
A MACHINE LEARNING FRAMEWORK FOR

THE CLASSIFICATION AND REFINEMENT

OF HAND DRAWN CURVES

Shlomo Saul Simhon

Department of Computer Science

McGill University, Montréal

6 Fe bruary 2006

A Thesis submitted to McGill University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

© SHLOMO SAUL SIMHON) MMVI

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-25255-0
Our file Notre référence
ISBN: 978-0-494-25255-0

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

This thesis presents a machine learning framework for the automatic classification

and refinement of curves. The proposed framework is composed of both a representa­

tion and a family of algorithms for making inferences from examples, given suitable

guidance from a user. The underlying computational paradigm taken consists of ap­

plying Hidden Markov Models to a wavelet representation of the curves of interest,

each of which is presented as part of a pair of examples. The learning framework

is exemplified by developing a gesture-based interface for two distinct applications:

robot path planning and sketch beautification. For each, it is demonstrated that we

can learn constraints on curves from a set of examples and apply them to augment

rudimentary gesture information from a human operator. Further, it is demonstrated

that we can identify what class of curves the human input belongs to, allowing us to

automate the curve refinement pro cess for unclassified inputs. Finally, in cases where

gesture information is given in the form of an image, it is also shown that the same

methodology can be used to detect and extract the most likely parametric curve from

the image.

There are three key issues that are addressed for the classification and refinement

of curves. First, we must establish the way in which the input, training and output

curves look like one another. In the framework presented, this likeness is expressed

statistically using Hidden Markov Models that extend over multiple curve attributes

(such as curve thickness or color) and scales. Second, when attempting to infer

a curve, we must also determine the way in which the surrounding curves should

ABSTRACT

affect the inference. Using a hierarchy of Hidden Markov Models, we can impose

and exploit probabilistic interactions between multiple curves that make up an entire

scene. Finally, in addition to the learned constraints, we must also determine a

method for combining user-defined constraints with the Hidden Markov Models. It

is shown that we can reformulate the Hidden Markov Models using a regularization

framework and allow for the seamless integration of ad hoc biases to the learned

models.

iii

RÉSUMÉ

Cette thèse présente une structure d'apprentissage informatisée automatique de clas­

sification et de raffinement de courbes. La structure proposée est composée à la

fois d'une représentation et d'une famille d'algorithmes afin de créer des inférences

à partir d'exemples, selon des instructions pertinentes d'un usager. Le paradigme

d'informatisation de ce travail est d'appliquer les Modèles Cachés de Markov à une

représentation ondulatoire des courbes d'intéret, chacune desquelles étant démontrée

par une paire d'exemples. La mise en pratique de cette structure est représentée par

deux applications disctinctes: planification du parcours d'un robot et embellissement

de croquis. Pour chacune d'entre elles, il est démontrque nous pouvons apprendre

les contraintes des courbes à partir d'exemples et les appliquer afin de perfectionner

l'information gestuelle rudimentaire d'un opérateur humain. En outre, il est démontré

que nous pouvons identifier à quel type de courbe appartient l'entrée d'informations

fournie par la personne humaine. Tout ceci nous permet aussi d'automatiser le net­

toyage de la courbe pour des entrées non classifiées. Finalement, dans les cas où

l'information gestuelle est traitée sous forme d'image, il est démontré que la meme

méthodologie peut etre utilisée afin de détecter et extraire les courbes paramétriques

les plus probables à partir de l'image.

Il existe trois points principaux qui sont adressés quant à la classification et le raf­

finement de courbes. Tout d'abord, il faut établir la manière par laquelle les courbes

initiale, déntrainement et finale se ressemblent. Avec la structure préée, cette simi­

larité est exprimée statistiquement grace aux Modèles Cachés de Markov qui prennent

RÉSUMÉ

en compte les multiples attributs de la courbe (tels que son épaisseur ou sa couleur)

et les échelles. Ensuite, lorsque l'on essaie d'inférer une courbe, nous devons aussi

déterminer de quelle manière les courbes environnantes affectent l'inférence. Grace à

l'utilisation d'une hierarchie des Modèles Cachés de Markov, il est possible d'imposer

et d'exploiter les interactions probables entre les multiples courbes qui forment une

scène entière. Finalement, en addition aux contraintes apprises, nous devons aussi

déterminer une méthode qui puisse combiner les contraintes définies par l'usager avec

les Modèles Cachés de Markov. Il est démontré que nous pouvons reformuler les

Modèles Cachés de Markov par l'utilisation d'une structure de régularisation et per­

mettre l'intégration aisée des polarisations aux modèles appris.

v

ACKNOW"LEDGEMENTS

1 am grateful to have had the opportunity to work with my adviser, Gregory Dudek,

who has taken me under his wing and given me the opportunity to take part in sorne of

the most wonderful research in Computer Science. Greg is both an amazing adviser

and great friend. He has given me the encouragement and confidence that this thesis

would not have been possible without. 1 cannot begin to express how much 1 have

learned and grown while working with him. The countless discussions we had, both

on academic and personal facets, and the many problems we worked on together are

all invaluable and greatly cherished. Thanks for everything you've do ne Greg!

1 would like to thank members of my committee and all other faculty members at

Mc Gill who l've had the opportunity to either take courses with or get feedback about

my work. In particular, 1 would like to thank James Clark, Frank Ferrie, Mike Langer,

Doina Precup and Sue Whitesides for their insightful feedback and discussions.

Many thanks to Luz Abril, Eric Bourque, Paul Di Marco, Matt Garden, Dimitri

Marinakis, loannis Rekleitis, Junaed Sattar and Rob Sim who are both my friends

and lab-mates. 1 am grateful for our friendships and for all the technical assistance.

1 will miss our weekly lab-meeting/lunch duo!

Finally, 1 thank all my family for their support; my parents and brothers who have

always been there for me. 1 especially thank Stacy, whose love and encouragement

has helped me overcome all obstacles. Thanks for putting up with me throughout

this long endeavor!

ACKNOWLEDGEMENTS

This thesis would not have been possible without the financial support from

FCAR (Fonds de Recherche sur la Nature et les Technologies) and IRIS/Precarn.

vii

for Stacy, Sage, Samson and my angel Shoshana Shalem

TABLE OF CONTENTS

ABSTRACT

RÉSUMÉ ..

ACKNOWLEDGEMENTS

LIST OF FIGURES

CHAPTER 1. Introduction

l. Gesture-Based Input

2. Sketching

2.l. Segmentation

3. Robotic Control

4. Contributions

5. Outline

CHAPTER 2. Related Work .

l. Curves and Surfaces .

2. Sketching

2.l. Curve Extraction

3. Motion Planning .

3.l. Animation ..

CHAPTER 3. Framework Overview .

l. Pen Stroke Representation ...

ii

IV

vi

xiv

1

5

6

10

10

13

16

17

17

20

25

26

28

32

32

2. Problem Definition

3. Approach to the Refinement Problem

4. Curve Classes

5. Curve Synthesis using a Markov Model

5.1. N on-Stationarity . . .

6. Multi-Scale Representation

6.1. Continuous Wavelet Transform

6.2. Properties of Wavelet Basis Functions .

6.3. Haar Basis

6.4. Sub-band Coding

7. Refinement of Curves using Hidden Markov Model

8. Two-Level Hierarchical Hidden Markov Model

CHAPTER 4. Curve Refinements

1. Refinement Model Overview

2. Learning Refinement Models

2.1. Hidden States

2.2. Translation Step

2.3. Observations.

2.4. Auxiliary Attributes

2.5. Transition Probabilities .

2.6. Transition Matrix .

2.7. Stationarity Window

2.8. Confusion Matrix

2.9. Initial Distribution

3. Decoding Refinement Models

3.l. Thresholding

3.2. Starting Point Invariance .

3.3. Input Handling

4. Adding Preferences using a Regularization Framework

TABLE OF CONTENTS

33

34

35

37

39

40

41

42

43

44

45

46

50

50

51

52

53

56

56

57

58

60

61

62

62

64

65

66

68

x

5. Summary

CHAPTER 5. Sketching Application

1. Curve Attributes for the Hidden Layer

1.1. Seed Pixels

2. Curve Attributes for the Observation Layer

3. Normalization and Sampling

3.1. Normalizing for a Stationary Model

3.2. Normalizing for a Non-Stationary Model

4. Supplementary Sketch Refinement Preferences

4.1. Cartesian Co-ordinates

4.2. Curve Closure

4.3. Additional Parameters

5. Drawing Output Curves. .

5.1. Drawing Texture Fill Seeds .

5.2. Overlaying Curves

6. Texture Filling ...

7. Experimental Setup

8. Experimental Results

8.1. Coastlines

8.2. Leaves .

8.3. Skyline.

8.4. Basic Shapes

8.5. Fish

8.6. First Order versus Second Order Representation

8.7. Texture Fill

8.8. Additional Examples

CHAPTER 6. Path Planning Application.

1. Path Attributes and Parameters . . .

TABLE OF CONTENTS

70

72

72

73

74

74

74

75

75

77

78

79

80

80

81

81

82

84

84

87

88

89

90

91

95

96

107

107

xi

TABLE OF CONTENTS

2.

3.

4.

5.

Regularization Terms

Dynamic Sampling

Experimental Setup

Results

CHAPTER 7. Classification of Curves

1. Scene Refinement Model

1.1. Learning Scene Constraints

1.2. Hidden States and Transition Matrix

1.3. Observation States and Confusion Matrix .

1.4. Additional Model Parameters

1.5. Scene Refinements

1.6. Regularization Term for Evaluating Model Compatibility

1. 7. Probability Normalization

1.8. Decoding the Applicable Curve Refinement Models

2. Scene Refinement Results .

3. Curve Extraction

3.1. Generating Candidate Curves

3.2. Starting Point . . .

3.3. Path Segment Tree

3.4. Pruning

3.5. Ranking Candidate Curves .

CHAPTER 8. Conclusion

1. F\J.ture Work

109

111

113

113

121

122

122

123

123

123

124

124

125

126

127

129

129

132

133

135

136

141

142

APPENDIX A. Pseudo-Code for Learning and Decoding the Refinement Models 147

1. State Labelillg Algoritlull 147

1.1. Transition Matrix Algorithm . 149

1.2. Confusion Matrix Algorithm

1.3. Decoding Algorithm

150

151

xii

TABLE OF CONTENTS

REFERENCES. .. 154

xiii

LIST OF FIGURES

1.1 Examples of gesture-based hardware devices. The le ft image shows a child

using a simple electronic pen tablet, middle shows a tablet PC (from

teddy [41]) and right shows an electronic whiteboard (from T. Stahovich

et al. [50]). .. 5

1.2 Sample sketches. The left shows a fiow chart, the middle shows a storyboard

and the right shows a circuit design. 7

1.3 Sample sketches demonstrating ambiguities (e.g. in one case the zig-zag shape

is a resistor while in another its a spring, T. Stahovich et al. [50]). 7

1.4 Example trajectory for a car-like robot. Instead of the simpler trajectory

(dashed path) , due to the limitation on the turning radius a more complex

trajectory must be taken (solid path). 12

2.1 Example interface and results from [41]. Left shows the interface and right

shows 3D example results. 21

2.2 Example curve analogies from [38]. Left shows the input curves and right

shows the output. 23

2.3 Example sketch interpretation from [1]. Left shows the input sketch and right

shows the physical interpretation. 24

2.4 An example sketch editing action from [73]. Using the sketch editing

application, elements of the sketch can be extracted, grouped and modified. 27

LIST OF FIGURES

3.1 Two examples classified in the same family. Each example is labeled as a

roof-top and new locally consistent mixtures result in other examples that can

also be considered as roof-tops. .. 37

3.2 Realizations of two Markov processes trained using the left roof top example

in Fig. 3.1(a). 39

3.3 Wavelet representation of a signal. 42

3.4 Haar wavelet with translation and scaling. 44

3.5 Local relationships of refined and coarse curves. For all curve segments (in

gray), the transition matrix and confusion matrix store the above likelihoods.

This is computed over every example in a given set. 47

3.6 Example relationships in a scene. The labels correspond to HMMs at the

curve-level and the letters above correspond to the allowable relative position

(i.e. A: ab ove , B: below, L: left R: right). 48

4.1 Examples from a training set. Curves on the le ft show the control curves

while curves on the right show the associated refined ones that include color.

Typically, the shape of the control curves are filtered versions of the refined

ones, in this case the filtered ones are very similar to the originals. The set

is sampled uniformly with 128 samples per example for a maximum of 1024

unique points. .. 52

4.2 Comparing the states for two different translation steps. In figure 4.2(a),

the translation step at scale SO is set to four sample points. Prediction and

multi-scale decomposition is thus performed on a four-point segment basis.

In figure 4.2(b), the translation step at scale SO is set to one sample points.

Prediction and multi-scale decomposition is thus performed on a sample point

basis. (For opened curves, sample point padding is applied at the curve's

end-points.) The shaded boxes show the information that each state encodes.

Note that even when the translation step is set to one (the segment length is

thus one), the state encodes information beyond the segment. 54

xv

LIST OF FIGURES

4.3 Synthesis diagram for three states {hl, h2 , h3} and three input points {o(l), 0(2), 0(3)}.

Solid arrows indicate all possible transitions, the ones shown in red indicate

the best transitions. At the last point, the state with the greatest likelihood

(hd is chosen, followed by a backtracking procedure that uses the back­

pointers to traverse and extract the most likely previous states (shown by

dashed arrows). 64

4.4 A plot of the sigmoid function for the tangent angle attribute 1>.

5.1 A screen-shot of the graphical user interface for the sketching application.

Left pane is used for drawing, right pane is used to display the results and the

bottom pane is used to provide quick access to common commands.

5.2 Refined curves from a training set used to draw coastlines. The entire set

consists of 25 examples. The control curves are generated by applying a

low-pass filter on the refined curves, removing the fine details that are too

68

83

difficult to draw. 84

5.3 Example synthesis of a hand-drawn curve using the coastlines training set

(Fig. 5.2). 85

5.4 Example synthesis with a large magnetic bias. 85

5.5 Example synthesis when applying the decay function on the magnetic bias. 86

5.6 Example outputs demonstrating the effect of the mixture variance. Top

center shows the input curve. From the top-left to bottom-right, the results

are shown when increasing mixture variances. 87

5.7 Examples demonstrating the results when increasing the mixture variance

and exc1uding the lllagnetÏtHll tenu. Top center tlhowtl the input curvc. From

the top-left to bottom-right, the results are shown when increasing mixture

variances. Because the input curve is closed, the long line segments are

produced by linear interpolation to close the output curve. 88

XVI

LIST OF FIGURES

5.8 A training set used for producing outlines that look like leaves. The control

curves are filtered versions of the refined ones.

5.9 Curve synthesis using the leaves training set.

5.10\ simple training set used to draw skylines. .

5 . 11Exam pIe synthesis using the sky line training set.

5.1:Example demonstrating the effect of backtracking. The top curve shows the

input, the middle curve in shows the result when using a greedy approach,

89

90

90

91

the bottom curve shows the result when backtracking. 92

5.13<\ training set consisting of basic shapes. 93

5.1L8ynthesis results using the basic shapes training set. 93

5. 15I'raining set with the color attribute. 93

5.HResults displaying the effect of the example coherence regularization tenu.

When using the term, there are fewer transitions between training examples. 94

5.1'iExample synthesis using the basic shapes training set. 95

5.1ffixample synthesis using the basic shapes training set. 95

5.19fraining set with examples of fish. Control curves (not shown) are blurred

versions of the refined ones. . . .

5.2Œxample synthesis of fish shapes. The left shows the inputs and the right

shows the results. Sorne results are exact instances from the training while

others are segment mixtures.

5.2illaining set consisting of a curl-like pattern associated to a simple control

96

96

curve. 97

5.223ynthesis of a curl pattern using the second-order shape descriptor. Left

shows the input and right shows the synthesis results.

5.233ynthesis results for three different sampling resolutions. Top shows the input,

bottom left to right show the results when reducing the resolution (fewer input

97

sam pIes). 98

xvii

LIST OF FIGURES

5.24Examples demonstrating the difference between a first and second-order

representation. Figure (a) shows the input curve and Fig. (d) shows the two

patterns and the control curve (straight line segment). Figures (b) and (e)

show the results using the first-order representation and figures (c) and (f)

show the results using the second-order representation. 99

5.25\ training set consisting of a right turn (traversed from top-left to bottom­

right). It is also used to learn the shape of a left turn (traversed from

bottom-right to top-left). 99

5.2Œffects that result when using a training set consisting of only a right turn. 100

5.2/Results when using a training set consisting of left and right turns. 101

5.2ffiynthesis of coastlines with texture seeds. 102

5.29I'exture image used for coastlines. 102

5.3Ofexture filling process. The progression of the texture fill pro cess is shown at

the top, from le ft to right and the final result is shown at the bottom. . .. 103

5.3lExample synthesis with and without the multi-scale representations. Top left

shows the input, top right shows the training set, bottom left shows the result

when the wavelet representation is omitted and the bottom right shows the

result when the wavelet representation is included.

5.3:Bketch refinement using several different training sets (assigned manually).

103

The left shows the input and the right shows the results. 104

5. 333creen-shot: more examples using the fish-shapes training set. Note that when

the training set is not rich, input curves that do not resemble the limited set

of segments produce odd results. Such results may be interesting in the realm

of fiction! 105

5. 343creen-shot: synthesis using the roof-top training set shown in figure 5.10. 106

6.1 Example energy field. The left image shows the environment and the right

image is a plot of the energy field. .. 110

xviii

LIST OF FIGURES

6.2 Projection of the vector V2 (from the output trajectory) onto the vector VI

(from the input trajectory). The projection is used to determine which sample

point along the input curve should be used for applying the input conditional. 112

6.3 A training set with example paths for non-holonomic motions. Paths on

the left display the constrained motions while paths on the right display

the associated unconstrained goal path. The forward directions used for the

secondary control attribute consist of the tangent angles along the constrained

motions (left). The full set consists of the above set at four orientations to

form a rectilinear set. 114

6.4 The examples above show the input path (A) and the synthesized paths

(B,C,D) using three training sets. The three training sets consist of a zig-zag

pattern for a sweep motion, a curl-like pattern for a narrow-beam sensor scan

and the bounded turning radius pattern. 115

6.5 Example path synthesis using the non-holonomic training set. Top shows the

input and bottom shows the resulting path 115

6.6 Results wh en including the forward direction as an input condition (indicated

by arrows). Top shows the input and bottom shows the generated paths. The

cusps indicate a direction revers al. 116

6.7 Results with and without the magnetic regularization term. The left path

shows the goal trajectory, the middle shows the resulting output without the

magnetic regularization term and the right path shows the output with the

magnetic regularization term. The cusps indicate a direction reversal. . .. 116

6.8 Example path synthesis going through a narrow region. Left shows the input,

right shows the output and the shaded areas show the obstacles. 117

6.9 Example path synthesis with obstacle avoidance. Left shows the input and

right shows the output. .. 117

6. HExample path synthesis with obstacle avoidance. Left shows the input and

right shows the output 118

XIX

LIST OF FIGURES

6.1lExample path synthesis going through a narrow region. Left shows the input.

The middle shows the output using a large value for À4 and right shows the

output with a small value for À4 (the obstacle avoidance term). It can be seen

that due to the large divergence, the output trajectory lags behind the goal

trajectory. This is compensated for by the dynamic sampling technique. 119

6.12A.n exmaple where the robot does not reach its goal. Left shows the input

and right shows the output. .. 120

6.1:Example synthesis using the second-order representation. Note that when

using this representation, the curves have few distinguishing values. In some

cases, the input matches well and the desired features are generated (the

learned u-turn maneuver) while in other cases, the match is not sufficient but

the magnetism term helps steer the pro cess (in cases where the learned u-turn

should have been generate another maneuver was used). 120

7.1 A graph used to train a scene-level HMM for cartoon facial profiles. 127

7.2 Generating profiles of cartoon faces. The top sketches show the input and the

bottom sketches show the results. .. 128

7.3 Synthesis of an island scene. Left shows the input, middle shows the generated

scene, including seeds for texture fill, right shows the resulting texture filled

scene using the texture sample shown in Fig. 7.4.

7.4 Training texture used to generate the texture fill in Fig. 7.3.

7.5 Top le ft shows the input sketch, top right shows the output using a greedy

method, bottom left shows the output using Viterbi and bottom right shows

128

129

the re~mlt when applyillg the Markoviall texture filler. 130

7.6 Scene refinement example using the island training set (Fig. 7.8). 131

7.7 Scene refinement example using the city skyline training set (Fig. 7.9). 131

xx

LIST OF FIGURES

7.8 Training set used to generate tropical island scenes. The top shows the scene­

level constrains, the middle shows the curve-level training sets and the bottom

shows an example texture. .. 132

7.9 Training set used to generate city skyline scenes. The top shows the scene­

level constrains, the middle shows the curve-level training sets and the bottom

shows an example texture. .. 133

7.10\ set of candidate curves that can be extracted form an image. The top figure

shows the original image and the figures below show the candidate curves. 134

7.11Finding the starting position s. First, the system searches for the nearest

pixel p mat ching the foreground color, then it recurses up to l steps to find

the starting point. 134

7.11.jurve segment tree. Top right shows the original image with the starting

point highlighted .. 135

7.1:First-order pruning of pixels from a two pixel thick image. Pixels labeled with

M are inadmissible. 137

7. 14Extraction of a zig-zag pattern (shown in red) ..

7.11Example extraction using the leaves training set. Note how the extraction

algorithm can make the right selection even when there are junctions where

138

the curvatures at different branches are locally similar. 138

7. HExample extraction and refinement. Top le ft shows original image and the

user pointer, top right shows the automatically extracted curve (in red).

Bottom le ft shows the curve isolated by dragging it and bottom right shows

result of the automated refinement process. 139

7.1'iLeft shows extraction (in red), middle shows refinement, right shows a resize. 139

8.1 Preliminary results for controlling an underwater robot. Training set consisted

of several simulated motions. 145

XXI

LIST OF FIGURES

8.2 Preliminary resu1ts for motions synthesis. Training set consisted of severa1

examp1e motions. The 1eft shows the input curve and the right shows the

resu1ting motion. 146

xxii

CHAPTER 1

Introduction

Ruman interactions can be characterized by a set of signaIs or cues that typically

result in ambiguous, noisy or incomplete expressions. Cues such as words, body

language or tone of voice are thus subject to interpretation by the recipient who,

based on an assumed context and prior knowledge concerning the subject, attempts

to infer missing information and disambiguate the message being conveyed [17]. Can

computer systems similarly interpret such informaI expressions? This thesis examines

the problem of how to represent and use knowledge in order to deal with ambiguities,

noise or missing information. This is a longstanding research problem in Artificial

Intelligence (AI) which has been extensively investigated in contexts such as Robotics.

The focus of this thesis lies in aspects of human-computer interaction for robotic and

graphical applications; extending and applying AI techniques to develop a smart user

inte'rface which can interpret the rudimentary hand gestures used for sketching and

robotic control.

While it is common in human dialog to say "1 know exactly what you mean" (and

in most cases be correct), a computer system simply "knows exactly what it knows" .

That is, the process of high-Ievel interpretation that is implied by the statement "1

know what you mean" is generally lacking when interacting with a computer system.

This is evident in many of today's systems where there is a large gap between the level

of abstraction possible in human-computer interactions and the level of abstraction

CHAPTER 1. INTRODUCTION

which humans are normally accustomed to when interacting amongst themselves. To

accomplish what one "means" typically requires substantial low-level specifications,

fine tuning and specialized expertise or talent. Whether for a computer program, a

schematic drawing or simply a set of point-and-click actions, the acceptable human

inputs for producing the desired outputs are usually constrained by a rigid set of

low-level requirements.

An important concept in AI is that of abstraction; Le. methods that attempt

to provide more compact representations for a problem of interest. The process of

abstraction is often used in commonsense reasoning to eliminate unnecessary details

from information involved in sorne task [32]. While finding an appropriate abstract

representation is an essential problem, conversely, decoding an abstract model is an

even larger challenge. The challenge is to automatically compute the missing values

of low-Ievel parameters, which are larger in number with potentially complicated

interdependence, from the given values of high-Ievel parameters, which are fewer in

number and more suit able to the user (or agent). Indeed there are many cases where

this is trivially accomplished. For example, consider the image of a circle. One does

not need to specify every pixel on the screen, but rather to sim ply identify a center

and radius and the circle can be rendered automatically. On the other hand, consider

designing a new sixteenth-century style chapel. One requires a substantial amount of

meticulous specification of the parameters which will fully define the desired output.

How to provide the appropriate abstraction model and to subsequently acquire the

knowledge required to decode that model remains an open problem.

Reducing the required amount of user intervention while, at the same time, pro­

viding enough expressive power is a key sub-problem in abstraction. There are grow­

ing efforts in the fields of Robotics and Computer Graphics, where end-users are

challenged by increasingly complex tasks, to both implicitly and explicitly address

this issue. For instance, there has been substantial work in Robotics where the goal

is to automatically control low-Ievel motor parameters in or der to provide a suffi­

cient set of high-Ievel behaviors [12, 4, 64]. (The most popular methods are known

2

CHAPTER 1. INTRODUCTION

as hierarchical control, reactive control and subsumption.) Similar ideas have been

applied in Graphics and Animation where the low-Ievel control points required for

producing complex scenes are abstracted by higher-Ievel models with more intuitive

controls [3, 28]. Depending on the domain of application, the methods and degree of

abstraction can vary substantially.

In this thesis, a gesture-based interface is developed for two applications of inter­

est; sketching and robot control. For the sketching application, a sketch beautification

system is developed that transforms rough hand-drawn curves to produce refined ver­

sions of them [80]. For the robot control application, a path-planning system is

developed that automatically generates kinematically correct trajectories from rough

goal trajectories (that are otherwise invalid) [77]. These two seemingly different ap­

plications share in common aspects of abstraction; to take the coarse inputs and

automatically compute the low-Ievel details that satisfy sorne desired constraints or

preferences. This thesis presents a generic framework (suitable to both applications)

for modeling the knowledge required to both define the validity of the low-Ievel output

and associate that output with a high-level layer for control. The following outlines

the important criteria that are considered in developing this framework:

Simplicity: A key criterion for the framework is that of simplicity. The

resulting system must simplify what is otherwise a complex task to the

user. However, the focus is not to directly address aesthetic issues such as

the usability of an interface, the layout preferences or difficulty in system

set-up and configuration. While all these are important components to

consider, the main problem of interest is how to reduce the amount of data

or expected accuracy required to produce the desired end-results. Thus,

the user-friendliness of the system relates to the convenient and intuitive

forms of input that can be used in order to perform difficult tasks.

Controllable: The framework must provide a suit able control scheme. Un­

like many AI applications, the goal is not aimed at developing a completely

autonomous system, rather, the behavior of the resulting system should be

3

CHAPTER 1. INTRODUCTION

dependent and tightly cou pIed to the human input. This semi-autonomous

and collaborative approach emphasizes the aspects of human-computer in­

teractions in the system. Users must have the ability to easily steer the

system toward the desired results.

Customizable: The way in which the system behaves may vary from one

user to another. Users have different preferences and abilities, sorne may

wish to have a certain degree of control while others may wish to change

the control scheme altogether. The framework must therefore be flexible

in the way it handles the inputs, allowing for custom configuration that

accommodates personal preferences.

General: The framework should be general, with limited domain specifie as­

sumptions. Supplementary ad hoc constraints that are suitable for special­

ized applications must be easily integrable into the system. The framework

must also support parameters in arbitrary dimensions such that it can rep­

resent domains with multiple degrees of freedom.

Example-Based: Having to manually model the desired behavior of the sys­

tem for each application is a cumbersome task. Instead, the framework

should have the ability to learn from examples the range of valid outputs

for a particular application and its relationship to the expected inputs.

Expressive Power: The range of possible outputs that the system can pro­

duce for a given domain should not be overly restrictive. The provided

learning framework must adequately generalize specifie examples to a broad

ensemble of cases.

The framework developed is based on Markov Models: probabilistic descriptions

of how sequentially ordered states are related. Specifically, we use Hidden Markov

Models (HMMs), a modeling formalism that allows us to express the relationship

between aspects of a system that can be observed directly (the coarse input from

the user) and variables that cannot be observed, but which determine the output

(what the user "really wants"). This doubly stochastic model combined with several

4

1.1 GESTURE-BASED INPUT

other techniques discussed later form the core of the framework satisfying the criteria

described above.

1. Gesture-Based Input

Gesture-based interfaces provide users with a natural method for interacting with

computer systems. There is a wide array of hardware devices that attempt to accu­

rately capture human gestures. Examples range from expensive wearable sensor sys­

tems that capture multiple degrees of freedom to simple point and click devices (Fig.

1.1). Pen-based devices such as pen tablets, tablet PCs or electronic white-boards are

becoming increasingly popular tools for users of varying degrees of expertise. While

such systems may soon become common HCI devices, driving the demand for novel

application, the research dealing with processing and analyzing pen strokes is still in

its infancy.

FIGURE 1.1. Examples of gesture-based hardware devices. The 1eft image
shows a child using a simple electronic pen tablet, middle shows a tablet
PC (from teddy [41]) and right shows an electronic whiteboard (from T.
Stahovich et al. [50]).

In the framework presented here, a signal processing approach is taken to process

pen-based inputs. Every pen stroke drawn by the user can be considered as a stochas­

tic signal, represented by a parametric function over time (or traveled distance). In

gelleral, the parametric fUllctiollS cau be of arbitrary dimellsiollality, ellcodillg mul­

tiple attributes such as pen position, speed or pressure. Continuous functions that

map a one-dimensional space to an n-dimensional space are referred to as parametric

curves. As such, throughout this thesis, aH user inputs to the system are referred to

5

1.2 SKETCHING

as curves (e.g. the drawn outlines of a sketch or the coarse trajectory of a robot).

Similarly, all of the resulting outputs are also referred to as curves, parametric func­

tions that compute the desired application specific output (mapping attributes such

as position, motor speed, coloration or thickness).

2. Sketching

Drawing a sketch is one of the most common and versatile ways to convey in­

formation. Sketches are often found in comics, presentation material, cel-animation,

storyboard designs, system designs (sketch to prototype) and non-photorealistic pen­

and-ink illustrations (Fig. 1.2). Despite the natural ease of drawing a sketch, the

creation of high-quality good-Iooking sketches remains time consuming and skill de­

pendent. In fact, a search on the web for the phrase "1 can't draw" returns roughly

74,000 hits (using the Google search engine, August 28, 2005). While almost every­

one can sketch a crude illustration, only a few have the artistic talent and patience

to draw the refined details they wish to depict. Even those who are lucky enough to

possess those abilities may not have the appropriate tools at hand.

In many cases, sketches are used as a first-order presentation of concepts [93]; to

quickly construct a coarse visualization of an idea. The pur pose is not to pro duce

a physically or cosmetically correct illustration but rather to easily capture an idea

that may or may not materialize later in a more comprehensive design. Such sketches

typically consist of a set of curves that are disproportionate, noisy and coarse. When

these sketches pass the "drawing board" phase or if they need to be presented more

clearly to other viewers, the intricate task of preparing a more refined version takes

place. Existing tools to accomplish this in a digital domain include software applica­

tions for CAD, diagramming, desktop publishing, image editing and vector graphics.

While the initial sketch typically lacks the details required for an unambiguous

interpretation, it is meant to provide sufficient information for a human observer to

envision the artist's original intention and construct a Mental Madel [18, 45]. This

interpretation is dependent on both the shapes of the curves and their context III

6

/

1.2 SKETCHING

"-\
No_[~;Z:0

'U1L-J ----
"IlS

l-,:1~Çl _~"-l

cà>

r

....... ;t'-

. i"

,-
,

~ if 1.... ""~, 1

FIGURE 1.2. Sample sketches. The left shows a flow chart, the middle shows
a storyboard and the right shows a circuit design.

'1

the sketch (Fig. 1.3). For example, in one context, a rough circle may be a coarse

representation of a gear, while in another, it may represent the head of a stick figure.

The resulting Mental Model in combination with the tools at hand are used in a skill

dependent feedback pro cess to pro duce the final drawing.

wire rigid body

~l ~à ,.,ft f»0 D
ro1 Efj :. pulley
.0 l-.l belt

(a)

rigid body

&~Oj
~~ --~------~--~

(h)

j spring rigid body

~4~(~)WhOOI
frame n"ll

(r)

FIGURE 1.3. Sample sketches demonstrating ambiguities (e.g. in one case
the zig-zag shape is a resistor while in another its a spring, T. Stahovich et
al. [50]).

7

1.2 SKETCHING

Given the diverse set of possible types of drawings and contexts, can a universal

system be developed that automatically infers the refined version of a sketch? A

system that uses only specialized domain specific constraints may be overly restrictive.

Rather, the knowledge of what the refinements should be, for a given domain, must

be extracted automatically from an ensemble of examples that show samples of the

desired output.

This leads to two key problems that must be addressed in a trainable setting; the

curve refinement problem and the curve classification problem. First, the system must

be able to learn the desired types of curve refinements and then transform a coarse

curve to exhibit the desired style (treating each curve in the sketch independently).

This is accomplished by applying a curve refinement model; a set of learned rules that

transform a coarse curve to a refined one. Second, for each curves in the sketch, the

system must automatically select most appropriate refinement model that should be

applied from the set of all possible models (there can be several such models trained

under different contexts or styles). This is accomplished by choosing the refinement

model that best transforms the curve while also satisfying high-level relationships

between other curves in the sketch (using semantics that identify the types of curves

in a sketch). For example, suppose a curve is best represented using a refinement

model for a tree (the semantic label), the refinement models applicable to other

curves above it should be ones for clouds, leaves, birds, etc.

The approach taken to address these problems consists of modeling probabilistic

constraints on curves in a sketch using a two-Ievel hierarchy of Hidden Markov Models

[25]. Each HMM in the first level de scribes the refinements for a class of curves and

each HMM in the second level describes the high-Ievel constraints for a class of scenes.

This leads to a relationship between the HMMs used on individual curves, the curve­

level HMMs, and those used to specify the identity of objects within the entire scene,

the seene-level HMMs. The scene-level HMM encodes probabilistic constraints on

the application of the curve-Ievel HMMs based on the type of sketch that is being

drawn. When a curve is refined using a particular curvel-Ievel HMM, the refinements

8

1.2 SKETCHING

applicable on the neighboring curve must be compatible. For example, we should

never refine a curve to look like a fish when a previous curve below it has been refined

to look like a tree. While this approach does imply a sequential ordering of curves, it

is possible to either ignore the sequential ordering constraints (described in Chapter

3), dynamically sequence the curves based on their proximity or extend the framework

to use Markov Random Fields.

While the HMMs provide a powerful framework for learning local constraints on

curves, their application alone may not be sufficient for the desired behavior of the

system. Additional do main specific constraints may be required to complement the

learned ones and further enhance the way a curve is synthesized. In order to allow

for such supplementary constraints (ad hoc biases) to be plugged into the system,

the curve-Ievel HMMs are reformulated using a regularization framework (discussed

in Chapter 4). This is especially important in cases where the prior distributions

are not easily available and explicit analytical functions must be used to further bias

the distribution. For example, it may be desirable to include a constraint to enforce

curve closure, which is too difficult to model using only HMMs but can easily be

incorporated as an regularizing bias using analytical functions.

Developing a smart sketch-based interface in this fashion can facilitate many of

the difficult and laborious drawing tasks. Such an interface can be used for technical

drawing and diagramming, where primitive shapes such as lines and arcs can make

up a training set. Instead of using the traditional point-and-click technical drawing

interfaces, the user can naturally sketch out a novel diagram while the smart interface

infers the new shapes that are stylistically similar to the training set. Similarly, the

interface can also be used for creating web-art and can potentially be extended to

animation. One potential difficulty in the usability of such a system is that the train­

ing set must be carefully constructed in or der provide the desired types of outputs.

Though this is a one time set-up step, users must have a good idea on the types of

outputs that can be produced for a given training set.

9

1.3 ROBOTIC CONTROL

2.1. Segmentation. If the sketch is drawn using a digital medium (sueh as

a tablet, pointing device or PDA) then the pen strokes may be available to the sys­

tem. An interesting problem arises when the original pen strokes are not direetly

available but have already been rendered to an image. Can the original pen strokes

be detected and extracted from the image? This issue is also relevant to many mod­

ern image editing applications where the available tools for transforming objects are

applied under the assumption that the objects have already been isolated. Manually

extracting individual pen strokes from images that are noisy or include occlusions can

be a tedious task.

Curve segmentation is a well established researched topic in the fields of Com­

puter Vision and Image Processing, with particular applications to contour detection

and object recognition. Approaches to this problem range from band-pass filtering

techniques to curvature heuristic-based methods [21]. In this work, the learning

framework is used to extract parametric curves from images of sketches. The ap­

proach consists of searching through all the possible parametric curves that explain

the image and pruning those that are inconsistent with the learned constraints [79].

The user ean then simply click near an end-point of the desired pen stroke and the

system automatically extracts it based on its similarity in style with the training set.

3. Robotic Control

In motion planning (e.g. for a robot), there are typically two types of constraints

to consider on the paths that can be taken: extrinsic constraints, imposed by the envi­

ronment or other external factors, and intrinsic constraints, imposed by the physical

characteristics of the vehicle itself. Finding valid trajectories that satisfy both the

mechanically imposed constraints and environmelltal constraillts can be a difficult

task. Further, motion planning is complicated not only by the need to generate these

paths, but also by the need to initially model whatever constraints may be imposed

by a particular vehicle or task.

10

1.3 ROBOTIC CONTROL

Traditionally, intrinsic motion constraints have been modeled using analytic meth­

ods that constrain the differential geometry of the set of admissible paths. The

constraint equations for motion are complex relations that attempt to simulate the

dynamics or kinematics of a mobile robot based on its mechanical design. In par­

ticular, non-holonomie constraints refer to limitations on the allowed derivatives of

the path, and planning in the presence of such constraints is often difficult (an au­

tomobile is a common ex ample of a vehicle with such constraints, as it is unable to

move perpendicular to the direction in which it is facing, Fig. 1.4). There are two

approaches taken for analytically modeling these constraints: one based on forward

kinematics and the other based on reverse kinematies. Forward kinematics refers to

the modeling formalism used for computing the trajectory a robot can take given a

sequence of model parameter values (which directly translate to motor commands). A

regular sequence of such parameter values for an articulated robot is often referred to

as a gait. The reverse kinematics based approach consists of deriving explicit models

that can solve for the sequence of parameter values (or gaits) that result in the robot

traversing a desired goal trajectory. Path planning typically entails either solving

the inverse kinematic models or solving an optimization problem over the forward

kinematic constraint equations.

Motion constraints are not only used for modeling a robot's internaI mechani­

cal configuration but are also used to model extrinsic motion preferences. In sorne

applications, equations are constructed to model task specific motion requirements,

such as a sweeping pattern for full fioor coverage or a suitable behavior to scan the

environment using a narrow-beam sensor. Specialized paths also occur in various

specialized contexts; in the classic 1979 film "The In-Laws" Peter Falk instructs Alan

Arkin to run along a "serpentine" path while heading for a goal that is straight ahead.

Additionally, in applications such as obstacle avoidance, motions are not only related

to the robot 's pose but are also a function of the perceived environment. In aIl of

these examples, the underlying core problem consists of finding a valid transforma­

tion between two components: 1) the idealized "raw" path that directs the robot to a

11

1.3 ROBOTIC CONTROL

FIGURE 1.4. Example trajectory for a car-like robot. Instead of the simpler
trajectory (dashed path), due to the limitation on the turning radius a more
complex trajectory must be taken (solid path).

goal without taking into account certain preferences or constraints, and 2) the refined

path that attempts to reach the goal while also satisfying the system constraints.

Whatever the constraints, expressing them in a suitable formaI framework is of­

ten challenging. Further, the processes of fin ding allowable solutions can be costly,

particularly since the solution techniques are often engineered for a specifie context.

In contrast, this thesis presents a radically different approach to path planning. The

presented machine learning framework is used to simulate the motion constraints

without having to explicitly model them. The constraints (or preferences) are ex­

pressed in terms of a set of examples that illustrate how the robot is permitted to

move. Further, these examples indicate how to elaborate a coarse input path from

a user (which is typically not acceptable in itself) into a suitable acceptable output

path. Informally, the examples say: "if a user asks you to do something like this than

what you should actually perform is a maneuver like thaf'. This nuvel appruach tu

path planning is referred to as analogical pa th planning [78], wherein paths are gen­

erated by analogy with previous observed acceptable paths and without an analytic

model.

12

1.4 CONTRIBUTIONS

In similarity with the sketching application, Hidden Markov Models are used to

both model the constraints on the allowable paths and provide a layer for high-level

control. Further, using the regularization framework, these HMMs are dynamically

biased in order to account for environmental constraints. Obstacle avoidance is per­

formed by computing a distance transform over boundaries in the environment and

combining the resulting field with the trained HMM. This biased HMM constrains

the configuration space of the robot resulting in trajectories that satisfy the desired

motions and avoid obstacles.

Because the system learns from examples, it can be applied in a variety of do­

mains. This avoids having to extract and analytically model constraints for each de­

sired task or mechanical configuration that we may wish to control. One can sim ply

demonstrate how a robot can move and subsequently the system can automatically

produce new paths based on these motions. One area of application is tele-operated

robotics. A human can guide the robot to areas by sim ply sketching a coarse path.

The system can then refine that path based on the learned specification of the robot

and generate a new valid path analogous to the goal. Another application is to com­

plement high-level planners to relieve them of the burden of non-holonomic (complex)

path planning. Our system can take in as input the paths generated by such planners

and augment them to avoid obstacles while maintaining a desired behavior during

motion.

4. Contributions

The main contribution of this thesis is the development of a machine learning

framework applied to a novel gesture-based interface for creating illustrations and

controlling a robot. The novelty stems from the idea that coarse gestures can be used

to steer a Markovian-based synthesis procedure and produce new refined outputs.

The synthesis procedure is rooted on the idea that stitching and blending fragments

from a training set can results in new examples that can also be considered part of

the set. While many of the models used in this thesis are already weIl established

13

1.4 CONTRIBUTIONS

(such as HMMs, wavelets), they have never been used together in the fashion pre­

sented nor have they been applied as a unified approach for the applications presented

here (sketch beautification, curve extraction from images and robotic control). The

following lists the contributions of this thesis in more detail:

• A novel sketch beautification system is developed where curve transforma­

tions are represented by a hierarchy of probabilistic models.

• A novel gesture-based robot path-planning system is developed (called ana­

logical path planning) where robot trajectories are produced by analogies

with the the training set.

• The same framework used for the sketching and robotics application is also

used to develop a novel method for segmenting images.

• A novel two-level Hierarchical Hidden Markov Model is developed where the

first level of the hierarchy (curve-level) models probabilistic constraints on

individual curves and the second level of the hierarchy (scene-level) models

probabilistic constraints over entire scenes. A third level process is also

developed (pixel-level) to synthesize textures.

• U sing dynamic programming, an efficient algorithm is developed for synthe­

sizing full colored illustrations from the hierarchy of models. Unlike most

approaches taken in this domain, the algorithm is not based on a greedy

strategy but rather takes into account the entire sequence of inputs, both at

the curve-level and at the scene-level, before committing to a final solution.

• Hidden Markov Models are used in combination with wavelets to efficiently

capture long-range probabilistic constraints from the training data. This

simulates a higher or der Markov process without exponentially increasing

the state space.

• A regularization framework is combined with the HMMs in order to inte­

grate supplementary analytical biases whose net biasing effects are other­

wise too difficult to automatically learn.

14

1.4 CONTRIBUTIONS

• A dynamic labeling scheme is developed to represent training sets in con­

tinuous domains using discrete samples. The scheme applies on multi­

dimensional samples and can simultaneously encode multiple curve at­

tributes (such as curve color or thickness), multiple input attributes (such

as pen pressure or speed) and multiple seales. In this fashion, the state

space has at most N elements where N is the number of unique sample

points form the training set.

• Learning eurve transformations is simplified by providing training sets that

consist of a pair of examples (Le. labeled samples). Rather than having

to use computationally eomplex learning algorithms sueh as Expeetation

Maximization, learning is performed by sim ply analyzing the statistics of

the training set. Using training sets in this fashion also allows users to

explicitly eustomize the way curves are transformed.

• Using Gaussian basis funetions, a method for eontrolling the sensitivity to

make transitions between training examples is developed. The variance

of the Gaussian controls the degree of mixing examples where at one end

of the spectrum the outputs are forced to resemble exact instances of the

training set while at the other end of the speetrum arbitrary mixtures ean

take place.

• Using a sigmoid blur, a method for eontrolling the sensitivity of the system

to the user input is developed. The parameters of the sigmoid regulate how

sensitive the system is to the user input.

The thesis includes a theoretical framework, an instantiation in software and experi­

mental validation.

15

1.5 OUTLINE

5. Outline

This thesis is organized as follows:

Chapter 2: Relevant work in the fields of Computer Graphies, Vision and

Robotics are presented and discussed in context to the applications of in­

terest.

Chapter 3: An overview of the framework is presented, including a discus­

sion of the curve representation, Markov Models, multi-scale methods, Hid­

den Markov Models and the the Hierarchical Hidden Markov Model.

Chapter 4: The method for learning curve refinement models and applying

them on individu al curves is presented.

Chapter 5: The framework is customized for the sketching application and

results are presented using various training sets.

Chapter 6: The framework is customized for the robotics application, lll­

cluding an additional function for obstacle avoidance. Results are presented

for a simulated robot.

Chapter 7: The method for learning scene refinements and applying them

on entire sketches is presented. The curve extraction algorithm is also

presented and the results for sketch refinement and curve extraction are

shown.

Chapter 8: A conclusion and discussion of future work is presented.

16

CHAPTER 2

Related -Work

This chapter reviews the related work in the fields of Computer Graphies, Image

Processing and Robotics. While all of these areas together are beyond the scope of this

thesis, there are sub-domains of applications that address similar issues from different

vantage points. Section 1 describes recent efforts for developing convenient curve and

surface models, a well established topic in Computer Graphies. Section 2 describes

sorne existing sketching systems where the goal is to provide a natural interface for

creating illustrations. This is followed by a discussion of image processing systems

that attempt to detect and extract curves from images. Section 3 reviews relevant

work in robot path planning and animation, where the control of elaborated systems

is crucial.

1. Curves and Surfaces

In Computer Graphies applications, one of the most widely used mechanisms to

construct an illustration consists of manually laying out curves and surfaces. This is

accompli shed by specifying a set of control points and using an interpolating function

that. defines t.he geomet.ry bet.weell t.he poiut.s. First.-order fuuctious (e.g. polyliues)

pro duce piecewise linear approximations to the desired shapes while higher-order

functions provide a smoother approximation with fewer vertices. Common curve and

surface representations are based on third-order tensor products known as NURBS

2.1 CURVES AND SURFACES

(Nonuniform Rational B-Splines) [27]. Such models provide good expressive power,

local support, up to second-order parametric continuity and invariance to affine trans­

formations (i.e. transformations need to be applied only on the control points). Im­

plicit models [74], defined by a function J(x) = 0 for all points x, are an alternative

form of representation that are less widely used due to their computational complex­

ity and memory requirements. They are most commonly used in applications where

point classification is critical such as collision detection, constructive solid geometry

and shape blending [92].

In general, parametric interpolation consists of hard-coded smooth functions

{x(t),y(t),z(t)} for a curve or {x(t,s),y(t,s),z(t,s)} for a surface over a domain

such as [0,1]. These functions alone are often not intuitive enough to provide a natu­

raI interface for constructing and manipulating shapes. Important details are usually

blurred-out during interpolation and can only be preserved by manually adjusting

an excessive number of control points. For example, in or der to represent shapes of

arbitrary topology, these models must be partitioned into a collection of patches and

explicitly stitched together [24]. A large number of parameters are introduced to

stitch adjacent patches and enforce geometric continuity conditions. This is further

complicated in cases where the designers wish to interactively edit the model on a

regular basis. Instead, approaches such as hierarchical modeling, multi-scale meth­

ods, subdivision schemes or functional minimization can be used to further extend

the functionality of the underlying parametric models.

One of the key ideas for facilitating user friendly interactive models is the notion

of coarse to fine control, or abstract to detailed representation. This idea has been

explored in early work by Forsey and Bartels [28] in which hierarchical B-splines are

developed. Rather than having the user interact with a single control layer, large- or

small-scale edits can be made by manipulating control points at the corresponding lev­

els in the hierarchy. Similarly, Salesin and Finkelstein [26] develop a multi-resolution

curve representation using wavelets. A curve is decomposed into n resolution levels

18

2.1 CURVES AND SURFACES

using a multi-scale basis function based on B-splines. (The D'th degree B-spline re­

duces to the Haar basis.) Curves may then be modified at multiple levels of detail,

such as changing the overall form of the curve while preserving its detail or vise versa.

Instead of providing the user with multiple levels of representation, another ap­

proach consists of attempting to automatically determine those areas of a curve (or

surface) that require higher resolution. In this approach, the sampling resolution is

related to the geometry of the shape rather than a level of some hierarchical repre­

sentation. Parametric subdivision schemes, first introduced by Doo et al. [19] and

Catmull et al. [15], consist of repeatedly refining an initial control mesh until a sat­

isfiability criterion is met. Applying subdivision rules on the smooth basis functions

results in piecewise smooth shapes that maintain the character of sharp features such

as creases, corners and darts while reducing the number of control points at smoother

areas.

Such multi-resolution approaches provide enhanced flexibility and control and a

designer using them can easily interact with pre-fabricated families of shapes with

fixed topology. However, once the topology is established, it becomes a tedious task

to modify it. Weltch and Witkin [99] describe a variational calculus approach to free­

from shape design by representing a surface as the solution of an energy minimization

problem. The control points of B-spline basis functions are dynamically computed to

satisfy a desired objective function (smoothness) in conjunction with the potentially

varying shape constraints. Topological changes are managed with heuristic based

facet splitting and merging techniques. Users can pin-down, cut, extrude and merge

the shapes.

In general, functional minimization techniques can be used with arbitrary objec­

tive functions, including physics-based formulations where the objective is to simu­

late or approximate the dynamics of real world systems. Such formulations typically

include specialized constraints that define an application specifie behavior for the de­

sired shape. For example, Terzopoulos and Fleischer [87] model flexible surfaces such

as cloth by connecting a grid of points with springs, dash-pots and plastic slip units.

19

2.2 SKETCHING

When applying forces at different positions, a new cloth-like shape is computed by

solving an energy minimization problem. Baraff et al. [83J modei the shattering of

brittie objects using a set of point masses connected by linear constraints. Forces

are cascaded through the lattice using Lagrange multipliers, producing cracks when

surpassing a predefined threshold. A similar approach is taken to develop a smart

floor-plan designing system [36J. Finding good approximation models with com­

putationally tractable solutions is a key hurdle to overcome in these physics-based

systems.

2. Sketching

Though most of the approaches described in the section above result in computa­

tionally complex solutions, the main intent is to create an illusion of simplicity for the

designer. The ideal representation should produce the impression of a continuously

malle able shape having no fixed control points. lndeed this vision is synonymous with

the core ideas behind may of todays smart sketching systems, where the aim is to

simulate the simplicity experienced in pen-and-paper drawings. There are a variety

of related sub-goals that sketching systems attempt to achieve, including modeling,

beautification, recognition, synthesis and classification. The recent approaches taken

to de al with these problems is the subject of this section.

Traditionally, methods for pen-based modeling use specialized constraints that are

based on rules and preferences for a given domain. Such methods attempt to estimate

the parameters of geometric objects that best fit the data points acquired from a pen­

stroke. The difficulty in solving for this stems from both the noisy nature of most data

sets and the ambiguities present in the ob ject models themselves (different parameter

values can result in a similar shape). This has been demonstrated by several authors.

Banks and Cohen [8] develop a system for the real-time fitting of B-tiplineti to halld­

drawn curves. The approach, based on earlier work by Lyche and Morken [59], is to

first consider the initial curve sample points as B-spline knots and then iteratively

remove the knots that have least influence the shape. Davis et al. [75J describe a

20

2.2 SKETCHING

method that uses both curvature and speed of a pen-stroke to detect vertices for a

hybrid geometric model consisting of a combinat ion of polylines and Bezier curves.

Novins and Avro [5] apply a continuous morphing procedure to interactively morph

segments of a hand-drawn curve with the best fit shape from a set predefined basic

primitives such as lines, arcs and boxes. Igarashi et al. [41] develop a system where

2D contours of shapes are sketched out with the intent of producing 3D surfaces

that pass through them (Fig. 2.1). A 3D mesh is automatically "infiated" from

the fiat image by first triangulating the contour using the control points and then

computing the shape's spine along the triangulated plane. New vertices and edges

are attached to the spine joints and are elevating in proportion to their distance from

the surrounding edges. Topological edits can also be performed by sketching out

extrusions or cuts from the drawn shape. Mesh beautification systems [40] or line­

drawing beautification systems [42] can be used in cases where the resulting objects do

not satisfy preferences such as uniformity, smoothness, perpendicularity, congruency

and symmetry. Though these and other similar approaches have proven to be very

successful, the extent of their application is strictly limited by the expressive power

of the geometric models used.

FIGURE 2.1. Example interface and results from [41]. Left shows the inter­
face and right shows 3D example results.

Allother research direction illvolves the use of a training set that shows examples

of the types of curves that the user is expected to draw. By simply providing the

appropriate examples, these systems can dynamically adapt to both the personal

drawing habits of a user and the desired domain of application. Rubine [71] expands

21

2.2 SKETCHING

on this idea to develop a gesture-based interface for drawing, editing and writillg text.

The core of the work consists of a trainable recognizer that classifies gestures using

a linear discriminator on features from the input gesture and the target examples.

Landay and Myers [52] further make use of this recognition system to develop a

sketch-based interface for designing and creating graphical user interfaces. Their

system recognizes predefined curve strokes as DI widgets and further groups them

based on predefined preferences on spacial relationships. A similar approach is taken

by Zeleznik et al. [103], where example gestures are used as quick-hand notations

of 3D objects and editing commands. Lipson and Shpitalni [57] develop a system

for reconstructing 3D polyhedra from 2D line drawing by learning from examples the

correlation of connected lines in 3D space to their planar projection.

The methods mentioned above provide fiexibility in the types of gestures that are

recognizable. Once recognition is performed, the outputs consist of sorne parametric

variations of predefined primitives (such as a line, a cube or a character). Recent

advancements in texture synthesis and image restoration methods [37, 98, 31] suggest

that we can learn the regular properties of example images and generate new ones

that exhibit the same statistics but are not exact duplicates of the original. Work

by Hertzmann et al. [38] show how this stochastic approach can also be taken to

stylize hand-drawn curves (Fig. 2.2). In their work, curve styles are learned from the

statistics of example styles and new curves exhibiting those same styles are synthesized

along the shape of the input curve. Analogies between the inputs and outputs are

computed by calculating an offset between the best mat ching segments of the input

curve and training examples. This offset is then used for a rigid transformation on

the best candidate match. Likewise, Freeman et al. [29] present a example-based

method to stylize line segments. Novel curves are generated as a linear combinat ion

of the k nearest neighboring examples in the training set. In work by Kalnins et

al. [46] these ideas are extended to automatically synthesize stylized silhouettes of

3D object, part of a comprehensive interactive system for gesture-based annotations

of non-photorealistic rendering styles on 3D objects. The framework presented in

22

2.2 SKETCHING

this thesis is similar in spirit to such methods where, using a probabilistic approach,

users can controllably synthesize novel outputs that are similar to, but are not exact

instances of, examples in the training set.

o o
~ ~

FIGURE 2.2. Example curve analogies from [38]. Left shows the input curves
and right shows the output.

Another important function of a sketching system is to determine if the interpre­

tation of the current object is compatible with the interpretation of the surrounding

objects. In principle, this problem is similar to the ones addressed by the methods

discussed above. Rather than only considering constraints on individual pixels (or

sample points), the pixels are grouped to form objects and constraints are then ap­

plied on these objects. Several researchers take this into consideration and develop

systems that attempt to resolve ambiguities by examining the compatibility of the

placement of objects using their semantics. Alvarado and Davis [1] describe a system

for recognizing and disambiguating shapes in mechanical drawings. Included in the

system are constraints that are applicable to individual objects, with preferences for

temporal coherence, simplicity and high recognition confidence, and constraints on

how these objects relate to one another, with preferences for valid mechanicallayout

and phy~ically fea~ible configuration~ (Fig. 2.3). Similarly, Kurtoglu and Stahovich

[50] identify the physical compatibility of sketch components in mechanical drawings

and remove interpretations of object that are in incompatible classes. In later work

by Alvarado et al. [2], shape description grammar rules are used to define high-Ievel

23

2.2 SKETCHING

objects by patterns of low-Ievel primitives. A hierarchical recognition system eou­

pIed with a Bayesian network is developed to reeognize the domain specifie objects

based on the interpretation that best fits the grammar rules. In work by Viola and

Shilman [76], an A * algorithm is used to search through the set of possible groupings

of neighboring pen-strokes to find the optimal interpretation. The search is based on

an underestimate measure for segment compatibility, which can be computed using

arbitrary recognizers.

FIGURE 2.3. Example sketch interpretation from [1]. Left shows the input
sketch and right shows the physical interpretation.

In this thesis, three key ideas are developed that extend the sketch based meth­

ods cited above. First, using a Hierarchy of Hidden Markov Models, the system can

capture the interaction of multiple stochastic functions in order to represent scene

dynamics over various scales and contexts. Second, the individual HMMs themselves

are two-layered systems, where one layer models the output generation process while

the other ties in controllability to that process. That is, the synthesis is driven by

the input such that the actual features generated are directly dependent on the shape

of the input. This allows us to model examples with localized and non-stationary

features that are tied to the shape of a given region (such as a roof ledge that extends

only at the corner of the roof). Finally, many of the existing approaches to synthe-

sizing novel outputs consider greedy strategies, always choosing the best match at

the current point. When we are given inputs or partial data, the locally best points

may not contribute to the global optimum. Future information often biases earlier

points, for example, when drawing a vertical line we do not know whether to apply

24

2.2 SKETCHING

brick features or bark features until we see what will be drawn later. U sing a dynamic

programming algorithm, the system takes into account the entire sequence of inputs

while also avoiding excessive run-time complexity.

2.1. Curve Extraction. If the stroke sequencing is not directly available

but has already been rendered in the form of an image (i.e. a digital scan of a hand­

drawn picture), then we must first attempt to extract the curves from the image.

There is an abundance of literature concerning the extraction of curves from images.

The literature typically deals with several distinct processes: edge detection, curve

grouping, and segmentation. The latter two (grouping and segmentation) refer to the

pro cess of extracting meaningful connected curves from data that may be confusing,

cluttered or incomplete.

Curvature information is a key heuristic for building curves from noisy data. A

standard approach in the presence of ambiguous data is to select the curve that min­

imizes a "goodness measure" based on minimum curvature, minimum absolute cur­

vature or minimum variation in curvature. Such goodness measures can be posed

as energy functionals, procedural rules, or decision trees. Work by Ullman and

Sha'ashua [94] use locally connected networks to determine saliency for smoothness,

continuity, and curve length. Similarly, Jacobs [43] develop a method for extracting

curve segments based on a convex saliency measure. Earlier work by Lowe shows how

a curve can be extracted by applying perceptually inspired grouping rules with prop­

erties such as proximity, collinearity and parallelism [58]. Estrada and Jepson [23]

use predefined geometry-based affinity measures to evaluate the quality of line seg­

ment junctions. All of these approaches have proven to be very powerful, but they

are based almost universally on an attempt to obtain generic domain-independent

grouping strategies, typically using rules inspired by visual psychophysics [48].

Another approach is to use probabilistic methods in order to maintain the likeli­

hoods of a set of possible solutions. These likelihoods are typically computed using

both hard-coded conditional biases (such as a preference on curvature) and learned

conditional biases (computed on the fly using representative exemplars). Taking this

25

2.3 MOTION PLANNING

approach, Williams and Jacobs [100] develop a method for contour extraction where

a prior probability on the shape of a boundary is computed using paths of particles

that undergo a random walk in the image. August and Zuker [7] describe the notion of

curve indicator fields as generic models for producing edge likelihoods. In particular,

their experiments employ a Markov random field model for contour enhancements.

This thesis takes a similar approach where, using the HMM learning framework, prob­

abilistic constraints are applied to rank the candidate pen strokes found in images.

Unlike many of the previous methods, the presented method captures features over

multiple scales using a wavelet representation.

While the problem of extracting curves from images has been a long standing

research topic in the domain of computer vision, there is a variety of recent work that

is more focused on sketches and employ similar image based principles for recognizing

and grouping sketch components. For example, Saund [72] develops a method to

rank candidate paths that form perceptually closed contours. The approach consists

of applying local preferences on candidates with both tightly closed paths and smooth

paths. In related work, Saund et al. [73] develop a sketch editing application that

includes image analysis techniques for the separation of foreground from background

and a method for finding and selecting "perceptually sound" grouping of sub-regions

of a sketch. Images such as that shown in Fig. 2.4 can then be interacted with by

simply selecting the desired elements of the image.

3. Motion Planning

The key problem in the sketch refinement consists of determining the appropriate

methods for producing the preferred output while reducing the required amount of

user intervention. Generating a sketch, which consist of producing curves while tak­

ing into account the u::;er input and the de::;ired type of output, i::; a ::;imilar problem

to generating a path, where a robot must be driven using a trajectory that adheres to

a set of constraints. Many of these constrains stem from either the mechanical con­

figuration of a robot, a desired task-specific motion or the surrounding environment.

26

2.3 MOTION PLANNING

Q:I'AI~l ~(dU~UllJ\' l OOlU!1l(flt~ ,md <;dtllllj" .. "und My D')(lHllf Ilt\ 1I1~' VUlf H w.11 PIIJ.l1.3

.'~ l '"

FIGURE 2.4. An example sketch editing action from [73]. Using the sketch
editing application, elements of the sketch can be extracted, grouped and
modified.

Path planning for a mobile robot has been extensively examined by many authors.

One of the key ideas in the area is the notion of path planning under non-holonomie

constraints, where the velocity of the robot q is constrained by its pose q:

G(q, q) = 0

Specifically, path planning using a bound on the turning radius of the vehic1e [53]

is the subject of interest in this thesis. Notable work in the field inc1udes that of

Dubins [20] and Reeds and Shepp [70] on optimal trajectories. Much of this work

deals with the que st for an optimal path (or trajectory) under a motion constraint

which is expressed analytically (for example a derivative constraint). Prevalent so­

lution techniques inc1ude analytic solutions (or expressions regarding their bounds),

search methods that seek to optimize a path, and planners that start with a path of

Olle form and seek to reflue it.

In particular, a c1assic approach to the application of non-holonomie constraints

is to find an (optimal) unconstrained solution and then apply recursive constrained

path refinement to the sub-regions to achieve an admissible plan [53]. This is also

27

2.3 MOTION PLANNING

typical of probabilistic motion planning methods [54]. Similarly, jerky paths are

sometimes smoothed using energy minimization methods [82, 55].

This the sis shares that common spirit in that the presented system takes an

initial path as input and pro duces a refined path as its result. While traditional

methods such as those cited above typically accomplish path refinement based on

highly specialized constraints, typically in the domain of differential geometry, the

method presented learns from examples of acceptable paths. That is, the desired

constraints or preferences are indicated by showing the appropriate refinements that

should be applied in specific cases.

This idea of learning to generalize specific examples to a broad ensemble of cases

is, of course, the crux of classical machine learning [63]. Learning using Markov

models is a longstanding classic research area, although, to our knowledge, it has

never been applied to problems like this one. Although there has been sorne prior

work on the relationship between learning and planning, most of this has de aIt with

more traditional plan formulation problems [97] or on learning suit able cues that

control or determine plan synthesis or execution [22].

Uncertainty introduced when executing commands in the real world is a foremost

challenge in robot path planning and navigation. This is often addressed using closed

loop processes and probabilistic models that maintain a distribution over system

states [89, 81]. These distributions (or beliefs) can refiect the likelihoods of a robot's

current pose, the existence of obstacles in the environment and the progress of a par­

ticular task. Planning long-term strategies is generally computationally intractable

when considering aH possible states. Approaches that deal with such issues include

approximate methods that reduce the belief space [10], tree methods that exploit

similarities in neighboring belief vectors [65] and temporal abstraction techniques

(planning over higher level actions) [85].

3.1. Animation. Motion planning in virtual environments reduces the com-

plexities that can occur when dealing with the uncertainties introduced in real world

executions. However, the difficult challenge of controlling and synthesizing realistic

28

2.3 MOTION PLANNING

motions remains an open problem. People are naturally skilled at perceiving sub­

tle anomalies of motion [44], exaggerating any artifacts produced when designing

the animation sequence. Further, animation sequences of an articulated figure are

typically made up of motions that exhibit many singularities in the velocity vector

(f (x) ---t (0), im posing on the designer the tedious task of carefully configuring the

large number of required key-frames. (Key-frame animation [84] is a common ap­

proach in designing animations in which, akin to the parametric methods described

in Section 1, an animation sequence is generated by interpolating over a selected set

of control points.)

Example-based methods avoid these problems by providing a mechanism to reuse

pre-fabricated libraries of motion clips, typically bIen ding and transitioning motion

snippets according to some procedural rules and mat ching functions. Witkin and

Popovic [102] apply time-warping techniques that blend the motion signaIs from

the training set with the specified key-frame points. In work by Wang et al. [51],

each example motion clip is modeled by a Linear Dynamic System and transitions

between these clips are moderated by a higher-level transition matrix. Their system

controllably synthesizes novel motions by searching for the most locally consistent

mixture of the clips in the database that results in a sequence that passes near the

specified key-frames. A similar approach consists of automatically identifying good

transition points in the clips and then explicitly storing them in a graph where the

nodes represent the clips and the edges represent the allowable transitions [49]. Paths

can then be controllably generated by searching the graph for motions that satisfy

user defined criteria (such as "stay close to this path" or "go near these key-frames"),

minimizing an error function. Hertzmann and Brand [11] develop a system to learn

motion styles from a database of pre-classified families of motions (Le. examples for

ballet, modern dance, running etc.). Examples of each style are used to train a Hidden

Markov Model. The set of Hidden Markov Models are then parametrized by a style

parameter s to pro duce an all encompassing Stylistic Hidden Markov Model (SHMM).

The user can specify the desired amount of each particular style (by setting weights

29

2.3 MOTION PLANNING

on the style parameter) and the system synthesizes a new motion that exhibits the

desired styles (by selecting the maximum likelihood sequence of the SHMM states).

Van de Panne et al. [88] develop a sketch based system for controlling an animated

sequence. In their work, a hand-drawn path is segmented to recognizable primitive

gestures that are associated with particular motions. The resulting compound motion

consists of first extracting parameters from the recognized gesture segments (i.e. the

start position, end-position, speed of motion, scale, etc.), then smoothly interpolating

the associated motions while rescaling them according to the extracted parameters.

Signal processing approaches have also been used in example based motion edit­

ing. Unuma et al. [95] apply Fourier transforms to the signaIs produced from the

sequence of joint angles of an articulated figure. Based on frequency analysis of the

data, they capture global qualitative factors such as "brisk" or "tired". These fac­

tors are then used in linear combinat ions to interpolate and combine characteristics

to create new motions. Bruderlin and Williams [13] similarly applied Gaussian and

Laplacian filter pyramids and time-warping techniques over the example motion sig­

naIs to provide equalizer-like tools for motion editing. Pullen and Bregler [68] use

multi-band filters to match candidate database motion signaIs with sparse and incom­

pIete key-frames (typical in a quick and dirty design process where the key-frames

are far apart and each key-frame may be missing sorne parameter values). The match

is further constrained by learning the correlation of joint angles, providing better

solutions when key-frames have many missing joint angle specifications.

The main approach of these techniques is to take a few examples and build sorne

knowledge base about the valid motions. Alternatively, this knowledge can consists

of specialized constraints that attempt to simulate real physical laws. Witkin and

Kass [101] propose a method for animation where a set of differential equations

are used to describe the dynamics of real world physical factors such as gravit y,

friction, muscle forces, etc. An objective function that specifies how the motion should

be performed is optimized subject to the constraints. Sorne physics-based methods

[91, 39] dynamically vary the objective function in accordance to high-Ievel behavior

30

2.3 MOTION PLANNING

models. In most cases, these methods, also known as space-time constraint methods,

result in nonlinear differential equations that are often computationally intractable

and extremely sensitive to initial conditions. Hybrid systems attempt to avoid this

by combining key-frame techniques and nonlinear approximation methods [33, 67].

Typically, intra-frame constraints (constraints between joint angles) are modeled by

using object kinematics and inter-frame constraints (constraints between frames) are

models by an interpolating function. Lee and Shin [56] take this approach by using

inverse kinematics and hierarchical B-splines to morph an existing motion clip to one

that adheres to specified key-frames.

31

CHAPTER 3

Framework Overview

This chapter presents a brief overview of the learning framework, including the pen­

stroke representation, the problem definition and the approach. A review of Markov

Models, vVavelets and Hidden Markov Models is also presented, followed by an intro­

duction to the Hierarchical Hidden Markov Model.

1. Pen Stroke Representation

The curve refinement system accepts as input a pen stroke for controlling a low­

level synthesis process. The path of the pen stroke is represented by a curve over 2D

space parametrized by the arc-length. (Though in principle the refinement system can

also be applied to 3D curves.) Let the mapping 0: : R ----+ R 2 represent a parametric

planar curve {x(te), y(te)} where te E R is the arc-Iength of the curve over the range

o <= t <= T. The tangent angle along the curve can be computed by the following:

(3.1)

In this thesis, all curves are approximated using a discrete representation. A

zeroth-order discrete repret)entation of 0: can be produced by t)amplillg the continuout)

curve using a uniform sampling resolution. The resulting points can then be used as

vertices for a polyline. A first-order discrete representation of 0: thus consists of a

starting point Po, the sequence of all edge lengths r(t) and the edge angles ()(t) of the

3.2 PROBLEM DEFINITION

polyline, where Po E n2, r : Z* ~ n, B : Z* ~ n and t E Z* (i.e. an absolute chain

code). A second-order discrete representation of a consists of the starting point Po,

starting direction Bo E n and the sequence of an edge lengths r (t) and exterior angles

tlB(t) (i.e. a relative chain code). Depending on the application requirements, either

a first-order or second-order representation can be used. When using the first-order

representation, the system is invariant to the initial starting point and hence the

shape can be reproduced over rigid orientation-preserving transforms. When using

the second-order representation, the system is invariant to the initial starting point

and direction and hence the shape can be reproduced over an rigid transforms. In

both cases, all curves are sampled uniformly over the arc-Iength, r(t) = r E n.
In principle, these curves can be used to represent arbitrary signaIs. They repre­

sent not only the input pen stroke, but the examples in the training sets and the syn­

thesized output as weIl. The curves can be generalized to functions that support ap­

plication specific input and output attributes, such as pen-pressure, pen-speed, robot

trajectory, a motor command or a curve's thickness, and can be extended to higher­

dimensional spaces to simultaneously support multiple attributes (i.e. a : n ~ nm).

2. Problem Definition

Let a denote a refined curve, the curve the user seeks to produce. Let (3 denote

a coarse curve, the curve the user has actually drawn (the path of the pen-stroke).

A set of refined curves is referred to as a refined scene. and set of coarse curves is

referred to as a coarse scene The curve (3 can be thought of as the curve resulting

from sorne lossy (possibly non-invertible) transformation of a:

(3 = F(a) (3.2)

The refinement problem is to reconstruct a given the noisy and coarse user input

(3. This is an ill-posed problem, where there is insufficient information to solve for a

unique solution (i.e. the problem is under-constrained) [90]. Before it can be solved,

33

3.3 APPROACH TO THE REFINEMENT PROBLEM

one must first define the way in which Do can be inferred. That is, restoring the well­

posedness of the problem requires a set of restrictions that limit the class of admissible

solutions.

The underlying idea in this thesis is that the knowledge required to uniquely infer

Cl: can be acquired in two ways: by using pre-defined analytical functions engineered

for a specialized domain and by using pre-classified examples that show the types of

outputs the user intends to produce. The problem then becomes three-fold. How

can the system learn from the examples the appropriate constraints? What are the

analytical functions and how should they be combined with the learned priors? How

can Cl: be generated given f3 and this prior knowledge? Indeed, this is a classical inverse

problem given a priori knowledge. Though unlike many of the existing approaches

to this problem (such as variational regularization using a quadratic stabilizer), it

cannot be assumed that the output is smooth, nor that the solution space is convex.

In contrast, the system must reconstruct the high frequency features that are assumed

missing in the input curve.

3. Approach to the Refinement Problem

The curve elaboration framework is based on a two-level hierarchy of Hidden

Markov Models. As a supervised learning problem, the goal is to acquire a multi­

level generative model that captures from data a refinement function for augmenting

rudimentary hand-drawn curves. The first level of the hierarchy, called the curve­

level, models the refinements that are applicable on individual hand-drawn curves.

The second level of the hierarchy, called the scene-level, imposes constraints between

the allowable types of curves that make up an entire scene.

A curve-level HMM is trained using a set of example curves that serve as exem­

plan; of the killds of curves the users wish to produce; there are typically several sets

of sueh examples (e.g. fish, water, terrain, trajectories) and hence several models are

trained. Each example in a set has a coarse curve associated to it that shows what the

user would draw when their intention is to pro duce that partieular example, i.e. the

34

3.4 CURVE CLASSES

pair {Œi,,BJ for i = L.N examples. Each,Bi can be thought of as a user's short-hand

notation (or glyph) for the elaborated shape Œi' U sing one of these sets, a hand-drawn

curve is used to steer a synthesis procedure and generate a new curve. The resulting

curve is a locally consistent mixture of segments from the set, but is not necessar­

ily identical to any single example in the set. A locally consistent mixture of curve

segments refers the sequence of curve segments where the values of all neighboring

samples are also found in the training set under the same sequential ordering. This

is complicated by the need to account for additional user-defined analytical functions

and for both fine-seale details as well as large seale motions of the eurve. Learning

and synthesis at the curve level is described in more detail in Chapter 4.

While the user can manually select which training set to use to refine the curve,

the who le process is automated by classifying the curve being drawn as belonging to

one of the sets. The scene-Ievel of the hierarchy moderates the recognition of what

sets should be used by specifying the conditional probability of drawing one type

of curve after another, or one type below or above another. These constraints are

encoded in the form of a probabilistic transition diagram over the curve-Ievel models.

The scene-Ievel of the hierarchy is discussed in more depth in Chapter 7.

4. Curve Classes

Each training set is made up of examples that are pre-classified in the same fam­

ily. The notion of families of examples is not new and has been applied in various

settings, including in work for stylized motion synthesis where examples are said to

be admissible to the same family if they have "sorne generic data-generating mecha­

nism in common" [11]. Similarly, in this thesis it is assumed that there exists sorne

ullderlying gelleration process that results in a variety of distinct examples that have

similar characteristics. It is up to the users to subjectively identify a family of exam­

pIes based on the type of outputs they wish to produce. It is then up to the system to

attempt to infer the underlying pro cess that can produce new instances in that family.

35

3.4 CURVE CLASSES

(The terms a "family of curves" and a "class of curves" are used interchangeably in

this thesis.)

There are two necessary but not sufficient conditions for identifying when curves

are similar and hence belong in the same class:

• AlI curves in a class have the same user defined semantic annotation .

• Any locally consistent mixture of curve segments in a class results in a new

curve that can also be considered part of the same class.

The first condition states that examples can be in the same class only if they

have the same label (which is manually specified). This semantic annotation is used

to identify curves that are subject to the same high-Ievel constraints. For example,

leaves and flow-chart symbols are used in different contexts, have different applicable

high-Ievel constraints and should therefore be in separate classes. It may be the case

that an example can have multiple labels. It is then duplicated, with each copy given

a single label and assigned to the appropriate class. It may be possible to extract this

automatically from labeled scenes, though this problem is outside the scope of this

thesis.

The second condition states that new curves having the same local shape as those

in the set can also be considered to be part of the same set. (An assumption readily

used in many of the recent state-of-the-art texture and curve synthesis methods [98,

38].) As such, the examples form a set of basis functions for the types of outputs that

can be produced. Under this criterion, the richness of a set can be quantified using

cross validation techniques where ex amples are first removed from the set, followed

by an attempt to reconstruct them using the remaining examples.

As an example, consider the class of shapes comprising of roof-top segments. New

roof-top shapes can be produced by taking locally consistent mixtures of segments

from the original set. The degree of mixing, the location of mixing and the scale in

which the consistency is enforced are aIl crucial parameters that must be considered in

producing the desired output. Figure 3.1 shows a roof-top class with two members and

the result of a manually controlled mixture of segments from the set (the new output

36

3.5 CURVE SYNTHESIS USING A MARKOV MO DEL

is also considered to belong in the same class). Each curve in this training set has

very distinct features and contributes crucially to the shapes that can be produced.

The statistic of this set would then result in a distribution with low entropy and by

using cross-validation, it is easy to see that no example can produce the other.

(a) An example training set.

(b) A new curve made up of locally consistent mixtures of segments in the set.

FIGURE 3.1. Two examples classified in the same family. Each example
is labeled as a roof-top and new locally consistent mixtures result in other
examples that can also be considered as roof-tops.

5. Curve Synthesis using a Markov Model

The main idea behind the curve synthesis framework is to model local proba­

bilistic constraints on the desired shapes in a given curve family. (This is further

extended in Chapter 4 to include other curve attributes such as thickness or color.)

It is assumed that a stochastic process 6. is the common curve generating source for

a family of refined curves. This process generates a sequence of sam pIe points where

the value of the point::; repre::;ent the realized ::;tate::; of the process (i.e. the currellt

state refers to the value of the current sample point). Each curve is thus considered

to be a random signal with characteristics described by the probability density func­

tion of the process. Let Œ denote a curve and () (t) denote the tangent angles of that

37

3.5 CURVE SYNTHESIS USING A MARKOV MO DEL

curve parametrized over the arc-Iength t (i.e. the first-order representation). It is

assumed that the sequence of samples e(t) from 0 <= t <= T for aH curves exhibit

an nth-order Markov property, i.e. ~ is a Markov process:

p{e(t+1) 1 e(t),e(t-1), ... ,e(t-n+1)} =p{e(t+1) 1 e(t),e(t-1), ... ,e(O)} (3.3)

This locality condition states that information from recent sample points is sufficient

to compute the likelihood for the next candidate points. How far back in history does

the model need to account for? This is dependent on the nature of the training set

and the scale of the desired features of interest.

An nth-order finite state Markov process ~ is defined by the finite state space 1-l

(the set of aH values that the process can produce), the transition matrix M (which

stores the likelihood of having a transition from any state in 1-l to any other state

in H, as shown in Eq. 3.3) and an initial probability distribution 7r over the state

space H. There are several other factors that characterize the long term behavior of

a Markov process:

Absorption: Astate is said to be absorbant if the transition probability of

leaving that state is zero.

Communication Class Structure: The states in any Markov process can

be grouped together such that for any two states hi and hj that belong to

the same communicating class, it is possible, starting from hi to get to hj

and starting from hj to get back to hi.

Periodic: A state hi has period d if, given that the system at time zero is in

state hi (Xo = hi), the system can return to state hi at time n (Xn = hi)

only when n is a multiple of d.

Irreducible: A Markov process is said to be irreducible if starting from any

state it is possible to get to any other state (i.e. one communication class).

Ergodicity: If the pro cess is irreducible and a-periodic, then it is said to be

ergodic and guarantees a unique stationary distribution (i.e. there exists a

unique eigenvector of M with an associated eigenvalue of 1).

38

3.5 CURVE SYNTHESIS USING A MARKOV MO DEL

The characterization of the pro cess helps identify the types of outputs we should

expect. For example, in texture mixing applications [9], a resultant pro cess that has

many recurrent (absorbant) communication classes may pro duce a synthesis that is

not representative of the target texture. The procedure can get stuck in a small

disjoint sub-region of the texture, generating pixels that do not express the entire

texture. It is demonstrated later how this effect can be reduced by effectively blurring

the transition matrix and providing a steering mechanism to bias the process.

Figure 3.2 shows two random realizations from two related Markov pro cesses

over curve elements; a first-order process and a higher-order process. The transition

probabilities of the processes are computed by the statistics of consecutive tangent

angles of an example in the roof-top training set; the left curve in Fig. 3.1(a). It

is easy to see that large-scale structures are only captured under the higher-order

assumption.

(a) Resu1ts from a first-order Markov Process.

(b) Resu1ts from a high-order Markov Process.

FIGURE 3.2. Realizations of two Markov pro cesses trained using the 1eft
roof top example in Fig. 3.1(a).

5.1. Non-Stationarity. For training sets that exhibit regular properties,

uniform local constraints set at the appropriate scale are sufficient to capture the de­

sired structures, which in turn can be realized at any point along the curve. However,

39

3.6 MULTI-SCALE REPRESENTATION

there are many interesting examples that contain transitory characteristics, where the

probabilistic constraints on successive points are non-stationary along the curve. In

such cases, the locality condition is position-variant and hence the transition matrix

M becomes a function of the arc-Iength t; M(t). This generalization provides more

fiexibility in the types of examples that can be synthesized, having the option to im­

pose global constraints in cases where the absolute location of features is important.

(For example, if the training set consists of examples of leaves, when one side of the

leaf is being processed the constraints from the other side do not necessarily need to

be considered.)

6. Multi-Scale Representation

As shown in Fig. 3.2, the order of the pro cess has significant impact in the way the

output is produced. For many applications, a high-order Markov assumption is crucial

for a satisfactory synthesis, though the implementation can be somewhat problematic.

The size of the transition matrix grows exponentially with the order of the pro cess ,

becoming impractical to suitably store it under physical memory limitations. There

are two observations that can be exploited in order to deal with this problem. First,

the resulting matrix is generally sparse, where the number of non-zero entries is not

larger than the number of sample points in the training set. One can then apply

matrix compression techniques or exploit space-time tradeoffs and perform on-line

computation of likelihoods (discussed later). Second, using the appropriate filter,

one filtered sample point can be representative of several unfiltered sample points,

providing a shorthand summary for the region. The latter approach is the subject of

this section while the former is described in Chapter 4.

In order to efficiently capture the structure of a curve at various scales, a wavelet

repre:::;entation i:::; u:::;ed. Not only doe:::; thi:::; repre:::;elltatioll address thc implcmclltatioll

issues described ab ove , it also allows to control the scale at which constraints are

enforced. (It may be desirable to produce mixtures of examples that are similar at a

coarse scale, though differ significantly at the fine scale.) The fundamental idea in a

40

3.6 MULTI-SCALE REPRESENTATION

wavelet representation is that functions can be reconstructed by linear combinations

of basis junctions. lndeed, this idea lies at the heart of Fourier analysis, where any

oscillatory function can be represented by a combinat ion of sines and cosines. For a

wavelet representation however, the basis functions must be functions of both time

and scale. This complements the Markov Model as not only does it provide a spectral

decomposition of a signal but also indicates where those spectral components exist,

providing the ability to sequentially order points at multiple sub-bands.

There are many research areas that use wavelets, including topics such as speech,

music, time-scale analysis and sampling theorems. The idea of multi-scale analysis

is not new and has been explored as early as 1909 (Haar, 1909 [35]). Since then,

similar ideas have been applied in Communications (Gabor, 1946 [30]) and Quantum

Mechanics (Aslaksen and Klauder, 1969 [6]). Though only recently has a unifying

theoretical formalism been reconciled, rooted by the works of various authors includ­

ing Grossmann and Morlet [34], Marr and Hildreth [61], Meyer [62] and Mallat [60].

Wavelets are now commonly used in Computer Vision and Graphics and have been

proven to be extremely useful in multi-resolution editing of curves [26, 16].

6.1. Continuous Wavelet Transform. The multi-scale representation h(s, T)

for a continuous signal B(t) is a function of scale and time (or arc-Iength position)

consisting of a convolution of the signal with wavelet basis functions:

h(s, T) = J B(t)Ds,T(t)dt (3.4)

That is, the function B(t) is decomposed by a set of basis functions DS,T parametrized

by seale s and translation T. Figure 3.3 shows an example signal and its multi-seale

representation.

The inverse wavelet transform is given by the following:

B(t) = J J h(s, T)D;,T(t)dsdT (3.5)

41

3.6 MULTI-SCALE REPRESENTATION

FIGURE 3.3. Wavelet representation of a signal.

where O:,T is the complex conjugate of 08,T such that:

(3.6)

when s = Si and T = T'. The basis functions are said to be orthogonal if the integral

in Eq. 3.6 evaluates to zero whenever s =1- Si and T =1- T'.

6.2. Properties of Wavelet Basis Functions. For a candidate function

to formally be considered as a wavelet basis, it must adhere to the admissibiliiy and

42

3.6 MULTI-SCALE REPRESENTATION

regularity conditions. The admissibility condition implies that the function must he

oscillatory (with band-pass like spectrum, the integral of the function over all time

must be zero and the square integral of the Fourier transform of the function, divided

by the frequency, over all frequencies must be finite) while the regularity condition

implies the function should be compactly supported (the low-order moments must

vanish). Different wavelet families have different tradeoffs over how compactly the

basis functions are localized in space and how smooth they are.

A prototype function, also known as the mother wavelet O(t), is first developed to

satisfy the above criteria, then the wavelet basis functions are translated and dilated

variations of the mother wavelet. Computing the transform over every scale sand

translation 7 is an overly redundant and computationally intensive process. Instead

discrete steps are taken where the basis at one scale is dilated typically by a power

of 2 of the previous:

(3.7)

where sand 7 are integers. The term 2 -;s is used for energy normalization.

6.3. Haar Basis. Due to its simplicity and efficiency, a Haar wavelet (rect-

angular function) is used for producing the multi-scale representation for the input

and training set curves:

O(t) =

1 O<t::;~

-1 ~<t::;l

o otherwise

The traditional Haar basis consists of the Haar mother wavelet with a dilation factor

of 28 and a translation factor of 2-8 7. Figure 3.4 shows the shape of the Haar wavelet

with examples of translation and scaling.

In thiti work, because orthogollality is Ilot a pretitiillg factor for the application of

interest, the basis functions can be scaled and translated by any user-defined step.

There are several reasons for allowing such flexibility. Primarily, the use of wavelets

in the HMM framework is not for compression encoding and reconstruction purposes,

43

3.6 MULTI-SCALE REPRESENTATION

FIGURE 3.4. Haar wavelet with translation and scaling.

but rather for enforcing large-scale constraints on the allowable sequences of points

in the smaller scale. (The term large scale refers to the coarser representation and

the term small scale refers to the finer representation.) In fact, the multi-scale curve

representation always explicitly stores the original curve sample points and the sam pIe

points in the higher-scale are only used for computing probabilities. Second, even

if the points were not stored explicitly and reconstruction was used, in a discrete

representation, there can be loss of information due to quantization errors and, unless

compression is an important factor, redundancy is sometimes preferred. The potential

for such redundancy can then reduce quantization artifacts that may occur when

reconstructing from a finite set of rectangular functions, thus a smoother wavelet is

not necessarily required.

6.4. Sub-band Coding. Sub-band coding is a method that can be used for

performing a discrete wavelet transform. The main idea is to decompose a discrete

signal using a filter-bank with filter kernels that are developed based on the desired

wavelet basis function. A signal is repeatedly filtered and subsampled using both a

low-pass filter and a high-pass filter. For the Haar basis, the decomposition kernels

are:

L

H

[~
[- ~

(3.8)

(3.9)

44

3.7 REFINEMENT OF CURVES USING HIDDEN MARKOV MO DEL

where L is the low-pass filter kernel and H is the high-pass filter kernel. The result

is a pyramid of signaIs that are filtered at multiple frequency bands. Half of these

signaIs maintain only the high-frequency components (the details) and the other half

maintain only the low-frequency components(the coarse variations).

The multi-scale representation for the training set and input curves is produced

using the sub-band co ding approach with two slight variations. First, the original

sample points are always maintained (along with the low-pass filtered sample points)

and the High-pass filter is not applied (it is mainly useful for reconstruction purposes).

Second, since the translation step T is allowed to be any user-defined value (i.e.

training set mixing can potentially occur on a sample point basis), subsampling may

not always be performed. The resulting redundancy has the benefit of having a one­

to-one correlation between samples of the original signal and samples of the filtered

signal, simplifying the registration of sam pIe points at different scales. A signal

reduction issue arises when dealing with curves that are not closed. In such cases,

the endpoints are padded using the value of the neighboring sample point.

7. Refinement of Curves using Hidden Markov Model

The Markov pro cess in combination with the wavelet representation provides

an efficient mechanism to pro duce a random realization of a curve with a high-order

Markovassumption. However, the user has no control in the way a curve is generated.

In order to provide a method for the user to bias the synthesis, the framework must

take into account the likelihood that a user would draw a particular curve given that

their intent is to pro duce another. This is accomplished by using a Hidden Markov

Model.

A Hidden Markov Model encodes the dependencies of successive elements of a

set of hidden states along with their relationship to observable states. It is typically

used in cases where a set of states that exhibit the Markov property are not directly

measurable but only their effect is visible through other observable states. In this

work, the states in the observation layer represent the samples that are expected to

45

3.8 TWO-LEVEL HIERARCHICAL HIDDEN MARKOV MODEL

be drawn by the user and the states in the hidden layer represent the samples that

the user actually meant to draw. Formally, a Hidden Markov Model A is defined as

follows:

A = {M, E, 'if, 'H, O} (3.10)

where M is the transition matrix with transition probabilities for the hidden states,

p{ hi (t) 1 hj (t - 1)}, B is the confusion matrix containing the probability that a hidden

state hj generates an observation 0i, p{ Oi(t) 1 hj(t)}, and 'if is the initial distribution

of the hidden states. The set 'H = {ho, ... , hn } is the set of all hidden states and the

set 0 = {oo, ... , om} is the set of aIl observation states.

There is an abundance of literature on Hidden Markov Models and the domain

is frequently decomposed into three basic problems of interest:

• Learning: Given an observed set of ex amples , what model A best repre­

sents that observed set?

• Decoding: Given a model A and a sequence of observations 01,02, ... , 0T,

what is the most likely hidden state sequence hl, h2 , ... , hT that pro duces

those observations?

• Evaluation: Given a model A and a sequence of observations 01,02, ... , 0T,

what is the probability that those observations are generated by that model?

Solutions to the above three problems are key to this work. Learning provides an

automated method for modeling various types of outputs or drawing habits by sim ply

providing the examples. Decoding allows for the synthesis of a new curve (sequence

of hidden states) based on a coarse user input (sequence of observation). Evaluation

is used to detect the appropriate class of curves that an input stroke belongs to by

computing the likelihood that the input curve would be generated by the model in

question.

8. Two-Level Hierarchical Hidden Markov Model

At the first level of the hierarchy (curve-Ievel), the characteristics of training

sets are expressed probabiiistically with each set modeled by its own Hidden Markov

46

3.8 TWO-LEVEL HIERARCHICAL HIDDEN MARKOV MO DEL

Model. Sample points from the refined curves play the role of the hidden states while

sample points from the coarse curves play the role of the observations. The transition

matrix refiects the likelihoods of generating curve segments given the previous (prob­

abilistic local constraints) and the confusion matrix refiects the likelihoods that users

would draw the particular coarse shapes when their intent is the associated refined

one (Fig. 3.5). We construct the set go consisting of N HMMs where each HMM is

trained using a particular training ensemble:

(3.11)

For example, A~ may represent the set for terrains and Ag may represent the set for

roof-tops. Each A~ in go is the trainable part of the curve refinement model and is

further augmented in Chapter 4 to include additional constraints.

p{h(t) 1 h(t-1)}

p{ o(t) 1 h(t)}

o(t)

Coarse curve

FIGURE 3.5. Local relationships of refined and coarse curves. For aU curve
segments (in gray), the transition matrix and confusion matrix store the
ab ove likelihoods. This is computed over every example in a given set.

At the second level (scene-level), another HMM is used to model high-level prob­

abilistic constraints on the application of models at the first level. This is only used

for the sketching application where relationships on the types of curve that can be

47

3.8 TWO-LEVEL HIERARCHICAL HIDDEN MARKOV MODEL

drawn are cri tic al. The model allows us to represent restrictions on the types of refine­

ments that are applicable on neighboring curves. For example, one can suggest that

the cloud model in go can only be applied to a curve that lies above another curve

that has been refined by the terrain model. As such, the state space of this HMM

reflects all possible models in gO and their relative positions. While in principle such

constraints can be learned from labeled illustrations, for the purpose of this thesis,

they are manually encoded in the form of a graph (Fig. 3.6).

Several such graphs can be used to train HM Ms at the scerie-level of the hierarchy:

(3.12)

Each model in gl depicts different kinds of scenes. For example, you can have face

scenes that suggest the sequence f orehead --+ nose --+ mouth --+ chin or landscape

scenes that suggest grass --+ (flower, above), cloud --+ (tree, below). Wh en con­

straints on the order in which curves are drawn are not desired, a graph can suggest

that every model can be followed by any other model, with only their relative po­

sitioning as a constraint. Each A~ described thus far is the trainable part of the

scene refinement model and is further augmented in Chapter 7 to include additional

constraints.

~ ~ fB\.. (7:'\
(V"-'(J~ A /V

+ + 0
fi\ 8/V "-~ skyline

FIGURE 3.6. Example relationships in a scene. The labels correspond to
HMMs at the curve-Ievel and the letters above correspond to the allowable
relative position (i.e. A: above, B: below, L: le ft R: right).

48

CHAPTER 4

Curve Refinements

Each curve-level HMM in the hierarchical HMM framework is a model that captures

from data the constraints that are required to synthesize a refined curve from a coarse

one. These HMMs, in combination with supplementary user-defined functions, are

called curve refinement models. This chapter describes the methods for learning and

applying these refinement models, including a description of the models' state space,

transition and confusion matrices and the decoding algorithm. Issues regarding the

practical and efficient implementation of these models are also addressed. Once the

formalism for learning and decoding is established, a regularization framework is

presented that provides for the seamless integration of supplementary user-defined

analytical biases. The pseudo-code for the algorithms presented can be found in

Appendix A.

1. Refinement Model Overview

A curve refinement model A 0 is an augmented HMM that includes supplementary

analytical biases and parameters. These additional components further define the

way in which the model is trained and applied. More formally, a refinement model is

defined as follows:

(4.1)

4.2 LEARNING REFINEMENT MO DELS

The first parameter is the HMM A = {M, B, 7r, H, a} as described in Eq. 3.10. The

parameter R = {RI, R2' ... , Rn,)\1, À2' ... , Àn} is a set of regularization functions and

weights that embed additional biases into the model. The parameter Q = {Q, H', a'}
consists of a quantization function Q and a set of labels H' and 0' used to label the

states in {H, a} such that likelihoods can be expressed in the finite matrices M and

B. The set S = {s 1 s E Z*} is the set of scales that the states must encode. Each

element identifies the number of times the Haar filter must be applied on the training

curves. The sets A and Ao identify the curve attributes encoded in the hidden states

and observation states respectively. The sets X and Xo are the set of auxiliary curve

attributes that must be represented in the hidden and observation states respectively.

The value T is the translation step for the wavelet representation (this value is also

used to determine the number of samples astate can encode). The value w is the

stationarity window, used to determine if the model is stationary or non-stationary.

The parameters Y and Y 0 are the distance metrics and associated parameters used for

determining the similarity of hidden and observation states respectively. Finally, T

and Ta is the mutli-scale representation of the refined and coarse curves from training

where Ys and Ta,s are the set of training curves at scale s. The remaining sections of

this chapter describe these parameters in more detail.

2. Learning Refinement Models

A refinement model A 0 is trained over a family of examples consisting of a

set of refined curves Ta = {ŒI' Œ2, ... Œn} associated with a set of control curves

Ta,o = {,6I, ,62, ... , ,6n} (Fig. 4.1) where each curve is represented by T sample points.

A refined curve depicts the desired solution that should be produced if a user sketches

its associated control curve. If a user sketches a curve unlike any single one of the

control curves, then the tlytltem mutlt illfer the detlired output USillg tlegmelltti from

various refined curves. The control curve can be any user defined curve (for custom

drawing habits) or it can be automatically generated by filtering the associated refined

curve. It may be the case that segments from different control curves are identical,

50

4.2 LEARNING REFINEMENT MODELS

though it is undesirable to have control curves t.hat are everywhere similar. Cont.rol

curves wit.hout any distinguishing features result in an ambiguous training set which

increases t.he likelihood of non-unique solutions. It is assumed that each ex ample

{ai, (Ji} is a suitably normalized tuple such that the associated sample-points on the

two curves are already in correspondence.

When only the observat.ions are available, learning can be performed by applying

algorithms such as the Baum-Welch algorithm or other Expectation-Maximization

methods [69], using criteria such as maximum likelihood (ML) or maximum mutual

information (MMI). In this work, a supervised learning paradigm is taken where the

data for both the observation and hidden layers is explicitly provided by the user

(during t.raining, it. is assumed that. t.he values corresponding to t.he hidden states

are directly available while during synthesis, they are not). The parameters of a

HMM can therefore be estimated using the statistics of the training data, calculating

probabilities of successive sam pIe point.s along the refined curves and t.he probabilities

that they generat.e the corresponding sam pIe points along the control curves (discussed

more in detail below). These points are represented by the states in the model. In

the remainder of t.his thesis, the term successive states is used to refer t.o a sequence

of states that represent a sequence of sample points from a curve.

060uO DODO
FIGURE 4.1. Examples from a training set. Curves on the left show the
control curves while curves on the right show the associated refined ones
that include color. Typically, the shape of the control curves are filtered
versions of the refined ones, in this case the filtered ones are very similar to
the originals. The set is sampled uniformly with 128 samples per example
for a maximum of 1024 unique points.

2.1. Hidden States. The HMMs operate over a multi-scale curve description

in order to capture long-range constraints on curves. Each hidden state encodes a

51

4.2 LEARNING REFINEMENT MO DELS

curve segment at multiple scales. A multi-dimensional state space 1-l is used for the

hidden states 1-l = {hi 1 hi E nlAxSI} where S = {sa, ... , sn} is the set of scales and

A = {ao, ... , am} is the set of curve attributes. Let the function Hi(t) correspond to

a state hi at position t in the sequence and let the function Hi(t)a,s correspond to

the value of the state indexed by a particular attribute a at a particular scale s. In

general, the function Hi(t)w is the projection of astate onto a subspace that excludes

the dimensions corresponding to elements in the set W by fixing their values.

Depending on the application, different scales and curve attributes may be re­

quired (e.g. for the sketching application, the attributes can include a curve's shape,

color, thickness, etc.). While in principle all of the selected curve attributes can be

represented at multiple scales, for the applications of interest, it is typically sufficient

to only encode the shape at multiple scales (B(s, t) where sES) as this provides

adequate multi-scale constraints for the desired output. (The likelihood of having

similar segments decays exponentially with the segment length, hence one attribute

can be sufficient to distinguish long segments.) As discussed in Section 6 of Chapter

3, a wavelet representation is used for the multi-scale curve descriptor.

2.2. Translation Step. The translation step defines the step size that is

taken along the curves when encoding successive states and hence it specifies the

size of curve segments (the granularity of the states). The size of the state space is

then increased according to the number of samples in the segment. It is also used

when constructing the multi-scale representation (as described in section 6). The

translation step has a significant impact on the speed of the system, the ability to

steer the synthesis procedure and the redundancy of the multi-scale representation

(Figure 4.2). Setting a small translation step results in a slower and more redundant

system but has the advalltage of finer control resolution (prediction can be perfoI"med

on a sample-point basis rather than on a segment basis). Setting a large translation

step results in a faster system that produces sequences of large segment blocks at the

cost of losing the ability to mix sample points within those segments.

52

4.2 LEARNING REFINEMENT MO DELS

S2 Pl P2

/\ /\
SI Pl P2 P3 P4

/\ /\ /\ /\
SO Pl P2 P3 P4 PS P6 P7 P8

(a) Astate representation using three scales (with down­
sampling) and a translation step of four sam pIe points.

~(t+2)

S2 P4 PS P6

Il
S1 P3 P4 PS P6

1111
SO P2 P3 P4 PS P6

(b) Astate representation using three sc ales (no down­
sampling) and a translation step of one sample point.

FIGURE 4.2. Comparing the states for two different translation steps. In
figure 4.2(a), the translation step at scale SO is set to four sample points.
Prediction and multi-scale decomposition is thus performed on a four-point
segment basis. In figure 4.2(b), the translation step at scale SO is set to one
sam pIe points. Prediction and multi-scale decomposition is thus performed
on a sam pIe point basis. (For opened curves, sample point padding is applied
at the curve's end-points.) The shaded boxes show the information that
each state encodes. Note that even when the translation step is set to one
(the segment length is thus one), the state encodes information beyond the
segment.

Whell cOlllputing the lllulti-scale representation for the curves (Chapter 3, Section

6), given the translation step for one scale, the translation step for the next scale is

computed as follows:

Ts+l = max(l, lTs/IKIJ) (4.2)

53

4.2 LEARNING REFINEMENT MO DELS

where l·J is the integer part ofthe argument (the floor function) and IKI is the size of

the filter kernel. The speeified parameter T is used to set the lowest seale translation

step TO:

TO = min(IKI, T) (4.3)

The degree of overlap between successive states is determined by both the set

of seales used and the translation step. It is easy to see from Equation 4.2 and 4.3

that when the largest seale in the representation is sufficiently small (when Smax ::;

lO9iKI (TO)) then all the information eontained in astate pertains to that state only

and there are no redundaneies over neighboring states. (A point at scale S represents

IKIB raw samples, hence the transition step must be at least IKIB in order to have

mutually exclusive neighbors.) Otherwise, the state eontains information that is

already encoded in previous states, a typieal (and acceptable) artifact of an Nth_

order Markov assumption, where the transition probabilities applied to the eurrent

point have references to the N - 1 points that have already been referred to in the

transition probability applied to the previous point (this redundaney is illustrated in

Fig.4.2(b)).

In eonjunetion with the translation step, the set S determines the degree that a

state encodes the eurve's history. The elements of the set ean span a eontiguous set of

seales (e.g. seales {O, 1, 2, 3, ... , smax}) or a non-eontiguous set (e.g. seales {O, 3}). The

set must always include the zeroth seale sueh that all states encode the original sample

points. (While points in the zeroth seale might not actually be used in probability

estimation, they are required to realize the end result.) In Figure 4.2(a), the point Pl

at seale 82 represents a summary for the four points {Pl, P2, P3, P4} at seale SO.

In figure 4.2 (b), the point P 4 at seale S2 represents a summary for the three points

{P2, P3, P4} at seale SO. While the largest-seale sample point alone ean be used to

represent the entire eurve segment, in general, points at any combination of seales

ean be used for eomputing the probabilities. A set of weights are assigned to eaeh

seale to emphasize its relative importance (used in Eq. 4.4 as part of the parameter

y and diseussed further below).

54

4.2 LEARNING REFINEMENT MO DELS

2.3. Observations. The state space 0 for the observations consist of a multi­

dimensional space for capturing multiple control modalities at various scales; 0 =

{Oi 1 Oi E nlAo x SI} where Ao is the set of control attributes and S is the set of scales.

Let the function Qi (t) correspond to astate 0i at position t in the sequence and let the

function Oi(t)a,s correspond to the value of the state indexed by particular attribute

a at a particular scale s. In general, the function Oi(t)W is the projection of astate

onto a subspace that excludes the dimensions corresponding to elements in the set

W by fixing their values.

The control attribut es define the types of inputs that are expected from the user

to steer the synthesis procedure. They are selected based on the application (e.g. for

the robot path planning application, the desired path and robot facing direction can

both be controlling components). By default, the value for the translation step and

the set of scales for the observation states are set to be the same as those in the hidden

states. The scales may be reconfigured empirically to customize the importance of

history in the control layer, which can differ from the hidden layer. The translation

step however must always have same value for both the hidden and observation states

as this synchronizes the input segment length with the output segment length.

2.4. Auxiliary Attributes. In addition to the attributes in A and Ao, the

state space is augmented to accommodate for auxiliary attributes X and Xo . The

dimensionality of the state space the becomes lA x S + XI for the hidden states and

IAo x S +Xoi for the observation states. Auxiliary attributes are used to maintain sup­

plementary information that may be required for additional processing of the states.

There are two types of auxiliary attributes: training set auxiliary attributes and de­

coding auxiliary attributes. Training set auxiliary attributes are curves attributes that

capture meta-information regarding the training data. Decoding auxiliary attributes

are curve attribute::; that are Ilot available during training but are captured a::; 1'e­

quired when solving for the best hidden state sequence. These attributes can exist

in both the observation states and the hidden states. In the hidden states, the aux­

iliary attribut es are not bound to local consistency requirements and hence do not

55

4.2 LEARNING REFINEMENT MO DELS

enforce sequential constraints on successive sample points. In the observation states,

the auxiliary attributes are not included as part of the generative model and hence

do not influence the confusion matrix.

One example of an auxiliary attribute is the translation step. Since knowledge of

the translation step is required for the eventual realization of the output curve and it

cannot be assumed that every state has the same translation step (T may not be an

integral deviser of the number of sam pIe points T), then the translation step is stored

in the states as an auxiliary attribute. Additionally, the sample points at the zeroth

scale can also be considered as auxiliary attributes when their importance weights are

set to zero. (While these points are not explicitly used in constraining the sequence,

they are required later to realize the output curve.) Other auxiliary attribut es are

discussed further throughout the remaining sections of this thesis as they pertain to

the application.

2.5. Transition Probabilities. The transition probabilities p{Hi(t) 1 Hj(t-

1)} for all states in the training set are estimated from the statistics of successive sam­

pIe points, counting the occurrence of successive states for each mat ching previous

state. Rather than searching for exact matches, the transition probabilities are esti­

mated by evaluating the goodness of a match. The probability that two states match

is determined using a proximity function that evaluates the distance between states.

A Gaussian distance metric G is used and the parameter Y is defined by {G, ~ 2 , '111, a}

and used as follows:

(4.4)

where

~2(H.(t) H.(t)) = 2::aEA 2::sES 2::7'=0 .. 78 '111(8, a)(Hi(t)s,a,7' - Hj(t)s,a,7,)2 (4.5)
2 , J 2::aEA 2:: sES '111(8, a)(j2(a)Ts

and where w(s, a) is the associated importance weight and a2 (a) is the attribute's

mixing variance. This Gaussian blur is applied on the difference of two curve segments

encoded in the states as a weighted sum over the specified scales and constraining

56

4.2 LEARNING REFINEMENT MO DELS

attributes, excluding aU auxiliary attributes. (When dealing with the angles, the

difference is always computed over two the interval [-7f, 7f]). This effectively blurs the

non-zero elements in the transition matrix, avoiding synthesis issues that can occur

due to quantization errors or disjoint communication classes while also providing sorne

degree of control and flexibility over the mixing tendency. The tendency to mix curve

segments is determined by the value of the variance (52 (a). A smaU variance reduces

the mixing tendency such that the output will be more similar to exact instances of the

training set while a large variance aUows the synthesis pro cess to transition between

states more easily at the co st of losing sorne local consistency with the training set.

For most of the experiments, a large weight is used for the shape attribute at

a high scale and the variance is set empiricaUy for each training set. For efficient

implementation, to avoid iterating over zero values weights, only non-zero valued

weights are stored in a vector where each element in the vector indexes the state

location of the target scale and attribute that it applies on.

2.6. Transition Matrix. In a finite state space HMM, the transition proba-

bilities for aU states are stored in the matrix M where the (i, j)th element corresponds

to the transition between state i and state j. This becomes problematic in continuous

state spaces where there is an uncountably infinite number of states. One approach

to address this issue is to quantize the continuous space using weU defined bound­

aries, though this alone can lead to implementation issues regarding the size of the

matrix. Even with the compact multi-scale representation, the size of the transition

matrix grows exponentially with the number of attributes, irrespective of the number

of non-zero probability transition, which may be relatively few in number. (Note that

while M may become large, the total amount of training data having been provided

by the user is probably of limited size.) The approach takell ta avaid this issue is ta

dynamically label regions of the state space that contain states that exist in the train­

ing set and then use this label to index the matrix. This compacts what is otherwise

a large and sparse matrix.

57

4.2 LEARNING REFINEMENT MO DELS

The estimated transition probabilities are stored in a matrix M that is indexed

by a predefined state identifier. Let the finite set H' = {L 1 L E Z*} be the quantized

state space where each L in H' is a label for states in H. Let the mapping Q : H -+ H'

be the quantization function that assigns labels in H' to states in H (i.e. RIAxsl -+

Z*). Each state hi that exists in the training set is labeled dynamically using Q and

the transition matrix M is indexed using the labels in H'. The value of each matrix

element M ij is then p{ Q-1(i) 1 Q-1(j)} where Q-1 is the inverse mapping of Q,

computing a state in H that is representative of the label in H' (i.e. Q-1(k) = hk).

In this fashion, M has only non-zero entries and the size of M is proportional to

square of the number of uniquely labeled hidden states in the training set; M is thus

expressed using only an IH'I x IH'I matrix. In order to have random access to a state's

label L, all candidate states include the label as an auxiliary parameter.

The quantization function Q is computed by evaluating Eq. 4.5 on each attribute

separately. Those states that have all attribute similarity measures falling below the

specified attribute thresholds are labeled with the same value L; i.e. if p{ Hi (t)a =

Hj(t)a} < atresh for all attributes a then Q(hi) = Q(hj). Unlike in the computation

for the transition probabilities, this computation also includes the auxiliary attributes

as they contain state information that must be preserved and hence take part in

distinguishing states: a EAu X. (To avoid over-blurring, the value of athresh should

be relatively small.)

A new centroid state, representative of the label, is computed by averaging the

attribute values over all states that have the same label: Q-1 (i) = hi where hi is

the centroid state. The average is computed by a uniformly weighted sum of the

attributes (angles are handled as a special case when their values span the first and

fourth Cartesian quadrant). Computing the centroid state in this fashion can result

in a drift where the distance of sorne samples to the centroid can increase beyond the

error bound. However, this effect is minimal when the error bound is small, as the

maximum drift caused by a sample point is ~ where n is the number of samples

associated with the label.

58

4.2 LEARNING REFINEMENT MO DELS

2.7. Stationarity Window. A stationary model is one where the likelihoods

in the transition matrix (and confusion matrix) are not a function of position; M(O) =

M(I) = ... = M(T) = M. Any locally consistent mixture of curve segments can occur

at any point along the curve, with only the input and local history as constraining

factors. In contrast, a non-stationary model may have a distribution that is a function

of the position. In cases where a stationary model is not suit able (when the features

of curves do not repeat consistently over the entirety of the curves), the transition

matrix must be calculated over a predefined stationarity window w. This window

identifies the size of local regions that exhibit regular properties (which can be as

small as one sample point).

Providing the option to specify a local stationarity window (hence global non­

stationarity) accommodates sets that inherently exhibit position-dependent features.

As an example, consider drawing the outline of a mountain. Initially, the edge should

be colored brown or green and later it should be colored white or gray (simulating the

snowy look in higher altitudes). Even though the underlying shape may not change,

the output varies according to the position along the curve. Non-stationarity also

helps preserve proportionality and sizing constraints over large scales by enforcing

the sequential progression of sam pIe points more strictly. The underlining premise in

non-stationarity is that the characteristics of curves become functions of the position

along the curve, hence the arc-Iength position itself becomes one of the constraining

elements in the system.

The desired rate at which the transition matrix is permitted to vary is specified

by the manually tuned stationarity window parameter w. The stationarity window

can be specified within the range [1, Tl as a multiple of the transition step T. The

transition matrix M(t) is then computed using the statistics of the sample points in

the training set that lie between a lower bound l and an upper bound u centered

about t:

l = max(O, t - lw/2J)
u = min(T, t + fw/2l)

59

for open curves and

4.2 LEARNING REFINEMENT MO DELS

l = min+(T -lw/2J,t -lw/2J)
u = (t + Iw/21) MOD T

for closed curves, where w is the stationarity window. The function min+(-) returns

the smaHest positive number and 1·1 rounds up the argument (the ceiling function).

2.8. Confusion Matrix. The confusion matrix B stores the likelihood of

observing a curve segment when the intent is to produce its associated refined segment.

Given the set of tuples {ai,,6i}, the likelihoods p{Oj(t) 1 Hi(t)} for aH states in

the training set can be estimated from the statistics of the set. The number of

matching coupled states {hi,oj} is computed by searching for exact matches over

aH examples within the stationarity window. Similar to the transition matrix, the

confusion matrix is also index by precomputed state labels. The observation states

are assigned labels from a finite state space 0' = {L 1 L E Z*} using the quantization

function Q : 0 --+ 0' from Eq. 4.5. The size of the matrix B is then IH'I x 10'1.
lndeed this matrix only encodes the expected observations from a limited set

of examples, which may or may not be exactly as drawn by the user. This poses

a problem when the user draws a curve segment that has not been anticipated in

the training set. One approach to address this issue is to provide a large confusion

matrix with aH possible inputs, train it under the training set and then and blur it

to avoid non-zero likelihoods. However, attempting to anticipate in advance every

possible curve segment that the a user can draw is inefficient and impractical with

CUITeut melllory lilllitatiout:>. Therefore, thit:> it:>t:>ue lllUt:>t be addret:>t:>ed dYllalllically

when decoding the model with the input, taking into account the possibility that the

training set does not anticipate every input and must be used as an approximation

to what the user is expected to draw.

60

4.3 DECODING REFINEMENT MODELS

2.9. Initial Distribution. To complete the configuration of the HMM, an

initial distribution 7r for the hidden states must be specified. A uniform initial proba­

bility distribution is assumed. That is, before anything is drawn, an curve candidates

have an equallikelihood of being synthesized.

3. Decoding Refinement Models

Once the model is trained, it can be used to refine a coarse input curve. Given

an input curve and a HMM A 0 trained over a family of curves, a new refined curve is

synthesized by solving for the maximum likelihood hidden state sequence:

That is, the most likely sequence of refined curve segments (represented by the hid­

den states) is reconstructed using the sample points from the input curve (represented

by the sequence of observation states). One approach to solve this problem consists

of examining an possible sequences, computing the likelihood for each candidate se­

quence and then choosing the one with the maximum likelihood. This results in an

overly redundant system where the same computations are repeatedly performed for

the same candidate sub-sequence. Such an approach leads to a runtime complexity

of O(NTo) where N is the number of hidden states (l1-fl) and To is the length of the

observation sequence. Instead, a dynamic programming approach is taken where, for

each observation in the input sequence, the best transitions between an successive

states are maintained, avoiding redundant computations for the same transition like­

lihoods in different candidate sequences. The Viterbi algorithm [96] is used to solve

this problem with a run-time complexity of O(N2To).

The approach consists of iterating over the sequence of observations, updating

the likelihood of candidate sequences by computing their compatibility with the input

sequence up to the current observation. At each iteration, the maximum likelihood

estimate for a partial observation sequence and hidden state sequence given that the

current hidden state is hi is computed (i.e. the likelihood of the best path passing

61

4.3 DECO DING REFINEMENT MODELS

through state hi at sequence point t):

1/J(Hi(t)) = max p{H(O), ... , H(t -1), H(t) = hi, Oin(O), ... , Oin(t) 1 AO} (4.7)
H(O), ... ,H(t-l)

This likelihood is computed for aIl states hi by the foIlowing two steps:

(4.8)

This two step iteration consists of a propagation step followed by a conditioning

step. First, the distribution W(t) over aIl states hi, i = (L.N), is computed by

propagating the previous distribution using the transition probabilities in M(t-1) for

t > O. (At t = 0 the distribution 'if is used directly for initialization and propagation

is skipped.) Then, using the probabilities in B (t), the input is used to bias the

propagated distribution. The resulting distribution is normalized.

In a typical Markov chain propagation, the probability for the current state is

calculated by accumulating the likelihoods over aIl previous states that the current

is dependent on. In contrast, the goal of the decoding algorithm is to eventuaIly

realize a sequence and thus only the most likely previous state that generates the

current is considered. In order to maintain this partial sequencing information, for

each candidate state Hi(t) a back-pointer is maintained that points to the most likely

previous state Hj (t - 1) that generates the current. This information is stored in each

candidate state Hi(t) as an auxiliary attribute.

At the end of the input sequence, the state with the largest likelihood in w(To)

is selected and used as the root of a backtracking procedure that traverses the back­

pointers and realizes the entire sequence of states (Fig. 4.3). Backtracking is essential

for generating a curve as not only does it select the best transitions between successive

states but also implicitly propagates information from future observations back to

earlier points in the sequence. This avoids local maxima pitfalls that can occur in

greedy strategies where the locaIly best point may not contribute to the best overall

62

4.3 DECODING REFINEMENT MODELS

FIGURE 4.3. Synthesis diagram for three states {hl, h2 , h3} and three input
points {o(1),o(2),o(3)}. Solid arrows indicate aU possible transitions, the
ones shown in red indicate the best transitions. At the last point, the state
with the greatest likelihood (hl) is chosen, foUowed by a backtracking pro­
cedure that uses the back-pointers to traverse and extract the most likely
previous states (shown by dashed arrows).

sequence. In this fashion, the maximum likelihood hidden state sequence that best

describes the observation sequence is synthesized.

3.1. Thresholding. The synthesis procedure can be further accelerated by

using heuristic pruning. Thresholding the state distribution increases the efficiency of

the system by removing candidate states that are not expected to be part of the final

solution. Although the solution space may not be convex over the sequence, it can

be assumed that for low valued candidate solutions the likelihood varies smoothly. It

is easy to see from Eq. 4.8 that the likelihoods are compounded over the sequence

and hence only a drastic change in the observation sequence that is not anticipated in

the training set can significantly change the rank of low probability sequences. That

is, at each iteration, candidate solutions that have very low prolmbility will likely

remain low with respect to the top candidates unless aIl of the top candidates are

drastically demoted. Given this assumption, it then becomes feasible to remove low

ranking candidate states and provide a more efficient system. Only the most probable

63

4.3 DECO DING REFINEMENT MODELS

m candidate states need to be maintained and the vector \[f is normalized accordingly.

The runtime for each iteration then becomes O(2mN), O(mN) to extract the top m

candidates and O(mN) for propagation, hence improvements occur when m < N /2.

3.2. Starting Point Invariance. With a stationary model, the synthesis

procedure is inherently invariant to the starting point of the input curve. This is

not the case with a non-stationary model where the starting position must first be

synchronized to the training set. This causes an undesirable restriction, particularly

when dealing with closed curves where users may wish start drawing the shape at any

point along the curve. For example, consider the shapes in Fig. 4.1, having to force

the users to always start the curves from a fixed position can undermine the simplicity

and usability of the system. Therefore, in order to provide invariance to the starting

point, the initial matrices M(O) and B(O) are computed over the entire arc-Iength (the

stationary matrix). This allows the synthesis procedure to be bootstrapped to any

state at any position along the curve. Based on this bootstrap, different transition and

confusion matrices can be applied for different candidate states in the same iteration.

In order to keep track of the bootstrap, two auxiliary parameters are used. First,

the state space is augmented to include a training set auxiliary attribute ttrain that

identifies the sequence position of the candidate state from training. This is used

to uniquely label states that are found at different positions in the training curves

and thereafter help identify the transition and confusion matrices that should be

used when processing the candidate state. (Note the use of an auxiliary attribute

rather than a constraining attribute, maintaining the ability to transition to states

at different positions within the stationarity window.) Second, a decoding auxiliary

attribute t~rain is used to maintain the initial starting sequence point leading up to

the current state. Its value is only set once, at t = 0, using the auxiliary attribute

ttrain from the candidate titateti Hi(O). The value is patitied alollg the tiequellcc durillg

propagation using the most likely previous state that generates the current (i.e. the

back-pointer). Then, the state associated matrices are referenced by M(t') and B(t')

where t' = (t + Hi(t) . i~rain) MOD TM and TM is the number of matrices. This shifts

64

4.3 DECO DING REFINEMENT MODELS

the sequence point t by the bootstrap value of the candidate sequence and applies

the time-shifted matrices.

3.3. Input Handling. As discussed in Section 1.2, it cannot be expected that

aIl sam pIe points from the user-drawn curves will have an exact match to sorne point

in the control curves of the training set. In cases where exact matches do not exist, the

input will cause the distribution to be zeroed as the system does not anticipate every

possible input (p{ Oin(t) 1 Hi(t)} may not exist in B). This is further exaggerated when

multiple input attributes are used, exponentially reducing the likelihood that a exact

match can occur. To address this issue, a sigmoid function is used in order to blur

the input bias. This function can be thought of as a soft threshold function, reducing

the sensitivity to noise when applying the input conditioning step from Eq. 4.8. The

sigmoid is suitable for modeling noisy user inputs as it can be assumed that the intent

of the user within a given error range is equally distributed over the neighbors and

sharply decays at points further away. The state similarity parameter Y 0 is then

{C, ~, k, c, w} where C is the sigmoid function, k and c are the sigmoid parameters,

w is a function that returns the importance weights of scales and attributes and ~

is defined below. The probability that the input attribute Oin(t)a corresponds to the

learned observation state attribute Oj(t)a is then computed by the following:

where

and
k(a) = 4.3944

PlO(a) - P90(a)

c(a) = -(p90(a) + PlO(a))
2

(4.9)

(4.10)

65

4.3 DECODING REFINEMENT MODELS

The sigmoid function can be considered as a blurred step function with blurring

parameter k and a shift parameter c. These parameters identify the center of the

sigmoid and the sharpness of the cutoff. A simple variable transformation allows for

the the sigmoid shape to be conveniently specified by the 90th and lOth percentile

thresholds (P90 and PlO)' These parameters are used to control the degree that the

input curve biases the synthesis procedure. Setting the 90th and lOth percentile to

large values results in similar likelihoods over all observation states, reducing the

importance of the input. Setting the 90th and lOth percentile to small values results

in an increased sensitivity to the user input and hence provides an increase in the

steering power. Figure 4.4 shows a plot of the sigmoid function with labels for the

90th and lOth percentiles for a curves tangent angle attribute.

The totallikelihood over all available input attribut es is computed by taking the

product of the individual attribute likelihoods:

p{Oj(t) 1 Oin(t)} = II p{Oj(t)a IOin(t)a} (4.11)
aEAin

where Ain is the set of control attributes used in the input. This product implicitly

disregards any learned control attributes that are not provided by the input, allowing

the users to freely select what control attributes they wish to use and where along

the sequence they wish to use them.

When applying the sigmoid blur, an input sample point no longer acts as a

unique conditional, but rather pro duces a distribution over the observation states.

The conditioning step of Eq. 4.8 then becomes:

(4.12)

where

66

4.4 ADDING PREFERENCES USING A REGULARIZATION FRAMEWORK

0.9 -

0.8

0.7

0.6

P{<Pl=<p2}
0.5

0.4

0.3

0.2

0.1

50 60

1"" <P 1

FIGURE 4.4. A plot of the sigmoid function for the tangent angle attribute cp.

That is, the observation that results in the best input bias is used to steer the syn­

thesis procedure. The runtime of the system then increases from (N 2T) to O(N2T +
NIO'IT).

4. Adding Preferences using a Regularization Framework

Regularization [90] is used to solve for a data interpolating function that satis­

fies sorne supplementary preference, such as smoothness. The technique is typically

applied in ca::le::l where noi::ly data or illterpolatillg fUllction ambiguities re~mlt in llOll-

unique solutions. Such under-constrained problems require additional constraints in

order to further restrict the set of admissible solutions. Given a desired regularization

function, the goal is to minimize the error of a functional consisting of a weighted sum

67

4.4 ADDING PREFERENCES USING A REGULARIZATION FRAMEWORK

of the interpolating function's residuals in conjunction with the reglllarizing term:

(4.13)

The function f (.) that minimizes the above equation is the solution for the desired

data interpolating function.

A probabilistic approach to regularization [86, 47] consists of maximizing the

posterior of a Bayesian model:

max p{f 1 D} ex max p{D 1 f}p{f 1 M}
fEM fEM

(4.14)

where f is an element of a set of functions M and D is the input data. Typically, the

data model P{D 1 f} assumes a Gaussian noise model and the fidelity model P{f 1 M}

is the regularization bias commonly defined as an exponent of the smoothness term:

",n (J(Xi)-Yi)2

p{ D 1 f} = e- L...i=l a 2 (4.15)

p{f 1 M} = e-ÀJ~ (J"fdx (4.16)

The HMM framework can be formulated using Eq. 4.14. Rather than having a

fixed noise model and smoothness constraint, priors for these components are learned

from examples. That is, using the HMMs, the maximum likelihood hidden state

sequence can be considered as the desired interpolation function, the confusion matrix

can be considered to represents a learned data term p{ D 1 f} and the transition matrix

can be considered to represent a learned regularization term p{f 1 M} (evaluating

the goodness of the function using the previous neighbors).

Using this framework, users can embed supplementary ad-hoc biases to the sys­

tem. These biases can be in the form of analytical functions that define a prior

preference on the types of solutions that can be produced. Further, since our state

space is discrete, we do not need to rely on traditional gradient-descent based varia­

tional calculus techniques but rather, we can apply the Viterbi algorithm to find the

maximum. At each iteration of the decoding algorithm (Eq. 4.8), the distribution

68

4.5 SUMMARY

vector W(t) is biased by augmenting the energy of each candidate state as follows:

E(Hi(t)) = -log('ljJ(Hi(t))) + L ÀkRk(Hi(t)) (4.17)
k

where Rk (.) is a regularization constraint (such as smoothness) and Àk is the asso­

ciated weight. This must be computed before the propagation step of Eq. 4.8 such

that the regularization terms are taken into account when selecting the maximum

likelihood previous state.

In general, there are few restrictions on the type of regularization constraints that

are applied. First, they must be causal su ch that the distribution can be propagated

forward. Second, when state thresholding is applied, it must also be assumed that

the function is smooth. If the regularization terms require information from previous

points (such as in a smoothness constraint), the history is readily accessible using

the back-pointer of each state. It may be the case that the regularization terms

require information from the input conditionals, which is also readily available. Any

additional parameter required by the regularization term can be stored as an auxiliary

attribute in the candidate states. For example, when the input conditional only

consists of the tangent angles of an input curve (as discussed in Chapter 3, Section

1), a regularization function may instead require the Cartesian co-ordinates and hence

must recompute the position for each sample point (assuming a bootstrap is available

at t = 0). To avoid such redundant computations, this information can be stored and

updated conveniently in auxiliary attributes, providing direct access to the desired

forms of data.

5. Summary

This chapter described a framework that consists of learning and applying curve

refinement models. The refinemellt pro cess consists of solvillg for the maximum

likelihood mixture of segments from the training set that best explain the input. The

degree of mixing and the scales at which to mix in are specified by the parameters of

the model. The presented framework is general and in order to apply it to real world

69

4.5 SUMMARY

applications it must be customized accordingly. This entails defining the following

components ofthe model: {R, S, A, Ao, X, Xo, T, w, T, Ta}. That is, the regularization

terms, the set of scales and attributes to use and the training data are all application

specifie components. Furthermore, the mixture variance, sigmoid parameters and

importance weights in Y and Y o must also be specified. These are discussed in

more details in the following two chapt ers where the framework is customized for two

applications: sketch beautification and robot path planning.

70

CHAPTER 5

Sketching Application

This chapter deals with the sketching application and presents the required frame­

work customization, the experimental setup and results. Customizing the framework

for this application consists of identifying and integrating the desired curve attributes,

control schemes and regularization constraints into the model as pertained to sketch­

ing. A supplementary texture filling pro cess that further enhances the sketch refine­

ment pro cess is also presented. The experiments consist of testing the system over a

variety of training sets, input curves and parameters, examining the behavior of the

system by subjectively evaluating the results.

1. Curve Attributes for the Hidden Layer

The hidden layer of the HMM encodes constraints on the types of sketches that

can be synthesized. The states corresponding to this layer encode multi-attributed

sketching elements consisting of the following components:

• Shape of the curve

• Color of the curve

• Thicklless of the curve

• Fill-color

• Fill-transparency

• Fill-direction

5.1 CURVE ATTRIBUTES FOR THE HIDDEN LAYER

The set of desired curve attributes is thus defined as follows:

A = {e(t), t1e(t), c(t), k(t), u(t), d(t)}

The shape of the curve is represented using either a first-order representation, the

tangent angle e(t), or a second-order representation, the change in tangent angle

t1e(t). Both of these are evaluated experimentally with and discussed in more detail

later. The color of the curve c(t) is a 24 bit RG B value (eight bits per color channel)

and the thickness k(t) specifies the radius (in pixels) that should be used when drawing

a curve's scan converted pixels. The filling parameters are used to "color in" the

interior of the curve. The fill-color and transparency u(t) are encoded using a 32 bit

RGBA value (eight bits for each of the three color channels and eight bits for the

alpha channel). The fill-direction d(t) is used to identify whether the seed pixels for

filling should be generated along the curve's normal or opposite to it; it is set to 0 for

no fill, + 1 for filling along the normal and -1 for filling opposite to the normal.

1.1. Seed Pixels. The fill-color, transparency and direction are used to gen­

erate seed pixels; pixels adjacent to the curve that initiate a texture filling process.

If one desires, more than one seed pixel can be colored along each sample point of

the curve, providing a larger-scale bootstrap for the texture synthesis process. The

fill-direction must be adjusted in correspondence to a curve's sequence orientation

(clockwise or counterclockwise) in order to fill the interior of a curve. lndeed, there

may be cases where the synthesis of curve segments result in fill-directions aimed

at the the exterior of a closed curve. This is particularly prevalent when drawing

self-intersecting curves. For such segments, the user lllUt:it either mallually fiip the

fill-direction or completely remove the seed pixels at those points. Developing an

editing tool to accomplish this is straightforward, setting d(t) = -d(t) (or zero) for

all curve sample points that fall within the user's boundary selection.

72

5.3 NORMALIZATION AND SAMPLING

2. Curve Attributes for the Observation Layer

The observation layer of the HMM encodes constraints on the effect an input

curve segment has on the resulting sketch. The states corresponding to this layer

represent the types of inputs the system expects and includes the following attribute:

• Shape of curve

hence Ao = {4>(t), .6.4>(t)}. That is, the shape of the input curve is represented

by either a first-order representation 4>(t) or second-order representation .6.4>(t). In

principle, other input components can also be used to control the synthesis procedure,

su ch as the pen-pressure and speed, though these are not experimented with in this

thesis.

3. Normalization and Sampling

Recall that Curves in T and Ta are normalized over their arc-Iengths and uni­

formly sampled. The values used to accomplish this are determined based on the

type of model used; stationary or non-stationary. One of the key criteria that must

be satisfied is to preserve the appropriate correspondence between the sample points

from the control curves and sam pIe points from the associated refined curves. In

particular, to synchronize B and M, the number of samples used to represent the

control curves must be the same as the number of samples used to represent the

refined curves, despite the fact that their arc-Iengths may differ.

3.1. Normalizing for a Stationary Model. When a stationary model is

chosen, all curves in the training set are normalized using the arc-Iength of the longest

curve in the set. This preserves the relative size of features in curves of different

lengths. The curves are then sam pIed using a piecewise linear approximation; P =

(l-l)Pi +lPi+1 where 0 ::; l ::; 1. Finit, each refilled curve is sampled uniformly with a

fixed, predefined sampling resolution. Then, each control curve is sam pIed uniformly

using a sampling resolution that is determined dynamically; the sampling resolution is

computed such that the resulting representation pro duces the same number of samples

73

5.4 SUPPLEMENTARY SKETCH REFINEMENT PREFERENCES

for both a refined curve and it's associated control curve. This can be approximated

by dividing the total arc-Iength of the control curve by the total number of sample

points used to represent the associated refined curve.

Although all of the training curves are normalized, the input curve is not normal­

ized. This allows for the possibility of applying the decoding algorithm in real-time,

providing immediate feedback to the user (subject to a lag spanning the larger of the

filter window or translation step).

3.2. Normalizing for a Non-Stationary Madel. In a non-stationary

model, the input curve and an training curves are normalized using their own arc­

length. As such, an curve have an arc-Iength of 1 and their relative size is not

preserved. This is required in order to synchronize the arc-Iength positions of the

input curve with the non-stationary transition and confusion matrices. Once the

curves are normalized, they are sampled uniformly with a fixed sampling resolution

using a piecewise linear approximation. During synthesis, processing is delayed until

the complet ion of the input curve; once the input curve is completely drawn, it is

normalized over its arc-length, re-sampled and then used to synthesize the output.

4. Supplementary Sketch Refinement Preferences

There are three regularization constraints that are used to improve the results

for the sketching application:

• Sequence coherence

• Example coherence

• Magnetic attraction to input

The set R is then {RI, R2' R3, ÀI' À2' À3} where each element is further described in

this section.

The t-)equellce coherence constraint is used to reduce the likelihood of gelleratillg

out of sequence transitions, promoting solutions that are more consistent with the

sequencing in the training set. That is, if two different candidates have a similar

likelihood, the solution will be biased toward the candidate that is in sequence. This

74

5.4 SUPPLEMENTARY SKETCH REFINEMENT PREFERENCES

constraint has also been used in earlier work by Hertzmann et al. [38] where the

authors exemplify how coherence provides better progression over the sequence and

hence better reflects the features (or styles) of a training set. In order to embed this

bias in the model, the training set auxiliary attribute ttrain is used to identify the

position of candidate states in the training set. Using the back-pointer, the position

of the last state that generates the current is identified and the likelihood of the

current state is penalize if out of sequence:

(5.1)
otherwise

where Cl > 1 is the penalty factor.

The example coherence constraint is used to reduce the number of transitions

between different ex amples in the training set. This biases the system to generate

larger curve segments from a individual ex amples and avoid unnecessary transitions

that may occur over similar examples. (Note that the translation step strictly enforces

this constraint by limiting the minimum segment length.) To integrate this bias into

the model, another training set auxiliary attribute is induded to help identify the

training example that the candidate state belongs to. State sequences with different

example identifiers are then penalized:

if Hi(t) . id = Hj(t - 1) . id
otherwise

(5.2)

where C2 > 1 is the penalty factor and id is the example identifier.

Finally, an additional constraint is used to promote solutions that are doser to

the input. This constraint is referred to as the magnetic regularization term as its

biasing effect is similar to that of applying a magnetic attraction force between the

input and output curvcs. This constraint helps avoid drift duc to quantization crrors.

Moreover, even in ideal cases, because the state spaces for both the observation and

hidden states encode the shape of a curve using its angles, there are no constraints

learned explicitly on the positions of curves. This regularization term provides the

75

5.4 SUPPLEMENTARY SKETCH REFINEMENT PREFERENCES

added advantage of enforcing position based constraints while also maintaining the

flexibility of a first or second-order representation of the training set. In order to

determine the distance between the input and candidate solutions, the Cartesian

co-ordinates of the sequence leading up to the states must be determined.

Assuming that the Cartesian co-ordinates are available in the form of auxiliary

attributes of the candidate states, the regularization term for the state can easily be

computed as a function of the distance between the candidate points {x, y} and the

input points {Xin, Yin}' This is evaluated by averaging the square distance between

aH points in the candidate state and the input:

R3 (Hi(t)) = L (Xin(tr + l) - Hi(t) . X(l))2 + (Yin(tr + l) - Hi(t) . y(l))
2

(5.3)
I=O ... T

where T is the transition step (the number of points in the segment). The method to

compute the Cartesian co-ordinates is described below.

4.1. Cartesian Co-ordinates. To include position based constraints in the

model, additional decoding auxiliary parameters {x, y} are added to the states. These

parameters identify the Cartesian co-ordinates for aH sample points in the current

state by traversing the most likely hidden state sequence up-to and including the

state. Their values are computed by extrapolating the {x, y} co-ordinates from ei­

ther the previous point within a segment (within the same state) or the most re­

cent point in previous state (identified by the back-pointer). Using the tangent

angels at the lowest scale, the Cartesian point {x(l),y(l)} is then calculated by

{x(l- 1) + t5t(l) cos(B(l)), y(l- 1) + t5t(l) sin(B(l))} where l is the sequence position

of the input sample point and 6t is the sampling resolution. (In this formulation, the

parameter l is used to index the respective position of the auxiliary parameter in state

H(t) by taking the modulus remainder with the transition step T). At l = 0, the initial

point {x(O), y(O)} is bootstrapped to the first input point drawn {Xin(O), Yin(O)}.

76

5.4 SUPPLEMENTARY SKETCH REFINEMENT PREFERENCES

In order to properly match the resolution of the auxiliary co-ordinates with that

of the control and refined curves from training, the sampling resolution r5t(l) is com­

puted using two additional training set auxiliary attributes. One attribute stores

the sampling resolution of the control curves r5to and the other stores the sampling

resolution of the refined curves 6th:

(5.4)

where r5tin is the sampling resolution of the input curve. According to the described

normalization scheme, in the non-stationary case 6to = r5th, hence the resolution

used degenerates to the input sampling resolution; r5t(I) = r5tin (I). In the stationary

case, Eq. 5.4 compensates for the resolution difference between the control curves and

refined curves. In both cases, the learned styles will contract or dilate according to

the input sampling resolution.

When the second-order curve representation fj.() is used, the tangent angles then

become a decoding auxiliary attribute. The Cartesian co-ordinates are computed

using a second-order reconstruction {x(l - 1) + r5t(l) cos(()(l- 1) + .6.e(I)) , y(l - i) +
6t(1) sin(()(1- 1) + fj.()(l))}. The synthesized curve is then bootstrapped using the first

two input points {Xin (0), Yin (O)} and {Xin (1), Yin (1)}

4.2. Curve Closure. In sorne cases, it may be desirable to vary the degree

of influence for a regularization term along the sequence. This is easily accomplished

by defining the regularization weight as a function of the sequence position; .\(t).

To exemplify this, a sequence varying regularization weight is used to enforce curve

dosure. Maintaining dosure when it is desired is an important component of the

sketching system. If the user draws a dosed curve, then the system must enforce

this criterion as failing to satisfy it results in an output curve that is topologically

different from the input, resulting in a significantly noticeable discrepancy betwccn

the input and output.

The approach taken to synchronize the dosure of an output curve with that of

the input curve consists of applying a large bias to increase the likelihood that the

77

5.4 SUPPLEMENTARY SKETCH REFINEMENT PREFERENCES

output curve remains near the input curve. (If the output is always near the input,

then when the input curve is closed the output curve will also be closed, and vice

versa.) However, it is not desirable to apply this bias equally along the entire curve;

the system must also provide the fiexibility for the output to diverge from the input

in order to express the learned styles. It is however desirable to restrict the output

curve when approaching the the curve's endpoints, where closure is not guaranteed.

Thus, to allow the interior of the output curve to divert from the input curve while

converging at the endpoints, the magnetic regularization term is weighed by a function

of the arc-length as follows:

(5.5)

where t is the current state sequence position and Ta is the length of the observation

sequence. This smoothly increases the magnetic term at the curve's end-points where

it is needed while reducing it when away from the end-points.

Since the sequence length Ta of the observation sequence in not known until the

user has finished drawing the curve, this constraint is only applicable once the entire

curve has been drawn and cannot be used in real time executions. To achieve this in a

real-time drawing environment, it is first assumed that the drawn curve is not closed

and synthesis is preformed concurrently while the curve is being drawn. Once the

input curve is complete, the system evaluates if the input curve's endpoints are within

a predefined distance. If the endpoints are close enough, then the system assumes

that the curve is closed and regenerates the entire curve using the decay function

from Eq. 5.5.

4.3. Additional Parameters. The remaining parameters of the model are

determined empirically. Sorne are universally applied for all training sets while others

are aùjutlted accordillg the the nature of the tlet. The importance weighttl, tlcaler:;,

transition step and sigmoid parameters are set once. The shape of the curve is set to be

the primary constraining attribute and all the other attributes have their importance

weights set to sm aller values (i.e. w(O) » w(a) for all other curve attributes a).

78

5.5 DRAWING OUTPUT CURVES

There are 4 scales used for the multi-scale representation and the highest scale is set

to bear the most weight (twice the weight of the other scales). The scales include the

following: the original sample points and 2, 4, 6 fold Haar filtered versions of those

points (i.e. the points resulting from repeatedly applying the filter 2, 4, 6 times on the

raw sample points). The sigmoid parameters are empirically determined; it is found

that a 90 percentile threshold at 15 degrees and 10 percentile threshold at 33 degrees

can provide a good degree of control with limited sensitivity to noise. The mixture

variance, stationarity windows and regularization weights are empirically determined

for each training set.

5. Drawing Output Curves

A curve is drawn by instantiating the decoded maximum likelihood hidden state

sequence. The curve's Cartesian co-ordinates are captured from the auxiliary pa­

rameters described in section 4 while the other attributes are captured from their

corresponding dimensions in the state. The samples from the states are then used as

control-points in an integer scan-conversion algorithm [66] that uses a linear inter­

polant to pro duce the raw pixel values and locations. In cases where the input curve

is closed, the end-points are also linearly interpolated.

5.1. Drawing Texture Fill Seeds. The texture fin seeds are points that

are drawn adjacent to the scan-converted pixels to indicate how a curve should be

shaded. They are rendered using the corresponding colors and directions extracted

from the states. The exact locations of the seed pixels are computed by applying

predefined placement rules that use the location of the current and previous pixels in

the scan-converted curve. For example, if the fill direction is positive, and the previous

pixel co-ordinates, {xp(l-l), Yp(l-l)}, are both less than the current {xp(l), YP (l)} ,

then the location for the seed pixel is {xp(l) + k(l), Yp(l)}. This is repeatedly applied

for each fin-color dimension (there can be more than one seed pixel for each sample

point), incrementing the co-ordinates accordingly. The fin update for the current pixel

stops when either the seed pixels are exhausted or the placement location refers to a

79

5.6 TEXTURE FILLING

point that is already filled. An assumption taken in this procedure is that the scan­

converted curves do not superimpose each other as this can result in pixels emanating

outside the interior of the curve.

5.2. Overlaying Curves. When a new curve is drawn, a new image layer

is created for that curve. The size of the layer is adjusted using the maximum and

minimum co-ordinate values (Le. the bounding box of the curve). It can also be

specified that the layer must span horizontally or vertically up to the edge of the

image (e.g. for filling in the sky or the terrain). The layer or der is determined by

the order in which curves are drawn. The final RGB color value of a pixel is then

computed by compositing the layers as follows:

C = _A_l C_1_+_(_1_-_A_l---.:) (~A_2C_2_+_(_1_-_A_2_)(_A_3C_3_+_._:-))
Anorm

(5.6)

where C is the composite color for the pixel, Ai is the alpha value for the pixel at layer

i and Ci is the color of the pixel at layer i. The normalized composition is computed

by dividing the unnormalized colors by a normalization constant computed as follows:

(5.7)

6. Texture Filling

Specifying the interior colors along each curve as a supplementary attribute allows

the system to initiate a post-processing texture synthesis procedure. This procedure

is used to color inside the empty areas of a closed curve (or an opened curve that is

bounded by the edges of the image). A statistical texture filling process, also based on

a Markov Model of image properties, is applied to synthesize a new texture that looks

similar to a sample texture in the training set. (In regards to the two level hierarchy

of HMMti, the curve-level and the ticene-level, thiti procedure cau be contiidcrcd as a

third level processing phase; the pixel-Ievel.)

The texture filling process is initiated from cues attached to the synthesized

curves, acting as the "seeds" for an incremental stochastic pixel inference procedure.

80

5.7 EXPERIMENTAL SETUP

The pro cess consists of first identifying the empty pixels that need to be colored and

then determining the color by searching the sample texture for a similar regions.

The search for empty pixels is performed over four orthonormal scan-lines; from

left to right, right to le ft , top to bottom and bottom to top. When searching along

a scan line, the first empty pixel that 1) has at least one filled neighbor that is not

a boundary and 2) is found after an odd number of boundary crossings is added

to the list of pixels to be filled and the next scan line is processed. (A boundary is

identified by a unique color.) When all scan-lines are exhausted, the set of pixels to be

filled is sorted in order of the number of filled neighbors each one has. For efficiency,

sorting is performed at every nth iteration. To avoid starvation of low-ranking pixels

and provide a more uniform synthesis from all directions, at every mth iteration the

pixel rank is perturbed randomly and if the top pixel on the li st belongs to the same

scan-line as the top pixel from the last iteration, it is penalized. The highest ranking

unfilled pixel is selected and its color is drawn as the maximum likelihood value of

the probability of the color as described in [98].

The pixel inference procedure is bound by the curve's edge, its bounding box and

the edges of the image. It is applied to each layer independently using the example

texture from the corresponding training set. If the example texture does not have

an alpha map, the alpha value is copied-over from the synthesized seed pixels. Any

unfilled pixels remaining in the image take on the value of a specified background

texture. That is, once post-processing of alllayers is complete, every pixel that is left

unprocessed is set with an alpha value of zero (completely transparent). The layers

are then merged together with a predefined background texture that has its alpha

value set to one (completely opaque).

7. Experimental Setup

The experiments described here were performed using a sketching application that

implements the HMM framework. The application allows a user to draw interactively

while performing curve synthesis in real-time. The user selects the class of curves used

81

5.7 EXPERIMENTAL SETUP

for synthesis and controls various parameters of the synthesis process. Figure 5.1

shows a screen shot of the application's graphical user interface. The main window

consists of three panes, the left pane is used for drawing, the right pane is used to

present the results and the bottom pane provides buttons for common actions. In

addition to the graphical user interface, a command line interface is used to provide

direct access to all parameters and functions.

III --

FIGURE 5.1. A screen-shot of the graphical user interface for the sketching
application. Left pane is used for drawing, right pane is used to display
the results and the bottorn pane is used to provide quick access to cornrnon
cornrnands.

The training sets used in the experiments are carefully drawn by hand with an

electronic pen and tablet. Where applicable, texture seeds are manually extracted

from sample images and, using linear interpolation, are registered with the curves'

sample points. The parameters for each training set are empirically detenllined based

on a subjective evaluation of the results. These parameters are stored together with

the training set and reloaded whenever the set is used. AH experiments are executed

in real time using a 3 Ghz Pentium 4 with 1 Gigabyte of RAM.

82

5.8 EXPERIMENTAL RESULTS

8. Experimental Results

This section presents the synthesis results for various training sets and input

curves. The results are examined and evaluated subjectively under various parameter

settings and curve attributes (such as color and fill-color with the texture filling

process).

FIGURE 5.2. Refined curves from a training set used to draw coastlines.
The entire set consists of 25 examples. The control curves are generated
by applying a low-pass filter on the refined curves, removing the fine details
that are too difficult to draw.

8.1. Coastlines. Figure 5.2 shows several examples from a training set used

to pro duce coastlines. These refined curves exhibit low-Ievel details that are too

difficult or cumbersome to manually draw. For each curve, its associated control

curve is automatically generated by blurring the refined one using a low-pass filter

(removing the elements of the curve that are difficult to draw). This set is used to

train a stationary model.

Figure 5.3 shows an example sketch and the results of the synthesis procedure

when no regularization tenus are utied. It is eatiy to tiee that, although the tiyllthetiiti

exhibits the coastline features, the output is not an acceptable solution. One no­

ticeable artifact is that the topology of the input curve is different than that of the

output curve; the gap between the endpoints is too large for linear interpolation to

83

5.8 EXPERIMENTAL RESULTS

FIGURE 5.3. Example synthesis of a hand-drawn curve using the coastlines
training set (Fig. 5.2).

FIGURE 5.4. Example synthesis with a large magnetic bias.

take place without degrading the desired style. (For display purposes, the output

curve has been left open, though the system normally performs a linear interpolation

due to the fact that the end point of the input curve are close enough such that its

considered a closed curve.) Figure 5.4 shows the result when the magnetic regular­

ization term (Eq. 5.3) is applied. In this case, it is easy to see that the output curve

is close enough to the input curve to observe to the clos ure constraint, though the

learned coastline features are no longer as prevalent. When the magnetic term is too

large, the candidate solutions cannot diverge far enough from the input curve in order

to express the learned style.

Figure 5.5 shows the result when applying the sequence dependent decay function

on the regularization weight (from Eq. 5.5). The magnetic attraction constraint is

84

5.8 EXPERIMENTAL RESULTS

FIGURE 5.5. Example synthesis when applying the decay function on the
magnetic bias.

relaxed throughout the inner parts of the curve, allowing for the coastline features

to be expressed, while bearing more weight at the endpoints, resulting in an output

that is topologically similar to the input.

Figure 5.6 shows the results when changing the mixture variance. It can be seen

that the larger the variance, the more influence the input curve and magnetic terms

have on the output. In the top left example, because the synthesis uses a very low

mixture variance (~ 1 square degree), the resulting output consists of segments from

only one of the training examples (almost an exact instance from training). The

following curve on the right shows the output when increasing the variance by 20

degrees. The resulting curve is a mixture of segments from the training set, though

there is insufficient blurring for the input and magnetic term to steel' the process such

that the output exhibits the same overall shape as the input. When increasing the

variance further, the output begins to converge to the overall shape of the input. The

bottom right curve shows the result wh en using a very large variance (in the order of

10000 square degrees). In this case, the learned constraint for sequential consistency

have minimal influence and the shape of the output curve lacks the desired style.

Figure 5.7 shows the re~mltti for the tiame experimellt utied to produce the retiultti

shown in Fig. 5.6, but without the regularization term. This isolates the effects

of the input cOllditional and demonstrates its influence when changing the mixture

variance. It can be seen that the first few output curves are similar to those in

85

5.8 EXPERIMENTAL RESULTS

FIGURE 5.6. Example outputs demonstrating the effect of the mixture vari­
ance. Top center shows the input curve. From the top-left to bottom-right,
the results are shown when increasing mixture variances.

the previous figure, demonstrating that the learned sequential constraints are the

dominating biases in both experiments. When increasing the variance further, the

input begins to play a bigger role, though it fails steer the process such that the output

converges to the overall shape of the input, even when the sequential constraints are at

a mmlmum. This further demonstrates the importance of the magnetic regularization

term.

8.2. Leaves. Figure 5.8 shows a training set used for drawing leaves. It can be

seen that for sorne examples in this set, the low-Ievel details are a uniquely associated

to the overall shape (e.g. the maple leaf has a unique overall shape and defining

details), while for other examples, leaves with similar overall shapes exhibit distinct

features (there are ambiguities in the set). Because the examples have well-localized

features, this set is used to train a non-stationary model. In Fig. 5.9(a), the synthesis

results are illustrated when using this set. It can be seen how the generated mixtures

exhibit the desired leaf-like styles.

86

5.8 EXPERIMENTAL RESULTS

FIGURE 5.7. Examples demonstrating the results when increasing the mix­
ture variance and excluding the magnetism term. Top center shows the
input curve. From the top-left to bottom-right, the results are shown when
increasing mixture variances. Because the input curve is closed, the long line
segments are produced by linear interpolation to close the output curve.

However, the resulting shapes are not symmetrical, a property often seen in real

leaves but can sometimes be ignored in the realm of imaginative illustrations. Sup­

plementary global constraints are required in order to enforce symmetry and hence it

remains an open problem. Figure 5.9(b) shows the successive results of the ongoing

synthesis process. It can be se en how input points later in the sequence affect the

solution at earlier points.

8.3. Skyline. A set of training curves consisting of two primitive roof-top

shapes are used to pro duce skylines (Fig. 5.10). Note the difference between the set

shown in Fig. 5.10(b) and the set shown in Fig. 3.1(a); the connecting line segments

are no longer required as the Gaussian blur allows the user to force a segment mixture

despite the fact that such transitions are not seen in the set. In this example set,

because the desired output consists of repetitive mixtures of these examples, the set

is used to train a stationary model.

Figures 5.11 and 5.12 show the results when using this set. It is easy to see

that the outputs consists of a locally consistent mixture of the training set that are

87

5.8 EXPERIMENTAL RESULTS

(a) Control curves produced by filtering the refined curves.

(b) Refined curves from a training set used to capture a style for leaves.

FIGURE 5.8. A training set used for producing outlines that look like leaves.
The control curves are filtered versions of the refined ones.

guided by the input curve. Desired transitions that do not exist in the training

set can also be seen, such as that from a vertical line to a sloping roof-top. To

demonstrate the importance of the backtracking procedure, Fig. 5.12 shows the results

when synthesizing a curve using a greedy approach and the Viterbi algorithm. It can

be seen that when using a greedy strategy (middle curve) , the input curve in its

entirety is not considered and each segment is treated independently, resulting in

the stair-case effect. Backtracking corrects this problem by considering the entire

sequence leading to a satisfactory result.

8.4. Basic Shapes. Figure 5.13 shows a training set with various polygonal

shapes and a round shape (used to train a stationary model) and Fig. 5.14 shows the

results when using this set. It can be seen how the appropriate segments from the

training set are synthesized in arder to maintain the overall shape of the input curvc.

Figure 5.15 shows the same training set with color added. This set is used to pro duce

the results shows in Fig. 5.16, 5.17 and 5.18. In Fig. 5.16, the effect of applying the

example selection coherence bias (Eq. 5.2) is demonstrated. It can be seen from the

88

5.8 EXPERIMENTAL RESULTS

o
&
6
o

(a) Example synthesis using the leaf train­
ing set.

(b) Results of the synthesis procedure
while accepting addition al input (from
top to bottom).

FIGURE 5.9. Curve synthesis using the leaves training set.

l (Il
(a) Control curves. (b) Refined curves.

FIGURE 5.10. A simple training set used to draw skylines.

colors along the output curves that when this regularization term is used there are

less transitions between examples and the output is more uniformly colored.

8.5. Fish. Figure 5.20 shows the results when using a training set consisting

of fi~h shapes (Fig. 5.19). It can be se en that some of the outputs are exact Illatche~

from training while others are novel curves consisting of mixtures of segments from

training. Users can control the degree of mixing by changing the variance parameter.

For this training set, a non-stationary models was used.

89

5.8 EXPERIMENTAL RESULTS

FIGURE 5.11. Example synthesis using the skyline training set.

8.6. First Order versus Second Order Representation. Figure 5.21

shows a training set consisting of only one example (a curl-like pattern) associated

with a simple control curve (a straight line). This set is used to generate the results

show in Fig. 5.22. Instead of using the tangent angles ()(t), the shape attribute of the

curve is encoded using the second-order representation (L~.e(t)). One of the difficulties

often seen when using a second oder representation is that errors are accumulated

over the entire curve. Figure 5.22(a) shows an example synthesis where, due to

accumulated errors, the output curve drifts away from the input. Further, since the

control curve in this training set consists of only a straight line, the system is not

trained to respond any differently to different input curvatures. This lack of control is

demonstrated in Fig. 5.22(b). Applying the magnetic regularization constraint helps

avoid these issues by biasing the distribution such that the output curve is more

likely to remain close to the input (Fig. 5.22(c)). Note that because an orientation

invariant representation is used, despite the fact that the system is trained using only

one example oriented in one direction, the pattern is repeatable along any arbitrary

direction. Such orientation invariance is sometimes desired, but not always (i.e. trees

are always vertical, text horizontal etc.). Using the same training example, Fig. 5.23

:::;hows the result:::; whell changillg the input :::;amplillg resolutioll. It cau he tieell how

the size of the curl pattern dilates when reducing the sampling resolution.

Figure 5.24 shows the results when using both the first and second-order repre­

sentation. For the first-order representation, the training sets consists of the patterns

90

5.8 EXPERIMENTAL RESULTS

(

FIGURE 5.12. Example demonstrating the effect of backtracking. The top
curve shows the input, the middle curve in shows the result when using a
greedy approach, the bottom curve shows the result when backtracking.

rotated at four principle directions, up, down, left, right. (The actual examples con­

sists of vertical and horizontal patterns that are traversed along both directions.)

Using the second-order represelltation results in outputs are similar ta that seell in

texture maps, warping the pattern over the input curve. Using the first-order rep­

resentation, the outputs preserve the rectilinear shape of segments from the training

sets.

91

5.8 EXPERIMENTAL RESULTS

OD 060J
FIGURE 5.13. A training set consisting of basic shapes.

o
o

D
D

~ ')
FIGURE 5.14. Synthesis results using the basic shapes training set.

FIGURE 5.15. Training set with the color attribute.

Figure 5.25 shows a simple training set used ta further demonstrate the degree

of control when using the second-order representation (a stationary model is used).

The results are show in Fig. 5.26. It can be seen in Fig. 5.26(a) that, starting from

92

5.8 EXPERIMENTAL RESULTS

/\
/ \

(a) Without the example coherence regularization term.

(b) With the example coherence regularization term.

-7

_/

~
-_/

FIGURE 5.16. Results displaying the effect of the example coherence regu­
larization term. Wh en using the term, there are fewer transitions between
training examples.

the top-left, the process is controlled to execute the desired turn, but when the input

curvature is too low, the output curve follows a straight trajectory while the input

slowly drifts away, an example of input drift. Figures 5.26(b) and 5.26(c) show the

results when increasing the magnetism term. It can be seen how the output curve

follows the input curve by having to perform a few turns that in the short term are

divergent from the input. This training example is further used ta leanl the shapes

for both a left turn and a right turn (the model is trained by traversing the curve

from both end-points). Figure 5.27 shows the results with various setting for the

magnetism term.

93

5.8 EXPERIMENTAL RESULTS

FIGURE 5.17. Example synthesis using the basic shapes training set.

o
cJ

1

l
----r-O

'-------' (

o
FIGURE 5.18. Example synthesis using the basic shapes training set.

.~.~/-' .. / ,
L- ..

, ,

8.7. Texture Fill. Figure 5.28 illustraten the renultn whell illcludillg the fill-

color attribute and Fig. 5.29 shows the texture that was used for the texture filling

process illustrated in Fig. 5.30. It is easy to see that the texture is extrapolated from

the contours to pro duce the desired full-color illustration.

94

5.8 EXPERIMENTAL RESULTS

FIGURE 5.19. Training set with examples of fish. Control curves (not
shown) are blurred versions of the refined ones.

FIGURE 5.20. Example synthesis of fish shapes. The left shows the inputs
and the right shows the results. Some results are exact instances from the
training while others are segment mixtures.

8.8. Additional Examples. Figure 5.31 shows example synthesis with and

without the multi-scale representation. It can be seen that the large scale features

are not captured without using the multi-scale representation. In Fig. 5.32, the

refinement of an entire sketch is illustrated. Each curve is refined by first manually

selecting the desired training set and then applying the synthesis procedure using

that set. Figures 5.33 and 5.34 show screen-shots of the application's user interface

with more synthesis examples.

95

5.8 EXPERIMENTAL RESULTS

OOOOQ

FIGURE 5.21. Training set consisting of a curl-like pattern associated to a
simple control curve.

(a) Drift due to accumulated errors in orientation.

(b) Lack of control in position.

(c) Control asserted due to the magnetic term.

FIGURE 5.22. Synthesis of a curl pattern using the second-order shape de­
scriptor. Left shows the input and right shows the synthesis results.

96

5.8 EXPERIMENTAL RESULTS

FIGURE 5.23. Synthesis results for three different sampling resolutions. Top
shows the input, bottom left to right show the results when reducing the
resolution (fewer input samples).

97

5.8 EXPERIMENTAL RESULTS

/v~

ODOOQ

(a) (d)

(b) (e)

(c) (f)

FIGURE 5.24. Examples demonstrating the difference between a first and
second-or der representation. Figure (a) shows the input curve and Fig. (d)
shows the two patterns and the control curve (straight line segment). Figures
(b) and (e) show the results using the first-order representation and figures
(c) and (f) show the results using the second-order representation.

FIGURE 5.25. A training set consisting of a right turn (traversed from top­
left to bot tom-right). It is also used to learn the shape of a left turn (tra­
versed from bottom-right to top-left).

98

5.8 EXPERIMENTAL RESULTS

(a) Input orientation drift due to low curvatures that are not found in training.

J
(b) Low magnetism weight. Note how the curve's position diverges from the input in order to make
the right turns such that, in the long term, the output is doser to the input. A behavior not apparent
when using a greedy strategy.

(c) Large magnetism weight.

FIGURE 5.26. Effects that result when using a training set consisting of only
a right turn.

99

5.8 EXPERIMENTAL RESULTS

(a) Synthesis without the magnetic term. The output curve fails to close properly.

(b) Synthesis with the magnetic term. The output remains near the input, but is too noisy.

(c) Synthesis with the magnetic term and the decay function applied to its weight. This preserves
both longer line segments and the clos ure condition.

FIGURE 5.27. Results when using a training set consisting of left and right
turns.

100

5.8 EXPERIMENTAL RESULTS

FIGURE 5.28. Synthesis of coastlines with texture seeds.

FIGURE 5.29. Texture image used for coastlines.

101

5.8 EXPERIMENTAL RESULTS

FIGURE 5.30. Texture filling process. The progression of the texture fill
pro cess is shown at the top, from left to right and the final result is shown
at the bottom.

/v"'"'

FIGURE 5.31. Example synthesis with and without the multi-scale represen­
tations. Top left shows the input, top right shows the training set, bot tom
left shows the result when the wavelet representation is omitted and the
bottom right shows the result when the wavelet representation is included.

102

o

5.8 EXPERIMENTAL RESULTS

o

(a) (b)

FIGURE 5.32. Sketch refinement using several different training sets (as­
signed manually). The left shows the input and the right shows the results.

103

5.8 EXPERIMENTAL RESULTS

~ <lulu dr,lW

Hand Dfaw Genera\ed

d c=1

ç) D <J P
c=::) ~

~ ~

cYJ 0 ~ d
<:/ 0 C)<1 D

[~ r~~-;I B EJ 1 5Cale++ 1 1 ~m++ 1 1 NormaJjze 1 1 GenerateJ 1 dasslfy 1 1 8acktrack 1 [~Q

1 SEL++ 1 1 SEL-] 0 W G G 1 Del ... 1 1 Semantlc backtrack

§RALlJ W [] [~

I~~ [~]

FIGURE 5.33. Screen-shot: more examples using the fish-shapes training
set. Note that when the training set is not rich, input curves that do not
resemble the limited set of segments pro duce odd results. Such results may
be interesting in the realm of fiction!

104

5.8 EXPERIMENTAL RESULTS

Hard Oraw

EJ
G

Generated

FIGURE 5.34. Screen-shot: synthesis using the roof-top training set shown
in figure 5.10.

105

CHAPTER 6

Path Planning Application

A robot trajectory can be represented by a signal that identifies the positions a

robot must sequentially follow in order to reach the desired destination. This chapter

describes the application-specifie framework customization required for producing

su ch signaIs. While there are various new components introduced into the system,

most of the methods presented for the sketching application are common to this

domain. This chapter also presents the path synthesis results and exemplifies how

the system attempts to predict permissible robot trajectories; paths, guided by an

input goal trajectory, that avoid obstacles while maintain the learned constraints.

The training set used in the experiments consist of example trajectories for non­

holonomie motions.

1. Path Attributes and Parameters

The hidden layer of the HMM encodes constraints on the allowable sequence of

positions a robot can traverse (the allowable trajectories). Using either a first-order or

second-order representation, the states corresponding to this layer encode the shapes

of segments from the allowable trajectories (A = {e(t), ~e(t)}). As in the sketching

application, there are 4 scales used for the multi-scale representation and the highest

sc ale is set to have the most weight (twice the weight of the other scales). U nlike in

the sketching application, where it is not always necessary to have exact sequential

6.1 PATH ATTRIBUTES AND PARAMETERS

consistency with the training set to achieve the desired visual effect, the sequential

constraints learned for producing robot trajectories must be strictly enforced. The

mixture variance is thus set to a small value (~ 5 square degree), just large enough to

allow for small discrepancies that may occur from quantization errors or minor large­

scale inconsistencies. Further, in the path planning application, the absolute location

of features in a trajectory does not impose a constraint on the desired output (at

any point, the robot should have the potential to perform any maneuver), hence a

stationary model is used. (Though it is conceivable to have a training set where

stationarity is desired, for example, there may be a maneuver that is desired only at

the beginning or end of the trajectory.) The translation step T is set to one sample

point, allowing for transitions to take place on a point-by-point basis.

The observation layer of the HMM encodes the expected control mechanism used

to guide the robot in or der to follow a goal trajectory. The states corresponding to this

layer encode segments of the goal trajectory and include the following components:

• The shape of the goal trajectory

• The direction of the robot 's axis

The goal trajectories are paths that the user (or high-Ievel planner) pro duces to con­

trol the robot (typically excluding the complexities incumbent by the mechanical

constraints of the robot). Each goal trajectory is associated with the more com­

plicated and allowable trajectory (i.e. the control/refined curve coupling). Their

shapes are represented using the same order and multi-scale representation as those

used for the allowable trajectories. The direction of the robot 's axis is an abso­

lute orientation that identifies where the robot must face along the goal trajectory

(Le. the forward direction). It is represented by a first-order representation without

the multi-scale components. The set of control attribute is thus defined as follows:

Ao = {cp(t), 6.cp(t) , B(t)}. The sigmoid blur parameters are set to the same values

as those used in the sketching application as it is expected that a user will steer the

process.

107

6.2 REGULARIZATION TERMS

2. Regularization Terms

There are several components that contribute to what constitutes a valid path.

First, the HMM must be taken into account such that the output is consistent with

the training examples. Second, it is preferred that the generated paths stay near the

input trajectory. Finally, the output curve should not go through or approach too

close to obstacles in the environment. This combination of hard and soft constraints

can result in complex paths that are otherwise difficult to determine efficiently using

traditional analytical models. Further, very few existing planners are example-based.

In summary, the components are:

• The learned constraints of the HMM

- local shape consistency with training examples

- control by the goal trajectory

• Distance to the goal trajectory

• Obstacles avoidance

Using the regularization framework describe in Section 4, these components are com­

bined together to provide the desired control scheme.

To reduce the average distance between the goal trajectory and the synthesized

one, the magnetic regularization term, describe in Eq. 5.3, is used. The regularization

weight is empirically specified and is fixed over the entire curve. (One may suggest

ways to set '\'3 based on the divergence exhibited between the control and refined

curves in the training set.)

To avoid obstacles in the environment, an energy field is generated over free space

and its values are used to bias the likelihood of candidate paths. The field is generated

by applying a distance transform over the obstacles in the environment. A suit able

function must result in high energies at regions near the obstacles and low energies at

regions far form obstacles. As such, the energy of astate is updated by the following:

108

6.2 REGULARIZATION TERMS

The energy of the state is augmented by the value of the field, calculated as the inverse

of the average square distance between the position of points in the current candidate

state and the position of the nearest obstacle (the obstacle that results in the max­

imum field value). At positions close to or on the obstacles, the energy approaches

infinity while at areas further away the energy decays to zero. The regularization

weight À4 controls the degree of influence the obstacles have on the solution. Large

values will coerce the robot maintain a large distance from the obstacles while small

values will allow the robot to reach closer to the obstacles, allowing it to traverse

through narrower free-space regions.

For efficiency, the environment is preprocessed by generating the field in advance

over a grid. To evaluate the energy for a state, the auxiliary parameters that identify

the state's Cartesian co-ordinates are used to index the grid, providing random access

to the gird values. Figure 6.1 shows a field generated for a sample environment.

FIGURE 6.1. Example energy field. The left image shows the environment
and the right image is a plot of the energy field.

109

6.3 DYNAMIC SAMPLING

3. Dynamic Sampling

The obstacle avoidance and magnetic regularization terms often result in com­

peting factors. In order to avoid obstacles, the synthesized path may divert from the

input more than any divergence exhibited between the control and refined curves in

the training set. This results in a discrepancy between the arc-Iength that is required

to reach the goal and the arc-Iength of the input trajectory. (Eq. 5.4 only compen­

sates for arc-Iength discrepancies that exist in the training set.) In such cases, the

synthesized path may not converge to the goal trajectory.

To address this issue, during the propagation and conditioning steps, instead of

using the fixed sampling rate to determine the current sequence position, each can­

didate state is synchronized with the input dynamically. This is accomplished by

computing the appropriate sequence position of the input trajectory for each candi­

date state independently. As such, at any given iteration, a different input conditional

can be applied to different candidate states, depending on where on the input path

the resulting candidate state is synchronized to.

The sequence position of the input trajectory is identified by the projection of

candidate path onto the input trajectory (Fig. 6.2). This is performed by computing

the dot product of the vector VI from the candidate path's starting point to the

current point with the vector V2 from the input 's starting point to the the last input

sample point used. The length of the projection Iql is computed as follows:

(6.2)

If the dot product is negative or if the length of the projection is smaller than IVII,

then the same sequence position l is used for the next iteration (li+! = li), otherwise

the proceeding sequence position l + 1 is used (lHI = li + 1). This sampling scheme

results in a sequence progression that either waits for the output to catch up to the

input (if ahead) or attempts to catch up with the output (if behind) and, to help

ensure progress and avoid cycles, it never back-steps to earlier points.

110

PO

6.3 DYNAMIC SAMPLING

V2

Obstacle

• • +.. .:.e
•• •••• Pl

•• .+
+. .+

•••• • •••••• •.•...•.•.
Output

Pl'

FIGURE 6.2. Projection of the vector V2 (from the output trajectory) onto
the vector VI (from the input trajectory). The projection is used to deter­
mine which sample point along the input curve should be used for applying
the input conditional.

Input

The system then iterates over the propagation and conditioning steps until either

all candidate paths are within sorne acceptable distance to the last point of the input

trajectory or a maximum number of iterations is reached (the default maximum is

twice the number of samples from the input). This maximum iteration limit is re­

quired to avoid infinite propagations (there is no guarantee that all, or any, candidates

paths will converge). While decoding the model, there willlikely be cases where sorne

candidate states result in paths that have converged while others have not. In such

cases, only the candidates that have not reached the goal must be propagated fur­

ther. An auxiliary parameter is used to identify if astate has reached the goal. The

candidate titates that have reached the goal are labeled ati leaf titateti and excluded

from the next propagation step (Eq. 4.8 is modified to exclu de allleaf states).

Selecting the best trajectory then consists of choosing the leaf state with maxi­

mum likelihood and backtracking. Because likelihood comparisons are made between

111

6.5 RESULTS

candidate states from different iterations (resulting from longer or shorter sequences),

the probability normalization constants must be considered in the likelihood compu­

tation. The normalization constants used at each iteration are divided by the sum

of all normalization constants and then the likelihoods are multiplied by their corre­

sponding value.

4. Experimental Setup

Experiments have been performed using the sketching application's Graphical

User Interface as described in chapter 5. A modification to the interface was performed

in order to provide a method for drawing simulated obstacles in the environment and

computing the energy field. The goal trajectories are hand-drawn and the desired

robot forward directions are manually entered by specifying the corresponding vectors

at the desired locations. The lack of for ward directions in sorne or all sam pIe points

does not have an adverse effect on the output as only the input components that are

actually entered in the system are applied (Eq 4.11). A training set that simulates

the actions of a robot subject to a bounded turning radius constraint is used and the

results are evaluated subjectively.

5. Results

Figure 6.3 shows a manually constructed training set used to learn non-holonomie

motion constraints. The refined trajectories are shown on the left and the expected

goal trajectories are shown on the right. For the forward directions, the sequence of

tangent angles along the refined trajectories are used (the refined trajectories are used

for both the hidden states and the secondary dimension of the observation states).

This set is used to train a stationary model using a first-order representation of the

curve::; and all of the regularization tenu::; de::;cribed in thi::; chapter and the previou::;

chapter are included.

Figure 6.4 shows an input trajectory that is refined using several training sets;

the non-holonomie training set and the sweep-like and curl-like training sets from

112

6.5 RESULTS

FIGURE 6.3. A training set with example paths for non-holonomie motions.
Paths on the left display the constrained motions while paths on the right
dis play the associated unconstrained goal path. The forward directions used
for the secondary control attribute consist of the tangent angles along the
constrained motions (left). The full set consists of the above set at four
orientations to form a rectilinear set.

previous chapter. It can be seen how the resulting paths form analogies to the input

path and learned styles. They follow the overall goal trajectory and remain locally

consistent with the training set.

Figure 6.5 shows two more examples that demonstrate the results when using

the non-holonomie training set. It is easy to see that the generated paths follow a

smooth trajectory while preserving the desired overall trajectory. It can bee seen in

the left example that the bottom right turn was synthesized as an extended loop about

that corner rather than the typical smooth turn (as shown in training). The system

takes into account the fact that the proceeding segment consists of a second turn,

immediately after the first, limiting the space available for performing the standard

t:illlooth turn and tllUt:i the tighter loop lllaneuver is required.

In Fig. 6.6, the input consists of a goal trajectory with forward directions spec­

ified at various points along the goal trajectory (indicated by arrows). The results

show how the predicted output paths attempt to follow the overall goal trajectory

113

6.5 RESULTS

A B

c o

FIGURE 6.4. The examples above show the input path (A) and the synthe­
sized paths (B,C,D) using three training sets. The three training sets consist
of a zig-zag pattern for a sweep motion, a curl-like pattern for a narrow-beam
sensor scan and the bounded turning radius pattern.

FIGURE 6.5. Example path synthesis using the non-holonomie training set.
Top shows the input and bot tom shows the resulting path

114

6.5 RESULTS

while performing the required maneuvers that align the robot to the desired forward

directions. Figure 6.7 shows an example that demonstrates the importance of the

magnetic regularization term. It can be seen how the output remains close to the

input only when the magnetic regularization term is used.

FIGURE 6.6. Results when including the forward direction as an input con­
dition (indicated by arrows). Top shows the input and bottom shows the
generated paths. The cusps indicate a direction reversaI.

FIGURE 6.7. Results with and without the magnetic regularization term.
The left path shows the goal trajectory, the middle shows the resulting out­
put without the magnetic regularization term and the right path shows the
output with the magnetic regularization term. The cusps indicate a direction
reversaI.

In Fig. 6.8, the results of several example syntheses with the obstacle avoidance

term are illustrated. It is easy to see how the generated paths avoid the obstacles

115

6.5 RESULTS

FIGURE 6.8. Example path synthesis going through a narrow region. Left
shows the input, right shows the output and the shaded areas show the
obstacles.

while roughly following the goal trajectory. Figures 6.9 and 6.10 show the path

planning results in two simulated environments. The goal trajectory directs the robot

to traverse either too close to or through obstacles but the resulting paths avoid the

obstacles and preserve the learned non-holonomie constraints.

FIGURE 6.9. Example path synthesis with obstacle avoidance. Left shows
the input and right shows the output.

Figure 6.11 demom;trate::> the effect wheu lllodifyillg the weight of the oo::>tade

avoidance regularization term and applying the dynamic sampling technique. It can

be seen that with a large regularization weight, the paths stay further away from

the obstacles while a small weight allows the paths to go through narrow regions.

116

6.5 RESULTS

FIGURE 6.10. Example path synthesis with obstacle avoidance. Left shows
the input and fight shows the output.

Furthermore, because the output path diverts far from the input path, there are not

enough sam pIe points to reach the destination. The dynamic sampling technique

overcomes this issue by compensating for the missing sam pIe points.

Figure 6.12 illustrates an example where the system does not find a solution that

converges to the final goal. The large obstacle obstructs a direct path and in order

to reach the goal the path must divert far from the input, requiring a number of

samples that is beyond the specified maximum. The results when using the second­

order representation are shown in Fig. 6.13. It can bee seen that the path can be

generated along arbitrary directions. To achieve this results, the parameters of the

sigmoid are adjusted to impose the input conditional more heavily. When using the

absolute angles, the bias from the input is accumulate over successive iterations while

when using the second-order representation, the input variation is narrowly localized

(i.e. whell performing a turn, the input cOllditional is distinct only at the corner) and

a single match must sufficiently bias the distribution. Though when the match is not

sufficient, the magnetism term helps maintain the overall shape. This can be seen

when comparing the first (top-left) and fourth (bottom-right) u-turns to the other

117

6.5 RESULTS

(a) Synthesis with a fixed sampling rate.

n

(b) Synthesis with dynamic sampling.

FIGURE 6.11. Example path synthesis going through a narrow region. Left
shows the input. The middle shows the output using a large value for À4

and right shows the output with a small value for À4 (the obstacle avoidance
term). It can be seen that due to the large divergence, the output trajectory
lags behind the goal trajectory. This is compensated for by the dynamic
sampling technique.

ones. Those u-turn segments are not synthesized in direct accordance to the training

data but rather sorne other maneuver is used to follow the trajectory.

118

6.5 RESULTS

FIGURE 6.12. An exmaple where the robot does not reach its goal. Left
shows the input and right shows the output.

FIGURE 6.13. Example synthesis using the second-order representation.
Note that wh en using this representation, the curves have few distinguishing
values. In sorne cases, the input matches well and the desired features are
generated (the learned u-turn maneuver) while in other cases, the match is
not sufficient but the magnetism term helps steer the pro cess (in cases where
the learned u-turn should have been generate another maneuver was used).

119

CHAPTER 7

Classification of Curves

In previous chapters, it is assumed that the validity of applying a HMM on an input

curve is subjectively determined by a human operator. This chapter describes a

framework for automatically classifying those curves, identifying which set of training

examples the curves best belong to. This allows the system to objectively determine,

in a maximum likelihood sense, the compatibility between models and curves.

The applicability of the classification framework is exemplified by making two

extensions to the sketching application: one for automated model selection and the

other for automated curve extraction. For the automated model selection, when a user

draws a curve, the system attempts to determine the most likely HMM that should

be applied to refine the curve (and thus implicitly recognize it). This is accomplished

by taking into account both the shape of the input and its context in the sketch

(its relationship to other curves). The approach consists of iteratively evaluating

and decoding the Hierarchical Hidden Markov Model described in chapter 4. For the

automated curve extraction, when an input curve is rendered in the form of an image,

the system attempts to automatically extract from the image the most likely curve

that belongs to a particular model. This is accompli shed by evaluating all possible

curves in the image with respect to the HMM and selecting the one with maximum

likelihood. Results and discussions are presented for each of these applications.

7.1 SCENE REFINEMENT MODEL

1. Scene Refinement Model

A seene consists of a set of curves drawn in accordance with a well defined set of

rules that constrain the types of curves based on their spacial position and sequential

ordering. The sequential constraints in a scene can suggest, for example, that back­

grounds must be drawn first, followed by other objects which in turn can be followed

by other objects, each drawn over the previous. They can represent typical drawing

habits, such as when users draw the profile of a cartoon face, the forehead will most

likely be followed by a nose, then a mouth and a chin. Conversely, the scene can be

sequentially unconstrained, such that every curve can follow any other type of curve.

The spacial constraints are applied to further restrict the types of curves that can be

drawn based on their relative locations. They can suggest, for example, that sorne

types of curves can be drawn above or below other types. High-level quantifiers are

used, such as above, below, left, right, in and out, deterrnined relative to the edges

and center of the bounding box of each curve.

A scene-Ievel HMM encodes such constraints by restricting the types of refine­

ments that can be applied on curves in a sketch (the curve-Ievel HMMs). Recall from

Eq. 3.11 that the set QO is the set of all HMMs applicable to a scene. A seene refine­

ment model Al is then an augrnented HMM (Eq. 4.1) where the states correspond to

curve-level models in QO. In this fashion, all of the rnethods described in Chapter 4

are applicable to the scene-level models. This section further describes the approach

take to learn and apply scene-Ievel refinements.

1.1. Learning Scene Constraints. A scene-Ievel HMM Al is trained using

a graph y = {D, E} that defines the high-Ievel scene constraints (Fig. 3.6). The nodes

D of the graph refer to the HMMs in the curve-level and an associated position (above,

be1ow, 1eft, right, in or out). For examp1e, if there are three lllodelt;, oue to pro duce

grass, one to produce trees and one to pro duce clouds, there could be as rnany as

eighteen nodes. The edges E of the graph include weights that identify the probability

that a user would draw the type of curve (identified by the destination node) at a

121

7.1 SCENE REFINEMENT MO DEL

relative position to the previous (identified by the source node). For example, the

probability that a tree is drawn above a cloud is very small.

1.2. Hidden States and Transition Matrix. The hidden states of the

scene-Ievel HMM represent nodes from the graph y and the multi-dimensional state

space can easily accommodate for both attributes (model and position). Each curve­

level HMM in ç;? is manually assigned a unique model label L that is encoded in the

state's first dimension. For efficiency, a state's second dimension is used to encode all

of the allowable positions using a six bit number where each bit refers to a location

identifier (i.e. the first bit can represent up, the second down etc., using this value as

a bit-mask, simply applying a bitwise OR operation on the position of the curve can

determine the curve's positional validity). The likelihoods for the transition matrix

Ml are captured directly from the edges of the graph.

1.3. Observation States and Confusion Matrix. The observation states

of the scene-level HMM encode the observed positions of curves relative to one another

(an observation consists of an input curve drawn at an observable position relative

to the previously drawn curve). The confusion matrix BI is the Identity matrix such

that the observation states correspond directly to the hidden states. Recall from

Equation 4.11 that although the observation states refer directly to the hidden states

(and hence must be two dimensional), the first dimension is implicitly disregarded

as only the curve position is used in the input observation (the type of curve being

drawn is not an observable).

1.4. Additional Model Parameters. All scene-level HMMs assume a sta-

tionary model as enforcing a constraint on the absolute sequential position of curves

cau beCOllle overly re~trictive, exce~~ively reduciug the uumber of ~ceue~ that cau be

produced. There is one regularization term embedded in the scene-Ievel model and

it is used ta take into account the shape of the curve (discussed further below). The

translation step is set ta one (iterating on a curve by curve basis) and the multi-scale

122

7.1 SCENE REFINEMENT MO DEL

representation in not used (it is assumed that it is sufficient to only consider the

immediate neighbor in the sequence of drawn curves).

It is expected that the exact position of curves are given, thus there is no input

blurring applied (the sigmoid parameters are set to very small values). Further, the

similarity function in Y 0 is modified such that a bitwise OR operator is used to

determine if two states are similar (recall that the position identifier is represented

by a six bit number). Finlay, note that the curve-Ievel HMMs are labeled arbitrarily

and the labels are not meant to imply a distance metric between models (identifying

the similarity between different types of models is an open problem). Therefore, state

blurring is also not applicable on the hidden states (the mixture variance is set to a

low value).

1.5. Scene Refinements. The scene refinement process consists of first de­

termining the most likely sequence of curve-Ievel HMM models that should apply to

each curve, then refining the individual curves using the associated models. Given a

sequence of K curves <I>(O) , <I>(1), ... ,<I>(K), a set go with N curve refinement models

go = {A ~ , Ag, ... A ~} and a scene-Ievel HMM Al trained under a particular scene

graph y, the most likely sequence of curve refinement models that apply on each

curve must be determined:

max p{AO(O), ... , AO(K) 1 <I>(O) , ... , <I>(K), Al}
A~ ... A~

(7.1)

There are two criteria that must be considered when solving for this maximum:

• The high-Ievel scene constraints .

• The similarity between an input curve <I>(k) and the models' training curves.

These two criteria are combined using the regularization framework such that the

scene-Ievel HMM Al is decoded with a regularization term that measures the com­

patibility of the candidate models with the curve's shape.

1.6. Regularization Term for Evaluating Model Compatibility. The

scene-Ievel regularization term RI is developed to bias the distribution toward models

123

7.1 SCENE REFIKEMENT MODEL

that are more compatible with the input curve. The value is computed over aU curve­

level models as a function of the input curves. For each of the K input curves, a vector

is used to represent the log-likelihoods of all models in go where in the resulting vector

sequence R1(O), R1(1), ... , Rl(K), the value R~(k) is the log-likelihood that the model

A~ can generate the observation sequence corresponding to the input curve <I>(k).

This likelihood is computed by applying the Evaluation algorithm over all HMMs in

go using the corresponding input curve. For the k th curve, a refinement model A~ is

evaluated by iterating over the curve's arc-Iength and computing the following:

1/J~~ (Hi(t)) = L (p{Hi(t) 1 Hj(t - 1), A~}1/JA~ (Hj(t - 1)))
Hj

(7.2)

where Oin,k(t) corresponds to the observation for the kth input curve at sequence

position t (i.e. <I>(k, t)) and Hi(t) is the candidate hidden state for the curve-Ievel

model A~. The likelihood that a model A~ can generate the observation sequence

corresponding to the curve <I>(k) is computed by taking the the sum over all states in

W A~ (n). The value for the regularization term is computed as the logarithm of this

sum:

Rn(k) = log (L 1/JA~ (Hi(Tk))) (7.3)
Hi

where Tk is the sequence length of the kth curve. This procedure is almost identical to

the steps for decoding the HMM (Eq. 4.8). Instead of choosing the maximum previous

state at each step of the process, the sum the probabilities of aU mat ching states is

used. That is, aU of the possible ways that the model can be used to synthesize the

curve are considered and the accumulation of the individual likelihoods is used as a

measure of its total likelihood.

1. 7. Probability Normalization. While the probability vectors are nor-

malized at each iteration of the decoding algorithm, in the evaluation algorithm the

compound probabilities over the entire curve are required (Eq. 7.2). However, for long

124

7.1 SCENE REFHŒMENT MODEL

curve segments, the probabilities may reach very small values and become difficult.

to store. Thus, at each iteration, the probability vector 'li A~ (t) is normalized and the

normalization constant CA~ (t) is stored. Once all models have been evaluated, the

normalization constants at each iteration are themselves normalized over all models

then compounded over the entire sequence as follows:

(7.4)

and

(7.5)

where CAO is the compound normalization term used to determine the candidate
n

model's likelihood. Further, since each curve-level model is customized with poten­

tially different parameter settings, their values must also be taken into account. The

mixture variance must be included as a normalization constant for the probability

vector (divide by a} The state's energy is also normalized using the sum of the reg­

ularization constants. It is assumed that the same sigmoid parameters are used for

all training sets (the sigmoid parameters change as a function to the user) and that

the translation step is the same for all models in GO (the sequence length is the same

for each model).

1.8. Decoding the Applicable Curve Refinement Models. Once the

vectors Rl(O), Rl (1), ... , Rl(K) are computed, they are used in decoding the scene­

level HMM A 1. This is accomplished using the same approach taken for decoding the

curve-Ievel HMM (Chapter 4). First, the initial distribution over the hidden states

'li Al (0) is assumed uniform and the first regularization vector RI (0) is used to bias

'liAI (0) as follows: log ('l/JAI (Hl(O))) + Rkf(o)JO) where Hl(O) is a hidden state in the

scene-level model and Hl (0 h is the label that corresponds to a curve-level model.

The distribution is then propagated using the transition matrix Ml, biased using the

input observation (the location of the next drawn curve relative to the previous) and

regularized again using the next regularization term. Once this is performed over all

125

7.2 SCENE REFINEMENT RESULTS

input curves, the curve-level model that has maximum likelihood is selected and then

the backtracking procedure is executed. The result is a solution for Eq. 7.1, selecting

the most likely sequence of refinement models that apply on the drawn curves. Each

curve is then decoded using the associated refinement model.

2. Scene Refinement Results

Figure 7.2 shows the results for generating cartoon facial profiles. In this example,

the input scenes consist of sequences of curve segments corresponding to the cartoon

components (forehead, nose, mouth, chin and hair). It is assumed that the user has

prior knowledge on the way in which a cartoon face is segmented and draws the curves

accordingly. There are five curve-level HMMs used where each HMM is trained using

six examples of each segment. Each example also includes a supplementary attribute

for curve thickness. Figure 7.1 shows the graph used to train the scene-level HMM

(there are no positional constraints imposed on this model). It is easy to see from

Fig. 7.2 that the curve segments draws by the user are refined using the appropriate

model.

~1.0~1.0~1.0~1.0~ C ~~~~~~~~~J
FIGURE 7.1. A graph used to train a scene-Ievel HMM for cartoon facial profiles.

Figures 7.3, 7.6, 7.5, 7.7 illustrate additional examples of scene refinements. The

results are produced using the training sets shown in Fig. 7.8 and Fig. 7.9. Figure 7.5

shows the results when applying both a greedy strategy and the Viterbi algorithm

when decoding the scene-level HMM. With the greedy approach, the system only

comiiders the currellt likelihood vector whell selecting the maximum likelihood titate,

hence curves drawn later in the sequence do not affect the selection of the refinement

models applied to previously drawn curves. In the example, aH horizontal curves

below the skyline are rendered using the grass model, despite the fact that the system

126

o

7.2 SCENE REFINEMENT RESULTS

FIGURE 7.2. Generating profiles of cartoon faces. The top sketches show
the input and the bot tom sketches show the results.

recognizes that the shape below the bottom horizontal line is most similar to a fish.

Using Viterbi, classification is performed by taking into account the probabilistic

dependencies that arise from an of the curves in the scene. Since a curve can only

be refined by a fish model when its preceded by a curve that has been refined by a

water model (or another fish model as show in Fig. 7.9), the refinement applied to the

bottom horizontalline is then updated and the curve is re-rendered using the water

model.

o

FIGURE 7.3. Synthesis of an island scene. Left shows the input, middle
shows the generated scene, including seeds for texture fill, right shows the
resulting texture filled scene using the texture sample shown in Fig. 7.4.

127

7.3 CURVE EXTRACTION

FIGURE 7.4. Training texture used to generate the texture fill in Fig. 7.3.

3. Curve Extraction

The sketching application is extended such that users can automatically extract

curves from an image of a sketch by simply clicking with a pointing device on the

desired curves. Once a curve is extracted, it is available for the user to edit it using

traditional curve transformations (split, merge, move, scale, rotate, filter, etc.) or

to apply the automated curve refinement procedure. The key issue that must be

addressed is how to identify what curve the user intends to extract? Figure 7.10

shows sorne of the possible candidate curves that can be extracted from an image.

If the system can automatically identify the curve that stands out from the rest, in

sorne desired context, then it can include it as a potential candidate for the user's

selection. The approach taken to address this issue consists of first identifying all

possible curves in an image and then applying the Evaluation algorithm described

in the previous section in order to rank them with respect to the model. As such,

rather than using a traditional constraint, such as curvature continuity, this approach

provides a system that can extract curves that are consistent with a wide range of

learned constraints.

3.1. Generating Candidate Curves. It is assumed that an image of a

sketch is given as input and the image consists of thill edges that are two pixelt; thick

with a well defined foreground color. (In practice, there are well established methods

that can extract foreground and thin edges [14, 73].) It is also assumed that the

curves are not adjacent to any other curves and they do not superimpose on each

128

7.3 CURVE EXTRACTION

o o

o

o

o
FIGURE 7.5. Top left shows the input sketch, top right shows the output
using a greedy method, bottom left shows the output using Viterbi and
bottom right shows the result when applying the Markovian texture filler.

other but can intersect (superposition can only occur over two pixels). When the

utier clicb on the given image near the detiired curve, an possible curves that begin

from the nearest edge must be identified. The approach to this problem consists

of first finding a starting point on the curve and then recursively iterating over the

neighbors of pixels to create a curve segment tree. The curve segment tree encodes all

129

7.3 CURVE EXTRACTION

o

FIGURE 7.6. Scene refinement example using the island training set (Fig. 7.8).

FIGURE 7.7. Scene refinement example using the city skyline training set (Fig. 7.9).

possible curves that begin from the the starting point. The nodes of the tree represent

curve segments and the edges represent their junctions (Fig. 7.12).

130

7.3 CURVE EXTRACTION

Beachllsland Scene

Scene level training constraints

Curve level training sets

FIGURE 7.8. Training set used to generate tropical island scenes. The top
shows the scene-Ievel constrains, the middle shows the curve-Ievel training
sets and the bottom shows an example texture.

3.2. Starting Point. The starting point is determined based on the number

of admissible neighbors a pixel has (the admissibility of a neighbor is described fur­

ther below). To find the starting point s, the system first searches for the nearest

pixel, within sorne distance d to the mouse click, that matches the foreground color

(Fig. 7.11). This distance is set to provide a margin of error such that a user does

not need to deal with the accuracy required for clicking exactly on the curve. Once

this pixel pis found, the four neighboring pixels are examined (above, below, left and

right) and if their color matches the foreground color, they are labeled ai:> admii:>sible

neighbors. If there is only one admissible neighbor, then the current pixel is consid­

ered as the starting point, otherwise, the system recursively examines each neighbor.

On successive iterations, a neighboring pixel is only considered admissible if it is not

131

7.3 CURVE EXTRACTION

Skyline Scene

Scene level training constraints

Curve level training sets

FIGURE 7.9. Training set used to generate city skyline scenes. The top
shows the scene-level constrains, the middle shows the curve-level training
sets and the bottom shows an example texture.

the same pixel from the previous iteration (avoids revisiting the same pixel). This

is performed for 1 steps and if an end-point is not found within this number of steps

then the original starting point is chosen.

3.3. Path Segment Tree. Once the starting point is found, a similar recur-

sion is performed to construct the curve segment tree. The tree is initialized at the

starting point Po and the root node encodes the curve segment cg containing one point

(po(x),po(y)). The neighbors are then examined recursively to determine if there is

a junction. If there is only one admissible neighbor Pl, there is no junction and the

point is added to the CUITent segment c;, otherwise, for each admü;sible neighbor Pi,

a new curve segment c~+1 is created and the point Pi is included in that segment.

The result is a hierarchy of curve segments (Fig. 7.12) corresponding to an junctions

in the sketch.

132

7.3 CURVE EXTRACTION

-r--

-P
FIGURE 7.10. A set of candidate curves that can be extracted form an
image. The top figure shows the original image and the figures below show
the candidate curves.

,
1."

FIGURE 7.11. Finding the starting position s. First, the system se arches
for the nearest pixel p mat ching the foreground color, then it recurses up to
l steps to find the starting point.

133

7.3 CURVE EXTRACTION

3.4. Pruning. When eonstrueting the segment tree, to avoid issues that ean

oeeur with loops, a pixel is only considered as an admissible neighbor if that pixel

does not already exist in the current segment or any of the parent segments up to

the root of the tree (i.e. is it has not been visited yet). For each node in the tree,

a lookup table is maintained in order to provide random access to this information.

This lookup table consists of the pixels that have been visited when traversing the

tree and are eonsidered inadmissible. However, in order to allow for self-intersecting

curves, pixels that have three admissible neighbors are never included in the lookup

table, irrespective of whether they have been traversed. This allows the system to

retrace those pixels twice (the second time they are labeled as inadmissible as they

no longer have three admissible neighbors).

FIGURE 7.12. Curve segment tree. Top right shows the original image with
the starting point highlighted

In both the search for the starting point and construction of the segment tree, a

first-order look-ahead is performed in order to ignore neighbors that satisfy certain

criteria. In particular, because it is assumed that the width of a curve is two pixels,

134

7.3 CURVE EXTRACTION

the neighbors of neighbors are pruned as follows: if Po, Pl and P2 are neighbors of P

and if aIl of Po's neighbors are neighbors of either Pl or P2, then Po in not considered.

That is, when a neighbor Po does not lead to a junction, aIl of its neighbors are

reachable directly from the neighbors of the source pixel and hence Po can be ignored.

For consistency, the same or der is followed when pruning neighbors.

3.5. Ranking Candidate Curves. The curve segment tree provides the

system with a list of candidate curves that must be ranked. The tree is first traversed

to construct aIl candidate curves. The curves are thereafter sampled using the same

sampling rate used in training, filtered to reduce aliasing effects and normalized if the

training examples are also normalized. The tangent angles along the curves are also

computed from the Cartesian points and the multi-scale representation is applied.

Each curve is ranked based on the likelihood that the model can pro duce that

curve. The likelihood is determined by applying the Evaluation algorithm (Eq. 7.2).

Once aIl candidate curves are ranked, they are sorted from best to worst and the user

is presented the top candidate. If desired, the user can further scroU through the

list to examine other solutions. Figure 7.14 shows an example curve extraction using

the zig-zag patterns training set (Fig. 5.31) and figure 7.15 shows the the extraction

using the leaf training set (Fig. 5.8). Figure 7.16 shows an example extraction and

refinement using the leaf training set and Fig. 7.17 shows another extraction example

using the basic shapes training set (Fig. 5.13). In each example, the curve that is

most similar to the training set is extracted.

135

7.3 CURVE EXTRACTION

(a) Pixel P has two candidate neighbors NI and N2.

N2 P 'vI !vI M

? Ni),1 M M

(b) Examine the admissibility of NI. Its inadmissible as its only neighbor is adjacent to N2.

(c) Examine the admissibility of N2. Its admissible as there exists a neighbor that is not adjacent to
any of the neighbors of P.

(d) Update the lookup table and recurse over the next pixel.

FIGURE 7.13. First-order pruning of pixels from a two pixel thick image.
Pixels labeled with M are inadmissible.

136

7.3 CURVE EXTRACTION

FIGURE 7.14. Extraction of a zig-zag pattern (shown in red).

FIG URE 7.15. Example extraction using the leaves training set. Note how
the extraction algorithm can make the right selection even when there are
junctions where the curvatures at different branches are locally similar.

137

7.3 CURVE EXTRACTION

FIG URE 7.16. Example extraction and refinement. Top left shows original
image and the user pointer, top right shows the automatically extracted
curve (in red). Bottom left shows the curve isolated by dragging it and
bottom right shows result of the automated refinement process.

FIGURE 7.17. Left shows extraction (in red) , middle shows refinement, right
shows a resize.

138

CHAPTER 8

Conclusion

This thesis presented a machine learning framework for automatically classifying and

refining hand-drawn curves. The underlying model consisted of a Hidden Markov

Model that encodes constraints on the types of output curves that can be synthe­

sized, the types of input curves that are expected and the effect the input has on

the synthesis. Using a regularization framework, these Hidden Markov Models were

combined with supplementary user-defined constraints that further restrict the types

of outputs that can be produced. In addition, by extending the dimensionality of

the models' state space, constraints on multiple curve attributes at multiple scales

were encoded without exponentially increasing the computational complexity of the

system. Decoding these models resulted in the synthesis of novel curves that exhibit

a similar look to examples in the training set while also adhering to the the user­

defined constraints. Finally, a Hierarchical Hidden Markov Model was developed in

order to model high-level constraints on the types of refinements that can be applied.

Evaluating the likelihood that a curve can be generated by a curve-level model in

conjunction with evaluating the applicability of the model based on the high-level

constrains resulted in a classification scheme that takes into account both the shape

of the curve and its context.

The applicability of the described framework was exemplified by two applications;

a sketching application and a robot path planning application. For the sketching

8.1 FUTURE WORK

application, Hidden Markov Models were trained using several training sets. Each

sets consisted of control curves that exemplify the types of inputs a user would draw

and refined curves that exemplify the desired look. These models were used to extract

curves from an image, identify what class of examples the drawn curves best belong

to and then augment those curves using the appropriate model.

Based on a subjective evaluation of the results, it was shown that novel full­

color 2D illustrations that exhibit the desired look can be generated from the coarse

sketches. This was demonstrated using both the Viterbi algorithm and a greedy algo­

rithm. It was shown that because the greedy approach does not take into account the

entire sketch when synthesizing the individual elements, the results did not properly

refiect the learned curve styles while the Viterbi algorithm generated satisfactory re­

sults as the entire sequence of inputs was considered before selecting the final solution.

The synthesis results were further examined under different parameter settings and

curve attribute. It was demonstrated how the mixture variance, regularization terms

and weights, stationarity window, sampling resolution and the curve representation

affect the output. A texture synthesis procedure was also developed that further en­

hanced the output. It was shown how the synthesized texture seeds can be used to

initiate a texture synthesis procedure that fills the interior of the synthesized curves.

For the path planning application, it was demonstrated that the same learning

framework can be used to learn constraints on robot trajectories from examples.

Using the regularization framework, a bias to avoid obstacles was embedded into the

system. It was demonstrated that the generated paths followed the desired input

trajectory while satisfying the learned constraints and avoiding the obstacles.

1. Future Work

One open problem that remains to be addressed is that of automatically finding

good values for the parameters that control the synthesis process. For example, the

synthesis of novel illustrations depends on mixing aspects of different examples from

140

8.1 FUTURE WORK

the same set. Excessive mixing, however, would lead to an output curve which is sim­

ply an average (in sorne multi-scale space) of the input curves. This is complicated

by the need to account for the regularization terms and input bias. At present, the

mixing fractions are fixed and predetermined manually but their automatic determi­

nation remains an open problem. A possible direction for work can be to examine

how to set these values based on sorne initial conditions, such as a maximum diver­

gence form the input or a minimum distance to the obstacles. This can lead to an in

depth theoretical analysis of the system to attempt to prove that certain conditions

are guaranteed to occur when using the training set under the specified parameter

settings. For example, in the path-planning application, it may be possible to de­

termine that the system is resolution complete with respect to the training data and

selected parameters. Another approach can be to attempt to infer the parameter set­

tings of one set from the parameter settings of another. A potential approach to this

can consist of attempting to equalize the likelihood of mixing neighboring segments

or to apply cross-validation techniques and determine if one set can reconstruct its

members as well as the another can for its own members. (Such an approach can also

be used to evaluate the richness of a set).

Another interesting problem that can be examined is that of automatically clas­

sifying the initial training sets. This allows the user to sim ply provide a bulk of ex­

amples and the system would automatically group them. lndeed this is the clustering

problem, an extensively studied research problem, though the problem of measuring

the distance between clusters of curves remains an open problem. Building on the

presented framework, a potential approach to this problem can consist of using the

evaluation algorithm to identify similarities between examples or groups of examples.

One significant open issue concerns the application of global constraints to the

curves being synthesized. For ex ample , in the sketching application, the synthesis

results using the leaves and skyline training set did not exhibit symmetry, a property

often found in such examples. As another example, in the texture filling process,

141

8.1 FUTURE WORK

pixels that are produced from different parts of the contour may not join in a desir­

able fashion. For ex ample , texture filling for leaves would require sorne specialized

constraints in or der to have the veins of the leaves meet at the right location. De­

veloping an approach that can learn such constrains or developing a smart interface

that allows users to interactively accomplish this task remains an open problem.

In the curve extraction algorithm, one of the difficulties that can occur is where

there is an excessive number of candidate paths in the path-segment tree. This is

especially apparent wh en the contours are more than two pixels thick. A direction

for future work ean be to develop methods that ean dynamically prune the graph

in parallel to the evaluation process. While its always best to evaluate a path in

its entirety, one can suggest that an iteratively deepening look-ahead ean help prune

candidate paths that are not expeeted to rank high enough to be part of the final

solution.

In general, the problem of providing natural and convenient interfaces can be

found in many domains. The extent in which machine learning is used in developing

smart interfaces is limited and the potential opportunities for research are vast. There

are a number of applications and domains that the presented learning system can be

extended to. In particular preliminary work is taking place for the control of an

underwater robot with eighteen degrees of freedom (Fig. 8.1). By eustomizing the

framework, the system ean simplify the control of a complex robot by automaticallY

generating the appropriate sequence of gaits or motor commands that lead the robot

to follow the desired goal trajectory (Fig. 8.1). Another do main of application lies in

animation editing. Preliminary result show that when using the refinement system, a

pen-stroke can eonveniently control the motion of an artieulated figure (Fig. 8.2). Pen

speed and pressure can further assist as supplementary eues for eontrolling the motion.

These are just a few examples that illustrate the extensibility of the framework.

The novel ideas presented in this thesis form a foundation with great potential for

developing new techniques that can suitably represent, learn and express properties

142

8.1 FUTURE WORK

of examples in order to help address a variety of problems in Computer Graphies and

Roboties.

(a) An underwater robot developed at McGill University. The robot has
six legs, each parametrized by three parameters (fin frequency, amplitude
and shift) for a total of 18 DOF.

--_../
(b) The predicted path for the robot. Left shows input and the right shows the predicted paths
and gaits (color coded).

FIGURE 8.1. Preliminary results for controlling an underwater robot. Train­
ing set consisted of several simulated motions.

143

8.1 FUTURE WORK

r

FIGURE 8.2. Preliminary results for motions synthesis. Training set con­
sisted of several example motions. The left shows the input curve and the
right shows the resulting motion.

144

APPENDIX A

Pseudo-Code for Learning and Decoding

the Refinement Models

In this appendix the pseudo-code for the learning and decoding algorithm is present.

The fist section presents the state labeling algorithm, followed by the algorithm for

computing the transition and confusion matrices. Finally, the decoding algorithm is

presented.

1. State Labeling Algorithm

The original states, the labels and their representative states are easily combined

together by using augmented data structures. Algorithm 1.1 shows the pseudo-code

for labeling states. The procedure first takes in as input a set of multi-attributed

curves and generates the multi-scale representation for each curve. Following this,

the procedure creates a table called Tset, where each (i, j) element in the table

stores the multi-dimensional state H for the yth segment of the ith curve (T set is the

complete t:>tate repret:>entation of the training curves). A label it:> then assigned to each

unique state in Tset (the function SameState() evaluates if Equation 4.5 is below

all attribute thresholds), the set H' is augmented to store all new labels and Q-l is

computed by averaging the states having the same label.

A.1 STATE LABELING ALGORITHM

Algorithm 1.1: MAKELABELEOTsET(multiAttributeCurves a)

global 5, T

max Labels +--- 0

C +--- MAKEMuLTISCALECuRvEs(a, 5, T)

for i +--- 0 to C. numberO f Examples

for j +--- 0 to C[i].numberOfSegments

segment +--- Cri] [j]

H +--- MAKEMULTISCALESTATE(segment)

do Tset[i][j] +--- H

Tset[i][j].label +--- -1

maxLabel + +
label +--- 0

for i +--- 0 to max Label s

Q-1[i] +--- new QUEUEO

'H' +--- new QUEUEO

for i +--- 0 to Tset.numberO f Examples

for j +--- 0 to Tset[i].numberOfSegments

if Tset[i][j].label = -1

Tset [i][j].label +--- label

Q-1 [label].push(Tset[i] [j])

H +--- AVERAGE(Q-1[label])

for k +--- i to Tset.numberO f Examples

for l +--- 0 to Tset[k].numberOfSegments

then if Tset[k][l].label = -1 and SAMESTATE(Tset[k][l], H)

{

Tset[k][l].label = label

then Q-1 [label].push(Tset[k][l])

H +--- AVERAG E(Q -1 [label])

'H' .push(label)

label + +
for each i E 'H'

{

H +---.AVERAGE(Q-1[i])

do Q-1[z].clearO

Q-1[i].push(H)

return (Tset, Q-1, 7-l')

146

A.l STATE LABELING ALGORITHM

1.1. Transition Matrix Algorithm. Algorithm 1.2 shows the pseudo-code

for computing the transition matrix over the stationarity window range [l, u]. In the

stationary case, the procedure is only called once with l = 0 and u = T for closed

curves and u = T - T for open curves. In the non-stationary case, the procedure is

called for every segment, adjusting the lower and upper bounds respectively. The first

step is to call the function MakeLabeledTset() (Algorithm 1.1) to generate the labeled

state representation for the refined curves. Because the training set representation is

indexes the position along the curve by the segment number (H(t) refers to the tth

segment), the input parameters land u must first be divided by the transition step T.

The procedure then initializes an IH'I x IHI' transition matrix with all probabilities

set to zero. The main likelihood computation is performed at li ne (i), evaluating

the Gaussian similarity measure (Equation 4.4 over the constraining attributes. This

similarity is then added to the likelihood of generating the following state.

This procedure is performed as a preprocessing step and is repeated each time

the translation step, stationarity window, the variance or weights of Equation 4.5 are

modified. For systems with limited memory (such as a video card), this preprocessing

step must be computed during runtime. In such cases, instead of computing the entire

matrix for each i E H', the desired state is passed as an argument and the procedure

returns the column of the matrix corresponding to the potential transitions for that

state.

147

A.l STATE LABELING ALGORITHM

Algorithm 1.2: MAKETRANSITIONMATRlx(multiAttributeCurves Œ,pas l,pas u)

global 5, A, T

(Hset,Q-l, H') = MAKELABELEDTSET(Œ)

l ~ l~J

u ~ I~l

INITMATRIX(M, H' x H', 0)

for each i E H'

for j ~ 0 to Hset.numberOfExamples

for t ~ l to u

do

similarity = GAUSSIANSIMILARITY(Q-l li], H set [j][t], 5, A) (i)

nextState ~ (t + 1) MOD Hset[j].numberOfSegments

nextStateLabel ~ H set[j][nextState].label

M[i][nextStateLabel]+ = similarity

NORMALIZE(M)

return (M)

1.2. Confusion Matrix Algorithm. The procedure for estimating B is

outlined in Algorithm 1.3. It bears similarities to Algorithm 1.2 with the primary

difference of searching for exact matches of the tuples representing the associated

hidden and observation states. In or der to disregard the hidden states' auxiliary

attributes, the set of auxiliary attributes is temporarily disabled before attempting to

check for a match. The function SameState(-) then ignores the auxiliary attributes.

This results in a redundancy of likelihoods similar to that in the transition matrix.

(Note that while the procedure only uses an exact mat ching criterion, because the

auxiliary attributes are ignored in the source state, a single pass over the training set

is not sufficient to pro duce the desired matrix.)

148

A.l STATE LABELING ALGORITHM

Aigorithm 1.3: MAKECONFUSIONMATRlx(multiAttributeCurves a, (3,pos l,pos u)

global Aaux l +-- l~J

u +-- I~l

(Hset,QI'/' H') = MAKELABELEDTsET(a)

(Oset, Q(j 1,0') = MAKELABELEDTSET((3)

INITMATRIX(B, H' x 0',0)

temp +-- Aaux

Aaux +-- NU LL

for each i E H'

for j +-- 0 to H set.numberO f Examples

for t +-- 1 to u

do

if SAMESTATE(QI/ li], H set [j][t])

then similarity +-- 1

else similarity +-- 0

obs +-- Oset[i] [tl.label

B[i][obs]+ = similarity

NORMALIZE(B)

Aaux +-- temp

return (B)

1.3. Decoding Algorithm. Algorithm 1.4 shows the pseudo-code for point-

based decoding of the HMM with regularization priors. The main body consist of

two parts, the first part, starting at line (i), implements the propagation step and the

second part, starting at line (ii), implements the input conditional step. In the first

part, the procedure begins by iterating over an states in the previous distribution

w(t -1). (The vector w(t) stores both the likelihood and the state information for all

candidate stateti aud iti iudexed by the state labelti; i.e. 'l1(t,i).labcl = 'i.) For cach of

the previous states, the likelihood of generating the next state, for all possible next

states, is computed. This includes evaluation of the regularization biases as applied

to the candidate state sequence, preceded by a procedure call SetAuxParams(-) that

149

A.l STATE LABELING ALGORITHM

updates additional decoding auxiliary attributes required for regularization. The

state that has the highest likelihood is then stored in the next distribution with a

back-pointer to the previous. In the second part, the input conditional is applied

using the sigmoid function and the likelihoods in the confusion matrix. (The function

SigmoidProd(-) computes the product of the sigmoid blur over all the input attributes

as shown in Equation 4.11.) The best input conditional that matches the input

observation is used.

For illustrative purposes, this algorithm does not implement thresholding, hence

the candidate state vector \li can be indexed by the state labels (providing random

access wh en checking for the best succession of states). When thresholding, the state

vector itself must be sorted by the highest ranking states and cannot be indexed by

the labels. The thresholding implementation can achieve similar runtime efficiencies

by using a supplementary data vector that indexes the state labels to their locations

in W.

150

A.l STATE LABELING ALGORITHM

Algorithm 1.4: DECODE(pos t, input Qin)

global W, M, B, Qj/, Q(j\ 'H', 7r

wnext ~ new VECTOR()

if t = 0

then Wnext = 7r

else for each SE w[t - 1]

for each 1 E 'H'

do

Snext = Qj/ [1]

Snext.lable = 1

Snext-likelihood = S.likelihood * M[t - I][S.label][Snext.label]

Snext.backPtr = S.label

SETAuxPARAMS(Snext)

REGULARIZE(Snext, Gin)

if Wnext[Snext-label] = NU LL

then Wnext[Snext-label] = Snext

else if Wnext[Snext.label].likelihood < Snext.likelihood

then WnexdSnext.label] = Snext

for i ~ 0 to wnext.size

do

bestConditional ~ 0

for each G E Q(jl

do

conditional = SIGMOmPROD(G, Gin)

conditional = conditional * B[t][i][G.label]

if conditional > bestConditional

then bestConditional = conditional

W nexdi].likelihood = Wnext[i].likelihood * bestConditional

W [t] = W next

(i)

(ii)

151

REFERENCES

[1] C. Alvarado and R. Davis, Resolving ambiguities to create a natuml computer­

based sketching environment, International Joint Conference on Artificial In­

telligence, 2001, pp. 1365-1374.

[2] C. Alvarado, M. Oltmans, and R. Davis, A fmmework for multi-domain

sketch recognition, Proceedingsof AAAI Spring Symposium on Sketch Un­

derstanding, March 2002.

[3] O. Arikan, D. A. Forsyth, and J. O'Brien, Motion synthesis from annotations,

ACM Transactions on Graphies 33 (2003), no. 3, 402-408.

[4] R. Arkin and R. Murphy, Autonomous navigation in a manufacturing envi­

ronment, IEEE Transaction on Robotics and Automation 6 (1990), no. 4,

445-454.

[5] J. Arvo and K. Novins, Fluid sketches: Continuous recognition and morphing

of simple hand-dmwn shapes, Proceedings of the 13th Annual ACM Sympo­

sium on User Interface Software and Technology, 2000.

[6] E. W. Aslaksen and J. R. Klauder, Continuous representation theory using

the affine group, Journal of Mathematical Physics 10 (1969), no. 1, 2267-

2275.

[7] Jonas August and Steven W. Zucker, Sketches with curvature: The curve

indicator mndom field and markov processes, IEEE Transactions on Pattern

Analysis and Machine Intelligence 25 (2003), no. 4, 387-400.

REFERENCES

[8] M.1 Banks and E. Cohen, Real time spline curves from interactively sketched

data, SI3D '90: Proceedings of the 1990 symposium on Interactive 3D graph­

ies, ACM Press, 1990, pp. 99-107.

[9] Z. Bar-Joseph, R. EI-Yaniv, D. Lischinski, and W. Werman, Texture mixing

and texture movie synthesis using statistical learning, IEEE Transactions on

Visualization and Computer Graphies 7 (2001), no. 2, 120-135.

[10] R. 1. Brafman, A heuristic variable grid solution method for pomdps, Pro­

ceedings Fourteenth National Conference on Artifieial Intelligence (AAAI),

1997, pp. 727-733.

[11] M. Brand and A. Hertzmann, Style machines, Proceedings of ACM SIG­

GRAPH, 2000, pp. 183-192.

[12] R. A. Brooks, A robost layered control system for a mobile robot, IEEE Jour­

nal of Robotics and Automation 2 (1986), no. 1, 14-23.

[13] A. Bruderlin and L. Williams, Motion signal processing, Proceedings of ACM

SIGGRAPH, August 1995.

[14] J. Canny, A computational approach to edge detection, IEEE Transactions on

Pattern Analysis and Machine Intelligence 8 (1986), no. 6.

[15] E. Catmull and J. Clark, Recursively generated b-spline surfaces on arbitrary

topological meshes, Computer-Aided Design 10 (1978), no. 6, 350-355.

[16] G. C.-H. Chuang and C.-C. J. Kuo, Wavelet descriptor of planar curves:

Theory and application, IEEE Transanctions on Image Processing 5 (1996),

no. 1, 56-70.

[17] H. H. Clarck, Using languages, Cambridge University Press, 1996.

[18] K. Craik, The nature of explanation, Cambridge University Press, 1943.

[19] D. Doo and M. Sabin, Behaviour of recursive division surfaces near extraor­

dinary points, Computer-Aided Design 10 (1978), no. 6, 356-360.

153

REFERENCES

[20] L. E. Dubins, On curves of minimal length with a constraint on average

curvature, and with prescribed initial and terminal positions and tangents,

American Journal of Mathematics, vol. 79, 1957, pp. 497-517.

[21] G. Dudek and J. K. Tsotsos, Shape representation and recognitionfrom multi­

scale curvature, Computer Vision and Image Understanding 68 (1997), no. 2,

170-189.

[22] S. P. Engelson, Learning robust plans for mobile robots from a single trial,

AAAI/IAAI, Vol. 1, 1996, pp. 869-874.

[23] F. J. Estrada and A. D. Jepson, Controlling the search for convex groups,

Technical Report CSRG-482, January 2004.

[24] G. Farin, Curves and surfaces for computer aided geometric design, Academic

Press, 1992.

[25] S. Fine, Y. Singer, and N. Tishby, The hierarchical hidden markov model:

Analysis and applications, Machine Learning 32 (1998), no. 1, 41-62.

[26] A. Finkelstein and D. H. Salesin, Multiresolution curves, Proceedings of ACM

SIGGRAPH, July 1994, pp. 261-268.

[27] A. R. Forrest, The twisted cubic curve: A computer-aided geometric design

approach, Computer Aided Design 12 (1980), no. 4, 165-172.

[28] D. R. Forsey and R. H. Bartels, Hierarchical b-spline refinement, Computer

Graphics 22 (1988), no. 4, 205-212.

[29] VV. T. Freeman, J. B. Tenenbaum, and E. Pasztor, Learning style translation

for the lines of a drawing, ACM Transactions on Graphics 22 (2003), no. 1,

33-46.

[30] D. Gabor, Theory of communication, Journal of the Institution of Electrical

Engineers 93 (1946), no. 26, 429-457.

154

REFERENCES

[31] S. Geman and D. Geman, Stochastic relaxation, gibbs distribution and the

bayesian restoration of images, IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 6, 1984, pp. 721-741.

[32] E. Giunchiglia and T. Walsh, A theory of abstraction, Artificial Intelligence

26 (1992), no. 2-3, 323-390.

[33] M. Gleicher, Motion editing with space-time constraints, Proceedings of the

1997 Symposium on Interactive 3D Graphies, April 1997, pp. 139-148.

[34] A. Grossmann and J. Morlet, Decomposition of hardy functions into square

integrable wavelets of constant shape, Society for Industrial and Applied

Mathematics, J. Mathematics 15 (1984), no. l, 723-736.

[35] A. Haar, Zur theorie der orthogonalen funktionensysteme, 1909.

[36] M. Harada, A. Witkin, and D. BarafI, Interactive physically-based manipula­

tion of discretejcontinuous models, Proceedings of ACM SIGGRAPH, August

1995.

[37] D. J. Heeger and J. R. Bergen, Pyramid-based texture analysisjsynthesis,

Proceedings of ACM SIGGRAPH, 1995, pp. 229-238.

[38] A. Hertzmann, N. Oliver, B. Curless, and S. M. Seitz, Curve analogies, 13th

Eurographics Workshop on Rendering, June 2002.

[39] J. K. Hodgins, W. L. Wooten, D. C. Borgan, and J. F. O'Brien, Animating

human athletics, Robotics Research: The Eighth International Symposium,

no. Springer-Verlag:Berlin, August 1995, pp. 356-367.

[40] T. Igarashi and J. F. Hughes, Smooth meshes for sketch-based freeform mod­

eling, ACM Symposium on Interactive 3D Graphies, 2003, pp. 139-142.

[41] T. Igarashi, S. Matsuoka, and H. Tanaka, Teddy: A sketching interface for

3d freeform design, Proceedings of ACM SIGGRAPH, 1999, pp. 409-416.

155

REFERENCES

[42] T. Igarashi, S. Kawachiya S. Matsuok and, and H. Tanaka, Interactive beau­

tification: A technique for rapid geometric design, ACM Symposium on User

Interface Software and Technology (UIST), 1997, pp. 105-114.

[43] D. W. Jacobs, Robust and efficient detection of convex groups, Computer

Vision and Pattern Recognition, 1993, pp. 770-771.

[44] G. Johansson, Visual perception of biological motion and a model for its anal­

ysis, Perception and Psychophysics 14 (1973), no. 2.

[45] P. N. Johnson-Laird, Mental models, Foundations of Cognitive Science, Cam­

bridge University Press, 1983, pp. 469-493.

[46] R. D. Kalnins, L. Markosian, B. J. Meier, Michael A. Kowalski, Joseph C. Lee,

Philip L. Davidson, Matthew Webb, John F. Hughes, and Adam Finkelstein,

WYSIWYG NPR: Drawing Strokes Directly on 3D Models, ACM Transac­

tions on Graphies 21 (2002), no. 3, 755-762.

[47] D. Keren and M. Werman, A bayesian framework for regularization, IEEE

International Conference on Pattern Recognition, 1994, pp. 72-76.

[48] K. Koffka, Perception: and introduction to the gestalt-theory, Psychological

Bulletin 19 (1922), 531-585.

[49] L. Kovar, M. Gleicher, and F. Pighin, Motion graphs, Proceedings of ACM

SIGGRAPH, 2002.

[50] T. Kurtoglu and T. F. St ahovich , Interpreting schematic sketches using phys­

ical reasoning, AAAI Spring Symposium on Sketch Undestanding, 2002.

[51] Y. L., T. Wang, and H.-Y. Shum, Motion texturing: A two-level statisti­

cal model for character motion synthesis, Proceedings of ACM SIGGRAPH,

2002.

[52] J. A. Landay and B. A. Myers, Interactive sketching for the early stages

of user interface design, Proceedings of the SIG CHI Conference on Human

Factors in Computing Systems, 1995, pp. 43-50.

156

REFERENCES

[53] J. C. Latombe, Robot motion planning, Kluwer Academic Publishers, 1991.

[54] L. Kavraki J-C. Latombe, Probabilistic roadmaps for path planning in high­

dimensional configuration spaces, IEEE Thansactions on Robotics and Au­

tomation, vol. 12, August 1996.

[55] J.-P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, A motion planner

for nonholonomic mobile robots, IEEE Thansactions on Robotics and Au­

tomation, vol. 10, 1994, pp. 577-593.

[56] J. Lee and S. Y. Shin, A hierarchical approach to interactive motion editing

for human-like figures, Proceedings of ACM SIGGRAPH, 1999, pp. 39-48.

[57] H. Lipson and M. Shpitalni, Correlation-based reconstruction of a 3d object

fram a single freehand sketch, AAAI Spring Symposium on Sketch Under­

standing, 2002, pp. 99-104.

[58] D. G. Lowe, Perceptual organization and visual recognition, Kluwer Academic

Publisher, 1985.

[59] T. Lyche and K. Morken, Knot removal for parametric b-spline curves and

surfaces, Comput. Aided Geom. Des. 4 (1987), no. 3, 217-230.

[60] S. Mallat, A theory for multiresolution signal decomposition : the wavelet rep­

resentation, IEEE Thansaction on Pattern Analysis and Machine Intelligence

Il (1989), no. 1, 674-693.

[61] D. Marr and E. C. Hildreth, Theory of edge detection, Proceedings of the

Royal Society of London, 1980, pp. 187-217.

[62] Y. Meyer, Wavelets: Algorithms and applications, Society for Industrial and

Applied Mathematics, J. Mathematics (1993), xii+133.

[63] T. Mitchell, Machine learning, McGraw Hill, 1997.

[64] J. Miura and Y. Shirai, Hierarchical vision-motion planning with uncertainty:

Local path planning and global route selection, IEEE/RSJ International Con­

ference on Intelligent Robots and Systems, 1992, pp. 1847-1854.

157

REFERENCES

[65] J. Pineau, G. J. Gordon, and S. Thrun, Applying metric-trees to belief-point

pomdps, Advances in Neural Information Processing Systems 16 (Sebastian

Thrun, Lawrence Saul, and Bernhard Scholkopf, eds.), MIT Press, Cam­

bridge, MA, 2004.

[66] M. L. V. Pitteway, Algorithm for drawing ellipses or hyperbolae with a digital

piotter, The Computer Journal 10 (1967), no. 3, 282-289.

[67] Z. Popovic and A. Witkin, Physically based motion transformation, Proceed­

ings of ACM SIGGRAPH, August 1999.

[68] K. Pullen and C. Bregler, Motion capture assisted animation: Texturing and

synthesis, Proceedings of ACM SIGGRAPH, 2002.

[69] L. R. Rabiner, A tutorial on hidden markov models and selected applications

in speech recognition, Alex Weibel and Kay-Fu Lee (eds.), Readings in Speech

Recognition, 1990, pp. 267-296.

[70] J. Reeds and L. Shepp, Optimal paths for a car that goes both forwards and

backwards, Pacific Journal of Mathematics, vol. 145(2), 1990, pp. 367-393.

[71] D. Rubine, Specifying gestures by example, Proceedings of ACM SIGGRAPH,

1991, pp. 329-337.

[72] E. Saund, Finding perceptually closed paths in sketches and drawings, IEEE

Transactions on Pattern Analysis and Machine Intelligence 25 (2003), no. 4,

475-491.

[73] E. Saund, D. Fleet, D. Larner, and J. Mahoney, Perceptually-supported image

editing of text and graphies, ACM Symposium on User Interface Software and

Technology (UIST), 2003, pp. 183-192.

[74] T. W. Sederberg, Aigebraic piecewisp algpbraic 81lrfaœ patches, Computer

Aided Geometric Design 2 (1985), no. 1, 53-59.

[75] T. Sezgin, T. Stahovich, and R. Davis, Sketch based interfaces: Early pro­

cessing for sketch understanding, Perceptive User Interfaces Workshop, 2001.

158

REFERENCES

[76] M. Shilman and P. Viola, Spatial recognition and grouping of text and graph­

ies, Eurographies Workshop on Sketeh-Based Interfaces and Modeling, 2004.

[77] S. Simhon and G. Dudek, Path planning using learned constraints and pref­

erences, IEEE Internation Conference on Roboties and Automation (Taipei,

Taiwan), May 2003, pp. 2907-2913.

[78] , Analogical path planning, AAAI National Conference on Artificial

Intelligence Conference, July 2004, pp. 537-543.

[79] , Pen stroke extraction and refinement using learned models, Euro-

graphies Workshop on Sketeh-Based Interfaces and Modeling (SBM'04), Au­

gust 2004, pp. 62-69.

[80] , Sketch interpretation and refinement using statistical models, Euro-

graphies Symposium on Rendering, June 2004, pp. 23-32.

[81] R. Simmons and S. Koenig, Probabilistic robot navigation in partially ob­

servable environments, Proceedings of the International Joint Conference on

Artificial Intelligence, 1995, pp. 1080-1087.

[82] S. Singh and M. C. Leu, Optimal trajectory generation for robotic manip­

ulators using dynamic programming, ASME Journal of Dynamie Systems,

Measurement and Control, vol. 109, 1989.

[83] J. Smith, A. Witkin, and D. Baraff, Fast and controllable simulation of the

shattering of brittle objects, Graphies Interface 2000, no. Montreal, May 2000,

pp. 27-34.

[84] D. Sturman, Interactive keyframe animation of 3-d articulated models, Graph­

ies Interface '86, Tutorial on Computer Animation, 1986.

[85] R. S. Sutton, D. Preeup, and S. Singh, Between mdps and semi-mdps: A

framework for temporal abstraction in reinforcement learning, Artifieial In­

telligence 112 (1999), no. 1, 181-211.

159

REFERENCES

[86] R. Szeliski, Bayesian modeling of uncertainty m low level vision, Kluwer,

1989.

[87] D. Terzopoulos and K. Fleiseher, Modeling inelastic deformation: Viscoelas­

ticity, plasticity, fracture, Computer Graphies 22 (1988), no. 4, 269-278.

[88] M. Thorne, D. Burke, and M. van de Panne, Motion doodles: An interface

for sketching character motion, ACM Transactions on Graphies 23 (2004),

no. 3, 424-431.

[89] S. Thrun, Probabilistic algorithms in robotics, AI Magazine 21 (2000), no. 4,

93-109.

[90] A. N. Tikhonov and V. Y. Arsenin, Solution of ill-posed problems, Winston

and Sons, 1977.

[91] X. Tu and D. Terzopolous, Artificial fishes: Physics, locomotion, perception,

behavior, SIGGRAPH '94 Proceedings, July 1994.

[92] G. Turk and J. O'Brien, Shape transformation using variational implicit func­

tions, Proeeedings of ACM SIGGRAPH, August 1999, pp. 335-342.

[93] D. G. Ullman, S. Wood, and D. Craig, The importance of drawing in me­

chanical design process, Computers and Graphies 14 (1990), no. 2, 263-274.

[94] S. Ullman and A. Sha'ashua, Structural saliency: The detection of globally

salient structures using a locally connected network, International Conference

on Computer Vision, 1998, pp. 321-327.

[95] M. Unuma and R. Takeuehi, Generation of human motion with emotion,

Computer Animation '93 Proeeedings, 1993, pp. 77-88.

[96] A. J. Viterbi, Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm, IEEE Transactions on Information Theory IT-

13 (1967), no. 2, 260-269.

[97] X. Wang, Learning planning operators by observation and practice, Artifieial

Intelligence Planning Systems, 1994, pp. 335-340.

160

REFERENCES

[98] L.-Y. Wei and M. Levoy, Fast texture synthesis using tree-structv,red vector

quantization, Proceedings of ACM SIGGRAPH, 2000, pp. 479-488.

[99] W. Welch and A. Witkin, Free-form shape design using triangulated surfaces,

Proceedings of ACM SIGGRAPH, July 1994.

[100] L.R. Williams and D.W. Jacobs, Stochastic completion fields: A neural model

of illusory contour shape and salience., Neural Computation 9 (1997), no. 4,

837-858.

[101] A. Witkin and M. Kass, Space-time constraints, Computer Graphies 22

(1988), 159-168.

[102] A. Witkin and Z. Popovic, Motion warpmg, Proceedings of ACM SIG­

GRAPH, August 1995.

[103] R. Zeleznik, K. Herndon, and J. F. Hughes, Sketch: An interface for sketching

3d scenes, Proceedings of ACM SIGGRAPH, 1996.

161

