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ABSTRACT

The multiplier algebra of LZ(X,v) ; L2(X,V) is the space
of all functions ¢ defined on X x X such that
6 + v e LAX,v) ® L2(X,v) for all ¥ e L2(X,v) & L2(X,v). In
this thesis we study the multiplier algebra of L2(X,v) @ L2(X,v)
for different measure spaces (X,v). For any finite set X and
any measure Vv on X we prove that ¢ is a multiplier of.
L2(x,v) ® L2(X,v) with I¢l, <1 if and only if

r .
IJJ¢(a,b)dP(a)dQ(b)HLH < 1 for every pair of spectral (not neces-

XxX :
sarily commuting) measures P and Q on ((X,v). If B(I) de-

notes the space of bounded Borel functions on the unit interval

I; then for any Borel measure Vv on I, B(IxI,vxv) denotes

the space of all functions ¢ defined on I x I such that

¢ = lim ¢_a.e. and ¢_ e B(I) ® B(I) with k¢ I, sC for

some constant C and for all n. It is proven-that a bounded
Borel function ¢ on I x I is a multiplier of 'LQ(I,v) e L2(I,v)
if and only if ¢ « B(IxI,vxv). For X = 2Z and v is the count-
ing measure, we prove that the multiplier algebra of

L2z ) 5 L2(Z) is the space V(Z) = B(ZxZ,vxv). Certain results
concerning the maximal ideal space of the multiplier algebra of
LZ(T,m) é L2(T,m) are given. Finally, we study certain homo-

morphisms of the trace-class operators.



L'algeébre de multiplicateurs de L2(X,v) © LZ(X,V) est
l'ensemble de fonctions ¢ définies sur X x X telles que
6 + v e L2(X,v) ® L2(X,v) pour tout ¥ ¢ L2(X,v) ® L2(X,v).
Dans cette th&se, nous étudiﬁns l'algébre de multiplicateurs
de LZ(X,V) ) L2(X,v) pour différents espaces mesurés (X,v).
Etant donnés un ensemble fini arbitraire X, et une mesure Vv
sur X, nous démonstrons que ¢ est un muitiplicateur de

LZ(X,V) é LZ(X,v) si et seulement si IJJ¢(a,b)dP(a)dQ(b)BLHs 1,

XxX
pour tout couple de mesures spectrales P et Q (qui ne commutent

pas néceséairement sur (X,v). Si B(I) dénote l'espace des
fonctions Bor&liennes bornées sur 1l'intervalle unitaire I,
‘alors pour toute mesure Boreliénne v sur I, B(IxI,vxv) dé-
note l'espace de toutes les fonctions ¢ définies sur I x I
telles-que ¢ = lim ¢, Dresque partout, ou ¢, € B(I) @ B(I)
et "¢nIM < C pour tout n =2 1 pour certaine constante C.

I1 est démontré qu'une fonction Borélienne bornée ¢ sur I x I
est un multiplicateur de L2(I,v) ) LZ(I,v) si et seulement si
¢ € B(IxI,vxv). Dans le cas oi X = Z et v est la mesure
normbrable, nous démontrons que l'algébre de multiplicateurs de
1.2(z2) ® 1.2(2) est l'espace V(Z) = B(ZxZ,vxv). Certains
résultats concernant le spectre de 1l'algébre de multiplicateurs
de LZ(T,m) ® L2(T,m) sont donnés. Finalement, nous étudions
certain homomorphismes de l'espace.des operateurs de trace

finie.
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NOTATIONS

We attempt to use standard notations and to avdid con-
fusion, let us state some of the more frequent tebminoiogy.

T denotes the unit circle and D 1is the unit disc. We
write Z for the integers and N for the set of natural
numbers . Zn denotes the set {-n,...., 0,..., n} and 'Z;
denotes the set {l1,..., n}.

LP(T,m) denotes the space of> p;summable functions on T
with respect to the Lebesgue meésure m. We write .f for the
Fourier transform of f ¢ Ll(T,m). A(T) is the space of
functions on T which has an absolutely convergent Fourier
series. M(T) will denote the space of all Borel measures on
T. We write lﬁ for the n-dimensional space of p-summable
sequences .

If A and B are Banach spaces, then A é B denotes
their projective tensor product. HaHA is the nofm of a in
A. An element in A ; B of the form a @ b will be called an
‘atom (not to be confused with an atom of a measure).

LCA,B) is'the space of all continuous linear mappings from
A into B. AY s the dual space of’_A with the usual norm.

If ¢ ¢ L2(X,v) @ L2(X,v) then we write ol for the
norm of ¢ in such a space. M(L2(X,v) ® LZ(X,v)) is the
multiplier algebra of L2(X,v) @ LZ(X,v) and RwﬂM 'is the
multiplier norm of ¢. V(Z ) is the space Lw(Zn) ® Lw(Zn).
V(Z) denotes the space of all ¢ on Z x Z such that

o = ¢| e V(Z_) and supl¢_ | < e, Finally, H
n anzn n n n V(Zn)



denotes a Hilbert space, and <a,b> 1is the inner product of

C; a and b in H. tal is the norm of a in H.

Note: V denotes VI(N).



PREFTACE

Let A be a space of functions defined on a measure
space (X,v). Then a function ¢ defined on X will be
called a multiplier of A if ¢ - ¢ ¢ A fof all ¢ € A. The
space of all multipliers of A will bé called the multiplier
algebra of A and we will denote it by M(A). Schur [23],
was the first to study this type of problem for the special
case X = N, v fhe counting measureAOn N and A 1is the
space of all kernel operators on 22 - RQ(N,v). The purpose
of this thesis is to study M(LZ(X,v) ) L2(X,v)) for differenf
measure spaces (X,v).

In section 2.1 we prove the completeness of M(A) under
a certain topology. Section 2.2 is devoted to the study of
M2 ® 22) where we prove that it is just V. The problem of
the Hankel multipliers of LZ(Z) & L2(Z) is the object of
section 2.3. |

Pairs of normal contractions on a Hilbert space have a close
relationship to the multiplier algebra of LZ(X,V) ® LZ(X,v)
for finite set X. Such a relationship is the theme of sectidn'
3.1. 'In section 3.2 we study the relationship betweeh pairs of
spectral measures on (X,v) and M(LQ(X,v) ® LZ(X,v)) for
finite set X.. These results are applied in section 3.3 for
the study of certain class of multipliers of the spaée
LZ(I,v) ® L2(I,v) for any Borel measure v on the unif interval

I. The study of the maximal ideal space of M(LQ(T,m) 3 L2(T,m))



is the content of section 4.1 where we prove its assymetry.
In the last section, 4.2, which is independent of the other
sections, we study the problem of homomorphisms of the space
L2(T,m) & L2(T,m).

| As far as I know, the work in this thesis is original,
except where the fext indicates the contrary. In particular,

chapter I is purely expository.



CHAPTER I
This chapter presents the concepts and propositions
which we shall use in this thesis. All the results that

are presented in this chapter are well known.

1.1. Tensor Products of Banach Spaces.

In their work, Schatten [21], and Grothendieck [ % 1, had
developed the theory of topological tensor products. Schatten
was the first to give a systematic treatment of.the ways of
norming the algebraic tensor product of two Banach spaces.
Simpler expositions of the material in their work can be
found in the paper of Amemiya and Shiga [1 1, and in the
recent book of Diestel and Uhl, [61. In this section we
present an outline of the main concepts that are important
to our present work.

Let G and G

1 2
groups with Haar measures v, and v, respectively. If

be any two 1ocally compact abelian

A and B are two vector spaces of complex valued functions

defined on G1 and G respectively, then A & B will

2
denote their algebraic tensor product, and f @ g denotes

the tensor product of f ¢ A and g ¢ B,[#al. If A and B
are Banach spaces with norms | "A and | "B’ then we can

define a norm on A ® B 1in different ways. The following

two norms are of particular interest to us.



(i) The projective norm. Let ¢ ¢ A ® B. Then ¢

N
has a representation of the form: ¢ = Z fi ® g5 where N
i=1

is a finite positive integer. The projective-norm of ¢ 1is

defined to be

IE5 1,0 Mg lg),

tol, = inf{.gl

i
where the infimum is taken over all the representations of ¢
in A ® B.

Clearly |f ® gh, = "an- HfHB. If A 1is any other norm
on A 8 B such that A(f @ g) < HfHA'HgHB, for all
fegeA@B, then A(f & g) s-ﬂf‘egHA [6], Some authors
call the projective norm, the greatest - crossnorm.

The space A @ B with the projective norm need nof be
complete. Let A ® B be the completion of A ® B with
respect to the projective norm. Since A and B are assumed
to be complete, then every element ¢ e A 8 B has a represen-

tation of the form

(-]

s L NELu, s Mgy < =,

¢ = ) f. e g.
= i=1

1

" o
ol = inf{iglufillA- IIgiIIB},

where the infimum is taken over all such representations of
¢ [26].

(ii) The injective norm. Let ¢ ¢ A ® B  have a
N

representation of the form: ¢ = } f; ®g;, f;e A and
' i=1

g; € B. The injective-norm of ¢ 1is defined as follows:



H¢Hv = sup{l_g <fi,h><gi,k>l},
1=1

where the supremum is taken over all h and k in the unit
balls of A* and B*, the duals of A .and vB, respectively.
Again one can see that |f @ gl, = HfHA' ﬂgﬂB- If n is any
other norm on A € B. such that n(f ® g) < ﬂfﬂA'_UgﬂB for all
f8gechA®B, then If®gl, s<n(feg) [f]l. The injective
norm is often called the least-crossnorm. '

For i = 1,2, let LP(Gi,vi) denote the space of v, -

measurable functions f on Gi for which

f P
} | £(x)]| dvi(x) < o, 1 <P < o

G.
1

essential supremum |f(x)]| < o, P = o,

The spaces Lp(Gi,vi) abe Banach spaces under the norm:

( )‘ 1£Go Pav, P if 1 <p < w

1€ = S

ess. sup|f(x)] o if p = o,

We shall often omit the measure v, from the notation and
simply write ‘Lp(Gi). Our aim, now, is to have a realization
of the space -Lp(Gi) ® Lp(Gi) as a épace of functions defined

on Gl x G2. For this considef the map

> LP(Gl x G,),

. 1Pep P
K : p (6;) @ 1L°(6,) )

which is defined by

K(f @ g)(x,y) = f(x)gx).



(:; Since LP(Gl) ® LP(Gz) is dense in LP(Gl) e LP(GZ), the
mapping K can be extended to LP(Gl) ® LP(GZ) and we will
continue to write K for the extension. What we must show
is that K is a (1-1) mapping. Let F and G be the
g-algebras on which v, and v, are defined. Choose two
sets of finite o-algebras (Fa)aex and (GB)BGY such that:

c . . . .
Fa c FY if a <y in X and GB < Ge if B < e 1in Y,

and F 1is the smallest #-algebra generated by (Fa)’ and G
1s the smallest o-algebra generated by (GB). For each o € X

and B € ¥ let Ea and T be the conditional expectation

B

operators:

> LP(Gl,Fa)

> LP<92,68>.

For each f e Lp(Gl) and g e Lp(Gz) we have

B

E, (£) ¢ . f and % (g)

> g, pointwise.

Consider the following diagram

K

A
LP(Gl,F) e LP(GZ,G) > Lp(Gl x Gy,F x G)

Ea e FB | Ea @ PB

K

v v
p S 1P p
L (Gl’Fa) @ L (GZ’GB) > L7(6y X GZ’Fa x GB)

where K 1is the restriction of K on LP(Gl,Fa) ® LP(Gz,GB).

For f x g e LP(Gl) @'Lp(Gz),

ﬁ:;



"An operator S : L

[(Eu @ F_)oKIJ(f © g)(x,y) Y(feg)(x,y)

8 (Ea e F

B
Ea(f)(x)-FB(g)(y).

On the other hand we have

[Ke(E, ® F)OI(f @ g)(x,y) = 'K(Ea(f) ® Fo(g)) (x,y)
Ea(f)(x)-FB(g)(Y).b

Hence the above diagram commutes. Let ¢ € LP(Gl,F) ] Lp(Gz,G)
be in the kernel of K. TFrom the commutativity of the diagram
we get

K(Ea e FB)(¢)‘= (E, ® FB)(K(¢)) = 0.

Since Lp(Gl,Fa) and LP(GZ’GB) are finite dimensional, then
the mapping K is (1-1). Thus (Ea ® % J(¢) = 0. But since

this is true for all a and B, and (Ea e FB)(¢) — G5B o,

we see that ¢ = 0 and this proves the claim that KX is (1-1).

From the representation we have for the elements in
LP(Gl) e LP(GZ) one can easily see that an element ¢ is in

the range of K if and only if ¢ admits a representation

¢(x,y) =i§1 fi(x)gi(y},

p p 5 . -
where fi e L (Gl) and g; e L (Gz) _and iglﬂfiﬂp Hgiﬂp < o,

and 1f ¢ = K(y), then o, = inf{ } Hfiﬂp-ﬂgiﬂ },' where the
_ i% P

infimum is taken over all representations of ¢ in the range
of K.

Let G, =6, =T ={z¢¢ | 1zl = 1} be the circle group.

2(T) —_— LQ(T) is called a trace-class



-

operator if } |<Se;se;>| < » for every orthonormal basis
i=1

(e;) in LA(T).

Theorem 1.1.1.
(1) L2(T) e L2(T) can be identified with the space of

trace class operators on L2(T).

i1y [L2(m e L2 1" T L(T)), the space of all con-
tinuous linear operators on L2(T).

i) [L2em o Lim1* T Liem 8 LAm.

(iv) [L2ern1® 2 2 e L(T)18 ¢
where C 1s the space of bounded functionals that vanish on

2 v o2 . _ . 2 ~ 2
L°(T) ¢ L°(T), and if F = F, + F, with F, € L°(T) ® L°(T)

1 2

and Fz e C, +then |IF| = HPlﬂ + Hgﬂ.

1

Proof.
(i) See [22] theorem 5, page 42.
(ii) See [R2] theorem 3, page 48.
(iii) See [32] feorem i, poge UE .
(iv) See [32] theorem 5, page 50.

The statements of the previous theorem continue to hold if we
replace L2(T) by 22(Z) or 22 = 22(N), where Z is the
group of integers and N is the set of natural numbers.

In his development of the theory of tensor products on
Banach spaces, Grothendieck [ #1, stated what he called "the

fundamental theorem of the metric theory of tensor products."

If &n is the n-dimensional space (real or complex) with the



supremum norm, then this theorem can be stated as follows:

Theorem 1.1.2. (Grothéndieck Inequality).

Let Ugseees Uy and Viseeos Vo be any two sets of
unit elements of a (complex or real) Hilbert Space H. Let
¢ Dbe the function defined on 2 x Z as follows:

. <ui,vj> if 1,3 é n
$(i,3) =

0 otherwise.

Then ¢ e z; ® 2: and H¢HA < K The constant KG is known

G-
as the Grothendieck constant.

For a proof ofvthe above theorem, one can consult the
paper of Lindenstrauss and Pelczynski [/4] theorem 2.1, where
they prove the theorem in a different setting. Their proof
~gilves a certain bound on KG; Subsequently, Rietz [/%#1], .pre_
sented another proof of this theorem, from which he obtained a
better bound on KG. The least possible value of VKG is still
unknown. Recently,'Stepheﬁs and Cohen, [251, proved that:

Ky = Y2 if - n = 2 or n = 3 (for the real case).

Theorem 1.1.3. (Littlewood Inequality).
Let ¢ € 2: e 2:, where n is any positive integer. Then

n .
(1) I¢d, s CosupC § |o¢i,3) D2
: 3 i=l

n
i) del, s C'-C T jeci, i) |,
1]

where the constants C and C' are independent of n.



The proof of this theorem can be found in the work of Littlewcod

©

[15] theorem 1(1), where he proves the dual form of the above

theorem.



C

1.2. Absolutely Summing Operators.

Let A and B be two Banach spaces, and S ¢ L(A,B),
the space of all continuous linear operators from A into B.
For 1 £ p < », the operator S 1is called p-absolutely éum-
ming if there is a number C = 0 such that the relation

n

n ‘ % % %
(.Z HS(ai)ng)l/Ps C sup (] |<ai,a >|p)l/p: a e A}
=1 la"1s1 *71
holds for every finite set {al,..., an} from A, n = 1,2,... .

Such operators were first introduced in the workbof Pietsch [161],

and Grothendiegk [8]1. In their work, []V]; Lindenstrausé and

Pelczynski sfudied p-absolutely summing mappings in Lp-spaces,
The space of p-absolutely summing mappings from A into

B 1s a Banach space under the norm
a (S) = inf C
P(

where the infimum is taken over all C for which the above
inequality holds. If p, < p,» then a_ (S) = a_ (S), [#].
1 2 P2 Pl v
Hence every pl—absolutevly summing map is also p2—absolutely
summing.
With the aid of the Grothendieck inequality, Lindenstrauss

and Pelczynski were able to prove the following

Theorem 1.2.1.
If v is a o-finite measure on a measure space X, and

H 1is (real or complex) Hilbert space. Then every operator



‘:;

10

Se L(Ll(X,V),H) is l-absolutely summing.
Not every 2-absolutely summing operator between two Banach
spaces is l-absolutely summing. However, Kwapien [13], proved

the following result:

Theorem 1.2.2.

If 1sr< 2, 1<p<=<2 and 2 £ q < », then for each
Banach space A

(i) Every p-absolutely summing mapping in chP,A)‘ is
l-absolutely summing.

(ii) Every q-absolutely summing mapping in L(X,Zr) is

2-absolutely éumming,

A special case of this theorem that we are going to use
in our work is when r = 2 and A = & .
’ v . _ %
If A and B are two Banach spaces, then (A @ B) , +the

dual of A & B, can be identified with a vector subspace of

" L(A,B") [30]. The operators in such a subspace are called

Integral operators. An important property of Integral operators
that Grothendieck established is the factorization property:
A continuous operator S : A —> B is integral if and only if

S admits a factorization:

A S > B J S FE3
A
T Q
v
- I
L (Q,v) > Ll (Q,v)

where Vv 1is a finite regular Borel measure on some compact



11

o

%%
> B : is the natural embedding,

Hausdorff space Q, J : B

I : LOQ,v) > Ll(Q,v) is the natural inclusion and

ok
T : A > B are bounded linear

> L°(2,v) and Q: LY@,v)
operators. |

An interesting result that shows the relationship between
Integral operators énd p-absolutely summing operators is the

following:

Theorem 1.2.3.
If v is a o-finite measure on a measure space X; then
every l-absolutely summing operator S in L(Lw(X,v),B) or

in L(A,Lw(X,v)) is integral, for any Banach space A and B.

A proof of this theorem can be found in [20] corollary 2,

page 263.
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CHAPTER ITI

The purpose of this chapter is to study the multiplier

algebra of the space 22 & 12 and the Hankel multipliers of
22(2) g 22(2). In section 2.1 we give the definition of the
multiplier algebra of a Banach space of functions, A, defined
on some measurable space (X,v). With the aid of certain con-
ditions on A, we prove the completeness of the multiplier

algebra of A under a suitable topology. Section 2.2 contains
' 2 2

the characterization of the multiplier algebra of & ® % 5
and in section 2.3 we apply the results of section 2.2, to

characterize the Hankel multipliers of 22(2) ® ZZ(Z).

2.1. The Algebra of Multipliers.

The concept of multipliers of a Banach algebra was intro-
duced by Helgason [ 9§ ] as follows: Let A be a semisimple
Banach algebra considered as an algebra of continuous functions
over its maximal ideal'space A(A). Then by a multiplier of A
is meant a function over A(A) such that gA € A. However,

in our present work we introduce the following

Definition 2.1.1.

Let (X,v) be a measure space and A be a Banach space
of complex valued functions on X such that for each x € X
there exists an f ¢ A which does not vanish at . By a

multiplier of A we mean a complex valued function ¢ defined
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on X, such that ¢+f € A for every f € A,. where
(¢-f)(x)v= $(x)f(x). The set of all multipliers of A is
called the multiplier algebra of A and it will be denoted
by M(A).

Let $q and ¢2 be any two multiplieré of A, thén one
can easily check that:

(i) a¢l + b¢2 e M(A) for all a and b in C.

(ii) $3 b, € MCA).

Hence M(A) 1is a vector space of funétions over X. Every

element ¢ € M(A) can be considered as an operator:

6 : A > A, ¢(f) = ¢-Ff.

Setting H¢HM = u??p lu¢(f)uA, the operator norm of ¢, we
S R
A

then prove

Lemma 2.1.1.
For any Banach space, A, of functions on a measure space

(X,v), M(A) is a Banach space under the operator norm.

Proof.
We need only prove the completeness of M(A). Let (¢a)

be a Cauchy net in M(A). That is

lim l¢, = ¢.0, = O.
o,g ¢ BM
Let f be any element in A. The previous identity implies

Lim ¢ (£f) - ¢, (X}, = O.
o, B o 8 A



1y

from which we deduce that (¢u(f)) is a Cauchy net in A.
The completeness of A implies the convergence of ¢a(f)'

Let g = lﬁn¢a(f). Consider the following mapping:
a

¢ : A > A

o(£f) =1lim ¢a(f)' =g,
o

Since each ¢ is a linear mapping, ¢ is also linear. We
claim that ¢ e M(E). For each x' € X, choose an f € A such

that f(x) #'0. Define a function ¢ on X as follows:

- 9(E)Y(x) ‘
w(X)-W ———————————————————— 1.

f
For any f ¢ A, ¢L )=¢a-f for all o. Hence for h e A,

hoe ¢, (£) = £+ ¢ (h) —mmmmmmommmmme 2 .

which implies that
¢a(f) ¢a(h)

£ - h

Hence ¢ 1is independent of the choice of f. Furthermore if
f(x) = 0 for some x in X, then choose an h € A such that
h(x) # 0. Then relation 2 implies that ¢(f) = 0; from

this and from relation 1 we obtain
() (x) = Y(x)£(x),

for all f ¢ A and for all x € X. Hence ¢(f) = PY+f e A when-
ever f € A. This implies that ¢ e M(A). Since (¢,) 1is a

Cauchy net in M(A) and ¢a(f)

- ¢(f) for every f € A,

it follows that $ > ¢ 1in M(A). This completes the proof

o



15

of the lemma.

If the Banach space of functions A contains the
constant function‘l, then for any ¢ ¢ M(A), one has
¢+l = ¢ ¢ A. Hence M(A) S A. Now, if we take A to be
LZ(T), where T is the unit circle with the Lebesgue measure,
then, as it is well known, M(LZ(T)) = L”(T). A more interest-
ing example of M(A) is due to Vardpoulos [2F]: |

Let V(Z) = 27(2) ® 27(Z) and ¥(Z) be the set of all
functions defined on Z x Z with the following property:

o e V(z) if and only if for any finite set

F = Fy vaz € 7 x 7 we have

op = Plpur, € 2(F) € £7(F,) = V),

and the set {“¢F“V(F)} is uniformly bounded. The norm of ¢

in V(Z) is defined to be

1905 5y = SuPléply pys

where the supremum is taken over all finite subsets F = Fl x F
in Z x Z. Consider the Banach space CD(Z) é CU(Z)’ where
CO(Z) is the space of bounded funétiqns-over 7 that tend to
zero at «. Then M(A) can be identified isometrically to
Vz).

Since the constant function 1 = 1€ 1 € V(Z), then
M(V(z)) € V(Z). But on the other hand, as one can easily see,

V(z) € M(V(2)). Furthermore, for ¢ e V(Z)



1ol s Bolg = 1o « 1 8 g < lol,

Hence M(V(z)) is isometrically isomorphic to Vz).

16
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2.2. The Multiplier Algebra of 2% o 7.

Every element ¢ ¢ 2% is the kernel of a trace-

class operator in L(lz). One of many characterizations of

the trace-class operators is given in the following

Lemma 2.2.1.
Let S € L(lz). Then the following are equivalent:
(i) S is a trace-class operator

(1ii) There is a constant K such that

Y O1<S€E:),ns> < K,

551 3773

for every pair {&l,..., En} and {nl,..., nn} of finite

orthonormal systems in X

(iii) There is a constant C such that
sup|T(SeU) | = C,

where 1(SeU) is the trace of SeU, and the supremum is
taken over all operators U e L(22> such that WUl < 1. The
operator SoU 1is the composition of the two operators and not

the pointwise multiplication.

For a proof of this lemma one can consult the Book of
Ringrose [/8]), or Schatten [22], where an excellent account

on trace-class operators is given.
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In the following theorem, we see the relationship between

M2 o 12) and absolutely summing operators.

Theorem 2.2.1.

For a function ¢ e L2(N x N), the following are equi-
valent:

(i) ¢ € M(2? & 2?)

2

(ii) ¢-f g : 2 > 27 is 2-absolutely summing for all

foges”e 22,

Proof. (ii) - (i). Let u @ v be an arbitrary atom in 22 ® 12.
Since the linear span of the set of all atoms in 22 ® 22 is
dense in _22 ) £2, it is enough to prove that

b cudve 226 22, Let {€)5.+5 £} and {nj5..., n_} be

any pair of finite orthonormal systems in 22. Then:

(.
i
‘s

< ¢ru @ vI(E5),m >

co

n
= 7| ¢ (r,s) (u(rIv(s)Es (rIn;(s)]

)

j=1 r,s=1

n -] o .
= 7 (] u@Ei@) - ). ¢(r,s)visin:(s))]

j=1 . r=l J s=1 - J

n <o L
< ¥ 10T uee.e)|-sup| ¥ ¢i,s)v(sIn.(s)]|

j=1  r=1 I i s=:1 J

n ot ' 2 1/2 n 2 1/2
<} (sup| § ¢(i,s)v(sdn.(s)])?) (] l<u,€5>1%)  °

j:l i s=1 ] . j:l

by the Schwartz inequality. Since gl,..., gn are orthonormal:

n
I l<u,6:>]7 < jubl.
=1
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The function 18 v e &° 8'22, and thus (ii) implies that

o ~ 1Ov : L
is 2-absolutely summing. Hence

/2

2

n
L<C =+ lul, - sup (] |<nj,f>{2)
I£1,<1 =1

where C 1s a constant independent of n. The orthonormality

of Myseees M implies
L<C- ﬂuH2 . Hfﬂ2

£ C - "u"2'

An application of lemma 2.2.1 completes the proof of (ii) - (i).

Conversely (i) = (ii). Let K = {gl,..., En} be any finite

set of elements in ’22, and f @ g be an arbitrary atom in

22 @ 22. Then

i
1
~2

¢+ fog)(E)l>
321 .

n

I supl| § otr,s)f(mg(sdEs(s) |2
il r s=1

f1

For each £ € K there exists Pg such that

8

sup| § ¢(r,s)f(r)g(s)e(s)|? = | §(rg,8)E(r,dg(s)ECs) |2
r =1 s=1

8

g

The mapping X : K > N such that A(§) = r, need not be a

(1-1) mapping. Let Kiseons Kk be a partition of K such that

A(Kl) = Pyseees A(Kk) ='rk. Considering ¢ as an infinite
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matrix, we set ¢ to be an infinite matrix obtained from ¢

th . th .
1 1 times ,..., rk row nk »tlmes,

where Nys.-., N are the cardinalities of Kl"”’ Kk. By

by repeating the row n

lemma 3.1.1 in Chapter III of this thesis, the function

~

Y e M(,Q,2 ® 22) and HWHM = H¢HM. Since relabelling the indices
of the eléments of K does not change the value of L, we can
assume that Pl = 1, r2 = n

Hence we can write

+l,0.., P = D, + *** + n

k l +l.

1 k-1

0

n
Ls § 11 w<j,s>f(rj)g<s)ejcs)|2.
j=1 s=1 s

Further, since f e lw, we can take f to be the constant

function 1. Define the function & on N x N as follows:

Ej (m) if j £ n
E(j,m) = :
0 if j > n.
_ 92 A 9 , 2 2 .2 i ‘
Clearly & € 47 ® 2 and so Y& € L° ® 2°., One now has

L < n(wog)(g)ug
2 2
< lghy » y-£l .
2 L(22)
From theorem 1.1.1 (iv) we have
lpegl = sup|<y-&,F>| ,
L) T

2 A 2

where the supremum is taken over all F e & & % such that

HFHTP < 1. Here "F“Tr denotes the norm of F in &° @ 22. But
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|<y-&,F>|

= »l<€>‘p'F>[
< €l iy -Fi
L(22) . Tr
< Il “Nob, ~IFE_ .
L(g?y M T
Hence we conclude
n o
Los lghl-lglZe sup I | ] £(j,8)h(s) |2
Hh"251 j=1 s=1
n
< Hg"%t"¢"§~ sup ) |<£-,h>|2.
' Ihl =1 351 -

This completes the proof of the theoren.

Let &Y
n

"be the n-~dimensional space of r-summable
sequences. Then as a corollary to the previous theorem we have

the following

Theorem 2.2.2.
HeZ & 22y < M(2” © 22) for all n e N.
n N n n

~

Proof. Let ¢ € M(Qi e li) and f & g be any atom in R: é Ri
Set ¢(r,s) = f(r)g(s) = 0 for all r,s > n. Then ¢ e 22 @ 92
and f 8 g ¢ 27e22. By theorem 2.2.1, the mapping

2

pf®g : 2 > 2% is 2-absolutely summing. Hence, theorem

1.2.2 implies that ¢+f@g : &2

>2" is l-absolutely summing.

. . . . . + +
Since ¢-f € g has support which is contained in Zn x Zn’ we

have

¢f@g : 2 > En

is l-absolutely summing. Then it follows from theorem 1.2.3,
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v
that ¢-feg ¢ (&1 @2), the dual of zlezz

1 2

However, the

n
spaces &% and 2 are finite dimensional, which implies

o0

V \J ~
(li ] zﬁ)" = (2@ 22), [22]. Since f ® g 1is an arbitrary

n n
atom in 2: ® Qi, and the linear span of the atoms is dense in
Q:ielg (actually it is equal to 2: 2] 23 since the space is

finite dimensional) we obtain ¢ e M(Z: a ﬂﬁ). This completes

the proof of the theorem.

Let ¢ € M(zi @ Rﬁ) for all n and f ® g be any atom
in " e £2. Define the following function:
(f & g)(r,s) if r,s < n
(fn e gn)(r,s) =

0 ~if r,s > n

. w -~ 2 ) ' : . .
Then fn ® g, € Zn ® ln’ and fn e g, > f @ g pointwise and

o A 2*_ w 2
anllOo Ilgnll2 < Ilfllc0 Hgﬂz. If f e (2 & L) = L(Z 2£7) and
IFIl < 1, then we have

. (o)
|<¢p-feg,F>| = | 7} ¢ (r,s)E(r)g(s)F(r,s) |
r,s=1
n -
1im | § ¢(r,s)f_(r)g (s)F_(r,s)]
n r,s=1 n n n’ l
where Fn(r,s) = F(r,s) 1if r,s < n and it is equal to zero
: c % @
otherwise. Since Fn € (zn e Rg) and ¢ € M(z ) 22),
¢F e (l: e lg)x. Hence h (s) = Z ¢ (r, s)F (r;s)f (r) e 22 for all

IN

neN, and |Uh I, = Ioly-If I, < "¢"u Ifl_. Thus
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n

lim| § g _(s)h_(s)]
n ls=l n n

u

|<¢-f @g,F>|

A

limlg_I,+ln |

n 2

A}

IIgII2-|Ih||2

1

by the Schwartz inequélity and the Lebesgue dominated con-
vergence theorem. Hence M(z: 8 lﬁ) c M(2" @ 22) for all n.
2y

Similarly one can prove M(lﬁ <] zi) < M(JL2 e 2 for all n.

This argument proves the following

Theorem 2.2.2!
e e 22y €M™ o 19

We further prove the other inclusion.

" Theorem 2.2.3.
M2 @ 22y = Me™ 8 122y,
Remark. The isomorphism here is not an isometry but rather a

‘norm equivalence.

Proof. From the argument used to prove theorem 2.2.2', it is
enough to prove that M(Q: 8 zi) E-M(li 8 zﬁ) for all n € N.

Let ¢ be any element in M(Qz e 2ﬁ) and ¢ an arbitrary

) . ~ 2.% . .
element in (zn ® ln) = L(zg). For u € zg, consider:
£(1) = (=) () (i)
n

1"
o~

o (i, JIyi,jdu(l)

Wi, 5)6(i,35)+(1 @ ud(i,j).

n
e~
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~

Since ¢ e M(L) ® zi), then ¢ » 1@ ue 2”@ ai. If

¢ + 1 oeu= ) f ©g¢g

is a representation of ¢ <« 1 & u in 2: ] 25, then

n [e2]
(i) DR ZE TSP £ (g (3)

3=1 r=1

© n
Iof () - ) w(d,g (3.
r=1 r j:]_ r

n
. . .. 2 . 2
jzl $(i,3)g,(j) dis in & since g_e 20

and Y e L(zﬁ). Furthermore, Ilhrll2 < H¢ﬂTr°HgPN2. Hence

i

The function hr(i)

L), < | £ (1)n ()
2 r=1 T b 2

[+

< ) Hfrllw-llhrll2

< z Hfrhw~ﬂgr32-ﬂwﬂTrf
r=1 . , :
2 8 2% . .
n ® zn) s from which we obtain

This implies that ¢ « ¥ € (2
~ F3 » ~ !
¢ e M(zﬁ s zﬁ) - M(zﬁ ® zﬁ). This completes the proof of the

theorem,

We are now half the way from the full characterization of

M(22 e 12). Using theorem 2.2.3, we prove

Theorem 2.2.4,.
The following are equivalent:

(i) ¢ ¢ M(2™ 8 22)
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1 > 2% is 2-absolutely summing operator

(ii) ¢f®@g : &

for all f e g ¢ Lz @ L.

Proof. (ii) - (i). Let f € g be any atom in L7 8 1", Since

pef@g : .Ql

> 2% is 2-absolutely summiﬁg operator, then

theorem 1.2.2 implies that ¢+f@ g : gt

> 27 is l-absolutely
summing. Hence by theorem 1.2.3, ¢ « f @ g e-L(ll,Zm) is an |
integral operator. However, from the definition of intergral
operators, we have ¢ « £ @ g «¢ (21 é El)* = V. Hence for every
atom f @ g € L2 8 2° we have ¢ « £ ® g € V. Since the linear |
span of the atoms of 27 8 27 is dense in &° 5 2m, it follows
that for every F e 8° é L% ¢ « F € V.

Now let @ e V. If wn z ¢| + +> then from the definition
o Zn*7n

of V, section 2.1, we have wn € & (Z;) e lw(Zn), and hence

o Y e V. Further

IA

lpop 4 _ < Nol-lw_|
n'g n V(Z;)

YR P

A

where H¢ll is the norm of ¢ as an operator from 27 e 2%

~ + 0 + o (-] + @ 2 -]
1 = = ® . 3 L
into V and V(Zn) 2 (Zn) e 2 (Zn) ln 2n But this is
the sufficient condition (and also necessary) for ¢+ to be
in V. Thus b € M(V) = V as in section 2.1. Since

¢n = ¢| + + € 2= é ¥ for all n € N, 1t follows that

¢ € M(E: é zﬁ) for all n € N. Then, as in the proof of theorem
2.2.2' ¢ € MQR™ 8 22y,

Conversely (i) + (ii). Let ¢ e M(2” ® 22) and f @ g be any
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atom in 2~ @ 2°. Let K = {51,..., £n} be any finite set of
1

©

elements in &~. Then

(m
i

-

]

2

n

Y} sup]| ¥ ¢(r,s)f(r)g(s)€j(s)|2.

1($+£ @ g)E2
1 J

1]

j=1 r s=1

For each £ ¢ K, there exists rg e N such that

T 6(r,s)E(r)g(s)E(s) |2 = | ¢(rj,s)f(r)g(s)£(s)|2.
: 1 | |

sup |
r 1 s=

S

The mapping A : K > N such that A(&) = re need not be a

s Kk be a partition of K such that

Considering ¢ as an infinite

(1-1) mapping. Let Ki,...

A(Kl) = Tyseees A(Kk) = r

K *
matrix, we set Y to be a matrix obtained from ¢ by repeating
the rth row n, times ,..., the r;h POW Ny times, where
nys..., N are the cardinalities of Kl,..., Kk‘ Since, by

theorem 2.2.3, M e 22) = M(z2 @ 22), an application of lemma
3.1.1 in Chapter III of this thesis implies that ¢ e M(L" e 22)
and Iyl =< c'ﬂ¢ﬂm, for some constant c¢. Since reiabélling

the indices of the elements of K does not change the value of

L, we assume that ry = 1, r, = ntl,..., T T Dy + eee + nk—l+l"

Hence we write

P03, Elrg dgl)E () |7

" n o
Ls I |1
= =] 3

1l s

Further, we can take f +to be the constant function 1. Since

G j Dbelongs to a finite set of N, it follows that
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2), where £ 1is the function

Ej(s) if 'j n
£(j,s) = {

0 if 3 > n.

P o £ e L(2T,8

3
IA

This implies that

n

T w(i,s)e(s)Ed,s) |2
j=1

o
A

A

TRIENH

bgl2elyeci? ,

1A

where H¢°€H is the norm of ¢+ as an element in

Let F be any element in the unit ball of 27 8 g

2

27

L(2”, 2%y,

Then, if

gl denotes the norm of & as an element in L(Zm,lz), we

have _
|<Ysg,F>| = |<E,ysF>|
< lgl ~llw-Flllm;22
< Igh-lyly,
< csloly, -lel.

Since F was arbitrary in the unit ball of L8 2

follows

Iyl < c~lglhy el .

Fihally we obtain

2

b

it
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L < Igh? -cz-nMi(-ngn?
. o
s cZaglZenonl - sup (] |<€s,n>]%),
Iht_<1 j=1
1 ) o

from which it follows that o « £ @ g : 2 > & is 2-
absolutely summing operator. This completes the proof of the

theorem.

As a corollary to the previous theorem we obtain the

following

Theorem 2.2.5.
M2 8 2%y = 7.

Proof. Let ¢ e M(2Z & £2). Theorem 2.2.3 implies that

> o]
> R

d € M(e” é 22). Hence, by theorem 2.2.4, ¢ +f & g : 21

is 2-absolutely summing operator. The proof of (ii) -+ (i) of

vtheorem 2.2.4, then implies that ¢ e MC(V) = V. It follows that

M(22 @ 22) = 7. On the other hand, if ¢ ¢ V, then

'¢n = ¢|Z+xZ+ € M(Zﬁ % 25). Hence V C‘M(JL2 P lz), and the
n “n

proof is complete.

Remark. Theorem 2.2.5 is implicit in the work of Benﬁett [31],
although he does not state it explicitly;' This work and that
of Bennett are independent.

We have to remark that the isoﬁorphism in theorem 2.2.5 is

not an isometry but a norm equivalence. That is
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Holy, = "MV < aollq)lIM, o > 1.

Further, the same results are valid for the space 22(2) A lz(z). |
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2.3. The Hankel Multipliers of QZ(Z) ® 22(2).

Let f e 27(2)

and ¢ be a function on

Z x Z defined

by 6(r,s) = £(r+s). If ¢ e M(22(2) ® 22(2)), then ¢ will

be called a Hankel multiplier of 22

(z) © 22(z). It is the

purpose of this section to characterize the Hankel multipliers

of 22(z) ® 22(2).

Let M(T) denote the space of

bounded Borel measures on T. Set

tions f ¢ Rm(Z) such that f = v

Theorem 2.3.1.

Let ¢ € 2°(Z x Z) be defined

some f e £7(Z) then the following

(1) ¢ « M2%2) 6 222)).

(ii) £ e B(Z).

Furthermore, Ifl

B(z) = lToly-

Proof. (ii) » (i). Let Vv be any

well known, [J0 ], that there exists

measures in- M(T) such that:

vn(j) —> v(j) for all j, and anH

all complex valued regular
B(Z) to be the set of func-

for some vy € T.

by: ¢(r,s) = f(r+s) for

are equivalent:

element in M(T). It is

a sequence of discrete

vl

M) = "™lvery-
For any discrete measure Vv, we have
0 R -] . + ~ -]
v= Tags, V) = T o™, and Mviggy = Iofos] <,
j=1 < 7] j=1 j=1
where ﬁt’ is the unit mass at the point tj' Now, let

J
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<:> ¢(r,s) = G(r+s) = f(r+s). Then
6(r,s) = 2 o e‘%(r+s)ﬁ
j=1
- 2 ) e—lrt e—lsq
j=1

Setting fj(r) = aj e 'Y apa gj(s) = e-lstj; we see that
¢ € 27(2) @ 2¥(2). Further

2]

161, = 16055y < j§l|“j| = 15lpezy-

For ¢(r,s) = f(r+s), where f is any function in B(Z),
we have ¢(r,s) =lim.fn(r+s),' where fn(r+s) = vn(r+s) for some
n ,

discrete measure v and "fn"B(Z) < "fuB(ZY Hence the function
¢ is the pointwise limit of a uniformly bounded sequence of
_elements in &= @ 7. It follows, [29], that ¢ € V(z) and
. . 2 Ny}
||¢|Iv(2)s “f"B(Z)' Theorem 2.2.5 implies that ¢ € M(ﬁ(z)el (Z»

Further ¢l < 1olg,S 1€z -
> 22(Z x Z) be the

Conversely (i) » (ii). Let F : 22(2)

mapping F(u)(r,s) = u(r+s); and E be the set of functions ¢

in M(l&(Z) ® ZL(Z)) such that ¢ = F(u) for some u in
2°(Z). Theorem 2.2.5 implies that E S WZ)-Hence if
~ n k -
¢, = ¢ly wpz 5 then ¢ e £7(Z ) ® 2°(Z). Let ] f;€ g,
nn _ 1=1

be a representation of ¢ in Rw(Zn) e lm(Zn). Then

n

¢n(r,s) (F(u))n(r,s)v

3]

k
.Z fi(r)'gi(S)

@ib ) 1=1
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) £, (a)g; (B) ——===-m 4

i
HB4W.

i
for all o and # 1in Z such that o+ = r+s. TFor each n e N,

define a mapping Pn on E as follows:

P : E > 17(2),

n

Pn(¢) = fi ® g

k
1
2n+l g

i=1
The funection Pn(¢)» is independent of. the representation of $..>

for

. k
.1 .
P ($)(k) = oI iEl(fi % g;) (k)
M S T
o ( f.o(k=-Iv.(iN
2ntl j=-n i=1 % i
1 E ‘ o
= . ¢ _(k-j,3).
2n+l 58 0

Let A(Z) be the space £°(Z) # 22(2) which is, by the
Plancherel theorem, the same space as. FLl(T), the Fourier
transforms of ‘Ll(T). Then Pn(¢) € A(Z) € B(Z). Further, if
[ denétes the norm in Rz(Zn) ® RZ(Zn) and 1, is the

r n
characteristic function of Zn’ then

T - 1ol

"Pn(¢)"A(Z) <
< E%?I s oy, 1Zne 1Zn||Tr
< 2i+1 . "¢n"M°“lZn9 1zn5fr
< 1ol
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On the other hand, since ¢ = F(u),

P (k) = P (F(u)) (k)

1 n
= gneT (L $atk-3eD)
j=-n

1 n
= m 2 U.(k)

j=-n

= u(k).

Hence Pn(F(u)) > u pointwise. Since (Pn(F(u))):=l is a
uniformly bounded sequence in A(Z) which converges pointwise
to u, we obtain that u € B(Z). Furthermore, relation « #

implies that

<

Iulg gy < N6l

This completes the proof of the theoremn.

A similar result was proved by Varopoulos [ 28], where he
proved the isometry of B(Z) and its image under F 1in the

‘tensor algebra norm:

As an application of theorem 2.3.1, we estimate the multi-
plier norm of the matrix ¢, as an element in M(Z2(Z) ® 22(2)),

where
1 if 0 < i+j < n
p(i,J) =

0 otherwise.

Lemma 2.3.1.

IHMM ~ Celog n,
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where C 1s a constant independent oi n.
Proof. Let f be a function defined on Z as follows:

1 if 0 < i < n
£(i) = '
0 otherwise

Clearly $(i,j) = f(i+j). Since f has a finite support in Z,
then f € B(Z). Let f = v for some Vv € M(T). By the Riesz~

representation theorem, there exists a continuous linear func-

tional S : C(T) > ¢ such that S(h) = j hdv . and

T
ish = "VHM(T)’ where
ISi = sup IS 4 o ey
h Ihi
It follows from theorem 2.3.1 that
Hw"m = "f"B(Z) = "V"M(T) = [Isl.

Hence it is enough to estimate the norm of S. Further,since
the trigonometric polynomials are dense in C(T) under the
supremum norm, it is enough to take h, in the definition of

IS, to be a trigonometric polynomial. Setting

v(r) = J elrt dv(t) = f(r), we see that

T
1 if 0 < r £ n
s(eltty -
0 ° otherwise.
X i34 |
Thus if h(t) = § a. e 3%, then
j=-k
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O if k > n

L

13

S(h) =

if k < n.

1%
R
[ 1

Consider the following function in C(T):

irt

(vl
~~
rt
N
it

1 ~1
o

1

n
cos rt + i } sin rt
1 r=1

i
it o~

r

1

l —
(Dn— 7)(t) + Dn(t),

where D_ is the Dirichlet kernel and ﬁg is the conjugate
kernel to Dn' A classical result in harmonic analysis, [Z 1,

asserts that "Dnﬂ ~ a log n and.'"ﬁgﬂl ~ log n, where | N

1

denotes the norm in L¥(T). Hence Hﬁnlll =~ c log n for some
constant ¢ independent of n. Next we observe that

n ~
Y o. = (D_ & n)(0),

from which we conclude

n
ISCh)| =] } o.l
j=1
= [(D * n)(0)]
D . !
< IIDnlll bl
< ¢ log n + Ihi_.
Hence [SI = supl§£hll-< ¢ log n. This completes the proof of

Y
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the lemma.

The rest of this section is devoted to the study of the
Hankel multipliers when 2 is replaced by N. Let f € 22 ()

such that for each n ¢ N, f| has a representation

+
X “n
£ +(r) = ¥ ui(s)vi(r—s), 0 £ s <r. Set
Z 1=1 }
n
k
o(f,n) = inf{ } Bu. b _iv.l_},
i=1 * 1

where the infimum is taken over all the representations of

f|] ,+ Now we introduce the following
Z .

n

Definition 2.3.1.

A function f ¢ 2°(N) will be called a tensorial function,.

if for each n e N, f| . has a representation

Zn

ne~-1x

£l (r) =

Z i
n

) ui(s)vi(r-s), 0 £ s £r, such that (a(f,n)):=l

is a bounded sequence. Let J be the space of all tensorial
functions. We introduce a norm on J as follows

HfHJ = sup a(f,n).
n

If v = Zc

jat is any discrete measure on T, such that
j=1 ]
iIvi = § lc.] < », then
3=1 ] .
~ bog 3 .
Vr) = ¥ . 'Y
j=1 -

CcC. e

1stj el(P-S)tj.
1 J |

I
I~ 8

i
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"N ~>1%

Furthermore U¢| I, <

Z i

llluillw-llvill°° < ufHJ. Hence for each

neN, ¢| ; € M(zg e Zg). From which we obtain that
n

¢ |. e 2”@ 2”, and f#¢| ¥~ < Ifl_, This implies that
7t 7t v J
n n
o e V(N). Another application of theorem 2.2.5 yields

¢ e M(L”™ @ 22). This completes the proof of the theorem.

The previous theorem shows that there exists.a (1-1) mapping
F, between the space J and a subspace of M(SL2 ® 22). Let
A(N) denote the space 22 22, which is simply the space of
Fourier transforms of Li(T) = {f € L;(T)|%(n) = 0, n < 0}. We,

then, prove the following

Theorem 2.3.3.
> 2%(N x N), such that F(f)(r,s)= f(r+s).

Consider T : 2>

If F(f) e M(22 @ 22), then £ ¢ M(AN)).

Proof. Let F(f) € M(R,2 é 22). Theorem 2.3.2 implies that f e J.

From the definition of J and theorem 2.2.5, it is enough to take
[e <]

f of the form f£f(r) = } ui(s)vi(r—s), 0 <s <YV, and
i=1

‘21 bu b elv.B <o, If ¢y =g#h is an atom in A(N), then

1=

[}
~

r
u; (8)vy(r=8))C I g(A)h(xr-1))
A=0
(g(Mh(r-2) UV, (r=1))
v 1=1 .

(-4
I (1} g(Mu; (X)) *h(r=2)v, (r=1))
i=1 A=0

(f9)(r)

]
’-l.

8 e~ ut~18
,_l

>
o

n

i§l<gi *# h.)(r),
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where g; = 8 * u; and hi = h - v Furthermore

LEyl, gy < izlugiu ,tIhil,

s'Hgﬂ2-uhﬂ2-.zlﬂuiﬂw-ﬂviﬂm.
i=

Hence f +« 3 € A(N). Since ¢ was an'arbitrary atom in 22 % g2

>

it follows that f e M(A(N)). This completes the proof of the

theorem.
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CHAPTER III

This chapter is concerned with the relationship between
the multiplier algebra of certain function spaces and certain
operators on some Hilbert space. Section 3.1, is devoted to
the study of the multiplier algebra of fuhction spaces which
are defined on finite measure spaces, and their relation to
normal contractions defined on some Hilbert space. The re-
lationship between spectral measures and multiplier algebra
of certain function spaces is the object of section 3.2. The
.results of section 3.2 are used, in section 3.3, to study the
multiplier algebra of function spaces which are defined on

infinite compact measure spaces.-

3.1. Multipliers and Normal Contractions

Generally, we denote by H a complex Hilbert space.

The set D = {Z|Z ¢ C, |Z] < 1} will denote the unit disc and
C(D) is the space of continuous functions over D. By a normal
contraction on H we mean a linear operatér S : H~>H such
that SS* = s°S and USxl = Ixl for all x ¢ H, where S°

is the adjoint of S. Fix an n ¢ N, and let H be of dimen-
sion n. Since H 1is finite dimensional, any normal operator
on H has a setAof orthonormal eigen vectors which sﬁan H.

For any pair of normal contractions S and T on H

consider the bounded bilinear form
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F : C(D) x C(D) > L(H)

F((f,g)) = £(S)og(T).

Then, [ 241, there exists a bounded linear operator
F : c(D) ® C(D) —> L(H) such that the following diagram
commutes:

F
C(D) x C(D) ——> L(H)

st

c(D) ® (D)

where 1 1is the inclusion mapping; Hence, for any function

¢ in C(D) éC(D), we make sense of ¢(S,T) (since H is

finite dimensional ¢(S,T) makes sense for all bounded Borel
functions ¢ on (D x D).

Let E = {Al’..., An} and E2 = {nl,ooo’ nn} be al'ly

1
two sets of points in D. The sets E and E,, will be fixed

1
throughout the present section. Since H 1is finite dimensional,
one can find two normal contractions S and T on H whose
eigen values are the points of the sets E, and E, respective-

ly. Now, fix a function ¢ din C(D) @ C(D). If Z; is the

set {1,..., n}, then consider the function v,

> C

. +
Y+ 2 x Zn
w(i,j) = ¢(Ai,nj)’ l < i,js n.,

Then we prove the following theorem.
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b2

Theorem 3.1.1.

The following are equivalent:

(1) v e M(Rﬁ 8 2i) ;nd bl < 1.

(ii) B¢ (s,TOHk < 1, for any pair of normal contrac-

L(H)
tions S8 and T on H whose eigen values are the elements

of the sets E and E respectively.

1 2

Proof. (i) » (ii). Let u ® v be any atom in the unit ball

2 A 2 .. | 2 2
of % © & . Since ¢ € M(SLn e ln) and HwHM < 1, then
You @ v is in the unit ball of zi 8 zi. It follows from

lemma 2.2.1(iii) that
sup|tr((Yeu @ v)oU)| < 1,

where the supremum is taken over all operator§ U in the unit
ball of L(Ri), and 1tr((y+u @ v)oU) denotes the trace of

(¢*u @ v)oU. Hence the assumption implies

N
[

8t
| ) e, DulDvNUG,D) |
1,3=1
22 and for any
n ‘an or any

i

for any atom u ® v in the unit ball of zi

>

U in the wnit ball of L(%2).

Let S and T be any pair of normal contractions on H
whose eigenvalues are the elements of the sets Bl and E2
respectively. Again; since H is finite dimensional, then there

exists two sets of orthonormal vectors {el,..., en} and

IERREE fn} such that

Se:-L = Aie. and Tfj = n.f.



43

R | @ . - . ~
; Let "kglckgk h]< be a representation of ¢ in C(D) & (D),

n
and let e and f be any unit vector in H. If e = } ase.
" n v i=1 + *

and. f o= jglbjf., wherg a = (al"f" a) and b = (by,..., b )

. . 2
are unit vectors in Qn’ then we have

©0

<} ckgk(S)hk(T)f,e>|

|<¢(S,T)f,e>] =
| k=1
<1 I I -
= |< ¢, b.g (S)h (T)f., T a.e.>
k=1 j=1 X 37Kk gy itd
[ n n
=]< ) I cb.g (S)h (n)f., ) a.e.>
k=1 j=1 K ITRTTRIITYY 52 i |
n o
=| } a;b.<f.,e.> 7 c g (A.)h (n.)
i,5=1 i73 3’71 k=1 k®k177k M)

|i §—1 ¢(Ai,nj)aibj<fj,ei>[
3=

Set u(i) = a; v(3i) = bj’ and U(j,1i) = <fj,ei>. Then u € v
is an atom in the unit ball of 2i 5 li. Further, since H and

Eﬁ are isometrically isomorphic, and each of the sets {el,...,en}

and {fl,..., fn} is an orthonormal basis of H, +then U 1is a

2

unitary operator on Qn. From this we deduce

!
N1

|<¢(S,T)f,e>| = P(i,3)u(iIvEiIUCG,1) |

IA
<
=

Since this is true for all unit vectors e and f in H, it

‘:; follows that H¢(S,T)HL(H) < 1, which proves (ii).
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Conversely (ii) -+ (i). Let u ® v. be any atom of unit norm in
li @ Ri, and U be any unitary operator on zi. The identifi-

cation of H and li, enables us to choose two sets of vectors
{el,..., en} and {fl,...,_fn}, each of which is an orthonormal
basis of H such that U(j,i) = <fj,ei>. Define linear operators

S and T on H as follows:

n’ n '
T( )} b.f.) ) binf

1 33 j=lj 3"

Then S and T are two normal contractions on H whose eigen

values are the elements of the sets El and E2 respectively

and '{el,..., en}, {fl,..., fn} are the corresponding eigen
n - . n .
vectors. Set e = u(i)ei and f = ] v(j)f(j), so e and
i=1 j=1

f are unit vectors in ki. Then

=
1

n .
| 1 v, DuldvNU,1) ]
i,j=1

n
|i §:l¢(xi,nj)u(i>v(j><fj,ei>|

"

|<¢(S,T)E,e>|

A

1

by assumption. Since u ® v 1is an arbitrary atom in the unit
ball of %i ® li, ~and as it is well known, L£f8], the unit ball of
L(Ri) is just the closed convex hull of the set of unitary operators

on 22, we obtain that ¥ e M(2%2  22) and Iyl, < 1. This
n n n M

completes the proof of the theorem.-
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Let ¢ be a polynomial in two variables defined on D x D.

Then one can have a representation of ¢ in C(D) @ (D) of the

form
n _
¢(Zl’22) _Z fi(zl)gi(zz),
1=1
for some n e N. Let If.h, = £f;(3,) and ngﬁm = gj(nj) for
1 £1i,j < n. Define a function ¢ on Z; x Z; by
Y(i,j) = ¢(Ai,nj). In Chapter II, we proved that

ue? o 2%y is isomorphic (up. to norm equivalence) to V. 1t
follows that M(li ] zi) = 2: 8 2: (up to norm equivalence).
Then one has

rot, < ﬂwuz““ w S Hol < Cl-ﬁwﬂ wr 0 S ColWRy.

N c(D)&(D) Y

n n n

These remarks, together with theorem 3.1.1, impiy the following

Theorem 3.1.2.
Let ¢ be a polynomial in two variables defined on D x D.

CIf h¢(S,TI < 1 for all pair of normal contractions on the

L(H)
Hilbert space H, then there exists a constant C such that

telepyeny = €
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3.2 Multipliers and Spectral Measures on Finite Measure Spaces

We start bd recalling the definition of spectral measures.
Let X be a set and F be a o-algebra of subsets of X. Given

a complex Hilbert space H, then a mapping

> L(H)

is called a spectral measure on X if the range of P is con-

tained in the set of projections in L(H) and the set function

n o F
X

> €

p(E) = <P(E)x,x>

X
is a measure on X for all x ¢ H. Let us adopt the convention
that P(X) = I, the identity operator on H. An excellent
account on spectral measures is given in the book of Berberian

Lyl.

Now take the set X +to be Z {1,2y..., n}y, and F +to

O+ 8+

be the family of all subsets of Z_. Then we prove the following

Theorem 3.2.1.

The following are equivalent:

. 2 45 ,2
(1) ¢ e M(&Z ® 2°) and ¢l s 1.
n
(ii) 0} ¢(i,3)P(L)IQUII < 1 for every pair of (not
i,j=1 L(H)
necessarily commuting) spectral measures P, Q on Z;.

Proof. (i) » (ii). For a start, let us fix a complex Hilbert

space H. Let P and Q De any pair of spectral measures on
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Z; ~with values in L(H). Set P(i)H = AiA and Q(j)H = Bj’
1 s<i,j <n. Since {P(1),..., P(n)} and {Q(1),.vvy QCn)}
are two sets of orthogonal projections in L(H), then

{P(1)H,..., P(n)H} and k{Q(l)H,..., Q(n)H} are two sets of

closed orthogonal subspaces in H. Hence

H

1

A1 + e ¢ An

H = B1 + **° ¢+ Bn'

We call such decompositions of H, the P~decomposition and
the Q-decomposition respectively. Let a and b be any two
vectors in the unit ball of H. Let P(i)a = a;, and Q(j)b = b..

]

Then a = a, + ccc +al and b = bl toeee bn in the P-decompo-
sition and the Q-decomposition of H respectively. For the non-

zero components of a and b we write

a a

1 n
a = !!alll ||a1I + + Ilanll 'ﬁ?n-'r
bl bn
b = byl —=— + o+ + |Ib I ——— .
1 ﬂblﬂ n anﬂ
aj .
Set e; = T3, 1 if aj # 0 and e; = 0 if a, = 0. Slm;larly

:—-——j——-' = = 1 . o= -
fj Hbju if bj OA and fj 0 if bJ 0. Then the non

zero elements of {el,..., en} and {fl,..., fn} form two sets

of orthonormal vectors in H. This implies that the matrix
F(i,]j) = <fi’ej> is a contraction on Qi.
Set u(i) = Hai“ and v(3) = Hij, then since a and b

~are unit vectors in H, then u @ v 1is an atom in the unit
2 e 22

ball of 2 .
: n n

If we notice that P(i)a :vu(i)ei and
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Q(3i)b = v(j)fj, then we obtain

n
| ] ¢(i,3)<Q(i)b,P(i)a>|
i,j=1

L

n
| ] et Dulvi<Es e ]

i,j=1
From (i) and lemma 2.2.1(iii) we conclude

L < 101,

< 1.

Since a and b were arbitrary elements in the unit ball of

H, we get | Z ¢(i,j)P(i)Q(j)ﬂL(H) < 1. This proves the
i,j=1 »

first half of the theorem.

Conversely (ii) - (i). Let u ® v be any atom in the unit ball

of 25 @ lﬁ, and U be any unitary operator in L(zﬁ). Since
li can be identified to a subspace of dimension n 1in H,

then two sets, {el,..., en} and {fl""’ fn}, of orthonormal

vectors can be chosen in H such that U(i,j) = <fi,ej>. Set
n n '

x = ) ulide. and y = } v(3j)f.. The vectors x and y are
i=1 * j=1 J

in the unit ball of H. If we define

P(i)

Q(3)

Projection on the span of {ei}

Projection on the span of {fj},

then P(i)x = u(i)ei, Q(j)y = v(j)fj, and

¢(i,uld)Iv(IUG,1) |
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n
|1 $(i,3ulIvII<E, e, >
i,3=1 71

H

n
| T ¢(i,3)<Q(I)y,P(i)x>|
i,j:l

n
o ¢(i,3)PCL)QCI
i, j=1
< 1.

A

L(H)

Since u ® v is any atom in the unit ball of 2n e 25, and

since any contraction in L(Rﬁ) is the convex combination of
unitary operators in L(li) [181, it follows, from lemma 2.2.1

~

(iii) and the definition of the multiplier algebra of En e Zﬁ,

that ¢ ¢ M(Zi e lg) and B¢y < 1. This completes the proof

of the theorem.

Let x and y be any two vectors in H. Set P(i)x = X,

and Q(j)y = yj. Since P and Q are spectral measures on

+ : -
Z  then {Xl,..., xn} and {yl,..., yn} are two sets of ortho-
gonal elements. With this in mind, we can restate theorem

3.2.1 to read

Theorem 3.2.1"
The following are equivalent
. 2 5 .2
(1) ¢ € M(JLn e Qn) and H¢HM < 1.
n
(ii) | } ¢(i,j)<xi,y.>| < Ixl~liyl, for any pair of sets
' i,j=1 J _
{xl,..., xn} and {yl,..., yn} of orthogonal elements in H.

We obtain from the previous theorem the following
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: Corollarx 3.2.1

. 1y .1 2 502 ’
(1) 27 & & & M(R® e £°) and ﬂ¢HM < KG'“¢“£1;21’ where
KG is the Grothendieck constant.
.. 2, _ 2 0 238 .2 5 2
(11) L(L%) = (&% & &%) M(Lc @ 2°) and B¢IM < M“L(H)'

Proof. (i) Follows from an application of the Grothendieck in-
equality (or from the Littlewood inequality).

(ii) Let {Xl""’ Xn} and {yl,..., yn} be two sets of
orthogonal elements in H. Without loss of generality we can

assume that {xl,..., xn} and {yl,..., yn} span the same space,

n 2 n 9
and Y oix.° <1, T ly.l“ < 1. Let {el,..., e_} be an
i=1 ¢t j=1 n

orthonormal basis of the span of {xl,..., xn}} Assume

n n
X, = kzlxikek and y; = kglnjkek. Then
n
L = l z ¢(iaj)<xi53’j>|
1,31=1
n . n
- li’jzzl ¢(133) kgl Alknjk'.

Set fk(l) = Aik and gk(j) = Mgk Then the function

n
P(i,i) = ) £ (g (1)
k=1 k k _

n
is in & € &-, and uwnrr < kglufkuz.ugkuz < 1. Hence

n

| T e, DvE, D
1,]=1

=
]

A

ll.¢“L(H) ) “wnTr

s 1ol oy

This completes the proof of the corollary.
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: N> N and B : N > N be any two maps which
2

Let «
©

need not be (1-1). If ¢ ¢ M(2%2 & 22), then put ¢ = ¢ola @ B),

where

pelo @ BY(i,]) = ¢(a(i),B(J)).
Consider any two spectral measures P and Q bn N. Set

P' (k)

n

P({a”t0OD)
Qi .

1]

Q' ()

Clearly, P! and Q' are two spectral measures on N. The
previous remarks together with theorem 3.2.1 enable us to prove

the following

Lemma 3.2.1.

.b 21\» )
Let o and B be as above. If ¢ e M(L ® 22), then

the fuﬁction UV = ¢ o0 ®B € M(R,2 ® 22). Further H¢HM = lwlM.

Proof. Fixz any finite positive integer n and any two spectral

measures P and Q@ on N. Then

(i,3)P(1)Q(3)

]
e

e
“w

soo@ B)(i,3)P(idQ(3)

=
-

]
o~

1
e B B ST N = R e T

1]

¢ (a(i),B(3)P(1)Q(3)
1

1"

o

"
o [~ (8}

) oG, P e T oD
R’ .

7 ¢(k,2)P'(k)Q'(L).
k, %

~

O Since ¢ e M('il,2 e 22), then
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' ¢k, 2P (KIQ! (R (s 5 HOH .
This implies that

n
] GLIPEIQEN gy < 101
e L (1) Mo

from which we conclude that HwﬂM < H¢HM. On the other hand,

one can easily see that 11¢l,, < #yl,. This completes the proof.
M M

In the previous lemma, let us take B to be the identity
function on N, and the function o to be finitely many-to 1
on a finite set E < N, and (1-1) on the complement of E.
The function ¢ can be considered as an infinite matrix ob-

tained from ¢ by repeating finitely many rows finitely many

)

times. In this setting, lemma 3.2.1 reads that if ¢ ¢ M(R,2 e %
and ¢ is a matrix obtained from ¢ be repeating finitely many

rows finitely many times, then V¢ ¢ M(22 (7 22) and H¢HM = anM;

Let E be a finite set and u be a discrete measure on E.
Assume that wua) # 0 for all a € E. We write v for the
counting measure on E. Let S be an operator on LZ(E,u)
such that Sl =< 1. By theorem 1.1.1(ii), we have
Isl = sup|<S, u @ v>|, where the supremum is taken over all
atoms u ® v in the unit ball of LZ(E,u). Then

| T Sta,bluta)vdula)u(d)| s 1.
a,b

Set u(a) = ula)v/u(a) and v(b) = v(b)/u(b). Then u & v is in

the unit ball L2(E,v) 8 L2(E,v). This implies that

| ¥ SCa,b)/utayu(by - a(a)v(b)| = 1.

a,b
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From which we conclude that S(a,b) = S(a,b)/p(ajyulb) is in
the unit ball of L(LQ(E,V)). In a similar way one can show

that if S is in the unit ball of L(LQ(E,v)), then

§(a,b) = §£§lgl~—+- is the unit ball of. L(LZ(E,u)).
Yu(a)u(b)

Now, let ¢ e M(LZ(E,u) @ L2(E,1)) and 1¢h, s 1.
This is equivalent to |[<¢-u ® v, 8>| < 1 for all atoms u ® v
in the unit ball of LZ(E,u) ® LQ(E,p) and operators S in
the unitvball of L(LZ(B,u)). But this is the same as writing

| 1 ¢Ca,blulalv(bl)S(a,bIulalu(b)| < 1.
a,b

Let £ @ g be any atom in the unit ball of L2(E,v) ® L2(E,v)

and W be any operator in the unit ball of L(LZ(E,V)). Set

f(a) = ££il~, g(b)g 5£22-, and W(a,b) = ESELEL~__‘ Then
vula) RAIE)) ' e @y (d)
L= 7] ¢Ca,b)f(a)g(blWla,b) |

a,b

| T ¢¢a,b)Eargmdfica,biucaluld)|
a,b :

|<¢’F®g: V‘Dl
< 1. '
Hence ¢ ¢ M(L2(E,v) @ L2(E,v)) and 11, < 1. Similarly one

can prove that if ¢ € M(LZ(E,v) ® LQ(E,V)) and H¢HM <1

then ¢ ¢ M(Lz(E,u) ® LZ(E,u)) and H¢HM < 1.
We summarize this as

Theorem 3.2.2.

Let E be a finite set. Assume that v, and v, be any
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two discrete measures on E which are absolutely continuous
with respect to each other. Then the following are equivalent:
(1) ¢ e ML2(E,v;) ® L%(E,v;)) and hel, s 1,

(i1) ¢ e MCLZ(E,v,) o L2<E,v2>> and Il s 1.

As a corollary of theorem 3.2.1 together with theorem 3.2.2,

we have

Theorem 3.2.3.

Let E be a finite set. If I § ¢(a;b)P(a)Q(5)nL(H) <1
. a,b

for every pair of spectral measures on E, then
d € M(LQ(E,u) P L2(E,u)) and E¢HM < 1 for every discrete

measure Y on LE.-

So far, we considered multipliers of certain function
spaces with respect to a fixed measure. Before we consider non-
discrete measure spaces, we prove, in the following, a result

concerning the common multipliers of more than one space.

Theorem 3.2.4,
| Let X and Y be two finite sets. Then the following are
equivalent:
(1) ¢ e ML2x,2) @ L2(¥Y,n)) and I¢l, < 1 for every
pair of measures A and n on X and Y ©respectively.
(11) ¢ € LZ(X,A) 8 LZ(Y,n) and H¢HTrs 1 for every pair

of probability measures A and n on X and Y respectively.

Proof. (i) - (ii). Let A and n be any two probability

measures on X and Y respectivély. If 1©®1 1is the constant
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function with range {1}, then

©

Il @ 11 .= 1.
L2(nenn)

Now, ¢ = ¢ « 1 & 1, from which it follows

(e
"

ol "
L2 (e (n)

1

lg » 1 @ 1

L2

(A)8L2 ()

In

1o, » 11 @ 1l )
M L2(0eL? )

A

1o, < 1.

Conversely. (ii) » (i). Let A and 1n be any two measures
on X and Y respectively. Take u @ v to be any atom in
the unit ball of Lz(l) ) Lz(n) such that ﬂuﬂ2 =1 = Ivﬂé.
Set |

Clearly X and n are two probability measures on X and

Y ©respectively. From (ii) it follows that ¢ is in the unit
ball of L2(X) @ L2(R). Let } a; f, ® g, be a representation

. i
1=1
[e+]

Z la. < 1 Hf.l . <1
jz1 ’ 1120

<1 for all i. Now consider

of ¢ in Lz(i) @ Lz(ﬁ) such that

and lg.1
1,2,
" L(n)

¢ s uB®v = izl a;(f;-u) & (g;-v),

E. ~ul 2 - I Ifil21u|2 ax

1 Lz(l)
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Similarly we have lg; * vi < 1. Hence ¢ * u & v is

L2 (n)
in the unit ball of LZ(A) ® Lz(n). Since u ® v was an

arbitrary atom, and the convex span of the atoms is dense in
the unit ball of L2(A) ) L2(n), it follows that
¢ € M(Lz(k) @ L2(n)) and H¢HM < 1. This completes the proof

of the theorem.

Now, we consider the multiplier algebra of function
spaces defined on finite non-discrete measure spaces. We prove
a result that is similar to theorem 3.2.1, namely theorem 3.2.5.

Let E Dbe a finite set and Vv be a measure on E,.

n
Assume that E E are the atoms of v, so E = U E..

12+++s E
Take another set X which has the same cardinality as E, and
let F be a (1-1) onto mapping from X into E. Now we define
a discrete measure u on X such that f : (X,u) » (E,v) 1is

a measure preserving mapping. fhe mapping F induces an

operator

U : L2(E,v) & L2(E,v) > L2(X,1) @ L2X,u),

i

where U(P)(x,y) = (P ¢ F ® Fl(x,y) = v (F(x),F(y)).

Lema 3.2.2'
Let (E,v), (X,u) and U be as above. Then the operator

U 1is an isometry.

Proof. For ¢ ¢ L2(E,v) ® LQ(E,v), put ¢ = U(w). Let

| denote the norms in L2(E,v) @ L2(E,V)

u'rr(v)’ : “tr(u)
and L2(X,u) ® LQ(X,u) respectively. By definition we have
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Vel er (u)
fimum is taken over all representations of ¢ in

= inf{J ufinz-ngiuz, ¢ =} £, © gi},' where the in-
i i

LQ(X,p) e L2(X,u). As it is well known (and easy to prove),
the operator S : LQ(E,v) > LZ(X,p) ~defined by S(u) = u o F
is an isometry. It follows that to prove fhe lemma, it is
enough to show that every representation of ¢ in

12(x,1) @ L?(X,u) is of the form Z (u; » F) ®© (§i o F),

. 1 :
for some representation X us ® Vi of ¢ 1in LQ(E,v)e LQ(E;V).

Now, choose any representation of ¢ in LZ(X,u) e LZ(X,u),
say ¢ = Z fi ® g;. Since the operator S defined above is an
isometry,lone can write Lzéx,u) = S(Lz(E,v)) + (S(LQ(E;v)))L,
where 1 denotes the orthogonal complement. Consequenfly we

have

et
N

1 2

and g, = g; * g5,

where fi, gi e S(L2(E,v)) and fi, gg e (S(LZCE,v)))Y. Hence

-©
It

I'f; ©g;
1

1 1 1 2 2 1, . .2 2
E (7 @ gy) + (fy @ gi) + (f] ® g}) + (f7 @ gI)

n

1 1 1 2 2 1, 2. 2
E (£; ® gi) + g (fF; ® gi) + (f; @ g;) + (f] ® g{);

since the sum over 1i. is a finite sum. The operator U consi-
dered as a map from LZ(EXE,vxv) into LQ(XXX,uxu) is an
isometry. Consequently, since functions of finite rank are

dense in LQ(EXE,vxv), it follows that the span of the funec-
tions of the form .(a ¢ F) ® (b o F) is dense in U(LZ(EXE,vxv)).

Now consider
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1l 1 2
<a*F®boF, fy © g§> = <aeF, fi>+<beF, gi>
= <a°P,>f%>-0
1
= 0
. 2 2 i

Since g; € (U(L“(E))) . It follows that
£7 © g2 ¢ WW(ExE,vev))) Y. Similarly
f% ® g%, fi ® gi € (U(LZ(EXE,vxv)))L. But the function

1
6 = UGY) e UCLZ(EXE,vxv)), hence E(f%@ g§>+(f§egi>fr(f§@g§)5 0.
Therefore ¢ = ) fi ® g% = Z (ui ° F)'® (vi° F) for some
i i

)) u; @ v, in LZ(E,v) ® L2(E,v). This completes the proof

of the lemma.

As a corollary of the previous lemma we have

Lemma 3.2.3.
Let (E,v), (X,u), U Dbe as in lemma 3.2.2. If U(¢) ¢
MLZx,u) 8 L2(X,u) and IUC§IN, s 1, then |

¢ ¢ M(L2(E,v) & L%(E,v)) and 141, < 1.

Proof. Let ¢ be any element of LZ(B,v) & LQ(E,v), Lemma

3.2.2 implies that E¢'¢“Tr(v)= nU(¢~¢)ﬂ Since

Tr(u)’

-1

UCp * ¥) = (¢ » §) o (F @ F)

(¢ o F@&F) » (y oF ®F),

n

it follows that

1o+ Wlpeyy 100+ ) o F @Fl

Iu(g) = U

Tr ()
HU(¢)HM « BU (Y)Y

A

Telu).



59

Now by assumption we get H¢-pl s BUCP)H Another

()’
application of lemma 3.2.2 implies "¢'wﬂtr(v) < Byl

(V)

Tr(v)’
Hence ¢ e M(LZ(E,v) & L%(E,v)) and 1¢l, < 1. This completes

the proof.

One can state lemma 3.2.3 in a more general setting as

follows: Let (Al,vl), (Bl,ul) and (A2,v2), (B ) Dbe

22H2

finite measure spaces. Assume that a ¢ Al > A2 and

B By > B, be two (1-1) onto measure-preserving mappiﬁgs. Then
e 2 ~ 2

if (¢ o o @ B) ¢ M(L (Al,vl) ® L (Bl,ul)) and ¢ o a @ 3uM s 1,
2,u2)) and H¢RM < 1. In case of

discrete spaces, then the converse is also true. That is if

then ¢ ¢ M(LP(A,,v,) @ L2(B

6 ¢ MLEA,,v,) @ 12(B,,u,) and 16l <1 then (4 @B c

MH@2(a),v) 8 128 ,uy0) and 19 o (@ By

IA

1. This follows

from the fact that the operators

fea

L2 2
S, : L (Az,vz) + L (Al,v

1 Sl(f)

l)’

s, :'LQ(Bz,u2) N L2<Bl,ul>, s, (g)

ge°B

are onto. So if u @ v is an atom in L2(Al,vl) ® Lz(Bl,ul)
then there is f @ g, an atom in L2(A2,v2) & L2(B2,u2) such

that u @ v

(f ® g) o (0 & B).

Now, let E Dbe a finite set and v a finite measure with

atoms E E. If £ is a measurable function defined on

ERREE,
E, then f assumes one value on each Ei' Let E = {al,...,an}

~

where a; e E;, and put a discrete measure Vv on E such that

G(ai) = v(E;). Then we prove
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Theorem 3.2.5
The following are equivalent.

(i) ¢ e M(LYE,v) @ L2(E,v)) and Ity s 1

(ii) II [ ¢(a,b)dP(a)dQ(b)HL(H) £ 1 for every pair of
ExE
spectral measures on (E,v).
Proof. (i) ~» (ii) If f is an element of the unit ball of

L2(E,v) then |£¢a;)|? V(E;) < 1.Hence it is in the unit ball
i=l

of L2(§,5). One can then prove that ¢ e M(L2(E,v) o L2(§,5))
and H$HM < 1, where $(ai) = ¢(Ei). By theorem 3.2.2,

§ e MWHE,D 8 L%E, W) and 131, < 1, where ¥ is the
coﬁnting measure. Theorem 3.2.1, then implies that

2 $(a. LY )P(a )Q(a )l s 1 for every pair of spectral
b1 i L(H)
’

measures P and 5 on E. However,

ff¢(a b)dP(a)dQ(b)HL(H) = | g l¢(a >33 JP(E; JQ(E. )HL(H)

ExE

! z ¢(al,a )P(a )Q(a. )"L(H)
i,j=1

<1,
where P(ai) = P(Ei) and Q(aj) = Q(Ej).

Conversely (ii) - (i)

: ,
JI¢(a,b)dP(a)dQ(b) : 2 ¢(ai,aj)P(Ei)Q(Ej).

ExE
Hence (ii) implies that

bﬂl‘*

J (a b)dP(a)dQ(b)uL(H) <1 for every
xE
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~ ~

pair of spectral measures P and Q on E. Theorem 3.2.3
implies that 5 € M(L2(§53) é Lz(igG)) and H$HM < 1. Hence
¢ « MLWZ(E,v) & L2(E,v)) and Mgl < 1. This completes the

proof.

In the same way as in theorem 3.2.2, one can prove'that

A

¢ ¢ M(L?(E,v) & LZ(E,v)) and U¢l, < 1 implies that

A

¢ € M(Lz(E,u) o L2(E,u)) and H¢HM 1 for every measure
on E with the same atoms as V. .

Let E be a finite set and v be any finite measure on
E. Take X to be a set of the same cardinality as E and‘ M

be a discrete measure on X. If F : X > EF 1is a (1-1) onto

measure-preserving mapping, then

Theorem 3.2.6. -
The following are equivalent:
(1) ¢ < Mw?E,v) 8 L2(E,v)) and ¢l <1

(1) (¢ o F @ F) e M(L2(Xx,u) & L2(X,u)) and U¢oFeFly< L.
Proof. (ii) -+ (i). This is just lemma 3.2.3.

Conversely (i) - (ii). By theorem 3.2.2 and the remark after'
theorem 3.2.5, one can assume without loss of genefality that
is the counting measure on X so if E; is an atom in E then
V(E;) = IEiI’ the cardinality of E,. Theorem 3.2.5 together
with (i) implies that D[ f¢(a,b)dP(a)dQ(b)lL(H) < 1  for every

ExE
pair of spectral measures P and Q on (E,v){ Thus, using

the notation of theorem 3.2.5, we have
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n .
v Z_ ¢(ai,aj)P(ai)Q(aj)"L(H) < 1.
1,3=1

Now, let u ® v be any atom in the unit ball of

LZ(X,u) @ L2(X,u) >and S be any contraction on L2(X,u).

Choose two orthonormal sets of vectors in H,. (ex)XEX and
(fy)yex such that S(x,y) = <ex’fy>' Setv )
P(Ei) = P(ai) = Projedtion onto the span of {eXIS(x) € Ei}
Q(Ej) = a(aj) = Projection onto the span of {fyIS(y) € Ej}.
Further, put e = } u(x)e, —and f = Y ov(y)f . Then
. xeX yeX y
L= ) (¢ oF x F)(x,y)u)Iv(y)S(y,x)|
X,y
= | } ¢(F(x),F(yduxIviy)<e ,f_>|
X,y yox

n .
) $a; ,a.)< Y} oulxde,, ) viy)f >
Ji,j:l B F(x)eE; % F(y)eEj y |

li,gzl$(ai,aj)<§(ai)e;§(aj)f>[

Since e and f are in the unit ball of H, then we obtain

L <£1. But u ® v was an arbitrary atom in the unit ball of
L2(X,u) é LZ(X,u) and the convex span of such atomé is dense

in the unit ball, it follows that ¢ o F®F ¢ M(LZ(X,u) @ L2(X,u))

and ¢ o F @ F"M < 1. This completes the proof of the theorem.
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3.3, Multipliers on Infinite Compact Spaces

Let I denote the unit interval [0,1], and F be the
o-algebra of all Borel sets in I. In this section we will be
considering the multiplier algebra of LZ(I,F,v) 5 L2(I,F,v)
for any Borel measure v on (I,F). Throughout the section,
the o-algebra F will be fixed and we wifi write L2(v) for
L2(I,F,v).

Now, for each n 1let Fn denote the o-algebra generated
by the 2n—equal length-intervals of I whose union is TI.
Clearly we have

F. € F, € sse € F_ S eee S F,

1 2 n

Furthermore F 1is just the o-algebra generated by the Fn's.
Let ¢ be a bounded Borel function on I x I. Then En(¢)
will denote the conditional expectation of ¢ with respect to

the o-algebra Fn x Fn in I xI, [51]. So if E (V) is

the restriction of v to Fn’ then

f f .
JJ¢(x,y)dv(x)dv(y) = JJEn(¢)(x,y)dEn(V)(x)dEn(v)(y),
E E
“ for’évery set E ¢ Fn x Fn. The following lemma is well knoWn,

[5j, and the proof will be omitted.

Lemma 3.3.1.
Let ¢ and En(¢) be as above, then
(1) En(¢) > ¢ a.e.

(ii) If (¢i)I=l is a sequence of bounded Borel functions
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on I x I such that l¢i| < K  for some constant K, and

(iii) If ¢ 1is a measurable function on (I x I, Fn x Fn)
and if ¢, &é-p are both in LY(I x I, F x F, v x v), then

En(¢~w) = YE_(¢) a.e.

Let F € Lz(v) ® Lz(v).' Since Lz(v) ® L2(v) is the dual
space Lz(v) 3 Lz(v), (221, it follows that RFBTP = Sup|<F,y>|,
where the éupremUm is taken over all functions ¢ in the unit
ball of Lz(v) x Lz(v). However, 'L?(vji L2(v§ is isometrically
isomorphic to the space of compact operators on LQ(V). Hence,
ﬂPHTr < 1 implies |<F,y>| < 1 for every compact operator

of norm < 1. With this in mind, we now prove the following

result.

Theorem 3.3.1 |
Let ¢, v, F, En(¢), En(v) and Fn be as given above.
Then the following are equivalent:
(i) ¢ e ML) 8 L%(v)) and Mg, < 1.
E . (v))) and

.. 2 o 72
(ii) En(¢) § M(L (I,Fn,En(v)) Q L (I,Fn,

HEn(¢)HM < 1.

Proof. (i) - (ii). For a start, let ‘Lz(En(v)) ® L2(En(v))
stands for LZ(I,F ,E (v)) & L°(I,F ,E ,(v)). Let f @g be an
étom in the unit ball of LZ(En(v)) @ LZ(En(v)), and K be the
kernel of a compact operator on L2(En(v)) of norm < 1. It
follows that f ® g is an atom in the unit ball of

Lz(v) ® L2(v) and K is the kernel of a compact operator on

Lz(v) of norm < 1. Since f ®@ g * Ke L2(v x v), it follows
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e:; by lemma 3.3.1(iii) that
En(¢0f@g0K):f®gf}(oEn(¢).

This implies

H

|<En(¢)°f&g,K>| En(¢)(x,y)f(x)g(y)K(x,y)dEn(v)(x)dEn(v)(y))|

X Sn——y
HY——— b —— HY——

E_(¢£0g-K) (x,y)dE (V) (x)dE (V) (¥) |

K oy

(¢+£0g+K) (x,y)dv(x)dv(y) |

= —

CX Sy

< 1

by (i). Since f © g wWwsaw arbitrary atom in the unit ball of
L2(En(v)) 8 L2(En(v)) and K was arbitrary contractive compact
operator of norm < 1 on L2(En(v)), it follows that

2 5 12 ‘
En(¢) e M(L (En(v)) ® L (En(v))).

Conversely (ii) » (i). If K is the kérnel of a compact operator
on L2(v) of norm < 1, then |JJ(fe>g°K)(x,y)dv(x)dv(y)| <1
for all atoms f & g in the unit ball of L2(v) ® L2(V). Let

u ® v be an atom in the unit ball of LZ(En(v)) é L2(En(v)).

!
!

g:; by lemma 3.3.1(iii). Considering u ® v as an atom in the unit

Then

-
]

u @ veE (K)E_(v)(x)dE_(v)(y) |

En(u ® voK)dEn(v)(x)dEn(v)(y)l,

MY H—
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ball of L2(v) @ L®(v), it follows that

L = J J (uev « K)(x,y)dv(x)dv(y).
IxI

Hence |L| s 1. This implies that E_(K) is the kernel of a

contractive-compact operator on- LZ(En(v)). Now take f © g

to be any atom in the unit ball of L2(v) 5 Lz(v). Then, [6 1,

E (f @g) is in the unit ball of L2(E_(v)) @ L2(E_(v)). The

assumption (ii) implies that

|JJ En(¢)- En(f ® g)- En(K)dEn(v)(x)dEn(v)(y)|‘s 1.
IxI '
By lemma 3.3.1(i) we have En(¢) + ¢ a.e., En(f @ g) > feg

a.e., and En(K) + K a.e. It follows that
En(¢)'En(f'9g)'En(K) +~ ¢+f ®g-K a.e, —===- #

Since for each n, Fn x Fn has finitely many atoms, it follows
that En(¢), E (f e g), and En(K) are bounded. Relation &,

then, implies that
|En(¢)En(f ® g)En(K)| <C-+¢-fxg K, a.e.

for some constant C and for all n. Applying the bounded con-

vergence theorem, one obtains

|JJ ¢ (x,y)E(x)g(y)K(x,y)dv (x)dv(y)
IxI

= limIJJ En(¢)(x,y)En(f e g)(x,y)En(K)(x,y)dEn(v)(x)dEn(v)(y)|

n
IxI

< 1.



67

Once again, since f ® g and K were arbitrary, it follows
that ¢ < M(LZ(v) @ L2(v)) and 1¢1, < 1. This completes the

proof.

Now, let ﬁs write B(I) for the space of bounded Borel
functions on I. Clearly B(I) & B(I) € M(LZ(v) @ Lz(v)) for
any Borel measure v on I. Wevdefine the space §(IXI,vxv) to
be the set of all bounded Borel functions ¢ on I x I such
that there is a sequence in B(I) ® B(I) which is uniformly
bounded in M(Lz(v) é L2(v)) and converges to ¢ a.e. v x V.

We then prove

Theorem 3.3.2

Let ¢ be a bounded Borel functioh on I x I. Then for any
Borel measure Vv on VI, the following are equivalént:

(1) ¢ ¢ M2 @ L))

(ii) ¢ e B(IxI,vxv).

Proof. (i) » (ii). Let ¢ McL2(v) © L2(v)) and oy, < 1.
Theorem 3.3.1, then, implies that

E ($) « M(Lz(En(v)) ® LZ(En(v))) and ﬂEn(v)uM < 1. ‘Sinée

En(v) is burely atomic and has finite number of atoms, wé can
consider (I,Fn,En(v)) as a finite discrete measure épace. By .
theorem 3.2.2, we obtain that E_(¢) e M(LZ(I,Fn,u) ® L2(I,Fn,u))
and HEn(¢)HM < 1, where u 1is the counting measure on (I,Fn).
This together with theorem 2.2.5, implies that

E_(¢) « B(I) ® B(I). However, by lemma 3.3.1(i), E_(¢) » ¢

a.e. v x v. Hence ¢ e B(IxI,vxv).



68

)(X)

i=1 be a sequence of functions

Conversely (ii) » (i). Let (¢,
in  B(I) ® B(I) such that ﬂ¢iHM <1, and ¢ > ¢ a.e.Vxv. We
would like to prove that ¢ « M(Lz(v) @ Lz(v)). An application

of theorem 3.3.1, implies that E_(¢.) ¢ M(LZ(E_(v)) & L2(E_(v))
and HEn(¢i)ﬂM <1 for all i 2 1. Since ¢ > ¢. a.e. vxv, then
lemma 3.3.1(ii) implies that E (¢;) ~ E (¢) a.e.vxv. Again, since
En(v) is purely atomic and has finite number of atoms, it fol-
lows from theorem 3.2.2 together with theorem 2.2.5, that

£ (0;) « B(I) & B(I). Hemce E_(6) ¢ M(LZ(E (3) & LP(E_(v))

and HEH@QHM < 1. Théorem 3.3.1, then, implies that

6 ¢ M(LZ(v) @ L2(v)) and I¢l, < 1. This completes the proof

" of the theorem.

The rest of this section is devoted to state a theorem
similar to theorem 3.2.5. To start with, let P and Q be any
two spectral measures on (I,F). En(P) and Eg(Q) will denote
the restriction of P and Q respectively on (I,Fn). Let ¢

be a bounded Borel function on (I x I, F x F). Set

S, = J J EL(9)(x,y)dE_(P)(x)AE (Q)(y).
IxI '

The sequence of operators (S )7

need not conver in
nln=1  0e erge the

weak~operator topology. However, if (Sn):=l converges weakly,

then let

S = JJ ¢ (x,y)dP(x)dQ(y)
. IxI
denote such a limit.
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Theorem 3.3.3.

Let ¢ be a bounded Borel function on ‘I x I. For any
Borel measure v on I, the following are eguivalent"

(1) ¢ € M(L2(v) 8 L2(v)) and “¢HM < 1 for any Borel
measure Vv on I.

(ii) IJ J ¢(x,y)dP(x)dQ(y)“L(H) < 1 for any pair of spectral
IxT
measures P and Q on (I,F).

Proof. (i) » (ii). Let ¢  M(L2(v) ® L2(v)) and l¢l, < 1.
Theorem 3.3.1 implies that E_(4) ¢ M(LZ(E_(v) & L%(E_(v))) and
HqJ¢)HM £ 1 for all n 2 1. Since for each n, the o-algebra
Fn is finite, we can apply theorem 3.2.5 to obtain

"Sn“L(H) = HJ;J En(¢)(x,y)dEn(P)(x)dEn(Q)(y)“L(H) <1

IxI

for all n 2 1. Now, we want to prove that (<Sn a,b>):=l is a
convergent sequence of complex ngmbers for every a and b in
H. We show that such a sequence is a Cauchy sequence.

If E=A x B 1is an atom in ﬁlx ﬁf then 'En(¢) has con-
stant value on E. For m 2 n,k one has E ¢ Fm x Fm but it is

} (A; x B.) where A, and B,
ij=2 * * )

not an atom there. Let E

are measurable atoms in Fm , 1 <1, < k. If En(¢)(E) = A e C,

then we have

En(¢)(E)<P(A)a,Q(B)b>

A<P(A)a,Q(B)b>

k
2' A<P(Ai)a,Q(B-)b>,
.iaj=l J

where A = U Ai and B = V Bj' Repeating the above procedure
i i
for every atom E in Fn we could obtain another function
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Eém)(¢) which is Fm x Fm—measurable such that

ESM () 0x,y) = E_(0)(x,y)  for all (x,y) ¢ I x I.

This enables us to write

L = [<8 a,b> - <8 a,b>|
( _
= |<J J En(¢)(x,y)dEn(P)(x)dEn(Q)(y)a,b> -
IxI
- <J J Em(¢)(x,y)dEm(P)(x)dEm(¢)(y)a,b>|
IxI '
= ] 3 E™G)r,8) - E (0)(,5>UEa, P(EID>
r,s :
where (Er x Es)gTszl are the atoms in Fm X Fm and

(E;m)(¢) - Em(¢))(r,s) denotes the value that such a function
takes on every element of the set E, x E_,. Now, to estimate
the last summation, we need to estimafe ﬂE;m)(¢) - EmIM és
an element of M(LZ(E_(v)) & L%(E_(v))).

- Let u @ v be an atom in the unit ball of |
LQ(Em(v)) 8 L2(Em(v)) and K be the kernel of a.contractive—
compact operator on LZ(Em(v)). It follows u ® v is in the

unit ball of LQ(V) é Lz(v) and K is the kernel of a contrac-

tive-compact operator on L2(v). Then

R(n,m)

<£ém)(¢> S E (4D -uev, K

<Eém)(¢) *u®v, K> - <E (¢) - u @ v, K,
Lemma 3.3.1(iii) implies that

ﬁn(¢ e u®v s« K) = Em(¢) s u ® v - K.
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Hence we obtain
_ (m) ‘
"R(n,m) = <En (¢) *u®v, K> -~ <¢p = u@v, K>.

Another application of lemma 3.3.1(i), wWe have lﬁnfém)(¢) = ¢,

where the convergence is a.e. vxv., This implies that

lim R(n,m) = O.

n,m »
Since u @ v and K were arbitrary in their specific spaces it
follows that

. (m) _
lim VE "7(¢) - E ()M = 0.
n,m : : _

We, again, consider L = [<S_a b> - <§ a,b>|. Theorem
3
3.2.5 now is applied together with the last estimate on
( ‘ .
ﬁEnm)(¢) - Em(¢)ﬁM to ylgld that
lim |<sn a,b> - <8_ a,b>| = 0.
n,m
Hence (<Sn a,b>)°1::l is a Cauchy sequence in C for all a and

b in H. So (Sn>:=1 converges in the weak-operator topology.

Further if S is the limit of the sequence then HSHL(H) s 1.

Conversely (ii) » (i). Let 1lim “Sn“L(H).S 1. This implies that
n v

for each & > 0 there exists an r{(8) such that

nsrnL(H) < 1+6.
- Choose a sequence Gr such that Gr + 0 as r » o« and
"SPHL(H) < l+6r. By theorem 3.2.5? we have

E,(8) e MLZ(E,(v)) 8 LA(E,(v))) and BE (), < 1+6_.
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Noﬁ, let f @ g be any atom in the unit ball of Lz(v) é L2(v)
and K be the kernel of a contractive-compact operator on
L2(v). As in theorem 3.3.1, En(f ® g) 1is an atom in the unit
ball of LZ(E_(v)) & L%(E_(v)), and E_(K) is the kernel of

a contractive~compact operator on LZ(En(v)). We then have

|<¢ + £ © g, K|

]

lim |<E_(¢) « E_(f & g), E_(K)>|
n

A

l%m (1 + Gn)

N

1.

Since f @ g and K were arbitrary in their specific spaces,
it follows that ¢ ¢ M(LZ(v) @ L2(v)) and ¢l s 1. This

completes the proof of the theorem.
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CHAPTER IV

This final chapter consists of two sections. In the
first section we prove the asymmetry and some other general
results about the space M(L2(T§m) 8 L2(Tgm)). The study of
the change of variables on the space L2(I,m) 8 L2(I,m) is the

object of the second section.

4.1. The Asymmetry of M(L2(T,m) 8 L2(T,m)).

Throughout the whole section T will denote the unit‘CiﬂJe

and m the Lebesgue measure on T. For the simplicity
of the notations, we write LP for LP(T,m), 1 <p < =.

Let C(T) denote the space of continuous functions on T
and A(T) be the space of those functions in C(T) that have
absolutely convergent Fourier series. Consider the mapping |

F:C—> C(T x T) defined by F(f)(x,y) = f(x+y). Then

Theorem 4.1.1.
The following are equivalent:
(1) £ e A(T)

(ii) F(£) e C(T) & C(T).
Proof. See [12], page 255.

The map F defined above has range in ML? o L2) when

it is restricted to A(T). Furthermore we prove the following
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Lemma 4.1.1.

HF(f)HM = I£l

A(T)"’
Ld .
Proof. Since f e A(T), then we can write f(t) = } a, elrt,
«© Lod . . ==
Z |ar| < @. Hence F(£)(x,y) = Z a, etTX . MY, However,
r=s-—w ==
ﬂelrxﬂgi for all r, it follows that HF(f)“M s "f"A(T)‘

To show the other inequality, define a mapping

P : C(T x T)

> C(T),
s

such that P(¢)(x) = J ¢ (x-y,y)dy. Clearly P o F : C(T) — C(T)
T A

is just the identity mapping. Let F(f) e C(T) @ C(T) and

©

) u; @ v, be any representation of F(f). Then
i=1l

P(F(£)) = [ u. % v..

It follows that

IP(F(f))HA(T) s'HF(f)HTr.

However, the function 1 8 1 ¢ L2 ® L2, so we have

IIP(f)IlTr IF(E) « 1 e 1llT

r

IA

HF(f)HM s 1 e 1“Tr

= HF(f)ﬂM.
Hence HP(F(f))HA(T) < ﬂP(f)HM. Since P(F(£f)) = f, then
"qu(T) < HF(f)HM. This completes the proof.

For the proof of the asymmetry of M(L2 e L2), we need

é:: to prove the following lemma:
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Lemma 4.1.2.
Let ¢l and ¢2 be any two elements in the unit ball of

ML? @ L2). Assume, further, that supp ¢; € 0y = X; x Y ,

1
supp ¢, € 2, = X, x Y,, where X, nX, =Y Y, =90, the

empty set. Then there exists a function ¢ € M(L? o L2) such

that ¢|o = ¢,
1

;5 1 =1,2 and H¢HM = max-"¢i"M.

Proof. Define the following function ¢ on T x T

¢l if (X ,Y) € Ql
$(x,y) =
¢2 if (x,y) € 92

1 U 92. We claim that the

function ¢ is the required function. First, since ¢ = ¢l + ¢2,

and ¢ = 0 on the complement of Q

it follows that ¢ e M(L2 e L2). Remains to estimate the multi-

plier-norm of ¢. To do so, let f ® g be any atom in the unit

2 2

ball of L% @ L®. Since

£Fog - Tf%; (HElgh /2 Wg%;-(ufﬂz-"gﬂz)l/z

b

we can assume that “f“2 = HgH2 < 1. Further since the support

of ¢ 1is contained in Q, v 92, we let supp(f) © Xy v X2 and

supp(g) < Y; v Y,. Set f; = f|xi and g; = lei, i=1,2.

Then £ = fl + f2 and g = g1 % €59 Further

2 _ 2 2 2 _ 2 2 .
Hfﬂ2 = Hfll2 + Hf2H2 and ngu2 = "g1"2 + Hg2H2, since
2 2
n X. = N Y. = p. Now, consider
- l hd l
i=1 i=1 :

¢ o f 8 g = ¢l . fl (2] g1 + ¢2 °.f2 (2] g,



Since u¢i“M £ 1, 1=1,2, we deduce

NESRNES

b v Fi @8 = LY ;

e~ 8

J
(i)
Z l]uj ] 2

v 1y
j=1 J

2

Again as above, we can assume that “fi“2
i 2

SRES TR e 3%
uJ H2 ij 2 for i 1,2 and

2

w02 < pey
12

5 S

Hi~3 8

j=1

2
5 < Hgiﬂ .

N~ 8

ey
Rt

Now define the following functions

. = ugl) + u$2)
J J ]
RS I (2
] ] J
Then

for all j = 1.

b6 + f x g 8 wj) .1

" ,
e 8 ‘

where lE

But since

2 _ gy f22y2

(2,2
PR v 1ul?y
2yia = Tuy7lg * Huy™ihy

!

(1342 4 g, (292

TR v 29

i'2 32

i

it followsvthat

s UEgl,-lgglh,.
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HgiH2
It follows that

(XlXYl)p(XQUYz)’

denotes the characteristic function of the set E.
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g « £ © gHTr < g szﬂ o .l

521 2 ] 2
o 1/2 1/2
(1),2,44,$2)2 . (v (1), 2 +1v (2) 2

< .z (hu ||2+Iuj H2) ( J 2 3 2)

1=1

1/2 1/2
R E j=1
2 1/2 2 2 1/2
< (Hle2 + If H2) . (Ilglﬂ2 + ngzuz)
s»ﬂfﬂ2 . Mgﬂ2
s 1.
Since f ® g was arbitrary atom in the unit ball of >L2_9_L2,

it follows that -“¢HM < 1. This completes the proof of the lemma.

Let us recall that a commutative Banach algebra is called
symmetric if, regarded as a function algebra on its maximal
ideal space, it is closed under complex conjugation. Clearly

~

M(L >3 L2) is a commutative Banach algebra, where multiplication

is taken to be composition as operators on 12 & 1.2,

Varopoulos,
[279], proved the asymmetry of the tensor algebra C(T) & C(T).

In a similar way we prove the following

Theorem 4.1.2.

The space M(L? @ L?) is not symmetric.

Proof. To prove the asymmetry of a>space it is enough to pro-
" duce an element in such a space which has independent powers,
[301].

Let P be a Cantor independent set which is not Helson
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in T. The existence of P is illustrated in [13]. Take v
to be a non-negative measure concentrated on Pu (-P). Then v
has mutually singular convolution powers, and if we choose

ol = 1, we obtain

M(T)

n
YoV
poyp ¢ M(T)

o~ 0

|2, |
. r=1 vl

for all kr e C and n ¢ N. Since discrete measures on ‘T are
dense in M(T) in the weak-# topology [/0], then we can find
a sequence (vn)::l of finitely supported discrete measures

(the support of each v, is a finite subgroup of 'T) such that
() —> v(I)

for all j € Z. That P is not Helson enables us to choose v

such that Hv"w is as small as we like and. 3 to be real. If

En denotes the support of V,» then we can find a sequence
(fn):=l of real functions on T such that
ﬂanA(En) <1 (n21), ifd,—> 0 as n > oo,
N I Dyl
supl A, £ = Al
n r=1 * D A(En) r=1 r

for all s € N and Ar e C.

Now, let (Xél)>§£1 i = 1,2, be two sequences of sets in
T such that Xél) n Xél) =p for n#m, i= 1,2 and Xgl)
has the same cardinality as En' Identify, then, Xél)' with

E for every n 21, and i=1,2. If F : C(T) — C(T x T)

is the function defined in theorem 4.1.1, then set ¢n = F(fn),



/3

n > 1. A simple application of lemma 4.1.1 implies that

¢, e ML ® L?) and

> 0 as n > oo

o Iy =1 (n>1); ¢l

S S
r‘ .
Sgpurzo A oThy rg 05

H

for all s € N and A_ e C. Using lemma 4.1.2 fepeatedly we

r
construct a sequence of real functions (wn):zl in M(L2 8 L2)
such that |

0L (2)
ﬂwnHM <1 (n 2 1), supp y = U Xj x Xj 3
j=1
V| = ¢, by I >0 as n > e,
n Xil)xXQZ) - 'n n

Clearly, the sequence (wn)::l converges uniformly to a function

Y e M(L2 @ 12). Furthermore “w“M = supﬁwnnM. Hence
n

This completes the proof of the theorem.
As a corollary of the previous theorem we have

Theorem 4.1.3.

The space M(L? & 1.?) is not separable.

Proof. The functions (wn)::l in theorem 4.1.2 have the pro-
perty that Hwn - wmuM 20 >0 for n #m. This proves the

claim.

The following theorem is similar to that in [31] for
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M(T).

Theorem 4.1.4.
Given any € > 0, there exists a ¢ e'M(L2 @ L2) such
that | |
(1) N¢HM <1
(ii) ¢ has independent powers
(iii) 0 s y(¢) < ¢ for all self—adjoiﬁt character vy in

the maximal ideal space of ML? & 19

Proof. Theorem 4.1.2 implies the existence of an ,
VY e M(L2 ® L2) such that ¢ satisfies (i) and (ii). Set
¢, = (nwuﬁ 1@ 1 - w?)n.
Clearly ¢n satisfies (ii) for all n = 1. Furthermore
n¢ﬁuM = Myt
If Yy 1s any element in‘the maximal ideal space of M(L2 ) L2),

IYCwy | < Iylelgly, = “W“M'

Choosing % to be real and Yy to be self-adjoint, we get

- HwHM < y(P) < “¢"M
on
Set ¢ = T T for some n 2 1. Then since Y(1 8 1) = 1,
n M _
we have
Y(¢ )
ve) = Ty
n M

' n
¢1 — . (uwuﬁ - Y(¢)2) .

n M
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It follows that

0 s y(¢) s nwnﬁn.

Hence one has

2n
y(¢n) i HwHM 1
n .

0 < y(¢) € ' = =
TonlTy = 2haapi2h 2

Taking n to be large enough such that lﬁ < € we get

2
0 < y(¢) < €. This completes the proof of the theorem.
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4.2. Certain Homomorphisms of the Trace-Class Operators

This section, in some way, is independent of the rest éf
this thesis. It deals with the problem of change of variables
on the space L2(I,m) é LQ(I,m), where I is the unit interval,
ahd m 1is the Lebesgue measure on I.

Let F: I xI —> I x I be a measurable mapping. The map-
ping F induces an operator U : L2(I) e L2(I) —_ LZ(I) ) LQ(I),
where for simplicity of notations we wrote L2(1) for L2(I,m).
If ¢ 1is an element of L2(I) ) L2(I), .then HwﬂTr will de-
note the frace-class norm of ¢, and ‘ﬂwﬂHS ‘denotes the Hilbert

Schmidt norm. Then we prove the following:

Theorem 4.2.1.

Let F and U be as above. If MU _ = BwoFﬂTr < byl

then F is essentially of the type F = (Fl’FZ)’ where F, and

F, are measure preserving mappings on I.

Proof. Since the proof is little long, we prove the theorem in
steps.
Step I. The mapping F 1s measure preserving.

Proof. Let X1 and X2 be any two disjoint sets in I

such that I = Xl U X2, If Yl and Y2 is a similar pair of

sets in I, then set .lX <Y to denote the characteristic¢ func-

J :
tion of Xi x Yj’ 1l <i,j £ 2. From the definition of the

Hilbert Schmidt norm we deduce
E1., - o FI = 1 o FI

XiXYj HS XiXYj .2
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-1 1/2
[m(F (xi x Yj))]

X.xY. r
3 T
< 1
XiXYj r
= i1 e 1, |
Xi Yj r

1/2
[m(xi x Yj)] .

On the other hand we have

2 -1
7 m(F (Xi x Y.))
i,j=1 J
2
2
= z 1 o FI
i,5=1 XiXYj HS
2

. 2
< 7 Il I
i,5:1 %13

[
H

)
- - m(X- X Yo)-
i,j=1 *

Hence, it follows that m(I—‘—l(Xi X Yj)) = m(Xi,x Y.),

J
1 <1, £ 2. Now if A x B 1is any rectangle, then setting

1= A, X2 = Ac, Yl = B, and Y2 = Bc, the previous argument

shows that m(A x B) = m(F (A x B)). So F preserves the

X

measure of any rectangle. However, the set of rectangles in
I x I forms an algebra of sets. Further the o¢-algebra of the
Lebesgue measurable sets in I x I 1is just the completion of
the smallest o-algebra containing the rectangles. It follows

that F is measure preserving on (I x I, m x m),

Step II. The operator U preserves atoms in L2(1) & LZ(I).
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Proof. Let f ® g be any atom in L2(I) o L2(I). If

If @ gt denotes the norm of f @ g as an element of L2(1 x I,

2

then If @ gh, = If @ gl . By step I, as it is well known and

2

easy to prove, the operator U on .L2(I x I) 1is an isometry,

so If e gh, = I(f @.g) o FI

) Then

2°

If e gl If & gl

H

HS 2

I(f ® g) o FI

2
I(f ® g) o FI

HS

A

I(f e g) o Fl,

A

If e gﬂ_[r

If e gl|2,

This implies that 1(f @ g) o F"HS = I(f @ g) o FI__. However,
from the definition of the trace-class norm and the Hilbert-
Schmidt norm, the two norms coincide only on operators of rank
one. Hence f ® g oF = u ®v for some atom u ® v in
L%y 8 L%(D).

Step III. Constructioﬂ of F, and F,.

Let i : I —> I be the idenfity map: i(x) = x, and
Ty T, I x I —> I be the first and the second projections
respectively. Set F, =m °F and F, = m, c F. Then
F = (F),F,). Now consider the map i @ 1 1.2(I) ® L2(I), where

1 denotes the constant function with raﬁge {1}. Step II implies
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that (1 ® 1) o F = ® SPER Y and o are in L2(I). Hence

(11 2

i

(0 @ 0 ))(x,y) = (1 @ 1 o (Fy,F))(x,y)

al(x)qz(y) = 1(F1(x))
= Fl(x).
Therefore Fl = ay 8 a2. Similarly F2 = Bl @ 62.

Step IV. Each of the functions Fl and F2 depend on one

of the. variables but not both.

Proof. For any function ¥ e L2(I) e LQ(I), set

m(w) = J

J Y(x,y)dxdy.
IxI

From step I, it follows that

m(y) = m(U(P)) - - ~ - %

For an atom ¢ in L2(I) ® LZ(I); set

{
ml(¢)(x) @ j ¢(x,y)dy
I
ml(¢)(y) = J o(x,y)dx.
I
Hence one can write
m(¢) + ¢ = ml(¢) ® m2(¢) - - = - %k

Step II together with # implies

m(¢) + UC) = my(U($)) @ my(U(9)),
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So if m(¢) = 0, then either m (U(¢)) = 0 or mQ(U(¢)) = 0.
Now, take ¢ = f @ 1, and let us write U(f) for U(f ® 1).
Set

Vi o= {f | my(UCE-m(£)+1)) = O},

where m(f) denotes m(f ® 1). Since for any f e'LZ(I) we
have

m(f-m(f)-1) = m(f) - m(£f) = O,

it follows that for any f e Lz, either ml(U(f—m(f)-l)) = 0

1 and Vé are closed sub-

spaces of L2(I) such that LQ(I) = Vy u Vv

or mz(U(fam(f)‘l)) = 0. Hence V

p+ In this case,

as it is well known, either V1 = LZ(I) or V2 = LQ(I). That

1is there exists j =1 or 2 such that
mj(U(f)—m(f)l)) = 0,

for all f e'LZ(I). Let us assume that J = 1.. It fqllows that
mi(U(f5) = m(f)-1l.

Relations # And %% then imply

m(£)+U(f) = m(£)(1 & mz(U(f))).

Thus if m(f) # 0, we conclude that
u(f) =u(f e 1) =108 mQ(U(f)).

But U(f @ 1)

1

(f @ 1) o (Fl’FZ) = (f°Fy) @ 1. So for any

(x,y) ¢ I x I,



87

mQ(U(f))(y)

(f 8 1) o F(x,y)
= (f o Fl)(x,y)

= f(al(x)az(y)),

by step III. Hence o is a constant. In case j = 2, we

1

obtain a, is a constant. This proves that the function F

depends either on the first coordinate, or on the second co-

1

ordinate but not on both. Now on considering the atom
1 @ f, we prove the same way as above that either By is a
constant or 62 is a constant, so F2 also depends on one of

the coordinates but not on both. 8So we conclude that. F has

one of the following forms:

1]
n

(1) F = (ap,By), (i) F = (ap,8,)

(iii) F

"

(60,5810, (iv) F = (a,,B,).

Finally, we have to show fhat ay5 Gs Bl, 62 are all measure
preserving maps on I. We prove such a claim only for T
since it is the same for the others. Let E be any set in. I.
Set f =1 and consider f & 1 = 1. @ 1. Since F 1is measure

E E
preserving we.obtain

/2 _
= IIlE ® 11

(m(B))l Il(1E @ 1) o Fl

2 2

HlE(al) e 1(61)“2

lllE(ocl)Il2

[mCat(E))1L/ 2,

‘:} where we are considering F to be of the form (i). ‘Before we
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close the proof of the theorem, we have to remark about the no-

tation in the forms (i), (ii), (iii), and (iv). Here

(1) FGx,y) = Cag(x),8100)),  (21) FOy) = (ag (), B,(y))

(1i1) FGoy) = (a,(9),8 (3)),  Gv) Flx,y) = (a,(y),B,(y)).

And now, the proof of the theorem is complete.
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