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Abstract

Internal-combustion-engine vehicles (ICEVs) entail various problems, first and foremost, pollution.
Due to a much lower impact on the environment, electric vehicles (EVs) appear as proper substitutes
for ICEVs. Nonetheless, EVs have failed to gain popularity because of an inherent problem, as the
current energy-storage capacity of electric batteries is much lower than that of fossil fuels. Hence,
the efficiency of EVs should be improved to make them viable. One step in this direction is the
application of multi-speed transmissions (MSTs) in EVs. This way, the desired power is transmitted
in more than one way, via several gear ratios included; therefore, by appropriate gear-shifting, a
higher efficiency can be achieved. Compared to ICEVs, electric motors (EMs) are speed-controllable
in an extensive range. Accordingly, it is not required to disconnect the motor from the transmission
during gear-shifting. In fact, for a seamless gear-shifting in EVs, the drive torque supplied by
the EM can be adopted as an autonomous control input. Since gear-shifting influences passenger
comfort and vehicle drivability, the main objectives are smoothness, swiftness, and cancellation of
output-torque interruption.

Firstly, the kinematics and dynamics models of the proposed MST designed for EVs, with
the advantages of simplicity and modularity, are derived via a Lagrangian formulation. Next, the
Kalman filter, the Luenberger observer and neural networks are used to estimate the unavailable
states, the unknown arbitrary disturbance and the unknown clutch torque applied to the transmission.
After defining the gear-shifting problem in the space of angular velocities, to guarantee velocity,
acceleration and jerk continuity, the optimal trajectory for a swift and seamless shift is found based
on variational calculus and polynomial blending functions.

From a control point of view, the formulation of the gear-shifting problem leads to an over-
actuated system, i.e., the number of control inputs is greater than the number of states to be controlled.
Furthermore, there are terminal constraints on both states and control inputs. Several control

algorithms are proposed for this specific problem to satisfy all end control and state conditions,
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while tracking the desired trajectory. The first algorithm, which includes two phases, approaching
and coasting, is based on a genetic algorithm, a supervisory controller and PID gain-scheduling. In
the second algorithm, one input is suggested to be changed independently, based on a 2-3 blending
polynomial. Then, the new fully-actuated system is controlled using a linear quadratic integral
controller, which is an extension of the linear quadratic regulator for tracking problems. Moreover,
to find a continuous and smooth optimal control input, two different novel, non-standard optimal
control problems are formulated, which allow us to apply soft or hard terminal constraints on the
control input, both applicable to the gear-shifting problem in EVs. Lastly, to find the optimum
trajectory, while satisfying both terminal control and state constraints, a control scheme is suggested

based on Bellman’s dynamic programming and the principle of optimality.



Résumé

Les véhicules a moteur a combustion interne (VMCI) posent divers problemes, le principal étant la
pollution. En raison d’un impact beaucoup plus faible sur I’environnement, les véhicules électriques
(VE) s’averent étre des substituts appropriés pour les VMCI. Néanmoins, les véhicules €lectriques
n’ont pas réussi a gagner en popularité parce que la capacité actuelle de stockage d’énergie des batte-
ries électriques est beaucoup plus faible que celle des combustibles fossiles. Par conséquent, il faut
améliorer le rendement des VE pour les rendre viables. L’application de transmissions multi-vitesses
(TMV) dans les véhicules électriques va dans cette direction. La puissance désirée est transmise
de plusieurs manieres, par des rapports de démultiplication portés, qui permettent d’améliorer
I’efficacité grace a un changement de vitesse approprié. La vitesse des moteurs €lectriques (ME)
est réglable de diverses facons, contrairement a celles des VMCI; il n’est donc pas nécessaire de
déconnecter le moteur de la transmission pendant le changement de vitesse. En fait, pour obtenir un
changement de vitesse en douceur dans les véhicules électriques, le couple d’entrainement fourni
par I’ME peut étre adopté comme entrée de commande autonome. Puisque le changement de vitesse
influe sur le confort des passagers et la maniabilité du véhicule, les principaux objectifs sont la
fluidité, la rapidité et I’annulation de I’interruption du couple de sortie.

Les modeles cinématique et dynamique de la TMV proposée pour les véhicules €lectriques, avec
les avantages de la simplicité et de la modularité, est obtenu d’une formulation Lagrangienne. Le
filtre de Kalman, I’observateur de Luenberger et les réseaux neuronaux sont ensuite utilisés pour
estimer les états non-mesurables, toute perturbation arbitraire inconnue et le couple d’embrayage
inconnu appliqué a la transmission. Apres avoir défini le probleme du changement de vitesse dans
I’espace des vitesses angulaires, afin de garantir la continuité de la vitesse, 1’accélération et la
suraccélération, la trajectoire optimale pour un déplacement rapide et continu se base sur le calcul

variationnel et des fonctions polynomiales de transition.

En ce qui concerne la commande, la formulation du probleme de changement de vitesse mene
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a un systeme sur-actionné, c’est-a-dire que le nombre de signaux de commande est supérieur au
nombre d’états a commander. De plus, il existe des contraintes terminales sur les états et les signaux
de commande. L’auteur propose plusieurs algorithmes pour la synthese de la commande pour ce
probleme spécifique afin de satisfaire toutes les conditions de commande et d’état, tout en suivant
la trajectoire désirée. Le premier algorithme, qui comprend deux phases, en approche et en roue
libre, se base sur un algorithme génétique, une commande de supervision et un réglage de type
odométrique-intégral-tachymétrique. Dans le deuxieme algorithme, 1’ auteur propose une excitation
a modifier indépendamment, basée sur un polyndme de transition 2-3. Ensuite, le nouveau systeme
entierement actionné est commandé a 1’aide d’'une commande intégrale quadratique linéaire, soit
une extension du régulateur quadratique linéaire pour les problemes de suivi. De plus, pour trouver
un signal de commande optimale continue et lisse, I’auteur formule deux nouveaux problémes de
commande optimale non standard, qui permettent d’appliquer des contraintes terminales souples ou
dures sur les signaux de commande, applicables au probleme de changement de vitesse dans les
VE. Enfin, pour trouver la trajectoire optimale qui satisfait a la fois la commande terminale et les
contraintes d’état, I’auteur propose un schéma de commande, basé sur la programmation dynamique

de Bellman et le principe d’optimalité.
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Chapter 1

Introduction

Internal-combustion-engine vehicles (ICEVs) give rise to various problems, first and foremost,
pollution. The need to find an appropriate substitute has thus notably increased in recent years.
Hybrid electric vehicles (HEVs) and electric vehicles (EVs) are suitable substitutes of their internal-
combustion-engine (ICE) counterparts, since they are capable of operating with a much lower impact
on the environment. However, EVs have failed to gain popularity because of an inherent problem, as
the current storage-capacity of electric batteries is much lower than that of fossil fuels. In other words,
when the source of energy changes from ICE to electricity, for longer running time on a single charge
of the battery, it is required to enhance the efficiency of the vehicle. This can be done in various ways,
such as improvement of the electric motor (EM) performance and decreasing transmission losses.
Such performance features are limited by current technology. Nonetheless, the efficiency of EVs can
still be improved. Most EVs on the market are equipped with a single-speed gearbox that exhibits
a trade-off between efficiency and dynamic performance. Research demonstrates that applying a
multi-speed transmission (MST) in EVs and designing/tuning appropriate control algorithms for
gear-shifting can not only reduce the size and cost of the EM used, but also provide an appropriate
balance between efficiency and dynamic performance. However, employing MSTs with more than
three gear ratios might not be justified due to the comparatively flatter energy efficiency curve of
EMs and the energy losses brought about by the transmission. An EM equipped with an MST can
provide the desired power in more than one way by means of gear ratios, and hence, reduce the
energy consumption of the EV through proper gear-shifting. In fact, in this way, the EM can operate
on the high-efficiency region for longer periods. However, the overall efficiency improvement

depends on the gear ratio values, the number of gear ratios and the driving cycle [1, 2, 3, 4, 5, 6, 7].

23



The Automotive Partnership Canada (APC) Project at McGill University focused on developing
MSTs in order to improve the efficiency of EVs. The APC Program is a joint effort between univer-
sities and industry partners with funding from the latter and the Natural Sciences and Engineering
Research Council of Canada (NSERC). McGill University, in collaboration with three Canadian
manufacturers, Linamar, TM4 and Infolytica, developed MSTs for EVs to enhance their efficiency.
The McGill team worked on four different areas: EMs; new materials; EV drive systems; and
transmissions. The research work reported here focuses on the latter. Several gear-shifting control
algorithms were developed for the proposed transmission. An outline of this chapter follows. Section
1.1 is devoted to different types of transmission systems for EVs and provides an overview of the
state of the art of MSTs for EVs. Gear-shifting in EVs with MSTs is discussed in Section 1.2.
Finally, this chapter ends with conclusions, a brief description of the thesis materials and the main

assumptions in Sections 1.3 and 1.4.

1.1 Multi-Speed Transmission Systems in EVs

Different types of MSTs can be applied in EVs, such as automated manual transmissions (AMTSs),
automatic transmissions (ATs), dual-clutch transmissions (DCTs), and continuously variable trans-
missions (CVTs). These transmissions were initially designed for ICEVs. Since these vehicles
cannot operate below certain speeds and their speed control during gear-shifting is quite challenging,
the presence of clutches or torque-converters is indispensable for startups, idle running and gear-
changing. For EVs, however, this is not the case, because EMs are speed-controllable in a wide
range of operating speeds. This difference provides an opportunity to design novel transmissions
for EVs without any clutches or torque converters to disconnect the mechanical coupling during
gear-shifting; as a result, the losses are minimized. In fact, to make seamless gear-shifting feasible,
the EM is used as an independent control input in MSTs designed for EVs [8, 9, 10, 11].

1.1.1 Automated Manual Transmissions (AMTs)

AMTs are a kind of semi-automatic transmissions (SATs), which make gear-shifting easier when
compared to manual transmissions, by dispensing with the need to press the clutch pedal during
gear-shifting. In fact, AMTs do not include a clutch pedal, only accelerator and brake pedals.
The purpose of applying AMTs is to make the powertrain automatic. This transmission system is
widely used in the European car market. Compared to other types of transmissions, the advantages
of this type are lower weight and higher efficiency. The AMT system is an enhanced version of
the gearbox used by Ferrari since 1989, developed in association with Magneti-Marelli (another

Italian automotive company) in its F355 F1 racing car in 1997. Apart from Ferrari, the German
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transmission-maker Getrag, the world’s largest supplier of transmission systems for passenger cars
and commercial vehicles, was the first on the market with a sequential AMT, developed for the
BMW M3 in 1996. An AMT generally includes a dry clutch and a multi-speed gearbox, which are
equipped with electro-mechanical or electro-hydraulic actuators, driven by an electronic control unit
(ECU) [12].

In AMTs, since the clutch affects the starting and shifting quality directly and the drive perfor-
mance depends on their engagement process, the studies of AMT control mostly focus on clutch
control, while engine control is usually neglected. Based on the kinematics and dynamics of the
transmission system, Ge et al. [13] proposed a strategy for engine constant speed control in the
starting-and-shifting process. A nonlinear multi-rigid body approach was developed by Zhang et al.
[14] for modelling the automated clutch system in power transmissions during clutch engagement.
An adaptive optimal controller was also designed for an ideal dynamic performance of the clutch
engagement. In controller design, some significant factors such as throttle angle, engine speed,
gear ratio, vehicle acceleration and road conditions were considered. Based on a novel design of
the synchronizing rings and their actuation, Heath and Child [15] introduced an alternative design
solution for the implementation of seamless gearshifts, called Zeroshift AMT. Zeroshift technology
allows a manual transmission to change gears instantaneously. The main benefits lie in the areas of
fuel economy, dynamic performance, shift quality and manufacturability. Moreover, the test data
from a Ford Mustang demonstration vehicle was also reported [15]. Lucente et al. [12] developed
detailed nonlinear models of the electro-hydraulic servo-actuated gearbox and clutch actuators of
a car equipped with an AMT. Experiments were also conducted on a commercial car to verify the
proposed model during gear-shifting. Miao et al. [16] applied a fuzzy-logic approach to control
the gear-shifting process of AMTs with the engine running and considering clutch-engaging states.
In other words, based on a radial basis function neural network (RBFNN), a wet clutch pressure
“intelligent" control arithmetic was designed to realize accuracy control of the clutch pressure.
RBFNNSs are typically trained by a two-step algorithm. According to the error between the clutch
target pressure and actual pressure value, the system under control learns the underlying dynamics,

and hence, compensates for the clutch and solenoid valve model errors.

The main problems with AMTs lie in driving and passenger comfort, caused by torque interrup-
tion during gear-shifting. Gear-shifting and drivability-improvement of a clutchless AMT (CLAMT)
for EVs was developed by means of a sliding-mode controller that reduces the gap of torque inter-
ruption during shifting. The main advantages of a CLAMT are high efficiency, low cost, and simple
structure [17]. Zhu et al. [18] investigated the speed synchronization optimal controller design
for CLAMT. To this end, a combination of state-feedback and H, robust controllers was applied.
Moreover, the linear quadratic cost function and the pole-placement technique were adopted to trade

off between the transient response and the maximal control effort. Additionally, to accomplish the
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traction interruption, Sorniotti et al. proposed a novel seamless transmission called inverse AMT (I-
AMT) [19, 20]. In I-AMT, the dry clutch is located at the rear of the transmission so that the traction
interruption of traditional AMT can be cancelled. Gao et al. [6] studied a two-speed transmission of
this type. In fact, the gear ratios were optimized first, by minimizing the energy consumption under
combined urban and suburban driving cycles, using Bellman’s dynamic programming (DP). Then,
after addressing gear-shift control, a smooth shift process without torque hole was achieved through
feedforward and feedback control of the clutch and the motor. Furthermore, it was also shown
that the two-speed AMT with a rear-mounted dry clutch performs much better than a fixed-ratio
gear box in terms of acceleration time, maximum speed and energy consumption. Using optimal
control techniques, reference trajectories of the clutch slip speed and motor torque were generated
for improving the shift quality of a two-speed I-AMT of EVs. The off-line results were utilized
for on-line implementation in a physical system, while using a PID controller to compensate for
disturbances and errors [21]. Based on hybridized AMT (HAMT), a new type of hybrid powertrain
system was designed by Wu and Dong [22], which, by applying the concept of torque gap filler
(TGF), has the potential to overcome the torque gap issue during gear-shifting. A control scheme
was also established to harmonically coordinate various powertrain components to realize the TGF
function. Considering the angular-displacement sensor fault, a control method was proposed for
AMT gear-shifting engaging process, based on updating the actuator current observer and the
gear-shifting engaging torque table [23]. To realize power-on shifting without torque interruption
and maximize the overall efficiency, a high-speed motor was adopted to connect to the input of a
CLAMT, while a low-speed, high-torque EM was connected to the output shaft of the transmission
with the fixed gear ratio [24].

1.1.1.1 Automatic Transmission Based on a Planetary Gear Set

In 1925, H. Rieseler designed an AT comprising a torque converter and a rear-mounted planetary
gear set. In addition, Rieseler made an extraordinary contribution by replacing the dry clutches
with a fluid clutch. The first mass-produced transmission of this kind was the General Motors
Hydramatic in 1939 [10]. In fact, ATs with planetary gear sets have the advantage of eliminating the
output-torque interruption during gear-shifting. Although the existence of a torque converter in this
type of transmission increases passenger comfort and drivability, its efficiency is lower than in other
types of transmissions because of the internal slippage inside the torque converter. Some researchers
have worked on various aspects of this type of transmission, such as its dynamics modelling and
analysis, closed-loop control of gear-shifting, and modelling and control of torque converters and
clutches [25, 26, 27, 28].
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1.1.2 Dual-Clutch Transmissions (DCTs)

ATs can change gear ratios automatically as the vehicle moves, freeing the driver from shifting
gears manually. DCT is a kind of AT that uses two separate clutches for odd and even gear sets. It
allows torque transfer from one clutch to another without interrupting traction. The clutches are
engaged alternatively at different speed ratios, while power transmission continues during a shift
through the control of clutch slippage. In fact, a shift process involves engaging the oncoming clutch
and releasing the off-going clutch. Two important concerns in DCT, dynamic performance and
the associated driver perception, are greatly dependent on the control system, which generates the
reference signals for both synchronizers and clutches [29, 30].

A mathematical model for simulation, analysis and control of the launch and shift processes of
DCT vehicles was proposed by Kulkarni et al. [29]. First, vehicle dynamics during shifting was
modelled, then simulation results were analyzed. Afterwards, shift control was optimized using
clutch-pressure profiles as control signals. For analysis of the powertrain overall performance and
shift transient characteristics, Zhang et al. [31] modelled the kinematics, dynamics, and control of
the transmission. The model was implemented in an object-oriented software tool, and mathematical
formulations and look-up tables were both used to model the powertrain components. Synchronizer
assemblies were modelled as switches for the power-flow paths at different speed ratios. Moreover,
an integrated powertrain control for gearshifts was developed by Goetz et al. [32, 33]; in their
algorithm, clutch slip for a smooth transfer of engine torque was controlled, with the aim of
reproducing the operation of a one-way clutch. Furthermore, a closed-loop control of engine speed
through a combination of engine controls and clutch pressure was implemented. Finally, dynamic
effects of the gear preselection through conventional cone-type synchronizers on the overall shift
quality was investigated . A detailed simulation model was built for the quantitative analysis of the
vehicles equipped with a dry DCT during launch and shifts of the vehicle. The model provides a tool
for DCT torque control and calibration. Based on calibration data, feedback control and open loop
control were both used for the clutch torque during launch and shifts. Additionally, simulation results
were compared with experimental data obtained from a Ford test vehicle [34]. The impact of pump
selection on fuel economy in a DCT vehicle that lacks a torque converter and uses fewer clutches
than conventional ATs, was investigated by Ahlawat et al. [35]. A reduced lumped-parameter model
for DCTs was developed by treating the gear sets as modulated transformers with losses. Also, in
this case, synchronizers were modelled as power-flow switches. The analysis provided insight into
the pumping losses in a DCT, one of the areas where the greatest improvement can be achieved. A
method was proposed for combined speed and torque control of vehicle powertrains with DCTs for
both engine and clutches. In other words, the role of integrated power train control of both engine
and clutches in reducing shift transient response for DCTs was demonstrated with the inclusion of

detailed hydraulic system models. It was also concluded that the adoption of feedforward control of
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engine torque has the potential to reduce the DCT transient response during shifting [36]. A full
set of transmission kinematics and dynamics equations of a DCT was also reported, taking into
account all the possible configurations that can take place in relation to the various power-flow paths
[30]. An upshifting and downshifting open-loop control algorithm was proposed for a two-speed
DCT [37]. A test rig was built at the powertrain lab of the University of Technology, Sydney (UTS).
Further, both transient shifting and driving cycle control were implemented on the testbed. Results
demonstrated that the vibration of the output torque was reduced and the torque interruption was
almost eliminated. An optimization problem was formulated for gear-shifting in DCTs, in order
to minimize the jerk and the energy losses in the clutches [38]. To this end, nonlinear constraints
of the clutch friction were omitted by imposing linear constraints and dividing the time interval
into two phases. To precisely describe the powertrain vibration, a control-oriented model was
developed for DCT drivelines. Further, based on this model, a real-time torque observer was adopted

to compensate for the absence of torque sensors [39].

1.1.3 Continuously Variable Transmissions (CVTs)

In contrast to other mechanical transmissions that offer a finite number of gear ratios, a CVT
is capable of changing seamlessly through a continuous range of gear ratios between high and
low extremes. This difference, flexibility of a CVT, provides the opportunity of operating at the
most efficient point for the motor. As a result, a CVT improves the fuel economy and dynamic
performance of the vehicle. Several vehicle manufacturers, such as Honda, Toyota, Ford, and Nissan,
are working on exploiting the benefits of a CVT in a vehicle [40]. Among different types of CVTs,
belt and chain CVTs are the most commonly used in automotive applications. A CVT includes two
variable-diameter pulleys, kept at a fixed distance apart, connected by a power-transmitting device
like a belt or a chain. The belt/chain can undergo both radial and tangential motions, depending on
the torque loading conditions and the axial forces on the pulleys.

Extensive research has been conducted on different aspects of belt CVTs, such as dynamic
modelling, performance, slip behavior, efficiency, configuration design, loss mechanisms, friction,
vibrations, operating regime, and control [41, 42, 43]. For instance, Srivastava and Haque [44, 45]
studied the effects of pulley flexibility, band-pack slip and lubrication-related friction characteristic
in transient dynamic modelling of a metal pushing V-belt CVT. In addition to belt CVTs, significant
research effort has been directed towards the dynamics and power transmission characteristics of
chain CVTs. As an example, by developing a planar multibody model of a chain CVT, Srivastava
and Haque [46, 47, 48, 49, 50] studied the influence of clearance and friction parameters on dynamic
performance indices of chain CVTs for high torque applications. By inducing chaos and self-
sustained vibration in the system, some models were developed to analyze the friction-induced

nonlinear dynamics of a chain CVT drive. The dynamics model of a chain CVT was described
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by a quite simple first-order nonlinear differential equation by Yildiz et al. [51], which makes the
real-time control of a CVT easier.

The control aspect of CVTs includes achieving an appropriate gear-ratio profile, by means
of pulley actuation forces, with the purpose of increasing the torque capacity of a CVT system,
minimizing belt slip losses, and maximizing vehicle fuel economy and acceleration performance
[40]. Based on a linearized slip model, Bonsen et al. [52, 53] developed a robust gain-scheduling PI
controller to measure and control slip in a CVT while minimizing clamping forces and preventing
destructive belt slip. Ryu et al. [54] developed a model-based control algorithm for the pressure-
control type CVT using the steady-state characteristics of the ratio control valve. Applying a set-point
feedforward and a linearizing feedback controller, a new ratio controller for a metal pushing V-belt
CVT with a hydraulic clamping system was developed by Pesgens et al. [55]. Furthermore, Adachi
et al. [56] employed a robust control method, 1-synthesis, to design the controller and coupled it with
a feedforward controller for better control performance. Considering the electrical and mechanical
parameters of the EM, a fuzzy controller was designed for EVs equipped with CVTs to achieve the
maximum efficiency of the motor during operation [57].

1.2 Gear-shifting in EVs

Gear-shifting is one of the most significant concerns in transmission systems, since it influences
passenger comfort, dynamic performance and efficiency, besides drivability. The main difference
between transmission systems in EVs and ICEVs is that, as mentioned before, EMs are speed-
controllable in a wide range of operating speeds in the former. Consequently, instead of disconnecting
the mechanical coupling by means of clutches or torque converters during gear-shifting, one can
design novel transmissions for EVs, in which the drive motor is also an element to be controlled and,
as a result, minimize the losses. The main purpose of gear-shift control is to make it as seamless
and swift as possible. Additionally, there are some other goals which are also considerable, such
as increasing drivability, eliminating vibrations, reducing power losses and improving efficiency,
while eliminating output torque interruption. Extensive research has been conducted on each of the
above-mentioned targets. Some of the remarkable ones were already discussed in Section 1.1, for
different transmission systems. Further research in these areas is discussed below.

Generally speaking, one of the main conventional strategies for gear-shifting control is to separate
the torque and inertia phases, and control each phase independently. This method is mostly employed
for ATs and DCTs. As mentioned above, the control algorithm consists of two phases, i.e., the torque
phase and the inertia phase. In the former, the clutches are switched by controlling the clutch torques.
At the beginning of this phase, the off-going clutch is completely engaged and the on-going clutch

is completely released. In the end, the off-going clutch is completely released and the on-going
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clutch is slipping. In the inertia phase, the speed of the motor is matched with the speed of the
driveline in the second gear set. At the same time, the output speed and torque of the transmission
are controlled by means of the on-going clutch torque. At the end of the inertia phase, the on-going
clutch is completely engaged. The point here is that during the torque phase, the angular velocities

of gears and motor also need to be controlled [58, 33, 8].

In EVs, due to the perpetual connectedness of the power transmission paths, torques and speeds
are always dependent on each other through the transmitted power. Hence, it is not required to
separate the above-mentioned phases distinctly for control purposes. Rahimi et al. [7, 9] developed
a control strategy based on this idea. With the purpose of keeping the output speed and torque of the
driveline constant, the Pontryagin minimum principle was employed to design an optimum shifting
controller for gear-shifting, while minimizing shifting time and energy dissipation. A back-stepping
controller was also designed to provide a stabilizing feedback law based on the optimal control inputs.
Experiments were conducted to validate the simulation results, thereby demonstrating a smooth
shifting. Employing the time-optimum hybrid minimum principle, Pakniyat et al. [59] formulated
the problem of the minimum acceleration time required for reaching the speed of 100 km /h, from
the stationary state, and found the optimal control inputs and the optimum gear-shifting instants. In
addition, Pakniyat et al. [60] solved the problem of optimal gear selection for EVs and demonstrated
the importance of gear selection on energy consumption. It was concluded that the minimum possible
energy consumption was subject to several consecutive switchings in short periods. Since successive
switchings are undesirable due to physical limitations and performance efficiency, restrictions were
introduced on switching counts, which in general result in the dependence of the gear selection
decision to the whole time interval of optimization. Rahimi et al. [61] designed a deterministic
Luenberger observer and a stochastic Kalman-Bucy filter to estimate the unmeasured states for a
seamless two-speed transmission for EVs. Under process noise, simulation and experimental results
were compared. Thereafter, in order to provide a robust concurrent estimation of unavailable states
and the unknown input, Rahimi et al. [62] combined the method of modelling the unknown input as a
fictitious state variable with the fading-memory Kalman filter. The estimation results were compared
to those of a conventional Kalman filter and a deterministic Luenberger observer. Using an unknown
input observer, the estimation of the frictional torque of the synchromesh during the gear-shifting
operation in an EV with a clutchless AMT was studied [63]. Similarly, a deterministic Luenberger
observer and a stochastic Kalman-Bucy filter were designed to estimate the frictional torque of
the synchromesh. The results demonstrated satisfactory performance of the stochastic observer
when the system encounters process and measurement noise, which are likely to happen in the real
world. Furthermore, an observer-based back-stepping controller was devised to provide seamless
gear-shifting for an EV, while tracking the optimal trajectory corresponding to the minimum shifting

time [64]. The input and output torques of the transmission and the angular velocities of the gears
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were estimated based on measurements of the motor speed and the speed of the vehicle.

Other researchers have conducted studies on other aspects. For instance, Zhang et al. [58]
simulated the transient torsional vibration for AT gear-shifting using the finite element method. In
fact, a four-degree-of-freedom (dof) planetary gear set was considered to describe the dynamics of
ATs during gear-shifting. Sorniotti et al. [65] studied the control system of a two-speed transmission
system with focus on optimal gearshift dynamics. It was concluded that, in comparison to DCTs
within ICEVs, the torque characteristics of typical EM drives require a different actuation for
seamless gear-shifting. Hong et al. [66] proposed a gear-shifting control algorithm, to control two
shift actuators and the driving motor, for an EV with a two-speed DCT. For the proposed control
algorithm evaluation, based on MATLAB/Simulink, a shift performance simulator was developed by
modelling a DCT-type EV with a two-speed transmission system. Without the algorithm, simulation
showed drive shaft torque overshoot during gear-shifting. Results showed no overshoot in the drive
shaft torque after using the proposed algorithm, which verified the shifting quality improvement.
Similarly, Xu et al. [67] designed an automatic shifting controller for an EV with a five-speed
transmission. Gear selection and gear-shifting were implemented using a pneumatic cylinder and
shifting forks, driven by electromagnetic valves. Receiving data on vehicle velocity, motor speed,
motor current, gear position, and accelerator position, a microcontroller unit (MCU) was applied to
adjust the motor angular velocity accurately and rapidly as well as to control the electromagnetic
valves. The controller was implemented in a converted electric Isuzu truck with AC induction
motor. Results indicated that the controller improved the motor efficiency and shifting quality.
Considering the DCT powertrain as an over-actuated system, a two-stage optimal control strategy
was implemented for gear-shifting. In the first stage, an upper level controller determines the
most proper torque trajectories of the clutches and engine, while in the second stage, a lower level
controller is used to track the desired torque trajectories [68]. For achieving a swift and smooth shift
in DCTs, Li and Gorges [69] proposed a new control algorithm to find the optimum trajectories for
the clutch torque and input shaft torque. Moreover, to attain an appropriate friction torque for the
two clutches, a finite-horizon linear quadratic regulator (LQR) was applied for the mutual engaging
and disengaging control during the torque phase. Finally, an LQR-based integral controller was used
to determine the optimal input for regulating the relative speed between the engine and the slipping

clutch during the inertia phase.

1.3 Conclusions and Thesis Materials

This research work focuses on gear-shifting control algorithms for MSTs in EVs. A literature
review on various types of EV transmissions and the state of the art were provided. Research on

gear-shifting in MSTs was also discussed. Additionally, a review on modelling and control of
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these transmissions was included. The literature review showed that implementation of MSTs for
EVs has not been fully solved and is still controversial. Therefore, there is still much room for
improvement; lack of knowledge warrants further work in this area. In this research, MSTs for EVs
will be given due attention and consideration. Specifically, gear-shifting control schemes will be
studied. Contribution to knowledge pertains to developing new gear-shifting algorithms for MSTs
in EVs and establishing proper controllers for swift and seamless gear-shifting. An outline of the

thesis materials follows.

Firstly, the mechanism of the proposed MST designed for EVs is briefly described. The main
advantages of the proposed MST are simplicity and modularity, namely, depending on the application
and the number of gear ratios required, the appropriate number of modules, including a planetary
gear set and a clutch, can be added to the transmission. For effective gear-shifting, the model of
the transmission is required. Moreover, reliable methods should be employed for estimation of the
unmeasurable loads and states of the system, under model-based control. To this end, the kinematic
relations, i.e., the constraints, and the dynamics model of the transmission are derived applying the
Euler-Lagrange formulation. Next, after a brief description of the sources of the external disturbance
applied to the output shaft and finding the process and measurement models, the Kalman-filter, the
Luenberger observer and neural networks (NNs) are employed to estimate the states, the unknown
arbitrary disturbance and the unknown clutch torque applied to the transmission. The estimation
algorithms are evaluated by applying various disturbances to the system, such as linear, parabolic,

sinusoidal, and arbitrary.

After defining the gear-shifting problem for a multi-stage planetary gear set in the space of
angular velocities, based on the kinematic relations, calculus of variations (CoVs) is used to find
the schedules of the angular velocities during gear-shifting for a swift, seamless operation, which
leads to the optimum trajectory. To this end, we resort to polynomial transition functions in the
time-domain. In fact, what we term 2-3, 3-4-5 and 4-5-6-7 polynomials are suggested for a swift
and seamless shift. The continuity of the angular velocity, acceleration and jerk, the limitations
of the power supply, and the shifting time are considered in comparing the results obtained with
these polynomials. The corresponding input torques applied by the EM and the clutches are also

determined based on inverse dynamics.

From a control point of view, the gear-shifting problem in the proposed transmission for EVs
leads to an over-actuated system, i.e., the number of control inputs is greater than the number of
states to be controlled. Furthermore, terminal constraints on both control inputs and states are
included. Since these properties make the problem quite challenging, new algorithms should be
developed for gear-shifting that, besides swiftness and smoothness, satisfy the end-point conditions
on states and control inputs. Several control algorithms are proposed for this specific problem to

meet all end control and state conditions, while tracking the desired trajectory.
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The first control algorithm consists of two phases, the approaching phase and the coasting
phase. During the former, the free clutch remains disengaged. In fact, the objective is to change
gears artificially, namely, by changing the gear ratio without engaging the free clutch. At the end
of this phase, the fixed clutch is engaged partially. Next, since the gear ratio has changed, we
can readily engage the free clutch. Besides, we should start by disengaging the partially-engaged
clutch completely, while controlling the drive torque to keep the input and output angular velocities
constant. For each of the above-mentioned phases, a separate PID controller is designed based on
trial-and-error and genetic algorithms (GAs). Depending on the phase and the gear-ratio values, the

proper PID gains are selected by a supervisory controller, called PID gain-scheduling.

In the second algorithm, one of the inputs is changed independently, based on a 2-3 blending
polynomial, which, besides satisfying the input terminal constraints, guarantees the continuity of the
velocity, acceleration and jerk at the ends of the gear-shifting interval. Then, the new fully-actuated
system is controlled employing a linear-quadratic-integral (LQI) controller, which is an extension
of the LQR for tracking problems. In a real EV, some parameters, such as the mass of the vehicle,
the vehicle speed, the forces between road and tires, the road slope and the aerodynamic drag
force, influence significantly the size of the EMs used and the ranges of the applied power and
torques. Hence, to assess the performance of the proposed approach in a real EV, unknown external
disturbances and external loads are applied to the transmission system during gear-shifting, which
include the effects of all parameters mentioned above. Compared to the first algorithm, this strategy
is less complex and can be implemented on a physical MST more easily. Furthermore, the control

inputs vary more smoothly than those of the previous scheme.

To find the smooth, continuous, optimal control inputs for this specific over-actuated system,
with terminal-point control and state conditions, two different novel, non-standard optimal control
problems are formulated. In other words, while the classical approaches only consider terminal
time and state constraints in defining and solving optimal control problems (see e.g. [70, 71]), in
the proposed approaches, besides the continuity and smoothness of the control effort, applying soft
or hard terminal constraints on the control inputs is also included. This leads to the appearance
of some new terms in most relations in the line of proof and deriving the necessary conditions for
optimality. To this end, in the first scheme, a general Lagrange variational problem is considered
with a modified terminal penalty term including the terminal control input, while in the second
approach, the functional, i.e., the performance index to be minimized, includes the time derivative
of the control input. The results are used to achieve control allocation in an over-actuated linear
quadratic tracking (LQT) problem for linear time-varying (LTV) systems, which is applicable to
the gear-shifting problem in MSTs for EVs. However, the application of the results extends to
optimal control problems in which it is necessary to impose terminal constraints on the state, its

time derivative, and/or its controls, to guarantee smooth system operation over extended periods,
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or seamless blending of operation modes. Even if the system is not over-actuated, the proposed
approaches can still be applied, as long as the constraints at the ends are reasonable and the solution
exists.

Lastly, this specific optimal control problem is solved applying Bellman’s DP and the principle
of optimality: “An optimal policy has the property that, no matter what the previous decisions were,
the remaining decisions must constitute an optimal policy with regard to the current state obtained
from those previous decisions." In other words, to find the optimum trajectory for the states, while
satisfying both terminal control and state constraints, a control scheme is suggested based on DP.
The main advantage of DP is reducing the number of required calculations dramatically, as the
number of decisions at each stage is restricted. In fact, instead of trying all admissible trajectories
leading from each state to the target and choosing the one with the lowest cost, the principle of
optimality is applied in DP. In using DP, depending on the control objectives, various performance

indices with different weights can be defined to find the optimal state trajectory and control input.

1.4 Assumptions

The main assumptions are given below:

— The focus of the thesis is the development of gear-shifting control algorithms for the proposed
MST designed for EVs. Hence, in establishing different approaches for gear-shifting, since the
problem is mostly studied from a control point of view, only the gearbox is considered. In other
words, the details of the electric powertrain system, EMs, clutches, differential and EV driving
cycles lie beyond the scope of the thesis.

— The research work reported in the thesis hinges on the transmission testbed designed and
prototyped in our laboratory. For this reason, the ranges of the torques and angular velocities are
narrow. In an actual EV, these ranges are much broader.

— While DC motors are not used in EVs, our transmission is equipped with one such motor
because of practical reasons, as DC motors are convenient for laboratory conditions.

— In the model derivation, all components are considered as rigid bodies without any nonlinearity,
dissipation or flexibility, statically balanced and symmetrically laid out, the total potential energy of
the system then being constant. As well, our models are based on the assumptions of pure-rolling
relative motion, free of sliding and Coulomb friction. In fact, everything neglected in the model is
included in the unknown external disturbance applied to the transmission system.

— In developing control algorithms for gear-shifting, the clutches are assumed to be active, not
passive, 1.e., they can apply the required torques in both directions regardless of the direction of the
ring gear angular velocity. In fact, the torques applied by these clutches are provided by independent

EMs. The reader is referred to the Appendix for more details.
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Part I

Modelling, Estimation and Optimal
Gear-shifting Trajectory in Multi-speed
Transmissions for Electric Vehicles
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Chapter 2

Design, Modelling and Estimation of a Novel
Modular Multi-speed Transmission System

for Electric Vehicles

Abstract

The efficiency of electric vehicles (EVs) should be improved to make them viable, especially in
light of the current low energy-storage capacity of electric batteries. Research demonstrates that
applying a multi-speed transmission (MST) in an EV can reduce the energy consumption of the
vehicle through gear-shifting. However, for effective gear-shifting control in MSTs, first of all,
the model of the transmission is required. Moreover, reliable methods should be employed for
estimation of the unmeasurable loads and states of the system, under model-based control. This
study establishes the mathematical model and estimation algorithms for a novel MST designed for
EVs. The main advantages of the designed MST are simplicity and modularity. After devising
the dynamics of our proposed transmission, the Kalman filter, the Luenberger observer and neural
networks (NNs) are used to estimate the states, the unknown arbitrary disturbance and the unknown
clutch torque applied to the system. Simulation results demonstrate that the proposed approach
is suitable for estimation purposes. Experiments were conducted using an in-house prototyped

transmission testbed, to validate the simulation results and assess the estimation algorithms.
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2.1 Introduction

The main problem with internal-combustion-engine (ICE) vehicles is pollution. We thus need to find
an appropriate substitute for them, with a much lower impact on the environment. Hybrid electric
vehicles (HEVs) and electric vehicles (EVs) are two appropriate substitutes. Nonetheless, due to
the current low energy-storage capacity of electric batteries, EVs have failed to gain popularity.
Hence, it is required to improve the efficiency of EVs, to achieve longer running time on a single
charge of the battery. Research demonstrates that by applying a multi-speed transmission (MST) in
EVs, we can decrease the energy consumption of the vehicle, since the desired power is provided
in more than one way in an MST. In fact, this way, the electric motor (EM) can operate on the
high-efficiency regions for longer periods. However, the overall efficiency improvement depends on
the gear ratio values and the number of gear ratios in the MST, as well as the chosen driving cycle
[2,1,3,4,5,6,7].

Automated manual transmissions (AMTs) [12, 18, 21], automatic transmissions (ATs) [10, 72,
28], dual-clutch transmissions (DCTs) [30, 37, 73], and continuously variable transmissions (CVTs)
[40, 50] are various kinds of MSTs. The above-mentioned MSTs were initially designed for ICE
vehicles. However, EMs are speed-controllable in a wide range of speeds, compared to their ICE
counterparts. Therefore, novel transmissions can be designed for EVs, without a clutch or torque
converter to disconnect the motor from the transmission during gear-shifting; consequently, the
losses are minimized. Instead, the EM is an element to be controlled to make gear-shifting swift
and seamless [9, 10]. Gear-shifting affects drivability', passenger comfort, dynamic performance,
and efficiency. Thus, the main objectives in gear-shifting are seamlessness, swiftness, increased
drivability, vibration elimination, output-torque interruption cancelation, and improved efficiency.
There has been extensive research on each of these targets [58, 65, 66, 67, 59, 60]. One of the main
gear-shifting algorithms, mostly adopted in ATs and DCTs, is based on separating and controlling
the torque and inertia phases distinctly [58, 33]. However, since the power transmission paths are
permanently connected in EVs, torques and speeds are always related to each other. Accordingly, the
above-mentioned phases should not be controlled independently [7, 9]. Using polynomial transition
functions to guarantee the continuity of the velocity, acceleration and jerk, the optimal gear-shifting
in MSTs for EVs was investigated, which led to a swift, seamless shift [74].

For appropriate gear-shifting, an accurate real-time monitoring of the unmeasurable states, the
unknown disturbance and the unknown inputs of the transmission are required. Liu et al. [75]
employed a combination of the auxiliary particle filter and the iterated extended Kalman filter
(APF-IEKF) to estimate the tire-road friction coefficient using the existing sensors. Furthermore, a

deterministic Luenberger observer, a stochastic Kalman-Bucy filter, and a fading-memory Kalman

'No generally acceptable definition of the term can be cited, but it usually includes the qualitative evaluation of a
powertrain, such as the degree of smoothness and steadiness.
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filter were designed by Rahimi et al. [62, 63, 76] to estimate the unmeasurable states and the
unknown inputs for a seamless, two-speed clutchless AMT for EVs. Then, based on the estimation
results, an observer-based back-stepping controller was established for a seamless gear-shifting
in an EV, while following the optimal trajectory associated with the minimum shifting time [64].
Combining the model-based observer, the unknown input observers, and the adaptive output torque
observer, a novel algorithm was developed to estimate the torque of the clutches during gear-shifts
for a DCT [77]. Although there has been intensive research on MSTs, there are still lacunae in the
design, mathematical modelling and estimation.

The mathematical modelling and estimation algorithms of a novel MST designed for EVs are
developed in this paper. The main advantages of the designed MST are simplicity and modularity.
Firstly, the kinematics and dynamics model of our proposed transmission system are established via
a Lagrangian formulation. Then, after finding the process and the measurement models, the Kalman
filter, the Luenberger observer and neural networks (NNs) are applied to estimate the unmeasurable
states, the unknown arbitrary disturbance and the unknown clutch torque applied to the system.
For the assessment of the estimation algorithms, various disturbances, such as linear, parabolic,
sinusoidal, and arbitrary, are applied to the system. Results demonstrate that the Kalman filter has a
better performance than the two other methods. In fact, compared to NNs, the Kalman filter is more
precise, since it is based on a mathematical model. Also, compared to the Luenberger observer, the
Kalman filter considers the covariances of the noise of both the process and the measurement models.
Moreover, according to the error covariance, the Kalman gain is updated during the estimation,
while the Luenberger gain remains constant. Using an in-house prototyped transmission testbed,
some experiments are also conducted to validate the model and the estimation algorithms.

An outline of the paper follows. Section 2.2 is devoted to the mathematical model of the proposed
MST designed for EVs. Estimation of the transmission is discussed in Section 2.3. Section 2.4

provides simulation results. Experimental work is reported in Section 2.5.

2.2 Mathematical Model of the Proposed MST for EVs

The proposed MST designed for EVs is depicted in Fig. 2.1. As shown in the figure, all sun gears are
installed on the same shaft. As well, all planetary gear sets share the same carrier. In the overdrive
gear train, the input shaft is connected to the carrier, while the output shaft is connected to the sun
gears. The underdrive gear train operates the other way around. As mentioned, the main advantages
of the proposed MST are simplicity and modularity. In other words, depending on the application
and the number of gear ratios required, the appropriate number of modules, including a planetary
gear set and a clutch, can be added to the transmission. The EM is connected to the input shaft. By

engaging a clutch, the corresponding speed ratio is achieved in the output. In fact, for switching
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between gears, the engaged clutch should be released and another one should be engaged. The
resultant external disturbance is applied to the output shaft.

The overdrive and underdrive gear trains can also be combined to develop a single transmission,
as represented in Fig. 2.2. In the new transmission, two friction clutches are required between the
carrier and one of the planet or sun gears in both gear trains, C} and C?, in order to make the free
overdrive or underdrive gear train act as a rigid body when the corresponding clutch is closed. In
fact, depending on the operation mode required, i.e., underdrive or overdrive, one of the friction
clutches is engaged, the other released. The new transmission supports m + n main gear ratios,
when one of the gear trains is operating and the other is disengaged, as well as m x n median gear
ratios when both gear trains are controlled simultaneously. In median gear ratios, one ring clutch in
engaged from each side and both friction clutches are released. Therefore, including the direct drive

mode, the total number of speed ratios in the proposed transmission is

j=m+n+mxn-+1 (2.1)

The most significant benefit of the proposed transmission is that the designer can determine the
numbers of the underdrive and overdrive modules independently, according to the application and
the desired number of gear ratios. Note that in each gear ratio, the others can be treated as a rigid
body. The kinematics and dynamics of a two-speed transmission, as well as the external disturbance

applied to the transmission are investigated below. The parameters used here are defined in Table
2.1.
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Figure 2.1: Multi-stage planetary gear sets: (a) overdrive gear train; and (b) underdrive gear train
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Figure 2.2: A combined multi-speed transmission system

Table 2.1: Definition of the system parameters

Parameter Definition
Ts pitch radius of the sun gear
Ty pitch radius of the ring gear
Tp pitch radius of the planet gear
Te centre-to-centre distance between sun and planet gears
Ts; pitch radius of the sun gear of the i planetary gear set

Tr, pitch radius of the ring gear of the 7 planetary gear set

Tp, pitch radius of the planet gear of the i™ planetary gear set
I, moment of inertia of the sun gear of the 7" planetary gear set
I, moment of inertia of the ring gear of the i planetary gear set
I, moment of inertia of the planet gear of the 1" planetary gear set
1. moment of inertia of the carrier
My, mass of the planet gear of the i™ planetary gear set

2.2.1 Kinematics of a Two-speed Transmission

The kinematic relations, i.e., the constraints, of the system are discussed in this subsection. These
constraints will be used to formulate the dynamics equations.

A planetary gear set includes a sun gear, a carrier, a ring gear, and two to four planet gears, as
illustrated in Fig. 2.3. Assuming w,, w,, w, and w, to be, respectively, the angular velocities of the
sun, carrier, ring and planet gears, the kinematic relations below are obtained under the assumption

of pure-rolling between the elements in contact.

TrWp = TeWe + TpWp, TeWe = TsWs + Tpwp (2.2)
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with

TT — T’C + rpa /rc = TS + rp (2.3)

Therefore, the system has two degrees of freedom (dof); four generalized coordinates, i.e., the
angular displacements of the sun, carrier, ring and planet gears, and the two constraints of Egs. (2.2).

By eliminating w,, from Egs. (2.2) and (2.3), we obtain

(rs + 1) We = T'sws + Trwy (2.4)

Figure 2.3: A planetary gear set

Assuming two planetary gear sets in the transmission, we have

_ Viwp, + Wg VoW, —+ W

. . 2.5
v +1 vy +1 2.5)
with
b=y = (2.6)
7"91 ng

Note that according to Fig. 2.1, in each gear train, all planetary sets share the same carrier

rotating at w,.. Further, all sun gears are installed on the same shaft rotating at w;,.

2.2.2 Dynamics of a Two-speed Transmission

Applying the Lagrange equation, given below, the dynamics model of the transmission system is

established in this subsection:
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with

q : the vector of generalized coordinates

T : the total kinetic energy of the system

V' : the total potential energy of the system

L : the Lagrangian

IT : the power supplied to the system

A : the dissipation function

Let T,, Ts, T, and T}, denote the kinetic energies of the carrier, the sun, the ring and the planet
gears, respectively, and n the number of planet gears, the total kinetic energy of the system is given
by

T'=1T.+T,+ 1T, +nT, (2.8)
where
1 2
T. = §Icwc (2.9a)
1
T, = 3 (I, + I,,) w? (2.9b)
1 2 1 2
T, = QInwn + 3 2 Wy (2.9¢)
1 1 1 1
p = §mp11}]§1 + ijplw;zl + §mp2v]212 + §[p2w§2 (29d)
with
Upy = Upy = Tele (2.10)

Since all elements are considered as rigid bodies in our model, the total potential energy of the

system remains constant.” The external torques applied to the transmission include

Note that all the nonlinearities, flexibilities and dry friction that have been neglected in the model are included in
the disturbance applied to the transmission, which should also be estimated.
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T4 : drive torque of an EM applied to the input shaft
7; : external load applied to the output shaft
: torque of the first clutch applied to the first ring

Tr, : torque of the second clutch applied to the second ring

Therefore, under the assumption of an underdrive gear train, the power supplied to the system

can be expressed as

IT = Tyws + Tiwe + Ty Wiy + TryWry (2.11)

The dissipation function can also be written as

A= %ccwz + %cswg (2.12)
with ¢, and ¢, denoting the resultant damping coefficients obtained from experiments, including the
effects of all bearings and friction.

Finally, after substitution of Egs. (2.8)—(2.12) into Eq. (2.7), and using Eqgs. (2.2)—(2.4), the

mathematical model of the transmission system is given below.

T'sq Tsy

AOwc + Bows = T4 — Csws — —Try — —Try (2.13a)
1 T
2r, 2r,

Cotoe + Dolog = T — Cot + Sy + 7, (2.13b)
T1 T2

where Ag, By, Cy and D, indicate the generalized inertias.

2.2.3 External Disturbance Applied to the Transmission

In this subsection, the external disturbance 7;(¢) applied to the output shaft of the transmission is
studied. The external disturbance mostly originates from the road, aerodynamics and gravity. For the
representation of the force between road and tire, there are semi-empirical models that are based on
the measured data as well as the structures originating from physical models. In other words, tables
of measured data have been applied together with interpolation schemes to improve the accuracy of
the constitutive equations used for force modelling. Unlike a rigid, undeformable wheel, the tires
of a vehicle deform due to the vertical load applied; the wheel contacts the road over a non-zero
footprint area, called the contact patch. According to experimental results, the longitudinal tire force
F, depends on the slip ratio, which is defined below, the normal load F’, on the tire, and the friction

coefficient of the tire-road interface. The tire normal load comes from a portion of the weight of the
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vehicle. This normal force is influenced by fore-aft location of the mass centre, vehicle longitudinal
acceleration, aerodynamic drag forces and grade of the road. The longitudinal force and the normal

force are shown in Fig. 2.4. The longitudinal slip ratio is defined as

wHWw T Vx . .
Op = %; during braking (2.14a)
TuwWy — Vi ) .
0, = —  ; during acceleration (2.14b)
TapWay

Figure 2.4: Tire-road contact

where r,, and w,, indicate the radius and the angular velocity of the wheel, respectively, and V. is
the longitudinal vehicle velocity. Assuming the friction coefficient of the tire-road interface and the
normal force to be constant, if the longitudinal slip ratio is small, less than 0.1, the longitudinal tire

force is proportional to the slip ratio, namely,

Fy=C,o4, |oal <0.1 (2.15)

where C, is the longitudinal tire stiffness. Note that F}, and C,, have the same units, in Newtons,
since o, is dimensionless. If the longitudinal slip ratio is not small enough or the road is slippery, a
more sophisticated nonlinear tire model will be required to calculate the longitudinal tire force. In

this case, the Pacejka “magic formula” for the tire model [78] can be used, i.e.,
F, =y(z)+ S, (2.16)
with
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y(z) = Dsin {C arctan [Bx — F (Bx — arctan Bz)]}, x =0, — S, (2.17)

where B, C, D, E, S, and S}, denote the dimensionless stiffness factor, the shape factor, the peak
value, the curvature factor, the horizontal shift and the vertical shift, respectively. Numerical values
of these parameters have been found experimentally.

Furthermore, the equivalent aerodynamic drag force applied to a vehicle is given by [79, 77]

1
Faero - §PCdAer2ezy ‘/Tel = V:v + Vwind (218)

with p, Cy, Ay, Ve and V4 denoting the density of the air, the aerodynamic drag coefficient, the
frontal area of the vehicle (the projected area of the vehicle in the direction of travel), the relative
velocity, and the wind velocity (positive for a headwind and negative for a tailwind), respectively.

Finally, the gravity force can be represented as [79, 77]

F, = mygsin(6,) + K,m,g cos(6,) (2.19)

where m,, g, 0, and K, represent the mass of the vehicle, the gravity acceleration, the road inclination
and the tire rolling resistance, respectively.

For control purposes, such as state-feedback, the unmeasurable states and inputs of the system
should be estimated, which will be investigated in Section 2.3.

2.3 Estimation of the Transmission System

This section is devoted to the process of estimating the system. First, the process and measurement
models are provided. Afterwards, a brief description of the Kalman-filter algorithm, the Luenberger
observer and NNs are given. The methods are used to estimate the states, the unknown arbitrary
disturbance and the unknown input to the system.

Upon letting x1(t) = w,(t) and x2(t) = w,(t) denote the state variables of the system, under no

external load applied to the system, the process and measurement models are displayed below.

x(t) = Ax(t) + B(u(t) + w(t)) (2.20a)
y(t) = c"x(t) +v(t) (2.20b)

where w(t) and v(¢) denote the process noise and the measurement noise, while the input is denoted

T
by u(t) = |:7'7n1 (t) 7, (%) Td(t)] . Herein, it is assumed that the only available measurement is

we(t), ie. ¢l = [1 ()]. Also, A and B are constant, 2 x 2 and 2 x 3 matrices, namely,
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0.0336 7.6699  17.2394
B = [ (2.21)

—0.9196 —6.1311

A —0.3448 —0.9196
B ’ ~110.2022 —40.9364 45.9798

Note that the entries of A and B depend on the system parameters given in Eq. (2.13), such as
the generalized inertias, damping coefficients and radii of the elements. Estimating the states of the
system, i.e. w.(t) and ws(t), one can obtain the angular velocities of the rings from Egs. (2.5).

Approximating x(tx) ~ (X, — X,—1) / T, where T" denotes the sampling time, the discrete-time

state-space model is

Xp = Fro1Xp—1 + Grorugp—y + Lo 1wy (2.22a)
yr = hixp + My, (2.22b)

where F,_1=1+TA, G, =TB,L;,_; =T1TB, h;, =cand M;, = 1.

2.3.1 Kalman Filter and Luenberger Observer

Assuming a constant sampling time 7', the system can be proven to be completely observable
(CO). Additionally, the system is linear and autonomous (or time-invariant). Hence, the Kalman
filter, which is the best linear unbiased estimator (BLUE), is applied for estimation. Assuming
wi ~ N(0,Qy) and v ~ N(0,Ry), i.e., Gaussian (normal) distributions with zero mean and
covariances Q; and Ry, after initialization, the Kalman-filter algorithm for a multi-input-multi-

output (MIMO) system with y;, = Hyx; + Mj vy is summarized in two steps:

- Prediction:
X, = FriXp1 + Grougy (2.23a)
P, = Fip 1Py Fi_ + L1 Qe L, (2.23b)
- Correction:
V, = H,P, H{ + MR, M] (2.24a)
K, =P H/ V' (2.24b)
P, = (1-KH,)P, (1 - K,Hy)" + K,M,R, MK}
=P, - K,H,P, - P,H/K! + K, V,K} (2.24d)

where Py is the covariance of the error and K, denotes the Kalman gain.
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The Luenberger observer for the discrete-time system is summarized as

xp =Fxp1 + Gumy + Ly (yr — Yi) (2.252)
$, = HX, (2.25b)

where L; is the Luenberger observer gain. The observer is asymptotically stable if the observer error
e, = Xy — X converges to zero when £ — oo . For the Luenberger observer, the error satisfies
e; = (F — L;H) e;_;. Therefore, the observer for the discrete-time system is asymptotically stable

if and only if all the eigenvalues of the matrix F' — L;H lie inside the unit circle.

2.3.2 Disturbance and Clutch Torque Estimation

Now we assume that an unknown external load 7;() is applied to the output shaft. In this case, the
external load, i.e., the disturbance, should also be estimated, since it cannot be measured directly.
Also, assuming the second clutch to be engaged, there is no sensor to measure the torque of the
clutch; it should be estimated, too. Therefore, considering the disturbance and the clutch torque as

states, the new process model can be written as

x(t) = Ax(t) + bu(t) + Sw(t) (2.26)
where
WC(t)
s(T
<0 = [“O1 we) = ) (2.27)
Trz(t)
(1)
and
—0.3448 —0.9196 7.6699  45.9798 17.2394 17.2394 0 0
A _ | 709196 —6.1311 —40.9364 306.5569 L [45.9798 g_ [45.9798 0 0
B 0 0 0 0 ’ 0 ’ 0 10
0 0 0 0 0 0 0 1
(2.28)

Herein, to write the process model, it is assumed that the disturbance and torque of the clutch
are constant but noisy. For the system to be CO, angular velocities of both the input and the output
shafts should be measurable directly. In other words, the output y(¢) should be
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y(t) = Cx(t) + v(t) (2.29)

with

1000 RO
C= lo o o]’ v(t) = Lz(t)] (2.30)
2.3.3 Neural Networks

Machine learning (ML) is a branch of computer science. In fact, ML provides computers with the
ability to learn without being explicitly programmed. Evolved from pattern recognition and compu-
tational learning theory in artificial intelligence (AI), ML focuses on the algorithms that can learn
from collected data and make predictions or decisions on new data. An ML method that operates
based on the way the brain solves problems, with large clusters of biological neurons connected
by axons, is termed neural networks (NNs). In NNs, each individual neural unit, connected with
many others, has a transfer function whose input is the weighted summation of the values of all the
connected input neurons plus a bias. NNs typically include an input layer, some hidden layers and
an output layer, as depicted in Fig. 2.5. Back propagation (BP) is a supervised learning technique in
which the output error is applied to tune the weights and biases. BP is commonly used in conjunction
with an optimization method, such as steepest descent. In BP, the gradient of the error function
with respect to all the weights and biases in the network is calculated to update the weights and
biases, in an attempt to minimize the loss function. The BP algorithm is now outlined, based on the

nomenclature included below:

: the input to node j of layer [

: the weight from node ¢ of layer [ — 1 to node j of layer [
l . . .

¢;  : the bias of node j of layer [

o(x) : the transfer function

o; : the output of node j of layer [

t;  : the target value of node j of the output layer

Given a set of training data, the loss function can be expressed as
E = 12@ —#)? — min (2.31)
2 A Wn ’
with o, and ¢, indicating the output and the target values of node k of the output layer, respectively.

The objective is to minimize the loss function w.r.t. the weights arrayed in vector w,,. To this end,

after simplification, for the output layer we have
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hidden layer 1 hidden layer 2 hidden layer 3

input layer

Figure 2.5: Schematic diagram of a multilayer neural network

oOE 0 1
Dwye  Owy, 2 ?“’“ —t)" = 0j0k, = on(1— on) (o — i) (2.32)

Similarly, using the chain rule, for the hidden layers we obtain

oE

By, ~ 00 = osl=o) ; e (2.33)

Finally, since doy, /06 = 1, for the bias term 6 in any layer [,
oE

0
Hence, according to the steepest-descent algorithm [80], the weights and biases are updated

) (2.34)

according to

w+—w+ Aw, 0+ 0+ Af (2.35)

with

Aw = —nd0;_1, A0 = —nj (2.36)

where 7 is a small positive constant gain.

NN can be applied to tune the weights and biases corresponding to the collected data, i.e., the
measured output and the state values. Next, knowing the output values, one can find the unknown
state values using the trained NNs. In our application, the input and target data to the network are
the measured output values, i.e., w.(t) and/or ws(t), and the state values, respectively. The network
is then trained using experimental data and the NN toolbox in MATLAB. The mean square error
is applied to evaluate the performance of the trained network. About 75%, 15% and 10% of the
samples are used as the training, validation and testing data, respectively. The number of hidden

layers is chosen to be 15.
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2.4 Simulation Results

This section includes simulation results obtained from the Kalman filter, the Luenberger observer
and NN for estimation of the system states, disturbances and clutch torques. The results are reported
and compared for the methods.

Assuming no external load is applied to the system and the only measurable state is the first one,
the results of the above techniques to estimate the states of the system are included in Figs. 2.6(a)—(d).
The estimation results are compared in Figs. 2.6(a) and (b), while the estimation errors for the
Kalman filter with the square root of their variance oy, =30 bounds, are depicted in Figs. 2.6(c)
and (d), which demonstrate the acceptability of the errors. As shown in the figures, the Kalman
filter provides much better results, since, compared to the Luenberger observer, it considers the
covariances of the noise of the process and measurement models. Moreover, according to the error
covariance, the Kalman gain is updated during the estimation, while the Luenberger observer gain
remains constant. As well, compared to the NNs, the Kalman filter is more accurate since it is based
on the mathematical model. Nonetheless, the results of NNs are more accurate at the beginning. Note
that, in simulation, the output values, i.e. yj, are generated artificially from Egs. (2.22a) and (2.22b)
using wi ~ N(0,Qi) and v, ~ N(0,Ry), while in experiments, output values are measured
directly. In other words, using measured outputs from the experiments, covariance matrices QQ; and
R, must be found to be used in the Kalman-filter algorithm.

Now, assuming a noisy constant disturbance applied to the output shaft, for a CO system, both
angular velocities of the input and output shafts must be available. Simulation results to estimate the
states, the unknown disturbance and the unknown clutch torque are depicted in Figs. 2.7(a)—(d).

Even if the disturbance is not constant, it can be estimated. The results of the above-mentioned
algorithms to estimate various loads, such as linear, parabolic, sinusoidal, and arbitrary, are indicated

in Figs. 2.8(a)—(d). Note that it is assumed that all loads are noisy.

2.5 Experimental Work

The system under study is a novel MST designed for EVs, consisting of a four-stage planetary gear
set with spur gears®; two overdrive and two underdrive gear ratios. The ratios of the pitch diameters
of the gears on the input and output sides are different in order to provide different gear ratios, i.e.,
different output speeds. Four clutches are used in the transmission, as control inputs, for engagement
of the rings at each stage. The mechanism of the clutches designed for this purpose are represented
in Figs. 2.9(a) and (b). The power of the motor is transmitted to the fingers through a double threaded

rod acting as a power screw, converting the rotational motion into the translational motion. Hence,

3Spur, instead of helical gears, are used because of our own design constraints.
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Estimation of w,(t)
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Figure 2.6: Estimation under no external load applied and ¢’ = [1  0]: (a) for w,(t); (b) for w(t);
(c) error for w,(t) with £30}, bounds; and (d) error for w;(t) with £30; bounds

to open or close the clutch, the motor should turn in different directions. To reduce the friction and
achieve a smooth motion, the plastic-base fingers slide on a metal rail. In the proposed MST, the
transmission is permanently connected to the EM and the final drive. Thus, there is no clutch or
torque converter to disconnect the mechanical coupling during gear-shifting. Hence, in order to
cancel the torque interruption and reduce fluctuations on the output, the torque of the EM should

also be controlled during gear-shifting.

The transmission testbed manufactured in our lab is shown in Fig. 2.10. Each planetary gear
set includes three planet gears. Note that all suns rotate at the same angular velocity, since they are
attached to the same shaft. Also, all planet gears are installed on the same carrier, which is connected
to another shaft. The output of the system is the angular velocity of the output shaft. Depending on
the operation mode, overdrive or underdrive speed ratios, one of the friction clutches is engaged,
i.e., the input and output shafts are attached either to the sun gears or to the carrier. In the former,
the input and output shafts are attached to the carrier and to the sun gears, respectively; the latter
operates the other way around. The inputs of the system include the torque of the EM applied to the
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Figure 2.7: Estimation in the presence of a noisy constant disturbance for: (a) w.(t); (b) ws(t); (c)

the clutch torque 7., (t); and (d) the disturbance 7;()

input shaft and the torques of the clutches applied to the rings for engagement or disengagement.
Different speed ratios are achieved by engaging or disengaging the rings by means of clutches. Two
Glentek brushless servomotors, GMBM®80550-45, are employed to apply the torque to the input
shaft and simulate the external disturbance, with the specifications indicated in Table 2.2 in the
Appendix. The parameters of the servomotors should be tuned using the software called Motion
Maestro, provided by the same company. The encoders are also included beside the servomotors to
measure the angular velocities. To drive the servomotors, Glentek omega series digital amplifiers,
SMA9807-2A-2, shown in Fig. 2.11(a), are adopted. The amplifiers are used for both controlling
and calibrating the servomotors and the encoders. MATLAB is applied for communication between
the PC and the data-acquisition (DAQ) board and the amplifiers. The DAQ board used here is Q8
hardware-in-the-loop (HIL) control board, supplied by Quanser, depicted in Fig. 2.11(b). In fact, the

DAQ board is used for commanding the motors and receiving data from encoders.

As an example, assuming that only one sensor is available to measure the angular velocity of
the input, Figs. 2.12(a) and (b) represent the results obtained with the Kalman filter, the Luenberger
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Figure 2.8: Estimation of various unknown disturbances applied: (a) a linear disturbance; (b) a
parabolic disturbance; (c) a sinusoidal disturbance; and (d) an arbitrary disturbance

(a) (b)
Figure 2.9: The designed ring gear clutch: (a) in SolidWorks; and (b) the manufactured one

observer and NNs to estimate the true state values coming from experiments. As expected, the
Kalman filter provides more accurate results because of the reasons mentioned in Section 2.4.
Additionally, the results of NNs are better than those of the Luenberger observer. Actual values of

the system parameters can be found in Table 2.3 in the Appendix.
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Figure 2.11: The electronic components: (a) Glentek omega series digital amplifiers; and (b) Q8
HIL control board
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Figure 2.12: Comparison of estimated signals with experimental measurements for: (a) w.(t); and

(b) ws(t)

2.6 Conclusions

The mathematical modelling and estimation algorithms of a novel MST designed for EVs were
investigated. First, using a Lagrangian formulation, the dynamics model of the proposed transmission
system was developed. Subsequently, after finding the state-space model, the Kalman filter, the
Luenberger observer and neural networks (NNs) were employed to estimate the unmeasurable

states, the unknown arbitrary disturbance and the unknown clutch torque applied to the system. The
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algorithms were evaluated by applying various disturbances to the system, such as linear, parabolic,
sinusoidal, and arbitrary. Results showed that the Kalman filter has a better performance than the
two other methods. Moreover, NNs outperform the Luenberger observer. Using the transmission

testbed built in our lab, experimental results validated the simulation results [81].

Appendix

Table 2.2: Servomotor specifications

Rating Value
rated power 550 W
rated speed 2000 rpm
max. speed 3000 rpm

cont. stall rating | 2.68 N.m

peak stall torque | 8.03 N.m

peak stall current 114 A
torque/current | 0.70 N.m/A
volts/1000rpm 44.6 V

Table 2.3: Actual values for the system parameters

Parameter | Value | Unit Parameter Value Unit
Tpy 0.0239 m I, 9.6139 x 107° | kgm?
T 0.0119 | m I, 5.8210 x 107° | kgm?
e 0.0478 | m I. 0.0121 kgm?
T 0.0716 | m I, 0.0132 kgm?
Ty 0.0597 | m I, 0.0082 kgm?
Ts 0.0239 m I, 9.6139 x 107 | kgm?
Ts, 0.0358 m I, 4.8909 x 10~* | kgm?
Cs 0.0200 | Ns/m My, 0.2683 kg
Ce 0.0200 | Ns/m M, 0.0540 kg
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Chapter 3

The Optimal Gear-shifting for a Multi-speed

Transmission System for Electric Vehicles

Abstract

Although electric vehicles (EVs) are more advantageous compared to their internal-combustion-
engine (ICE) counterparts, they have failed to gain popularity because of the current state of battery
technology. Research demonstrates that an EV equipped with a multi-speed transmission can
provide the desired power in more than one way, and therefore, reduce the energy consumption
of the vehicle through gear-shifting. However, gear-shifting should be as swift and seamless as
possible. We investigate the gear-shifting of a multi-speed transmission for EVs with optimum
performance under functional constraints. After deriving the kinematics of the transmission, calculus
of variations is employed to find the schedules of the angular velocities during gear-shifting for a
swift, seamless operation, which leads to the optimal trajectory in the space of transmission angular
velocities. To this end, we resort to polynomial transition functions in the time-domain. After
comparing the results obtained with these polynomials, while considering the limitations of the
power supply, it is concluded that what we dub the 3-4-5 polynomial offers the optimal performance.
The corresponding input torques are also obtained, to guarantee the continuity of the angular velocity,
acceleration and jerk. Results show that the proposed approach is highly encouraging for a smooth,
swift gear-shifting.
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3.1 Introduction

Internal-combustion-engine (ICE) vehicles entail various problems, first and foremost pollution.
Hence, the need to find an appropriate substitute has notably increased in recent years. Hybrid electric
vehicles (HEVs) and electric vehicles (EVs) are suitable substitutes for their ICE counterparts, since
they are capable of operating with a much lower impact on the environment. However, EVs have
failed to gain popularity because of an inherent problem, as the energy-storage capacity of electric
batteries is much lower than that of fossil fuels. In other words, when the source of energy changes
from ICE to electricity, for longer running time on a single charge of the battery, it is required to
minimize the losses of the vehicle. Most electric vehicles on the market are equipped with one
single-speed gearbox that exhibits a trade-off between efficiency and dynamic performance. It is
anticipated that applying a multi-speed transmission in EVs can not only reduce the size of the motor,
but also provide an appropriate balance between efficiency and dynamic performance. Research
demonstrates that an electric motor equipped with a multi-speed transmission can provide the desired
power in more than one way, and hence, reduce the energy consumption of the vehicle through
gear-shifting [1, 5, 6, 8,9, 7].

There are different types of multi-speed transmissions for EVs, such as automated manual trans-
missions (AMTs) [16, 18, 21], automatic transmissions (ATs) [10, 27, 28], dual-clutch transmissions
(DCTs) [30, 36, 37], and continuously variable transmissions (CVTs) [40, 50]. These transmissions
were initially designed for ICE vehicles. Since the latter cannot operate below certain speeds and
their speed control during gear-shifting is challenging, the presence of clutches or torque converters
is indispensable for startups, idle running and gear-shifting. For EVs this is not the case, since
electric motors are speed-controllable in a wide range of operating speeds. This difference provides
an opportunity to design novel transmissions for EVs without any clutches or torque converters
to disconnect the mechanical coupling during gear-shifting; as a result, the losses are minimized.
In fact, motor and clutches are used as control inputs in the transmission to make seamless, swift
gear-shifting feasible [8, 9, 10].

Gear-shifting is one of the most significant concerns in transmission systems, since it influences
passenger comfort, dynamic performance and efficiency, besides drivability'. The main difference
between transmission systems in EVs and ICE vehicles is that electric motors are speed-controllable
in a wide range of operating speeds. Consequently, instead of disconnecting the mechanical coupling
by means of clutches or torque converters during gear-shifting, one can design novel transmissions
for EVs, in which the input motor is also an element to be controlled so as to minimize the losses.
The main purpose in gear-shift control is to make it as seamless and as swift as possible. Additionally,

there are other goals to be considered, such as increasing drivability, eliminating vibrations, reducing

'No generally acceptable definition of the term can be cited, but it usually includes the qualitative evaluation of a
powertrain, such as the degree of smoothness and steadiness.
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power losses and improving efficiency, while eliminating output torque interruption. Extensive
research has been conducted on each of these targets [58, 65, 66, 67].

Generally, one of the main conventional strategies for gear-shifting control is based on separating
the torque and inertia phases, then controlling each phase independently. This method is mostly
employed for ATs and DCTs [58, 33, 8]. However, in EVs, due to the permanent connection of
the power transmission paths, torques and speeds are always dependent on each other. Hence, it is
not required to separate the above-mentioned phases distinctly for control purposes. Rahimi et al.
[7, 9] developed a control strategy based on this idea. Employing the time-optimal hybrid minimum
principle, Pakniyat and Caines [59, 60] formulated the problem of the minimum acceleration time
required for reaching a speed of 100 km /h, or 60 mph, from the stationary state, and then, found the
optimal control inputs, the optimal gear ratios, and the optimal gear-changing instants. Furthermore,
Rahimi et al. [61, 62, 63] designed a deterministic Luenberger observer, a fading-memory Kalman
filter, and a stochastic Kalman-Bucy filter to estimate the unmeasured states and the unknown
inputs for a seamless two-speed transmission for EVs. Based on the estimation, an observer-based
back-stepping controller was devised to provide a seamless gear-shifting for an EV, while tracking
the optimal trajectory corresponding to the minimum shifting time [64]. Although there has been
intensive research on gear-shifting, there are still lacunae in gear-shifting strategies and control.

The optimal gear-shifting of a multi-speed transmission for EVs is developed in this paper. After
stating the gear-shifting problem in a multi-stage planetary gear set, variational calculus is applied
to determine the optimal angular-velocity schedule during gear-shifting, which leads to the optimal
trajectory. Finally, what we dub the 2-3, 3-4-5 and 4-5-6-7 polynomials are suggested to be used for
a swift and seamless shift. Results validate the proposed scheme. Considering motor specifications,
the 3-4-5 polynomial was found to have a better performance than the other two candidates. Hence,
for a smooth and swift shift, the 3-4-5 polynomial is the candidate of choice. The torques of the
electric motor and the clutches during gear-shifting are also determined using the same polynomial,

which guarantees the continuity of the angular velocity, acceleration and jerk.

3.2 Gear-Shifting: Problem Statement

First, consider one planetary gear set, as shown in Fig. 3.1, consisting of a sun gear, a planet carrier, a
ring gear, and some planet gears (usually two to four). The system has four generalized coordinates,
i.e. angular displacements of the sun, carrier, ring and planet gears, 0, 0., 0, and 0,, respectively.
Let wy, we, w, and w), be the corresponding angular velocities of the foregoing elements, respectively,
i.e., the time derivatives of the pertinent displacements. As well, let r,, r,. and 7, be the pitch radii
of the sun, ring and planet gears, and r. be the radius of the planet carrier. The kinematic relations

below are obtained by virtue of the pure-rolling constraints at the contact points.
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Trly = TeWe + TpWp,  TeWe = TsWs + TpWp (3.1

with

Ty =Te+Tp, Te=Ts+T, (3.2)

The system thus has two degrees of freedom, since it comprises four generalized coordinates
subject to two constraints, Eqs. (3.1). Combining Eqgs. (3.1) and (3.2), w, is eliminated, thereby

obtaining

(rs + 1) We = rsws + rpwy (3.3)

Figure 3.1: A planetary gear set

Upon assuming two planetary gear sets in the system, and letting vy = 7, /75, and vy = 7, /7s,,
we obtain
VW, + Wy Vo, + Ws
wCl = —7 wCQ S —
v+ 1 Vo + 1
Note that, according to Fig. 3.2, which illustrates the overdrive and underdrive gear trains, the

(3.4)

sun gears of all the planetary sets are attached to the same shaft. Therefore, the angular velocities of
the sun gears, i.e., w, in the two sets, are the same. In addition, the planetary sets share the same

carrier. In this light, Egs. (3.4) lead to

Wy, + Ws VoW, —+ W
v +1 vy +1

Wep = Wey

or, equivalently,
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(v + 1) ywy, + (o — 1) ws — (1 + 1) ow,, =0 (3.5)

which represents a plane in the space (2 of the angular velocities ws, w,, and w,.,. At every instant,
the system is operating at a certain point of this plane. Assuming v; = 3 and v, = 5/3, Fig. 3.3
illustrates the gear-shifting problem. The plane of motion is depicted in Fig. 3.3(a). The intersections
of the planes in Figs. 3.3(b) and (c) represent the lines at which the first and the second ring gears
are engaged. In fact, the gear-shifting problem reduces to devising a trajectory I that joins point A
with point B, as depicted in Fig. 3.3(d).

cC . GG ..Cy
thih h Ll L
R
R4 R [Rn R, =R2 1
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S o FE=E Carrer
— 1 —
1 — Sz 1 Sz -
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#::: ===

(a) Bl (b) AR

Figure 3.2: Multi-stage planetary gear sets: (a) overdrive gear train; and (b) underdrive gear train

3.3 The Optimal Gear-shifting

Trajectory-optimization problems fall in the realm of calculus of variations [70]. The Brachis-
tochrone problem, introduced by Johann Bernoulli in 1696, is an interesting landmark within this
realm. The problem consists in finding the shape of a frictionless wire, lying in a vertical plane, on
which a bead slides under the gravitational field, so that the bead moves between two designated

points in minimum time.

Assume that the functional, i.e., the performance measure to be minimized, is defined as

J = / " g(x(t), %(t), t)dt (3.6)

to

under 7 constraints given by
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Figure 3.3: Illustration of the gear-shifting problem: (a) plane of motion; (b) first gear set engaged;
(c) second gear set engaged; and (d) gear-shifting trajectory I'

Fx(),%(8),8) =0, i=1,2,m 3.7

The necessary condition for an extremal of the functional under the constraints, called the Euler

equation, is

% (1), %0, (1), 1) — 5 | 222 (x(1), (1), p(0) 1)| = 0 G
where
g 3x(0), (0) D{1), ) = 9 x(2) %(6), ) + 7 (D (x(1), %(1), (9)

with p(t) = [p1(t), p2(t), ... pu(t)]" and £(x(t),%(t),t) = [f1, fo, ..., f»]" denoting the vectors of
Lagrange multipliers and of the constraints, respectively.

To make gear-shifting as swift and as seamless as possible, for an underdrive gear train, the
performance index is defined as

t
J= / ' {1 + o [wo(t) — we]? }dt (3.10)
to

where w,, is the current angular velocity of the carrier, before gear-shifting, and « indicates a

constant weight. According to the constraints (3.4), we have
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Wy, + Wy VoWp, + Wy
a — 1 ct_ 02} c_l— C—Q— 3.11
g { + a[we(t) — We +p1(w B )—i—pz(w oo 1 1 ) (3.11)

the Euler equation for w,. then becoming

dg9, d (aga

~dt \ Ow,

OJw, dt

Similarly, the Euler equations for ws, w,,, and w,, lead to

>:0:>2a (we(t) — wey) +p1+p2 =0 (3.12)

v v
P1 P2 0 P11 —0 D22

_ _ — — = — = 3.13
V1+1 V2+1 ’ V1+1 ’ 1/2—|—1 ( )
Upon solving Egs. (3.12) and (3.13) for py, p; and w.(t), we obtain
P1 = 07 P2 = 07 wc(t) - wco (314)
As a result, we have four variables, wy, w., w,, and w,,, and three constraints:
wy + Ws Voly + Ws
We = ﬁ, We = ﬁ, we(t) = w,, = const. (3.15)

Thus, one of the variables can be freely chosen, according to our objective. Assuming w;(t) to be
the chosen variable, the problem is to find a blending function w;(t), t € [to, t/], i.e., defined over the
gear-shifting interval. The function is required to be as smooth as possible, namely, it must have
continuous derivatives up to some desired order in the open interval, to avoid abrupt motions and
stay within the limits of the power supply. The function should also be at least of class C! at the

ends?, i.e., ws(t) and w,(t) should be continuous at ¢, and :
ws(to) = wsy,  Ws(to) =0, ws(ty) =ws,, ws(ty) =0 (3.16)

3.3.1 Polynomial Transition

A simple inspection of Egs. (3.16) reveals that, since the function is required to meet four conditions,

it must have at least four parameters. We thus start with a cubic polynomial.

3.3.1.1 The 2-3 polynomial

In order to represent the function ws(t), we use a normal cubic polynomial s(7), namely,

s(t) = —21% + 372 (3.17)

2A function f(z) is said to be of class C* if the function and its first k derivatives are continuous in a given interval.
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which we call the 2-3 polynomial. The polynomial is said to be normal because it meets the

conditions
t— 1o
0<s(n)<1, 0<7<1, 7= R T =ty —to (3.18)
Therefore, s(7) satisfies the end-conditions
s(0)=0, 0)=0, s(1)=1, s(1)=0 (3.19)

Now, w;(t) is represented by means of the foregoing polynomial:

ws(t) = Aws(T) + wsy,  Aw = w,, — wy, (3.20)
Hence,
A A A
by(t) = T‘*’s'(f), D(t) = T—;“’S”(T), (1) = T—;”s"'(f) (3.21)

Knowing both end-values and the time interval 7', the function w,(t) is therefore fully defined,
with 7" denoting the time required for gear-shifting. Thus, we have the freedom to conduct the
gear-shifting in as short a time as needed. However, the time cannot be too small, for we must respect
the motor specifications, such as the maximum angular velocity, jerk continuity and the maximum
torque. The latter will be discussed in Subsection 3.3.3. For brevity, the maximum acceleration is
considered here rather than the maximum torque. From Eq. (3.20) it is apparent that this function
and its first two derivatives take on their maximum values at points corresponding to those at which

the normal polynomial and its corresponding derivatives do. The latter are given below:

1 3
Smax = 5 (1) = 1, s;ax=S'(§>:‘ Smax = 5" (0) = 6 (3.22)

Therefore, assuming Aw > 0, the maximum values of wy(t), ws(t) and &4 (¢) are

) 3 Aw . Aw
(ws)max = w3f7 (ws)max = 5?7 (w8>max = 6? (323)

Hence, Eqgs. (3.23) can be used to determine the minimum shifting time 7" according to the motor
specifications.
3.3.1.2 The 3-4-5 polynomial

If, in addition to the continuity conditions of Subsection 3.3.1.1, one needs to have the second
derivative of s(7) vanish at the ends of the interval [0, 1], we have to increase the degree of the

polynomial by two, i.e.,
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s(t) = 67° — 157" + 1073 (3.24)

which we call the 3-4-5 polynomial [82].
According to the maximum values of the functions s(7), s'(7) and s”(7), the corresponding

values of wy(t), ws(t) and W,(t) can be expressed as

_ 15A0 . 10v/3 Aw
(ws)max - w3f7 (ws)max - g?ﬂ (ws)mam - TW (325)

which can be utilized to find the minimum time 7" required for gear-shifting, while respecting motor

specifications.

3.3.1.3 The 4-5-6-7 polynomial

If, in addition to the above conditions, the third derivative of s(7) is required to vanish at both ends

of 0 < 7 < 1, we resort to a seventh-degree polynomial, namely,

(1) = —207" 4 707° — 847° + 357* (3.26)
which we call the 4-5-6-7 polynomial [82].

Similarly, the extreme values of w;(t), ws(t) and @, (t) are

. 35 Aw 84v/5 Aw
(Ws)maz = Wsys (Ws)mae = 6T (@) oz = o5 T2 (3.27)
3.3.2 Selection of the Blending Function
A summary of the three polynomials found above follows:
wis(t) = Aw (—27% 4 37%) + w,, (3.28a)
wss(t) = Aw (67° — 157* + 107°) + w,, (3.28b)
wrs(t) = Aw (207" 4 707° — 847° + 357%) + wy, (3.28¢)

This section is devoted to the selection of the working function out of the above candidates.
This can be done according to the motor specifications and our objective, to make gear-shifting
as swift and as seamless as possible. Since the angular velocity of the carrier remains constant
during gear-shifting, i.e. w.(t) = w,,, for the three functions, the shifting is seamless. Therefore, the
function with the shortest shifting time should be selected. However, the limitations of the power
supply should also be considered. The angular velocity and the angular acceleration must always

lie within the limits of the motor. Further, the angular jerk is desired to be continuous everywhere,
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without any abrupt jumps, and as small as possible. The reason is that control engineers realized
the importance of jerk for a smooth motion, to mitigate impact, suppress vibration and resonance,
thereby reducing trajectory tracking errors, while providing a smoother and cooler motor operation
[83]. Moreover, it is impossible for the motor to change its rotor acceleration instantly. In other
words, a motor cannot change the torque instantly since the current in the armature cannot be varied
instantly due to the inductance in the armature.

For all the three functions, the maximum angular velocity is the same, i.e, w; ; (or wg,). Thus, this
velocity cannot be applied as a criterion to choose the function. Assuming o, to be the maximum
angular acceleration that the motor can supply, using Egs. (3.23), (3.25) and (3.27), the minimum
shifting times for the functions (3.28) are

TSmin = 3 ) T5min = 5 ) T7min = T4 (329)

2 Oémax

Obviously, since Aw/am, is the same in all three cases, we have

T3min < T5min < T7min (330)

The 2-3 polynomial thus provides the shortest time for gear-shifting. However, the jerk corre-
sponding to the 2-3 polynomial is not continuous at the ends; as a result, this polynomial is rejected.
The 3-4-5 polynomial is the right selection, since it provides a shorter shifting time compared to the

4-5-6-7 polynomial, while its jerk vanishes at the ends of the gear-shifting interval.

3.3.3 Modelling a DC Motor

A DC motor is a common actuator in most control systems. In a DC motor, the torque 7, supplied

by the motor is related to the armature current ¢ via the armature constant K, namely,

Ta = Kyt (3.31)

the relation between the back emf e and the angular velocity w of the rotor being

e=K.w (3.32)

with K, denoting the motor constant. Moreover, the armature and motor constants are equal, i.e.,
K; = K. = K. Using Newton’s second law and Kirchhoff’s voltage law, according to Fig. 3.4, we

have
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(T + )i + bw = Ki (3.33a)

o
Ld—z Y Ri=V - Kuw (3.33b)

Ta(t) L w(t)

+ +
V() i) ) e) (I Ji A—!

b

%

Figure 3.4: Schematic diagram of a DC motor

where J,,,, J;, b, L, R and V indicate the moment of inertia of the motor, the moment of inertia of
the external load, the damping coefficient, the armature inductance, the armature resistance, and the

input voltage, respectively. Combining Eqgs. (3.33), after eliminating 7, we obtain

(I + J)LE + [(J + )R+ bL)w + (bR + K*)w = KV (3.34)

According to this equation, since the input voltage V' is continuous, the angular jerk ¢« should
also be continuous. Assuming V (¢) to be the input and w(t) the output, the transfer function can be

expressed as

Q(s) K
= 3.35
V(s) ~ (U t J)LSE+ (I + J) R+ 0LJs + (bR + K2) (3.35)
while the transfer function between €2(s) and I(s) is
Q K
&) _ (3.36)

I(s)  (Jn+J)s+b
Based on motor specifications and the external load, the limits for the torque, the angular

velocity, the angular acceleration, the angular jerk, the current and the voltage can be determined
using Eqgs. (3.33-3.36).

3.4 Mathematical Model of the System

In this section, the mathematical model of the system under study is derived using a Lagrangian

formulation.
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The Lagrange equation of the system is given below:

d (0L oL 0]
E(%)_ﬁ_q:%aI_A)’ L=T-V (3.37)
where q, 7', V, and L denote the vector of generalized coordinates, the total kinetic energy of
the system, the total potential energy of the system, and the Lagrangian, respectively. As well, 11
indicates the power supplied to the system by the motors delivering a controlled generalized force,
and A is the dissipation function associated with all energy sinks in the system. For the kinetic
energy, four rigid bodies intervene: carrier plus sun, ring and planet gears. In our case, the shafts are
considered rigid, their moment of inertia thus being lumped with that of one of the four rigid bodies

identified above. Hence, the total kinetic energy of the system becomes

T=T,+T,+T,+nT, (3.38)

where T¢, T, T, and T}, represent the kinetic energy of the carrier, the sun, the ring and the n planet

gears, respectively. Thus,

T, = 1} (3.39)
T, = % (Is, + I,) w2 (3.39b)
T, = %[mwfl + 2[,,2@32 (3.39%¢)
T, = (%mplv; + %meﬁl) + (%mmvf; + % p2w§2) (3.39d)

where [, I,, I,,, I,,, I,,,, and I, are the moments of inertia of the sun, ring, and planet gears of
the first and the second gear sets, respectively, and /.. is the moment of inertia pertaining to the planet
carrier. Moreover, m,, and m,,, are the masses of each planet gear for each planetary gear set, while

vp, and vy, indicate the speeds of the centers of mass of the planet gears for each planetary set, i.e.,

Upy = Upy = TeWe (3.40)

Since it is assumed that the total potential energy remains constant in our model, potential energy
is not considered here. This assumption is plausible under the condition that all rotating elements
are statically balanced and the planet gears are symmetrically laid out. Four types of torques are

applied to the system, namely,
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T4 : drive torque applied to the input shaft by an electric motor
7; : external load applied to the output shaft
Tr, : torque applied to the first ring by the first clutch

Tr, : torque applied to the second ring by the second clutch

Hence, assuming an underdrive gear train, the power supplied to the system is

IT = ryws + Tiwe + T Wiy + TryWry (3.41)

As well, the dissipation function can be expressed as

A= %ccwz + %cswg (3.42)
where c. and c; are the damping coefficients of the bearings on which the shafts are attached to the
carrier and the suns are mounted. Note that c. and ¢, are obtained either from experiments or from
catalogues. In addition, c. and ¢, also include the effects of the planet-mounting bearings.

Substituting w,,, Wy,, Wy, , and wy, from Egs. (3.1) and (3.3) into Eq. (3.37), the mathematical

model is derived as

Apte(t) + Bows(t) = 74 — csws — (L) Try — <L> Tra (3.43a)
) . 27, 2r.
COUJc(t) + DOWs(t) = T — CcWe + (7’_) Try + (_) Trq (343b)

where Ag, By, Cy and Dy are four constant coefficients with units of generalized inertia.

3.4.1 Inverse Dynamics

In subsection 3.3.2, the 3-4-5 polynomial was found to be the best choice for ws(¢). Hence,

substituting w;(t) and w,(¢) into Egs. (3.43) to solve the inverse dynamics problem, we have

Ty — (—) o — <L> Toy = Bowss(t) + cowss(t) (3.44a)

T2

2 c 2 c .
( ! ) Tr + (L) Try = Dowss(t) 4+ Cewey — T (3.44b)

T2

The model thus involves two equations and three unknowns, 74(t), 7, (t) and 7., (¢). In other

words, one torque can be freely assigned; it should be determined according to our objectives and
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the constraints imposed by the motors. Assuming 7,4(t) to be the independent variable, Eq. (3.33)

can be written as

(T + J)(t) + bw(t) = Ta(t) = (T + J)(E) + bio(t) = 4(t) (3.45)

Therefore, since the angular velocity, the angular acceleration and the angular jerk are required
to be continuous, 74(t) and 7,4(¢) must be continuous at the ends of the shifting interval. As a result,

using the 2-3 blending polynomial, 7,4(t) can be expressed as

T4(t) = A1y (—273 + 372) + Ty, ATy = Ta; — Tag (3.46)

where 74, and 7,4, denote the initial and final values of 7,4(t) during gear-shifting. After finding
74(t) from Eq. (3.46), 7, (t) and 7,.,(t) can be readily determined from Eqgs. (3.44). The results are
reported in Section 3.5.

3.5 Resulis

This section provides the results when applying the 2-3, 3-4-5 and 4-5-6-7 polynomials for gear-
shifting. The results are reported and compared for all polynomials.

The functions and their first three derivatives, all normalized to fall within the interval [—1, 1], for
the normal 2-3, 3-4-5 and 4-5-6-7 polynomials, are indicated in Figs. 3.5-3.7. As shown in Fig. 3.5,
for a 2-3 polynomial, only the function and its first derivative are continuous at the ends; from
Fig. 3.6, for a 3-4-5 polynomial, the second derivative is also continuous. A 4-5-6-7 polynomial
leads to the continuity of the third derivative at the ends, too, as shown in Fig. 3.7.

Assuming vy = 3, 5 = 5/3 and w,, = 10 rad/s, using Egs. (3.15), for switching between the
first and the second gear, we have

ws(ty) =80/3rad/s, wy,(tg) =40/9rad/s, w.,(ty) =0 (3.47a)
ws(ty) = 40 rad/s, Wy, (tf) =0, Wy, (ty) = —8rad/s (3.47b)

while w.(t) = w,, = 10 rad/s, i.e., w. remains constant during gear-shifting. Assuming 77, to be
the reference, while considering all limitations of the power supply, we obtain Ty = (6/7) Trmin
and Tynin = (24/35) Trmin using Eq. (3.29). The results obtained using 2-3, 3-4-5 and 4-5-6-7
polynomials for the angular velocity w;(t) of the sun are depicted in Fig. 3.8. As expected, the
shortest shifting time corresponds to the 2-3 polynomial. The jerks of the three functions are
represented in Fig. 3.9. As shown in the figure, there is a jump in the jerk of the 2-3 polynomial, as it

is not continuous at the end of gear-shifting. Also note that the difference between the extreme jerk
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T

Figure 3.5: A 2-3 polynomial and its first three derivatives

Figure 3.6: A 3-4-5 polynomial and its first three derivatives

values of the 3-4-5 and 4-5-6-7 polynomials is negligible. Thus, the 3-4-5 polynomial is the best

choice, since its shifting time is 6/7 that of its 4-5-6-7 counterpart, and hence, the shifting is swifter.

Using Egs. (3.15), the angular velocities of the ring gears and the carrier for a 3-4-5 polynomial

are indicated in Fig. 3.10. In this figure, the vertical line shows the time when the gear-shifting is
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Figure 3.8: Comparison among 2-3, 3-4-5 and 4-5-6-7 polynomials for w(t)

finished. Note that the angular velocity of the output, i.e., w,. (), does not change during gear-shifting,
which guarantees a seamless shift without any fluctuations on the output. As well, the torques of the
electric motor, the first and the second clutch during gear-shifting are depicted in Fig. 3.11. The

torques and their first time derivatives are also continuous, which guarantee the continuity of the
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angular velocity, acceleration and jerk. As a result, motor “kicking" is eliminated in the electric

vehicle.
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Figure 3.10: The angular velocities of the ring gears and planet carrier during gear-shifting
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Figure 3.11: The torques of the electric motor and clutches during gear-shifting

3.6 The Path to Implementation

This section is devoted to the details of the implementation of the proposed scheme for gear-shifting
in an actual MST designed for EVs. As demonstrated in Section 3.5, to guarantee the continuity of the
angular velocity, acceleration and jerk of all rotating components during gear-shifting, thus avoiding
jumps and discontinuities, their angular velocity should change following a 3-4-5 polynomial, except
for the output, which should remain constant. As well, the torques applied by the actuators are
required to follow the 2-3 polynomial, which warrants the continuity of the torques and their first
time derivative. To this end, a cascade controller is recommended to be employed, including some
inner and outer loops. The latter are used to control the angular velocities of all parts for tracking
the 3-4-5 polynomial or remaining constant for the output. The angular velocities are measured
using sensors, such as encoders. The inner loops are utilized to control the applied torques to
follow the 2-3 polynomial. Since various mechanisms can be adopted for applying the required
torques, such as disk brakes, band-type brakes and wet clutches for engaging the ring gears, torque
or force sensors should be used for measuring the applied torques at different points. The model
of the mechanism is also required for control purposes. The torque of the electric motor can be
found by measuring its current and using the armature constant /; of the motor. The external load
applied to the output mostly originates from the road, aerodynamics and gravity, which can be
measured directly or estimated using estimation algorithms, such as Kalman filter or neural networks

(NNs). To implement the approach appropriately, all the nonlinearities, flexibility, small inertias,
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and dry friction that have been neglected in the derivation of the model should be included in the
unknown disturbance applied to the transmission. Considering the above-mentioned points, one
can implement the proposed algorithm for gear-shifting in the real world. Note that the proposed
scheme is based on the smooth blending curves that were developed in the RMSLab [84]. As an
example, one of the smooth curves in question, the cycloidal curve, was implemented on a PUMA
260 robot to find the near-minimum-time trajectory, which guarantees eliminating jerky motions>.
In this case, although only the first two derivatives of the cycloidal curve vanish at the ends of the
interval of interest, the motions produced in a physical system are smooth throughout the whole

interval. A 3-4-5 polynomial should do even better.

3.7 Conclusions

One of the means to improve the efficiency of EVs is to apply multi-speed transmissions. However,
gear-shifting should be as swift and as seamless as possible for the shifting to be acceptable. The
optimal gear-shifting of a multi-speed transmission for EVs was studied. First, the kinematic
relations were invoked. Next, the optimal trajectory for gear-shifting was found using variational
calculus. Three polynomials were proposed as transition functions of the angular velocities, 2-3,
3-4-5 and 4-5-6-7 polynomials, to reach a swift and seamless gear-shifting. Comparing shifting times
and jerks, it was concluded that the 3-4-5 polynomial is the best candidate. Results demonstrate that
the proposed approach is promising for a smooth and swift gear-shifting in EVs. Future research
will be devoted to the investigation of the NVH* performance in the proposed MST designed for
EVs [74].

3The related video is available at: ~angeles/rmsl/Index/Index.htm > Courses > MECHS573 Mechanics of Robotic
Systems > Videos > Puma260_Near-minimun-time-trajectories.avi
4Noise, vibration, and harshness
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Chapter 4

A Two-phase Control Algorithm for
Gear-shifting in a Novel Multi-speed

Transmission for Electric Vehicles

Abstract

In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions
(MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the
energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the
major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme
for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity
and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase
algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and
swift shift. In other words, a separate control set is applied for shifting between each gear pair,
which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm
(GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to
choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers
and conditions are reported and compared, indicating that the proposed scheme is highly promising

for a desired gear-shifting even in the presence of an unknown external disturbance.
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4.1 Introduction

Due to a much lower impact on the environment, hybrid electric vehicles (HEVs) and electric
vehicles (EVs) appear as proper substitutes for internal-combustion-engine vehicles (ICEVs). Never-
theless, since the energy-storage capacity of electric batteries is much lower than that of their ICE
counterparts, EVs are not yet established as viable substitutes. Therefore, to achieve longer running
time on a single charge of the electric battery, the efficiency of EVs should be improved. Research
has shown that by applying a multi-speed transmission (MST) in EVs, thus providing the desired
power in more than one way, one can attain a higher efficiency through gear-shifting [1, 5, 6, 7].

There are various types of MSTs for EVs, initially designed for ICEVs, such as automated
manual transmissions (AMTSs) [16, 21, 22], automatic transmissions (ATs) [10, 27, 28], dual-clutch
transmissions (DCTs) [30, 37, 85] , and continuously variable transmissions (CVTs) [40, 50]. The
presence of clutches or torque converters are vital for gear-shifting in ICEVs, since ICEs cannot
operate below certain speeds and their speed control is quite challenging. On the other hand, electric
motors (EMs) are speed-controllable in a wide range of operating speeds. Hence, novel MSTs
can be designed for EVs, without any clutches or torque converters to disconnect the EM from
the transmission during gear-shifting. In fact, EM and clutches can be adopted as control inputs
in the EV transmissions to make gear-shifting seamless and swift. Since gear-shifting affects the
dynamic performance, passenger comfort, and drivability! of the vehicle, the main objectives during
gear-shifting are seamlessness, swiftness, increased drivability, vibration-elimination, cancellation
of output-torque interruption, and improved efficiency. Extensive research has been conducted on
each of the above-mentioned goals [58, 65, 66, 67].

Different strategies have been employed for gear-shifting control and estimation in ATs and
DCTs [33]. For instance, applying the time-optimal hybrid minimum principle, Pakniyat and Caines
[59, 60] found the minimum acceleration time required for reaching a speed of 100 km /h from rest.
Next, the authors obtained the optimal gear ratios, the optimal gear-shifting instants and the optimal
control inputs. Based on the dynamics model and gear-shifting objectives, an optimal shifting
control strategy, including a PID controller and a robust two degree-of-freedom (dof) controller, was
developed by Meng et al. [86] for an AT for automotive applications. Further, Rahimi et al. [63, 76]
estimated the unmeasurable states and the unknown inputs for a seamless two-speed transmission
for EVs. Then, based on the estimation results, an observer-based back-stepping controller was
developed to achieve seamless gear-shifting, while tracking the optimal trajectory corresponding to
the minimum shifting time [64]. Walker et al. [36] proposed a new scheme, namely, the integrated
powertrain control of both the engine and the clutches, for reducing shift transient responses in DCTs.

Design, modelling and estimation of the unmeasurable loads and states of a novel MST designed

'No generally acceptable definition of the term can be cited, but it usually includes the qualitative evaluation of a
powertrain, such as the degree of smoothness and steadiness.

80



for EVs were studied by our team based on the Kalman filter, the Luenberger observer and neural
networks (NNs) [81, 87]. Moreover, to assure acceleration and jerk continuity, the optimal trajectory
for a swift and seamless gear-shifting was found employing polynomial transition functions [74].
Although intensive research has been conducted on MSTs for EVs, there are still lacunae in design,
modelling, and gear-shifting strategies and control.

This paper reports on the development of a two-phase gear-shifting control algorithm for a novel
modular MST designed for EVs. The main advantages of the proposed MST are simplicity and
modularity. Firstly, the dynamics model of our proposed MST is devised. Then, the proposed
control algorithm for gear-shifting is described, for achieving a swift, seamless shift. Using trial-
and-error and a genetic algorithm (GA), different PID controllers are tuned and compared to find
the appropriate control inputs for each phase of the proposed gear-shifting algorithm. In fact, for
shifting between each two gear ratios in the transmission, i to j™, a separate two-step control set
is developed. Such controllers are called PID gain-scheduling, which means different gains have
been tuned for the PID controllers. The proper gains will be selected by a supervisory controller.
Simulation results indicate that the approach is highly encouraging for a smooth and swift gear-
shifting.

An outline of the paper follows. Section 4.2 is devoted to the mathematical model of the proposed
MST designed for EVs. The proposed gear-shifting algorithm and tuning of the corresponding
controllers are discussed in Sections 4.3 and 4.4. Simulation results are reported and compared in
Section 4.5.

4.2 Mathematical Model of the Proposed MST for EVs

As shown in Fig. 4.1, in the proposed MST designed for EVs, all sun gears are connected to the
same shaft. Also, there is only one carrier for all planetary gear sets. In the underdrive gear train, as
represented in Fig. 4.1(a), the sun gears are installed on the input shaft, while the shaft connected
to the carrier is the output. The overdrive gear train, as indicated in Fig. 4.1(b), operates the other
way around. Different speed ratios are achieved by engaging the corresponding clutch. In fact, the
gear-shifting process includes releasing the engaged clutch and engaging another one.

One can combine both overdrive and underdrive gear trains into a single transmission, as
illustrated in Fig. 4.1(c). In the combined transmission, two friction clutches should be employed
between carrier and planet gears in both gear trains, C} and C?, in order to lock the free overdrive or
underdrive gear train when the associated clutch is engaged. In fact, only one of the friction clutches
is closed, depending on the overdrive or underdrive mode. The combined transmission has m + n
main gear ratios, when only one of the gear trains is operating, as well as m X n median gear ratios

when both gear trains are engaged at the same time. Note that, in median gear ratios, one ring clutch
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is engaged from each side of the transmission; both friction clutches are released. Thus, the total

number of speed ratios in the proposed combined transmission, including the direct drive mode, is

j=m+n+mxn-+1 4.1)

The main advantage of the proposed transmission is modularity. In other words, the designer
can determine the numbers of the underdrive and overdrive modules, including a planetary gear set
and a clutch, separately, according to the application and the number of gear ratios required. We are
prototyping the proposed MST designed for EVs. As depicted in Fig. 4.2, our transmission testbed
includes a four-stage planetary gear set, consisting of two overdrive and two underdrive gear ratios.
The dynamics model of a two-speed transmission, represented in Fig. 4.1(d), is investigated below.

Letq,T,V, L, Il and A denote the vector of generalized coordinates, the kinetic energy, the
potential energy, and the Lagrangian of the system, the power supplied to the system and the system

dissipation function, respectively, the Lagrange equation is then given by

d (0L oL 0
— = )-=—==IT-A L=T-V 4.2
dt (8(’1) oq aq< ) “4.2)
LetT¢, T, T, and T, be the kinetic energies of the carrier, the sun, the ring and the planet gears,

respectively, and n the number of planet gears. The total kinetic energy of the system can thus be

expressed as

T=T.+T,+ T, +nT, 4.3)
where
1 1 1 1
T. = 3 Wi T, = 3 (I, + I,) w?, T, = §Irlwfl +3 raWo (4.42)
1 2 1 2 1 2 1 2
T, = 31 Vpy + §Iplwp1 + 32U, + §Ip2wp2, Up, = Up, = TcWe (4.4b)

with Iy, I,, I,,, I,,, I, and I,,, denoting the moments of inertia of the sun, the ring, and the planet
gears of the first and the second gear sets, respectively, and /. the moment of inertia pertaining to
the carrier. Moreover, m,,,, m,,, vp, and v,, denote the masses and the speeds of the centers of mass
of each planet gear for each gear set. Note that, as illustrated in Fig. 4.1(d), the planetary sets share
the same carrier rotating at w.. As well, the sun gears are installed on the same shaft rotating at ws.
The angular velocities of the ring gears are indicated by w,, and w;.,.

Since all elements are considered as rigid bodies in our model, the total potential energy of the

system remains constant’. Let 74, 7;, 7,, and 7,., indicate the drive torque of an EM applied to the

Note that all the nonlinearities, flexibility and dry friction that have been neglected in the model are included in the
unknown disturbance applied to the transmission.
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Figure 4.1: Multi-stage planetary gear sets: (a) underdrive gear train; (b) overdrive gear train; (c)
combined MST; and (d) a two-stage planetary gear set

input shaft, the external load applied to the output shaft, the torque of the first clutch applied to the
first ring and the torque of the second clutch applied to the second ring, respectively, as shown in

Fig. 4.1(d). Under the assumption of an underdrive gear train, the power supplied to the system and
the dissipation function can be expressed as

1 1
II = Tyws + TiWe + Toy Wiy + TryWry, A= iccwf + §cswf 4.5)
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Figure 4.2: The transmission testbed built in our laboratory

with ¢, and ¢, denoting the resultant damping coefficients obtained from experiments, including
the effects of all bearings and friction. Finally, after substitution of Egs. (4.3)—(4.5) into Eq. (4.2),
and using the kinematic relations obtained by assuming pure-rolling constraints between gears in
contact, the mathematical model of the transmission system is set up as

Iw+Cw=r1 (4.6)

with I indicating the generalized inertia matrix, w the generalized-velocity vector, T the generalized-

force vector, and C the damping matrix, as displayed below.
c, O

) T -
0 c.

4.3 The Control Algorithm Description

Td = Ts1Trq /Tm - TS2TT2/T7’2

“4.7)
T+ QTCTrl /r"‘l + 27‘07}2 /”2

This section includes the description of the proposed control algorithm for gear-shifting in the MST
designed for EVs. Assuming an underdrive gear train, the problem is how to switch between two
gear sets, from the first gear ratio to the second one, for instance, such that, to achieve a seamless
gear-shifting and cancel the torque interruptions, the angular velocity w,.(t) of the carrier, i.e. the
output, remains constant during gear-shifting. Therefore, at the beginning of the gear-shifting

process, for t = t, the first clutch is completely engaged and the second one released, namely,

wrl (to) = O, Trqy (to) = 0 (48)

At the end of gear-shifting, for ¢ = ¢;, we should have the second clutch completely engaged and
the first one released, i.e.,

Wry(ty) =0, 7 (tf) =0 (4.9)
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The control inputs during gear-shifting are the drive torque 7,(¢) applied to the input shaft by an
electric motor, the clutch torque 7, (¢) applied to the first ring by the first clutch, and the clutch torque
7, (t) applied to the second ring by the second clutch, while an external load 7;(¢) is applied to the

output shaft, as shown in Fig. 4.1(d). The control algorithm proposed here is divided into two phases:

Phase I. Approaching: ¢ € [to, t1], to < t; < ty; t; is achieved when w;, (¢1) = 0.

During this phase the second clutch remains released, i.e. 7,,(t) = 0, € [to, t1]. In other words,
the control input in this step is u; (¢) = |:Td(t) Try (t)} ' and the output is y; (t) = [ws(t) wc(t)} !
The objective here is to change the gears artificially, namely, by changing the gear ratio without
engaging the second clutch. To this end, we start disengaging the first clutch while controlling the
drive torque 74(t) such that the angular velocity of the second ring becomes zero, i.e. w,,(t;) = 0,
with the angular velocity of the output remaining constant. Note that at the end of this phase, the
first clutch is partially engaged, while the angular velocity of the second ring is zero, with the
second clutch still released completely. During this phase, the input angular velocity follows a 3-4-5
blending polynomial, which guarantees the continuity of the angular acceleration and jerk at both

ends [74]. In other words, assuming wy(ty) = ws, and w(t;) = wy, ,

t—to
t —to

ws(t) = Aw (66° — 150" +106°) + wy,, 0 = Aw = w,, — wy, (4.10)
Phase II. Coasting: ¢ € [t1, /]

Now since the angular velocity of the second ring is zero at ¢1, we can readily engage the second
clutch. Afterwards, we should start disengaging the first clutch completely, while controlling the
drive torque 74(t) to keep the input and output angular velocities constant. Hence, the control input
is up(t) = [Td(t> T (8)  Try (t)} ' and the output is y,(t) = [ws(t) We(t) T, (t)] T. At the end
of this phase, the first clutch is released, 7,, (t;) = 0, and the second one is engaged completely,
Wy, (tf) = 0.

For each of the above-mentioned phases, a separate discrete-time PID controller is designed, as
briefly explained in Section 4.4. In fact, we just need to switch between the two controllers at ¢;.
For shifting between each two gear ratios in the transmission, i™ to 5, a separate control set can be
developed, each consisting of two PID controllers as well as a switch, as depicted in Fig. 4.3. Such
controllers are called PID gain-scheduling, which means different gains have been tuned for the PID
controllers. The proper gains will be selected by a supervisory controller, based on the two gear
ratios between which we want to shift, such as one to two, two to three, etc., as well as the step, one
or two, in the control algorithm explained above. Note that, because of the motor limitations, there

is a saturation after each control input, in order to make implementation on a real prototype feasible.
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Figure 4.3: The proposed control loop for gear-shifting

4.4 Discrete-time PID Controller

One of the best control schemes, readily implementable, is the proportional-integral-derivative (PID)
controller. The continuous-time representation of a PID controller for a multi-input-multi-output
(MIMO) system is given by

u(t) =Kye(t) + K; /Ot e(T)dr + Kqé(t), e(t)=r(t) —y(t) 4.11)

where u(t) is the control input and e(t) is the error between the reference signal r(¢) and the output

of the system y(¢). Upon Laplace-transforming Eq. (4.11), we obtain

u(s) = (Kp + éKz + st) e(s), e(s)=r(s)—y(s) 4.12)

Further, using the Z-transform, the Laplace operators of the derivative and the integral can be

approximated by

S

11—zt 1 1427t
-~ = 4.13
T, 7 s 21—z “.13)
with 7§ denoting the constant sampling time. Hence, the discrete-time version of the feedback
control input takes the form
T, 1+ 271 1— 2~

1
u(z) = (Kp + E 1 271 Kz + T Kd) e(z) (414)

or, equivalently,
TS 1 -1 TS 2 272 1
u(z) = {(Kp + ?Kz + in) + z (—Kp + EKZ - in) + TSKC[] ﬁe(z)
(4.15)
Finally, for implementation of the discrete-time PID controller, we have
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u, = up_1 + Ace, + Beep_1 + Ceep (4.16)

with

T 1 T. 2 1
A. =K K, +—-—K =-K K, - —K =—K .
c P + 9 i+ Ts ds Bc D + 9 7 TS ds Cc Ts d (4 17)

The dimensions of A, B, and C. (or K,,, K; and K,,) depend on the system. In a MIMO system,
these matrices consist of many entries. Therefore, it is very complicated to find these matrices by
trial-and-error. There are two ways to accomplish this task: one is reducing the number of unknowns
by applying some constraints, the other is employing a genetic algorithm (GA) to find the optimum
matrices, while minimizing the tracking error. In the GA, the control inputs can be treated as optimal,

numerically-investigated, not symbolically-derived [88]. Both methods are discussed below.

4.4.1 Tuning the PID Gains Using the Monic Form of the Model

The mathematical model of our system is given in Eq. (4.6). At this step, the system is massaged to
take it into monic form, i.e., with the leading-term coefficient equal to the identity matrix. To this

end, since I is positive-definite, it can be expressed in the form

I=J% J=VI (4.18)
where J is the positive-definite square root of I, and hence, can be assumed to be symmetric. Now
Eq. (4.6) becomes

Jo+Cw=71 or Jo+J 'Cw=J"'r (4.19)

Now, upon the change of variable 1 = Jw, we have the monic form of Eq. (4.6):

YpHAY=t, A=J'CI', t=J'r (4.20)

with A and t denoting the positive-definite dissipation matrix and the new input vector, respectively.
Therefore, using Eq. (4.12) and the Laplace transform, the relation between the output (s) and the

reference signal r(s) can be expressed as

[ (1+Ky) + s (A +K,) + K] 9(s) = (s°Kg + sK, + K;) r(s) (4.21)

For the system to be strictly proper and also reducing the left-hand-side of Eq. (4.21) to a monic
form, a PI controller should be applied, i.e., K; = 0. Further, for stability, the matrices A + K,

and K; are required to be positive-definite and, preferably, symmetric. The coefficient of 4 (s) in
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Eq. (4.21) can be diagonalized if and only if A 4 K, and K share the same set of eigenvectors. A

simple way of achieving this is by rendering these two matrices proportional to each other, i.e.,

K,=a(A+K,), aeR" (4.22)

This way, we can reduce the number of unknowns for tuning the PID gains in n-dimensional
first-order systems from 3n? to n(n + 1)/2 distinct entries plus a suitable value for .. Thus, tuning

the gains by trial-and-error becomes feasible.

4.4.2 The Genetic Algorithm (GA)

A GA can be applied to find the optimum PID gains in the controller design, i.e., the matrices in

Eq. (4.16), while minimizing the tracking error. To this end, the objective function can be written as

T=>"lexl® ex=ri—yi (4.23)
k

GAs are part of the larger class of evolutionary algorithms (EAs). Since GAs are self-tuning,
they are employed to find the fittest solution, with the minimum value for the objective function
(4.23), without any complex numerical procedures, by relying on bio-inspired operators, such as
mutation, crossover and selection. Each individual in the population, including a set of chromosomes,
indicates a value for the PID gains in the search space, i.e., a possible solution to the optimization
problem. After each iteration, the tracking error is evaluated and the best fit individuals are selected
for reproducing to yield the next generation [89, 90]. Hence, the GA-based optimization can be
summarized in three steps: initialization, selection and reproduction. These steps repeat until finding
the optimum PID gains with a reasonable tracking error or reaching the threshold in the number of

generations, both preassigned by the user.

4.4.3 Stability Analysis

The stability of the closed-loop control system, i.e., a multi-input multi-output (MIMO) system,
is studied in this subsection. Assume that in the closed-loop control system including the PID
controller, the reference signal r(s) and the output of the system y(s) are related by the transfer

matrix function G.(s), namely,

y(s) = Ge(s)r(s) (4.24)

The continuous-time system (4.24) is stable if and only if all the poles of G.(s) lie in the left-half
of the complex plane, i.e., if the poles of all entries of the transfer matrix G.(s) have negative real

parts. Similarly, the discrete-time version of the above system
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y(2) = Ge(2)r(2) (4.25)

is stable if and only if the poles of all entries of the transfer matrix G.(z) lie inside the unit circle
on the Z-plane, i.e., each pole of G.(z) has a magnitude less than unity [91].
Hence, the gains of the PID controller, included in G.(s) or G.(z), should be chosen to ensure

that the closed-loop control system is always stable.

4.5 Simulation Results

The simulation results obtained with the proposed gear-shifting algorithm for switching between
two planetary gear sets in the proposed MST, designed for EVs, are reported here. Different PID
controllers are tuned and compared, to find the appropriate control inputs for the gear-shifting
algorithm.

As discussed in Section 4.3, the algorithm consists of two phases, i.e., the approaching phase
and the coasting phase. Therefore, two different PID controllers are required to be designed for each
step. However, we need to switch between the controllers at the right time, i.e., at the end of the first
phase when ¢ = ¢;. First, using trial-and-error to find the appropriate entries of the matrices A, B,
and C, in Eq. (4.16), the simulation results for switching from the second to the first gear ratio are
depicted in Figs. 4.4. In this case,

wey(to) =0, T (to) =0, wy(t;) =0, 7,(t;)=0 (4.26)
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Figure 4.4: The angular velocities during gear-shifting: (a) the input and output shafts; and (b) the
ring gears

where ty = 5 s, while ¢; and ¢ are achieved when w,, (¢;) = 0 and 7,, () = 0, respectively. Note

that in this case, the first clutch remains completely released during the approaching phase, i.e.,
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7., (t) = 0, t €[to, t1]. The desired and output values for the angular velocities of the input shaft
ws(t) and the output shaft w.(¢) are compared in Fig. 4.4(a). As shown in the figure, the angular
velocity of the input shaft follows the 3-4-5 polynomial, while the angular velocity of the output
shaft remains constant during gear-shifting. The angular velocities of the first and the second ring
gears are shown in Fig. 4.4(b). As observed, at the beginning of gear-shifting, the angular velocity
of the second ring gear is zero, i.e. the second gear set is engaged, while at the end of gear-shifting,

the first gear set is engaged.
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Figure 4.6: The control inputs during gear-shifting: (a) using trial-and-error; and (b) using GA

In a general case, applying the GA-based optimization method to find the appropriate entries
for the PID matrices, the simulation results are indicated in Figs. 4.5. The tracking errors are much
smaller when using the GA. Therefore, it is highly recommended to use the GA-based optimization
technique to find the proper matrices for each PID controller, then switch between them when

necessary using a supervisory controller. The corresponding control inputs for both controllers are
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Figure 4.7: The angular velocities in the presence of an external disturbance: the input and output
shafts using trial-and-error; (b) the ring gears using trial-and-error; (c) the input and output shafts
using GA; and (d) the ring gears using GA

represented in Figs. 4.6. According to the figure, the torque 7,, applied to the first ring gear is zero
until ¢ = ¢;. At the end of gear-shifting, the torque 7,., applied to the second ring gear is zero, i.e.,
the second gear set is completely released. Note that the values of the control inputs remain bounded
all the time. As shown in the same figure, the shifting time is about 50% shorter when the GA is

applied.

Assuming an unknown external disturbance applied to the transmission, to evaluate the per-
formance of the tuned controllers, Figs. 4.7(a)—(d) provide a comparison of the results of both
controllers. According to these figures, not only does the GA-based controller reduce the shifting
time considerably, but also provides a better performance. Simulation results demonstrate that the
proposed gear-shifting algorithm is very promising for a swift and seamless shift in the proposed
MST designed for EVs, since the angular velocity of the output shaft remains constant during
gear-shifting and the angular velocities of the input shaft and both ring gears follow the 3-4-5

polynomial, which guarantees the continuity of the angular acceleration and jerk.

91



4.6 Conclusions

Applying MSTs is a way to improve the efficiency of EVs. Nevertheless, swiftness and seam-
lessness are significant concerns in gear-shifting. A two-phase control algorithm was proposed
for gear-shifting in a novel modular MST designed for EVs. First, the mathematical model of
the proposed transmission was derived. Next, after a brief description of the shifting algorithm,
different PID controllers were designed for each step using trial-and-error and a GA. Simulation
results demonstrate that the GA-based controller provides both a much shorter shifting time and a
better performance when an unknown external disturbance is applied. The proposed gear-shifting
algorithm appears promising for a swift, seamless shift, since the output angular velocity remains
constant during gear-shifting and the input angular velocity follows the 3-4-5 polynomial, which
guarantees the continuity of the angular acceleration and jerk. Future research will be devoted to the

implementation of the proposed gear-shifting control algorithm on a physical MST [92].
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Chapter 5

Gear-shifting in a Novel Modular
Multi-speed Transmission for Electric
Vehicles Using Linear Quadratic Integral

Control

Abstract

The efficiency of electric vehicles (EVs) can be improved by applying multi-speed transmissions
(MSTs), while ensuring that gear-shifting is swift and smooth. This paper establishes a gear-shifting
control algorithm for a novel MST, with the advantages of simplicity and modularity, designed for
EVs. Firstly, the mathematical model of the proposed MST is derived. Next, the control algorithm
developed for gear-shifting is clarified, which guarantees seamlessness and swiftness. The system
under study is over-actuated, with end constraints on some control inputs. Therefore, for acceleration
and jerk continuity, while satisfying the input terminal constraints, one input is suggested to be
changed independently, based on a 2-3 blending polynomial. Then, the new fully-actuated system
is controlled using a linear quadratic integral (LQI) controller, which is an extension of the linear
quadratic regulator (LQR) for tracking problems. Simulation results indicate the effectiveness of the

proposed control algorithm in the presence of unknown external disturbances.

93



5.1 Introduction

Electric vehicles (EVs) suffer from the current low energy-storage capacity of electric batteries.
Hence, to improve the efficiency of EVs, multi-speed transmissions (MSTs) are being considered
for applications in EVs [1, 5, 6, 7]. This way, since the power provided by the electric motor (EM) is
transmitted to the wheels by different gear ratios, the maximum operating efficiency can be achieved

for various conditions via proper gear-shifting.

Automated manual transmissions (AMTSs) [16, 21, 22], automatic transmissions (ATs) [10,
27, 28], dual-clutch transmissions (DCTs) [30, 37, 85], and continuously variable transmissions
(CVTs) [40, 50] are different kinds of MSTs for EVs. The above-mentioned transmissions were
initially designed for internal-combustion-engine vehicles (ICEVs). However, in ICEVs, since the
engine cannot operate below certain speeds, and their speed control is quite challenging, clutches
or torque converters are essential to disconnect the engine from the transmission system during
gear-shifting. On the contrary, one can remove such clutches or torque converters in designing
MST:s for EVs, since the speed of EMs can be controlled in an extensive range. In fact, in EVs, to
make gear-shifting seamless and swift, the torque provided by the motor can be employed as an
independent control input [9]. Gear-shifting affects drivability of the vehicle, dynamic performance,
and passenger comfort. Hence, the key goals during gear-shifting are seamlessness, swiftness,
vibration-elimination, cancellation of output-torque interruption, and increased drivability. There

has been intensive research on the above-mentioned targets [58, 65, 66, 67].

Many approaches have been applied for design, modelling, and gear-shifting control and estima-
tion in MSTs [33]. For instance, Pakniyat and Caines [59, 60] employed the time-optimal hybrid
minimum principle to reach a certain speed from rest in minimum time. The same authors also
found the optimal gear-shifting instants, the optimal gear ratios, and the optimal control inputs.
Considering gear-shifting goals, Meng et al. [86] established an optimal shifting control algorithm,
1.e., the combination of a PID and a robust controller, based on their dynamics model. Moreover,
Rahimi et al. [76, 63] estimated the unmeasurable states and the unknown inputs of a transmission
for EVs. Next, using the estimation results, these authors built an observer-based back-stepping con-
troller to attain a seamless shift [64]. Based on the integrated powertrain control of both the engine
and the clutches, a new strategy was introduced by Walker et al. [36] to improve the gear-shifting
transient response in DCTs. Design, mathematical modelling and estimation of the unmeasurable
loads and states of a novel MST designed for EVs was investigated employing the Kalman filter, the
Luenberger observer and neural networks (NNs) [81, 87]. Further, applying polynomial transition
functions, the optimal trajectory for gear-shifting was found, which guarantees velocity, acceleration
and jerk continuity [74]. Although there has been extensive research on MSTs for EVs, there are

still lacunae in gear-shifting algorithms and control.
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In this paper, a gear-shifting control algorithm is developed for a novel modular MST designed
for EVs. The designed MST has the advantages of simplicity and modularity. Firstly, after a
brief description of the proposed MST, its dynamics model is established. Then, after stating the
gear-shifting problem, the proposed control algorithm for a swift, seamless shift is explained. From
a control point of view, the system under study is over-actuated, i.e., the number of control inputs is
greater than the number of outputs. Besides, there are terminal constrains on some of the control
inputs. Hence, it is suggested to change one of the inputs independently based on a 2-3 blending
polynomial, which, besides meeting the end constraints, guarantees the continuity of the acceleration
and jerk at the ends of the gear-shifting interval. Next, for controlling the new fully-actuated system,
a linear quadratic integral (LQI) controller is employed, which is an extension of the linear quadratic
regulator (LQR) for tracking problems. Simulation results demonstrate that the proposed control
algorithm is very promising for a seamless, swift shift in the designed MST, even in the presence of

unknown disturbances.

An outline of the paper follows. In Section 5.2, the proposed MST designed for EVs is briefly
described. The mathematical model of the transmissions is derived in Subsection 5.2.1, while the
gear-shifting problem is explained in Subsection 5.2.2. The proposed gear-shifting control algorithm

is discussed in Section 5.3. Simulation results are reported in Section 5.4.

5.2 The Proposed MST Designed for EVs

First, the mathematical model of the proposed MST designed for EVs is derived using a Lagrangian

formulation. Next, the gear-shifting problem is discussed.

5.2.1 Mathematical Modelling

All planetary gear sets in the proposed MST designed for EVs share the same carrier, as represented
in Fig. 5.1. As well, all sun gears on each side of the transmission are installed on the same shaft.
In the underdrive gear train, the sun gears and the carrier are connected to the input and output
shafts, respectively, as depicted in Fig. 5.1(a), while the overdrive gear train operates the other
way around, as shown in Fig. 5.1(b). To achieve the desired speed ratio, the corresponding clutch
should be engaged. For shifting between speed ratios, the engaged clutch should be released and
another one should be engaged. The underdrive and overdrive gear trains can be combined into
one single transmission, as indicated in Fig. 5.1(c). In the new MST, two friction clutches, C} and
Cy, are applied between carrier and planet gears to lock the free overdrive or underdrive gear train.

The main advantages of the proposed MST designed for EVs are modularity and simplicity. The
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mathematical model of a two-speed underdrive gear train, illustrated in Fig. 5.1(d), is now derived
using a Lagrangian formulation.
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Figure 5.1: Multi-stage planetary gear sets: (a) underdrive gear train; (b) overdrive gear train; (c)
combined MST; and (d) a two-stage planetary gear set

The Lagrange equation is given below.
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with q, T, V, L, IT and A denoting the vector of generalized coordinates, the kinetic energy, the
potential energy, the Lagrangian, the power supplied and the dissipation function, respectively. The

total kinetic energy of the system is

T=T.+T,+ 1T, +nT, (5.2)

where T¢, T}, T, and T, indicate the kinetic energies of the carrier, the sun, the ring and the planet

gears, respectively, while n is the number of planet gears in each set. These items are given by

1 1 1 1
Te=glae, To=g (st Lows, Tr=gluen, + 5l (5.3a)
1 1 1
Tp = §mp1U;1 §Ip1w§1 + Emmvé + §[p2w§2, vp1 = Upg = 7r.We (5.3b)

with Iy, I,, I,,, I,,, I,,, and I, denoting the moments of inertia of the sun, the ring, and the planet
gears of the first and the second gear sets, respectively, and /.. that of the carrier. Besides, m,,,, mp,,
vp, and v, denote the masses and the speeds of the centers of mass of each planet gear for each gear
set. Also, ws, w,, wy, and w,, represent the angular velocities of the sun, carrier, and the first and the
second ring gears, respectively, while r. the radius of the carrier. Note that, since all elements are
modeled as statically and dynamically balanced rigid bodies in this paper, the total potential energy
of the system is assumed to remain constant.! The power supplied to the system and the dissipation
function can be expressed as

II = Tyws + TiWe + Toy Wry + TrgWry, A = %ccwf + %cswg (5.4)
with 74, 7, 7., and 7,, indicating the drive torque of an EM applied to the input shaft, the external
load applied to the output shaft, and the torques of the first and the second clutch applied to the
first and the second ring, respectively, as shown in Fig. 5.1(d). Moreover, c. and ¢, denote the
resultant damping coefficients obtained from experiments, including the effects of all bearings and
friction. Substituting Egs. (5.2)—(5.4) into Eq. (5.1) and using the kinematic relations obtained by
the pure-rolling assumption between gears in contact, the dynamics model of the system is derived

as

TS TS
Apws + Bowe = Ty — Css — —Tpy — —Try (5.5a)
T1 r2
2r, 2r,
Byws + Cowe =1 — Cewe + — Ty + — T4, (5.5b)
T1 T'I"Q

'Everything neglected in the model derivation, such as nonlinearities, flexibility and dry friction, can be included
in the unknown disturbance and external load applied to the transmission system. For a more detailed model of the
transmission, the reader is referred to a previous work [87].
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with Ay, By and Cj defined as the entries of the 2 x 2 generalized inertia matrix:

2 2 2 2
Ag=1,, + 1, + (T—> I, + (T—> L, +n (T—> I, + (T—) I, (5.6a)
Try T'ry Tp1 T'pa

By = —4r, (%I + %1) —2nr, (r—;llpl + %]m) (5.6b)
TTl T7‘2 Tpl p2
I, I I, I
Co= 1.+ 4r? <71 + —22) + nr? (mp1 + My, + - + %) (5.6¢)
rrl T2 Tpl TPQ

Note that r,,, 7,, 7, Try, 1'p, and 7,, denote the pitch radius of the sun, the ring, and the planet

gears of the first and the second planetary gear sets, respectively.

5.2.2 Gear-shifting Problem

With 2 (t) = w.(t) and 25(t) = ws(t) denoting the state variables, using Eqgs. (5.5) under no external

load, the state-space equations can be expressed as

x(t) = Ax(t) + Bu(t) (5.7)

with u(t) = [Trl (t) T,(t) Td<t)] ' indicating the control input. As well, A and B are constant
2 x 2 and 2 x 3 matrices, with the entries depending on the parameters in Egs. (5.5), such as radii of
the elements, the generalized inertias, and the damping coefficients. Further, we assume that, for
instance, we want to switch from the first to the second gear ratio, i.e., upshifting. In this case, at the
beginning of the gear-shifting process, at t = %, the first ring gear is engaged and the second one

released, i.e.,

Wy (to) = O, Trqy (to) =0 (58)

Att = ty, the end of gear-shifting, we should have the second ring gear engaged and the first one

released, namely,

wr,(ty) =0, 7. (t;) =0 (5.9)
Note that Egs. (5.8) and (5.9) represent initial and final constraints on some control inputs.
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5.3 Gear-shifting Control

For a swift, seamless shift, the angular velocity w.(t) of the output shaft should remain constant
during gear-shifting, i.e., w.(t) = we,, t €[to, tf], Where w,, is the angular velocity of the output
before shifting. As well, assuming w;(to) = ws, and w;(ts) = ws,, the angular velocity w;(t) of the
input shaft should follow the 3-4-5 blending polynomial introduced in an earlier paper [74], namely,

t—to
tr—to

which guarantees the continuity of the angular velocity, acceleration and jerk at both ends. In

wss(t) = Aw (60° — 150" + 106%) + w,,, 6= Aw = wy, — wy, (5.10)

other words, the desired value of the state vector is r(t) = [w,, wss(t)]”. However, the system is
over-actuated; there are only two states to be controlled but three control inputs. Also, according to
Eqgs. (5.8) and (5.9), there are initial and final constraints on some of the control inputs. One way
to cope with the above-mentioned issues is to assign one of the inputs independently, such that the
terminal constraints are satisfied, and find the other control inputs using an appropriate controller.
Since it is assumed that at the beginning of gear-shifting the first ring gear is engaged and the second
released, conditions (5.8) are satisfied automatically. Accordingly, the first input is assigned here to
satisfy the second condition in Eq. (5.9), i.e., the first planetary gear set should be released at the
end. In other words, since 7., (o) = 7,, is assumed to be known and 7,, (ts) = 7, ,, to guarantee
the continuity of the angular velocity, acceleration and jerk at both ends, we can use a 2-3 blending

polynomial for the first input, namely,

t—to
ty —to’
For details of different blending polynomials and their properties, we refer to a previous work
[74].
Since 7r, = 0, Eq. (5.11) reduces to

7 (1) = A1y (=260 4+ 30%) + 7, 0= ATp = Toyp — Tryg (5.11)

Ty () = Ty (20° — 367 + 1) (5.12)
If the first input changes independently, based on Eq. (5.12), the new control input will be

u(t) = |:7'r2 (1) Td(t)i| . The new tracking problem can be controlled using a linear quadratic

integral (LQI) controller, which is briefly explained below.

5.3.1 Linear Quadratic Integral (LQI) Control

LQI is an extension of the linear quadratic regulator (LQR) for tracking problems. In LQI, an
integral compensator, i.e., the integral of the tracking error, is introduced to guarantee robust tracking
[93, 94], as represented in Fig. 5.2. The LQI is briefly described below.

99



r®) N e®

u(t) Xx(t)
Integrator [ System 555

Figure 5.2: The LQI control loop

Consider an n-dimensional fully-actuated linear time-varying (LTV) system given by

x(t) = A(t)x(t) + B(t)u(t) (5.13)

The objective of LQI control is to find the optimal feedback law of the form

u(t) = —-K(t)z(t), z(t) = [;((?)] , e(t)=r(t) —x(t) (5.14)
which minimizes the performance index
J= /tf 2" (1)Q()z(t) + u” (H)R(t)u(t)] dt (5.15)

with r(¢) and e/ (¢) indicating the desired state vector and the integral of the error e(t), respectively.
Also, Q(t) and R(¢) denote the weighting matrices; Q(t) is positive semi-definite, while R(?) is

positive definite. In fact, e;(t) is

er(t) = / [r(r) — x(7)] dr (5.16)

to
Hence,

er(t) = r(t) — x(t) (5.17)

which can be considered as a new state equation. Combining Eqgs. (5.13) and (5.17) yields the new

state-space equation
x(t) | | |B@)

xt)| [A{) O
e/(t)| | -1 O] |es(t) 0

with O and 1 indicating the n x n zero and identity matrices, respectively. Applying a change of

u(t) + r(t) (5.18)

variables, the new state-space equation (5.18) and the performance index (5.15) can be proven to
define the LQR problem with the new state matrices [95]

(5.19)
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The above-mentioned optimization problem leads to a differential Riccati equation (DRE). After
finding the solution to the Riccati equation, the optimal gain K(¢), and hence the optimal control

input u(t), can be determined using Eq. (5.14).

5.4 Simulation Results

This section provides the simulation results obtained with the proposed approach, i.e., the 2-3
blending polynomial and the LQI controller, for gear-shifting control in MSTs for EVs.

The desired state vector is r(t) = [w., wss(t)]7, as mentioned in Section 5.3. Assuming that
the gear-shifting process begins at to = 5 s and ends at* ¢; = 6 s, while the gear ratios are 4 and 8/3,

and w,, = 10 rad/s, for upshifting we have

ws(to) =40rad/s, ws(ty) = % rad/s (5.20)

As well,

Wiy (to) =0, 7y(to) =0, wp(ty) =0, 7,(tf) =0 (5.21)

The desired and output values of the states, i.e., w.(t) and w(t), are compared in Fig. 5.3(a).
As observed, the states track the reference signals acceptably; w(t) tracks the 3-4-5 blending
polynomial, while w.(t) remains constant during gear-shifting, as expected. Also, for the ring gears,
the reference and output values of the angular velocities are compared in Fig. 5.3(b). As shown in
the figure, at the beginning of the gear-shifting, the first planetary gear set is engaged, i.e., w,, 1S
zero, while at the end of gear-shifting, w,, 1s zero, namely, the second planetary gear set is engaged.
Note that, according to the kinematic constraints, the angular velocities of the ring gears also track
the 3-4-5 blending polynomial, which assures the angular velocity, acceleration and jerk continuity.

The control inputs during gear-shifting are also indicated in Fig. 5.4. As illustrated in the figure,
the torques change smoothly. The torque 7,, applied to the first ring gear changes independently,
based on the 2-3 blending polynomial (5.12), starting from its initial value 7, , to zero. The other
torques, 7,, and 7,4, are determined by the LQI controller, as discussed in Subsection 5.3.1. As
expected, at the beginning, the torque 7., applied to the second ring gear is zero, while at the end,
the torque 7,., applied to the first ring gear is zero, i.e., the first gear set is disengaged completely.

To assess the performance of the proposed approach and the LQI controller, a sudden unknown
external disturbance is assumed to be applied to the transmission system during gear-shifting, which

includes the effect of the terms neglected in the model derivation. The results are depicted in

2This is just an example to show that the algorithm works. In fact, depending on the limitations of the power supply,
the gear-shifting time can be reduced considerably.
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Figure 5.4: The control inputs during upshifting

Figs. 5.5 and 5.6; the states and the ring gear angular velocities are represented in Figs. 5.5(a) and
(b), while the inputs are shown in Fig. 5.6. In this case, the disturbance does not affect the first input
7., (t), since it is not included in the new control input, i.e., u(t) = |:7'r2 (t) Td(t)i| T. In fact, 7, (t)
changes independently, based on the 2-3 blending polynomial.

In a real EV, some parameters, such as the mass of the vehicle, the vehicle speed, the forces
between road and tires, the road slope and the aerodynamic drag force, influence the size of the
EMs used and the ranges of power and the torques applied significantly. For instance, assuming
an external load applied to the output shaft, which includes the effects of all parameters mentioned
above, Figs. 5.7 and 5.8 illustrate the results for downshifting in higher angular velocities, where
We, = 100 rad/s, wy(to) = 800/3 rad/s and w,(tf) = 400 rad/s. As shown in these figures, the
results of the proposed scheme are plausible in this case too; the states and the ring gears follow the
command signals adequately, while all terminal state and control conditions are satisfied. Note that,

in this case, because of the presence of the external load, the torques applied by the EMs increase
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Figure 5.6: The control inputs for upshifting in the presence of an unknown disturbance

considerably.

Simulation results show that the proposed approach is highly encouraging for gear-shifting
control in MSTs for EVs, which is an over-actuated system with terminal constraints on the control
input. In other words, a smooth shift can be achieved, while the end constrains are met, even
in the presence of various unknown disturbances and external loads. In fact, in comparison to
an earlier two-phase control algorithm for gear-shifting in EVs, with approaching and coasting
phases, developed recently by our team [92], the strategy proposed here is much simpler and readily
implementable in the real world. Furthermore, the control inputs vary more smoothly than in the

prior study.
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Figure 5.8: The control inputs for downshifting in the presence of an external load on the output

5.5 Conclusions

By adopting MSTs, with a seamless and swift gear-shifting, one can enhance the performance of EVs.
Based on the mathematical model derived here, a gear-shifting control scheme was built for a novel
modular MST designed for EVs, to assure smoothness and swiftness. Since there were terminal
constraints on some of the control inputs and also the transmission system was over-actuated, it
was suggested to change one input separately, based on a 2-3 blending polynomial. This way, the
continuity of the acceleration and jerk are guaranteed [74]. Also, the input end constraints are met.
An LQI controller, i.e., an extension of the LQR for tracking problems, was then used to control the
new fully-actuated system. Simulation results show that the proposed control approach is promising
for a swift, seamless shift, even in the presence of unknown external disturbances. This is made

apparent by the desired smooth trajectories followed by the angular velocities and the inputs [96].
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Part 111

Developing Optimal Control Schemes for
Gear-shifting in Electric Vehicles with
Multi-speed Transmissions
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Chapter 6

Optimal Control with Terminal Control

Constraints and Over-actuation

Abstract

Necessary optimality conditions for several types of optimal control problems with terminal con-
straints on both the system state and its control are derived using a direct variational approach under
strong regularity conditions. Imposing additional constraints restricts the set of admissible controls
that might endanger the existence of solutions. The properties of attainable sets for selected, re-
stricted classes of admissible controls are thus discussed for the case of linear systems to explain the
advantages of over-actuation. The results are used to achieve control allocation in an over-actuated
linear quadratic tracking problem that accomplishes gear-shifting in a multi-speed transmission
system of an electric vehicle. The application of the results extends to optimal control problems in
which imposing terminal constraints on the state, its time derivative, and/or its controls is necessary
to guarantee smooth system operation over extended periods, i.e., seamless blending of operation

modes.

6.1 Introduction

Rapid progress in the development of high-end engineering technologies poses new challenges in

the design and operation of machinery. In machine design, increasing importance is assigned to
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reliability, precision, and functionality of mechanisms. At the same time, only low cost and energy
saving designs are acceptable. Such strenuous quality specifications almost always require the use

of optimization tools.

Specifically, the class of problems that provided motivation for the work reported here concerns
the optimal design of a new generation of multi-speed transmissions (MSTs) that will significantly
improve the functioning of electrical vehicles (EVs) [92, 68, 86]. The EV technology is developing

rapidly, as it is becoming increasingly important in modern transportation systems.

EV gear-shifting mechanisms must have the capacity to perform rapid changes of motor speed
while securing smooth roll of the car chassis before and after every speed change. The industry
standards are very high, calling for up to 98% efficiency, safety, high running stability, minimum
maintenance, and minimum operating noise. For these reasons, the gear-shifting patterns are best
sought as solutions to a minimum-time, minimum-effort finite-horizon optimal control problem.
For the speed of the vehicle to vary smoothly, hard constraints on both the system state and the
control effort must be imposed at the terminal instant of the gear shifting horizon. The resulting
optimal control problem formulation is not typical due to the presence of the explicit, hard terminal
constraints on the control effort that cannot be circumvented while maintaining equivalent operational
quality of the resulting design. Interestingly, the necessary conditions for optimality in the presence
of such terminal control-effort constraints, and specifically the explicit statement of the boundary
conditions that they require, have been omitted from the existing literature, which is exceptionally

rich.

With variational analysis as a precursor subject—see the exhaustive work [97, 98]—classical texts
on optimal control [99, 100, 101, 102] cover both the minimum principle and dynamic programming,
while restricting the class of admissible controls to continuous or piecewise continuous functions.
More recent texts favor significant relaxation of optimality conditions for a much larger class of
only measurable admissible controls [103, 104, 105]. The latter employs generalized gradients and
discusses the properties of viscosity solutions to the Hamilton-Jacobi-Bellman (HJB) equation. The
hybrid minimum principle and hybrid dynamic programming are further extensions of the theory
[104, 106, 107, 108].

From a pure optimality viewpoint, the wider the class of admissible controls, the lower the
cost value achieved and the higher the chances of existence of solutions. Although switched or
hybrid approaches in the control of gear-shifting in hybrid electric vehicles have been considered
[109, 110, 111, 112], such results are valued as a proof of concept (of rapid control being achievable)
rather than a practical solution to the actual problem. In switching or hybrid optimal control, the
continuity of the control effort is no issue, while optimality is strictly limited to the interior of a
given time interval with little interest on how the optimal trajectories may affect the future evolution

of the system.
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Many industrial applications hence still require restricted sets of smooth admissible controls;
examples abound in robotics, vehicle control, or machine design, where smooth operation is a valued
attribute and the pieces of optimum trajectories must connect seamlessly [113, 114]; other recent
developments requiring smooth control effort can be cited [115, 116, 117, 118].

Optimization problems that call for high regularity of trajectories can achieve the above goal by
imposing point constraints on both ends of the optimization interval. Such problem statements then
lend themselves directly to solution methods in classical variational analysis. While the necessary
conditions for strong optimality always involve the Euler-Lagrange equations that hold under
well-established regularity assumptions, the major difficulty resides in the derivation of adequate
boundary conditions that secure the satisfaction of the constraints imposed on the system. As already
mentioned above, the boundary conditions corresponding to the presence of hard terminal constraints
on the control effort (rather than on the state) are absent from the current literature. The reason may
lie in that enforcing such constraints can be achieved indirectly by imposing an adequately high
end-point penalty, while smoothness of trajectories can be achieved by extending the state of the
system (adding integrators). Since neither of these alternatives can deliver fully equivalent designs,

the desired boundary conditions are developed here explicitly.

When many, or higher-order constraints are imposed on the system, the existence of admissible
controls that satisfy the required boundary conditions is an obvious concern. In such instances, the
existence of extremals can be secured by introducing additional, seemingly redundant, actuation.
This leads to the notion of over-actuated systems, i.e. systems with fewer states than control
variables, which then need to be adequately “allocated” to carry out the required optimal control
task [119, 120, 121, 122].

Based on the above problem statement, the contributions of this paper are described below.

Assuming suitable regularity, necessary conditions for optimality are derived for optimal control
problems with soft (penalty-type) and hard terminal constraints on controls and state variables for
both fixed or free terminal time. The conditions are shown to follow naturally from the solution of the
general Lagrange variational problem with nonholonomic constraints. A comprehensive treatment
of optimality conditions pertaining to a broad spectrum of optimal control problem formulations
in the presence of end-point constraints is absent from the literature. The necessary conditions are
then interpreted to apply to regulator and trajectory-tracking control problems with soft or hard

constraints on terminal values of the state and the controls in a possibly over-actuated setting.

The discussion of the properties of the attainable sets for problems with terminal control and
state constraints and the role of over-actuation is limited (for simplicity) to linear time-invariant (LTT)
systems. It is shown that, for completely controllable LTI systems, the attainable set is insensitive
to terminal constraints on the controls. On the other hand, satisfaction of additional higher-order

constraints on the terminal states, such as terminal constraints on the state derivative, generally
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requires additional control power (over-actuation) and adequate control allocation. In both cases,
imposition of end-point control constraints can be viewed as adding isoperimetric constraints to the

underlying variational problem.

The necessary conditions and associated results are applied to achieve closed-loop control
allocation in the problem of gear-shifting [92, 68, 86] in a novel design of an MST for EVs [81, 87].
The study aims to track a pre-planned “blending trajectory” that achieves the gear-shift, as previously
reported [74]. Although the strict optimality of the blending trajectory cannot be claimed (it is just
one of infinitely many possible solutions of an Euler-Lagrange equation for a singular variational
problem), the latter is shown to satisfy the imposed terminal conditions as necessary for seamless
gear-shifting. It is shown that the blending trajectory can be tracked exactly, as the problem is
over-actuated. The two-stage feedback control approach to gear-shifting proposed here constitutes
a significant improvement over the previous non-robust, open-loop trajectory following approach
based on the inverse dynamics of the system [74].

The paper organization follows. Section 6.2 establishes the necessary conditions for optimality
in general smooth optimal control problems with terminal constraints on both the state and the
control, but in the absence of any hard functional constraints (except for the constraint involving the
dynamical system equation). Without loss of generality, the class of problems considered includes
systems that are over-actuated. In Section 6.3, the potential benefits of over-actuation are briefly
discussed. Since the necessary results of Section 6.2 pertain to systems that may be time-varying,
the latter are further specified as linear quadratic trajectory tracking problems in Section 6.4. Finally,
the necessary conditions developed here are employed to deliver an optimal control for gear-shifting

in multi-speed EVs.

6.2 Necessary Conditions for Optimality in Problems
with Terminal Control and State Constraints

The derivation below extends the standard optimality conditions for general time-varying nonlinear
problems of class C*?[to, t;] on an interval [to, /] to the case when the set of admissible controls
may be restricted to contain functions satisfying point constraints at the final time ¢;. Admissible
control efforts might further be required to steer the system to a given terminal state x(¢¢), if such a
constraint is present. For simplicity, it is assumed that magnitude constraints on the controls and
state over the entire horizon [ty, ] can be enforced implicitly by shaping the cost functional. Such
formulation lends itself naturally to the methods of variational analysis used here in similarity with
the classical approaches of Kirk [70] and Naidu [71]. A similar notation used by Kirk [70] is also

adopted so that the reader can easily trace the differences.
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As expected, the necessary conditions for the special case described above coincide with those
of Kirk [70], inasmuch as they both require the solution of the Euler-Lagrange equations, the state
and co-state equations, and lead to the same Hamiltonian function. The difference appears in the
variational statement of the boundary conditions, as per Eq. (6.5), which now contains an additional
term associated with the variation duy that is absent from the optimality conditions considered
elsewhere. The development of this term may be traced through Egs. (6.13)—(6.21) in the proof of
the theorem. The difference in boundary conditions also appears in the discussion of the possible
cases of constrained problems (6.22)—(6.24) and in the compact Hamiltonian re-statement of the
results of Theorem 1, for which the untypical “transversality conditions” of Eq. (6.27) are missing

in the optimal-control literature.

Theorem 1 Consider a, potentially over-actuated, optimal control problem with the cost functional
ty
I(w) = ity x(ts) ) + [ gltx(e) u(e)d 6.1)
to

subject to differential constraints
x(t) = f(t,x(t),u(t)), x(t) € R", u(t) € R™, t€ [t,1y] (6.2)

where all the functions, including the admissible controls, are assumed to be of class C*[to, ts], while
the initial conditions of the system and the initial control values are considered fixed: x(ty) = Xo,
u(tg) = ug. The general necessary conditions for optimality (comprising a variety of terminal
constraints) take the form described below:

The Euler-Lagrange equation comes first

S (ex(o),ul) + | g x(0.u(0)| w0 =0 63)

followed by the co-state (Lagrange multiplier) equation

o) = - [ ZEeoxto) )] p) - |22 exto) ) (6:4)
p - aX ) ) p aX ) ) .
subject to the system constraints (6.2) and end-point boundary conditions written in variational
Sform:
oh g oh ’
et x(ep)ults)) ~ plen) | oxs-+ |Gt x(ep).utep))|ouy

+ {g(tfjx(tf)a u(ty)) +p’ (tp)f(ts, x(tf), ulty)) + %(tfax(tf)v u(tf))} oty =0  (6.5)
[ |
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Proof (Employing a variational approach):

Under the assumed regularity of the functions involved

h(x(ts),u(ty), t;) = h(x(to), u(ty), to) + / " (), u (), 0] dt (6.6)

o dt
the cost functional takes a simpler form

J(u) = h(x(to),u(to), to) + /t ' {g(x(t), u(t),t) + % [h(x(t), u(t),t)]} dt (6.7)

As tg, x(to) and u(ty) are considered fixed, the first term of the RHS of Eq. (6.7) does not

involve any optimization variables; it is therefore omitted, .J(u) then becoming

J(u) = /t g {g(x(t),u(t),t) + % [h(x(t),u(t),t)]}dt (6.8)
- /t f {g(x(@»“(t)at) + B—Z(X(t),U(t%t)} x(t)
+ {g—ﬁ(x(t),u(t),t)} u(t) + %(X(i),u(t),t)} dt (6.9)

Using Lagrange multipliers p(¢) € R" to include the constraints (6.2) in the cost index (6.1)

delivers the augmented index

|G (000 60) + ) (0).0) + 57 () (), 000, 1) - x<t>]} i
(6.10)
or, equivalently,
Ja(u) :/tfga(x(t),k(t),u(t),l'l(t),p(t),t)dt (6.11)
with
0 x(0) K(0) (0) 6(0),p(0,0) = g0, (0, 0) + | 5 ), 0)| (0
(0 ue), 0] (1) + G ) .0+ 70 FOx(0), ). 0) - (0] (6.12)
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Introducing variations 0x, 0x, ou, du, 0p and dt, the first variation of the augmented cost index
is

+ aai:(x(t), (t),u(t),fl(t)ap(t)at)- 0% (t)
_aga 1T

+

- “ (x(t),x(t),u(t),a(t), p(t),t)| ou(t)

- 1T
1 op (x(£),%(t), u(t), u(t), p(t),?) 513(75)} dt
] tf+5tf -
[ alt).x(e) ule) (o) ple) Ot + HOT = 0 (6.13)
Ly
where HOT denotes “higher-order terms". To a first-order approximation,

tp+oty
/t ga(X(t)’ X(t)’ u(t)v ﬁ@)? p(t)v t)dt ~ [ga(x(tf)’ X(tf)v u(tf)’ u(tf)a p(tf)> tf)] 5tf

(6.14)
Since 0x(t) = d(dx(t))/dt and du(t) = d(du(t))/dt, integration by parts yields

/t ! { {%‘; <x<t>,x<t>,u<t>,a<t>,p<t>,t>} ok(t) + {gi <X(t>”"(t>’““)’““)’p(”’ﬂ] ‘w)} “

[&%

[t

/to { {%ﬁ( (1), X(t),u(t),li(t),p(t),t)]de(t)

,u(ty),u (tf)ap(tf)atf)} ox(ty)

(tf)7ﬁ(tf)vp(tf)vtf)] ou(ty)

+ % {E;gl(; (x(t),%(t), u(t),u(t),p(t),t)l 5u(t)} dt (6.15)

Furthermore, since ¢y, x(o) and u(ty) are fixed, with x(¢y) = 0 and du(¢y) = 0, substitution
of Egs. (6.14) and (6.15) into Eq. (6.13), while noting that

5X(tf) = 5Xf — X(tf)(;tf, 5u(tf) = 511f — fl(tf)(stf (616)
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yields an expression for the first variation of the cost, namely,

5, () =
8 ) ), ). ), (). ) |0y 2 ) ) e, ) () )| o

|G 050,00, 50,000.]” = |5 060,500, 050 000.0) ]5u<t>
| % o) 5600 u(0), 600, p(0.0) ap@)} i o)

It is noteworthy that p(t) does not appear in the above expression. As the second partial
derivatives of the function h(x(t),u(t),¢) are assumed continuous, it can be readily verified (by
direct calculation) that the terms including h(x(%), u(t), ) in the augmented cost integrand g, cancel

each other. Based on this observation, the integral term in Eq. (6.17) changes to

/tof { H%(x(t),u(t),t)] +pT (1) {%(X(t),u(t),t)} 4 %(pT(t))] 5x(1)
dg T . -
{a_u(x(t),u(t)yt)} +p (1) [%(X(t),u(t),t)u su(t) + [(E(x(t), u(t), £) — x(2)] 5p(t)} »

(6.18)

+

Regardless of the boundary conditions, the above integral must vanish on an extremal. This
implies that the coefficients of the independent variations 6x, du and ép must be zero, which delivers

the state and co-state equations below:

(1) = £(x(t), u(t). 1) p<t>:—{§—i<x<t>,u<t>,t>} p<t>—[%<x<t>,u<t>,t>] (6.19)

together with the Euler-Lagrange equation

99
ou

(x(t),u(t),t) + [S—i(x(t), u(t),t)} p(t) = 0. (6.20)
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The terms outside of the integral in Eq. (6.17) must then also satisfy

Swxltp)ults)ot) ~ plen) | oxs+ |G xtep) uleshtg)| uy
+ {Q(X(tf)a u(ty),te) +p' (t)E(x(ty), ulty), ty) + %(X(tf), u(tf%tf)} oty =0 (6.2
which completes the proof. 0

The variational statement of the boundary conditions (6.21) captures the six different situations

for which the corresponding explicit boundary conditions are listed below:

o Fixed terminal time ¢; yields ¢y = 0, while free terminal time ¢; requires:

g(ts, x(tg), ulty)) +p" (tp)E(tr, x(tf), ulty)) + @(tﬁ x(tr),u(ty)) =0 (6.22)

ot
o Fixed terminal state x(¢ ;) yields 6x; = 0, while free terminal state x ; requires:
o (b (1), ult) — pliy) = 0 623
e Fixed terminal control u(¢ f) yields duy = 0, while free terminal control uy requires:
(17, x(t0) (i) = 0 (6:24)

The boundary conditions can be applied component-wise. Note that, in the absence of the
soft penalty; i.e. when h = 0, while the time horizon and the final state are considered fixed, the
variational boundary condition Eq. (6.21) vanish identically. This is not equivalent to the absence
of an actual control constraint, however. The control effort is still constrained by the definition of
the class U, of admissible controls, which requires that its members satisfy u € C? [to, t f], with

u(ty) = up and u(ty) = uy.

6.2.1 Hamiltonian Formulation

The Legendre transformation, whose validity is due to the assumed regularity conditions, conve-

niently leads to the definition of the Hamiltonian function:

H(x(t),u(t),p(t),t) = g(x(t),u(t),t) + p’ (H)f(t,x(t),u(t)) (6.25)
which permits to re-state the necessary conditions for optimality in the familiar compact form of
Egs. (6.19)—(6.21):

X(t) = g—?(x(t), u(t)7 p(t)7t)
p(t) = —%—z(x(t), u(t), p(t),t) (6.26)
%(X(t)7 u(t>, p(t)7 t) -0
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{g_Z(X(tf)au(tf)atf)_p(tf):| 5Xf+[g—ﬁ(x(tf),u(tf),tf)} 6uf

[t utes) (e ) + G et ) oty =0 620

6.3 Benefits of Over-Actuation

Sufficiency conditions for optimality are omitted here due to the complexity of the problem and the
need of the second variation of the cost. Agreeably, existence of extremals does not warrant existence
of optimal solutions in general. Similarly, existence analysis, which usually involves continuity and
compactness arguments [97, 98], is substituted here by a few considerations pertaining to attainable
sets under control restrictions and the potential benefits of over-actuation. The precise question to
ask is whether the set of admissible controls is non-empty, given that both states and controls must
satisfy given boundary conditions. Questions of this kind lead to the notion of attainable sets under

restricted classes of controls. The definition below is relevant to the discussion:

Definition: (Attainable set)
Given a dynamical system with an initial condition x (%) = X, and a class of admissible controls

U, defined on a control horizon [¢y, /], the set of attainable states is
A(xo, to, tr, Uy) = {xy € R" | s.t. 3u € U, that transfers x(ty) = xo to x(ty) = x5} (6.28)

With reference to controllable LTI systems, it can be readily shown that constraining terminal

values of the controls does not shrink the set of attainable terminal states of the system.

Theorem 2 Given a completely controllable LTI system:
x(t) = Ax(t) + Bu(t); x(t) € R"; u(t) e R™ (6.29)
and two different sets of admissible controls:

U, = {ue C'to, ty] | ulto) = uo, u(ty) = uy }
U2 ={ueC'ty,ty] |ulty) =uo } (6.30)

the corresponding attainable sets are equal, i.e. for every (Xo,to,t5):

A(xo, to, tr, Ul) = A(xo, to, t, U2) (6.31)
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Proof:
Complete controllability of the system (6.29) (by controls from the admissible set U?) implies

that the controllability matrix

C = B AB A2B Anle] (632)

has full rank. The proof will be completed by showing that any state x; € R" can also be reached
from x, at time ¢, by a control from U, which is a more restrictive class of controls than U?.
Apparently, it suffices to show the existence of a dynamical system extension to Eq. (6.29) that is
completely controllable and such that its state vector contains both x and u. To this end, consider a

cascaded system

x(t) = Ax(t) + Bw(t); x(t) € R"; w(t) € R™
w(t) =v(t); v(t) e R™ (6.33)

where v is considered as a new unrestrained input. The controllability matrix for the cascade is

2 . n—1
Cc. — O,. B AB A-°B . A"'B (6.34)

1, O, O, O, - O,
with O,,,, as the n X m zero matrix, and 1,, and O,, as the m x m identity and zero matrices,
respectively. As the controllability matrix C. inherits the full rank property from C, there exists a
surrogate control v* that steers the cascade to any desired state (x, w) € R™ x R™. Imposing that
x(ty) = xy and w(ts) = uy, makes the function w, which corresponds to an exogenous control v*,
play the role of the desired control u = w € U! that accomplishes the transfer of the system state

from x, to x¢, thereby completing the proof. 0

Apparently, from the system equations (6.29), imposing terminal conditions on u automatically
constrains the system time derivative to x(¢;) = Ax(¢;)+Bu(ts); hence, the terminally constrained
control u cannot generally steer the system to an arbitrarily selected terminal state along with its
time derivative. It is possible to circumvent this problem if the system can be equipped with a
redundant control, the system thereby becoming over-actuated. For brevity, such a development is

explained by way of a simple example.

Example: Consider a system in the form of a chain of two integrators and its dynamic extension,

as introduced in Theorem 2:

. Ty = Ty
Tl = T2 .
_ iy = w (6.35)
T = U .
w ="
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Both systems are clearly controllable; hence, there exists a control v that steers both (x;, z5) and
w to any desired terminal points (z1(tf), z2(ts)) and w(ts). Then, u = f:o v(T)dr steers the first
system to (x1(ts), z2(ts)) and also satisfies u(t;) = w(ts), as required. The problem of steering
with terminal constraints on both the state and the control is hence seen as equivalent to steering the

extended system to a terminal state under an isoperimetric constraint

w(ty) = / 7 o(T)dr. (6.36)

to
Now let us assume that the terminal derivative () is also subject to a terminal constraint with
To(ts) # u(ty). Clearly, this is not achievable, as the system model requires that 5 = u, unless
additional control power can be introduced. The simplest over-actuated system (and its extension)
by which to attain the desired values of (x1, x2, ©2) at time ¢; by a control that takes any prescribed

terminal value u(ty) is proposed in the form

,’/31:2’2
T T 2=
1= T2 .
] i3 =81+ 589 =AW+ bv (6.37)
To=u-+r .
S1 = S92
5‘2:1)

The state and control variables of the extended system have been assigned as:
21 ‘= X1y R = .Ctl = T9; 23 = il = {1.32

t o t
51 ::/ / v(T)drdo; so ::/ v(T)dr (6.38)
to Jto to

with u = s1; 7 = s1; W := [21, 29, 23, 51, S2) 1, yielding &y = 23 = @ + 7 = sy + 51, as required.

The extended system matrices are

:b=10,---,0,1]" (6.39)

o O o O
o O O O =
o O O = O
S O = O O
S = = O O

0

from which it is apparent that the above pair [A, b] is controllable. It follows that v can control the
entire extended state w to any pre-specified end-point w (). This includes 1, x5, #3 and u = s,
as required. Further skillful system extensions can accommodate additional constraints on the
over-actuation control variable 7, should the latter be necessary due to a specific desired control
configuration. The redundant variable provides a feedback signal that “decouples” @5 from u so that

both can be steered independently to meet their respective end-point constraints.

118



6.4 Linear Quadratic Tracking with Terminal Constraints

Due to their generality, the results of Theorem 1 readily deliver necessary optimality conditions for
the class of linear quadratic tracking (LQT) problems with terminal constraints. As the latter will be
employed in a case study in Section 6.5, it is useful to state them explicitly here.

Consider the following LQT problem

(1) = A(t)x(t) + B(t)u(t) (6.40)
with cost functional
7 =5 [uty) — i) Hluts) — vity)
n % /t ' {[x(t) —r®)]" Q) [x(t) — r(t)] + uT(t)R(t)u(t)} dt (6.41)

where v(ty) is the desired terminal value of the control, and r(-) is the trajectory to be tracked.
The above weighting matrices are required to satisfy: H > O, Q(¢) > O, and R(¢) > O. Using
Eq. (6.25), the Hamiltonian is

+pl ()A)x(t) + p’ (t)B(t)u(t) (6.42)
and
(x(ty). ultr) ) = 5 [ulty) = ()] H () — vity) (6.43)
The normality conditions follow from Eqgs. (6.26):
ﬂﬂ:%%:A@mw+B@mw
(1) =~ 2 = —Q(r)x(r) ~ A" (Hp() + QU)r(1) (6.44)
T R(u() + B Wp() =0 = ) = ~R (B ()p(1)

It can be shown that the co-states p(¢) are linear functions of the states x(¢) [70, 71]; thus, there

exist matrix and vector functions S(-) and ¢(-) such that Egs. (6.44) can be re-written as
p(t) = S(1)x(t) + ¢(t) (6.45)

which leads to
p(t) = S(t)x(t) + S(t)x(t) + () (6.46)
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Combining Egs. (6.44)—(6.46) yields
[-Q(t) — AT(0)S(D)] x(t) — AT(1)$(t) + Q(t)r(t) = |S(t) + S(t)A(t) — S(HE()S(1)| (1)

—S(E(1)¢(1) + ¢(1) (6.47)
with E(t) = B(¢)R~*(¢)B?(¢). Equation (6.47) must be satisfied for all x(¢) and all r(¢), which

leads to the familiar differential Riccati equation (DRE), namely,
S(t) = —=S(t)A(t) — AT(1)S(t) — Q(t) + S(H)E(t)S(t) (6.48)

as well as

o(t) = — [AT(t) - S(E(D)] o(t) + Q()r(?) (6.49)

Assuming that t; and x(t;) = x; are fixed, 6t; = 0, and dx; = 0. In this case, u(ty) is
considered to be free, Eq. (6.27) thus reducing to

O (x(ty). u(ty). 1) = 0
ie. Hlu(t;) — v(t;)] =0 (6.50)

Since u(t) = —K(t)x(t) — ¥ (t), K(t) = R7Y(¢)BT(¢)S(t) and ¥(t) = R (t)BT (1) (1),
Eq. (6.50) can be re-written as

H [-R7(t7)B' (t/)S(ts)x(ts) — R7'(ts)B' (tr)p(ts) — v(ts)] =0 (6.51)

Hence, to satisfy condition (6.51), matrix S(¢;) and vector ¢ () should be found such that the
vector in brackets lies in the null space of matrix H. As u(ty) = ug is known, the relation below
must hold

— R (to) BT (t0)S(to)x(to) — R (te) B (to) (o)) = ug (6.52)

6.5 Case Study: Gear-shifting in Electric Vehicles

A novel two-speed transmission system for EVs, as previously designed and discussed [81, 87],
consists of two planetary gear sets, as shown in Fig. 6.1. The planetary sets share the same carrier,
which is connected to the output shaft. The sun gears are mounted on the same input shaft. To
achieve a desired speed ratio, the corresponding ring gear should be fixed. For shifting between
speed ratios, the fixed ring gear should be released and the second one should be fixed.

Employing the Lagrangian formalism, a mathematical model of the system is derived as

AOwc + Bows = Tg — Csws — &Trl - TﬁTm (6.53a)
1 T
%,  or,

Cotre + Doty = 71 — ot + —17, + =215, (6.53b)
71 2

120



&[]
P = >
Carrier

Sl Sz

%
i

7-7‘1 TTQ

Td g

Figure 6.1: A two-speed transmission system for EVs

where Ag, By, Cy and D, indicate generalized inertia terms, w,. and w, denoting the angular velocities
of the carrier and the sun gears, while c. and c, are generalized damping coefficients. Also, 74, 7,
7, and 7., denote, respectively, the driving torque of the electric motor applied to the input shaft,
the external load applied to the output shaft, and the torques applied to the first and the second ring
gears. The variables, 7, , rs,, 1, and 7., are the pitch radii of the sun and the ring gears of the first
and the second planetary sets, respectively, and r.. is the radius of the planet carrier.

Let z1(t) = w.(t) and z5(t) = w(t) denote the state variables of the system. In the absence of

any external load, the state-space model is an LTI system:

x(t) = Ax(t) + Bu(t)

T
where u(t) = [Trl (t) 7, (%) Td(t)] is the control input. The system matrices A € R**? and

B € R?*3 are
A= % % gz [T O (6.54)
b byt by b, by '

whose entries are functions of the system parameters appearing in Eqgs. (6.53), namely, the radii of
the elements, the generalized inertias, and the damping coefficients.
To further explain the physical model, consider shifting from the first gear ratio to the second. In

this case, at the beginning of the gear-shifting process (¢t = ?), the first ring gear is fixed and the
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second one released, i.e.,
Wy (to) = 0, Trqy (to) =0 (655)

At the end of gear-shifting, i.e. at ¢t = ¢, the second ring gear is fixed and the first one is released,
1.e.,

wm(tf) = O, Try (tf) =0 (656)

Note that Egs. (6.55) and (6.56) represent initial and final constraints on the control input. For
a swift, seamless gear-shifting, without any torque interruptions and discontinuities, the angular
velocity w,() of the output shaft should remain constant during the whole operation, i.e., w.(t) = we,,
t €[to, ts], where w,, is the angular velocity of the output before shifting. Also, assuming that
ws(to) = ws, and w,(ts) = ws,, the angular velocity w;(t) of the input shaft should follow the 3-4-5
blending polynomial [74]. The latter is defined as

t—to

wss(t) = Aw (660° — 150" + 106%) + w,,, 6= ra—

Aw = Ws; — Wsq (6.57)

which guarantees the continuity of the angular velocity, acceleration and jerk att =ty and ¢ = t4. In
other words, the desired value of the state vector is r(t) = [w., wss(t)]?. According to Eq. (6.56),
only the final value of the first control input is required to vanish; assuming a suitable value for a

constant 3 a soft constraint is adopted, namely,

6 0 0
h(x(tp),ulty), ty) = %5731 (tr) = % (x(ty) —r(ty)] Hx(ty) —x(tp)]; H= |0 0 0
0 00

(6.58)

6.5.1 Simulation Results

The desired state vector is r(t) = [w,, wss(¢)]”; then, assuming ¢ € [0,0.075], w,, = 10 rad/s, and

the first and the second gear ratios of 4 and 8/3, respectively, imposes

ws(to) =40rad/s, ws(ty) = ? rad/s (6.59)

wr (to) =0, 7,(t) =0, wy,(ty) =0, 7,(t;)=0 (6.60)
Note that, since the initial control input u(¢¢) is assumed known, for a smooth shift, the condition
u(ty) = ug should be met in finding the control input.

A shooting method [123] was employed to solve the two-point boundary-value-problem (BVP)
(6.48) and (6.49), with conditions (6.51) and (6.52), that delivers the optimal tracking control u(¢).
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In fact, the shooting method is based on reducing the two-point BVP to a sequence of initial value
problems (IVPs), each being readily solvable.

The reference and output values of w,(t) and w,(t) are compared in Fig. 6.2(a). As seen in the
figure, the states follow the desired trajectory exactly; w.(t) remains constant during gear-shifting,
while w;(t) follows the 3-4-5 polynomial. The angular velocities of the ring gears are depicted in
Fig. 6.2(b). As expected, at t, w,, = 0, 1.e., the first gear set is engaged, while at ¢, the second gear

set is engaged. Note that the angular velocities of the ring gears also follow the 3-4-5 polynomial.
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Figure 6.2: The angular velocities during gear-shifting: (a) the input and output shafts; and (b) the
ring gears
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Figure 6.3: The solution to: (a) Riccati equation; and (b) vector ¢ equation

The components of the matrix and vector functions, S and ¢ are shown in Figs. 6.3(a) and (b),
respectively. The optimal control inputs during gear-shifting are shown in Fig. 6.4. Note that the
torque 7,, applied to the second ring gear is near zero at ty. At ¢, the torque 7., applied to the

first ring gear is near zero, i.e., the first gear set is released. Also, the control input before shifting
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T
is correct, i.e., u(ty) = [—0.15 0 0.75] , so that the constraints are met at both ends of the

gear-shifting horizon while control inputs vary considerably during gear-shifting.
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Figure 6.4: The optimal control inputs during gear-shifting

Simulation results demonstrate that the approach is highly promising for the optimal control of
over-actuated systems with constraints on the initial and final values of the control input. Note that
even if the system is not over-actuated, the approach can still be applied, as long as the constraints at

the end points of the control interval [to, ¢ ;] are such that a solution exists.

6.6 Conclusions

The results reported in this paper complement the classical literature in discussing the intricacies of
optimal control problems in which imposing terminal constraints on the state, its time derivative,
and/or its controls is necessary to guarantee smooth system operation over extended periods, i.e.,
seamless blending of operation modes. The necessary conditions were first derived using a general
variational approach to optimal control, then applied to a variety of optimization problems with both
soft and hard end-point constraints.

The results were applied to deliver optimal seamless gear-shifting in recent novel designs of
MSTs driven by electrical motors. Future contributions will aim to eliminate the need for generation
of blending trajectories, including additional smoothness constraints at the boundaries of the gear-

shifting interval, and further exploring the benefits of over-actuation [124].
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Chapter 7

Optimal Control of Over-actuated Systems
Applying Smooth Control Inputs with

Terminal Constraints

Abstract

An optimal control scheme is proposed for over-actuated systems, where the control effort is required
to be smooth in the given time interval while satisfying a given set of boundary conditions. Firstly,
applying variational calculus, the necessary conditions of optimality are derived for a novel optimal
control problem with terminal control and state constraints. Next, these conditions are employed to
develop the well-known linear quadratic tracking problem for linear time-varying systems while
applying end control and state constraints. The results obtained are then used to solve a specific
optimal control problem, i.e., gear-shifting control in a multi-speed transmission system designed
for electric vehicles. This is an over-actuated system with boundary conditions on the states and
the control input. The results show that the proposed approach is applicable to the smooth optimal

control of over-actuated systems with terminal-point control and state conditions.
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7.1 Introduction

New optimization problems in the design and operation of modern machinery in industry require
novel optimal control formulations. This paper investigates a class of such new problems, where,
besides the state, there are constraints on the end values of the control input in the given time interval.

Moreover, the control effort must be seamless and smooth.

In a common optimal control problem, the continuity of the control effort at the ends is not
an issue, as the problem is solved within a given time interval, without considering the response
outside of this interval. However, discontinuities may influence the performance of the entire system
substantially, unless conditions are imposed on the end values of some of the control inputs. There
are examples in machine design and operation where the smoothness before and/or after the optimum
trajectories is essential [113, 114]. A classical optimization problem, solved by variational calculus,
usually involves constraints on the state values at both ends of the given time interval. Nonetheless,
optimal control problems with terminal control constraints have not been considered in the literature.
Guaranteeing the existence of admissible smooth controls that satisfy the boundary conditions
may require actuation redundancy. There has been an extensive research effort on the control of
over-actuated systems [125, 119, 120, 121, 126]. Accordingly, the contributions of this paper are

described below.

In this paper, we report on the optimal control of over-actuated systems where the control input
is required to be smooth and terminal-point constraints on the controls arise. In other words, firstly, a
variational problem is formulated to find a seamless optimal control input for over-actuated systems
in a given time interval, in the presence of end constraints on the states and the control effort. In fact,
the normality conditions are derived for such problems. Then, applying the results obtained, the
well-known optimal trajectory-tracking problem, i.e., linear quadratic tracking (LQT), is formulated

for linear time-varying (LTV) systems with end-point control conditions.

Further, the scheme developed is employed for closed-loop control of a system of current
interest, i.e., the gear-shifting problem [92, 68, 73, 127] in a novel modular multi-speed-transmission
system (MSTS) designed for electric vehicles (EVs) [81, 87], which is an over-actuated system
with terminal control constraints. In fact, the states are required to track a pre-planned “blending
trajectory” leading to a swift, seamless shift [74]. Also, besides looking for a smooth control, there
are end constraints on the states and the control input in the given time-interval. It is shown that,
as the system is over-actuated, the desired trajectory can be followed acceptably and the boundary
conditions can be satisfied exactly.

An outline of this paper follows. Section 7.2 is devoted to finding the necessary conditions for
optimality in a general smooth optimal control problem with end-point constraints on the state and

the control effort. In Section 7.3, the results of Section 7.2 are used to solve the LQT problem
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for LTV systems in the presence of state and control boundary conditions. Finally, as an example
of application, our technique is adopted for gear-shifting control in a novel MSTS for EVs, as

illustrated in Section 7.4.

7.2 Modified Optimal Control Problem

In this section, a variational approach is applied to solve a modified optimal control problem for an
over-actuated system, where, besides the final time and the final state, constraints on the final value
of the control input arise. Furthermore, the control input is required to be smooth without any jump
or discontinuity. To this end, assume that the functional, i.e., the performance index to be minimized,

is defined as

J(u) = / " (), ut), a(t), £)dt (7.1)

x(t) = £(x(t), u(t), t) (7.2)

where the initial time t,, state x(ty) = X and control input u(#y) = uo, as well as the final time ¢
and state x(t;) = x are specified, while the final control input u(¢;) = uy is free. Note that the
performance index includes a new term compared to the classical optimal control formulation, i.e.,
the time derivative of the control input 1i(¢). The problem consists in finding a smooth admissible
control u(t), t € [to, ts], that makes system (7.2) track a desired trajectory r(t), ¢ € [to, ], while
minimizing the performance index (7.1).

Adopting Lagrange multipliers p(¢) € R™ to include the constraints (7.2) in the performance
index (7.1) leads to

Ju(w) = / gl (t), u(t), (), 1)+ pT () [E(x(t) u(e) ) — k(O] dt (1.3)

or, equivalently,

Ja(u) = / " gu(x(t), x(1), u(t), a(t), p(t), t)dt (7.4)

with



To find the variation of .J,, we first introduce the variations' dx, 0%, du, du and dp. Hence,

+ gﬁ’;% (1), (t),u(t%ﬂ(t),p(t),t):T5X(t)
|t (), u(0), (0, p(0).0)| uo)
i 881 (x(1), %), u(), (0, p(0), )| 00
+ %C; (x(t), %(t), u(t), a(t), p(t), t)] ' 6p<t>} dt =0 (7.6)

On the other hand, since 0x(t) = d(dx(t))/dt and du(t) = d(du(t))/dt, using integration by
parts, we obtain

[ { Bi (x(t), %(2), u(t), (), p(tW} X0 {%1 (c(2), (), u(e), u(?), p“)’”} W)} .

[%% (X(tf), X(tf), u(tf), ﬁ(tf), p(tf), tf)] 5u(tf)

-/ {% B () (1) (0,500, p(0).) | 0x(1)

2t | B 50, (0500, p(0). 1) 5u(t>} " -

Note that since to, x(to), u(to), ty and x(¢s) are fixed, 0x(to) = 0, du(ty) = 0 and 6x(ts) = 0.
Next, substituting Eq. (7.7) into Eq. (7.6), and applying the relations

(511(tf) = 511f - ﬂ(tf)5tf, 5tf =0 (78)

the variation of the performance index becomes

'Note that the final time ty is fixed, i.e., 6ty = 0.
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n /mf {H%Z;l(x(t),x(t),u(t),u(t),p(t),t)} -2 {‘g{g(x@,x@),u@),u(t),p(t),t)} ] Sx(l)

[aga<x<t>,x<t>,u<t>,u<t>,p<t>,t>] -4 [aga<x<t>,>'<<t>,u<t>,u<t>,p<t>,t>] ]5u<t>

" Lo oa
; Bﬁ) (x(8), (1), u(t), (1), p(t), t)] 5p<t>} " o

Note that p(¢) does not appear in the foregoing relations. Using Eq. (7.5), the integral term in
Eq. (7.9) can be written as

/tof { Hg—i(x(t),x(t),u(t),u(t),t)] +p’(t) [%(X(t)’u(t)jt)} _ % [_p(t)]tr] 5x(t)

of ]
_|_

({0 %(0),0(0),5000,0)| +57(0) | S x(0)u(0).

99
ou

d [ g

- | St ko). u<t>,t>]T

- su(t) + [(F(x(t),u(t),t) —x(t)]" 5p(t)}dt (7.10)

Since on an extremal, regardless of the end conditions, the integral should vanish, the coefficient

of each independent variation dx, du and p must be zero. The latter yields the equations [70, 71]:

() = £(x(£), u(t), (7.11a)
Bl0) =~ | 2 x(0. (0 u(0) (1)) | - (xo)ue).0)] w0
(7.11b)
% g—i(x(t),x(t),u(t),li(t),t)} = [g—ﬁ(x@),xa),u(t),u@),t)] + {%(x(t),u(t),t)} p(t)

(7.11c)

where Eqs. (7.11a) and (7.11b) denote the state x(¢) and co-state p(¢) equations, respectively.
Moreover, the term outside of the integral in Eq. (7.9) must also vanish. Therefore, using Eq. (7.5),
we obtain

dg T

a—u(x(tf)ﬁi(tf)a u(ty),a(ty)ty)| oup=0 (7.12)
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Based on Eq. (7.12), if the final control input u(ty) is fixed, du; = 0, while the free-end control

input leads to

29 (x(ty), (1), (ty), (ty). 1) = 0 (7.13)

Next, defining the Hamiltonian as

H(x(t), u(t),u(t), p(t),t) = g(x(t), u(t), u(t),t) + p" (f(x(t), u(t),) (7.14)

relations (7.11)—(7.12) can be rewritten as

oH

() = P00 00,000 @15

(1) =~ (x(t),u(t) 6(1). B 1) (T150)

| FrO.u0.50.p0.0] = FixOu0. 80, p0.0 0150
{%(x(tf), x(ty),ulty), alty), tf)} ' dur =0 (7.15d)

7.3 Modified Linear Quadratic Tracking (LQT)

This section is devoted to an important class of optimal control problems using the results of Section
7.2, i.e., the control of linear time-varying (LTV) systems applying LQT.
Consider an LTV system described by

(1) = A(t)x(t) + B(t)u(t) (7.16)

and the performance index to be minimized given as

1

J(w) =3 /t f {Bx(t) = v QU (1) = r(0)] + uT (R (u(t) + 0 (ON(E(L) f dt (7.17)

where r(t) denotes the desired value of the state vector x(¢). As well, Q(¢), R(t) and N(t) are the
weighting matrices.

Using Eq. (7.14), the Hamiltonian is given by
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Hence, applying Eqgs. (7.15a)—(7.15c), the normality conditions are

(t) = A()x(t) + B(t)u(t) (7.19a)
B(1) = —QU)x(t) — AT(1)p(1) + Q(O)x(1) (7.19b)
< IN(R(0)] = R(t)u(t) + BT ()p(1) (7.19¢)

Moreover, fixed-end control input u(¢;) requires du; = 0, while, based on Eq. (7.15d), the
free-end control input yields:

N(t,)u(t;) =0 (7.20)

Hence,

il(tf) =0 or ﬁ(tf) S N(N(tf)) (7.21)

7.4 Case Study: Gear-shifting in EVs

In this section, we investigate an important application of the developed approach, i.e., gear-shifting
control in MSTS for EVs.

7.4.1 Gear-shifting problem

Consider a novel modular MSTS designed for EVs, comprising two planetary gear sets, as depicted
in Fig. 7.1. The output shaft is connected to the common carrier for both planetary gear sets. As
well, the same input shaft is attached to the sun gears. When one of the ring gears is engaged, the
corresponding gear ratio is reached. The gear-shifting problem includes disengaging the fixed ring
gear, while engaging the other one.

Applying the Lagrangian method, the mathematical model of the transmission can be expressed

as

T'sy T'sy

A(]ws + Bowe = Tqg — Csws — —Try — — Try (7.22a)
1 T
. .

Botws + Cotoe = 71 — cowe + —S7 4+ S, (7.22b)
T1 72

with all the above variables defined below:
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Figure 7.1: A two-speed transmission designed for EVs

Ao, By, Cy: generalized inertia terms;

w., ws: angular velocities of the carrier and the sun gears;

Ce, Cs: generalized damping coefficients;

T4: drive torque of the electric motor applied to the input shaft;

7;: external load applied to the output shaft;

Try» Try: torques applied to the first and the second ring gears;

Tsy» T'sy» Trys Try: Pitch radii of the sun and the ring gears of the two planetary sets;

r.: radius of the carrier.

Let z1(t) = w.(t) and x2(t) = ws(t) be the states of the transmission. Under no external load

applied to the output shaft, the state-space model can be written as

x(t) = Ax(t) + Bu(t) (7.23)

where u(t) = |7,,(t) 7,,(¢) Td(t)]T denotes the control input. Also, A € R?*? and B € R**3
are constant matrices, i.e., the system is linear time-invariant (LTT).

As an example, consider that we want to switch from the first gear ratio to the second one. For
this case, at ¢y, i.e., the start of gear-shifting, the first ring gear is fully engaged and the second one

disengaged completely, namely,
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wrl (to) = 0, ’7'7»2 (to) = 0 (724)

At ty,i.e., the end of gear-shifting, the second ring gear should be completely engaged, while the
first one fully disengaged, i.e.,

wry(tf) =0, 7, (tf) =0 (7.25)

Based on Egs. (7.24) and (7.25), there are terminal conditions on the control input in the gear-
shifting problem. To achieve a smooth, swift gear-shifting, constant output angular velocity w,(t) is
required during shifting. Furthermore, to assure the angular velocity, acceleration and jerk continuity

at the ends, the input angular velocity w;(t) must track the 3-4-5 blending polynomial [74], i.e.,

t—to
tr—to

where w,, = w;(to) and ws, = w;(ty). In fact, it can be concluded that the desired state vector is

wss(t) = Aw (66° — 150" +106°) + w,,, 0 =

Aw = ws; — ws, (7.26)

r(t) = [we, wss(t)]T, where w,, is the carrier angular velocity before gear-shifting.

7.4.2 Simulation Results

The simulation results, obtained with the proposed LQT for gear-shifting in a two-speed transmission
system designed for EVs, are reported in this subsection.
As discussed in Subsection 7.4.1, the desired state vector is r(t) = [w,, wss(t)]”. Assuming

t €[0,0.1], we, = 10 rad/s, and the gear ratios are 4 and 8/3, we have

wilto) = 40 rad /s, wy(t;) = ? rad/s (7.27)

T T
which leads toxo = [10 40] andx; = [10 80/3] . Also,

Wiy (to) =0, 7,(t) =0, wy(ty) =0, 7.,(tf)=0 (7.28)

Note that, as mentioned in Section 7.2, the initial control input before gear-shifting, i.e., u(tg) =
ug, is assumed to be specified. Thus, while finding the control input, for a seamless shift, this
condition should be satisfied.

The command signals and the output values for the angular velocities of the carrier and the
sun gears, as well as the angular velocities of the ring gears, are depicted in Figs. 7.2(a) and
(b), respectively. According to these figures, the outputs follow the desired values quite closely;
w,(t) remaining constant during gear-shifting, while ws(t), w;, (t) and w;,(t) following the 3-4-5

polynomial.? Also, at ¢ = o and t = ¢, respectively, w,, and w,, vanish.

2Note that, based on the kinematic relations, w,., () and w,., () also follow the 3-4-5 blending polynomial.
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Figure 7.2: The angular velocities during gear-shifting: (a) the carrier and the sun gears; and (b) the
ring gears
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Figure 7.3: The Lagrange multipliers

The Lagrange multipliers are plotted in Fig 7.3. As well, the optimal control inputs during
gear-shifting are indicated in Fig. 7.4. As observed in this figure, the torque 7, is zero at t = {,
while at ¢ = ¢, the torque 7,, vanishes. Note that, as the initial control input before gear-shifting
is specified, i.e., ug = [0.15 0 0.85} T, this condition is satisfied. Further, since only one of the
control inputs is fixed at ¢y, i.e., 7,, (t;) = 0, for the terminal constraints of the other two inputs,
assuming IN(¢¢) is diagonal, Eq. (7.21) leads to 7,,,(tf) = 0 and 74(¢;) = 0. In other words, although

the control inputs change considerably during gear-shifting, all constraints are met at both ends.

To evaluate the performance of the proposed approach, an unknown external disturbance is
assumed to be applied to the MSTS. The results for the states and the corresponding control inputs
are depicted in Figs. 7.5(a) and (b), respectively. Simulations illustrate that our scheme provides
encouraging results for the optimal control of over-actuated systems applying smooth control inputs

with constraints on the initial and final values. Note that in the absence of an over-actuated system,
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Figure 7.4: The optimal control inputs during gear-shifting
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Figure 7.5: The results in the presence of an external disturbance: (a) the states; and (b) the optimal
control inputs

the method can still be applied, if the terminal conditions are feasible.

7.5 Conclusions

Employing a variational approach, the necessary conditions of optimality were found for the smooth
optimal control of over-actuated systems, while applying boundary constraints on the control input.
As well, the scheme was limited to the well-known LQT problem for LTV systems with the same end-
point conditions. Afterwards, the necessary conditions were applied for optimal control of a modern
over-actuated system with terminal state and control constraints, namely, the gear-shifting control in
anovel MSTS for EVs. It was observed that the states followed the reference signals acceptably.
Moreover, the state and control end conditions were satisfied precisely. Results demonstrate that the

proposed scheme can be adopted for the seamless optimal control of over-actuated systems with
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control and state boundary conditions. Future research will target the elimination of the blending

trajectories, i.e., the command signals, in such optimization problems.
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Chapter 8

Gear-shifting Control in Electric Vehicles
with Multi-speed Transmissions via

Dynamic Programming

Abstract

One way to enhance the efficiency of electric vehicles (EVs) is to apply multi-speed transmissions
(MSTs), with a swift and seamless gear-shifting. A gear-shifting control scheme is proposed in
this paper for a novel modular MST designed for EVs. After establishing the dynamics model of
the designed MST and defining the gear-shifting problem, the proposed control methodology is
formulated. From a control standpoint, the problem leads to an over-actuated system, with terminal
constraints on both states and control inputs. Accordingly, a control algorithm is required, to meet
all end control and state conditions, while leading to the optimum solution. To this end, Bellman’s
dynamic programming is applied to solve this specific optimal control problem. Simulation results
are conducted for various performance indices to demonstrate the effectiveness of the proposed

control approach.
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8.1 Introduction

Increasing the efficiency of electric vehicles (EVs) is the motivation behind this paper, especially in
light of the current limited storage capacity of batteries. One step in this direction is the application of
multi-speed transmissions (MSTs) in EVs [1, 5, 6, 7]. By doing this, the desired power is transmitted
in more than one way, since several gear ratios are included. Thus, by appropriate gear-shifting, a

higher efficiency can be attained.

Various types of transmission systems can be used in EVs, such as automated manual transmis-
sions (AMTs) [16, 21, 22], automatic transmissions (ATs) [10, 27, 28], dual-clutch transmissions
(DCTs) [30, 37, 85], and continuously variable transmissions (CVTs) [40, 50]. These MSTs are
applied in internal-combustion-engine vehicles (ICEVs). Nonetheless, since the control of the engine
speed is extremely complicated in ICEVs, for a seamless shift, the engine should be disconnected
from the transmission during gear-shifting, by means of a clutch or a torque converter. Conversely,
as the electric motors (EMs) are speed-controllable in an extensive range, such clutches or torque
converters can be omitted in MSTs designed for EVs. Indeed, for a smooth gear-shifting in EVs, the
drive torque supplied by the EM can be adopted as an autonomous control input [9]. Since gear-
shifting influences passenger comfort and vehicle drivability, the main objectives are smoothness,

swiftness, and cancellation of output-torque interruption [58, 65, 66, 67].

There has been an intensive effort on the design, modelling, and gear-shifting control and
estimation of MSTs [33]. For instance, besides finding the optimal gear-shifting instants, the optimal
gear ratios and the optimal control inputs, the hybrid minimum principle was applied to achieve a
certain speed in minimum time [59, 60]. Combining a PID and a robust controller, Meng et al. [86]
proposed an optimal control algorithm for gear-shifting. Additionally, Rahimi et al. [76, 62, 63]
estimated the unavailable states and inputs of a transmission system for EVs. The same authors
established an observer-based back-stepping controller to achieve a smooth shift [64]. To enhance the
gear-shifting transient response in DCTs, a new strategy was introduced by Walker et al. [36], based
on the control of the engine and the clutches. Design, modelling and estimation of the unknown
loads and states of a modular MST was studied using the Kalman filter, the Luenberger observer and
neural networks (NNs) [81, 87]. In addition, based on blending polynomials, the optimal trajectory
for gear-shifting was found, which assures velocity, acceleration and jerk continuity [74]. Applying
a piecewise affine (PWA) feedback law, the engagement of a synchromesh system in a clutchless
AMT for EVs was also investigated [128]. Considering the vehicle operation constraints, the optimal
control of hybrid EVs during mode transition was studied, which ensures drivability [129]. A

two-phase control algorithm was recently proposed for gear-shifting in MSTs for EVs [92].

The authors propose here a gear-shifting control algorithm for a novel modular MST designed

for EVs. Firstly, the mathematical model of the designed MST is derived applying the Lagrange
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methodology. Subsequently, after the formulation of the gear-shifting problem, the proposed control
approach for a smooth, swift shift is clarified. From a control viewpoint, the transmission system
under study is over-actuated, as the number of control inputs is greater than the number of states to
be controlled. Additionally, there are end constrains on some control inputs and states. Accordingly,
to find the optimum trajectory, while satisfying both terminal control and state constraints, a
control scheme is suggested based on Bellman’s dynamic programming (DP). Simulation results for
different performance indices illustrate that the proposed control method is highly encouraging for
gear-shifting in the designed MST, since all conditions are adequately met.

An outline of the paper follows. In Section 8.2, the dynamics model of the designed MST for
EVs is established. Also, the gear-shifting problem is clearly explained in the same section. Section
8.3 is devoted to the proposed gear-shifting control algorithm based on DP. Simulation results are

provided in Section 8.4.

8.2 The Proposed MST Designed for EVs

In the first subsection, applying the Lagrange approach, the dynamics model of the MST of interest
is formulated. The gear-shifting problem is defined is Subsection 8.2.2.

8.2.1 Dynamics Model

In the proposed MST, designed for EVs, the sun gears are attached to the same shaft and the planetary
gear sets share the same carrier, as illustrated in Fig. 8.1. The desired speed ratio is achieved by fixing
the corresponding ring gear. Gear-shifting occurs upon releasing the fixed ring gear and engaging
the other one. The key benefits of the designed MST are simplicity and modularity [81, 87].

With q, 7', V, L, IT and A indicating the vector of generalized coordinates, the kinetic energy,
the potential energy, the Lagrangian, the power supplied and the dissipation function, respectively,

the dynamics model is based on the equation below:

d (OL\ oL 9
E(%)_a_q_a_qm_A)’ L=T-V (8.1)

If T,, T, T, and T;, denote the Kinetic energies of the carrier, the sun, the ring and the planet

gears, respectively, and n the number of planet gears in each set, then the kinetic energy of the

transmission is given by

T'=T.+T,+ 1T, +nT, (8.2)
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with
1 2 1 9 1 9 1 N
Te=glas, To=g Ut lu)ws, Tr =gl 5l (83a)
1 1
T, = §mp1U§1 + §Ip1w72,1 + §mp21}]2,2 + 5]],20022, Upy = Upy = Tele (8.3b)

where I, I;,, I,,, I,,, I,,, and I, indicate the moments of inertia of the sun, the ring, and the
planet gears of the first and the second gear sets, respectively, and /. that of the carrier. Furthermore,
My, > Mp,, Up, and vy, denote the masses and the speeds of the centers of mass of each planet gear.
Moreover, ws, w., w;, and w,, denote the angular velocities of the sun, carrier, and the first and the
second ring gears, respectively, while r. the radius of the carrier. In the ensuing derivation it is
assumed that all components are statically and dynamically balanced rigid bodies. Thus, the potential

energy of the system remains constant, and hence, plays no role in the model under formulation.

The power supplied to the system and the dissipation function are displayed below:

1 1
Il = Tyws + Tiwe + ToyWry + TryWyry, A= iccwf + §CSW§ (8.4)
with 74, 77, 7., and 7,, denoting the drive torque applied to the input shaft by an EM, the external
load applied to the output shaft, and the torques applied to the first and the second ring gears,
respectively, as shown in Fig. 8.1. Additionally, c. and c;, including the effects of the bearings and

friction, indicate the generalized damping coefficients. Substituting Egs. (8.2)—(8.4) into Eq. (8.1),
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the mathematical model of the transmission can be expressed as

Aows + Bow, = 74 — Csws — riﬂ,l — rﬁﬂ,2 (8.5a)
T1 T2
o, 9
Bots + Cotoe = 11 — cowe + —S7 4+ S, (8.5b)
(21 Try
where
r 2 r 2 r 2 P 2
Ay =1, + 1, + <i> I, + (ﬁ> I, +n (i) L, + (ﬁ) I, (8.6a)
Trq Try T'p, T'py
TS TS TS 7nS
By = —4r, <‘71L~1 + 72@2) — onr, (Tlfpl + T?Im) (8.6b)
TTI TT? Tpl Tp2
I, 1, I I
Co = I, + 412 (71 + —22) + nr? (mp1 + My, + 5+ %) (8.6¢)
,rrl 72 7/.pl TPQ

with rg,, 7s,, 77, Ty, Tp, and 7p, indicating the pitch radius of the sun, the ring, and the planet gears

of the planetary sets.

8.2.2 Gear-shifting Problem

If z1(t) = w.(t) and z5(t) = w;(t) indicate the states, based on Egs. (8.5) with no external load, the

state-space equations take the form

x(t) = Ax(t) + Bu(t) (8.7)

where u(t) = |:TT1 (t) Ty (t) Ta(t) " denotes the control input. The entries of A € R**? and
B € R?*3 depend on the system parameters in Egs. (8.5) and (8.6), such as the damping coefficients,
the radii of the components and the generalized inertia terms. As an example, in the case of
switching from the first gear ratio to the second one, at the beginning (¢ = ?¢) and the end (¢ = t¢)

of gear-shifting we have

Wry (t()) =0, 7, (tO) =0, w?"z@f) =0, 7, (tf) =0 (8.8)

which means that at ¢t = ¢, the first ring gear 1s engaged and the second one released, while at the
end, it is the other way around.
Note that, based on Egs. (8.8), there are initial and final constraints on some control inputs.

Moreover, the system is over-actuated; there are only two states to be controlled, while three control
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inputs. These properties make the gear-shifting problem complicated. A control algorithm for

gear-shifting is developed in Section 8.3.

8.3 Gear-shifting Control Scheme

This section is devoted to the proposed gear-shifting control method in the designed MST based
on DP. In the first subsection an outline of DP is provided for quick reference. Applying DP for
gear-shifting in multi-speed EVs is discussed in Subsection 8.3.2.

8.3.1 Dynamic Programming

In this subsection, the fundamentals of DP, as introduced by R. E. Bellman in the late 1950s [102],
is briefly described. DP can be employed to solve an extensive range of optimal control problems,
including nonlinear and/or time-varying systems.

Bellman’s DP is based on the principle of optimality, namely,

An optimal policy has the property that no matter what the previous decisions were, the
remaining decisions must constitute an optimal policy with regard to the current state

obtained from those previous decisions.

Based on the above-mentioned principle, any portion of an optimal trajectory is optimum. Hence,
DP implies that the optimal control inputs can be found backward-in-time, from the final stage.
The main advantage of DP is reducing the number of required calculations dramatically, as the
number of decisions at each stage is restricted. In other words, instead of trying all admissible
trajectories leading from each state to the final state and selecting the one with the lowest cost, which
is an exhaustive and time-consuming search, the principle of optimality is applied in DP. In fact,
for the N-stage process, DP involves N2/2 + N additions, while the direct enumeration requires
(N — 1)N!/((N/2)!(N/2)!) additions. For instance, for N = 20, DP requires only 220 additions,
while enumeration involves more than three million additions. Another advantage of DP is applying
constraints on the control inputs and state variables readily.

Consider a nonlinear system

Xk+1 :fk(xk,uk), ]{I:Z,Z—Fl,,N—l (89)
which implies that [, V] is the interval of interest. Let us assume that the performance index is

N-1

Ji(xi) = ¢(N,xn) + > Li(x, uy) (8.10)

k=i
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The problem consists now in finding the optimal control inputs u," ' which minimize the
performance index (8.10) subject to constraints (8.9), based on the principle of optimality.

Assume that J;',  (x;1) indicates the optimal cost from stage & + 1 to the final stage IV for all
possible states x; 1. This optimal cost is obtained when the optimal control inputs uj_ , uz_ o, ...,
u}_, are applied to the system with the state x;4,. Now, by applying an arbitrary control uy, at

stage k, the new cost can be written as

Jk(Xk) = Lk(Xk, uk) + J]:+1(Xk+1) (8.11)

Based on Bellman’s principle of optimality, the optimal cost from stage &k can be expressed as

(]]:(Xk) = IIlllin(Lk(Xk, uk) + J;Jrl(Xk_H)) (812)

which is called the functional equation of DP. In other words, the optimal control input uj, at the kth
stage is the control input u,, that minimizes the performance index (8.12). This equation can be used
for implementation of DP while moving backward from the final stage.

Note that, in using DP, additional constraints and/or limits can be applied on the states and
control inputs. Therefore, in implementing DP, all values must satisfy the constraints and stay within

the admissible region. The main advantages of DP are summarized below.

e The solution found by DP is the global minimum, as the functional equation (8.12) is solved
using a direct search. Since, instead of trying all admissible control inputs, the ones that

satisfy the principle of optimality are considered, the direct search is feasible by DP.

e DP leads to the optimal control inputs in a closed-loop form, i.e., the optimal inputs are
known for all admissible states. Hence, even if we deviate from the optimal trajectory, the

new optimal path from the current state to the target can be readily determined.
e The number of calculations required to find the optimal control policy is reduced significantly,

since DP employs the principle of optimality [70, 130].

8.3.2 The Control Algorithm Using DP
As mentioned in Subsection 8.2.2, for switching from the first to the second gear ratio, at the
beginning and at the end of gear-shifting, the conditions

wr (to) =0, 7,(t) =0, wy,(ty) =0, 7,(tf)=0 (8.13)

must be satisfied, which represent initial and final constraints on both the states and the control inputs.

Approximating X(¢;41) & (Xx+1 — Xi) / T, where T indicates the sampling time, the discrete-time
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state-space model of Eq. (8.7) is given by

Xg+1 = Fka + Gkuk (814)
with F, = 1 4+ T'A and G, = TB, where 1 denotes the identity matrix. Hence, assuming the
process has N stages (k = 0,1,..., N — 1), the conditions (8.13) change to

w(0)=0, 7.,0)=0, w,(N)=0, 7,(N—-1)=0 (8.15)

For a smooth shift, during gear-shifting, the output angular velocity w, should remain constant—
we(k) = we,, Where w,, denotes the output angular velocity before gear-shifting. Hence, assuming

that the desired final value of wj is w; ., the performance index is defined as!

=2

J =c1(k)(ws(N) — wsf)Q + [CQ(k:)(wc(k) - cuco)2 (8.16)

+ (X1 — xu) " Ca (k) (%1 — Xi) + (W1 — )T Ca(k) (Wgr — uy,)]

B
Il

where the last two terms indicate the degree of smoothness of the states and the inputs during
shifting, with the weighting matrices C3(k) and C4(k) assumed symmetric and positive definite.
Similarly, ¢; (k) > 0 and co(k) > 0 denote the weighting numbers for the first two terms in J.

Additionally, the input angular velocity w, should stay within its admissible region in all stages,
L.e., assuming its initial value is wy,, with w,, < ws,, the condition ws, < ws(k) < ws, must be met
during gear-shifting. Note that, due to the limitations of the power supply, there are limitations on
the control inputs, too.

Eventually, the problem consists in finding the control inputs u; that minimize the performance

index (8.16) subject to constraints (8.14), with the conditions below:?

ws(0) = wsy, 7,(0) =0, 7, (N—=1)=0, ws <ws(k)<ws, (8.17)

while the control inputs must stay within the predefined limits.

8.4 Simulation Results

Simulation results obtained with the foregoing scheme are reported in this section.
Assuming ¢ €[0,0.1], N = 10 (a ten-stage process)’ and w,, = 10 rad/s, while the gear ratios

are 4 and 8/3, we have

'Note that if w.(N) = we, and ws(N) = w,,, then w,,, (N) = 0, based on kinematic relations.

Note that, based on the kinematic relations, if w.(0) = w,, and w,(0) = wy,, then w,., (0) = 0.

3This is just an example to show that the algorithm works. In fact, depending on the control objectives and the
precision required, the time interval and the number of stages can be changed.
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ws(0) =40rad/s, ws(10) = ? rad/s (8.18)

Hence, based on Eq. (8.17),

ws(0) =40rad/s, 7,,(0)=0, 7.,(9)=0, ? rad/s < wy(k) < 40 rad/s (8.19)

As well, the limits of the control inputs are assumed to be

0.4Nm < 7y(k) <09Nm, 0<7,(k)<1.5Nm, 0<r7,(k)<15Nm (8.20)

In order to end up with a feasible number of computations, the number of calculations must be
limited. Thus, the admissible state and control values must be quantized when implementing DP.
However, to achieve more precise results at a relatively low computational cost, the admissible state
and control values should be quantized into small intervals. Depending on the weighting numbers
and matrices in the performance index (8.16), the optimum solution can vary. As the first example,
suppose that the objective is to have smoother changes in the angular velocities rather than control
inputs, i.e., the Frobenius norm of C3(k) is greater than that of C4 (k). For this case, the optimum
results using DP are illustrated in Figs. 8.2 and 8.3. The angular velocities of the input and output
shafts, w, and w,, are indicated in Fig. 8.2(a), while the angular velocities of the ring gears, w,, and
wr,, are represented in Fig. 8.2(b). As expected, the output angular velocity does not change during
gear-shifting. As well, the initial and final conditions on w; are satisfied. Furthermore, at ¢t = ¢, the
first ring gear is fixed, i.e., w,, 1s zero, while at the end, w,., is zero, i.e., the second ring gear is fixed.

Note that the angular velocities change remarkably smoothly.
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Figure 8.2: Ex. 1. The smooth changes of the angular velocities during gear-shifting: (a) the input
and output shafts; and (b) the ring gears
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The optimal control inputs obtained during gear-shifting are depicted in Fig. 8.3. As represented
in the figure, in the first stage, 7,, = 0, i.e., the second planetary gear set is completely disengaged,
while in the last stage, the first planetary gear set is completely released, i.e., 7,, = 0. Note that all

input values remain within their limits during gear-shifting.
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Figure 8.3: Ex. 1. The control inputs during gear-shifting for smooth changes of the states

As a second example, assume that the Frobenius norm of C,(k) is greater than that of C3(k),
i.e., smoother control inputs are desired. As indicated in the results shown in Figs. 8.4 and ??, the
control inputs change more smoothly compared to the previous example. Note that, as in the first
example, all terminal conditions are met. Besides, the angular velocities and the control inputs
vary within their predefined bounds. However, as expected, the angular velocities do not change as

smoothly as in the previous example.
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Figure 8.4: Ex. 2. The angular velocities while applying smoother inputs: (a) the input and output
shafts; and (b) the ring gears

Simulation results illustrate that the proposed scheme is quite promising for gear-shifting control

in MSTs for EVs, which is an over-actuated system with terminal constraints on the states and
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control inputs. In fact, depending on the control objectives, various performance indices with
different weighting numbers/matrices can be defined to solve the optimization problem and find the

optimal control inputs.
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Figure 8.5: Ex. 2. The smoother control inputs during gear-shifting

8.5 Conclusions

Application of MSTs, with a smooth and swift gear-shifting, can lead to improved efficiency in
EVs. Based on the dynamics model developed, a gear-shifting control methodology was established
for the proposed modular MST designed for EVs. From a control viewpoint, besides having an
over-actuated system, the problem includes end-constraints on some of the control inputs and
states. Consequently, to find the optimal control inputs, while satisfying terminal control and state
constraints, Bellman’s DP was invoked. Simulation results for different performance indices, defined
according to the control objectives, verify the performance of the proposed control scheme, as all
initial and final conditions on the controls and states were appropriately met. Further, the states and

the control inputs remained within their predefined limits.
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Chapter 9

Closing Remarks

Because of the problems with ICEVs, mainly pollution, we need to find a proper substitute. HEVs
and EVs, with a much lower impact on the environment, appear as appropriate substitutes for
ICEVs. Nonetheless, due to the current limited storage-capacity of electric batteries, it is required to
improve the efficiency of EVs. One step in this direction, adopting MSTs in EVs and developing
suitable control algorithms for gear-shifting, is reported here. In this way, the EM can operate in
the high-efficiency region for longer periods, given that a multi-speed EM can transmit the desired
power to the wheels through various gear ratios and, therefore, enhance the efficiency of EVs via

proper gear-shifting.

Various kinds of MSTs can be applied in EVs, such as AMTs, ATs, DCTs and CVTs, which were
initially designed for ICEVs. However, compared to ICEVs, EMs are controllable in an extensive
range of speed and torque. Accordingly, it is not required to disconnect the EM from the MST
during gear-shifting. In fact, to make smooth gear-shifting feasible, the torque applied by the EM
can be employed as an independent control input in MSTs designed for EVs. Since gear-shifting
affects passenger comfort, efficiency and vehicle drivability, the main objectives are seamlessness,
swiftness and continuous output-torque, which were given due attention. This study focused on
establishing several algorithms for gear-shifting in the proposed MST for EVs, with the advantages
of simplicity and modularity, while developing the appropriate controllers to adequately meet the
shifting targets. The summary of the results and the main conclusions of this research work are

included in Section 9.1. Section 9.2 includes recommendations for future work.
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9.1 Results and Conclusions

The mathematical model of the proposed MST was established using a Lagrangian formulation.
Next, based on the process and measurement models, the Kalman-filter, the Luenberger observer
and neural networks were utilized for the estimation of the states, the unknown arbitrary disturbance
and the unknown clutch torque applied to the MST. To assess the estimation algorithms, different
disturbances were applied to the transmission, such as linear, parabolic, sinusoidal, and arbitrary.
Results showed that the Kalman filter outperforms the two other methods. In fact, since the Kalman
filter is based on a mathematical model, not the case of neural networks, it is more effective. Further,
compared to the Luenberger observer, the Kalman filter considers the covariance of the noise of both
the process and the measurement models. Also, according to the error covariance, the Kalman gain

is updated during the estimation, while the Luenberger gain remains constant.

Considering the optimum performance under functional constraints, the gear-shifting in the
proposed transmission was investigated. Firstly, based on the kinematic relations, the gear-shifting
problem was stated in the space of angular velocities. Next, employing variational calculus and
polynomial transition functions to find the optimum trajectory, the schedules of the angular velocities
during gear-shifting were determined, for a swift, smooth operation. After comparing the results
obtained with the suggested functions, 2-3, 3-4-5 and 4-5-6-7 polynomials, while considering
the limits on the power supply, it was concluded that the 3-4-5 polynomial offers the optimum
performance. In a 3-4-5 polynomial, the continuity of the angular velocity, acceleration and jerk are
guaranteed. Based on the inverse dynamics of the system, the corresponding input torques of the

EM and the clutches were also found.

From a control standpoint, in the gear-shifting problem, the number of control inputs is greater
than the number of outputs, thereby leading to an over-actuated system. Besides, conditions on the
end values of some control inputs and states are imposed. Consequently, to meet all terminal control
and state constraints, while following the desired trajectory to ensure swiftness and seamlessness,

several control algorithms were developed for this specific problem.

The first proposed scheme includes the approaching phase and the coasting phase. In the
former, the goal is to shift the gears without engaging the free clutch; in the latter, the free clutch
starts engaging. Using trial-and-error and genetic algorithms, various PID controllers were tuned
and compared to find the appropriate control inputs for each phase of the proposed gear-shifting
algorithm. Depending on the phase and the gear ratio values, a supervisory controller was applied
to choose the suitable PID gains, i.e., PID gain-scheduling. Due to the motor limitations, in order
to implement the schedule on a physical prototype, saturation was included for the control inputs.
Results showed that the genetic algorithm scheme led to a controller with both a much shorter

shifting time and a better performance in the presence of unknown external disturbances. Further,
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the desired trajectories were tracked plausibly, while all end-point conditions were satisfied.

In the second method, to guarantee velocity, acceleration and jerk continuity while meeting the
input terminal constraints, one input was suggested to be changed autonomously, based on a 2-3
blending polynomial. Subsequently, the new fully-actuated system was controlled using an LQI
controller, an extension of the LQR for tracking problems. Some parameters, such as the mass of
the vehicle, the vehicle speed, the forces between road and tires, the road slope and the aerodynamic
drag force, affect considerably the size of the EMs employed and the ranges of power and torque
applied in a real EV. Accordingly, to evaluate the performance of the proposed algorithm and include
the effects of all parameters mentioned above, unknown external disturbances and external loads
were assumed to be applied to the MST during gear-shifting. Compared to the first approach, this
strategy was less sophisticated for implementation on a real MST. Besides, the inputs changed more

seamlessly than when the first method was used.

In addition to the first two algorithms, two different novel, non-standard optimal control problems
were formulated to find the continuous, seamless optimal control effort for this specific over-actuated
system, with end control and state constraints. In fact, compared to classical approaches, which
only include end-time and state conditions in formulating optimal control problems, in our proposed
schemes, besides the seamlessness and continuity of the control inputs in the given time interval,
one can apply a set of soft or hard boundary conditions on the controls too. In other words, in
finding the necessary conditions for optimality, in the first approach, a modified terminal penalty
term consisting of the terminal control input was included in defining a general Lagrange variational
problem. In the second approach, however, the time-derivative of the control input was included
in the functional. The results were narrowed to find control allocation in an over-actuated LQT
problem for LTV systems, applicable to the gear-shifting problem in MSTs for EVs. Nonetheless,
the results can be applied to various optimal control problems with initial and final control and/or
state constraints, where the smoothness of the system operation is required over extended periods. If
the constraints at the ends are reasonable and a solution exists, the proposed schemes can also be

used for either fully-actuated systems or in the presence of external disturbances.

Finally, Bellman’s DP and the principle of optimality were adopted to solve this specific optimal
control problem. Indeed, to find the optimum trajectory for the states, while meeting both control
and state boundary conditions, a control method was proposed based on DP. The solution found this
way is the global minimum, as the functional equation is solved using a direct search. Since, instead
of trying all admissible control inputs, the ones that satisfy the principle of optimality are considered,
the direct search is feasible for DP. This way, the computational complexity required to find the
optimal control policy was also reduced significantly. Furthermore, DP leads to the optimal control
inputs in a closed-loop form, i.e., the optimal inputs are known for all admissible states. Hence, even

if we deviate from the optimal trajectory, the new optimal path from the current state to the target
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can be readily determined. To find the optimal state trajectory and control input using DP, depending

on the control objectives, various performance indices with different weights can be defined.

9.2 Future Work

Based on the current study, several recommendations for future research are mentioned below.

e A more detailed, realistic mathematical model of the proposed transmission designed for
EVs should be derived. In other words, in the model derivation, one should consider all the
nonlinearities, energy sinks and flexibility, i.e., stiffness and dissipation, of all components,
including gears, planet-carrier and shafts. That is, Coulomb and viscous friction between

different elements of the transmission in contact and bearings should be considered.

e For estimation of the unavailable states, the unknown external disturbances and the unknown
inputs applied to the transmission system, assuming a nonlinear model, the model-based
extended Kalman filter (EKF) should be employed. In fact, EKF is an extension of the Kalman
filter for nonlinear systems, which, compared to other algorithms, provides much better results
with the least errors. Moreover, for comparison of the results, adaptive approaches based on

the steepest-descent and heuristic fuzzy logic systems should be adopted.

e In order to develop a more comprehensive gear-shifting control algorithm that can readily be
implemented on a physical EV, the dynamics models of all elements and actuators of the trans-
mission system, including the clutches and the EMs, should be considered in designing/tuning

controllers.

e Depending on the market feedback and the customer’s need, after implementation of the
proposed gear-shifting algorithms on a real EV, various performance indices should be
considered in defining the optimization problems and finding the optimum trajectory of

the angular velocities for gear-shifting.

e To overcome uncertainty, noise and disturbances, adaptive schemes, such as a model-reference
adaptive controller (MRAC) or a model predictive controller (MPC), robust H, controllers,
and nonlinear controllers, e.g., different versions of sliding-mode controllers, should be

employed for gear-shifting.

e New gear-shifting algorithms should be established based on optimal control where, instead
of tracking a predefined blending trajectory, the optimum state trajectory and control input are
determined directly, while considering the gear-shifting objectives and satisfying the boundary

conditions.
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e To evaluate the performance of all the proposed gear-shifting algorithms, these algorithms
should be implemented on a physical EV. This way, the schemes can be tested and modified

in the real world.
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Appendix

As per Section 1.4, when formulating the gear-shifting control algorithms in EVs, the clutches are
considered active. In other words, regardless of the angular velocity direction, they are capable of
applying the required torques in either directions. As an example, a mechanism for such operation is
described below.

ring

Ty

sun

carrier

wheel Tw

A: The mechanism for applying active torques

In the proposed mechanism, a metal wheel surrounded by rubber, to provide high friction, is
employed to control the motion of the ring gear, as illustrated in Fig. A. As shown in the figure, the
wheel connected to the motor shaft is in direct contact with the ring gear. By activating the EM, as

an independent control input, the required torque can be applied to the ring gear in both directions.
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However, the speed and torque ratios depend on the radii of the ring gear and the wheel, i.e., . and
. In other words, assuming that w, and w,, indicate the angular velocities of the ring gear and the

wheel, respectively, and 7, and 7,, denote the corresponding torques, we have

Wy Tw  Tw
W T Ty
A similar mechanism can be developed for this operation where the wheel is replaced by a gear
installed on the motor shaft to drive the ring gear. Note that, in this case, the ring gear must have
teeth on the outer surface as well [131, 132].
On the other hand, a passive clutch applies a dissipative force. In fact, the torque of a passive

clutch can only be applied in the opposite direction of the ring gear angular velocity, i.e.,

Tr, = —|7|sgn(w,,), for w, #0

Try = _’7—7‘2|Sgn<w7”2)7 for Wry 7é 0

where sgn(-) denotes the sign function. For passive clutches, the dynamics model of the transmission
system can be expressed as

sy T'sy
Aun(0) + Bso(0) = 72— oo+ (22 ) I lsentin) + (22 I fsenir,)

T1 T2

2r, 27,
Coislt) + Doslt) = 1= s — (22 ) I st = (222 Ilsenlny

T1 T2

As an example, assuming w,., = 10 rad/s, for switching from the second to the first gear ratio, at

the beginning,

wy, (to) =40/9rad/s, w,,(to) =0, 7,(to) =0

while at the end,

W (ty) =0, wy(ty) =—8rad/s, 7.,(tf) =0

Hence, during gear-shifting w,, > 0 and w,, < 0, which implies that 7., < 0 and 7, > 0. At
the beginning of the gear-shifting, the second clutch is engaged. According to Subsection 3.4.1, if
this clutch is released based on a 2-3 blending polynomial, the continuity of the angular velocity,
acceleration and jerk are guaranteed, while the control terminal conditions are also met. The other
two inputs can be found by solving the inverse dynamics or using a proper controller. The results

are represented in Fig. B.
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B: The input torques during gear-shifting using passive clutches

As indicated in Fig. B, the second clutch is disengaged using a 2-3 polynomial, while satisfying
7., > 0. The first clutch also engages while meeting 7,, < 0 until 7,, is zero. When the second
clutch is released and w,, = 0, the direction of the torque applied by this clutch changes, since the
first ring gear tends to rotate in the negative direction although its angular velocity is zero. Note that
an engaged clutch always applies a torque to resist the motion of the ring gear, even if its angular

velocity is zero.
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