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Abstract (English) 

Decision-making is a critical cognitive function for everyday life.  In any given day, we are 

constantly tasked with making decisions, large and small, and we must identify potential 

options, gather and compare the relevant information, and ultimately make a choice.  The brain 

must infer the most likely state of the world given a variable amount of sensory evidence – a 

process commonly referred to as “perceptual decision-making”.  The last two decades bore 

witness to great strides towards explaining how the brain can enable adaptive action in the face 

of noisy sensory information.  Animal physiology has had success in identifying neural signals 

that perform the role of a “decision variable” which integrates sensory information in favour of 

a particular outcome up to an action-triggering threshold.  Recently, there has been a push to 

also consider the aspect of time which may impose an evidence-independent “urgency” factor 

to the decision-making process.  Taken together, animal studies have shown that 

computational models can be fitted to behaviour and to signals from microelectrode recording 

in various parts of the brain.  This has provoked a search for similar neural processes at work in 

the human brain, however, this has proven challenging.  The present doctoral thesis aimed to 

bridge this gap in knowledge through three studies that exploit recent advances in 

neuroimaging methodologies and computational tools to overcome inherent limitations in non-

invasive recording techniques.  In the first study, we demonstrate that sensory evidence in the 

human brain can be decoded by model-driven machine-learning neuroimaging techniques.  This 

representation of sensory evidence was found to be relayed between visual, decision, and 

motor brain regions to inform and enact decisions.  Moreover, we observed an inverse-urgency 

signal rooted in the caudate that slowed decisions.  In the second study, we examined 

perceptual decisions at a faster timescale and disentangled neural signals within a trial.  We 

provide evidence that the neural decision variable reflects the combined influence of both the 

sensory evidence and an urgency signal.  In the third study, we aimed to test how global brain 

networks may shape perceptual decisions.  We found that variability in the functional 

configuration of the brain captured at rest influenced behavioural performance in task.  This 

relationship was mediated by the activity of subcortical structures, including the thalamus and 

caudate, that are involved with generating an inverse-urgency signal in task.  Understanding the 
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neuroscience of perceptual decision-making in humans can expose principles of neural 

processing that underlie a variety of mental functions, providing critical insight into the 

pathophysiology of disease that compromise cognitive function, and ultimately help elucidate 

ways to ameliorate cognitive dysfunction. 

 

Résumé (Français) 

La prise de décision est une fonction cognitive essentielle pour la vie quotidienne.  Chaque jour, 

nous sommes constamment amenés à prendre des décisions, grandes ou petites, et nous 

devons identifier les options potentielles, rassembler et comparer les informations pertinentes, 

et finalement faire un choix.  Le cerveau doit déduire l'état le plus probable du monde en 

fonction d'une quantité variable de preuves sensorielles - un processus communément appelé 

"prise de décision perceptive".  Les deux dernières décennies ont vu de grands progrès dans 

l'explication de la manière dont le cerveau peut permettre une action adaptative face à des 

informations sensorielles bruyantes.  La physiologie animale a réussi à identifier les signaux 

neuronaux qui jouent le rôle de "variable de décision" intégrant l'information sensorielle en 

faveur d'un résultat particulier, jusqu'à un seuil de déclenchement de l'action.  Récemment, il a 

eu un effort de prise en considération l'aspect du temps qui peut imposer un facteur 

d'"urgence", indépendant des preuves, dans le processus de décision.  Dans l'ensemble, les 

études sur les animaux ont montré que les modèles basés sur des méthodes computationnelles 

peuvent être ajustés au comportement et aux signaux des microélectrodes enregistrant 

l’activité dans différentes parties du cerveau.  Cela a entrainé la recherche de processus 

neuronaux similaires, à l'œuvre dans le cerveau humain, ce qui s'est révélé plus difficile.  Cette 

thèse de doctorat vise à combler cette lacune grâce à trois études qui exploitent les récentes 

avancées dans les méthodologies de neuroimagerie et les outils informatiques pour surmonter 

les limites inhérentes aux techniques d'enregistrement non invasives.  Dans la première étude, 

nous démontrons que les preuves sensorielles dans le cerveau humain peuvent être décodées 

par des techniques de neuroimagerie à apprentissage automatique pilotées par des modèles.  

Cette représentation des preuves sensorielles s'est avérée être relayée entre les régions 
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visuelles, décisionnelles et motrices du cerveau pour informer et mettre en œuvre des 

décisions.  De plus, nous avons observé un signal d'urgence inverse, enraciné dans le noyau 

caudé, qui ralentit les décisions.  Dans la seconde étude, nous avons examiné les décisions 

perceptives à une échelle de temps plus rapide et avons démêlé les signaux neuronaux au sein 

d'un même essai.  Nous avons démontré que la variable de décision neurale reflète l'influence 

combinée des preuves sensorielles et d'un signal d'urgence.  Dans la troisième étude, nous 

avons cherché à tester comment les réseaux cérébraux globaux peuvent façonner les décisions 

perceptives.  Nous avons constaté que la variabilité de la configuration fonctionnelle du 

cerveau au repos influençait les performances comportementales durant les tâches.  Cette 

relation était médiée par l'activité des structures sous-corticales, y compris le thalamus et le 

noyau caudé, qui sont impliquées dans la génération d'un signal d'urgence inverse durant la 

tâche.  La compréhension de la neuroscience de la prise de décision perceptive chez l'homme 

peut exposer les principes du traitement neural. Ces principes sous-tendent une grande variété 

de fonctions mentales, fournissant un aperçu critique de la physiopathologie des maladies qui 

compromettent la fonction cognitive. Les comprendre pourra contribuer à élucider les moyens 

d'améliorer le dysfonctionnement cognitif. 
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Prologue 

Overview of Thesis 

In this monograph, I present the results of several years worth of experiments and analyses to 

help bridge the knowledge gap in what we understand about the neural underpinnings of 

perceptual decisions in humans.  The subsequent chapters are organized as follows:  Chapter 1 

provides a literature review of topics related to the studies conducted in this thesis.  Perceptual 

decision-making, computational models used to explain the decision process, the putative 

neural correlates of decision parameters, as well as neuroimaging approaches are discussed.  

Relevant statistical methods employed in this thesis are also introduced.  Chapter 2 examines 

how decisions parameters are encoded in the human brain using a combination of model-

driven machine-learning neuroimaging techniques, psychophysics, and computational 

modelling.  We identify brain regions involved in the accumulation of sensory evidence and the 

pathway by which this information is relayed across the brain to inform decisions.  Chapter 3 

examines perceptual decisions at a faster timescale, parsing neural signals within a trial that 

may contribute to different decision parameters.  We further test whether an endogenous 

urgency signal may affect observed behaviour and captured neural signals.  Chapter 4 focuses 

on how latent brain connectivity may modulate and shape perceptual decisions.  We compare 

and contrast brain connectivity at rest to that during a task, and ask how this may be affected 

by task demands.  Finally, Chapter 5 discusses the overall findings, limitations, and possible 

future directions of the present thesis. 
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CHAPTER 1. Introduction 

Imagine you are hiking in the forest and it starts to rain.  You notice a blurry figure on the trek 

ahead; as you step closer, you realize that it’s a bear possibly heading in your direction.  You 

remember the old saying: “If it’s brown, lay down.  If it’s black, fight back”.  Due to the poor 

light and rain, it is hard to decipher how far away the bear is, which exact direction it’s heading 

in, let alone whether it has brown or black fur.  However, you will eventually commit to an 

action: lay down on the ground or make loud noises to scare the bear away.  Importantly, as the 

bear approaches you, there is an increasing urgency to commit to a choice.  How much 

information do you need to make such a perceptual decision and how sure do you have to be to 

act upon it?  The process by which the available sensory information is gathered and used to 

influence how we behave in the world is commonly referred to as “perceptual decision-making” 

(Heekeren et al., 2008; Shadlen & Kiani, 2013).  On the one hand, making the decision too 

slowly runs the risk of being mauled by the bear.  On the other hand, acting prematurely before 

collecting enough information for your decision also runs the risk of being mauled by the bear.  

Though this is an oversimplified example of perceptual decisions, it exemplifies the need for the 

brain to coordinate between perception and action to yield a rapid yet accurate behavioural 

response. 

Over the past two decades, understanding how perceptual decisions are made has become a 

central theme in neuroscientific research.  Both neurophysiological studies in monkeys and 

functional neuroimaging methods in humans have contributed to our further understanding of 

the neurobiology underpinning decisions.  More recently, advances in the range of available 

methodologies, paradigms, and computational tools have dramatically broadened and a 

number of studies – including the original research in this thesis – have attempted to exploit 

these approaches to better understand how perceptual decisions are shaped and formed. 

 



17 
 

1.1. Studying Perceptual Decision-Making 

 

Fig. 1.1.  Random dot motion task.  (a)  Overview of the random dot motion task.  Subjects view 

a patch of random dots and decides the net direction of motion; decision is indicated by a 

saccade to a peripheral.  (b)  Effect of motion strength (i.e., percentage of dots moving in a 

coherent direction) on accuracy and reaction time (RT).  Original figure adapted with permission 

from Gold and Shadlen (2007). 

Much of what we have learned about perceptual decisions comes from laboratory tasks in 

which subjects are asked to make fast two-choice decisions.  These tasks allow researchers to 

control the nature and quality of sensory input variables in the decision environment, and to 

reward the animal for specific sensorimotor behaviours.  In particular, the random dot motion 

task (Fig 1.1A) has served as a cornerstone for how we understand neural contributions to 

perceptual decision-making (Newsome et al., 1989).  In a given trial, monkeys are presented a 

random pattern of moving dots where most, but not necessarily all, of the dots move 

coherently in one direction.  The monkey is then typically rewarded for making a saccade to a 

target corresponding to the direction of the coherent motion.  The percentage of coherently 

moving dots can be adjusted to manipulate the amount of sensory noise in the decision 

environment, and consequently, manipulate the task difficulty.  When information quality is 

low (for example, when most dots move randomly and only some move in a coherent 

direction), decisions can be optimized by repeatedly sampling sensory information and 
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integrating the resulting direction estimates over time.  Although this task is a severe reduction 

of the complexity of how our brain performs in a naturalistic and dynamic environment, it has 

provided an avenue for researchers to investigate the neural mechanisms of perceptual 

decision-making, resulting in a wealth of insights (Gold & Shadlen, 2007). 

Progress in our understanding of the neural mechanisms underlying decision-making comes, in 

large part, from the development of computational models of decision-making.  These models 

provide a framework to infer latent psychological processes underlying the decision process, 

and to link them to neural mechanisms. They are based on the notion that observed behaviour, 

such as reaction time (RT) and accuracy, can be decomposed into latent processes that can not 

be directly observed.  One family of models – here referred to with the umbrella term 

“evidence accumulation models” – has emerged as canon in describing choice behaviour 

(Ratcliff et al., 2016).  Though many variations are available today (for review: Evans & 

Wagenmakers, 2019; Ratcliff et al., 2016), they all share the common assumption that a 

decision between two alternatives is based on an integrative mechanism in which information 

supporting each alternative accumulates over time until an internal decision bound is 

reached by a “decision variable”.  This decision variable is a level of representation that can 

be dissociated from sensory processing of evidence and motor planning.  It is thought to 

integrate sensory evidence, as well as potentially incorporating other signals related to 

value, time, and prior probability.  The decision variable is used by neurons that sense 

thresholds and calculate certainty to then trigger a decision that is usually executed through 

movement (Shadlen & Kiani, 2013).  In this thesis, we will focus on the standard evidence 

accumulation model, namely the drift diffusion model (DDM). 

 

1.2. The Drift Diffusion Model 

The DDM (Fig. 1.1B) is a parsimonious model that posits the difference in evidence accrued for 

two choice alternatives is represented by a biased random walk process, the speed of which is 

captured by the drift rate (v) parameter.  Decisions are made once the random walk hits one of 
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two critical decision thresholds (a).  The starting point of this random walk may be biased (z) 

towards one choice alternative and begins after a period of non-decision time (t) for stimulus 

encoding and response execution latencies.  The observed response time results from a 

combination of these four parameters.  How the different decision parameters are adjusted is 

dependent on the shape of the RT distribution (Ratcliff et al., 2016).  The DDM has had much 

success in describing and predicting choice behaviour in paradigms such as the random dot 

motion task (Ratcliff et al., 2016).  Moreover, the DDM has been adopted by the neuroscientific 

community as an intermediary level between the observed behavioural data and its underlying 

neuronal substrate (Fig. 1.2A).  For example, the mean firing patterns of single neurons in the 

lateral intraparietal cortex (LIP) of non-human primates, has been shown to mirror the drift rate 

estimated by the DDM (e.g., Gold & Shadlen, 2007; Roitman & Shadlen, 2002).   

 

Fig. 1.2.  Computational models as a middle ground in observations.  (A) Model parameters 

from computational models can serve as an intermediary level to help bridge observed 

behaviour with neuronal processes.  (B) Overview of the drift diffusion model.  The model is one 

of the most commonly used evidence accumulation model that decomposes behavioural data 

into four parameters: non-decision time (t) for stimulus encoding and response execution 

latencies, bias (z) towards one choice alternative, drift rate (v) for speed of evidence 

accumulation, and decision threshold (a) which determines how much evidence is needed before 

a decision is reached. 
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1.2.1. Bayesian Estimation of the Drift Diffusion Model 

One issue with computational models, such as the DDM, is that it can require a high number of 

trials to accurately estimate model parameters.  While this is less problematic in non-human 

primates where animals can be incentivized to partake in thousands of repeated trials, this is 

difficult to achieve with human participants where there are typically substantial constraints on 

the duration of the task.  As such, there is a need for an efficient and reliable estimation 

method despite the relatively small number of trials.  Hierarchical Bayesian data analytic 

methods may provide a potential remedy to this problem. 

Bayesian analytics are quickly gaining popularity in the cognitive sciences (Lee & Wagenmakers, 

2013).  In brief, the general principle of Bayesian analysis is that observed data are used to 

update the prior information to become posterior information.  Uncertainty, or “degree of 

belief”, of the value of a parameter is expressed as a probability distribution called the “prior 

distribution”.  Without any knowledge about what the value of the parameter might be, equal 

probability is assigned to every possible value of the parameter.  Observed data can then be 

used to update the prior belief.  This is described by the “posterior distribution” which 

quantifies the relative probability that each possible value of the parameter is the true value.  

With more sampling and new information provided by the observed data, uncertainty of the 

parameter’s value can be reduced and the posterior distribution narrows. 

There are three main advantages motivating the use of Bayesian estimation.  First, compared to 

traditional frequentist approaches, Bayesian methods provide inference for the full posterior 

distribution of each parameter by quantifying uncertainty in their estimation, rather than 

simply providing the one most likely value of each parameter.  Second, Bayesian analytics 

allows for the natural implementation of hierarchical models.  Traditionally, psychological 

experimenters either fit models separately to each individual, thus assuming that subjects are 

completely independent of one another, or fit one model to the group, thus assuming all 

subjects are the same.  Both approaches are sub-optimal in model parameter estimation: the 

former fails to capitalize on the statistical strength shared across individuals should one or more 

parameter be similar among subjects, whereas the latter approach fails to account for 
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individual differences and can result in situations where the estimated model cannot accurately 

fit any one subject.  Hierarchical Bayesian methods circumvent these problems by allowing both 

group and subject parameters to be estimated simultaneously in a hierarchical manner 

(Kruschke, 2010), with the posterior distribution for any given subject constrained by the group 

distribution, and vice versa.  Third, and perhaps most importantly, the statistical power gained 

by implementing a hierarchical Bayesian model can help overcome limitations of low number of 

trials.  Hierarchical Bayesian estimations of the DDM have been shown to more robustly 

estimate DDM parameters, including regression effects of trial-by-trial variations of neural 

signals on decision parameters (Matzke & Wagenmakers, 2009; Wiecki et al., 2013). 

Bayesian analysis, however, remains intensively computationally demanding.  The fundamental 

reason for this is that models associated with coalescent data must integrate over trees of high 

complexity to form a convergent model.  Though Bayesian estimations can still take days of 

computer time to execute, rapid growth in computation power and the availability of packages 

implementing approximation tools at higher efficiency (e.g., Markov Chain Monte Carlo 

approximation using PyMC in Python (Salvatier et al., 2016)) have helped improved usability. 

 

1.3. Putative Neural Correlates of a Decision Variable 

An important question remains: where in the brain should we look to find a decision variable?  

To understand how decisions are made in the brain requires some familiarity with the brain 

structures involved in decision-making and their organization; the details of this are the subject 

of entire textbooks.  Here, I provide a brief and highly selective review of the putative neural 

basis of perceptual decisions most relevant to the original research presented later in this 

thesis.  

In brief, the neural architecture for perceptual decision-making can be thought of as four 

distinct, but interacting, processing modules that contribute to forming a decision variable (for 

review: Heekeren et al., 2008).  The first is a sensory system that computes, accumulates, and 

compares sensory evidence.  The second is a decision system that integrates stimulus 
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representation, detects perceptual uncertainty or difficulty, and signals when additional 

resources are required to accurately process a task.  The third is the motor system which 

prepares and executes an action based on the decision variable.  The fourth involves the 

performance monitoring system, which updates future decisions strategies when it detects 

errors have occurred.  Brain regions related to these four systems are thought to constantly 

interact as information moves from occipital to motor areas, with decisions emerging from a 

competition between relevant motor outputs (Cisek, 2007; however, see Tversky & Kahneman, 

1981 for competing view).  In particular, regions of the sensory and decision system have been 

targeted in attempts to decode a decision variable. 

Our understanding of perceptual decisions comes, in large part, from neurophysiological 

studies in non-human primates using paradigms like the random dot motion task.  The use of 

such visual discrimination tasks are apt choices given that the neural circuits underlying the 

visual system are among the best understood in the primate brain.  According to the 

“affordance competition hypothesis” (Cisek, 2007), action specification begins in the visual 

cortex and proceeds toward the parietal lobe, transforming visual information into 

representation of potential actions (Fig. 1.3).  This follows the conventional “dorsal stream” of 

the visual processing pathway involved with spatial information, as opposed to the parallel 

“ventral stream” involved in object identification (Ungerleider et al., 1982).  Neural populations 

along the dorsal stream are thought to reflect a mixture of sensory, motor, and cognitive 

information – thus resembling a decision variable.  They are subject to modulation by 

attentional selection, whereby information from certain regions of interest is enhanced while 

information from other regions is suppressed. 
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Fig. 1.3.  Sketch of the proposed neural substrates in the primate brain underpinning goal-

directed, visually guided behaviours.  Solid-lined arrows reflect pathways of action specification 

(i.e., how to do it) whereas double-lined arrows reflect pathways of action selection (i.e., what 

to do).  Original figure reproduced with permission from Cisek (2007). 

Building on the computational framework for understanding decision-making, the neural 

mechanisms underlying perceptual choices have been extensively studied in the macaque 

monkey using extracellular recordings from single neurons.  It is commonly assumed that firing 

rates of suspected accumulator-neurons reach a fixed threshold near the time of behavioural 

response, suggesting that the critical level needed for decision commitment is close to the peak 

firing rate.  There have been attempts to locate “accumulator regions” where neurons may 

present this type of firing pattern, with research focused on cortical neurons that encode task-

relevant sensory signals.  In non-human primates, one part of the parietal cortex, namely the 

LIP, has received particular interest due to its direct projections to eye movement-related areas 

(Andersen et al., 1990) and connections to visual cortical areas of the dorsal and ventral visual 

stream (Lewis & Van Essen, 2000).  The LIP has spatially-defined receptive fields that receive 

inputs from the middle temporal visual (MT) area where motion direction in the random dot 

motion task is encoded (Britten et al., 1993).  Single-cell recordings found that populations of 

neurons in the LIP exhibit a gradual modulation of their firing rates – depending on the 
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direction and strength of the sensory evidence – in advance of a response.  Thus, LIP neurons 

are thought to integrate signals from direction-selective neurons in lower visual areas (e.g., 

area MT) (Hanks et al., 2006; Shadlen & Newsome, 2001), and may therefore compute an 

integrating decision variable.  Such neuronal activity is not purely motor-related since its time 

course varies systemically with the signal to noise ratio (i.e., coherency of the dots) even 

though the saccadic motor output remains the same.  This line of work from non-human 

primates has provided compelling evidence that LIP neurons – or at least a subset of them – 

encode the cumulative sum of sensory information, in close correspondence to the DDM’s drift 

rate parameter.  This information is then used to promote a saccade towards a given spatial 

target. 

It must be noted that recent work has challenged the notion that neuronal firing in the LIP 

directly encodes a decision variable posited to govern perceptual decisions.  Katz et al. (2016) 

found that pharmacological inactivation of the LIP in rhesus macaques had no measurable 

impact on decision-making performance during the random dot motion task.  Moreover, it is 

likely that LIP is one of many areas that represent a decision variable and that where such a 

signal might arise in the brain may depend upon the sensory stimuli used (e.g., motion 

direction, color, object) and the type of response executed (e.g., saccades, button-press).  For 

example, the medial intraparietal area has been implicated in arm-reaching actions (de 

Lafuente et al., 2015; Swaminathan et al., 2013) and the premotor cortex in manual choices 

(Cisek & Kalaska, 2005).  Nonetheless, convergent lines of evidence broadly suggest that 

decision variables can be detected in the monkey brain, primarily in the frontal and parietal 

cortex, provoking attempts to find human analogues. 

Regions of the fronto-parietal network are not the only ones involved in perceptual decision-

making.  The competition between potential actions is thought to be biased by a multitude of 

regions that collect information for action selection, including input from regions of the ventral 

stream encoding stimulus features, as well as the basal ganglia and prefrontal cortex.  Since 

action selection is a fundamental problem across vertebrates, the neural structures involved 

are likely conserved in evolution with the basal ganglia having emerged as a potential 
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candidate.  The basal ganglia are a collection of subcortical nuclei that, as a whole, are thought 

to be involved in a central gating mechanism.  While the cortex generates ensembles of 

possible choice alternatives, the basal ganglia selects among these alternatives by activating 

specific downstream circuits either promoting or suppressing behavioral response for each 

choice (Frank et al., 2007; Lo & Wang, 2006).  This has motivated recent neuro-computational 

models to test the role of the basal ganglia in perceptual decisions, and their results lend 

credence to the basal ganglia’s involvement in shaping the decision variable (Bogacz & Gurney, 

2007; Ding & Gold, 2012; Thura & Cisek, 2017).  Other brain structures, such as the prefrontal 

cortex of primates, are also likely involved in action selection.  For example, neurons in the 

dorsolateral prefrontal cortex are sensitive to various combinations of stimulus features, and 

this sensitivity relates to the difficulty of task demands (Bechara et al., 1998; Heekeren et al., 

2004; Kim & Shadlen, 1999).  The dorsolateral prefrontal cortex is thought to establish the task 

set or the current goal, to link the sensory evidence accrued to a behavioural plan for action 

execution, and to signal the need for additional resources when sensory information is noisy.  

This is, of course, a very simplified account of how action selection is achieved but nonetheless 

provides us with a foundation to understand how and where decisions may be formed in the 

brain. 

 

1.4. An Alternative: The Urgency Gating Model 

Inspired by a marriage of computational modelling and neural recording (predominantly in non-

human primates), the theory that neurons in the sensorimotor areas contribute to perceptual 

decisions by optimizing input signals through repeated sequential sampling and linear 

integration to a fixed decision threshold has been canonized in how cognitive neuroscientists 

view perception decisions.  This line of work exemplifies the benefits of convergent 

mathematical and biological approaches in understanding brain function.  However, 

outstanding issues with the DDM must be addressed.  While pioneering studies and their 

subsequent work have largely been based on manipulating the reliability of sensory signals 

(e.g., level of motion coherence) by means of simple, well-controlled experimental designs 
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(e.g., random dot motion task), our natural interactive environment can change without 

warning.  Decisions made in these unpredictable environments often do not allow one to stop, 

think, and collect a complete picture of one’s surroundings.  Even without time constraints, 

when sensory information is low, further sampling is unlikely to be informative for choice 

commitment.  Despite this, we still observe individuals making a decision (i.e., a guess) in such 

settings, albeit taking longer to do it.  This challenges the notion that an integrating decision 

variable can achieve a fixed critical threshold for decisions based solely on sensory evidence.  

Optimal models thus predict that the height of the decision threshold should “collapse” over 

time, such that less sensory evidence is required for decision commitment as elapsed decision 

time increases (Bowman et al., 2012; Drugowitsch et al., 2012; for opposing view: Hawkins et 

al., 2015).  However, the empirical question of whether decisions about signals with unknown 

reliability respect a collapsing bounding algorithmically, and how this might be implemented by 

neurons, remains unknown. 

One emerging view is that decisions may be driven to the critical threshold by an evidence-

independent quantity referred to as an “urgency” signal.  This signal is thought to ubiquitously 

elevate activity towards unchanged thresholds, which effectively implements a collapsing 

bound by inflating later accumulators states away from the starting baseline (Cisek et al., 2009; 

Murphy et al., 2016; Thura & Cisek, 2014).  One line of evidence for such a signal can be 

observed by analyzing trials on which sensory evidence is entirely ambiguous (e.g., 0% motion 

coherence), where firing rates in LIP nevertheless grow towards the threshold associated with 

the eventual response (Churchland et al., 2008).  Moreover, fitting a computational model (i.e., 

urgency gating model) with an evidence-independent, time-variant influence on the decision 

variable appears to better reflect the firing rate of LIP neurons at different levels of coherency 

in the random dot motion task (Ditterich, 2006; Standage et al., 2011).  This urgency signal may 

be particularly enhanced when subjects are asked to emphasize speed over accuracy (Hanks et 

al., 2014; Heitz & Schall, 2012). 

Carland et al. (2019) argue that urgency provides a central underlying mechanism by which 

multiple aspects of behaviour are jointly coordinated.  Individual variability in the baseline level 
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of this signal may constitute an individual trait.  This is driven by the notion that baseline 

urgency appears to be stable across time and context (Berret et al., 2018; Reppert et al., 2018).  

They argue that individual variability in urgency may provide a mechanistic link between 

decision-making and the behavioural manifestations of broader personality traits, such as 

impulsivity.  Conceptually, the behavioural profile of an individual with relatively high “trait” 

level of urgency is broadly consistent with the behavioural trait of impulsivity, defined as 

tendency to act rapidly with undue consideration of consequence (Voon, 2014) or to exhibit 

disinhibition of prepotent responses (Choi et al., 2014).  The trait of impulsivity itself has strong 

etiological ties to a variety of clinical psychopathologies, including substance use disorders, 

gambling disorder, attention deficit hyperactivity disorder, and disordered eating (Chamberlain 

& Sahakian, 2007; Fineberg et al., 2014; Schag et al., 2013).  By extension, deviations from a 

“normative” trait urgency may confer increased vulnerabilities to these conditions.  Moreover, 

the DDM has been used to infer disrupted cognitive mechanisms in a host of neurological and 

psychiatric disorders (Banca et al., 2015; Pedersen et al., 2017; White et al., 2010). If urgency is 

indeed a closer representation of the ground-truth in how decisions are formed, we must revisit 

the interpretations of these previous findings. 

Where in the brain may an urgency signal arise?  The notion of urgency ties closely to action 

selection during decision formation.  The dynamic nature of action selection and speed-

accuracy trade-off has been tested using the “tokens task” (Cisek et al., 2009; Thura et al., 

2012).  In each trial, tokens gradually move from a center circle to another circle on either the 

left or right.  Subjects must decide based on these constantly changing sensory evidence which 

circle will ultimately have the greatest number of tokens.  The timing of how the tokens moved 

was manipulated between different blocks of trials to encourage either slow and accurate or 

fast and risky decisions.  It was found that as time passed, less evidence was needed to commit 

to a choice, in agreement with the proposed urgency gating hypothesis.  Moreover, early 

decisions (typically made on the basis of strong evidence) were associated with reduced vigour 

in the movement the animals used to make their decisions, whereas later decisions (relying on 

weak sensory evidence but high urgency) were associated with greater vigour (Thura & Cisek, 

2014).  The authors interpreted this as resulting from a global influence of the urgency signal 
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during both decision and action.  They argue this link between decision urgency and movement 

vigour points to the potential involvement of the basal ganglia, a region known to be involved 

in motor control (Jueptner & Weiller, 1998; Maia & Frank, 2011). 

 

Fig. 1.4.  Overview of basal ganglia’s pathways.  (a) Output of the basal ganglia is determined 

by the balance between the direct and indirect pathway.  (b) Anatomical investigations suggest 

a more complex organization.  GPe: globus pallidus pars externa; GPi: globus pallidus pars 

interna; SNr : substantia nigra pars reticular; SNc : substantia nigra pars compacta; STN : 

subthalamic nucleus.  Original figure reproducted with permission from Redgrave et al. (2010) 

The basal ganglia are a collection of subcortical nuclei that are interconnected with the cerebral 

cortex through a series of loops (Fig. 1.4).  The input structures are together called the striatum 

(including the caudate, putamen, and ventral striatum), and receive direct projections from the 

cerebral cortex.  The output structures are together called the pallidum (including global 

pallidus pars interna, substantia nigra pars reticulata, and ventral pallidum), which project to 

the brainstem movement generators, as well as back to the cerebral cortex via the thalamus.  

Intrinsic nuclei (including globus pallidus pars externa, the substantia nigra pars compacta, and 

subthalamic nucleus) activate and regulate these input-output regions.  The model of action 
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selection in the basal ganglia proposes that the cortex generates ensembles of possible actions, 

and the striatum selects among these actions by activating specific downstream circuits that 

either promote or suppress movements.  More specifically, Bogacz and Gurney (2007) proposed 

that the striatum is involved in estimating the conditional probabilities of multiple hypotheses 

being true given the sensory stimuli.  According to this model, these probabilities are relayed by 

the direct dopaminergic pathway from the striatum to the pallidal output neurons.  The indirect 

dopaminergic pathway, in which cortical inputs are further processed in the interconnected 

intrinsic nuclei, gathers information related to all alternatives and inhibits the output to the 

thalamus until enough information is accumulated.  In sum, the basal ganglia are proposed to 

be involved in encoding certain actions, and facilitating the appropriate behavioural response 

for the choice alternative with the most supporting evidence by suppressing alternative signals 

via its dopaminergic projections to the indirect pathway (Frank et al., 2007; Lo & Wang, 2006).   

Though the basal ganglia are perhaps best known for their role in motor output, they are also 

involved in sensory information processing (Ding & Gold, 2012; Forstmann et al., 2010; Nagano-

Saito et al., 2012).  They provide an indirect link between cortical (e.g., LIP and frontal eye field) 

and brainstem (e.g., superior colliculus) structures that encode evidence accumulation for 

saccadic decisions, thus influencing evidence accumulation, evaluation, and choice bias during 

the random dot motion task (Ding & Gold, 2010).  The basal ganglia’s influence likely extends 

beyond saccadic movements: a meta-analysis of fMRI studies investigating an array of simple 

perceptual decision-making tasks concluded that the basal ganglia broadcasts widely 

throughout the cortex, and complements the fronto-parietal network involved in general 

perceptual decision-making by serving as a gating mechanism (Keuken et al., 2014).  Thura and 

Cisek (2017) recorded pallidal activity in monkeys, and found that pallidal firing rate did not 

contribute to evidence accumulation, and instead reflected a temporally growing urgency signal 

to commit to a choice.  Other studies argue for the involvement of the subthalamic nucleus in 

task-switching or in mediating the decision threshold under stimulus conflict (Cavanagh et al., 

2011a; Mansfield et al., 2011).  Taken together, these results points towards the involvement of 

subcortical brain structures in several aspects of perceptual decision-making and perhaps in 

urgency; however, this latter relationship is debated and has yet to be established in humans.  
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While the interesting notion of an urgency neural signal controlling the timing of decisions may 

better explain observed behaviour, it remains controversial and is challenged on numerous 

grounds (Voskuilen et al., 2016; Winkel et al., 2014).  For example, the performance of highly 

trained monkeys was better captured by a dynamic collapsing bound, whereas humans 

performing a limited number of trials were best described by a fixed decision threshold 

(Hawkins et al., 2015).  Conversely, Thura et al. (2012) argue that standard psychophysiological 

tasks, such as the random dot motion task, where evidence is constant, cannot disambiguate 

drift rate or threshold from urgency.  To tease these parameters apart, one must manipulate 

the dynamics of information presented.  If one were to gradually raise the amount of sensory 

information available over time, a pure evidence accumulation model would predict that the 

decision variable should almost perfectly track the slope of this increase.  An urgency gating 

model would instead predict that the decision variable should rise above and beyond the 

sensory information available, with signals deviating further from the raw sensory information 

and more towards threshold as time goes by, resulting in a non-linear decision variable.  

Further testing with these dynamic tasks is needed in order to conclude whether an evidence-

independent urgency signal exists and to expose its potential neural underpinnings; this line of 

work in naïve (i.e., untrained) human subjects is particularly lacking and we attempt to bridge 

this gap with the research conducted in this thesis.  

 

1.5. Of Monkeys and Men? Neural Decision Signals in Humans 

Perceptual decisions have largely been probed by neurophysiological studies in non-human 

primates.  However, the often-cited evidence from single-cell recordings is not unequivocal and 

complimentary data from human subjects are largely missing.  Studying decision-making in 

humans is important because: (i) the neural underpinnings may differ between humans and 

over-trained animals, (ii) complex decision-making behaviour can be examined more feasibly in 

humans, and (iii) the advances in animal neurophysiology need to be bridged to humans in 

order to improve understanding of cognitive disruptions in psychiatric and neurological 

disorders.  Here, I will briefly discuss some of the recent functional neuroimaging studies that 
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shed light into how decisions may unfold in the human brain.  Of note, most studies have 

primarily focused on action specification and fronto-parietal regions that may demonstrate a 

decision variable, or on lower-level sensory processing regions that may encode sensory 

information, and have largely neglected the role of action selection in decision-making. 

 

1.5.1. Finding a Decision Variable using Functional Magnetic Resonance Imaging 

Functional magnetic resonance imaging (fMRI) is a key non-invasive neuroimaging methodology 

that allows for the localization of discrete brain structures involved in decision-making with 

millimetre-level precision.  fMRI analysis is based on the assumption that neuronal activity is 

reflected by the blood oxygen level-dependent (BOLD) signal (Kwong et al., 1992; Ogawa et al., 

1990a; Ogawa et al., 1990b).  Neurons do not have internal energy reserves (i.e., sugar and 

oxygen) and thus require energy to be conveyed to them when active.  Through a process 

called the haemodynamic response, blood carries and releases oxygen to active neurons at a 

greater rate than to inactive neurons.  Importantly, neuronal activity leads to increased cerebral 

blood flow that exceeds the needs of the active neurons; therefore, blood oxygen level (carried 

by oxyhaemoglobin) goes up when neurons are more active.  This changes the relative level of 

oxy- and deoxy-haemoglobin, of which the former is diamagnetic and the latter paramagnetic.  

The difference in magnetic susceptibility can then be detected using MRI.  The onset of 

stimulus-induced haemodynamic response is typically delayed by roughly 2 seconds due to the 

time it takes blood to travel from arteries to capillaries and draining veins (Kwong et al., 1992).  

The signal then reaches a plateau 6-12 seconds after stimulus onset, returning to baseline with 

a similar ramp, and is followed by a post-stimulus undershoot (Logothetis et al., 1999).  

Algorithms can be used to convolve raw BOLD signals to this haemodynamic response, 

regressing out its effect, thus allowing researchers to examine task-dependent changes in the 

BOLD signal (Friston et al., 1994; Henson & Friston, 2007).  Nonetheless, due partly to the 

nature of blood flow and partly to methodological constraints, fMRI BOLD responses generally 

have a relatively poor temporal resolution with sampling or repetition time often in the order 

of seconds. 
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Typically, researchers have looked for correlations between BOLD signal within certain voxels 

and fitted values of drift rate or other model parameters of the DDM.  However, a single voxel 

in fMRI can reflect the aggregated activity of tens of thousands of neurons.  Unlike the 

aforementioned animal neurophysiology studies, neural selectivity to sensory decision variables 

(e.g., motion direction) in paradigms such as the random dot motion task is indistinguishable by 

fMRI.  Moreover, the sluggish nature of BOLD response makes it difficult to distinguish neural 

signals that occur before, during, or after a decision.  Consequently, previous studies have often 

failed to dissociate sensory evidence from decision variables (Braunlich & Seger, 2016; Gluth et 

al., 2012; Nagano-Saito et al., 2012; Wheeler et al., 2015b) unless they artificially elongate task 

design to tens of seconds long (Ploran et al., 2007).  A potential solution has been to devise 

visual discrimination tasks where choice stimuli preferentially activate different clusters of 

voxels along the ventral stream of the visual pathway using stimuli like faces and houses for 

example (e.g., Heekeren et al., 2004).  Akin to firing rate in sensory regions (e.g., MT area in 

non-human primates), BOLD signal in these regions is thought to scale with the relative 

strength of evidence for each choice alternative.  It is argued that the decision variable 

represents the temporal integration of the sensory evidence and should therefore highly 

correlate with the evidence itself.  Thus, one approach has been to search for brain regions 

whose BOLD activity covary with the difference in relative BOLD signal in these extrastriate 

areas, in line with the assumption that the decision variable is a cumulative differential of 

sensory inputs.  Moreover, studies often use conditions of high versus low sensory evidence to 

conclude, based on this contrast, where a decision variable might be formed in the brain (Fig. 

1.5). 

There is yet to be a consensus about how perceptual evidence accumulation is expressed in 

fMRI signal (for review: Mulder et al., 2014).  On the one hand, it is hypothesized that evidence 

accumulation models should predict a positive correlation between sensory evidence and BOLD 

activity: the larger the discriminability between stimuli (likely reflecting higher drift rate), the 

larger the BOLD response.  This hypothesis is derived from the idea that the computation of a 

decision variable requires a comparison of two or more neuronal populations whose activity 

reflects the accumulated sensory evidence in support of different options.  Thus, on easier 
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trials, where there is clearer sensory evidence in support of one option, the activity in a 

decision-making area is predicted to demonstrate greater integrated activity and reach 

threshold faster.  This fits with what is observed in the LIP area of non-human primates (Gold & 

Shadlen, 2007; Shadlen & Newsome, 1996).  Indeed, in one of the first studies to interpret their 

fMRI findings in light of the DDM, Heekeren et al. (2004) reported that BOLD response in the 

dorsolateral prefrontal cortex not only covaried with the difference between signals of face- 

and house-selective regions, but also demonstrated greater activity for trials with high 

compared to low sensory evidence (Fig. 1.5).  Similar findings have been observed in several 

other higher-level, fronto-parietal brain regions in subsequent work (Tosoni et al., 2008; White 

et al., 2012).  These findings are contingent on the assumption that a decision variable remains 

elevated after reaching threshold until some fixed post-stimulus time, thus spending longer 

time at a high level for an earlier threshold crossing.  If BOLD activity mirrors the decision 

variable, heightened BOLD activity should be maintained temporarily post-decision before 

subsiding, resulting in a greater overall BOLD signal for easier trials despite their faster reaction 

time.   

 

Fig. 1.5.  Example of a fMRI study of perceptual decisions. (A) BOLD activity in face- and house-

selective brain regions is thought to scale with the level of sensory evidence.  (B) It is argued 

that a higher-level brain region (i.e., dorsolateral prefrontal cortex) may represent a decision 

variable that integrates sensory evidence from lower-level sensory processing areas as (i) BOLD 

signal in this region covaried with the difference between signals of face- and house-selective 

regions, and (ii) demonstrated greater activity with clearer images of faces/houses when 
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comparing high versus low sensory evidence.  Original figure adapted with permission from 

Philiastides and Heekeren (2009); results based on work from Heekeren et al. (2004). 

On the other hand, a competing hypothesis is that evidence accumulation models should 

predict a negative correlation between sensory evidence and BOLD activity.  It is assumed the 

decision variable falls immediately to baseline upon reaching threshold, and the buildup in 

neuronal firing (although shallower) is more prolonged for slower responses.  Thus, BOLD signal 

is summed across multiple samples or repetition times, and results in a greater overall signal.  

Moreover, during difficult decisions with low sensory information, there is thought to be a 

greater need to amplify choice-relevant information to overcome competing noise/information 

for successful computation of a decision variable.  Findings in line with this hypothesis also 

implicated fronto-parietal brain regions, along with regions of the ventral stream that are 

thought to be involved in encoding sensory information, such as the fusiform gyrus (Ho et al., 

2009; Liu & Pleskac, 2011; Noppeney et al., 2010).   

A fundamental question in cognitive neuroscience deals with the issue of representation: what, 

how, and where in the brain is different information represented?  How is this information 

transformed at different stages of processing?  Though most fMRI studies have broadly 

concluded that the fronto-parietal network is likely where the decision variable is computed, 

there is conflicting accounts as to how a decision variable driving perceptual decisions in 

humans should relate to the BOLD response.  Moreover, we may not be accurately measuring 

what is accumulated in the brain.  Most studies assume that activations scaling with 

discrimination difficulty in sensory areas appropriate to the modality of discrimination (e.g., 

face or house) equate to sensory evidence.  However, not all neural signals that appear to vary 

as a function of task-relevant stimulus features are necessarily read out by downstream 

systems controlling behaviour (Williams et al., 2007).  As such, we cannot definitively conclude 

that the BOLD signal detected in these studies constitute the sensory evidence that the brain 

then exploits to form a decision variable.  Taken together, fMRI can help elucidate neural 

mechanisms underpinning human perceptual decisions and early work has shown promising 

results, but many questions remain. 
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1.5.2. Decoding Sensory Evidence using Multivariate Pattern Analysis 

Here, I will briefly detail an alternative approach to disentangling sensory accumulation from 

decision variable using fMRI.  We have discussed above how exploiting extrastriate regions 

demonstrating face- and house-selectivity may be a potential way to circumvent issues 

associated with detecting sensory information representation in the brain by fMRI.  Though this 

approach has been productive, it is nevertheless limited by univariate analysis that links 

cognitive variables to individual brain voxels.  Rather than examining voxels in isolation, one can 

instead use powerful pattern-classification algorithms applied to multi-voxel/multivariate 

patterns of activity to decode the information that is represented in the pattern of activity.  This 

multivariate pattern analysis (MVPA) can help elucidate more precisely what is accumulated 

and where, giving us a better understanding of how processes predicted by the DDM may be 

represented in the human brain. 

Animal neurophysiology has long interpreted the selectivity of neurons as serving to represent 

various kinds of sensory or decision information.  For example, the firing rate of neurons 

belonging to different receptive fields of the LIP in non-human primates has been used as 

evidence of an integrating decision variable for different motion directions in the random dot 

motion task (Hanks et al., 2006; Shadlen & Newsome, 2001).  The population of neurons within 

an area is thought to jointly represent the information in what is called a neuronal population 

code (Averbeck et al., 2006) and may be reflected by patterns of activity across many spatially 

distributed neurons within a functional region (Norman et al., 2006).  This idea, along with the 

realization that development for pattern classification in other domains (e.g., image 

recognition) can be productively applied to fMRI data analysis, has motivated studies to exploit 

MVPA with fMRI (Haxby et al., 2001; Kriegeskorte & Kievit, 2013). 

MVPA commonly employs machine learning classifiers (Fig. 1.6), which treat each element (e.g., 

each voxel) of the patterns of interest as a separate dimension, or “feature”, in a high-

dimensional space.  Each trial-wise stimulus presentation elicits a pattern that occupies a point 
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in a N-dimensional neural activation space with N defined as the number of voxels within the 

region of interest.  The classifier’s goal is to find a way to transform this high-dimensional space 

into one where the voxel patterns associated with each condition are separable by a decision 

boundary or “hyperplane”.  Although a rich variety of classifiers are available, simple linear 

classifiers (e.g., support vector classifier with a linear kernel) are most commonly used as they 

provide a principled means of estimating a linear hyperplane between classes in activation 

space and have higher interpretability (James et al., 2013).  To avoid overfitting, the classifier 

must be cross-validated; the hyperplane is estimated for a subset of the data designated as 

“training” data, and the classifier subsequently “tested” on the remaining data.  The classifier 

assigns condition labels for the training data based on the position of the activity patterns 

relative to the hyperplane – this gives a weighting to each voxel in the pattern that determines 

their relative predicted contribution to the condition.  Training and testing are done multiple 

times, with data partitioning shifted at each iteration (e.g., k-fold cross-validation) to ensure a 

random subset of data is used for validating.  The performance of the classifier is then a 

function of the accuracy of its label assignment, averaged across iterations.  If the mean 

classifier performance is statistically better than chance (e.g., > 50% for a two-condition 

classifier, or >25% for a four-condition classifier), the patterns for the different conditions are 

considered discriminable.  This is a simplification of how machine-learning is applied for MVPA, 

but the same general principles can be applied to all decoding analyses.  Note that the same 

methodologies can be applied to other neuroimaging modalities (e.g., electrodes as features). 
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Fig. 1.6.  Overview of MVPA.  (A) Hypothetical experiment where subjects view stimuli from two 

object categories (i.e., bottles and shoes).  The fMRI time series is decomposed into discrete 

brain patterns that correspond to a spatial pattern of activity across voxels at a particular point 

in time.  (B) A subset of the dataset is used to train a classifier, which is then tested on unseen 

data to test accuracy of predicted category labels.  (C) After repeated cross-validation, the 

classifier defines the hyperplane (or decision boundary) that best discriminates between the two 

object categories.  Each dot corresponds to a pattern and the color indicates its category (i.e., 

green for bottles, blue for shoes).  Depending on the parameters set, the classifier can tolerate a 

certain level of misclassification.  (D)  An illustration of how patterns of activity can be portrayed 

in a higher-dimensional space of voxel patterns.  On the left, a hyperplane between two 

hypothetical voxels can be visualized in a 2-D plot as a line.  On the right, a hyperplane between 

three hypothetical voxels can be visualized in a 3-D plot as plane.  The hyperplane becomes 

difficult to visualize once there are more than three features/voxels.  Original figure adapted 

with permission from Norman et al. (2006). 

The primary advantage of MVPA methods over individual-voxel-based methods is increased 

sensitivity in detecting the presence of a particular mental representation in the brain.  

Conventional univariate fMRI analysis methods (e.g., Heekeren et al., 2004; Liu & Pleskac, 2011) 

try to find voxels that show a statistically significant response to experimental conditions (e.g., 

face versus house stimuli).  These methods spatially average across voxels that respond 
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significantly to one condition, while subtracting away the other, to help increase sensitivity to a 

particular condition.  Although this approach reduces noise, it also reduces signal in two 

important ways: (i) voxels with weak (i.e., non-significant) responses to a particular condition 

that may still carry some pertinent information are excluded from consideration based on 

statistical thresholds, and (ii) spatial averaging blurs out fine-grained spatial patterns that might 

discriminate between experimental conditions.  Multivariate analysis overcomes these 

limitation by searching for the optimal combination of (distributed) voxels and assessing their 

contribution to stimulus discriminability (Davis et al., 2014; Kriegeskorte et al., 2006).  

Pioneering work by Haxby et al. (2001) illustrated how multi-voxel patterns of activity can be 

used to distinguish between faces, houses, and a variety of object categories (e.g., shoes, 

bottles, chairs, animals).  Using MVPA, they showed that each category was associated with a 

reliable (i.e., cross-validated) and distinct pattern of activity in the ventral temporal cortex.  

Their results suggested that regions such as the “parahippocampal place” or the “fusiform face 

area” are not dedicated to representing only spatial arrangements or human faces, 

respectively.  Rather, they are part of a more extended representation of all objects – or at 

least the extensive list of categories tested – to differing extents.  Though previous fMRI work 

has employed univariate analyses to differentiate activity in face/house brain regions to infer 

sensory evidence, decoding information from patterns of neural activity using MVPA can 

provide stronger evidence about what information those patterns represent (for opposing 

view: Ritchie et al., 2017).  Importantly, the increased sensitivity afforded by MVPA methods 

make it feasible to discriminate patterns of activity with less data – using only a few seconds’ 

worth of BOLD activity (Haynes & Rees, 2005; LaConte et al., 2005; O'Toole et al., 2005).  

Though the temporal resolution of fMRI is inherently limited, MVPA allows for researchers to 

relate brain activity to behaviour on a trial-by-trial basis in the order of seconds with relative 

confidence (Haynes & Rees, 2005; Polyn et al., 2005).   

Despite its potential benefits, the multivariate approach remains relatively under-utilized in 

cognitive neuroscience.  One interesting approach developed here is the use of facial emotion 

detection as an example of sensory evidence accumulation in examining perceptual decisions.  

Facial expressions have been studied in great detail, likely because they are apparent in 
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everyday life and their controlled presentation in an experimental setting is relatively easy 

(Duchaine & Yovel, 2015; Haxby et al., 2000).  The face-processing system is thought to include 

a core system wherein outputs from the inferior occipital gyrus, which engages in the early 

stages of face processing, are sent to the fusiform gyrus and the superior temporal sulcus for 

detecting aspects of faces including identity and emotional expressions.  These core face-

processing regions are linked to the extended system (e.g., intraparietal sulcus, auditory cortex, 

anterior temporal, and regions of the limbic system), which are not dedicated to the processing 

of visual information per se but extract different types of information from faces.  fMRI BOLD 

activity from regions of the core and extended system can be accurately decoded by MVPA 

techniques to distinguish between emotional facial features (Wegrzyn et al., 2015).  In the 

context of perceptual decisions, this decoded activity may carry sensory representations in the 

brain that vary with decision parameters from evidence accumulation models.  As an added 

benefit, we can generate natural transitions in facial emotion to use as a dynamic stimulus to 

test predictions from different computational models (e.g., DDM vs urgency gating model, 

reviewed in Chapter 1.4).  We exploit this well characterized face-processing system in the 

studies presented in this thesis to test perceptual decisions.  Moreover, one of our studies 

(Chapter 2) is, to our knowledge, the first to exploit multivariate techniques to decode sensory 

information using fMRI in the context of an evidence accumulation model. 

 

1.5.3. Finding a Decision Variable using Electroencephalography 

Electroencephalography (EEG) may be more suited to test perceptual decisions in humans as it 

samples neural activity at millisecond temporal resolution.  EEG recording measures the 

electrical activity generated by similarly orientated groups of cerebral cortical neurons near the 

scalp where the recording electrodes are placed.  Each scalp electrode collects synchronous 

inhibitory or excitatory postsynaptic potential from hundreds of thousands of pyramidal 

neurons near each recording site.  This summated activity, or “local field potential”, can be 

represented as an electric field with positive and negative poles (i.e., dipoles) that are typically 

parallel to the orientation of their source pyramidal cells (Jackson & Bolger, 2014).  Despite 
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having high temporal resolution, it is important to note that EEG signal is limited by the size of 

the electric field produced by neurons.  Although reconstruction of the neural current (i.e., 

source localization) that produce a given EEG signal can be done, it requires the assumption of 

additional constraints to obtain a unique solution. 

There is a rich history of using EEG techniques to explore and isolate distinct processing stages 

intervening between stimulus and response, and disentangling their individual contributions to 

a decision variable (Hillyard & Kutas, 1983; Woodworth et al., 1954).  One prominent sensory-

evoked event-related potential (ERP), the classic “P300”, has been repeatedly linked with 

decision-making.  For example, early-work on P300 found it to be evoked exclusively by task-

relevant events requiring decisions (Rohrbaugh et al., 1974; Sutton et al., 1965) and that its 

amplitude was larger for detected versus undetected stimuli (Hillyard et al., 1971; Parasuraman 

& Beatty, 1980).  However, a consensus regarding the precise role played by P300 in decision 

formation has failed to emerge (Nieuwenhuis et al., 2011; Nieuwenhuis et al., 2005; Polich, 

2007; Twomey et al., 2015).  This is in large part due to the discrete, sudden-onset ERP 

paradigms often employed, which result in temporally overlapping sensory, decision, and 

motor signals summed in a global signal, making it difficult to disentangle each distinct stage. 

As with fMRI, innovative approaches have been taken in attempt to dissociate relevant decision 

parameters at the macroscopic level.  Visual discrimination tasks, such as between faces and 

cars, have been used to test which signals can discriminate between the two conditions at trial-

level (Philiastides et al., 2006; Philiastides & Sajda, 2006; Vanrullen & Thorpe, 2001).  Employing 

machine-learning techniques (described above), a linear classifier was computed to 

differentiate the two conditions and construct discriminate component maps.  These studies 

found two signal kernels (Fig. 1.7A): (i) an early frontal potential at ~170ms post stimulus-onset 

(i.e., N170) was selective for faces and only weakly predictive of errors, thus a possible 

correlate of sensory evidence, and (ii) a later centroparietal potential at ~300-450ms post 

stimulus-onset appeared to reflect task difficulty, and was thus argued to be a decision variable.  

In a follow-up study, trials were split into two groups based on the mean amplitude of the 

components.  Trial bins with higher late component amplitudes within each stimulus coherence 
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level were associated with higher drift rates in the DDM (Ratcliff et al., 2009).  This relationship 

was not observed when dividing the data on the basis of the early component, or on the latency 

(i.e., peak times) of either components.  The authors thus concluded that while the early 

component may relate to the quality of incoming sensory evidence, the late component 

indexed decision-relevant evidence and constituted the decision variable.  Furthermore, 

situated somewhere between the early and late components (~220ms post-stimulus onset) 

there was yet a third component that systematically increased with task difficulty/lower 

coherence.  This third component was also detected at centroparietal electrode sites and was 

found to be strongly correlated with the onset time of the late component (Philiastides et al., 

2006), with the authors suggesting that it is a top-down influence on decision-making, perhaps 

relating to a “caution” signal or decision threshold of the DDM, though this was never formally 

tested. 

Rather than focusing on a component’s peak amplitude alone, perhaps a better strategy is to 

characterize the temporal evolution of an EEG signal, which would track more closely with the 

predicted trajectory of a decision variable.  More recently, a positive potential recorded over 

midline parietal electrodes has been shown to grow as sensory evidence accumulates (Fig. 

1.7B) (Kelly & O'Connell, 2013; O'Connell et al., 2012; van Vugt et al., 2019), perhaps relating to 

the late component described in earlier work (Philiastides et al., 2006).  This centroparietal 

positivity (CPP) potential reaches a peak before motor response, mirroring the firing rate 

acceleration observed in LIP neurons.  By manipulating the task paradigm such that stimuli are 

presented in a smooth and gradual manner, the authors were able track the sensory 

information available, as well as eliminate transient sensory-evoked ERP signals and observe 

neural decision formation over a longer timescale.  The same dynamics can be observed during 

detection of deviant stimuli that typically elicit the classic P300 potential, with which the CPP 

shares a scalp topography.  This has led to the notion that the P300 and CPP may be the same 

under different names, and are common manifestations of a dynamically growing decision 

variable (Twomey et al., 2015).  However, the short trial times in these studies means that 

these two signals cannot be disentangled temporally and, as such, cannot be definitively 

concluded as being identical.  This is an issue we address in one of our studies (Chapter 3). 
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Fig. 1.7.  Examples of EEG studies investigating perceptual decisions.  (A) Participants partook in 

a visual discrimination task between face and cars.  Differences between the two categories 

revealed an early and late component whose activity scaled with the task difficulty/phase 

coherency of images.  Original figure adapted with permissions from Philiastides and Sajda 

(2006).  (B) CPP scales with dynamically changing sensory information and peaks close to the 

time of response.  Original figure adapted with permission from O'Connell et al. (2012). 

Alternatively, the continuous sinusoidal rhythmic activity in EEG signal is thought to represent 

oscillatory cortico-cortical and cortico-subcortical communications.  These communication 

loops occur spontaneously when the brain is at rest and not engaged in any specific task.  When 

confronted with a task, the electrical activity of the cortex desynchronizes and changes in 

specific frequency bands of oscillatory activity are attributed to various cognitive functions 

(Başar et al., 2001; Klimesch, 1999; Sauseng et al., 2010).  For example, when opposing 

perceptual decisions involve lateralized hand responses, the power of high-frequency, EEG beta 

band activity over motor regions diverges steadily between hemisphere that are contra- and 

ipsi-lateral to the hand responsible for the targeted response.  This beta signal arguably reflects 

a gradual response preparation signal downstream to the encoding of decision information in 

the parietal EEG signals (Gould et al., 2012; Kubanek et al., 2013; Wyart et al., 2012).  Theta 

band oscillations have also been implicated in perceptual decisions, with their power shown to 



43 
 

covary with decision certainty (Cavanagh et al., 2011a; Jacobs et al., 2006) and prediction errors 

(Cavanagh et al., 2010).  Simultaneous fMRI and EEG recording revealed the decision threshold 

predicted by the DDM was not fixed across trials, but varied as a function of task difficulty (in 

this case, conflict), mid-frontal EEG theta oscillations, and subthalamic nucleus fMRI activity 

(Frank et al., 2015).  While studying patients having undergone therapeutic deep brain 

stimulation, this group further demonstrated that mid-frontal theta oscillations are closely 

linked with subthalamic nucleus activity which gates behavioural outputs by raising the 

threshold required to arrive at a decision (Cavanagh et al., 2011b).  However, other groups have 

also proposed that theta oscillations instead reflect the drift rate of the DDM (van Vugt et al., 

2012). 

 

1.5.4. Brain Networks as the Backbone to Behaviour 

A unique contribution of macroscopic neuroimaging techniques is their ability to probe the 

interaction between different brain systems, helping reveal the wider brain networks involved 

in making perceptual decisions.  While we have discussed some models of how the brain may 

arrive at a decision elicited by state-dependent activation in response to cognitive tasks, less is 

known about the quality and quantity of individual variation that occurs atop this blueprint 

(Van Horn et al., 2008).  Typically, neuroimaging studies collapse data from many subjects and 

ignore the possibility that brain functional organization may vary between individuals.  There 

may be meaningful idiosyncrasies in this organization across individuals that can reveal: (i) 

crucial variability in relating brain activity to behavioural phenotypes, and (ii) biomarkers with 

potential real-world utility for clinical conditions.   

The fMRI community, and more recently the EEG community, have embraced resting state or 

intrinsic functional connectivity (FC) approaches to mapping brain organization (Kelly et al., 

2012).  FC charts spontaneous temporal coactivation between disparate brain regions: the 

more in sync (i.e., correlated) two regions are in their activity, the stronger they are thought to 

be connected functionally.  There is mounting evidence that suggest FC reflects the connectivity 
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between brain regions and is more than just a spurious signal resulting from stochastic noise 

(Deco et al., 2011; Handwerker et al., 2012; Tagliazucchi et al., 2012; Thompson et al., 2013).  

Assuming FC reflects anatomical connectivity, a functional topography can unfold on a 

relatively fixed structural scaffold (Shen et al., 2015) in various intrinsic configurations termed 

resting-state networks (RSNs) over extended periods that are task-free (“resting”) (Laird et al., 

2011; Yeo et al., 2011).  These RSNs have been variably named after the functional 

characteristics of the networks or according to the core brain regions comprising them (e.g., 

default mode, fronto-parietal, motor-visual, and dorsal attention network).  Having 

demonstrated FC’s utility for charting the large-scale functional architecture of the brain, there 

is now a growing momentum to leverage task-independent methods for investigation of 

phenotypic variations. 

RSN dynamics are arguably a reflection of the array of cognitive architectures that the brain has 

available.  Variations within and between RSNs are thought to “fingerprint” individual 

differences in a variety of traits and behaviour related to cognitive function, age, and mental 

health (Finn et al., 2015; Geerligs et al., 2015a; Geerligs et al., 2015b; Li et al., 2013; Sanz-Arigita 

et al., 2010; van den Heuvel et al., 2009).  Recent neuroimaging studies have shown that the 

RSN architecture is largely preserved during rest and cognitive task (Cao et al., 2014; Cole et al., 

2014; Krienen et al., 2014).  In general, external tasks are thought to perturb the baseline 

network configuration observed at rest, and the extent to which the RSNs change between rest 

and task is a function of task difficulty (Gießing et al., 2013; Power & Petersen, 2013; Shine et 

al., 2016).  More cognitively demanding tasks may benefit from a less modular and more 

integrated connectivity between RSNs (Cohen & D'Esposito, 2016).  The emergence of 

momentary neural coalitions form the basis of complex cognitive functions (Bassett et al., 2015; 

Cole et al., 2014). A more globally integrated network architecture is thought to give rise to 

faster, more effective information processing during task performance.  However, this 

integrated state is theorized to be metabolically costly to maintain, being present only when 

essential for the task at hand, in order to balance between efficient information-processing and 

metabolic expenditure (Bullmore & Sporns, 2012). 



45 
 

In tandem, there has been recognition in recent years that FC itself is not static, with 

connection strengths varying during a single resting-state scan (Chang & Glover, 2010; 

Hutchison et al., 2013; Lurie et al., 2018) and within various cognitive tasks (Cole et al., 2013; 

Gonzalez-Castillo et al., 2015; Shine et al., 2016).  This has led to the conceptualization of a 

dynamic or time-varying FC that argues averaging over an extended period of rest may lead to a 

useful but oversimplified characterization of the brain’s functional networks.  Instead, different 

analytical techniques (e.g., k-mean clustering with sliding windows) can be used to identify 

transient “brain states” that may be present in the population tested.  To this end, recent 

experiments using fMRI have demonstrated that the global brain signals at rest transition 

between states of high and low modularity over time (Zalesky et al., 2014).  However, the 

psychological relevance of these fluctuations remains poorly understood.  Emerging evidence 

suggests that more dynamic connectivity between specific networks (e.g., fronto-parietal and 

default-mode) (Douw et al., 2016), or the propensity to transition between certain brain states 

of high and low modularity at rest (Nomi et al., 2017), may relate to better cognitive 

performance.  Although literature is accumulating about the time-varying FC of brain networks 

during resting state and, to a lesser extent, during task performance, there is a need to better 

understand the link between the two and how this may shape decisions – we attempt to bridge 

this gap in Chapter 4. 

 

1.6. Summary 

In the previous sections we reviewed the current knowledge of perceptual decisions, 

particularly as it pertains to humans.  Decision-making underlies a wide range of human 

behaviour (e.g., economics and social interactions) and disruptions in this process are 

commonly noted in many neurological and psychiatric conditions (e.g., major depressive 

disorder, schizophrenia, substance-use disorders, and post-traumatic stress disorder (Aupperle 

et al., 2012; Rock et al., 2014; Stevens et al., 2014)).  Understanding how the mind produces 

behaviour and the decision processes made prior to executing an action can shed light on what 

happens when this process is disrupted and help identify potential ways to ameliorate this 
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cognitive disruption.  The challenge lies in the logistics of studying a highly flexible and dynamic 

system that is constantly evolving in a dynamic environment.  Several computational models 

have been proposed in recent years in an attempt to account for how people arrive at a 

decision when presented with perceptual information.  One school of thought posits that 

people gather information from the environment until they reach a decision threshold.  This 

model (i.e., DDM) has received much support and is backed by a multitude of behavioural and 

neurological evidence.  However, the DDM may not be applicable to real-world scenarios where 

dynamic and changing stimuli are present.  Experimental tasks we use to understand this 

process often involve a constant stimulus that may not be representative of the true nature of 

our environment.  Specifically, an alternative school of thought argues that evidence 

accumulation models are lacking in that they do not consider the aspect of time which may 

impose an “urgency” factor to the decision-making process.   

At present, important knowledge gaps in human perceptual decision-making remains: Where 

are the neural origins of the hypothesized sensory encoding and decision variable in the human 

brain?  How may different decision parameters unfold temporally and relate to different neural 

signals?  What is the influence and meaning of individual variability in functional organization of 

the brain on perceptual decisions?  Finally, can accounting for an endogenous, time-variant 

urgency signal improve our understanding of perceptual decisions and if so, where may this 

signal arise in the brain?  This thesis consists of three studies that attempt to address these 

interrelated research questions as well as testing a series of specific experimental aims.  

Chapter 2 addresses how decision parameters are encoded in the human brain.  We aimed to 

identify brain regions involved in the accumulation of sensory evidence and the pathways by 

which this information is relayed across the brain to inform decisions.  We additionally tested 

the theory that the traditional DDM may fail to explain decisions in the face of ambiguous or 

low signal-to-noise decision environments.  Chapter 3 examines perceptual decisions at a faster 

time-scale, disentangling neural signals within a trial that may relate to different decision 

parameters.  We tested whether an urgency gating model may better explain the dynamics of 

the captured neural signals.  Chapter 4 focuses on how the propensity to express different 

configurations of brain connectivity at rest may modulate and shape perceptual decisions in 
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task.  We compare and contrast brain connectivity at rest to that in task and ask how this 

relationship may be affected by task demands.  With these findings, we hope to provide a more 

comprehensive and valid understanding of how the brain deliberates in a dynamic 

environment. 
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CHAPTER 2.  Neural correlates of evidence and urgency during human 

perceptual decision-making in dynamically changing conditions 

2.1. Preface 

There have been many successful studies of perceptual decision-making in monkeys usually 

employing visual discrimination tasks between two choice alternatives.  These studies show 

that one can fit computational evidence accumulation models to behaviour and extract model 

signals from microelectrode recordings in various parts of the brain.  This approach, however, 

has proven more difficult in humans.  In this chapter, we developed a task consisting of smooth, 

continuously changing stimuli – a neutral face that morphs towards happy or sad expression – 

that allows us to track the amount of sensory information available in the decision environment 

at any given time within a trial.  Participants underwent this task while inside the fMRI scanner.  

We used MVPA to extract the neuronal code for happy and sad facial expressions from the 

fusiform gyrus, and showed that this neural information is related to sensory encoding in the 

evidence accumulation model.  Furthermore, we tested the theory that the traditional DDM 

may fail to explain decisions in the face of ambiguous or changing information.  We provide 

evidence for an urgency signal from the caudate nucleus that can modulate the timing of 

decisions.  This endogenous urgency signal varies between individuals and can potentially 

account for why certain individuals are prone to faster and erroneous decisions, particularly 

when the sensory information is ambiguous.  This study aimed to characterize decision 

parameters underlying human perceptual decision-making in the setting of dynamic, changing 

environments by combining model-driven machine-learning fMRI techniques, psychophysics, 

and computational modelling.  Our results reveal how decision parameters are encoded in the 

human brain and indicate that machine-learning techniques can be used to probe and 

disentangle the biological underpinnings of the decision process.  This work has been published 

in Cerebral Cortex. 
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2.2. Abstract 

Current models of decision-making assume that the brain gradually accumulates evidence and 

drifts towards a threshold which, once crossed, results in a choice selection. These models have 

been especially successful in primate research, however transposing them to human fMRI 

paradigms has proved challenging. Here, we exploit the face-selective visual system and test 

whether decoded emotional facial features from multivariate fMRI signals during a dynamic 

perceptual decision-making task are related to the parameters of computational models of 

decision-making. We show that trial-by-trial variations in the pattern of neural activity in the 

fusiform gyrus reflect facial emotional information and modulate drift rates during deliberation. 

We also observed an inverse-urgency signal based in the caudate nucleus that was independent 

of sensory information but appeared to slow decisions, particularly when information in the 

task was ambiguous. Taken together, our results characterize how decision parameters from a 

computational model (i.e., drift rate and urgency signal) are involved in perceptual decision-

making and reflected in the activity of the human brain. 

 

2.3. Introduction 

Decisions are often made based on noisy or changing information. A prominent theory in 

decision-neuroscience, referred to as the evidence-accumulation or drift-diffusion model (Smith 

& Ratcliff, 2004), posits that deliberation is an integrative mechanism in which sensory 

information supporting different options accumulates over time until a boundary is reached, at 

which point the decision is made (Glaze et al., 2015; Gold & Shadlen, 2007; Yang & Shadlen, 

2007). Neuroscientific support for the drift-diffusion model comes principally from single-unit 

recordings in non-human primates. “Accumulator regions” – where neurons exhibit ramp-like 

increases or drift in their firing towards a decision threshold – have been located in several 

brain areas in a widely-studied dot motion perceptual decision paradigm (Gold & Shadlen, 

2007; Hanks et al., 2015; Roitman & Shadlen, 2002; Scott et al., 2017; Shadlen & Newsome, 

1996, 2001). This work suggests that different pools of selectively tuned, lower-level sensory 
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neurons could feed information to higher-level cortical regions to compute perceptual 

decisions. However, single-unit recordings provide a spatially narrow view of the brain 

mechanisms underlying decision-making. Functional magnetic resonance imaging (fMRI) 

studies, though comparatively limited in spatial resolution, have begun to explore the neural 

substrates of evidence accumulation during perceptual decision-making in humans in attempt 

to provide a more holistic view (Heekeren et al., 2004; Ploran et al., 2007; Tremel & Wheeler, 

2015). 

Also, some decisions need to be made promptly despite incomplete or changing evidence. 

Simple drift-diffusion models have difficulty accounting for these situations. A recent 

theoretical approach suggests that decision-making incorporates an “urgency” signal, 

independent of the sensory evidence, which grows over time to bring neural activity closer to a 

decision threshold (Cisek et al., 2009; Mormann et al., 2010; Murphy et al., 2016; Thura et al., 

2012). Single-unit recordings in monkeys have implicated the basal ganglia as the neural driver 

of this postulated urgency signal (Thura & Cisek, 2017). Urgency signals are of interest in human 

behaviour as they may relate to the trait of impulsivity (Carland et al., 2019; Thura & Cisek, 

2014, 2016). However, the few studies to date that have employed fMRI to differentiate 

evidence accumulation and urgency parameters are limited by relatively small sample sizes 

(Mulder et al., 2014). Moreover, the univariate BOLD response analysis typically employed may 

fail to differentiate relevant neuronal populations that encode stimulus features used for 

making the decision as they ignore the possibility that information may be represented in a 

distributed manner across voxels (Braunlich & Seger, 2016; Gluth et al., 2012). Multivariate 

analysis overcomes this limitation by searching for the optimal combination of (distributed) 

voxels and assessing their contribution to stimulus discriminability (Davis et al., 2014; 

Kriegeskorte et al., 2006). 

We designed a novel fMRI task to identify neural substrates of the time-dependent processes 

that occur during deliberation in a simple sensory decision-making task. We took advantage of 

the fact that it is possible to reliably decode brain activity related to facial emotion detection. 

Subjects decided whether a short video of a face presented on screen was transitioning to a 
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happy or sad emotion. Previous work suggests that not only is it possible to decode 

representation of faces from fMRI signal in extrastriate visual areas  (Haxby et al., 2001), but 

that distinct emotional facial features are uniquely represented in the brain and can be 

decoded (Kassam et al., 2013; Wager et al., 2015). Our task allowed identification of 

multivariate patterns indicative of happy or sad faces, which we took to represent the sensory 

evidence upon which the decision was made. According to evidence accumulator models, 

information on the upcoming choice decoded from the population of neurons participating in 

facial processing should increase towards a decision threshold, reflecting the gradual 

accumulation of evidence in support of the upcoming choice. Analogous to results from single-

unit recording studies in non-human primates, we hypothesize that decision-making 

parameters will covary with decoded fMRI activity related to detection of facial emotion. To 

test the urgency-gating model (Cisek et al., 2009), we included ambiguous trials in the study 

design. We examined the extent to which neural representation of evidence accumulation 

contributed to decisions in ambiguous conditions, and whether an urgency parameter 

improved model fit.  

 

2.4. Methods 

2.4.1. Participants 

53 right-handed young, healthy adults (23 males; age mean 24.02yr±5.49 standard deviation 

[SD]) participated in the present study. Exclusion criteria included current or past diagnosis of a 

psychiatric disorder, neurological disorder, or concussion, and moderate to severe depression 

(score >5 on the Beck Depression Inventory (Beck et al., 1961)). All participants gave written 

informed consent prior to data acquisition and received monetary compensation for their 

participation. The study was approved by the Montreal Neurological Institute Research Ethics 

Board. 
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2.4.2. Task Design 

Face stimuli were derived from the NimStim database (Tottenham et al., 2009). Photographs of 

six (3 males) out of 43 models with closed-mouth happy and sad expressions were selected as 

stimuli for the task because they had the highest identification accuracy in both Tottenham et 

al. (2009)’s initial validation of the dataset and in our piloting. Face stimuli were made 

achromatic in MATLAB and presented on a grey background. In order to manipulate the 

intensity of the emotional expressions, 18 intermediate face stimuli were also generated from 

the NimStim faces using STOIK MorphMan software (http://www.stoik.com/) to create 

different emotion levels that gradually transitioned between a model’s neutral and happy or 

sad face. Thus, emotion levels varied from 0 to 19 in both directions. Two independent tasks 

were conducted using these stimuli: (1) a training task and (2) a dynamic task.  

 

Fig. 2.1.  Experiment overview. (A) Training task was used to decode BOLD activity in response 

to viewing of static happy or sad faces. One classifier was generated for each of 7 bilateral 

regions of interest, per subject. The classifiers were then used to determine support vector 

machine-learning (SVM) weights, or distance from hyperplane, which were in turn projected to 

http://www.stoik.com/
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the BOLD effect size values while viewing faces in the (B) dynamic task. This yielded a neural 

“code” per trial, per region. Two trial types were used in the dynamic task: (i) easy trials where 

facial expression gradually morphed towards one of the two emotions and (ii) ambiguous trials 

where facial expression varied around neutral until two-thirds into the trial after which point 

emotion rapidly ramped up towards happy or sad. 

 

The static training task (Fig. 2.1A) served to localize patterns of brain activity related to happy 

and sad faces. Subjects viewed a face with an emotional level >15 for 2.5 secs; this fixed time of 

display ensured that we eclipsed at least one full repetition time (TR) of fMRI acquisition to 

allow for accurate parameter estimation. After this, a question mark appeared with a maximum 

time of 1 sec, during which the subject was instructed to respond with their evaluation of 

whether the face was happy or sad; if no response was made, “Too Slow” was displayed on the 

screen for 1 sec. 

In the dynamic task (Fig. 2.1B), subjects viewed dynamic stimuli of faces “morphing” between 

expressions. In these trials, a maximum of 60 frames were presented over 6 secs (i.e. 10 frames 

per second), plus a final image of the correct emotion (with the emotion level > 15) for 1 sec 

either after a response was made or at the end of a trial if the subject had not yet made a 

response. Participants were instructed to predict whether the face would be happy or sad by 

the end of the trial and to respond whenever they felt confident enough to do so. Subjects 

were asked to respond both as quickly and as accurately as possible. Within the dynamic task, 

there were two types of trials, namely “easy” and “ambiguous”, which were modelled after 

previous work (Thura et al., 2012). In both trial types, the first image presented was the model’s 

neutral face. 

In easy trials, all faces presented were of the correct emotion (e.g., in a trial in which the 

correct answer is happy, no sad images are ever presented). Each successive frame had a 65% 

chance of being one level higher than the previous frame in the direction of the correct 

emotion. By the final frame, all trials had an emotion level >16. The final frame was presented 

for 1 sec as soon as the subject made a response, or it was presented as a 1 sec long additional 
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frame if they had not yet responded. Subjects could respond during this final frame only if they 

had not yet done so.  

In ambiguous trials, the probability of each frame during the first two-thirds of the trials (i.e., up 

to the 40th frame) had a 50% chance of being one level higher than the previous in the direction 

of the correct emotion, such that the images generally hovered around a neutral valence. To 

prevent, for example, many slightly happy images and a few very sad images being presented, 

the maximum levels presented in the correct and incorrect direction before the 40th frame 

were kept within two levels of each other. Furthermore, the maximum level reached in either 

direction before the 40th frame was limited to 7. In the final third of the trial, there was a steep 

increase of level in favour of the correct emotion, with a 95% chance that a given frame would 

be exactly one level higher in favour of the correction emotion than the previous frame. All 

trials had a final emotion level > 16. As with the easy trials, this final frame was presented for a 

duration of 1 sec as soon as a response was made, or as a 1 sec long 61st frame during which 

subjects could respond if they had not yet done so. 

In both tasks (i.e., static training and dynamic), a pause followed by a time-jittered fixation cross 

preceded each trial. The trials were evenly split between happy and sad (determined by the 

emotion at the final frame for the dynamic task), with the order of trials randomized in every 

block. Participants took part in 4 runs for the localizer task and 3 runs for the dynamic task. 

Both tasks had a total of 120 trials each, divided equally among the runs. 

2.4.3. MRI Acquisition 

Neuroimaging was carried out with a Siemens Magnetom Prisma 3T MRI scanner equipped with 

a 64-channel head coil at the Montreal Neurological Institute (MNI). High-resolution MPRAGE 

T1-weighted structural images were first obtained for anatomical localization (TR=2.3s; 

TE=2.3ms; FOV=240mm; scan matrix=192x256x256; voxel size=0.9mm isotropic). Functional 

data were then acquired with an echo-planar T2*weighted sequence for blood oxygenation 

level-dependent (BOLD) contrast (TR=0.719s; TE=30ms; scan matrix=104x108x72; flip 

angle=44°; FOV=208mm; voxel size=2mm isotropic, multiband acceleration factor=8). Here, we 
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capitalized on multi-band acquisition to help improve temporal resolution, allowing for the 

potential of multiple data points per trial to better characterize signal change during the 

decision process 

2.4.4. MRI Preprocessing 

Preprocessing and beta extraction were performed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) and Matlab. Signals with >4% intensity change were 

despiked and corrected using ArtRepair Toolbox (Mazaika et al., 2007). Images were corrected 

for motion, realigned, normalized to the MNI ICBM152 template (Fonov et al., 2009), and 

minimally smoothed (6mm FWHM Gaussian kernel). Spatial filtering techniques (such as 

Gaussian smoothing) have been shown to increase the signal-to-noise ratio (Brants et al., 2011; 

Hendriks et al., 2017), as well as classification performance in multivariate pattern analysis 

(MVPA) (Op de Beeck, 2010). One subject was excluded from further analysis after quality 

control due to excessive motion. 

2.4.5. Generation of Regions of Interest 

We generated bilateral region of interest masks for 7 brain areas previously shown to be 

involved in the detection of facial expression (Haxby et al., 2000; Wegrzyn et al., 2015) and one 

for the caudate thought to play a role in urgency. An association test (FDR-corrected, <0.01) for 

the terms “amygdala”, “anterior temporal”, “fusiform gyrus”, “inferior occipital”, “insula”, 

“intraparietal”, “superior temporal”, and “caudate” on the Neurosynth meta-analytical 

database was conducted yielding one brain map per term indicating the probability of that term 

being used in a study given the reported activation (i.e., P(Term|Activation)) (Yarkoni et al., 

2011). To avoid overlaps between our regional masks, voxels in overlapping regions were 

assigned to the region with the greatest z-score from the reverse inference map derived the 

Neurosynth search terms. These spatially unique maps were then binarized.  

http://www.fil.ion.ucl.ac.uk/spm/
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2.4.6. Multivariate Pattern Analysis & Fusiform Code 

Preprocessed functional data were used as input for run-wise GLM first-level designs yielding 

one regressor for the event of interest, a second for all other events, and six motion regressors 

(Mumford et al., 2012), creating one GLM per event. This approach is thought to lead to more 

representative trial-by-trial estimates of the true activation magnitude. Only the beta value 

(i.e., parameter estimates or coefficients representing effect size from linear regression) for the 

event of interest was used for all further analysis in generating a classifier in the localizer task. 

For the dynamic task, fMRI signal extracted through the canonical GLM (i.e., one GLM per run 

with regressors for the duration of face presentation, intertrial interval, button press, six 

additional motion regressors as nuisance regressors, and a constant) implemented by SPM was 

used for statistical analysis.  

A linear support vector machine-learning (SVM) algorithm (C=1.0, L2 penalty, square hinged 

loss, tolerance=0.0001, max iterations=1,000) was implemented using the scikit-learn package 

in Python (Pedregosa et al., 2011) to classify happy and sad stimuli from the preprocessed beta 

images after data normalization. Features were extracted within each of the regional masks, 

without additional voxel selection. A feature’s (i.e., BOLD signal) distance away from 

hyperplane determined the SVM weight. A k-fold cross validation (k=10) was conducted to test 

the accuracy of the classifier and reveal voxels where local patterns of activation reliably 

discriminated between happy and sad faces. After subtracting the activity in the preceding 

inter-trial period and normalization, the SVM weights from the classifier derived from the 

localizer task were then projected to each trial’s BOLD effect size in the dynamic task to 

calculate the fusiform “code” during viewing of the morphing video. 

Statistical significance of the decoder’s accuracy was tested using permutation of the original 

data per subject with randomly shuffled class labels of the training and testing data sets before 

supplying them to the classifier (Mahmoudi et al., 2012; Pereira & Botvinick, 2011). This 

procedure was done 1,000 times in order to generate a null distribution and was used to test 

how likely a certain classifier accuracy was to occur by pure chance. Due to exchangeability 

issues between run – that is the risk of predicting runs rather than class label – labels were only 
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permuted within, rather than across data splits (i.e., within each subject, within each run). P-

values were calculated as the proportion of instances where permutated data had equal or 

higher accuracy than the original decoder accuracy divided by the number of all permutations. 

Eight subjects with classifiers that did not perform better than chance in any of the regions 

investigated were excluded from further analysis. 

2.4.7. Fitting the Hierarchical Drift Diffusion Model (HDDM) 

The drift diffusion model (DDM), an established dynamic model of two-choice decision 

processes (Ratcliff et al., 2016), was fitted to subjects’ reaction time (RT) distributions. The 

DDM simulates two-alternative forced choices as a noisy process of evidence accumulation 

through time. The mode implies a single accumulator integrating the sample evidence 

according to a stochastic diffusion process until the evidence accumulated reaches one of two 

decision bounds, here for ‘happy’ or ‘sad’. The model decomposes behavioural data into four 

parameters mapped on to the latent psychological process: drift rate (v) for speed of 

accumulation, starting point (z) for a response bias towards one choice, non-decision time (t) 

for stimulus encoding and response execution latencies, and critical decision threshold (a). 

Here we used a hierarchical extension of the DDM (HDDM) (Wiecki et al., 2013) to estimate 

decision parameters. This method assumes that parameters for individual participants are 

random samples drawn from group-level distributions and uses Bayesian statistical methods to 

optimize all parameters at both the group and subject level. In other words, fits for individual 

subjects are constrained by the group distribution, but can vary from this distribution. This 

Bayesian approach for parameter estimation has distinct advantages over other methods in 

robustly recovering model parameters estimates for both individual and group levels, 

particularly when the number of trials is relatively small. Moreover, HDDM has been shown to 

reliably estimate DDM parameters, including regressing effects of trial-by-trial variations of 

neural signals on decision parameters (Matzke & Wagenmakers, 2009; Wiecki et al., 2013). 

Bayesian estimates allow for quantification of parameter estimates and uncertainty in the form 

of joint posterior distribution, given the observed experimental data (Gelman et al., 2013). To 

account for outliers in behaviour that cannot be captured by HDDM (e.g., slow responses due 
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to inattention or fast erroneous responses due to action slips), we removed 5% of the trials at 

each tail of the RT distribution. Markov chain Monte Carlo sample methods were used to 

accurately approximate the posterior distribution of the estimated parameters. 5,000 samples 

were drawn from the posterior to obtain smooth parameter estimates, the first 100 samples 

were discarded as burn-in. Convergence of Markov chains were assessed by inspecting traces of 

model parameters, their autocorrelation, and computing the Gelman-Ruben statistic (Gelman & 

Rubin, 1992) to ensure that the models had properly converged. 

Two models were used: one without inclusion of any fMRI data and a second that allowed for 

trial-by-trial variations in neural activity to modulate decision parameters. To test our 

hypotheses relating neural activity to model parameters, we estimated posterior distributions 

not only for basic model parameters, but the degree to which these parameters are altered by 

variations in neural measures (i.e., facial emotion code from each region of interest, and 

caudate BOLD activity – see below). In these regressions, the coefficient weighs the slope of the 

parameters (defined by drift rate v and threshold a) by the value of the neural measure on this 

trial, with an intercept, for example: v(t) = β0 + β1condition + β2fusiform code(t) + 

β3condition(t)*fusiform code(t). The regression across trials allows us to infer the degree to 

which threshold changes with neural activity. Changes in drift rate relate to RT speed and 

accuracy.  

Modulators, in this case the fMRI-derived neural parameters, were iteratively added in to our 

model to test whether successive additions improved model fit. Model fit was assessed by 

comparing each models’ deviance information criterion (DIC) value (Spiegelhalter et al., 2002), 

with a lower value for a given model (for the whole group) indicating higher likelihood for that 

model compared to an alternative model, taking into account model complexity (degrees of 

freedom). A DIC difference of 10 is considered significant (Zhang & Rowe, 2014). DIC is widely 

used for comparisons of hierarchical models where other measures (e.g., Bayesian information 

criterion) are not appropriate (Frank et al., 2015; Ratcliff et al., 2016). Parameters of the best 

model were analyzed by Bayesian hypothesis testing, which examines the probability mass of 

the parameter region in question (i.e., percentage of posterior samples greater than zero). 
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Posterior probabilities ≥95% were considered significant. Note, this value is not equivalent to p-

values estimated by frequentist methods but can be interpreted in a similar manner. 

2.4.8. Psychophysiological-Interaction (PPI) 

Generalized psychophysiological-interaction (gPPI) analysis (McLaren et al., 2012) was used to 

identify brain regions with activity that covaried with the activity of the fusiform “seed” voxels 

as parametrically modulated by the fusiform code. Two 6mm spheres centered at the peak 

voxel from the z-score map of the “fusiform gyrus” search term from Neurosynth – identical to 

the aforementioned search in the Generation of Regions of Interest section – in each 

hemisphere were used as seeds (left center: x=-42, y=-48, z=-20; right center: x=44, y=-48, z=-

16). Our GLM included regressors accounting for periods corresponding to trials for each 

emotion (i.e., happy and sad) each parametrically modulated by the fusiform code, with 

intertrial interval duration, button press, six additional motion regressors as nuisance 

regressors, and a constant. gPPI regressors were created by deconvolving the seed to obtain an 

estimated neural signal during perceptual decisions using SPM’s deconvolution algorithm, 

calculating the interaction with the task in the neural domain, and then re-convolved to create 

the final regressor. Participant effects were then used in a group-level analysis, treating 

participants as a random effect, using a one-sample t-test against a contrast value of zero at 

each voxel. 

2.4.9. Fitting the Urgency Gating Model (UGM) 

A filtered evidence variable 𝑥 was derived using the following differential equation: 

𝜏
𝑑𝑥(𝑡)

𝑑𝑡
= −𝑥(𝑡) + 𝑔𝐸(𝑡) + 𝐺(0, 𝑁)   (1) 

whereby at a given time t, the evidence E, which denotes the amount of information (i.e., facial 

emotion level) is multiplied by an attentional fixed gain term 𝑔. Further, an intra-trial Gaussian 

noise variable G(0,N) with a mean of 0 and a standard deviation of N was added. Here we chose 

N=6, because it gave a range of simulated RTs with similar variability as the observed data (but 

see Supplementary Table A2.4 for evidence that the model is robust to the choice of N). How 
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far back in time sensory information is considered by the model is determined by the time 

constant 𝜏. We next computed the estimated neural activity 𝑦. 

𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑢(𝑡)   (2) 

This was determined by multiplying the filtered evidence  𝑥 with an urgency parameter 𝑢. A 

decision is made when the variable 𝑦(𝑡) reaches threshold T. A non-decision time of 200ms was 

added to yield the predicted RT. 

Implementation of the non-hierarchical DDM (nDDM) and the urgency-gating model (UGM) 

differed in two key ways. First, there was no urgency parameter 𝑢 added to the nDDM. In other 

words, the nDDM assumes that once the variable 𝑥(𝑡) reach the threshold T, a decision is 

made. Second, in the UGM, a low-pass filter of the sensory information in the first-order linear 

differential equation was applied. The time constant 𝜏 was set to 200ms for the UGM whereas 

the maximum trial duration of 6000ms was used as time constant for the DDM. We assumed a 

time constant of 200ms for the UGM on the basis previous behavioural and physiological 

studies (Cisek et al., 2009; Thura et al., 2012; Thura & Cisek, 2014). Evidence (E), gain (𝑔), and 

noise (N) parameters were the same in both models. 

In the nDDM, the T parameter was adjusted using an exhaustive search to find the variable that 

minimized the mean squared error between the model’s predicted RT versus the real RT across 

all trials for each subject. In the UGM, the 𝑢 parameter was similarly searched for using this 

criterion. Note that for each model, one parameter was adjusted to fit the data; both T and 𝑢 

influence the means of RT distributions. The models were used to simulate 5,000 trials, the 

mean of which was used to compare against the real RT distributions. 

2.4.10. Statistical Analysis of Behavioural Data 

Statistics for this study were conducted in R (R Core Team, 2015) and MatlabR2018b (MATLAB, 

2018). Due to low sample size, which may increase vulnerability to spurious outliers, non-

parametric tests were used to assess the following subject-level data. Mean RTs and accuracy 

were evaluated by a Friedman’s test to compare the effect of trial type and emotion while 

accounting for runs in each instance. Spearman correlations were used to test for all 
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correlations between task performance (i.e., accuracy and RT) and other metrics of interest 

(e.g., HDDM decision threshold, UGM urgency signal, questionnaires). To test a possible two-

way interaction effect of accuracy (i.e., correct and incorrect) and condition (i.e., easy and 

ambiguous) on neural activity, we ran a two-away Analysis of Variance as the non-parametric 

equivalent (i.e., Friedman’s test) does not consider interaction effects.  Wilcoxon Signed-Ranks 

tests were then used to compare neural activity between incorrect and correct trials whereas 

Wilcoxon Rank Sum tests were used compare between groups (i.e., early versus late responders 

– see below). In both cases, z-values refer to Wilcoxon’s z (approximation). 

2.4.11. Neural Correlates of Urgency 

To look for neural correlates of urgency gating, we compared individuals who tended to wait for 

information in ambiguous trials to those who tended to respond early (n=24 and 21 participants 

respectively, see below). We compared BOLD activity during stimulus presentation in early vs 

late responders, using the fusiform MVPA code as a parametric modulator (see equation 2). 

Because there were no significant differences in the whole-brain analysis we focused on the 

caudate nucleus region of interest, based on previous work identifying this structure as a likely 

source of urgency signals (Ding & Gold, 2012; Nagano-Saito et al., 2012; Thura & Cisek, 2017). 

 

2.5. Results 

2.5.1. Multivariate Pattern Analysis of Facial Emotion Detection 

First, the static task was used to localize patterns of brain activity related to the two facial 

emotions using linear support vector machine-learning (SVM) classifiers (Fig. 2.1). MVPA was 

applied to the beta values derived from a first-level GLM of the BOLD response from each trial 

(Mumford et al., 2012) for each of the 7 a priori face-processing regions of interest (Haxby et 

al., 2000; Wegrzyn et al., 2015), resulting in 7 classifiers per participant. Subjects who failed 

quality control or had classifiers that did not significantly decode above chance level were 
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removed from further analysis (n=8). In the remaining group, above-chance classification was 

possible in all 7 regions of interest (Fig. 2.2). 

 

Fig. 2.2.  Decoding performance. Mean decoding accuracy (n=45) from each region of interest. 

Error bars depict standard error of the mean. Brain slices show SVC weights from a sample 

subject with warm and cold colors representing weighting towards happy and sad, respectively. 

2.5.2. Decision Making Task: Behavioural Results 

Participants then engaged in the dynamic task, with easy and ambiguous trials. RTs on easy 

trials (with gradually increasing information) were significantly faster (χ2
F(1,52)=138.77, 

p<.0001) and responses more accurate (χ2
F(1,52)=197.32, p<.0001) relative to ambiguous trials 

(Fig. 2.3). RTs on ambiguous trials were bimodally distributed with responses tending to either 

be early or late. Overall, subjects also responded faster (χ2
F(1,52)=46.30, p<.0001) and more 

accurately (χ2
F(1,52)=31.42, p<.0001) to trials that were heading towards the happy than the 

sad direction.  
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Fig. 2.3.  Reaction time distributions. Histogram of reaction time for (A) easy and (B) 

ambiguous trials. Solid lines reflect the gaussian kernel density estimation. ER: early 

responders (n=21); LR: late responders (n=24). 

2.5.3. Fusiform Code Modulates Drift Rate on a Trial-By-Trial Level 

SVM weights from the classifiers derived from the static task were projected to the BOLD effect 

size maps in each trial of the dynamic task to determine the regional MVPA “code” while 

viewing the morphing video. Two central hypotheses were tested using HDDM (Wiecki et al., 

2013).  

First, we assessed basic assumptions of the model without inclusion of any fMRI data. This 

involved modulating drift rate by differences in the information available as determined by trial 

type (analogous to motion coherence in random dot motion tasks (Ratcliff & McKoon, 2008)). 

High (absolute) drift rates result in faster responses and fewer errors, whereas a drift around 

zero indicates chance performance with long RT. The drift rate parameter calculated using this 

basic model was correlated with participants’ overall accuracy in predicting the correct 

emotion at the end of a trial (r=.3331, p=.0271), even when RT was used as a covariate in a 

partial correlation (r=.302, p=.0463), suggesting that drift rate was a better reflection of 

behavioural performance than RT alone. Consistent with the behavioural data (above), there 

was a bias towards the happy decision threshold (z, mean=0.5606±0.0019). 
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Second, we tested whether drift rate reflected the regional fMRI MVPA code from our seven 

regions of interest on a trial-by-trial level (Fig. 2.4A). We estimated posterior distributions not 

only for basic model parameters, but the degree to which these parameters are altered by 

variations in neural measures. Compared to a base model, allowing fusiform MVPA code to 

modulate drift rate yielded an improved model fit (difference in DIC=26.29) whereas MVPA 

codes from the other 6 regions did not improve model fit (Fig. 2.4B). Thus, model selection 

provided strong evidence that trial-by-trial variations in drift rate are modulated by fusiform 

code as a measure of the evidence for facial emotion. Moreover, while facial emotion is 

reflected in the entire set of a priori regions, only information in the fusiform gyrus appeared to 

influence the decision. 

 

Fig. 2.4.  Hierarchical Drift Diffusion Model (HDDM). (A) Illustration of the model with trial-wise 

neural regressors. Decision parameters including drift rate (v), decision threshold (a), non-

decision time (t), bias (z) and standard deviation of drift rate (sv) were estimated for the group 

(circles outside the plates with: group mean (μ) and variance (σ)) and subjects (s) (circles in 

outer plate). Blue nodes represent observed data, including trial-wise behavioural data 

(accuracy, RT) and neural measures (neural MVPA code from a region as determined by 

projected SVM weights). Trial-wise variations in v were modulated by neural measures as well 

as trial type (easy or ambiguous trials). (B) Schematic of the drift diffusion model and estimated 

decision parameters. Evidence is accumulated over time until one of two decision thresholds is 

reached at which point a response is made. (C) Model comparison of the seven neural HDDMs. 
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Inverse function of DIC values relative to DIC of the HDDM not containing any neural data are 

shown (raw DIC values can be found in Supplementary Table A2.1). 

2.5.4. Neural Circuitry Interacting with Fusiform Code 

 
Fig. 2.5.  Information flow. Group psychophysiological interaction (gPPI) from a left (top row) 

and right (bottom row) fusiform seed as parametrically modulated by the multivariate fusiform 

code for emotion. Color bar represents t-values. 

We were interested in exploring the broader neural circuits that interact with the fusiform 

face area during perceptual decisions. We used a generalized psychophysiological-

interaction (gPPI) analysis (McLaren et al., 2012) to identify brain regions with activity that 

covaried with the activity of fusiform “seed” voxels as parametrically modulated by the fusiform 

code. This allows us to identify putative downstream areas that receive the information 

decoded in the fusiform gyrus in the dynamic task. Two gPPI analyses were conducted with 

two 6mm spherical seeds: one in the left fusiform (center: x=-42, y=-48, z=20) and one in the 

right fusiform (center: x=44, y=-48, z=-16). We found significant increases in connectivity 

within the entire ventral face processing stream posterior and anterior to the fusiform seed, 

including multiple areas along the lateral occipital cortex and superior temporal sulcus (Fig. 

2.5, Supplementary Table A2.2). There was also connectivity with several portions of the 

dorsal visual stream, namely the superior parietal lobule, inferior parietal sulcus, and 

supramarginal gyrus, moving anteriorly to premotor areas that encompass the frontal eye 
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fields. In addition, for the left fusiform seed alone, there was also connectivity with inferior 

frontal gyrus, dorsolateral prefrontal and orbitofrontal cortex.  

2.5.5. Individual Differences in the Tendency to Wait 

To further probe the role of fusiform MVPA code, we tested whether the magnitude of this 

code may differ in easy versus ambiguous trials. In easy trials, the absolute fusiform code 

significantly differed between correct and incorrect trials (z=2.212, p=.0269). This was the 

not the case in ambiguous trials with no difference in fusiform code observed between 

correct and incorrect trials (z=-0.103, p=.9179). Analysis of Variance revealed a significant 

interaction effect (F(1,43)=4.381, p=.042) but no main effect for either accuracy (p=.241) or 

condition (p=.086) on fusiform code. However, a proportion of participants tended to 

respond rapidly during ambiguous trials, before there was enough information to arrive at a 

decision (Fig. 2.3B). To disentangle these individual differences, we conducted a post-hoc 

analysis comparing subjects who tended to respond when no information was present in an 

ambiguous trial versus those who tended to wait for information to be available before 

responding. Subjects were split into two groups: (1) early responders who, on >=80% of 

ambiguous trials, responded during the first two-thirds of the trial before information 

ramped towards one direction (N=21) and (2) the rest, who were categorized as late 

responders (N=24). Across the three runs, early responders demonstrated no significant 

changes in RT (F(2,46)=0.433, p=.651) suggesting no learning effect (average RT for run 

1=1.819s, run 2=1.835s, run 3=1.773s).  Conversely, late responders seemingly learned to 

slow down over time (average RT for run 1=3.690s, run 2=4.019s, run 3=4.156s) 

(F(2,40)=5.920, p=.006). As expected, early responders had significantly lower decision 

thresholds (mean=2.671±0.724) than late responders (mean=5.067 ±0.1.114) in the non-

neural HDDM model (t(43)=-8.661, p<.0001). Early responders were significantly less 

accurate in predicting trial outcome (mean=53.17%, stdev=0.05) than late responders 

(mean=77.22%, stdev=13.12) (z=-5.604, p<.0001) in ambiguous trials. Early responders had 

accuracy close to chance in ambiguous trials, suggesting that they were guessing based on 

partial information.  



67 
 

We next examined the regression coefficients to determine the relationship between trial-by-

trial variations in fusiform code and drift rate in a post-hoc analysis (see methods). Our data 

was split three-ways to generate separate models in HDDM: (1) easy trials across all subjects, 

(2) ambiguous trials among late responders, and (3) ambiguous trials among early 

responders. This allowed us to compare drift rates of decisions made during periods of low 

versus high information. Greater fusiform code increased drift rates in easy trials (95.61% of 

posterior probability >0) and in ambiguous trials among late responders (97.86% of posterior 

probability >0). However, this effect was not observed in ambiguous trials among early 

responders (73.96% of posterior probability >0) (Fig. 2.6). A post-hoc independent samples 

Kolmogorov–Smirnov test indicates that the distributions of the posterior probability in early 

and late responders significantly differed from one another (D=0.688, p<.0001). Taken together, 

our results suggest that fusiform code does not simply drive increases in drift rate, but that this 

relationship depends on the quality of information as well as individual differences. Early 

responses during ambiguous trials are made before information is available, therefore the 

fusiform code cannot affect the response or the modeled drift rate. This further supports the 

interpretation that the fusiform code is a measure of the evidence that drives the response. 

 

Fig. 2.6.  Posterior probability density for modulation of drift rate. (A) Easy trials, (B) 

ambiguous trials split by early (ER) and late (LR) responders. Peaks reflect the best estimates, 

while width represents uncertainty. 
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2.5.6. Caudate BOLD Signal May Reflect Inhibition  

We then tried to determine what neural signals differed between late and early  responders. 

A whole-brain group-level GLM of late, versus early, responders revealed no significant 

differences. However, there was higher caudate activation in two clusters ((1) t=4.45; x=-8, 

y=4, z=18; (2) t=3.97; x=-8, y=18, z=2) after small volume correction using a structural 

caudate mask (alpha=.05) as an a priori region of interest (Ding & Gold, 2012; Thura & Cisek, 

2017) when comparing ambiguous versus easy trails, taking into account the parametric 

modulation of the fusiform (Fig. 2.7B). This suggests that caudate activity plays a role and 

may serve to slow down decision in favor of a more accurate choice. Conversely, lower 

caudate BOLD activity among early responders potentially reflects disinhibition resulting in 

response prior to having accrued enough evidence. 

 

Fig. 2.7.  Urgency gating. (A) Predicted neural activity 𝑦 for a sample trial as estimated per 

the urgency gating model (𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑢(𝑡)) across time 𝑡. This is determined by multiplying 

a filtered evidence variable 𝑥 with no (mirroring the drift diffusion model), low, or high 

urgency 𝑢. Both 𝑥 and 𝑢 change across time, with 𝑢 growing as a linear function of time. Once 
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𝑦(𝑡) crosses the decision threshold, a decision is made. (B) A whole-brain group-level general 

linear model (GLM) revealed that early, versus late, responders had lower caudate activation in 

two clusters ((1) t=4.45; x=-8, y=4, z=18; (2) t=3.97; x=-8, y=18, z=2), highlighted in red, after 

small volume correction using a structural caudate mask (alpha=.05) when comparing BOLD 

activity, that was parametrically modulated by the fusiform code, between ambiguous versus 

easy trails. An estimated urgency parameter was negatively correlated with (C) performance 

accuracy among ambiguous trials (r=-.80, p<0001) and (D) mean beta of caudate BOLD signal 

from within the two significant clusters from our GLM analysis (r=-.28, p=.06). 

2.5.7. Testing the Caudate Signal with the Urgency Gating Model 

The caudate is not typically implicated in facial processing (Haxby et al., 2000). Therefore, we 

sought to test whether its involvement here reflected a not previously described role in 

facial emotion processing or whether it may be involved in another aspect of decision-

making that is independent of the sensory information content, as hypothesized by the 

urgency gating model. We ran an SVM classifier per participant restricted to the caudate to 

decode happy and sad faces in the training task. We found that, as opposed to the fusiform 

and other face processing areas, caudate activity did not decode facial emotions better than 

chance (mean=50.08%±0.06). Furthermore, we found that adding the trial-by-trial caudate 

BOLD signal extracted from the aforementioned clusters to the HDDM model did not 

improve model fit nor did it significantly modulate the drift rate (Supplementary Fig. A2.1). 

Taken together, this suggests that the caudate did not decode facial information in this task, 

but rather, perhaps reflects another decision variable untested by the HDDM. 

Given the growing literature in support of an “urgency” gating signal (Cisek et al., 2009)(Fig. 

2.7A) and the hypothesized role for the basal ganglia in this gating, we tested whether the 

caudate BOLD may reflect this decision parameter. We used a second model (see methods) 

that directly tested whether an additional urgency parameter may multiplicatively add to the 

evidence accumulated, driving it towards a decision threshold, as described by Thura et al. 

(2012). First, we validated that parameter fits by a non-hierarchical DDM (nDDM) model 

without urgency corroborated the non-neural basic HDDM results. The estimated decision 

threshold parameter per participant generated from these two models were highly 

correlated (r=.9461, p<.0001). Next, we tested whether a fitted urgency parameter added to 
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this nDDM model may relate to the caudate BOLD signal from our clusters. We found that 

the mean caudate BOLD activity per subject negatively correlated with participants’ urgency 

parameter with marginal significance (r=-.2789, p=.0636) (Fig. 2.7D). Urgency was strongly 

related to decreased accuracy among ambiguous trials (r=-.7995, p=<.0001) (Fig. 2.7C). We 

did not find any significant correlation between urgency and any of our questionnaire 

measures of impulsivity (i.e., BIS-11, BIS/BAS) (p>.05) (Supplementary Table A2.3).  

 

2.6. Discussion 

Much research on decision making has used simple choice paradigms based on visual evidence, 

such as dot motion tasks. When used in non-human primates, these tasks allow accurate 

characterization of the properties of sensory inputs, fitting of computational models to 

behaviour, and identification of neural activity that reflects the underlying sensory evidence or 

decision variables (Gold & Shadlen, 2007). However, these paradigms are difficult to use in 

human participants, where trial numbers are usually smaller, and the ability to accurately 

measure neural activity limited. Here, we took advantage of the large body of knowledge on 

face processing studied with fMRI, combined with MVPA and hierarchical Bayesian modelling, 

to overcome these limitations. 

We used a dynamic task in which participants had to identify the correct emotion from face 

pictures that gradually transitioned from neutral to happy or sad. Applying machine learning to 

fMRI data from a training task, we identified patterns of neural activity that encode facial 

emotion information. We then applied the individual decoders to the dynamic task and showed 

that the MVPA code in the fusiform gyrus reflected the evidence used to make a choice, as 

suggested by its relation to computational modelling parameters (drift rate) and by connectivity 

patterns to areas implicated in sensory decoding, decision-making, and motor control. This 

suggests that the neural MVPA code was driving decision in our task.  

Multivariate encoding of sensory information was found to reflect adjustments of decision 

parameters in our evidence accumulation model. We confirmed previous MVPA studies by 
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showing that facial emotion can be decoded from each of 7 brain regions hypothesized to form 

a distributed system for facial emotion processing (Haxby et al., 2000; Wegrzyn et al., 2015). 

However, only the MVPA code from the fusiform gyrus contributed to the drift diffusion model. 

There was a clear distinction between it and the other 6 regions in terms of DIC (Fig. 2.4C). This 

suggests that, while emotional facial features lead to recoverable neuronal activity in the entire 

face processing network, the fusiform gyrus is central to decoding and feeding the information 

forward in this decision-making task. These results are in keeping with recent evidence that the 

fusiform gyrus is especially involved in emotion processing (Harry et al., 2013; Wegrzyn et al., 

2015). On the other hand, the amygdala, sometimes postulated to specifically decode facial 

emotion (Haxby et al., 2000), did not influence evidence accumulation in our model. Further 

support for the role of the fusiform comes from the fact that the strength of the emotional 

code derived from MVPA was correlated with the estimated drift rate. Single cell recordings in 

monkeys have shown that drift rate is proportional to the signal-to-noise or coherence of the 

stimulus (Gold & Shadlen, 2007), implying that better sensory evidence is associated with faster 

accumulation. Note that the relationship between fusiform code and drift rate was contingent 

on the trial type and on individual differences in participants’ tendency to wait for more 

information before deliberation: it only influenced drift rate in easy trials and for late 

responders on ambiguous trials. In early responders on ambiguous trials, fusiform code did not 

contribute to evidence accumulation; this is expected, as there is insufficient evidence in the 

early portion of ambiguous trials. In sum, our results point to the fusiform gyrus as the key node 

in decoding facial information and accumulating evidence for the purpose decision-making in 

this experiment. 

The fusiform gyrus decodes the sensory information, but does it feed this information forward 

for the purpose of computing a decision variable (Gold & Shadlen, 2007)?  We used generalized 

PPI to identify brain regions where functional connectivity with a seed in the fusiform gyrus was 

modulated by the fusiform MVPA code. This approach attempts to go beyond simple 

connectivity to map the actual flow of information used in the task. It has a similar goal to other 

multivariate pattern covariance methods proposed previously sometimes referred to as 

Informational Connectivity (Anzellotti et al., 2017; Coutanche & Thompson-Schill, 2013). While 
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these analyses do not reveal directionality, they suggest possible pathways by which 

information flows to a series of regions belonging to the ventral and dorsal visual streams as 

well as premotor and cerebellar regions. Informational connectivity with fusiform was found 

along several more posterior areas of the visual system, likely representing visual information 

streaming from occipital cortex to fusiform. In the forward direction, the observed connectivity 

pattern suggests that face information flows to ventral stream regions implicated in object 

identification (Mishkin et al., 1983), such as the superior temporal sulcus, and dorsal stream 

areas involved in action specification (Goodale & Milner, 1992). The latter regions included the 

inferior parietal sulcus, superior parietal lobule, supramarginal gyrus, and frontal eye fields. All 

of these regions have been previously implicated in sensory evidence accumulation in monkeys 

and humans (Gold & Shadlen, 2007; Mulder et al., 2014). The inferior parietal sulcus, which 

corresponds to the lateral intraparietal area in monkeys,  is thought to receive sensory evidence 

information from relevant sensory areas (motion sensitive areas in the case of moving-dot 

tasks, the fusiform in the current study), and to convert this into a decision variable that is then 

passed on to premotor areas (Gold & Shadlen, 2007; Hanks et al., 2006). Our results support 

this model, by demonstrating (1) that sensory evidence is computed in the fusiform, and (2) 

that the fusiform exhibits informational connectivity with inferior parietal sulcus and premotor 

areas. This informational connectivity pattern can be interpreted in the light of the affordance 

competition model (Cisek, 2007), in which information related to sensory representations and 

action selection constantly interacts as it moves from occipital to motor areas, and where 

decisions emerge from a competition between relevant motor outputs. This model predicts 

that sensory decoding should feed information forward to the medial temporal, parietal and 

premotor areas involved in converting sensory information into action, as shown here. 

Previous fMRI studies have attempted to image regions involved in evidence accumulation 

(reveiwed in: Mulder et al., 2014). Typically, researchers look for correlations between BOLD 

signal and fitted values of drift rate or computed evidence variables. However, in studies to 

date, it has not been possible to use fMRI to discriminate between neural representations of 

sensory evidence as opposed to decision variables. For example, Wheeler et al. (2015a) 

designed a paradigm in which shapes appeared successively to indicate cumulative probability 
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in favour of a left or right hand response. Thus, at each time point it was possible to relate 

BOLD to an evidence variable. They were able to identify brain regions involved in evidence 

accumulation independent of action preparation, but because the visual stimuli were similar, 

sensory evidence accumulation could not be imaged. Braunlich and Seger (2016), using a similar 

paradigm, found that evidence thus defined correlated with BOLD in motor regions 

(contralateral motor cortex and putamen, ipsilateral cerebellum), suggesting that a motor 

decision rather than a sensory evidence correlate, was being imaged. Using a stock-picking 

paradigm with sequential probabilistic information, Gluth et al. (2012) found that a calculated 

decision variable was reflected in value-coding brain areas (ventromedial prefrontal cortex and 

ventral striatum) while a response variable was tracked in motor areas. Another study using a 

moving-dot paradigm identified correlates of the accumulation rate in the inferior parietal 

sulcus, but once again this likely reflected a decision variable rather than sensory evidence 

(Nagano-Saito et al., 2012). In sum, previous fMRI studies imaged decision variables or value 

signals related to different choice options rather than the accumulating sensory evidence that 

guides these choices.  By using MVPA, we were able to distinguish neural responses to the two 

choice stimuli used here and show that this response reflected evidence accumulation since it 

modulated the drift rate in our Bayesian model. 

The basal ganglia did not display PPI connectivity to fusiform, nor did they appear to encode 

face information, however they did emerge in our analysis of group differences, albeit only 

after small volume correction. Specifically, there was greater caudate activation during 

ambiguous stimulus viewing in late versus early responders. In the affordance competition 

model the basal ganglia are thought to bias decisions via cortico-striatal connections (Cisek, 

2007; Thura & Cisek, 2017). One type of response bias is to slow down in ambiguous situations, 

which one could call “negative urgency”. Indeed, Cisek et al. (2009) have suggested that the 

pure evidence accumulation models do not fully account for observed behaviour when speed-

accuracy trade-offs are present or information is ambiguous. They suggest the presence of an 

additional model parameter, termed urgency, that is independent of the sensory evidence, but 

multiplies the drift rate to hasten or slow down decisions when the context demands it. 

Fortuitously, approximately half our subjects slowed down during ambiguous trials, waiting for 
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the stimuli to morph towards the final emotion, and the others did not. One way for race 

models to accommodate slower responses is to raise the decision threshold, but because easy 

and ambiguous trials were intermixed, participants did not have a priori knowledge of which 

type of stimulus would be displayed in any given trial. Another way to account for slower 

responses on ambiguous trials is lower urgency. Our findings implicate the caudate in slowing 

down decisions when the evidence is ambiguous. Moreover, there was a weak negative 

correlation between caudate BOLD effect size during ambiguous trials and the fitted urgency 

parameter; therefore, caudate BOLD may reflect negative urgency. These results are consistent 

with microelectrode recordings in the basal ganglia of monkeys in which neuronal firing was 

insensitive to evolving sensory evidence but could influence the response speed by modulating 

activity in sensory processing regions (Thura & Cisek, 2017). The observed caudate activity in 

our study may reflect the indirect pathway of the basal ganglia – originating from a striatal 

population of projection neurons thought to generate a net inhibition resulting in a “stopping 

signal” (Frank & Claus, 2006). For example, in a fMRI study with a dot-motion task, we found 

that participants slowed their responses when offered the possibility of monetary reward, and 

that caudate activation during these trials correlated with a raising of the decision threshold 

(Nagano-Saito et al., 2012). Dopamine signaling was shown to underpin this effect. It should be 

noted that evidence-independent urgency signals could end up being modeled as drift rate or 

threshold in pure evidence accumulation models; to disambiguate urgency from pure evidence 

accumulation, one needs to dynamically manipulate the amount of information presented, as in 

the present study (Cisek et al., 2009). It must be noted however that the caudate effect only 

emerged after small-volume correction of the neuroimaging data, meaning that it should be 

confirmed in future studies. 

Findings from our study should be considered in light of its limitations. First, both the evidence 

accumulation and urgency signal are hypothesized to grow in time. Though we used multiband 

fMRI acquisition to reduce repetition time below 1 second, without the ability to record at 

millisecond resolution, the estimated neural parameters of each model may lack in precision. 

Second, we used facial emotion as an exemplar of sensory information for perceptual decision-

making. Future studies should test whether MVPA decoding can also be applied to other forms 
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of sensory information, and whether the relationship to decision parameters holds. Third, 

though we observed caudate activity thought to reflect a dopaminergic stopping signal, our 

study does not measure dopamine nor the indirect pathway per se. The implications of this 

pathway in human decision-making in ambiguous environments merits further research. 

 

2.7. Conclusion 

By combining model-driven multivariate fMRI analysis, psychophysics, and computational 

modelling, we characterized two decision parameters underlying human perceptual decision-

making processes (drift rate and urgency signal) in the setting of dynamic, changing 

environments. Our results reveal how these decision parameters are encoded in the human 

brain and indicate that MVPA techniques can be used to probe and disentangle the biological 

underpinnings of the decision process. This may be of particular relevance to characterizing 

brain phenotypes related to disorders of decision-making (e.g., addictions, impulse control 

disorders, and obsessive-compulsive disorder). 
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CHAPTER 3.  Disentangling the neural decision parameters involved in 

perceptual decisions in humans. 

3.1. Preface 

EEG may be better suited to parse the temporal characteristics of decision parameters and 

differentiate how neural signals may evolve and devolve with time.  As a continuation from 

Chapter 2, we tested the same dynamic perceptual decision-making task in a relatively large 

cohort of subjects while they underwent EEG.  In this chapter, we replicated previous work that 

demonstrated a domain-general neural correlate of the decision variable, namely the CPP, 

which gradually builds throughout the trial and ramps steeply close to the time of response.  

We provide evidence that the CPP signal reflects the combined influence of sensory evidence as 

well as an urgency signal.  To our knowledge, this study is the first to directly test the trial-by-

trial influence of urgency on a decision variable in naïve human subjects.  Furthermore, we 

were able to dissociate this decision variable signal from an ERP that was evoked earlier in the 

trial, contradicting previous findings that suggest these two signals are one and the same.  This 

highlights the importance of having high temporal resolution and sufficiently long trial times to 

properly tease apart neural signals temporally.  Our results reveal how neural correlates of 

decision parameters may unfold in time and provide further evidence for the role of an urgency 

signal in perceptual decisions. This work is currently in preparation for submission. 

 

3.2. Abstract 

Conventional models of perceptual decision-making posit that noisy sensory evidence is 

integrated and determines choice based on the decision threshold reached.  Neural signals 

bearing these properties (i.e., decision variables) have been characterized in non-human 

primates but complimentary data in humans is largely missing.  Moreover, recent findings 

suggest an additional evidence-independent, time-variant urgency signal is in play and 

decreases the amount of sensory evidence needed to commit to a choice as time elapses.  Our 
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findings provide evidence that activity of a previously identified neural decision variable, 

namely the centroparietal positivity (CPP), reflects the combined influence of sensory evidence 

and an endogenous urgency signal.  We demonstrate that the predicted neural signal from a 

urgency gating model fitted with the observed CPP activity over time.  Inter-individual 

variability in this urgency signal potentially accounted for why certain individuals are prone to 

fast and erroneous decisions, especially when signal-to-noise ratio of the decision environment 

is low.  These findings highlight potential determinants of perceptual decisions in human 

perceptual decision-making and reveal how neural signal dynamics may unfold throughout the 

decision formation.   

 

3.3. Introduction 

Imagine you are arriving at a stop light and as you approach, the light turns yellow.  You must 

consider the relevant information at your disposal: your distance from the stop, the speed of 

your vehicle, the traffic condition etc.  Importantly, as the stop is getting closer, there is an 

increasing urgency to commit to a choice and your decision is expressed through a movement – 

a step on either the gas or the brake.  Studies of decision-making conventionally assume a 

stochastic accumulation of sensory evidence and a decision is made once the accrued evidence 

passes a criterion level, termed the decision threshold (Gold & Shadlen, 2007; Ratcliff & 

McKoon, 2008).  Decision parameters from this class of drift diffusion models (DDMs) have 

predominantly received support from studies in non-human primates that have successfully 

identified neuronal signals encoding these ingredients (Kiani & Shadlen, 2009; Shadlen & 

Newsome, 2001).   

While pioneering studies on the neural correlates of decision-making by proxy of the DDM in 

non-human/human primates have been conducted by means of simple, well-controlled 

experimental paradigms (e.g., random dot motion task) (Ratcliff et al., 2016), natural actions 

during interactive behaviour in the wild are determined by constantly changing and 

unpredictable environment. The notion that sensory evidence must achieve a critical threshold 
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before decision is difficult to reconcile with when choices are made based on little or no 

sensory evidence – what then drives choice commitment when there lacks sensory input to be 

integrated?  Convergent lines of research now support the notion of an additional “urgency” 

signal which non-selectively elevates activity towards unchanged action thresholds, such that 

less sensory evidence is required for decision commitment as elapsed decision time increases 

(Cisek et al., 2009; Murphy et al., 2016; Thura & Cisek, 2014).  While the traditional DDM 

models would predict the neuronal firing in evidence accumulation regions (e.g., lateral 

intraparietal area) to scale with sensory evidence, a model with an urgency parameter would 

predict such firing would additionally ramp more rapidly towards a decision threshold as time 

elapses.  Indeed, primate single-cell recording studies indicate that this evidence-independent 

influence on the decision process is observable in the activity of neurons that reflect evolving 

decision formation (Ditterich, 2006; Hanks et al., 2014; Heitz & Schall, 2012; Standage et al., 

2011; Thura & Cisek, 2016).  Recently, this line of work has been extended to human decision-

making using scalp electroencephalography (EEG) which characterized a centroparietal 

positivity (CPP) in the event-related potentials (ERPs) that traces evidence accumulation, 

irrespective of the feature being evaluated (O'Connell et al., 2012).  Speed pressure was found 

to enhance representations of sensory evidence, rendering the alternatives more 

distinguishable, and may have a knock-on impact on steepening the CPP (Steinemann et al., 

2018).  However, to our knowledge, no EEG study has formally tested an urgency signal and 

how it may affect a neural decision variable.  Moreover, the sudden-onset and discrete trial 

presentation coupled with short trial times often favoured in ERP research has a key 

shortcoming: stimuli elicit strong early sensory-evoked components that may partly obscure the 

dynamics of an unfolding decision process. 

While previous work has illuminated the mechanistic basis of decision formation in non-human 

primates, complimentary data on the neural decision variables in humans remains 

understudied.  Moreover, the influence an additional urgency signal may have on this neural 

evidence accumulation signal is, to our knowledge, untested.  In the present study, we aim to 

address these outstanding issues.  As a mean to disambiguate evidence accumulation and 

urgency processes, we designed a dynamic decision-making task more closely resembling 
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naturalistic settings while also allowing us to track the amount of information available in the 

environment (Thura et al., 2012; Yau et al., 2020).  We exploited EEG’s high temporal resolution 

to tease apart neural determinants of human decision formation.  First, we hypothesized that a 

neural signal (i.e., N170 or P300) close to the start of the trial likely reflects the 

setting/adjusting of decision threshold whereas a neural signal (i.e., CPP) that ramps up in time 

with peak close to response reflects the evidence accrued.  Second, we tested whether the 

predicted neural signal from our candidate models matched the actual observed data.  We 

predict a model incorporating an urgency signal would provide a better fit with the neural 

decision variable.  Finally, with a relatively large sample of subjects, we investigated whether 

individuals may exhibit differing latent levels of the endogenous urgency signal, and if this may 

affect the relation between neural signals and decision parameters. 

 

3.4. Methods 

3.4.1. Participants 

74 right-handed young healthy adults (34 males; age mean 23.4years±5.17 standard 

deviation) participated in the experiment for monetary compensation.  All subjects gave 

informed consent prior to data acquisition and were screened for current or past diagnosis of 

a psychiatric disorder, neurological disorder, or concussion, and moderate to severe 

depression (score >5 on the Beck Depression Inventory (Beck et al., 1961)). The study was 

approved by the Montreal Neurological Institute Research Ethics Board.   

3.4.2. Experimental Design 

Participants were presented short videos of a face “morphing” between expressions (Fig. 3.1).  

Each trial was preceded by a time-jittered fixation cross.  Trials always began with a neutral 

expression and gradually transitioned into either a happy or sad emotion.  Participants were 

instructed to predict whether the facial expression would be happy or sad by the end of the 

trial via a button box in their right hand, and to respond whenever they felt confident enough 
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to do so.  Subjects were asked to respond both as quickly and as accurately as possible.  Face 

stimuli were derived from the NimStim database (Tottenham et al., 2009) and manipulated to 

generate 18 intermediary faces that gradually transitioned in intensity of emotional expressions 

between a model’s neutral and happy or sad emotion.  Thus, emotion levels varied from 0 to 19 

in both directions.  Trials lasted for a maximum of 60 frames over 6secs (i.e., 10 frames per sec), 

plus a final image of the correct emotion (with the emotion level >15) for 1sec either 

immediately after a response was made or at the end of the trial if the participant had not yet 

made a response.  In the latter case, subjects could still respond during the final frame (i.e., 61st 

frame) only if they had not yet done so earlier in the trial.  Responses during this period were 

recorded but the frame would not change and continue to persist until the original 1sec 

window was over. 

The current study consisted of two trial types (or conditions), namely “easy” and “ambiguous”, 

which were modelled after previous work (Thura et al., 2012).  These two trial types were 

interleaved throughout the runs and subjects did not know, at the start of the trial, which trial 

type will proceed.  In easy trials, all intermediary faces presented were of the correct emotion 

(e.g., in a trial in which the correct answer is happy, no sad images are ever presented).  Each 

successive frame had a 65% chance of being one level higher than the previous frame in the 

direction of the correct emotion.  By the final frame, all trials had an emotion level >16.  In 

ambiguous trials, frames within the first two-thirds of the trial (i.e., up to the 40th frame) 

generally hovered around a neutral valence.  Each successive frame had a 50% chance of being 

one level higher than the previous in the direction of the correct emotion and could only reach 

a maximum of emotion level 7.  To prevent, for example, many slightly happy and a few very 

sad images being presented, the maximum emotion levels presented in the correct and 

incorrection directions were kept within two levels of each other.  In the final third of the trial, 

there was a steep increase of emotion level in favour of the correct emotion, with a 95% chance 

that a given frame would be exactly one level higher than its predecessor.  As with the easy 

condition, all trials had an emotion level >16 by the final frame. 
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Each subject partook in 120 trials total, divided equally across 3 blocks.  Trials were evenly split 

between happy and sad (determined by the emotion at the frame frame), and between easy 

and ambiguous.  Trial order was randomized in every block. 

 

Fig. 3.1.  Schematic of task design.  (a) Progression of a single trial begins with a blank image 

followed by a time-jittered fixation cross.  A short video that start at a neutral facial expression 

which transitions into a happy or sad emotion is then presented.  Participants are asked to 

respond what they think the final emotion will be and to do so whenever they felt confident in 

their prediction.  If either a response is made or 6secs have elapsed, an image of the correct 

emotion is presented.  (b)  Two types of trials were employed: “easy” and “ambiguous”.  In easy 

trials, facial expressions gradually morphed towards one of the two emotions.  In ambiguous 

trials, facial expressions remain relatively neural until two-thirds of the trial has elapsed, after 

which point emotion rapidly ramped up towards happy or sad. 

3.4.3. EEG Acquisition and Preprocessing 

EEG was recorded continuously using a 256-channel high-impedance HydroCel Geodesic 

Sensory Net (Electrical Geodesic, Inc., Eurgene, OR) using the NetStation 5 acquisition software 

(Electrical Geodesic).  As per manufacturer standard recommendations, electrode impedance 

levels were kept below 50Ω during acquisition.  Data were collected with a sampling rate of 

1000Hz using the electrode Cz as reference with online visualization filters of 60Hz for Notch, 

5Hz for high-pass, and 120Hz for low-pass. 
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Raw data were preprocessed offline using the Automagic pipeline (Pedroni et al., 2019).  First, 

bad channels were identified using PREP (Bigdely-Shamlo et al., 2015) in which a 1Hz high-pass 

filter is applied, power-line noise removed, and robust average referencing iteratively 

implemented to detect and interpolate bad channels to arrive at an average reference that is 

not affected by artifacts.  Bad channels were then excluded as to avoid contamination in later 

preprocessing steps.  Second, continuous EEG recordings were filtered with a bandpass filter of 

0.1-60Hz.  Third, artifacts related to eye-blinks and muscle movement were corrected for using 

the Multiple Artifact Rejection Algorithm (MARA) – a supervised learning algorithm that 

classifies whether components identified by independent component analysis qualify as 

artifacts based on established expert ratings (Winkler et al., 2011).  Finally, the previously 

excluded bad channels were interpolated and the data was down-sampled to 250Hz for 

computational efficiency.  Data quality after preprocessing was assessed automatically by 

Automagic and confirmed by subsequent manual inspection.  Further details regarding the 

Automagic pipeline can be found online (https://github.com/methlabUZH/automagic).  After 

preprocessing and quality control, data from 57 participants were used for further analysis. 

Preprocessed data files were imported into MNE-Python (Gramfort et al., 2013; Gramfort et al., 

2014) for statistical analysis and visualization.  Epochs were created around the stimulus onset 

(-1,000ms to 8,000ms time-window) and response (-1,000ms to 1,000ms time-window), with 

both baseline-corrected for the 500ms preceding stimulus onset.  Epochs in which the activity 

exceeded ±150µV were excluded (average number of trials post-preprocessing: 

Easy=57.92±4.47, Ambiguous=57.74±4.64). 

3.4.4. Event Related Potentials 

Here we focused on three ERPs of interest: the N170, P300 and centroparietal positivity (CPP).   

https://github.com/methlabUZH/automagic


83 
 

 

Fig. 3.2.  Grand average across all trials and subjects (N=57) for (a) onset-locked and (b) 

response-locked epochs.  Topomaps for the timepoints of peak activity are depicted above the 

waveforms, with warmer and colder colors indexing higher and lower activity, respectively. 

The N170 is a face-sensitive visually evoked ERP elicited over posterior visual cortical areas.  It’s 

amplitude is thought to scale with how similar the stimuli is to a face (Eimer, 2011) but has 

recently also been cited as a domain-general response to unexpected perceptual events 

(Robinson et al., 2018).  Previous work using a face-car visual discrimination task to test the 

drift diffusion model found that the N170 reflected an early perceptual event that is not directly 

related to the actual decision (Philiastides et al., 2006; Philiastides & Sajda, 2006).  Based on the 

existing literature and on our grand-average waveform, we extracted the N170 as the peak 

amplitude between 120-200ms at two lateral occipital sites (E114 & E168) after stimulus onset 

(Supplementary Fig. A3.1). 

The centroparietal “P300” or “P3b” has a long-established role in decision-making and is well 

defined in the literature, though its exact role in the decision process is debated (Polich, 2007; 

Sutton et al., 1965).  We focused on the posterior P3b specifically, instead of the frontal P3a, as 

it has been previously linked with the CPP component (O'Connell et al., 2012; Twomey et al., 

2015) and shown to modulate onset of a neural decision variable based on task difficulty 

(Philiastides et al., 2006).  In keeping with the literature and on the maxima and time 

distributions observed in the grand-average waveform across our participants (Fig. 3.2), P300 

was defined as the peak amplitude between 200-400ms at electrode site Pz after stimulus 

onset and the maximum amplitude reached has been previously implicated in decision-making 

(Picton, 1992). 
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More recently, a CPP component that spatially overlaps with the P300 has been also identified 

and is thought to index a developing decision variable in the decision-making process (Kelly & 

O'Connell, 2013; O'Connell et al., 2012; van Vugt et al., 2019).  Unlike the traditional conception 

of ERP components as unitary processes, the CPP is thought to be a gradual signal that scales 

with the strength of sensory evidence, peaking close to the time of decision/action.  This rise-

to-threshold like activity is thought to be insensitive to sensory modality or target feature 

(O'Connell et al., 2012) and resembles the drift rate parameter of the DDM which indexes the 

speed of sensory evidence accumulated over time.  Unlike the P300, there is no clear 

established time-window of interest for CPP with variations in the relative timing used likely 

reflecting differences in paradigms and design (O'Connell et al., 2012; van Vugt et al., 2019).  As 

such, we took a data-driven approach to identify a time-window of interest over which we 

could observe CPP signal buildup.  As with O'Connell et al. (2012), we calculated the temporal 

slope of the activity from each participant’s average waveform at electrode site Pz in moving 

windows of 100ms length in 10ms steps, starting from -1,000ms to response execution (i.e., 

0ms).  Signal buildup rate was computed as the slope of a straight line fitted to the unfiltered 

signal within each sliding window.  A one-tail permutation t-test implemented via 

mne.stats.permutation_t_test with 5,000 permutations was then used to identify signal buildup 

rates that significantly differed from 0 across all subjects in a positive direction – indicating CPP 

activity is ramping up – and are marked in black below the waveforms in Fig. 3.5.  The 

cumulative sum of activity within this time-window of interest was then used to index CPP 

signal buildup for further analysis.  An alternative to using the cumulative sum is to calculate 

the area under curve; however, these two signals are almost identical (Spearman’s rho=.999, 

p<.0001) and did not affect our findings.  We additionally compared our analysis to results from 

a larger cluster, centered on the Pz (5 electrodes: E101, E100, E129, E119, E110, E128) 

(Supplementary Fig. A3.1 & A3.2), to ensure our findings replicated. 

3.4.5. Time-Frequency Analysis 

In addition to standard ERP, different frequencies of oscillatory activity in the EEG signal has 

been linked to decision parameters of the DDM.  The theta band power from mid-frontal 
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electrodes, for example, has been linked to decision threshold and is thought to reflect a gating 

mechanism (Cavanagh et al., 2011a; Cavanagh et al., 2011b; Frank et al., 2015).  A harmonic 

posterior alpha signal has also been implicated (Klimesch, 2012; Kloosterman et al., 2019) as 

well a motor beta signal in the contralateral hemisphere to the hand for response execution 

(O'Connell et al., 2012).  We were interested in testing whether our straight-forward, 

minimalistic processing analysis of ERPs was linked to these ongoing oscillatory fluctuations.  To 

this end, we used the Morlet wavelet methods implemented via 

mne.time_frequency.tfr_morlet to assess spectral power across the trial period on our 

preprocessed epoch data.  The trial’s estimated power was then baseline-corrected for the 

500ms preceding stimulus onset and resampled using scipy.signal.resample to match onset and 

response across all trials (i.e., all trials began at timepoint 0 and ended at timepoint 1 which 

stood for the maximum RT for the subject).  Power was averaged across the frequency range 

for each band (alpha=0-4Hz, theta=4-8Hz, alpha=8-12Hz, beta=12-30Hz, gamma=30-45Hz).  

Each sample of EEG time course was z-scored and outliers (z>4.5) were replaced with the 

average EEG power (Frank et al., 2015).  We then extracted the early (first 10% of trial time 

after onset) and late power (last 10% of trial time before response) for each frequency band to 

compared against ERPs of interest.  Based on the literature, we focused on theta power from 

the FCz, alpha from the Pz, and beta from electrodes of the left hemisphere.  We also repeated 

this analysis using the power for each frequency band averaged across all electrodes 

(Supplementary Fig. A3.3). 

3.4.6. Tendency to Wait: Early versus Late Responders 

As with our previous work (Yau et al., 2020), we observed two distinct groups of individuals 

based on their performance under the ambiguous condition (Fig. 3.3) : (1) early responders 

(n=32), who on >=80% of ambiguous trials, responded during the first two-thirds of the trial 

before information ramped towards one direction and (2) the rest, who were categorized as 

late responders (n=25).  We hypothesized that one factor that may drive this group difference 

lies in differences in the endogenous urgency signal. 
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Fig. 3.3.  Histogram of reaction time distributions in (a) easy and (b) ambiguous trials.  Solid 

lines reflect the gaussian kernel density estimation.  ER: early responders (n=32); LR: late 

responders (n=25). 

One mixed-design ANOVA per neural signal (i.e., N170 maximum amplitude, P300 maximum 

amplitude, and CPP cumulative sum) were conducted to investigate the within-subject 

relationships of conditions (i.e., easy and ambiguous) and between-subject relationships for 

group affiliation (i.e., early and late responders) as well as their interaction.  Given the unequal 

sample size, Levene’s test was used to test and confirm equality of variance between the two 

groups.  If sphericity was violated, Greenhouse-Geisser corrected degrees of freedom are 

reported. 

In addition, given that CPP gradually ramps up in time, we tested whether CPP buildup/slope 

may differ between the two groups at specific time intervals within our larger time-window of 

interest.  A two-tailed, two sample permutation t-test (mlxtend.evaluate.permutation_test) 

with 5,000 permutations was conducted per condition.  Time windows where the two groups 

significantly differed are marked in purple below the waveforms in Fig. 3.5. 
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3.4.7. Hierarchical Drift Diffusion Model 

Drift diffusion models (DDM) have been widely applied over the last decades and is commonly 

used to infer latent psychological processing underlying perceptual decision-making, and to link 

them to neural mechanisms (Ratcliff et al., 2016). In the DDM framework, decision-making 

between two alternatives is reflected by a continuous integration of relative sensory evidence 

over time until sufficient sensory evidence has been accumulated and a decision threshold for 

one of the choices is reached.  The model decomposes behavioural data into four parameters: 

non-decision time (t) for stimulus encoding and response execution latencies, bias (z) towards 

one choice alternative, drift rate (v) for speed of evidence accumulation, and decision threshold 

(a) which determines how much evidence is needed before deliberation (Fig. 3.4a).  The shape 

of the reaction time (RT) distribution determines which decision parameters are to be adjusted  

(Ratcliff et al., 2016). 

Here, we applied a hierarchical estimation of the DDM (HDDM) (Wiecki et al., 2013), 

implemented in Python 2.7 (http://www.python.org), to calculate the decision parameters (Fig. 

3.4b).  The hierarchical design assumes that model parameters from individual participants, 

while varying, are not completely independent.  Rather, individuals’ parameters are drawn and 

constrained by the group distributions with group priors (Gelman et al., 2013). This Bayesian 

estimation is thought to be more robust in recovering model parameters, particularly when the 

number of trials are relatively small (Matzke & Wagenmakers, 2009; Wiecki et al., 2013).  Trials 

that fell within 5% of each tail of the RT distribution were considered outliers that cannot be 

captured by HDDM (e.g., slow responses due to inaction or fast erroneous responses due to 

action slips) and removed from analysis (Wiecki et al., 2013).  Markov chain Monte Carlo 

sampling was used for Bayesian approximation of the posterior distribution of model 

parameters.  5,000 samples were drawn from the posterior to obtain smooth parameter 

estimates, the first 100 samples were discarded as burn-in.  Convergence of Markov chains 

were assessed by inspecting traces of model parameters, their autocorrelation, and computing 

the Gelman-Ruben statistic (Gelman & Rubin, 1992) to ensure that the models had properly 

converged.   

http://www.python.org/
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As a first step, we constructed a base model whereby decision parameters are simply a function 

of RT and accuracy.  In a second model, we expanded upon this base with a simple model that 

allowed drift rate and decision threshold to vary between condition (i.e., easy and ambiguous).  

Our third model further extended this by allowing for trial-by-trial variations in neural activity, 

in addition to condition, to modulate decision parameters.  The estimated posterior 

distributions index the degree to which the decision threshold (a) are altered by variations in 

P300 and N170 as well as drift rate (v) by CPP buildup.  Our comprehensive model is as follows: 

[a(t) = β0 + β1P300(t) * β2N170(t)*β3condition(t), v(t) = β4 + β5 CPP(t)*β6condition(t)].  In these 

regressions, a larger positive coefficient weight (β) indicates a stronger positive correlation 

between neural measure and decision parameter, and vice versa.  Of note, distribution of the 

decision threshold and drift rate parameter were estimated separately for early and late 

responders for all models using the “depends_on" function in HDDM as group distributions are 

hypothesized to be different.  Further, we iteratively added in modulators to test whether 

successive additions of these modulators improved model fit (described below). 

Deviance information criterion (DIC), a widely used criterion for comparisons of hierarchical 

models, was used for model comparison (Spiegelhalter et al., 2002).  A lower raw DIC value for 

a given model (for the whole group) favors models with highest likelihood and least number of 

parameters.  A DIC difference of 10 is considered significant (Zhang & Rowe, 2014).  All 

reported DIC values are relative to the base model (i.e., target model DIC minus base model 

DIC) – the more negative the value, the better the model fit compared to the base model.  

Parameters of the best fitting model were analyzed by Bayesian hypothesis testing which 

examines the probability mass of the parameter region in question (i.e., percentage of posterior 

samples greater/smaller than zero). For all HDDM analyses, we considered posterior probability 

≥95% of the respective parameters being different than zero as significant. 
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Fig. 3.4.  Overview of the drift diffusion model.  (a)  Schematic of the drift diffusion model.  (b) 

Graphical illustration of the hierarchical drift diffusion model (HDDM) with trial-by-trial neural 

regressors. Round nodes represent continuous random variables and double-bordered nodes 

represent deterministic variables, defined in terms of other variables. Decision parameters 

including drift rate (v), decision threshold (a), non-decision time (t), bias(z), and standard 

deviation of drift rate (sv) were estimated for the group (nodes outside the plates with: group 

mean (μ) and variance (σ)) and subjects (s) (nodes in outer plate). Blue nodes represent 

observed data, including trial-wise behavioural data (accuracy, RT) and neural measures (P300 

and CPP). Trial-by-trial variations of v and a were modulated by P300 and CPP, respectively, as 

well as by trial type (i.e., easy or ambiguous trials). 

3.4.8. Urgency Gating Model 

Models of decision-making incorporating an endogenous urgency signal posits that choices 

result from a combination of signals that reflect the available sensory evidence as well as a level 

of urgency which grows in time (Cisek et al., 2009; Drugowitsch et al., 2012).  We constructed a 

minimalistic urgency gating model (UGM) and a non-hierarchical drift diffusion model (nDDM) 

to compare against and to test whether accounting for an urgency signal may better fit our 

observed data.  

In both models, a filtered evidence variable 𝑥 was derived by the following differential 

equation: 

𝜏
𝑑𝑥(𝑡)

𝑑𝑡
= −𝑥(𝑡) + 𝑔𝐸(𝑡) + 𝐺(0, 𝑁)   (1) 
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At any given time t, the evidence E (i.e., level of information/facial emotion level) is multiplied 

by an attentional fixed gain term g.  An intra-trial Gaussian noise variable G(0,N) with a mean of 

0 and a standard deviation of N was added.  A N of 6 was chosen based on previous work 

(Carland et al., 2019; Yau et al., 2020) and because it gave a range of simulated RTs with similar 

variability as the observed data in our current study.  The time constant 𝜏 determines how far 

back in time sensory information is considered by the model.  The UGM posits that only recent 

information is used to inform decision whereas nDDM does not; thus, 𝜏 was set to 200ms for 

the UGM on the basis of previous behavioural and physiological studies (Cisek et al., 2009; 

Thura et al., 2012; Thura & Cisek, 2014) while the maximum trial duration of 6sec was used as 𝜏 

for the DDM.  Evidence (E), gain (𝑔), and noise (N) parameters were the same in both models. 

Next, the filtered evidence 𝑥 at a given time t was then used to compute the estimated neural 

activity 𝑦 as follows: 

𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑢(𝑡)   (2) 

A decision is made then the variable 𝑦(𝑡) reaches a critical decision threshold T.  Importantly, 

the UGM assumes that evidence is multiplied by an urgency signal 𝑢 that linearly increases with 

time (Cisek et al., 2009; Thura & Cisek, 2014; Yau et al., 2020).  A core prediction of the UGM is 

that decisions made with low levels of filtered evidence 𝑥 should be associated with high levels 

of urgency and vice versa.  In other words, high urgency will push one to commit to a choice 

even if evidence for that choice is weak. On the other hand, the nDDM does not have an 

urgency signal 𝑢; once the variable 𝑥(𝑡) reaches threshold T, a decision is made.  In both 

models, a non-decision time of 200ms was added to yield the predicted RT. 

Each model adjusted for one parameter: for UGM, the 𝑢 parameter and for nDDM, the T 

parameter.  Both these parameters influence the means of RT distributions.  An exhaustive 

search was implemented to find the parameter that minimized the mean squared error 

between each model’s predicted RT versus the observed RT across all trials for a subject.  The 

models were used to simulated 5,000 trials, the mean of which was used to compared against 

the real RT distributions. 
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Linear mixed effect models implemented via statsmodels.mixedlm were used to examine the 

relationship between the actual observed CPP signal compared to a neural code predicted by 

either the UGM or the nDDM at the trial-level.  Subjects were included as a random variable 

with differing intercepts.  For both the predicted and observed neural signal, buildup was 

determined as the cumulative sum of activity from 500ms post stimulus-onset to the time of 

response.  This 500ms delay was to ensure that we did not confound our CPP activity with the 

P300 signal as they spatially overlap.  The log-transformed absolute value of the predicted 

neural code was used for our analysis as this value had directionality towards the upper or 

lower bound, whereas CPP is thought to be a general evidence accumulation signal and 

positively ramp up regardless of the stimulus presented.  As with the HDDM, trials that 

registered no response or with RT that fell within 5% of each tail of the RT distribution were 

considered outliers and discarded. 

3.4.9. Statistical Analysis of Behavioural Data 

Statistics for this study were conducted using packages including pingouin (Vallat, 2018), 

statsmodels (Seabold & Perktold, 2010), and mlxtend (Raschka, 2018) in Python 3.7 

(http://www.python.org).  To account for potential spurious outliers in our relatively low 

sample size, non-parametric tests were used to assess the following subject-level data.  Mann-

Whitney U tests were conducted to compare differences in behavioural performance (i.e., 

mean accuracy and RT) between emotion, groups, as well as neural signals between correct and 

incorrect trials.  Spearman correlations were used to examine relationships between different 

neural signals (e.g., P300 and CPP) and other metrics of interest (e.g., HDDM decision threshold, 

nDDM decision threshold, and UGM urgency signal).  An alpha of .05 was used as threshold for 

statistical significance and were corrected for multiple comparison using the FDR Benjamini-

Hochberg correction as implemented by statsmodels.stats.multitest.multipletests. 

 

http://www.python.org/
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3.5. Results 

3.5.1. Behavioural Results 

The early responder (ER) group were significantly less accurate on ambiguous trials 

(mean=53.76%±6.23) than the late responder (LR) group (mean=73.36±7.34) (U=629.5, 

p<.0001).  ER individuals appear to be performing at chance level, suggesting that they were 

guessing rather than making informed judgements.  Difference in accuracy performance was 

also observed on easy trials with the ER group (mean=94.86%±5.42) having lower accuracy than 

the LR group (mean=98.89%±1.2) (U=766.0, p<.0001) although both groups preformed near 

ceiling.  Moreover, although group categorization was made based on RTs on ambiguous trials 

(see Methods), ER (mean=1.39s±0.28) tended to also respond earlier than LR (mean=2.16 

±0.61) on easy trials (U=718.0, p<.0001).  Overall, subjects were neither faster (U=6165.5, 

p=.498) nor more accurate (U=5536.0, p=.107) to either happy or sad stimuli. 

3.5.2. Comparing Neural Signals of Interest between Early and Late Responders 

To examine endogenous determinants of decision RT, we began by identifying the neural 

correlates previously implicated in evidence accumulation during perceptual decision-making.  

In addition to a prominent sensory-evoked P300, we observed a CPP activity that increased 

over time and peaked close to the time of response – consistent with the build-to-threshold 

dynamics proposed by drift diffusion models.  These two signals were significantly positively 

correlated (rho=.38, p<.0001).  The grand-average waveforms indicate that CPP generally 

peaked before response suggesting that CPP encodes sensory information and not motor 

readiness.  Crucially, the use of a gradual morphing stimuli eliminated sensory-evoked 

deflections (e.g., N170 and P300) from the ERP trace, making it possible to disentangle the two 

and finely trace the evolution of the CPP from its onset to its peak.  Given the temporal 

evolution of the CPP, we probed with a permutation test whether there may be windows of 

time within which the buildup rate may differ between groups.  For easy trials, we found that 

LRs had greater CPP signal buildup compared to ERs during the -280ms to -64ms preceding 

response (Fig. 3.5b).  For ambiguous trials, we again observed greater CPP signal buildup among 
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LRs than ERs over two time-windows preceding response: -300ms to -204ms and -180ms to -

84ms (Fig. 3.5d). 

 

Fig. 3.5.  Grand average waveforms and topographical maps.  (a-d): Grand average waveforms 

from electrode site Pz.  The onset-locked P300 signal is depicted in the left-hand column for (a) 

easy and (c) ambiguous trials.  The response-locked CPP signal is depicted in the right hand 

column for (b) easy and (d) ambiguous trials.  In these CPP plots, the identified time window of 

interest where slopes differ from zero, indicating signal buildup, is marked by the solid black line 

at the bottom.  Group differences in slope is marked by the solid purple line at the bottom.  Blue 

and red lines relate to the late and early responders, respectively.  Shading around the lines 

reflect the 95% confidence interval.  (e-f): Single-trial plots for (e) easy and (f) ambiguous trials 

show the temporal relationship between the neural signal from the electrode site Pz (normalized 

relative to each individual’s baseline average) and decision time (curved black line).  P300 can 

be noted early in the trial whereas CPP can be observed preceding the time of decision.  (g-h): 

Topographical maps for (g) onset- and (h) response-locked activity are depicted at various time 

points. 

We next sought to examine whether N170 amplitude, P300 amplitude, and CPP within a 

broader time window of interest (see Methods) may differ between our groups as well as 

between conditions (i.e., easy and ambiguous) (Fig. 3.5).  Contrary to our hypothesis, no 
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significant main effect of group (F(1,55)=2.409, p=.126), condition (F(1,55)=.059, p=.809), or 

their interaction (F(1,55)=0.113, p=.738) was observed for the N170.  For P300, no significant 

main effect of group (F(1,55)=0, p=.986), condition (F(1,55)=0, p=1.00), or their interaction 

(F(1,55)=0.718, p=.402) was observed.  Similarly for the CPP, no main effect of group 

(F(1,55)=1.708, p=.197), condition (F(1,55)=1.611, p=.210), or their interaction (F(1,55)=2.399, 

p=.127) was statistically significant.  Additionally, N170 amplitude (U=1631, p=.973), N170 

latency (U=1794, p=.845), P300 amplitude (U=1646, p=.973), P300 latency (U=1649, p=.973), 

and CPP (U=1862, p=.845) did not differ between correct and incorrect trials.  Taken together, 

this suggests that our neural signals of interest likely relate to subjective indexing, rather than 

actual evidence in the environment. 

3.5.3. Trial-by-trial Variations in Neural Signals Modulates Decision Parameters 

Though we did not observe discernable differences when examining our neural signals alone, 

one might nonetheless postulate that these neural signals may relate differently to decision 

parameters depending on group affiliation and condition.  We thus assessed whether decision 

parameters are modulated by EEG neural signals and to estimate the regression coefficients 

determining their relationship while accounting for trial-by-trial variations.  Non-neural HDDM 

models where both decision threshold and drift rate varied as a function of condition 

(difference in DIC=-1262.89) compared with just threshold (DIC=-86.1) or just drift rate (DIC=-

1236.46) had improved model fit.  Moreover, allowing the decision threshold and drift rate to 

vary parametrically with P300 amplitude and CPP buildup, respectively, yielded a better fitting 

model (DIC=-1272.87) compared to just P300 (DIC=-86.15), CPP (DIC=-1243.81), or no neural 

signal (DIC=-1236.46) (summarized in Supplementary Fig. A3.4).  Allowing decision threshold to 

vary with N170 did not improve model fit (DIC=87.97), suggesting it is not used to inform 

perceptual decisions – at least in the context of the DDM.  In sum, our best fitting model was 

one that allowed for decision threshold and drift to vary by condition, as well as by both P300 

and CPP, respectively. 

Trial-by-trial modulation of P300 amplitude were parametrically related to higher decision 

thresholds, but only in LRs and only for ambiguous trials (99.20% posterior probability > 0).  This 
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is confirmed in the interaction analysis; P300 was significantly higher on ambiguous compared 

to easy trials among LRs (95.33% posterior probability > 0).  Regression coefficients indicate all 

other relationships were not significant (Supplementary Table A3.1 & A3.2).  Our results suggest 

that LRs are using P300 as a “caution” signal when the environment lacks abundant information 

for one choice over another, while ERs are not. 

CPP on the other hand, is thought to index the amount of information in the environment and 

thereby the drift rate.  Among ERs, CPP was related to lower drift rate on easy trials (99.99% 

posterior probability < 0), likely because they still tend to respond relatively early and at points 

of low level of information.  However, on ambiguous trials, CPP was in fact related to higher 

drift rate in ERs (97.98% posterior probability > 0).  Interaction analyses suggest that CPP was 

significantly related to greater increases in drift rate on ambiguous compared to easy trials 

among ERs (99.90% posterior probability > 0) and a similar trending effect was noted among 

LRs (91.41% posterior probability > 0).  This contradicts the notion that CPP indexes only actual 

sensory evidence in the environment.  Moreover, given that ERs perform around chance on 

ambiguous trials but still demonstrate high levels of CPP signal buildup suggests CPP may also 

index subjective perception of evidence and that perhaps another variable not considered by 

the HDDM may be at play. 
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Fig. 3.6.  Bayesian posterior probability densities for modulation of decision parameters 

estimated from the hierarchical drift diffusion model by neural signals.  Peaks reflect the best 

estimates, while width represent uncertainty.  Simple effects of (a) P300 on decision threshold 

and (b) CPP on drift rate are depicted in the upper row.  Interaction effect of (c) P300 (d) and 

CPP on decision threshold and drift rate, respectively, with condition are depicted in the lower 

row.  A more positive regression coefficient indicates ambiguous > easy. 

3.5.4. CPP Reflects a Combination of Evidence Accumulation and an Evidence-

Independent Urgency Signal 

We hypothesized that the CPP signal buildup across the entirety of a trial reflects a combination 

of both the sensory evidence available in the environment and an evidence-independent 

urgency signal.  As discernable from the waveform plots (Fig. 3.5b & Fig. 3.5d), CPP does not 

linearly ramp in time but rather, the slope is steepest close to the time of response and 

resembles a dynamic signal that grows in time.  We therefore tested a second model that 

accounts for this “urgency” signal (Fig. 3.7; described in Methods).  As expected, the estimated 
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urgency signal was significantly lower for the LR (mean=1.73±1.27) compared to the ER 

(mean=6.60±3.39) group (U=26.5, p<.0001). 

The predicted neural signal from a model that included the evidence-independent urgency 

signal significantly related to our actual recorded CPP signal (β=43.74, p=.023, 95%CI=[6.17, 

81.33]).  We did not observe this with the nDDM (β=7.155, p=.706, 95%CI=[-30.07, 44.38]).  A 

pairwise Spearman correlation indicates that our nDDM and HDDM yielded highly similar 

decision threshold estimates (rho=.951, p<.0001) and are, therefore, comparable.  Taken 

together, our findings confirm that the observed CPP signal buildup fitted with predictions of 

the dynamics that a neural decision variable signal should exhibit from a model that 

incorporated an urgency parameter. 

 

Fig. 3.7.  Schematic of the urgency gating model.  Sensory evidence is first differentiated and 

filtered.  The resulting signal (x) is then multiplied by a subject’s evidence-independent urgency 

signal (u) that grows in time.  The combined signal together forms the model’s predicted neural 

signal (y).  Green lines depict a neural signal that incorporates an urgency signal whereas grey 

lines do not.  Once the predicted neural signal crosses a decision threshold, a decision is made. 
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3.5.5. Relationship between ERPs and Oscillatory Fluctuations in EEG Signals 

 

 

Fig. 3.8.  Time frequency analysis.  (a) Average time-frequency power across all trials.  Data is 

resampled to match onset (timepoint 0) and onset (timepoint 1).  A strong early theta power 

and a late alpha power can be observed.  Heatmap depicts strength of power, as compared to 

baseline (-500ms to onset), with warmer and colder colours reflecting higher or lower power, 

respectively.  (b-e) Scatterplots with regression lines depicting correlation between ERPs of 

interest (i.e., P300 and CPP) and EEG oscillatory power (i.e., early theta and late alpha). 

Difference frequencies of EEG oscillations have been previous implicated in perceptual 

decisions (e.g., Cavanagh et al., 2011a; Klimesch, 2012).  Here, we aimed to link our ERPs to 

these bands of EEG oscillations.  Our paradigm allowed us to identify when in the decision-

process this signal peaked.  We observed an early theta power near stimulus onset and a late 

alpha power close to the time of response (Fig. 3.8, see Supplementary Fig. A3.3 for replication 

of finding with whole-sensor power).  Pairwise Spearman correlations indicate that early mid-

frontal theta power was related positively to both P300 maximum amplitude (rho=.329, p=.012) 

and CPP buildup (rho=.411, p=.001).  However, late posterior alpha did not relate significantly 

to either P300 (rho=.116, p.389) or CPP (rho=.147, p=.274).  No other significant correlation was 

observed between either the early or late power of other frequency bands and our ERPs of 

interest. 
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3.6. Discussion 

The current study interrogates the neural determinants of perceptual decision-making in 

humans by isolating discrete neural signatures of decision caution and sensory evidence 

encoding.  These signals are observable with minimum signal processing and the high temporal 

resolution of EEG allows for these signal dynamics to be observed throughout decision 

formation – akin to previous work with single-cell recordings in non-human primates.  Our 

findings provide evidence contradicting the common assumption that timings of decision 

commitment are determined by a context-dependent, but time-invariant criterion, on 

accumulated evidence.  Through analysis of observed behaviour, computational modelling, and 

scalp electrophysiology, we show that human decisions are made not solely based on the 

accumulated sensory evidence, but that an urgency signal can change the amount of evidence 

needed to commit to a choice.  This endogenous urgency signal varies between individuals and 

can potentially account for why certain individuals are prone to fast and erroneous decisions, 

particularly when signal-to-noise ratio of the decision environment is low. 

The information available in a natural environment can vary from one decision to the next and 

additionally, can change even within decisions.  Estimating the drift rate as a static, linear, and 

time-invariant parameter is suboptimal because the occurrence of a weak signal would lead to 

prohibitively long decision times.  This has motivated computational models to account for a 

dynamic decision criterion, namely the “urgency” signal (Churchland et al., 2008; Cisek et al., 

2009), and have received support for its time-dependent influence on the decision process of 

highly-trained monkeys (Hanks et al., 2014; Thura & Cisek, 2014, 2016).  However, little 

evidence for a time-dependent neural signal in mostly naïve human subjects exists; those that 

do often ask subjects to emphasize on either speed or accuracy and thereby artificially 

manipulate a sense of urgency (Murphy et al., 2016; Steinemann et al., 2018).  Here, we 

formally tested an urgency parameter and demonstrated that individuals have natural 

tendencies to exhibit differing levels of urgency which influenced their decision time and 

accuracy.   
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In neurophysiology, the firing rate of neurons represent the accumulated evidence for one 

choice or another until a decision threshold is surpassed.  Here, we found that the domain-

general CPP signal gradually builds throughout the trial, ramping up steeply close to decision, 

and resembled characteristics of a neural signature of decision formation.  As with previous 

studies (Kelly & O'Connell, 2013; van Vugt et al., 2019), the peak of CPP activity temporally 

preceded that of the response, suggesting it reflects an intermediate level in the decision 

hierarchy between stimulus onset and motor action.  Further supporting the role of CPP in 

evidence accumulation, we found that CPP covaried with the drift rate parameter though this 

relationship was context-dependent and modulated by individual differences in tendencies to 

wait.  Importantly, our results challenge the notion that CPP solely traces sensory evidence 

(O'Connell et al., 2012) in two key ways: (i) CPP was related to higher drift rate in situations of 

high, compared to low, ambiguity in the decision environment, and (ii) the group of subjects 

who tended to respond early in the trial when sensory evidence is low and performed around 

chance, still demonstrated CPP signal buildup.  This dovetails with recent finding that CPP is 

mediated by subjective evidence and perceived decision confidence, over and above the 

sensory evidence (Herding et al., 2019; Tagliabue et al., 2019).  Furthermore, it lends support to 

the consideration that CPP reflects a combinatory force of sensory evidence and an dynamic 

urgency signal that pushes one to commit to a choice even if evidence for that choice is weak 

(Cisek et al., 2009).  It must be noted that the evidence-independent urgency signals could be 

misconstrued as drift rate or threshold in pure evidence accumulation models; to disambiguate 

the two, one needs to dynamically manipulate the amount of information presented (Thura et 

al., 2012), as in the present study.  Indeed, neural signals predicted by a model that accounts 

for an individual’s urgency signal fit better with our observed CPP signal than that predicted by 

the conventional drift diffusion model.  Note that this urgency signal was estimated per subject 

and reflects a global mechanism affecting decision-making that is not specific to any one 

sensory input modality or effector.  Such a global gain modulation may not only manifest in the 

firing rate of neurons tracking the evolving decision process; urgency may influence processes 

both early and late in the decision hierarchy such as in the gain of sensory inputs to decision 
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circuits (Heitz & Schall, 2013) and in downstream regions involved directly with motor 

execution (Thura & Cisek, 2016, 2017).   

Finally, the use of relatively long trial times with smooth sensory transitions in the present 

study allowed us to temporally disentangle the CPP from it’s spatially overlapping counterpart, 

the P300.  This classic ERP has been frequently implicated in decision-making since it’s 

discovery (Sutton et al., 1965) and several lines of evidence have converged to show that the 

amplitude of the P300 component lies at the interface between stimulus processing and 

response preparation (Donchin & Coles, 1988; Polich, 2007; San Martín et al., 2013) though 

there is little consensus regarding its precise functional role.  Here, we demonstrated that P300 

is used as a caution signal and relates to increased decision thresholds among individuals 

tending to wait, particularly when information in the environment is ambiguous. One 

prominent theory on the biological origins of P300 amplitude is that it is a cortical 

manifestation of the phasic locus-coeruleus-noradrenergic orientation response which 

potentiates information processing and prepares/facilitates a behavioural response to the 

eliciting stimulus (Nieuwenhuis et al., 2011; Swick et al., 1994).  This may underpin the famous 

sensitivity of the P300 to stimulus probability (Lucci et al., 2016; Mars et al., 2008) and motor 

inhibition (Smith et al., 2008) – concepts which, in the terminology of the evidence 

accumulation framework, translates to changes in the decision threshold.  Collectively, our 

findings suggest that the P300 and CPP play critically different roles in the decision process.  

The short trial time implemented in previous studies may have equivocated the two 

components and led to the misconception that they are one and the same (O'Connell et al., 

2012; Twomey et al., 2015; Verleger et al., 2005). 

Although the notion of urgency in decision-making has been gaining momentum, there remains 

debate how a hypothetical urgency signal is incorporated into the decision process and where it 

originates.  One potential alternative interpretation of our findings is that decisions results from 

boundary adjustments over the course of a trial.  Previous psychophysical studies in humans 

have found collapsing bound to improve model fit (Palestro et al., 2018; Tajima et al., 2016), 

though negative findings exists (Hawkins et al., 2015; Voskuilen et al., 2016). This may be a 
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matter of interpretation: an increasing urgency signal is mathematically equivalent to a 

symmetrically collapsing decision threshold.  However, as with other studies investigating the 

neural signals of urgency (Cisek et al., 2009; Thura et al., 2012), results from our study indicates 

that urgency works via a dynamic gain in evidence accumulation in time.   Nonetheless, open 

questions remain regarding where such urgency might be generated in the brain.  According to 

the affordance competition model, the basal ganglia is thought to bias decisions via cortico-

striatal connections (Cisek, 2007) and preliminary findings in humans point to the caudate as a 

potential root of the urgency signal (Yau et al., 2020).  However, further study is warranted to 

better source the urgency signal in the brain. 

 

3.7. Conclusion 

Our results reveal how different decision parameters may be reflected in neural signals.  In 

particular, we demonstrate that the CPP, which behaves as a developing decision variable, is a 

reflection of the sensory evidence available in the decision environment as well as an 

endogenous urgency signal that grows in time.  By embedding these neural signals into a 

computational framework, it is possible to generate testable predictions about how different 

parameters should vary as a function of specific stimulus properties such as discriminability.  

These mechanisms expose principles of cognitive function in general and can pave a new and 

more precise understanding of how clinical brain disorders and experimental manipulations 

impact on decision-making in the human brain. 
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CHAPTER 4.  Dynamics of brain connectivity at rest constrains 

performance in task. 

4.1. Preface 

The current understanding of how distinct brain regions coordinate perceptual decision-making 

across the brain is limited, with most research groups focusing exclusively on a limited number 

of recording sites, such as the LIP.  Since decisions are formed across brain systems rather than 

individual brain regions, we questioned whether decision-making is influenced by individual 

variability in the functional organization of the brain.  To this end, we took advantage of resting-

state fMRI and examined FC during an extended task-independent, rest period.  We tested 

whether fluctuations between and the propensity to occupy/dwell in certain network 

configurations at rest may relate to improved behavioural performance on the dynamic 

perceptual decision-making task.  Given our knowledge of how a FC configuration of high 

modularity may help conserve metabolic expenditure, whereas low modularity may be more 

efficient in processing information, we hypothesized that longer dwell time at rest in a modular 

brain state may allow for better performance in task.  Additionally, we tested whether 

variations between individuals in the urgency signal we observed in Chapter 2 and 3 relate to 

our observed findings.  We found that individuals with a propensity to spend greater time in a 

more modular brain state at rest also demonstrated higher subcortical activity in task.  Activity 

from these subcortical regions were related to the subject’s estimated urgency level.  Our 

results demonstrate the importance of network topology in shaping behavioural performance 

when confronted with external tasks.  This work is currently in preparation for submission. 

 

4.2. Abstract 

Cognitive processes are thought to be coordinated across multiple brain regions organized in 

intrinsic networks.  Recent studies suggest that the functional organization of networks is 

largely preserved between task and rest, suggesting the two are highly intertwined.  
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Understanding variabilities in the network profile at rest can give context to brain activity and 

performance in task.  Here, we utilized a time-varying, dynamic approach to characterize 

fluctuations in functional connectivity at rest and identified four distinct brain states.  

Individuals with a propensity to more frequently express a state at rest with higher global 

modularity, especially between the transmodal default mode and unimodal visual and 

somatomotor networks, were also more likely to demonstrate increased thalamic and caudate 

activity in task.  Activity from these subcortical regions served as a “braking” signal that slowed 

decision time and consequently, improved behavioural accuracy in task.  Next, we show that 

network profile during more difficult trials in task resembled a more integrated brain state, and 

that this relationship correlated with behavioural performance.  These results underscore the 

importance of brain network configuration dynamics in shaping behaviour. 

 

4.3. Introduction 

In the highly dynamic environment we inhabit, brain regions must communicate and relay 

information in a rapid manner to make accurate and timely decisions.  These relay pathways 

conforms to intrinsic topographies, identifiable during extended periods of rest, known as 

resting-state networks (RSNs) (Laird et al., 2011; Yeo et al., 2011).  The magnitude of 

correlation, or functional connectivity (FC), between different RSNs are thought to not merely 

reflect epiphenomenal activity at rest, but can reveal processes contributing to individual 

differences in a number of behavioural and cognitive domains in task (Stevens & Spreng, 2014). 

However, the conventional method that presumes these correlations are stable in time ignores 

the potential dynamic interplay within and between RSNs.  There is now evidence that RSNs 

coalesce and dissolve in a “dynamic” or time-varying manner (for review: Cohen, 2018).  A 

natural next step is to understand how individual differences in human behaviour and cognition 

may be driven not only by external task demands, but be constrained by one’s propensity to 

express different latent brain connectivity patterns. 
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Brain activity continuously fluctuates at rest even in the absence of an explicit task.  Topology of 

these fluctuations are thought to conform to an intrinsic network profile and are more stable 

than the synchrony of elicited activation by tasks (Cao et al., 2014; Cole et al., 2014; Krienen et 

al., 2014).  Because FC at rest appears to be such a stable characteristic of the brain, it is often 

thought of as a trait measure and can “fingerprint” individual differences in cognition function, 

age, and mental health (Finn et al., 2015; Geerligs et al., 2015a; Geerligs et al., 2015b; Sanz-

Arigita et al., 2010; van den Heuvel et al., 2009).  These studies together suggest that a stable 

core network is necessary for healthy general cognitive function.  On the other hand, humans 

demonstrate behavioural flexibility in response to their environment and must, therefore, be 

reconfiguring their brain networks to meet external task demands.  This level of reconfiguration 

appears dependent on the level of attention and cognitive control required (Gießing et al., 

2013; Power & Petersen, 2013) with more cognitively demanding tasks benefiting from a less 

modular and more integrated connectivity between RSNs (Cohen & D'Esposito, 2016).  Thus, 

from a relatively stable core network configuration emerges a dynamical repertoire of large-

scale, context-dependent functional networks that are critical for flexible cognition and 

behaviour. 

In tandem, time-varying functional connectivity (tvFC) has received growing attention in recent 

years due to progress in acquisition techniques and computational tools to quantitatively 

characterize reoccurring brain patterns (i.e., “tvFC states”) at a high temporal and spatial 

resolution (Allen et al., 2014; Calhoun et al., 2014; Lurie et al., 2018).  This has altered the view 

of intrinsic network topographies – the conventional approach of averaging FC across scan time 

might obfuscate underlying dynamics in networks configuration and rather, individuals traverse 

in and out of different tvFC states across time.  tvFC state metrics, such as state transition 

probabilities and dwell lifetime, calculated using functional magnetic resonance (fMRI) have 

shown promise and sensitivity to capturing brain communication in mental and vigilance states 

(Shirer et al., 2012) and in disentangling disease progression (Damaraju et al., 2014; Fiorenzato 

et al., 2019).  The notion that FC between RSNs is a transient rather than stable phenomenon is 

supported by electrophysiological (Rabinovich et al., 2012; Tagliazucchi et al., 2012) and calcium 

imaging (Matsui et al., 2018) studies that demonstrate endogenous neural signals continuously 
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shift to form adaptive patterns of activity over various time scales.  However, the behavioural 

relevance of FC dynamics remains poorly understood with most existing studies have only 

focused on specific brain regions (Braun et al., 2015; Douw et al., 2016). 

Here, participants underwent fMRI while participating in a perceptual decision-making task and 

again while at rest.  We first aimed to temporally decompose FC configurations at rest and 

identify latent brain states by means of tvFC.  We take a data-driven approach to assess FC 

dynamics based on established techniques including: whole-brain group spatial independent 

component analysis parcellation to identify RSNs (Calhoun et al., 2001) and k-mean clustering 

of fixed-length sliding windowed correlation matrices to identify FC states (Allen et al., 2014) 

during resting state fMRI (i.e., rs-fMRI).  Second, we test the hypothesis that differences in 

intrinsic FC signatures as indexed by tvFC state metrics derived from rest relates to behavioural 

performance in task.  Finally, we examine whether different FC configurations in task may be 

expressed as a function of task difficulty and if this expression impacts behavioural 

performance.   

 

4.4. Methods 

4.4.1. Participants 

53 right-handed young, healthy adults (23 males; age 24.02yr±5.49) participated in the 

present study.  Participants with a current or past diagnosis of a psychiatric or neurological 

disorder were excluded.  Informed consent was obtained from all participants and the study 

was approved by the Montreal Neurological Institute Research Ethics Board.  

4.4.2. Perceptual Decision-Making Task 

Participants were presented short videos of a face “morphing” between expressions (Fig. 4.3A).  

In a given trial, a face from the NimStim dataset (Tottenham et al., 2009) of neutral facial 

emotion was displayed in the center of the screen and gradually morphed into a happy or sad 

expression.  The maximum trial time was six seconds with participants asked to press a 
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response button for either happy or sad in their right-hand, as quickly and as accurately as 

possible, once they felt confident they could predict the final emotion.  Our paradigm consisted 

of two levels of task difficulty: easy and ambiguous.  In easy trials, the faces morphed in a 

gradual manner towards the correct emotion.  In ambiguous trials, the faces remained around 

neutral for two-thirds of the trial and then rapidly ramped towards the correct emotion.  The 

task consisted of three blocks of 40 trials (i.e., 120 trials total), split evenly between happy and 

sad, and between easy and ambiguous.  Importantly, trial types were interleaved within a 

block.  Further task details have been described elsewhere (Yau et al., 2020). 

4.4.3. Endogenous Urgency Signal 

A particular inter-individual parameter of interest is the “urgency” signal.  This endogenous 

signal is thought to modulate the deliberation process, continually pushing decision-related 

neural activity towards a decision threshold for choice commit as time elapses (Cisek et al., 

2009).  Variability in the baseline level of urgency is thought to be stable over time and across 

contexts (Berret et al., 2018; Reppert et al., 2018; Thura & Cisek, 2014) and may therefore be 

an individual trait.  Moreover, the urgency signal is related to a variety of discretely quantifiable 

behaviour commonly related to decisions and actions, suggesting it may be a particularly useful 

construct for conceptualizing certain phenotypical personality traits (Carland et al., 2019).  

Here, as with our previous work (Yau et al., 2020), we estimated the urgency signal via a 

minimalistic urgency gating model.  This model builds upon the tradition drift diffusion model 

of perceptual decision-making (Ratcliff et al., 2016) and assumes that an urgency signal is 

multiplied onto the evidence available in the decision environment (Cisek et al., 2009).  Once 

this combined signal reaches a critical threshold, decision is then made.  An exhaustive search 

was implemented to find the optimal urgency parameter that minimized the mean squared 

error between the model’s predicted reaction time versus the observed reaction time across all 

trials acquired from our perceptual decision-making task for a given subject.  This yielded one 

optimal urgency parameter per subject which was then used to test against tvFC measures. 
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4.4.4. MRI Acquisition and Preprocessing 

Neuroimaging was carried out with a Siemens Magnetom Prisma 3T MRI scanner equipped 

with a 64-channel head coil at the Montreal Neurological Institute (MNI).  High-resolution 

MPRAGE T1-weighted structural images were first obtained for anatomical localization 

(TR=2.3s; TE=2.3ms; FOV=240mm; scan matrix=192x256x256; voxel size=0.9mm isotropic).  

Functional data was then acquired with an echo-planar T2*weighted sequence for blood 

oxygenation level-dependent (BOLD) contrast using multi-band acquisition to help improve 

temporal resolution (TR=0.719s; TE=30ms; scan matrix=104x108x72; flip angle=44°; 

FOV=208mm; voxel size=2mm isotropic, multiband acceleration factor=8).  First, participants 

completed a perceptual decision-making task in scanner (described above).  Second, a task-

free, eyes-open rs-fMRI was collected.  Participants were instructed to relax and focus on a 

fixation cross – a design shown to maximize reliability (Zou et al., 2015).  A total of 840 

functional image volumes were collected (i.e., 10mins).  The same parameters were used for 

task and resting-state data acquisition. 

Task-data preprocessing was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) 

and MATLAB (MATLAB, 2018).  Signals with >4% intensity change were despiked and corrected 

using ArtRepair Toolbox (Mazaika et al., 2007).  Images were corrected for motion, realigned, 

normalized to the MNI ICBM152 template (Fonov et al., 2009), and minimally smoothed 

(6mm FWHM Gaussian kernel).  Spatial filtering techniques (such as Gaussian smoothing) 

have been shown to increase the signal-to-noise ratio (Brants et al., 2011; Hendriks et al., 

2017). First-level analyses were conducted with each participant’s preprocessed volumes. 

Preprocessing for the rs-fMRI data was performed using FMRIPREP 1.4.1 (Esteban et al., 2019) 

including the following steps: skull stripping, estimation for head-motion parameters, co-

registration to corresponding structural image (boundary-based registration with 9 degrees of 

freedom), and spatial normalization to MNI space (non-linear registration).  For more details of 

the pipeline see https://fmriprep.readthedocs.io/en/1.4.1/workflows.html.  Outputs from 

FMRIPREP were then treated for confound denoising using XCP Engine (Ciric et al., 2018).   We 

implemented the 36P strategy which expands the 6 motion estimates and 2 physiological time 

http://www.fil.ion.ucl.ac.uk/spm/
https://fmriprep.readthedocs.io/en/1.4.1/workflows.html
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series with global signal regression to yield 9 regressors, their derivatives, quadratic terms, and 

square derivatives.  Additionally, we implemented spike regression which flagged for volumes 

that exceeded 0.25mm root mean square displacement  (Ciric et al., 2017; Satterthwaite et al., 

2013).  This strategy has been shown to most optimally attenuate resting-state confounds 

(Satterthwaite et al., 2013). 

4.4.5. Independent Component analysis (ICA) 

After preprocessing, rs-fMRI data were subject to spatial independent component analysis (ICA) 

implemented using the GIFT toolbox (http://mialab.mrn.org/software/gift/)(Calhoun et al., 

2001). All participants’ data were reduced with a two-step approach using principal 

components analysis: first to 120 components which was concatenated and further reduced to 

100 components. We then decomposed the data into 100 independent components (ICs) using 

the infomax ICA algorithm (Bell & Sejnowski, 1995). The number of components chosen were 

based on previous research that demonstrate this decomposition sufficiently captures 

functional parcellation of major brain systems (Allen et al., 2014; Nomi et al., 2017). To 

determine the reliability of the ICA algorithm, we repeated the analysis 100 times using ICASSO 

(Himberg & Hyvarinen, 2003). Independent components were then back reconstructed to 

obtain individual-specific maps using the group-ICA approach (Erhardt et al., 2011). ICs were 

visually inspected by two independent reviewers for assignment to functional domains based 

on previously characterized RSNs (Laird et al., 2011). In addition to the manual inspection, our 

ICs were binarized (i.e., masked) and compared against templates from Laird et al. (2011) using 

Spearman’s correlation.  ICs were assigned to networks with which they showed highest 

correlation coefficients (mean r=.301). If this rating differed from raters’ assignment, the 

components were again visually inspected until consensus was reached. 46 of the 100 ICs were 

matched to RSNs and the rest were deemed artifacts. 

4.4.6. Time-varying Functional Connectivity (tvFC) at Rest 

tvFC was computed across ICs using the sliding-window approach which extracts the dynamic 

interaction between brain areas by using a moving time-window along the BOLD time series 

http://mialab.mrn.org/software/gift/
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(Allen et al., 2014; Hutchison et al., 2013) using the GIFT toolbox 

(http://mialab.mrn.org/software/gift/).  For each participant, 766 time-windowed domains 

were obtained for each of the ICA’s time-course by convolving a window width of 63 TRs 

(45secs) with a Gaussian of sigma 3 TRs (to obtain a tapered edge) and sliding in 1 TR steps.  

The window size was chosen according to previous tvFC analysis that indicate optimal window 

sizes hover between 30-60sec and can discern cognitive states (Allen et al., 2014; Hutchison et 

al., 2013; Shirer et al., 2012).  Within each time-windowed domain, 1035 (i.e., 46 ICs * (46 ICs-

1)/2) unique functional connectivity pairwise correlations were obtained between windowed 

ICAs time-courses.  Covariance matrices were calculated using L1 regularized inverse covariance 

matrices carried out by a graphical LASSO algorithm (Friedman et al., 2008; Smith et al., 2011) 

to account for potential effects of noise on covariance estimation due to sampling short time-

windows.  The regularization parameter (λ) was optimized for each participant independently.  

Finally, the tvFC matrices were Fisher-z-transformed to normalize variance before further 

analysis. 

A discrete number of reoccurring tvFC patterns were detected by applying clustering analysis 

on the windowed correlation matrices concatenated across participants.  We use k-means 

clustering with k (number of clusters) from 2 to 20, repeating each 20 times (Allen et al., 2014; 

Calhoun et al., 2014).  Clustering was first conducted on a sub-sampled number of windows 

(i.e., windows with relative maxima of variance) for all time points in order to estimate initial 

cluster centroids (cluster medians).  The sum of absolute distance or L1 distance method was 

used with a maximum of 150 iterations for k-means cluster computation.  The optimal number 

of clusters k=4 was obtained using the elbow criterion of the ratio comparing within- versus 

between-cluster sum of squares distances.  The resulting four centroid states from the 

clustering of sub-sampled data were subsequently used as initial clustering positions for 

clustering all data.  These clusters are referred to as tvFC states and describe connectivity 

patterns that individual participants move between over time.  It is important to note that not 

all individuals have tvFC in all states.  Two clustering measure output metrics are derived per 

participant: dwell lifetime (i.e., average number of TR’s spent in a given state) and number of 

transitions (i.e., frequency of changes between states).  To test the relationship between 

http://mialab.mrn.org/software/gift/
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clustering measure outputs and behaviour (e.g., reaction time, accuracy, and urgency), 

Spearman partial correlations correcting for age was used. False discovery rate corrections 

(alpha=.05) were applied to account for multiple comparison. 

4.4.7. Modularity of Different tvFC States 

One key organizational principle in FC is the degree to which brain regions dissociate from each 

other.  At the global level, this concept of modularity is widely measured by partitioning the 

network’s nodes, or FC communities, to maximize the modularity quality function, Q (Newman 

& Girvan, 2004).  Given that functional brain networks may contain negative edge weights, we 

adopted the asymmetric generalization of the modularity quality function (Rubinov & Sporns, 

2011).  Q was maximized using the Louvain algorithm (Blondel et al., 2008) implemented 

through the community_louvain function in the Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net) with the default resolution parameter γ=1 and initial community 

affiliation based on ICs’ assignment to canonical RSNs.  Maximized Q values were used as a 

measure of modularity for each tvFC state.  We assessed two additional basic nodal properties: 

(1) within module degree z-score that reflects the degree of connectivity of a node to another 

node in the same module, and (2) participation coefficients which is the fraction of a node’s 

edge that connects to other nodes within the same module.  These measures give an index of 

the separation and integration, respectively, of RSNs in each tvFC state. 

4.4.8. Functional Mapping Gradients of Different tvFC States 

A second core organizational principle is that the cortex follows a spatially continuous 

topographical arrangement along a global gradient which underpins its cognitive processes 

(Huntenburg et al., 2018; Mesulam, 1998).  Of particular interest is the principle gradient which 

describes gradual transitions at the whole-cortex level, running from primary sensory and 

motor regions at one end to transmodal cortices (i.e., default mode network (DMN) in humans) 

at the other end.  This spatial separation is thought to enable DMN to perform its commonly 

ascribed functions relating to information integration and abstraction (Margulies et al., 2016).  

http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/


112 
 

To generate functional mapping gradients, we first assigned our resting state data to 400 

parcels based on an established parcellation scheme (Schaefer et al., 2018) and then replicated 

the steps to generate sliding windows and their covariance matrix as described previously (i.e., 

45secs window width, L1 regularized inverse covariance matrices, and Fisher-z-transformation).  

A sliding window’s assignment to a tvFC state was matched to our previous k-means clustering 

analysis.  The average covariance matrix of all sliding windows corresponding to a given state 

was used to generate gradient maps using the BrainSpace toolbox (de Wael et al., 2019).  10 

gradient maps per tvFC state were generated using a normalized angle kernel, dimensionally 

reduced via the diffusion embedding technique, and aligned to one another using Procrustes 

analysis.  To calculate the distance of our derived principle gradient for each state, we took the 

median embedding value of DMN regions and calculated the Euclidean distance to both the 

median embedding value of the visual and somato-motor RSNs (Yeo et al., 2011) and then 

averaged these two distances to yield one value per state.  These distance values were then 

compared to a distribution of distance values derived from randomly generated gradients 

which were sampled by generating covariance matrix from 1000 random sliding windows; we 

consider the distance value to be significant if it is higher than the 95th percentile. 

4.4.9. Task-based Activation and Functional Connectivity 

Group analyses of task-related activity between trial > inter-trial periods were performed with 

one-sample t-tests using the general linear model in SPM12.  Separate random effects 

ANCOVAs were then calculated on this contrast of interest for each of the FC state 

properties (e.g., dwell lifetime per state and transitions) as covariates. Clusters corrected for 

multiple comparisons using a familywise error (FWE) threshold of PFWE < .05, with an extent 

threshold of 110 contiguous voxels, were considered significant.  Region of interest analyses 

were performed by computing the mean parameter estimate of activation for functionally 

defined clusters for each condition and subject using the spm_summarise function. 

RSNs are not conditional upon a task-free resting state, but have been shown to be heavily 

involved in task performance (Cole et al., 2014; Laird et al., 2011).  To determine connectivity 

strength in task, we took the back reconstructed, individual-specific IC maps and applied them 
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to the task-based data.  We calculated the correlation between all IC pairs but restricted the 

data to only trial time (i.e., when participants were viewing faces).  These correlations were 

Fisher-z-transformed then averaged across trials per trial type (i.e., easy and ambiguous) to 

yield two connectivity matrix per participant.  In comparing connectivity matrixes derived from 

rs-fMRI connectivity to task-fMRI, we ran a Mantel’s test with 5,000 permutation (alpha=.05) 

(Diniz-Filho et al., 2013).   

4.5. Results 

4.5.1. Brain States Identified by Time-Varying Functional Connectivity 

Based on anatomical, functional properties, and similarities to RSNs identified in previous 

studies (Laird et al., 2011), the selected 46 ICs derived from group-ICA were categorized into 

nine functional domains (Supplementary Fig. A4.1): Emotion/Interoception (EI), Basal Ganglia 

(BG), Motor/Visuospatial (MVS), Visual Perception (VIS), Default Mode Network (DMN), 

Cognitive (COG), Auditory (AUD), Language (LNG), Cerebellum (CB). 

 

Fig. 4.1.  Overview of time-varying functional connectivity (tvFC) analysis.  Left: Schematic 

depicting the computation of tvFC states.  First, group independent component analysis was run 

to create spatially independent components (ICs).  Second, covariance matrices or functional 

connectivity are computed on temporally windowed portions of the resting-state fMRI scan 
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between the IC’s.  Finally, tvFC matrices from all participants are clustered using the k-means 

algorithm, yielding cluster centroids and cluster membership assignment for all windows.  Right: 

Cluster centroids corresponding to the four tvFC states identified.  Proportion of scan time spent 

in each state across participants are shown in parentheses next to the state number.  Matrices 

show all pairwise correlations between ICs grouped into nine RSNs [EI: Emotion/Interoception; 

BG: Basal Ganglia; MVS: Motor/Visuospatial; VIS: Visual Perception; DMN: Default Mode 

Network; COG: Cognitive; AUD: Auditory; LNG: Language; CB: Cerebellum].  Warm and cold 

colours depict positive and negative correlations, respectively.  

tvFC during the rs-fMRI acquisition is best represented by four FC states (Fig. 4.1), as assessed 

by the elbow criterion (Supplementary Fig. A4.2).  Each tvFC state has a unique spatial 

connectivity profile and we sought to understand how their network properties and topology 

differed.  To assist in this interpretation, we investigated the modularity and functional 

mapping gradients of each tvFC state (Fig. 4.2).  State 1 (16% overall dwell lifetime) is 

characterized primarily by positive correlations within and between the motor and visual 

domains as well as negative correlations/anti-correlations between these networks and other 

networks (with exception of the auditory domain).  State 2 (18% overall dwell lifetime) shows 

hypo-connectivity between networks with some intra-correlation within a select number of ICs 

in the motor and visual domains.  State 3 (19% overall dwell lifetime) shows relatively 

prominent anticorrelations between ICs from the DMN domain and those from the motor and 

visual domains and demonstrates pronounced modularity (as indexed by the maximized Q 

value (Fig. 4.2A)).  The DMN also demonstrates strong positive within-module degree z-score 

(Fig. 4.2B), suggesting that nodes within the DMN were highly connected to other nodes within 

the same module – an indication of high DMN modularity.  State 4, occurring at the highest 

frequency (47% overall dwell lifetime), has weak overall correlations within and between 

networks with a large number of correlations centered around zero.  Although its FC profile 

resembles State 2, it importantly differs in that it has high participation coefficients across RSNs 

(Fig. 4.2C) and the lowest modularity score of the four tvFC states, together suggesting high 

integration between the RSNs during this state.  

We next consider functional gradient maps (Fig. 4.2D) which serves to provide a framework for 

the spatial ordering of large-scale networks.  Across all four states, Gradient 1 accounts for the 

largest amount of variability in resting-state connectivity patterns across the cortex.  It is 
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anchored at one end by the transmodal DMN regions and, at the other end, by unimodal 

regions corresponding to visual and somatomotor RSNs.  When analyzing the distance or 

spread of Gradient 1, we found that State 1 and 3 significantly differed from chance (both 100th 

percentile) suggesting that these two tvFC states had greater separation between unimodal and 

transmodal regions (Supplementary Fig. A4.3).  Distance values of State 2 and 4 did not 

significantly differ from chance. 

 

Fig. 4.2.  Description of time-varying functional connectivity (tvFC) states.  (A) Bar plot of the 

modularity of each state.  State 3 has the highest modularity indicating greatest dissociation 

between resting state networks (RSNs) whereas State 4 demonstrate the lowest.  (B)  Module 

degree z-score for each of the RSNs based on the network configuration of the tvFC states.  

Scores reflect the degree of connectivity of a node to another node in the same 

module/community.  (C) Positive (left) and negative (right) participation coefficient for each 

RSNs given each tvFC state.  Scores reflect the extent to which a node is connected to nodes in 

other modules.  (D) Scatterplot of the low dimensional representation using the diffusion 

embedding algorithm between the first two gradients.  Values depict the embedding value for 

Gradient 1 (y-axis) and 2 (x-axis).  Regions corresponding to the default mode network (DMN), 

visual, and somatomotor regions are highlighted in red, green, and blue, respectively.  Gradient 

1 represents the dissociation between transmodal and unimodal areas on its two extremes.  

Gradient 2 depicts the dissociation between the visual and somatomotor networks.  Brain 

images on the sides depict the embedding values for the first two gradients (vertically: Gradient 

1; horizontally: Gradient 2) across the cortex with warmer (yellow) and colder (blue) colouring 

reflecting higher and lower values, respectively. 
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4.5.2. FC State Properties at Rest Relates to Performance and Brain Activity in Task 

Network cartographic profile at rest are thought to constrain network reconfiguration and brain 

activity in task.  With this in mind, we hypothesized that variability in how one expresses 

different tvFC states at rest may translate to differences in performance in task.  How long an 

individual dwelled in the modular State 3 at rest positively correlated with accuracy on easy 

trials (rho=.501, p=.003).  Higher accuracy on easy trials was also marginally significantly 

correlated with a greater overall number of transitions between the four identified brain states 

(rho=.346, p=.052).  No other behavioural measure (i.e., reaction time, accuracy, or urgency 

signal) significantly related to brain state characteristics after multiple comparison correction. 

One might expect that variability in the prevalence tvFC states at rest may have a more indirect 

effect: the propensity to express a tvFC state may predispose brain activity during task which, in 

turn, drives behaviour.  To this end, we tested whether dwell lifetime in each of the four tvFC 

states covaried with brain activity in task when comparing trial versus inter-trial periods across 

all trials.  During trials, an array of regions involved in face processing including visual 

processing (i.e., lateral occipital), face processing (i.e., face processing, insula), executive 

function (i.e., dorsolateral prefrontal cortex), and motor regions (i.e., pre-central gyrus, 

supramarginal gyrus) demonstrated greater activation than intertrial periods (Fig. 4.3A).  When 

considering the impact of FC states, we observed two significant clusters of brain regions who’s 

activity scaled with longer dwell lifetime in State 3: one bilaterally in the thalamus (t=5.54; x=-

6, y=-16, z=10) and one in the right caudate (t=4.66; x=18, y=4, z=18).   Activity from these 

subcortical clusters were significantly related to participant’s reaction time (overall: rho=.377, 

p=.006; easy: rho=.347, p=.013; ambiguous: rho=.404, p=.003) but not directly to performance 

accuracy (overall: rho=.102, p=.478; easy: rho=.228, p=.107; ambiguous: rho=-.110, p=.442).  

Rather, as Fig. 4.3C illustrates, the effect of the subcortical cluster’s BOLD activity on accuracy 

appears to be partially mediated via reaction time.  Moreover, BOLD activity from the 

subcortical clusters was significantly negatively correlated with participants’ endogenous 

urgency signal (rho=-.452, p<.001); this relationship remained significant even after controlling 

for mean reaction time as a covariate (rho=-.358, p=.009).  This provides converging evidence 
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that the dwell lifetime in State 3 relates to an increase likelihood of exhibiting a “braking” signal 

in task which helps to improve behavioural performance.  Dwell lifetime in no other state, nor 

the overall number of transitions between states, demonstrated significant covariation with 

brain activity in task.  Taken together, this suggests that the propensity to express certain brain 

states at rest can shape brain activity in task which, in turn, relates to behavioural performance. 

 

Fig. 4.3.  Relating time-varying functional connectivity (tvFC) state properties to behaviour.  (A) 

Schematic of task design.  Subjects viewed a short movie clip that slowly morphed from a 

neutral to either happy or sad facial expression.  Easy and ambiguous trial types were 

interleaved throughout the blocks. (B) Signal contrasts between the trial and intertrial periods 

across all participants are depicted in green.  When considering the effect of dwell lifetime in 

State 3 as a covariate on this contrast, we observe two significant clusters: one in the thalamus 

and another in the caudate (highlighted in yellow-red).  In both instances, warmer colour 

indexes higher contrast values. (C)  Mediation analysis for the association between the region of 

interest’s (ROI; i.e., subcortical clusters) BOLD activity, mean reaction time, and overall 

accuracy.  Path coefficients are shown next to arrows indicating each link in the analysis, with 

standard errors in parentheses.  Path a refers to the path from BOLD activity to reaction time; 

path b refers to the direct link between reaction time and accuracy; path c is the relationship 

between BOLD activity and accuracy; and path c’ refers to the total association between BOLD 

activity and accuracy, without the mediator (*=p <.05, **=p<.01, ***p<.0001).  (D)  Correlation 

between the cluster’s BOLD activity and the urgency signal. 
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4.5.3. Conservation of Network Configuration between Rest and Task is a Function of 

Task Difficulty 

Although we established that a more pronounced global braking signal in task is observed 

among subjects with longer dwell lifetime in the modular brain State 3 at rest, our finding that 

dwell lifetime in State 3 only related to accuracy in easy trials leaves open the question how 

external task demands may influence network cartography.  We addressed this by assessing 

whether FC configuration during rs-fMRI is preserved in task-fMRI and, if so, whether they may 

resemble a specific tvFC state.  Moreover, we examined whether similarity between task and 

rest FC configuration may relate to behavioural performance.  Within easy trials, the more 

similar the connectivity matrix in task-fMRI on easy trials was to that of the modular State 3, 

the better an individual performed on the easy trials in terms of accuracy (r=.408, Mantel’s 

statistic: p=.003).  Within ambiguous trials, closer resemblance between connectivity patterns 

and that of the low modularity State 4 was related to better accuracy on ambiguous trials 

(r=.395, Mantel’s statistic: p=.004).  We did not observe a significant relationship between dwell 

lifetime in any other FC states and behavioural performance metrics after multiple comparison 

correction.   

 

4.6. Discussion 

Cognitive processes are associated with altered brain activity and, by extension, functional 

connectivity.  Understanding the intrinsic organization of brain networks at rest and in task can 

offer a context for the performance in task.  Here, we provide evidence that individual 

differences in the prevalence of different network topology at rest relate to performance in a 

perceptual decision-making task.  We utilized a dynamic approach to characterize fluctuations 

in FC configurations at rest and identified four distinct brain states.  Results showed that 

individuals who had a propensity to more frequently express a tvFC state at rest with higher 

global modularity, especially of the DMN, were also more likely to demonstrate increased 

thalamic and caudate activity in task.  This brain activity, in turn, served as a brake that slowed 
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decision time and improved accuracy in task.  Next, we showed that network integration in task 

is dependent on task difficulty and that this relationship correlates with behavioural 

performance.  These results underscore the importance of network topology in shaping 

behavioural performance when confronted with external tasks. 

Why would the propensity to occupy a modular state at rest improve behavioural performance 

in task?  A highly modular network architecture reduces the metabolic costs involved in 

maintaining the wiring of long-range, between-system connections (Bullmore & Sporns, 2012) 

which, though perhaps necessary for adaptive cognition, can only be sustained for brief periods 

of time.  Critically, modularity is also behaviourally relevant – global brain network modularity 

measured during periods of rest is correlated with state-like (e.g., perception on a trail-by-trial 

basis (Boly et al., 2007; Sadaghiani et al., 2015)) as well as trait-like (e.g., working memory 

(Stevens et al., 2012)) aspects of cognition.  Here, we add to this previous work by showing that 

the propensity to exhibit longer occupancy of a brain state of high modularity at rest improves 

behavioural performance in task.  Our findings suggest a key role for subcortical structures, 

such as the thalamus and caudate, in mediating this relationship and the reason for this may be 

two-fold.  First, the thalamus and basal ganglia may be uniquely poised to influence cognition 

as it forms part of a core circuit that support convergence of functionally diverse neural signals 

(Bell & Shine, 2016; Shafiei et al., 2018; Sherman, 2016).  While a modular organization at rest 

may improve performance in task, a completely modular organization renders the brain limited 

in function.  For example, without connectivity between networks, perceptual information from 

the visual cortex could never reach the motor cortex and dictate actions.  Subcortical structures 

may play a key role in mediating the switch from a modular and segregated network 

configuration to one that is highly integrated when confronted with task demands.  Second, the 

thalamus and basal ganglia serve as relays for the serial flow of information from structures 

involved in reward and motivation which can critically influence goal-directed cognition and 

subsequently drive motor output (Haber & Knutson, 2010).  Our results suggest activity from 

these regions likely serve as a braking signal to pause, wait till enough information is accrued to 

make an informed decision, and consequently, improve performance accuracy.  These findings 

dovetail with recent work implicating these subcortical regions in suppressing competing motor 
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actions (Dunovan et al., 2015; Meder et al., 2016) and to an endogenous urgency signal (Thura 

& Cisek, 2017; Yau et al., 2020), as in the present study. 

During goal-orientated behaviour, more demanding cognitive functions may benefit from a less 

modular brain organization.  As modules become more integrated, regions can change their 

module allegiance more quickly, potentially forming bridges of communication and foster flow 

of information in response to task demands (Bullmore & Sporns, 2012; Cole et al., 2014). Our 

results suggest that system-wide alterations in network topology facilitate more effective 

behavioural performance, but that this relationship is a function of task difficulty: in relatively 

straightforward easy trials, the more similar the network cartography was to a more modular 

brain state, the better individuals performed behaviourally; conversely, in ambiguous trials that 

require more complex working memory updating and cognitive control, resemblance of 

network cartography to a more integrated brain state resulted in better behavioural 

performance.  This hypothesis has already garnered support from recent studies in network 

dynamics that suggest the extent to which the brain is globally integrated scales to task 

complexity and cognitive demand across blocks of similarly difficult trials (Cohen & D'Esposito, 

2016; Hearne et al., 2017; Shine et al., 2016; Vatansever et al., 2017; Yue et al., 2017).  Our 

findings extend these studies by demonstrating fluctuations in network topology can be 

identified even when task difficultly changes from one trial to the next, thus more closely 

mimicking natural settings.  However, the specific cognitive demands that drive global 

integration remains unclear and warrants further investigation. 

There are some important limitations to note in our study.  First, we only tested one perceptual 

decision-making task and therefore do not know the generalizability of our results to other 

cognitive tasks.  Second, FC fluctuations at rest may arise, in part, from stochastic noise 

(Handwerker et al., 2012).  Though converging lines of evidence from computational models 

(Deco et al., 2011) and multimodal imaging (Tagliazucchi et al., 2012; Thompson et al., 2013) 

indicate a neural basis of tvFC, debate remains regarding whether these signals are spurious 

(Lurie et al., 2018).  Finally, though we used a common sliding-window approach to estimate 

connectivity dynamics, there are many techniques used to estimate these metrics (e.g., Allen et 
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al., 2014; Lurie et al., 2018; Shappell et al., 2019; Yaesoubi et al., 2015) and further work should 

consider and compare robustness of different tvFC approaches in determining its relation to 

cognition. 

Recognition that dynamic neuronal signalling is important in adaptive cognition and behaviour 

has been long established (Hebb, 1949) but the notion that signalling can be dynamic also in the 

absence of external task demands is relatively novel.  Our results indicate that connectivity 

patterns between brain regions are continuously changing both at rest as well as in task.  

Performance on a cognitive task may not depend entirely on changes during the task itself, but 

also on the propensity of an individual to express certain patterns of intrinsic network 

organization.  Thus, understanding examining individual differences in intrinsic network profile 

can help elucidate potential mechanisms underpinning disrupted cognition. 
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CHAPTER 5: General Discussion 

A critical question in neuroscience is how a person, and by proxy the brain, arrives at a decision.  

We frequently navigate dynamic decision environments where sensory information changes 

from one moment to the next and can contain unreliable information.  How does the brain 

support adaptive choices in these changing and ambiguous environments?  Theories as to how 

decisions are formed stretch back centuries, but only in the recent decades have 

neuroscientists begun to chip away at the biological basis of perceptual decisions.  This is driven 

largely by the convergence of computational models and non-human primate neurophysiology.  

In this doctoral thesis, I attempted to bridge this research to human perceptual decisions by 

employing various non-invasive neuroimaging modalities.  The central aim of this thesis was to 

study the correlates of decision parameters in the human brain and examine whether decision 

formation may be influenced by an urgency signal.  In brief, we tested potential neural 

correlates of hypothesized decision parameters in Chapter 2.  We demonstrate that MVPA can 

be used to infer sensory evidence from fMRI BOLD activity by relating it to model parameters 

from a hierarchical Bayesian model of the DDM.  Moreover, the paradigm we developed can 

probe the dynamics of perceptual decision-making and tease apart predictions made by a pure 

evidence accumulation versus urgency gating model.  Our results point to the caudate as a 

potential source of an inverse-urgency signal.  We extended this in Chapter 3 and examined 

how perceptual decisions unfold over time.  We provide evidence that a decision variable 

captured by EEG reflects the combined influence of both sensory evidence and an evidence-

independent, time-variant urgency signal.  In Chapter 4, we highlight how individual variability 

in the functional organization of the brain may influence behavioural performance in task.  We 

demonstrate how this may be mediated by activity of subcortical regions that are involved with 

generating an inverse-urgency signal.  This final chapter presents a general discussion of the 

common themes from the questions we have considered, the limitations in our findings, and 

highlights some potential avenues for future research. 
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5.1. Probing Decision-Related Neural Activity from Individual Brain 

Regions/Signals Using Non-Invasive Recordings in Humans 

A particularly rich vein of research in perceptual decision-making has been driven by applying 

evidence accumulation models to study neural mechanisms underlying simple choice 

paradigms based on visual sensory evidence, such as the random dot motion task.  These tasks 

have allowed researchers to accurately characterize the sensory information in the decision 

environment, fit computational models to behaviour, and identify neural activity that reflects 

core ingredients of perceptual decisions (e.g., sensory evidence and decision variables) using 

single-cell recordings in non-human primates (Gold & Shadlen, 2007).  We sought to adapt 

these tasks for use with neuroimaging modalities (i.e., fMRI and EEG) for data acquisition in 

humans.  Neuroimaging techniques provide us with a way to non-invasively acquire whole-

brain recording to assess the contribution of different brain regions, and their connectivity, to 

perceptual decisions.  Building on previous work (O'Connell et al., 2012; Thura et al., 2012), we 

designed and employed a dynamic visual discrimination task across our three studies.  This task 

involved the presentation of a neutral facial emotion that gradually morphed into a happy or 

sad expression.  Subjects were asked to respond whenever they felt confident enough to 

predict what the final emotion will be, and to respond both as accurately and as quickly as 

possible.  We used the subject’s RT distribution, along with accuracy, to estimate decision 

parameters in our computational models and then searched for their neural correlates using 

neuroimaging modalities. 

5.1.1. CPP Signalling in Humans as a Homologue to LIP Signalling in Monkeys 

Researchers have long searched for brain region(s) that demonstrate activity which closely 

mirror the estimated decision variable from evidence accumulation models like the DDM.  One 

of the pivotal findings in the field of perceptual decision-making is the discovery that dynamic 

activity of single neurons in the LIP of the monkey cortex can be well-described by an evidence 

accumulation process during the random dot motion task (Gold & Shadlen, 2007; Hanks et al., 

2006; Roitman & Shadlen, 2002; Shadlen & Newsome, 2001).  Significance advances in non-

invasive assays have opened opportunities for translating this finding, as well as other detailed 
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characterisations of decision mechanisms, from animal neurophysiology to the human brain.  In 

particular, the high temporal resolution of EEG naturally lends itself to serve as an appropriate 

non-invasive alternative to single cell recording.  In our study (Chapter 3), we were able to 

identify a domain-general CPP signal from scalp EEG in human subjects.  This neural signal 

displayed hallmarks of a decision variable: it gradually evolved in time, ramped steeply close to 

decision, and peaked just before the time of response.  We formally test this notion with a 

hierarchical Bayesian implementation of the DDM to demonstrate that the buildup of the CPP 

signal reflected the evidence accrued as related to the drift rate parameter at a trial-by-trial 

level.  Our analysis further suggested that the relationship between CPP buildup and drift rate 

was dependent on the trial type, and on individual differences in the tendency to wait for more 

information before deliberation.  In brief, CPP buildup did not differ between correct or 

incorrect trials, was related to higher drift rate in trials of higher ambiguity in sensory 

information, and was still detected in subjects who tended to respond early despite high 

ambiguity.  These findings are in line with recent work suggesting that the CPP is mediated by 

subjective evidence and perceived decision confidence, over and above the actual sensory 

evidence in the environment (Herding et al., 2019; Tagliabue et al., 2019), thus contradicting 

the original assumption that the CPP solely varies with the available sensory information 

(O'Connell et al., 2012).  Our findings also point to the potential involvement of an additional 

urgency parameter (discussed in Chapter 5.3).  In a similar vein, firing rates of LIP and other 

fronto-parietal neurons thought to reflect a decision variable in non-human primates have also 

been shown to encode a signal of subjective sensory experience and decision confidence (de 

Lafuente & Romo, 2005; Grimaldi et al., 2015; Kiani & Shadlen, 2009; Pouget et al., 2016).  

Taken together, our findings suggest that the CPP signal may relate to similar, or even 

homologue, mechanisms reflected in the neuronal processes identified in the LIP of non-human 

primates.  

While EEG is a versatile, inexpensive, and portable neuroimaging modality, a key limitation is 

that it provides a very indirect reflection of the neural processes underlying brain functions.  

The recording captured by a single electrode can reflect the summed activity of hundreds of 

thousand of pyramidal neurons.  Moreover, the shape and conductivity of the skull and scalp 
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strongly influence the EEG signal.  Attempts to identify the spatial, cortical origin of signals 

detected on the scalp by using source localization are limited by issues in the forward problem 

(that is, estimating the brain, skull, and scalp surface boundaries which can distort EEG signals), 

and importantly, the lack of a unique solution for the inverse problem (that is, how to calculate 

the relationship between the potential at the scalp and the dipole amplitude in the brain) 

(Akalin Acar & Makeig, 2013; Asadzadeh et al., 2020).  Thus, to infer where in the brain a scalp 

EEG signal originates require certain assumptions and constraints to attain a unique solution.  

This does not mean the source localization of EEG signals is uninformative.  Source localization 

algorithms like minimum norm estimates and their generalization (e.g., low resolution electrical 

tomography) have yielded results that are largely anatomically concordant with fMRI BOLD 

localization (Grech et al., 2008; Phillips et al., 2002).  Although our results suggest that the CPP 

acts as a decision variable, without knowing the specific neural origin of the signal, it is hard to 

contextualize this finding in the decision circuitry.  A brain region that encodes a decision 

variable should be connected to regions that encode the sensory information and to regions 

that are involved with the appropriate (motor) response.  As it stands, we do not know if CPP 

matches these criteria, and to our knowledge, the cortical origin of this signal has yet to be 

tested.  Though the CPP is captured from a parietal site on the scalp suggesting it is likely under 

the greatest influence of activity from parietal pyramidal neurons, we cannot definitively draw 

this conclusion.  Thus, an interesting next step may be to apply source localization to identify 

the neural origins of the CPP.  Alternatively, and perhaps a more precise methodology, one 

could use simultaneous acquisition of EEG and fMRI data to characterize the temporal dynamics 

of a decision variable, such as the CPP, on a trial-by-trial level in spatially well-defined neural 

networks. 

5.1.2. Neural Representation of Sensory Evidence in the Human Brain 

Given that perceptual decisions are hypothesized to result from the gathering of sensory 

information from the environment, another interesting question to address is where and how 

in the brain is the relevant sensory information represented.  For example, it is established in 

the non-human primate literature that, during the random dot motion task, neurons within the 

area MT encode the sensory decision variable (i.e., motion direction) based on their receptive 
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field, and project to the LIP to inform a decision variable (Katz et al., 2016; Mazurek et al., 2003; 

Perrone, 2004).  Extending this to humans is difficult as non-invasive assays of the human brain 

cannot differentiate between motion directions in the random dot task.  As such, there is a 

need to use alternative stimuli sets whose representations in the brain are discriminable by 

neuroimaging modalities.  Previous EEG studies have shown that the early N170 component – a 

face-sensitive visually evoked ERP – and a late parietal component can discriminate face from 

car stimuli (Philiastides et al., 2006; Philiastides & Sajda, 2006).  However, this stimulus is not 

ideal for a dynamic task as faces and cars do not naturally transition, and artificial manipulation 

is required to modulate the level of sensory information available between the two options 

(e.g., blurred masks or jumbling pixels of face and car images).  Moreover, EEG is generally ill-

suited for discriminating neural correlates of sensory information as its captured signals reflect 

the summed activity of an extensive pool of neurons that are likely sensitive to different 

sensory information.  In this thesis, we first opted to use fMRI due to its higher spatial 

resolution and exploited the well-characterized face-processing system in the human brain.  

fMRI BOLD activations to different facial emotions can be decoded with MVPA and machine-

learning techniques (Haxby et al., 2000; Wegrzyn et al., 2015).  Facial emotions also naturally 

transition from one to the next and were therefore ideally suited for our dynamic paradigm. 

Although a number of previous studies have attempted to characterize how sensory 

information is represented in the human brain using averaged fMRI BOLD activity, their findings 

have been highly discrepant (reviewed in Chapter 1.5.1).  In Chapter 2, we attempted to 

reconcile this issue by taking a new approach of using MVPA to decode information from 

patterns of BOLD activity.  MVPA is arguably a better methodology to detect more precisely 

what information is accumulated and where (Haxby et al., 2001; Norman et al., 2006).  While 

univariate analysis focuses on the difference in mean BOLD signal, MVPA focuses on decoding 

the informational content of activation patterns encoded in different regions (Davis & Poldrack, 

2013).  We exploited this methodology to decode patterns of activity related to either happy or 

sad expressions in a training task, allowing us to infer the extent to which a voxel carried neural 

signals in favour of each choice alternative.  We then applied the individual decoders to our 

dynamic task, and with hierarchical Bayesian modelling, we tested whether allowing the drift 
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rate of the DDM to vary with the multivariate “code” of sensory representation in regions 

previously implicated in face-processing (Haxby et al., 2000; Wegrzyn et al., 2015) could 

improve model fit.  While facial emotion could be decoded from the BOLD activity from all of 

our regions of interest, only the MVPA code from the fusiform gyrus contributed to the DDM 

and related to the estimated drift rate at a trial-by-trial level.  This suggests that the fusiform 

gyrus may be central to decoding and feeding the information forward in our task.  As with the 

CPP in our EEG experiment, we found that the relationship between the fusiform MVPA code 

and drift rate was contingent on trial type and on individual differences in the tendency to 

respond early or late.  However, in contrast to the CPP buildup which we found to be present 

regardless of the amount of sensory information in the decision environment, the fusiform 

MVPA code was only related to drift rate when there was sufficient evidence.  The fusiform 

MVPA code was not found to contribute to evidence accumulation in responses made during 

the early portion of the ambiguous trials where there were low levels of sensory evidence.  This 

likely suggests that the fusiform MVPA code is a more direct representation of the sensory 

evidence, mirroring closely the amount of information available.  On the other hand, the CPP 

signal is more characteristic of a decision variable that integrates lower-level sensory 

information and appears to be under some other influence that drives its buildup, independent 

of sensory evidence.  We demonstrate that the fusiform gyrus can be used to provide a window 

into decision processes and the computations they implement, specifically in the context of 

facial emotion stimuli.  As with MT firing being informative for motion detection, activity from 

the fusiform should not be misconceived as a central function in accumulating evidence for all 

decisions.  Presumably, different areas would be involved if the decision depended on different 

categories of stimulus features.  We used facial emotion as an example of sensory information 

in perceptual decision-making but testing with other forms of sensory information is warranted.  

We believe that our approach of combining MVPA with DDM can serve as a template for future 

fMRI studies.   

MVPA has been ambitiously advertised as a means of “reading” the brain (Norman et al., 2006).  

However, it should be noted that there are several caveats with employing an MVPA approach.  

Compared to traditional univariate analyses, MVPA may be better suited to revealing the 



128 
 

informational content coded in activation patterns in the brain, but it is by no means a perfect 

description of this representation (Ritchie et al., 2017).  Classifiers, especially more complex 

non-linear ones, can be too informationally greedy.  The information the classifier uses as a 

basis of the discrimination may not be constrained to the information the brain actually exploits 

to make the distinction.  How a classifier exploits information in neural data can be deeply 

opaque.  Moreover, the biological plausibility of decoding methods is often overlooked.  While 

fMRI has superior spatial resolution compared to EEG, BOLD is nonetheless an indirect measure 

of the underlying neural processes, and a voxel reflects the average activity of hundreds of 

thousands of neurons.  Regardless of performing univariate or multivariate analysis, all fMRI 

studies face this inherent limitation.  In our study (Chapter 2), we show that our activation 

“code” of the fusiform gyrus – derived from support vector machine-learning weights – has 

psychological plausibility as it links to observed behaviour, and specifically, the drift rate 

parameter.  Moreover, we show that the fusiform MVPA code is transferred between relevant 

up-stream and down-stream brain regions (discussed below in Chapter 5.2.1) suggesting 

biological plausibility.  Nonetheless, we must remain cautious in how we interpret our findings.  

Further understanding of the assumptions that different machine-learning techniques make, in 

addition to identifying their strengths and weaknesses for specific representational questions, 

may be essential in revealing and interpreting how information may be represented in the brain 

to make decisions possible. 

 

5.2. Decisions in the Context of Brain Networks 

Thus far, we have discussed our findings from individual brain regions/signals.  However, we 

know that the coordinated activity between a multitude of brain regions contributes to 

successful decision formation and execution.  Visual information flows through dorsal and 

ventral visual streams responsible for action specification and action selection, respectively 

(reviewed in Chapter 1.3 and depicted in Fig. 1.3) (Cisek, 2007; Goodale & Milner, 1992).  
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5.2.1. Informational Connectivity of Sensory Evidence During Task 

After providing evidence that the MVPA code from the fusiform gyrus represents sensory 

information in the brain, we sought to contextualize this finding in light of the decision circuitry.  

To this end, we took advantage of the spatial resolution of fMRI and its ability to probe the 

whole brain, including ventral and subcortical structures that may be more difficult to capture 

by scalp EEG.  In Chapter 2, we used generalized psychophysiological-interaction analysis 

(McLaren et al., 2012) to identify which brain regions not only temporally coactivated with the 

fusiform gyrus – thus reflecting FC – but also whether these connections were modulated by 

the fusiform MVPA code.  We interpreted this as reflecting informational connectivity, which 

charts the flow of information during the task (Anzellotti et al., 2017).  We found that the 

neural representation of sensory evidence from the fusiform MVPA code is relayed between 

regions of lower-level sensory processing areas (e.g., lateral occipital area), as well as dorsal 

stream areas involved in action specification (e.g., inferior parietal sulcus, superior parietal 

lobule, supramarginal gyrus, and frontal eye fields).  This resembles findings from non-human 

primate physiology studies that suggest sensory evidence from the area MT projects to the LIP 

where a decision variable is formed and then converted into action (Gold & Shadlen, 2007; 

Hanks et al., 2006).  Here, we provide a more global view of the decision circuitry that may be 

involved in perceptual decisions during our task.  However, due to the low temporal resolution 

of fMRI, we were unable to temporally tease apart the flow of information during the decision 

process. Simultaneous single-cell recording from area MT, LIP, and the prefrontal cortex in 

macaque monkeys have shown that perceptual decisions are not simple feed-forward 

processes, but result from complex temporal dynamics including feedforward and feedback 

interactions between frontal and posterior cortex (Siegel et al., 2015); whether this principle 

holds true in the human brain remains to be tested. 

5.2.2. Individual Variations in the Organization of Human Brain Networks Affects Task 

Performance 

While connectivity between brain regions may change in response to task demands, the 

organization of these connections are thought to be dominated by certain intrinsic 

configurations or RSNs (Laird et al., 2011; Yeo et al., 2011) with substantially more modest 
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contributions from task-state (Cole et al., 2014; Gratton et al., 2018).  This view of brain 

function highlights the role of individual brain regions within the context of broader neural 

networks.  For example, the informational connectivity of the fusiform MVPA code we observe 

in Chapter 2 involves visual perception, cognitive, and motor/visuospatial networks.  RSNs do 

not work independently and the dynamics between RSNs are thought to reflect the array of 

cognitive architectures that the brain has available (Bertolero et al., 2018).  Critically, functional 

network architecture identified using resting-state FC is also present during task performance 

and may reflect the route by which activity flows during cognitive task performance (Cole et al., 

2014; Cole et al., 2016).  In tandem, there is growing recognition of the importance of time-

sensitive descriptions of brain activity, and that the traditional analysis technique of averaging 

across extended periods of fMRI scan-time may obfuscate the time-varying reconfiguration in 

global network structures (Allen et al., 2014; Lurie et al., 2018).  In Chapter 4, we found that 

individuals who more frequently expressed a brain state (or FC configuration) with higher global 

modularity/segregation were also more likely to perform better behaviourally in task.  Our 

findings suggest a key role for the thalamus and caudate in mediating this relationship by 

serving as an inverse urgency signal (discussed below in Chapter 5.3).  In the context of 

evidence accumulation models, slower responses (e.g., by raising the decision threshold) likely 

allow for more information to be accrued before choice commitment, in turn, improving 

accuracy.  These subcortical structures may also play a key role in mediating the switch 

between modular and integrated brain states (Bell & Shine, 2016; Bullmore & Sporns, 2012; 

Shafiei et al., 2018; Sherman, 2016).  This is important as more demanding cognitive functions 

benefit from a more integrated brain organization that fosters the flow of information in 

response to task demands, but can be too metabolically demanding to sustain over long periods 

of time (Bullmore & Sporns, 2012; Shine et al., 2016).  In our task, ambiguous trials with low 

sensory information are arguably more difficult, requiring greater cognitive control, and more 

complex working memory updating.  In line with our hypothesis, we found that the more a 

subject’s FC configuration during ambiguous trials resembled an integrated brain state, the 

better the subject performed.  Conversely, subjects’ FC configuration resembled a more 

modular brain state during easy trials, and the degree of this resemblance related to how well 
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the subject performed on these trials.  We discussed at the beginning of this thesis (Chapter 

1.3) how the neural architecture of perceptual decision-making can be split into four systems: 

sensory, decision, motor, and performance monitoring.  While distinct, these systems are 

thought to be constantly interacting as information flows from occipital to motor areas (Cisek, 

2007).  In a situation where sensory information is abundant, the default baseline (i.e., rest) 

connectivity between different RSNs pertaining to these four systems may be sufficient in 

conveying information flow to inform a decision.  However, in situations where sensory 

information is weak or ambiguous, there may be a greater need to form stronger bridges of 

communication between RSNs, for example, to exert action selection mechanisms.  Taken 

together, our results help contextualize perceptual decisions in the framework of brain 

connectivity and networks. 

5.2.3. Limitations of Functional Connectivity 

A potential issue with how we address brain connectivity in both Chapter 2 and 4 is that we 

assume it is determined by FC.  This method ignores a fundamental assumption in 

neuroscience: anatomical connections between brain regions provide the structural basis for 

functional interactions between them.  Thus, the propensity for two regions to interact should 

vary in proportion to the density and efficacy of the projections connecting them, and FC is 

thought to reconfigure around the underlying large-scale anatomical structure of the human 

cerebral cortex (Honey et al., 2009).  For example, it has been shown that functional activation 

to faces in the fusiform gyrus can be predicted by structural connectivity alone (as measured by 

diffusion-weighted imaging) (Saygin et al., 2011).  While recent studies suggest there is strong 

evidence for the biological plausibility of FC (Deco et al., 2011; Handwerker et al., 2012; 

Tagliazucchi et al., 2012; Thompson et al., 2013), studies that use FC to infer brain connectivity, 

as we do in our studies, do not explicitly consider the relevant anatomical skeleton.  A better 

understanding of the nature of the structure-function relationship may help further guide our 

understanding of how cognition is achieved.  Future work can expand the findings from our 

study, and the combination of structural and functional connectivity techniques (e.g., voxel-to-

voxel tractography) may help more finely characterize the relationship between brain 

connectivity and function. 
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5.3. Role of an Evidence-Independent Urgency Signal 

While the DDM has been a reliable workhorse for describing extant neural data, recent work 

contends that this standard account provides an incomplete picture of how neural responses 

contribute to the timing of perceptual decisions, especially in the face of noisy or changing 

sensory information (Churchland et al., 2008; Thura & Cisek, 2017).  In the highly complex and 

dynamic environment we inhabit, making accurate and timely decisions is a considerable 

challenge since the information the brain receives is almost always to some degree unreliable.  

Decisions may not be merely driven by accumulation of noisy sensory evidence, but also by a 

time-varying urgency signal that helps curtail deliberation in the face of ambiguous information 

(Cisek et al., 2009).   

The urgency signal is thought to grow with time and ubiquitously elevate a decision variable 

towards decision thresholds, such that less sensory evidence is required for decisions 

commitment as elapsed decision time increases.  This contradicts the traditional DDM which 

assumes an integrating decision variable is based solely on sensory evidence.  In tasks that 

present constant evidence (e.g., where dot motion coherence remains unchanged throughout a 

trial), the DDM and the urgency gating model make very similar predictions about neural 

activity and behaviour (Thura et al., 2012).  In both, the predicted decision variable grows at a 

rate proportional to the subject’s estimate of the strength of evidence, and reaches some 

threshold level of activity at the time decision is made.  In the DDM, this is attributed to the 

accumulation of sensory evidence, whereas in the urgency gating model, this is attributed to an 

endogenous urgency signal that grows with time.  In order to distinguish the predictions made 

from these two computational models, one must track either the sensory evidence available or 

the urgency signal.  However, since the urgency signal is posited to arise endogenously, it 

difficult to explicitly manipulate naturally without creating artificial scenarios where speed is 

encouraged over accuracy (Hanks et al., 2014; Heitz & Schall, 2012).  In our paradigm, by 

changing the sensory information in the decision environment, we can accurately characterize 

the sensory information available at any given time and compare our captured neural signal to 

that predicted by our models.  Moreover, by having trials of differing ambiguity of sensory 
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information (i.e., easy and ambiguous), we were able to more clearly see when suboptimal 

decision policies were in place and to offer the opportunity to understand their computational 

substrates (e.g., higher urgency). 

Results from our studies suggest an urgency signal can be observed in naïve human 

participants.  Our participants were not trained on the dynamic paradigm we employed, were 

allowed to freely respond, and were not incentivised to choose one decision strategy over 

another (e.g., rewarding subjects based on performance).  We nevertheless observed two 

broad groups of individuals: those who tended to wait for more sensory information to be 

available when the decision environment is ambiguous, and those who tended to respond early 

with incomplete and ambiguous information.  Participants appear to inherently vary in their 

motivations to complete the task, and by formally testing with an urgency gating model, we 

demonstrate that those of higher urgency (i.e., early responders) tended to choose speed over 

accuracy, despite not being explicit prompted to do so.  This contradicts previous work that 

suggests models incorporating a time-varying parameter only fit behaviour of highly trained 

monkeys and not humans performing a limited number of trials (Hawkins et al., 2015).  In 

addition to these behavioural findings, we provide evidence that a dynamically growing neural 

decision variable, namely the CPP captured by EEG (Chapter 3), nonetheless ramps up in time 

among early responders who make decisions despite very ambiguous sensory information in 

the decision environment.  This resembles previous finding in macaque monkeys where firing 

rates in the LIP grew in time even on trials where sensory evidence was entirely ambiguous (i.e., 

0% motion coherence during the random dot motion task) (Churchland et al., 2008).  One 

potential interpretation of this finding is that the decision variable is subject to an urgency 

signal, in close conjunction with subjective evidence and perceived decision confidence 

(Braunlich & Seger, 2016).  We formally tested this notion and found that our predicted neural 

signal from an urgency gating model accurately fitted with the observed CPP buildup at a trial-

by-trial level – this was not the case for neural signals predicted by the DDM.   

Our results also shed light into where in the brain an urgency signal may arise.  While the neural 

correlates of an urgency signal have been formally tested in non-human primates (Thura & 
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Cisek, 2014, 2017), this model has yet to be extended to humans.  We demonstrate using fMRI 

(Chapter 2), that late compared to early responders exhibited greater caudate activity on 

ambiguous compared to easy trials.  Moreover, BOLD signal from the caudate was inversely 

related to subjects’ estimated urgency signal.  In Chapter 4, we found that individuals who 

exhibited a propensity to demonstrate a modular FC organization at rest – argued to be a less 

metabolically-demanding and more optimal configuration when not engaged in external task 

(Bullmore & Sporns, 2012) – were also more likely to exhibit greater thalamus and caudate 

activity during the task.  Consistent with our observations in Chapter 2, we observed that a 

subject’s average activity from these subcortical regions inversely related to their estimated 

urgency parameter.  Taken together, our findings indicate that urgency may be rooted in 

subcortical activity.  We posit that this is linked to braking signals generated by the indirect 

dopaminergic pathway originating from a striatal population of projection neurons (Frank & 

Claus, 2006).  This ties in with basal ganglia’s hypothesized role in action selection: multiple 

possible actions generated by the cortex are received by the basal ganglia, which acts as a 

gating mechanism, selecting the behavioural response that is considered most appropriate, and 

suppressing alternative signals (Bogacz & Gurney, 2007; Cisek, 2007; Frank et al., 2007).  

However, in none of our studies did we directly measure dopamine or the indirect pathway per 

se.  Future research is needed to more directly test the link between dopamine (e.g., tyrosine 

depletion, Parkinson patients, or positron emission tomography studies) and the urgency signal 

in human decision-making. 

The research presented in this thesis lends support to the notion that the formation of 

perceptual decisions is influenced by an evidence-independent, time-variant variable, and these 

studies are among the first to formally test the neural correlates of an urgency signal in naïve 

human subjects.  However, it is important to acknowledge that this concept is relatively nascent 

and remains a debated topic (Thura et al., 2012; Winkel et al., 2014).  Though our trial types are 

modelled after previous work testing the urgency gating model in macaques (Thura et al., 

2012), there are several drawbacks to this task paradigm.  First, our trial types may encourage 

individuals to choose between speed and accuracy, perhaps exaggerating the effects of 

urgency.  Second, subjects were asked to make an inference about the future, and not 
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necessarily to make a judgement based on the current available sensory information.  Third, 

urgency may be only one of the explanations for our findings.  There is a plethora of 

computational models that have attempted to describe observed behaviour and this thesis only 

considers two possible variants.  Though we found that the urgency gating model was a better 

fit to our data than to the DDM, it shares similar assumptions with other models such as the 

collapsing bound model or leaky-competing-accumulator (Evans et al., 2020; Thura, 2016).  

Direct comparison of a more comprehensive range of models may help better elucidate which 

hypothesized mechanisms are actually closest to the ground-truth of how perceptual decisions 

are formed.  We believe that better characterization of the urgency signal (or lack thereof) at 

the neural level is an important future goal for cognitive neuroscientists and can provide us 

with a more mechanistically principled and refined understanding of the cognitive 

underpinnings of perceptual decisions. 

 

5.4. Use and Limitations of Computational Models 

David Marr, a pioneer in Computational Neuroscience, postulated in his famous three-step 

recipe of brain modelling that to understand the brain one must: (i) formulate the problem and 

identify its normative solution (i.e., the way it behaves optimally), (ii) search for computational 

models that accomplish the optimal solution, and (iii) elucidate implementations of such 

algorithm(s) in the brain (Marr, 1982; Marr & Poggio, 1979).  In this thesis, I have demonstrated 

how computational models (e.g., DDM and urgency gating model) can be harnessed to provide 

insight into the latent psychological processes that underlie decisions.  The ability to model 

behaviour provides a powerful analysis tool for mechanistic understanding of the processes 

by which decisions are forged in the brain at group, subject, or even trial level.  This is 

achieved by formalizing conceptual models into mathematical terms, thus eliminating the 

vagueness in terminology, and enforcing a rigorous and precise way of testing relevant 

components or parameters.  Such quantitative descriptors or model parameters can provide 

a bridge between mental and neuronal processes and allow us to test how they map onto 

each other (e.g., urgency signal mapping inversely to subcortical activity).  Moreover, model 
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parameters may serve as additional biomarkers that can disentangle symptom clusters as 

they probe a more basic level of understanding, independent of diagnostic category (Huys et 

al., 2016).   

The foregoing discussion illustrates the benefits of anchoring neuroimaging data to 

principled quantitative models of behavioural data.  However, it is important to note an 

obvious caveat to this approach: the insight computational models provide about an 

individual’s disposition is limited to the abstractions assumed by the model.  A model must 

trade-off between parsimony (i.e., economy of parameters) and comprehensiveness (i.e., 

goodness of fit) in its assumptions:  too simple a model and you risk not being able explain your 

observed data; too complex a model and you risk overfitting and becoming unable to generalize 

outside your dataset.  Ultimately, it is the estimate of the model parameters that serves as a 

proxy for underlying decision dynamics.  Computational models are typically optimized for 

behavioural data, with their validity assessed by its fit to accuracy and RT data.  However, they 

remain agnostic about the precise implementation of the algorithms at the neural level.  While 

behavioural data can be comprehensively explained by parsimonious models with a minimal set 

of parameters, the underlying neural implementations are probably far more complex – it is 

unlikely that neural signals have a simple one-to-one relation with model parameters.  

Moreover, many other hypotheses can be generated that are consistent with the observed link 

but differ in the mechanics that explain the link (e.g., the identified region may simply relay or 

mirror the signal of interest).  Results from our studies, as well as other studies, that use model 

parameters based on behavioural data to identify neural signals should be considered in light of 

this key limitation.  Over the coming years, new neural data will undoubtedly help further 

constrain and update our modelling framework.  Development of new devices, new methods of 

measurement, and new experimental paradigms are required to support computational models 

that respect the complexity of brain structure and function.  Such advances can help us 

determine whether model parameters reflect underlying neural processes, or remain 

abstractions disconnected from this ground-truth. 
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5.5. Beyond Perceptual Decisions 

Though this thesis centers on perceptual decision-making, not all decisions revolve around 

perception.  Understanding how the brain overcomes the challenges associated with perceptual 

decision-making may illuminate broader principles of computation that extend to a range of 

cognitive operations.  A common engine for decision-making could be one that drives the 

observer from a state of ambiguity towards a decision based on the information gathered from 

the environment, while simultaneously faced with a growing pressure to commit to a choice as 

time elapses.  Whether such principles are idiosyncratic to perceptual decision-making or have 

further implications is an intriguing and important question. 

For example, decisions are often driven by their “value” (or in economic terms, “utility”) with 

the selected option being the one with the highest subjective value.  One may choose between 

eating an apple or a cake not based on its perceptual properties, but by its perceived value or 

taste.  However, our understanding of perceptual decisions suggests evidence needs to be 

accrued from the external decision environment.  This is difficult to reconcile with in value-

based decision-making, as deliberations are made based on internal evidence – that is, the 

subjective value assigned to each option.  One approach has been to include an attention 

parameter to the DDM, which is hypothesized to modulate the drift rate during choice 

accumulation.  Eye tracking data suggest that greater time is spent fixated on objects/stimuli of 

higher value, and that this fixation time or attention moderates the drift rate across time 

(Krajbich et al., 2010; Krajbich & Rangel, 2011; Mormann et al., 2010).  More recently, it has 

been proposed that the hippocampus may carry internal evidence to support deliberations 

about value, and damage to this region impacts the ability to draw on such internal evidence, 

resulting in stochastic choices and longer reaction times (Bakkour et al., 2019).  Others have 

emphasized the role of the striatum and ventromedial prefrontal cortex in encoding the 

expected value of a decision (Summerfield & Tsetsos, 2012).  For example, the neural correlates 

of a decision variable estimated using the DDM for a value-based, compared to a perceptual, 

decision-making task was found to not only involve parietal regions implicated in integrating 

sensory evidence, but also frontal regions that encode valuation (Polanía et al., 2014).  There is 
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less knowledge about how a time-variant parameter like urgency may come into play in value-

based decisions.  Recent evidence suggest both choice and saccadic vigour vary with subjective 

economic value (Yoon et al., 2018; Yoon et al., 2019), potentially reflecting a global influence of 

the urgency signal during both decision and action.  This resembles a study performed with 

macaques, which showed that both the decision time and the vigour of movement used to 

report decisions related to an urgency signal in a perceptual task (Thura & Cisek, 2014).  

However, to our knowledge, the influence of an urgency parameter on value-based decision-

making has yet to be formally tested and could be an interesting avenue to pursue in future 

research. 

Understanding perceptual decisions can also give us insight into what may have gone awry in 

neurological and psychiatric disorders where cognitive dysfunction is apparent.  For example, 

the phenomenon of misperceiving one object as another, or the belief that there is a percept 

despite no sensory signals (i.e., hallucinations), are present in conditions such as schizophrenia 

(Limongi et al., 2018; Powers et al., 2017; Tek et al., 2002).  Such illusory or phantom percepts 

may be a result of dysfunctions in the perceptual system when the brain regions responsible for 

generating a decision variable (e.g., fronto-parietal) incorrectly interpret weak sensory evidence 

coming from lower-level sensory regions (e.g., visual) (Summerfield et al., 2006).  More broadly, 

clinical disorders may also be amenable to pathophysiological abnormalities in the decision 

formation process.  For example, elevated urgency may be etiologically tied to disorders of 

impulsivity (discussed in Chapter 1.4), while excessively diminished urgency may cause lack of 

motivation and blunting of reward sensitivity, potentially posing vulnerability to conditions such 

as depression and anhedonia (Carland et al., 2019).  If indeed our understanding of perceptual 

decisions can be translated to the broader neuroscience discipline, it can potentially assist in 

generating a unifying framework in understanding the cognitive underpinnings of decision-

making.  Ultimately, better understanding will lead to better treatment options to correct or 

ameliorate cognitive dysfunctions present in a variety of clinical disorders.  Future work that 

provides a more refined understanding of the underlying neural mechanisms can lead to new 

therapies that target brain systems in ways we cannot currently imagine. 
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5.6. Conclusion 

The original research presented in this thesis helps bridge some of the gaps in our 

understanding of human perceptual decisions.  I have shown how neural correlates of decision-

making can be addressed at different timescales using different neuroimaging modalities, 

specifically fMRI and EEG.  Moreover, our research highlights some new approaches that can be 

used to connect theoretical insights concerning the computations that support decision 

formation to neuronal activity.  The field of cognitive neuroscience is at an important juncture: 

the current age of big data and open science, with the ability to acquire and manipulate 

extremely high-dimensional, multimodal datasets (e.g., cognitive, neuroimaging, clinical, and 

genetic), holds great promise in uncovering the complex cognitive underpinnings of human 

decision-making.  However, it poses a data analysis challenge, and can be like finding needles of 

understanding in haystacks of data.  Having a clearly articulated analytic goal in mind is 

paramount to research endeavours.  I hope the work from this thesis can serve as a guide to 

orient future research.  

Though we have covered much ground in this doctoral thesis, the study of decision-making 

extends far beyond what I have presented here.  Decision-making is a fundamental human 

behaviour and a palimpsest of intellectual disciplines, including neuroscience, psychology, 

mathematics, sociology, economics, political science, and philosophy, to name a few.  This 

speaks to the far-reaching implications of decision-making.  A nuanced understanding of human 

decisions, and the neural mechanisms that support it, can improve decision-making in many 

situations and potentially ameliorate dysfunctions when it has gone awry.   
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APPENDIX 

Supplementary Materials from Chapter 2 

 

Supplementary Fig. A2.1. A striatal “urgency” signal may interact with fusiform code depending 

on task demands. To test this hypothesis, we adapted our HDDM model to assess whether 

caudate activity, within the significant clusters, could alter decision parameters. As with our 

HDDM models with fusiform code, we split our data three-ways based on: (1) easy trials 

across all subjects, (2) ambiguous trials among late responders, and (3) ambiguous trials 

among early responders. Adding caudate BOLD activity did not improve model fit, as 

assessed by DIC, beyond a model with only fusiform code. There was weak evidence that the 

degree to which fusiform code impacted drift rate was modulated by variance in caudate 

activity in easy trials (79.02% of posterior probability >0) and in ambiguous trials among late 

responders (71.98% of posterior probability >0). It had little to no effect on ambiguous trials 

among early responders (54.35% of posterior probability > 0). To test whether caudate may 

convey information regarding facial emotions, we ran a SVM classifier per participant 

restricted to the caudate to decode happy and sad faces in the training task. We found that, 

as opposed to the fusiform and other face processing areas, caudate activity did not 

accurately decode facial emotions better than chance. Thus, although caudate activity 

reflected parts of the evidence accumulation process, it did not appear to reflect information 

processing of facial emotion stimuli nor affect decision parameters as estimated by HDDM. 
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Supplementary Table A2.1. Raw deviance information criterion (DIC) values comparing HDDM 

model fit of the seven neural models relative to base. 

Region Name Difference in DIC value (relative to base) 

Amygdala 653.49 

Anterior Temporal 650.22 

Fusiform Gyrus -26.29 

Inferior Occipital 662.75 

Insula 672.19 

Intraparietal Sulcus 683.00 

Superior Temporal 668.38 
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Supplementary Table A2.2. Psychophysiological interaction (PPI) from a left and right fusiform 

seed as parametrically modulated by the multivariate fusiform code for emotion. Related to Fig. 

2.5. 

Region x y z t stat 
Number of 
Voxels 

L Fusiform Gyrus Seed 

L lateral occipital -18 -92 22 7.03 24 

R lateral occipital 38 -80 32 10.79 1202 

L cerebellum -14 -74 -44 10.44 267 

R cerebellum 22 -70 -44 8.26 170 

R lateral occipital 48 -70 4 7.86 30 

R lateral occipital 40 -70 -24 7.26 39 

R fusiform gyrus 30 -68 -4 7.53 93 

R inferior temporal 54 -54 -14 10.04 551 

L fusiform gyrus -42 -48 -20 23.96 3359 

L lateral occipital -12 -48 54 8.03 252 

R superior temporal sulcus 56 -44 4 9.45 489 

R superior parietal lobule 30 -44 50 8.49 56 

L intraparietal sulcus -48 -42 48 9.40 360 

R supramarginal gyrus 60 -38 24 7.28 75 

R intraparietal sulcus 50 -36 54 9.66 182 

L supramarginal gyrus -60 -36 26 7.55 42 

L superior temporal sulcus -50 -34 4 7.78 111 

R premotor cortex 32 -2 52 8.99 122 

L premotor cortex -26 0 50 7.68 35 

L inferior frontal gyrus -42 14 20 9.13 651 

R inferior frontal gyrus 48 16 22 11.00 143 

R orbitofrontal cortex 32 26 -18 7.59 27 

R middle frontal gyrus 54 34 8 9.07 80 
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R Fusiform Gyrus Seed 

R fusiform gyrus 26 -82 -8 9.14 94 

R lateral occipital 26 -82 -22 7.80 53 

L cerebellum -24 -80 -30 7.12 33 

L lateral occipital -48 -78 18 7.44 35 

L cerebellum 10 -76 -44 7.77 89 

L lateral occipital -42 -70 -2 8.86 266 

R cerebellum 36 -70 -28 7.32 36 

L cerebellum -26 -66 -50 8.30 161 

L lateral occipital -26 -64 48 7.22 31 

R superior temporal sulcus 46 -58 4 7.02 31 

R precuneus 12 -54 48 7.1 63 

R fusiform gyrus 44 -48 -16 18.27 898 

R cerebellum 44 -48 -38 8.83 25 

L supramarginal gyrus -42 -40 50 7.65 164 

R superior temporal sulcus 46 -20 -8 8.87 44 

L postcentral gyrus -54 -18 34 7.21 41 
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Supplementary Table A2.3. Spearman correlations between urgency signal and factors from 

BIS-11 (Patton et al., 1995) and BIS/BAS (Carver & White, 1994; Heym et al., 2008). No 

correlations survive significance test (alpha=.05) after a Bonferroni correction for multiple 

comparison. 

 

Questionnaire r p 

BIS-11 

   

Attentional -0.0751 0.6237 

Motor -0.2139 0.1584 

Non-planning 0.0733 0.6324 

BIS/BAS 

BAS Drive -0.1791 0.2390 

BAS Fun Seeking -0.0456 0.7664 

BAS Reward 

Responsiveness -0.3721 0.0118 

BIS Anxiety -0.0324 0.8328 

BIS FFFS-Fear 0.0389 0.7998 
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Supplementary Table A2.4.  Spearman’s correlations between participants’ optimized 

parameters as determined by varying levels of Gaussian noise (N) compared to an N of 6, as 

used in the main text.  Values reflect Spearman’s r. 

 

Optimized 

Parameter 

N=4 N=5 N=7 N=8 

UGM (µ) 0.9941 0.9940 0.9904 0.9897 

DDM (T) 0.9771 0.9750 0.9683 0.9717 
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Supplementary Materials from Chapter 3 

 

Supplementary Fig. A3.1.  Topomap of 256-channel HydroCel GSN v1.0 (Adult).  

Channels/electrodes used for the ERP of interest is highlighted in red. 
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Supplementary Fig. A3.2.  Grand average waveforms from 5 posterior electrode sites 

surrounding Pz (E101, E100, E129, E119, E110, E128) closely resembles waveforms from the 

single electrode site Pz (Fig. 3.5 in main text).  The onset-locked P300 signal is depicted in the 

left-hand column for (a) easy and (c) ambiguous trials.  The response-locked CPP signal is 

depicted in the right hand column for (b) easy and (d) ambiguous trials. 
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Supplementary Fig. A3.3.  Relationship between the early theta and late alpha power with our 

ERPS of interest.  Power was derived by averaging across all electrodes.  Early theta was 

significantly positively related to both P300 amplitude (rho=.312, p=.018) and CPP amplitude 

(rho=.382, p=.003).  Late alpha did not relate to either P300 amplitude (rho=.07, p=.606) or CPP 

amplitude (rho=.011, p=.937).  Each dot represents a subject, with blue and red representing LRs 

and ERs, respectively. 

  



149 
 

 

Supplementary Fig. A3.4.  DIC values when comparing HDDM model fit that allows for decision 

parameters (decision threshold (a) and drift rate (v)) to vary by neural signals (N170, P300, and 

CPP).  The best fitting model is one where decision threshold is allowed to vary with P300 

maximum amplitude and drift rate to vary with CPP build up (highlighted in green). 

  

aP300 aN170 vCPP aP300:vCPP aP300:aN170:vCPP

DIC difference -86.15 87.97 -1243.81 -1272.87 -1068.29
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Supplementary Table A3.1.  Breakdown of posterior probabilities from HDDM when considering 

trail-by-trial modulation of P300 on decision threshold (a) and CPP on drift rate (v).  These 

findings are depicted in Fig 3.6a and 3.6b in the main text. 

 

 

 

  

 

Condition Group 
Posterior 

Probability > 0 

Posterior 

Probability < 0 

P300 

Easy 
LR 58.31 41.69 

ER 11.96 88.04 

Ambiguous 
LR 99.20 0.80 

ER 21.27 78.73 

  
   

CPP 

Easy 
LR 22.49 77.51 

ER 0.01 99.99 

Ambiguous 
LR 88.10 11.90 

ER 97.98 2.02 
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Supplementary Table A3.2.  Breakdown of posterior probabilities from HDDM when considering 

trail-by-trial modulation of P300 on decision threshold (a) and CPP on drift rate (v), as well as 

their interaction with condition (easy or ambiguous trial types).  These findings are depicted in 

Fig 3.6c and 3.6d in the main text. 

Interaction Group 

Posterior 

Probability  

> 0 

Posterior 

Probability < 0 

P300 x condition 
LR 95.33 4.67 

ER 57.49 42.51 

 
   

CPP x condition 
LR 91.41 8.59 

ER 99.9 0.1 
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Supplementary Materials from Chapter 4 

 

Supplementary Fig. A4.1. Independent components grouped according to RSNs.  Each colour 

depicts one independent component within each of the nine RSNs [EI: Emotion/Interoception; 

BG: Basal Ganglia; MVS: Motor/Visuospatial; VIS: Visual Perception; DMN: Default Mode 

Network; COG: Cognitive; AUD: Auditory; LNG: Language; CB: Cerebellum] 

  



153 
 

 

Supplementary Fig. A4.2.  Elbow criterion of cluster validity index, computed as the ratio of 

within- to between-cluster distance and indexes the optimal number of clusters (k) for k-means 

clustering. 
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Supplementary Fig. A4.3.  Euclidean distance between transmodal and unimodal regions.  This 

was determined as the average Euclidean distance between the median embedding value of 

DMN regions against the median embedding value of the visual and somato-motor RSNs for the 

principle gradient map of each tvFC state (highlighted with dotted lines).  This was compared 

again a distribution of distance values derived from randomly generated gradients which were 

sampled by generating covariance matrix from 1,000 randomly selected sliding windows. 
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