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Abstract 

High alloy steels are attracting increasing interest among researchers because of their advanced 

mechanical properties, corrosion resistance, electromagnetic properties, etc. Besides, addition of 

light alloying elements like Al and Si into the high alloy steels can also reduce the steel weight, 

which has very promising application in eco-friendly automobile industry. On the other hand, 

introduction of the Mn in steels increases the solubility of phosphorus because of its high affinity 

with phosphorus. The six component Fe-Mn-Al-Si-C-P alloy system is very important for 

production of the advanced high strength steels and ferro alloys. In the present study, the available 

thermodynamic database of the Fe-Mn-Al-Si-C system was slightly revised and extended by 

including phosphorus to develop an accurate and self-consistent thermodynamic database of the 

Fe-Mn-Al-Si-C-P system using the CALculation of PHAse Diagrams (CALPHAD) method.  

 

In the present thermodynamic modeling, the liquid phase was described using the Modified 

Quasichemical Model (MQM) with consideration of short-range ordering in the molten alloys. 

Besides, appropriate geometric interpolation techniques based on the nature of involved binary 

systems were also introduced for each ternary solution to reduce the model parameters and improve 

the predictability of ternary and higher-order systems simultaneously. The solid solutions were 

modeled using the Compound Energy Formalism (CEF) considering the crystallographic structure 

of each solid solution. The thermodynamic properties of P in the liquid and solid alloys, 

thermodynamic stability of all intermediate phosphides, various types of phase diagrams (liquidus, 

solidus, isopleth diagrams, isothermal sections, liquid projections, etc.) of the Fe-Mn-Al-Si-C-P 

system were critically evaluated and optimized to reproduce all reliable experimental data. 
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The behavior of P in the sub-systems of the Fe-Mn-Al-Si-C-P alloy was accurately described based 

on the present thermodynamic database with very small number of model parameters. The present 

database is compatible with other thermodynamic databases in FactSage, and can be applied to the 

calculation of the dephosphorization reaction of molten high alloy steels. The distribution of P 

between molten steel and slag at various temperatures was calculated accurately. In addition, the 

thermodynamic database constructed in the present study can also be used to predict unexplored 

phase diagrams and thermodynamic properties of the Fe-Mn-Al-Si-C-P system.    
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Résumé 

Les aciers fortement alliés suscitent un intérêt croissant parmi les chercheurs en raison de leurs 

propriétés mécaniques avancées, de leur résistance à la corrosion, de leurs propriétés 

électromagnétiques, etc. De plus, l'ajout d'éléments d'alliage légers comme Al et Si dans les aciers 

fortement alliés peut également réduire le poids de l'acier, ce qui est une application prometteuse 

dans l'industrie automobile écologique. En revanche, l'introduction du Mn dans les aciers 

augmente la solubilité du phosphore en raison de sa forte affinité avec le phosphore. Le système 

d'alliage à six composants Fe-Mn-Al-Si-C-P est très important pour la production des aciers à 

haute résistance et des ferro-alliages avancés. Dans la présente étude, la base de données 

thermodynamique disponible du système Fe-Mn-Al-Si-C a été légèrement révisée et étendue en 

incluant le phosphore pour développer une base de données thermodynamique précise et cohérente 

pour le système Fe-Mn-Al-Si-CP en utilisant la méthode de CALculation des diagrammes de 

PHAse (CALPHAD). 

 

Dans la modélisation thermodynamique actuelle, la phase liquide a été décrite en utilisant le 

modèle quasi-chimique modifié (MQM) en tenant compte de l'ordre à courte portée dans les 

alliages fondus. De plus, des techniques d'interpolation géométrique appropriées basées sur la 

nature des systèmes binaires impliqués ont également été introduites pour chaque solution ternaire 

afin de réduire les paramètres du modèle et améliorer simultanément la prévisibilité des systèmes 

ternaire et d'ordre supérieur. Les solutions solides ont été modélisées à l'aide du formalisme 

énergétique des composés (CEF) en tenant compte de la structure cristallographique de chaque 

solution solide. Les propriétés thermodynamiques du P dans les alliages liquides et solides, la 

stabilité thermodynamique de tous les phosphures intermédiaires, les différents types de 
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diagrammes de phases (liquidus, solidus, diagrammes isoplèthes, coupes isothermes, projections 

des liquides, etc.) du système Fe-Mn-Al-Si-C-P ont été évalué de manière critique et optimisé pour 

reproduire toutes les données expérimentales fiables. 

 

Le comportement de P dans les sous-systèmes de l'alliage Fe-Mn-Al-Si-C-P a été décrit avec 

précision avec la base de données thermodynamique actuelle avec un très petit nombre de 

paramètres du modèle. La présente base de données est compatible avec d'autres bases de données 

thermodynamiques de FactSage et peut être appliquée au calcul de la réaction de déphosphoration 

des aciers fondus fortement alliés. La distribution du P entre l'acier fondu et le laitier à diverses 

températures a été calculée avec précision. De plus, la base de données thermodynamiques 

construite dans la présente étude peut également être utilisée pour prédire des diagrammes de 

phases inexplorés et les propriétés thermodynamiques du système Fe-Mn-Al-Si-C-P. 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

Acknowledgements 

The accomplishment of this dissertation would not be possible without the help from many people 

who contributed their favors throughout my study in McGill University.  

 

First of all, I am very indebted to my supervisor Prof. In-Ho Jung for acceptance of my application 

to this Ph.D program, instructive supervision, enthusiastic encouragement and financial support 

during my study in McGill University and Seoul National University. Prof. In-Ho Jung has 

inspired me a lot especially by his discerning idea on research and innovative capability on 

converting theoretical knowledge to industrial applications. His diligence and enthusiasm on 

research, kind assistance and encouragement in my life have also set a good example for me. In 

addition, I would like to express my sincere appreciation to my co-supervisor Prof. Mainul Hasan 

who gave me good ideas for completing my project and current thesis writing.   

 

Then, I would like to thank my parents for giving me the life, bringing me up, educating me and 

encouraging me on my study all the time. And also, I would like to express my gratitude towards 

my elder sister, elder brother and brother-in-law who have been supporting me unselfishly. 

Additional thanks to my little nephew Yifan Feng, who always brings me lots of cheers and 

joyfulness. 

 

I am also very grateful to Dr. Min-Kyu Paek who worked as a postdoctoral fellow in my group. 

He helped me a lot with my study and also gave me courage during my hard time in life.   

 



11 
 

I also appreciate the aids from my other group members including Dr. Pierre Hudon, Dr. Marie-

Aline Van Ende, Dr. Zhijun Zhu, Dr. Senlin Cui, Mr. Weitong Du, Ms. Yumin Zhang, Ms. Xintong 

Du, Dr. Junghwan Kim, Dr. Dong-Geun Kim, Dr. Bikram Konar, Dr. Sourav Kumar Panda, Dr. 

Elmira Moosavi, Mr. Jaesung Lee et al. in various ways.  

 

The kind help from my good friends Dr. Baoqi Guo and Dr. Shuang Gao is very appreciated. I also 

would like to thank many other friends who prayed for me in Canada and China. 

 

The administrative help from Ms. Barbara Hanley, Ms. June Persaud and Ms. Leslie Bernier during 

my Ph.D is also very appreciated.  

 

I acknowledge McGill University for offering me the McGill Engineering Doctorate Award 

(MEDA), and financial support from Tata Steel Europe, Voestalpine Stahl, RioTinto Iron and 

Titanium, Hyundai Steel, Doosan Heavy Industry and Construction, Natural Sciences and 

Engineering Research Council of Canada (NSERC), POSCO, JFE Steel, Nucor Steel, RHI, RIST, 

Nippon Steel and Sumitomo Metals Corp., Schott A.G. 

 

Lastly, I would thank the God almighty for giving me courage and strength to overcome the 

difficulties and complete this dissertation.  

 

 

 

 

 



12 
 

Preface and Contributions of Authors 

All the work presented in the thesis was performed in the High Temperature Thermochemistry 

Laboratory in the Department of Mining and Materials Engineering, McGill University. Four 

chapters are included in this Ph.D thesis and have been and will be submitted for publication: 

  

Chapter 3: Critical Evaluation and Thermodynamic Optimization of the Fe-P System by Zhimin 

You and In-Ho Jung, published in Metallurgical and Materials Transactions B. 

 

Chapter 4: Thermodynamic Optimization of the Mn-P and Fe-Mn-P Systems by Zhimin You and 

In-Ho Jung, on revision for being published in CALPHAD. 

 

Chapter 5: Critical Evaluation and Thermodynamic Optimization of the Al-P and Fe-Al-P 

Systems by Zhimin You and In-Ho Jung, published in Journal of Phase Equilibria and Diffusion. 

 

Chapter 6: Critical Evaluation and Thermodynamic Modeling of the Fe-Si-P and Fe-C-P Systems 

by Zhimin You and In-Ho Jung, to be submitted to Metallurgical and Materials Transactions B. 

 

Appendix A: Application of the Present Thermodynamic Database to the Dephosphorization of 

Ferromanganese (FeMn) Alloys by Zhimin You and In-Ho Jung, to be submitted: September, 2020. 

 

For all the work presented, the author of current thesis is the main investigator, who is in charge 

of the research plan, literature review and data analysis, thermodynamic modeling and database 

development, and manuscript preparation. All thermodynamic modeling, manuscript writing and 



13 
 

corrections during the present study were finished under the supervision and guidance of Professor 

In-Ho Jung. Besides, Dr. Pierre Hudon assisted the translation of the abstract from English to 

French.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

List of Figures 

Chapter 1 

Figure 1.1 Flow chart of the present thermodynamic optimization using the CALPHAD 

method……………………………………………………………………………………………28 

Chapter 2 

Figure 2.1 Geometric models: (a) Kohler model, (b) Kohler / Toop model, (c) Muggianu Model, 

and (d) Muggianu / Toop Model…………………………………………………………………47 

Figure 2.2 Schematic graph of the two sublattices (A, B)m(C, D)n solid solution model…………50 

Chapter 3 

Figure 3.1 Present optimized phase diagram of the Fe-P system (a) compared with experimental 

data, and (b) compared with previous assessments………………………………………….…...65 

Figure 3.2 Phase diagram of the Fe-P system in the Fe-rich region………………………………67 

Figure 3.3 Heat capacities 𝐶𝑃 stoichiometric compounds (a) Fe3P, (b) Fe2P, and (c) FeP………69 

Figure 3.4 Thermodynamic properties of iron phosphides in the Fe-P system (a) 𝛥𝐻298.15 K
° , (b) 

𝛥𝐻900 K
° , and (c) 𝑆298.15 K

°  ………………………………………………………………………...72 

Figure 3.5 Gibbs energies of formations of Fe3P and Fe2P from γ-Fe and P2(g)…………….......74 

Figure 3.6 Equilibrium partial pressures of phosphorus vapor of reactions (a) 4FeP(s) =

4Fe2P(s) + P2(g) , (b) 2FeP2(s) = 2FeP(s) + P2(g) , and (c) 4FeP2(s) = 4FeP(s) + P4(g) , 

depending on the temperature………………………………………………………………….…75 

Figure 3.7 Standard Gibbs energy change for the reaction of P2 dissolution in liquid 

Fe…………………………………………………………………………………………………78 

Figure 3.8 Activity of Fe in the liquid Fe-P solution at 1550 ℃, along with experimental data…81 



15 
 

Figure 3.9 Activity of P(l) in the liquid Fe-P solution with reference to pure P(l) as a standard state 

at (a) 1650 ℃, (b) 1600 ℃, (c) 1536 ℃, (d) 1500 ℃, (e) 1400 ℃, and (f) 1300 ℃…………….…83 

Figure 3.10 Enthalpy and Gibbs energy of mixing of the Fe-P liquid solution at 1550 ℃ optimized 

in the present study in comparison with experimental data………………………………………87 

Figure 3.11 (a) Distribution coefficient of P, and (b) dissolved [P] content in molten Fe after 

dephosphorization of the liquid Fe-P solution with molten slag at 1550 ℃ to 1700 ℃ ………….89 

Chapter 4 

Figure 4.1 Optimized phase diagrams of the (a) Fe-P (b) Fe-Mn, and (c) Mn-P systems……….113 

Figure 4.2 Enthalpy of mixing of the liquid solutions in the (a) Fe-P and (b) Mn-P 

systems……………………………………………………………………………………...…..115 

Figure 4.3 Calculated activities (a) 𝑎P
R, and (b) 𝑎Mn

R  of the liquid Mn-P solution in the references 

of pure liquid P and Mn, compared to experimental data………………………………………117 

Figure 4.4 Heat capacities of (a) MnP, (b) Mn2P, and (c) Mn3P in the Mn-P system……………119 

Figure 4.5 Standard enthalpy of formation ∆𝐻298.15𝐾
°  and entropy 𝑆298.15𝐾

°  of stoichiometric 

manganese phosphides at 298.15 K…………………………………………………………….121 

Figure 4.6 Gibbs energy of formations of (a) Mn3P, (b) Mn2P, (c) Mn3P2, and (d) MnP from CUB-

Mn and P2(g)………………………………..…………………………………………………..124 

Figure 4.7 Calculated equilibrium vapor pressures of P2 and P4 gas of the reactions (a) 

4MnP(s) = 2Mn2P(s) + P2(g)  and (b) 2MnP3(s) = 2MnP(s) + P4(g) , compared to 

experimental data……………………………………………………………………………….126 

Figure 4.8 Calculated phase diagram of the Fe2P-Mn2P system, compared to experimental 

data……………………………………………………………………………………………...129 



16 
 

Figure 4.9 Calculated isopleths of the Fe-Mn-P system at mass ratios of (a) Fe: Mn = 1: 9, (b) 

Fe: Mn = 5: 5, (c) Fe: Mn = 9: 1, and (d) Fe: Mn = 19: 1, compared to experimental data……129 

Figure 4.10 Calculated phase diagrams of the Fe-Mn-P system at (a) wt. %P = 1, (b) wt. %P = 6, 

and (c) wt. %P = 12, compared to experimental data…………………………………………..131 

Figure 4.11 Calculated isothermal section in the Fe-rich region of the Fe-Mn-P system at 1000 ℃, 

compared to experimental data………………………………………………………………….133 

Figure 4.12 Isothermal phase diagram of the Fe-Mn-P system at 800 ℃………………..…….134 

Figure 4.13 Liquidus projection of the Fe-Mn-P system between 1000 ℃ and 1500 ℃, compared 

to experimental data…………………………………………………………………………….135 

Figure 4.14 Calculated activities (a) 𝑎P
R, (b) 𝑎Fe

R , and (c) 𝑎Mn
R  in various liquid Fe-Mn-P solutions, 

compared to experimental data …………………………………………………………………137 

Figure 4.15 Calculated activities of (a) P(l) at 𝑥Mn = 0.016 − 0.20 and 1550 ℃, and (b) Mn(l) at 

𝑥Mn = 0.036 − 0.041 and 1500 ℃ of the liquid Fe-Mn-P, compared to experimental data…..138  

Figure 4.16 Effect of Mn on the activity coefficient of P in the liquid Fe-Mn-P solution at 1400 

℃ and 1550 ℃, compared to experimental data………………………………………………..140 

Figure 4.17 Predicted Henrian activity coefficient of P in the Fe-Mn melts at 1400 ℃ to 1700 

℃………………………………………………………………………………………………..141 

Figure 4.18 Predicted phase diagrams of the (a) Fe3P-Mn3P system and (b) FeP-MnP system...142 

Figure 4,19 Predicted iso-activity contours of (a) Fe(l), (b) Mn(l), and (c) P(l) of the liquid Fe-

Mn-P solution at 1550 ℃……………………………………………………………………….143 

Chapter 5 

Figure 5.1 Optimized phase diagrams of the (a) Fe-P system and (b) Fe-Al system………..…170 

Figure 5.2 The Al-P phase diagram in the (a) full composition and (b) Al-rich region………...173 



17 
 

Figure 5.3 Heat capacity of AlP against the temperature……………………………………….174 

Figure 5.4 Vaporization pressures of Al(g) and P2(g) above solid AlP phase………………….177 

Figure 5.5 Calculated isopleths of the Fe-Al-P system at (a) wt. %P = 6, (b) wt. %P = 9, (c) 

wt. %Al = 10, and (d) wt. %Al = 25, compared to the experimental data…………………….178 

Figure 5.6 Isothermal phase diagram of the Fe-Al-P system on the Fe-rich corner at 1000 ℃, 

compared to experimental data……………………………..…………………………………...180 

Figure 5.7 Isothermal diagrams of the Fe-Al-P system at (a) 450 ℃, (b) 650 ℃, and (c) 800 ℃..181 

Figure 5.8 Liquid projection of the Fe-Al-P system together with experimental data……….…183 

Figure 5.9 Effect of Al on the activity coefficient of P in the liquid Fe-Al-P solution at 1400 ℃ 

and 1600 ℃, compared to experimental data ……………………………….………….….……185 

Chapter 6 

Figure 6.1 Calculated phase diagrams of the (a) Fe-P, (b) Si-P, and (c) Fe-Si systems…………211 

Figure 6.2 Pseudobinary (a) FeSi − FeP (b) FeSi − FeSi4P4 and (c) FeSi2 − FeSi4P4 diagrams in 

the ternary Fe-Si-P system compared to experimental data……………………………..………214 

Figure 6.3 Calculated isopleths of the Fe-Si-P system at (a) wt. %Si = 7 and (b) wt. %P = 13, 

compared to experimental data……………………….…………………………………………216 

Figure 6.4 Calculated isothermal section of the Fe-Si-P system on the Fe-rich corner at 1000 ℃, 

compared to experimental data………………………………………………………………….217 

Figure 6.5 Calculated liquidus surface projection of the Fe-Si-P system between 1000 ℃ and 1500 

℃, compared to experimental data ……………………………………………………………..218 

Figure 6.6 Effect of Si on the activity coefficient of P (γP
Si) in the liquid Fe-Si-P alloys from 1400 

to 1600 ℃, compared to experimental data……………………………………………………...220 



18 
 

Figure 6.7 Calculated solubility of P2(g) in the Si-Fe melts at 1450 ℃ under the partial pressure 

of 𝑃P2(𝑔) = 0.184 Pa, compared to experimental data………………………………………….221 

Figure 6.8 Calculated phase diagrams of the (a) Fe-C and (b) C-P systems……………………222 

Figure 6.9 Calculated vertical phase diagrams of (a) Fe91P9 − Fe95.5C4.5, (b) Fe92P8 − Fe97C3, (c) 

Fe98P2 − Fe98C2 , (d) Fe98.4P1.6 − Fe98.4C1.6 , and (e) Fe − Fe97P1.5C1.5  in weight percent, 

compared to experimental data………………………………………………………………….223 

Figure 6.10 Variation of the temperature along with P content of the Fe-C-P system at wt. %C =

2.4, compared to experimental data………………….…………………………………………226 

Figure 6.11 Variation of the temperature with P content along the metastable liquidus reaction 

Liquid = FCC_A1 + Fe3C, together with experimental data……………………………………227 

Figure 6.12 Calculated isothermal sections of the Fe-C-P system on the Fe-rich corner at (a) 

900 ℃, (b) 950 ℃, (c) 1000 ℃, and (d) 1100 ℃, compared to experimental data.……………228 

Figure 6.13 Calculated solubility of C in molten Fe with increasing P content between 1300 ℃ 

and 1600 ℃, compared to experimental data…………………..…………………………...…..232 

Figure 6.14 Calculated Liquidus surface projection of the Fe-C-P system on the Fe-rich corner, 

compared to experimental data………………………………………………………………….234 

Appendix A 

Figure A.1 Solubility of C affected by the P content in the (a) high Mn hot metal and (b) FeMn 

alloys of the Fe-Mn-C-P system at 1400 ℃, compared to experimental data………………….262 

Figure A.2 Predicted P partition coefficient between molten slag and (a) high Mn hot metal and 

(b) high-C FeMn alloys based on present database, compared to experimental data…………..263 

Figure A.3 Variation of the P content in metal (100 g) with the contents of BaO and MnO of the 

flux (15 g) at 1300 ℃……………………………………………………………………………269 



19 
 

Figure A.4 Variations of the quantity of all stable phases with the BaO content at 1300 ℃ at (a) 

wt.%MnO = 10, (b) wt.%MnO = 15, (c) wt.%MnO = 20, and (d) wt.%MnO = 25 of the flux…270 

Figure A.5 Variations of the amount of all stable phases and the dissolved [P] content of FeMn 

alloys with the BaO content at 1300 ℃ when m(MnO) = 22.67 wt.% of the flux………………271  

Figure A.6 Effect of the temperature on the (a) dephosphorization efficiency, (b) activity of each 

slag component, and (c) formation of gas species………………………………………………272 

Figure A.7 Variation of each alloy component with the added amount of flux in the composition 

of 41wt.%BaO-22.67wt.%MnO-36.33wt.%BaCl2 at 1361 ℃………………………………….274 

Figure A.8 Effect of initial Si content of the flux on (a) dephosphorization efficiency and (b) 

formation of stable phases………………………………………………………………………275 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

List of Tables 

Chapter 3 

Table 3.1 Summary of crystal structure information of all solid phases in the Fe-P system…….63 

Table 3.2 Optimized model parameters for the Fe-P system (J/mol, J/mol-K)……….…..……..63 

Table 3.3 Invariant reactions of the Fe-P system in the present study…………………………..66 

Chapter 4 

Table 4.1 Summary of crystal structure information of all solid phases in the Fe-Mn-P system..108 

Table 4.2 Optimized model parameters for the Fe-Mn-P system (J/mol, J/mol-K)……………109 

Table 4.3 Invariant reactions of the Mn-P system optimized in the present study………………114 

Table 4.4 Invariant reactions of the Fe-Mn-P system with experimental data…………………136 

Chapter 5 

Table 5.1 Summary of crystal structure information of all solid phases in the Fe-Al-P system..166 

Table 5.2 Optimized model parameters for the Fe-Al-P system (J/mol, J/mol-K)……………..167 

Table 5.3 Standard enthalpy of formation (∆𝐻298.15𝐾
° ) of AlP in the Al-P system…………….175 

Table 5.4 Standard entropy (𝑆298.15 𝐾
° ) of AlP in the Al-P system………………………………176 

Table 5.5 Invariant reactions of the Fe-Al-P system with experimental data…………………..184 

Chapter 6 

Table 6.1 Summary of crystal structure information of all solid phases in the Fe-Si-P system..204 

Table 6.2 Summary of crystal structure information of all solid phases in the Fe-C-P system..205 

Table 6.3 Optimized model parameters for the Fe-Si-P system (J/mol, J/mol-K)……………..205 

Table 6.4 Optimized model parameters for the Fe-C-P system (J/mol, J/mol-K)………………208 

Table 6.5 Invariant reactions of the Fe-Si-P system with experimental data…………………..219 

Table 6.6 Invariant reactions of the Fe-C-P system with experimental data………………….…234 



21 
 

Appendix A 

Table A.1 Chemical composition (wt.%) of starting high-C FeMn alloy (100 grams)…………267 

Table A.2 Optimal composition (wt.%) of the BaO-MnO-BaF2 flux………………………….271 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

List of Abbreviations and Symbols 

𝑎𝑃
𝐻                   Activity of phosphorus in the Henrian standard state 

𝑎𝑃
𝑅                   Activity of phosphorus in the Raoultian standard state 

𝑎𝑃
𝑤𝑡.%              Activity of phosphorus in the 1 wt.% standard state 

ACM              Acid Calorimerty Method 

AE                  Aging Examination 

BWRMM       Bragg-Williams Random Mixing Model 

CALPHAD    CALculation of PHAse Diagrams 

CA                 Chemical Analysis 

CCM              Calorimetry Combustion Measurement 

CEF                Compound Energy Formalism 

𝑪𝑷                   Molar heat capacity, J/mol/K 

CM                 Calorimetry Method 

CMT               Casting Microsonde Test 

DCM              Drop Calorimetry Method 

DM                 Diffusion Method 

DTA               Differential Thermal Analysis 

DSC               Differential Scanning Calorimeter 

EE                  Electrolytical Etching 

EMF               Electromotive Force 

EPMA            Electron Probe Microanalysis  

ESM               Electrolytic Separation Method 

G                    Molar Gibbs energy, J/mol 



23 
 

𝐺𝑚𝑔               Magnetic contribution to the Gibbs energy, J/mol 

𝐺𝑇
°                   Molar Gibbs energy of the pure component at temperature T, J/mol 

𝐺𝑒𝑥                 Excess Gibbs energy, J/mol 

𝐺𝑆
𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟        Gibbs energy contribution of the disordered part, J/mol 

𝑔(𝜏)               Polynomial fraction                

HEM              Hot Extraction Method 

𝐻𝑇
°                   Molar enthalpy of pure component at temperature T, J/mol 

HT                  Holding Test 

[i]                   The component i in molten steel 

(i)                   The component i in slag 

IAC                 Infrared Analysis with Combustion 

KEM              Knudsen effusion method 

𝐿𝑖                    Interaction parameter of the i order 

𝐿𝑃                   The distribution of phosphorus between slag and metal (𝐿𝑃 = wt. %(P)/wt. %[P]) 

MA                 Microscopic Analysis 

ME                  Microscopic Examination 

MBM              Molybdenum Blue Method  

MLE               Mass Loss Effusion 

MQM              Modified Quasichemical Model 

𝑀𝑖                    Molar atomic weight of element i 

MT                  Magnetic Test 

MSA                Mass Spectroscopic Analysis 

MSM               Magnetic Susceptibility Measurement 



24 
 

𝑛𝑖                     The number of moles of component i, mole 

𝑛𝐴𝐴, 𝑛𝐵𝐵, 𝑛𝐴𝐵  The numbers of moles of (A-A), (B-B) and (A-B) pairs, mole 

P                      The fraction of the magnetic enthalpy absorbed above the critical temperature 

PCM                Phosphorus Colorimetric Method 

P2
+, P+              Intensities of ions P2

+ and P+, respectively 

𝑞𝐴𝐵
𝑖𝑗

                   Interaction parameter between A and B species (i, j: power of the mole fraction of 

                         A and B species, J/mol 

R                      Gas constant, J/mol/K 

QM                  Quenching Method 

QTM                Quantitative Television Microscope 

SEM-EDS        Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy  

𝑆298.15𝐾
°             Standard entropy at 298.15 K, J/mol/K 

𝑆𝑇
°                      Molar entropy at temperature T, J/mol 

SM                   Scale Measurement 

T                       Temperature in the unit Kevin (K) 

TA                    Thermal Analysis 

TCFM              Temperature Controlled Filtration Method 

TM                   Transportation Method 

𝑇𝐶                     Curie temperature, K 

𝑇𝑁                     Neel temperature, K 

𝑥𝑖                      Mole fraction of component i 

𝑋𝐴𝐴, 𝑋𝐴𝐵, 𝑋𝐵𝐵   Pair fraction of (A-A), (A-B), (B-B) pairs 

XMA                X-ray Microprobe Analyzer 



25 
 

XRD                 X-ray Diffraction 

XRF                  X-ray Fluorescence 

𝑦𝑖                      Site fraction of component i in the designated sublattice 

𝑌𝐴, 𝑌𝐵                Coordination equivalent fractions of components A and B 

𝑍𝐴, 𝑍𝐵               Coordination number of atoms A and B, respectively  

𝑍𝐴𝐴                    Coordination number when all nearest neighbors of A atoms are A atoms  

                          (𝑍𝐵𝐴, 𝑍𝐵𝐵 defined in the analogous manner) 

τ                          The ratio of instant temperature to critical temperature (Curie or Neel temperature) 

β                        Average magnetic moment per mole of atoms, B 

𝛾𝑃
0                      Henrian activity coefficient of phosphorus 

Δ𝑔𝐴𝐵                 Gibbs energy change of forming 2 moles of (A-B) pairs in the atom pair  

                          exchange-reaction 

𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟            Gibbs energy contribution of long-range ordering, J/mol 

𝛥𝑆𝑐𝑜𝑛𝑓.              Configurational entropy of mixing, J/mol/K 

𝛥𝐻298.15𝐾
°           Standard enthalpy of formation at 298.15 K, J/mol 

∆𝐻𝑚𝑎𝑥
𝑚𝑖𝑥               The most negative value for the enthalpy of mixing, kJ/mol 

 

 

 

 

 

 

 

 



26 
 

Chapter 1: Introduction 

1.1 Background 

High alloy steels have aroused increasingly wide interest because of their advanced mechanical 

properties, weight-lightening characteristics, and electromagnetic properties etc. Meanwhile, there 

are some challenging difficulties in the upstream and downstream processes during producing high 

alloy steels. For example, the phosphorus in steels originated from the raw materials (iron ores, 

flux, coke etc.) can causes serious steel defects such as weld brittleness and cracks, despite very 

low amount. However, it is hard to control P below the allowed concentration especially at the 

presence of the alloying element such as Mn and Cr, etc. that has high affinity to P.  

 

The currently available thermodynamic database for molten steels was developed mainly using the 

Bragg-Williams Random Mixing Model (BWRMM) based on the experimental data in the Fe-rich 

region. However, the chemical reactions such as deoxidation, nitrogen degassing and 

dephosphorization reactions during the refining process of high Mn steel and high Si steel are not 

calculated very accurately using the currently available database stored in FactSage and 

Thermocalc [1]. Moreover, the phase equilibria (some liquidus and solidus, phase transformation 

between solid phases, etc.) of high alloy steels are not described accurately either. Although several 

low-order P-containing high alloy steel systems have recently been thermodynamically optimized 

by researchers, the discrepancies left in some binary and ternary systems were still not resolved 

and the multicomponent systems are poorly predicted in the existing modeling studies. This is 

probably due to inappropriate selection of the model or model parameters used in the database. In 

the previous assessments based on the BWRMM, the random mixing of entropy was assumed and 

an intrinsic Muggianu interpolation technique was used to predict the Gibbs energy of the ternary 
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solution from binary excess parameters, which is the limitation of this model especially when the 

solution is highly deviated from the ideal mixing assumption. Using the BWRMM, the excessive 

interaction parameters especially big temperature-dependent terms are always required to 

reproduce the experimental data of the binary and ternary systems. This may cause a miscibility 

gap and hypothetical solid phases appearing at very high temperature region. Besides, excessive 

model parameters can also cause inconsistency when extending from low-order systems to 

multicomponent systems. Therefore, it is essential to develop a more accurate and self-consistent 

thermodynamic database for the high alloy steel applications encompassing from refining to the 

final steel product.  

 

1.2 Objective 

The objective of the present study is to develop a new thermodynamic database for the entire Fe-

Mn-Al-Si-C-P six-component system containing all solid and liquid phases by including P in the 

existing Fe-Mn-Al-Si-C database. This system is a key alloy for advanced high strength steels. In 

the present study, all P-containing sub-systems of the Fe-Mn-Al-Si-C-P alloys were critically 

optimized using the CALculation of PHAse Diagrams (CALPHAD) method. Besides, some of the 

sub-systems of the Fe-Mn-Al-Si-C alloys were also slightly revised based on previous modeling 

results [2-8]. The developed thermodynamic database for the Fe-Mn-Al-Si-C-P system will be part 

of the big database of the Fe-Mn-Al-Si-Cr-Ni-Ti-Nb-C-O-N-P-S system in future FSstel database 

in FactSage software [1].  
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1.3 CALPHAD Method 

In the present study, thermodynamic modeling of all the P containing sub-systems of the Fe-Mn-

Al-Si-C-P alloys was performed using the CALculation of PHAse Diagrams (CALPHAD) method 

(http://www.calphad.com), which was originally introduced by Kaufman and Bernstein [9] in 

1970s, and then developed by Saunders and Miodownik [10], Fabrichnaya et al. [11], Lukas et al. 

[12], Kattner [13], and Liu and Wang [14] etc.  

 

Figure 1.1 Flow chart of the present thermodynamic optimization using the CALPHAD method 

 

The CALPHAD approach is based on the fact of phase diagram as a manifestation of the 

equilibrium thermodynamic properties of the system. The phase diagram is a very powerful tool 

for predicting the state of a system under different conditions (temperature, chemistry, pressure, 

etc). Therefore, this approach is usually employed to model thermodynamic properties for each 

phase and simulate the behavior of multicomponent phases, aiming at promoting computational 

thermodynamics by developing a self-consistent thermodynamic database based on the critical 

http://www.calphad.com/
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assessment of available data. Overall, the CALPHAD method is one of the most effective ways to 

predict complex thermochemistry process in the multicomponent system. It helps understand 

various industrial and technological processes and becomes more and more popular in new 

materials and processes designing. 

 

The flow chart of present thermodynamic optimization using the CALPHAD method is 

demonstrated in Fig. 1.1. Firstly, the literature data of stables phases such as crystal structures (site 

occupations, symmetry, etc.), thermodynamic properties (Gibbs energies, enthalpies, entropies, 

heat capacities, activities, etc.), and phase diagram (liquidus, solidus, isopleths, isothermal sections, 

liquid projections, solubilities, other phase boundaries, etc.), magnetic ordering and chemical 

ordering were collected. Then the accuracy and reliability of collected experimental data must be 

strictly evaluated in terms of sample preparation, experimental procedures and techniques, 

systematic errors, data analysis approaches, etc. In the case of experimental data are not available 

in the literature, key phase diagram experiments may be needed to clarify the phase relations of 

target systems. In the present study, experiments are not necessary for the optimization. Thirdly, 

appropriate thermodynamic models were selected based on the structures of studied phases. In this 

work, the Modified-Quasichemical Model (MQM) [15,16] and Compound Energy Formalism 

(CEF) [17] were used to describe the liquid phases and solid solutions, respectively.  The MQM 

proposed by the FactSage group has an outstanding advantage in describing liquid solutions 

specially with strong short-range ordering.  The CEF is widely used to model the solid solutions. 

Afterwards, thermodynamic modeling was performed by determining Gibbs energy expressions 

of all stable phases on the basis of Gibbs energy minimization with assist of FactSage software [1]. 

The adjustable model parameters of Gibbs energy expressions were determined by reproducing 
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the reliable experimental data. Before completing the database development, the accuracy and 

consistency in describing the optimized system and extended higher-order system have to be 

carefully checked. Finally, the construction of thermodynamic database was completed and can be 

used to back-calculate unexplored phase diagrams and thermodynamic properties of the studied 

system for various applications. 

 

1.4 Organization of the Thesis  

The current PhD thesis consists of eight chapters and it is organized as follows: 

Chapter 1 introduces the project background and objective of the present study. Besides, the 

CALPHAD method used for the present thermodynamic modeling of high alloy steel systems is 

introduced, and organization of current thesis is given.  

Chapter 2 presents the overview of thermodynamic models used for thermodynamic optimization 

of all phases (pure elements, stoichiometric compounds, liquid solutions and solid solutions) 

involved in the present study.  

Chapter 3 presents the thermodynamic modeling results of the binary Fe-P system. As the most 

fundamental steel system containing P, the Fe-P system is very important for dephosphorization 

of high alloy liquid steels. Much emphasis is put on the determination of thermodynamic properties 

of P in the molten Fe. The dephosphorization reactions at the steel/slag interface of different 

temperatures and compositions were also calculated with combination of the FToxid database in 

FactSage to validate the accuracy of the present database. 

Chapter 4 presents the critical evaluation and thermodynamic modeling of the Mn-P and Fe-Mn-

P systems. Thermodynamic properties of all stable Mn phosphides and ferromanganese 
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phosphides were critically optimized based on available experimental data. The thermodynamic 

behavior of P in molten Mn was compared with that in molten Fe.  

Chapter 5 presents the critical thermodynamic optimization results of the binary Al-P and ternary 

Fe-Al-P systems. The optimized Gibbs energy of stoichiometric AlP compound, thermodynamic 

behavior of P in liquid Al and Fe-Al alloys, and phase equilibria of various isopleths and isothermal 

sections of the Fe-Al-P system were calculated in comparison with available experimental data. 

Chapter 6 presents the critical evaluation and thermodynamic optimization results of the Fe-Si-P 

and Fe-C-P systems. Thermodynamic properties of P in Fe-rich and Si-rich liquid solution regions, 

various vertical phase diagrams, isothermal sections and liquid projections of the ternary Fe-Si-P 

and Fe-C-P systems are in good agreement with available experimental data. 

Chapter 7 summarizes the results included in the present PhD thesis and also gives some 

suggestions for the future work based on the present study.  

Chapter 8 highlights the contributions of present PhD work to the original knowledge.  

Appendix A presents the application of the thermodynamic database developed in this study to 

the dephosphorization calculations of high Mn alloys using proper fluxes. The optimal chemistry 

of the flux for maximizing the dephosphorization efficiency was obtained. Besides, effects of 

conditions on the dephosphorization reactions were also investigated. 
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Chapter 2: Thermodynamic Modeling 

 

2.1 Critical Evaluation and Optimization 

In the present study, thermodynamic modeling of all the sub-systems of the Fe-Mn-Al-Si-C-P 

alloys are performed using the CALculation of PHAse Diagrams (CALPHAD) method based on 

the critical evaluation of all available phase equilibria and thermodynamic data, aiming at 

obtaining one set of consistent Gibbs energies expressions of all phases as functions of temperature 

and composition. During the data evaluation, the discrepancies among available experimental data 

need to be resolved and only reliable data can be selected for further thermodynamic optimization. 

The optimization of a system follows the order from low-order systems to high-order systems to 

ensure self-consistency of the database. The model parameters of low-order systems are 

automatically adopted in the calculations of high-order systems. In this way, once a large self-

consistent thermodynamic database is developed, it can be utilized to calculate any unexplored 

phase diagrams and thermodynamic properties of the systems of interest. Besides, the developed 

database can be applied to various industrial productions and assist in understanding the 

thermochemistry process of different conditions.  

 

During the process of thermodynamic evaluation and optimization using CALPHAD approach, 

the following procedures are followed:  

i. the system of interest is well-defined. As mentioned above, the optimization undergoes in the 

order of low-order systems to high-order systems, so the unaries (Fe, Mn, Al, Si, C, P in various 

solid states, liquid state, gaseous species), binary systems (Fe-P, Mn-P, Al-P, Si-P, C-P, Fe-Mn, 
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Fe-Al, Fe-Si, etc.), ternary systems (Fe-Mn-P, Fe-Al-P, Fe-Si-P, Fe-C-P, etc.), quaternaries and 

even multicomponent systems are defined; 

ii. in the process of data evaluation, all available data from the literature for the system of interest 

are collected: (1) thermodynamic data including heat capacity, entropy, enthalpy, Gibbs energy, 

vapor pressure, chemical potential and activity data, etc.; (2) phase equilibria data like liquidus, 

solidus, solubility, melting point and various phase boundaries of multiphases; (3) crystallographic 

structure information like prototype, space group, Pearson symbol, lattice parameters, etc; (4) 

magnetic ordering and chemical ordering of stables phases in the studied system; 

iii. ahead of the thermodynamic optimization, the reliability of all collected literature data should 

be critically evaluated. Once all available experimental data are in good consistency, then 

thermodynamic optimization is directly performed by reproducing the data as much as possible. 

In the cases that experimental data from different sources are not consistent with each other, 

experimental error limits and incoherencies within the data are checked by evaluating the sample 

preparations, experimental procedures and techniques, characteristics ways, etc. Other possible 

experimental errors, for example, total pressure of all gaseous phosphorus species (gaseous P, P2, 

P4), which was often taken as the partial pressure of P2 gas, must be carefully used in the evaluation. 

Eventually, reliable experimental data are reproduced with minimum model parameters. 

Occasionally, it is hard to judge the accuracy of experimental data from very limited information, 

so other experimental results by the same authors can also be referred to judge the reliability of 

their experiments. In addition, systematic evaluation between preliminary thermodynamic 

optimization and multiple systems is always helpful for obtaining consistent assessment; 
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iv. in the case that the available literature data are not sufficient for determining the Gibbs energies 

all involved phases of a system, key experiments may be needed to explore the phase diagrams 

and thermodynamic properties of the target system; 

v. with available experimental data ready for the thermodynamic optimization, proper models are 

selected based on the nature or crystal structure of the phases to calculate the Gibbs energies. The 

number and scale of model parameters highly depends on the model selected for the modeling. A 

good thermodynamic model can minimize the model parameters and improve the predictability of 

thermodynamic database for the high-order and multicomponent systems simultaneously; 

vi. thermodynamic modeling is performed following the order from low-order systems to high-

order systems. The model parameters of low-order parameters are automatically taken advantage 

of in the high-order systems to keep the consistency of the thermodynamic database. In addition, 

reduction of model parameters and enhancement of the predictability of the database in high-order 

systems can also be achieved by introducing appropriate geometric interpolation techniques in the 

ternary liquid solutions. Basically, it is highly preferred to minimize of the model parameters used 

in the database without sacrificing the accuracy in reproducing experimental data;  

vii. once the preliminary optimizations of all the unary, binary and ternary systems are finished, 

then tests on the multicomponent systems are necessary to check the accuracy and consistency of 

the database. Besides, the model parameters of low-order systems can also be reoptimized to 

compensate the discrepancies left in different phases and systems to ascertain overall consistency 

of the developed thermodynamic database.  
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2.2 FactSage Software 

FactSage [1] is a commercial software introduced in 2001 as the fusion of the FACT-Win/ 

F*A*C*T (Thermfact, Canada) and ChemSage/SOLGASMIX (GTT-Technology, Germany) 

thermochemical packages [2]. This software runs on a PC operating under Microsoft Windows 

and consists of a series of information, database, calculation and manipulation modules. In 

FactSage software, complex calculations in the fields of materials science, pyrometallurgy, 

hydrometallurgy, electrometallurgy, corrosion, glass technology, combustion, ceramics, geology, 

etc. can be performed using the databases stored behind the software. The accuracy of 

thermodynamic calculations in FactSage depends on the accuracy of the databases. At the moment, 

there are 18 databases available in the most updated FactSage 7.3. They are ELEM, FTdemo, 

FactPS, SGPS, FToxid, FTsalt, FTmisc, FTOxCN, FTfrtz, FThall, FThelg, FTpulp, FTlite, FTnucl, 

FScopp, FSlead, FSstel, FSupsi, SGsold, SGTE2011, SGTE2014, SGTE2017, BINS, SGUN, 

SGnobl, SpMCBN, and TDnucl databases. The details of the database are available elsewhere [2]. 

The most important database relevant to the present study are the following four databases:  

• The FactPS database contains more than 4800 pure stoichiometric solids, liquids, and gases 

phases. In particular, the Gibbs energy data of gas phase such as O2, N2, CO, CO2, P2, etc. are 

all taken from this database.  

• The FSstel is specialized database for steel, which is an updated version of the SGTE solution 

database [3] and is similar to the TCFE database in ThermoCalc software [4]. It is mainly used 

for phase diagram calculations. The FSstel database contains 31 elements (Al, B, Bi, C, Ca, 

Ce, Co, Cr, Cu, Fe, Hf, La, Mg, Mn, Mo, N, O, Nb, Ni, P, Pb, S, Sb, Si, Sn, Ta, Ti, V, W, Zn, 

Zr) in over 205 completely assessed binary alloy systems, approximately 100 ternary and 20 

quaternary systems, in which there are stable 133 solution phases and 447 stoichiometric 
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compounds. In the FSstel database of FactSage 7.3, the liquid solutions are described using 

Modified Quasichemical Model (MQM) [5,6]. This database is intended for calculating the 

steelmaking processes including (1) reduction of O and S content by de-O and de-S of the melt, 

(2) constitution of a wide range of steels, including austenitic, ferritic and duplex stainless 

steels, carbide and nitride formation, (3) conditions for heat treatment operations to produce a 

desired constitution, (4) conditions for scrap re-melting to maintain as low concentrations as 

possible of undesired “tramp elements”, and (5) melt-crucible interactions, etc.  

• The FTmisc database is mainly developed for the applications on impurity refining of liquid 

metals, and non-ferrous smelting process. In particular, the liquid Fe solution (FTmisc-FeLq) 

database was developed using the United Interaction Parameter Formalism (UIPF) [7] with the 

well-known interaction parameters recommended by JSPS [8]. This database covers over 30 

dilute elements in the Fe melt (Fe-Ag-Al- B-C-Ca-Ce-Co-Cr-Cu-H-La-Mg-Mn-Mo-N-Nb-Ni-

O-Pb-Pd-S-Si-Sn-Ta-Ti-U-V-W-Zr). That is, the accuracy can only be ensured in the Fe-rich 

liquids with dilute alloy components.  

• The FToxid database contains data of pure oxides and oxides solutions of 23 elements for the 

molten slag, numerous solid solutions and all available stoichiometric compounds in the Al2O3-

CaO-SiO2-MgO-FeO-Fe2O3-MnO-TiO2-Ti2O3-CrO-Cr2O3-ZrO2-NiO-CoO-Na2O-K2O-B2O3-

Cu2O-As2O3-GeO2-PbO-SnO-ZnO-P2O5-S-F system. The database containing both liquid slag 

and solid phases. This is very important database for general pyrometallurgical process 

involving ores, slag, refractories, non-metallic inclusion, etc.    
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Compared to FSstel and FTmisc thermodynamic databases in currently most updated FactSage 7.3 

version, the current PhD work with optimized parameters gives more accurate and self-consistent 

descriptions of the Fe-Mn-Al-Si-C-P system over the full composition range.  

 

2.3 Thermodynamic Models 

2.3.1 Pure Elements and Stoichiometric Compounds 

The Gibbs energies of pure elements and stoichiometric compounds are calculated using the 

following equation:  

T T TG H T S  = −                                                                                                                           (2.1) 

where 𝐺𝑇
° , 𝐻𝑇

°  and 𝑆𝑇
°  are the Gibbs energy, enthalpy and entropy at temperature T in Kevin, 

respectively. The Gibbs energies of pure elements are directly taken from the Scientific Group 

Thermodata Europe (SGTE) database [9]. In the present study, various pure solid phases in 

crystallographic structures such as FCC_A1, BCC_A2, HCP_A3, CBCC_A12, CUB_A13, 

Diamond_A4, etc. liquid and gaseous Fe, Mn, Al, Si, C and P elements are taken into account. The 

Gibbs energies of involved stoichiometric compounds were calculated from the enthalpy and 

entropy as functions of the heat capacity 𝐶𝑃 at given temperature as follows:  

298.15

298.15

T

T K P

T K

H H C dT 

=

=  +                                                                                                    (2.2) 

( )298.15

298.15

/

T

T K P

T K

S S C T dT 

=

= +                                                                                                  (2.3) 

where 𝛥𝐻298.15𝐾
°  is the standard enthalpy of formation at 298.15 K, 𝑆298.15𝐾

°  is the standard 

entropy at 298.15 K, and 𝐶𝑃 is the heat capacity. That is, the Gibbs energies (𝐺𝑇
° ) of stoichiometric 

compounds can be calculated from 𝛥𝐻298.15𝐾
° , 𝑆298.15𝐾

°  and 𝐶𝑃.  
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Basically, the 𝐶𝑃 expression of each compound can be determined by fitting the experimental 𝐶𝑃 

data. In the case of no available experimental 𝐶𝑃 data for a stoichiometric compound, then its 𝐶𝑃 

expression can be predicted using Neumann-Kopp (NK) rule [10] or from heat capacity expression 

of neighboring compounds of the same system. For example, the 𝐶𝑃 of Fe3P, Fe2P and FeP are 

determined based on their experimental 𝐶𝑃 data, but the 𝐶𝑃 expression of FeP2 with no available 

experimental data is estimated from those of Fe3P, Fe2P and FeP. The 𝛥𝐻298.15𝐾
°  is usually 

determined from calorimetry measurements and 𝑆298.15𝐾
°  is integrated from low temperature 𝐶𝑃 

data below 298.15 K. And also, 𝛥𝐻298.15𝐾
°  and 𝑆298.15𝐾

°  are sometimes back-calculated from high 

temperature data, which can be Gibbs energy, enthalpy, entropy, heat capacity, activity, partial 

pressure of gas species, etc. at high temperatures. If there are no available experimental 

information for 𝛥𝐻298.15𝐾
°  and 𝑆298.15𝐾

° , then they can also be adjusted within reasonable ranges 

to reproduce other experimental data. 

 

In the present study, the Gibbs energies of following stoichiometric intermediate compounds were 

considered: 

i. the Fe-P system: Fe3P, Fe2P, FeP, FeP2; 

ii: the Mn-P system: Mn3P, Mn2P, Mn3P2, MnP, MnP3; 

iii: the Al-P system: AlP; 

iv: the Si-P system: SiP, SiP2; 

v: the Fe-Al system: Fe2Al5, FeAl2; 

vi: the Fe-Si system: Fe2Si, Fe5Si3, FeSi, FeSi2; Fe3Si7; 

vii: the Fe-C system: Fe3C; 
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viii: the Mn-Al system: Mn23Al99, Mn4Al11, MnAl12, MnAl4, MnAl6; 

ix: the Mn-Si system: Mn6Si, Mn9Si2, Mn3Si, Mn5Si3, MnSi, Mn11Si19; 

x: the Mn-C system: Mn23C6, Mn3C, Mn5C2, Mn7C3; 

xi: the Al-C system: Al4C3; 

xii: the Si-C system: SiC; 

xiii: the Fe-Si-P system: FeSi4P4; 

xiv: the Mn-Si-C system: Mn5SiC, Mn8Si2C; 

xv: the Al-Si-C system: Al8SiC7, Al4SiC4. 

 

When a pure element or stoichiometric compound exhibits magnetic behavior, an additional 

magnetic contribution term 𝐺𝑚𝑔, which was originally proposed by Inden [11] and then modified 

by Hillert and Jarl [12], has to be taken into account in describing the Gibbs energy:  

( )ln 1 ( )mgG RT g = +                                                                                                         (2.4) 

where, τ is given by 𝑇/𝑇∗ and 𝑇∗ is the critical temperature of magnetic transition associated with 

Curie temperature 𝑇𝐶  for ferromagnetic materials or Neel temperature 𝑇𝑁  for antiferromagnetic 

materials. β is the average magnetic moment per mole of atoms expressed in Bohr magnetons. 

𝑔(𝜏) is a polynomial fraction derived by Hillert and Jarl [12]: 

1 3 9 1579 474 1
( ) 1 1 /

140 497 6 135 600
g D

P P

   


−   
= − + − + +   

   

   ……𝜏 ≤ 1                                      (2.5) 

5 15 25

( ) /
10 315 1500

g D
  


− − − 

= − + + 
 

                ……𝜏 > 1                                                              (2.6) 
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where 518 11692 1
1

1125 15975
D

P

 
= + − 

 
, and the value of P can be considered as the fraction of the 

magnetic enthalpy absorbed above the critical temperature depending on the structure. P is 0.40 

for the simple BCC_A2 phase while P is 0.28 for other common phases.  

 

2.3.2 Liquid Solution 

In a liquid solution with no interaction between the components, all components are randomly 

distributed in the solution. In this case, the Gibbs energy of the liquid solution is calculated using: 

( )
1 1

ln
n n

i i i

i i

G xG RT x x

= =

= +                                                                                                        (2.7) 

where 𝐺𝑖
° is the Gibbs energy of pure liquid component i, 𝑥𝑖 is the mole fraction of component i, 

T is the temperature in Kevin (K), and ( )
1

ln
n

i i

i

R x x
=

  is the contribution of configurational entropy 

to the Gibbs energy resulted from random mixing in one dimensional Ising approximation.  

 

When the components of the liquid solution have the same probability to occupy any lattice sites, 

then the Gibbs energy of the solution is expressed by the regular solution model (random mixing 

model) as follows: 

( )
1 1

ln
n n

ex

i i i

i i

G xG RT x x G

= =

= + +                                                                                               (2.8) 

where 𝐺𝑒𝑥 is the excess Gibbs energy describing the interaction among the components of the 

liquid solution. In the A-B liquid solution, for example, 𝐺𝑒𝑥 is often expressed as a polynomial in 

the mole fraction as follows: 

,

ex ij i j

AB A B

i j

G q x x=                                                                                                              (2.9) 
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where 𝑞𝐴𝐵
𝑖𝑗

 is the interaction parameter and can be temperature-dependent. There are also a few 

more mathematical polynomial expressions for describing the excess Gibbs energy 𝐺𝑒𝑥. One of 

the most popular expressions is “Redlich-Kister” polynomial expressed as below: 

0

( )
n

ex i

A B i A B

i

G x x L x x
=

= −                                                                                          (2.10) 

here 𝐿𝑖 is the interaction parameters which can also be temperature dependent. The type of the 

model as expressed in Eq. (2.10) depends on the value of n used in the optimization as follows: 

i. 𝑛 = 0, it is the regular solution model as described below: 

0

ex

A BG x x L=                                                                                                                     (2.11) 

ii. 𝑛 = 1, it is the sub-regular solution model as described below: 

( )0 1( )ex

A B A BG x x L L x x= + −                                                                                (2.12) 

iii. 𝑛 = 2, it is the sub-sub-regular solution model as described below: 

( )2

0 1 2( ) ( )ex

A B A B A BG x x L L x x L x x= + − + −                                               (2.13) 

In many cases, however, the model for the liquid solutions with assumption of random mixing of 

components is lacking in accuracy, especially in the liquid solutions exhibiting significant 

deviation from ideal mixing. Different components of the liquid solution have tendency to be 

together in terms of energetic reason, that is, the atoms of the solution exhibit short-range ordering. 

Besides, the enthalpy of mixing shows a “V” shape in terms of composition. For example, the 

enthalpy of mixing of the Fe-P solution has a minimum value at around 𝑥𝑃 = 0.33 (Fe: P = 2: 1). 

In this situation, some new models such as the associate solution model and quasi-chemical model 

were developed to describe the liquid solution considering short-range ordering (SRO).  
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In the current PhD thesis, the liquid solution was described using the Modified Quasichemical 

Model (MQM) [5,6] considering the short-range ordering of the nearest-neighbor atoms was used 

to describe liquid Fe-P solution. Compared to the conventional regular solution model (Bragg-

Williams Random Mixing Model), the MQM gives more realistic thermodynamic description of 

the entropy of the liquid phase. In the MQM, the Gibbs energy of pair formation can be expanded 

as a polynomial in the pair fraction instead of the component fraction, and the coordination 

numbers are allowed to vary with composition for describing the short-range ordering of the liquid 

solution. These modifications provide greater flexibility in reproducing experimental data of the 

binary system and combining the binary parameters to higher-order solutions.  

 

In the case of A-B liquid solution, the molecules of atoms A and B are assumed to be distributed 

over the quasilattice sites. The atom pair exchange-reaction of the A-B liquid solution can be 

expressed as follows: 

( ) ( ) 2( ); ABA A B B A B g− + − = −                                                                                               (2.14) 

where (i-j) represents the nearest-neighbor pair between components i and j, and Δ𝑔𝐴𝐵 is the Gibbs 

energy change of forming 2 moles of (A-B) pairs. The Gibbs energy of the liquid solution can be 

calculated by the following equation:  

 . .( ) ( / 2)sol o o conf

L A A B B AB ABG n G n G T S n g= + −  +                                                                          (2.15) 

where 𝑛𝐴 and 𝑛𝐵 are the numbers of moles of A and B atoms, and 𝐺𝐴
°  and 𝐺𝐵

°  are the molar Gibbs 

energies of pure components A and B. 𝛥𝑆𝑐𝑜𝑛𝑓. is the configurational entropy of mixing given by 

random distribution of the (A-A), (B-B) and (A-B) pairs.  

.

2 2
( ln ln ) ln ln ln

2

conf AA BB AB
A A B B AA BB AB

A B A B

X X X
S R n X n X R n n n

Y Y Y Y

      
 = − + − + +      

      
                                (2.16) 
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here 𝑛𝐴𝐴, 𝑛𝐵𝐵 and 𝑛𝐴𝐵 are the numbers of moles of (A-A), (B-B) and (A-B) pairs, and 𝑋𝐴𝐴, 𝑋𝐴𝐵 

and 𝑋𝐵𝐵  are the pair fraction of the corresponding atom pairs. 𝑌𝐴  and 𝑌𝐵  are the coordination 

equivalent fractions of components A and B. The pair fractions 𝑋𝐴𝐴, 𝑋𝐴𝐵, 𝑋𝐵𝐵 and coordination 

equivalent fractions 𝑌𝐴, 𝑌𝐵 can be calculated as follows:  

( )/AA AA AA AB BBX n n n n= + +
                                                                                                     (2.17) 

( )/AB AB AA AB BBX n n n n= + +                                                                                                      (2.18) 

( )/BB BB AA AB BBX n n n n= + +                                                                                                       (2.19) 

1

2
A AA ABY X X= +                                                                                                                    (2.20) 

1

2
B BB ABY X X= +                                                                                                                                  (2.21) 

𝛥𝑔𝐴𝐵 is the model parameter for reproducing the Gibbs energy of the binary A-B solution, which 

can be expanded as a polynomial in terms of the atomic pair fractions 𝑋𝐴𝐴 and 𝑋𝐵𝐵 as follows: 

0 0

1 1

o i i j j

AB AB AB AA AB BB

i j

g g g X g X
 

 =  + +                                                                                  (2.22) 

where 𝛥𝑔𝐴𝐵
𝑜 , 𝑔𝐴𝐵

𝑖0  and 𝑔𝐴𝐵
0𝑗

 are the adjustable model parameters that can be functions of the 

temperature. In the MQM, the coordination numbers of atoms A and B, 𝑍𝐴 and 𝑍𝐵, are allowed to 

vary with composition to reproduce the short-range ordering of the liquid phase and expand to 

higher-order systems using proper geometric interpolation technique. 

1 1 2 1

2 2

AA AB

A A

A AA AA AB AB AA AB

n n

Z Z n n Z n n

   
= +   

+ +   
                                                                              (2.23) 

1 1 2 1

2 2

BB AB

B B

B BB BB AB BA BB AB

n n

Z Z n n Z n n

   
= +   
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                                                                              (2.24) 
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here 𝑍AA
A  is the value 𝑍A when all nearest neighbors of a A atom are A atoms, and 𝑍AB

A  is the value 

of 𝑍A  when all nearest neighbors of the A atom are B atoms. 𝑍BB
B  and 𝑍BA

B  are defined in an 

analogous manner.  

 

The MQM can be easily extended from binary systems to ternary and multicomponent systems. 

For simplicity, the ternary 1-2-3 liquid solution is taken as an example. The pair exchange reaction 

between M and N atoms of the 1-2-3 solution distributed over the quasi-lattice sites is as follows:  

( ) ( ) 2( ); MNM M N N M N g− + − = −                                                                                                (2.25) 

here M, N = 1, 2, 3, (M-M), (M-N) and (N-N) represent the first-nearest-neighbor pairs between 

components M and N, and Δ𝑔𝑀𝑁 is the Gibbs energy change of forming 2 moles of (M-N) pairs. 

The Gibbs energy of the liquid solution is calculated using:  

3 3 3
. .

1 1

( / 2)sol o conf

L M M MN MN

M N M M

G n G T S n g
=  =

= −  +                                                                             (2.26) 

where 𝑛𝑀 is the number of the moles of atom M (M = 1, 2, 3) in the liquid solution, 𝐺𝑀
°  is the 

molar Gibbs energy of pure liquid M, 𝑛𝑀𝑁 is the number of the moles of M-N pairs, Δ𝑔𝑀𝑁 is the 

Gibbs energy change of forming 2 moles of (M-N) pairs, and 𝛥𝑆𝑐𝑜𝑛𝑓.  is an approximate 

configurational entropy of mixing given by the following expression: 

3 3 3 3
.

2
1 1 1

ln ln ln
2

conf MM MN
M M MM MN

M M N M MM M N

x x
S R n x R n n

Y Y Y= =  =

   
 = − − +   

    
                                  (2.27) 

where 𝑥𝑀 is the mole fraction of component M, 𝑛𝑀𝑀 is the number of moles and 𝑥𝑀𝑁 is the mole 

fraction of each type of atom pairs (1-1, 2-2, 3-3, 1-2, 1-3, 2-3), and 𝑌𝑀 and 𝑌𝑁 is the coordination 

equivalent fraction of components M, N (M, N = 1, 2, 3), they are defined as follows: 
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3

1

/M M i

i

x n n
=

=                                                                                                                                        (2.28) 

3 3

1 1

/ ( )MN MN ii ij

i i
j i

x n n n
= =



= +                                                                                                                    (2.29) 

1

2
M MM MN

M N

Y x x


= +                                                                                                                             (2.30) 

In the MQM used for the ternary and higher-order systems, various geometric interpolation 

techniques [6] based on the nature of each binary system within a ternary system are used to predict 

the Gibbs energy of the liquid solution. If necessary, ternary correction terms can also be further 

introduced to give more precise description of the Gibbs energy of the ternary liquid solution. Four 

types of geometric interpolation models including symmetric Kohler model and Muggianu model, 

and asymmetric Kohler/Toop model and Muggianu/Toop model are commonly used by the 

FactSage community, as demonstrated in Fig. 2.1. For example, the Toop interpolation technique 

with P as the asymmetric component is adopted for the Fe-Mn-P liquid solution in the present 

database, because the Fe-P and Mn-P liquid solutions deviate significantly from ideal mixing while 

the Fe-Mn liquid solution is almost in ideal mixing. 

 

       (a) Kohler model                                                  (b) Kohler / Toop model 
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      (c) Muggianu model                                       (d) Muggianu / Toop model 

Figure 2.1 Geometric models: (a) Kohler model, (b) Kohler / Toop model, (c) Muggianu model, 

and (d) Muggianu / Toop model 

 

In the present optimization for all P-containing systems, only Kohler and Kohler / Toop 

interpolation techniques are used. In the case of an asymmetric ternary 1-2-3 solution with 

component “1” as asymmetric component. the Δ𝑔12 and Δ𝑔13 between asymmetric components (1 

and 2, 1 and 3) are calculated by:  

( ) ( ) 3
12 12 12 11 22 23 33 12(3) 11 22 23 33

( ) 1 0, 0, 1 2 3

k

j jij i ijk i

i j i j k

Y
g g g x x x x g x x x x

Y Y



+    

 
 =  + + + + + +  

+ 
                              (2.31) 

( ) ( ) 2
13 13 13 11 22 23 33 13(2) 11 22 23 11

( ) 1 0, 0, 1 2 3

k

j jij i ijk i

i j i j k

Y
g g g x x x x g x x x x

Y Y



+    

 
 =  + + + + + +  

+ 
                           (2.32) 

and  𝛥𝑔23 between symmetric components (2 and 3) is calculated by:  
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                                                      (2.33) 

where 𝑔12
𝑖𝑗

, 𝑔13
𝑖𝑗

, 𝑔23
𝑖𝑗

 are the binary liquid parameters; 𝑔12(3)
𝑖𝑗𝑘

, 𝑔13(2)
𝑖𝑗𝑘

 and 𝑔23(1)
𝑖𝑗𝑘

 are the ternary 

liquid parameters.  

 

2.3.3 Solid Solutions 

The Gibbs energies of the solid solutions were modeled using the Compound Energy Formalism 

(CEF) [13] considering crystallographic structures. In the sub-systems of the Fe-Mn-Al-Si-P 

system, the disordered FCC_A1, BCC_A2, HCP_A3, CBCC_A12, CUB_A13, etc. solid solutions 

are described with one sub-lattice approach for the substitutional site.  Take A-B-C system as an 

example, the molar Gibbs energies of its substitutional solutions are calculated as follows:  

.

, , , ,

, , ,

0,1,2... 0,1,2... 0,1,2...

, ,

0,1,2...

lnsol o

S i i i i

i A B C i A B C
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A B A B B C B C A C A C

m k p

q mg

A B C A B C
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G x G R x x

x x L x x L x x L

x x x L G

= =

= = =

=

= + 

+ + +

+

 

  



                                                                 (2.34) 

where 𝑥𝑖 is the mole fraction of component i (𝑖 = A, B, C) in the substitutional site. 𝐺𝑖
° is the molar 

Gibbs energy of pure solid i. R and T are the gas constant (8.314 J/mol-K) and the temperature in 

Kelvin (K); 
,

m

i jL is the adjustable binary interaction parameters between components i and j (𝑖, 𝑗 =

A, B, C); 
, ,

q

A B CL  is the adjustable ternary parameters of component A, B, C; 𝐺𝑚𝑔 is the magnetic 

contribution to the Gibbs energy, which was also described by Hillert and Jarl [12] using Eqs. 

(2.4-2.6). The magnetic transition temperature and Bohr magneton can be described by a linear 

combination of pure element properties with the excess terms in the forms of R-K polynomial.  
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In the case of solid solutions with more than one sublattice like two sublattices (A, B)m(C,D)n. The 

schematic graph of this two sublattices solid solution model is demonstrated in Fig. 2.2.  

 

Figure 2.2 Schematic graph of the two sublattices (A, B)m(C, D)n solid solution model  

 

As shown in the figure, AmCn, AmDn, BmCn, and BmDn are the end-members of the solid solution. 

The Gibbs energy per formula unit of this phase can be described using Compound Energy 

Formalism (CEF) [13] as follows:  

 ( )
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        (2.35) 

where 𝐺𝐴:𝐶, 𝐺𝐴:𝐷, 𝐺𝐵:𝐶, 𝐺𝐵:𝐷 are Gibbs energies of the end-members of AmCn, AmDn, BmCn, and 

BmDn, respectively; 𝑦𝐴 , 𝑦𝐵  and 𝑦𝐶 , 𝑦𝐷  are the site fractions of components A, B on the first 

sublattice ( 𝑦𝐴 + 𝑦𝐵 = 1 ) and components C, D on the second sublattice ( 𝑦𝐶 + 𝑦𝐷 = 1 ), 

respectively; 
, :

i

A B mL  and 
: ,

i

n C DL interaction parameters between components A and B on the first 

sublattice, and between components C and D on the second sublattice. , : ,

i

A B C DL
 is the reciprocal 
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interaction parameter with the first sublattice occupied by components A, B and the second 

sublattice occupied by components C, D.  

 

In some solid solutions, there exists order-disorder transition in terms of temperature and 

composition. This type of transition belongs to second order transition. To describe this type of 

phase transition, the Gibbs energies of both the disordered part and ordered part need to be 

considered simultaneously. At the moment, only the transition in face centered cubic (FCC) and 

body centered cubic (BCC) structures can be accurately described. For the FCC phase, there are 

disordered FCC_A1 structure and ordered FCC_L10 and FCC_L12 structures. For the BCC phase, 

disordered BCC_A2 and ordered BCC_B2 and BCC_D03 crystal structures are included.  

 

In the description of the Gibbs energy of a phase with order-disorder transition, the disordered and 

ordered parts need to be considered simultaneously. Take the transition between disordered 

BCC_A2 and ordered BCC_B2 of the M-K system as an example. The BCC phase was modeled 

considering disordered part described with the model (M, K)(Va)3 and the ordered part described 

with the model (M, K)0.5(M, K)0.5(Va)3. The Gibbs energy of the BCC solid solution is calculated 

using the following expression:  

.sol disorder order

BCC S BCCG G G= +                                                                                                       (2.36) 

where 𝐺𝑆
𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 is the Gibbs energy contribution of the disordered part, which can be calculated 

using Eqs. (2.34) and (2.35), 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟is the Gibbs energy contribution of long-range ordering. 

When the site fractions of component i (𝑖 = M, K) in the first sublattice equals to that in the second 

sublattice (𝑦𝑖
′ = 𝑦𝑖

′′), then the ordering contribution 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟 equals to zero and the Gibbs energy 
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of BCC phase is the same as the Gibbs energy of disordered BCC_A2 (𝐺𝑆
𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟). When 𝑦𝑖

′ ≠ 𝑦𝑖
′′, 

then the ordering contribution 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟 becomes negative and is calculated using Eq. (2.37).  

( )

( )

' '' ' '' ' ''
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      (2.37) 

here i, j represent M, K. 𝑦𝑀
′ , 𝑦𝐾

′  and 𝑦𝑀
′′ , 𝑦𝐾

′′ are site fractions of components M, K in the first and 

second lattice of the formula (M, K)0.5(M, K)0.5(Va)3. In the composition of site fractions of 

component i in the first sublattice equals to that in the second sublattice (𝑦𝑖
′ = 𝑦𝑖

′′), then the 

ordering contribution 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟  is zero and the Gibbs energy of BCC is the same as the Gibbs 

energy of disordered BCC_A2 (𝐺𝑆
𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟) calculated in Eq. (2.34). In the case of 𝑦𝑖

′ ≠ 𝑦𝑖
′′, then 

the ordering contribution 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟 becomes negative and the Gibbs energy of BCC phase with 

consideration of disorder/order transit is calculated using Eq. (2.36).  
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Abstract 

Thermodynamic optimization of the Fe-P system was performed using the CALculation of PHAse 

Diagrams (CALPHAD) method based on critical evaluation of all available phase equilibria and 

thermodynamic data. The Gibbs energies of liquid phase and solid solutions were described using 

the Modified Quasichemical Model and Compound Energy Formalism, respectively. The Fe-P 

phase diagram, thermodynamic properties of P in liquid Fe and stability of intermediate iron 

phosphides (Fe3P, Fe2P, FeP and FeP2) in the entire composition range were reoptimized for 

resolving the discrepancies left in the previously optimized database. Several problems in previous 

assessments were resolved and a more accurate and consistent description of the Fe-P system was 

achieved compared to experimental data. The distribution of P between molten Fe-P alloys and 

slag at different temperatures was also calculated to present the applicability of the present work 

to steel dephosphorization calculation. 

Keywords: Thermodynamic optimization, Fe-P system, CALPHAD, Iron phosphides, 

Dephosphorization 
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3.1. Introduction 

Phosphorus in steels mainly originates from the raw materials such as iron ores, flux, coke etc. 

Phosphorus can improve the hardness, toughness, corrosion resistance and machinability in free-

cutting steels, but in most cases, it is an undesirable impurity in steels and ferroalloys despite the 

relatively minor amount. For example, a very small amount of P in steel (about 0.04 wt.%) can 

result in weld brittleness and apparently increase the tendency of crack. Therefore, it is essential 

to control P tightly in steels. By controlling the proper chemistry of slag, phosphorus can be 

removed from the metal and transferred into the slag in the forms of P2O5 and phosphates.[1] For 

a liquid containing relatively high P content, stoichiometric iron phosphides can precipitate as the 

temperature decreases and the type of precipitated phosphide depends on the temperature and 

overall P content. Iron phosphides are often used as alloying agents to produce high P steels in the 

steelmaking process. In addition, iron phosphides can be produced as semiconductors because of 

their excellent performance in high power and high frequency applications. 

 

To comprehend the thermodynamic behavior of P in Fe, numerous experimental studies and 

computational modeling have been performed. Experimental studies on the phase equilibrium and 

thermodynamic properties of the Fe-P system were reviewed by Okamoto [2], who proposed a 

partial diagram of the Fe-P system in the Fe-rich region. Recently, Schlesinger [3] summarized 

thermodynamic properties of different forms of phosphorus and iron phosphides based on reported 

information. The Fe-P system was thermodynamically assessed by Spencer and Kubaschewski [4], 

Gustafson [5], Shim et al. [6], Ohtani et al. [7] and Cao et al. [8,9]. Spencer and Kubaschewski [4] 

evaluated the thermodynamic properties and phase boundaries of each phase. Gustafson [5] 

performed a thermodynamic description of the Fe-P system in the composition up to 50 at.%P 
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within SGTE communication. However, a two-liquid miscibility gap is calculated in the P-rich 

region. Likewise, Shim et al. [6] assessed the partial Fe-P system up to 50 at.%P using the 

CALculation of PHAse Diagrams (CALPHAD) method, and better reproduction of the BCC_A2 

phase boundary was achieved compared to previous calculations by Gustafson [5]. However, the 

liquidus line and stability of P in liquid Fe apparently deviate from experimental data. In more 

recent modeling work by Ohtani et al. [7], the Fe-P system was thermodynamically optimized in 

the full composition range and five stoichiometric phosphides including Fe3P, Fe2P, FeP, FeP2 and 

FeP4 were considered. However, the thermal stability of the P-rich phosphide compounds such as 

FeP2 and FeP4 were estimated to be much higher than those of Fe3P, Fe2P and FeP. Recently, Cao 

et al. [9] reassessed the Fe-P system by adopting thermodynamic properties of iron phosphides 

recommended by Zaitsev et al. [10], who carried out experiments by means of differential scanning 

calorimetry (DSC) and the Knudsen effusion method (KEM) with mass-spectrometric analysis. 

The melting temperatures of FeP2 and FeP4 were lower than the results by Ohatani et al. [7] while 

the stability of FeP was overestimated for unknown reason. Experimental data of thermodynamic 

properties of P in liquid Fe were neglected in the optimization by Cao et al. [9]. 

 

The thermodynamic database based on the CALculation of PHAse Diagrams (CALPHAD) method 

is a powerful tool for new materials design and process optimization. The database of target system 

is developed by means of thermodynamic modeling (optimization), aiming at obtaining one set of 

the consistent Gibbs energies of all phases as functions of temperature and composition. In the 

optimization, all available phase equilibria and thermodynamic data such as activity, entropy, 

enthalpy, and Gibbs energy, etc are critically evaluated simultaneously. The discrepancies between 

available data are resolved in the critical evaluation process, and the Gibbs energy functions for 
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all related phases in target system are derived. Predictions on unexplored thermodynamic 

properties and phase equilibria are possible by interpolations and extrapolations in a 

thermodynamically correct manner. 

 

The aim of the present study is to develop an accurate thermodynamic database for the Fe-P system. 

The Modified Quasichmical Model (MQM) [11,12] and Compound Energy Formalism (CEF) [13] 

were used to describe the liquid and solid solutions, respectively. All available phase diagram and 

thermodynamic data in the literature were critically evaluated for determining consistent Gibbs 

energy functions of liquid, FCC_A1, BCC_A2, Fe3P, Fe2P, FeP and FeP2 phases. To validate the 

accuracy of the present thermodynamic description, the distribution of P between molten Fe-P 

alloy and molten CaO-FeO-Fe2O3 slag was also calculated. This is part of comprehensive study 

for developing a wide high alloy steel database containing Fe-Mn-Al-Si-Cr-Ni-Ti-Nb-C-O-N-P-S. 

All the thermodynamic calculations were performed using FactSage software [14].  

 

3.2 Thermodynamic Models 

3.2.1 Pure Elements and Stoichiometric Compounds 

The Gibbs energies of all pure elements Fe and P were taken from the Scientific Group Thermodata 

Europe (SGTE) database [15], and intermediate phosphides Fe3P, Fe2P, FeP and FeP2 of the Fe-P 

system were treated as stoichiometric compounds in the present study. The Gibbs energies of pure 

elements and stoichiometric compounds were calculated as follows: 

T T TG H T S  = −                                                                                                                                                                 (3.1)   
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298.15
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T
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H H C dT 

=

=  +                                                                                                    (3.2) 

( )298.15
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/

T
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S S C T dT 

=

= +                                                                                                (3.3) 

where 𝐺𝑇
° , 𝐻𝑇

°  and 𝑆𝑇
°  are the Gibbs energy, enthalpy and entropy at temperature T,  𝛥𝐻298.15𝐾

°  is 

standard enthalpy of formation at 298.15 K, 𝑆298.15𝐾
°  is the standard entropy at 298.15 K, and 𝐶𝑃 

is the heat capacity. In this study, the heat capacities of Fe3P, Fe2P and FeP were determined as 

the function of temperature by fitting experimental 𝐶𝑃 data. In the case of FeP2 with no available 

𝐶𝑃 data, its 𝐶𝑃 expression was estimated based on those of Fe3P, Fe2P and FeP.   

 

When a pure element or stoichiometric compound exhibits magnetic behavior, an additional 

magnetic contribution term 𝐺𝑚𝑔  needs to be accounted for describing its Gibbs energy.  The 

magnetic contribution to the Gibbs energy of FCC_A1, BCC_A2 and Fe3P phases were described 

using an empirical expression proposed by Inden [16] and modified by Hillert and Jarl [17] as 

follows: 

( )ln 1 ( )mgG RT g = +                                                                                                        (3.4) 

where, τ is given by 𝑇/𝑇∗ and 𝑇∗ is the critical temperature of magnetic transition associated with 

Curie temperature 𝑇𝐶  for ferromagnetic materials or Neel temperature 𝑇𝑁  for antiferromagnetic 

materials. β is the average magnetic moment per mole of atoms expressed in Bohr magnetons. 

𝑔(𝜏) is a polynomial fraction derived by Hillert and Jarl [17]: 

1 3 9 1579 474 1
( ) 1 1 /

140 497 6 135 600
g D

P P
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

−   
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where 518 11692 1
1

1125 15975
D

P

 
= + − 

 
, and the value of P can be considered as the fraction of the 

magnetic enthalpy absorbed above the critical temperature depending on the structure. P is 0.40 

for the simple BCC_A2 phase while P is 0.28 for other common phases.  

 

3.2.2 Liquid Solution 

In the present study, the Modified Quasichemical Model (MQM) [11,12] considering the short-

range ordering of the nearest-neighbor atoms was used to describe liquid Fe-P solution. Compared 

to the conventional Bragg-Williams Random Mixing Model (BWRMM), the MQM gives a more 

realistic thermodynamic description of the entropy of the liquid phase. In the MQM, the Gibbs 

energy of pair formation can be expanded as a polynomial in the pair fraction instead of the 

component fraction, and the coordination numbers are allowed to vary with composition for 

describing the short-range ordering of the liquid solution. These modifications provide greater 

flexibility in reproducing experimental data of the binary system and combining the binary 

parameters to higher-order solutions.  

 

In the binary Fe-P liquid, the Fe and P atoms are assumed to distribute over the quasilattice sites. 

The atom pair exchange-reaction of the Fe-P liquid solution can be described as follows: 

( ) ( ) 2( ); FePFe Fe P P Fe P g− + − = −                                                                                        (3.7) 

where (i-j) represents the nearest-neighbor pair between components i and j, and Δ𝑔𝐹𝑒𝑃 is the 

Gibbs energy change of forming 2 moles of (Fe-P) pairs. The Gibbs energy of the liquid solution 

can be calculated by the following equation:  

 . .( ) ( / 2)sol o o conf

L Fe Fe P P FeP FePG n G n G T S n g= + −  +                                                                     (3.8) 
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where 𝑛𝐹𝑒  and 𝑛𝑃  are the numbers of moles of Fe and P atoms, and 𝐺𝐹𝑒
°  and 𝐺𝑃

°  are the molar 

Gibbs energies of pure liquid Fe and P. 𝛥𝑆𝑐𝑜𝑛𝑓. is the configurational entropy of mixing given by 

random distribution of the (Fe-Fe), (P-P) and (Fe-P) pairs.  

.

2 2
( ln ln ) ln ln ln

2

conf FeFe PP FeP
Fe Fe P P FeFe PP FeP

Fe P Fe P

X X X
S R n X n X R n n n

Y Y Y Y

     
 = − + − + +     

     
                         (3.9) 

here 𝑛𝐹𝑒𝐹𝑒, 𝑛𝑃𝑃 and 𝑛𝐹𝑒𝑃 are the numbers of moles of (Fe-Fe), (P-P) and (Fe-P) pairs, and 𝑋𝐹𝑒𝐹𝑒, 

𝑋𝐹𝑒𝑃  and 𝑋𝑃𝑃  are the pair fraction of the corresponding atom pairs. 𝑋𝐹𝑒  and 𝑋𝑃  are the mole 

fraction of Fe and P atoms and 𝑌𝐹𝑒 and 𝑌𝑃 are the coordination equivalent fractions of components 

Fe and P. The pair fractions 𝑋𝐹𝑒𝐹𝑒, 𝑋𝐹𝑒𝑃, 𝑋𝑃𝑃 and coordination equivalent fractions 𝑌𝐹𝑒, 𝑌𝑃 can be 

calculated as follows:  

( )/FeFe FeFe FeFe FeP PPX n n n n= + +
                                                                                            (3.10) 

( )/FeP FeP FeFe FeP PPX n n n n= + +                                                                                                (3.11) 

( )/PP PP FeFe FeP PPX n n n n= + +                                                                                                 (3.12) 

1

2
Fe FeFe FePY X X= +                                                                                                                (3.13) 

1

2
P PP FePY X X= +                                                                                                                   (3.14) 

𝛥𝑔𝐹𝑒𝑃 is the model parameter for reproducing the Gibbs energy of the binary Fe-P solution, which 

can be expanded as a polynomial in terms of the atomic pair fractions 𝑋𝐹𝑒𝐹𝑒 and 𝑋𝑃𝑃 as follows: 

0 0

1 1

o i i j j

FeP FeP FeP FeFe FeP PP

i j

g g g X g X
 

 =  + +                                                                              (3.15) 

where 𝛥𝑔𝐹𝑒𝑃
𝑜 , 𝑔𝐹𝑒𝑃

𝑖0  and 𝑔𝐹𝑒𝑃
0𝑗

 are the adjustable model parameters that can be functions of the 

temperature. In the MQM, the coordination numbers of atoms Fe and P, 𝑍𝐹𝑒 and 𝑍𝑃, are allowed 
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to vary with composition to reproduce the short-range ordering of the liquid phase and expand to 

higher-order systems using proper geometric interpolation technique. 

1 1 2 1

2 2

FeFe FeP

Fe Fe
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n n
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   
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where 𝑍𝐹𝑒𝐹𝑒
𝐹𝑒  is the value 𝑍𝐹𝑒 when all nearest neighbors of the Fe atom are Fe atoms, and 𝑍𝐹𝑒𝑃

𝐹𝑒  is 

the value of 𝑍𝐹𝑒 when all nearest neighbors are P atoms. 𝑍𝑃𝑃
𝑃  and 𝑍𝑃𝐹𝑒

𝑃  are defined in an analogous 

manner. In the present study, 𝑍𝐹𝑒𝐹𝑒
𝐹𝑒 =  𝑍𝑃𝑃

𝑃 = 𝑍𝑃𝐹𝑒
𝑃 = 6 and 𝑍𝐹𝑒𝑃

𝐹𝑒 = 3 were taken for the liquid 

Fe-P solution, aiming at describing the short-range ordering of liquid Fe-P solution.  

 

3.2.3 Solid Solutions 

The Gibbs energies of the solid solutions were described using the Compound Energy Formalism 

(CEF)[13] considering crystallographic structures. In the present study, the FCC_A1 and BCC_A2 

solid solutions were described with a one-sublattice (Fe, P) model.  The molar Gibbs energies of 

the solid solutions can be expressed as follows:  

( ) ( ).

,

0,1,2...

ln lnsol o o m mg

S Fe Fe P P Fe Fe P P Fe P Fe P

m

G y G y G R y y y y L y y G
=

= + +  + + +                             (3.18) 

where 𝑦𝐹𝑒 and 𝑦𝑃 are the site fraction of Fe and P species in the sublattice, respectively. 𝐺𝐹𝑒
°  and 

𝐺𝑃
°  are molar Gibbs energies of pure solid Fe and P. R and T are the gas constant (8.314 J/mol-K) 

and the temperature in Kelvin (K); 𝐿𝐹𝑒,𝑃
𝑚  is the adjustable interaction parameters between Fe and P 

in the sublattice; 𝐺𝑚𝑔 is the magnetic contribution to the Gibbs energy.  
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3.3 Critical Evaluation and Thermodynamic Optimization 

3.3.1 Phase Diagram 

In the Fe-P system with suppression of gas phase, three solutions (liquid, FCC_A1 and BCC_A2) 

and four stoichiometric compounds (Fe3P, Fe2P, FeP and FeP2) are considered stable in the present 

study. Though existence of FeP4 between 900 K and 1200 K was reported by Jeitschko and Braun 

[18], its stability is very controversial and available experimental information of this phase is very 

scarce, so it is treated as unstable in the present study. The crystal structure information of all solid 

phases in the Fe-P system is summarized in Table 3.1, and the optimized model parameters are 

summarized in Table 3.2. The calculated phase diagram of the Fe-P system is compared with 

experimental data [19-38] in Fig. 3.1. As shown in Fig. 3.1(a), all phase diagram data are 

concentrated within the composition 𝑥𝑃 < 0.5, because high vaporization pressure of phosphorus 

greatly limits the reliability of experimental results at the higher P concentration region. The 

present calculation is in fairly good agreement with the majority of experimental data. In Fig. 

3.1(b), the presently calculated Fe-P phase diagram is compared with previously assessed 

diagrams. It is shown that all modeled phase diagrams are basically consistent with each other at 

𝑥𝑃 < 0.4 but differ largely at 𝑥𝑃 > 0.4. In the assessment by Gustafson [5] and Shim et al. [6], the 

phase diagram was not given for the region of 𝑥𝑃 > 0.5. A two-phase liquid miscibility gap is 

calculated in the high P region, if the parameters of Gustafson [5] are used. In contrast, 

thermodynamic descriptions of the Fe-P system were made for the full composition region by 

Ohtani et al. [7] and Cao et al. [8,9]. In both studies, high-order phosphides FeP2 and FeP4 were 

considered stable till at least 1544 ℃. Although there is no experimental evidence, such a high 

congruent melting of FeP2 and FeP4 seem to be unreliable considering the short-range ordering of 

liquid phase at around 𝑥𝑃 = 0.33. The present liquidus plotted in solid black lines show the 
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peritectic melting of FeP2. All invariant reactions of the Fe-P system in the present study are 

summarized in Table 3.3.  

Table 3.1 Summary of crystal structure information of all solid phases in the Fe-P system 

Phase Structure Prototype Space group Pearson symbol 

FCC_A1 Cubic Cu 𝐹̅m3̅m cF4 

BCC_A2 Cubic W 𝐼m3̅m cI2 

Fe3P Tetragonal Ni3P I4̅ tI32 

Fe2P Hexagonal Fe2P P6̅2m hP9 

FeP Orthorhombic MnP Pnma oP8 

FeP2 Orthorhombic FeS2 Pnnm oP6 

White P Cubic P4 I4̅3m C*8 

Red P --- P --- C*66 

 

Table 3.2 Optimized model parameters for the Fe-P system (J/mol, J/mol-K) 

Phase Model parameters 

Liquid 

(Fe, P) 

𝑍𝐹𝑒𝐹𝑒
𝐹𝑒 = 𝑍𝑃𝑃

𝑃 = 6, 𝑍𝑃𝐹𝑒
𝑃 = 6, 𝑍𝐹𝑒𝑃

𝐹𝑒 = 3 [*] 

𝛥𝑔𝐹𝑒𝑃 = −56902.4 + 6.56888𝑇 + (5481.04 + 3.0334𝑇)𝑋𝐹𝑒𝐹𝑒 +

(−11966.24 + 2.5104𝑇)𝑋𝐹𝑒𝐹𝑒
2 − 9623.2𝑋𝑃𝑃 [*] 

FCC_A1 

(Fe, P)1(Va)1 

𝐺𝐹𝑒:𝑉𝑎
𝐹𝐶𝐶 = 𝐺𝐹𝑒(𝐹𝐶𝐶)

°  [*] 

𝐺𝑃:𝑉𝑎
𝐹𝐶𝐶 = 𝐺𝑃(𝐹𝐶𝐶)

°  [*] 

𝐿𝐹𝑒,𝑃:𝑉𝑎
𝐹𝐶𝐶 = −139787.44 + 6.4852𝑇 [*] 

𝑇𝐶𝐹𝑒:𝑉𝑎 = −201, 𝛽𝐹𝑒:𝑉𝑎 = −2.1 [39] 
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BCC_A2 

(Fe, P)1(Va)3 

𝐺𝐹𝑒:𝑉𝑎
𝐵𝐶𝐶 = 𝐺𝐹𝑒(𝐵𝐶𝐶)

°  [*] 

𝐺𝑃:𝑉𝑎
𝐵𝐶𝐶 = 𝐺𝑃(𝐵𝐶𝐶)

°  [*] 

𝐿𝐹𝑒,𝑃:𝑉𝑎
𝐵𝐶𝐶 = −203476.288 + 15.4808𝑇 − 33472(𝑦𝑃 − 𝑦𝐹𝑒) [*] 

𝑇𝐶𝐹𝑒:𝑉𝑎 = 1043, 𝛽𝐹𝑒:𝑉𝑎 = 2.22 [39] 

𝑇𝐶𝐹𝑒,𝑃:𝑉𝑎 = −285 [*] 

Fe3P [*] 

(Fe)3(P)1 

LT-Fe3P: 

𝛥𝐻298.15𝐾
° = −164830, 𝑆298.15𝐾

° = 110.15 

298.15 K < 𝑇 < 727 K: 𝐶𝑃 = 106.76 + 0.0108𝑇 − 780000𝑇−2 

727 K < 𝑇 < 2000 K: 𝐶𝑃 = 109.84 + 0.0287𝑇 − 8000000𝑇−2 

HT-Fe3P: 

𝛥𝐻𝑡𝑟𝑎𝑛𝑠.
𝐿→𝐻 = 1000, 𝑇𝑡𝑟𝑎𝑛𝑠.

𝐿→𝐻 = 698 𝐾 

298.15 K < 𝑇 < 727 K: 𝐶𝑃 = 106.76 + 0.0108𝑇 − 780000𝑇−2 

727 K < 𝑇 < 2000 K: 𝐶𝑃 = 109.84 + 0.0287𝑇 − 8000000𝑇−2 

𝛽 = 0.6, 𝑇𝐶 = 713 K, 𝑃 = 0.28 

Fe2P [*] 

(Fe)2(P)1 

𝛥𝐻298.15𝐾
° = −157643, 𝑆298.15𝐾

° = 83.12 

𝐶𝑃 = 71.555 + 0.02375𝑇 − 370000𝑇−2 

FeP [*] 

(Fe)1(P)1 

𝛥𝐻298.15𝐾
° = −126100, 𝑆298.15𝐾

° = 47.77 

𝐶𝑃 = 43.7878 + 0.01985𝑇 − 232000𝑇−2 

FeP2 [*] 

(Fe)1(P)2 

𝛥𝐻298.15𝐾
° = −191100, 𝑆298.15𝐾

° = 51.05 

𝐶𝑃 = 77.52563 + 0.009348𝑇 − 443846𝑇−2 − 1.1 × 10−6𝑇2 

   * Optimized in the present study 
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Figure 3.1 Present optimized phase diagram of the Fe-P system (a) compared with experimental 

data, and (b) compared with previous assessments [5-7,9] 
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Table 3.3 Invariant reactions of the Fe-P system in the present study 

Type Reactions Temperature, ℃ 

Eutectic L(xP = 0.166) = BCC(xP = 0.0466) + Fe3P(xP = 0.25) 1055 

Incongruent L(xP = 0.246) + Fe2P(xP = 0.333) = Fe3P(xP = 0.25) 1151 

Congruent L(xP = 0.333) = Fe2P(xP = 0.333) 1374 

Eutectic L(xP = 0.395) = Fe2P(xP = 0.333) + FeP(xP = 0.50) 1257 

Congruent FeP(xP = 0.50) = FeP(xP = 0.50) 1395 

Incongruent L(xP = 0.702) + FeP(xP = 0.50) = FeP2(xP = 0.667) 1184 

Eutectic L(xP = 0.166) = FeP2(xP = 0.6667) + Red_P(xP = 1) 579 

 

Fig. 3.2 presents the partial Fe-P phase diagram within the composition of 𝑥𝑃 < 0.2 compared 

with the experimental data. Most of the experimental data are consistent except those measured by 

Saklatwalla [19], Konstantinow [20], Schurmann and Kaiser [35]. The eutectic reaction liquid =

BCC_A2 + Fe3P  occurring at around 𝑥𝑃 = 0.166  and 𝑇 = 1055  ℃  was accepted in all 

assessments. A maximum solubility ( 𝑥𝑃 = 0.0466 ) of P in BCC_A2 phase at eutectic 

temperature was obtained in the present study, as summarized in Table 3.3. Above the 

eutectic temperature, the calculated boundary of BCC_A2 phase by Gustafson [5] deviates 

positively from the experimental data. This is probably due to the overestimated temperature-

dependent parameters used for the liquid or BCC_A2 phase. Below the eutectic temperature, 

experimental data were well reproduced in the present and Gustafason’s studies, whereas Shim et 

al. [6], Ohtani et al. [7] and Cao et al. [9] overestimated the solubility of P in BCC_A2 phase, and 

the overestimation increases especially with decreasing temperature. In FCC_A1 solution, the data 
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by Haughton [21], Lorenz and Fabritius [27], and Fischer et al. [31] were reasonably reproduced 

in all assessments except that by Ohtani et al. [7].  

 

Figure 3.2 Phase diagram of the Fe-P system in the Fe-rich region 

 

3.3.2 Thermodynamic Properties of Iron Phosphides 

The thermodynamic properties including heat capacity, enthalpy, entropy, Gibbs energy, and 

relative stability of intermediate compounds of the Fe-P system were critically evaluated and 

optimized. Though red P is thermodynamically more stable than white P at room temperature, the 

standard enthalpy of white P is set to be 0 J/mol at 25 ℃, which is thermodynamically more 

consistent for calculating the Gibbs energies of solid phases. Therefore, ɑ-Fe (BCC_A2) and white 

P were taken as standard states for evaluating the formation enthalpy and Gibbs energy of the solid 

phases, and pure liquid Fe and liquid P as reference state for the liquid Fe-P solution. In the present 
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study, experimental data in the reference of red P have been converted to corresponding values in 

the reference of white P for consistency. 

 

Zaitsev et al. [10] carried out experiments using differential scanning calorimetry (DSC) and 

Knudsen effusion method (KEM) with mass-spectrometric analysis of the gaseous phase to 

investigate the thermodynamic properties of iron phosphides, BCC_A2 and liquid phases. The 

DSC experiments were performed in the temperature range of 113 K to 873 K. The stoichiometric 

compounds including Fe3P, Fe2P and FeP were synthesized from high purity of iron and red 

phosphorus in dry Ar atmosphere. Fig. 3.3 shows the calculated heat capacity of Fe3P, Fe2P and 

FeP together with the experimental data, and the 𝐶𝑃 function of each compound is summarized in 

Table 3.2. A magnetic transition at around 713 K was observed in the sample Fe3P, which was 

adopted in the present study. Another sudden strong Curie transit peak for Fe2P at 217 K was 

suggested by Beckman et al. [40] The 𝐶𝑃 functions by Gustafson [5] and Ohtani et al. [7], derived 

from ɑ-Fe and red P using the Neumann-Kopp (NK) rule,[41] deviate slightly from experimental 

data particularly at low temperatures. In the assessment by Shim et al. [6], linear 𝐶𝑃 functions were 

proposed for reproducing the data above room temperature.  
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Figure 3.3 Heat capacities 𝐶𝑃 of stoichiometric compounds (a) Fe3P, (b) Fe2P, and (c) FeP 

 

The standard entropy (𝑆298.15 𝐾
° ) of iron phosphides (Fe3P, Fe2P, FeP) according to Zaitsev et al. 

[10] was determined from low temperature heat capacity data and high temperature Knudsen 

effusion experimental data. Fig. 3.4(c) shows that 𝑆298.15 𝐾
°  data from these two experiments are 

basically consistent and reproduced in all assessments excluding that of FeP underestimated by 

Ohtani et al. [7] Similar discrepancies also exist in Ohtani et al.’s calculations of enthalpy at 298.15 

K and 900 K, as shown in Fig. 3.4(a) and (b). The 𝛥𝐻298.15 𝐾
°  data of Fe3P, Fe2P, and FeP obtained 

by Zaitsev et al. [10] from Knudsen effusion experiments are favored in the present study. Roth et 

al. [42] also measured the 𝛥𝐻298.15 𝐾
°  of Fe2P using a combustion calorimeter. In their experiments, 

three series of experiments were carried out to measure the enthalpy, and the results of all 

experiments were very inconsistent. For example, despite an average 𝛥𝐻298.15 𝐾
° (Fe2P) =

−188.99 kJ/mol by the authors, 𝛥𝐻298.15 𝐾
° (Fe2P) = −173.51 ± 15.6 kJ/mol was obtained from 

one series of experiments. Considering the large error range of the data, the optimized 𝛥𝐻298.15 𝐾
°  
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of Fe2P in the present study is still in fair agreement with the results of Roth et al. [42] At the 

higher temperature (about 900 K), the formation enthalpy of the Fe-P samples were measured by 

Weibke and Schrag [43] in the composition range of 0.15 < 𝑥𝑃 < 0.33. 𝛥𝐻900 K
° = −164.78 ±

2.95  kJ/mol for Fe3P and 𝛥𝐻900 K
° = −161.85 ± 2.89  kJ/mol for Fe2P were proposed in the 

reference of ɑ-Fe (BCC_A2) and white P. These data were favored in the present and previous 

studies [5,6,9]. However, the present enthalpy for Fe2P, FeP and FeP2 is slightly more positive 

than the data suggested by Lewis and Myers [44], who determined the enthalpy of Fe2P from 

Knudsen effusion experiments. The P2(g) gas pressure for the reaction 6Fe2P(s) = 4Fe3P(s) +

P2(g) was determined first based on the known data of Fe3P. However, they mentioned that P2(g) 

gas pressure of this reaction was less reliable. That is, the enthalpy of Fe2P derived from this 

chemical reaction might be less accurate. Using a similar method, the enthalpy of FeP and FeP2 

were also derived and the error in the enthalpy values could be accumulated. Therefore, the data 

by Lewis and Myers were not highly considered. Nevertheless, the enthalpy calculated from the 

present study is still in fair agreement with their results. 
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Figure 3.4 Thermodynamic properties of iron phosphides in the Fe-P system (a) 𝛥𝐻298.15 K
° , (b) 

∆𝐻900 K, and (c) 𝑆298.15 K
°  

 

Zaitsev et al. [10] measured the equilibrium partial pressures of Fe(g) and P2(g) in equilibrium 

with Fe3P and Fe2P using the high-temperature Knudsen effusion method (KEM). From these 

pressures, they determined the Gibbs energy of formation of Fe3P and Fe2P, as expressed in 

Eqs.(3.19) and (3.20). 

2 33 ( ) 0.5 ( ) ( , )Fe P g Fe P HT s + = ;      
3

243781 84.689Fe PG T = − +                                          (3.19) 

2 22 ( ) 0.5 ( ) ( )Fe P g Fe P s + = ;          
2

233479 82.056Fe PG T = − +                                            (3.20) 

As can be seen in Fig. 3.5, the experimental Gibbs energy data of Fe3P and Fe2P are well 

reproduced in the present study.  
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Figure 3.5 Gibbs energies of formations of Fe3P and Fe2P from γ-Fe and P2(g) 

 

Experimental investigation of the stability of phosphides Fe2P, FeP and FeP2 was carried out by 

Franke et al. [45], Lewis and Myers [44], and Zaitsev et al. [10]. The experimental results are 

compared with present calculations in Fig. 3.6. In the experiments by Franke et al. [45], existence 

of FeP2 between 892 ℃ to 973 ℃ was confirmed with the XRD technique. The partial pressure of 

P2(g) above Fe2P-FeP mixture and P2(g) and P4(g) above FeP2-FeP mixture were measured using 

tension analysis (TA) technique.  Lewis and Myers [44] and Zaitsev et al. [10] measured the P2(g) 

pressure from Knudsen effusion experiments. Overall, the experimental data are reproduced within 

reasonable accuracy as shown in Fig. 3.6.  
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Figure 3.6 Equilibrium partial pressures of phosphorus vapor of reactions (a) 4FeP(s) =

4Fe2P(s) + P2(g), (b) 2FeP2(s) = 2FeP(s) + P2(g), and (c) 4FeP2(s) = 4FeP(s) + P4(g), 

depending on the temperature 

 

3.3.3 Thermodynamic Properties of Liquid Solution 

To understand the behavior of P in liquid Fe, many experimental studies have been conducted to 

determine the thermodynamic properties of liquid Fe-P solution. Due to the high vapor pressure 

of phosphorus, especially at high temperatures and high P concentration region, most of the 

experimental studies are concentrated in Fe-rich region. In previous thermodynamic assessments 

[5-9], less emphasis was put on the behavior of P in liquid Fe. Zhang [46] and Yang et al. [47] 

calculated the thermodynamic properties of Fe and P of the Fe-P melts in different standard states 

based on the Atom-Molecule Coexistence Theory (AMCT) [48]. However, their assessments were 

limited only to liquid Fe-P solution, and no phase diagram data including solid phases were taken 
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into account. The activity of P in liquid Fe is the most important data to evaluate the 

dephosphorization in the steelmaking process. For calculation convenience, the activities of 

various steel components are usually defined based on three different standard states (Raoultian 

standard state related to pure substances, infinite dilute Henrian standard state, 1 wt.% standard 

state), and conversions of the activity between three standard states are expressed as follows:  

Henrian standard state to Raoultian standard state: 

0R H

P P Pa a=                                                                                                                                 (3.21) 

Raoultian standard state to 1 wt.% standard state: 

.%

0

100wt RP
P P

P Fe

M
a a

M
=                                                                                                                  (3.22) 

1 wt.% standard state to Henrian standard state:  

.%

100

H wtFe
P P

P

M
a a

M
=                                                                                                                  (3.23) 

where 𝑀𝑃  and 𝑀𝐹𝑒  are the atomic weight of P and Fe, respectively. 𝛾𝑃
0 is the Henrian activity 

coefficient of P in the liquid Fe-P solution. In the present study, the Henrian activity coefficient 

𝛾𝑃
0 of P(l) is optimized as below: 

ln𝛾𝑃(𝑙)
0 = −22871/𝑇 + 4.3704                                                                                                 (3.24) 

where T is the temperature in Kevin (K). 

 

3.3.3.1 Dissolution of Phosphorus in Liquid Fe from Gas Phase 

Dissolution of phosphorus in molten Fe depends on the equilibrium partial pressure of phosphorus 

above the liquid Fe-P alloys. Gaseous phosphorus has three different allotropes in the form of P(g), 

P2(g) and P4(g). At steelmaking temperatures, gaseous phosphorus exists mainly as P2(g) and P(g), 
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because P4(g) gas becomes unstable and decomposes into P2(g) and P(g). In most previous studies, 

P2(g) was assumed to be the only species in the gas phase. According to reported data [10,49], the 

partial pressure of P(g) is comparable to that of P2(g) above the dilute Fe-P melts. Therefore, all 

experimental data in the literature should be evaluated very carefully. In the present study, all 

possible gas species were considered simultaneously. To deal with practical steelmaking 

conditions, 1 wt.% standard state is conveniently defined for such dissolution reaction. In the 

present study, the Gibbs energy changes for the dissolution of P(g) and P2(g) in liquid Fe (1 wt.% 

standard state) are determined as follows, based on 𝛾𝑃(𝑙)
0  in Eq. (3.24). 

( ) ( .%)Fe PP g P wt−= ;             
( ) 497803 113.26P gG T = − +                                                       (3.25) 

20.5 ( ) ( .%)Fe PP g P wt−= ;            
2 ( ) 249378 53.768P gG T = − +                                                     (3.26) 

 

Figure 3.7 Standard Gibbs energy change for the reaction of P2 dissolution in liquid Fe 
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The calculated Gibbs energy of P2(g) dissolution in molten Fe is plotted in Fig. 3.7 and compared 

with the available data in the literature. Bookey and Bookey et al. [50,51] studied the equilibration 

between liquid Fe (wt. %P = 0.008~1.0) and a mixture of tetracalcium phosphate (Ca4P2O9) and 

calcium oxide (CaO) under the controlled O2 atmosphere by the mixture of H2O(g) and H2(g). The 

Gibbs energy change ∆𝐺P2(g)
° = −122.35 − 1.896 × 10−2𝑇 kJ/mol for the reaction 0.5P2(g) =

P(wt. %) was derived. Though the values of ∆𝐺P2(g)
°  at the considered low temperatures are close 

to other results, the negative temperature dependence seems to be unreasonable. Schenck et al. 

[52,53] conducted experiments on the Fe-P melts in the composition of 𝑥𝑃 = 0.15 − 0.43. The 

vapor above the liquid was suggested to be composed of P2(g) and P4(g), whereas the partial 

pressure of P2(g) was assumed to far exceed that of P4(g). ∆𝐺P2(g)
° = −151.05 kJ/mol at 1528 ±

13 ℃ and ∆𝐺P2(g)
° = −463.361 + 0.1725𝑇 kJ/mol at 1550 ℃ to 1650 ℃ were proposed as the 

Gibbs energy change of P2(g) dissolution in molten Fe. However, as the concentration of P is far 

from its diluted region, the accuracy of ∆𝐺P2(g)
°  can not be guaranteed. In the experiments by Ban-

ya et al. [54], the vapor pressures of phosphorus species at 1200 ℃ to 1500 ℃ are measured using 

the gas transportation method (TM). They proposed that P2(g) was dominant among three gaseous 

phosphorus species (P(g), P2(g) and P4(g)) especially when the P concentration is high in the liquid 

solution. As shown in Fig. 3.7, the ∆𝐺P2(g)
°  by Ban-ya et al. [54] deviates significantly from the 

others. In the experiments by Yamamoto et al. [49] and Zaitsev et al. [10], both P2(g) and P(g) 

were considered simultaneously in equilibrium with the liquid Fe-P solution, and the 

corresponding partial pressures were measured using the Knudsen effusion method (KEM). The 

advantage of this is the accuracy of the measured partial pressures of P(g) and P2(g) can be self-

tested. As indicated in both experiments, the activity of phosphorus (𝑎𝑃) in liquid Fe-P calculated 

from P(g) is consistent with that from P2(g). Besides, in the Knudsen effusion experiments by 
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Yamamoto et al.( 𝑥𝑃 = 0.017 − 0.051) and Zaitsev et al.( 𝑥𝑃 = 0.015 − 0.30), the dilute Fe-P 

alloys was analyzed for the proper determination of the Henrian activity coefficient (𝛾𝑃
0) of P in 

liquid Fe. As shown in the figure, reasonable agreement is achieved between the present 

optimization and the results proposed by Yamamoto et al. [49] and Zaitsev et al. [10]. 

 

3.3.3.2 Activity of Fe and P in Liquid Solution 

The activity of Fe(l) in Raoultian standard state (𝑎𝐹𝑒
𝑅 ) in liquid Fe-P solution at 1550 ℃  is 

calculated in Fig. 3.8 and compared with experimental data [10,56,57]. Polyakov et al. [56] 

measured mass loss of the molten Fe-P alloys in the vacuum furnace at 1550 ℃. The activity of 

Fe, 𝑎𝐹𝑒
𝑅 , was determined from mass loss amount of the Fe-P alloys relative to that of pure Fe. The 

obtained experimental data deviate from the other two sets of data because of the limitation of the 

experimental technique with high vaporization of phosphorus in the experiments. Ban-ya and 

Suzuki [57] conducted equilibration experiments between liquid Fe-P and Ag at the temperatures 

of 1300 ℃ to 1600 ℃. The activity of Fe at 1550 ℃ was calculated from measured activity of P 

using the Gibbs-Duhem equation. Comparing to 𝑎𝐹𝑒
𝑅  obtained by Polyakov et al. [56], the reported 

𝑎𝐹𝑒
𝑅  by Ban-ya and Suzuki [57] and Zaitsev et al. [10] were more favored in the present study. It 

should be noted that the activity of Fe(l) decreases rapidly at around 𝑥𝑃 = 0.333, which indicates 

the strong short-range ordering of the liquid solution. 
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Figure 3.8 Activity of Fe in the liquid Fe-P solution at 1550 ℃, along with experimental data 

[10,56,57] 

 

The activity of P in liquid Fe is critically important for describing the behavior of P during the 

steelmaking process and ferroalloy refining. Numerous experimental studies [10,24,31,49,52-54, 

57-62] have been performed to investigate the activity of P in molten Fe-P alloys at different 

temperatures. The activity data of P in the Fe-P liquid solution are available in the literatrure in 

various forms: (i) the activity (𝑎𝑃
𝐻 , 𝑎𝑃

𝑅 , 𝑎𝑃
𝑤𝑡.%)  or activity coefficient (𝑓𝑃

𝐻 , 𝛾𝑃
𝑅 , 𝑓𝑃

𝑤𝑡.%)  in three 

different standard states (infinite dilute Henrian standard state, Raoultian standard state and 1 wt.% 

standard state), and (ii) equilibrium vapor pressures of P2(g) and P(g). All these data available in 

the literature were converted into the activity of P(l) in Raoultian standard state scale 𝑎𝑃
𝑅 (pure P(l) 

as reference state) to compare with existing data in consistent manner. All data are compared in 
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Fig. 3.9. In the calculation, the solid FCC_A1, BCC_A2 and intermediate compounds were also 

considered.  

 

Granovskaya and Lyubimov [58] measured the partial pressures of phosphorus and Fe above the 

Fe-P melts in the composition of 𝑥𝑃 = 0 − 0.02  at 1540 ℃ , 1595 ℃  and 1620 ℃  using the 

isotopic tracer method (ITM). Since different allotropes cannot be distinguished from each other 

by this technique, gaseous phosphorus was assumed to exist entirely as P(g). That is why the 

activity of P converted from partial P(g) pressure deviates positively from most other data sets. 

Moreover, it is contradictory that measured partial pressures of Fe(g) are even higher than those 

of pure liquid Fe. The Knudsen effusion method (KEM) was adopted in the experiments by Saito 

et al. [62], Yamada and Kato [61], Yamamoto et al. [49], and Zaitsev et al. [10]. Vapor pressures 

of P2(g) and P(g) were determined simultaneously from the the intensities of P2
+ and P+ ions. All 

KEM data are consistent and fairly well reproduced in the present optimization, with the exception 

of those by Saito et al. [62]. As shown in Fig. 3.9(c) and (d), the activity of P by Saito et al. [62] 

converted from both P2(g) and P(g), is apparently inconsistent and deviates greatly from the other 

data, so their data are not considered reliable and are neglected in this optimization. Fig. 3.9(b), 

(c) and (d) also shows that the experimental data by Schenck et al. [52,53] are off compared to the 

other data, because they assumed P2(g) as the only phosphorus species in the calculation of 𝑎𝑃 of 

the liquid phase. Ban-ya and Suzuki [57] and Ban-ya et al. [54] measured 𝑎𝑃 in molten Fe using 

the distribution method (DM) and gas transportation method (TM), respectively. The reported 

earlier 𝑎𝑃 data are slightly smaller than the present calculated lines, while the latter data converted 

from P2(g) vapor pressure (P(g) and P4(g) were taken into account to determine the apparent vapor 

pressure of P2(g)) deviates greatly from the other data. This is probably due to the influence of the 
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carrier gas flow rate and gas condensation on the measurement of phosphorus partial pressure. As 

tested by Ban-ya et al. [54], the P2(g) partial pressure fluctuated with the gas flow rate, so it might 

be hard to determine the approapriate carrier gas flow rate and condensing time to achieve 

equilibrium P2(g) partial pressure above the Fe-P melts. Other data by Urban [24,59] using the 

partition coefficient method (PCM), Fischer et al. [31] using electromotive force (EMF), Frohberg 

et al. [60] using the distribution method (DM) are reasonable.  

 

It should be noted that the slope of 𝑎𝑃
𝑅 is changing at 𝑥𝑃 ≈ 0.333. This also indicates the strong 

short range ordering at 𝑥𝑃 ≈ 0.333 composition. 
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Figure 3.9 Activity of P(l) in the liquid Fe-P solution with reference to pure P(l) as a standard 

state at (a) 1650 ℃, (b) 1600 ℃, (c) 1536 ℃, (d) 1500 ℃, (e) 1400 ℃, and (f) 1300 ℃ 

 

3.3.3.3 Enthalpy and Gibbs Energy of Mixing 

Enthalpy of mixing is one of most important thermodynamic properties for evaluating the 

interaction between the components of the liquid phase. Schurmann et al. [55] measured the 

enthalpy of mixing (∆𝐻𝑚𝑖𝑥) of liquid Fe-P alloys for a composition up to 𝑥𝑃 = 0.34 at 1550 ℃, 

using the calorimetry method (CM) and thermal analysis (TA). Correspondingly, the Gibbs energy 

of mixing (∆𝐺𝑚𝑖𝑥) was also derived. The enthalpy and Gibbs energy of mixing at 1550 ℃ are 

calculated and compared with the experimental data [55] in Fig. 3.10. As shown in the figure, the 

enthalpy of mixing has a minimum value of -47.98 kJ/mol at 𝑥𝑃 ≈ 0.35. The slope of mixing 

enthalpy is nearly constant up to the minimum enthalpy region. This is a typical feature for the 
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liquid solution which has a very strong short-range ordering. The present calculation results are in 

excellent agreement with the experimental data, as shown in Fig. 3.10.  

 

Figure 3.10 Enthalpy and Gibbs energy of mixing of the Fe-P liquid solution at 1550 ℃ 

optimized in the present study in comparison with experimental data [55] 

 

3.4 Application of Optimized Database to Dephosphorization Calculation for Liquid Fe 

Depending on the basicity (CaO) and oxidizing (FetO) conditions, phosphorus in liquid steels and 

ferroalloys can be removed from liquid metal and transferred into slag in the form of P2O5 [1]. In 

high CaO slag, the formed P2O5 can further react with CaO to generate stoichiometric tricalcium 

phosphate (Ca3P2O8) or tetracalcium phosphate (Ca4P2O9) depending on the basicity (CaO/P2O5) 

of the slag. Dephosphorization reactions typically occur under high basicity and oxidizing 

condition, as expressed by the following reactions:  

2 52[ ] 5( ) ( ) 5[ ]P FeO PO Fe+ = +                                                                                                   (3.27) 

3 2 82[ ] 5( ) 3( ) ( ) 5[ ]P FeO CaO Ca PO s Fe+ + = +                                                                           (3.28) 



88 
 

where [i] and (i) represents the component in molten steel and slag, respectively. Since 

dephosphorization occurs at the interface of the metal and slag, the distribution of P depends on 

the properties of P in molten steel and that of P2O5 in slag. The distribution coefficient 𝐿𝑃 of P is 

calculated from the ratio of the P concentration in molten slag to that in metal, as expressed below:  

.%( )

.%[ ]

slag

P

metal

wt P
L

wt P
=                                                                                                              (3.26) 

where 𝑤𝑡. %(𝑃)𝑠𝑙𝑎𝑔  is the weight percent of P (in the form of P2O5) in molten slag, and 

𝑤𝑡. %[𝑃]𝑚𝑒𝑡𝑎𝑙 is the weight percent of P in liquid metal.  

 

Recently, the Gibbs energies of pure solid and liquid P2O5 were reevaluated by Jung and Hudon 

[63] and a thermodynamic database of the molten FetO-CaO containing P2O5 slag system has been 

optimized.[1] for the dephosphorization treatment in the steelmaking process, which is now stored 

as the FToxid database in FactSage 7.3 [14]. The database has been proved to be accurate in 

reproducing the dephosphorization capacity of various multicomponent slag systems. Here, 

dephosphorization calculations were performed using the FToxid database for slag and 

thermodynamic database of the Fe-P system optimized in the present study. 
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Figure 3.11 (a) Distribution coefficient of P, and (b) dissolved [P] content in molten Fe after 

dephosphorization of the liquid Fe-P solution with molten slag at 1550 ℃ to 1700 ℃ 
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Many experimental investigation [31,64-70] have been  performed to determine the P distribution 

between molten steel and slag at various compositions and temperatures. Peter et al. [64] 

conducted equilibrium experiments between molten iron and phosphorus containing slag in the 

dolomite crucible (co-saturation of CaO and MgO) at 1550 ℃ to 1700 ℃. Troemel et al. [65,67-

69], Knueppel et al. [66], and Nagabayashi et al. [70] also studied the dephosphorization of molten 

steels in the saturation of CaO or Ca4P2O9 at 1550 ℃ to 1650 ℃. Fischer et al. [31] measured the 

activity of P in the Fe-P melts from 1550 ℃ to 1700 ℃ through electromagnetic force (EMF) 

experiments with Ca4P2O9 electrolyte, and the P distribution coefficient 𝐿𝑃 was also determined 

in the experiments. The literature data [31,64-70] of 𝐿𝑃 between liquid Fe and CaO or Ca4P2O9 

saturated CaO-FeO-P2O5 slag at 1550 ℃ to 1700 ℃ are compared with the present calculations in 

Fig. 3.11(a). The 𝐿𝑃  data, despite some scattering, are reasonably reproduced in a wide 

temperature and composition range. As shown in the figure, 𝐿𝑃 varies with the temperature and 

slag composition. In particular, 𝐿𝑃 has a maximum value when wt. %FeO ≈ 20 in slag, and higher 

𝐿𝑃 values can be achieved at lower temperatures. Fig. 3.11(b) shows variations of the P content in 

liquid Fe with slag composition (wt.%FetO). The P content decreases dramatically with increasing 

FetO content of slag up to about 10~20 in weight percent. Then, it remains almost constant even 

if the FetO content was further increased. As shown in Fig. 3.11(b), the measured concentration 

of dissolved P in molten Fe is very well reproduced based on the liquid Fe-P database optimized 

in the present study. 

 

3.5 Summary 

A critical evaluation and optimization of all available experimental data of the Fe-P system have 

been performed to obtain a set of Gibbs energies of all the phases of this system. The liquid Fe-P 
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solution was described using the Modified Quasichemical Model (MQM), and solid solutions such 

as BCC_A2 and FCC_A1 solutions were described using the Compound Energy Formalism (CEF). 

The discrepancies of the phase diagram and thermodynamic data left in previous assessments were 

resolved in the present study. The present Fe-P thermodynamic optimization results are proved to 

be reliable in describing the dephosphorization process between steels and slags. 
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Abstract 

Thermodynamic modeling of the Mn-P and Fe-Mn-P systems in the full composition was carried 

out using the CALculation of PHAse Diagrams (CALPHAD) method based on the critical 

evaluation of all available phase equilibria and thermodynamic data. The liquid and solid solutions 

were described using the Modified Quasichemical Model and Compound Energy Formalism, 

respectively. The Gibbs energies of the binary stoichiometric iron and manganese phosphides were 

determined based on reliable experimental data. The ternary (Fe,Mn)3P, (Fe,Mn)2P and (Fe,Mn)P 

phosphides were modeled as solid solutions with mutual substitution between Fe and Mn atoms. 

The Gibbs energy of the liquid solution was predicted using the Toop interpolation technique with 

P as an asymmetric component, without any ternary parameters. The thermodynamic properties of 

P in the entire composition region and the liquidus of the ternary system were well reproduced. 

Based on the thermodynamic models with optimized parameters, unexplored phase diagrams and 

thermodynamic properties of the Fe-Mn-P system were predicted. 

Keywords: Thermodynamic modeling, Mn-P system, Fe-Mn-P system, CALPHAD, Phase 

diagrams, Thermodynamic properties 
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4.1. Introduction 

Manganese (Mn), as the fifth most abundant metallic element in the earth, has valuable 

significance in the metallurgical industry as an alloying additive in high Mn steels, in which Mn 

can be up to 30 wt.% for improving mechanical properties including hardenability, tensile strength, 

toughness. Besides, Mn is always used as a deoxidizer or a sulphide former in the steelmaking 

process [1]. The Mn in steels mostly originates from raw materials such as iron ore, flux, FeMn 

alloy agents, etc., which also contain certain amount of impurity elements like phosphorus. In most 

cases, P is a detrimental element in steels when exceeding allowed level because it can cause 

irreversible steel defects such as embrittlement and inner cracks. However, it is difficult to get rid 

of P during the steelmaking process especially at the presence of Mn because of high affinity 

between Mn and P.  

 

In the past decades, various experimental and computational studies have been performed to 

investigate the behavior of P in Fe, Mn, and Fe-Mn alloys. Experimental studies on the Fe-P, Mn-

P and Fe-Mn-P systems were reviewed by Okamoto [2], Schlesinger [3], Hansen and Anderko [4], 

Raghavan [5], and Korniyenko [6]. Thermodynamic assessments of the binary Fe-P, Mn-P and Fe-

Mn systems have been performed by many researchers [7-21]. Previous assessments of the Fe-P 

system were discussed by present authors [22]. The Mn-P system was assessed by Lee et al. [12] 

based on reported data, including the partial Mn-P phase diagram up to 𝑥𝑃 = 0.5  and 

thermodynamic properties of intermediate manganese phosphides Mn3P, Mn2P, Mn3P2, MnP and 

MnP3. Miettinen [13,23] also calculated the Mn-P phase diagram of the composition up to 𝑥𝑃 =

0.5. Tokunaga et al. [14] calculated the Mn-P diagram of the full composition range considering 

Mn3P, Mn2P, Mn3P2, MnP and MnP4 phosphides. Thermodynamic optimization of the Fe-Mn 
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system was performed by many researchers [15-21], in which the parameters proposed by Huang 

[17] were widely accepted. The ternary Fe-Mn-P system was thermodynamically modeled by 

Miettinen et al. [23], and Tokunaga et al. [14]. In the former, the descriptions were given only in 

the composition of 𝑥𝑃 ≤ 0.5 while the discrepancies in liquid and solid solutions were not resolved 

despite excessive model parameters used. In the latter, the Gibbs energy of MnP4 was calculated 

based on the assumed formation enthalpy of FeP4. The uncertainty resulted from the assumptions 

in the binary Fe-P and Mn-P systems can be accumulated in the ternary Fe-Mn-P system. Besides, 

some phase diagram and thermodynamic data of previous experiments were ignored in the work 

by Tokunaga et al. [14]. 

 

Thermodynamic database based on the CALculation of PHAse Diagrams (CALPHAD) method is 

a powerful tool for new materials design and process optimization. The database of a target system 

is developed by means of thermodynamic modeling (optimization), aiming at obtaining one set of 

the consistent Gibbs energies of all phases as functions of temperature and composition. In the 

optimization, all available phase equilibria and thermodynamic data such as activity, entropy, 

enthalpy, and Gibbs energy, etc are critically evaluated simultaneously. The discrepancies between 

available data are resolved in the critical evaluation process, and the Gibbs energy functions for 

all related phases in the target system are derived. Prediction on unexplored thermodynamic 

properties and phase equilibria can be possible by interpolations and extrapolations in a 

thermodynamically correct manner.  

 

In the present study, the liquid and solid solutions will be described using the Modified 

Quasichmical Model (MQM) [24,25] and Compound Energy Formalism (CEF) [26], respectively. 
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The optimized Fe-Mn system by Huang [17] with modification of the liquid phase by Paek et al. 

[27] and the recently optimized Fe-P system by present authors [22] have been adopted in this 

work. Phase equilibria and thermodynamic properties of the Mn-P and Fe-Mn-P systems were 

optimized for the entire composition range, based on critical evaluation of all available 

experimental data. The present description of the Fe-Mn-P system will be included in the new 

high-alloy steel Fe-Mn-Al-Si-Cr-Ni-Ti-Nb-C-O-N-S-P FSstel 8.0 database. All the calculations 

were performed using FactSage software [28]. 

 

4.2. Thermodynamic Models 

4.2.1 Pure Elements and Stoichiometric Compounds 

The Gibbs energies of all elemental Fe, Mn and P were taken from Scientific Group Thermodata 

Europe (SGTE) database compiled by Dinsdale [29]. The Gibbs energies of stoichiometric 

compounds were determined based on available thermodynamic data including heat capacity, 

standard enthalpy and entropy of formation at 298.15 K. In the present study, stoichiometric iron 

phosphides Fe3P, Fe2P, FeP and FeP2 of the Fe-P system and manganese phosphides Mn3P, Mn2P, 

Mn3P2, MnP and MnP3 of the Mn-P system were taken into account, and their Gibbs energies were 

determined using the equation below: 

( )298.15 298.15
298.15 298.15

T T
P

T K P K
K K

C
G H C dT T S dT

T

   
=  + − + 

 
                                                          (4.1)   

here 𝐺𝑇
°  is the Gibbs energy at temperature T (J/mol),  𝛥𝐻298.15𝐾

°  and 𝑆298.15𝐾
°  are standard 

enthalpy of formation (J/mol) and standard entropy (J/mol/K) at 298.15 K, and 𝐶𝑃  is the heat 

capacity (J/mol/K). The heat capacity of each stoichiometric compound was expressed as a 

function of temperature by fitting experimental 𝐶𝑃  data. In the case of compounds without 
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available experimental 𝐶𝑃 data, their 𝐶𝑃 were estimated using Neumann-Kopp (NK) rule [30] or 

𝐶𝑃 functions of neighboring compounds.  

 

When a pure element or stoichiometric compound exhibits magnetic behavior, an additional 

magnetic contribution term 𝐺𝑚𝑔 will be added to describe the Gibbs energies of corresponding 

phases using the empirical expression proposed by Inden [31] and modified by Hillert and Jarl 

[32].  

( )ln 1 ( )mgG RT g = +                                                                                                         (4.2) 

where τ is given by 𝑇/𝑇∗ and 𝑇∗ is the critical temperature of magnetic transition associated with 

Curie temperature 𝑇𝐶  for ferromagnetic materials or Neel temperature 𝑇𝑁  for antiferromagnetic 

materials. β is the average magnetic moment per mole of atoms expressed in Bohr magnetons. 

𝑔(𝜏) is a polynomial function derived by Hillert and Jarl [32]. In the Fe-Mn-P system, the magnetic 

contribution terms was applied to Fe (BCC_A2, FCC_A1), Mn (CBCC_A12, BCC_A2, FCC_A1), 

Fe3P and MnP. 

 

4.2.2 Solid Solutions 

The Gibbs energies of solid solutions were described using the Compound Energy Formalism 

(CEF) [26] considering crystallographic structures. In the ternary Fe-Mn-P system, the solid 

(Fe,Mn)3P, (Fe,Mn)2P and (Fe,Mn)P solutions in the formulas of Me3P, Me2P and MeP  were taken 

into account through mutual substitution of Fe and Mn atoms between isomorphous Fe3P and 

Mn3P, Fe2P and Mn2P, FeP and MnP, respectively. Besides, the solid FCC_A1, BCC_A2, 

CBCC_A12 and CUB_A13 solutions were also considered. 
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The FCC_A1, BCC_A2, CBCC_A12 and CUB_A13 phases were described using the CEF with 

the substitutional one-sublattice (Fe, Mn, P) approach. The molar Gibbs energies of these solid 

solutions were calculated as follows:  

.

, , , ,

, , , , ,

0,1,2... 0,1,2... 0,1,2... 0,1,2...

lnsol o

S i i i i

i Fe Mn P i Fe Mn P

m k p q mg

Fe P Fe P Mn P Mn P Fe Mn Fe Mn Fe Mn P Fe Mn P

m k p q

G x G R x x

x x L x x L x x L x x x L G

= =

= = = =

= + 

+ + + + +

 

   
              (4.3) 

where 𝑥𝑖 is the mole fraction of component i and 𝐺𝑖
° is the molar Gibbs energy (J/mol) of the pure 

solid i (i = Fe, Mn, P); R and T are the gas constant (8.314 J/mol-K) and the temperature in Kelvin 

(K); 𝐿Fe,P
m , 𝐿Mn,P

k , 𝐿Fe,Mn
p

 and 𝐿Fe,Mn,P
q

 are the adjustable interaction parameters of corresponding 

binary and ternary systems; 𝐺𝑚𝑔 is the magnetic contribution to the Gibbs energy (J/mol).  

 

The solid Me3P, Me2P and MeP solutions were also described with a two-sublattice (Fe, Mn)n(P) 

model. In the substitutional site, Fe and Mn atoms substitute each other to form the solutions in 

different compositions. Their molar Gibbs energies can be expressed as: 

 ( ).

, :

0,1,2...

ln ln
n n

sol o o m mg

S Fe Fe P Mn Mn P Fe Fe Mn Mn Fe Mn Fe Mn P

m

G y G y G nR y y y y y y L G
=

= + +  + + +                  (4.4) 

here 𝐺Fe𝑛P
°  and 𝐺Mn𝑛P

°  are Gibbs energies (J/mol) of pure stoichiometric compounds FenP and 

MnnP, respectively. n (n = 3, 2, 1) is the number of molar substitutional sites of the two-sublattice 

formula. 𝑦Fe  and 𝑦Mn are site fractions of Fe and Mn in the substitutional site. 𝐿Fe,Mn:P
m  is the 

adjustable parameter describing the interaction between Fe and Mn in the substitutional lattice.  

 

4.2.3 Liquid Solution 

The Modified Quasichemical Model (MQM) [24,25] considering the short-range ordering of the 

nearest-neighbor atoms was used to describe the liquid solutions. Compared to the conventional 
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Bragg-Williams Random Mixing Model (BWRMM), the MQM gives a more realistic description 

of the entropy of solution. In the MQM, the Gibbs energy of pair formation can be expanded as a 

polynomial in the pair fraction rather than the component fraction and coordination numbers of 

the components are allowed to vary with composition for reproducing the short-range ordering of 

the liquid solution with less parameters, providing greater flexibility in reproducing experimental 

data of the binary liquids and combining the binary parameters in higher-order systems. 

 

In the case of the binary A-B liquid solution, the atoms A and B are distributed over the quasilattice 

sites. The atom pair exchanging reaction of the A-B liquid solution can be expressed as follows: 

( ) ( ) 2( ); ABA A B B A B g− + − = −                                                                                                         (4.5) 

where (i-j) represents the nearest-neighbor pair between components i and j, and Δ𝑔AB is the Gibbs 

energy change (J/mol) of forming 2 moles (A-B) pairs. The Gibbs energy of the liquid solution is 

given by the following equation:  

 .( ) ( / 2)L conf

AB A A B B AB AB ABG n G n G T S n g = + −  +                                                                              (4.6) 

where 𝑛A and 𝑛B are the numbers of moles of A atoms and B atoms, and 𝐺A
°  and 𝐺B

°  are the molar 

Gibbs energies of pure A and B components. Δ𝑆AB
conf. is the configurational entropy of mixing given 

by random distribution of the (A-A), (B-B) and (A-B) pairs as follows:  

.

2 2
( ln ln ) ln ln ln

2

conf AA BB AB
AB A A B B AA BB AB

A B A B

X X X
S R n X n X R n n n

Y Y Y Y

      
 = − + − + +      

      
                              (4.7) 

here 𝑛AA, 𝑛BB and 𝑛AB are the numbers of moles of the (A-A), (B-B) and (A-B) pairs; 𝑋AA, 𝑋AB 

and 𝑋AB are the pair fractions of corresponding atom pairs; 𝑋A and 𝑋B are the mole fractions of A 

and B atoms and 𝑌A and 𝑌B are the coordination equivalent fractions of A and B atoms. The pair 

fractions 𝑋AA, 𝑋AB, 𝑋BB and coordination equivalent fractions 𝑌A and 𝑌B are calculated as:  
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( )/AA AA AA AB BBX n n n n= + +
                                                                                                              (4.8) 

( )/AB AB AA AB BBX n n n n= + +                                                                                                                 (4.9) 

( )/BB BB AA AB BBX n n n n= + +                                                                                                                (4.10) 

1

2
A AA ABY X X= +                                                                                                                               (4.11) 

1

2
B BB ABY X X= +                                                                                                                                (4.12) 

The 𝛥𝑔𝐴𝐵 in Eq. (4.5), the model parameter for reproducing the Gibbs energy of the binary A-B 

solution, can be expanded as a polynomial based on the atomic pair fractions 𝑋𝐴𝐴 and 𝑋𝐵𝐵: 

0 0

1 1

i i j j

AB AB AB AA AB BB

i j

g g g X g X

 

 =  + +                                                                                          (4.13) 

where Δ𝑔AB
° , 𝑔AB

i0  and 𝑔AB
0j

 are the adjustable model parameters that can be functions of the 

temperature. In the MQM, the coordination numbers of A and B, 𝑍A and 𝑍B, can be varied with 

the composition to reproduce the short-range ordering of the solution:  

1 1 2 1

2 2

AA AB

A A

A AA AA AB AB AA AB

n n

Z Z n n Z n n

   
= +   

+ +   
                                                                                    (4.14) 

1 1 2 1

2 2

BB AB

B B

B BB BB AB BA BB AB

n n

Z Z n n Z n n

   
= +   

+ +   
                                                                                     (4.15) 

here 𝑍AA
A  is the value 𝑍A when all nearest neighbors of a A atom are A atoms, and 𝑍AB

A  is the value 

of 𝑍A  when all nearest neighbors of the A atom are B atoms. 𝑍BB
B  and 𝑍BA

B  are defined in an 

analogous manner.  

 

When extending from the binary systems to the ternary system, the Gibbs energy of the ternary 

liquid solution can be predicted using the proper interpolation technique based on the nature of all 



107 
 

involved binary systems. If necessary, ternary correction terms can also be further introduced to 

give a more precise description of the Gibbs energy of the ternary liquid solution. In the Fe-Mn-P 

system, the liquid Fe-P and Mn-P solutions behave very negative deviation from ideal mixing 

while the liquid Fe-Mn solution is almost in ideal mixing. Therefore, the Toop-type geometric 

interpolation technique [25] with P as the asymmetric component was adopted for the Fe-Mn-P 

system. The configurational entropy of mixing and Gibbs energy of the liquid Fe-Mn-P solution 

was calculated using the following equations:   

 .

2
, , , , , , ,

ln ln
2

k m
jjconf km

FeMnP i i jj km

i Fe Mn P j Fe Mn P k m Fe Mn Pj k m

X X
S R n X R n n

Y Y Y



= = =

    
 = − − +     

    
                        (4.16) 

( ).

, , , , ,

/ 2
j k

L conf

FeMnP i i FeMnP jk jk

i Fe Mn P j k Fe Mn P

G n G T S n g




= =

= −  +                                                             (4.17) 

here each pair formation Gibbs energy 𝛥𝑔FeP, 𝛥𝑔MnP and 𝛥𝑔FeMn depends on the symmetry of 

each component (Fe, Mn, P) in the ternary system. Therefore, 𝛥𝑔FeP  and 𝛥𝑔MnP  between 

asymmetric components (Fe and P, Mn and P) are expressed as below: 

( ) ( )( )

( ) 1 0, 0, 1

k

j jij i ijk i Mn
FeP FeP FeP PP FeFe FeMn MnMn FeP Mn PP FeFe FeMn PP

i j i j k Fe Mn

Y
g g g x x x x g x x x x

Y Y



+    

 
 =  + + + + + +  

+ 
      (4.18) 

( ) ( )( )

( ) 1 0, 0, 1

k

j jij i ijk i Fe
MnP MnP MnP PP FeFe FeMn MnMn MnP Fe PP FeFe FeMn PP

i j i j k Fe Mn

Y
g g g x x x x g x x x x

Y Y



+    

 
 =  + + + + + +  

+ 
      (4.19) 

and  𝛥𝑔FeMn between symmetric Fe and Mn is expressed as:  

( ) 1

( )

0, 0, 1

i j

ij FeFe MnMn
FeMn FeMn FeMn

i j FeFe FeMn MnMn FeFe FeMn MnMn

i j

ijk kFeFe MnMn
FeMn P P

i j k FeFe FeMn MnMn FeFe FeMn MnMn

x x
g g g

x x x x x x

x x
g Y

x x x x x x



+ 

  

   
 =  +    

+ + + +   

   
+    

+ + + +   





                            (4.20) 
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where 𝑔FeP
𝑖𝑗

, 𝑔MnP
𝑖𝑗

, 𝑔FeMn
𝑖𝑗

 are the binary liquid parameters; 𝑔FeP(Mn)
𝑖𝑗𝑘

, 𝑔MnP(Fe)
𝑖𝑗𝑘

 and 𝑔FeMn(P)
𝑖𝑗𝑘

 are 

the ternary liquid parameters.  

 

4.3 Critical Evaluation and Thermodynamic Optimization 

Thermodynamic optimization of the Fe-Mn-P system was performed using the CALPHAD 

approach based on the critical evaluation of all available phase equilibria and thermodynamic data. 

The liquid and solid solutions of all sub-systems were described using the MQM [24,25] and CEF 

[26], respectively. White P were selected as the standard state for the solid phases. The crystal 

structure information of all solid phases in the Fe-Mn-P system is summarized in Table 4.1. The 

optimized model parameters of the Fe-Mn-P system are summarized in Table 4.2.  

Table 4.1 Summary of crystal structure information of all solid phases in the Fe-Mn-P system 

Phase Structure Prototype Space group Pearson symbol 

FCC_A1 Cubic Cu 𝐹̅m3̅m cF4 

BCC_A2 Cubic W 𝐼m3̅m cI2 

CBCC_A12 Cubic αMn 𝐼4̅3m cI58 

CUB_A13 Cubic βMn P4132 cP20 

Me3P Tetragonal Ni3P I4̅ tI32 

Me2P Hexagonal Fe2P P6̅2m hP9 

MeP Orthorhombic MnP Pnma oP8 

FeP2 Orthorhombic FeS2 Pnnm oP6 

Mn3P2 Tetragonal Zn3P2 P42/nmc tP40 

MnP3 --- --- --- --- 
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White P Cubic P4 I4̅3m C*8 

Red P --- P --- C*66 

 

Table 4.2 Optimized model parameters for the Fe-Mn-P system (J/mol, J/mol-K) 

Phase Model parameters 

Liquid 

(Fe, Mn, P) 

6Fe Mn P

FeFe MnMn PPZ Z Z= = =  [27, *] 

6P P Fe Fe

PFe PMn FeMn MnFeZ Z Z Z= = = =  [27, *], 3Fe Mn

FeP MnPZ Z= =  [*] 

256902 6.569 (5481 3.0334 ) ( 11966 2.5104 ) 9623.2FeP FeFe FeFe PPg T T X T X X = − + + + + − + −  [*] 

257279 4.6024 (7113 4.6024 ) ( 18326 4.184 ) 17656.5MnP MnMn MnMn PPg T T X T X X = − + + + + − + −  [*] 

1338.88 0.16736 418.4 334.72FeMn FeFe MnMng T X X = − + + −  [27] 

 “Toop-type” interpolation with P as an asymmetric component [*] 

FCC_A1 

(Fe, Mn, P)1(Va)1 

: ( )

FCC

FeVa Fe FCCG G= , 
: ( )

FCC

Mn Va Mn FCCG G= , 
: ( )

FCC

P Va P FCCG G=  [*] 

, : 139787.44 6.4852FCC

Fe PVaL T= − +  [22] 

, : 33472FCC

Mn P VaL = −  [*] 

( ), : 7762 3.865 259FCC

Fe Mn Va Fe MnL T x x= − + − −  [17] 

( ), : 2282 2068FCC

CFe Mn Va Fe MnL y y= − − −  [17] 

: 201CFeVaT = − , : 2.1FeVa = −  [17]  

: 1620CMn VaT = − , : 1.86Mn Va = −  [17] 
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BCC_A2 

(Fe, Mn, P)1(Va)3 

: ( )

BCC

FeVa Fe BCCG G= , 
: ( )

BCC

Mn Va Mn BCCG G= , 
: ( )

BCC

P Va P BCCG G=  [*] 

( ), : 203476.3 15.4808 33472BCC

Fe PVa Fe PL T y y= − + + −  [22] 

, : 30543.2BCC

Mn P VaL = −  [*] 

, : 2759 1.237BCC

Fe Mn VaL T= − +  [17] 

, : 285CFe P VaT = − , 
, : 123CFe Mn VaT =  [17] 

: 1043CFeVaT = , : 2.22FeVa =  [17] 

: 580CMn VaT = − , : 0.27Mn Va = −  [17] 

CBCC_A12 

(Fe, Mn, P)1(Va)1 

: ( )

CBCC

FeVa Fe CBCCG G= , 
: ( )

CBCC

Mn Va Mn CBCCG G= , 
: ( ) 30000CBCC

P Va P whiteG G= +  [*] 

, : 34308.8CBCC

Mn P VaL = −  [*] 

, : 10184CBCC

Fe Mn VaL = −  [17] 

CUB_A13 

(Fe, Mn, P)1(Va)1 

: ( )

CUB

FeVa Fe CUBG G= , 
: ( )

CUB

Mn Va Mn CUBG G= , 
: ( ) 25000CUB

PVa P whiteG G= +  [*] 

, : 34308.8CUB

Mn P VaL = −  [*] 

, : 11518 2.819CUB

Fe Mn VaL T= − +  [17] 

Me3P 

(Fe, Mn)3(P)1 

3

3:

Me P

Fe P Fe PG G=  [22] 

3 2 7 3 1

: 224543 629.2778 108.95 ln 0.0136 6.583 10 212500
Me P

Mn PG T T T T T T− −= − + − − +  +  [*] 

3

, : 47446.56 29.288 ( 7041.67 10.46 )( )
Me P

Fe Mn P Fe MnL T T x x= − + − + −  [*] 

Me2P 

(Fe, Mn)2(P)1 

2

2:

Me P

Fe P Fe PG G=  [22] 

2 2 7 3 1

: 195270 374.927 67.4032 ln 0.01865 4.675 10 234827Me P

Mn PG T T T T T T− −= − + − − +  +  [*] 

( )( )2

, : 39886.1 20.92 26359.2 16.736Me P

Fe Mn P Fe MnL T T y y= − − + − + −  [*] 
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MeP 

(Fe, Mn)1(P)1 

:

MeP

Fe P FePG G=  [22] 

2 7 3 1

: 137881 246.546 43.945 ln 0.0113 4.675 10 165000MeP

Mn PG T T T T T T− −= − + − − +  +  [*] 

, : 0MeP

Fe Mn PL =  [*] 

FeP2 [22] 

(Fe)1(P)2 

𝛥𝐻298.15𝐾
° = −191100, 𝑆298.15𝐾

° = 51.05 

𝐶𝑃 = 77.52563 + 0.009348𝑇 − 443846𝑇−2 − 1.1 × 10−6𝑇2 

Mn3P2 [*] 

(Mn)3(P)2 

𝛥𝐻298.15𝐾
° = −288185, 𝑆298.15𝐾

° = 151.5 

𝐶𝑃 = 111.3482 + 0.0599𝑇 − 799654𝑇−2 − 5.61 × 10−6𝑇2 

MnP3 [*] 

(Mn)1(P)3 

𝛥𝐻298.15𝐾
° = −201880, 𝑆298.15𝐾

° = 82.0 

𝐶𝑃 = 84.9186 + 0.03840928𝑇 − 710692𝑇−2 − 8.415 × 10−6𝑇2 

   * optimized in the present study 

 

4.3.1 The Fe-P and Fe-Mn System 

The Fe-P system optimized by present authors [22] and the Fe-Mn system optimized by Huang 

[17] with the modification of the liquid phase by Paek et al. [27] were adopted in the present study. 

The optimized phase diagrams of the Fe-P and Fe-Mn system are plotted in Fig. 4.1(a) and Fig. 

4.1(b). With suppression of the gas phase, three solutions including the liquid, FCC_A1 and 

BCC_A2 and four stoichiometric compounds including Fe3P, Fe2P, FeP and FeP2 are stable in the 

Fe-P system [22]. P is soluble in γ-Fe and α-Fe in the Fe-rich region, as shown in Fig. 4.1(a). In 

the Fe-Mn system, five solutions including the liquid, BCC_A2, FCC_A1, CBCC_A12 and 

CUB_A13 were considered. 
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(a) 

 

(b)  
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(c) 

Figure 4.1 Optimized phase diagrams of the (a) Fe-P (b) Fe-Mn, and (c) Mn-P systems 

 

4.3.2 The Mn-P System 

4.3.2.1 Phase Diagram 

The optimized Mn-P phase diagram was compared with experimental data in Fig. 4.1(c). Five 

solutions (liquid, BCC_A2, FCC_A1, CUB_A13 and CBCC_A12) and five stoichiometric 

compounds (Mn3P, Mn2P, Mn3P2, MnP and MnP3) were considered in the Mn-P system. There is 

no evidence of P dissolution in solid Mn, so the solubility of P in the BCC_A2, FCC_A1, 

CUB_A13 and CBCC_A12 Mn is taken as zero. Invariant reactions of the Mn-P system are 

summarized in Table 4.3. 
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Table 3.3 Invariant reactions of the Mn-P system optimized in the present study 

Type Reactions Temperature, ℃ 

Eutectic L(xP = 0.119) = CUB_Mn(xP = 0) + Mn3P(xP = 0.25) 965 

Incongruent L(xP = 0.212) + Mn2P(xP = 0.333) = Mn3P(xP = 0.25) 1101 

Congruent L(xP = 0.333) = Mn2P(xP = 0.333) 1337 

Peritectic Mn2P(xP = 0.333) + L(xP = 0.429) = Mn3P2(xP = 0.4) 1100 

Eutectic L(xP = 0.434) = Mn3P2(xP = 0.4) + MnP(xP = 0.50) 1094 

Congruent MnP(xP = 0.50) = MnP(xP = 0.50) 1143 

Peritectic MnP(xP = 0.5) + L(xP = 0.754) = MnP3(xP = 0.75) 809 

Eutectic L(xP = 0.9996) = MnP3(xP = 75) + Red_P(xP = 1) 576 

 

4.3.2.2 Liquid Solution 

The thermodynamic properties of P in molten Mn are of metallurgical significance particularly for 

the P removal in Mn alloys and high Mn steels. Schurmann et al. [33] measured the enthalpy of 

mixing of the liquid Fe-P solution at 1550 ℃ using the calorimetry method (CM) and thermal 

analysis (TA). The optimized enthalpy of mixing of liquid Mn-P and Fe-P solutions are plotted in 

Fig. 4.2. The liquid Mn-P solution shows very negative mixing enthalpy (∆𝐻mixing
min = −49.87 

kJ/mol), which is slightly more negative than that of the liquid Fe-P solution (∆𝐻mixing
min = −47.98 

kJ/mol) [22]. Both solutions exhibit apparent short-range ordering at the composition of 0.3 <

𝑥𝑃 < 0.4, which were well described using the MQM.   
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(a)  

 
(b)  

Figure 4.2 Enthalpy of mixing of the liquid solutions in the (a) Fe-P and (b) Mn-P systems 
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The activities of P and Mn in the Mn-P liquid solution were investigated by Dashevskii et al. [34], 

Batalin et al. [35,36] and Zaitsev et al. [37]. The calculated Raoltian activities of P (𝑎P
R) and Mn 

(𝑎Mn
R ) in the reference of pure liquid P and Mn were compared with experimental results in Fig. 

4.3. As shown in the figure, the data of both 𝑎P
R and 𝑎Mn

R  from different experiments are very 

inconsistent. The 𝑎P
R obtained by Dashevskii et al. [34] and Batalin et al. [35] were calculated 

based on the 𝑎Mn
R  determined from the Mn vapor over the liquid solution using the Gibbs-Duhem 

relationship. In their experiments, the measured Mn vapor pressure over the pure liquid Mn, 

however, as the reference pressure, even deviated from the well-known vapor pressure, so the 

accuracy of their data is suspicious. Another set of 𝑎P
R data were measured by Batalin et al. [36] 

using the vacuum calorimetry method (VCM), which seems to be  more reliable. Zaitsev et al. [37] 

carried out Knudsen effusion experiments at 976 ℃ to 1298 ℃ to measure the activities of P and 

Mn, which were determined from the intensities of individual gaseous ion species. As can be seen 

in Fig. 4.3, the experimental data of Zaitsev et al. [37] at lower temperatures (976 ℃ ≤ 𝑇 ≤

1175 ℃ ) are reasonably reproduced in the present modeling. However, the data at higher 

temperatures (1243 ℃ ≤ 𝑇 ≤ 1298 ℃) deviate from the calculated results, because vaporization 

of the liquid Mn into the gas phase cannot be neglected at higher temperatures, which resulted in 

positive deviation in 𝑎Mn
R  in terms of the analytical technique (KEM). The behaviors of 𝑎P

R and 

𝑎Mn
R  in Fig. 4.3 for the Mn-P system are very similar to those of 𝑎P

R and 𝑎Fe
R  for the Fe-P system 

[22]. 
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(a)  

 
(b)  

Figure 4.3 Calculated activities (a) 𝑎P
R, and (b) 𝑎Mn

R  of the liquid Mn-P solution in the references 

of pure liquid P and Mn, compared to experimental data [34-37] 
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In the dilute solution of P in liquid Mn, the Henrian activity coefficient 𝛾𝑃
0 of P is a very important 

parameter to calculate the P distribution between the liquid Mn and slag or gas phase. The 

calculated 𝛾𝑃
0 and the Gibbs energy of P2(g) dissolution in liquid Mn are:  

0ln 24713 / 4.8307P T = − +                                                                                                  (4.21) 

20.5 ( ) ( .%)in liquid MnP g P wt= ;     
2 ( ) 265250 57.779P gG T = − +                                   (4.22) 

here T is the temperature in Kevin (K).  

 

4.3.2.3 Stoichiometric Manganese Phosphides 

Stoichiometric Mn3P, Mn2P and MnP compounds are undoubtably stable in the Mn-P system at 1 

atm total pressure. Mn3P2, however, was not confirmed in the early experiments [38,39] but was 

detected between around 1002 ℃  and 1090 ℃  in more recent experiments [37,40-42]. The 

stabilities of stoichiometric MnP3 and MnP4 compounds are very controversial. Biltz and 

Wiechmann [43] measured the vapor pressure of P4(g) in equilibrium with the Mn and red P 

mixture in the composition of 𝑛P: 𝑛Mn = 1.0 − 4.2 at 610 ℃ to 720 ℃. In their experiments, 

stoichiometric MnP and MnP3 compounds, instead of MnP2 and MnP4, were detected in the 

samples. According to other researchers, various polymorphs of manganese tetraphosphides (2-, 

6-, 8- and γ-MnP4) synthesized either at very high pressure (30-55 kbar) or in tin flux experiments 

[44-46]. Interestingly, MnP3 can always be detected in the tin flux experiments [45,46] In the 

investigation by Henge et al. [47], the stabilities of the above four polymorphs of MnP4 were 

evaluated based on their electronic structures and phonon calculations. The new γ-MnP4 turned out 

to be metastable, and the other three modifications exist only in very limited conditions. Since no 

reliable clue of thermodynamic properties is available for MnP4, so it was assumed to be metastable 
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in the present optimization. Instead, MnP3 was considered as the stable phase in favor of 

experimental results by Biltz and Wiechmann [43].  

 

The calculated heat capacities of Mn3P, Mn2P, and MnP were compared with experimental data in 

Fig. 4.4. With no available experimental data in the literature, the heat capacities of Mn3P2 and 

MnP3 were determined based on those of Mn2P and MnP, 𝐶𝑃(Mn3P2) =  𝐶𝑃(MnP) + 𝐶𝑃(Mn2P) 

and 𝐶𝑃(MnP3) =  3𝐶𝑃(MnP) − 2𝐶𝑃(MnCBCC), as expressed in Table 4.2. The heat capacities of 

MnP and Mn2P obtained by Makharadze et al. [48] using the calorimetry technique are inconsistent 

with other experimental results [49-51]. Makharadze et al. [48] extrapolated the heat capacities of 

MnP and Mn2P from the 𝐶𝑃 data of the Mn2P-MnP mixture. The 𝐶𝑃 data of Mn2P obtained by 

Grandjean [52] and those of MnP obtained by Krasovskii and Fakidov [49], Baratashvili et al. [50] 

and Stolen et al. [51] were consistent and favored in the present optimization.  

\  

(a) 
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(b)  

 
(c) 

Figure 4.4 Heat capacities of (a) MnP, (b) Mn2P, and (c) Mn3P in the Mn-P system 

 

Fig. 4.5 shows the standard formation enthalpy and standard entropy of stoichiometric manganese 

phosphides in the references of CBCC_A12 Mn(α) and white P at 298.15 K. The standard enthalpy 
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of formation was measured using the calorimetry method (CM) [52-54], Electromotive Force 

(EMF) technique [55,56], Mass-loss effusion (MLE) technique [57,58] and Knudsen effusion 

method (KEM) [37]. The results reported by Grandjean et al. [52] and Zaitsev et al. [37] are in 

good consistency but deviated from those of Mn3P by Baratashvili et al. [54], Mn2P and MnP by 

Myers et al. [56,58] and Shchukarev et al. [53] Baratashvili et al. [54] obtained the standard 

enthalpy of Mn3P based on their previous result of Mn2P [55] and estimated 𝐶𝑃 of Mn3P. Therefore, 

the experimental errors and estimation uncertainties are probably accumulated in the standard 

enthalpy of Mn3P. In addition, the standard enthalpies of Mn2P and MnP suggested by Myers et 

al. [56,58] deviate largely from other data including their own earlier results [57]. Hence, these 

two sets of data are not considered reliable. Shchukarev et al. [53] synthesised MnP with solid Mn 

and phosphorus vapor. However, the MnP formed on the surface of Mn probably prevented further 

formation of MnP, and condensation of gaseous phosphorus mixing with the solid MnP was 

observed during the experiments. These phenomena cause inaccuracy in the measured enthalpy of 

MnP, as shown Fig. 4.5(a).  

 
(a) ∆𝐻298.15 K

°  
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(b) 𝑆298.15 K

°  

Figure 4.5 Standard enthalpy of formation ∆𝐻298.15𝐾
°  and entropy 𝑆298.15 𝐾

°  of stoichiometric 

manganese phosphides at 298.15 K 

 

In the Mn-P system, experimental data [37,50-52,54,57] of the standard entropy at 298.15 K are 

only available for Mn3P, Mn2P and MnP. However, significant scattering exists among available 

experimental results, as can be seen in Fig. 4.5(b). Baratashvili et al. [54] obtained a value of 

𝑆298.15 𝐾
° = 22.385 J/K-mol atoms for Mn3P using the calorimetry method (CM), based on their 

earlier 𝑆298.15𝐾
° = 25.243 J/K-mol atoms [50] for Mn2P. Myers et al. [57] measured the vapor 

pressure of P2(g) in equilibrium with the Mn2P-MnP mixture using the mass-loss effusion (MLE) 

technique to determine the enthalpies of Mn2P and MnP. They also assessed the standard entropies 

𝑆298.15𝐾
°  of Mn2P and MnP based on the entropies of manganese silicides. Grandjean et al. [52] 

measured the heat capacity of Mn2P at 5 to 350 K using an adiabatic calorimeter and determined 

𝑆298.15 𝐾
°  of Mn2P by integrating experimental 𝐶𝑃  data of Mn2P. Zaitsev et al. [37] conducted 



123 
 

Knudsen effusion experiments to measure the intensities of all ion species in the gas phase. The 

obtained entropies of Mn3P, Mn2P and MnP were determined based on their Gibbs energy and heat 

capacity data. Stolen et al. [51] obtained a value of 𝑆298.15 𝐾
° = 24.48 J/K-mol atoms for MnP from 

the heat capacity data of MnP at 5 to 840 K using the adiabatic calorimetry method (ACM). As 

can be seen in Fig. 4.5(b), the entropies of Mn3P by Baratashvili et al. [54], Mn2P and MnP by 

Baratashvili et al. [50], Myers et al. [57] and Stolen et al. [51] are apparently underestimated 

compared to the results by Grandjean et al. [52] and Zaitsev et al. [37], which are in reasonable 

agreement with the present calculations. 

 

Fig. 4.6 shows variations of the Gibbs energy of formations of per mole of Mn3P, Mn2P, Mn3P2 

and MnP with the temperature. Experimental studies on the Gibbs energy of manganese 

phosphides were performed by Chizhikov et al. [59], Myers et al. [58] and Zaitsev et al. [37] using 

the Knudsen effusion method (KEM). A maximum difference of about 27 kJ per mole formula 

unit exists between the Gibbs energy data for Mn3P. Among all these data, those obtained from 

Knudsen effusion experiments by Zaitsev et al. [37] are favored in the present study.  
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(a) 

 

 (b) 
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(c) 

 

 (d) 

Figure 4.6 Gibbs energy of formations of (a) Mn3P, (b) Mn2P, (c) Mn3P2, and (d) MnP from 

CUB-Mn and P2(g) 
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Myers et al. [57] carried out Mass-loss effusion (MLE) experiments on the reaction 

4MnP(s) = 2Mn2P(s) + P2(g) in the temperature range of 1071 K to 1192 K. The variation of 

the equilibrium P2 pressure with the temperature is plotted in Fig. 4.7(a) along with experimental 

data. The only available thermodynamic data for MnP3 was reported by Biltz and Wiechmann [43] 

who synthesized MnP3 from a mixture of Mn and red P. In the equilibrated specimen, a mixture 

of MnP3 and MnP was detected and the partial pressure of P4 gas above this solid mixture was 

measured. The obtained experimental results are compared with present calculation in Fig. 4.7(b).  

 
(a)  
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(b)  

Figure 4.7 Calculated equilibrium vapor pressures of P2 and P4 gas of the reactions (a) 

4MnP(s) = 2Mn2P(s) + P2(g) and (b) 2MnP3(s) = 2MnP(s) + P4(g), compared to 

experimental data [43,57] 

 

In the present study, all the data [37,43,48-59] in Fig. 4.4 to 4.7 were simultaneously optimized to 

obtain one set of parameters for all solid manganese phosphides.  

 

4.3.3 The Fe-Mn-P System 

In the ternary Fe-Mn-P system, solution phases including the liquid, BCC_A2, FCC_A1, 

CBCC_A12, CUB_A13 and mutually substitutional (Fe, Mn)3P, (Fe, Mn)2P, (Fe, Mn)P solid 

solutions, and stoichiometric compounds including FeP2, Mn3P2 and MnP3 were considered in the 

present study. Specially, the (Fe, Mn)3P solid solution is formed with mutual dissolution of the 

isomorphous (Ni3P type) Fe3P and Mn3P phases. Goto et al. [60] proposed the occurrence of an 
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ordered orthorhombic phase (τ3) in the composition range of 0.3 < 𝑥𝑀𝑛 < 0.7 between tetragonal 

Fe3P- and Mn3P-based solid solution, which has not yet confirmed. In this work, partial dissolution 

between the isomorphous Fe3P and Mn3P in each other to form the discontinuous tetragonal (Fe, 

Mn)3P solution, instead of the ordered orthorhombic τ3 phase, was taken into account to reproduce 

the available experimental data [61-63]. Likewise, the hexagonal (Fe, Mn)2P solid solution is 

formed with mutual dissolution between the isomorphous (Fe2P-type) Fe2P and Mn2P in each other. 

Some researchers [64-71] reported an orthorhombic FeMnP (τ2) phase that demonstrates 

antiferromagnetic behavior in the composition between Fe2P side and Mn2P side of the (Fe, Mn)2P 

solution. According to the experiments conducted by Nowotny and Henglein [61] and Vogel and 

Berak [62], however, a continuous (Fe, Mn)2P solid solution throughout the composition from 

Fe2P side to Mn2P side was observed, which was favored in the present optimization. And also, 

the orthorhombic MnP-type (Fe, Mn)P phase was also modeled as a continuous ideal solution in 

the present study, based on reported data [72-74]. 

 

4.3.3.1 Phase Diagram 

Vogel and Berak [62] undertook the experimental investigation on the phase equilibria of the Fe-

Mn-P system by means of the thermal analysis (TA), microscopic analysis (MA) and X-ray 

diffraction (XRD), including a series of vertical sections, an isothermal section at 20 ℃ as well as 

the liquidus surface projection. The experimental results of isopleths  of Fe2P − Mn2P , 

wt. %Fe: wt. %Mn = 1: 9, 5: 5, 9: 1, 19: 1, and wt. %P = 1, 6, 12 are compared with the present 

calculations in Fig. 4.8, 4.9, 4.10, respectively. In the previous experiments, a full composition 

range of various FeMn alloys containing up to 25 wt.%P were used. As can be seen in the figure, 

all the experimental results are very well reproduced in this study.  
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Figure 4.8 Calculated phase diagram of the Fe2P-Mn2P system, compared to experimental 

data[62] 

 

 

(a)  



130 
 

 

 (b)  

 

(c)  
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 (d)  

Figure 4.9 Calculated isopleths of the Fe-Mn-P system at mass ratios of (a) Fe: Mn = 1: 9, (b) 

Fe: Mn = 5: 5, (c) Fe: Mn = 9: 1, and (d) Fe: Mn = 19: 1, compared to experimental data [62] 

 

 

(a)  
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(b)  

 
 (c)  

Figure 4.10 Calculated phase diagrams of the Fe-Mn-P system at (a) wt. %P = 1, (b) wt. %P =

6, and (c) wt. %P = 12, compared to experimental data [62] 
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Figure 4.11 Calculated isothermal section in the Fe-rich region of the Fe-Mn-P system at 1000 

℃, compared to experimental data [30] 

 

Kaneko et al. [75] measured the solubility of P in ferrite Fe-Mn alloys, which are in equilibrium 

with the ternary phosphide Me3P at 1000 ℃. Fig. 4.11 shows the isothermal phase diagram in the 

Fe-rich region at 1000 ℃, compared to experimental data [75]. As can be seen in the figure, fairly 

good agreement was achieved between the present calculation and experimental results. The 

solubility of P in ferrite Fe decreases gradually from 2.28 to 1.80 in weight percent with the 

increase of Mn up to 4.0 in weight percent. 

 

Kaneko et al. [63] studied the homogeneous range of Fe3P with additional Mn. They found that 

the Fe3P phase can dissolve at least 13.3 wt.% of Mn to form the Ni3P-type (Fe, Mn)3P solid 

solution at 800 ℃. Fig. 4.12 shows the calculated isothermal phase diagram of the Fe-Mn-P system 

at 800 ℃, compared to the experimental data [63]. As can be seen in the diagram, the Me3P solid 
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solution exhibits a miscibility gap, and the Me2P solid solution appears as the primary crystalline 

phase at wt. %Mn = 10 − 75 while the Me3P solid solution is stable on the rest Fe-rich and Mn-

rich sides, as also indicated in Fig. 4.10(c). According to the present modeling, a maximum 

solubility of wt. %Mn = 13.37 in Fe3P and wt. %Fe = 28.80 in Mn3P at 800 ℃ were calculated. 

However, no experimental data are available on the site of the miscibility gap of the Me3P solid 

solution so far. On the other hand, the Me2P and MeP are complete solid solutions. This is 

consistent with observations in the previous studies [61,63]. 

 

Figure 4.12 Isothermal phase diagram of the Fe-Mn-P system at 800 ℃ 

 

The liquidus surface projection of the Fe-Mn-P system between 1000 ℃  and 1500 ℃  was 

predicted together with experimental results by Vogel and Berak [62] in Fig 4.13. The invariant 

reactions were summarized in Table 4.4. The calculated invariant points U1, U2 and U3 are well 

matching the data [62] within experimental errors. The calculated reaction  L + CUB_A13 =
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Me2P + FCC_A1 at point U4 deviates from the reported experimental data [62]. The discrepancy 

in the CUB_A13 phase is accepted in the present study because the suggested experimental data 

for this reaction cannot be reproduced without sacrificing the accuracy of the binary Fe-Mn 

diagram or adding unreasonable ternary parameters. And also, another invariant point Ux 

representing the reaction L + FCC_Mn = CUB_A13 + FCC_Fe was reported by Vogel and Berak 

[62]. Occurrence of this reaction (Ux) can only be resulted from incomplete dissolution of 

FCC_A1 Fe-Mn solution, that is, FCC_Fe phase on the Fe-rich side is isolated from FCC_Mn 

phase on the Mn-rich side, which is apparently contradictory with the well-known Fe-Mn phase 

diagram. Therefore, the Ux point is not considered in the present study. 

 

Figure 4.13 Liquidus surface projection of the Fe-Mn-P system between 1000 ℃ and 1500 ℃, 

compared to experimental data [62] 
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Table 4.4 Invariant reactions of the Fe-Mn-P system with experimental data [62] 

Code Reactions Wt.%Fe Wt%Mn Wt.%P T, ℃ 

𝐔𝟏 L + BCC = Me3P + FCC 

82.64 7.79 9.57 1014 

~81.60 ~8.5 ~9.9 1025[62] 

𝐔𝟐 L + Me3P = Me2P + FCC 

65.49 25.05 9.46 968 

~70.1 ~20 ~9.9 1008[62] 

𝐔𝟑 L + Me3P = Me2P + FCC 

45.53 45.67 8.80 949 

~39.9 ~50.8 ~9.3 955[62] 

𝐔𝟒 L + CUB_A13 = Me2P + FCC 

24.31 67.98 7.71 950 

~35 ~56 ~9.0 958[62] 

𝐔𝐱 L + FCC_Mn = CUB_A13 + FCC_Fe 26 68 6.0 1050[62] 

𝐔𝟓 L + MnP3 = FeP2 + MeP 1.17 33.97 64.86 806 

𝐄𝟔 L = Red_P + MnP3 + FeP2 0.07 1.58 98.35 576 

 

4.3.3.2 Thermodynamic Property of Liquid Solution 

The binary parameters of liquid Fe-P, Mn-P and Fe-Mn solutions were combined to predict the 

ternary liquid Fe-Mn-P solution using the Toop-type interpolation technique [25] (P as an 

asymmetric component), without any additional ternary parameters, as presented in section 4.3. 

All available thermodynamic properties of the liquid solution are very well calculated.  

 

The activities of P, Fe and Mn in various compositions of the liquid solutions were measured by 

Zaitsev et al. [76,77] using the Knudsen effusion method (KEM). As shown in Fig. 4.14, the 

experimental data are predicted very accurately using the MQM in this study. 
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(a) 

 

(b) Fe 
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 (c) 

Figure 4.14 Calculated activities (a) 𝑎P
R, (b) 𝑎Fe

R , and (c) 𝑎Mn
R  in various liquid Fe-Mn-P 

solutions, compared to experimental data [76] 

 

 
(a)  
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 (b) 

Figure 4.15 Calculated activities of (a) P(l) at 𝑥Mn = 0.016 − 0.20 and 1550 ℃, and (b) Mn(l) 

at 𝑥Mn = 0.036 − 0.041 and 1500 ℃ of the liquid Fe-Mn-P, compared to experimental 

data[76,78] 

 

Fig 4.15 shows the variations of the activity of P(l) at 𝑥Mn = 0.016 − 0.02 and 1550 ℃, and Mn(l) 

at 𝑥Mn = 0.036 − 0.041 and 1500 ℃ respectively with the content of P. Both sets of experimental 

data [76,78] are well reproduced by the present calculations. 

 

Schenck et al. [79] conducted experiments to measure the activity coefficient of P in the Fe melts 

with the added Mn up to 𝑥Mn = 0.167 at 1550 ℃ using X-ray fluorescence (XRF) and chemical 

analysis (CA). Ban-ya et al. [80] measured the partial pressure of P2 in equilibrium with the liquid 

Fe-Mn-P at 1400 ℃ using the transportation method (TM). According to the experimental results, 

effect of Mn on the activity coefficient of P(l) are presented in Fig. 4.16. A significant deviation 

exhibits between two data sets. Only the data by Schenck et al. [79] were well reproduced and an 
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interaction parameter 𝜀P
Mn = −0.287 at 1550 ℃ was calculated based on the present database. The 

results of Ban-ya et al. [80] were not favored because they assumed only P2(g) in the gas phase. 

However, high vaporization of Mn ( 𝑃Mn(g) = 1.706 × 10−3 atm above the Fe −

Mn alloys at 𝑥Mn = 0.2 and 1400 ℃) can occur and other gaseous P species, such as P(g) and 

P4(g), can be formed as well. According to the present calculations, the partial pressures of P(g) 

and P4(g) are 1.951 × 10−8 atm and 1.091 × 10−14 atm respectively at 𝑥P = 0.2 and 1400 ℃. In 

addition, their results [81,82] for the binary Fe-P liquid solution were also not reliable, as discussed 

in the previously published paper [22]. 

 

Figure 4.16 Effect of Mn on the activity coefficient of P in the liquid Fe-Mn-P solution at 1400 

℃ and 1550 ℃, compared to experimental data [79,80] 

 

The thermodynamic properties of P in the liquid Fe-Mn is of great importance for understanding 

the behavior of P in high Mn steels as well as ferromanganese (FeMn) alloys. With the increasing 

demand for high quality steel, tight control of P becomes very critical. Since P is always very dilute 
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in both high Mn steels and Mn alloys, so the Henrian activity coefficient of P, 𝛾𝑃
𝑜 , is a key 

parameter for the dephosphorization calculations. The 𝛾𝑃
𝑜 in the binary Fe-P [22] and Mn-P liquids 

have been discussed previously. The 𝛾P
0 in the ternary liquid Fe-Mn-P solution was calculated in 

the temperature range of 1400 ℃ to 1700 ℃ and plotted in Fig. 4.17. As shown in the figure, the 

𝛾𝑃
𝑜 decreases with the increase of the Mn content. The difference between 𝛾𝑃

𝑜 in Fe and 𝛾𝑃
𝑜 in Mn 

is about 0.5 in logarithmic scale, and it becomes bigger with the decrease of the temperature.  

 

Figure 4.17 Predicted Henrian activity coefficient of P in the Fe-Mn melts at 1400 ℃ to 1700 ℃ 

 

4.3.3.3 Predicted Phase Diagrams of the Fe-Mn-P System 

According to the thermodynamic modeling with optimized model parameters, the phase diagrams 

of the Fe3P − Mn3P system and the FeP − MnP system with gas phase suppression are predicted 

in Fig. 4.18. As can be seen in the figure, Fe3P and Mn3P are partially soluble in each other while 

FeP and MnP are completely soluble in each other below the melting point of MnP (1143 ℃).  
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(a) 

 
(b) 

Figure 4.18 Predicted phase diagrams of the (a) Fe3P-Mn3P system and (b) FeP-MnP system 

 

The iso-activity contours of Fe, Mn and P in pure liquid standard state at 1550 ℃ are predicted in 

Fig. 4.19. As shown in the figure, the iso-activities at 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9 are plotted for 
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Fe(l) and Mn(l), and the iso-activities at 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2 and 

1 × 10−1 are plotted for P(l).  

 
(a)                                                                    

 

(b) 
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(c) 

Figure 4.19 Predicted iso-activity contours of (a) Fe(l), (b) Mn(l), and (c) P(l) of the liquid Fe-

Mn-P solution at 1550 ℃ 

 

4.3.3.4 Improvements of Present Optimization Compared to Previous Assessments 

Compared to previous assessments on the Mn-P system [12,13,23] and Fe-Mn-P system [14,23], 

some improvements have been achieved in the present thermodynamic optimization. In the Mn-P 

system, the phase diagram of the composition range over 𝑥𝑃 > 0.5 were calculated based on 

consistent descriptions of the liquid solution and thermodynamic properties of all stoichiometric 

compounds (Mn3P, Mn2P, Mn3P2, MnP and MnP3). In the assessments of the Fe-Mn-P system by 

Tokunaga et al. [14] and Miettinen and Vassilev [23], many big parameters have to be added for 

the liquid solution to reproduce available experimental data in the literature. However, 

thermodynamic properties of each component in the liquid Fe-Mn-P solution and various isopleths 
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and isothermal phase diagrams were accurately predicted without any parameters based on the 

present database, compared to experimental results. 

 

4.4 Summary 

The binary Mn-P system and ternary Fe-Mn-P system in the full composition range were 

thermodynamically optimized based on the critical evaluation of available thermodynamic and 

phase equilibria data. The Modified Quasichemical Model (MQM) and Compound Energy 

Formalism (CEF) were used to model the liquid and solid solutions, respectively. The activities of 

P, Fe and Mn in the liquid solution and various phase diagrams were accurately predicted by 

combining the binary parameters and the Toop-type interpolation technique (P as an asymmetric 

component), without any ternary liquid parameters. Besides, the discrepancies left in the Mn-P 

system and Fe-Mn-P system were resolved with very few model parameters. In the present study, 

a more accurate and consistent thermodynamic database has been developed for describing the 

behavior of the Fe-Mn-P system. 
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Abstract 

The Al-P system and Fe-Al-P system have been thermodynamically optimized using the 

CALculation of PHAse Diagrams (CALPHAD) method based on the critical evaluation of all 

available experimental data. The liquid phases and solid solutions were modeled using the 

Modified Quasichemical Model and Compound Energy Formalism, respectively. The Gibbs 

energies of stoichiometric AlP compound and liquid Al-P solution were critically optimized to 

reproduce the melting point of AlP and the liquidus of the Al-P system on the Al-rich corner. In 

the ternary Fe-Al-P system, the behavior of P in the liquid was also well optimized with 

introduction of Toop interpolation technique (Al as an asymmetric component). In addition, 

various phase equilibria of Fe-Al-P alloys containing up to 30 wt.%Al and 15 wt.%P, isothermal 

sections at 450 ℃, 650 ℃ and 800 ℃, and the solubility of P in BCC_A2 Fe-Al alloys were 

excellently described, compared to experimental data. According to the present optimization, an 

accurate and consistent thermodynamic database of the Fe-Al-P system has been developed.  

Keywords: Al-P system, Fe-Al-P system, CALPHAD, AlP, Thermodynamic descriptions 
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5.1 Introduction 

With increasingly high demand for the safety and energy-efficiency of automotive, light alloy such 

as Al is often added into the new generation automotive steels for reducing the weight and 

improving the mechanical properties simultaneously. To further enhance the corrosion resistance, 

paintability and also the weldability of steels, the galvannealing coatings were always applied on 

the steel plate surface [1]. In high Al steels, phosphorus on one hand plays a positive role in solid 

solution strengthening and corrosion resistance of the steels, but on the other hand, enrichment of 

P in the grain boundary inhibits formation of coating layers [2]. Besides, the galvannealing coating 

layer pulverization and flaking off the substrate are very challenging difficulties during the 

stamping process, which largely increase the defective and repairing rate. Moreover, P, as the 

typical metalloid impurity of steels, can also cause unexpected steel defects like brittleness and 

inner cracks. Therefore, it is very necessary to tightly control the P impurity of the steels below 

the allowed level. In the Fe-Al alloys containing high concentration of P, formation of aluminum 

phosphide AlP and various iron phosphides depends on the temperature and composition. As is 

well known, AlP is highly toxic compound widely used as rodenticide, insecticide, fumigant [3]. 

Hence, very cautious attention needs to be paid to the application of high Al and high P materials. 

Nevertheless, aluminum phosphide and iron phosphides are also widely applied in high power and 

high frequency manufacturing, such as semiconductor diodes [4,5]. To explore as much 

application potential as possible without sacrificing their mechanical properties, it is very essential 

to understand the thermodynamic behaviors of the Fe-Al-P system in terms of service conditions.   

 

Previously, many experimental and computational studies have been conducted to investigate the 

sub-systems of the Fe-Al-P system. Besides, reviews on the Fe-P system were given by Okamoto 
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[6] and Schlesinger [7], the Al-P system by McAlister [8] and Okamoto [9], and the Fe-Al-P 

system by Raghavan [10-12], Schmid-Fetzer [13]. The Fe-P system was thermodynamically 

assessed in many studies [14-18] and by the present authors [19]. The Al-P system and the Fe-Al-

P system was optimized by Ansara et al. [20], Tu et al. [21], Wu et al. [22], Liang and Schmid-

Fetzer [23,24], Cao et al. [17], and Miettinen et al. [25]. Although the Al-P system is a simple 

system containing the only stoichiometric compound AlP, inconsistency among available 

experimental data has not been resolved in the previous optimizations [17,20-24]. In the recent 

assessment by Miettinen et al. [25], experimental data of the binary Al-P system was reasonably 

reproduced, but the accuracy was not maintained when extending to the ternary Fe-Al-P system, 

compared with available experimental data [25]. Therefore, it is necessary to resolve the 

discrepancies left in previous modeling by reoptimizing the Fe-Al-P system.  

 

Thermodynamic database based on the CALculation of PHAse Diagrams (CALPHAD) method is 

a powerful tool for new materials design and process optimization. The database of a target system 

is developed by means of thermodynamic modeling (optimization), aiming at obtaining one set of 

consistent Gibbs energies of all phases as functions of temperature and composition. In the 

optimization, all available phase equilibria and thermodynamic data such as activity, entropy, 

enthalpy, and Gibbs energy, etc are critically evaluated simultaneously. The discrepancies between 

available data are resolved in the critical evaluation process, and the Gibbs energy functions for 

all related phases in the target system are derived. Prediction on unexplored thermodynamic 

properties and phase equilibria can be possible by interpolations and extrapolations in a 

thermodynamically correct manner. 
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In the present study, the liquid phases and solid solutions of the binary Al-P and ternary Fe-Al-P 

systems were described using the Modified Quasichmical Model (MQM) [26,27] and Compound 

Energy Formalism (CEF) [28], respectively. The Fe-Al system originally optimized by Sundman 

et al. [29] with recent modification by Phan et al. [30], and the Fe-P system reassessed by present 

authors [19] were adopted in the present study. The solubility of P in liquid Al, thermodynamic 

properties of stoichiometric AlP compound, various isopleth diagrams, isothermal diagrams, 

liquidus surface projection and the activity of P in molten Fe-Al-P alloys will be optimized to 

reproduce reliable experimental data. All the thermodynamic calculations were performed using 

FactSage software [31]. 

 

5.2. Thermodynamic Models 

5.2.1 Pure Elements and Stoichiometric Compounds 

The Gibbs energies of elemental Fe, Al and P were taken from the Scientific Group Thermodata 

Europe (SGTE) database [32]. The Gibbs energies of stoichiometric compounds involved in the 

Fe-Al-P system were determined based on available thermodynamic data including the heat 

capacity, standard enthalpy of formation and standard entropy at 298.15 K. In the present study, 

the Gibbs energies of stoichiometric compounds were calculated as follows: 

( )298.15 298.15
298.15 298.15

T T
P

T K P K
K K

C
G H C dT T S dT

T

   
=  + − + 

 
                                                         (5.1)   

where 𝐺𝑇
°  is the Gibbs energy (J/mol) at temperature T(K),  𝛥𝐻298.15𝐾

°  and 𝑆298.15𝐾
°  are standard 

enthalpy of formation (J/mol) and standard entropy (J/mol/K) at 298.15 K, and 𝐶𝑃  is the heat 

capacity (J/mol/K). The heat capacity of each stoichiometric compound was expressed as a 

function of temperature by fitting experimental data. For the compounds with no available 
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experimental data, their 𝐶𝑃  functions were estimated using Neumann-Kopp (NK) rule [33] or 

based on determined 𝐶𝑃 of neighboring compounds in the same system.  

 

When a pure element or stoichiometric compound exhibits magnetic behavior, an additional Gibbs 

energy of magnetic contribution term 𝐺𝑚𝑔 will be applied. In the Fe-Al-P system, the magnetic 

contribution terms for Fe (BCC_A2, FCC_A1) and Fe3P were determined using the empirical 

expression proposed by Inden [34] and modified by Hillert and Jarl [35]: 

( )ln 1 ( )mgG RT g = +                                                                                                         (5.2) 

where τ is expressed as 𝑇/𝑇∗ and 𝑇∗ is the critical temperature of magnetic transition associated 

with Curie temperature 𝑇𝐶  for ferromagnetic materials or Neel temperature 𝑇𝑁  for 

antiferromagnetic materials. β is the average magnetic moment per mole of atoms in Bohr 

magnetons. 𝑔(𝜏) is a polynomial function derived by Hillert and Jarl [35], as expressed below:  
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where 518 11692 1
1

1125 15975
D

P

 
= + − 

 
, and the value of P can be considered as the fraction of the 

magnetic enthalpy absorbed above the critical temperature depending on the structure. P is 0.40 

for the simple BCC_A2 phase while P is 0.28 for other common phases.  

 

5.2.2 Solid Solutions 

In the binary Fe-P system, solid solutions including disordered FCC_A1 and BCC_A2 were 

considered in the present study [19]. As is well known, P is not soluble in solid Al, so no stable 
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solid solution in the binary Al-P system. In the binary Fe-Al system, the BCC phase undergoes a 

long-range ordering from disordered BCC_A2 to ordered BCC_B2 transition. Another ordered 

D03 phase [29] in maximized Fe3Al composition was not considered in this work for keeping the 

consistency in extending to multicomponent systems. Besides, disordered FCC_A1, Al8Fe5 and 

Al13Fe4 are also taken into account. In the ternary Fe-Al-P system, Al can substitute the Fe atoms 

of Fe3P and Fe2P to form Me3P and Me2P solid solutions in the formulas (Fe, Al)3P and (Fe, Al)2P, 

respectively. The Gibbs energies of all solid solutions in the sub-systems of the Fe-Al-P system 

were described using the Compound Energy Formalism (CEF) [28] considering their 

crystallographic structures. 

 

5.2.2.1 FCC_A1 Solid Solutions 

The disordered FCC_A1 solid solution was modeled with the formula (Fe, Al, P)1(Va)1, and its 

Gibbs energy was calculated using the following equation: 

 
, , , ,

, , , , ,
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lndisorder o
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= =

= = = =

= + 
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 

   
            (5.5) 

where 𝑥𝑖 is the mole fraction of component i and 𝐺𝑖
° is the molar Gibbs energy (J/mol) of pure 

solid i (i = Fe, Al, P); R and T are the gas constant (8.314 J/mol-K) and the temperature in Kelvin 

(K); 𝐿𝐹𝑒,𝑃
𝑚 , 𝐿𝐴𝑙,𝑃

𝑘 , 𝐿𝐹𝑒,𝐴𝑙
𝑝

 and 𝐿𝐹𝑒,𝐴𝑙,𝑃
𝑞

 are the adjustable interaction parameters of the related binary 

and ternary systems; 𝐺𝑚𝑔 is the magnetic contribution to the Gibbs energy (J/mol).  
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5.2.2.2 Disordered/Ordered BCC Solid Solutions 

The BCC phase exhibits a transition from disordered to ordered crystallographic structure. The 

Gibbs energy of BCC solution was modeled combining the disordered part with the model (Fe, Al, 

P)(Va)3 and the ordered part with the model (Fe, Al, P)0.5(Fe, Al, P)0.5(Va)3. The Gibbs energy of 

the disordered part was calculated using Eq. (5.5), which is the same as that for disordered 

FCC_A1 phase. The Gibbs energy contribution from the ordered part was calculated as follows:  

' ''
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here i, j, k are the component symbols of Fe, Al, P. 𝑦𝑖
′, 𝑦𝑗

′, 𝑦𝑘
′  and 𝑦𝑖

′′, 𝑦𝑗
′′, 𝑦𝑘

′′ are site fractions of 

component i, j, k in the first and second lattice of the formula (Fe, Al, P)0.5(Fe, Al, P)0.5(Va)3. The 

total Gibbs energy of the BCC solid solution combining contribution from both disordered and 

ordered parts was determined from Eq. (5.8): 

.sol disorder order

BCC S BCCG G G= +                                                                                                         (5.8) 

When the site fractions of i in the first sublattice equals to that in the second sublattice (𝑦𝑖
′ = 𝑦𝑖

′′), 

then the ordering contribution 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟 is nil and the Gibbs energy of BCC phase can be calculated 

by Eq. (5.5). However, in the case of 𝑦𝑖
′ ≠ 𝑦𝑖

′′ , then ordering contribution 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟  becomes 

negative and the Gibbs energy of BCC_B2 phase can be described with Eq. (5.8).  
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5.2.2.3 Other Solid Solutions (Al8Fe5, Al13Fe4, Me3P, Me2P) 

The solid solutions including Al8Fe5, Al13Fe4, Me3P and Me2P were also modeled using the 

formulas (Al, Fe)8(Al, Fe)5, (Al)32(Fe)12(Al, Va)7, (Fe, Al)3P, and (Fe, Al)2P, respectively. The 

Gibbs energy of Al8Fe5 was calculated with the equation below: 

( ) ( )
8 5

. ' '' ' '' ' '' ' ''

: : : :

' ' ' ' '' '' '' ''

,
' ' '' ' '' ''

, : : ,

0,1,2... 0,1,2..

8 ln ln 5 ln ln

sol

Al Fe Al Al Al Al Fe Fe Fe Fe Al Fe Al Fe Fe Al Fe Al

Al Al Fe Fe Al Al Fe Fe

i Al Fe
m n

Al Fe i Al Fe i j Al Fe j Al Fe

m n

G y y G y y G y y G y y G

R y y y y R y y y y

y y y L y y y L
=

= =

= + + +

+  + +  +

+
,

.

j Al Fe=



                                              (5.9) 

where 𝐺𝐴𝑙:𝐴𝑙, 𝐺𝐹𝑒:𝐹𝑒, 𝐺𝐴𝑙:𝐹𝑒, 𝐺𝐹𝑒:𝐴𝑙 are the end-member Gibbs energies (J/mol); 𝑦𝐴𝑙
′ , 𝑦𝐴𝑙

′′ , 𝑦𝐹𝑒
′ , 𝑦𝐹𝑒

′′  

are the site fractions of Al and Fe in corresponding lattice; 𝐿𝐴𝑙,𝐹𝑒:𝑖
𝑚 , 𝐿𝑗:𝐴𝑙,𝐹𝑒

𝑛  are the adjustable 

interaction parameters. The Gibbs energy of Al13Fe4 was calculated as follows: 

( )
13 4

.

: : : : : : ,

0,1,2...

7 ln lnsol m

Al Fe Al Al Fe Al Va Al FeVa Al Al Va Va Al Va Al Fe Al Va

m

G y G y G R y y y y y y L
=

= + +  + +         (5.10) 

where 𝐺𝐴𝑙:𝐹𝑒:𝐴𝑙  and 𝐺𝐴𝑙:𝐹𝑒:𝑉𝑎  are end-member Gibbs energies (J/mol); 𝑦𝐴𝑙  and 𝑦𝑉𝑎  are site 

fractions of Al and vacancies in the third sublattice; 𝐿𝐴𝑙:𝐹𝑒:𝐴𝑙,𝑉𝑎
𝑚  is the adjustable interaction 

parameter. The Gibbs energies of Me3P and Me2P are expressed by as follows:  

( ).

, :

0,1,2...

ln ln
n n n

sol m mg

Me P Fe Fe P Al Al P Fe Fe Al Al Fe Al Fe Al P

m

G y G y G nR y y y y y y L G

=

= + +  + + +            (5.11) 

where n is the number of substitutional site within the formulas Me3P(𝑛 = 3) and Me2P(𝑛 = 2); 

𝐺Fe3P
°  and 𝐺Fe2P

°  are optimized Gibbs energies (J/mol) of stoichiometric Fe3P  and Fe2P 

compounds respectively in the Fe-P system [19]; GAl3P and GAl2P are Gibbs energies (J/mol) of 

the end-members Al3P and Al2P respectively in the substitutional sublattice; yFe , yAl  are site 

fractions in the substitutional sublattice; 𝐿Fe,Al:P
m  is the adjustable interaction parameter; Gmg is the 

magnetic contribution to the Gibbs energy (J/mol). 
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5.2.3 Liquid Solution 

The liquid solution was described using the Modified Quasichemical Model (MQM) [26,27] 

accounting for the short-range ordering of the nearest-neighbor atoms explicitly. Comparing to the 

conventional Bragg-Williams Random Mixing Model (BWRMM), the MQM gives a more 

realistic description of the entropy of liquid solution. In the MQM, the Gibbs energy of pair 

formation can be expanded as a polynomial in the pair fraction rather than the component fraction, 

and the coordination number of each component is allowed to vary with composition for 

reproducing the short-range ordering of liquid solution with less parameters, providing greater 

flexibility in reproducing experimental data of the binary liquids and higher-order systems.  

 

In the case of the binary A-B liquid solution, the atoms A and B are distributed over the quasilattice 

sites. The atom pair exchanging reaction of liquid A-B solution can be expressed as follows: 

( ) ( ) 2( ); ABA A B B A B g− + − = −                                                                                             (5.12) 

here, (i-j) represents the nearest-neighbor pair between components i and j, and Δ𝑔𝐴𝐵 is the Gibbs 

energy change (J/mol) of forming 2 moles (A-B) pairs. The Gibbs energy of liquid solution was 

calculated:  

 .( ) ( / 2)L conf

AB A A B B AB AB ABG n G n G T S n g = + −  +                                                                      (5.13) 

where 𝑛𝐴 and 𝑛𝐵 are the numbers of moles of A atoms and B atoms, and 𝐺𝐴
°  and 𝐺𝐵

°  are the molar 

Gibbs energies (J/mol) of pure liquid A and B. 𝛥𝑆𝐴𝐵
𝑐𝑜𝑛𝑓.

 is the configurational entropy (J/mol) of 

mixing given by random distribution of the (A-A), (B-B) and (A-B) pairs as follows:  

.

2 2
( ln ln ) ln ln ln

2

conf AA BB AB
AB A A B B AA BB AB

A B A B

X X X
S R n X n X R n n n

Y Y Y Y

      
 = − + − + +      

      
                         (5.14) 
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here 𝑛𝐴𝐴, 𝑛𝐵𝐵 and 𝑛𝐴𝐵 are the numbers of moles of (A-A), (B-B) and (A-B) pairs; 𝑋𝐴𝐴, 𝑋𝐴𝐵 and 

𝑋𝐴𝐵 are the pair fraction of the corresponding atom pairs; 𝑌𝐴 and 𝑌𝐵 are the coordination equivalent 

fractions of atoms A and B. The pair fractions 𝑋𝐴𝐴, 𝑋𝐴𝐵, 𝑋𝐵𝐵 and coordination equivalent fractions 

𝑌𝐴, 𝑌𝐵 were calculated as follows:  

( )/AA AA AA AB BBX n n n n= + +
                                                                                                    (5.15) 

( )/AB AB AA AB BBX n n n n= + +                                                                                                     (5.16) 

( )/BB BB AA AB BBX n n n n= + +                                                                                                     (5.17) 

1

2
A AA ABY X X= +                                                                                                                     (5.18) 

1

2
B BB ABY X X= +                                                                                                                     (5.19) 

𝛥𝑔𝐴𝐵 in Eqs. (5.12) and (5.13) is the model parameter for reproducing the Gibbs energy of the 

binary A-B solution, which can be expanded as a polynomial based on the atomic pair fractions 

𝑋𝐴𝐴 and 𝑋𝐵𝐵 as follows: 

0 0

1 1

i i j j

AB AB AB AA AB BB

i j

g g g X g X

 

 =  + +                                                                               (5.20) 

where 𝛥𝑔𝐴𝐵
° , 𝑔𝐴𝐵

𝑖0  and 𝑔𝐴𝐵
0𝑗

 are the adjustable model parameters that can be functions of the 

temperature. In the MQM, the coordination numbers of A and B, 𝑍𝐴 and 𝑍𝐵, can be varied with 

composition to reproduce the short-range ordering of the solution:  

1 1 2 1

2 2

AA AB

A A

A AA AA AB AB AA AB

n n

Z Z n n Z n n

   
= +   

+ +   
                                                                              (5.21) 

1 1 2 1

2 2

BB AB

B B

B BB BB AB BA BB AB

n n

Z Z n n Z n n

   
= +   

+ +   
                                                                              (5.22) 
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here, 𝑍𝐴𝐴
𝐴  is the value 𝑍𝐴 when all nearest neighbors of an A atom are A atoms and 𝑍𝐴𝐵

𝐴  is the value 

of 𝑍𝐴  when all nearest neighbors of an A atom are B atoms. 𝑍𝐵𝐵
𝐵  and 𝑍𝐵𝐴

𝐵  are defined in an 

analogous manner. When extending from the binary systems to the ternary system, the Gibbs 

energy of ternary liquid solution can be predicted using a proper geometric interpolation technique 

based on the nature of all involved binary liquid solutions. If necessary, ternary correction terms 

can also be introduced to give more precise description of phase equilibria and thermodynamic 

properties of the ternary liquid solution. In the Fe-Al-P system, the liquid Fe-P exhibits much more 

negative deviation from ideal mixing, compared to liquid Al-P and Fe-Al solutions. Therefore, the 

Toop-type interpolation technique [27] with Al as the asymmetric component was applied to the 

liquid Fe-Al-P solution. The Gibbs energy and configurational entropy of mixing of liquid Fe-Al-

P solution were calculated as follows:   

( ).

, , , , ,

/ 2
j k

L conf

FeAlP i i FeAlP jk jk

i Fe Al P j k Fe Al P

G n G T S n g




= =

= −  +                                                              (5.23) 

 .

2
, , , , , , ,

ln ln
2

k m
jjconf km

FeAlP i i jj km

i Fe Al P j Fe Al P k m Fe Al Pj k m

X X
S R n X R n n

Y Y Y



= = =

    
 = − − +     

    
                         (5.24) 

where each pair formation Gibbs energy ΔgFeP, ΔgAlP and ΔgFeAl depends on the symmetry of 

each component (Fe, Al, P) in the ternary system. Therefore, ΔgAlP  and ΔgAlFe  between 

asymmetric components are described as follows: 

( ) ( )( )

( ) 1 0, 0, 1

k

j jij i ijk i P
FeAl FeAl FeAl AlAl FeFe FeP PP FeAl P AlAl FeFe FeP AlAl

i j i j k Fe P

Y
g g g x x x x g x x x x

Y Y



+    

 
 =  + + + + + +  

+ 
        (5.25) 

( ) ( )( )

( ) 1 0, 0, 1

k

j jij i ijk i Fe
AlP AlP AlP AlAl FeFe FeP PP AlP Fe AlAl FeFe FeP AlAl

i j i j k Fe P

Y
g g g x x x x g x x x x

Y Y



+    

 
 =  + + + + + +  

+ 
             (5.26) 

and  𝛥𝑔FeP between symmetric Fe and P was calculated as follows:  
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( ) 1

( )

0, 0, 1

i j

ij FeFe PP
FeP FeP FeP

i j FeFe FeP PP FeFe FeP PP

i j

ijk kFeFe PP
FeP Al Al

i j k FeFe FeP PP FeFe FeP PP

x x
g g g

x x x x x x

x x
g Y

x x x x x x



+ 

  

   
 =  +    

+ + + +   

   
+    

+ + + +   





                                         (5.27) 

where 𝑔AlP
𝑖𝑗

, 𝑔FeAl
𝑖𝑗

, 𝑔FeP
𝑖𝑗

 are the binary liquid parameters; 𝑔FeAl(P)
𝑖𝑗𝑘

, 𝑔AlP(Fe)
𝑖𝑗𝑘

 and 𝑔FeP(Al)
𝑖𝑗𝑘

 are the 

ternary liquid parameters.  

 

5.3 Critical Evaluation and Thermodynamic Optimization 

Thermodynamic optimization of the Fe-Al-P system was performed using the CALPHAD 

approach based on critical evaluation of all available phase equilibria and thermodynamic data. 

The liquid and solid solutions of all sub-systems were described using MQM [26,27] and CEF 

[28], respectively. White P was selected as the reference state of P in the solid phases. The crystal 

structure information of all solid phases in the Fe-Al-P system is summarized in Table 5.1. The 

optimized model parameters of the Fe-Al-P system are summarized in Table 5.2.  

Table 5.1 Summary of crystal structure information of all solid phases in the Fe-Al-P system 

Phase Structure Prototype Space group Pearson symbol 

FCC_A1 Cubic Cu 𝐹̅m3̅m cF4 

BCC_A2 Cubic W 𝐼m3̅m cI2 

BCC_B2 Cubic CsCl 𝑃𝑚3̅m cP8 

Fe3Al Cubic BiF3 𝐹m3̅m cF16 

Me3P Tetragonal Ni3P I4̅ tI32 

Me2P Hexagonal Fe2P P6̅2m hP9 

FeP Orthorhombic MnP Pnma oP8 
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FeP2 Orthorhombic FeS2 Pnnm oP6 

AlP Hexagonal ZnS 𝐹4̅3m cF8 

Al2Fe Rhombohedral FeAl2 P1 aP18 

Al5Fe2 Orthorhombic Al5Fe2 Cmcm oC16 

Al8Fe5 Cubic Zn8Cu5 𝐼4̅3m cI52 

Al13Fe4 Monoclinic Al13Fe4 C2/m mC102 

White P Cubic P4 I4̅3m C*8 

Red P --- P --- C*66 

 

Table 5.2 Optimized model parameters for the Fe-Al-P system (J/mol, J/mol-K) 

Phase Model parameters 

Liquid 

(Fe,Al,P) 

6Fe Al P

FeFe AlAl PPZ Z Z= = =  [30,*] 

6P P Fe Al Al

PFe PAl FeAl AlFe AlPZ Z Z Z Z= = = = =  [19,30,*], 3Fe

FePZ =  [19] 

256902 6.569 (5481 3.033 ) ( 11966 2.510 ) 9623FeP FeFe FeFe PPg T T X T X X = − + + + + − + −  [19] 

21443 6.9036AlPg T = − +  [*] 

220292 3.347 (1674 1.255 ) 1046 (10460 4.184 )FeAl FeFe FeFe AlAlg T T X X T X = − + − + − − −  [30] 

101

( ) 20920 5.6484FeP Alg T= − + , 011

( ) 104600FeP Alg = −  

 “Toop-type” interpolation with Al as an asymmetric component [*] 

FCC_A1 

(Fe,Al,P)1(Va)1 

: ( )

FCC

FeVa Fe FCCG G= , 
: ( )

FCC

Al Va Al FCCG G= , 
: ( )

FCC

P Va P FCCG G=  [*] 

, : 139787.44 6.4852FCC

Fe PVaL T= − +  [19] 

, : 18828FCC

Al P VaL = −  [*] 

( ) ( )
2

, : 105855 30.65 (29017 4.91 ) (32200 17 )FCC

Fe Al Va Fe Al Fe AlL T T x x T x x= − + − − − + − −  [30] 
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: 201CFeVaT = − , : 2.1FeVa = −  [36] 

BCC_A2 

(Fe,Al,P)1(Va)3 

2

: ( )

BCC A

FeVa Fe BCCG G− = , 2

: ( )

BCC A

Al Va Al BCCG G− = , 2

: ( )

BCC A

P Va P BCCG G− =  [*] 

( )2

, : 203476.3 15.4808 33472BCC A

Fe PVa Fe PL T y y− = − + + −  [19] 

2

, : 6276BCC A

Al P VaL − = −  [*] 

2 2

, : 123044 31.99 2945( ) 3347( )BCC A

Fe Al Va Fe Al Fe AlL T x x x x− = − + − − − −  [30] 

, : 285CFe P VaT = −  [19], 
, : 438 1720( )CFe Al Va Fe AlT y y= − + −  [30] 

: 1043CFeVaT = , : 2.22FeVa =  [36] 

BCC_B2 

(Fe,Al,P)0.5(Fe,Al,P)0.5

(Va)3 

2 2

: : : : 14462 3.973BCC B BCC B

Fe Al Va Al FeVaG G T− −= = − −  [29,30] 

2 2

: : : : 0BCC B BCC B

Fe FeVa Al Al VaG G− −= =  [30] 

2 2 2 2 2

: : : : : : : : : : 0BCC B BCC B BCC B BCC B BCC B

P PVa Fe PVa Al PVa P FeVa P Al VaG G G G G− − − − −= = = = =  [*] 

: : : : 250CFe Al Va CAl FeVaT T= = −  [29], : : : : 2.72Fe Al Va Al FeVa = = −  [29] 

2 2

, : 1665.37 4 524( ) 1560( )BCC B

Fe Al Al Fe Al Fe AlL T y y y y− = − + − − −  [29] 

2 2

: , 1665.37 4 524( ) 1560( )BCC B

Al Fe Al Fe Al Fe AlL T y y y y− = − + − − −  [29] 

2 2

, : 5346 1.6 524( ) 1560( )BCC B

Fe Al Fe Fe Al Fe AlL T y y y y− = − − + − − −  [29] 

2 2

: , 5346 1.6 524( ) 1560( )BCC B

Fe Fe Al Fe Al Fe AlL T y y y y− = − − + − − −  [29] 

, : : , : : : , : : , : 250CFe Al Al Va CFe Al FeVa CFe Fe Al Va CAl Fe Al VaT T T T= = = = −  [29] 

2

, : : , : : 0.6 1.6( ) 0.4( )Fe Al Al Va Fe Al FeVa Fe Al Fe Aly y y y = = − + − + −  [29] 

2

: , : : , : 0.6 1.6( ) 0.4( )Fe Fe Al Va Al Fe Al Va Fe Al Fe Aly y y y = = − + − + −  [29] 

2

, : , : 16800 3.6BCC B

Fe Al Fe Al VaL T− = − −  [29,30] 

Al8Fe5 

(Al, Fe)8(Al, Fe)5 

: ( )13Al Al Al BCCG G=  [29], 
: ( )13 13000Fe Fe Fe BCCG G= +  [29] 

: ( ) ( )8 5 384500 30Al Fe Al BCC Fe BCCG G G T = + − +  [29,30] 
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: ( ) ( )8 5 200000 30Fe Al Fe BCC Al BCCG G G T = + + +  [29,30]

8 5

: , 133888
Al Fe

Al Al FeL = −  [30], 8 5

, : 174000
Al Fe

Al Fe FeL = −  [29] 

Al13Fe4 

(Al)32(Fe)12(Al,Va)7 

: : ( ) ( )39 12 1564680 377Al Fe Al Al FCC Fe BCCG G G T = + − +  [29] 

: : ( ) ( )32 12 1433100 377Al FeVa Al FCC Fe BCCG G G T = + − +  [29] 

Me3P 

(Fe, Al)3(P)1 

3

3:

Me P

Fe P Fe PG G=  [19] 

3

: ( ) ( )3 14830 85
Me P

Al P Al FCC P WhiteG G G T = + − +  [*] 

3

, : 346025 50
Me P

Fe Al PL T= − +  [*] 

Me2P 

(Fe, Al)2(P)1 

2

2:

Me P

Fe P Fe PG G=  [19] 

2

: ( ) ( )2 50000Me P

Al P Al FCC P WhiteG G G = + +  [*] 

2

, : 175728Me P

Fe Al PL = −  [*] 

FeP [19] 

(Fe)1(P)1 

𝛥𝐻298.15𝐾
° = −126100, 𝑆298.15𝐾

° = 47.77 

𝐶𝑃 = 43.7878 + 0.01985𝑇 − 232000𝑇−2 

FeP2 [19] 

(Fe)1(P)2 

𝛥𝐻298.15𝐾
° = −191100, 𝑆298.15𝐾

° = 51.05 

𝐶𝑃 = 77.52563 + 0.009348𝑇 − 443846𝑇−2 − 1.1 × 10−6𝑇2 

AlP [*] 

(Al)1(P)1 

𝛥𝐻298.15𝐾
° = −163000, 𝑆298.15𝐾

° = 40.34 

𝐶𝑃 = 48.53 + 0.00457𝑇 − 690000𝑇−2 

Al2Fe [30] 

(Al)2(Fe)1 

𝐺Al2Fe
° = 2𝐺Al(FCC)

° + 𝐺Fe(BCC)
° − 94850 + 13.42𝑇 

Al5Fe2 [30] 

(Al)5(Fe)2 

𝐺Al5Fe2

° = 5𝐺Al(FCC)
° + 2𝐺Fe(BCC)

° − 217301 + 34.83𝑇 

   * optimized in the present study 
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5.3.1 The Fe-P and Fe-Al Systems 

The Fe-P system was optimized by present authors [19] using the CALPHAD approach. The Fe-

Al system assessed by Sundman et al. [29] was modified by Phan et al. [30]. In particular, they 

applied MQM to the liquid phase. The optimized parameters of the above Fe-P and Fe-Al systems 

were adopted in the present study. The calculated phase diagrams of the Fe-P and Fe-Al systems 

are plotted in Fig. 5.1. With suppression of gas phase, 3 solutions including liquid, FCC_A1 and 

BCC_A2 and 4 stoichiometric compounds including Fe3P, Fe2P, FeP and FeP2 are considered in 

the Fe-P system [19]. P is soluble in γ-Fe and α-Fe of the Fe-rich region, as shown in Fig. 5.1(a). 

In the Fe-Al system, 5 solutions including liquid, FCC_A1, BCC_A2, BCC_B2, Al8Fe5, Al13Fe4 

and stoichiometric compounds Al2Fe, and Al5Fe2 are taken into account. 

 
(a) 
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(b) 

Figure 5.1 Optimized phase diagrams of the (a) Fe-P system [19] and (b) Fe-Al system [30] 

 

5.3.2 The Al-P System 

In the Al-P system, AlP is well known as the only stable stoichiometric compound. White and 

Bushey [37] adopted a few approaches to produce AlP and eventually confirmed AlP as the only 

stable intermediate stoichiometric aluminum phosphide in the Al-P system, which was also 

supported by Panish and Ilegems [38], and Ilegems and Panish [39,40]. The crystal structure of 

AlP was characterized as ZnS-blende cubic type [37,41,42]. The melting point of AlP was 

experimentally determined as 2530 ± 30 ℃ by Kischio [43]. The liquidus of the Al-rich region 

was investigated experimentally by Panish et al. [44], Beer [45], and Lescuyer et al. [46]. The 

present Al-P phase diagram is compared with previous one in Fig. 5.2 along with experimental 

data. According to the present optimization, the melting temperature of AlP is calculated to be 

2532 ℃, compared to 2557 ℃ by Ansara et al. [20], 2528 ℃ by Tu et al. [21], 2539 ℃ by Wu et 
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al. [22], 2529 ℃ by Cao et al. [18], 2522 ℃ by Liang et al. [23], 2360 ℃ by Liang and Schmid-

Fetzer [24], and 2534 ℃ by Miettinen et al. [25]. That is, the melting point of AlP reported by 

Kischio [43] was basically favored in all the assessments except in the recent one by Liang and 

Schmid-Fetzer [24]. However, the liquidus of the Al-rich and P-rich regions are very scattering 

among the assessments. As indicated in Fig. 5.2(b), the experimental data of P dissolution in 

molten Al were neglected by Tu et al. [21], Wu et al. [22], and Cao et al. [18]. Liang and Schmid-

Fetzer [24] modified their earlier result [23] with respect to the experiments conducted by Lescuyer 

et al. [46], but at the sacrifice of accuracy in reproducing the melting point of AlP. Beer [45] 

equilibrated AlP with molten Al at 900 to 1200 ℃ to measure the solubility of P in quenched 

samples using colorimetric phosphovanadomolybdate method (CPM). The accuracy of his 

experimental data relies too much on the dissolution and reprecipitation of AlP crystals in the 

liquid. Panish et al. [44] estimated the solubility of P in liquid Al based on the solubility of P in 

Ga-rich Ga-Al liquid solution with assumption of ideal mixing of Ga and Al. This assumption can 

result in big errors in the solubility of P in pure Al despite small interaction between Ga and Al. 

Lescuyer et al. [46] measured the concentration of P in two types of samples: a few hundred grams 

of isothermally filtered liquid Al-P alloy and isolated isothermally filtered liquid Al-P drops. The 

accuracy of their experimental results can be ensured by two analyses. As can be seen in Fig. 

5.2(b), the data by Lescuyer et al. [46] are favored in the present study and by Miettinen et al. [25]. 

No experimental data are available in the P-rich region due to high vaporization of P.  
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(a) full composition range 

 

(b) Al-rich side 

Figure 5.2 The Al-P phase diagram in the (a) full composition and (b) Al-rich region 
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Figure 5.3 Heat capacity of AlP against the temperature 

 

The heat capacity of AlP compound is plotted in Fig. 5.3 along with a few sets of data obtained 

from calorimetry experiments [47-49]. The constant heat capacity from 300 K to 1200 K by Cox 

and Pool [47] is less likely. In contrast, the data by Peviak and Sandulova [48] and Itagaki and 

Yamaguchi [49] are more favored in this work to obtain the 𝐶𝑃 of stoichiometric AlP compound. 

 

The standard enthalpy of formation ∆𝐻298.15 𝐾
°  and standard entropy 𝑆298.15 𝐾

°  of AlP are 

summarized in Table 5.3 and 5.4, respectively. As listed in Table 5.3, Wang et al. [42] obtained 

a value of ∆𝐻298.15 𝐾
° = −138.80 ± 8.37 kJ/mol as the standard enthalpy of AlP by means of 

oxygen bomb calorimetry. Peviak and Sandulova [48] determined a much more negative value 

(∆𝐻298.15 𝐾
° = −180.33 ± 9.62 kJ/mol) from the heat of reaction 3H2SO4 + AlP = Al2(SO4)3 +

2PH3. In comparison, ∆𝐻298.15 𝐾
° = −165.27 ± 2.09 kJ/mol by Kischio [43] using HCl solution 
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calorimetry method and 163.15 ± 1.72 kJ/mol by Martosudirdjo and Pratt [50] using precipitation 

calorimetry method are more favored in the present optimization (∆𝐻298.15 𝐾
° = −163.15 kJ/mol).  

 

There was no available experimental data on the standard entropy (𝑆298.15𝐾
° ) of stoichiometric AlP 

compound. Various estimations [52-55] and assessments [18,21-25] of 𝑆298.15 𝐾
°  of AlP range from 

36.00 to 57.39 J/mol/K, excluding an incredibly high value (175.32 J/mol/K) given by Ansara et 

al. [20]. In the present study, the standard entropy (𝑆298.15 𝐾
° ) of AlP was determined as 40.34 

J/mol/K, as listed in Table 5.4. According to the currently optimized ∆𝐻298.15 𝐾
° , 𝑆298.15 𝐾

°  and 𝐶P 

of AlP, the partial pressures of Al(g) and P2(g) in equilibrium with solid AlP, which were obtained 

from Knudsen effusion experiments by Maria et al. [56], were well reproduced along with a wide 

temperature range, as shown in Fig. 5.4.  

Table 5.3 Standard enthalpy of formation (∆𝐻298.15 𝐾
° ) of AlP in the Al-P system 

∆𝑯𝟐𝟗𝟖.𝟏𝟓𝑲
° , kJ/mol Methods References 

−138.80 ± 8.37 Oxygen Bomb Calorimetry Wang et al. [42] 

−165.27 ± 2.09 Acid Solution Calorimetry Kischio [43] 

−180.33 ± 9.62 Acid Solution Calorimetry Peviak & Sandulova [48] 

−163.15 ± 1.72 Precipitation Calorimetry Martosudirdjo & Pratt [50] 

-148.56 Assessment Ansara et al. [20] 

−102.00 Assessment Tu et al. [21] 

−166.52 Assessment Wu et al. [22] 

−148.00 Assessment Cao et al. [18] 

−163.20 Assessment Liang et al. [23] 
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−163.20 Assessment Liang & Schmid-Fetzer [24] 

−163.69 Assessment Miettinen et al. [25] 

−𝟏𝟔𝟑. 𝟏𝟓 Assessment This work 

 

Table 5.4 Standard entropy (𝑆298.15 𝐾
° ) of AlP in the Al-P system 

𝑺𝟐𝟗𝟖.𝟏𝟓𝑲
° , J/mol/K Methods References 

38.06 Estimation Sharifov [51] 

39.36 Estimation Karapet'yants & Karapet'yants [52] 

46.89 ± 2.51 Estimation Marina et al. [53] 

47.28 Estimation Voronin & Nashelskii [54] 

47.30 Estimation Kubaschewski & Alcock [55] 

175.32 Assessment Ansara et al. [20] 

57.39 Assessment Tu et al. [21] 

47.28 Assessment Wu et al. [22] 

55.11 Assessment Cao et al. [18] 

40.39 Assessment Liang et al. [23] 

36.00 Assessment Liang & Schmid-Fetzer [24] 

42.11 Assessment Miettinen et al. [25] 

𝟒𝟎. 𝟑𝟒 Assessment This work 
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Figure 5.4 Vaporization pressures of Al(g) and P2(g) above solid AlP phase 

 

5.3.3 The Fe-Al-P System 

In the ternary Fe-Al-P system, the liquid phase, solid solutions including BCC_A2, BCC_B2, 

FCC_A1, Al8Fe5, Al13Fe4, Me3P and Me2P, and stoichiometric compounds including FeP, FeP2, 

AlP, Al2Fe, Al5Fe2 were taken into account. The parameters of FCC_A1, BCC_A2 and BCC_B2 

phases in the Al-P system were optimized to reproduce phase equilibria of the ternary Fe-Al-P 

system. In addition, the solubility of Al in Fe3P and Fe2P were also calculated. It should be noted 

that no ternary parameter was necessary for FCC_A1, BCC_A2 and BCC_B2 solid solutions.  

 

5.3.3.1 Phase Diagram 

Vogel and Klose [57] carried out a series of experiments to study the liquidus and solidus of the 

ternary Fe-Al-P system by means of differential thermal analysis (DTA) and microscopic analysis 

(MA). Experimental results of the Fe-Al-P isopleths at the composition of wt. %P = 6 and 9 and 
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wt. %Al = 10  and 25 were compared with present calculations in Fig. 5.5. As can be seen in the 

figure, experimental data up to 30 wt. %Al and 15 wt. %P were excellently reproduced. 

 

(a)  

 

 (b)  
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(c)  

 
 (d)  

Figure 5.5 Calculated isopleths of the Fe-Al-P system at (a) wt. %P = 6, (b) wt. %P = 9, (c) 

wt. %Al = 10, and (d) wt. %Al = 25, compared to the experimental data [57] 
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Figure 5.6 Isothermal phase diagram of the Fe-Al-P system on the Fe-rich corner at 1000 ℃, 

compared to experimental data [58] 

 

The solubility of P in α-Fe (BCC_A2) with addition of Al at 1000 ℃ was investigated by Kaneko 

et al. [58] using chemical analysis (CA) and X-ray diffraction (XRD) techniques. It was found that 

saturation of P in BCC_A2 solution results in precipitation of the ternary phosphide Me3P, which 

is in the Ni3P prototype crystal structure. In this work, the isothermal section of the Fe-Al-P system 

at 1000 ℃ on the Fe-rich corner was calculated and compared with experimental results in Fig. 

5.6. As shown in the figure, the solubility of P in ferrite Fe-Al alloys decreases from 2.28 to 1.0 in 

weight percent with the added Al increasing up to 5 in weight percent, and the present calculation 

is in good agreement with experimental data.  
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(a)  

 

(b)  
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(c)  

Figure 5.7 Isothermal diagrams of the Fe-Al-P system at (a) 450 ℃, (b) 650 ℃, and (c) 800 ℃ 

 

Fig. 5.7 shows the isothermal phase diagrams of the Fe-Al-P system at the temperatures of 450 ℃, 

650 ℃ and 800 ℃. The phase equilibria of the Fe-Al-P system was studied by Wu et al. [22] and 

Huang [1] by annealing various compositions of alloys within 20 at.%P at 450 ℃ and 650 ℃ for 

60 days. The equilibrated specimens were analyzed using scanning electron microscopy (SEM) 

coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). In their 

experiments [1,22], the Al2Fe, Al5Fe2, Al13Fe4, Me3P, Me2P, AlP, disordered BCC_A2 and ordered 

BCC_B2 phases were observed, which has also been verified by the present database, as shown in 

Fig. 5.7(a) and (b). Kaneko et al. [58,59] found that Fe3P containing 1.1 wt.%Al was in equilibrium 

with the ferrite alloy in the composition of Fe − 0.49 wt. %Al − 0.96 wt. %P at 800 ℃. In order 

to reproduce this data, the Gibbs energy of Al3P in Me3P was optimized.  
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5.3.3.2 Liquid Surface Projection 

The liquid projection of the Fe-Al-P system is predicted in Fig. 5.8. All predicted invariant 

reactions are summarized in Table 5.5. Besides, the available experimental data [57] representing 

quasi-peritectic reaction L + Me3P = Me2P + BCC_A2 and eutectic reaction L = AlP + Me2P +

BCC_B2  were imposed for comparison. As can be seen in the figure, the calculated eutectic 

reaction ( L = AlP + Me2P + BCC_B2 ) is in satisfactory agreement with the experimental 

datapoint E1. However, the prediction of the quasi-peritectic reaction at point U1 is deviated from 

the experimental result. This is mainly ascribed to the stability of Me3P phase relative to Me2P and 

BCC_A2 phases. This discrepancy cannot be avoided unless sacrificing the accuracy of phase 

equilibria presented in Fig. 5.5 and Fig. 5.6. In addition, other invariant reactions at points U2, U3, 

U4, U5, U6, U7, U8, U9 and E2 involved in the Fe-Al-P system are also predicted based on the 

optimized thermodynamic database, as shown in Fig. 5.8 and Table 5.5. To validate these 

predictions, further experimental studies are still necessary.  

 

Figure 5.8 Liquid projection of the Fe-Al-P system together with experimental data [57] 
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Table 5.5 Invariant reactions of the Fe-Al-P system with experimental data [57] 

Code Invariant reactions 𝐱𝐅𝐞 𝐱𝐀𝐥 𝐱𝐏 T, ℃ 

U1 L + Me3P = Me2P + BCC_A2 

0.720 0.089 0.191 1035 

0.677 0.140 0.183 1020[57] 

E1 L = AlP + Me2P + BCC_B2 

0.547 0.264 0.189 989 

0.556 0.275 0.169 995[57] 

E2 L = FeP + Me2P + AlP 0.546 0.061 0.393 1208 

𝐔𝟐 L + FeP = FeP2 + AlP 0.297 0.028 0.675 1170 

𝐔𝟑 L + Fe2Al5 = Al8Fe5 + Fe2Al 0.322 0.668 0.01 1142 

𝐔𝟒 L + Fe2Al5 = Al13Fe4 + AlP 0.253 0.737 0.01 1139 

𝐔𝟓 L + Fe2Al5 = Fe2Al + AlP 0.331 0.646 0.023 1130 

𝐔𝟔 L + Fe2Al = Al8Fe5 + AlP 0.372 0.591 0037 1118 

𝐔𝟕 L + Al8Fe5 = BCC_B2 + AlP 0.412 0.531 0.057 1099 

𝐔𝟖 L + BCC_A2 = Me2P + BCC_B2 0.653 0.162 0.185 1030 

𝐔𝟗 L + Al = Al13Fe4 + AlP 0.008 0.992 0 1099 

 

5.3.3.3 Activity of P in Liquid Fe-Al-P Solution 

Yamada and Kato [60,61] investigated the influence of Al on the activity coefficient of P in molten 

Fe at 1600 ℃ using Knudsen effusion method (KEM). In their experiments, the concentration of 

P in the samples was maintained at 1 wt.% while that of Al was increased up to 5 wt.%. They 

calculated εAl
P = 4.6 ± 0.7 at 1600 ℃ based on their experimental results. In comparison, Ban-ya 

et al. [62] measured the vapor pressure of phosphorus above the Fe-Al-P melts containing 2.46 to 
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2.97 wt.%Al at 1400 ℃ using transportation method (TM), and derived εAl
P = 3.57 ± 0.33 at 1400 

℃. These experimental results are compared with present calculations in Fig. 5.9. As shown in the 

figure, the present calculations are in reasonable agreement with the experimental data [60-62]. 

According to present optimization, the activity coefficient interaction parameters are determined 

as εAl
P = 2.878 at 1600 ℃ and εAl

P = 2.655 at 1400 ℃. 

 

Figure 5.9 Effect of Al on the activity coefficient of P in the liquid Fe-Al-P solution at 1400 ℃ 

and 1600 ℃, compared to experimental data [60-62] 

 

5.4 Summary 

The binary Al-P and ternary Fe-Al-P systems have been thermodynamically optimized in the full 

composition range based on critical evaluation of available thermodynamic and phase equilibria 

data. The Modified Quasichemical Model (MQM) and Compound Energy Formalism (CEF) were 

used to model the liquid and solid solutions, respectively. Dissolution of P in liquid Al, the melting 

point of stoichiometric AlP compound, and thermodynamic properties of AlP compound in the 
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binary Al-P system were accurately described. The optimized parameters of binary Al-P system 

and recently optimized Fe-Al and Fe-P system were combined to describe the ternary Fe-Al-P 

system. The Gibbs energy of liquid solution was determined with very few parameters by adopting 

the Toop-type interpolation technique. Besides, the thermodynamic properties and phase equilibria 

of the Fe-Al-P system have been accurately and consistently reproduced, compared to available 

experimental data. The thermodynamic database of the Fe-Al-P system developed in the present 

study will be used as part of new FSstel database in FactSage 8.0 version. 
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Abstract 

Critical evaluation and optimization of all available thermodynamic and phase diagram data of the 

Fe-Si-P system and Fe-C-P system has been performed using the CALculation of PHAse Diagrams 

(CALPHAD) method to obtain a set of Gibbs energy functions of all the phases in the systems. 

The liquid phases and solid solutions were modeled using the Modified Quasichemical Model 

employing short-range ordering in the pair fraction approximation and Compound Energy 

Formalism considering crystallographic structures, respectively. Accurate descriptions on the 

thermodynamic properties of liquid solutions and phase equilibria of the Fe-Si-P and Fe-C-P 

systems have been achieved by resolving the discrepancies among the experimental data. The 

developed thermodynamic database can be used to predict the behavior of P in the Fe-Si and Fe-

C alloys at any compositions and temperatures.  

 

Keywords: Optimization, Fe-Si-P system, Fe-C-P system, Thermodynamic properties, Phase 

equilibria 
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6.1 Introduction 

Silicon electrical steels (or silicon steels) with excellent magnetic properties have aroused much 

attention among researchers. As typical soft magnetic materials combining high saturation 

magnetization and low magneto-striation, silicon steels are usually used to produce electric motors 

in the industry of green energy generation and vehicles. Besides, Advanced High Strength Steels 

(AHSS) such as TWIP, TRIP steels containing 1-3 wt.% Si are always applied in the automotive 

industry. The mechanical and electromagnetic properties of these silicon steels are highly 

depending on their compositions and microstructure features. On the other hand, production of 

ferrosilicon alloys needs tight control of impurities such as carbon, phosphorus etc.  

 

Many thermodynamic assessments and reviews [1-8] and assessments [9-35] were performed to 

describe the thermodynamic behaviors of the sub-systems of the Fe-Si-P and Fe-C-P systems. 

However, some discrepancies such as thermodynamic stability of Fe phosphides and activity of P 

in molten Fe, Gibbs energy of P2 dissolution in molten Si, stability of BCC phase at high-

temperature of the Fe-C region, liquidus and solidus boundaries of the Fe-C-P system, etc. left in 

previous assessments degrade the reliability of currently available thermodynamic database. To 

resolve the above discrepancies, development of a new thermodynamic database of the Fe-Si-C-P 

system with more accuracy and consistency will very necessary for producing the materials with 

required properties. 

  

Thermodynamic database based on the CALculation of PHAse Diagrams (CALPHAD) method is 

a powerful tool for new materials design and process optimization. The database of a target system 

is developed by means of thermodynamic modeling (optimization), aiming at obtaining one set of 
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consistent Gibbs energies of all phases as functions of temperature and composition. In the 

optimization, all available phase equilibria and thermodynamic data such as activity, entropy, 

enthalpy, and Gibbs energy, etc are critically evaluated simultaneously. The discrepancies between 

available data are resolved in the critical evaluation process, and the Gibbs energy functions for 

all related phases in the target system are derived. Prediction on unexplored thermodynamic 

properties and phase equilibria can be possible by interpolations and extrapolations in a 

thermodynamically correct manner.  

 

In the present study, all sub-systems of the Fe-Si-P and Fe-C-P systems were modeled using the 

Modified Quasichemical Model (MQM) [36,37] and Compound Energy Formalism (CEF) [38] 

for the liquid phases and solid solutions, respectively. The optimized thermodynamic database of 

the Fe-Si-P and Fe-C-P systems, as the basis of the quaternary Fe-Si-C-P system, will be included 

in the new high alloy steel Fe-Mn-Al-Si-Cr-Ni-Ti-Nb-C-N-O-P database. The recently optimized 

Fe-P [14], Si-P [26], and Fe-Si [24], and Fe-C [32] systems using CALculation of PHAse 

Diagrams (CALPHAD) approach were adopted in the present optimization. The optimized 

thermodynamic properties of liquid solutions, various vertical section diagrams, isothermal phase 

diagrams, and liquid surface projections of ternary Fe-Si-P and Fe-C-P systems will be presented. 

All the calculations were carried out using FactSage software [39].  

 

6.2. Thermodynamic Models 

6.2.1 Pure Elements and Stoichiometric Compounds 

The Gibbs energies of elemental solid and liquid Fe, Si, C, P were taken from the Scientific Group 

Thermodata Europe (SGTE) database [40]. The Gibbs energies of all involved stoichiometric 
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compounds in the Fe-Si-P and Fe-C-P systems were optimized based on their heat capacity, 

standard enthalpy of formation and standard entropy at 298.15 K. In the present study, Gibbs 

energies of stoichiometric iron phosphides Fe3P, Fe2P, FeP and FeP2 in the Fe-P system, silicon 

phosphides SiP and SiP2 in the Si-P system, ferrosilicides Fe2Si, Fe5Si3, FeSi, FeSi2 and Fe3Si7 in 

the Fe-Si system, cementite Fe3C in the Fe-C system, and iron phosphosilicides FeSi4P4 in the 

ternary Fe-Si-P system were calculated using the following equation: 

( )298.15 298.15
298.15 298.15

T T
P

T K P K

C
G H C dT T S dT

T

   
=  + − + 

 
                                                          (6.1)   

here 𝐺𝑇
°  is the Gibbs energy at temperature T,  𝛥𝐻298.15𝐾

°  and 𝑆298.15𝐾
°  are standard enthalpy of 

formation and standard entropy at 298.15 K, and 𝐶𝑃 is the heat capacity. The heat capacity of each 

stoichiometric compound was expressed as a function of temperature by fitting experimental data. 

For the compounds with no available experimental data, 𝐶𝑃 was estimated using Neumann-Kopp 

(NK) rule [41] or determined 𝐶𝑃 functions of other relevant compounds in the same system.  

 

In the cases of pure elements or stoichiometric compounds exhibiting magnetic behavior, an 

additional Gibbs energy of magnetic contribution term 𝐺𝑚𝑔 will be applied. In the Fe-Si-P system, 

magnetic contribution terms apply to Fe(BCC_A2, FCC_A1), Fe3P and Fe5Si3 were determined 

using the empirical expression proposed by Inden [42] and modified by Hillert and Jarl [43]: 

( )ln 1 ( )mgG RT g = +                                                                                                         (6.2) 

here, τ is expressed as 𝑇/𝑇∗ and 𝑇∗ is the critical temperature of magnetic transition associated 

with Curie temperature 𝑇𝐶  for ferromagnetic materials or Neel temperature 𝑇𝑁  for 

antiferromagnetic materials. β is the average magnetic moment per mole of atoms in Bohr 

magnetons. 𝑔(𝜏) is a polynomial function derived by Hillert and Jarl [43], as expressed below:  
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1 3 9 1579 474 1
( ) 1 1 /

140 497 6 135 600
g D

P P

   


−   
= − + − + +   

   

   ……𝜏 ≤ 1                                       (6.3)  

5 15 25

( ) /
10 315 1500

g D
  


− − − 

= − + + 
 

 ……𝜏 > 1                                                                            (6.4) 

where 518 11692 1
1

1125 15975
D

P

 
= + − 

 
, and the value of P can be considered as the fraction of the 

magnetic enthalpy absorbed above the critical temperature depending on the structure. P is 0.40 

for the simple BCC_A2 phase while P is 0.28 for other common phases.  

 

6.2.2 Solid Solutions 

In the present study, the disordered solid solutions including FCC_A1, BCC_A2, Diamond_A4, 

Me3P, Me2P, MeP and ordered BCC_B2 solid solution in the Fe-Si-P system and all disordered 

solid solutions including FCC_A1, BCC_A2 in the Fe-C-P system were modeled using Compound 

Energy Formalism with consideration of their crystallographic structures [38].  

 

6.2.2.1 Disordered FCC_A1, BCC_A2, Diamond_A4 Solid Solutions 

In the Fe-Si-P system, FCC_A1, BCC_A2 and diamond_A4 solid solutions were described with 

the substitutional model (Fe, Si, P)1(Va)n, where n = 1 for FCC_A1 and diamond_A4 phases and 

n = 3 for BCC_A2 solid solution. The Gibbs energy per formula unit were calculated using the 

following equation: 

, , , ,

, , , , ,

0,1,2... 0,1,2... 0,1,2... 0,1,2...

lndisorder o

S i i i i

i Fe Si P i Fe Si P

m k p q mg

Fe P Fe P Si P Si P Fe Si Fe Si Fe Si P Fe Si P

m k p q

G x G R x x

x x L x x L x x L x x x L G

= =

= = = =

= + 

+ + + + +

 

   
                (6.5) 
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where 𝑥𝑖 is the mole fraction of component i and 𝐺𝑖
° is the molar Gibbs energy of pure solid i (i = 

Fe, Si, P); R is the gas constant (8.314 J/mol-K) and T is the temperature in Kelvin (K); 𝐿𝐹𝑒,𝑃
𝑚 , 𝐿𝑆𝑖,𝑃

𝑘 , 

𝐿𝐹𝑒,𝑆𝑖
𝑝

 and 𝐿𝐹𝑒,𝑆𝑖,𝑃
𝑞

 are the adjustable interaction parameters of relevant binary and ternary systems; 

𝐺𝑚𝑔 is the magnetic contribution to the Gibbs energy.  

 

In the Fe-C-P system, FCC_A1 and BCC_A2 phases were modeled using two sublattice formula 

(Fe, P)1(C, Va)q, in which Fe, P atoms are in the substitutional lattice and C, vacancies(Va) are in 

the interstitial lattice. The Gibbs energy per formula unit were described using CEF as follows:  

( ).

: : : :

, : : ,

0,1,2... , ,

ln ln

( ln ln )

sol

S Fe C Fe C Fe Va Fe Va P C P C P Va P Va Fe Fe P P

i i mg

C C Va Va Fe P m Fe P m n C Va n C Va

i m C Va n Fe P

G y y G y y G y y G y y G R y y y y

qR y y y y y y y L y y y L G
= = =

= + + + +  +

 
+  + + + + 

 
  

                    (6.6)  

here, 𝑞 = 1 for FCC_A1 phase and 𝑞 = 3 for BCC_A2 phase. 𝐿𝐹𝑒,𝑃:𝑚
𝑖  and 𝐿𝑛:𝐶,𝑉𝑎

𝑖  are adjustable 

interaction parameters between the species in the same sublattice.  

 

6.2.2.2 Ordered BCC_B2 Solid Solution 

The BCC solid solution of the Fe-Si-P system exhibits the transition from disordered to ordered 

crystal structures. The Gibbs energy of BCC solution was modeled considering disordered part 

described with the model (Fe, Si, P)(Va)3 and ordered part described with the model (Fe, Si, 

P)0.5(Fe, Si, P)0.5(Va)3. The Gibbs energy contribution of ordered part was calculated as follows:  

' ''

' '' ' ''( , ) ( , )
k k

order order order

BCC BCC i j BCC i j y y
G G y y G y y

=
 = −                                                                       (6.7) 

and, 
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                                                       (6.8) 

here i, j, k represent Fe, Si, P. 𝑦𝑖
′, 𝑦𝑗

′, 𝑦𝑘
′  and 𝑦𝑖

′′, 𝑦𝑗
′′, 𝑦𝑘

′′ are site fractions of component i, j, k in 

the first and second lattice of the formula (Fe, Si, P)0.5(Fe, Si, P)0.5(Va)3. The Gibbs energy of BCC 

solid solution with consideration of disorder/order transit was determined from Eq. (6.9): 

.sol disorder order

BCC S BCCG G G= +                                                                                                          (6.9) 

In the composition of site fractions of component i in the first sublattice equals to that in the second 

sublattice (𝑦𝑖
′ = 𝑦𝑖

′′), then the ordering contribution 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟 is nil and the Gibbs energy of BCC 

is the same as the Gibbs energy of disordered BCC_A2 (𝐺𝑆
𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟) calculated in Eq. (6.5). In the 

case of 𝑦𝑖
′ ≠ 𝑦𝑖

′′, then ordering contribution 𝛥𝐺𝐵𝐶𝐶
𝑜𝑟𝑑𝑒𝑟 becomes negative and the Gibbs energy of 

BCC_B2 phase can be calculated using Eq. (6.9).  

 

6.2.2.3 Other Solid Solutions (Me3P, Me2P, MeP) 

The solid solutions Me3P, Me2P and MeP were described using the model (Fe)n(P, Si), where 𝑛 =

3, 2, 1 for Me3P, Me2P and MeP, respectively. The Gibbs energies per formula unit of these three 

phases calculated based on CEF as follows:  

( ).

: ,

0,1,2...

ln ln
n n n

sol m mg

Me P P Fe P Si Fe Si P P Si Si P Si Fe P Si

m

G y G y G R y y y y y y L G

=

= + +  + + +                   (6.10) 
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here, 𝐺Fe3P
° , 𝐺Fe2P

°  and 𝐺FeP
°  are end-member Gibbs energies, corresponding to the optimized 

Gibbs energies of stoichiometric Fe3P, Fe2P and FeP compounds in the binary Fe-P system [14]. 

Likewise, 𝐺Fe3Si , 𝐺Fe2Si  and 𝐺FeSi  are end-member Gibbs energies based on BCC_A2 Fe, 

diamond_A4 Si and additional model parameters; 𝑦𝑃 , 𝑦𝑆𝑖  are site fractions of P and Si in the 

second sublattice; 𝐿𝐹𝑒:𝑃,𝑆𝑖
𝑚  is the adjustable interaction parameter between P and Si of the second 

sublattice; 𝐺𝑚𝑔 is the magnetic contribution to the Gibbs energy. 

 

6.2.3 Liquid Solution 

The liquid solutions of all involved sub-systems of the Fe-Si-P and Fe-C-P systems were described 

using the Modified Quasichemical Model (MQM) [36,37] considering the short-range ordering of 

the nearest-neighbor atoms. Comparing to the conventional Bragg-Williams Random Mixing 

Model (BWRMM), the MQM gives a more realistic description of the entropy of liquid solution. 

In the MQM, the Gibbs energy of pair formation can be expanded as a polynomial in the pair 

fraction rather than the component fraction and coordination numbers of the components are 

allowed to vary with composition for reproducing the short-range ordering in liquid solution with 

less parameters, providing greater flexibility in reproducing experimental data of the binary liquid 

phases and combining the binary parameters to higher-order systems.  

 

In the case of the binary A-B liquid solution, the atoms A and B are distributed over the quasilattice 

sites. The atom pair exchanging reaction of liquid A-B solution can be expressed: 

( ) ( ) 2( ); ABA A B B A B g− + − = −                                                                                             (6.11) 

here, (i-j) represents the nearest-neighbor pair between components i and j, and Δ𝑔𝐴𝐵 is the Gibbs 

energy change of forming 2 moles (A-B) pairs. The Gibbs energy of liquid solution was calculated:  
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 .( ) ( / 2)L conf

AB A A B B AB AB ABG n G n G T S n g = + −  +                                                                       (6.12) 

where 𝑛𝐴 and 𝑛𝐵 are the numbers of moles of A atoms and B atoms, and 𝐺𝐴
°  and 𝐺𝐵

°  are the molar 

Gibbs energies of pure liquid A and B. 𝛥𝑆𝐴𝐵
𝑐𝑜𝑛𝑓.

 is the configurational entropy of mixing given by 

random distribution of the (A-A), (B-B) and (A-B) pairs as follows:  

.

2 2
( ln ln ) ln ln ln

2

conf AA BB AB
AB A A B B AA BB AB

A B A B

X X X
S R n X n X R n n n

Y Y Y Y

      
 = − + − + +      

      
                          (6.13) 

here 𝑛𝐴𝐴, 𝑛𝐵𝐵 and 𝑛𝐴𝐵 are the numbers of moles of (A-A), (B-B) and (A-B) pairs; 𝑋𝐴𝐴, 𝑋𝐴𝐵 and 

𝑋𝐴𝐵 are the pair fraction of the corresponding atom pairs; 𝑌𝐴 and 𝑌𝐵 are the coordination equivalent 

fractions of atoms A and B. The pair fractions 𝑋𝐴𝐴, 𝑋𝐴𝐵, 𝑋𝐵𝐵 and coordination equivalent fractions 

𝑌𝐴, 𝑌𝐵 are calculated as:  

( )/AA AA AA AB BBX n n n n= + +
                                                                                                         (6.14) 

( )/AB AB AA AB BBX n n n n= + +                                                                                                       (6.15) 

( )/BB BB AA AB BBX n n n n= + +                                                                                                       (6.16) 

1

2
A AA ABY X X= +                                                                                                                     (6.17) 

1

2
B BB ABY X X= +                                                                                                                     (6.18) 

𝛥𝑔𝐴𝐵 in Eqs. (6.12) and (6.13) is the model parameter for reproducing the Gibbs energy of the 

binary A-B solution that can be expanded as a polynomial based on the atomic pair fractions 𝑋𝐴𝐴 

and 𝑋𝐵𝐵: 

0 0

1 1

i i j j

AB AB AB AA AB BB

i j

g g g X g X

 

 =  + +                                                                                  (6.19) 
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where 𝛥𝑔𝐴𝐵
° , 𝑔𝐴𝐵

𝑖0  and 𝑔𝐴𝐵
0𝑗

 are the adjustable model parameters that can be functions of the 

temperature. In the MQM, the coordination numbers of A and B, 𝑍𝐴 and 𝑍𝐵, can be varied with 

composition to reproduce the short-range ordering of the solution:  

1 1 2 1

2 2

AA AB

A A

A AA AA AB AB AA AB

n n

Z Z n n Z n n

   
= +   

+ +   
                                                                             (6.20) 

1 1 2 1

2 2

BB AB

B B

B BB BB AB BA BB AB

n n

Z Z n n Z n n

   
= +   

+ +   
                                                                              (6.21) 

here 𝑍AA
A  is the value 𝑍A when all nearest neighbors of a A atom are A atoms, and 𝑍AB

A  is the value 

of 𝑍A  when all nearest neighbors of the A atom are B atoms. 𝑍BB
B  and 𝑍BA

B  are defined in an 

analogous manner. When extending from the binary systems to the ternary systems, Gibbs energy 

of the ternary liquid solution can be predicted using proper geometric interpolation technique based 

on the nature of all the binary systems. In the present study, Toop-type geometric interpolation 

technique [37] with Fe as the asymmetric component in the Fe-Si-P system and with P as the 

asymmetric component in the Fe-C-P system were adopted to describe the liquid solutions.  If 

necessary, ternary correction terms will also be introduced to the ternary system for giving more 

precise description of phase equilibria and thermodynamic properties. The configurational entropy 

of mixing and Gibbs energy of liquid Fe-Si-P and Fe-C-P solutions were calculated as follows:   

 .

, , / 2
, , / , , / , , , /

ln ln
2

k m
jjconf km

Fe P Si C i i jj km

i Fe P Si C j Fe P Si C k m Fe P Si Cj k m

X X
S R n X R n n

Y Y Y



= = =

    
 = − − +     

    
                 (6.22) 

( ).

, , / , , /

, , / , , , /

/ 2
j k

L conf

Fe P Si C i i Fe P Si C jk jk

i Fe P Si C j k Fe P Si C

G n G T S n g




= =

= −  +                                                (6.23) 

here, 𝛥𝑔𝑗𝑘 (𝑗, 𝑘 = Fe, Si, C, P) is the pair formation Gibbs energy depending on the symmetry of 

each component (Fe, Si, C, P) in the ternary Fe-Si-P and Fe-C-P systems. Therefore, the interaction 
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model parameters between asymmetric components in the Fe-Si-P system (𝛥𝑔FeSi, 𝛥𝑔FeP) and Fe-

C-P system (𝛥𝑔CP, 𝛥𝑔FeP) are described as follows:  

( ) ( )( )

( ) 1 0, 0, 1

k

j jij i ijk i Y
XZ XZ XZ ZZ XX XY ZZ XZ Y ZZ XX XY ZZ

i j i j k X Y

Y
g g g x x x x g x x x x

Y Y



+    

 
 =  + + + + + +  

+ 
                      (6.24) 

( ) ( )( )

( ) 1 0, 0, 1

k

j jij i ijk i X
YZ YZ YZ ZZ XX XY ZZ YZ X ZZ XX XY ZZ

i j i j k X Z

Y
g g g x x x x g x x x x

Y Y



+    

 
 =  + + + + + +  

+ 
                        (6.25) 

The interaction model parameters between symmetric components (𝛥𝑔𝑆𝑖𝑃 in the Fe-Si-P system 

and 𝛥𝑔𝐶𝑃 in the Fe-C-P system) were calculated using the following equation:  

( ) 1

( )

0, 0, 1

i j

ij XX YY
XY XY XY

i j XX XY YY XX XY YY

i j

ijk kXX YY
XY Z X

i j k XX XY YY XX XY YY

x x
g g g

x x x x x x

x x
g Y

x x x x x x



+ 

  

   
 =  +    

+ + + +   

   
+    

+ + + +   





                                           (6.26) 

Here, X, Y represent asymmetric components and Z represents the symmetric component in the Fe-

Si-P system and Fe-C-P system. 𝑔𝑋𝑌
𝑖𝑗

, 𝑔𝑋𝑍
𝑖𝑗

, 𝑔𝑌𝑍
𝑖𝑗

 are the binary liquid parameters; 𝑔𝑋𝑌(𝑍)
𝑖𝑗𝑘

, 𝑔𝑋𝑍(𝑌)
𝑖𝑗𝑘

 

and 𝑔𝑌𝑍(𝑋)
𝑖𝑗𝑘

 are the ternary liquid parameters.  

 

6.3. Critical Evaluation and Thermodynamic Optimization 

Thermodynamic modeling of the Fe-Si-P and Fe-C-P systems were performed using the 

CALPHAD approach based on the critical evaluation of all available phase equilibria and 

thermodynamic data. The liquid and solid solutions of all sub-systems were described using the 

MQM [36,37] and CEF [38], respectively. White P were selected as the standard state for the solid 

phases. The crystal structure information of all solid phases in the Fe-Si-P and Fe-C-P systems 
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were summarized in Table 6.1 and Table 6.2. The optimized model parameters of the Fe-Si-P and 

Fe-C-P systems were summarized in Table 6.3 and Table 6.4. 

Table 6.1 Summary of crystal structure information of all solid phases in the Fe-Si-P system 

Phase Structure Prototype Space group Pearson symbol 

FCC_A1 Cubic Cu 𝐹̅m3̅m cF4 

BCC_A2 Cubic W 𝐼m3̅m cI2 

BCC_B2 Cubic CsCl 𝑃𝑚3̅m cP8 

Diamond_A4 Cubic C(dia.) 𝐹𝑑3̅𝑚 cF8 

Me3P Tetragonal Ni3P I4̅ tI32 

Me2P Hexagonal Fe2P P6̅2m hP9 

MeP Orthorhombic MnP Pnma oP8 

FeP2 Orthorhombic FeS2 Pnnm oP6 

SiP Orthorhombic SiP 𝐶𝑚𝑐21 oS24 

SiP2 Orthorhombic GeAs2 𝑃𝑏𝑎𝑚 oP24 

Fe2Si Cubic CsCl 𝑃𝑚3̅𝑚 cP2 

Fe5Si3 Hexagonal Mn5Si3 𝑃63/𝑚𝑐𝑚 hP16 

FeSi Cubic FeSi 𝑃213 cP8 

FeSi2 Orthorhombic FeSi2 Cmca oC48 

Fe3Si7 Tetragonal Fe3Si7 P4/mmm tP3 

FeSi4P4 Triclinic FeSi4P4 P1 --- 

White P Cubic P4 I4̅3m C*8 

Red P --- P --- C*66 
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Table 6.2 Summary of crystal structure information of all solid phases in the Fe-C-P system 

Phase Structure Prototype Space group Pearson symbol 

FCC_A1 Cubic Cu 𝐹̅m3̅m cF4 

BCC_A2 Cubic W 𝐼m3̅m cI2 

Fe3P Tetragonal Ni3P I4̅ tI32 

Fe2P Hexagonal Fe2P P6̅2m hP9 

FeP Orthorhombic MnP Pnma oP8 

FeP2 Orthorhombic FeS2 Pnnm oP6 

Fe3C Orthorhombic Fe3C Pnma oP16 

White P Cubic P4 I4̅3m C*8 

Red P --- P --- C*66 

Graphite Hexagonal C P63/mmc hP4 

 

Table 6.3 Optimized model parameters for the Fe-Si-P system (J/mol, J/mol-K) 

Phase Model parameters 

Liquid 

(Fe,Si,P) 

6Fe Si P

FeFe SiSi PPZ Z Z= = =  [24,*] 

6P P Fe Si Si

PFe PSi FeSi SiFe SiPZ Z Z Z Z= = = = =  [14,24,26,*] 3Fe

FePZ =  [14] 

256902 6.569 (5481 3.033 ) ( 11966 2.510 ) 9623FeP FeFe FeFe PPg T T X T X X = − + + + + − + −  [14] 

-5857.6SiPg =  [26] 

233710 2.26 (12552 5.02 ) (8368 4.82 ) (3054 6.49 )FeSi FeFe FeFe SiSig T T X T X T X = − + − + − − − − [24] 

001

( ) 6359.68 7.1128FeSi Pg T= − +  [*], 101

( ) 11953.69 3.138FeSi Pg T= − +  [*] 
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 “Toop-type” interpolation with Fe as an asymmetric component [*] 

FCC_A1 

(Fe,Si,P)1(Va)1 

: ( )

FCC

FeVa Fe FCCG G= , 
: ( )

FCC

Si Va Si FCCG G= , 
: ( )

FCC

P Va P FCCG G=  [*] 

, : 139787.44 6.4852FCC

Fe PVaL T= − +  [14] 

, : 0FCC

Si P VaL =  [26] 

( ) ( )
2

, : 115254 2.19 (84777 44.33 ) 20007FCC

Fe Si Va Fe Si Fe SiL T T x x x x= − − − − − + −  [24] 

: 201CFeVaT = − , : 2.1FeVa = −  [44] 

BCC_A2 

(Fe,Si,P)1(Va)3 

2

: ( )

BCC A

FeVa Fe BCCG G− = , 2

: ( )

BCC A

Si Va Si BCCG G− = , 2

: ( )

BCC A

P Va P BCCG G− =  [*] 

( )2

, : 203476.3 15.4808 33472BCC A

Fe PVa Fe PL T y y− = − + + −  [14] 

2

, : 48116BCC A

Si P VaL − = −  [*] 

2 2

, : 154014 32.29 (63511 13.25 )( ) 35728( )BCC A

Fe Si Va Fe Si Fe SiL T T x x x x− = − + − − − + −  [24] 

, : 285CFe P VaT = − [14], 
, : 504( )CFe Si Va Fe SiT y y= −  [24] 

: 1043CFeVaT = , : 2.22FeVa =  [44] 

BCC_B2 

(Fe,Si,P)0.5(Fe,Si,P)0.5 

(Va)3 

2 2

: : : : 20930BCC B BCC B

Fe Si Va Si FeVaG G− −= = −  [24] 

2 2

: : : : 0BCC B BCC B

Fe FeVa Si Si VaG G− −= =  [24] 

2 2 2 2 2

: : : : : : : : : : 0BCC B BCC B BCC B BCC B BCC B

P PVa Fe PVa P FeVa Si PVa P Si VaG G G G G− − − − −= = = = =  [*]  

2 2 2 2

, : , : : , : , 0BCC B BCC B BCC B BCC B

Fe Si Si Fe Si Fe Fe Fe Si Si Fe SiL L L L− − − −= = = =  [24] 

2 2 2 2

, : , : : , : , 0BCC B BCC B BCC B BCC B

Fe P P Fe P Fe Fe Fe P P Fe PL L L L− − − −= = = =  [24] 

 2 2 2 2

, : , : : , : , 0BCC B BCC B BCC B BCC B

Si P P Si P Fe Si Si P P Si PL L L L− − − −= = = =  [*] 

Diamond_A4 

(Si, Fe, P)(Va) 

: ( )Si Va Si DiamondG G=  [24], 
: ( ) 1000FeVa Fe FCCG G= +  [24] 

: ( ) 5418.4 2.092PVa P WhiteG G T= + +  [26] 
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, : 25940.8 11.1713Diamond

Si PVaL T= −  [26] 

, : 113001.5 0.5Diamond

Si FeVaL T= −  [24]  

Me3P 

(Fe)3(P,Si) 

3

3:

Me P

Fe P Fe PG G=  [14] 

3

: ( ) ( )3 92000
Me P

Fe Si Fe BCC Si DiamondG G G = + −  [*] 

3

: , 0
Me P

Fe P SiL =  [14] 

Me2P 

(Fe)2(P, Si)1 

2

2:

Me P

Fe P Fe PG G=  [14] 

2

: ( ) ( )2 113050 18.0Me P

Fe Si Fe BCC Si DiamondG G G T = + − +  [*] 

2

: , 0Me P

Fe P SiL =  [*] 

MeP 

(Fe)(P, Si)1 

:

MeP

Fe P FePG G=  [14] 

: ( ) ( ) 85200 15MeP

Fe Si Fe BCC Si DiamondG G G T = + − +  [*] 

: , 0MeP

Fe P SiL =  [*] 

FeP2 [14] 

(Fe)1(P)2 

𝛥𝐻298.15𝐾
° = −191100, 𝑆298.15𝐾

° = 51.05 

𝐶𝑃 = 77.52563 + 0.009348𝑇 − 443846𝑇−2 − 1.1 × 10−6𝑇2 

SiP [26] 

(Si)1(P)1 

𝛥𝐻298.15𝐾
° = −63300, 𝑆298.15𝐾

° = 34.735 

𝐶𝑃 = 38.343 + 0.010878𝑇 − 565000𝑇−2 

SiP2 [26] 

(Si)1(P)2 

𝛥𝐻298.15𝐾
° = −79300, 𝑆298.15𝐾

° = 67.0 

𝐶𝑃 = 67 + 0.0171𝑇 

Fe2Si [24] 

(Fe)2(Si)1 

𝛥𝐻298.15𝐾
° = −53889.7,  𝑆298.15𝐾

° = 106.39 

2( ) 2 ( ) ( )P P BCC P DiamondC Fe Si C Fe C Si= +  

Fe5Si3 [24] 

(Fe)5(Si)3 

𝛥𝐻298.15𝐾
° = −234740, 𝑆298.15𝐾

° = 209.1 

𝐶𝑃 = 180.3069 + 0.085912𝑇 − 1060722𝑇−2 + 2.665 × 10−7𝑇2 
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𝛽 = 2.32, 𝑇𝐶 = 360 K, 𝑃 = 0.28 

FeSi [24] 

(Fe)1(Si)1 

𝛥𝐻298.15𝐾
° = −76410,  𝑆298.15𝐾

° = 46.024 

𝐶𝑃 = 48.5666 + 0.01472𝑇 − 428220𝑇−2 − 1.7511 × 10−6𝑇2 

FeSi2 [24] 

(Fe)1(Si)2 

𝛥𝐻298.15𝐾
° = −96940.44,  𝑆298.15𝐾

° = 55.48 

𝐶𝑃 = 79.02985 − 0.0181469𝑇 − 999009𝑇−2 − 1.782 × 10−6𝑇2 

Fe3Si7 [24] 

(Fe)3(Si)7 

𝛥𝐻298.15𝐾
° = −247842.42,  𝑆298.15𝐾

° = 207.3 

𝐶𝑃 = 214.2176 + 0.10993𝑇 − 2345707𝑇−2 − 2.3033 × 10−6𝑇2 

FeSi4P4 [*] 

(Fe)1(Si)4(P)4 

𝛥𝐻298.15𝐾
° = −343500,  𝑆298.15𝐾

° = 178 

4 4( ) ( ) 4 ( ) 4 ( )P P BCC P Diamond P WhiteC FeSi P C Fe C Si C P= + +  

  *optimized in the present study 

 

Table 6.4 Optimized model parameters for the Fe-C-P system (J/mol, J/mol-K) 

Phase Model parameters 

Liquid 

(Fe, C, P) 

6Fe C P

FeFe CC PPZ Z Z= = =  [32, *] 

6P P C C

PFe PC CFe CPZ Z Z Z= = = =  [32,14,*], 3Fe Fe

FeP FeCZ Z= =  [14,32] 

256902 6.569 (5481 3.033 ) ( 11966 2.510 ) 9623FeP FeFe FeFe PPg T T X T X X = − + + + + − + −  [14] 

0CPg =  [*] 

30459.52 3.138 1129.68FeC FeFeg T X = − + −  [32] 

 “Toop-type” interpolation with P as an asymmetric component [*] 

FCC_A1 

(Fe ,P)1(C, Va)1 

: ( )

FCC

FeVa Fe FCCG G= , 
: ( )

FCC

P Va P FCCG G=  [*] 

: ( ) ( ) 77207 15.877FCC

Fe C Fe FCC C graphiteG G G T = + + −  [32] 
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: ( ) ( ) 83000 15.0FCC

P C P FCC C graphiteG G G T = + + −  [*] 

, : 139787.44 6.4852FCC

Fe PVaL T= − +  [14] 

: , 34671FCC

Fe C VaL = −  [32], 
: , 0FCC

P C VaL =  [*] 

, : 87864FCC

Fe P CL = −  [*] 

: 201CFeVaT = − , : 2.1FeVa = −  [44] 

BCC_A2 

(Fe,P)1(C, Va)3 

2

: ( )

BCC A

FeVa Fe BCCG G− = , 2

: ( )

BCC A

P Va P BCCG G− =  [*] 

2

: , ( ) ( )3 322050 75.667BCC A

Fe C Va Fe BCC C GraphiteG G G T−  = + + +  [32] 

2

: , ( ) ( )3 320000BCC A

P C Va P BCC C GraphiteG G G−  = + +  [*] 

( )2

, : 203476.3 15.4808 33472BCC A

Fe PVa Fe PL T y y− = − + + −  [14] 

: , 190BCC

Fe C VaL T= −  [32], 
: , 0BCC

P C VaL =  [*]  

, : 285CFe P VaT = − [14]  

: 1043CFeVaT = , : 2.22FeVa =  [44] 

Fe3P [14] 

(Fe)3(P)1 

LT-Fe3P: 

𝛥𝐻298.15𝐾
° = −164830, 𝑆298.15𝐾

° = 110.15 

298.15 K < 𝑇 < 727 K: 𝐶𝑃 = 106.76 + 0.0108𝑇 − 780000𝑇−2 

727 K < 𝑇 < 2000 K: 𝐶𝑃 = 109.84 + 0.0287𝑇 − 8000000𝑇−2 

HT-Fe3P: 

𝛥𝐻𝑡𝑟𝑎𝑛𝑠.
𝐿→𝐻 = 1000, 𝑇𝑡𝑟𝑎𝑛𝑠.

𝐿→𝐻 = 698 𝐾 

298.15 K < 𝑇 < 727 K: 𝐶𝑃 = 106.76 + 0.0108𝑇 − 780000𝑇−2 

727 K < 𝑇 < 2000 K: 𝐶𝑃 = 109.84 + 0.0287𝑇 − 8000000𝑇−2 

𝛽 = 0.6, 𝑇𝐶 = 713 K, 𝑃 = 0.28 
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Fe2P [14] 

(Fe)2(P)1 

𝛥𝐻298.15𝐾
° = −157643, 𝑆298.15𝐾

° = 83.12 

𝐶𝑃 = 71.555 + 0.02375𝑇 − 370000𝑇−2 

FeP [14] 

(Fe)1(P)1 

𝛥𝐻298.15𝐾
° = −126100, 𝑆298.15𝐾

° = 47.77 

𝐶𝑃 = 43.7878 + 0.01985𝑇 − 232000𝑇−2 

FeP2 [14] 

(Fe)1(P)2 

𝛥𝐻298.15𝐾
° = −191100, 𝑆298.15𝐾

° = 104.77 

𝐶𝑃 = 77.52563 + 0.009348𝑇 − 443846𝑇−21.1 × 10−6𝑇2 

Fe3C [45] 

(Fe)3(C)1 

𝛥𝐻298.15𝐾
° = 26944.46, 𝑆298.15𝐾

° = 51.05 

𝐶𝑃 = 118.47637 + 0.0014𝑇 − 1181054𝑇−2 

𝛽 = 1.008, 𝑇𝐶 = 485 K, 𝑃 = 0.28 

  * optimized in the present study 

 

6.3.1 The Fe-Si-P System 

6.3.1.1 Binary Systems (Fe-P, Si-P and Fe-Si Systems) 

As the most fundamental P-containing system, the binary Fe-P system has been extensively 

optimized [9-14]. Discrepancies left in previous assessments based on substitutional model were 

discussed with comparison to experimental data in recent reassessment by present authors [14]. In 

developing the new Fe-P database, dephosphorization reactions at the metal/slag interface were 

taken into account to determine the thermodynamic properties of molten Fe-P alloys. The 

optimized phase diagram of the Fe-P system was plotted in Fig. 6.1(a), based on the optimized 

parameters as summarized in Table 6.3. 
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(a) 

 

(b) 
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(c) 

Figure 6.1 Calculated phase diagrams of the (a) Fe-P, (b) Si-P, and (c) Fe-Si systems 

 

The Si-P system is crucial to silicon metallurgy industry. To describe the behavior of P in silicon 

accurately, Jung and Zhang [26] carried out systematic optimization of the Si-P system using the 

CALPHAD approach. The phase constitution of the Si-P system was built up by optimizing the 

molten Si-P alloys, diamond_A4 phase in the Si-rich region and stoichiometric SiP and SiP2 

compounds based on critical evaluation of available experimental data. Besides, 

dephosphorization reaction between metallurgical-grade molten Si and CaO-based slags was taken 

into account to validate the constructed Si-P thermodynamic database. The phase diagram of the 

Si-P system based on optimized model parameters in Table 6.3 was plotted in Fig. 6.1(b).  

 

As mentioned above, Cui and Jung [24] recently optimized the Fe-Si system, in which the 

order/disorder transition in BCC solution was taken into account and the liquid solution were 
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described using both Bragg-Williams Random Mixing model and Modified Quasichemical Model. 

For the compatibility in higher-order system, the parameter set based on MQM was adopted in the 

present modeling. Fig. 6.1(c) illustrates the calculated phase diagram of the Fe-Si system.  

 

6.3.1.2 Ternary Fe-Si-P system 

In the ternary Fe-Si-P system, Si was considered soluble in Fe3P, Fe2P and FeP to form Me3P, 

Me2P and MeP solid solutions to reproduce experimental data and give consistent description of 

the Fe-Si-P phase equilibria. However, no evidence shows P is soluble in the Fe2Si, Fe5Si3, FeSi, 

FeSi2, Fe3Si7. Hence, the solubility of P was assumed to be 0 in these ferrosilicides. Besides, 

stoichiometric FeP2, SiP, SiP2 and ternary compound FeSi4P4 are also stable in the ternary system. 

Vogel and Giessen [46] carried out a few sets of experiments on designated composition of Fe-Si-

P alloys. The liquidus and solidus temperatures and microstructures of the target alloys were 

determined by means of thermal analysis and microscopic examination. Besides, the ternary 

stoichiometric compound, FeSi4P4, was also confirmed with a maximum melting temperature of 

1210 ℃. The measured experimental data concerning pseudobinary FeSi − FeP, FeSi − FeSi4P4 

and FeSi2 − FeSi4P4 diagrams were compared with present calculations in Fig. 6.2. It is shown 

that the measured data were well reproduced in present modeling.  
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(a)  

 

(b)  
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(c)  

Figure 6.2 Pseudobinary (a) FeSi − FeP (b) FeSi − FeSi4P4 and (c) FeSi2 − FeSi4P4 diagrams in 

the ternary Fe-Si-P system, compared to experimental data [46] 

 

Fig. 6.3 shows calculated isopleths of the Fe-Si-P system at wt. %Si = 7  and wt. %P = 13 

comparing with experimental data by Vogel and Giessen [46]. Both sets of data are explained in 

the present modeling, except those on the Si-rich corner at wt. %P = 13. The liquidus and solidus 

boundaries are positively deviated from the measurements, which can not be got rid off unless 

sacrificing the reproduction of all other experimental data. 
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(a) 

 

(b)  

Figure 6.3 Calculated isopleths of the Fe-Si-P system at (a) wt. %Si = 7 and (b) wt. %P = 13, 

compared to experimental data [46] 
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Kaneko et al. [47] measured the solubility of P in Fe-Si alloys containing up to 4 wt.% Si. Their 

experimental results were compared with present calculation in Fig. 6.4. As shown in the figure, 

fairly good agreement between the modeling and experiments was achieved. Besides, dissolution 

of P in BCC solution decreases from 2.28 wt.% to 1.28 wt.% with the increase of Si up to around 

4 wt.%Si in the alloys.   

 

Figure 6.4 Calculated isothermal section of the Fe-Si-P system on the Fe-rich corner at 1000 ℃, 

compared to experimental data [47] 

 

The calculated liquidus surface projection of the Fe-Si-P system between 1000 ℃ and 1500 ℃ was 

compared with experimental data measured by Vogel and Giesson [46] in Fig. 6.5. In the figure, 

the liquidus isothermals between 1000 ℃ and 1500 ℃ were plotted in dash lines. All involved 

variant reactions of the Fe-Si-P system were summarized in Table 6.5. The calculated invariant 

temperatures are consistently in agreement with measured values while the calculated composition 

of some invariant points such as eutectic E3, E5, peritectic U5 are slightly deviated from the 
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datapoints, and even the invariant reaction types are inconsistent between the calculation and 

experimental result, that is, eutectic reaction L = Diamond_A4 + Fe3Si7 + FeSi4P4 in E4’ was 

considered to be a mistake and corrected to peritectic reaction L + Diamond_A4 = Fe3Si7 +

FeSi4P4 labeled as U4. 

 

Figure 6.5 Calculated liquidus surface projection of the Fe-Si-P system between 1000 ℃ and 

1500 ℃, compared to experimental data [46]  

 

 

 

 

 

 

 



219 
 

Table 6.5 Invariant reactions of the Fe-Si-P system with experimental data [46] 

Code Invariant reactions 𝐱𝐅𝐞 𝐱𝐒𝐢 𝐱𝐏 T, ℃ 

𝐄𝟏 L = MeP + Me2P + FeSi 
72.2 10.9 16.9 1163 

71.0 14.0 15.0 1166[46] 

E2 L = Me2P + Fe2Si + Fe5Si3 79.0 18.0 3.0 1141 

𝐄𝟑 L = FeSi + FeSi4P4 + MeP 

49.4 29.5 21.1 1087 

47.1 34.0 18.9 1095 [46] 

𝐄𝟒 L = FeSi + FeSi4P4 + Fe3Si7 

45.7 37.3 17.0 1094 

46.0 36.4 17.6 1096 [46] 

𝐄𝟓 L = SiP + FeSi4P4 + Diamond_A4 

1.1 56.4 42.5 1125 

6.0 61.5 32.5 1116 [46] 

𝐄𝟔 L = SiP + FeSi4P4 + SiP2 1.4 41.3 57.3 1132 

E7 L = Red_P + SiP2 + FeP2 0.075 0.035 99.89 580 

U1 L + Me2P = Me3P + BCC_A2 86.1 5.4 8.5 1093 

U2 L + BCC_B2 = Me2P + BCC_A2 85.9 5.8 8.3 1097 

U3 L + BCC_B2 = Me2P + Fe5Si3 82.7 14.2 3.1 1164 

𝐔𝟒 

E4’ 

L + Diamond_A4 = Fe3Si7 + FeSi4P4 

L = Diamond_A4 + Fe3Si7 + FeSi4P4 

38.7 45.0 16.3 1113 

33.5 49.2 17.3 1113 [46] 

𝐔𝟓 L + MeP = FeP2 + FeSi4P4 39.7 12.3 48.0 1099 

𝐔𝟔 L + FeSi4P4 = SiP2 + FeP2 17.6 9.4 73.0 1027 

 

The thermodynamic behavior of P in molten Fe with addition of Si was investigated 

experimentally by some researchers. Schenck et al. [48] obtained the activity coefficient of P 
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affected by Si by measuring vapor pressures of P2(g) above molten Fe-Si-P alloys at 1515 ℃. 

Yamada and Kato [49,50] measured ions species of phosphorus in the gas phase measure the 

activity coefficient of P in the Fe-Si-P melts at 1600 ℃. By using Knudsen effusion method (KEM), 

vapor pressures of different allotropic gaseous phosphorus (P2, P, P4) can be measured individually. 

Ban-ya et al. [51] conducted transportation experiments to investigate effect of Si on the activity 

coefficient of P at 1400 ℃. The experimental data were compared with present modeling results 

in Fig. 6.6. It is shown that inconsistency among the data becomes larger with increase of Si 

concentration. Compared to the other two sets of data, those obtained by Knudsen effusion method 

(KEM) are considered more reliable. According to present database, the interaction parameter 𝜀𝑃
𝑆𝑖 

was determined as 11.02, which is very close to the 11.90 recommended by Yamada and Kato 

[49,50].  

 

Figure 6.6 Effect of Si on the activity coefficient of P (γP
Si) in the liquid Fe-Si-P alloys from 

1400 to 1600 ℃, compared to experimental data [48-51] 
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Dissolution of phosphorus in molten Si-Fe alloys was investigated by Ueda et al. [52] at 1450 ℃. 

The Si-Fe alloys containing a range of 0.08 < 𝑥𝐹𝑒 < 0.63 were equilibrated under a pressure of 

𝑃𝑃2(𝑔) = 0.184 Pa. Fig. 6.7 shows calculated solubility of P2(g) in Si-Fe alloys together with 

experimental data at 1450 ℃. As shown in the figure, the solubility of P decreases slightly first 

and then increases sharply with increasing Fe content. The minimum solubility was reached at 

about 51 wt.%Fe. This is due to a maximized interaction between Fe and Si in the liquid solution.  

 

Figure 6.7 Calculated solubility of P2(g) in the Si-Fe melts at 1450 ℃ under the partial pressure 

of 𝑃𝑃2(𝑔) = 0.184 Pa, compared to experimental data [52] 

 

6.3.2 The Fe-C-P System  

6.3.2.1 Binary Systems (Fe-C and C-P Systems) 

As mentioned above, the Fe-C system optimized by Shubhank and Kang [32] adopted in the 

present study. The calculated Fe-C phase diagram is shown in Fig. 6.8(a) with enlarged Fe-rich 

side showing phase equilibria of liquid, BCC_A2 and FCC_A1. Fig. 6.8(b) shows phase diagram 
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of C-P system based on the present database. Solid P and C were assumed insoluble in each other 

and no intermediate compound was found stable in the C-P system. Liquid model parameter was 

avoided to reproduce experimental data in the ternary Fe-C-P system, which will be discussed later. 

 
(a) 

 
(b) 

Figure 6.8 Calculated phase diagrams of the (a) Fe-C, and (b) C-P systems 
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6.3.2.2 Ternary Fe-C-P System 

Vogel et al. [46] carried out series experiments on the Fe-rich region to investigate phase equilibria 

of the Fe-C-P system at various vertical sections: (1) Fe91P9 − Fe95.5C4.5, (2) Fe92P8 − Fe97C3, (3) 

Fe98P2 − Fe98C2, (4) Fe98.4P1.6 − Fe98.4C1.6, (5) Fe − Fe97P1.5C1.5. In the experiments, quenching 

method (QM), thermal analysis (TA) and metallographic analysis (MA) were employed to 

determine critical temperatures and crystal structures of target alloys. The experimental data were 

compared with present calculations in Fig. 6.9. It is shown that the calculations are in good 

agreement with experimental data. 

 

(a)  
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 (b)  

 

(c)  
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 (d)  

 

(e)  

Figure 6.9 Calculated vertical phase diagrams of (a) Fe91P9 − Fe95.5C4.5, (b) Fe92P8 − Fe97C3, 

(c) Fe98P2 − Fe98C2, (d) Fe98.4P1.6 − Fe98.4C1.6, and (e) Fe − Fe97P1.5C1.5 in weight percent, 

compared to experimental data [53] 
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Fig. 6.10 illustrates calculated the metastable isopleth diagram of the Fe-C-P system at wt. %C =

2.4, compared to experimental results. Ohide and Ohira [54] studied the solidification process of 

the Fe-C-P alloys containing less than 8 wt.% P. The primary precipitation of austenite, secondary 

precipitation of cementite and solidus temperatures at fixed composition master alloys were 

determined by means of thermal analysis. Precipitated crystals were identified using 

metallographic analysis (MA). Fairly good agreement was achieved between experimental results 

and the present optimization.   

 

Figure 6.10 Variation of the temperature along with P content of the Fe-C-P system at wt. %C =

2.4, compared to experimental data [54] 

 

Fig. 6.11 shows variation of the temperature with P content with along the metastable liquidus 

reaction Liquid = FCC_A1 + Fe3C  together with experimental data provided by Wust [55], 

Schichtki and Piwowarsky [56], Schumann et al. [57]. The liquidus and solidus temperatures up 
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to the eutectic point at around 7 wt.%P suggested by Schurmann et al. [57] were reasonably 

reproduced within experimental errors. In comparison, those liquidus data by Wust [55], Schichtki 

and Piwowarsky [56] are slightly lower than predicted values. 

 

Figure 6.11 Variation of the temperature with P content along the metastable liquidus reaction 

Liquid = FCC_A1 + Fe3C, together with experimental data [55-57] 

 

Various Fe-C-P alloys have been studied to investigate phase equilibria of ferrite, austenite, 

cementite and Fe phosphide on the Fe-rich corner. All available experimental data [47,57-60] 

ranging from 900 ℃ to 1100 ℃ were sorted by phases and compared with the calculations in Fig. 

6.12. Compared to BCC_A2 phase, the solubility of C in FCC_A1 solid solution is much higher 

at all considered temperatures. More C and P dissolution result in precipitation of cementite and 

Fe3P within the solution. As shown in the figures, the phase boundary on the Fe-rich side were 

basically reproduced, despite some scattering among the experimental data. 
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(a)  

 

(b)  
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(c)  

 

(d)  

Figure 6.12 Calculated isothermal sections of the Fe-C-P system on the Fe-rich corner at (a) 

900 ℃, (b) 950 ℃, (c) 1000 ℃, and (d) 1100 ℃, compared to experimental data [47,57-60] 
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The solubility of C in molten Fe with dissolution of P has been investigated by many researchers 

[57,61-68]. Fig. 6.13 presents variation of saturated C concentration of the Fe-P melt with 

increasing P content from 1300 ℃ to 1600 ℃. At all considered temperatures, the solubility of C 

decreases with the increase of P concentration. Besides, the available experimental data are 

basically consistent and well reproduced based on present Fe-C-P database. 

 
(a) 
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(b)  

 

(c)  
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(d)  

 

(e)  
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(f)  

Figure 6.13 Calculated solubility of C in molten Fe with increasing P content between 1300 ℃ 

and 1600 ℃, compared to experimental data [57,61-68] 

 

The liquidus surface projection of the Fe-C-P system on the Fe-rich corner was plotted together 

with experimental results [55-57] in Fig.6.14. The isothermal lines from 1100 ℃ to 1500 ℃ were 

plotted in dashed lines and giving good reproduction on the experimental results by Schurmann et 

al. [57] using thermal analysis. Reasonable agreements were also achieved in various eutectic 

reactions of Liquid = Fe3C + FCC_A1 and Liquid = BCC_A2 + FCC_A1, comparing to the data 

reported by Wust [55] and Schichtki and Plwowarsky [56]. Invariant reactions on the Fe-rich 

corner was summarized in Table 6.6. 
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Figure 6.14 Calculated liquidus surface projection of the Fe-C-P system on the Fe-rich corner, 

compared to experimental data [55-57] 

 

Table 6.6 Invariant reactions of the Fe-C-P system with experimental data [55-57] 

Code Invariant reactions 𝐰𝐭. %𝐅𝐞 𝐰𝐭. %𝐂 𝐰𝐭. %𝐏 T, ℃ 

U1 L + Fe2P = Fe3C + Fe3P(HT) 88.327 2.898 8.775 1005 

U2 L + BCC_A2 = FCC_A1 + Fe3P(HT) 90.908 0.904 8.188 1004 

E1 L = Fe3P(HT) + Fe3C + FCC_A1 91.293 2.107 6.600 941 

 

6.4. Summary 

The Fe-Si-P and Fe-C-P systems were thermodynamically optimized over the full composition 

range based on the critical evaluation of available experimental data. The liquid phases and solid 

solutions were described using the Modified Quasichemical Model (MQM) and Compound 

Energy Formalism (CEF), respectively. The Gibbs energy of the ternary compound FeSi4P4 was 
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optimized and the phase equilibria of the Fe-Si-P system in wide composition ranges were well 

reproduced. Thermodynamic properties of the liquid Fe-Si-P alloys in both Fe-rich and Si-rich 

side were optimized based on reported data. In the Fe-C-P system, all experimental data 

concentrated on the Fe-rich corner were used to optimize the liquidus, solidus BCC_A2 and 

FCC_A1 boundaries. Besides, the solubility of C in the Fe-P melts at various temperatures were 

excellently explained with very limited parameters. According to the present optimization, a 

consistent and accurate thermodynamic database of the Fe-Si-P and Fe-C-P system has been 

developed for describing the behavior of P in various conditions of Fe-Si and Fe-C alloys. The 

optimized database will be used as part of new FSstel database in FactSage software.  
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Chapter 7: Comprehensive Scholarly Discussion 

 

Phosphorous is a typical impurity element existing in high alloy steels. Despite a small quantity of 

P in steels, it is very important to understand the behavior of P because of its significant influence 

on steel qualities. Thermodynamic database based on the CALculation of PHAse Diagrams 

(CALPHAD) method [1] is a powerful tool for process optimization and new materials design. 

The thermodynamic database of the high alloy Fe-Mn-Al-Si-C-P system was developed by means 

of thermodynamic optimization, aiming at obtaining one set of consistent Gibbs energies of all 

phases as functions of composition and temperature. In this study, all available phase equilibria 

and thermodynamic data including activity, entropy, enthalpy and Gibbs energy, etc were critically 

evaluated simultaneously. The discrepancies between available data were resolved in the critical 

evaluation process. In the P-containing systems, all experimental data are concentrated in the 

metal-rich regions while almost no data were reported on the P-rich side, because it’s hard to obtain 

equilibrium data due to high vaporization pressure of P. Exceptionally, the thermodynamic 

property data for FeP2 [2,3] and MnP3 [4] were reported and considered in the present optimization. 

The consistency and accuracy of the optimization of low-order systems can be tested by the higher-

order systems, because only one set of model parameters are used in the entire database. 

 

In the present study, all thermodynamic calculations were performed in FactSage software [5], in 

which the well-established thermodynamic databases for the gases (FactPS) and oxides (FToxid) 

are available to assist the present modeling. The thermodynamic modeling also relies on the 

selection of the model. In this study, the Modified Quasichemical Model (MQM) [6,7] considering 

short-range ordering (SRO) and Compound Energy Formalism (CEF) [8] considering the crystal 
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structures were used to describe the liquid phase and solid solutions, respectively. For examples, 

the Fe-P system and Mn-P system exhibit very similar negative interactions and apparent short-

range orderings happen in the composition of 𝑛𝑖 ∶ 𝑛𝑃 = 2: 1 (i = Fe, Mn) in both liquid solutions. 

In comparison, Al, Si and C have weaker interactions than Fe and Mn with P and a short-range 

ordering is probably happening at the composition of 𝑛𝑗 ∶ 𝑛𝑃 = 1: 1 (j = Al, Si, C) based on 

reported data. These short-range orderings were considered in the present modeling by using 

MQM. Besides, when extending from the binary systems to the ternary system, proper 

interpolation techniques [7] depending the nature of each binary system are available to predict 

the Gibbs energy of the ternary liquid. This gives more realistic description of the entropy of the 

liquid solution and increases the predictive ability of the database, compared to the conventional 

Bragg-Williams Random Mixing Model (BWRMM) with assumption of random mixing of 

entropy and an intrinsic Muggianu interpolation technique for all the systems. A good example for 

application of the interpolation technique is given by the Fe-Mn-P system, in which the binary Fe-

Mn liquid solution is in almost ideal mixing while the Fe-P and Mn-P liquids exhibit very negative 

interactions, so the Toop-type interpolation technique (P as an asymmetric component) was 

introduced to the ternary Fe-Mn-P liquid solution. According to the present optimization, the 

behavior of the Fe-Mn-P system is excellently predicted without adding any ternary liquid 

parameters. In the Fe-Si-P, Fe-Al-P and Fe-C-P liquids, proper interpolation techniques depending 

on the nature of related binary systems were also introduced. It should be noted that 

thermodynamic properties of liquid P were optimized from very dilute region to the metallic side. 

The thermodynamic properties of P in very dilute region are of great importance to the P refining 

of metals.  
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Thermodynamic descriptions of the solid phases are associated with the liquid solution. The Gibbs 

energies of the solid phases and liquid solution, on one hand, have to satisfy their own 

thermodynamic properties, on the other hand, they have to compensate each other to reproduce the 

liquidus and solidus. Similar to the liquid solution, the Gibbs energies of solid phases in the higher-

order systems are also affected by those in the lower-order system. For example, the Gibbs energy 

of BCC_A2 solid solution in the Fe-P system are adopted in all the (Fe-P)-containing ternary and 

multicomponent systems. The Gibbs energy of the ternary (Fe, Mn)3P phase also relies on the 

Gibbs energies of Fe3P and Mn3P. That is, the optimization of binary systems plays a key role in 

the optimization of the multicomponent system. The lower-order systems were preliminarily 

optimized to test higher-order systems. Once the descriptions of higher-order systems cannot be 

satisfied with, then the lower-order systems have to be reoptimized until all the subsystems are 

consistently optimized. Because of the scale limitation of thesis, only the thermodynamic 

optimization results of binary Fe-P, Mn-P, Al-P, Si-P, C-P systems and ternary Fe-Mn-P, Fe-Al-

P, Fe-Si-P, Fe-C-P systems are presented in current thesis. According to the present 

thermodynamic optimization, most of experimental data of these sub-systems were accurately 

reproduced.  

 

The current database can be used not only for the phase diagram and thermodynamic property 

calculations at normal compositions and temperatures but also for the P refining in various dilute 

alloys within the Fe-Mn-Al-Si-C system. As shown in Chapter 3 and Appendix A, the present 

thermodynamic database can be applied for the dephosphorization calculations of steel and FeMn 

alloys with combination of existing database for gases (FactPS) and oxides (Oxides) in FactSage. 

The present calculations have been proved to be accurate, compared to available experimental data. 
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Chapter 8: Summary and Suggestions for Future Work 

 

8.1 Summary 

The present research was conducted to develop a self-consistent thermodynamic database for the 

high alloy Fe-Mn-Al-Si-C-P steel system. For this objective, critical evaluation and 

thermodynamic optimization of all available literature data were performed to obtain one set of 

Gibbs energy functions for all phases within the systems. In the literature review, experimental 

data including the information of stable phases, crystal structures, thermodynamic properties, 

phase equilibria, etc. were collected. To resolve the discrepancies among all the collected data, a 

critical evaluation and preliminary assessment of the data was performed to check their consistency 

and reliability. Then thermodynamic modeling/optimization of the P-containing high alloy Fe-Mn-

Al-Si-C-P system was performed from low-order systems to high-order systems to reproduce all 

reliable experimental data using the CALculation of PHAse Diagrams (CALPHAD) [1] method.  

 

In the present thermodynamic optimization, the liquid solutions were described using the 

Modified-Quasichemical Model (MQM) [2,3] considering the short-range ordering (SRO) of the 

liquid solutions. Using the MQM, the atom pair formation and introduction of coordination 

numbers provide greater flexibility in reproducing the SRO among liquid components and 

combining the binary parameters to the high-order solutions. Besides, geometric interpolation 

techniques [3] were used to predict the Gibbs energy of the ternary liquids based on optimized 

binary parameters. Determination of a proper interpolation technique depends on the nature of 

each binary liquid solution involved in the target ternary solution. A proper interpolation technique 

increases the predictive ability of the MQM model in higher-order liquid solutions. The solid 
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solutions were described using the Compound Energy Formalism (CEF) [4] with consideration of 

their crystallographic structures.  

 

The Gibbs energies of pure elemental liquid and solid components were directly taken from the 

Scientific Group Thermodata Europe (SGTE) database [5]. The Gibbs energies for all related 

stoichiometric compounds were critically optimized based on available thermodynamic data 

including the heat capacities, enthalpies, entropies and other sources of Gibbs energy data. In the 

present study, thermodynamic properties of all intermediate phosphides and P in various liquid 

alloys, various types of phases diagrams of the Fe-Mn-Al-Si-C-P system were critically optimized 

to reproduce all the reliable experimental data. The thermodynamic database developed in the 

present study can also be used to predict unexplored phase diagrams and thermodynamic properties 

of other sub-systems of the Fe-Mn-Al-Si-C-P alloys at any compositions and temperatures. All the 

thermodynamic calculations were performed using the FactSage system [6] containing the Gibbs 

energy minimization routine.  

 

The highlights of thermodynamic optimization in each chapter of current thesis are summarized 

as follows: 

 

i. In Chapter 3, all available experimental data are critically evaluated for conducting 

thermodynamic optimization of the Fe-P system is using the CALculation of PHADiagram 

(CALPHAD) method. The Fe-P phase diagram, thermodynamic properties of P in liquid Fe and 

stability of each intermediate iron phosphides in the entire composition range have been critically 

optimized to resolve the discrepancies left in previous assessments. The behavior of P in both 
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liquid and solid Fe was accurately described in the present study. Besides, dephosphorization 

reactions of molten Fe-P alloys were calculated by combining the present database and the FToxid 

database in FactSage [6]. The distribution of P between liquid metal and slag at different 

temperatures were accurately calculated, compared to experimental data.  

 

ii. In Chapter 4, thermodynamic modeling results of the Mn-P and Fe-Mn-P systems were 

presented.  The Gibbs energies of binary stoichiometric manganese phosphides were determined 

by reproducing reliable experimental data. Besides, the ternary (Fe,Mn)3P, (Fe,Mn)2P, (Fe,Mn)P 

phosphides solutions were modeled as solid solutions with mutual dissolution of isomorphous Fe3P 

and Mn3P, Fe2P and Mn2P, FeP and MnP, respectively. The thermodynamic properties of the Fe-

Mn-P liquid solution in both dilute region and high-P concentration region were accurately 

predicted without any additional parameters. 

 

iii. In Chapter 5, the binary Al-P and ternary Fe-Al-P systems are thermodynamically optimized 

using the CALPHAD approach. The Al-P phase diagram data and thermodynamic properties of 

stoichiometric AlP compound were critically assessed for optimizing the binary Al-P and ternary 

Fe-Al-P systems. The discrepancies in the existing experimental diagrams of the Al-rich region of 

the Al-P system and various isopleths diagrams of Fe-Al-P system were resolved. More accurate 

and consistent descriptions on the Fe-Al-P system than previous assessments have been obtained 

in the present study. 

 

iv. In Chapter 6, the Fe-Si-P and Fe-C-P systems are thermodynamically optimized by means of 

the CALPHAD approach. The ternary stoichiometric compound FeSi4P4 was considered as a stable 
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phase in the Fe-Si-P system for the first time. The phase diagrams of the pseudo-binary FeSi-FeP, 

FeSi-FeSi4P4, and FeSi2-FeSi4P4 systems, isopleths at wt. %Si = 7 and wt. %P = 13 of the Fe-Si-

P system, the solubility of P in BCC_A2 Fe-Si alloys, and thermodynamic properties of P in molten 

Fe-rich and Si-rich regions of Fe-Si alloys were all well reproduced. In the Fe-C-P system, various 

vertical diagrams of the Fe-rich region from low temperatures to high temperatures were critically 

evaluated and accurately optimized in the present study. At 1300 ℃ to 1600 ℃, variations of the 

solubility of C in molten Fe with the P content were excellently reproduced in this modeling. In 

addition, the liquidus projection of the Fe-rich region of the Fe-C-P system was well predicted, 

compared to experimental data.  

 

v. In Appendix A, the thermodynamic database for the Fe-Mn-Al-Si-C-P system was developed 

and applied to describe the behavior of P various high alloy system. Good predictions on the high-

order systems given by the example of the Fe-Mn-C-P system, and the distribution of P between 

molten slag and high Mn hot metal, molten slag and high-C FeMn alloys are obtained, compared 

to available experimental data. Besides, by combination of the FToxid database and FactPS 

database with present new metallic thermodynamic database, the composition and quantity of the 

flux, temperature, initial Si content of the metal were optimized to enhance the dephosphorization 

of FeMn alloys.  

 

8.2 Suggestions for Future Work 

In the present study, all the sub-systems of the Fe-Mn-Al-Si-C-P system with experimental data 

available were optimized. Although the present thermodynamic optimization results are in good 

accordance with reliable experimental data, there are still some limitations needed to be addressed:  
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i. Basically, most experimental data of the P-containing systems are only concentrated in the region 

of 𝑥𝑃 < 0.5 due to high vaporization pressure of P in the high-P region. Therefore, descriptions of 

the high-P region (liquidus, thermodynamic properties of high-P phosphides such as FeP2, MnP3, 

etc.) were determined using very limited literature information, or predicted from the phase 

equilibria and thermodynamic properties of the low P region where reliable experimental data are 

available. So, more data in the P-rich region are still very necessary. Besides, more advanced 

experimental techniques overcoming the difficulties of experiments for the P-rich region should 

be developed.   

 

ii. In the Fe-Si-P system, experimental data on the liquidus, solidus and the solubility of P in Si-

rich Fe-Si alloys are hardly reproduced simultaneously with reasonable model parameters. Further 

experimental studies on the Si-rich phase equilibria are necessary.  

 

iii. The metallic Ni, Cr, Ti and Nb are very important alloying elements in steel. Therefore, it is 

very necessary to include these elements in the developed high alloy steel database in the future 

for more extensive applications.  

 

iv. The impurities N, S and O are also very important elements in high alloy steels. They should 

be included together with P in the developed database for the steelmaking applications. 
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Chapter 9: Contribution to Original Knowledge 

 

The present work is a comprehensive attempt to develop a thermodynamic database of the high 

alloy Fe-Mn-Al-Si-C-P steel system. Critical evaluation and assessments of all available literature 

data were performed for the thermodynamic optimization using the CALculation of PHADiagram 

(CALPHAD) approach. The main original contributions to knowledge from this work are listed as 

follows: 

i. Thermodynamic modeling of liquid solutions of the Fe-P, Mn-P, Al-P, Si-P and C-P systems 

was performed for the first time using the Modified Quasichemical Model (MQM), considering 

the short-range ordering of the liquid solutions.  

 

ii. In the Fe-P system, phase equilibria of BCC_A2 phase at both low and high temperatures were 

accurately described for the first time. Besides, various sources of experimental data (Heniran 

standard state, Raoultian standard state, 1 wt.% standard state, partial pressure of gaseous P/P2/P4, 

etc.) for the activity of P in molten Fe at different temperatures were critically assessed together to 

describe the thermodynamic properties the Fe-P liquid solution. For the first time, the Fe-P 

database can be used to not only calculate conventional phase diagrams and thermodynamic 

properties at normal composition range, but also calculate the thermodynamic behavior of P in 

very dilute region, which has very important applications for the steelmaking process.  

 

iii. The Fe-Mn-P, Fe-Al-P, Fe-Si-P and Fe-C-P systems were thermodynamically optimized over 

the entire composition range using the MQM for the first time. Proper geometric interpolation 
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techniques were used to predict the Gibbs energies of the ternary liquids for the first time, which 

increased the predictive ability and reduced the number of model parameters added to the database. 

iv. In the Fe-Mn-P system, the activities of Fe, Mn and P were accurately predicted in the entire 

composition of liquid solutions at various temperatures without any additional parameters, which 

proves high reliability of present database. The present database can be used to do 

dephosphorization calculations of high Mn steels and Mn alloys.   

 

v. The Al-P system was accurately optimized by reproducing thermodynamic properties of 

stoichiometric AlP compound, the liquidus of the Al-rich region and the melting point of AlP were 

simultaneously for the first time. Besides, the ternary stoichiometric compound FeSi4P4 was 

considered in the present optimization for the first time.  

 

vi. The present thermodynamic database can be utilized to predict unexplored phase diagrams and 

thermodynamic properties of the Fe-Mn-Al-Si-C-P system at any temperatures and compositions. 

This database can be also used to do dephosphorization calculations of any system within Fe-Mn-

Al-Si-C.  
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Abstract 

In the production of FeMn alloys, the impurity such as P originated from the raw materials and 

processing route needs to be tightly controlled. The BaO-based fluxes are considered more 

effective than CaO-based fluxes and reducing dephosphorization agents in the P removal of FeMn 

alloys. In the present study, the thermodynamic database for the Fe-Mn-Si-Al-C-P system was 

developed using the CALculation of PHADiagram (CALPHAD) method, and it has been applied 

to determine the optimal conditions (flux composition, flux quantity, temperature, initial Si content) 

for the P refining using the BaO-MnO-BaF2 flux. All the thermodynamic calculations were 

performed using the FactSage software with presently developed database and existing 

thermodynamic databases for oxides and gases. 

 

 

Key words: FeMn alloys, Dephosphorization, CALPHAD, BaO-MnO-BaF2 flux, 

Thermodynamic Database 
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A. 1 Introduction 

Ferromanganese (FeMn), as one of the typical bulk ferroalloys, is widely applied in the 

steelmaking process, because of its roles as the deoxidizer and sulphide former (30%), and alloying 

agent (70%) of the steels [1]. Manganese (Mn), as the dominant component of FeMn alloys, 

contributes to enhancing the steel mechanical properties such as hardenability, tensile strength, 

toughness, etc. [2]. In particular, the demand for high quality FeMn alloys is increasing with the 

production of high Mn steels such as Twin Induced Plasticity (TWIP) and Transformation Induced 

Plasticity (TRIP) steels.  

 

FeMn alloys are usually produced by reduction of Mn ores either in Blast Furnace (BF) or 

Submerged Arc Furnace (SAF) at the temperature above 1200 oC. Mn ores mainly exist in the 

form of the oxide mixture (MnO2, Mn2O3, Mn3O4, MnO, Fe2O3, Fe3O4, etc.) [3]. Reduction of Mn 

oxides into metallic Mn is done by either carbothermic or silicothermic reduction process. That’s 

why C and Si always present with Mn and Fe in the FeMn alloys. According to the C content, 

FeMn alloys are classified into three grades: standard high-C FeMn (74-82 wt.%Mn and 6.0-7.5 

wt.%C), medium-C FeMn (80-85 wt.%Mn and 1.0-1.5 wt.%C), and low-C FeMn (80-90 wt.%Mn 

and 0.1-0.75 wt.%C) [1,4]. High-C FeMn alloys are produced by carbothermic reduction either in 

BF process or SAF process. Medium-C FeMn alloys are produced by partial oxidation of high-C 

FeMn alloys or silicothermic reduction of Mn ores using SAF process. In comparison, low-C 

FeMn alloys can only be produced by silicothermic reduction process in SAF. Since the mid-20th 

century, BF process has been gradually replaced by SAF process for the FeMn alloys production 

[5] because of demands for higher-grade FeMn alloys, less reductant (coke) consumption and 

longer refractory life of SAF. However, certain volume of FeMn alloys are now still produced with 
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BF process because low grade Mn ores (as low as 28 wt.%Mn) can be processible in BF process 

with high consumption of C [6]. In the production of FeMn alloys, however, it is hard to avoid the 

impurities like P originated from the raw materials and processing route. The content of P in FeMn 

alloys can be 0.4 to 0.6 in weight percent, so P can be directly transferred to the steels through the 

alloying process. Though the P is in a small quantity in steels compared to other metallic 

components, the presence of P in steels can cause serious quality defects like weld brittleness and 

inner cracks. It is thus very necessary to tightly control the P in molten FeMn alloys.  

 

To understand the behavior of P in FeMn alloys, it is of great importance to know the 

thermodynamic properties of P in the FeMn alloys. In the present study, the thermodynamic 

database of the Fe-Mn-Al-Si-C-P system was constructed using the CALculation of PHADiagram 

(CALPHAD) method. In particular, the liquid solutions and solid solutions were described using 

the Modified Quasichemical Model (MQM) [7,8] considering the short-range ordering and 

Compound Energy Formalism (CEF) [9] considering their crystallographic structures. All 

available phase diagram data and thermodynamic property data of the sub-systems of the Fe-Mn-

Al-Si-C-P system were critically evaluated for optimizing the consistent Gibbs energy functions 

of all the phases in the corresponding systems. The developed thermodynamic database in this 

study was combined with FToxid database for oxides and FactPS database for gas to calculate 

complex dephosphorization reactions among the metal, slag and gas phases [10]. According to the 

present calculations, the optimal flux compositions and conditions was determined to improve the 

dephosphorization efficiency of high-C FeMn alloys. All the thermodynamic calculations were 

performed using the FactSage software [11]. 
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A. 2 Thermodynamic Models 

A. 2. 1 Pure Elements and Stoichiometric Compounds 

In the sub-systems of the Fe-Mn-Al-Si-C-P system, the Gibbs energies of all the pure elemental 

substances were taken from the Scientific Group Thermodata Europe (SGTE) database compiled 

by Dinsdale [12], while the Gibbs energies of involved stoichiometric compounds were determined 

based on the available thermodynamic data including the heat capacity, standard enthalpy of 

formation and standard entropy at 298.15 K, as shown below: 

( )298.15 298.15
298.15 298.15

T T
P

T K P K
K K

C
G H C dT T S dT

T

   
=  + − + 

 
                                                  (A.1)   

where 𝐺𝑇
°  is the Gibbs energy at temperature T, 𝛥𝐻298.15𝐾

°  and 𝑆298.15𝐾
°  are the standard enthalpy 

of formation and standard entropy at 298.15 K, and 𝐶𝑃 is the heat capacity. The heat capacity of 

each stoichiometric compound was expressed as a function of temperature by fitting experimental 

𝐶𝑃 data. In the case of compounds without available experimental 𝐶𝑃 data, their 𝐶𝑃 were assessed 

using the Neumann-Kopp (NK) rule [13] or the 𝐶𝑃 functions of neighboring compounds.  

 

When a pure element or stoichiometric compound exhibits either antiferromagnetic or 

ferromagnetic transition, then an additional magnetic contribution term 𝐺mg will be also taken into 

account in the determination of its Gibbs energy using the empirical expression proposed by Inden 

[14] and modified by Hillert and Jarl [15]. 

( )ln 1 ( )mgG RT g = +                                                                                                            (A.2) 

Here τ is calculated by 𝑇/𝑇∗ and 𝑇∗ is the critical temperature of magnetic transition associated 

with Neel temperature 𝑇𝑁  for antiferromagnetic materials and Curie temperature 𝑇𝐶  for 
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ferromagnetic materials. β is the average magnetic moment per mole of atoms expressed in Bohr 

magnetons. 𝑔(𝜏) is a polynomial function derived by Hillert and Jarl [15]. 

 

A. 2. 2 Solid Solutions 

In the present study, the Gibbs energies of the solid solutions were described using the Compound 

Energy Formalism (CEF) [9] with consideration of their crystallographic structures. For all the 

sub-systems of the Fe-Mn-Al-Si-C-P system, there exists many different solid solutions including 

the disordered FCC_A1, BCC_A2, HCP_A3, CBCC_A12, CUB_A13, Diamond_A4, Me𝑛P(𝑛 =

3, 2, 1), Cementite, etc. and the ordered BCC_B2, L12 phases. The calculation of the Gibbs energy 

of a solid solution depends on its sublattice model. For example, the Gibbs energy of a solid 

solution with a two-sublattice (A, B)𝑝(C, D)𝑞 is calculated using the following equation: 

( )
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      (A.3) 

where 𝑦A, 𝑦B and 𝑦C, 𝑦D are the site fractions of component A, B in the first sublattice (𝑦A + 𝑦B =

1) and components C, D in the second sublattice (𝑦C + 𝑦D = 1), respectively. 𝐺A:C, 𝐺A:D, 𝐺B:C, 

𝐺B:D are Gibbs energies of the end-members ApCq, ApDq, BpCq, BpDq, respectively. 
, :

i

A B mL  and 

: ,

i

n C DL  are interaction parameters between A and B of the first sublattice and between C and D of 

the second sublattice. 
, : ,

i

A B C DL  is the reciprocal interaction parameter with the first sublattice 

occupied by components A, B and the second sublattice occupied by components C, D. 𝐺mg is the 

magnetic Gibbs energy contribution. For other solid solutions with different sublattices, the Gibbs 
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energies can be calculated using the analogous approach depending on their crystallographic 

sublattice arrangements.  

  

A. 2. 3 Liquid Solution 

The Modified Quasichemical Model (MQM) [7,8] considering the short-range ordering (SRO) of 

the nearest-neighbor atoms was used to describe the liquid solutions because it gives a more 

realistic description of the entropy of the liquid solution, compared to the conventional Bragg-

Williams Random Mixing Model (BWRMM). In the binary A-B liquid solution, for example, the 

atom pair exchanging reaction was considered and expressed as follows: 

( ) ( ) 2( ); ABA A B B A B g− + − = −                                                                                             (A.4) 

where (i-j) represents the nearest-neighbor pair between components i and j, and Δ𝑔AB is the Gibbs 

energy change of forming 2 moles (A-B) pairs. The Gibbs energy of the liquid solution is 

calculated using the following equation:  

 . .( ) ( / 2)sol o o conf

L A A B B AB ABG n G n G T S n g= + −  +                                                                        (A.5) 

where 𝑛A and 𝑛B are the numbers of moles of A atoms and B atoms. 𝐺A
°  and 𝐺B

°  are the molar 

Gibbs energies of pure A and B components. Δ𝑆AB
conf. is the configurational entropy of mixing given 

by random distribution of the (A-A), (B-B) and (A-B) pairs, which describes the SRO of the liquid 

solution. 𝛥𝑔AB is the model parameter for reproducing the Gibbs energy of the binary A-B solution 

and can be expanded as a polynomial in terms of the atomic pair fractions 𝑋𝐴𝐴 and 𝑋𝐵𝐵 as follows: 

0 0

1 1

o i i j j

AB AB AB AA AB BB

i j

g g g X g X
 

 =  +  +                                                                                       (A.6) 

here, Δ𝑔AB
° , 𝑔AB

i0  and 𝑔AB
0j

 are the adjustable model parameters that can be functions of the 

temperature. In the MQM, the coordination number of each component was considered and 
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allowed to vary with composition to reproduce the SRO of the solution. When extending from the 

binary systems to the ternary system, proper geometric interpolation techniques are available to 

predict the Gibbs energy of the ternary liquid solution. Determination of the interpolation 

technique depends on the nature of involved binary systems. If necessary, ternary correction terms 

can be further introduced to give a more precise description of the ternary system.  

 

A.3 Prediction of Present Database 

In the present study, new metallic database for the Fe-Mn-Al-Si-C-P system was developed to 

describe the thermodynamic behavior of impurity P in various Fe-Mn-Al-Si-C alloys. In the 

development of this new database, the Gibbs energies of all the phases were determined by 

reproducing all the available reliable experimental data. The low-order subsystems were first 

optimized to obtain the model parameters and then extended to high-order subsystems. Since only 

binary and ternary parameters are added in the database, so thermodynamic description of multi-

component systems completely relies on the accuracy of these low-order parameters. In the present 

study, the thermodynamic descriptions are kept consistent throughout all the subsystems. Fig. A.1 

presents the solubility of C at different P contents of the liquid Fe-Mn-C-P solution at 1400 ℃, 

compared to experimental data [16,17]. It shows that the predicted solubility of C in both high-Mn 

hot metal (Fig. A.1(a)) and FeMn alloys (Fig. A.1(b)) from the present database are in excellent 

agreement with available experimental data. 
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(a)                                                                         (b) 

Figure A.1 Solubility of C affected by the P content in the (a) high Mn hot metal and (b) FeMn 

alloys of the Fe-Mn-C-P system at 1400 ℃, compared to experimental data [16,17] 

 

The accuracy of description of the thermodynamic behavior of P among the metal, oxides and gas 

phase were tested against the available experimental data, with the combination of the well-

constructed FToxid database for oxides and FactPS database for gases. For example, it can be seen 

from Fig. A.2 that the predicted partition coefficient of P between molten slag and hot metal,(Fig. 

A.2(a)) molten slag and high-C FeMn alloys (Fig. A.2(b)) from the present database and 

previously developed FToxid and FactPS database in FactSage are in excellent agreement with 

available experimental data [18,19]. Therefore, it is believed that the thermodynamic database 

developed in this work is reliable for the dephosphorization calculations of the FeMn alloys in a 

wide composition range. 
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       (a)                                                                               (b)  

Figure A.2 Predicted P partition coefficient between molten slag and (a) high Mn hot metal and 

(b) high-C FeMn alloys based on present database, compared to experimental data [18,19] 

 

A.4 Phosphorous Refining of Ferromanganese Alloys 

A.4.1 Dephosphorization Approaches 

In the production of FeMn alloys, it is hard to remove the P from molten alloys because of high 

affinity of Mn to P. Therefore, appropriate approaches for tightly control P in molten FeMn alloys 

are of great importance. Among various approaches for the dephosphorization, the physical 

beneficiation technique is not suitable for the removal of P since the vapor pressure of Mn is even 

higher than that of P at the smelting temperatures of FeMn alloys. Till now, the P of FeMn alloys 

is mainly removed through two approaches: (i) adding basic fluxes under reducing conditions, and 

(ii) adding basic fluxes under oxidizing conditions.  

 

For the dephosphorization under reducing conditions, CaC2-CaF2, CaSi-CaF2 and Ca-CaF2 are 

commonly used as the fluxes to treat molten alloys. Zhu et al. [20], Harashima et al. [21], Wang 

and Shao [22], and Karbowniczek et al. [23] studied the dephosphorization of FeMn alloys using 
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the CaSi/CaC2-CaF2 fluxes under reducing conditions. In their experiments, the P removal 

efficiencies were relatively high, but it is only applicable for FeMn alloys containing low C content 

because the combination of Ca and P is restricted with high C in the molten alloys. In addition, 

Ca3P2 as the dephosphorization product under reducing conditions is likely to form toxic phosphine 

(PH3) once in contact with the moisture [24]. And also, it is hard to maintain a very low oxygen 

potential during the production. Concerning these limitations, dephosphorization under reducing 

conditions has not been widely accepted by the steelmakers.  

 

For the dephosphorization under oxidizing conditions, in comparison, the alkali oxide, CaO- and 

BaO-based fluxes are usually added to the melts for forming the slag with proper chemistry. The 

P refining of FeMn alloys is mainly conducted using basic fluxes under oxidizing conditions. 

Li2CO3, K2CO3-KF, Na2CO3-KF and Na2CO3-NaF are common alkali oxide-based fluxes used to 

remove the P. Wang and Shao [22] investigated  the dephosphorization behavior of pig iron and 

FeMn alloys using the Na2CO3 flux. It was found that Na2CO3 behaved a good performance on 

the dephosphorization of pig iron but a much poorer efficiency on that of FeMn alloys. In their 

experiments, the dephosphorization rate of alloys containing 10 wt.%Mn dropped to 20% after 10 

mins treatment. Fujita et al. [25] observed that the P was hardly removed from high Mn ferroalloys 

using either Li2CO3 flux or Na2CO3-NaF flux. As is well known, CaO-based fluxes are widely 

applied to the steelmaking process and show very good performance on the P removal. Some 

researchers [18,25-27] studied the P refining of FeMn alloys using CaO-based fluxes, which 

unfortunately turned out be inefficient to remove P from the metal. Though CaO exhibits high 

basicity and can react with P to produce calcium phosphates under oxidizing conditions, the 

presence of high Mn causes the decrease of the P activity because of very negative interaction 
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between Mn and P. To improve the dephosphorization efficiency, many efforts were donated to 

develop new flux systems that are more effective than CaO-based fluxes. According to many 

attempts, BaO-based fluxes are probably the alternative agents because BaO is more basic than 

CaO. In previous experiments, various BaO-based fluxes including BaCO3 [18,25,28,29], BaCO3-

BaF2 [30], BaO-BaCl2-MnO2 [31], BaO-BaF2-MnO [18,19,30,32-34], BaCO3-BaCl2-MnO2 [26], 

BaCO3-BaF2-MnO2 [35], BaCO3-BaF2-MnO2-Fe2O3 [36], BaCO3-MnO2-Fe2O3 [27], BaO-BaF2-

MnO2-Fe2O3 [37] were selected as the dephosphorization agents for high-Mn steels and FeMn 

alloys in a wide composition range. It was consistently recognized that BaO-based fluxes exhibit 

a much higher dephosphorization efficiency than CaO-based fluxes [19,25,27-29]. Besides, Fujita 

et al. [25] also found that dephosphorization reaction of high-Mn (wt.%Mn = 5 - 60) and high-C 

(wt.%C = 3.0 - 6.7) pig irons using the BaCO3 flux proceeded faster than that using CaCO3-based, 

Na2CO3-based and Li2CO3-based fluxes. On the other hand, Guo and Dong [37] investigated the 

equilibrium distribution of P between high-C FeMn alloys and various BaO-halide slags at 1400 

℃. They found that the phosphate capacity of the slag differed with the type of halide in the order 

BaF2 > BaCl2 > CaF2 > CaCl2, which is consistent with the results obtained by Chaudhary et al. 

[30]. However, the loss of Mn was relatively high in the experiments of Chaudhary et al. [30], 

because the generated CO2 from the decomposition of BaCO3 created high oxygen potential, which 

caused oxidation of Mn and the Mn oxide would transferred from the metal to the top slag. This 

problem also existed in other experiments using BaCO3-based fluxes [25,26,36,38], unless other 

sources of Mn like MnO2 were added to compensate the Mn loss [27,35,36]. Ahundov et al. [32] 

conducted equilibrium experiments between the molten BaO-BaF2-MnO and C-saturated hot 

metal containing Mn up to 21 wt.% at 1200 ℃ to 1300 ℃ under the CO atmosphere. From the 

experiments, a partition ratio of 50 for P between Fe-8wt.%Mn-C(sat.) and BaO-BaF2-MnO flux 
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was obtained at 1200 ℃. Watanabe et al. [19] obtained a partition ratio of P as high as 1730 

between the BaO-8.47wt.%MnO-9.21wt.%BaF2 flux and the Fe-9.39wt.%Mn-C(sat.) alloys at 

1300 ℃ , which can be reproduced based on the present database, as shown in Fig. A.2(a). 

According to the experimental studies [24,18,30,33,34], the BaO-BaF2-MnO fluxes exhibited very 

good performances in the P refining of various composition ranges of FeMn alloys with very 

limited Mn loss. In the dephosphorization of FeMn alloys under oxidizing conditions, it has been 

commonly recognized that the dephosphorization can be promoted with: (i) high basicity, (2) 

relatively low temperatures, (3) relatively high oxygen potential, (4) fluxes with proper chemistry 

and (5) appropriate flux quantity, etc. 

 

Overall, the physical beneficiation technique is not suitable for removing the P from FeMn alloys. 

Despite high dephosphorization rate using the fluxes such as CaC2-CaF2, CaSi-CaF2 and Ca-Si-

CaF2, etc. under reducing conditions, it is not suitable for the industrial application due to 

environmental concerns, harsh oxygen potential and strict limitation of C content in the alloys. 

Under oxidizing conditions, CaO-based and alkali oxide-based fluxes are not acceptable because 

of low dephosphorization efficiency in refining the FeMn alloys containing high Mn. In 

comparison, BaO-based fluxes with higher basicity than CaO-based fluxes show much better 

performance in the dephosphorization of both hot metal and Mn alloys in a wide composition 

range. However, dephosphorization with BaCO3-based fluxes can result in a high loss of Mn 

without additional source of Mn. Adding MnO to BaO-based fluxes can develop oxidizing 

conditions and avoid high loss of Mn simultaneously. As a consequence of high-melting 

temperature of the BaO-MnO system, BaF2, as the most effective fluxing agent among various 

halides, can increase the activity coefficient of MnO and facilitates the melting of BaO-MnO fluxes 
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at moderate temperatures, which provides beneficial conditions for accelerating the metal/slag 

reactions and cutting down the Mn loss. Therefore, the BaO-MnO-BaF2 fluxes are considered 

promising in the P refining of FeMn alloys.  

 

A.4.2 Determination of the Flux Composition 

As discussed above, the BaO-MnO-BaF2 flux is very promising in the P refining of high Mn alloys. 

The dephosphorization reaction occurred at the interface between the BaO-MnO-BaF2 flux and 

FeMn alloys is described as follows: 

2 53( ) [ ] 5( ) 5[ ] 3 ( )BaO P MnO Mn BaO PO s+ + = +                                                                     (A.7) 

As can be seen in the reaction, MnO acts as the source of oxygen for oxidizing soluble P into P2O5 

while BaO provides high basic conditions that promotes the occurrence of dephosphorization 

reactions by reducing the activity of P2O5 in the slag. However, combination of BaO with MnO is 

not enough for removing the P from the Mn alloys due to high melting point of MnO (1785 ℃). 

Hence, BaF2 is usually added to the BaO-MnO flux to facilitate the melting of flux and improve 

the fluidity of the slag. Besides, it also was reported that addition of BaF2 reduce the activity 

coefficient of MnO and the loss of Mn [19,39]. Whereas dephosphorization of FeMn alloys is a 

process encompassing very complex reactions. To enhance the dephosphorization efficiency, it is 

necessary to optimize the parameters including the composition of flux and metal, quantity of flux, 

temperature, oxygen potential etc.  

Table A.1 Chemical composition (wt.%) of starting high-C FeMn alloy (100 grams) 

Components Mn Fe Si P C 

Composition 76 16.2 0.3 0.5 7.0 
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In the present study, the dephosphorization reactions between high-C FeMn alloys and molten slag 

was modelled based on the present new thermodynamic database and previously well-optimized 

FToxid database and FactPS database in FactSage 7.3. In the previous laboratory studies [18,19, 

24,33,34], the quantity of flux varied a lot among different experiments, but usually the amount of 

10 to 20wt.% of the charged metal were added for the P refining treatment. In this modeling, 15 

grams flux (15 wt.%) was set to treat 100 grams high-C FeMn alloy. The chemical composition of 

the typical high-C FeMn alloy is given in Table A.1. As a result of high melting point of MnO, 

the initial amount of MnO in the flux was set as 10, 15, 20 and 25 wt.% of the flux amount. Under 

fixed amount of MnO, the amount of BaO and BaF2 changes with each other. Besides, let’s assume 

dephosphorization reactions occurs at 1300 ℃. Variations of the P content in the metal with the 

BaO content of the flux are plotted in Fig. A.3. As can be seen, the P is hardly removed with 10 

wt.%MnO in the flux. This is probably due the existence of Si in the FeMn alloy, which will be 

discussed later. With 15, 20 and 25 wt.%MnO in the flux, the P content starts to decrease when 

the BaO content is more than 20.5 wt.%, and then it decreases to minimum values with the increase 

of the BaO in the flux. Obviously, the smaller minimum P content can be obtained by higher MnO 

content in the flux. From the figure, it can be seen the P content can be reduced from 0.50 to 0.377, 

0.252 and 0.132 wt.% with 15, 20, and 25 wt.%MnO in the flux, respectively. To obtain these 

minimum P contents, 31, 37.33, 44 wt.%BaO need to be added in the flux respectively.  



269 
 

 

Figure A.3 Variation of the P content in metal (100 g) with the contents of BaO and MnO in the 

flux (15 g) at 1300 ℃ 

 

Fig. A.4 shows variations of the quantity of all stable phases with the BaO content in the flux at 

1300 ℃ when the MnO content is set as 10, 15, 20 and 25 wt.% of the flux. As shown in Fig. A.3 

and Fig. A.4, All minimum P contents can be achieved with no formation of solid phases, except 

that when 25 wt.%MnO is added to the flux, solid bC2S (mainly Ba2SiO4) is precipitated within 

the molten slag, which greatly deteriorates the fluidity of the slag and slows down the metal/slag 

reactions. Therefore, 25 wt.%MnO in the flux is not acceptable though a lowest P content is 

calculated, as indicated in Fig. A.4, because in is hard to reach the complete equilibrium condition 

in the real case of solid phases precipitating within the molten slag.  
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(a)                                                                               (b)  

 

(c)                                                                            (b)  

Figure A.4 Variations of the amounts of all stable phases with the BaO content at 1300 ℃ when 

(a) wt.%MnO = 10, (b) wt.%MnO = 15, (c) wt.%MnO = 20, and (d) wt.%MnO = 25 of the flux  

 

To maximize the dephosphorization efficiency, the optimal configuration of the flux needs to be 

determined. According to the above calculations, the optimal MnO content of the flux is between 

20 wt.% and 25 wt.%. By using the same approach, an amount of 22.67 wt.%MnO of the flux is 

calculated, which is the critical flux amount for current conditions to obtain the best 
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dephosphorization efficiency at 1300 ℃. Under the same conditions, the calculated P content and 

the quantity of all stable phases at different BaO contents are plotted in Fig. A.5. It shows a 

minimum P content of 0.187 wt.% (dephosphorization rate: 62.6%) can be obtained without solid 

phase formation in the molten slag when 15 grams flux in the composition of 41wt.%BaO - 

22.67wt.%MnO - 36.33wt.%BaF2 is used for the dephosphorization, as listed in Table A.2.  

 

Figure A.5 Variations of the amount of all stable phases and the dissolved [P] content of FeMn 

alloys with the BaO content at 1300 ℃ when m(MnO) = 22.67 wt.% of the flux  

 

Table A.2 Optimal composition (wt.%) of the BaO-MnO-BaF2 flux 

Components BaO MnO BaF2 

Composition 41.0 22.67 36.33 
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A.4.3 Effect of Temperature on Dephosphorization 

It is well known that relatively low temperatures can improve the dephosphorization rate of steels, 

because dephosphorization reaction is exothermal. According to the determined optimal 

composition of the flux (41wt.%BaO - 22.67wt.%MnO - 36.33wt.%BaF2), the effect of 

temperature on the dephosphorization of high-C FeMn alloys is investigated. Fig A.6 presents 

variations of P in the alloys, activities of slag components, CO(g) and Mn(g) vapor with the 

temperature. As shown in Fig. A.6(a), the P content of the alloys after dephosphorization increases 

slightly with the temperature until 1361 ℃, then it increases more significantly at T > 1361 ℃, 

because the activity of MnO in slag starts to decrease sharply with increasing temperature above 

1361 ℃, as shown in Fig. A.6(b). Though the activity of molten BaO in the slag keeps increasing, 

the sharp drop of MnO activity outweighs the slight increase of the activity of BaO. This is 

probably caused by the sudden formation of CO(g) gas, as can be seen in Fig. A. 6(c). At 1361 ℃, 

the P content is removed from 0.50 wt.% to 0.194 wt.% by adding 15 grams of the optimal flux to 

100 grams high-C FeMn alloys. 

 

(a) 
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(b) 

 

(c) 

Figure A.6 Effect of the temperature on the (a) dephosphorization efficiency, (b) activity of each 

slag component, and (c) formation of gas species 
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A.4.4 Effect of Flux Quantity on Dephosphorization 

Dephosphorization rate, on one hand, can be restricted by increasing the temperature. On the other 

hand, dephosphorization reaction proceeds faster at higher temperatures. However, the Mn loss 

also increases with the increase of temperature. As discussed above, the final P content increases 

slightly from 0.187 wt.% to 0.197 when the temperature increases from 1300 ℃ to 1361 ℃. Fig. 

A.7 shows the composition of each metallic component using the optimal flux at 1361 ℃. It is 

shown the P content does not change until more than 7.5 grams flux is added, then it continuously 

decreases to 0.098 wt.% (dephosphorization rate: 80.4%) when 18 wt.% flux of charged alloys is 

added. That is, the dephosphorization rate can be increased from 62.6% to 80.4% by adding 3 wt.% 

more flux (41wt.%BaO - 22.67wt.%MnO - 36.33wt.%BaF2) at 1361 ℃.  

 

Figure A.7 Variation of each alloy component with the added amount of flux in the composition 

of 41wt.%BaO-22.67wt.%MnO-36.33wt.%BaCl2 at 1361 ℃ 
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A.4.5 Effect of Initial Si Content on Dephosphorization 

It is interesting to see from Fig. A.7 the P content doesn’t change but Si content decreases quickly 

with increasing flux amount. When almost all the Si is removed, the P content starts to decrease 

with more than 7.5 wt.% of flux. To investigate the effect of Si on the dephosphorization of FeMn 

alloys, the final P content and dephosphorization rate at 1361 ℃ with initial Si ranging from 0 to 

1 wt.% are calculated in Fig. A.8(a). Obviously, the final P content increases significantly with 

the increase of initial Si content in the metal. When Si content is above 0.7 wt.%, 

dephosphorization reaction almost doesn’t happen, because oxidation of dissolved Si consumed 

the MnO to produce SiO2 and further react with BaO to precipitate solid Ba2SiO4 phase, as 

indicated in Fig.A.8(b).  It is thus necessary to tight control the initial Si content for having high 

dephosphorization efficiency. As shown in Fig. A.8(a), for example, the initial Si content should 

be no more than 0.36 wt.% for removing no less than 70% P from the alloys.  

 

(a) 
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(b)  

Figure A.8 Effect of the initial Si content of the flux on (a) dephosphorization efficiency and (b) 

formation of stable phases 

 

Overall, BaO-based fluxes are more effective in the dephosphorization of various composition of 

FeMn alloys, compared to CaO-based fluxes and reducing dephosphorization fluxes. The BaO-

MnO-BaF2 flux is very promising because of high dephosphorization efficiency, low Mn loss and 

friendly environmental concern. The thermodynamic database for high alloy steel developed in the 

present study can be applied to optimize the chemistry and quantity of the flux and other conditions, 

with combination of the FToxid database and FactPS database. The flux in the amount of 15 to 18 

wt.% charged metal and in the composition of 41wt.%BaO - 22.67wt.%MnO - 36.33wt.%BaF2 is 

determined as the optimal flux for the dephosphorization treatment of high-C FeMn alloys at 1300 

to 1361 ℃.  



277 
 

 

Summary 

In the present study, a thermodynamic database for the Fe-Mn-Al-Si-C-P system was constructed 

using the Modified Quasichemical Model and Compound Energy Formalism. The present database 

has been confirmed to be accurate in calculating the dephosphorization of both hot metal and FeMn 

alloys in a wide composition range. Effects of the composition of flux and alloys (initial Si content), 

quantity of flux, temperature, initial Si content etc. on the dephosphorization reactions are 

investigated. According to the present calculations, the flux in the quantity of 15 to 18 wt.% flux 

in the composition of 41wt.%BaO-22.67wt.%MnO-36.33wt.%BaF2 is determined as the optimal 

flux for dephosphorization of high-C FeMn alloys at 1300 to 1361 ℃. All the thermodynamic 

calculations were performed using the FactSage software with presently developed database and 

existing thermodynamic databases for oxides and gases. 
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