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MAGNETISM AND MAGNETIC EXCITATIONS

IN NARROWBAND METALS
AND RARE.EARTH COMPOUNDS

* In Part | of this thesis, we investigate the properties
of a model for magnetm In narrow band metals which
consists of localized orbitah hybridizing with a QQFd
conduction band, We examine the static magnetic properties
of this model and obtain the conditions under which a
magnetic state exists. We also exarine the magnetic ex:
citations, pin waves and apin fluctuations, in this model,
Wse show that the spin wave dispersion relation has the
usual quadratic form in the long wavelength limit, We aho
show that the wattering of glectrom-off 1pin fluctuations
teads to_the usual T* term in the resiativity at low temper

atures and discums ity application to the pressure sffects in.

«le.

In Part ‘1, we consider the damping of magnetic
sxcitations in singletground4tate systers by random
fekds {due to- thermal fluctuations) using the coherent
potential approximation (CPA) and discuss its application
to PryTR. We find that, in addition to broadening, the
scattoring shifts the spin wave modes,
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.
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s
In Part I of thiz thesis, we invesrigate the propertire

of a model for magnetism lk narrow band metals which consists
of localited orbitals hybfidizing with a broad conduction -
band. NWe examine the :gttic nlgnotjc properties of this
model and obtain the c9nd1tions under which a magnetic state
exists, NWe also examine the magnetic oxcitattoqs."spin
waves and spin fluctuations, in this model. We show that
the }pin wave dispersion relation has the usual quadratic
form in the long wavelength limit, N;';llo ihow that thoe
scattering of electrons off spin fluctuations l;ads to the
usual T! term i the resistivity at low temperatures and
discuss its application to the pressure effects in a-Ce.

In Part ,II, we consider the damping of magnetic ‘aap
o;cicutions“1n‘?1n310€;;round-state systems by random
fields (due to thermal fluctuations) using the coherent
potential approximation (CPA) and discgss its application
to PryTL. NWe find that, in addition to broadening, the

s
scattering shifts the spin wave modes.
{
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Résumé -
La premidre partie de cette thdse concerne 1'étude
des propriétés d'un moddle pour le¢ magnétisme dans les
‘métaux 1 hahdedétroite, qui consiste d'orbitales localiséoen

hybridées avec une large bande de conduction., Nous

examinons les propriétes magnétiques statiques de ce moddle

et obtenons les conditions sous lesquelles un état y
magnétique existe. Nous examinons aussi dans ce moddle .
les excitations magnétiques, les ondes de spin et les
fluctuations de spin. Nous montrons que la relation de
dispersion de l'onde de spin possdde la forme quadratique
usuelle dans la limieo des grandes longueurs d'onde. Nous
montrons aussi que la dispersion des électrons par les
fluctuations de sping conduit au terme habituel en T' dans
la résistivité X basse température et discutons son
application aux effets de pression dans a-Ce.

idme partie, nous considerons 1'amortissement

Dans la 2
des excitations magnétiques par des champs aléatoires(dds
tux'fluctuatlons thermiques) dans les systdmes ayant pour
6ta; fondamental un singulot.‘on utilisant l'approximation
du potentiel cohérent (APC) et nous discutons son application
4 PryTL. Nous trouvons que, en plus de les Clarrir. la

dispersion déplace les modes d'onde de spin.
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PREFACE

This thesis i3 concerned with the atudy of sonme

problems related to magnetism in metallic systems. The

Pd
-

magnetic moment associated with an atom results from the
moments of electrons such as the 3d electrons in transition
metals and the 4f electrons in the rare-earth metals,.
These two groups of metals, however, differ in a funda-
mental way: - the 3d electrons ifn the transition metals
are {tinerant while the &ﬁaflectrons in the rare-earth
metals are well localized at their respective atomic
sites. Thus, in the transition metals such as Ni, Co
and Fe a band picture is omplqyed for the 35d electrons
and the magnetization results from the splitting of the
spin up and spin down bands. On the other hand the
magnetic moments in the rare-earth metals (e.g. Gd) are
well localited and they interact via the conduction
electrons,

In certain metals the localized magnetic electrons '
can hybridize with a conduction band i.e. the localized
orbitals and the conduction states are mixed and electrons
can jump from one to the other. If the localited orbitals
Aave appreciable overlap with orbitals on neighbouring

-~

sites they will form a narrow band and this band may also

4

hybridize with a broad conduction band. . /

f In other metals the localizred moment iy strongly

affected by the electric charges of the heighbouring
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iony. )Thcsc charges produce an'elpctrostattg potential
» ' N E]

(cn!lgd the crystal-field potential) which can split t\e
ground state mnltibtet of the -central ifon. This
changes the character of the moment and. leads to an
intevesting magnetic behaviour.

+

In Part I of this thesls we study the magne

pfoporties of metals dn which the mtgnttl!bcloct
-hybridizc with the conduction band. /In particula
examnine tﬁoir static properties such‘a: magneti
and Curie temperatures and also thelr collectiv
excitations in both the ferromagnetic and paramagnetic

states. In Part II we consider metallic systems with’

strong crystal-fields. Here we consider the damping or
scattoring of spin waves by fluctuating magnetic fields

which result from thermal fluctuations of spins.
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Statement of originality ,

The material in Chupters(Y-lV on the static.and dynimic
. .
munnctic proporties of tho narrow band modol is orl(lnab The

oxtension o! the double rosonnnco theory for the interaction

&

bhetween .two momcnts is also original. To tho bost of my

.

knowledge, tho coherent pOtontiul lpprq}fmltion 1s usnd for the

first timo in Part 11 to invostigute the scattering of spin .
A ! " 3
waves in singlet-ground-state systems,

/
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PART 1

. Magnetism and magnetic excitations in narrow band metals

{

INTRODUCTION

Ferromagnetism has been a fascinating subject for many

years, In 1907 Weiss put forward the "molecular field"

s hypothesis that each atom of a ferromagnetic material is

a magnetic dipoloﬂand is acted upon by an intense magnetic
field proportional to, and parallel to, the magnetization

in the region surrounding it. This met with considerable
success in accounting for spontaneous magnetization and its
variation with temperature. Neiss realized that the

molecular field has to be more intense than could be accounted,
for by orQinlry magnethc forces but was unable to trace.

its origin. The strong interaction responsible for spontaneous
magnetization was recognized by Heisenb¥rg in 1926 as being

the "exchange" interaction between slectrons ptedicted by

the then newly deveoloped quantum mechanics. The exchange
for;es are basicalfy electrostatic in origin Lnd consequently
may have an intensity many orders of magnitude greater than_
the ordinary magnetic forces between the spin moments.

The first theory of ferromagnetism based on exchange

interactions was put forward independently by Heisenberg and

Q /
o



Dirac in 1928. They showed that the exchange interaction
between electrons localized on different atomic sites can
be written in terms of a coupling between their spins. The

result is the Heisenberg Hamiltonian

/

e

17 13 J,*d / (1)

- =}

h

where J. 1s the spin of the 1" atomic site and Jij the

th

e;chango interaction between the i and the jth atoms. The

Heisenberg| model of direct interaction is mainly applicable

to insulators sﬁch as the ferromagnetic compounds Eu0 and
GdCl,. |

In the iron-group metals Fe, Co and Ni, calculations
show that the exchange coupling between eclectrons localized
on atomic sites is too small to account for their strong
ferromagnetism. There are, moreover, other reasons why a
perfectly localized model is inadeq%ate for these metals.
In particular it 1§ now known that the measured moments per
atom are not integral numbers of Bohr magnetons. The
'collective electron' model first put forward by Stoner and
by Slater explained this fact by taking into account the
itinerant nature of the 3d electrons. These electrons now
form pands and the effect of the exchange intetactiog is to
split the spin up and spin down bands giving rise to a net

!

magnetic moment. As in the Weiss molecular field theory,
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the oxchan~e field which splits the spin up Rgd spin down _
bands is in turn propaortional to the ne§,magneti:ation.
The band picturc allows a non-integ?al oﬁcupation per atom
and this can explain the fact that the momants in the iron-
group metals are not integral numbers of Bohr magnetons.
Direct exchange between electrons localized on atomic
sites is even less likely to be significant in raré-earth
metals where the 4f orbit;ls. with radii of abouz OSSR, over-
lap very little with orbitals on neighbouring atoms which
_are separated by about'SR. In the rare-earth metals;
indirec; exchange via the conduction electrons is responsible
for the magnetic order. An example of such an intarnc{ion
is the Ruderman-Xittel-Kasuva-Yosida or RKKY interaction.
In this model, an exchange interaction bhetween a localﬂze¢
spin and the conduction electrons causes a polarization of
the conduction electrons which is centered aroﬁnd the local
moment and falls off with distance in an oscillatory manner.
Another localized spin sees this polarization and interacts
with it thus leading to a coupling -between the spins. For

two spins S, and S, separated by a distance R the 7KKY

interaction energy is given by

. - gngzhr ZkFR Cos 2kFR - Sin ZkFR fs s, (2 .
RKKY T2k R) ¥ 2t.22
€r ‘ F ) .
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where J is the exchange coupling between the localized spin
and the conduction electrons, I the number of conduction
electrons per atom, €p the Fermi energy and kF the Fermi wave

,

vector given by ' .

k. = (3nin)l/3 (3)

F
where n is the conduction electron ,concentration. The
interaction (2) is oscillatory and we note that the coupling
can be changed from ferromagnetic to anti-ferromagnetic by
changing kF i.e. by changing the electron concentratiq“;

In the first part of this thesis we examine a new model
for magn;tism that is more suitable for certain metals and
intermetallic compounds. An interesting example is presented
by a group of intermetallic compounds known as Heusler alloys.
Before describing the new model we give below a brief
description of these alloys.

The Heusler alloys first became of interest in 1903
when F. Heusler discovered that it was possible to make
ferromagnetic alloys entirely from non-ferromagnetic elements.
These alloys were made from copper-maganese bronze alloyed
with gpe elements tin, aluminum, arsenic, antimony, bisﬁuth,
or boron. Among the first to be discovered were the alloys
CuzMn Sn and Fuz Mn Al. A comprehensive crystallographic
investigation of the structure of one of these alloys was
carried out by Bradley and Rodgers (1934) on Cu, Mn Al. The

structure is shown in Figure 1 and is best described in terms

7



of four interpenstrating face-centered cubic sublattices
A, B, C and D. At the stoi:hiometric composition Cu MnAl
the A and C sites are occupied by €u atoms, the B sites

by Mn and the D sites by Al. This arrangement corresponds
to the Strukturbericht type L2;,. Heusler alloys are now
commonly defined as ternary intermetallic compounds at the
stoighiometric composition X,YZ with the L2, structure.

The magnetic moment in the Heusler alloys was believed
by early investigators to be carried by the Mn atoms. The
first direct evidence in support of this view was obtained
by Felcher et al (1963) from neutron diffraction measurements.
They investigated the magnetic moment distribution in Cu,MnAl
and were able to show that within the accuracy of the
experiment the entire moment of the molecule could be
attributed to the Mn atom. Later experiments have confirmed
that in most Heusler a;loys containing Mn the magnetic
moment is confined to the Mn sites. The only exceptions are
a series containing cobalt (Webster (1971)) in which the
magnetic momeni is shared 'with the cobalt atoms.

A summary of the properties of the principal ferro-
magnetic Heusler alloys is shown in Table 1. The lattice
parameter is of the 6%der of 6; in these alloys. The
magnetic moment per formula is of the order of 4uy (where
ug is the Bohr magneton) in the non-cobalt alloys and of
the order of Sup in the cobalt ones. In the latter, between
25-30 per cent of the moment is on the Co atoms and the rest

on the Mn atoms. In contrast to the lattice constant and

i
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‘} Lattice Curie ‘ Magnetic Moment
Allay Parameter Tempesrature" per formula
‘ 2a. (1) Te (K . u (Bohr magretons)
CuzMnAl 5.958 600 3.8
Cu,Mnln C6.2 520 4,0
CuzMnSn 6.1" (530) 4.1
PdaMnSn 6.380 189 4.23
PdaMnSb 6.424 247 4.40
NiaMnln 6.068 323 4.40
NiaMnSn 6.052 344 ° 4.05
NiaMnsb 6.000 360 3.27
CoaMnSi 5.654 985 §.07 A
: Co2MnGa 5.770 694 " 4.05
" CoaMnGe 5.743 905 .11
/ Co2MnSn 6.000 ‘ 829 ' 5.08

Table 1. Properties of some of the ferromagnetic Heusler alloys.

(Taken from Webster -(1969)).
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magneflc momen} the urie temperature varies widely in these '
alloys being highest in the \cobalt allovs. J

The intcractioﬁ responsibic for the alignment of the
mor sius was f1r<t Jiscusscd in térms of direct exchangoe.

+
Accorling to the ecarlv theory, ferromagnetism requires the
presence of atoms with an incomplete shell of electrons to
provide a permanent momentﬁ usually the d and f yhells.
These atoms must have neighbours with which they can interact
to produce a positive value of the exchange integral, and
hence the distance between the atoms must not be too great,
or else the interaction energy becomes insufficient to
stabilize the ferromagnetic conqition. Coles et al (1949)
used these ideas to compare Cu,MnAl and Cu,MnIn. These two
alloys are <£rictly analogous as regards valencies,
structures and clectron concentration. However, the In
LY

atom Ewhich is below Al in the periodic table) has a larger
radius and consequently the lattice constant and the
resultant Mn-Mn separation is larger in Cu,MnIn than Cu,MnAl.
Assuming approximately the same moment on the Mn atofs in
both alloys they concluded that in the direct exchange
piéture the lower Curie temperature in the In alloy is due
to the larger Mn-Mn separation in this compound.

However, objections have been raised against direct
exchange between the Mn atoms because the Mn-Mn separation

L)
in thcgp'allo}s is ~ 4,2A which is thought to be too large

to account for the strong ferromagnetism in the non-cobalt

~
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alloys. (In alloys containing cobalt the situation is mdre

complicated in that the Co atous also carry a moment and one
can have Co-Cu, Co-Mn and Mn-Mn intersgeions. The Co-Co
distance is © 3.01 wgile %he Co-Mn <cparation is n Z.GR and
it is likely that therd would be direct exchange in these
alloys. The exchange mechani;m in the cobalt alloys i;
expected to be quite complex and in what follows we will
concentrate on the simpler case of non-cobalt alloys.) It

is also known that the conduction electrons play an

important role in the magnetism of these alloys. The

series Pd%MnIn. Pd,MnSn and Pd,MnSd ilfustrutes this point,.
The last two alloys are ferromagnetic with Curie temperatures

of 189 and 247K respectively (see Table 1) while Pd,MnIn

is antiferromagnetic with a Neel temperature of 142K. The
>

lattice parameter for Pd,MnlIn is 2a, = 6.373; and its
magnetic‘m;ment per formula is 4.3 un. Although small
changes in the lattice parameter and the magnetic moment
may have some effect on the exchange forces.'it is the
conduction electron concentration (assuming that In
contributes 3 electrons”to the conduction band while Sn and m
Sb contribute 4 and 5 electrons respectively) that determines
whether ferromagnetic or anti-ferromagnetic order will
predoninate. This suggests that the interaction between the
Mn' atons might be an indirect one via the conduction electrons

such as the RKKY interaction. In this way it would be possible




to exp!ain the ¢fange frowm anti-fcrroma:n;tism in PdaNnlIn
Fo ferromagnetism in Pd,MnSn and Pd,MnSb as resulting from
A& change in the electron concentration as mentioned carlier.
The magnetic moment ¢ the Mn ator: in an aly such
as CuaMnAl results from the unfilled d-shells of Mn. The
outer s and p electrons of Cu, Mn and Al form broad
conduction bands while the d-orbitals of Mn remain well
localized. However the broad conduction bands overlap
the d-levels and mixing or hybridization takes place between
these states. Thus any theory for the Heusler alloys must
take into account this hybridization and in the first part
of this thesis we consider such a model. To simpi}fy.natters
we take an idealized situation and consider a model consisting
of the following:
(i) o broad free-like conduction band for the outer-
shell electrons
(ii) a periodic lattice of N magnetic atoms each
with a localized non-degenerate orbital
(iii) mixing between the conduction and localized states
via & hybridization matrix element which allows
electrons to jump from a localized state into a
conductbn state and vice versa
(iv) a Coulomd repulsion between opposite spin electrons
on the locailized orbital! This spin-splitting
interaction is r;sponsibie for the magnetic moment
formation on the localized, levels.

The Mn atoms in the Heusler alloys are well separated




1¢

=

and we have assuncd the 3d orbitals to be well localized.
In reality, however, there wonuld be some overlap between

-

orbitals on neighbouring atoms and the'kﬁ'glecﬁrons would
form 4 very narrow band. Although we hiv: neygigcted the

oY
overlap of the 3d orbitals we still refer ® this model as
the narrow band model. We also *!te that this model is

also suitable for the 4f electrons in the rare-earth netals

.and the S5f electrons in the actinide metals.

+

The properties of the narrow band model are investigated
in the first three chapters. In chapter I we exanine the
static magnetic properties of this system. The Couland
repulsion(U) favors a ferromagnetic or spin split state
while the mixing or hybridization potential(V) has the
opposite effect. In the Hartree—Fq;k*d%proximation, we I
discuss under what conditions a ferromagnetic state is
stable as U and V are varied. We thus obtain a magnetic
phase diagram which shows the mggnetif,and non-magnetic
regions in U-V space. In the ferfomagnetic state we obhtain’
the variation of the magnetization and Curie temperature as
a function of U and as expected both increase with U.
Finally, we plot the temperature dependence of the magneti-
zation and the static susceptibility.

In chapter I7 we consider the ferromagnetic state and
examine the collective excitations or spin waves of the system.
These spin wa;es are single particle excitations which
propagate through the crystal with energy w and wave vector

4. In the long waveclength Jimit, we show that the dispersion

—J------mz"urﬂllnﬂﬁmlﬁﬂﬁﬁi
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relation for these excitations has the usual quadratic form
wn™ Dq'. The stiffness coefficient D is evaluated for
different values of magnetization and it is shown that for
small values of the magqetiz;tion D increases linearly with
magnetization.
Ne then consider, in chapter III, the excitations of
X the system in the paramagnetic state. These excitations
are known as "gpinbfluctuations" and their spectral density
is obtained. We then consider the effect of the spin
fluctuations on the resistivity and show that the temperature
dependence of the spin fluctuation part of the resistivity
has the usual form i.e. aT? behaviour at low temperatures
going over to a linear dependence at higher tenpéragurosk,
Atlstill higher temperatu%es-thE'fé§r§ti;ity d?;iates below

the linear law. .

~~~~~~~~~~~~~~
e

to the ferromagnetic Heusler alloys, We also discuss
qualitatively the possible application to a-Ce and in particular
attempt to explain the pressure dependence 3; the resistivity
found in a-Ce.

For the Heusler alloys we find that the Curie temperatures
obtained are higher than thq Abserved values and hence, in ;
chapter V we exanmine another model. This is the double

‘resonance model which considers the interaction of two Mn
atoms. The d.levels of each Mn atom form resonances by

hybridization with the conduction band and the interaction

r
between the atoms is via the conduction band. This interaction

[

-

i




was derived by Caroli (1967) who showed that, for a large

sep.aration R of the Mn atoms, it varies as 1/R?Y, " This¥s
valid for dilute a/lloys where the separation of the nagne‘tic
atoms is very large but is expected to be a pooz" approximation
for concentratsd alloys such }\u t;;he Heusler alloys. In
chapter V we obtain the 1/R* correction term to this inter-
action and show that we can obtain a better fit to the

e .
_-fleusler alloys than that given by Caroli's expression.

4
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~electrons overlaps the localized orbitals, mixing or
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Chapter I

The narrow band model

The magnetic moment on atoms arises frowm unfilled

inner shells such as the 3d electrons in the transition

metals, t“o 4f electrons in the rate-earth metals and
the S5f electrons in the actinide metals. When such atons
condense into & solid the outer valence electrons fora

broad conduction bands. The inner shell electrons may or

may not form bands depending on the extent of the overlap

-y

ofxtho wave functions on neighbouring atoms. In the rare-
e‘ith metals t@o 4f electrons are well localized and retain
much of their ;tOliC character. In the ironegroup metals |
the 3d wavefunctionson neighbouring atoms overlap to somd
extent and the 3d ;lectrons form narrow bands. The same

is true of some of the actinide metals where the overlap

of Sf wavefunctions is appreciable. On the other hand, when
transition metal or actinide atoms combine wigh non-ntgnitic
metals to form intermetallic compounds the overlap is reduced

and the inner shell wavefunctions remain well localized.

However, when the broad conduction band formed from the outer

hybridization takes place as electrons jump from the localized

orbitals into the conduction band and vice versa. We are

thus lead to consider an idealized model consisting of a broad

conduction band hybridizing with localized orbitals centred on

atomic sites of a periodic lattice. The localized orbdbitals can

|

’
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be considered as the limit of an infinitely narrow band
(ie. zero overlap) and we call this'model the narrow band
model.
We begin in‘section 1.1 with a brief description of
the Anderson mo§01 which considers the simpler case of one .
magnetic atom dissolved iﬁ a metallic host. Then in section
1.2 we describe the narrow band model and examine its static
magnetic properties.

A \
1.1 TRe Anderson model ; \

The characteristic property of transition metal atoms,

is an unfilled inner shell of d-electrons, which gives rise
€

to interesting maghetic properties. NWhen suéz an atom is
dissolved in another metal, its d-shells retain much of their
localized character, the d-electron wavefunction being mostly
cgntainbd within the impurity cell,. while the outer s-electrons
go into the conduction Band of the host. However, the state

of magnetization of the impurity depends strongly on the host. For

exa#ple in some metals Fe group impurities appear to lose
/

their magnetic moments completely. Figure 1.1 shows what

+4

happens to the magnetic moment of Fe when dissolved into alloys

) Y

of the second-row transition metals. We see, for example,

‘that iron forms a local moment in molybdenum but not in

rhenium;
N
In the a;oLic d-shq{:, exchange and Coulomb correlations
pradupe alignfients of spins,to Bive’ a magnétic moment. (Hund's

!
rule). In a.,metallic host the d-levels 0f a transition metal '
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Moment per stom in
Bohr magnetons, u/u,
o

Figure 1.1

Magnetic moment in Bohr magnetons of an iron
atom dissolved in various second-row transition

metgﬁs and alloys as a function of electron ,

\
1

/
concentration. (After A. Clogston et al (1962)).
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impurity may lie somewhere in the conduction band, so
d-elecctron wavefunctions hybriaize with conduction electron
states and this can change the atomic character of the

impurity wavefunctions. The hybridization produces a r;sonance
or a virtual bound state (v.b.s.) ik.e. the sharp d-level is

broadened. Friedel (1958) argues that a narrow v.b.s. will

retain a localized moment, while for a bread state the

t

&
magnetic splitting will be swamped out and the state will be

degenerate with respect to spin and non-magnetic.

Following the above ideas, Anderson (1961) proposed a
model for localized magnetic states in metals. He considered
a potentially magnetic atom dissolved in a metallic host. {The
hos? is represented by a.conduction band and the impurity by
a non-degenerate localized d-;rgital whicp is ‘allowed to
mix or hybridize with the host conduction states. Including
a Coulomb repulsion between opposite sp&n electrons in the
localized state, the Hamiltonian in the second quantized

notation is:

t t
Ho= Ze_lg Cl_c_o c&o +ZEd Cao Cdo
g

ko
+ ‘ (v C+ C + Vv Cf C.) «Un n (1 })
kd “ko “da dk “do ko d¢ “d+ :
ko

where €y is the kinetic energy of a conduction electron with

momentum k and CIU and Ckc are the creation and annihilation

operators for conduction electrons with momentum k and spin o.

'

\

.
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cdo and cdo

the localized d-level with spin o and Ejg is the energy of this

a

dre the creation and annihilation operators for

level. The third term in (1.1) represents the hybridization
and de is the mixing matrix element. The fourth,term is
the Coulomb repulsion between states of opposite spins and tﬁe

Coulomb interaction U is given by

2
U= Seg e e 1¢4(22) |* dxydz,

where ¢d(£) is the wavefunction for the d-level. In (1.1)

_ T .
Nyo = Cdo Cdo is the number operator. (

In thf Hartree-Fock approximation the operator LEP

T

is replaced by

.

=<n d+

LFPLPH as’ "d+/*<“df> n

where < LI is the average occupation. The d-part of thé
[

Green's function is then (Anderson (1961)):

. 1 .
Gd?(“) T E (IR (1.2)

\

-

where

Eqg = Eq * Uemy_o> (1.3)
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and

(1.4)

IV, al?
I‘-iA:Z kd

" w - Ek + i6

where 6 is a positive infinitesimal. The real part T
represents a shift in the d-level and can be absofbed into

Eq- The resulting d-part of the density of states is

1 A
pdo(w) ¥ (m-Eda)?v+ Af
|

(1.5)

/" This is a Lorentzian of width A as shown in figure 1.2.

Integrating (1.5) to the Fermi levef €p gives the

averag# occupation number /

E, -€ .
_ 1 -1 do °F
<ndo> = 3 Cot — / (1.6)

Because of (1.3), equation (1.6) represents a pair of coupled
equations in < ndf> and'<nd+>. Fér Updo (eF) < 1 the only
solution is non-magnetic i.e. Sny> =<mng > while for
Ude(EF) > 1, a magnetic solution { nd*> A <nd¢>) is stable.
The phase bouna;ry between magnetic and non-magnetic states
is given by Uﬁ;o(ep) = 1 and this is shown in figure 1.3.

' %

1.2 The narrow band model

We now generalize the Anderson model from a one impurity
problem to a system with N atoms situated on an ordered lattice.

The N localized levels form a flat band which hybridizes with

o 35 o T YR SR AT SR W1
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Figure 1.2

Schematic plot of the density of state distributions

in 'the Anderson model in f magnetﬁc case.

s
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a broad conduction band. The Hamiltonian can then be

written as:

+ H / +« H

H = Hs + H sd

dd (1.7a)

Hs is the conduction band part given, as before, by

- T
Ho = D ey Cyg Cig (1.7b)
ke — T 7

*

Hd is the flat localized band

S
CHg = Z(;decdio Cdia (1.7¢)
1

where 1 runs over the N sites (we réfer to this as the
dband, but it could also represent a narrow f-band). The

mixing term Hsd and the interaction term Hdd are similarly

given by *
1 ‘ﬁ + +
. - - — -—
kig
W —
and
) Haq = Z” Ngit "di+ (1.7e)
i
<% i 2
with
e
+ . N
n = C C (1.7F) N

dioc “diog “dig




/p

o

To obtain the various densities of Qtates we employ

the Green's function method of Zubarev (1960). For twd’
i

operators,A and B, we define the retarded Green's function

as:
z ) P
GAB&t-t') a <<A(t)|B(t7)>> )
= ~-18(t) < [A(t), B(t7)] > (1.8)
where 8 is the step function and< ...> denotes a thermal"
average. The + or - sign indicates an anticommutator for

Fermion operators and a commutator for Boson operators
respectively. The time dependence of the operators is in

. L .
the Helsegberg representation i.e. for any operator 0 we

1
i

have

0(t) = e Ht g -iHt (1.9)

.

where H is the Hamiltonian of the system and we have taken

'h = 1. Using (1.9) it is straightforward to show that the
1
equation of motion for the Green's function is:

ige Gpp(t-t7) = 8(t-t7) < A,8] >,

/

+ << [A(t), H] |B(d)>> (1.10)
\ -, /
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Fourier transforming this equation we obtain:

w G, p(w) = < [A,B] > « << [A(t),H] [B(t7)>>, (1.11)

where << ... "'>>w indicates Fourier transfoxm. It can

al1so be shown (Zubarev (1960)) that

\
> L)
<BA = [ J(w) f(w) dw (1.12)
where J is the spectral function given by
., 1
J(w) = %~ T Inm GAB (w + i8) (1.13)

and for Fermionoperators f(w) is the Fermi function
f(w) = (P 1yt (1.14)

with 8 = 1/KT. | ‘ ,

(

Since we are interested in the average occupation

numbers for the localized and conduction states we define
»

the following Green's functions:

/ t
Gijo(t-t') =<<Cyyq(t) |cdjo(t )>> (1.15)




I 3 ¥, -
Ry e a !
- l-“ P y

BT A

né
and
‘ .
l_ds g(t-t7) =<« cm(ﬁ) l'c;z_,a(t )>> (1.16)

|

For the first Green's function the equation of motion (1.11)
ﬁ

gives

.’.

(W) = 835 + << [Cyyq(t), HI | Cysp

1jo (t')>>m (1.17)

The commutator on the right hand side is easily evaluated

giving:

[C

Ungi-g Cai0 (1-18)

Y
dig’™ = By Cyiq *& Z
k

“ Hence

|

GijoW) = 85 + By Gy (w) «

>0

Z Gyjglw
LS \

.
¢ Uiy §1) Cyiq(0dICy 527>

/ \\' (1.19)

-

where, in an obvious notation
"

- ‘ t -
o(t/'t ) = <<C_,§,(t){ Cj0(tT)>>
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The Iast tgrl of (1.19) represents a higher order Greeﬁ's
function and its equation of no.tion would generate a Green's
function of still higher order leading to a hierachy of «\:
coupled Green's functions equations. To decouplt; these
equatio\ns we use the Hartree-Fock approximation which is
equivalent in this case to replacing the number operator
Ni-g in (1.19) by its average v‘lu°<"di-o>'_<“d-a>
independent of site. With this simplication, equut.ion {1.19)

reduces to
1
(w - Bgg) Gyjolw) = 8,5 /E %vdik yc w) (1.20)
with /

Eyo = Eg ¢ Ueny_ > (1.21)

The equation of motion for ¢kjc gives

-

c,(m) = << [c_l_:_o(t)' H] {CIjo(t‘]»u

/

1
= eL sto(mf ‘m‘zvk‘u G).jo(m)
)

or

-

1
(w - ei) Gga(u) -&thu P (1.22)
]




e e 4 = 2 i et

P

2

Substituting (1.22) into (1.20) gives

& (o = 5, L1 Z Vaix Vkag Spjo() (1.25)
ijo w-Egy Nk,2 (w-Ey ) (w-gy) T

-

This is an integral equation for Gijo which can easily be

solved by introducing the Fourier transform:
G.. (&) = %ZG (w) et (%i‘-“—j) . (1.24a)
and its inverse

= 1 vy 014 (R.-R.)

6o ) § 26t e 178y (1.24b)
ij

where Ei is the position of the ith site and ? runs/over the

Brillouin zone. Hence frh:ijl.24) and using the relation

/

. , _ ik.R, |
\ Vaik = Vaox & i (1.25)

we find / '
v 2
) T G
Hence
. 1 / ) \
T Dl

—
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, which can be rewritten as a sum of two "quasi-particle"

Green's fun®ion as: . ’ .
’ L2 e
(“) (1.27)
A=t w- e
g0 .
where
ed =l v B, TR E T T AV T . (1.28)
g0 2 % do/ ¢ “do doq. hd :
and
A
2 = -&3"—6—1)— (1.29
{0 (E%U—E‘I}U

Similarly for Gk (m) we find that

/ e . L
(w—ek) G E,O(m)- 6!5&, *NZVE}‘" Glﬁ’o(m)
TR

with

1
(-Eg ) Gy g o (0) /-ﬁ-z aLi 5 (@)
K

Substituting the second equation into the first gives
*

8., . v v (w)
_ °xk xdt Yarkn Sgey- ‘g
ng'a(w) - w- € :E' (w-g,) (w- Eq )
K k RK' k ,
2 /
w- € Cm—gi)(w-Edo)
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Pt

using (1.25). As before this can be rewritten in the '"quas:-

§

article" form as.
par,

/

-

»

Z A .

Y 6 »,

D (1.30)
h=- ko

he Cx ’o(w) )
. XK
where
4 »
A A

i Y50 = 1 ZEO (1.31)

- The '"quasi-particle" energies 530 are shown in figure
‘

1.4 together with the unperturbed conduction band and the

flat localized band at Ed. Here, we have made the following
simplifying assunptions:
: ¥
(1) Vdoqlls 1nd?peﬁdent of % and we write
. ' Vdoq= a (1 32)

(ii) the conduction band is parabolic i.e.

4 f2¢2

\ E =

k 2m

'

(1.33)

[}

As seen .in figure 1:4, the hybridization between the conduction

band and bpe N localized states 1s coherent and instead of

localized Lorentzian resonance

B
(as found in the one impur:ty

case) we find two new hybrid bands split by an ‘energy gap.

Y

-
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.. Figure 1.4
Hybridized bands in the non-magnetic state in the narrow band
model (schematic). In the magnetic case the spin up bands will
be shifted downwards relative to the spin down bands.
on '
. ® ' {

S
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Havfng found the Green's function we can nowx go ahead
' -

and obta'in the average occupation numbers using equation

(l.lé). Thus the average occupation per atom of the localized

states for spin 0 is
_ 1L t
Ngg = N 2 “Cdic Caio”
i

1
N

o

= [ odc(w) f(w) dw

- 0

!
i

2L, (-2 ln G (weid) f(w) dw
i

(1.34)

where the last line defines the density of gtates per atom

of/spin o for the localized states

1 1 .
pdo(m) =N }i_(- Fy Im Giio(m+16))
i
Substituting (1.24) and (1.27) into (1.35) gives

)

g

40 >

-~ J

1 A
1
3.
where we have used the relatioaon

Im/;;—}-s- =-1T&x)

.

-+ (1.35)

(1.36)

Similarly the average occupation of the conduction states

per and of spin<0 is

o - ———— —————



_ 1 AT
Neo = W Z ‘go Cxo”
/ . k - - )
," 1 o 1 -
= q zi - (- T Im Gkko(w+16)) f(w) dw
X kk
= P (W) £(w) du (1.37)

- G0

¢

where again we have introduced the density of states per

atom of spin ¢ for the conduction states

\
Pog (W)= & 2 (-1 Gppg@id)) (1.38)
- kk

Substituting (1.30) into (1.38) gives ’ .

—

1Zx A -
pco(m) * N YEO G(m-eko) (1.39)
kA
' J

The densities of states given by equation (1.36) and
(1.39) are the main results of this section. As they
stand , these equations are not EF a very convenient form.
They can be simplified by pL$§orming the sum over the wave-
vectors and thereby removing the S§-functions. It follows
from (1.32) and (1.33) that Egois a function only of the

. ' A X .
magnitude ofs}and hence so are un and Yqo' This enables
us to make a further approximation and reﬁlace the sums in
(1.36) and (1.39), which are taken over the Brillouin 2o0ne,
by an integral over a sphere of the same volume. Thus, if
the radius of the sphere is q, we have

!

47
.?'qﬁ, = ﬁk’/v
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\

i.e. a, = (enivyl/3 (1.40)
oy ~ o
where v is the unit cell volume. The replacement is then
1 3 s
’,Q'Zgr"’ T/ a’da
s o
’ {
Using this we find, after a little algebra, that
+ - /2
’ (w-e_ ) (w-€ ;? + +
3/2 00 o0 - -
; Peg (W) = for e <uw<e
co 3/2 _ o0 s
s (v Edo) // /
= 0 otherwise (1.41)
<« 7 T .
- and -
v: ’
. _ e Y
Pag @) = o (w) ot 32 N (1.42;
do ,
/where J//
’ - t2, 2 -
/ | €, h q */2m . (1.43)
' g ‘ .

v and the band edges are'given by /

-

3

(es + Edo + A/(cs-Edo)Z + 4V2) /(1.443)

™
i
N

and

(1.44b) "



Typical density of states curves are drawn schematicaily
in figure 1.5 and shows the qualitative features of the
densities of‘states for fin1tg values of V.

’

We note here that tﬁese densities' of states do not
have a simple integrable ?ora and to obtain the occupation
numbers the integrations have to be done nuﬁerically.

To investigate the propertiei of the system described
above we perform mode; calculations treating U and V as
variable parameters. We are especially interested in the
effects of U and V on the static magnetic properties. From
the results of section 1.1, we expect U to favour a magnetic
or spin-spiit state and V to have the opposite effect. We
begin by rewriting equation (1.34) for the average occupation
number of the localized state as:

!

Nd0 = {:‘ho(w’Edo) f(w) dw (1.45{

» 'y

-

where we have now explicitly indicated that the density of
states pdo depends on Edo’ But from (1.21), Edc depends on
<nd_0> = Nd-c' Hence equation (1.45) is really a pair of

coupled'equations for Nd+ and N , :

d+
- . )
Nd+ = {m Wdo(m’xd+) f(w) dw (1.46a)
and ' \
” -
N = f pdo(w,hd’) f(w) dw (1.46b)

d+
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/0 ds ‘J’

Figure 1.5

1 B v v *
. Density of states for ‘the localized and conduction states

’ * N ( -
in the narrow band model (schematic). *

{
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These two equations must be solved self-consistently and,

4
depending on the relative strengths of U and V, we may hare
4 non-magnetic solution (Ndf = Nd+) or a mggnetic one

(Nd+ # Nd+)' Thus we can draw a U-V phase diagram showing

‘the magnetic and non-magnetic regions and this is done below.

We then examine other properties of this model such as the

magnetization, the Curieltemperature and the susceptibility.

(i) Phase diagram at T = 0.

,(; \

The simplest way to obtain the condition under which
gquation (1.46) has a magnetic solution is through the
d-part of the static susceptibility Xs. The dynamic
susceptibility is derived in appendix A and taking the
static limit we find

X°

X = —S o (1.47)

5 1 - ux
S

When the denominator is zero the susceptibility diverges

and this indicates a transition from a non-magnetic to

f
a ferromagnetic state. Thus the phase boundary is given by

‘

1

\ I ux? = 1 (1.48)

In the above equation X; is evaluated in the non-magnetic

state and it is then easy to show that

Ux; = {: pl(w) f(u)) dw + {: pl (UJ) -_g__g (w) d,? (1 .‘”4'9‘)

, B

s




where

(w) (1150)

“and . ﬁg
»
1 (1.51)

((w-E )%+ VH)?

P, (w) = UV o, (w)

2
with pcc and pd0 given by (1.41) and (1.42) respectively.
Since we are working in the paramagnetic state we have
Nas = Ngy = Y4 do

Before we can proceed further we need to know the

= N, and E is independent of o©. \

total number of electrons in the system. The densities

of states pccand %0 each have room enough for one electron

per atom per spin i.e. the maximum possi?le number of electrbns
is 4 per atom. 4 electrons per atom represents completely

full bands and this is not an interesting case. We do not
consider here the case of 2 electrons per atom because this

represents a special case of full lower bands at zero

temperature. Fof our model calculations we have chosen

3 electrons per atom i.e we have { .
q

+ N = 3 (1.52)

This is done by introducing a chemical potential u in

the Fermi function f(w) as




e e 2 S e v . b

and u/is chosen to satisfy condition (1.52). The choice
of 3 electrons per atom represents a model calculation and
cannot be applied to realistic systems such as the Heusler
alloys. The main reason is that the simple model we
consider does not take into account the degeneracy of the
localized level. This is discussed further in chapter IV.
It is convenient to normalize all energies to €y

(given by (1.43)) which is typicafly of the order of a few

v

eV for the Heusler alloys of interest to us (e.g. in

v s o i o e asn 2 i s T,

CusMnAl and CuaMnlin € v 4 eV)., U and V are also of the
order of a few eV and we have therefore taken the range

of normalized U and V to be 0 - 1, NWe assume Ed lies in

[T o S

the middle of the band and thus take Ej = 0.5.
To obtain the phase diagram we proéeed as follows:
for fixed U and V we solve the self-consistent equations

(1.46) with Nd+ = Nd+ and satisfying (1.52) We search for

1

pairs of values of U and V which satisfy the critical
condition ng = 1, These form the phase boundary shown in
figure 1.6. For Ux;< 1 we have a non-nagnetic solution

to (1.46) and for ng > 1 a magnetic solution is the

stable ocne. As expected, we see that as U increases we

"go from a non-magnetic to a magnetic region and vice versa

for V. /
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(ii) Mggnetizatéon at T = 0

"value of the Fermi energy ¢

The magnetic solution at C is the stable one and we can

From the phase diagram of figure 1.6 we know the values
of U and V for which a magnetic solution to (1.46) exists.
We investigate here how the magnetization varies with U for
a fixed value of V. The simplest way to obtain the magnetic
solution is to plot N&’ as a function of Nd& for a given
Fe Typical plots are shown
schematically in figure 1.7 for two values of U, one in
the non-magnetic region (figure 1:7a) and the other in the

magnetic region (figure 1.7b). 1In these figures AB” is the

reflection of AB about the line OP which corresﬁonds to

Nd+ h Nd+

possible self-consistent solution and it is the non-magnetic

We see from figure 1.7a that there is only one

solution at A. In figure 1.7b there are two self-consistent

solutions, a magnetic one at C and a non-magnetic one at A.

L)
converge to it by following the path indicated by the arrows.

Having found this solution we then vary e€_ to satisfy (1.52).

F
We obtain the magnetic solution for various values of U .
and plot the magnetitation in figure 1.8. The d-part of the

magnetization M;, the conduction part M. and the total

magnetization M are defined as

Md = Ndf - Nd+ (1.53a)

MC,= Nc+ - Nc* (1.53b)

MI=Md "MC (1.53%)
For low values of U the magnetization is zero. As U

increases beyond a critical value Uc the magnetization increases

\ ’
:
{
i
1




‘ from zero, at first very sharply, and tends to saturate for
/
high value& of U. The value of UC is comsistsnt with
figure 1.6. We also note that M >>M, and this is reasonable

since the magnetic interactions are in the d-band.

(iii) Curie temperatures/ /

The magnetization shown in figure 1.8 is the maximum

i value obtained at T = 0. As the temperature increases we .
expect this value to decrease steadily and to drop to zero
at .& transition or Curie temperature Tc’ Above this
i temperature the system would be non-magnetic. To find

this temperature we again look at the static susceptibility

and its temperature dependence. At high temperatures, the

unenhancedfsusceptibility X° is‘:ﬁall { and UX§<< 1) but as

v > »

T decreases it increases. The critical temperature is

reached when UXZ = 1 at which point the static susceptibility
-
A ]

Xs diverges,signalling a phase transition to the ferromagnetic

/ state. Thus Tc is defined by

Ux: (T.) = 1 (1.54)

4 ~
-

As in thT case of magnetization we have obtained T, as a
function of U for a fixed value of V and this is shown in
figure 1.9. Again, for small U the Curie temperature is
«zero but at Uc it starks increasing in a manner similar to

the magnetization.
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(iv) Magnetization as a function of temperature

For a point in the magnetic region 'of the phase
diagram we solve (t.46) self-consistently for various
tempera®ures and plot the magnetization as a function of
temperature in figure 1.10. As expected, the magnetization

decreases as the temperature increases and drops to zero at

the value of Tc given by (1.54).

J

(v) Paramagnetic susceptibility as a function of T

At temperatures above the Curie temperature we plot,
in figure 1.11, the inverse of the static susceptibility

as a function of temperature. The linear dependence with
§

temperature indicates that the static susceptibility has

¥
+

the following Curie-Weiss form

X, (T) = T, (1.55)

*

where C is the Curie constant,
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Magnetic
0.6 UX:>1
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‘Non-Magnetic

A
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Figure 1.6

'Phase diagram for the narrow band model. All energies are

" normalized to € {equation(1.43)).
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Figure 1.8
Magnetization as a function of U in the narrow band model. Md' M
. , and M are defined by (1.53)., All energies are normalized to
< e_ (equation (1.15)).
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/l . Figure 1.9

Curie tenperaturéwas a /functiom of U in the narrow band model.
All energies are normalized to‘es (equation (1.43)).
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Figure 1.10
Magnetﬁzation as a function of temperature in the narrow

band model. Md’ Mc and M are defined in (1.53). All

energies are normalized to € (equation (1.43)).
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Figure 1.11
Inverse static susceptibility as a function of temperature
in the narrow band model. All energies are normalized to

€ (equation (1.43)).
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Chapter II
Spin waves in the narrow band model

) L)

In ferromagnets, at zero temperature, all moments are

-

aligned resulting in maximum magnetization.[ At finite’
teaperatures there will always be some nisf??entation of
the moments because of thermal activation and hence the
spontaneous magnetization of a sample will decrease as the
temperature is raised. At low temperatures the magnetization:
M(T) is found to vary with temperature in the following ,
simple manner:

3/2

M(T) = M(0) (1 - ATY®) (2.1)

{
where A is™a constant. Although the application of
Boltzm‘g;\:zftistics to the Weiss molecular field th%ory
gives an expression for the temperature dependence of
the magnetization which is in qualitative agreement with

3/2 Lehaviour

experiment , the theory does not yield the T
observed at low temperatures.

Bloch (1930) introduced the idea of spin waves in order
to explain the observed temperature dependence of the
magnetization. In section 2.1 we give & brief review of -
spin waves in the localized theory of ferromagnetism. Then,
in section i.z, we discuss how these concepts are extenfed

(
to itinerant electrons. Finally, in section 2.3, we examine

spin waves in the narrow band model.

|
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2.1 Spin waves in the localized model

In 1930, Bloch proposed a theory to describe the
behaviour of a ferromagnet in which a small fraction of the
total spin is not aligned to the magnetization. The |
simplest excited states of the system are those .in which
the magnefic moment is reduced by a single deviati;n of
the total spin. This deviation is not static sindéian
exchange interaction of some type will ensure that it
travels through the lattice. Thus the spin deviation may .

£ .
be considered to‘be associated with all the ions in the
crystal and forming a colfective excitation. If!ﬁhé deviation
were maintained on a particular lattice site it would be a
single particle excitation and would require much more encrgy.
Thus the collective excitations, which are called spin waves,
are the magnetic excitations of lowest energy. At finite
temperatures, the complicated motion of the spins can be

g

con‘iaered as a superposition of spin waves. This idea is
similar to that used in treating the complicated thermal
motion of ions in a solid which is considered to be composed
of a superposition of normal vibrational modes. The normal
vibrational modes are called phonons and by analogy a spin
wave may be considered as a quasi-particle reyerred to as a
magnon, .

-~ The disp?rsion relation for spin .waves is of fundamental

interest and for the localized model it can be obtained in a

straightforward way. We be;in with the Heisenberg Hamiltonian

/




. ~
H= -2 :E_J.. S. . S, (2.2)
i>j 13 1 JG
f
Introducing transverse spin operators
! x
ST = 5.5 sis.7 (2.3)
J ] J

!

and assuming only nearest neighbour ihteraction J, the

Hamiltonian can be rewritten as:

He -2 Z

i>]

(si‘sjz . % st §7 « % s s;)._ (2.4)

1

Following Holstein and Primakoff -(1940) we write sz and

4+
S. in terms of boson annihilation and creation operators

j
L 4
aj and aj
+ af a.\1/2
S, = (25)‘/2<1- —l——? a (2.5a)
J / ) 2S §
. . a: a.\1/2
s, = (25) 1/ a (1 - -l——l) (2.5b)
2s
o + ’
S -8 - a8 | (2.5¢)
Pl

-

Using the expansion

. ”
- N 1 L'} V2 2 A
L vay PTastyty T Yyttt

+ Oo‘-\ov (2.6)
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s

* !
and neglecting terms higher than quadratic in aj: the

Hamiltonian becomes

H=-Js?NZ - 235 2 (a; a; - a) a;) (2.7)
ij .

whgre Z is the number of nearest neighbours. This can

now be diagonalized by a transformation from the atomic

operators ay to spin wave operators b, :
b, = 1 el E-Ej 2, (2.8)

th ion. Substituting this

where Ej is the position of the j
into (2.7) and neglecting thﬁ constant first term we findE
-

1 H -:E:w

(2.9)

|r+

where

w ol k-8 (2.10)°

.

= 2J8Z (1 '

[
o\

k

“and § are vectors to the nearest neighbours. In (2.9)

L 4
by by

énergy w, . The dispersion relation (2.10) has a very simple

is the number operator for a magnon of wavevector k and

form in the longwavelength Iimit. Thus for k+0 and for a

cubic lattice

=k 2 z.11)




O

=1

L3
where the stiffness coefficient D is given by 7

]

D = 2JS a’ (2.12)

and a is the lattice constant.
It is instructive to look at spin waves from the
classical point of view which gives a more physical picture
The spin’'S is now considered as a classical spin which will
precess around a magnetic field. The state of one spin
deviation now becomes a state in which a wave travels through
the precessing spins in such a manner that, in the direction
of the wave, the phase angle between neighbouring spins
differ by a constant amount. Figure 2.1 shows the usual
clas;ical’picture of a spin wave. If we consider a spin
S

%l surrounded by neighbours §j’ the Hamiltonian is

- 2J §1Z §-j' Thl:S we may represent the effect of the /
d

exchange on spin §i by an effective field which is proportional

to 2 J§§_j. The classical equation of motion for S, is then

. 25, '
-5—t—'12J_5_i,.Z§_j " (2.13)

, K
without(;;ing into details of the calculation (see for examnple
Kittel (1971))equation (2.13) has s solufion for S, of a

i(wt - —k.'ﬁi)

travelling wave form e with @ given in terms o/

k by (2.10). :
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There is now a sound body of experimental work which &

demonstrate that spin waves really do exist in magnetic
materials. Oné\jf tre mos;‘direct methods of probipg
spin waves is by neutron inelastic scattering. The neutron
has a spin of 1/2Z and a magnetic moment of about -1.9 nuclear
: magnetons, and so it will interact magnetically with the
magnetization of a lattice and thus be scattered. In
inelastic scattering the neutrons can be thought of as
. treating or destroying a magnon in the scattering process.
-Conservation of energy and momentum allows the determination
%.fof the energy and momentum of the spin waves i.e. the
éetermination of the disp;rsion relation for magnors. Results
of experiments on face-centered cubic crystals of Co + 8% Fe

by Sinclair and Brockhouse (1960) are shown in figure 2.2.

The dispersion relation is of the fora:

w, = A + Dk? (2.14)
L3 /-

\

where A is a gap introduced by anisotropy fields. The value

of D in (2.14) was found to be 5.9 x l()'29 evg cm? or

W

L
approximately 370 meV Az,
The effect of spin waves on magnetization can be

easily derived. The spin deviation operator for the whole

¥

system is \\\\\/ \

NS - Zsj’ -an (2.15)
J Y
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where n, = b; bk.‘ This equatien states that each excited

spin wave reduces the z-cor-onent of the total spin by one

unit. The magnetization is thus given by

-

?
§

R

M(T) = M(o) - gu82< n, >
s

- i

where the average occupation numbers are determined by

Bose-Einstein statistics. Hence,

M(T) = M(o) - g,sji -7ﬁr———m
1] ) ’ 5 (e B_'l)

J 3
-
-

3

At low temperatures, it is a good approximation to use the

long wavelength expression for wy (equation (2.11)) and,

—-—

replacing the sum over k by an integral, we find

k1 \3/2
M(T) = M(o) - Big d3/2)(zgﬁ ’ (2.16)

. 4

where  is the Riemann-Zeta function. This is the Bloch

$3/2

p ' law. Although the first experiments to see how the

magnetization of Fe, Ni and Co changed on cooling to very low
temperatures were made as. early as 1910, it was not until 1936
th?t a proper investigation of the magnetization of Fe and Ni
was made down to 20f (Fallot (1936)). This work was
specificg}ly done to see if the nagnetization~at low .

3/2

temperatures followed the 1-AT law predicted by the Bloch

theory or whether it was closer to the 1-BT2 dependence

‘which other investigators had found was applicable at hig!.r

“



g

§ ~ Figure 2.1

Classical %icture of a spin wave: (a) The ends of the spin .vectors
precess on the surface of cones, with successive spins advanced in
phase by a constant angle. (b) Spins viewed from above, showing

one wavelength. .
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figure 2.2
' ’ ~ Spin wave dispersion in fce Co + 8% Fe (ufter

§inciair and Brockhouse (1960)).
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3/2

temperatures. Fallot foudnd that 1-AT gave a better fit.

More recent work (such asythat of Llliot et al (1953)on Gd)
)

T
3/2 dependence at very low temperatures.

¥

does confirm the T

2,2 Spin waves in the, itinerant model
-

For a considerable time it was not clear wheth;r Spi
waves could exist in mctals where the magnetic electrons
are itinerant. ' The earlier band model of ferromagnetisnm
(Stoner (1938), Wohlfarth (1953))did not contain any spin
wave excitations because it used the molecular field
approximation which precludes spin wave excitations from
.the outset. However, Herring and Kittel (1951) proposed 1
that spin waves did exist in metals, and since that time a
new theoryﬂsf itinerant electron ferromagnetism has been
evolved by Jzuyama (1960), Izuyama and Kubo (1964) and
Mattis (1963). 1In essence these treatments investigsate
more fully the features of the Stonor-Wohlfa;;h model !
However, the interaction is now treated in 4 proper dynamic
form, rather than the static approximation meehqw used earlier.

V4

As a starting point we consider the Hubbard Hamiltonian

|
(Hubbard (1963)) which describes a band of interacting

>

~ /
electrons. The interaction is & Coulomb repulsion between N
electrons of opposite spins when they are at the same atomic
site. The Hamiltonisan is then a sum of a kinetic energy

{
term and an interaction term




€ t
§
)+ 4
H-ZcECEU CKG+ZI Rip Ny, (2.17)
K¢ £ ,
- .
where I is the Coulomb repulsion and nig * Cig Cio where
L
Cio and C,  are creation and annihilation operators for

f

Wannier states for site i and are related to the conduction

state wave fundétions by:

1 ik.
Co " < > etkBic - (2.18)
£

Substituting this into (2.17) gives .

+ p t t
H o= Z €% ko Cxo * W Z_ Cgr’«,g_wf Cq‘ ekt Cxv Cxme

ﬁf "_‘,'E' (2.19)

The molecular field (MF) approximation spplied to (2.17) is}

equivalent to replacing the four operator product by two

operstor products as

Myp Mgy " SMgp> Ngy 2000 Mgy © (2.198)

and using (2.18) we f£ind that in the MF spproximation the

Hamiltonian becomes

| u7 " Z ‘£° c;',,,cy (2.20) O

{4 . 4

{

A

A




f
L

'Cf | Ck+ and we now define s spin wave operator l’lun s

where

eka - ek + I<"i- > (2.21)

)
i

Thﬁs in the MF approximation the band is spin-split (figw}c 2.3a)

by in amount proportional to the magnetization and this is

-

equivalent to the Stoner-Wohlfarth model. We now consider
a8 spin-flip excitation of an electron from a state k to

b

k + as shown in figure 2.3a. The energy of this single-
g

particle excitation is:

" - ck + KKm> (2.22)

whete < m> -<n*>-\<n+> is the magnetizatfon. These single-
p;;ticlo excitations are known as Stoner excitations and
their spectrum is given by (2.22) and shown by the shaded
region of figure 2.3b., We note that there is a gap in the
excitation energy at smull‘q and at g- 0 this gap is equal

to the band splitting Km>,

L4

We csn also form excitstions of lower onor;y/by taking'

8 linear combination of the sinélc-purticlo excitations §.ec.

by forming a collective excitation or a spin wave. The

excitation coranponding to (2.22) is given by the operutor

kegs
superposition of these i.0, ’ N

- ~



1' l
B '/%“k Ch”f’ Cie (2.23)

'
A

1f rhe excitation energy for this spin wave is w&¥ , then

Bq,saxisfies the following equation of motion

. {H,B?] . w"i*" By . (2.24)

¢

]

It is straightforward to show from (2.19) and (2.23) that

!

We trest the second term in the rpndom phase approximation

(RPA) by replacing the 4-particle operators by 2-particle

operators as: V f
ct c ¢t ¢, w8 <n ‘t ¢t ¢
B0 B I R N R PR L

+
e 6 _sﬂ <n3’>ck”‘ C "k‘1

. SRR

t t | +
-8 » <N > C". c
4,47 Pkt ke Cyrente o




)

t c
Zi ket ™kt T W Z A R ﬁ’/f qu& Kk

Replacing <"ko> by the Fermi function f(eko) we get:

*
["'8%1 'Zak(cktq# - €k+) ck#q’,* ck*
© k X L3

( .
N Z “5’(”65_‘.44’ = £le-4)) F_l(_+%+c;_q

. 1
N ’
T .
where we have used the reélation r‘//N\\\\

a .

33 Mo’
5

Hence from (2.24) we have

f

- - 4

[

N ‘ sw *
‘ - Z“”f ®k Ckeyv Okt

Equating coefficients of C 1‘ Ck+ gives:

+
ke
1
N

Z UICRONIEICRSS

O gy - S0y -
-1

»

(2.25)

/

The left hsnd side is s constant sand denoting it by A we pet

’
A

= “’%w - (€ kegt = €4) [

A

r'y
Substituting ‘hu back into '(2.25) we obtain the following

t‘ t P



. .
"Qlthough the spin wave stiffness coefficient D has s different’

-

equation for the spin wave energy w%‘“ :

{ = 1 Z f_L(C ‘L‘) . f(sh’) 3 (2.26)
R | '
w - (€ - €.4)
K 4 h‘?* k4 A

{
The same expression was obtained by lzuyama, Kim and Kubo

(1963) from the dynamic susceptibility. These authors also
showed that in the long-wavelength limit (2.26) yields the

following di;ﬁersion relation

»

w%w - Dq’ (2.27)
where ’ . A
/ g
¢ I '
2 ; ooy zZ
. ST tley) « (e D gy f(zl*))(vﬁbl_J
k 2K n> (km>)? . |

4
smicroscopic origin from that of the localized model, the

lpiﬁ wave energy is once more of the form Dq? (figure 2.3b) in
the long-wave length limit.' Hence the magnetization at low
temperstures in th; itinerant model will also follow the
Btoch 1372 1w,

{ . )Z . .

3 )

2.3 Spin waves in the narrow band- model.

As 1n/thc ftinerant case, spin waves in the narrow band
-

model can be built up from s linear combinstion of singie-

particle excitations., To do this we first obtain the Harfrce-

Fock oxpression for the model Hemiltonian described in Chaptour -

.
.
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k

N

\ ' thro 2,3(a)
Spin-split bsnds of the itinerant model shpwing a single-particle
o;citctlon (schematic)., <n> s<n,> -4 is the magnetization.
' ! r'

»
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! ‘ Pigure 2.3(Vb)

Spectrum of single-particle (Stoner continuum) and spin wave
excitastions in the itinerant model (schemstic). o

)

= iin
i



~
L

In this approximation the interaction

I (equation (1.7)).
term is treated in exactly the same way as for the itincrunt

model i.e.as in equation (2.19a). The Hamiltonian thus reduces

to

t t
Hy = 2 €k Cko ko * Z‘-_Eda Cdio Ca1v
¢

K€
+ t
Y Cxo Ca10 * Vaix Ca10 Cxo’
LAl (2.28)
This can be simplified further by transforming Cdio to
momentum representation:
(2.29)

1 ig.R,
Cysq ./}?%. $-Ry cd?a

a

Substituting this into (2.28) snd using (1.25) we get:

# t
Ho = 2 64 Go Cqo° By Cago Cogo
34
¢ "4
o " Ya04§o Cayo ¢ Cygo GO} 1230

where we have taken vdo@ to be resl.
to show that cqyntion (2.30) 1is diagonslized by the following

It is strajghtforward

unitsry transformstion:

A




e
coshe -sin @ a+yo
Cd%o \ sin @ cos 8 a-}c (2.31) !
with

29 . o*
sin“o y/ o

t

where a;d is given by (1.29). Equation (2.30) can then be

written ss

H = €
o .
'9A

with ‘%a given by (1.28). This {s not s surprising re}ult

A +
30 ‘xqa . 740 (2.32)

|

and we could have guessed it from the form of (1.27) and (1.28) |

for the Green's functions in the Hartree-Fock approximation. }
‘Me use the states in (2.32) ss the single-particle states

from which we build up the collective excitstions. The energy of |

8 transition from a spin up state in the A“band with wave-
vector Ltﬁ,to 8 spin.down state in the ) band with wave vector
k is wigx, givo: by X y
w*fx, " S .cyv (2.33)
The operator for such a transition {is 1;3‘ ‘x£¢*¢ and the
four possible transitions for As - snd A= - are shown in
figure 2.4a. The continuum ctrum represented by.(z.JS)
is shown schemstically in figu 2.4b, As in the itinerant

model there are gaps in these excitations for“+- O,‘nnd
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again we can form collective excitations of lower energy by
taking linear combinations of the .single-particle excitations,

The spin wsve 6peraton i5 now defined as

AN u “ '
B% E agh a, A'% 4t (2.33)
4)3 i

and its equation of motion is again (2.24). We now write

3
the full Hamiltonian H in terms of the Hartree-Fock Hamiltonian
Ho as:

- H = Ho + H,.'- H

ad (2.34)

sdd

where Hdd is given by (1.7e¢) and Hadd is

‘ “
¢ = 2 Vng.o” Cay4 Caio (2.35)

We need to expréss H in terms of the operators ';qo and
'Aga‘ Ho is already -in this form andwe can put Hyg and Hadd i‘nto
the required form by using (2.29) and (2.31). We have from

(2.31) thet

Zx o ‘A?a

’«//

where

(X))t ez




Figure 2.4(s)

Single-particle excitations in the narrow band -odol/ (cchematic!).
: ) ) l

{

|
i

|

M




ASN
1

67

'~

" #igure ¥.4(b)
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Spectrunm of sth;lo—parctclo snd spin wsve excitations ih the

Rerrow blnd model (tcho:nzic)
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\3* A Ay Al

s n s e o e - SOOI T

-

JNe finally find:

~ '

+*
Q”Wf‘ ;'o,-{gf Y;-.’g+ ?,& x*“‘ ‘Al'}“f‘f" Az‘a 'r.
Aihadghy * _ [
) ‘ '*'W'* “kuﬂu+ _ \ (2.37) .
” b}
and &
'\ ~ 2
Ax Ag hd
H » Uzn > X X a [ (2.38)
add . Q0 d-u 10 10 CA g Aagho /

The commutator in (2.24) is easy to evaluste gnd for Ho and

{

[H

* - b . )" ]
°"A“>"0 .l“qn“ﬂ'] (‘-*”* ~ #c,q¢) lan‘

.
and

' ,f !
+- eI ueny,, Bl K
ldd"x Q'"" .A“"“’;#] A1 U‘n"b an* x&cc‘ 4A ?:" 1 q-u“'

/

[H

‘ + ’
4 | / Ny U<ﬂd*b X oo,” Qu"?* ‘XQ"O ‘AAH‘?’
N , “(2.40) !

Y

5 ) P /

The coulu:f;or with H“ ﬂa more complicated Lnl raqutrol 8-

}ittle nore care, . Rrom (2ﬂ37)/w0 esn 000 that we need to
ovaluste the lououtnt umutuf - 1 ) /
4 ’ ' / . ! ( ' )
» ¢ ’ . . ¢ ‘ _‘;‘.’
i ) 4 / ; ;/. ) ¢ :'*:“

>




/ ) + ¢+ ’ .
f A) 5"5* )\2@3-?‘54“A3%l+ ‘Agi ot “A$”$ ‘A’%”t%f’

.2l s ' | .y " 8 6 ”
M‘u'iﬂ 22 ?,a“s* M?H k’g*’,* A gu,g
\e

-'a;s% i gamgetthafie Shufs 62117 G998

(2.41)

We now use the random phase approximation (RPA) to simplify

»
(2.41) and this is equivalgnt to making the following

roplacomontu:

';xgu'gﬂ/ otV Q a"l‘?:,;agﬂ ‘A"”f’+ )

4 " ‘.;3 $u'$|1‘l>\a %;";1',‘;.!3-& .A'gufg1'

* <.;l%;.%l* .A'$"$ 4 ‘Ag’s'$l+ ';&;’H

_’ ‘AQA| 6’ l,"“ £ ‘;l‘“-i" ‘A;’h"." .;'3" .Alg"bt 4

- ’

3
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. ) ' . . / .
" % *
: ‘kﬂ’;h"c,’"f’ “""i*’/‘h’s* e YY T IT.

s .‘ v ”
Fo. 0T S / ,

ol oghy AR
’, i

) . ' = \ o,
’ - , -
R O (3.42) .
A
+ , i

K 0 i . '
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where we have replacedthe uveruge vulues by Fermi functionn
-~

o
: f

Similarily we find

* *
.Ai‘ .Az"'$'g? .l;,ﬂ' .Augg‘-
v

As .0
e fgagl Tl AE Y 'xzia'%n

A *
6‘::’%“ f(C’l*) ‘A|’.+ .Alil.gl+

(2.433
#
Prom (2.37), (2.41), (2.42) and (2.43) we get
LIPS g+ ‘x‘t%ul
A A ’
// ] Ff" ’. ’l’ ’ ’.’ x,p’* ’ ‘(“:."+) ‘x"" lezﬂ‘z*
V. ® A2A} .
*Z. M N () 8l .
” g.m,mr gttt e T4t TUURAET Pt T e gt

M
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g Xgogr Xt e FEL Sgry ngeys
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™M
R

/

A » »
¥g'ge ’_‘g:*u "w Ry £CEQY) Shgi Sha gurgr

LN
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U x\ xx' ey F.h' : Z M' ty
o * " " L4 - f 4
"’ %*’?( ( g‘) ( ’r'f)) N g')’n ;,0 ;'4-%1‘ )
| ." '] ’
WIS (%)
(2.44)

where we have used the fact that \

52V f(c (2.45)

1

The first two terms of (2.44) éxactly cancel (2.40). % Henco
!
(2.24) gives

/
Z_D(‘{(ﬁglz‘i;vg'r)axg& Ga; 31 +UX2" %qr({(i%&)
g |

J - 7[(2?”1" )‘L’ A f"* x"”f a" ?"'a”g"'rr:;
| ‘“ AN
[
/oy - ;Z's 3 e a“? Axgege

In the second term on the LHS we interchange the summation
labels A3y and X,A; and )’, u/nd Q, and g' This enables us to
equate the coefficients of ‘;!" ‘A" gt on both sides

-

of the oquulon whtch uvuz / \

- (th }"‘11‘ ]" | .
-ux“x,r,,,,,Z"o» p pogr (£ r’“z-*:ﬁ

(2.46)
]
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Denoting the sum on the RHS by A, we get

’

0(;% _ Uﬁu ie*ﬁ A
£
( ?J’ "'27) (2.47)

Substituting this back in (2.40) gives:

Z Z k ()[(E;:&) )t(ig,qf)
;l‘v *;T wﬂv (E » )
gy

i:\a
(2.48)

&

L)

xThis implicit equation for u;f‘is the most impfdrtant result
of this chapter., We note thst we would hsve obtained the
same expression {f we had set the dongulnutor of the dynsmic
susceptibility (equstion (A44))1n sppendix A) to zoro:

d +8ince w; sre interested in long-wavelength spin waves
we can expand equation (2.40). to do this we first rearrsnge
it ss follows: |

/ Z Za £(20r) Zl-u _ Zy, 7((2&)2;4-}1"
N &K (RCE fege) Y Bl )

Yy (2.49)

" Using the Taylor sxpansion
4’ - %4 (§-Ya)Fq +j(g Yc)lj poo
. (2.80)

Thls rosult was siso obtained hy Masnohsr{i971) from tho
dynantc susseptibiiicy,

1




we have , / ’-
/

> > . ¥ ’
EQT-E; g; EQT—E‘M *(%'Y")EQL ) “; <2Y‘) €q,

(2.51)
)

}’.
From inversion symmetry sny sum over Q which.involves go

only is zero and therefore, to order t}’(u:umlng that the

BV

leading term in w, is 1’, see below) we find éhat'

; A' / a
Zg-g4 = ! [ZA (/ J(QY‘ 5 w;
A ;?- 6;1&) Baxs Aa“

¥ (p9ee0, Y g ) )
+ (42 9*,) Valg, )9 Yatey 1(9.%) Zgs
(LERP (3 an)(? ) . 4(87) s
) > (2.82)
n ut;oro Ag AA = ng - 5“, : (2 §3a)
Similarly .
{ A ﬂv
Zu,f r o I [ (’ + g .‘)‘ﬁf
W /eh -
- (pyrmtay) e |
Ve Y‘E) 1\’ ‘ zh | E) o /
+ (’ ”) J(30Ty)(30ty) 16-%)
bart / Agax
N | (2,83b)
Hence, from (2.49) we have o '

®
I-a+$w -C; (2,84)
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‘ Z!,{(E’,)Zg&’Zg‘/ ‘N) a1
(S !
@i

' N
N ary /i . (2.55)"

e

UZ_ Z;f /(i;f Z;&’Z:&ﬂi;&) Z;,,“ - -

N o AaM | (2.56)
and ‘ . ‘;x ,7 2 N ;’ y PN
¢ =L Z { E‘d‘a")ﬁvz“ - 29, f(84, )4V Zay
: 3N~9M’ | Ag AN
%
4 _IL; (z,,)(z“iVE“Wz“ Y‘N)*’Zg f(fu)(zsf"”s' +Vz,, 7%, )
, Agn -
y Zgr {(‘!r)ZN(Y‘u) - z,&{(z,,)zi,(ye,,) } \
[ By

~

. il (2057)
and sll derivatives sre taken with respect to Q. In the abovVe

we have aversged over all directions u?, using the following

‘'  pelations:

. zr(e y,, '5*?’%&"’”5 Y

° Sh (g.ﬁiﬂ,)(goﬁ,) . TORILSD)
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<:) Now, it is strafghtforward to show that
A » /
Z ZS" - E ZQ,[, - o — /
N Dgax N  Agax UM

is the d-part of the magnotization und is given by

[

where Md

/ (1.53a).

)
1

. Hencoe

0o 4 [ 20 f08)- T 2]
’. AAﬂi €)> GQ’(

= ] from (2.48)

/

Similarly, it csn be shown that

A,, My + M

UMg
/ : where “c is the conduction part of tho‘lngnctizetlon given
by (1.83b).
Hence from (2.54) we have y

m ”
“’; = D $’ (2.58)
with

S e

|
‘l’ _ Thus the dispersien for lang-vtvoio»;th spin wave is of the

fors Dq® (Pigure 2.4%) in the ssrrow baad~naddl'sc in the
, P .
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localized snd itinersnt models dewscriled previ5uuly. We
have evalusted D for the model calculeations of chapter | und’
the results sre shown in Figure 2.58 where D is plotted sas

s function o} U, The msgnetization Md is slso plotted for
comparision. 1In Figure 2.5b we plot D ss 8 function oflkhol
é magnetization ”d snd we note that for small "d the

stiffness coefficient is proportionsl to M‘.
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Chapter 111
Spin fluctuutjons In the nutrow bund model
The magnetic susceptilLiility of nearly ferromagneti.
metuls such as Pd is enhanced by strong intecractions
betwoen opposite spin e¢lectrons in the d-bund. The avoruge
veceupstion of both spin ban'd- fs the n/rg_r:,, but the inter-

L]

sctions induce transient parallel splnngignmont» over
microscopic regions of the crystsl. Thes -!luctuntio;s sre

« known as spin fluctuations. ‘The nearer thel mets] is to the
ferromsgnetic instebility, the greatsr is tRe sputis! and
temporal persistence of these spin fluctu:i\ins. The effect
of spin fluctustions is seen in severs! propo;?Tis of neurly
forron;{notic metals. Doniasch and Engelsberg (1966) lh?ucd
that spin fluctuastions produce s large renormslization of the
d-hole mass in Pd, leading to an enhancement of the electronic
specific hest for exsmple. Figure.3.] shows the enhancement

of lbo susceptibility and the specific hest constant ‘
towsrdsrthe end of the 4d and 5d series. Also shown is the
suppression of the superconducting criticsl tempersture ss the
enhancement incresses. FPollowing an 1nltia1 suggestion by
honisch, Bork snd Schrieffer (1966) showed that the tendency
towsrds parsllel alignment represented by spin fluctustions
opPOIeuptho superconductive pairing of opposite spin
electrons, thereby suppressing the ;uporcodhuetin; criticsl
temperiture, -

One of the most interesting effects of spin fluctustions
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Figure 3.1
Susceptibiiity (xi, slectronic specific hest
constant (y) and superconducting eriticsl
Conpornturo cr ) for metsils snd slloys

towsrds the 7n4 of E‘o 44 and $4 series

.

. (oltor Andres snd Jensen (1"‘))r
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{ fss im the trsnsport propeities uf/}olﬁda. It 1% now
generally uccepted that e T? tern in the low temperstuse
resistivity of Pd, Pd-Ni, Ir-Fe apd other transition meta]
slloys is due to the sgcattering of conduction electrons
\ from spin fluctustions., In section 3.1 we review bricfly
\ spin fluctustions and spin fluctustion rcsistiv!tyﬁin the
\ itinerant model, Then, in section 3.2, we exsamine“spin

fluctustions in the narrcw band model,

3.1 Spin fluctustions in the itinersnt model

s \ Bcccu;o of the dynanic chsrscter of spin fluctuatignl
(; J | their properties must be examined by looking at the dyn;mSC
‘ susceptibility otktho system. The dynamic suuccptibiltt;
X(r,t) is the response function for the -;inﬁtizntton M(r,t)
) rrisin. from sn spplied ﬂn?notic field H(r,t): ' ’
| .

-

-

M(x,t) = /X‘(z-z',é-t’) H(Y, )dy d¢’ 31

* The linesr response theory of Kubo (1957) shows that for
\\l s transverse field the response function is given by the
\ _ retarded GCreen's function: ' O

)= - 00 [STe) STo,0])

bhcrL,g(r is the spin density operator. Iiuysms,Kim and-
\ | ,

o LN s .
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Kupbo (1863) have evaluated the dynanmic :uacepfibll(ty. in

th; random phase npproxima\imn (RPA), for interacting {tinerant
electrons described by the ﬁubhard Hamilton!aﬁ (Jquat!on (2.17)),
They find that the Fourier tranaform of the dynamic sulceptibglilv

has the form

’X(%,w) - X (%’:J) ’(s.s)
‘ 1‘[)((*,«))

where
[+] - (EB"‘ ) | .
X(gr0) = 151 ) f e (3.4
- % N g bp - w '

and Cro is given by (2.21). We note frum (3.3) that the

static susceptibility X(0,0) is enhanced above the non-
1ntgrnctin| Pauli susEoptibility X*(0,0) by. the Stoner
enhancenment factor S. In the paramagnetic phase X°*({0,0) is

equal to the density of states at the Fermi level Pq" Thus

y _
S = Z-Iﬁz (3.5)

The static susceptibility diverges for Ip, = 1 and this
indicates a phase transition from a paramagnetic ctate to a
ferromagnetic state. If log < 1 then the system is para-

magnetic while the ferromagnetic state is stable for Ipg > 1.

' TN



The poles of the dynamic susceptibility X(g.u) veprexent

the excitod states of the system and lts imaginary part pi>ox

the frequency distribution, or spectral density, of these \

excitations. Figure 3.2 shows Im X(‘.m) for ufiuvalu,s of
the Stoner enhancement factor in the paramagnetic phase. )
The position of the peak in the spectral d'§31tY-‘°SF&})-

3: given by ithe pole of X(‘.w). For small w, this pole is

&

given by (Doniach (1967):

w = 1« W (3) . : 5.6

where

I

»

war ($) = lfﬁg—?“); S en
o Rg c ]

!

Thus we have poles of x(}.w) on the 1nagin:ry axix which

give rise to peaks in the spectral density The excitations
represented by such a spectral density are therefore
critically damped and are the spin fluctuations mentioned
earlier. Fquation (3.7) iz the dispersion relation for spin
fluctuations and Wep is in fact the inverse of the life-timc

of these fluctuations. We note from (3.7) that the life-tinme

‘tends to infinity as Ipd + 1 Le. as the ferromagnetic

instability is approached the persistence of the spin fluctuatiens
\

increases. o



Das

S=§0

ﬂk.

Figure 3.2 _
Spectral density for spin fluctuytlons in the
itinerant model. The peak becomes sharper as
the Stoner snhancenent facior S (equation;(3.5))

increases (after Donidch (1967)).
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(r) The scattering of s clectrons off d-band spin

fluctuations has heen discussed hy Mills and Lederver

(19606). A simple two-band model i3 used, one \representing
e : I .
the s-1ike portion of the Fermi surface and the other the

d-1ike portion, The conductivity of the metal is assumed
to arise solely from the s-band, which has a nearly free; ?
electron character, while the effective slectron mass in tpe
narrow d-hand is much larger. The d-band, on the other hand,

{s assumed to dominate the magnetic properties. The s-electrons
can then scatter off d-band spin fluctuations via an s-d

exchange ipteraction of the fornm A

H«,; V{/i(r)é(r) dy | (3.8)

wvhere # is the volume of the unit cell, J the coupling constant,
g(g)‘ih; spin density of the s-electrons and S(I) the spin.
density of the d-band. Treating the interaction H as »

. perturbation, Mills and Lederer (1966) have calculated the

{
spin-flip scattering rate P(k*k")df s-electrons from the
state k to k” using the Fermi Golden rule and find that it is

given by:

P(2+¢') %Z‘fj(:—/;,)(lm(n))lflg)‘!g(gun)
. | (3.9)

Here N is the total number of htomsf fk is the distribution
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— OL./ o """‘\"‘"/_A
. ) x
'{' ! »
function for the conduction state Lk, n(id) is the Bose, 5
function, F(‘) it the form factor tor the d-orbhitals and

§(‘.Q) fs the epectral density of the spin fluctuationy

given by
/

\ -
A(%.ﬂ.) =4 ('X(g,ﬂ\‘iS)-'.X(;,n-ix)) (3.10)
) :’
where % . g-i‘ is the electron wave vector change on
s(ittering gnd Q- £ €y is the energy change.
In equllihrium.ﬁth: detailed balance condition P(g~§'\
= P(k“+h)is satisfied and one can then use the variational method

(Ziman (1960)) to evaluate the resistivity ¢o. This is plven

- X o |
_d () 5[4“5 [-€[R(s>)
</D "ﬁ}k%" ‘V, <Te‘k;/§7i‘)\ | o)

by

%

>

where ¢ is the electronic charge and kF the Fermi vector of
the conduction electrons. P _(k+k") is the equilibrium value
of the scattering rate. Equation (3.11) can bdbe simplified

using (3.9) to girvve ¥

‘p = T} dk olk’
P l6KgT M, &

(2] (3\12)
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where f; is the equilibrium distribution and n, I the
number ;( atoms per unit volume. Millw hnd;hoderbr woere Uhe
first to point out that ecquation (3.12) givea a Tt dopgndoncv
for thonroslstivlty and would Qkpllin the large T! term in
the roslntlvityljf Pd and Pt at low temperatures. Later we
will discuss how in general a T! dependence can be obtained.
The addition of Ni impurities to ;d greatly enhancex
the T! term in the resistivity. But for such alloys a
localized spin fluctuation mode] is ncododz To compute the )
spsn fluctuation spectral density in dilute Pd-Ni alloys
Lederer and Mills (1908) used a simple ¢xtension of the
Hubbard model. Lecalized spin fluctya(ions arise boc-uso/th¢
QOulomb interaction is increased to & v;luo I « 41 in the

Ni impurity cel), I being the value in the Pd host cells,

The Hamiltonian is then:

H = H. + AIZ 'ndjf 'ndj‘ (3.13)
J

where/ Hy, is the Hubbard Hamiltonian (oquutioﬁ'}2.l7)) and the

sum over j in the second term is taken over the impurity cells.

Lederer and Mills (1968) jnvestigated the response of this
¢

system to a time and spatially varying magnetic €field using

& dynawmic molecular field approximation equivalent to the RPA.
Since the impurities destroy the translational invariance of
the system, the definition of the magnetic r‘:ponse function

is generalized. The susceptibility X is now a function of
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R e T ] -

-

hboth v and v°, and nat aimply of rof" as wag the cage In 1
Py - . ¢ ) - W
W

L .l
pure metal, The Fourler tramsform ot thy dynamic suscept bility

then has the form X($.¥‘.m) and Ledorer and Millx <how that

’”
~

¥

./ g p
X (%%'3 W) = X("“) S’%’ + ¢4l X(%N) X(g'w)
/= AT X{w)

»

(1)

where X(‘ ,w) is the enhanced host susceptibility (3.3), ¢

is tho impurity concontrntion and Y(w) is given by ¢

. ’)((w Z(X(%)w) '(3,15)

The specttal a:nsity is now a sum of a host lndé!%binpurity
spectral density given by the first and second terms of (3.14)

respectively, Lederer and Mills have shown that the locun... d

spin fluctuations due to the impurities also lead to a T’

]
term in the rosist{xity\

.

This calculation by Lederer and Mills of the resistivity

due to scattering of conduction electrons from localized spin

\fluctuations has been oxtended by Kaiser and Doniach (1970

to higher temperatures, Thete anthors rewrite cquation (3 1.)

s

a

‘(w) (3.16)
& C ()0 )

i
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where -

T

)h 1

ﬁ(w)a "é:. /F(i)/"q(i’")?'d?' (3.17)

2
N = Joqc (qqa m - v
/0. 4 n/ net % (3.18)

/

Hevre v = l/cF. e is the density of states per atom at the
Formi level for the conduction electrons, m i{s their effective
mass and n is their density, Equation (3.16) shows the
general form of the resistivity due to scattering from Bose
excitatjons,

The averaged spectral density for the localized spin‘

fluctuationsis given by (Kaiser and Doniach (1970)):

|

A‘(w) = 8 = | ' (3.19)

T
W,F-o-w‘

where Wep is a characteristic paramagnon frequency:

{
’ 3

. — - \
Wse = XA] XI . (3.20) ;
4
~ W
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(:) a is the local enhancenment factor given by

1
|

/
/ ""AI -X-R ' (3.21)

K =

' and Y, and ¥, are the real and imaginary parts of X(w) i.e.

5(- (w) = S(‘R +_‘: )‘EI (3.22)

L For small u, Y! is proportional to wand hence ug i3 independent

: of w. The spectral density K(w) increases linearly with

| snergy w at low energies, peaks at wep and falls off
approxinitoly as 1/w at high energies as shown in Figure 3.3,

“Defining a characteristic paramagnon temperature TSF and a

characteristic resistivity Perp by

»
*

KD-’;F = Wse (3.23)

f;,.- = B/oo ’ ‘ (3.24)

+

and introducing a normalized rosistivity'h and a nermalized

temperature k)

/0
?’.

L |
~
>
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Figure 3;3 .
The averaged spectral density (equation *(3.19)) for

localized spin fluctiations (schematic)
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the resistivity oxpression (3.10) can be written as

t

" Bquation (3.27) Jds a universal expression for the resistivity

{n terms of the dimensionless quantities 3 and T and all
parameters of the host metal and impurity atoms are included
in the normalization factors in (3.25) and (3.26). Figure 3.4
shows a plot of’g versus ?. At low temperatures the 3‘ term
in the denominator of (3.27) can be neglected and this ix
equivalent to taking the spectral donsity‘to be linear in
energy. Putting x -3/* we then find that

é (T-) O) =

~oa

./dx (c‘-l)?/—i‘) T
= ' ()

3

TA!: is the low temperature T! law obtained by Lederer and

(3.28)

Nills. At high temperatures equation (3.27) gives

~ \] ——

P T ) 3 ( 7;F (3.29)
Tho'rosistlvity p as a function of temperature T will have the
same form as the universal curve in Figure 3.4 only if the

scaling factors in (3.25) and (3.26) are temperature independent.




At high tempoeraturcs, the varintion of the =usceptibilaty
with temperature will afrect these <caling factod, 1hL
temperature variation of YR and Y! {s very small, but it
can be seen from (3.21) that a small change in X, produces
a l;rgc change in a when a is large. To fllustrate this
effect, Kaiser and Doniach (1970) calcdlntcd the tewmperature
dependence of a for an anenhanced host metal (Fig. 3.5).
For a l{;gu the vari‘tion of B, and hence Pep: with temperature
can b‘ neglected but the decrease in a with temperature will change
the scaling factor TSF according to (3.23) and (3.20).
Figure 3.6 shows the decroa;o below the linear law produced
by the vgr!ution of a with temperature.

Kaiser and Doniach have shown that the above theory
describes fajirly well the observed dehaviour of the impurity
resistivity in dilute Jr-Fe allioys over an extended

temperature range (Figure 3.7).

3.2 Spin fluctuations in the narrow band model .

We now examine spin fluctuations in the narrow band
model described in section 1.2. Since iho main magnetic
effects are expected to occur in the d-band we look at the
d-part of the dynaﬁic susceptibility:

.44

Xij (¢-¢) = 10 O[S, S o

where .

!

-

ot
S = Cdia Cdip ~ © (8. 31a)
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' Figure 3.4
Universal curve for spin fluctuation
resistivity calculatied €rom (3.27).
The dotted line is the high temperature

limit (after Kaiser and Donaich (1970)).
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Figure 3.5

crease of the local enhancement factor
?&) ?:quatf;n ?3.21)) as the €0lp0rl€ugb

(T) increases. €. is the Fermi energy of
the host d-band(agtor~laisor and Doniach
(1970)).
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Figure 3.6
The effect on the spin fluctuation resistivity
of the temperature dependen ﬁ%f a shown in
Figure 3.5 (after Kaiser an niach (1970)).
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Figure 3.7(a)

Resistivity date of Sarachik (1968) for '’
Ir-Fe. The full line is the universal
curve of Figure 3.4 (after Xaiser and
Doniach (1970)) .
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Ir-Fe. The full line is a theoretical curve
From Figure 3.6 (after Kaiser and Doniach (1970
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©(3.31b)

The breen's function (3.30) is evaluated in Appendix A using
diagrammatic techniques. In RPA the Fourier transform of the

dynamic susceptibility is given by

X’(?’w)
_ U ,xo(%,w) | (3.32)

'X(%""’) =

where \

'Xo(%,w) ZZQ*”ZQJ' ({(80 }1‘ ]((£g¢))

bn ‘ w*(&g,v Em)ﬂf

(3.33)

where e;U

and Z;o are as defined in Chapter 1 (equations (1.28)
and (1.29)). As we are interested in the plramugnetic phase
we will drop all spin indices in (3.33). Replacing the sum
over Q by an integral over a sphere of radius q . 28 discussed

in Chapter I (see equation (l 40)), we find

X (31 w) “;A Z[f“ dta 7 4 ,((a -

AN ©

# ;
y v-(8 gL YE e (Ehey 82)HS
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where u = Cos8 and 0 is the angle between Q and %.

For a parabolic band, we have:

Egt% = Eq + E;tﬁ(&sz)‘/‘/u

(3.35)

Substituting (3.35) into (3.34) and again normalizing all
k- 4

energies to € (equation (1.43)) we find:

! ' '
X' () = 3 Z [..c."‘ds. Lo f(ea) T

AA
ya

(3.36)

where

(p-vipr)
(/ A ((p-»3r)* t)"‘)
/ﬂ - &* (Vl/“) VRSVE
17._, EJ‘-Eq-(? | (3.38)
1 = lf(fa%)vz ' (3.39)

A vw-—&-E;*&q o 500y
Yy = 4Vv? ‘

and ’

5)(")!," l Vi ((v-*?’w)"‘)

7" = /df*

(3.37)

~~

3.41)
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In (5.36) we have also normalized X°(q,w) by multiplying it

by €g- We note from (3.37) and (3.40) that

f X(3-%) = R X(3,w)

(3.42)

Z:m ’Xo(';)"w) = “.Z:m Xt’(})“’) (3.43)

i.e. the real partp of X*(q,w) is even impw while its

' \
imaginary part is odd. The spectral density is

Algrw) = 2 Im X(5:)

= 2 Im 'X.(‘}»“ )
,’ (1 - VEX" (%) '+ (VI X (3+))'

Hence, from (3.42) and (3.43), the spectral density is odd in

(3.44)

w. Ne can simplify the expression for X°(q,w) by naking'the

substitution

= 01/

Ain (3.37) Thus we find:

él(v;) o e '9}

S /
J«—— 4»; /d7 (,_v)z(Fv_7+£vs) (3.46)

~Al_v7)
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Evaluating the real and imaginary parts of 3V and substituring

chen\into (3.36) we obtain, after some aigcbra

In X (3% 5 foa fe) e
| /ﬁ Xo(z)“’ = Z/R /<E )ds“ (3.48)
”z where |

i 1 4
B s L ECoy A
! — e 32 9 v <Fv—’7)a (3.49)

with

8= 1 fof‘Z(( B-€6:1))€ 0,

-0 V . ' / (tésm
and /
¥ -3{2
RQ = = Z ¢ (3.51)
: 32 / v ‘
with

o P 1 S ‘&/(E(‘g)ﬁ)(&'*{?}’ﬂ)
. —HF  E0 [ (E6)-p£)(€)-p)

(3.52)
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Figure 3.8
The imaginary part of tlre unenhanced susceptibility in the narrow

band model for Vs=1.0, U=2.7 and €=E, - ¢

F" 1.3. All energies
are normslized to € (equation (l.4§?).
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The reul part of the unenhanced susceptibility in the narrow
band model for V = 1.0, U = 2.7 and ¢ = E €p ® 1.3. Al i
energies are nornalixed to €, (equation (? 43)) )
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Figure 3.10’
The spectral density for spin fluctuations in the narrow band
model for V = 1.0, U = 2.7 and € "= E; "~ €p = 1.5. All

energies are normalired to €, (equation (1.43)).
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To see the behaviour of the dynamic susceptibility and the
spectral density we have akiin performed' médel calculations
. % :
and as an illustration vé'givo}zore the results of one set
&
of such calculations. The‘Sirnueters we chose were V=1.0
and U=2.7 (all’e‘l’&ies normalized to es). Another important

parameter is the separation of the d-level from the Fernmi

level. Ne label this € and we have

€ = Eqe - &

(3.53) °

The results for e=1.3 are shown in Figure 3.8 to Figure 3.10.
In Figure 3.8 we have plotted the imaginiry part of X°(q,w)
as a function of w for various values of q. For esach g,

Im X°*(q,w) starts off linearly with w and then drops off
sharply to zero. Figure 3.9 shows the real part of

X*(q,w) as i)fpnction of w. We note that for very small
values of w, Re X°(q,w) varies slowly with w . Finally in
Figure 3.10 we plot the spectral density A{(q,w) as a function
of w. As in the case of the itinerant model, A{q,w) rises
very sharply to a peak and then drops off to zero. l

For small w, the imaginary part of X°(q,w) has the

following form:

[m 'Xa( yw | = Ew { (3.54)
)= E
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where £ is a real constant. Also, for small w , wWe may usce
the following approximation for the real part of X*(q,w)

P

’ﬁ Xo(?’w) = 7(5 (3.55)

where x‘s = X*(0,0) is the static susceptibility.. Under
these conditjons the poles of the dynamic susceptibility are
given by
’ |
60 - Et 4 ‘L§1:<72_)

(3.56)

From (3.55), (3.54) and (3.32) we have

-UXs)
W e (1)=( UE ) } | (5.57)

Again, from equation (3.56)Mg£7note that the excitations are
critically damped spin fluctuations and the dispersion

/relation for these excitations is given by (3.57). o
With the above approximations the spectral density

becomes




‘lexpression for the resistivity (equation' (3.16)) is

<

10¢

Hence the average spectral density that appears in the

“»

ke : |
e 28w fy PO
UCEg ke | Wr(3)r @ (3.59)

-,

The main q-dependence of the integrand in (3.59) comes from

the q' term and we therefore make the simplifying assumption
of replacingt&F(q) by an appropriate average value. NWNe take
its value at q and introduce a characteristic spin
fluctuation frequency Wep?

1 .
Wsg = Wse (?s) . (3.60)

Substituting this inte (3.59) we find

A

/Q(“’)’-‘-'B w. (3.61) \1

2

» 2
ws,_. + W
where th

= ‘; é;? . | 0‘ l//?( /' Y \ 3.62
8 u*zz,k;.,ﬂz Wy o

Thus the averaged spectral density has the same form as in

the localized spin fluctuation model of "Kaiser and Doniach.

Hence the universal curve-given by equation (3.27) and éhcnn

~ ' w
1,&
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in Figure 3.4 applies in the narrow band nodel too. , The

i

scaling factors for B and ¥ in the narrow band model are,

-however, given by different expressions. Fron (3.57) and

(3.60), and defining T, as before (equation (3.23))., we

have for this model

3 A{ _ % 633 |
glse = (3.63)
V% S 'f

where S is the Stoner enhancement factor

S = —1—
| /- ux, =

As the temperature increases S decreases and hence (neglecting

-

(3.64)

the temperature dependence of §) TSF increases and Psp

remains unchanged. This behaviour is similar to.the localized
spin fluctuation model and thus we expect the resistivity in
the narrow band model to d:viafe from the universal curve in

4

a manner similar to Figure 3.6.
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Chapter IV

Applications of the narro; band model

Ne now examine possible applications of the narrow
band model described in the previous chapters. Because of
the idealized nature of the model we can only make qualitative
comparison of the basic features of the model with experiment.
In particular, we will discuss two cases: magnetic properties
of ‘Heusler alloys and the effects of pressure on the

B \

maénetic properties of a-Ce.

!

4.1 Heusler alloys

‘\l
The magnetic moment on Mn atoms in the non-cobalt’

Heusler alloys is of the order of 4 Bohr magnetons. Because

a
we assumed in our model that the l&calizeq level is non-

degenerate the maximum magnetization that can result from the
spin splitting of sich a level is 19 Thus, in order to

compare experiment with the results of the model calculations .
[ 4

of Chapter I we take 1/5 of the magnetig?loment(the degeneracy
of the d-level of Mn is 5) i.e. 0.8 Bohr magnetons. Fronm

Figure 1.8 we see that for a magnetization of 0.8 we need a

value of U of the order of 0.65. With this value of U the
Curie temperature given #n Figure 1.9 is of the order of 0.054.

e
These are given,in units of energy that are normalized to €
. /

i.e. if TC is the Curie temperature in degree K then

e W

kB 7;. =.0-054 & (4.1)

i | .
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where kB is the Boltzmann constant. Since €, is of the
order of 4eV we find that T, is of the order of 2500K. This
value of Tc is at ieast 4 times greater than any of the
non-cobalt alloys listed on page 6 . To obtain an improve-
ment in these results we must perform more anlistic
calcufatjon;. Such calculations have to take into account
the band structure-df these alloys, the degeneracy of the
d-level and the exchange effects on the Mn atoms. This is
a complex problem and we do not attempt it here. Instead,
we discuss in Chapter V, a differqnt model which gives good
fits to both the magnetization and Curie temperature in the
Heusler alloys. f

Finally, it is interesting-to examine the results of the
spin wave calculations of Chapter II. From Figure 2.5b we
see that for a magnetization of 0.25 (D/k%/2m) ~ 0.12.
Putting in values of + and m we find D +450 meV A . Evidence
of spin waves in the Heusler alloys is found‘indirectly in
nuclear magnetic resénance experiments and directly from
inelastic neutron scattering experiments. Sugibuchi and
Endo\(1964) report that tre nuclear magnetic resonance lines

3/2

and magnetization follow a T law in CuzMnAl. They find

the following relatjonship for the NMR frequency:
. . 34
, CU(T) = (,U(o)' (I— AT ) (4.2)

with

A an . e s i s
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‘ , .
Since w(T) is directly proportional to the magnetization- -~ ', .
v §

* /)
this is the sane constant ﬁ’that appears in the Bloch TJ'“ Tdw.
Equation (2.16) can be rewritten as
. . ~, 3A
(T) = /- A(%T
= 0 - /
.o ’ D (4.3) j

‘ /
with
1~

A= 980 5osg7
M(o) (¢T)* (NS/V) ,

Hence

A = ,0-0587 ks)%
ﬂ (NS/V) D/ .

and '

2
P = o.osx7v)/3/<8
NSA

For CuyMnAl, (V/N) = 2al where 2a, = 5.95 and S ~ 4 giving

D ~ 100 meVY /52

The'dispersion relation for spin waves in Pd.MnSn was studied

-

by Ishikawa and Noda (1973) by the neutron inelastic scattering
method. These authors also find a value of D of about 100 mev 12
for this alloy. The order of magnitude of the results of thke

narrow band model are thus consistent with experimental values.

4,2 Pressure effects in a-Ce .
N /
The locilized f-level in the rare-earth metal cerium

2also hybridizes with the conduction band. Hence the narrow

!




band model is appropriate here too. The position of the f-lriei .a

cerium changes with pressure leading to dramatic changes in its

magnetic properties. The most striking fgature is the change
in the spin fluctuation resistivity with pressure in the
paramagnetic phase of cerium. In this sectioh we show that
these results can be explained in the narrow band model by
extending the calculations of Chapter III and investigating
the effect of a shift in the position of the localized
level on spin fluétugtions. Before we do this we‘give a
brief description of the main experimental results.

The change in the magnetic properties of cerium with

pressure is illustrated by its pressure-temperature phase-

| /

d%agram shown in Figure 4.1. The 8 ‘and Y phases have net
l‘gnetic moments but we concentr#te here only on the
paramagnetic a-phase. In the a-phase Cerium is a Pauli
paramagnet with a strdéng local exchange enhancement which
decreases with increasing pressure (MacPherson et al (1971)).
Furthermore, the resistivity data of Katzman and Mydosh (1972)
shows a spin fluctuation contribution which decreases niLi
pressure as shown in Figure 4.2. Apart from a residual
value which is non-spin fluctuation in origin, the respstivity
curves of Figure 4.2a strongly resemble those of Figur;s 3.4

-

and 3.6. For all pressures, the resistivity varies as T?

I

at low temperatures and changes to a linear law at higher

temperatures. As the temperature increases further, the
L

resistivity deviates below the linear law. We also note that

as the pressure increases the resistivity decreases. j
’ I
The T? law is more clearly seen in Figure 4.2b, where the

I~
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Figure 4.1

Phase diagram for cerium (after King

et al (1970)).
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\
resistivity is plotted as a function of T2 . Thus the low

temperature resistivity has the form
. 2
/O(T) ,-—_-/o., + al (4.4)

where po is the residual resistivity. The coefficient a as
a function of pressure is shown in Figure 4.3. Also shown
in this figure is the experimentally determined spin
fluctuation temperature TSF ag a function of pressure (from

equations (3.28) and (3.29) T F = % wb/a where b is the

S

slope of the linear part of the resistivity curve). We see

v

that as the pressure increases a decreases while TSF increases.

In the virtual seund state model the pressure effects
in a-Ce can be explained in terms of an upward shift of the
f-level away from the Fermi levei as pressure increases

(Coqblin (1971)). However, this model is oversimplified

sinte the Ce atoms are treated as independent of each other.

In this respect the narrow band model is more suitable.
However, following Coqblin, we must also assume in the
narrow band model that as pressure increases thé f-level
moves upwards away from the Fermi level i.e. e€(given by
(3.53)) increases. To simulate pressu#e effectss we have
evaluated the dynamic susceptibility for various values of
€ apd these are shown in Figures 4.4 to 4.6. As seen in
Figure 4.6 the spin fluctuation spectral function increases
as € decreases i.e. as pressure decreases and this will

Tesult in an increase in spin fluctuation resistivity as

b4
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is found experimentally. To investigate thi% further we
ploé in F?gure 4.7 TSF given by (3.63) and the coefficient
a of the T? term given by (3.28) as a funftion of €. Phe
qualitative features of these plots are in agreement with
the experimental curves of Figure 4.3. Also shown in
Figure 4.7 is the Stoner enhancement factor S which decreases
with € or pressure in agreement with the susceptibility
measurements of MacPherson et al (1971). NWe conclude that
the narrow band model gives a fairly good qualitative
description of the pressure effects in a-Ce (Bahurmuz and
Zuckermann (1974)).

The model deséribed in section 1.2 has been used by a
number of authors. Ratto et al (1969)incorporated this
model in a theory to explain the pressure dependence of the

'
superconducting transition temperature of lanthanum and the
presence of a superconducting high pressure phase in cerium.
Kishore and Joshi (1970) obtained the conditions for ferro-
magnetism, for zero and finite width of the d-band, as a
function of the widths of both the conduction and d-bands.
This was extended by Jullien and Coqblin (1973), qbo included a
variable hybridization, to explain the magnetism of actinide

metals. Daniel (1971) used this model to discuss spin

polarization and hyperfine fields in Heusler alloys.

»

4
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Spin fluctuation resistivity in a-Ce as a function of

temperature and pressure (after Katzman and Mydosh (1972)).
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Real part of the unenhanced susceptibility for V=1.0,.U=2.7
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The spectral density for %Pi“ fluctuations for V = 1.0,

U=2.7 and ¢ = - € All energies are normalized

‘Eag F°
to ss (equation (1.43)).
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Figure 4.7

The Stoner enhancement
Jfactor (S), the spin
fluctuation temperature
(TSF) and the coefficiem
_Jof the T? term in the
resistivity (a) as a
function of €= Edo—eF

g

All values are e
normalized, for
conveniean, to those

of €x};26. All energis
are no?nalized to €

(equation (1.43)).

\

1-30




e

120

Chapter V

The dou“}e resonance theory

The Curie temperatures for the Heusler alloys predicked
by the narrow band model of Chapter I were %ound to be too
high compared to the experimental values. Hence,’in this
chapter we examine an alternative model for thE.Heusler
alloys which gives a better fit to their Curie'tenpefatures.

One of the more successful theories for the Heusler
alloys is the double &esonance theory of Caroli (1967). In
this theory the interaction between the magnetic moments
of two transition atoms, e.g. Mn, dissolved in a normal metal
such as Cu is considered. However, the interaction energy
in this model is derived in the limit of very large sepag;gkpn
of the two impurities and this is not a good approxilat{;n
for concentrated alloys or intermetallic compounds such as the

Heusler alloys: In the limit of large separation,_the

.

interaction energy in this model varies as 1/R' where R is the
dis}ance between the magnetic atoms. In this chapter we
derive the next correction term to the interaction energy
which is of the order 1/R" and show that it gives a better

fit to theﬂHeusler alloys than the first approximation of
Caroli. In section 5.1 we examine briefly the Oaroﬁi nodel
and then in section 5.2 discuss the extension of this model

E
and investigate its consequences.
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5.1 The Caroli model

Caroli (1967) has discussed the problem of interaction
between two impurity atoms 1in the framework of the Anderson
model. The Hamiltonian considered is a generalization of

(1.1) to the case of 2 impurities:

H — Z_ 55 CKO‘ Ckg +ZEdL Cdtl’ Cdtt‘ +ZU 'ndtr'nd“
I}

+
Y (Vsd«: Ces Cdis + Veex Caee C:_rc) (s.1)
Kee .

where i refers to impurities 1 and 2. The mechanism of
interaction can be qualitatively explained as -follows: the
first impurity scatters an electron of spin o and wavevector

k and thus the wavefunction for large r is

1K.y vky  L§°
%s(!),ze +—e;-;—-€ ,J(MS

.where &° is the phase shift. The electron is/then scattered

\
by the second impurity and the problem can be treated in the

oriéinal Anderson fashion by replacing ,the matrix element

V by: ’ .
k Y ‘l.kY N

6
e . 6
Chaltjdy = o (5% & € s
Y
where R is the distance between the two-ilpurities. The

' /
Green's function for the second impurity is thus modified and
‘ P

Caroli finds }hat
\ / .
s () = = ’
" 26 = ) . ’, ‘
. 7( w— Edzs —(f;’_ L Azn) . ’ . -

4*3-—-iL----IiIIIIIIIIII

[
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where

- ,_‘(2lcR+5"‘)

Y Y Y S W A o

~

-

(kRY!

with Tz and A2 being respectively the shift and width of

the isolated second impu;ity. Due to the presence of the

first impurity, the effective shift P; and width A; of the
second impurity are modified. This creates a variation of

the number of electrons on the second impurity and consequently
to a coupling between the two impurities. It is obvious that
the problem has to be treated self-consistently but it exhibits
clearly the mechanisms of interaction. Caroli has shown that

L 4
for two magnetic impurities, the interaction energy can be
written in terms of a coupling between their moments just as
in the Heisenberg Hamiltonian. Thus, if §1 and §2 are the

spins of the two impurities, then the interaction Hamiltonian

has the form

..._" 2
-—5:;" - . » (5.2)
where
| . . IEUS; ) ‘ ) 5‘
. Lo (R) ”
T(R) = )3 e
, . 06 o

and g?° (R) i's given, in the limit of large separation, by the

) "

following expreésion
I

oy
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(R)._ 956;4«»54%8 c,,,(:k;ewd)
"X (ke R)?

(5.4)

o
where the phase shift 6% is given in terms of Ndo’ the
number of electrons of spin 0 in the d-states, by Friedel's

theorem: ’

6' a—
S = _{S.'Ndo'
5

(5.5)

Before we apply these results to the Heusler alloys we note
that the interaction energy J(R) in this model has a form
similar to the RKKY interaction (equation (4.1)).

In the noleculd?-field approximation the paramagnetic

Curie temperature resulting from (5.2) is

l
7: - 3/<5 ; 7(R) (5.6)

We consider first the alloy Cu,MnAl: the number of sp
electrons contributed to the conduction band by each Cu and Al
atom is 1 and 3 respectively. an'has 7 electrons in its outer
s and d shells and if Ngs and Ng¢ are the number of spin up
and spin down electrons in the d-state then the number v
contribu;ed to the conduction band is 7-Njg-Ndg. Thus the
number of conductior electrons per.Mn atom is 12-Ngy -Nd¢ and
knowing the volume per Mn atom the conduction electron

concentration, and consequently €p and kF, can be found. Also

1
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¥

knowing’ Ndy and Ny fixes the magnetization i.e. /we have

Md = Ndr - Nd{ (5.7) \

2

wher d is the magnetic moment in Bohr magnetons. Because
of the/oscillatory nature of J(R)»the sum in (5.6) converges
very slowly and we needed to sum over 300 shells to obtgin
good convergence. The resultant éurie temperatures are shown
in Figure 5.1 as a function of magnetization for various
values of Ngp. For a given value of Nds the Curie temperature
igywery sensitive to the value of the magnetization because
of the phase factors in (5.4). We note that for the value

of the magnetization given in the tagle on page 6 (Md-3.8)
the maximum value of Tc is v 500K and this is in good
agreement with the experimental value of 600K. However,

for the other alloyarthe agreeneﬂt is poor e.g. for the
ferromagnetic alloys Pd,MnSn and PdMnSb the Caroli theory

v

predicts negative Curie temperatures.
\

5.2 Extension of the Caroli model
T .

The expression for the interaction energy (equation (5.4))

is only valid in the limit R+w. ! This is expected to be a good
approximation for dilute alloys but in concentrated alloys like
the Heusler alloys it is a poor approximation. We need to
consider the next term in (5.4) which will b; of order 1/R".

To do this we start with the following expression for the
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, ) Figure 5.1
“Meoretical curves of the Curie temperature in the Caroli model
(equations (5.6) and (5.4)) for Cu,MnAl. The broken horizontal
line is the experimental value of the Curie temperature.
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interaction energy (Caroli (1967)):

& |
65’ 6 ¢ ,
E (R) = ;’E Z"""/Goo( (%) F(E)K) 600( (E) de (5.8)
i ' o
where G d(e) is the isolated impurity Green's function

G:d (€) =

E-Fqs +: (s.9)
and F(e,R) is given by . ”
N
— Vi 42 lek Z Viedi de!_(
F(é)K)‘—— ZE Ex+c§ X E-Sx +(§ ,
It is showA in appendxx B that for a five-fold degenerate
d-orbital F is given by
~2I<R .
F(eR) = as A (e)e___ Ar).
(Kk) (5.10)
where
2 L 6
A(E) - A [(?s_d 'A) + Kr (5_ )5
(2« +>s)t+l<" Ke| (5.11)
and

,f](x) =.-(I+ 2. - fo2 _57%c | 2232

 — F 5'9404.
X JX’ J(? 2: ’(f
- _ 10530 _ N340¢

- v 4 5670
x® x’? X.' (5.12)




Substituting (5.10) and (5.9) into (5.8) and integrating

by parts, keeping only terns to order 1/R*, we find after

-

some algebra ’
) ..(JK,R+S‘+8‘)
“(R) —~ 25 E¢ 8 s 8 /ﬂ
7 (KFR)
5.13
Q ‘?' + ‘ U ( ) )
KGR KR
where
T“.___, @25614- ’4«;25.6
B8 (5.14)

U ths - 12K a2 £u25°
(kf +(,23)) 2B (519

B = A/gﬂ ' ; (5.16)

I

9 and A are defined in appendix B. In deriving (5.13) we

have expressed (5.9) in terms of the phase shifts 60 as
/
(Caroli (1467))

6 o
Go‘d (8) = -é_‘“_—{ € (5.17)

- f3 _

A being the width of, an isglated impurity. Fhe value of A

ﬁ .
gnd hence of B) is not known for the Heusler alloys and may be
considered an adjustable parameter. However, for transition

metal impurities in normal metals AvleV and since Ep is one

rd
»*
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-

order of magnitude greater we have taken B = 0.1 in our
subsequent calculations.

We note that (5.13) can be written as a sum of two terms:

E() = EX(R) + E°(R)

»

where 590 (R) is Caroli's expression (equation (5.4) and

E?o (R) the leading co§rection term:

! Y 554 55 ’ s ¢’
E;°(R) = -Nkfrf‘;i)f‘“‘f T Gr (2kR 5% 5°)

+ Ucfda (JKfR+J"+J")) (5.19)

Substituting for ¢ (R) in (5.3) we can also write the

exchange coupling J(R) as a sum of two corresponding terms
J (R) = \/o (k) + \/l ‘R) (5.20)

Jo(R) is the Caroli term (equation {(5.3)) and J; (R) is the

correction term

o

I'4
/ 66
’ 4
—+ § Les’ )
J, (K) — 2 / (R (5.21)
' 66’ ‘ ‘

Although chk) ~ 1/R* compared to 1/R® for J,(R), the combination
of sine and cosine factors that appear in (5.4) and (5.19) can

e
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make J, (R) larger than JO(R). .This is illustrated in Figure

+

5.2a for CupMnAl which shows that the interaction energy
is substantially chang;d by the correction term. For
example, the first nelghsbur interaction changes from a
small positive value to a large negative value. this is
illustrated further in Figure 5.2b w;ere we plot the ratio
J;/Jo for the nearest neighbour distance as a function of
Nge for CuzMnAl. ﬂ\ut

This figure showsLJl/Jo< -1 %or all possiblf values of
Ng¢ vwhich means that the correction term changes the sign of
the nearest neighbour interaction. Thus we expect the
Curie temperature to be changed substantially by the new
term in the interaction energy and indeed this is what is
found.

In Figure 5.3 we plot the Curie temperature’T of

Cu,MnAl resulting from the interaction energy J(R) (equation

Y -
(5.20)). Also shown, for comparison, is the Curie temperature
Tcougiven by the Caroli term Jo(R)' As mentioned earlier,

for CuMnAl with magnetization Md=3.8, the Caroli expression f
gives a Curie temperature which is slightly smaller than the
experimental value (v500K compared with 600K found experimentally).
With the correction term we are able to fit exactly the Curie
temperature of Cu,MnAl as shown in Figure 5.3 where the broken
horizontal line represents the experimental value of the Curie

temperature.

Figures 5.4 and 5.5 show the results for CuzMnIn and

Cu2MnSn respectively and again we see that we need the
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EJ
correction term J;(R) to give the right Curie temperatures.

'
Finally, Figure 5.6 shows the results for Pd;NnSn and
PdMnSb. In these two alloys Caroli's expression gives
negative values for TC for all possible values of Ndg¢ but
again with the correction term J;(R) we can obtain the right

|

Curie temperatures as shown.

a¥




Figure 5.2(a)
Interaction energy for CupMnAl. J(R) = JO(R) + J1(R)

Jo is the Caroli term and J; is the correction term.
parameters used are M, = 3.8, N, = 5.0 and B = 0.1.
normalization constant eo = IOOEF/ﬂ = 266'6 eV and Ro

L]
Mn-Mn nearest neighbour distance.
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- Figure 5.2(b) i -

J1/Js for nearest neighbour disgeance as a function of Nd*.for
CuzMnAl. The paraweters uséd are M ,=3.8 and B=0.1. ’
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Figure 5.3 .
Curie temperature of Cuqun73 as a function of Ngs- Tco is

evaluated using Caroli's expression for the interaction energy
\

(equation (5.4)) and Tc is obtained by including the correction
tern (equation (5.8)). The broken horizontal line is the

experimental value. The parameters used are My '= 3.8 and B = O.
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Figure 5.4 i /
Curie tenperatufﬁ of CuaMnin as a fuéction of Ndf‘ Tco is’
evaluated using Caroli'; expression for the interaction energy
(equation (S.4))Aand ’l'c is obtained by including the correct?on
ters (equation (5.8)). 'The broken horizontal line is the

—

experimental value. The pafaletets used are "d = 4,0 and B = 0.1.

i
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’ Figure 5.5

Curie temperature of CuzMnSn as a functiona of Nd&’ Tco is

1

evaluated using Caroli's expression for the interaction energy
(equation (5.4)) and Tc is obtained by including the correction
ternm (equaiion (5.8)). The broken horizontal line is the
experimental value. The parameters used are "d“' 4,1 and B = 0.1.
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Figure 5.6

Curie temperatures for PdasMnSn and PdyMnSb in the double resonance model including the
correction term to the interaction energy (equation (5.18)). The Curie temiperatures
obtained using Caroli's expression for the interaction energy (equation (5.4)) are negative
and are not shown. The dashed lines are the experimental values of the Curie temperatures.
The parameters used are B=1,0 and M4*4.33 for PdyMnSn and 4.4 for Pd,MaSh.
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Appendix A

In this appendix, we give a brief sketch of the

derivation of the dynamic susceptibility.

the susceptibility_is defined as:

’ / . ’

where

+
Si = Caiy Cdig

and
+
Si = Caip Coliy

4

Xij(48)= 2 80-) ([ S10, 5 (€] won

(A.2a)

(A.2b)

The Green's function in (A.1) will be evaluated using
[

dizgramatic methods. ' The Hamiltonian of the systenm

(equation (1.7)) is written as a sum of a non-interact&ng

part H, and the interaction term Hine®
H = Ho + H[,,t

where .

H, =Hs + Hqy + Hsd

W

(AL&) N

The d-part of

J

/\..




and

Hit = Huad
with HS, Hd’ Hsd and Hdd given in (1.7). The diagrams
are then developed by expanding in a perturbation series
in Hipe- Following Matsubara (1955), we introduce the so-

called "temperature Green's function', which depends on

a fictitious imaginary time 1 = jt:
5

XU (‘C,'(') _ <7:C (C;i‘t(’t)cdif (‘z))(jijT (z')CdjL(t’7)>
(A 4)

where the Heisenbergoperators Cdio(r) are defined by

(H-pN)T ~(H-p V)T
| Cdi.-(’()-.—. e Cdes (’_( ~ (A.5)

U is the chemical poLential, N the number operator and ‘l’T
A

is the ordering operator for v . Going over into the

interaction representation, equation (A.4) becomes

(Abrikosov et al (1963)): .
‘ T (c+'(t)c 1) Cjp (V) 45 (¥)S
(o) - (eI et )
Qo

<S>° (A.6)

(t) are nov in the interaction representation

(H.—,-d)‘z ~(Ho-pN)T '
Clic (¥)= € Cgie € - (A

where cdia

grpeaand’ reprercnts the thermal average in the non-interacting

, }




system and S is given by’

S= T, ex/;{ }/ert('f )Jt}

Z(.,)f f"“ d o (T (Het () - Hu("fa))) (4-8)

fizo -0
Substituting this in the numerator of (A.6) we obtain the }
perturbation series for the susceptibility
( ) Yr Yo |
’ -1
.. dt .
J <S ;

’ Y
o (7 (i () Cagy €5 (¥4 ¥ Hit () Hae ()
o

(A.9)

We shall not expand S in the denominator of (A.6) because,

as it turns out, the factor < $>3 cancels an identical
factor in the numerator (in terms of diagrams, this is
equivalent to neglecting all disconnected diagrams).

The first term in (A.9) is the zeroth orher term

X‘J ()= <1:[ (cgw“)Cde(t)ng (z)c )> (A.10)
Using ;ick’s theorenb/(;is'deco-posqs into
'X:j (2,¢') =T (Caip(¥) Fe;jr("')))<7:c ( C:fq("m‘j&“""))),

L4 o
= "/G«.’jr(‘t,‘t') Gji‘, (t’,‘t) (A.11)

where we have introduced the free-particle Green's function




AR - R
= ?‘_.i.*"# 2 < - . l

Q
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0 (A.12)

\
GCJ’C (1,7) = - <T‘( (Cdo'r (¢) C:f/'dc (C,))>

The second term in (A.9) is the first order term

r
Xij (6t) = / dy, (r (Ciey ) Caip () Clp € )Hw“')}

= 'UZ /dt (2 (de (1) Caip (1) €, () Coti (')

X Cdlr("t) Cdlr('l’v) Cdu(’ll) Cagy (‘t,))>

(A.13)
Agaxn u51ng Wick's theorel this reduces to

'X‘:] (y,r)= -V Z/“”’[G‘/r“'f‘) Goer (%) Gy (51%) Gy 14%)
+ G‘J,(i’ ) Ga‘(t: ?) Gju(" ":) Gur (v, )
~ Gtjp (4,7) Gaep (7, 1) Ge, (t"")‘;:u(’ u)
- G (5,7 G/u(t,t) qar(""")%u(%"')}

‘(A.14)
To draw diagrams, we represent the free-particle Green's

function G° by a straight line and the interaction U by

a8 wavy line:
{

o L U \ c
Gi: ('t,‘!')-{- T ra =

<
o

and




The diagrams corresponding to (A.11) and (A.14) are

o ! 4
Xi (4,1) zj'c'<>';"‘ |
4

!

| ¢
' ')
X‘j (v7) = e,
N 1 ' '
jx’ it 4
h

w

t v ¢ - 1
.+ j"’®h’+ jt'<>i'c L
T ¢ e, v v

Similarly we can find diagrams corresponding to the higher

(A.16)

order terms in (A.9). The number of terms increases very
fast with order but, fortunately, we need not consider them
all. To begin with,and as mentioned earlier,we can neglect

all disconnected diagrams such as the fourth/hiagra- in

x;;. Secondly, for the nth order term, there will be sets
/of nl! “topologically“ similasr diagrams each giving the same

contribution to x:,. hocssso of the n! factor ia (A.9) we can

'
v

consider only one dligram iam the set if we drop the n! factor

in (A.’). ‘Pinslly, we can neglect n7y diasgras coantaining the

1
. .
PV
LS
e % ;
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1

C) factor?. provided we replace all the free particle Grefn’s

function G;jo by the Hartree-Fock propagators. With these

simplifications we have

'ch("f,'t) O+ o+ @

+ third and higher order diagrams (A.17)

Inspite of the above simplifications it is still not possible

to evaluate tﬂe above sum. However, as we shall show, we

can sum a certain subset of these diagrams to infinite order.

These are the so-called "bubble' diagrams

£ ’)(;J'('c,'t'): O+ @_, @+®+...

(A.18)

This is an approximation equivalent to the random phase
approximation. The sum in (A.18) can be easily performed
if we Fourier transform it. We first consider the zeroth

order ternm

’X:j (%) = O

&J = - Gﬁr(‘iﬂ’) Gj;‘_ (‘t;t) (A.19)
| ‘

3
Following Abrikosov et al (1963) the Fourier series for G

. and X are defined as:




L : - Y w -
c R - i W }*ﬁr’
»

O

~
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- Wy ('t“"(,)
o _ o <
tho‘(’t’t )=1 Z qf/“—tf" 4
7 < #(A.20)
»>
and -
, ~ 8l (T-4')
Q "o jl
X (T)T)‘ T% ’X‘j ( ") (A.21) ©
where
Wn = (27‘1‘,)7(— r (A.22a)
_ T ’
{25 = ,Jn 7 (A.22b)
and |
= + -+ e .
T ° % I) - 2) ) N (A.22¢)
Substituting (A.20) into (A.19) gives
. R i (wy-00,0) (Z-7")
() = -1 ° (w ° ’ ¢
xu} ( It) T ,'Z“’ G‘JT ")Gj"‘(“’) Q
. . , - (7-%’)
= -T2 Gg, (are) Gio, <) €
P An’ (A.23)

vhere we have put “n - Q“ + w; . Co-paria‘ (A.21) and (A.23)
we find

, o(Zj () = -TD G5 (v o) Gy )

-

(A.24)

-
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he now introduce the spatial Fourier[for G° and X° as:

' IS0 (w) oo BR)
Gv«(“’* = N;G;,( ) e

(A.25)

\ Y
o , 0 ~. ; ] (g‘.-&b) . \
c(ln] = A Z 'X Q £ P
‘x"./ ( ") N (%’ ") N (A.26)
. % [
where Ei is }the positi‘on of the ith atom. Substituting (A.25)

~

in (A 24) gives

ng (2.) = -Tﬁ% G%f(ﬂaf‘”ﬂ’)é ,,(w,.) o HYEE)

=T 3 Gy S ye's (-5

" n;% (A.27)
fomparing (A.27) and (A.26) we obtain: |
o ‘ o o
.X (%;Q"\)‘: "’{ Zlngtr(aﬁwx) 6"‘(“1">
‘ ol - (A.28)

Next we consider the first order term

* 'X:,J (’t,‘t') = Qi>'# ‘
=V Z _/ dz, G;/f (f’;t‘)ngr (tﬂv) G:«-], (gtt)'qj.(‘(t;tl)

= vty o, 6 € «.)et,,(-«,)@r«.,)ejq(w»)

En, NNy ny < e-s [ (Wa, - Wag )%, -7’ ) # (9n"n, Xt”"v)] (A.29)




;
a2 e
g

>

3\#’*’ ‘,.' L % - S -
,‘“f i ;,335 “ e s e 1 F . Sy
i ;#‘ L [ :" % 2%-*’
PR »

O

| 'X;j (v¥') = 0T Z G‘/r “n,) Gfty(“”')ét%(“’”)@q(“"“ﬂ
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Using the rélation

{
/T ,\_((4],\’ w" )T/

T d’t’, S /! v
Wn, “’” :

(A.30)

/ ‘

we £ind

/ Lma,n, “ny )

\ | x & < (way-wn)) (T-27) (A.51) °

’

Lotting Wp, - @, * n and Wo, " wnz ¢ W é - W ';ivos

(1’ (4 ) - (T3 Z 69, (42,,+w,.)<7",,(ﬂ»*% )G;;‘ )

/ lﬂﬂ 'n‘
"1 P
j X G/N (ww) ¢

-4y (7-%' )

.,a,.('z‘z) , (A.32)

Hence

%J (41, = ur'z 6:, (A #10)G 3, SO0 ) G ) Gna (9

En'm, (A.33)

8

stnillrly substituting (A.25) into (A.33) gives

Xv("w)- Uiy Y T DA TN

’c")*”-ﬂ X G‘t‘,(w l) eﬁ; (3‘-2,)

&.'. Z ‘x’(g’ﬂ,/,,) €~’o G""'-gl)L /(A3
//% , /
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X(g,0)= Y13 Ggrgy @) Gpug, (0 “0) Gy (om)
t o ,

Using (A.28), we buve \
'-Xl(%‘.a") — ,x’(%’n*)u’xo(%,ﬂa)

-

(A.36)

In s similar manner, we find for the second order ters
2 o P - ° -
/ 'X (%’Q") =X (%’%)UXQ'“") UxX (g,a,.) © (A.37)

We thus find for X the following geometric series:

'X(%I'ﬂﬂ) = ’X.(g.a.) +A'X,(¥,JL,.).;. 'Xzfg,ﬂg)+ R

= ‘XY%:A.)(H U%’(;,a;.) Vx(pamYs . )
= X i- X (pan) s

From equation (1.27) of Chapter I we have the Hartree-Fock

/

—~ *y
2
e

propagstor 5 .

Zee
v ‘ 4 ]
Ggf(fo") = z c'w,, - z;' +(A.39) '

A=t

To evalusate x‘(i,a.), we use the following relation

\ , ) . , ) /.

N ,
+ !
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Fliwn) = - =, 515 F(2){(z) dz
TZ’:- ) -y R A ./ (A, 40)
/ e
vwhere !
/
][(z) = C’Bz-/-l (A.41)

| i
and 8 = 1/T (using units such that the Boltzmsann constant

KB = 1). The contour C is shown in Figure A.1. Equation
(A.40) is easily provéd by n:}ing that the function f(z)

has poles on the imaginary axis at 2 - i (Zn+l)x = iwn, and
that the residue at these poles is(-% )? Hence, from (A.28),

(A.39) and (A.40) we have ’

Ze 7.
o 489 _ Lgy dz
'X (%’n"') = ,z;(m/ Zf Zha.-e ‘ - Ej”‘ 7[(2)
/’/‘ ”f i‘
. (A.42)

In additfion to the poles of £(z), the integrand in (A.42)

) A
has poles st 2z = c’,‘ and at z = -4Q t";i' These poles
sre shown in Figure A.2 which also shows how one can deform
the contour C in Figure A.1 in order to evaluate the integrsal

(A.42). The deformed contour in Fi;uro A.2 encloses two

simple poles at zi,* and -4 ﬂ . Hence
X (%a“") Z Zt'}f i‘—( ¢J2.,+£", _45
T 1 $s TPy
_ {54 f-m-)
(A.43)

R T

LY




)

p—

% o L R
&

L
/

" ([(52‘21) /(Ezt)) B

v 2
NSy 78t Ly (05 (€., Eg,) {\

where we have used the fact that f(z-iﬁn) = f(z) since

Qn = 2n n/8.
Finally we obtain the real time Green's function
X(?,w) from the temperature Green's function X(?,ﬂn) by

replacing i by w (Abrikosov et al (1963)). Thus

X(g.0) = —2 @)

(A.44)

[ U X(g,w)

N CTAR(A)
:§5é2[24£ :qu"

where

K($w) = 4

w - (62,* E;‘)
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Figure A.1l
Contour for the integrsl inm (A.40). The full

circles indicate the poles of £(1).
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Figure A.2 - /
Deformed contour for the integral in (A.42).
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Appendix B

In this appendix we evaluate the function F(¢,R) that
sppears in equation (5.8). This derivation is due to
D.J.W. Geldart (privat; co-nudication)., Caroli's exprgssion
for F (Caroli (1967)) is generalized to the case of a Five-

fold degenerate £ = 2 orbital to give

{ 2 . 5
FER) = 2 (A (64R)
(81)
me= -1
with
Z\/dmg Vitim e"&-&
En(E’R) = ~ExHi§
X (82)
and

(83)

¢4y is the d-orbital quolu;ctlon
ot 5 4 :
¢ ()= Cr e Y, (f) (34)
dm B e
/

vhotre C is & no&'uuution constant, Y, is s sphericsl”
. F'S - !

&

-
&

— N
v # 1 LELPIN . , ’
) o4 . ,
"% “ L . -
— - “ i 53
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harmonic and, for a Mn ion, X = 3.5417 } S

For V, the screened Coulomb potential is used
N

- Y

. g sc )
Vir) = % &
BS

Y (%)
q . is the inverse of the Thomas-Fermi screoening length and
is given by ’

/

(B6)

2“ = (67["77 e’/&

where n is the conduction electron concentration, e the

/
/

€

electronic charge and e the Fermi level.

>

Substituting (BS) and (B4) into (B3) and expanding the plane
wave in sphorical harsonics the integral is easily evaluated
£

giving

Vi = - 47 1(x) Yom (%)

(B7)
/ |
where
o I(K)""" XVC"k’
[(2‘ 43) kz] ““ (38)
. Ins'arting (87) into (l2) gives
" (é,R) .3. dk /(n_ I(k’ Qn(m) 59

‘E Eg 4;.;

(Griffith. (1961)).




ldertinindingmliy — - :

O

where 5R

o (R) = [, RCIAGE

(B10)

Again expanding the planewave into partial waves the integral
involves a complicated product which can be evaluated in
terms of Clebsch-Gordon coefficients. The result, with

L =« 2, is

am (KR) = Z(zz.n (kR) (LLom [tm) <Lzoo/(o>

(B11)
where jL i; a spherical Berel function. With (Bil) in
(B9), the k integral can be evaluated anslytically. Dropping

terms which decay exponentially with R, we find

F. (&,R) = Z(zw)z. <L 10m/cvn><[_(oo/[a>
x 2: _OKI(“)/' (KR)] (B12),

where k is now given by h2k?/2m = ¢ and hL is the spherical

Hankel function‘of the first kind. The sum over m in (Bl) can

be also evaluated using properties of the Clebsch-Gordon

coefficients giving

F(E,R)= (2‘6’) (m:.k I(K)) ) (c (kk)(((oo/u>)

(813)

The C-G coefficients restrict the sum to L = 0,2,4,...20,

so that in this cxse we need consider only L = 0,2 and 4,
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Hence we only need the following spherical Hankel functions:-

e e ()
h, (2) e‘;ZLz(Lz-_';’_., - -3-]

z . /o_./os‘
h(z) = & [i(4- 5+ 2)e (57 2)]

z‘

Substituting these in (Ble we obtain finally

-

« 2kR
Fler) = 25 0€) € A(xr)
kR)?

(B14)

L4

P\

where |
A) = (1+ 25 -2 - 51 4 mn 4 sapod
&y ’(;

z’

Sn————

— fos30 _ /3404 + 56J0 (B15)
x* x7

and
128 m W C K*
K [(9,47) 4 k2]°

In terms of the isolated impurity width A equation (B16) becomss

‘ (9 +2) '+ Ke
s o[g22] )

(B16)

A(e) =
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Part 11!

Damping of magnetic excitations in singlet-ground-state systems.

(i) Introduction

There has been considerable interest in the dynamics
of localized magnetic syite-s in which the single fon
crystal-field-only ground state is a singlet. 1In these
systems ordering occurs by a magnetic polarization of the
ground state and this lechani;m is fundamentally different
fro-~conventionzl magnets where magnetic order results from
the alignments of permanent moments., Recent reviewsof this
field are given by Cooper (1972a) and Birgeneau (1973).

In this part of the thesis we examine the scattering
of the magnetic excitations in these systems and we will
concentrate our attention on the ferromagnetic compound
PrsTg. The exchange interaction botw#en the Pr ions in this
compound is weak and only just sufficient to induce -a;not{e
order at temperatures below 11.6K.. The saturstion moment A
which is only 8 quarter of the free ion value

B
(Birgonoiu et a1l (1971)). In Pr3TL, the nine-fold degenerate

is about/o,su
i

4£? 4, ground multiplet of the Pr** fon is spiit by the
crystal-fileld into a singlet I; lowest state followed by a
triplet Ty , 8 doublet [y and a triplet Ig(FPigure 1).

The solecular }1014 mixes up these states and splits the
dogonoractbs'as shown in F%;uro'l. Tho/-a;natlc excitations
sre now transitions between these levels vhich/propa;atc

through the lsttice via the exchange intersction. These
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collective excitations are spin waves.

Measurements of the spin wave dispersion relation in
polycrystalline material by neutron inelastic scattering
have been made by Birgenez. et al (1971) and the striking
feature of these results was the insensitivity of the
excitation energy to temperature (Figure 2). The simplest
theory for singlet-ground-state sy§tels is the singlet-
singlet model in which the excited states of the ground
multiplet are approximated by a single level. This theory,
when solved within the randoms phase approximation (RPA),
predicts that the frequency of the longitudinal zone-centre
spin wave mode will fall to zero (i.e. go soft) as the
temperature is raised from zero to the transition temperature,
and will then rise again as the temperature increases further.
This is in marked contrast to the.exporilontal results
mentioned above. It was not clear from these measurements
(which had to be made at non-zero wavevectors because the
specimen was éolycrystallino) whether the zone-centre mode
does or does not go soft. However, temperature effects
\\y:cdictod by the singlet-singlet theory should have been
readily observable at th; accessible.vavevectors. A i
refinement.of the theory, the singlet-triplet model, is not
in signifiéantly better agreement with experiment. In this
model four states of the ground multiplet are included, the
singlet [y ground state and triplet 'y excited states.

- A shortcoming of these sinple model theories LL the

neglect of the other levels belonging to the ground multiplet.

A
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st a1l other wavevectors in both Pr;T4
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The only theories of singlet-ground-state systeams in which

the real level scheme is considered’are based on the

p;eudoboson theory of Grover (1965). This was applied to
Pr;Te by Cooper (1972b). The pseudoboson theory is restricted
- to low temperatures, since only transitions cht of the
ground state are included and cannot be readily extendeﬁato ’
higher temperatures. However, Holden and Buyers (1974) point
out that the marked contrast noted by Birgeneau gt al (1971) between
the experiment and the simple model theories cogés from the
neglect in the theories of the higher energy levels and the
excitations out of these excited states. }hey suggest a
sethod of obtaining the temperature dependence of the spin
waves taking into account the real level scheme and the
excitations from all the levels of the ground multiplet.
In this case the excitations are obtained from the poles
of the dynsmic susceptibility. The dynasic susceptibility
is evaluated in the random phase approxin"ion (RPA) and
this theory is reviewed briefly in section (ii).

The excitations obtained in the RPA are well do!;nod
spin vaves. At finite tsmperatures these are damped 2s a
resilt of scat}erin; from fluctuating {’%lds in the crystsl.
Tho;ﬁ fields arise from thermal fluctustioms of spins which
are coupled by an exchange intersctiom. 1In sectiom (iif) we
examine the scatf.ring of spin waves by thow‘ggctuiciug field;
using the c;hcrfnt potential approx}uttion (Cg’), The }esults,
show thst,in additlonhfo thckigagiggf the ?"éﬁcrin; introduces
a shift in the spin wave modes. The fregﬁihﬁy and intel‘ity

-
] ¢ -

L

Wby



A

of/ the neutron pesk is obtainod in the CPA and compsred
with the experimenta! dats of Birgenesu et a) (1971) und

with the RPA results.

L41) Mafnetic excitstions snd the rsndom phsse spproximstion.

The Hamiltonien we consider consiéts of s sum of
sifigle-ion crystal-field terss and a Helsenberg exchange

interaction term: ' 1

He S Vi (6) - g_a-, S0sQ)
A ¢ ' ‘

In ‘cubic symmetry, the crystsl-field potential Vep €88 be

written in terms of the operstor oquivalents (Hutchings (1964)%:

]
Vey = gz(b;,«so;)/, 8,(0-210{)

where o: are the operator equivslents for the total sajiler
momentus and B{ and 3] sre the crystal-field parsmeters

which depend on the details of the crystsl, strueture. 'n the
-qlocular fie1d spproximstion (Smart (1966)) the HAltﬁtanlcn /

(1) roducun to

/. .
H, = z v;,(é) - H Sl

¥

Where the woloculsr fie1d M, is gives by

qu." JZ <$',(;)> -

o
t . . ' ' r

A




y/

N ,
s 1 60 o

" Th; Hamiltoniun (3a) I» first diagonslized to give s set
of moleculur fleld eigenstutes |n»> and corresponding
eigenvalues Wy s Defining the Op.rltO}ﬂ C;(i) snd Cn(i) s
crestion and snnihilation operstors respectively for the
$tute [n> on site §, the moleculsr field Humiltonian can
be written ss:

: Zw,,COC()

(3b)

»
The moleculsr field results for Pr;TL sre susmarized in

' Figure 1 and Table 1. We note that the molecular field
mixes some of the excited states into the .round staste thus

1nduc1ng s moment in tho ground stste, ' "

U-Lnl the squstion of sotion method, Buyers et al (1975)
have derived expressions for the longitudinal and transverse
.Eonpcnontl of the dynamic susceptibility in the random
phase approximstion (RPA), We now outline briefly their
dorivsation, n[: dynsmic susceptibility is given by the
# retarded Groo/‘o function defined ss (Zubarevy (1960)):

G“.'(g,e) = - (0(6)([Su(is8), 5 (‘0]> |

N

= <§.‘ (\¢) S, Qny W

and its Hol;onborg cqustion of notien 1%

° o G = [, 59]) + ([m&,a H] )s,.cp)

€ ))
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Tadle 1
Energy levels and matrix olements of the totsl sngulsr

momentus § in PryTL (sfter Holden snd Buyers (1974)).
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0 where p
o /G’y,t)e ot

From (1) sund (34), the Humiltonian H can be rewritten as

H = H, - ZI [$2(6)(s:4)) - :(a(,)))
My 4 (Sm)s:(/) + S-(c)S}(/))] (7) 0

;. (6)

Y

She spin components sq(a-:,z) “can be expressed in. terms of
the molecular field operators C, as: f

S‘ - ZS“‘M‘H C‘: Cn /
Mn ”

. )

where the matrix elements ’aln"' given by

\ Semn = {m|Sa "‘) , (9)
/

* snd sre tabulsted in Table 1 for Pr;Ti. It is convenient to |
substitute for l glvon by (8) into c“' and dcnno an 1nt¢r- ’
level wuopubiuty a by: * = /

X

T 17
! G"("/' t) = ZS},,,. G (m""/’ t) (10)
' m» '

]

. where ] k/ : |
® ONEAC
T P = (000654

iy o

!
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and its equution of motjon {=s

w G rmipe) = [0 @), 561
+(([C:.“,f)cu(c',t))H]/ﬁp(j)>w (12)

y

. /
Using (3b) snd (8) the Hamilsonisn H in (7) can bc/aritton
entirely in terms of the operators C_ and hcﬁco the
commutuSX(o in (12) can be essily ;vnluotod. Sa;o terns fronm
the locond\eomautator gnvolvo products of four Cn operators.
These give rise to s higher order Green's functions whose
equations 1f motion gonc;;to, in s similar way, Green's
functions of an even higher order. The resulting hierschy

of Green’s function ;quttions msy be decoupled in the RPA

by raplncin; s groduct of four {foratorl by teras involving
only two operators ss follows:

CCh()C,(6) € (Yp() = (CRIHCn (<)) CE(4) Ch() S
+{ch (1) Co(t)) chtc)C(€) Spy
= £ €4 (0¢(1)8m, +f;ci ()G()8pg

/ ' ' / ] ‘l’)
whoro,l. -'<c;(1) c.(1)> is the Boltzmann oceupation factor
for the level n snd is independent of the site. Substituting
into (12) and ts&iu; Fourier transforas, it can essily be

L) - g6 * PTG )
4 + f () Tlg)Gf’(;,uh 23‘ () T(3) G (%)
(14)

. - #ﬁ ' ';v‘ U -
a——— 4 x«"‘ - ‘
) v 4 A yeri 1 :
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where

o ;o %R, ~ g (Re-R))
G (ym) = X/’ZG (.0) € ‘ l
(.j ‘

(15)

sand the single-ion suscoptibilit& gaa(w) is ‘given by

. (o = fm)
?“P(w) = ;S;(wm SP"I‘M w- (w,- W)

4

(16)

. A

For Pr’® ion in cubic symmetry, 4t is found that if sny one

of 8§, 8§ or sz has 8 non-zero matrix element between the levels
m and n, then the other two have zero mstrix elwments. Hence,
from (16), the only non-zero components of the single-ion

12

susceptibility are g", g" and g With this simpliification

oquation (14) reduces to:

G ()= 57 97T § )
G (g = Tt JOTRIG )
ng(i'“)", 7"{4&)1‘2}21{;)‘772)‘612(?) arer

The components of the dynsnlc susceptibility sre thus given by:

[

[t - - §w) > |
G (?:“’) /,_'7(3)3};,(“) (188)

o
-‘/
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(18b)

and ‘ @
7(w)

G (8:‘4) = T/ _27.(2)727“) (18¢)

Althohgh these equations have a very simple form, most of
tho‘inforlation sbout the conplex crystal level structure
is contained in the single-ion susceptibility gag(w) given
by €16). All the transitions between the single-fon levels
sre contained in (16)<and equation (17) tells us how these
propsgate through the crystsal as spin waves via the
exchange., The s#}n wave energies are givoé by the poles

’ [

of the Groon’slfunctlon G(’,w) and the neutron lncihstic

scattering cross-section is proportionsl to

Ty R0 e

Holden and Buyers (1974) and Buyers ot a1l (1078) have _

spplied this theory to PrsTi and (Pr, La)sTe sad obcaimy,
fairly ;ood':g:oament with ixporl-ont in the tempersture
dependence o; the magnetic cxcltag}oas in these systems. Some
of ;he rasuits for PrsTL are shown in Figures 3 and 4.

" riguro 3 shows the, dtspor’ion rctsﬁionc st T = 0 whors i1

sodes ortjilttq £¥i;wgro groq’i state, Oniy ghe thres

AN
e Wﬁ? /} / .
‘-&-—“
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lowest branches arising from I'y,-I;y transitions have
sppreciable dispersion. The higher-frequency branches,
sincc they have small matrix elements (see Table 1), are
ulmost independent of wa cvector as expected from equation
(18). At finite temperatures the excited ststes become
populsted and new modes sppesr. At 0.9 Tc the dtspersion
relations of the lowost\frcquoncy excitations are as shown

in Figure 4.

ii4 Scattering of magnetic excitations snd the coherent

potential approximstion.

The magnetic excitstions obtained from the RPA expression
for the dynsmic susceptibility are undsmped. As mentioned
earlier, these spin waves are transitions between single-ion
moleculsr field st:t‘u which propsgsate through the crystal
v%c the exchange interaction. If the state of an ion were
to deviaste from the moleculsr liafﬁ vaiue, it would be
equivalent to introducing a defect at that site which can
scatter the spin waves. One way in which the molecular
field state of an ion msy be changed is by spplying a magnetic
field., 1In this work we assume that there is s distribution
of fluctuating fields in the crystal which can scatter the
spin waves, At sny site these fields srise from thermsl
fluctustions of the spins on neighbouring sites which couple
to the contr;l site vis the exchsnge interasction. The
scattoring of the :9iﬁ waves is trested ig/tﬁ; ecohoront
potintisl sppro;ll;qiou (CPA) and ve bf;&g in section (A)

H A

€ ' Tt
“
i
~ /
" B

<lage

i et Attt $.. 1. . 4%
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Dispersion relation of spin waves propagsting along the

{110]) direction of Pr,TL st Te0, The full circles sre

the erxnoriments! resuits of Birgenesu ot al (1971). The

single-ion natrix elements corresponding te eseh transitiosn

"Dwm sre 5, “qaﬂﬂé;?%f!?f’ 5e2,2; {tltog{{gycrn ot al(1978)).
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Pigure 4

Dispersion relstion for PrsTL st finite tempersture. The

sysbols m-n identify the single-1on transitions corroopond@ng

A-v
to the excited state spin waves., (sfter Buyers et ai (1978)),




104k

o

Pr,TA g =1(¢,¢t,0) 2n/a
2.0 * ~ A 1
| T=090 T,
! “ ,
- -
el - o= == -:-.-7:’ :.- :-:::'.: ‘:;;.::: ._5:‘_'__% == _. . _8-3__
g DR ST S L NI
|.0— w_ 4. ___1I-% =
/A 7-6
_ ~ / -
8:7 | -
—5%
e R ot N 1
o 9,2 ‘ 0.4 06 o8 1.0
REDUCED WAVE-VECTOR COMPONENT. ¢
, Flgure 4
> /~ /.



169

below with a2 brief summary of the ’g,‘PA results, ‘Then §n
section (B) we obtuin an expression for the distribution -
of fluctnating fields which §is used to discuss the 1

scattering of spin waves in section (C). Finally, the

results and conclusions are g:ven {n section (D).

(A) The Coherent Potentisl Approximstion

The coherent potentisl spproximation (CPA) s sn
offective nediun theory for disordered systems. 1In the
case of s binsry metdllic alloy the different scsttering
potentials at- the two types of stoms sre replsced by the
same effective potential st esch stomic site., This restores
the translstions]l invsriance of the lattice and enasbles the
electronic band structure to be caslculsted, We give here

s brief summary of the main results of the CPA and the

resder is referred to the pspers by Soven (1967, 1969) for
further details, ,

Consider an slloy of N atoms of type A snd B with .
concentration ¢ and 1-¢ respectively. In the sbsence of any
scattering potentisls the empty lstglco 49 represented dy o
conduction band with s Hamiitonian ho given by

ll{o = :z: £K-<:Z Cﬁ
) X

\ (20)

The corresponding unperturbed Croen's fusction is

b 0 /
G (“)’ W - H' (21)

a
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or in momentum representation

° /
Gy (@) = - 22)

- L]
In the presegce of the potentials, the totsl Hamiltonian H

is written as

H = Ho + H

/ (23)

where 1i; is the contribution due to the potentisls snd has
the followin! form in the Veanier representation:

., :
H’ - Z VL Ct CL | 't (24)
“ *

»

The atomic potential \!1 has the value \!A st the A sites
and Vg st the B sites and C; and C1 are the creation and
sanihilstiop operators for the Waanier function of the 1“‘
stonic sitd The totsl Green‘s function is

, / .
6(“’) = 7‘0_” | (23)

‘ i

%
4

snd is relsted to the unperturbed GCreen's function ss follows:

L

N

’ 0 y
G= G +GHG e
P s ' .
In t!:- Wsasier representation shis beconss

o o : :

Gj= Gyt 2 G¥t Gy 5
/ Cy AP (n

. v . . t"‘ ,"{’,‘ ;;: e 2o .

: . 24,
& J SR

e ey « Sy ,[’ [ . . e
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wheze v, 1is the excess potentisi st site {t i.0,
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&

-

"The starting point for VA s to sssume an sffective
/ ..v’
potentisl I(w) at each site {.e./un effoctive medium w:th

the Hawiltonian
%

.

HCH = Ho +,ZZ(“’)C¢+C£ ‘ "
- |

(28)

-

.

N
The potentis] I(w) is energy dcpond“f snd is ususlly called
the electron self-energy. It is dcto*pod self-sensistently
-~

by requiring thst the excess single-sith scattering ‘4s zero, .

The Green's function for the cf(activ_i':.odiuu is
s} .
Cff / p“ s -

W= Hepy o

S )
—~
>
s
|

. (29)

or in momentus representstion

¢ff . [

relsted to the effective Green's function as (a&ﬁvu

-

off off - . |
6‘/ - g"j * ;Gu v G‘/ - wuu»
| Ve = /Vg "Z“:‘) | .

/

. N
¥ ?
X 3
P o idm ‘ .

SRRV T -
w o 7" g Fd é - * - M v

N DN 1 TP EERTEEN
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The total scaytering of an elevtron due to this excenn

potential 1a given by the single aitd tematrix

1

b = R '
£ [ - G"f’vl . (33a)

)

\

Because of the translational invariance of the effective
medium G::' {a {ndependent of the aite and we may take p to
be the origin ( 2« 0). Hence
fL = Y
N / - '}f

(33b)

In CPA we assume that the averajs excess scattering is zero i.e.

r : <£L> = OL—\ | | | (34)

f

Neglecting the remaining scattering terms we tind that the
Green's function G (which we now denote by GCPA) is that of

the effective medium we started with i.e.

W] wm
K w- (85\1*2:'(00)) (%)

WNo note that from (22) this can be rewritten a3

o ()= Gelo)+ Gl WGy () (o

!

Thus the CPA condition may by written uy

| |
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B4

(v,.-zz»»’ . ’*a-u(v.'-w) -0
Goo ) (V- ) = Gou (@) (VT 1)

where '
CPA
ePA / ‘
00 (w) = ;V- Z Ga (N) (38)

and the self-energy I(w) ia determined self-conaistontly

(37)

from (37) and (38),

In the following sections we will apply these results
to the acattering of the spif waves diacusased ot:llor. WNe
will show that the propagator equation for the apin waves
in real space has the same form as that of electrons
(equation(27)). However, instead of two typn; of scattering
potentials we have an infite dtagributlon of fields which

scatter the spin waves.

(B) Distribution of fluctuating fields.

¢t
The fluctuating flelds at a site result from thermal

fluctuations’of apins of neighhouring atoms which are coupled
to the central site by the exchange interaction. Furrer

and Heer (1973) ;xtondod.tha mo{oculnr field thoofy for
rare~earth metals to include such fluétutting fields and

were thus able to obtain & better fit for the nn;noti:a%ion

of NdSH as a function of temperaturs, ®In-this section we

present an alternative derivation of the probability diatribution

of Furver and Heer for the fluctuating fields. The resulting

exprossion ia submequently uied to examine the Acattering of
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Apin waves at non-:ero temporatiarea. The probability
for a deviation }Sl An the z.vomponent of a spin s glven
hy Llunduﬁ and Lifahite (l938)): 2 '
P55 = b€ Beaesty
)= 9[(6‘3‘ (39) -
v 2) :

whoro<68' >is glvon by the fluctuation dissipation theorem ‘

(gsz /Im 6" e, el $7 4o

(40)

"Tho Green's function in (40) is the full Groen's function of
the syatem which Yncludes the effects of the fluctuating
fields self-conaistently, (A firat approximation ta tb

<replace G'% in (40) by lts RPA value, To simplify this .

0xprunon we employ the classical Approx{MItlpn and keep

only the leading term in Coth I%T Thus

(:s ) = _,K/r.,e (ciypm) KT oo

= KT/IW« (“o;“) dw

and using the Kramera-Kronig nlnton this reduces to
'\\_/

. (ng'>= KTG“ (Ci,o), (41)

i

whore GEE(11,0) is the local static suscoeptibility. Using
the RI'A eapreasion for the susceptibildity {equation (l8c¢) we
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can write this as

Gn(*;‘;") _ 4 % G“(%)o)

) N
(o) .
- fv; T ey

where we have now indicated explicitly the temperature
dependence of the aingle-ion su:coptibtuty.G The Curie
toﬁporaturo or the transition to an ordered state is given
in the RPA by tho\gﬁlo of the * » 0 component of the static

susceptidbility in (42) ..

/- 2 »7(;)?"(0;72) = 0 / (43) ‘

u:twi this we can rewrite (42) as:

22
G (¢éy0) = 3#57 W(T) ()

where
1

P
d ,
W(T) "N g |+ y(‘r)- NQ\ ’mus)

For nearest neighbdour 1ntor|ctleﬁ. ‘(') is a structure factor

givéen by

MOE T($)/100) |
- ;ed"sc . (46)}X .




In equation (45), all the tampar;turn dopéndancv is In y(T)

which ia defined an:

~

90,72 ) - 3(0,7)
§o,T)

At the transition temperature y » O and W is of the order

(47)

._7"”) _

of unity. We now make a further aimplifying assumption by
neglecting the temperature dopondoﬁc. of W and replacing (¢t

by unity. With this approximation we finally obtain
2 KT .
| <('§:Si.:> ~~ (48)
/ 2 (o)

The field h at a given site due to fluctuations GS' of spins

of noighbouring atoms is

h = A§S:

< (49)

where X = 2J(o). From (39),(48) and (49) the probability for

a field h at a site is

| "‘)kaT
A = d e }
Pb) = =t —

This is the same 6x§§¥ltion as that obtained by Purrer and

“

Here (1973). X

1 /
Y-
Ll i

Bn
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\ \
. LR
C bum of the mu.gotl; gxcitations.

ﬂn now consldor, in the CPA, the acnttcrln; of the sapin
y{an by the fluctuating fields. To do this we wrtts the

Auacoptibility squation (17) yn real xpace formally as:

Pl

G(ijw) = 3(@,»)&,%;(»»)01‘. G(Yw) )

In the presence of the fluctuating fields h distributed

at the mtomic sites with a distridution given by (830) this

-~

squation +sbecomes

G("]’w"‘) 3(!. w, +Z?(‘ “’)“)j G llo"':“)

(52)
To simplify matters, we now change the notation shightly and

rewrite equations (S1) and (52) respectively as:
6'(%”) - io(‘;)"’)gdj' +% ?o(‘-‘)ul) j.;. G.(lj,;.;)
(
and \.ﬁ $3)
6 (QI,N)‘ ?(C,w \J +Z?(",“)Tt 6(9)0&)

(5‘)

[}

Ne now define & new function F as
F(‘:j)w)'= G(“‘!‘)”)/ﬂ("‘)“’) o8

so that, substituting this in (54) gives
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(36)

Fgo) = By ¢ T Ellm)

To obtain an equation with alngle-aite scattoering torms

we tntioduce another function Q definad as -

Q(/)) ZF(«.fw) J 5

Tt can ocanily be shown that Q satisfies the following equation

Q '(Cj',w) ,; Q°((',w) +Z a.(k'l)u)(? (4,w) ,.f(‘)“))&(lj)u)

(58)
where Qf/lljhvaluqtod {n the ahsence of the scattering fields,.
The propagator equation (58) should he compared with equation
(27) for an electron scattered by a xeries of potentials.
Within the CPA we look for the self-consistent Q whic
minimizes the s:nt:orlng. Following the arguments of

section (A) the single-site t-matrix ia

4o At g S )
L : . (59)
/- &("0:“))(9(6“} ~] ((,N)-Z(“))

3

1€ h 13 tho field at site & then this t-matrix wmay be

3

written as:

E(h) = — Sp) =T (v
/ ‘-'— @ (o0, w )(g;(‘.s) -2 (w))

where d3(w) is thé differonce in the siﬁilo-lon susceptibility

(60)

i% . "\

s
r\s’ .
i

-

NS
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~

- .
in the presence and absence of the fleld h., The CPA

condition {s then
[Pt th)dh = © cm

Tho'solf-cnorgy't(u) relates the self-consistent CPA solution
Q to the mean field solution Q* via the equation (compare with

(36)): )
Q(Q»w) = QO(S’““ 073'“)2("‘)&(%’") (82)

where

Q( W = Q'(g'“)
)T )Ty

T 7(3)
Q@ (?: ) -7l g7) (64)

The last equation is easily obtained from the Fourlier

truﬁsrorns of equations (56) and (§7). Flhnlly. the ;in;lo-

site function in (60) is /
!
Q(OO,W) - f\-j %: Q(%)N) (68)

Hence (61) is an implicit function for I(w) which can be
b N

solved by qn‘ltiéativo procedure and thus obtain Q(%.m)\ This

li
> -
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y -»

L3
cap then be inverted, using (57) and (558), to give ui the
- - .
CPA suaceptibilicy - .

(g,w) = . ?'(“)*Z’WM
o) = Tg) (1)1 2)) o0

Using this G we can obtain the spin wave spectrum and the

neutron ascattering cross-section in the CPA,

(D) Results and Cohcluaionn. . ]

’w. have applied the scattering theory descridbed above
to the damping of the magnotic excitations in PryTR. This
compound has the CujAu structure which is equivalent to fcc
Pr with the corner Pr atoms f;plucad by Th. alrgohtau (1972)
points out that if the charge of the TL ion i3 taken equal
to that of the Pr'’ ion, then {h the point charge model the
effective symmetry at the Pr site is cubic. It then follows
that the ratio of the crystnl-flild pnrangtgé “/at given bdy
the point charge model is -149.4 (Holden and Buyers (1874)).
The magnitudes of B and 8! are chosen to reproduce the
observed crystal-field splitting. The average crystal-field
splitting between the ground state and the first excited
stato triplet i3 A = 77K and the crystal field parameters thosen
to €it this are B = -i.G% X 10°'TH: and Bl = 6.9 x 1070 -
(1TH2 = 48K)2 Ai;ualn; only nearest neighbour interaction, ‘
the exchange coupliqg J( -5.8 X 10" 'THL) is chosen to give the

observed saturation moment in Pr;Te (Holden and luyors (1974)).

h

r'd



field., The magnitudes of the ficlds increase rapidly as T
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, s
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To evaluate the CPA propagatoy (866) we solve the
coupled wquations (&61) and (o5) for tho\anlf-onargy.t(m)
ngun itovative procedure, }o facilitate nuncrlc;} ’
calculation, we replaco the continudus distribution in (61)
by a finite number of discrite fields with the Gaussian
distribution given by (50). We found that we can obtain
good convergence with a fairly small number of fields
(in our calculations "t have considered 13 fields).

The broadening of the spin wave modes due to acattering
is shown 1& Figure 5, In this }1guro the lineshape of the
transverse spin wave modes is shown for 3 values of the
wavevector., We note that the ‘- gpnodo is shifted upwards
from 0.3 TH: to 0.65 TH: and is also broadened in the CPA
compared to the RPA, fh- 0.02 THt width in the RPA case ia
the Lorentzian width artificially introduqod to simplity
numerical computation, This was done Sy“ddin; to the
frequency a small imaginary part € = 0.01 THR. In the
CPA, the width i3 0.05 TH: which means that the broadening
due to scattering is 0.?3 TH:. At very low temperatures this
broadening disappears as expected since as T+0 the fluctuating

.
fields disappear.” As sho'tcnpoflturo increases the damping

width incredses aﬁ; thcn remains fairly constant at 0.03 The
from 4.5 to 57 X (the highest-temperature considered). The
large shift of the 3'- 0 mode is due to the fact the
scattoring fields are quite large. For example at T = 0.9 T,

the average scattering field is twice as large as thp molocular
172
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at low temperatures(cquation (43)) and honce the scattering
is expected to indroaso rapidly at lowftonporaturia. Ay the
temperature incroases further the scattering would tend to
/alturuto and this could oxpltlniwhy the damping rematns
fairly constant above 4.8 K. /

Tn Figure 6 we show the dispersion of the longitudinal
spin waves at a finite tompor;turu (T=15K). The upper part
is the RPA-result which shows the main dispersion curve
mixing with 2 weak dispcr:lonluai modes originating from
the excited séata:. The lower CPA picture is in marked
contrast., Here the main dispersion curve is shlttod upwards
with maximum shift occuring at small wavevectors. In
addition, new weak modes appear which are fairly dispersionless
and they also wix with the main dispersion curve. In the
RPA the spin wave modea may be identified as arising from
trann%tioQ% between pairs of molecular field levels by
examining the level structure of Figure 1 and the matrix
elements of Table 1. In the CPA the inclusion of the
fluctuating fields changes the level structure and it becomes
difficult to identify the new weak modes.

Figure 7 shows the tonpcntuﬁ dependence of thc‘- 0
main spin wave modes arising from the I'y-T) transitions. In
the QPA. the onor;l}: of both thz transverse and longitudinal

modes decrease as the temperature increases. Although they

»

, ¥ - N
exhibit soft mode behaviour, the modes do met becomes soft at

the transition ttnp}raturo. Their encrgies fall off to a

L]

finite vadue at Te and then increase again as the tomperature




183

, ' .
increases further, In contrast, in the CPA, the energies

~<
of these modes .increase with temperature and show no~ '

tendency toward softening. The splitting botw.oﬂ tho‘
transverse anq longitudinal nodes adove Tc is due to the

fact that we have only considered fluctuating fields in the
z-direction. The sharp linear rise at lév temperatures 1?

the CPA modes is due to ghn sharp increase in the magnitudes

of the scattering fields at low ‘temperatures. WNe note that

the tonpnrtturo distridution of the tields (cquation (48)) vas’
obtnlnod in the classical approximation which 1: not applicable
at low temperatures,

Figure 8 indicates the/ temperature dependence of the main
modes at finite wavovgetor and shows that their behaviour
with temperature is qualitatively the same a3 the $ =0
modes. .

Finally.in Figure 9 we plot the frequency and intensity
of the neutron peak as a function of t‘npor&turo and compare
them with the experimental results oi Figure 2, For the
frequency, the CPA results are not as good as those in the
RPA while agreement with experiment for the intensity is
better in CPA.

Rcco*tly Bak (1978).introduced a new scheme for
calculating danping/offic;s in the spin excitation spectra of
singlet-ground-state systems by use of the lowest ord:: self-
consistcﬁt corrections to the RPA, Tho*. corrections also

correspond to spin wave scattering by single site fluctuations.

It is at yroscnt difficult to compare Bak's scheme with the

4

S
54 &
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C!A,ntthod of thiaiaoction since he considered dniy the,
‘alaylut-doublot excitations in paramagnetic dhep -

Prasevdimiun -whereas the CPA was applied to Qy" excitations
“in PraTh. Ve hoi. to apply the cv;\§n¢ rolttQA qtthoda\to ’
dhep Pr'’ for this purpose. ‘ ' '

In conclusion, we have presented a Th"pd'o! calculating
the-danping of the magnetic excitations in singlet-ground.-
state systeas using the coherent potential approximation.

Some of the results are difficult to“interpret and noro\
oxp0é1nontal information i3 noo’od'to give us a )cttﬁr
understanding. In particular detailed measurements (rg
required of the spin wave spectra on single-crystal Pr;?k
which would distinguish the varicus modes (especially the
nodes near the zone-centre) ;nd‘would thus allow direct

comparison with the CPA results to de made,

. <
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Lineshape for trJnsvorso spin waves in PryTR.in R\Q and CPA,
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Figure 6

Dispersion of longiduéinal spin wﬂvos in PryTA at finite

temperature in RPA and CPA.
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Figure 9
Temperature dependence of the frequency (top) and intensity
(bottom) of the peak in the neutron scattering in RPA and-CPA,

| The full circles are the experimental results of Birgeneau et

al (1971).
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