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ABSTRACT 

This thesis presents a machine learning framework for the automatic classification 

and refinement of curves. The proposed framework is composed of both a representa­

tion and a family of algorithms for making inferences from examples, given suitable 

guidance from a user. The underlying computational paradigm taken consists of ap­

plying Hidden Markov Models to a wavelet representation of the curves of interest, 

each of which is presented as part of a pair of examples. The learning framework 

is exemplified by developing a gesture-based interface for two distinct applications: 

robot path planning and sketch beautification. For each, it is demonstrated that we 

can learn constraints on curves from a set of examples and apply them to augment 

rudimentary gesture information from a human operator. Further, it is demonstrated 

that we can identify what class of curves the human input belongs to, allowing us to 

automate the curve refinement pro cess for unclassified inputs. Finally, in cases where 

gesture information is given in the form of an image, it is also shown that the same 

methodology can be used to detect and extract the most likely parametric curve from 

the image. 

There are three key issues that are addressed for the classification and refinement 

of curves. First, we must establish the way in which the input, training and output 

curves look like one another. In the framework presented, this likeness is expressed 

statistically using Hidden Markov Models that extend over multiple curve attributes 

(such as curve thickness or color) and scales. Second, when attempting to infer 

a curve, we must also determine the way in which the surrounding curves should 
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affect the inference. Using a hierarchy of Hidden Markov Models, we can impose 

and exploit probabilistic interactions between multiple curves that make up an entire 

scene. Finally, in addition to the learned constraints, we must also determine a 

method for combining user-defined constraints with the Hidden Markov Models. It 

is shown that we can reformulate the Hidden Markov Models using a regularization 

framework and allow for the seamless integration of ad hoc biases to the learned 

models. 
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RÉSUMÉ 

Cette thèse présente une structure d'apprentissage informatisée automatique de clas­

sification et de raffinement de courbes. La structure proposée est composée à la 

fois d'une représentation et d'une famille d'algorithmes afin de créer des inférences 

à partir d'exemples, selon des instructions pertinentes d'un usager. Le paradigme 

d'informatisation de ce travail est d'appliquer les Modèles Cachés de Markov à une 

représentation ondulatoire des courbes d'intéret, chacune desquelles étant démontrée 

par une paire d'exemples. La mise en pratique de cette structure est représentée par 

deux applications disctinctes: planification du parcours d'un robot et embellissement 

de croquis. Pour chacune d'entre elles, il est démontrque nous pouvons apprendre 

les contraintes des courbes à partir d'exemples et les appliquer afin de perfectionner 

l'information gestuelle rudimentaire d'un opérateur humain. En outre, il est démontré 

que nous pouvons identifier à quel type de courbe appartient l'entrée d'informations 

fournie par la personne humaine. Tout ceci nous permet aussi d'automatiser le net­

toyage de la courbe pour des entrées non classifiées. Finalement, dans les cas où 

l'information gestuelle est traitée sous forme d'image, il est démontré que la meme 

méthodologie peut etre utilisée afin de détecter et extraire les courbes paramétriques 

les plus probables à partir de l'image. 

Il existe trois points principaux qui sont adressés quant à la classification et le raf­

finement de courbes. Tout d'abord, il faut établir la manière par laquelle les courbes 

initiale, déntrainement et finale se ressemblent. Avec la structure préée, cette simi­

larité est exprimée statistiquement grace aux Modèles Cachés de Markov qui prennent 
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en compte les multiples attributs de la courbe (tels que son épaisseur ou sa couleur) 

et les échelles. Ensuite, lorsque l'on essaie d'inférer une courbe, nous devons aussi 

déterminer de quelle manière les courbes environnantes affectent l'inférence. Grace à 

l'utilisation d'une hierarchie des Modèles Cachés de Markov, il est possible d'imposer 

et d'exploiter les interactions probables entre les multiples courbes qui forment une 

scène entière. Finalement, en addition aux contraintes apprises, nous devons aussi 

déterminer une méthode qui puisse combiner les contraintes définies par l'usager avec 

les Modèles Cachés de Markov. Il est démontré que nous pouvons reformuler les 

Modèles Cachés de Markov par l'utilisation d'une structure de régularisation et per­

mettre l'intégration aisée des polarisations aux modèles appris. 

v 
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CHAPTER 1 

Introduction 

Ruman interactions can be characterized by a set of signaIs or cues that typically 

result in ambiguous, noisy or incomplete expressions. Cues such as words, body 

language or tone of voice are thus subject to interpretation by the recipient who, 

based on an assumed context and prior knowledge concerning the subject, attempts 

to infer missing information and disambiguate the message being conveyed [17]. Can 

computer systems similarly interpret such informaI expressions? This thesis examines 

the problem of how to represent and use knowledge in order to deal with ambiguities, 

noise or missing information. This is a longstanding research problem in Artificial 

Intelligence (AI) which has been extensively investigated in contexts such as Robotics. 

The focus of this thesis lies in aspects of human-computer interaction for robotic and 

graphical applications; extending and applying AI techniques to develop a smart user 

inte'rface which can interpret the rudimentary hand gestures used for sketching and 

robotic control. 

While it is common in human dialog to say "1 know exactly what you mean" (and 

in most cases be correct), a computer system simply "knows exactly what it knows" . 

That is, the process of high-Ievel interpretation that is implied by the statement "1 

know what you mean" is generally lacking when interacting with a computer system. 

This is evident in many of today's systems where there is a large gap between the level 

of abstraction possible in human-computer interactions and the level of abstraction 
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which humans are normally accustomed to when interacting amongst themselves. To 

accomplish what one "means" typically requires substantial low-level specifications, 

fine tuning and specialized expertise or talent. Whether for a computer program, a 

schematic drawing or simply a set of point-and-click actions, the acceptable human 

inputs for producing the desired outputs are usually constrained by a rigid set of 

low-level requirements. 

An important concept in AI is that of abstraction; Le. methods that attempt 

to provide more compact representations for a problem of interest. The process of 

abstraction is often used in commonsense reasoning to eliminate unnecessary details 

from information involved in sorne task [32]. While finding an appropriate abstract 

representation is an essential problem, conversely, decoding an abstract model is an 

even larger challenge. The challenge is to automatically compute the missing values 

of low-Ievel parameters, which are larger in number with potentially complicated 

interdependence, from the given values of high-Ievel parameters, which are fewer in 

number and more suit able to the user (or agent). Indeed there are many cases where 

this is trivially accomplished. For example, consider the image of a circle. One does 

not need to specify every pixel on the screen, but rather to sim ply identify a center 

and radius and the circle can be rendered automatically. On the other hand, consider 

designing a new sixteenth-century style chapel. One requires a substantial amount of 

meticulous specification of the parameters which will fully define the desired output. 

How to provide the appropriate abstraction model and to subsequently acquire the 

knowledge required to decode that model remains an open problem. 

Reducing the required amount of user intervention while, at the same time, pro­

viding enough expressive power is a key sub-problem in abstraction. There are grow­

ing efforts in the fields of Robotics and Computer Graphics, where end-users are 

challenged by increasingly complex tasks, to both implicitly and explicitly address 

this issue. For instance, there has been substantial work in Robotics where the goal 

is to automatically control low-Ievel motor parameters in or der to provide a suffi­

cient set of high-Ievel behaviors [12, 4, 64]. (The most popular methods are known 
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as hierarchical control, reactive control and subsumption.) Similar ideas have been 

applied in Graphics and Animation where the low-Ievel control points required for 

producing complex scenes are abstracted by higher-Ievel models with more intuitive 

controls [3, 28]. Depending on the domain of application, the methods and degree of 

abstraction can vary substantially. 

In this thesis, a gesture-based interface is developed for two applications of inter­

est; sketching and robot control. For the sketching application, a sketch beautification 

system is developed that transforms rough hand-drawn curves to produce refined ver­

sions of them [80]. For the robot control application, a path-planning system is 

developed that automatically generates kinematically correct trajectories from rough 

goal trajectories (that are otherwise invalid) [77]. These two seemingly different ap­

plications share in common aspects of abstraction; to take the coarse inputs and 

automatically compute the low-Ievel details that satisfy sorne desired constraints or 

preferences. This thesis presents a generic framework (suitable to both applications) 

for modeling the knowledge required to both define the validity of the low-Ievel output 

and associate that output with a high-level layer for control. The following outlines 

the important criteria that are considered in developing this framework: 

Simplicity: A key criterion for the framework is that of simplicity. The 

resulting system must simplify what is otherwise a complex task to the 

user. However, the focus is not to directly address aesthetic issues such as 

the usability of an interface, the layout preferences or difficulty in system 

set-up and configuration. While all these are important components to 

consider, the main problem of interest is how to reduce the amount of data 

or expected accuracy required to produce the desired end-results. Thus, 

the user-friendliness of the system relates to the convenient and intuitive 

forms of input that can be used in order to perform difficult tasks. 

Controllable: The framework must provide a suit able control scheme. Un­

like many AI applications, the goal is not aimed at developing a completely 

autonomous system, rather, the behavior of the resulting system should be 

3 



CHAPTER 1. INTRODUCTION 

dependent and tightly cou pIed to the human input. This semi-autonomous 

and collaborative approach emphasizes the aspects of human-computer in­

teractions in the system. Users must have the ability to easily steer the 

system toward the desired results. 

Customizable: The way in which the system behaves may vary from one 

user to another. Users have different preferences and abilities, sorne may 

wish to have a certain degree of control while others may wish to change 

the control scheme altogether. The framework must therefore be flexible 

in the way it handles the inputs, allowing for custom configuration that 

accommodates personal preferences. 

General: The framework should be general, with limited domain specifie as­

sumptions. Supplementary ad hoc constraints that are suitable for special­

ized applications must be easily integrable into the system. The framework 

must also support parameters in arbitrary dimensions such that it can rep­

resent domains with multiple degrees of freedom. 

Example-Based: Having to manually model the desired behavior of the sys­

tem for each application is a cumbersome task. Instead, the framework 

should have the ability to learn from examples the range of valid outputs 

for a particular application and its relationship to the expected inputs. 

Expressive Power: The range of possible outputs that the system can pro­

duce for a given domain should not be overly restrictive. The provided 

learning framework must adequately generalize specifie examples to a broad 

ensemble of cases. 

The framework developed is based on Markov Models: probabilistic descriptions 

of how sequentially ordered states are related. Specifically, we use Hidden Markov 

Models (HMMs), a modeling formalism that allows us to express the relationship 

between aspects of a system that can be observed directly (the coarse input from 

the user) and variables that cannot be observed, but which determine the output 

(what the user "really wants"). This doubly stochastic model combined with several 
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other techniques discussed later form the core of the framework satisfying the criteria 

described above. 

1. Gesture-Based Input 

Gesture-based interfaces provide users with a natural method for interacting with 

computer systems. There is a wide array of hardware devices that attempt to accu­

rately capture human gestures. Examples range from expensive wearable sensor sys­

tems that capture multiple degrees of freedom to simple point and click devices (Fig. 

1.1). Pen-based devices such as pen tablets, tablet PCs or electronic white-boards are 

becoming increasingly popular tools for users of varying degrees of expertise. While 

such systems may soon become common HCI devices, driving the demand for novel 

application, the research dealing with processing and analyzing pen strokes is still in 

its infancy. 

FIGURE 1.1. Examples of gesture-based hardware devices. The 1eft image 
shows a child using a simple electronic pen tablet, middle shows a tablet 
PC (from teddy [41]) and right shows an electronic whiteboard (from T. 
Stahovich et al. [50]). 

In the framework presented here, a signal processing approach is taken to process 

pen-based inputs. Every pen stroke drawn by the user can be considered as a stochas­

tic signal, represented by a parametric function over time (or traveled distance). In 

gelleral, the parametric fUllctiollS cau be of arbitrary dimellsiollality, ellcodillg mul­

tiple attributes such as pen position, speed or pressure. Continuous functions that 

map a one-dimensional space to an n-dimensional space are referred to as parametric 

curves. As such, throughout this thesis, aH user inputs to the system are referred to 
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as curves (e.g. the drawn outlines of a sketch or the coarse trajectory of a robot). 

Similarly, all of the resulting outputs are also referred to as curves, parametric func­

tions that compute the desired application specific output (mapping attributes such 

as position, motor speed, coloration or thickness). 

2. Sketching 

Drawing a sketch is one of the most common and versatile ways to convey in­

formation. Sketches are often found in comics, presentation material, cel-animation, 

storyboard designs, system designs (sketch to prototype) and non-photorealistic pen­

and-ink illustrations (Fig. 1.2). Despite the natural ease of drawing a sketch, the 

creation of high-quality good-Iooking sketches remains time consuming and skill de­

pendent. In fact, a search on the web for the phrase "1 can't draw" returns roughly 

74,000 hits (using the Google search engine, August 28, 2005). While almost every­

one can sketch a crude illustration, only a few have the artistic talent and patience 

to draw the refined details they wish to depict. Even those who are lucky enough to 

possess those abilities may not have the appropriate tools at hand. 

In many cases, sketches are used as a first-order presentation of concepts [93]; to 

quickly construct a coarse visualization of an idea. The pur pose is not to pro duce 

a physically or cosmetically correct illustration but rather to easily capture an idea 

that may or may not materialize later in a more comprehensive design. Such sketches 

typically consist of a set of curves that are disproportionate, noisy and coarse. When 

these sketches pass the "drawing board" phase or if they need to be presented more 

clearly to other viewers, the intricate task of preparing a more refined version takes 

place. Existing tools to accomplish this in a digital domain include software applica­

tions for CAD, diagramming, desktop publishing, image editing and vector graphics. 

While the initial sketch typically lacks the details required for an unambiguous 

interpretation, it is meant to provide sufficient information for a human observer to 

envision the artist's original intention and construct a Mental Madel [18, 45]. This 

interpretation is dependent on both the shapes of the curves and their context III 
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FIGURE 1.2. Sample sketches. The left shows a flow chart, the middle shows 
a storyboard and the right shows a circuit design. 
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the sketch (Fig. 1.3). For example, in one context, a rough circle may be a coarse 

representation of a gear, while in another, it may represent the head of a stick figure. 

The resulting Mental Model in combination with the tools at hand are used in a skill 

dependent feedback pro cess to pro duce the final drawing. 
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FIGURE 1.3. Sample sketches demonstrating ambiguities (e.g. in one case 
the zig-zag shape is a resistor while in another its a spring, T. Stahovich et 
al. [50]). 
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Given the diverse set of possible types of drawings and contexts, can a universal 

system be developed that automatically infers the refined version of a sketch? A 

system that uses only specialized domain specific constraints may be overly restrictive. 

Rather, the knowledge of what the refinements should be, for a given domain, must 

be extracted automatically from an ensemble of examples that show samples of the 

desired output. 

This leads to two key problems that must be addressed in a trainable setting; the 

curve refinement problem and the curve classification problem. First, the system must 

be able to learn the desired types of curve refinements and then transform a coarse 

curve to exhibit the desired style (treating each curve in the sketch independently). 

This is accomplished by applying a curve refinement model; a set of learned rules that 

transform a coarse curve to a refined one. Second, for each curves in the sketch, the 

system must automatically select most appropriate refinement model that should be 

applied from the set of all possible models (there can be several such models trained 

under different contexts or styles). This is accomplished by choosing the refinement 

model that best transforms the curve while also satisfying high-level relationships 

between other curves in the sketch (using semantics that identify the types of curves 

in a sketch). For example, suppose a curve is best represented using a refinement 

model for a tree (the semantic label), the refinement models applicable to other 

curves above it should be ones for clouds, leaves, birds, etc. 

The approach taken to address these problems consists of modeling probabilistic 

constraints on curves in a sketch using a two-Ievel hierarchy of Hidden Markov Models 

[25]. Each HMM in the first level de scribes the refinements for a class of curves and 

each HMM in the second level describes the high-Ievel constraints for a class of scenes. 

This leads to a relationship between the HMMs used on individual curves, the curve­

level HMMs, and those used to specify the identity of objects within the entire scene, 

the seene-level HMMs. The scene-level HMM encodes probabilistic constraints on 

the application of the curve-Ievel HMMs based on the type of sketch that is being 

drawn. When a curve is refined using a particular curvel-Ievel HMM, the refinements 
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applicable on the neighboring curve must be compatible. For example, we should 

never refine a curve to look like a fish when a previous curve below it has been refined 

to look like a tree. While this approach does imply a sequential ordering of curves, it 

is possible to either ignore the sequential ordering constraints (described in Chapter 

3), dynamically sequence the curves based on their proximity or extend the framework 

to use Markov Random Fields. 

While the HMMs provide a powerful framework for learning local constraints on 

curves, their application alone may not be sufficient for the desired behavior of the 

system. Additional do main specific constraints may be required to complement the 

learned ones and further enhance the way a curve is synthesized. In order to allow 

for such supplementary constraints (ad hoc biases) to be plugged into the system, 

the curve-Ievel HMMs are reformulated using a regularization framework (discussed 

in Chapter 4). This is especially important in cases where the prior distributions 

are not easily available and explicit analytical functions must be used to further bias 

the distribution. For example, it may be desirable to include a constraint to enforce 

curve closure, which is too difficult to model using only HMMs but can easily be 

incorporated as an regularizing bias using analytical functions. 

Developing a smart sketch-based interface in this fashion can facilitate many of 

the difficult and laborious drawing tasks. Such an interface can be used for technical 

drawing and diagramming, where primitive shapes such as lines and arcs can make 

up a training set. Instead of using the traditional point-and-click technical drawing 

interfaces, the user can naturally sketch out a novel diagram while the smart interface 

infers the new shapes that are stylistically similar to the training set. Similarly, the 

interface can also be used for creating web-art and can potentially be extended to 

animation. One potential difficulty in the usability of such a system is that the train­

ing set must be carefully constructed in or der provide the desired types of outputs. 

Though this is a one time set-up step, users must have a good idea on the types of 

outputs that can be produced for a given training set. 
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2.1. Segmentation. If the sketch is drawn using a digital medium (sueh as 

a tablet, pointing device or PDA) then the pen strokes may be available to the sys­

tem. An interesting problem arises when the original pen strokes are not direetly 

available but have already been rendered to an image. Can the original pen strokes 

be detected and extracted from the image? This issue is also relevant to many mod­

ern image editing applications where the available tools for transforming objects are 

applied under the assumption that the objects have already been isolated. Manually 

extracting individual pen strokes from images that are noisy or include occlusions can 

be a tedious task. 

Curve segmentation is a well established researched topic in the fields of Com­

puter Vision and Image Processing, with particular applications to contour detection 

and object recognition. Approaches to this problem range from band-pass filtering 

techniques to curvature heuristic-based methods [21]. In this work, the learning 

framework is used to extract parametric curves from images of sketches. The ap­

proach consists of searching through all the possible parametric curves that explain 

the image and pruning those that are inconsistent with the learned constraints [79]. 

The user ean then simply click near an end-point of the desired pen stroke and the 

system automatically extracts it based on its similarity in style with the training set. 

3. Robotic Control 

In motion planning (e.g. for a robot), there are typically two types of constraints 

to consider on the paths that can be taken: extrinsic constraints, imposed by the envi­

ronment or other external factors, and intrinsic constraints, imposed by the physical 

characteristics of the vehicle itself. Finding valid trajectories that satisfy both the 

mechanically imposed constraints and environmelltal constraillts can be a difficult 

task. Further, motion planning is complicated not only by the need to generate these 

paths, but also by the need to initially model whatever constraints may be imposed 

by a particular vehicle or task. 
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Traditionally, intrinsic motion constraints have been modeled using analytic meth­

ods that constrain the differential geometry of the set of admissible paths. The 

constraint equations for motion are complex relations that attempt to simulate the 

dynamics or kinematics of a mobile robot based on its mechanical design. In par­

ticular, non-holonomie constraints refer to limitations on the allowed derivatives of 

the path, and planning in the presence of such constraints is often difficult (an au­

tomobile is a common ex ample of a vehicle with such constraints, as it is unable to 

move perpendicular to the direction in which it is facing, Fig. 1.4). There are two 

approaches taken for analytically modeling these constraints: one based on forward 

kinematics and the other based on reverse kinematies. Forward kinematics refers to 

the modeling formalism used for computing the trajectory a robot can take given a 

sequence of model parameter values (which directly translate to motor commands). A 

regular sequence of such parameter values for an articulated robot is often referred to 

as a gait. The reverse kinematics based approach consists of deriving explicit models 

that can solve for the sequence of parameter values (or gaits) that result in the robot 

traversing a desired goal trajectory. Path planning typically entails either solving 

the inverse kinematic models or solving an optimization problem over the forward 

kinematic constraint equations. 

Motion constraints are not only used for modeling a robot's internaI mechani­

cal configuration but are also used to model extrinsic motion preferences. In sorne 

applications, equations are constructed to model task specific motion requirements, 

such as a sweeping pattern for full fioor coverage or a suitable behavior to scan the 

environment using a narrow-beam sensor. Specialized paths also occur in various 

specialized contexts; in the classic 1979 film "The In-Laws" Peter Falk instructs Alan 

Arkin to run along a "serpentine" path while heading for a goal that is straight ahead. 

Additionally, in applications such as obstacle avoidance, motions are not only related 

to the robot 's pose but are also a function of the perceived environment. In aIl of 

these examples, the underlying core problem consists of finding a valid transforma­

tion between two components: 1) the idealized "raw" path that directs the robot to a 
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FIGURE 1.4. Example trajectory for a car-like robot. Instead of the simpler 
trajectory (dashed path), due to the limitation on the turning radius a more 
complex trajectory must be taken (solid path). 

goal without taking into account certain preferences or constraints, and 2) the refined 

path that attempts to reach the goal while also satisfying the system constraints. 

Whatever the constraints, expressing them in a suitable formaI framework is of­

ten challenging. Further, the processes of fin ding allowable solutions can be costly, 

particularly since the solution techniques are often engineered for a specifie context. 

In contrast, this thesis presents a radically different approach to path planning. The 

presented machine learning framework is used to simulate the motion constraints 

without having to explicitly model them. The constraints (or preferences) are ex­

pressed in terms of a set of examples that illustrate how the robot is permitted to 

move. Further, these examples indicate how to elaborate a coarse input path from 

a user (which is typically not acceptable in itself) into a suitable acceptable output 

path. Informally, the examples say: "if a user asks you to do something like this than 

what you should actually perform is a maneuver like thaf'. This nuvel appruach tu 

path planning is referred to as analogical pa th planning [78], wherein paths are gen­

erated by analogy with previous observed acceptable paths and without an analytic 

model. 
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In similarity with the sketching application, Hidden Markov Models are used to 

both model the constraints on the allowable paths and provide a layer for high-level 

control. Further, using the regularization framework, these HMMs are dynamically 

biased in order to account for environmental constraints. Obstacle avoidance is per­

formed by computing a distance transform over boundaries in the environment and 

combining the resulting field with the trained HMM. This biased HMM constrains 

the configuration space of the robot resulting in trajectories that satisfy the desired 

motions and avoid obstacles. 

Because the system learns from examples, it can be applied in a variety of do­

mains. This avoids having to extract and analytically model constraints for each de­

sired task or mechanical configuration that we may wish to control. One can sim ply 

demonstrate how a robot can move and subsequently the system can automatically 

produce new paths based on these motions. One area of application is tele-operated 

robotics. A human can guide the robot to areas by sim ply sketching a coarse path. 

The system can then refine that path based on the learned specification of the robot 

and generate a new valid path analogous to the goal. Another application is to com­

plement high-level planners to relieve them of the burden of non-holonomic (complex) 

path planning. Our system can take in as input the paths generated by such planners 

and augment them to avoid obstacles while maintaining a desired behavior during 

motion. 

4. Contributions 

The main contribution of this thesis is the development of a machine learning 

framework applied to a novel gesture-based interface for creating illustrations and 

controlling a robot. The novelty stems from the idea that coarse gestures can be used 

to steer a Markovian-based synthesis procedure and produce new refined outputs. 

The synthesis procedure is rooted on the idea that stitching and blending fragments 

from a training set can results in new examples that can also be considered part of 

the set. While many of the models used in this thesis are already weIl established 
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(such as HMMs, wavelets), they have never been used together in the fashion pre­

sented nor have they been applied as a unified approach for the applications presented 

here (sketch beautification, curve extraction from images and robotic control). The 

following lists the contributions of this thesis in more detail: 

• A novel sketch beautification system is developed where curve transforma­

tions are represented by a hierarchy of probabilistic models. 

• A novel gesture-based robot path-planning system is developed (called ana­

logical path planning) where robot trajectories are produced by analogies 

with the the training set. 

• The same framework used for the sketching and robotics application is also 

used to develop a novel method for segmenting images. 

• A novel two-level Hierarchical Hidden Markov Model is developed where the 

first level of the hierarchy (curve-level) models probabilistic constraints on 

individual curves and the second level of the hierarchy (scene-level) models 

probabilistic constraints over entire scenes. A third level process is also 

developed (pixel-level) to synthesize textures. 

• U sing dynamic programming, an efficient algorithm is developed for synthe­

sizing full colored illustrations from the hierarchy of models. Unlike most 

approaches taken in this domain, the algorithm is not based on a greedy 

strategy but rather takes into account the entire sequence of inputs, both at 

the curve-level and at the scene-level, before committing to a final solution. 

• Hidden Markov Models are used in combination with wavelets to efficiently 

capture long-range probabilistic constraints from the training data. This 

simulates a higher or der Markov process without exponentially increasing 

the state space. 

• A regularization framework is combined with the HMMs in order to inte­

grate supplementary analytical biases whose net biasing effects are other­

wise too difficult to automatically learn. 
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• A dynamic labeling scheme is developed to represent training sets in con­

tinuous domains using discrete samples. The scheme applies on multi­

dimensional samples and can simultaneously encode multiple curve at­

tributes (such as curve color or thickness), multiple input attributes (such 

as pen pressure or speed) and multiple seales. In this fashion, the state 

space has at most N elements where N is the number of unique sample 

points form the training set. 

• Learning eurve transformations is simplified by providing training sets that 

consist of a pair of examples (Le. labeled samples). Rather than having 

to use computationally eomplex learning algorithms sueh as Expeetation 

Maximization, learning is performed by sim ply analyzing the statistics of 

the training set. Using training sets in this fashion also allows users to 

explicitly eustomize the way curves are transformed. 

• Using Gaussian basis funetions, a method for eontrolling the sensitivity to 

make transitions between training examples is developed. The variance 

of the Gaussian controls the degree of mixing examples where at one end 

of the spectrum the outputs are forced to resemble exact instances of the 

training set while at the other end of the speetrum arbitrary mixtures ean 

take place. 

• Using a sigmoid blur, a method for eontrolling the sensitivity of the system 

to the user input is developed. The parameters of the sigmoid regulate how 

sensitive the system is to the user input. 

The thesis includes a theoretical framework, an instantiation in software and experi­

mental validation. 
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1.5 OUTLINE 

5. Outline 

This thesis is organized as follows: 

Chapter 2: Relevant work in the fields of Computer Graphies, Vision and 

Robotics are presented and discussed in context to the applications of in­

terest. 

Chapter 3: An overview of the framework is presented, including a discus­

sion of the curve representation, Markov Models, multi-scale methods, Hid­

den Markov Models and the the Hierarchical Hidden Markov Model. 

Chapter 4: The method for learning curve refinement models and applying 

them on individu al curves is presented. 

Chapter 5: The framework is customized for the sketching application and 

results are presented using various training sets. 

Chapter 6: The framework is customized for the robotics application, lll­

cluding an additional function for obstacle avoidance. Results are presented 

for a simulated robot. 

Chapter 7: The method for learning scene refinements and applying them 

on entire sketches is presented. The curve extraction algorithm is also 

presented and the results for sketch refinement and curve extraction are 

shown. 

Chapter 8: A conclusion and discussion of future work is presented. 

16 



CHAPTER 2 

Related -Work 

This chapter reviews the related work in the fields of Computer Graphies, Image 

Processing and Robotics. While all of these areas together are beyond the scope of this 

thesis, there are sub-domains of applications that address similar issues from different 

vantage points. Section 1 describes recent efforts for developing convenient curve and 

surface models, a well established topic in Computer Graphies. Section 2 describes 

sorne existing sketching systems where the goal is to provide a natural interface for 

creating illustrations. This is followed by a discussion of image processing systems 

that attempt to detect and extract curves from images. Section 3 reviews relevant 

work in robot path planning and animation, where the control of elaborated systems 

is crucial. 

1. Curves and Surfaces 

In Computer Graphies applications, one of the most widely used mechanisms to 

construct an illustration consists of manually laying out curves and surfaces. This is 

accompli shed by specifying a set of control points and using an interpolating function 

that. defines t.he geomet.ry bet.weell t.he poiut.s. First.-order fuuctious (e.g. polyliues) 

pro duce piecewise linear approximations to the desired shapes while higher-order 

functions provide a smoother approximation with fewer vertices. Common curve and 

surface representations are based on third-order tensor products known as NURBS 
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(Nonuniform Rational B-Splines) [27]. Such models provide good expressive power, 

local support, up to second-order parametric continuity and invariance to affine trans­

formations (i.e. transformations need to be applied only on the control points). Im­

plicit models [74], defined by a function J(x) = 0 for all points x, are an alternative 

form of representation that are less widely used due to their computational complex­

ity and memory requirements. They are most commonly used in applications where 

point classification is critical such as collision detection, constructive solid geometry 

and shape blending [92]. 

In general, parametric interpolation consists of hard-coded smooth functions 

{x(t),y(t),z(t)} for a curve or {x(t,s),y(t,s),z(t,s)} for a surface over a domain 

such as [0,1]. These functions alone are often not intuitive enough to provide a natu­

raI interface for constructing and manipulating shapes. Important details are usually 

blurred-out during interpolation and can only be preserved by manually adjusting 

an excessive number of control points. For example, in or der to represent shapes of 

arbitrary topology, these models must be partitioned into a collection of patches and 

explicitly stitched together [24]. A large number of parameters are introduced to 

stitch adjacent patches and enforce geometric continuity conditions. This is further 

complicated in cases where the designers wish to interactively edit the model on a 

regular basis. Instead, approaches such as hierarchical modeling, multi-scale meth­

ods, subdivision schemes or functional minimization can be used to further extend 

the functionality of the underlying parametric models. 

One of the key ideas for facilitating user friendly interactive models is the notion 

of coarse to fine control, or abstract to detailed representation. This idea has been 

explored in early work by Forsey and Bartels [28] in which hierarchical B-splines are 

developed. Rather than having the user interact with a single control layer, large- or 

small-scale edits can be made by manipulating control points at the corresponding lev­

els in the hierarchy. Similarly, Salesin and Finkelstein [26] develop a multi-resolution 

curve representation using wavelets. A curve is decomposed into n resolution levels 
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using a multi-scale basis function based on B-splines. (The D'th degree B-spline re­

duces to the Haar basis.) Curves may then be modified at multiple levels of detail, 

such as changing the overall form of the curve while preserving its detail or vise versa. 

Instead of providing the user with multiple levels of representation, another ap­

proach consists of attempting to automatically determine those areas of a curve (or 

surface) that require higher resolution. In this approach, the sampling resolution is 

related to the geometry of the shape rather than a level of some hierarchical repre­

sentation. Parametric subdivision schemes, first introduced by Doo et al. [19] and 

Catmull et al. [15], consist of repeatedly refining an initial control mesh until a sat­

isfiability criterion is met. Applying subdivision rules on the smooth basis functions 

results in piecewise smooth shapes that maintain the character of sharp features such 

as creases, corners and darts while reducing the number of control points at smoother 

areas. 

Such multi-resolution approaches provide enhanced flexibility and control and a 

designer using them can easily interact with pre-fabricated families of shapes with 

fixed topology. However, once the topology is established, it becomes a tedious task 

to modify it. Weltch and Witkin [99] describe a variational calculus approach to free­

from shape design by representing a surface as the solution of an energy minimization 

problem. The control points of B-spline basis functions are dynamically computed to 

satisfy a desired objective function (smoothness) in conjunction with the potentially 

varying shape constraints. Topological changes are managed with heuristic based 

facet splitting and merging techniques. Users can pin-down, cut, extrude and merge 

the shapes. 

In general, functional minimization techniques can be used with arbitrary objec­

tive functions, including physics-based formulations where the objective is to simu­

late or approximate the dynamics of real world systems. Such formulations typically 

include specialized constraints that define an application specifie behavior for the de­

sired shape. For example, Terzopoulos and Fleischer [87] model flexible surfaces such 

as cloth by connecting a grid of points with springs, dash-pots and plastic slip units. 
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When applying forces at different positions, a new cloth-like shape is computed by 

solving an energy minimization problem. Baraff et al. [83J modei the shattering of 

brittie objects using a set of point masses connected by linear constraints. Forces 

are cascaded through the lattice using Lagrange multipliers, producing cracks when 

surpassing a predefined threshold. A similar approach is taken to develop a smart 

floor-plan designing system [36J. Finding good approximation models with com­

putationally tractable solutions is a key hurdle to overcome in these physics-based 

systems. 

2. Sketching 

Though most of the approaches described in the section above result in computa­

tionally complex solutions, the main intent is to create an illusion of simplicity for the 

designer. The ideal representation should produce the impression of a continuously 

malle able shape having no fixed control points. lndeed this vision is synonymous with 

the core ideas behind may of todays smart sketching systems, where the aim is to 

simulate the simplicity experienced in pen-and-paper drawings. There are a variety 

of related sub-goals that sketching systems attempt to achieve, including modeling, 

beautification, recognition, synthesis and classification. The recent approaches taken 

to de al with these problems is the subject of this section. 

Traditionally, methods for pen-based modeling use specialized constraints that are 

based on rules and preferences for a given domain. Such methods attempt to estimate 

the parameters of geometric objects that best fit the data points acquired from a pen­

stroke. The difficulty in solving for this stems from both the noisy nature of most data 

sets and the ambiguities present in the ob ject models themselves (different parameter 

values can result in a similar shape). This has been demonstrated by several authors. 

Banks and Cohen [8] develop a system for the real-time fitting of B-tiplineti to halld­

drawn curves. The approach, based on earlier work by Lyche and Morken [59], is to 

first consider the initial curve sample points as B-spline knots and then iteratively 

remove the knots that have least influence the shape. Davis et al. [75J describe a 
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method that uses both curvature and speed of a pen-stroke to detect vertices for a 

hybrid geometric model consisting of a combinat ion of polylines and Bezier curves. 

Novins and Avro [5] apply a continuous morphing procedure to interactively morph 

segments of a hand-drawn curve with the best fit shape from a set predefined basic 

primitives such as lines, arcs and boxes. Igarashi et al. [41] develop a system where 

2D contours of shapes are sketched out with the intent of producing 3D surfaces 

that pass through them (Fig. 2.1). A 3D mesh is automatically "infiated" from 

the fiat image by first triangulating the contour using the control points and then 

computing the shape's spine along the triangulated plane. New vertices and edges 

are attached to the spine joints and are elevating in proportion to their distance from 

the surrounding edges. Topological edits can also be performed by sketching out 

extrusions or cuts from the drawn shape. Mesh beautification systems [40] or line­

drawing beautification systems [42] can be used in cases where the resulting objects do 

not satisfy preferences such as uniformity, smoothness, perpendicularity, congruency 

and symmetry. Though these and other similar approaches have proven to be very 

successful, the extent of their application is strictly limited by the expressive power 

of the geometric models used. 

FIGURE 2.1. Example interface and results from [41]. Left shows the inter­
face and right shows 3D example results. 

Allother research direction illvolves the use of a training set that shows examples 

of the types of curves that the user is expected to draw. By simply providing the 

appropriate examples, these systems can dynamically adapt to both the personal 

drawing habits of a user and the desired domain of application. Rubine [71] expands 
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on this idea to develop a gesture-based interface for drawing, editing and writillg text. 

The core of the work consists of a trainable recognizer that classifies gestures using 

a linear discriminator on features from the input gesture and the target examples. 

Landay and Myers [52] further make use of this recognition system to develop a 

sketch-based interface for designing and creating graphical user interfaces. Their 

system recognizes predefined curve strokes as DI widgets and further groups them 

based on predefined preferences on spacial relationships. A similar approach is taken 

by Zeleznik et al. [103], where example gestures are used as quick-hand notations 

of 3D objects and editing commands. Lipson and Shpitalni [57] develop a system 

for reconstructing 3D polyhedra from 2D line drawing by learning from examples the 

correlation of connected lines in 3D space to their planar projection. 

The methods mentioned above provide fiexibility in the types of gestures that are 

recognizable. Once recognition is performed, the outputs consist of sorne parametric 

variations of predefined primitives (such as a line, a cube or a character). Recent 

advancements in texture synthesis and image restoration methods [37, 98, 31] suggest 

that we can learn the regular properties of example images and generate new ones 

that exhibit the same statistics but are not exact duplicates of the original. Work 

by Hertzmann et al. [38] show how this stochastic approach can also be taken to 

stylize hand-drawn curves (Fig. 2.2). In their work, curve styles are learned from the 

statistics of example styles and new curves exhibiting those same styles are synthesized 

along the shape of the input curve. Analogies between the inputs and outputs are 

computed by calculating an offset between the best mat ching segments of the input 

curve and training examples. This offset is then used for a rigid transformation on 

the best candidate match. Likewise, Freeman et al. [29] present a example-based 

method to stylize line segments. Novel curves are generated as a linear combinat ion 

of the k nearest neighboring examples in the training set. In work by Kalnins et 

al. [46] these ideas are extended to automatically synthesize stylized silhouettes of 

3D object, part of a comprehensive interactive system for gesture-based annotations 

of non-photorealistic rendering styles on 3D objects. The framework presented in 
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this thesis is similar in spirit to such methods where, using a probabilistic approach, 

users can controllably synthesize novel outputs that are similar to, but are not exact 

instances of, examples in the training set. 

o o 
~ ~ 

FIGURE 2.2. Example curve analogies from [38]. Left shows the input curves 
and right shows the output. 

Another important function of a sketching system is to determine if the interpre­

tation of the current object is compatible with the interpretation of the surrounding 

objects. In principle, this problem is similar to the ones addressed by the methods 

discussed above. Rather than only considering constraints on individual pixels (or 

sample points), the pixels are grouped to form objects and constraints are then ap­

plied on these objects. Several researchers take this into consideration and develop 

systems that attempt to resolve ambiguities by examining the compatibility of the 

placement of objects using their semantics. Alvarado and Davis [1] describe a system 

for recognizing and disambiguating shapes in mechanical drawings. Included in the 

system are constraints that are applicable to individual objects, with preferences for 

temporal coherence, simplicity and high recognition confidence, and constraints on 

how these objects relate to one another, with preferences for valid mechanicallayout 

and phy~ically fea~ible configuration~ (Fig. 2.3). Similarly, Kurtoglu and Stahovich 

[50] identify the physical compatibility of sketch components in mechanical drawings 

and remove interpretations of object that are in incompatible classes. In later work 

by Alvarado et al. [2], shape description grammar rules are used to define high-Ievel 
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objects by patterns of low-Ievel primitives. A hierarchical recognition system eou­

pIed with a Bayesian network is developed to reeognize the domain specifie objects 

based on the interpretation that best fits the grammar rules. In work by Viola and 

Shilman [76], an A * algorithm is used to search through the set of possible groupings 

of neighboring pen-strokes to find the optimal interpretation. The search is based on 

an underestimate measure for segment compatibility, which can be computed using 

arbitrary recognizers. 

FIGURE 2.3. Example sketch interpretation from [1]. Left shows the input 
sketch and right shows the physical interpretation. 

In this thesis, three key ideas are developed that extend the sketch based meth­

ods cited above. First, using a Hierarchy of Hidden Markov Models, the system can 

capture the interaction of multiple stochastic functions in order to represent scene 

dynamics over various scales and contexts. Second, the individual HMMs themselves 

are two-layered systems, where one layer models the output generation process while 

the other ties in controllability to that process. That is, the synthesis is driven by 

the input such that the actual features generated are directly dependent on the shape 

of the input. This allows us to model examples with localized and non-stationary 

features that are tied to the shape of a given region (such as a roof ledge that extends 

only at the corner of the roof). Finally, many of the existing approaches to synthe-

sizing novel outputs consider greedy strategies, always choosing the best match at 

the current point. When we are given inputs or partial data, the locally best points 

may not contribute to the global optimum. Future information often biases earlier 

points, for example, when drawing a vertical line we do not know whether to apply 
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brick features or bark features until we see what will be drawn later. U sing a dynamic 

programming algorithm, the system takes into account the entire sequence of inputs 

while also avoiding excessive run-time complexity. 

2.1. Curve Extraction. If the stroke sequencing is not directly available 

but has already been rendered in the form of an image (i.e. a digital scan of a hand­

drawn picture), then we must first attempt to extract the curves from the image. 

There is an abundance of literature concerning the extraction of curves from images. 

The literature typically deals with several distinct processes: edge detection, curve 

grouping, and segmentation. The latter two (grouping and segmentation) refer to the 

pro cess of extracting meaningful connected curves from data that may be confusing, 

cluttered or incomplete. 

Curvature information is a key heuristic for building curves from noisy data. A 

standard approach in the presence of ambiguous data is to select the curve that min­

imizes a "goodness measure" based on minimum curvature, minimum absolute cur­

vature or minimum variation in curvature. Such goodness measures can be posed 

as energy functionals, procedural rules, or decision trees. Work by Ullman and 

Sha'ashua [94] use locally connected networks to determine saliency for smoothness, 

continuity, and curve length. Similarly, Jacobs [43] develop a method for extracting 

curve segments based on a convex saliency measure. Earlier work by Lowe shows how 

a curve can be extracted by applying perceptually inspired grouping rules with prop­

erties such as proximity, collinearity and parallelism [58]. Estrada and Jepson [23] 

use predefined geometry-based affinity measures to evaluate the quality of line seg­

ment junctions. All of these approaches have proven to be very powerful, but they 

are based almost universally on an attempt to obtain generic domain-independent 

grouping strategies, typically using rules inspired by visual psychophysics [48]. 

Another approach is to use probabilistic methods in order to maintain the likeli­

hoods of a set of possible solutions. These likelihoods are typically computed using 

both hard-coded conditional biases (such as a preference on curvature) and learned 

conditional biases (computed on the fly using representative exemplars). Taking this 
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approach, Williams and Jacobs [100] develop a method for contour extraction where 

a prior probability on the shape of a boundary is computed using paths of particles 

that undergo a random walk in the image. August and Zuker [7] describe the notion of 

curve indicator fields as generic models for producing edge likelihoods. In particular, 

their experiments employ a Markov random field model for contour enhancements. 

This thesis takes a similar approach where, using the HMM learning framework, prob­

abilistic constraints are applied to rank the candidate pen strokes found in images. 

Unlike many of the previous methods, the presented method captures features over 

multiple scales using a wavelet representation. 

While the problem of extracting curves from images has been a long standing 

research topic in the domain of computer vision, there is a variety of recent work that 

is more focused on sketches and employ similar image based principles for recognizing 

and grouping sketch components. For example, Saund [72] develops a method to 

rank candidate paths that form perceptually closed contours. The approach consists 

of applying local preferences on candidates with both tightly closed paths and smooth 

paths. In related work, Saund et al. [73] develop a sketch editing application that 

includes image analysis techniques for the separation of foreground from background 

and a method for finding and selecting "perceptually sound" grouping of sub-regions 

of a sketch. Images such as that shown in Fig. 2.4 can then be interacted with by 

simply selecting the desired elements of the image. 

3. Motion Planning 

The key problem in the sketch refinement consists of determining the appropriate 

methods for producing the preferred output while reducing the required amount of 

user intervention. Generating a sketch, which consist of producing curves while tak­

ing into account the u::;er input and the de::;ired type of output, i::; a ::;imilar problem 

to generating a path, where a robot must be driven using a trajectory that adheres to 

a set of constraints. Many of these constrains stem from either the mechanical con­

figuration of a robot, a desired task-specific motion or the surrounding environment. 
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FIGURE 2.4. An example sketch editing action from [73]. Using the sketch 
editing application, elements of the sketch can be extracted, grouped and 
modified. 

Path planning for a mobile robot has been extensively examined by many authors. 

One of the key ideas in the area is the notion of path planning under non-holonomie 

constraints, where the velocity of the robot q is constrained by its pose q: 

G(q, q) = 0 

Specifically, path planning using a bound on the turning radius of the vehic1e [53] 

is the subject of interest in this thesis. Notable work in the field inc1udes that of 

Dubins [20] and Reeds and Shepp [70] on optimal trajectories. Much of this work 

deals with the que st for an optimal path (or trajectory) under a motion constraint 

which is expressed analytically (for example a derivative constraint). Prevalent so­

lution techniques inc1ude analytic solutions (or expressions regarding their bounds), 

search methods that seek to optimize a path, and planners that start with a path of 

Olle form and seek to reflue it. 

In particular, a c1assic approach to the application of non-holonomie constraints 

is to find an (optimal) unconstrained solution and then apply recursive constrained 

path refinement to the sub-regions to achieve an admissible plan [53]. This is also 
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typical of probabilistic motion planning methods [54]. Similarly, jerky paths are 

sometimes smoothed using energy minimization methods [82, 55]. 

This the sis shares that common spirit in that the presented system takes an 

initial path as input and pro duces a refined path as its result. While traditional 

methods such as those cited above typically accomplish path refinement based on 

highly specialized constraints, typically in the domain of differential geometry, the 

method presented learns from examples of acceptable paths. That is, the desired 

constraints or preferences are indicated by showing the appropriate refinements that 

should be applied in specific cases. 

This idea of learning to generalize specific examples to a broad ensemble of cases 

is, of course, the crux of classical machine learning [63]. Learning using Markov 

models is a longstanding classic research area, although, to our knowledge, it has 

never been applied to problems like this one. Although there has been sorne prior 

work on the relationship between learning and planning, most of this has de aIt with 

more traditional plan formulation problems [97] or on learning suit able cues that 

control or determine plan synthesis or execution [22]. 

Uncertainty introduced when executing commands in the real world is a foremost 

challenge in robot path planning and navigation. This is often addressed using closed 

loop processes and probabilistic models that maintain a distribution over system 

states [89, 81]. These distributions (or beliefs) can refiect the likelihoods of a robot's 

current pose, the existence of obstacles in the environment and the progress of a par­

ticular task. Planning long-term strategies is generally computationally intractable 

when considering aH possible states. Approaches that deal with such issues include 

approximate methods that reduce the belief space [10], tree methods that exploit 

similarities in neighboring belief vectors [65] and temporal abstraction techniques 

(planning over higher level actions) [85]. 

3.1. Animation. Motion planning in virtual environments reduces the com-

plexities that can occur when dealing with the uncertainties introduced in real world 

executions. However, the difficult challenge of controlling and synthesizing realistic 
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motions remains an open problem. People are naturally skilled at perceiving sub­

tle anomalies of motion [44], exaggerating any artifacts produced when designing 

the animation sequence. Further, animation sequences of an articulated figure are 

typically made up of motions that exhibit many singularities in the velocity vector 

(f (x) ---t (0), im posing on the designer the tedious task of carefully configuring the 

large number of required key-frames. (Key-frame animation [84] is a common ap­

proach in designing animations in which, akin to the parametric methods described 

in Section 1, an animation sequence is generated by interpolating over a selected set 

of control points.) 

Example-based methods avoid these problems by providing a mechanism to reuse 

pre-fabricated libraries of motion clips, typically bIen ding and transitioning motion 

snippets according to some procedural rules and mat ching functions. Witkin and 

Popovic [102] apply time-warping techniques that blend the motion signaIs from 

the training set with the specified key-frame points. In work by Wang et al. [51], 

each example motion clip is modeled by a Linear Dynamic System and transitions 

between these clips are moderated by a higher-level transition matrix. Their system 

controllably synthesizes novel motions by searching for the most locally consistent 

mixture of the clips in the database that results in a sequence that passes near the 

specified key-frames. A similar approach consists of automatically identifying good 

transition points in the clips and then explicitly storing them in a graph where the 

nodes represent the clips and the edges represent the allowable transitions [49]. Paths 

can then be controllably generated by searching the graph for motions that satisfy 

user defined criteria (such as "stay close to this path" or "go near these key-frames"), 

minimizing an error function. Hertzmann and Brand [11] develop a system to learn 

motion styles from a database of pre-classified families of motions (Le. examples for 

ballet, modern dance, running etc.). Examples of each style are used to train a Hidden 

Markov Model. The set of Hidden Markov Models are then parametrized by a style 

parameter s to pro duce an all encompassing Stylistic Hidden Markov Model (SHMM). 

The user can specify the desired amount of each particular style (by setting weights 
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on the style parameter) and the system synthesizes a new motion that exhibits the 

desired styles (by selecting the maximum likelihood sequence of the SHMM states). 

Van de Panne et al. [88] develop a sketch based system for controlling an animated 

sequence. In their work, a hand-drawn path is segmented to recognizable primitive 

gestures that are associated with particular motions. The resulting compound motion 

consists of first extracting parameters from the recognized gesture segments (i.e. the 

start position, end-position, speed of motion, scale, etc.), then smoothly interpolating 

the associated motions while rescaling them according to the extracted parameters. 

Signal processing approaches have also been used in example based motion edit­

ing. Unuma et al. [95] apply Fourier transforms to the signaIs produced from the 

sequence of joint angles of an articulated figure. Based on frequency analysis of the 

data, they capture global qualitative factors such as "brisk" or "tired". These fac­

tors are then used in linear combinat ions to interpolate and combine characteristics 

to create new motions. Bruderlin and Williams [13] similarly applied Gaussian and 

Laplacian filter pyramids and time-warping techniques over the example motion sig­

naIs to provide equalizer-like tools for motion editing. Pullen and Bregler [68] use 

multi-band filters to match candidate database motion signaIs with sparse and incom­

pIete key-frames (typical in a quick and dirty design process where the key-frames 

are far apart and each key-frame may be missing sorne parameter values). The match 

is further constrained by learning the correlation of joint angles, providing better 

solutions when key-frames have many missing joint angle specifications. 

The main approach of these techniques is to take a few examples and build sorne 

knowledge base about the valid motions. Alternatively, this knowledge can consists 

of specialized constraints that attempt to simulate real physical laws. Witkin and 

Kass [101] propose a method for animation where a set of differential equations 

are used to describe the dynamics of real world physical factors such as gravit y, 

friction, muscle forces, etc. An objective function that specifies how the motion should 

be performed is optimized subject to the constraints. Sorne physics-based methods 

[91, 39] dynamically vary the objective function in accordance to high-Ievel behavior 
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models. In most cases, these methods, also known as space-time constraint methods, 

result in nonlinear differential equations that are often computationally intractable 

and extremely sensitive to initial conditions. Hybrid systems attempt to avoid this 

by combining key-frame techniques and nonlinear approximation methods [33, 67]. 

Typically, intra-frame constraints (constraints between joint angles) are modeled by 

using object kinematics and inter-frame constraints (constraints between frames) are 

models by an interpolating function. Lee and Shin [56] take this approach by using 

inverse kinematics and hierarchical B-splines to morph an existing motion clip to one 

that adheres to specified key-frames. 

31 



CHAPTER 3 

Framework Overview 

This chapter presents a brief overview of the learning framework, including the pen­

stroke representation, the problem definition and the approach. A review of Markov 

Models, vVavelets and Hidden Markov Models is also presented, followed by an intro­

duction to the Hierarchical Hidden Markov Model. 

1. Pen Stroke Representation 

The curve refinement system accepts as input a pen stroke for controlling a low­

level synthesis process. The path of the pen stroke is represented by a curve over 2D 

space parametrized by the arc-length. (Though in principle the refinement system can 

also be applied to 3D curves.) Let the mapping 0: : R ----+ R 2 represent a parametric 

planar curve {x(te), y(te)} where te E R is the arc-Iength of the curve over the range 

o <= t <= T. The tangent angle along the curve can be computed by the following: 

(3.1) 

In this thesis, all curves are approximated using a discrete representation. A 

zeroth-order discrete repret)entation of 0: can be produced by t)amplillg the continuout) 

curve using a uniform sampling resolution. The resulting points can then be used as 

vertices for a polyline. A first-order discrete representation of 0: thus consists of a 

starting point Po, the sequence of all edge lengths r(t) and the edge angles ()(t) of the 
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polyline, where Po E n2, r : Z* ~ n, B : Z* ~ n and t E Z* (i.e. an absolute chain 

code). A second-order discrete representation of a consists of the starting point Po, 

starting direction Bo E n and the sequence of an edge lengths r ( t) and exterior angles 

tlB( t) (i.e. a relative chain code). Depending on the application requirements, either 

a first-order or second-order representation can be used. When using the first-order 

representation, the system is invariant to the initial starting point and hence the 

shape can be reproduced over rigid orientation-preserving transforms. When using 

the second-order representation, the system is invariant to the initial starting point 

and direction and hence the shape can be reproduced over an rigid transforms. In 

both cases, all curves are sampled uniformly over the arc-Iength, r(t) = r E n. 
In principle, these curves can be used to represent arbitrary signaIs. They repre­

sent not only the input pen stroke, but the examples in the training sets and the syn­

thesized output as weIl. The curves can be generalized to functions that support ap­

plication specific input and output attributes, such as pen-pressure, pen-speed, robot 

trajectory, a motor command or a curve's thickness, and can be extended to higher­

dimensional spaces to simultaneously support multiple attributes (i.e. a : n ~ nm ). 

2. Problem Definition 

Let a denote a refined curve, the curve the user seeks to produce. Let (3 denote 

a coarse curve, the curve the user has actually drawn (the path of the pen-stroke). 

A set of refined curves is referred to as a refined scene. and set of coarse curves is 

referred to as a coarse scene The curve (3 can be thought of as the curve resulting 

from sorne lossy (possibly non-invertible) transformation of a: 

(3 = F(a) (3.2) 

The refinement problem is to reconstruct a given the noisy and coarse user input 

(3. This is an ill-posed problem, where there is insufficient information to solve for a 

unique solution (i.e. the problem is under-constrained) [90]. Before it can be solved, 
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one must first define the way in which Do can be inferred. That is, restoring the well­

posedness of the problem requires a set of restrictions that limit the class of admissible 

solutions. 

The underlying idea in this thesis is that the knowledge required to uniquely infer 

Cl: can be acquired in two ways: by using pre-defined analytical functions engineered 

for a specialized domain and by using pre-classified examples that show the types of 

outputs the user intends to produce. The problem then becomes three-fold. How 

can the system learn from the examples the appropriate constraints? What are the 

analytical functions and how should they be combined with the learned priors? How 

can Cl: be generated given f3 and this prior knowledge? Indeed, this is a classical inverse 

problem given a priori knowledge. Though unlike many of the existing approaches 

to this problem (such as variational regularization using a quadratic stabilizer), it 

cannot be assumed that the output is smooth, nor that the solution space is convex. 

In contrast, the system must reconstruct the high frequency features that are assumed 

missing in the input curve. 

3. Approach to the Refinement Problem 

The curve elaboration framework is based on a two-level hierarchy of Hidden 

Markov Models. As a supervised learning problem, the goal is to acquire a multi­

level generative model that captures from data a refinement function for augmenting 

rudimentary hand-drawn curves. The first level of the hierarchy, called the curve­

level, models the refinements that are applicable on individual hand-drawn curves. 

The second level of the hierarchy, called the scene-level, imposes constraints between 

the allowable types of curves that make up an entire scene. 

A curve-level HMM is trained using a set of example curves that serve as exem­

plan; of the killds of curves the users wish to produce; there are typically several sets 

of sueh examples (e.g. fish, water, terrain, trajectories) and hence several models are 

trained. Each example in a set has a coarse curve associated to it that shows what the 

user would draw when their intention is to pro duce that partieular example, i.e. the 
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pair {Œi,,BJ for i = L.N examples. Each,Bi can be thought of as a user's short-hand 

notation (or glyph) for the elaborated shape Œi' U sing one of these sets, a hand-drawn 

curve is used to steer a synthesis procedure and generate a new curve. The resulting 

curve is a locally consistent mixture of segments from the set, but is not necessar­

ily identical to any single example in the set. A locally consistent mixture of curve 

segments refers the sequence of curve segments where the values of all neighboring 

samples are also found in the training set under the same sequential ordering. This 

is complicated by the need to account for additional user-defined analytical functions 

and for both fine-seale details as well as large seale motions of the eurve. Learning 

and synthesis at the curve level is described in more detail in Chapter 4. 

While the user can manually select which training set to use to refine the curve, 

the who le process is automated by classifying the curve being drawn as belonging to 

one of the sets. The scene-Ievel of the hierarchy moderates the recognition of what 

sets should be used by specifying the conditional probability of drawing one type 

of curve after another, or one type below or above another. These constraints are 

encoded in the form of a probabilistic transition diagram over the curve-Ievel models. 

The scene-Ievel of the hierarchy is discussed in more depth in Chapter 7. 

4. Curve Classes 

Each training set is made up of examples that are pre-classified in the same fam­

ily. The notion of families of examples is not new and has been applied in various 

settings, including in work for stylized motion synthesis where examples are said to 

be admissible to the same family if they have "sorne generic data-generating mecha­

nism in common" [11]. Similarly, in this thesis it is assumed that there exists sorne 

ullderlying gelleration process that results in a variety of distinct examples that have 

similar characteristics. It is up to the users to subjectively identify a family of exam­

pIes based on the type of outputs they wish to produce. It is then up to the system to 

attempt to infer the underlying pro cess that can produce new instances in that family. 
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(The terms a "family of curves" and a "class of curves" are used interchangeably in 

this thesis.) 

There are two necessary but not sufficient conditions for identifying when curves 

are similar and hence belong in the same class: 

• AlI curves in a class have the same user defined semantic annotation . 

• Any locally consistent mixture of curve segments in a class results in a new 

curve that can also be considered part of the same class. 

The first condition states that examples can be in the same class only if they 

have the same label (which is manually specified). This semantic annotation is used 

to identify curves that are subject to the same high-Ievel constraints. For example, 

leaves and flow-chart symbols are used in different contexts, have different applicable 

high-Ievel constraints and should therefore be in separate classes. It may be the case 

that an example can have multiple labels. It is then duplicated, with each copy given 

a single label and assigned to the appropriate class. It may be possible to extract this 

automatically from labeled scenes, though this problem is outside the scope of this 

thesis. 

The second condition states that new curves having the same local shape as those 

in the set can also be considered to be part of the same set. (An assumption readily 

used in many of the recent state-of-the-art texture and curve synthesis methods [98, 

38].) As such, the examples form a set of basis functions for the types of outputs that 

can be produced. Under this criterion, the richness of a set can be quantified using 

cross validation techniques where ex amples are first removed from the set, followed 

by an attempt to reconstruct them using the remaining examples. 

As an example, consider the class of shapes comprising of roof-top segments. New 

roof-top shapes can be produced by taking locally consistent mixtures of segments 

from the original set. The degree of mixing, the location of mixing and the scale in 

which the consistency is enforced are aIl crucial parameters that must be considered in 

producing the desired output. Figure 3.1 shows a roof-top class with two members and 

the result of a manually controlled mixture of segments from the set (the new output 
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is also considered to belong in the same class). Each curve in this training set has 

very distinct features and contributes crucially to the shapes that can be produced. 

The statistic of this set would then result in a distribution with low entropy and by 

using cross-validation, it is easy to see that no example can produce the other. 

(a) An example training set. 

(b) A new curve made up of locally consistent mixtures of segments in the set. 

FIGURE 3.1. Two examples classified in the same family. Each example 
is labeled as a roof-top and new locally consistent mixtures result in other 
examples that can also be considered as roof-tops. 

5. Curve Synthesis using a Markov Model 

The main idea behind the curve synthesis framework is to model local proba­

bilistic constraints on the desired shapes in a given curve family. (This is further 

extended in Chapter 4 to include other curve attributes such as thickness or color.) 

It is assumed that a stochastic process 6. is the common curve generating source for 

a family of refined curves. This process generates a sequence of sam pIe points where 

the value of the point::; repre::;ent the realized ::;tate::; of the process (i.e. the currellt 

state refers to the value of the current sample point). Each curve is thus considered 

to be a random signal with characteristics described by the probability density func­

tion of the process. Let Œ denote a curve and () (t) denote the tangent angles of that 
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curve parametrized over the arc-Iength t (i.e. the first-order representation). It is 

assumed that the sequence of samples e(t) from 0 <= t <= T for aH curves exhibit 

an nth-order Markov property, i.e. ~ is a Markov process: 

p{e(t+1) 1 e(t),e(t-1), ... ,e(t-n+1)} =p{e(t+1) 1 e(t),e(t-1), ... ,e(O)} (3.3) 

This locality condition states that information from recent sample points is sufficient 

to compute the likelihood for the next candidate points. How far back in history does 

the model need to account for? This is dependent on the nature of the training set 

and the scale of the desired features of interest. 

An nth-order finite state Markov process ~ is defined by the finite state space 1-l 

(the set of aH values that the process can produce), the transition matrix M (which 

stores the likelihood of having a transition from any state in 1-l to any other state 

in H, as shown in Eq. 3.3) and an initial probability distribution 7r over the state 

space H. There are several other factors that characterize the long term behavior of 

a Markov process: 

Absorption: Astate is said to be absorbant if the transition probability of 

leaving that state is zero. 

Communication Class Structure: The states in any Markov process can 

be grouped together such that for any two states hi and hj that belong to 

the same communicating class, it is possible, starting from hi to get to hj 

and starting from hj to get back to hi. 

Periodic: A state hi has period d if, given that the system at time zero is in 

state hi (Xo = hi), the system can return to state hi at time n (Xn = hi) 

only when n is a multiple of d. 

Irreducible: A Markov process is said to be irreducible if starting from any 

state it is possible to get to any other state (i.e. one communication class). 

Ergodicity: If the pro cess is irreducible and a-periodic, then it is said to be 

ergodic and guarantees a unique stationary distribution (i.e. there exists a 

unique eigenvector of M with an associated eigenvalue of 1). 
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The characterization of the pro cess helps identify the types of outputs we should 

expect. For example, in texture mixing applications [9], a resultant pro cess that has 

many recurrent (absorbant) communication classes may pro duce a synthesis that is 

not representative of the target texture. The procedure can get stuck in a small 

disjoint sub-region of the texture, generating pixels that do not express the entire 

texture. It is demonstrated later how this effect can be reduced by effectively blurring 

the transition matrix and providing a steering mechanism to bias the process. 

Figure 3.2 shows two random realizations from two related Markov pro cesses 

over curve elements; a first-order process and a higher-order process. The transition 

probabilities of the processes are computed by the statistics of consecutive tangent 

angles of an example in the roof-top training set; the left curve in Fig. 3.1(a). It 

is easy to see that large-scale structures are only captured under the higher-order 

assumption. 

(a) Resu1ts from a first-order Markov Process. 

(b) Resu1ts from a high-order Markov Process. 

FIGURE 3.2. Realizations of two Markov pro cesses trained using the 1eft 
roof top example in Fig. 3.1(a). 

5.1. Non-Stationarity. For training sets that exhibit regular properties, 

uniform local constraints set at the appropriate scale are sufficient to capture the de­

sired structures, which in turn can be realized at any point along the curve. However, 
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there are many interesting examples that contain transitory characteristics, where the 

probabilistic constraints on successive points are non-stationary along the curve. In 

such cases, the locality condition is position-variant and hence the transition matrix 

M becomes a function of the arc-Iength t; M(t). This generalization provides more 

fiexibility in the types of examples that can be synthesized, having the option to im­

pose global constraints in cases where the absolute location of features is important. 

(For example, if the training set consists of examples of leaves, when one side of the 

leaf is being processed the constraints from the other side do not necessarily need to 

be considered.) 

6. Multi-Scale Representation 

As shown in Fig. 3.2, the order of the pro cess has significant impact in the way the 

output is produced. For many applications, a high-order Markov assumption is crucial 

for a satisfactory synthesis, though the implementation can be somewhat problematic. 

The size of the transition matrix grows exponentially with the order of the pro cess , 

becoming impractical to suitably store it under physical memory limitations. There 

are two observations that can be exploited in order to deal with this problem. First, 

the resulting matrix is generally sparse, where the number of non-zero entries is not 

larger than the number of sample points in the training set. One can then apply 

matrix compression techniques or exploit space-time tradeoffs and perform on-line 

computation of likelihoods (discussed later). Second, using the appropriate filter, 

one filtered sample point can be representative of several unfiltered sample points, 

providing a shorthand summary for the region. The latter approach is the subject of 

this section while the former is described in Chapter 4. 

In order to efficiently capture the structure of a curve at various scales, a wavelet 

repre:::;entation i:::; u:::;ed. Not only doe:::; thi:::; repre:::;elltatioll address thc implcmclltatioll 

issues described ab ove , it also allows to control the scale at which constraints are 

enforced. (It may be desirable to produce mixtures of examples that are similar at a 

coarse scale, though differ significantly at the fine scale.) The fundamental idea in a 
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wavelet representation is that functions can be reconstructed by linear combinations 

of basis junctions. lndeed, this idea lies at the heart of Fourier analysis, where any 

oscillatory function can be represented by a combinat ion of sines and cosines. For a 

wavelet representation however, the basis functions must be functions of both time 

and scale. This complements the Markov Model as not only does it provide a spectral 

decomposition of a signal but also indicates where those spectral components exist, 

providing the ability to sequentially order points at multiple sub-bands. 

There are many research areas that use wavelets, including topics such as speech, 

music, time-scale analysis and sampling theorems. The idea of multi-scale analysis 

is not new and has been explored as early as 1909 (Haar, 1909 [35]). Since then, 

similar ideas have been applied in Communications (Gabor, 1946 [30]) and Quantum 

Mechanics (Aslaksen and Klauder, 1969 [6]). Though only recently has a unifying 

theoretical formalism been reconciled, rooted by the works of various authors includ­

ing Grossmann and Morlet [34], Marr and Hildreth [61], Meyer [62] and Mallat [60]. 

Wavelets are now commonly used in Computer Vision and Graphics and have been 

proven to be extremely useful in multi-resolution editing of curves [26, 16]. 

6.1. Continuous Wavelet Transform. The multi-scale representation h(s, T) 

for a continuous signal B(t) is a function of scale and time (or arc-Iength position) 

consisting of a convolution of the signal with wavelet basis functions: 

h(s, T) = J B(t)Ds,T(t)dt (3.4) 

That is, the function B(t) is decomposed by a set of basis functions DS,T parametrized 

by seale s and translation T. Figure 3.3 shows an example signal and its multi-seale 

representation. 

The inverse wavelet transform is given by the following: 

B(t) = J J h(s, T)D;,T(t)dsdT (3.5) 
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FIGURE 3.3. Wavelet representation of a signal. 

where O:,T is the complex conjugate of 08,T such that: 

(3.6) 

when s = Si and T = T'. The basis functions are said to be orthogonal if the integral 

in Eq. 3.6 evaluates to zero whenever s =1- Si and T =1- T'. 

6.2. Properties of Wavelet Basis Functions. For a candidate function 

to formally be considered as a wavelet basis, it must adhere to the admissibiliiy and 
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regularity conditions. The admissibility condition implies that the function must he 

oscillatory (with band-pass like spectrum, the integral of the function over all time 

must be zero and the square integral of the Fourier transform of the function, divided 

by the frequency, over all frequencies must be finite) while the regularity condition 

implies the function should be compactly supported (the low-order moments must 

vanish). Different wavelet families have different tradeoffs over how compactly the 

basis functions are localized in space and how smooth they are. 

A prototype function, also known as the mother wavelet O(t), is first developed to 

satisfy the above criteria, then the wavelet basis functions are translated and dilated 

variations of the mother wavelet. Computing the transform over every scale sand 

translation 7 is an overly redundant and computationally intensive process. Instead 

discrete steps are taken where the basis at one scale is dilated typically by a power 

of 2 of the previous: 

(3.7) 

where sand 7 are integers. The term 2 -;s is used for energy normalization. 

6.3. Haar Basis. Due to its simplicity and efficiency, a Haar wavelet (rect-

angular function) is used for producing the multi-scale representation for the input 

and training set curves: 

O(t) = 

1 O<t::;~ 

-1 ~<t::;l 

o otherwise 

The traditional Haar basis consists of the Haar mother wavelet with a dilation factor 

of 28 and a translation factor of 2-8 7. Figure 3.4 shows the shape of the Haar wavelet 

with examples of translation and scaling. 

In thiti work, because orthogollality is Ilot a pretitiillg factor for the application of 

interest, the basis functions can be scaled and translated by any user-defined step. 

There are several reasons for allowing such flexibility. Primarily, the use of wavelets 

in the HMM framework is not for compression encoding and reconstruction purposes, 
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FIGURE 3.4. Haar wavelet with translation and scaling. 

but rather for enforcing large-scale constraints on the allowable sequences of points 

in the smaller scale. (The term large scale refers to the coarser representation and 

the term small scale refers to the finer representation.) In fact, the multi-scale curve 

representation always explicitly stores the original curve sample points and the sam pIe 

points in the higher-scale are only used for computing probabilities. Second, even 

if the points were not stored explicitly and reconstruction was used, in a discrete 

representation, there can be loss of information due to quantization errors and, unless 

compression is an important factor, redundancy is sometimes preferred. The potential 

for such redundancy can then reduce quantization artifacts that may occur when 

reconstructing from a finite set of rectangular functions, thus a smoother wavelet is 

not necessarily required. 

6.4. Sub-band Coding. Sub-band coding is a method that can be used for 

performing a discrete wavelet transform. The main idea is to decompose a discrete 

signal using a filter-bank with filter kernels that are developed based on the desired 

wavelet basis function. A signal is repeatedly filtered and subsampled using both a 

low-pass filter and a high-pass filter. For the Haar basis, the decomposition kernels 

are: 

L 

H 

[~ 
[- ~ 

(3.8) 

(3.9) 
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where L is the low-pass filter kernel and H is the high-pass filter kernel. The result 

is a pyramid of signaIs that are filtered at multiple frequency bands. Half of these 

signaIs maintain only the high-frequency components (the details) and the other half 

maintain only the low-frequency components(the coarse variations). 

The multi-scale representation for the training set and input curves is produced 

using the sub-band co ding approach with two slight variations. First, the original 

sample points are always maintained (along with the low-pass filtered sample points) 

and the High-pass filter is not applied (it is mainly useful for reconstruction purposes). 

Second, since the translation step T is allowed to be any user-defined value (i.e. 

training set mixing can potentially occur on a sample point basis), subsampling may 

not always be performed. The resulting redundancy has the benefit of having a one­

to-one correlation between samples of the original signal and samples of the filtered 

signal, simplifying the registration of sam pIe points at different scales. A signal 

reduction issue arises when dealing with curves that are not closed. In such cases, 

the endpoints are padded using the value of the neighboring sample point. 

7. Refinement of Curves using Hidden Markov Model 

The Markov pro cess in combination with the wavelet representation provides 

an efficient mechanism to pro duce a random realization of a curve with a high-order 

Markovassumption. However, the user has no control in the way a curve is generated. 

In order to provide a method for the user to bias the synthesis, the framework must 

take into account the likelihood that a user would draw a particular curve given that 

their intent is to pro duce another. This is accomplished by using a Hidden Markov 

Model. 

A Hidden Markov Model encodes the dependencies of successive elements of a 

set of hidden states along with their relationship to observable states. It is typically 

used in cases where a set of states that exhibit the Markov property are not directly 

measurable but only their effect is visible through other observable states. In this 

work, the states in the observation layer represent the samples that are expected to 
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be drawn by the user and the states in the hidden layer represent the samples that 

the user actually meant to draw. Formally, a Hidden Markov Model A is defined as 

follows: 

A = {M, E, 'if, 'H, O} (3.10) 

where M is the transition matrix with transition probabilities for the hidden states, 

p{ hi (t) 1 hj (t - 1)}, B is the confusion matrix containing the probability that a hidden 

state hj generates an observation 0i, p{ Oi(t) 1 hj(t)}, and 'if is the initial distribution 

of the hidden states. The set 'H = {ho, ... , hn } is the set of all hidden states and the 

set 0 = {oo, ... , om} is the set of aIl observation states. 

There is an abundance of literature on Hidden Markov Models and the domain 

is frequently decomposed into three basic problems of interest: 

• Learning: Given an observed set of ex amples , what model A best repre­

sents that observed set? 

• Decoding: Given a model A and a sequence of observations 01,02, ... , 0T, 

what is the most likely hidden state sequence hl, h2 , ... , hT that pro duces 

those observations? 

• Evaluation: Given a model A and a sequence of observations 01,02, ... , 0T, 

what is the probability that those observations are generated by that model? 

Solutions to the above three problems are key to this work. Learning provides an 

automated method for modeling various types of outputs or drawing habits by sim ply 

providing the examples. Decoding allows for the synthesis of a new curve (sequence 

of hidden states) based on a coarse user input (sequence of observation). Evaluation 

is used to detect the appropriate class of curves that an input stroke belongs to by 

computing the likelihood that the input curve would be generated by the model in 

question. 

8. Two-Level Hierarchical Hidden Markov Model 

At the first level of the hierarchy (curve-Ievel), the characteristics of training 

sets are expressed probabiiistically with each set modeled by its own Hidden Markov 
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Model. Sample points from the refined curves play the role of the hidden states while 

sample points from the coarse curves play the role of the observations. The transition 

matrix refiects the likelihoods of generating curve segments given the previous (prob­

abilistic local constraints) and the confusion matrix refiects the likelihoods that users 

would draw the particular coarse shapes when their intent is the associated refined 

one (Fig. 3.5). We construct the set go consisting of N HMMs where each HMM is 

trained using a particular training ensemble: 

(3.11) 

For example, A~ may represent the set for terrains and Ag may represent the set for 

roof-tops. Each A~ in go is the trainable part of the curve refinement model and is 

further augmented in Chapter 4 to include additional constraints. 

p{h(t) 1 h(t-1)} 

p{ o(t) 1 h(t)} 

o(t) 

Coarse curve 

FIGURE 3.5. Local relationships of refined and coarse curves. For aU curve 
segments (in gray), the transition matrix and confusion matrix store the 
ab ove likelihoods. This is computed over every example in a given set. 

At the second level (scene-level), another HMM is used to model high-level prob­

abilistic constraints on the application of models at the first level. This is only used 

for the sketching application where relationships on the types of curve that can be 
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drawn are cri tic al. The model allows us to represent restrictions on the types of refine­

ments that are applicable on neighboring curves. For example, one can suggest that 

the cloud model in go can only be applied to a curve that lies above another curve 

that has been refined by the terrain model. As such, the state space of this HMM 

reflects all possible models in gO and their relative positions. While in principle such 

constraints can be learned from labeled illustrations, for the purpose of this thesis, 

they are manually encoded in the form of a graph (Fig. 3.6). 

Several such graphs can be used to train HM Ms at the scerie-level of the hierarchy: 

(3.12) 

Each model in gl depicts different kinds of scenes. For example, you can have face 

scenes that suggest the sequence f orehead --+ nose --+ mouth --+ chin or landscape 

scenes that suggest grass --+ (flower, above), cloud --+ (tree, below). Wh en con­

straints on the order in which curves are drawn are not desired, a graph can suggest 

that every model can be followed by any other model, with only their relative po­

sitioning as a constraint. Each A~ described thus far is the trainable part of the 

scene refinement model and is further augmented in Chapter 7 to include additional 

constraints. 

~ ~ fB\.. (7:'\ 
(V"-'(J~ A /V 

+ + 0 
fi\ 8/V "-~ skyline 

FIGURE 3.6. Example relationships in a scene. The labels correspond to 
HMMs at the curve-Ievel and the letters above correspond to the allowable 
relative position (i.e. A: above, B: below, L: le ft R: right). 
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CHAPTER 4 

Curve Refinements 

Each curve-level HMM in the hierarchical HMM framework is a model that captures 

from data the constraints that are required to synthesize a refined curve from a coarse 

one. These HMMs, in combination with supplementary user-defined functions, are 

called curve refinement models. This chapter describes the methods for learning and 

applying these refinement models, including a description of the models' state space, 

transition and confusion matrices and the decoding algorithm. Issues regarding the 

practical and efficient implementation of these models are also addressed. Once the 

formalism for learning and decoding is established, a regularization framework is 

presented that provides for the seamless integration of supplementary user-defined 

analytical biases. The pseudo-code for the algorithms presented can be found in 

Appendix A. 

1. Refinement Model Overview 

A curve refinement model A 0 is an augmented HMM that includes supplementary 

analytical biases and parameters. These additional components further define the 

way in which the model is trained and applied. More formally, a refinement model is 

defined as follows: 

(4.1) 



4.2 LEARNING REFINEMENT MO DELS 

The first parameter is the HMM A = {M, B, 7r, H, a} as described in Eq. 3.10. The 

parameter R = {RI, R2' ... , Rn, )\1, À2' ... , Àn} is a set of regularization functions and 

weights that embed additional biases into the model. The parameter Q = {Q, H', a'} 
consists of a quantization function Q and a set of labels H' and 0' used to label the 

states in {H, a} such that likelihoods can be expressed in the finite matrices M and 

B. The set S = {s 1 s E Z*} is the set of scales that the states must encode. Each 

element identifies the number of times the Haar filter must be applied on the training 

curves. The sets A and Ao identify the curve attributes encoded in the hidden states 

and observation states respectively. The sets X and Xo are the set of auxiliary curve 

attributes that must be represented in the hidden and observation states respectively. 

The value T is the translation step for the wavelet representation (this value is also 

used to determine the number of samples astate can encode). The value w is the 

stationarity window, used to determine if the model is stationary or non-stationary. 

The parameters Y and Y 0 are the distance metrics and associated parameters used for 

determining the similarity of hidden and observation states respectively. Finally, T 

and Ta is the mutli-scale representation of the refined and coarse curves from training 

where Ys and Ta,s are the set of training curves at scale s. The remaining sections of 

this chapter describe these parameters in more detail. 

2. Learning Refinement Models 

A refinement model A 0 is trained over a family of examples consisting of a 

set of refined curves Ta = {ŒI' Œ2, ... Œn} associated with a set of control curves 

Ta,o = {,6I, ,62, ... , ,6n} (Fig. 4.1) where each curve is represented by T sample points. 

A refined curve depicts the desired solution that should be produced if a user sketches 

its associated control curve. If a user sketches a curve unlike any single one of the 

control curves, then the tlytltem mutlt illfer the detlired output USillg tlegmelltti from 

various refined curves. The control curve can be any user defined curve (for custom 

drawing habits) or it can be automatically generated by filtering the associated refined 

curve. It may be the case that segments from different control curves are identical, 
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though it is undesirable to have control curves t.hat are everywhere similar. Cont.rol 

curves wit.hout any distinguishing features result in an ambiguous training set which 

increases t.he likelihood of non-unique solutions. It is assumed that each ex ample 

{ai, (Ji} is a suitably normalized tuple such that the associated sample-points on the 

two curves are already in correspondence. 

When only the observat.ions are available, learning can be performed by applying 

algorithms such as the Baum-Welch algorithm or other Expectation-Maximization 

methods [69], using criteria such as maximum likelihood (ML) or maximum mutual 

information (MMI). In this work, a supervised learning paradigm is taken where the 

data for both the observation and hidden layers is explicitly provided by the user 

(during t.raining, it. is assumed that. t.he values corresponding to t.he hidden states 

are directly available while during synthesis, they are not). The parameters of a 

HMM can therefore be estimated using the statistics of the training data, calculating 

probabilities of successive sam pIe point.s along the refined curves and t.he probabilities 

that they generat.e the corresponding sam pIe points along the control curves (discussed 

more in detail below). These points are represented by the states in the model. In 

the remainder of t.his thesis, the term successive states is used to refer t.o a sequence 

of states that represent a sequence of sample points from a curve. 

060uO DODO 
FIGURE 4.1. Examples from a training set. Curves on the left show the 
control curves while curves on the right show the associated refined ones 
that include color. Typically, the shape of the control curves are filtered 
versions of the refined ones, in this case the filtered ones are very similar to 
the originals. The set is sampled uniformly with 128 samples per example 
for a maximum of 1024 unique points. 

2.1. Hidden States. The HMMs operate over a multi-scale curve description 

in order to capture long-range constraints on curves. Each hidden state encodes a 
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curve segment at multiple scales. A multi-dimensional state space 1-l is used for the 

hidden states 1-l = {hi 1 hi E nlAxSI} where S = {sa, ... , sn} is the set of scales and 

A = {ao, ... , am} is the set of curve attributes. Let the function Hi(t) correspond to 

a state hi at position t in the sequence and let the function Hi(t)a,s correspond to 

the value of the state indexed by a particular attribute a at a particular scale s. In 

general, the function Hi(t)w is the projection of astate onto a subspace that excludes 

the dimensions corresponding to elements in the set W by fixing their values. 

Depending on the application, different scales and curve attributes may be re­

quired (e.g. for the sketching application, the attributes can include a curve's shape, 

color, thickness, etc.). While in principle all of the selected curve attributes can be 

represented at multiple scales, for the applications of interest, it is typically sufficient 

to only encode the shape at multiple scales (B( s, t) where sES) as this provides 

adequate multi-scale constraints for the desired output. (The likelihood of having 

similar segments decays exponentially with the segment length, hence one attribute 

can be sufficient to distinguish long segments.) As discussed in Section 6 of Chapter 

3, a wavelet representation is used for the multi-scale curve descriptor. 

2.2. Translation Step. The translation step defines the step size that is 

taken along the curves when encoding successive states and hence it specifies the 

size of curve segments (the granularity of the states). The size of the state space is 

then increased according to the number of samples in the segment. It is also used 

when constructing the multi-scale representation (as described in section 6). The 

translation step has a significant impact on the speed of the system, the ability to 

steer the synthesis procedure and the redundancy of the multi-scale representation 

(Figure 4.2). Setting a small translation step results in a slower and more redundant 

system but has the advalltage of finer control resolution (prediction can be perfoI"med 

on a sample-point basis rather than on a segment basis). Setting a large translation 

step results in a faster system that produces sequences of large segment blocks at the 

cost of losing the ability to mix sample points within those segments. 
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S2 Pl P2 

/\ /\ 
SI Pl P2 P3 P4 

/\ /\ /\ /\ 
SO Pl P2 P3 P4 PS P6 P7 P8 

(a) Astate representation using three scales (with down­
sampling) and a translation step of four sam pIe points. 

~(t+2) 

S2 P4 PS P6 

Il 
S1 P3 P4 PS P6 

1111 
SO P2 P3 P4 PS P6 

(b) Astate representation using three sc ales (no down­
sampling) and a translation step of one sample point. 

FIGURE 4.2. Comparing the states for two different translation steps. In 
figure 4.2(a), the translation step at scale SO is set to four sample points. 
Prediction and multi-scale decomposition is thus performed on a four-point 
segment basis. In figure 4.2(b), the translation step at scale SO is set to one 
sam pIe points. Prediction and multi-scale decomposition is thus performed 
on a sam pIe point basis. (For opened curves, sample point padding is applied 
at the curve's end-points.) The shaded boxes show the information that 
each state encodes. Note that even when the translation step is set to one 
(the segment length is thus one), the state encodes information beyond the 
segment. 

Whell cOlllputing the lllulti-scale representation for the curves (Chapter 3, Section 

6), given the translation step for one scale, the translation step for the next scale is 

computed as follows: 

Ts+l = max(l, lTs/IKIJ) ( 4.2) 
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where l·J is the integer part ofthe argument (the floor function) and IKI is the size of 

the filter kernel. The speeified parameter T is used to set the lowest seale translation 

step TO: 

TO = min(IKI, T) ( 4.3) 

The degree of overlap between successive states is determined by both the set 

of seales used and the translation step. It is easy to see from Equation 4.2 and 4.3 

that when the largest seale in the representation is sufficiently small (when Smax ::; 

lO9iKI (TO)) then all the information eontained in astate pertains to that state only 

and there are no redundaneies over neighboring states. (A point at scale S represents 

IKIB raw samples, hence the transition step must be at least IKIB in order to have 

mutually exclusive neighbors.) Otherwise, the state eontains information that is 

already encoded in previous states, a typieal (and acceptable) artifact of an Nth_ 

order Markov assumption, where the transition probabilities applied to the eurrent 

point have references to the N - 1 points that have already been referred to in the 

transition probability applied to the previous point (this redundaney is illustrated in 

Fig.4.2(b)). 

In eonjunetion with the translation step, the set S determines the degree that a 

state encodes the eurve's history. The elements of the set ean span a eontiguous set of 

seales (e.g. seales {O, 1, 2, 3, ... , smax}) or a non-eontiguous set (e.g. seales {O, 3}). The 

set must always include the zeroth seale sueh that all states encode the original sample 

points. (While points in the zeroth seale might not actually be used in probability 

estimation, they are required to realize the end result.) In Figure 4.2(a), the point Pl 

at seale 82 represents a summary for the four points {Pl, P2, P3, P4} at seale SO. 

In figure 4.2 (b ), the point P 4 at seale S2 represents a summary for the three points 

{P2, P3, P4} at seale SO. While the largest-seale sample point alone ean be used to 

represent the entire eurve segment, in general, points at any combination of seales 

ean be used for eomputing the probabilities. A set of weights are assigned to eaeh 

seale to emphasize its relative importance (used in Eq. 4.4 as part of the parameter 

y and diseussed further below). 
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2.3. Observations. The state space 0 for the observations consist of a multi­

dimensional space for capturing multiple control modalities at various scales; 0 = 

{Oi 1 Oi E nlAo x SI} where Ao is the set of control attributes and S is the set of scales. 

Let the function Qi (t) correspond to astate 0i at position t in the sequence and let the 

function Oi(t)a,s correspond to the value of the state indexed by particular attribute 

a at a particular scale s. In general, the function Oi(t)W is the projection of astate 

onto a subspace that excludes the dimensions corresponding to elements in the set 

W by fixing their values. 

The control attribut es define the types of inputs that are expected from the user 

to steer the synthesis procedure. They are selected based on the application (e.g. for 

the robot path planning application, the desired path and robot facing direction can 

both be controlling components). By default, the value for the translation step and 

the set of scales for the observation states are set to be the same as those in the hidden 

states. The scales may be reconfigured empirically to customize the importance of 

history in the control layer, which can differ from the hidden layer. The translation 

step however must always have same value for both the hidden and observation states 

as this synchronizes the input segment length with the output segment length. 

2.4. Auxiliary Attributes. In addition to the attributes in A and Ao, the 

state space is augmented to accommodate for auxiliary attributes X and Xo . The 

dimensionality of the state space the becomes lA x S + XI for the hidden states and 

IAo x S +Xoi for the observation states. Auxiliary attributes are used to maintain sup­

plementary information that may be required for additional processing of the states. 

There are two types of auxiliary attributes: training set auxiliary attributes and de­

coding auxiliary attributes. Training set auxiliary attributes are curves attributes that 

capture meta-information regarding the training data. Decoding auxiliary attributes 

are curve attribute::; that are Ilot available during training but are captured a::; 1'e­

quired when solving for the best hidden state sequence. These attributes can exist 

in both the observation states and the hidden states. In the hidden states, the aux­

iliary attribut es are not bound to local consistency requirements and hence do not 
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enforce sequential constraints on successive sample points. In the observation states, 

the auxiliary attributes are not included as part of the generative model and hence 

do not influence the confusion matrix. 

One example of an auxiliary attribute is the translation step. Since knowledge of 

the translation step is required for the eventual realization of the output curve and it 

cannot be assumed that every state has the same translation step (T may not be an 

integral deviser of the number of sam pIe points T), then the translation step is stored 

in the states as an auxiliary attribute. Additionally, the sample points at the zeroth 

scale can also be considered as auxiliary attributes when their importance weights are 

set to zero. (While these points are not explicitly used in constraining the sequence, 

they are required later to realize the output curve.) Other auxiliary attribut es are 

discussed further throughout the remaining sections of this thesis as they pertain to 

the application. 

2.5. Transition Probabilities. The transition probabilities p{Hi(t) 1 Hj(t-

1)} for all states in the training set are estimated from the statistics of successive sam­

pIe points, counting the occurrence of successive states for each mat ching previous 

state. Rather than searching for exact matches, the transition probabilities are esti­

mated by evaluating the goodness of a match. The probability that two states match 

is determined using a proximity function that evaluates the distance between states. 

A Gaussian distance metric G is used and the parameter Y is defined by {G, ~ 2 , '111, a} 

and used as follows: 

( 4.4) 

where 

~2(H.(t) H.(t)) = 2::aEA 2::sES 2::7'=0 .. 78 '111(8, a)(Hi(t)s,a,7' - Hj(t)s,a,7,)2 (4.5) 
2 , J 2::aEA 2:: sES '111(8, a)(j2(a)Ts 

and where w(s, a) is the associated importance weight and a2 (a) is the attribute's 

mixing variance. This Gaussian blur is applied on the difference of two curve segments 

encoded in the states as a weighted sum over the specified scales and constraining 
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attributes, excluding aU auxiliary attributes. (When dealing with the angles, the 

difference is always computed over two the interval [-7f, 7f]). This effectively blurs the 

non-zero elements in the transition matrix, avoiding synthesis issues that can occur 

due to quantization errors or disjoint communication classes while also providing sorne 

degree of control and flexibility over the mixing tendency. The tendency to mix curve 

segments is determined by the value of the variance (52 (a). A smaU variance reduces 

the mixing tendency such that the output will be more similar to exact instances of the 

training set while a large variance aUows the synthesis pro cess to transition between 

states more easily at the co st of losing sorne local consistency with the training set. 

For most of the experiments, a large weight is used for the shape attribute at 

a high scale and the variance is set empiricaUy for each training set. For efficient 

implementation, to avoid iterating over zero values weights, only non-zero valued 

weights are stored in a vector where each element in the vector indexes the state 

location of the target scale and attribute that it applies on. 

2.6. Transition Matrix. In a finite state space HMM, the transition proba-

bilities for aU states are stored in the matrix M where the (i, j)th element corresponds 

to the transition between state i and state j. This becomes problematic in continuous 

state spaces where there is an uncountably infinite number of states. One approach 

to address this issue is to quantize the continuous space using weU defined bound­

aries, though this alone can lead to implementation issues regarding the size of the 

matrix. Even with the compact multi-scale representation, the size of the transition 

matrix grows exponentially with the number of attributes, irrespective of the number 

of non-zero probability transition, which may be relatively few in number. (Note that 

while M may become large, the total amount of training data having been provided 

by the user is probably of limited size.) The approach takell ta avaid this issue is ta 

dynamically label regions of the state space that contain states that exist in the train­

ing set and then use this label to index the matrix. This compacts what is otherwise 

a large and sparse matrix. 
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The estimated transition probabilities are stored in a matrix M that is indexed 

by a predefined state identifier. Let the finite set H' = {L 1 L E Z*} be the quantized 

state space where each L in H' is a label for states in H. Let the mapping Q : H -+ H' 

be the quantization function that assigns labels in H' to states in H (i.e. RIAxsl -+ 

Z*). Each state hi that exists in the training set is labeled dynamically using Q and 

the transition matrix M is indexed using the labels in H'. The value of each matrix 

element M ij is then p{ Q-1(i) 1 Q-1(j)} where Q-1 is the inverse mapping of Q, 

computing a state in H that is representative of the label in H' (i.e. Q-1(k) = hk ). 

In this fashion, M has only non-zero entries and the size of M is proportional to 

square of the number of uniquely labeled hidden states in the training set; M is thus 

expressed using only an IH'I x IH'I matrix. In order to have random access to a state's 

label L, all candidate states include the label as an auxiliary parameter. 

The quantization function Q is computed by evaluating Eq. 4.5 on each attribute 

separately. Those states that have all attribute similarity measures falling below the 

specified attribute thresholds are labeled with the same value L; i.e. if p{ Hi (t)a = 

Hj(t)a} < atresh for all attributes a then Q(hi ) = Q(hj ). Unlike in the computation 

for the transition probabilities, this computation also includes the auxiliary attributes 

as they contain state information that must be preserved and hence take part in 

distinguishing states: a EAu X. (To avoid over-blurring, the value of athresh should 

be relatively small.) 

A new centroid state, representative of the label, is computed by averaging the 

attribute values over all states that have the same label: Q-1 (i) = hi where hi is 

the centroid state. The average is computed by a uniformly weighted sum of the 

attributes (angles are handled as a special case when their values span the first and 

fourth Cartesian quadrant). Computing the centroid state in this fashion can result 

in a drift where the distance of sorne samples to the centroid can increase beyond the 

error bound. However, this effect is minimal when the error bound is small, as the 

maximum drift caused by a sample point is ~ where n is the number of samples 

associated with the label. 
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2.7. Stationarity Window. A stationary model is one where the likelihoods 

in the transition matrix (and confusion matrix) are not a function of position; M(O) = 

M(I) = ... = M(T) = M. Any locally consistent mixture of curve segments can occur 

at any point along the curve, with only the input and local history as constraining 

factors. In contrast, a non-stationary model may have a distribution that is a function 

of the position. In cases where a stationary model is not suit able (when the features 

of curves do not repeat consistently over the entirety of the curves), the transition 

matrix must be calculated over a predefined stationarity window w. This window 

identifies the size of local regions that exhibit regular properties (which can be as 

small as one sample point). 

Providing the option to specify a local stationarity window (hence global non­

stationarity) accommodates sets that inherently exhibit position-dependent features. 

As an example, consider drawing the outline of a mountain. Initially, the edge should 

be colored brown or green and later it should be colored white or gray (simulating the 

snowy look in higher altitudes). Even though the underlying shape may not change, 

the output varies according to the position along the curve. Non-stationarity also 

helps preserve proportionality and sizing constraints over large scales by enforcing 

the sequential progression of sam pIe points more strictly. The underlining premise in 

non-stationarity is that the characteristics of curves become functions of the position 

along the curve, hence the arc-Iength position itself becomes one of the constraining 

elements in the system. 

The desired rate at which the transition matrix is permitted to vary is specified 

by the manually tuned stationarity window parameter w. The stationarity window 

can be specified within the range [1, Tl as a multiple of the transition step T. The 

transition matrix M(t) is then computed using the statistics of the sample points in 

the training set that lie between a lower bound l and an upper bound u centered 

about t: 

l = max(O, t - lw/2J) 
u = min(T, t + fw/2l) 
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l = min+(T -lw/2J,t -lw/2J) 
u = (t + Iw/21) MOD T 

for closed curves, where w is the stationarity window. The function min+(-) returns 

the smaHest positive number and 1·1 rounds up the argument (the ceiling function). 

2.8. Confusion Matrix. The confusion matrix B stores the likelihood of 

observing a curve segment when the intent is to produce its associated refined segment. 

Given the set of tuples {ai,,6i}, the likelihoods p{Oj(t) 1 Hi(t)} for aH states in 

the training set can be estimated from the statistics of the set. The number of 

matching coupled states {hi,oj} is computed by searching for exact matches over 

aH examples within the stationarity window. Similar to the transition matrix, the 

confusion matrix is also index by precomputed state labels. The observation states 

are assigned labels from a finite state space 0' = {L 1 L E Z*} using the quantization 

function Q : 0 --+ 0' from Eq. 4.5. The size of the matrix B is then IH'I x 10'1. 
lndeed this matrix only encodes the expected observations from a limited set 

of examples, which may or may not be exactly as drawn by the user. This poses 

a problem when the user draws a curve segment that has not been anticipated in 

the training set. One approach to address this issue is to provide a large confusion 

matrix with aH possible inputs, train it under the training set and then and blur it 

to avoid non-zero likelihoods. However, attempting to anticipate in advance every 

possible curve segment that the a user can draw is inefficient and impractical with 

CUITeut melllory lilllitatiout:>. Therefore, thit:> it:>t:>ue lllUt:>t be addret:>t:>ed dYllalllically 

when decoding the model with the input, taking into account the possibility that the 

training set does not anticipate every input and must be used as an approximation 

to what the user is expected to draw. 
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2.9. Initial Distribution. To complete the configuration of the HMM, an 

initial distribution 7r for the hidden states must be specified. A uniform initial proba­

bility distribution is assumed. That is, before anything is drawn, an curve candidates 

have an equallikelihood of being synthesized. 

3. Decoding Refinement Models 

Once the model is trained, it can be used to refine a coarse input curve. Given 

an input curve and a HMM A 0 trained over a family of curves, a new refined curve is 

synthesized by solving for the maximum likelihood hidden state sequence: 

That is, the most likely sequence of refined curve segments (represented by the hid­

den states) is reconstructed using the sample points from the input curve (represented 

by the sequence of observation states). One approach to solve this problem consists 

of examining an possible sequences, computing the likelihood for each candidate se­

quence and then choosing the one with the maximum likelihood. This results in an 

overly redundant system where the same computations are repeatedly performed for 

the same candidate sub-sequence. Such an approach leads to a runtime complexity 

of O(NTo ) where N is the number of hidden states (l1-fl) and To is the length of the 

observation sequence. Instead, a dynamic programming approach is taken where, for 

each observation in the input sequence, the best transitions between an successive 

states are maintained, avoiding redundant computations for the same transition like­

lihoods in different candidate sequences. The Viterbi algorithm [96] is used to solve 

this problem with a run-time complexity of O(N2To ). 

The approach consists of iterating over the sequence of observations, updating 

the likelihood of candidate sequences by computing their compatibility with the input 

sequence up to the current observation. At each iteration, the maximum likelihood 

estimate for a partial observation sequence and hidden state sequence given that the 

current hidden state is hi is computed (i.e. the likelihood of the best path passing 
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through state hi at sequence point t): 

1/J(Hi(t)) = max p{H(O), ... , H(t -1), H(t) = hi, Oin(O), ... , Oin(t) 1 AO} (4.7) 
H(O), ... ,H(t-l) 

This likelihood is computed for aIl states hi by the foIlowing two steps: 

( 4.8) 

This two step iteration consists of a propagation step followed by a conditioning 

step. First, the distribution W(t) over aIl states hi, i = (L.N), is computed by 

propagating the previous distribution using the transition probabilities in M(t-1) for 

t > O. (At t = 0 the distribution 'if is used directly for initialization and propagation 

is skipped.) Then, using the probabilities in B (t), the input is used to bias the 

propagated distribution. The resulting distribution is normalized. 

In a typical Markov chain propagation, the probability for the current state is 

calculated by accumulating the likelihoods over aIl previous states that the current 

is dependent on. In contrast, the goal of the decoding algorithm is to eventuaIly 

realize a sequence and thus only the most likely previous state that generates the 

current is considered. In order to maintain this partial sequencing information, for 

each candidate state Hi(t) a back-pointer is maintained that points to the most likely 

previous state Hj (t - 1) that generates the current. This information is stored in each 

candidate state Hi(t) as an auxiliary attribute. 

At the end of the input sequence, the state with the largest likelihood in w(To ) 

is selected and used as the root of a backtracking procedure that traverses the back­

pointers and realizes the entire sequence of states (Fig. 4.3). Backtracking is essential 

for generating a curve as not only does it select the best transitions between successive 

states but also implicitly propagates information from future observations back to 

earlier points in the sequence. This avoids local maxima pitfalls that can occur in 

greedy strategies where the locaIly best point may not contribute to the best overall 
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FIGURE 4.3. Synthesis diagram for three states {hl, h2 , h3} and three input 
points {o(1),o(2),o(3)}. Solid arrows indicate aU possible transitions, the 
ones shown in red indicate the best transitions. At the last point, the state 
with the greatest likelihood (hl) is chosen, foUowed by a backtracking pro­
cedure that uses the back-pointers to traverse and extract the most likely 
previous states (shown by dashed arrows). 

sequence. In this fashion, the maximum likelihood hidden state sequence that best 

describes the observation sequence is synthesized. 

3.1. Thresholding. The synthesis procedure can be further accelerated by 

using heuristic pruning. Thresholding the state distribution increases the efficiency of 

the system by removing candidate states that are not expected to be part of the final 

solution. Although the solution space may not be convex over the sequence, it can 

be assumed that for low valued candidate solutions the likelihood varies smoothly. It 

is easy to see from Eq. 4.8 that the likelihoods are compounded over the sequence 

and hence only a drastic change in the observation sequence that is not anticipated in 

the training set can significantly change the rank of low probability sequences. That 

is, at each iteration, candidate solutions that have very low prolmbility will likely 

remain low with respect to the top candidates unless aIl of the top candidates are 

drastically demoted. Given this assumption, it then becomes feasible to remove low 

ranking candidate states and provide a more efficient system. Only the most probable 
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m candidate states need to be maintained and the vector \[f is normalized accordingly. 

The runtime for each iteration then becomes O(2mN), O(mN) to extract the top m 

candidates and O(mN) for propagation, hence improvements occur when m < N /2. 

3.2. Starting Point Invariance. With a stationary model, the synthesis 

procedure is inherently invariant to the starting point of the input curve. This is 

not the case with a non-stationary model where the starting position must first be 

synchronized to the training set. This causes an undesirable restriction, particularly 

when dealing with closed curves where users may wish start drawing the shape at any 

point along the curve. For example, consider the shapes in Fig. 4.1, having to force 

the users to always start the curves from a fixed position can undermine the simplicity 

and usability of the system. Therefore, in order to provide invariance to the starting 

point, the initial matrices M(O) and B(O) are computed over the entire arc-Iength (the 

stationary matrix). This allows the synthesis procedure to be bootstrapped to any 

state at any position along the curve. Based on this bootstrap, different transition and 

confusion matrices can be applied for different candidate states in the same iteration. 

In order to keep track of the bootstrap, two auxiliary parameters are used. First, 

the state space is augmented to include a training set auxiliary attribute ttrain that 

identifies the sequence position of the candidate state from training. This is used 

to uniquely label states that are found at different positions in the training curves 

and thereafter help identify the transition and confusion matrices that should be 

used when processing the candidate state. (Note the use of an auxiliary attribute 

rather than a constraining attribute, maintaining the ability to transition to states 

at different positions within the stationarity window.) Second, a decoding auxiliary 

attribute t~rain is used to maintain the initial starting sequence point leading up to 

the current state. Its value is only set once, at t = 0, using the auxiliary attribute 

ttrain from the candidate titateti Hi(O). The value is patitied alollg the tiequellcc durillg 

propagation using the most likely previous state that generates the current (i.e. the 

back-pointer). Then, the state associated matrices are referenced by M(t') and B(t') 

where t' = (t + Hi(t) . i~rain) MOD TM and TM is the number of matrices. This shifts 
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the sequence point t by the bootstrap value of the candidate sequence and applies 

the time-shifted matrices. 

3.3. Input Handling. As discussed in Section 1.2, it cannot be expected that 

aIl sam pIe points from the user-drawn curves will have an exact match to sorne point 

in the control curves of the training set. In cases where exact matches do not exist, the 

input will cause the distribution to be zeroed as the system does not anticipate every 

possible input (p{ Oin(t) 1 Hi(t)} may not exist in B). This is further exaggerated when 

multiple input attributes are used, exponentially reducing the likelihood that a exact 

match can occur. To address this issue, a sigmoid function is used in order to blur 

the input bias. This function can be thought of as a soft threshold function, reducing 

the sensitivity to noise when applying the input conditioning step from Eq. 4.8. The 

sigmoid is suitable for modeling noisy user inputs as it can be assumed that the intent 

of the user within a given error range is equally distributed over the neighbors and 

sharply decays at points further away. The state similarity parameter Y 0 is then 

{C, ~, k, c, w} where C is the sigmoid function, k and c are the sigmoid parameters, 

w is a function that returns the importance weights of scales and attributes and ~ 

is defined below. The probability that the input attribute Oin(t)a corresponds to the 

learned observation state attribute Oj(t)a is then computed by the following: 

where 

and 
k(a) = 4.3944 

PlO(a) - P90(a) 

c(a) = -(p90(a) + PlO(a)) 
2 

( 4.9) 

(4.10) 
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The sigmoid function can be considered as a blurred step function with blurring 

parameter k and a shift parameter c. These parameters identify the center of the 

sigmoid and the sharpness of the cutoff. A simple variable transformation allows for 

the the sigmoid shape to be conveniently specified by the 90th and lOth percentile 

thresholds (P90 and PlO)' These parameters are used to control the degree that the 

input curve biases the synthesis procedure. Setting the 90th and lOth percentile to 

large values results in similar likelihoods over all observation states, reducing the 

importance of the input. Setting the 90th and lOth percentile to small values results 

in an increased sensitivity to the user input and hence provides an increase in the 

steering power. Figure 4.4 shows a plot of the sigmoid function with labels for the 

90th and lOth percentiles for a curves tangent angle attribute. 

The totallikelihood over all available input attribut es is computed by taking the 

product of the individual attribute likelihoods: 

p{Oj(t) 1 Oin(t)} = II p{Oj(t)a IOin(t)a} (4.11) 
aEAin 

where Ain is the set of control attributes used in the input. This product implicitly 

disregards any learned control attributes that are not provided by the input, allowing 

the users to freely select what control attributes they wish to use and where along 

the sequence they wish to use them. 

When applying the sigmoid blur, an input sample point no longer acts as a 

unique conditional, but rather pro duces a distribution over the observation states. 

The conditioning step of Eq. 4.8 then becomes: 

( 4.12) 

where 
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FIGURE 4.4. A plot of the sigmoid function for the tangent angle attribute cp. 

That is, the observation that results in the best input bias is used to steer the syn­

thesis procedure. The runtime of the system then increases from (N 2T) to O(N2T + 
NIO'IT). 

4. Adding Preferences using a Regularization Framework 

Regularization [90] is used to solve for a data interpolating function that satis­

fies sorne supplementary preference, such as smoothness. The technique is typically 

applied in ca::le::l where noi::ly data or illterpolatillg fUllction ambiguities re~mlt in llOll-

unique solutions. Such under-constrained problems require additional constraints in 

order to further restrict the set of admissible solutions. Given a desired regularization 

function, the goal is to minimize the error of a functional consisting of a weighted sum 
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of the interpolating function's residuals in conjunction with the reglllarizing term: 

(4.13) 

The function f (.) that minimizes the above equation is the solution for the desired 

data interpolating function. 

A probabilistic approach to regularization [86, 47] consists of maximizing the 

posterior of a Bayesian model: 

max p{f 1 D} ex max p{D 1 f}p{f 1 M} 
fEM fEM 

(4.14) 

where f is an element of a set of functions M and D is the input data. Typically, the 

data model P{D 1 f} assumes a Gaussian noise model and the fidelity model P{f 1 M} 

is the regularization bias commonly defined as an exponent of the smoothness term: 

",n (J(Xi)-Yi)2 

p{ D 1 f} = e- L...i=l a 2 (4.15) 

p{f 1 M} = e-ÀJ~ (J"fdx ( 4.16) 

The HMM framework can be formulated using Eq. 4.14. Rather than having a 

fixed noise model and smoothness constraint, priors for these components are learned 

from examples. That is, using the HMMs, the maximum likelihood hidden state 

sequence can be considered as the desired interpolation function, the confusion matrix 

can be considered to represents a learned data term p{ D 1 f} and the transition matrix 

can be considered to represent a learned regularization term p{f 1 M} (evaluating 

the goodness of the function using the previous neighbors). 

Using this framework, users can embed supplementary ad-hoc biases to the sys­

tem. These biases can be in the form of analytical functions that define a prior 

preference on the types of solutions that can be produced. Further, since our state 

space is discrete, we do not need to rely on traditional gradient-descent based varia­

tional calculus techniques but rather, we can apply the Viterbi algorithm to find the 

maximum. At each iteration of the decoding algorithm (Eq. 4.8), the distribution 
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vector W(t) is biased by augmenting the energy of each candidate state as follows: 

E(Hi(t)) = -log( 'ljJ(Hi(t))) + L ÀkRk(Hi(t)) ( 4.17) 
k 

where Rk (.) is a regularization constraint (such as smoothness) and Àk is the asso­

ciated weight. This must be computed before the propagation step of Eq. 4.8 such 

that the regularization terms are taken into account when selecting the maximum 

likelihood previous state. 

In general, there are few restrictions on the type of regularization constraints that 

are applied. First, they must be causal su ch that the distribution can be propagated 

forward. Second, when state thresholding is applied, it must also be assumed that 

the function is smooth. If the regularization terms require information from previous 

points (such as in a smoothness constraint), the history is readily accessible using 

the back-pointer of each state. It may be the case that the regularization terms 

require information from the input conditionals, which is also readily available. Any 

additional parameter required by the regularization term can be stored as an auxiliary 

attribute in the candidate states. For example, when the input conditional only 

consists of the tangent angles of an input curve (as discussed in Chapter 3, Section 

1), a regularization function may instead require the Cartesian co-ordinates and hence 

must recompute the position for each sample point (assuming a bootstrap is available 

at t = 0). To avoid such redundant computations, this information can be stored and 

updated conveniently in auxiliary attributes, providing direct access to the desired 

forms of data. 

5. Summary 

This chapter described a framework that consists of learning and applying curve 

refinement models. The refinemellt pro cess consists of solvillg for the maximum 

likelihood mixture of segments from the training set that best explain the input. The 

degree of mixing and the scales at which to mix in are specified by the parameters of 

the model. The presented framework is general and in order to apply it to real world 
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applications it must be customized accordingly. This entails defining the following 

components ofthe model: {R, S, A, Ao, X, Xo, T, w, T, Ta}. That is, the regularization 

terms, the set of scales and attributes to use and the training data are all application 

specifie components. Furthermore, the mixture variance, sigmoid parameters and 

importance weights in Y and Y o must also be specified. These are discussed in 

more details in the following two chapt ers where the framework is customized for two 

applications: sketch beautification and robot path planning. 
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CHAPTER 5 

Sketching Application 

This chapter deals with the sketching application and presents the required frame­

work customization, the experimental setup and results. Customizing the framework 

for this application consists of identifying and integrating the desired curve attributes, 

control schemes and regularization constraints into the model as pertained to sketch­

ing. A supplementary texture filling pro cess that further enhances the sketch refine­

ment pro cess is also presented. The experiments consist of testing the system over a 

variety of training sets, input curves and parameters, examining the behavior of the 

system by subjectively evaluating the results. 

1. Curve Attributes for the Hidden Layer 

The hidden layer of the HMM encodes constraints on the types of sketches that 

can be synthesized. The states corresponding to this layer encode multi-attributed 

sketching elements consisting of the following components: 

• Shape of the curve 

• Color of the curve 

• Thicklless of the curve 

• Fill-color 

• Fill-transparency 

• Fill-direction 



5.1 CURVE ATTRIBUTES FOR THE HIDDEN LAYER 

The set of desired curve attributes is thus defined as follows: 

A = {e(t), t1e(t), c(t), k(t), u(t), d(t)} 

The shape of the curve is represented using either a first-order representation, the 

tangent angle e(t), or a second-order representation, the change in tangent angle 

t1e(t). Both of these are evaluated experimentally with and discussed in more detail 

later. The color of the curve c( t) is a 24 bit RG B value (eight bits per color channel) 

and the thickness k(t) specifies the radius (in pixels) that should be used when drawing 

a curve's scan converted pixels. The filling parameters are used to "color in" the 

interior of the curve. The fill-color and transparency u( t) are encoded using a 32 bit 

RGBA value (eight bits for each of the three color channels and eight bits for the 

alpha channel). The fill-direction d(t) is used to identify whether the seed pixels for 

filling should be generated along the curve's normal or opposite to it; it is set to 0 for 

no fill, + 1 for filling along the normal and -1 for filling opposite to the normal. 

1.1. Seed Pixels. The fill-color, transparency and direction are used to gen­

erate seed pixels; pixels adjacent to the curve that initiate a texture filling process. 

If one desires, more than one seed pixel can be colored along each sample point of 

the curve, providing a larger-scale bootstrap for the texture synthesis process. The 

fill-direction must be adjusted in correspondence to a curve's sequence orientation 

(clockwise or counterclockwise) in order to fill the interior of a curve. lndeed, there 

may be cases where the synthesis of curve segments result in fill-directions aimed 

at the the exterior of a closed curve. This is particularly prevalent when drawing 

self-intersecting curves. For such segments, the user lllUt:it either mallually fiip the 

fill-direction or completely remove the seed pixels at those points. Developing an 

editing tool to accomplish this is straightforward, setting d(t) = -d(t) (or zero) for 

all curve sample points that fall within the user's boundary selection. 

72 



5.3 NORMALIZATION AND SAMPLING 

2. Curve Attributes for the Observation Layer 

The observation layer of the HMM encodes constraints on the effect an input 

curve segment has on the resulting sketch. The states corresponding to this layer 

represent the types of inputs the system expects and includes the following attribute: 

• Shape of curve 

hence Ao = {4>(t), .6.4>(t)}. That is, the shape of the input curve is represented 

by either a first-order representation 4>( t) or second-order representation .6.4>( t). In 

principle, other input components can also be used to control the synthesis procedure, 

su ch as the pen-pressure and speed, though these are not experimented with in this 

thesis. 

3. Normalization and Sampling 

Recall that Curves in T and Ta are normalized over their arc-Iengths and uni­

formly sampled. The values used to accomplish this are determined based on the 

type of model used; stationary or non-stationary. One of the key criteria that must 

be satisfied is to preserve the appropriate correspondence between the sample points 

from the control curves and sam pIe points from the associated refined curves. In 

particular, to synchronize B and M, the number of samples used to represent the 

control curves must be the same as the number of samples used to represent the 

refined curves, despite the fact that their arc-Iengths may differ. 

3.1. Normalizing for a Stationary Model. When a stationary model is 

chosen, all curves in the training set are normalized using the arc-Iength of the longest 

curve in the set. This preserves the relative size of features in curves of different 

lengths. The curves are then sam pIed using a piecewise linear approximation; P = 

(l-l)Pi +lPi+1 where 0 ::; l ::; 1. Finit, each refilled curve is sampled uniformly with a 

fixed, predefined sampling resolution. Then, each control curve is sam pIed uniformly 

using a sampling resolution that is determined dynamically; the sampling resolution is 

computed such that the resulting representation pro duces the same number of samples 
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for both a refined curve and it's associated control curve. This can be approximated 

by dividing the total arc-Iength of the control curve by the total number of sample 

points used to represent the associated refined curve. 

Although all of the training curves are normalized, the input curve is not normal­

ized. This allows for the possibility of applying the decoding algorithm in real-time, 

providing immediate feedback to the user (subject to a lag spanning the larger of the 

filter window or translation step). 

3.2. Normalizing for a Non-Stationary Madel. In a non-stationary 

model, the input curve and an training curves are normalized using their own arc­

length. As such, an curve have an arc-Iength of 1 and their relative size is not 

preserved. This is required in order to synchronize the arc-Iength positions of the 

input curve with the non-stationary transition and confusion matrices. Once the 

curves are normalized, they are sampled uniformly with a fixed sampling resolution 

using a piecewise linear approximation. During synthesis, processing is delayed until 

the complet ion of the input curve; once the input curve is completely drawn, it is 

normalized over its arc-length, re-sampled and then used to synthesize the output. 

4. Supplementary Sketch Refinement Preferences 

There are three regularization constraints that are used to improve the results 

for the sketching application: 

• Sequence coherence 

• Example coherence 

• Magnetic attraction to input 

The set R is then {RI, R2' R3, ÀI' À2' À3} where each element is further described in 

this section. 

The t-)equellce coherence constraint is used to reduce the likelihood of gelleratillg 

out of sequence transitions, promoting solutions that are more consistent with the 

sequencing in the training set. That is, if two different candidates have a similar 

likelihood, the solution will be biased toward the candidate that is in sequence. This 
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constraint has also been used in earlier work by Hertzmann et al. [38] where the 

authors exemplify how coherence provides better progression over the sequence and 

hence better reflects the features (or styles) of a training set. In order to embed this 

bias in the model, the training set auxiliary attribute ttrain is used to identify the 

position of candidate states in the training set. Using the back-pointer, the position 

of the last state that generates the current is identified and the likelihood of the 

current state is penalize if out of sequence: 

(5.1) 
otherwise 

where Cl > 1 is the penalty factor. 

The example coherence constraint is used to reduce the number of transitions 

between different ex amples in the training set. This biases the system to generate 

larger curve segments from a individual ex amples and avoid unnecessary transitions 

that may occur over similar examples. (Note that the translation step strictly enforces 

this constraint by limiting the minimum segment length.) To integrate this bias into 

the model, another training set auxiliary attribute is induded to help identify the 

training example that the candidate state belongs to. State sequences with different 

example identifiers are then penalized: 

if Hi(t) . id = Hj(t - 1) . id 
otherwise 

(5.2) 

where C2 > 1 is the penalty factor and id is the example identifier. 

Finally, an additional constraint is used to promote solutions that are doser to 

the input. This constraint is referred to as the magnetic regularization term as its 

biasing effect is similar to that of applying a magnetic attraction force between the 

input and output curvcs. This constraint helps avoid drift duc to quantization crrors. 

Moreover, even in ideal cases, because the state spaces for both the observation and 

hidden states encode the shape of a curve using its angles, there are no constraints 

learned explicitly on the positions of curves. This regularization term provides the 
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added advantage of enforcing position based constraints while also maintaining the 

flexibility of a first or second-order representation of the training set. In order to 

determine the distance between the input and candidate solutions, the Cartesian 

co-ordinates of the sequence leading up to the states must be determined. 

Assuming that the Cartesian co-ordinates are available in the form of auxiliary 

attributes of the candidate states, the regularization term for the state can easily be 

computed as a function of the distance between the candidate points {x, y} and the 

input points {Xin, Yin}' This is evaluated by averaging the square distance between 

aH points in the candidate state and the input: 

R3 (Hi(t)) = L (Xin(tr + l) - Hi(t) . X(l))2 + (Yin(tr + l) - Hi(t) . y(l)) 
2 

(5.3) 
I=O ... T 

where T is the transition step (the number of points in the segment). The method to 

compute the Cartesian co-ordinates is described below. 

4.1. Cartesian Co-ordinates. To include position based constraints in the 

model, additional decoding auxiliary parameters {x, y} are added to the states. These 

parameters identify the Cartesian co-ordinates for aH sample points in the current 

state by traversing the most likely hidden state sequence up-to and including the 

state. Their values are computed by extrapolating the {x, y} co-ordinates from ei­

ther the previous point within a segment (within the same state) or the most re­

cent point in previous state (identified by the back-pointer). Using the tangent 

angels at the lowest scale, the Cartesian point {x(l),y(l)} is then calculated by 

{x(l- 1) + t5t(l) cos(B(l)), y(l- 1) + t5t(l) sin(B(l))} where l is the sequence position 

of the input sample point and 6t is the sampling resolution. (In this formulation, the 

parameter l is used to index the respective position of the auxiliary parameter in state 

H(t) by taking the modulus remainder with the transition step T). At l = 0, the initial 

point {x(O), y(O)} is bootstrapped to the first input point drawn {Xin(O), Yin(O)}. 
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In order to properly match the resolution of the auxiliary co-ordinates with that 

of the control and refined curves from training, the sampling resolution r5t(l) is com­

puted using two additional training set auxiliary attributes. One attribute stores 

the sampling resolution of the control curves r5to and the other stores the sampling 

resolution of the refined curves 6th: 

(5.4) 

where r5tin is the sampling resolution of the input curve. According to the described 

normalization scheme, in the non-stationary case 6to = r5th, hence the resolution 

used degenerates to the input sampling resolution; r5t(I) = r5tin (I). In the stationary 

case, Eq. 5.4 compensates for the resolution difference between the control curves and 

refined curves. In both cases, the learned styles will contract or dilate according to 

the input sampling resolution. 

When the second-order curve representation fj.() is used, the tangent angles then 

become a decoding auxiliary attribute. The Cartesian co-ordinates are computed 

using a second-order reconstruction {x(l - 1) + r5t(l) cos(()(l- 1) + .6.e(I)) , y(l - i) + 
6t( 1) sin( ()( 1- 1) + fj.()( l))}. The synthesized curve is then bootstrapped using the first 

two input points {Xin (0), Yin (O)} and {Xin (1), Yin (1)} 

4.2. Curve Closure. In sorne cases, it may be desirable to vary the degree 

of influence for a regularization term along the sequence. This is easily accomplished 

by defining the regularization weight as a function of the sequence position; .\(t). 

To exemplify this, a sequence varying regularization weight is used to enforce curve 

dosure. Maintaining dosure when it is desired is an important component of the 

sketching system. If the user draws a dosed curve, then the system must enforce 

this criterion as failing to satisfy it results in an output curve that is topologically 

different from the input, resulting in a significantly noticeable discrepancy betwccn 

the input and output. 

The approach taken to synchronize the dosure of an output curve with that of 

the input curve consists of applying a large bias to increase the likelihood that the 
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output curve remains near the input curve. (If the output is always near the input, 

then when the input curve is closed the output curve will also be closed, and vice 

versa.) However, it is not desirable to apply this bias equally along the entire curve; 

the system must also provide the fiexibility for the output to diverge from the input 

in order to express the learned styles. It is however desirable to restrict the output 

curve when approaching the the curve's endpoints, where closure is not guaranteed. 

Thus, to allow the interior of the output curve to divert from the input curve while 

converging at the endpoints, the magnetic regularization term is weighed by a function 

of the arc-length as follows: 

(5.5) 

where t is the current state sequence position and Ta is the length of the observation 

sequence. This smoothly increases the magnetic term at the curve's end-points where 

it is needed while reducing it when away from the end-points. 

Since the sequence length Ta of the observation sequence in not known until the 

user has finished drawing the curve, this constraint is only applicable once the entire 

curve has been drawn and cannot be used in real time executions. To achieve this in a 

real-time drawing environment, it is first assumed that the drawn curve is not closed 

and synthesis is preformed concurrently while the curve is being drawn. Once the 

input curve is complete, the system evaluates if the input curve's endpoints are within 

a predefined distance. If the endpoints are close enough, then the system assumes 

that the curve is closed and regenerates the entire curve using the decay function 

from Eq. 5.5. 

4.3. Additional Parameters. The remaining parameters of the model are 

determined empirically. Sorne are universally applied for all training sets while others 

are aùjutlted accordillg the the nature of the tlet. The importance weighttl, tlcaler:;, 

transition step and sigmoid parameters are set once. The shape of the curve is set to be 

the primary constraining attribute and all the other attributes have their importance 

weights set to sm aller values (i.e. w(O) » w(a) for all other curve attributes a). 
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There are 4 scales used for the multi-scale representation and the highest scale is set 

to bear the most weight (twice the weight of the other scales). The scales include the 

following: the original sample points and 2, 4, 6 fold Haar filtered versions of those 

points (i.e. the points resulting from repeatedly applying the filter 2, 4, 6 times on the 

raw sample points). The sigmoid parameters are empirically determined; it is found 

that a 90 percentile threshold at 15 degrees and 10 percentile threshold at 33 degrees 

can provide a good degree of control with limited sensitivity to noise. The mixture 

variance, stationarity windows and regularization weights are empirically determined 

for each training set. 

5. Drawing Output Curves 

A curve is drawn by instantiating the decoded maximum likelihood hidden state 

sequence. The curve's Cartesian co-ordinates are captured from the auxiliary pa­

rameters described in section 4 while the other attributes are captured from their 

corresponding dimensions in the state. The samples from the states are then used as 

control-points in an integer scan-conversion algorithm [66] that uses a linear inter­

polant to pro duce the raw pixel values and locations. In cases where the input curve 

is closed, the end-points are also linearly interpolated. 

5.1. Drawing Texture Fill Seeds. The texture fin seeds are points that 

are drawn adjacent to the scan-converted pixels to indicate how a curve should be 

shaded. They are rendered using the corresponding colors and directions extracted 

from the states. The exact locations of the seed pixels are computed by applying 

predefined placement rules that use the location of the current and previous pixels in 

the scan-converted curve. For example, if the fill direction is positive, and the previous 

pixel co-ordinates, {xp(l-l), Yp(l-l)}, are both less than the current {xp(l), YP (l)} , 

then the location for the seed pixel is {xp(l) + k(l), Yp(l)}. This is repeatedly applied 

for each fin-color dimension (there can be more than one seed pixel for each sample 

point), incrementing the co-ordinates accordingly. The fin update for the current pixel 

stops when either the seed pixels are exhausted or the placement location refers to a 
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point that is already filled. An assumption taken in this procedure is that the scan­

converted curves do not superimpose each other as this can result in pixels emanating 

outside the interior of the curve. 

5.2. Overlaying Curves. When a new curve is drawn, a new image layer 

is created for that curve. The size of the layer is adjusted using the maximum and 

minimum co-ordinate values (Le. the bounding box of the curve). It can also be 

specified that the layer must span horizontally or vertically up to the edge of the 

image (e.g. for filling in the sky or the terrain). The layer or der is determined by 

the order in which curves are drawn. The final RGB color value of a pixel is then 

computed by compositing the layers as follows: 

C = _A_l C_1_+_(_1_-_A_l---.:) (~A_2C_2_+_(_1_-_A_2_)(_A_3C_3_+_._ .. ....:-)) 
Anorm 

(5.6) 

where C is the composite color for the pixel, Ai is the alpha value for the pixel at layer 

i and Ci is the color of the pixel at layer i. The normalized composition is computed 

by dividing the unnormalized colors by a normalization constant computed as follows: 

(5.7) 

6. Texture Filling 

Specifying the interior colors along each curve as a supplementary attribute allows 

the system to initiate a post-processing texture synthesis procedure. This procedure 

is used to color inside the empty areas of a closed curve (or an opened curve that is 

bounded by the edges of the image). A statistical texture filling process, also based on 

a Markov Model of image properties, is applied to synthesize a new texture that looks 

similar to a sample texture in the training set. (In regards to the two level hierarchy 

of HMMti, the curve-level and the ticene-level, thiti procedure cau be contiidcrcd as a 

third level processing phase; the pixel-Ievel.) 

The texture filling process is initiated from cues attached to the synthesized 

curves, acting as the "seeds" for an incremental stochastic pixel inference procedure. 
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The pro cess consists of first identifying the empty pixels that need to be colored and 

then determining the color by searching the sample texture for a similar regions. 

The search for empty pixels is performed over four orthonormal scan-lines; from 

left to right, right to le ft , top to bottom and bottom to top. When searching along 

a scan line, the first empty pixel that 1) has at least one filled neighbor that is not 

a boundary and 2) is found after an odd number of boundary crossings is added 

to the list of pixels to be filled and the next scan line is processed. (A boundary is 

identified by a unique color.) When all scan-lines are exhausted, the set of pixels to be 

filled is sorted in order of the number of filled neighbors each one has. For efficiency, 

sorting is performed at every nth iteration. To avoid starvation of low-ranking pixels 

and provide a more uniform synthesis from all directions, at every mth iteration the 

pixel rank is perturbed randomly and if the top pixel on the li st belongs to the same 

scan-line as the top pixel from the last iteration, it is penalized. The highest ranking 

unfilled pixel is selected and its color is drawn as the maximum likelihood value of 

the probability of the color as described in [98]. 

The pixel inference procedure is bound by the curve's edge, its bounding box and 

the edges of the image. It is applied to each layer independently using the example 

texture from the corresponding training set. If the example texture does not have 

an alpha map, the alpha value is copied-over from the synthesized seed pixels. Any 

unfilled pixels remaining in the image take on the value of a specified background 

texture. That is, once post-processing of alllayers is complete, every pixel that is left 

unprocessed is set with an alpha value of zero (completely transparent). The layers 

are then merged together with a predefined background texture that has its alpha 

value set to one (completely opaque). 

7. Experimental Setup 

The experiments described here were performed using a sketching application that 

implements the HMM framework. The application allows a user to draw interactively 

while performing curve synthesis in real-time. The user selects the class of curves used 
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for synthesis and controls various parameters of the synthesis process. Figure 5.1 

shows a screen shot of the application's graphical user interface. The main window 

consists of three panes, the left pane is used for drawing, the right pane is used to 

present the results and the bottom pane provides buttons for common actions. In 

addition to the graphical user interface, a command line interface is used to provide 

direct access to all parameters and functions. 

III --

FIGURE 5.1. A screen-shot of the graphical user interface for the sketching 
application. Left pane is used for drawing, right pane is used to display 
the results and the bottorn pane is used to provide quick access to cornrnon 
cornrnands. 

The training sets used in the experiments are carefully drawn by hand with an 

electronic pen and tablet. Where applicable, texture seeds are manually extracted 

from sample images and, using linear interpolation, are registered with the curves' 

sample points. The parameters for each training set are empirically detenllined based 

on a subjective evaluation of the results. These parameters are stored together with 

the training set and reloaded whenever the set is used. AH experiments are executed 

in real time using a 3 Ghz Pentium 4 with 1 Gigabyte of RAM. 
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8. Experimental Results 

This section presents the synthesis results for various training sets and input 

curves. The results are examined and evaluated subjectively under various parameter 

settings and curve attributes (such as color and fill-color with the texture filling 

process). 

FIGURE 5.2. Refined curves from a training set used to draw coastlines. 
The entire set consists of 25 examples. The control curves are generated 
by applying a low-pass filter on the refined curves, removing the fine details 
that are too difficult to draw. 

8.1. Coastlines. Figure 5.2 shows several examples from a training set used 

to pro duce coastlines. These refined curves exhibit low-Ievel details that are too 

difficult or cumbersome to manually draw. For each curve, its associated control 

curve is automatically generated by blurring the refined one using a low-pass filter 

(removing the elements of the curve that are difficult to draw). This set is used to 

train a stationary model. 

Figure 5.3 shows an example sketch and the results of the synthesis procedure 

when no regularization tenus are utied. It is eatiy to tiee that, although the tiyllthetiiti 

exhibits the coastline features, the output is not an acceptable solution. One no­

ticeable artifact is that the topology of the input curve is different than that of the 

output curve; the gap between the endpoints is too large for linear interpolation to 
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FIGURE 5.3. Example synthesis of a hand-drawn curve using the coastlines 
training set (Fig. 5.2). 

FIGURE 5.4. Example synthesis with a large magnetic bias. 

take place without degrading the desired style. (For display purposes, the output 

curve has been left open, though the system normally performs a linear interpolation 

due to the fact that the end point of the input curve are close enough such that its 

considered a closed curve.) Figure 5.4 shows the result when the magnetic regular­

ization term (Eq. 5.3) is applied. In this case, it is easy to see that the output curve 

is close enough to the input curve to observe to the clos ure constraint, though the 

learned coastline features are no longer as prevalent. When the magnetic term is too 

large, the candidate solutions cannot diverge far enough from the input curve in order 

to express the learned style. 

Figure 5.5 shows the result when applying the sequence dependent decay function 

on the regularization weight (from Eq. 5.5). The magnetic attraction constraint is 
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FIGURE 5.5. Example synthesis when applying the decay function on the 
magnetic bias. 

relaxed throughout the inner parts of the curve, allowing for the coastline features 

to be expressed, while bearing more weight at the endpoints, resulting in an output 

that is topologically similar to the input. 

Figure 5.6 shows the results when changing the mixture variance. It can be seen 

that the larger the variance, the more influence the input curve and magnetic terms 

have on the output. In the top left example, because the synthesis uses a very low 

mixture variance (~ 1 square degree), the resulting output consists of segments from 

only one of the training examples (almost an exact instance from training). The 

following curve on the right shows the output when increasing the variance by 20 

degrees. The resulting curve is a mixture of segments from the training set, though 

there is insufficient blurring for the input and magnetic term to steel' the process such 

that the output exhibits the same overall shape as the input. When increasing the 

variance further, the output begins to converge to the overall shape of the input. The 

bottom right curve shows the result wh en using a very large variance (in the order of 

10000 square degrees). In this case, the learned constraint for sequential consistency 

have minimal influence and the shape of the output curve lacks the desired style. 

Figure 5.7 shows the re~mltti for the tiame experimellt utied to produce the retiultti 

shown in Fig. 5.6, but without the regularization term. This isolates the effects 

of the input cOllditional and demonstrates its influence when changing the mixture 

variance. It can be seen that the first few output curves are similar to those in 
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FIGURE 5.6. Example outputs demonstrating the effect of the mixture vari­
ance. Top center shows the input curve. From the top-left to bottom-right, 
the results are shown when increasing mixture variances. 

the previous figure, demonstrating that the learned sequential constraints are the 

dominating biases in both experiments. When increasing the variance further, the 

input begins to play a bigger role, though it fails steer the process such that the output 

converges to the overall shape of the input, even when the sequential constraints are at 

a mmlmum. This further demonstrates the importance of the magnetic regularization 

term. 

8.2. Leaves. Figure 5.8 shows a training set used for drawing leaves. It can be 

seen that for sorne examples in this set, the low-Ievel details are a uniquely associated 

to the overall shape (e.g. the maple leaf has a unique overall shape and defining 

details), while for other examples, leaves with similar overall shapes exhibit distinct 

features (there are ambiguities in the set). Because the examples have well-localized 

features, this set is used to train a non-stationary model. In Fig. 5.9(a), the synthesis 

results are illustrated when using this set. It can be seen how the generated mixtures 

exhibit the desired leaf-like styles. 
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FIGURE 5.7. Examples demonstrating the results when increasing the mix­
ture variance and excluding the magnetism term. Top center shows the 
input curve. From the top-left to bottom-right, the results are shown when 
increasing mixture variances. Because the input curve is closed, the long line 
segments are produced by linear interpolation to close the output curve. 

However, the resulting shapes are not symmetrical, a property often seen in real 

leaves but can sometimes be ignored in the realm of imaginative illustrations. Sup­

plementary global constraints are required in order to enforce symmetry and hence it 

remains an open problem. Figure 5.9(b) shows the successive results of the ongoing 

synthesis process. It can be se en how input points later in the sequence affect the 

solution at earlier points. 

8.3. Skyline. A set of training curves consisting of two primitive roof-top 

shapes are used to pro duce skylines (Fig. 5.10). Note the difference between the set 

shown in Fig. 5.10(b) and the set shown in Fig. 3.1(a); the connecting line segments 

are no longer required as the Gaussian blur allows the user to force a segment mixture 

despite the fact that such transitions are not seen in the set. In this example set, 

because the desired output consists of repetitive mixtures of these examples, the set 

is used to train a stationary model. 

Figures 5.11 and 5.12 show the results when using this set. It is easy to see 

that the outputs consists of a locally consistent mixture of the training set that are 
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(a) Control curves produced by filtering the refined curves. 

(b) Refined curves from a training set used to capture a style for leaves. 

FIGURE 5.8. A training set used for producing outlines that look like leaves. 
The control curves are filtered versions of the refined ones. 

guided by the input curve. Desired transitions that do not exist in the training 

set can also be seen, such as that from a vertical line to a sloping roof-top. To 

demonstrate the importance of the backtracking procedure, Fig. 5.12 shows the results 

when synthesizing a curve using a greedy approach and the Viterbi algorithm. It can 

be seen that when using a greedy strategy (middle curve) , the input curve in its 

entirety is not considered and each segment is treated independently, resulting in 

the stair-case effect. Backtracking corrects this problem by considering the entire 

sequence leading to a satisfactory result. 

8.4. Basic Shapes. Figure 5.13 shows a training set with various polygonal 

shapes and a round shape (used to train a stationary model) and Fig. 5.14 shows the 

results when using this set. It can be seen how the appropriate segments from the 

training set are synthesized in arder to maintain the overall shape of the input curvc. 

Figure 5.15 shows the same training set with color added. This set is used to pro duce 

the results shows in Fig. 5.16, 5.17 and 5.18. In Fig. 5.16, the effect of applying the 

example selection coherence bias (Eq. 5.2) is demonstrated. It can be seen from the 
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(a) Example synthesis using the leaf train­
ing set. 

(b) Results of the synthesis procedure 
while accepting addition al input (from 
top to bottom). 

FIGURE 5.9. Curve synthesis using the leaves training set. 

l (Il 
(a) Control curves. (b) Refined curves. 

FIGURE 5.10. A simple training set used to draw skylines. 

colors along the output curves that when this regularization term is used there are 

less transitions between examples and the output is more uniformly colored. 

8.5. Fish. Figure 5.20 shows the results when using a training set consisting 

of fi~h shapes (Fig. 5.19). It can be se en that some of the outputs are exact Illatche~ 

from training while others are novel curves consisting of mixtures of segments from 

training. Users can control the degree of mixing by changing the variance parameter. 

For this training set, a non-stationary models was used. 

89 



5.8 EXPERIMENTAL RESULTS 

FIGURE 5.11. Example synthesis using the skyline training set. 

8.6. First Order versus Second Order Representation. Figure 5.21 

shows a training set consisting of only one example (a curl-like pattern) associated 

with a simple control curve (a straight line). This set is used to generate the results 

show in Fig. 5.22. Instead of using the tangent angles ()(t), the shape attribute of the 

curve is encoded using the second-order representation (L~.e( t)). One of the difficulties 

often seen when using a second oder representation is that errors are accumulated 

over the entire curve. Figure 5.22(a) shows an example synthesis where, due to 

accumulated errors, the output curve drifts away from the input. Further, since the 

control curve in this training set consists of only a straight line, the system is not 

trained to respond any differently to different input curvatures. This lack of control is 

demonstrated in Fig. 5.22(b). Applying the magnetic regularization constraint helps 

avoid these issues by biasing the distribution such that the output curve is more 

likely to remain close to the input (Fig. 5.22( c)). Note that because an orientation 

invariant representation is used, despite the fact that the system is trained using only 

one example oriented in one direction, the pattern is repeatable along any arbitrary 

direction. Such orientation invariance is sometimes desired, but not always (i.e. trees 

are always vertical, text horizontal etc.). Using the same training example, Fig. 5.23 

:::;hows the result:::; whell changillg the input :::;amplillg resolutioll. It cau he tieell how 

the size of the curl pattern dilates when reducing the sampling resolution. 

Figure 5.24 shows the results when using both the first and second-order repre­

sentation. For the first-order representation, the training sets consists of the patterns 
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( 

FIGURE 5.12. Example demonstrating the effect of backtracking. The top 
curve shows the input, the middle curve in shows the result when using a 
greedy approach, the bottom curve shows the result when backtracking. 

rotated at four principle directions, up, down, left, right. (The actual examples con­

sists of vertical and horizontal patterns that are traversed along both directions.) 

Using the second-order represelltation results in outputs are similar ta that seell in 

texture maps, warping the pattern over the input curve. Using the first-order rep­

resentation, the outputs preserve the rectilinear shape of segments from the training 

sets. 
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OD 060J 
FIGURE 5.13. A training set consisting of basic shapes. 

o 
o 
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FIGURE 5.14. Synthesis results using the basic shapes training set. 

FIGURE 5.15. Training set with the color attribute. 

Figure 5.25 shows a simple training set used ta further demonstrate the degree 

of control when using the second-order representation (a stationary model is used). 

The results are show in Fig. 5.26. It can be seen in Fig. 5.26(a) that, starting from 
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(a) Without the example coherence regularization term. 

(b) With the example coherence regularization term. 
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FIGURE 5.16. Results displaying the effect of the example coherence regu­
larization term. Wh en using the term, there are fewer transitions between 
training examples. 

the top-left, the process is controlled to execute the desired turn, but when the input 

curvature is too low, the output curve follows a straight trajectory while the input 

slowly drifts away, an example of input drift. Figures 5.26(b) and 5.26(c) show the 

results when increasing the magnetism term. It can be seen how the output curve 

follows the input curve by having to perform a few turns that in the short term are 

divergent from the input. This training example is further used ta leanl the shapes 

for both a left turn and a right turn (the model is trained by traversing the curve 

from both end-points). Figure 5.27 shows the results with various setting for the 

magnetism term. 
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FIGURE 5.17. Example synthesis using the basic shapes training set. 
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FIGURE 5.18. Example synthesis using the basic shapes training set. 
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8.7. Texture Fill. Figure 5.28 illustraten the renultn whell illcludillg the fill-

color attribute and Fig. 5.29 shows the texture that was used for the texture filling 

process illustrated in Fig. 5.30. It is easy to see that the texture is extrapolated from 

the contours to pro duce the desired full-color illustration. 
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FIGURE 5.19. Training set with examples of fish. Control curves (not 
shown) are blurred versions of the refined ones. 

FIGURE 5.20. Example synthesis of fish shapes. The left shows the inputs 
and the right shows the results. Some results are exact instances from the 
training while others are segment mixtures. 

8.8. Additional Examples. Figure 5.31 shows example synthesis with and 

without the multi-scale representation. It can be seen that the large scale features 

are not captured without using the multi-scale representation. In Fig. 5.32, the 

refinement of an entire sketch is illustrated. Each curve is refined by first manually 

selecting the desired training set and then applying the synthesis procedure using 

that set. Figures 5.33 and 5.34 show screen-shots of the application's user interface 

with more synthesis examples. 
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OOOOQ 

FIGURE 5.21. Training set consisting of a curl-like pattern associated to a 
simple control curve. 

(a) Drift due to accumulated errors in orientation. 

(b) Lack of control in position. 

(c) Control asserted due to the magnetic term. 

FIGURE 5.22. Synthesis of a curl pattern using the second-order shape de­
scriptor. Left shows the input and right shows the synthesis results. 
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FIGURE 5.23. Synthesis results for three different sampling resolutions. Top 
shows the input, bottom left to right show the results when reducing the 
resolution (fewer input samples). 
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(a) (d) 

(b) (e) 

(c) (f) 

FIGURE 5.24. Examples demonstrating the difference between a first and 
second-or der representation. Figure (a) shows the input curve and Fig. (d) 
shows the two patterns and the control curve (straight line segment). Figures 
(b) and (e) show the results using the first-order representation and figures 
(c) and (f) show the results using the second-order representation. 

FIGURE 5.25. A training set consisting of a right turn (traversed from top­
left to bot tom-right). It is also used to learn the shape of a left turn (tra­
versed from bottom-right to top-left). 
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(a) Input orientation drift due to low curvatures that are not found in training. 

J 
(b) Low magnetism weight. Note how the curve's position diverges from the input in order to make 
the right turns such that, in the long term, the output is doser to the input. A behavior not apparent 
when using a greedy strategy. 

(c) Large magnetism weight. 

FIGURE 5.26. Effects that result when using a training set consisting of only 
a right turn. 
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(a) Synthesis without the magnetic term. The output curve fails to close properly. 

(b) Synthesis with the magnetic term. The output remains near the input, but is too noisy. 

(c) Synthesis with the magnetic term and the decay function applied to its weight. This preserves 
both longer line segments and the clos ure condition. 

FIGURE 5.27. Results when using a training set consisting of left and right 
turns. 
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FIGURE 5.28. Synthesis of coastlines with texture seeds. 

FIGURE 5.29. Texture image used for coastlines. 
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FIGURE 5.30. Texture filling process. The progression of the texture fill 
pro cess is shown at the top, from left to right and the final result is shown 
at the bottom. 

/v"'"' 

FIGURE 5.31. Example synthesis with and without the multi-scale represen­
tations. Top left shows the input, top right shows the training set, bot tom 
left shows the result when the wavelet representation is omitted and the 
bottom right shows the result when the wavelet representation is included. 
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(a) (b) 

FIGURE 5.32. Sketch refinement using several different training sets (as­
signed manually). The left shows the input and the right shows the results. 
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FIGURE 5.33. Screen-shot: more examples using the fish-shapes training 
set. Note that when the training set is not rich, input curves that do not 
resemble the limited set of segments pro duce odd results. Such results may 
be interesting in the realm of fiction! 
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FIGURE 5.34. Screen-shot: synthesis using the roof-top training set shown 
in figure 5.10. 

105 



CHAPTER 6 

Path Planning Application 

A robot trajectory can be represented by a signal that identifies the positions a 

robot must sequentially follow in order to reach the desired destination. This chapter 

describes the application-specifie framework customization required for producing 

su ch signaIs. While there are various new components introduced into the system, 

most of the methods presented for the sketching application are common to this 

domain. This chapter also presents the path synthesis results and exemplifies how 

the system attempts to predict permissible robot trajectories; paths, guided by an 

input goal trajectory, that avoid obstacles while maintain the learned constraints. 

The training set used in the experiments consist of example trajectories for non­

holonomie motions. 

1. Path Attributes and Parameters 

The hidden layer of the HMM encodes constraints on the allowable sequence of 

positions a robot can traverse (the allowable trajectories). Using either a first-order or 

second-order representation, the states corresponding to this layer encode the shapes 

of segments from the allowable trajectories (A = {e(t), ~e(t)}). As in the sketching 

application, there are 4 scales used for the multi-scale representation and the highest 

sc ale is set to have the most weight (twice the weight of the other scales). U nlike in 

the sketching application, where it is not always necessary to have exact sequential 



6.1 PATH ATTRIBUTES AND PARAMETERS 

consistency with the training set to achieve the desired visual effect, the sequential 

constraints learned for producing robot trajectories must be strictly enforced. The 

mixture variance is thus set to a small value (~ 5 square degree), just large enough to 

allow for small discrepancies that may occur from quantization errors or minor large­

scale inconsistencies. Further, in the path planning application, the absolute location 

of features in a trajectory does not impose a constraint on the desired output (at 

any point, the robot should have the potential to perform any maneuver), hence a 

stationary model is used. (Though it is conceivable to have a training set where 

stationarity is desired, for example, there may be a maneuver that is desired only at 

the beginning or end of the trajectory.) The translation step T is set to one sample 

point, allowing for transitions to take place on a point-by-point basis. 

The observation layer of the HMM encodes the expected control mechanism used 

to guide the robot in or der to follow a goal trajectory. The states corresponding to this 

layer encode segments of the goal trajectory and include the following components: 

• The shape of the goal trajectory 

• The direction of the robot 's axis 

The goal trajectories are paths that the user (or high-Ievel planner) pro duces to con­

trol the robot (typically excluding the complexities incumbent by the mechanical 

constraints of the robot). Each goal trajectory is associated with the more com­

plicated and allowable trajectory (i.e. the control/refined curve coupling). Their 

shapes are represented using the same order and multi-scale representation as those 

used for the allowable trajectories. The direction of the robot 's axis is an abso­

lute orientation that identifies where the robot must face along the goal trajectory 

(Le. the forward direction). It is represented by a first-order representation without 

the multi-scale components. The set of control attribute is thus defined as follows: 

Ao = {cp(t), 6.cp(t) , B(t)}. The sigmoid blur parameters are set to the same values 

as those used in the sketching application as it is expected that a user will steer the 

process. 
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2. Regularization Terms 

There are several components that contribute to what constitutes a valid path. 

First, the HMM must be taken into account such that the output is consistent with 

the training examples. Second, it is preferred that the generated paths stay near the 

input trajectory. Finally, the output curve should not go through or approach too 

close to obstacles in the environment. This combination of hard and soft constraints 

can result in complex paths that are otherwise difficult to determine efficiently using 

traditional analytical models. Further, very few existing planners are example-based. 

In summary, the components are: 

• The learned constraints of the HMM 

- local shape consistency with training examples 

- control by the goal trajectory 

• Distance to the goal trajectory 

• Obstacles avoidance 

Using the regularization framework describe in Section 4, these components are com­

bined together to provide the desired control scheme. 

To reduce the average distance between the goal trajectory and the synthesized 

one, the magnetic regularization term, describe in Eq. 5.3, is used. The regularization 

weight is empirically specified and is fixed over the entire curve. (One may suggest 

ways to set '\'3 based on the divergence exhibited between the control and refined 

curves in the training set.) 

To avoid obstacles in the environment, an energy field is generated over free space 

and its values are used to bias the likelihood of candidate paths. The field is generated 

by applying a distance transform over the obstacles in the environment. A suit able 

function must result in high energies at regions near the obstacles and low energies at 

regions far form obstacles. As such, the energy of astate is updated by the following: 
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The energy of the state is augmented by the value of the field, calculated as the inverse 

of the average square distance between the position of points in the current candidate 

state and the position of the nearest obstacle (the obstacle that results in the max­

imum field value). At positions close to or on the obstacles, the energy approaches 

infinity while at areas further away the energy decays to zero. The regularization 

weight À4 controls the degree of influence the obstacles have on the solution. Large 

values will coerce the robot maintain a large distance from the obstacles while small 

values will allow the robot to reach closer to the obstacles, allowing it to traverse 

through narrower free-space regions. 

For efficiency, the environment is preprocessed by generating the field in advance 

over a grid. To evaluate the energy for a state, the auxiliary parameters that identify 

the state's Cartesian co-ordinates are used to index the grid, providing random access 

to the gird values. Figure 6.1 shows a field generated for a sample environment. 

FIGURE 6.1. Example energy field. The left image shows the environment 
and the right image is a plot of the energy field. 
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3. Dynamic Sampling 

The obstacle avoidance and magnetic regularization terms often result in com­

peting factors. In order to avoid obstacles, the synthesized path may divert from the 

input more than any divergence exhibited between the control and refined curves in 

the training set. This results in a discrepancy between the arc-Iength that is required 

to reach the goal and the arc-Iength of the input trajectory. (Eq. 5.4 only compen­

sates for arc-Iength discrepancies that exist in the training set.) In such cases, the 

synthesized path may not converge to the goal trajectory. 

To address this issue, during the propagation and conditioning steps, instead of 

using the fixed sampling rate to determine the current sequence position, each can­

didate state is synchronized with the input dynamically. This is accomplished by 

computing the appropriate sequence position of the input trajectory for each candi­

date state independently. As such, at any given iteration, a different input conditional 

can be applied to different candidate states, depending on where on the input path 

the resulting candidate state is synchronized to. 

The sequence position of the input trajectory is identified by the projection of 

candidate path onto the input trajectory (Fig. 6.2). This is performed by computing 

the dot product of the vector VI from the candidate path's starting point to the 

current point with the vector V2 from the input 's starting point to the the last input 

sample point used. The length of the projection Iql is computed as follows: 

(6.2) 

If the dot product is negative or if the length of the projection is smaller than IVII, 

then the same sequence position l is used for the next iteration (li+! = li), otherwise 

the proceeding sequence position l + 1 is used (lHI = li + 1). This sampling scheme 

results in a sequence progression that either waits for the output to catch up to the 

input (if ahead) or attempts to catch up with the output (if behind) and, to help 

ensure progress and avoid cycles, it never back-steps to earlier points. 
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FIGURE 6.2. Projection of the vector V2 (from the output trajectory) onto 
the vector VI (from the input trajectory). The projection is used to deter­
mine which sample point along the input curve should be used for applying 
the input conditional. 

Input 

The system then iterates over the propagation and conditioning steps until either 

all candidate paths are within sorne acceptable distance to the last point of the input 

trajectory or a maximum number of iterations is reached (the default maximum is 

twice the number of samples from the input). This maximum iteration limit is re­

quired to avoid infinite propagations (there is no guarantee that all, or any, candidates 

paths will converge). While decoding the model, there willlikely be cases where sorne 

candidate states result in paths that have converged while others have not. In such 

cases, only the candidates that have not reached the goal must be propagated fur­

ther. An auxiliary parameter is used to identify if astate has reached the goal. The 

candidate titates that have reached the goal are labeled ati leaf titateti and excluded 

from the next propagation step (Eq. 4.8 is modified to exclu de allleaf states). 

Selecting the best trajectory then consists of choosing the leaf state with maxi­

mum likelihood and backtracking. Because likelihood comparisons are made between 
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candidate states from different iterations (resulting from longer or shorter sequences), 

the probability normalization constants must be considered in the likelihood compu­

tation. The normalization constants used at each iteration are divided by the sum 

of all normalization constants and then the likelihoods are multiplied by their corre­

sponding value. 

4. Experimental Setup 

Experiments have been performed using the sketching application's Graphical 

User Interface as described in chapter 5. A modification to the interface was performed 

in order to provide a method for drawing simulated obstacles in the environment and 

computing the energy field. The goal trajectories are hand-drawn and the desired 

robot forward directions are manually entered by specifying the corresponding vectors 

at the desired locations. The lack of for ward directions in sorne or all sam pIe points 

does not have an adverse effect on the output as only the input components that are 

actually entered in the system are applied (Eq 4.11). A training set that simulates 

the actions of a robot subject to a bounded turning radius constraint is used and the 

results are evaluated subjectively. 

5. Results 

Figure 6.3 shows a manually constructed training set used to learn non-holonomie 

motion constraints. The refined trajectories are shown on the left and the expected 

goal trajectories are shown on the right. For the forward directions, the sequence of 

tangent angles along the refined trajectories are used (the refined trajectories are used 

for both the hidden states and the secondary dimension of the observation states). 

This set is used to train a stationary model using a first-order representation of the 

curve::; and all of the regularization tenu::; de::;cribed in thi::; chapter and the previou::; 

chapter are included. 

Figure 6.4 shows an input trajectory that is refined using several training sets; 

the non-holonomie training set and the sweep-like and curl-like training sets from 
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FIGURE 6.3. A training set with example paths for non-holonomie motions. 
Paths on the left display the constrained motions while paths on the right 
dis play the associated unconstrained goal path. The forward directions used 
for the secondary control attribute consist of the tangent angles along the 
constrained motions (left). The full set consists of the above set at four 
orientations to form a rectilinear set. 

previous chapter. It can be seen how the resulting paths form analogies to the input 

path and learned styles. They follow the overall goal trajectory and remain locally 

consistent with the training set. 

Figure 6.5 shows two more examples that demonstrate the results when using 

the non-holonomie training set. It is easy to see that the generated paths follow a 

smooth trajectory while preserving the desired overall trajectory. It can bee seen in 

the left example that the bottom right turn was synthesized as an extended loop about 

that corner rather than the typical smooth turn (as shown in training). The system 

takes into account the fact that the proceeding segment consists of a second turn, 

immediately after the first, limiting the space available for performing the standard 

t:illlooth turn and tllUt:i the tighter loop lllaneuver is required. 

In Fig. 6.6, the input consists of a goal trajectory with forward directions spec­

ified at various points along the goal trajectory (indicated by arrows). The results 

show how the predicted output paths attempt to follow the overall goal trajectory 
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FIGURE 6.4. The examples above show the input path (A) and the synthe­
sized paths (B,C,D) using three training sets. The three training sets consist 
of a zig-zag pattern for a sweep motion, a curl-like pattern for a narrow-beam 
sensor scan and the bounded turning radius pattern. 

FIGURE 6.5. Example path synthesis using the non-holonomie training set. 
Top shows the input and bot tom shows the resulting path 
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while performing the required maneuvers that align the robot to the desired forward 

directions. Figure 6.7 shows an example that demonstrates the importance of the 

magnetic regularization term. It can be seen how the output remains close to the 

input only when the magnetic regularization term is used. 

FIGURE 6.6. Results when including the forward direction as an input con­
dition (indicated by arrows). Top shows the input and bottom shows the 
generated paths. The cusps indicate a direction reversaI. 

FIGURE 6.7. Results with and without the magnetic regularization term. 
The left path shows the goal trajectory, the middle shows the resulting out­
put without the magnetic regularization term and the right path shows the 
output with the magnetic regularization term. The cusps indicate a direction 
reversaI. 

In Fig. 6.8, the results of several example syntheses with the obstacle avoidance 

term are illustrated. It is easy to see how the generated paths avoid the obstacles 
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FIGURE 6.8. Example path synthesis going through a narrow region. Left 
shows the input, right shows the output and the shaded areas show the 
obstacles. 

while roughly following the goal trajectory. Figures 6.9 and 6.10 show the path 

planning results in two simulated environments. The goal trajectory directs the robot 

to traverse either too close to or through obstacles but the resulting paths avoid the 

obstacles and preserve the learned non-holonomie constraints. 

FIGURE 6.9. Example path synthesis with obstacle avoidance. Left shows 
the input and right shows the output. 

Figure 6.11 demom;trate::> the effect wheu lllodifyillg the weight of the oo::>tade 

avoidance regularization term and applying the dynamic sampling technique. It can 

be seen that with a large regularization weight, the paths stay further away from 

the obstacles while a small weight allows the paths to go through narrow regions. 
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FIGURE 6.10. Example path synthesis with obstacle avoidance. Left shows 
the input and fight shows the output. 

Furthermore, because the output path diverts far from the input path, there are not 

enough sam pIe points to reach the destination. The dynamic sampling technique 

overcomes this issue by compensating for the missing sam pIe points. 

Figure 6.12 illustrates an example where the system does not find a solution that 

converges to the final goal. The large obstacle obstructs a direct path and in order 

to reach the goal the path must divert far from the input, requiring a number of 

samples that is beyond the specified maximum. The results when using the second­

order representation are shown in Fig. 6.13. It can bee seen that the path can be 

generated along arbitrary directions. To achieve this results, the parameters of the 

sigmoid are adjusted to impose the input conditional more heavily. When using the 

absolute angles, the bias from the input is accumulate over successive iterations while 

when using the second-order representation, the input variation is narrowly localized 

(i.e. whell performing a turn, the input cOllditional is distinct only at the corner) and 

a single match must sufficiently bias the distribution. Though when the match is not 

sufficient, the magnetism term helps maintain the overall shape. This can be seen 

when comparing the first (top-left) and fourth (bottom-right) u-turns to the other 
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(a) Synthesis with a fixed sampling rate. 

n 

(b) Synthesis with dynamic sampling. 

FIGURE 6.11. Example path synthesis going through a narrow region. Left 
shows the input. The middle shows the output using a large value for À4 

and right shows the output with a small value for À4 (the obstacle avoidance 
term). It can be seen that due to the large divergence, the output trajectory 
lags behind the goal trajectory. This is compensated for by the dynamic 
sampling technique. 

ones. Those u-turn segments are not synthesized in direct accordance to the training 

data but rather sorne other maneuver is used to follow the trajectory. 
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FIGURE 6.12. An exmaple where the robot does not reach its goal. Left 
shows the input and right shows the output. 

FIGURE 6.13. Example synthesis using the second-order representation. 
Note that wh en using this representation, the curves have few distinguishing 
values. In sorne cases, the input matches well and the desired features are 
generated (the learned u-turn maneuver) while in other cases, the match is 
not sufficient but the magnetism term helps steer the pro cess (in cases where 
the learned u-turn should have been generate another maneuver was used). 
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CHAPTER 7 

Classification of Curves 

In previous chapters, it is assumed that the validity of applying a HMM on an input 

curve is subjectively determined by a human operator. This chapter describes a 

framework for automatically classifying those curves, identifying which set of training 

examples the curves best belong to. This allows the system to objectively determine, 

in a maximum likelihood sense, the compatibility between models and curves. 

The applicability of the classification framework is exemplified by making two 

extensions to the sketching application: one for automated model selection and the 

other for automated curve extraction. For the automated model selection, when a user 

draws a curve, the system attempts to determine the most likely HMM that should 

be applied to refine the curve (and thus implicitly recognize it). This is accomplished 

by taking into account both the shape of the input and its context in the sketch 

(its relationship to other curves). The approach consists of iteratively evaluating 

and decoding the Hierarchical Hidden Markov Model described in chapter 4. For the 

automated curve extraction, when an input curve is rendered in the form of an image, 

the system attempts to automatically extract from the image the most likely curve 

that belongs to a particular model. This is accompli shed by evaluating all possible 

curves in the image with respect to the HMM and selecting the one with maximum 

likelihood. Results and discussions are presented for each of these applications. 



7.1 SCENE REFINEMENT MODEL 

1. Scene Refinement Model 

A seene consists of a set of curves drawn in accordance with a well defined set of 

rules that constrain the types of curves based on their spacial position and sequential 

ordering. The sequential constraints in a scene can suggest, for example, that back­

grounds must be drawn first, followed by other objects which in turn can be followed 

by other objects, each drawn over the previous. They can represent typical drawing 

habits, such as when users draw the profile of a cartoon face, the forehead will most 

likely be followed by a nose, then a mouth and a chin. Conversely, the scene can be 

sequentially unconstrained, such that every curve can follow any other type of curve. 

The spacial constraints are applied to further restrict the types of curves that can be 

drawn based on their relative locations. They can suggest, for example, that sorne 

types of curves can be drawn above or below other types. High-level quantifiers are 

used, such as above, below, left, right, in and out, deterrnined relative to the edges 

and center of the bounding box of each curve. 

A scene-Ievel HMM encodes such constraints by restricting the types of refine­

ments that can be applied on curves in a sketch (the curve-Ievel HMMs). Recall from 

Eq. 3.11 that the set QO is the set of all HMMs applicable to a scene. A seene refine­

ment model Al is then an augrnented HMM (Eq. 4.1) where the states correspond to 

curve-level models in QO. In this fashion, all of the rnethods described in Chapter 4 

are applicable to the scene-level models. This section further describes the approach 

take to learn and apply scene-Ievel refinements. 

1.1. Learning Scene Constraints. A scene-Ievel HMM Al is trained using 

a graph y = {D, E} that defines the high-Ievel scene constraints (Fig. 3.6). The nodes 

D of the graph refer to the HMMs in the curve-level and an associated position (above, 

be1ow, 1eft, right, in or out). For examp1e, if there are three lllodelt;, oue to pro duce 

grass, one to produce trees and one to pro duce clouds, there could be as rnany as 

eighteen nodes. The edges E of the graph include weights that identify the probability 

that a user would draw the type of curve (identified by the destination node) at a 
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relative position to the previous (identified by the source node). For example, the 

probability that a tree is drawn above a cloud is very small. 

1.2. Hidden States and Transition Matrix. The hidden states of the 

scene-Ievel HMM represent nodes from the graph y and the multi-dimensional state 

space can easily accommodate for both attributes (model and position). Each curve­

level HMM in ç;? is manually assigned a unique model label L that is encoded in the 

state's first dimension. For efficiency, a state's second dimension is used to encode all 

of the allowable positions using a six bit number where each bit refers to a location 

identifier (i.e. the first bit can represent up, the second down etc., using this value as 

a bit-mask, simply applying a bitwise OR operation on the position of the curve can 

determine the curve's positional validity). The likelihoods for the transition matrix 

Ml are captured directly from the edges of the graph. 

1.3. Observation States and Confusion Matrix. The observation states 

of the scene-level HMM encode the observed positions of curves relative to one another 

(an observation consists of an input curve drawn at an observable position relative 

to the previously drawn curve). The confusion matrix BI is the Identity matrix such 

that the observation states correspond directly to the hidden states. Recall from 

Equation 4.11 that although the observation states refer directly to the hidden states 

(and hence must be two dimensional), the first dimension is implicitly disregarded 

as only the curve position is used in the input observation (the type of curve being 

drawn is not an observable). 

1.4. Additional Model Parameters. All scene-level HMMs assume a sta-

tionary model as enforcing a constraint on the absolute sequential position of curves 

cau beCOllle overly re~trictive, exce~~ively reduciug the uumber of ~ceue~ that cau be 

produced. There is one regularization term embedded in the scene-Ievel model and 

it is used ta take into account the shape of the curve (discussed further below). The 

translation step is set ta one (iterating on a curve by curve basis) and the multi-scale 

122 



7.1 SCENE REFINEMENT MO DEL 

representation in not used (it is assumed that it is sufficient to only consider the 

immediate neighbor in the sequence of drawn curves). 

It is expected that the exact position of curves are given, thus there is no input 

blurring applied (the sigmoid parameters are set to very small values). Further, the 

similarity function in Y 0 is modified such that a bitwise OR operator is used to 

determine if two states are similar (recall that the position identifier is represented 

by a six bit number). Finlay, note that the curve-Ievel HMMs are labeled arbitrarily 

and the labels are not meant to imply a distance metric between models (identifying 

the similarity between different types of models is an open problem). Therefore, state 

blurring is also not applicable on the hidden states (the mixture variance is set to a 

low value). 

1.5. Scene Refinements. The scene refinement process consists of first de­

termining the most likely sequence of curve-Ievel HMM models that should apply to 

each curve, then refining the individual curves using the associated models. Given a 

sequence of K curves <I>(O) , <I>(1), ... ,<I>(K), a set go with N curve refinement models 

go = {A ~ , Ag, ... A ~} and a scene-Ievel HMM Al trained under a particular scene 

graph y, the most likely sequence of curve refinement models that apply on each 

curve must be determined: 

max p{AO(O), ... , AO(K) 1 <I>(O) , ... , <I>(K), Al} 
A~ ... A~ 

(7.1) 

There are two criteria that must be considered when solving for this maximum: 

• The high-Ievel scene constraints . 

• The similarity between an input curve <I>(k) and the models' training curves. 

These two criteria are combined using the regularization framework such that the 

scene-Ievel HMM Al is decoded with a regularization term that measures the com­

patibility of the candidate models with the curve's shape. 

1.6. Regularization Term for Evaluating Model Compatibility. The 

scene-Ievel regularization term RI is developed to bias the distribution toward models 
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that are more compatible with the input curve. The value is computed over aU curve­

level models as a function of the input curves. For each of the K input curves, a vector 

is used to represent the log-likelihoods of all models in go where in the resulting vector 

sequence R1(O), R1(1), ... , Rl(K), the value R~(k) is the log-likelihood that the model 

A~ can generate the observation sequence corresponding to the input curve <I>(k). 

This likelihood is computed by applying the Evaluation algorithm over all HMMs in 

go using the corresponding input curve. For the k th curve, a refinement model A~ is 

evaluated by iterating over the curve's arc-Iength and computing the following: 

1/J~~ (Hi(t)) = L (p{Hi(t) 1 Hj(t - 1), A~}1/JA~ (Hj(t - 1))) 
Hj 

(7.2) 

where Oin,k(t) corresponds to the observation for the kth input curve at sequence 

position t (i.e. <I>(k, t)) and Hi(t) is the candidate hidden state for the curve-Ievel 

model A~. The likelihood that a model A~ can generate the observation sequence 

corresponding to the curve <I>(k) is computed by taking the the sum over all states in 

W A~ (n). The value for the regularization term is computed as the logarithm of this 

sum: 

Rn(k) = log (L 1/JA~ (Hi(Tk))) (7.3) 
Hi 

where Tk is the sequence length of the kth curve. This procedure is almost identical to 

the steps for decoding the HMM (Eq. 4.8). Instead of choosing the maximum previous 

state at each step of the process, the sum the probabilities of aU mat ching states is 

used. That is, aU of the possible ways that the model can be used to synthesize the 

curve are considered and the accumulation of the individual likelihoods is used as a 

measure of its total likelihood. 

1. 7. Probability Normalization. While the probability vectors are nor-

malized at each iteration of the decoding algorithm, in the evaluation algorithm the 

compound probabilities over the entire curve are required (Eq. 7.2). However, for long 
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curve segments, the probabilities may reach very small values and become difficult. 

to store. Thus, at each iteration, the probability vector 'li A~ (t) is normalized and the 

normalization constant CA~ (t) is stored. Once all models have been evaluated, the 

normalization constants at each iteration are themselves normalized over all models 

then compounded over the entire sequence as follows: 

(7.4) 

and 

(7.5) 

where CAO is the compound normalization term used to determine the candidate 
n 

model's likelihood. Further, since each curve-level model is customized with poten­

tially different parameter settings, their values must also be taken into account. The 

mixture variance must be included as a normalization constant for the probability 

vector (divide by a} The state's energy is also normalized using the sum of the reg­

ularization constants. It is assumed that the same sigmoid parameters are used for 

all training sets (the sigmoid parameters change as a function to the user) and that 

the translation step is the same for all models in GO (the sequence length is the same 

for each model). 

1.8. Decoding the Applicable Curve Refinement Models. Once the 

vectors Rl(O), Rl (1), ... , Rl(K) are computed, they are used in decoding the scene­

level HMM A 1. This is accomplished using the same approach taken for decoding the 

curve-Ievel HMM (Chapter 4). First, the initial distribution over the hidden states 

'li Al (0) is assumed uniform and the first regularization vector RI (0) is used to bias 

'liAI (0) as follows: log ('l/JAI (Hl(O))) + Rkf(o)JO) where Hl(O) is a hidden state in the 

scene-level model and Hl (0 h is the label that corresponds to a curve-level model. 

The distribution is then propagated using the transition matrix Ml, biased using the 

input observation (the location of the next drawn curve relative to the previous) and 

regularized again using the next regularization term. Once this is performed over all 
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input curves, the curve-level model that has maximum likelihood is selected and then 

the backtracking procedure is executed. The result is a solution for Eq. 7.1, selecting 

the most likely sequence of refinement models that apply on the drawn curves. Each 

curve is then decoded using the associated refinement model. 

2. Scene Refinement Results 

Figure 7.2 shows the results for generating cartoon facial profiles. In this example, 

the input scenes consist of sequences of curve segments corresponding to the cartoon 

components (forehead, nose, mouth, chin and hair). It is assumed that the user has 

prior knowledge on the way in which a cartoon face is segmented and draws the curves 

accordingly. There are five curve-level HMMs used where each HMM is trained using 

six examples of each segment. Each example also includes a supplementary attribute 

for curve thickness. Figure 7.1 shows the graph used to train the scene-level HMM 

(there are no positional constraints imposed on this model). It is easy to see from 

Fig. 7.2 that the curve segments draws by the user are refined using the appropriate 

model. 

~1.0~1.0~1.0~1.0~ C ~~~~~~~~~J 
FIGURE 7.1. A graph used to train a scene-Ievel HMM for cartoon facial profiles. 

Figures 7.3, 7.6, 7.5, 7.7 illustrate additional examples of scene refinements. The 

results are produced using the training sets shown in Fig. 7.8 and Fig. 7.9. Figure 7.5 

shows the results when applying both a greedy strategy and the Viterbi algorithm 

when decoding the scene-level HMM. With the greedy approach, the system only 

comiiders the currellt likelihood vector whell selecting the maximum likelihood titate, 

hence curves drawn later in the sequence do not affect the selection of the refinement 

models applied to previously drawn curves. In the example, aH horizontal curves 

below the skyline are rendered using the grass model, despite the fact that the system 
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FIGURE 7.2. Generating profiles of cartoon faces. The top sketches show 
the input and the bot tom sketches show the results. 

recognizes that the shape below the bottom horizontal line is most similar to a fish. 

Using Viterbi, classification is performed by taking into account the probabilistic 

dependencies that arise from an of the curves in the scene. Since a curve can only 

be refined by a fish model when its preceded by a curve that has been refined by a 

water model (or another fish model as show in Fig. 7.9), the refinement applied to the 

bottom horizontalline is then updated and the curve is re-rendered using the water 

model. 

o 

FIGURE 7.3. Synthesis of an island scene. Left shows the input, middle 
shows the generated scene, including seeds for texture fill, right shows the 
resulting texture filled scene using the texture sample shown in Fig. 7.4. 
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7.3 CURVE EXTRACTION 

FIGURE 7.4. Training texture used to generate the texture fill in Fig. 7.3. 

3. Curve Extraction 

The sketching application is extended such that users can automatically extract 

curves from an image of a sketch by simply clicking with a pointing device on the 

desired curves. Once a curve is extracted, it is available for the user to edit it using 

traditional curve transformations (split, merge, move, scale, rotate, filter, etc.) or 

to apply the automated curve refinement procedure. The key issue that must be 

addressed is how to identify what curve the user intends to extract? Figure 7.10 

shows sorne of the possible candidate curves that can be extracted from an image. 

If the system can automatically identify the curve that stands out from the rest, in 

sorne desired context, then it can include it as a potential candidate for the user's 

selection. The approach taken to address this issue consists of first identifying all 

possible curves in an image and then applying the Evaluation algorithm described 

in the previous section in order to rank them with respect to the model. As such, 

rather than using a traditional constraint, such as curvature continuity, this approach 

provides a system that can extract curves that are consistent with a wide range of 

learned constraints. 

3.1. Generating Candidate Curves. It is assumed that an image of a 

sketch is given as input and the image consists of thill edges that are two pixelt; thick 

with a well defined foreground color. (In practice, there are well established methods 

that can extract foreground and thin edges [14, 73].) It is also assumed that the 

curves are not adjacent to any other curves and they do not superimpose on each 
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o o 

o 

o 

o 
FIGURE 7.5. Top left shows the input sketch, top right shows the output 
using a greedy method, bottom left shows the output using Viterbi and 
bottom right shows the result when applying the Markovian texture filler. 

other but can intersect (superposition can only occur over two pixels). When the 

utier clicb on the given image near the detiired curve, an possible curves that begin 

from the nearest edge must be identified. The approach to this problem consists 

of first finding a starting point on the curve and then recursively iterating over the 

neighbors of pixels to create a curve segment tree. The curve segment tree encodes all 
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o 

FIGURE 7.6. Scene refinement example using the island training set (Fig. 7.8). 

FIGURE 7.7. Scene refinement example using the city skyline training set (Fig. 7.9). 

possible curves that begin from the the starting point. The nodes of the tree represent 

curve segments and the edges represent their junctions (Fig. 7.12). 
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Beachllsland Scene 

Scene level training constraints 

Curve level training sets 

FIGURE 7.8. Training set used to generate tropical island scenes. The top 
shows the scene-Ievel constrains, the middle shows the curve-Ievel training 
sets and the bottom shows an example texture. 

3.2. Starting Point. The starting point is determined based on the number 

of admissible neighbors a pixel has (the admissibility of a neighbor is described fur­

ther below). To find the starting point s, the system first searches for the nearest 

pixel, within sorne distance d to the mouse click, that matches the foreground color 

(Fig. 7.11). This distance is set to provide a margin of error such that a user does 

not need to deal with the accuracy required for clicking exactly on the curve. Once 

this pixel pis found, the four neighboring pixels are examined (above, below, left and 

right) and if their color matches the foreground color, they are labeled ai:> admii:>sible 

neighbors. If there is only one admissible neighbor, then the current pixel is consid­

ered as the starting point, otherwise, the system recursively examines each neighbor. 

On successive iterations, a neighboring pixel is only considered admissible if it is not 
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Skyline Scene 

Scene level training constraints 

Curve level training sets 

FIGURE 7.9. Training set used to generate city skyline scenes. The top 
shows the scene-level constrains, the middle shows the curve-level training 
sets and the bottom shows an example texture. 

the same pixel from the previous iteration (avoids revisiting the same pixel). This 

is performed for 1 steps and if an end-point is not found within this number of steps 

then the original starting point is chosen. 

3.3. Path Segment Tree. Once the starting point is found, a similar recur-

sion is performed to construct the curve segment tree. The tree is initialized at the 

starting point Po and the root node encodes the curve segment cg containing one point 

(po(x),po(y)). The neighbors are then examined recursively to determine if there is 

a junction. If there is only one admissible neighbor Pl, there is no junction and the 

point is added to the CUITent segment c;, otherwise, for each admü;sible neighbor Pi, 

a new curve segment c~+1 is created and the point Pi is included in that segment. 

The result is a hierarchy of curve segments (Fig. 7.12) corresponding to an junctions 

in the sketch. 
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-r--

-P 
FIGURE 7.10. A set of candidate curves that can be extracted form an 
image. The top figure shows the original image and the figures below show 
the candidate curves. 

, 
1." 

FIGURE 7.11. Finding the starting position s. First, the system se arches 
for the nearest pixel p mat ching the foreground color, then it recurses up to 
l steps to find the starting point. 
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3.4. Pruning. When eonstrueting the segment tree, to avoid issues that ean 

oeeur with loops, a pixel is only considered as an admissible neighbor if that pixel 

does not already exist in the current segment or any of the parent segments up to 

the root of the tree (i.e. is it has not been visited yet). For each node in the tree, 

a lookup table is maintained in order to provide random access to this information. 

This lookup table consists of the pixels that have been visited when traversing the 

tree and are eonsidered inadmissible. However, in order to allow for self-intersecting 

curves, pixels that have three admissible neighbors are never included in the lookup 

table, irrespective of whether they have been traversed. This allows the system to 

retrace those pixels twice (the second time they are labeled as inadmissible as they 

no longer have three admissible neighbors). 

FIGURE 7.12. Curve segment tree. Top right shows the original image with 
the starting point highlighted 

In both the search for the starting point and construction of the segment tree, a 

first-order look-ahead is performed in order to ignore neighbors that satisfy certain 

criteria. In particular, because it is assumed that the width of a curve is two pixels, 
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the neighbors of neighbors are pruned as follows: if Po, Pl and P2 are neighbors of P 

and if aIl of Po's neighbors are neighbors of either Pl or P2, then Po in not considered. 

That is, when a neighbor Po does not lead to a junction, aIl of its neighbors are 

reachable directly from the neighbors of the source pixel and hence Po can be ignored. 

For consistency, the same or der is followed when pruning neighbors. 

3.5. Ranking Candidate Curves. The curve segment tree provides the 

system with a list of candidate curves that must be ranked. The tree is first traversed 

to construct aIl candidate curves. The curves are thereafter sampled using the same 

sampling rate used in training, filtered to reduce aliasing effects and normalized if the 

training examples are also normalized. The tangent angles along the curves are also 

computed from the Cartesian points and the multi-scale representation is applied. 

Each curve is ranked based on the likelihood that the model can pro duce that 

curve. The likelihood is determined by applying the Evaluation algorithm (Eq. 7.2). 

Once aIl candidate curves are ranked, they are sorted from best to worst and the user 

is presented the top candidate. If desired, the user can further scroU through the 

list to examine other solutions. Figure 7.14 shows an example curve extraction using 

the zig-zag patterns training set (Fig. 5.31) and figure 7.15 shows the the extraction 

using the leaf training set (Fig. 5.8). Figure 7.16 shows an example extraction and 

refinement using the leaf training set and Fig. 7.17 shows another extraction example 

using the basic shapes training set (Fig. 5.13). In each example, the curve that is 

most similar to the training set is extracted. 
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(a) Pixel P has two candidate neighbors NI and N2. 

N2 P 'vI !vI M 

? Ni ),1 M M 

(b) Examine the admissibility of NI. Its inadmissible as its only neighbor is adjacent to N2. 

(c) Examine the admissibility of N2. Its admissible as there exists a neighbor that is not adjacent to 
any of the neighbors of P. 

(d) Update the lookup table and recurse over the next pixel. 

FIGURE 7.13. First-order pruning of pixels from a two pixel thick image. 
Pixels labeled with M are inadmissible. 
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FIGURE 7.14. Extraction of a zig-zag pattern (shown in red). 

FIG URE 7.15. Example extraction using the leaves training set. Note how 
the extraction algorithm can make the right selection even when there are 
junctions where the curvatures at different branches are locally similar. 
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FIG URE 7.16. Example extraction and refinement. Top left shows original 
image and the user pointer, top right shows the automatically extracted 
curve (in red). Bottom left shows the curve isolated by dragging it and 
bottom right shows result of the automated refinement process. 

FIGURE 7.17. Left shows extraction (in red) , middle shows refinement, right 
shows a resize. 
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CHAPTER 8 

Conclusion 

This thesis presented a machine learning framework for automatically classifying and 

refining hand-drawn curves. The underlying model consisted of a Hidden Markov 

Model that encodes constraints on the types of output curves that can be synthe­

sized, the types of input curves that are expected and the effect the input has on 

the synthesis. Using a regularization framework, these Hidden Markov Models were 

combined with supplementary user-defined constraints that further restrict the types 

of outputs that can be produced. In addition, by extending the dimensionality of 

the models' state space, constraints on multiple curve attributes at multiple scales 

were encoded without exponentially increasing the computational complexity of the 

system. Decoding these models resulted in the synthesis of novel curves that exhibit 

a similar look to examples in the training set while also adhering to the the user­

defined constraints. Finally, a Hierarchical Hidden Markov Model was developed in 

order to model high-level constraints on the types of refinements that can be applied. 

Evaluating the likelihood that a curve can be generated by a curve-level model in 

conjunction with evaluating the applicability of the model based on the high-level 

constrains resulted in a classification scheme that takes into account both the shape 

of the curve and its context. 

The applicability of the described framework was exemplified by two applications; 

a sketching application and a robot path planning application. For the sketching 
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application, Hidden Markov Models were trained using several training sets. Each 

sets consisted of control curves that exemplify the types of inputs a user would draw 

and refined curves that exemplify the desired look. These models were used to extract 

curves from an image, identify what class of examples the drawn curves best belong 

to and then augment those curves using the appropriate model. 

Based on a subjective evaluation of the results, it was shown that novel full­

color 2D illustrations that exhibit the desired look can be generated from the coarse 

sketches. This was demonstrated using both the Viterbi algorithm and a greedy algo­

rithm. It was shown that because the greedy approach does not take into account the 

entire sketch when synthesizing the individual elements, the results did not properly 

refiect the learned curve styles while the Viterbi algorithm generated satisfactory re­

sults as the entire sequence of inputs was considered before selecting the final solution. 

The synthesis results were further examined under different parameter settings and 

curve attribute. It was demonstrated how the mixture variance, regularization terms 

and weights, stationarity window, sampling resolution and the curve representation 

affect the output. A texture synthesis procedure was also developed that further en­

hanced the output. It was shown how the synthesized texture seeds can be used to 

initiate a texture synthesis procedure that fills the interior of the synthesized curves. 

For the path planning application, it was demonstrated that the same learning 

framework can be used to learn constraints on robot trajectories from examples. 

Using the regularization framework, a bias to avoid obstacles was embedded into the 

system. It was demonstrated that the generated paths followed the desired input 

trajectory while satisfying the learned constraints and avoiding the obstacles. 

1. Future Work 

One open problem that remains to be addressed is that of automatically finding 

good values for the parameters that control the synthesis process. For example, the 

synthesis of novel illustrations depends on mixing aspects of different examples from 
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the same set. Excessive mixing, however, would lead to an output curve which is sim­

ply an average (in sorne multi-scale space) of the input curves. This is complicated 

by the need to account for the regularization terms and input bias. At present, the 

mixing fractions are fixed and predetermined manually but their automatic determi­

nation remains an open problem. A possible direction for work can be to examine 

how to set these values based on sorne initial conditions, such as a maximum diver­

gence form the input or a minimum distance to the obstacles. This can lead to an in 

depth theoretical analysis of the system to attempt to prove that certain conditions 

are guaranteed to occur when using the training set under the specified parameter 

settings. For example, in the path-planning application, it may be possible to de­

termine that the system is resolution complete with respect to the training data and 

selected parameters. Another approach can be to attempt to infer the parameter set­

tings of one set from the parameter settings of another. A potential approach to this 

can consist of attempting to equalize the likelihood of mixing neighboring segments 

or to apply cross-validation techniques and determine if one set can reconstruct its 

members as well as the another can for its own members. (Such an approach can also 

be used to evaluate the richness of a set). 

Another interesting problem that can be examined is that of automatically clas­

sifying the initial training sets. This allows the user to sim ply provide a bulk of ex­

amples and the system would automatically group them. lndeed this is the clustering 

problem, an extensively studied research problem, though the problem of measuring 

the distance between clusters of curves remains an open problem. Building on the 

presented framework, a potential approach to this problem can consist of using the 

evaluation algorithm to identify similarities between examples or groups of examples. 

One significant open issue concerns the application of global constraints to the 

curves being synthesized. For ex ample , in the sketching application, the synthesis 

results using the leaves and skyline training set did not exhibit symmetry, a property 

often found in such examples. As another example, in the texture filling process, 
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pixels that are produced from different parts of the contour may not join in a desir­

able fashion. For ex ample , texture filling for leaves would require sorne specialized 

constraints in or der to have the veins of the leaves meet at the right location. De­

veloping an approach that can learn such constrains or developing a smart interface 

that allows users to interactively accomplish this task remains an open problem. 

In the curve extraction algorithm, one of the difficulties that can occur is where 

there is an excessive number of candidate paths in the path-segment tree. This is 

especially apparent wh en the contours are more than two pixels thick. A direction 

for future work ean be to develop methods that ean dynamically prune the graph 

in parallel to the evaluation process. While its always best to evaluate a path in 

its entirety, one can suggest that an iteratively deepening look-ahead ean help prune 

candidate paths that are not expeeted to rank high enough to be part of the final 

solution. 

In general, the problem of providing natural and convenient interfaces can be 

found in many domains. The extent in which machine learning is used in developing 

smart interfaces is limited and the potential opportunities for research are vast. There 

are a number of applications and domains that the presented learning system can be 

extended to. In particular preliminary work is taking place for the control of an 

underwater robot with eighteen degrees of freedom (Fig. 8.1). By eustomizing the 

framework, the system ean simplify the control of a complex robot by automaticallY 

generating the appropriate sequence of gaits or motor commands that lead the robot 

to follow the desired goal trajectory (Fig. 8.1). Another do main of application lies in 

animation editing. Preliminary result show that when using the refinement system, a 

pen-stroke can eonveniently control the motion of an artieulated figure (Fig. 8.2). Pen 

speed and pressure can further assist as supplementary eues for eontrolling the motion. 

These are just a few examples that illustrate the extensibility of the framework. 

The novel ideas presented in this thesis form a foundation with great potential for 

developing new techniques that can suitably represent, learn and express properties 

142 



8.1 FUTURE WORK 

of examples in order to help address a variety of problems in Computer Graphies and 

Roboties. 

(a) An underwater robot developed at McGill University. The robot has 
six legs, each parametrized by three parameters (fin frequency, amplitude 
and shift) for a total of 18 DOF. 

--_../ 
(b) The predicted path for the robot. Left shows input and the right shows the predicted paths 
and gaits (color coded). 

FIGURE 8.1. Preliminary results for controlling an underwater robot. Train­
ing set consisted of several simulated motions. 
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r 

FIGURE 8.2. Preliminary results for motions synthesis. Training set con­
sisted of several example motions. The left shows the input curve and the 
right shows the resulting motion. 
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APPENDIX A 

Pseudo-Code for Learning and Decoding 

the Refinement Models 

In this appendix the pseudo-code for the learning and decoding algorithm is present. 

The fist section presents the state labeling algorithm, followed by the algorithm for 

computing the transition and confusion matrices. Finally, the decoding algorithm is 

presented. 

1. State Labeling Algorithm 

The original states, the labels and their representative states are easily combined 

together by using augmented data structures. Algorithm 1.1 shows the pseudo-code 

for labeling states. The procedure first takes in as input a set of multi-attributed 

curves and generates the multi-scale representation for each curve. Following this, 

the procedure creates a table called Tset, where each (i, j) element in the table 

stores the multi-dimensional state H for the yth segment of the ith curve (T set is the 

complete t:>tate repret:>entation of the training curves). A label it:> then assigned to each 

unique state in Tset (the function SameState() evaluates if Equation 4.5 is below 

all attribute thresholds), the set H' is augmented to store all new labels and Q-l is 

computed by averaging the states having the same label. 



A.1 STATE LABELING ALGORITHM 

Algorithm 1.1: MAKELABELEOTsET( multiAttributeCurves a) 

global 5, T 

max Labels +--- 0 

C +--- MAKEMuLTISCALECuRvEs(a, 5, T) 

for i +--- 0 to C. numberO f Examples 

for j +--- 0 to C[i].numberOfSegments 

segment +--- Cri] [j] 

H +--- MAKEMULTISCALESTATE(segment) 

do Tset[i][j] +--- H 

Tset[i][j].label +--- -1 

maxLabel + + 
label +--- 0 

for i +--- 0 to max Label s 

Q-1[i] +--- new QUEUEO 

'H' +--- new QUEUEO 

for i +--- 0 to Tset.numberO f Examples 

for j +--- 0 to Tset[i].numberOfSegments 

if Tset[i][j].label = -1 

Tset [i][j].label +--- label 

Q-1 [label].push(Tset[i] [j]) 

H +--- AVERAGE(Q-1[label]) 

for k +--- i to Tset.numberO f Examples 

for l +--- 0 to Tset[k].numberOfSegments 

then if Tset[k][l].label = -1 and SAMESTATE(Tset[k][l], H) 

{

Tset[k][l].label = label 

then Q-1 [label].push(Tset[k][l]) 

H +--- AVERAG E( Q -1 [label]) 

'H' .push( label) 

label + + 
for each i E 'H' 

{

H +---.AVERAGE(Q-1[i]) 

do Q-1[z].clearO 

Q-1[i].push(H) 

return (Tset, Q-1, 7-l') 
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A.l STATE LABELING ALGORITHM 

1.1. Transition Matrix Algorithm. Algorithm 1.2 shows the pseudo-code 

for computing the transition matrix over the stationarity window range [l, u]. In the 

stationary case, the procedure is only called once with l = 0 and u = T for closed 

curves and u = T - T for open curves. In the non-stationary case, the procedure is 

called for every segment, adjusting the lower and upper bounds respectively. The first 

step is to call the function MakeLabeledTset() (Algorithm 1.1) to generate the labeled 

state representation for the refined curves. Because the training set representation is 

indexes the position along the curve by the segment number (H(t) refers to the tth 

segment), the input parameters land u must first be divided by the transition step T. 

The procedure then initializes an IH'I x IHI' transition matrix with all probabilities 

set to zero. The main likelihood computation is performed at li ne (i), evaluating 

the Gaussian similarity measure (Equation 4.4 over the constraining attributes. This 

similarity is then added to the likelihood of generating the following state. 

This procedure is performed as a preprocessing step and is repeated each time 

the translation step, stationarity window, the variance or weights of Equation 4.5 are 

modified. For systems with limited memory (such as a video card), this preprocessing 

step must be computed during runtime. In such cases, instead of computing the entire 

matrix for each i E H', the desired state is passed as an argument and the procedure 

returns the column of the matrix corresponding to the potential transitions for that 

state. 
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A.l STATE LABELING ALGORITHM 

Algorithm 1.2: MAKETRANSITIONMATRlx(multiAttributeCurves Œ,pas l,pas u) 

global 5, A, T 

(Hset,Q-l, H') = MAKELABELEDTSET(Œ) 

l ~ l~J 

u ~ I~l 

INITMATRIX(M, H' x H', 0) 

for each i E H' 

for j ~ 0 to Hset.numberOfExamples 

for t ~ l to u 

do 

similarity = GAUSSIANSIMILARITY( Q-l li], H set [j][t], 5, A) (i) 

nextState ~ (t + 1) MOD Hset[j].numberOfSegments 

nextStateLabel ~ H set[j][nextState].label 

M[i][nextStateLabel]+ = similarity 

NORMALIZE(M) 

return (M) 

1.2. Confusion Matrix Algorithm. The procedure for estimating B is 

outlined in Algorithm 1.3. It bears similarities to Algorithm 1.2 with the primary 

difference of searching for exact matches of the tuples representing the associated 

hidden and observation states. In or der to disregard the hidden states' auxiliary 

attributes, the set of auxiliary attributes is temporarily disabled before attempting to 

check for a match. The function SameState(-) then ignores the auxiliary attributes. 

This results in a redundancy of likelihoods similar to that in the transition matrix. 

(Note that while the procedure only uses an exact mat ching criterion, because the 

auxiliary attributes are ignored in the source state, a single pass over the training set 

is not sufficient to pro duce the desired matrix.) 
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A.l STATE LABELING ALGORITHM 

Aigorithm 1.3: MAKECONFUSIONMATRlx(multiAttributeCurves a, (3,pos l,pos u) 

global Aaux l +-- l~J 

u +-- I~l 

(Hset,QI'/' H') = MAKELABELEDTsET(a) 

(Oset, Q(j 1,0') = MAKELABELEDTSET((3) 

INITMATRIX(B, H' x 0',0) 

temp +-- Aaux 

Aaux +-- NU LL 

for each i E H' 

for j +-- 0 to H set.numberO f Examples 

for t +-- 1 to u 

do 

if SAMESTATE( QI/ li], H set [j][t]) 

then similarity +-- 1 

else similarity +-- 0 

obs +-- Oset[i] [tl.label 

B[i][obs]+ = similarity 

NORMALIZE(B) 

Aaux +-- temp 

return (B) 

1.3. Decoding Algorithm. Algorithm 1.4 shows the pseudo-code for point-

based decoding of the HMM with regularization priors. The main body consist of 

two parts, the first part, starting at line (i), implements the propagation step and the 

second part, starting at line (ii), implements the input conditional step. In the first 

part, the procedure begins by iterating over an states in the previous distribution 

w(t -1). (The vector w(t) stores both the likelihood and the state information for all 

candidate stateti aud iti iudexed by the state labelti; i.e. 'l1(t,i).labcl = 'i.) For cach of 

the previous states, the likelihood of generating the next state, for all possible next 

states, is computed. This includes evaluation of the regularization biases as applied 

to the candidate state sequence, preceded by a procedure call SetAuxParams(-) that 
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A.l STATE LABELING ALGORITHM 

updates additional decoding auxiliary attributes required for regularization. The 

state that has the highest likelihood is then stored in the next distribution with a 

back-pointer to the previous. In the second part, the input conditional is applied 

using the sigmoid function and the likelihoods in the confusion matrix. (The function 

SigmoidProd(-) computes the product of the sigmoid blur over all the input attributes 

as shown in Equation 4.11.) The best input conditional that matches the input 

observation is used. 

For illustrative purposes, this algorithm does not implement thresholding, hence 

the candidate state vector \li can be indexed by the state labels (providing random 

access wh en checking for the best succession of states). When thresholding, the state 

vector itself must be sorted by the highest ranking states and cannot be indexed by 

the labels. The thresholding implementation can achieve similar runtime efficiencies 

by using a supplementary data vector that indexes the state labels to their locations 

in W. 
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A.l STATE LABELING ALGORITHM 

Algorithm 1.4: DECODE(pos t, input Qin) 

global W, M, B, Qj/, Q(j\ 'H', 7r 

wnext ~ new VECTOR() 

if t = 0 

then Wnext = 7r 

else for each SE w[t - 1] 

for each 1 E 'H' 

do 

Snext = Qj/ [1] 

Snext.lable = 1 

Snext-likelihood = S.likelihood * M[t - I][S.label][Snext.label] 

Snext.backPtr = S.label 

SETAuxPARAMS(Snext) 

REGULARIZE(Snext, Gin) 

if Wnext[Snext-label] = NU LL 

then Wnext[Snext-label] = Snext 

else if Wnext[Snext.label].likelihood < Snext.likelihood 

then WnexdSnext.label] = Snext 

for i ~ 0 to wnext.size 

do 

bestConditional ~ 0 

for each G E Q(jl 

do 

conditional = SIGMOmPROD(G, Gin) 

conditional = conditional * B[t][i][G.label] 

if conditional > bestConditional 

then bestConditional = conditional 

W nexdi].likelihood = Wnext[i].likelihood * bestConditional 

W [t] = W next 

(i) 

(ii) 

151 



REFERENCES 

[1] C. Alvarado and R. Davis, Resolving ambiguities to create a natuml computer­

based sketching environment, International Joint Conference on Artificial In­

telligence, 2001, pp. 1365-1374. 

[2] C. Alvarado, M. Oltmans, and R. Davis, A fmmework for multi-domain 

sketch recognition, Proceedingsof AAAI Spring Symposium on Sketch Un­

derstanding, March 2002. 

[3] O. Arikan, D. A. Forsyth, and J. O'Brien, Motion synthesis from annotations, 

ACM Transactions on Graphies 33 (2003), no. 3, 402-408. 

[4] R. Arkin and R. Murphy, Autonomous navigation in a manufacturing envi­

ronment, IEEE Transaction on Robotics and Automation 6 (1990), no. 4, 

445-454. 

[5] J. Arvo and K. Novins, Fluid sketches: Continuous recognition and morphing 

of simple hand-dmwn shapes, Proceedings of the 13th Annual ACM Sympo­

sium on User Interface Software and Technology, 2000. 

[6] E. W. Aslaksen and J. R. Klauder, Continuous representation theory using 

the affine group, Journal of Mathematical Physics 10 (1969), no. 1, 2267-

2275. 

[7] Jonas August and Steven W. Zucker, Sketches with curvature: The curve 

indicator mndom field and markov processes, IEEE Transactions on Pattern 

Analysis and Machine Intelligence 25 (2003), no. 4, 387-400. 



REFERENCES 

[8] M.1 Banks and E. Cohen, Real time spline curves from interactively sketched 

data, SI3D '90: Proceedings of the 1990 symposium on Interactive 3D graph­

ies, ACM Press, 1990, pp. 99-107. 

[9] Z. Bar-Joseph, R. EI-Yaniv, D. Lischinski, and W. Werman, Texture mixing 

and texture movie synthesis using statistical learning, IEEE Transactions on 

Visualization and Computer Graphies 7 (2001), no. 2, 120-135. 

[10] R. 1. Brafman, A heuristic variable grid solution method for pomdps, Pro­

ceedings Fourteenth National Conference on Artifieial Intelligence (AAAI), 

1997, pp. 727-733. 

[11] M. Brand and A. Hertzmann, Style machines, Proceedings of ACM SIG­

GRAPH, 2000, pp. 183-192. 

[12] R. A. Brooks, A robost layered control system for a mobile robot, IEEE Jour­

nal of Robotics and Automation 2 (1986), no. 1, 14-23. 

[13] A. Bruderlin and L. Williams, Motion signal processing, Proceedings of ACM 

SIGGRAPH, August 1995. 

[14] J. Canny, A computational approach to edge detection, IEEE Transactions on 

Pattern Analysis and Machine Intelligence 8 (1986), no. 6. 

[15] E. Catmull and J. Clark, Recursively generated b-spline surfaces on arbitrary 

topological meshes, Computer-Aided Design 10 (1978), no. 6, 350-355. 

[16] G. C.-H. Chuang and C.-C. J. Kuo, Wavelet descriptor of planar curves: 

Theory and application, IEEE Transanctions on Image Processing 5 (1996), 

no. 1, 56-70. 

[17] H. H. Clarck, Using languages, Cambridge University Press, 1996. 

[18] K. Craik, The nature of explanation, Cambridge University Press, 1943. 

[19] D. Doo and M. Sabin, Behaviour of recursive division surfaces near extraor­

dinary points, Computer-Aided Design 10 (1978), no. 6, 356-360. 

153 



REFERENCES 

[20] L. E. Dubins, On curves of minimal length with a constraint on average 

curvature, and with prescribed initial and terminal positions and tangents, 

American Journal of Mathematics, vol. 79, 1957, pp. 497-517. 

[21] G. Dudek and J. K. Tsotsos, Shape representation and recognitionfrom multi­

scale curvature, Computer Vision and Image Understanding 68 (1997), no. 2, 

170-189. 

[22] S. P. Engelson, Learning robust plans for mobile robots from a single trial, 

AAAI/IAAI, Vol. 1, 1996, pp. 869-874. 

[23] F. J. Estrada and A. D. Jepson, Controlling the search for convex groups, 

Technical Report CSRG-482, January 2004. 

[24] G. Farin, Curves and surfaces for computer aided geometric design, Academic 

Press, 1992. 

[25] S. Fine, Y. Singer, and N. Tishby, The hierarchical hidden markov model: 

Analysis and applications, Machine Learning 32 (1998), no. 1, 41-62. 

[26] A. Finkelstein and D. H. Salesin, Multiresolution curves, Proceedings of ACM 

SIGGRAPH, July 1994, pp. 261-268. 

[27] A. R. Forrest, The twisted cubic curve: A computer-aided geometric design 

approach, Computer Aided Design 12 (1980), no. 4, 165-172. 

[28] D. R. Forsey and R. H. Bartels, Hierarchical b-spline refinement, Computer 

Graphics 22 (1988), no. 4, 205-212. 

[29] VV. T. Freeman, J. B. Tenenbaum, and E. Pasztor, Learning style translation 

for the lines of a drawing, ACM Transactions on Graphics 22 (2003), no. 1, 

33-46. 

[30] D. Gabor, Theory of communication, Journal of the Institution of Electrical 

Engineers 93 (1946), no. 26, 429-457. 

154 



REFERENCES 

[31] S. Geman and D. Geman, Stochastic relaxation, gibbs distribution and the 

bayesian restoration of images, IEEE Trans. on Pattern Analysis and Machine 

Intelligence, vol. 6, 1984, pp. 721-741. 

[32] E. Giunchiglia and T. Walsh, A theory of abstraction, Artificial Intelligence 

26 (1992), no. 2-3, 323-390. 

[33] M. Gleicher, Motion editing with space-time constraints, Proceedings of the 

1997 Symposium on Interactive 3D Graphies, April 1997, pp. 139-148. 

[34] A. Grossmann and J. Morlet, Decomposition of hardy functions into square 

integrable wavelets of constant shape, Society for Industrial and Applied 

Mathematics, J. Mathematics 15 (1984), no. l, 723-736. 

[35] A. Haar, Zur theorie der orthogonalen funktionensysteme, 1909. 

[36] M. Harada, A. Witkin, and D. BarafI, Interactive physically-based manipula­

tion of discretejcontinuous models, Proceedings of ACM SIGGRAPH, August 

1995. 

[37] D. J. Heeger and J. R. Bergen, Pyramid-based texture analysisjsynthesis, 

Proceedings of ACM SIGGRAPH, 1995, pp. 229-238. 

[38] A. Hertzmann, N. Oliver, B. Curless, and S. M. Seitz, Curve analogies, 13th 

Eurographics Workshop on Rendering, June 2002. 

[39] J. K. Hodgins, W. L. Wooten, D. C. Borgan, and J. F. O'Brien, Animating 

human athletics, Robotics Research: The Eighth International Symposium, 

no. Springer-Verlag:Berlin, August 1995, pp. 356-367. 

[40] T. Igarashi and J. F. Hughes, Smooth meshes for sketch-based freeform mod­

eling, ACM Symposium on Interactive 3D Graphies, 2003, pp. 139-142. 

[41] T. Igarashi, S. Matsuoka, and H. Tanaka, Teddy: A sketching interface for 

3d freeform design, Proceedings of ACM SIGGRAPH, 1999, pp. 409-416. 

155 



REFERENCES 

[42] T. Igarashi, S. Kawachiya S. Matsuok and, and H. Tanaka, Interactive beau­

tification: A technique for rapid geometric design, ACM Symposium on User 

Interface Software and Technology (UIST), 1997, pp. 105-114. 

[43] D. W. Jacobs, Robust and efficient detection of convex groups, Computer 

Vision and Pattern Recognition, 1993, pp. 770-771. 

[44] G. Johansson, Visual perception of biological motion and a model for its anal­

ysis, Perception and Psychophysics 14 (1973), no. 2. 

[45] P. N. Johnson-Laird, Mental models, Foundations of Cognitive Science, Cam­

bridge University Press, 1983, pp. 469-493. 

[46] R. D. Kalnins, L. Markosian, B. J. Meier, Michael A. Kowalski, Joseph C. Lee, 

Philip L. Davidson, Matthew Webb, John F. Hughes, and Adam Finkelstein, 

WYSIWYG NPR: Drawing Strokes Directly on 3D Models, ACM Transac­

tions on Graphies 21 (2002), no. 3, 755-762. 

[47] D. Keren and M. Werman, A bayesian framework for regularization, IEEE 

International Conference on Pattern Recognition, 1994, pp. 72-76. 

[48] K. Koffka, Perception: and introduction to the gestalt-theory, Psychological 

Bulletin 19 (1922), 531-585. 

[49] L. Kovar, M. Gleicher, and F. Pighin, Motion graphs, Proceedings of ACM 

SIGGRAPH, 2002. 

[50] T. Kurtoglu and T. F. St ahovich , Interpreting schematic sketches using phys­

ical reasoning, AAAI Spring Symposium on Sketch Undestanding, 2002. 

[51] Y. L., T. Wang, and H.-Y. Shum, Motion texturing: A two-level statisti­

cal model for character motion synthesis, Proceedings of ACM SIGGRAPH, 

2002. 

[52] J. A. Landay and B. A. Myers, Interactive sketching for the early stages 

of user interface design, Proceedings of the SIG CHI Conference on Human 

Factors in Computing Systems, 1995, pp. 43-50. 

156 



REFERENCES 

[53] J. C. Latombe, Robot motion planning, Kluwer Academic Publishers, 1991. 

[54] L. Kavraki J-C. Latombe, Probabilistic roadmaps for path planning in high­

dimensional configuration spaces, IEEE Thansactions on Robotics and Au­

tomation, vol. 12, August 1996. 

[55] J.-P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, A motion planner 

for nonholonomic mobile robots, IEEE Thansactions on Robotics and Au­

tomation, vol. 10, 1994, pp. 577-593. 

[56] J. Lee and S. Y. Shin, A hierarchical approach to interactive motion editing 

for human-like figures, Proceedings of ACM SIGGRAPH, 1999, pp. 39-48. 

[57] H. Lipson and M. Shpitalni, Correlation-based reconstruction of a 3d object 

fram a single freehand sketch, AAAI Spring Symposium on Sketch Under­

standing, 2002, pp. 99-104. 

[58] D. G. Lowe, Perceptual organization and visual recognition, Kluwer Academic 

Publisher, 1985. 

[59] T. Lyche and K. Morken, Knot removal for parametric b-spline curves and 

surfaces, Comput. Aided Geom. Des. 4 (1987), no. 3, 217-230. 

[60] S. Mallat, A theory for multiresolution signal decomposition : the wavelet rep­

resentation, IEEE Thansaction on Pattern Analysis and Machine Intelligence 

Il (1989), no. 1, 674-693. 

[61] D. Marr and E. C. Hildreth, Theory of edge detection, Proceedings of the 

Royal Society of London, 1980, pp. 187-217. 

[62] Y. Meyer, Wavelets: Algorithms and applications, Society for Industrial and 

Applied Mathematics, J. Mathematics (1993), xii+133. 

[63] T. Mitchell, Machine learning, McGraw Hill, 1997. 

[64] J. Miura and Y. Shirai, Hierarchical vision-motion planning with uncertainty: 

Local path planning and global route selection, IEEE/RSJ International Con­

ference on Intelligent Robots and Systems, 1992, pp. 1847-1854. 

157 



REFERENCES 

[65] J. Pineau, G. J. Gordon, and S. Thrun, Applying metric-trees to belief-point 

pomdps, Advances in Neural Information Processing Systems 16 (Sebastian 

Thrun, Lawrence Saul, and Bernhard Scholkopf, eds.), MIT Press, Cam­

bridge, MA, 2004. 

[66] M. L. V. Pitteway, Algorithm for drawing ellipses or hyperbolae with a digital 

piotter, The Computer Journal 10 (1967), no. 3, 282-289. 

[67] Z. Popovic and A. Witkin, Physically based motion transformation, Proceed­

ings of ACM SIGGRAPH, August 1999. 

[68] K. Pullen and C. Bregler, Motion capture assisted animation: Texturing and 

synthesis, Proceedings of ACM SIGGRAPH, 2002. 

[69] L. R. Rabiner, A tutorial on hidden markov models and selected applications 

in speech recognition, Alex Weibel and Kay-Fu Lee (eds.), Readings in Speech 

Recognition, 1990, pp. 267-296. 

[70] J. Reeds and L. Shepp, Optimal paths for a car that goes both forwards and 

backwards, Pacific Journal of Mathematics, vol. 145(2), 1990, pp. 367-393. 

[71] D. Rubine, Specifying gestures by example, Proceedings of ACM SIGGRAPH, 

1991, pp. 329-337. 

[72] E. Saund, Finding perceptually closed paths in sketches and drawings, IEEE 

Transactions on Pattern Analysis and Machine Intelligence 25 (2003), no. 4, 

475-491. 

[73] E. Saund, D. Fleet, D. Larner, and J. Mahoney, Perceptually-supported image 

editing of text and graphies, ACM Symposium on User Interface Software and 

Technology (UIST), 2003, pp. 183-192. 

[74] T. W. Sederberg, Aigebraic piecewisp algpbraic 81lrfaœ patches, Computer 

Aided Geometric Design 2 (1985), no. 1, 53-59. 

[75] T. Sezgin, T. Stahovich, and R. Davis, Sketch based interfaces: Early pro­

cessing for sketch understanding, Perceptive User Interfaces Workshop, 2001. 

158 



REFERENCES 

[76] M. Shilman and P. Viola, Spatial recognition and grouping of text and graph­

ies, Eurographies Workshop on Sketeh-Based Interfaces and Modeling, 2004. 

[77] S. Simhon and G. Dudek, Path planning using learned constraints and pref­

erences, IEEE Internation Conference on Roboties and Automation (Taipei, 

Taiwan), May 2003, pp. 2907-2913. 

[78] , Analogical path planning, AAAI National Conference on Artificial 

Intelligence Conference, July 2004, pp. 537-543. 

[79] , Pen stroke extraction and refinement using learned models, Euro-

graphies Workshop on Sketeh-Based Interfaces and Modeling (SBM'04), Au­

gust 2004, pp. 62-69. 

[80] , Sketch interpretation and refinement using statistical models, Euro-

graphies Symposium on Rendering, June 2004, pp. 23-32. 

[81] R. Simmons and S. Koenig, Probabilistic robot navigation in partially ob­

servable environments, Proceedings of the International Joint Conference on 

Artificial Intelligence, 1995, pp. 1080-1087. 

[82] S. Singh and M. C. Leu, Optimal trajectory generation for robotic manip­

ulators using dynamic programming, ASME Journal of Dynamie Systems, 

Measurement and Control, vol. 109, 1989. 

[83] J. Smith, A. Witkin, and D. Baraff, Fast and controllable simulation of the 

shattering of brittle objects, Graphies Interface 2000, no. Montreal, May 2000, 

pp. 27-34. 

[84] D. Sturman, Interactive keyframe animation of 3-d articulated models, Graph­

ies Interface '86, Tutorial on Computer Animation, 1986. 

[85] R. S. Sutton, D. Preeup, and S. Singh, Between mdps and semi-mdps: A 

framework for temporal abstraction in reinforcement learning, Artifieial In­

telligence 112 (1999), no. 1, 181-211. 

159 



REFERENCES 

[86] R. Szeliski, Bayesian modeling of uncertainty m low level vision, Kluwer, 

1989. 

[87] D. Terzopoulos and K. Fleiseher, Modeling inelastic deformation: Viscoelas­

ticity, plasticity, fracture, Computer Graphies 22 (1988), no. 4, 269-278. 

[88] M. Thorne, D. Burke, and M. van de Panne, Motion doodles: An interface 

for sketching character motion, ACM Transactions on Graphies 23 (2004), 

no. 3, 424-431. 

[89] S. Thrun, Probabilistic algorithms in robotics, AI Magazine 21 (2000), no. 4, 

93-109. 

[90] A. N. Tikhonov and V. Y. Arsenin, Solution of ill-posed problems, Winston 

and Sons, 1977. 

[91] X. Tu and D. Terzopolous, Artificial fishes: Physics, locomotion, perception, 

behavior, SIGGRAPH '94 Proceedings, July 1994. 

[92] G. Turk and J. O'Brien, Shape transformation using variational implicit func­

tions, Proeeedings of ACM SIGGRAPH, August 1999, pp. 335-342. 

[93] D. G. Ullman, S. Wood, and D. Craig, The importance of drawing in me­

chanical design process, Computers and Graphies 14 (1990), no. 2, 263-274. 

[94] S. Ullman and A. Sha'ashua, Structural saliency: The detection of globally 

salient structures using a locally connected network, International Conference 

on Computer Vision, 1998, pp. 321-327. 

[95] M. Unuma and R. Takeuehi, Generation of human motion with emotion, 

Computer Animation '93 Proeeedings, 1993, pp. 77-88. 

[96] A. J. Viterbi, Error bounds for convolutional codes and an asymptotically 

optimum decoding algorithm, IEEE Transactions on Information Theory IT-

13 (1967), no. 2, 260-269. 

[97] X. Wang, Learning planning operators by observation and practice, Artifieial 

Intelligence Planning Systems, 1994, pp. 335-340. 

160 



REFERENCES 

[98] L.-Y. Wei and M. Levoy, Fast texture synthesis using tree-structv,red vector 

quantization, Proceedings of ACM SIGGRAPH, 2000, pp. 479-488. 

[99] W. Welch and A. Witkin, Free-form shape design using triangulated surfaces, 

Proceedings of ACM SIGGRAPH, July 1994. 

[100] L.R. Williams and D.W. Jacobs, Stochastic completion fields: A neural model 

of illusory contour shape and salience., Neural Computation 9 (1997), no. 4, 

837-858. 

[101] A. Witkin and M. Kass, Space-time constraints, Computer Graphies 22 

(1988), 159-168. 

[102] A. Witkin and Z. Popovic, Motion warpmg, Proceedings of ACM SIG­

GRAPH, August 1995. 

[103] R. Zeleznik, K. Herndon, and J. F. Hughes, Sketch: An interface for sketching 

3d scenes, Proceedings of ACM SIGGRAPH, 1996. 

161 


