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ABSTRACT 

Modulation of the innate immune response by Leishmania has been extensively 

studied; however, sorne questions still need to be answered. In the present study, we 

demonstrated, in vitro and in vivo, that Leishmania interacts with TLR4 in order to induce 

chemokine mRNA expression. That TLR4-dependent macrophage (M~) activation was 

shown to be MyD88-independent in vitro, and results in the activation of the transcription 

factors NF-KB and CREB. Their role in chemokine mRNA expression was further 

demonstrated using specifie inhibitors toward these transcription factors. Moreover, using 

TLR4-deficient mice we confirmed the role of TLR4 in Leishmania-induced chemokine 

gene expression and in the subsequent recruitment of inflammatory cells. Collectively, 

our results bring new insights for understanding the interaction of Leishmania with its 

host cell, the M~. 
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RÉSUMÉ 

La modulation de la réponse immune innée par Leishmania a été intensivement 

étudiée; néanmoins, certaines questions sont encore sans réponse. Dans cette étude, nous 

démontrons que Leishmania interagit avec TLR4 afin d'induire la transcription de 

chimiokines in vitro et in vivo. Cette activation des M~ dépendente de TLR4 est 

indépendente de MyD88 et entraîne l'activation des facteurs transcriptionel NF-KB et 

CREB. Leur rôle dans l'expression de l'ARNm de chimiokines a été confirmé en 

employant des inhibiteurs spécifics de ces facteurs. De plus, par l'utilisation de souris 

déficientes en TLR4, nous avons confirmé le rôle de ce récepteur dans la transcription de 

chimiokines induite par Leishmania, ainsi que le recrutement de cellules inflammatoires 

qui en résulte. Collectivement, nos résultats apportent des éléments important pour la 

compréhension de l'interaction de Leishmania avec sa cellule hôte, le M~. 
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CHAPTERI 

LEISHMANIA; THE PARASITE AND THE INFECTION 

1.1 Leishmania 

1.1.1 History and Taxonomy 

Long before the first description of the cause of black sickness, also called Kala

Azar, by Dr. Leishman, images of people harbouring facial lesions of what could very 

weIl be the mucocutaneous form of the disease, were found on 500-year-old lnca's 

pottery (1). Nevertheless, it is only in 1900 that Leishman observed the presence of 

ovoid-shaped microorganisms in spleen phagocytes from a deceased of Kala-Azar. Later, 

Donovan supplemented this observation and developed the first and still used diagnostic 

procedure, which consist in the identification of "Leishman-Donovan" bodies in splenic 

macrophages of patient with Kala-Azar symptoms (1). From this, the species responsible 

for Kala-Azar was given the name of Leishmania donovani. 

Leishmania are protozoan parasites of the order kinetoplastida, and part of the 

Trypanosomatidae family. Of the genus Leishmania, about 28 species have been 

identified, and reported so far, and are divided in two subgenera, L. (Leishmania) spp. and 

L. (Viannia) spp. (2, 3). 
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1.1.2 Geographie Distribution and Prevalenee 

Leishmaniases, the group of diseases caused by Leishmania, are endemic in 88 

countries of tropical and subtropical regions worldwide, with the exception of Australia 

and Antarctica (Figure 1) (3-5). A 10th of the world population is at risk, with an overall 

prevalence of 12 million people infected (4, 6, 7). Each year, two million cases are 

reported, of which, 1.5 million cases of cutaneous leishmaniasis and 500,000 cases of 

visceralleishmaniasis (4, 5, 7, 8). Leishmaniases are a growing public health concem for 

several countries, due to the increasing number of overseas travellers, Gulf War veterans, 

and also with the emerging AIDS-Ieishmaniasis co infection (4, 7). Other risk factors 

affecting the spread of the disease are the economic development, environ mental changes, 

and deforestation (5). 

Figure 1. Geographical distribution of Leishmaniasis. Taken from (6) 
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1.1.3 Morphology and Life Cycle 

Leishmania parasites are characterized by a dimorphic life cycle, the two 

developmental stages being the amastigote and the promastigote forms (Figure 2). The 

promastigote form is defined by its slender shape, 4 by 15 to 20 !J.m, and the presence of a 

flagella. This form is the extracellular stage found in the midgut of the vector (7, 9-13). 

The second stage is the intracellular amastigote, characterized by its round or oval shape, 

2 to 4 !J.m, and the absence of a flagella, whi'ch renders them non-motile (7, 9-13). 

Ama5tigole 

KÎn~IOpl<lst 

Promas,tigotc 

Figure 2. Promastigote and amastigote forms. Takenfrom (10). 

The cycle (Figure 3) begins when the vector, a sandfly of the genera Phlebotomus 

or Lutzomia, takes a blood meal from an infected mammal and ingests infected 

phagocytes (7). In the midgut of the sandfly, the amastigotes then transform in 

promastigotes. These immature promastigotes, called procyclic, multiply by binary 

fission (11, 14). Then, the lipophosphoglycan (LPG; the major surface molecule of 

Leishmania parasites) terminal ~-galactose residues bind to the epithelium lectin-like 

molecules of the midgut (7, 12). 



(
PhagOIYSOSome 

lJpteK.e 

Metacyclîc 
promastigotes 

Intracellular amastigote 

Procyclic 
promastigotes 

Figure 3. The life cycle of Leishmania. Takenfrom (6) 

4 
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After attachment, the procyclic promastigotes stop replicating, and go through different 

maturation stages, to finally differentiate into metacyclic promastigotes (6, 12, 15). By 

going through this metacyclogenesis, promastigotes acquire virulence capabilities and 

become more motile (2, 7). The resulting metacyclic promastigotes possess longer LPGs, 

and the terminal ~-galactose have been capped with a-arabinose. Thereafter, the 

metacyclic promastigotes detach from the epithelium and migrate to the pharynx and 

buccal cavity (12, 16). During the next blood meal, the infected sandfly vector will 

regurgitate metacyclic promastigotes in the small blood pool formed at the bite site in the 

host (10). 

In the mammalian host (rodent, dog or human), the parasites attach to receptors on 

mononuclear phagocytes, and are phagocytosed (10, 13). Many macrophage (M~) surface 

receptors are thought to be involved in this host-parasite interaction. Among them are the 

complement receptors CRI and CR3, mannose-fucose receptor, fibronectin receptor, and 

RAGE (10, 13, 17). Phagocytosis can occur by classical "zipper" phagocytosis, as well as 

by "coiling" phagocytosis. "Zipper" phagocytosis is seen where the parasite interact with 

one, or more, receptor which induces the recruitment of more receptors, formation of a 

pseudopode and then engulfment of the parasite (13). "Coiling" phagocytosis which is 

characterized by the asymmetrical occurrence of pseudopodia coils and multi layered 

pseudopode stacks (13). Once engulfed in phagolysosome, the promastigotes transform in 

non-motile amastigotes, which then replicate. Proliferation of these intracellular 

amastigotes lead to the lysis of the phagocytic cell, resulting in the liberation of the 

amastigotes which then infect neighbouring cells, and propagate the infection (2, 7, 10). 
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1.2 Leishmaniases 

Of the 28 species of Leishmania, only six species have been formally identified as 

human pathogens (Table 1) (6). Although their morphology is very similar, they can 

cause strikingly different pathological responses. The disease forms can range from a 

self-resorbing cutaneous u1cer, to a mucocutaneous disease with severe disfigurement, or 

a life-threatening visceral infection. 

TABLE 1. Leishmania species pathogenic for humans, their vectors, host range and 
disease manifestations (6) 

ISpecies IIHost range IIMain vector IIDisease manifestations 
1 

IL. donovani 1 Dogs, savannah rodents, P. argentipes, Visceralleishmaniasis (kala 
humans L. longipalpis azar), PKDL 

L. major Desert and savannah P.papatasi Cutaneous leishmaniasis, 
rodents; Rhombomys, (rural, wet Oriental sore) 
Psammomys, 
A rvican th is 

IL. tropica rumans 1 P. sergenti Cutaneous leishmaniasis 
(urban, dry Oriental sore), 
visceralleishmaniasis 

L. aethiopica IROCkhyrax 1 P. longipes Cutaneous leishmaniasis, 
diffuse cutaneous 
leishmaniasis 

L. braziliensis ISloth, dog 1 L. umbratilis Cutaneous leishmaniasis, 
, and many others mucocutaneous leishmaniasis 

L. mexicana Forest rodents L. Cutaneous leishmaniasis, 
Iflaviscutellata, diffuse cutaneous 
L. olmeca leishmaniasis 
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1.2.1 Cutaneous Leishmaniasis 

The infection by Leishmania species causing cutaneous leishmaniasis can remain 

undetected (asymptomatic) or become clinically apparent after an incubation period of a 

few days to several months in sorne cases (7, 18). Skin lesions are usually localized at the 

site of the sandfly bite (Figure 4), although sorne rare diffuse forms may result in the 

dissemination of the lesions (4, 7, 18). These lesions can evolve from small, red papule 

(indicating the infiltration of plasma cells, lymphocytes and macrophages), to nodule and 

ulcerative lesions. Ultimately spontaneous healing with atrophie sears oeeurs within 3 to 

6 months (4, 7, 18). Even though lesions disappear, sorne parasites still remain in the host. 

These remaining parasites are thought to provide a strong immunity and resistanee to a 

reinfection, though in sorne cases these can result in the reaetivation of the disease (7). 

Figure 4. Cutaneous leishmaniasis. Taken from (19) 

1.2.2 Mucocutaneous Leishmaniasis 

The mucocutaneous form is caused by Leishmania braziliensis. Months to years 

after the initial skin lesion has healed, metastatic lesions develop in the mucosal system of 

the nasal and buccal cavity (4, 6, 18). Following dissemination of amastigotes in the naso

oropharyngeal mueosa, progressive destruction of the lips, nose, hard and soft palates and 

vocal cords can be observed, which result in major dis figuration (Figure 5) (7, 18,20). 
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Figure 5. Mucocutaneous leishmaniasis. Takenfrom (19) 

1.2.3 Visceral Leishmaniasis 

Aiso known as Kala-Azar (Hindi for black sickness) or Dum-Dum fever, this form 

of leishmaniasis is caused by Leishmania species targeting the visceral organs. Although 

the majority of individuals remain subclinically infected, a small percentage develop the 

active form of the disease after an incubation period of 2 to 4 months (7, 21). The 

symptoms associated with an active visceral leishmaniasis are fever, general malaise, 

wasting, anemia, massive hepatosplenomegaly (splenomegaly generally predominant), 

thrombopenia, hypergammaglobulinemia, and ultimately, if untreated and sometimes 

despite treatment, death (4, 6, 7, 18, 21-23). Activation of sub clinical infection can also 

occur upon immunosuppression, and this phenomenon is increasing with the spread of 

AIDS. An interesting observation is that Leishmania species usually causing cutaneous 

leishmaniasis can, in co infection with AIDS, cause visceral leishmaniasis, These co 

infections are often resistant to treatment and accelerate AIDS (4, 6). 
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1.3 Host-parasite interaction 

Normally, the encounter of a pathogen by the immune system results in the death 

of this invader. The killing of an outsider organism can occur by different mechanisms; 

the complement cascade can directly lyse the pathogen, or the fixation of the complement 

can opsonized the pathogen. Opsonization will result in the phagocytosis of the 

microorganism by phagocytic cells, like M~. When an invader is phagocytosed, it is 

degraded by exposure to several harsh elements, such as oxygen and nitrogen radicals, 

acidic pH, lysosomal enzymes, nutrient deprivation, and many antimicrobial proteins 

(24). In order to gain entry into the phagocytic cells and survive the harsh environment of 

the phagolysosome, Leishmania parasites have evolved numerous strategies (Table 2). 

These strategies can involve the modulation of extracellular pathways, as weIl as of the 

intracellular signalling of their host cells. Of aIl the signalling alteration associated with 

an infection by Leishmania, several have been reported to be a direct or indirect cause of 

two parasite surface molecules, lipophosphoglycan (LPG) and glycoprotein 63 (gp63). 

1.3.1 LPG modulated pathways 

LPG is a major constituent of the surface of aIl Leishmania parasites. Several 

studies have linked this molecule to the impairment of a wide variety of M~ functions, 

inhibition of PKC being the best known (25). In other studies LPG has been associated 

with resistance against complement-mediated lysis, interference with phagosome

endosome fusion, and phagolysosome maturation, modulation of immunomodulatory 

effector molecules, su ch as iNOS and cytokines, and scavenging of hydroxyl radicals and 

superoxide anions (2, 17, 26-29). By doing so, Leishmania assure its survival during its 

short passage in the blood, increases its chances of being phagocytosed, and most 

importantly, ensures its survival inside the phagolysosome by providing protection 

against oxidative burst/damage and digestion within the phagolysosome (2, 17,26-29). 



TABLE 2. Evasion strategies of Leishmania parasites (30) 

Istrategy IIMeChanism IIExamPle IIReference 
1 

Alteration of the host Inactivation of complement components by Leishmanial protein kinase (LPK-1, c-Ipk2) (31,32) 
complement system phosphorylation 

Shedding of C5b-C9 L. major promastigotes (33) 
Protease-catalysed conversion of C3b to C3bi on Gp63 metalloproteinase (34) 
parasite surface ~parasite uptake by M~ via CR3 

Protection against anti- Invasion of cells lacking leishmanicidal mechanisms Immature or stromal M~, Langerhans cells (35,36) 
leishmanial products Inhibition of phagolysosomal fusion L. donovani LPG (26) 

Inhibition of degrading phagolysosomal enzymes gp63 (37) 
Scavenging of reactive oxygen intermediates LPG (27) 
Transformation into amastigotes Enhanced resistance (30) 

Suppression of the Inhibition of oxidative burst (abnormal PKC AlI Leishmania spp.; LPG; gp63 (25,38-40) 
synthe sis of anti- activation) 
leishmanial products Inhibition ofiNOS expression or activity L. major, L. amazonensis; LPG; GIPLs (41,42) 

Cytokine modulation Induction of cytokines inhibiting/deactivating M~ Upregulation ofTGF-13, IL-1O (10,21,30) 
Suppression or lack of induction of activating Impaired IL-lITNF -a. production; (30,43) 
cytokines Lackldownmodulation ofIL-12 expression by (28,44-47) 

promastigotes, amastigotes, and LPG 

Inhibition of antigen- Suppression of MHC class II expression L. donovani (24,30) 
presentation and T cell Intemalization and degradation ofMHC class II L. amazonensis (48) 
stimulation Inhibition/sequestration of antigen processing/peptide L. donovani, L. major,L. amazonensis,L. (30,49,50) 

loading of MHC molecules mexicana 

11~lteration ofT cell Induction of a disease exacerbating T cell response IInduction of an early IL-4 peak 1 (10,21,51,52) 
differentiation/function (Th2) 
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1.3.2 gp63 modulated pathways 

Gp 63, the most abundant prote in expressed on the surface of promastigotes, has 

also been associated with resistance to complement-mediated lysis (reported to facilitate 

and control complement inactivation in the serum), and protection against 

intraphagolysosomal killing (2, 10,53, 54). Although gp63 does not appear to be essential 

for establishment of infection, its presence enhances phagocytosis and survival inside 

phagolysosome. Moreover, it has been demonstrated that in absence of gp63, the lesions 

observed during the infection are smaller than in the presence ofthis glycoprotein (54). 

1.3.3 Other modulated pathways 

Beside these alterations caused by the surface molecules, other pathways are also 

known to be modulated in the presence of Leishmania, but the precise molecule/ligand 

still remains to be identified. Among these alterations, it has been shown that Leishmania 

can induce the production of inhibitory molecules such as TGF-~ and PGE2, therefore 

preventing the activation and proliferation of M~, respectively (55-59). Others have 

demonstrated that the parasite is responsible for the inhibition of MRP, a PKC substrate, 

and inhibition of c-fos, a PKC-inducible prote in (60, 61). It has been reported that 

Leishmania is able to down-regulate y-IFN-activated Jak-Statl signalling pathway, 

through the activation ofPTPs such as SHP-l (10,28,62-64). Other molecules also found 

to be affected during infection are MAPKs. Different studies have found that ERKl/2 

phosphorylation in response to LPS or PMA was abrogated (65, 66). Many hypothesis 

were explored in hope of finding the mechanism underlying this inhibition. One 

suggestion was that this could be the result of ceramide induction by the parasite (67). 

Other studies have reported the ability of Leishmania to modulate the expression of 

chemokines at different periods post-infection. The up- or down-regulation of M~ 

chemokine mRNA has, in sorne cases, been linked to susceptibility or resistance to 

infection by Leishmania (68, 69). 
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CHAPTERII 

CHEMOKINES 

2.1 Generalities on chemokines 

2.1.1 Chemokine Structure 

Chemokines were discovered 16 years ago with the identification of the first 

leukocyte subtype selective chemoattractant molecule, IL-8 (70, 71). However, it is only 

four years later, at the Third International Symposium on Chemotactic Cytokines in 

Baden, that they were officially given the name "chemokine", derived from chemotactic 

cytokine (70). With close to 50 distinct chemokines, they represent the largest family of 

cytokines in charge of the regulation of aIl white blood cell trafficking, from 

hematopoietic stem cells to mature N~ and lymphocytes (72, 73). 

Chemokines are small basic pro teins of 70 to 125 amino acids, with a molecular 

weight range of 6 to 17 kDa (74, 75). Chemokines are usually act as monomers, and most 

are secreted, although sorne are expressed on the cell surface (76). These heparin-binding 

proteins have a p-sheet structure with a short loop in a Greek key, and also have an 

exposed loop in the backbone between the second and third cysteine where the regions 

that interact with the receptor can be found (76). 
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2.1.2 Chemokine Classification 

Based on the positioning of the N-tenninal cysteine residues, chemokine can be 

classified into four families, C, CC, CXC, and CX3C. CC, CXC, and CX3C have four 

conserved cysteine, although sorne CC chemokines have six, whereas C chemokines have 

only two (70). CXC chemokines can be further separated into two groups, ELR+ and 

ELR-, based on the presence or absence of a tripeptide motif glutamic acid-leucine

arginine (ELR) N-tenninal of the first cysteine (77, 78). The presence of the ELR motif is 

associated with the specificity for chemotaxis and activation of neutrophils (N~), while 

the absence of this motif is associated with the specificity for lymphocytes and cens 

outside the hematopoietic compartment (77, 79). CC chemokines attract monocytes, 

lymphocytes, basophils, and eosinophils, but do not affect N~ (75, 80). Together, CXC 

and CC chemokines represent more than 85% of an known chemokines (77). Chemokines 

can also be subdivided in two categories depending on their expression; sorne chemokines 

are constitutively expressed, while others are inducible. Constitutive chemokines are said 

to be responsible for the basal leukocyte trafficking and to also be involved in the 

architecture of secondary lymphoid organs. Inducible chemokines are responsible for the 

recruitment of leukocytes in response to different stimuli (72). Table 3 summarizes the 

members of an four families of chemokines, including their systematic names 

(nomenclature developed by Zlotnik and Yoshie (81)), their common hum an and mouse 

names, the receptors they bound to and their function (inflammation or homeostasis). 
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2.2 Chemokine receptors 

Chemokines ean interaet with the negatively glyeosaminoglyeans (GAGs). The 

binding on the different GAGs is ehemokine specifie and its affinity is variable (76). The 

creation of the ehemokine gradient needed for the proper ehemotaxis is thought to oeeur 

by oligomerization of ehemokines on GAGs (82, 83). 

However, the biologieal signaIs are produeed when ehemokines bind to their 

reeeptors (82). These reeeptors are a group of about 20 heterotrimerie Gi protein-eoupled 

reeeptor (GPCR) that possess seven hydrophobie transmembrane domains, three 

intraeellular and three extraeellular hydrophilie loops (71, 74). Chemokine GPCRs are 

normally eonstituted of 340 to 370 amino acids, an acidic NH2 terminus, 10 conserved 

amino acids in the second intracellular domain and one conserved cysteine in each 

extracellular loop (76). An intracellular C-terminus containing serine and threonine 

residues that act as phosphorylation sites for receptor regulation is also present (Figure 6) 

(70, 84). Chemokine recptors were first found to be expressed on the surface of 

leukocytes. Nevertheless, it is now known that they can also be found on endodermal, 

mesenchymal, ectodermal and neuroectodermal cells (74). 
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EXTRACELLULAR 

INTRACELLULAR 

Figure 6. Schematic Representation of Chemokine Receptors. Extracellular N

terminal acidic residues are shaded. C-terminal potential phosphorylation residues (serine and 

threonine) are black, and conserved cysteines are hatched. Taken from (84). 



Table 3. The chemokine families 

Systematic Name Human Common Mouse Common Receptors 
Names Names Bound 

CC chemokine 
CCLI 1-309 TCA-3 CCR8 
CCL2 MCP-I,MCAF JE/MCP-I CCR2 
CCL3 MIP-Ia, LD78a MIP-Ia CCRI,5 
CCL4 MIP-I~ MIP-I~ CCR5,8 
CCLS RANTES RANTES CCRI,3,5 
CCL6 ? CIO, MRP-I ? 
CCL7 MCP-3 MCP-3/FIC, MARC CCRI,2,3 
CCL8 MCP-2 MCP-2 CCR3 
CCL9 ? MRP-2, MIP-Iy ? 
CCLI 0 ? ? ? 
CCLll Eotaxin Eotaxin CCR3 
CCLl2 ? MCP-5 CCR2 
CCLI 3 MCP-4 ? CCR2,3 
CCLl4 CC-l, HCC-I, CK~I, MCIF ? CCRI 
CCLI 5 HCC-I, Lkn-I, MIP-5, ? CCRI,3 
CCLI 6 HCC-4, LEC, Mtn-I LCC-I CCRI 
CCLI 7 TARC TARC CCR4 
CCLI 8 DC-CK-I, PARC, MIP-4 ? ? 
CCLI 9 MIP-3~, ELC, exodus-3, ck~ II MIP-3~, ELC CCR7 
CCL20 MIP-3a, LARC, exodus-I ST38, MIP-3a, LARC CCR6 
CCL21 6Ckine, SLC, ck~9, TCA-4, exodus- SLC, TCA-4 CCR7 

2 
CCL22 MDC, STCPI Abcd-I, dc/~-ck CCR4 
CCL23 MPIF-I, ck~8-1, MIP-3 ? CCRI 
CCL24 MPIF-2, eotaxin-2, ck~6 ? CCR3 
CCL25 TECK, ck~5 TECK CCR9 
CCL26 Eotaxin-3, MIP-4a ? CCR3 
CCL27 Eskine, CT ACK, ILC ALP, skinkine CCRIO 
CCL28 MEC ? CCRIO 

C chemokine 
XCLI Lymphotactin a, SCM-Ia, ATAC Lymphotactin XCRI 
XCL2 Lymphotactin~, SCM-I~, ATAC ? XCRI 

CXC chemokine 
CXCLl* GROa, MGSA-a MIP-2, KC CXCRI,2 
CXCL2* GRO~, MIP-2a, MGSA-~ KC CXCR2 
CXCL3* GROy, MIP-2~, MGSA-y KC CXCR2 
CXCL4 PF4 PF-4 ? 
CXCL5* ENA-78 LIX ? CXCR2 
CXCL6* GCP-2 GCP, CKa-3 CXCRI,2 
CXCL7* NAP-2 ? CXCR2 
CXCL8* IL-8 ? CXCRI,2 
CXCL9 Mig MIG CXCR3 
CXCLIO IP-IO IP-IO, CRG-2 CXCR3 
CXCLII I-TAC, IP9, Hl 74 ? CXCR3 
CXCLl2 SDF-Ia/~, PBSF SDF-I CXCR4 
CXCLl3 BLC, BCA-I BLC, BCA-I CXCR5 
CXCLl4 BRAK, bolekine BRAK ? 
CXCLl5 ? Lungkine ? 
CXCLl6 CXCLl6 CXCLl6 CXCR6 

CX3C chemokine 
CX3CLl Fractalkine Fractalkine, Neurotactin CX3CLI 

This table is an adaptation of those presented in (70, 74, 76, 85) 
The terms Inflamm and Homeo refer to inflammation and homeostasis, respectively. 
" ELR+ 
?, unknown. 
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Function 

Inflamm 
lnflamm 
Inflamm 
Inflamm 
Inflamm 
? 
Inflamm 
Inflamm 
? 
? 
Inflamm 
lnflamm 
Inflamm 
? 
? 
? 
Inflamm, Homeo 
Homeo 
Homeo 
Inflamm, Homeo 
Homeo 

Inflamm, Homeo 
? 
Inflamm 
Homeo 
Inflamm 
Homeo 
Inflamm, Homeo 

? 
? 

Inflamm 
Inflamm 
lnflamm 
Inflamm 
lnflamm 
Inflamm 
Inflamm 
Inflamm 
Inflamm 
Inflamm 
Inflamm 
Homeo 
Homeo 
Homeo 
? 
Inflamm 

Inflamm 
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2.3 Biological Effects of Chemokines 

With the discovery of the existence of about 50 chemokines and 20 chemokine 

receptors; and that virtually aIl cell types and tissues tested can be induced to produce 

chemokines, it was expected that chemokines would have many roles. These data in 

mind, along with the fact that one cell can produce a variety of chemokines and 

chemokine receptors, more research was done and it was rapidly found that the biological 

effects of the ligation of the chemokine to its receptor can go further then the regulation 

of leukocyte migration (74). Apart from being the most important regulators of leukocyte 

trafficking and activation, chemokines have also been shown to be involved in tissue 

repair processes, angiogenesis, hematopoiesis, antigen sampling in secondary lymphoid 

tissue, and immune surveillance (71, 78, 85-88). Other studies have reported that 

chemokines also play a role in organogenesis and in neuronal communication with 

microglia (89, 90). An appropriate activation of chemokines is necessary to mount an 

immune response and initiate wound healing; however, inappropriate activation of the 

chemokine network can cause tissue destruction in diverse diseases su ch as rheumatoid 

arthritis, myocardial infarction, and adult respiratory distress syndrome. (72, 73). 

Inappropriate production of chemokines has also been reported to play a role in asthma, 

neurological diseases, carcinogenesis, pathogenesis of HIV infection, and auto immune 

infections (78, 91). 

2.3.1 Chemokines in Microbial Infections 

Chemokines are known to be involved in antimicrobial mechanisms. The 

production of chemokines can be directly increased by the encounter of a pathogen. 

Nevertheless, depending on the chemokines induced in response to this specific pathogen 

(bacteria, nematode, virus, or parasite), the effect of certain chemokines can be 

detrimental for the host. 
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2.3.1.1 Chemokines and bacteria 

The interaction of a bacteria with the Immune system can trigger the expression of 

chemokines. For instance, during an infection with Streptococcus pneumoniae the 

predominance of N~ can be observed and is thought to be responsible for the acute 

inflammation associated with this infection (75). Other studies have demonstrated that the 

induction of MCP-l and MIPs following infection with Mycobacterium tuberculosis 

results in acute and chronic inflammation, and that high secretion levels of IL-8 in 

presence of Helicobacter pylori is associated with a high degree of gastritis (75, 92, 93). 

Moreover, the increase of IL-8 during an infection with either Escherichia coli, 

Pseudomonas aeruginosa or Staphylococcus aureus, is also associated with an increased 

infiltration ofN~ and causes a severe acute illness (75). 

2.3.1.2 Chemokines and viruses 

Viruses have also been reported to be able to modulate the expression of chemokines. 

Indeed, during an infection with the CMV virus, activated NK cells have been reported to 

express increased levels of MIP-la, MIP-lp and RANTES (94). In human respiratory 

tract, respiratory syncytial virus (RSV) induces the expression of several chemokines 

such as IL-8, RANTES, MIP-la and MCP-l, aIl ofwhich were reported to contribute to 

symptoms severity (95-99). A great deal of research has focused on the interaction 

between HIV-l and the chemokine system (75, 100). Numerous studies have 

demonstrated the essential use of CCR5 and CXCR4, in addition to CD4, by HIV-l as 

primary co-receptors in order to gain entry in their host cens (101-103). By contrast, 

infection by HIV -1 down-regulates the expression of CXCR5 on the surface of activated 

naïve B cens, which may account for the induction of immunological deficiencies by the 

virus (104). In the brain of HIV-l-infected individuals, the Tat prote in of the virus was 

shown to cause a drastic increase in the expression of several chemokines; MCP-l, IL-8, 

IP-lO, MIP-la, MIP-lp and RANTES, an of which are thought to contribute to the 

neuropathogenesis of HIV -1 infection (105, 106). Interestingly, it was recently found that 

some chemokines could also inhibit the replication ofHIV-l (107). Indeed, a recent study 

demonstrated that increased expression of RANTES, MIP-la, MIP-lp and SDF-l could 

decrease the replication ofHIV-l in peripheral-blood mononuclear cells (PBMC) (107). 
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2.3.1.3 Chemokines and parasites 

Numerous parasites (Toxoplasma, Plasmodium, Trypanosoma, and Leishmania) can also 

interact with the immune system and affect the expression of chemokines. Several studies 

have demonstrated that during an infection by Toxoplasma gondii tachyzoites, the 

expression of MCP-l, RANTES, and IP-I0 by astrocytes was found to be increased in 

hum an brain (108-110). These chemokines were found to participate in the control of the 

infection by recruiting monocytes and T lymphocytes (111, 112). Others have reported 

that T. gondii induced N~ to express MIP-la, MIP-lp, RANTES, and CCL20, four 

strong chemoattractants of dendritic cens (DC), which are necessary to initiate type 1 

immunity against the parasites (113, 114). It should be noted that tachyzoites can interact 

with the immune system in an unconventional way; molecular mimicry was recently 

shown between Toxoplasma cyc10philin and the ho st CCR5-binding ligands (115). 

Chemokines have also been implicated in the infection by Plasmodium. This parasite uses 

DARC (Duffy antigen/receptor for chemokine), a chemokine receptor for IL-8 and 

RANTES, to gain entry in erythrocytes (116-118). Infected erythrocytes then adhere to 

vascular endothelial cens by binding to the membrane-bound chemokine, fractalkine, on 

the surface on those cens. This mechanism demonstrates a second mode of exploitation of 

the chemokine-receptor system (119). During infection, Plasmodium was also found to 

modulate the expression of chemokines, and different groups have shown that hemozoin, 

a parasite metabolite, is responsible for the induction of MIP-la, MIP-lp, MIP-2, and 

MCP-l (120, 121). Induction ofthese chemokines demonstrated the proinflammatory role 

ofhemozoin and that it may contribute to the immunopathology of the disease (120). 

An other protozoan parasite capable of modulating the expreSSIOn of chemokine is 

Trypanosoma. It was indeed demonstrated that Trypanosoma cruzi can increase the 

expression of RANTES and MIP-l a in the heart of infected patients, giving rise to 

cardiac dysfunction (122). In vitro experiments using murine embryonic cardiomyocytes 

have also demonstrated elevated expression of chemokines, along with other chemokines 
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(GRO, MIG, MIP-2, IP-10, RANTES, and MCP-1) (123). Other studies have shown that 

an increase in the expression of MIP-1 a, RANTES and MCP-l could be measured in the 

peritoneal exudate of T. cruzi-infected mice (124). By contrast to what was found in the 

heart, expression of these chemokines may promote parasite uptake and control of the 

replication (124). Experiments using Trypanosoma brucei brucei have shown that this 

speCle can increase the expression of MIP-2, RANTES, and MIP-1a in astrocytes, 

microglia, M~ and T lymphocytes, and are thought to contribute to the CNS 

immunopathogenesis (125). These chemokines, along with MCP-1 were also found to be 

induced in splenocytes in T. b. brucei-infected mice (126). 

Chemokines also play an important role in Leishmania infection. Indeed, in presence of 

Leishmania major, phagocytic cells were shown to produce RANTES, MIP-1a, IP-10, 

IL-8/mMIP-2 and MCP-1 (68, 127, 128). By their chemotactic action on monocytes, T 

cells, NK cells, N ~ and DC, these chemokines participate in the efficient control of the 

infection (68, 129). The pattern of chemokine expression has also been associated with 

different forrns of cutaneous leishmaniasis. High expression of MCP-1 and low 

expression of MIP-1 a has been associated with self-healing cutaneous leishmaniasis 

(LCL). On the other hand, predominant expression ofMIP-1a and low MCP-1 have been 

reported in progressive diffuse cutaneous leishmaniasis (DCL) (130, 131). These 

findings, along with the discovery that MCP-1 could synergize with IFN-y to activate 

monocytes, suggest that MCP-1 may contribute to the killing of the parasite, whereas its 

absence leads to progression of the infection (132). Furtherrnore, different studies have 

demonstrated that L. donovani could induce the same chemokines as L. major (e.g. MIP

la, MIP-1~, MCP-l, MIP-2, IP-lO, RANTES); however, in the comparative study of the 

two species done by our laboratory, L. major was shown to be a more potent inducer of 

those chemokines (69, 133, 134). Overall, these observations suggest that the difference 

in induction intensity, and therefore in the inflammation response, could influence the 

development of different pathologies (69). 
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CHAPTERIII 

TOLL-LlKE RECEPTORS 

3.1 TLR structure and signalling 

Exposition to microorganisms present in the environment is a fact that every living 

organism has to deal with and need to somehow survive invasion by these 

microorganisms (135). In order to mount the proper immune reaction, the organism has to 

be able to recognize the invading microorganisms. Since their discovery, Toll-like 

receptors (TLRs) have been demonstrated to be important in the detection of such 

invading pathogens (136). 

The involvement of Toll receptors in innate immunity was first described in Drosophila 

(136). However, Toll receptors were first described as an important pathway for the 

establishment of the embryonic dorsoventral polarity in Drosophila (137, 138). It is only 

after the discovery of the similarity between the Drosophila Toll and the mammalian IL-l 

receptor that an involvement in immunity was proposed (136). Both receptors possess a 

cytoplasmic domain now known as the Toll receptor-IL-IR (TIR) domain, which is 

characterized by the presence of three highly homologous regions known as boxes 1, 2 

and 3 (135, 139). Furthermore, observations demonstrated that TLRs could interact with 

the same downstream signalling molecules used by IL-IR (140). The first mammalian 

homologue was found and named Toll-like receptor (TLR) 4, a year after the discovery of 

Toll in Drosophila, (136). As ofnow, 10 members of the TLR family have formally been 

identified (Table 4), and very recently, sorne experiments have suggested the existence of 

TLRll in humans (141). 
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In general, upon activation of TLR by its ligand, the adapter molecule Myd88 

associates to the TIR do main of the TLR. Myd88 first recruits lRAK4, then lRAKl. After 

phosphorylation of lRAK1 by lRAK4, TRAF6 is recruited to the receptor complex and 

binds to the phosphorylated lRAK1 (135, 142). After dissociation of the lRAK1-TRAF6 

complex, and association to other signalling molecules, the IKK complex is ultimately 

activated and williater lead to the phosphorylation of I-KB, and therefore to the activation 

and translocation of NF-KB to the nucleus (Figure 7). For the majority of TLRs, 

activation of the signalling cascade will subsequently lead to the activation of different 

transcription factors such as NF-KB and AP-1, which will ultimately lead to the 

production of cytokines and chemokines (143). Although this pathway is used by most 

TLRs, this is not the only one and the signalling mechanism is much more complex then 

researchers first thought. Indeed, it has rapidly become evident that given the limited 

number of receptors and the large number and variety of ligands (Table 4), there would 

also have to be a certain variability in the signalling pathway used by each receptor in 

order to produce the proper response to a given pathogen/ligand. This variability can, in 

part, be associated with the different adaptor molecules that can be recruited by the TLRs. 



TABLE 4. Toll-like Receptors adaptedfrom Akira 2004 (135) 

ilReceptor IILocalization IlLigand IILigand origin IIReferences 

I
TLRI Ilcell membrane IITri-aCYlliPopeptide 1 M~cob~cteria,.ba:t~~a 1(144) 1 
~. ======:.~. ========i.Soluble factors . Nezsserza menmgzudzs (145). 
TLR2 Cell membrane Lipoprotein/lipopeptide Many pathogen (146,147) 

Peptidoglycan Gram-positive bacteria (148) 
Lipoteichoic acid Gram-positive bacteria (148) 
Lipoarabinomannan Mycobacteria (149) 
Phenol-soluble modulin Staphylococcus epidermidis (150) 
G1ycoinositolphospholipids Trypanosoma cruzi (151) 

. G1ycolipids Treponema maltophilum (152) 
i Porins Neisseria (153) 

Atypical LPS Leptospira interrogans, Porphiromçmas gingivalis (154, 155) 
·1 HSP70 Host (156) 

Zymosan Fungi (157) 

~IT==L==R=3 ====:I~IE=n=do=s=om=e =? ====iIIDouble-stranded RNA IIViruses 11(158) 
:==========: 

TLR4 Cell membrane LPS Gram-negative bacteria (159) 
Taxol Plant (160) 
Fusion protein RSV (161) 
Envelope protein MMTV (mouse mammary-tumor virus) (162) 
HSP60 Chlamydia pneumoniae, host (136,163,164) 
HSP70 Host (165) 
Fibronectin (Type III repeat extra domain A) Host (166) 
Hyaluronic acid (Oligosaccharides) Host (167) 

1 Heparan sulfate (Plysaccharide fragments) Host (168) 
'1 Fibrinogen Host (169) 

:==========: 
IITLR5 IICell membrane IIFlagellin IIBacteria 1F'=1(1=7::::0)=========: 

DLR6 Cell membrane Di-acyllipopeptides Mycoplasma (171) 
Lipoteichoic acid Gram-negative bacteria (148) 

~======~ Zymosan Fungi F'=(1=7=2=) ========i 

DLR7 1 Endosome IlmidazoqUinOline Synthetic compounds (173) 
Loxoribine Synthetic compounds (174) 
Bropirimine Synthetic compounds (174) 
Smgle-stranded RNA Viruses (175, 176) 

~====~~========~ ~~======~ 

I
TLR8 1 1 Endosome II~dazOqUinOline IIS~thetic compound 11(177) 
~. ======:.~. ========i.Smgle-stranded RNA .Vlruses .F'=(=17::::5=)========i 
ITLR9 IIEndosome? IICpGDNA IIBacteria 11(178) 

IITLRlo IICell membrane Il? Il? Ii~=========i 
ITLRll IICell membrane? Il? IIUropathogenic bacteria Il'-'..(1_4--'1) ______ --' 
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Figure 7. TLR signalling. Adaptedfrom (179). 

3.1.1 The adaptor family 

Following the discovery of the Myd88-independent pathway, the study of the 

signalling pathways of each TLRs has revealed the existence of other adaptor molecules. 

Up to date, there is five different adaptors that have been identified to be used by TLRs 

(180). 

MyD88, like all five adaptors molecules has a TIR domain, but is the only adaptor prote in 

to possess aN-terminal death domain (DD) (181). Upon its activation, MyD88 functions 

as a link between the TLRlIL-1R and downstream signalling molecules that possess a DD 

like IRAK (135). MyD88 can be used by all TLRs, with the exception of TLR3, and 

appears to be essential for the recognition of the different ligands of TLR1, TLR2 and 

TLR5-9 (135, 136, 179). 
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TlRAP/Mal, was first thought to be the adaptor mediating the TLR4 MyD88-

independent signalling pathway (182, 183). However, Mal knockout mice experiments 

have demonstrated that this adaptor was not involved in MyD88-independent signalling 

but was actually an adaptor of the Myd88-dependent pathways used by both TLR2 and 

TLR4 (184, 185). Indeed, it was shown that the signalling activated by TLR2 ligands 

(using TLR1 and TLR6 as co-receptors) is entirely abrogated by the deletion of Mal. 

Furthermore, TLR2 signalling is also entirely abolished in MyD88-deficient mice, which 

suggests that this later adaptor and Mal act together and are both essential (179, 186). 

Other studies have demonstrated that TLR3, TLR5, TLR7 and TLR9 do not signal 

through Mal, suggesting that the last three receptors only use MyD88 as an adaptor 

molecule, and that TLR3 does not require the action of neither Mal nor MyD88 (179). 

Trif/TICAM-l, was identified when the search for novel adaptor molecules possibly 

involved in TLR signalling was conducted (184, 187). Studies have shown Trif (TIR

domain-containing adaptor inducing interferon-p) to be an essential element in the 

signalling mechanistic ofTLR2, TLR3, TLR4 and TLR7 for the activation ofNF-KB, via 

TRAF 6, and of TLR3 and TLR4 for the induction of IRF3 and IFN-P (188, 189).This 

activation ofNF-KB by Trifwas shown to be at a lower extent than what can be observed 

with MyD88. Nevertheless, the use of a double knockout, were the activation ofNF-KB is 

entirely abolished, suggests that Trif would actually be responsible for this delayed 

activation of the transcription factor seen in MyD88-deficient mice (187). Furthermore, 

these studies also demonstrate that Trif is the main adaptor used by TLR3 (179). 

TRAM/TIRP, (Trif-related adaptor molecule/TIR domain-containing prote in) the fourth 

adaptor, has been identified by sequence homology in database searches (190). 

Interaction studies have demonstrated that TRAM can interact with Trif, Mal and TLR4; 

however, inhibition of TRAM showed impaired activation of IRF3 only for TLR4 

signalling and not for TLR3 (190-192). Two groups have demonstrated that TRAM is 

actually acting as a bridging molecule between TLR4 and Trif (191, 192). The 
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involvement of TRAM in the MyD88-independent TLR4 induction of IRF3 has been 

further supported by the results obtained using TRAM-deficient mice; the activation of 

cytokine production was impaired in response to LPS (only the MyD88-independent 

response) but not in response to the ligands for TLR2, TLR3, TLR7 and TLR9 (193). 

SARM, (SAM and ARM-containing protein) is the fifth adaptor protein of the TIR 

signalling to be described. Like the other adaptors, SARM also contain a TIR domain, but 

is the only adaptor to possess sterile a (SAM) and HEAT/Armadillo (ARM) motifs (179, 

194). The fact that the SAM domain is known to be involved in signalling and is 

widespread in nuclear proteins has made SARM a prote in likely to be part of the TLR 

signalling (195). Nevertheless, besides that SARM contains a TIR domain and that it is 

closely related to two TIR domain-containing proteins of C. elegans, no experimental 

data have demonstrated its exact role in the TLR signalling (179, 180). 

3.1.2 Negative regulator of TLR pathways 

Excessive immune responses can induce serious systemic disorders that are detrimental to 

the host, and therefore a negative regulation of the TLR signalling is crucial for the 

immune system integrity (135, 196). Study of the TLR signalling has identified several 

molecules thought to be negative regulators;such as PI3K, IRAK-M, MyD88s, SOCSl, 

SIGIRR and ST2 (135, 196). 

PI3K, Recent evidence suggest a role for phosphatidylinositol (PI) 3-kinase in different 

inflammatory response and it seems to play numerous roles in TLR signalling (196). 

Fukao et al. have demonstrated the ability of PI3K to suppress the production of IL-12 by 

TLR2, TLR4 and TLR9 (197). More recent observations by this team showed that PI3K 

would function at an earlier time than lRAK-M in TLR signalling, and therefore would 

play a role in the modulation of the intensity of the primary activation (196). 

Interestingly, negative regulation is not the only role played by PI3K in TLR signalling. 

Indeed, it was demonstrated by an other team that PI3K is involved in the induction of 
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cytokines downstream of TLR4 and TLR2, as well as NF-KB activation by TLR2 and 

induction of chemotaxis in response to TLR9 ligand, which point out even more the 

complexity of TLR signalling (198-201). 

IRAK-M, is part of the interleukin-l receptor associated kinases (lRAKs) which has four 

human members, but unlike the other members of the family, lRAK-M is not ubiquitous 

and is expressed mainly by monocytes/M~ (202). Kobayashi et al., have demonstrated 

that lRAK-M negatively regulate TLR signalling by preventing the dissociation of lRAK-

1 and lRAK-4 from MyD88, and therefore inhibits the formation of the lRAK-TRAF6 

complexes (203). lRAK-M seems to be induced following peptidoglycan (PNG) and LPS 

stimulation, and its induction has been reported to be an essential element for the PNG

and LPS-induced tolerance (204, 205). Furthermore, it was recently shown that this 

induction ofIRAK-M could be triggered by NO via TNF-a in monocytes (206). 

MyD88s (MyD88short), is a splice variant of MyD88 that lacks a short domain between 

the DD and TIR domain (142). MyD88s was shown to down regulate TLR signalling by 

interfering with the phosphorylation of IRAK-l, as well as with the activation and 

ubiquitination of NF-KB (142, 207). It should be noted that MyD88s inhibits only LPS

induced NF-KB activation and not TNF-induced, nor does it interfere with the activation 

of AP-I (207,208). 

SOCSl, is part of the suppressor of cytokine signalling (SOCS). Following LPS 

stimulation, SOCS 1 was shown to be rapidly induced and to negatively regulate LPS 

signalling (209). Kinjyo et al. have concluded from their results that SOCS 1 was directly 

suppressing TLR4 signalling; however, a recent study demonstrates that the effect was 

actually indirect. In this recent study it was shown that SOCS 1 would in fact act on TLR 

signalling through the regulation of IFNa/p signalling (210). Nevertheless, even if the 

effect is indirect, SOCS 1 still is responsible for a negative feedback on TLR signalling. 
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SIGIRR (single Ig IL-IR-related molecule), also known as TIR8, is part of the IL-l 

receptor family and functions as a modulator of TLR-IL-IR signalling (211, 212). The 

exact mechanism of action of SIGIRR is more or less c1ear; however, a recent study has 

revealed that it would act as a decoy by transiently interacting with TLR4, IRAK and 

TRAF6, and therefore negatively regulating TLR signalling (211, 213). 

ST2, is an orphan receptor member of the TIR family (214,215). However, ST2 does not 

activate NF-KB like the other members of the family (215). Very few studies have been 

conducted on this receptor, but a group recently demonstrated that the membrane-bound 

form of ST2 was involved in the negative regulation of IL-IR and TLR4 by interacting 

with MyD88 and Mal (215). 
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3.2 TLR2 

Of all the TLRs, only two have been shown to be involved in the recognition of 

Leishmania, TLR2 and TLR4. For this reason these two receptors will be discussed in 

more details in these next two sections. 

TLR2 can recognize a broad range of pathogen associated molecular patterns 

(PAMPs) from a variety of microorganisms. Activators of TLR2 signalling include: 

peptidoglycan from Gram-positive bacteria (148), bacterial lipoproteins (147), 

mycobacterial cell-walllipoarabinomannan (149), glycophosphatidylinositollipid from T. 

cruzi (151), a phenol-soluble modulin produced by S. epidermidis (150), and yeast cell 

walls (157). Furthermore, TLR2 has been shown to be involved in the recognition of 

atypical LPS such as LPS from Leptospira interrogans and Porphiromonas gingivalis 

(154, 155). These LPS are different from the one found on the surface of enteric bacteria 

like E. coli and Salmonella spp.; these two types of LPS have a different number of acyl 

chains in the lipid A component (216). In addition, Becker et al. have also demonstrated 

that TLR2 can be activated by Leishmania LPG and lead to the activation of human NK 

cells in vitro (217). The vast number of TLR2 ligands may be explained, in part, by the 

discovery that it can heterodimerized with at least two other TLRs, TLR 1 and TLR6 (171, 

172). Cooperation between TLR2 and either TLRI or TLR6 seems to dictate the 

specificity of the ligand recognition (218). For example, it was found that TLR2-deficient 

mice were unresponsive to both bacterial and mycoplasmal lipoprotein. However, TLR6-

deficient mice were unresponsive to only mycoplasmallipoprotein (171). These findings 

demonstrate that TLR2 cooperates with TLR6 for the recognition of mycoplasmal 

lipoprotein, but may use another TLR for the recognition of bacterial lipoprotein. The 

signal triggering the heterodimerization has not been identified yet; it is still unclear 

whether it happens upon ligation of the ligand or prior. Nevertheless, it has been 

demonstrated that once activated, both heterodimers (TLR2-TLRI and TLR2-TLR6) uses 

the same adaptor proteins, MyD88 and MAL, and that the signalling pathways appear to 
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be very similar (Figure 8). It is worth mentioning that up to date no MyD88-independent 

pathway has been known to be used by TLR2. 

3.3 TLR4 

TLR4 was the first Drosophila Toll homologue identified in human (219). Soon 

after its discovery, its first ligand was identified using LPS-hyporesponsive C3H/HeJ 

mice (220). The hyporesponsiveness of these mice was first found to be the cause of the 

Lps locus (endotoxin unresponsive gene locus) located on the same region of the 

chromosome 4 as TLR4 gene (221). The genetic comparison of C3H/HeJ mice with 

TLR4-deficient mice demonstrated that TLR4 was the gene product of this Lps locus 

(220). 

Recognition of LPS involves several accessory molecules. First, LPS binds to serum LBP 

(LPS-binding protein), and is then transferred to CDI4, which is thought to interact with 

TLR4 (222). Another molecule that was shown to be important in the recognition of LPS 

using deficient mice is MD-2, which is a small prote in expressed on the cell surface in 

association with the ectodomain of TLR4 (223, 224). However, its exact function is still 

unclear (223, 224). Sorne studies suggest that LPS might interact directly with TLR4; 

however, this interaction would also be enhanced by CD14 and MD-2 (225). 

In addition to LPS, TLR4 is involved in the recognition of several other ligands from 

plant, bacteria, viruses and host (Table 4). Moreover, recent in vivo studies have brought 

evidences that TLR4 would also play a role in the recognition of Leishmania since the 

absence of this receptor has resulted in enhanced repli cation of this protozoan parasite 

(226). The results obtained by this team suggest a role for TLR4 both in the late innate 

and adaptive immunity against Leishmania. The exact mode of interaction between 

Leishmania and TLR4 still remains to be identified; however, once TLR4 is activated, 

several observations, in vitro in transfected peritoneal M~ as well as in vivo, have 

involved MyD88 in the signalling pathway induced (227,228). 
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Once activated, it was demonstrated that TLR4 can signal through MyD88 and Mal, and 

start a signalling pathway similar to the one activated by TLR2, leading to the activation 

of NF-KB, p38 and JNK (Figure 8) (230). In contrast with TLR2, TLR4 can also signal 

through MyD88-independent pathways. The observation that MyD88-deficient mice 

stimulated with LPS would still activate NF-KB and JNKlp38, although in delayed time 

compared to wild type mice, led to the identification of MyD88-independent pathways 

used by TLR4 (231). As said previously in this chapter, TRIF and TRAM are the two 

adaptor molecules used by TLR for the MyD88- and Mal-independent signalling. The use 

of TRAM-deficient mice indeed demonstrated that TRAM is used by TLR4 for the 

activation of IRF3 (193). Moreover, studies using TRIF-deficient mi ce led to the same 

observations, meaning that this adaptor was also part of the MyD88-independent 

signalling of TLR4 leading to the late activation of NF-KB (187). Of interest, it was 

demonstrated that TLR4 and TLR3 are the only TLRs known to activate the IRF3 

pathway leading to the early up regulation ofIFN-p, IP10 and RANTES (232). 
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RATIONALE AND AIMS OF THE STUDY 

Exposition of the immune system to Leishmania results in the modulation of 

several signalling pathways leading to the induction of cytokines and chemokines. This 

phenomenon is weIl documented; however, the exact mechanistm underlying the 

induction ofthese pro-inflammatory molecule still remains to be fully discovered. 

Specifie aims 

Ta evaluate the possible involvement of TLR4 in the induction of chemokine mRNA by 

Leishmania and ta define the transduction al events involved in this signalling pathway 

TLR4 has been shown to be involved in the recognition of a variety of P AMPs, from 

bacteria, plant and virus. Therefore we were interested to deterrnine whether TLR4 was 

necessary for the recognition of Leishmania leading to the induction of chemokine 

mRNA expression by M~. We also seek to identify the possible transcription factors 

involved. Furtherrnore, in vivo experiments were done to confirrn the TLR4-mediated 

chemokine mRNA expression following Leishmania inoculation and its role in the 

subsequent chemokine-mediated inflammatory cell recrui tment. 
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Abstract 

Leishmania's ability to exploit the innate immune response has been extensively studied. 

One of the strategies through which Leishmania assures its survival is by modulating the 

pattern of macrophage (M~) chemokine expression, which will ultimately favor the 

recruitment of selected inflammatory cells. In the present study, we investigated the role 

of Toll-Like Receptors (TLR) and the signaling mechanism underlying this chemokine 

mRNA induction in vitro, using different murine bone marrow-derived M~ cell lines 

(TLR4-deficient, TLR4 KO, TLR2-/-, MyD88-/- and their wild type counterparts), and in 

vivo, using mice that were TLR4-competent, TLR4-deficient, and overexpressing TLR4. 

Our results revealed that both Leishmania major (L. major) and L. donovani have the 

capacity to induce chemokine gene expression ( MIP-Ia/~, MCP-I, MIP-2) in a TLR4-

dependent and MyD88-independent manner. Analyze of different transcription factors 

revealed that NF-KB and CREB nuc1ear translocation is an essential element to this 

activation process, whereas AP-l is not involved. Specific blockage ofNF-KB resulted in 

reduction of its translocation, DNA binding activity and inhibition of MIP-l ~ and MCP-l 

transcripts induction. By contrast, inhibition of cAMP-dependent CREB phosphorylation 

reduced only slightly the translocation of CREB and the Leishmania-induced chemokine 

gene expression. The in vivo results demonstrate that TLR4 is essential for the proper 

leukocyte recruitment upon Leishmania infection and chemokine gene expression by 

recruited cells. Collectively, our study provides important information concerning the 

mechanisms whereby Leishmania-parasite can modulate host chemokine gene expression 

by exploiting TLR-dependent signaling. 
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Introduction 

Leishmania are obligate intracellular parasites that reside almost exclusively in 

mononuclear phagocytic cells of their mammalian host (1, 2). These protozoan parasites 

are the causative agent of leishmaniasis, a group of diseases that affect more than 12 

million people distributed on aIl continents, with the exception of Antarctica and 

Australia (3). The clinical manifestations and severity of the disease depend both on the 

infecting species of Leishmania, of which more than 20 have been identified so far (4), 

and the immune response of the host (5-7). The pathology can range from asyrnptomatic 

to self-resorbing nodules to disfiguring mucocutaneous lesions or a severe visceral form 

of the disease, that is lethal in sorne cases (3, 5, 7). 

In order to survive and establish infection in its mammalian host, Leishmania has 

evolved several strategies through out its life cycle. Numerous studies have reported the 

important role played by the parasite surface molecule lipophosphoglycan (LPG) and the 

63 kDa glycoprotein (gp63) in the evasion of the immune response, by evading the 

complement-mediated lysis, protecting against or suppressing the synthesis of 

antileishmanial products (8-11). Extensive research has also demonstrated the ability of 

Leishmania to regulate the expression of a great number of cytokines, which include IL-l, 

IL-4, IL-12, and TNF-a (12-15). Other reports have aiso described the capacity of 

Leishmania to modulate the expression of chemokines by infected macrophages (M~). It 

was indeed demonstrated that during infection, the monocyte chemotactic protein-1 

(MCP)-l, the macrophage inflammatory prote in (MIP)-l-a and MIP-1p as weIl as MIP-2 

were differentially expressed (16-18). 

Chemokines are important molecules involved in activation of leukocytes, 

inflammatory diseases, anti-microbiai mechanisms, and also act as effectors of the innate 

immune response in regard of the leukocyte trafficking (19, 20). By their actions on 

adaptive immune cells, chemokines are crucial for the modeling of the adaptive immune 

response, which will often determine the outcome of an infection (20). In leishmaniasis, 

the different chemokines expressed and the cellular populations present at the infection 
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site have suggested that chemokines would be responsible for driving the adaptive 

immune response toward either a Thl or a Th2 type of response (21). 

Although the innate immune response was first thought to be non-specific, it is 

now weIl established that the innate immune cells can recognize, to a certain extent, 

pathogen-associated molecular patterns (PAMPs) (19). Recognition of these PAMPs is 

achieved by their interaction with pattern-recognition receptors (PRRs), like the Toll-like 

receptors (TLRs), which when activated, can induce expression of certain chemokines, 

such as MIP-la, MIP-lp, MIP-3a, IFN-y-inducible protein (lP)-lO, IL-8 and regulated 

upon activation, normal T-cell expressed and activated (RANTES) (19, 22). 

In the present study, we were interested to determine whether Leishmania-induced 

macrophage chemokine gene expression was trigger upon parasite/TLR interaction. We 

obtained results demonstrating that induction of chemokine mRNA expression by 

Leishmania-infected macrophages is mediated through TLR4, but of interest, is 

independent of the myeloid differentiation factor 88 (MyD88). Characterization of the 

signaling pathways revealed the requirement for the nuc1ear translocation of NF-KB and 

cAMP-response element binding (CREB), but not of AP-l, in these TLR4-dependent 

events. Although the nature of this interaction remains to be further elucidated, our data 

suggest that it does not involve the parasite surface molecules LPG or gp63. 

The in vivo experiments demonstrate the essential role of TLR4 in the recruitment of 

leukocytes in response to L. major infection, and consequently confirmed TLR4 

involvement in Leishmania-induced chemokine mRNA expression. 
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Materials and Methods 

Materials. Lipopolysaccharide (LPS ;Escherichia coli, serotype R515 ) and MALP-2 

(synthetic) were purchased forrn Alexis (San Diego, CA). Phorbol myristate acetate 

(PMA) was obtained from Sigma-Aldrich (St. Louis, MO). Endotoxin-free PBS was 

purchased from Gibco BRL (Burlington, Canada). Isotopes [a_32P]dUTP (3000 Ci/mmol) 

and [y)2p]dATP (3000 Ci/mmol) were obtained from Perkin Elmer (Boston, MA). 

Specific inhibitors MDL-12,330A hydrochloride and BAY 11-7082 were purchased from 

Biomol Research Laboratories (Plymouth Meeting, PA). 

CeU and Culture Conditions. The murine bone marrow derived M~ cell lines BI OR 

(derived from B10A.Bcgr [B10R] mice (23)), TLR-4 deletion (derived from 

C57Bl/10ScCr mice), TLR-4 KO (TLR2 gene knockout mice backcrossed to C57BL/6 

strain), ANA-1 (derived from C57B1I6 mice), TLR-2 deletion (TLR2 gene knockout mice 

backcrossed to C57BL/6 strain), MyD88 Control (derived from a litterrnate control mice 

from the last backcrosses to C57BL/6 strain) and MyD88 deletion (MyD88 gene knockout 

mice backcrossed to C57BL/6 strain), were generated in Dr D. Radzioch laboratory and 

immortalized (McGill University, Montreal, Canada). Cells were maintained at 37°C and 

5% CO2, in Dulbecco's DMEM (Life Technologies, Rockville, MD) supplemented with 

10% heat-inactivated FBS (Gibco BRL), 100 Ilg/ml penicillin-streptomycin and 2 mM L

glutamine (Gibco BRL). 

Parasite cultures. Promastigotes of L. donovani 2211, L. major Friedlin, L. major A2, L. 

major A2 KO gp63 (24), L. donovani lS2D and L. donovani R2D2 ( Dr. S. Turco, 

University of Kentucky, USA) were grown at 25°C, and transferred biweekly in SDM-79 

culture medium (Gibco BRL) supplemented with 10% FBS as described elsewhere (25, 

26). Macrophages were infected in vitro at a parasite:cell ratio of 20: 1. 
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RNase protection assay (RPA). Chemokine mRNA expression was monitored using an 

RP A kit (mCK-5 RiboQuant; BD PharMingen, San Diego CA), as we previously 

described (27), to enable simultaneous detection of a large number of these 

proinflammatory molecules (Lymphotactin, RANTES, MIP-1~, MIP-1a, MIP-2, IP-10, T 

cell activation prote in [TCA]-3, and eotaxin). Total RNA was extracted from the 

stimulated, and non-stimulated cells with TRizol (Life Technologies) following the 

manufacturer's protocol. The commercial multiprobe was labelled with [a_32P]dUTP 

using T7 RNA polymerase. Labelled probe (3 x 105 cpm) was added to 10 flg of total 

RNA, and allowed to hybridize for 16 h at 56°C. Resulting mRNA probe hybrids were 

subjected to an RNase A treatment, and extracted with phenol-chlorophorm. Protected 

hybrids were loaded on a 5% denaturing polyacrylamide sequencing gel. Once dried, the 

gel was exposed to a radiographie film at -80°C, and also subjected to densitometry 

analysis using a Molecular Imager FX and the analysis software Quantity One ID version 

4.4 (Bio-Rad). Chemokine density values were normalized to the housekeeping gene 

mL32, also present in the multiprobe template. 

Preparation of nuclear extracts. Cell stimulation and infection were terminated by the 

addition of ice-cold PBS, and washed 3 times in order to remove all non-ingested 

parasites. Nuc1ear extraction was performed according to the micros cale preparation 

protocol (28). Briefly, sedimented cells were resuspended in buffer A (10 mM HEPES 

pH7.9, 10 mM KCI, 1 mM DTT, and 0.5 PMSF), and incubated on ice for 15 minutes. 

Twenty-five igepal (Sigma-Aldrich) were added to the mixture, which was then vortexed 

for 10 s, and centrifuged for 30 s at 12,000 x g. The supematant was discarded, and the 

pellet resuspended in 50 fll of buffer C (20 mM HEPES, pH 7.9, 0.4 M NaCl, 1 mM 

EDTA, 1 mM EGTA, 1 mM DTT, and 1 mM PMSF). The samples were then rocked at 

4°C for 15 min. Cellular debris were removed by a 5 min centrifugation at 12,000 x g at 

4 oC, and the supematant was kept at -80°C until used. 

Electrophoretic Mobility Shift Assay (EMSA). EMSA was performed using 6 flg of 

nuc1ear extract. Prote in concentrations were determined using the commercial BCA 

Protein Assay Reagent (Pierce, Rockfort, IL). The dsDNA oligonuc1eotides (Santa Cruz 
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Biotechnology, Santa Cruz, CA), used either as probes or competitors were as follows: 

consensus site for AP-1 c-jun homodimer and Jun/Fos heterodimeric complexes, 5'

CGCTTGATGACTCAGCCGGAA-3'; consensus binding site for CREB of the 

CREB/activating transcription factor family, 5'

GAGATTGCCTGACGTCAGAGAGCTAG-3'; and consensus binding site for the NF-

KB/c-Rel homodimeric and heterodimeric complexes, 5'-

AGTTGAGGGGACTTTCCCAGGC-3'. The oligonucleotides containing NF-KB or 

CREB binding sites of the murine chemokine promoters were synthesized in our 

laboratory as follows: NF-KB/MIP-2 5'-GAGCTCAGGGAATTTCCCTGGTCC-3' (29); 

and CREB/MIP-1P 5'-CTCGATGCCATGACATCATCTTTAC-3' (30). The non

specific probe Oct-2A 5' -GGAGTATCCAGCTCCGTAGCA TGCAAATCCTCTGG-3' 

was used to confirm specificity of the DNA/nuclear protein reaction and was also 

synthesized in our laboratory. As we previously described (31), nuclear extracts were 

incubated at room temperature for 20 min in 1.0 J..lI of binding buffer (100 mM HEPES, 

pH 7.9, 40% glycerol, 10% ficoll, 250 mM KCI, 10 mM DTT, 5 mM EDTA, 250 mM 

NaCI),2 J..lg ofpoly(dI-dC), and 10 J..lg ofnuclease-free BSA (fraction V) (Sigma-Aldrich) 

containing 1.0 ng of radio-Iabelled dsDNA oligonucleotide. dsDNA (100 ng) was end

labeled using [y_32p]dATP and T4 polynucleotide kinase (New England Biolabs, 

Beverley, MA). After a 20-min incubation, the reaction was stopped with the addition of 

5 J..lI of 0.2 M EDT A. The DNA/protein mixture was extracted with phenol/chlorophorm 

and passed through a G-50 spin column. DNA-protein complexes were resolved from 

free-Iabelled DNA by electrophoresis in native 4% (w/v) polyacrylamide gels containing 

50 mM Tris-HCI, pH 8.5, 200 mM glycine, and 1 mM EDTA. The gels were 

subsequently dried and autoradiographed. Cold competitor àssays were conducted by 

adding a 100-fold molar excess of unlabeled oligonucleotides homologous of the labelled 

dsDNA probes. 

Air pouch and leukocyte migration. Air pouches were raised on the dorsum of 3 to 6 

months C57BL/10J (TLR4 competent), C57BL/10ScNcr (TLR4 deficient) and 

C57BL/lOScNcr transgenic mice containing 6 copies of TLR4 gene, as described 

elsewhere (27, 32). L. major stationary phase promastigotes (1 x 107 in 1 ml of 
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endotoxin-free PBS) were injected in the air pouches. Control animaIs were injected with 

endotoxin-free PBS (negative control) and LPS (10 Ilg/ml; positive and toll4 gene 

deletion controls). After 6 h of stimulation, mice were lethally exposed to CO2, and the 

pouches were washed with a total volume of 5 ml of endotoxin-free PBS/l mM EDTA. 

Leukocytes recruited to the pouch exudates were counted directly with a hemacytometer 

following acetic blue staining. Cytospin preparations of pouch exudates of each animal 

were stained using Diff-Quick (Baxter Healthcare; Deerfield, IL) in order to perform the 

differential cell counts for the various stimulations. Cell exudates from each experimental 

group were pooled and centrifuged at 1200 rpm x 10 min at room temperature. Total 

RNA was extracted from the recruited cells with TRizol reagent (Life Technologies), 

according to the manufacturer's protocol, for further analysis of chemokine mRNA 

expreSSiOn. 

Statistical analysis. Statistically significant differences were determined by using EXCEL 

(Microsoft Office 2000). Values of p < 0.05 were deemed statistically significant. AlI data 

are presented as mean ± SD. 
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Results 

In vitro modulation of chemokine mRNA expression by Leishmania. We first investigated 

whether both L. major and L. donovani could modulate the induction of chemokine 

mRNA in a similar manner, regarding the amplitude of the induction and the time

dependent response. Measurements of chemokine mRNA levels were therefore conducted 

by RP A after various times of infection (0.5 to 6 h) of the M~ cellline B 10R. As shown 

in Fig. 1, infection by L. major or L. donovani caused an increase in the expression of 

several M~ chemokine genes, MIP-1a, MIP-113, MIP-2 and MCP-l. The induction can be 

observed as early as half an hour after infection, and reached its maximum at 2 h post

infection for both strains of parasites, although L. major seemed to induce the expression 

of MIP-2 mRNA at a greater extent than L. donovani. These data are in correlation with 

previous results (18). Subsequent experiments presented in this paper have all been 

conducted with both L. major and L. donovani and showed significant similarity; 

therefore, the term Leishmania will be used from now on and will refer to both strains, 

unless otherwise mentioned. RP A experiments were also performed using metacyclic 

parasites, extracted with peanut agglutinine (PNA) (as described (33), in order to compare 

the ability of these highly infectious, non-di vi ding, mature promastigotes, to modulate 

M~ chemokine gene expression with the stationary phase parasites. The results from this 

experiment demonstrated that both types are able to induce chemokine mRNA 

expression. Although metacyclic showed a slightly higher capacity to up-regulate it, this 

difference was not statistically significant (data not shown). 

Leishmania-induced chemokine gene expression does not in volve toll-like receptor 2 

(TLR2). Given that previous studies have reported that interaction of the LPG of 

Leishmania with TLR2 could cause the activation of the nuc1ear factor NF-KB (34), as 

well as the activation of natural killer (NK) cells (35), we sought to determine if TLR2 

could aiso be responsible for the induction of chemokine mRNA expression observed 

during infection of macrophages by Leishmania. To this end, TLR2 DEL M~ (derived 
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from C57BL/6 mi ce with TLR2 gene knockout) and ANA-l M~ (wild type) were infected 

with Leishmania for 2 h, total RNA was extracted, and chemokine mRNA was monitored 

by RPA. An increase can be seen in both TLR2 DEL M~ and ANA-IM~ (control ceIl), 

demonstrating that TLR2 does not seem to play a role in the Leishmania-induced 

chemokine mRNA (data not shown). 

Leishmania-induced chemokine mRNA expression is TLR4-dependent. We then 

investigated the possible role of TLR4 in the induction of M~ chemokine mRNA. In 

order to do so, we infected two different ceIl lines deficient in TLR4; TLR4 DEL M~ 

(derived from C57Bl/lOScCr mice) and TLR4 KO M~ (derived from B6 mice with a toll4 

gene disruption), in paraIlel with the wild type BI OR M~. After 2 h of infection, total 

RNA was extracted and subjected to RP A for chemokine mRNA measurements. The 

results obtained were the same for both types of deficient ceIl lines; therefore, only the 

results for TLR4 KO M~ are shown. As can be seen in Fig. 2, wh en stimulated with 100 

ng/ml of LPS, a pronounced increase in the level of mRNA expression can be observed in 

the wild type M~, but is totaIly abrogated in the TLR4 KO M~. In a similar manner, 

Leishmania-induced chemokine transcripts expression can be observed in the wild type 

M~ (B lOR), but this induction is significantly reduced, almost back to a basallevel, in the 

TLR4 KO M~. Thus, our results strongly suggest that TLR4 plays an essential role in 

Leishmania-induced chemokine rnRNA expression in vitro. 

Leishmania-induced chemokine mRNA expression is MyD88-independent. We next 

sought to determine if the TLR4-dependent pathway, used by Leishmania to induce the 

expression of chemokine mRNA in M~, was dependent of the myeloid differentiation 

factor 88 (MyD88). For this purpose, we infected BMDM ceIl line generated from 

C57BL/6 deficient in the MyD88 adapter molecule, in parallel with wild type M~. As a 

control, we stimulated with LPS at a concentration of 100 ng/ml for 2 h and, as depicted 

in Fig. 3, a strong induction of chemokine mRNA expression can be observed in the wild 

type M~, but is abrogated in the MyD88 deleted ceIls. On the other hand, after 

stimulation with Leishmania, an increase in chemokine gene expression can be noticed in 
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both wild type and MyD88 deficient M~ ceIllines. These results clearly demonstrate that 

increase in the expression of chemokine mRNA induced by Leishmania is independent of 

the MyD88 adaptor protein. 

Identification of transcription factors involved in Leishmania-induced M rjJ chemokine 

gene expression. In order to elucidate the signalling pathway used by Leishmania to 

modulate macrophage chemokine gene expression, we next attempted to identify 

potential transcription factors involved. NF-KB is an important transcription factor 

controlling the expression of genes involved in inflammation (36), and is associated with 

the transcription of various genes, including those encoding for cytokines (IL-l, IL-2, 

TNF-a, and IL-12) (37), adhesion molecules, and chemokines (MCP-l, MIP-2 and IL-8 

(38-41). There is an extensive list of bacteria and bacterial products that can lead to the 

activation of NF-KB, as either a result of inflammation or infection (37). NF-KB can also 

be activated by protozoan parasites, it was indeed demonstrated that Trypanosoma cruzi 

(42) as weIl as Leishmania promastigotes (43) and amastigotes (44) can lead to the 

activation ofthis transcription factor. 

To define whether Leishmania in TLR4 KO and wild type M~ differentially affect 

NF-KB translocation, both ceIllines were infected for various periods oftime (0.5 to 4 h), 

and extracted nuclear pro teins were subjected to EMSA. As shown in Fig. 4A, 

Leishmania induces a rapid, as early as 30 min, and transient translocation of NF-KB in 

wild type M~. However, such induction by the parasites or LPS could not be observed in 

TLR4 KO M~. To determine if the binding of NF-KB to the MIP-2 gene was also 

disrupted in TLR4KO M~, nuclear proteins were incubated with an oligonucleotide 

specific for the NF-KB binding site present in the murine MIP-2 promoter. Of interest, we 

found that the binding to this chemokine promo ter was also inhibited in the absence of 

TLR4, whereas an increase in binding could be seen in BI0R M~ ( Fig. 4B). To further 

demonstrate the involvement of NF-KB on the Leishmania-induced chemokine 

modulation, BI OR M~ were treated for 1 h with increasing concentrations of BAY 11-

7082 (1, 3 and 5 ~M), which is known to inhibit IKB phosphorylation, resulting in 

decrease expression ofNF-KB (45). M~ were then stimulated for 2 h withLeishmania and 
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EMSA were performed to study NF-KB translocation and binding to the MIP-2 promoter. 

As expected, a concentration-dependent inhibition of Leishmania-induced translocation 

and binding could be observed for both the consensus NF-KB sequence (data not shown) 

and NF-KB/MIP-2 (Fig. 5A). We next tested the effect of this inhibitor on the induction 

of chemokine mRNA by Leishmania, by subjecting extracted RNA to RP A after treating 

the cells as it was done for the EMSA analysis. As demonstrated in Fig. 5B, treating the 

M~ with BAY 11-7082 resulted a the partial reduction of MIP-la and MIP-2 mRNA 

expression, and a total inhibition of Leishmania-induced MIP-l p and MCP-l transcripts. 

Given that the treatment with the IKB inhibitor did not result in the absolute 

inhibition of all chemokine induced during infection, we studied another transcription 

factor known to play an important role in the regulation of chemokine expression, and 

like NF-KB, AP-l possesses a binding sequence in MIP-2 promo ter (40). Since previous 

studies have demonstrated that Leishmania can down-modulate the activation of AP-l in 

M~ (43), we were interested to see wh ether this transcription could be involved, or no t, in 

the TLR4-dependent signalling pathway used by the parasite to induce chemokine mRNA 

expression. In this optic, we studied the nuclear translocation of AP-l as it was done 

previously for NF-KB. In contrast to the results obtained for NF-KB, Leishmania was able 

to modulate the translocation of AP-l, both in the wild type and the TLR4 KO M~. As 

shown in Fig. 6, in both cell types we can observe an inhibition of AP-l translocation 

following infection by Leishmania, demonstrating that AP-l would not be part of this 

particular signalling pathway. 

In addition to the study of the transcription factors NF-KB and AP-l, we evaluated 

the potential contribution of CREB. Although its link with any TLR signalling has not yet 

been clearly defined, it is well established that CREB is involved in the regulation of 

MIP-l p chemokine (30). EMSA were performed as previously described; in BI OR M~, 

Leishmania induced an increase in the nuclear translocation of CREB; however, in the 

TLR4 KO M~, this translocation was dramatically reduced (Fig. 7 A), demonstrating that 

CREB is potentially an essential part of this signalling mechanism. To better define the 

contribution of this transcription factor in the modulation of chemokine gene expression 

by Leishmania, we treated the M~ with an inhibitor of adenylate cyclase, MDL-12,330A 
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(1, 5, 10 !-lM), which blocks cAMP-dependent CREB phosphorylation (46), before 

Leishmania infection, and RP A were performed. As demonstrated in Fig. 7B, the 

treatment with MDL-12,330A, reduced only partially the induction of MIP-1p, MIP-2 

and MCP-1, but did not affect MIP-1a, which suggest that this transcription factor does 

contribute to the induction by Leishmania, but only to a small part. 

Evaluation of the potential role of Leishmania surface molecule in the induction of 

chemokine mRNA. In an attempt to identify surface molecule(s) of the parasite that might 

interact with TLR4 to induce chemokine mRNA expression, we used parasites deficient 

for various surface molecules. One of the components that we tested was the major 

surface molecule LPG. In order to determine its effect, we infected B10R M~ with a 

strain of parasites deficient in LPG, Ld R2D2, in parallel with its wild type counterpart, 

Ld lS2D, and subjected the M~ RNA to RPA analysis. As shown in Fig. 8A, the absence 

of LPG did not significantly reduce the induction of chemokine gene expression, with the 

exception of MIP-2 which is slightly decreased. The second molecule tested was gp63, 

using the knock-out parasite strain Lm A2 KO gp63 and its wild type counterpart Lm A2, 

as shown in Fig. 8B, no significant change in the induction of chemokines by Leishmania 

can be seen between both strains of parasites. These results strongly suggest that neither 

LPG nor gp63 plays a significant part in the induction of chemokine mRNA expression 

by Leishmania. 

Leishmania-induced leukocyte recruitment and chemokine mRNA expression in the air 

pouch are TLR4-dependent. To confirm the role of TLR4 in Leishmania-induced 

chemokine gene expression and early pro-inflammatory events in vivo, we used a murine 

air pouch model to monitor innate inflammatory response. After a 6 h treatment 

(Leishmania, PBS or LPS), pouch exudates were collected and the total number of 

leukocytes recruited in response to the different stimuli was determined. As depicted in 

Fig. 9, stimulation with L. major led to a significant increase in the number of leukocytes 

recruited in the pouches of wild type mice; however, this increase is dramatically reduced 

in TLR4 DEL mice, which demonstrates the importance of this receptor for the 

recruitment of leukocytes in response to L. major. This observation was further confirmed 
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using transgenic TLR4 6X, in which the elevation of leukocyte recruitment lS ev en 

greater than what can be noticed in the wild type mice. By performing differential ceIl 

counts of leukocyte subpopulations for the various stimulations of the three strains of 

mice, we could observe that PBS-stimulated wild type mice already presented a diversity 

of subpopulations a high proportion of which (50%) was constituted of neutrophils (Fig. 

10). When stimulated with L. major, the same proportions of subpopulations, as for the 

PBS-stimulated, were observed in the wild type mice (50% neutrophils, 25% monocytes, 

20% eosinophils, and 5% lymphocytes); however, the number of ceIls of each 

subpopulation is increased (5-fold for the monocytes and neutrophils, 3-fold for the 

lymphocytes, and 7-fold for the eosinophils). In the TLR4 DEL mi ce, the subpopulations 

of leukocytes recruited in the presence of PBS show different proportions, 45% 

monocytes, 25% neutrophils, 30% eosinophils and 5% lymphocytes. Although a small 

increase of certain cell populations can be observe in presence of L. major, the 

proportions as well as the number of cells recruited still remain lower than what was 

observed in the wild type animaIs. The role of TLR4 can be further assessed when 

comparing the response of the transgenic mice TLR4 6X with the resistant wild type. As 

shown in Fig. lOB (right graphie), in presence of L. major, there is a recruitment of 

27,44x104/ml monocytes and 95,69x104/ml neutrophils, which represent a 2,4-fold and a 

4-fold increase, respectively, over the results obtained in the wild type mice infected with 

L. major. These data indicate the involvement of TLR4 in the recruitment of leukocytes, 

particularly of neutrophils, to the site of infection. 

The examination of the induction of chemokine genes in vivo was conducted by 

pooling the pouch exudates of each experimental group, and total RNA was extracted 

from the recruited leukocytes to be subjected to RP A. In correlation with leukocyte 

recruitment and the data obtained in vitro, an increase in the four chemokines: MIP-l p, 
MIP-la, and MCP-l (Monocytes (47)), and MIP-2 (Neutrophils (48)) could be observed 

in the wild type mice, in the presence of L. major (Fig Il). However no such induction 

could be observed in the TLR4 DEL mice, where no increase was visible for MCP-l and 

only a slight up-regulation was induced in the presence of L. major for the other three 

chemokines. These results, once again, support the role played by TLR4 in the 
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Leishmania-induced chemokine mRNA expressIOn and consequent inflammatory cell 

recruitment. 
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Discussion 

The innate immune response plays a crucial role in the recognition of different 

pathogens. Toll-like receptors, since their discovery, have been associated with the 

recognition of several pathogen-associated molecular patterns (P AMPs), first found to be 

mainly of bacterial origin, now known to be of a great diversity (review in (49)). In our 

study we found that Leishmania can interact with TLR4, conducting to the induction of 

several chemokine genes expression in vitro, as weIl as in vivo. In vitro, this chemokine 

mRNA induction was shown to be independent of the adaptor molecule MyD88. 

Nevertheless, this TLR4-dependent Leishmania-induced chemokine transcripts 

expression was shown to involve the activation of the transcription factors, NF-KB and 

CREB. In vivo experiments, have permitted to demonstrate that leukocyte recruitment 

was significantly reduced in the absence of TLR4, which was in correlation with the 

reduction of chemokine gene expression. 

Chemokines are an integral part of the innate immune response, and their 

expression can be modulated in different ways by pathogens. As we previously reported 

(18), an up-regulation of chemokine gene expression was also observed in vitro, when 

murine BMDM were stimulated with Leishmania. Indeed, RP A analysis demonstrated the 

induction of MIP-lp, MIP-la, MIP-2 and MCP-l, as seen in vivo. Furthermore, we 

demonstrated that this chemokine mRNA induction was also abrogated when 

macrophages deficient in TLR4 were infected with Leishmania, demonstrating the 

importance ofthis particular receptor for the up-regulation ofthose chemokines. 

Previous in vivo experiments by Kropf et al. (4, 50) have revealed the importance 

of TLR4 for the development of efficient immune control over Leishmania infection. 

However, these experiments have not studied the role of this TLR in the initial 

recognition of Leishmania by macrophage at which time innate immunity plays a crucial 

role in the local containment of Leishmania infection (51, 52). One of the key effector 

cells that have been identify to reduce parasite numbers at the site of inoculation, and 

therefore control early systemic spreading are the neutrophils (52, 53). In agreement with 

the observation of Lima et al. (52) that neutrophils are the major cell type present at the 
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site of infection in the first 3 days after inoculation, we also observed that these cells were 

the predominant cell type (around 50% ofrecruited cells) present in the air pouches of the 

wild type mice. These data are also in agreement with previous results obtained by our 

team in the air pouch model, as well as in footpad infection (54, 55). However, in the 

TLR4 DEL mice the major cell type of the few recruited cells was found to be monocyte, 

and both these cells and the neutrophils were found to be present in significantly lower 

numbers than in the TLR4-competent mice. This inability to recruit neutrophils may be in 

part an indicator as to why these mice were shown to be less efficient to control L. major 

infection. In the same line of thinking, it is possible to speculate that the TLR4 6X, where 

a higher leukocyte recruitment was measured, and in particular of neutrophils, could be 

even more efficient to control Leishmania infection, but this hypothesis remains to be 

tested. 

In correlation with these results, and the in vitro experiments, modulation of 

several chemokine transcripts; such as MIP-l~, MIP-la, MIP-2 and MCP-l; was 

observed when total RNA was extracted from the recruited cells of the pouch exudates 

from wild type mice. Most importantly, MIP-2, a powerful neutrophil chemoattractant 

and activator (48), was found to be highly up-regulated and to be the chemokine that has 

the highest expression. This difference with the in vitro results, where MIP-2 mRNA was 

not as highly expressed, can be explained by the fact that, in vitro, we only studied M~ 

chemokine expression, whereas in vivo the chemokine gene expression was the one 

observed for the recruited cells, which is constituted be a mixed population of leukocytes, 

such as monocytes, neutrophils, eosinophils and lymphocytes. Meaning that the 

expression observed in vivo could be the one of monocytes as well as the one of 

neutrophils, which can also produce MIP-2 (56). This data reflect very well why 

neutrophils constitute the majority of the cells recruited in the pouch exudates. Moreover, 

the induction ofthese chemokines was found to be significantly reduced in the absence of 

TLR4, as reported by the results obtained in TLR4 DEL mice. 

Given the knowledge that TLR4 can react with the adaptor molecule MyD88, and 

previous studies have shown that MyD88 might be essential for the clearance of 

Leishmania (34), we then sought to determine if the chemokine induction would also be 

dependent of MyD88. According to the results obtained from the RP A experiments using 
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MyD88-deficient M~, this particular signalling mechanism was shown to be MyD88-

independent. Of interest, in the absence of MyD88 the chemokine gene up-regulation was 

found to be, for sorne of the chemokines (MIP-IP and MIP-2 mainly), even stronger. This 

observation could be explained by the possibility that deletion of MyD88 also resulted in 

deletion of MyD88s, a splice variant of MyD88. MyD88s was found to act as a negative 

regulator of the TLR response, in order to prevent over activation of the cells, which 

could be deleterious for the organism (49, 57). Taken together, this would mean that the 

deletion of MyD88s could result in the over expression that we observed in the RP A 

experiments; however this hypothesis remained to be confirmed. 

Although these data demonstrate the pivotaI role played by TLR4 in Leishmania

induced chemokine gene expression, the transductional mechanisms involved in this 

modulation still remained to be studied. Thus, the possible link between TLR4 and the 

activation of different transcription factors (NF-KB, AP-l and CREB) have been 

investigated. 

For instance, we found that Leishmania can modulate NF-KB activity, which is in 

accordance with previous results obtained by others (44, 54). Of importance, results 

demonstrate that the early activation ofNF-KB by Leishmania, is TLR4-dependent, since 

the absence of this receptor resulted in the inhibition of the activation of this transcription 

factor. In these experiments, we noticed that the basal level of NF-KB in the nucleus is 

lower in the TLR4 KO M~, than in the wild type M~. This difference seems to be related 

to a defect in the translocation rather than in the amount of NF-KB in the ce Il , since 

Western analysis of the subunits p65 and p50 revealed that these subunits are present in 

the same amount in both cell types (data not shown). In order to further demonstrate the 

need for NF-KB in chemokine gene induction by Leishmania, we used the inhibitor BAY 

11-7082. The inhibition of NF -KB activation resulted in the inhibition of the induction of 

MIP-lp and MCP-l, as weIl as a reduction in the expression of MIP-la and MIP-2. 

These results clearly demonstrate the essential role played by NF-KB in the up-regulation 

ofM~ chemokine mRNA in presence of Leishmania. 

AP-l has previously been shown to be modulated in presence of Leishmania (43), 

III our experiments, we indeed observed a time-dependent down-modulation of its 
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activity. However, this ability of Leishmania to modulate the activity of AP-l does not 

appear to be TLR4-dependent, given that the same effect of the parasite on the 

translocation could be observed in presence, or in absence of the receptor. 

Another transcription factor studied in this paper was CREB. Although no 

previous report of its modulation by Leishmania has been published, it has been reported 

that another protozoan parasite, Theileria parva, is responsible for an increase in the 

binding activity of CREB in infected bovine T cells (58). In addition, it was demonstrated 

that CpG DNA could interfere with the binding activity of CREB (59), and since CpG is 

known to be a TLR9 ligand, a role for TLR in this modulation is probable. The same 

observation can be made about previous results showing that HSP60, a TLR4 ligand, can 

induce the activation of CREB (60).However, none of these studies used knock out cells 

or mice in order to confirmed more directly the link between TLR and CREB. In our 

study, however, we have demonstrated that Leishmania can induce CREB activation in 

murine M~ during the early time of infection, and that this activation is significantly 

reduced when the same experiment was carried out in M~ deficient in TLR4, which 

clearly suggest a role of TLR4 in the activation of CREB. 

In an attempt to identify the potential TLR4 ligand of Leishmania, we studied the 

effect of the deletion oftwo different surface molecules of Leishmania, LPG and gp63, on 

the induction of chemokine genes. LPG is known to play a role in the modulation of a 

variety of signalling pathways involved, for instance, in inducible nitric oxide synthase 

(61) and cytokines like IL-12 (13), resistance to complement-mediated lysis (33), and 

many others. In our experiments, however, the deletion of LPG from the surface of 

Leishmania did not show any significant change in the induction of chemokine mRNA 

expression. This result is not surprising since previous studies have shown LPG to be a 

TLR2 ligand (35), and in the case of our study, the deletion of TLR2 did not resulted in 

any significant changes in the up-regulation of chemokine genes, which supports that 

LPG does not play a major role in the TLR4-dependent induction of chemokine mRNA. 

We then tried with parasites deficient in gp63, and once again, there were no significant 

changes in the level of expression of chemokine mRNA. 
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In conclusion, our study demonstrates the important role fulfiUed by TLR4 in the 

Leishmania-induced M~ chemokine gene expression in vitro, as well as in vivo. And to 

involve a MyD88-independent signalling events conducting to NF-KB and CREB 

activation and chemokine gene transcription. Furthermore, the in vivo experiments have 

shown that the induction of chemokines following infection by Leishmania is necessary 

for the recruitment of specific leukocyte subpopulations, particularly of neutrophils, to the 

site of infection, phenomenon also dependent on the presence of TLR4. Taken together, 

these data bring new insights in the signalling mechanistic involved in host-pathogen 

interaction, which could eventually lead to the identification of potential therapeutic 

targets. 
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Figure 1. Kinetic analysis of Leishmania-induced chernokine rnRNA expression. 

BI OR M<j> were stimulated with either L. donovani 2211 (left panel) or L. major Friedlin 

(middle panel), at a parasite:cell ratio of 20:1, for 0 to 6 h, and chemokine mRNA 

expression was monitored by using a mCK5 multiprobe RP A system. Densitometric 

quantification of mRNA levels over negative control after normalization to mL32 (right 

panel). Results are representative of one of three independent experiments. 
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Figure 2. Leishmania-induced chemokine gene expression is TLR4-dependent. TLR4 

KO M<j> and BI0R M<j> were infected with either L. donovani (Ld) or L. major (Lm) 

(parasite:cell ratio of 20:1) for a 2 h period and chemokine mRNA expression was 

evaluated by RP A (left pane!). Integrated density values of chemokine mRNA levels of 

both cell lines normalized to mL32 (right pane!). Results are representative of one of 

three separate experiments. Nil: Untreated; Lsh: L. major 1 L. donovani. 
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Figure 3. Induction of chemokine mRNA expression by Leishmania is MyD88-

independent. MyD88 deficient M<j> and their control were infected (parasite-to-cell ratio 

of 20:1) for 2 h and chemokine gene expression was monitored by RPA (left panel). 

Integrated density values of chemokine mRNA levels of both cell lines normalized to 

mL32 (right panel). Results are representative of one of three independent experiments. 
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Figure 4. Leishmania-induced NF-KB nuclear translocation is TLR4-dependent. A, 

Nuclear extracts from TLR4 KO and BIOR M<j> stimulated for different time periods (0-4 

h) were incubated with a [y-32P]-labe1ed NF-KB consensus probe, and subjected to 

EMS A. Binding specificity was tested by adding to nuclear extracts from 2-h-LPS-treated 

BIOR M<j> a 100-foid molar excess of either a cold NF-KB oligonucleotide (CO 100X) or 

a non-specifie Oct2A competition (NSC). B, EMSA analysis was performed as described 

in A, but this time nuc1ear extracts were incubated with a NF-KB probe specifie for the 

murine MIP-2 promoter. Binding specificity was tested by adding to nuclear extracts 

from 2-h-LPS-treated BIOR M<j> a 100-foid molar excess of cold NF-KB oligonucleotide 

specifie for MIP-2 promoter or a non-specifie Oct2A probe. Results are representative of 

one of three separate experiments. 
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Figure 5. Role of NF -KB on M«j> chemokine mRNA expression in response to 

Leish man ia. A, Nuclear extracts form cells treated with BA Y 11-7082 (1 h) before 

stimulation by Leishmania (2 h) were subjected to EMSA by using a probe containing a 

NF-KB binding site in the murine MIP-2 promoter. B, Total RNA was extracted from M<I> 

stimulated as described in the previous experiment and chemokine mRNA modulation 

was monitored by RP A (left panel). Integrated density values of chemokine mRNA 

expression normalized to mL32 (right panel). Nil: untreated (open bar), Leishmania ± 

BAY 11-7082 (solid bars). These results are representative of one of three separate 

experiments. 
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Figure 6. Down-modulation of AP-l nuclear translocation by Leishmania is TLR4-

independent. Nuclear extracts from TLR4 KO and BIOR M<j>, stimulated for different 

time periods (0-4 h), were incubated with a y-32P-labeled AP-l probe, and were subjected 

to EMSA. Binding specificity was tested by adding to nuclear extracts from 2-h-LPS

treated BIOR M<j> a 100-fold molar excess of either a cold AP-l oligonucleotide or a non

specifie Oct2A probe. These results are representative of one of three independent 

experiments. 



Figure 7. Leishmania-induced CREB DNA binding activity is TLR4-dependent. A, 

Time course of CREB binding in response to Leishmania (0-4 h), in either BI OR or TLR4 

KO M~, was monitored by EMSA using a [y-32P]-labeled CREB probe. E, Following 

MDL-12,330A treatment (l h) and Leishmania infection (2 h), total RNA was extracted 

from B lOR M~ and chemokine mRNA modulation was monitored by RP A (left panel). 

Integrated density values of chemokine gene expression normalized to mL32 (right 

panel). Nil: untreated (open bar), Leishmania ± MDL-12,330A (solid bars). These results 

are representative of one of three independent experiments. 
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Figure 8. Role of LPG and gp63 on the induction of Mcp chemokine gene expression 

by Leishmania. Cells were stimulated with Ld R2D2 (A) or Lm A2 KO gp63 (B), 

deficient in LPG and gp63 respectively, along with their respective wild type counterpart. 

Total RNA was extracted and chemokine mRNA expression was monitored by RPA (left 

panels). Densitometric quantification of chemokine mRNA levels over negative control 

after normalization to mL32 (right panels). Results are representative of one of three 

separate experiments. 
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Figure 9. TLR4 involvement in Leishmania-induced leukocyte recruitment. 

Leukocyte accumulation in the air pouch of wild type, TLR4 DEL and TLR4 6X mice in 

response to L. major (1X107/ml), LPS (10 !-tg/ml) or endotoxin-free PBS (1 ml) after 6 h. 

Values are expressed in fold increase over PBS for each mouse strain. Six-hour LPS- and 

PBS-treated mice were used as positive and negative controls, respectively. Total cell 

counting was performed directly by using a hemacytometer. Results represent mean + SD 

of four to five mice. *,p < 0.02, L. major/LPS vs. PBS; **,p < 0.001, L. major/LPS vs. 

PBS. Data are representative of one oftwo independent experiments. 
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Figure 10. Differentialleukocyte recruitment induced by Leishmania. A, Percentage 

of leukocyte subpopulations in the air pouch of wild type, TLR4 DEL and TLR4 6X mice 

in response to L. major (1X107/ml), LPS (10 !-.tg/ml) or endotoxin-free PBS (1 ml) after 6 

h. B, Number of monocytes, neutrophils, lymphocytes and eosinophils recruited in the 

pouch exudates, in response to the same stimuli as described in A. DifferentiaI cell count 

were performed on Wright-Giemsa stained cytospin preparations. Results represent mean 

+ SD of four to five mice. Data are representative of one of two separate experiments. 
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Figure 11. Leishmania-induced up-regulation of chemokine mRNA in the air pouch 

is TLR4-dependent. Following a 6-h treatment, exudates from each experimental group 

were pooled and total RNA was extracted from the leukocytes recruited. Chemokine 

mRNA levels were monitored by RP A (left panel). Densitometric quantification of 

chemokine mRNA expression over negative control after normalization to mL32 (right 

panel). Data are representative of one of two independent experiments. 





Figure 8. TLR2 and TLR4 signalling. Taken [rom (229) 
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CHAPTER V 

GENERAL DISCUSSION AND CONCLUSION 

Leishmania is a widespread parasite affecting 12 million people in a great number 

of country and each year new cases are reported. The increasing incidence due to wars 

and an increase in overseas travellers has made the need for more efficient treatment and 

vaccines an even bigger concem. However, before being able to find those, a better 

understanding of the host-parasite interact is necessary. 

In order to mount the proper immune response against a pathogen, the immune 

system has to recognize the invader. Recognition of an outsider organism by immune 

cells is crucial for the activation of different signalling pathways which would eventually 

lead to the activation of these and other immune cells. These activated phagocytes can 

then phagocytose and degrade the pathogen. Previous studies have demonstrated that 

recognition of Leishmania by M~ can lead to the expression of different pro- and anti

inflammatory molecules such as chemokines and cytokines. Although the induction of 

these molecules in response to the parasite is known, the exact mechanism of recognition 

and signalling pathway involved in the activation of these functions is still largely 

unknown (10, 30, 69). 

In order to identify of the possible receptors involved in the recognition of 

Leishmania, different groups have discovered that the parasite surface molecule LPG 

could be recognized by TLR2, leading to the activation of NF-KB, as well as the 

activation of NK cells (217, 228). Other groups have reported that different TLRs could 

be involved in the development of an immune response toward Leishmania infection. 

Using M~ deficient for MyD88, one group has demonstrated that Leishmania would 

activate the expression of IL-la through the activation of the TLR adaptor protein 
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MyD88, which suggest the TLR involvement (227). A role for TLR was also 

demonstrated by Kropf et al. when they looked at the progression of Leishmania infection 

in mice deficient in TLR4. In their experiments, this group has found that TLR4 was 

important for the efficient control of the infection (226, 233). Although more and more 

evidences demonstrate the importance of TLRs in the recognition of Leishmania, none of 

these studies have yet investigated their role in the Leishmania-induced chemokine 

mRNA expression in the early time of infection. 

In the present study, our goal was to determine whether TLR receptors were 

involved in Leishmania-induced chemokine expression and to decipher the signalling 

events conducting to their activation. In order to achieve this goal we used BMDM 

deficient in TLR2, TLR4 or in the TLR adaptor molecule MyD88 for the in vitro 

chemokine expression study and identification of transcription factors involved. We 

confirmed our findings using TLR4-deficient and TLR4-overexpressing mice. 

The results from our in vitro study have demonstrated that the induction of 

chemokine mRNA expression upon Leishmania infection is TLR4-dependent. However, 

by contrast with the results for the induction of IL-la, Leishmania-induced chemokine 

expression does not depend on the adaptor molecule MyD88. In fact, it seems that the 

absence of MyD88 actually lead to an increase in the level of gene expression of sorne of 

the chemokines induced by Leishmania. This observation could be explained by several 

events, one could be that recognition of Leishmania by M~ is also activating a pathway 

involving MyD88 who would act as a negative regulator or moderator of the response 

induced by the TLR4 pathway. Another possibility is that the deletion of the MyD88 gene 

in our cells also resulted in the deletion of MyD88s, a short spliced variant of MyD88. 

Research on MyD88s have demonstrated that this molecule is involved in the negative 

regulation of TLR signalling; however, no studies have tested if it is involved in the 

negative regulation of TLR-dependent but MyD88-independent pathways (142, 207). 

More research on these hypothesis would have to be done in order to c1arify which 

negative regulation mechanism is involved in our case. 
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The results regarding the role of TLR4 in the Leishmania-induced chemokine 

mRNA expression was further demonstrated in vivo. The in vivo experiments were 

performed using wild type, TLR4-deficient and TLR4-overexpressing mice in the air 

pouch mode!. Comparison of the level of chemokine gene induction in the recruited cells, 

as well as the number of leukocytes recruited to the pouch enabled us to assess the role of 

TLR4. These data revealed that TLR4 was indeed playing an important part in the 

induction of chemokine mRNA, which is crucial for the cellular recruitment induced 

following infection by Leishmania. Analysis of the in vivo results has also shown that 

MIP-2 was the chemokine which has the highest induction following infection, and this 

induction was strongly inhibited in absence of TLR4. These data are very interesting 

because they correlate nicely with the observation that N~ are the major leukocyte 

subfamily recruited in the air pouch, and it is common knowledge that these cells are 

chemoattracted by MIP-2. Worth mentioning is that Lima et al. have demonstrated that 

N~ are very important for the control of Leishmania infection since they are able to ingest 

and de grade the parasites (234). The same important role for N~ was demonstrated by our 

team in SHP-l-deficient mice, in this study the high recruitment of N~ was correlated 

with almost total abolition of L. major infection and footpad swelling (63). This could 

mean that since the mice overexpressing TLR4 exhibit a higher recruitment of N~, they 

would control the infection more efficiently than the wild type mice; however, other 

studies have also demonstrated that a high recruitment ofN~ could sometime result in an 

increase of inflammation which would exacerbate the disease (128, 235). Given that 

recruitment of a high number of N ~ can result in either fast clearing of the infection, or in 

exacerbation of the disease, it would be necessary to do the follow up of the progression 

of Leishmania infection in the three different types of mice in order to really understand 

the role played by the TLR4-dependent N~ recruitment. 

We also performed EMSA experiments with the deficient M~ in order to 

identified which transcription factors could be involved in the TLR signalling. The results 

obtained demonstrate that NF-KB and CREB are both involved in the TLR4-dependent 

Leishmania-induced chemokine mRNA expression since their activation was significantly 
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reduced in absence of TLR4. These data were confirmed usmg inhibitors pnor to 

Leishmania infection and monitoring of chemokine RNA expression by RP A. Although 

an inhibition of the induction of sorne chemokine could be seen, neither the use of the 

NF-xB nor the CREB inhibitor resulted in the complete inhibition of the induction of the 

chemokine. These data suggest that other transcription factors could be involved in this 

signalling mechanism, therefore more study should be performed in order to identify 

these transcription factors. Since previous studies have reported that one of the 

transcription factor that could be activated in TLR4-dependent, MyD88-independent 

pathways is IRF3, this could be a good starting point for our investigation (232). 

Furthermore, rnernbers of the STAT farnily and CIEBP could also be tested since 

different groups have reported their role in the transcription of sorne chernokines (236-

239). After the identification ofpotential transcription factors, confirmation oftheir effect 

on Leishmania-induced chernokine rnRNA expression would have to be conducted using 

specific inhibitors and RP A analysis would have to be done. 

In conclusion, we have dernonstrated that Leishmania-induced chemokine mRNA 

expression was dependent on TLR4, but not for the TLR adaptor rnolecule MyD88 that 

was found not to be involved in this cellular activation. The chemokine gene induction 

was found to correlate with the recruitrnent of specific leukocyte subpopulations to the 

site of infection and this particular recruitrnent was also dependent on the presence of 

TLR4. Moreover, our in vitro results showed that both NF-xB and CREB were involved 

in the signalling pathway leading to the induction of chemokine genes, and their 

activation was also dependent on the presence of TLR4. Although these discovery are of 

a great interest and bring new insights necessary for a better understanding of the 

Leishmania-host interaction, details remains to be clarified. The signalling pathway 

following the activation of TLR4 until the activation of the different transcription factors 

is stilllargely unclear and will have to be characterized in order to know everything that 

is involved and to what extent. It is also unclear what is the exact impact of the activation 

of TLR4; leading to the expression of chernokines and leukocyte recruitrnent; on the 

outcorne of the disease, as weIl as on the parasite survival, and these are crucial elernents 

that need to be understood. 
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