
Asynchronous Subgradient Push: Fast,
Robust, and Scalable Multi-Agent

Optimization

Mahmoud S. Assran

Master of Engineering

Department of Electrical and Computer Engineering

McGill University

Montreal, Quebec

April 10, 2018

A thesis submitted to McGill University in partial fulfilment of the requirements of
the degree of Master of Engineering

Copyright c© Mahmoud S. Assran 2018

ACKNOWLEDGEMENTS

I would like to start off by thanking Mike, my advisor and mentor, who intro-

duced me to optimization and machine learning while I was still pursing my under-

graduate degree. Your guidance and support has been incontrovertibly invaluable,

in more ways than one — not least of all for all your editorial and advisory efforts in

all research culminating in this thesis — the list runs the gamut, and I’m eternally

grateful that our paths have crossed. The research process is often frustrating, but

ultimately greatly satisfying. Thank you to my dear friends Kevin, Stephan, Char-

lotte, Paul, Reid, Oyku, and Jonathan, for helping me get through those frustrating

times. Your friendship has been a tremendously precious support throughout. Most

of all, thank you to my family for helping me through it all and for all the love and

effort you’ve invested in me throughout my life; I owe any and all of my success to

you.

ii

ABSTRACT

The need to develop distributed optimization methods is rooted in practical

applications involving the processing of data that is naturally distributed, private,

or simply too large to store on a single machine. In the past decade, a large num-

ber of distributed algorithms for solving large-scale convex optimization problems

have been proposed and analyzed in the literature, especially from the perspective

of multi-agent systems. Although it is fairly well understood which algorithms have

the most desirable theoretical properties, many of the theoretical analyses ignore

important practical issues such as asynchronism and communication delays. As a

result, it is often the case that algorithms with the most desirable theoretical prop-

erties (e.g., fastest convergence rates in iterations) do not necessarily have the most

desirable properties in practice (e.g., fastest convergence rates in time). Based on

this observation, we propose a new distributed optimization algorithm termed Asyn-

chronous Subgradient-Push. Through numerical experiments we demonstrate that

Asynchronous Subgradient-Push converges faster than the state-of-the-art multi-

agent methods in practice, is more robust to failing/stalling agents, and scales better

with the network size. Motivated by the method’s superior empirical performance,

we develop a convergence theory, and, in particular, show that a subsequence of the

iterates at each agent converges to a neighbourhood of the global minimum, where the

size of the neighbourhood depends on the degree of asynchrony in the multi-agent

network. We also implement the state-of-the-art first-order methods compared in

this work using the MPI (Message Passing Interface) standard for message-passing

iii

in clusters, and make them available to the community. In addition, throughout

the process of our analysis we develop some peripheral results concerning an asyn-

chronous version of the Push-Sum algorithm for consensus averaging — a building

block for many of the state-of-the-art distributed optimization methods proposed in

the literature — that are interesting in their own respect. In particular, we show

that agents running the Push-Sum consensus-averaging algorithm asynchronously

converge to the average of the network geometrically fast (i.e., at a rate of O
(
λk
)
),

where the constant of geometric convergence, λ, depends on the maximum delay and

the connectivity of the communication topology, and this convergence holds even

in the presence of exogenous perturbations at each agent that seek to derail the

consensus process.

iv

ABRÉGÉ

Le besoin de développer des méthodes d’optimisation distribuées est nécessaire

dans des applications pratiques impliquant le traitement de données naturellement

distribuées, privées, ou simplement trop grandes à stocker sur une seule machine.

Au cours de la dernière décennie, un grand nombre d’algorithmes distribués ont été

trouveés pour résoudre des problèmes d’optimisation convexe à grande échelle, en

particulier pour les systèmes multi-agents. Même si les algorithmes avec des pro-

priétés théoriques les plus souhaitables sont connus, beaucoup d’analyses théoriques

ignorent des problèmes pratiques importants, tels que l’asynchronisme et les délais

de communication. Par conséquent, il arrive souvent que ces algorithmes ayant des

propriétés théoriques souhaitables (par exemple, un taux de convergence rapide en

itérations) n’aient pas nécessairement les propriétés les plus souhaitables en pratique

(par exemple, un taux de convergence rapide en temps). Sur la base de cette observa-

tion, nous proposons un nouvel algorithme d’optimisation distribuée appelé: “Asyn-

chronous Subgradient-Push”. Grâce à des expériences numériques, nous démontrons

que “Asynchronous Subgradient-Push” converge plus rapidement que les méthodes

multi-agents de pointe dans la pratique, est plus robuste aux agents défaillants /

bloquants, et évolue mieux avec la taille du réseau. Motivés par la performance

empirique supérieure de la méthode, nous développons une théorie de convergence

et démontrons en particulier qu’une sous-séquence des itérations de chaque agent

converge vers un voisinage du minimum global, où la taille du voisinage dépend du

degré d’asynchronie dans le réseau multi-agent. De plus, nous implémentons les

v

méthodes de premier ordre en utilisant la norme MPI (Message Passing Interface)

pour la transmission de messages dans des grappes de calcul les comparons avec notre

travail, et les mettons à la disposition de la communauté. De plus, tout au long du

processus de notre analyse, nous développons des résultats périphériques concernant

une version asynchrone de l’algorithme “Push-Sum” pour le consensus de moyenne

— une élément fondamental de plusieurs des méthodes d’optimisation distribuées

de pointe proposées dans la littérature — qui sont intéressants dans leur propre

égard. En particulier, nous montrons que les agents exécutant l’algorithme de con-

sensus de moyenne de type “push-sum” convergent à un taux géométrique de façon

asynchrone (c’est-à-dire à un taux de O
(
λk
)
) vers la moyenne du réseau. La conver-

gence géométrique dépend du délai maximum et de la connectivité de la topologie

de communication, et cette convergence est toujours valable même en présence de

perturbations exogènes de chaque agent qui cherchent à faire dérailler le processus

consensuel.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . v

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1

1.1 Motivation . 1
1.2 Distributed Optimization . 2
1.3 Problem Formulation . 5
1.4 Related Work . 6
1.5 Contributions . 10
1.6 Proposed Algorithm & Main Results 11

1.6.1 Constant Step-Size . 13
1.6.2 Diminishing Step-Size . 14

1.7 Thesis Overview . 15

2 Background . 16

2.1 Convex Optimization & Graph Theory 16
2.2 Synchronous Push Sum Averaging 22
2.3 Synchronous Subgradient Push . 24
2.4 Extra Push . 25
2.5 Push DIGing . 26
2.6 Summary . 28

3 System Model . 29

3.1 Communication . 33

vii

3.2 Delays . 34
3.3 Augmented Graph . 35
3.4 Brief Recap . 37

4 Asynchronous Consensus using Perturbed Push Sum 39

4.1 Formulation of Asynchronous Push-Sum 39
4.2 Main Results . 43
4.3 Analysis . 46

5 Asynchronous Subgradient Push . 63

5.1 Formulation of Asynchronous Subgradient Push 63
5.2 Main Results . 67
5.3 Analysis . 70

5.3.1 Preliminaries . 70
5.3.2 Proof of Theorem 2 . 83
5.3.3 Proof of Theorem 3 . 89
5.3.4 Proof of Theorem 4 . 94

5.4 Numerical Experiments . 96

6 Summary and Extensions to Future Work 105

References . 108

viii

LIST OF TABLES
Table page

5–1 Spectral radii of generated multi-agent networks. Larger spectral-radii
indicate more sparsely connected graphs. The spectral radius is
computed as 1

1−λ2 , where λ2 is the second-largest eigenvalue of
the uniform edge weighted matrix used to score the graphs. For
fully-connected graphs, λ2 is equal to 0. As the graph connections
are made more and more sparse, the second-largest eigenvalue will
approach 1 from below: λ2 ↑ 1. 97

5–2 Statistics concerning the time taken by agent v1 to perform an update
in the reported experiments for multiple different network sizes in
the Fixed Problem Workload formulation. 98

ix

LIST OF FIGURES
Figure page

3–1 Example of agent updates in synchronous and asynchronous Subgradi-
ent Push implementations with τproc = 4 in the asynchronous case.
Processing delays correspond to the time required to perform a local
iteration. Transmission delays correspond to the time required for
all outgoing message to arrive at their destination buffers. Even
though a message arrives at a destination agent’s receive-buffer
after some real (non-integer valued) delay, that message is only
processed when the destination agents performs its next update. . . 32

3–2 Sample augmented graph of a 4-agent reference network with a
maximum time-index message transmission delay of τmsg = 3
iterations. 36

5–1 (Best viewed in colour). Example of agent updates in an Asyn-
chronous Gradient Push procedure with a maximum time-index
processing delay τproc = 4. The time-index, k, increments by 1 each
time an agent performs an update (completes a Local Computa-
tion). At the end of each update, the updating agent initiates a
message transmission to its neighbours and proceeds with its local
computation. The diagram depicts the local iteration increments
(in red), the time axis with delineated τproc time-index increments
(in blue), and one possible choice for a subsequence of partially
overlapping computations (in orange). Note that each time-index
in the subsequence of partially overlapping computations could
potentially correspond to a different local iteration at each agent.
For example, k = 2 corresponds to Agent 1’s first iteration, Agent
2’s second iteration, and Agent 3’s second iteration. 66

x

5–2 Time t[k] (seconds) at which F (x[k]) − F (x?) < 0.01 is satisfied for
the first time. Plots on the right correspond to experiments with
an artificial 500ms delay induced at agent v2 at each of its local
iterations. Plots on the left correspond to the normal operation of
the algorithm. The asynchronous algorithm reaches the threshold
residual error faster than the state-of-the-art methods. The Extra-
Push algorithm is not plotted, because, in several cases, we were
not able to find a step-size that enabled the method to achieve
the target residual error in a reasonable amount of time; this is
consistent with the observations in [58], where in some cases, there
were no step-sizes that even lead to convergence. 99

5–3 Multinomial logistic regression training error on the covertype dataset
using large multi-agent networks. Plots on the right correspond
to experiments with an artificial 500ms delay induced at agent v2

at each of its local iterations. Plots on the left correspond to the
normal operation of the algorithm. The asynchronous algorithm
appears to be more robust than the synchronous algorithms to
failing or stalling nodes. 100

5–4 Multinomial logistic regression training error on the covertype dataset
using small multi-agent networks. Plots on the right correspond
to experiments with an artificial 500ms delay induced at agent v2

at each of its local iterations. Plots on the left correspond to the
normal operation of the algorithm. The asynchronous algorithm
appears to be more robust than the synchronous algorithms to
failing or stalling nodes. 101

5–5 Scaling the network size while holding the computational load at
each agent fixed. Multinomial logistic regression training error
on the covertype dataset, where each agent randomly samples
290000 training instances from the dataset to construct its local
loss function. In all cases, the asynchronous algorithm achieves
faster convergence than the state-of-the-art methods. 103

xi

CHAPTER 1
Introduction

1.1 Motivation

Distributed optimization has played an ever-increasing role in society due to the

emergence of numerous applications encompassing distributed sensing systems [65],

the internet of things [81, 41, 60], the smart grid [68, 42], multi-robot systems [46,

62, 12] and large-scale machine learning [72, 73, 74, 20, 1, 64, 86, 9] to name a few.

To say that everything is an optimization problem would be a tautology, and the

field of distributed optimization has the potential to touch many seemingly disjoint

subject areas all under this premise. Optimization is very powerful in that it allows

us to obtain excellent and justifiable solutions to problems once they have been

modelled, however the modelling process often involves data, and when the data is

naturally distributed, private, or simply too large to store on a single machine, we

turn to distributed optimization algorithms to obtain solutions to our problems. The

emergence of Big Data has also played a large role in the burgeoning of distributed

optimization. In the wake of Big Data, solving a “typical” optimization problem

has become an increasingly time-consuming and resource hungry undertaking, and,

as a result, we may turn to distributed optimization algorithms simply to obtain

faster solutions to our problems. More generally, there has always been a need

for the solution of very large computational problems, whether data-based or not,

and distributed optimization provides an efficient way to solve these problems [5,

1

72]. While raw computational throughput and storage capacity have increased at

exponential rates as predicted by Moore’s Law, transistor efficiencies have plateaued,

as dictated by Dennard’s law, and so it follows that in order to handle the massive

computational and storage resources demanded by Big Data at reasonable power

costs, we must increasingly rely on distributed optimization [14]. All of these motives

have propelled research in the area of distributed optimization, and, as a result,

there have been significant advances in the development of distributed methods with

theoretical convergence guarantees. In general, the field of distributed optimization

looks at how to perform distributed optimization quickly and robustly.

1.2 Distributed Optimization

There have been many approaches taken towards the design and development

of distributed optimization algorithms. The seminal reference of Bertsekas and Tsit-

siklis [5] presents many of these methods cogently. Some approaches, under the

aegis of parallel optimization, focus on parallelization at the task level using colo-

cated processors [5] (e.g., the optimization problem is somehow broken into several

discrete subproblems that can be solved concurrently, and each processor works in-

dependently on one of these subproblems) — these methods are interesting in their

own right, but do not technically belong to the domain of distributed optimization.

Distributed optimization is more generally concerned with having multiple agents

(processors) work together to solve an optimization problem, with parallelization

typically performed at the data or parameter level [5] (e.g., each agent performs

computations using a subset of the data, or only updates a subset of the parame-

ters). In distributed computing systems, processors may be far apart; communication

2

delays may be unpredictable; communication links may be unreliable; the topology

may undergo changes during operation due to failures/repairs of communication links

and or processors; and each processor may be engaged in its own private activities

while at the same time cooperating with other processors in the context of some

computational task [5]. High performance computing clusters fit this model of dis-

tribution quite nicely [72], especially since node and link failures have become the

norm rather than the exception [74, 39, 19].

Loosely speaking, we can categorize much of the work in the distributed opti-

mization literature according to three criteria. The first criterion is the presence or

absence of a global control mechanism. At one extreme, the global control mecha-

nism is only used to load a common program to the processors, and each processor

is allowed to work on its own thereafter. At the other extreme, the control mech-

anism is used to instruct each processor on what to do at each step. The former

falls under the category of distributed methods, while the latter falls under the

category of centralized methods. Centralized methods are non-ideal for several rea-

sons; the master node becomes a bottleneck on the entire optimization process and

a central point of failure; it follows that without the recourse of highly optimized

tools, such as MapReduce [21], centralized methods can be highly suboptimal when

scaling to large processing systems [14]. Actually, even MapReduce [21], a popular

distributed computing tool used in machine learning applications, is known to be

ill-suited for the iterative computations inherent in the training of large-models and

deep-learning in particular [20]. Decentralized methods bypass many of these issues

3

by providing increased robustness to node failure, and scalability with the network

size [74, 76, 77, 66, 75, 72, 65].

The second criterion for classifying work in the distributed optimization lit-

erature concerns the general operating principle of the algorithm: synchronous or

asynchronous. The distinction here refers to the presence or absence of a common

global clock used to synchronize the operation of the different processors. The chief

benefit of synchronous operation is that the behaviour of the processors is much eas-

ier to control, and algorithm design is considerably simplified. On the other hand,

synchronous operation introduces undesirable overhead that can greatly degrade the

algorithm’s efficiency in practice [66, 5, 20, 44, 2, 11, 32, 40, 3, 82, 48, 47].

The third criterion is the processor interconnection, the mechanism by which

processors exchange information. In a shared memory architecture, such as that uti-

lized by the Hogwild! algorithm [69], processors communicate by writing variables

to a shared memory, however this architecture necessitates the need for access con-

trol to make multiple-access of the same memory block safe. In a message-passing

architecture, each processor has its own local memory and processors communicate

through an interconnection network consisting of direct communication links joining

certain pairs of processors. Even though it would be best if all processors were di-

rectly connected to each other, this is often not feasible. Either there is an excessive

number of links, which leads to increased cost, or processors communicate through

a bus which leads to excessive communication delays due to bus contention.

This thesis is primarily concerned with distributed message-passing systems of

both the synchronous and asynchronous variety. Message-passing systems encompass

4

anything from processors on a single machine communicating over a bus, to servers in

a high-performance computing cluster communicating over an InfiniBand network,

to sensor-nodes scattered around a city communicating over an ad-hoc network.

1.3 Problem Formulation

In this section we describe the standard formulation of the unconstrained opti-

mization problems arising in the context of message-passing distributed optimization

algorithms; these algorithms are sometimes referred to as multi-agent methods in

the literature.

We are interested in distributed algorithms to solve the optimization problem

minimize
x∈Rd

F (x) :=
∑n

i=1 fi(x) (1.1)

where x ∈ Rd is the optimization variable, and the functions fi are strongly-convex

with Lipschitz-continuous gradients. We consider multi-agent frameworks consisting

of n agents connected together over a communication network. Information about

each function fi (such as a black-box oracle to obtain gradients of fi) is only available

at agent vi, and the agents must cooperate by communicating over a network in order

to find a minimizer. Multi-agent methods are iterative, and each agent maintains a

local copy of the decision variable; the ultimate goal is for all agents to agree (i.e.,

achieve a consensus) on a minimizer x? of (1.1). Hence, message-passing distributed

optimization algorithms often go by the moniker of consensus-based distributed op-

timization methods.

This problem formulation is quite general and arises in many applications such

as robust statistical inference [65], formation control [62], non-autonomous power

5

control [68], distributed message routing [60], spectrum access coordination [87], and

empirical loss minimization in machine learning [72]. For example, each agent can

use a subset of the data to construct its own local loss function, and then work

together to agree on the model parameters that minimize the sum of their local loss

functions.

1.4 Related Work

Consensus-Based Multi-Agent Optimization

One of the earliest related works on multi-agent optimization is that of Nedic

and Ozdaglar [52], which analyzes distributed subgradient algorithms using a doubly-

stochastic consensus scheme. At each local iteration, each agent performs a local,

greedy, optimization step using its local objective function to update its estimate

of the optimal model parameters, and then performs a consensus step by gossiping

with its neighbours in the communication topology, and, in particular, takes a convex

combination of its parameter estimate with those of its neighbours. This method is

typically analyzed in matrix-form by stacking all of the agents’ parameter vectors into

a single parameter-matrix; the special convex combination of the agents’ estimates —

the consensus procedure — can then be represented by multiplying the parameter-

matrix by a so-called consensus-matrix, which conforms to the graph structure of

the communication topology, and has stochastic rows and columns (i.e., all entries

are nonnegative, and the rows and columns sum to 1). Consensus-matrices with

stochastic rows and columns are referred to as doubly stochastic. Similar works such

as [56, 54] use a similar approach in mixing a local subgradient iteration with a

doubly-stochastic averaging step.

6

Consensus Averaging in Multi-Agent Optimization

In fact, most multi-agent optimization methods build on distributed averaging

algorithms [72]. However, it turns out that doubly stochastic protocols are unde-

sirable for many reasons, especially in peer-to-peer networks, which tend to lack a

highly organized structure. This lack of organization as well as the fact that node

and link failures have become the norm rather than the exception [74, 39, 19] present

new types of constraints on the consensus algorithms being used, thereby eliminating

the applicability of many doubly-stochastic protocols, which in general tend to have

more strict network constraints [74, 39, 75, 58, 88, 57]. To eliminate the need for

doubly stochastic averaging, the Push-Sum approach for consensus averaging, which

only requires singly-stochastic consensus-matrices, was introduced in [39], where it

was also analyzed in the case of fully connected communication graphs. The analysis

was extended in [4] for general connected graphs. Further work has provided con-

vergence guarantees in the face of the other practical issues, such as communication

delays and dropped messages [16, 30, 15, 29]. In general, Push-Sum is attractive for

implementations because it can easily handle directed communication topologies, and

thus avoids incidents of deadlock that may occur in practice when using undirected

communication topologies [74].

Multi-Agent Optimization with Singly-Stochastic Consensus Matrices

Rabbat and Tsianos proposed and analyzed the first multi-agent optimization

algorithm using Push-Sum for distributed averaging [75] — they studied a variant

of the Distributed Dual Averaging algorithm [25]. Nedic and Olshevsky continued

this line of work by proposing and analyzing the Subgradient-Push method [57], a

7

distributed (sub)gradient algorithm that uses the Push-Sum protocol in place of the

original doubly-stochastic consensus procedure. Yin and Zeng, and Khan and Xi

simultaneously came out with the DEXTRA and Extra-Push algorithms for multi-

agent optimization using the Push-Sum protocol; their algorithms are able to achieve

geometric convergence rates over directed graphs [85, 84, 89, 88]. Nedic, Olshevsky,

and Shi built upon this work by proposing the Push-DIGing algorithm for multi-

agent optimization using the Push-Sum protocol, which is able to achieve a geometric

convergence rate over directed and time-varying communication graphs [49]. The

Push-DIGing and DEXTRA/Extra-Push algorithms are considered to be the state-

of-the-art, and the Subgradient-Push algorithm, a multi-agent analog of classical

gradient descent, is considered a baseline method. It should be noted that all of

these algorithms are synchronous in nature.

Asynchronous Multi-Agent Optimization

Most recently, in the past year or so, there have been several asynchronous

multi-agent optimization algorithms proposed in the literature, such as [83], which

requires doubly-stochastic consensus over undirected graphs; [26], which requires

push-pull based consensus over undirected graphs; and [50], which assumes a model of

asynchrony in which agents become activated, or “wake-up,” according to a Poisson

point process and “finish updates before another agent becomes activated.”

The seminal work on asynchronous multi-agent optimization algorithms of Tsit-

siklis et al. [78] considers the case where each agent holds one component (or block)

of the optimization variable, and can locally evaluate the gradient of the global objec-

tive with respect to its component. Convergence is proved for a distributed gradient

8

algorithm in that setting, but that setting is also inherently different from the pro-

posed problem formulation where each agent does not necessarily have access to the

global objective. The work of Li and Basar [43] studies distributed asynchronous al-

gorithms and proves convergence and asymptotic agreement in a stochastic setting,

but assumes a similar computation model to that of Tsitsiklis et al. [78] in which each

agent updates a portion of the parameter vector using an operator which produces

contractions with respect to the global objective.

As was already mentioned, there exist non-consensus-based parallel asynchronous

optimization algorithms, such as [69, 63, 33], which are implemented on either

a shared-memory multiprocessor system, or utilize some sort of parameter server.

These methods are actually quite successful at performing certain tasks in practice,

however, they represent a fundamentally different computing architecture from the

multi-agent setting considered in this work.

In general, many of the asynchronous multi-agent optimization algorithms pro-

posed in the literature make restrictive assumptions regarding the nature of the agent

updates (e.g., sparse Poisson point process [50], randomized single activation [8, 24],

randomized multi-activation [38, 27, 53, 37, 22, 79, 36, 7, 90]). To the best of our

knowledge, there are no asynchronous multi-agent optimization algorithms that uti-

lize singly-stochastic consensus and don’t make these types of assumptions.

Theory-Practice Knowledge Gap

It is interesting to note that, in the past decade, a large number of distributed

algorithms for solving large-scale convex optimization problems have been proposed

and analyzed in the literature, especially from the perspective of multi-agent systems.

9

Although it is fairly well understood which algorithms have the most desirable the-

oretical properties, there has been relatively little work investigating and evaluating

practical implementations of these algorithms and there is a non-trivial gap between

theory and practice [34, 23, 76, 72, 74, 73]. For example, many of the theoretical

analyses ignore important practical issues such as asynchronism and communication

delays. As a result, it is often the case that algorithms with the most desirable

theoretical properties (e.g., fastest convergence rates in iterations) do not necessar-

ily have the most desirable properties in practice (e.g., fastest convergence rates in

time).

1.5 Contributions

In this work we extend the Subgradient-Push optimization algorithm to asyn-

chronous operation and term the extended algorithm Asynchronous Subgradient-

Push. Through numerical experiments we demonstrate that Asynchronous Subgradient-

Push converges faster than the state-of-the-art multi-agent methods in practice, is

more robust to failing/stalling nodes, and scales better with the network size [2].

Motivated by the superior empirical results of the proposed algorithm, we proceed

to develop a convergence theory: when the local objective functions are strongly con-

vex with Lipschitz-continuous gradients, we show that a subsequence of the iterates

at each agent converges to a neighbourhood of the global minimum, where the size of

the neighbourhood depends on the maximum delay, the modulus of strong-convexity,

and the Lipschitz constant. In addition, throughout the process of our analysis we

develop some peripheral results concerning an asynchronous version of the Push-

Sum Protocol used for consensus averaging that are interesting in their own respect.

10

In particular, we show that agents running the Push-Sum Protocol asynchronously

converge to the average of the network — even in the presence of exogenous pertur-

bations at each agent that seek to derail the consensus process — geometrically fast,

where the constant of geometric convergence depends on the consensus-matrices’ de-

gree of ergodicity (cf. Hajnal and Bartlett [31]), and takes into account the degree of

asynchrony in the multi-agent network. We also implement the state-of-the-art first-

order methods compared in this work using the Message Passing Interface (MPI)

standard for message-passing in clusters [18, 17, 28], and make them available to the

community.1

1.6 Proposed Algorithm & Main Results

In this work we are particularly interested in asynchronous multi-agent methods,

by which we mean that agents do not necessarily perform updates at the same times

or at the same rate, and that messages between agents may be subject to delays.

Agents do not wait for each other to complete computations, nor do they wait for

messages to be received before moving on to the next step in the algorithm; this

asynchronous nature makes it possible for agents to perform a drastically different

number of gradient steps over any time interval.

Practical asynchronous implementations of multi-agent communication using

the Message Passing Interface (MPI) [28], or other message passing standards, often

have the notion of a send-buffer and a receive-buffer. A send-buffer is a data structure

containing the messages sent by an agent, but not yet physically transmitted by the

1 Open Source: https://github.com/MidoAssran/maopy

11

Algorithm 1 Asynchronous Gradient Push (Pseudocode) for agent vi

Initialize x← some vector in Rn {Push-sum numerator}
Initialize y ← 1 {Push-sum weight}
Initialize α← some scalar value in R++ {Step-size}
Nout ← number of out-neighbours
repeat

begin: Local Computation
z ← x/y {Debias consensus estimate of minimizer}
x← x− α∇fi(z) {Greedy local minimization of fi(·)}
Update step-size α
end
begin: Asynchronous Gossip
Copy message m = (x/Nout, y/Nout) to local send-buffer {Send messages to neighbours}
x, y ← x, y + sum of all messages in local receive-buffer {Process received messages}
end

until termination.

underlying communication system. A receive-buffer is a data structure containing

the messages received by an agent, but not yet processed. Using this notion of send-

and receive-buffers, the pseudocode running on each individual agent in the network

is provided in Algorithm 1 and entails a basic two-step procedure consisting of Local

Computation followed by Asynchronous Gossip. During the Local Compu-

tation phase, agents update their estimate of the minimizer by performing a local

(sub)gradient-descent step. During the Asynchronous Gossip phase, agents copy

all outgoing messages into their local send-buffer and subsequently process (sum) all

messaged received (buffered) in their local receive-buffer while the agent was busy

performing the preceding Local Computation. The underlying communication

system begins transmitting the messages in the send-buffer once they are copied

there; thereby freeing the agent to proceed to the next step of the algorithm without

waiting for the messages to reach their destination.

12

Some brief notation that we use to state our main result: for an agent running

the code in Algorithm 1, we denote the value of the variable z held locally by agent

vi at time t[k] by zi[k], and we generalize this notation to other variables as well. We

also represent the communication-topology as a directed graph, G(V , E), where V is

the set of nodes (agents), and E is the set of edges (directed communication links).

Let τproc (∈ Z++, positive, non-zero, integers), denote a measure of the asynchrony

in the multi-agent network; we formalize τproc in our analysis. For ease of exposition,

we assume that the communication-graph is static and strongly-connected. The

strongly-connected property of the directed graph is necessary to ensure that all

agents are capable of influencing each other’s values, and in the discussion section

we describe how one can extend our analysis to account for time-varying directed

communication-topologies.

1.6.1 Constant Step-Size

If the agents run Algorithm 1 with a constant step-size, α, which satisfies an

appropriate upper-bound, and the local objective functions are strongly-convex with

Lipschitz-continuous gradients, then for all agents, vi, it holds that

lim inf
k→∞

‖zi[k]− x?‖ < L

m

√
2(τproc − 1)(n− 1) +O

(
α

1− q

)
,

where x? is a globally optimal solution to problem (1.1), q depends on consensus-

matrices’ degree of ergodicity taking into account the delays, and L and m are the

Lipschitz constant and modulus of strong-convexity, respectively.

The
√

2(τproc − 1)(n− 1) term is due to the asynchrony in the multi-agent sys-

tem. If τproc decays to 1, that is, if the algorithm operates semi-synchronously

13

(agents wait for each other to complete updates, but don’t wait for messages to be

sent/received), then this term completely disappears. The O (α/(1− q)) term is due

to the consensus-disagreement between agents. If the agents have little influence on

each other (large 1/(1− q)), or if the agents use a large step-size, meaning it’s easier

for them to move away from consensus in their local optimization steps, then the

size of the neighbourhood to which they are guaranteed to converge also increases.

1.6.2 Diminishing Step-Size

If the agents run Algorithm 1 with a diminishing step-size and the local objective

functions are strongly-convex with Lipschitz-continuous gradients, then for all agents,

vi, it holds that

lim inf
k→∞

‖zi[k]− x?‖ < L

m

√
2(τproc − 1)(n− 1),

where, once again, x? is a globally optimal solution to problem (1.1), and L and

m are the Lipschitz constant and modulus of strong-convexity, respectively. If τproc

decays to 1, that is, if the algorithm operates semi-synchronously (agents wait for

each other to complete updates, but don’t wait for messages to be sent/received),

then the parameter estimates, z, at each agent converge to the same globally optimal

solution. In order to implement such a diminishing step-size, the agents need not

know the exact times at which other agents perform updates, instead they can use

the technique suggested in [74] to update their step-size using actual wall-clock time.

For example, each agent can maintain a counter, k, that increments by 1 every 100ms

or so. This technique works in practice and has been validated through numerous

experimental results [74, 72].

14

1.7 Thesis Overview

In Chapter 2, a detailed background regarding some of the terminology and

machinery commonly used in the convex analysis and optimization literature is pro-

vided and accompanied by a formal description of the Push-Sum consensus-averaging

algorithm and the Subgradient-Push, Push-DIGing, and Extra-Push optimization al-

gorithms. In Chapter 3 we describe the System Model constructed for the analysis of

asynchronous algorithms. In Chapter 4 we develop an asynchronous formulation of

the Push-Sum protocol and prove a geometric convergence rate in the asynchronous

setting, even in the presence of exogenous perturbations that seek to derail the

consensus process at each agent. In Chapter 5 we develop an asynchronous formula-

tion of the Subgradient-Push algorithm (termed Asynchronous Subgradient Push),

provide numerical experiments showcasing its superior performance relative to the

state-of-the-art methods in the literature, and, using the results from Chapter 4,

prove convergence to a neighbourhood of the global minimum, where the size of

the neighbourhood depends on the degree of asynchrony in the multi-agent network.

In Chapter 6 we summarize our findings and describe possible extensions to future

work.

15

CHAPTER 2
Background

In this chapter we describe in a bit more detail some of the related work on dis-

tributed optimization methods in the literature and introduce the Push-Sum protocol

for consensus-averaging formally. We also introduction to some of the terminology

commonly used in the convex analysis and distributed optimization literature.

Notation. Let In denote the n × n identity matrix, and 1n represent an n-

dimensional column vector with each entry equal to 1. A generic local variable z

held by agent vi in the network at time-index k is denoted by the vector zi[k], where

zi[k] ∈ Rd. Let z[k] ∈ Rn×d be a matrix which stores the copy of variable z for

the entire n-agent network at time-index k, where (zi[k])T is the ith row of z[k]. In

general, all matrices are represented with boldfaced symbols, and all vectors with

regular math font, with the exception of 1n which is a vector.

2.1 Convex Optimization & Graph Theory

Convexity. A scalar-valued function f : Rd → R is convex if and only if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y),

for some θ ∈ [0, 1] and x, y ∈ Rd. The principal benefit of convex optimization

(versus non-convex optimization) is that local optimization and global optimization

become one task. That is, any local minimum found is also guaranteed to be a global

minimum. Non-convex optimization on the other hand makes no such guarantees,

16

and as such, non-convexity is generally believed to increase the difficulty of the

problem at hand [10].

Gradient and Subgradient. The gradient of a smooth convex function f :

Rd → R at x ∈ Rd is a unique vector g ∈ Rd which satisfies the (sub)gradient

inequality

gT (y − x) ≤ f(y)− f(x),

for all y ∈ Rd. The entries of the gradient g correspond to the partial derivatives

of f at x, and so g is often denoted by ∇f(x). If f is non-smooth, i.e., there exist

several vectors g that satisfy the (sub)gradient inequality (note, this is not a formal

definition of smoothness), then the vectors g are called the subgradients of f at x,

and the set of all subgradients g is called the subdifferential of f at x, denoted by

∂f(x).

First Order Optimality. If x? is a minimizer of a smooth scalar-valued con-

vex function f : Rd → R, then the gradient of f at x? is the zero-vector 0 ∈ Rd.

Alternatively, if f is non-smooth, then the zero-vector 0 is in the subdifferential of

f at x?, ∂f(x?).

Strong Convexity. A scalar-valued function f : Rd → R is m strongly-

convex, with modulus of strong convexity m (∈ R++, positive, non-negative, reals),

if and only if the function x 7→ f(x) − m
2
‖x‖2 is convex. Strong convexity gives a

lower bound on the growth of a function [10], thereby allowing us to reliably use the

closeness of the gradient ∇f(x) to 0 as a measure of the closeness of x to the min-

imizer (if the minimizer exists). Given that a whole class of iterative optimization

17

algorithms, under the aegis of first-order methods, rely on the gradient to deter-

mine the minimizer of a function, it comes as no surprise that strong-convexity is a

relatively standard assumption in the literature.

Lipschitz Smoothness. A scalar-valued convex function f : Rd → R is M

Lipschitz-smooth if its gradients are M Lipschitz-continuous; i.e., there exists a

constant M ∈ R++ such that

‖∇f(x)−∇f(y)‖ ≤M ‖x− y‖ ,

for all x, y ∈ Rd. Lipschitz-smoothness ensures that the gradients of a function

cannot arbitrarily explode in any direction, a standard assumption in the literature.

For example, the prototypical quadratic

f : x ∈ Rd 7→ xTAx+ bTx+ c,

for c ∈ R, b ∈ Rd, and symmetric positive definite A ∈ Sd×d++ , is strongly convex

and Lipschitz-smooth. Another example of a strongly-convex and Lipschitz-smooth

function is the regularized cross-entropy loss function

f : x ∈ Rd 7→
n∑
j=1

ln
(

1 + e−tjw
T
j x
)

+
λ

2
‖x‖2 ,

for wj ∈ Rd, tj ∈ {−1,+1}, and n, λ > 0. This function arises quite often in machine

learning classification applications — e.g., when performing maximum-likelihood

with a logistic-regression likelihood model.

18

More generally, some examples of functions that are strongly-convex and Lipschitz-

smooth are the family of functions of the form

f : x ∈ Rd 7→ g(x) +
λ

2
‖x‖2

where g(x) : Rd → R is a (potentially non-convex) function that belongs to the set of

twice differentiable functions with bounded Hessian (absolute row sum is bounded),

and λ > 0 is a sufficiently large scalar regularizer (λ greater than the maximum

absolute row sum of the Hessian of g at all points x).

Directed Strongly Connected Graphs. A graph G(V , E) consists of a set

of vertices, V , and a set of edges, E . Each edge in the edge-set joins a pair of vertices

together. The graph G(V , E) is termed directed if there is a direction associated with

the edges in the edge-set, and is termed undirected otherwise. A directed graph

G(V , E) is strongly connected if every vertex is reachable from every other vertex by

traveling along a directed path adhering to the direction of the edges in the edge-set.

If every vertex in the directed graph is reachable from every other vertex by traveling

along an undirected path, not necessarily adhering to the direction of the edges in

the edge-set, then the directed graph is simply referred to as connected. A strongly-

connected component of a directed graph, G(V , E), is a subgraph that is itself strongly

connected, and has the property that no additional edges from G(V , E) can be added

to the subgraph without breaking its (the subgraph’s) strong connectivity.

Graph Conformance. The adjacency matrix of a directed graph, G(V , E), is

a |V| × |V| matrix, A ∈ R|V|×|V|, that contains a 1 in its (i, j)th entry if there is an

edge from vertex i to vertex j, and contains a 0 in that entry otherwise. Note that

19

the adjacency matrix of a directed graph is not necessarily symmetric. An arbitrary

matrix P is said to be graph conformant with respect to the graph G(V , E) if P has

the same zero/non-zero structure as the adjacency matrix of graph G(V , E).

Stochastic, Indecomposable, Aperiodic. A square matrix P is said to be

(column) stochastic if all its entries are non-negative, and all the columns sum to 1

(i.e., 1TP = 1T). A square matrix P is said to be (column) stochastic, indecompos-

able, and aperiodic (SIA) if it is (column) stochastic, and if

lim
n→∞

P n = Q

exists and all the columns of Q are the same. Furthermore, if the square matrix

P is graph conformant with respect to a directed graph G(V , E), then the graph

G(V , E) is connected and has only one strongly-connected component. If the square

matrix P ∈ Rv×v is doubly stochastic, then all of its entries are non-negative, and

all the columns and rows sum to 1. If P is (doubly) stochastic, indecomposable, and

aperiodic, then

lim
n→∞

P n =
1

v
11T .

Linear (Geometric) Convergence. A sequence {x[k]} is said to converge

Q-linearly to a limit point x? if

‖x[k + 1]− x?‖
‖x[k]− x?‖

= λ,

for all k sufficiently large and some non-negative constant λ ∈ (0, 1). The prefix “Q”

stands for “quotient” since this type of convergence is defined in terms of a quotient

20

of successive error terms [61]. For instance, the sequence 1 + (0.2)k converges Q-

linearly to 1 with rate λ = 0.2. A sequence {x[k]} is said to converge R-linearly

(geometrically) to a limit point x? if there is a sequence of nonnegative scalars {vk}

such that

‖x[k]− x?‖ ≤ vk,

for k ∈ N, and {vk} converges Q-linearly to zero. The prefix “R” stands for “root”

and characterizes the overall rate of decrease of the error, rather than the decrease

between successive steps, and hence represents a slightly weaker form of convergence

than Q-linear convergence. For instance, the sequence

x[k] =


1 + (0.2)k, k even,

1, k odd,

is dominated by the sequence 1 + (0.2)k and thus converges R-linearly to 1. Notice

that the error ‖x[k]− 1‖ does not decrease at each step, hence this sequence does

not converge Q-linearly.

Sublinear Convergence. A sequence {x[k]} is said to converge sublinearly

(or sub-geometrically) to a limit point x? if

‖x[k + 1]− x?‖
‖x[k]− x?‖

= λ[k],

for k ∈ N, where λ[k] ∈ (0, 1) and λ[k] ↑ 1 as k →∞.

21

2.2 Synchronous Push Sum Averaging

In this section we describe the Push-Sum algorithm used for consensus averaging

in multi-agent networks, a fundamental building block of the first-order state-of-the-

art methods compared in this work. Each agent vi in the n agent network holds a

local variable zi[0] ∈ Rd. The goal of distributed gossip averaging is to have all the

agents in the network agree (achieve consensus) on the average of their initial values

by gossiping with their neighbours (i.e., z[k]→ 1
n
1n1

>
nz[0]). Converging to the true

average of the network through gossip is an iterative process; a typical consensus

averaging protocol solves the problem by performing the iterations z[k+1] = P0z[k]

starting at z[0], where P0 is a doubly stochastic SIA matrix. However, as was

already mentioned, doubly stochastic protocols are undesirable for many reasons,

especially in peer-to-peer networks, which tend to lack a highly organized structure.

The Push-Sum protocol achieves consensus averaging using only column stochastic

matrices, and is directly used by many multi-agent optimization algorithms. At all

time-indices k, each agent vi locally maintains the variables wi[k], zi[k] ∈ Rd, and

yi[k] ∈ R. A small subtlety to note is that since each yi[k] is a scalar, the state of

the variable y in the entire network is represented by a vector, y[k] ∈ Rn, as opposed

to a matrix, where yi[k] is the ith entry of y[k]. In order to describe the algorithm

from a global perspective, we use the matrix-based formulation of the Push-Sum

Averaging protocol provided in Algorithm 2, where diag(y) is a diagonal matrix with

the elements of the vector y on the diagonals. The initializations are w
(0)
i [0] ∈ Rd,

and y
(0)
i [0] = 1. Since the mixing matrices are only column-stochastic, sending agents

control their own respective columns of the mixing matrices independently, without

22

Algorithm 2 Delay Free Synchronous Push-Sum Averaging (cf. [39])

for k = 0, 1, 2, . . . to termination do

w[k + 1] = P0w[k] (2.1)

y[k + 1] = P0y[k] (2.2)

z[k + 1] = (diag(y[k + 1]))−1w[k + 1] (2.3)

coordination with the other agents in the network. At each time-index k, each agent

vj gossips (or pushes) its scaled push-sum numerator, [P0]ij wj[k], and its scaled

push-sum weight, [P0]ij yj[k], to its neighbouring agents {vi ∈ Nout
j }. After pushing

values to peers, agents subsequently perform a local update by summing the push-

sum messages that they have received. Any bias built up in the push-sum numerator,

wj[k], is also built up in the scalar push-sum weight, yj[k], and so a division of the

push-sum numerator by the scalar yields the unbiased consensus estimate of the

network average. After several such iterations, the consensus estimates zi[k] at each

agent converge to the true average of the network (asymptotically). The column

stochastic mixing matrices are typically given by

[P0]ij :=


1

Nout
j
, (i, j) ∈ E ,

0, otherwise.

(2.4)

That is, each agent gossips with all of its out-neighbours at each iteration with equal

weight. In order to do so, the agents must know their number of out-neighbours.

Define the “type” of a matrix to be its zero/non-zero structure. Observe that, by

definition, the matrix P0 is of the same type as the adjacency matrix of the graph

G(V , E), and so the consensus matrix P0 is said to conform to the graph structure

23

Algorithm 3 Synchronous Subgradient-Push (cf. [57])

for k = 0, 1, 2, . . . to termination do

w[k + 1] = P0 (w[k]− α[k]∇F [k]) (2.5)

y[k + 1] = P0y[k] (2.6)

z[k + 1] = diag(y[k + 1])−1w[k + 1] (2.7)

G(V , E). Each agent running the synchronous Push-Sum protocol converges to the

network-wide average R-linearly, where the constant of geometric convergence is

given by the second-largest eigenvalue of the consensus-matrix P0 . Namely, for all

i = 1, 2, . . . , n, ∥∥∥∥zi[k]− 1

n
1Tnw[0]

∥∥∥∥
1

≤ Cλk,

where λ ∈ [0, 1) is the second-largest eigenvalue of the consensus-matrix P0 .

2.3 Synchronous Subgradient Push

The synchronous Subgradient-Push optimization algorithm is used as a baseline

and corresponds to a push-based analogue of the classical gradient descent algorithm

(cf. [61] for a gradient descent reference). At all time-indices k, each agent vi locally

maintains the variables wi[k], zi[k] ∈ Rd, and yi[k] ∈ R. In order to describe the

algorithm from a global perspective, we use the matrix-based formulation of the

synchronous Subgradient-Push method provided in Algorithm 3. The consensus-

matrices P0 are as defined in (2.4). The matrix-valued function∇F [k] is the Jacobian

of the global objective F (·) at z[k]. In the non-differentiable but convex objective

setting, the rows of ∇F [k] are members of the subgradient set of the global objective

F (·) evaluated at z[k]. The initializations are z[0] = w[0] ∈ Rd, y[0] = 1n, and α[·] is

24

just a positive scalar step-size. For the agents to achieve consensus and converge to

a global minimum, it is recommended that the step-size satisfy the Robbins-Monro

conditions (
∑∞

k=0 α[k] =∞,
∑∞

k=0(α[k])2 <∞). The push-sum modification simply

interleaves a push-sum averaging step with a gradient-descent step. The push-sum

averaging step is used to steer the nodes’ estimates of the optimal parameter setting

towards each other (consensus), and the gradient-descent step is used to steer the

nodes’ arguments towards the minimizer (greedy minimization). The Subgradient

Push algorithm converges sublinearly at a rate of O
(

ln k/
√
k
)

for general convex

functions [57], and at a rate of O (ln k/k) for strongly convex functions [55].

2.4 Extra Push

The first order state-of-the-art Extra-Push optimization algorithm [88] is an ex-

tension of the original doubly-stochastic EXTRA (exact first order algorithm) [70]

to singly-stochastic operation. Most notably, agents running the Extra-Push algo-

rithm achieve consensus and converge to a global minimum by using a constant

step-size. It is this ability to use a constant step-size, rather than a diminishing one,

that attributes Extra-Push with its linear convergence rate. At all time-indices k,

each agent vi locally maintains the variables wi[k], zi[k] ∈ Rd, and yi[k] ∈ R. In

order to describe the algorithm from a global perspective, we use the matrix-based

formulation of the synchronous Extra-Push method provided in Algorithm 4. The

consensus-matrices P0 are as defined in (2.4). The matrix-valued function ∇F [k] is

the Jacobian of the global objective F (·) evaluated at z[k]. In the non-differentiable,

but convex objective setting, the rows of ∇F [k] are members of the subgradient

set of the global objective F (·) evaluated at z[k]. Since the algorithm’s updates

25

Algorithm 4 Synchronous Extra-Push (cf. [88])

for k = 2, 3, 4, . . . to termination do

w[k + 1] = (P0 + In)w[k]− 1

2
(P0 + In)w[k − 1]− α (∇F [k]−∇F [k − 1])

(2.8)

y[k + 1] = P0y[k] (2.9)

z[k + 1] = diag(y[k + 1])−1w[k + 1] (2.10)

requires iterates from two iterations back, we must provide initializations for k = 0

and k = 1. The initializations at time-index k = 0 are z[0] = w[0] ∈ Rd, y[0] = 1n.

The initializations at time-index k = 1 are w[1] = P0w[0]− α∇F [0], y[1] = P0y[0],

and z[1] = diag(y[1])−1w[1]. The constant α is just a positive scalar step-size. The

Extra-Push algorithm can be directly derived from the synchronous Subgradient-

Push algorithm by taking the difference between two successive iterations of (2.5);

one iteration using the consensus-matrix P0 and the other using the consensus-matrix

P̃0 := 1
2
(In +P0). By using a gradient difference in the optimization update, Extra-

Push is able to achieve exact convergence for general convex functions using a con-

stant step-size. The literature on the convergence theory for the Extra-Push algo-

rithm is restricted to synchronous and static (time-invariant) directed graphs. The

Extra-Push algorithm converges Q-linearly when the global objective is strongly con-

vex [58, 88].

2.5 Push DIGing

The Push-DIGing (distributed gradient tracking) optimization algorithm [58]

is another first order state-of-the-art method. Most notably, agents running the

Push-DIGing algorithm achieve consensus and converge to a global minimum, even

26

Algorithm 5 Synchronous Push-DIGing (cf. [58])

for k = 0, 1, 2, . . . to termination do

w[k + 1] = P0 (w[k]− αx[k]) (2.11)

y[k + 1] = P0y[k] (2.12)

z[k + 1] = diag(y[k + 1])−1w[k + 1] (2.13)

x[k + 1] = P0x[k] + (∇F [k + 1]−∇F [k]) (2.14)

in the presence of time-varying communication topologies, by using a constant step-

size. It is this ability to use a constant step-size, rather than a diminishing one,

that attributes Push-DIGing with its linear convergence rate, and it is the dynamic

gradient tracking procedure that allows the method to converge over time-varying

graphs (in contrast to Extra-Push which diverges over time-varying graphs [59]). At

all time-indices k, each agent vi locally maintains the variables wi[k], xi[k], zi[k] ∈ Rd,

and yi[k] ∈ R. In order to describe the algorithm from a global perspective, we use

the matrix-based formulation of the synchronous Push-DIGing method provided in

Algorithm 5.

The consensus-matrices P0 are as defined in (2.4). The matrix-valued function

∇F [k] is the Jacobian of the global objective F (·) evaluated at z[k]. In the non-

differentiable, but convex objective setting, the rows of ∇F [k] are members of the

subgradient set of the global objective F (·) evaluated at z[k]. The initializations

are z[0] = w[0] ∈ Rd, y[0] = 1n, x[0] = ∇F [0] and α is just a positive scalar step-

size. The algorithm shares many similarities to Extra-Push, however one of the most

salient differences is that the Push-DIGing method performs dynamic gradient track-

ing through the variable x, and is therefore capable of converging over time varying

27

directed graphs. The synchronous Push-Diging algorithm converges R-linearly when

the global objective is strongly convex [58].

2.6 Summary

In this chapter we reviewed the Push-Sum consensus-averaging algorithm —

a fundamental building block of singly-stochastic multi-agent optimization — and

provided a brief intertextual exposition of some of the state-of-the-art methods in

multi-agent optimization. All of these methods have only been described and an-

alyzed in the synchronous setting in the literature. In this thesis we analyze an

asynchronous version of Subgradient-Push, and, to that end, an asynchronous ver-

sion of the Push-Sum consensus-averaging algorithm. In the next chapter we discuss

the system model that we introduce to facilitate this analysis.

28

CHAPTER 3
System Model

To describe Asynchronous Gradient Push, and prove convergence, we establish

some new notation, adapt existing graph-based communication models, and slightly

update the optimization iteration of Synchronous Subgradient Push. We put together

these pieces to create an asynchronous multi-agent model under the assumptions of

bounded computation and communication delays. Without any loss of generality we

can describe and analyze the algorithm in discrete-time since all events of interest,

such as message transmissions/receptions and local variable updates, may be indexed

by a discrete-time variable (cf. [78]).

For analysis purposes we adopt the notation and terminology for analyzing asyn-

chronous algorithms developed in [78, 5]. We let t[0] denote the time at which

the agents begin optimization, and we assume that there is a set of times T =

{t[1], t[2], t[3], . . . , } at which one or more agents perform an update. We let Ti ⊆ T

denote the subset of times at which agent vi in particular performs an update. For

example, if the time-indices at which agent vi performs an update are given by

{5, 6, 25, . . . , }, then Ti = {t[5], t[6], t[25] . . . , }. In this case, t[5] is the time at which

agent vi completes its first Local Computation, t[6] is the time at which agent vi

completes its second Local Computation, t[25] is the the time at which agent vi

completes its third Local Computation, and so on. Since agents do not wait for

each other to complete computations, nor do they wait for messages to be received

29

before moving on to the next step in the algorithm, it follows that the differences

t[5]−t[0], t[6]−t[5], t[25]−t[6] can be regarded as the inter-update delays; we refer to

these time differences as the continuous-time processing delays experienced by agent

vi, and we refer to the corresponding time-index differences, 5 − 0, 6 − 5, 25 − 6,

etc., as the time-index processing delays experienced by agent vi. Assume that the

continuous-time processing delays are bounded from above and below — meaning

that agents do not take an infinite amount of time to perform an update, nor do

they perform updates infinitely fast — as is typically the case in works that analyze

asynchronous algorithms (cf. Bertsekas and Tsitsiklis [78, 5]), then it follows that

the time-index processing delays are also bounded. Let τproc denote an upper bound

on the time-index processing delays.

In practical implementations of message-passing algorithms, when a message

is sent from one agent to another, that message experiences some real (non-integer

valued) transmission delay due to the variable latency in the communication medium.

Since agents neither wait for each other to complete computations, nor do they wait

for messages to be sent/received before moving on to their next local iteration, it

follows that an outgoing message may not be processed until some other time later in

the future. For example, a message sent from agent vi to agents vj and v` at time t[k]

may experience some variable transmission delays τj′ , τ`′ ∈ R+. Thus, the messages

may not be processed by agents vj and v` until some later times t[j′] ≥ t[k] + τj′ and

t[`′] ≥ t[k] + τ`′ respectively. The fact that the message arrives at agent vj’s receive-

buffer at time t[k] + τj′ does not necessarily imply that it is also processed at time

t[k]+τj′ ; it may be that agent vj is busy performing a Local Computation, and does

30

not process the newly arrived message until its next update. The continuous-time

differences t[j′]− t[k] and t[`′]− t[k] are referred to as the continuous-time message

delays, and the corresponding time-index differences k′−k and s′−k are referred to as

the time-index message delays. Assume that the continuous-time message delays are

bounded, as is typically the case in works that analyze asynchronous algorithms (cf.

Bertsekas and Tsitsiklis [78, 5]), then, coupled with the assumption that continuous-

time processing delays are bounded from above and below, it follows that the time-

index message delays are also bounded. Let τmsg denote an upper bound on the

time-index message delays.

Note that we have used t[k] to refer to the time at which an agent completes

a Local Computation — performs an update — and also the time at which that

same agent begins Asynchronous Gossip — sends a message to its neighbours by

copying the outgoing message into its local send-buffer. And so we say that an agent

performs an update and sends a message to its out-neighbours at time t[k]. More

precisely, t[k] ∈ Ti implies that agent vi performs an update and sends a message

to its out-neighbours at time t[k]. Furthermore, since messages are only processed

during the agent update times, it follows that, for analysis purposes, messages are

sent with an effective delay such that they arrive right when the agent is ready to

process the messages. That is, a message sent at time t[k] that arrives in an agent’s

receive buffer at time t[k] + τj′ , but is not processed until time t[j′], is, for analysis

purposes, sent with a continuous-time delay t[j′]− t[k], or equivalently a time-index

delay j′ − k. Figure 3–1a illustrates the agent update procedure in the synchronous

31

k=1 k=2

start

start itr.1 itr.2

start itr.1 itr.2

start itr.1 itr.2

Agent 1

Agent 2

Agent 3

Time

Synchronous Subgradient Push processing delay

transmission delay

idling

(a)

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=9k=8 k=10 k=11

start itr.1 itr.2 itr.3

start itr.1 itr.2

start itr.1

itr.3

itr.2 itr.3

itr.4

itr.4

Agent 1

Agent 2

Agent 3

Time

Asynchronous Subgradient Push processing delay

transmission delay

(b)

Figure 3–1: Example of agent updates in synchronous and asynchronous Subgradient
Push implementations with τproc = 4 in the asynchronous case. Processing delays
correspond to the time required to perform a local iteration. Transmission delays
correspond to the time required for all outgoing message to arrive at their destina-
tion buffers. Even though a message arrives at a destination agent’s receive-buffer
after some real (non-integer valued) delay, that message is only processed when the
destination agents performs its next update.

case (Synchronous Subgradient Push): agents must wait for all network communica-

tions to be complete before moving-on to the next iteration, and, as a result, some

agents may experience idling periods. Figure 3–1b, on the other hand, illustrates

the agent update procedure in the asynchronous case (Asynchronous Subgradient

32

Push): at the end of each local iteration, agents make use of their message buffers

by copying all outgoing messages into their local send-buffers, and by retrieving all

messages from their local receive-buffers. The underlying communication systems

subsequently transmit the messages in the send-buffers while the agents proceed

with their computations. Though not totally obvious from the diagram, it is possi-

ble for message transmission delays to take more time than processing delays; this is

a non-issue so long as the agents’ communication buffers do not overflow in practice.

3.1 Communication

The multi-agent communication topology is represented by a directed graph

G(V , E), where V := {vi | i = 1, . . . , n} is the set of agents, and E := {(vj ←

vi) | vi can send messages to vj} is the set of edges. We refer to G(V , E) as the

reference graph for reasons that will become apparent when we augment the graph

with virtual agents. We let N in
j := | {vi | (vj ← vi) ∈ E} | denote the cardinality

of the in-neighbour set of agent vj, and Nout
j := | {vi | (vi ← vj) ∈ E} | denote the

cardinality of the out-neighbour set of agent vj. Since all agent have access to their

local information at every iteration, we use the convention that each agent is both an

in- and out-neighbour of itself at all times; i.e., (vi ← vi) ∈ E for all i. We define the

communication set at time-index k by C[k], and we say that vi ∈ C[k] if and only if

agent vi performs an update at time t[k]. More formally, C[k] := {vi | t[k] ∈ Ti}. For

convenience, we also define the functions πi(k) := max {k′ ∈ N | k′ < k, vi ∈ C[k′]}

for all i, which return the most recent time-index — up to, but not including, time-

index k — that agent vi was in the communication set. To handle the corner-case

at k = 1, we let πi(1) equal 0 for all i.

33

3.2 Delays

Let τproc
i [k] := k − πi(k) (defined for all t[k] ∈ Ti) denote the time-index

processing delay experienced by agent vi at time t[k]. Since the maximum time-

index processing delay experienced by an agent is denoted τproc, we have that

1 ≤ τproc
i [k] ≤ τproc. In words, if agent vi performs an update at some time t[k],

then it performed its last update at time t[k − τproc
i [k]], where τproc

i [k] is bounded

above by τproc. Note that this is less strict than explicitly requiring the inter-update

time t[k]− t[k − τproc
i [k]] to be bounded from above and below.

By similar construction, let τmsg
ji [k] (defined for all t[k] ∈ Ti) denote the time-

index message delay experienced by a message sent from agent vi to agent vj at time

t[k]. Since the maximum time-index message delay is denoted τmsg, we have that

0 ≤ τmsg
ji [k] ≤ τmsg. In words, if agent vi sends a message to agent vj at time t[k], then

agent vj will process that message at time t[k + τmsg
ji [k]], where τmsg

ji [k] is bounded

above by τmsg. Note that this is less strict than explicitly requiring t[k + τmsg
ji [k]] to

be bounded. We use the convention that τmsg
ii [k] = 0 for all i and k ∈ N, meaning

that all agents have access to their own local information at all times.

Since all agents enter the communication set — i.e., complete an update and

initiate a message transmission to all their out-neighbours — at least once every

τproc − 1 time indices, and because all messages are processed within at most τmsg

time indices from when they are sent, it follows that each agent is guaranteed to

process at least one message from each its in-neighbours every τ := τmsg + τproc − 1

time indices. In our subsequent analysis, we use τ to derive the effective connectivity

of the communication graph.

34

3.3 Augmented Graph

To analyze the Asynchronous Gradient Push optimization algorithm we aug-

ment the reference graph by adding τmsg virtual agents for each non-virtual agent,

using a procedure similar to that used in [15, 16, 29, 30] for synchronous averaging

with transmission delays. To state the procedure concisely: for each non-virtual

agent, vj, we add τmsg virtual agents, v
(1)
j , v

(2)
j , . . . , v

(τmsg)
j , where each v

(r)
j contains

the messages to be received by agent vj in r time indices. As an aside, we may inter-

changeably refer to the non-virtual agents, vj, as v
(0)
j for the purpose of notational

consistency. The virtual agents associated with agent vj are daisy-chained together

with communication edges (v
(r−1)
j ← v

(r)
j), such that at each time-index k, and for

all r ∈ {1, . . . , τmsg}, agent v
(r)
j forwards its summed messages to agent v

(r−1)
j . In

addition, for each edge (v
(0)
j ← v

(0)
i) in the reference graph (where j 6= i), we add the

edges (v
(r)
j ← v

(0)
i) in the augmented graph.

This augmented model simplifies the subsequent analysis by enabling agent vi

to send a message at time-index k to agent v
(τmsg
ji [k])

j with delay zero, rather than send

a message to agent vj with delay τmsg
ji [k]. An example of the graph augmentation

procedure is shown in Figure 3–2. The solid agents and edges correspond to the

reference graph, and the dashed agents and edges correspond to the those inserted

after the graph augmentation. At this point, it is worth pointing out that we have

not changed our definitions for the edge and vertex sets E and V respectively, they

are still solely defined in-terms of the non-virtual agents.

35

v1

v4 v2

v3

v
(1)
1v

(2)
1v

(3)
1

v
(1)
2 v

(2)
2 v

(3)
2

v
(1)
3 v

(2)
3 v

(3)
3

v
(1)
4v

(2)
4v

(3)
4

Non-Virtual Agent

Virtual (Delay) Agent

Non-Virtual Edge

Virtual (Delay) Edge

Figure 3–2: Sample augmented graph of a 4-agent reference network with a maximum
time-index message transmission delay of τmsg = 3 iterations.

To adapt the augmented graph model for optimization we formulate the equiv-

alent optimization problem

minimize F (x) :=
τmsg∑
r=0

n∑
i=1

f
(r)
i (x), (3.1)

36

where f
(r)
i (x) equals fi(x) if r = 0, and f

(r)
i (x) equals 0 if r 6= 0. In words, each of

the non-virtual agents, v
(0)
i , maintains its original objective function fi(·), and all the

virtual agents are simply given the zero objective. Clearly F (x) defined in (3.1) is

equal to F (x) defined in (1.1), and we will use these two notations interchangeably.

We also define the augmented state matrix x[k] ∈ Rn(τmsg+1)×d, given by

x[k] :=



x(0)[k]

x(1)[k]

...

x(τmsg)[k]


,

where each x(r)[k] ∈ Rn×d is a block matrix that stores a copy of the variable x

at all the delay-r agents in the augmented graph at time-index k (in keeping with

this notation, the block matrix x(0)[k] corresponds to the non-virtual agents in the

network). More specifically, x
(r)
i [k] ∈ Rd, the ith row of x(r)[k], is a copy of the

variable x held locally at agent v
(r)
i at time-index k; we generalize this notation for

other variables as well.

3.4 Brief Recap

We now briefly recap the behaviour of the asynchronous algorithm model. When

a non-virtual agent is in the communication set (just completed and update), the

agent asynchronously sends a message to each out-neighbour with some bounded

delay, such the messages are received right when the destination agents are ready

to process them, and, commensurately, reads all the messages that were received

(buffered) while carrying out the previous local update. When a non-virtual agent

is not in the communication set, the agent remains computing, neither sending new

37

messages to, nor receiving new messages from, any of its neighbours. Each non-

virtual agent is guaranteed to return the communication set (preform an update) at

least once every τproc time indices, and no message experiences a time-index delay

greater than τmsg. The virtual agents simply forward all of their messages to the next

agent in the delay daisy-chain at each subsequent time-index, and since all the virtual

agents have f
(r)
i (·) := 0, they never produce any new information in their gradient

step iterations (5.4). Hence, the non-virtual agents do not influence the result of

the optimization. This model and formulation allows agents to work at independent

rates, communicate with arbitrary transmission delays, and perform computations

with outdated information, so long as the delays are bounded.

38

CHAPTER 4
Asynchronous Consensus using Perturbed Push Sum

Just as consensus-averaging is a fundamental building block of the synchronous

state-of-the-art multi-agent optimization methods [72], so too is consensus-averaging

a fundamental building block of the proposed Asynchronous Subgradient Push op-

timization algorithm. In this chapter we present and prove convergence of an asyn-

chronous version of the synchronous Perturbed Push-Sum Protocol [57], the goal of

which is to perform push-sum consensus averaging with some unknown perturba-

tion term (e.g., random noise or a local gradient) added to the agents’ iterates at

each local iteration. Our definition of asynchrony in the context of push-sum con-

sensus implies that agents may gossip with their neighbours at different rates (due

to heterogeneous/variable message-processing delays), communicate with arbitrary

transmission delays, and perform push-sum averaging steps with stale (outdated)

information. This behaviour is in stark contrast to that of the synchronous Push-

Sum consensus-averaging algorithm defined in Section 2.2, where all agents gossip

at the same rate, and idle at each communication round until all messages to/from

neighbours are sent/received.

4.1 Formulation of Asynchronous Push-Sum

The lack of synchronization between agents in the asynchronous Perturbed Push-

Sum formulation results in specific times at which some agents are communicating,

and others are not, leading to an effectively time-varying graph structure, G(V , E [k]),

39

which we appropriately call the effective graph. Note the subtle distinction between

G(V , E [k]) used to represent the time-varying effective graph, and G(V , E) used to

represent the static reference graph. The effective graph is a subgraph of the reference

graph (not the augmented graph) with the same exact vertex-set, but only a subset

of the edge-set at each time-index. For example, if agent vi initiates a message

transmission to agent vj at time t[k], then the edge (vj ← vi) is in the effective graph

at time t[k], G(V , E [k]), even though that message experiences some finite-valued

transmission delay, and may not be processed by agent vj until some later time t[k′].

The effective graph, G(V , E [k]), is used solely for analysis purposes to denote the set

of edges in the reference graph along which message transmissions are initiated at

time t[k]. Since the non-virtual agents are guaranteed to send a message to each

of their peers at least once every τproc time indices, it follows that the union of

τproc consecutive effective graphs is equivalent to the reference graph in terms of the

non-virtual agent connectivity (i.e.,
⋃τproc−1
t=0 G(V , E [k + t]) ≡ G(V , E) for all k ≥ 0).

Therefore, if the reference graph, G(V , E), is strongly connected, then the effective

graph sequence {G(V , E [k])} is τproc-strongly connected.

40

The consensus matrices P [k] ∈ Rn(τmsg+1)×n(τmsg+1) for the augmented state

model are defined as

P [k] :=



P̃0 [k] In×n 0 · · · 0

P̃1 [k] 0 In×n · · · 0

...
...

...
. . .

...

P̃
τ−1

[k] 0 0 · · · In×n

P̃
τmsg [k] 0 0 · · · 0


, (4.1)

where each P̃r [k] ∈ Rn×n is a block matrix defined as

[
P̃r [k]

]
ji

:=



1
Nout
i
, vi ∈ C[k], (j, i) ∈ E , and τmsg

ji [k] = r,

1, vi /∈ C[k], r = 0, j = i,

0, otherwise.

(4.2)

In words, when a non-virtual agent is in the communication set, it sends a message to

each of its out-neighbours in the reference graph with some arbitrary, but bounded,

delay r, where the delay r may vary from one out-neighbour to another, and from

one time instance to another. When a non-virtual agent is not in the communication

set, it keeps its value and does not gossip. Furthermore, since we have chosen a

convention in which messages between agents are sent with some effective message

delay, τmsg
ji [k], it follows than non-virtual agents do not process any messages while

outside the communication set. Virtual agents, on the other hand, simply forward

all of their messages to the next agent in the delay daisy-chain at all time-indices

k, and so there is no notion of virtual agents belonging to (or not belonging to) the

41

Algorithm 6 Asynchronous Perturbed Push-Sum Averaging

for k = 0, 1, 2, . . . to termination do

w[k + 1] = P [k]x[k] (4.3)

y[k + 1] = P [k]y[k] (4.4)

z[k + 1] = diag(y[k + 1])−1w[k + 1] (4.5)

x[k + 1] = w[k + 1] + η[k + 1] (4.6)

communication set. The communication set is exclusively a construct for the non-

virtual agents. In the sequel, we make frequent use of the block matrix definitions

P̃r [k] defined in (4.2).

Remark 1 (Properties of Consensus Matrices). Observe that the matrices P [k] are

column stochastic at all time-indices k simply by their definition. Furthermore, the

block matrix sum
∑τmsg

r=0 P̃r [k
′] conforms to the effective graph representing the non-

virtual agent connectivity at time k′: G(V , E [k′]). Since the union of τ proc consecu-

tive effective graphs is equivalent to the reference graph in terms of the non-virtual

agent connectivity (i.e., ∪τprock′=0E [k + k′] ≡ E), we have that the block matrix sum∑τproc

k′=1

∑τmsg

r=0 P̃r [k + k′] (for any k ∈ N) conforms to the reference graph structure

G(V , E).

To analyze the Asynchronous Perturbed Push-Sum Averaging algorithm from

a global perspective, we us the matrix-based formulation provided in Algorithm 6,

where η[k + 1] ∈ Rn(τmsg+1)×d is some perturbation term, and the matrices P [k]

are as defined in (4.1) for the augmented state. At all time-indices k, each agent

v
(r)
i locally maintains the variables w

(r)
i [k], z

(r)
i [k], x

(r)
i [k] ∈ Rd, and y

(r)
i [k] ∈ R.

This matrix-based formulation describes how the agents’ values evolve at some time

42

t[k + 1] ∈ T = {t[1], t[2], t[3], . . . , } — a time at which one or more agents complete

an update, which in this case consists of processing (summing) received messages.

The time-varying consensus-matrices P [·] capture the asynchronous communication

dynamics between agents.

4.2 Main Results

Assumption 1 (Communicability). All agents influence each other’s values suffi-

ciently often; precisely:

1. The reference graph G(V , E) is static and strongly connected.

2. The communication and computation delays are bounded: τmsg < ∞ and

τ proc <∞.

Remark 2. The assumption that the reference graph is static is only made for ease

of exposition. In the discussion section we explain how one can extend the analysis

to account for time-varying directed communication topologies.

Let n represent the number of non-virtual agents in the network; let the scalar

ψ represents the number of possible types (zero/non-zero structures) that an n× n

SIA (Stochastic, Indecomposable, and Aperiodic) matrix can take (hence ψ < 2n
2
);

let the scalar λ represent the maximum Hajnal and Bartlett Coefficient of Ergodicity

(cf. [31]) taken over the product of all possible (τ + 1) consensus-matrix products —

we will prove later that λ is strictly less than 1, and guaranteed to exist — and let δmin

represent a lower bound on the entries in the first n-rows of the product of n(τ+1) or

more consecutive consensus-matrices (rows corresponding to the non-virtual agents).

Theorem 1 (Convergence Rate of Asynchronous Perturbed Push-Sum Averaging).

Suppose that Assumption 1 is satisfied, then it holds for all i = 1, 2, . . . , n, and k ≥ 0,

43

that ∥∥∥∥z(0)
i [k + 1]− 1>x[k]

n

∥∥∥∥
1

≤ Cqk
∥∥∥x(0)

i [0]
∥∥∥

1
+ C

k∑
s=0

qk−s ‖ηi[s]‖1 ,

where q ∈ (0, 1) is related to the degree of ergodicity associated with the asymptotic

product of the consensus-matrices, q = λ
1

(ψ+1)(τ+1) , and C is a finite constant, C <

2
λ(ψ+2)/(ψ+1)δmin

≈ 2
λδmin

with δmin = min1≤j≤n

(
1

Nout
j

)n(τ+1)

.

Remark. Note that Theorem 1 is only stated with regards to the consensus estimates

of the non-virtual agents:
{
z

(0)
i ∈ Rd

∣∣∣ i = 1, 2, . . . , n
}

. As for the virtual agents, the

constant C may blow-up and result in a trivial bound since the corresponding entries

in the consensus matrices may vanish (equal 0). Also note that while C appears to

have an inverse proportionality to the second largest eigenvalue of the graph consensus

matrices, λ, the constant q exhibits a stronger exponential relationship to λ, and so

smaller values of λ greatly improve the convergence rate bound. Furthermore, observe

that both q and C depend on the maximum effective delay in the network; specifically,

larger delays will result in larger values of both q and C, meaning that larger effective

delays result in slower convergence bounds. Lastly, it should be noted that the scalar

ψ, which represents the number of possible types (zero/non-zero structures) that an

n×n SIA matrix can take, increases with the number of agents n; therefore, increasing

the number of agents results in a slower convergence rate bound. In general, the

bound provided on ψ, (≤ 2n
2
) is very loose and can possibly be tightened by taking

into account the graph conformance and SIA properties of the consensus matrices.

Remark. It is worth pointing out that the result of Theorem 1 is interesting in that it

informs us on the asymptotic convergence of the Asynchronous Perturbed Push-Sum

Averaging algorithm and allows us to couple this method with distributed optimization

44

algorithms (the geometric rate of convergence is typically crucial to the analysis of

overlying distributed optimization methods); however, the magnitude of the constant

C is likely to be very large, and so the “bound” on performance is likely to be very

loose and of little interest in practice.

Corollary 1.1 (Convergence to a Neighbourhood for Non-Diminishing Perturba-

tion). If the perturbation term is bounded for all i = 1, 2, . . . , n: there exists a con-

stant L <∞ such that

‖ηi[k]‖1 ≤ L,

then by substituting the bound into the result of Theorem 1 and taking the limit of

the geometric series, we have for all i = 1, 2, . . . , n that

lim
k→∞

∥∥∥∥z(0)
i [k + 1]− 1>x[k]

n

∥∥∥∥
1

≤ C̃L

1− q
.

Remark 3. From [67, Lemma 3.1] we know that if q ∈ (0, 1), and lims→∞ α[s] = 0,

then it holds that

lim
k→∞

k∑
s=0

qk−sα[s] = 0.

Corollary 1.2 (Exact Convergence for Vanishing Perturbation). If the perturbation

term tends to 0 as k (the time-index) tends to infinity,

lim
k→∞
‖η[k]‖1 = 0,

then from the result of Theorem 1 and Remark 3, it holds for all i = 1, 2, . . . , n that

lim
k→∞

∥∥∥∥z(0)
i [k + 1]− 1>x[k]

n

∥∥∥∥
1

= 0.

45

4.3 Analysis

In order to prove that the consensus estimates of the non-virtual agents converge

to a neighbourhood of the mutual time-wise average at a geometric rate, we show that

the asymptotic product of the time-varying consensus-matrices, P [k] · · ·P [1]P [0]

(for large enough k) is stochastic, indecomposable, and aperiodic (SIA) and, further-

more, that the entries in the first n rows of the asymptotic product (corresponding to

the non-virtual agents) are bounded below by a strictly positive quantity. Applying

some standard tools from the literature concerning SIA matrices we show that the

columns of the asymptotic product of consensus-matrices weakly converge to a (pos-

sibly time-varying) stochastic vector sequence at a geometric rate (i.e., the columns

of the asymptotic product all converge to one-another geometrically fast, but are

not necessarily stationary). Substituting this geometric bound into the definition of

the asynchronous perturbed Push-Sum updates in Algorithm 6, and, through a little

algebraic manipulation, we obtain the desired result.

Lemma 1.1 (SIA Matrix Products). The product of ` + 1 consecutive consensus-

matrices Q`+1[k] := P [k+ `] . . .P [k+ 2]P [k] is (column) stochastic, indecomposable

and aperiodic (SIA) for arbitrary k and ` ≥ τ .

Proof. Column stochasticity of the product follows since each of the individual ma-

trices P [·] are column stochastic by definition, and the product of column stochastic

matrices is also column stochastic. Indecomposability and aperiodicity of the ma-

trix product can be checked from the graph structure implied by the zero/non-zero

structure of Q`+1[k]. In particular, a matrix is indecomposable if the directed graph

it describes is connected and has only one strongly-connected component [30, 80].

46

An indecomposable matrix is aperiodic if it has at least one self-loop (this is a

sufficient, but not a necessary, condition; cf. [30]). Since all of the non-virtual

agents have self-loops at all times, aperiodicity will be satisfied by default. There-

fore, what remains is to check indecomposability from the graph structure implied

by the zero/non-zero structure of the matrix product. We represent the product

Q`+1[k] := P [k + `] . . .P [k + 2]P [k] as a block matrix

Q`+1[k] =



Q
(0,0)

`+1 Q
(0,1)

`+1 · · · Q
(0,τmsg)

`+1

Q
(1,0)

`+1 Q
(1,1)

`+1 · · · Q
(1,τmsg)

`+1

...
...

. . .
...

Q
(τmsg,0)

`+1 Q
(τmsg,1)

`+1 · · · Q
(τmsg,τmsg)

`+1


.

We want to show that for ` ≥ τ the Q
(0,0)

`+1 matrix block conforms to a strongly

connected graph, and that the remaining Q
(0,1)

`+1 ,Q
(0,2)

`+1 , . . . ,Q
(0,τmsg)

`+1 matrix blocks all

have positive entries on their diagonal. The former condition implies that all the non-

virtual agents form a strongly connected component, and the latter condition implies

that all the virtual agents are connected to the strongly connected component. This

is similar to the approach taken in [29] to prove the SIA property of the product of

consensus matrices defined for an augmented graph.

47

Since Q`+1[k] equals P [k + `]Q`[k], we can rewrite Q`+1 in terms of the Q
(i,j)

`

blocks

Q`+1[k] =



P̃0 [k + `]Q
(0,0)

` +Q
(1,0)

` · · · P̃0 [k + `]Q
(0,τmsg)

` +Q
(1,τmsg)

`

P̃1 [k + `]Q
(0,0)

` +Q
(2,0)

` · · · P̃0 [k + `]Q
(0,τmsg)

` +Q
(2,τmsg)

`

... · · · ...

P̃
τmsg−1

[k + `]Q
(0,0)

` +Q
(τmsg,0)

` · · · P̃
τmsg−1

[k + `]Q
(0,τmsg)

` +Q
(τmsg,τmsg)

`

P̃
τmsg [k + `]Q

(0,0)

` · · · P̃
τmsg [k + `]Q

(0,τmsg)

`


,

from which we can see that

Q
(0,0)

`+1 = P̃0 [k + `]Q
(0,0)

` +Q
(1,0)

` .

Further decomposing the Q
(0,0)

`+1 matrix block in terms of the Q
(i,j)

`−1 matrix blocks gives

Q
(0,0)

`+1 =P̃0 [k + `]
(
P̃0 [k + `− 1]Q

(0,0)

`−1 +Q
(1,0)

`−1

)
+ P̃1 [k + `− 1]Q

(0,0)

`−1 +Q
(2,0)

`−1 . (4.7)

After expanding the matrix product in the parentheses in (4.7) we have

Q
(0,0)

`+1 =P̃0 [k + `]P̃0 [k + `− 1]Q
(0,0)

`−1

+ P̃0 [k + `]Q
(1,0)

`−1

+Q
(2,0)

`−1

+ P̃1 [k + `− 1]Q
(0,0)

`−1 ,

48

which can be additionally decomposed in terms of the Q
(i,j)

`−2 matrix blocks as

Q
(0,0)

`+1 =P̃0 [k + `]P̃0 [k + `− 1]P̃0 [k + `− 2]Q
(0,0)

`−2

+ P̃0 [k + `]P̃0 [k + `− 1]Q
(1,0)

`−2

+ P̃0 [k + `]Q
(2,0)

`−2

+Q
(3,0)

`−2

+ P̃0 [k + `]P̃1 [k + `− 2]Q
(0,0)

`−2

+ P̃1 [k + `− 1]P̃0 [k + `− 2]Q
(0,0)

`−2

+ P̃1 [k + `− 1]Q
(1,0)

`−2

+ P̃2 [k + `− 2]Q
(0,0)

`−2 .

By recursing in a similar fashion, we have that the matrix block Q
(0,0)

`+1 for ` ≥ τmsg

can be written as

Q
(0,0)

`+1 =
(

Π`−1
r=0P̃0 [k + `− r]

)
Q

(0,0)

1

+
(

Π`−2
r=0P̃0 [k + `− r]

)
Q

(1,0)

1

...

+
(

Π
`−(τmsg+1)
r=0 P̃0 [k + `− r]

)
Q

(τmsg,0)

1

+D
(0,0)
`+1 ,

(4.8)

49

where D
(0,0)
`+1 is some non-negative matrix. Substituting the definition for Q1[k]

(:= P [k]), we have

Q
(0,0)

`+1 =
(

Π`−1
r=0P̃0 [k + `− r]

)
P̃0 [k]

+
(

Π`−2
r=0P̃0 [k + `− r]

)
P̃1 [k]

...

+
(

Π
`−(τmsg+1)
r=0 P̃0 [k + `− r]

)
P̃
τmsg [k]

+D
(0,0)
`+1 ,

where the P̃r [k] ∈ Rn×d are the block matrices of P [k] defined in (4.2) and (4.1)

respectively.

Notice that if we left-multiply an arbitrary non-negative matrix G by an arbi-

trary non-negative matrix F that has all positive entries on its diagonals, the product

FG will have positive entries in at least all the positions where G has positive en-

tries. Since the matrix block P̃0 [k], defined in (4.2), always has positive entries on its

diagonals, from the convention that all non-virtual agents have self-loops at all time-

indices k and that τmsg
ji [k] = 0 whenever j = i, it follows that the matrix product

coefficient terms Π`−m
r=0 P̃0 [k+ `− r] have positive entries on the diagonals. Therefore,

it can be seen from (4.8) that the block matrix Q
(0,0)

`+1 has positive entries in at least

all the positions where
∑τmsg

r=0 P̃r [k] has positive entries. Using the fact that P̃0 [·]

has positive entires on its diagonals, it follows that Q
(0,0)

`+1 also has positive entries

on its diagonals for all ` ≥ 0. Since we know from Remark 1 that the matrix sum∑τmsg

r=0 P̃r [k] conforms to the graph structure of the effective graph at time-index k,

50

G(V , E [k]), it follows that the matrix block Q
(0,0)

`+1 , for all ` ≥ τmsg, conforms to the

graph structure of the effective graph at time-index k, G(V , E [k]).

Now consider two arbitrary non-negative matrices A and B written in block

matrix format as

A =



A0,0 A0,1 . . . A
0,τ

A1,0 A1,1 . . . A
1,τ

...
...

. . .
...

A
τ,0

A
τ,1

. . . A
τ,τ


, B =



B0,0 B0,1 . . . B
0,τ

B1,0 B1,1 . . . B
1,τ

...
...

. . .
...

B
τ,0

B
τ,1

. . . B
τ,τ


,

where the A0,0 and B0,0 blocks have strictly positive entries on their diagonal. The

products AB and BA both have positive entries in the (0, 0) index block in at least

all the position where A0,0 has positive entries.

Since P̃0 [·] (the (0,0) index block of P [·]) has positive entries on its diagonals,

it follows that left or right multiplying Q`+1[k] by any consensus matrix P [·] (or a

product thereof) will at least maintain all the positive entries in the Q
(0,0)

`+1 block.

Furthermore, since the product of τ + 1 consecutive consensus-matrices matrices

Qτ+1[k] (:= P [k + τ] . . .P [k + 2]P [k]) can be written as

Qτ+1[k] = Qτmsg+1[k + τproc − 1]P [k + τproc − 2] . . .P [k]

= P [k + τ]Qτmsg+1[k + τproc − 2]P [k + τproc − 3] . . .P [k]

...

= P [k + τ]P [k + τ − 1] . . .P [k + τmsg + 1]Qτmsg+1[k],

51

we have that the matrix block Q
(0,0)

τ+1[k] has positive entries in at least all the same

positions as the matrix Q
(0,0)

τmsg+1[k′] for all k′ ∈ {k, k + 1, . . . , k + τproc − 1}. Since

each Q
(0,0)

τmsg+1[k′] conforms to the effective graph structure at time-index k′, we have

that Q
(0,0)

τ+1[k] conforms to the effective graph structure at τproc consecutive time-

indices (k, k + 1, . . . , k + τ − 1). Recalling that the effective graph is τproc-strongly

connected (given our assumption that the reference graph is strongly connected [cf.

Assumption 1]), it follows that the matrix block Q
(0,0)

τ+1[k] conforms to a strongly

connected graph component. Since the matrix block Q
(0,0)

`+1 , for all ` ≥ τ , has positive

entries in at least all the same positions as the matrix block Q
(0,0)

τ+1, and because

Q
(0,0)

`+1 [k] has positive entries on its diagonals for all ` ≥ 0, it follows that Q
(0,0)

`+1 [k]

conforms to the (sub)graph structure of a strongly connected component and has

positive entries on its diagonals for all ` ≥ τ .

Now it remains to be shown that the Q
(0,r)

`+1 matrix blocks, for all r ∈ {1, 2, . . . ,

τmsg} and ` ≥ τ , have positive entries on their diagonals; we show this using a simple

induction argument. Recall that Q
(0,r)

`+1 = P̃0 [k + `]Q
(0,r)

` + Q
(1,r)

` . Since P̃0 [k
′] has

positive entries on its diagonals at all time-indices k′ and Q
(1,r)

` is non-negative, we

have that Q
(0,r)

`+1 has positive entries on its diagonals if Q
(0,r)

` has positive entries on its

diagonals. Now to consider the base cases. We have that Q1 (:= P [k]) contains the

identity matrix in the (0, 1) index block simply by the definition of P [k] (4.1). We

have that Q2 (:= P [k+1]P [k]) contains the identity matrix in the (0, 2) index block,

Q3 (:= P [k + 2]P [k + 1]P [k]) contains the identity matrix in the (0, 3) index block,

and so on and so forth for Q4 up to Qτmsg . Therefore, for any integer b between

1 and τmsg, the matrix product Qb[k] (:= P [k + b − 1] · · ·P [k + 1]P [k]) contains

52

the identity matrix in the (0, b) index block (i.e., Q
(0,b)

b = In×n). Since the identity

matrix has positive entries on its diagonals, it follows by induction that the matrix

blocks Q
(0,r)

`+1 for all r ∈ {1, 2, . . . , τ} and ` ≥ τmsg − 1 have positive entries on their

diagonals. Since the result holds for all ` ≥ τmsg−1, it also holds for all ` ≥ τ (recall

τ := τmsg + τproc − 1).

Therefore, we have shown that for ` ≥ τ , the zero/non-zero structure of Q
(0,0)

`+1

corresponds to a strongly connected graph, and that the remaining Q
(0,1)

`+1 ,Q
(0,2)

`+1 , . . . ,

Q
(0,τmsg)

`+1 matrices all have positive entries on their diagonal. This implies that the

non-virtual agents form a strongly connected component, and that the virtual agents

are all connected to the strongly connected component. Hence, the graph structure

contained by Q`+1 for all ` ≥ τ has only one strongly connected component, and

finally we have that the product of ` + 1 consecutive consensus-matrices Q`+1[k]

(:= P [k + `] · · ·P [k + 2]P [k]) is (column) stochastic, indecomposable and aperiodic

(SIA) for arbitrary k and ` ≥ τ .

�

Corollary 1.3 (Weak Convergence of SIA Matrix Products). As a result of separate

interest, we have weak convergence of the consensus matrices P [k].

Proof. The matrix P [k] can take no more than (τmsg + 2)|E| different matrix values,

and therefore can be said to come from a finite collection of matrices, P . The upper

bound on the cardinality of the collection |P| comes from the fact that each agent can

transmit on any of the τmsg +1 different delay edges in the augmented graph (0-delay

up to τmsg-delay), and has the additional option to not transmit a message on any of

its edges (which occurs when the agent is not in the Communication Set). Therefore,

53

the number of possible matrix values is upper bounded by the number of possible

permutations arising from having τmsg + 2 different transmission options for each

edge in the reference graph i.e., (τmsg + 2)|E|. Using the aforementioned fact and the

result of Lemma 1.1, we can proceed to invoke weak convergence from Wolfowitz’s

Theorem [80] for ergodic matrices. Namely, we have that P [k] . . .P [2]P [1]→ d[k]1>

for large k, where d[k]1> is some rank one matrix with all identical columns. Here

we have implicitly used the fact that we can invoke Wolfowitz’s Theorem for ergodic

matrices to the matrix products Q`+1[k] for ` ≥ τ , rather than the individual P [k]

(we do this because the matrices Q`+1[k] are SIA, but the individual P [k] are not

necessarily SIA, an important requirement of Theorem [80]). �

The result of Corollary 1.3 can be used to prove convergence of an unperturbed

asynchronous push-sum averaging algorithm by using a similar idea to the proof in

[29] for Ratio Consensus with Delays.

Lemma 1.2 (Lower Bound on the Entries of SIA Matrix Products). It holds for the

matrix product Q`+1[k] (:= P [k+ `] · · ·P [k+ 1]P [k]) for all ` ≥ n(τ + 1)− 1, k ∈ N,

and i = 1, 2, . . . , n, that

min
1≤j≤τmsg+1

[Q`+1[k]]i,j ≥ δmin := min
1≤j≤n

(
1

Nout
j

)n(τ+1)

,

where n is the number of non-virtual agents in the network.

Proof. We can write the matrix product Qn(τ+1)[k] as

Qn(τ+1)[k] = Qτ+1[k + (n− 1)(τ + 1)] · · ·Qτ+1[k + (τ + 1)]Qτ+1[k]

=
(
Q(n−1)(τ+1)[k + (τ + 1)]

)
Qτ+1[k],

54

where Qτ+1[k′] is defined as the product of τ + 1 consecutive matrices P [k′ +

τ] · · ·P [k′ + 1]P [k′]. From our intermediate result in Lemma 1.1, we know that,

for all k′ ∈ N, the (0, 0) index block Q
(0,0)

τ+1[k′] ∈ Rn×n conforms to a strongly con-

nected reference graph structure. It follows that the product of n − 1 such matrix

blocks (Q
(0,0)

τ+1[k′+(n−2)(τ+1)] · · ·Q(0,0)

τ+1[k′+(τ+1)]Q
(0,0)

τ+1[k′]) has positive entries in all

positions, and hence Q
(0,0)

(n−1)(τ+1)[k+(τ +1)] has positive entries in all positions. Fur-

thermore, because each (0, r) index blockQ
(0,r)

τ+1[k] ∈ Rn×n, for all r ∈ {0, 1, . . . , τmsg},

has positive entries on its diagonals (which we know from our intermediate result in

Lemma 1.1), we have that right multiplying Q(n−1)(τ+1)[k + (τ + 1)] by the matrix

Qτ+1[k] will ensure that each (0, r) index block in the product Q(n−1)(τ+1)[k + (τ +

1)]Qτ+1[k] has positive entries in all positions. In other words, each entry in the

first n rows of Qn(τ+1)[k] will be positive. Furthermore, since Qn(τ+1)[k] is the prod-

uct of n(τ + 1) consecutive matrices P [k + n(τ + 1) − 1] · · ·P [k + 1]P [k], and the

minimum non-zero entry in each P [·] is equal to minj(1/N
out
j), it follows that the

minimum non-zero entry in Qn(τ+1)[k] is greater than or equal to minj(1/N
out
j)n(τ+1).

If we right multiply the matrix product Qn(τ+1)[k] by any column stochastic matrix

P [k− 1], then the lower bound on the entries in the first n rows of Qn(τ+1)[k] is pre-

served because the new lower bound lies in the convex hull of each row of Qn(τ+1)[k].

Hence, it holds for all ` ≥ n(τ + 1) that each entry in the first n rows of Q`[k] are

bounded below by (minj(1/N
out
j))n(τ+1). �

55

Lemma 1.3 (Geometric Convergence of Ergodic Matrices). For arbitrary k, s ∈ Z

with k ≥ s ≥ 0 we have∣∣∣[P [k] · · ·P [s+ 1]P [s]
]
i,j
− [φ[k]]i

∣∣∣ ≤ Cqk−s, (i, j = 1, 2, . . . , n(τmsg + 1))

where C is some non-negative constant, q ∈ (0, 1) and φ[k] is a stochastic vector.

Proof. The proof here is an application of Wolfowitz’s Lemmas [80, Lemmas 1–4]

to the asynchronous, time-varying, augmented consensus matrices defined in (4.1).

Let A := {A ∈ Rn×n} be a finite collection of matrices such that the product

of any subset of matrices in the collection (possibly with repetition) is stochastic,

indecomposable, and aperiodic (SIA). Let δ(A) be a measure of the dissimilarity of

the rows of A from one another

δ(A) := max
j

max
i1,i2

∣∣∣[A]i1,j − [A]i2,j

∣∣∣ ,
and let λ(A) be the coefficient of ergodicity introduced by Hajnal and Bartlett in [31]

λ(A) := 1−min
i1,i2

∑
j

min
(

[A]i1,j , [A]i2,j

)
.

An SIA matrix B is called scrambling if λ(B) < 1. From [80, Lemma 2] and [31,

Lemma 4], it holds that

δ(A1A2 · · ·Ak) ≤ Πk
i=1λ(Ai). (4.9)

Let ψ be the number of possible types (zero/non-zero structures) that an n× n SIA

matrix can take. From [80, Lemmas 3 and 4], all products in the A’s of length

` ≥ (ψ + 1) are scrambling. Since any n × n matrix can take no more than 2n
2

56

types, ψ is bounded above by 2n
2
, however this bound is relatively loose, and can

be tightened by taking into account the fact that the matrices under consideration

must also conform to the graph structure and be SIA.

Now consider some arbitrary matrices Q> ∈ Rn(τmsg+1)×n(τmsg+1) that come from

a finite collection of SIA matrices such that any product in the Q>’s is also SIA. It

follows than any product of length ψ + 1 in the Q>’s is scrambling, and since the

Q>’s come from a finite collection of matrices, the number of possible products of

length ψ + 1 is also finite. Hence, there exists some constant d ∈ [0, 1) such that

δ(Q>i Q
>
i+1 · · ·Q>i+t) ≤ d for all i. Here we have implicitly taken d to be the maximum

λ(·) taken over all products of length ψ + 1. Applying (4.9) and observing that the

floored quotient
⌊
k−s
ψ+1

⌋
can be regarded as a lower bound on the number of products

of length ψ + 1 in the expression Q>s Q
>
s+1 . . .Q

>
k , we have that

δ(Q>s Q
>
s+1 · · ·Q>k) ≤ db

k−s
ψ+1c ≤ C̃

(
d

1
ψ+1

)k−s
, (k ≥ s ≥ 0),

where d ∈ (0, 1) and 0 ≤ C̃ < 1/d is some non-negative constant. Let ej ∈ Rn(τmsg+1)

denote the vector with a 1 in its jth entry, and 0 everywhere else. Substituting the

definition for δ(·) and defining q̃ := d
1

ψ+1 gives

max
i1,i2

([
Q>s Q

>
s+1 · · ·Q>k ej

]
i1
−
[
Q>s Q

>
s+1 · · ·Q>k ej

]
i2

)
≤ C̃q̃k−s,

for all ej. Defining φ[k] as a stochastic vector whose jth entry is given by φj[k] :=[
Q>s Q

>
s+1 · · ·Q>k ej

]
1

(the jth column of the 1st row of the matrix product), and taking

transposes we have ∣∣∣[Qk · · ·Qs+1Qs]j,i − φj[k]
∣∣∣ ≤ C̃q̃k−s,

57

for all i, j = 1, 2, . . . , n(τmsg + 1).

To ensure that each Q comes from a finite collection of SIA matrices and all

products in the Q’s are SIA, we define each Qj′ as the product of ` ∈ {τ + 1, τ +

2, . . . , 2τ} consecutive consensus-matrices P [j′ + `− 1] · · ·P [j′ + 1]P [j′] (where the

consensus-matrices are as defined in (4.1)). Here we have implicitly used two previous

results. The first is Lemma 1.1, which tells us that the product of τ + 1 or more

consecutive matrices, P [k], is SIA. The second is Corollary 1.3, which tells us that

the matrices P [k] come from a finite collection of matrices, and hence the set of

products in the P [k]’s of length ` ∈ {τ+1, τ+2, . . . , 2τ} come from a finite collection

of matrices. Observing that the floored quotient
⌊
k′−s′
τ+1

⌋
can be regarded as a lower

bound on the number of matrices Qj′ in the matrix product P [k′] · · ·P [s′ + 1]P [s′],

and substituting for the new definition of Qj′ gives∥∥∥[P [k′] · · ·P [s′ + 1]P [s′]
]
j,i
− φj[k′]

∥∥∥
∞
≤ C̃q̃

⌊
k′−s′
τ+1

⌋
≤ C

(
q̃

1
τ+1

)k′−s′
≤ Cqk

′−s′ ,

where C < C̃/q̃ < 1/(dq̃) = 1/(d (ψ+2)/(ψ+1)) is a non-negative constant, and q is

defined as q := q̃
1
τ+1 = d

1
(ψ+1)(τ+1) , thus q ∈ (0, 1). The result holds for all k, s ∈ Z+

such that k′ ≥ s′ ≥ 0. �

Lemma 1.4 (Lower Bound on the Stochastic Vector Sequence). For the vector φ[k] ∈

Rn(τmsg+1) with ith entry given by

φi[k] :=
[
P [k] · · ·P [s+ 1]P [s]

]
i,1
,

58

it holds for all i = 1, 2, . . . , n, and k, s ∈ Z such that k − s ≥ n(τ + 1)− 1, that

φi[k] ≥ δmin := min
j

(
1

Nout
j

)n(τ+1)

,

where n is the number of non-virtual agents in the network.

Proof. From the definition of φk we have

φi[k] :=
[
P [k] · · ·P [s+ 1]P [s]

]
i,1
,

for all i = 1, 2 . . . , n(τ+1). From Lemma 1.2, we know that minj
[
P [k] . . .P [s+ 1]P [s]

]
i,j

is bounded below by δmin :=
(

1
Nout
j

)n(τ+1)

for all i = 1, 2, . . . , n and k−s ≥ n(τ+1)−1.

Therefore, it follows that φ[k]i is bounded below by δmin for all i = 1, 2, . . . , n and

k − s ≥ n(τ + 1)− 1. �

We are now ready to combine all of our previous Lemmas to prove Theorem 1.

Proof of Theorem 1. Let P [k : s] denote the matrix product P [k] · · ·P [s + 1]P [s];

it follows from the definition of the perturbed averaging iteration (4.6) that

x[k + 1] = P [k : 0]x[0] +
k∑
s=1

P [k : s]η[s] + η[k + 1]. (4.10)

From column-stochasticity of the consensus-matrices P [k], we have that 1>P [k] =

1>, and therefore

1>x[k + 1] = 1>x[0] +
k+1∑
s=1

1>η[s]. (4.11)

59

Multiplying each term in the expressions for (4.10) and (4.11) by P [k+1] and φ[k+1]

respectively, and taking the difference gives

P [k + 1]x[k + 1]− φ[k + 1]1>x[k + 1] =(P [k + 1 : 0]− φ[k + 1]1>)x[0]

+
k+1∑
s=1

(P [k + 1 : s]− φ[k + 1]1>)η[s],

for all k ≥ 1. Defining D[k : s] := P [k : s] − φ[k]1> and invoking Lemma 1.3, we

have for all i, j = 1, 2, . . . , n(τmsg + 1) and k ≥ s ≥ 0, that∣∣∣[D[k : s]]ij

∣∣∣ ≤ Cqk−s, (4.12)

where C ≥ 0 and q ∈ (0, 1). It follows that

P [k + 1]x[k + 1] = φ[k + 1]1>x[k + 1] +D[k + 1 : 0]x[0] +
k∑
s=1

D[k + 1 : s]η[s].

From the definitions of w[k],y[k] ∈ Rn(τmsg+1)×d in iterations (4.3) and (4.6) respec-

tively, we have for all k ≥ 1 that

w[k + 1] = P [k]x[k] (4.13)

= φ[k]1>x[k] +D[k : 0]x[0] +
k∑
s=1

D[k : s]η[s], (4.14)

and

y[k + 1] = P [k : 0]y[0] (4.15)

= φ[k]1>y[0] +D[k : 0]y[0] (4.16)

= φ[k]n+D[k : 0]1. (4.17)

60

Substituting these expressions for w[k+ 1],y[k+ 1] ((4.14) and (4.17), respectively),

into the definition of z[k + 1] in (4.5), and subtracting the network-wide average

vector (1>x/n) ∈ Rd from each zi[k + 1] (the ith row of z[k + 1]) gives

zi[k + 1]− 1>x[k]

n
=
φi[k]1>x[k] + [D[k : 0]x[0]]i +

∑k
s=1[D[k : s]η[s]]i

φi[k]n+ [D[k : 0]1]i
− 1>x[k]

n
,

for all i = 1, 2, . . . , n(τmsg + 1). Bringing terms to a common denominator and

cancelling terms

zi[k+1]−1>x[k]

n
=
n[D[k : 0]x[0]]i + n

∑k
s=1[D[k : s]η[s]]i

n(φi[k]n+ [D[k : 0]1]i)
− 1>x[k][D[k : 0]1]i
n(φi[k]n+ [D[k : 0]1]i)

.

Since (φi[k]n + [D[k : 0]1]i) = [P [k : 0]1]i, by invoking Lemma 1.2, we have for all

i = 1, 2, . . . , n, that

n(φi[k]n+ [D[k : 0]1]i) = n[P [k : 0]1]i ≥ n2δmin,

where δmin > 0 is a finite positive constant. Thus, for all i = 1, 2, . . . , n and k ≥ 1,∥∥∥zi[k + 1]− 1>x[k]
n

∥∥∥
1
≤ 1

nδmin
(maxj |[D[k : 0]]ij|) ‖x[0]‖1 n

+ 1
nδmin

∑k
s=1 (maxj |[D[k : s]]ij|) ‖η[s]‖1 n

+ 1
n2δmin

∥∥1>x[k]
∥∥

1
(maxj |[D[k : 0]]ij|)n2,

where ‖η[s]‖1 and ‖x[0]‖1 denote 1-matrix norms (maximum absolute column sums).

Using the entry-wise decay bound on |[D[k : s]]ij| in (4.12) gives us∥∥∥∥zi[k + 1]− 1>x[k]

n

∥∥∥∥
1

≤ C

δmin
qk ‖x[0]‖1 +

C

δmin

(
k∑
s=1

qk−s ‖η[s]‖1 +
∥∥1>x[k]

∥∥
1
qk

)
,

61

for all i = 1, 2, . . . , n and all k ≥ 1. Also, by apply the norm operator to each side

we have ∥∥1>x[k]
∥∥

1
≤ ‖x[0]‖1 +

k∑
s=1

‖η[s]‖1 .

Because q ∈ (0, 1), it follows that
∑k

s=1 q
k ‖η[s]‖1 ≤

∑k
s=1 q

k−s ‖η[s]‖1, and therefore∥∥∥∥zi[k + 1]− 1>x[k]

n

∥∥∥∥
1

≤ 2C

δmin

(
qk ‖x[0]‖1 +

k∑
s=1

qk−s ‖η[s]‖1

)
,

for all i = 1, 2, . . . , n and k ≥ 1. From our block matrix definition of z[k] ∈

Rn(τmsg+1)×d as

z[k] :=



z(0)[k]

z(1)[k]

...

z(τ)[k])


,

where each z(r)[k] ∈ Rn×d is a block matrix storing a copy of the variable z at all the

delay-r agents at time k, we have that the first n rows of z correspond to the first n

rows of the z(0) matrix block. Therefore, for C̃ := 2C/δmin, it holds that∥∥∥∥z(0)
i [k + 1]− 1>x[k]

n

∥∥∥∥
1

≤ C̃qk ‖x[0]‖1 + C̃
k∑
s=1

qk−s ‖η[s]‖1 ,

for all i = 1, 2, . . . , n and k ≥ 1. �

62

CHAPTER 5
Asynchronous Subgradient Push

In this chapter we present and prove convergence of an asynchronous version

of the synchronous Subgradient-Push optimization algorithm. Our definition of

asynchrony in the multi-agent optimization setting implies that agents do not wait

for each other to complete computations, nor do they wait for messages to be

sent/received before moving on to the next step in the algorithm. Given that agents

do not necessarily perform updates at the same times or at the same rate and that

messages between agents may be subject to delays, it follows that agents may per-

form a drastically different number of gradient steps over any time interval and, in

particular, may perform updates using outdated messages.

5.1 Formulation of Asynchronous Subgradient Push

We now make explicit our asynchronous iterations. At all time-indices k, each

agent, v
(r)
i , locally maintains the variables w

(r)
i [k], z

(r)
i [k], x

(r)
i [k] ∈ Rd, and y

(r)
i [k] ∈

R+. To analyze the Asynchronous Gradient Push Optimization algorithm from a

global perspective, we us the matrix-based formulation provided in Algorithm 7.

The matrix-based formulation describes how the agents’ values evolve at some time

t[k + 1] ∈ T = {t[1], t[2], t[3], . . . , }, a time at which one or more agents perform

an update. The asynchronous communication dynamics are accounted for in the

consensus-matrices P [·], and the matrix-valued function ∇F [k+ 1] ∈ Rn(τmsg+1)×d is

63

Algorithm 7 Asynchronous Gradient Push Optimization

w[k + 1] = P [k]x[k] (5.1)

y[k + 1] = P [k]y[k] (5.2)

z[k + 1] = diag(y[k + 1])−1w[k + 1] (5.3)

x[k + 1] = w[k + 1]− α[k + 1]∇F [k + 1] (5.4)

defined as

∇F [k + 1] :=



∇f (0)(z(0)[k + 1])

0

...

0


.

In particular, the notation ∇f (0)(z(0)[k+ 1]) ∈ Rn×d denotes a block matrix with ith

row equal to

δi[k + 1]∇f (0)
i (z

(0)
i [k + 1]).

The scalar-valued function δi[·] is a 0, 1–indicator that is equal to 1 at some time

before agent vi completes an update, and is equal to 0 otherwise. The non-virtual

agent initializations are x
(0)
i [0] ∈ Rd, and y

(0)
i [0] = 1. The virtual agent initializations

are x
(r)
i [0] = 0, and y

(r)
i [0] = 0 (for all r 6= 0).1

1 Note, given the initializations, the virtual agents could potentially have z
(r)
i [k +

1]/0 (division by zero) in update equation (5.3), but this is a non-issue since z
(r)
i

(for all r 6= 0) is never used to produce gradients according to the definition of the
gradient matrix ∇F [k + 1], and anyways, the virtual-agents are only introduced for
analysis purposes.

64

We use a similar notation to synchronous Subgradient Push [57]: w is the push-

sum numerator, and y is the push-sum weight. Nonetheless there are a few note-

worthy differences between iterations (5.1)–(5.4) and the synchronous subgradient

iterations. First, the consensus matrices in the asynchronous update are defined for

an augmented state, and in particular, model the asynchronous communication be-

tween agents. Second, the gradient step (5.4) in the asynchronous iteration contains

the presence of 0, 1–indicator functions. If agent vi is in the communication set at

some times t[k′] and t[s′], and at no other time in between, where t[k′] > t[s′] ≥ 0,

then the length of the interval (t[s′], t[k′]) can be thought of as a processing delay ex-

perienced by agent vi at time t[k′], during which, agent vi neither sends nor processes

any new messages — the only messages that are processed in this time-interval are

those that were read from the receive-buffer when the agent was last in the commu-

nication set (at time t[s′]). By the end of the time interval, agent vi completes a

Local Computation, and hence a gradient step. Mathematically, this is equivalent

to setting the gradient activator, δi[k], to 1 once — and only once — at some time in

the interval (t[s′], t[k′]). Since agent vi neither sends nor processes any new messages

in the interval (t[s′], t[k′]), the specific time in the interval at which δi[·] is set to 1

does not matter. At all other times in the interval, δi[·] will be set to 0. For example,

if agent vi completes its first update at time t[2], then δi[·] can be set to 1 at time

t[0], and set to 0 at times t[1] and t[2]. Alternatively, δi[·] can be set to 1 at time

t[1], and set to 0 at times t[0] and t[2]. Another option is to set δi[·] to 1 at time t[2],

and set to 0 at times t[0] and t[1]. From an analysis perspective, all permutations

produce the same result.

65

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=9k=8 k=10 k=11

start itr.1 itr.2 itr.3

start itr.1 itr.2

start itr.1

itr.3

itr.2 itr.3

itr.4

itr.4

Agent 1

Agent 2

Agent 3

Time

Asynchronous Subgradient Push processing delay

transmission delay

Figure 5–1: (Best viewed in colour). Example of agent updates in an Asynchronous
Gradient Push procedure with a maximum time-index processing delay τproc = 4.
The time-index, k, increments by 1 each time an agent performs an update (completes
a Local Computation). At the end of each update, the updating agent initiates a
message transmission to its neighbours and proceeds with its local computation. The
diagram depicts the local iteration increments (in red), the time axis with delineated
τproc time-index increments (in blue), and one possible choice for a subsequence of
partially overlapping computations (in orange). Note that each time-index in the
subsequence of partially overlapping computations could potentially correspond to a
different local iteration at each agent. For example, k = 2 corresponds to Agent 1’s
first iteration, Agent 2’s second iteration, and Agent 3’s second iteration.

Remark 4 (Subsequence of Partially Overlapping Computations). In our subsequent

analysis we show that a local subsequence of the iterates at each agent converges to a

neighbourhood of the global minimum. To construct such a subsequence, we define a

subsequence of partially overlapping computations: By the bounded processing delay

assumption it follows that each agent, vj, needs to set its indicator, δj[·], to 1 at least

once every τ proc time indices. Hence, in every τ proc time-index interval there is at least

one time-index during which all agents can simultaneously set their gradient activator

to 1. We refer to these time-indices as the elements of a subsequence of partially

overlapping computations, which we denote by {bk}. Since such a time index must

66

occur at least once in every τ proc interval, it follows that the time-index difference

between successive subsequence terms is at most τ proc (i.e., bk+1 − bk ≤ τ proc for all

k ≥ 0). Figure 5–1 shows an example of such a subsequence of partially overlapping

computations.

5.2 Main Results

Assumption 2 (Existence, Convexity, and Smoothness). A minimizer of (1.1) ex-

ists, and the local objective functions are strongly-convex and have Lipschitz-continuous

gradients. Precisely:

1. argminx F (x) 6= ∅.

2. Each function fi(x) : Rd 7→ R is mi-strongly convex, and has Mi-Lipschitz

continuous gradients.

Let m := min(mi), and M := max(Mi), where mi and Mi are as defined in

Assumption 2. In addition, let Nout
max := max1≤j≤nN

out
j represent the maximum

number of out-neighbours associated to any non-virtual agent. Let x[k] := 1>x[k]/n

be the mutual time-wise average of the variable x at time-index k, and let x? :=

argminF (x), the global minimizer.

Theorem 2 (Convergence of Asynchronous Gradient Push for Diminishing Step–

Size). If Assumption 1 and Assumption 2 are satisfied, and the (strictly positive)

step-size sequence {α[k]} is non-increasing and satisfies

∞∑
k=1

α[k] =∞,
∞∑
k=1

α2[k] <∞, α[0] ≤
(m

2M2

)(1

Nout
max

)n(τ+1)

,

67

then for all i = 1, 2, . . . , n,

lim inf
k→∞

‖zi[k]− x?‖ < L

m

√
2(τ proc − 1)(n− 1),

Remark. The result of Theorem 2 states that by using a diminishing step-size se-

quence, the agents running the Asynchronous Gradient Push optimization algorithm

are guaranteed to agree on a solution that converges to a neighbourhood of the global

minimizer, where the size of the neighbourhood depends on the maximum time-index

processing delay, the modulus of strong-convexity, and the Lipschitz constant. Hence,

as τ proc decays to 1 (i.e., the algorithm operates semi-synchronously; agents wait for

each other to complete updates, but don’t wait for messages to be sent/received), the

zi terms at each agent converge to the global minimizer, even if the communication

delays do not go zero.

Remark. It is worth pointing out that the upper bound on the step-size is quite

small in practice and perhaps overly conservative. In our numerical simulations we

observe that there exist much larger step-sizes that still lead to convergence. In fact,

one can show that the result of Theorem 2 still holds if, rather than having α[0] ≤(
m

2M2

) (
1

Nout
max

)n(τ+1)

, it (instead) holds that α[k] ≤
(

m
2M2

)
yi[k] for all k sufficiently

large, where yi[k] is the push-sum weight held locally by agent vi at time k. If the

agents work at roughly the same rate then yi[k] ≈ 1. This remark applies wherever the

inequality α[0] ≤
(

m
2M2

) (
1

Nout
max

)n(τ+1)

appears in any theorem or lemma statements

throughout the rest of this thesis.

Theorem 3 (Convergence of Asynchronous Gradient Push for Constant Step-Size).

If Assumption 1 and Assumption 2 are satisfied, and the step-size, α > 0, is a

68

constant satisfying

α ≤ min

(m

2M2

)(1

Nout
max

)n(τ+1)

,
((n− 1)(τ proc − 1))3

2n(m(τ proc)2 + 2τprocM
√
dC

(1−q))

 ,

then for all i = 1, 2, . . . , n

lim inf
k→∞

‖zi[k]− x?‖ < L

m

√
2(τ proc − 1)(n− 1) + α

C̃L

1− q
,

where C̃ is the constant defined in Corollary 1.2.

Theorem 4 (Convergence of Semi-Synchronous Gradient Push for Constant Step–

Size). Suppose τ proc = 1 or n = 1 and Assumption 1 and Assumption 2 are satisfied.

For any ρ > 0, if the step-size, α > 0, is constant and satisfies

α ≤ min

(m

2M2

)(1

Nout
max

)n(τ+1)

,
mρ2

nL2
(

(τ proc)2 + 2τprocMC
√
d

m(1−q)

)
 ,

then for all i = 1, 2, . . . , n,

lim inf
k→∞

‖zi[k]− x?‖ <
√

2Lρ

m
+ α

CL

1− q
.

Remark 5. The O
(√

ρ
)

term is the neighbourhood to which the mutual time-wise

average converges, and the αCL
1−q term is due to the worst-case consensus disagreement

between agents. The step-size bound depends on the desired size of the neighbourhood

of convergence, and the connectivity and asynchrony in the multi-agent network. In-

terestingly so, the communication delays do not play a role in this asymptotic conver-

gence result. However one would expect communication delays to play an important

role in any derived convergence rate, as is the case in Theorem 1, where the delays

69

directly affect the geometric rate at which the asynchronous Perturbed Push-Sum al-

gorithm converges to the mutual time-wise average.

5.3 Analysis

In order to prove convergence of Algorithm 7 for both the constant and dimin-

ishing step-size cases, we first observe that Algorithm 7 (Asynchronous Subgradient

Push Optimization) can be reduced to Algorithm 6 (Asynchronous Perturbed Push-

Sum Averaging) by letting the perturbation term, η[k], equal the gradient term,

−α[k + 1]∇F [k + 1], defined in iteration (5.4). That is, by regarding the gradient

term as a single exogenous perturbation to an asynchronous push-sum averaging

procedure, and showing that these perturbations remain bounded, we have that the

iterate sequences at all the non-virtual agents (the z
(0)
i [k] terms) converge to a neigh-

bourhood of the mutual time-wise average in the constant step-size case, and to the

exact average in the diminishing step-size case. Then by showing that the mutual

time-wise average converges to a point in a neighbourhood of the minimizer, we have

the desired result. The main challenge in the analysis is to show that the perturba-

tion terms (the gradients) do indeed remain bounded, and that the mutual time-wise

average converges to a point in a neighbourhood of the minimizer.

5.3.1 Preliminaries

Theorem 5 (Bounded Iterates and Gradients). If Assumption 2 is satisfied and, for

all agents vi, the terms in the step-size sequence {αi[k]} satisfy

αi[k] ≤ m

2M2
yi[k] (for all k ∈ N),

70

then there exist D,L ∈ R++ such that,

sup
k
‖∇fi(zi[k])‖ ≤ L,

sup
k
‖x[k]‖ ≤ D.

Remark. One can also show that the result of Theorem 5 still holds if, rather

than requiring all step-sizes in the step-size sequence {αi[k]} to satisfy the inequality

αi[k] ≤ m
2M2yi[k], there exists some finite k0 ∈ N, such that the inequality is satisfied

for all k ≥ k0.

Before proving Theorem 5 we first establish a few key lemmas.

Lemma 5.1. Let f : Rd → R be an m-strongly convex function with M-Lipschitz-

continuous gradients. Also, let u, v ∈ Rd be related as

u = v − α∇f(v)

for some α ∈ [0,m/(2M2)]. Then there exists a compact set X ⊂ Rd such that

‖u‖ ≤


‖v‖ , (v /∈ X)

R, (v ∈ X)

where

R = max
z∈X
{‖z‖+ α ‖∇f(z)‖}.

The proof of Lemma 5.1 is very similar to that in [55, Lemma 3], where the

analysis is conducted in the setting of stochastic gradients; we adapt the analysis

here to provide a looser constraint on the step-size by making-do without the additive

stochastic noise assumption in the update equation.

71

Proof. Strong convexity of f implies

〈∇f(v), v〉 ≥ f(v)− f(0) +
m

2
‖v‖2 . (5.5)

Using the definition of u and substituting in the inequality (5.5), we have

‖u‖2 = ‖v‖2 − 2α〈∇f(v), v〉+ α2 ‖∇f(v)‖2

≤ (1− αm) ‖v‖2 − 2α(f(v)− f(0)) + α2 ‖∇f(v)‖2 .

(5.6)

Using Lipschitz-continuity of the gradient, and Young’s Inequality, (a+ b)2 ≤ 2a2 +

2b2,

‖∇f(v)‖2 ≤ (‖∇f(v)−∇f(0)‖+ ‖∇f(0)‖)2 ≤ 2M2 ‖v‖2 + 2 ‖∇f(0)‖2 . (5.7)

Substituting (5.7) back into the expression in (5.6)

‖u‖2 ≤ (1− αm) ‖v‖2 − 2α(f(v)− f(0)) + 2α2M2 ‖v‖2 + 2α2 ‖∇f(0)‖2

= (1− α(m− 2αM2)) ‖v‖2 − 2α(f(v)− f(0)) + 2α2 ‖∇f(0)‖2 .

(5.8)

For all α ∈ [0,m/(2M2)] the expression (5.8) simplifies to

‖u‖2 ≤ ‖v‖2 − 2α(f(v)− f(0)) + 2α2 ‖∇f(0)‖2

= ‖v‖2 − 2α
(
f(v)− f(0)− α ‖∇f(0)‖2) .

Define the level set of f ,

X :=
{
z
∣∣∣ f(z) ≤ f(0) +

m

2M2
‖∇f(0)‖2

}
.

Since f is finite-valued and strongly-convex (hence convex), it is continuous on the in-

terior of its domain, and hence lower-semicontinuous, which gives us closed level-sets

72

(cf. [35]). Also, since f is strongly-convex, it is also supercoercive (hence coercive),

and thus has bounded level-sets (cf. [35]). Putting these two pieces together, it fol-

lows that the level-sets of a finite-valued strongly-convex function are compact, thus

we have that the set X is compact. If v /∈ X, we can get rid of the second term in

the inequality, leaving us with

‖u‖2 ≤ ‖v‖2 .

If v ∈ X, then from the definition of u we have

‖u‖2 ≤ ‖v‖2 + α ‖f(v)‖2 .

�

Now for convenience, define I[k] to be the set of indices corresponding to agents

with non-zero push-sum weights at time k:

I[k] := {i ∈ N | 1 ≤ i ≤ n(τmsg + 1), yi[k] 6= 0} .

Lemma 5.2. For all k ≥ 1 and i ∈ I[k + 1], the push-sum update (5.3) can instead

be written as

zi[k + 1] =

n(τmsg+1)∑
xj [k]6=0,j=1

Qij[k]

(
xj[k]

yj[k]

)
,

where the ith row of the matrix Q[k] ∈ Rn(τmsg+1)×n(τmsg+1) is stochastic.

73

Proof. From the first three update equations in Algorithm 7; we have that for all

k ≥ 1 and i ∈ I[k + 1],

wi[k + 1] =

n(τmsg+1)∑
j=1

Pij[k]xj[k]

yi[k + 1] =

n(τmsg+1)∑
j=1

Pij[k]yj[k]

zi[k + 1] =
wi[k + 1]

yi[k + 1]
.

Notice that without any loss of generality, we can rewrite the wi update by excluding

the terms in the sum where xj[k] = 0 (since the entries of P [k] are always finite)

wi[k + 1] =

n(τmsg+1)∑
xj [k]6=0,j=1

Pij[k]xj[k].

Since wi[k + 1] = yi[k + 1]zi[k + 1], we can further rewrite the wi update as

yi[k + 1]zi[k + 1] =

n(τmsg+1)∑
xj [k] 6=0,j=1

Pij[k]yj[k]xj[k]/yj[k],

where we have multiplied the right hand side by 1 = yj[k]/yj[k]. Note that for j > n

(the virtual agent indices), it is possible that yj[k] = 0, however this only happens at

initialization, or if the virtual agent has forwarded all of its information to the next

agent in the delay daisy-chain, and has not received any new information since (cf.

Lemma 1.4). Therefore, the event yj[k] = 0 always coincides with xj[k] = 0 (though

the converse is not necessarily true), and since these terms are excluded anyways,

74

the summation is well-defined. Hence for all i ∈ I[k + 1], we have

zi[k + 1] =

n(τ+1)∑
xj [k] 6=0,j=1

(1/yi[k + 1])Pij[k]yj[k]xj[k]/yj[k],

Defining the matrix Q[k] ∈ Rn(τmsg+1)×n(τmsg+1) as

Qij[k] :=


1

yi[k+1]
Pij[k]yj[k], yi[k + 1] 6= 0

0, otherwise,

gives for all i ∈ I[k + 1]

zi[k + 1] =

n(τmsg+1)∑
xj [k] 6=0,j=1

Qij[k]xj[k]/yj[k].

To see that for all i ∈ I[k + 1] the ith row of Q[k] is stochastic, notice that

n(τmsg+1)∑
j=1

Qij[k] =
1

yi[k + 1]

n(τmsg+1)∑
j=1

Pij[k]yj[k] =
1

yi[k + 1]
yi[k + 1] = 1.

�

Proof of Theorem 5. From the result of Lemma 1.4, we have that each entry in y(0)[k]

is bounded below by δmin > 0 at all times k ≥ 1. That is, for all i = 1, 2, . . . , n and

k ≥ 1, it holds that

yi[k] ≥ δmin :=

(
1

Nout
max

)n(τ+1)

> 0.

Hence, we can rewrite the index set I[k] as

I[k] = {1, . . . , n} ∪
{
î ∈ N

∣∣∣ n < î ≤ n(τmsg + 1), yî[k] 6= 0]
}
.

75

Now from the definition of the variable x in (5.4) and the variable z in (5.3), we have

that for all i = 1, 2, . . . , n and k ≥ 1,

xi[k + 1] = wi[k + 1]− α[k + 1]δi[k + 1]∇fi[k + 1]

= yi[k + 1]

(
zi[k + 1]− α[k + 1]δi[k + 1]

yi[k + 1]
∇fi[k + 1]

)
,

which can be rewritten as

xi[k + 1]

yi[k + 1]
= zi[k + 1]− α[k + 1]δi[k + 1]

yi[k + 1]
∇fi[k + 1].

Recall that ∇fi[k + 1] is the gradient of fi evaluated at zi[k + 1], and δi[k + 1] is

a 0, 1-indicator. By assumption, α[k + 1] ∈ (0, yi[k + 1]m/(2M2)]; therefore we can

apply the results of Lemma 5.1, with u defined as

ui[k] :=
xi[k]

yi[k]
.

Therefore, for all i = 1, 2, . . . , n and k ≥ 1,

∥∥∥∥xi[k + 1]

yi[k + 1]

∥∥∥∥ ≤

‖zi[k + 1]‖ , (zi[k + 1] /∈ X)

Ri, (zi[k + 1] ∈ X).

(5.9)

As for the virtual agents (indices j = n + 1, n + 2, . . . , n(τmsg + 1)), it holds for all

k ≥ 1 that when zj[k + 1] is well defined (i.e., yj[k + 1] 6= 0), the following holds∥∥∥∥xj[k + 1]

yj[k + 1]

∥∥∥∥ = ‖zj[k + 1]‖ . (5.10)

Expression (5.10) follows from the definition of the zj[k] update in (5.3) and the fact

that fj(·) = 0 for all j ∈ {n+ 1, . . . , n(τmsg + 1)}.

76

From Lemma 5.2, we know that for all i ∈ I[k + 1], the variable zi[k + 1] is

in the convex hull of
{
xj [k]

yj [k]

∣∣∣ xj[k] 6= 0
}
⊆
{
xj [k]

yj [k]

∣∣∣ yj[k] 6= 0
}

; invoking this property

and using the convexity of the norm and the bounds in (5.9) and (5.10), we have

that for all k ≥ 1, and for all i ∈ I[k + 1],

‖zi[k + 1]‖ ≤ max
{j | yj [k] 6=0}

∥∥∥∥xj[k]

yj[k]

∥∥∥∥ ≤ max{ max
1≤j≤n

‖zj[k]‖ , max
1≤j≤n

Rj,

max
{n<j≤n(τmsg+1) | yj [k]6=0}

‖zj[k]‖}.
(5.11)

Recall that

I[k] = {1, . . . , n} ∪
{
î ∈ N

∣∣∣ n < î ≤ n(τmsg + 1), yî[k + 1] 6= 0]
}
,

and therefore, the bound in (5.11) can be applied recursively to the each of the ‖zj[k]‖

terms on the right hand side of inequality (5.11). Since ‖zi[1]‖ is deterministic and

bounded for all i ∈ {1, . . . , n}, and since yj[1] = 0 for all j ∈ {n, . . . n(τmsg +

1)} — hence {‖zj[1]‖ | n < j ≤ n(τmsg + 1), yj[1] 6= 0} is the empty set — it follows

through induction that ‖zi[k]‖ is bounded for all i ∈ {1, . . . , n(τmsg + 1)} and k ≥ 1.

Specifically

‖zi[k]‖ ≤ max{max
1≤i≤n

‖zi[1]‖ , max
1≤i≤n

Ri} =: D̃.

To see that the gradients are also bounded, just invoke their Lipschitz-continuity:

Let z?i be the minimizer of fi, and let ∇f ?i be the gradient of fi evaluated at z?i .

Then for all i ∈ {1, . . . , n} and k ≥ 1

‖∇fi[k + 1]‖ = ‖∇fi[k + 1]−∇f ?i ‖ ≤Mi ‖zi[k + 1]− z?i ‖ ≤M(D̃ + ‖z?i ‖),

77

Therefore, there exists an L ∈ R++ such that for all i ∈ {1, . . . , n} and k ≥ 1,

‖∇fi[k + 1]‖ ≤ L ≤ max
1≤i≤n

Mi(D̃ + ‖z?i ‖).

The result also holds trivially for all i > n (the virtual agent indices) since the

corresponding gradients equal 0 by definition. It follows that ‖x[k]‖ is also bounded

for all k ≥ 1. In particular, using the result from Theorem 1 and substituting in the

bounds for ‖zi[k + 1]‖ and ‖∇fi[k + 1]‖ we have

‖x[k]‖ ≤ D̃ + max
1≤i≤n

(
C ‖xi[1]‖+ Cαi[1]

L

1− q

)
=: D,

where αi[1] is the initialized step-size at agent vi. Thus we have that the iterates

and gradients at each agent remain bounded, the desired result. �

The following lemmas, together with Theorem 5, will be used in the convergence

proofs of Asynchronous Subgradient Push.

Lemma 5.3. If Assumption 2 is satisfied, and the step-size sequence {α[k]} is non-

increasing and satisfies

α[0] ≤
(m

2M2

)(1

Nout
max

)n(τ+1)

,

and defining

γ̃[bk] :=
1

n

∆k∑
j=0

α[bk+1 − j]
n∑
i=1

δi[bk+1 − j](∇fi(x[bk+1 − 1− j])−∇fi(zi[bk+1 − j])),

ζ[bk] :=
1

n

∆k−1∑
j=0

α[bk+1 − j]

(
−

n∑
i=1

δi[bk+1 − j]∇fi(x[bk+1 − 1− j])

)
,

78

which represent the consensus error and asynchrony error respectively, where {bk} is

the subsequence defined in Remark 4, ∆k := bk+1− bk − 1 is related to the number of

time indices between successive subsequence terms, and d[bk] := −
∑n

i=1∇fi(x[bk]) is

the negative gradient of the global objective F (·) evaluated at x[bk], then it holds that

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

+
2

n
〈α[bk + 1]d[bk] + γ̃[bk] + ζ[bk], x[bk]− x?〉

+ (τ proc)2(α[bk + 1])2L2.

Proof. Recall the update equation (5.4) given by

x[k + 1] = w[k]− α[k + 1]∇F [k + 1]

= P [k]x[k]− α[k + 1]∇F [k + 1].

Since the P [k] are column stochastic, we can multiply each side of (5.4) by 1T/n

and obtain

x[k + 1] = x[k]− α[k + 1]

n

n∑
i=1

δi[k + 1]∇fi(zi[k + 1]). (5.12)

Adding and subtracting α[k+1]
n

∑n
i=1 δi[k + 1]∇fi(x[k]) in (5.12) gives

x[k + 1] =x[k]− α[k + 1]

n

n∑
i=1

δi[k + 1]∇fi(x[k])

+
α[k + 1]

n

n∑
i=1

δi[k + 1](∇fi(x[k]−∇fi(zi[k + 1])).

(5.13)

79

Let γ[k+1] :=
∑n

i=1 δi[k+1](∇fi(x[k])−∇fi(zi[k+1])). Hence we can rewrite (5.13)

as

x[k + 1] = x[k]− α[k + 1]

n

n∑
i=1

δi[k + 1]∇fi(x[k]) +
α[k + 1]

n
γ[k + 1].

Recursing for some ∆k ≤ τproc − 1 time indices until we find an iteration at which

the agents’ computations partially overlap (cf. Remark 4), and, without any loss of

generality, let k + 1 be an iteration at which agents’ computations partially overlap,

we have

x[bk+1] =x[bk]−
α[bk + 1]

n

n∑
i=1

∇fi(x[bk])

+

∆k∑
j=0

α[k + 1− j]
n

γ[k + 1− j]

+

∆k−1∑
j=0

α[k + 1− j]
n

(
−

n∑
i=1

δi[k + 1− j]∇fi(x[k − j])

)
.

(5.14)

Let d[bk] := −
∑n

i=1∇fi(x[bk]), which is the negative gradient of the global objective

F (·) evaluated at x[bk]. In addition, let γ̃[bk] := 1
n

∑∆k

j=0 α[k + 1 − j]γ[k + 1 − j],

which represents the “consensus error” in the update, and let ζ[bk] := 1
n

∑∆k−1
j=0 α[k+

1 − j] (−
∑n

i=1 δi[k + 1− j]∇fi(x[k − j])), which represents the “asynchrony error”

in the update. Equation (5.14) simplifies to

x[bk+1] = x[bk] +
1

n
α[bk + 1]d[bk] + γ̃[bk] + ζ[bk]. (5.15)

80

Subtracting x? from each side of (5.15) and taking the squared norm

‖x[bk+1]− x?‖2 = ‖x[bk]− x?‖2

+ 2〈 1
n
α[bk + 1]d[bk] + γ̃[bk] + ζ[bk], x[bk]− x?〉

+

∥∥∥∥ 1

n
α[bk + 1]d[bk] + γ̃[bk] + ζ[bk]

∥∥∥∥2

.

(5.16)

Note that

1

n
α[bk + 1]d[bk] + γ̃[bk] + ζ[bk] =

∆k∑
j=0

1

n
α[k + 1− j]

(
−

n∑
i=1

δi[k + 1− j]∇fi(zi[k + 1− j])

)
.

Recalling the assumption that the step-size sequence is non-increasing, and noting

that ∆k < τproc and δi[k] ∈ {0, 1}, we can use the triangle inequality to obtain∥∥∥∥ 1

n
α[bk + 1]d[bk] + γ̃[bk] + ζ[bk]

∥∥∥∥2

≤ (τproc)2(
1

n
α[bk + 1])2n2L2. (5.17)

Substituting (5.17) into the update equation (5.16) gives the desired result

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

+ 2〈 1
n
α[bk + 1]d[bk] + γ̃[bk] + ζ[bk], x[bk]− x?〉

+ (τproc)2(α[bk + 1])2L2.

�

Lemma 5.4. If Assumption 1 and Assumption 2 are satisfied, and the step-size

sequence {α[k]} is non-increasing and satisfies

α[0] ≤
(m

2M2

)(1

Nout
max

)n(τ+1)

,

81

then

〈γ̃[bk], x[bk]− x?〉 ≤ (τ proc)M
√
d
L

m
α[bk + 1]

(
C ‖x0‖ qbk−τ

proc

+ CL

bk∑
s=0

qbk−sα[s]

)
,

〈ζ[bk], x[bk]− x?〉 ≤
(n− 1)

n
(τ proc − 1)α[bk + 1]

(
L ‖x? − x[bk]‖ −

m

2
‖x? − x[bk]‖2

)
,

where γ̃[bk] and ζ[bk] are the consensus and asynchrony error terms, respectively,

defined in Lemma 5.3, q and C are the constants defined in Theorem 1, and D and

L are the bounds constructed in Theorem 5.

Proof. We can bound the consensus error inner product, 〈γ̃[bk], x[bk]−x?〉, as follows:

〈γ̃[bk], x[bk]− x?〉 :=
1

n

∆k∑
j=0

α[k + 1− j]
(n∑

i=1

δi[k + 1]〈∇fi(x[k − j])

−∇fi(zi[k + 1− j]), x[bk]− x?〉
)

≤(τproc)α[bk + 1] max
i,j
‖∇fi(x[k − j])−∇fi(zi[k + 1− j])‖1 ‖x[bk]− x?‖∞

≤(τproc)M
√
d
L

m
α[bk + 1] max

i,j
‖zi[k + 1− j]− x[k − j]‖

≤(τproc)M
√
d
L

m
α[bk + 1]

(
C ‖x0‖ qbk−τ

proc

+ CL

bk∑
s=0

qbk−sα[s]

)
.

Here we have explicitly used the gradient Lipschitz-continuity; the consensus rate

bound from Theorem 1; the strong-convexity of the objective; and the fact that the

step-size sequence is non-increasing.

Now we bound the asynchrony error inner product 〈ζ[bk], x[bk]− x?〉; by substi-

tuting in the definition for ζ[bk] we have that

〈ζ[bk], x[bk]− x?〉 :=

∆k−1∑
j=0

α̃[k + 1− j]

(
n∑
i=1

δi[k + 1− j]〈∇fi(x[k − j]), x? − x[bk]〉

)
.

82

Bounding each one of the terms in the sum individually, we can say that

〈∇fi(x[k − j]), x? − x[bk]〉 ≤ fi(x
? − x[bk] + x[k − j])− fi(x[k − j])− m

2
‖x? − x[bk]‖2

≤ L ‖x? − x[bk]‖ −
m

2
‖x? − x[bk]‖2 .

Now by making use of the fact that ∆k ≤ τproc − 1, and recalling that the step-size

sequence is non-increasing, we can substitute these term-by-term bounds back into

the inner product relation to obtain

〈ζ[bk], x[bk]− x?〉 ≤
(n− 1)

n
(τproc − 1)α[bk + 1]

(
L ‖x? − x[bk]‖ −

m

2
‖x? − x[bk]‖2

)
,

the desired result. �

5.3.2 Proof of Theorem 2

Proof of Theorem 2. Define the lim inf sequence {m[k]} given by m[k + 1] := min{

F (x[k]),m[k]}. Note that {m[k]} is monotonically decreasing and bounded below

by F (x?), hence the sequence converges to some m?. i.e., m[k] ↓ m? ≥ F (x?). Let

ρ := (n− 1)(τproc − 1)L/m, and define

v[bk] := x? − ρ d[bk]

‖d[bk]‖
.

Let β := F (x?)+Lρ, and assume for the sake of a contradiction that m? ≥ β > F (x?).

From the Lipschitz-continuity of the global objective implied by the gradient bound

in Theorem 5, we have

F (v[bk])− F (x?) ≤ L ‖v[bk]− x?‖ = Lρ,

83

hence

F (v[bk]) ≤ F (x?) + Lρ = β.

That is, v[bk] is in the β-sublevel set of F (·). Recalling that d[bk] is the negative

gradient of the global objective and using the first-order definition of convexity we

have

〈v[bk]− x[bk],−d[bk]〉 ≤ F (v[bk])− F (x[bk]) ≤ β −m[bk + 1] ≤ 0. (5.18)

Substituting in the definition of v[bk] into (5.18) gives

〈x? − x[bk]− ρ
d[bk]

‖d[bk]‖
,−d[bk]〉 = 〈x[bk]− x?, d[bk]〉+ ρ ‖d[bk]‖ ≤ 0,

therefore

〈x[bk]− x?, d[bk]〉 ≤ −ρ ‖d[bk]‖ < 0. (5.19)

Substituting (5.19) into the result of Lemma 5.3 gives the following update relation:

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

+ 2〈γ̃[bk] + ζ[bk], x[bk]− x?〉

+ (τproc)2(α[bk + 1])2L2

− 2
1

n
α[bk + 1]ρ ‖d[bk]‖ .

(5.20)

84

Applying the bounds from Lemma 5.4 directly, and defining the constants

C1 := (n− 1)(τproc − 1),

C2 := 2(τproc)M
√
d
L

m
C ‖x0‖ q−τ

proc

,

C3 := 2(τproc)M
√
d
L2

m
C,

C4[bk] := L ‖x? − x[bk]‖ −
m

2
‖x? − x[bk]‖2 ,

the update relation (5.20) simplifies to

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

+ (τprocLα[bk + 1])2

− 2ρ
1

n
‖d[bk]‖α[bk + 1]

+ C2α[bk + 1]qbk + C3

bk∑
s=0

qbk−sα2[s]

+ 2
C1C4[bk]

n
α[bk + 1].

Grouping terms together gives

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

+ α[bk + 1](α[bk + 1](τprocL)2 − 2

n
(ρ ‖d[bk]‖ − C1C4[bk]))

+ C2α[bk + 1]qbk

+ C3

bk∑
s=0

qbk−sα2[s].

(5.21)

85

Now by invoking the strong convexity of F (·) and noting that ∇F (x?) = 0 (since,

by definition, x? is the global optimum), we have

m

2
‖x− x?‖2 ≤ F (x)− F (x?) ≤ 〈∇F (x)>, x− x?〉 − m

2
‖x− x?‖2 ,

≤ ‖∇F (x)‖ ‖x− x?‖ − m

2
‖x− x?‖2 ,

which implies that

m ‖x− x?‖ ≤ ‖∇F (x)‖ . (5.22)

Using (5.22), which holds in general for all strongly-convex functions, and applying

the definition of ρ := (n− 1)(τproc − 1)L/m, observe that

(n− 1)(τproc − 1)L ‖x[bk]− x?‖ ≤ ρ ‖d[bk]‖ ,

hence

ρ ‖d[bk]‖ − (n− 1)(τproc − 1)C4[bk] ≥ ε > 0 (5.23)

for all bk and a scalar ε > 0. Since the step-size is decreasing, it follows that there

exists an index br such that for all bk ≥ br

α[bk] ≤ ε ≤ ρ ‖d[bk]‖ − C1C4[bk]

n(τprocL)2
. (5.24)

86

Therefore, by applying (5.24) to (5.21) it holds that for all bk ≥ br that

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

− α[bk + 1]

n
(ρ ‖d[bk]‖ − C1C4[bk])

+ C2α[bk + 1]qbk

+ C3

bk∑
s=0

qbk−sα2[s],

which implies

ε

n
α[bk + 1] ≤‖x[bk]− x?‖2 − ‖x[bk+1]− x?‖2

+ C2α[bk + 1]qbk

+ C3

bk∑
s=0

qbk−sα2[s],

87

for all bk ≥ br. Summing over the subsequence, and noticing that we have a tele-

scoping sum on the right hand side, gives

ε

n

∑̀
k=r

α̃[bk + 1] ≤‖x[br]− x?‖2 − ‖x[b`]− x?‖2

+ C2α[br + 1]
1

1− q

+ C3

∑̀
k=r

bk∑
s=0

qbk−sα2[s],

≤‖x[br]− x?‖2

+ C2α[br + 1]
1

1− q

+ C3

∑̀
k=r

bk∑
s=0

qbk−sα2[s].

Since q ∈ (0, 1), and by assumption
∑∞

s=0 α
2[s] <∞, it follows from [67, Lemma 3.1]

that
∞∑
k=0

bk∑
s=0

qbk−sα2[s] <∞,

hence

ε

n

∞∑
k=r

α[bk + 1] ≤‖x[br]− x?‖2

+ C2α[br + 1]
1

1− q

+ C3

∞∑
k=r

bk∑
s=0

qbk−sα2[s]

<∞.

(5.25)

88

This is a contradiction since the step-size sum on the left hand side of (5.25) sums

to infinity. Hence m? < β. Therefore

lim inf
k→∞

m

2
‖x[k]− x?‖2 ≤ lim inf

k→∞
F (x[k])− F (x?) = m? − F (x?) (5.26)

< β − F (x?) = Lρ =
(n− 1)(τproc − 1)L2

m
, (5.27)

where (5.26) simply follows from the strong convexity of the global objective, and

the (5.27) is a result of the contradiction. Hence,

lim inf
k→∞

‖x[k]− x?‖ < L

m

√
2(τproc − 1)(n− 1).

Since for all i = 1, 2, . . . , n, the iterates zi[k+1] converge to x[k], we add an subtract

zi[k + 1] to obtain

L

m

√
2(τproc − 1)(n− 1) > lim inf

k→∞
‖zi[k + 1] + x[k]− zi[k + 1]− x?‖ ,

≥ lim inf
k→∞

(‖zi[k + 1]− x?‖ − ‖x[k]− zi[k + 1]‖) ,

= lim inf
k→∞

‖zi[k + 1]− x?‖ ,

where the last equality is due to Corollary 1.2. �

5.3.3 Proof of Theorem 3

Proof of Theorem 3. Define the lim inf sequence {m[k]} given by m[k + 1] := min{

F (x[k]),m[k]}. Note that {m[k]} is monotonically decreasing and bounded below

by F (x?), hence the sequence converges to some m?. i.e., m[k] ↓ m? ≥ F (x?). Let

89

ρ := (n− 1)(τproc − 1)L/m, and define

v[bk] := x? − ρ d[bk]

‖d[bk]‖
. (5.28)

Let β := F (x?)+Lρ, and assume for the sake of a contradiction that m? ≥ β > F (x?).

The proof is identical to that of Theorem 2 up to (5.19), which tell us that

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

+ 2〈γ̃[bk] + ζ[bk], x[bk]− x?〉

+ (τproc)2α2L2

− 2

n
αρ ‖d[bk]‖ .

(5.29)

Applying the bounds from Lemma 5.4 directly, and defining the constants

C1 := ((n− 1)(τproc − 1))2,

C2 := 2(τproc)M
√
d
L

m
C ‖x0‖ q−τ

proc

,

C3 := 2(τproc)M
√
d
L2

m
C

1

1− q
,

C4[bk] := L ‖x? − x[bk]‖ −
m

2
‖x? − x[bk]‖2 ,

90

the update relation (5.29) simplifies to

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

+ (τprocLα)2

− 2

n
ρ ‖d[bk]‖α

+ C2αq
bk + C3α

2

+
2C1C4[bk]

n
α.

Grouping terms together gives

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

+ α(α((τprocL)2 + C3)− 2

n
(ρ ‖d[bk]‖ − C1C4[bk]))

+ C2αq
bk .

Using (5.22), which holds for all strongly convex functions, and applying the defini-

tion of ρ := (n− 1)(τproc − 1)L/m, observe that

(n− 1)(τproc − 1)L ‖x[bk]− x?‖ ≤ ρ ‖d[bk]‖ ,

hence ρ ‖d[bk]‖ − (n− 1)(τproc − 1)C4[bk] ≥ ε > 0 for all bk and a scalar ε > 0. Now

going back to our assumption

lim inf
k→∞

F (x[k]) := m? ≥ β := F (x?) + Lρ,

91

we see that this implies

Lρ ≤ lim inf
k→∞

F (x[k])− F (x?)

≤ L lim inf
k→∞

‖x[k]− x?‖ ,

and therefore,

ρ ≤ ‖x[k]− x?‖ , (5.30)

for all k. We now make use of this result. Since, by assumption, the step-size satisfies

α ≤ ((n− 1)(τproc − 1))3L2

2nm((τprocL)2 + C3)
=
m(n− 1)(τproc − 1)

2n((τprocL)2 + C3)
ρ2,

it follows that the step-size also satisfies

α ≤ 1

n((τprocL)2 + C3)

(
m(n− 1)(τproc − 1)

2
‖x? − x[bk]‖2

)
,

=
1

n((τprocL)2 + C3)

(
ρ ‖d[bk]‖ − C1

L

m
‖d[bk]‖+

mC1

2
‖x? − x[bk]‖2

)
,

≤ 1

n((τprocL)2 + C3)

(
ρ ‖d[bk]‖ − C1

(
L ‖x? − x[bk]‖ −

m

2
‖x? − x[bk]‖2

))
=

1

n((τprocL)2 + C3)
(ρ ‖d[bk]‖ − C1C4[bk]) .

Therefore,

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2

− α

n
(ρ ‖d[bk]‖ − (n− 1)(τproc − 1)C4[bk])

+ C2αq
bk ,

92

which implies

(ρ ‖d[bk]‖ − (n− 1)(τproc − 1)C4[bk])

n
α ≤‖x[bk]− x?‖2 − ‖x[bk+1]− x?‖2

+ C2αq
bk .

(5.31)

Summing (5.31) over the subsequence, using (5.23), and noticing that we have a

telescoping sum on the right hand side, gives

ε

n

∑̀
k=0

α ≤‖x[b0]− x?‖2 − ‖x[b`]− x?‖2

+ C2α
1

1− q
,

≤‖x[b0]− x?‖2 + C2α
1

1− q
,

hence

ε

n

∞∑
k=0

α ≤‖x[b0]− x?‖2

+ C2α
1

1− q

<∞.

This is a contradiction since the step-size sum on the left hand side of the inequality

sums to infinity. Hence m? < β. Therefore

lim inf
k→∞

m

2
‖x[k]− x?‖2 ≤ lim inf

k→∞
F (x[k])− F (x?) = m? − F (x?)

< β − F (x?) = Lρ =
(n− 1)(τproc − 1)L2

m
,

93

where the first inequality simply follows from the strong convexity of the global

objective, and the second inequality is a result of the contradiction. Hence

lim inf
k→∞

‖x[k]− x?‖ < L

m

√
2(τproc − 1)(n− 1).

Since for all i ∈ {1, . . . , n} the iterates zi[k+ 1] converge to a neighbourhood of x[k],

we add an subtract zi[k + 1] to obtain

L

m

√
2(τproc − 1)(n− 1) > lim inf

k→∞
‖zi[k + 1] + x[k]− zi[k + 1]− x?‖ ,

≥ lim inf
k→∞

(‖zi[k + 1]− x?‖ − ‖x[k]− zi[k + 1]‖)

≥ lim inf
k→∞

‖zi[k + 1]− x?‖ − lim inf
k→∞

‖x[k]− zi[k + 1]‖ .

Therefore

lim inf
k→∞

‖zi[k + 1]− x?‖ < lim inf
k→∞

‖x[k]− zi[k + 1]‖+
L

m

√
2(τproc − 1)(n− 1)

≤ α
C̃L

1− q
+
L

m

√
2(τproc − 1)(n− 1).

where the last inequality follows from Corollary 1.1 �

5.3.4 Proof of Theorem 4

The proof is also identical to that of Theorem 2 up to (5.20), which tells us that

‖x[bk+1]− x?‖2 ≤‖x[bk]− x?‖2 + (τprocαL)2 + C2αq
bk

− 2ρ ‖d[bk]‖
n

α +
C3α

2

1− q
,

94

where here we have arbitrarily defined ρ > 0, and assumed, for the sake of a contra-

diction, that

lim inf
k→∞

F (x[k]) := m? ≥ β := F (x?) + Lρ.

Since, by assumption, the step-size satisfies

α ≤ mρ2

n((τprocL)2 + C3

1−q)
,

it follows from (5.30) and (5.22) that the step-size also satisfies

α ≤ ρ ‖d[bk]‖
n((τprocL)2 + C3

1−q)
. (5.32)

Therefore, using (5.32), we have

mρ2

n
α ≤‖x[bk]− x?‖2 − ‖x[bk+1]− x?‖2 + C2αq

bk . (5.33)

Summing (5.33) over the subsequence and noticing that we have a telescoping sum

on the right hand side, gives

mρ2

n

∑̀
k=0

α ≤‖x[b0]− x?‖2 + α
C2

1− q
<∞.

This is a contradiction; hence m? < β, and therefore

lim inf
k→∞

m

2
‖x[k]− x?‖2 ≤ lim inf

k→∞
F (x[k])− F (x?) (5.34)

< β − F (x?) = Lρ, (5.35)

95

where (5.34) follows from the strong convexity of the global objective, and (5.35) is

a result of the contradiction. Making use of (5.35) and Corollary 1.1, it follows that

lim inf
k→∞

‖zi[k + 1]− x?‖ < αCL

1− q
+

√
2Lρ

m
.

�

5.4 Numerical Experiments

We report experiments on a high performance computing cluster. The cluster

makes use of a QDR InfiniBand network capable of 40 Gbps to each node and hosts

large scale storage systems operating with an optimized parallel file system. The

Intel-MPI distribution is used with Python bindings (mpi4py) for message passing.

The communication graphs (network topologies) are randomly generated; amongst

other parameters, our implementation of the graph generation algorithm allows us to

specify the desired size of the graph, as well as the average out-degree of each agent.

The generator produces a number of graphs and confirms that they are strongly

connected by performing a breadth-first search through the graphs. Subsequently,

the generator takes the adjacency matrices corresponding to the strongly-connected

graphs and scores them in terms of information diffusion speed. This is done by creat-

ing an equivalent doubly stochastic uniform edge weighted matrix, using a procedure

similar to that proposed in [13], and by subsequently computing the second largest

eigenvalue of this matrix (the largest is equal to 1 (cf. [8])). The graph with the

smallest spectral radius is saved. Table 5–1 shows the spectral radii of the uniform

edge weighted matrices corresponding to the generated graphs.

96

Table 5–1: Spectral radii of generated multi-agent networks. Larger spectral-radii
indicate more sparsely connected graphs. The spectral radius is computed as 1

1−λ2 ,
where λ2 is the second-largest eigenvalue of the uniform edge weighted matrix used
to score the graphs. For fully-connected graphs, λ2 is equal to 0. As the graph con-
nections are made more and more sparse, the second-largest eigenvalue will approach
1 from below: λ2 ↑ 1.

Num. agents Spectral radius
2 1.000
4 1.000
8 1.498
16 2.500
32 4.121
64 6.447

A multinomial logistic regression classifier (softmax predictor) is trained on the

Covertype dataset [45] (available from the UCI repository) using the negative log-

likelihood loss function:

min
w∈Rd

F (X,y|w) := −
D∑
i=1

K∑
j=1

log

(
exp(wTj x

i)∑K
j′=1 exp(wTj′x

i)

)yij

,

where D ∈ R++ is the number of training instances in the dataset, K ∈ R++ is

the number of classes, xi ∈ Rd and yi ∈ RK correspond to the ith training instance

feature and label vectors respectively (the label vectors are represented using a 1-hot

encoding), and w ∈ Rd are the parameterizing weights. The dataset contains 581012

data samples, and 54 raw predictive features. Consequently, the optimizer solves for

378 (=54 × 7) parametrizing weights. The optimization problem is distributed by

giving each agent in the multi-agent network a subset of the data samples from which

to construct local negative log-likelihood loss functions, fi(wi). The vector wi ∈ R378

denotes the parameterizing weight vector held locally by agent vi. The goal is to use

97

Table 5–2: Statistics concerning the time taken by agent v1 to perform an update in
the reported experiments for multiple different network sizes in the Fixed Problem
Workload formulation.

Num. agents Mean time (s) Max. time (s) Min. time (s) Std. (s)
2 1.085 1.322 0.959 0.050
4 0.316 0.426 0.288 0.037
8 0.194 1.302 0.148 0.089
16 0.180 0.256 0.101 0.017
32 0.032 0.080 0.021 0.009
64 0.013 0.031 0.009 0.005

these features to predict the cover-type of a geographic area; there are 7 cover-types

in total, and hence 7 possible classes from which to make a prediction — this is a

classification problem. The 54 features consist of a mix of categorical (binary 1 or

0) features and real numbers. We whiten the non-categorical features by subtracting

the mean and dividing by the standard deviation. Each of the Push DIGing (PD),

Extra Push (EP), Synchronous Subgradient Push (Synch-SSP), and Asynchronous

Subgradient Push (Asynch-SSP) algorithms are used to minimize the negative log-

likelihood of the softmax function constructed form the Covertype dataset. All step-

sizes are hand-optimized using a simple grid-search; coincidentally, the Synchronous

Subgradient Push, Extra Push, Push DIGing, and Asynchronous Subgradient Push

methods all use the same (constant) step-size.

Fixed Problem Workload

In each n-agent multi-agent network, each agent uses ∼ 581012/n data samples

to construct its local negative log-likelihood loss functions. These data samples are

98

0 10 20 30 40 50 60
Number of Agents

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e
(s

)
Time to Training Error:0.01

Asynch-SSP
Synch-SSP
PD

0 10 20 30 40 50 60
Number of Agents

Ti
m

e
(s

)

Time to Training Error:0.01 with Artificial Delay

Asynch-SSP
Synch-SSP
PD

Figure 5–2: Time t[k] (seconds) at which F (x[k])− F (x?) < 0.01 is satisfied for the
first time. Plots on the right correspond to experiments with an artificial 500ms
delay induced at agent v2 at each of its local iterations. Plots on the left correspond
to the normal operation of the algorithm. The asynchronous algorithm reaches the
threshold residual error faster than the state-of-the-art methods. The Extra-Push
algorithm is not plotted, because, in several cases, we were not able to find a step-size
that enabled the method to achieve the target residual error in a reasonable amount
of time; this is consistent with the observations in [58], where in some cases, there
were no step-sizes that even lead to convergence.

non-overlapping, and so the problem at hand is considered to have a fixed compu-

tational workload; that is, as we increase the size of the multi-agent network, the

computational load per agent decreases.

Discussion. Figure 5–3 shows how the individual algorithms scale with the

network size as we keep the average out-degree of each agent fixed (i.e., larger net-

works correspond to sparser topologies; cf. Table 5–1). Increasing the network size

99

0 50 100 150 200 250 300
Time (s)

10
2

10
1

10
0

F (1 n

n

i=
1x i

(t)
)

F(
x

)
Training Error:64nodes

Asynch-SSP
Synch-SSP
PD
EP

0 50 100 150 200 250 300
Time (s)

F (1 n

n

i=
1x i

(t)
)

F(
x

)

Training Error:64nodes with Artificial Delay

Asynch-SSP
Synch-SSP
PD
EP

(a)

0 100 200 300 400 500
Time (s)

10
2

10
1

10
0

F (1 n

n

i=
1x i

(t)
)

F(
x

)

Training Error:32nodes

Asynch-SSP
Synch-SSP
PD
EP

0 100 200 300 400 500
Time (s)

F (1 n

n

i=
1x i

(t)
)

F(
x

)
Training Error:32nodes with Artificial Delay

Asynch-SSP
Synch-SSP
PD
EP

(b)

Figure 5–3: Multinomial logistic regression training error on the covertype dataset
using large multi-agent networks. Plots on the right correspond to experiments with
an artificial 500ms delay induced at agent v2 at each of its local iterations. Plots
on the left correspond to the normal operation of the algorithm. The asynchronous
algorithm appears to be more robust than the synchronous algorithms to failing or
stalling nodes.

appears to exhibit a sub-geometric improvement in the optimization time.2 Fig-

ure 5–3 also shows that the asynchronous subgradient algorithm actually decreases

2 The question of how to choose the optimal number of agents for a given dis-
tributed optimization problem is studied in depth in [73].

100

0 200 400 600 800 1000
Time (s)

10
2

10
1

10
0

F (1 n

n

i=
1x i

(t)
)

F(
x

)
Training Error:8nodes

Asynch-SSP
Synch-SSP
PD
EP

0 200 400 600 800 1000
Time (s)

F (1 n

n

i=
1x i

(t)
)

F(
x

)

Training Error:8nodes with Artificial Delay

Asynch-SSP
Synch-SSP
PD
EP

(a)

0 500 1000 1500
Time (s)

10
2

10
1

10
0

F (1 n

n

i=
1x i

(t)
)

F(
x

)

Training Error:4nodes

Asynch-SSP
Synch-SSP
PD
EP

0 500 1000 1500
Time (s)

F (1 n

n

i=
1x i

(t)
)

F(
x

)
Training Error:4nodes with Artificial Delay

Asynch-SSP
Synch-SSP
PD
EP

(b)

Figure 5–4: Multinomial logistic regression training error on the covertype dataset
using small multi-agent networks. Plots on the right correspond to experiments with
an artificial 500ms delay induced at agent v2 at each of its local iterations. Plots
on the left correspond to the normal operation of the algorithm. The asynchronous
algorithm appears to be more robust than the synchronous algorithms to failing or
stalling nodes.

the residual error for both small and large network sizes faster than the state-of-

the art methods and its synchronous counterpart. This behaviour is even more

101

pronounced if one of the agents in the network works at a slower pace than the

others. In particular, the asynchronous algorithm appears to be more robust than

the synchronous algorithms to failing or stalling nodes. Figures 5–3 and 5–4 show

the residual error of the algorithms for different network sizes with an artificial de-

lay induced at agent v2 at each iteration. The synchronous algorithms experience

a significant slowdown relative to the asynchronous algorithm, which is much less

affected. This observation is also clear from Figure 5–3, where the time to reach a

threshold error is plotted. Table 5–2 shows the standard deviation as well as the

mean, maximum, and minimum amount of time taken by agent v1 to perform a local

computation for a given multi-agent network under normal operating conditions. A

500ms delay experienced by at least one agent in the 2, 4 or even 8 agent networks

is a relatively plausible occurrence. In larger multi-agent networks, such as the 32

or 64 multi-agent networks, a 500ms delay is relatively extreme since there could

be more than 3500 events (updates by individual agents) in the time it takes the

500ms artificially delayed agent to perform just a single update (cf. Table 5–2). The

fact that the asynchronous algorithm is still able to converge in this scenario (in

one quarter of the time taken by the state-of-the-art methods) is a testament to its

robustness.

Fixed Workload per Agent

In each n-agent multi-agent network, each agent randomly samples 290000 data

samples from the dataset to construct its local loss function, akin to a stochastic

version of the overlap regime studied in depth in the seminal works of Bertsekas and

Tsitsiklis [5, 78].

102

0 200 400 600 800 1000 1200
Time (s)

10
2

10
1

10
0

F (1 n

n

i=
1x i

(t)
)

F(
x

)
Training Error:128nodes

Asynch-SSP
Synch-SSP
PD
EP

(a)

0 200 400 600 800 1000 1200
Time (s)

10
2

10
1

10
0

F (1 n

n

i=
1x i

(t)
)

F(
x

)

Training Error:32nodes

Asynch-SSP
Synch-SSP
PD
EP

(b)

0 200 400 600 800 1000 1200
Time (s)

10
2

10
1

10
0

F (1 n

n

i=
1x i

(t)
)

F(
x

)

Training Error:8nodes

Asynch-SSP
Synch-SSP
PD
EP

(c)

0 200 400 600 800 1000 1200
Time (s)

10
2

10
1

10
0

F (1 n

n

i=
1x i

(t)
)

F(
x

)

Training Error:4nodes

Asynch-SSP
Synch-SSP
PD
EP

(d)

Figure 5–5: Scaling the network size while holding the computational load at each
agent fixed. Multinomial logistic regression training error on the covertype dataset,
where each agent randomly samples 290000 training instances from the dataset to
construct its local loss function. In all cases, the asynchronous algorithm achieves
faster convergence than the state-of-the-art methods.

Discussion. Figure 5–5 shows how the relative performance of the algorithms

scale with a fixed workload per agent. That is, by keeping the number of data samples

per agent fixed and increasing the size of the multi-agent network, we observe that

103

the asynchronous algorithm consistently achieves faster convergence than the state-

of-the-art methods. Most notably, as the computational load per agent increases,

the significance of any operating variance decreases (cf. Table 5–2), and thus the

effective level of asynchrony in the multi-agent network decreases, thereby leading the

asynchronous algorithm to perform reliably with less fluctuations in its optimization

trajectory. As a peripheral observation, it is interesting to note that the time taken by

the asynchronous algorithm to achieve the target residual error of 0.01 in this overlap

regime formulation is nearly identical for all reported multi-agent networks (this does

not seem to hold up for the synchronous algorithms); one of the main motivations

for constructing such an overlap regime in practice is to provide increased robustness

to individual node failure [6, 5, 78].

104

CHAPTER 6
Summary and Extensions to Future Work

The burgeoning of distributed optimization is attributable to the myriad ap-

plications in which in which such problems arise. Touching domains from finance

to the engineering, biological and social sciences, the need to develop distributed

optimization methods is rooted in practical applications involving the processing of

data that is naturally distributed, private, or simply too large to store on a single

machine. More generally, there has always been a need for the solution of very large

computational problems, whether data-based or not, and distributed optimization

methods provide a practical way to tackle these problems. However, despite the

practice-motivated roots of distributed optimization, the crux of the matter is that

there remains a nontrivial gap between theory and practice. Relative to the amount

of the theoretical development in the literature, there has been less work investi-

gating practical implementations of these algorithms, and furthermore, many of the

theoretical analyses makes assumptions that are difficult or undesirable to satisfy in

practice (e.g., synchronous, push-pull, doubly-stochastic) [74].

Based on this observation, we extend the baseline Subgradient-Push optimiza-

tion method to an asynchronous implementation, and show that it out-performs the

state-of-the-art (synchronous) methods in practice in terms of optimization time,

scalability with the network size, and robustness to failing or stalling agents. We

then proceed to develop a convergence theory for Asynchronous Subgradient Push

105

by developing a general modelling framework for analyzing asynchronous algorithms,

and applying it to the analysis of Asynchronous Subgradient Push. Along the way,

we also develop some peripheral results concerning the convergence, and convergence

rate, of an asynchronous version of the Push-Sum consensus protocol that are inter-

esting in their own respect. We also implement and open-source implementations of

the state-of-the-art first-order methods compared in this work using the MPI stan-

dard for message-passing in clusters [18, 17, 28], and make them available to the

community.1

It should be noted that even though our analyses are presented for static commu-

nication graphs, they actually hold trivially for time-varying communication graphs

so long as the graph sequence is “slowly time-varying” and is B-strongly connected

for some finite B. Precisely, the reference graph should remain static for at least

τproc − 1 consecutive iterations before changing topology, and there should exist a

finite B̃ such that the union of (τproc)B̃ consecutive graphs is strongly connected.

If the time-index processing delay, τproc, is reduced to 1 (synchronous operation),

then the proof holds for all time-varying graphs that are B̃-strongly connected for

arbitrary B̃.

In general, motivated by empirical observations [2], this thesis introduces the

first of, what will hopefully be, many singly-stochastic asynchronous multi-agent op-

timization methods available in the literature (cf. Section 1.4). In this work we

extended synchronous Subgradient-Push to an asynchronous implementation, but

1 Open Source: https://github.com/MidoAssran/maopy

106

Subgradient-Push is simply a multi-agent analog of gradient descent, and it would be

interesting to explore the possibility of extending other algorithms to asynchronous

operation using singly-stochastic consensus matrices. For example, it would be inter-

esting to explore methods that use an extrapolation between iterates to accelerate

convergence [58, 88], or quasi-newton methods that approximate the Hessian us-

ing only first-order information [51], or Lagrangian-dual methods that formulate the

consensus constrained optimization problems using the Lagrangian, or Augmented

Lagrangian, and simultaneously solve for both primal and dual variables [71]. Fur-

thermore, it would be interesting to establish convergence rates for asynchronous

versions of these algorithms. Another interesting direction of future work would be

to develop some theory for multi-agent optimization algorithms in the non-convex

case, given that most of the theoretical development to date has focused on convex

optimization. Non-convexity arises quite often in practice, especially in deep-learning

applications, which appear to lend themselves quite nicely to multi-agent optimiza-

tion methods given the scale of computing resources involved.

107

References

[1] Tansu Alpcan and Christian Bauckhage. A distributed machine learning frame-
work. In Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference
on, pages 2546–2551. IEEE, 2009.

[2] Mahmoud Assran and Michael G Rabbat. An empirical comparison of multi-
agent optimization algorithms. In IEEE GlobalSIP Symposium on Distributed
Optimization and Resource Management over Networks. IEEE, 2017.

[3] Arda Aytekin. Asynchronous Algorithms for Large-Scale Optimization: Analysis
and Implementation. PhD thesis, KTH Royal Institute of Technology, 2017.

[4] Florence Bénézit, Vincent Blondel, Patrick Thiran, John Tsitsiklis, and Martin
Vetterli. Weighted gossip: Distributed averaging using non-doubly stochastic
matrices. In Information theory proceedings (isit), 2010 ieee international sym-
posium on, pages 1753–1757. IEEE, 2010.

[5] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation:
numerical methods, volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[6] Dimitri P Bertsekas and John N Tsitsiklis. Some aspects of parallel and dis-
tributed iterative algorithms—a survey. Automatica, 27(1):3–21, 1991.

[7] Pascal Bianchi, Walid Hachem, and Franck Iutzeler. A coordinate descent
primal-dual algorithm and application to distributed asynchronous optimiza-
tion. IEEE Transactions on Automatic Control, 61(10):2947–2957, 2016.

[8] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Ran-
domized gossip algorithms. IEEE/ACM Transactions on Networking (TON),
14(SI):2508–2530, 2006.

[9] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction

108

109

method of multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–
122, 2011.

[10] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[11] Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, and Gesualdo Scu-
tari. Asynchronous parallel algorithms for nonconvex big-data optimization.
part ii: Complexity and numerical results. arXiv preprint arXiv:1701.04900,
2017.

[12] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of
recent progress in the study of distributed multi-agent coordination. IEEE
Transactions on Industrial informatics, 9(1):427–438, 2013.

[13] Valerio Cappellini, Hans-Jürgen Sommers, Wojciech Bruzda, and Karol
Życzkowski. Random bistochastic matrices. Journal of Physics A: Mathematical
and Theoretical, 42(36):365209, 2009.

[14] Volkan Cevher, Stephen Becker, and Mark Schmidt. Convex optimization for
big data: Scalable, randomized, and parallel algorithms for big data analytics.
IEEE Signal Processing Magazine, 31(5):32–43, 2014.

[15] Themistoklis Charalambous and Christoforos N Hadjicostis. Average consensus
in the presence of dynamically changing directed topologies and time delays.
In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages
709–714. IEEE, 2014.

[16] Themistoklis Charalambous, Ye Yuan, Tao Yang, Wei Pan, Christoforos N Had-
jicostis, and Mikael Johansson. Distributed finite-time average consensus in di-
graphs in the presence of time delays. IEEE Transactions on Control of Network
Systems, 2(4):370–381, 2015.

[17] Lisandro Dalcin. mpi4py, 2007.

[18] Lisandro Dalćın, Rodrigo Paz, and Mario Storti. Mpi for python. Journal of
Parallel and Distributed Computing, 65(9):1108–1115, 2005.

[19] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, 2013.

110

[20] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale dis-
tributed deep networks. In Advances in neural information processing systems,
pages 1223–1231, 2012.

[21] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[22] Paolo Di Lorenzo, Sergio Barbarossa, and Ali H Sayed. Decentralized resource
assignment in cognitive networks based on swarming mechanisms over random
graphs. IEEE Transactions on Signal Processing, 60(7):3755–3769, 2012.

[23] Alexandros G. Dimakis, Soummya Kar, José M. F. Moura, Michael G. Rab-
bat, and Anna Scaglione. Gossip algorithms for distributed signal processing.
Proceedings of the IEEE, 98:1847–1864, 2010.

[24] Alexandros G Dimakis, Soummya Kar, José MF Moura, Michael G Rabbat, and
Anna Scaglione. Gossip algorithms for distributed signal processing. Proceedings
of the IEEE, 98(11):1847–1864, 2010.

[25] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling. IEEE Trans-
actions on Automatic control, 57(3):592–606, 2012.

[26] Mark Eisen, Aryan Mokhtari, and Alejandro Ribeiro. Decentralized quasi-
newton methods. IEEE Transactions on Signal Processing, 65(10):2613–2628,
2017.

[27] Fabio Fagnani and Sandro Zampieri. Randomized consensus algorithms over
large scale networks. IEEE Journal on Selected Areas in Communications, 26(4),
2008.

[28] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the mpi message passing interface
standard. Parallel computing, 22(6):789–828, 1996.

[29] Christoforos N Hadjicostis and Themistoklis Charalambous. Average consensus
in the presence of delays and dynamically changing directed graph topologies.
arXiv preprint arXiv:1210.4778, 2012.

111

[30] Christoforos N Hadjicostis and Themistoklis Charalambous. Average consensus
in the presence of delays in directed graph topologies. IEEE Transactions on
Automatic Control, 59(3):763–768, 2014.

[31] John Hajnal and MS Bartlett. Weak ergodicity in non-homogeneous markov
chains. In Mathematical Proceedings of the Cambridge Philosophical Society,
volume 54, pages 233–246. Cambridge University Press, 1958.

[32] Matthew T Hale, Angelia Nedich, and Magnus Egerstedt. Asynchronous multi-
agent primal-dual optimization. IEEE Transactions on Automatic Control,
2017.

[33] Robert Hannah and Wotao Yin. More iterations per second, same quality–why
asynchronous algorithms may drastically outperform traditional ones. arXiv
preprint arXiv:1708.05136, 2017.

[34] Jarvis D. Haupt, W. U. Bajwa, Michael G. Rabbat, and Ryan K. Nowak. Com-
pressed sensing for networked data. IEEE Signal Processing Magazine, 25:92–
101, 2008.

[35] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and min-
imization algorithms I: Fundamentals, volume 305. Springer science & business
media, 2013.

[36] Mingyi Hong and Tsung-Hui Chang. Stochastic proximal gradient consensus
over random networks. IEEE Transactions on Signal Processing, 65(11):2933–
2948, 2017.

[37] Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Asyn-
chronous distributed optimization using a randomized alternating direction
method of multipliers. In Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on, pages 3671–3676. IEEE, 2013.

[38] Soummya Kar and José MF Moura. Sensor networks with random links: Topol-
ogy design for distributed consensus. IEEE Transactions on Signal Processing,
56(7):3315–3326, 2008.

[39] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of
aggregate information. In Foundations of Computer Science, 2003. Proceedings.
44th Annual IEEE Symposium on, pages 482–491. IEEE, 2003.

112

[40] Sandeep Kumar, Rahul Jain, and Ketan Rajawat. Asynchronous optimization
over heterogeneous networks via consensus admm. IEEE Transactions on Signal
and Information Processing over Networks, 3(1):114–129, 2017.

[41] Rafael Laufer, Henri Dubois-Ferriere, and Leonard Kleinrock. Multirate anypath
routing in wireless mesh networks. In INFOCOM 2009, IEEE, pages 37–45.
IEEE, 2009.

[42] Na Li, Lijun Chen, and Steven H Low. Optimal demand response based on
utility maximization in power networks. In Power and Energy Society General
Meeting, 2011 IEEE, pages 1–8. IEEE, 2011.

[43] Shu Li and Tamer Basar. Asymptotic agreement and convergence of asyn-
chronous stochastic algorithms. IEEE Transactions on Automatic Control,
32(7):612–618, 1987.

[44] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel
stochastic gradient for nonconvex optimization. In Advances in Neural Infor-
mation Processing Systems, pages 2737–2745, 2015.

[45] M. Lichman. UCI machine learning repository, 2013.

[46] Pedro U Lima and Luis M Custodio. Multi-robot systems. In Innovations in
robot mobility and control, pages 1–64. Springer, 2005.

[47] Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Par-
allelism and convergence properties. SIAM Journal on Optimization, 25(1):351–
376, 2015.

[48] Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar.
An asynchronous parallel stochastic coordinate descent algorithm. Journal of
Machine Learning Research, 16(285-322):1–5, 2015.

[49] Qingguo Lü and Huaqing Li. Geometrical convergence rate for distributed opti-
mization with time-varying directed graphs and uncoordinated step-sizes. arXiv
preprint arXiv:1611.00990, 2016.

[50] Fatemeh Mansoori and Ermin Wei. Superlinearly convergent asynchronous dis-
tributed network newton method. arXiv preprint arXiv:1705.03952, 2017.

113

[51] Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro. Network newton distributed
optimization methods. IEEE Transactions on Signal Processing, 65(1):146–161,
2016.

[52] Angelia Nedic. On the rate of convergence of distributed subgradient meth-
ods for multi-agent optimization. In Decision and Control, 2007 46th IEEE
Conference on, pages 4711–4716. IEEE, 2007.

[53] Angelia Nedic. Asynchronous broadcast-based convex optimization over a net-
work. IEEE Transactions on Automatic Control, 56(6):1337–1351, 2011.

[54] Angelia Nedić. Distributed optimization. Encyclopedia of Systems and Control,
pages 308–317, 2015.

[55] Angelia Nedić and Alex Olshevsky. Stochastic gradient-push for strongly convex
functions on time-varying directed graphs. IEEE Transactions on Automatic
Control, 61(12):3936–3947, 2016.

[56] Angelia Nedic and Asuman Ozdaglar. 10 cooperative distributed multi-agent.
Convex Optimization in Signal Processing and Communications, 340, 2010.

[57] A. Nedich and A. Olshevsky. Distributed optimization over time-varying di-
rected graphs. IEEE Transactions on Automatic Control, 60(3):601–615, 2015.

[58] Angelia Nedich, Alex Olshevsky, and Wei Shi. Achieving geometric conver-
gence for distributed optimization over time-varying graphs. arXiv preprint
arXiv:1607.03218, 2016.

[59] Angelia Nedich, Alex Olshevsky, and Wei Shi. A geometrically convergent
method for distributed optimization over time-varying graphs. In Decision and
Control (CDC), 2016 IEEE 55th Conference on, pages 1023–1029. IEEE, 2016.

[60] Giovanni Neglia, Giuseppe Reina, and Sara Alouf. Distributed gradient op-
timization for epidemic routing: A preliminary evaluation. In Wireless Days
(WD), 2009 2nd IFIP, pages 1–6. IEEE, 2009.

[61] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[62] Alex Olshevsky. Efficient information aggregation strategies for distributed con-
trol and signal processing. arXiv preprint arXiv:1009.6036, 2010.

114

[63] Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. On the conver-
gence of asynchronous parallel iteration with arbitrary delays. arXiv preprint
arXiv:1612.04425, 2016.

[64] Joel B Predd, Sanjeev R Kulkarni, and H Vincent Poor. A collaborative training
algorithm for distributed learning. IEEE Transactions on Information Theory,
55(4):1856–1871, 2009.

[65] Michael Rabbat and Robert Nowak. Distributed optimization in sensor net-
works. In Proceedings of the 3rd international symposium on Information pro-
cessing in sensor networks, pages 20–27. ACM, 2004.

[66] Michael G Rabbat and Konstantinos I Tsianos. Asynchronous decentralized
optimization in heterogeneous systems. In Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on, pages 1125–1130. IEEE, 2014.

[67] S Sundhar Ram, Angelia Nedić, and Venugopal V Veeravalli. Distributed
stochastic subgradient projection algorithms for convex optimization. Journal
of optimization theory and applications, 147(3):516–545, 2010.

[68] Sundhar Srinivasan Ram, Venugopal V Veeravalli, and Angelia Nedic. Dis-
tributed non-autonomous power control through distributed convex optimiza-
tion. In INFOCOM 2009, IEEE, pages 3001–3005. IEEE, 2009.

[69] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in
Neural Information Processing Systems, pages 693–701, 2011.

[70] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algo-
rithm for decentralized consensus optimization. SIAM Journal on Optimization,
25(2):994–966, 2015.

[71] Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear conver-
gence of the admm in decentralized consensus optimization. IEEE Transactions
on Signal Processing, 62(7):1750–1761, 2014.

[72] Konstantinos Tsianos. The role of the network in distributed optimization al-
gorithms: Convergence rates, scalability, communication/computation tradeoffs
and communication delays. PhD thesis, McGill University Libraries, 2013.

115

[73] Konstantinos Tsianos, Sean Lawlor, and Michael G Rabbat. Communica-
tion/computation tradeoffs in consensus-based distributed optimization. In Ad-
vances in neural information processing systems, pages 1943–1951, 2012.

[74] Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Consensus-based
distributed optimization: Practical issues and applications in large-scale ma-
chine learning. In Communication, Control, and Computing (Allerton), 2012
50th Annual Allerton Conference on, pages 1543–1550. IEEE, 2012.

[75] Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Push-sum dis-
tributed dual averaging for convex optimization. In 2012 IEEE 51st IEEE Con-
ference on Decision and Control (CDC), pages 5453–5458, 2012.

[76] Konstantinos I Tsianos and Michael G Rabbat. The impact of communication
delays on distributed consensus algorithms. arXiv preprint arXiv:1207.5839,
2012.

[77] Konstantinos I Tsianos and Michael G Rabbat. Efficient distributed online
prediction and stochastic optimization with approximate distributed averag-
ing. IEEE Transactions on Signal and Information Processing over Networks,
2(4):489–506, 2016.

[78] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms. IEEE
transactions on automatic control, 31(9):803–812, 1986.

[79] Ermin Wei and Asuman Ozdaglar. On the o (1= k) convergence of asynchronous
distributed alternating direction method of multipliers. In Global Conference
on Signal and Information Processing (GlobalSIP), 2013 IEEE, pages 551–554.
IEEE, 2013.

[80] Jacob Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices.
Proceedings of the American Mathematical Society, 14(5):733–737, 1963.

[81] Qihui Wu, Guoru Ding, Yuhua Xu, Shuo Feng, Zhiyong Du, Jinlong Wang, and
Keping Long. Cognitive internet of things: a new paradigm beyond connection.
IEEE Internet of Things Journal, 1(2):129–143, 2014.

[82] Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H Sayed. Decentralized
consensus optimization with asynchrony and delay. 2016.

116

[83] Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H Sayed. Decentralized
consensus optimization with asynchrony and delays. In Signals, Systems and
Computers, 2016 50th Asilomar Conference on, pages 992–996. IEEE, 2016.

[84] Chenguang Xi. Distributed Optimization Algorithms in Large-Scale Directed
Networks. PhD thesis, Tufts University, 2017.

[85] Chenguang Xi and Usman A Khan. Dextra: A fast algorithm for optimization
over directed graphs. IEEE Transactions on Automatic Control, 2017.

[86] Lin Xiao. Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research, 11(Oct):2543–2596, 2010.

[87] Yuhua Xu, Jinlong Wang, Qihui Wu, Alagan Anpalagan, and Yu-Dong Yao.
Opportunistic spectrum access in cognitive radio networks: Global optimiza-
tion using local interaction games. IEEE Journal of Selected Topics in Signal
Processing, 6(2):180–194, 2012.

[88] J. Zeng and W. Yin. Extra push for convex smooth decentralized op-
timization over directed networks. UCLA CAM Report, 15-61, 2015.
http://arxiv.org/abs/1511.02942.

[89] Jinshan Zeng and Tao He. A fast algorithm for distributed optimization over
directed networks. In IEEE International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER), pages 45–49. IEEE,
2016.

[90] Guoqiang Zhang and Richard Heusdens. Bi-alternating direction method of
multipliers over graphs. In Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, pages 3571–3575. IEEE, 2015.

