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Abstract 

The protozoan parasite Entamoeba histolytica is the etiological agent of human 

amebiasis. Trophozoites colonize the colonie mucus layer and may invade the epithelium 

subsequent to overcoming the mucus barrier. MUC2 is the major gel-forming mucin 

secreted by goblet cells in the colon and serves to maintain epithelial barrier function as 

well as acting as a major host defense against invading pathogens. The polymerization of 

MUC2 monomers via the N- and C- terminal cysteine rich D-domains is essential for 

mucus gel formation and conf ers protection to the underlying mucosa. Amoebae secrete 

cysteine proteinases, glycosidases and an unidentified mucus secretagogue, which may 

play a role in overcoming the protective mucus barrier. We hypothesize that E. histolytica 

cysteine proteinases as well as glycosidases are involved in mucus degradation and 

weakening of the mucus barrier by disrupting mucin polymerization. Amoebae secreted 

cysteine proteinases were shown to degrade the cysteine ri ch regions of MUC2 involved 

in polymerization and abrogate its protective function. More importantly, the major E. 

histolytica surface proteinase, cysteine proteinase 5 (EhCP5) was shown to specifically 

degrade e5S]cysteine labeled colonic mucin as effectively as secreted components. 

Moreover, trophozoites genetically engineered to express low levels of CP activity were 

incapable of traversing a mucus barrier and destroying the underlying epithelium, 

indicating a strong dependence between amebic invasiveness and cysteine protease 

activity. In addition, we have demonstrated that EhCPs specifically target the MUC2 C­

terminus resulting in destabilization of the mucin polymerie network. Parasite 

glycosidase activity was also shown to contribute to mucin oligosaccharide degradation. 

Taken together, these results indicate that E. histolytica can substantially weaken the 

colonie mucus barrier via proteolytic degradation and glycosidase activity to compromise 

the gel and allow the parasite to invade the underlying colonie epithelium. These findings 

have made a major contribution to our understanding of how E. histolytica virulence 

factors interact with innate defenses of the gut in the of pathogenesis of intestinal 

amebiasis. This information is necessary to devise molecular and immunological 

approaches in the treatment of intestinal amebiasis. 



Abrégé 

Le parasite protozoaire Entamoeba histolytica est l'agent étiologique de l'amibiase 

humaine. Les trophozoites colonisent la couche muqueuse du colon et peuvent envahir 

l'épithélium après avoir passer la barrière muqueuse. MUC2, la mucine qui forme un gel, 

est la mucine principale sécrétée par les cellules de goblet dans la colon. MUC2 sert à 

maintenir la fonction de barrière épithéliale et sert aussi comme première défense contre 

les pathogènes envahissants. La polymérisation des monomères de MUC2 via les 

terminus N et C, contenant des domaines D riches en cystéines, est essentielle pour la 

formation du gel muqueux et la protection des muqueuses sous-jacentes. Les amibes 

sécrétent des protéinases à cystéine, des glycosidases et une sécrétagogue à mucus non­

identifiée. Tous ces éléments pourraient aider le parasite à franchir la couche protectrice 

de mucus. Nous hypothésons que les protéinases à cystéine et les glycosidases de E. 

histolytica sont impliquées dans la dégradation des mucines et donc dans 

l'affaiblissement de la couche protectrice de mucus via la désintégration des polymères 

de mucine. Les protéinases à cystéine sécrétées par les amibes ont démontré l'abilité 

d'abolir la fonction protectrice de MUC2 par la dégradation des régions riches en 

cystéines nécessaires à la polymérisation. De plus, la protéinase majeure de E. histolytica 

exposée à la surface du parasite, la protéinase à cystéine 5 (EHCP5), a pu spécifiquement 

dégrader des mucines coloniques marquées avec de la eSS]-cystéine. Cette dégradation 

par la EHCP5 était comparable à celle observée par les produits sécrétés du parasite. Des 

trophozoites génétiquement modifiés pour exprimer de bas niveaux d'activité CP, étaient 

incapables de traverser la couche protectrice de mucus et de détruire l'épithélium sous­

jacent, indiquant une forte corrélation entre l'activité des protéinases à cystéine et 

l'invasion amibienne. Nous avons aussi démontré que les EHCPs ciblent spécifiquement 

le C-terminus de MUC2, provoquant la déstabilisation du réseau polymérique de 

mucines. Nous avons montré que les glycosidases du parasite contribuent aussi à la 

dégradation des oligosaccharides de mucine. Pris ensemble, ces résultats indiquent que E. 

histolytica peut significativement affaiblir la couche protectrice de mucus colonique via 

une dégradation protéolitique et une activité glycosidase qui compromettent le gel et 

permettent au parasite d'envahir l'épithélium sous-jacent. Ces trouvées nous aident 
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grandement à mieux comprendre comment l' intéraction entre les facteurs de virulence de 

E. histolytica et les défenses innées de l'intestin contribue à la pathogénèse de l'amibiase 

intestinale. Cette information est nécessaire pour concevoir de nouvelles approches 

moléculaires et immunologiques afin de traiter l'amibiase intestinale. 
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Section 1: Literature Review 
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Introduction 

The protozoan parasite Entamoeba histolytica is the etiological agent of human 

amebiasis. Approximately one percent of the world's population is infected with the 

parasite and about 10% ofthose infected develop invasive disease [1]. E. histolytica is a 

major cause of morbidity and mortality in developing countries throughout the world and 

infection rates are among the highest in areas such as Mexico, India, sub-Saharan Africa 

and Asia. The major symptoms of the disease are bloody or mucoid containing stool, 

diarrhea, colitis, liver abscess formation, and subsequent death if left without treatment. 

The initiating events contributing to invasive disease are ill defined and very few studies 

have focused on the initial interactions between the parasite and the innate host defense of 

colonic mucin. Following excystment in the small intestine, E. histolytica trophozoites 

colonize the mucus layer of the colon by adhering to galactose and N-Acetyl-D­

galactosamine residues present on mucin via a 170 kDa GallGalNAc lectin [2]. In most 

cases, the parasite remains in or on the mucus layer as a harmless commensal and forms 

cysts that are passed out in the feces to continue the lifecycle. However, in a small 

percent of cases, the parasite overcomes the mucus barrier, makes contact with the 

underlying epithelium and causes cytolysis of host epithelial and inflammatory cells. The 

trophozoites then migrate through the mucosa and degrade tissues and extracellular 

matrix proteins via the action of secreted cysteine proteinases [3]. Finally, during 

migration, the parasites may be picked up by the circulatory system and passively 

disseminate to organs such as the liver where they become lodged and form an abscess. 

The parasite virulence factors involved in mucus disruption prIor to epithelial cell 

invasion have not previously been identified and cysteine proteases are likely key 

molecules responsible for depleting the mucus barrier. E. histolytica constitutively 

secretes copious amounts of cysteine proteases and these have potent lytic activity against 

a range of host proteins such as collagen [3], fibronectin [4], complement [5], and 

immunoglobulins. In addition, the parasite produces glycosidases that may contribute to 
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mucus degradation [6]. Mucus secretion is also induced during infection by an unknown 

secretagogue, possibly contributing to depletion of the mucus barrier. 

MUC2 is the major gel forming mucin secreted by goblet cells of the colon. The MUC2 

molecule is composed of two mucin domains, which are heavily glycosylated with 0-

linked oligosaccharides and are resistant to proteolytic attack. The N- and C- terminal 

regions flank:ing the mucin domains are ri ch in cysteine residues and are involved in 

polymerization of MUC2 with corresponding termini [7]. These regions are poorly 

glycosylated in comparison to the mucin domains and may be susceptible to proteolytic 

attack. The intrinsic gel-forming and protective properties of mucus are dependent upon 

both the oligosaccharide's ability to protect the protein core, as well as the molecule's 

ability to form polymers via the poorly glycosylated regions. Alterations in the mucin 

polymeric network such as depolymerization would likely destabilize the mucus gel and 

contribute to weakening of the barrier. This depletion could facilitate parasite invasion of 

the colon by allowing the trophozoites to overcome the mucus barrier. The objective of 

this study was to identify the E. histolytica enzymes that facilitate parasite invasion 

of the colon by disrupting the mucin polymerie network. The specific aims were: 

1) To characterize E. histolytica proteinase activity against colonic mucin 

2) To determine the specific role cysteine proteinases play in mucin degradation 

and epithelial cell invasion 

3) To identify the specific cysteine proteinase cleavage sites on MUe2 

4) To characterize glycosidase activity by amebae secreted components 

These studies have identified an important E. histolytica virulence factor, the cysteine 

proteinases, as being the main class of enzymes responsible for destabilizing the mucin 

polymeric network and allowing the parasite to traverse the mucus barrier. In addition, 

parasite glycosidase activity and mucus secretagogue activity may also play secondary 

roles in mucus depletion. These findings have made a major advance in our 
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understanding of how E. histolytica cysteine proteinases overcome luminal barrier 

function in intestinal amebiasis. 
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Chapter 1: Entamoeba histolytica: Iife cycle and virulence factors 

1.1 Introduction to Entamoeba histolytica 

Entamoeba histolytica is a protozoan parasite, and the etiological agent of human 

amebiasis. It is estimated that one percent of the world' s population is infected with 

the parasite of which 10% develop amebic colitis and/or extraintestinal disease [1]. 

The parasite causes an estimated 100,000 deaths per year and is the third leading 

cause of morbidity and mortality due to a parasitic disease in humans after malaria 

and schistosomiasis [2]. Amebiasis affects mainly people in developing countries 

where sanitation conditions are poor, but increased international travel has caused the 

parasite to be of concern in developed nations. Infection with E. histolytica can be 

very distressful to the host and may cause abdominal pain, severe diarrhea as well as 

fever, bloody mucoid stool, extraintestinalliver abscess and death ifleft untreated [3]. 

E. histolytica belongs to the Phylum protozoa, Class Lobosea, Order Amoebida and 

family Entamoebidae. Initial attempts to identify the parasite have proven difficult 

due to the presence of other nonpathogenic amoebae in the normal human colon. The 

organism was first identified in 1875 by Fedor Losch, a Russian physician, and was 

initially called "Amoeba coli" by its discoverer. It was not until several years later in 

1903 that Fritz Schaudinn created the species name Entamoeba histolytica. At that 

time, scientists believed that the parasite could exhibit varying degrees of virulence 

since many people infected with what was once thought of as E. histolytica, could 

spontaneously clear their infection and never develop disease. This parasite's alter 

ego made studies of the pathogenesis of the disease very problematic. There were no 

clear morphological differences found between the "pathogenic" and 

"nonpathogenic" amoebae, therefore they were believed to be one of the same. In 

1925, Emile Brumpt suggested that there were two species, one, which causes disease 

and has the potential to invade, and the other which would never cause disease, 

named Entamoeba dispar. It was not until later in the 1970s and 1980s with the 

development of new biochemical and genetic data that there was enough evidence to 

support the existence of E. dispar as a separate species. In 1993 a formaI 
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redescription of E. histolytica was published which distinguished it from E. dispar 

[4]. Thanks to this differentiation, future research on the pathogenesis of amebiasis 

has shifted towards discovering the genetic and biochemical differences between 

these two organisms with regards to potential virulence factors present in E. 

histolytica, which may be absent or in lower abundance in the non-invasive 

commensal E. dispar. Since its redescription, many virulence factors unique to E. 

histolytica have been shown to be involved in the pathogenesis of invasive amebiasis. 

1.2 E. histolytica Life Cycle and Cell Biology 

E. histolytica is a parasite with a simple life cycle. Rumans become infected by 

ingesting the infective cyst form of the parasite with fecally contaminated food and/or 

water. An E. histolytica cyst contains four nuclei and measures about 12 ""M in 

diameter and this resistant stage of the parasite can survive outside the host for several 

days in a moist environment. Upon ingestion, the cyst passes through the stomach and 

small intestine and excystation occurs in the terminal ileum or as the cyst enters the 

large intestine, followed by a series of nuclear then cytoplasmic divisions. This 

results in the release of eight uninucleated trophozoites into the colon. The 

trophozoite is not infective and cannot survive passage through the harsh environment 

of the stomach. Trophozoites range in size from 7 to 30 ""m in diameter and reside in 

or on the mucus layer of the large bowel where they feed on bacteria and divide by 

binary fission. In asymptomatic cases, the amoebae will colonize the large intestine as 

harmless commensals, aggregate in the intestinal mucus layer and form cysts. 

Rowever, in a small percent of cases, the parasite crosses the mucus barrier, and binds 

and lyses host epithelial cells via the galactose and N-Acetyl-D-galactosamine 

inhibitable adherence lectin (Gal-Iectin) and invades the colonic epithelium. During 

invasion, the trophozoite may be carried away by the host' s circulatory system to 

distant soft tissue organs such as the liver, lungs, or brain and causes abscess 

formation. 

E. histolytica was considered a primitive eukaryotic cell since its cytoplasm seemed 

to be lacking sorne characteristic membrane bound organelles such as mitochondria, 
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Golgi apparatus, rough endoplasmic reticulum, centrioles and microtubules. However, 

there is now abundant genetic and biochemical evidence which supports the existence 

of functionally related organelles [5-11]. The cytoplasm of the trophozoite does 

contain a dense population of acidic vacuoles involved in the endocytic process. 

Parasite food vacuoles can often be seen filled with starch or bacteria in amoeba from 

xenic cultures or containing ingested red blood cells when recovered from patients 

with amebic dysentery. 

1.3 Epidemiology and Treatment of E. histolytica Infection 

In the past, up to 90% of E. histolytica infections reported in humans were actually 

intestinal colonization with E. dispar and epidemiological studies involving the 

identification of E. histolytica by examination of stool samples were not accurate. 

Today there are reliable diagnostic tests available to identify E. histolytica infection. 

Currently, identification by microscopic analysis of stool alone is not sufficient for 

diagnosis, but in conjunction with serological/fecal testing and in sorne cases 

isoenzyme characterization, an accurate diagnosis of E. histolytica infection can be 

made. In addition, the development of reliable PCR based detection methods have 

proven valuable due to the specific and sensitive nature of these types of tests [12, 

13]. 

Infection with E. histolytica can be found throughout the world, although endemic 

areas in developing countries such as Mexico, South America, Sub Saharan Africa, 

lndia and Pakistan have the highest infection rates [14-16]. Non-endemic areas 

including the United States and Canada have infection rates of approximately 1-2%. 

Risk groups in developed countries include travelers to or recent immigrants from 

developing countries, as well as residents of mental institutions [17-19], sexually 

active homosexuals [20-24], lower socioeconomic groups in the southern United 

States [25] and immuno-compromised individuals [26, 27]. Interestingly, the 

pandemic of HIV infection has not resulted in an increase in invasive amebiasis 

although colonization may be common [3] [28]. 
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Treatment of E. histolytica infection may differ for nomnvaSlve and invasive 

infection, and the drugs used to treat the disease are not necessarily approved in aIl 

countries. Non-invasive infections are often treated with paromomycin or diloxanide 

furoate, which is not available in the United States. Treatment for invasive infection is 

mainly by the use of nitroimidazoles such as metronidazole (Flagyl) or other effective 

compounds with longer half-lives such as tinidazole (not yet available in the USA or 

Canada) [29]. To date, metronidazole is the drug of choice for use in patients with 

acute and chronic forms of invasive amebiasis and drug resistance is not yet a major 

problem but should be of sorne concern due to its world-wide usage and the ability to 

generate metronidazole resistant parasites in culture [30]. A mucosal vaccine against 

the parasite would be a useful alternative and is currently a topic of study by members 

of our laboratory [31]. 

1.4 Pathogenesis of Invasive Amebiasis 

Pathogenesis is defined as the mechanisms involved in the initiation, evolution, and 

subsequent outcome of a disease and involves both host and parasite factors. There 

are at least three separate and distinct phases in the pathogenesis of invasive 

amebiasis and these are illustrated in Fig. 1.1. The first stage is (i) colonization of the 

colonie mueus layer by the parasite Gal-Ieetin. FoIlowing colonization, the parasite 

(ii) disrupts and causes depletion of the protective mucus barrier and gains access to 

and (iii) binds host epithelial ceIls using the Gal-Iectin. The invading trophozoites 

then proeeed to kill host epithelial and inflammatory ceIls in a contact-dependent 

fashion, inducing severe colonic ulceration. During invasion of the host tissue, the 

parasite may be swept away by the circulatory system and bec orne lodged in distant 

organs, most notably the liver, where amebic abscesses may form. There are four 

clinical manifestations of invasive intestinal amebiasis, aIl of which are generaIly 

aeute: bloody diarrhea or dysentery, fulminating eolitis, amebie appendieitis, and 

ameboma of the colon [32]. Diarrhea and dysentery are usuaIly the main symptom in 

about 90% of invasive infections. 
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Figure 1.1 Schematic Diagram ofInvasive Amebiasis. 
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Moncada DM. et al. Trends in Parasitology 2003. 7,305-11 

Colonization of the colon is mediated by adherence of the parasite to galactose and N­

acetyl-D-galactosamine residues of mucin oligosaccharides via the surface Gal-Iectin. 

E. histolytica Gal-Iectin is a heterodimeric prote in consisting of a 170 kDa heavy 

subunit disulfide linked to a 31/35 kDa light subunit, which noncovalently associates 

with a 150 kDa intermediate subunit [33]. The parasite binds exposed terminal 

galactoselN-acetyl-D-galactosamine residues present on mucin as well as target 

epithelial cells [34, 35]. Purified rat and human colonie mucin act as the main 

receptors for the parasite and the Gal-Iectin has been shown to bind these 

glycoproteins with high affinity (Kd=8.2 x W-ll M-I
) [36]. In addition, colonic mucin 

has a cytoprotective function and has been shown to inhibit adherence of the parasite 

to target epithelial cells in vitro [37]. Interestingly, although E. histolytica cannot 

successfully colonize the rat colon, purified rat colonic mucin is very effective at 

inhibiting adherence of the parasite to epithelial cells [37]. This supports the universal 
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role of mucin carbohydrates in acting as receptors for enteric organisms and also 

indicates that there are additional host and/or parasite factors involved in colonization. 

In asymptomatic cases of amebiasis, the parasite remains in the mucus layer causing 

no harm to the host, and will continue out its life cycle and form infectious cysts that 

are passed out in the feces. However, in cases of invasive disease, the parasite 

overcomes the innate host defense of the colonie mucus barrier and causes a depletion 

of the mucus layer by mechanisms that are not weIl defined and are currently under 

investigation. Previous studies using the gerbil model of invasive amebiasis have 

revealed that this depletion may be a result of parasite-induced hypersecretion of 

goblet cell mucus [38]. Increased mucus release and goblet cell cavitation have been 

observed prior to invasion of the colonie mucosa in the same model [39]. Currently, 

there is no consistent animal model for intestinal amebiasis. The gerbil model has 

many limitations, and trophozoites grown in culture are not capable of colonizing or 

invading the gerbil cecum. 

E. histolytica trophozoites have been shown to evoke massive mucus secretion in 

human colonie epithelial cells through a Protein kinase C-dependent mechanism [40]. 

In addition, a cyclooxygenase-like enzyme has been isolated from the parasite and 

characterization studies have revealed that the enzyme catalyzes the conversion of 

arachidonic acid into prostaglandin E2 (PGE2) [41]. The enzyme is constitutively 

expressed by amoebae and PGE2 is known to act as a potent mucin secretagogue in 

both human colonie epithelial cells and rat colonie loop studies [42]. Although to 

date, the parasite secretagogue has not been identified, parasite production of PGE2 

likely contributes to invasion of the colonie epithelium by inducing the release of 

goblet cell mucin. In addition to inducing hypersecretion of high molecular weight 

mucin from goblet cells, E. histolytica secretagogue activity also causes the release of 

abundant low molecular weight proteins that have not been characterized [43]. 

Although hypersecretion of mucus from goblet cells may be at least one factor 

involved in parasite invasion, it is not the sole event involved in the removal of the 
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colonic mucus layer by the parasite. E. histolytica trophozoites release abundant 

amounts of cysteine proteinases [44, 45] as well as glycosidases [46, 47] into culture 

medium. These enzymes may act in a concerted fashion to disassemble the mucin 

polymer and prevent the parasite from becoming trapped and sloughed off with the 

mucus layer. ~-N-acetylhexosaminidase is the major glycosidase released by the 

parasite [48], in addition, significant levels of a-D-glucosidase, ~-L-fucosidase, ~-D­

galacosidase and ~-D-glucosidase activities have been found in parasite conditioned 

medium. These enzymes have not been directly implicated in the pathogenesis of 

invasive amebiasis but their contribution towards degrading mucin oligosaccharides 

still needs to be investigated. A previous study has reported that E. histolytica cellular 

lysates and secreted products are ineffective at degrading mucin, but the methods 

used to analyze the degradation products may not have been sensitive enough to 

detect small changes in such a large molecule [46]. 

Following disruption of the mucus layer, the parasite is able to gain access and bind to 

the colonic epithelium. Trophozoites efface the enteric microvilli to establish intimate 

contact with enterocytes by a mechanism involving the disruption of the actin­

bundling protein villin [49]. Once the parasite makes contact, the trophozoite must 

overcome additional components of the epithelial barrier. Epithelial tight junctions 

physically link neighboring cells of the intestinal tract to one another. These junctions 

regulate barrier function by forming a seal that selectively controls the paracellular 

transport of molecules between epithelial cells [50]. The junctional complex also 

maintains the polarity of the epithelium by separating the apical and basolateral 

domains of the plasma membrane. In vitro studies have shown that E. histolytica 

disrupts epithelial barrier function upon contact with the epithelium by causing a 

rapid drop in the transepithelial electrical resistance of confluent monolayers which is 

a measurement of tight junction integrity [51]. In addition, the trophozoites cause an 

increase in paracellular permeability, as measured by the abnormal passage of small 

molecules such as e4C]mannitol between epithelial cells. During invasion, the 

parasite may physically migrate between epithelial cells, and this event would likely 

contribute to disruption of the tight junction complex. The events involved in tight 
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junction alterations induced by the parasite are poorly understood, although 

dephosphorylation and disassociation of sorne integral junction proteins has been 

observed [52]. A parasite virulence factor involved in these events has not been 

identified. 

The adherence of E. histolytica trophozoites to target epithelial cells is mediated by 

the Gal-Iectin [53]. Lectin activity is inhibited by Gal and GalNAc in such a fashion 

that the sugars prevent the contact-dependent celllysis caused by the parasite [54]. In 

vitro experiments using Chinese hamster ovary (CHû) cell mutants engineered to be 

deficient in terminal GallGalNAc residues revealed that the cells are almost 

completely resistant to amebic adherence and cytolytic activity [55, 56]. Rapid killing 

of host target cells occurs within 5-15 minutes after contact with the parasite and the 

mechanism of action is not clear, but both cell death characteristics of apoptosis and 

necrosis have been reported [57-59]. Additional factors such as amoebapores have 

also been linked to the cytopathic effect of the parasite. Amoebapores are pore­

forming proteins, which upon contact, are inserted by the parasite into eukaryotic and 

bacterial cell membranes to form ion channels [60]. This virulence factor causes 

depolarization of host epithelial monolayers and is directly involved in lysis of target 

cells [61]. 

E. histolytica trophozoites disrupt and invade the colonic epithelium after contact, and 

cysteine proteinases play a key role in this event by killing target cells [62] and 

degrading extracellular matrix proteins [63]. Secreted and membrane bound cysteine 

proteinases are involved in trophozoite invasion. The proteinases are responsible for 

the cytopathic effect, which is the detachment and rounding of epithelial cells in vitro 

[64] but this event has not been observed in animal models. Following parasite 

invasion of the epithelium, a massive infiltration and subsequent lysis of neutrophils 

occurs in the lamina propria, contributing to the inflammation observed during 

invasive disease and leads to tissue necrosis around the site of invasion [65]. 
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1.5 E. histolytica Major Virulence Factors and Their Role in Invasive Disease 

The events involved in invasive amebiasis are multifactorial and no single virulence 

factor alone is responsible for all events of pathogenesis. Three parasite pathogenic 

factors have been extensively characterized and these include the Gal-Iectin, the 

amoebapores, and the cysteine proteinases. These virulence factors and their 

suggested functions are summarized in Table 1.1. Although other putative parasite 

molecules may be involved in pathogenesis, and still others may have yet to be 

defined, these three factors are known to play key roles in invasive amebiasis. 

Table 1.1 Major E. histolytica Virulence Factors 

Virulence Factor Suggested Role in Pathogenesis 

1. Adherence to and colonization of 

Gal/GaINAc-Adherence 
colonic mucus layer. 

2. Adherence to target cells. 
Lectin 3. Cytotoxicity 

4. Resistance to complement-mediated 
cytolysis. 

Amoebapore proteins A, B, and C 1. Lysis oftarget cells 

1. Degradation of mucus barrier? 

Cysteine Proteinases 
2. Degradation of extracellular matrix 

proteins. 
3.Degradation ofimmunoglobulins and 

complement components 
4. lnduce colitis 

One of the best-characterized virulence factors of E. histolytica is the parasite' s 

surface Gal-Iectin. The Gal-Iectin has been shown to play multiple roles in amebic 

pathogenesis, which include: colonization of the mucus layer [37], adherence to host 

cells [66], cytotoxicity [54], resistance to complement-mediated lysis [67], as well as 

amebic actin polymerization and cell signaling [68, 69]. As stated earlier, 

colonization of the mucus layer by the parasite is mediated through the Gal-Iectin by 

its ability to bind Gal and GalNAc residues of mucus glycoproteins with high affinity. 

GalNAc is the preferred sugar substrate over Gal, having a sevenfold higher affinity 

for the GalNAc monosaccharide. In addition, the lectin has a 1000 times higher 

affinity for GalNAc containing- over Gal containing-oligosaccharides, and a 100,000 
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fold higher affinity for polyvalent Gal/GaiNAc containing neoglycoproteins than the 

corresponding monosaccharides [70, 71]. Colonic mucin is highly polyvalent in 

terminal Gal and GalNAc residues. These findings may explain the parasite' s ability 

to colonize the mucus layer through the high affinity interactions between the parasite 

lectin and the multivalent nonreducing terminal GalNAc residues. The Gal-Iectin is 

also involved in adherence and contact-dependent cytolysis of human epithelial cells 

as well as neutrophils, T-Iymphocytes, macrophages and erythrocytes [54]. Amebic 

contact with mammalian cells rapidly results in a 20-fold increase in intracellular 

calcium and membrane blebbing [72]. The mechanism of target cell death is not 

entirely understood and has been reported to vary according to cell type. For example, 

E. histolytica causes necrosis to occur in human myeloid cells [59], and apoptosis in 

murine myeloid cells [73]. Several lines of evidence suggest a non-classical 

mechanism of apoptotic killing by the parasite. There is evidence that the parasite 

damages cell membranes through the formation of pores. The plasma membrane then 

loses its function as a permeability barrier and subsequent cell swelling and lysis 

occur [59]. This was shown using Jurkat cells in which cellular membranes were 

compromised prior to DNA degradation [59]. 

Studies using monoclonal antibodies directed against the heavy subunit of the Gal­

lectin, which blocked cytotoxicity but not adherence, directly implicated the Gal­

lectin in causing cell death [74]. The mechanism of this action is not known; 

researchers have theorized that the binding may block conformational changes in the 

Gal-Iectin necessary for cell killing [53]. Antisense inhibition of the 35 kDa light 

subunit of the Gal-Iectin does not strongly affect amebic adherence to target cells, but 

does inhibit amoeba cytotoxicity and liver abscess formation [75]. These results are 

not surprising since the carbohydrate recognition domain (CRD) is present on the 

heavy chain, and suggest that the light subunit has an important raIe in virulence. The 

Gal-Iectin directly interacts with the parasite's cytoskeleton and upon binding to 

target cells, the lectin may signal events involved in cytolysis through the stimulation 

of actin polymerization [68] [76]. Actin polymerization occurs at the site oftarget cell 

contact and is involved with parasite motility and target cell interactions including 
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phagocytosis. The Gal-Iectin does not only play a role in recognition and binding of 

host ce lIs, but it is also involved in parasite survival in the host by inhibiting 

components of the innate immune response. During migration through host tissue 

and/or the circulatory system, the parasite is exposed to human complement, but 

virulent parasites are resistant to complement-mediated lysis [77]. The Gal-Iectin 

binds to C8 and C9 components of complement and blocks the formation of the 

membrane attack complex on the ameba plasma membrane [78]. The heavy subunit 

of the Gal-Iectin shows a limited homology with CD59, which is a human inhibitor of 

C5b-9 assembly and may explain the inhibitory activity. 

E. histolytica produces three amoebapore proteins which include amoebapore A, B, 

and C. Isolated amoebapores were found to be cytotoxic towards eukaryotic cells and 

also have potent antibacterial activity [60]. Their primary function is hypothesized to 

be for combating the growth of phagocytosed microorganisms inside the digestive 

compartments [79]. The pore forming proteins are contained within acidic 

cytoplasmic granules in the parasite and are not constitutively secreted by 

trophozoites [80, 81]. These proteins share significant homology with NK-Iysins 

found in natural killer cells. Pore forming activity is strongly dependent on pH and 

amoebapore polymerization occurs only between pH 4 and pH 6, and is triggered by 

the protonation of a histidine residue [79]. Therefore, the active proteins are likely 

secreted by the parasite into the intercellular space of the contact zone where a 

microenvironment, having a low pH could be maintained [82]. Insertion of 

amoebapores into cellular membranes results in the rapid depolarization oftarget cells 

and the formation of ion channel s, which allow the passage of water, ions, and other 

molecules into the ce II , leading to lysis [32]. Amoebapore A (AP-A) is the most 

abundant of the three isoforms produced by the parasite and the proteins are present at 

a ratio of 35:10:1 for A, B, and C respectively [83] and the molecules have similar 

structural and functional properties. Antisense inhibition and transcriptional silencing 

of the AP-A gene has made it possible to define a role for the virulence factor in 

invasive amebiasis. A 60% reduction in AP-A activity has been achieved using 

antisense technology in amebic trophozoites [84]. Parasites with reduced amoebapore 
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activity exhibited a 90% decrease in cytopathic and cytolytic activity towards 

mammalian cells while retaining only 40% of normal AP-A protein. The parasites 

also displayed a reduced ability to induce hepatic lesions in hamsters [84]. 

Additionally, transcriptional silencing of the amoebapore gene confirmed the role of 

the virulence factor in killing target cells as well as disruption of phagocytosed cells, 

since silenced parasites were found to be avirulent [85]. These results showed for the 

first time that the inhibition of an amoebapore directly affects the pathogenicity of the 

parasite. 

Cysteine proteinases are by far one of the most important virulence factors involved 

in colonie invasion produced by the parasite. This c1ass of amebic protease has been 

implicated in the pathogenesis of invasive amebiasis due to its involvement in 

degrading extracellular matrix proteins [64], immunoglobulins [86, 87], 

anaphylatoxins C3a and C5b [88] and their role in the detachment of tissue culture 

monolayers [89]. In addition, E. histolytica produces anywhere from 10 to 1,000 fold 

more secreted proteinase activity than non-invasive E. dispar [90], and these findings 

have led to the interest in the role of these enzymes in invasion. See chapter 2 for an 

extensive review of the structure and function of E. histolytica cysteine proteinases. 

1.6 Host Response to E. histolytica Infection 

The host response to E. histolytica plays a major role in the pathogenesis of invasive 

amebiasis. Intestinal epithelial cells are important components of the host's innate and 

acquired immune system and can produce active cytokines in response to certain 

stimuli. In addition to parasite virulence factors directly damaging host cells, the 

parasite initiates an acute inflammatory response by causing the production of 

proinflammatory cytokines, and chemoattractant factors even in the absence of 

cellular contact [91, 92]. Coculture studies of the parasite with epithelial and stromal 

cells have revealed that the parasite induces the production of tumor necrosis factor a 

(TNF-a), interleukin la (IL-l) and interleukin 8 (IL-8). IL-8 is a potent 

chemoattractant factor of neutrophils and may play a role in the initiation of the 

inflammatory response even before mucosal invasion [92]. Amebic lesions in animal 
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models are characterized by an infiltration of polymorphonuc1ear leukocytes (PMNs), 

the majority being neutrophils [93]. Interestingly, trophozoites are quite resistant to 

neutrophil mediated killing while virulent trophozoites effectively kill neutrophils 

[94]. This massive lysis results in the release of cytotoxic granules which contribute 

to host tissue damage [95]. Infiltration of neutrophils to local sites where amoeba are 

invading is a sign of acute inflammation and results in tissue damage. E. histolytica 

cysteine proteinases also possess interleukin-1 beta (IL-1~) converting enzyme 

activity which may contribute to intestinal inflammation by activating pIL-1 ~ 

released by damaged cells, contributing to the influx of inflammatory cells into the 

mucosa [96]. 

REFERENCES 

1. WHOIP AHO/UNESCO report. A consultation with experts on amoebiasis. 

Mexico City, Mexico 28-29 January, 1997. Epidemiol Bull, 1997. 18: p. 13-

14. 

2. WHO, Amoebiasis. Wkly Epidemiol Rec, 1997.72: p. 97-99. 

3. Haque, R., Huston, C.D., Hughes, M., Houpt, E., and Petri, W.A., Jr., 

Amebiasis. N Engl J Med, 2003.348: p. 1565-1573. 

4. Diamond, L.S.c., c.G., A redescription of Entamoeba histolytica Schaudinn, 

1903 (Emended Walker, 1911) separating it from Entamoeba dispar Brumpt, 

1925. l Euk. Microbiol., 1993.40: p. 340-344. 

5. Dacks, lB., Davis, L.A., Sjogren, A.M., Andersson, J.O., Roger, A.J., and 

Doolittle, W.F., Evidence for Golgi bodies in proposed 'Golgi-lacking' 

lineages. Proc R Soc Lond B Biol Sci, 2003. 270 Suppl 2: p. S168-171. 

6. Welter, B.H. and Temesvari, L.A., A unique Rab GTPase, EhRabA, of 

Entamoeba histolytica, localizes to the leading edge of motile cells. Mol 

Biochem Parasitol, 2004. 135: p. 185-195. 

7. Mazzuco, A., Benchimol, M., and De Souza, W., Endoplasmic reticulum and 

Golgi-like elements in Entamoeba. Micron, 1997.28: p. 241-247. 
17 



8. Chavez-Munguia, B., Espinosa-Cantellano, M., Castanon, O., and Martinez­

Palomo, A., Ultrastructural evidence of smooth endoplasmic reticulum and 

golgi-like elements in Entamoeba histolytica and Entamoeba dispar. Arch 

Med Res, 2000.31: p. SI65-167. 

9. Bakatse1ou, C., Beste, D., Kadri, A.O., Somanath, S., and Clark, C.O., 

Analysis of genes of mitochondrial origin in the genus Entamoeba. J Eukaryot 

Microbiol, 2003.50: p. 210-214. 

10. Arisue, N., Sanchez, L.B., Weiss, L.M., Muller, M., and Hashimoto, T., 

Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia 

intestinalis, Entamoeba histolytica and two microsporidians. Parasitol Int, 

2002.51: p. 9-16. 

Il. Loftus, B., Anderson, 1., Davies, R., Aismark, U.C., Samuelson, J., Amedeo, 

P., Roncaglia, P., Berriman, M., Hirt, RP., Mann, BJ., Nozaki, T., Suh, B., 

Pop, M., Duchene, M., Ackers, J., Tannich, E., Leippe, M., Hofer, M., 

Bruchhaus, 1., Willhoeft, U., Bhattacharya, A., Chillingworth, T., Churcher, 

c., Hance, Z., Harris, B., Harris, D., Jagels, K., Moule, S., Mungall, K., 

Ormond, D., Squares, R, Whitehead, S., Quail, M.A., Rabbinowitsch, E., 

Norbertczak, H., Priee, C., Wang, Z., Ouillen, N., Oilchrist, C., Stroup, S.E., 

Bhattacharya, S., Lohia, A., Foster, P.O., Sicheritz-Ponten, T., Weber, C., 

Singh, u., Mukherjee, c., EI-Sayed, N.M., Petri, W.A., Jr., Clark, C.O., 

Embley, T.M., Barrell, B., Fraser, C.M., and Hall, N., The genome of the 

protist parasite Entamoeba histolytica. Nature, 2005. 433: p. 865-868. 

12. el-Hamshary, E.M., el-Shewy, K.A., Hezagy, M.M., and Zakaria, H., 

Selective identification of the pathogenic E. histolytica in fresh stool samples 

using polymerase chain reaction (PCR). J Egypt Soc Parasitol, 2004. 34: p. 

611-620. 

13. Furrows, S.J., Moody, A.H., and Chiodini, P.L., Comparison of PCR and 

antigen detection methods for diagnosis of Entamoeba histolytica infection. J 

Clin Pathol, 2004.57: p. 1264-1266. 

18 



14. Diaz, E., Mondragon, l, Ramirez, E., and BernaI, R, Epidemiology and 

control of intestinal parasites with nitazoxanide in children in Mexico. Am J 

Trop Med Hyg, 2003. 68: p. 384-385. 

15. Blessmann, l, Van Linh, P., Nu, P.A, Thi, H.D., Muller-Myhsok, B., Buss, 

H., and Tannich, E., Epidemiology of amebiasis in a region of high incidence 

of amebic liver abscess in central Vietnam. Am J Trop Med Hyg, 2002.66: p. 

578-583. 

16. Gutierrez Trujillo, G. and Munoz Hemandez, O., [Amebiasis. Its 

epidemiology today]. Rev Gastroenterol Mex, 1989. 54: p. 145-156. 

17. Sexton, D.J., Krogstad, D.l, Spencer, H.C., Jr., Healy, G.R, Sinclair, S., 

Sledge, C.E., and Schultz, M.G., Amebiasis in a mental institution: serologic 

and epidemiologic studies. Am J Epidemiol, 1974. 100: p. 414-423. 

18. Gatti, S., Lopes, R, Cevini, C., Ijaoba, B., Bruno, A, Bemuzzi, AM., de Lio, 

P., Monco, A, and Scaglia, M., Intestinal parasitic infections in an institution 

for the mentally retarded. Ann Trop Med Parasitol, 2000.94: p. 453-460. 

19. Nagakura, K., Tachibana, H., Tanaka, T., Kaneda, Y., Tokunaga, M., Sasao, 

M., and Takeuchi, T., An outbreak of amebiasis in an institution for the 

mentally retarded in Japan. Jpn J Med Sci Biol, 1989.42: p. 63-76. 

20. Sargeaunt, P.G., Oates, lK., MacLennan, L, Oriel, J.D., and Goldmeier, D., 

Entamoeba histolytica in male homosexuals. Br J Vener Dis, 1983. 59: p. 193-

195. 

21. Thompson, lE., Jr., Freischlag, l, and Thomas, D.S., Amebic liver abscess in 

a homosexual man. Sex Transm Dis, 1983. 10: p. 153-155. 

22. Ortega, H.B., Borchardt, K.A, Hamilton, R, Ortega, P., and Mahood, J., 

Enteric pathogenic protozoa in homosexual men from San Francisco. Sex 

Transm Dis, 1984. 11: p. 59-63. 

23. Bienzle, U., Coester, C.H., Knobloch, J., and Guggenmoos-Holzmann, L, 

Protozoal enteric infections in homosexual men. Klin Wochenschr, 1984. 62: 

p.323-327. 

19 



24. Yoshikawa, L, Murata, L, Yano, K., Kume, K., and Otsuki, M., Asymptomatic 

amebic colitis in a homosexual man. Am J Gastroenterol, 1999. 94: p. 2306-

2308. 

25. Spencer, H.C., Jr., Hermos, lA., Healy, G.R, Melvin, D.M., and Shmunes, 

E., Endemic amebiasis in an Arkansas community. Am J Epidemiol, 1976. 

104: p. 93-99. 

26. Stoller, J.S., Adam, H.M., Weiss, B., and Wittner, M., Incidence of intestinal 

parasitic disease in an acquired immunodeficiency syndrome day-care center. 

Pediatr Infect Dis J, 1991. 10: p. 654-658. 

27. Ohnishi, K., Murata, M., and Okuzawa, E., Symptomatic amebic colitis in a 

Japanese homosexual AIDS patient. Intem Med, 1994.33: p. 120-122. 

28. Fontanet, A.L., Sahlu, T., Rinke de Wit, T., Messele, T., Masho, W., 

Woldemichael, T., Yeneneh, H., and Coutinho, RA., Epidemiology of 

infections with intestinal parasites and human immunodeficiency virus (HIV) 

among sugar-estate residents in Ethiopia. Ann Trop Med Parasitol, 2000. 94: 

p.269-278. 

29. Powell, S.l, MacLeod, L, Wilmot, A.J., and Elsdon-Dew, R, Metronidazole 

in amoebic dysentery and amoebic liver abscess. Lancet, 1966. 2: p. 1329-

1331. 

30. Wassmann, c., Hellberg, A., Tannich, E., and Bruchhaus, L, Metronidazole 

resistance in the protozoan parasite Entamoeba histolytica is associated with 

increased expreSSIOn of iron-containing superoxide dismutase and 

peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J 

Biol Chem, 1999.274: p. 26051-26056. 

31. Gaucher, D. and Chadee, K., Immunogenicity of an optimized Entamoeba 

histolytica gal-Iectin DNA vaccine. Arch Med Res, 2000.31: p. S307-308. 

32. Espinosa-Cantellano, M. and Martinez-Pa1omo, A., Pathogenesis of intestinal 

amebiasis: from molecules to disease. Clin Microbiol Rev, 2000. 13: p. 318-

331. 

33. Ravdin, J.L, Murphy, C.F., Salata, RA., Guerrant, RL., and Hewlett, E.L., N-

Acetyl-D-galactosamine-inhibitable adherence lectin of Entamoeba 

20 



histolytica. 1. Partial purification and relation to amoebic virulence in vitro. J 

Infect Dis, 1985. 151: p. 804-815. 

34. Ravdin, J.I., Stanley, P., Murphy, c.P., and Petri, W.A., Jr., Characterization 

of cell surface carbohydrate receptors for Entamoeba histolytica adherence 

lectin. Infect Immun, 1989.57: p. 2179-2186. 

35. Petri, W.A., Jr., Chapman, M.D., Snodgrass, T., Mann, B.J., Broman, l, and 

Ravdin, lI., Subunit structure of the galactose and N-acetyl-D-galactosamine­

inhibitable adherence lectin of Entamoeba histolytica. J Biol Chem, 1989. 

264: p. 3007-3012. 

36. Chadee, K., Johnson, M.L., Orozco, E., Petri, W.A., Jr., and Ravdin, lI., 

Binding and internalization of rat colonic mucins by the galactose/N-acetyl-D­

galactosamine adherence lectin of Entamoeba histolytica. J Infect Dis, 1988. 

158: p. 398-406. 

37. Chadee, K., Petri, W.A., Jr., Innes, D.l, and Ravdin, lI., Rat and human 

colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. 

J Clin Invest, 1987. 80: p. 1245-1254. 

38. Chadee, K. and Meerovitch, E., Entamoeba histolytica: early progressive 

pathology in the cecum of the gerbil (Meriones unguiculatus). Am J Trop Med 

Hyg, 1985.34: p. 283-291. 

39. Chadee, K. and Meerovitch, E., The Mongolian gerbil (Meriones 

unguiculatus) as an experimental host for Entamoeba histolytica. Am J Trop 

Med Hyg, 1984.33: p. 47-54. 

40. Keller, K., Olivier, M., and Chadee, K., The fast release of mucin secretion 

from human colonic cells induced by Entamoeba histolytica is dependent on 

contact and protein kinase C activation. Arch Med Res, 1992.23: p. 217-221. 

41. Dey, L, Keller, K., Belley, A., and Chadee, K., Identification and 

characterization of a cyclooxygenase-like enzyme from Entamoeba 

histolytica. Proc Natl Acad Sci USA, 2003. 100: p. 13561-13566. 

42. Belley, A. and Chadee, K., Prostaglandin E(2) stimulates rat and human 

colonic mucin exocytosis via the EP(4) receptor. Gastroenterology, 1999. 117: 

p. 1352-1362. 

21 



43. Chadee, K., Keller, K., Forstner, l, Innes, D.l, and Ravdin, II., Mucin and 

nonmucin secretagogue activity of Entamoeba histolytica and cholera toxin in 

rat colon. Gastroenterology, 1991. 100: p. 986-997. 

44. Moncada, D., Keller, K., and Chadee, K, Entamoeba histolytica Cysteine 

Proteinases Disrupt the Polymeric Structure of Colonic Mucin and Alter Its 

Protective Function. Infect Immun, 2003.71: p. 838-844. 

45. Perez-Montfort, R., Ostoa-Saloma, P., Velazquez-Medina, L., Montfort, L, 

and Becker, L, Catalytic classes of proteinases of Entamoeba histolytica. Mol 

Biochem Parasitol, 1987.26: p. 87-97. 

46. Spice, W.M. and Ackers, IP., The effects of Entamoeba histolytica lysates on 

human colonic mucins. J Eukaryot Microbiol, 1998.45: p. 24S-27S. 

47. Connaris, S. and Greenwell, P., Glycosidases in mucin-dwelling protozoans. 

Glycoconj J, 1997. 14: p. 879-882. 

48. Riekenberg, S., Flockenhaus, B., Vahrmann, A, Muller, M.C., Leippe, M., 

Kiess, M., and Scholze, H., The beta-N-acetylhexosaminidase of Entamoeba 

histolytica is composed of two homologous chains and has been localized to 

cytoplasmic granules. Mol Biochem Parasitol, 2004. 138: p. 217-225. 

49. Lauwaet, T., Oliveira, M.l, Callewaert, B., De Bruyne, G., Saelens, x., Ankri, 

S., Vandenabeele, P., Mirelman, D., Mareel, M., and Leroy, A, Proteolysis of 

enteric cell villin by Entamoeba histolytica cysteine proteinases. J Biol Chem, 

2003. 278:p. 22650-22656. 

50. Denker, B.M. and Nigam, S.K, Molecular structure and assembly of the tight 

junction. Am J Physiol, 1998.274: p. FI-9. 

51. Leroy, A, de Bruyne, G.K, Oomen, L.C., and Mareel, M.M., 

Alkylphospholipids reversibly open epithelial tight junctions. Anticancer Res, 

2003.23: p. 27-32. 

52. Leroy, A., Lauwaet, T., De Bruyne, G., Cornelissen, M., and Mareel, M., 

Entamoeba histolytica disturbs the tight junction complex in human enteric 

T84 ceIllayers. Faseb J, 2000. 14: p. 1139-1146. 

22 



53. Petri, W.A., Jr., Haque, R., and Mann, B.l, The bittersweet interface of 

parasite and host: lectin-carbohydrate interactions during human invasion by 

the parasite Entamoeba histolytica. Annu Rev Microbiol, 2002. 56: p. 39-64. 

54. Ravdin, lI. and Guerrant, R.L., Role of adherence in cytopathogenic 

mechanisms of Entamoeba histolytica. Study with mammalian tissue culture 

cells and human erythrocytes. J Clin Invest, 1981. 68: p. 1305-1313. 

55. Li, E., Becker, A., and Stanley, S.L., Jr., Use of Chinese hamster ovary cells 

with altered glycosylation patterns to define the carbohydrate specificity of 

Entamoeba histolytica adhesion. J Exp Med, 1988. 167: p. 1725-1730. 

56. Li, E., Becker, A., and Stanley, S.L., Jr., Chine se hamster ovary cells deficient 

in N-acetylglucosaminyltransferase l activity are resistant to Entamoeba 

histolytica-mediated cytotoxicity. Infect Immun, 1989.57: p. 8-12. 

57. Huston, C.D., Boettner, D.R., Miller-Sims, V., and Petri, W.A., Jr., Apoptotic 

killing and phagocytosis of host cells by the parasite Entamoeba histolytica. 

Infect Immun, 2003. 71: p. 964-972. 

58. Huston, C.D., Houpt, E.R., Mann, B.l, Hahn, C.S., and Petri, W.A., Jr., 

Caspase 3-dependent killing of host cells by the parasite Entamoeba 

histolytica. Cell Microbiol, 2000. 2: p. 617-625. 

59. Berninghausen, O. and Leippe, M., Necrosis versus apoptosis as the 

mechanism of target cell death induced by Entamoeba histolytica. Infect 

Immun, 1997.65: p. 3615-3621. 

60. Leippe, M., Andra, l, and Muller-Eberhard, H.J., Cytolytic and antibacterial 

activity of synthetic peptides derived from amoebapore, the pore-forming 

peptide of Entamoeba histolytica. Proc Natl Acad Sci USA, 1994. 91: p. 

2602-2606. 

61. Rosenberg, L, Bach, D., Loew, L.M., and Gitler, C., Isolation, characterization 

and partial purification of a transferable membrane channel (amoebapore) 

produced by Entamoeba histolytica. Mol Biochem Parasitol, 1989.33: p. 237-

247. 

62. Singh, D., Naik, S.R., and Naik, S., Role of cysteine proteinase of Entamoeba 

histolytica in target cell death. Parasitology, 2004. 129: p. 127-135. 

23 



63. Schulte, W. and Scholze, H., Action of the major protease from Entamoeba 

histolytica on proteins of the extracellular matrix. J Protozool, 1989. 36: p. 

538-543. 

64. Keene, W.E., Petitt, M.G., Allen, S., and McKerrow, IH., The major neutral 

proteinase of Entamoeba histolytica. J Exp Med, 1986. 163: p. 536-549. 

65. Shibayama, M., Navarro-Garcia, F., Lopez-Revilla, R, Martinez-Palomo, A., 

and Tsutsumi, V., In vivo and in vitro experimental intestinal amebiasis in 

Mongolian gerbils (Meriones unguiculatus). Parasitol Res, 1997. 83: p. 170-

176. 

66. Ravdin, II., John, lE., Johnston, L.I., Innes, D.l, and Guerrant, RL., 

Adherence of Entamoeba histolytica trophozoites to rat and human colonic 

mucosa. Infect Immun, 1985.48: p. 292-297. 

67. Gutierrez-Kobeh, L., Cabrera, N., and Perez-Montfort, R, A mechanism of 

acquired resistance to complement-mediated lysis by Entamoeba histolytica. J 

Parasitol, 1997.83: p. 234-24l. 

68. Bailey, G.B., Day, D.B., and Gasque, lW., Rapid polymerization of 

Entamoeba histolytica actin induced by interaction with target cells. J Exp 

Med, 1985. 162: p. 546-558. 

69. Bailey, G.B., Day, D.B., Nokkaew, C., and Harper, C.C., Stimulation by target 

cell membrane lipid of actin polymerization and phagocytosis by Entamoeba 

histolytica. Infect Immun, 1987.55: p. 1848-1853. 

70. Yi, D., Lee, RT., Longo, P., Boger, E.T., Lee, Y.C., Petri, W.A., Jr., and 

Schnaar, RL., Substructural specificity and polyvalent carbohydrate 

recognition by the Entamoeba histolytica and rat hepatic N­

acetylgalactosamine/galactose lectins. Glycobiology, 1998.8: p. 1037-1043. 

71. Adler, P., Wood, S.J., Lee, Y.C., Lee, RT., Petri, W.A., Jr., and Schnaar, 

R.L., High affinity binding of the Entamoeba histolytica lectin to polyvalent 

N-acetylgalactosaminides. J Biol Chem, 1995.270: p. 5164-517l. 

72. Ravdin, J.1., Moreau, F., Sullivan, J.A., Petri, W.A., Jr., and Mandell, G.L., 

Relationship of free intracellular calcium to the cytolytic activity of 

Entamoeba histolytica. Infect Immun, 1988.56: p. 1505-1512. 

24 



73. Ragland, B.D., Ashley, L.S., Vaux, D.L., and Petri, W.A, Jr., Entamoeba 

histolytica: target cells killed by trophozoites undergo DNA fragmentation 

which is not blocked by Bc1-2. Exp Parasitol, 1994.79: p. 460-467. 

74. Saffer, L.D. and Petri, W.A, Jr., Role of the galactose lectin of Entamoeba 

histolytica in adherence-dependent killing of mammalian cells. Infect Immun, 

1991. 59:p.4681-4683. 

75. Ankri, S., Padilla-Vaca, F., Stolarsky, T., Koole, L., Katz, U., and Mirelman, 

D., Antisense inhibition of expression of the light subunit (35 kDa) of the 

Gal/GalNac lectin complex inhibits Entamoeba histolytica virulence. Mol 

Microbiol, 1999.33: p. 327-337. 

76. Mann, B.l and Lockhart, L.A, Molecular analysis of the Gai/GalNAc adhesin 

of Entamoeba histolytica. J Eukaryot Microbiol, 1998.45: p. 13S-16S. 

77. Reed, S.L., Sargeaunt, P.G., and Braude, AI., Resistance to lysis by human 

serum of pathogenic Entamoeba histolytica. Trans R Soc Trop Med Hyg, 

1983. 77:p.248-253. 

78. Braga, L.L., Ninomiya, H., McCoy, Il, Eacker, S., Wiedmer, T., Pham, C., 

Wood, S., Sims, P.l, and Petri, W.A, Jr., Inhibition of the complement 

membrane atlack complex by the galactose-specific adhesion of Entamoeba 

histolytica. J Clin Invest, 1992.90: p. 1131-1137. 

79. Leippe, M., Bruhn, H., Hecht, O., and Grotzinger, l, Aneient weapons: the 

three-dimensional structure of amoebapore A Trends Parasitol, 2005. 21: p. 5-

7. 

80. Leippe, M., Andra, l, Nickel, R., Tannich, E., and Muller-Eberhard, H.l, 

Amoebapores, a family of membranolytic peptides from cytoplasmic granules 

of Entamoeba histolytica: isolation, primary structure, and pore formation in 

bacterial cytoplasmic membranes. Mol Microbiol, 1994. 14: p. 895-904. 

81. Leippe, M., Sievertsen, H.J., Tannich, E., and Horstmann, R.D., Spontaneous 

release of cysteine proteinases but not of pore-forming peptides by viable 

Entamoeba histolytica. Parasitology, 1995. 111 (Pt 5): p. 569-574. 

82. Gitler, c., Calef, E., and Rosenberg, 1., Cytopathogenicity of Entamoeba 

histolytica. Philos Trans R Soc Lond B Biol Sei, 1984.307: p. 73-85. 

25 



83. Nickel, R, Ott, C., Dandekar, T., and Leippe, M., Pore-forming peptides of 

Entamoeba dispar. Similarity and divergence to amoebapores in structure, 

expression and activity. Eur J Biochem, 1999.265: p. 1002-1007. 

84. Bracha, R, Nuchamowitz, Y., Leippe, M., and Mirelman, D., Antisense 

inhibition of amoebapore expression in Entamoeba histolytica causes a 

decrease in amoebic virulence. Mol Microbiol, 1999. 34: p. 463-472. 

85. Bracha, R, Nuchamowitz, Y., and Mirelman, D., Transcriptional silencing of 

an amoebapore gene in Entamoeba histolytica: molecular analysis and effect 

on pathogenicity. Eukaryot Cell, 2003.2: p. 295-305. 

86. Kelsall, B.L. and Ravdin, lI., Degradation of human IgA by Entamoeba 

histolytica. J Infect Dis, 1993. 168: p. 1319-1322. 

87. Tran, V.Q., Herdman, D.S., Torian, B.E., and Reed, S.L., The neutral cysteine 

proteinase of Entamoeba histolytica degrades IgG and prevents its binding. J 

Infect Dis, 1998. 177: p. 508-511. 

88. Reed, S.L., Ember, J.A., Herdman, D.S., DiScipio, R.G., Hugli, T.E., and 

Gigli, L, The extracellular neutral cysteine proteinase of Entamoeba 

histolytica degrades anaphylatoxins C3a and C5a. J Immunol, 1995. 155: p. 

266-274. 

89. Reed, S., Bouvier, l, Pollack, A.S., Engel, lC., Brown, M., Hirata, K., Que, 

X, Eakin, A., Hagblom, P., Gillin, F., and et al., Cloning of a virulence factor 

of Entamoeba histolytica. Pathogenic strains possess a unique cysteine 

proteinase gene. J Clin Invest, 1993.91: p. 1532-1540. 

90. Reed, S.L., Keene, W.E., and McKerrow, lH., Thiol proteinase expression 

and pathogenicity of Entamoeba histolytica. J Clin Microbiol, 1989. 27: p. 

2772-2777. 

91. Eckmann, L., Reed, S.L., Smith, lR, and Kagnoff, M.F., Entamoeba 

histolytica trophozoites induce an inflammatory cytokine response by cultured 

human cells through the paracrine action of cytolytically released interleukin-

1 alpha. J Clin Invest, 1995.96: p. 1269-1279. 

26 



92. Yu, Y. and Chadee, K, Entamoeba histolytica stimulates interleukin 8 from 

human colonic epithelial cells without parasite-enterocyte contact. 

Gastroenterology, 1997. 112: p. 1536-1547. 

93. Chadee, K and Meerovitch, E., The pathology of experimentally induced 

cecal amebiasis in gerbils (Meriones unguiculatus). Liver changes and amebic 

liver abscess formation. Am J Pathol, 1985. 119: p. 485-494. 

94. Guerrant, R.L., Brush, l, Ravdin, II., Sullivan, lA., and Mandell, G.L., 

Interaction between Entamoeba histolytica and human polymorphonuclear 

neutrophils. J Infect Dis, 1981. 143: p. 83-93. 

95. Martinez-Palomo, A., Tsutsumi, V., Anaya-Velazquez, F., and Gonzalez­

Robles, A., Ultrastructure of experimental intestinal invasive amebiasis. Am J 

Trop Med Hyg, 1989.41: p. 273-279. 

96. Zhang, Z., Wang, L., Seydel, KB., Li, E., Ankri, S., Mirelman, D., and 

Stanley, S.L., Jr., Entamoeba histolytica cysteine proteinases with interleukin-

1 beta converting enzyme (ICE) activity cause intestinal inflammation and 

tissue damage in amoebiasis. Mol Microbiol, 2000.37: p. 542-548. 

27 



Chapter 2. E. histolytica Cysteine Proteinases 

2.1 Structure and Function of E. histolytica Cysteine Proteinases 

Peptide hydrolases (proteases) are enzymes, which catalyze the cleavage of amide 

linkages (peptide bonds) and can be categorized based on their substrate specificities or 

mechanisms of catalysis. For example, five major classes of proteases have been 

identified based on their mechanism of peptide hydrolysis: serine, cysteine, aspartic, 

threonine, and metallo-proteases. The most abundant type of enzymes produced by E. 

histolytica are the cysteine proteases, and these have been implicated in the pathogenesis 

of invasive amebiasis [1]. As a class, cysteine proteases include several mammalian 

lysosomal cathepsins, caspases, the cytosolic calcium activated proteases (calpains), and 

the plant proteases papain and actinidin [2]. Cysteine proteases have been identified in 

many types of parasitic protozoa and helminths including, but not limited to E. 

histolytica, Leishmania mexicana, Plasmodium falciparum, Giardia lamblia, 

Trichomonas vaginalis, Fasciola hepatica and Schistosoma japonicum and S. mansoni [3, 

4]. This class of protease has many functions throughout a parasite' s life cycle and is 

necessary in such events as encystmentlexcystment, nutrient uptake, prote in degradation, 

growth and development, evasion of the host immune response, as weIl as invasion of 

host tissues or cells [5]. In addition, these proteases may play crucial roles in host-parasite 

interactions and affect the outcome of infection. 

Proteinases or endopeptidases are proteases which cleave internaI peptide bonds and the 

term cysteine proteinase is descriptive of the active site mechanism and identifies sorne 

characteristics of the substrate specificity for this class of enzyme [6, 7]. E. histolytica 

cysteine proteases have been reported to exhibit endopeptidase activity as determined by 

protease inhibition and synthetic substrate cleavage studies [1] [8]. In addition, the major 

cleavage sites on the bovine insulin !)-chain have aiso been identified, supporting the role 

ofthese enzymes as being endopeptidases [9]. The majority of parasite cysteine proteases 

belong to the papain-like family of proteases under the subfamilies of cathepsin-L and 

cathepsin-B based on structural differences, and at least 9 additional types of cathepsins 

are found in mammalian cells [10]. E. histolytica cysteine proteases (EhCPs) share the 
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closest structural identity to the cathepsin L-like proteases while exhibiting cathepsin B­

like activity by hydrolyzing the synthetic substrate Z-Arg-Arg-pNA [11], indicating that 

the proteases cannot be classified in the same manner as typical mammalian cysteine 

proteases [11]. Cathepsins Band L have primary substrate preference at the S2 subsite and 

cathepsin B-like proteases preferentially cleave substrates with positively charged amino 

acids such as lysine or arginine in the P2 position and have little affinity for cathepsin L 

substrates with bulky aromatic amino acids in the P2 position [12] [5]. An example of the 

interactions between a peptide and the cysteine protease active site pocket is seen in Fig. 

2.1. These differences can be explained due to the fact that the E. histolytica cysteine 

proteinase (Eh CP) active site pocket usually contains a negatively charged aspartic acid 

in the S2 subsite, except in the case for EhCP5 where homology modeling predictions 

indicate a glycine in the S2 pocket [11]. This difference would account for the cathepsin 

B-like activity exhibited by the proteinases and may allow for a broader range of 

substrate specificity for EhCP5, but this has yet to be determined. 

In general, mammalian cathepsins are most active in the acidic pH of the lysosome, but 

become rapidly inactivated at neutral pH and this may be a protective mechanism against 

escape of these proteases from the lysosomal compartment [6]. Over-expression or 

aberrant expression of human extracellular cathepsin activity is associated with a variety 

of diseases including cancer, osteoporosis, inflammation, and rheumatoid arthritis [6, 13, 

14]. Cysteine proteases secreted by parasites that invade host tissues and cells are active 

over a broader range of conditions, and are most active at neutral to slightly alkaline pH 

[12]. E. histolytica, F. hepatica, Ostertagia ostertagi and T vaginalis for example secrete 

cysteine proteases into their environment that are highly active against host proteins [15-

18]. 
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Figure 2.1 Diagram of the peptide substrate interactions within the active site pockets of 

a cysteine protease. Amino acids from the peptide are designated by a Pn, (n indicating the 

position of the amino acid from the scissile bond), and the corresponding protease 

subsites that they interact with are designated by an Sn. The carboxyl si de of the peptide 

and corresponding subsites are given the designation "prime" while amino acids on the 

amino si de are given the non-prime designation. E. histolytica cysteine proteinases are 

most active against substrates with arginine in the P2position. Adapted from: [5]. 

E. histolytica cysteine proteinases (CPs) contain all the key structural features typical of 

the papain like cysteine proteases inc1uding an N-terminal predomain, a propeptide, and 

a catalytic domain which represents the mature enzyme [19]. Fig. 2.2 illustrates the basic 

structure of an E. histolytica cysteine proteinase. Amebic predomains range from 12 to 14 

amino acids in length and the signal peptide is composed of a basic N-terminal region (n­

region), a central hydrophobic region (h-region) and a polar C-terminal region. The 

predomain region or signal sequence is responsible for translocation of the enzyme to the 

endoplasmic reticulum. Following ribosomal protein synthesis and processing in the ER, 

the signal peptide is removed by signal peptidase c1eavage between the pre and 

prodomains, and the c1eavage site has been predicted using the method of von Heijne 

[20]. The propeptide segment of eukaryotic cathepsins has at least three functions [21, 

30 



22]: (1) the proregion acts as a structural template, allowing for proper folding of the 

enzyme, (2) the pro do main functions as a molecular chaperone for the transport of the 

enzyme through the secretory pathway, and (3) the prodomain acts as a reversible 

inhibitor of the enzyme and prevents premature activation. E. histolytica CP prodomains 

contain a conserved ERFNIN motif (Glu-X3-Arg-X2-(VallIle)-Phe-X2-Asn-X3-Ile-X3-

Asn) close to amino acid -50 for aIl six amebic proteinases [23] and this motif is a 

common structural feature of cathepsin L-like proteases. The mature region of E. 

histolytica cysteine proteinases range in size from 216 to 255 amino acids, are structurally 

similar to cathepsin L-like proteases, and have an active site that contains a cysteine, 

histidine, and asparagine residue. The majority of cysteine proteases contain a highly 

conserved active site sequence, CGSCWAFS (active site cysteine underlined), although 

E. histolytica cysteine proteinases contain sorne amino acid substitutions [11]; for 

example, EhCP5 contains the sequence CGSCYSFA and EhCPl contains the amino acid 

sequence CGSCYTFG. Finally, a number of cysteine residues involved in disulfide 

bridge formation conserved in cathepsin L-like enzymes are found in E. histolytica 

cysteine proteinases. 

Pre- Pro- Mature enzyme 

C H N COOH 

12-14 aa 78-82 aa 216-225 aa 

Fig. 2.2 E. histolytica cysteine protease structure. Active site residues: CC) cysteine, CH) 

histidine, (N) asparagine. Adapted from: [19]. 
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2.2 Expression and Regulation of E. histolytica Cysteine Proteinase Genes 

The E. histolytica genome contains 20 cysteine proteinase genes with full-Iength open 

reading frames, although only seven are expressed in the parasite during in vitro 

cultivation [24, 25]. A summary of the major cysteine proteinase genes found in E. 

histolytica and the nonpathogenic commensal E. dispar (EdCP) as well as the known 

sub strate s for the enzymes (EhCPs) is listed in Table 2.1. Functional genes 

corresponding to Eh CP 1 and Eh CP 5 are absent in E. dispar and have led to investigation 

into the role of these proteinases as virulence factors. In addition, pathogenic isolates of 

E. histolytica release larger quantities of proteinase than E. dispar [15]. The E. 

histolytica cysteine protease genes Eh CP 1, EhCP2, EhCP3, EhCP5, EhCP8, EhCP9 and 

Eh CP 112 are all expressed at various levels in the parasite [25, 26] with Eh CP 1, EhCP2 

and Eh CP 5 expression being the highest. Expression levels of these genes directly 

correlate with the amount of cysteine protease activity found in trophozoite lysates. N­

terminal sequence analyses of the purified cysteine proteinases from the parasite revealed 

that ~90% of total cysteine proteinase activity could be attributed to the proteins EhCP 1, 

EhCP2, and EhCP5 [24]. 

Table 2.1 Cysteine Proteinases of E. histolytica and E. dispar 

Enzyme Gene Expression Known Substrates (EhCPs) References 
E. histolytica E. dispar 

EhCPl * (EdCPI) + (S) Laminin, fibronectin, bovine [27,28] 
collagen type l, human 
collagen type IV 

EhCP2 * (EdCP2) + (S) + Ruman collagen type IV [8] 
EhCP3 (EdCP3) + (S) + NA 
EhCP4 (EdCP4) NA 
EhCP5* (EdCP5) + (S) Fibronectin, IgG, C3 and C9 [29-31] 

complement components, 
proIL-18, hemoglobin, 
fibrinogen 

EhCP6 (EdCP6) NA 
EhCP8 (EdCP8) + + NA 
EhCP9 (EdCP9) + NA 
EhCP112 + (S) Collagen type l, fibronectin [32] 
(EdCPI12) and hemoglobin 
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*Underline indicates highest expression levels of the cysteine proteinases. (S) denotes the 

enzyme is secreted by the parasite. 

CPs are spontaneously secreted by the parasite in the absence of cellular contact [33] and 

the major secreted proteinases detected in parasite conditioned medium are as follows: 

EhCP1>EhCP2>EhCP5>EhCP3 (personal communication, Meléndez-L6pez, S.). There 

is evidence suggesting that the level of CP activity produced by arnoebae is directly 

related to parasite virulence, and is likely due to the action of the proteinases on 

extracellular matrix proteins such as larninin and fibronectin. The virulent HM-l (HM-

1 :IMSS) strain exhibits high levels of cysteine proteinase activity [34, 35]. High levels of 

CP activity have also been detected in parasites isolated from patients with symptomatic 

cases of arnebic colitis or liver abscess compared to asymptomatic individuals, and 

antibodies against the proteinases have been detected in infected individuals [15]. 

Host proteins encountered by the parasite during infection are known to play a role in 

regulating the expression of arnebic cysteine proteinase genes as weIl as the release of 

parasite virulence factors. Interactions between amebic trophozoites and human collagen 

type l (a major component of connective tissue) have been studied using microarray 

technology [36]. A significant up-regulation of EhCP 1 and EhCP2 mRNA levels occurs 

in response to incubation with collagen type l and may give a more accurate prediction of 

protease activity released within the host [36]. Incubation of the parasites with collagen 

also leads to parasite activation and release of virulence factors such as collagenase, as 

weIl as various other proteases, as detected by gelatin zymograrn [37]. This increase in 

protease production may be needed for the parasite to degrade the extracellular matrix 

proteins during invasion. Additionally, co-association of the parasite with the bacterium 

Escherichia coli KI2 increased parasite CP activity almost four-fold and this increase 

was attrihuted to increased expression in Eh CP 2 and Eh CP 5 transcripts [38]. 

2.3 Cellular Localization and Description of E. histolytica Cysteine Proteinases 

EhCP5 is currently one of three known CPs found on the trophozoite surface, in addition, 

the enzyme is also localized to intracellular compartments [29]. One explanation for this 
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localization pattern could be that after its release from intracellular granules, the enzyme 

associates with the trophozoite membrane. Purification of the native protein from the 

parasite and subsequent homology modeling have revealed sorne interesting properties of 

the enzyme [29]. The proteinase has an isoelectric point of 8.12, much higher than the 

other CPs. The enzyme shows a strong affinity for membranes and the specific activity 

increases two-fold when associated with liposomes [29]. The nature of the protein­

membrane interaction is hydrophobic and may be explained by the hydropathy profile of 

the prote in, revealing a large stretch of hydrophobic amino acids unique to EhCP5. 

Interestingly, a functional gene encoding for CP5 is not found in the non-pathogenic 

species E. dispar. A non-coding CP5 gene in E. dis par has been identified but is highly 

degenerated and contains numerous nucleotide exchanges, insertions and deletions 

resulting in multiple stop codons in the sequence [39]. It is hypothesized that the EhCP5 

gene started to degenerate in E. dispar coincidently when the two organisms began to 

diverge from a common ancestor. 

EhCP112 is another amebic proteinase with sorne unique features. EhCP112 forms part 

of the 112 kDa adhesin prote in along with a 75 kDa adhesin (EhadhI12) and is localized 

to the surface of the trophozoite. [26]. Both proteins are encoded by different genes, but 

may be held together by strong electrostatic forces or covalent bonding. The 112 kDa 

adhesin complex is translocated during phagocytosis from the plasma membrane to 

phagocytic vesicles and then is recycled back to the plasma membrane [26]. EhCP112 

also contains a putative transmembrane domain near the C-terminus and an RGD 

sequence (integrin attachment domain) absent in the other cysteine proteases except 

EhCP5, which may play a role in the contact of the protease with extracellular matrix 

proteins [26, 40]. The active proteinase may also be secreted by the parasite [32]. EhCP2 

is a highly expressed membrane associated CP found on both the cell surface as well as 

internaI membranes in the parasite, and has aiso been localized to the surface of E. dispar 

(EdCP2) [23]. EhCP3, on the other hand, is located primarily in cytoplasmic granules of 

E. histolytica. After phagocytosis of erythrocytes by the parasite, both EhCP2 and EhCP3 

co-Iocalize into phagocytic vesicles [23, 41]. Since many of the cysteine proteinases 

localize to these vesicles, it is likely that a major role of these enzymes in the parasite is 
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the digestion of nutrients. These same cysteine proteinases as weIl as EhCPl and EhCP5 

are also secreted by the parasite, which would imply an additional role for these enzymes 

in host invasion. 

2.4 The Role of Cysteine Proteinases in Immune Evasion 

E. histolytica cysteine proteinases have been found to destroy important components of 

the innate and acquired immune response directed against the parasite. Thus, these 

enzymes are important virulence factors involved in immune evasion. E. histolytica 

cysteine proteinases activate the alternative pathway of complement by cleaving the 

components C3 and C5 [42, 43]. Although the parasite is resistant to complement­

mediated cell lysis, the molecules released by this cleavage, C3a and C5a, are potent 

inducers of inflammation. The main role for these anaphylatoxins is to recruit 

inflammatory cells to active sites of inflammation. C3a is responsible for activating 

neutrophils, inducing the release of histamine from mast ceIls, and increasing vascular 

permeability, as weIl as inducing the release of IL-l from macrophages (reviewed in 

[44]). C5a, the more potent anaphylatoxin, induces macrophage activation [45], 

chemokinesis and chemotaxis of neutrophils [46], enhances vascular permeability [47], 

and causes the release ofIL-8 [48], IL-l, and IL-6 [49]. These anaphylatoxins have a very 

short half-life and the biological significance of this activation during infection with the 

parasite is not known. C5 is more resistant to amebic proteolysis, and cleavage by the 

parasite requires 10 times more active cysteine proteinase than does C3 cleavage [50]. In 

addition, C3a and C5a fragments undergo additional cleavage by the proteases and 

become inactivated, this degradation may be a mechanism used by the parasite to 

overcome host immunity [50, 51]. Cleavage of C3 also results in the liberation of active 

C3b-like molecules that participate in the activation of late acting components of 

complement [52]. EhCP5 has been shown to degrade IL-18 into inactive fragments, 

which may help to block the host inflammatory response [30], while EhCP2 has been 

shown to inhibit the biological activity ofhost chemokines [53]. 

In addition to degrading complement and host chemokines, the parasite may circurnvent 

the host' s immune response by degrading and inactivating immunoglobulins. Parasite 
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lysate and secreted components have been shown to de grade both serum and secretory 

IgA [54]. This de gradation was inhibited by the specifie cysteine protease inhibitor E-64 

(trans-epoxysuccinyl-L-Ieucylamido (4-guanidino) butane). Human and murine IgG are 

both cleaved by E. histolytica cysteine proteinases [55]. Cleaved monoclonal antibody 

directed against the 29 kDa surface antigen of E. histolytica was virtually ineffective at 

binding trophozoites compared to native antibody. IgG is produced against the parasite in 

>95% of infected individuals whether symptomatic or asymptomatic but despite this 

response, the parasite is still able to invade [56]. The cysteine proteinases may limit the 

effectiveness of the humoral response against the parasite. 

2.5 Role of Cysteine Proteinases in the Pathogenesis of Invasive Amebiasis 

E. histolytica encounters many obstacles in the host that impede its ability to invade. 

These obstacles are made up of the innate defenses such as intestinal mucus and 

antimicrobial peptides as weIl as soluble host factors such as secretory IgA antibodies. A 

summary of the innate defenses of the gut is listed in Table 2.2. In addition, the parasite 

must destroy the colonie epithelium by disrupting tight junction proteins that help form a 

protective barrier from intestinal contents including microorganisms and their secreted 

products. Once the parasite passes through and disrupts the intestinal epithelium, it meets 

little resistance from the underlying mucosa and easily migrates through host tissue. The 

trophozoite may then passively disseminate to the liver via the circulatory system. 

Many virulence factors produced by E. histolytica are involved in the pathogenesis of 

invasive amebiasis, but cysteine proteinases are among the most destructive molecules 

produced by the parasite. Since the trophozoites bind mucin oligosaccharides and the 

mucus layer is the first innate defense the parasite cornes in contact with, one can easily 

theorize that the parasite disrupts this barrier via proteolysis. Other parasites that come 

into contact with mucin such as T. vaginalis and F hepatica have been shown to degrade 

mucin, but the specifie molecules involved in degradation by the se organisms have not 

been characterized and the degradation may be attributed to protease, as weIl as 

glycosidase activity [57, 58]. Since E. histolytica secretes glycosidases and proteases into 

its surroundings, the actions of these enzymes on the mucus layer should not be 
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discounted [59-61]. An extensive review of the structure and function of gastrointestinal 

mucin can be found in Chapter 3. 

Table 2.2 Innate Defenses of the Gastrointestinal Tract 

Molecule Defensive role 

Secretory mucins Mucus gel formation, physical barrier, molecular 
sieve, reduces shear stress, blocks chemical 
insults, binding sites for intestinal flora, trap and 
expel pathogens. 

Gastric acid Antimicrobial [62] 

Lysozyme Antibacterial actions [63] 

Antimicrobial peptides Antimicrobial actions [64] 
( defensins) 

Trefoil factor proteins Epithelial restitution, epithelial continuity [65] 

Mannose-binding lectin Activation of complement [66] 

Epithelium/tight junctions Mechanical barrier [67] 

Galanin-1 receptor/Galanin Fluid and electrolyte secretion [68] 

Toll-like receptors Innate recognition of pathogens [69] 

Adapted from: [70] 
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Chapter 3: Production, Structure and Function of Gastrointestinal 

M . 1 ucms 

3.1 General Properties of Mucins 

The gastrointestinal (GI) epithelium is covered by a thick viscous mucus blanket 

composed of water, salts, immunoglobulins, secreted proteins and most importantly, 

mucins. Mucins are high molecular weight glycoproteins, which act as the main 

structural component, giving rise to the polymeric, viscoelastic and protective properties 

of the adherent mucous gel. The mucus layer is the most important protective component 

of the GI tract and all mucosal surfaces due to its ability to maintain epithelial barrier 

function. Not all mucins are alike and thus, are grouped into two major classes: 

membrane bound, and secreted mucins. Secreted mucins contribute to the formation of 

the mucus gel and are produced from specialized epithelial ceUs found throughout the GI 

tract, including the salivary glands, stomach, pancreatic and bile ducts, smaU and large 

intestines and colon. A summary of the major secreted mucins and their tissue 

distribution is listed on Table 3.1. Membrane-bound mucins are located on epithelial 

cells throughout the body, but their function is not as well defined. As a class, mucins are 

extremely large glycoproteins with molecular masses ranging between 0.5-25 x 106 kDa. 

The protein core of a typical mucin molecule contains mucin domains, consisting of 

tandem repeats ri ch in the amino acids threonine, proline and/or serine and the hydroxyl 

residues are heavily substituted with O-linked oligosaccharides [1]. The carbohydrate 

content of mucin may be responsible for more than 90% of its dry weight and the 

abundant glycosylation of the repeat domains give mucin its characteristic bottle-brush 

like appearance. Additionally, the densely packed carbohydrates are responsible for 

protecting the protein core from damage. Many mucins also contain sialic acid and 

sulfate attached to sugars giving mucin a negative charge under physiological conditions. 

1 Portions of this chapter were adapted with permission from the following reference: Moncada, D.M. and 

Chadee, K. Infections of the Gastrointestinal Tract. Ed. Blaser, M.l., Smith, P.D., Ravdin, 1.1., Greenberg, 

H.B., and Guerrant, RL. 2002. Lippincott Williams & Wilkins. Philadelphia, PA. p. 57-79. 

45 



The general properties of mucins, such as protease resistance, high charge density from 

sialic acid and sulfate residues as well as a large water-holding capacity are attributes of 

extensive glycosylation. In general, the amino and carboxyl terminal regions of mucin 

are less glycosylated than the mucin domains and contain a wide range of amine acids, 

most notably cysteine residues. The cysteines form intramolecular disulfide bonds within 

the carboxyl and amino terminal regions, as well as intermolecular disulphide bonds 

between mucin molecules, participating in the polymerization of mucin and enabling 

formation of the viscoelastic mucus gel. 

Table 3.1. Tissue distribution ofhuman secreted mucins 

Mucin 

MUC2 

MUC3*t 

MUC5AC 

MUC5B 

MUC6 

MUC7 

Tissue/cell distribution 

Small and large intestine (goblet cells), salivary gland ducts, inferior 

turbinates 

Jejunum, ileum, colon, gallbladder, goblet cells and absorptive cells of 

intestine 

Colon (goblet cells), superficial stomach epithelium, bronchus (mucus 

glands and ciliated epithelium), inferior turbinates endocervical 

epithelium 

Submandibular glanda, salivary glands, gall bladder (billiary epithelial 

cells), bronchus (mucus and serous glands), colon (goblet cells), 

endocervical epithelium, inferior turbinates (submucosal glands). 

Small and large intestine (goblet cells), gall bladder epithelium, 

stomach (mucous neck cells;antral mucous cells), seminal vesic1e, 

pancreas (centroacinar cells and ducts), endocervical epithelium, 

endometrial epithelium, biliary epithelial cells. 

Salivary glands (mucous cells), bronchial airways (submucosal glands), 

inferior turbinates ( submucosal glands) 

*Reports of both membrane and secreted forms produced by alternative splicing [2]. tEvidence for two 

genes encoding MUC3 termed MUC3A and MUC3B [3]. 
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The surface of the GI epithelium is continually exposed to numerous macromolecules and 

microorganisms including, chemical irritants, digested foods, toxins, resident bacteria, 

intestinal pathogens and their products. The mesh-like structure of the mucin gel impedes 

the diffusion of offending macromolecules through it. The delicate single-cell-thick 

epithelium lining the intestinal tract would be susceptible to injury from acids and 

luminal contents if it were not for the non-specific protection provided by the mucus 

blanket [4]. Not only does the mucus gel protect against chemical insults, but it also 

provides a physical barrier against enteric pathogens by containing binding sites for 

resident flora while maintaining high concentrations of secretory IgA [5]. 

Mucin plays a major role in infections of the GI tract by providing initial attachment sites 

for mucosal pathogens allowing colonization and establishment of the organisms in the 

mucus layer. Many invading pathogens secrete enzymes and putative mucin 

secretagogues that weaken the mucus barrier, facilitating access to the epithelial surface. 

Alternatively, mucins may prevent invading microbes from gaining access to the mucosa 

by physically trapping and aiding in expulsion of the organisms. The ability of goblet 

cells to hypersecrete mucin, along with release of fluid from enterocytes may aid in the 

rapid expulsion of pathogens. The fate of mucin-bound organisms is dependent upon 

their ability to successfully colonize the intestinal tract. Most microorganisms are not 

able to colonize the mucin barrier and are sloughed away with peristaltic movements and 

expelled during defecation. In addition, nonpathogenic intestinal flora residing in the GI 

tract play an important role in preventing colonization of pathogens by occupying 

available microbial attachment sites. Alterations in the mucin barrier are most likely a 

contributing factor in the pathogenesis of many infections and disease states. The 

mechanisms leading to alterations in mucus composition in relation to mucin-pathogen 

interactions are still poorly understood. 

3.2 UnregulatedIBaseline Secretion 

Under normal physiological conditions, goblet cells continually synthesize and secrete 

mucins that are not stored in the apical granule mass to replenish the mucus blanket 

covering the epithelium. This continuaI secretion is necessary to maintain the thickness 

47 



of the mucus gel, which is constantly exposed to acids and irritants in addition to being 

sloughed away via peristaltic movements [6]. The release of newly formed mucin 

granules during unregulated (baseline) secretion in not a receptor-mediated event. 

Mucosal explants of human and rat colon have been shown to continually incorporate 

radio-Iabeled mucin precursors into mucus glycoproteins [7]. Following synthesis, 

labeled mucins are then packaged into granules, transported to the cell surface and 

secreted into the lumen. Stored mucin granules are thought to play a role in unregulated 

secretion since there is evidence for incorporation of newly formed mucins into storage 

granules [8]. Little is known about the mechanism of unregulated secretion; however, it 

is dependent upon continuous transport of granules from the golgi vesic1es to the cell 

surface and movement of granules within the cell is a microtubule-dependent event [9]. 

Baseline granule turnover is a result of the movement of newly synthesized mucin 

granules along the periphery of the theca to the apical plasma membrane for exocytosis. 

Microtubules (MT) play a major role in baseline secretion by maintaining the orderly 

movement of mucin granules from the golgi to the apex of the cell, through interactions 

with golgi elements in the supranuc1ear region and mucin granules located in the 

peripheral apical granule mass. Monensin, which disrupts golgi function was found to 

almost completely inhibit baseline secretion in the colonic adenocarcinoma cell line 

LS 180 and agents such as nocadazole which inhibit microtubule assembly also inhibit 

secretion [9]. These studies suggest that baseline secretion is a result of newly 

synthesized mucin being transported from the golgi to the cell surface with the assistance 

ofMTs. 

3.3 Mucin Secretion in Response to Gastrointestinal Pathogens 

Mucin secretion is enhanced in response to offending microorganisms. Goblet cells are 

responsible for maintaining the mucus blanket and are known to respond to various 

luminal pathogens and their products through an increase in mucus secretion [10-12]. 

This rapid secretion is thought to bestow an important mechanism of protection by 

trapping and flushing out intestinal pathogens. Bacteria and their toxins and 

endoproducts are known to have a potent secretagogue effect on goblet cells; for 

example, in addition to causing severe diarrhea in humans, Vibrio cholerae enterotoxin 
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was shown to markedly increase mucin secretion in the rat small intestine, colon and HT-

29 cells [13]. The bacillus Yersinia enterocolitica is linked to an increase in mucin 

secretion in rabbit distal small intestine and the proximal colon [14]. Perhaps the best 

example illustrating mucin-pathogen interactions may be observed during infection with 

the enteric protozoan parasite E. histolytica. The parasite colonizes the colon by binding 

to Gal and GalNAc residues of colonic mucin, and is known to evoke the release of 

mucins through prote in kinase C activation in LS 174T cells [15]. Not only do goblet 

cells respond to E. histolytica by secreting mucins, but the parasite also stimulates the 

release of both pre-formed and newly synthesized mucins [16], as weIl as both neutral 

and acidic mucin species [10]. This rapid secretion does not result in expulsion of the 

parasite but may result in depletion of the mucus blanket at a rate that exceeds 

regeneration, allowing the parasite to gain access to the colonic epithelium. This may be a 

novel strategy used by an intestinal pathogen to gain access to the underlying epithelial 

cells. Infection with H pylori is also associated with depletion of the gastric mucus 

barrier, but instead of causing mucin hypersecretion, the organism inhibits mucin 

biosynthesis [17]. IronicaIly, pathogens can cause a depletion of the mucus blanket, either 

by inducing hypersecretion of stored mucin pools or by decreasing mucin biosynthesis. 

3.4 Structure of Gastrointestinal Mucins 

Peptide core 

The peptide core of mucins has been reported to range in size from approximately 1,500 

amino acids to more than 5,000 amino acids in composition for the MUC2 apoprotein. 

The polypeptide backbone provides numerous sites for the addition of O-linked 

oligosaccharides through an abundance of serine and threonine residues. The amino acid 

composition of mucin contributes to only ~ lOto 20% of the dry weight of a typical 

secretory mucin molecule and the remainder of the protein is composed of O-linked and 

N-linked oligosaccharides and a small percentage of sulfate residues [17]. There are 

currently at least four secreted mucins found covering mucosal surfaces in humans; these 

are MUC2, MUC5AC, MUC5B, and MUC6 and the genes encodong these mucins are 

c1ustered on chromosome llp15.5 [18]. Advancements in the discovery and c10ning of 

mucins have revealed that there are several characteristics common among these 
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molecules. Intestinal apomucins contain common structural domains including a series of 

tandem repeats rich in threonine, proline and often serine residues. These mucin domains 

often contain numerous amino acid repeats and provide a scaffold for abundant 0-

glycosylation. These highly glycosylated regions take on a rod-like, extended 

conformation due to the presence of numerous oligosaccharides and proline residues, are 

devoid of any secondary structure, and are less flexible than the poorly glycosylated 

regions. In addition, the amine and carboxyl terminal ends of secreted GI mucins are rich 

in cysteine residues, which play a role in polymerization and formation of the mucus gel. 

The cysteine-rich flanking regions in secretory GI mucins contain D-domains sharing 

similarity to the D-domains in the blood coagulation factor, von Willebrand Factor 

(VWF) [19]. 

One of the most weIl characterized and studied GI mucin is MUC2. MUC2 is the major 

secretory mucin produced by goblet cells of the small and large intestines, and is the 

predominant gel-forming mucin constituting the mucus layer overlying these organs. A 

diagram representing the structure of a MUC2 monomer is shown in Fig. 3.1. 

N c 

Figure 3.1. Hypothetical model of a MUC2 mucin monomer. The heavily glycosylated 

mucin domains termed the irregular repeat (IR) region and the variable number tandem 

repeat region (VNTR) give muein its bottle-brush like appearanee and proteet the protein 

core from damage. The less glycosylated D-domains are rich in cysteine residues 

forming intramolecular disulphide bonds giving the carboxyl and amino terminus a 

globular protein appearance. IR, irregular repeat, VNTR, Variable number tandem repeat, 
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D, von Willebrand factor like domains, and lines indicate area of glycosylation. Adapted 

from: [20,21]. 

At least 90% of Mue2 alleles encode a protein consisting of more than 5000 amino acid 

residues [1, 22, 23]. The MUC2 apoprotein contains two mucin domains termed the 

variable number tandem repeat (VNTR) composed mainly of the amino acids threonine 

and proline, and the irregular repeat region (IR) rich in serine, threonine and proline 

residues. The VNTR is composed of a series of 23 amino acid repeats and provides 

several potential sites for O-linked glycosylation. The IR is composed of a 347-amino 

acid domain, also providing several O-linked glycosylation sites, contrihuting to the 

resistant nature of these domains to chemical and proteolytic damage [1]. The N­

terminus of MUC2 flanking the IR region contains three cysteine-rich D-domains and the 

carboxyl terminal end of MUC2 flanking the VNTR possesses one cysteine rich D­

domain. These domains share high sequence similarity to the D-domains of VWF and 

are named DI-D4 in order from the N- to C-terminus of the molecule. These regions are 

involved in the formation of MUC2 monomers into polymers, characteristic of large 

secretory mucins. Potential N-linked glycosylation sites are also dispersed throughout the 

molecule, although much less prominent than O-linked oligosaccharides. 

Amino Terminal End 

There are several cysteine rich domains found in human secreted mucins. These domains 

are often at the terminal regions of mucin molecules and they share a high sequence 

similarity in the position of the cysteines when compared to the VWF. These regions are 

also named similarly to the D-domains of VWF termed DI, D2 and D3. In addition, a 

partial D' domain is located between the D2 and D3 in all VWF-like secreted mucins as 

well as in VWF [24]. Secretory mucins often contain three N-terminal flanking VWF­

like domains as depicted in Figure 3.1 for MUC2. In addition, these regions may have as 

many as 30 cysteine residues participating in the assembly of mucins into multimers by 

the formation of disulfide bonds. AU cysteine residues in VWF are thought to participate 

in inter- or intra-molecular disulfide bond formation [24]. The N-terminal of MUC2 and 

other mucins contain sites for potential N-linked glycosylation, which are essential for the 
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proper processing and transport of mucin within the secretory pathway [25]. The N­

terminus of MUC2 is assembled into trimers, held together by disulfide bonds between 

monomers of similar termini [26]. Trefoil-like domains have been identified within this 

region and allow the polymer to stay intact even after digestion with trypsin, due to 

disulfide bonds holding the proteins together [26]. This unique structure may allow the 

mucin polymer to maintain its structure even under the constant assault of intestinal 

proteases. 

Carboxyl Terminal End 

The C-terminal regions of most secreted mucins contain a single D-domain rich in 

cysteine residues aligning similarly with those of the VWF domains. This suggests an 

important function for this region. Most secreted mucins contain one C-terminal D­

domain, termed D4, in keeping with the naming in order from N- to C- terminus. The 

carboxyl terminal D-domain of mucin takes on the structure of a globular prote in and is 

highly homologous to the cysteine knot motif family of proteins [25] [27]. Currently it is 

believed that all available thiols participate in either inter- or intra-molecular disulfide 

bond formation in a similar fashion to those in VWF [24]. Sites for N-glycosylation may 

also be present in this region, but there are little or no potential sites for O-linked 

glycosylation. Dimerization and subsequent polymerization of mucin is thought to occur 

in a similar fashion as VWF, through the C-terminal by a "tail to tail" assembly. 

Reducing agents disrupt the polymeric structure by breaking the intermolecular disulfide 

bonds between mucin molecules, although reduction insensitive bonds have been 

identified [1]. MUC2 has a unique C-terminal region. Exposure of MUC2 mucin to 

reducing agents often results in the release of a 118 kDa peptide from the C-terminus that 

is easily visualized when separated by SDS-polyacrylamide gel electrophoresis. 

Previously thought to be a link peptide, further analysis revealed the sequence to be part 

of the C-terminal peptide core. Cleavage of MUC2 mucin by an unknown mechanism 

was thought to be responsible for the release of this peptide under normal conditions, and 

the fragment could remain attached via disulfide bonds [27] [28]. The liberation of a 118 

kDa peptide and other mucin glycopeptide fragments often occurs during mucin 

purification. More recent studies have revealed that the MUC2 C-terminus does undergo 
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an autocatalytic cleavage between an Asp-Pro peptide bond, in a low pH environment 

(below pH 6.0) and is only released upon reduction [29]. This cleavage is likely 

responsible for liberation of the "link peptide" and is not prevented by protease inhibitors 

[29]. The cleavage is also theorized to be a natural phenomenon that may take place in 

the late secretory pathway where the pH is below 6.0 and is dependent upon the length of 

exposure of the molecules to acidic conditions. In addition, the reaction may pro duce a 

reactive C-terminus that could link to other components. Purification of mucin in the 

presence of guanidinium chloride is known to be an effective way to significantly prevent 

degradation during the purification and storage of mucin. 

Tandem Repeats 

Epithelial mucins are characterized by their tandem repeat (TR) domains (Fig. 3.1), 

which can comprise more than 50% of the apomucin. The TRs provide sites for 0-

glycosylation, however the content and order of threonine, proline and/or serine residues 

influences the actual extent of oligosaccharide density. MUC1 contains less serine and 

threonine residues when compared to MUC5AC and as a consequence, has less 

glycosylation sites available; in contrast, MUC2 TRs contain a greater concentration of 

threonine residues and therefore are more densely glycosylated. The 23 amino acid TR 

of MUC2 (PTTTPITTTTTVTPTPTYTGTQT) contains 14 threonine residues, which 

have been reported to be glycosylated up to 78% in LS174T cells [30]. The extent of 

glycosylation can have a dramatic effect on the physical properties of mucin and the TR 

can influence the rigidity and gel forming properties of mucin depending on the 

availability of glycosylation sites. The sequence of the repeat may vary between different 

mucins depending on the function of the molecule, but repeats from all mucins are known 

to contain threonine, proline and/or serine residues. The presence of proline residues 

within these repeats appears to be important in determining the specificity of the 

polypeptide N-acetyl-galactosaminyltransferases (GaINAc transferases) catalyzing 0-

linked oligosaccharide addition. The six or seven flanking amino acids around the target 

hydroxy amino acid influence its acceptor function, especially proline at the position +3, 

favoring glycosylation ofthreonine [31-33]. 
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Polymorpisms 

Theoretically, mucins are the most polymorphie of all the biological macromolecules 

produced by eukaryotic organisms. They are even more polymorphie than 

immunoglobulin and T-cell receptors due to the abundant potential sites for O-linked 

glycosylation and the numerous possibilities for unique and extended oligosaccharide 

chain combinations. Mucin genes exhibit genetic polymorphism and there are allelic 

variations between individuals. As a consequence, there are different protein isoforms. 

Polymorphism in the VNTR are a common feature of most mucins and there is a high 

level of genetically determined polymorphism due to variations in the number of copies 

ofthese tandem repeated sequences (VNTR) [34, 35]. Interestingly, the secretory mucins 

MUC2 and MUC6 show an incredible degree of polymorphism in the VNTR region, with 

up to a two-fold difference in length of the co ding sequence and subsequently an increase 

in protein size [35]. Variations in the length of secreted mucin molecules may have an 

influence on the properties of the mucus geL 

3.5 Carbohydrate Structure 

N-linked Oligosaccharides 

N-linked oligosaccharides are present in most mucins, although they comprise only a 

small percent of the total carbohydrates. These carbohydrates are mostly confined to the 

N- and C-terminal regions of the mucin molecule. Experiments using LS 174T cells 

treated with tunicamycin, a potent inhibitor of N-linked glycosylation, revealed the 

importance of N-glycosylation in the synthesis of the MUC2 apomucin [36] [25]. Despite 

the lack of N-glycans, MUC2 monomers are able to form dimers in the ER but the rate of 

dimerization is delayed. There is a high probability that N-glycosylation may be 

important in mediating proper folding and disulfide bond formation in the MUC2 

apomucin. In addition, the successful transfer of mucin dimers to the golgi for further 

processing was aiso found to be dependent on N-linked gIycosyIation of mucin in the ER 

[25]. In MUC2, there are several consensus sequences for potential N-glycosylation sites 

(asn-X-ser/thr) and sorne ofthese sites are known to be occupied, although it is unknown 

if all available sites are glycosylated. Few compositional or structural details concerning 

the N-linked branches in mucin are known, although at least sorne of them in rat and 
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human intestinal mucins must have exposed oligomannosyl residues, based on their 

recognition of E. coli type 1 (mannose sensitive) pili [37]. 

O-Linked Oligosaccharides 

The incorporation of O-linked oligosaccharides into mucms occurs following N­

glycosylation and disulfide linked dimer formation [27]. The functions of O-glycans are 

diverse and include maintaining protein conformation, control of active epitopes and 

antigenicity, in addition to acting as binding sites for microbes. O-glycans are attached to 

the apomucin peptide TRs via an O-glycosidic linkage between the first carbon of 

GalNAc and the hydroxyl oxygen ofthreonine or serine. It is possible that these linkages 

are further stabilized, and the chains oriented with respect to the peptide, by a hydrogen 

bond between the amide group of GalNAc and the carbonyl oxygen of the threonine or 

serine [38]. The addition of GalNAc serves to "stiffen" the TR domain of the peptide 

core in an extended conformation [39]. GalNAc residues are important in maintaining a 

highly extended random coil configuration of mucin, and removal of the mucin 

oligosaccharide branches results in the denaturation and collapse of the molecule [39,40]. 

These mucin-bound carbohydrates also have a large water holding capacity, which allows 

for hydration of the mucin molecule. Although O-glycans are tightly packed side by side 

in the central TRs (Fig. 3.1), not aIl serine and threonine residues are necessarily 

glycosylated and the carbohydrate chains may exist as clusters possibly exposing regions 

of the TR to damage [40]. This may not be the case for MUC2, since digestion of the 

MUC2 monomer by trypsin and analysis of the degradation products revealed that the IR 

and VNTR domains remain intact and correspond to the appropriate predicted molecular 

weights of the domains [1]. A consensus sequence for the addition of GalNAc has not 

yet been found, although predicted algorithms do exist. The presence of adjacent proline 

residues at the -1 and +3 positions has been associated with O-glycosylation and the 

presence of charged residues in these positions is not favored. Proline residues are 

responsible for breaking helix formation and instead may promote the formation of ~ 

sheets, and O-glycosylation is thought to occur at these predicted ~ turns. Alanine, serine 

and threonine are often found adjacent to O-glycosylated residues and apparently charge 

distribution is more of a major factor vs. actual charge [41]. The sequence of the MUC2 
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tandem repeat contains consecutive and alternating threonine residues. Studies conducted 

to predict glycosylation patterns in MUC2 mucin have been performed using synthetic 

peptides representing various sequences of the VNTR of MUC2. These peptides were 

incubated with LS 174T cell microsome fractions to determine the incorporation of 

GalNAc into threonine residues, and it was revealed that maximum incorporation 

occurred in peptides containing consecutive threonine residues [42]. 

O-glycans contain GaINAc, GleNAc, fucose, galactose, and sialic acid. MUC2 contains 

21 separate oligosaccharide groups including 10 acidic and Il neutral structures ranging 

in chain length size from two to 12 sugars. Many of these may represent minor variations 

of a basic biantennary structure [43]. Several hundreds of different O-glycan structures 

have been described in mucins, made possible due to variations in linkage (a or ~) and 

degree of branching, which amplify their potential to generate numerous recognition sites 

for lectins, and viral, bacterial, or parasite adhesins. The carbohydrate structures of 

mucins are heterogeneous and vary in different regions of the intestine, and even among 

different mucus cells of the same organ, such as the deep superficial mucus cells of the 

stomach [44] or the crypt and surface goblet cells of the colon [45] . 

The initiating event of O-glycosylation is the addition of the monosaccharide GalNAc 

(from UDP-GaINAc) to serine or threonine residues. O-glycan synthesis is simpler than 

N-glycan synthesis as it does not utilize a lipid-linked oligosaccharide precursor for 

transfer of the oligosaccharide to the apomucin. This addition is catalyzed by a 

polypeptide GalNAc transferase (GaINAcT). There are several GalNAcTs expressed in 

various tissues. GaINAcT-l expression seems to be widespread and abundant in human 

and other vertebrate cells and there are at least eight polypeptide GalNAcT genes, which 

are generally expressed in specific tissues and cell types. Specificity for glycosylation by 

GalNAcTs is regulated both by the enzyme source (organs) and by the apornucin 

sequence [46]. Typical core structures of mucin O-glycans consist of six different 

arrangements of Gal and GlcNAc bound to GalNAc (Figure 3.2). Most O-glycans 

contain the core 1 subtype structure formed by the addition of galactose in a ~1-3 linkage 

to the GaINAc. The first four cores are cornmon, particulary core 2 and 3 in intestinal 

56 



mucins. The glycosyltransferase responsible for the Core 1 subtype structure is known as 

core 1 pl-3 galactosyltransferase (Core 1 GalT). Core 2 G1cNAcT for the formation of 

the Core 2 subtype, Core 3 GlcNAcT for the Core 3 subtype and Core 4 G1cNAcT for the 

Core 4 subtype [47, 48]. The core structures are substrates for transferases, which add 

sugars and elongate the oligosaccharide chains. The production of core 2 O-glycans 

requires the Core 1 as substrate and production of Core 3 O-glycans actually inhibits the 

ability of Core 2 G1cNAcT to act. In addition, the Core 2 structure can become elongated 

into either a mono- or biantennary form with the presence of multiple lactosamine 

(Galpl-4GlcNAc) units, which become terminated by the addition of sialic acid or 

fucose. The Core 3 O-glycans can be the building block for the formation of biantennary 

O-glycans by acting as a substrate for Core 4 GlcNAc activity. Very few tissues besides 

the GI tract show high Core 3 and 4 G1cNAcT activities. As oligosaccharide elongation 

proceeds, the more proximal core structures become "masked" making them inaccessible 

to lectins, adhesins, or antibodies specific for them. 

The final step in oligosaccharide synthesis is the transfer of sugars (fucose, galactose, 

GaINAc, and sialic acid) from their nucleotide sugar donors to terminal galactose 

residues of the backbones, completing oligosaccharide synthesis. The peripheral sugars 

bond via a-glycosidic linkages, preventing further elongation, and give rise to the well­

known ABH and Lewis blood group specific mucins. The A-, B-, or H-specific sugars 

can serve as nutrients for sorne colonic commensals [49]. To sorne extent, the blood 

groups determine which species or strains inhabit the human colon. Alterations in 

peripheral sugars also occur in mucins during immune responses to parasitic infections 

[50-52]. 
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Figure 3.2. O-glycan core structures. The mucin cores are synthesized from the precursor 

Tn antigen by addition of Gal and/or GleNAc. Cores 1 to 4 are most common in normal 

mucins. 

Suifation 

Sorne of the peripheral or backbone residues (chiefly Gal or GleNAc) of mucin 

oligosaccharides acquire sulfate at the level of the golgi membranes during biosynthesis 

[53]. The longest or most branched chains are likely to carry the most sulfate [54]. Most 

goblet cells contain sorne sulfated mucin molecules and sulfation increases from the 

proximal to distal segments of the intestine and is highest in colonic areas that harbor 
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high populations of fecal bacteria and may make the mucin more resistant to degradation 

[55]. 

3.6 Mucin Polymers 

The interactions between mucins at the intermolecular and intramolecular levels give rise 

to the polymeric and eventually the viscoelastic properties of the mucus gel. To achieve 

this, mucin monomers must link together to form polymers. The formation of disulfide 

bonds between MUe2 mucin monomers is a crucial step in the assembly of mucins into 

multimers. The assembly of gel-forming mucin polymers is believed to occur in a similar 

fashion to that of VWF due to the high degree of sequence similarities in the positions of 

the cysteines in the carboxyl and amino termini. The initial dimerization of MUe2 has 

been shown to occur in the ER [25] through the formation of disulfide bonds between the 

carboxyl terminal regions of the mucin peptide. Dimerization of mucin monomers occurs 

directly after translation of the apoprotein in LS 174T cells. Transfer of the mucin 

monomers and dimers to the golgi apparatus is an N-glycosylation dependent event. Once 

translocated to the golgi, mucin dimers become O-glycosylated. Multimerization of the 

mucin dimers occurs through interchain disulfide bonds formed between the amino 

terminal D-domains of disulfide linked dimers, forming very high molecular weight 

multimers [24,25,56]. A hypothetical model of a MUe2 polymer is seen in Fig. 3.3. 

C-terminus 

~ 

Figure 3.3. Hypothetical model of a MUe2 mucin polymer. The sulthydryl bonds at the 
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carboxyl- and amino-terminal ends Hnk the MUC2 monomers. The heavily glycosylated 

IR and VNTR are depicted as bottle-brush like regions. 

Once mucin polymers are assembled and fully glycosylated, they normally assume 

semiflexible "kinky" configurations which, when extended by shearing stress and 

examined by electron microscopy, are se en to be extremely heterogeneous in length [57]. 

Respiratory mucins are weIl studied and shown to range from 0.2 to more than 10 ,"",m in 

length. After reduction they decrease in size to 200 to 600 nm [58]. 

3.7 Gel Formation 

Within goblet cell granules, mucin polymers are physically constrained in a highly 

condensed form, which excludes water. Packing is enhanced by calcium ion 

neutralization of the fixed negative charges of sulfate and sialic acid. Upon secretion of 

the mature mucin granules, polymers uncoil, Ca + diffuses outward, and the mucin 

becomes rapidly hydrated and its volume greatly increases [59]. Mucin molecules in 

solution aggregate via H-bonding, electrostatic and hydrophobie interactions and Van der 

Waals forces [60]. Gel formation occurs as the number of cross-links between mucin 

molecules increases and the long polymer chains intertangle. The sol-gel-phase 

transformation from the solution of linear or branched molecules to a highly viscous and 

elastic gel occurs when mucin reaches a concentration of 30 to 50 mg/ml. Cross-linkage 

of the gel structure provides considerable resistance to flow and may explain why mucins 

are not completely cleared from the mucosal surface after a single fluid "flush". 

Mucin forms a gel that is adherent to the intestinal epithelium, and is composed of two 

layers: a loosely adherent layer, which is removable, and a layer, which is firmly attached 

to the mucosa. The mucus gel flows slowly over the mucosal surface forming a blanket, 

which follows the surface of the mucosa. The viscoelastic properties of mucus can 

withstand the large shear forces found in the digestive tract as weIl as the movement of 

particles and macromolecules over the epithelial surface. If subjected to a strong shear 

stress, a mucin gel may rupture, but if left undisturbed, it will reanneal due to its instrinsic 

elasticity. Thus, viscosity and elasticity are important properties for the continuity and 
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stability of the mucus blanket covering the Gr mucosal surface. The unstirred mucus 

layer provides a stable microenvironment at the mucosal surface, and in the colon, the 

mucus layer provides an essential environment for microflora [61]. The thickness of the 

mucus gel ranges from 50 to 450 f-tm (average 180 f-tm) in the human stomach and is 

thinner and possibly discontinuous in the small intestine. Studies measuring the thickness 

of intestinal mucus in the rat have shown that the mucus layer is thickest in the colon 

(830 f-tm) and thinnest in the jejunum (~123 f-tm) [62]. The mucus layer is decreased 

during starvation [63] and thickens in bacterial overgrowth [64]. 

3.8 Susceptibility of Mucins to Damage 

Both the peptide core and the oligosaccharides of Gr mucms are fragmented and 

eventually completely degraded by enzymes liberated into the lumen from normal host 

tissue and colonic bacteria (Fig. 3.4). Degradation of mucin is a natural physiological 

process that plays a role in regulating the thickness of the Gr mucus blanket. However, 

many pathogens and host cells elaborate enzymes that are mucolytic. An excess of these 

enzymes can alter the dynamic equilibrium between mucin production and degradation 

rates that can cause a structural weakening of the protective mucus gel layer. Sorne of the 

sites on mucin molecules recognized to be particularly susceptible to damage, are 

discussed below and are highlighted schematically in Fig. 3.4. 

61 



Figure 3.4. Degradation of intestinal mucin. (a): A hypothetical mucin oligosaccharide to 

show the sequential action of bacterial exoglycosidases and glucosulfatase. (b): A portion 

of the polypeptide core to show amino acids (squares) vulnerable to chemical and 

enzymatic rupture. H, histidine; T, threonine; S, serine; P, proline; R, arginine; F, 

phenylalanine; K, lysine; G, glycine; C, cysteine. Many serine and cysteine proteinases 

of bacterial and host epithelial cells are mucolytic. 

Proteolysis 

Solubilization of the intestinal mucus gel occurs throughout the gut by degradation of the 

polymer into soluble degraded mucin units. The non-glycosylated regions of mucins are 

theorized to be susceptible to proteolytic cleavage by proteinases. A large portion of the 

proteolysis of GI mucin takes place in the colon, where there is a high content of 

intestinal microflora. In addition, mucin in the upper GI tract is constantly degraded by 

host proteinases. Analysis of the amino acid sequence ofMUC2 has revealed that the N­

and C- terminal regions contain many arginine, lysine and valine residues as well as a 

small number of aromatic residues such as phenylalanine, tyrosine, and tryptophan. 

62 



Therefore, these domains may be highly susceptible to serine proteinases produced by the 

host as well as serine and cysteine proteinases produced by GI pathogens. In vivo, sorne 

protection of mucins against lumenal proteases may be afforded by weak interactions of 

mucins with nonmucin components such as proteins, constituents of bile, anionic 

proteoglycans, lipids, and products of sloughed cells [65, 66]. It is also likely that the 

normally folded state of the mucin peptide near the cysteine-rich termini "buries" sorne 

protease-sensitive regions, which only become vulnerable after disulfide bonds are 

ruptured [26, 57]. 

It is hypothesized that once the polymeric structure has been lost, the mucus blanket is 

less effective at preventing invasion of the intestines. V. cholerae secrete a potent zinc­

dependent metalloproteinase that lowers mucin viscosity and facilitates penetration of the 

enterotoxin to its GM1 ganglioside receptor on cell membranes [67]. There is evidence 

that H pylori secretes a protease that increases the movement of the organism through the 

mucus gel to the gastric cells [68]. The mucus barrier may also be damaged in 

inflammatory bowel disease by fecal proteinases, which may be increased by alterations 

in the normal resident bacterial populations [69]. Additionally, it is likely that GI 

inflammation contributes to mucin damage by the action of neutrophil proteases [70], 

mast cell proteases [71], and proteases from other inflammatory cells. 

Cysteine residues form disulfide bonds that stabilize the tertiary structure of mucins, and 

reducing agents are widely recognized to be capable of destroying mucin polymers and 

collapsing mucin gels. Although specific bacterial reductases for these bonds have not 

been identified, colonic flora and host cells produce reductases and glutathione, both of 

which are believed to participate in mucin depolymerization. Thiols in secretions can 

also activate cathepsins, which can damage the mucin peptide. 

Glycosidases 

Mucin oligosaccharides are degraded in a stepwise manner by the sequential removal of 

carbohydrates in a direction from the periphery to the internaI core nearest the peptide 

linkage as shown schematically in Fig. 3.4. Specific subpopulations of normal colonic 
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flora elaborate the required exoglycosidases [69, 72]. The importance ofthese enzymes as 

virulence factors, however, is largely speculative. Antibiotics decrease mucin 

degradation and alter mucin composition to resemble that of mucins found in the germ 

free state [73]. Proteinases, as well as glycosidases have been shown to play a role in 

host-parasite interactions, in particular, mucus penetration. There is evidence to support 

that the protozoan parasites E. histolytica and G. lamblia produce a ~-N­

acetyglucosaminidase that may aid in the penetration of the protective mucin layer [74, 

75]. For organisms such as T vaginalis, motility alone is not sufficient for these 

pathogens to migrate through the mucus layer [76]. Therefore, the concerted action of 

proteinases and glycosidases may be necessary for sorne pathogens to invade the mucosa. 

F. hepatica also produces a range of glycosidases capable of degrading mucin which may 

facilitate parasite invasion and tissue migration [77, 78] As mucin peptides become 

progressively deglycosylated, they are rendered more sensitive to rupture by proteolytic 

enzymes. Thus, alternating activities of bacterial (and host) glycosidases may gradually 

degrade mucin macromolecules. Bacterial glycosulfatases [79] participate by removing 

sulfate from its attachment to galactose, GleNAc, or GalNAc of the oligosaccharides. 

Since sulfate is thought to decrease the rate of mucin damage by glycosidases and 

proteases, those pathogens that e1aborate sulfatases may accelerate mucin fragmentation 

[80]. A number of mucin-specific glycosulfatases have been reported in bacteria. 

3.9 Mucins in Host Defense Against Intestinal Pathogens 

A number of microorganisms have been found to adhere to mucin carbohydrate moieties. 

Protection of the intestinal epithelium against pathogenic microorganisms incIuding, 

bacteria, parasites, and viruses lies in the binding capacity of mucin carbohydrates to 

microbial adhesins. Binding sites on mucins are thought to compete with those on 

underlying epithe1ial cells preventing attachment to the mucosal surface. In many 

instances, microorganisms are sloughed and swept out during peristaltic movements and 

defecation. Nonpathogenic organisms incIuding the indigenous flora that reside in the 

adherent mucus blanket occupy an important niche within the intestine due to their ability 

to prevent attachment of pathogenic organisms by occupying available binding sites. The 

initial step in the pathogenesis of many intestinal pathogens is the binding of the 
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microorganism to mucin. The fate of many mucin-bound organisms lies in their ability to 

colonize the intestinal tract. There are four possible outcomes in the interactions between 

pathogens and intestinal mucins. 1: Initial mucin binding followed by elimination of the 

pathogen through sloughing and peristalsis, 2: Successful colonization, and the pathogen 

is retained in the mucus blanket and its access to the underlying epithelium is denied, 3: 

Colonization of the mucus layer with elaboration of virulence factors, and 4: Epithelial 

invasion where the mucus barrier is breached and the invading pathogen gains access to 

the intestinal epithelium [81]. Several pathogens inc1uding, E. histolytica [82], 

Salmonella typhimurium [83], V cholerae [84], Y enterocolitica [85], and Candidia 

albicans [86] are aIl known to adhere to intestinal mucin. Although the mechanisms 

enabling the penetration of the mucus layer by these organisms is still under 

investigation, release of proteinases and mucus secretagogues by pathogens may play a 

role in destroying the protective, polymeric nature of the mucus gel. In most cases, 

mucus physically traps the organisms and entangles them. Providing mucus "flushing" 

rates exceed bacterial colonization rates and mucin proteolytic degradation, the offending 

organisms are rapidly eliminated. The mechanisms used by intestinal pathogens to 

overcome the mucus barrier are still po orly understood and require further study. 
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ABSTRACT 

The adherent mucus gel layer lining the colonic epithelium is the first line of host defense 

against invasive pathogens, such as Entamoeba histolytica. The mucus layer prevents the 

attachment of amoeba to the colonic epithelium by trapping and aiding in the expulsion of 

the parasite. Disruption of the mucus layer is thought to occur in invasive amebiasis and 

the mechanism by which the parasite overcomes this barrier is not known. The aim of this 

study was to characterize the specific interactions occurring between E. histolytica 

secreted cysteine proteinases and colonie mucin, as a model to examine the initial events 

of invasive amebiasis. E. histolytica secreted products were examined for mucinase 

activity utilizing mucin metabolically labeled with eSS]cysteine as a substrate. Cysteine 

proteinases degraded mucin in a time- and dose-dependent manner. A significant 

reduction (>50%) in high MT mucin with altered buoyant density was observed when 

degraded mucin was analyzed by Sepharose 4B column chromatography, SDS-PAGE 

and autoradiography, and CsCI density gradient centrifugation. Mucinase activity was 

abrogated by the specific cysteine protease inhibitor trans-epoxysuccinyl-L-Ieucylamido­

(4-guanidino) butane (E-64) and was independent of glycosidase activity. Moreover, the 

degraded mucin was 38% less effective than native mucin at inhibiting amebic adherence 

to target epithelial cells. These results are the first to show that E. histolytica cysteine 

proteinases alter the protective function of the mucus barrier by disrupting the structure of 

the MUC2 polymer. Mechanistically, the parasite achieves this via proteolytic 

degradation of the terminal cysteine-rich domains. 
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INTRODUCTION 

The enteric protozoan parasite Entamoeba histolytica is the causative agent of human 

amebiasis. Infection with this parasite may result in amebic colitis and liver abscess 

formation, causing significant morbidity and mortality. More than 500 million people are 

infected with the parasite worldwide, resulting in an estimated 50 million cases of 

diarrhea and 100,000 deaths per annum [1, 2]. Although less than one percent of E. 

histolytica infections result in invasive disease, amebiasis ranks second only to malaria as 

a cause of mortality due to a protozoan parasite. 

There are three separate and distinct phases in the pathogenesis of intestinal amebiasis: 1) 

colonization, 2) mucus disruption and/or depletion, and 3) binding to and cytolysis of 

host colonic epithelial cells. Histopathology studies in the gerbil model of invasive 

amebiasis suggest that amoeba first colonize the mucus layer by adherence via the 

parasite surface Gal-Iectin to galactose (Gal) and N-acetyl-D-galactosamine (GaINAc) 

residues present on colonic mucin [3]. Following colonization, the parasite causes a 

disruption and/or dissolution of the mucus layer to gain access to the underlying 

epithelium. This phenomenon may be a result of the concerted actions of a battery of 

cysteine proteinases released by the parasite into its microenvironment [4]. The amoeba 

cysteine proteinases have also been implicated in the recruitment of host inflammatory 

cells to the site of invasion [5]. Subsequent to depletion of the mucus barrier, the parasite 

may come into contact with and cause lyses of host epithelial and polymorphonuc1ear 

cells, inducing colonic ulceration and colitis. Following invasion, trophozoites are 

capable of migrating through the lamina propria and submucosa before they disseminate 

to soft organs, most often the liver, causing amebic liver abscess and death if left 

untreated [6]. 

Colonic mucin serves an important function in preventing parasite invasion of the colon. 

Amebic adherence to GallGalNAc residues of MUC2 mucin facilitates colonization of 

the mucus layer lining the colon via the 170 kDa Gal-Iectin. This high affinity (Kd = 

8.20 X 10-11 M) interaction inhibits parasite adherence to and cytolysis of target cells, in 
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turn, protecting the colonic epithelium from parasite invasion [7]. In order for the 

parasite to gain access to the underlying epithelial cells, it must tirst breach the protective 

mucus layer. The mechanisms, which enable the parasite to overcome this barrier, have 

yet to be determined. 

MUe2 is the major glycoprotein component of the colonic mucus gel layer. The MUe2 

apoprotein (Fig. 4.1) is composed of two mucin domains termed the variable number 

tandem repeat region (VNTR) and the irregular repeat region (IR). The VNTR is 

composed of a well-conserved 23 amino acid tandemly repeated sequence, rich in the 

amino acids threonine and proline, and the actual number of repeats varies significantly 

among alleles. The IR comprises a much shorter mucin domain constituting a 347 -amino 

acid repeat region ri ch in serine, threonine, and proline [8, 9]. Both mucin domains are 

heavily glycosylated with oligosaccharides bound to serine and threonine residues via 0-

glycosidic bonds. Twenty-one separate oligosaccharide structures have been previously 

identitied in the major colonie mucin species and characterization studies have revealed 

oligosaccharides ranging in chain length from two to 12 residues for the mature MUe2 

glycoprotein [10]. These mucin domains are resistant to proteolytic attack due to their 

extensive glycosylation, and the action of glycosidases in these regions would be 

necessary to expose the protein core to proteases. 
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Figure 4.1. Hypothetical model of a MUC2 monomer. The molecular mass of the 

monomer is approximately 1.5 X 106 Da, containing ~5000 amino acids [11]. The mucin 

domains are represented by shaded boxes and represent the IR (180 kDa) and VNTR 

(~930 kDa). The protein core of the IR and VNTR are resistant to proteolytic attack due 

to steric hindrance. Less-glycosylated segments (A, B), flank the mucin domains. These 

regions contain D-domains, which are rich in cysteine and are sites for polymerization of 

MUC2. The D-domains are hypothesized to be targets for proteases. 

The N- and C- terminal regions, which flank the mucin tandem repeats, are composed of 

various cysteine rich D-domains that share a high sequence similarity to the polymerie 

serum glycoprotein, von Willebrand factor [12]. The terminal D-domains are poorly 

glycosylated in comparison to the mucin domains. These cysteine-rich regions play a 

critical role in the disulphide dependent dimerization and subsequent polymerization of 

MUC2, which gives rise to the visco-elastic and protective nature of mucus [13, 14]. 

Mucus gel formation has been observed to be inhibited upon disruption of the non­

glycosylated regions of mucin, either by disulphide bond reduction or proteolytic 

digestion [11, 15]. In addition, studies using rat MUC2, a homologue to human intestinal 

MUC2, have revealed these flanking regions to be extremely susceptible to proteolytic 

cleavage [14]. 
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E. histolytica releases significant quantities of cysteine proteinases (EhCPs) into its 

environment [4]. EhCPs are the major class ofproteinase produced by the trophozoite [4, 

16-18] and a direct correlation between EhCP activity and amebic virulence and 

invasiveness has been reported [19, 20]. The EhCPs de grade extracellular matrix proteins 

such as laminin, collagen and fibronectin [21], contributing to the cytopathic effect 

involving the detachment of host epithelial cells [22]. The proteinases may play a key 

role in immune evasion since they have been found to degrade immunoglobulins as weIl 

as complement [23]. The role of EhCPs in liver abscess formation has also been 

investigated, and antisense inhibition of EhCPs in trophozoites resulted in decreased liver 

abscess formation in hamsters [24]. In addition, incubation of trophozoites with the 

cysteine proteinase inhibitor E-64 greatly reduced liver abscess formation in severe 

combined immunodeficient mice [25]. Although there have been numerous studies 

concerning the role of amebic CPs in invasive amebiasis at the mucosal and systemic 

levels, there have been few attempts to elucidate the primary events involved in invasion. 

Amebic invasion of the colonic epithelium may be facilitated by the ability of EhCPs to 

degrade colonic mucin, and consequently, this may alter its gel forming ability and 

abrogate its protective function. Herein, we examine the interactions between E. 

histolytica secretory proteinases and LS 174T cell mucin as a model for invasive 

amebiasis. 

METHODS 

Ccli Cultures 

The human colonie adenocarcinoma cellline LS 174T was obtained from The American 

Type Culture Collection (Rockville, MD) and cultured in minimal essential media 

(MEM) (In Vitrogen Corporation, Burlington, ON) supplemented with 10% fetal calf 

serum (Hyclone Laboratories, Logan, UT), 100 !-tg of streptomycin sulfate per ml, 100 

units of penicillin per ml, and HEPES. Cultures were grown in plastic tissue culture flasks 

(15 by 10 cm) and maintained in a humidified 5% C02 atmosphere at 37°C as previously 

described [26]. LS 174T cells grown to 80% confluence were used for metabolic labeling 

of mucin, as weIl as a source of nonlabeled native mucin. Chine se hamster ovary cells 
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(CHû) were cultured in F12 media (Invitrogen) supplemented with 10% fetal bovine 

serum, 100 units of penicillin per liter, and 100 f-Lg of streptomycin sulfate per ml at 37°C. 

Upon confluence, cells were harvested by 0.25% trypsin digestion for 5 minutes. 

Cultivation and Harvesting of E. histolytica 

HM-l :IMSS E. histolytica trophozoites serially passaged through gerbillivers to maintain 

high virulence were maintained axenically in TYI-S-33 media at 36.6°C as previously 

described [26]. Trophozoites were harvested at log phase growth (72 hours); the 

trophozoites were chilled on ice for 10 min and collected by centrifugation (700 X g for 

5 min at 4°C). 

Collection of Amoeba Secretory Products 

Following harvest, trophozoites were washed twice with Hank's balanced salt solution 

(HBSS; Invitrogen) and incubated in HBSS (2 X 107 amoeba/ml) in the absence of serum 

for 2 hours at 36.6°C. Trophozoites were collected by centrifugation (700 X g for 5 

minutes at 4°C), and the supernatant contained amoeba secretory products (SPs). Amebic 

viability was determined to be >95% after a 2-h incubation in HBSS as determined by the 

trypan blue exclusion assay. Protein concentrations of SPs were determined by the 

method of Bradford, using bovine serum albumen as a standard [27] and the SPs were 

stored at -80°C until needed. 

Enzymatic Assay for Amebic Secreted Proteases 

General proteolysis was detected by a colorimetric method using the universal substrate, 

azocasein, as previously described [28]. Amoeba SPs were incubated with the protease 

inhibitors E-64 (20 f-LM), Pefabloc SC (4mM), EDTA-Na2 (0.7mM) and Pepstatin (lf-LM) 

(Roche Diagnostics GmbH, Germany) for 20 minutes at 37°C prior to the assay. The 

change in absorbance was monitored at 440 nm and the percentage of residual activity 

was determined. Specific cysteine proteinase activity was measured against 

benzyloxycarbonyl-L-arginyl-L-arginine-p-nitroanilide (Z-arg-arg-pNA; Bachem, 

Torrance, CA) as previously described with sorne modifications [18]. The reaction 
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consisted of O.lmM substrate in reaction buffer followed by the addition of secreted 

proteins (50 !-tg). Secreted proteins were incubated with a panel of protease inhibitors 

prior to the assay. The cleavage rate of p-nitroaniline was monitored at 405 nm for 10 

minutes at 3rC. One unit of enzyme activity was defined as the number of micromoles 

of substrate digested per minute per mg of protein. Secreted products were assayed for 

proteinase activity by substrate gel electrophoresis as previously described [4]. 

Metabolic Labeling ofLS 174T Mucin 

LS 174T cells were grown to 80% confluence, and culture media was removed and 

replaced with fresh MEM media supplemented with eSS]cysteine (0.5 !-tCi/ml, sp act, 

> 1000 Ci/mMol; Amersham Biosciences, Baie D'Urfé, QC). Supernatants containing 

eSS]cysteine labeled mucin were collected twice weekly for 2 weeks and stored at -20°C. 

[6)H]glucosamine labeling of mucin was achieved by replacing MEM media with fresh 

MEM containing [6)H]glucosamine (2 !-tCi/ml, sp act, 25-40 Ci/mMol; ICN, Montreal, 

QC). Native mucin was collected from cell cultures grown in MEM void of radiolabel. 

The purification steps for mucin were identical under all conditions (radiolabeled or 

native mucin) unless otherwise specified. Supernatants were concentrated by speed 

vacuum or lyophilization. Particulates were removed by centrifugation (750 X g) for 10 

minutes at 4°C, and supernatants were re-suspended in column buffer (0.01 M Tris-HeI, 

0.001 % sodium azide, [pH 8.0]) (Sigma-Aldrich, St. Louis, Mo.). 

Preparation of Native and Metabolically Labeled LS 174T Mucin 

LS 174T supernatants were applied to a Sepharose 4B (S4B) column (50 cm by 2.5 cm; 

Bio-Rad Laboratories, Richmond, CA) previously equilibrated with column buffer. The 

column was calibrated using the following molecular mass standards: blue dextran (2000 

kDa) (Pharmacia, Uppsala, Sweden), thyroglobulin (669 kDa) and bovine serum albumin 

(68 kDa). Samples were eluted at a flow rate of 40 ml/hr and 4-ml fractions were 

collected. AlI purification steps were performed at 4°C. Aliquots (100 !-tL) of each 

fraction (1-40) were added to individual scintillation vials containing 5 ml of liquid 

scintillation fluid (ICN, Costa Mesa, CA.). The elution profile for radiolabeled mucin 

was determined by liquid scintillation counting. Fractions containing void volume (Vo) 
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mucin (fractions 11-18) were pooled and dialyzed for 24 hours against deionized water at 

4°C. Total 3H_ or 35S-labeled activity was determined for each fraction. To isolate native 

mucin, the fractions were monitored for protein (absorbance at 280 nm), and the elution 

profile was obtained, and protein concentration was determined. 

Highly purified mucm was obtained by CsCI density gradient centrifugation. 

Metabolically labeled S4B Vo mucin (2 X 106 cpm for 35S-labeled mucin and 3 X 106 

cpm for 6}H-Iabeled mucin) was resuspended in 10 ml of Dulbecco's phosphate buffered 

saline (DPBS) (pH 7.2) (Invitrogen). Cesium chloride (Invitrogen) was added to the 

mucin suspension to achieve a starting density of 1.42 g/ml, and the suspension was 

dispensed equally into two centrifuge tubes (13 by 51 mm; Beckman, Palo Alto, CA). A 

gradient was established by centrifugation of the samples at 250,000 X g for 48 hours at 

4 oC. The contents of the tubes were divided into eight equal fractions and each fraction 

was removed from the top and the density determined. Total 3H_ or 35S-labeled mucin 

activity was quantified by liquid scintillation counting and normalized for 1.0-ml 

fractions. For native mucin, 100 !-tL of each fraction was removed and prote in 

concentration was determined. 

Mucin Degradation Assays 

Sepharose 4B Size Exclusion Chromatography 

To determine mucinase activity, 35S-labeled, S4B Vo purified mucin (1 X 105 cpm) was 

incubated with EhSPs (50 !-tg) in 0.5 ml of DPBS (pH 7.0) for 6 hours at 3rC and 

fractionated by S4B chromatography (column, 30 cm by 0.75 cm) (Bio-Rad 

Laboratories, Richmond, CA). To determine the class of protease responsible for 

degrading mucin, SPs were incubated for 20 minutes prior to the assay with the following 

protease inhibitors: E-64 (20 !-tg/ml), Pefabloc SC (0.5 !-tg/ml), and Pepstatin (0.7 !-tg/ml). 

Thirty fractions (0.5 ml each) were collected at a flow rate of 7 ml/h. The 35S-labeled 

mucin elution profile was determined. 
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SDS-P AGE and Autoradiograph Analysis 

[35S]cysteine labeled (2 X 104 CPM) Vo mucin was incubated with 50 !-tg of SPs in 0.5 ml 

of reaction buffer at 37°C and the reactions were terminated at various time points (15, 

30, 60, 180 and 360 min) by boiling. Secretory products were also incubated with E-64 

(100 !-tM) for 20 minutes prior to the assay to inhibit cysteine proteinase activity. The 

samples were concentrated and re-suspended in SDS-PAGE loading buffer (50 mM Tris­

Cl (pH 6.8), 10 mM DTT, 2% SDS, 0.1% bromophenol blue, 10% glycerol). Digests 

were analyzed by SDS-PAGE (4% stacking, 7% resolving) under reducing conditions and 

visualized by autoradiography by exposing the Kodak XAR-5 film with an intensifying 

screen to the gel for one week at -70°C) as previously described [29]. The relative density 

of stacking gel mucin was determined and the percent mucinase activity was calculated 

using the public domain NIH Image pro gram (http://rsb.info.nih.gov/nih-image). 

Buoyant Density Analysis 

S4B Vo mucin (105 cpm of 35S-labeled mucin) was incubated with 100 !-tg of SPs or 

DPBS alone for 18 hours at 3rC. Specificity for CPs was demonstrated by pre­

incubating the SPs with E-64 (100 !-tM) for 20 minutes prior to the assay. The digests 

were concentrated and re-suspended in DPBS to a final volume of 5.0 ml, and CsCI was 

added to achieve a starting density of 1.42 g/ml. Samples were then analyzed by density 

gradient centrifugation as described above for previous mucin purification steps. To 

differentiate amoeba cysteine protease activity from glycosidase activity, 3H-Iabeled Vo 

mucin (106 cpm) was incubated with SPs (250 !-tg) at 37°C for 18 hours. 3H-Iabeled 

mucin degradation was analyzed as described for e5S]cysteine labeled mucin. 

Functional Analysis of Degraded Mucin 

Amebic adherence assays to target CHO cells were performed by a modified version of a 

standard protocol [7]. Briefly, trophozoites were first washed with M199s medium 

(Invitrogen) supplemented with 5.7 mM cysteine, 25 mM Hepes and 0.5% BSA (Sigma­

Aldrich). The trophozoites were resuspended to a concentration of 106 amoebalml 

followed by incubation with media alone, media and S4B Vo mucin (100 !-tg/ml), or 

mucin preincubated with SPs for 1 at 3rC. To determine if cysteine proteinases were 
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responsible for the loss of protective function, SPs were also incubated with E-64 (100 

/-tM) prior to the assay. Following incubation, 100 /-tL (104
) trophozoites was added to 2 

X 105 CHO cells in M199s (volume, 1 ml). The samples were pelleted by centrifugation 

at 600 X g for 5 minutes at 4°C, followed by incubation at 4°C for 2 hours. Rosette 

formation was defined as the percentage of amoeba adherent to three or more target cells, 

which was determined by counting > 100 amoeba per tube. 

Statistical Analysis 

Data (mean ± standard deviations [SDs]) were analyzed by the student t test. A P value of 

< 0.05% was considered statistically significant. 

RESULTS 

Secreted Protease Activity 

Inhibition studies employing several protease inhibitors including E-64, Pefabloc SC, 

Pepstatin, and EDTA were used to determine the major catalytic classes of enzymes 

released by the parasite. In addition, other protease inhibitors (leupeptin, 

Phenylmethylsulfonyl fluoride [PMSF], apotinin, and N a-p-tosyl-L-lysine chloromethyl 

ketone [TLCK]) were used to confirm the results. The majority of the secreted protease 

activity against azocasein was inhibited by E-64 (> 90%) (Fig. 4.2). Zymogram analysis 

of the SPs (gelatin substrate gels) revealed three major bands ofprotease activity at 57, 44 

and 25 kDa. Proteinase activity increased with increasing concentrations of SPs and the 

majority of the activity was eliminated by E-64 (Fig. 4.3). 

To determine the activity and specificity of the cysteine proteinases, Z-Arg-Arg-pNA was 

used as a substrate (Table 4.1). SPs were incubated with a panel ofprotease inhibitors to 

determine the specificity of the enzymes for the substrate. As expected, only inhibitors of 

cysteine and cysteine/serine proteases inhibited enzyme activity, confirming the presence 

of cysteine proteinase activity in the SPs. 
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Figure 4.2. The major classes of proteolytic enzymes released by E. histolytica. Amoeba 

secretory/excratory products (50""g) were assayed for total proteolytic activity using 

azocasein (4%) as substrate. Secreted proteases were incubated with the following 

protease inhibitors: E-64 (20 ~M), Pefabloc SC (4 mM), Pepstatin (1 ~M), and EDTA­

Na2 (EDTA, 0.7 mM) for 10 minutes prior to the assay. The reaction was terminated by 

addition of 10% TCA (500",,1) and precipitated protein was removed by centrifugation 

(3,000 X g for 5 minutes). Protease inhibition was plotted as the percent of residual 

activity after 2 hours of incubation compared to the control (no inhibitor). The data 

indicate the mean ± standard deviation (n = 3) of a representative experiment that was 

repeated twice. 
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Figure 4.3. Substrate gel electrophoresis of E. histolytica secretory/excretory products. E. 

histolytica secretory products were separated on a 12% SDS polyacrylamide gel co­

polymerized with 0.1 % gelatin. Numbers indicate the amount of protein separated in !-tg 

and E-64 indicates pretreatment of proteins with 100 !-tM of inhibitor for 20 minutes prior 

to separation. FoUowing separation of the proteins, the gel was washed with 2.5% Triton 

X-I00 for 1 h to remove the SDS. The gel was then incubated at 37°C for two hours in 

reaction buffer (100mM Potassium phosphate, 20 mM DTT, [pH 7.0]). Secreted products 

were also separated using a 12 % SDS polyacrylamide gel and visualized by silver 

staining using the Bio-Rad silver stain kit according to the maufacturer's instructions. 
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Table 4.1. Effects of protease inhibitors on E. histolytica cysteine proteinase activity*. 

Inhibitor 

Cystatin 

E-64 

Leupeptin 

TLCK 

TPCK 

Pefabloc-SC 

Aprotinin 

Pepstatin 

Phosphoramidon 

Inhibitor Class 

Cysteine 

Cysteine 

Cysteine/Serine 

Cysteine/Serine 

Cysteine/Serine 

Serine 

Serine 

Aspartic 

Metal1o-

% Residual 
Activity 

2 ± 0.79 

5 ±0.54 

5 ± 0.43 

2 ± 0.25 

6 ± 1.49 

93 ± 1.43 

100 ± 2.51 

100 ± 7.57 

100± LOO 

*Secreted cysteine proteinase activity was measured using the synthetic substrate Z-Arg­

Arg-pNA. E. histolytica cysteine proteinases are known to cleave substrates with arginine 

in the P2 position. Class specifie protease activity was determined by incubation of the 

secreted products with protease inhibitors for 10 min prior to the assay. The assay was 

performed as described in methods. Results are given as the mean percent residual 

activity (of control) ± SD (n = 3) and the experiment was repeated three tîmes. 
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Degradation of Mucin by E. histolytica Cysteine Proteinases 

Analysis by Sepharose 4B Gel Filtration 

High-molecular-weight (MW) mucin polymers can be partially isolated using S4B 

column chromatography [26]. As shown in Fig. 4.4 A, eSS]cysteine labeled mucin 

eluted exclusively in the Vo, whereas mucin incubated with 50!-tg of SPs for 6 h resulted 

in a 34% decrease in high-MW Vo mucin and a corresponding increase in degraded 

lower-MW cleavage products in fractions 12-25. To determine if cysteine proteinase 

activity was responsible for mucin degradation, SPs were pretreated with protease 

inhibitors. Consistent with the data in Table 4.1, only E-64 eliminated mucinase activity 

by more than 50%, whereas Pefabloc SC and Pepstatin displayed no inhibitory effect. To 

rule out any possibility of enzymatic activity to nonmucin components, eSS]cysteine 

labeled mucin was purified by CsCI density gradient centrifugation prior to treatment 

with SPs. As shown in Fig. 4.4 B, SPs almost completely degraded the highly purified 

mucin as characterized by S4B column chromatography, demonstrating specific mucinase 

activity against the poorly glycosylated eSS]cysteine-labeled regions of mucin. 

Analysis by SDS-P AGE 

Due to its high MW and extensive glycosylation, the majority of 3sS-labeled mucin 

remains in the 4% stacking gel and the first portion of the running gel when analyzed by 

SDS-PAGE and autoradiography. As shown in Fig. 4.5 A, SPs degraded mucin in a 

time-dependent fashion. Mucinase activity occurred as early as 15 min and increased 

progressively with time, resulting in a reduction of stacking gel mucin and a 

corresponding increase in the appearance of degraded mucin polypeptide fragments at 85 

and 120 kDa (arrows). After 6 h of incubation, there was more than a 90% decrease in 

3sS-labeled stacking gel mucin. In contrast, highly purified mucin isolated by CsCI 

density gradient centrifugation was found to be slightly more resistant to degradation by 

the SPs (Fig. 4.5 B). Nonetheless, almost complete degradation of mucin (>70%) 

occurred within 6 h of incubation with the SPs. The degradation was inhibited by 85% in 

the presence of the cysteine proteinase inhibitor E-64, clearly implying CPs disrupt the 

polymeric structure of MUC2. 
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Figure 4.4. (A) S4B elution profile of [35S]cysteine-Iabeled rnucin degraded by E. 

histolytica SPs. The elution profiles of control, high-MW rnucin and rnucin incubated 

with SPs al one or with E-64, Pefabloc SC (PSC), or pepstatin are shown. kCPM, 1,000 

cprn. (B) S4B elution profiles of CsCI rnucin (fraction 6) degraded by E. histolytica SPs. 

The elution profiles of control, [35S]cysteine-Iabeled rnucin alone and rnucin incubated 

with SPs are shown. For details of the rnoiecular rnass rnarkers, see rnethods (BD, blue 

dextran; TG, thyroglobulin). 
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Figure 4.5 (A) Time-dependent degradation of e5S]cysteine-labeled S4B Vo mucm 

incubated with SPs (50 !-tg). The positions of molecular mass markers (in kilodaltons) are 

indicated to the left of the gel. (B) Dose-dependent degradation of CsCl-purified, 35S_ 

labeled mucin (fraction 6). In the rightmost lane, SPs were preincubated with E-64. The 

positions of the 4% separating gel (arrowheads) and cleavage products (arrows) are 

indicated. 
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Analysis by Cesium ChIo ride Density Centrifugation 

Purification of mucin by CsCl density gradient centrifugation separates the noncovalently 

bound mucins from other proteins in the high-density hexose-rich fractions [26]. Fig. 4.6 

A clearly shows that the majority of the eSS]cysteine labeled mucin partitioned in 

fraction 6 and had a buoyant density of> 1.42 g/ml. This partitioning is consistent with 

highly purified mucin, which migrates to fractions 6 on a CsCI density gradient [26]. In 

contrast, following incubation with SPs, there was a dramatic shift in 3sS-labeled mucin 

from fraction 6 to fractions 1 to 4, of lower buoyant density «1.40 g/ml; Fig. 4.6 B). The 

appearance of 3sS-activity in these low-density fractions suggests that the N- and/or C­

terminal cysteine rich regions of MUC2 are altered by SPs. Evidence for this is clearly 

shown in Fig. 4.6 C, where pre-treatment of SPs with E-64 prior to the assay, inhibited 

the degradation of MUC2, and resulted in a notable reduction in degraded mucin in 

fractions 1-3 and an increase in 3sS-activity in fractions 5-7. 

[6)H]glucosamine-Iabeled mucin displayed a similar partitioning profile compared to 

3sS-labeled mucin; however, the majority of the 6)H-Iabeled mucin remained in fraction 

6 after exposure to SPs, suggesting proteinase but not glycosidase activity (data not 

shown). 
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Figure 4.6 (A) CsCl density gradient centrifugation of mucin degraded by E. histolytica 

SPs. Mucin partitioned in fraction 6, with a density > 1.42 g/ml. ( ... --... ). (B and C) 

Mucin incubated with SPs (B) and SPs pretreated with E-64 (C). Results are displayed as 

a representative graph ofthree separate experiments. kCPM, 1,000 cpm. 
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Functional Analysis of Degraded Mucin 

To determine if the protective function of mucin was compromised by EhCPs, amebic 

adherence assays to CHû cells were performed. As shown in Fig. 4. 7, native S4B Vo 

mucin was capable of inhibiting amebic adherence to CHû cells by >73% compared to 

the control without mucin. However, following incubation ofmucin with 100 !-tg and 250 

!-tg of SPs, amebic adherence to target cells increased 52 and 71%, respectively. To 

examine the role of cysteine proteinases in this event, SPs (250 !-tg) were pre-incubated 

with E-64. Interestingly, not only was E-64 found to inhibit mucin degradation, but it 

also helped to maintain the protective function of the mucin. This was evident due to the 

fact that mucin incubated with E-64 treated SPs inhibited amebic adherence to CHû cells 

by 67%, which was similar to that of native mucin. These results directly implicate 

EhCPs in altering the protective function of mucin. 
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Figure 4.7. E. histolytica cysteine proteinases alter the protective function of LS 174T 

cell mucin. Note that preincubation of SPs with E-64 (100 !-tM), significantly reversed 

amebic adherence to target cells (values that were significantly different [*p<0.05] from 

the value for the homologous control are indicated by the asterisks). The mean amebic 

adherence of different concentrations of SPs ± SD (error bar) (n = 6) from one 

representative experiment of three experiments is shown. 
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DISCUSSION 

The majority of individuals infected with E. histolytica are asymptomatic carrIers, 

however, invasion does occur in a small percent of those afflicted with the parasite [30]. 

In order for invasion to occur, the parasite must overcome the protective mucus layer 

lining the colon. Histopathology studies of the human colon and rectum have revealed 

that the mucus layer lining these regions is separated into two striated layers. The outer 

layer contains the majority of bacteria and fecal content and the inner layer contains little 

to no bacteria [31]. These observations imply that mucin plays a role in establishing a 

clear barrier between luminal contents, including pathogens, and the colonic epithelium. 

Previous studies have indicated that E. histolytica cellular lysates and SPs were 

ineffective at degrading human colonic mucin, and it was suggested that the parasite may 

cause a mechanical depletion of the mucus blanket by inducing goblet cell hypersecretion 

prior to invasion [32]. In this study, we have show that EhCPs are capable of degrading 

human colonic mucin. We have previously demonstrated that colonic mucin can be 

purified from cellular secretions of LS 174T cells by S4B column chromatography and 

CsCI density gradient centrifugation [26]. Mucin collected from CsCI density gradients 

has been extensively characterized and shown to be free of contaminants such as 

proteoglycans or low-MW proteins [26]. Metabolic labeling ofLS 174T cell mucin with 

e5S]cysteine allowed the tracking of the poorly glycosylated flanking regions of the 

molecule. This strategy allowed us to directly examine the ability of E. histolytica SPs to 

disrupt the cysteine-rich regions of highly purified mucin. Our results demonstrate that E. 

histolytica SPs were effective at degrading the poorly glycosylated regions of colonic 

mucin as visualized by S4B column chromatography, SDS-PAGE, and CsCI density 

gradient centrifugation. The parasite SPs efficiently disassembled the mucin polymer into 

smaller cleavage products. In addition, protease inhibition studies revealed that the CPs 

are responsible for most of the mucinase activity. These results are significant because 

the cysteine-rich regions of MUC2 are essential for mucin polymerization and gel 

formation. Interestingly, the cysteine-rich flanking regions of MUC2 and other gel-
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forming mucins are well conserved between species [33]. This indicates the importance 

of disulphide bond mediated mucin polymerization in mucus gel formation. 

Degraded mucin was not as effective at inhibiting amebic adherence to target cells as the 

native molecule, demonstrating that the degraded mucin had lost its inherent protective 

properties. This may be a consequence of the depolymerization and subsequent loss of 

the viscoelastic properties of the mucus gel. In vivo, mucin degradation may facilitate 

parasite invasion of the colonic epithelium. The mechanism by which proteolytic 

degradation of mucin affects amebic adherence is not known, but the polymeric form 

appears to be more protective than the degraded form. Even though we did not detect 

significant glycosidase activity in our study, their role as virulence factors cannot be 

entirely ruled out. One could speculate that differences in the length of the VNTRs 

between individuals and/or differences in glycosylation patterns may play a role in 

facilitating the pathogenesis of invasive amebiasis, but there is no evidence for this. 

Clearly, multiple parasite virulence factors contribute to the deterioration and penetration 

of the mucus barrier. The role that the CPs play in the pathogenesis of invasive amebiasis 

is not yet fully understood. Most studies have been limited to host-parasite interactions 

under conditions that simulate postinvasion of the protective mucus barrier. In order to 

understand how invasive amebiasis occurs, it is essential to directly examine the 

interactions between E. histolytica and colonic mucin. Cysteine proteinases are known to 

be important virulence factors in diseases caused by various mucin-dwelling protozoa 

such as Trichomonas vaginalis, Tritrichomonas foetus, E. histolytica and Giardia lamblia 

[34]. A study has shown that out ofthese organisms, only the trichomonads produced the 

necessary range of glycosidases needed for the complete breakdown of mucin [35]. This 

may suggest that the other organisms utilize an alternative method for overcoming the 

mucus barrier. At least seven genes encoding for cysteine proteinases have currently been 

identified in E. histolytica [36-38]. However, only gene products from five of these 

genes, EhCPl, EhCP2, EhCP3, EhCP5, and EhCP1l2 have been identified in cultured 

trophozoites [36, 37-39]. Bruchhaus et al. [37], have reported that the enzymes EhCPl, 

EhCP2 and EhCP5 contribute to approximately 90% of the total cysteine proteinase 
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activity from the parasite. However, a specifie CP involved in mucin degradation or 

amebic pathogenesis has not been identified. Clearly, future studies should focus on 

identifying the specifie proteases involved in degrading colonie mucin. Identification of 

the virulence factors that play a role in the initial events of invasive amebiasis may aid in 

the development of new targets for chemotherapy or new vaccine candidates to prevent 

invasive amebiasis. 
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Connecting Statement 1 

In Manuscript l, we set out to characterize the interactions between E. histolytica and 

colonie mucin. We have identified the E. histolytica cysteine proteinases as the major 

class of enzyme responsible for degrading colonie mucin. In addition, we also discovered 

that the parasite proteinases decrease the cytoprotective effect of mucin. In the next series 

of experiments in Manuscript II, we characterized the involvement of the cysteine 

proteinases in mucus gel penetration and epithelial cell invasion using our LS 174T cell 

model of colonie invasion. The generation of cysteine proteinase deficient parasites was 

achieved by antisense technology and allowed us to directly examine the role of the 

proteinases in mucus gel disruption. 
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Antisense Inhibition of Entamoeba histolytica Cysteine 

Proteinases Inhibits Colonie Mucus Degradation * 
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* Submitted to Gastroenterology. 2005. In revision 
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ABSTRACT 

Background & Aims: Cysteine proteases are believed to be major virulence factors 

released by E. histolytica in the pathogenesis of intestinal amebiasis. However, the exact 

role these proteases play in overcoming the protective mucus barrier, as a prerequisite to 

epithelial cell disruption is not known. Herein, we determined whether E. histolytica 

trophozoites expressing the antisense transcript to cysteine protease 5 (EhCP5) could 

degrade colonic mucin and destroy epithelial cells. Methods: Cysteine protease deficient 

amoebae were generated by antisense inhibition of Eh CP 5, and assayed for proteolytic 

activity against LS 174T eSS]cysteine labeled mucin and analyzed by SDS-PAGE and 

Sepharose 4B chromatography. Mucinase activity of recombinant EhCP5 was determined 

using purified colonic mucin. Disruption of an intact mucus barrier and epithelial cell 

invasion by amoebae were measured using LS 174T monolayers with an intact mucus gel 

and CHû cells devoid of a mucus barrier. Results: Trophozoites with reduced cysteine 

proteinase activity were ineffective at degrading eSS]cysteine labeled colonic mucin 

compared to wild-type amoebae by >60%. However, bioactive recombinant EhCP5 

degraded >45% of purified native mucin which was specifically inhibited by the cysteine 

proteinase inhibitor, E-64. Cysteine protease deficient trophozoites could not overcome a 

protective intact mucus barrier and disrupt an LS 174T cell monolayer; however, they 

readily adhere to and disrupt CHû monolayers devoid of a mucus barrier. Conclusions: 

These findings unravel a central role for E. histolytica cysteine proteinases as key 

virulence factors in disrupting an intact mucus barrier in the pathogenesis of intestinal 

amebiasis. 
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INTRODUCTION 

Gastrointestinal mucus acts as the first line of host defense against enteric parasites by 

preventing the attachment of microorganisms to enterocytes and directly influences the 

ability of pathogens to colonize the gastrointestinal tract. In addition, mucin also aids in 

the expulsion of intestinal microbes [1-3]. MUC2 is the major gel-forming mucin 

secreted in the colon and the monomer has a mass of ~1.5 million Daltons [4]. The 

oligosaccharide component accounts for up to 90 % of the dry weight of the molecule and 

this dense glycosylation protects the mucin domains from proteolytic cleavage and is 

responsible for microbial binding and colonization. 

MUC2 forms polymers, which upon hydration give rise to the viscoelestic and protective 

properties of the mucus gel. The ability of MUC2 to form a gel is dependent upon its 

nature to polymerize via the cysteine-rich D-domains by forming intramolecular disulfide 

bonds with corresponding termini of MUC2 monomers [4-6]. These domains are poorly 

glycosylated in comparison to the mucin domains and therefore are hypothesized to be 

vulnerable to proteolytic attack by enzymes released by invasive enteric pathogens. 

Breaching of the mucus barrier is a prerequisite to epithelial cell attachment by invasive 

microorganisms, and a limited number of studies have attempted to dissect the 

mechanisms used by pathogens to overcome the mucus layer during the course of 

infection. Degradation of the protein and/or oligosaccharide components of mucin by 

enteric pathogens is thought to be at least one strategy used by these organisms to weaken 

and traverse the mucus gel. Motility, as weIl as expression of the Zn2+-dependent 

metalloprotease Hap (mucinase) by Vibrio cholerae is necessary for the bacteria to 

translocate through intestinal mucus [7]. The enteric pathogens Candida albicans, 

Yersinia enterocolitica, Shigella flexneri, and He/icobacter pylori aIl produce virulence 

factors involved in mucus degradation [8-11]. 

Entamoeba histolytica is the etiological agent of human amebiasis, and the motile 

trophozoite form of the parasite colonizes the large bowel and invades the colonie 

epithelium resulting in mucosal damage and colitis. In the most severe cases of amebiasis 
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the trophozoites enter the blood stream while invading mucosal tissue to cause liver 

abscesses, resulting in death if left untreated. Cysteine proteinases produced by the 

parasite are directly involved in tissue invasion through their ability to degrade 

extracellular matrix proteins, and play a key role in immune evasion by degrading host 

antibodies and complement [12-14]. We have previously shown that E. histolytica 

secreted products effectively de grade colonic mucin and the degraded mucin could not 

inhibit amebic adherence to target cells as weIl as the native molecule [15]. These results 

suggest that the polymeric structure of mucin must be maintained to protect the 

epithelium. The molecules involved in mucus degradation have not yet been identified, 

but cysteine proteases are likely to be the key virulence factors involved in disrupting the 

mucus barrier. Since breaching the mucus barrier is a prerequisite for invasion by the 

parasite, proteolytic cleavage of mucin by cysteine proteinases would be sufficient to 

disrupt the polymeric nature of mucin and permit the parasite to make contact with the 

colonic epithelium. In this study, we specifically determined whether E. histolytica 

cysteine proteinases could disrupt colonic mucin by transfecting the parasite with the 

pSA8 plasmid expressing antisense to Eh CP 5 to generate cysteine proteinase deficient 

amoebae. This enabled us to directly examine the involvement of the cysteine proteinases 

in the initial events of invasive amebiasis using colonic epithelial cells that pro duce a 

protective mucus barrier. Our results show that the cysteine proteinases are essential 

virulent components that abolish the cytoprotective function of mucin, enabling the 

parasite to bind and destroy colonic epithelial cells. 

METHODS 

Cell Culture and Preparation of E. histolytica Secretory Components 

LS 174T cells (ATCC, Rockville, MD, USA) were cultured to 70-80% confluence in 

minimal essential medium (MEM) (Invitrogen, Burlington, Ontario, Canada) 

supplemented with 10% fetal calf serum (Hyclone Laboratories, Logan, Utah, USA), 100 

!-tg of streptomycin sulfate per ml, 100 U of penicillin per ml, and 20 mM HEPES [15, 

16]. CHO cell cultures were maintained in F12 medium (Invitrogen) supplemented with 

10% fetal calf serum, 100 !-tg of streptomycin sulfate per ml, 100 U of penicillin per ml, 
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and 20 mM HEPES (Invitrogen). E. histolytiea HM-l :IMSS trophozoites were serially 

passaged through gerbillivers to maintain high virulence and were cultured axenically in 

TYI-S-33 medium at 36.6°C as previously described [16]. Trophozoites were harvested 

after 72 hours at logarithmic growth phase by incubation on ice for 10 minutes followed 

by centrifugation (700 x g) for 5 minutes at 4°C. Secreted products were collected from 

trophozoites (2 x 107/ml) incubated in Hank's balanced salt solution (Invitrogen) at 37°C 

for two hours as described elsewhere [17]. 

Transfection of E. histolytiea Trophozoites 

Trophozoites in logarithmic growth phase were transfected with the pSA8 (EhCP5 

antisense) or pEhAct-neo (parental) plasmids as previously described using a Bio-Rad 

gene Pulser [18]. Briefly, following collection, the trophozoites were washed twice with 

phosphate-buffered saline followed by one wash with cytomix (120 mM KCI, 0.15mM 

CaCI2, lOmM potassium phosphate buffer, [pH 7.5], 25 mM HEPES, 2 mM EGTA, and 

5mM MgCI2). The parasite was resuspended in cytomix to a concentration of 3 X 106 

amoeba/ml with 2.5 /-lg of DEAE dextran and 100 /-lg of plasmid (pSA8 or pEhAct-neo) 

for transfection in 0.4 cm electroporation cuvettes (Bio-Rad). The transfected parasites 

were allowed to recover for 48 hours prior to drug selection with G-418 sulfate (G418) 

(Invitrogen). The concentration of G418 was raised to 60 /-lg/ml over a period of four 

weeks. 

Southern and Northern Blot Analysis 

Total nuclear DNA was isolated from E. histolytiea trophozoites as previously described 

[19]. The digested DNA was then subjected to electrophoresis through a 1% agarose gel, 

transferred to a Hybond-N nylon membrane (Amersham Biosciences, Baie d'Urfé, 

Québec, Canada) and fixed by UV radiation. The blots were probed under stringent 

conditions with a [a_32P]dCTP (ICN Biomedicals Inc., Irvine, CA, USA) labeled DNA 

fragment (877bp) of the E. histolytiea Eh CP 5 gene amplified from genomic DNA [20]. 

For Northem blot analysis, RNA from E. histolytiea was isolated with TruZOL reagent 

(Invitrogen). Probes were generated by PCR amplification of E. histolytiea aetin and 

Eh CP 5 genes, as well as the neomycin phosphotransferase gene (neo) of bacterial origin 
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[20]. EhCP5 sense and antisense [a_32P]dUTP (lCN Biomedieals Ine.) labeled probes 

were generated by in vitro transcription of Eh CP 5 in the pGEMT -easy vector (Promega 

Corporation, Madison, WI, USA) using SP6 and T7 polymerases. The blots were 

hybridized with the probes and the optical density of the bands was analyzed using NIH 

image software (http://rsb.info.nih.gov/nih-imageD. 

Cysteine Protease Activity and Expression of Recombinant EhCP5 

Cysteine proteinase (CP) activity was measured in E. histolytica total cell lysates 

prepared by three freeze-thawing cycles. One unit of protease activity was defined as the 

~mol of substrate digested pel' min mg- l protein [21]. Protease activity was also 

monitored by zymogram analysis with a 12% polyacrylamide gel copolymerized with 

0.1 % gelatin (Sigma-Aldrich, Oakville, Ontario, Canada) as described elsewhere [22]. 

EhCP5 was expressed in E. coli strain BL21(DE3) [pAPlacIQ] using the expression 

vector pJC45. The recombinant protein was expressed as an insoluble histidine-tagged 

proenzyme and was solulibilized, purified, and refolded as described elsewhere [23]. 

Processing of the recombinant enzyme to the mature active form was monitored by 

gelatin zymogram gel analysis and cleavage of the synthetic substrate z-Arg-Arg-pNA 

[21]. 

Measurement of Amebic Adherence to Epithelial CeUs 

Adherence of E. histolytica to CHO cells was performed using a standard protocol as 

previously described with modifications [24]. Trophozoites were washed in M199s media 

(Invitrogen) supplemented with 5.7 mM cysteine, 25 mM HEPES and 0.5% BSA (Sigma­

Aldrich). The CHO cells were resuspended in media and incubated at a concentration of 

20: 1 with amoebae in a total volume of one ml of M199s. The cells were pelleted by 

centrifugation at 600 x g for 5 minutes at 4°C and incubated at the same temperature for 2 

hours (hrs). Rosette formation is defined as the percentage of amoebae adherent to three 

or more CHO cells and was determined by counting > 100 amoebae per condition from a 

total of six tubes per condition performed 3 times. 
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Purification of [35S]cysteine Labeled Mucin from Colonie CeUs and Muein 

Degradation Assays 

Labeling of mucin with eSS]cysteine allows for tracking of the poorly glycosylated 

regions of MUC2. For the preparation of radiolabeled mucin, LS 174T cells were grown 

in medium containing 2 /-lCi/ml of eSS]cysteine (specific activity > 1000 Ci/mmol; MP 

Biomedicals, Irvine, CA, USA) and the secreted mucin was purified as described 

previously [15, 16]. Labeled mucin was incubated with parasite cell lysate, secreted 

products or recombinant EhCP5 in DPBS at 3rC. For analysis by SDS-PAGE, the 

samples were concentrated and resuspended in loading buffer (50 mM Tris-HCl [pH 6.8], 

10 mM DTT, 2% SDS, 0.1% bromophenol blue, and 10% glycerol) and separated by 

SDS-PAGE with a 4% stacking and a 7% running gel. The dried gels were exposed to 

Kodak ZAR-5 film with an intensifying screen for one week at -70°C. The degradation 

was measured by densitometric analysis of high molecular weight stacking gel mucin as 

previously described using the NIH Image software (http://rsb.info.nih.gov/nih-irnage/) 

[15, 25]. Additional analyses of the digests were also conducted by Sepharose 4B gel 

filtration (column; 30 cm x 0.75 cm, Bio-Rad Laboratories Ltd.) and 30 fractions of 0.5 

ml were collected and subjected to liquid scintillation counting [15]. 

Epithelial Monolayer Invasion Assay 

LS 174T and CHO cell monolayer destruction assays were performed with wild type 

amoebae as weIl as pEhActNeo and pSA8 transfectants. CeIllines were seeded onto 24 

weIl plates (Corning, NY, USA) and grown to 80% confluency. E. histolytica 

trophozoites were resuspended in M199s media supplemented as above, to a 

concentration of 1 x 105 amoebae/ml and when stated, parasites were incubated with 100 

/-lM E-64. The monolayers were washed three times with DPBS (3rC) and one ml of the 

trophozoite suspension was added to each weIl. The cells were incubated at 37°C for 3 

hrs to assess CHO cell monolayer destruction and 1, 3, 4, and 6 hrs for LS 174T 

monolayer destruction assays. Trophozoites were removed by incubation at 4°C and by 

washing the monolayers three times with ice cold DPBS. The remaining inact monolayers 

were fixed with 2.5% glutaraldehyde (Sigma-Aldrich) in DPBS and stained with 0.1 % 

methylene blue in 100 mM borate buffer [pH 8.0]. The stain was extracted from the cells 
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in one ml of IN HCI and incubation at 3rC for 30 minutes. The absorbance for each 

weIl was measured at 660 nm and the amount of destruction was determined by 

calculating [A66o control wells - A660 experimental wells] / [A66o control wells] x 100 

[16]. Survival of amoebae was determined using the trypan blue exclusion assay. 

LS 174T Cell Mucin Secretion 

LS 174T cells were incubated with 1 !lCi/ml [6-3H]glucosamine hydrochloride (40 

Ci/mmol; MP Biomedicals Inc. Irvine, CA, USA) for 48 hrs and washed three times with 

MEM medium prior to addition of test substances. Epithelial cells grown on 24 weIl 

plates were incubated with 20 !lM calcium ionophore A 23187 (Sigma-Aldrich), secreted 

products from E. histolytica, M199s medium, or whole trophozoites (1 x 105
) separated 

by a Millicell-HA culture plate insert with a pore size of 0.45 !lm (Millipore, Bedford, 

MA, USA). Secreted 3H-activity was determined for 100 !lI aliquots of medium collected 

after four hrs of incubation by liquid scintillation counting as previously described [15]. 

The secreted mucin was analyzed by Sepharose 4B gel filtration as described above. 

Statistical Analysis 

Data (mean ± SD) were analyzed using the student t test with Prism 4 (GraphPad 

Software Inc. San Diego, CA.) A P value of < 0.05% was considered statistically 

significant. 
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RESULTS 

Antisense Inhibition of EhCP5 Decreases E. histolytica Cysteine Protease Activity 

To determine whether E. histo!ytica trophozoites were successfully transfected with the 

pSA8 plasmid or the parental pEhAct-neo plasmid, Southern blot analysis was performed 

on trophozoite total genomic DNA. Genomic DNA isolated from the pEhAct-neo 

transfectants hybridized with the Eh CP 5 probe to reveal a band corresponding with the 

genomic copy of the gene, while pSA8 genomic DNA hybridized with the probe to reveal 

two bands, one corresponding to the genomic copy and the other, the episomal EhCP5 

gene of plasmid origin (Fig. 5.1 A). Northern blot analysis confirmed that EhCP5 

antisense transcripts were expressed in the pSA8 transfectants and were not present in the 

control transfectants (Fig. 5.1 B). 
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Figure 5.1. Characterization of E. histolytica transfectants 

(A) Southern blot analysis of E. histolytica transfectants. 10 !-tg of total DNA from pSA8 

and pEhAct-neo transfectants grown in G418 was digested with the restriction enzyme 

pairs EcoR l and Sa! l (lanes 1-3) or Bg! II and Sa! l (lanes 4-5) (Invitrogen). (1) pEhAct­

neo transfectants grown in 6 !-tg/ml G418, (2) pSA8 grown in 6 !-tg/ml, (3) pSA8 grown 

in 60 !-tg/ml (4) pEhAct-neo in 6 !-tg/ml and (5) pSA8 in 6 !-tg/ml. (G) Genomic copy of 
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EhCP5. (P) Plasmid derived EhCP5 gene. (B) Northern blot analysis. 10 !-tg of total RNA 

from amoebae was denatured using glyoxyl and was subjected to electrophoresis through 

a 1 % agarose gel and hybridized with the genes encoding actin, neomycin 

phosphotransferase, and EhCP5. E. histolytica pEhAct-neo transfectants grown in (1) 6 

!-tg/ml and (2) 60 !-tg/ml of G418. pSA8 transfectants grown in (3) 6 !-tg/ml and (4) 60 

!-tg/mlofG418. 

Moreover, antisense expression increased in trophozoites grown in high concentrations of 

G418, and total cysteine proteinase activity against z-Arg-Arg-pNA was reduced by 

~90% in both the pSA8 transfectants grown in 48 or 60 !-tg/ml of G418 (Fig. 5.2 A). 

Gelatin zymogram analysis revealed an evident decrease in proteolytic activity in the 

pSA8 transfectants (Fig. 5.2 B). EhCP5 antisense mRNA inhibited EhCP5 as well as the 

expression of other cysteine proteases which may be due to a high degree of sequence 

homology and conservation of all residues critical for protease function [26, 27]. 
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Figure 5.2 Enzymatic activity of pEhAct-neo and pSA8 transfectants 

(A) Protease activity of the pEhAct-neo (Ct) and pSA8 strains was plotted as percent 

activity of the wild-type trophozoites. The activity was measured by monitoring the 

digestion of the chromogenic substrate z-Arg-Arg-pNA. (B) Gelatinase activity of wild 

type (WT), pEhAct-neo (Ct), and pSA8 strains grown in 12, 24, 48 and 60 ~g/ml of 

G418. Incubation ofWT lysate with E-64 (E-64). 
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E. histolytica Cysteine Proteases Degrade Colonie Muein 

We have previously shown that mucin degradation by E. histolytica secreted components 

was markedIy inhibited by the cysteine protease inhibitor E-64 [15]. To specifically 

determine the role of cysteine proteinases in mucus gel disruption and epithelial cell 

invasion, we examined whether pSA8 transfected amoebae could degrade colonic mucin. 

Due to the high molecular weight and abundant glycosylation of mucin, the native 

molecule remains in the 4% stacking gel when separated by SDS-PAGE, allowing 

degradation to be calculated by densitometric analysis of radiolabeled mucin. Figure 5.3 

A, shows that the pEhAct-neo transfectants readily degrade the eSS]cysteine labeled 

mucin N-and/or C-terminal flanking regions similar to the wild type amoebae (100% 

degradation). In contrast, the pSA8 strain showed a marked decrease in mucinase activity 

with trophozoites grown in 24, 48, and 60 f.tg/ml of G418 degrading high molecular 

weight mucin by only approximately 20% compared to the control transfectants (Fig. 5.3 

A). Interestingly, pSA8 transfectants grown in 24 f.tg/ml of G418 with < 25% of wild type 

cysteine proteinase activity showed almost a complete inhibition in mucinase activity 

similar to that of the pSA8s grown in higher concentrations of G418. This correlates with 

a major reduction in cysteine protease activity observed when transfectants are grown in 

concentrations of G418 greater than 12 f.tg/ml. Degradation products were also analyzed 

by Sepharose 4B gel filtration (Fig. 5.3 B). Native mucin collected from LS 174T cells 

elutes in the void volume (Vo) of a Sepharose 4B column calibrated with blue dextran 

(fractions 6-11). Incubation of labeled mucin with pEhAct-neo or wild type lysate 

resulted in a net reduction of 3sS-labeled Vo mucin and a subsequent increase in lower 

molecular weight mucin fragments in the included fractions (fractions 12-20). pSA8 

transfectants exhibited a significant loss of mucinase activity as seen by high levels of 

intact mucin eluting in the Vo and a lack of degradation fragments, indicative of cysteine 

proteinase mediated disruption of the N- and/or C- terminal flanking regions ofmucin. 
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Figure 5.3. Mucin degradation assays of wild type and pSA8 transfected E. histolytica. 

(A) SDS-PAGE and autoradiograph of e5S]cysteine labeled LS 174T mucin. 
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Radiolabeled mucin (2 x 104 cpm/digest) was incubated with 100 !-tg of E. histolytica cell 

lysate from wild type (WT), pEhActNeo grown in 12!-tg/ml of 0418 (Ct) or pSA8 

transfectants grown in increasing concentrations of 0418 for six hrs at 37°C, separated by 

SDS-PAOE and visualized by autoradiography. (B) Digests were separated by gel 

filtration using a Sepharose 4B column. Mucin in the absence of E. histolytica lysate was 

used as a control. The column was calibrated with blue dextran (BD 2000 kDa) and 

bovine serum albumen (BSA 67 kDa, Amersham Biosciences, Uppsala, Sweden). 

Cysteine Protease Aetivity is Required by E. histolytica to Destroy a Proteetive 

Mueus Barrier and Disrupt the Colonie Epithelium 

Wild type trophozoites overcome a mucus barrier and destroy LS 174T cell monolayers 

by 80 ± 3% within three hours of incubation (Fig. 5.4 A). However, when wild type 

trophozoites were preincubated with the specifie cysteine proteinase inhibitor E-64, it 

prevented disruption of the mucus barrier and subsequent monolayer destruction by 75 ± 

5 %. These results suggest that cysteine proteinases are used by the parasite to disrupt the 

mucus gel. To address whether cysteine proteinase activity was important in overcoming 

the protective mucin barrier, we tested the ability of the pEhAct-neo and pSA8 strains of 

the parasite to invade colonie epithelial cells. As shown in Fig. 5.4 B, the pEhAct-neo 

strain (12 !-tg/ml 0418) readily overcomes the mucus barrier and kills LS 174T cells in a 

time-dependent manner. In contrast, the pSA8 transfectants grown in the presence of 

increasing concentrations of 0418 (12, 24, and 48 !-tg/ml) (pSA8-12, -24, -48) showed 

decreased protease activity and a corresponding decrease in mono layer destruction. In the 

CP deficient amoebae, only the pSA8-12 trophozoites were capable of causing a 

significant increase in monolayer destruction of 34% after 6 hrs incubation; this strain 

retains only ~ 45% of the cysteine proteinase activity of WT amoebae. The pSA8-24 and 

-48 transfectants with less than 20 and 10% of total cysteine protease activity, 

respectively, could not destroy an LS 174T monolayer with an intact mucus barrier after 

6 hrs of incubation. 
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Figure 5.4. LS 174T cell mono layer destruction and mucin degradation by E. histolytica 

cysteine proteases. (A) Destruction of an LS 174T cell monolayer by E. histolytica 

trophozoites. Colonie cells were incubated with 100 f-tM E-64 (control), with E. 

histolytica trophozoites (1 x 10\ or trophozoites and E-64 for 3 hours. (B) Destruction of 

an LS 174T cell monolayer by E. histolytica trophozoites. Mucin producing LS 174T 

cells were incubated with E. histolytica trophozoites transfected with the pEhAct-neo (12 

f-tg/ml G418) or pSA8 plasmids grown in 12, 24, and 48 f-tg/ml of G418. (C) CHû cell 

monolayers, which do not produce gel-forming mucin were incubated for 3 hrs with the 

transfectants as weIl as the pSA8 48 revertant (Rvt) grown in the absence of G418 for 

three months or in the presence of 100 f-tM E-64 (E-64). For killing assays, the pSA8 

transfectants were compared to the respective control (Ct) for each time point. * denotes a 

P value of < 0.05. 
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As cysteine proteinases are critically important in disrupting the mucus gel, we tested 

whether WT and CP deficient amoebae could equally destroy a CHO cell monolayer 

devoid of a protective mucus barrier. CHO cells are more susceptible to invasion than LS 

174T cells since they do not secrete gel-forming mucins and were used to determine the 

actual contribution of the cysteine proteinases in mucus disruption versus epithelial cell 

invasion. As shown in Fig. 5.4 C, the pEhAct-neo strain destroyed 74% of a CHO 

monolayer, while the pSA8-12 destroyed 73% within three hrs. A 39% increase in CHO 

monolayer destruction was observed, compared to LS 174T monolayer invasion for the 

same time point. Although the pSA8-24 and -48 were unable to significantly destroy an 

LS 174T monolayer, both transfectants retained their ability to destroy a CHO monolayer 

(Fig. 5.4 C), with the pSA8-24 destroying 57% and the pSA8-48 destroying 18%, 

respectively. pSA8-48 revertants grown in the absence of G418 for three months 

completely regained their ability to destroy CHO cell monolayers similar to WT 

parasites. Interestingly, revertants incubated with E-64 destroyed the monolayer at a 

similar rate as the pSA8-48 strain. These results clearly indicate that cysteine proteases 

are needed for degradation of the mucus gel prior to epithelial cell invasion. 

Adherence of the pSA8 Transfectants to CHO Cells 

Amebic adherence to target cells via the Gal-Iectin to galactose and N-acetyl-D­

galactosamine residues is a prerequisite for epithelial cell cytolysis [24]. The Gal-Iectin of 

E. histolytica binds with high affinity to colonic mucin in colonization and to epithelial 

cells during tissue invasion. In the pSA8 transfectants, it is possible that decreased 

cysteine proteinase production could affect Gal-Iectin processing and surface expression 

of the Gal-lectin. To determine if the pSA8 transfectants were deficient in adherence 

capabilities mediated by the Gal-Iectin, we assessed each transfectant's ability to adhere 

to target epithelial cells. In addition, the inhibition of adherence via the Gal-Iectin was 

also demonstrated in the presence of galactose. As shown in Fig. 5.5, 70% of WT 

trophozoites formed positive CHO cell rosettes, which was inhibited by 50% in the 

presence of purified colonic mucin or 50 mM galactose. The pSA8-24 and -48 

trasfectants only showed a slight decrease in CHO cell rosette formation compared to 

control transfectants. More importantly, the pSA8-48 amoebae formed CHO cell rosettes 
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that were inhibited by 34% in the presence of 50 mM galactose suggesting that the 

transfectants were not deficient in Gal-Iectin binding capacity to mucin and to target 

epithelial cells. 
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Figure 5.5. Adherence of E. histolytica transfectants to CHO cells. CHû cells were 

incubated with WT trophozoites (+) or with trophozoites preincubated with 1 Ilg of 

colonic mucin (-) for one hr. Adherence of pEhAct-neo (Ct), pSA8 transfectants and a 

pSA8-48 revertant (Rvt) was determined, as well as pSA8-48 and WT trophozoites in the 

presence of 50 mM galactose. An E. histolytica trophozoite adherent to three or more 

CHû cells was considered a positive rosette formation. Adherence of transfectants was 

compared to control (Ct), and adherence of trophozoites (WT) treated with mucin or 

galactose was compared to untreated trophozoites (solid black bar). * denotes a P value 

of < 0.05. 
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Recombinant EbCP5 Degrades Colonie Mucin 

EhCP5 is one of the major surface associated and secreted cysteine proteinases produced 

by E. histolytica. The Eh CP 5 gene is highly degenerated, and is not expressed in the 

noninvasive and closely related E. dispar; therefore it is hypothesized to be a likely 

virulence factor involved in host cell invasion [28]. The recombinant enzyme was 

expressed as an insoluble fusion protein in E. coli, and the refolding and activation of the 

enzyme was monitored by gelatin zymography (Fig. 5.6 A). Following activation, a 28 

kDa band of activity was observed, and the enzyme was inhibited by E-64. The cysteine 

proteinase was then assessed for its ability to degrade e5S]cysteine labeled mucin. As 

shown in Fig. 5.6 B, mucin was digested with E. histolytica secreted products as a 

positive control for degradation by cysteine proteinases, and 50 !-tg of secreted products 

degraded 65% of high molecular weight mucin. Similarly, the recombinant EhCP5 

enzyme (4 !-tg) degraded 45% ofhigh molecular weight mucin and was inhibited by E-64. 

Sepharose 4B gel filtration confirmed that the rEhCP5 de grades native mucin in a similar 

fashion as proteases secreted from live amoebae, demonstrating that EhCP5 is a major 

mucin-degrading enzyme (Fig. 5.6 C). 
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Figure 5.6. Degradation of colonie mucin by recombinant EhCP5. (A) Gelatin zymogram 

of activated recombinant EhCP5 in the absence or presence of E-64. Clear band indicates 

cysteine proteinase activity. (B) SDS-PAGE and autoradiograph of eSS]cysteine labeled 

mucin digested with 50 fA.g of E. histolytica secreted products (SP), rEhCP5 (4fA.g) and 

rEhCP5 preincubated with E-64 (100 fA.M) for 6 h. The percent degradation was 

calculated as compared to the control mucin alone by densitometric analysis (Ct). (C) 

Sepharose 4B chromatography of eSS]cysteine labeled mucin under the same conditions 

as (B). 
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E. histolytica Cysteine Proteinases do not Directly Evoke Mucin Secretion 

To determine if E. histolytica cysteine proteases are involved in stimulating mucus 

secretion, amoeba secreted products as weIl as CP deficient amoebae were assayed for 

mucus secretagogue activity (Fig. 5.7 A). The secreted products induced mucin secretion 

in a dose-dependent manner with 25 and 50 ~g inducing 245% and 317% secretion of the 

control, respectively. The addition of E-64 to 50 ~g of secreted products had little effect 

on altering mucus secretagogue activity. These results were confirmed by Sepharose 4B 

column chromatography and the elution pattern of 3H-Iabeled mucin demonstrated an 

increase in S4B Vo material in response to amoeba-secreted components (data not shown). 

In a separate study, live trophozoites (2.5 x 105
) induced low levels of mucin secretion 

during co-culture with epithelial cells using Millicell-HA membranes. There were no 

significant differences in mucus secretagogue activity between the pSA8-24 and -48 

strains compared to the pEhAct-neo and WT trophozoites (Fig. 5.7 B). These results 

indicate that the mucus secretagogue released by the parasite is not a cysteine proteinase. 

Additionally, since mucus is continually secreted by the cells, and the cysteine proteinase 

deficient amoebae cannot digest the mucus, the trophozoites are impaired in their ability 

to traverse the mucus layer and are unable to reach the underlying epithelium to cause 

damage. 

Secreled Produc.ts (III) 

(Figure 5.7 B continued on next page) 
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Figure 5.7. Secretion of 3H-Iabeled mucm from LS 174T cells in response to E. 

histolytica secreted products. LS 174T colonic cells were incubated with 20 mM calcium 

ionophore A 23187 (+) as a positive control for mucus secretion, or various 

concentrations of secreted products, and secreted products with 100 ""M E-64. Mucus 

secretion was assessed after 4 hrs incubation at 37°C. (NS) no significant difference 

between the two samples. (B) A co-culture system of LS 174T cells with WT 

trophozoites and transfectants was used to measure mucus secretion in response to live 

parasites. Mucus secretagogue activity was plotted as the percent secretion of control. 

The secretion in both experiments was compared to that of normal baseline secretion of 

the negative control (100 % secretion). * denotes a P value of < 0.05. 
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DISCUSSION 

The present study provides evidence that E. histolytica cysteine proteinases are directly 

involved in the early events of invasive amebiasis. More specificaIly, the parasite causes 

a disruption of the innate mucus barrier. We have previously shown that E. histolytica 

secreted products from WT trophozoites degraded e5S]cysteine labeled colonic mucin, 

which was inhibited by the cysteine protease inhibitor E-64. These results led us to 

investigate the specific contribution of the cysteine proteinases in mucus gel disruption 

and epithelial cell invasion. 

An in vitro model of intestinal mucus penetration has been developed by our laboratory to 

determine the role of the mucus blanket in impeding epithelial cell invasion by E. 

histolytica trophozoites [16]. LS 174T cell monolayers produce large quantities ofmucin 

and are currently the only in vitro model available for the study of invasive amebiasis 

prior to epithelial cell contact. Previously, we have shown that these cells are more 

resistant to destruction than CHû ceIls due to the protective mucus layer, in addition, 

inhibition of O-linked glycosylation with Benzyl-a-GaINAc in LS 174T ceIls facilitated 

rapid monolayer disruption by the parasite [16]. In the present study, the specific cysteine 

protease inhibitor E-64 prevented trophozoites from making contact with and destroying 

LS 174T monolayers and provided evidence for the involvement of CPs in mucus 

disruption. 

Generation of cysteine proteinase deficient amoebae using antisense technology as weIl 

as the expression of recombinant cysteine protease 5 has made it possible to directly 

assess the contribution of the cysteine proteinases in invasive amebiasis [20]. E. 

histolytica trophozoites expressing the antisense message to Eh CP 5 retain low levels of 

CP activity «10%), and exhibit a 10ss of mucinase activity. Additionally, inhibition of 

CP activity directly influenced the parasite's ability to overcome a mucus gel and make 

contact with target epithelial ceIls, which resulted in a marked decrease in LS 174T 

mono layer destruction. Cysteine protease activity had a less significant effect on the 

ability of the parasite to disrupt a CHû ceIl monolayer lacking a mucus blanket. To 
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ensure that antisense inhibition of the CPs did not result in alterations of the Gal-Iectin, 

and eliminate the possibility that the parasites were unable to adhere to epithelial cens, 

amebic adherence to CHO cens was assessed. Inhibition of protease activity had little 

effect on the ability of the parasite to bind to target cens and galactose specifically 

inhibited adherence of the pSA8-48 transfectants to CHO cells to the same extent as 

control amoebae. These results indicate that the pSA8 transfectants are not adherence 

deficient and their inability to invade an epithelial cell mono layer was not due to a lack of 

adherence to either mucin or epithelial cells. During its course of invasion, E. histolytica 

evokes a massive secretion of mucin from colonic cells [29]. It is hypothesized that this 

hypersecretion may cause an imbalance between mucus production, secretion, and 

degradation, resulting in a net reduction of the mucus blanket. This mucus depletion is 

thought to be one of the main factors contributing to epithelial cell invasion by the 

parasite. In our study, the cysteine proteases did not significantly contribute to mucus 

secretion as the pSA8 transfectants evoked mucus secretion to the same extent as wild 

type amoebae. These results confirm that additional parasite virulence factors involved in 

mucus depletion were unaffected by antisense expression. 

E. histolytica secretes a small number of cysteine proteinases which may be involved in 

mucus disruption and cell invasion. These enzymes have similar substrate specificities 

and the proteases secreted by the parasite are all likely to independently de grade mucin 

and are not likely to work synergistically. Of the few cysteine proteinase genes that are 

expressed by the parasite, Eh CP 5 is the only homologous gene not expressed by the non 

pathogen E. dispar due to the fact that the gene is highly degenerated, and this has raised 

interest in determining a role for this enzyme in mucin degradation and invasive 

amebiasis [26, 30]. EhCP5 is the only secreted cysteine proteinase known to re-associate 

with the parasite surface and exhibit increased activity when bound to membranes [31]. 

To date, attempts to over-express this enzyme in E. histolytica and E. dispar by plasmid 

transfection have been unsuccessful, making expression of an active recombinant EhCP5 

enzyme a necessity to determine a function for the proteinase in invasion [22]. Until now, 

no specifie protease has been identified as being directly involved in mucus degradation. 
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This study has defined a specifie role for this group of proteinases and EhCP5 ln 

particular, in overcoming the innate defense of the mucus layer. 

Recent advances in the study of the synthesis and structure of MUC2 have increased our 

understanding of how the mucin polymerie network can maintain its integrity under the 

constant assault of pancreatic digestive enzymes. MUC2 is assembled into trimers and the 

folded protein contains a trypsin resistant trefoil domain [32]. These studies revealed the 

mechanism by which intestinal mucin is partially resistant to digestive enzymes such as 

trypsin, but much is still unknown with regards to how enteric pathogens breach the 

mucus barrier and how amoebae cysteine proteinases contribute to mucin destabilization. 

Future studies should focus on determining the target cleavage sites on MUC2 by the 

cysteine proteinases in order to understand how the parasite disrupts mucin 

polymerization. Perhaps E. histolytica uses a combination of glycosidase activity [33] in 

addition to proteases to destabalize the mucus gel. The parasite cysteine proteinases may 

have evolved in such a way as to specifically target the poorly glycosylated regions of 

MUC2 at sites that compromise mucin polymerization. The cysteine proteases and 

EhCP5 in particular, are attractive targets for the development of chemotherapeutic 

agents or vaccines against invasive amebiasis due to their central role in weakening the 

mucus gel and disrupting epithelial barrier function. 
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Connecting Statement II 

In Manuscript l, we demonstrated that cysteine proteinases are responsible for the major 

mucinase activity of E. histolytica. In Manuscript II, we have shown that E. histolytica 

requires the action of cysteine proteinases to overcome an intact mucus barrier and invade 

colonie epithelial cells. The exact mechanism by which the parasite overcomes the mucus 

gel still remained unknown. In Manuscript III, our aim was to identify the cleavage sites 

on MUC2 targeted by the parasite, to depolymerize the mucin network. This was 

performed using recombinant MUC2 N- and C-terminal proteins as these portions of the 

molecule are critically involved in mucin polymerization. 
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Chapter 6: Manuscript III 

Entamoeba histolytica Cysteine Proteinases Degrade the C-Terminal 

Flanking Region of MUC2 and Destabilize the Mucin Polymer* 

Moncada, D.M., Lidell, M., Hansson, G.C., and Chadee, K. 

*Manuscript in preparation for submission 
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ABSTRACT 

The protozoan parasite Entamoeba histolytica invades the colonie epithelium following 

disruption of the mucus layer by an unknown process. Herein, we investigated the 

mechanism by which amoeba cysteine proteinases disrupt the mucin polymerie network. 

E. histolytica secreted cysteine proteinases were assayed for their ability to degrade 

recombinant MUC2 prote in segments involved in polymerization, and produced by 

expression in CHû-KI cells to allow for proper assembly of the recombinant proteins. 

These proteins corresponded to the entire MUC2 N-terminal flanking region up to amino 

acid 1379 and the C-terminal protein segment containing the last 981 amino acids of 

MUC2. Interestingly, the amino terminus was discovered to be resistant to proteolytic 

degradation by E. histolytica cysteine proteinases whereas the MUC2 C-terminus was 

specifically targeted by the proteinases at two cleavage sites. A minor cleavage site was 

located within the cysteine-rich VWF like D-domain and would not compromise MUC2 

polymerization. However, the major cleavage site located between the VNTR and the D4 

domain could result in destabilization of the polymer. Specificity for this unique 

cleavage site was demonstrated through site-directed mutagenesis, which prevented the 

action of the cysteine proteinases. Furthermore, E. histolytica secreted proteinases were 

shown to disassemble insoluble MUC2 gel isolated from LS I74T cells. These results 

unravel a major role for E. histolytica cysteine proteinases in disrupting the 

polymerization of the mucus gel in the pathogenesis of intestinal amebiasis. 
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INTRODUCTION 

MUC2 is the major gel-forming mucin secreted by goblet cells of the small and large 

intestines and is responsible for maintaining luminal barrier function by forming a 

protective gel, covering the epithelium. The mucus layer forms a physical barrier between 

contents of the lumen and the intestines and prevents the attachment of pathogens to 

enterocytes due to an abundance of carbohydrate receptors. Assembly of the MUC2 

polymer is initiated by the formation of disulfide linked dimers through its COOH­

terminal cysteine-rich domains in a similar fashion to PSM and VWF dimerization [1-3]. 

Multimerization takes place after transport of the dimer to the Golgi network by 

interchain disulfide bonding between N-termini as in the case of PSM [4, 5]. Studies in 

which the recombinant MUC2 N-terminus was expressed in CHO cells revealed that the 

N-termini form trimers that are held together by a trypsin resistant core creating a trefoil­

like structure [4] and indicate that MUC2 does not form linear polymers but rather 

branched structures. The irregular repeat and variable number tandem repeat mucin 

domains of MUC2 are heavily glycosylated with O-linked oligosaccharides on serine and 

threonine residues. These highly glycosylated mucin domains are resistant to proteolytic 

atiack due to steric hindrance, preventing access of the proteases to the protein core. The 

globular ends of the mucin protein are less glycosylated and the protein core is exposed, 

although intra- and intermolecular disulfide bonds formed within the N- termini enable 

the protein to maintain its polymeric structure following proteolytic digestion by trypsin 

[4]. Breakage of the mucin polymer by reduction and/or proteolytic degradation inhibits 

gel formation and compromises the protective function of the molecule [6, 7]. Mucin gel 

formation occurs as a result of polymerization as well as noncovalent interactions 

between polymers and factors that interrupt these events can compromise the mucus gel. 

In order for enteric pathogens to invade and make contact with the colonie epithelium, 

they must overcome the protective mucus barrier. Microbes are theorized to accomplish 

this by a variety of mechanisms including proteolytic degradation of the mucin polymer, 

degradation of mucin oligosaccharides, and inducing hypersecretion of mucus, all 

contributing to mucus depletion and invasion [8-11]. The protozoan parasite Entamoeba 
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histolytica colonizes the mucus layer of the colon by adhering to mucin oligosaccharides 

via a 170 kDa GallGalNAc-adherence lectin [12]. In most cases of amebiasis, E. 

histolytica causes little harm to the host and remains in the mucus layer feeding on 

bacteria; however, in a small percent of infections, the parasite is able to overcome the 

mucus barrier and invade the underlying epithelium. We have previously shown that E. 

histolytica secretes cysteine proteinases, which degrade the cysteine-rich flanking regions 

of LS 174T cell colonic mucin. Moreover, the degraded mucin was less effective at 

inhibiting amebic adherence to target epithelial cells, indicating that the mucin polymer 

must be intact to maintain its protective function [6]. This same observation has been 

reported for Candida albicans when mucin was degraded by the secretory aspartyl 

proteinase Sap2p [13]. E. histolytica trophozoites expressing the antisense to EhCP5 [14] 

have an impaired ability to disrupt an intact colonic mucus barrier and invade epithelial 

cell monolayers (Chapter V). These observations indicate that the parasite cysteine 

proteinases facilitate invasion of the colon by disrupting the innate defenses of the mucus 

gel. The exact mechanism by which the parasite compromises the mucin polymer has yet 

to be determined. 

The aim of this study was to characterize the interactions between E. histolytica secreted 

cysteine proteinases and the N- and C- terminal flanking regions of MUC2 involved in 

polymerization. To achieve this, we expressed the N- and C- termini of MUC2 as 

recombinant proteins in CHG-Kl cells and examined the ability of the cysteine 

proteinases to degrade the secreted forms of the MUC2 ends. We found that while the N­

terminus was completely resistant to proteolytic attack by E. histolytica proteinases, the 

C-terminus was cleaved at two distinct sites, which can depolymerize the MUC2 gel. 

This is the first study to identify a specific mechanism used by an enteric pathogen to 

disrupt the polymeric structure of mucin. 
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METHODS 

Cell Culture and Preparation of E. histolytica Secret ory Components 

CHû-KI [American Type Culture Collection] cells as well as the colon adenocarcinoma 

cellline LS 174T (ATCC) were cultured as described previously [15]. LS 174T (ATCC) 

cells were cultured in minimal essential medium (MEM) (Invitrogen) supplemented with 

10% (v/v) fetal calf serum (Hyclone Laboratories), 100 Ilg/ml of streptomycin sulfate, 

100 U of penicillin per ml, and 20 mM HEPES (Invitrogen) [16]. The CHO-Kl cells 

expressing the recombinant MUC2 N-terminal cysteine-rich domain were grown in serum 

free ProCH03-CDM medium (Biowhittaker) [4]. 

E. histolytica HMI :IMSS trophozoites were serially passaged through gerbil livers to 

maintain high virulence and were cultured in TYI-S-33 as described previously [16]. 

Secretory components were collected from trophozoites incubated in Hank's balanced 

salt solution (Invitrogen) for two hours at 37°C at a final concentration of 2 x 107 

amoebae/ml [17]. The cysteine proteinase activity in the secretory components was 

measured against the synthetic substrate z-Arg-Arg-pNA (Bachem) and assayed by 

gelatin zymogram [18]. The viability of the trophozoites was determined using the trypan 

blue exclusion assay. 

Expression of Recombinant MUC2 N- and C- Termini 

The CHO-Kl cells stably expressing the recombinant N- and C-terminal cysteine-rich 

domains of the human MUC2 mucin "respectively" have been described before [3, 19, 

20]. CHû-KI cells were transfected with the expression vector pSNMUC2-MG 

containing the first 4191 base pairs of the Mue2 gene sequence after the native signal 

sequence (GeneBank™/EBI accession number L21998) [21]. CHû cells were also 

transfected with the pSMG-MUC2C plasmid containing bases 12622-15708 of the Mue2 

gene sequence as previously described [3]. The IRTT sequence in the pSMG-MUC2C 

vector (located at positions 4320 to 4323 in the MUC2 sequence [22]) was mutated to 

ADAA by site-directed mutagenesis (QuickChange™ site-directed mutagenesis kit; 

Stratagene), using the oligonucleotides 5' -CTCCACACCCAGCATCGCCGACG 
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CCGCCGGCCTGAGGCCCTACC-3' and 5' -GGTAGGGCCTCAGGCCGGCGGCGT 

CGGCGATGCTGGGTGTGGAG-3'. The obtained plasmid, pSMG-MUC2C 

IRTT(4320-4323)ADAA was transfected into CHû-K1 cells using Lipofectamine 2000 

(Invitrogen) and stable clones were selected and screened as described earlier [3]. Both 

constructs contained the gene encoding GFP and a MycTag. The MUC2 genes were 

ligated in frame with the GFP sequence and the immunoglobulin K-chain signal sequence 

was used to direct the MUC2 termini into the secretory pathway [4]. 

Purification of Recombinant MUC2 Terminal Cysteine-rich Domains 

Selection of CHû-K1 cells transfected with the pSNMUC2-MG, pSMG-MUC2C2, and 

pSMG-MUC2C2 IRTT(4320-4323)ADAA plasmids and detection of positive clones for 

expression was determined by G418 and fluorescence as previously described [3, 4]. Both 

the mutated and the non-mutated recombinant MUC2 C-terminal and MUC2 N-terminal 

cysteine-rich domains were purified as described previously for [3, 4]. Briefly, spent 

culture media were centrifuged at 1,000 x g for 10 min at 4°C and 0.02% (w/v) ofNaN3 

was added. The samples were further purified by ultrafiltration and dialyzed against 50 

mM Tris/HCl buffer (pH 8.0). The MUC2 C-terminal prote in was further purified by ion 

exchange chromatography on a Mono Q column and by gel filtration on a Superose 6 HR 

column as previously described [3]. 

Antibodies and Affinity Purification of Rabbit Antiserum 

The polyclonal antiserum, a-MUC2C2 directed against amino acids 4995 to 5013 

(CIIKRPDNQHVILKPGDFK) located C-terminal to the D4 domain of the apoprotein 

was generated against synthetic peptides in New Zealand white rabbits as described 

previously [7]. The a-mycTag monoclonal antibody (MAb) was from spent culture media 

of the 1-9E10.2 hybridoma (ATCC, CRL-1729). ûther antibodies used were Goat-anti­

mouse immunoglobulins coupled to horseradish peroxidase (Goat-a-Mouse-HRP) 

(Pierce) and Goat-anti-rabbit immunoglobulins coupled to alkaline phosphatase (Goat-a­

Rabbit-AP) (DAKû). Antibodies were purified from the serum by ammonium sulfate 

precipitation and prote in G Sepharose chromatography according to the manufacture' s 

instructions (Amersham Biosciences). 
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Purification of Insoluble Mucins from LS 174T Cells 

LS 174T cells were cultured in 6-well plates for 10 days with daily media changes, and 

washed twice in cold PBS. The cells were extracted with guanidinium chloride (6 M 

guanidinium chloride, 5 mM EDTA, 10 mM NaH2P04 [pH 6.5], 5 mM N­

ethylmaleimide, and 1 mM phenylmethylsulfonyl fluoride), and incubated for 40 min at 

4°C under agitation. Insoluble material was pelleted by centrifugation for 20 min at 

30,000 x g, and the pellet was washed and centrifuged six times in similar guanidinium 

chloride buffer followed by similar washing six times in Dulbecco's phosphate buffered 

saline (DPBS) or 100 mM Tris-HCI [pH 8.5]. The resulting insoluble MUC2 gel was 

used for degradation studies. 

Digestions with Amoeba Secretory Products 

Amoeba secretory proteins were preincubated in DPBS with or without 100 ~M E-64 

(Roche) at 37°C for 30 min. Purified MUC2 C-terminal cysteine-rich domain or MUC2 

N-terminal cysteine-rich domain from spent culture medium was then added to the 

mixtures. The recombinant MUC2 N-terminal fusion protein and the recombinant MUC2 

C-terminus were incubated with DPBS alone or with 1 and 1.5 ~g of E. histolytica 

secretory components and 1.5 ~g pretreated with 100 ~M E-64 (Roche) in DPBS for 6 

hours at 37°C. The negative controls were incubated in DPBS only. The incubations were 

stopped by heating the samples for 5 min at 95°C. 

When insoluble mucins from LS 174T cells were digested with Eh secreted proteins, the 

secreted proteins were pre-treated as above and transferred to insoluble mucins extracted 

from one of the wells of the 6-well plate. The mixtures were then incubated at 37°C for 

16 hours. The negative controls were incubated in DPBS only. The incubations were 

stopped as above, centrifuged at 16,000 x g for 10 min and the resulting pellets were 

photographed. 
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SDS-polyacrylamide Gel Electrophoresis and Silver Staining 

The samples were mixed with Laemmli sample buffer with or without 100 mM DTT, 

heated for 5 min at 95°C and analyzed by discontinuous SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) [23]. The Precision Protein Standards (Bio-Rad) were used 

as a molecular mass marker. Silver staining was performed according to the method 

described by Blum et al. [24]. 

Western Blot Analysis of Recombinant MUC2 Digests. 

The recombinant MUC2 N- and C- terminal digests were analyzed by SDS-PAGE under 

native and reducing conditions using a 3-10% gradient gel with a 3% stacking gel as 

previously described [3]. After transfer of the proteins to PVDF membranes (Immobilon­

PSQ, Millipore), the membranes were placed in blocking solution (PBS containing 5% 

(w/v) milk powder, 0.1% (v/v) Tween-20 and 0.05% (w/v) NaN3) overnight at 4°C and 

then incubated with either a-mycTag MAb (diluted 1:10) or a-MUC2C2 (diluted 1:100) 

for 2 h at room temperature. The membranes were washed 3 x 5 min with PBS-T (PBS 

containing 0.1% (v/v) Tween-20) and incubated with secondary antibodies (either Goat­

a-Mouse-HRP 10 ng/ml or Goat-a-Rabbit-AP 1: 1000 in blocking solution without NaN3) 

for 1 h at room temperature. After another wash in PBS-T (3 x 5 min) the blots were 

developed using either the SuperSignal West Pico Chemiluminescent Substrate (Pierce) 

or NBT/BCIP (Promega). 

Edman Sequencing of the Major MUC2 Cleavage Products 

8.6 ~g of recombinant MUC2 C-terminal cysteine-rich domain was digested with 6 ~g of 

secreted proteins for 4 hours at 37°C and was separated by SDS-PAGE and blotted to a 

PVDF membrane as above. The membrane was stained with Coomassie blue and the 

stained bands were excised and N-terminally sequenced by Edman degradation on a 

Procise 492 Protein Sequencer (Applied Biosystems). A pulsed-liquid sequencing method 

for PVDF-blotted protein was used according to the manufacturer. 
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RESULTS 

Expression of the Recombinant MUC2 N- and C- Terminal Proteins 

T 0 study the specifie interactions between the E. histolytica cysteine proteinases and 

MUC2, it was necessary to express the regions of the molecule that are involved in 

polymerization, the MUC2 N- and C- termini. This was essential as the MUC2 polymer is 

extremely large (> 5 million Daltons) and is difficult to process in its native form [7, 25]. 

As shown in Fig. 6.1 B, the first 1397 amino acids of the MUC2 N-terminus were 

expressed as a fusion protein with a MycTag, followed by GFP. The prote in was secreted 

from CHO cells as a trimer held together by intramolecular disulfide bonds between 

MUC2 N-termini [4]. In addition, the entire MUC2 C-terminus including amino acids 

4198-5179 was also expressed as a fusion protein (Fig. 6.1 C). This recombinant protein 

was secreted by CHO-Kl cells as a dimer which was covalently joined by intramolecular 

disulfide bonds formed within the last 150 amino acids of the monomers [3]. The mutated 

MUC2 C-terminus was also expressed. The recombinant MUC2 proteins assemble in a 

similar fashion to native MUC2 termini, in addition, the secreted proteins are 

glycosylated similar to native MUC2 termini and were used for subsequent degradation 

studies. 
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Figure 6.1. Schematic diagram of the MUC2 apoprotein and the recombinant MUC2 

fusion proteins. (A) The entire protein sequence for MUC2 mucin. The sequence 
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includes the N-terminus, the irregular repeat (IR) mucin domain, the variable number 

tandem repeat (VNTR) and the C-terminus. VWF D-domains (DI-4) are located in the 

terminal flanking regions and the C-terminus contains a cysteine knot (CK) motif. (B) 

The coding region of the MUC2 N-terminus was expressed as a fusion protein with a 

MycTag and GFP in CHû-KI cells. (C) The MUC2 C-terminus recombinant prote in was 

expressed in CHû-KI cells as in (B). The MUC2 C-terminus was also expressed with 

the amino acid substitutions from IRTT( 4320-4323)-ADAA. a-MUC2C2 indicates an 

antibody directed against an epitope located C-terminal to the D4 domain. 

Analysis of MUC2 Termini Degraded by E. histolytica Cysteine Proteinases 

To determine the mechanism by which E. histolytica overcomes the protective mucus 

barrier, we digested the recombinant MUC2 N- and C-terminal proteins with amoebae 

secreted cysteine proteinases and analyzed the degradation products by sil ver staining. 

The MUC2 digests were initially separated under reducing conditions in order to 

visualize the monomeric forms of the proteins. As shown in Fig. 6.2 A, the MUC2 N­

terminus incubated in DPBS alone as a negative control migrated on an SDS-PAGE gel 

with an apparent molecular mass of approximately 260 kDa, and was completely resistant 

to proteolytic degradation by amoebae proteinases. In contrast, however, E. histolytica 

secretory components markedly degraded the recombinant MUC2 C-terminus and 

generated two cleavage fragments, one with a molecular mass of 170 kDa and the second 

with a molecular mass of 75 kDa (Fig. 6.2 B). Moreover, pretreatment of the secretory 

components with the cysteine proteinase inhibitor E-64 specifically inhibited mucin 

degradation, and migration of the recombinant prote in was identical to the monomeric 

form of the MUC2 C-terminus which migrated as a 250 kDa band due in part to the 

addition of glycans to the apoprotein [3]. Analysis of the undigested MUC2 C-terminus 

under non-reducing conditions yielded a band with a molecular mass of 470 kDa by silver 

staining (Fig. 6.3 A). Incubation of the dimer with amebae secretory components resulted 

in the liberation of a 300 kDa product and the degradation was also inhibited with E-64. 
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Figure 6.2. SDS-PAGE and silver staining of recombinant MUC2 proteins digested with 

E. histolytica secreted proteinases. The recombinant proteins were incubated with 1 and 

1.5 ~g of E. histolytica (Eh) secreted proteinases or 1.5~g secreted proteinases treated 

with E-64. (A) MUC2 N-terminus was separated using SDS-PAGE [3-10% gradient] 

under reducing conditions before and after exposure to Eh secreted proteinases. The 

monomer (M 260) has an apparent molecular mass of 260 kDa. (B) MUC2 C-terminus 

was incubated with the Eh secreted proteinases and analyzed as stated in (A). (D 170) 

MUC2 C-terminal c1eavage fragment with a molecular mass of 170 kDa and (D 75) 

c1eavage fragment of 75 kDa. Positions of the molecular weight markers are indicated to 

the right of the gel in (A) and to the left in (B). 
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Figure 6.3. Characterization of the assembled MUC2 C-termini degraded by E. 

histolytica cysteine proteinases. (A) SDS-PAGE and silver staining of MUC2 C-terminus 

analyzed under non-reducing conditions. The 470 kDa homodimer of the MUC2 C­

terminus (D 470) and the 300 kDa dimer (D 300) degraded by 1 and 1.5 !-tg of secreted 

proteinases or 1.5 !-tg secreted proteinases pretreated with E-64. (B) Western blot 

analysis of degraded MUC2 C-terminus separated by SDS-PAGE under either reducing 

or non-reducing conditions. The blots were probed with the a-MUC2C2 antibody. (M 

250) non-digested MUC2 C-terminal monomer, (M 170) 170 kDa fragment, (M 75) 75 

kDa fragment. 
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The identity of the degraded MUC2 C-terminus was investigated by western blotting and 

epitope mapping using an antibody directed against an epitope located within the last 150 

amino acids of the prote in known to be involved in polymerization (Fig. 6.3 B). The a­

MUC2C2 antibody recognized both the 170 kDa and the 75 kDa fragments. A band of 

250 kDa was also observed when the secreted products were pretreated with E-64. In 

addition, the antibody recognized the 300 kDa dîmer indicating that the cleavage site(s) 

likely occurs outside this region. The a-MycTag antibody reacted with a fragment of ~30 

kDa under non-reducing conditions (data not shown). These resuIts demonstrate that E. 

histolytica cysteine proteinases specifically target the MUC2 C-terminus, and possibly 

cause breakage of the MUC2 polymer. 

Identification of the Major Cleavage Sites on MUC2 by E. histolytica Cysteine 

Proteinases 

N-terminal sequencing of the 170 kDa and 75 kDa bands shown in Fig. 6.2 B, was 

performed to delineate the locations of the cysteine proteinase cleavage sites. Sequencing 

of the peptides revealed that the cysteine proteinase activity was responsible for cleaving 

two regions of the protein resulting in major and minor cleavage sites (Fig. 6.4 A). The 

75 kDa band was generated as a resuIt of a minor cleavage, while the 170 kDa band was 

the major product re1eased after treatment of the MUC2 C-terminus with amoebae 

secretory components. The peptide fragments were mapped to the protein sequence of 

MUC2 and found to be located within two distinct regions of the molecule (Fig. 6.4 B). 

The minor fragment was released after cleavage within the peptide sequence KT­

TPHKDCT, and the major fragment was released after cleavage between the peptides 

RT -TGLRPYPSSVLI. E. histolytica cysteine proteinases have been reported to cleave 

substrates with arginine or lysine in the P2 position [26] and the identified cleavage sites 

are in agreement with this specificity. 
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Figure 6.4. Identification of the E. histolytica cleavage sites on the MUC2 C-terminus. 

(A) Edman sequencing of the 170 kDa and 75 kDa cleavage fragments revealed the N­

terminal amino acid sequences of the peptides. Arrows indicate the site of cleavage and 
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underlined amino acid sequences indicate the N-terminal sequence of the (a) 170 kDa 

and (/3) 75 kDa digestion products. (B) Schematic of the recombinant MUC2 C-terminal 

fusion protein indicating the cysteine proteinase susceptible c1eavage sites. Amino acids 

are depicted as single letters and the sequences that are underlined and in bold are those 

identified by N-terminal sequencing of the c1eavage fragments. The sequence underlined 

only, represents the epitope recognized by the a-MUC2C2 antibody. C indicates 

cysteine. The entire MUC2 C-terminal sequence begins following the italicized amino 

acid sequence of the GFP and MycTag fusion partners as weIl as the murine IgK signal 

sequence. D4, Von Willebran factor like D4 domain. CK, cysteine knot motif. 

The specificity of the cysteine proteinases for the major c1eavage site releasing the 170 

kDa band was demonstrated by mutating the c1eavage site and changing the amino acid 

sequence from IRTT(4320)-ADAA. Replacement of the positively charged amino acid 

arginine with a negatively charged aspartic acid in the P2 position of the peptide resulted 

in inhibition of degradation by the cysteine proteinases compared to the wild type MUC2 

sequence (Fig. 6.5 A). This change in sequence would not prevent the c1eavage of the 

minor site and could account for the appearance of two minor protein bands having 

molecular masses of ~ 175 and 75 kDa. Analysis of the digests containing the mutated 

protein under non-reducing conditions revealed that the dimer was intact after digestion 

with only a minor reduction in size after exposure to E. histolytica secreted proteinases 

(Fig. 6.5 B). 

Degradation of the Insoluble MUC2 Complex by E. histolytica 

Examination of the degraded mucin peptides c1early showed that the cysteine proteinases 

targeted two regions of the MUC2 C-terminus, but the functional significance of this 

event was not determined. To address this, insoluble MUC2 gel was extracted from LS 

174T cells and incubated with various concentrations of E. histolytica secretory cysteine 

proteinases and examined for depolymerization of the mucin polymeric network. As 

shown in Fig. 6.6, a significant reduction in the insoluble mucin gel was observed 

following incubation with amoebae secretory components in a dose-dependent fashion. 

Moreover, mucin degradation was significantly inhibited by E-64. 
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Figure 6.5. Digestion of mutated recombinant MUC2 by E. histolytica cysteine 

proteinases. Recombinant human MUC2 C-terminal cysteine-rich domain with the 

sequence IRTT (amino acids 4320 to 4323[22]) mutated to ADAA, was digested with 

either 0.1 or 0.25 )..tg of amoeba secretory products (SPs) for 3 hours at 37°C. Negative 

controls (Neg. Ctrl.) were treated with digestion buffer only and in the cases where the 

cysteine protease inhibitor, E-64, were used, the SPs were pretreated with the inhibitor for 

30 min at 3rC before the recombinant mucin was added. The digests were separated on 

3-10% SDS-P AGE gels under reducing (A) or non-reducing (B) conditions and the 

proteins were visualized by silver staining. MG-MUC2-C, recombinant MUC2 C­

terminus; MG-MUC2-C IRTT(4320-4323)ADAA, mutated recombinant MUC2 C­

terminus. Positions of molecular mass standards are indicated to the right. 
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Secretory Products 

Figure. 6.6. LS 174T cells were extracted with guanidium chloride (6 M guanidium 

chloride, 5 mM EDTA, 10 mM NaH2P04, [pH 6.5], 5 mM N-ethylmaleimide, 1 mM 

phenylmethylsulfonyl fluoride) and the remaining insoluble material, representing, the 

insoluble mucins, washed with Dulbecco's phosphate buffered saline (DPBS). The 

insoluble mucins were incubated with either 1.5 or 25 ~g of amoeba secretory proteins 

(SPs) for 16 hours at 37°C. Negative controls (Neg. Ctrl.) were treated with DPBS only 

and in the cases were the cysteine protease inhibitor E-64 were used, the SPs were 

pretreated with the inhibitor for 30 min at 37°C before adding it to the insoluble mucin. 

Digestions were stopped by heating them to 95°C for 5 min. The samples were centrifued 

at 16, 000 x g for 10 min and the resulting pellets photographed. 
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Figure 6.7. Cysteine proteinases secreted from E. histolytica depolymerize the MUC2 

network. Cysteine proteinases secreted from E. histolytica c1eave the MUC2 mucin at two 

positions in its C-terminal cysteine-rich domain generating the a and B fragments. While 

the mucus gel is still held together by disulfide bonding after the generation of the B 
fragment, the c1eavage generating the a fragment disrupts the gel, thereby giving the 

amoeba access to the epithelial surface. 
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In order to predict if this degradation was sufficient to break the mucin polymer, it was 

necessary to examine the secondary structure of the C-terminal dimer (Fig. 6.7). The 

model predicts that the major cleavage resulting in the release of the 170 kDa band under 

reducing conditions, falls outside the areas involved in polymerization and is sufficient to 

break the mucin polymer. In contrast, the cleavage resulting in the 13 fragment would not 

be sufficient to disassemble the polymer due to intramolecular disulfide bridging enabling 

the molecule to maintain its structure. 

DISCUSSION 

Enteric pathogens must overcome a series of innate host defenses prior to making contact 

with the intestinal epithelium. The first obstacle encountered during invasion is the mucus 

barrier. Attachment to the host mucus layer and colonization of the gastrointestinal tract 

are the first steps in the infection process, which determine the outcome of disease. Tissue 

specific expression of mucin and mucin glycosylation patterns allow for the colonization 

of microbes in different regions of the gastrointestinal tract. For example, Shigella 

dysenteriae 1, the causative agent of shigellosis in humans, preferentially adheres to 

colonie mucin but not to small intestinal mucin [27]. E. histolytica colonizes the mucus 

layer of the colon by binding with high affinity to Gal and GalNAc residues of colonic 

mucin [12, 28]. The parasite also binds host epithelial cells via the Gal-Iectin and this 

adherence is a prerequisite for epithelial cell cytolysis and invasion [28]. Mucin 

carbohydrates act as receptors for commensal gut microflora as well as invasive 

organisms and binding sites on mucins compete with those on the underlying epithelium 

and contribute to restricting pathogens access to the mucosa. In addition, mucus plays a 

protective role by entrapping pathogens resulting in expulsion with mucus flow during 

defecation [29]. 

Even after successful colonization of the gastrointestinal tract, invading bacteria, viruses, 

or parasites must overcome the mucus barrier. Virulence factors such as proteases, 

glycosidases, and mucus secretagogues are produced by these organisms and are 

responsible for disruption of the mucus gel. E. histolytica constitutively secretes at least 
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four cysteine proteinases into its environment that are involved in tissue destruction and 

invasive disease [18, 30]. The closely related non-invasive species E. dispar exhibits 

significantly less cysteine proteinase activity than E. histolytica, and does not express 

sorne homologous cysteine proteinases to E. histolytica shown to be involved in mucus 

degradation (Chapter V) [31, 32]. It is possible that high levels of cysteine proteinase 

activity in E. histolytica contribute to increased virulence and invasion. Previous studies 

have indicated that this activity plays a major role in intestinal as well as extraintestinal 

disease. Cysteine proteinase activity is necessary for the parasite to cause liver abscess 

[33, 34], migrate through host tissue [35], and disrupt epithelial cell monolayers in vitro 

[14]. In addition, cysteine proteinase activity was found to be essential for trophozoites to 

traverse a colonie mucus barrier prior to cell cytolysis [6] (Chapter V). The mechanism 

by which the parasite disrupts the mucin polymerie network was unknown, but there was 

evidence to support the idea that amoebae disrupt the cysteine-rich domains of MUC2 

involved in polymerization [6]. 

In this study, we have identified the regions of the MUC2 polymer targeted by the E. 

histolytica cysteine proteinases. The molecular weights of MUC2 polymers cannot be 

assessed with accuracy by SDS-PAGE analysis due to the fact that the glycoproteins do 

not enter the gels under non-reducing conditions. This has made studies concerning the 

effects of enteric pathogens on intestinal mucins a challenge. Therefore, a more practical 

approach was taken to investigate the interactions of the E. histolytica cysteine 

proteinases with the MUC2 N- and C- termini. This was achieved by expressing the 

entire MUC2 N- and C- termini as recombinant proteins in CHO-Kl cells. The proteins 

were directed to the secretory pathway using the murine IgK -chain signal sequence to 

ensure proper assembly and secretion of the recombinant proteins. Previous studies were 

conducted using these same expression systems in order determine how the MUC2 

polymer is assembled and secreted [3, 4]. The MUC2 C-terminus was shown to form 

heterodimers, while the N-terminus was shown to be secreted as a trimer; this was clearly 

demonstrated by SDS-PAGE analysis and electron microscopy of the recombinant 

proteins [3,4]. Using this system, we identified two cleavage sites on the MUC2 protein 

in the C-terminus targeted by the parasite. Both sites were in agreement with the 
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specificity of the proteases for arginine or lysine in the P2 position of the peptide and 

sequencing of the two cleavage products identified their location to be at opposite ends of 

the C-terminus [36, 37]. Interestingly, non-reducing SDS-PAGE analysis revealed that 

even after digestion by the cysteine proteinases, the C-terminal dimer was still held 

together but was of an apparent lower molecular weight. This indicated that only one of 

the cleavage sites could be responsible for breaking the mucin polymer and this was 

located near the N-terminus of the recombinant protein between the VNTR and the D4 

domain (see Fig. 6.4). These results are consistent with the intra and inter-molecular 

disulfide bonding occurring within the later portion of the C-terminus, which would allow 

the dimer to stay intact even after proteolytic degradation. Site directed mutagenesis of 

the main cleavage site was performed to demonstrate the specificity of the proteinases. 

Replacement of arginine with aspartic acid inhibited the majority of the cleavage and 

altered the degradation pattern of the recombinant protein, although the minor cleavage 

site was still targeted. 

The mucus layer presents an obstacle for all invasive pathogens of the gastrointestinal 

tract that must be disrupted prior to contact with the epithelium. E. histolytica has 

developed a unique strategy to overcome the innate defense of the mucus barrier. In 

addition to degrading the mucin oligosaccharide component of the molecule [38] the 

parasite specifically targets the regions of the molecule involved in polymerization by 

proteolytic degradation. This event has not yet been documented for an enteric 

microorganism and may aid in our understanding of how invading pathogens defeat the 

innate defense of the mucus layer. 
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Connecting Statement III 

In the preceding three manuscripts we demonstrated: 1) that E. histolytica degrades 

colonie mucin, 2) the parasite uses the action of cysteine proteinases to overcome a 

mucus barrier, and 3) that the parasite cysteine proteinases target the C-terminus of 

MUC2 and depolymerize the mucin network. We successfully identified the virulence 

factor involved in the initiating events of invasive amebiasis. Our studies focused on the 

effect of the parasite proteases on the mucin prote in core, and not the oligosaccharide 

component of the molecule. Since many of the properties of the mucus gel are directly 

attributed to the oligosaccharide component of mucin, it was important to determine if E. 

histolytica glycosidases are also involved in mucus degradation. In Manuscript IV, we 

characterize the E. histolytica glycosidase activity against colonie mucm 

oligosaccharides. 
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ABSTRACT 

Degradation of the mucus layer by Entamoeba histolytica is a prerequisite for invasion of 

the colonic mucosa. In this study we demonstrate that amoebae secreted products degrade 

3H-Iabeled and native colonic mucin oligosaccharides independent of proteolytic activity. 

We conclude that E. histolytica degrades mucin oligosaccharides, which may facilitate 

parasite invasion of the colon. 

Entamoeba histolytica is responsible for at least 50 million cases of diarrhea and an 

estimated 100,000 deaths per annum and ranks second only to malaria as a cause of 

mortality due to a protozoan parasite [1]. Infection with the parasite leads to amebic 

colitis and colonic ulceration and less frequently, dissemination to the liver resulting in 

amebic liver abscess. The initial events leading to invasion of the colon by E. histolytica 

are poorly understood and the mechanisms used by the parasite to overcome the innate 

host defenses of the gastrointestinal tract are currently under investigation. The parasite 

colonizes the colonic mucus layer by binding mucin oligosaccharides via a 170 kDa 

Gal/GaiNAc lectin and must traverse this protective barrier in order to cause epithelial 

cell damage and colonic ulceration. Mucin oligosaccharides serve to prote ct the mucin 

core from proteases, preserving the integrity of the mucin polymer. Various O-linked 

glycan structures are attached to the apomucin via O-glycosidic linkage to serine and 

threonine residues and these O-glycan branches contain N-acetylgalactosamine 

(GaINAc), N-acetylglucosamine (GlcNAc), fucose, galactose, and sialic acid. The 

oligosaccharide component of gastrointestinal mucin has been reported to account for up 

to 90% of its dry weight, and the densely packed oligosaccharides are responsible for 

manY intrinsic physical properties of the mucus gel ranging from hydration, gel-forming 

capacity, protease resistance, and rigidity [2]. Previous studies have identified numerous 

glycosidase activities in E. histolytica lysates and secretory products. More specificaIly, 

the parasite has been found to produce a sialidase, an a-glucosidase, as well as j3-N­

acetylhexosaminidase, enzymes which are released by the parasite and are hypothesized 

to be involved in amebic pathogenesis [3-5]. These glycosidases may play a role in 

disrupting mucin by exposing the protein backbone to parasite proteases. Previously we 

have shown that E. histolytica secreted cysteine proteases degrade the poorly 
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glycosylated reglOns of MUC2 and we hypothesize that the parasite may use the 

concerted actions of glycosidases and proteases to disassemble the mucin polymeric 

network [6]. 

In the present study, we determined whether E. histolytica secreted glycosidases could 

degrade colonie mucin oligosaccharides. Parasite secretory products were collected from 

trophozoites incubated in HBSS for 2 hours and> 95% of trophozoites were viable as 

determined by trypan blue exclusion assay [7]. Secreted products were assayed for 

activity against a panel of glycosidase substrates as previously described with some 

modifications [8]. Briefly, 20 /-tg of secreted components (representing ~2 x 105 

trophozoites) were assayed for glycosidase activities between pH 3.5 and pH 8.5 to 

determine optimal activity using various p-nitrophenyl (pNP) glycoside substrates (2mM) 

(EMD Biosciences Inc., San Diego, CA). One unit of enzyme activity was defined as the 

number of micromoles of substrate digested per minute per milligram of protein, and one 

unit of activity was considered significant. 

Highly purified 3H-Iabeled mucin as well as native mucin was collected from LS 174T 

colonic cells (American Type Culture Collection, Rockville, MD.) grown to 80% 

confluence in minimal essential medium (MEM) (Invitrogen Corporation, Burlington, 

Ontario, Canada) and purified by Sepharose 4B (S4B) gel filtration and/or cesium 

chloride density gradient centrifugation (CsCI mucin) as previously described [6, 9]. 

Mucin oligosaccharide degradation was assessed with native mucin and was visualized 

by Periodic Acid-Schiff, in-gel staining of the mucin oligosaccharides using the GelCode 

glycoprotein staining kit according to the manufacturer' s instructions (Pierce, Rockford, 

IL). Western blot analysis was performed using an antibody generated in New Zealand 

white rabbits against LS 174T cell mucin which was purified by gel filtration and density 

gradient centrifugation [9]. Specificity of the antibody for mucin oligosaccharides was 

determined by oxidizing the mucin with 10 mM sodium metaperiodate (Sigma-Aldrich, 

Burlington, Ontario Canada) in phosphate buffered saline (Invitrogen Corporation) in the 

dark for one hour [10]. In addition, degradation of 3H-Iabeled mucin glycoproteins was 

examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), 
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and fluorography as well as Sepharose 4B size exclusion chromatography, as previously 

described [6]. Secreted products were pretreated with protease inhibitors or with the 

complete-mini EDTA-free protease inhibitor cocktail according to the manufacturer's 

instructions (Roche GmbH, Mannheim, Germany). Trypsin and papain were used as a 

control for proteolytic degradation in the absence of glycosidase activity (Roche GmbH). 

E. histolytica secreted products were found to contain abundant amounts of activity 

against various glycoside substrates (Table 7.1). The highest level of activity detected 

was that of ~-N-acetyl-D-glucosaminidase at pH 7.0. In addition, high levels of a-D­

glucosidase activities were also detected with maximal activity between pH 6.0 and pH 

8.0 which is in agreement with a previous report [11]. Modest levels of ~-D­

galactosidase, ~-L-fucosidase as well as a-N-acetyl-D-galactosaminidase were also 

detected. 

TABLE 7.1. Glycosidase activity present in E. histolytica secreted products 

Substrate 

~-N-Acetyl-D-Glucosamine 

a-D-Glucose 

~-D-Galactose 

~-L-Fucose 

a-N -Acety 1-D-Galactosamine 

a-L-Fucose 

a-D-Mannose 

a-D-Galactose 

S, significant NS, not significant 

163 

Activity (U) Significance 

62 S 

46 S 

3.6 S 

3.2 S 

1.2 S 

NS 

NS 

NS 



Based on the various structures of human intestinal mucin oligosaccharides, aIl of these 

enzymes would be required to break down mucin oligosaccharides by the parasite [12, 

13]. There has been no evidence to date that defines a role for these enzymes in mucin 

degradation, and previous methods used to examine oligosaccharide degradation by the 

parasite may have not been sensitive enough to detect minor changes in the structure of 

mue in due to its high molecular weight and polymerie nature. As shown in Fig. 7.1 A, E. 

histolytica secreted products degraded mucin and mucin oligosaccharides in a dose­

dependent manner as evidenced by the migration of PAS reactive material into an SDS­

PAGE running gel. Incubation of the mucin with as little as 10 !-tg of secreted products 

resulted in an 87% decrease in high molecular weight stacking gel mucin, while trypsin 

did not alter the migration compared to control mucin. Since cysteine proteases are the 

major class of enzyme released by the parasite, and have been shown to degrade the 

poorly glycosylated flanking regions of mucin [6], the involvement of these proteases in 

altering mucin oligosaccharide migration was assessed. Degradation of the mucin 

oligosaccharides by the parasite was not inhibited by the cysteine protease inhibitor E-64 

or by the serine protease inhibitor Pefabloc-SC (Fig. 7.1 B). These results are of 

particular interest since E-64 has been shown to markedly inhibit the majority of 

proteolytic degradation of purified mucin by amoebae [6]. Treatment of the secreted 

products with a protease inhibitor cocktail was also ineffective at inhibiting the liberation 

ofmucin oligosaccharides into the running gel (data not shown). Western blot analysis of 

the digests with an antibody that recognizes purified colonic mucin oligosaccharides 

showed a 56% reduction in immunoreactive mucin remaining in the stacking gel (1 o !-tg 

secreted products), while trypsin digestion of the mucin did not result in any significant 

loss of mucin carbohydrates from the stacking gel (Fig. 7.1 C). The a-mucin antibody 

did not recognize mucin in which the sugars have been oxidized, indicating that the 

antibody specifically recognizes mucin oligosaccharides (Fig. 7.1 D). 
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Figure. 7.1. PAS staining of native rnucin treated with E. histolytica secreted products. 

(A) Dose-dependent degradation of CsCI purified rnucin visualized by SDS-PAGE and 

PAS staining. (B) E. histolytica secreted cornponents (10"",g) were preincubated with E-64 

and Pefabloc-SC prior to the digest. (C) Western blot analysis of rnucin digests with a a­

LS 174T cell rnucin antibody. (Ct) Control. Arrow indicates border between stacking and 

running gel. (D) Western blot analysis showing specificity of the antibody for rnucin 

oligosaccharides. (Ct) control rnucin; NaI04, sodium rnetaperiodate treatrnent. 
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To address specifie cleavage of mucin oligosaccharides, the mucin was metabolically 

labeled by incubating LS 174T cells with CH]glucosamine. Under these conditions, the 

glucosamine is converted to various carbohydrates and is incorporated into mucin 

glycoproteins. This allows for the tracking of the sugars and is useful for detecting minor 

alterations in mucin structure. As shown in Fig. 7.2 A, 3H-Iabeled S4B Vo (Void volume) 

mucin was degraded by amoebae secreted products in a dose-dependent fashion which 

was specifically inhibited by boiling. Amoebae glycosidase activity of 3H-Iabeled mucin 

was similar to the degradation pattern observed with native colonie mucin (Fig. 7.1 A). 

More importantly, the addition of a variety of protease inhibitors had no effect on 3H_ 

labeled mucin degradation (Fig. 7.2 B), clearly demonstrating glycosidase activity. This 

method is more sensitive than PAS staining for detecting oligosacchride degradation and 

confirmed that the mucin carbohydrates were being disrupted. As shown in Fig. 7.3 A, 

3H-Iabeled mucin purified by CsCI density gradient centrifugation elutes in the Vo of a 

S4B column. However, following incubation with amoebae secreted products there was a 

51 % decrease in void volume (fractions 6-11) mucin, and an increase in 3H-Iabeled 

material in the included fractions (fractions 12-25). Although the size of the mucin 

molecule does change dramatically upon degradation with amoebae-secreted products, 

changes in the buoyant density of the mole cule are not as dramatic, but are evidenced 

(Fig. 7.3 Band C). The degraded mucin does exhibit a wider range of densities and can 

be detected in fractions 5 to 7. Furthermore, mucin appeared to be solubilized by the 

secreted products, as evident by an increase in the total amount of recoverable 3H-Iabeled 

mucin in the presence of secreted products as compared to controls (Fig. 7.3 B). 

166 



A 

211 

122 
80 

51 

Ct .25 .5 1 2 3 4 BI 

lime (Hours) 

Ct SP E1 ES PM L A P 

Figure 7.2. SDS-PAGE and autoradiograph of 3H-Iabeled mucin degraded by amoebae 

secreted products. (A) Time-dependent degradation of 3H-Iabe1ed mucin. Sepharose 4B 

purified mucin was incubated with 50 !-lg of amoebae-secreted products for up to 4 hours. 

Control (Ct). Mucin was also incubated with secreted products that were inactivated by 

boiling (BI). (B) Effect of protease inhibitors on the degradation of eH]glucosamine 

labeled mucins. Secreted products (SP) were treated with the following protease 

inhibitors prior to incubation with mucin: Eland E5 (E-64, 100 !-lM and 500 !-lM), PM 

(PMSF, 10 mM), L (leupeptin, 10 mM), A (aprotinin, 10 mM), and P (pepstatin, 10 mM) 

(Roche GmbH). The digests were performed for 6 hours. Arrow indicates border between 

stacking and running gel. 
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Fig. 7.3. Sepharose 4B gel filtration of3H-labeled CsCI mucin degraded by E. histolytica 

secreted products. (A) Purified mucin (3 x 105 cpm) was incubated in PBS alone or with 

200 !-tg of secreted products at 37°C for 18 hours. The digests were separated by gel 

filtration and aliquots of each fraction were analyzed by liquid scintillation counting. The 

column was calibrated with blue dextran (BD, 2,000 kDa, Pharmacia, Uppsala, Sweden) 

and BSA (Bovine serum albumin, 68 kD, Sigma-Aldrich). (B-C) CsCI density gradient 

centrifugation of 3H-Iabeled mucin incubated in PBS (B) or with amoebae secreted 

components (C). Data represent the results of one experiment repeated two times with 

similar results. 
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We have previously demonstrated that E. histolytica cysteine proteinases are responsible 

for degrading the cysteine-rich regions of colonie mucin, and the degraded mucin is less 

effective at inhibiting amebic adherence to target Chinese hamster ovary cells [6]. 

Degradation of mucin by E. histolytica is likely to result in destabilization of the mucin 

polymer, solation of mucus, and subsequent loss of the protective function of the mucus 

gel. Although mucin polymerization is an important and essential element required for its 

gel formation, mucin O-linked oligosaccharides are necessary for protecting the prote in 

backbone, inc1uding the mucin domains, from degradation by proteases. Although sorne 

previous studies have determined that the parasite does not produce the proper range of 

glycosidases to de grade mucin, we have found that the parasite does pro duce a wide 

range of glycosidases and the products secreted by the parasite are capable of degrading 

colonie mucin. This indicates that the parasite uses both protease and glycosidase activity 

to disrupt the mucin polymerie network. The liver fluke Fasciola hepatica also secretes 

glycosidases into its environment and the parasite's excretory-secretory products have 

been shown to degrade ovine mucin even in the absence of proteolyic activity [14]. Our 

results indicate for the first time that E. histolytica releases abundant amounts of 

glycosidases into its environment, and this activity is sufficient to degrade colonie mucin 

oligosaccharides. In addition, the ability of these enzymes to degrade mucin suggests they 

play an important role in allowing the parasite to overcome the innate defense of the 

mucus barrier. 

SUPPORT 

This study was supported by a grant from the Canadian Institutes of Health Research 

(CIHR). 

REFERENCES 

1. WHO, Amoebiasis. Wkly Epidemiol Rec, 1997.72: p. 97-99. 

2. Herrmann, A., Davies, J.R., Lindell, G., Martensson, S., Packer, N.H., Swallow, 

D.M., and Carlstedt, L, Studies on the "insoluble" glycoprotein complex from 

169 



human colon. Identification of reduction-insensitive MUC2 oligomers and C­

terminal cleavage. J Biol Chem, 1999.274: p. 15828-15836. 

3. Nok, Al and Rivera, W., Characterization of sialidase from Entamoaeba 

histolitica and possible pathogenic role in amebiasis. Parasitol Res, 2003. 89: p. 

302-307. 

4. Zamarripa-Morales, S., Villagomez-Castro, lC., Calvo-Mendez, C., Flores­

Carreon, A, and Lopez-Romero, E., Entamoeba histolytica: identification and 

properties of membrane-bound and soluble alpha-glucosidases. Exp Parasitol, 

1999. 93:p. 109-115. 

5. Riekenberg, S., Flockenhaus, B., Vahrmann, A, Muller, M.C., Leippe, M., Kiess, 

M., and Scholze, H., The beta-N-acetylhexosaminidase of Entamoeba histolytica 

is composed of two homologous chains and has been localized to cytoplasmic 

granules. Mol Biochem Parasitol, 2004.138: p. 217-225. 

6. Moncada, D., Keller, K., and Chadee, K., Entamoeba histolytica Cysteine 

Proteinases Disrupt the Polymerie Structure of Colonie Mucin and Alter Its 

Protective Function. Infect Immun, 2003.71: p. 838-844. 

7. Yu, Y. and Chadee, K., Entamoeba histolytica stimulates interleukin 8 from 

human colonie epithelial cells without parasite-enterocyte contact. 

Gastroenterology, 1997. 112: p. 1536-1547. 

8. Connaris, S. and Greenwell, P., Glycosidases III mucin-dwelling protozoans. 

Glycoconj J, 1997. 14: p. 879-882. 

9. Belley, A, Keller, K., Grove, l, and Chadee, K., Interaction of LS174T human 

colon cancer cell mucins with Entamoeba histolytica: an in vitro model for 

colonie disease. Gastroenterology, 1996. 111: p. 1484-1492. 

10. Tse, S.K. and Chadee, K., Biochemical characterization of rat colonic mucins 

secreted in response to Entamoeba histolytica. Infect Immun, 1992. 60: p. 1603-

1612. 

11. Spice, W.M. and Ackers, IP., The effects of Entamoeba histolytica lysates on 

human colonic mucins. J Eukaryot Microbiol, 1998.45: p. 24S-27S. 

12. Podolsky, D.K., Oligosaccharide structures ofhuman colonic mucin. J Biol Chem, 

1985. 260:p. 8262-8271. 

170 



13. Moncada, D.M. and .Chadee, K., Production, Structure, and Function of 

Gastrointestinal Mucins, in Infections of the Gastrointestinal Tract, Smith P.D., 

Blaser M.I, Ravdin LI, Greenberg H.R., and Guerrant R.L., eds. 2002, 

Lippincott Williams & Wilkins: Philadelphia, PA. p. 57-79. 

14. Irwin, lA., Morrissey, P.E., Ryan, IP., Walshe, A., O'Neill, S.M., Carrington, 

S.D., Matthews, E., Fitzpatrick, E., Mulcahy, G., Corfield, A.P., and Dalton, IP., 

Glycosidase activity in the excretory-secretory products of the liver fluke, 

Fasciola hepatica. Parasitology, 2004. 129: p. 465-472. 

171 



Section III: General Discussion 

172 



Discussion 

The epithelium of the gastrointestinal tract is continually exposed to chemical and 

physical insults as weIl as potential enteric pathogens. The mucus layer is a dynamic 

barrier in a constant state of turnover rather than a static state and is continually renewed 

by secretions from goblet cells. The normal gastrointestinal microflora also play a 

beneficial role in regulating mucus thickness by degrading mucins and utilizing them as a 

source of energy. A fine balance between mucin production and secretion must be 

maintained during these conditions in order to ensure adequate protection of the 

epithelium. One can think of the innate defenses of the GI tract as a series of obstacles 

and attacks that an "enemy" microbe must overcome to defeat the host. The offending 

microbe is itself armed with a battery of "weapons" to defeat these attacks. The mucus 

barrier acts as a nonspecific obstacle to invasion by physically trapping microorganisms 

and impeding the diffusion of microbial toxins, denying them access to the underlying 

epithelium. The host responds to pathogens by hyper secreting mucus, which is often 

sufficient for removal of the irritant. In addition, the mucus layer contains high levels of 

secretory IgA [1], lysozyme [1], antimicrobial peptides (defensins) [2] and trefoil factor 

proteins [3] to help combat the deleterious effects of microbes. AlI of these 

aforementioned factors contribute to the innate defense of the gastrointestinal tract. 

Trefoil factors in particular are known to be involved in epithelial restitution and have 

been shown to increase the viscosity of mucus [4] which may also contribute to 

stabilizing the interactions between mucin polymers. 

In the event that microbes or their toxins breach the mucus barrier, the next line of innate 

defense cornes into play. Epithelial cells form a physical barrier, keeping luminal 

contents from entering the body. These cells are joined together by tight junctions, which 

function as the "glue" between the cells and are composed of membrane spanning 

proteins present on the apical surface of the cells. Tight junctions act as agate, restricting 

the movement of molecules between epithelial cells. In addition, they also serve a fence 

function by separating the apical and basolateral membrane components to maintain cell 

polarity [5]. Many invasive organisms have evolved mechanisms of altering epithelial 
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permeability by regulating or disrupting tight junctions. FinaIly, epithelial cells also 

express "microbial sensors" called ToIl-like receptors. These receptors recognize 

pathogen-associated molecular patterns and allow the host to detect antigens on 

pathogens and mount an appropriate response to eliminate the offending organism 

(reviewed in [6]). Regardless of a strong innate host defense mechanism, in sorne 

instances, microbial pathogens invade the mucosal surface and cause disease. In the end, 

severity of disease is dependent upon the virulence of the organism as weIl as the host 

defense. 

Clearly, maintenance of a functionally intact mucus barrier is the first action required by 

the host to protect the epithelium. MUC2, the major gel forming mucin of the colon 

forms long branched structures that assemble into a mesh-like polymeric network. Upon 

secretion, the heavily glycosylated polymers form a slimy visco-elastic gel in part 

because the oligosaccharide components become highly hydrated and swollen. In 

addition, mucin forms large aggregates in solution as a result of polymer cross-linking 

[7]. This noncovalent cross-linking between the mucin polymers is essential to gel 

formation. Mucin gel formation is reversed or inhibited when the cysteine-rich flanking 

regions are disrupted by either disulfide bond reduction or proteolytic degradation. 

Mucins may have evolved to withstand degradation by gastrointestinal proteases by 

containing cysteine-rich regions involved in polymerization that take on secondary 

structures such as trefoillike domains. These regions in the N-terminus of MUC2 enable 

the molecules to maintain their polymeric nature, even when cleaved, due to 

intramolecular disulfide bonding keeping the molecules intact [8]. Gastrointestinal 

pathogens must accordingly develop strategies to overcome these structural features. The 

heavily glycosylated irregular repeat and variable number tandem repeat regions of 

MUC2 are very heavily glycosylated and the oligosaccharides confer protease resistance 

to these domains. The glycosylation also causes the mucin molecule to take on an 

extended conformation while the poorly-glycosylated regions contain globular 

conformations. Intestinal microflora as weIl as pathogens have been shown to produce a 

range of glycosidases that are involved in mucin oligosaccharide degradation. In order for 

invading microorganisms to reach the intestinal epithelium, they must traverse the mucus 
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barrier. This may be accompli shed by at least one, or a combination of the following 

events; 1) proteolytic degradation of the poorly glycosylated regions of mucin and 

breaking of the mucin polymer, 2) degradation of mucin oligosaccharides leading to 

exposure of the mucin apoprotein to degradation, and 3) hypersecretion of mucus in such 

a fashion that mucus secretion rates exceed mucin production rates, resulting in a net 

decrease in mucus gel thickness. Demonstrating these events in vivo would prove quite 

difficult since the host itself produces proteases and the commensal gut microflora 

contribute to mucin degradation. Additionally, other factors such as mechanical shearing 

of the loosely adherent mucus layer by intestinal contents and removal of mucus during 

peristalsis add more variables that would be difficult to distinguish from pathogen effects. 

Our lab has developed an in vitro model to study the interactions between enteric 

microorganisms and colonic mucin using the mucus producing colonic adenocarcinoma 

cellline LS 174T [9]. Previously, we have characterized the mucins secreted from these 

cells and have demonstrated that they are similar in composition to the major colonic 

mucin species of the human colon. LS 174T cells contain a mucus barrier and are more 

resistant to invasion by E. histolytica due to the protective effect of the mucus blanket, 

while non-mucus secreting cells are more susceptible to invasion. This system has 

allowed us to decipher the mechanisms used by E. histolytica to overcome the mucus 

barrier, and has made it possible to investigate the effects major parasite virulence factors 

have on mucin structure and function. 

E. histolytica produces many virulence factors involved in the pathogenesis of invasive 

amebiasis but only a small number would likely be involved in mucin gel destabilization. 

The primary molecules interacting with the mucus layer are the Gal-Iectin and cysteine 

proteinases. The Gal-Iectin allows amebae to colonize the colon by binding to mucin 

oligosaccharides. This is the first key step in invasive disease but this event also occurs 

during noninvasive disease and does not actually contribute to alterations in mucin. Other 

virulence factors such as the cysteine proteinases are more likely to be key molecules 

involved in invasion since they have been shown to de grade a range of host proteins. 

Therefore, we hypothesized that E. histolytica cysteine proteinases de grade colonic 

mucin and facilitate invasion of the colon. We set out to test this hypothesis (manuscript 
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1), and our goal was to determine if parasite secretory products could degrade colonic 

mucin and if so, what c1ass of protease is responsible for this event. This aim was 

accompli shed by metabolically labeling LS 174T cell mucin with e5S]cysteine to track 

the poorly glycosylated regions of mucin. Subsequently, mucin degradation assays were 

performed with Eh secretory components in the presence and absence of a variety of 

protease inhibitors. Cysteine proteinases were identified as the major mucinase activity 

by inhibition with the specific inhibitor E-64 [10]. Measuring the ability of the degraded 

mucin to inhibit adherence of the parasite to target epithelial cells allowed us to 

determine the functional significance of this degradation. Our results c1early showed that 

native mucin significantly inhibited adherence of the parasite to epithelial cells to a 

greater extent than degraded mucin, indicating that the polymeric nature of mucin must 

be maintained to confer adequate protection. 

After discovering that the cysteine proteinases degrade the flanking regions of mucin, our 

next aim was to determine the role these enzymes play in traversing the mucus barrier 

and in epithelial cell invasion. This was achieved (in manuscript II) by generating 

cysteine proteinase deficient parasites through antisense technology. This strategy 

allowed us to investigate the contribution that the proteinases play in facilitating invasion 

of colonie epithelial cells. Using these transfectants in combination with our LS 174T cell 

colonie model, we demonstrated that the proteinase activity was necessary for the 

parasite to overcome a mucus barrier and destroy the underlying epithelium. This was 

achieved by comparing the ability of the parasite to destroy intact epithelial cell 

monolayers that secrete gel-forming mucins (LS 174T) or those devoid of a mucus 

barrier (CHO). The results observed between the two conditions were dramatic and the 

essential role for these proteinases in facilitating invasion of the mucus barrier was 

revealed. To address which of the proteinases may be involved in mucin degradation and 

mucus gel disruption we chose to express recombinant cysteine proteinase 5 in a bacterial 

expression system. This cysteine proteinase is of particular interest since it 1) is secreted 

by the parasite, 2) associates with the parasite membrane and exhibits increased activity 

in association with membranes and, 3) is not expressed in the non invasive commensal E. 

dispar. EhCP5 was found to be highly mucolytic and degraded mucin in a similar fashion 
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as total secretory proteinases. These results define a clear role for EhCP5 in invasive 

amebiasis as a virulence factor responsible for disruption of the colonic mucus layer. 

After discovering the major virulence factor responsible for allowing the parasite to 

overcome the innate defense of the mucus barrier, we sought to determine specifically 

how these enzymes are capable of disrupting the mucin polymeric network (manuscript 

III). Since mucin polymers are extremely large and virtually impossible to work with, we 

decided to direct our focus on the portions of the molecule involved in polymerization, 

the N- and C-terminal cysteine rich regions. This was accomplished by obtaining 

recombinant MUC2 C-terminal dimers and N-terminal trimers secreted from CHû cells. 

These recombinant proteins are held together by disulfide bonds in the same manner as 

those of native MUC2 polymers and enabled us to determine how EhCPs compromise 

these structures. Although the MUC2 N-terminus was resistant to degradation by the 

proteinases, we identified two cleavage sites on the MUC2 C-terminus, one major and 

one minor. Of particular importance, the major cleavage site falls outside the cysteine 

knot motif of the molecule and would allow for disassembly of the dimer. This major 

finding is the first reported mechanism by which an enteric pathogen destabilizes the 

mucin network. 

Cysteine proteinases clearly have a destructive effect on the mucus barrier but the 

parasite produces other virulence factors that may be involved in mucin degradation. One 

characteristic of mucin is its abundant glycosylation. The oligosaccharides prote ct the 

protein core from damage by blocking proteases from coming in close proximity to the 

peptide. Interestingly, the parasite secretes a range of glycosidases that would be 

necessary for degrading mucin sugars. The final aim of our study, addressed in 

manuscript IV was to determine if E. histolytica secreted glycosidases are involved in 

mucin degradation. Our overall studies in this thesis did not initially inc1ude the 

investigation of the effect of parasite glycosidase activity on mucin. But during our initial 

attempt to characterize mucinase activity, we made sorne crucial observations. We 

discovered that degradation of 3H-Iabeled mucin oligosaccharides could not be inhibited 

by E-64 or any other protease inhibitor used in the studies [11]. This led us to suggest that 
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mucin oligosaccharide degradation could be contributing to the destruction of the mucus 

gel. We also theorized that this degradation could expose the mucin core to proteases and 

contribute to increased degradation of the polymer. The specifie enzymes involved in this 

event still remain to be determined. 

In conclusion, the results of this study have demonstrated for the first time that E. 

histolytica cysteine proteinases are involved in the initial events of invasive amebiasis 

through disrupting the first line of innate host defense, the mucus barrier. The proposed 

model of amebic invasion is illustrated in Fig. 1. 

Figure 1. Model of E. histolytica overcoming the innate defense of the colonie mucus 

barrier during invasive amebiasis. 

Entamoeba histolytica 

1. Adherence 

2. Colonization 

Mucus Layer 
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The initial events leading to invasive disease can be summarized as follows; 1) adherence 

of the parasite to colonie mucin oligosaccharides, 2) colonization of the mucus layer, 3) 

degradation of mucin and disruption of the mucus gel, 4) adherence to the colonie 

epithelium and invasion of the mucosa and 5) hyper-secretion of mucus in response to 

parasite secreted components. These destructive parasite molecules play many roles in 

amebiasis from immune evasion to tissue destruction and are now implicated in 

destroying innate defenses of the gastrointestinal tract. The development of inhibitors 

against these virulence factors may prove useful in combating this disease. 

Our study has raised sorne interesting questions regarding differences between invasive 

and noninvasive infection with E. histolytica. Why do only 10% of individuals infected 

with the parasite develop invasive disease? This question still remains to be answered. 

One could speculate that there are differences between the parasites that invade, such as 

increased expression of virulence factors. Reports of clinical isolates collected from 

patients with amebic colitis or liver abscess suggest this is possible since these parasites 

show an increase in cysteine proteinase activity compared to those collected from 

individuals with noninvasive disease [12]. There may also be differences in other 

virulence factors as well. In addition, host factors could also play a role in the outcome of 

the disease. It is possible that differences in MUC2 between individuals could contribute 

to infection. There are two major alleles of the MUe2 gene that encode the protein and 

they have major differences in the length of the VNTR region, resulting in a "long" and a 

"short' allele. Subsequently, the corresponding proteins encoded by these genes are 

different but the consequence of this difference on protein function is unknown. 

Glycosylation patterns on mucin can differ between individuals and may change the 

composition or properties of the mucus, although there is currently no evidence to 

support these theories. In the future, it will be necessary to analyze both differences in 

mucin between infected individuals as well as variations in virulence factors of different 

isolates of E. histolytica. It would be particularly interesting to identify any 

polymorphisms in the MUC2 flanking regions that are susceptible to cleavage by the 

cysteine proteinases. Finally, we can conclude that the factors contributing to invasive 

amebiasis are multifactorial and much research still needs to be conducted to determine 
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why only a small percent of infections are invasive. This body of work has advanced the 

study of amebiasis by deciphering the mechanism of how the parasite invades. 
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Appendix 

The Thesis Submission Guidelines state that: " If the research for the thesis involved 

human participants, animal subjects, microorganisms, living cells, other biohazards, 

and/or radioactive materials, the appropriate compliance certificates must be included as 

an appendix to the thesis". 

The required documents are added as an appendix in the following pages. 
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