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ABSTRACT

Let (M,g) be a compact, Riemannian manifold and V' € C*(M;R). Given
an energy level £ > minV, we consider L?-normalized eigenfunctions, uy, of the
Schrodinger operator P(h) = —h*A, +V — E(h) with P(h)uy, = 0 in L* where
E(h) = E 4 o(1). The well-known Agmon-Lithner estimates [Hel88] are exponen-
tial decay estimates (ie. upper bounds) for eigenfunctions in the forbidden region
{V > E} in terms of the Agmon distance function dg associated with the degenerate
Agmon metric (V — E), g supported in the forbidden region.

The point of this thesis is to prove a partial converse to the Agmon estimates
(ie. lower bounds for the eigenfunctions) in terms of Agmon distance in the for-
bidden region under a control assumption on eigenfunction mass in the allowable
region {V < E'} arbitrarily close to the caustic {V = E}. We then give some appli-
cations to hypersurface restrictions of eigenfunctions in the forbidden region along

with applications to nodal intersection bounds.
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ABREGE

Soit (M, g) une variété riemannienne compacte et V€ C*°(M;R). Etant donné
un niveau en énergie £ > min V', on considere fonctions propres L2-normalisées, uy,
de lopérateur de Schrodinger P(h) = —h*A, +V — E(h) avec P(h)u;, = 0 dans L?
ou F(h) = E+o(1). Les estimations d’Agmon-Lithner bien connues [Hel88| sont des
estimations de décroissance exponentielle (c’est-a-dire des bornes supérieures) pour
des fonctions propres dans la région interdite {V > E} en terme de la fonction de
distance Agmon dg associée a la métrique Agmon dégénérée (V' — FE), g supportée
dans la région interdite.

Le but de cette these est de prouver un inverse partiel des estimations d’Agmon
(c’est-a-~dire pour les fonctions propres) en terme de distance d’Agmon dans la région
interdite sous une hypothese de controle sur la masse propre dans la région admissible
{V < E} arbitrairement proche du caustique {V = E}. Nous donnons ensuite
quelques applications aux restrictions d’hypersurface des fonctions propres dans la

région interdite ainsi qu’aux applications aux limites d’intersection nodale.

v
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CHAPTER 1
Introduction

1.1 Motivation and background
Let (M, g) be a compact, C*>° Riemannian manifold and V' € C*(M;R) be a
real-valued potential. We assume that F a regular value of V' so that dV'|,—g # 0.

The corresponding classically allowable region is

Qp ={xre M;V(x) < E}. (1.1.1)
with boundary C* hypersurface (ie. boundary caustic)

Ap:={z e M;V(z)=FE}. (1.1.2)

The forbidden region is the complement Q% = {x € M;V (z) > E}.
Agmon-Lithner estimates

Let P(h): C*(M) — C*°(M) be the Schrodinger operator
P(h) := —h*A, + V(z) — E(h)
and vy, € C*°(M) be L*-normalized eigenfunctions with eigenvalue E(h) so that

P(h)u, =0 and E(h)=FE+o(1) as h — 0*.



The Agmon metric associated with P(h) is defined by

gr(r) = (V(z) — E)+ g().

The degenerate metric gg is supported in the forbidden region 2%, and we denote
the corresponding Riemannian distance function by dg : Q% x Qf, — R*. By a slight

abuse of notation, we define the associated distance function to Ag by

dg(x) :=dp(z,Ag) = inf dg(z,y), =€ Q%. (1.1.3)

yEAE
It is well-known [Hel88] that, dp € Lip(Q%) and also, |V.dg|, < (V(z) —
E),, ae.

Intuitively, in the quantum mechanics the probability of finding the particle in
the classically forbidden region €2}, in the semiclassical limit should be quite small. In
1980s, Agmon [Agm82] gave a quantitative estimate for Schrodinger eigenfunction
u(z). Given an open subset, U, of the forbidden region Q¢ with U C ¢, the

Agmon-Lithner estimate says that for any € > 0,
[u(2)e 2 || 2y < O(1), (1.1.4)

for a suitable positive weight function p(z).

Later, Helffer [[Hel88] Proposition 3.3.4] showed in the semiclassical case,

et—)dz/h unl oy = O<(1), (1.1.5)



where ||f||fq’11(U) = [, (|fI* + |ROf]?). A standard argument with Sobolev estimates
then yields corresponding pointwise upper bounds as well. Such estimates have
widespread applications to tunnelling problems [Hel88] [CS81] [Sim84] and the theory
of Morse-Witten complexes [Wit82].

For the ground states, [CS81] [Sim84] showed (1.1.4) and (1.1.5) cannot be
improved by using Feynman-Kac path integrals. In [Sim84], the author gave a very
explicit lower bound for a ground state eigenfunction along the Agmon geodesic.
Indeed the analysis of tunneling for ground states is known in great detail including
eigenfunction asymptotics, eigenvalue asymptotics and splitting. These topics were
studied extensively by B.Helffer and J. Sjostrand in a series of papers in the 1980’s
([HS84, HS85b, HS85a, HS85¢, HS86]).

The purpose of this thesis is as follows: (i) to reveal the tunneling phenomenon
(i.e. a partial converse to (1.1.5)) in the case of an excited state E in a Fermi
neighborhood of the caustic Ag under a suitable control assumption on eigenfunction
mass and certain growth restrictions for the potential V' (z); (ii) to give lower bounds
for LP-restrictions of eigenfunctions to hypersurfaces in the forbidden region (so-
called goodness estimates in the terminology of Toth and Zelditch [TZ09]) ; (iii)
improve the nodal intersection bounds of [CT16] for a large class of hypersurfaces in
forbidden regions. We now describe our results in more detail.

In the following we fix a constant ry € (0, W) and let Ug(ro) be a Fermi
neighbourhood of the caustic Ag of diameter 2ry with respect to the ambient metric
g. We denote the Fermi defining function y, : M — R with the property that

Yn > 0 in the forbidden part and Ap = {y, = 0}. In terms of Fermi coordinates,



the collar neighbourhood Ug(ry) := {y;|y.| < 2r¢}. Consider an annular region in
Ug(ro) N{V > E} given by A(01,02) :={y € Ug(ro); E+ 61 < V(y) < E + d2} with
0 < 01 < do. Our first result in Theorem 1.2.1 is a partial converse to the Agmon
estimates in (1.1.5). First, we introduce a control assumption on the eigenfunctions
uyp in the allowable region.

Definition 1.1.1. We say that the eigenfunctions w; satisfy the control assumption
if for every € > 0 there exists constants C'(¢) > 0 and hg(¢) > 0 so that for h €
(0, ho(e)];

/{E verer, lup|? dvy > Cy ()WY (1.1.6)
—e/2<V(z)<

for some N > 0. When (1.1.6) is satisfied for a fized ¢ = g9 > 0, we say that the

eigenfunction sequence satisfies the g control assumption.

Roughly speaking, the control assumption in Definition 1.1.1 says that in an
arbitrarily small (but independent of k) annular neighbourhoods of the caustic in the
allowable region, eigenfunctions have at least polynomial mass in h. It is easy to see
that this assumption is necessary since simple counterexamples can be constructed
otherwise by introducing additional effective potentials (see Chapter 6).

We note that the control assumption is automatically satisfied in the 1D case
where WKB theory yields asymptotics for the eigenfunctions. In section 6, we give
examples of eigenfunction sequences satisfying this condition in arbitrary dimension.

Our second assumption is a convexity condition on the potential V' itself; in par-
ticular, ruling out tunnelling phenomena in the Fermi neighbourhood. Specifically,

we make the following



Definition 1.1.2. We say that V satisfies the convezrity assumption provided:
(1) Crit(V)) N (Ug(ro) N Q) =0,

(43) V]ugme)nas, is convex.

Under the control and convexity conditions, by using Carleman estimates to
pass across the caustic hypersurface, in Theorem 1.2.1 we prove that for any € > 0

and h € (0, ho(e)].,

e/, a1 (A(s1,52)) = C(€, 1, 5z))e /N, (1.1.7)

where () = o(1) as ¢ — 07 and

To = (HlaXyEUE(To) |aynV’>l/2
minyeUE(To) |aynv|

Here the explicit geometric constant 79 > 1 and the result in (1.1.7) is clearly a

partial converse to the Agmon estimates in (1.1.5).



1.2 Statement of results
The main result of this thesis is
Theorem 1.2.1. Let ro > 0 define the collar neighbourhood Ug(ro) of the hypersur-

face {V = E} as above and consider an annular subdomain
A(61,52) C ({V > E} N UE(T())), 0 <91 <dy <.

Then, under the control and convezity assumptions in Definitions 1.1.1 and 1.1.2, it
follows that for any e > 0 and h € (0, ho(e)], there exists a constant C(g,01,02) > 0
such that

€™ =/ up | 111 (a81.50) > CE, 01, 8) e "M,

with

B <maXUE(TO) 8ynV>1/2
To = -
ming,, (rg) Oy, V'

and where 3() = 0 ase — 07 .

Remark 1.2.2. We note in the more general case where the eigenfunction sequence
satisfies the gp-control assumption, the estimate in Theorem 1.2.1 is still valid (simi-
larly for Theorems 1.2.3 and 1.2.5). In such a case, the constant 3(eg) can be readily

estimated explicitly in terms of the potential from (5.1.17) and (5.1.18) above.

In section 5.2 we use the Carleman bounds in (1.1.7) with shrinking annuli
together with a Green’s formula argument to get lower bounds for LP eigenfunction
restrictions to hypersurfaces smoothly isotopic in Ug(rg) N {V > E} to level sets

H = {y, = const.} (see Definition 5.2.1) to prove the following



Theorem 1.2.3. Suppose H is an admissible hypersurface in sense of Definition
5.2.1. Then, under the control and convezity conditions and with E(H) in (5.2.4),

it follows that for any € > 0 and with h € (0, ho(e)],
[un | Loy = Cle, p) e~ BodE—dst+BENA ) > 1 (1.2.1)

where () — 07 as e = 0% and dg(H) = mingep dp(q), di = maxgen, ., de(q).
Remark 1.2.4. We note that since 7o > 1 and d¥ > dg(H), it is clear that the

constant 27y(H)d% — dg(H) > 0.

The bounds in (1.2.1) are goodness estimates in the terminology of Toth and
Zelditch [TZ09]; the key novelty here being the rather explicit geometric rate 275 d —
dg(H) appearing in (1.2.1).

Finally, in section 5.3, we give an application of (1.2.1) to nodal intersection
bounds in forbidden regions. In [CT16], Canzani and Toth prove that for any sepa-

rating hypersurface H in the forbidden region, with Z,, = {x € M; u,(z) = 0},
#{Z, "HY < Cyh™*.

While this rate in h is easily seen to be sharp in general, there is no explicit
estimate for the constant Cy > 0 given in [CT16]. Using (1.2.1) with p = 2, the
bound in (1.2.1) allows to give a rather explicit estimate for Cy in the cases where H
is smoothly isotopic to a level set of the defining function y,, in the forbidden region.

This is essentially the content of the following result,



Theorem 1.2.5. Assume that dim M = 2 and (M, g, H,V') are all real-analytic.

Then, under the same assumptions as in Theorem 1.2.3, one has
#{Z,, NH} < Cyxh™,

where

Finally, we note that while all results are stated here for compact manifolds, the
results in Theorems 1.2.1-1.2.5 extend to the case of Schrodinger operators on R"
and the proofs are the same.

The organization of this thesis is as follows. In Chapter 2, we give a brief
introduction of pseudodifferential operator, specialized to the Weyl quantization, in
the framework of semiclassical analysis. In Chapter 3, we review Agmon estimates.
In Chapter 4, we review the basic theory Carleman estimates along with notation
of pseudoellipticity. In Chapter 5, we give the proof of Theorem 1.2.1 and discuss
improved nodal intersection bounds (Theorem 1.2.5) using an LP-restriction lower
bound for eigenfunctions (Theorem 1.2.3). In Chapter 6, we discuss some explicit
examples.

1.3 Author’s Original Contribution

The main original contribution of the author is Theorem 1.2.1. In this result,
the author proves lower bounds for Schrodinger eigenfunction in classically forbidden
regions that are consistent with the well-known Agmon upper bounds. Theorems

1.2.3 and 1.2.5 are applications of this result to eigenfunction restriction bounds



and nodal intersection bounds respectively. Both of these results are also original

contributions by the author.



CHAPTER 2
Pseudodifferential operators

In this chapter, we first give a very brief introduction to pseudodifferential op-
erators ([DS99, Sogl7, Zwol2]). we then introduce semiclassical Garding inequality.
The latter result is central to the theory of Carleman estimates which we take up in
Chapter 3.

2.1 Semiclassical quantization
Definition 2.1.1. A measurable function m : R** — (0,+00) is called an order

function if there exist constants C, N such that
m(w) < C (z —w)" m(z)

for all w, z € R?".
m(z) =1 and m(z) = (z) = (1 + |2/*)'/? are standard exmaples.
Definition 2.1.2. Given an order function m on R?", we define the corresponding

class of symbols:

S(m) := {a € C*| for each multiindex «

there exists a constant C,, so that |0%| < C,m}.
As a special case, the space of Kohn-Nirenberg symbol of m € Z is given by

S™ = {a(w, ) € C(R™) 1020/ a| < Cap (&)™ ! for all a, B},

10



In this thesis, we usually work with the symbol class S := S(1), where
S(1) = {a € C>*(R*") ||0%a| < C, for all a}.

Theorem 2.1.3 ([Zwol2]). Assume a; € S(m) for j =0, 1, .... Then there exists
a symbol a € S(m) such that
athjaj in S(m). (2.1.1)
j=0
Remark 2.1.4. The notation (2.1.1) means that
N
VN eN, a- Zhjaj c hNTES(m).
=0
We call a( the principal symbol of a.

Definition 2.1.5. For a € S(m), we define the Weyl quantization on u € ./

oV (2, hD)u(z) (2W1h)n / n / n ei@-y@a(

Take a(z,§) = £ for an example,

= y,£) u(y)dyds.

aV(z, hD)u(z) = (hD)“u(z).

Proposition 2.1.6 ([Zwol2]). Assume that

does not depend on &. Then

h
(¢, hD) = 5 > (Dsy¢j+¢;Dy)).

Jj=1

11



Proof. By definition and integral by parts, for u € .%

1 < i
(e, hD)" .= (27h)" ; / ) / ) e vl (”T;y) & uly)dyd§
_ 1 - Liz—y, ‘ T +y
= _(27rh)n ]Zl/n /n <hDyj€ ( y§>> ¢ ( 5 ) u(y)dyd£

(R Z.
= o e (hDijj (%)) uly)ayds
=1 /R R
1 & Z.
T 2ah) 2 / . / Cerlrlle (x;y) (hDy,uly)) dydg
7j=1

=1/2> (Doyc)"u+ Y ()" Dyu
j=1 =1

=h/2 Z(ijcj)u +h Z ¢;jDyu
j=1 j=1

=h/2 Z D, (cju) — h/2 chDzju + hchD:Cju
=1 =1 j=1

=h/2 ZDzj(cju) +h/2 chiju.
j=1

Jj=1

O

Definition 2.1.7. We say that [, is an oscillatory integral if it can be written in the

form
In = In(a, ¢) = / eMadz,

where a € C°(R"), ¢ € C°(R") are real-valued.
One of most important theorems in semiclassical analysis is the following sta-

tionary phase formula,

12



Theorem 2.1.8 ([Zwol2]). Assume that a € CP(R"™) and K := supp(a). Suppose

ro € K and

Op(xg) =0, det 9%*p(xq) # 0.

Assume further that Op(z) # 0 on K\{zo}. Then there exist for k = 0,1,...
differential operators Agx(z, D) of order less than or equal to 2k, such that for each
N

< OyhMVte Z sup |0%al.
R

N-1 ,
In — (Z Aoy (, D)a(fﬁo)thrg) e

k=1

|| <2N+n+1
As an important example we have

Theorem 2.1.9 ([Zwol2]). Assume that a € C*(R*"). Then for each positive

integers N,
. N-=1 k
/ / er ™V a(x,y)dudy = (2wh)" <Z h—, (M> a(0,0) + O(hN)> :
n n : L
k=0

Definition 2.1.10. For z = (z,&) and w = (y,n), define their symplectic product

U(sz) = <£,y> - <33,77>.

We have the following product formula for two semiclassical pseudodifferential

operators:

Theorem 2.1.11 ([Zwol2]). Suppose a € S(my) and b € S(my). Then

a(z, hD)b" (z,hD) = (a#b)" (2, hD)

13



for the symbol

a#tb(x, €) = e3P LoD (2 )b(y, 1)) ymrme-

Here we have following integral representation formula

(ab)(x,€) =

(mh)2" /R% /Rzn et Q)a(z + w1)b(2z + ws)dwy dw,,

where z = (x,§), and

a#b € S(mymy).

By a standard stationary phase argument, one can then derive an asymptotic
expansion for a#b.
Theorem 2.1.12 ([Zwol2]). Assume a € S(my) and b € S(msy).
(i) We have for N =0,1,..

N (ih)k (1 g
a#b(w,f)zz k! (ﬁg(vaDfaDyaDn)) (a(x,f)b(y,77))|y:x,n:g+05(m1m2)(hN+1)

k=0

as h — 0.
(ii) In particular,

h
a#b =ab+ %{a, b} + OS(m1m2)(h2>

and

" (e, hD), B 2, hD)] = =, B (2, D) + O (1°).

14



Theorem 2.1.13 ([Zwol2]). Suppose a € S(1). Then
la" (2, hD) 12y < C'sup la] + O(Y?)
R2n

as h — 0.
2.2 Semiclassical Garding inequality
Definition 2.2.1. Let U C R” be an open set, h > 0, and k € N. The semiclassical

norm of a function f € HF(U) is

1/2

1l = | S0 / (hD)*Pda

o<k
Theorem 2.2.2 (Garding inequality [LRL12)). Let K be a compact set of R". As-

sume a(x,&,h) € S™, with principal symbol a,,. If there exists C' > 0 such that
Rea, > C &)™, xe K, (e€R" he (0 h),
then for 0 < C" < C and hy > 0 sufficiently small we have
Re (" (x, hD)u,u) > C”||u||2;1/2, ue Cr(K),0<h< h. (2.2.1)

Remark 2.2.3. This theorem tells us that the positivity of the principle symbol of

a implies a certain positivity for the operator a'V.

Proof. The symbol a(z, &, h) is of the form

a(x, &, h) = ap(z,&,h) + hapy_1(z, &, h), with a,_, € S™ .

15



For sufficiently small A < hy, the full symbol a(z, &, h) satisfies
Rea(z,&,h) > C" (&)™, xe K, £€R" he(0,h),

with " < C" < C. Let U be a neighborhood of K such that
Rea(z,&, h) > C" (™, (2,§) e UxR", he(0,h),

with " < C" < C" < C. Let x(z) € C°(U) such that 0 < y < land x =1ina

neighborhood of K. One sets
a(z,&, h) = x(x)a(z,§,h) + C"(1 = x) ()",
which satisfies
aeS™ and Rea(z,& h) >C"(E™, (2,6 eR" xR he(0,h). (2.22)

Moreover note that <éwu, u> = <aWu, u> if supp (u) C K. Without loss of generality
we may thus consider the symbol a satisfies (2.2.2) in the remaining of the proof.

Choose a constant 5 > 0 such that ¢’ < § < C” and set
p(z,&,h) == Rea(z,&,h) = 5(6)™)", and A=a", P=p".

Theorem 2.1.12 gives
P oP=ReA— A"+ hR,

16



with A = (14 (hD)?)'/? and R € V™! where Re A = (A + A*)/2. We then have

Re (Au,u) = (Re Au,u) > B (A"u,u) — h (Ru,u)
> BIA™ 22 — R ull
h

> (8= hg)ul

One can conclude the proof by taking h sufficiently small.

17



CHAPTER 3
Agmon estimates

For a bounded open set U D Qp with C? boundary, let us consider the Dirichlet

problem for the Schrédinger operator P(h),

(

\

P(h)un(x) = E(h)un(z),

un ()| 2y = 1,
(3.0.1)

up(x)]ov =0,

E(h) - E as h—0.

The following integration by parts argument is central to the Agmon estimates:

Proposition 3.0.4 ([Hel88]). Let ¢ be a real valued Lipschitz function on U ( V¢

is well defined in L>(U) by Rademacher’s theorem). Then, for any u(z) € C*(U)

and u(zx)|sy = 0, we have

/Ue?%ﬂ/h(P(h)—E(h))u-udx :hQ/U\V(e“”/hu)]?dx

+ /U(V(x) — E(h) — |Vg0(x)|2)e2@/hu2dx.

(3.0.2)

18



Proof. This identity is just an application of Green’s formula:

/UeQ“”/h(P(h) — E(h)u-u= —h2/

XM A -+ / MV (z) — B(h))u?
U

U

— 2 /U V- V(M) + /U 2NV () — B(h))i?

= /U (2| Vul® + 2huVu - Vo + |Vo(2)|?) e M da
+ [ @) - B0 - Vo) i

— 2 /U IV (e#/h) |2

+ /U(V(x) — E(h) — |Vg0(a:)|2)62‘0/hu2dx.

Let dg(z,y) denote the distance from point x to y in the Agmon metric gg.

Proposition 3.0.5. The Agmon distance function dg(x,y) is locally Lipschitz and
Vyde(z,y)l; < (V(y) = E)y, ace.
Proof. By triangle inequality;,
|de(z,y) — dp(z, 2)| < dp(y, 2).

Let v(t), t € [0, 1] be the geodesic curve from y to z on (M, g). Since v is a geodesic,

|7 (t)], is a constant. So d(y, z) = fol 1V (t)|,dt = |7/ (t)|, and the length of v in gg is

() = / V) — BY2R (0)]dt = 17 (0], / V(1) — BYdt = Cy-d(y, 2),

19



where C, ., = fol(V(fy(t)) — E)frﬂdt. Hence for a fixed point x
ds(w, ) — (e, 2)| < d(y, 2) < Cy.d(y, 2) (3.03)

and so, the Lipschitz condition is satisfied.

A direct computation gives

lim sup || |ds (e, y + h) — dp(r,y)| < limsup ||~ |dp(y + b, y)|
[h|—0 |h|—0
1

< lim [ (V(y(t) = B)Y?dt = (V(y) - B){.

The second inequality follows from (3.0.3). Thus, at points y where dg(x,y) is
differentiable, the above result indicates that |V dg(z,y)|2 < (V(y) — E)4.

]

Theorem 3.0.6 ([Hel88]). Suppose up(x) satisfies (3.0.1). For each § > 0, there

exists Cs such that for h € (0, ho|

”e(lftS)dE(w

)/huhHH}L(U) < Cs.
Proof. For dg(z),
10, dp(x)]* < (V — E);(z) for almost every z.

Take p(z) = (1 — §)dg(z), so

p(@) < (1= 62V — B)a(a). (3.0.4)
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Define Qf = {z € U,V(z) > E+¢} and Q7 = {z € U,V(z) < E+ ¢}. Applying

identity (3.0.2) for u = up(x), one has
h2/ IV (e?/Mu)|2dx + / (V(z) — E(h) — |Ve(z)[})e*/Muldz = 0.
U U
Then we deduce that

h? / IV (e?/Mu)|2d: +/ (V(z) — E — |Vo(z)]?)e* Mldx
U Q

g

< sup |V(z) — E(h) — ]Vgo(:c)ﬂ/ et d.
Qs

e
From the inequality (3.0.4) for small h € (0, hy] we get
h2/ ]V(e“"/hu)|2dx+(52/ e#M2dy < C/ eX/My2dx,
U of Q

and then

hz/ |V(e“"/hu)|2dx+52/eQ‘P/hUde
U U

<1+ C)/ 2?2 dx
0

€

< (1+ C)eQSupweﬂg Wh/ u?dx
U

< (14 )P with 3(6) = 0 for § — 0.
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CHAPTER 4
Carleman estimates

Given the discussion in Chapter 2, we know the probability of finding a particle
in the forbidden region {V > E} is exponentially small. However, in this chapter we
will show that it can never be superexponentially small
4.1 Carleman estimate in a bounded region
4.1.1 Interior Carleman estimate

We have following useful elliptic estimate,

Proposition 4.1.1 ([Zwol2] Theorem 7.1). Write
Q(h) := —h*A + (a,hDf) + b,

where the coefficients a,b are smooth. Assume also that U CC W C R"™ are open

sets. there exists a constant C such that

[y < CUQMR)fll 2wy + 1l 2w)

for all f € C®(W).
Definition 4.1.2. Given ¢ € C*(R"), we define the conjugation of P(h) — E(h) by
e#/h:

P,(h) := e?/"(P(h) — E(h))e *?/".
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Lemma 4.1.3. We have

for the symbol
Pe(w,€) = (€ +i0p(x),§ +i0p(x)) + V(2) = E = [¢]* + V — E — |0p|" + 2i (£, 0p) .
Proof. For any u € C*°(R™) we have
P,(h)u = e?/"(—h*A+V — E) (e ?/")
= —h*Au+ 2h (D, 0u) — |0¢|*u + (V — E)u + hApu.
By Proposition 2.1.6,
py (z,hD) = —h*Au+ (V — E)u — |0¢*u + i((dp, hDu) + (hD, dpu)).

So this lemma is valid.

]

Definition 4.1.4. Hémander’s hypoellipticity (or pseudoellipticity) condition is the

requirement for the symbol p,, that
if p, =0, then i{p,,p,} > 0. (4.1.1)

Here {, } denotes the Possion bracket. Such ¢ is called Carleman weight.
Remark 4.1.5.

If p, =0, then i{p,,p,} = 0.
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The corresponding ¢ is called the limiting Carleman weight. Such functions play
crucial roles in the applications of complex geometrical optics solutions to inverse
problems [KSU07] [DSFKSU09], and on the other hand it satisfies Hérmander’s local
solvability condition

i{Py, D, <0, when p, =0.

In analogy, one has following definition
Definition 4.1.6. [Tat] We say that the C? function ¢ is strongly pseudoconvex at

xo with respect to P at xq if

Re{p, {p, ¢} }x0,§) >0 whenever p(zg,§)=0,&#0, (4.1.2)

{p(z,&+itV),p(x, & +iTV )} /it > 0 whenever (4.1.3)
{p(z,§ +iTVp) =0, 7 >0, (§,7) # 0}.
Remark 4.1.7. Choosing 7 = %, (4.1.3) is the Homander’s hypoellipticity condition.

Remark 4.1.8. (4.1.2) is the limiting case of (4.1.3) as 7 — 0. Indeed, by Taylor

expansion in 7, the first two terms of p(x,& +iTVp) at 7 =0 is

op 0
pl(l‘7€a7—) = p(l‘ag) +Z7_8_§ ' a_i
op 0 op 0
— o) +ir (2. 52 - 2. 260

= p(x,§) +it{p, p}(x, §).

Hence, if p(xq, &) = 0, then

lim{p(z, & +i7V), p(a, +i7V ) } /it = 2Re{p, {p, 0} }(20, £).
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Remark 4.1.9. Indeed we have a simple geometrical interpretation of the pseudo-
convexity condition. If the symbol p is real, one can rewrite the pseudoconvexity
condition (4.1.2) as

H¢ >0 whenever p(z0,§) =0.

Here H 5(,0 represents the second derivative of ¢ along the Hamiltonian flow of p. Then
the above relation says that the ¢ is ‘curved’ on the energy surface p(xg, &) = 0.
Lemma 4.1.10. If U CcC R" and Homander’s hypoellipticity condition (4.1.1) is
valid within U. Then

M|py|? + i{po, by Ha, &) > C ()"

Proof. The proof is basic calculus. Write R" = V' [ JR™\V, here V' CC R".
First consider (z,€) € U x V, the inequality is obvious since (¢€)* is bounded in
V and we can take the constant C' small enough with the help of condition 4.1.1.
Secondly, for (z,£) € U x R"\V.

(i) Notice W := {&, py(z,§) = 0} is a bounded set since U CC R™. Similarly,
we can take C' small enough to get the desired inequality for (z,£) € U X
WAR™\V.

(ii) For (z,£) € U xR™\(V W), we can take M large enough from comparing the
order of £ since the order is 4 for [p,|?* and is 2 for i{p,, p,}(z,&).

[

Theorem 4.1.11. Let U CC R"”, and assume Homander’s hypoellipticity condition
(4.1.1) is valid within U.

25



Then there exists a constant C' such that
W2 ul| g2y < Cl|Po(h)ull 2y

for all w € C3°(U), provided 0 < h < hy with hy sufficiently small.

Proof. 1t follows from Theorem 7.5 in [Zwol2], let’s sketch the proof,

|P,(h)ull72 = (P5(h)Py(h)u, u)
= (P,(h)P5(h)u, u) + ([P}(h), Py(h)]u, u)

= | P (h)ull® + ([P (h), Pyp(h)]u,w) .
For any M > 1 and h small enough the calculation above gives

1P (h)ull: = Mh| Py (h)ull® + ([P(h), Py(h)u], w)

= h ((Mp|* + i{py, B })" u, u) — O(1?)|[ul3p2.

Lemma 4.1.10 implies for M large enough that

M|py|? + i{po, by Ha, &) > C ()"

Then we can apply Garding inequality (2.2.1) to show that
|1Po(h)ullze = Chllullz: — O(h*)[[ullF.-

Hence we can complete the proof with the help of Proposition 4.1.1.

26

(4.1.4)



Remark 4.1.12. For convenience, let us see how the pseudoconvexity of ¢ plays the
crucial role when dimension n = 1.

Whenn =1

d? d d
_ 2 A, / B - /12
Po(h) = =h* 5 + h= (") + he' -+ V(z) = E = | "
Let A = __de’ B, = %(SDI')’ By = 90/% and g(x) _ V(%) _E_ |90/|2’

1P (h)ullze = hH| Aull* + 12| Byul|* + 22| Bau||* + || gu ]+
2h (Biu, gu) + 2h (Bou, gu) + 2h* {Au, gu) + 2h* (Au, (By + By)u) .
(4.1.5)

By an integration by parts,
(Biu, gu) + (Bau, gu) = (¢'u, (2¢'¢" = V')u) .

For suitable ¢ (For an example, one can take ¢ strictly increasing and convex

such that 2¢'¢"” — V' > 0), one has
(Biu, gu) + (Bau, gu) > Cllul|* > 0,

for some positive constant C'.

In (4.1.5), the last two terms are o(h) and hence for sufficiently small A > 0

W2 |ull 2wy < ClIPA(R)ul 2.

Remark 4.1.13. For the limiting Carleman weights, one has similar L? estimates

for the conjugated operator P,(h) ([KSUO7] [DSFKSU09]). One key step is to make
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a little perturbation to convexify the limiting Carleman weight to get a Carleman
weight satisfying condition 4.1.1.

From the above argument, we can see a key step in proving the Carleman es-
timate is to construct a weight function ¢ which satisfies condition (4.1.1). Con-
vexifying a function which has no critical point is the basic idea. It goes back to
Hormander’s classic book ([H63]).

Let us start with a Morse function v - that is, a smooth real-valued function
having no degenerate critical points. We note that Morse functions are dense in
C>(U), here U can be any bounded open set in R".

Now set 1, ..., 2y to be the (necessarily finitely many) critical points of ¢, and
wy CCU.

Lemma 4.1.14 ([Van09] Lemma 2.3). There ezists a diffeomorphism » : U — U
such that s(x) = x near OU and such that »(x;) € wy for Vj.

Following this lemma, we can assume v is such a Morse function which has
finitely many critical points, all of which are contained in wy.

Now let

@ = e,

where v > 0 is to be determined. We will show such ¢ is a Carleman weight.
Proposition 4.1.15 ([Van09] Proposition 2.4). For « large enough, ¢ = €% is a

Carleman weight on U\wy.

Proof. We have

Po(,6) = €2 +V — E — |0¢|* + 2i (£, 00) .
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Py, = 0 means

€2 +V — E — 09 =0 (4.1.6)
and
(£, 0¢) = 0. (4.1.7)
From ¢ = e’ we can get dp = yOye’ and 0% = (y20) ® O + vO%h)e.
Hence
€] < Cre™, (4.1.8)
by (4.1.6).

Now we can compute

pp 1w, = {Rep,,Tmp,}
=4{Pp& &)+ 4(D%pp, ) —2(0V, )
= 4(7* (00, 6)" + 7 (0°0E, £) ) + 4(v"|ow|*
+ 97 (0", ) ) €N — 2y (OV, 0¢) €7

= 4(v! 0y + O(v?)) e — 2y (3V, ) ¥

where the last identity follows from (4.1.7), (4.1.8) and U is compact. Notice v has
no critical point in U\wg which means |0¢| > 0 there. By comparing the order of ~
and using the fact U is compact, we can conclude that %{pg,, Py}, &) > 0 from the
above identity.

]

Remark 4.1.16. ¢7?f=17) is an example of Carleman weight in B(0, R)\B(0,7) for

~ sufficiently large.
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Remark 4.1.17. Correspondingly, log |x| is one example of a limiting Carleman

weight in R™\{0} for the operator —h?A ([KSUOT7]). Indeed in [DSFKSU09], the

authors determine all the limiting Carleman weights for —h?A in the Euclidean

metric.

Theorem 4.1.18 ([Zwol2]). Suppose U CC R™, and for large constant Ry, V €

C>*(R",R) satisfying

0°V (2)] < Co (2)*  for each multiindex o, |x| > Ry,

Vi) > c(x) for x| > Ry .

If u(h) solves
P(h)u(h) = E(h)u(h) in R",

then there exist constants C, hg > 0 such that

_c
lu(h)l| 22wy = e * [[u(h)]| 2,

for 0 < h < hyg.
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CHAPTER 5
Proof of main results

5.1 Carleman estimates in a Fermi neighbourhood of the caustic
5.1.1 Collar neighbourhood of caustic and Fermi coordinates

Let (M,g) be a compact, C*° Riemannian manifold and V' € C*(M;R) be
a real-valued potential. For ro < inj(M,g)/2 there exists a collar neighbourhood,
Ug(ro), of Ap = {x € M;V(z) = E} along with Fermi coordinates (y,,y’) : Ug —

(—2rg, 2r9) x R"! for the ambient metric g, so that in terms of these coordinates

g=dy:+h(y,y.)|dy'|>, yeU

Here, y,, € C*(M;R), is an appropriately normalized defining function for Ag;
with
AE = {yn = O}a dyn’AE 7é 0.

where h(y',y,) > 0 and h(y',0)|dy'|* = > hi;j(y',0)dy; A\ dy; is the metric on the

i,JF#n
hypersurface A = {V = E} induced by g¢. In these coordinates, we choose the sign

convention so that
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{V>E}nUg(ro) = {y;0 <y, <2r} and

{V < E}NnUg(ry) ={y; —2r¢ < y, < 0}.

It will also be useful in the following to introduce the following annular domains

in the forbidden region defined by
Ap(6,0") ={xe M;d <y, <0}, 0<d<d. (5.1.1)

In terms of the Fermi coordinates (v, y,,), the corresponding Agmon metric has

the form
gz = (V(y) — E) (dys + (', yu)ldy'[*), vy €U, yo >0, (5.1.2)
It follows by first-order Taylor expansion that
V(y) = E=y. F(y,yn), (5.1.3)

where
1
PO/ o) = [ (0, V)0 sty .
0
As result, the Agmon metric can also be written in the form

95 = Yn F(y) (dy2 + h(y, yn)|dy'|?), y €U, y, >0, (5.1.4)

with F(y) in (5.1.3). Since for y € Q5 the functions V(y) — E > 0 and y,, > 0, it is

clear from (5.1.3) that F'(y) > 0.
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We recall (see assumptions (i) and (ii) in the introduction) that by assumption,
the collar neighbourhood Ug(rg) contains no critical points of V' and that V' is strictly
convex in the same neighbourhood. We claim that under these assumptions, not only

is F'(y) > 0, but in fact,

0y, V(y) >0 forall y e (Ug(ro) NQ%L). (5.1.5)

To verify (5.1.5), we simply differentiate (5.1.3) in y,, to get

1
9,V (y) = F(y) + ¥ / (02 V)(y ty,) tdt.
0

and (5.1.5) follows since F' > 0, y,, > 0 and 9*V (y) > 0 for all y € Ug(re) NQ% under
the convexity assumption on the potential.

It then follows from (5.1.5) and (5.1.3) that
in 0, V(y) < F(y) < a,,V(y). 5.1.6
im0y, V(y) < Fly) < max 0,,V(y) (5.1.6)

Locally minimal geodesics and Agmon distance
In the collar neighbourhood Ug(ry), given a point (v, y,) € Ug(ro) NQ,;, there is
a unique minimal geodesic 7y : [0, 1] x A — Ug(ro) for the ambient metric g. Setting

Y(y) = v(t,y) where vo = (¢/,0) € Ap and 1 = (v, y), the minimal geodesic is

%', 0) = (¢, ty,); 0<t<1.

It is easy to see that these “normal” geodesic segments to Ag are unfortunately

not, in general, minimal geodesics for the conformally rescaled Agmon metric gg;
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indeed the latter can be quite complicated (see examples in 6.3). Nevertheless, we
will need the following elementary estimate for Agmon distance in terms of the
natural Fermi defining function y, : M — R above.

LEmMA 5.1.1. Under the convexity assumption in Definition 1.1.2, it follows that

2 .
dp(y) > - ( min 9, V(y) )12 yiﬂ; y € Ug(ro).

yEUE(m)
Proof. Let ~y : [0,1] — QS be a piecewise-C'! minimal geodesic for the Agmon metric
g joining y = (v, y) € Ug(ro) N Qf to Ap; explicitly, v(0) = (¥',y,) and y(1) =

(f(v,yn),0) € Ag. Then, writing v = (v, vn), with v = (71, ..o; Y1),

d(y) = / Ay (1) .

and since

v Ol = (FO0) 30 ldn®F + FO0) 1(8) (hly(t) der' 1), 1)) )

with F, 7, > 0, and h(-) is a positive-definite matrix, it follows that

1
dg(y) > min F'/2. / Yo (£)? |dyy ()] d.
0

Finally, by making the change of variables t — s = 7,(t) in the last integral,

one gets

Yn
dg(y) > min F/? / 5% ds,
0

and the lemma follows from this last estimate combined with (5.1.6) since min F'*/2 >

min (9, V)2, O
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5.1.2 Local control and Carleman bounds near the caustic Ap

Model computation

Consider the model Airy operator Py(h) := (hD,)*> +y where y € R where
V(y) = y and £ = 0 with the corresponding Airy-type weight function in the

forbidden region given by

2 5

wo(y)=3y . y>0.

Then, the symbol of the conjugated operator e¥°/" Py(h)e=#0/h is

Py (¥, €) = € — oy ()| +y + 2iy* /%€, y >0

and

Char(p,,) = {(y,€) € R% £ =10, y > 0}.

The latter follows since (y,&) € Char(p,,) iff 0 = €2 — |¢h(y)|> + y + 2iy/%¢

which in turn holds iff £ = 0 since |} (y)|> —y = 0.

We note that the weight function g is borderline for the Hormander subelliptic

condition in the sense that for (y,0) € Char (py, ), we have

{Repyy. Impyy b = 400 ()6 ()| — 2¢5(y) =0, y > 0.

Of course, in this case, @o(y) = 2y** = [/ 7'/%dr is precisely the Agmon dis-

tance function dg(y), where by convention we have set E = 0.
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Construction of the weight function

Let P(h) = —h*A, +V — E : C*(M) — C*(M) and consider the conju-
gated operator P,(h) = e¥/"P(h)e=#/" : C*°(M) — C>(M) with principal symbol
Po(r,8) = [€7 — Va2 + V() — E+2i (£, Vo), . The model case above suggests
that to create subellipticity for P,(h) in a Fermi neighbourhood of the caustic, it
should suffice to slightly modify the model weight function ¢y in the normal Fermi
coordinate y,. With this in mind, for € > 0 arbitrarily small (for concreteness, as-
sume 10e < 1) and constant 7 > 0 to be determined later on, we now set in Fermi

coordinates (v, y,) : Ugp — R"™1 x (=27, 2r9),

2
polyn) 1= (5 +€) T (o + 10272y, € (<25, 2r0). (5.1.7)

Remark 5.1.1. We recall here that ro < inj(M,g) is fixed (but not necessarily
small), whereas ¢ > 0 will be chosen arbitrary small (but independent of k) consistent
with the control assumption on the eigenfunctions.

We abuse notation somewhat in the following and simply write ¢ = ¢., the
dependence on e being understood. Then, ¢ € C*°([—2¢,2r(]) and plainly ¢ :

[—2¢,2r¢] — RT is strictly-convex and monotone increasing with

min (¢ (yn), ¢" (yn)) > Cle) >0, y, € (—2¢,2r0).
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Moreover, the characteristic variety

Char(p,) N7 ([—2¢, 2ro])

Since F'(y) > 0, it follows that this set is non-trivial; indeed for any —2¢ < y,, < 0

(ie. a point in the allowable region),
Char(p,) N7 (yn) = 85, (M) N {&, = 0}.

Since Char(p,) is non-trivial, global ellipticity over the interval (—2¢,2ry) evi-
dently fails. However, we claim that subellipticity is now satisfied in such an interval
provided 7 > 0 is chosen large enough but depending only on the potential V. In-
deed, since the normal Fermi coordinate is y, and ¢ is a function of only y, with

nn = 1, a direct computation gives,

{Repy, Impy}y = {&) + €2 = (9,,0)* +V = E, 20, - &}
= 0, (&2) 0y, (204, - &) — Oy, (= (0y,0)* +V — E) O, (20,0 - &)
=402 ¢ (|8yn90|2 + éﬁ) — 20y, - 8,V
> 20,0 (202 ¢ -0y, 0— 8,,V)

> 27C(e)(20; ¢ Oyp — 0, V), yn € (=22, 2r9). (5.1.8)

From (5.1.7), for any € > 0 and for all y,, € (—2¢, 2r9),
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2 9 2 2 2 2
28yn<p-8ng0517 <§+€) > T

Choosing
=8, V|2 (5.1.9)

Lo°(Ug(ro))’

it follows from (5.1.8) that for all (y, &) with y,, € (—2¢,2r),

{Rep,, Imp,}(y, &) > C(r,e) > 0.

Consequently, ¢ = ¢. is a Carleman weight for P(h) globally in the Fermi
neighbourhood of the caustic where —2¢ < y,, < 2ry.

Remark 5.1.2. If V = V(y,) in Ug(ry), consider

©e(yn) = (1 +¢) /Oyn ) VV(t) — Edt, y, € (—2¢,2r).

Similarly

' (yn) = (14 )/ V(yn +10c) — E > C(e) > 0,
" _ 1 +e aynv(yn + 108)
#"(tn) 2 \/V(y, +10s) — E —

C(e) >0, y, € (—2¢2r).
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Moreover

{Rep,, Imp,} = {& + (€] — (0,,0)* +V = E, 20, - &1}
=482 ¢ (10, 92 + €) = 20,0+ 9,V
> 20y, ¢ ( 28§nga Oy, 0 — 0, V)
> 20, ¢ ((1+)?-1)0,,V

>0, yn € (—2¢,2r)).

This means ¢ = . is also a Carleman weight for P(h) globally in the Fermi neigh-

bourhood of the caustic where —2¢ < y,, < 27.
Now, let x € C§°(R; [0, 1]) be a cutoff satisfying

3 3
X(yn) = 1; —55 < Yp < §T0
with

X(yn) =0;  y, € R\ (—2¢,2r0).

J AN

—2 _3c 0 Srg 210 R

Figure 5-1: Cutoff function x

In the following, we let x1 € C{°(R) with 0 < yxi < 1. Moreover, writing
fr = fley.>0, we choose x4 (y,) so that xi(y,) = 1 for y, € supp ((3{%)()jE and

X+(yn) = 0 for y, € supp (9,,x)T. More concretely, in terms of Fermi coordinates,
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we choose y+ so that
X_(yn) =1, =3e<y,< g,
X=(yn) =05 yn >,
and
3

X+(yn) =1, 57’0—€<yn <2rg+e,

3
X*(yn) = 0; Un < §T0 — 2e.

Set P,(h) := e?/"P(h)e#/": C5°(U) — Cg°(U) and with y = x(yn) above,
vy, 1= e“"/hxuh
where P(h) := —h?A, + V(z) — E(h) and
P(h)uy, = 0.

Moreover, we assume throughout that the eigenfunctions wu;, are L?-normalized with
[unll2arg) = 1.

In view of the subellipticity estimate in (5.1.8) and the support properties of
the cutoff xy € C§° it follows by the standard Carleman estimate [Zwol2, Theorem
7.7] that

|Po(R)unll3a > Cr A [lonll. (5.1.10)
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Since P(h)uy, = 0 and P,(h) is local with supp x4 Nsupp x— = 0, it follows from
(5.1.10) that

le?/M P (R), X] xunllZz + 7" P(R), X] x-unll7:

> Ch (S)h <||€¢/hXUh||§1;L(suppx+) + ||ew/hxuh||§—[,1l(suppx_)>

(5.1.11)

or equivalently,

[e?/*[P(R), X] X+ un||72 — Ci(e)h ||e¢/hxuh”?ii(

Suppx+)
= Cr(@) Rl xunll s qupp -y = 167" [P(R), X]x-unl 2.

(5.1.12)

Then, it follows from (5.1.12) that

B2l unl; > Cu(e)hlle? M unll 7

P 12 w/h 2
H} (suppoxt) — ) h CQ<€>H€ uhH

H} (suppdx~)’

(5.1.13)

sSuppx —

where, in (5.1.13), the sets supp Ox* arbitrarily small neighbourhoods of supp (9x)*
respectively. Specifically, we can assume that supp y+ D suppé?j/E D supp (9x)*

and in addition
€

meas (supp Ox* \ supp (9x)*) < o

Since (Ox)~ is supported in the classically allowable region where y,, < 0, we will

now use the control assumption in Definition 1.1.1 to get an effective lower bound

for the RHS in (5.1.13).
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Computing in Fermi coordinates, the RHS of (5.1.13) is

> C1()h [y ez 0n X0 (un(@)? + [h0yun(y)]?) dy'dy,
= oM ooy 70 M () + 110y ()?) Ay, (5119
where the last line in (5.1.14) follows since supp 5}2: C{yeU;-3<vy, <—c}.
Next we use strict monotonicity of the weight function ¢ € C*>([—2¢,2r]) in

(5.1.7). Wesset m(e) := miny,e(—< 0) P(yn) > 0 and M (g) 1= maxy,e(—3,—c) 9(Yn) > 0.

Then, since ¢ is strictly increasing,
m(e) — M(e) = Cs(e) > 0.
So, it follows that (5.1.14) is bounded below by

Oy (8)62m(6)/h ( h||up, ||12r{}L({U;yn€(f%,O)})

Finally, by standard elliptic estimates, [|us|z; = O(1) and by the control as-

sumption in Definition 1.1.1, it follows that for any € > 0,

”uhH%I}L({U;yne(fé,O)}) > 027N(€)hN.

2

Consequently, from (5.1.13)-(5.1.15) it follows that with h € (0, ho(e)], there

exist constants Cj(¢) > 0,5 =1,...,5, such that
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hQHG@/hu H > Cl(€>€2m(5)/h<hN+1CQ7N(€) _’_05(67203(5)/h))

HY (suppoxt) =

> 047N(€)h]\/+162m(6)/h > 05’N(€)em(a)/h‘ (5116)

Next, we relate the weight function ¢. to Agmon distance dg. From Lemma

5.1.1 we recall that

[\

dp(y) > —(mm 0y, V)2 3/

3 Ug(ro)
( ming, ry) Oy, V'

mMaxg,, (ry) Oy, V'

) p=(yn) + O(e). (5.1.17)

The latter estimate in (5.1.17) follows since in the definition of the weight ¢, (see
(5.1.7)), we choose T = max, ey, (ro) |9y, V2. Since from (5.1.5), minyep,(r) 0y, V >

0, it then follows that

maXycUg(rg) Oy, V. 1/2
%(yn) = (minyGUE(ro) 6ynv> dE(Z/) T 0(8) (5118)
Thus, in view of (5.1.16) and (5.1.18), we have proved the Theorem 1.2.1.

Remark 5.1.3. Under the same assumptions as in Remark 5.1.2, it’s easy to see
the piecewise-C! minimal geodesic under gp joining (v/,y,) to Ag is just the same

minimal geodesic under g (see the section 6.3). Hence

_ /0 " IV = Edt = p.(y,) + O(c).
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5.2 L” restriction lower bounds in forbidden regions

Consider a C* separating hypersurface H C 2%, in the forbidden region that
bounds a domain Q5 C Qf%. The point of this section is to extend Theorem 1.2.1 to
lower bounds for LP-restrictions of eigenfunctions to hypersurfaces H in the forbidden
region.

Let v be the unit exterior normal to H with (VV,v) < 0. Then, under the

separation assumption above, by Green’s formula,

/ |hN up|? dv, —I—/ (V — E)|up|?* dv, = h2/ Oyuy, - up, do (5.2.1)
Qu H

Qp

Using the fact that V(z) — E > C > 0 for all x € Qp, it follows from (5.2.1)

that with a constant Cs = C(V, E, E',0) > 0

h2/ Dyun - undo > Csllunllly (5.2.2)
H

From the pointwise Agmon estimates

Hh@,,uhHLoo(H) = Og(ede(HH’B(S)/h), dE'(H) ‘= min dE(q>

qeH

together with the Holder inequality,

lunllzo(ery > Coe(p) =D g3, p 2 1. (5.2.3)
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Here, f(e) = o(1) as e — 07.

Definition 5.2.1. We say that the hypersurface H C {V > E} is admissible pro-
vided:

(i) H us a separating hypersurface bounding a domain Qg C {V > E}.

(ii) There exists E’ > F such that the hypersurface Ay = {y, = E' — E} has
the property that

A C QN UE(T()).

7 ()

Admissible Not Admissible
Red region is {V > E} N Ug(ro)

Figure 5-2: Admissible and not Admissible hypersurfaces

Set

E(H) = inf{E' > E; Ap C (Q 0 Ug(ro))}- (5.2.4)
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Since Apr N Qy = 0 for any ' > FE sufficiently close to E, it follows that
E(H) > E. Moreover, under the admissiblity assumption, it follows that for any

0 > 0 sufficiently small,

A(E(H), E(H) +6) C (5 N Ug(ro))
and so,
”UhHJ%I}L(QH) > ‘|uhH?{}1L(A(E(H)7E(H)+5)- (5.2.5)

From the Carleman estimate in Theorem 1.2.1,

where 3(e,d) — 0" ase,d — 0T,

It then follows from (5.2.3)-(5.2.6) that for any ¢’ > 0, and with

MaXyp(rg) Eyn [ >1/2 H d d .
O = 4]! = Imnax H = Imin d . 52 1
0 < i o) ayn‘ ; ; E g€ m E(Q)a E( ) qelH E(Q) ( )

one has the following lower bound for LP-restrictions of the u;, to H :

unl oy > C(€, p) e 20 i/ . dpD/h o=BER ) >

where (') — 0 as ¢’ — 0. Consequently, we have proved the Theorem 1.2.3

5.3 Nodal intersection bounds in forbidden regions
The main job of this section is to give an improved Theorem 1.2.5 following the
steps in [CT16]. Before that, we shall give a very brief review of known results about

nodal sets of the eigenfunctions of Laplace and the Schodinger operators.
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Theorem 5.3.1 ([Che76]). Suppose that (M, g) is an n-dim C* Riemannian man-

ifold without boundary (not necessarily compact). If f € C(M) satisfies
(A+s(z))f =0,

for s € C°(M). Then except on a closed set of lower dimension (i.e. dim <n —1)
the nodal set of f forms an (n — 1)-dim C* manifold.

The study of zero sets was historically motivated by the desire to visualize energy
states by finding the points where the quantum particle is least likely to be. In fact
the nodal sets of the hydrogen atom energy states have become visible to microscopes
[SRL*13].

In the late 70’s, S. T. Yau gave a conjecture for the ‘size’ of the zero set Z,,,

Zy, = {z,u\(z) = 0}, of eigenfunctions
—AQUJ)\ = )\U)\

of the laplacian A, on (M, g). The conjecture is stated as follows,
Conjecture 5.3.2. For general C*°(M, g) of any dimension n, there exist positive

constants ¢ and C' depending only on g so that
NN < AN Z,,) < CVN.

Here s#"~1(Z,,) represents the n — 1-dimentional Hausdorff measure.
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When (M, g) is analytic, this problem has been extensively studied. In 1988,
Donnelly-Fefferman [DF88| proved the conjectured bounds for real analytic Rieman-
nian manifolds (possibly with boundary). In 1991, Lin [Lin91] showed the same
upper bound by using the frequency of uy.

However, for C* metrics, this conjecture is still not completely solved. A lot of
experts made great contributions in this conjecture ([Bru78] [CM11] [Don92] [DF90]
[HS89] [SZ12]). We refer to [Zell3] for a list of references. Recently Logunov ([Log]
[Log18b] [Logl8a]) has some breakthrough results for both the upper and lower
bounds.

Motivated by Yau’s conjecture, Toth-Zelditch [TZ09] [TZ] considered the dis-
tribution of Z,, on a piecewise analytic domain in R?%. More specifically, they gave

an upper bound for the number of intersection points of Z,, with a ‘good’ analytic

curve H (cf Fig. 4-2).

T
—
jus]

&
e

N

p
2

7
L\O[% I
)

Figure 5-3: Nodal intersetion

One key technique in the proof of Yau’s conjecture involves establishing Carle-

man estimate since the measure of the nodal sets is closely related to the Carleman

weight [DF8S].
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More generally, we can consider the problem of determining the measure of the
zero set Z,, of Schrodinger eigenfunctions. From now on, we only consider the case
that g € C¥.

Jin [Jin17] extended the known results in the homogeneous case where V = 0
to Schrodinger eigenfunctions in 2g. Due to quantum tunneling phenomenon, it is
natural to study the property of zero set in %, but little is known in this case.
In dimension one, we know that the eigenfunctions of the Harmonic Oscillator have
no zeros in the forbidden region and Hanin-Zelditch-Zhou [HZZ15] [HZZ17] have
proved that in any higher dimension the expected value of the measure of the nodal
set of random eigenfunctions of the harmonic oscillator inside any ball is of order
h~1/2 and the density of zeros is of order h=5 in an h~3-tube around the caustic set
{z : V(z) = E'}. Recently Canzani-Toth [CT16] have shown the sharp upper bound
for the nodal intersection of Schrodinger eigenfunctions with any simple closed real

analytic curve is of order A~ on a compact real analytic surface without boundary.

We now turn to the proof of Theorem 1.2.5, but first review the basic method
in [CT16]. One key observation is that the number of nodal intersections with an
analytic curve is always upper bounded by the zeros of corresponding complexified
eigenfunction in a complex strip. Then the authors apply a crucial inequality [[TZ09],
Proposition 10] which says basically that the number of zeros of a holomorphic

function is controlled by the logarithm of the holomorphic function.
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We now present the details. Consider the special case where dim M = 2 and
(M,g,V) are, in addition, real-analytic. Let H C Qf be a simple, closed, real-

analytic curve in the forbidden region. Given the nodal set
Zy, ={x € M;uy(z) =0},

the problem is to estimate the number of nodal interesections with H; that is #{H N
Z,, } which is just the cardinality of the intersection. Indeed, under an exponential
lower bound on the L%-restrictions of the eigenfunctions (ie. a goodness bound), this
intersection consists of a finite set of points.

Let g : [0,27] — H be a C¥, 2w-periodic, parametrization of H. To bound
the number of zeros of uy o g : [0,27] — R we consider its holomorphic extension

(up 0 q)¢ : HE — C to the complex strip
HE ={teC: Ret 0,2, Imt| <7}

for some 7 > 0, and use that #{Z,, N H} < #{Z,,09c N HE}. Then, the zeros of

Up°q

(up 0 q)€ are studied using the Poincaré-Lelong formula:

00log|(un o) ()P = Y d.(2):

Zk €Z<uhoq>c

According to [TZ09, Proposition 10|, there exists C' > 0 so that

#{Zu, VH} < #{Zuy0qc N Hy} < C maxlog|Ey (1)), (5.3.1)
teHC
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where FZ(t) with ¢t € HE is the holomorphic continuation of the normalized eigen-

function traces

Fu(t) = up(q(t))

= . (5.3.2)
HuhHLz(H)

It follows that we shall need to control the complexification Fi(t) to obtain
upper bounds on #{Z,, N H}. Without loss of generality we assume that H C
int(€2,) where 2, C QF is a domain whose closure is contained in Q% and whose
boundary is a closed C* curve that we call 7. Moreover, we choose 7 so that for any
fixed € > 0, the distance d(H,~y) < €. Then, in [CT16] (4.9), the authors prove that

there exist positive constants C, hg, dy and C1(¢) so that

U o, u
[FE()] < Cem @@/ ( lenllzzey | | ’"‘HLZ(”> . (5.3.3)
lunllzzceny — Nunllz2em)

From the Agmon estimates in (1.1.5), one has the upper bounds

max{ [[un|z2(y), [0unllziy } < Cle)e EETHEIE - dy(H) = min dg(q),
qe

for all h € (0, ho(e)] with B1(e) = o(1) as € — 0F. On the other hand, from Theorem

1.2.3, we have the lower bound

un | L2y > 0(5)6[*27—0d5+dE(H)+B2(5)Vh, d = max dg(q),
9EAE(H)

with fa(e) = o(1) as e — 0.

Consequently, from (5.3.3) we get that

[Fr(t)] < C(e)e @M QM. (Lludi=dstI - Oy (e) > 0, B(e) = o(1); & = 07

(5.3.4)
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Then, using the Jensen-type bound in (5.3.1) and letting £ > 0, we complete

the proof of Theorem 1.2.5.
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CHAPTER 6
Examples and counterexamples

In this chapter, we shall discuss the necessity of the control assumption in Defi-
nition 1.1.1 and compare the geodesics under the ambient metric g with those under
the Agmon metric gg.

6.1 Counterexample: Effective potentials and lack of eigenfunction con-
trol

Here we show that without the control assumption in Definition 1.1.1, we can es-
tablish a Schordinger model such that the corresponding eigenfunction decays much
faster than e~(1=9)4/" in A(§, ') for &' small enough. Such counterexample is essen-
tially inspired by the paper ([CT16]).

Consider a convex surface of revolution generated by rotating a curve v =
{(r, f(r)), r € [—1,1]} about r-axis with f € C*([-1,1],R), f(1) = f(—-1) = 0,
and f"(r) < 0 for all » € [~1,1]. Furthermore, one requires f™(—1) = (1) for
all n-th derivatives.

Let M be the corresponding convex surface of revolution parametrized by

B:[—=1,1] x [0,27) — R,

B(r,0) = (r, f(r)cos, f(r)sinb).

53



Then, M inherits a Riemannian metric g given by
g = w*(r)dr* + f*(r)do?,

where w(r) = /1+ (f'(r))%.

Consider the Schordinger equation on M given by
(=h*A, + V), = E(h)ps,

where V' € C*°(M) and is radial, so that V(r,8) = V(r). We also assume that
E(h) = E + o(1) and that f(V-Y(E)) > 0.
We seek eigenfunctions of the form ¢, (r, 0) = v,,(r)1,(0). The Laplace operator
in the coordinates (r, ) has the following form
IV YA
w(r)f(r)or \w(r)or 12(r) 002

Making the radial change of variables s — r(s) = [’ 1{) ((Z)) dr, it follows that

0
vp(r(s)) and 1, (0) must satisfy the ODE

kdm¢ﬂ) hi mi; n(0) (6.1.1)

and

(1 + PO EE) = B0 + w6 ) () =0 (612

for some my, € Z. Let {hy} be a decreasing sequence with by — 07 as k — +oo and

mp, = 1/hg € Z. Then, we choose a particular sequence of solutions of (6.1.1) given
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whk (6) = eia/hk'

Consider the annulus A(—eg, 9) = {r(s); —eo < V(r(s)) — E(h) < 0}. Since for

r € A(—eo,£0) we have for g9 > 0 sufficiently small

P — ) +wl(r) > qu'(r),

it then follows by the standard Agmon-Lithner estimate applied to (6.1.2) that for

any 0 > 0, and with V(rg) = E,

I 5 dT) [l
0’ /Uhk (7’)||L2(A(,€0’50) - 05(]-)7 (6].3)

Since O0sr = % > 0 for r(s) € A(—eg,e0) with g9 > 0 sufficiently small, the
inequality (6.1.3) contradicts the control condition in Definition 1.1.1; indeed, the
eigenfunctions already decay exponentially in A in the allowable region A(—¢g,0).
We note that since dg(r) = O(|V (r) — E|*/?) = O(eg/z) and the additional effec-
tive potential term w(r) = /1 + (f/(r))? > 1, it follows that for £, > 0 sufficiently

small, in the forbidden region where r € A(0, &¢),

= / Uéi? dr > Cy (V(r) = B) > nodi(r),  Co > 0.

0
In this case, the exponential decay is therefore more pronounced than in Theorem
1.2.1. This is due to the presence of the effective potential term w? which in turn
appears because of the particular choice of the sequence of Fourier modes in (6.1.1)
with mghi ~ 1. This is consistent with our results, since as we have already shown,

the control condition is violated for this particular sequence of eigenfunctions.
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6.2 Examples of eigenfunction sequences satisfying control
We consider precisely the same example of a Schrodinger operator on a convex

surface of rotation as above but choose the quantum number m = const. so that

mhy, = O(hy) as hy — 0. Then, the ODE in (6.1.2) becomes

(—h?d— + L)V r(s) — B(h) +0(h) w2<r<s>>) o (r(s) = 0. (6:21)

" ds?
The fact that the corresponding eigenfunctions ¢, (r,0) = v, (r),(0) satisfy

the control assumption is then an immediate consequence of standard WKB theory

applied to the semiclassical ODE (6.2.1). Indeed, writing ®(r) := [~ L9 (g —

ro Osr

V(r))Y2dr, it follows by WKB asymptotics that for r € [—1,1] satisfying £ — & <

V(r) < E,
(1) ~h_o+ eié(’”)/hcl(h) ay(r;h) + e_i‘I’(T)/th(h)ag(r; h), (6.2.2)
where for k = 1,2, ag(r; h) ~ 3272 ax ;(r)h/ and
lex()* + lea (W) 2 C1 > 0, ar(ri h)| > Cafe) > 0; k= 1,2.

Consequently, from (6.2.2) we get that for any e > 0,

2 27
/ / lon(r, 49)|2 drdf = / / |vh(r)|2 |eime|2 drdf
—e<V(r)—E<0 J0 —e<V(r)—E<0 Jo

21
— / / lop(r) | dr > C(g) > 0.
—e<V(r)—E<0J0
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In the last estimate, to control mixed terms, we have used that by an integration by

parts,
/ e:|:2i<I>(r)/ha1 (T; h)ag(r; h) dr = Oa(h>
—e<V(r)—E<0

As a result, this particular sequence clearly satisfies the control assumption in Defi-
nition 1.1.1 with N = 0.
6.3 Geodesics in the Agmon metric

In this section, we compare and contrast geodesics in background metric g and
Agmon metric g in some simple cases.

Radial-type Agmon metrics

Let (M, g) be C* compact Riemannian surface (n = 2) and V' € C*°(M;R) with
regular value E. Let (y,,,v') : Ug(ro) — R™ be Fermi coordinates in a neighbourhood

of the caustic set V = E. We assume here that V' is radial in the sense that
V=V(yn), y€Ug(ro)n{V >E}.
Recall that in Fermi coordinates
9= dyy + h(y' ya)ldy'|*,
and the associated Agmon metric is
95 = (V(yn) = E) (dy2 + hy/.ya)ldy ), V(y) > E.

We make the change of radial variables y,, — Y,, where

Y, (yn) = /0 " V) = Edu, (6.3.1)
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which is monotone increasing when V(y,,) > E. In the (Y,,,y')-coordinates, the Ag-

mon metric has the form
gg = dY;} + H(Ya,v') |dy'|?, H > 0.
It then easily follows that the curves normal to the caustic given by

V() = (Yat) =ty =4/ (0); [t <7

are minimal geodesics in g and, modulo the reparametrization in (6.3.1), they are
also minimal geodesics in the background metric g. In general, other geodesics of g
do not necessarily agree with those of gg, even in these radial cases.

Non-radial example

When the potential is not radial in the Fermi defining function, it is easy to
construct examples where even the minimal geodesics in the background metric g
normal to the caustic V = F are no longer geodesics in the Agmon metric, gg.

To see this, consider the potential V(r,60) = (r + sinf)? and E = 0 in the polar

coordinates (r,6) on R? so that the background metric in polar form is
g =dr* +1*d6* (r,0):R*— (0,00) x S*.

Hence, given a constant 6y € [0,27], obviously the line segment v : [0,ry] — R

~(t) = (t,6y) is the geodesic in the flat metric g joining (0,0) to (79, 6p).
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Now gg = V(r,0)dr?* + r*V(r,0)d6? is the Agmon metric. We claim ~(¢) is not

the geodesic under gg. The length of v in gp is

T0 70 1
U(y) = / VV(r,0)dr = / (r 4+ sinfy)dr = 57“3 + rosinfy.
0 0

Denote ¢; be the circular arc joining (79, 0) to (ro, 6p) and co, the straight segment

from (0,0) to (r9,0).

~y (r0,60)
(0,0) C2 (r0,0)

Figure 6-1: Non-radial example

It is easy to compute the lengths of ¢; and ¢, :

90 90
Uey) = V'V (ro,8) - redd = / (1o + sin @) - rodf = 1360 + (1 — cos Oy)ro,
0 0

and
70 To 1
l(cy) = / V'V (r,0)dr = / rdr = 57’(2).
0 0

Choosing ry = % and 0y = 7§ gives

1+2v2 1 2—+/2
:—8\/_> + \/_+E=€(cl)+€(02)-

£(7) 1 1

oo |

Consequently, v does not minimize the distance from (0,0) to (rg, ).
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APPENDIX A
Riemannian geometry

In this appendix we include basic definitions and identites which are used through-
out this thesis.
The Riemannian metric g on M induces a natural isomorphism between the

tangent and cotangent bundles by

T(M) — T*(M),

(2, X) — (z,X)
where X°(Y) = (X,Y), and the corresponding inverse is

(M) = T(M),

(2,6) = (2,&)
where &% is defined by £(X) = <£u, X>. Assume the metric g is given by
g = gjrdr; @ dxy,
in the local coordinates. Then,

X' = gijjd-’ﬂk? fﬁ = gjkfjazk'
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In particular, the gradient field is defined by V¢ = dp*. The musical isomorphisms
allow one to lift the metric to the cotangent bundle. The cotangent bundle is hence

naturally endowed with the Riemannian metric ¢g—! given in the local coordinates by
gt = gtdg; @ dg,

here g;; - g’% = oF.
We denoted D as the uniquely determined Levi-Civita connections on (M, g)
which satisfies the following conditions:
(i) DyxY = fDxY, and Dx(fY) = (Xf)Y+fDxYif f is a smooth function on M,
(ii) DxY — Dy X = [X,Y],
(i) X(Y,Z) =(DxY,Z)+(Y,DxZ).
This connection is determined in local coordinates by
Dazjaxk - F‘ijaxl,
where the Christoffel symbols I‘ék are given by

1
Fé’k - iglm (axjgkm + Or, Gjm — axmgjk)'

The Hessian of a smooth function ¢ is the symmetric (2, 0)-tensor D*p = Ddip. The

expression of the Hessian in local coordinates is

TjTg

D%*p = (82 o — ngarlgo) dz; @ dxy,.
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For the smooth function f on M, we can define the gradient of f, V f, to be the
vector field on M for which

(Vf, X)=Xf

for all X € T'M.
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APPENDIX B
Symplectic geometry

An even dimensional smooth manifold M endowed with a closed nondegenerate
2-form w is called a symplectic manifold.
With standard coordinates on R*" denoted by (1,...,Zn, Y1, --,Yn), has the

standard symplectic form
w = Z dx; N\ dy;.
i=1
Naturally there is a tautological 1-form, 7, on the cotangent bundle T*M. It is

not hard to prove that w = —dr is a symplectic form on T*M. Let (z;,&;) denote the

corresponding natural coordinates on T*M, one has the canonical symplectic form
w=Y dr; Ad&.
i

Theorem B.0.1 (Darboux). Let (M,w) be a 2n-dimensional symplectic manifold.
For any p € M, there are smooth coordinates (xy,...,xn,&1,...,&,) centered at p in

which w has the canonical coordinates representation

i=1

Remark B.0.2. Darboux’s Theorem states that all symplectic structures are iden-
tical locally, in the sense that all are equivalent to that give by w. It implies that

symplectic geometry is at least locally, not as rigid as Riemannian geometry. There
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are no local invariants in symplectic geometry, but for example, curvature is a local
invariant in Riemannian geometry.
Like the gradient defined for the smooth function f on the Riemannian manifold
(M, g), we can define a Hamiltonian vector field Hy on Symplectic manifold (M, w)
by
w(Hy, X) = df(X),

for all X € T'M.
For f, g € C*°(M), their Poisson bracket is defined by

{f.g} = Hyg.

In the canonical coordinates (xy,...,x,, &1, ..., &), that is

" Of 0 af o
{rgp=Y 9009 0/ %
i=1
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