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ABSTRACT

Let (M, g) be a compact, Riemannian manifold and V ∈ C∞(M ;R). Given

an energy level E > minV , we consider L2-normalized eigenfunctions, uh, of the

Schrödinger operator P (h) = −h2Δg + V − E(h) with P (h)uh = 0 in L2 where

E(h) = E + o(1). The well-known Agmon-Lithner estimates [Hel88] are exponen-

tial decay estimates (ie. upper bounds) for eigenfunctions in the forbidden region

{V > E} in terms of the Agmon distance function dE associated with the degenerate

Agmon metric (V − E)+ g supported in the forbidden region.

The point of this thesis is to prove a partial converse to the Agmon estimates

(ie. lower bounds for the eigenfunctions) in terms of Agmon distance in the for-

bidden region under a control assumption on eigenfunction mass in the allowable

region {V < E} arbitrarily close to the caustic {V = E}. We then give some appli-

cations to hypersurface restrictions of eigenfunctions in the forbidden region along

with applications to nodal intersection bounds.
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ABRÉGÉ

Soit (M, g) une variété riemannienne compacte et V ∈ C∞(M ;R). Etant donné

un niveau en énergie E > minV , on considère fonctions propres L2-normalisées, uh,

de l’opérateur de Schrödinger P (h) = −h2Δg + V − E(h) avec P (h)uh = 0 dans L2

où E(h) = E+o(1). Les estimations d’Agmon-Lithner bien connues [Hel88] sont des

estimations de décroissance exponentielle (c’est-à-dire des bornes supérieures) pour

des fonctions propres dans la région interdite {V > E} en terme de la fonction de

distance Agmon dE associée à la métrique Agmon dégénérée (V − E)+ g supportée

dans la région interdite.

Le but de cette thèse est de prouver un inverse partiel des estimations d’Agmon

(c’est-à-dire pour les fonctions propres) en terme de distance d’Agmon dans la région

interdite sous une hypothèse de contrôle sur la masse propre dans la région admissible

{V < E} arbitrairement proche du caustique {V = E}. Nous donnons ensuite

quelques applications aux restrictions d’hypersurface des fonctions propres dans la

région interdite ainsi qu’aux applications aux limites d’intersection nodale.
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CHAPTER 1
Introduction

1.1 Motivation and background

Let (M, g) be a compact, C∞ Riemannian manifold and V ∈ C∞(M ;R) be a

real-valued potential. We assume that E a regular value of V so that dV |V=E �= 0.

The corresponding classically allowable region is

ΩE := {x ∈ M ;V (x) ≤ E}. (1.1.1)

with boundary C∞ hypersurface (ie. boundary caustic)

ΛE := {x ∈ M ;V (x) = E}. (1.1.2)

The forbidden region is the complement Ωc
E = {x ∈ M ;V (x) > E}.

Agmon-Lithner estimates

Let P (h) : C∞(M) → C∞(M) be the Schrödinger operator

P (h) := −h2Δg + V (x)− E(h)

and uh ∈ C∞(M) be L2-normalized eigenfunctions with eigenvalue E(h) so that

P (h)uh = 0 and E(h) = E + o(1) as h → 0+.
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The Agmon metric associated with P (h) is defined by

gE(x) := (V (x)− E)+ g(x).

The degenerate metric gE is supported in the forbidden region Ωc
E and we denote

the corresponding Riemannian distance function by dE : Ωc
E ×Ωc

E → R
+. By a slight

abuse of notation, we define the associated distance function to ΛE by

dE(x) := dE(x,ΛE) = inf
y∈ΛE

dE(x, y), x ∈ Ωc
E. (1.1.3)

It is well-known [Hel88] that, dE ∈ Lip(Ωc
E) and also, |∇xdE|2g ≤ (V (x) −

E)+, a.e.

Intuitively, in the quantum mechanics the probability of finding the particle in

the classically forbidden region Ωc
E in the semiclassical limit should be quite small. In

1980s, Agmon [Agm82] gave a quantitative estimate for Schrödinger eigenfunction

u(x). Given an open subset, U , of the forbidden region Ωc
E with U ⊂ Ωc

E, the

Agmon-Lithner estimate says that for any ε > 0,

‖u(x)e(1−ε)ϕ(x)‖L2(U) ≤ Oε(1), (1.1.4)

for a suitable positive weight function ϕ(x).

Later, Helffer [[Hel88] Proposition 3.3.4] showed in the semiclassical case,

‖e(1−ε)dE/h uh‖H1
h(U) = Oε(1), (1.1.5)
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where ‖f‖2
H1

h(U)
:=

∫
U
(|f |2 + |h∂f |2). A standard argument with Sobolev estimates

then yields corresponding pointwise upper bounds as well. Such estimates have

widespread applications to tunnelling problems [Hel88] [CS81] [Sim84] and the theory

of Morse-Witten complexes [Wit82].

For the ground states, [CS81] [Sim84] showed (1.1.4) and (1.1.5) cannot be

improved by using Feynman-Kac path integrals. In [Sim84], the author gave a very

explicit lower bound for a ground state eigenfunction along the Agmon geodesic.

Indeed the analysis of tunneling for ground states is known in great detail including

eigenfunction asymptotics, eigenvalue asymptotics and splitting. These topics were

studied extensively by B.Helffer and J. Sjöstrand in a series of papers in the 1980’s

([HS84, HS85b, HS85a, HS85c, HS86]).

The purpose of this thesis is as follows: (i) to reveal the tunneling phenomenon

(i.e. a partial converse to (1.1.5)) in the case of an excited state E in a Fermi

neighborhood of the caustic ΛE under a suitable control assumption on eigenfunction

mass and certain growth restrictions for the potential V (x); (ii) to give lower bounds

for Lp-restrictions of eigenfunctions to hypersurfaces in the forbidden region (so-

called goodness estimates in the terminology of Toth and Zelditch [TZ09]) ; (iii)

improve the nodal intersection bounds of [CT16] for a large class of hypersurfaces in

forbidden regions. We now describe our results in more detail.

In the following we fix a constant r0 ∈ (0, inj(M,g)
2

) and let UE(r0) be a Fermi

neighbourhood of the caustic ΛE of diameter 2r0 with respect to the ambient metric

g. We denote the Fermi defining function yn : M → R with the property that

yn > 0 in the forbidden part and ΛE = {yn = 0}. In terms of Fermi coordinates,
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the collar neighbourhood UE(r0) := {y; |yn| < 2r0}. Consider an annular region in

UE(r0) ∩ {V > E} given by A(δ1, δ2) := {y ∈ UE(r0);E + δ1 < V (y) < E + δ2} with

0 < δ1 < δ2. Our first result in Theorem 1.2.1 is a partial converse to the Agmon

estimates in (1.1.5). First, we introduce a control assumption on the eigenfunctions

uh in the allowable region.

Definition 1.1.1. We say that the eigenfunctions uh satisfy the control assumption

if for every ε > 0 there exists constants C(ε) > 0 and h0(ε) > 0 so that for h ∈
(0, h0(ε)], ∫

{E−ε/2<V (x)≤E}
|uh|2 dvg ≥ CN(ε)h

N (1.1.6)

for some N > 0. When (1.1.6) is satisfied for a fixed ε = ε0 > 0, we say that the

eigenfunction sequence satisfies the ε0 control assumption.

Roughly speaking, the control assumption in Definition 1.1.1 says that in an

arbitrarily small (but independent of h) annular neighbourhoods of the caustic in the

allowable region, eigenfunctions have at least polynomial mass in h. It is easy to see

that this assumption is necessary since simple counterexamples can be constructed

otherwise by introducing additional effective potentials (see Chapter 6).

We note that the control assumption is automatically satisfied in the 1D case

where WKB theory yields asymptotics for the eigenfunctions. In section 6, we give

examples of eigenfunction sequences satisfying this condition in arbitrary dimension.

Our second assumption is a convexity condition on the potential V itself; in par-

ticular, ruling out tunnelling phenomena in the Fermi neighbourhood. Specifically,

we make the following
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Definition 1.1.2. We say that V satisfies the convexity assumption provided:

(i) Crit(V ) ∩ (UE(r0) ∩ Ωc
E) = ∅,

(ii) V |UE(r0)∩Ωc
E

is convex.

Under the control and convexity conditions, by using Carleman estimates to

pass across the caustic hypersurface, in Theorem 1.2.1 we prove that for any ε > 0

and h ∈ (0, h0(ε)].,

‖eτ0dE/h uh‖H1
h(A(δ1,δ2)) ≥ C(ε, δ1, δ2))e

−β(ε)/h, (1.1.7)

where β(ε) = o(1) as ε → 0+ and

τ0 =
(maxy∈UE(r0) |∂ynV |
miny∈UE(r0) |∂ynV |

)1/2

.

Here the explicit geometric constant τ0 ≥ 1 and the result in (1.1.7) is clearly a

partial converse to the Agmon estimates in (1.1.5).
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1.2 Statement of results

The main result of this thesis is

Theorem 1.2.1. Let r0 > 0 define the collar neighbourhood UE(r0) of the hypersur-

face {V = E} as above and consider an annular subdomain

A(δ1, δ2) ⊂
(
{V > E} ∩ UE(r0)

)
, 0 < δ1 < δ2 < r0.

Then, under the control and convexity assumptions in Definitions 1.1.1 and 1.1.2, it

follows that for any ε > 0 and h ∈ (0, h0(ε)], there exists a constant C(ε, δ1, δ2) > 0

such that

‖eτ0 dE/huh‖H1
h(A(δ1,δ2)) ≥ C(ε, δ1, δ2) e

−β(ε)/h,

with

τ0 =
(maxUE(r0) ∂ynV

minUE(r0) ∂ynV

)1/2

and where β(ε) → 0 as ε → 0+ .

Remark 1.2.2. We note in the more general case where the eigenfunction sequence

satisfies the ε0-control assumption, the estimate in Theorem 1.2.1 is still valid (simi-

larly for Theorems 1.2.3 and 1.2.5). In such a case, the constant β(ε0) can be readily

estimated explicitly in terms of the potential from (5.1.17) and (5.1.18) above.

In section 5.2 we use the Carleman bounds in (1.1.7) with shrinking annuli

together with a Green’s formula argument to get lower bounds for Lp eigenfunction

restrictions to hypersurfaces smoothly isotopic in UE(r0) ∩ {V > E} to level sets

H = {yn = const.} (see Definition 5.2.1) to prove the following
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Theorem 1.2.3. Suppose H is an admissible hypersurface in sense of Definition

5.2.1. Then, under the control and convexity conditions and with E(H) in (5.2.4),

it follows that for any ε > 0 and with h ∈ (0, h0(ε)],

‖uh‖Lp(H) ≥ C(ε, p) e− [ 2τ0 dHE−dE(H)+β(ε) ]/h, p ≥ 1, (1.2.1)

where β(ε) → 0+ as ε → 0+ and dE(H) = minq∈H dE(q), dHE = maxq∈ΛE(H)
dE(q).

Remark 1.2.4. We note that since τ0 ≥ 1 and dHE ≥ dE(H), it is clear that the

constant 2τ0(H)dHE − dE(H) > 0.

The bounds in (1.2.1) are goodness estimates in the terminology of Toth and

Zelditch [TZ09]; the key novelty here being the rather explicit geometric rate 2τ0 d
H
E−

dE(H) appearing in (1.2.1).

Finally, in section 5.3, we give an application of (1.2.1) to nodal intersection

bounds in forbidden regions. In [CT16], Canzani and Toth prove that for any sepa-

rating hypersurface H in the forbidden region, with Zuh
= {x ∈ M ; uh(x) = 0},

#{Zuh
∩H} ≤ CHh

−1.

While this rate in h is easily seen to be sharp in general, there is no explicit

estimate for the constant CH > 0 given in [CT16]. Using (1.2.1) with p = 2, the

bound in (1.2.1) allows to give a rather explicit estimate for CH in the cases where H

is smoothly isotopic to a level set of the defining function yn in the forbidden region.

This is essentially the content of the following result,
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Theorem 1.2.5. Assume that dimM = 2 and (M, g,H, V ) are all real-analytic.

Then, under the same assumptions as in Theorem 1.2.3, one has

#{Zuh
∩H} ≤ CHh

−1,

where

CH = 2(τ0d
H
E − dE(H)) > 0.

Finally, we note that while all results are stated here for compact manifolds, the

results in Theorems 1.2.1-1.2.5 extend to the case of Schrödinger operators on R
n

and the proofs are the same.

The organization of this thesis is as follows. In Chapter 2, we give a brief

introduction of pseudodifferential operator, specialized to the Weyl quantization, in

the framework of semiclassical analysis. In Chapter 3, we review Agmon estimates.

In Chapter 4, we review the basic theory Carleman estimates along with notation

of pseudoellipticity. In Chapter 5, we give the proof of Theorem 1.2.1 and discuss

improved nodal intersection bounds (Theorem 1.2.5) using an Lp-restriction lower

bound for eigenfunctions (Theorem 1.2.3). In Chapter 6, we discuss some explicit

examples.

1.3 Author’s Original Contribution

The main original contribution of the author is Theorem 1.2.1. In this result,

the author proves lower bounds for Schrödinger eigenfunction in classically forbidden

regions that are consistent with the well-known Agmon upper bounds. Theorems

1.2.3 and 1.2.5 are applications of this result to eigenfunction restriction bounds
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and nodal intersection bounds respectively. Both of these results are also original

contributions by the author.
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CHAPTER 2
Pseudodifferential operators

In this chapter, we first give a very brief introduction to pseudodifferential op-

erators ([DS99, Sog17, Zwo12]). we then introduce semiclassical G̊arding inequality.

The latter result is central to the theory of Carleman estimates which we take up in

Chapter 3.

2.1 Semiclassical quantization

Definition 2.1.1. A measurable function m : R2n → (0,+∞) is called an order

function if there exist constants C,N such that

m(w) ≤ C 〈z − w〉N m(z)

for all w, z ∈ R
2n.

m(z) ≡ 1 and m(z) = 〈z〉 = (1 + |z|2)1/2 are standard exmaples.

Definition 2.1.2. Given an order function m on R
2n, we define the corresponding

class of symbols:

S(m) := {a ∈ C∞| for each multiindex α

there exists a constant Cα so that |∂αa| ≤ Cαm}.

As a special case, the space of Kohn-Nirenberg symbol of m ∈ Z is given by

Sm := {a(x, ξ) ∈ C∞(R2n) | |∂α
x∂

β
ξ a| ≤ Cαβ 〈ξ〉m−|β| for all α, β}.
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In this thesis, we usually work with the symbol class S := S(1), where

S(1) = {a ∈ C∞(R2n) | |∂αa| ≤ Cα for all α}.

Theorem 2.1.3 ([Zwo12]). Assume aj ∈ S(m) for j = 0, 1, . . . . Then there exists

a symbol a ∈ S(m) such that

a ∼
∞∑
j=0

hjaj in S(m). (2.1.1)

Remark 2.1.4. The notation (2.1.1) means that

∀N ∈ N, a−
N∑
j=0

hjaj ∈ hN+1S(m).

We call a0 the principal symbol of a.

Definition 2.1.5. For a ∈ S(m), we define the Weyl quantization on u ∈ S

aW (x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dydξ.

Take a(x, ξ) = ξα for an example,

aW (x, hD)u(x) = (hD)αu(x).

Proposition 2.1.6 ([Zwo12]). Assume that

c = (c1(x), . . . , cn(x))

does not depend on ξ. Then

〈c, hD〉W =
h

2

n∑
j=1

(Dxj
cj + cjDxj

).

11



Proof. By definition and integral by parts, for u ∈ S

〈c, hD〉W u =
1

(2πh)n

n∑
j=1

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉cj

(
x+ y

2

)
ξj u(y)dydξ

= − 1

(2πh)n

n∑
j=1

∫
Rn

∫
Rn

(
hDyje

i
h
〈x−y,ξ〉

)
cj

(
x+ y

2

)
u(y)dydξ

=
1

(2πh)n

n∑
j=1

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉

(
hDyjcj

(
x+ y

2

))
u(y)dydξ

+
1

(2πh)n

n∑
j=1

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉cj

(
x+ y

2

)(
hDyju(y)

)
dydξ

= h/2
n∑

j=1

(Dxj
cj)

Wu+ h
n∑

j=1

(cj)
WDxj

u

= h/2
n∑

j=1

(Dxj
cj)u+ h

n∑
j=1

cjDxj
u

= h/2
n∑

j=1

Dxj
(cju)− h/2

n∑
j=1

cjDxj
u+ h

n∑
j=1

cjDxj
u

= h/2
n∑

j=1

Dxj
(cju) + h/2

n∑
j=1

cjDxj
u.

Definition 2.1.7. We say that Ih is an oscillatory integral if it can be written in the

form

Ih = Ih(a, ϕ) =

∫
Rn

eiϕ/hadx,

where a ∈ C∞
c (Rn), ϕ ∈ C∞(Rn) are real-valued.

One of most important theorems in semiclassical analysis is the following sta-

tionary phase formula,
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Theorem 2.1.8 ([Zwo12]). Assume that a ∈ C∞
c (Rn) and K := supp(a). Suppose

x0 ∈ K and

∂ϕ(x0) = 0, det ∂2ϕ(x0) �= 0.

Assume further that ∂ϕ(x) �= 0 on K\{x0}. Then there exist for k = 0, 1, . . .

differential operators A2k(x,D) of order less than or equal to 2k, such that for each

N ∣∣∣∣∣Ih −
(

N−1∑
k=1

A2k(x,D)a(x0)h
k+n

2

)
e

iϕ(x0)
h

∣∣∣∣∣ ≤ CNh
N+n

2

∑
|α|≤2N+n+1

sup
Rn

|∂αa|.

As an important example we have

Theorem 2.1.9 ([Zwo12]). Assume that a ∈ C∞
c (R2n). Then for each positive

integers N,∫
Rn

∫
Rn

e
i
h
〈x,y〉a(x, y)dxdy = (2πh)n

(
N−1∑
k=0

hk

k!

(〈Dx, Dy〉
i

)k

a(0, 0) +O(hN)

)
.

Definition 2.1.10. For z = (x, ξ) and w = (y, η), define their symplectic product

σ(z, w) := 〈ξ, y〉 − 〈x, η〉 .

We have the following product formula for two semiclassical pseudodifferential

operators:

Theorem 2.1.11 ([Zwo12]). Suppose a ∈ S(m1) and b ∈ S(m2). Then

aW (x, hD)bW (x, hD) = (a#b)W (x, hD)
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for the symbol

a#b(x, ξ) := e
1
2
ihσ(Dx,Dξ,Dy ,Dη)(a(x, ξ)b(y, η))|y=x,η=ξ.

Here we have following integral representation formula

(a#b)(x, ξ) =

1

(πh)2n

∫
R2n

∫
R2n

e−
2i
h
σ(w1,w2)a(z + w1)b(z + w2)dw1dw2,

where z = (x, ξ), and

a#b ∈ S(m1m2).

By a standard stationary phase argument, one can then derive an asymptotic

expansion for a#b.

Theorem 2.1.12 ([Zwo12]). Assume a ∈ S(m1) and b ∈ S(m2).

(i) We have for N = 0, 1, . . . ,

a#b(x, ξ) =
N∑
k=0

(ih)k

k!

(
1

2
σ(Dx, Dξ, Dy, Dη)

)k

(a(x, ξ)b(y, η))|y=x,η=ξ+OS(m1m2)(h
N+1)

as h → 0.

(ii) In particular,

a#b = ab+
h

2i
{a, b}+OS(m1m2)(h

2)

and

[aW (x, hD), bW (x, hD)] =
h

i
{a, b}W (x, hD) +OS(m1m2)(h

3).
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Theorem 2.1.13 ([Zwo12]). Suppose a ∈ S(1). Then

‖aW (x, hD)‖L2→L2 ≤ C sup
R2n

|a|+O(h1/2)

as h → 0.

2.2 Semiclassical G̊arding inequality

Definition 2.2.1. Let U ⊂ R
n be an open set, h > 0, and k ∈ N. The semiclassical

norm of a function f ∈ Hk
h(U) is

‖f‖Hk
h(U) :=

⎛⎝∑
|α|≤k

∫
U

|(hD)α|2dx
⎞⎠1/2

.

Theorem 2.2.2 (G̊arding inequality [LRL12]). Let K be a compact set of Rn. As-

sume a(x, ξ, h) ∈ Sm, with principal symbol am. If there exists C > 0 such that

Re am ≥ C 〈ξ〉m , x ∈ K, ξ ∈ R
n, h ∈ (0, h0),

then for 0 < C ′ < C and h1 > 0 sufficiently small we have

Re (aW (x, hD)u, u) ≥ C ′‖u‖2
H

m/2
h

, u ∈ C∞
c (K), 0 < h ≤ h1. (2.2.1)

Remark 2.2.3. This theorem tells us that the positivity of the principle symbol of

a implies a certain positivity for the operator aW .

Proof. The symbol a(x, ξ, h) is of the form

a(x, ξ, h) = am(x, ξ, h) + ham−1(x, ξ, h), with am−1 ∈ Sm−1.
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For sufficiently small h < h1, the full symbol a(x, ξ, h) satisfies

Re a(x, ξ, h) ≥ C ′′ 〈ξ〉m , x ∈ K, ξ ∈ R
n, h ∈ (0, h1),

with C ′ < C ′′ < C. Let U be a neighborhood of K such that

Re a(x, ξ, h) ≥ C ′′′ 〈ξ〉m , (x, ξ) ∈ U × R
n, h ∈ (0, h1),

with C ′ < C ′′′ < C ′′ < C. Let χ(x) ∈ C∞
c (U) such that 0 ≤ χ ≤ 1 and χ = 1 in a

neighborhood of K. One sets

ã(x, ξ, h) = χ(x)a(x, ξ, h) + C ′′′(1− χ) 〈ξ〉m ,

which satisfies

ã ∈ Sm and Re ã(x, ξ, h) ≥ C ′′′ 〈ξ〉m , (x, ξ) ∈ R
n × R

n, h ∈ (0, h1). (2.2.2)

Moreover note that
〈
ãWu, u

〉
=

〈
aWu, u

〉
if supp (u) ⊂ K. Without loss of generality

we may thus consider the symbol a satisfies (2.2.2) in the remaining of the proof.

Choose a constant β > 0 such that C ′ < β < C ′′ and set

p(x, ξ, h) := (Re a(x, ξ, h)− β 〈ξ〉m)1/2 , and A = aW , P = pW .

Theorem 2.1.12 gives

P ∗ ◦ P = ReA− βΛm + hR,
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with Λ = (1 + (hD)2)1/2 and R ∈ Ψm−1, where ReA = (A+ A∗)/2. We then have

Re 〈Au, u〉 = 〈ReAu, u〉 ≥ β 〈Λmu, u〉 − h 〈Ru, u〉

≥ β‖Λm/2u‖2L2 − hβ′‖u‖2
H

(m−1)/2
h

≥ (β − hβ′)‖u‖2
H

m/2
h

One can conclude the proof by taking h sufficiently small.
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CHAPTER 3
Agmon estimates

For a bounded open set U ⊃ ΩE with C2 boundary, let us consider the Dirichlet

problem for the Schrödinger operator P (h),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (h)uh(x) = E(h)uh(x),

‖uh(x)‖L2(U) = 1,

uh(x)|∂U = 0,

E(h) → E as h → 0.

(3.0.1)

The following integration by parts argument is central to the Agmon estimates:

Proposition 3.0.4 ([Hel88]). Let ϕ be a real valued Lipschitz function on Ū ( ∇ϕ

is well defined in L∞(U) by Rademacher’s theorem). Then, for any u(x) ∈ C∞(Ū)

and u(x)|∂U = 0, we have∫
U

e2ϕ/h(P (h)− E(h))u · u dx =h2

∫
U

|∇(eϕ/hu)|2dx

+

∫
U

(V (x)− E(h)− |∇ϕ(x)|2)e2ϕ/hu2dx.

(3.0.2)
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Proof. This identity is just an application of Green’s formula:∫
U

e2ϕ/h(P (h)− E(h))u · u = −h2

∫
U

e2ϕ/hΔu · u+

∫
U

e2ϕ/h(V (x)− E(h))u2

= h2

∫
U

∇u · ∇(e2ϕ/hu) +

∫
U

e2ϕ/h(V (x)− E(h))u2

=

∫
U

(h2|∇u|2 + 2hu∇u · ∇ϕ+ |∇ϕ(x)|2)e2ϕ/hu2dx

+

∫
U

(V (x)− E(h)− |∇ϕ(x)|2)e2ϕ/hu2dx

= h2

∫
U

|∇(eϕ/hu)|2dx

+

∫
U

(V (x)− E(h)− |∇ϕ(x)|2)e2ϕ/hu2dx.

Let dE(x, y) denote the distance from point x to y in the Agmon metric gE.

Proposition 3.0.5. The Agmon distance function dE(x, y) is locally Lipschitz and

|∇ydE(x, y)|2g ≤ (V (y)− E)+, a.e.

Proof. By triangle inequality,

|dE(x, y)− dE(x, z)| ≤ dE(y, z).

Let γ(t), t ∈ [0, 1] be the geodesic curve from y to z on (M, g). Since γ is a geodesic,

|γ′(t)|g is a constant. So d(y, z) =
∫ 1

0
|γ′(t)|gdt = |γ′(t)|g and the length of γ in gE is

�(γ) =

∫ 1

0

(V (γ(t))− E)
1/2
+ |γ′(t)|gdt = |γ′(t)|g

∫ 1

0

(V (γ(t))− E)
1/2
+ dt = Cy,zd(y, z),
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where Cy,z =
∫ 1

0
(V (γ(t))− E)

1/2
+ dt. Hence for a fixed point x

|dE(x, y)− dE(x, z)| ≤ dE(y, z) ≤ Cy,zd(y, z) (3.0.3)

and so, the Lipschitz condition is satisfied.

A direct computation gives

lim sup
|h|→0

|h|−1|dE(x, y + h)− dE(x, y)| ≤ lim sup
|h|→0

|h|−1|dE(y + h, y)|

≤ lim
|h|→0

∫ 1

0

(V (γ(t))− E)
1/2
+ dt = (V (y)− E)

1/2
+ .

The second inequality follows from (3.0.3). Thus, at points y where dE(x, y) is

differentiable, the above result indicates that |∇ydE(x, y)|2g ≤ (V (y)− E)+.

Theorem 3.0.6 ([Hel88]). Suppose uh(x) satisfies (3.0.1). For each δ > 0, there

exists Cδ such that for h ∈ (0, h0]

‖e(1−δ)dE(x)/huh‖H1
h(U) ≤ Cδ.

Proof. For dE(x),

|∂xdE(x)|2 ≤ (V − E)+(x) for almost every x.

Take ϕ(x) = (1− δ)dE(x), so

|∂ϕ(x)|2 ≤ (1− δ)2(V − E)+(x). (3.0.4)
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Define Ω+
ε = {x ∈ U, V (x) ≥ E + ε} and Ω−

ε = {x ∈ U, V (x) < E + ε}. Applying

identity (3.0.2) for u = uh(x), one has

h2

∫
U

|∇(eϕ/hu)|2dx+

∫
U

(V (x)− E(h)− |∇ϕ(x)|2)e2ϕ/hu2dx = 0.

Then we deduce that

h2

∫
U

|∇(eϕ/hu)|2dx+

∫
Ω+

ε

(V (x)− E − |∇ϕ(x)|2)e2ϕ/hu2dx

≤ sup
x∈Ω−ε

|V (x)− E(h)− |∇ϕ(x)|2|
∫
Ω−ε

e2ϕ/hu2dx.

From the inequality (3.0.4) for small h ∈ (0, h0] we get

h2

∫
U

|∇(eϕ/hu)|2dx+ δ2
∫
Ω+

ε

e2ϕ/hu2dx ≤ C

∫
Ω−ε

e2ϕ/hu2dx,

and then

h2

∫
U

|∇(eϕ/hu)|2dx+ δ2
∫
U

e2ϕ/hu2dx

≤ (1 + C)

∫
Ω−ε

e2ϕ/hu2dx

≤ (1 + C)e
2 sup

x∈Ω−ε
ϕ/h

∫
U

u2dx

≤ (1 + C)eβ(δ)/h with β(δ) → 0 for δ → 0.
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CHAPTER 4
Carleman estimates

Given the discussion in Chapter 2, we know the probability of finding a particle

in the forbidden region {V > E} is exponentially small. However, in this chapter we

will show that it can never be superexponentially small

4.1 Carleman estimate in a bounded region

4.1.1 Interior Carleman estimate

We have following useful elliptic estimate,

Proposition 4.1.1 ([Zwo12] Theorem 7.1). Write

Q(h) := −h2Δ+ 〈a, hDf〉+ b,

where the coefficients a, b are smooth. Assume also that U ⊂⊂ W ⊂ R
n are open

sets. there exists a constant C such that

‖f‖H2
h(U) ≤ C(‖Q(h)f‖L2(W ) + ‖f‖L2(W ))

for all f ∈ C∞(W ).

Definition 4.1.2. Given ϕ ∈ C∞(Rn), we define the conjugation of P (h)−E(h) by

eϕ/h:

Pϕ(h) := eϕ/h(P (h)− E(h))e−ϕ/h.
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Lemma 4.1.3. We have

Pϕ(h) = pWϕ (x, hD)

for the symbol

pϕ(x, ξ) := 〈ξ + i∂ϕ(x), ξ + i∂ϕ(x)〉+ V (x)−E = |ξ|2 + V −E − |∂ϕ|2 + 2i 〈ξ, ∂ϕ〉 .

Proof. For any u ∈ C∞(Rn) we have

Pϕ(h)u = eϕ/h(−h2Δ+ V − E)(e−ϕ/hu)

= −h2Δu+ 2h 〈∂ϕ, ∂u〉 − |∂ϕ|2u+ (V − E)u+ hΔϕu.

By Proposition 2.1.6,

pWϕ (x, hD) = −h2Δu+ (V − E)u− |∂ϕ|2u+ i(〈∂ϕ, hDu〉+ 〈hD, ∂ϕu〉).

So this lemma is valid.

Definition 4.1.4. Hömander’s hypoellipticity (or pseudoellipticity) condition is the

requirement for the symbol pϕ that

if pϕ = 0, then i{pϕ, pϕ} > 0. (4.1.1)

Here { , } denotes the Possion bracket. Such ϕ is called Carleman weight.

Remark 4.1.5.

If pϕ = 0, then i{pϕ, pϕ} = 0.
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The corresponding ϕ is called the limiting Carleman weight. Such functions play

crucial roles in the applications of complex geometrical optics solutions to inverse

problems [KSU07] [DSFKSU09], and on the other hand it satisfies Hörmander’s local

solvability condition

i{pϕ, pϕ} ≤ 0, when pϕ = 0.

In analogy, one has following definition

Definition 4.1.6. [Tat] We say that the C2 function ϕ is strongly pseudoconvex at

x0 with respect to P at x0 if

Re{p̄, {p, ϕ}}(x0, ξ) > 0 whenever p(x0, ξ) = 0, ξ �= 0, (4.1.2)

{p(x, ξ + iτ∇ϕ), p(x, ξ + iτ∇ϕ)}/iτ > 0 whenever (4.1.3)

{p(x, ξ + iτ∇ϕ) = 0, τ > 0, (ξ, τ) �= 0}.

Remark 4.1.7. Choosing τ = 1
h
, (4.1.3) is the Hömander’s hypoellipticity condition.

Remark 4.1.8. (4.1.2) is the limiting case of (4.1.3) as τ → 0. Indeed, by Taylor

expansion in τ , the first two terms of p(x, ξ + iτ∇ϕ) at τ = 0 is

pl(x, ξ, τ) = p(x, ξ) + iτ
∂p

∂ξ
· ∂ϕ
∂x

= p(x, ξ) + iτ

(
∂p

∂ξ
· ∂ϕ
∂x

− ∂p

∂x
· ∂ϕ(x)

∂ξ

)
= p(x, ξ) + iτ{p, ϕ}(x, ξ).

Hence, if p(x0, ξ) = 0, then

lim
τ→0

{p(x, ξ + iτ∇ϕ), p(x, ξ + iτ∇ϕ)}/iτ = 2Re{p̄, {p, ϕ}}(x0, ξ).
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Remark 4.1.9. Indeed we have a simple geometrical interpretation of the pseudo-

convexity condition. If the symbol p is real, one can rewrite the pseudoconvexity

condition (4.1.2) as

H2
pϕ > 0 whenever p(x0, ξ) = 0.

HereH2
pϕ represents the second derivative of ϕ along the Hamiltonian flow of p. Then

the above relation says that the ϕ is ‘curved’ on the energy surface p(x0, ξ) = 0.

Lemma 4.1.10. If U ⊂⊂ R
n and Hömander’s hypoellipticity condition (4.1.1) is

valid within U . Then

M |pϕ|2 + i{pϕ, p̄ϕ}(x, ξ) ≥ C 〈ξ〉4 .

Proof. The proof is basic calculus. Write R
n = V

⋃
R

n\V , here V ⊂⊂ R
n.

First consider (x, ξ) ∈ U × V , the inequality is obvious since 〈ξ〉4 is bounded in

V and we can take the constant C small enough with the help of condition 4.1.1.

Secondly, for (x, ξ) ∈ U × R
n\V .

(i) Notice W := {ξ, pϕ(x, ξ) = 0} is a bounded set since U ⊂⊂ R
n. Similarly,

we can take C small enough to get the desired inequality for (x, ξ) ∈ U ×
W

⋂
R

n\V .

(ii) For (x, ξ) ∈ U ×R
n\(V ⋂

W ), we can take M large enough from comparing the

order of ξ since the order is 4 for |pϕ|2 and is 2 for i{pϕ, p̄ϕ}(x, ξ).

Theorem 4.1.11. Let U ⊂⊂ R
n, and assume Hömander’s hypoellipticity condition

(4.1.1) is valid within U .
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Then there exists a constant C such that

h1/2‖u‖L2(U) ≤ C‖Pϕ(h)u‖L2(U)

for all u ∈ C∞
0 (U), provided 0 < h ≤ h0 with h0 sufficiently small.

Proof. It follows from Theorem 7.5 in [Zwo12], let’s sketch the proof,

‖Pϕ(h)u‖2L2 =
〈
P ∗
ϕ(h)Pϕ(h)u, u

〉
(4.1.4)

=
〈
Pϕ(h)P

∗
ϕ(h)u, u

〉
+
〈
[P ∗

ϕ(h), Pϕ(h)]u, u
〉

= ‖P ∗
ϕ(h)u‖2 +

〈
[P ∗

ϕ(h), Pϕ(h)]u, u
〉
.

For any M > 1 and h small enough the calculation above gives

‖Pϕ(h)u‖2L2 ≥ Mh‖P ∗
ϕ(h)u‖2 +

〈
[P ∗

ϕ(h), Pϕ(h)u], u
〉

= h
〈
(M |pϕ|2 + i{pϕ, p̄ϕ})Wu, u

〉−O(h2)‖u‖2H2
h
.

Lemma 4.1.10 implies for M large enough that

M |pϕ|2 + i{pϕ, p̄ϕ}(x, ξ) ≥ C 〈ξ〉4 .

Then we can apply G̊arding inequality (2.2.1) to show that

‖Pϕ(h)u‖2L2 ≥ Ch‖u‖2L2 −O(h2)‖u‖2H2
h
.

Hence we can complete the proof with the help of Proposition 4.1.1.
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Remark 4.1.12. For convenience, let us see how the pseudoconvexity of ϕ plays the

crucial role when dimension n = 1.

When n = 1

Pϕ(h) = −h2 d2

dx2
+ h

d

dx
(ϕ′·) + hϕ′ d

dx
+ V (x)− E − |ϕ′|2.

Let A = − d2

dx2 , B1 =
d
dx
(ϕ′·), B2 = ϕ′ d

dx
and g(x) = V (x)− E − |ϕ′|2,

‖Pϕ(h)u‖2L2 = h4‖Au‖2 + h2‖B1u‖2 + h2‖B2u‖2 + ‖gu‖2+

2h 〈B1u, gu〉+ 2h 〈B2u, gu〉+ 2h2 〈Au, gu〉+ 2h3 〈Au, (B1 +B2)u〉 .
(4.1.5)

By an integration by parts,

〈B1u, gu〉+ 〈B2u, gu〉 = 〈ϕ′u, (2ϕ′ϕ′′ − V ′)u〉 .

For suitable ϕ (For an example, one can take ϕ strictly increasing and convex

such that 2ϕ′ϕ′′ − V ′ > 0), one has

〈B1u, gu〉+ 〈B2u, gu〉 > C‖u‖2 > 0,

for some positive constant C.

In (4.1.5), the last two terms are o(h) and hence for sufficiently small h > 0

h1/2‖u‖L2(U) ≤ C‖Pϕ(h)u‖L2(U).

Remark 4.1.13. For the limiting Carleman weights, one has similar L2 estimates

for the conjugated operator Pϕ(h) ([KSU07] [DSFKSU09]). One key step is to make
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a little perturbation to convexify the limiting Carleman weight to get a Carleman

weight satisfying condition 4.1.1.

From the above argument, we can see a key step in proving the Carleman es-

timate is to construct a weight function ϕ which satisfies condition (4.1.1). Con-

vexifying a function which has no critical point is the basic idea. It goes back to

Hörmander’s classic book ([H6̈3]).

Let us start with a Morse function ψ - that is, a smooth real-valued function

having no degenerate critical points. We note that Morse functions are dense in

C∞(U), here U can be any bounded open set in R
n.

Now set x1, . . . , xN to be the (necessarily finitely many) critical points of ψ, and

ω0 ⊂⊂ U .

Lemma 4.1.14 ([Van09] Lemma 2.3). There exists a diffeomorphism κ : U → U

such that κ(x) = x near ∂U and such that κ(xj) ∈ ω0 for ∀j.
Following this lemma, we can assume ψ is such a Morse function which has

finitely many critical points, all of which are contained in ω0.

Now let

ϕ := eγψ,

where γ > 0 is to be determined. We will show such ϕ is a Carleman weight.

Proposition 4.1.15 ([Van09] Proposition 2.4). For γ large enough, ϕ := eγψ is a

Carleman weight on U\ω0.

Proof. We have

pϕ(x, ξ) = |ξ|2 + V − E − |∂ϕ|2 + 2i 〈ξ, ∂ϕ〉 .
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pϕ = 0 means

|ξ|2 + V − E − |∂ϕ|2 = 0 (4.1.6)

and

〈ξ, ∂ϕ〉 = 0. (4.1.7)

From ϕ := eγψ we can get ∂ϕ = γ∂ψeγψ and ∂2ψ = (γ2∂ψ ⊗ ∂ψ + γ∂2ψ)eγψ.

Hence

|ξ| ≤ Cγeγψ, (4.1.8)

by (4.1.6).

Now we can compute

i

2
{pϕ, p̄ϕ}(x, ξ) = {Re pϕ, Im pϕ}

= 4
〈
∂2ϕ ξ, ξ

〉
+ 4

〈
∂2ϕϕ, ϕ

〉− 2 〈∂V, ∂ϕ〉

= 4
(
γ2 〈∂ψ, ξ〉2 + γ

〈
∂2ψξ, ξ

〉 )
eγψ + 4

(
γ4|∂ψ|4

+ γ3
〈
∂2ψψ, ψ

〉 )
e3γψ − 2γ 〈∂V, ∂ψ〉 eγψ

= 4
(
γ4|∂ψ|4 +O(γ3)

)
e3γψ − 2γ 〈∂V, ∂ψ〉 eγψ

where the last identity follows from (4.1.7), (4.1.8) and U is compact. Notice ψ has

no critical point in U\ω0 which means |∂ψ| > 0 there. By comparing the order of γ

and using the fact U is compact, we can conclude that i
2
{pϕ, p̄ϕ}(x, ξ) > 0 from the

above identity.

Remark 4.1.16. eγ(2R−|x|) is an example of Carleman weight in B(0, R)\B(0, r) for

γ sufficiently large.
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Remark 4.1.17. Correspondingly, log |x| is one example of a limiting Carleman

weight in R
n\{0} for the operator −h2Δ ([KSU07]). Indeed in [DSFKSU09], the

authors determine all the limiting Carleman weights for −h2Δ in the Euclidean

metric.

Theorem 4.1.18 ([Zwo12]). Suppose U ⊂⊂ R
n, and for large constant R0, V ∈

C∞(Rn,R) satisfying⎧⎪⎪⎨⎪⎪⎩
|∂αV (x)| ≤ Cα 〈x〉k for each multiindex α, |x| ≥ R0,

V (x) ≥ c 〈x〉k for |x| ≥ R0 .

(4.1.9)

If u(h) solves

P (h)u(h) = E(h)u(h) in R
n,

then there exist constants C, h0 > 0 such that

‖u(h)‖L2(U) ≥ e−
C
h ‖u(h)‖L2(Rn),

for 0 < h < h0.
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CHAPTER 5
Proof of main results

5.1 Carleman estimates in a Fermi neighbourhood of the caustic

5.1.1 Collar neighbourhood of caustic and Fermi coordinates

Let (M, g) be a compact, C∞ Riemannian manifold and V ∈ C∞(M ;R) be

a real-valued potential. For r0 < inj(M, g)/2 there exists a collar neighbourhood,

UE(r0), of ΛE = {x ∈ M ;V (x) = E} along with Fermi coordinates (yn, y
′) : UE →

(−2r0, 2r0)× R
n−1 for the ambient metric g, so that in terms of these coordinates

g = dy2n + h(y′, yn)|dy′|2, y ∈ U

Here, yn ∈ C∞(M ;R), is an appropriately normalized defining function for ΛE;

with

ΛE = {yn = 0}, dyn|ΛE
�= 0.

where h(y′, yn) > 0 and h(y′, 0)|dy′|2 := ∑
i,j �=n hij(y

′, 0)dyi∧ dyj is the metric on the

hypersurface ΛE = {V = E} induced by g. In these coordinates, we choose the sign

convention so that
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{V > E} ∩ UE(r0) = {y; 0 < yn < 2r0} and

{V < E} ∩ UE(r0) = {y;−2r0 < yn < 0}.

It will also be useful in the following to introduce the following annular domains

in the forbidden region defined by

AE(δ, δ
′) := {x ∈ M ; δ < yn < δ′}, 0 < δ < δ′. (5.1.1)

In terms of the Fermi coordinates (y′, yn), the corresponding Agmon metric has

the form

gE = (V (y)− E) (dy2n + h(y′, yn)|dy′|2), y ∈ U, yn > 0, (5.1.2)

It follows by first-order Taylor expansion that

V (y)− E = yn F (y′, yn), (5.1.3)

where

F (y′, yn) =
∫ 1

0

(∂ynV )(y′, tyn) dt.

As result, the Agmon metric can also be written in the form

gE = yn F (y) (dy2n + h(y′, yn)|dy′|2), y ∈ U, yn > 0, (5.1.4)

with F (y) in (5.1.3). Since for y ∈ Ωc
E, the functions V (y)−E > 0 and yn > 0, it is

clear from (5.1.3) that F (y) > 0.
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We recall (see assumptions (i) and (ii) in the introduction) that by assumption,

the collar neighbourhood UE(r0) contains no critical points of V and that V is strictly

convex in the same neighbourhood. We claim that under these assumptions, not only

is F (y) > 0, but in fact,

∂ynV (y) > 0 for all y ∈ (UE(r0) ∩ Ωc
E). (5.1.5)

To verify (5.1.5), we simply differentiate (5.1.3) in yn to get

∂ynV (y) = F (y) + yn

∫ 1

0

(∂2
ynV )(y′, tyn) t dt,

and (5.1.5) follows since F > 0, yn > 0 and ∂2V (y) ≥ 0 for all y ∈ UE(r0)∩Ωc
E under

the convexity assumption on the potential.

It then follows from (5.1.5) and (5.1.3) that

min
y∈UE(r0)

∂ynV (y) ≤ F (y) ≤ max
y∈UE(r0)

∂ynV (y). (5.1.6)

Locally minimal geodesics and Agmon distance

In the collar neighbourhood UE(r0), given a point (y′, yn) ∈ UE(r0)∩Ωc
E, there is

a unique minimal geodesic γ : [0, 1]×ΛE → UE(r0) for the ambient metric g. Setting

γt(y) = γ(t, y) where γ0 = (y′, 0) ∈ ΛE and γ1 = (y′, y), the minimal geodesic is

γt(y
′, 0) = (y′, tyn); 0 ≤ t ≤ 1.

It is easy to see that these “normal” geodesic segments to ΛE are unfortunately

not, in general, minimal geodesics for the conformally rescaled Agmon metric gE;
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indeed the latter can be quite complicated (see examples in 6.3). Nevertheless, we

will need the following elementary estimate for Agmon distance in terms of the

natural Fermi defining function yn : M → R above.

Lemma 5.1.1. Under the convexity assumption in Definition 1.1.2, it follows that

dE(y) ≥ 2

3
( min
y∈UE(r0)

∂ynV (y) )1/2 y3/2n ; y ∈ UE(r0).

Proof. Let γ : [0, 1] → Ωc
E be a piecewise-C1 minimal geodesic for the Agmon metric

gE joining y = (y′, yn) ∈ UE(r0) ∩ Ωc
E to ΛE; explicitly, γ(0) = (y′, yn) and γ(1) =

(f(y′, yn), 0) ∈ ΛE. Then, writing γ = (γ′, γn), with γ′ = (γ1, ..., γn−1),

dE(y) =

∫ 1

0

|dtγ(t)|gE dt,

and since

|dtγ(t)|gE =
(
F (γ(t)) γn(t) |dtγn(t)|2 + F (γ(t)) γn(t) 〈h(y(t)) dtγ′(t), dtγ′(t)〉

)1/2

,

with F, γn > 0, and h(·) is a positive-definite matrix, it follows that

dE(y) ≥ minF 1/2 ·
∫ 1

0

γn(t)
1/2 |dtγn(t)| dt.

Finally, by making the change of variables t �→ s = γn(t) in the last integral,

one gets

dE(y) ≥ minF 1/2 ·
∫ yn

0

s1/2 ds,

and the lemma follows from this last estimate combined with (5.1.6) since minF 1/2 ≥
min (∂ynV )1/2.
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5.1.2 Local control and Carleman bounds near the caustic ΛE

Model computation

Consider the model Airy operator P0(h) := (hDy)
2 + y where y ∈ R where

V (y) = y and E = 0 with the corresponding Airy-type weight function in the

forbidden region given by

ϕ0(y) =
2

3
y3/2, y > 0.

Then, the symbol of the conjugated operator eϕ0/hP0(h)e
−ϕ0/h is

pϕ0(y, ξ) = ξ2 − |ϕ′
0(y)|2 + y + 2iy1/2ξ, y > 0

and

Char(pϕ0) = {(y, ξ) ∈ R
2; ξ = 0, y > 0}.

The latter follows since (y, ξ) ∈ Char(ϕϕ0) iff 0 = |ξ|2 − |ϕ′
0(y)|2 + y + 2iy1/2ξ

which in turn holds iff ξ = 0 since |ϕ′
0(y)|2 − y = 0.

We note that the weight function ϕ0 is borderline for the Hörmander subelliptic

condition in the sense that for (y, 0) ∈ Char (pϕ0), we have

{Re pϕ0 , Im pϕ0} = 4ϕ′′
0(y)|ϕ′

0(y)|2 − 2ϕ′
0(y) ≡ 0, y > 0.

Of course, in this case, ϕ0(y) =
2
3
y3/2 =

∫ y

0
τ 1/2dτ is precisely the Agmon dis-

tance function dE(y), where by convention we have set E = 0.
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Construction of the weight function

Let P (h) = −h2Δg + V − E : C∞(M) → C∞(M) and consider the conju-

gated operator Pϕ(h) = eϕ/hP (h)e−ϕ/h : C∞(M) → C∞(M) with principal symbol

pϕ(x, ξ) = |ξ|2g − |∇xϕ|2g + V (x)− E + 2i 〈ξ,∇xϕ〉g . The model case above suggests

that to create subellipticity for Pϕ(h) in a Fermi neighbourhood of the caustic, it

should suffice to slightly modify the model weight function ϕ0 in the normal Fermi

coordinate yn. With this in mind, for ε > 0 arbitrarily small (for concreteness, as-

sume 10ε < r0) and constant τ > 0 to be determined later on, we now set in Fermi

coordinates (y′, yn) : UE → R
n−1 × (−2r0, 2r0),

ϕε(yn) :=
(2
3
+ ε

)
τ (yn + 10ε)3/2, yn ∈ (−2ε, 2r0). (5.1.7)

Remark 5.1.1. We recall here that r0 < inj(M, g) is fixed (but not necessarily

small), whereas ε > 0 will be chosen arbitrary small (but independent of h) consistent

with the control assumption on the eigenfunctions.

We abuse notation somewhat in the following and simply write ϕ = ϕε, the

dependence on ε being understood. Then, ϕ ∈ C∞([−2ε, 2r0]) and plainly ϕ :

[−2ε, 2r0] → R
+ is strictly-convex and monotone increasing with

min (ϕ′(yn), ϕ′′(yn) ) ≥ C(ε) > 0, yn ∈ (−2ε, 2r0).
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Moreover, the characteristic variety

Char(pϕ) ∩ π−1([−2ε, 2r0])

= {(y, ξ); |ξ|2y − |∂ynϕ|2 + F (y)yn = 0, ξn = 0, yn ∈ (−2ε, 2r0)}.

Since F (y) > 0, it follows that this set is non-trivial; indeed for any−2ε < yn < 0

(ie. a point in the allowable region),

Char(pϕ) ∩ π−1(yn) ∼= S∗
yn(M) ∩ {ξn = 0}.

Since Char(pϕ) is non-trivial, global ellipticity over the interval (−2ε, 2r0) evi-

dently fails. However, we claim that subellipticity is now satisfied in such an interval

provided τ > 0 is chosen large enough but depending only on the potential V . In-

deed, since the normal Fermi coordinate is yn and ϕ is a function of only yn with

gn,n = 1, a direct computation gives,

{Re pϕ, Im pϕ} = {ξ2n + |ξ′|2y − (∂ynϕ)
2 + V − E, 2∂ynϕ · ξn}

= ∂ξn
(
ξ2n
)
∂yn

(
2∂ynϕ · ξn

)− ∂yn
(− (∂ynϕ)

2 + V − E
)
∂ξn

(
2∂ynϕ · ξn

)
= 4∂2

ynϕ
(
|∂ynϕ|2 + ξ2n

)
− 2∂ynϕ · ∂ynV

≥ 2∂ynϕ ( 2∂2
ynϕ · ∂ynϕ− ∂ynV )

≥ 2τC(ε)( 2∂2
ynϕ · ∂ynϕ− ∂ynV ), yn ∈ (−2ε, 2r0). (5.1.8)

From (5.1.7), for any ε > 0 and for all yn ∈ (−2ε, 2r0),
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2∂2
ynϕ · ∂ynϕ ≡ 9

4
τ 2
(2
3
+ ε

)2

> τ 2.

Choosing

τ = ‖∂ynV ‖1/2L∞(UE(r0))
, (5.1.9)

it follows from (5.1.8) that for all (y, ξ) with yn ∈ (−2ε, 2r0),

{Re pϕ, Im pϕ}(y, ξ) ≥ C(τ, ε) > 0.

Consequently, ϕ = ϕε is a Carleman weight for P (h) globally in the Fermi

neighbourhood of the caustic where −2ε < yn < 2r0.

Remark 5.1.2. If V = V (yn) in UE(r0), consider

ϕε(yn) = (1 + ε)

∫ yn+10ε

0

√
V (t)− Edt, yn ∈ (−2ε, 2r0).

Similarly

ϕ′(yn) = (1 + ε)
√

V (yn + 10ε)− E ≥ C(ε) > 0 ,

ϕ′′(yn) =
1 + ε

2

∂ynV (yn + 10ε)√
V (yn + 10ε)− E

≥ C(ε) > 0 , yn ∈ (−2ε, 2r0).
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Moreover

{Re pϕ, Im pϕ} = {ξ2n + |ξ′|2y − (∂ynϕ)
2 + V − E, 2∂ynϕ · ξn}

= 4∂2
ynϕ

(
|∂ynϕ|2 + ξ2n

)
− 2∂ynϕ · ∂ynV

≥ 2∂ynϕ ( 2∂2
ynϕ · ∂ynϕ− ∂ynV )

≥ 2∂ynϕ
(
(1 + ε)2 − 1

)
∂ynV

> 0, yn ∈ (−2ε, 2r0).

This means ϕ = ϕε is also a Carleman weight for P (h) globally in the Fermi neigh-

bourhood of the caustic where −2ε < yn < 2r0.

Now, let χ ∈ C∞
0 (R; [0, 1]) be a cutoff satisfying

χ(yn) = 1; −3

2
ε < yn <

3

2
r0

with

χ(yn) = 0; yn ∈ R \ (−2ε, 2r0).

−2ε −3
2
ε 0 3

2
r0 2r0 R

Figure 5–1: Cutoff function χ

In the following, we let χ± ∈ C∞
0 (R) with 0 ≤ χ± ≤ 1. Moreover, writing

f± := f |±yn≥0, we choose χ±(yn) so that χ±(yn) = 1 for yn ∈ supp (∂ynχ)
± and

χ±(yn) = 0 for yn ∈ supp (∂ynχ)
∓. More concretely, in terms of Fermi coordinates,
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we choose χ± so that

χ−(yn) = 1; −3ε < yn <
ε

2
,

χ−(yn) = 0; yn > ε,

and

χ+(yn) = 1;
3

2
r0 − ε < yn < 2r0 + ε,

χ−(yn) = 0; yn <
3

2
r0 − 2ε.

Set Pϕ(h) := eϕ/hP (h)e−ϕ/h : C∞
0 (U) → C∞

0 (U) and with χ = χ(yn) above,

vh := eϕ/hχuh

where P (h) := −h2Δg + V (x)− E(h) and

P (h)uh = 0.

Moreover, we assume throughout that the eigenfunctions uh are L2-normalized with

‖uh‖L2(M,g) = 1.

In view of the subellipticity estimate in (5.1.8) and the support properties of

the cutoff χ ∈ C∞
0 it follows by the standard Carleman estimate [Zwo12, Theorem

7.7] that

‖Pϕ(h)vh‖2L2 ≥ C1(ε)h ‖vh‖2H1
h
. (5.1.10)
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Since P (h)uh = 0 and Pϕ(h) is local with suppχ+∩ suppχ− = ∅, it follows from
(5.1.10) that

‖eϕ/h[P (h), χ]χ+uh‖2L2 + ‖eϕ/h[P (h), χ]χ−uh‖2L2

≥ C1(ε)h
(
‖eϕ/hχuh‖2H1

h(suppχ+) + ‖eϕ/hχuh‖2H1
h(suppχ−)

)
(5.1.11)

or equivalently,

‖eϕ/h[P (h), χ]χ+uh‖2L2 − C1(ε)h ‖eϕ/hχuh‖2H1
h(suppχ+)

≥ C1(ε)h‖eϕ/hχuh‖2H1
h(suppχ−) − ‖eϕ/h[P (h), χ]χ−uh‖2L2 .

(5.1.12)

Then, it follows from (5.1.12) that

h2‖eϕ/huh‖2H1
h(supp ∂̃χ

+)
≥ C1(ε)h‖eϕ/huh‖2H1

h(suppχ−)
− h2C2(ε)‖eϕ/huh‖2H1

h(supp ∂̃χ
−)
,

(5.1.13)

where, in (5.1.13), the sets supp ∂̃χ± arbitrarily small neighbourhoods of supp (∂χ)±

respectively. Specifically, we can assume that suppχ± ⊃ supp ∂̃χ± ⊃ supp (∂χ)±

and in addition

meas (supp ∂̃χ± \ supp (∂χ)±) ≤ ε

10
.

Since (∂χ)− is supported in the classically allowable region where yn < 0, we will

now use the control assumption in Definition 1.1.1 to get an effective lower bound

for the RHS in (5.1.13).
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Computing in Fermi coordinates, the RHS of (5.1.13) is

≥ C1(ε)h
∫
{U ;yn∈(− ε

2
,0)} e

2ϕ(yn)/h(|uh(y)|2 + |h∂yuh(y)|2) dy′dyn
−C2(ε)h

2
∫
{U ;yn∈(−3ε,−ε)} e

2ϕ(yn)/h(|uh(y)|2 + |h∂yuh(y)|2) dy′dyn, (5.1.14)

where the last line in (5.1.14) follows since supp ∂̃χ− ⊂ {y ∈ U ;−3ε < yn < −ε}.
Next we use strict monotonicity of the weight function ϕ ∈ C∞([−2ε, 2r0]) in

(5.1.7). We setm(ε) := minyn∈(− ε
2
,0) ϕ(yn) > 0 andM(ε) := maxyn∈(−3ε,−ε) ϕ(yn) > 0.

Then, since ϕ is strictly increasing,

m(ε)−M(ε) = C3(ε) > 0.

So, it follows that (5.1.14) is bounded below by

C1(ε)e
2m(ε)/h

(
h‖uh‖2H1

h({U ;yn∈(− ε
2
,0)})

− C2(ε)h
2e2[M(ε)−m(ε)]/h]‖uh‖2H1

h({U ;yn∈(−3ε,−ε)})
)
. (5.1.15)

Finally, by standard elliptic estimates, ‖uh‖H1
h
= O(1) and by the control as-

sumption in Definition 1.1.1, it follows that for any ε > 0,

‖uh‖2H1
h({U ;yn∈(− ε

2
,0)}) ≥ C2,N(ε)h

N .

Consequently, from (5.1.13)-(5.1.15) it follows that with h ∈ (0, h0(ε)], there

exist constants Cj(ε) > 0, j = 1, . . . , 5, such that
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h2‖eϕ/huh‖2H1
h(supp ∂̃χ

+)
≥ C1(ε)e

2m(ε)/h
(
hN+1C2,N(ε) +Oε(e

−2C3(ε)/h)
)

≥ C4,N(ε)h
N+1e2m(ε)/h ≥ C5,N(ε)e

m(ε)/h. (5.1.16)

Next, we relate the weight function ϕε to Agmon distance dE. From Lemma

5.1.1 we recall that

dE(y) ≥ 2

3
( min
UE(r0)

∂ynV )1/2 y3/2n

=
(minUE(r0) ∂ynV

maxUE(r0) ∂ynV

)1/2

ϕε(yn) +O(ε). (5.1.17)

The latter estimate in (5.1.17) follows since in the definition of the weight ϕε (see

(5.1.7)), we choose τ = maxy∈UE(r0) |∂ynV |1/2. Since from (5.1.5), miny∈UE(r0) ∂ynV >

0, it then follows that

ϕε(yn) ≤
(

maxy∈UE(r0)
∂ynV

miny∈UE(r0)
∂ynV

)1/2

dE(y) +O(ε) (5.1.18)

Thus, in view of (5.1.16) and (5.1.18), we have proved the Theorem 1.2.1.

Remark 5.1.3. Under the same assumptions as in Remark 5.1.2, it’s easy to see

the piecewise-C1 minimal geodesic under gE joining (y′, yn) to ΛE is just the same

minimal geodesic under g (see the section 6.3). Hence

dE(y) =

∫ yn

0

√
V (t)− Edt = ϕε(yn) +O(ε).
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5.2 Lp restriction lower bounds in forbidden regions

Consider a C∞ separating hypersurface H ⊂ Ωc
E in the forbidden region that

bounds a domain ΩH ⊂ Ωc
E. The point of this section is to extend Theorem 1.2.1 to

lower bounds for Lp-restrictions of eigenfunctions to hypersurfacesH in the forbidden

region.

Let ν be the unit exterior normal to H with 〈∇V, ν〉 < 0. Then, under the

separation assumption above, by Green’s formula,

∫
ΩH

|h∇uh|2g dvg +
∫
ΩH

(V − E)|uh|2 dvg = h2

∫
H

∂νuh · uh dσ (5.2.1)

Using the fact that V (x) − E ≥ C > 0 for all x ∈ ΩH , it follows from (5.2.1)

that with a constant Cδ = C(V,E,E ′, δ) > 0

h2

∫
H

∂νuh · uh dσ ≥ Cδ‖uh‖2H1
h(ΩH). (5.2.2)

From the pointwise Agmon estimates

‖h∂νuh‖L∞(H) = Oε(e
−dE(H)+β(ε)/h), dE(H) := min

q∈H
dE(q)

together with the Hölder inequality,

‖uh‖Lp(H) ≥ Cδ,ε(p) e
[dE(H)−β(ε)]/h‖uh‖2H1

h(ΩH), p ≥ 1. (5.2.3)
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Here, β(ε) = o(1) as ε → 0+.

Definition 5.2.1. We say that the hypersurface H ⊂ {V > E} is admissible pro-

vided:

(i) H us a separating hypersurface bounding a domain ΩH ⊂ {V > E}.
(ii) There exists E ′ > E such that the hypersurface ΛE′ = {yn = E ′ − E} has

the property that

ΛE′ ⊂ ΩH ∩ UE(r0).

V < E

H

Admissible

V < E

H

Not Admissible

Red region is {V > E} ∩ UE(r0)

Figure 5–2: Admissible and not Admissible hypersurfaces

Set

E(H) := inf{E ′ > E; ΛE′ ⊂ (ΩH ∩ UE(r0))}. (5.2.4)
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Since ΛE′ ∩ ΩH = ∅ for any E ′ > E sufficiently close to E, it follows that

E(H) > E. Moreover, under the admissiblity assumption, it follows that for any

δ > 0 sufficiently small,

A(E(H), E(H) + δ) ⊂ (ΩH ∩ UE(r0))

and so,

‖uh‖2H1
h(ΩH) ≥ ‖uh‖2H1

h(A(E(H),E(H)+δ). (5.2.5)

From the Carleman estimate in Theorem 1.2.1,

‖eτ0dE/huh‖2H1
h(A(E(H),E(H)+δ)) ≥ C(δ, ε)e−β(ε,δ)/h, (5.2.6)

where β(ε, δ) → 0+ as ε, δ → 0+.

It then follows from (5.2.3)-(5.2.6) that for any ε′ > 0, and with

τ0 =
(maxUE(r0) ∂ynV

minUE(r0) ∂ynV

)1/2

, dHE := max
q∈ΛE(H)

dE(q), dE(H) = min
q∈H

dE(q). (5.2.7)

one has the following lower bound for Lp-restrictions of the uh to H :

‖uh‖Lp(H) ≥ C(ε′, p) e−2τ0·dHE /h · edE(H)/h · e−β(ε′)/h, p ≥ 1

where β(ε′) → 0+ as ε′ → 0+. Consequently, we have proved the Theorem 1.2.3

5.3 Nodal intersection bounds in forbidden regions

The main job of this section is to give an improved Theorem 1.2.5 following the

steps in [CT16]. Before that, we shall give a very brief review of known results about

nodal sets of the eigenfunctions of Laplace and the Schödinger operators.
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Theorem 5.3.1 ([Che76]). Suppose that (M, g) is an n-dim C∞ Riemannian man-

ifold without boundary (not necessarily compact). If f ∈ C∞(M) satisfies

(Δ + s(x))f = 0,

for s ∈ C∞(M). Then except on a closed set of lower dimension (i.e. dim < n− 1)

the nodal set of f forms an (n− 1)-dim C∞ manifold.

The study of zero sets was historically motivated by the desire to visualize energy

states by finding the points where the quantum particle is least likely to be. In fact

the nodal sets of the hydrogen atom energy states have become visible to microscopes

[SRL+13].

In the late 70’s, S. T. Yau gave a conjecture for the ‘size’ of the zero set Zuλ
,

Zuλ
= {x, uλ(x) = 0}, of eigenfunctions

−Δguλ = λuλ

of the laplacian Δg on (M, g). The conjecture is stated as follows,

Conjecture 5.3.2. For general C∞(M, g) of any dimension n, there exist positive

constants c and C depending only on g so that

c
√
λ ≤ H n−1(Zuλ

) ≤ C
√
λ.

Here H n−1(Zuλ
) represents the n− 1-dimentional Hausdorff measure.
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When (M, g) is analytic, this problem has been extensively studied. In 1988,

Donnelly-Fefferman [DF88] proved the conjectured bounds for real analytic Rieman-

nian manifolds (possibly with boundary). In 1991, Lin [Lin91] showed the same

upper bound by using the frequency of uλ.

However, for C∞ metrics, this conjecture is still not completely solved. A lot of

experts made great contributions in this conjecture ([Bru78] [CM11] [Don92] [DF90]

[HS89] [SZ12]). We refer to [Zel13] for a list of references. Recently Logunov ([Log]

[Log18b] [Log18a]) has some breakthrough results for both the upper and lower

bounds.

Motivated by Yau’s conjecture, Toth-Zelditch [TZ09] [TZ] considered the dis-

tribution of Zuλ
on a piecewise analytic domain in R

2. More specifically, they gave

an upper bound for the number of intersection points of Zuλ
with a ‘good’ analytic

curve H (cf Fig. 4-2).

H

Figure 5–3: Nodal intersetion

One key technique in the proof of Yau’s conjecture involves establishing Carle-

man estimate since the measure of the nodal sets is closely related to the Carleman

weight [DF88].
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More generally, we can consider the problem of determining the measure of the

zero set Zuh
of Schrödinger eigenfunctions. From now on, we only consider the case

that g ∈ Cω.

Jin [Jin17] extended the known results in the homogeneous case where V = 0

to Schrödinger eigenfunctions in ΩE. Due to quantum tunneling phenomenon, it is

natural to study the property of zero set in Ωc
E, but little is known in this case.

In dimension one, we know that the eigenfunctions of the Harmonic Oscillator have

no zeros in the forbidden region and Hanin-Zelditch-Zhou [HZZ15] [HZZ17] have

proved that in any higher dimension the expected value of the measure of the nodal

set of random eigenfunctions of the harmonic oscillator inside any ball is of order

h−1/2 and the density of zeros is of order h− 2
3 in an h− 2

3 -tube around the caustic set

{x : V (x) = E}. Recently Canzani-Toth [CT16] have shown the sharp upper bound

for the nodal intersection of Schrödinger eigenfunctions with any simple closed real

analytic curve is of order h−1 on a compact real analytic surface without boundary.

We now turn to the proof of Theorem 1.2.5, but first review the basic method

in [CT16]. One key observation is that the number of nodal intersections with an

analytic curve is always upper bounded by the zeros of corresponding complexified

eigenfunction in a complex strip. Then the authors apply a crucial inequality [[TZ09],

Proposition 10] which says basically that the number of zeros of a holomorphic

function is controlled by the logarithm of the holomorphic function.
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We now present the details. Consider the special case where dimM = 2 and

(M, g, V ) are, in addition, real-analytic. Let H ⊂ Ωc
E be a simple, closed, real-

analytic curve in the forbidden region. Given the nodal set

Zuh
= {x ∈ M ; uh(x) = 0},

the problem is to estimate the number of nodal interesections with H; that is #{H∩
Zuh

} which is just the cardinality of the intersection. Indeed, under an exponential

lower bound on the L2-restrictions of the eigenfunctions (ie. a goodness bound), this

intersection consists of a finite set of points.

Let q : [0, 2π] → H be a Cω, 2π-periodic, parametrization of H. To bound

the number of zeros of uh ◦ q : [0, 2π] → R we consider its holomorphic extension

(uh ◦ q)C : HC

τ → C to the complex strip

HC

τ = {t ∈ C : Re t ∈ [0, 2π], |Im t| < τ}

for some τ > 0, and use that #{Zuh
∩H} ≤ #{Z(uh◦q)C ∩HC

τ }. Then, the zeros of

(uh ◦ q)C are studied using the Poincaré-Lelong formula:

∂∂ log |(uh ◦ q)C(z)|2 =
∑

zk∈Z(uh◦q)C

δzk(z).

According to [TZ09, Proposition 10], there exists C > 0 so that

#{Zuh
∩H} ≤ #{Z(uh◦q)C ∩HC

τ } ≤ C max
t∈HC

τ

log |FC

h (t)|, (5.3.1)
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where FC

h (t) with t ∈ HC

τ is the holomorphic continuation of the normalized eigen-

function traces

Fh(t) :=
uh(q(t))

‖uh‖L2(H)

. (5.3.2)

It follows that we shall need to control the complexification FC

h (t) to obtain

upper bounds on #{Zϕh
∩ H}. Without loss of generality we assume that H ⊂

int(Ωγ) where Ωγ ⊂ Ωc
E is a domain whose closure is contained in Ωc

E and whose

boundary is a closed Cω curve that we call γ. Moreover, we choose γ so that for any

fixed ε > 0, the distance d(H, γ) < ε. Then, in [CT16] (4.9), the authors prove that

there exist positive constants C, h0, dH and C1(ε) so that

|FC

h (t)| ≤ Ce−C1(ε)/h

( ‖uh‖L2(γ)

‖uh‖L2(H)

+
‖∂νuh‖L2(γ)

‖uh‖L2(H)

)
. (5.3.3)

From the Agmon estimates in (1.1.5), one has the upper bounds

max{ ‖uh‖L2(γ), ‖∂νuh‖L2(γ) } ≤ C(ε)e−[ dE(H)+β1(ε) ]/h, dE(H) = min
q∈H

dE(q),

for all h ∈ (0, h0(ε)] with β1(ε) = o(1) as ε → 0+. On the other hand, from Theorem

1.2.3, we have the lower bound

‖uh‖L2(H) ≥ C(ε)e[−2τ0dHE+dE(H)+β2(ε) ]/h, dHE = max
q∈ΛE(H)

dE(q),

with β2(ε) = o(1) as ε → 0+.

Consequently, from (5.3.3) we get that

|FC

h (t)| ≤ C(ε)e−C1(ε)/h eβ(ε)/h · e[ 2( τ0dHE−dE(H) ) ]/h, C1(ε) > 0, β(ε) = o(1); ε → 0+.

(5.3.4)
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Then, using the Jensen-type bound in (5.3.1) and letting ε > 0, we complete

the proof of Theorem 1.2.5.
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CHAPTER 6
Examples and counterexamples

In this chapter, we shall discuss the necessity of the control assumption in Defi-

nition 1.1.1 and compare the geodesics under the ambient metric g with those under

the Agmon metric gE.

6.1 Counterexample: Effective potentials and lack of eigenfunction con-
trol

Here we show that without the control assumption in Definition 1.1.1, we can es-

tablish a Schördinger model such that the corresponding eigenfunction decays much

faster than e−(1−ε)dE/h in A(δ, δ′) for δ′ small enough. Such counterexample is essen-

tially inspired by the paper ([CT16]).

Consider a convex surface of revolution generated by rotating a curve γ =

{(r, f(r)), r ∈ [−1, 1]} about r-axis with f ∈ C∞([−1, 1],R), f(1) = f(−1) = 0,

and f ′′(r) < 0 for all r ∈ [−1, 1]. Furthermore, one requires f (n)(−1) = f (n)(1) for

all n-th derivatives.

Let M be the corresponding convex surface of revolution parametrized by

β : [−1, 1]× [0, 2π) → R
3,

β(r, θ) = (r, f(r) cos θ, f(r) sin θ).
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Then, M inherits a Riemannian metric g given by

g = w2(r)dr2 + f 2(r)dθ2,

where w(r) =
√

1 + (f ′(r))2.

Consider the Schördinger equation on M given by

(−h2Δg + V )ϕh = E(h)ϕh,

where V ∈ C∞(M) and is radial, so that V (r, θ) = V (r). We also assume that

E(h) = E + o(1) and that f(V −1(E)) > 0.

We seek eigenfunctions of the form ϕh(r, θ) = vh(r)ψh(θ). The Laplace operator

in the coordinates (r, θ) has the following form

Δg =
1

w(r)f(r)

∂

∂r

(
f(r)

w(r)

∂

∂r

)
+

w2(r)

f 2(r)

∂2

∂θ2
.

Making the radial change of variables s → r(s) =
∫ s

0
f(τ)
w(τ)

dτ , it follows that

vh(r(s)) and ψh(θ) must satisfy the ODE

−h2
k

d2

dθ2
ψh(θ) = h2

k m
2
hk
ψh(θ) (6.1.1)

and (
−h2

k

d2

ds2
+ f 2(r(s))(V (r(s))− E(h)) + w2(r(s))

)
vhk

(r(s)) = 0. (6.1.2)

for some mh ∈ Z. Let {hk} be a decreasing sequence with hk → 0+ as k → +∞ and

mhk
= 1/hk ∈ Z. Then, we choose a particular sequence of solutions of (6.1.1) given
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by

ψhk
(θ) = eiθ/hk .

Consider the annulus A(−ε0, ε0) = {r(s);−ε0 < V (r(s))−E(h) < ε0}. Since for
r ∈ A(−ε0, ε0) we have for ε0 > 0 sufficiently small

f 2(r)(V (r)− E) + w2(r) >
1

4
w2(r),

it then follows by the standard Agmon-Lithner estimate applied to (6.1.2) that for

any δ > 0, and with V (r0) = E,

‖e
(1−δ)

2

( ∫ r
r0

w(τ)
∂sτ

dτ

)
/hk

vhk
(r)‖L2(A(−ε0,ε0) = Oδ(1), (6.1.3)

Since ∂sr = f(s)
w(s)

> 0 for r(s) ∈ A(−ε0, ε0) with ε0 > 0 sufficiently small, the

inequality (6.1.3) contradicts the control condition in Definition 1.1.1; indeed, the

eigenfunctions already decay exponentially in h in the allowable region A(−ε0, 0).

We note that since dE(r) = O(|V (r)−E|3/2) = O(ε
3/2
0 ) and the additional effec-

tive potential term w(r) =
√
1 + (f ′(r))2 ≥ 1, it follows that for ε0 > 0 sufficiently

small, in the forbidden region where r ∈ A(0, ε0),

(1− δ)

2

∫ r

r0

w(τ)

∂sτ
dτ ≥ C0 (V (r)− E) > τ0dE(r), C0 > 0.

In this case, the exponential decay is therefore more pronounced than in Theorem

1.2.1. This is due to the presence of the effective potential term w2 which in turn

appears because of the particular choice of the sequence of Fourier modes in (6.1.1)

with mkhk ∼ 1. This is consistent with our results, since as we have already shown,

the control condition is violated for this particular sequence of eigenfunctions.
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6.2 Examples of eigenfunction sequences satisfying control

We consider precisely the same example of a Schrödinger operator on a convex

surface of rotation as above but choose the quantum number m = const. so that

mhk = O(hk) as hk → 0. Then, the ODE in (6.1.2) becomes

(
−h2

k

d2

ds2
+ f 2(r(s))(V (r(s))− E(h)) +O(h2

k)w
2(r(s))

)
vhk

(r(s)) = 0. (6.2.1)

The fact that the corresponding eigenfunctions ϕh(r, θ) = vh(r)ψh(θ) satisfy

the control assumption is then an immediate consequence of standard WKB theory

applied to the semiclassical ODE (6.2.1). Indeed, writing Φ(r) :=
∫ r

r0

f(r)
∂sr

(E −
V (r))1/2 dr, it follows by WKB asymptotics that for r ∈ [−1, 1] satisfying E − ε <

V (r) ≤ E,

vh(r) ∼h→0+ eiΦ(r)/hc1(h) a1(r;h) + e−iΦ(r)/hc2(h)a2(r;h), (6.2.2)

where for k = 1, 2, ak(r;h) ∼
∑∞

j=0 ak,j(r)h
j and

|c1(h)|2 + |c2(h)|2 ≥ C1 > 0, |ak(r;h)| ≥ C2(ε) > 0; k = 1, 2.

Consequently, from (6.2.2) we get that for any ε > 0,∫
−ε<V (r)−E≤0

∫ 2π

0

|ϕh(r, θ)|2 drdθ =

∫
−ε<V (r)−E≤0

∫ 2π

0

|vh(r)|2 |eimθ|2 drdθ

=

∫
−ε<V (r)−E≤0

∫ 2π

0

|vh(r)|2 dr ≥ C(ε) > 0.
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In the last estimate, to control mixed terms, we have used that by an integration by

parts, ∫
−ε<V (r)−E≤0

e±2iΦ(r)/ha1(r;h)a2(r;h) dr = Oε(h).

As a result, this particular sequence clearly satisfies the control assumption in Defi-

nition 1.1.1 with N = 0.

6.3 Geodesics in the Agmon metric

In this section, we compare and contrast geodesics in background metric g and

Agmon metric gE in some simple cases.

Radial-type Agmon metrics

Let (M, g) be C∞ compact Riemannian surface (n = 2) and V ∈ C∞(M ;R) with

regular value E. Let (yn, y
′) : UE(r0) → R

n be Fermi coordinates in a neighbourhood

of the caustic set V = E. We assume here that V is radial in the sense that

V = V (yn), y ∈ UE(r0) ∩ {V > E}.

Recall that in Fermi coordinates

g = dy2n + h(y′, yn)|dy′|2,

and the associated Agmon metric is

gE = (V (yn)− E)
(
dy2n + h(y′, yn)|dy′|2

)
, V (y) > E.

We make the change of radial variables yn �→ Yn where

Yn(yn) =

∫ yn

0

√
V (u)− E du, (6.3.1)
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which is monotone increasing when V (yn) > E. In the (Yn, y
′)-coordinates, the Ag-

mon metric has the form

gE = dY 2
n +H(Yn, y

′) |dy′|2, H > 0.

It then easily follows that the curves normal to the caustic given by

γ(t) = (Yn(t) = t, y′ = y′(0)); |t| < r0

are minimal geodesics in gE and, modulo the reparametrization in (6.3.1), they are

also minimal geodesics in the background metric g. In general, other geodesics of g

do not necessarily agree with those of gE, even in these radial cases.

Non-radial example

When the potential is not radial in the Fermi defining function, it is easy to

construct examples where even the minimal geodesics in the background metric g

normal to the caustic V = E are no longer geodesics in the Agmon metric, gE.

To see this, consider the potential V (r, θ) = (r + sin θ)2 and E = 0 in the polar

coordinates (r, θ) on R
2, so that the background metric in polar form is

g = dr2 + r2dθ2, (r, θ) : R2 → (0,∞)× S
1.

Hence, given a constant θ0 ∈ [0, 2π], obviously the line segment γ : [0, r0] → R
2,

γ(t) = (t, θ0) is the geodesic in the flat metric g joining (0, 0) to (r0, θ0).
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Now gE = V (r, θ)dr2 + r2V (r, θ)dθ2 is the Agmon metric. We claim γ(t) is not

the geodesic under gE. The length of γ in gE is

�(γ) =

∫ r0

0

√
V (r, θ0)dr =

∫ r0

0

(r + sin θ0)dr =
1

2
r20 + r0 sin θ0.

Denote c1 be the circular arc joining (r0, 0) to (r0, θ0) and c2, the straight segment

from (0, 0) to (r0, 0).

(0, 0) c2

(r0, θ0)γ

(r0, 0)

c1

Figure 6–1: Non-radial example

It is easy to compute the lengths of c1 and c2 :

�(c1) =

∫ θ0

0

√
V (r0, θ) · r0dθ =

∫ θ0

0

(r0 + sin θ) · r0dθ = r20θ0 + (1− cos θ0)r0,

and

�(c2) =

∫ r0

0

√
V (r, 0)dr =

∫ r0

0

rdr =
1

2
r20.

Choosing r0 =
1
2
and θ0 =

π
4
gives

�(γ) =
1 + 2

√
2

8
>

1

8
+

2−√
2

4
+

π

4
= �(c1) + �(c2).

Consequently, γ does not minimize the distance from (0, 0) to (r0, θ0).
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APPENDIX A
Riemannian geometry

In this appendix we include basic definitions and identites which are used through-

out this thesis.

The Riemannian metric g on M induces a natural isomorphism between the

tangent and cotangent bundles by

T (M) → T ∗(M),

(x,X) �→ (x,X�)

where X�(Y ) = 〈X, Y 〉, and the corresponding inverse is

T ∗(M) → T (M),

(x, ξ) �→ (x, ξ�)

where ξ� is defined by ξ(X) =
〈
ξ�, X

〉
. Assume the metric g is given by

g = gjkdxj ⊗ dxk

in the local coordinates. Then,

X� = gjkXjdxk, ξ� = gjkξj∂xk
.
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In particular, the gradient field is defined by ∇ϕ = dϕ�. The musical isomorphisms

allow one to lift the metric to the cotangent bundle. The cotangent bundle is hence

naturally endowed with the Riemannian metric g−1 given in the local coordinates by

g−1 = gjkdξj ⊗ dξk,

here gij · gjk = δki .

We denoted D as the uniquely determined Levi-Civita connections on (M, g)

which satisfies the following conditions:

(i) DfXY = fDXY, andDX(fY ) = (Xf)Y+fDXY if f is a smooth function on M,

(ii) DXY −DYX = [X, Y ],

(iii) X 〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉.
This connection is determined in local coordinates by

D∂xj
∂xk

= Γl
jk∂xl

,

where the Christoffel symbols Γl
jk are given by

Γl
jk =

1

2
glm

(
∂xj

gkm + ∂xk
gjm − ∂xmgjk

)
.

The Hessian of a smooth function ϕ is the symmetric (2, 0)-tensor D2ϕ = Ddϕ. The

expression of the Hessian in local coordinates is

D2ϕ =
(
∂2
xjxk

ϕ− Γl
jk∂xl

ϕ
)
dxj ⊗ dxk.
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For the smooth function f on M , we can define the gradient of f , ∇f , to be the

vector field on M for which

〈∇f,X〉 = Xf

for all X ∈ TM .
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APPENDIX B
Symplectic geometry

An even dimensional smooth manifold M endowed with a closed nondegenerate

2-form ω is called a symplectic manifold.

With standard coordinates on R
2n denoted by (x1, . . . , xn, y1, . . . , yn), has the

standard symplectic form

ω =
n∑

i=1

dxi ∧ dyi.

Naturally there is a tautological 1-form, τ , on the cotangent bundle T ∗M . It is

not hard to prove that ω = −dτ is a symplectic form on T ∗M . Let (xi, ξi) denote the

corresponding natural coordinates on T ∗M , one has the canonical symplectic form

ω =
∑
i

dxi ∧ dξi.

Theorem B.0.1 (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold.

For any p ∈ M , there are smooth coordinates (x1, . . . , xn, ξ1, . . . , ξn) centered at p in

which ω has the canonical coordinates representation

ω =
n∑

i=1

dxi ∧ dξi.

Remark B.0.2. Darboux’s Theorem states that all symplectic structures are iden-

tical locally, in the sense that all are equivalent to that give by ω. It implies that

symplectic geometry is at least locally, not as rigid as Riemannian geometry. There
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are no local invariants in symplectic geometry, but for example, curvature is a local

invariant in Riemannian geometry.

Like the gradient defined for the smooth function f on the Riemannian manifold

(M, g), we can define a Hamiltonian vector field Hf on Symplectic manifold (M,ω)

by

ω(Hf , X) = df(X),

for all X ∈ TM .

For f, g ∈ C∞(M), their Poisson bracket is defined by

{f, g} := Hfg.

In the canonical coordinates (x1, . . . , xn, ξ1, . . . , ξn), that is

{f, g} =
n∑

i=1

∂f

∂ξi

∂g

∂xi

− ∂f

∂xi

∂g

∂ξi
.
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classique. IV. étude du complexe de Witten. Comm. Partial Differen-
tial Equations, 10(3):245–340, 1985.
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