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ABSTRACT

The focus of this work is the thermodynamics of aqueous solutions of strong elec-
trolytes for both binary and multicomponent systems.

A new excess Gibbs energy function to represent the deviations from ideality of
binary electrolyte solutions was derived. The function consists of two contributions,
one due to long-range forces, represented by the Debye~Hiickel theory, and the other
due to short-range forces represented by the local composition concept. The model
is valid for the whole range of electrolyte concentrations, from dilute solutions up to
saturation. The model consistently produces better results particularly at the higher
concentration regions in which the other models deteriorate.

An electrochemical cell apparatus using lon—Selective Elecirodes (ISE) was con-
structed to measure the electromotive force (emf) of ions in the aqueous electrolyte
mixtures. For the NaCl-NaNO;-H,0 system, the data for the mean ionic activity
coefficient of NaCl was obtained in order to show the reproducibility of literature
data and to test the validity of the experimental procedure. The data for mean ionic

activity coefficient of the following systems were also collected.
1. NaBr-NaNO3-H,0 (a system with common ion)
2. NaBr-Ca(NO;),-H,0 (a system with no-common-ion)

A novel mixing rule was proposed for the mean activity coefficients of electrolytes
in mixtures in terms of the mean ionic activity coefficients of electrolytes in the binary
solutions. The rule is applicable to multicompone.t systems which obey Harned's
Rule. Predictions are in excellent agreement with experimental data for ternary

systems which follow the Bronsted specific ionic theory.
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RESUME

L'object principal de ce travail est I'étude thermodynamique des solutions aque-
uses des électrolytes fortes pour des systemes binaires et a composés multiples.

Une nouvelle fonction d’énergie d’excés de Gibbs représentant les déviations de
l'idéalité des solutions électrolytiques binaires a été introduite. Dans cette fonc-
tion interviennent deux termes, le premier est dii aux forces a longue distance
représentées par la théorie Debye-Hiickel et le second est relié aux forces a courte
distance représentées par le concept de composition locale. Le modele est applicable
aussi bien aux solutions diluées qu’aux solutions saturées. Les résultats obtenus sont
meilleurs que ccux obtenus par d'autres modeles surtout dans le cas des concentra-
tions élevées.

Une cellule électrochimique utilisant des électrodes & ions sélectifs (EIS) a été
construite a fin de mesurer la force électromotrice (fem) des ions dans les mélanges
électrolytiques aqueux. Pour le systeme NaCl-NaNO;-H,0, le coefficient moyen
d’activité ionique de NaCl a été calculé pour reproduire les données de la iittérature
et démontrer ainsi la validité de la procédure expérimentale. Dans cette étude des

données ont été tabulées pour les systémes suivants:

1. NaBr-NaNOQO;-H,0 (un systeme avec un ion en commun)

2. NaBr-Ca(NQOj;),-H;0 (un systeme sans ion en commun)

Une nouvelle regle des mélanges a été proposée pour déterminer le coéfficient
d’activité moyen des mélanges d'électrolytes. Cette regle est décrite en termes des
coéfficients d’activité moyen des solutions électrolytiques binaires. Elle est applicable
aux systémes multicomposés obéissant a la regle d'Harned. Les prédictions sont
en trés bon accord avec les résultats expérimentaux pour les systémes ternaires qui

obéissent a la theorie d'ions spécifique de Bronsted.
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Chapter 1

Introduction

1.1 General

Aqueous electrolyte solutions play an important role in chemical, biological and
environmental systems  Electrolyte solutions are distinct and different from non-
clectrolyte soliitions The presence of both ionic and molecular species in solution
is one of the most important aspects differentiating electrolyte svstems from non-
electrolyte mixtures According to the Arrhenius [7.8.9] theory. electrolvies partially
dissociate m a solvent with the extent of dissociation depending on the diclectric
properties of the solvent. Based on the degree of dissociation, aqueous electiolyte
solutions can be classified into three groups The first group 15 made up of strong
electrolytes such as NaCl and KOH. which nearly completely dissociate to charged
ions when dissolved in water. The second type is that of complex electrolytes such as
P04 and H,SO, which form ionic or molecular intermediates in aqueous solutions.
The final group consists of weak electrolytes, such as CO; and H,S. which form a
subset of complex electrolytes with water.

As a consequence of the presence of both ions and molecular species in clectrolyte
systems, both chemical and physical equilibria are present simultancously. A wide
variety of chemical reactions can occur in multicomponent electrolyte mixtures lead-
ing to complex solution chemistry. The study of liquid (aqueous) phase equilibria in

systems such as those found in distillation using salts as additional separation agents




or in sour water stripping are specific cases in which the solution chenustry mvolves
both chemical and physical equilibria. Other examples of this type of chenustry are
found in studies of liquid (organic)-liquid (aqueous) phase equilibria of hydrocarbon
sour water systems or in studies of liquid-liquid extraction of aqueous solutions of
metals.

One 1mportant aspect of electrolyte systems, which particularly concerns our
research, is the strong thermodynamic non-ideahty of the liquid phases This s due
to interionic and intermolecular interactions among the various 1onic and molecu-
lar species. The presence of long-range interionic forces in mixtures containing elec-
trolvtes results in high deviations from thermodynamic behavior of the ideal solutions
A theoretical study of the thermodynamic properties of electrolyte systems should
consider the contributions of at least two effects, one related to long range coulombice
forces between ions and the other short range Van der Waals type forces between
the species. The short range effects are particularly important at high concentrated
electrolyte solutions. These two forces will be discussed in Chapter 3

The study of electrolyte systems, particularly of agueons electrolyte solutions.
has a wide diversity of applications i chemical, environmental. and biological idus-
tries. In an academic sense one can classify the applications of electrolyte sy stems
according to the physical equilibria mvolved, r.e . Vapor-Liqud Eqmbibna (VLE),
Liquid-Liquid Equilibria (LLE) and Liquid-Sohd equilibna (LSE) For instance, NaOH
scrubbing technology for the removal of sulfur compounds and carbon dioxide from
process gas streams is one case of VLE which is important in preventing acid rain
problems. Similarly the study of the vapor-lhiquid equlibria of the NH; CO, H,0
systems is industrially important for accurate design of sour-water strippers

Most recently, interest has been focused on the effects of electrolyvtes in two liquid
phase systems used in biological separations. It has been found that inorganic salts
such as Na,SOy, MgSO,, K;PO, and even certamn uni-univalent salts such as NaCl
are important in the formation of such two-phase aqueons systems [3.29] The mam
advantage of this technique is the use of two aqueous phases making 1t possible to
control the partitioning of biological substances between the two phases. It bas been
also observed that eclectrolytes have an important effect in separation of organelles,

enzymes, proteins and other substances, from biological mixtures using membranes




or gels.

Liquid Solid equilibria systems involving electrolytes are to be found in the
following processes: sea water desalination, corrosion, crystallization processes in ge-
ological systems (geothermal brines or drilling muds), ion exchange, hydrometallurgy
of ores, electro- metallurgical extraction and refining of metals. The list of industrial
problems which would benefit from a better understanding of electrolyte solutions is
virtually endless. We have quoted a few examples here for the purpose of showing

the variety of fields in which the effect of electrolytes is important.

1.2 Thermodynamic Properties of Electrolyte
Solutions

The current state of the thermodynamic knowledge of aqueous electrolyte solutions
is the result of the almost one century of research. Among the thermodynamic
properties of aqueous electrolyte solutions, the Gibbs free energy and related functions
such as heats of mixing, mean activity coefficient or osmotic coefficient are particularly
important. Other properties such as the equilibrium constants of reactions and heat
capaaties are also of some interest. These thermodynamic properties are useful in
process design. For example, data on the vapor-liquid equilibria of the Mg(NQO3);-
HNO;-H,0 systems are necessary for column design in the extractive separation
of nitric acid. In this process, the HNQ3-H,O azeotrope can be broken by adding
Mg(NQ;), salt to the liquid solution [124]. This type of phenomenon is referred
to as salting-in and salting-out effects in distillation operations [19,51,52]. Furter
has presented excellent reviews of the eflects of salts in distillation [50,53]. In the
thermodynamic modelling of gels, used in separation of biological compounds, one
needs a knowledge of the osmotic coefficients in order to estimate the effect of osmotic
pressure in the swelling behavior of the gels [129].

Experimental thermodynamic studies of aqueous solutions of electrolytes involve
measurements of mean activity coefficients of the electrolytes and the osmotic coeffi-
cient of the solvent. In relation to this thesis it is interesting to mention that almost
all experimental data in literature belong to single salt aqueous mixtures or to ternary

electrolyte solutions containing two salts with a common ion {63,64,116]. In addition,
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most of the experimental data collected on ternary systems are activity or osmotic
pressure of the solvent. Individual measurements of the mean activity coeflicients of
salts are rarely reported. For examnple, the mean ionic activity coefficients of NaCl
and KCl with common anion [23] or NaNO; and NaCl with common cation [83] have
been reported but, to the best of this author’s knowledge, the measurements of activ-
ity coefficients for KCl and NaNQO; (without a common ion) have not been reported
and only the osmotic coefficient of water has been measured for this system [12].
Experimental techniques will be discussed in Chapter 5. With respect to modelling,
the original theories of electrolyte solutions go back to Svante Arrhenius [8] who first
suggested that chemical equilibria between ions and undissociated molecular species
exists in electrolyte solutions [7]. Studies of these mixtures have provided an in-
teresting field of research for scientists, since electrolyte solutions exhibit appreciable
deviations from ideality even at room tempe:ature and atmospheric pressure. In 1923
Debye and Hiickel [40] proposed a theory to predict the activity coefficients of ions
in very dilute solutions. This theory is based on the consideration of electrostatic in-
teractions between ions in a continuum dielectric medium. The Debye-Hiickel theory

and other models will be discussed in Chapter 3.

1.3 Objectives of the Research

Most theories or models for the correlation of thermodynamic properties of aqueous
electrolyte solutions, such as mean ionic activity coefficients and osmiotic coefficients,
are limited to low concentrations of the electrolytes. The majority are for single elec-
trolytes in water at concentrations below six molal. Most existing thermodynamic
models are unable to correlate solution properties at all concentrations up to satu-
ration. On the other hand, experimental data for multicomponent aqueous solutions
are confined to ternary systems with a common ion. The few measurements which
have been reported for solutions without a common ion are for csmotic coeflicient
calculated from measurements of the activity of water. Therefore the objectives of

this research in both theoretical and experimental fields are as follows:

I -To develop a model to correlate mean ionic activity coefficients in binary elec-

trolyte solutions over a wide range of concentration and temperature and to



compare the proposed model with resuits obtained with existing models.

II -To attempt the prediction of mean activity coeflicients in multi-component

clectrolyte solutions from binary data alone.

IIT -To design and develop an experimental technique to measure the mean activ-
ity coeflicients of electrolytes in ternary electrolyte mixtures with or without

common ion.

IV -To measure the mean activity coefficients of the salts in the following three

representative systems

1. NaCl-NaNQ;3-H,0 (a system for reproducibility of the literature data)
2. NaBr-NaNO;-H;0 (a system with a common ion)

3. NaBr-Ca(NOj;),-H20 (a system with no-common ion)

1.4 Presentation of the Thesis

The thermodynamics of electrolyte solutions is introduced in Chapter 2. In Chapter 3,
the Debye-Huckel theory and other selected thermodynamic models are reviewed.
In Chapter 4, a Non-Random Factor (NRF) model for the excess Gibbs energy of
electrolyte solutions is presented. The equations for mean activity coeflicients of
clectrolytes and ions in the binary solutions are discussed. The model is tested and
compared against those of Pitzer, Bromley, Meissner and Chen. In Chapter 5, lon
Selective Electrode (ISE) techniques to measure the mean ionic activity coefficients
of electrolytes in multicomponent electrolyte systems are reviewed in detail. Chap-
ter 6 contains a description of experimental apparata and the procedures to measure
mean ionic activity coeflicients of electrolytes in ternary aqueous systems. Chapter 7
presents experimental results and reduced data for the following three ternary sys-
tems: NaCl-NaNO3;-H,0, NaBr-NaNO3-H,0, and NaBr-Ca(NQO3),-H,0. In Chap-
ter 8, a new mixing rule to predict mean activity coefficients of electrolytes in mul-
ticomponent electrolyte mixtures is presented. Finally, in Chapter 9, original contri-

butions and suggestions for further work are summarized.




Chapter 2

Thermodynamics of Electrolyte
Solutions

2.1 Introduction

The physico-chemical state of an electrolyte in a solvent depends on the dielectric
constant of the solvent. Generally, the dissociation of an electrolyte, CA, in a solvent

may be stated as follows:
Co A = v,C + v A7 (2.1)

where v, and v_ are stoichiometric numbers of cation C** and anion A*~, re:pec-
tively, and z* and 2~ are the corresponding charge numbers. In a mixtureof a solvent
of molecular weight M and a binary electrolyte at molality m, the mole fraction of

the salt, S, and ions can be expressed as follows,

m

TS = m + 1000/ M (22)
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_ o tam 2.3
TC = Um + 1000/M (23)

v.m
. v-m 2.4
TA = ym + 1000/M (24)

where the stoichiometric number of the salt is,
v=wvi+r_ (2.5)

Equations (2.3) and (2.4) assume tctal dissociation of the salt and the following
relation can be written between mole fraction of salt, zg, and mole fraction of the

solvent (water).
vrs +zw =1

In this chapter, the chemical potential of electrolytes in terms of mean ionic
activity coeflicients and mean activity coefficient of a salt in different scales will
be reviewed. Finally, the Gibbs-Duhem equation for binary aqueous solutions and

expressions for the osmotic coefficient will be summarized.

2.2 The Chemical Potential and the Activity of
Electrolytes

For an open phase in which matter is able to enter or leave, and where surface and

force fields effects are negligible, differential Gibbs energy can be written as

dG = -S dT +VdP + ) _p,dn, (2.6)
J

where S and V are the entropy and volume of the system and n, denotes the number
of moles of species j present in the phase. At constant temperature and pressure, the

chemical potential of species 1 is given by,




oG
B = (%)T.P,n,,. (2.7)

The right hand side of equation (2.7) shows that the chemical potential is the partial
molar property of the Gibbs energy with respect to species:. The partial molar Gibbs
energy can not be measured directly. Thus, the definition of the activity a, of species

¢ in a solution provides a convenient way to express its chemical potential:

a,

p = pd + RT In(=5) (2.8)

Following the nomenclature of Stokes [125], the superscript @ denotes an arbitrarily
chosen standard state for the component ¢ at the temperature of the system T and
ul is the standard chemical potential of ¢ at T. It is conventional to choose the
standard state so that the corresponding standard activity @’ is unity to obtain a

simpler relation:
o = pf + RT Inag, (2.9)

The activity a, of species ¢ can also be expressed in terms of its fugacity.

_h

- F (2.10)

a,

where f? is the standard fugacity for the component i at the given temperature.

In aqueous electrolyte solutions, the electrolyte usually dissociates into ionic
species, and it thus is convenient to develop thermodynamic equations for the ionic
species. However, a standard state which recognizes the ionic character of the solution
is required. This raises a problem which can not be solved experimentally because
according to eq. (2.7), the physical operation, in which one can add to the solutions
ions ¢ only, can not be carried out. Thus, only an electrolyte solution with a balanced
amount of negative charges and positive charges can be treated Nevertheless, in

principle, the chemical potential of an electrolyte theoretically can be expressed as a
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function of its constituents.

For aqueous solutions the activity of a salt can be expressed in terms of different
concentration scales such as molality (m), molarity (c), and mole fractions (z). The
most commonly used concentration scale in aqueous electrolyte thermodynamics is
the molality, i.e., moles per 1000g of solvent. The molality of a stable mixture does
not change with temperature and pressure variations unless a phase change occurs.
For ions the arbitrarily chosen standard state for the activity of species i is the
hypothetical ideal solution of unit molality of the ion i. The ideal solution is chosen
such that the ratio 7= tends to unity as the molality approaches zero. This ratio can
be defined as the molal activity coeflicient 4,:

a,

"= (a, =vm,) ;7 —=1 when m, =0 (2.11)

and using eq. (2.11), eq. (2.9) takes the form

m =’ + RTIn (yym,) _ (2.12)
combining eqs (2.10) and (2.11), fugacity of species i becomes

fo=rm,f} (2.13)

However, eq. (2.13) is not conventional because the fugacity is usually expressed

using a mole fraction sc~le. One can also define the chemical potential in terms of

the mole fraction scale,
= pi + RT In(z,7") (2.14)

where 7'(1) denotes the rational or mole fraction activity coefficient of species ;. The

conventional fugacity of species 7 is then expressed as:




fi= 752)1'1./-: (2.15)

where f is the fugacity standard state of species 7. In this case, the ideal solution
is chosen such that the ratio = tends to unity as the mole function approaches zero.
Thus, 7,(’) — 1 when z, — 0. The standard state fugacity corresponds to unit mole

fraction of the ideal solution.

2.3 Mean Ionic Activity Coefficient

As discussed above, the thermodynamic properties for individual ionic species can
not be obtained separately and must be measured for the electrolyte as whole. Con-
sidering the chemical reaction, i.e., eq. (2.1), the following electroneutrality relation

is valid for a binary electrolyte solution.

veZt+v.Z27 =0 (2.16)
The chemical potential of salt S can be written as:

ps = vipy +vop- (2.17)

where p, and p_ are the chemical potential of the cation and the anion, respectively.

Using eq. (2.9) for both anion and cation:
py =pS + RTInay (2.18)
p-=p® + RTna_ (2.19)
Replacing eqs (2.18) and (2.19) in eq. (2.17):

ps = ps + RT In(ata’) (2.20)

10




where
ug = vipl + vopl (2.21)

According to Lewis and Randall [85], the equilibrium constant of reaction (2.1) using

eq. (2.11), can be written as

ata _ (mPyi)(miaY) (2.22)
as as .

K =

If the standard states for the ions are chosen such that there would be no difference
in the standard free energies of dissociated and undissociated forms, then K is unity

and the activity of the salt S can be found as [85]:

as = ayta” = (mPmI) (it (2.23)
where my = v, m and m_ = v_m. The mean ionic activity coefficient is then defined
as

1 = (W)Y (2.24)

and eq. (2.23) takes the following form.

as = (V3" ymay | (2.25)
Thus, the mean activity of salt S can be written as

ay = (Vi) myy (2.26)

Replacing eq. (2.25) in eq. (2.20), the chemical potential of the salt, S, in terms of

the mean ionic activity coefficient can be expressed as

11




ps = u® + RT In(v* v*~) + vRT In(mvz) (2.27)

or

p=p"+vRT In(myy) (2.28)

The mean activity coefficient, 44, is based on the molality scale. However, as men-
tioned in the previous section, the activity coefficient of electrolytes can also be
expressed in terms of mole fraction (z), or in terms of molarity (¢). According to
Robinson and Stokes [116], the relations between various mean activity coeflicients

are summarized as follows:

¥ = 41 + 0.0010 Mm) (2.29)
(m) C (o) ‘

2.30

= ps’)’i (2.30)

where 'yf) and 7(;) are the rational and molarity mean activity cocflicient, respectively

and p, is the density of the pure solvent.

2.4 The Solvent Chemical Potential and the
Osmotic Coefficient

In aqueous electrolyte solutions we are concerned with activity of water, ayy. The

chemical potential of water in terms of activity of water can be presented as:
pw = pd + RT Inay (2.31)

where the standard state is the pure water at the same temperature and pressure of
the solution. Hence for pure water, the activity is unity. The activity or the activity
coeflicient of water are not very sensitive quantities in dilute aqueous solutions. In

order to exaggerate the deviations from ideality of the water, it is convenient to

12
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express the activity of water using the osmotic coefficient. For a multicomponent

clectrolyte solution with a solvent of molecular weight Af, the osmotic coefficient is

defined as follows

—1000 In aw (2 32)

¢==3 )z, v,m,

where v, is the stoickiometric number of thesalt 7. In asense the osmotic coefficient is
analogous to the compressibility factor. As the real solution behavior tends towards
ideal, the osmotic coefficient tends to unity. Following Pitzer [104], the osmotic

coefficient of a mixed electrolyte solution can be written as

_ 9G=[INw

RT ¥, m, (2:33)

¢=1

where Nyy is the number of kilograms of water. Equation (2.33) can also be expressed

in terms of the activity coeflicient of water in a binary electrolyte solution.

=1~ % In v (2.34)
S

where ng is the number of moles of salt and ny is the number of moles of water.

2.5 The Gibbs-Duhem Equation for Binary
Aqueous Electrolyte Solutions

For a binary aqueous solution, the Gibbs-Duhem equation at constant temperature

and neglecting the cffect of the pressure can be written as
nsdus + nwduw = 0 (2.35)

The chemical potential of both salt and water can be expressed by means of rational

(mole fraction) activity coeflicients so that eq. (2.35) is written as:

13
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vzsdny$ + rwdinAE = 0 2.36)

Alternatively, using molal mean activity coefficients, the following forms of Gibbs-

Duhem equation are obtained.

vmdln (mys) + (%)dln aw =0 (2.37)
or

vmdlnyy + }%%len w + vdm =0 (2.38)
Using eqn.(2.32), eqn.(2.37) can be written as:

vmdln(myg) = --(l%)dln aw = vd(me) (2.39)

By manipulation of eq. (2.39), the osmotic coeficient can be expressed in terms of

the mean ionic activity coefficient:
1 m
p=1+ —/ mdln vy (2.10)
m Jo

conversely, given the osmotic coefficient the mean activity coefficient can be obtained

by integration of eq. (2.39).

—ln'yi:(l—é)—/om @—r;-.—-l—)-dm (2.41)

Equations (2.40) and (2.41) are useful in experimental determination of mean ionic

activity coeflicients using isopiestic techniques (Chapter 5).

14
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2.6 Synopsis

In this chapter the basic equations and definitions of the thermodynamics of elec-
trolytes solutions, particularly aqueous solutions, were reviewed. The chemical po-
tential and standard states using different concentration scales were discussed. Ex-
pressions for the chemical potential of electrolytes in binary solutions in terms of
mean ionic activity coefficients and the Gibbs-Duhem equation for binary aqueous
electrolyte solutions were presented. Finally, the definition of the practical osmotic
coefficient was introduced and, using Gibbs-Duhem equation, the relations between

mean ionic activity coefficient and osmotic coefficient were shown.
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Chapter 3

Some Models for the Mean Ionic
Activity Coeflicient of Electrolytes in
Aqueous Solutions

3.1 Introduction

The concept of activity coefficient needs a clear definition and is meaningful only when
a reference solution has been chosen. It 1s useful to distinguish between molecular
activity coefficients and ionic activity coeflicients. The 10onic activity coefficient can
be defined for diflerent compositions scales as me-tioned in Chapter 2, 1.¢, molality
(m), mole fraction (x) or molarity (c) [73,116,136]. When ionic or molecular activity
coeflicients are used it is important to state the composition scale in use. Relation-
ships between the various activity coefficients are given in Chapter 2 The difference
in numerical values among different scale mean ionic activity coefficients appears for

solutions with molarities higher than about 0.1 mole/l. At infinite dilution:

% = % 0

Iny™ = =1n7) =0 when z°=m

16




From here on we will use 74 for the molality mean ionic activity coefficient and 7;(:)

for mole fraction or rational mean ionic activity coefficient.

The mean ionic activity coefficient is not a measurable quantity but it can be
directly calculated from electromotive force measurements, particularly at low con-
centration. For high concentrations, the mean activity coefficient has traditionally
been obtained by isopiestic methods [100,116], or from freezing point data using the

following equation [73]:

AH; 1 1. ACp T, ACp, T,

In(mgvs) = T('f— THT “('7‘1:)‘*' 7 (T - 1) (3.1)

where AT = T, - T is the freezing-point depression; AH? is the heat of fusion and
ACp is the heat capacity difference between the liquid and the solid phases. Some
experimental techniques for the measurement of the mean ionic activity coefficients
will be discussed further in Chapter 5.

After the Arrhenius [7,8,9] theory of electrolytic dissociation of electrolytes, De-
bye and Hiickel [40] proposed a theory of ionic interactions which has been recognized
as the limiting law for the mean ionic activity coefficient of strong electrolytes at very

dilute solutions. The limiting law is expressed as
Inve = —AZ*Z~VI (3.2)

where A is the Debye-Hiickel constant and I is the ionic strength of the solution

introduced by Lewis and Randall [85]. The ionic strength is evaluated as follows
1 2
I = EZm,Z, (3’3)

where m, and Z, are molality and charge number of ion i, respectively.

In this chapter, the effects of long and short range forces are discussed. In
particular, the Debye—Hiickel theory and its basic aspects are examnined. Finally, for
binary aqueous electrolyte solutions, some previous models and their shortcomings

arc analyzed.

17




3.2 Long and Short Range Forces

In the development of thermodynamic models for electrolyte solutions one should
consider at least two effects, one related to long range forces between ionic species
and the other to short range forces between molecule-molecule and molecule-ion
species [65,71,73]. The long range forces are electrostatic in nature and are inversely
proportional to the square of the separation distance between particles. These forces
have a much greater range of interaction than other forces and thus. they are referred
to as long-range forces. Short range intermolecular forces such as Lenard-Jones
interaction forces usually depend cn the reciprocal distance to a power seven or
higher. The repulsive forces only act at very short distances and thus they are
considered as short-range forces. Chemical and hydrogen bonds may be treated as
short range forces in some cases [81]. The ion-molecule interactions are dominated by
the electrostatic forces between permanent dipoles and ions which also can be treated
as short range forces in nature [81]. Other forces such as induction forces, dispersion
forces and chemical forces are generally also referred to as short range forces [71].

The thermodynamic and physical properties of aqueous electrolyte solutions
depend on both types of forces. The relative importance of each type depends on the
concentration of salt. In concentrated solutions short range forces dominate while
in the dilute solutions long-range forces control the thermodynamic behavior of the
solution.

Perhaps the most important aspects of aqueous electrolyte solutions are the
structure of water and the interaction of ions with water molecules. In fact, “the
nature of the water-water interactions, the life time of distinguishable species of
water molecules, and the fraction of hydrogen-bonded structures in the liquid water
still await clarification ™ [46]. Many postulates have been proposed 1o explain the
nature of intermolecular forces in aqueous solutions; however further discussion of
this subject is out of the scope of the present research. Additional details may be

found in several references [46,71,81,109].
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3.3 The Debye—Huckel Theory

A theoretical model for completely dissociated electrolytes in water was developed by
Debye and Hiickel in 1923 [40]. This model is considered to be one of the cornerstones
of our knowledge of the thermodynamic properties of electrolyte solutions. It has
been thoroughly analyzed and discussed by many researchers with different levels
of sophistication. A detailed account of the theory can be found in the literature
[84,85,116,136]). This model is strictly applicable to very low concentrations up to
molalities of the order of 0.01 of electrolyte in water. The Debye-Hiickel theory
is also referred to as the ion-cloud model, because the ions are considered to be
distributed in a continuous dielectric media The basic assumptions introduced in

the development of the theory are as follows,

1. The electrolyte solution is treated as if only anions and cations exist in the

solution.

2. A primitive model is applied, in which the ions are regarded as charged hard
spheres and the solvent is replaced by a dielectric continuum with dielectric
constant. D, through the whole medium. According to the primitive model, the
direct potential i,, between ions 2 and j of charges Z,e and Z,e, separated by

a distance r,,, is given by

_ Z,ZJe2

Dr, (ry, 2 a) (3.4)

d)u
Yy, =00 (r, <a)

3. Only long range electrostatic interactions are considered in the development of
the theory. The short range interactions between water molecules and ionic

species are ignored.

4. An ion is arbitrary chosen to be the central ionic species, surrounded by an
ion cloud. The variation of the excess charge density with distance r from
this central or reference ion is then considered. The charge of the cloud of

ions contributes a total charge equal to that of the central ion but of opposite
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i sign. Thus the solution is considered as a collection of central ions with their

respective ion clouds.

5. The distribution function for the cloud ions around the central ion is assumed

to be of the Boltzmann distribution form:

Zie,,(r) ‘
gy (r) = ez‘p(—';k—Tl—) (3.5)
Where Z, is the charge number of ion 2 in ion cloud and & is the Boltzmann
constant. The dependence of the total electric potential on the charge dis-
tribution is expressed by Poisson’s equation of electrostatics which relates the
time-averaged charge density p,(r) and electrostatic potential ¥, (r) for any dis-

tance r from the central ion of type j. Thus, the electrostatic potential, (),

can be derived by using of Poisson’s law and considering only the first two terms

of the Taylor’s expansion of the exponential term of Boltzmann distribution.

Finally, the molar electrical Gibbs-energy can be obtained as [116],

N°Z%?
ex . _ J . 6
9; 2D 1+ ka (3.6)
where
2 - 47"62271,2,2 (3 7)

DkT

The constant a is the radius of the hard sphere core. The quantity & is sometimes de-
scribed as the reciprocal thickness of the ionic atmosphere and it can be approximated
by

1/2
- 8 ps
K = 50.2916 x 10 W\ﬁ (3.8)

where I is the ionic strength as defined by eq. (3.3) and ps is the density of the
solvent. The activity coefficient of ion j can be obtained by using eq (3.6) and the

definition of the chemical potential. Then,
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- — 3.9
1+ Bavi (39)

In~,

where

e [2mp,No 42013 x 105912 3.10
4= DkT) 1000 (TD)3/? (3.10)

and

e 87rN°p,)1/2 _50.029 x 10851/

(kTD)‘/z( 1000 - (TD)/? (3.11)

B =
The values of A and § at T=298.15K and D=78.3 (dielectric constant of water) are

A = 0.51081n10 = 1.1762 kg'*mole="/?
B = 0.3287 x 10° kg'/*mole~'*cm™!

The size of the ion, a, has been reported by several investigators [73] and for most
ions is close to a value of 4 angstroms. For cations such as H* and Na* values of
6 and 5 angstroms, respectively, have been reported. However, in most treatments

the product of Sa is considered as an adjustable parameter, B, with a value using

1/2 -1/2

between 1 to 2 kg'/*mole

Finally, using the definition of the mean ionic activity coeflicient,
vinys = vilny + volny. (2.24)

and eq. (3.9), the mean ionic activity coefficient can be obtained as

—A|Z+Z-|VI
1 = 3.12
(Inv+)pu 1 BVI (3.12)

21




.

Alternatively, as shown by Robinson and Stokes [116], following the charging
process approach of Fowler and Guggenheim [45], the molar excess Gibbs energy of

an individual single ion of species j can be obtained as,

ez Nee?Z? 5.kT o
5 =" J 1+ ka 247:N°a3( a)0(xa) (3.13)
with
o(ka) = —i—[1+na— 1 —2In(1 + xa)] (3.14)
(k@ )? 1+ ka 3.

The activity coefficient of ionic species j derived from eq. (3.13) has the following

form.

21262 K + v,
2DEkT 1 + ka 24rNeag 3

(Inv)pn = — (ka)’o(ka) (3.15)

As discussed by Robinson and Stokes [116], the second term of the right-hand
side of eq. (3.15) is negligible at all concentrations of the electrolyte other than the
extremely dilute solution <o that eq. (3.15) is simplified to eq. (3.9). In addition,
when the ions are assumed to be point charges, i.e, £.=0, eq. (3.9) is simplified to
eq.(3.1) which is the limiting ionic activity coefficient at extremely dilute solutions.

Pitzer used mole fraction as the measure of composition. The form obtained by
Pitzer [101] was derived using pressure equation of statistical mechanics. The final

equation for the electrostatic excess Gibbs energyv is

Gez el

(X 1000)1,2 4-’:)¢Iz)]n(l+p[}_/2) (3.16)

s

where the sum includes all species, neutral as well as ions. Here, n; is the number
of moles of species k, M is the molecular weight of the solvent and I, 1s the ionic

strength of the solution on a mole fraction basis,
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= 5 Z Z,z.’l,‘l (3.17)

1 27 N°pw

o= STy E o (3.18)

DkT

The parameter p is related to the closest approach of ions, i.e, the sum of their
effective radii in solution, but increased by the factor (1302)!/2 from the parameter B
used on the molality basis. The derivative of G** yields the activity coefficient of any

species.

211/2 213/2
— (300 )1724 [ 1n(1+p11/2)+ Z,

— v (3.19)

In+, =

In the case of uni-univalent salts, using eq. (3.19), the mean ionic activity coefficient

of the salt can be obtained as

l _ 500 1/2 4 In(1 L1 x;/z_xg/z 3.90
n‘yi-——(M) ¢{— n( +21/2 2 )+1+21/2 772 (3.20)

where z, is mole fraction of the salt. Pitzer [101] obtained a value of 1.2 for B which
converted by the factor (1_1@“__000)1/2 yields 8.94 on a mole fraction basis. However Pitzer
proposed a value of 14.9 for closest approach which is approximately constant for a
wide variety of salts.

Several investigators have criticized the Debye-Hiickel theory [85,112,113,116].
The major problem in the theory is the use of Boltzmann law for the radial distribu-
tion function, 1.e, the distribution of ions around a central ion, and “the Boltzmann
law can only be applied rigorously to non-interaction particles or to particles that
interact solely through elastic collision which do not affect the free energy of the
system.” {113] The theory is liuited to very low concentrations, since short range
forces are neglected. At higher concentrations attractive short range forces and even
repulsive shorter range forces become important. Another shortcoming of the theory

arises from the assumption that the hard-core diameter is the same for all ions in
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the solution. Furthermore, the theory treats water as a continuous medium in which
the dielectric behavior is constant for whole range of concentration. It was shown by
Hasted et al. [69] that due to the changing of the dipole moment of water and the
saturation of dielectric in the neighborhood of an ion, the dielectric constant of water

decreases upon increasing the concentration of the electrolyte.

3.4 Debye-Huckel Expressions for the Water
Activity and the Osmotic Coefficient

The Debye-Hiickel expression for the activity of water in a binary aqueous sulution

can be obtained using the Gibbs-Duhem eq. (2.36) as {ollows,

1000
M

In(aw)pn = L'm+/ vmd(Invy) (3.21)
0
using Debye-Hiickel expression, eq. (3.12), equation (3.21) can be rearranged as,

—vmM AM 1 Vi p
1000 ' 1000 Jo (1 + BVT)?

—_
-
o
o

~

(lﬂ aw)DH =

Integrating eq. (3.22),

—-vmM
1000

(Inaw)pn =
24N (1 + BVI ~21n(1 + BVT) - ) (3.23)

Equation (3.23) gives the Debye-Hiickel activity of water. The activity coefficient of

water (aw = Ywaw) can be readily obtained as

In(yw)py = (2351[1 +BVT —2In(1 + BVI) — 41+

In(1 4 ¥nb)_ umM (3.24)
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By expanding the second term and neglecting the higher order terms of the expanded

equation, at high dilution eq. (3.24) takes the following form.

1

The osmotic coefficient of water can be obtained by one of eqs (2.32), (2.33)
and (2.34). For simplicity, eq. (3.25) is substituted in eq. (2.34) and the following
equation is obtained.

Z+Z-A 1
— BVI—2In(1+ B 3.26
doar = 1= 57— (1 + BVI = 2In(1 + BVI) - TTB/T (3.26)

3.5 Models for Aqueous Electrolyte Solutions

Since the introduction of the Debye-Hiickel theory for dilute solutions, there have been
many attempts to reproduce the behavior of mixtures of higher molalities; Maurer
[89] and Renon [114] have reviewed developments up to 1986. Generally, it is possible

to group existing models into three categories:
1. Models based on direct extensions of the Debye-Hiickel equation.
2. Models based on statistical molecular thermodynamics.
3. Models based on the local composition concept.

Although not comprehensive, this simple classification allows a systematic pattern
in the study of models. However, the possibility that in the near future local com-
positions may be evaluated from pair correlation functions and used to extend the
Debye-Hiickel theory can not be ignored. It should be noted that all models in-
cluded in these three classes reduce to the Debye-Hiickel expression 1s the solution

approaches infinite dilution.

3.5.1 Direct Extensions of the Debye—Hiickel expression

The Debye Hiichel theory takes into account only long range electrostatic forces which

dominate only in very dilute solutions. Semi-empirical models developed for the
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mean activity coefficient by many investigators normally retain the Debye Hickel
expression as the leading term. Among these models we may include the specific
ionic interaction model of Guggenheim [58], the one-parameter model of Bromley
[20], the graphical correlation of Meissner [92,93], and the hydration model of Stokes
and Robinson [126,127].

Following the specific ion interaction approach of Bronsted [21], 1.e, considering
that only ions of opposite sign interact, Guggenheim proposed a simple equation for
the mean ionic activity coeflicient of an electrolyte which consists of cation “¢” and

anion “a” as,

()
In Ttea = (ln 7i:ca)DH +— + v Z Bca’ma’ + z B allle (327)
vy

where B+ and B, are called the specific ion interaction coefficients which cxpress
the contribution of the short range interactions. Some simple relations [38,39] for
these coefficients have been proposed for binary aqueous electrolyte solutions and
they are applicable up to molality 0.1. However, these coeflicients are usually treated
as adjustable parameters.

Bromley [20] proposed an empirical model which is simple and applicable to
single strong electrolyte solutions up to an ionic strength of six. The model has one
adjustable parameter which is correlated to two cationic and anionic parameters with

a cation-anion combination. He proposed an equation of the following form.

log v+ = (logvx)pw + B2l (3.28)

where

(0.06 + 0.6 B)|Z*+Z |
(1 + rz—%:f[y

and B is the only adjustable parameter .
Meissner and Kusik [92,93] proposed a method in which they defined a quantity,

I, the reduced activity coefficient as,

26




“

I = /77 (3.30)

Plotting I' versus the ionic strength allows one to construct a family of curves in
which, by having one value of 74 above the Debye-Hiickel concentration range, the
mean ionic activity coefficient for any concentration could be predicted. This model
is applicable for temperatures higher than 25 C° and can fit the mean ionic activity
coefficient data up to an ionic strength of six.

Experimental evidence reveals that the interaction of water molecules with ionic
species depends on the size and charge of the ions. Based on ionic hydration consid-
erations, Stokes and Robinson [127] proposed a model which describes the behavior
of many strong electrolyte solutions in the range of low to medium concentrations.
A limitation of this model was the use of fixed hydration number, i.e, the number of
water molecules associated with a given ion at all concentration of salt. After, Stokes
and Robinson [126] modified their model by allowing ions to be partially hydrolyzed
through successive thermodynamic constants for n, n+1, ...etc water molecules per
ion. Thus by decreasing hydration number with increasing concentration allows a fit

of experimental mean activity coefficient of LiBr up to a molality of twenty.

3.5.2 Models Based on Statistical Molecular
Thermodynamics

Models based on molecular thermodynamic approaches have been widely used to
predic mean activity and osmotic coefficients of aqueous electrolyte solutions above
Debye-Hiickel himit. According to Lee et al. [84], using molecular thermodynam-
ics there are two approacnes, other than experiments, for obtaining the structure
of fluids: 1) computer simulation using Monte Carlo (MC) or Molecular Dynamics
(MD) methods and 2) integral equations such as the Percus-Yevick (PY) and the
Hyper-Netted Chain (HNC) equations. Using these two approaches, there are two
kinds of statistical mechanical models in which electrolyte solutions can be treated.
First, the McMillan-Mayer [48,91] type of models which approximate the solvent as
continuum dielectric media and only consider the interaction of ionic species. Thus,
Debye-Hiickel theory is a special case of McMillan-Mayer models. Second, Born-

Oppenheimer type of models [48] in which the solvent species as well as the ionic
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species appear explicitly in the solution.

Based on the McMillan-Mayer theory, Monte-Carlo techniques were used to
study the primitive model of an ionic solution by Card et al. {28]. The prediction
of osmotic and mean activity coefficients of single uni-univalent electrolyte aqueous
solutions were obtained in the range 0.01-2 m.

Kondo et al. [79] developed expressions using statistical mechanics for activity
and osmotic pressures for electrolyte solutions. They proposed Coulombic and hard-
sphere terms (primitive model) for ionic interactions potentials and a square-well
term was introduced to take care of the solvent interaction potentials. By taking the
depth of the square-well as a adjustable parameter, the model was applicable up to
jonic strength of three.

Integral equations based on correlation functions have been widely used for the
prediction of thermodynamic properties of electrolyte solutions from a knowledge
of pair potentials. One key development in the integral equation method has been
the use of Mean Spherical Approximation (MSA). Application of mtegral equations
such as the HNC and PY are lirrited by lack of an accurate analytical expression for
the correlation functions. From a statistical mechanical point of view, in otder to
determine the molar Helinholtz free energy as a function of intersive properties ('T,p)
one needs to specify both the total h(r) and the direct ¢(r) correlation functions.

These correlation functions are defined as,
h(ri2) = g(r12) - 1 (3.31)
h(ri2) = ¢ (r2) + P/drsc(f‘m)h(rzn) (3.32)

where g(r;7) is the radial distribution or pair correlation function. Equation (3.32)
is called Ornstein-Zernike [94] equation. As it is evident from eqgs (3.31) and (3.32),
in order to determine the radial distribution function, one needs to have explicit

expressions for both h(r;,) and ¢(ry2). The MSA is an approximation which assumes
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the following forms for these functions.

h(riz) =—1  for r3<o, (¢(r12) = o00) (3.33)
e(ri2) = "i‘{’f’) for ri2>0, (r— o) (3.34)
where

Here o,; is the closest distance of approach for the pair and ,,(r) is the electrostatic

interactive potential

e*Z,7
w’](r) = ND r :

Lebowitz and Percus [82], based on the integral equation theory of Percus and
Yevick [97], proposed the use of MSA for lattice gases (neutral molecules) with ex-
tended hard cores. Waisman and Lebowitz [133,132] and Blum [16,17,18] ,using
MSA, developed and solved exact analytical solutions for a primitive model (charged
spheres) of electrolyte solutions.

There are other models such as the fluctuation theory which was proposed by
Kirkwood and Buff [77] and further developed by Cabezas et al. [26] and by Perry
et al. [98] using MSA for strong electrolyte solutions. Copeman [33] developed a
perturbed hard-sphere equation of state for solutions containing an electrolyte. The
equation consists of hard-sphere, electrostatic and attractive contributions to the
Helmbholtz free energy. Planche and Renon {99] and Ball et al. [10] also developed a
semiempirical expression for the Helmholtz energy of mixed electrolyte solutions in
solvent mixtures. This expression is obtained from the solution of MSA by introducing
the consideration of short-range (Dirac) forces. Copeman and Stein [34] developed
an explicit non-equal diameter MSA model for electrolytes. The predicted internal

cnergy of the electrolyte solutions were compared with those of Blum for ion sizes

29




up to 3A°. Harvey et al. [69] alsc developed a MSA solution based on a linear
mixing rule for a single effective ion size and a low-ion—density approximation due to
Copeman and Stein [34]. The results obtained for aqueous electrolyte solutions, using
the primitive model, are comparable with published Monte Carlo data. Anderson
and Chandler [5,6] developed the exponential MSA (EXP-MSA) which was used by
Gering et al. [55] to determine the thermodynamic properties of electrolyte solutions
as a function of composition and temperature for binary and mixed-salt solutions at
high electrolyte concentrations. In most electrolyte theories using MSA, the diameter
of ionic species or sometimes diameter of water is used as an adjustable parameter
to fit osmotic or mean activity coeflicients of electrolyte solutions.

Following the McMillan-Mayer solution theory, Pitzer [105], in a sermempirical
way, introduced a virial expansion to complement the Debye-lHiickel term in the

expression of the excess Gibbs energy of electrolyte solutions

G** .
= for(D)+ 303 (I mam, + 30303 popmemymy (3.35)
anT , P s R

where fpy(I) is an electrostatic Debye—Hiickel osmotic terra which is obtained by
substituting th= Debye-Hiicke! radial distribution function in the pressure equation
of statistical mechanics. The parameter A,,(I) 1s a binary short-range interaction
term which is dependent on the ionic strength and u, is a teraary short-range
interaction term which is independent of ionic strength. From eq (3.35) the osmotic
coefficient, ¢, and mean ionic activity coefficient, v, expressions have been obtained
[102,103,104,106,107]. The Pitzer model has been widely used to predict ¢ and 4

for aqueous electrolyte mixtures and is applicabl. up to a molality of six

3.5.3 Models Based on the Local Composition Concept

The third class of models use empirical expressions to express the effect of local
composition. As do other models for electrolyte solutions. models of this class recog-
nize the existence of both long-range and short-range forces in electrolyte solutions.
The ion-ion interactions are long-range forces that are determinant on the behav-

ior of dilute electrolyte solutions. Short-range forces are mostly due to interactions
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between the ions and the solvent molecules and, as in systems of non-electrolytes,
may be associated with local composition effects. The Fowler-Guggenheim version
of the Debye-Hiickel or the Pitzer version of the Debye-Hiickel theory are applied
to account for long-range contributions. For short-range contributions, various lo-
cal composition treatments such as those of Wilson [75], Non-Random Two Liquid
(NRTL) models, etc. have been applied. For the NRTL the hypothetical pure state
of ions [31] and the random state of ions through the Non-Random Factor (NRF) as
a reference state [61] have been used.

In their most general formulation, local composition models consider that, due to
the presence of short range forces, the composition in the immediate neighborhood of
a given species is different from that in the bulk of the mixture. The local composition

effect is usually expressed in the form

X, X
= B (3.36)

where X, and X are the bulk mole fractions of species j and k. The term X,
represents the (local) mole fraction of species j around species : and , similarly, X4,
is the (local) mole fraction of species k around species i. The term 7, usually of
exponential form, is related to the relative strength of potentials between species ?, ;
and k. Local composition models have been used to develop excess Gibbs energy
functions which are then differentiated to obtain mean ionic activity and osmotic
coefficients.

Cruz and Renon [36] proposed to use both the Fowler and Guggenheim version
of the Debye-Hiickel theory and the Debye-McAulary [116] theories for long-range
forces and NRTL local composition model for short-range forces, which were assumed
to cause total hydration of 10nic species. The resulting model had four adjustable
parameters and was applicable over the whole concentration range for aqueous solu-
tions of a single electrolyte. Chen et al. [30,31] proposed a new local composition
model using the Pitzer version of the Debye-Hiickel term for long-range forces and a
modified NRTL for short-range forces. The model of Chen et al. includes two key as-
sumptions. First, it assumes that there is no interaction between similar ionic species

(like~ion repulsion). This assumption is in agreement with the theory of the specific
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interactions of Bronsted [18]. Secend, it assumes that the distributions of cations
and anions around a central solvent molecules is such that the net local jonic charge
is zero (local electroneutrality). The resulting model has two adjustable parameters
and reproduces well the activity coeflicients of single electrolytes in water up to a
molality of six. Ball et al. [10] modified the Cruz-Renon model [36] and reduced the
adjustable parameters from four to two. The resulting model was used to fit osmotic
coefficients of single-electrolyte solutions and compared with other two-parameter
models using data up to a molality of six. Other models have extended group meth-
ods to eiectrolytes such as the Kawaguchi et at [75,76] version of ASOG which
assumes total hydration of ions. They used the Fowler-Guggenheim-Debye-Huckel
term for long-range mean ionic activity coefficients and the Wilson local composition
model for short range mean activity coefficients. The UNIFAC-type model of Chris-
tensen et al. [32], uses a Debye-Hiickel term for electrostatic interactions and both a
Brénsted-Guggenheim term [59] and an UNIQUAC (1] term for short-range forces

This study proposes a new local composition model using the Fowler-
Guggenheim version of Debye-Hiickel model for long-range electrostatic forces [61].
For short range contribution, a new version of NRTL using non -random factors is
used. The model is successful and it appears to be the most accurate two-parameter
model for aqueous solutions of single electrolytes. It can fit mean activity coeflicient
data for all binaries from dilute solutions up to the saturation point. Details of this
model will be discussed in Chapter 4.

Liu et al. [86] derived a new version of the Debye-Hickel theory which 1s based
on the Poisson equation of electrostatic theory, the Boltzmann distribution law ani
the local composition concept. For short range forces, Liu et al. [86] derived a local
composition expression similar to Chen’s approach except that the local composition
concept applies to the excess enthalpy instead of the excess Gibbs energy. The ex-
ccss Gibbs energy was obtained by integrating the Gibbs-Helmbholtz equation This
model has one adjustable parameter. Liu et al. [87] modified the local-composition
expression for short range contribution. The new version of Liu’s local composition
has two adjustable parameters, one of the parameter represents the ion specific po-
tential and the other is an energy adjusting parameter which accounts for the effects

of the interaction energy strengths and the species sizes. The new version of local
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composition model fitted the mean activity coefficient of LiBr in water at 25 C° up
to molality 20.

Ananth et al. [2] have recently proposed .. self-consistent local composition
model using Pitzer version of Debye-Huckel term for electrostatic long-range forces.
For short range forces, the quasichemical lattice theory of Guggenheim using the
self-consistent assumption of correct pair counting [96] was applied. However the
model ignores size and shape factors so that the description is made in terms of local
composition variables. In spite of mathematical complexity of the osmotic and mean
activity coefficient expressions, the model was used to fit the osmotic coefficient of

some aqueous electrolyte solution up to molality 20. The model has two adjustable

parameters,

3.6 Synopsis

In this chapter the modelling of long and short range forces, which is an important
aspect of electrolyte solutions, was discussed. The Debye-Hiickel theory and its basic
assumptions were explained. Debye-Hiickel expressions for mean ionic activity and
osmotic coefficients were presented. The Fowler-Guggenheim and Pitzer versions of
Debye-Hiickel theory for excess Gibbs energy and mean activity coefficients were in-
troduced. Finally, previous thermodynamic models for the mean activity and osmotic
coefficients were reviewed. The models were arbitrarily classified in the three follow-
ing groups: 1) Models based on direct extensions of the Debye-Hiickel equation, 2)
models based on statistical molecular thermodynamics, and 3) models based on the

local composition concept.
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Chapter 4

A Non—Random Factor Model for the
Excess Gibbs Energy of Electrolyte
Solutions

4.1 Introduction

A typical limitation of all two-parameter local composition models previously pro-
posed in the literature is the inability to correlate activity coeflicients (or osmotic
coefficients) beyond a molality of six which, incidentally, is close to the saturation
molality of sodium chloride. For many industrial processes. such as crystallization
of salts other than sodium chloride or work with drlling muds. it is necessary to
have models able to represent the thermodynamic behavior at higher molalitics. In
this chapter a new formulation to represent the deviations from ideality of clect rolyte
solutions is discussed. The model is applicable from dilute solution up to saturation.
Results from the model are compared with those obtained from other two-parameter
or one parameter rnodels of Meissner, Bromley, Pitzer and Chen et al. It should be
noted that the model presented in this chapter has been already published in AICHE

Journal in 1988 [61]. In this chapter we follow the content of the paper with some
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revision to improve the results for bi-bivalent aqueous binary electrolyte solutions.

4.2 A New NRTL-NRF Model

Following the work of Chen et al. [30,31], we assume that the excess Gibbs energy of
an aqueous electrolyte solution may be expressed as the sum of a contribution due
to long-range coulonubic interactions and a contribution due to short-range interac-
tions causing local order. For the long-range interactions we use the Debye-Hiickel
expression and for the short—-range interactions we use a new version of NRTL model
of Renon and Prausnitz [115] in terms of non—-random factors (NRF) formally similar

to those proposed by Panayiotou and Vera [96], and thus we write,

er

9% = (9" )on + (9°)NRTL-NRF (4.1)

where (¢°%) py is the Debye—Hiickel contribution to the excess Gibbs energy as given
for a single ion, by eq. (3.13).

The excess Gibbs energy due to the short-range effects, (¢°*)vrTL-n~NRF, arises
from molecule-molecule, molecule-ion and ion-ion interactions at high concentra-
tions. To express these effects, we follow Chen et al. [30,31] and assume the existence
of three types of cells as shown in Figure (4.1). These cells, which depend on the
central species are assumed to be determinant, in the microstructure of an aqueous
solution of a single electrolyte. Two types of cells are those with a cation or with an
anion as central species. For these cells Bronsted theory (like-ion repulsion) leads
to the assumption that the local mole fraction of cation around cation and of anion
around anion is zero. Thus, only solvent molecules and counterion species surround
a particular ion. The third type of cell has solvent central molecules with anions,
cations and solvent molecules in the surrounding. Thus, the molar excess Gibbs en-
ergy due to short-range interactions is considered to be the sum of the excess Gibbs

energy of individual cells weighted by their mole fractions as follows,

g _ 9% gc g
(RT)NRTL—NRF = TApT +rc RT + Tw RT (4.2)
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Figure 4.1: The various central cells in a binary electrolyte solution.
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where g5, ¢&& and g represent the contributions of the cells with central anions A,
central cation C and central solvent molecule W to excess Gibbs energy arising from
short-range interac.ions. In a major departure from the NRTL model [115] and from
Chen’s et al. extension [30,31] to electrolytes, we consider here that the excess Gibbs
energy contributions of the cells with different central species are expressed with
respect to the random case instead of considering them with respect to hypothetical

cells of pure central species. Thus,

9% =9a — 9 (43)

9¢ =9c — 9¢ (44)
and

gw = 9w — 9w (4.3)

by assuming the interaction energy between the different species as Gibbs energy, the

Gibbs energy of the cells in terms of local mole fraction may be written as,

ga =Awagwa+ Xcagea (4.6)

gc = Xwc gwe + Xac 9ac (4.7)
and

gw = Xww gww + Xcw gew + Xaw gaw (4.8)

for the three types of the cells. The terms gw 4, gwc, gww are the interaction Gibbs

energies between the various species. In our case, for the reference cells in the random
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case
9a=Xwowa+ Xc gca (1.9)
9¢c = Xwgwc + Xa gac (4.10)
and
9w = Xw gww + Xc gow + X4 gaw (4.11)

thus, in this new approach g° considered as the Gibbs free energy of a cell when the
random array prevails. In Chen’s approach [30,31], ¢° considered as the Gibbs free
energy of a hypothetical cell of pure species 1 assumption which is not realistic for
ionic species.

For generality, following Chen's et al. [30], we have used effective mole fractions
defined as,

Xa=2424 = Zqvazs (4 12)

Xc = Zcze = Zovezs (1.13)
and

Xw = zw (4 1)

using electroneutrality, Zcve = Zyvy, from eqs (4.12) and (4.13) we observe that
X4 = Xg, which is the condition of electroneutrality of the local ionic cells.

In NRTL and related models, a parameter q, closely related to the inverse value
of the coordination number z, is interpreted as a measure of non randomness. In

this work the non-randomness of the species is represented by means of non random




factor (NRF). Thus, in general, for i — j interactions
X, = X[, (4.15)

where X,, and I',, are the local composition and the non-random factor of species i

surrounding species 7. Similarly,
X[J = .\’/FQ (416)

from which:

X, T,
— = — = 4.17
Xy~ X(Ty, (4.17)

However, in this work the NRF are not obtained from the quasichemical theory [96]
but are evaluated using the empirical Wilson [135] type expressions similar to those

used by Renon and Prausnitz [115] and by Chen et al. [30,31] Thus, the NRTL

equation can be written as

X, X,
—_J. b ?ﬂ‘]'l] (4'18)
(7] ER Y4
with
g:; — Gt
Buy = exp(==555") (4.19)

comparing eqs (4.17) and (4.18),

I, = Le; 8,4 (4.20)

and, in particular, when ¢ = j,
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Fu = FJJ:BU.JJ (4.21)

It should be clear that after choosing to use the empirical Wilson-type expres-
sion, eq. (4.18), to relate the non-random factors, our final model has the same
theoretical limitations and practical advantages of all other models based on these
expressions [130]. Among the practical advantages, it is intetesting to observe that
the final model has only two adjustable parameters for a system of a single electrolyte
dissolved in a single solvent. This can be shown by eliminating variables as follows.

For the energy parameters we have the following relations:

9gca = gac = 9e (4.22)

gaw =gwa & gow = gwe (4.23)

In addition, assuming local electroneutrality around a central molecule of solvent. 1 ¢,

the net charge of a central solvent cell is zero,

ZaXaw = ZeXew (4.24)
where

Xaw = XqTaw = Zyralaw (1.25)

Xew = Xclew = ZercTew (4.26)

combining eqs (4.24), (4.25) and (4.26) and considering the expression for the overall

electroneutrality of the solution (Z4z4 = Zczc), one obtains

Faw = Tow (4.27)
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using eq. (4.21), I'aw and ['ew can be written as follows,
Caw =Tww Bawww & Tecw =Tww Bewww (4.28)
then eqs (4.27) and (4.28) give

gaw = gcw = gew (4.29)

thus, relations (4.22), (4.23) and (4.29) reduce to only two independent variables and

from eq. (4.19) we may write

Becawa = Bacwe = Pe (4.30)

Bawww = Bewww = Bw (4.31)

to simplify the notation we define the related terms arising from eq. (4.19) as

g — gEW
e = 4,32
E RT (4.32)
and
gEW — gww
Ay = =277 4.3
w = L2 (439

the terms Az and Ay are the only two adjustable parameters for an aqueous solution
of a single electrolyte assumed to be completely dissociated. The parameters Ag and
Ay are designated from here on as the electrolyte and the solvent (water) parameters,
respectively.

Using eqs (4.12) and (4.13), in order to express the contribution to the excess
Gibbs energy due to short—range effects in terms of the above two adjustable parame-

ters, we observe that for the electrolyte the effective (charge) mole fractions of cation
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and anion are equal due to the condition of overall electroneutrality. t.e.

X4 = Xo = Xg (1.34)

thus, starting with the cation central cell we may write an equation of the form:

Xac + Xec + Xwe =1 (1.35)

Writing the local compositions in terms of NRF’s and using the Bronsted principle
(Xce=0),

XalTuc + Xwlwe =1 (136)

using eq. (4.20), ['wc can be written as

FAC

Pwe = TacBwe,ac = (1.37)

BAC,WC

substituting eq. (4.37) in (4.36),

Bacwce .
I‘ = . '1.38
AC7 XaBacwo + X (1.38)
similarly, for the anion central cell we can obtain,
Becawa
7 XcBoawa + Xw (1.39)
then, using relations (4.30) and (4.34),
Fe=Tac=Tca = By (1.10)

XeBe + Xw




and similarly for the solvent central cells,

Xow + Xaw + Xww =1 (4.41)
where

Xcew = Xclew = Xc Tww Bew,ww (4.42)

Xaw = Xulaw = XaTww Bawww (4.43)

using relations (4.31) and (4.34) and combining egs (4.42), (4.43) with eq. (4.41),
(Xa+Xc)TwpBw + XwTw =1

or

1 1

é s = - (4.44
(Xa+Xe)bw+ Xw  2Xefw + Xw )

Fw =

where I'iy = C'ww. It should be noted that in the publication, I'y in eq. (19a) should
read Fwe.

Having the non-random factors, e, eqs (4.38) and (4.39), the excess Gibbs
energy of the cation central cell can be obtained by substituting eqs (4.10) and (4.7)
in eq. (4.1). Thus, writing the local compositions in terms of NRF’s and dividing

the resultant equation by “RT”

go _ L
RT ~— RT

(Xw Cwegwe + XaTacgac — Xw gwe — Xagac) (4.45)

using eq. (4.36) for both the non-random case and also for the random case with

l'ic = Cwe = 1, one can obtains




¢ ?

:

¢

erxr

gc

AT = Xa(Tac — DAg (4.16)
similarly,
i 2’}, = Xc(lca—1)Ae (4.47)

Following the same procedure, by substituting eqs (4.8) and (4.11) in eq. (1.5)
and using eq. (4.41) for the non-random case and also for the random case with
F'aw = F'ew = Tww = 1, the excess Gibbs energy of the solvent central cell can be

written as,

}i’?‘—;: = = Xw(Tw — DAw (4.18)

Finally by substituting eqs (4.46), (4.47) and (4.48) in eq. (4.2) and using eqs (4.12)

and (4.13), the excess Gibbs energy of the mixture is as,

er

RT

(

INRTL-NrF = (Z4 + Zo)zazo(TE ~ )Ag — 2% (Tw — DAy (4.19)

where Ap and Ay are the two adjustable parameters given by eqs (4.32) and (1.33).
Clearly for the random case, g = 'y = 1, and eq. (4.19) vanishes in agreement with
the local composition concept. However, it must be clearly stated that due to the
simplifying assumptions of this phenomenological derivation. especially the like-ion
repulsion assumption and the use of Wilson-type non-random factors. the balance
equations for each cell do not extend to the overall mixture,

Following Robinson and Stokes [116], we may express eq. (4.49) in terms of a

salt mole fraction as,

ns

Ly = ——o
nw + vng

(4.50)

from which, the solvent mole fraction is obtained as:

44




ey

zw =1 - vzg (4.51)
Thus, using 4 = v4zs and z¢ = vcozs, eq. (4.49) takes the ferm:
(RT)NRTL—NRF = vavc(Za + Zc)z3(TE - 1)Ag — 2y (Tw — 1) Aw (4.52)

It should be noted that eq. (4.52) is a general equation for all single electrolyte
solutions which is a little different from eq. (22b) in the publication. Equation (22b)
is true for all of the binaries except bi-bivalent electrolyte solutions. The reason is
that the right hand side equality of eqs (6a) and (6b) in the pi.per are not true for
bi-bivalent electrolytes. In the derivation of eq. (4.52) we used eqs (4.12) and (4.13)
which are applicable for all salts. On the other hand, the new version gives better

results for bi-bivalent electrolyte solutions.

4.2.1 Expression for the Mean Ionic Activity Coefficient

As discussed by Hala et al. [60] the mean ionic activity coefficient of an electrolyte

in an aqueous solution may be obtained from the relation

a nge.t

vinys =

For the contribution of long-range interactions to the excess Gibbs energy (the
Debye-Hiickel model) the unsymmetrical normalization is used, 1.e, the activity co-
efficient of electrolyte approaches unity as its mole fraction goos to zero, but activity
coefficient of solvent approaches unity as its mole fraction goes to one. Thus, it is
necessary to normalize the contribution due to short-range interactions on the same

basis. Therefore we use

gt .. Gex .
(G NRTL-NRF = (RT)NRTL—NRF - vzslnag (4.54)

or in terms of the ionic activity coeflicients it can be written as,
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¢

gez . g N
(R“f)NRTL-NRF = (‘RL;:)NRTL-NRF - zclnyg — z4lnv] (4.55)
where the superscript oo is used to indicate the value of the function at infinite

dilution. The non-random factors, eqs (4.38), (4.39) and (4.44), can be written in

terms of the electrolyte mole fractions as

fe= ZEVETSﬂgE +Tw (4.56)
[y = 1 (4.57)
2vgZgTsPw + Tw
where
Zgvg = Zove = Zava
Using eqs (4.56) and (4.57), from egs (4.52) and (4.53) we obtain
nvg = (2222 5y — 1)y (4.58)

and then from eqs (4.54) and (4.58)

exr

(RT

o

YNrrL-NRF = Vavc(Za+ Z2¢)2d(Te — DAe — 2}y (Tw — DAw

+:L‘s(l/ - 2ZEVE,6W)/\W (4.59)

Hence, from eqs (4.53) and (4.59), the expressions for the activity cocfficients of salts

in the unsymmetrical convention take the form

— ZevEfE
(Inyy)neri-~vrRF = Zgvezshe[(l +zw)(Te—1) + Iszw(z——ﬂ%iﬁﬁ)l Z
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+zi Aw(Tw — 1)

Bw) (4.60)

(T - 1)1 - 222

The activity coefficient of the solvent (water) is

Zgv -V
(Inyy INRTL-NRF = vave(Za+ Zo)eAg[l — Tg + zo( “2eE—— Eﬁﬂ; )z

-—.rwAw(2 - zw)(Fw - 1)
~zsziy [y Aw (2Z5vE Bw — v) (4.61)

Again, eqgs (4.60) and (4.61) are different from eqs (29) and (30) of the publication.
Finally, the mean ionic activity coefficient of a single salt in a single solvent can be

written as

Inv: = (Inv:)py + (In 1 )NRTL-NRF (4.62)

where the Debye-Hickel contribution is given by eq. (3.12). It should be noted that
eq. (3.12) is based on the molality scale, while the NRTL-NRF eq. (4.60) uses mole
fraction as the composition variable. However, as it was shown in Chapter 3, the
Debye-Hiickel expression is valid at very low concentrations in which the numerical
value of the activity coefficient is the same irrespective of the concentration scales.
We will further illustrate this fact at the end of the next section by showing the
different, contributions to the activity coefficients for the aqueous solution of HCI and
KOH.

Similarly, the activity coefficient of the solvent (water) can be obtained by the

sum of eqs (3.24) and (4.61).
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4.2.2 Results and Discussion

The new model developed in this study is based on the Debye Hiickel theory for
electrostatic forces (long-range forces) and a new NRTL-NRF model for the effect of
local order (short-range forces). The use of the non-random factors {NRF) and of a
random liquid as a reference fluid permits the development of a model applicakle to
the whole range of concentration from the dilute region up to the saturation point of
each salt. Figure (4.2) shows the detail of both contributions, 1 ¢, long- and short-
range forces, to the activity coefficients of HCl in an aqueous solution. The model
developed in this work has been tested for many salts. Results for the fitting of the
mean ionic activity coefficients for uni-univalent electrolytes are shown wn Table (L)
As can be observed from Table (4.1), the model 1s able to predict the mean 10nic
activity coefficients of salts bevond the traditional molality of six that has been the
limit set by most investigators. Some results for uni-untvalent electrolytes up to
molality 20 are shown in Figure (4.3). Figures (1 1) and (1.5) present a comparnison
of the results obtained with the most commonly used models and with new model for
HCl and KOH. The two-parameter model of Ball et al [21] was not included 1 the
comparisons since 1ts parameters were evaluated using data of osmotic coetlicients
and a comparison in terms of mean ionic activity coefficient would be unfair In fact,
Ball's et al. comparison of their model with those of Chen et al [31] and Pitzer et
al. [107] was done in terms of osmotic coefficients and used parameters spec ifically
fitted with osmotic coefficient data. The model developed in the present study yields
standard deviations of less than 2.5% for HCl and less than 1% for KOI at whole
range of concentration. Table (1.2) shows the results of the fit for molality mean
ionic activity coefficients for non-uni-univalent electrolytes at 298 15K to maximum
molalhity of six Figure (4.6) presents results for bi-umvalent electroly tes The model
developed 1n the present study yields standard deviations for CaBry and CaC’l, of
7.2% and 2% while Chen’s et al. model produces standard deviations of 35 1% and
20.5%, respectively As Table (1.3) shows, the results for bi-bivalent electrolyte have
been improved from the publication [11] by using the new version of the model

The assumption of a completely dissociated electrolyte may be considered as
limiting for the application of the present model to molecular electroly te species and

complex ions in solution. However the model was used for electrolytes suchas H,504
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Table 4.1. Fit of the molality mean ionic activity coefficient data of pure aqueous

uni-univalent electrolytes at 298.15K (Hamer and Wu, 1972)

Max Std Dev
Electrolyte | Molality A Ay of In values
HCl 16 -9822 | 16 151 0024
HBr 11 -10722 | 19 862 0 040
HI 10 -10 433 | 20 069 0 062
HCIO,4 16 ~11 897 | 22 251 0129
HCIO,4 10 -11050 | 20 034 0 060
HCIO4 6 -10 154 | 17 695 0026
HNO3 28 -6 971 | 9007 0018
LiCl 20 -10072 | 16 262 0052
LiBr 20 -11465 | 20 516 0 095
LiBr 6 -10651 | 18 525 0 045
[l 3 -4 505 9 584 0 020
LiIOH 5 -9898 | 11173 0 021
LiC104 45 -7662 | 12996 0017
LiNO3 20 -7616 | 10 450 0016
NaF 1 -T382 | 6967 0 002
NaCl 6 144 -8 318 | 10 209 0011
NaBr 9 -8357 | 11000 0061
Nal 12 9246 | 13 370 0 028
NaOH 29 -10217 | 14 178 0 081
NaOH 20 -10502 | 14 952 0 057
NaClO; 3 -3975 | 339 0 005
NaClOy4 6 ~7002 | 7461 0 009
NaBrOg 2 617 -7910 | 677 0 002
NaNQjy 10 -9 151 | 9169 0072
NaH.PO, 65 -943 | 8458 0 003
NaH2AsOy 13 -4477 | 172 0010
Na(CNS 13 -8 046 | 10 508 0039
KF 175 -9224 [ 11750 0018
hF 6 -8 646 | 10 705 0 006
KCl 5 -3806 | 3995 0021
KBr 25 -7329 7752 0 004
Kl 45 -0736 | 3430 0 005
KOH 20 -10155 | 15710 0 039
KClO3 070 -5558 | 0279 0 002
KBrO; 04 -6549 | 18%4 0 001
KNO3 35 -9097 | 6945 0 004
KH,PO, 18 -10794 | 10 867 0 002
KHaAsOy 13 -8723 | 6704 0 002
KCNS 5 -6 565 | 6 252 0 063
KPFe 05 -15100 | 30 36 0 000
RbF 35 -35% | 5333 0 009
Rb('l 78 -7041 | 8144 0 003
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Table 4.1: (continued) Fit of the molality mean ionic activity coefficient data of pure
aqueous uni-univalent electrolytes at 298.15K (Hamer and Wu, 1972)

Max Std Des
Electrolyte Molality Ag A of In values
RbBr 5 -7 937 T 987 0001
Rbl 3 -8 167 | 8342 0002
RbNO; 45 -9 375 7 260 0007
CsF 35 -5 808 7893 0007
CsCl 11 ~-8430 | 8116 0013
CsBr H -8 961 9 225 0005
Csl 3 -8 874 | B &2} 0005
CsOH 12 -4790 | TYy2 nore
CsNO; 15 -10894 | 11 191 0 000
AgNO3 15 -8327 | 552 0ol
TICIO, 05 -11928 | 15 157 000l
TINO; 04 -16 198 | 40 791 0002
TINO, 14 -17T 167 | 40 858 0003
NH,Cl 7 405 7021 | 7030 0002
NH,4ClO4 21 10776 | 12 432 0007
NH4NO; 25 -7 909 D670 0010
L1 p-tol 15 -6 231 6 100 0011
Na p-tol 1 -4 U076 R 0011
K p-tol 35 -4 808 U738 0020
Na-formate 39 -3 601 470 0 008
Li-acetate 1 -6 631 R 202 0 005
Na-acetate 35 -3 101 6 134 0 009
K-acetate 35 -3273 6 844 0 008
Rb-acetate 35 -2589 | 6708 0 D0R
Cs-acetate 35 -3 361 7165 0 )oK
Tl-acetate 6 -8 357 T 0010
Na-propionate 3 330 | T AT 0 00x
Na-butyrate 35 -3 300 7799 0 026
Na-valerate 2 -3 321 7 981 0017
Na-caproate 23 -3 276 | 816 0017
Na-heptylate 3 -4 613 1221 0167
Na-heptylate 05 3170 | 8112 0001
Na-caprylate 3 =7224 1 0005 0149
Na-perlargonate 23 -14291 | 18325 0 058
Na-caprate 8 -15997 | 24 361 0 020
Na-acid moloate 5 -7 461 6 868 000l
Na-acid succinate 5 8216 | 8 1) 0 002
Na-acad adipate 07 3755 | 4515 0 001
K-acid malonate 3 -7 860 | 6712 0001
K-acid succinate 49 -8 322 8115 0 003
K-acid adipate | 3859 1 3 TR 0003
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Table £.2: Fit of the molality mean ionic activity coefficient data of pure aqueous
non-uni- univalent electrolytes at 298.15 K. (Robinson and Stokes, 1959 )

P

J

Bi-Univalent Electrolyte Max molality Std Dev )

Ap Aw of In values J

BaAce, 35 -7896 | 8499 0072 ‘

BaBr, 2 -10 165 | 17 481 0020 .
Ba(l, 18 -10230 | 16 172 0021
Ba(CLO4)2 4 -8759 | 14128 0029
j Bal, 2 -10 259 | 20725 0015
CabBr, 6 -11232 | 23 44 0072
CaCly 10 -9571 | 17099 0 109
Cal'ly 6 -10474 | 19052 0021
Ca(CLOy)2 6 -10 383 | 22 683 0005
Cal, 2 ~10 533 | 23 061 0 007
Ca(NQy)a 6 -8 728 | 10668 0 046
C'dBry 4 ~-14 308 | 16 558 0 365
CdCly 6 -12640 | 11085 0333
Cdly 25 -17 348 | 31222 0 166
Cd(NO3)a 25 -8970 | 13166 0 023
(“oBry 5 -10021 | 20 790 0 039
CoCly 4 -9451 | 16 191 0045
Col, 6 -10 190 | 24 067 0100
Coly 5 -10 686 | 25 545 0027
("o(NO3)4 5 -9 621 | 16256 0026
Cully 6 -6 977 | 8941 0 048
Cu(NOz)2 6 -9252 | 11495 0035
FeC'l, 2 ~-10 565 | 19 608 0019
MgAes 4 -9 840 | 123887 0072
MgBro 5 -10 967 | 24 431 0025
MgCly 5 -10 851 | 21 829 0018
Mg(ClO4)» 4 -1 071 | 27 528 0026
Mgly 5 -11 353 | 28 031 0 046
Mg(NO3)a 5 -9 686 | 1. 143 0022
MaCly 6 7921 | 12044 0067
Ny 5 -9649 | 17 326 0052
Ph(C10y4)2 6 -9492 | 16470 0028
Pb(NO3) 2 ~12408 | 15536 0064
SrBry 2 -10 623 | 20 372 0013
SrCly 4 -10134 | 17 316 0020
Sr(C104)9 6 -9668 | 18944 0 042
Srla 2 -10 477 | 22 100 0 006
Se(NOs)q 4 -8 977 | 9426 0041
1O, 3 -8539 | 15159 0024
UOy(C104)2 55 -11626 | 32720 0029
UO:{NO;)a 55 1151 ) 10190 0094
ZnBr; 6 -2360 | 5999 0058
ZnCl, 6 -8255 | 9219 0029
Znl,y 6 -1 888 | 752 0149
Zn(Cl0y)q 1 -11 372 | 28 689 0019
Zn{NOy)» 6 -9336 | 16105 002l

+« Stables and Nuttall [124]
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Table 4.2: (continued) Fit of the molality mean ionic activity coefficient data of pure
aqueous non-uni-univalent electrolytes at 298.15K (Robinson and Stokes, 1959 )

Uni-Bivalent Electrolyte | Max molality Std Dey
Age An of In values
(59504 138 -5 853 3 97) 001l
KaCrOy 35 -7 033 7710 0017
K2504 07 -9 415 | 11127 0 004
L1,504 J -6 670 8 183 0019
Na,CrO4 4 -7701 | 94t 0010
Na, -Fumarate 2 -7 089 | 10096 0 004
Nas-Maleate 3 -8 990 | 11278 0027
NapS0, 5 -8 191 | 8166 0010
NayS-03 35 -7 297 N6t 0021
(NH4)2S0, 4 -RATR | R32T 022
Rb2SO4 18 -6 1Y b 228 0010
H,50,# 75 10032 1 11 136 232
|| Bi-Bwvalent Electrolyte | [ | | I
BeSO, 4 9645 | 17730 0 059
MgSO, 3 -QRT0 | 17529 0052
MuSO, 4 9675 | 15622 0051
N1SO, 25 -10 104 § 18 320 0016
CuSO; 14 11115 | 21001 0016
ZnS0, 35 015 1T 0019
CdS0, 35 984l | 10994 0035
0,50, 6 -8 %33 13201 0096
([ Tn-Univalent Electrolyte | ] ! | “
AlCl 138 -6 825 | 19601 0 0RO
Ce(l3 2 -4 237 | 12263 0 063
Co(en)3Cl3 1 -8 371 3 850 Hort
CrCly 12 1171 | 13339 0073
Cr(NOy)3 14 SlIst | 12178 0070
EuCl; 2 -4 383 13 511 0 06%
Ga(Cl04)3 p 6863 | 25 T2 0 158
[ Tn-Unnvalent Electrolyte | | [ ] i
K3Fe(CN)s 11 B33 7 auss b ot
LaClg 2 -4 250 | 12871 0063
NdCly 2 -1 014 13572 Hoot
PrClj 2 -4 165 | 13002 0 062
ScCly 18 3 M6 13 837 1059
SmCly 2 -4 181 | 13 152 0064
YClj 2 -5 937 15533 0061
” Tri-Bivalent Electrolyte [ [ L I ”
Al2(S04)3 1 6369 1 1115y 0051
Cra(504), 12 0 687 11116 0132
+ Stables [123]
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Expernimental values and values calculated with models other than the present

study are those reported by Zemaites et al (1986)
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Figure 4.6: Experimental (Stokes and Robinson, 1948)
and calculated molality mean activity coefficient of

various bi-univalent electrolytes at 298.15 K.
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Table 4.3: Comparison of fit for bi-bivalent electiolytes

Std. Dev. of In values
Elecirolyte | Previous Work (198%8) | This Work
BeSO; 0.078 0.059
MgSO, 0.074 0.052
MnSO, 0.084 0.051
NiSO, 0.072 0.016
CuSO, 0.067 0.016
ZnS0, 0.083 0.019
CdS0, 0.073 0.055
U0O,S0; 0.054 0 096

and Na heptylate with good results. The standard deviation for H,SO, for maximum
molality 27.5 was 0.232.

For the study of temperature effects, the present model was used without any
modification for various electrolytes at different temperature and model parameters
were adjusted at each temperature. Table (4.1) shows the results of ‘he fit for some
salts at temperatures higher than 298 15K and Figure (1 7) presents the results for
CaCl; at 471 K obtained using the various models. The average standard deviations
for the salts shown in Table (1.5) are within { 1 % for the present model while the
standard deviation using Chen's model1s 98 % In Chen et al.’s model the interaction
parameters are those evaluated at 293.15K and the temperature etfect is introduced
in parameter A of the Debye-Huckel expression. Contributions to the excess Gibbs
energy due to long-range forces represented by the Debye-Hiickel theory and to
short-range forces represented by the NRTL-NRF model seem to be adequate i all
the range from dilute solutions up to lngh iomic strengths. Figure (1.8) shows both
contributions to the mole fraction activity coeflicient of KOII 1in an aqueous solution
It is clear that long-range forces dominate at low ionic strength while short range
forces dominate at high concentrations of electrolyte

In conclusion, the model presented 1n this work gives a realistic representation

of aqueous solutions of a single electrolyte and can be used with confidence up to
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Table 4.4: Fit of the molality mean ionic activity coefficient data of binary aqueous
electrolyte mixtures at various temperatures.

Max Temperature Std. Dev.

Electrolyte | Molality (K) Ag Aw | of In values
HCI 2 32315 -8.366 | 12.563 0 002
KCH 4 353.15 -8 541 | 9.452 0.008
KOH+ 17 353.15 -9.911 | 14.049 0072
NaCl! 6 373.15 -8.760 | 10.599 0.017
NaClt 6 573.15 -13.412 | 16.334 0187
NaOH* 4 308 15 -8.361 | 10.620 0.011
MgSO; 2 350 15 5957 | 8078 0019
Na,SO; 16 350.15 -9 639 | 11709 0 021
CaCl} 3.5 382 00 -8 459 | 14 260 0015
CaCl} 3.5 475 00 -10.315 | 14 233 0 092
MgCl3 2 353.15 -8 513 | 16.009 0.011

* Harned and Owen [65]

* Snipes et al. [119]

t Silvester and Pitzer [118]
t Holmes et al [72]

high ionic strengths.

4.2.3 Optimization of the Binary Parameters

The model proposed in this work uses two binary adjustable parameters to fit the
mean ionic activity coefficient data. The binary parameter, Ag, is the difference of
the dimensionless interaction energies between cation-anion pair and ion-molecule
pair. The solvent parameter, Ay, is the difference of dimensionless interaction en-
ergies between ion-solvent pair and solvent-solvent pair. These binary parameters
presented in Tables (4.1), (4.2) and (4.3) were obtained by using the Powell algorithm
[108] and minimizing the mean square standard deviation between the calculated and
experimental mole fraction mean activity coefficients:

calcy\2

o, = [Z(ln »7;1'7)/; In T+ ) ]1/2 (4.63)

The results were converted to molality mean ionic activity coefficient as follows:
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Table 4.5: Comparison of models for electrolytes at various temperature (Zemaites

et al., 1986).

Std Dev of In Values of Activity Coeflicient
Electrolyte Temp Bromley | Meissner F’ltzor ] Chen I Present Stu ly

HTI 323 15 0 071 0 i 0 050 0 07R 002 o
KCl 353 15 0179 0 055 0243 0182 0 008
KOH 353 15 0975 0531 32440 2357 0072
NaCl 373 15 0 266 0169 0274 0 154 0017
NaCl 573 15 4 663 3202 0195 0759 0 187
NaOH 308 15 0 096 0 098 0038 0095 00
MgSO, 350 15 0 851 0279 0038 0 060 0019
Na;,SO ¢ 350 15 0 192 0 086 0223 0181 0021
CaCl, 382 00 1 935 2626 629 261x 0015
CaCl, 175 00 6 187 6 339 (1 8323 3319 (0 092
Avg Std Dev 1 602 1342 3195 0 981 0014

Muvm
1000

In{™ = lny; — In(l + ) (1.61)

The parameters were evaluated using the non-linear minimzation algonthm
proposed by Powell [103]. program ZXPowell (International Mathematical and Sta-
tistical Library, 1975). Adjusting these two parameters presented some difliculties
since both parameters are strongly correlated and 1n some cases the existence of mul-
tiple roots was found As an example. two positive values, 12173 and 11 933, were
found for the parameters for LiClO4 with standard deviation of 1.9% which 15 close
to the value of 1.7 % obtained with the parameters reported in Table (4.1) However
for the sake of uniformuity it was preferred to report the negative and positive values
of the parameters, as shown in Tables (11) and (1.2). The only rationale for the
above choice is that the opposite sign parameters gave the best fit of the data for
almost all the systems studied.

Attempts were also carried out to determine the sensitivity of the results on the
value assumed for the closest approach, B, in the Debye-Hickel model and on the
coordination number Z in NRTL-NRF model. A value of 8 for Z and 1.2 for B yield

the minimum value of standard deviation for majority of electrolytes. However, with
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I3 set to 2 for bi-umvalent electrolytes the results improve significantly.

4.2.4 Activity Coeflicients of the Ions

Activity coefficients of 1ons are not accessible to direct measurement. However using
omce solution theories. the mean 1onic activity coefficient of an electrolyte can be
reasonably separated into their 1onic activity coefficients [13]. Although for aqueous
solutions of a single electrolyte such as those considered in this work, eqs (1.60)
and (4 61) suffice, for extension to multielectrolyte mixtures it would be desirable
to have expressions for the individual 1onic activity coeflicients These ionic activity

coefficients are related to the mean ionic activity coeflicient of the electrolyte as

follows
(vatve)lnyi =valnyy +velnqg (4.63)
Using electroneutrality, Zeve = Zyvy, eq. (4.65) can also be written as
(Za+Zc)Invg = Zelnvs + Zaln g (4.66)

As discussed by Prigogine and Defay [110], the condition of electroneutrality lim-
its the possibility of knowing the values of all partial derivatives of the excess Gibbs
energy. Infact, it is not possible to change the concentration of cations while keeping
the concentration of anions constant and simultaneously maintaining the electroneu-
trality of the mixture. However, if we ignore the condition of electroneutrality and
differentiate eqq. (1.55) with respect to the number of moles of each individual ion we
can obtain the activity coeflicients of ions in the unsymmetrical convention. On the
other hand, we are faced with an ambiguity when trying to derive expressions for the
activity coeflicients of 1ons because there are four different alternatives to use for the

non-random factors I'g and I'yy. One can write eq. (4.53) in its original form

gt.l‘
(

ﬁ)fvm L-vir = LarcAplZe(Tea = 1)+ Za(Tac — 1)) — 23y (Tw — 1)Aw
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~rnygd —z4Inv7 (1.67)

where, according to eq. (4.40), T'cy and [y are equal. However, as one can see
from eqs (4.38), (4.39) and (4.40) there are four different options which generate four
different expressions for activity coefficients of ions. All of these expressions satisfy eq
(4.65). Using the expressions given by eqs (4.38) and (4.39) for I'y¢ and I'c 4 results in
two symmetrical expressions for the activity coefficients of ions which have the same
values for uni-univalent electrolyte solutions. However, using only one of the eqs
(4.38) or (4.39) for both I'yc and Tcy, as suggested by eq (1.10). results m dhiferent
values for the activity coefficients of 10ns for a um univalent electroly te mixture By
investigating the different options, it was found that the followmg expressions for
non-random factors yield values for activity coefficients of the 1onic species which are

different and comparable to the values obtaimed from the hydration model [15)].

BE
=T =T - = 1.68
> cA iC w + Zetedp (1.68)

1
T aw + (Zyra + Zore)Pw

Tw (1.69)

using eqs (4.68) and (4.69), one can differentiate eq. (1.67) with respect to the

number of moles of ions to obtain the following expressions for the individual activity

coefficients of ions.

(InYe)vrrL-nRF = (Za+ Zo)ea(zw +24)(Tg = DA+

1 = Z¢cPk +

S Zex e+

(Za+ Ze)zaze(zw
y(Cw — DA\w — (1 = ZBw) (a3 T3 = 1) Ay —

zazly Bw(Za — Zc )Ty Aw (4.70)
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(Inv3)vriL-~nrr = (Za+ Z¢)xc(zw + rc)(Te — 1A+
- Iy 2
(Z1+ Zc)zAl‘c(l‘wE + Zexc)TgAe+
i (Cw — DAw = (1 ~ ZaBw)(zh T — DAw—
rcxiyBw(Zc — Za)liy dw (4.71)

Notably, eqs (1.70), (4.71) and (1.60) satisfy eq (4.63). Thus, in spite of their mathe-
matical shortcomngs, eqs (1.70) and (£.71) may be used together with the long-range
contribution presented in Chapter 3. eq. (3.9), to obtain the activity coefficient of

individual 10ns as,

lny, = (Iny,)py + (In~, )NRTL-NRF (4.72)

Table 4.6: Activity coeflicients of ionic species in aqueous solutions of NaCl at
298.15K

7(Na¥) 7(C)
Hydration NRTL-NRF Hydration NRTL-NRF
Molality Model Model Model Model
01 0783 0771 0773 0771
02 0744 0725 0726 0723
05 0 701 0674 0 661 0 667
10 0 697 0 662 0620 0637
20 0 756 0721 0 590 0625
3.0 0 870 0 839 0 586 0626
40 1.038 1010 0591 0 627
50 1272 1239 0 600 0624
60 1 594 1535 0610 0617

As one can see from Table (1.6), the calculated activity coefficients of ions for binary

aqueous solutions of NaCl are very close to the values obtained by the hydration
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model [15]. This agreement is surprising since both models are quite dufferent in
nature. Should a strong disagreement had been found it would have been difficult,
without further experimental evidence, to decide which model gave more realistic

values.

4.3 Synopsis

Recent models for the estimation of the mean ionic activity coefficient of ele trolytes
in aqueous solutions (C'ruz and Renon [36]; Chen el al [30.31]) have made use of
variations of the NRTL model [111] for the excess Gibbs energy of a g noxture
Thus. these models for electroly te solutions include the following basic assumptions

of the NRTL approach.

1. Solution considered to consist of different types of cells which depend on the

central species,

2. The contribution of each cell to the excess Gibbs energy of the mixture is the
difference between the Gibbs energy f 'ie cell and that of a hypothetical cell

of pure central species

with these assumptions. the two-parameter models based on NRTL produce satis-
factory results up to a concentration of six molal for solutions of a single electrolyte
but the predicted results rapidly deviate from experiment at higher molalities

In this work a new local composition model 1s developed Long -range mterac-
tions are accounted for by the Debye-Hiickel theory Local compositions, expressed
in terms of non-random factors, are used to represent the effect of short- range in-
teractions in aqueous electrolyte solutions While the assumption of the existence
of different types of cells, dependent on their central species. has been retained, the
contribution to the excess Gibbs encrgy from each type of cell 1s treated differently
from previous NRTL models. In agreement with the concept of non random factors,
the contribution to the excess Gibbs energy from cach cell has been expressed by
the difference between the Gibbs energy of the cell and that of a cell with the same
central particle in a random mixture. The new two-parameter model 1s able to cor-

relate the mean 1onic activity coefficient of electrolytes in aqueous solutions from the
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dilute region up to saturation. The empirical Wilson-type expression [135] used in
this work to represent the non-random factors has all the theoretical limitations and
practic.] advantages of similar expressions used in NRTL-type treatments [130]. The
two-parameter model obtained in this work with the non-random factor interpreta-
tion of the local composition concept is the best two—parameter model available for

aqueous solutions of single electrolytes.
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Chapter 5

Experimental Techniques for the
Measurement of Mean Ionic Activity
Coeflicients in Aqueous Electrolyte
Solutions

5.1 Introduction

For more than a centu-,, uifferent techniques have been used to measure thermo-
dynamic properties of electrolyte solutions One of the most important functions in
phase equilibria is the excess Gibbs energy 1n terms of temperature and composi-
tion. In fact, the excess Gibbs encrgy is a function from which other thermodynamic
properties such as activity coeflicients or heats of mixing can be obtamed. In prac-
tice the excess Gibbs energy is not directly measurable and 1t 15 evaluated from a
knowledge of the activity coetficients of the components i a mixture. Moreover.
binary solutions of an electrolyte and a solvent, the mean 1nic activity coellicient of
the electrolyte can not be directly measured and must be evaluated indirectly from

the fugacity of the solvent or back calculated from measurement of the potential in
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electrochemical cells

For ternary systems the evaluation of mean ionic activity coefficients is even more
difficult than in binary systems. In the following paragraph we discuss an important
feature of electrolyte systems and then we briefly review the different experimental
techniques for the evaluation of mean ionic activity coefficients in binary systems.

In the first piace, as indicated by Pitzer [103] “ because of space- charge ef-
fects, single-1on activity coefficients are not measurable by ord:nary thermodynamic
methods. Ultrasensetive methods measuring individual 10ns may make such quanti-
ties measurable in the future ™ On the other hand, although not attamable through
direct measurements, actiity coeficients of individual 1onic species appear in many
formulations of thermodynamic relations. In addition 1t 1s sometimes useful to pos-
tulate mathematical models to compute them for complex mixtures because these
values can be casily combined to obtain mean activity coeflicients for electrolytes
i the mixture In Chapter 4, a mathematical method for calculating the activity
coeflicient of individual 1ons was presented

According to the Phase Rule (F=N-r s-r+2) [122]. when one non-volatile salt is
dissolved in degassed water at a given temperature and the two-phase system (r=2)
1s allowed to reach equilibrium, we have two degrees of freedom The salt and its ions
plus water are four chemical species (N=1) related by one chemical equilibria (r=1)
and with a tixed ratio of 1ons (s=1). In fact, if one ignores the 1onic dissociation and
considers only the salt and molecular water, the number of degrees of freedom from
the phase 1ule is the same as above. Therefore the intensive equilibrium state of a
binary electrolyte system can be characterized by the specification of two indepen-
dent intensive variables. The measurable intensive variables of interest are pressure,
temperature and composition Thus for a binary electrolyte systern i which vapor is
pure solvent, measurements of the activity of solvent as a function of composition at
a given temperature permits the calculation of the activity of the electrolyte by the
use of the Gibbs-Duhem equation. The intensive equilibrium state of a single-phase
two-components system is determuned by the specification of three independent in-
tensive variables Measuring more variables leads to over determiration of the system
and makes 1t possible to use the Gibbs-Duhem equation to check for thermodynamic

consistency. Conversely, m a single phase binary mixture a knowledge of the mean
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ionic activity coefficient of the salt as a function of composition at a given temper-

ature and pressure allows the calculation of the activity coefficient of the soivent by

the use of the Gibhs-Duhem equation.

5.2 Experimental Methods

Generally two methods are widely used to measure the activity coefficients of non

volatile electrolytes in solution. These are solvent activity methods and electrochem-
ical cell techniques. In solvent activity methods, one first calculates the activity
coefficient of the solvent by measuring the equilibrium pressute of the puie <olvent
vapor phase with the binary muxture and then using the Gibbs-Duhem equation to
calculate the mean ionic activity coeffictent of the electrolsyte  T'he second method
allows a direct calculation of the activity of an electrolyte by measurement of the
electrochemical potential of ions in an electrocherucal cell  Wilhoit [131] has pre-
sented a useful review of experimental techniques that have been widely used during

the last fifty years

5.2.1 Solvent Activity Methods

Solvent activity or vapor pressure method has been traditionally used in vapor-liquid
equilibria studies of aqueous electrolytes. Different techniques have been proposed
[116] depending on the way of measuring the activity of the solvent The most widely

used methods are the static and the isopiestic method.

5.2.1.1 The Static Method

Static methods are easy to use for mixtures in which one component is non-volatile,
as in the case, for instance, of polymer solutions or some electrolyte solutions. Due
to the lack of volatility of one component, the vapor phase consists entirely of the
volatile solvent and there 1s no need to obtain a sample for analy«is of the equiibrivm
compositions. In this case, the composition of the liquid phase can be ev.luated
from a mass balance of the total amounts of the two compounents in the system,
the vapor pressure and the vapor volume The use of a pressure transducer permaits

the monitoring of the vapor pressure of solvent at various temperatures. The most
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cumbersome step in the static method is the complete elimination of all air from

the system. The static method is particularly useful for binary electrolyte solutions

(4,116].

5.2.1.2 The Isopiestic Method

This technique was introduced by Bousfield in 1918 [116] and improved by Sinclair
[116]). The mean ionic activity coefficients of several hundred single-salt aqueous
solutions and their free energies of mixing have so far been determined by means of
the 1sopiestic method [64,65,100,116). It is a comparative method which uses two
solutions of different electrolytes with the same solvent. An open dish of the solution
under investigation is placed in a sealed vessel along with a similar dish of a reference
solution, whose solvent activity is known as a function of concentration. The solvent
distills isothermally from one dish to another until its chemical potential is the same
in each solution. Due to equality of chemical potential of the solvent in all solutions
at equilibrium, it 1s convenient to choose the same standard state for the solvent in
all solutions. When this is, the case, the solvent activity over both solutions will also
be the same. From a series of measurements at various molalities one can construct
a cutve of the 1sopiestic ratio against the molality of either electrolyte. The isopiestic

ratio is defined by

R = UrTR (5.1)
Vymyx

where my and mpg are the molalities of the measured and the reference samples
respectively and, vy and vg are the corresponding total stoichiometric numbers. It
is usual to express the solvent activity by means of the practical osmotic coe.ficient.
This is a function that expresses the deviation from ideality of the solvent in a more

pronounced way than the activity of the solvent, ag

___l(‘)‘_Q_O In as
¢ = —AM ——- (5.2)
Sv,m,




where M is the molecular weight of the solvent. In terms of the osmotic coefficient,

the condition of equal activity (vapor pressure) is given by
_ VRMRR = vxmxox
or
¢x = R ¢n (5.3)

thus ¢x can be obtained from R and ég.
As discussed in Chapter 2, from ¢x the mean ionic activity coefficient Y+ can

be calculated using the integrated Gibbs-Duhem equation:

~lnyex = (1 —¢x)+/0m(1—¢15x)d In my (5.1)

Alternatively if R and y.p are available, one can use the following relation [116].

—_—
|
(1)

~——

mx
Invex = Inyup+In R +/0 (R~ 1)d In(yzpmyp)

Although the isopiestic method provides a simple and convenient way of measur-
ing the activity of the solvent, it suffers from two main drawbacks. The attainment
of equilibrium needs a great deal of skill and 1t cun take several days to obtain reli-
able data. For example, the time required for a 0.1 m solution to reach equibbrium
is three to four days and therefore this technmique 1s imappropriate at very low con-
centrations. Another disadvantage is that this techmque is cumbersome to use for
multicomponent electrolyte solutions

McKay and Perring [90] have proposed an isopiestic method for multicomponent,
mixtures. Even when reliable data are obtained for the osmotic coefficient of the
solvent, the mean ionic activity coeflicients of the individual salts can not be obtained

easily.
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5.2.2 Electrochemical Methods

Electrochemical cells are an essential tool for experimental studies of electrolyte so-
lutions and have been used widely in electrochemistry for measurement of thermo-
dynamics properties of electrolyte solutions. In contrast to vapor pressure measure-
ments, this technique is very useful for the measurement of the chemical potential or
activity of electrolytes in very dilute binary electrolyte mixtures. One can directly
determine the activity of salts in aqueous electrolyte mixtures. Thus this technique
provides an independent check on the validity of the thermodynamics relation used to
calculate the electrolyte activity from solvent activity methods. Many experimental
data for binary aqueous electrolyte solutions have been measured using this method.
This technique can be adapted for multicomponent solutions provided that each elec-
trode is selective only to one specific ion. Mean ionic activity coefficients for ternary
systems with common ions have been reported in the literature [14,22,83,128]. To the
best of this author’s knowledge very few data have been reported for ternary systems
without a common ion. In the last decade ion-selective electrodes have been used
in industry and in research to measure specific ion concentrations, activity of elec-
trolytes and the pll of solutions. In this section we will discuss the basic principles

and equations governing electrochemical cells and the potentiometric technique.

5.2.2.1 Electrochemical Cells

An electrochemical cell consists of two conductors or electrodes immersed in a single
electrolyte solution, or of two different solutions in electrical contact. Electrochemical
cells may be divided into two categories. The first one consists of galvanic cells which
convert chemical energy into electrical energy by an oxidation-reduction reaction.
The others are the electrolytic cells which are used to carry out chemical reactions
at the expense of electrical energy. In an electrochemical cell the electrochemical

potential of species ¢ in phase @ may be written as

A =u% + RTIna® + ZFo° (5.6)
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where u% and a2 are the standard chemical potential and activity of species ¢ in
phase a respectively. Z, is the charge number of species ¢ , F'is the Faraday constant
(96,485 coulombs/mole) and ¢ is the potential in phase a. Equation (5.6) can be

written for phase 3 as:

A = p” + RTInof « Z,F¢f (5.

[+51]
-1
~—

At equilibrium the electrochemical potential of species i should be the same in

phases a and 3 .

B o= m)
so that
u* - u? = ZFE (58)
where
pe = p? 4+ RTIn o? (5.9)
pf = 4% 4 RTInof (5.10)
E = ¢ — ¢ (5.11)

Using eq. (5.8) the molar change of the Gibbs energy of the reaction can be written

as:

Ag, = —ZFE (5.12)
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Equation (5.12) is the starting point of the study of electrochemistry [11,47,80].
For example, in a reduction-oxidation reaction for a uni-univalent electrolyte, the
molar Gibbs energy of the reaction can be written in terms of eq. (5.12) so that the

classical Nernst equation is obtained as [27]

E = F° Tln(mcmni) (5.13)

- ZF

E? is the standard electrochemical potential of the standard oxidation-reduction re-
action in which all the reactants and products are in their unit activity standard
state. The molalities of the cation and anion are m¢c and m 4, respectively. The most
common form of the Nernst equation used by electrochemists, at 298.15 K, is of the

form:

0.05916

E=F 7

log(memavl) (in volts) (5.14)

In electrochemistry, potentiometry is the appropriate tool to use in obtaining
chemical information, such as the activity of salts, by measurement of cell voltages.
To set up an e'~.trochemical cell to determine the activity of an electrolyte in an
aqueous sclution, usually one needs at least two half-cell electrodes to insert into the
solution. One of these electrodes, which responds directly to the analyte, is called
the indicator electrode. The other electrode, against which the potential of analyte
should be compared, is called the reference electrode. One of the most advanced
types of indicator electrodes are the Ion-Selective Electrodss (ISE). These are widely
used for the determination of mean ionic activity coeflicients of electrolytes in binary

and in ternary aqueous electrolyte systems.

5.2.2.2 Ion-Selective Electrodes