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ABSTRACT 

The multiplier algebra of L2 (X,v) ; L2(X,v) is the space 

of all functions ~ defined on X x X such that 

~ • l/J c. L2(X,v) @ L2 (X,v) for all tJ; € L2 (X,v) @ L2 CX,v). In 

this thesis we study the multiplier algebra of L2 (X,v) @ L2(X,v) 

for different measure spaces (X,v). For any finite set X and 

any measure v on X ~e prove that ~ is a multiplier of 

L2{X,v) ~ L2(X,v) with H~UM s 1 if. and only if 

I JJ~(a,b)dP(a)dQ{b)ILH s l for every pair of spectral (not neces­
xxx 
sarily commuting) measures P and Q on (X,v). If B(I) de-

notes the space of bounded Borel functions on the unit interval 

I, then for any Borel measure v on I, B(Ixi,vxv) denotes 

the space of all functions ~ defined on I x I such that 
A 

~ = lim ~ a.e. and ~ € B(I) ® B(I) with ·~ IM s c for n n 

some constant c and for all n. It is proven that a bounded 

Bor function ~ on I X I is a multiplier of L2(I,v) @ L2(I,v) 

if and only if ~ E: B(Ixi, vxv). For . X = Z and v is the count-

ing measure, we prove that the multiplier algebra of 

L2<z ) e L2 (Z) is the space V(Z) = B(ZxZ,vxv). Certain results 

concerning the maximal ideal space of the multiplier algebra of 

L2 (T,m) @ L2(T,m) are given. Finally, we study certain homo-

morphisms of the trace-class operators. 
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RESUME 

L'algebre de multiplicateurs de L2 CX,v) @ L2 (X,v) est 

1 1 ensemble de fonctions ~ definies sur X x X telles que 

~ • $ £ L2 CX,v) i L2 CX,v) pour tout $ e L2 CX,v) i L2 CX,v). 

Dans cette these, nous etudions l'algebre de multiplicateurs 

de L2 (X,v) i L2 CX,v) pour differents espaces mesures (X,v). 

Etant donnes un ensemble fini arbitraire X, et une mesure v 

sur X, nous demonstrons que ~ est un multiplicateur de 

L2(X,v) ~ L2(X,v) si et seulement si •JJ~·(a,b)dP(a)dQ(b)BLH~ 1, 
xxx 

pour tout couple de mesures spectrales P et Q (qui ne commu~nt 

pas necessairement sur (X,v). Si B(I) denote 1 1 espace des 

fonctions Boreliennes bornees sur 1 1 interval le uni taire. I, 

·alors pour toute mesure Borelienne v sur I, B(Ixi,vxv) de.­

note l 1 espace de toutes les fonctions ~ definies sur I x I 
A 

telles-que ~ = lim ~n presque partout~ o~ ~n e B(I) @ B(I) 

et U~niM ~ C pour tout n ~ 1 pour certaine constante C. 

Il est demontre qu'une fonction Borelienne bornee ~ sur I x I 

est un multiplicateur de L2 (I,v) 0 L2 CI,v) si et seulement si 

~ e B(Ixi,vxv). Dans le cas o~ X= Z et v est la mesure 

normbrable, nous demontrons que l'algebre de multiplicateurs de 

L2 (Z) @ L2 (Z) est 1 1 espace V(Z) = B(Zxz,vxv). Certains 

resultats concernant le spectre de l'algebre de multiplicateurs 

de 2 "' 2 L (T,m) 0 L (T,m) sont donnes. Finalement, nous etudions 

certain homomorphismes de l'espace des operateurs de trace 

finie. 
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NOTATIONS 

We attempt to use standard notations and to avoid con-

fusion, let us state some of the more frequent terminology. 

T denotes the unit circle and D is the unit disc. We 

write Z for the integers and N for the set of natural 

numbers. zn denotes the set 

denotes the set {1, ••. , n}. 

LP(T,m) denotes the space 

{-n, ...• , 0, ••. , n} and z+ 
n 

of p-sum.mable functions on 
,., 

T 

with respect to the Lebesgue measure m. We write ·f for the 

Fourier transform of f € 
1 L (T,m). A(T) is the space of 

functions on T which has an absolutely convergent Fourier 

series. M(T) will denote the space of all Borel measures on 

T. We write tP for the n-dimensional space of p-summable 
n 

sequences. 
A 

If A and B are Banach spaces, then A 0 B denotes 

their projective tensor product. RaUA is the norm of a in 

A. An element in A ® B of the form a 0 b will be called an 

atom (not to be confused with an atom of a measure). 

L(A,B) is the space of all continuous linear mappings from 

into 
.,, 

with A B. A is the dual space of A the usual. norm. 

If <P € L2 CX,v) e L2 CX,v) then we write U <f> ft T:r for the 

norm of <P in such a space. M(L 2 CX,v) @ L2 (X,v)) is the 

multiplier algebra of 1 2·cx, v > @ L 2 (X, V) and IIJJIM is the 

multiplier norm of ljJ. V (Zn) is the 
()() ,., 00 

space L (Zn) ® L (Zn). 
,... 
V(Z) denotes the space of all <P on z X z such that 

<P :: <t>lz € V(Zn) and supU<f> IIV(Z ) < oo. Finally, H n xz 
n n n n n 
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denotes a Hilbert space, and <a,b> is the inner product of 

a and b in H. DaH is the norm of a in H. 

Note: V denotes V(N). 
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PREFACE 

Let A be a space of functions defined on a measure 

space (X,v). Then a function ~ defined on X will be 

called a multiplier of A if ~ • $ e A for all ~ € A. The 

space of all multipliers of A will be called the multiplier 

algebra of A and we will denote it by M(A). Schur (.l3], 

was the first to study this type of problem for the special 

case X = N, v the counting measure on N and A is the 

space of all kernel operators on 2 2 t = t (N,v). The purpose 

of this thesis is to study M(L 2 (X,v) ® L2 (X,v)) for different 

measure spaces (X,v). 

In section 2.1 we prove the completeness of l.f(A) under 

a certain topology. Section 2.2 is devoted to the study of 

M(t 2 ® t 2) where we prove that it is just V. The problem of 

the Hankel multipliers of L2 (Z) ® L2 CZ) is the object of 

section 2.3. 

Pairs of normal contractions on a Hilbert space have a close 

relationship to the multiplier algebra of L2 (X,v) @ L2 (X,v) 

for finite set X. Such a relationship is the theme of section 

3.1. In section 3.2 we study the relationship between pairs of 

spectral measures on (X,v) and M<L 2 (X,v) @ L2 (X,v)) for 

finite set X. These .results are applied 1n section 3. 3 for" 

the study of certain class of multipliers of the space 

L2 (I,v) ; L2 (I,v) for any Borel measure v on the unit interval 

I. The study of the maximal ideal space of 2 "' 2 M(L (T,m) 0 L (T,m)) 



0 
is the content of section 4.1 where we prove its assymetry. 

In the last section, 4.2, which is independent of the other 

sections, we study the problem of homomorphisms of the space 

2 A 2 
L (T,m) e L (T,m). 

As far as I know, the work in this thesis is original, 

except where the text indicates the contrary. In particular, 

chapter I is purely expository. 
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CHAPTER I 

This chapter presents the concepts and propositions 

which we shall use in this thesis. All the results that 

are presented in this chapter are well known. 

1.1. Tensor Products of Banach Spaces. 

In their work, Schatten [~1], and Grothendieck [ 1 ] , had 

developed the theory of topological tensor products. Schatten 

was the first to give a systematic treatment of the ways of 

norming the algebraic tensor product of two Banach spaces. 

Simpler expositions of the material in their work can be 

found in the paper of Amemiya and Shiga [ 1 ] , and in the 

recent book of Diestel and Uhl, [ C ] • In this section we 

present an outline of the main concepts that are important 

to our present work. 

Let G1 and G
2 

be any two locally compact abelian 

groups with Haar measures v1 and v 2 respectively. If 

A and B are two vector spaces of complex valued functions 

defined on G1 and G2 respectively, then A 8 B will 

denote their algebraic tensor producty and f 6 g denotes 

the tensor product of f e: A and g € B, [it] . If A and B 

are Banach spaces with norms 11 IIA and a U B' then we can 

define a norm on A 0 B in different ways. The following 

two norms are of particular interest to us. 
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(i) The projective norm. 

has a representation of the form: 

Let $ E A 8 B. Then 

N 
$ = L f. 0 g., where 

i=l ~ l. 
N 

is a finite positive integer. The projective-norm of $ is 

defined to be 

2 

where the infimum is taken over all the representations of $ 

in A 8 B. 

Clearly u f e g n A = 11 f 11 A • HfiiB. If A is any other norm 

on A 8 B such that A(f e g) s UfUA•IIgiiB' for all 

f e g E A e B, then A(f e g) s Of egiiA [(]], Some authors 

call the projective norm, the greatest - crossnorm. 

The space A 0 B with the projective norm need not be 

" complete. Let A 6 B be the completion of A e B with 

respect to the projective norm. Since A and B are assumed 

" to be complete, then every element $ E A e B has a represen-

tation of the form 

I 
i=l 

f. @ g. 
l. ~ 

CO 

C)Q 

' i!lHfiiiA· lgiUB < C)Q' 

U$UA = inf{i!
1

11fiUA• UgiU 8 }, 

where the infimum is taken over all such representations of 

$ llG'] • 

(ii) The injective norm. 
N 

representation of the form: <P = I 
i=l 

Let <P e: A @ B 

f.@ g., f.e: 
~ ~ 1 

have a 

A and 

gi e: B. The injective-norm of $ is defined as follows: 
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N 
11$ llv ::::: sup{ I l <f. ,h><g. ,k>ll, 

i=l ~ ~ 

where the supremum is taken over all h and k in the unit 

* * balls of A and B 
' 

the duals of A and B, respectively. 

Again one can see that Uf @ gUv = U f IIA • BgUB. If T) is any 

other norm on A~ B such that n<f @ g) s lfUA •. BgDB for all 

f e g E A 61 B, then llf e gUv s n(f ~ g), [El]. The injective 

norm is often called the least-crossnorm. 

For i = 1,2, let denote the space of 

measurable functions f on G. 
~ 

for which 

r 
) lf(x)jpdvi(x) < oo, 
G. 

l. 

essential supremum lf(x)l < oo, p = QO. 

The spaces LP (G. ,v.) 
l. l. 

are Banach spaces under the norm: 

llfll = p 

( J jf(x)lpdvi(x))l/p 

G. 
l. 

ess. suplf(x) I 

if l s p < 00 

if p = QO 

v.-
l. 

We shall often omit the measure v. from the notation and 
~ 

simply write Lp(Gi). Our aim, now, ~s to have a realization 

Lp(Gi) " Lp(Gi) of the space ® as a space of functions defined 

on Gl X G2. For this consider the map 

which is defined by 

K(f 0 g)(x,y) = f(x)g(x). 
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p p p A p 
Since L CG1 ) @ L (G 2 ) is dense in L (G1 ) @ L CG 2 ), the 

mapping K can be extended to Lp(G1 ) e Lp(G 2 ) and we will 

continue to write K for the extension. What we must show 

is that K is a (1-1) mapping. Let F and G be the 

a-algebras on which v1 and v 2 are defined. Choose two 

sets of finite a-algebras (fa)a£X and (Ge)eEY such that: 

and F is the smallest ~-algebra generated by (fa)' and G 

is the smallest a-algebra generated by (Ge>· For each a € X 

and e € Y let Ea and Fe be the conditional expectation 

operators: 

Ea • Lp(G
1
,f) 

Fe Lp(G
2

,G) 

a --> f 

--> Lp(G
1

,Fa) 

-> Lp(G
2

,Ge). 

and 1 <g> _e_> g' pointwise. 

Consider the following diagram 

K 
--~> Lp(Gl X G2,F X G) 

Ea e Fe E @ Fe a 
..... 

V K V 

Lp(G
1

,Fa) 
,... p 

> LP (G X G2,Fa x Ge> 0 L (G 2 ,Ge) 1 

where 
..... p A 

Lp(G2'~e>· K is the restriction of K on L (G1 ,Fa) & 

For f X g € L p ( G l ) @· L p ( G 
2 

) , 



. . 

[(Eel 0 F
6

)ol<)(f 0 g)(x,y) = (Eel 6 r 6)(f•g).(x,y) 

= E(l(f)(x)·r6Cg)(y). 

On the other hand we have 

[Ko(ECl ~ r
6
)](f@ g)(x,y) = K(ECl(f) G r 6(g))(x,y) 

= Ea(f)(x)·F8 Cg)(y) • 

5 

Hence the above diagram commutes. Let ~ e: LPCG1 ,F) S Lp(G
2

,G) 

be 1n the kernel of K. From the commutativity of the diagram 

we get 

Since LP(G1 ,Fa) 
,..., 

the mapping K 

and LP(G 2,G6) 

is (1-1). Thus 

are finite dimensional, then 

(Ea 0 ~ )(~) = 0. But since 

this is true for all a and 8, and (Ea ® r 6><+) a, B "' > 'I' ,. 

we see that ~ = 0 and this proves the claim that K is (1-1). 

From the representation we have for the elements in 

Lp(G1 ) 0 Lp(G
2

) one can easily see that an element ~ is in 

the range of K if.and only if ~ admits a r>epresentation 

f. E Lp(G
1

) 
l 

where 

and if ~ = K(ljJ), 

<P(x,y) = r f.(x)g.(y), 
i=l l l 

and g. E LPCG
2

) and 
l 

00 

r Uf.B •Bg.U < 
i=l l p l p 

then lll)J 11 A = i nf { l g f . n p • " g . n } ' 
. i=l l l p 

where 

oo, 

the 

infimum is taken over all representations of ~ in the range 

of K. 

Let Gl = G2 = T = {Z € e I lzl = 1} be the circle group. 

·An operator S : L2 (T) ---> L2 (T) is called a trace-class 
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operator if l I<Se.,e.>l < oo for every orthonormal basis 
i=l l. l. 

( e · ) in L 2 ( T ) • 
l. 

Theorem 1.1.1. 

(i) L2 (T) @ L2 (T) can be identified with the space of 

trace class operators on L2 (T). 

6 

(ii) [L 2(T) ; L2(T)]* ; L(L 2(T)), the space of all con­

tinuous linear operators on L2 (T). 

(iii) [L 2(T) ~ L2(T)]*; L2(T) e L2(T). 

(iv) [L(L2(T))]* ': [L 2(T) e L2 (T)] ~ C 

where c is the space of bounded functionals that vanish on 

L2 (T) 
V 

L 2 (T), € L2(T) @ L2 (T) 0 and if F - F + F2 with Fl - 1 

and F2 € c, then IIFII = IIF1 ll + 11~1. 

Proof. 

(i) See [l1J theorem 5' page 42. 

(ii) See Li:LJ theorem 3, page 48. 

(iii) See C!t'-J 1f<e er em'\. :1.. , f'"Be. t.t ~ 

(iv) See [ '-l.] theorem 5, page 50. 

The statements of the previous theorem continue to hold if we 

or where Z is the 

group of integers and N is the set of natural numbers. 

In :his development of the theory of tensor products on 

Banach spaces, Grothendieck [ 1 ] , stated what he called "the 

fundamental theorem of the metric theory of tensor products." 

If 
00 

in is the n-dimensional space (real or complex) with the 
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supremum norm, then this theorem can be stated as follows: 

Theorem 1.1.2. (Grothendieck Inequality). 

Let and v
1

, ... , v . . n be any two sets of 

unit elements of a (complex or real) Hilbert Space H. Let 

4> be the function defined on Z x Z as follows: 

if i,j s: n 

otherwise. 

Then and The constant is known 

as the Grothendieck constant. 

For a proof of the above theorem, one can consult the 

paper pf Lindenstrauss and Pelczynski [/q] theorem 2.1, where 

they prove the theorem in a different setting. Their proof 

. gives a certain bound on KG. Subsequently, Rie_tz [ l't] ~ pre­

sented another proof of this theorem, from which he obtained a 

better bound on KG. The least possible value of KG is still 

unknown. Recently, Stephens and Cohen, [~5), proved that 

K = 12 if· n = 2 or n = 3 (for the real case). G 

Theorem 1.1·. 3. ( Li ttlewood Inequality). 

Let where n is any positive integer. Then 

(i) 

(ii) 

where the constants C and er are independent of n. 
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The proof of this theorem can be found in the work of Litt1ewood 

[ 15] theorem 1 ( 1), where he proves the dual form of the above 

theorem. 
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1.2. Absolutely Summing Operators. 

Let A and B be two Banach spaces, and S ~ l(A,B), 

the space of all continuous linear operators from A into B. 

For 1 ~ p < oo~ the operator S is called p-absolutely sum­

ming if there is a number C ;;:: 0 such that the relation 

holds for every finite set {a1 , ... , an} from A, n = 1,2, •.•• 

Such operators were first introduced in the work of Pietsch [ 1.8], 

and Grothendieck [ 8 ] • In their work, [ 111], Lindenstrauss and 

Pelczynski studied p-absolutely summing mappings in 1P-spaces. 

The space of p-absolutely summing mappings from A into 

B is a Banach space under the norm 

where the infimum is taken over all C for which the above 

inequality holds. If p
1 

~ p 2 , then ap
2

Cs) ~ 

Hence every p1 -absolutely summing map is also 

summing. 

Bp ( S) , ( flf ) • 
1 

p 2-abso)..utely 

With the aid of the Grothendieck inequality, Lindenstrauss 

and Pelczynski were able to prove the following 

Theorem 1.2.1. 

If v is a a-finite measure on a measure space X, and 

H is (real or complex) Hilbert space. Then every operator 
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S€ L(L1 (X,v),H) is !-absolutely summing. 

Not every 2-absolutely summing operator between two Banach 

spaces is 1-absolutely summing. However, Kwapien [ 13], proved 

the following result: 

Theorem 1.2.2. 

If 1 ~ r ~ 2, 1 ~ p ~ 2 and 2 ~ q < eo, then for each 

Banach space A 

(i) Every p-absolutely summing mapping ~n L(tr,A) is 

!-absolutely summing. 

(ii) Every q-absolutely summing mapping in L(X,tr) is 

2-absolutely summing~ 

A special case of this theorem that we are going to use 

in is 
00 

our work when r = 2 and A = R, . 
If A and B are two Banach spaces, then (A ~ ·s>*, the 

dual of A 
V 

B, can be identified with a vector subspace of e 

L(A,B * [lO]. ) The operators in such a subspace are called 

Integral operators. An important property of Integral operators 

that Grothendieck established is the factorization property: 

A continuous operator S : A --> B is integral if and only if 

S admits a factorization: 

s J ** A > B > B 
1\ 

T Q 
V 

QO 
I 

> Ll (0, V) L (O,v) 

where v is a finite regular Borel measure on some compact 
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0 Hausdorff space *'': r., J : B -> B is the natural embedding, 

I L00(0.,v) ---> L1 (Q,v) is the natural inclusion and 

T w 1 ** A ---> L (Q,v) and Q: L (Q,v) ---> B are bounded linear 

operators. 

An interesting result that shows the relationship between 

Integral operators and p-absolutely summing operators is the 

following: 

Theorem 1.2.3. 

If v is a a-finite measure on a measure space X, then 

every 1-absolutely summing operator S in 
ClO 

L(L (X,v},B) or 

in 
CO 

L(A,L (X,v)) is integral, for any Banach space A and B. 

A proof of this theorem can be found in [~0] corollary 2, 

page 263. · 

0 
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CHAPTER II 

The purpose of this chapter is to study the multiplier 

algebra of the 2 "' i2 and the Hankel multipliers of space i ® 

R.2(Z) 
A 

t 2(Z). 9 In section 2.1 we give the definition of the 

multiplier algebra of a Banach space of functions, A, defined 

on some measurable space (X,v). With the aid of certain con-

ditions on A, we prove the completeness of the multiplier 

algebra of A under a suitable topology. Section 2.2 contains 

the characterization of the multiplier algebra of 

and in section 2.3 we apply the results of section 2.2, to 

characterize the Hankel multipliers of t 2 (Z)@ t 2 (Z). 

2.1. The Algebra of Multipliers. 

The concept of multipliers of a Banach algebra was intro­

duced by Helgason [ 9 ] as follows: Let A be a semisimple 

Banach algebra considered as an algebra of continuous functions 

over its maximal ideal space A(A). Then by a multiplier of A 

is meant a function over A(A) such that gA S A. However, 

1n our present work we introduce the following 

Definition 2.1.1. 

Let (X,v) be a measure space and A be a Banach space 

of complex valued functions on X such that for each x e X 

there exists an f € A which does not vanish at x. By a 

multiplier of A we mean a complex valued function ~ defined 
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on X, such that $•f € A for every f e A, where 

($•f)(x) = $(x)•f(x). The set of all multipliers of A is 

called the multiplier algebra of A and it will be denoted 

by M (A). 

Let $1 and $ 2 be any two multipliers of A, then one 

can easily check that: 

(i) a$ 1 + b$ 2 e M(A) for all a and b in C. 

(ii) $1 •$ 2 e M(A). 

Hence M(A) is a vector space of functions over X. Every 

element $ .c. M(A) can be considered as an operator: 

$ A -> A, $ (f) = $ • f . 

Setting the operator norm of we 

then prove 

Lemma 2.1.1. 

For any Banach space, A, of functions on a measure space 

(X,v), M(A) is a Banach space under .the operator norm. 

Proof. 

We need only prove the completeness of M(A). Let ($a) 

be a Cauchy net in M(A). That is 

Let f be any element in A. The previous identity implies 

lim U$a(f) - $ 13 (f)RA = 0. 
a,f$ 
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from which we deduce that (~a(f)) is a Cauchy net in A. 

The completeness of A implies the convergence of ~a(f). 

Let g = lim ~ (f). 
a a 

Consider the following mapping: 

~:A-.>A 

~ (f) = lim ~ (f) = g • 
a. a. 

Since each cpa. is a linear mapping~ cp is also linear. We 

claim that 4> e. M (E). . For each . x · e: X, choose an f E: A such 

that f (x) ;.. · 0. Define a function lf; on. X as follows: 

lf;(x) = ~(f)(x) 
f(x) 

For any f E A, cp(f)=cp •f for all 
a. (l (l. 

h •• (f) = f •• N(h) 
. (l '"" 

which implies that 

l 

Hence for h E: A, 

2 • 

Hence ~ is independent of the choice of f. Furthermore if 

f(x) = 0 for some X in X, then choose an h e: A such that 

h(x) # 0. Then relation 2 implies that cp(f) = 0; from 

this and from relation l we obtain 

for a11· f € A and for all X € X. Hence cp(f) = tP •f € A when-

ever f E A. This implies that • E M(A). Since (cp(l) is a 

Cauchy net in M(A) and .(l(f) -> ~(f) for every f e A, (l 

it follows that cpa. -> cp (l 1n M(A). This completes the proof 
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of the lemma. 

If the Banach space of functions A contains the 

constant function 1, then for any $ E M(A), one has 

15 

$•1 = $ E A. Hence M(A) S A. Now, if we take A to be 

L2 (T), where T ~s the unit circle with the Lebesgue measure, 

then, as it is well known, M(L 2 CT)) = Lw(T). A more interest-

ing example of M(A) is due to Varopoulos [~1]: 

Let V(Z) = i
00

(Z) ; i
00

(Z) and V(Z) be the set of all 

functions defined on Z x Z with the following property: 

$ E V(Z) if and only if for any finite set 

F = r 1 x r
2 

5 Z x Z we have 

and the set {II$FRV(F)} is uniformly bounded. The norm of $ 
,.., 

in V(Z) is defined to be 

where the supremum is taken over all finite subsets F = r 1 x r
2 

h 

in Z x Z. Consider the Banach space C0{Z) @ c0 (Z), where 

c0 CZ) is the space of bounded functions over Z that tend to 

zero at oo. Then M(A) can be identified isometrically to 

V{Z). 

Since the constant function 1 = 10 l E V(Z), then 

M(V(Z)) ~ V(Z). But on the.other hand, as one can easily see, 

V(Z) s MCV(Z)). Furthermore, for $ E V(Z) 
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Hence MCV(Z)) is isometrically isomorphic to 
,._, 
V (Z). 



2.2. The Multiplier Algebra of 
2 A 2 

R, @ R, • 

Every element $ e t 2 @ t 2 is the kernel of a trace­

class operator in LCR- 2 ). One of many characterizations of 

the trace-class operators is given in the following 

Lemma 2.2.1. 

Let Se L(R- 2 ). Then the following are equivalent:· 

(i) S 1s a trace-class operator 

(ii) There is a constant K such that 

n 
I I<S(~.),n.> s K, 

j =1 J J 

for every pair {~ 1 , ... , ~n} 

orthonormal systems in t 2 . 

and {n n } of finite 
1' · · · ' n 

(iii) There is a constant C such that 

supjT{SoU) I s C, 

17 

where T(SoU) is the trace of SoU, and the supremum is 

taken over all operators U c LCt2 ) such that IUI s 1. The 

operator SoU is the composition of the two operators and not 

the pointwise multiplication. 

For a proof of this lemma one can consult the Book of 

Ringrose [18], or Schatten [~~], where an excellent account 

on trace-class operators is given. 
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In the following theorem, we see the relationship between 

M(t 2 @ t 2) and absolutely summing operators. 

Theorem 2.2.1. 

For a function 
. CX> 

<P € t (N X N), the following are equi-

valent: 

t 2 --> t
00 

is 2-absolutely summing for all 

Proof. (ii) -+ (i). Let u @ V be an arbitrary atom in 12 ; 

12 
.... 

12 Since the linear span of the set of all atoms in @ is 

dense in 1 2 e 12, it is enough to prove that 

cp • u @ V E: 1 2 e 1 2 . Let {1; 1 , ••• , i;n} and {n1 , •• o, nn} be 

any pair of finite orthonormal systems in t 2 . Then: 

n 
L :: ~ I< <P•u@ v)(i;.),n.>l 

j=l J . J 

n 00 

= l I l <fl(r,s)(u(r)v(s)~j(r)nj(s)j 
j=l r,s=l · 

n <» CO 

= r l ( r u(r)i;.(r) • l· <fl(r,s)v(s)n.(s))j 
j=l r=l J s=l J . 

n 
s ~ 

j=l 
1< I u<r)s-<r>)l·supl I <P<i,s>v<s>n-<s>l 

r=l J . i s=l J 

t2. 

n co · 1/2 n 1/2 
(sup I r 4> ( i , s ) V ( s ) n . ( s) I> 2 

) •. ( r I <u' i;J· > 12 ) ' s l 
j=l i s=l J j=l 

by the Schwartz inequality. Since ~ ~ are orthonormal: .,1' 0 

• ·' .._.n 
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The function and thus (ii) implies that 

2 noo 
~ • l0v t --> ;v 

is 2-absolutely su~ing. Hence 

n . 2 1/2 . 
L :!> C • 11 u 11 

2 
• sup ( I I <n · , f> l ) , 

UfU 2sl j=l J 

Where C is a constant independent of n. The orthonormality 

of lJ 1 , ••• , nn implies 

An application of lemma 2.2.1 completes the proof of (ii) ~ (i). 

Conversely (i) ~ (ii). Let K - {~ ~ } be any finite - "'1'"""' "'n 

set of elements in t 2, and f G g be an arbitrary atom in 

p.,(/1)0 t 2 • Then 

L = 

= 

n 
I ll(cp• fGg)(~.)lf 2 

j=l J 00 

r supj f cp(r,s)f(r)g(s)~J.(s)j 2 . 
j=l r s=l 

For each ~ € K there exists r~ such that 

00 00 

s~p~s~lcp(r,s)f(r)g(s)~(s)j 2 = ls~l cp(r~,s)f(r~)g(s)~(s)j 2 • 

The mapping A . K --> N such . that A(~) = r~ need not be a 

(1-1) mapping. Let Kl, .•. , Kk be a partition of K such that 

A(Kl) :: rl' ..• , A (Kk) = rk. Considering 4> as an infinite 
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matrix, we set ~ to be an infinite matrix obtained from $ 

by repeating the rth row 
l 

. th n 1 t1mes , .•. , rk row nk times, 

where n1 , ... , nk are the cardinalities of K1 , ... , Kk. By 

lemma 3.1.1 in Chapter III of this thesis, the function 

1/J e M(t 2 ; t 2 ) and Ul/JUM = ll~f!DM. Since relabelling the indices 

of the elements of K does not change the value of L, we can 

assume that r 1 = l, r 2 = n 1 +1, •.• , rk = n 1 + ••• + nk_1 +1. 

Hence we can write 

Further, since f € t(X> 
' 

we can take ·f to be the constant 

function 1. Define the function ~ on N x N as follows: 

-
-[ ~Jo •. (m) 

~ ( j ,m) 

· l:' "" a2 ~ n 2 Clearly ~ c. N "" N and so 

From theorem 1.1.1 (iv) we have 

if j ~ n 

if j > n. 

Hl/J·~I = sup I <1/J·~,F> I , 
L(1 2 ) T 

where the supremum is taken over all F e: 12 

D Fa Tr ~ 1. Here IIFB T;r' denotes the norm of 

One 

® 12 

F 

now has 

1n 

such that 

!2 8 !2. But 



0 

21 

s ll~UL(! 2 )·D~·FITr 

s II~IIL(! 2 ) •AIPBM •UFI 1 r· 

Hence we conclude 

n eo 

L s llgll~·ll<j>IIM2 • sup l l ,;(j,s)h(s) 12 

llhH 2 j=l s=l 

This completes the proof of the theorem. 

Let 11 r be the d · · 1 f N n- 1mens1ona space o 
n r-summable 

sequences. Then as a corollary to the previous theorem we have 

the following 

Theorem 2.2.2. 

M(! 2 @ 1 2 ) c M(!
00 @ ! 2 ) for all n E N. n .n - n n 

Proof. Let <j> € M(1 2 ; t 2 ) 
n n 

Set <P(r,s) = f(r)g(s) = 0 

CO "" 2 and f ~ g be any atom in 1 e ! . 
n n 

for all r,s > n. Then <j> e !2 i 1 2 

eo" 2 
and f 9 g € ! e.·:t . By theorem 2 • 2 .1, the mapping 

cp•f6g ! 2 --> !
00 

is 2-absolutely summing. Hence, theorem 

1.2.2 implies that <j>•f@g: 1 2 -->!eo is 1-absolutely summing. 

Since <j>•f e g has support which is contained in z~ X Z~, we 

have 

is 1-absolutely summing. Then it follows from theorem 1.2.3, 
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that cp•fsg (il ; 2 1: 
the dual of tl ~ £2. However, the f. i ) , n n. n n 

spaces g_l and g_2 are finite dimensional, which implies n n 
V 2 ,, " 12) (il @ R, ) = (ioo 0 [~1] . Since f @ g is an arbitrary n n n n , 

and the linear span of the atoms is dense in 

(actually it is equal to 
" 

t
00 e t 2 since the space is n n 

finite dimensional) we obtain ro ~ n2) <P f. M ( R. IQI' ;v This completes n n · 

the proof of the theorem. 

Let <P € MCiro e t 2 > 
n n for all n and f @ g be any atom 

in 
CO . A 

.R. 2. R, G Define the following function: 

= { (f 11 
g)(r,s) if r,s s n 

(f e g )(r,s) n n 
0 if r,s > n 

00 " 2 Then f e g t: i e t • n n n n and f 0 g ---> f e g pointwise and n n 

Hfnfl
00

•Hgnfl 2 :S flffl
00

•HgU 2 . If 
00 A 2 * (lO 2 FE: (1 0 .R. ) = L(i ,£ ) and 

urn s 1, then we have 

I<<P•ftl g,F>I = I I cp(r,s)f(r)g(s)F(r,s) I 
r,s=l 

lim 
n 

n 
L cp(r~s)fn(r)g (s)F (r,s)r 

r,s=l n n 

where F (r,s) n 
;:; F(r,s) if r,s s n and it lS equal to zero 

(too 
A 

t2)* oo A 12) otherwise. Since F € ® and <P E: M(t e n n n n n ' 
00 2 * = I cp(r,s)F (r,s)f (r} £ 12 cp•F t: (R, e 1 ) . Hence h (s) for all n n n n r n n 

n e: N, and Uhnll 2 s II<PIIM•IIfnll 00 s II<PIIM•UfUoo. Thus 
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n 

l<cp ·f e g,F> I = lim I I gn <s>hn <s> I 
n s=l 

s limUg 11
2

·1lh 11
2 n n n 

by the Schwartz inequality and the Lebesgue dominated con-

vergence theorem. Hence MO.oo e 
n 

t2) 
n ~ MCt 

00 
@ t2) for all 

Similarly one can prove MCt 2 0 t 2) n n 
c MCt 2 e t2) for all 

This argument proves the following 

Theorem 2.2.2' 

MCt 2 e t 2 ) S M(t
00 

e t 2) 

We further prove the other inclusion. 

Theorem 2.2.3. 

MCt 2 ~ t 2 ) = M(t
00 ~ t 2 ). 
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n. 

n. 

Remark. The isomorphism here is not an isometry but rather a 

norm equivalence. 

Proof. 

enough 

Let cp 

element 

From the argument used to prove theorem 2.2.2', it 

M(t- t2) s ·Mo. 2 ,. 
t2) to.prove that 0 0 for all n E: n n n n 

be any element ~n M(Q.oo @ t2) and 1/J an arbitrary n n 
(Q.2 

.... 
in 0 n 

Q.2)* L(t 2). = For n n u € Q.2 
n' consider: 

f(i) = ($•1/J)(u)(i) 

n 

= L $(i,j)11J(i,j)u(j) 
j=l 

n 
= I 1/J(i,j)cp(i,j)•(l@ u)(i,j). 

j=l 

is 

N. 



0 

24 

Since 
0) A 

£2) R,Q) @ 12. cl> e: M(i ® then cl> .. 1 @ u e: If n n ' n 
0) 

<P • 1 @ u = r f 0 gr 
r=l r 

lS a representation of cl> • 1 Q u in R.CX) @ 12 then n n, 

n ()() 

f(i) = 2 ljl(i,j) l fr(i)gr(j) 
j=l r=l 

Cl() n 
= l f (i} . l lP ( i , j ) gr ( j ) . 

r=l r j=l 

n 
12 Jt2 The function h (i} :: l Jti(i,j)gr(j) is in since grc:: r n j=l 

and lJI e: L(1~). Furthermore, u~n 2 s: 11 w R T r • 11 gr ft 2 • Hence 

QO 

llfll2 s Ill fr(i)hr(i) 11 2 r=l 
00 

s l llf 11 •llh 112 
r=l 

r 0) r 

00 

s 2 llfriiO) • )lgrl 2 • 0 l/JU -rr· 
r=l 

This implies that 

<~> e: M<R. 2 ; 1 2 >* = n n 

~ • ,,, e: (£ 2 @ 1 2)* from which we obtain 
'+' "' n . n ' 

M(1~ 0 1~). This completes the proof of the 

theorem. 

We are now half the way from the full characterization of 

M(1 2 e 1 2). Using theorem 2.2.3, we prove 

Theorem 2 • 2 • 4 . 

The following are equivalent: 

(i) <P e: M(1
00 0 1 2) 

n 
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(ii) $•f0 g : t 1 
---> too is 2-absolutely summing operator 

for all 

Proof. (ii) + (i). Let f @ g be any atom in Since 
1. 00 

$·f~ g : t ---> t is 2-absolutely summing operator, then 

theorem 1. 2. 2 implies that $. f e g t 1 
--> 1(0 is 1-absolutely 

1 CO 
summing. Hence by theorem 1.2.3, $ • f @ g e L(1 ,t ) is an 

integral operator. However, from the definition of intergral 

operators, we have 1 V 1 * · ~ $ • f e g e (1 e 1 > = v. Hence for every 
00 1"\ 00 I'V 

atom f Q g e 1 e 1 we have $ • f@ g e V. Since the linear 

span of the atoms of is dense in it follows 

F 
QG "' CO 

that for every £ 1 @ 1 $ • F £ V. 
,..... 

Now let tP £ V. If tPn 
,... 

of V, section 2.1, we have 

""' 
$ • lj!n € V. Further 

11$·tPnll..., ~ 

V 

~ 

where is the norm of ~ as an operator from 

into V and 
+ 00 + A 00 + 00 A 00 

V(Z ) = 1 (Z ) @ 1 (Z ) = 1 @ 1 . n n n n n But this is 

the sufficient condition (and also necessary) for $•tP to be 
"' ,..... ,... 

in V. Thus $ e M(V) = V as in section 2.1. Since 

for all n e N, it follows that 

00 "' 2 
• e MC! e 1 ) for all n e N. Then, as in the proof of theorem 

n n 
oo· "' 2 

2.2.2t • e M(t G 1 ). 

Conversely (i) + (ii). Let • e M(1
00 @ 1 2 ) and f 9 g be any 
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atom in ~oo e ~00

• Let K = {~ 1 ~ •.. , ~n} be any finite set of 

elements in ~ 1 . Then 

L = j ft<<P • f ~ g)(t:. )ll;, 
]=1 J 

r supj r <fl(r,s)f(r)g(s)~.(s) j 2 • 
j=l r s=l J 

= 

For each ~ € K, there exists r~ E N such that 

00 00 

supt r <P<r~s)f(r)g(s)~(s) 1
2 

r s=l 
= j I <fl(r.,s)f(r)g(s)~(s)j 2 • 

s=l J . 

The mapping A : K --> N such that /.(~) = r~ need not be a 

(1-1) mapping. Let Kl, ... ' Kk be a partition of K such that 

A(K
1

) = rl, .•. , A(Kk) = rk. Considering <P as an infinite 

matrix, we set 1/J to be a matrix. obtained from <P by repeating 

r th . th . 
the row n1 tJ.mes , ... ,.the rk row nk tJ..mes, where 

n1 , ... , nk are the cardinalities of K1 , •.. , Kk. Since, by 

theorem 2. 2. 3, M (R, 
00 @ R.. 2> = M (R.. 2 @ ~ 2 ), an application of lemma 

3.1.1 in Chapter III of this thesis implies that 1/J € M(R..~ ; t 2 ) 

and U 11> I! m ~ c •11 <P Urn, for some constant c. · Since re labelling 

the indices of the elements of K does not change the value of 

L, we assume that r 1 = l, r 2 = n+l, .•. , rk = n 1 + ••• + nk_
1

+1. 

Hence we write 

n oo 

L s r I i: IJ>(j,s)f(re- .. >g(s)~J.(s)! 2 • 
j=l s=l ~J 

Further, we can take f to be the constant function 1. Since 

J belongs to a finite set of N, it follows that 
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0 

1jJ ~ 
CO 2 where ~ is the function • € L(i ,£ ), 

= rj (s) 
if ""\ s; n .J 

~(j,s) 

. 0 if j > n. 

This implies that 

where 

n 
L s; I lw<j,s)g(s)~(j ,s) j2 

j=l 

s; 11(1/J·~)(g)ll; 

s; UgU~·IIlJ1·~11 2 , 

is the norm of as an element in 
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ClO 2 
L(i ,t ). 

Let F be any element in the unit ball of i
00 a t 2 . Then, if 

00 2 denotes the norm of ~ as an element in L(t ,t ), we 

have 

s; 11~11·111/JIIM 

s; c•llcpiiM·II~II. 

CO A 112 Since F was arbitrary in the unit ball of t ® N , it 

follows 

Finally we obtain 
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from which it follows that ~ • f @ g : i 1 
--·-> i~ is 2-

absolutely summing operator. This completes the proof of the 

theorem. 

As a corollary to the previous theorem we obtain the 

following 

Theorem 2 • 2 • 5. 

MCi 2 @ i 2 ) = V. 

Proof. Let ~ E MCi 2 @ ~ 2 ). Theorem 2.2.3 implies that 

IX) .... 2 1 ~ 
~ E M(t @ t ). Hence, by theorem 2.2.4, $. f e g : t ---> t 

is 2-absolutely summing operator. The proof of (ii) ~ (i) of 

theorem 2.2.4, then implies that ~ E MCV) = V. It follows that 

MCt 2 0 t 2 ) c V. On the other hand, if $ E V, then 

..+. = "' I M ( t 2 e t 2 ) . Hence V c M ( t 2 e t 2 ) ' and the ~n ~ + + E n n z xz 
n n 

proof is complete. 

Remark. Theorem 2.2 .5 is implicit in the work of Bennett [ 3], 

although he does not state explicitly·. This work and that 

of Bennett are independent. 

We have to remark that the isomorphism in theorem 2.2.5 is 

not an isometry but a norm equivalence. That is 
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0 a > 1. 

Further, the same results are valid for the space £ 2 (Z) e t 2 (z). 

0 
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2.3. The Hankel Multipliers of t 2 (Z) ; t 2 (Z). 

Let f E: t
00

(Z) and 4> be a function on Z X Z defined 

by <j>(r,s) = f(r+s). If <I> E: M<t 2(Z) e t 2(Z)), then <I> will 

be called a Hankel multiplier of t 2 (Z) e t 2 <z>. It is the 

purpose of this section to characterize the Hankel multipliers 

of t 2(Z)@ t 2(Z). 

Let M(T) denote the space of all complex valued regular 

bounded Borel measures on T. Set B(Z) to be the set of func-

such that f = v for some v E: T. 

Theorem 2.3.1. 

Let 4> E: t
00

(Z x Z) be defined by: <f>(r,s) = f(r+s) for 

some f E: t
00

(Z) then the following are equivalent: 

(i) <I> E: M(t 2(Z) G t 2(Z)). 

( ii) f E: B ( Z) . 

Furthermore, llfiiB(Z) = II<I>IIM • 

Proof. (ii) + (i). Let v be any element in M(T). It is 

well known, [JC], that there exists a sequence of discrete 

measures in M(T) such that: 

A A 

V n ( j ) -> V ( j ) for a 11 j , and 11 V n 11 M ( T ) ::<:: 11 V 11 M ( T) . 

For any discrete measure v, we have 

00 00 QC) 
A r -irtj "' 

V = .l a.jdt .. ' v(r) = a..e ' and UviiB(Z) = r I a.· I < 
J=l J j=l J j=l J 

where ~t. is the unit mass at the point t· .• Now, let 
J 

J 

oo, 
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"' $(r,s) = v(r+s) = f(r+s). Then 

00 

e -i(r+s)tj $(r,s) = I a. 
j=l J 

00 

-irt e -istj = i: a. e . 
j J 

e
-ir-t_.! 

Setting f.(r) = a. J 
J J 

and 
-ist: . 

= e -J ' we see that 

00 "' 00 
$ E i (Z) e i (Z). Further 

For $(r,s) = f(r+s), where f is any function in B(Z), 

"' we have cp (r, s) = lim f (r+s), · where 
·n n 

f (r+s) = v (r+s) n n for some 

discrete measure vn and llfniiB(Z) s llfUB(Z)" Hence the function 

cp is the pointwise limit of a uniformly bounded sequence of 

elements in It follows, [~q], that cp E V(Z) and 

11 cp n Vl'll 11 f 11 B (Z) . Theorem 2. 2 • 5 implies that 

Further II<PIIM s 11$11V(z)s llfiiB(Z) · 

cp € M<i'rz)el.'(z)). 

Conversely (i) + (ii). 
00 00 

Let F : i (Z) ---> i (Z x Z) be the 

mapping F(u)(r,s) = u(r+s), and E be the set of functions cp 

in M(~~(Z); i~(Z)) such that cp = F(u) for some u in 

!
00

(Z). Theorem 2.2.5 implies that E = Wt)·Hence 

~ = ~~ · th_en ~ € i
00

(Z) 0 1
00

(Z ). Let 
"'n "' Z x Z ' "'n n n n n 
be a representation of ~ "'n ~n 

$n(r,s) = (F(u))n(r,s). 

k 
= r f.(r)•g.(s) 

i=l ~ ~ 

if 
k 
I f. e g. 

i=l ~ ~ 

Then 
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k 
::: r 

i=l 
f.(a)•g.{B) -------

l l 

_for all a and s in z such that a+p ::: r+s. For each n e N, 

define a mapping p 
n on E as follows: 

p : E --> R..<IO(Z)' n 

1 
k 

p (cj>) ::: 
2n+l r f. * g. n i=l l J. 

The function P (cj>) J.S independent of the representation of n . 

for 
k 

2~+l r (f.·• g.)(k) 
i=l l J. 

1 n k 
= 2n+1 .r <.tlfiCk-j)vi(j)) 

J=-n l= 

1 n 
= 2n+l .r cpn(k-j,j). 

J=-n 

Let A(Z) be the space R- 2 (Z) * R- 2 (Z) which is, by the 

Plancherel theorem, the same space as FLJ..(T), the Fourier 

transforms of LJ,(T). Then p (cj>) e A(Z) c B(Z). Further, n -
" 

if 

R-2cz > R..2(Z ) 11 UT denotes the norm in ~ and 1z is the n r n n 
characteristic function of zn' then 

1 llq, 1z e lz u'(r :;; 2n+l • 
. 

n n n 
:;; 1 

11 tf:ln IIM ·lllzn Q lz 
11 

2n+l " 11 Tr n 
:;; 11 cj>nliM 

s HtPHM ----------------- * 

cpn' 
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On the other hand, since ~ = F(u), 

1 n 
- 2n+l .r ~n<k-j,j) 

J =-n 

1 n 
= 2n+l .r u(k) 

J=-n 

= u(k). 

Hence Pn(F(u)) ---> u pointwise. Since 
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uniformly bounded sequence in A(Z) which converges pointwise 

to u, we obtain that u E B(Z). Furthermore, relation * * 
implies that 

This completes the proof of the theorem. 

A similar result was proved by Varopoulos [~BJ. where he 

proved the isometry of B(Z) and its image under F in the 

tensor algebra norm; 

As an application of theorem 2.3.1, we estimate the multi­

plier norm of the matrix ~' as an element in MC1 2(Z) ; t 2 CZ)), 

where 

-- { 10 ~(i,j) 

if 0 < i+j s n 

otherwise. 

Lemma 2.3.1. 
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where C is a constant independent of n. 

Proof. Let f be a function defined on Z as follows: 

= [ lo f(i) 

if 0 < ~ ::;; n 

otherwise 

Clearly ~(i,j) = f(i+j). Since f has a finite support in z, 
then f e: B(Z). Let f = v for some v E M(T). By the Riesz-

representation theorem, there exists a continuous linear func-

tional S C(T) ---> ~ such that S(h) = J hdv and 

T 
HSU = BvHM(T)' where 

Hsll I S(h) I 
= sup llhll 

h 
hE C(T). 

It follows from theorem 2.3.1 that 

Hence it is enough to estimate the norm of S. Further1 since 

the trigonometric polynomials are dense in C(T) under the 

supremum norm, it is enough to take h, 1n the definition of 

11 S ft, to be a trigonometric polynomial.. Setting 

.... 

f eirt v(r) = dv(t) = f(r), we see that 

T 

=[ if 0 < r ::;; n 
S(eirt) 

otherwise. 

k ijt Thus if h(t) = I a. e ' then 
j=-k J 
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n 

l a.. 
1 J 

if k > n 

S(h) = 
k 
I a.. 
1 J 

if k < n. 

Consider the following function in C(T): 

...., n irt D (t) = I e n r=l 

n n 
= I cos rt + i I sin rt 

r=l r=l 

= (D - ~)(t) + D (t), n n 

where Dn is the Dirichlet kernel and D 
n 

is the conjugate 

kernel to D . A classical result in harmonic analysis, n 
asserts that lln nlll ~~<~ a. log n and llnnu 1 

...... log n, where "' 

denotes the norm in L1 (T). Hence un nlll ~ c log n for 

constant c independent of n. Next we observe that 

n r a.. = 
j =1 J 

<n * h)(O), n 

from which we conclude 

n 
Is (h > I =: I ) a.J. I 

]=l 

= l<n ,•,h)(O)I 
n 

~ 1115 11 1 • llh!l n eo 

~ c log n • llhll
00

• 

[ :L J. 

u 11 

some 

Hence 11 s n Is (h) I = sup llhll ~ c log n. This completes the proof of 
h ()() 
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the lenuna. 

The rest of this section is devoted to the study of the 

Hankel multipliers when Z is replaced by N. 
00 

Let f E: t (N) 

such that for each n E N, 

k 
I u.(s)v.(r-s), 

. 1 J. J. 
1.= 

fj + has a representation 
z 

n 

0 ~ s ~ r. Set 

k 
a(f,n) = inf{./: luiftoo·uviHoo}, 

J.=l 

where the infimum is taken over all the representations of 

fl +" Now we introduce the following 
zn 

Definition 2.3.1. 

A function 
00 

f E t (N) will be led a tensorial function, 

if for each n E N, has a representation 

k 
fJ (r) = .! u

1
.(s)v

1
.(r-s), 

z+ J.=l 
0 ~ s ~ r, such that 

00 

(a(f,n))n=l 

n 

is a bounded sequence. Let J be the space of all tensorial 

functions. We introduce a norm on J as follows 

00 

UfHJ =sup a(f,n). 
n 

If v = l c.6t J.S any discrete measure on T, such that 
j =1 J j 

D vU < oo, then 

00 
irt· " 

i: c. v(r) = e J 
j =1 J 

00 

ist· i(r-s)t· = r c. e J e J • 
j =1 J 
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k 
Furthermore s I Uu.U •Dv.U s UfiJ. Hence for each 

i=l 1. llO 1. ClO 

neN,.t~.j 
't' + 

Zn 

and 

~ 2 ). From which we obtain that 
n 

n 4> 1 n .... s a fl J. 
z+ v 

n 

This implies that 

4> e V(N). Another application of theorem 2.2.5 yields 

4> e MC~2 @ ~ 2 ). This completes the proof of the theorem. 

The previous theorem shows that there exists a (1-1) mapping 

F, between the space 

A(N) denote the space 

J and a subspace of M(~ 2 e ~ 2 ). Let 

~ 2 * ~ 2 , which is simply the space of 

Fourier transforms of 
1 1 A 

L+(T) = {f e L. (T) lf(n) = O, n < O}. We, 

then, prove the following 

Theorem 2.3.3. 

Consider F : ~~» --> 
ClO 

~ (N X N)' such that F(f)(r,s) = f(r+s). 

If F(f) e MC~ 2 i ~ 2 ), then f e MCA(N)). 

Proof. Let F(f) E Mc~ 2 e ~ 2 ). Theorem 2.3.2 implies that f € J. 

From the definition of J and theorem 2.2.5, it is enough to take 

f 

I 
i=l 

00 

of the form f(r) = I 
i=l 

u . ( s ) v. ( r-s) , 
1. 1. 0 s s s ""'' and 

lu.ll •lv.l < oo. 
1. llO 1. 00 

If is an atom in A(N), 

oo r 
= (I u.(s)v.(r-s))•( I g(A.)h(r-A.)) 

i=l 
1 1 A.=O 

'( QO 

= I (g(A)h(r-A)• I~A)v.(r-A)) 
A.=O i=l 1 

QO ' • 

= I ( I g(A)u.(A)•h(r-A)v.(r-A)) 
i=l A=O 1 1 

= I ( g . * h
1
. )( r) , 

. 1 1. 1.= 

then 
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where g. = g • u. 
~ ~ 

and h. = h • v .• 
~ ~ 

Furthermore 

w 

~ Ugl
2 

•HhD
2

• l Uu.H •lv.l • 
i=l ~ 00 ~ ()() 

Hence f • ~ € A(N). Since ~ was an arbitrary atom in t 2 * 1 2 , 

it follows that f E M(A(N)). This completes the proof of the 

theorem. 
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CHAPTER III 

This chapter concerned with the relationship between 

the multiplier algebra of certain function spaces and certain 

operators on some Hilbert space. Section 3.1, is devoted to 

the study of the multiplier algebra of function spaces which 

are defined on finite measure spaces, and their relation to 

normal contractions defined on some Hilbert space. The re­

lationship between spectral measures and multiplier algebra 

of certain function spaces is the object of section 3.2. The 

results of section 3.2 are used, in section 3.3, to study the 

multiplier algebra of function spaces \vhich are defined on 

infinite compact measure spaces. 

3.1. Multipliers and Normal Contractions 

Generally, we denote by H a complex Hilbert space. 

40 

The set D = {ZIZ E: C, IZI :;;; 1} will denote the unit disc and 

C(D) is the space of continuous functions over D. By a normal 

contraction on H we mean a linear operator s H + H such 
i: '1: * that ss = s s and U SxU :;;; llxll for a:11 X E H, where s 

is the adjoint of s. Fix an n E: N, and let H be of dimen-

si on n. Since H is finite dimensional, any normal operator 

on H has a set of orthonormal eigen vectors which span H. 

For any pair of normal contractions S and T on H 

consider the bounded bilinear form 



c 

c 

F : C(D) X C(D) -> L(H) 

F((f,g)) = f(S)og(T). 

Then, [l~J. there exists a bounded linear operator 

..., " 
F : C(D) @ C(D) --> L(H) such that the following diagram 

commutes: 
F 

i 

1 C(D) 

..., 
F 

C(D) 

" C(D) @ (D) 

where 1 is the inclusion mapping. Hence, for any function 

<f> in C(D) eC(D), we make sense of <f>(S,T) (since H is 

finite dimensional <f>(S,T) makes sense for all bounded Borel 

functions <f> on CQ:> x D). 

Let E
1 

= {A1 , •.• , An} and E2 = £n 1 , ••• , nn} be any 
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two sets of points in D. The sets E1 and E2 , will be fixed 

throughout the present section. Since H 1s finite dimensional, 

one can find two normal contractions S and T on H whose 

eigen values are the points of the sets E1 and respective-

" ly. Now, fix a function <P in C(D)@ C(D). If is the 

set {1, ••. , n}, then consider the function ~' 

~ : z+ x z+ -> c 
n n 

~(i,j) = cpo .. ,n.), 
1 J 

1 ~ i,j .~ n. 

Then we prove the following theorem. 



(ii) D~(S,T)HL(H) ~ 1, for any pair of normal cont~ac­

tions S and T on H whose eigen values are the elements 

of the sets E1 and E2 respectively. 
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Proof. (i) -+ (ii). Let U ~ V be any atom in the unit ball 

12 "' 2 Since M0, 2 12) D$1lM ~ 1, then of Q 51. • 1/J € Q and 
n n n n 

51.2 A 12 It follows from 1/J•u e v is in the unit ball of 0 n n· 

lemma 2.2.l(iii) that 

where the supremum is taken over all operators U in the unit 

ball of L(1~), and Tr(($•u e v)oU) denotes the trace of 

(1/J•u G v)oU. Hence the assumption implies 

n 
I l: 1/J(i,j)u(i)v(j)U(j,i)j ~ 1 
i,j=l . 

for any atom u 0 v 1n the unit ball of 

U in the unit ball of 

2 ... 2 
5I, @ Jl. n n and for any 

Let S and T be any pair of normal contractions on .H 

whose eigenvalues are the elements of the sets E1 and E
2 

respectively. Again, since H is finite dimensional, then there 

exists two sets of orthonormal vectors {e1 , ... , en} and 

· {£1 , ... , fn} such that 

Se. = A. e. 
1 1 1 

and Tf. = J).f., 
J J J 



0 
Let 

and 

and 

are 

oo· 

. r ckgk @ hk 
k=l 

let e and f 
n 

f = r b. f. , 
j =1 J J 

unit vectors in 

be a representation 

be any unit vector 

where a = (al' ... ' 

R.2 
n' then we have 

()() 

of cp J.n 

in H. If 

a ) n and 

" C(D) e (D), 

n 
e = l a.e. 

i=l ]. ]. 
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b = (b1 , .•. , bn) 

j<<j>(S,T)f,e>j = /< r ckgk(S)hk(T)f,e>t 
k=l 

00 n n 
= j< r I ckbjgk(S)hk(T)fj' r a.e.>/ 

k=l j=l i=l 
]. ]. 

00 n n 
= j< I I ckbjgk(S)hk(nj)fj' l a.e.>l 

k=l j =1 i=l 
]. ]. 

n 00 

= I . ~ a.b.<f.,e.> I ckgk(A.)hk(n.) 
]. , J =l ]. J J ]. k=l ]. J 

= I l cp(A.,n.)a.b.<f.,e.>/ 
i ,j =l ]. J l J J l 

Set u(i) =a., v(j) =b., and 
l J 

U(j,i) = <f.,e.>. Then 
J l 

U 9 V 

is an atom in the unit ball of R.2 e t 2 • Further, since n n H and 

R.~ are isometrically isomorphic, and each of the sets {e1 , •.. ,en} 

and {f1 , ... , fn} is an orthonormal basis of H, then U is a 

unitary operator on From this we deduce 

n 
/<cp(S,T)f,e>/ = / I ljJ(i,j)u(i)v(j)U(j,i)j 

i,j=l 

~ 1. 

Since this is true for all unit vectors e and f in H, it 

~ follows that Bcp(S,T)UL(H) ~ 1, which proves (ii). 
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Conversely (ii) ~ (i). Let u ~ v be any atom of unit norm in 

~~ e ~~~ and U be any unitary operator on ~~- The identifi-

cation of H and ~2 
n' enables us to choose two sets of vectors 

{el, ••• , e } and {fl, •.. ,fn}' each of which is an orthonormal 
n 

basis of H such that U(j ,i) = <f. , e.>. Define linear operators 
J 1. 

s and T on H as follows: 

n n 
S( l a. e.) = l a.A..e., 

i=l 1. 1. . 1 1. 1. 1. 1.= 

n n 
T( l b. f. ) r b.n.f .. 

j=l J J j=l J J J 

Then s and T are two normal contractions on H whose eigen 

values are the elements of the sets El and E2 respectively 

and ·{el, .•. , en}' 

vectors. Set e = 

f are unit vectors 

{fl, ... , fn} are the corresponding 

n n 
l u(i)e. and f = l v(j)f(j), 

. 1 1. j=l 1.= 

J..n ~2. 
n Then 

n 
L = I l wCi,j)u(i)v(j)U(j,i)l 

i,j=l 

n 

so 

= I l ~(A..,n.)u(i)v{j)<f.,e.>l 
i,j=l 1. J J 1. 

= j<~(S,T)f,e>j 

eigen 

e and 

by assumption. Since u S v 1.s an arbitrary atom in the unit 

ball of ~ 2 ~ ~ 2 . and as it is well known, [f8], the unit ball of n n' 

1(~ 2 ) is just the closed convex hull of the set of unitary operators 
n 

on we obtain that and This 

completes the proof of the theorem. 
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Let <P be a polynomial in two variables defined on D X D. 
A 

Then one can have a representation of <P in C(D) e (D) of the 

form 
n 

<P<zl,z2) = l fi(zl)gi(z2)' 
i=l 

for some n e N. Let llfilloo = f.()..) and 1 gj a 00 
= 

~ ~ 

l ~ i,j s n. Define a function 1/J on z+ x z+ by n n 

1/J(i,j) = <P(A.,n.). In Chapter II, we proved that 
~ J 

g.(n.) 
J J 

for 

M(J1.2 s J1. 2 ) is isomorphic (up to norm equivalence) to V. It 

follows that M(J1. 2 e J1.
2 ) = J1.

00 @ J1.
00 

(up to norm equivalence). n n n n 

Then one has 

s 11/J u OO"' CO s H <P u .... 
J1. &JI. C(D)®(D) n n 

These remarks, together with theorem 3.1.1, imply the following 

Theorem 3.1.2. 

Let <P be a polynomial in two variables defined on D x D. 

If B<P(S,TIIL(H) s l for all pair of normal contractions on the 

Hilbert space H, then there exists a constant C such that 



0 

0 

46 

3.2 Multipliers and Spectral Measures on Finite Measure Spaces 

We start bj recalling the definition of spectral measures. 

Let X be a set and F be a a-algebra of subsets of X. Given 

a complex Hilbert space H, then a mapping 

P : f -> L(H) 

is called a spectral measure on X if the range of P is con-

tained in the set of projections in L(H) and the set function 

Jl:f->t 
X 

p(E) = <P(E)x,x> 
X 

is a measure on X for all x E: H. Let us adopt the convention 

that P(X) = I, the identity operator on H. An excellent 

account on spectral measures is given in the book of Berberian 

[ l/]. 

Now take the set X to be 

be the family of all subsets of 

Theorem 3.2.1. 

z+ = {1,2, ••• , n}, and F to 
n 

z+. Then we prove the following 
n 

The following are equivalent: 

' ( i) et> E M ( t 2 e t 2 ) and Het> u M ~ 1. 
n n 

n 
(ii) l cf>(i,j)P(i)Q(j)U ~ 1 for every pair of (not 

i,j=l L(H) 

necessarily commuting) spectral measures P, Q on 

Proof. (i) ~ (ii). For a start, let us fix a complex Hilbert 

space H. Let P and Q be any pair of spectral measures on 



z+ with values in n 

1 ~ i,j ~ n. Since 

L(H). Set P(i)H = A. 
~ 

{ P ( 1 ) , . . . , P ( n ) } and 

and Q(j)H = Bj, 

{Q(l), ..• , Q(n)} 

are two sets of orthogonal projections in L(H), then 

{P(l)H, ... , P(n)H} and {Q(l)H, .•. , Q(n)H} are two sets of 

closed orthogonal subspaces in H. Hence 

• • • 

. . . 
+A n 

+ B . n 

We call such decompositions of H, the P-decomposition and 
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the Q-decomposition respectively. Let a and b be any two 

vectors in the unit ball of H. 

Then •• • + a and 
n 

Let P(i)a = a. 
~ 

+ ••• + b 
n 

and Q ( j ) b = b . • 
J 

in the P-decompo-

sition and the Q-decomposition of H respectively. For the non~ 

zero components of a and b we write 

al a 
U a 1 D + + Ha 11 

n a = lla1ll 
. . . 

raT n n 

bl b 
b Db1 U + + Db n n = 

·J bl u 
. . . 

TbT . n n 

a. 
Set ~ if -;. 0 and 0 if 0. Similarly e. = ua:-r a. e. = a. = ~ ~ ~ 1 

~ 

b. 
f. = _J_ if b. = 0 and 

J I b. U J 
f. = 0 if b. = 0. Then the non-

J J ] 

zero elements of { el' ... ' en} and {f1 , ... , fn} form two sets 

of orthonormal vectors in H. This implies that the matrix 

F(i,j) = <f., e.> is a contraction on t2. 
~ J n 

Set u(i) = R a. I 
~ 

and v(j) = 11 b .• ' 
J 

then since a and b 

are unit vectors in H' then U 9 V is an atom in the unit 

t2 
,.. 

t2. ball of ~ If we notice that P(i)a =·u(i)e. .and n n ~ 



Q(j)b = v(j)fj' then we obtain 

n 
L = I l $(i,j)<Q(j)b,P(i)a>l 

i,j=l 

n 
= I L $(i,j)u(i)v(j)<f.,e.>l. 

. . 1 J 1 
1 'J::: 

From (i) and lemma 2.2.l(iii) we conclude 
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Since a and b were arbitrary elements in the unit ball of 

H, we get 11. ~ !f>(i,j)P(i)Q(j)UL(H) s 1. This proves the 
1,]:::1 

first half of the theorem. 

Conversely (ii) + (i). 

of 1 2 ® 1 2 and U n n' 

Let u e v be any atom in the unit ball 

be any unitary operator in Since 

12 can be identified to a subspace of dimension n in H, n 

then two sets, { e 1 , ... , en} and { f 1 , ... , fn}, of orthonormal 

vectors can be chosen in H such that U(i,j) 

n n 
X = l u(i)e. and y = }; v(j)f .• The vectors 

i=l 1 j=l J 

in the unit ball of H. If we define 

then 

P(i) = Projection on the span of 

Q(j) = Projection on the span of 

P(i)x = u(i)e., 
1 

n 

Q(j)y = v(j)f., 
J 

and 

L::: l l ~(i~j)u(i)v(j)U(j,i)l 
i 'j =1 . 

= <f.,e.>. Set 
1 J 

X and y are 



0 
n 

= I l ~(i,j)u(i)v(j)<f.,e.>l 
. . 1 J J.. 
J.., J = 

n 
= I l ~(i,j)<Q(j)y,P(i)x>l 

i,j=l 

n 
s B. ~ ~(i,j)P(i)Q(j)UL(H) 

J.' J =1 

s 1. 

Since u 9 v is any atom in the unit ball of 
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and 

since any contraction in 1(~2 > is the convex combination of 
n 

unitary operators in 1(~2 > [18J. it follows, from lemma 2.2.1 n 

(iii) and the definition of the multiplier algebra of ~ 2 ; ~2 
n n' 

that cp € Mc~2 & ~2) and R~UM s 1. This completes the proof n n 

of the theorem. 

Let X and y be any two vectors in H. Set P(i)x = x. 
J.. 

and Q(j)y = y .. Since 
J 

p and Q are spectral measures on 

z+ then {:xl, ... , X } and {y 1 ' ... ' yn} are two sets of ortho-n n 

gonal elements. With this in mind, we can restate theorem 

3.2.1 to read 

Theorem 3.2.1' 

The following are equivalent 

(i) ~ € MC~ 2 e ~ 2 ) and I~UM s 1~ n n 
n 

(ii) I l ~(i,j)<x. ,y.>j s Dxii•Uyll, for any pair of sets 
i,j=l J.. J 

{x x } and {y y } of orthogonal elements in H. 1, ... , n 1, ... , n 

We obtain from the previous theorem the following 
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Corollary 3.2.1 

(i) 11 ~ 11 E MC1 2 ; 1 2 ) and U~UM s KG·I•R 
1

v 1 , where 
1 81 

KG is the Grothendieck constant. 

(ii) L(1 2 ) = (1 2 ; 1 2 )
11 

c M(1 2 e 2 2 ) and B.IM s I.IL(H)' 

Proof. (i) Follows from an application of the Grothendieck in-

equality (or from the Littlewood inequality). 

(ii) Let {x
1

, •.. , x. } 
.n and 

orthogonal elements in H. Without loss of generality we can 

assume that {x1 , ... , xn} and {y 1 , ... , y n} span the same space, 

n 2 n 2 
and l 0 x. I s 1, l I y .11 s 1. Let {e1 , ..• , en} be an 

i=l 1 j=l J 

orthonormal basis of. the span of {x1 , ... , xn}. Assume 

n 
x. = l A.kek and 

1 k=l l 
Then 

is in 

n 
L = I l • ( i, j ) <x. , y . > I 

i ,j =1 l J 

n n 
= [ r .(i,j) l A.kn.kl 

i,j=l k=l l J • 

and 

n 
1 = , r •<i,j)~(i,j>l 

i ,j =1 

s 1•"L<H> • 0 ~ 0 Tr 

s I.UL(H)' 

This completes the proof of the corollary. 

Hence 
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Let a : N ~ N and 8 : N ~ N be any two maps which 

need not be (1-1). If • e MCt2 ; 12 ), then put f = •o(a 9 B)~ 

where 

.o(a @ B)(i,j) = .(a(i),B(j)). 

Consider any two spectral measures P and Q on N. Set 

P' (k) ::: P({a-l(k)}) 

Q'Ct) = QC{B-1(!)}). 

Clearly, P' and Q' are two spectral measures on N. The 

previous remarks together with theorem 3.2.1 enable us to prove 

the following 

Lemma 3 • 2 • 1. 

Let a and B be as above. If • € MC12 @ 12 ),. then 

the function • = • 0 a e B e M0,2 @ 12). Further •••u = •••u· 
Proof. Fix any finite positive integer n and any two spectral 

measures P and Q on N. Then 

n 
L = l IIJ(i,j)P(i)Q(j) 

i,j=l 

n 
= l (.oa 0 BHi,j )P(i)Q(j) 

i,j=l 
n 

= l .(c:x.(i),B(j)P(i)Q(j) 
i,j=l 

= l $(k,1)P({a-1 (k)})Q({B-l(1)}) 
k,R. . 

= l $(k,1)P'(k)Q'(1). 
k,1 

0 Since • e M ( 12 ~ 12 ), then 



c 

0 

DI <fl(k,1)P'(k)Q'(1)1L(H) s lq,IM. 

This implies that 

n 
I. ~ ~(i,j)P(i)Q(j)UL(H) s l<fiHM, 
~,J=l 
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from which we conclude that II~UM s l<fiiM. On the other hand, 

one can easily see that Bq,IIM s II~IIM. This completes the proof. 

In the previous lemma, let us take S to be the identity 

function on N, and the function a to be finitely many-to 1 

on a finite set E c N, and (1-1) on the complement of E. 

The function ~ can be considered as an infinite matrix ob-

tained from q, by repeating finitely many rows finitely many 

times. In this setting, lemma 3.2.1 reads that if q, e: M(12 @ 12 ) 

and ~ is a matrix obtained from q, be repeating finitely many 

rows finitely many times, then ~ e: MC12 e 12 ) and ll<fiiiM = R~UM. 

Let E be a finite set and ll be a discrete measure on 

Assume that 1J(a) 'f. 0 for all a e: E. We write V 

counting measure on E. Let s be an operator on 

such that u so s 1. By theorem l.l.l(ii), we have 

U SI = supj<S, u e v> 1, where the supremum is taken 

atoms u e v in the unit ball of 2 L (E,1J). 

I I S(a,b)u(a)v(b)1J(a)1J(b)! s 1. 
a;b 

Then 

for the 

L2 (E,1J) 

over all 

..... 

E. 

Set u(a) = u(a){1J(a) and v(b) = v(b){1J(b). Them u e v is 1n. 

the unit ball L2 CE,v) $ L2CE,v). This implies that 

I I S(a,b)r'1J(a)1J(b) • u(a)v(b) I s 1. 
a;b 



53 

From which we conclude that S(a,b) = S(a,b)/~(a)~(b) is in 

the unit ball of L(L 2 (E,v)). In a similar way one can show 

that if S is in the unit ball of L(L 2 CE,v)), then 

~(a,b) = S(a,b) is the unit-ball of. L(L 2 CE,~)). 
l~(a)~(b) 

Now, let ~ E MCL2 (E,~) G L2 CE,~)) and D~IM s 1. 

This is equivalent to I<~ •u @ v, :S> I :s: 1 for all atoms u @ v 

in the unit ball of L2 (E,~) @ L2 {E,~) and operators S in 

the unit ball of LCL2 CE,~)). But this is the same as writing 

I r ~(a,b)u(a)v(b)S(a,b)~(a)~(b)l :s; 1. 
a,b 

Let f @ g be any atom in the unit ball of L2 CE,v) @ L2 (E,v) 

and w 

f(a) = 

be any operator in the unit ball of L(L2 CE,v)). 

f(a) 

l~(a) 

g(b) -= g(b) and W(a,b) , 
ll.iTb) 

L = I r ~(a,b)f(a)g{b)W(a,b) 
a;b 

= W(a,b) 

{~(a)~ (b) 

= I t ~(a,b)f(a)g(h)W(a,b)~(a)~(b)! 
a;b 

:s; 1. 

Set 

Then 

Hence ~ E MCL 2 CE,v) ; L2 (E,v)) 

can prove that if ~ E MCL2 (E,v) 

then ~ E MCL2 CE,~) @ L2 (E,~)) 

and U~IIM ::: 1. Similarly one 

0 L2 (E,v)) and a~uM s 1 

and U~IIM :s: 1. 

We summarize this as 

Theorem 3.2.2. 

Let E be a finite set. Assume that and be any 
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two discrete measures on E which are absolutely continuous 

with respect to each other. Then the following are equivalent:· 

(i) 

(ii) 

and 

and 

BcpBM s 1, 

lcpiM s 1. 

As a corollary of theorem 3.2.1 together with theorem 3.2.2, 

we have 

Theorem 3.2.3. 

Let E be a finite set. If U I $(a,b)P(a)Q(b)DL(H) s 1 
a,b 

for every pair of spectral measures on E, then 

• £ M(L2 (E,p) ~ L2 (E,p)) and BcpHM s 1 for every discrete 

measure p on E. 

So far, we considered multipliers of certain function 

spaces with respect to a fixed measure. Before we consider non-

discrete measure spaces, we prove, in the following, a result 

concerning the common multipliers of more than one space. 

Theorem 3.2.4. 

Let X and Y be two finite sets. Then the following are 

equivalent: 

(i) cp E M(L2 (X,A) e L2 CY,n)) and D$11M s 1 for every 

pair of measures A and n on 

(ii) $ E L2 (X,A)@ L2 (Y,n) 

X 

and 

and Y respectively. 

U cpll s 1 for every pair 
1'r 

of probability measures A and n on X and Y respectively. 

Proof. (i) ~ (ii). Let A and n be any two probability 

measures on X and Y respectively. If 1 0 1 is the constant 



0 

function with range {1}, then 

Dl 0 lD 
2 

,... 
2 

= 1. 
L 0.)0L (n) 

Now, $ = $ • 1 0 1, from which it follows 

~ R$11 • Ul e 111 
. M L2(A)eL2(n) 

~ 1$DM s 1. 

Conversely. (ii) + (i). Let A and n be any two measures 

on X and Y respectively. Take u ~ v to be any atom in 

the unit ball of L2 (A) 0 L2 Cn) such that Buft
2 

= 1 = lvU
2

• 

Set 

Clearly X and 
...... 
n are two probability measures on X and 
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Y respectively. From (ii) it follows that $ is in the unit 
00 

ball of L2 CX) e L2 (n). Let l a. f. @g. be a representation 
i=l l l l 

00 

of $ 1n L 2 CX) Q L 2 Cn) such that l I a. I< 1 , If. U s 1 
. i=l l l L2 CI) 

and Ug.l 2 ~ s 1 for all. i. Now consider 
1 

L <n> 
llO 

i: 
i=l 

a.(f.•u) 0- (g.•v), 
l l l 

2 
J lfil

2
1ul

2 dA u f . •u n 2 = 1 L (A) 

J If. 1
2 "' = dA 

l 

s 1. 
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Similarly we have Ugi • VILz(n) s 1. Hence ~ • u e V is 

in the unit ball of L2 ().) i L2 Cn). Since u Q v was an 

arbitrary atom, and the convex span of the atoms is dense in 

the unit ball of L2 ().) Q L2 (n), it follows that 
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~ f MCL 2{).) @ L2
(n)) and I~IM s 1. This completes the proof 

of the theorem. 

Now, we consider the multiplier algebra of function 

spaces defined on finite non-discrete measure spaces. We prove 

a result that is similar to theorem 3.2.1, namely theorem 3.2.;. 

Let E be a finite set and v be a measure on E. 
n 

= u E .• 
i=l J. Assume that E1 , ... , En are the atoms of v, so E 

Take another set X which has the same cardinality as E, and 

let F be a (1-1) onto mapping from X into E. Now we define 

a discrete measure ~ on X such that f : (X,~) + (E,v) is 

a measure preserving mapping; The mapping F induces an 

operator 

where U(~)(x,y) = (~ oF@ F)(x,y) = ~(F(x),F(y)). 

Lenuna 3.2.2. 

Let (E,v), (X,~) and U be as above. Then the operator 

U is an isometry. 

Proof. For 2 " 2 w EL {E,v) 0 L (E,v), put ~ = ucw>. Let 

I I ft I d t th ' L2 CE,v) ~ L2 CE,v) Tr(v), • Tr(~) eno e e norms J.n 141 

and L2 (X,~) 0 L 2 CX,~) respectively. By definition we have 
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I 4> H ( ) :: inf { l D f . U 
2 

• K g . U 2 , 4> :: l f . 0 g . } , · where the in-
Tr lJ . ~ 1 • ~ 1 

1 1 
fimum is taken over all representations of 4> in 

2 . " 2 L (X,u) @ L (X,}.J). As it is well known (and easy to prove), 

the operator 2 S : L (E,v) defined by S(u) = u a F 

is an isometry. It follows that to prove the lemma, it is 

enough to show that every representation 

t 2 CX,u) " L 2 (X, lJ) l 9 is of the form (u. 
i 

1 

for some representation l u. 0 v. of 1 1 

Now, choose any representation of 

of 4> 

0 F) e 

w in 

in 

in 

(v. oF), 
1 

2 2 L (E,v)e L (E,v). 

2 " 2 L (X,u) G L (X,}.!), 

say 4> = l f. e g .• Since the operator S defined above is an 
• 1 l. 

isometry,
1
one can write L2 (X,}.I) = S(L 2 CE,v)) + (S(L 2 CE,v)))~. 

where .i denotes the orthogonal complement. Consequently we 

have 

f. ::: f~ + f~ and 1 2 g. = g. + g.' l. l. 1 1 1 1 

where 1 1 SCL 2 CE,v)) and 2 2 (S(L 2 CE,v))).i. f. ' g. € f. ' g. € Hence l. l. 1 l. 

$ :: r f. e g. 
i 

1 1 

l (f~ 1 (f~ ® 2 (f~ 0 1 (f~ & g~) :: ® g.) + g.) + g. ) + 
i 

l. l. l. 1 l. l. l. l. 

l (f~ 1 l (f~ 2 (f~ 1 (f? 2 = 0 g. ) + 0 g. ) + @ g.) + e g. ) ' 
i 

l. l. 
i 

l. ]_ l. l. l. l. 

since the sum over i. is a finite sum. ·The operator U consi­

dered as a map from L2 (ExE,vxv) into L2 (XxX,uxu) is an 

isometry. Consequently, since functions of finite rank are 

dense 1n L2(ExE,vxv), it follows that the span of the func­

tions of the form . (a o F) 0 (b o F) is dense in U(L2(ExE,vxv)). 

Now consider 



0 
<aof0bof, f~ @ g?> ·<aoF, 1 

;: f.>•<boF, 
J. + J. 

= <aof, f~>-0 
J. 

;: 0 

s.ince gi E (U (L 2 (E))) l.. It follows that 

f~ @ g~ E (U(L2 (ExE,vxv)))l.. Similarly 
J. l. 

2 g.> 
J. 

f? @ g~, f? ~ g? E (U(L 2 (ExE,vxv)))l.. But the function 
l. J. l. J. 
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2 ~ 1 2 2 1 2 2 cp = U(lft) € U(L (ExE,vxv)), hence L (f. e g. )+(f.@ g.)+ (f.@ g.)= 0 • 
• J. l. J. l. l. l.-

Therefore 

in 

of the lemma. 

~ 1 1 L f. @g. 
• l. l. 
J. 

L2 (E,v) @ 

l. 

= l (u. o F) 0 (v.o F) for some 
. l. l. 
l. 

2 L (E,v). This completes the proof 

As a corollary of the previous lemma we have 

Lemma 3.2.3. 

Let (E,v), (X,ll), u be as in lemma 3.2.2. If U(cp) E 

M(L 2(X,lJ) S L2 CX,ll) and HU(cp)UM::; 1, then 

cp € M(L2 (E,v) @ L2CE,v)) and ucpnM ::; 1. 

Proof. Let 1ft be any element of 
2 A 2 

L ( E , v ) 0 L ( E , v ) . Lemma 

3.2.2 implies that Since 

U(cp • JP) = Ccp • JP) o (F 0 F) 

= (cp o Fe F) • (1ft o F 0 F), 

it follows that 

ncp • wa = n < cp • JP) o F ® FU ( ) Tr(v) Tr 11 
::: IIU(cp) • U(JP}ftTr(lJ) 

:::;; UU(cp)UM • IU(JP)K () Tr 11 • 
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Now by assumption we get ~<P·tPH ( ) :-;:; IU(tP)D ( )" Tr V Tr ~ 
Another 

application of lemma 3. 2. 2 implies U <P •tPU ( ) s hp I ( ) • Tr V Tr V 

Hence <P E M(L 2 (E,v) @ L2 (E,v)) and R<f>UM s 1. This completes 

the proof. 

One can state lemma 3.2.3 in a more general setting as 

follows: Let (A1 ,v1 ), CB1 ,~1 ) and <A2 ,v2 >, (B2 ,~ 2 > be 

finite measure spaces. Assume that a. : A1 -+ A
2 

and 

6 ·: B
1 

-+ B
2 

be two (1-1) onto measure-preserving mappings. Then 

if (cp 

then 

Bcp o a e SIM s 1, 

In case of 

discrete spaces, then the converse is also true. That is if 

and DcpHM :-;:; 1 then 

ncp o (a. 0 S)UM s 1. 

(cp o a 0 f3) € 

This follows 

from the fact that the operators 

are onto. So if U @ V J.S an atom in 2 " 2 L (A1 ,v1 ) ® L (B1 ,~1 ) 

then there is f ~ 
2 ,.. 2 

g, an atom J.n L CA 2 ,v2 ) 8 L (B2 ,~ 2 > such 

that u ® V : (f ® g) 0 (a. @ f3). 

Now, let E be a finite set and v a finite measure with 

atoms E1 , ..• , En. If f is a measurable function defined on 

E, then f assumes one value on each E .• 
]. 

where a. E E., 
]. ]. 

and put a discrete measure 

Let 
,... 
E = {a1 , ... ,an} 

E. such that 
..., 
v on 
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Theorem 3. 2. 5 

The following are equivalent. 

(i) ~ c:: MCL 2(E,v) ; L2CE,v)) and H~AM s 1 

(ii) aJ J ~(a,b)dP(a)dQ(b)UL(H) s 1 for every pair of 

ExE 

spectral measures on (E,v). 

of 

and 
..... 
~ E: 

(i) ~ (ii). If f is an element of the unit ball of 
n 

then I lfCai>l 2 v(Ei) ~ l.Hence ~is in the unit ball 
i=l 

2 ..... ..... ..... 
MCL 2CE,v) " L2 <E:,v>> L (E,v). One can then prove that ~ € e 

,..., 
~(ai) ~~~M ~ 1, where = ~(Ei). By theorem 3.2.2, 

MCL 2 CE,~) e L 2 CE,~)) .... 
and ll<piiM s 1, where 1( is the 

counting measure. Theorem 3.2.1, then implies that 
n 

I I ~(a.,a.)~(a.)ij(a.)UL(H) s 1 for every pair of spectral 
i,j=l 1 J 1 J 

measures P and ij on E. However, 

I Jf~<a,b)dP(a)dQ(b)U L(H) 

ExE 

Conversely (ii) ~ (i) 

n 

l 

n 
= U I ~(a.,a.)P(E.)Q(E.)BL(H) 

i,j=l 1 J 1 J 

n 
= U I ~(a. ,a. )P(a. )ij(a. )UL(H) 

. . -1 1 J 1 J 
1 ,J-

JJ~ca,b)dP(a)dQ(b) = 
i,j=l 

~(a.,a.)P(E.)Q(E.). 
1 J 1 J 

ExE 

Hence (ii) implies that U J J~ca,b)dP(a)dij(b_'HL(H) ~ 1 for every 
.......... 
ExE 
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pair of spectral measures and Q on 
.... 
E. Theorem 3 • 2 . 3 

implies that $ e: M(L 2 (E,v) @ L2 (E,v)) and 1$'UM s l. Hence 

<P e: M(L 2 (E,v) i L2 CE,v)) and 1$UM s l. This completes the 

proof. 

In the same way as in theorem 3. 2. 2, one can prove that 

M(L 2 (E,v) "' L2 CE,v)) <P € @ and U<f>RM s 1 implies that 

I.HL 2 (E,\J) " L2 (E,}l)) • E @ and U$DM s l for every measure }.1 

on E with the same atoms as v. 

Let E be a finite set and V be any finite measure on 

E. Take X to be a set of the same cardinality as E and 

be a discrete measure on X. If F : X -l- E is a (l-1) onto 

measure-preserving mapping, then 

Theorem 3. 2. 6. 

The following are equivalent: 

(i) <P e: MCL 2 CE,v) G L2 CE,v)) and 1$HM s 1 

"' 

}.1 

(ii) ($ o F G F) e: MCL 2 CX,}l) @ L2 (X,}l)) and H$o-F~FIM:s: l. 

Proof. (ii) -jo. (i). This is just lemma 3.2.3. 

Conversely (i) + (ii). By theorem 3.2.2 and the remark after 

theorem 3.2.5, one can assume without loss of generality that Jl 

is the counting measure on X so if E. 
1 

is an atom in E then 

v(Ei) = IEil' the cardin~lity of Ei. Theorem 3.2.5 together 

with (i) implies that U J J<t><a,b)dP(a)dQ(b)HL(H) s 1 for every 

ExE 
pair of spectral measures P and Q on (E,v). Thus, using 

the notation of theorem 3.2.5, we have 



n 
I ~(ai,aj)P(ai)Q(aj)liL(H) ~ 1. 

i,j=l 

Now, let u ~ v be any atom in the unit ball of 

and S be any contraction on 2 
L (X, 11). 

Choose two orthonormal sets of vectors 1n H, (ex)xE:X and 

(fy)yE:X such that S(x,y) = <ex,fy>. Set 

"" {exiS(x) P(E.) = P(a.) = Projection onto the span of E: 
l. l. 

"" {fyjS(y) Q(Ej) = Q(aj) ::: Projection onto the span of E: 

Further, put e = l u(x)ex and f ::: I v(y)fy. Then 
XEX yE:X 

L ::: 1 2 (<1> o F x F)(x,y)u(x)v(y)S(y,x) I 
x,y 

= I I cf>(F(x),F(y)u(x)v(y)<ey,fx>l 
x,y 

n 
= I I i<a. ,a.)< I u(x)ex, . I v(y)f >I 

· i,j=l 1 J F(x)eE. F(y)eE. y 
1 J 

n 
= I L i<a.,a.)<P(a.)e,Q(a.)f>l 

i,j=l 1 J 1 . J 
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E.} 
1 

E.}. 
J 

Since e and f are in the unit ball of H, then we obtain 

L !: 1. But u @ v was an arbitrary atom in the unit ball of 

L2 CX,v) 0 L 2 (X,v) and the convex span of such atoms is dense 

in the unit ball, it follows that <1> o F®F € MCL 2 CX,v) ® L 2 CX,v)) 

and U<jl o F@ FilM ~ 1. This completes the proof of the theorem. 
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3.3. Multipliers on Infinite Compact Spaces 

Let I denote the unit interval [0,1], and F be the 

a-algebra of all Borel sets in I. In this section we will be 

considering the ~ultiplier algebra of 
2 A 2 

L (I,F,v) @ L (I,F,v) 

for any Borel measure v on (I,F). Throughout the section, 

the a-algebra F will be fixed and we will write L2 (v) for 

2 L (I,F,v). 

Now, for each n let F denote the a-algebra generated n 

by the n 2 -equal length-intervals of I whose union is 

Clearly we have 

Fl c f c ••• c f c ••• c f 
- 2 - - n - - • 

Furthermore F is just the a-algebra generated by the 

I. 

F 's. n 

Let ~ be a bounded Borel function on I x I. Then En(~) 

will denote the conditional expectation of ~ with respect to 

the a-algebra F X F 
n n 

the restriction of v to 

JJ,cx,y)dv(x)dv(y) = 
E 

in I X I' 

F , then 
n 

[ 5 ]. So if E (v) 
n 

J
( . 
J
E (')(x,y)dE (v)(x)dE (v)(y), n .n n 

E 

is 

for every set E E: F X F • n n The following lemma is well known, 

[ 5], and the proof will be omitted. 

Lemma 3.3.1. 

Let <P and E (~) be as above, then n 

(i) En(~) -+- ~ a. e. 

(ii) If 
6o 

(~i)i=l is a sequence of bounded Borel functions 
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on I X I such that I <P · I J. 
!S: K for some constant K, and 

q>. -+ <P a.e., then En(lj>i) -+ En ( :p) . a.e., 
J. 

(iii) If 1/1 is a measurable function on (I X I ' F X F n) n 

and if q>, $•$ are both in L1 (I X I, F X f, \) X v), then 

En(lj>•l/J) = IJ!En($) a.e. 

Let F € L2(v) @ L2
(v). Since is the dual 

space [ ,1). J • it follows that 

where the supremum is taken over all functions $ in the unit 

ball of L2 (v) ~ L2 (v). However, L 2(v) ~ L2 (v) is isometrically 

isomorphic to the space of compact operators on L 2 (v). Hence, 

IFUTr !S: 1 implies l<f,IJ!>I ~ 1 for every compact operator $ 

of norm !S: 1. With this in mind, we now prove the following 

result. 

Theorem. 3. 3.1 

Let q>, v, F, En($)' En(v) and F be as given above. n 

Then the following are equivalent: 

(i) $ € MCL 2 (v) @ L2 (v)) and n~uM !S: 1. 

2 A 2 (ii) En(lj>) € M(L (I,Fn,En(v)) e L (I,Fn,En(v))) and 

Proof. (i) -+ (ii). For a start, let L2 0: (v)) 0 L2 (En(v)) . n 

stands for L 2 (I,Fn,En(v)) 
A 2 

Let f Q g 0 L (I,F ,E ,(v)). be an n n 

atom in the unit ball of L2 (E (v)) 
n 

A 2 
® L (En(v)), and K be the 

kernel of a compact operator on L2 CE n(v)) of norm $ 1. It 

follows that f ~ g is an atom in the unit ball of 

L2(v) 
A 

L2 (v) ® and K is the kernel ·of a compact operator on 

L2 Cv) of norm ~ l. Since f @ g • K E L2(v x \)) , it follows 
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by lemma 3.3.l(iii) that 

En (<Jl • f 9 g • K) = f 0 g • K • En (<Jl). 

This implies 

I<En(<Jl)•fBg,K>I = IJJEn(<Jl)(x,y)f(x)g(y)K(x,y)dEn(v)(x)dEn(v)(y)) I 
I xi 

= IJJEnC<P·f~g·K)(x,y)dEn(v)(x)dEn(v)(y) I 
rxr 

= !JJ<<P•f9g•K)(x,y)dv(x)dv(y) I 
I xi 

s 1 

by (i). Since f e g ~ tM'\ arbitrary atom in the unit ball of 

L2(En(v)) e L2(En(v)) and K was arbitrary contractive compact 

operator of norm s 1 on L2CEn(v)), it follows that 

En(<Jl) E MCL 2<En(v)) @ L2(En(v))). 

Conversely (ii) + (i). If K is the kernel of a compact operator 

on L2(v) of norm s 1, then I}J<f®g•K)(x,y)dv(x)dv(y)l s 1 

for all atoms f @ g in the unit ball of L2 Cv) ~ L2 Cv). Let 

u @ v be an atom in the unit ball of L2 (En(v)) 0 L2 (En(v)). 

Then 

L = ifJ u e v•En(K)dEn(v)(x)dEn(v)(y)l 
rxr 

= ljj En(u 8 v•K)dEn(v)(x)dEn (v)(y) I, 
rxr 

by lemma 3.3.l(iii). Considering u 0 v as an atom in the unit 
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ball of L2 (v) @ L2 (v), it follows that 

L = J J (u ® v • K)(x,y)dv(x)dv(y). 

Ixi 

Hence ILl s 1. This implies that E (K) is the kernel of a 
n 

contractive-compact operator on L2 (En(v)). Now take f 0 g 

to be any atom in the unit ball of L2 (v) @ L2 (v). Then, [G ], 
En(f@ g) is in the unit ball of L2 (En(v)) 9 L2 (En(v)). The 

assumption (ii) implies that 

1JJ En($) • En(f G g) • En(K)dEn(v)(x)dEn(v)(y) I s 1. 
I xi 

By lemma 3.3.l(i) we have E (<j>) + <1> a.e., 
n 

a.e., and En(K) + K a.e. It follows that 

a.e. ----- if 

Since for ea.ch n, F x f has finitely many atoms, it follows 
n n 

that En (<j>), E (f ~ g), and E (K) are bounded. Relation tr • n n 

then, implies that 

for some constant C and for all n. Applying the bounded con-

vergence theorem, one obtains 

I J J <j>(x,y)f(x)g(y)K(x,y)dv {x)dv (y)J 

I xi 

= 1:1JJ En(<j>)(x,y)En(f 6) g)(x,y)En(K)(x,y)dEn(v){x)dEn(v)(y)l 

I xi 
s 1. 
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Once again, since f@ g and K we~e a~bitrary, it follows 

that cp E MCL 2 (v) ® L2 (v)) and I<PUM s l. This completes the 

proof. 

Now, let us write B(I) for the space of bounded Borel 

functions on I. Clearly B(I)@ B(I) S MCL 2 (v) e L2 (v)) for 

any Borel measure v on I. We define the space B(Ixi,vxv) to 

be the set of all bounded Borel functions cp on I x I such 

" that there is a sequence in B(I) 0 B(I) which is uniformly 

bounded ~n MCL 2(v)@ L2 Cv)) and converges to cp a.e. v x v. 

We then prove 

Theorem 3.3.2 

Let cp be a bounded Borel function on I x I. Then for any 

Borel measure v on I, the following are equivalent: 

(i) cp E MCL 2 (v) @ L2 (v)) 

(ii) cp E B(Ixi,vxv). 

Proof. (i) + (ii). Let cp E MCL 2(v) e L2 Cv)) and DcpiM ~ 1. 

Theorem 3.3.1, then, implies that 

En(cp) E MCL 2CEn(v)) ; L2 CEn(v))) and REn(v)UM s l. Since 

En(v) is purely atomic and has finite number of atoms, we can 

consider (I,Fn,En(v)) as a finite discrete measure space. By 

theorem 3.2.2, we obtain that 2 " 2 f (cp) E M(L (I,F ,~) ® L (I,F ,~)) 
n n n 

and Hfn(cp)UM ~ l, where ~ is the counting measure o~ (I,Fn). 

This together with theorem 2.2.5, implies that 

"' fn(cp) E B(I)@ B(I). However, by lemma 3.3.l(i), fn(cp) + cp 

a.e. v x v. Hence cp E B(Ixi,vxv). 
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Conversely (ii) ~ (i). Let 
00 

( ~ ) be a sequence of functions 
'~'i i=l 

"' 1n. B(])@ B(I) such that D<PiHM s; 1, and cpn ~ <P a.e. vxv. We 

would like to prove that cp e MCL 2 (v) @ L2 (v)). An application 

of theor~~ 3.3.1, implies that En(cpi) E MCL
2

<En(v)) e L2
<En(v)) 

and i ~ 1. Since a.e. vxv. then 

lemma 3.3.l(ii) implies that En(cpi) ~ En(cp) a.e.vxv. Again,since 

E (V) is purely atomic and has finite number of atoms, it fol-n 

lows from theore.;n 3. 2. 2 together with theorem 2. 2. 5; that 

E (cp.) e B(I) ; B(I). Hence E ($) e MCL 2 CE (v)) ~ L2(E (v)) n 1 · n n . n 

and HEn~)UM s; 1. Theorem 3.3.1, then, implies that 

$ E MCL 2 (v) e L2 (v)) and UcpUM s; 1. This completes the proof 

of the theorem. 

The rest of this section is devoted to state a theorem 

similar to theorem 3.2.5. To start with, let P and Q be any 

two spectral measures on (I,F). En(P) and En(Q) will denote 

the restriction of P and Q respectively on (I,Fn). Let <P 

be a bounded Borel function on (I x I, F x f). Set 

Sn = J J En(~)(x,y)dEn(P)(x)dEn(Q)(y). 
Ixi 

The sequence of operators 
<XI 

(S ) need not converge in the n n=l 

weak-operator topology. However, if 

then let 

S = JJ cp(x,y)dP(x)dQ(y) 

I xi 

denote such a limit. 

CO 

( Sn) n=l converges weakly, 
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Theorem 3.3.3. 

Let ~ be a bounded Borei function on I x I. For any 

Borel measure v on I, the following are equivalent 11 

(i) ~ € MCL 2 Cv) i L2 (v)) and K~DM ~ 1 for any Borel 

measure v on I. 

(ii) I J J ~(x,y)dP(x)dQ(y)UL(H) ~ 1 for any pair of sp~ctral 
I xi 

measures P and Q on (I,F). 

E MCL 2 (v) 
.... 

L2 (v)) Proof. (i) + (ii). Let ~ @ and ·~nM ~ 1. 

MCL 2 CEn(v) 
.... 

L2 CE Theorem 3.3.1 implies that E (~) E e n(v))) and n 

I E"( ~)I M ~ 1 for all n ~ 1. Since for each n, the a-algebra 

F n is finite, we can apply theorem 3.2.5 to obtain 

ISnUL(H) = ~J J En(~)(x,y)dEn(P)(x)dEn(Q)(y)~L(H) ~ 1 
I xi 

for all n ~ 1. Now, we want to prove that 
GO 

(<Sn a,b>)n=l is a 

convergent sequence of complex numbers for every a and b in 

H. We show that such a sequence is a Cauchy sequence. 

If E = A X B is an atom in F X F ) then En(~) has con-n n 

stant value on E. For m ~ n, one has E E Fm X Fm but it is 
k 

not an atom there. Let E = }: (A. X B.) where A. and B. 
. . 1 l J l J 
l ,J = 

are measurable atoms in Fm , 1 ~ i,j ~ k. If En(~)(E) = A E C, 

then we have 

En(~)(E)<P(A)a,Q(B)b> 

= ).<P(A)a,Q(B)b> 

k 
= I A<P(A.)a,Q(B.)b>, 

i,j=l l J 

where A = U A. and 
i l 

for every atom E in 

B = U B.. Repeating the above procedure 
i J 

Fn we could obtain another function 



E~m)(~) which is Fm x fro-measurable such that 

t~m)(~){x,y) = Em(~)(x,y) for all (x,y) € I x I. 

This enables us to write 

En(~)(x,y)dEn(P)(x)dEn(Q)(y)a,b> -

- <f f E~(~)(x,y)dEn(P)(x)dEm(~)(y)a,b>l 
I xi 

where (E x E ) 2m are the atoms in fm x fm and r s r,s=l 

(E~m)(~) - Em(~))(r,s) denotes the value that such a function 

takes on every element of the set Er x Es~ Now, to estimate 

the last summation, we need to estimate RE~m)(~) - EmiM as 

an element of MCL 2 CEm(v))@ L2 (Em(v))). 

Let u e v be an atom in the unit ball of 

L 2 (Em(v)) 9 L2 (Em(v)) and K be the kernel of a contractive­

compact operator on L2(Em(v)). It follows u@ v is in the 

unit ball of L2 (v) ~ L2 (v) and K is the kernel of a contrac­

tive-compact operator on L 2 (v). Then 

R(n,m) ::: <E(m)(~) - E (~)) • u 0 v, K> n m 

Lemma 3.3.l(iii) implies that 

Em ( ~ • u ® v • K ) = E ($) • u @ V • K. m . 
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Hence we obtain 

R(n,m) = <E~m)(4J) • u 0 v, K> - <~ • u fJ v, K>. 

Another application of lemma 3.3.l(i), we have l:imf(m)(~) = ~' 
n,m n 

where the convergence is a.e. vxv. This implies that 

lim R ( n ,m) = 0. 
n,m 

Since u ~ v and K were arbitrary in their specific spaces it 

follows that 

lim IE~m)(4J) - fm(~)UM = 0. 
n,m 

We, again, consider L = I<S ab>- <S a,b>l. Theorem n , m 

3.2.5 now is applied together with the last estimate on 

lf~m)(~)- fm(~)UM to yield that 

Hence 

b in 

( <S 
n 

H. 

lim I<Sn a,b> - <Sm a,b>l = 0. 
n,m 
CO 

a,b>)n=l is a Cauchy sequence in C for all a and 
CO 

So (Sn)n=l converges in the weak-operator topology. 

Further if S is the limit of the sequence then DSDL(H) ~ 1. 

Conversely (ii) -+ (i). Let lim USniiL(H) ~ 1. This implies that 
n 

for each o > 0 there exists an r(o) such that 

Choose a sequence or such that o -+ 0 as r -+ eo and r 

l+o • r By theorem 3.2.5, we have 
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Now, let f @ g be any atom in the unit ball of L2
(v) ® L 2 (v) 

and K be the kernel of a contractive-compact operator on 

L2 (v). As in theorem 3.3.1, En(f @ g) is an atom in the unit 

ball of L
2 (En(v)) i L

2 CEn(v)), and En(K) is the kernel of 

a contractive-compact operator on L2 CE (v)). We theri have n 

1 < <P • f e g , K> 1 

= lim I<En(cf>) • E (f ®g), E (K)>I n n n 

s 1. 

Since f @ g and K were arbitrary in their specific spaces, 

it follows that <P € MCL 2(v) 0 L2 (v)) and lcpUM s 1. This 

completes the proof of the theorem. 
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CHAPTER IV 

This final chapter consists of two sections. In the 

first section we prove the asymmetry and some other general 

results about the space MCL 2 CT,m) e L2 CT,m)). The study of 

the change of variables on the space L2 CI,m) ~ L2CI,m) is the 

object of the second section. 

4.1. The Asymmetry of 
2 ... 2 

M(L (T,m) ~ L (T,m)). 

Throughout the whole section T will denote the unit Circle 

and m the Lebesgue measure on T. For the simplicity 

of the notations, we write LP for Lp(T,m), 1 s p s ~. 

'Let C(T) denote the space of continuous functions on T 

and A(T) be the space of those functions in C(T) that have 

absolutely convergent Fourier series. Consider the mapp1ng 

F : C -> C(T x T) defined by F(f)(x,y) = f(x.+y). Then 

Theorem 4.1.1. 

The foilowing are equivalent: 

(i) f e A(T) 
A 

(ii) F(f) E C(T) ® C(T). 

Proof. See [1~], 'page 255. 

The map F defined above has range in M(L 2 @ L2) when 

it is restricted to A(T). Furthermore we prove the following 
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Lemma 4.1.1. 

IF(f)IM = lfDA(T). 

00 

eirt Proof. Since f E A(T), then we can write f(t) = r ar 
r=-GO GO 00 

irx iry r lar I < 00 Hence F(f)(x,y) = r ar e • e • However, 
r=-GO r=-QO 
I eirxll :1 

QC) 
for all r, it follows that IF(f)UM ~ UfiA(T)" 

To show the other inequality, define a mapping 

p : c (T X T) -> c (T) ' 

r 
such that P(~)(x) = J ~(x-y,y)dy. Clearly P o F : C(T) --> C(T) 

T 
" just the identity mapping. Let F(f) E C(T) e C(T) and 

00 

r u. 0 v. be any representation of F(f). 
i=l ~ ~ 

Then 

GO 

P(F(f)) = 2 u. it V • • 

i=l ~ ~ 

It follows that 

However, the function l 9 l E 1 2 e 1 2 , so we have 

IF(f)U = UF(f) • l e lU 
Tr Tr 

s IF(f)UM • Ill 9 111 
Tr 

Hence UP(F(f))IA(T) ~ IF(f)UM. Since P(F(f)) = f' 

HfUA(T) ~ IF(f)IM. This completes the proof. 

For the proof of the asymmetry of M(L 2 e L2), 

to prove the following lemma: 

then 

we need 
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Lemma 4.1.2. 

and be any two elements in the unit ball of 

Assume, further, that supp ~1 ~ 01 = xl X Yl, 

supp ~2 £ 02 = x2 X Y2, where xl n x2 = yl n y2 = 0, the 

empty set. Then there exists a function ~ E M(L 2 e L2 ) such 

i = 1,2 and U ~ U M = max U ~ • 11 M • 
. 1 l. 
l.= '2 

Proof. Define the following function ~ on T x T 

if 

if 

and ~ : 0 on the complement of 01 u 0 2 • We claim that the 

function ~ is the required function. First, since ~ = ~l + $ 2 , 

it follows that $ E M(L 2 0 L2). Remains to estimate the multi-

plier-norm of ~. To do so, let f e g be any atom in the unit 

L2 "' L 2 • ball of 0 Since 

we can assume th;at ft fU 
2 = n gH 

2 
~ 1. Further s1.nce the 

of 4> is contained in 01 u 02' we let supp(f) c xl 

supp(g) c y 
1 u Y2. Set f. = l. fix. and g. = g ly.' i 

l. 
l. l. 

f = £1 + £ 2 and Then 

If U 2 
2 

2 2 
= N£112 + II£2U2 

g = g1 + g 2 • Further 

and Ugl~ = llg 1 11~ + Ug 2 11~, since 

2 
n 

i=l 
X. = 

l. 

2 
n 

i=l 
Y. 

l. 
= .0. Now, consider 

support 

u x2 and 

= 1,2. 
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Since u~iuM s 1, i = 1,2, we deduce 

QO 

(i) @ v~i) ~. • f. @ g. = l u . 
l l l j=l J J 

00 

l n u < i ) n • 11 v <i ) u s U f i 11 2 •11 gi H 2 . j=l j 2 j 2 

Again as above, we can assume that UfiH 2 = RgiH 2 and 

lu~i)H 2 = Hvji)a
2 

for i = 1,2 and j ~ 1. It follows that 

00 

r Hu~i)u~ s 11 f i H; 
j=l 

QO 

r u (i)u2 2 i vj 2 s 11 giB 2 , = 1 '2 . 
j =1 

Now define the following functions 

z. = 
(1) + u~2) u. 

J J J 

w. :: v~l) + v~2) 
J J J 

for all J ~ 1. Then 

ClO 

$ • f X g :: l (z. ew.) 
j=l J J 

where lE denotes the characteristic function of the set E. 

But since 

it follows that 
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llq> • f 0 gU :;; 
Tr 

s 1. 

Since f & g was arbitrary atom in the unit ball of L2 ; 1 2 , 

it follows that ·llq>ll M s 1. This completes the proof of the lemma. 

Let us recall that a commutative Banach algebra is called 

symmetric if, regarded as a function algebra on its maximal 

ideal space, it is closed under complex conjugation. Clearly 

M(L 2 e L2 ) is a commutative Banach algebra, where multiplication 

is taken to be composition as operators on L2 @ 1 2 • Varopoulos, 
.... 

proved the asymmetry of the tensor algebra C(T) 0 C(T). 

In a similar way we prove the following 

Theorem 4.1.2. 

The space M(L 2 @ L2 ) is not symmetric. 

Proof. To prove the asymmetry of a space it is enough to pro-

duce an element in such a space which has independent powers, 

[30]. 

Let P be a Cantor independent set which is not Helson 
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in T. The existence of P is illustrated in [19 ]. Take v 

to be a non-negative measure concentrated on Pu (-P). Then v 

has mutually singular convolution powers, and if we choose 

UvUM(T) = 1, we obtain 

n 
}: 

r=l 

for all t..r e C and n e N. Since discrete measures on T are 

dense in M(T) in the weak-* topology [{0], then we can find 
(IQ 

a sequence (vn)n=l of finitely supported discrete measures 

(the support of each vn is a finite subgroup of T) such that 

A 
.,., 

V (j) 
n 

-> v(j) 

for all j E z. That p is not He n enables us to choose V 

" " such that H vll is as small as we like and V to be real. If 
CO 

E denotes the support of n vn, then we can find a sequence 
CO 

(fn)n=l of real functions on T such that 

Uf 
n°A(En) 

s; 1 (n ;;:: l) ) 11 f n --> n eo 
0 as n --> QO' 

s r supB l >.r fn°A(E ) ::: l I >-r \' 
n r=l n r--=1 

for all s € N and A. r € c. 

Now, let (X ( i)) oo 1 = 1,2, be two sequences of sets in n n=l 

T such that x<i> n x(i) = ~ for n t m, i = 1,2 and x<i) 
n m n 

has the same cardinality as En. Identify, then, x<i> with n 

En for every n ;;:: 1, and i = 1,2. F : C(T) --> C(T X T) 

is the function defined in theorem 4.1.1, then set $n = F(fn)' 



0 
n ~ 1. A simple application of lemma 4.1.1 implies that 

~n e MCL 2 @ L2 ) and 

(n ~ 1); 
00 
-> 0 as n --> m 

s 
z: 

r=O 

I ::1 

for all s e N and Ar e C. Using lemma 4.1.2 repeatedly we 

construct a sequence of real functions (Wn)~=l in M(L 2 9 L2) 

such that 

n . (1) x x~ 2 >; 11/JniM :S l (n ~ 1); supp w = u X. n j=l J ] 

w I n x<l>xx(2) 
= <Pn ' 11/J u --> n oo 

0 as n --> eo. 

n n 

00 

Clearly, the sequence (1/Jn)n=l converges uniformly to a function 

1/J e M (L 2 e 1 2 ). Furthermore 11 1/JI M = supH 1/Jn I M. Hence 
n 

This completes the proof of the theorem. 

As a corollary of the previous theorem we have 

Theorem 4.1.3. 

The space M(L 2 G L2) is not separable. 

Proof. The functions 
00 

( ,,, ) in theorem 4.1.2 have the pro-
'~'n n=l 

perty that Bwn - 1/JmiM ~ a > 0 for n '# m. This proves the 

claim. 

The following theorem ~s similar to that ~n [31] for 



0 

so 

M (T). 

Theorem 4.1.4. 

Given any e: > 0, there exists a <P E. M (L 2 Q L 2 ) such 

that 

(i) UcpUM s 1 

(ii) <P has independent powers 

(iii) 0 s y(cp) < E for all self-adjoint character y in 

the maximal ideal space of MCL 2 Q L 2 ) 

Proof. Theorem 4.1.2 implies the existence of an 

$ E. MCL 2 @ L2 ) such that $ satisfies (i) and (ii). Set 

Clearly <Pn satisfies (ii) for all n <'!: 1. Furthermore · 

lcpnDM = 2nDwH~n . 
in the maximal MCL 2 "' 12), If y J.S any element ideal space of & 

Choosing ~ to be real and y to be self-adjoint, we get 

Set for some n 2 1. Then since y(l 0 1) = 1, 

we have 

2 2 n 
• (H$UM - y($) ) . 
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It follows that 

0 ( ~ ) g,r.uM2n. s y '~'n s -r 

Hence one has 

0 s y(cj>) 

Taking n to be large enough such that 

= 

!.___ < e: we get 
2n 

0 s y(cj>) < e:. This completes the proof of the theorem. 

81 
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4.2. Certain HomomorEhisms of the Trace-Class OEerators 

This section, in some way, is independent of the rest of 

this thesis. It deals with the problem of change of variables 

on the space L2 CI,m) S L2(I,m), where I is the unit interval, 

and m is the Lebesgue measure on I. 

Let F . I X I -> I X I be a measurable mapping. The. map-. 
ping F induces an operator u . L2 (I) & L2(I) -> L2(I) @ L2(I), . 
where for simplicity of notations we wrote L2(I) for 2 L (I ,m). 

If w is an element of L2(I) @ L2(I), then hpB will de-Tr 

note the trace-class norm of w, and UwBHS denotes the Hilbert 

Schmidt norm. Then we prove the following 

Theorem 4.2.1. 

Let F and u be as above. If DU(W)I = I woFI :!':: I W I , Tr Tr Tr 

then F is essentially of the type F = (Fl,F2)' where Fl and 

F2 are measure preserving mappings on I .. 

Proof. Since the proof is little long, we prove the theorem in 

steps. 

Step I. The mapping Y is measure preserving. 

Proof. 

such that 

Let x1 and 

I - X u x
2

• - l 

x2 be any two disjoint sets in I 

If Y1 and Y2 ~s a similar pair of 

sets in I, then set 1 X.xY. 
l. J 

tion of x. x Y., 1 ~ i,j :!':: 2. 
l. J 

Hilbert Schmidt norm we deduce 

11 o FIIHS = X. xY. 
l. J 

to denote the characteristic func-

From the definition of the 

Bl o FB
2 X. xY. 

l. J 
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~ I lX. xY . o F R -rr 
l. . J 

~ 11 D X. xY. -rr 
l. J 

= llx . e ly . •-rr 
l. J 

= (m(Xi x Yj)J
112

• 

On the other hand we have 

1 
2 

= I m(F-1 (x. x Y.)) 
. . 1 l. J 
l., J = 

2 2 
= . ~ lDlX.xY. o FUHS 

l.,J= l. J 

2 l Ul g2 
. . l X. xY. 
l.,J= 1. J -rr 

2 
= - L m(x. x Y.). 

. . 1 l. J l.,J= 

Hence, it follows that m(F-1 (Xi X y. ) ) = m(X. 
J l. 

1 s i ,j ~ 2. Now if A X B is any rectangle, 
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X y.)' 
J 

then setting 

x1 = A, x2 = Ac' yl = B, and y2 = BC 
' the previous argument 

shows that m(A x B) = m(F-1 (A x B)). So F preserves the 

measure of any rectangle. However, the set of rectangles in 

I x I forms an algebra of sets. Further the a-algebra of the 

Lebesgue measurable sets in I x I is just the completion of 

the smallest a-algebra containing the rectangles. It follows 

that F is measure preserving on (I x I, m x m). 

Step II. The operator U preserves atoms in L2 (I) e L2 (I). 
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then 

easy 

so 
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Proof. Let f 0 g be any atom 1n L2 (I) ~ L2 (I). If 

g112 denotes the norm of 

llf @ gft2 = llf @ gU . 
-rr 

to prove, the operator 

By 

u 

f e g as an element of L2 (I x I), 

step I, as it is well known and 

on L2 CI x I) is an isometry, 

Of e gU
2 

= n Cf e g) 0 FH 2 • Then 

Rf ~ gMHS = U f @ gO 
2 

= 11 (f ~ g) o ru
2 

= • (f @ g) o FRHS 

~ u (f e g) o rn 
-rr 

~ llf @ gD-rr 

= Df e gU 2. 

This implies that U(f e g) o FIIHS = 11 (f@ g) o FH-rr However, 

from the definition of the trace-class norm and the Hilbert-

Schmidt norm, the two norms coincide only on operators of rank 

one. Hence f e g o F = u ® v for some atom u 0 v in 

L 2 (I) @ L 2(I). 

Step III. Construction of F1 and r 2 . 

Let i I --> I be the identity map: i(x) = x, and 

1r
1

,1T 2 : I x I -> I be the first and the second projections 

respectively. Set r 1 = 1r1 oF and r
2 

= 1r 2 o F. Then 

F = (F1 ,r
2
). Now consider the map 1 8 1 € L2 CI) i L2 CI), where 

1 · denotes the constant function with range {1}. Step II implies 



0 

a 1 (x)a
2
(y) = i(F1 (x)) 

= F 
1 

(x). 
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Step IV. Each of the functions r1 and r 2 depend on one 

of the.variables but not both. 

Proof. For any function ~ € L2(I)@ L2(I)) set 

m($) = J J ~(x,y)dxdy. 
I xi 

From step I, it follows that 

m($) = m(U($)) - - - - * . 

r 
m1 (cp)(x) a: 

J <jl (x ,y )dy 

I 

ml (<jl )(y) = J cp(x,y)dx. 

I 

Hence one can write 

Step II together with * implies 
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So if m(IP) = o, then either m
1 

(U ( 41)) = 0 or m2 (U($)) = 0. 

Now, take $ = f @ 1, and let us write U(f) for U(f 0 1). 

Set 

v. = {f I m j ( U ( f -m ( f ) •1 ) ) = O}. 
J 

where m(f) denotes m(f @ 1). Since for any f E: L2(I) we 

have 

m ( f -m (f) •1 ) = m ( f ) - m ( f ) = 0 , 

it follows that for any f E 1 2 , either m1 (U(f~(f)•l)) = 0 

or m
2

(U(f-m(f) •1)) = o. Hence vl and v·2 are closed sub-

spaces of L 2 CI) such that L2 (I) ::: vl u V 2 • In this case, 

as it is well known, either vl = L2(I) or v2 = L2 (I). That 

is there exists j = 1 or 2 such that 

mj(U(f)-m(f)l)) =.0, 

for all f E -L 2 (I) . Let us assume that j = 1. It follows that 

m.(U(f)) = m(f)•l. 
l 

Relations A and ** then imply 

m(f)•U(f) = m(f)(l ~ m
2
(U(f))). 

Thus if m(f) t 0, we conclude that 

U(f) = U(f@ 1) = 1@ m2(U(f)). 

But U(f ® 1) = (f @ l) o (F1 ,F2 ) = (foF1 ) ® 1. So for any 

(x,y) E I xI, 
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by step III. 

obtain 0.2 is 

depends either 

m
2

CU(f))(y) = (f 0 1) o F(x,y) 

= ( f o F l) ( x ,y) 

= f(a.l(x)a.2(y)), 

Hence a.l is a constant.· In case 

a constant. This proves that the 

on the first coordinate, or on the 

ordinate but not on both. Now on considering the 
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j = 2, we 

function Fl 

second eo-

atom 

1 G f, we prove the same way as above that either B1 is a 

constant or 13 2 is a constant, so r 2 also depends on one of 

the coordinates but not on both. So we conclude that. F has 

one of the following forms; 

(i) F = (a.l,l31)' 

(iii) F = Ca. 2 ,131 ), 

(ii) F = (a.1 ,13 2 ) 

(iv) F = (a. 2 ,13 2 >. 

Finally, we have to show that a.1 , a. 2 , 131 , 13 2 are all measure 

preserving maps on I. We prove such a claim only for a 1 , 

since it is the same for the others. Let E be any set in. I. 

Set f = lE and consider f ® 1 = lE e 1. Since F is measure 

preserving we obtain 

(m(E))l/ 2 = lllE@ H
2 

= B(lE G 1) o ru
2 

= HlECa1 ) 0 1CI31 >H 2 

::: lllE(a.l )R 2 

= [m(a-l(E))]l/2, 

wh~we are considering F to be of the form (i). Before we 
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close the proof of the theorem, we have to remark about the no-

tation in the forms (i), (ii), ( ), and (iv). Here 

(i) F(x,y) = (a.l (x) ,(31 (x))' (ii) F Cx ,y) = (a.l (x),(32(y)) 

(iii) F (x ,y) = Ca.2(y),Sl (y)), (iv) F(x,y) = (a.2(y),f52(y)). 

And now, the proof of the theorem is complete. 
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