
M.Sc. Thesis, The Initial State of Heavy Ion
Collisions in the IP-Glasma Framework

Scott McDonald
Supervisor: Sangyong Jeon

Department of Physics

McGill University
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Abstract

First implemented by Schenke et al [1, 2], IP-Glasma is a QCD based initial state

model for Heavy Ion Collisions that is able to reproduce a wide range of observables,

both on average and in event-by-event distributions, when used to initialize hydrody-

namic simulations. The model incorporates small-x gluon saturation via the Impact

Parameter Dependent Saturation Model (IPSAT) [3] and introduces sub-nucleonic

color charge fluctuations by stochastically sampling the color charge density for each

nucleon, before ultimately evolving the gluon field configuration via a classical Yang-

Mills evolution. This thesis is the debut of a second formulation of IP-Glasma, the

results of which will be presented throughout this work. The objective is to reproduce

the results of the highly successful IP-Glasma model and to extend them to study

new experimental data in order to further constrain the transport properties of the

Quark Gluon Plasma. Predictions and postdictions for Run 2 at the LHC, which is

currently underway, will be presented and discussed.

xi



Résumé

Implémenté pour la première fois par Schenke et al [1, 2], IP-Glasma est un modèle

de conditions initiales pour collisions d’ions lourds, basé sur la chromodynamique

quantique, capable de décrire un large éventail d’observations lorsqu’utilisé en com-

binaison avec une simulation hydrodynamique. Le modèle inclus la saturation des

gluons de très basses énergies à l’aide du Modèle de Saturation avec Dépendance au

Paramètre d’Impact (”Impact Parameter Dependent Saturation Model” IPSAT) [3],

et introduit des fluctuations de charges sub-nucléoniques en échantillonnant stochas-

tiquement la densité de charges de couleur de chaque nucléon, pour ensuite évoluer

les configurations du champ de gluon à l’aide d’une évolution Yang-Mills classique.

Cette thèse est la première étape d’une nouvelle formulation du modèle IP-Glasma.

L’objectif est de reproduire les résultats existants du modèle et de l’appliquer à de

nouvelles données expérimentales, dans le but de mieux déterminer les propriétés de

transport du plasma quark-gluon. Des prédictions et postdictions pour le LHC sont

présentées et discutées.

xii
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Introduction

1.1 History

In 1911, Ernest Rutherford discovered the nucleus with his famous gold foil experi-

ment. By scattering alpha particles off of a thin sheet of gold foil, Rutherford was

able to determine that atoms were composed of a dense positive core and mostly

empty space. Thus nuclear physics was born.

Since Rutherford’s time, extraordinary progress has been made in understanding

the mysteries and complexities of the nuclear world, yet the idea underlying his ex-

perimental approach remains relevant to this day; nuclear physicists are still studying

scattering experiments at higher and higher energy resolution to determine the com-

position and nature of what are believed to be fundamental particles. The question of

atomic structure has long been resolved, but the nature of the subnucleonic structure

of protons and neutrons, collectively known as nucleons, is still the subject of intense

study. Today, nuclear physicists collide heavy ions such as gold and lead nuclei at

relativistic speeds to learn about the prevailing nuclear theory of the day, Quantum

Chromodynamics (QCD).

1.2 Quantum Chromodynamics

QCD is the theory that describes the strong nuclear force that binds quarks into

nucleons. Just as the electromagnetic force binds positively charged nuclei with neg-

atively charged electrons to form atoms, the strong nuclear force binds particles that

carry “color” charge together to form hadrons. Hadrons are made up of either three

1



2 1 Introduction

quarks (baryons), as in the case of protons and neutrons, or a quark and an anti-quark

(mesons), such as pions and kaons. There are three generations of quarks, each of

which has two members, for a total of six (up, down, charm, strange, top, bottom).

Given the six quarks and the rules for combining them into hadrons stated above,

one can create a zoo of hadronic matter.

In the Standard Model of particle physics forces are “mediated” or “carried” by

particles known as gauge bosons. In the case of Quantum Electrodynamics(QED),

the relativistic quantization of Maxwell’s equations of electromagnetism (EM), the

mediating particle is the photon. For QCD on the other hand, there are eight such

particles, known as gluons, each carrying different color content, that mediate the

QCD interaction. In both cases, the gauge bosons mediate forces between particles

that carry electromagnetic force or color force for QED and QCD, respectively. Some

particles, such as quarks, carry both types of charge, EM and color, and thus can

interact via either force. However, the range of the two forces are sufficiently different

that they are relevant on different length scales.

Despite the similarities, QCD poses clear challenges that make it more difficult

to study than QED, given the same set of tools. Firstly QCD is an asymptotically

free theory, meaning that the interaction is weak at short distances (high energy), but

becomes strong at large distances (low energy). This can be contrasted with the more

familiar forces of gravity and electromagnetism that behave in the opposite manner,

growing weaker at longer distances. Rather, it is more suitable to think of the strong

force as an elastic band that applies a constant restoring force as it is stretched, until

eventually it snaps, creating a particle and an anti-particle pair.

In fact, this analogy describes a consequence of asymptotic freedom known as

color confinement. In order to separate two particles that carry color charge, say

a quark and an anti-quark for example, one would need greater and greater energy

input until, eventually, it would become energetically favorable to produce a quark

and an anti-quark out of the vacuum. At this point, the tube of energy connecting

the quark and anti-quark, known as a “flux tube,” will snap, leaving two colorless
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bound states. Thus, color charge is said to be confined within colorless bound states

made up of either three quarks (baryons) or a quark and an anti-quark (mesons).

Consequently, we cannot study free color charged particles under normal conditions

which leads to the importance of heavy ion collisions in understanding QCD, to be

addressed in more detail in the following discussion.

On the theoretical side, a second, more technical difficulty owing to the coupling

constant occurs in the strongly coupled (low energy) regime. At low energies, pertur-

bative techniques, such as those employed with extraordinary success to study QED,

are not feasible. One saving grace is that the QCD coupling is energy dependent and

becomes weaker at high energies. This means that if we are able to build experiments

that can probe energies where QCD is weakly coupled, we may be able to compare ex-

perimental results with theory derived using well-established perturbative techniques.

Yet another reason to have hope is the fact that it is believed that at sufficiently high

temperatures and pressures, strong matter reaches deconfinement, where the bound

states melt into a soup of color charge made up of deconfined quarks and gluons and

known as Quark Gluon Plasma (QGP).

1.3 Heavy Ion Collisions and QGP

In the face of the challenges mentioned, and with these opportunities in mind, physi-

cists have devised various ways of studying QCD matter including lattice QCD,

AdS/CFT, non-perturbative techniques, and, most relevant to this thesis, Heavy

Ion Collisions (HIC’s). Current HIC experiments are sufficiently energetic to both

reach the weakly coupled regime, where QCD is better understood, and to form QGP,

thus opening a window into the behavior of unbound quarks and gluons at extreme

temperatures and pressures. This novel form of matter is believed to have existed in

the early universe, shortly after the Big Bang.

While the study of QGP may provide insight into other areas of physics, it is a

rich and fascinating form of matter worthy of study in its own right. Its formation

at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) in



4 1 Introduction

Long Island, New York and the Large Hadron Collider (LHC) at CERN in Geneva,

Switzerland has been the source of great excitement and the subject of intense inves-

tigation. By studying QGP, physicists hope to gain insight into the phase diagram,

transport coefficients, equation of state, and perhaps many more interesting features

of hot QCD matter. The obvious question is, how do we know that we have created

QGP? What is the evidence?

1.3.1 Signatures of the Formation of QGP

Collective Flow

One of the key signatures of QGP is the presence of elliptic flow, as quantified by the

second Fourier coefficient of the expansion of the azimuthal distribution of particles,

dN

dφ
=

N

2π

(
1 +
∑
n

2vn cos [n(φ− ψn)]

)
(1.1)

where ψn is the phase of vn and is known as the event-plane angle. This is the angle

from which the vn expansion is measured and orients the event along the impact

parameter axis.

Figure 1.1: Colliding nuclei with almond shape overlap leading to a difference in pressure gradients
in the long and short axis. This in turn leads to the elliptic flow phenomenon. Figure taken from
[4].

For collisions with a finite impact parameter, there will be an almond-like overlap

region between the colliding nuclei, as can be seen from figure (1.1). This almond
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like shape causes an anisotropy in pressure gradients in which the fluid expands more

rapidly parallel to the x-axis in figure (1.1), compared to the y-direction where the

pressure gradient is smaller. The shape of this momentum anisotropy causes the

Fourier expansion to be dominated by the cos(2φ) term, v2, known as elliptic flow.

The initial state energy anisotropies are quantified by εn,

εn =

√〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2
〈rn〉 (1.2)

where average quantities are the energy density weighted averages over the transverse

plane.

〈∗〉 =
∫
d2x ∗ ε(x)∫
d2xε(x)

(1.3)

and ε is the local energy density. The fact that the initial distribution of energy gets

converted to a momentum anisotropy is strong evidence for collective behavior and a

signature of the formation of QGP. This thesis will focus heavily on flow observables

that are directly related to the vn and εn, as well as the interplay between these

quantities.

1.3.2 HIC Theory Overview

From a theoretical standpoint, heavy ion collisions can be broken into three distinct

stages, each governed by their own effective theories: 1) Pre-equilibrium dynamics

and thermalization, 2) Hydrodynamic evolution, and 3) Hadronization. In fact, one

can subdivide HIC’s much more finely, as can be seen in table (1.3.2), but the main

divisions are those mentioned above. This thesis will be primarily concerned with

the pre-equilibrium dynamics of heavy ion collisions but will also rely on the other

phases of the evolution to be able to compare observables with experimental data,

since the initial state is not directly observed in experiment. Hydrodynamics and

hadronization will allow for a phenomenological study in which the results of the

IP-Glasma model, to be outlined in this thesis, are compared with experimental

data. That being said, this thesis will give only the most cursory overview of the

hydrodynamics and hadronization models employed, as they are not the focus of the
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current work. The specific numerical implementations used for these two theories

are MUSIC for hydrodynamics, and UrQMD for hadronization. MUSIC, or MUScl

for Ion Collisions, is a second-order relativistic viscous hydrodynamics simulation,

including shear and bulk viscosities, developed at McGill University [5]. UrQMD

stands for Ultrarelativistic Quantum Molecular Dynamics, and was first developed in

at Göethe Universität in Frankfurt, Germany [6].

To illustrate the complexity of HIC’s, table (1.3.2) gives a brief description of

HIC’s and the prevailing theories that govern each stage of the collision. The far

right column gives the specific numerical simulations used for this thesis.

Table 1.1: Table showing the complexity of heavy ion collisions along with the variety of models and
numerical simulations used to study them in this thesis.

Description Time Prevailing Theory Simulation Used

Before the collision t < t0 Color Glass Condensate IP-Glasma

Immediately after the collision t0 < t < 1
Qs

Strong Classical Fields - Glasma IP-Glasma

Thermalization/Isotropization 1
Qs

< t < tequilibrium Glasma/Kinetic Theory/Hydro IP-Glasma

QGP (Hydrodynamics) tequilibrium < t < tfreezeout Relativistic Viscous Hydrodynamics MUSIC

Hadron Gas tfreezeout < t < tfreestream Cooper-Frye/UrQMD/Kinetic Theory UrQMD

Free Streaming tfreestream < t Particles free stream to detectors UrQMD

Figure 1.2: Schematic diagram showing the various stages of a heavy ion collision and the effective
field theories by which they are governed. This thesis is focused very specifically on the the pre-
collision and classical Yang Mills dynamics represented as the two incoming nuclei, and the red strip
in the light cone, respectively. This figure was taken from [7]

.

In many ways the pre-equilibrium physics is the least well constrained component

out of the three, but is currently under intense study. It is important to note that
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knowledge of the initial nuclear wave functions will likely set the ultimate constraint

on our understanding of HIC’s, and thus the initial state will be critical in the study

of HIC’s for years to come. Relativistic viscous hydrodynamics has been enormously

successful in describing the behavior of the QGP formed at RHIC and the LHC, but

it is not yet fully understood how the system gets to an equilibrated state for which

hydrodynamics is justified, or whether such a stringent condition can be relaxed for

hydrodynamics. While this thesis will not address this crucial question directly, it

does aim to demonstrate the effectiveness of IP-Glasma, a QCD based model that is

able to reproduce experimental data for many observables of interest when used as

an initial condition for hydrodynamic simulations.

Historically, hydrodynamics has been initialized with a number of geometric initial

conditions such as Monte-Carlo Glauber, or wounded nucleon models. IP-Glasma,

however, is a QCD based model that includes saturation physics as well as both

geometric fluctuations and sub-nucleonic fluctuations relating to the distribution of

color charge density within each nucleon. Its ability to reproduce a wide range of

observables including quantities that are entirely fluctuation based such as v3, as well

as event-by-event vn and multiplicity distributions have made IP-Glasma the standard

in the field.

In terms of procedure, IP-Glasma is a Monte-Carlo event generator that determines

the saturation scale within the IPSat framework [3] and relates it to the color charge

density. The saturation scale is the energy scale at which the gluon density ceases to

grow, or saturates, within a high energy nucleus or hadron and will be discussed in

far greater detail in the next chapter. Once the color charge density is obtained, IP-

Glasma determines the gauge fields in the McLerran-Venugopalan (MV) [15] model

and evolves them in time via the classical Yang Mills equations. Finally, IP-Glasma

computes the stress-energy tensor, and diagonalizes it to find the energy density and

local velocity that are relevant to initializing hydrodynamical simulations. The details

of this process will be outlined in this thesis.
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1.3.3 Goals of this Thesis

As experimentalists smash heavy ions together near the speed of light, theorists try to

create a framework in which to understand their results. Progress in the field of heavy

ion collisions is a constant back and forth in which theorists and experimentalists trade

turns making advances that in turn pave the way for their counterparts to advance

the field. This thesis is an effort to summarize one of the most successful theoretical

models for the initial state of HIC’s, namely IP-Glasma, and perhaps make a small

contribution to its advancement.

This thesis was first and foremost aimed at reproducing the hugely successful re-

sults of the IP-Glasma model [1, 2] as a foundation for future novel and exciting

applications. Run 2 at the LHC, however, has provided an immediate opportunity to

expand this work to make predictions and postdictions relating to hadronic observ-

ables at 5.02 TeV. Novel results are presented for hadron integrated vn coefficients,

charged hadron multiplicity, and hadron differential vn. In addition, predictions are

made for 〈pT 〉, vn distributions, and identified particle as well as multi-strange par-

ticle spectra and multiplicities. Also, for the first time, two and three-plane event

correlations are computed using IP-Glasma initial conditions. Novel results are also

presented for identified particle differential v3 and v4 at both 2.76 TeV and 5.02 TeV.

1.3.4 Organization

This thesis is organized as follows. In chapter 2, we will delve into the background

theory, beginning with the most general theory, QCD, and we will progressively nar-

row the focus past the Color Glass Condensate(CGC)[8] and Mclerran-Venugopalan

(MV) [15] models, eventually arriving at IPSat and IP-Glasma. We will derive the

classical Yang Mills equations in τ − η coordinates and relate the pre-collision gauge

fields to the post-collision gauge fields by matching solutions on the boundary of the

light-cone. Then, we will back track slightly to determine the form of the pre-collision

gauge fields in terms of the color charge density. At this point, we will discuss the

saturation scale and relate it to the color charge density. Finally, we will discuss the
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boost invariant Hamiltonian formulation of the CGC, the equations of motion, and

their implementation of the lattice.

In chapter 3, we derive the stress energy tensor from the CGC action using

Noether’s theorem and explicitly show the form of its diagonal elements. We discuss

the anisotropy of the IP-Glasma stress-energy tensor and the procedure by which

we match it to hydrodynamics, We give a brief overview of hydrodynamics and the

parameters used for the phenomenological study carried out in this thesis. Finally,

we discuss UrQMD, the hadronic cascade model used for the results presented.

In chapter four, numerical details will be discussed. First we will discuss the units

and spacing used on the lattice for this work. From there we will discuss lattice

gauge theory, the numerical procedure for solving for the initial gauge fields after the

collision, the Leap Frog algorithm used to evolve the EOM’s, and Brent’s Method as

used to solve for the saturation scale. Finally, we will show the explicitly form of the

stress energy tensor on the lattice.

In the last chapter, we will discuss observables as well as show and analyze the

results of this thesis.



2

Theory

2.1 Introduction

In this section, we aim to discuss the theoretical foundation that undergirds the initial

state of Heavy Ion Collisions and motivates the rest of this thesis. In particular, this

section will discuss the Color Glass Condensate, the Classical Yang Mills equations,

IP-Sat, and ultimately IP-Glasma. We will discuss the procedure for determining

the color charge configuration of the incoming nuclei, derive the pre-collision gauge

fields, relate them to the gauge fields after the collision, and determine the evolution

equations.

2.2 Color Glass Condensate (CGC)

The theoretical framework that governs the pre-collision dynamics of heavy ion col-

lisions is an effective field theory known as the Color Glass Condensate (CGC). This

evocative name is a good place to start our discussion, at least at the qualitative

level. Color, of course, refers to the colors charges of QCD, since each nucleon in

the colliding nucleus is made of quarks and gluons, which carry color charge. More

specifically, nucleons are made of three valence quarks, but in addition carry many

more sea quarks and gluons, all of which carry color charge.

In physics, the term “glass” is often used to describe systems that evolve on time

scales much longer than their characteristic microscopic time scale, the reason being

that ordinary glass, the material that makes up household items such as window

panes and drinking cups, behaves as a solid on short time scales and as a fluid on

10
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long time scales. Here this term is applicable because the boosted partons that act as

sources for the gluon fields, experience time dilation and hence are essentially “frozen”

over the time scale of the interaction between the two colliding nuclei. Finally, the

system is like a condensate because the phase space density of gluons is very high and

they behave coherently over length scales <1/Qs, where Qs is the saturation scale, a

quantity that will be discussed in detail in a section later on.

In order to consider the CGC on a more quantitative level, we will first look at

the full QCD action

SQCD =

∫
d4x

(
−1

4
F a
μνF

μνa +
∑
f

ψ̄f

(
i /D −mf

)
ψf

)
(2.1)

where f is an index that runs over the number of quark flavors, and a is a color index

that runs from 1 to 8, and we have used Feynman’s slash notation /D = γμ∂μ where

γμ are Dirac matrices (see appendix (7.3)). This action describes the interaction of

dirac fermions, namely quarks that carry color charge along with eight color charged

gauge fields, i.e. gluons, and is the fundamental field theory governing quarks and

gluons. Here the field strength tensor Fμν and the covariant derivative are defined,

respectively as,

F a
μν = ∂μA

a
ν − ∂νA

a
μ + gfabcAb

μA
c
ν (2.2)

and,

Dμ = ∂μ − igAa
μt

a (2.3)

Comparing the full QCD action to the action of the CGC,

SCGC =

∫
d4x

(
−1

4
F a
μνF

μνa + JμaAa
μ

)
(2.4)

we can notice some clear differences. First, it is important to remember that the

CGC is an effective field theory meaning that it describes the system in terms of the

effective degrees of freedom, in this case gluon gauge fields. Most strikingly, we see
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Figure 2.1: HERA data for parton distribution functions taken from [10]. The different curves
correspond to different parton distribution functions where xuv is for the up quark, xdv is for the
down quark, xS is for the strange quark, and xg is for gluons.

that SCGC does not have any fermions. This is because the CGC separates large x

(fast) and small x (slow) degrees of freedom, treating the fast partons, including the

valence quarks, as “external” sources Jμa for the slow partons, i.e. classical gauge

fields. Here x denotes the fraction of the total nuclear momentum that each parton is

carrying, x = k
P
, where k is the momentum of the parton and P is the momentum of

the entire nucleus. Thus the quarks serve as static sources, frozen on the time scale of

the interaction, that radiate gluons via bremstrahlung. At sufficiently high energies,

the system will be dominated by gluons, which is reflected in the effective action in

equation (2.4). This can be seen in the parton distribution functions fitted to HERA

data in figure (2.1)

At high energy, or equivalently low values of x, the gluon distribution function

clearly dominates the system (note that it has been divided by 20 to compare with

the up and down quarks). For the constant x implementation of the saturation scale

given in this thesis x ≈ 10−4 at LHC energies as given by the CMS fit [11], which is
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well within the gluon dominated regime.

Furthermore, the sources are considered to be infinitely Lorentz contracted and

are thus treated as surface charge densities moving along the light cone (see appendix

(7.1) for details on light cone coordinates). In the CGC framework, the nuclei are

considered to be in what is often called the “infinite momentum limit”, meaning

that they are moving with the speed of light. In this case the nuclei truly are two

dimensional. This approximation is not a bad one, as the Lorentz factor at the LHC

is, for center of mass energy 2.76 TeV,

γ =
E

m
=

√
s/2

m
≈ 1.38 TeV

1 GeV
= 1380 (2.5)

where the masses of the proton and neutron are both approximately 1 GeV. For a

nucleus of radius Rnuc ≈ 6.0 fm, this gives a longitudinal width of

width =
2Rnuc

γ
=

12 fm

1380
≈ 0.0086fm (2.6)

Considering the fact that the radius of a nucleon is about 1 fm, the Lorentz con-

tracted nuclei see one another with less than 1 percent of the longitudinal extent

(diameter) of a nucleon at rest.

This applies to the large x valence partons that carry large fractions of the momen-

tum of the incoming nuclei [12]. The small x partons, however, for which x 	 A−1/3

are delocalized over distances larger than the diameter of the nucleus, due to the

uncertainty principle. Thus the small x gluon fields “see” the large x source terms as

infinitely thin in the longitudinal direction.

Additionally, one can use the uncertainty principle on the light cone,

Δx+ ∼ 1

k−
(2.7)

where x± = x∓ = (x0 ± x3)/
√
2 = (t ± z)/

√
2 is the light-cone coordinate of a

parton (appendix (7.1)) and k∓ is its conjugate momentum in the same coordinate

system, to estimate the lifetime of a parton. The relativistic dispersion relation in

these coordinates is
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m2 = E2 − k2 = E2 − k⊥2 − k2
z = (E + kz)(E − kz)− k⊥2 = 2k+k− − k⊥2 (2.8)

Thus the dispersion relation in light-cone coordinates is

k− =
m2 + k⊥2

2k+
=

m2
⊥

2k+
=

m2
⊥

2xP+
(2.9)

where the transverse mass is defined as m⊥ = m2 +k⊥2. Here P is the total momen-

tum of the nucleus and k is the fraction carried by the parton under consideration.

Combining the dispersion relation and the uncertainty principle gives

Δx+ ∼ x
P+

m2
⊥

(2.10)

where x+ plays the role of the time coordinate, and Δx+ represents the lifetime of the

parton. Thus, the lifetime of each parton is proportional to its momentum fraction x,

meaning that large x partons live far longer than small x partons. This means that

the small x gluon fields “see” frozen sources. The fact that the large x partons are

frozen and two dimensional justifies the color currents being delta functions moving

along the light cone,

Jμa(x) = ρa(A)(x⊥)δ
μ+δ(x−) + ρa(B)(x⊥)δ

μ−δ(x+) (2.11)

where the subscripts A and B refer to the two incoming nuclei. The exact form of the

charge density distribution within the colliding nuclei cannot be determined on an

event-by-event basis, leaving stochastic sampling as the best alternative. The form

of the color charge distribution is model dependent, but, in general, observables can

be calculated by [13]

〈O〉 =
∫

[Dρ]W [ρ]O[ρ] (2.12)

averaging over all charge configurations for an observable O according to the distri-

bution, or weight function, W [ρ]. In the McLerran-Venugopalan (MV) [15] model, in

which we will be working, the weight function takes the form of a Gaussian as will

be seen in the next section.
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2.2.1 Eikonal Approximation and Scale Separation

The CGC makes the eikonal approximation in which the hard partons remain unde-

flected after the collision and proceed along the light cone. To justify this approxi-

mation, first made [14], we move to light cone coordinates.

In light coordinates rapidity 1 becomes,

y =
1

2
ln

(
E + pz
E − pz

)
=

1

2
ln

(
p+

p−

)
(2.13)

where p± = p∓ = (p0 ± pz)/
√
2. Noting that

p+p− =
1

2

(
E2 − p2z

)
=

1

2

(
p⊥2 +m2

)
=

1

2
m2
⊥ (2.14)

where the last equality is simply through the definition of transverse mass, allows us

to re-write eq. (2.13) as

y =
1

2
ln

(
p+p+

p−p+

)
=

1

2
ln

(
2(p+)2

m2
⊥

)
(2.15)

For a particle created in the collision, say a pion, we define the Feynman x as the

longitudinal momentum fraction,

x =
p+π
p+proj

(2.16)

where 0 ≤ x ≤ 1 and p+proj is the momentum of the projectile nucleus. For the pion,

equation (2.15) becomes

y =
1

2
ln

(
2(p+π )

2

m2
π⊥

)
= ln

(√
2(xp+proj)

mπ⊥

)
= yproj − ln

(
1

x

)
+ ln

(
M

mπ⊥

)
(2.17)

where the rapidity of the projectile nucleus is yproj = ln(
√
2p+proj
M

). We will consider

two regimes: central rapidity (near y = 0), and rapidities near the beam rapidity.

1Rapidity is related to the direction and momentum of a particle, ranging from −∞ for a particle

travelling down the negative beam axis to +∞ for particles travelling down the positive beam axis. A

particle travelling purely in the transverse plane will have a rapidity of zero. Rapidity is particularly

useful because it is additive under Lorentz boosts.
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The former corresponds to pz = 0, or equivalently in the above formulation p+ = m⊥√
2
,

since

y =
1

2
ln

(
2(p+π )

2

m2
π⊥

)
=

1

2
ln

(
2(m⊥√

2
)2

m2
π⊥

)
=

1

2
ln(1) = 0 (2.18)

However, this corresponds to

x =
m⊥√
2p+proj

=
m⊥√
s

(2.19)

which in the high-energy limit, where our concerns lie, gives x 	 1. Thus, we are

safe to approximate the particle production at central rapidity to be primarily due

to the small-x particles, predominantly gluons as we saw in figure (2.1). Conversely,

particles that have rapidity close to the beam rapidity after the collision, correspond

to particles for which,

− ln

(
1

x

)
+ ln

(
M

m⊥

)
≈ 0 (2.20)

x ≈ m⊥
M

=

√
m2 + p⊥2

M
(2.21)

Consider the valence partons, which make up the a large portion of the mass of

the nuclei, i.e. m ≈ M . In this case, p⊥ ≈ 0, meaning that very little transverse

momentum was transferred and the particles continue virtually undisturbed along

the light cone. This is the large x (x ≈ 1) scenario, and provides some justification

for the large x eikonal source approximation mentioned above. Alternatively, one can

think of the dominant source of parton production as bremstrahlung for which, at

weak coupling, the typical momentum transfer is soft, leaving the source, i.e. valence

partons, as recoil-less sources moving along the light cone [15].

Either way, the system left behind is made up of strong classical gluon fields. At

these high energies the gluon fields are extremely strong and thus can be treated

classically since quantum corrections will be negligible. In particular, the high gluon

density limit corresponds to classical fields because, in this case, the commutator of

creation and annihilation operators is negligible compared to the large occupation

number [12],

[ak, a
†
k] = 1 	 a†kak = Nk (2.22)
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QED provides an intuitive analogy. Consider a highly occupied system of photons. In

this case, one need not consider the quantum corrections from QED, and Maxwell’s

equations describe the system quite well. The same is true of the gluon occupancy in

the CGC and thus we only consider the classical Yang-Mills equations.

In order to determine the form of the initial fields, and their subsequent evolu-

tion, we will need the equations of motion, the classical Yang Mills equations, to be

discussed in the next section.

2.3 Classical Yang Mills (CYM) Field

The Yang-Mills equations generalize Maxwell’s equations of electromagnetism to the

case of multiple charges, meaning that charge becomes a multi-dimensional complex

vector space, rather than just the scalar electric charge of E&M. In the case of QCD,

we have three charges, typically referred to as red, green, and blue, and thus we are

concerned with the SU(3) YM equations. By varying the CGC action in equation

(2.4) we arrive at the YM equations of motion,

[Dμ, F
μν ]a = Jν

a (2.23)

where the source term in the context of HIC’s is given by (2.11). Again, the EOM are

reminiscent of Maxwell’s equations but with an additional SU(3) color index. This

simple difference of gauge group has profound implications for the theory. For one,

the theory is non-abelian, meaning fields are matrix valued and do not commute with

one another. This in turns leads to the non-linearity of the equations, since, as is

apparent in the covariant derivative, there will be commutator terms that are non-

linear in the gauge fields. In terms of physics, this means that gluons, the QCD gauge

bosons, interact with one another, leading to many additional vertices and diagrams

that greatly complicate perturbative calculations. Furthermore, this non-linearity

destroys the superposition principle that is so useful in regular electrodynamics.

Of course, the non-Abelian nature of the YM equations leads to other profound

effects such as the negative beta function in the renormalization group flow that in
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turn leads to asymptotic freedom. These topics account for the rich complexity of

QCD, but are not the subject of this thesis. For now, we move on to deriving the

form of the field strength tensor and CYM equations in τ − η coordinates.

2.3.1 Derivation of Field Strength in τ − η Coordinates

In order to use the CYM equations to evolve the system after the collision (τ > 0),

it is necessary to first clarify the form of the field strength tensor. We will begin in

light-cone coordinates, which we will use for the gauge fields prior to the collision, and

convert to τ − η coordinates, since these will be more convenient after the collision.

The new variables τ and η are defined by

τ =
√
t2 − z2 (2.24)

η =
1

2
ln

(
t+ z

t− z

)
(2.25)

where t is the usual time coordinate ant z is the usual spatial coordinate, taken to be

the beam direction. Beginning our derivation with

F i± = ∂iA± − ∂±Ai − ig[Ai, A±] (2.26)

In anticipation of a later discussion, we will take the following ansatz in the forward

light cone (τ > 0) consistent with the gauge choice Aτ = (x−A+ + x+A−)/τ = 0

A+ = x+α(τ,x⊥) (2.27)

A− = −x−α(τ,x⊥) (2.28)

Ai = αi
3(τ,x⊥) (2.29)

Substituting these expressions into (2.26) and lowering the index on the derivative in

the middle term gives (refer to appendix (7.1) for a review of the metric in light cone

coordinates),
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F i± = ∂i(±x±α)−∂±αi
3−ig[αi

3,±x±α] = ∂i(±x±α)−g±∓∂±αi
3−ig[αi

3,±x±α] (2.30)

F i± = ∂i(±x±α)− ∂∓αi
3 − ig[αi

3,±x±α] (2.31)

Expanding the light cone derivatives in terms of τ −η coordinate derivatives by using

the chain rule,

F i± = ±x±∂iα− ∂τ

∂x∓
∂τα

i
3 − ig[αi

3,±x±α] (2.32)

Pulling out a factor of ±x± out of the first and third terms, which we can do since

x± is simply a number,

F i± = ±x±(∂iα− ig[αi
3, α])−

∂τ

∂x∓
∂τα

i
3 (2.33)

But,

∂τ

∂x∓
=

∂

∂x∓
√
2x+x− =

1

2

2x±√
2x+x−

=
x±

τ
(2.34)

which leaves us with

F i± = −x±
(
∓∂iα± ig[αi

3, α] +
1

τ
∂τα

i
3

)
= −x±

(
∓[Di, α] +

1

τ
∂τα

i
3

)
(2.35)

Following the same procedure for the pure light-cone gauge components,

F+− = −F−+ = ∂+A− − ∂−A+ − ig[A+, A−] = ∂+A− − ∂−A+ (2.36)

where the commutator vanishes because

[A+, A−] = [x+α,−x−α] = −x+x−[α, α] = 0 (2.37)
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This leaves us with,

F+− = ∂+(−x−α)− ∂−(x+α)

=
∂τ

∂x−
∂τ (−x−α)− ∂τ

∂x+
∂τ (x

+α)

=
x+

τ
∂τ (−x−α)− x−

τ
∂τ (x

+α)

=
−x−x+

τ
∂τα− x+

τ

τ

x+
α− x−x+

τ
∂τα− x−

τ

τ

x−
α

= −2
x−x+

τ
∂τα− 2α

= −1

τ
∂τ (τ

2α) (2.38)

where again we have used ∂x±
∂τ

= τ
x∓ . Finally, for the purely transverse coordinates,

F ij = ∂iαj
3 − ∂jαi

3 − ig[αi
3, α

j
3] (2.39)

Now that we have the form of the field strength tensor, we can derive the EOM’s

from the CYM equations.

2.3.2 Derivation of CYM EOM’s in τ − η Coordinates

In the forward light cone, where our interests lie, there are no source terms, so we

need only worry about the homogeneous CYM equations. Again, we will begin in

light cone coordinates and convert to τ − η, since these will be more convenient after

the collision. Beginning with the x+ direction

[Dμ, F
μ+] = 0 (2.40)

∂−F−+ − ig[A+, F−+] + [Di, F
i+] = 0 (2.41)

Converting derivatives to τ − η coordinates and using the expressions that we found

for the field strength components, we have,

∂τ

∂x−
∂τ

(
1

τ
∂τ (τ

2α)

)
− ig

[
x+α,

1

τ
∂τ (τ

2α)

]
+

[
Di,−x+

(
−[Di, α] +

1

τ
∂τα

i
3

)]
= 0

(2.42)
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x+

τ

{
∂τ

(
1

τ
∂τ (τ

2α)

)
− ig

[
α, ∂τ (τ

2α)
]
+ τ
[
Di, [D

i, α]
]− [Di, ∂τα

i
3]

}
= 0 (2.43)

Dividing out the x+

τ
factor, carrying out the τ derivative in the second term and

raising the index on the first covariant derivative in the third term,

∂τ

(
1

τ
∂τ (τ

2α)

)
− igτ 2[α, ∂τα]− τ

[
Di, [Di, α]

]− [Di, ∂τα
i
3] = 0 (2.44)

For the analogous term, in the x− direction,

[Dμ, F
μ−] = 0 (2.45)

∂+F
+− − ig[A−, F+−] + [Di, F

i−] = 0 (2.46)

Following a nearly identical procedure as above, we ultimately find,

− ∂τ

(
1

τ
∂τ (τ

2α)

)
− igτ 2[α, ∂τα] + τ

[
Di, [Di, α]

]− [Di, ∂τα
i
3] = 0 (2.47)

These are the same four terms that showed up in the expression for [Dμ, F
μ+] = 0,

except the signs are different. We can add and subtract these two results to get two

simplified equations. Adding them gives

igτ 2[α, ∂τα] + [Di, ∂τα
i
3] = 0 (2.48)

while subtracting yields,

∂τ

(
1

τ
∂τ (τ

2α)

)
− τ
[
Di, [Di, α]

]
= 0 (2.49)

The last result is commonly expressed as

1

τ 3
∂ττ

3∂τα− [Di, [Di, α]
]
= 0 (2.50)
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So far we have derived expressions for two of the three light cone CYM equations

in terms on the initial gauge fields after the collision. For the last one,

[Dμ, F
μi] = [D+, F

+i] + [D−, F−i] + [Dj, F
ji] = 0 (2.51)

Once again plugging in our expressions for the field strength components,

∂+

(
x+

(
−[Di, α] +

1

τ
∂τα

i
3

))
− ig

[
−x−α, x+

(
−[Di, α] +

1

τ
∂τα

i
3

)]

+ ∂−

(
x−
(
[Di, α] +

1

τ
∂τα

i
3

))
− ig

[
x+α, x−

(
[Di, α] +

1

τ
∂τα

i
3

)]
+ [Dj, F

ji] = 0

(2.52)

and applying the derivatives,

−[Di, α]+
1

τ
∂τα

i
3+x+ ∂τ

∂x+
∂τ

(
−[Di, α] +

1

τ
∂τα

i
3

)
−ig

[
−x−α, x+

(
−[Di, α] +

1

τ
∂τα

i
3

)]

+[Di, α]+
1

τ
∂τα

i
3+x−

∂τ

∂x−
∂τ

(
[Di, α] +

1

τ
∂τα

i
3

)
−ig

[
x+α, x−

(
[Di, α] +

1

τ
∂τα

i
3

)]
−[Dj, F ji] = 0

(2.53)

Combining like terms, making cancellations, and simplifying a bit,

2

τ
∂τα

i
3 + 2

x+x−

τ
∂τ

(
1

τ
∂τα

i
3

)
− 2igx+x−

[
α, [Di, α]

]− [Dj, F ji] = 0 (2.54)

2

τ
∂τα

i
3 + τ∂τ

(
1

τ
∂τα

i
3

)
− igτ 2

[
α, [Di, α]

]− [Dj, F ji] = 0 (2.55)

Finally, we can combine the first two terms into one,

1

τ
∂ττ∂τα

i
3 − igτ 2

[
α, [Di, α]

]− [Dj, F ji] = 0 (2.56)

We have derived the boost invariant CYM equations of motion in the forward light

cone. In order to utilize these equations to evolve the system in the forward light
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cone, we need to find the boundary conditions on the light cone to initialize the gauge

fields after the collision, which will be done in the next section.

2.3.3 Gauge Field due to a Single Nucleus

Sampling the charge distribution provides the source term to solve the classical Yang-

Mills equations (eq. (2.23)). As mentioned earlier, these sources represent the hard

partons that source the soft partons, i.e. the classical color fields, and travel along

the light cone. In terms of the sampled charge density, the current can be written,

J+(−)
a = gρa(x

−(+),x⊥) (2.57)

Before the collision, each nucleus is a thin sheet of color charge travelling near the

speed of light. In this picture, the sources are confined to the nuclei and thus the

solution must solve the free equations of motion everywhere outside of these narrow

sheets.

We aim to argue that the pre-collision fields satisfy 2-dimensional Poisson equa-

tions. The following discussion relies heavily on the reasoning of [16] but the original

results were obtained in [15, 17, 18, 19]. Considering the source J+ for the moment,

and choosing covariant gauge initially , i.e.,

∂μA
μ
C = 0 (2.58)

we can find a solution in region 1 (see figure (2.3.3) for meaning of regions 1-4, as

referred to throughout this section), for which A−C = Ai
C = 0. Here, the subscript

C is a reminder that we are working in covariant gauge. The only non-vanishing

component of the field strength tensor is

F i+ = ∂iA+
C − ∂+Ai

C + gfabcAi
CA

+
C = ∂iA+

C (2.59)

The gauge field in the x+-direction can be determined via the CYM equations,

[Di, F
i+] = J+ (2.60)
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Figure 2.2: The fields are pure gauge in regions 1 and 2. The forward light cone is labeled as region
3 and represents the post-collision region of space time that are causally connected to the collision.
The regions indicated in this figure are referred to throughout this section.

[
(∂i − igACi), ∂

iA+
C

]
= ∂i∂

iA+
C − ig[ACi, ∂

iA+
C ] = ∂i∂

iA+
C = J+ (2.61)

where i = 1, 2 and the commutator term vanished because Ai = 0. Thus the gauge

field satisfies a two-dimensional Poisson equation,

−∇2
⊥A

+
C = J+ = gρ(x−,x⊥) (2.62)

Or equivalently, as is often written in the literature,

A+
C =

−gρ(x−,x⊥)
∇2
⊥

(2.63)

where we require the gauge fields to go to zero as x⊥ approaches infinity. Of course,

for the current moving in the x−-direction, we have an analogous solution for region

2,

A−C =
−gρ(x+,x⊥)

∇2
⊥

(2.64)

Now that we have the gauge field in covariant gauge prior to the collision in regions

1 and 2, we can gauge transform to light-cone gauge, A+ = 0. Doing so in region 1

gives
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Ai
(A) =

i

g
V(A)∂

iV †(A) (2.65)

A− = 0 (2.66)

i∂−V
†
(A) = gΛV †(A) (2.67)

where V(A) is a gauge transformation matrix. Recalling that the gauge fields transform

as

Aa
μ(x)t

a → V (x)(Aa
μ(x)t

a +
i

g
∂μ)V

†(x) (2.68)

we can see that equation (2.65) is pure gauge. Defining Λ = A+
C and solving equation

(2.67), one can show

V = P exp

[
ig

∫ x−

−∞
Λ(z−,x⊥)dz−

]
(2.69)

where P refers to the path ordering of the exponent. Plugging this result into equation

(2.65) and replacing Λ with the right hand side of the Poisson equation (2.63), one

finally finds,

Ai = i

(
P exp

[
ig

∫ x−

−∞

−1

∇2
⊥
ρ(z−,x⊥)dz−

])
∇i

(
P exp

[
ig

∫ x−

−∞

−1

∇2
⊥
ρ(z−,x⊥)dz−

])†
(2.70)

This amazing result allows us to relate the charge density, which will be sampled

randomly for each nucleus, to the initial gauge fields by a pure gauge transform that

relies on the solution to Poisson’s equation. Now, we need to relate these pre-collision

gauge fields to the post-collision fields, which will be done in the next section.

2.3.4 Initial Gauge Fields of Two 2-D Colliding Nuclei

For two nuclei, we simply sum two sources, moving in opposite directions on the

x+and x− axes, respectively,

J = gρA(x
−,x⊥) + gρB(x

+,x⊥) (2.71)
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In this case,

A± = 0 (2.72)

Ai = θ(x−)θ(−x+)Ai
A(x⊥) + θ(x+)θ(x−)Ai

B(x⊥) (2.73)

satisfy the equations of motion before the collision [19]. Here AA and AB are the

pre-collision pure gauge fields associated with the two nuclei, A and B, respectively.

The physical information is embedded in the discontinuity of the fields across the

nuclei which gives the charge density and can be written, for t < 0,

∇iA
i
A(B) = ρA(B)(x⊥) (2.74)

Intuitively, the form of (2.73) makes sense as the gauge field due to two 2-dimensional

nuclei travelling at the speed of light. Since the nuclei are moving at the speed of

light, their fields cannot precede them and are pure gauge in their wake. Thus, there

is only the transverse gauge fields that travel along with their respective nuclei at the

speed of light. Due to their different charge configurations, the gauge fields from the

two nuclei differ.

As a consequence of this solution (eq. (2.72) and (2.73)), the field strength com-

ponents F ij vanish. This solution is exact at all points in spacetime that are causally

disconnected from the collision point, i.e. regions 1 and 2 in (2.3.3). It remains to

determine the form of AA and AB from the initial charge density, which will be done

in the next section.

After the collision, the solution is no longer pure gauge. When we are not on the

light cone, but in any of the four regions in figure (2.3.3), there are no source terms

since they are considered to remain on the light cone and thus the fields satisfy the

homogeneous field equations. We will work in Schwinger gauge,

x−A+ + x+A− = 0 (2.75)

and take the ansatz already referred to in equations (2.27)-(2.28) in the forward light

cone (x+ > 0 and x− > 0), where our interests lie, [19]
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A+ = x+α(τ,x⊥) (2.76)

A− = −x−α(τ,x⊥) (2.77)

Ai = αi
3(τ,x⊥) (2.78)

At this point, determining the fields after the collision becomes a boundary value

problem. The two nuclei collide at τ = 0, which connects the regions of space-time

before and after the collision. In order to derive the initial conditions at this point,

we match the expressions for the gauge field before and after the collision. As a

reminder, the equations of motions, as derived in a previous section, are [18][19]

1

τ 3
∂ττ

3∂τα− [Di, [Di, α]] = 0 (2.79)

1

τ
[Di, ∂τα

i
3] + igτ [α, ∂τα] = 0 (2.80)

1

τ
∂ττ∂τα

i
3 − igτ 2[α, [Di, α]]− [Dj, F ji] = 0 (2.81)

Plugging in the boundary condition and matching terms on the boundaries and

eliminating any discontinuities is a tedious but straightforward exercise in algebra

and gives the simple result relating the pre-collision pure gauge fields to the fields in

the forward light cone after the collision. The Yang Mills equation [Dμ, F
μi] = 0 has

a delta function singularity on the light cone which requires

αi
3(τ,x⊥)|τ=0 = αi

1(x⊥) + αi
2(x⊥) (2.82)

The other two equations of motion yield,

α(τ,x⊥)τ=0 = − ig

2
[αi

1(τ,x⊥), αi
2(τ,x⊥)] (2.83)

Eliminating the αi’s to get the actual fields before and after the collision,
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Ai(τ,x⊥)|τ=0 = Ai
A(x⊥) + Ai

B(x⊥) (2.84)

A+|τ=0 = x+α(τ,x⊥)|τ=0 = −x+ ig

2
[Ai

A(τ,x⊥), Ai
B(τ,x⊥)] (2.85)

A−|τ=0 = −x−α(τ,x⊥)|τ=0 = x−
ig

2
[Ai

A(τ,x⊥), Ai
B(τ,x⊥)] (2.86)

Thus the initial condition in the forward light cone is uniquely determined by the

pure gauge fields before the collision which in turn depend on the charge distribu-

tions. Before determining the pre-collision gauge fields, a few comments are in store.

First, the equations of motions and their solutions are boost invariant, meaning that

they are independent of the rapidity coordinate η, which will justify a 2+1D numer-

ical simulation. This is the initial condition analogue to Bjorken’s boost invariant

formulation of hydrodynamic equations, and will allow for a fully boost invariant,

2+1D treatment of HIC’s. Second, the formulation given above for the infinite mo-

mentum limit of HIC’s gives exact solutions for the notoriously difficult to solve CYM

equations.

In reality, this limit is a good approximation, but it is just that, an approximation.

The boost invariant case corresponds to mid-rapidity, and is unable to produce data

as a function of rapidity. Now that 3+1D hydrodynamic simulations are becoming

more common, the field will certainly move toward 3+1D initial conditions and, in

fact, is already beginning to do so [21].

2.4 Initial Fields from the Charge Density

At this point, the story should be relatively clear. We sample the color charge accord-

ing to the IP-Sat model, from which we can determine the initial pure gauge fields

before the collision, and ultimately the initial glasma fields immediately afterwards.

However, we have not yet specified how to solve the Poisson equation to determine

the pre-collision fields nor talked about sampling the color charge distribution. We
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will determine the pre-collision fields here and leave the charge sampling discussion

for section (2.7.1) on the IPSat model. Starting from equation (2.64),

−∇2
⊥A

+(−)
a (x⊥) = gρa(x

−(+),x⊥) (2.87)

Suppressing the x± notation as well as the color index for the moment, the Fourier

transform of equation (2.87) can be written,

A(k⊥) =
gρ(k⊥)
k⊥2 (2.88)

Thus, the differential equation becomes an algebraic one. Solving equation (2.88)

and taking the inverse Fourier transform gives us the gauge field as a function of the

position in the transverse plane. Taking the path ordered exponential of the gauge

field gives the Wilson Line in the fundamental representation, [22]

V (x⊥) = Pei
∫
dx−A+(x−,x⊥) (2.89)

which can be discretized as

V (x⊥) =
Ny∏
k=1

exp

{−igρ(x⊥)
∇2
⊥ −m2

}
(2.90)

where m is an infrared cutoff taken to be m = λQCD = 0.2 GeV. This leaves out

momentum modes below this “mass” scale and protects against infrared divergences.

Alternatively, the cutoff can be thought of as incorporating color confinement on the

nucleon level since it removes modes below the QCD scale that would be subject to

such confinement. Thus, it effectively “confines” these modes to within the nucleon

and we do not see free modes below this scale. The assumption is that modes at the

saturation scale dominate the system and thus the system should be insensitive to

this cutoff. Details on the numerical and physical significance of the infrared cutoff

can be found [22].

Using the expression for the discretized Wilson line (2.90), along with equation

(2.65), one gets the gauge fields of the pre-collision nuclei, Ai
A(B)(x⊥) which are

pure gauges outside of the light cone as mentioned above. Equation (2.90) will be
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instrumental in determining the form of the links in the lattice formulation, as will

be seen in eq. (2.108), and ultimately solving for the initial links in the future light

cone. For now, we have outlined the theoretical procedure for determining the gauge

fields of the glasma immediately after the collision. At this juncture, we move on to

Hamiltonian formulation and the EOMs of the fields.

Summary of Gauge Field Determination

1. Sample charge density

2. Solve the CYM equations in covariant gauge (Results in Poisson equation)

3. Solve Poisson equation to find gauge fields prior to the collision in regions 1 and

2 (Fourier Transform and Inverse Fourier Transform)

4. Gauge transform to light cone gauge

5. Relate pre-collision pure gauge fields from step 2 to find gauge fields immediately

after the collision in region 3 by matching on the light cone

2.5 Hamiltonian and Equations of Motion

Starting from the CGC action given in eq. (2.4) the Hamiltonian density in the boost

invariant case can be written in terms of the 2+1D Yang-Mills Hamiltonian coupled

to an adjoint scalar [23] [24],

H =

∫
dx⊥η{ 1

2τ
Ea

i E
a
i +

τ

4
F a
ijF

a
ij +

1

2τ
(Diφ)

a(Diφ)
a +

τ

2
Ea

ηE
a
η} (i = x, y) (2.91)

where the integration over space-time rapidity has already been carried out, and the

rapidity component of the gauge field is the scalar field,

Aη(τ, η,x⊥) = x−A+ − x+A− ≈ φ(τ,x⊥) (2.92)

and
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Ei
a = τ∂τA

a
i (2.93)

Eη
a =

1

τ
∂τA

a
η (2.94)

Renaming the rapidity component of the electric field as the conjugate momen-

tum of the scalar field, i.e. π = Eη, and taking a trace over the color indices, the

Hamiltonian density can be written,

H = Tr

{
1

τ
EiEi +

τ

2
FijFij + τπ2 +

1

τ
[Di, φ][Di, φ]

}
(i = x, y) (2.95)

This expression can be discretized to [23] [24]

H =
∑
x⊥

{
g2

τ
Tr(EiEi) +

2Ncτ

g2a2

(
1− 1

Nc

Re(Tr(Uxy))

)
+

τ

a2
Tr(π2) +

1

τ

∑
i

Tr(φ− φ̃i)
2

}

(2.96)

The terms correspond, from left to right, to the contributions due to the transverse

electric field, the longitudinal magnetic field, the longitudinal electric field, and the

transverse magnetic field, respectively. In this case, φ̃i is the parallel transported field

in the direction i. At the lattice site j, this is given by

φ̃i,j = Ui,jφj+îU
†
i,j (2.97)

where Ui,j = exp(igaAi,j) is the gauge link at lattice site j in the direction i. The other

quantities are the lattice spacing, a, the number of colors, Nc, the coupling constant,

g, and the plaquette in the transverse plane, Uxy = Ux,iUy,i+x̂U
†
x,i+ŷU

†
y,i defined by a

closed loop of gauge links. Notice the distinction in notation between the gauge link

at site j, in the direction i Ui,j, with the comma, and the plaquette in the x-y plane

Uxy, without the comma. The plaquette and its physical meaning are discussed in

greater detail in section (4.7). At initial time, the energy is given by the longitudinal

fields only, [25]

ε(τ = 0) = lim
τ→0+

1

τ

dE

d2x⊥dη
=

2

g2a4
(Nc − Re(Tr(Uxy))) +

1

a4
Tr(π2) (2.98)
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where the first term is due to the longitudinal magnetic field and the second is due

to the longitudinal electric field.

One can get the equations of motion for the fields by taking the Poisson brackets

between the fields and the Hamiltonian. The result is,

.

Ui= i
g2

τ
EiUi (2.99)

.

φ= τπ (2.100)

.

Ex=
iτ

2g2

[
Uxy + Ux(−y) − U †xy − U †x(−y)

]
− trace +

i

τ
[φ̃x, φ] (2.101)

.

Ey=
iτ

2g2

[
Uyx + Uy(−x) − U †yx − U †y(−x)

]
− trace +

i

τ
[φ̃y, φ] (2.102)

.
π=

1

τ

∑
i

[
φ̃i + φ̃−i − 2φ

]
(2.103)

where there is no sum over i implied in eq. (2.99) and the dot on the left hand side

of the equations refers to the time derivative of the dotted quantity. Also, “-trace”

means subtract the diagonal elements, leaving the matrix traceless. For equations

(2.101) and (2.102), the four plaquettes terms are the four possible 1× 1 plaquettes

starting at the lattice site in question. These equations of motion are discretized and

evolved in time using the leap frog algorithm (see chapter (4.4)) to get the fields at

all times. As we will see, it is important to be careful at initial times in order to avoid

division by zero.

2.5.1 Initial Conditions on the Lattice

The initial conditions (τ = 0) discussed in section (2.3.4) can be formulated on the

lattice to be [23],

Tr
[
ta((U

(A)
i + U

(B)
i )(1 + U

(3)†
i )− h.c.)

]
= 0 (2.104)
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which corresponds to (2.82), as well as

Ei = 0 (2.105)

φ = 0 (2.106)

π(x⊥) =
−i

4g

∑
i

[(
U

(3)
i (x⊥)− 1

)(
U
†(B)
i (x⊥)− U

†(A)
i (x⊥)

)

+
(
U
†(3)
i (x⊥ − ei)− 1

)(
U

(B)
i (x⊥ − ei)− U

(A)
i (x⊥ − ei)

)
− h.c.

] (2.107)

where the last expression is the lattice expression for equation (2.83). The links U (A)

and U (B) correspond to the pure gauge fields of the pre-collision nuclei and ei is the

unit vector on the lattice connecting neighboring points in the i direction. U (3) on

the other hand is the link matrix for the color field Ai after the collision (τ ≥ 0).

The index i takes values 1, 2 corresponding to the transverse coordinates x and y,

respectively. The pure gauge links are defined on the lattice by assigning two SU(3)

matrices (see appendix (7.2)), V1,j and V2,j, one for each incoming nucleus, at each

lattice site [24]. Then the link variable at site i, in the direction j, due to nucleus q

becomes

U
(q)

i,ĵ
= Vq,iV

†
q,i+ĵ

= eiΛ
(q)
i e

−iΛ(q)

i+ĵ (2.108)

where Λ
(q)
i is the solution to the Poisson equation for nucleus q at site i, ∇2

⊥Λ(q) =

−gρ(q). Thus, our stochastic sampling of the color charge gives us the fields of each

nucleus before the collision. One still needs to solve equation (2.104) to get U (3),

however. Since U (3) is an element of SU(3), solving equation (2.104) actually means

solving N2
c −1 = 8 equations. The procedure for doing so will be discussed in chapter

(4.3).

In the meantime, one can show that equation (2.104) solves the non-lattice initial

conditions. Expanding the links in the normal way to first order in the lattice spacing
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Ui = 1 + igaAi, for small a, equation (2.104) becomes,

Tr{ta[(1 + igaA
(A)
i + 1 + igaA

(B)
i )(1 + 1− igaAi)

− (1− igaA
(A)
i + 1− igaA

(B)
i )(1 + 1 + igaAi)]} = 0

Tr {ta[ (2 + iga(A
(A)
i + A

(B)
i ))(2− igaAi)

− (2− ig(aA
(A)
i + A

(B)
i ))(2 + igaAi) ]} = 0 (2.109)

Keeping only terms up to linear order in the lattice spacing,

Tr{ta[(4+2iga(A
(A)
i +A

(B)
i )−2igaAi)−(4−2iga(A

(A)
i +A

(B)
i )+2igaAi)]} = 0 (2.110)

and cancelling terms,

Tr{ta[4iga(A(A)
i + A

(B)
i )− 4igaAi)]} = 0 (2.111)

The solution comports with our previous result from section (2.3.4), that is

Ai = A
(A)
i + A

(B)
i (2.112)

Similarly, with a bit more effort, one can use the same expansion for the gauge link

to show that (2.107) coincides with (2.83), as is done in [24].

2.6 Saturation Scale and Color Charge Density

In HIC’s, the highly boosted nuclei radiate gluons via brehmstrahlung, but cannot

do so indefinitely. There is always a finite probability that two gluons can recombine.

At some point, the gluons become so closely packed within the nucleus that gluon

recombination begins to compete with gluon splitting. This phenomenon is known

as gluon saturation and occurs when the product of the gluon recombination cross

section with the gluon surface density of the nucleus exceeds unity [7], [26]

ρgσgg−→g ∼ αsQ
−2 × xG(x,Q2)

A2/3
(2.113)

The saturation momentum, then, is the minimum momentum for which this condition

is satisfied. Solving, one finds

Q2
s =

αsxG(x,Q2)

A2/3
(2.114)
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Below this scale, saturation effects play an important role in taming the growth of

gluon density, i.e. saturating the system. Above this scale, however, gluon cascades

are still relatively unimpeded and can continue to increase the gluon density. In order

for saturation effects to become evident, the saturation scale Qs must be sufficiently

large. In this thesis, the form of the saturation scale will be in accordance with the

IP-Sat Model. At LHC energies, this scale is in the 1-2 GeV range at 2.76 TeV and

reaches about 2.3 GeV for 5.02 TeV.

In terms of Feynman diagrams, the saturation process can be seen in fig. (2.3). The

figure shows gluon cascades and a single gluon recombination, circled in red. When

the recombination probability equals the probability for further radiation, saturation

is reached.

Figure 2.3: Gluon cascade and recombination highlighted in red circle. This figure was taken from
[7]

To foreshadow a later discussion, it is worth noting that it is perfectly intuitive

for the saturation scale to relate to the color charge density. This scale sets the

energy below which the gluon density can no longer grow and thus controls the charge

density. As we will see, in the IP-Glasma model the saturation scale and the color

charge density are related simply by a constant of proportionality.

For sufficiently high energy, or equivalently, small enough x [12],

Q2
s(x) � Λ2

QCD (2.115)

since the gluon density grows rapidly as a function of x, as we saw in figure (2.1.

This suggests a weakly coupled system, i.e. α2
s 	 1, and thus the opportunity to

use perturbative techniques. One must be careful, however, in this case because the

high gluon density compensates for the small coupling to amplify the interaction

probability to order one. In the absence of perturbative techniques, an effective field
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theory that integrates out the “fast” degrees of freedom, has been developed. This

theory is the CGC, discussed already in section (2.2).

During the first τ ≈ 1
Qs

the system can be described by solutions to the classical

field equations. After this time, the gluon fields starts to become dilute and the

classical field approximation begins to lose applicability. Thus, the higher the energy,

the longer the classical field approximation will provide an adequate description of

the system.

2.6.1 Geometric Scaling

For a system that is localized in rapidity, the only dimensionful quantity to determine

the scale of the problem at a given rapidity is the saturation scale Q2
s(x). Then, since

QCD is approximately scale invariant, the typical partonic transverse momentum

will also be of the order of Q2
s(x). If, in addition, the inverse of the saturation scale

squared is significantly larger than the area of the hadron, i.e., [12]

Q2
S(x) ∼

1

λ2
S

� 1

R2
(2.116)

where R is the radius, then the hadron area can be taken to be effectively infinite,

since the parton wavelength is far smaller than the radius of the hadron. This means

that for small enough x, all hadrons behave similarly, meaning that specific features of

the hadron enter only in the saturation scale Q2
s(x,A). In fact, this idea is supported

by the following empirical parametrization of the saturation scale,

Q2
s(x,A) ∼

A1/3

xλ
(2.117)

where λ ∼ 0.2 − 0.3. This suggests that processes like deep inelastic scattering,

which is central to the IP-Sat model, should be universal functions of the ratio of the

transferred momentum to the saturation scale. This is known as “geometric scaling”

and will be crucial in justifying the applicability of deep inelastic scattering physics

to heavy ions. This notion is also critical to the MV model which assumes infinitely

large 2-dimensional nuclei, the justification for which depends on the argument for

geometric scaling given above.
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2.7 IP-Glasma

IP-Glasma is a Monte-Carlo event generator that determines the color charge dis-

tribution within the IP-Sat framework. From there, it determines the gauge fields

and evolves them in time via the classical Yang Mills equations. Finally, IP-Glasma

computes the stress-energy tensor, and diagonalizes it to find the energy density and

local velocity that are relevant to initializing hydrodynamical simulations. Having

already discussed the CYM equations, and leaving the stress energy tensor for the

next chapter, this section will address the details of the IP-Sat model, the sampling of

nucleons, and the determination of the color charge density in the pre-collision nuclei.

2.7.1 IP-Sat Model

The Impact Parameter Dipole Saturation model [3], or IP-Sat, describes deep inelastic

scattering in which a virtual photon(gluon) fluctuates into a quark-antiquark dipole,

undergoes elastic scattering with a proton, and recombines into a photon (gluon).

It improves upon the Golec-Biernat and Wusthoff (GBW) dipole saturation model

by introducing a proton impact parameter dependence into the dipole dynamics and

incorporating DGLAP into the dipole cross-section in order to extend the model to

the high Q2 regime.

The total cross section for the quark-antiquark dipole to interact with the gluon

cloud in the proton is proportional to the area of the dipole πr2, the strong coupling

constant αs, and the number of gluons per color charge in the cloud xg(x,μ2)
Nc

,

σ
q
−
q
=

π2

Nc

r2αs(μ
2)xg(x, μ2) (2.118)

where xg(x, μ2) is the gluon distribution function for momentum fraction x, at the

scale μ2. If we assume the dipole cloud in the proton to be extremely dense, as it

would be in the CGC framework, and divide the proton into thin slices of thickness

dz, then the probability that a dipole, at impact parameter b, does not undergo an

inelastic interaction while traversing one slice of the proton is,

P (b) = 1− π2

Nc

r2αs(μ
2)xg(x, μ2)ρ(b, z)dz (2.119)
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where ρ(b, z) is the gluon density inside of the proton and is normalized to unity, i.e.,∫
d2bdzρ(b, z) = 1. For the full proton, this probability becomes,

|S(b)|2 = exp

{
− π2

Nc

r2αs(μ
2)xg(x, μ2)T (b)

}
(2.120)

where T (b) =
∫
dzρ(b, z). Assuming the S-matrix element is mostly real, the differ-

ential cross section is given by,

dσq̄q

d2b
= 2

[
1− exp

(
− π2

2Nc

r2αs(μ
2)xg(x, μ2)T (b)

)]
(2.121)

The impact parameter dependence is introduced through the proton thickness

function T (b), which is taken to be gaussian and normalized to unity,

T (b) =
1

2πBG

exp
(−b2/2BG

)
(2.122)

where BG = 4 GeV2 is fit to HERA diffractive data, and b is the proton impact

parameter. Looking at the differential cross section as a function of impact parameter

for different values of the the dipole size, we can see that the total cross section given

above begins to plateau, i.e. saturate, and does so at larger values of b for larger

dipole sizes.

Instead of thinking of saturation occurring below a certain energy level, one can

alternatively think of saturation occurring at a given dipole size, meaning as the sat-

uration scale increases, only smaller and smaller dipoles will “fit” inside the nucleus.

This idea is illustrated schematically in figure (2.4) and a bit more quantitatively in

figure (2.5).

The gluon distribution function, xg(x, μ2), is initialized at the scale μ2
0 = 1GeV2

via

xg(x, μ2
0) = Agx

−λg(1− x)5.6 (2.123)

where Ag = 2.308, and λg = 0.058 have been fitted to deep inelastic scattering

(DIS) data [27]. The momentum fraction of individual partons, x, is taken to be

x = 〈pT 〉√
s
, where the average transverse momentum 〈pT 〉 is from a fit done by the
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Figure 2.4: Schematic figure showing the increasing gluon density inside a nucleon as energy increases
(lower energy on left, higher energy on right). The circles represent gluons of different colors and
sizes within the nucleon.

CMS collaboration of charged hadrons as a function of the center of mass energy
√
s

[11],

〈pT 〉 = 0.413− 0.0171 ln s+ 0.00143(ln s)2 (2.124)

The scale can be related to the dipole radius via μ2 = 4
r2⊥

+ μ2
0. Finally, the strong

coupling at leading order is

αs(μ
2) =

12π

(33− 2Nf ) ln(μ2/Λ2
QCD)

(2.125)

where Nf = 3 and λQCD = 0.2GeV for the purposes of this thesis.

The gluon density, having been initialized in equation 2.123, is evolved from the

initial scale μ2
0 to μ2 using leading order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) evolution equations [28, 29, 30] in the absence of quarks, [1]

∂xg(x, μ̃2)

∂ log μ̃2
=

αS(μ̃
2)

2π

1∫
x

dzPgg(z)
x

z
g(
x

z
,
∼
μ
2

) (2.126)

where Pgg is the gluon splitting function with Nf = 3 flavors, CA = 3, and TR = 1,

Pgg(z) = 6

[
z

(1− z)
+

1− z

z
+ z(1− z)

]
+ (

11

2
− Nf

3
)δ(1− z) (2.127)

For the purposes of this thesis, these equations are solved using a software written

by Francois Gelis [31]. It solves the integro-differential DGLAP equations by expand-

ing parton distributions and splitting functions in Laguerre polynomials, thereby

reducing the problem to a set of ordinary differential equations defined by recurrence.
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Figure 2.5: The differential dipole cross section as a function of impact parameter for different proton
sizes saturating at 2.

In the CGC, there is a high gluon density, and the interaction probability for DIS

approaches unity. In the IP-Glasma model, the saturation radius, rs, is taken to be the

dipole size for which the proton size becomes one interaction length. This corresponds

to setting the exponent of equation (2.121) equal to 1/2. More specifically we mean,

(
π2

2Nc

r2αs(μ
2)xg(x, μ2)T (b)

) ∣∣∣∣
r=rs

=
1

2
. (2.128)

This equation can be solved iteratively to find the value of r that meets this

criterion. For this thesis, Brent’s Method, a root finding algorithm that combines

several less sophisticated methods for optimal efficiency and reliability, was used (see

section (4.5) for details).

From there, the radius can be related to the saturation scale via

Q2
s,p =

2

r2s
(2.129)

where the subscript p refers to the fact that is in the saturation scale for a single

proton. To compare with the saturation scale condition given in equation (2.114),
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plugging above into dipole saturation cross section, gives

π2

2Nc

r2αs(μ
2)xg(x, μ2)T (b) =

π2

NcQ2
s,p

α(μ2)xg(x, μ2)T (b) = 1 (2.130)

which, solving for Qs,

Q2
s,p =

π2

Nc

α(μ2)xg(x, μ2)T (b) ∼ ρgαs(μ
2)

Adipole

(2.131)

where the thickness function is a two dimensional Gaussian that acts as the inverse

of the spatial area of the dipole, 1/Adipole.

From this, the saturation scale for each nucleus is computed by summing the

contribution from each nucleon at a given point in the transverse plane. This depends

on the spatial distribution of nucleons, which will be discussed in the next section.

The saturation scale is directly related to the color charge squared per unit area,

g2μ2
(A)(x, b⊥), via,

Q2
s(A)(x, b⊥) = Cg2μ2

(A)(x, b⊥) (2.132)

where C is simply a constant of proportionality that is used to fit the overall energy

density to give the proper multiplicity after hydrodynamics and UrQMD simulations.

This has been fit to the 0 − 5% centrality bin for a given center of mass energy in

this thesis and has been determined to be C = 0.49 for 2.76 TeV and C = 0.51 for

5.02 TeV. The subscript (A) in equation (2.132) takes values 1 and 2, corresponding

to the two incoming nuclei. It has been argued in [22] that this relationship between

the saturation scale and color charge density should be C ≈ 0.6 but, as discussed

in this reference, there is a complicated numerical interplay between the longitudinal

discretization, the infrared cutoff m used in the solution of the Poisson equation,

and C. The initial implementation of IP-Glasma used this parameter to fix the

multiplicity, as is done here, and obtained a value of C = 0.75 [1].

Having determined the saturation scale squared for both nuclei, plotted in fig.

(2.6) for one nucleus, and thus the average squared color charge density, it is still not

clear how the color charge is distributed within each nucleus. The IP-Glasma model

samples the average color charge stochastically from a Gaussian distribution on an
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Figure 2.6: Position of nucleons and saturation scale variation in the IP-Glasma framework for an
ultra-central 0-1% Pb-Pb collision at 2.76 TeV

event-by-event basis as will be seen in the next section. This is a key feature of the

model that introduces sub-nucleonic color charge fluctuations.

2.7.2 Alternative x Determination

The above discussion presents the simplest method of determining x, but simply gives

a constant value throughout the nuclei. In reality, x should depend on the transverse

coordinate, x(x⊥), since the value of x should vary from gluon to gluon. Thus there

is also an implementation where x(x⊥) =
Qs(x⊥)√

s
is now a function of position in the

transverse plane [32]. This is a far more realistic implementation and will introduce

additional fluctuations. In this case, the thickness functions of individual nucleons is

summed to give a total thickness function,

Ttotal(b) =
A∑
i=1

Ti(b) (2.133)

where A is the number of nucleons in a given nucleus. This form for the thickness

function makes the differential cross section, given in (2.121)



2.7 IP-Glasma 43

dσq̄q

d2b
= 2

[
1− exp

(
− π2

2Nc

r2αs(μ
2)xg(x, μ2)

A∑
i=1

T (b)

)]
(2.134)

Note that in the previous case, we determined the saturation scale for an individual

nucleon and then summed the contributions to get the saturation scale for the entire

nucleus. Now that x is dependent on Qs, one must first solve for Qs and x iteratively

until the solutions converge. In order to do so, we take the initial value of x from the

CMS parametrization given above.

2.7.3 Nucleon Position - Sampling and Impact Parameter

In addition to the sub-nucleonic color charge fluctuations that will be discussed

shortly, IP-Glasma contains another crucial source of fluctuations that are geometric

in nature. While this is by no means unique to the IP-Glasma model, the stochastic

sampling of nucleon positions, and impact parameter b, introduce fluctuations that

are crucial to determining the proper distribution of energy density as characterized

by the εn’s. These energy anisotropies are converted by hydrodynamic simulations

into the flow harmonics, vn’s, crucial observables in the study of Heavy Ion Collisions.

These quantities will be discussed more thoroughly in the results section of this thesis.

In IP-Glasma, the position of nucleons are sampled according to a Woods-Saxon

distribution [1], [2] ,

ρ(r) = ρ0
1 + ω(r/R)2

1 + exp( r−R
a

)
(2.135)

where ρ0 is the nucleon density, ω represents deviations from the perfect Woods-

Saxon shape, R is the radius of the nucleus, and a is the nuclear skin depth. In the

simulations presented in this thesis, ω is taken to be zero, and ρ0 is unity. For
208Pb,

the only nucleus relevant to this thesis, R = 6.62 fm and a = 0.546 fm.

Alternatively, one can use pre-determined nucleon configurations generated in [33]

that include nucleon-nucleon correlations. This has been implemented numerically

and is most important for ultra-central collisions where the geometry of the colliding

nuclei is nearly circular and dominated by the distribution of nucleons within an
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Figure 2.7: Two sheets of color glass prior to the collision. The color represents the strength of the
saturation scale, and thus the color charge density, where red corresponds to a higher value, and
blue a lower value.

individual nucleus.

Once the nucleons are sampled according to the 3-dimensional Woods-Saxon dis-

tribution described above, each nucleon is projected onto the transverse plane. At

this point, there are two 2-dimensional nuclei, each with a distribution of nucleons.

This is prior to the collision and thus these represent the two sheets of colored glass

discussed previously and depicted in figure (2.7).

At this point, the impact parameter b, defined as the separation of the centers of

the incoming nuclei in the direction perpendicular to the beam axis, is sampled from

the distribution

P (b)db =
bdb

b2max/2
(2.136)

for each event, where bmax = 20 fm for this thesis. The two nuclei are then each

shifted by b/2 in opposite directions, giving a total separation of b.

2.7.4 Distribution of Color Charge

Once the positions of the nucleons are determined, the square of the saturation scale

for each nucleus can be determined by summing the contribution from each nucleon

at each point in the transverse plane,
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Q2
s,nucleus(x⊥) =

∑
i=1

Q2
s,p,i(x⊥) (2.137)

Since Q2
s,p =

2
r2s
, the total saturation scale is highly dependent on the distribution

of nucleons in the transverse plane. From here, we can use (2.132) to determine the

average squared surface color charge density for each nucleus.

The MV model considers colliding nuclei in the infinite momentum limit, where

the nuclei are thin, infinitely large, two dimensional slabs of color charge. For the

nucleus moving in the positive z direction the color charge is taken to have a statistical

distribution of the form [15]

W [ρ] = exp

{
−
∫

d2x⊥
ρa(x

−,x⊥)ρa(x−,x⊥)
2μ2(x−,x⊥)

}
(2.138)

where μ2(x−,x⊥) characterizes the local color charge density in the transverse plane.

Notice that, by neglecting correlations between partons with finite separation in the

tranverse plane, the expression above models color confinement.

The color charge squared per unit area is sampled from the Gaussian weight func-

tion given in (2.138) via

〈ρa(x−,x⊥)ρb(x+,y⊥)〉 = g2δabδ(x⊥ − y⊥)μ2 (2.139)

Discretizing this expression for the lattice,

〈ρak(x−,x⊥)ρbl (x
+,y⊥)〉 = δabδklδ(x⊥ − y⊥)

g2μ2

Ny

(2.140)

where k and l are indices that label the discretized longitudinal coordinate that run

from 1 to Ny. For the purposes of this thesis, Ny = 10 [22]. Of course, a and b

are SU(N) color indices that run from 1 to N2
c − 1, and x⊥ and y⊥ are the positions

of charges from the two nuclei in the transverse plane. Despite the fact that IP-

Glasma is a boost invariant 2+1D model, a finite width in the longitudinal direction,

one rapidity unit in this case, is necessary in order to avoid singularities arising from

infinite spatial resolution. Taking Ny slices in the η direction corresponds to averaging

over Ny color charge configurations. Numerically, the saturation scale is understood
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Figure 2.8: Contour plot of the energy density in the transverse plane for one event in the 0-5%
centrality bin at 2.76 TeV and τ = 0.4 fm/c. Quantum color charge fluctuations give the IP-Glasma
model its ”spikey” structure.

to depend on the value of Ny, but converges at some value of Ny, above which the

dependence disappears [22]. This has been checked numerically and convergence

occurs above Ny = 50.

Since the color charge squared is related to the saturation scale simply by a con-

stant of proportionality, equation (2.140) can easily be cast in terms of the saturation

scale as,

〈ρak(x−,x⊥)ρbl (x
+,y⊥)〉 = δabδklδ(x⊥ − y⊥)

Q2
s

CNy

(2.141)

This is the variance of the color charge distribution. Of course, the expectation

value of the color charge should vanish, 〈ρ(x⊥)〉 = 0. However, there should be

fluctuations on time scales much longer than the collision time, and given by equation

(2.141). These fluctuations are sub-nucleonic quantum fluctuations on length scales

on the order of the inverse saturation scale and lead to lumps of color charge on each

incoming sheet of color glass [34]. In turn, these lumps lead to the “spikey” initial

state, as opposed to smooth initial states generated in the Glauber model for example,
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that has become the trademark of IP-Glasma and can be seen in figure (2.8).

Such quantum fluctuations lead to fluctuations in the event by event energy dis-

tribution per unit rapidity that follow a negative binomial distribution (NBD), as

predicted by the glasma flux tube framework, and experimentally verified by fits to

p+p multiplicity distributions at RHIC and LHC energies [2]. Such agreement with

non-perturbative analytic results as well as experimental data lends credence to this

model of sub-nucleonic quantum color fluctuations.
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3

Energy-Momentum Tensor and Matching to Hydrodynamics

3.1 Introduction

After evolving the Yang-Mills equations to τswitch, which is taken to be 0.4 fm/c for this

thesis, the system should be close enough to thermal equilibrium for hydrodynamics

to be applicable. In order to initialize hydrodynamics evolutions, one needs the stress

energy tensor, T μν . This section will deal with the calculation of this quantity from

the fields that we have evolved via the YM equations and the procedure by which

this is matched to hydrodynamics.

3.2 Energy-Momentum Tensor

First, we will derive the form of the energy-tensor for the CGC Lagrangian. From

Noether’s Theorem, the conserved current associated with translational invariance is

the stress energy tensor given by,

T μν =
δL

δ(∂μAa
ρ)
∂νAa

ρ − Lδμν (3.1)

Recalling that, in the absence of sources, LCGC = −1
4
F aμνF a

μν , it is easy to show,

δL

δ(∂μAa
ρ)

= −F aμρ (3.2)

and thus

T μν = −F aμρ∂νAa
ρ −

1

4
gμν(−F aαβF a

αβ) (3.3)

49
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T μν = −F μρ∂νAρ +
1

4
gμνF αβFαβ (3.4)

This energy momentum tensor is neither symmetric, nor gauge invariant, due

to the first term. We can use an “improved” momentum tensor by adding a total

derivative, ∂ρK
ρμν [35]. Kρμν is anti-symmetric in its first two indices and takes the

form Kρμν = F aμρAaν . This addition leaves the global energy-momentum 4-vector

unchanged

pν =

∫
d3xT̃ 0ν =

∫
d3xT 0ν (3.5)

since a total derivative will become a boundary term that vanishes at infinity.

T̃ μν = −F aμρ∂νAa
ρ +

1

4
gμνF aαβF a

αβ + ∂ρ(F
aμρAaν)

T̃ μν = −F aμρ∂νAa
ρ +

1

4
gμνF aαβF a

αβ + (∂ρF
aμρ)Aaν + F aμρ∂ρA

aν (3.6)

We can re-write the second to last term using the fact that the partial derivative can

be written in terms of the covariant derivative as ∂ρ = Dρ + igAb
ρ,

T̃ μν = −F aμρ∂νAa
ρ +

1

4
gμνF aαβF a

αβ − ((Dρ + igAb
ρ)F

aρμ)Aaν + F aμρ∂ρA
aν

T̃ μν = −F aμρ∂νAa
ρ +

1

4
gμνF aαβF a

αβ − (DρF
aρμ + igF ρμAb

ρ + ig[Ab
ρ, F

aρμ])Aaν + F aμρ∂ρA
aν

T̃ μν = −F aμρ∂νAa
ρ +

1

4
gμνF aαβF a

αβ − ([Dρ, F
aρμ] + ig[Ab

ρ, F
aρμ])Aaν + F aμρ∂ρA

aν

(3.7)

From the equations of motions in the absence of sources, the term [Dρ, F
aμρ] = 0,

leaving

T̃ μν = −F aμρ∂νAa
ρ +

1

4
gμνF aαβF a

αβ − ig[Ab
ρ, F

aρμ]Aaν + F aμρ∂ρA
aν (3.8)

Finally, combining the first term with the last two terms by doing a little SU(3) group

algebra gives

T̃ μν = −F aμρF aν
ρ +

1

4
gμνF aαβFaαβ (3.9)
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This expression is now symmetric and gauge invariant.

T̃ μν = −gνδgρεgμθFθεFδρ +
1

4
gμνgαλgβωFλωFαβ (3.10)

3.2.1 Notation

Recalling that in the boost invariant case, we are treating the longitudinal component

of the gauge fields as a scalar field, and the electric field as its conjugate momentum,

Aη = φ

Eη = π =
1

τ
∂τAη (3.11)

Choosing the gauge Aτ = 0, and making the following definitions [24] ,

F iη = DiAη = giigηηDiAη =
1

τ 2
Diφ (i = x, y)

Ei = −τ∂τAi (3.12)

In this notation, the field strength tensor takes the form

F μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Ex

τ
−Ey

τ
−π

τ

Ex

τ
0 F xy Dxφ

τ2

Ey

τ
F yx 0 Dyφ

τ2

π
τ

−Dxφ
τ2

−Dyφ

τ2
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.13)

3.3 Diagonal Components of Tμν

In this section the diagonal components of the energy momentum tensor will be

derived. Most importantly, T ττ , the energy density of the system will be shown to

resemble very closely the energy density of Maxwell’s electromagnetic fields. Using

expression (3.10), and suppressing color indices throughout this calculation, the first
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term, T ττ , becomes

T ττ = −F τρF τ
ρ +

1

4
F αβFαβ (3.14)

Expanding the sum over indices and writing the field strength components out ex-

plicitly gives

T ττ = −[F τxF τ
x + F τyF τ

y + F τηF τ
η ] +

1

2
[F τxFτx + F τyFτy + F τηFτη + F xyFxy + F xηFxη + F yηFyη]

T ττ =

[
E2

x

τ 2
+

E2
y

τ 2
+ E2

η −
1

2

(
E2

x

τ 2
+

E2
y

τ 2
+ E2

η − (F xy)2 − 1

τ 2
(Dxφ)

2 − 1

τ 2
(Dyφ)

2

)]

T ττ =
1

2

[
E2

x

τ 2
+

E2
y

τ 2
+ π2 + (F xy)2 − 1

τ 2
(Dxφ)

2 − 1

τ 2
(Dyφ)

2

]
(3.15)

In terms of a trace over color indices, where we use,

Tr[tatb] =
1

2
δab (3.16)

our final result is

T ττ = Tr[
E2

x

τ 2
+

E2
y

τ 2
+ π2 + (F xy)2 − 1

τ 2
(Dxφ)

2 − 1

τ 2
(Dyφ)

2] (3.17)

The first three terms give the energy density in the chromo-electric fields, and the last

three in the chromo-magnetic fields. This expression is the analogue of the energy

density of electromagnetic fields,

T ττ
EM =

1

2
[E2 +B2] (3.18)

Equation (3.17) will be discretized in a later section and used to illustrate the behavior

of the fields throughout the simulation.

Figure (3.1) gives an idea of the energy contribution of the different fields. It is

clear that only the longitudinal fields are non-zero at initial time, and the other fields

grow as the longitudinal fields decrease until the four components are equal by 0.2

fm/c. The maximum Qs is about 2 GeV, so the time when the interactions become

weak and the system moves towards free streaming is τ ∼ 1
Qs

≈ h̄c
2GeV

≈ 0.1fm/c. It

is also worth noting that the expansion of the system causes energy density plotted

in figure (3.1) to decrease like dE
τdy

∼ 1
τ
while dE

dy
becomes constant [1].
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Figure 3.1: Energy Density in the Chromo-Electric and Chromo-Magnetic Fields

From eq. (3.10), one can derive the other diagonal components for the stress

energy tensor. In doing so, one finds,

T xx = tr[−E2
x

τ 2
+

E2
y

τ 2
+ π2 + (F xy)2 +

1

τ 2
(Dxφ)

2 − 1

τ 2
(Dyφ)

2] (3.19)

T yy = tr[
E2

x

τ 2
− E2

y

τ 2
+ π2 + (F xy)2 − 1

τ 2
(Dxφ)

2 +
1

τ 2
(Dyφ)

2] (3.20)

T ηη =
1

τ 2
tr[

E2
x

τ 2
+

E2
y

τ 2
− π2 − (F xy)2 +

1

τ 2
(Dxφ)

2 +
1

τ 2
(Dyφ)

2] (3.21)

From these expressions it is clear that

T μ
μ = 0 (3.22)

as it should be. The remainder of the components of T μν are straightforward to derive

from eq. (3.10). At this point, we will move on to discuss the procedure by which

one matches the results of IP-Glasma to hydrodynamic simulations.
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3.4 Eigenvalue Problem and Landau Matching

The stress energy tensor from the IP-Glasma framework can be used to initialize

hydrodynamic simulations in a process known as Landau matching. It is believed

that QGP is a strongly interacting medium that behaves as a nearly perfect fluid

while the mean free path of the constituent particles is sufficiently small compared to

the macroscopic scale, as characterized by the inverse of the expansion rate. Thus it is

natural to describe the complicated dynamics involved in this portion of the evolution

by hydrodynamics, a course grained theory that is based primarily on conservation

of energy and momentum [36]

∂μT
μν = 0 (3.23)

as well as various current conservation laws, such as baryon number, or electric charge,

∂μj
μ = 0 (3.24)

When supplemented by an equation of state, a function that relates the pressure

to the energy density, the hydrodynamics equations are closed and one can evolve the

system by solving these equations. In addition, one must initialize the stress energy

tensor, which, given that hydrodynamics is an expansion of the stress energy tensor

of an ideal fluid at rest, is traditionally required to be near local equilibrium. The

stress energy tensor made up of the classical gluon fields in the IP-Glasma framework

does not satisfy this criterion at common switching times, τ ≈ 0.2 − 0.4fm. In fact,

if we look at the transverse and longitudinal pressures in ratio to the total energy of

the system, defined as

PT = −T x
x + T y

y

2
= −gxxT

xx + gyyT
yy

2
=

T xx + T yy

2
(3.25)

and

PL = −T η
η = −gηηT

ηη = τ 2T ηη (3.26)
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Figure 3.2: The ratio of the transverse pressure and longitudinal pressures to the energy density,
given by the red and green curves respectively. It is clear that the system never isotropizes since
these values do not approach 1/3.

we can see that, due to the fact that the transverse fields vanish at τ = 0+,

lim
τ→0+

PT = − lim
τ→0+

PL = ε (3.27)

Additionally, for the classical YM equations [37],

lim
τ→∞

PT =
ε

2
(3.28)

and

lim
τ→∞

PL = 0 (3.29)

For an isotropic system PL = PT = ε
3
. Thus, for the Classical Yang Mills equations,

the stress energy tensor never isotropizes. It has, however, been shown that quantum

corrections can bring the system to a state in which hydrodynamics is applicable [37]

[38].

In order to get an isotropic stress energy tensor in equilibrium for the leading order,

i.e. classical, YM equations, one can simply neglect the non-equilibrium components
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by solving the eigenvalue problem

T μ
ν u

ν = εuν (3.30)

using the IP-Glasma T μν . The solution is taken to be the timelike eigenvector and

its corresponding eigenvalue. The flow velocity’s Minkowski norm is normalized to

unity,

uμuμ = gμνu
μuν = (uτ )2 − (ux)2 − (uy)2 − τ 2(uη)2 = 1 (3.31)

where the metric is gμν = diag(1,−1,−1 − τ 2). Here, ε is taken to be the initial

value of the local energy density in the hydrodynamic simulation, and uμ is used to

reconstruct the ideal hydrodynamics energy tensor [39]

For an ideal fluid at rest, the stress energy tensor decomposes as

T μν = (ε+ P )uμuν − Pgμν = diag(ε, P, P, P ) (3.32)

Thus, one can reconstruct an ideal stress energy tensor from the initial flow uμ and

energy density ε taken from the eigenvalue problem. This process is known as Landau

Matching.

In the absence of a process that equilibrates the system, Landau matching must

be used to connect IP-Glasma and subsequent hydrodynamic simulations. It is clear

that this process discards information from the IP-Glasma framework and more work

needs to be done understand how the system reaches equilibrium. At the moment,

however, when trying to match T μν
IPG directly to hydro, the inapplicability of hydro-

dynamics manifests itself numerically, as the non-ideal components can become order

one, meaning they are no longer corrections to the equilibrium stress-energy tensor,

and generate severe instabilities. The discarded components in Landau matching

correspond to the shear stress tensor πμν and bulk viscous pressure Π. This is the

case even in the viscous hydrodynamic simulations that will be presented in this the-

sis, meaning that T μν is initialized to the ideal case, and then evolved using the full

equations that include shear and bulk viscoscities, namely,

T μν = εuμuν −Δμν(P +Π) + πμν (3.33)
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with flow velocity uμ, pressure P, energy density ε, shear stress tensor πμν , and bulk

viscous pressure Π. Here, Δμν = gμν − uμuν is the local 3-metric that is orthogonal

to the flow vector, and the shear stress tensor and bulk pressure satisfy

τΠ
.

Π +Π = −ζθ − δΠΠΠθ + λΠππ
μνσμν (3.34)

and

τπ
.
π
〈μν〉

+πμν = 2ησμν − δπππ
μνθ + φ7π

〈μ
α πν〉α − τπππ

〈μ
α σν〉α + λπΠΠσ

μν (3.35)

respectively. These relaxation type equation are derived from kinetic theory and

solved numerically in MUSIC. The relaxation times for the bulk pressure and shear

stress tensor are denoted τΠ and τπ, respectively. Also, θ = ∂μu
μ is the scalar expan-

sion rate, σμν = 1
2

(∇μuν +∇νuμ − 2
3
θΔμν

)
, η is the shear viscosity and is assumed

to be proportional to the entropy density η ∝ s, while ζ is the bulk-viscosity whose

temperature dependence is given in equation (3.40). For the second order transport

coefficients listed in equation (3.34), the expressions are [40]

δΠΠ

τΠ
=

2

3
+O(z2 ln z),

λΠπ

τΠ
=

8

5

(
1

3
− c2s

)
+O(z4)

(3.36)

and for (3.35), they are,
λπΠ

τπ
=

6

5
+O(z2),

δππ =
4

3
τπ,

τππ =
10

7
τπ,

φ7 =
9

70P0

(3.37)

where z = m/T is the ratio of the mass of the particle to the temperature, cs is the

speed of sound, and P0 is the thermodynamic pressure.

It is worth noting that it has recently been argued that the requirement that

the system be near equilibrium may be an overly stringent demand since systems

out of equilibrium have been shown to be adequately described by hydrodynamics
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[36, 41, 42]. The mechanism by which this occurs is not fully understand and thus

we will consider this notion to be an intriguing but unsettled question that faces the

field in the years to come.

3.5 Initial Flow

A key feature of IP-Glasma is the non-zero flow that it provides as initial conditions

for hydrodynamic evolutions, in contrast to many other initial conditions. This flow

is necessary to get the correct values for observables such as the vn flow harmonics

and the mean transverse momentum 〈pT 〉.
Figure (3.3) shows the transverse flow field of a Pb-Pb collision at 2.76 TeV with

b = 0 fm. The plots are intuitively pleasing, as the flow tends to point from high

energy density to low energy density, as one would expect. The event in figure (3.4)

with b = 8 fm has the characteristic almond shaped overlap region, and already has

a non-zero v2, even before hydrodynamic evolution. Note, that the impact parameter

axis is the line y = x in figure (3.4).

Due to the historical fact that boost invariant simulations have preceded full 3+1D

simulations both in hydrodynamics and initial conditions, longitudinal flow has tra-

ditionally been initialized to zero. This is the case for the phenomenological study

presented in this thesis. However, the component of the flow vector in the η-direction

is not small. To illustrate this, we can compare the solution of the full 4×4 eigenvalue

problem to the case where the η components are excluded and the eigenvalue problem

effectively becomes 3 dimensional. In doing so for 100 Pb-Pb events at 2.76 TeV in

the 0-5% centrality range, we find that the η component of the flow is nearly 50%

of the transverse flow, where we use an RMS definition for the average of each flow

component

〈uμ〉 = 〈
√∫

εuμuμdx⊥∫
εdx⊥

〉 (3.38)

and

u⊥ =
√
(ux)2 + (uy)2 (3.39)
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Figure 3.3: Above: Flow field uμ superimposed on the local energy density ε, given in GeV/fm3, for
a Pb-Pb collision at b = 0 fm. Below: The same flow field uμ as given above without the background
energy density
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Figure 3.4: Top: Flow field uμ superimposed on the local energy density ε, given in GeV/fm3, for
a Pb-Pb collision at b = 8 fm. Note that the impact parameter axis is taken to be the line y = x.
One can see the famous almond shaped overlap region. Below: The same vector field without the
background energy density
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Table 3.1: Table of average flow 〈uτ 〉, 〈u⊥〉, and 〈τuη〉
Using 4x4 Tμν Using 3x3 Tμν

〈uτ 〉 1.027776 1.023935

〈τuη〉 0.1005303 N/A

〈u⊥〉 0.2115732 0.2200597

〈τuη〉
〈u⊥〉 0.4751561 N/A

In order to compare quantities with the same units, we multiply uη by τ , such that

τuη, u⊥, and uτ are all dimensionless in natural units. Note that the inclusion of the

uη component slightly decreases the transverse flow. The phenomenological effects of

uη, both on the transverse and longitudinal dynamics, should be studied to determine

its importance. As the field moves towards full 3+1D simulations, the η component

of the flow will almost certainly become a key new feature whose effects will need to

be included.

3.6 Viscous Hydrodynamics Parametrization

As mentioned, equations (3.23) and (3.24) govern the hydrodynamical evolution and

equation (3.33) gives the hydrodynamical stress energy tensor. The parameters that

are used for the viscous hydrodynamic evolution will be outlined in this section.

One of the central goals of the HIC is to extract the transport coefficients of the

QGP medium. Fortunately, the community has made significant progress in this

direction, and the parameters used in this thesis derive heavily from the work of

others and will be simply quoted here.

The shear viscosity used for the simulations in this thesis was taken to be η/s =

0.095 for both LHC energies. It has been postulated that a temperature dependent

shear viscosity may be necessary to accurately describe physics at a wide range of

collision energies. However, for the two energies studied here, which differ by less

than a factor of two, no such parametrization was necessary to accurately describe

the flow data, and thus the temperature dependence is either rather slight or the two
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collision energies produce very similar temperatures.

The bulk viscosity on the other hand has been taken from [43] [44] to be temper-

ature dependent and highly peaked around the QCD phase transition temperature.

The same temperature dependence as given in [43] was used but the peak was reduced

by 10%. The expression is given by,

ζ/s(T ) = 0.9×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.9e

(
T
Tp
−1

)
/0.0025

+ 0.22e

(
T
Tp
−1

)
/0.022

+ 0.03 if T < 0.95Tp

−13.77
(

T
Tp

)2
+ 27.55

(
T
Tp

)
− 13.45 if 0.95Tp < T < 1.05Tp

0.025e
−
(

T
Tp
−1

)
/0.025

+ 0.25e

(
T
Tp
−1

)
/0.13

+ 0.001 if T > 1.05Tp

,

(3.40)

where Tp = 180 MeV for the peak of ζ/s. The bulk viscosity above TP in this

parametrization is based on lattice calculations [45] and below TP , it is based on

calculations from a hadron resonance gas model [46].

3.7 Freezeout - Cooper-Frye Formalism

As the system expands hydrodynamically, it will cool and re-hadronize, i.e. turn back

into hadrons. This occurs when hydrodynamics is no longer applicable, namely when

the mean free path becomes on the order of the macroscopic length scale associated

with the system. We consider this to happen at a given temperature and thus take

an isothermal freezeout hypersurface, the exact temperature of which is often treated

as a parameter in numerical simulations, as it is here, and is chosen to be Tfreezeout =

145MeV [43].

The Cooper-Frye formalism, first given in [47], provides a way of converting the

hydrodynamic energy-momentum tensor into particles while conserving energy and

momentum. It does so by integrating a statistical distribution function, derived

through kinetic theory, to compute quantities of interest. The distribution function

with shear and bulk viscosities is

f(x,p) = f0(x,p) + δfshear(x,p) + δfbulk(x,p) (3.41)
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where the equilibrium term is

f0(x,p) =
1

exp(p·u
T
)∓ 1

(3.42)

depending on spin-statistics, and δfshear and δfbulk are viscous corrections to the

distribution function given by [48],

fshear(x,p) = f0(1 + af0)
πμνp

μpν

2(ε0 + P0)T 2
(3.43)

and

fbulk(x,p) = −f0(1 + af0)
Cbulk

T

[
m2

3(p · u) − (
1

3
− c2s)(p · u)

]
Π (3.44)

Here a = 0, 1,−1 for Boltzmann, Bose-Einstein, and Fermi-Dirac statistics, respec-

tively, cs is the speed of sound, and Cbulk is defined through

T

Cbulk

=
1

3

∑
n

dnm
2
n

∫
d3k

(2π)3Ek

fn,0(1± fn,0)

[
m2

n

3Ek

− (
1

3
− c2s)Ek

]
(3.45)

where the sum is over particle species and dn are degeneracy factors. One can convert

into particles via

dN

d3p
=

d

(2π)3

∫
Σ

f(x,p)
pμd3Σμ

Ep

(3.46)

where Σμ is the normal vector to the hypersurface of constant temperature. Assuming

a single species of particle in the hadronic gas from here on out for simplicity, the

number of particles is given by

N =

∫
dN

d3p
d3p =

∫
Σ

nμ(x)d3Σμ (3.47)

where nμ is the number current given by

nμ(x) =
d

(2π)3

∫
pμ

Ep

f(x,p)d3p (3.48)

The number of particles from each individual cell is sampled from a Poisson distribu-

tion
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P1−cell =
1

N !
〈N〉Ne−〈N〉 (3.49)

whose average is given by 〈N〉1−cell The total momentum can be determined as well

P μ =

∫
pμ

dN

d3p
=

∫
Σ

T μν(x)d3Σν (3.50)

where the stress energy tensor for the hadron gas comes from kinetic theory,

T μν(x) =
d

(2π)3

∫
pμpν

Ep

f(x,p)d3p (3.51)

Then momentum is also sampled via

dN

d3p
|1−cell = d

(2π)3
[f0(x,p) + δfshear(x,p) + δfbulk(x,p)]

pμΔΣμ

Ep

(3.52)

if f(x,p) ≥ 0 and pμΣμ > 0 are satisfied. These criteria correspond to having a

positive distribution function and a four-velocity uμ pointing in the direction of de-

creasing temperature, respectively, at the cell in question. Otherwise the momentum

is taken to be zero.

Once the system has fully hadronized, there are still re-scatterings and decays that

can alter the state of the system, before the particles reach the detectors. This physics

is taken care of in the Ultrarelativistic Quantum Molecular Dynamics (UrQMD)

framework [6], the details of which can be found at https://urqmd.org/.

3.8 UrQMD

3.8.1 Hadronic Re-Scattering

The cross sections in UrQMD are functions of the particular species involved, the cen-

ter of mass energy, and isospin, and are obtained from a variety of methods including

experimental fits, algebraic parametrizations, the principle of detailed balance, and

the additive quark model. These cross sections are interpreted as areas and the

criterion for whether a nucleon-nucleon collision occurs is simply,
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d⊥ < d0 =

√
σtot

π
(3.53)

where d⊥ is the separation of the particles and σtot = σ(
√
s, species) is simply a

function of energy and the interacting species involved. This criterion is checked for

each particle at every time step. For consistency, d⊥ is taken to be the distance of

closest approach in the local rest frame of the two potential collision partner particles,

d⊥ = d2 − d||
2 = (q1 − q2)

2 − ((q1 − q2)(p
′
1 − p

′
2))

2

(p
′
1 − p

′
2)

2
(3.54)

where qi are the location of the particles and p
′
i are the momenta of the particles

in the local rest frame of the colliding particles. This avoids any ambiguity in the

criterion for the nucleon-nucleon collisions arising from choice of reference frame.

The time of the collision is frame dependent and is defined in terms of the nucleus-

nucleus reference frame to be,

τcoll = −(r1 − r2) · (p1/E1 − p2/E2)

(p1/E1 − p2/E2)2
(3.55)

3.8.2 Resonance Decays

There is no reason to assume that all of the particles produced will be stable and

thus it is important to allow for the particles to decay before reaching the detector.

UrQMD includes resonance decays via a mass-dependent total width that is simply

the sum of all partial decay widths,

Γtotal(M) =

Nbr∑
br=i,j

Γi,j(M) (3.56)

where the partial decay widths into the channel with final particles i and j is,

Γtotal(M) = Γi,j
R

MR

M
(
〈pi,j(M)〉
〈pi,j(MR)〉)

2l+1 1.2

1 + 0.2(
〈pi,j(M)〉
〈pi,j(MR)〉)

2l
(3.57)

HereMR is the pole mass of the resonance, Γi,j
R is the partial decay width into particles

i and j at the pole as taken from the Particle Data Book, and l is the angular
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momentum of the channel. The lifetime of each resonance is sampled via a Monte-

Carlo procedure using the exponential decay law with decay constant τR = 1
ΓR

. Lastly,

the final state is determined using the branching ratio.

Further details on cross sections, decay widths, particle species, as well as any

other specifics related to the theory and implementation of UrQMD, can be found [6]

[49]. The parameters used for this thesis correspond to the default parametrization of

UrQMD. At this point, we move on to the numerical implementation of IP-Glasma.
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Numerical Implementation

4.1 Introduction

4.2 Lattice Units and Spacing

4.2.1 Lattice Units

First, it is important to make note of the the units that will be used on the lattice.

The reader may have noticed in the previous discussion that the lattice spacing, a,

shows up in many expressions. In order to simplify equations and avoid confusion

with units, we will work in “lattice units.” This means that all quantities, after having

been read into the simulation from the parameter file, are made unitless by the proper

operations with the lattice spacing. The lattice spacing has units of length, and thus

in natural units one can use the lattice spacing along with appropriate factors of h̄

and c to convert quantities to lattice units, i.e. unitless. This will eliminate all factors

of a in the calculation. After the simulation, all quantities are returned to physical

units by the reverse procedure.

4.2.2 Lattice Spacing

The energy in the fields at τ = 0+ is understood to depend on the lattice spacing

[50], but should converge towards a single value, regardless of lattice spacing at some

later time. Figure (4.1) reassures us that our numerical implementation is sound

and provides an indication of what lattice spacing and switching time are safe to

use. It is worth noting, however, that the average initial flow is more sensitive to the

67
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Figure 4.1: Total integrated energy density in the tranverse plane as a function of the lattice spacing,
given in GeV−1. For τ > 0.1 we see convergence for axy ≥ 0.5GeV−1

lattice spacing than the integrated energy density, and thus requires a finer grid to

find convergence. For the phenomenological results given in this thesis, N = 1000,

axy = 0.1 GeV-1, and the switching time is 0.4 fm/c. Here axy is the lattice spacing

in the transverse plane, and is equivalent to what we have been referring to more

generally as a.

As shown in figure (4.1), the energy density starts to converge at τ > 0.1fm/c at

relatively large values of axy ∼ 0.5GeV−1. The question, then, is for what value of the

lattice spacing can we be confident that we are probing all of the relevant physics?

What is the physical argument for using a given lattice spacing?

In order to resolve physics up to the saturation scale, the lattice spacing should

be at least as small as the inverse saturation scale 1/Qs. Conservatively taking

the maximum saturation scale at the LHC to be 4 GeV, the lattice spacing must be

axy ≤ 1
Qs,max

≈ 1/4 GeV = 0.25 GeV−1. By using a lattice spacing of axy = 0.1GeV−1

for the results presented in this thesis, we ensure that we are able to safely resolve

physics up to and including the saturation scale.
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4.3 Numerical Procedure for Solving Initial Fields

The following numerical procedure for solving eq (2.104) was developed by Marius

Cautun, Francois Fillion-Gourdeau, and Sangyong Jeon. The general procedure will

be outlined here, but further details can be found [51].

First, it worth noting that equation (2.104) is actually N2
c − 1 equations, one for

each SU(3) group generator. It has been solved analytically for the SU(2) case [24],

but is a highly non-linear system that must be solved iteratively for the Nc > 2 case.

One such solution will be presented in the following discussion.

The iterative procedure is initialized by taking the Abelian solution to equation

(2.104) as a guess for the more general solution, namely,

Ui = U
(A)
i U

(B)
i (4.1)

for a given lattice site (dropping lattice site index). Inserting this guess into eq.

(2.104) gives,

ReTr
[
ta(U

(1) + U (2))(1 + U (3)†)
]
= fa (4.2)

Recalling that U (3) is an element of SU(3) we can relate the current iteration to

the previous iteration via

U
(3)
current = eiαxataU

(3)
previous (4.3)

in order to preserve unitarity. Here U
(3)
previous is the previous guess obtained by solving

(4.2), and α is a constant parameter of our choosing < 1.0 that helps with convergence

by ensuring that fa is small. If fa is already small, α is taken to be unity. Expanding

the exponential in (4.3) and keeping the first two terms gives

U
(3)
current ≈ (1 + iαxata)U

(3)
previous (4.4)

and requiring that U
(3)
current solves (2.104) yields

αxbIm Tr
[
tbta(U

(1) + U (2))U
(3)†
previous

]
= −fa (4.5)
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This set of equations can be solved for xb, which in turns gives us U
(3)
current via

eq. (4.3) where we use the full expression, without approximating the exponential.

Plugging U
(3)
current back into (2.104) gives a new value of fa which we will denote f ∗a .

Using the Taylor expansion for the exponential in eq. (4.3), the first non-zero term

gives

f ∗a = −α2

2
xbxcReTr

[
tbtcta(U

(1) + U (2))U
(3)†
previous

]
(4.6)

Near the continuum limit, meaning limNy→∞, the Wilson lines become unit matrices.

In this limit, eq. (4.5) becomes xa = −fa, and eq. (4.6) simplifies to

f ∗a = −α2

4
fbfcdabc (4.7)

where dabc are structure constants given by

dabc = 2Tr [{ta, tb}tc] (4.8)

in the fundamental representation of SU(3), and {ta, tb} denotes the anti-commutator

of ta and tb.

Despite the fact eq. (4.7) was derived in the continuum limit, we expect fa ∝ fbfc

in the general case, albeit with a more complicated relationship perhaps. Thus, for

small initial guesses for fa we expect |f ∗a | < fa, and by iterating this process fa

should converge towards zero, yielding the solution to (2.104). The parameter α was

introduced in equation (4.3) with the assumption that our solution to (4.6) gives us

the correct direction to move for f ∗a from fa but not necessarily the magnitude. Thus

α helps this procedure converge faster.

If this procedure does not converge, although for most lattices spacings it does,

we call a simulated annealing method (SAM) to improve the initial guess for U (3).

This is done only if the process does not converge within a pre-determined number of

iterations, taken to be on the order of 10-50. For details on the numerical performance

of this method including data on iterations need for convergence, convergence speed,

etc., see [51].
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4.4 Leap Frog Algorithm

The leap frog algorithm is a symplectic integrator used to numerically integrate dif-

ferential equations such as those in equations (2.99)-(2.103). It gets its name from

the common children’s game in which children successively hop over one another.

The algorithm follows a similiar procedure by evolving derivatives at times halfway

between the time steps of the quantities themselves, and thus the quantity and its

derivative successively leap over one another, but are never at the same time. In

general, for a quantity x, its first time derivative v, and second derivative a,

x(τ + dτ) = x(τ) + v(τ + dτ/2)dτ (4.9)

v(τ + dτ/2) = v(τ − dτ/2) + a(τ)dτ (4.10)

Applying this procedure, the discretized Hamiltonian equations of motion given in

eq.’s (2.99)-(2.103), become,

φ(x, τ + dτ) = φ(x, τ) +
τ + dτ

2

dτ
π(x, τ +

dτ

2
) (4.11)

Ui(x.τ + dτ) = exp

(
i

g2dτ

(τ + dτ
2
)
Ei(τ +

dτ

2
)

)
Ui(τ) (4.12)

Ex(x, τ + dτ/2) = Ex(x, τ − dτ/2) + i
(τ + dτ

2
)dτ

2g2
(Uxy + Ux−y − h.c.− trace)

+i
dτ

(τ + dτ
2
)
[φ̃x, φ] (4.13)

Ey(x, τ + dτ/2) = Ey(x, τ − dτ/2) + i
(τ + dτ

2
)dτ

2g2
(Uyx + Uy−x − h.c.− trace)

+i
dτ

(τ + dτ
2
)
[φ̃y, φ] (4.14)

π(x, τ + dτ/2) = π(x, τ − dτ/2) +
dτ

(τ + dτ
2
)

∑
i

(φ̃i + φ̃−i − 2φ) (4.15)
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Note that the last three equations above would involve division by τ , which would

cause clear issues for τ = 0. For this reason 1
τ
is replaced by dτ

(τ+ dτ
2
)
which equals 1/2

for τ = 0. This introduces some error but prevents these terms from blowing up at

initial time. For large τ this expression has the same behavior as 1
τ
. Furthermore,

because, as mentioned, the momenta (derivatives) Ei and π are stored at τ− dτ
2
, while

φ and Ui are stored at τ , the derivatives will always lag behind the fields by half of

a time step. This is the so-called leap frog algorithm. At the end of the simulation,

the derivatives are evolved by an additional half time step to bring all quantities to

the same value of τ . The leap frog algorithm has error of order dτ 2 at each step.

4.5 Solving for Qs - Brent’s Method

Brent’s method [52] is a root finding algorithm that combines several simpler methods,

namely the bisection method, the secant method, and inverse quadratic interpolation,

for a quick yet reliable solution. As a reminder, the problem that we need to solve in

order to determine the saturation scale is,

f(r) =
π2

2Nc

r2αs(μ
2)xg(x, μ2)T (b)− 1

2
= 0 (4.16)

The value of r for which this condition is met gives the saturation scale as Q2
S = 2

r2
.

In order to solve this problem, Brent’s method begins with the bisection method to

isolate the root. Taking an initial guess for r, to be the average squared gluonic

radius of the proton, BG = 4.0GeV2, and then searching for a place where the value

of f(r) changes sign, i.e. f(a)f(b) < 0 for two points a and b, will allow us to utilize

the bisection method. For a continuous function, a change in sign guarantees a root

between the two points with differing signs, à la the intermediate value theorem. We

will call the current guess b and the guess for which the sign changes a such that

[a, b] contains the solution, and require that |f(b)| ≤ |f(a)|, meaning if this condition

is not met, we swap a and b. Thus b is regarded as the better approximation and a

third point, c, is initialized by setting c = a. Now that the solution is bracketed, we

check at each iteration whether f(b) = 0 or |a− b| < δ, where δ is the tolerance that

we set for the solution. If either condition is satisfied, b is the approximate solution
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and the process is complete. Otherwise, the method determines a new trial point b′

in the following way: If f(a) �= f(c) and f(b) �= f(c), b′ is determined using inverse

quadratic interpolation

b′ =
af(b)f(c)

(f(a)− f(b))(f(a)− f(c))
+

bf(a)f(c)

(f(b)− f(a))(f(b)− f(c))
+

cf(a)f(b)

(f(c)− f(a))(f(c)− f(b))
(4.17)

Otherwise, b′ is determined by linear interpolation

b′ =
af(b)− bf(a)

f(b)− f(a)
(4.18)

The method maintains values of a,b, and c that satisfy the following conditions at

each iteration:

(i) b �= c

(ii) f(b)f(c) < 0 such that the solution lies in the interval (a, c) if f is continuous

(iii) |f(b)| ≤ f(c) such that b is a better approximate solution than c

(iv) either a �= b and a �= c, or a = c and a and is the previous value of b

At this point, a relatively complicated set of conditions determines whether to

proceed by bisection or interpolation. The method iterates until a zero is found or

the procedure converges. Brent’s method is a fast, reliable root-finding algorithm

that does not require derivatives of the function whose root is being sought. Further

details of Brent’s method and its numerical implementation can be found at [52, 53].

4.6 Gauge Invariance and Transformations

This section will serve as a review and/or primer on gauge invariance and gauge

transformations to facilitate the discussion on lattice gauge theory in the section im-

mediately following this one. It relies heavily on the section regarding gauge variance

in Peskin and Schroeder [54] as well as [55] and [56].

As is familiar from classical electrodynamics, gauge fields are only determined up

to a total derivative,

Aμ → Aμ + ∂μθ (4.19)
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which allows the freedom to choose a gauge that will simplify calculations. In modern

quantum field theory, however, gauge invariance is taken to be a fundamental sym-

metry and is used to constrain the types of terms that are allowed in the Lagrangians

of gauge invariant theories.

An SU(N) gauge symmetry is a local symmetry of the the form,

φ(x) → V (x)φ(x) = eiθa(x)τaφ(x) (4.20)

where θa(x) is known as the gauge parameter and τa is an element of SU(N), known

as a group generator. The kinetic term for the scalar field, ∂μφ∂
μφ, is no longer gauge

invariant due to the fact that the local gauge invariance allows for independent rota-

tions in SU(N) at different locations. Thus, derivatives, which involve the difference

between the scalar field at two distinct points in space-time, are ill defined. To make

sense of derivative terms such as

εμ∂μφ = lim
ε→0

1

ε
[φ(x+ ε)− φ(x)] (4.21)

one can define what is called a “connection,” “comparator”, or as we will refer to it,

a “link”, U(y, x), that transforms as

U(y, x) → V (y)U(y, x)V †(x) (4.22)

the idea being that it links two different points by making a quantity located at x,

transform as if it is located at y. In this case, one can define the covariant derivative

εμDμφ = lim
ε→0

1

ε
[φ(x+ ε)− U(x+ ε, x)φ(x)] (4.23)

where the link, as expressed as an expansion of the separation between the two points

in the derivative, is

U(x+ ε, x) = 1 + igεμAμ(x) +O(ε2) (4.24)

Plugging this form into (69), one gets the covariant derivative,
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Dμ = ∂μ − igAa
μτ

a (4.25)

As its name would suggest the covariant dervivative transforms covariantly, i.e.,

Dμφ(x) → V (x)Dμφ(x) (4.26)

and therefore leaves the kinetic term, involving a product of the derivative and its

conjugate, invariant under gauge transformations.

The link in equation (4.24) is essentially the exponent of the gauge field,

U(x+ ε, x) = exp [igεμAμ(x)] (4.27)

This will be important in calculating the field strength tensor, as we will see in the

next section.

Alternatively, rather than thinking of the link as a way of preserving gauge invari-

ance, one can think of a path of links that connect two points as the fundamental

gauge invariant quantity associated with the gauge field, from which all other gauge

invariant quantities can be constructed. This quantity is called the Wilson line and

takes the form,

UP (z, y) = P

{
exp

[
ig

∫ 1

0

ds
dxμ

ds
Aa

μ(x(s))t
a

]}
(4.28)

where P denotes the path-ordered integral.

4.7 Lattice Gauge Theory

As in regular gauge theories, one needs to figure out a way to construct a gauge

invariant action on the lattice. On the lattice, derivatives involve differences between

neighboring lattice sites, connected by the smallest parallel transporter called the link.

The link transports the gauge field in the positive direction, whereas its hermitian

conjugate moves the field in the opposite direction. From the links, it is possible to
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Figure 4.2: Plaquette in the μ − ν plane beginning at lattice site i. In the boost invariant case,
the lattice is 2-dimensional and we need only worry about the x and y directions. Notice how the
hermitian conjugate of a link transports the field in the opposite direction.

construct the field strength by defining the plaquette. The plaquette is the trace of a

product of links around a square on the lattice.

Let’s see why the plaquette is important. Assuming a two-dimensional lattice with

equal lattice spacing in the x and y directions such that ax = ay = a, and expanding

the link

Uμ(x) = exp{igaAa
μ(x)t

a} (4.29)

Uμ = 1 + igaAa
μt

a − 1

2
g2a2Aa

μA
b
μt

atb +O(a3) (4.30)

Making a loop around a single square in the positive μ and ν directions,

Uμν = Uμ(x)Uν(x+ aμ̂)U †μ(x+ aν̂)U †ν(x) (4.31)

To linear order in the lattice spacing, a, we have

U (1)
μν ≈ 1 + iga{Aμ(x) + Aν(x+ aμ̂)− Aμ(x+ aν̂)− Aν(x)} (4.32)

U (1)
μν ≈ 1 + iga2{∂μAν − ∂νAμ} (4.33)
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At second order in the lattice spacing, we pick up the non-abelian term of the field

strength,

U (2)
μν ≈ U (1)

μν − g2a2(A2
μ+A2

ν +AμAν −AμAμ−AμAν −AνAμ−AνAν +AμAν) (4.34)

U (2)
μν ≈ 1+iga2(∂μAν−∂νAμ)−g2a2[Aμ, Aν ] = 1+iga2F a

μνt
a ≈ exp{+iga2Fμν} (4.35)

This is the plaquette. Its conjugate is found by traversing the square in the reverse

direction,

U †μν ≈ 1− iga2F a
μνt

a +
g2

2
a4F a

μνF
b
μνt

atb + ... ≈ exp{−iga2Fμν} (4.36)

Taking the trace gives us a plaquette and a gauge invariant way of computing the

field strength on the lattice. We can take different combinations of plaquettes in

order to compute quantities that are relevant for the action or stress-energy tensor,

to varying orders of the lattice spacing. For example, to compute the field strength

tensor squared, a quantity that will appear in the energy-momentum tensor, we can

take

Tr[4− 2Uμν − 2U †μν ] = g2a4F a
μνF

a
μν +O(a6) (4.37)

(we have used Tr[tatb] = 1
2
δab)

Alternatively, we can compute the field strength by taking the difference of a

plaquette and its hermitian conjugate, thus cancelling all even terms,

iTr[(U †μν − Uμν)t
a] = ga2F a

μν +O(a6) (4.38)

and then, by squaring it, we have F 2
μν to order a12.

Since we are dealing with an effectively 2-dimensional system, we need not worry

about gauge links in the longitudinal direction. This concludes our brief discussion

of lattice gauge theory, but this section will inform the lattice implementation of

the theory including the equations of motion, and the calculations of the energy-

momentum tensor.
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4.8 Energy Momentum Tensor on the Lattice

In this section, we will express the stress energy tensor in its discretized form for the

lattice calculation. We will define the transverse electric fields Ex,y at the midpoint of

the links, i+ ˆex,y
2

rather than at the vertices of the lattice. This choice means that the

two neighboring lattice sites will each contribute equally to the value of the electric

field in the middle of the link. In addition, we will define the stress energy tensor at

the middle of the plaquette. Finally, if we absorb a factor of 1/g into the transverse

electric field components as

Ei
x(y) −→

Ei
x(y)

g
(4.39)

and define the quantities for lattice site i,

E2
lattice,transverse(i) =

g2

2τ 2
Tr[Ex2

i + Ex2
i+ŷ + Ey2

i + Ey2
i+x̂] (4.40)

Note again that there are contributions to each component of the electric field from

the two neighboring lattice sites. Further defining,

B2
lattice,y(i) =

1

2τ 2
Tr
[
(φi − Ux,iφi+x̂U

†
x,i)

2 + (φi+ŷ − Ux,i+ŷφi+x̂+ŷU
†
x,i+ŷ)

2
]

(4.41)

B2
lattice,x(i) =

1

2τ 2
Tr
[
(φi − Uy,iφi+ŷU

†
y,i)

2 + (φi+x̂ − Uy,i+x̂φi+x̂+ŷU
†
y,i+x̂)

2
]

(4.42)

E2
lattice,long(i) =

1

4
Tr
[
π2
i + π2

i+x̂ + π2
i+ŷ + π2

i+x̂+ŷ

]
(4.43)

Here, because we have treated the longitudinal electric field as a scalar quantity, there

are contributions from all four lattice sites comprising a square. Finally,

B2
lattice,long(i) =

2

g2

[
Nc − ReTr(Ux,iUy,i+x̂U

†
x,i+ŷU

†
y,i)
]

(4.44)
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where this is the longitudinal magnetic field squared from (4.37). Alternatively, one

can increase the precision in the lattice spacing by taking the difference between the

plaquette and its conjugate rather than adding, just as is done in (4.38),

B2
lattice,long(i) =

[
−2

g
Im
(
Tr(Ux,iUy,i+x̂U

†
x,i+ŷU

†
y,i)
)]2

(4.45)

or

B2
lattice,long(i) =

[
− i

2g
(Ux,iUy,i+x̂U

†
x,i+ŷU

†
y,i − Uy,iUx,i+ŷU

†
y,i+x̂U

†
x,i − trace)

]2
(4.46)

The latter expression is implemented in the code for the work presented here. Once

again, “−trace” means subtract the diagonal elements of the matrix. From these four

terms, we can construct the diagonal components of T μνat lattice site i,

T ττ = E2
lattice,trans + E2

lattice,long +B2
lattice,x +B2

lattice,y +B2
lattice,long

T xx = E2
lattice,trans + E2

lattice,long − B2
lattice,x +B2

lattice,y +B2
lattice,long

T yy = E2
lattice,trans + E2

lattice,long +B2
lattice,x − B2

lattice,y +B2
lattice,long

T ηη = E2
lattice,trans − E2

lattice,long +B2
lattice,x +B2

lattice,y − B2
lattice,long

(4.47)

Thus, T μν is manifestly traceless. Because T μν is symmetric, there are only six

additional independent components, for a total of ten. The remaining components

are

T τx
i =

1

4τ
Tr

[
− iEy

i

(
Uy,iUx,i+ŷU

†
y,i+x̂U

†
x,i − Ux,iUy,i+x̂U

†
x,i+ŷU

†
y,i −

1

Nc

trace

+ U †x,i−x̂Uy,i−x̂Ux,i−x̂+ŷU
†
y,i − Uy,iU

†
x,i−x̂+ŷU

†
y,i−x̂Ux,i−x̂ − 1

Nc

trace
)

− iEy
i+x̂

(
Uy,i+x̂Ux,i+x̂+ŷU

†
y,i+2x̂U

†
x,i+x̂ − Ux,i+x̂Uy,i+2x̂U

†
x,i+x̂+ŷU

†
y,i+x̂ −

1

Nc

trace

+ U †x,iUy,iUx,i+ŷU
†
y,i+x̂ − Uy,i+x̂U

†
x,i+ŷU

†
y,iUx,i − 1

Nc

trace
)

− πi

(
Ux,iφi+x̂U

†
x,i − U †x,i−x̂φi−x̂Ux,i−x̂

)
− πi+ŷ

(
Ux,i+ŷφi+x̂+ŷU

†
x,i+ŷ − U †x,i−x̂+ŷφi−x̂+ŷUx,i−x̂+ŷ

)
− πi+x̂

(
Ux,i+x̂φi+2x̂U

†
x,i+x̂ − U †x,iφiUx,i

)
− πi+x̂+ŷ

(
Ux,i+x̂+ŷφi+2x̂+ŷU

†
x,i+x̂+ŷ − U †x,i+ŷφi+ŷUx,i+ŷ

)]
(4.48)
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Similarly,

T τy
i =

1

4τ
Tr

[
− iEx

i

(
Ux,iUy,i+x̂U

†
x,i+ŷU

†
y,i − Uy,iUx,i+ŷU

†
y,i+x̂U

†
x,i −

1

Nc

trace

+ U †y,i−ŷUx,i−ŷUy,i−ŷ+x̂U
†
x,i − Ux,iU

†
y,i−ŷ+x̂U

†
x,i−ŷUy,i−ŷ − 1

Nc

trace
)

− iEx
i+ŷ

(
Ux,i+ŷUy,i+ŷ+x̂U

†
x,i+2ŷU

†
y,i+ŷ − Uy,i+ŷUx,i+2ŷU

†
y,i+x̂+ŷU

†
x,i+ŷ −

1

Nc

trace

+ U †y,iUx,iUy,i+x̂U
†
x,i+ŷ − Ux,i+ŷU

†
y,i+x̂U

†
x,iUy,i − 1

Nc

trace
)

− πi

(
Uy,iφi+ŷU

†
y,i − U †y,i−ŷφi−ŷUy,i−ŷ

)
− πi+x̂

(
Uy,i+x̂φi+x̂+ŷU

†
y,i+x̂ − U †y,i−ŷ+x̂φi−ŷ+x̂Uy,i−ŷ+x̂

)
− πi+ŷ

(
Uy,i+ŷφi+2ŷU

†
y,i+ŷ − U †y,iφiUy,i

)
− πi+x̂+ŷ

(
Uy,i+x̂+ŷφi+2ŷ+x̂U

†
y,i+x̂+ŷ − U †y,i+x̂φi+x̂Uy,i+x̂

)]
(4.49)

Finally, for the last spatial-temporal component,

T τη =
g

τ 3
Tr

[
Ex

i

(
Ux,iφi+x̂U

†
x,i − φi

)
+ Ex

i+ŷ

(
Ux,i+ŷφi+x̂+ŷU

†
x,i+ŷ − φi+ŷ

)

+ Ey
i

(
Uy,iφi+ŷU

†
y,i − φi

)
+ Ey

i+x̂

(
Uy,i+x̂φi+x̂+ŷU

†
y,i+x̂ − φi+x̂

)] (4.50)

For the purely spatial components,

T xy
i =

1

2τ 2
Tr

[
− g2

(
Ex

i + Uy,iEi+ŷU
†
y,i

)(
Ey

i + Ux,iEi+x̂U
†
x,i

)
+
(
Ux,iφi+xU

†
x,i − φi)

(
Uy,iφi+yU

†
y,i − φi) + Uy,i

(
Ux,i+ŷφi+x̂+ŷU

†
x,i+ŷ − φi+ŷ

)
U †y,i
(
Uy,iφi+x̂U

†
y,i − φi

)
+
(
Ux,iφi+x̂U

†
x,i − φi

)
Ux,i

(
Uy,i+x̂φi+x̂+ŷU

†
y,i+x̂ − φi+x̂

)
U †x,i

+ Uy,i

(
Ux,i+ŷφi+x̂+ŷU

†
x,i+ŷ − φi+ŷ

)
U †y,iUx,i

(
Uy,i+x̂φi+x̂+ŷU

†
y,i+x̂ − φi+x̂

)
U †x,i

]
(4.51)

For the spatial-η components,
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T xη
i = − 2

τ 2
Tr

{
g

4

[
Ex

i

(
πi + Ux,iπi+x̂U

†
x,i

)
+ Ex

i+ŷ

(
πi+ŷ + Ux,i+ŷπi+x̂+ŷU

†
x,i+ŷ

)]

+
1

8ig

[(
Ux,iUy,i+x̂U

†
x,i+ŷU

†
y,i − Uy,iUx,i+ŷU

†
y,i+x̂U

†
x,i −

1

Nc

trace

+ Uy,iU
†
x,i−x̂+ŷU

†
y,i−x̂Ux,i−x̂ − U †x,i−x̂Uy,i−x̂Ux,i−x̂+ŷU

†
y,i −

1

Nc

trace
)(

Uy,iφi+ŷU
†
y,i − φi

)
+
(
Uy,i+x̂U

†
x,i+ŷU

†
y,iUx,i − U †x,iUy,iUx,i+ŷU

†
y,i+x̂ −

1

Nc

trace

+ Ux,i+x̂Uy,i+2x̂U
†
y,i+x̂+ŷU

†
x,i+x̂ − Uy,i+x̂Uy,i+x̂+ŷU

†
x,i+2x̂U

†
x,i+x̂ −

1

Nc

trace
)

×
(
Uy,i+x̂φi+x̂+ŷU

†
y,i+x̂ − φi+x̂

)]}
(4.52)

and finally,

T yη
i = − 2

τ 2
Tr

{
g

4

[
Ey

i

(
πi + Uy,iπi+ŷU

†
y,i

)
+ Ey

i+x̂

(
πi+x̂ + Uy,i+x̂πi+x̂+ŷU

†
y,i+x̂

)]

+
1

8ig

[(
Uy,iUx,i+ŷU

†
y,i+x̂U

†
x,i − Ux,iUy,i+x̂U

†
x,i+ŷU

†
y,i −

1

Nc

trace

+ Ux,iU
†
y,i+x̂−ŷU

†
x,i−ŷUy,i−ŷ − U †y,i−ŷUx,i−ŷUy,i+x̂−ŷU

†
x,i −

1

Nc

trace
)(

Ux,iφi+x̂U
†
x,i − φi

)
+
(
Ux,i+ŷU

†
y,i+x̂U

†
x,iUy,i − U †y,iUx,iUy,i+x̂U

†
x,i+ŷ −

1

Nc

trace

+ Uy,i+ŷUx,i+2ŷU
†
y,i+x̂+ŷU

†
x,i+ŷ − Ux,i+ŷUy,i+x̂+ŷU

†
x,i+2ŷU

†
y,i+ŷ −

1

Nc

trace
)

(
Ux,i+ŷφi+x̂+ŷU

†
x,i+ŷ − φi+ŷ

)]}
(4.53)
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5

Description of Observables and Results

5.1 Spatial and Momentum Anisotropies: εn and vn

As discussed in the introduction, one of the key signatures of QGP is the second

Fourier coefficient of the expansion of the azimuthal distribution of particles,

dN

pTdpTdydφ
=

dN

2πpTdpTdy

(
1 +
∑
n

2vn(y, pT ) cos [n(φ− ψn)]

)
(5.1)

Each coefficient in this expansion, vn, corresponds to a different shape of flow. The

first coefficient, v1, represents directed flow, whereas v3 is a measure of triangular flow.

The second harmonic, v2, on the other hand, corresponds to the elliptic flow of the

medium and is intimately linked to ε2, which is a measure of the elliptic shape of the

distribution of energy in the initial state that gets converted by hydrodynamic flow

from a pressure anisotropy to a momentum anisotropy. In fact, this relation between

ε2 and v2 is more generally true of the n-th harmonic. However, it is most clearly

illustrated, and in fact most important, in the case of v2, due to the initial geometry

of colliding nuclei at finite impact parameter. The efficiency by which hydrodynamics

converts the initial εn energy configuration from IP-Glasma, given in figure (5.1) , can

be seen by the ratio of 〈vn〉/〈εn〉 as given in plot (5.2). There are many definitions

for computing vn flow coefficients. In this work, we used the scalar product method,

more details on which can be found in appendix (7.4).
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Figure 5.1: 〈εn〉 at 5.02 TeV and 2.76 TeV for 1500 events per 10% centrality class. Note that the
values of 〈εn〉 are the same within statistical fluctuations for the two LHC collision energies.
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Figure 5.2: The event averaged integrated vn in ratio to the event averaged εn 〈vn〉/〈εn〉 at 5.02 TeV
and 2.76 TeV. The longer lifetime of the fireball at the higher energy allows more time for the flow
harmonics to develop.
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5.1.1 Centrality Selection

Centrality has been determined by the minimum bias method. This entails randomly

sampling the impact parameter, b, from 0-20 fm, according to P (b)db = bdb
b2max/2

, and

binning events according to their total energy in intervals, with 0-5% being the 5%

of events with the highest total energy. This process is closest to what is done by

experimentalists, who bin events on charged particle multiplicity. The criteria for

determining the 100% centrality cutoff, or equivalently the threshold for whether an

event occurred, is not as clear in the IP-Glasma framework as in, for example, the

Glauber model. This is due to the fact that IP-Glasma is composed of gluon fields, and

thus there can be gluon field interactions without what would be considered a binary,

or nucleon-nucleon, collision in the Glauber model. For the purpose of this thesis,

the boundary for the 100% centrality bin was taken such that the ratio of centrality

bins fits the dNch/dy distribution from experimental data. Thus, we used this cutoff

as a parameter that we fit to data, and once this 100% centrality determination was

made, all other centralities became fixed.

Figure 5.3: Charged particle multiplicity dNch

dy as a function of centrality for 2.76 TeV[57] and 5.02

TeV [58].

At 2.76 TeV, the boundary that we determined for 100% centrality corresponded
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to an energy of ≈ 0.4 GeV per unit rapidity, which for a plateau region of 10 rapidity

units, gives a total energy of 4 GeV. The maximum saturation scale at this energy is

2 GeV, meaning that the effective criterion set for whether a collision occurred was

the creation of two gluons at the saturation scale. We varied the boundary by a factor

of two and the results were insensitive to the exact choice of cutoff. For 5.02 TeV,

the maximum value of the saturation scale increases to about 2.25 GeV, and thus the

100% centrality threshold is slightly higher.

Figure 5.4: Minimum bias centrality selection histogram for 12,000 events at 2.76 TeV.

5.2 Results - Pb-Pb at 2.76 TeV vs. 5.02 TeV

5.2.1 Overview of Results

The results presented here consist of 1500 events per 10% centrality class for a total of

7500 events from 0-50%. IP-Glasma is run on a 1000×1000 grid with a lattice spacing

a = 0.1 GeV−1, which is then course grained for a lattice spacing of 0.5 GeV−1 for the

hydrodynamic simulation, MUSIC. Time steps are taken to be dτ = 0.01 GeV−1 ≈
0.002 fm for IP-Glasma and the system is evolved to a hydro switching time of 0.4 fm.

Qualitatively, the results at the two LHC energies are very similar. The quantita-

tive differences are generally on the single percentage level. The charged hadron v2
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for example only increases by a few percentage points at the higher energy, as shown

in figure (5.5) with good agreement with data. Measurements of many other observ-
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Figure 5.5: The ratio of v2 for the two LHC energies as a function of centrality. Data taken from
the ALICE Collaboration [59].

ables, at the time of this writing have yet to be published at 5.02 TeV, and thus the

results presented serve as predictions from the IP-Glasma+MUSIC+UrQMD frame-

work. These predictions follow a similar trend of qualitative agreement with slight

quantitative increases, as compared to 2.76 TeV. Quantities for which data has yet to

be published at 5.02 TeV include the particle spectra (fig. (5.9)), vn distributions (fig.

(5.9)), identified particle differential vn’s (figs. (5.7)), vn correlations (figs. (5.13),

(5.14)), and mean pT (fig. (5.10)).

In terms of IP-Glasma, the initial state eccentricities are the same within statistical

fluctuations for the two energies and the average initial flow, as characterized by 〈u⊥〉,
is 2-3% larger, on average, at 5.02 TeV compared to 2.76 TeV.

5.2.2 Differential vn’s

We can also look at vn flow harmonics as a function of pT . From figure (5.7), one

can see that our results match the data far better at 0-5% centrality in the 1-2 GeV

pT range compared to more peripheral events. This is because high pT physics such

as jets and mini-jets, plays a much larger role in peripheral collisions. Such high pT
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components are not part of the collective behavior of the QGP medium and thus do

not develop the same anisotropies as low pT partons. Our calculation, which does not

include jets, lacks these lower vn high pT contributions that would bring the curves

down in the pT > 1.0 GeV region. This is a clear sign that high pT physics is needed

to complete the picture.

Figure 5.6: Differential vn for charged hadrons in 0-5% (a, c) and 30-40% (b, d) centrality bins in
Pb+Pb collisions at 2.76 (a, b) and 5.02 (c, d) ATeV. Experimental data taken from [60, 61].

It should also be noted that far better agreement has been achieved for differen-

tial vn’s using only shear viscosity in other studies. Bulk viscosity, which is neces-

sary for other observables such as 〈pT 〉, acts isotropically and does not develop flow

anisotropies. Its inclusion requires a decreased shear, however, since some of the

viscous effects will be taken care of by bulk in this case. Thus, with a lower shear

viscosity, the slope of the differential vn’s changes and tends to miss the higher pT

region of hydrodynamic applicability.

In the identified particle differential vn in figure (5.7) there is a clear mass ordering

between the protons, kaons, and pions. This is due to the fact that as the fluid

hadronizes, the particles are boosted from the local rest frame of the fluid cell to the

lab frame. Given the same velocity, the heavier particles have a greater momentum
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Figure 5.7: Top: Identified particle differential v2 for (a) 5-10% at 2.76 TeV vs ALICE data [62] (b)
5-10% comparison between LHC energies (c) 30-40% at 2.76 vs ALICE data (d) 30-40% comparison
between LHC energies. Bottom: Differential v3 for (a) charged hadrdons 5-10% at 2.76 TeV and
5.02 TeV (b) identified particles 5-10% at 2.76 TeV and 5.02 TeV and differential v4 for (c) charged
hadrons 30-40% at 2.76 TeV and 5.02 TeV (d) identified particles 30-40% at 2.76 TeV and 5.02 TeV
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which blue shifts their differential vn to higher pT .

5.2.3 Integrated vn

Figure 5.8: Integrated vn as a function of centrality at 2.76 TeV and 5.02 TeV, as compared to
ALICE data [59]

As can be seen, despite nearly identical εn values for the two LHC collision energies

in figure (5.1), the higher energy has consistently larger vn. Higher temperature results

in a longer lifetime of the fireball since it will take longer for the system to cool to

the freezeout temperature, where the QGP hadronizes back into particles and the
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collective behavior ceases. A longer lifetime thus allows more time for the collective

behavior, as governed by hydrodynamics, to convert the initial energy anisotropies

into momentum anisotropies. Hence we see larger vn values at the higher energy.

5.2.4 vn distributions

While v2 is driven primarily by the initial geometry of the system, higher harmonics

such as v3 are fluctuation driven and are described well by the IP-Glasma model, a

feat that is rare among initial state models. In addition, as was shown in [63] the

IP-Glasma framework is not only able to reproduce event-averaged flow data but,

indeed, is able to reproduce the event-by-event vn distributions amazingly well, as in

fig. (5.9). Further note how closely the vn distributions track the corresponding εn

distributions, an indication that the initial state is behind the successful reproduction

of the vn distributions. This result suggests that the initial state fluctuations in the

IP-Glasma model accurately capture the physical fluctuations in the initial state of

HIC’s.

5.2.5 Mean Transverse Momentum: 〈pT 〉
IP-Glasma initial conditions generate large pressure gradients that lead to high mean

pT . It was shown in [43] that bulk viscosity can remedy this situation by slowing

the radial expansion of the fluid. Using the bulk parametrization given in this thesis,

we accurately describe the pion 〈pT 〉 but underestimate the heavier kaon and proton

data. The inclusion of re-scatterings in UrQMD generates increased mean pT for these

heavier hadrons and we end up within 10% of the data at all centralities. The effect

UrQMD on the 〈pT 〉 can be seen by comparing the dashed line, without UrQMD,

with the solid line, with UrQMD, in figure (5.10)

It is worth noting that one could also increase the mean pT by allowing hydrody-

namics to evolve to a lower temperature, since hydrodynamics will generate transverse

momentum. Doing so, however, would compromise the charged hadron multiplicities

of the heavier hadrons since the energy density at freeze out would be too low to

produce many of these heavy particles. The amazing thing about the results shown
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Figure 5.9: Event-by-event vn
〈vn〉 and εn

〈εn〉 distributions for Pb-Pb at 2.76 TeV in the 5-10% (top left)

and 40-45% (top right) centrality bin, for 2.76 TeV in the 0-5% centrality bin compared to ATLAS
data (middle left), between collision energies in 0-5% centrality bin (middle right), 2.76 TeV in the
20-25% centrality bin compared to ATLAS data (bottom left), and a comparison between collision
energies in the 20-25% centralily bin (bottom right) Data from the ATLAS collaboration [64].

here is that we are able to simultaneously describe charged hadron multiplicities, vn’s,

spectra, and mean pT .



5.2 Results - Pb-Pb at 2.76 TeV vs. 5.02 TeV 93

Figure 5.10: Identified particle 〈pT 〉 as a function of centrality (a) vs ALICE data [65] and (b) a
comparison between LHC energies.

5.2.6 Particle Spectra and Identified Particle Multiplicity

The identified particle spectra quantify the transverse momentum distributions of

individual particle species and are shown for pions, kaons, protons and multi-strange

particles in figure (5.12). It is important to note that hadronic re-scatterings from

UrQMD are necessary to adequately describe data for the heavier particles, such

as kaons, and especially protons. The identified particle multiplicity in figure (5.11)

shows that we are not only able to reproduce the centrality dependence of the charged

particle multiplicity, but that our thermal sampling in the Cooper-Frye particlization

procedure, along with the UrQMD dynamics are able to accurately produce the cor-

rect identified particle multiplicities as well.

5.2.7 vn Correlations

This is the first time vn correlations have been calculated for IP-Glasma initial condi-

tions. Non-trivial vn correlations in good agreement with data provide a strong indi-

cation that the initial state energy distributions of IP-Glasma are physical. Smooth

initial conditions, which are sometimes used to initialize hydrodynamics in HIC simu-

lations, cannot possibly reproduce the rich structure of these fascinating observables.
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Figure 5.11: Identified particle multiplicities dN
dy as a function of centrality

Take a smooth initial condition that is a perfect ellipse, for example. It will have

vanishing odd flow coefficients and v2-v4 correlations, due to symmetry. The same

smooth initial condition may be able to adequately reproduce v2, however. Thus,

vn correlations give us a deeper insight into the initial state, that goes beyond the

flow coefficients themselves. For details on how vn correlations were computed in this

work see appendix (7.5).
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Figure 5.12: Top: Identified particle spectra at two centralities (a),(c) comparison with ALICE data
[65] at 2.76 TeV and (b),(d) prediction and comparison between the two LHC energies. Bottom:
Strange particle spectra at two centralities (a),(c) comparison with data at 2.76 TeV, and (b),(d)
prediction and comparison between the two LHC energies
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Figure 5.13: Top: Two-plane vn correlations as a function of centrality for Pb-Pb at 2.76 TeV
compared to ATLAS data [66]. Bottom: Two-plane vn correlations as a function of centrality for
Pb-Pb at both LHC energies.

Figure 5.14: Top: Three-plane vn correlations as a function of centrality for Pb-Pb at 2.76 TeV
compared to ATLAS data [66].Bottom: Three-plane vn correlations as a function of centrality for
Pb-Pb at both LHC energies
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Conclusion

In this thesis, we have discussed the motivation for Heavy Ion Collisions as well

as the basic theoretical framework in which we study them, with a strong empha-

sis on the initial state. In particular, we have provided an in-depth description of

the IP-Glasma model and highlighted its distinguishing features. The procedures

used to implement IP-Glasma as a numerical simulation have been outlined. Fi-

nally, we have presented and analyzed phenomenological results produced in the IP-

Glasma+MUSIC+UrQMD framework and shown the incredible success of this model

by reproducing a wide range of observables.

Our ability to describe the data at both 2.76 TeV and 5.02 TeV with the same

parametrization is a strong indication that the temperatures are similar at the two

collision energies. The higher energy provides for a slightly longer lifetime of the QGP

fireball and thus allows hydrodynamics to develop more anisotropic flow. Overall, we

see only a slight difference on the percent level between the two energies for most

observables considered and conclude that there is no fundamentally different physics

at the two energies.

While intuitive, these results lend further support for the robust IP-Glasma +MU-

SIC+UrQMD hybrid model that has been developed at McGill University. Finally,

while the results presented are able to reproduce a broad range of observables, they

seem to leave a clear signal showing the necessity of high pT physics, such as jets, for

a complete picture of heavy ion physics. Such a signal appears in the differential and

integrated vn observables.
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Appendices

7.1 Light Cone Coordinates, Rapidity, and Proper Time

.

Light cone coordinates are extremely useful in the context of heavy ion collisions

and will be outlined here. This system mixes the temporal coordinate with the beam

coordinate to form

x± =
1√
2
(x0 ± x3) (7.1)

if the direction of the beam is taken to be the third spatial coordinate. Momentum

in this system, for example, can be written

p± =
1√
2
(p0 ± p3) =

1√
2
(E ± pz) (7.2)

Another important feature of light cone coordinates to note is the dot product,

x · y = x+y− + x−y+ − x⊥y⊥ (7.3)

Other useful definitions that are used throughout this thesis as well as the study

of HIC’s generally are proper time,

τ =
√
t2 − z2 =

√
x+x− (7.4)

and space-time rapidity,

η =
1

2
ln

(
t+ z

t− z

)
=

1

2
ln

(
x+

x−

)
(7.5)

Solving these expressions in terms of the Cartesian coordinates t and z,
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t = τ cosh η =
1

2
(x+ + x−)

z = τ sinh η =
1

2
(x+ − x−)

Proper time is the parameter that we use to evolve the system, since it corresponds

to the local time of a particle moving in the z-direction,

τ =
√
t2 − z2 = t

√
1− (

z

t
)2 = t

√
1− v2z =

t

γ
(7.6)

In addition to these coordinates, it is important to make note of the various met-

rics in the different coordinate systems. Throughout this thesis, we utilize three

different coordinate systems: Minkowski (t, x, y, z), Milne (τ, x, y, η), and light cone

(x+, x−, x, y). One can transform metric tensors between coordinates via,

g
′
αβ =

∂xμ

∂xα

∂xν

∂xβ
gμν

For the three coordinate systems mentioned we have

gμν(t, x, y, z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

gμν(τ, x, y, η) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −τ 2

⎞
⎟⎟⎟⎟⎟⎟⎠

gμν(x
+, x−, x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
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7.2 Lie Algebra - SU(3) Algebra

The SU(3) matrices are 3 × 3 special unitary matrices that obey the following lie

algebra,

[T a, T b] = ifabcT c (7.7)

where T a are group elements of SU(3) and fabc are SU(3) structure constants. In

addition, the generators are normalized to obey,

Tr[T aT b] =
1

2
δab (7.8)

There are N2
c − 1 such generators T a for SU(N), giving 8 in the case of SU(3).

7.3 Dirac Matrices

The gamma matrices γμ act on spinors and come in a variety of representations. Their

defining feature is the Clifford algebra that they obey, namely the anti-commutation

relation,

{γμ, γν} = 2ημν (7.9)

where μ, ν = 0, 1, 2, 3. The simplest representation of the Dirac matrices are 4 × 4

matrices, meaning there is no such representation in 3 × 3 or smaller matrices. One

prevalently used representation is

γ0 =

⎛
⎝ 0 1

1 0

⎞
⎠ (7.10)

γ0 =

⎛
⎝ 0 σi

−σi 0

⎞
⎠ (7.11)

where σi are the familiar Pauli matrices.
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7.4 Calculating Flow Harmonics - Scalar Product Method

There are various methods and definitions for calculating flow harmonics. The method

employed for the plots shown in this thesis is known as the scalar product method

and is outlined briefly here. For a more in depth discussion see [67, 68]. First defining

the event flow as

Qn = |Qn|einψn =
1

N

∑
j

einφj (7.12)

Then, as is done in the event plane method, one can define particles of interest as, for

example, identified particles in a small pT range and their corresponding flow vector

as Qn. Then vn is determined by correlating the particles of interest to two different

groups of particles, known as sub-events and denoted by A and B, in a wide pT range

with flow vectors QnA, and QnB, respectively. The expression is

vn{SP} =
〈QnQ

∗
nA〉√〈QnAQ∗nB〉

(7.13)

where the name scalar product comes from this definition. This expression assumes

that vn does not fluctuate event to event, an assumption we know not to be true. In

the case of of event-by-event fluctuations in vn, event averages are taken in two steps:

first averaging over events with the same vn and then averaging over vn bins. Doing

so for equation (7.13) and using the following two definitions

〈QnQ
∗
nA〉|vn = 〈Qne

−inφn〉|vn〈QnAe
−inφn〉∗|vn = vnvnA (7.14)

〈QnAQ
∗
nB〉|vn = v2nA (7.15)

we can calculate the scalar product result for the fluctuating case,

vn{SP} =
〈vnvnA〉vn√〈v2nA〉vn

=
√

v2n (7.16)

The scalar product method does not include any experimental detector specific prop-

erties and thus allows for an easy comparison between theory and experiment.
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7.5 Flow-Plane Correlations

It is also informative to look at how different vn coefficients correlate to one another.

Such correlations can be defined as [69]

C{c1n1, ..., cknk}{SP} =
〈Qc1

n1
...Qck

nk
〉√〈Qc1

n1(Q
c1
n1)∗〉...〈Qck

nk(Q
ck
nk)

∗〉 (7.17)

where
k∑

i=1

cini = 0 (7.18)

In this thesis, we only consider two- and three-plane vn correlations defined, respec-

tively, as

C{c1n1, c2n2}{SP} =
〈Qc1

n1
Qc2

n2
〉√〈Qc1

n1(Q
c1
n1)∗〉〈Qc2

n2(Q
c2
n2)∗〉

(7.19)

and

C{c1n1, c2n2, c3n3}{SP} =
〈Qc1

n1
Qc2

n2
Qc3

n3
〉√〈Qc1

n1(Q
c1
n1)∗〉〈Qc2

n2(Q
c2
n2)∗〈Qc3

n3(Q
c3
n3)∗〉

(7.20)

So to compute a two-plane angle for v2 and v4, for example, a combination that

satisfies (7.18) is n1 = c2 = 2, and n2 = c1 = 4.
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