
A Spectral Finite Element Method on
Non-Conforming Meshes:

Domain Decomposition for High Frequency
Scattering Problems

Ryan Galagusz

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

December 2018

A thesis submitted to McGill University in partial fulfilment of the requirements for the
degree of Doctor of Philosophy.

c© 2018 Ryan Galagusz

Contents

Title Page 1

.

Contents 2

.

List of Figures 5

.

List of Tables 9

.

Abstract 10

.

Résumé 11

.

Acknowledgements 13

.

1 Introduction 14

.

1.1 Historical Overview . 16

.

1.2 Relation to Prior Work . 18

.

1.3 Thesis Outline . 21

.

2 Preliminaries 24

.

2.1 Interpolation-based Numerical Integration 24

.

2.2 Interpolation-based Numerical Differentiation 33

.

3 One-Dimensional Finite Element Methods 42

.

3.1 The Variational Formulation . 42

.

3.2 The Ritz Method . 46

.

3.3 The Galerkin Method . 49

.

3.4 Solving the Saddle Point System . 51

.

3.5 The Classical Finite Element Method . 55

.

3.6 Adaptive Finite Element Considerations . 61

.

2

4 A Fast Adaptive Finite Element Method 62

.

4.1 Sparsity of the Operator Matrix . 62

.

4.2 Computing the Forcing Term . 75

.

4.3 Spatially Varying Parameters . 79

.

4.4 A Sparsity-Aware Finite Element Method . 84

.

4.5 Numerical Results . 92

.

5 A Space-Time Finite Element Method 102

.

5.1 Space-Time Galerkin Methods . 103

.

5.2 Boundary Constraints and Lagrange Multipliers 107

.

5.3 Space-Time Reflection of a Gaussian Pulse 114

.

5.4 Space-Time Simulation of a Fiber Bragg Grating 116

.

6 Extension to Higher Spatial Dimensions 123

.

6.1 The Variational Formulation . 124

.

6.2 The Ritz Method . 128

.

6.3 The Galerkin Method . 129

.

6.4 The Canonical Element in Higher Dimensions 131

.

7 A Single Square Element 138

.

7.1 Problem Specification and Basis Functions 138

.

7.2 Legendre Expansions for Spatially Varying Coefficients 140

.

7.3 Assembling the Operator Matrix . 146

.

7.4 Computing the Forcing Term . 155

.

7.5 Enforcing Dirichlet Boundary Conditions . 157

.

7.6 Examples . 162

.

8 A Single Curvilinear Quadrilateral Element 178

.

8.1 Transfinite Interpolation . 179

.

8.2 Polynomial Representation for Explicit and Implicit Boundaries 181

.

8.3 Solving PDEs on Curvilinear Quadrilaterals 185

.

8.4 A Prototypical Curvilinear Example . 190

.

9 A Non-Conforming Finite Element Method 195

.

9.1 Quadrilateral Mesh Generation . 196

.

9.2 A Conforming Finite Element Method . 207

.

9.3 Including Non-Conforming Constraints . 213

.

9.4 Adaptive Finite Element Considerations . 221

.

3

9.5 Bounded Electrostatic Examples . 226

.

9.6 Unbounded Time-Harmonic Scattering Example 236

.

10 Domain Decomposition for Non-Conforming Problems 256

.

10.1 The Dual-Primal Algorithm . 257

.

10.2 A Sparse Basis for the Null Space . 261

.

10.3 Consequences of this Choice of Basis for the Null Space 266

.

10.4 Considerations for the Helmholtz Equation 274

.

10.5 Convergence Tests . 281

.

10.6 Unbounded Time-Harmonic Scattering Examples 289

.

11 Conclusion 320

.

11.1 Future Work . 321

.

Bibliography 324

.

A The Fast Legendre Transform 342

.

A.1 The Fast Chebyshev Transform . 344

.

A.2 Legendre to Chebyshev Connection Coefficients 352

.

A.3 Factorization of the Hankel Part . 359

.

A.4 Fast Toeplitz Products . 367

.

A.5 Computing the Hankel and Toeplitz Seed Vectors 372

.

A.6 Finalizing the Algorithm . 374

.

B Fast Legendre Solvers 378

.

B.1 Generalized Sylvester Equations . 378

.

B.2 Preconditioners for the Helmholtz Problem 379

.

B.3 Partial Diagonalization . 385

.

B.4 Divide and Conquer Eigensolvers . 387

.

B.5 The Fast Multipole Method . 405

.

B.6 Properties of the Dirichlet Eigensystem . 422

.

4

List of Figures

2.1 Clenshaw-Curtis weights as a function of node positions. 30

.

4.1 Comparison of sparsity patterns for different types of basis functions. 71

.

4.2 Condition number of the operator matrix as a function of increasing lower
polynomial degree. 73

.

4.3 Condition number of the operator matrix as a function of increasing higher
polynomial degree. 74

.

4.4 Sparsity pattern for the order three tensor of integrals of triple products of
Legendre polynomials. 81

.

4.5 Sparsity pattern for the saddle point system which solves a simplified screened
Poisson equation. 94

.

4.6 Comparison of various measures of error in the computed solution as a func-
tion of the total number of degrees of freedom, as well as a plot of the final
computed solution for a simplified screened Poisson problem. 96

.

4.7 Comparison of various measures of error in the computed solution as a func-
tion of the total number of degrees of freedom, as well as a plot of the final
computed solution for a uniform sphere of charge problem. 100

.

4.8 Sparsity pattern for the saddle point system used to compute the electrostatic
potential for a sphere of uniform charge density. 101

.

5.1 Sparsity pattern for a single element space-time problem. 117

.

5.2 Space-time solution of the one-dimensional wave equation corresponding to
a reflecting Gaussian pulse. 118

.

5.3 Reciprocal of permittivity profile for a Gaussian apodized fiber Bragg grating
and incident modulated Gaussian pulse. 119

.

5.4 Simplified sparsity pattern for a multiple element space-time problem. . . . 121

.

5.5 Space-time distributions of the magnetic field intensity for a fiber Bragg grat-
ing problem. 122

.

5

6.1 Sparsity pattern for the order three tensor of integrals of triple products of
orthonormal polynomials on the triangle. 135

.

6.2 Sparsity pattern for the matrix of variable coefficient weighted inner products
of orthonormal polynomials on the triangle. 136

.

7.1 Single square element solution to Poisson’s equation subject to zero Dirichlet
boundary conditions. 165

.

7.2 Typical sparsity pattern of the saddle point system for a single element solu-
tion to a Poisson problem with Dirichlet boundary conditions. 166

.

7.3 Single square element solution to Helmholtz’ equation subject to zero Dirich-
let boundary conditions. 167

.

7.4 Typical sparsity pattern of the saddle point system for a single element solu-
tion to a Helmholtz problem with Dirichlet boundary conditions. 168

.

7.5 Single square element solution to Laplace’s equation subject to inhomoge-
neous Dirichlet boundary conditions. 170

.

7.6 Solution of a variable coefficient Helmholtz problem on a single square element.172

.

7.7 Error and sparsity pattern associated with the variable coefficient Helmholtz
problem solution. 173

.

7.8 Solution of a variable coefficient problem with mixed Robin and Dirichlet
boundary conditions on a single square element. 176

.

7.9 Error and sparsity pattern associated with the variable coefficient mixed
boundary condition problem solution. 177

.

8.1 Solution of a variable coefficient problem with mixed Dirichlet and Robin
boundary conditions on a single curvilinear domain. 193

.

8.2 Error and sparsity pattern associated with the curvilinear domain problem
solution. 194

.

9.1 Example of a structured Cartesian mesh after certain vertices are projected
onto interfaces. 200

.

9.2 Example of a structured Cartesian mesh after addition of pillow layer elements.201

.

9.3 Local canonical element vertex numbering and edge numbering. 202

.

9.4 Example of a structured Cartesian mesh after a small number of iterations
of Laplacian smoothing and local mesh optimization. 205

.

9.5 Example of a structured Cartesian mesh after quadtree coarsening and com-
putation of curvilinear edges. 207

.

6

9.6 Schematic illustrating how to choose signs when imposing continuity between
non-conforming elements. 220

.

9.7 Solution of Poisson’s equation for a given eigenfunction of the disk with as-
sociated mesh. 228

.

9.8 Pointwise error for the eigenfunction of the disk and sparsity pattern for the
saddle point matrix used to compute the approximate solution. 229

.

9.9 Schematic diagram for a shielded microstrip line. 231

.

9.10 Solution of a variable coefficient Laplace equation for a shielded microstrip
line with associated mesh. 232

.

9.11 Sparsity pattern for the saddle point matrix used to compute the shielded
microstrip line solution. 233

.

9.12 Schematic diagram of a coaxial waveguide discontinuity. 235

.

9.13 Solution of an axisymmetric Poisson equation for a waveguide discontinuity
problem with associated mesh. 237

.

9.14 Sparsity pattern for the saddle point matrix used to compute the waveguide
discontinuity problem solution. 238

.

9.15 Solution of Helmholtz’s equation for scattering from an infinitely long circular
cylinder with associated mesh. 250

.

9.16 Pointwise error for the circular cylinder scatterer problem and sparsity pat-
tern for the saddle point matrix used to compute the approximate solution. 252

.

9.17 Radar cross section of the circular cylinder with associated error. 255

.

10.1 Visual aid for construction of the sparse basis for the null space used in the
domain decomposition method. 266

.

10.2 Comparison of dispersion errors and eigenvalues of preconditioned coarse
problems for the Helmholtz equation with different number of continuity con-
straints imposed between elements. 276

.

10.3 Experimental determination of the dependence of the condition number of
the domain decomposition method applied to a Poisson test problem on the
polynomial degree of basis functions. 286

.

10.4 Preconditioned relative residual versus iteration number for the unmodi-
fied domain decomposition method and modified method with added Robin
boundary conditions applied to a test Helmholtz problem. 289

.

10.5 Mesh and relative residual versus iteration number for the domain decompo-
sition algorithm applied to a dielectric cylinder scattering problem. 292

.

7

10.6 Computed scattered field and error in the scattered field for a dielectric cylin-
der scattering problem. 294

.

10.7 Radar cross section and error in the radar cross section for a dielectric cylinder
scattering problem. 296

.

10.8 Computed total field and relative residual versus iteration number for a
Luneburg lens problem. 297

.

10.9 Computed total field and relative residual versus iteration number for an
Eaton lens problem. 300

.

10.10 Mesh used to compute the scattered field for a photonic crystal waveguide
problem. 301

.

10.11 Computed total field and relative residual versus iteration number for a pho-
tonic crystal waveguide problem. 302

.

10.12 Mesh and relative residual versus iteration number for the domain decom-
position algorithm applied to a perfect electric conducting ogival cylinder
scattering problem. 305

.

10.13 Computed scattered field and bistatic radar cross section for a perfect electric
conducting ogival cylinder scattering problem. 306

.

10.14 Magnetic field observed at the surface and monostatic radar cross section for
a perfect electric conducting ogival cylinder scattering problem. 308

.

10.15 Mesh and relative residual versus iteration number for an electromagnetic
cloak problem. 317

.

10.16 Computed total field and error in the scattered field for an electromagnetic
cloak scattering problem. 318

.

10.17 Radar cross section for an electromagnetic cloak scattering problem. 319

.

8

List of Tables

2.1 Newton-Cotes weights for equally spaced nodes. 29

.

2.2 Forward finite difference coefficients. 39

.

2.3 Centered finite difference coefficients. 40

.

4.1 Error for uniform h-refinement applied to the boundary layer problem. . . . 95

.

4.2 Error for uniform h-refinement applied to the sphere of charge problem. . . . 98

.

7.1 Vertex-to-edge incidence list for the square. 162

.

10.1 Number of iterations required for the preconditioned conjugate gradients method
to converge and maximum eigenvalue of the preconditioned system for a test
Poisson problem. 283

.

10.2 Number of iterations required for the preconditioned generalized minimum
residual method to converge for a test Helmholtz problem. 287

.

9

Abstract

Computational electromagnetics—the solution of Maxwell’s equations using computers—is
a key component of the modern design cycle for a wide variety of electrical engineering
devices. These include, but are not limited to, antennas, microwave devices, photonic crys-
tals, optical waveguides, and electric machines. This wide range of devices demonstrates
the predictive power of the theory of electromagnetism and the need to accurately analyze
Maxwell’s equations in situations for which classical mathematical techniques are ineffective.

This thesis describes a high accuracy finite element method suitable for solving Poisson
and Helmholtz problems, which arise from Maxwell’s equations. High accuracy finite element
methods are particularly useful for high frequency electromagnetic scattering problems. This
is because experimental and theoretical results regarding dispersion errors for finite element
methods applied to the Helmholtz problem indicate that an effective approach to control
dispersion is to increase the polynomial degree of the finite element model as a function of
element size and frequency. Increasing the polynomial degree where solutions are smooth
leads to high accuracy. However, there are difficulties associated with the solution of the
resulting linear systems when the polynomial degree increases. This tends to limit the extent
to which high degree polynomial modeling is adopted in practice.

To circumvent these difficulties, this thesis develops, from first principles, a high accuracy
one-dimensional finite element method that exploits Legendre polynomial expansions and
the associated fast Legendre transform. The method is extended to higher dimensions,
and implemented and tested in two dimensions, by developing a systematic approach to
enforce inter-element continuity. This approach allows for both arbitrary refinement of local
polynomial degree and non-conforming mesh refinement.

The method proposed in this thesis is capable of computing solutions to a user speci-
fied tolerance—potentially as stringent as machine precision—efficiently. All element-wise
computations are performed with near linear computational complexity, which allows for the
use of high polynomial degree to achieve high accuracy. The developed method is efficient
because it consists of a domain decomposition method that fully exploit these fast element-
wise computations. As long as the coupling between domains in the decomposition increases
in such a way as to control dispersion errors, the method can be applied to compute high
accuracy solutions while only solving systems that are much smaller than the total number
of unknowns. The thesis demonstrates this behavior on several electromagnetic problems,
including beam steering by lenses and photonic crystal waveguides, and radar cross section
computation for dielectric, perfect electric conductor, and electromagnetic cloak scatterers.

10

Résumé

L’électromagnétisme numérique—la solution des équations de Maxwell par ordinateur—est
un élément clé du cycle de conception moderne d’une grande variété de dispositifs communs
en génie électrique. Ces dispositifs comprennent les antennes, les dispositifs à micro-ondes,
les cristaux photoniques, les guides d’ondes optiques et les machines électriques. Cette large
gamme de dispositifs démontre le pouvoir prédictif de la théorie de l’électromagnétisme et
la nécessité d’analyser avec précision les équations de Maxwell quand les techniques mathé-
matiques classiques ne sont pas efficaces.

Cette thèse décrit une méthode des éléments finis de haute précision pour résoudre
numériquement les équations de Poisson et de Helmholtz qui proviennent des équations de
Maxwell. La méthode des éléments finis de haute précision est particulièrement utile pour
résoudre numériquement les problèmes de diffusion électromagnétique à haute fréquence.
Plusieurs résultats expérimentaux et théoriques concernant les erreurs de dispersion de la
méthode des éléments finis pour l’équation de Helmholtz indiquent qu’une approche efficace
pour contrôler la dispersion consiste à augmenter le degré du modèle polynomial des éléments
finis en fonction de la taille des éléments et de la fréquence du problème. L’augmentation du
degré polynomial mène à haute précision là où la solution est lisse. Cependant, lorsque le
degré polynomial augmente, le temps de calcul pour résoudre le système linéaire provenant
de la méthode des éléments finis devient considérable. Cela limite la mesure dans laquelle la
modélisation polynomiale à haut degré est adoptée en pratique.

Pour contourner ces difficultés, cette thèse développe, à partir de principes de base, une
méthode des éléments finis unidimensionnel de haute précision qui exploite les polynômes
de Legendre et la transformée de Legendre rapide. La méthode est étendue à dimensions
supérieures, et réalisée et testée en deux dimensions, en développant une approche systé-
matique pour assurer la continuité entre les éléments. Cette approche permet à la fois un
raffinement arbitraire du degré polynomial local et un raffinement du maillage non conforme.

La méthode proposée dans cette thèse est capable de calculer des solutions à une tolérance
spécifiée par l’utilisateur—possiblement aussi stricte que la précision double—efficacement.
Les calculs pour chaque élément sont effectués avec une complexité de calcul quasi linéaire, ce
qui permet d’utiliser un degré polynomial élevé pour obtenir une méthode à haute précision.
La méthode développée est efficace car elle consiste d’une méthode de décomposition de
domaine qui exploite les calculs rapides pour chaque élément. Tandis que le couplage entre
les domaines dans la décomposition augmente de manière à contrôler les erreurs de disper-
sion, la méthode peut calculer des solutions de haute précision en résolvant que des systèmes

11

beaucoup plus petits que le nombre total d’inconnues. Cette thèse démontre ce comporte-
ment avec plusieurs problèmes électromagnétiques, comprenant l’analyse par simulation des
ondes dirigées par lentille ou par guides d’ondes à cristal photonique, et le calcul de la section
équivalente radar des diffuseurs diélectriques et métalliques, et des capes d’invisibilité.

12

Acknowledgements

I would like to thank my supervisor Professor Steve McFee for the advice that he has pro-
vided throughout my graduate studies at McGill University. I am grateful for his patience,
understanding, and encouragement. His questions and comments during our conversations
have, on many occasions, completely changed my perspective on a problem and opened my
mind to ideas I may not have considered otherwise.

I would also like to extend my grattitude towards the members of my supervisory commit-
tee, Professors Dennis Giannacopoulos and Roni Khazaka. They, along with my supervisor,
showed me the ropes of computational electrical engineering. I didn’t know then, but I know
now that teaching is research.

In addition, I would like to thank my peers in the Computational Electromagnetics Lab
for stimulating discussions over the years. In particular, I would like to thank Adrian whose
enthusiasm for all things engineering science and mathematics is infectious. His curiosity
and mathematical rigor are exemplary, and I am thankful for our continued friendship.

Finally, I would like to express my appreciation to my family. Thank you for your
unwavering love and support. When I was younger, my parents and grandparents stressed
the importance of education. I don’t think they, nor I, thought that that meant pursuing
doctoral studies, but somehow, that’s what I’ve done. Thank you for instilling in me the
desire to learn.

This research was financially supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en
génie du Canada (CRSNG).

13

Chapter 1

Introduction

In 2013, the United Nations Educational, Scientific, and Cultural Organization (UNESCO)
proclaimed 2015 the International Year of Light and Light-based Technologies (IYL 2015)
[1

.

]. Their resolution cites notable anniversaries of several key scientific theories in the history
of light, including the 150th anniversary of Maxwell’s theory of electromagnetism. This the-
ory informs all aspects of the modern electrical engineer’s work. While the study of classical
electromagnetism is performed through the analysis of Maxwell’s equations, set forth in [2

.

],
the modern form of the equations was described in 1885 by Oliver Heaviside [3

.

], an electrical
engineer. Heaviside used the reformulation to study a wide variety of topics, including trans-
mission line theory and the skin effect and developed the operational calculus (a precursor
to the Laplace transform) to facilitate this analysis. His contributions to electrical engineer-
ing continue to be taught in the undergraduate curricula of major universities through the
instruction of electric circuits and electromagnetic fields and waves.

The finite element method applied to Maxwell’s equations is—to some extent—a natural
continuation of Heaviside’s pioneering work on the solution of Maxwell’s equations. Heavi-
side undertook a systematic study of the transmission line (a one-dimensional reduction of
Maxwell’s equations). In light of Heaviside’s solution of the one-dimensional equations, it is
natural to ask which solutions to the two- and three-dimensional cases can be computed. In
advanced electromagnetics courses, the first tool taught is the classical method of solution
using eigenfunction expansions [4

.

, 5

.

, 6

.

, 7

.

, 8

.

, 9

.

]. Classical eigenfunction expansions make
use of special geometric properties of the problem which allow for the separation of partial
differential equations (PDEs) into a set of related ordinary differential equations (ODEs)
whose series solutions are known. In the last 50 years, the finite element method has been
used to solve Maxwell’s equations in situations where the one-dimensional simplifications,
or classical eigenfunction expansions are not applicable [10

.

, 11

.

, 12

.

, 13

.

]. The method, put
simply, breaks the region of interest over which Maxwell’s equations are to be solved into a

14

number of disjoint subdomains (called elements). Over each element, the solution is approx-
imated by a linear combination of simple functions (often polynomial, called basis functions)
whose coefficients we seek. By ensuring that the local simple functions “agree” across ele-
ment boundaries, and that the local linear combinations “satisfy” the PDE, we determine
an approximate solution to Maxwell’s equations1

.

.
The primary objective of this thesis is to develop a high accuracy finite element method

which uses high polynomial degree basis functions on elements for the solution of Poisson
and Helmholtz equations, which arise from Maxwell’s equations. A high accuracy solver is
particularly useful for high frequency problems because experimental and theoretical results
regarding dispersion errors (sometimes called pollution errors) for finite element methods
applied to the Helmholtz equation suggest that an effective approach to control pollution
is to increase the polynomial degree (sometimes called order) as a function of element size
and frequency [14

.

, 15

.

, 16

.

, 17

.

, 18

.

, 19

.

]. While significant efforts have been made to avoid
polynomials in attempts to eliminate pollution errors, experimental evidence suggests that
high-order finite element methods are competitive with these alternative approaches [20

.

].
However, there are difficulties associated with the solution of the resulting linear systems
when the polynomial degree increases [21

.

, 22

.

] which tend to limit the extent to which high-
order methods are adopted in practice.

The method proposed in this thesis, which will be developed in one dimension, then
subsequently extended to higher dimensions (using two dimensions to illustrate the ap-
proach), is capable of computing solutions to a user specified tolerance (as stringent as
machine precision) efficiently. All element-wise computations can be performed with O (N)
or O (N(log2 N)2) complexity, where N is the number of unknowns per element. This allows
for the use of high polynomial degree to achieve high accuracy. The proposed method is
efficient because it consists of a domain decomposition algorithm which continues to exploit
these efficient decoupled element-wise computations at the cost of introducing a sparse cou-
pling matrix. In the domain decomposition method, the action of the inverse of the coupling
matrix applied to a vector is required. Since the dimension of the coupling matrix is a
frequency-dependent multiple of the number of interfaces between elements, the coupling
problem can become costly, but several examples in the thesis demonstrate that its cost is
small when the frequency of the problem is small and when the number of fine geometric
features of the problem is small. The coupling problem is always much smaller than the
total number of unknowns in the finite element problem. In constructing this high accuracy
finite element method, the main contributions of this thesis are:

1. The development of a one-dimensional finite element method that exploits Legendre
1The sense in which “agree” and “satisfy” are to be understood will be made precise later.

15

polynomial expansions to represent spatially varying parameters and forcing functions
which uses the fast Legendre transform to efficiently compute these expansions.

2. The development of a systematic approach to allow arbitrary element refinement and
polynomial degree mismatch between elements in higher dimensions needed to extend
the one-dimensional approach of Contribution 1.

3. The development of a domain decomposition method specially tailored for the types
of discretizations arising from Contribution 2.

4. Explanations and demonstrations of how the domain decomposition method in Con-
tribution 3 is suitable for both low and high frequency electromagnetic problems.

1.1 Historical Overview

The finite element method employed in the analysis of Maxwell’s equations is not new and,
as one might expect, significant progress has been made towards a fast and accurate solver.
In fact, the history of the finite element method can be traced back some 300 years beginning
with the work of several great mathematicians. For an excellent review of the history of the
finite element method, see [23

.

], which covers the first treatment of variational problems in
1696 up until the first modern electrical computing applications of the finite element method
in 1956. Here, we highlight some key contributions in this history, as outlined in that review.

We begin with the brachistochrone problem of Johann Bernoulli in 1696, which asks,
given two points A and B in the plane, to find the curve yielding the fastest travel time
of an infinitesimal point starting from A and traveling on the curve under the effect of
gravity to B. While many had provided solutions to the brachistochrone problem by 1744,
Euler solved the problem and a large class of similar variational problems by formulating a
more general minimization problem, and then showing that the minimizing solution solved
a corresponding ODE. Interestingly, Euler’s proof relied on breaking the interval into a set
of small segments, and approximating the curve by linear polynomials on each segment.
Some view this approach as a precursor to the finite element method, although many of the
ingredients that comprise a finite element method today are missing. In fact, that proof has
since been forgotten in favor of an elegant alternative presented by Lagrange in 1755 which
relied on perturbing the solution by a small arbitrary variation. This is the modern approach
used to derive from a variational equation the corresponding underlying ODE. It was not
until 1857 that Riemann showed that the solution of Laplace’s equation subject to Dirichlet
boundary conditions was equivalent to the solution minimizing a given energy functional.

16

This is Dirichlet’s principle, and was made rigorous between 1900 and 1904 by Hilbert. Ten
years later, Courant (Hilbert’s student) improved upon, and simplified Hilbert’s treatment.

The idea that such variational formulations could be solved approximately by substitut-
ing a linear combination of basis functions for the solution, reducing the infinite-dimensional
problem of minimizing the functional over a space of functions into a finite-dimensional
minimization problem in the unknown coefficients of the expansion was first proposed in
1908 by Ritz. There, Ritz began with two PDEs—the biharmonic equation as well as
Laplace’s equation—and wrote down the equivalent problem in variational form using Dirich-
let’s principle. He then introduced a linear combination of basis functions that led to a
finite-dimensional quadratic function in terms of the coefficients whose minimizer solved a
linear system of equations. His choice of basis functions was made so that integrals could be
evaluated by human computer, resulting in a diagonally dominant linear system that could
be solved (again, by human computer) using an iterative method!

The adoption of these methods in Western Europe was slow, but there was immediate
endorsement of these ideas in Russia, with Timoshenko (1913), Bubnov (1914), and Galerkin
(1915) all making use of and illustrating the effectiveness of the method for structural engi-
neering problems relating to rods and plates for shipbuilding. Bubnov noticed that it was
not necessary to appeal to the variational formulation, then recover the linear system via
minimization after the fact. He observed that one could obtain the same linear system di-
rectly by substituting the linear expansion for the solution in the PDE and then integrating
against a given basis function to obtain each equation separately. Today, this method is
known as Galerkin’s method as he was the first to observe that such an approach could also
be applied to equations that do not admit a variational formulation.

The basis functions employed by Ritz and Galerkin had been either eigenfunctions or
orthogonal functions to ease the computation of integrals in their respective approaches
(recall that neither had access to modern electrical computers). It was not until 1943 that
Courant proposed using basis functions that exist only on local subsets of the total domain
of interest. Courant suggested low order polynomials on disjoint triangular subdomains to
solve the plane torsion problem in what is considered by most mathematicians to be the first
paper on the finite element method. To most engineers, however, many details remained to
be specified. In fact, it was not until 1956 that Jon Turner’s structural dynamics group at
Boeing described the first modern electrical computing application of the method.

17

1.2 Relation to Prior Work

This historical perspective leads us to review the finite element method as applied to electrical
engineering problems. To my knowledge, the first such occasion dates to 1969 where the finite
element method was employed by Silvester to analyze homogeneous waveguide problems [24

.

].
It is interesting to note the lag between the first application of the finite element method to
electromagnetics and its first application in structural mechanics. This adoption was likely
slow for two reasons: one, discretization of Helmholtz’s equation (time-harmonic problems)
leads to indefinite matrices so that standard solvers for symmetric, positive definite systems
which arise when dealing with Poisson’s equation (static problems) such as the Cholesky
factorization or the Conjugate Gradient method should no longer be used [25

.

], and two,
that the engineering community had not yet found a satisfactory way to impose tangential
continuity of fields between elements rather than full continuity when solving the vector wave
equation [12

.

]. This thesis focuses on contributions to the first of these two difficulties, but
in this section, past efforts towards solving both problems are highlighted.

Regarding tangential continuity, Nedelec’s seminal 1980 work on mixed finite elements
in R3 has since been recognized as fundamental [26

.

]. Nedelec proposed on the tetrahedron
two families of finite element basis functions which were polynomial, and that allow direct
enforcement of tangential or normal continuity of vector fields, rather than standard con-
tinuity across element boundaries2

.

. To do this, Nedelec used the formalism of Ciarlet [27

.

],
which requires the specification of three properties to define an element: one, the canonical
region of the element (denoted K), two, the space of functions that can be represented on
K (denoted PK), and three, a set of linear functionals (referred to as degrees of freedom).
By specifying that K be the tetrahedron, PK be one of two special spaces of polynomials,
and that the degrees of freedom be special moments along edges, faces, and volumes of K,
Nedelec was able to show that the resulting polynomial basis functions could be used to
easily enforce tangential or normal continuity between adjacent elements.

Unfortunately, for the electrical engineer, such a specification does not yield explicit
representations of the basis functions which makes including them in a general finite element
code somewhat difficult. That being said, the basis can be computed by first picking an
arbitrary basis for PK and applying the linear functionals to this expansion, requiring that
the basis be interpolatory in the specified degrees of freedom. This yields a matrix whose
inverse is the basis transformation matrix from the arbitrary basis to the Nedelec basis.
Note that while the basis interpolates the degrees of freedom, they are degrees of freedom

2In the parlance of modern finite element analysis, these elements are conforming in the spaces H (curl)
and H (div) respectively (contrary to the standard H1 conforming elements).

18

associated with integrals along edges, faces, and volumes of K and do not interpolate a
vector function in the sense of a classical nodal basis [12

.

, 28

.

]. It is for this reason that the
name “edge element” has been associated with Nedelec’s tangential conforming elements,
which specify degrees of freedom of integrals on edges first, then faces, and finally volumes.
One of the important properties of the Nedelec families is that they satisfy a commuting
discrete de Rham diagram [29

.

]. This property is important in proving the convergence of
finite element solutions for Maxwell’s equations.

While Nedelec’s specification is valid for arbitrary orders of approximation, the resulting
basis functions are not hierarchical, meaning that if one increases or decreases the degree
of polynomial representation on a given element, one must do so for all elements. To this
end, Demkowicz et al. proposed a set of degrees of freedom that preserve the discrete de
Rham diagram, and that allow for arbitrary polynomial degrees on neighboring elements
[30

.

]. However, like Nedelec’s paper, no explicit description of the basis functions is given.
That being said, there is extensive literature on a variety of basis functions that have explicit
representation, and that are hierarchical. To highlight but a few, we mention the works [12

.

,
31

.

, 32

.

, 33

.

, 34

.

, 35

.

]. The works by Webb and Jin are geared towards an electrical engineering
audience while the remaining sources are aimed at applied mathematicians.

None of the aforementioned references to hierarchical basis functions for use in the finite
element method applied to the vector wave equation address issues of optimal conditioning
and sparsity of the resulting local element matrices. This is likely related to the fact that
for arbitrary material properties varying spatially over an element, one obtains full local
element matrices and so a discussion on these topics is often ignored. However, in the
computational fluid dynamics community, Sherwin and Karniadakis describe the existence
of basis functions for scalar elements that lead to well-conditioned, sparse matrices when
material parameters are constants over the element [36

.

, 37

.

]. Their methods rely on the theory
of orthogonal polynomials on the triangle and tetrahedron which can be found through the
Duffy transformation that takes the square or cube to the triangle or tetrahedron [38

.

, 39

.

].
Their methods are a natural extension of the study of spectral methods in one dimension
relying on the use of Legendre polynomials, which are orthogonal on the interval (−1, 1)
[40

.

, 41

.

, 42

.

, 43

.

]. It was not until recently that such ideas have started to be posed in the
context of vector finite element methods and it remains to be seen if such ideas can be made
useful when arbitrary material properties varying spatially over an element are introduced
[44

.

, 45

.

, 46

.

, 47

.

].
All basis functions in this thesis will be related to one-dimensional Legendre polynomials.

These functions have been known for some time in one dimension within the finite element
community as the Babuška-Szabó basis [48

.

] written as integrals of Legendre polynomials,

19

or within the spectral method community as the Shen basis [49

.

] written as particular linear
combinations of Legendre polynomials. They are the same as the one-dimensional polyno-
mials in [37

.

] written in terms of Jacobi polynomials. All three representations are identical.
These polynomials are hierarchical, and lead to sparse and well-conditioned matrices in the
presence of constant coefficient problems. This thesis makes use of recent advances in fast
polynomial transforms [50

.

, 51

.

] combined with classical results regarding integrals of products
of three Legendre polynomials [52

.

] to extend these sparsity properties to variable coefficient
problems.

To extend the method to higher dimensions, tensor products of these integrated Legendre
polynomials are used. By doing so, local element problems can be solved iteratively by using
variants of the constant coefficient fast direct solver for spectral Legendre-Galerkin methods
[49

.

] as a preconditioner when combined with the fast eigenvalue and eigenvector routines of
[53

.

, 54

.

, 55

.

, 56

.

, 57

.

] which leverage one-dimensional fast multipole methods [58

.

, 59

.

, 60

.

, 61

.

].
To avoid large numbers of iterations in situations where elements differ in shape from the
square, this thesis describes a mesh generation technique which constructs a quadtree mesh
[62

.

] away from interfaces and boundaries, with only a few layers of elements fitted to the
interfaces and boundaries. The mesh generation approach belongs to the family of super-
position methods [63

.

]. Creating high order boundary fitted meshes uses a variety of mesh
generation techniques, including implicit level set function projections [64

.

], volume fraction
determination and pillow layer insertion [65

.

], mesh smoothing [66

.

], and mesh optimization
[67

.

, 68

.

].
In the quadtree mesh, arbitrary levels of refinement lead to non-conforming meshes. That

is, a single element may have multiple neighbors along a given edge. To enforce continu-
ity of the solution along such edges, appropriate constraint equations using relationships
between Legendre polynomials and Legendre polynomials under affine transformations are
formulated. These relationships can be expressed recursively either by the method presented
in [69

.

], or by a similar method described in this thesis. When dealing with high polynomial
degree, an alternative algorithm is needed, which is developed as part of this research.

While low frequency problems can be effectively solved using Krylov subspace meth-
ods with preconditioners suitable for nearby static problems [70

.

] (such as standard domain
decomposition methods [71

.

] or multigrid methods [72

.

]), high frequency problems remain
difficult to precondition effectively due to the indefinite and/or complex-symmetric nature
of their associated discretized systems [73

.

]. Efforts to formulate improved preconditioners
for discretizations of the Helmholtz equation include extensions of domain decomposition
methods, variants on multigrid methods, shifted-Laplacian preconditioners, and combina-
tions of these methods, e.g. multigrid applied to a shifted-Laplacian preconditioner (see [74

.

]

20

for an overview of such methods). In addition, more recently, a type of domain decom-
position method called sweeping preconditioner has been proposed for second-order finite
difference discretizations of the Helmholtz equation which can be applied with near linear
computational complexity [75

.

, 76

.

].
The iterative method proposed in this thesis is closely related to domain decomposition

methods of finite element tearing and interconnecting (FETI) type [77

.

]. In particular, ideas
from dual-primal FETI (FETI-DP) [78

.

, 79

.

, 80

.

] and their extension to the Helmholtz problem
(FETI-DPH) [81

.

] are used. Recent experimental evidence [82

.

] suggests that FETI-DPH
can be effective for high frequency Helmholtz problems when compared to other domain
decomposition methods if a suitably chosen coarse space of plane waves is used to augment
the primal constraints.

This thesis makes two primary modifications to FETI-DPH. First, rather than augment
the coarse space with carefully chosen plane waves, a finite element method where continuity
between element subdomains is imposed via a hierarchy of weak constraints is formulated.
The method is globally conforming (unlike a mortar method [83

.

]), but the flexibility of the
weak constraints allows construction of a non-conforming coarse space used in a correspond-
ing FETI-DP domain decomposition method. The thesis shows experimentally that, by
choosing the size of the coarse space based on a dispersion error criterion [14

.

], the number
of iterations in the domain decomposition method depends only weakly on the frequency.
Second, Robin boundary conditions [84

.

, 85

.

] between subdomains are used to eliminate non-
physical resonant frequencies which arise in the FETI-DPH method. This robustness can
come at a computational cost, increasing the number of iterations required for convergence.

The method is applicable to interior problems with Dirichlet or Robin boundary condi-
tions, and the thesis shows that exterior Helmholtz problems can be treated by introducing
perfectly matched layers (PML) [86

.

, 87

.

]. With suitable parameter choices, PML do not
adversely affect convergence rates for the iterative method. The weak continuity constraints
between elements are sufficiently general so as to allow irregular mesh refinement and poly-
nomial mismatch between adjacent elements, making mesh and element degree refinement
possible.

1.3 Thesis Outline

The writing of this thesis shares an important view described in the resolution adopted
by the United Nations General Assembly containing the decision on IYL 2015. Broadly
speaking, IYL 2015 aims to “promote improved public and political understanding of the
central role of light in the modern world” [1

.

]. In keeping with this idea, this thesis describes

21

the finite element method with nothing more than a strong foundation of calculus and linear
algebra so as to keep as broad an audience as possible. Admittedly, possessing background
knowledge in convex and numerical optimization [88

.

, 89

.

, 90

.

] and numerical linear algebra
[25

.

, 91

.

, 92

.

, 93

.

] is helpful (one might argue that a strong foundation in calculus and linear
algebra subsumes these topics). This goes counter to the standard approach used in most
applied mathematics treatments where modern functional analysis is a prerequisite [27

.

, 29

.

,
33

.

, 48

.

, 94

.

, 95

.

, 96

.

]. Rather, the treatment is an extension of the engineering literature on the
subject [12

.

, 28

.

, 97

.

, 98

.

, 99

.

].
The first part of the thesis studies the one-dimensional formulation of the finite element

method applied to a prototypical differential equation characteristic of transmission lines
and one-dimensional electromagnetic problems. To this end, Chapter 2

.

outlines the rela-
tionships between classical numerical differentiation, numerical integration, and polynomial
interpolation in one dimension. An emphasis is placed on writing these rules using vector
notation to simplify their treatment, as well as connecting these formulae to classical orthog-
onal polynomials [100

.

]. Both of these ideas simplify construction of the fast and accurate
finite element solver in one dimension. Chapter 3

.

guides the reader through the theory
of the classical finite element method. The treatment anticipates modifications needed to
construct a fast adaptive solver. Chapter 4

.

describes the necessary modifications required
to obtain the one-dimensional fast and accurate solver, and includes examples demonstrat-
ing its efficiency and accuracy. The one-dimensional formulation is designed to parallel the
later development in higher dimensions. In fact, Chapter 5

.

extends the method to wave
equations in two dimensions (one spatial and one temporal) using the concept of space-time
and includes additional wave propagation examples. This chapter introduces certain ideas
necessary to extending the one-dimensional method to higher spatial dimensions without
having to treat complicated geometries.

The second part of the thesis generalizes the one-dimensional finite element solver to
higher spatial dimensions, using two dimensions as a prototypical example. Chapter 6

.

mirrors Chapter 3

.

, describing the Ritz and Galerkin methods with a focus on constraint
equations. Comments on how to generalize from one-dimensional elements to higher dimen-
sional elements are made. Chapter 7

.

uses the one-dimensional basis functions from Chapter
4

.

to solve PDEs on the square, and the key differences in one and higher dimensions are
highlighted. Chapter 8

.

describes how to generalize from the square to planar four sided curvi-
linear domains with a focus on accurate representation of curvilinear geometry. Chapter 9

.

first describes an approach used to construct non-conforming meshes for more complicated
domains, then describes an adaptive finite element method suitable for these types of meshes,
focusing on how to impose continuity constraints between elements. The chapter concludes

22

with the method applied to electrostatic problems and electromagnetic scattering problems.
Developments in the previous three chapters are relied upon extensively throughout. Fi-
nally, Chapter 10

.

shows how to solve the resulting system of equations from Chapter 9

.

using
iterative methods. In particular, Chapter 10

.

describes a domain decomposition algorithm
applicable to both Poisson and Helmholtz problems. Key differences between Poisson and
Helmholtz problems are highlighted, and connections to previous domain decomposition al-
gorithms are discussed. Conclusions are summarized in Chapter 11

.

, which also includes a
description of future work.

For those well acquainted with the finite element method and numerical methods, Chapter
2

.

, Chapter 3

.

, and the first part of Chapter 6

.

will be primarily review. These chapters are
intended to provide an appropriate foundation for the work that follows. Therefore, readers
possessing these prerequisites may proceed directly to Chapter 4

.

for the one-dimensional
development, Chapter 5

.

for the space-time development, or Chapters 7

.

through 10

.

for the
higher-dimensional development, should they feel so inclined.

As a final note, each chapter begins with a brief introduction outlining the content to
follow. Thereafter, the remaining body of each chapter is written in an expository style
using the editorial “we,” which is used to represent “the author and the reader.” This style
is common in mathematical writing. As a consequence, the “we” used in this thesis does
not indicate multiple co-authors speaking in unison. All contributions made in this thesis
are solely those of the author. Professor Steve McFee, acting as supervisor, performed an
editorial role in the writing of this thesis, providing comments, suggestions, and possible
revisions as drafts of each chapter were written.

23

Chapter 2

Preliminaries

Before treating the finite element method in one dimension, this chapter describes connec-
tions between numerical integration (numerical quadrature), numerical differentiation (finite
difference formulae), and polynomial interpolation in one dimension. The three topics are
covered in a wide variety of introductory numerical analysis and numerical method textbooks
[101

.

, 102

.

, 103

.

, 104

.

, 105

.

, 106

.

, 107

.

]. Why then devote a chapter to these topics? To demon-
strate that high accuracy numerical integration and differentiation of a function depends on
how closely a corresponding polynomial interpolant approximates that given function. This
will later extend to the finite element method where, on each element, it is imperative that
basis functions possess good approximation properties.

In addition, this chapter emphasizes the importance of linear algebra notation in the
treatment of numerical integration, differentiation, and interpolation. This is not typical of
many numerical method textbooks and, while this may not seem important, greatly simplifies
developments when manipulating basis functions in the finite element method. Of particular
interest is the use of vectors of orthogonal polynomials to represent Lagrange interpolating
polynomials, the derivation of differentiation matrices for those vectors of polynomials, and
overloaded notation to symbolize entrywise integration for vectors and matrices. These ideas
will be recurrent throughout the thesis.

2.1 Interpolation-based Numerical Integration

Many textbooks begin their description of one-dimensional numerical integration schemes
with a discussion of the so-called Newton-Cotes quadrature rules. These rules compute an
approximation to

I [f] =
ˆ b

a

f (x) dx (2.1)

24

where f : R → R is a scalar function of one variable x, and I [f] is the integral of f over the
interval x ∈ (a, b) (when the context is clear, we simply write I instead of I [f]). Using the
numerically stable invertible map [108

.

]

x = (b+ a) + (b− a)u
2 , (2.2)

u = (x− a) − (b− x)
b− a

, (2.3)

the integral I becomes

I = b− a

2

ˆ +1

−1
f

(
(b+ a) + (b− a)u

2

)
du. (2.4)

Since this map is always defined (as the case a = b yields a trivial integral of zero and is
of no practical value), Newton-Cotes quadrature rules are typically defined on the canonical
interval u ∈ (−1,+1), and are then modified to suit the appropriate interval of integration
when needed. Rather than use u, we develop the theory using x ∈ (−1,+1) in keeping
with standard notation1

.

. Since the integral of a function can be thought of as a generalized
summation (think Riemann sums), it is natural to look for quadrature rules of the form

I ≈
n∑

i=0
wif (xi) , (2.5)

where the wi are a set of coefficients called weights, and the xi are a set of points often called
nodes or abscissae.

To obtain such a quadrature rule, the key idea is to first approximate the function f with
a polynomial p. Since the integrals of monomials on the interval (−1,+1) are given by

I [xn] =
ˆ +1

−1
xn dx (2.6)

= xn+1

n+ 1

⏐⏐⏐⏐⏐
+1

−1
(2.7)

= 1 − (−1)n+1

n+ 1 (2.8)

=

⎧⎪⎨⎪⎩
2

n+ 1 mod (n, 2) = 0

0 otherwise,
(2.9)

1The distinction will only become important when dealing with several intervals in later chapters.

25

by the linearity of integration, it follows that the integral of any polynomial over that same
interval is known. This reduces the numerical integration problem (find a suitable quadrature
rule to closely approximate the integral of f) to that of the polynomial interpolation problem
(find an appropriate polynomial to closely approximate the function f). If we are interested
in a quadrature rule of the form (2.5

.

), then the simplest approach is to approximate f as a
linear combination of interpolatory Lagrange polynomials over the interval (−1,+1). That
is, we take

p (x) =
n∑

i=0
f (xi) li (x) (2.10)

where li is the Lagrange polynomial of degree n which is 1 at the node xi, and zero at all
other nodes xj where j ̸= i. In one dimension, the Lagrange polynomials can be written
explicitly as

li (x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

. (2.11)

Using this expression for p as a surrogate for f , we find that

I =
ˆ +1

−1
f (x) dx (2.12)

≈
ˆ +1

−1
p (x) dx (2.13)

≈
ˆ +1

−1

[
n∑

i=0
f (xi) li (x)

]
dx (2.14)

≈
n∑

i=0

[ˆ +1

−1
li (x) dx

]
  

wi

f (xi) (2.15)

≈
n∑

i=0
wif (xi) , (2.16)

which is precisely the form of the quadrature rule that was anticipated in (2.5

.

). A Newton-
Cotes quadrature rule chooses an equidistant arrangement of nodes over the interval (−1,+1)
[106

.

]. That is,
xi = −1 + 2

n
i (2.17)

for i = 0, 1, ..., n. Note that the interpolation nodes need not be inside the interval (−1,+1)
and, indeed, that is not the case for the equally spaced nodes which include the endpoints of
the interval. Once the distribution of nodes is set, we then proceed to compute the weights,
which amounts to integrating the Lagrange polynomials over the interval. Integrating the
Lagrange polynomials of degree n appears to be quite difficult for large n. That being said,

26

one can determine an algorithm to do just that by appealing to linear algebra.
We begin by noting that the Lagrange polynomial of degree n can be written as

li (x) =
n∑

k=0
αi,kx

k, (2.18)

where x0 = 1. That is, we express the degree n Lagrange polynomial as a linear combination
of n+1 monomials, which form a linearly independent set of functions on the interval (−1,+1)
(of course, numerically, this set is almost dependent for large n due to finite precision). Let

l̄ (x) =

⎡⎢⎢⎢⎢⎢⎢⎣
l0 (x)
l1 (x)
...

ln (x)

⎤⎥⎥⎥⎥⎥⎥⎦ , x̄ (x) =

⎡⎢⎢⎢⎢⎢⎢⎣
1
x
...

xn

⎤⎥⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎢⎢⎣
α0,0 α0,1 · · · α0,n

α1,0 α1,1 · · · α1,n

...
...

. . .
...

αn,0 αn,1 · · · αn,n

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.19)

then l̄ (x) = Ax̄ (x). To determine the entries of the matrix A, we use the fact that the
Lagrange polynomials are interpolatory. Thus,

l̄ (xi) = Ax̄ (xi) (2.20)

ēi+1 = Ax̄ (xi) , (2.21)

where ēi is the unit vector with a 1 in the ith coordinate, and zeros elsewhere. This is true
for all xi with i = 0, 1, ..., n, so that taking these n+1 expressions and writing them together
yields [

ē1 ē2 · · · ēn+1

]
  

In+1

= A
[
x̄ (x0) x̄ (x1) · · · x̄ (xn)

]
  

V T

, (2.22)

where V is the Vandermonde matrix and In+1 is the (n+ 1)× (n+ 1) identity matrix. Since
the monomials are a set of linearly independent functions, so long as the nodes xi are distinct,
the columns of V T will form a set of linearly independent vectors, and thus A = V −T .

We now rewrite the integral using this matrix notation. In particular, let

f̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
f (x0)
f (x1)
...

f (xn)

⎤⎥⎥⎥⎥⎥⎥⎦ , w̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
w0

w1
...

wn

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.23)

27

and overload the integration symbol to mean integration entrywise for vectors, then

I =
ˆ +1

−1
f (x) dx (2.24)

≈
ˆ +1

−1
f̄T l̄ (x) dx (2.25)

≈
ˆ +1

−1
f̄TV −T x̄ (x) dx (2.26)

≈ f̄T V −T

ˆ +1

−1
x̄ (x) dx  

w̄

. (2.27)

Note that the weights in (2.16

.

) are exactly the same as those found in (2.27

.

), but, given the
nodes xi, we can directly compute said weights as the Vandermonde matrix is determined,
and the vector

´ +1
−1 x̄ (x) dx can be computed exactly through the use of (2.9

.

). Thus, we
solve

V T w̄ =
ˆ +1

−1
x̄ (x) dx (2.28)

using LU factorization to determine the weight vector w̄.
Table 2.1

.

gives the values of the weights for increasing n. These were computed using
the MATLAB code given in Algorithm 2.1

.

, which is included to emphasize the simplicity of
the approach. Note that for n = 8 and n = 10, we observe negative weights. If we continue
to increase n, we find that the weights grow in magnitude. In particular, for n = 30, we have
weights ranging from 10−2 to 104. This behavior is also observed in the condition number
of V T , which MATLAB estimates to be 5.6424 × 1013. The weights continue to grow as
n increases. To understand why this is, we note that polynomial interpolation in equally
spaced nodes is ill-conditioned, and this ill-conditioning is reflected in the Vandermonde
matrix [109

.

].
To contrast with these classical Newton-Cotes quadrature rules, let us consider redis-

tributing the nodes. As an example, consider the nodes given by

xi = cos
(
π

n
i
)
, (2.29)

for i = 0, 1, ..., n. Rules of this type are called Clenshaw-Curtis quadrature rules and the
nodes are Chebyshev nodes [110

.

]. In this case, for n = 30, we have weights which are all
positive, between 0 and 0.105. Here, the condition number is 1.1773 × 1011, two orders of
magnitude smaller than the corresponding equally spaced case. Figure 2.1

.

gives the weights
as a function of their position for this particular Clenshaw-Curtis quadrature rule. If we

28

Algorithm 2.1 Newton-Cotes weights for equally spaced nodes on the interval (−1,+1).

1 % Equally spaced nodes
2 i = 0:n;
3 x_i = -1 + (2/n)*i;
4
5 % Construct the transpose of the Vandermonde matrix
6 VT = zeros(n+1,n+1);
7 for k = 1:n+1
8 VT(k ,:) = x_i .^(k -1);
9 end

10
11 % Compute the integrals of monomials on the interval (-1,+1)
12 I_monomial = (2./(i. ’+1)).*(mod(i ,2) == 0);
13
14 % Compute the weights
15 w = VT\ I_monomial ;

Table 2.1: Newton-Cotes weights for equally spaced nodes on the interval (−1,+1).
n w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1 1.0000 1.0000

2 0.3333 1.3333 0.3333

3 0.2500 0.7500 0.7500 0.2500

4 0.1556 0.7111 0.2667 0.7111 0.1556

5 0.1319 0.5208 0.3472 0.3472 0.5208 0.1319

6 0.0976 0.5143 0.0643 0.6476 0.0643 0.5143 0.0976

7 0.0869 0.4140 0.1531 0.3459 0.3459 0.1531 0.4140 0.0869

8 0.0698 0.4154 -0.0655 0.7405 -0.3203 0.7405 -0.0655 0.4154 0.0698

9 0.0638 0.3514 0.0241 0.4318 0.1290 0.1290 0.4318 0.0241 0.3514 0.0638

10 0.0537 0.3551 -0.1621 0.9099 -0.8703 1.4275 -0.8703 0.9099 -0.1621 0.3551 0.0537

continue to increase n, even for this well-behaved set of nodes, we run into numerical round-
off errors for n = 40 and larger. This suggests a different approach is needed.

Suppose that instead of expressing the polynomial approximation p to f as a linear
combination of monomials, we instead choose to write

li (x) =
n∑

k=0
α̃i,kpk (x) , (2.30)

where pk is the kth orthonormal polynomial on the interval (−1,+1) (with respect to the

29

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

x

w

Figure 2.1: Clenshaw-Curtis weights as a function of the node positions xi = cos
(

π
n
i
)

for
i = 0, 1, ..., n.

unit weight function) [100

.

]. Then, repeating the same process as before, we let

p̄ (x) =

⎡⎢⎢⎢⎢⎢⎢⎣
p0 (x)
p1 (x)
...

pn (x)

⎤⎥⎥⎥⎥⎥⎥⎦ , Ã =

⎡⎢⎢⎢⎢⎢⎢⎣
α̃0,0 α̃0,1 · · · α̃0,n

α̃1,0 α̃1,1 · · · α̃1,n

...
...

. . .
...

α̃n,0 α̃n,1 · · · α̃n,n

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.31)

and observe that l̄ (x) = Ãp̄ (x). By evaluating this expression at the interpolation nodes
of the Lagrange polynomials and collecting the columns of the n + 1 vector equations, we
obtain [

ē1 ē2 · · · ēn+1

]
  

In+1

= Ã
[
p̄ (x0) p̄ (x1) · · · p̄ (xn)

]
  

Ṽ T

. (2.32)

Since the orthonormal polynomials up to degree n are an independent set of functions on
the interval (−1,+1), we have that Ṽ , the generalized Vandermonde matrix, has a set of
linearly independent rows as long as the interpolation nodes are distinct. Thus Ã = Ṽ −T ,

30

and we can write the quadrature rule as

I ≈ f̄T Ṽ −T

ˆ +1

−1
p̄ (x) dx  

w̄

. (2.33)

The difficulty with this formulation resides in computing the integrals
´ +1

−1 p̄ (x) dx.
To circumvent this apparent difficulty, we attack the problem of integrating the orthonor-

mal polynomials on the interval by appealing to some of their fundamental properties. Since
explicit formulae for orthonormal polynomials on the interval are known, it is possible to
perform this integration directly. On the interval (−1,+1) with unit weight function, the
classical orthonormal polynomials are the Legendre polynomials given by the three-term
recurrence relation

p0 (x) = 1√
2
, (2.34)

p1 (x) =
√

3
2x, (2.35)

pk+1 (x) =
√

2k + 3
k + 1

[√
2k + 1xpk (x) − k√

2k − 1
pk−1 (x)

]
, k = 1, 2, ... (2.36)

To determine their integrals on the interval (−1,+1), we will need three properties. First,
pk (−x) = pk (x) when k is even (that is, p2l are even functions with l a positive integer).
Second, pk (−x) = −pk (x) when k is odd (so p2l+1 are odd functions). Finally,

ˆ +1

−1
pi (x) pj (x) dx = δi,j, (2.37)

where δi,j is the Kronecker delta function (for these properties, see [100

.

] under Jacobi poly-
nomials with α = β = 0). Thus,

ˆ +1

−1
p2l+1 (x) dx = 0 (2.38)

for all l ≥ 0 by the second property. In addition, consider
ˆ +1

−1
p2l (x) p2k (x) dx = δ2l,2k. (2.39)

31

If k = 0, then p2k (x) = p0 (x) = 1/
√

2 and we obtain

1√
2

ˆ +1

−1
p2l (x) dx = δ2l,0 (2.40)

so that if l = 0, then
´ +1

−1 p0 (x) dx =
√

2, and l ̸= 0 yields a zero result. Thus, if we return
to our problem, we obtain

w = Ṽ −T

ˆ +1

−1
p̄ (x) dx (2.41)

= Ṽ −T
√

2 e1 (2.42)

where e1 is the unit vector with its first entry one, and all other entries zero. We use the
recurrence relation for the orthonormal polynomials to fill the generalized Vandermonde
matrix Ṽ . On a computer, computing the weights reduces to solving

Ṽ Tw =
√

2 e1 (2.43)

which can be done using LU factorization.
To illustrate the difference between the standard Vandermonde approach and this gener-

alized Vandermonde construction, consider the Clenshaw-Curtis quadrature rule with n = 30
(note that the equally spaced nodes remain unusable, even when using orthonormal poly-
nomials in place of monomials). Earlier we said that the condition number of V T was
1.1773 × 1011. Using this orthonormal construction, we obtain a condition number for Ṽ T

of 7.2859. In fact, with this reduction in the condition number, no significant numerical
round-off errors for n = 40 and above are observed. It should be noted that while this
difference is considerable, for the Clenshaw-Curtis quadrature weights there exists an algo-
rithm which is far more efficient than the one presented here [111

.

]. The method exploits
the structure of the nodes and utilizes the Fast Fourier Transform (FFT) to compute the
weights in O (n log2 n) floating point operations (FLOPs), whereas naive LU factorization of
the generalized Vandermonde matrix uses O (n3) FLOPs2

.

. Nevertheless, in getting to the
generalized Vandermonde matrix with Chebyshev nodes, we have seen quite clearly that the
equally spaced nodes and monomial basis are not suitable for arbitrary order polynomial
approximation and computation. In addition, linear algebra has allowed us to concisely rep-
resent Lagrange interpolating polynomials and orthonormal Legendre polynomials, as well
as to describe how to compute weights for a corresponding numerical integration scheme.

2There are specialized inversion algorithms for generalized Vandermonde systems, but these still require
O
(
n2) FLOPs [112

.

].

32

2.2 Interpolation-based Numerical Differentiation

A large number of numerical analysis texts begin their discussion of finite difference approxi-
mations to derivatives through the Taylor series. In this section, our goal is to illustrate how
constructing derivative approximations through Lagrange interpolation is directly analogous
to the Taylor series approach, and that significantly more accurate derivatives can be ob-
tained if we leave the standard equally spaced forward, backward, and centered differences
in favor of more exotic ones. Again, an emphasis is placed on formulating the numerical
differentiation rules using linear algebra.

To begin, let us try to approximate the kth derivative of a function f , evaluated at point
x0 using a linear combination of m function evaluations

f (k) (x0) ≈
m∑

j=0
αjf (xj) . (2.44)

This is analogous to our approach for approximating integrals on the interval (−1,+1),
although here we expect some coefficients αj to be negative, as the very definition of the
derivative involves the difference (recall the conventional limit definition of the derivative).
Consider the Taylor expansion

f (xj) = f (x0) + f (1) (x0) (xj − x0) + 1
2f

(2) (x0) (xj − x0)2 + ... (2.45)

centered at x0. If we let x̃j = xj − x0, then we can write

αjf (xj) = αj

∞∑
i=0

1
i!f

(i) (x0) x̃i
j. (2.46)

Summing over j, we get

m∑
j=0

αjf (xj) =
m∑

j=0

[
αj

∞∑
i=0

1
i!f

(i) (x0) x̃i
j

]
, (2.47)

which can be rewritten by interchanging the order of summation on the right hand side,
giving

m∑
j=0

αjf (xj) =
∞∑

i=0

⎡⎣ 1
i!f

(i) (x0)
m∑

j=0
αjx̃

i
j

⎤⎦ . (2.48)

33

If we set

1
k!

m∑
j=0

αjx̃
k
j = 1 (2.49)

m∑
j=0

αjx̃
k
j = k! (2.50)

and
m∑

j=0
αjx̃

i
j = 0, i = 0, 1, ..., k − 1, (2.51)

we get

m∑
j=0

αjf (xj) = f (k) (x0) +
∞∑

i=k+1

⎡⎣ 1
i!f

(i) (x0)
m∑

j=0
αjx̃

i
j

⎤⎦ (2.52)

m∑
j=0

αjf (xj) ≈ f (k) (x0) (2.53)

which is precisely the linear combination we were searching for to approximate the derivative.
If m = k and the nodes xj have been specified (and are all distinct), then (2.50

.

) and (2.51

.

)
yield the linear system

V T ᾱ = k!ēk+1 (2.54)

where V ∈ R(k+1)×(k+1) and ᾱ ∈ Rk+1 with entries

(V)ij = x̃j−1
i−1 , (ᾱ)i = αi−1. (2.55)

Here, V is the Vandermonde matrix, and ᾱ can be obtained by LU factorization.
To fix ideas, let us consider the forward differences. That is, let xj = j. Note that usually,

the forward difference is written with xj = jh where h is some small distance. We omit the
factor of h because it will simply scale ᾱ by h−k. To see why, we observe that

m∑
j=0

αjx̃
k
j = k! (2.56)

m∑
j=0

αj (jh)k = k! (2.57)

hk
m∑

j=0
αjj

k = k! (2.58)

m∑
j=0

αjj
k = h−kk!. (2.59)

34

Similarly, for i = 0, 1, ..., k − 1,

m∑
j=0

αjx̃
i
j = 0 (2.60)

m∑
j=0

αj (jh)i = 0 (2.61)

hi
m∑

j=0
αjj

i = 0 (2.62)

m∑
j=0

αjj
i = 0 (2.63)

so that V T ᾱ = k!ēk+1 becomes V T ᾱ = h−kk!ēk+1 which can be rewritten as

V T (hkᾱ) = k!ēk+1. (2.64)

It should be noted that in this setting, we can determine the truncation error directly as we
have omitted the infinite sum in (2.52

.

). For the forward difference, we obtain

T =
∞∑

i=k+1

⎡⎣ 1
i!f

(i) (x0)
m∑

j=0
αjx̃

i
j

⎤⎦ (2.65)

= 1
(k + 1)!f

(k+1) (x0)
m∑

j=0
αj (jh)k+1 +

∞∑
i=k+2

⎡⎣ 1
i!f

(i) (x0)
m∑

j=0
αjx̃

i
j

⎤⎦ (2.66)

= 1
(k + 1)!f

(k+1) (x0)hk+1
m∑

j=0
αjj

k+1

  
O(h)

+
∞∑

i=k+2

⎡⎣ 1
i!f

(i) (x0)
m∑

j=0
αjx̃

i
j

⎤⎦
  

O(h2)

(2.67)

with the first term being order h since each coefficient αj contains a factor h−k. This also
gives us a systematic way to construct more accurate rules by setting the order h term to
zero, and so on. Of course, if we add one such equation, in order to keep V square, we also
must add an additional node xk+1. If we let keff +1 denote the number of equations to retain
from our infinite sum, then V ∈ R(m+1)×(keff+1) with m = keff yields the coefficients for the
kth derivative with accuracy O(hkeff−k+1).

Similarly, for backward differences, we take xj = −j and find that the coefficients are
precisely the same as those for the forward difference when k is even. When k is odd, we

35

change sign for all coefficients. To see why, note that

m∑
j=0

αjx̃
k
j = k! (2.68)

m∑
j=0

αj (−j)k = k! (2.69)

(−1)k
m∑

j=0
αjj

k = k! (2.70)

m∑
j=0

αjj
k = (−1)k k! (2.71)

thus only the right hand side changes sign, and the Vandermonde matrix remains unchanged
(the other equations are unchanged as their right hand sides are zero).

Finally, for centered differences, we take xj = j but change the indexing so that j ranges
from −l to l (where m = 2l and m ≥ k). We also take keff = m + (1 − mod (k, 2)). Note
that this means that V will not be square when k is even. We do this to emphasize the fact
that for k even, the right hand side of

V T ᾱ = k!ēk+1 (2.72)

remains in the range of the extended V T due to the symmetry of the nodes. This is important
because it explains why the truncation error for centered differences is always an even power
of h. That is, the truncation error is given by O(hkeff−k+1) where

keff − k + 1 = 2l + 1 − mod (k, 2) − k + 1 (2.73)

= 2 (l + 1)  
even

− (k + mod (k, 2))  
even

. (2.74)

To solve for the coefficients ᾱ, we can apply QR factorization to the overdetermined system.
Now that we have confirmed how to derive arbitrarily high order finite difference formulae

via the Taylor series and linear algebra, we consider polynomial interpolation to derive these
same finite difference coefficients. First, recall that Lagrange polynomials can be written as

l̄ (x) = V −T x̄ (x) . (2.75)

36

By the linearity of differentiation, we have that

d

dx
l̄ (x) = d

dx

[
V −T x̄ (x)

]
(2.76)

= V −T d

dx
x̄ (x) (2.77)

where the differentiation operator d
dx

is to be applied entrywise. Since x̄ (x) is the vec-
tor containing the monomials, we can write an explicit expression for the component-wise
differentiation by observing

d

dx
x̄ (x) = d

dx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x

x2

...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2x
...

nxn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.78)

Rewriting this operator as a matrix yields

d

dx
= D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0

2 . . .

. . . 0
n 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.79)

so that d
dx
x̄ (x) = Dx̄ (x). We note that D is a nilpotent matrix (that is, Dn+1 = 0). This

agrees conceptually with the fact that the monomial xn vanishes after n + 1 derivatives. If
we use the Lagrange polynomials to approximate the function f , we obtain

f (x) ≈ f̄T l̄ (x) (2.80)

f (x) ≈ f̄TV −T x̄ (x) (2.81)
d

dx
f (x) ≈ f̄TV −TDx̄ (x) (2.82)

f (1) (x0) ≈ f̄T V −TDx̄ (x0)  
ᾱ

(2.83)

and so the finite difference coefficients for the first derivative of f evaluated at x0 are given
by the vector ᾱ that satisfies

V T ᾱ = Dx̄ (x0) . (2.84)

37

To obtain the forward difference coefficients, we let xj = j which determines V and which
reduces x̄ (x0) = x̄ (0) = ē1. The product Dē1 = ē2, and so V T ᾱ = ē2. This mirrors the
result set forth by the Taylor series. In fact, we can apply this idea to higher derivatives.
We note that Dkē1 = k!ēk+1 and so

f (k) (0) = f̄T V −TDkē1  
ᾱ

(2.85)

with

V T ᾱ = Dkē1 (2.86)

V T ᾱ = k!ēk+1. (2.87)

This is precisely what we found for the Taylor series. An error analysis of equally spaced finite
difference formulae beginning from polynomial interpolation error analysis can be performed,
although there are subtleties that make this less straightforward [107

.

]. Such analysis results
in the same dependence on powers of the spacing h as described earlier. Table 2.2

.

gives
the finite difference coefficients as computed by the method of Lagrange interpolation for
the forward differences while Table 2.3

.

gives the finite difference coefficients for the centered
differences.

As with numerical integration via Lagrange interpolation, we note that inversion of the
Vandermonde matrix becomes impossible numerically for large n. This renders representing
derivatives of functions to arbitrary accuracy quite difficult since, in general, we would like
to take n large to achieve such a result. Just as in the case of integration, we consider
orthonormal polynomials to remedy the problem. Instead of expressing the interpolatory
Lagrange polynomials in terms of the monomials, we use the Legendre polynomials. Recall
that l̄ (x) = Ṽ −T p̄ (x) where l̄ (x) is the vector containing the Lagrange polynomials, p̄ (x)
is the vector containing the orthonormal Legendre polynomials, and Ṽ is the generalized
Vandermonde matrix (see (2.32

.

) and its associated paragraph). Our goal here is to write

f (k) (x0) = f̄T Ṽ −T D̃kp̄ (x0)  
α̃

(2.88)

just as we did for the monomial expansion of the Lagrange polynomials. The difficulty lies
in determining the structure of the differentiation matrix D̃ for the Legendre polynomials.

38

Table 2.2: Forward finite difference coefficients.
k n α0 α1 α2 α3 α4 α5

1 -1.0000 1.0000

2 -1.5000 2.0000 -0.5000

1 3 -1.8333 3.0000 -1.5000 0.3333

4 -2.0833 4.0000 -3.0000 1.3333 -0.2500

5 -2.2833 5.0000 -5.0000 3.3333 -1.2500 0.2000

k n α0 α1 α2 α3 α4 α5 α6

1 1.0000 -2.0000 1.0000

2 2.0000 -5.0000 4.0000 -1.0000

2 3 2.9167 -8.6667 9.5000 -4.6667 0.9167

4 3.7500 -12.8333 17.8333 -13.0000 5.0833 -0.8333

5 4.5111 -17.4000 29.2500 -28.2222 16.5000 -5.4000 0.7611

k n α0 α1 α2 α3 α4 α5 α6 α7

1 -1.0000 3.0000 -3.0000 1.0000

2 -2.5000 9.0000 -12.0000 7.0000 -1.5000

3 3 -4.2500 17.7500 -29.5000 24.5000 -10.2500 1.7500

4 -6.1250 29.0000 -57.6250 62.0000 -38.3750 13.0000 -1.8750

5 -8.0583 42.5333 -98.2250 129.6667 -106.0417 53.6000 -15.4083 1.9333

k n α0 α1 α2 α3 α4 α5 α6 α7 α8

1 1.0000 -4.0000 6.0000 -4.0000 1.0000

2 3.0000 -14.0000 26.0000 -24.0000 11.0000 -2.0000

4 3 5.8333 -31.0000 68.5000 -80.6667 53.5000 -19.0000 2.8333

4 9.3333 -55.5000 142.0000 -203.1667 176.0000 -92.5000 27.3333 -3.5000

5 13.3625 -87.7333 254.8167 -428.8000 458.0417 -318.1333 140.1500 -35.7333 4.0292

To do so, we use one additional property of the Legendre polynomials [40

.

]:

d

dx

⎡⎣ 1√
2 (n+ 1) + 1

pn+1 (x) − 1√
2 (n− 1) + 1

pn−1 (x)
⎤⎦ =

√
2n+ 1pn (x) . (2.89)

The expression for the derivative of pn+1 in terms of lower degree pj is found by rearranging
this equation such that

1√
2 (n+ 1) + 1

d

dx
pn+1 =

√
2n+ 1pn + 1√

2 (n− 1) + 1
d

dx
pn−1 (2.90)

39

Table 2.3: Centered finite difference coefficients.
n α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

2 -0.5000 0.0000 0.5000

4 0.0833 -0.6667 0.0000 0.6667 -0.0833

6 -0.0167 0.1500 -0.7500 0.0000 0.7500 -0.1500 0.0167

8 0.0036 -0.0381 0.2000 -0.8000 0.0000 0.8000 -0.2000 0.0381 -0.0036

10 -0.0008 0.0099 -0.0595 0.2381 -0.8333 -0.0000 0.8333 -0.2381 0.0595 -0.0099 0.0008

n α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

2 1.0000 -2.0000 1.0000

4 -0.0833 1.3333 -2.5000 1.3333 -0.0833

6 0.0111 -0.1500 1.5000 -2.7222 1.5000 -0.1500 0.0111

8 -0.0018 0.0254 -0.2000 1.6000 -2.8472 1.6000 -0.2000 0.0254 -0.0018

10 0.0003 -0.0050 0.0397 -0.2381 1.6667 -2.9272 1.6667 -0.2381 0.0397 -0.0050 0.0003

n α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

4 -0.5000 1.0000 0.0000 -1.0000 0.5000

6 0.1250 -1.0000 1.6250 0.0000 -1.6250 1.0000 -0.1250

8 -0.0292 0.3000 -1.4083 2.0333 -0.0000 -2.0333 1.4083 -0.3000 0.0292

10 0.0068 -0.0834 0.4830 -1.7337 2.3181 0.0000 -2.3181 1.7337 -0.4830 0.0834 -0.0068

n α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

4 1.0000 -4.0000 6.0000 -4.0000 1.0000

6 -0.1667 2.0000 -6.5000 9.3333 -6.5000 2.0000 -0.1667

8 0.0292 -0.4000 2.8167 -8.1333 11.3750 -8.1333 2.8167 -0.4000 0.0292

10 -0.0054 0.0834 -0.6440 3.4675 -9.2722 12.7417 -9.2722 3.4675 -0.6440 0.0834 -0.0054

which holds for any n ≥ 1. We can then write this for the case n− 2 to find

1√
2 (n− 1) + 1

d

dx
pn−1 =

√
2 (n− 2) + 1pn−2 + 1√

2 (n− 3) + 1
d

dx
pn−3 (2.91)

and substitute this into the last term in (2.90

.

) to obtain

1√
2 (n+ 1) + 1

d

dx
pn+1 =

√
2n+ 1pn +

√
2 (n− 2) + 1pn−2 + 1√

2 (n− 3) + 1
d

dx
pn−3. (2.92)

This process is repeated until no derivative terms remain on the right hand side. We finally
multiply through by

√
2 (n+ 1) + 1 to obtain

d

dx
pn+1 =

√
2(n+ 1) + 1

[√
2n+ 1pn +

√
2 (n− 2) + 1pn−2 + ...

]
. (2.93)

40

From this expression, we can compute the differentiation matrix entries. For example, con-
sider the case with n = 4. Then

d

dx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0

p1

p2

p3

p4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√

3 0
0

√
5
√

3 0
√

7 0
√

7
√

5 0
0

√
9
√

3 0
√

9
√

7 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0

p1

p2

p3

p4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.94)

and we can observe that, in general, D̃ = diag(h̄)Hdiag(h̄) where

hi =
√

2(i− 1) + 1, Hij =

⎧⎪⎨⎪⎩mod (i+ j, 2) j ≤ i

0 otherwise.
(2.95)

Just as in the monomial basis case, D̃n+1 = 0 and so D̃ is a nilpotent matrix.
We can repeat the same exercise as with the monomial basis and compute the finite differ-

ence coefficients with this new basis. This is not particularly enlightening (we get the same
coefficients). However, if we change the locations of the interpolation nodes, from equally
spaced to, for example, the Chebyshev nodes, we obtain a situation where the generalized
Vandermonde matrix condition number is small, and its factorization is accurate. This al-
lows us to take derivatives of functions to high accuracy by increasing n. This is not always
possible through the Taylor series approach. In effect, changing the basis for our Lagrange
polynomials corresponds to discarding the Taylor series altogether and, instead, replacing it
with an expansion in Legendre polynomials. We will exploit this approach when we discuss
possible improvements to the classical finite element method in Chapter 4

.

. Before that, we
describe a classical finite element method.

41

Chapter 3

One-Dimensional Finite Element
Methods

This chapter describes the classical finite element method in one dimension. The goal is
to illustrate the classical method in such a way that anticipates the high accuracy domain
decomposition approach put forth later in the thesis. First, the presentation covers the
variational formulation and the Ritz method used to obtain the classical method. Unlike
classical expositions, continuity and boundary conditions are explicitly imposed via addi-
tional constraint equations rather than enforced a priori. This gives rise to an associated
constrained optimization problem whose solution solves a saddle point system. Second, the
Galerkin method is used to obtain the same system and gives insight into the meaning of
the Lagrange multipliers appearing in the optimization problem. When basis functions are
chosen to interpolate the solution, the constraint equations are sparse, and a sparse basis
for the null space of the constraint matrix exists. This basis is what allows the classical
finite element method to sidestep the discussion of constraint equations. The constraint
equations, which do not usually appear in a standard finite element method, will be crucial
when describing domain decomposition methods.

3.1 The Variational Formulation

To keep our analysis general, we seek the unique solution to the boundary value problem
(BVP)

− d

dx

(
α (x) dφ

dx

)
+ β (x)φ (x) = f (x) , x ∈ (a, b) , (3.1)

subject to boundary conditions

42

φ (a) = p, (3.2)[
α
dφ

dx
+ γφ

]
x=b

= q, (3.3)

where we have imposed a Dirichlet boundary condition at x = a and a Robin boundary con-
dition at x = b so as to cover the three most common boundary condition types (Neumann
boundary conditions are a subset of Robin boundary conditions with γ = 0). Many other
possible combinations of these three types of boundary conditions are possible, but we omit
them for the sake of brevity. This BVP can be made into a Laplace, Poisson, or Helmholtz
problem, each of which are of particular interest to the electrical engineer. Notice that φ
satisfies the BVP in the open interval Ω = (a, b) but that it is assigned boundary values
at the endpoints a and b. In this thesis, boundary statements should be interpreted in a
limiting sense. That is, when we say, for example, that a Dirichlet boundary condition is
imposed at x = a by writing φ (a) = p, we mean, more precisely, that the limx→a+ φ (x) = p

where a+ denotes that x approaches a from the right (a similar notation a− would mean that
x approaches a from the left). We use the less precise notation for economy when there is
no ambiguity. Also, note that there is an implicit additional constraint that φ must satisfy,
which is that φ must be continuous in (a, b). This can be seen if we recast the BVP as a
variational problem

δF (φ) = 0, (3.4)

φ (a) = p, (3.5)

φ ∈ C0 (Ω) , (3.6)

where δF is the first variation of the functional

F (φ) = 1
2

ˆ b

a

α

(
dφ

dx

)2

+ βφ2 − 2φf dx+
[1
2γφ

2 − qφ
]

x=b
, (3.7)

and C0 (Ω) is the space of all continuous functions on domain Ω. The φ satisfying (3.4

.

)-(3.6

.

)
is called a weak solution of (3.1

.

)-(3.3

.

). To see why these two formulations are related, we
take the first variation of F , given by

δF (φ) = lim
ϵ→0

F (φ+ ϵδφ) − F (φ)
ϵ

, (3.8)

43

where ϵ is a small parameter and δφ ∈ C0 (Ω) is a function which satisfies a homogeneous
Dirichlet boundary condition at x = a. We are effectively assuming that φ is a function which
produces a local extremum for the functional F . In that case, setting the first variation to
zero is the same as finding a stationary solution φ to the functional F . For the sake of
argument, if φ minimizes F , then F (φ) < F (φ+ ϵδφ) for all ϵ > 0 (where ϵδφ is interpreted
as a small perturbation or variation of φ). If we treat F as a function of one parameter ϵ,
then a necessary condition for φ to minimize F is for the derivative of F with respect to ϵ
to be zero when ϵ approaches zero. This is directly analogous to taking the gradient of a
multidimensional function and setting it to zero to find critical points. In principle, we must
also check that φ does indeed minimize F , and that we have not found a saddle point, or
local maximum. We can do this by computing the second variation and verifying that it is
positive.

Before performing this check, we begin by computing the first variation

F (φ+ ϵδφ) − F (φ)
ϵ

= 1
ϵ

⎡⎣1
2

ˆ b

a

α

(
dφ

dx
+ ϵ

d

dx
δφ

)2

+ β (φ+ ϵδφ)2 − 2f (φ+ ϵδφ) dx

+
[1
2γ (φ+ ϵδφ)2 − q (φ+ ϵδφ)

]
x=b

−1
2

ˆ b

a

α

(
dφ

dx

)2

+ βφ2dx− 2fφ dx−
[1
2γφ

2 − qφ
]

x=b

⎤⎦ . (3.9)

Squaring and canceling terms, we obtain

F (φ+ ϵδφ) − F (φ)
ϵ

= 1
2

ˆ b

a

α

⎛⎝2dφ
dx

d

dx
δφ+ ϵ

(
d

dx
δφ

)2
⎞⎠+ β

(
2φδφ+ ϵδφ2

)
− 2fδφ dx

+
[1
2γ

(
2φδφ+ ϵδφ2

)
− qδφ

]
x=b

, (3.10)

which, in the limit as ϵ → 0, gives

δF (φ) =
ˆ b

a

α
dφ

dx

d

dx
δφ+ (βφ− f) δφ dx+ [(γφ− q) δφ]x=b . (3.11)

Now, we apply integration by parts to the first term to transfer the derivative from δφ to
αdφ

dx
. We will assume that α (x) has a single discontinuity1

.

at some a < xd < b. That is,
1The case where there are finitely many discontinuities inside Ω will follow from this simpler treatment.

44

letting

u = α
dφ

dx
, (3.12)

du = d

dx

(
α
dφ

dx

)
dx, (3.13)

v = δφ, (3.14)

dv = d

dx
δφ dx, (3.15)

we obtain

ˆ b

a

u dv =
⎡⎣uv⏐⏐⏐⏐⏐

x−
d

a

−
ˆ x−

d

a

v du

⎤⎦+
⎡⎣uv⏐⏐⏐⏐⏐

b

x+
d

−
ˆ b

x+
d

v du

⎤⎦ , (3.16)

where we have split the integration at the point of discontinuity xd. If we had finitely many
discontinuities of α in the interval (a, b), we would need to break up the integral into several
integrals accordingly. This gives

ˆ b

a

α
dφ

dx

d

dx
δφ dx = α

dφ

dx
δφ

⏐⏐⏐⏐⏐
x−

d

a

+ α
dφ

dx
δφ

⏐⏐⏐⏐⏐
b

x+
d

−
ˆ b

a

δφ
d

dx

(
α
dφ

dx

)
dx

= α
dφ

dx
δφ

⏐⏐⏐⏐⏐
b

a

−
ˆ b

a

d

dx

(
α
dφ

dx

)
δφ dx+ α

dφ

dx
δφ

⏐⏐⏐⏐⏐
x−

d

x+
d

(3.17)

where the integral on the right hand side is understood to be computed over each subinterval.
Note that since we will be imposing the Dirichlet boundary condition φ (a) = p, we must
have δφ (a) = 0 (as our perturbation φ+ ϵδφ must continue to satisfy the original boundary
condition), giving

δF (φ) =
ˆ b

a

[
− d

dx

(
α
dφ

dx

)
+ βφ− f

]
δφ dx+ α

dφ

dx
δφ

⏐⏐⏐⏐⏐
x−

d

x+
d

+
[(
α
dφ

dx
+ γφ− q

)
δφ

]
x=b

.

(3.18)
Since δφ is continuous, this allows us to write

δF (φ) =
ˆ b

a

[
− d

dx

(
α
dφ

dx

)
+ βφ− f

]
δφ dx+ α

dφ

dx

⏐⏐⏐⏐⏐
x−

d

x+
d

δφ (xd) +
[(
α
dφ

dx
+ γφ− q

)
δφ

]
x=b

,

(3.19)
and since δφ is an arbitrary continuous function with homogeneous Dirichlet boundary con-

45

dition2

.

, by the fundamental lemma of the calculus of variations [113

.

], setting δF (φ) = 0
means that we must have

− d

dx

(
α
dφ

dx

)
+ βφ− f = 0, (3.20)

α
dφ

dx

⏐⏐⏐⏐⏐
x=x−

d

− α
dφ

dx

⏐⏐⏐⏐⏐
x=x+

d

= 0, (3.21)
[
α
dφ

dx
+ γφ− q

]
x=b

= 0. (3.22)

Equations (3.20

.

) and (3.22

.

) are precisely (3.1

.

) and (3.3

.

), respectively. We see that by taking
the first variation of F , setting it to zero and imposing the Dirichlet boundary condition,
along with requiring continuity of φ, we solve the original BVP satisfying the boundary con-
dition of the third kind. In addition, we note that αdφ

dx
remains continuous at discontinuities

of α naturally through the formulation.
To ensure that we are in fact minimizing the functional F , we take the second variation

of F given by
δ2F (φ) = lim

ϵ→0

δF (φ+ ϵδφ) − δF (φ)
ϵ

. (3.23)

Using a process similar to computing the first variation (we are taking the first variation of
the first variation), we obtain

δ2F (φ) =
ˆ b

a

α

(
d

dx
δφ

)2

+ β (δφ)2 dx+
[
γ (δφ)2

]
x=b

. (3.24)

For φ to be the function which minimizes F , we require δ2F (φ) > 0 (in direct analogy
with the second derivative test from any standard calculus course). Clearly, the problem
parameters α, β, and γ have a strong influence over whether the stationary point corresponds
to a local minimum. As a simple case, if α > 0, β > 0, and γ > 0, then δ2F (φ) > 0 regardless
of the perturbation δφ, and we have in fact found a local minimum φ for the functional F .

3.2 The Ritz Method

Now that we have shown the equivalence of the BVP formulation with its variational for-
mulation, we proceed with a discussion of how one can use the variational form to compute
approximate solutions to the BVP. We begin by approximating φ by a linear combination
of basis functions φ (x) = ∑M

i=1 φiNi (x), where φi are the coefficients to determine and Ni

2Sometimes referred to as an admissibile variation.

46

are the basis functions. This reduces the problem of finding a stationary point of F (an
infinite-dimensional problem) into one of finding the coefficients φi which render stationary
F for the given set of basis functions Ni (a finite-dimensional problem). Of course, this
requires one to choose the set of basis functions, and there is no completely general, a priori
optimal approach to make this choice. For now, we leave the choice unspecified3

.

.
Let us now solve the Ritz problem. First, note that

φ =
M∑

i=1
φiNi (3.25)

= φ̄T N̄ (3.26)

= N̄T φ̄, (3.27)

where φ̄ =
[
φ1 φ2 · · · φM

]T
and N̄ (x) =

[
N1 (x) N2 (x) · · · NM (x)

]T
are vectors

containing the coefficients φi to be determined, and the basis functions Ni (x), respectively.
Using this vector notation, we substitute the linear combination of basis functions into the
functional F and obtain

F
(
φ̄
)

= 1
2

ˆ b

a

α

(
d

dx
N̄T φ̄

)2

+ β
(
φ̄T N̄

)2
− 2φ̄T N̄f dx+

[1
2γ
(
φ̄T N̄

)2
− qφ̄T N̄

]
x=b

(3.28)

= 1
2

ˆ b

a

α

(
φ̄T d

dx
N̄
[
d

dx
N̄
]T

φ̄

)
+ β

(
φ̄T N̄N̄T φ̄

)
dx+ 1

2γ
[
φ̄T N̄N̄T φ̄

]
x=b

−
ˆ b

a

φ̄T N̄f dx−
[
qφ̄T N̄

]
x=b

, (3.29)

and since the vector φ̄ is independent of x and integration is a linear operator, we can write

F
(
φ̄
)

= 1
2 φ̄

T

⎧⎨⎩
ˆ b

a

[
d

dx
N̄

]
α

[
d

dx
N̄

]T

dx+
ˆ b

a

N̄βN̄Tdx+
[
N̄γN̄T

]
x=b

⎫⎬⎭  
A

φ̄

− φ̄T

{ˆ b

a

N̄f dx−
[
qN̄

]
x=b

}
  

b̄

, (3.30)

where A ∈ CM×M and b̄ ∈ CM×1. Here, the integration symbol is overloaded to mean
integration entrywise. Remark that

[
d

dx
N̄
]
α
[

d
dx
N̄
]T

= α
[

d
dx
N̄
] [

d
dx
N̄
]T

since α is a scalar
3Often, this choice is made such that the interval (a, b) is partitioned a = x0 < x1 < . . . < xN = b into N

subintervals with only a subset of the basis functions Ni having support over a given subinterval (xj−1, xj).
This is in fact where the notion of element arises. When such a choice is made, we refer to the approach as
the finite element method, otherwise, we call this the Ritz method.

47

function. We choose the less conventional representation
[

d
dx
N̄
]
α
[

d
dx
N̄
]T

to emphasize that
in two and three dimensions, when α is replaced by a matrix α we may not exploit this
commutativity unless α possesses special structure. We also use the less conventional N̄f
instead of fN̄ anticipating further development. Note that in substituting φ, we have used
both vector representations, which are equivalent, to reveal the quadratic structure of the
functional in terms of φ̄, which can be written succinctly as

F (φ̄) = 1
2 φ̄

TAφ̄− φ̄T b̄. (3.31)

We seek the minimum of this functional, subject to the constraints that φ (a) = p and that
φ is continuous. It is crucial that we require continuity of φ, otherwise the expression for
A is incorrect. In particular, we would be missing terms of the form

[
φα d

dx
φ
]x−

d

x+
d

wherever a
discontinuity in α exists. To ensure that continuity is imposed, we enforce these constraints
as a linear equality on φ̄ given by

Cφ̄ = d̄, (3.32)

where the precise entries of C ∈ RNc×M and d̄ ∈ CNc×1 depend on the basis functions chosen
in N̄ and Nc is the number of constraint equations4

.

.
Thus, to solve the Ritz problem, we must solve the optimization problem

minimize
φ̄

1
2 φ̄

TAφ̄− φ̄T b̄ (3.33)

subject to Cφ̄ = d̄.

We note that if A is symmetric non-negative definite, the optimization problem is convex,
and we can solve the problem using the Karush-Kuhn-Tucker (KKT) conditions [88

.

]. That
is, we first form the Lagrangian

L(φ̄, ν̄) = 1
2 φ̄

TAφ̄− φ̄T b̄+ ν̄T (Cφ̄− d̄), (3.34)

where ν̄ is a vector of Lagrange multipliers, and take the gradient with respect to φ̄ and set
it to zero to obtain the stationarity requirement

∇φ̄L(φ̄, ν̄) = Aφ̄− b̄+ CT ν̄ = 0. (3.35)
4In the finite element method, Nc corresponds to the number of Dirichlet boundary conditions (one in

our BVP) plus the number of nodes in the partition, excluding the endpoints (N − 1) at which continuity
must be imposed. Later, we will give an example to illustrate the construction of these matrices and vectors
when using polynomial basis functions with disjoint support on subintervals (xj−1, xj).

48

Since the optimization problem does not have any inequality constraints, we need only satisfy
this stationarity requirement subject to primal feasibility, which requires that Cφ̄ = d̄ (this
is the same as taking the gradient of the Lagrangian with respect to ν̄ and setting it to zero).
Thus, the minimum is achieved when both equations

Aφ̄+ CT ν̄ = b̄, (3.36)

Cφ̄ = d̄, (3.37)

are satisfied. That is, the solution of the saddle point system⎡⎣ A CT

C 0

⎤⎦
  

S

⎡⎣ φ̄

ν̄

⎤⎦ =
⎡⎣ b̄

d̄

⎤⎦ (3.38)

minimizes the functional F (φ̄) subject to the Dirichlet boundary condition φ (a) = p and
the requirement that φ is continuous, both of which are encoded in the matrix C and vector
d̄. Note that if one were able to solve the saddle point system exactly, this would not mean
that the original BVP would be solved exactly, but that the coefficient vector φ̄ would be
chosen optimally for the given choice of basis functions in N̄ (in the sense of minimizing the
functional over the function space spanned by the basis functions chosen).

3.3 The Galerkin Method

Before we discuss conditions under which S is invertible, we return to the original BVP
to discuss an alternative formulation yielding the same saddle point system. We do so to
highlight the Lagrange multipliers ν̄ and to underscore their physical meaning. Let us take
a general basis function Ni and weigh the original BVP by it, integrating over the domain
Ω to obtain

−
ˆ b

a

Ni
d

dx

(
α
d

dx
φ

)
+Niβφ dx =

ˆ b

a

Nif dx. (3.39)

Let us also assume that the basis function Ni possesses a discontinuity at x = xd. Then, we
cannot directly apply integration by parts to transfer the derivative from α d

dx
φ to Ni as the

derivative of Ni does not exist at xd. To avoid this, we break the integral into two disjoint

49

segments and then apply integration by parts to both:

−
ˆ x−

d

a

Ni
d

dx

(
α
d

dx
φ

)
dx−

ˆ b

x+
d

Ni
d

dx

(
α
d

dx
φ

)
dx+

ˆ b

a

Niβφ dx =
ˆ b

a

Nif dx (3.40)

ˆ b

a

d

dx
Niα

d

dx
φ dx−

[
Niα

d

dx
φ

]x−
d

a

−
[
Niα

d

dx
φ

]b

x+
d

+
ˆ b

a

Niβφ dx =
ˆ b

a

Nif dx (3.41)

ˆ b

a

d

dx
Niα

d

dx
φ+Niβφ dx−

[
Niα

d

dx
φ

]b

a

−
[
Niα

d

dx
φ

]x−
d

x+
d

=
ˆ b

a

Nif dx. (3.42)

Next, we make use of the Robin boundary condition at x = b, as well as the fact that α d
dx
φ

is continuous at x = xd to find that

ˆ b

a

d

dx
Niα

d

dx
φ+Niβφ dx+

[
Niγφ

]
x=b

+
[
Niα

d

dx
φ

]
x=a

−
[
Ni

]x−
d

x+
d

[
α
d

dx
φ

]
x=xd

=
ˆ b

a

Nif dx−
[
Niq

]
x=b

. (3.43)

Now, let us define ν1 =
[
α d

dx
φ
]

x=a
, ν2 =

[
α d

dx
φ
]

x=xd

, and make the approximation that
φ = N̄T φ̄. Substituting these three expressions yields

ˆ b

a

d

dx
Niα

d

dx
N̄T φ̄+NiβN̄

T φ̄ dx+
[
NiγN̄

T φ̄
]

x=b  
terms associated with Aφ̄

+
[
Ni

]
x=a

ν1 −
[
Ni

]x−
d

x+
d

ν2  
terms associated with CT ν̄

=
ˆ b

a

Nif dx−
[
Niq

]
x=b  

terms associated with b̄

(3.44)

which, we confirm later, corresponds to the ith equation in Aφ̄ + CT ν̄ = b̄ with the ap-
propriately defined constraint matrix C. This means that the Lagrange multipliers in the
saddle point system have specific meaning: they approximate the term α d

dx
φ wherever one

terminates the region Ω by Dirichlet data and/or wherever one admits a discontinuity in
basis functions. In the physics parlance, the Lagrange multipliers are associated with the
flux described by our mathematical model (the BVP). For example, if we have α repre-
sent permittivity, β = 0, and f represent charge density, then the BVP has the physical
interpretation of Gauss’ law of electrostatics, and the flux term is precisely the electric flux
density.

Before we move on, let us be clear about one thing. In deriving this physical meaning,

50

we used the fact that the flux is continuous even if α and/or Ni are discontinuous at x = xd.
This is true for the exact solution φ. When we solve the saddle point system, the flux of
our computed solution can be discontinuous (there is nothing that enforces this continuity
explicitly). However, we know from our variational study that continuity of flux is weakly
enforced; this was a consequence found by taking the first variation of F and setting it to
zero (see (3.21

.

)). Roughly speaking, this means that as we better approximate φ, we get
closer to a solution whose flux is continuous.

3.4 Solving the Saddle Point System

We now have two different useful approaches to determine the saddle point system (3.38

.

).
The first approach illustrates how one can view solving the BVP as an optimization prob-
lem, the second gives physical meaning to the Lagrange multipliers that arise in the first5

.

.
Regardless of approach, the final step in computing the approximation φ = N̄T φ̄ is to solve
(3.38

.

). Here, we consider one important case where S is invertible and leave others to an
excellent paper on the subject [114

.

]. The special case is one where A is symmetric posi-
tive semidefinite. In this case, if C has full rank, and null (A) ∩ null (C) = {0}, then S is
invertible. To see why, let

ū =
⎡⎣ x̄

ȳ

⎤⎦ (3.45)

be such that Sū = 0. We will show that under these three conditions on A, C, and the
intersection of their null spaces, ū will be identically zero, meaning that the null space of S
is the set containing only the zero vector, and that S is invertible. We begin by expanding
Sū = 0 to see that

Ax̄+ CT ȳ = 0, (3.46)

Cx̄ = 0. (3.47)

Multiplying the first equation by x̄T gives

x̄TAx̄+ x̄TCT ȳ = 0 (3.48)

x̄TAx̄ = − (Cx̄)T ȳ (3.49)

= 0, (3.50)

5The Galerkin method is more general than the Ritz method in that it can be applied to BVPs that do
not have an associated functional. In such a case, the BVP may not exhibit the symmetry that we obtain
in A after applying integration by parts.

51

where the last line comes from (3.47

.

). Now, we know that A is symmetric positive semidef-
inite, which, together with x̄TAx̄ = 0, implies that Ax̄ = 0. To see why this last statement
is true, consider the function

p (t) = (x̄+ tȳ)T A (x̄+ tȳ) , t ∈ R, (3.51)

which is a quadratic function of the parameter t. We note that p (t) ≥ 0 for all t since A
is symmetric positive semidefinite. In addition, we note that p (0) = x̄TAx̄ = 0. We now
expand p (t) to obtain

p (t) = x̄TAx̄  
=0

+tx̄TAȳ + tȳTAx̄+ t2ȳT ȳ (3.52)

= 2tȳTAx̄+ t2ȳT ȳ (3.53)

= t
(
2ȳTAx̄+ tȳT ȳ

)
. (3.54)

We note that as p (t) is quadratic in t, it has two zeros. However, since p (t) ≥ 0 for all t
and p (0) = 0, we also know that those two zeros must be repeated. Thus, when t = 0, we
must have

[
2ȳTAx̄+ tȳT ȳ

]
t=0

= 0 (3.55)

ȳTAx̄ = 0. (3.56)

Now, since this last equation is true for all ȳ, we must have that Ax̄ = 0, as required. Thus,
for our vector ū, we have that x̄ satisfies both Ax̄ = 0 and Cx̄ = 0, which means that x̄ ∈
null (A) ∩ null (C). But note that one of our assumptions was that null (A) ∩ null (C) = {0},
and so x̄ = 0.

Now, we return to
Ax̄
=0

+CT ȳ = 0 (3.57)

to see that CT ȳ = 0. However, we know that C has full rank, and so ȳ = 0 as the columns
of CT are linearly independent. Finally, we see that ū = 0, and that S is invertible. Thus,
as long as C has full rank (that is, we do not have constraints which are redundant, or
which are implicitly satisfied given a set of other constraints) matrix A is symmetric positive
semidefinite (this depends on the parameters α, β, and γ and is directly analogous to our
discussion on whether the second variation of the original functional was positive), and the
intersection of their null spaces is the zero vector, then the Ritz or Galerkin solution to
the BVP is unique. Note that if A is symmetric positive definite, then null (A) = {0} and

52

null (A)∩null (C) = {0} so that, in this case, we only require C to have full rank. Also, if A is
a general matrix, then we really only need to satisfy the condition null (AS) ∩ null (C) = {0}
where AS = 1

2(A+ AT) is the symmetric part of A [114

.

].
Let us assume that our saddle point system satisfies these three conditions. Then a

common approach to solving the saddle point system is to use a null space method. That
is, first, we find a particular solution φ̄z satisfying the equality constraints

Cφ̄z = d̄. (3.58)

This can be done by satisfying the Dirichlet boundary conditions first and working through
the continuity conditions afterward. Second, we find a basis for the null space of C such
that CZ = 0 with Z ∈ RM×(M−Nc). If we let

φ̄ = Zφ̄p + φ̄z, (3.59)

where φ̄p ∈ C(M−Nc)×1, then

Cφ̄ = CZ
=0

φ̄p + Cφ̄z  
=d̄

(3.60)

= d̄. (3.61)

Thus, this choice of φ̄ satisfies the equality constraints. In addition, if we substitute this
expression into

Aφ̄+ CT ν̄ = b̄ (3.62)

A(Zφ̄p + φ̄z) + CT ν̄ = b̄ (3.63)

and multiply through by ZT , we obtain

ZTA(Zφ̄p + φ̄z) + ZTCT  
=0

ν̄ = ZT b̄ (3.64)

ZTAZφ̄p = ZT (b̄− Aφ̄z), (3.65)

which can be solved for φ̄p using any method suitable for solving symmetric systems of
equations. Once we have computed φ̄p, then the solution to our Ritz or Galerkin problem is
given by φ̄ = Zφ̄p + φ̄z.

The key step which remains to be addressed is how one computes Z. One common way
to compute a basis for the null space of a general rectangular matrix is to first compute its

53

singular value decomposition (SVD). In our case, since C ∈ RNc×M with M > Nc and with
rank (C) = Nc, the SVD of C is given by

C = U
[

Σ1 0
]

  
Σ

⎡⎣ V T
1

V T
2

⎤⎦
  

V T

, (3.66)

where U ∈ RNc×Nc and is orthogonal, Σ ∈ RNc×M , V ∈ RM×M and is orthogonal, Σ1 ∈
RNc×Nc and is diagonal and invertible, V 1 ∈ RM×Nc , and V 2 ∈ RM×(M−Nc) [25

.

]. Now, if we
seek a basis for the null space of C, we must look for vectors x̄ ∈ RM which satisfy

Cx̄ = 0 (3.67)

UΣ1V
T
1 x̄ = 0 (3.68)

V T
1 x̄ = (Σ−1

1 UT)0 (3.69)

V T
1 x̄ = 0. (3.70)

Since V is orthogonal, V TV = I, and thus⎡⎣ V T
1

V T
2

⎤⎦ [V 1 V 2

]
=
⎡⎣ I 0

0 I

⎤⎦ (3.71)
⎡⎣ V T

1 V 1 V T
1 V 2

V T
2 V 1 V T

2 V 2

⎤⎦ =
⎡⎣ I 0

0 I

⎤⎦ , (3.72)

which gives that V T
1 V 2 = 0. Therefore, if we take an arbitrary vector z̄ ∈ R(M−Nc)×1, we

can write x̄ = V 2z̄. That is, all vectors x̄ in the null space of matrix C can be written as a
linear combination of the columns of V 2, which means that V 2 is a basis for the null space
of C, and we can take Z = V 2.

Unfortunately, this completely general and systematic approach is rarely used because,
even if C is a sparse matrix (which is often the case for the constraint matrix), the resulting
orthogonal matrix V from the SVD need not be sparse (in general it is full). This is typically
considered a drawback of the SVD approach because if the number of basis functions which
share the same support on some subinterval of (a, b) is small compared to the total number
of basis functions M , then the matrix A will be sparse, and this sparsity will be lost when
multiplying by full Z. However, if both Z and A are sparse, then the product ZTAZ will
also be sparse, and we can use a solver which takes advantage of this fact (for example, a
sparsity-aware direct factorization, or an iterative algorithm exploiting sparse matrix-vector
products). In fact, the finite element method is a Ritz or Galerkin method where the choice

54

of basis functions is made precisely in this fashion, leading to a sparse A, and where it is
straightforward to compute a sparse basis for the null space Z. In the following, we discuss
the construction of one such basis and explain the ubiquity of nodal finite elements through
observations made on the resulting constraint matrices.

3.5 The Classical Finite Element Method

As alluded to previously, we begin by subdividing the domain Ω = (a, b) into N disjoint
subintervals (xj−1, xj) using the partition a = x0 < x1 < x2 < ... < xN = b. Over
each subinterval, we construct an interpolatory polynomial basis of degree L. Rather than
treat each basis separately, we focus on constructing a single basis on the canonical interval
u ∈ (−1, 1). We use this interval because there is an invertible, affine map from the canonical
interval to any other subinterval (xj−1, xj) using the transformations

x = (xj + xj−1) + (xj − xj−1)u
2 , (3.73)

u = (x− xj−1) − (xj − x)
xj − xj−1

. (3.74)

Both of these transformations are numerically stable to compute [108

.

]. In addition, since
the map is affine, polynomials on the canonical interval are mapped to polynomials on the
subinterval (xj−1, xj), preserving their approximation properties. Most standard texts on the
subject proceed to use Lagrange interpolation to define the interpolatory polynomial basis
of degree L on the canonical interval. The basis functions then take the form

li (u) =
L∏

j=0
i ̸=j

(u− uj)
(ui − uj)

(3.75)

where uj denotes an interpolation node typically lying somewhere inside or on the boundary
of (−1, 1) (although this is not strictly necessary). For the interpolatory polynomials to be
well defined, we require that the uj be distinct. A standard choice in the finite element
literature is for the nodes to be equally spaced with uj = −1 + 2

L
j and j = 0, 1, 2, ..., L

[12

.

, 28

.

].
There are several problems associated with this choice of basis function. First, interpola-

tion using equally spaced nodes is ill-conditioned, as discussed in Chapter 2

.

. To circumvent
this fact, many practitioners of the classical finite element method take L small (say L ≤ 4).
Since our goal is to describe a fast and highly accurate solver, we use basis functions that are

55

well-conditioned for large L, in which case interpolation using Chebyshev nodes, for example,
is preferred [109

.

]. Second, the use of (3.75

.

) in computation is inefficient and the barycentric
form of the Lagrange interpolant is superior, particularly for large L [115

.

].
Let us now discuss the constraint matrix C giving rise to Z. We will show that the

advantage of using interpolatory polynomials for our basis functions on disjoint subintervals
arises when considering the sparsity of the null space matrix Z and the operator matrix A.
Consider the partition a = x0 < x1 < x2 < . . . < xN = b of the interval (a, b). If we map the
subinterval (xj−1, xj) to (−1, 1), then we can use our Lagrange interpolation construction to
build basis functions for a degree L polynomial basis with support on (xj−1, xj). Thus, the
global basis functions will be

Ni (x) =

⎧⎪⎪⎨⎪⎪⎩
lk

(
(x− xj−1) − (xj − x)

xj − xj−1

)
x ∈ (xj−1, xj)

0 otherwise
(3.76)

with i = (L+ 1) (j − 1) + (k + 1), k = 0, 1, 2, ...L, and j = 1, 2, 3, ..., N, for a total of
M = N (L+ 1) basis functions. This definition of global basis functions may be unsettling
as certain basis functions are discontinuous at the points xj and, furthermore, a solution φ

constructed from a linear combination of such locally defined functions leaves the solution
at the nodes xj unspecified. We address such issues by imposing inter-element continuity.
Note that, for a given basis function on subinterval (xj−1, xj), regardless of whether we
use equidistant nodes or the Chebyshev nodes, we will always have one interpolation node
at xj−1 and another at xj (the remaining L − 1 nodes will be somewhere between these
two). Similarly, for the subinterval (xj, xj+1), we will have interpolation nodes at xj and
at xj+1, and so on. Because we have defined the basis functions locally, and because we
have interpolatory basis functions, when we construct our constraint matrix C to impose
continuity conditions, we recover a sparse matrix. This sparsity arises because equating
φ(x−

j) = φ(x+
j) reduces the equation

M∑
i=1

φiNi(x−
j) =

M∑
i=1

φiNi(x+
j) (3.77)

to one where only basis functions on neighboring elements to the point xj are active:

L∑
i=0

φ−
i N

−
i (x−

j) =
L∑

i=0
φ+

i N
+
i (x+

j), (3.78)

where positive superscripts indicate basis functions Ni and coefficients φi belonging to the

56

subinterval (xj, xj+1) and negative superscripts indicate the same quantities but for the subin-
terval (xj−1, xj). Since the basis functions are interpolatory, only N−

L+1(x−
j) = 1, whereas

all other basis functions evaluated at x−
j are zero, and N+

1 (x+
j) = 1, whereas all other basis

functions evaluated at x+
j are zero. This means that continuity can be enforced as

φ−
L+1 = φ+

1 (3.79)

φ−
L+1 − φ+

1 = 0. (3.80)

Thus, each continuity constraint will have a total of two nonzero entries in a row of N (L+ 1)
entries. This is sparse. In addition, since we have imposed inter-element continuity in a
limiting sense, the right and left sided limits at each xj will agree, and we can assign each
common limiting value to φ at each point xj. In doing so, we find an approximation to φ
that is continuous.

For example, to keep things simple, consider the case with L = 2. Then, ignoring Dirichlet
boundary conditions, we can represent continuity constraints using

Cc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −1 0 0
0 0 1 −1 0 0

0 0 1 −1 0 0
. . .

. . .
. . .

. . .

0 0 1 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.81)

where each row corresponds to enforcing a continuity condition between two adjacent subin-
tervals (xj−1, xj) and (xj, xj+1) (note that in our example, there will be N − 1 such con-
straints). Thus, our continuity conditions can be written as

Ccφ̄ = 0, (3.82)

which is in the form required for our saddle point system. We can add the Dirichlet boundary
condition φ (a) = p by appending a row to Cc. Again, since our basis is interpolatory, this
can be done by enforcing φ1 = p. In other words, we can write

C =
⎡⎣ Cc

ēT
1

⎤⎦ , (3.83)

where ēT
1 =

[
1 0 · · · 0

]
, and we can define d̄ = pēN , where ēT

N =
[

0 · · · 0 1
]

with

57

N entries to get
Cφ̄ = d̄. (3.84)

We now look for a basis for the null space of this particular C. We see that for the first
N − 1 columns we can take |Cc|T where the absolute value is to be applied entrywise. Since
we require C to have full rank, and C ∈ RN×N(L+1), then by the rank-nullity theorem, we
know that the dimension of the null space is NL. Since Cc has N − 1 rows, we have already
found N −1 columns of a basis for the null space. The N (L− 1)+1 remaining basis vectors
can be chosen as the unit vectors with a nonzero entry in any row corresponding to the
column number containing all zeros in C. For our simple example, we obtain

Z =

⎡⎢⎢⎢⎣

0
0 1
1
1
0 0 1

1
1
0 0 1

1 . . .

1 . . .

0 . . . 0 1
. . . 1

1 . . .

0 1
0 1

⎤⎥⎥⎥⎦

, (3.85)

which is a sparse basis for the null space (one can verify this fact by computing CZ and
observing that the result is identically zero). While this process may seem tedious, if we
rearrange the columns of Z, we obtain a very natural and simple way to construct this basis.
Consider the vector

φ̄global =

⎡⎢⎢⎢⎢⎢⎢⎣
φg,1

φg,2
...

φg,NL+1

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.86)

58

where φ̄global lists the value of φ at each interpolation node from left to right, making sure
not to double count at the locations xj for j = 1, ..., N − 1. Rearranging Z such that

Z =

⎡⎢⎢⎢⎣

0 0
1 0

1
1
0 1 0

1
1
0 1 0

1
1

0 1 . . .

. . . 1 0
1
1
0 1
0 0 1

⎤⎥⎥⎥⎦

, (3.87)

we see that φ̄ =
[
ē1 Z

]
φ̄global. Thus, Z is simply a global to local node identification

matrix with columns removed corresponding to nodes set by Dirichlet boundary conditions.
Perhaps the most important aspect of this observation is that there is no need to explicitly
solve for a sparse basis for the null space. This means that we can efficiently solve the
finite element problem without forming Z as long as we know how global nodes are related
to local nodes. This is usually done using what is called a connectivity array. The key
fact is that the matrix ZTAZ can be directly constructed from A and the connectivity
array without performing matrix products. This process is called global assembly. For one
possible description of global assembly, see [12

.

]. The same fact applies to the construction
of ZT (b̄−Aφ̄z). In particular, for our choice of interpolatory basis functions, φ̄z = pē1. Once
we have solved for φ̄p, it is straightforward to compute φ̄ = Zφ̄p + φ̄z without performing the
matrix-vector product Zφ̄p (again, the matrix-vector product is encoded in the connectivity
array).

Another important observation is that solving

ZTAZφ̄p = ZT (b̄− Aφ̄z) (3.88)

59

encodes the elimination of nodes related to Dirichlet data. In several texts, including [12

.

], the
recommended approach is to replace the row corresponding to a node enforcing a Dirichlet
boundary condition by a zero row with a 1 on the main diagonal. This operation undoes the
symmetry of A. Thus, to restore symmetry (which is desirable), the column corresponding
to the node is brought to the right hand side of the equations and both the row and column
are removed from the modified A. This is precisely what the reduced system of equations
for φ̄p accomplishes. Since Z lacks the unit vectors corresponding to nodes where Dirichlet
conditions are imposed, the multiplication of ZTAZ removes those rows and columns. In
addition, the data in the removed columns are moved to the right hand side via the term
−ZTAφ̄z. In fact, this tells us how φ̄global and φ̄p are related: φ̄p is φ̄global with Dirichlet
nodes removed.

Finally, we discuss the construction of A and its sparsity. Using our interpolatory basis
functions, we note that

A =

⎡⎢⎢⎢⎢⎢⎢⎣
A1

A2
. . .

AN

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.89)

where Ak ∈ C(L+1)×(L+1). The matrix A has this block diagonal structure because its entries
are given by

A =
ˆ b

a

[
d

dx
N̄

]
α

[
d

dx
N̄

]T

dx+
ˆ b

a

N̄βN̄Tdx+
[
N̄γN̄T

]
x=b

. (3.90)

It is clear that if a basis function in N̄ or d
dx
N̄ does not share common support with another,

that entry of A will be zero (integrating against the zero function returns zero). Of course,
this block structure only arises because we have grouped basis functions with shared support
over the same subinterval (this is standard practice). This result can be viewed as an
approximate orthogonality; by defining basis functions on disjoint subintervals, we ensure
that the majority of inner products in A evaluate to zero, guaranteeing sparsity. We note
that if we use either equally spaced or Chebyshev nodal interpolation for our local basis
functions, then each block matrix Ak is full, regardless of how α (x) and β (x) vary over
the element. This is not a problem when the local degree on each element L is small with
respect to the total number of unknowns N (L+ 1). When α and β are constants over each
element, then analytical expressions for Ak can be used. Otherwise, it is standard to apply
a Gaussian quadrature rule to evaluate the integrals [28

.

].
To conclude, we note that in the classical finite element method, the Ak matrices are

60

referred to as local element matrices, which are then assembled into a global finite element
matrix via the multiplication ZTAZ (again, this process is usually hidden by use of the
connectivity array). In our example, the global system is a banded matrix with bandwidth
L+ 1 due to the sequential numbering of elements from left to right.

3.6 Adaptive Finite Element Considerations

In the preceding section, we assumed that the polynomial degree L for each interpolatory
basis was uniform. Thus, to produce more accurate solutions to the finite element problem,
we have two choices: we may either further subdivide the interval (a, b) by using more
elements, or we may increase the polynomial degree L over all elements. We call element
refinement h-adaptivity and increasing local element degree p-adaptivity. p-adaptivity is well
suited to situations where the solution φ to the original BVP is smooth over the element.
This is intuitive as polynomials are infinitely differentiable; it makes little sense to expect to
represent a function with only a small number of derivatives over the subinterval (xj, xj+1) by
one comprised of a finite sum of smooth functions (although in the limit this is possible, see
[109

.

] for example). When the solution φ is not smooth, then h-adaptivity is preferred. Any
finite element code that allows for both local h-adaptivity and local p-adaptivity is deemed
an hp-adaptive code. These codes differ in the way that elements are chosen for h-adaption
or p-adaption.

How then can our description of the finite element method be modified to allow for hp-
adaption? First, each element must be assigned a local polynomial degree Lk. To allow
for arbitrary Lk, it becomes imperative that we use the Chebyshev nodes6

.

rather than the
equally spaced nodes since interpolation in equally spaced nodes need not converge as Lk

grows [109

.

]. If we make this choice, then the block diagonal matrix A will now have blocks of
size (Lk + 1)×(Lk + 1). One drawback associated with the nodal finite element basis chosen
is that these blocks must be recomputed if the local degree is changed. In addition, suppose
that our adaption algorithm concludes that p-adaption is preferred for all elements, then the
local element matrices become large compared to the total size of A, and the sparsity of the
finite element method is lost. In the following chapter, we discuss a choice of basis which
circumvents these drawbacks.

6In principle, any set of nodes that cluster near the endpoints of the canonical interval with the same
asymptotic node density [116

.

], and that includes the endpoints (for sparse inter-element continuity) is suffi-
cient, although the Chebyshev set described here is the simplest I know of.

61

Chapter 4

A Fast Adaptive Finite Element
Method

This chapter combines ideas from Chapters 2

.

and 3

.

to describe a fast, adaptive finite ele-
ment method. In particular, the chapter uses the strong approximation properties for smooth
functions that orthonormal Legendre polynomials and polynomial interpolation at Cheby-
shev nodes have (as described in Chapter 2

.

) to modify the classical finite element method
(as described in Chapter 3

.

). The presentation is directed in such a way as to naturally arrive
at the basis functions of Babuška-Szabó [48

.

] and Shen [49

.

] and to illustrate the desirable
properties these functions possess, including sparsity and conditioning of the associated local
element matrices. These results hold under simplified assumptions on material parameters.
The chapter goes on to show how to extend these results to spatially varying parameters
using Legendre expansions. Efficient computation of these expansions is described using the
algorithm of [51

.

]. The chapter concludes with a description of the finite element method
itself, and its application in an hp-adaptive framework.

4.1 Sparsity of the Operator Matrix

We begin by making two simplifying assumptions. First, let α and β be scalar constants.
We will return to the case where α and β vary arbitrarily in space later; this requires
some additional insight. Second, assume Ω = (−1, 1) and use a single element to span the
interval. Again, we will return to the case with several elements later, but the generalization
is relatively straightforward. With these assumptions, the BVP of interest becomes

62

− d

dx

(
α
dφ

dx

)
+ βφ (x) = f (x) , x ∈ (−1, 1) , (4.1)

φ (−1) = p, (4.2)[
α
dφ

dx
+ γφ

]
x=1

= q, (4.3)

and the corresponding functional is

F (φ) = 1
2

⎧⎨⎩α
ˆ 1

−1

(
dφ

dx

)2

dx+ β

ˆ 1

−1
φ2dx+ γ [φ(1)]2

⎫⎬⎭−
{ˆ 1

−1
fφ dx+ qφ(1)

}
. (4.4)

Recall (see (3.31

.

), for example) that by approximating φ by a linear combination of basis
functions, we obtain the quadratic form

F = 1
2 φ̄

TAφ̄− φ̄T b̄ (4.5)

with

A = α

ˆ 1

−1

[
d

dx
N̄

] [
d

dx
N̄

]T

dx+ β

ˆ 1

−1
N̄N̄Tdx+ γ

[
N̄N̄T

]
x=1

. (4.6)

Let us treat each term in (4.6

.

) separately, commenting on the sparsity of the resulting
matrices.

If we approximate φ using interpolatory Lagrange polynomials, then N̄ (x) = l̄ (x)
where l̄ is the vector containing Lagrange polynomials. Recall (see (2.32

.

) and its associ-
ated paragraph) that we can change basis to the orthonormal Legendre polynomials using
l̄ (x) = Ṽ −T p̄ (x) where Ṽ is the generalized Vandermonde matrix and p̄ is the vector con-
taining the orthonormal Legendre polynomials. For the first term in (4.6

.

), we obtain

α

ˆ 1

−1

[
d

dx
N̄

] [
d

dx
N̄

]T

dx = α

ˆ 1

−1

[
d

dx
l̄

] [
d

dx
l̄

]T

dx (4.7)

= α

ˆ 1

−1

[
d

dx
Ṽ −T p̄

] [
d

dx
Ṽ −T p̄

]T

dx. (4.8)

Next, we use the linearity of differentiation to interchange Ṽ −T and d
dx

and replace differen-
tiation of p̄ with multiplication by the appropriate differentiation matrix D̃ for orthonormal

63

Legendre polynomials (defined in (2.95

.

)). This gives

α

ˆ 1

−1

[
d

dx
N̄

] [
d

dx
N̄

]T

dx = α

ˆ 1

−1

[
Ṽ −T d

dx
p̄

] [
Ṽ −T d

dx
p̄

]T

dx (4.9)

= α

ˆ 1

−1

[
Ṽ −T D̃p̄

] [
Ṽ −T D̃p̄

]T
dx. (4.10)

Finally, we apply the matrix transposition rule and use the linearity of integration to integrate
only the outer product of p̄; this procedure yields

α

ˆ 1

−1

[
d

dx
N̄

] [
d

dx
N̄

]T

dx = α

ˆ 1

−1

[
Ṽ −T D̃p̄

] [
p̄T D̃

T
Ṽ −1

]
dx (4.11)

= αṼ −T D̃

ˆ 1

−1
p̄p̄Tdx  

IL+1

D̃
T
Ṽ −1 (4.12)

= αṼ −T D̃D̃
T
Ṽ −1 (4.13)

where the last step comes from the orthogonality of the Legendre polynomials over the
interval (−1, 1). Similarly, we can repeat the same procedure on the second term in (4.6

.

) to
obtain

β

ˆ 1

−1
N̄N̄Tdx = β

ˆ 1

−1
l̄ l̄Tdx (4.14)

= β

ˆ 1

−1

[
Ṽ −T p̄

] [
Ṽ −T p̄

]T
dx (4.15)

= β

ˆ 1

−1

[
Ṽ −T p̄

] [
p̄T Ṽ −1

]
dx (4.16)

= βṼ −T

ˆ 1

−1
p̄p̄Tdx  

IL+1

Ṽ −1 (4.17)

= βṼ −T Ṽ −1. (4.18)

Finally, the third term in (4.6

.

) is straightforward, as long as an interpolation node exists at
x = 1. In both the equally spaced and Chebyshev node cases, such a node exists, and we
conclude that all but one entry in N̄ will be zero, the exception being one. To keep things
simple, let us say that the ordering of Lagrange polynomials in N̄ is such that N̄ (1) = ēL+1

for the chosen basis of polynomial degree L. Putting these three computations together
yields

A = αṼ −T D̃D̃
T
Ṽ −1 + βṼ −T Ṽ −1 + γēL+1ē

T
L+1. (4.19)

64

Thus, if we have α and β constant, then computing these matrices does not require
integration. In fact, we can clearly see that the quality of the finite element solution depends
not only on the polynomial order, but also where the interpolation nodes lie. This is because
A depends on the inversion of the generalized Vandermonde matrix which we have shown,
in Chapter 2

.

, to be poorly conditioned for large L on equally spaced nodes. If we take
the Chebyshev nodes, this conditioning problem is significantly reduced, and we are free to
take L large. That being said, the matrix A is full since Ṽ and its inverse are both full
matrices and we have lost one of the defining properties of a classical finite element method,
the sparsity of A. This means that, using such a basis, we can construct a highly accurate
solver, but it will not be fast since solving the saddle point system will cost O (L3) FLOPs
using LU factorization.

How then can we rid ourselves of the generalized Vandermonde matrix appearing in A?
Consider no longer using an interpolatory basis. The previous discussion points us to one
potentially desirable basis, the orthonormal Legendre polynomials. That is, take N̄ = p̄ and
perform the same computations to obtain

A = αD̃D̃
T + βIL+1 + γp̄ (1) p̄ (1)T . (4.20)

In doing so, we have successfully removed the Vandermonde matrix, but we are presented
with two new problems. First, the product D̃D̃T is roughly half full. In fact, the sparsity
has a checkerboard structure with nonzeros if i > 1 and j > 1 and mod (i+ j, 2) = 0. In
addition, and more importantly, the outer product p̄ (1) p̄ (1)T is full. This is also a concern
as the vector p̄ (−1) arises when imposing the Dirichlet boundary condition and, should we
generalize to multiple elements, both p̄ (1) and p̄ (−1) arise when imposing inter-element
continuity conditions. In such a situation, it becomes unclear how to choose a sparse basis
for the null space for the constraint matrix.

To circumvent the first problem, let us attempt to eliminate the matrix D̃D̃T by making
one further modification to our orthonormal Legendre basis. We saw that by taking N̄ = p̄,
the second term in A simplified to the identity matrix. Thus one natural question which
arises is whether a similar approach—choosing N̄ such that the first term in A simplifies to
something close to the identity matrix—can be used (hoping, of course, that this transfor-
mation does not adversely affect the remaining terms in A). To find such a transformation,
we remark that the reason the second term evaluated to the identity matrix was because of
the orthonormality of the Legendre polynomials on the interval (−1, 1). Thus, if we want
the first term to evaluate to identity, we must look for functions whose derivatives are or-
thonormal on the same interval. That is, we must choose functions that are the indefinite

65

integrals (or antiderivatives) of the orthonormal Legendre polynomials.
To express such functions, we return to the property of orthonormal Legendre polynomials

that we used to derive the differentiation matrix D̃ in Section 2.2

.

. The property is

√
2n+ 1pn = d

dx

⎡⎣− 1√
2 (n− 1) + 1

pn−1 + 1√
2 (n+ 1) + 1

pn+1

⎤⎦ . (4.21)

Integrating both sides and simplifying radicals yields
ˆ
pn dx = − 1√

2n+ 1
√

2 (n− 1) + 1
pn−1 + 1√

2n+ 1
√

2 (n+ 1) + 1
pn+1 (4.22)

= − 1√
4n2 − 1

pn−1 + 1√
4 (n+ 1)2 − 1

pn+1 (4.23)

which we can use to build an integration matrix. For example, consider the case with n

ranging from 0 to 3 which gives

⎡⎢⎢⎢⎢⎢⎢⎣

´
p0 dx´
p1 dx´
p2 dx´
p3 dx

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1√

3
− 1√

3 0 1√
3

1√
5

− 1√
3

1√
5 0 1√

5
1√
7

− 1√
5

1√
7 0 1√

7
1√
9

⎤⎥⎥⎥⎥⎥⎥⎦
  

S̃inc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0

p1

p2

p3

p4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.24)

Unfortunately, we cannot choose N̄ = S̃incp̄ for our finite element method. This is because
S̃incp̄ does not span a complete space of polynomials; that is, it does not contain the constant
function. To see why, try to find a linear combination of rows of S̃inc which results in cēT

1

where c is any constant. This would lead to cp0 being representable in the set of integrals
of orthonormal Legendre polynomials, and since the function p0 is the constant function,
then S̃incp̄ would contain the constant function. To do this in our example, we must take
row 2 as it is the only row with an entry in the first column. We then are forced to scale
row 4 appropriately and add it to row 2 to cancel the entry in column 3 of row 2, but this
leaves a nonzero entry in column 5. The same is true for any number of additional rows and
columns when n is an arbitrary integer, and we confirm that it is impossible to represent a
constant function with the integrals of orthonormal Legendre polynomials. To circumvent
this problem, we add the constant function to our set of basis functions so that

N̄ =
⎡⎣ p0´

p̄ dx

⎤⎦ , S̃ =
⎡⎣ ēT

1

S̃inc

⎤⎦ , (4.25)

66

and N̄ = S̃p̄. This additional row renders S̃ a square matrix. In addition, since S̃ is
lower triangular with nonzero diagonal entries, its determinant is nonzero. This means that
S̃ is invertible which confirms that the space of polynomials spanned by the orthonormal
Legendre basis and this modified basis is the same. For arbitrary polynomial degree L, we
can write the integration matrix S̃ by defining the vector ḡ ∈ RL×1 with entries

gi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 i = 1

1√
4 (i− 1)2 − 1

otherwise (4.26)

and the shift matrix

SDL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0

1 . . .

. . . 0
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.27)

which shifts entries in a matrix down a row when multiplying from the left (adding zeros to
the first row), and shifts entries left one column when multiplying from the right (adding
zeros to the last column). With this vector and shift matrix, the integration matrix is given
by

S̃ = diag (ḡ) − SDLdiag (ḡ)SDL. (4.28)

We now return to the matrix A which, with this change of basis, is given by

A = αS̃D̃D̃
T
S̃T + βS̃S̃T + γ

[
N̄N̄T

]
x=1

(4.29)

where we have replaced Ṽ −T with S̃ in (4.19

.

). We now have three terms to investigate.
We begin with the first by computing the product S̃D̃. Remember, the intention was that,
in choosing N̄ to be the vector of integrals of Legendre polynomials (supplemented by the
constant function), we would obtain sparsity in the product S̃D̃. We now demonstrate that
this is true. Recall (from Chapter 2) that D̃ = diag(h̄)Hdiag(h̄) where

hi =
√

2(i− 1) + 1, Hij =

⎧⎪⎨⎪⎩mod (i+ j, 2) j ≤ i

0 otherwise.
(4.30)

67

Then

S̃D̃ =
[
diag (ḡ) − SDLdiag (ḡ)SDL

] [
diag(h̄)Hdiag(h̄)

]
(4.31)

=
[
diag (ḡ) diag(h̄) − SDLdiag (ḡ)SDLdiag(h̄)

]
Hdiag(h̄) (4.32)

where we have postmultiplied by diag(h̄) from the right. The term

SDLdiag (ḡ)SDLdiag(h̄) = diag (ḡ) diag(h̄)SDLSDL. (4.33)

This commutativity of matrix multiplication is not true in general but is due to the specific
entries of ḡ and h̄ (the identity is false for arbitrary ḡ and h̄). To see why this equality
holds, SDLdiag (ḡ)SDL is diag (ḡ) shifted down and to the left with zeros in the first row and
last column. This is followed by multiplication from the right by diag(h̄) which scales the
columns of SDLdiag (ḡ)SDL by h̄. Compare this to multiplying ḡ and h̄ entrywise along the
diagonal and then shifting the result left twice; the resulting matrices are identical1

.

. Thus

S̃D̃ = diag (ḡ) diag(h̄)
[
I − S2

DL

]
Hdiag(h̄) (4.34)

= diag (ḡ) diag(h̄)
[
H − S2

DLH
]

diag(h̄) (4.35)

where we have used this special commuting property to factor the diagonal scaling matrices
from the left. Examining the matrix in square brackets, we use the structure of H which is
strictly lower triangular with alternating subdiagonals of ones and zeros to conclude that

H − S2
DLH = SDL. (4.36)

This is true because S2
DLH is 2 shifts downward of the alternating subdiagonal matrix H.

Subtraction of this product from H cancels all nonzero subdiagonals with the exception of
the first. This gives

S̃D̃ = diag (ḡ) diag(h̄)SDLdiag(h̄) (4.37)

which, after scaling of rows by diag (ḡ) diag(h̄) and scaling of columns by diag(h̄) yields

S̃D̃ = SDL, (4.38)

again, because of the specific entries in ḡ and h̄. Having shown this simplification, we return
1The simplest way to verify this is by direct computation. Take the case L = 5 for simplicity as the

general case can be seen immediately from there.

68

to the first term of A to see that

αS̃D̃D̃
T
S̃T = αS̃D̃[S̃D̃]T (4.39)

= αSDLS
T
DL (4.40)

which is indeed quite simple since SDLS
T
DL is the identity matrix with the first entry along

the main diagonal set to zero.
Next, we examine the structure of the second term which involves the multiplication

S̃S̃T . We know that

S̃S̃T =
[
diag (ḡ) − SDLdiag (ḡ)SDL

] [
diag (ḡ) − SDLdiag (ḡ)SDL

]T
(4.41)

=
[
diag (ḡ) − SDLdiag (ḡ)SDL

] [
diag (ḡ) − ST

DLdiag (ḡ)ST
DL

]
(4.42)

which—after multiplication—yields four terms

S̃S̃T = diag (ḡ) diag (ḡ) + SDLdiag (ḡ)SDLS
T
DLdiag (ḡ)ST

DL

− diag (ḡ)ST
DLdiag (ḡ)ST

DL − SDLdiag (ḡ)SDLdiag (ḡ) . (4.43)

The first two terms contribute only to the main diagonal, the third term contributes to the
second superdiagonal, and the fourth term contributes to the second subdiagonal. The result
is a pentadiagonal matrix with three nonzero diagonals. Thus, in choosing the integrals of
Legendre polynomials as our basis functions we have—in a sense—balanced sparsity in both
the first and second terms of A. This is an improvement in sparsity over interpolatory
Lagrange polynomials (full matrices for both terms) and orthonormal Legendre polynomials
(full matrix for the first term, diagonal for the second).

However, before we can be sure that A is sparse, we need to consider the third term
arising from the Robin boundary condition. To do so, we need to know what these modified
basis functions evaluate to at the endpoints of the domain (−1, 1). We consider properties
of the orthonormal Legendre polynomials [117

.

]. In particular,

pn (1) =
√

2n+ 1
2 . (4.44)

Using (4.23

.

), we see that, for n > 0,
[ˆ

pn dx

]
x=1

= − 1√
4n2 − 1

pn−1 (1) + 1√
4 (n+ 1)2 − 1

pn+1 (1) . (4.45)

69

Property (4.44

.

) gives

[ˆ
pn dx

]
x=1

= − 1√
4n2 − 1

√2 (n− 1) + 1
2 + 1√

4 (n+ 1)2 − 1

√2 (n+ 1) + 1
2 (4.46)

= − 1√
2
√

2n+ 1
+ 1√

2
√

2n+ 1
(4.47)

= 0 (4.48)

whereas, for n = 0, [ˆ
p0 dx

]
x=1

= 1√
4 (1)2 − 1

p1 (1) (4.49)

= 1√
3

√2 (1) + 1
2 (4.50)

= 1√
2
. (4.51)

Finally, p0 = 1/
√

2 so that
N̄ (1) = 1√

2
(ē1 + ē2) , (4.52)

and
γ
[
N̄N̄T

]
x=1

= γ
1
2 (ē1 + ē2) (ē1 + ē2)T . (4.53)

This is also sparse; in fact, only the leading 2-by-2 block is nonzero. Thus, for our BVP, all
three terms in A are sparse, and A is given by

A = αSDLS
T
DL + βS̃S̃T + γ

1
2 (ē1 + ē2) (ē1 + ē2)T . (4.54)

In addition, we can let the polynomial degree of the basis L be arbitrarily large while
maintaining this sparsity. To summarize, Figure 4.1

.

contrasts the sparsity patterns for
the three choices of basis functions described in this section. Clearly, the third row of
Figure 4.1

.

, which corresponds to integrals of Legendre polynomials, balances sparsity in all
three components of matrix A better than either the interpolatory Lagrange polynomial or
Legendre polynomial representations (rows one and two respectively).

For completeness, we also investigate the case where the Robin boundary condition is
imposed at x = −1 to make sure that this case is also sparse. We note that

pn (−x) = (−1)n pn (x) (4.55)

70

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

1 3 5 7 9 11 13 15 17 19 21

1

3

5

7

9

11

13

15

17

19

21

Figure 4.1: Comparison of sparsity patterns for different terms in A. Row 1 corresponds
to interpolatory Lagrange polynomials, row 2 corresponds to Legendre polynomials, and
row 3 corresponds to integrated Legendre polynomials. Each column represents the sparsity
pattern for a single term in A. Column 1 corresponds to the α term, column 2 corresponds
to the β term, and column 3 corresponds to the γ term. Degree L = 20 polynomials are
used in all cases.

71

so that

pn (−1) = (−1)n pn (1) (4.56)

= (−1)n

√
2n+ 1

2 . (4.57)

Then, using (4.23

.

), we observe that

[ˆ
pn dx

]
x=−1

=

⎧⎪⎪⎨⎪⎪⎩
0 n > 0

− 1√
2

n = 0.
(4.58)

We now can write
N̄ (−1) = 1√

2
(ē1 − ē2) , (4.59)

confirming that an identical sparsity pattern is also obtained in this case. These two cases
for the Robin boundary condition are also important when considering Dirichlet boundary
conditions because either N̄ (1) or N̄ (−1) may arise in a constraint equation. In our example
BVP, we have φ (−1) = p which leads to the constraint

N̄ (−1)T φ̄ = p (4.60)
1√
2

(ē1 − ē2)T φ̄ = p (4.61)

and the constraint matrix
C = 1√

2
(ē1 − ē2)T (4.62)

which is also sparse (the constraint vector is d̄ = p). Combining this constraint matrix with
A, we note that, with this basis, solving the saddle point system directly or by the associated
null space method is an O (L) process since we can exploit the pentadiagonal structure of
A. This is a fast method.

In addition to speed, it is also important to consider whether solving such a system is
numerically stable. To characterize this stability, we compute the condition number of matrix
A for various choices of basis and polynomial degree. As an example, Figure 4.2

.

illustrates
the condition number measured in the 2-norm for a given fixed set of parameters α = 1,
β = −1, and γ = 0. Notice how the monomials and interpolatory Lagrange polynomials in
terms of equidistant nodes lead to extremely ill-conditioned matrices for polynomial degrees
larger than 5. Interpolatory Lagrange polynomials in terms of Chebyshev nodes as well as
Legendre polynomials are better behaved but grow increasingly ill-conditioned as the degree

72

0 5 10 15 20 25
10

0

10
5

10
10

10
15

10
20

Polynomial Degree

C
o
n
d
it

io
n
 N

u
m

b
er

Monomial

Equidistant Lagrange

Chebyshev Lagrange

Legendre

Integrated Legendre

Figure 4.2: Condition number κ2(A) with parameters α = 1, β = −1, and γ = 0 fixed, as a
function of increasing polynomial degree L. Comparison of the condition number for different
basis functions for lower polynomial degrees. Basis functions are monomials, interpolatory
Lagrange polynomials with equidistant nodes and Chebyshev nodes, Legendre polynomials,
and integrated Legendre polynomials.

is increased. Integrated Legendre polynomials are well-conditioned, even for high polynomial
degree. This is because the eigenvalues of the second term in A decay to zero, and the first
term is effectively the identity matrix. The matrix behaves like a compact perturbation of
the identity matrix with eigenvalues clustering near unity. Figure 4.3

.

shows the trend in
Figure 4.2

.

extended to higher polynomial degrees. It should be pointed out that in general
the conditioning of A depends on the choice of parameters α and β. For example, increasing
β has the effect of increasing the condition number for the integrated Legendre basis but does
not change the fact that this condition number is effectively independent of the polynomial
degree.

Finally, we take this opportunity to give a third representation of the integrated Legendre
polynomials (the first is their definition as integrals of Legendre polynomials and the second
is their description as linear combinations of Legendre polynomials given by N̄ = S̃p̄). These

73

10
1

10
2

10
3

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Polynomial Degree

C
o
n
d
it

io
n
 N

u
m

b
er

Chebyshev Lagrange

Legendre

Integrated Legendre

Figure 4.3: Condition number κ2(A) with parameters α = 1, β = −1, and γ = 0 fixed, as
a function of increasing polynomial degree L. Comparison of the condition number for dif-
ferent basis functions for higher polynomial degrees. Monomials and interpolatory Lagrange
polynomials with equidistant nodes are not shown due to their extremely poor conditioning.

polynomials can also be defined as

N0(x) = 1√
2
, (4.63)

N1(x) = x√
2
, (4.64)

Nk(x) = −(1 − x)(1 + x)√
k(k − 1)

p
(1,1)
k−2 (x), k = 2, 3, 4, ... (4.65)

where p(α,β)
k (x) is an orthonormal Jacobi polynomial. For k ≥ 2, the polynomials are eigen-

functions satisfying
d2

dx2Nk + λk

(1 − x)(1 + x)Nk = 0 (4.66)

with eigenvalues λk = k(k − 1) subject to homogeneous Dirichlet boundary conditions at
x = ±1. Depending on the literature, any of these three representations can appear; they
are identical. However, often the first two polynomials N0(x) and N1(x) are replaced by

74

interpolatory polynomials

l0(x) = 1 + x

2 , l1(x) = 1 − x

2 . (4.67)

This simplifies certain boundary expressions at the cost of reducing the sparsity of A. In
practice, we transform between the two representations using⎡⎣ N0

N1

⎤⎦ = 1√
2

⎡⎣ 1 1
1 −1

⎤⎦
  

Q

⎡⎣ l0

l1

⎤⎦ . (4.68)

Note that Q is orthogonal and symmetric and thus involutory, which means that Q−1 = Q.
Therefore, if Ñ(x) is the vector containing the integrated Legendre polynomials with first
two polynomials interpolatory, then

Ñ(x) =
⎡⎣ Q 0

0 IL−1

⎤⎦
  

B

N̄(x) (4.69)

and also N̄(x) = BÑ(x). Babuška and Szabó describe Ñ(x) using integrals of Legendre
polynomials [48

.

], Shen describes Ñ(x) using linear combinations of Legendre polynomials
[49

.

], and Sherwin and Karniadakis describe Ñ(x) using Jacobi polynomials [37

.

]. These
references use numerical integration to assemble A when computing with spatially varying
α and β or to assemble the forcing vector when computing with spatially varying forcing
function f . By doing so, the sparsity of the operator matrix A no longer holds. Section
4.2

.

describes how to represent the forcing function f as a linear combination of Legendre
polynomials and emphasizes how to efficiently compute this representation. Then, in Section
4.3

.

, such Legendre expansions are used to extend the method described thus far to cases
with variable α and β in a way that continues to preserve sparsity wherever possible.

4.2 Computing the Forcing Term

In this section, we consider how to compute the vector b̄ given by

b̄ =
ˆ 1

−1
N̄f dx−

[
qN̄

]
x=1

. (4.70)

75

The second term is straightforward as we can use the results obtained in applying the Robin
boundary condition directly to show that

[
qN̄

]
x=1

= q
1√
2

(ē1 + ē2) . (4.71)

The first term requires some comment. First, recall that f is an arbitrary function. This
means that, in a general code, evaluating the first term must be done numerically. For this
reason, most finite element codes use a Gaussian quadrature rule to evaluate each entry in
the vector [12

.

]. If the quadrature rule uses Lquad nodes, then the cost of computing the first
term is O (LquadL). If Lquad ≈ L, which is typical, then the computational bottleneck in our
fast solver is precisely the evaluation of this term. To circumvent this apparent problem, let
us again use the framework set up in Chapter 2

.

.
Suppose we approximate f as a sum of orthonormal Legendre polynomials such that

f ≈ p̄T f̄ (4.72)

where f̄ is a vector containing the coefficients in this expansion. Using this in our expression
for the first term gives

ˆ 1

−1
N̄f dx =

ˆ 1

−1
S̃p̄f dx (4.73)

≈
ˆ 1

−1
S̃p̄p̄T f̄ dx (4.74)

≈ S̃

ˆ 1

−1
p̄p̄Tdx  

IL+1

f̄ (4.75)

≈ S̃f̄ (4.76)

and since S̃ = diag (ḡ)−SDLdiag (ḡ)SDL , applying S̃ to the vector f̄ is an O (L) computation
involving scaling and shifting. The work has been transferred into computing the coefficients
in f̄ . In fact, we have not accomplished much, since any continuous function on (−1, 1) can
be written as an infinite sum of Legendre polynomials pk multiplied by some coefficients fk

given by
f =

∞∑
i=0

fipi. (4.77)

76

The coefficients are found by multiplying by pk and integrating:
ˆ 1

−1
pkf dx =

∞∑
i=0

fi

ˆ 1

−1
pkpi dx (4.78)

ˆ 1

−1
pkf dx = fk. (4.79)

In vector notation, f̄ =
´ 1

−1 p̄f dx, and we have a problem very similar to the one we first
encountered in (4.73

.

). That being said, there are a variety of algorithms that can be used
to compute f̄ .

First, let us approximate f by interpolation. Then,

f̄ =
ˆ 1

−1
p̄f dx (4.80)

≈
ˆ 1

−1
p̄
[
p̄T Ṽ −1f̄s

]
dx (4.81)

≈
ˆ 1

−1
p̄p̄Tdx  

IL+1

Ṽ −1f̄s (4.82)

≈ Ṽ −1f̄s (4.83)

where Ṽ is the generalized Vandermonde matrix evaluated at a set of interpolation nodes and
f̄s is the vector containing the values of the function f at the nodes. While inversion of the
dense matrix Ṽ is naively a O (L3) process, there exist specialized algorithms which exploit
the structure of the generalized Vandermonde matrix to compute f̄ in O (L2) operations
[112

.

].
Alternatively, we can apply numerical integration to write

f̄ ≈
M∑

j=0
wj p̄ (xj) f (xj) (4.84)

≈
[
p̄ (x0) p̄ (x1) . . . p̄ (xM)

]
  

Ṽ T

diag (w̄) f̄s (4.85)

so that f̄ = Ṽ T diag (w̄) f̄s where w̄ is the vector of weights wj and xj are the nodes for the
integration rule. Clearly, multiplication by diag (w̄) is O (M) FLOPs whereas multiplication
by Ṽ T is O (ML) FLOPs. Of particular interest is the case where M = L and xj are the
roots of pL+1. In this case, the integration rule is the standard Gauss-Legendre rule, and
Ṽ −1 = Ṽ T diag (w̄) so that the two methods are in fact identical. For our purposes, we use

77

M = 2L and xj the Chebyshev nodes so as to avoid computing the roots of pL+1
2

.

, however,
in this case the two methods are distinct. When L exceeds 256, we use a fast method to
compute the Legendre coefficients [51

.

]. The method first computes Chebyshev coefficients
in O(L logL) FLOPs, then converts the Chebyshev coefficients to Legendre coefficients in
O(L(logL)2) FLOPs. Alternative algorithms exist, such as [119

.

, 120

.

, 121

.

], but they have not
been considered in this work. For a detailed description of the fast method, see Appendix
A

.

.
Putting these results together, we have a fast solver for the constant coefficient case of

our BVP on a single element with saddle point system

⎡⎣ αSDLS
T
DL + βS̃S̃T + γ 1

2 (ē1 + ē2) (ē1 + ē2)T 1√
2 (ē1 − ē2)

1√
2 (ē1 − ē2)T 0

⎤⎦ ⎡⎣ φ̄

ν̄

⎤⎦
=
⎡⎣ S̃f̄ − q 1√

2 (ē1 + ē2)
p

⎤⎦ . (4.86)

All entries on the left are known explicitly, and only f̄ on the right needs to be computed.
To do so, we begin by computing f̄ for L = 8 and continue to increase L (either by doubling
or by incrementing by 1) until at least the last two coefficients in f̄ have decayed below a
user specified tolerance (say 100ϵmachine ≈ 2 × 10−14 in double precision taken relative to the
magnitude of f). We require two coefficients to be zero consecutively because the Legendre
polynomials are even and odd functions, and if the function f is even or odd, it is possible
for all even or odd coefficients to be zero (to the relative tolerance) but their counterparts
nonzero. Once this criterion is met, we can construct the saddle point matrix for the L
that was sufficient in representing f to the relative tolerance as long as this new L ≥ 1
(effectively throwing away coefficients that were zero to the relative tolerance). We then
solve the system using a direct sparse method for the pentadiagonal system. We can either
do this directly on the saddle point system (4.86

.

), or we can use the null space method by
taking Z =

[
ē1 + ē2 ē3 ē4 . . . ēL+1

]
and φ̄z =

√
2pē1. Note that Z is a sparse basis for

the null space; that is, we have not lost this property by changing to the basis of integrals
of Legendre polynomials3

.

.
Once we have computed φ̄, we can verify how well our computed solution approximates

2It should be pointed out that there exists a fast O (L) algorithm for the computation of the Gauss-
Legendre nodes and weights when L > 100, although the issue of multiplying by Ṽ T with less than O

(
L2)

FLOPs is not obvious [118

.

].
3The null space method is not very useful here because it reduces the size of the linear system by only

one equation and one unknown. It will become more important when we move to multiple elements.

78

the true solution to the BVP by changing to the Legendre basis. We have that

φ ≈ φ̄T N̄ (4.87)

≈ φ̄T S̃  
φ̄T

Leg

p̄ (4.88)

so that φ̄Leg = S̃T φ̄ are coefficients for the computed solution in the Legendre basis. Multi-
plication by S̃T costs O (L) FLOPs so the conversion is inexpensive. In the Legendre basis,
we know that the coefficients decay based on the smoothness of the underlying function [109

.

]
so we can expect such a decay in the coefficients of our solution. If the coefficients have not
decayed to the user defined tolerance, we increase L and solve the system again (by either
doubling or incrementing L by 1). Note that the expensive part of computing f̄ need not be
recomputed; we pad f̄ with zeros as we have already resolved the function f to the required
tolerance, but have not resolved φ to a similar tolerance. Note that the structure of the
saddle point system does not change with increasing L, we need only add rows and columns
to A and C, and they remain sparse.

4.3 Spatially Varying Parameters

The sparsity results obtained in Section 4.1

.

are valid only when α and β are constant over
the interval (−1, 1). Let us now allow both to vary spatially so that

A =
ˆ 1

−1

[
d

dx
N̄

]
α (x)

[
d

dx
N̄

]T

dx+
ˆ 1

−1
N̄β (x) N̄Tdx+ γ

[
N̄N̄T

]
x=1

. (4.89)

Here, there can be no general sparsity results as the sparsity of each integral depends on
the arbitrary functions α and β. Nevertheless, to describe sparsity, we borrow the idea used
in computing the forcing term b̄ in Section 4.2

.

. That is, we approximate α and β by two
separate Legendre expansions

α (x) ≈
Kα∑
k=0

αkpk, β (x) ≈
Kβ∑
k=0

βkpk, (4.90)

where Kα and Kβ are chosen large enough to represent α and β to the user specified tolerance
in the same way that f was approximated, although here we allow for the possibility that
Kα or Kβ are zero (this recovers the constant case we started with). Let us examine how
this change in the first term of A affects its sparsity.

We begin by using the approach characteristic of Section 4.1

.

of replacing N̄ by S̃p̄ and

79

differentiation by D̃ to obtain

ˆ 1

−1

[
d

dx
N̄

]
α (x)

[
d

dx
N̄

]T

dx =
ˆ 1

−1

[
S̃D̃p̄

]
α (x)

[
S̃D̃p̄

]T
dx (4.91)

=
ˆ 1

−1
[SDLp̄]α (x) [SDLp̄]T dx (4.92)

= SDL

ˆ 1

−1
p̄ α (x) p̄TdxST

DL. (4.93)

We now substitute the Legendre expansion for α to find

ˆ 1

−1

[
d

dx
N̄

]
α (x)

[
d

dx
N̄

]T

dx = SDL

ˆ 1

−1
p̄

[
Kα∑
k=0

αkpk

]
p̄TdxST

DL (4.94)

= SDL

[
Kα∑
k=0

αk

ˆ 1

−1
pkp̄p̄

Tdx

]
ST

DL (4.95)

= SDL

[
Kα∑
k=0

αkT k

]
ST

DL (4.96)

where each matrix
T k =

ˆ 1

−1
pkp̄p̄

Tdx (4.97)

is a frontal slice of the order three tensor4

.

T ∈ R(L+1)×(L+1)×(Kα+1) whose entries are given
by

(T)ijk =
ˆ 1

−1
pi−1pj−1pk−1dx. (4.98)

Repeating similar operations, we can also find an expression for the second term in A, which
is ˆ 1

−1
N̄β (x) N̄Tdx = S̃

⎡⎣Kβ∑
k=0

βkT k

⎤⎦ S̃T . (4.99)

Thus, to understand the sparsity of either term in A, we must understand the structure of
the matrices T k.

To do this, we need to be able to compute the integral of triple products of Legendre
polynomials. This property of the Legendre polynomials is, to my knowledge, not listed in
standard texts on orthogonal polynomials. However, it is common to find the integral of
triple products of Legendre polynomials by reading sources describing the 3j symbol found
in quantum mechanics [52

.

, 123

.

]. This work uses the classical formula [124

.

] given by Adams
4See [122

.

] for standard notation and nomenclature regarding tensors.

80

0 50 100 150

0

10

20

30

Figure 4.4: Sparsity pattern for the tensor T with dimensions L = 30 and Kα = 4 (or
Kβ = 4). The slices T k with k = 0, 1, ..., 4 are arranged from left to right. The total number
of entries in T is 5 × 312 = 4, 805 and the total number of nonzeros is 432.

to compute the integrals5

.

. Here we restate Adams’ formula, but modified for orthonormal
Legendre polynomials which we use to populate T :

ˆ 1

−1
pipjpkdx =

⎧⎪⎪⎨⎪⎪⎩
Cijk

A (s− i)A (s− j)A (s− k)
A (s) i+ j + k even, i+ j ≥ k, |i− j| ≤ k,

0 otherwise,
(4.100)

where

Cijk = 2
2s+ 1

√
2i+ 1

2

√
2j + 1

2

√
2k + 1

2 , (4.101)

A (m) = 1 · 3
2 · 5

3 · . . . ·
(

2 − 1
m

)
, (4.102)

A(0) = 1, and s = (i+ j + k)/2. The sparsity of the tensor T is visualized in Figure 4.4

.

for
a particular example.

Let us comment on the sparsity of T in more depth. First, the condition that i + j + k

be an even integer means that for each slice T k, we will observe a checkerboard pattern of
nonzeros which alternates with k. Second, the condition i + j ≥ k means that for each
slice, there is an anti-diagonal before and including which all anti-diagonal entries are zero
(the kth anti-diagonal counting from the top left corner of each slice). Third, the condition
|i− j| ≤ k implies that each slice has a bandwidth k. However, for a general function α

(the β case is completely analogous, simply replace coefficients αk with βk and Kα with
5Adams derived the formula by first computing an expression for the product of two Legendre polynomials

in terms of a sum of weighted Legendre polynomials. He accomplished this by direct computation of p1pn,
p2pn, p3pn, and p4pn, after which a pattern emerges for the general case pmpn where m < n. He then used
induction to prove that the general pattern is indeed correct. Finally, as a corollary, the integral of triple
products of Legendre polynomials is explicitly obtained since the integral of pmpn multiplied by another
pl yields a sum of integrals involving products of two Legendre polynomials, most of which go to zero by
orthogonality.

81

Kβ), we obtain a matrix of the form ∑Kα
k=0 αkT k in our expression for A, thus we are really

interested in the sparsity of this sum. Since the checkerboard pattern alternates with k and
the bandwidth grows with k for each slice T k, the sum ∑Kα

k=0 αkT k with arbitrary nonzero
coefficients αk is banded with bandwidth Kα (the band itself is full). This is desirable if Kα

is small compared to the degree of polynomial basis L (Kα ≪ L) as we preserve the banded
nature of the matrix A, and undesirable if Kα ≈ L, in which case ∑Kα

k=0 αkT k is roughly full
and we lose the sparsity of A.

For consistency, we verify that this generalization to arbitrary spatially varying α agrees
with our results in Section 4.1

.

. In the special case where α is constant, Kα = 0 since p0—the
constant orthonormal Legendre polynomial—is sufficient to represent α and

Kα∑
k=0

αkT k = α0T 0 (4.103)

= α0

√
2

2 IL+1 (4.104)

using our expression for the entries of T . Since

α0 =
ˆ 1

−1
αp0 dx (4.105)

= α

ˆ 1

−1
p0 dx (4.106)

= α
√

2, (4.107)

we find that

Kα∑
k=0

αkT k = (α
√

2)
√

2
2 IL+1 (4.108)

= αIL+1, (4.109)

which agrees with our results assuming α is constant. That is,

ˆ 1

−1

[
d

dx
N̄

]
α (x)

[
d

dx
N̄

]T

dx = SDL

[
Kα∑
k=0

αkT k

]
ST

DL (4.110)

= SDL [αIL+1]ST
DL (4.111)

= αSDLS
T
DL, (4.112)

as before.

82

We noted earlier that when Kα or Kβ are large with respect to the degree L of the
polynomial basis then the banded nature of the matrix A is lost. In fact, we can say how
sparse A will be by looking at the sparsity of the first two terms in (4.89

.

). Recall that the
first term is given by

ˆ 1

−1

[
d

dx
N̄

]
α (x)

[
d

dx
N̄

]T

dx = SDL

[
Kα∑
k=0

αkT k

]
ST

DL. (4.113)

Since the sum in brackets has bandwidth Kα and multiplication from the left by SDL shifts
rows down by one and multiplication from the right by ST

DL shifts columns right by one, the
bandwidth Kα is preserved.

Also, recall that the second term is given by

ˆ 1

−1
N̄β (x) N̄Tdx = S̃

⎡⎣Kβ∑
k=0

βkT k

⎤⎦
  

β

S̃T (4.114)

which we rewrite using shift matrices as

S̃βS̃T =
[
diag (ḡ) − SDLdiag (ḡ)SDL

]
β
[
diag (ḡ) − ST

DLdiag (ḡ)ST
DL

]
. (4.115)

Multiplying yields four terms

S̃βS̃T = diag (ḡ) βdiag (ḡ) + SDLdiag (ḡ)SDLβS
T
DLdiag (ḡ)ST

DL

− diag (ḡ) βST
DLdiag (ḡ)ST

DL − SDLdiag (ḡ)SDLβdiag (ḡ) . (4.116)

The first term has the same bandwidth Kβ as β since we only scale by diagonal matrices.
The second term also has the same bandwidth by the same argument involving shift matrices
that was applied for the α case. The third term is β shifted to the right, scaled twice, then
shifted to the right again. Similarly, the last term is β shifted down, scaled twice, and shifted
down again. The third term and fourth term taken together thus increase the bandwidth
of
´ 1

−1 N̄β (x) N̄Tdx by 2, meaning its bandwidth is Kβ + 2. Again, when Kα = Kβ = 0,
these results agree with the constant α and β results leading to a diagonal term αSDLS

T
DL

and a pentadiagonal term βS̃S̃T . When we consider the sparsity of A as a whole, we have
a banded matrix with bandwidth KA = max (Kα, Kβ + 2). Of course, if KA is equal to or
larger than the degree L then the matrix A is full.

Unfortunately, for arbitrary α and β it may not be possible to have KA small. This will
depend on the number of Legendre coefficients required to represent α and β on the interval

83

(−1, 1) to the user specified tolerance. One possible approach to avoid large KA would be to
limit the number of terms Kα and Kβ used to represent α and β in the integrals. This would
lead to an inaccurate A, and inaccurate solution φ, however, the solution of the associated
saddle point system will be faster as the bandwidth will be smaller. In this approach, we
trade accuracy for speed. To avoid this tradeoff, we propose a finite element method using
the integrated Legendre polynomial basis functions on subdomains which preserves a user
specified bandwidth while maintaining high accuracy.

4.4 A Sparsity-Aware Finite Element Method

Before we describe how to construct a fast and accurate solver using the methods discussed
in this chapter, let us describe a finite element method for the generalized domain Ω = (a, b).
Until now, we have taken our problem domain to be Ω = (−1, 1) to simplify our treatment.
We now make the transition to the more general problem

− d

dx

(
α (x) dφ

dx

)
+ β (x)φ (x) = f (x) , x ∈ (a, b) , (4.117)

φ (a) = p, (4.118)[
α
dφ

dx
+ γφ

]
x=b

= q. (4.119)

The simplified treatment on the canonical domain (−1, 1) will be used for this more general
problem. In fact, as we did in the classical finite element method described in Chapter 3

.

,
we will define basis functions on disjoint subintervals of (a, b) which are shifted and scaled
versions of those found on the canonical domain (−1, 1). To do so, we partition Ω such that
a = x0 < x1 < x2 < . . . < xN = b. If we map the interval (xj−1, xj) to (−1, 1), then we can
use our integrals of Legendre polynomial construction to build basis functions for a degree
Lj polynomial basis with support on (xj−1, xj). Thus, the global basis functions will be

N̄j (x) =

⎧⎪⎪⎨⎪⎪⎩
S̃p̄

(
(x− xj−1) − (xj − x)

xj − xj−1

)
x ∈ (xj−1, xj)

0 otherwise
(4.120)

with N̄ =
[
N̄T

1 N̄T
2 . . . N̄T

N

]T
for a total of M = ∑N

j=1 (Lj + 1) basis functions. That
is, we allow each subinterval to have a polynomial degree Lj basis independent of all other
subintervals (making sure that Lj ≥ 1). By choosing this basis, our approximate solution
will be given by φ = N̄T φ̄ where φ̄ =

[
φ̄T

1 φ̄T
2 . . . φ̄T

N

]T
.

84

We now verify the structure of the operator matrix A. Recall from our discussion of
classical finite element methods that by defining basis functions on disjoint subintervals, we
recover a block diagonal matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
A1

A2
. . .

AN

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.121)

To build each block Aj, we must compute

Aj =
ˆ xj

xj−1

[
d

dx
N̄j

]
α (x)

[
d

dx
N̄j

]T

dx+
ˆ xj

xj−1

N̄jβ (x) N̄T
j dx (4.122)

and will need to add the term
γ
[
N̄jN̄

T
j

]
x=b

(4.123)

when j = N . To evaluate the entries of this matrix, we change variables to the canonical
domain using

x = xj − xj−1

2  
Ξj

u+ xj + xj−1

2  
ξj

(4.124)

where u ∈ (−1, 1), dx = |Ξj| du, and, by the chain rule, d
dx
N̄j = Ξ−1

j
d

du
N̄j. Then

Aj =
ˆ 1

−1

[
Ξ−1

j

d

du
N̄j

]
α (Ξju+ ξj)

[
Ξ−1

j

d

du
N̄j

]T

|Ξj| du+
ˆ 1

−1
N̄jβ (Ξju+ ξj) N̄T

j |Ξj| du

(4.125)

= |Ξj| Ξ−2
j

ˆ 1

−1

[
d

du
N̄j

]
α (Ξju+ ξj)

[
d

du
N̄j

]T

du+ |Ξj|
ˆ 1

−1
N̄jβ (Ξju+ ξj) N̄T

j du,

(4.126)

and α (Ξju+ ξj) and β (Ξju+ ξj) are approximated by a linear combination of Legendre
polynomials on the canonical domain. Since N̄j = S̃p̄ (u) on the interval (−1, 1), we can
reuse our previous sparsity results from Section 4.3

.

directly, yielding

Aj = |Ξj| Ξ−2
j SDL

⎡⎣Kαj∑
k=0

α
(j)
k T k

⎤⎦ST
DL + |Ξj| S̃

⎡⎢⎣Kβj∑
k=0

β
(j)
k T k

⎤⎥⎦ S̃T (4.127)

where Kαj
is the number of Legendre coefficients required to approximate α on the interval

85

(xj−1,xj) and α
(j)
k are the corresponding coefficients. Similarly, for approximating β on the

same interval we have Kβj
terms with coefficients β(j)

k . For the case j = N , we add

γ
[
N̄jN̄

T
j

]
x=b

= γ
[
N̄NN̄

T
N

]
u=1

(4.128)

= γ
1
2 (ē1 + ē2) (ē1 + ē2)T (4.129)

to AN .
For the forcing vector, we have b̄ =

[
b̄T

1 b̄T
2 . . . b̄T

N

]T
with

b̄j =
ˆ xj

xj−1

N̄jf dx (4.130)

and, for the case j = N , we subtract

[
qN̄j

]
x=b

. (4.131)

Thus, using the same transformation to the canonical domain, we obtain

b̄j =
ˆ 1

−1
N̄jf (Ξju+ ξj) |Ξj| du (4.132)

= |Ξj|
ˆ 1

−1
N̄jf (Ξju+ ξj) du (4.133)

where we approximate f (Ξju+ ξj) on the interval (xj−1, xj) using a Legendre expansion
whose coefficients we place in a vector f̄j so that

b̄j = |Ξj| S̃f̄j. (4.134)

We subtract

[
qN̄j

]
x=b

= q
[
N̄N

]
u=1

(4.135)

= q
1√
2

(ē1 + ē2) (4.136)

from b̄j when j = N .
Finally, we must ensure that inter-element continuity is enforced, as well as the Dirichlet

boundary condition. We do this via constraint equations. First, for the Dirichlet boundary

86

condition, we obtain

φ (a) = p (4.137)

N̄ (a)T φ̄ = p (4.138)

N̄1 (a)T φ̄1 = p (4.139)

since all other basis functions besides those in N̄1 are zero at x = a due to their disjoint
nature. Since N̄1 (a) = S̃p̄ (−1), we obtain

1√
2

(ē1 − ē2)T φ̄1 = p (4.140)[
1√
2 (ē1 − ē2)T 0 . . . 0

]
φ̄ = p (4.141)

for our constraint equation imposing the Dirichlet boundary condition.
To impose inter-element continuity, let us consider the case of imposing continuity at xj.

Then

φ(x−
j) = φ(x+

j) (4.142)

N̄(x−
j)T φ̄ = N̄(x+

j)T φ̄ (4.143)

N̄j(x−
j)T φ̄j = N̄j+1(x+

j)T φ̄j+1 (4.144)

since only the intervals (xj−1, xj) and (xj, xj+1) have the limit points x−
j and x+

j respectively.
We know that N̄j(x−

j) = S̃p̄ (1) and N̄j+1(x+
j) = S̃p̄ (−1) so that

N̄j(x−
j)T φ̄j − N̄j+1(x+

j)T φ̄j+1 = 0 (4.145)
1√
2

(ē1 + ē2)T φ̄j − 1√
2

(ē1 − ē2)T φ̄j+1 = 0 (4.146)[
0 . . . 0 1√

2 (ē1 + ē2)T − 1√
2 (ē1 − ē2)T 0 . . . 0

]
φ̄ = 0 (4.147)

which gives us one of the inter-element continuity conditions. There are a total of N − 1
such equations, each shifted blockwise for continuity at xj with j = 1, 2, ..., N − 1. Note
that the lengths of ē1 and ē2 depend on the polynomial degree of element j. As an example,
consider the case where all Lj = 2. Then the constraint matrix C and constraint right hand

87

side vector d̄ are given by

C = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
1 1 0 −1 1 0

1 1 0 −1 1 0
. . .

. . .
. . .

1 1 0 −1 1 0
1 1 0 −1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, d̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p

0
0
...

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.148)

where the first row corresponds to the Dirichlet boundary condition, and the remaining rows
are inter-element continuity conditions. To construct a sparse basis for the null space of C,
denoted by Z, we remark that, by the rank-nullity theorem, the number of columns in C

(which is ∑N
j=1 (Lj + 1)) must be equal to the rank of C (which is N) plus the nullity of C.

This means that

null (C) =
N∑

j=1
(Lj + 1) − rank (C) (4.149)

=
N∑

j=1
Lj +N −N (4.150)

=
N∑

j=1
Lj. (4.151)

Observe that there are
N∑

j=1
[(Lj + 1) − 2] =

N∑
j=1

Lj −N (4.152)

columns of C that are zero vectors, meaning that we can take unit vectors with a 1 in the
row equal to the column index of each zero column in C as vectors in our basis for Z. This
leaves us to find an additional N columns for Z that form a linearly independent set of
vectors when appended to the unit vectors we have already found. N − 1 such vectors can
be found by taking the N − 1 last rows of C with the negative sign in the second pair of
nonzeros interchanged. The final vector corresponds to the vector with ones only in the
antepenultimate and penultimate rows, with zeros elsewhere. Again, for example, when all

88

Lj = 2, the resulting sparse basis for the null space is

Z =

⎡⎢⎢⎣

0 1
0 1
1 0
0 0 1 1
0 0 −1 1
0 1 0 0

0 . . . 1 1

0 . . . −1 1 . . .

0 . . . 0 0 0 . . . 1
. . . 0 1 . . . 1

1 −1 . . . 0

0 0 0 . . . 1 1

0 0 . . . −1 1
0 1 0 0

⎤⎥⎥⎦

. (4.153)

We can rearrange the three types of columns in Z to obtain

Z =

⎡⎢⎢⎣

1 0
1 0
0 1
1 0 1 0

−1 0 1 0
0 0 0 1

1 0 1

−1 0 1 . . .

0 0 0 . . . 1 0

1 . . . 1 0

−1 . . . 0 1

0 . . . 1 0 1 0
−1 0 1 0

0 0 0 1

⎤⎥⎥⎦

. (4.154)

89

If the Lj are arbitrary, the only changes to C are to add additional zero columns, meaning
that Z needs to contain additional unit vectors (and the vectors with four nonzero entries
need to have their entries shifted). One can verify that this construction always yields
CZ = 0.

Now that we can use the integrated Legendre polynomials on disjoint intervals to solve
the finite element problem, we describe the last step towards a fast and accurate finite
element solver: a sparsity-aware adaptive step. The main issue with our method up until
now has been that the sparsity of each block Aj depends on the number of terms in the
Legendre expansions associated with representing α and β. To circumvent this issue, we
begin with a coarse partition of Ω = (a, b) and a fixed bandwidth limit for A given by
Ktol ≥ 2 (recall that 2 is the lower limit since KAj

= max(Kαj
, Kβj

+ 2)). This maximum
bandwidth indicates that Kαj

can be no larger than Ktol and that Kβj
can be no larger than

Ktol −2. We then compute the Legendre coefficients in the expansions to approximate α and
β on each subinterval. If the coefficients have not decayed to the user specified tolerance,
rather than truncate the Legendre expansion and compute with a potentially insufficient
approximation to Aj, we instead subdivide the subinterval and repeat this process until the
sparsity requirement on each subinterval is met6

.

. This process can be viewed as an initial
h-adaptive step for our finite element solver. Note that this process terminates when α and β
are continuous. For this reason, it is imperative to create a starting partition which takes into
account discontinuities in α and β (so that element boundaries coincide with discontinuities
in α and β).

Once the bandwidth tolerance has been met, the sparsity of A is guaranteed to be Ktol,
regardless of the polynomial degree on each element. This means we are now able to adopt
an approach similar to the one described in Section 4.2

.

. That is, on each subinterval, we
compute the Legendre coefficients for the forcing function f to the user specified tolerance.
This gives us a starting polynomial degree Lj on each subinterval. We then build the Aj, b̄j,
C, and d̄ matrices and vectors and solve the associated saddle point system, either directly
using a sparse direct solver, or using the null space method with our sparse basis for the
null space Z. We then change basis to the Legendre coefficients on each element and verify
if they have decayed to the user specified tolerance. We do this by computing element-wise
error indicators which are, in this thesis, the sum of the magnitude squared of the final two
Legendre coefficients for each element.

Unlike Section 4.2

.

, now that we allow multiple elements, we have a choice between p-
refinement and h-refinement for each element, and we may even choose not to refine certain
elements. The hp-adaptive scheme that we will use to make these decisions is closely related

6I bisect the interval but there is room for potential improvement here which I have not explored.

90

to the one described in [125

.

]. The difference is only in the way that the error indicators are
computed. In [125

.

], they compute the more complicated, but provably reliable and efficient
indicator based on the ideas of [126

.

]. Their element-wise indicator is a weighted integral of
the residual of (4.117

.

) over the element interval (xj−1, xj) divided by αLj(Lj + 1). Strictly
speaking, their indicator is only appropriate for constant α. In practice, we have used this
indicator as well as the simpler one based on magnitudes of Legendre coefficients and have
found both to perform similarly. The refinement step procedes as follows. Once the error
indicators ηj are computed for each element j, we determine the largest error indicator ηmax

and refine all elements whose indicator is larger than ζηmax where ζ < 1 is a user specified
threshold. In our examples, we choose ζ = 3/4. For each of those elements chosen for
refinement, the decision to perform h- or p-refinement is based on estimating the rate of
decay of its Legendre coefficients computed thus far.

From approximation theory [127

.

], if φ is analytic throughout the interior of the Bernstein
ellipse (an ellipse centered at the origin with major axis of length a along the real axis and
minor axis of length b along the imaginary axis), then φ can be written as a Legendre series
that converges absolutely and uniformly on any closed set inside the ellipse. Moreover, the
coefficients φn in the series satisfy

lim sup
n→∞

|φn|1/n = 1
r

(4.155)

where r = a + b. When r is large (that is, when φ is analytic in a large ellipse), this
statement shows that the Legendre coefficients decay rapidly. The smallest possible ellipse
covering real interval (−1, 1) has r = 1 since a = 1 and b = 0. In cases where r is close to
one, the magnitudes of the coefficients in the series decay slowly. This means that we should
favor p-refinement when r is large and h-refinement when r is small. If we set θ = 1/r,
then θ near zero suggests using p-refinement and θ near one suggests using h-refinement.
Of course, the statement regarding decay of coefficients assumes that we have knowledge
of all coefficients. Instead, we compute a least squares fit to determine θ using only those
coefficients φ̄Leg that have been computed thus far. From (4.155

.

), we have

|φLeg,n|1/n ≈ θ (4.156)
1
n

log |φLeg,n| ≈ log θ (4.157)

log |φLeg,n| ≈ n log θ  
a1

. (4.158)

91

We then estimate a1 by producing a linear least squares fit log |φLeg,n| ≈ na1 + a2 using

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 1
2 1
...

...

Lj 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ā =

⎡⎣ a1

a2

⎤⎦ , ȳ = log |φ̄Leg|,

where log | · | is meant to be applied entrywise to φ̄Leg. Then Wā ≈ ȳ and we solve this
over-determined system using QR factorization. Once a1 is estimated, we compute θ = ea1

and choose p-refinement if θ is less than a user specified threshold 0 < θt < 1. Otherwise,
h-refinement is performed. In our examples, we choose θt = 3/4. This process is applied
independently to all elements that have been marked for refinement.

Elements undergoing p-refinement have their element degree Lj doubled, while elements
undergoing h-refinement are bisected. We then update the matrices and vectors Aj, b̄j, C,
and d̄, and compute a new solution. Once the Legendre expansions for all elements in the
mesh have decayed below the user specified tolerance, we terminate the algorithm. In other
words, the algorithm terminates once all element-wise error indicators are sufficiently small.

4.5 Numerical Results

To verify that the adaptive algorithm works as intended, we use the example

−ϵ d
2

dx2φ+ φ = 1, x ∈ (0, 1) , (4.159)

φ (0) = 0, (4.160)

φ (1) = 0, (4.161)

taken from [128

.

] where ϵ is a parameter7

.

. In terms of our general framework defined in
Section 4.1

.

, this corresponds to α = ϵ, β = 1, f = 1, and p1 = p2 = 0 for the two distinct
Dirichlet boundary conditions. There are no Robin boundary conditions and thus we need
not define γ or q. This fundamental BVP can be solved analytically to find that

φexact (x) = e−1/
√

ϵ − 1
e1/

√
ϵ − e−1/

√
ϵ
ex/

√
ϵ + 1 − e1/

√
ϵ

e1/
√

ϵ − e−1/
√

ϵ
e−x/

√
ϵ + 1 (4.162)

7This BVP is a simplification of the screened Poisson equation which arises when considering electric field
screening effects.

92

which is of particular interest when ϵ ≪ 1 since φ exhibits boundary layers which can be
difficult to resolve with lower accuracy finite element codes. We take ϵ = 10−5 in our tests.
Our starting discretization consists of three equal sized elements spanning the interval (0, 1).
The maximum bandwidth is set by Ktol = 2 with the user specified accuracy tolerance set
to 10−12. All computations are done in double precision using sparse matrices. The saddle
point system, whose typical sparsity pattern is shown in Figure 4.5

.

, is solved using a sparse
direct solver. Note that the first step in the algorithm is to compute the Legendre coefficients
in the expansions for α and β. Since both are constant, we expect the algorithm to identify
Kαj

and Kβj
as zero on all starting elements. As such, we expect the initialization step of

h-adaption to leave our starting partition unchanged. See the last plot in Figure 4.6

.

for the
solution φ computed to the desired tolerance. Circles indicate where elements begin and
end. Since the starting mesh consists of three elements, we can see from this figure that
h-adapation was performed twice near both boundary layers, and that otherwise p-adaption
was applied to resolve the behavior of the solution.

To quantitatively judge the accuracy of our algorithm, we consider three measures of
error. The first is measured in the operator norm given by

∥E∥2
E =
ˆ 1

0
ϵ

(
dE
dx

)2

+ E2 dx, (4.163)

where E is meant to remind us that this norm is associated with the energy related to the
functional. We take E = φ − φexact so that our error measure is ∥φ− φexact∥E. The second
error measure is computed in the standard L2 norm given by

∥E∥2
2 =
ˆ 1

0
E2 dx (4.164)

and our error measure is ∥φ− φexact∥2. Finally, our third error measure is obtained by
computing the difference in the value of the functional evaluated at the exact solution from
that evaluated at our computed solution. Recall that the functional is given by

F (φ) = 1
2

ˆ 1

0
ϵ

(
dφ

dx

)2

+ φ2dx−
ˆ 1

0
φ dx (4.165)

so that our error measure is |F (φ) − F (φexact)|. Note that in order to compute the first
two error measures, we can restrict them to element subintervals, and sum each element
contribution to the norm squared. Once all contributions have been added, we take the
square root to obtain the norm. This is possible due to the integral definition of each norm
which can be broken up into integrals on each subinterval. The first three plots in Figure 4.6

.

93

0 10 20 30 40 50 60 70 80 90 100 110

0

10

20

30

40

50

60

70

80

90

100

110

Figure 4.5: Sparsity pattern for the saddle point system which computes φ to 14 digits of
accuracy for the boundary layer problem. Note that the bandwidth of the operator matrix A
is restricted to Ktol = 2, as required. The constraint matrix C is not structured as in (4.148

.

)
because the ordering of the elements is not increasing from left to right on the interval. This
is a consequence of the mesh generation algorithm used, which was coded in anticipation of
two- and three-dimensional problems. We reserve comment on the specific algorithms used
for mesh generation for the sake of brevity. Note that the number of entries in the saddle
point matrix is 1132 = 12, 769 whereas there are only 343 nonzero entries.

94

Table 4.1: Error for uniform h-refinement applied to the boundary layer problem.
Element degree Error measured in the operator norm Degrees of freedom

1 3.1 × 10−2 192
2 2.4 × 10−2 144
4 2.1 × 10−2 120
8 5.9 × 10−4 216

illustrate the error measures, each as a function of the number of degrees of freedom used at
each step in the adaptive algorithm. We note that the error measures all decrease at each
adaptive step since we only ever add degrees of freedom in our algorithm, retaining the full
modeling flexibility of all previous discretizations.

For comparison purposes, we solved the same problem using a fixed polynomial degree
for all elements in the mesh, and performed uniform h-refinements on all elements in the
mesh at each h-adaption step until the total number of degrees of freedom exceeded 105 (the
final number required by the fully adaptive algorithm). This type of uniform h-refinement
is characteristic of classical finite element methods. We report the operator norm error for
various choices of polynomial degree in Table 4.1

.

. Notice that none of the uniform refinement
methods approach the small operator norm error (approximately 10−14) of the fully adaptive
method, even when their numbers of degrees of freedom exceed the number required for the
fully adaptive method to converge.

As a second example, we consider a unit radius sphere of uniform charge density ρ0,
which is centered on the origin and embedded in free space. The objective is to determine
the electrostatic potential φ for this system. We solve Gauss’ law

∇ · Ē =

⎧⎪⎪⎨⎪⎪⎩
ρ0

ϵ0
R ≤ 1

0 otherwise
(4.166)

where Ē = −∇φ is the electric field intensity, ϵ0 is the permittivity of free space, and R is the
radial distance from the origin in spherical coordinates. Since the geometry of our problem
is spherically symmetric, we know that the field and potential also vary only as functions of
R so that φ(R) and Ē = ER(R) āR where āR is the radially outward pointing unit vector in
spherical coordinates. Using the integral form of Gauss’ law, we find that

Ē =

⎧⎪⎪⎨⎪⎪⎩
ρ0

ϵ0

R

3 āR R ≤ 1
ρ0

ϵ0

1
3R2 āR otherwise

(4.167)

95

0 20 40 60 80 100 120

Number of degrees of freedom

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0 20 40 60 80 100 120

Number of degrees of freedom

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0 20 40 60 80 100 120

Number of degrees of freedom

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4.6: Comparison of various measures of error in the computed solution as a function
of the total number of degrees of freedom, as well as a plot of the final computed solution for
the boundary layer problem. In order (reading left to right, from top to bottom), we have
the error in the operator norm, the error in the L2 norm, the absolute difference in the value
of the functional, and a plot of the computed solution using the adaptive finite element code
for the final number of degrees of freedom required to have all Legendre expansions decay
below the user specified tolerance. The error plots were obtained by computing the error
measures at the conclusion of each adaptive step of the finite element method.

96

and that

φ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ0

ϵ0

(
1
2 − R2

6

)
R ≤ 1

ρ0

ϵ0

1
3R otherwise

(4.168)

when a reference potential of zero as R approaches infinity is chosen.
We can use the finite element method to compute this same solution over a finite interval

R ∈ (0, Rfar) where Rfar is some positive real number larger than 1. Using the gradient and
divergence in spherical coordinates, and the fact that φ depends only on R, Gauss’ law in
diffierential form simplifies to

− d

dR

(
R2 dφ

dR

)
=

⎧⎪⎪⎨⎪⎪⎩
ρ0

ϵ0
R2 R ≤ 1

0 otherwise.
(4.169)

This fits into our general framework with α = R2, β = 0,

f =

⎧⎪⎪⎨⎪⎪⎩
ρ0

ϵ0
R2 R ≤ 1

0 otherwise,
(4.170)

and x = R. We complete the specification of the BVP by describing boundary conditions on
φ at the two endpoints of the interval. First, through a symmetry argument at the origin,
we know that a homogeneous Neumann condition must hold. We can show that such a
condition holds for the solution (4.168

.

) by computing the normal flux −α ∂φ
∂R

at R = 0. This
gives [

−α ∂φ
∂R

]
R=0

=
[
−R2ρ0

ϵ0

(
−R

3

)]
R=0

(4.171)

=
[
ρ0

ϵ0

R3

3

]
R=0

(4.172)

= 0. (4.173)

Similarly, computing the normal flux α ∂φ
∂R

at R = Rfar yields
[
α
∂φ

∂R

]
R=Rfar

=
[
R2ρ0

ϵ0

(
− 1

3R2

)]
R=Rfar

(4.174)

=
[
−Rρ0

ϵ0

(1
3R

)]
R=Rfar

. (4.175)

97

Table 4.2: Error for uniform h-refinement applied to the sphere of charge problem.
Element degree Error measured in the operator norm Degrees of freedom

1 6.9 × 10−3 176
2 5.2 × 10−4 120
4 9.4 × 10−6 100
8 2.3 × 10−8 90

Rather than cancel the factors of R, we have written the last statement such that we have
−Rφ on the right hand side i.e. (4.175

.

) is −Rφ for Rfar > 1 and φ given by (4.168

.

). Then

α
∂φ

∂R
+Rφ(R) = 0

holds at R = Rfar, and we can use a homogeneous Robin boundary condition with γ = Rfar

and q = 0 to complete the description of the BVP. Alternatively, we could have used an
inhomogeneous Neumann boundary condition with γ = 0 and q = −ρ0/(3ϵ0).

Using our adaptive algorithm, we compute φ with Rfar = 5. We choose ρ0 = ϵ0 so as to
avoid computations with the permittivity of free space. This can be viewed as a scaling of R,
φ, and ρ0 which makes quantities unitless. We use a starting partition with five elements each
of length 1 with all other parameters set as in the previous boundary layer example. Including
the point R = 1 as a vertex in the mesh is important, otherwise Legendre expansions of the
forcing function f will require many terms to adequately model the discontinuity. Figure
4.7

.

shows the three error measures computed at each iteration of the adaptive algorithm, as
well as the final computed solution φ, along with the post-processed electric field component
ER (obtained by taking the negative derivative of φ with respect to R). The figure does
not show the exact solution as computed via the integral form of Gauss’ law because the
finite element solution is accurate to machine precision and indistinguishable from the exact
solution.

Again, we compare the adaptive algorithm to a uniform h-refinement algorithm which we
terminate once the number of degrees of freedom have exceeded 89 (the number required to
compute the adaptive solution to machine precision). Table 4.2

.

shows the error measure in
the operator norm for four different element degrees. Here, uniform h-refinement performs
better than it did for the boundary layer problem, but is still far from the level of accuracy
produced by the adaptive algorithm.

Finally, Figure 4.8

.

shows the sparsity pattern for the saddle point system used to compute
the final adaptive solution. Note that the bandwidth of each block is 2 since α can be exactly
represented by a degree 2 Legendre expansion. There are five elements, and correspondingly
five blocks visible in the operator portion of the saddle point system. By examining the

98

sparsity patterns of the blocks, we can deduce which block corresponds to which element.
The first block corresponds to the leftmost element because the exact solution is a quadratic
polynomial over this element, and the solver has identified that a degree 4 polynomial is
sufficient to represent the solution here8

.

. The second block corresponds to the rightmost
element because in its top corner, we see the contribution of the Robin boundary term. The
remaining three elements appear from right to left in the mesh since the polynomial degree
required to resolve the 1/R behavior of the solution is larger closer to the origin than away
from it.

8This is minimal since the solver does not know that the degree three and four coefficients in the expansion
are zero to machine precision until it computes them. In practice, one could truncate the expansion after
making such an observation, but I have not done so in my implementation.

99

10 20 30 40 50 60 70 80 90

Number of degrees of freedom

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 20 30 40 50 60 70 80 90

Number of degrees of freedom

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 20 30 40 50 60 70 80 90

Number of degrees of freedom

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

Figure 4.7: Comparison of various measures of error in the computed solution as a function
of the total number of degrees of freedom, as well as a plot of the final computed solution for
the uniform sphere of charge problem. In order (reading left to right, from top to bottom),
we have the error in the operator norm, the error in the L2 norm, the absolute difference
in the value of the functional, and a plot of the computed solution using the adaptive finite
element code. In the solution figure, the blue curve with circles depicts the electrostatic
potential φ while the red curve with crosses depicts the radial component of the electric field
intensity ER. Circles and crosses are placed at endpoints of each element.

100

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

Figure 4.8: Sparsity pattern for the saddle point system used to compute the electrostatic
potential for the uniform sphere of charge example. Note that the number of entries in the
saddle point matrix is 932 = 8, 649 whereas there are only 425 nonzero entries.

101

Chapter 5

A Space-Time Finite Element Method

Before generalizing the finite element method from Chapter 4

.

to multiple spatial dimensions,
this chapter demonstrates how the techniques introduced throughout Chapter 4

.

can be
applied to time-domain problems. In particular, this chapter considers the wave problem

− ∂

∂x

(
α (x) ∂φ

∂x

)
+ ∂2φ

∂t2
= 0, (x, t) ∈ (a, b) × (0, T) , (5.1)

φ (a, t) = 0, (5.2)

φ (b, t) = 0, (5.3)

φ (x, 0) = φ0 (x) , (5.4)
∂

∂t
φ (x, 0) = φ′

0 (x) , (5.5)

where φ is a function of both space and time. Homogeneous Dirichlet boundary conditions
in space are taken for simplicity, but this is not necessary. Typically, these problems are
approached via semi-discretization [129

.

, 130

.

]. That is, typically, one first discretizes φ in
space using the techniques described in Chapter 4

.

. This is possible because, ignoring the time
derivatives, the PDE (5.1

.

) reduces to the BVP (4.117

.

) with β = 1 and f = 0. Thus, if φ is
replaced by a linear combination of basis functions depending only on space, with coefficients
depending only on time, a second order system of ODEs for the unknown coefficient vector
results. This system is solved using an appropriate time stepping scheme [131

.

, 132

.

].
In what follows, a different approach is taken, discretizing in both space and time using

a tensor product of the integrated Legendre basis functions. Since time is often thought
of as being orthogonal to space, this is quite natural. The concept of a space-time finite
element method to solve second order wave equations is not new [133

.

, 134

.

]. However, this
chapter shows how the approach in one spatial dimension can be extended to a space-time
framework and demonstrates that the construction remains efficient and accurate. This has

102

the added benefit of introducing some of the mathematical techniques required for extension
to multiple spatial dimensions without the complications of discussing mesh generation and
curvilinear elements which will have to be introduced later.

Standard time domain finite element schemes for Maxwell’s equations are globally sec-
ond order methods [12

.

], which means that to compute a space-time solution accurate to a
stringent tolerance, the size of time steps must be extremely small. This issue is avoided
altogether by permitting basis functions in time of arbitrary order. One potentially unset-
tling characteristic of such a method is that the space-time solution is obtained by solving
a single linear system. As a result, the inherently causal nature of a time stepping scheme
(at each time step, the solution depends only on the solution from previous time steps) is
lost. This is not an issue if the solution is computed to high accuracy. Another potentially
surprising attribute of the method is that boundary conditions are imposed on only three
of the four edges of the space-time domain. In fact, two conditions are imposed on a single
edge (those corresponding to initial conditions) and the edge corresponding to the final time
is left unconstrained. This is different from the boundary treatment of the more typical
extension of the BVP (4.117

.

) to a PDE in two spatial dimensions which will be treated in
later chapters.

5.1 Space-Time Galerkin Methods

As in the one-dimensional case, let us begin on a single element. In this case, the single
domain is a rectangular patch of space-time given by (a, b) × (0, T). We will need to map
this domain to the canonical domain (−1, 1)×(−1, 1) to reuse results for integrated Legendre
polynomials. To do this, we define the affine transformations

x = b− a

2  
Ξ

u+ b+ a

2  
ξ

(5.6)

and
t = T

2 τ + T

2 (5.7)

where u and τ are space and time variables in the canonical domain. We also expand our
solution using a linear combination of basis functions

φ = φ̄T vec
(
N̄ (u) N̄ (τ)T

)
(5.8)

103

where the vectorization operator vec (·) takes a matrix and stacks its columns (from left to
right) into a single column vector. Since the outer product N (x, t) = N̄ (x) N̄ (t)T contains
all possible combinations of products of basis functions in space and time, so too does the
vector N̄(x, t) = vec

(
N̄ (x) N̄ (t)T

)
. We emphasize that in writing N̄(x, t), we really mean

to refer to the vector vec
(
N̄ (u) N̄ (τ)T

)
which can be written in terms of x and t by inverting

the maps (5.6

.

) and (5.7

.

). This is the same as how basis functions were defined in Chapter
4

.

. Note that

vec
(
N̄ (x) N̄ (t)T

)
=

⎡⎢⎢⎢⎢⎢⎢⎣
N0 (t) N̄ (x)
N1 (t) N̄ (x)

...

NLt (t) N̄ (x)

⎤⎥⎥⎥⎥⎥⎥⎦ (5.9)

where Lt is the total degree of polynomials in time. If the total degree of polynomials in
space is Lx, then there are (Lx + 1) × (Lt + 1) total basis functions.

To manipulate the vec (·) operator, we introduce the Kronecker product and certain of
its properties [25

.

]. The Kronecker product of matrices A ∈ Rm×n and B is given by

A⊗B =

⎡⎢⎢⎢⎢⎢⎢⎣
a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB

⎤⎥⎥⎥⎥⎥⎥⎦ (5.10)

and satisfies two key properties that we will make extensive use of:

(A⊗B)T = AT ⊗BT , (5.11)

(A⊗B) (C ⊗D) = (AC) ⊗ (BD) , (5.12)

where the second property holds only if the matrix products AC and BD are valid (the
matrices must have appropriate dimensions). The third property we will need relates the
vec (·) operator to the Kronecker product and matrix-vector multiplication via

vec (ABC) =
(
CT ⊗ A

)
vec (B) . (5.13)

We now apply these properties to understand how differentiation in time and space affect

104

basis functions. In particular, we can write

∂

∂x
φ = ∂

∂x

[
φ̄T vec

(
N̄ (u) N̄ (τ)T

)]
(5.14)

= Ξ−1 ∂

∂u

[
φ̄T vec

(
S̃p̄ (u) N̄ (τ)T

)]
(5.15)

where we have used the chain rule to transform derivatives depending on x to ones depending
on u. We then use the linearity of differentiation to obtain

∂

∂x
φ = Ξ−1

[
φ̄T vec

(
S̃
∂

∂u
p̄ (u) N̄ (τ)T

)]
(5.16)

= Ξ−1φ̄T vec
(
S̃D̃p̄ (u) N̄ (τ)T

)
(5.17)

= Ξ−1φ̄T vec
(
SDLp̄ (u) N̄ (τ)T

)
(5.18)

where the second step replaces the differentiation operator with its corresponding differenti-
ation matrix and the third step simplifies the product of the integration and differentiation
matrices. We are now in a position to apply property (5.13

.

) to find that

∂

∂x
φ = Ξ−1φ̄T

(
N̄ (τ) ⊗ SDL

)
vec (p̄ (u)) (5.19)

= Ξ−1φ̄T
(
N̄ (τ) ⊗ SDL

)
p̄ (u) (5.20)

with the final result obtained using the fact that the vec (·) operator maps vectors to vectors,
as expected. Similarly, applying the same types of operations, we find that

∂

∂t
φ = 2

T
φ̄T
(
SDL ⊗ N̄ (u)

)
p̄ (τ) . (5.21)

We are now prepared to use Galerkin’s method. We multiply by the test functions N̄ (x, t)
and integrate (5.1

.

) in space and time to obtain

ˆ b

a

ˆ T

0
N̄ (x, t)

[
− ∂

∂x

(
α (x) ∂φ

∂x

)
+ ∂2φ

∂t2

]
dt dx = 0 (5.22)

ˆ b

a

ˆ T

0
N̄ (x, t)

[
− ∂

∂x

(
α (x) ∂φ

∂x

)]
dt dx+

ˆ b

a

ˆ T

0
N̄ (x, t) ∂

2φ

∂t2
dt dx = 0. (5.23)

In one dimension, we apply integration by parts to transfer differentiation in space to the
test functions. We do the same here, but for the first term, we integrate by parts in space,

105

and for the second term, we integrate by parts in time. This gives

ˆ b

a

ˆ T

0

∂

∂x
N̄ (x, t)α (x) ∂φ

∂x
dt dx−

ˆ T

0

[
N̄ (x, t)α (x) ∂φ

∂x

]b

x=a

dt

−
ˆ b

a

ˆ T

0

∂

∂t
N̄ (x, t) ∂φ

∂t
dt dx+

ˆ b

a

[
N̄ (x, t) ∂φ

∂t

]T

t=0
dx = 0 (5.24)

which we treat term by term. For the first term, let us first introduce the expression (5.20

.

)
and recall that α can be approximated by a sum of Legendre polynomials in x. This gives

ˆ b

a

ˆ T

0

∂

∂x
N̄ (x, t)α (x) ∂φ

∂x
dt dx =

|Ξ| Ξ−2T

2

ˆ 1

−1

ˆ 1

−1

(
N̄ (τ) ⊗ SDL

)
p̄ (u)

[
Kα∑
k=0

αkpk (u)
]
p̄ (u)T

(
N̄ (τ) ⊗ SDL

)T
φ̄ dτ du (5.25)

where we have transformed to uτ -space and used the transpose of (5.20

.

) for the derivative
of φ. Integrating with respect to u and using the tensor of triple products of Legendre
polynomials gives

ˆ b

a

ˆ T

0

∂

∂x
N̄ (x, t)α (x) ∂φ

∂x
dt dx =

|Ξ| Ξ−2T

2

ˆ 1

−1

(
N̄ (τ) ⊗ SDL

) [Kα∑
k=0

αkT k

]
  

α

(
N̄ (τ)T ⊗ ST

DL

)
φ̄ dτ. (5.26)

To integrate with respect to τ we require one additional trivial, but important observation:

1 ⊗ α = α. (5.27)

With this, and property (5.12

.

), we get

ˆ b

a

ˆ T

0

∂N̄

∂x
α (x) ∂φ

∂x
dt dx = |Ξ| Ξ−2T

2

ˆ 1

−1

(
N̄ (τ) N̄ (τ)T ⊗ SDLαS

T
DL

)
φ̄ dτ (5.28)

= |Ξ| Ξ−2T

2

ˆ 1

−1

(
S̃p̄ (τ) p̄ (τ)T S̃T ⊗ SDLαS

T
DL

)
φ̄ dτ (5.29)

= |Ξ| Ξ−2T

2
(
S̃S̃T ⊗ SDLαS

T
DL

)
φ̄. (5.30)

The structure of the matrix S̃S̃T ⊗ SDLαS
T
DL is worth further comment. In particular, the

product S̃S̃T is what was found in the case of constant β for the φ term in the one-dimensional

106

BVP, whereas the SDLαS
T
DL term corresponds to the − ∂

∂x

(
α (x) ∂φ

∂x

)
term. Since the first

matrix has bandwidth 2 and the second term has bandwidth Kα, if Kα is small, then the
Kronecker product of the two matrices will also be sparse. In fact, since S̃S̃T is pentadiagonal,
by the definition of the Kronecker product, the matrix S̃S̃T ⊗ SDLαS

T
DL can be thought of

as a block pentadiagonal matrix with each nonzero block possessing bandwidth Kα.
We now consider the third term in (5.24

.

) which has similar structure. We obtain

ˆ b

a

ˆ T

0

∂

∂t
N̄ (x, t) ∂φ

∂t
dt dx =

|Ξ| 2
T

ˆ 1

−1

ˆ 1

−1

(
SDL ⊗ N̄ (u)

)
p̄ (τ) p̄ (τ)T

(
SDL ⊗ N̄ (u)

)T
φ̄ dt du (5.31)

where we have used (5.21

.

). Integrating in time, using (5.12

.

), and then integrating in space
yields

ˆ b

a

ˆ T

0

∂

∂t
N̄ (x, t) ∂φ

∂t
dt dx = |Ξ| 2

T

ˆ 1

−1

(
SDL ⊗ N̄ (u)

) (
ST

DL ⊗ N̄ (u)T
)
φ̄ du (5.32)

= |Ξ| 2
T

ˆ 1

−1

(
SDLS

T
DL ⊗ N̄ (u) N̄ (u)T

)
φ̄ du (5.33)

= |Ξ| 2
T

ˆ 1

−1

(
SDLS

T
DL ⊗ S̃p̄ (u) p̄ (u)T S̃T

)
φ̄ du (5.34)

= |Ξ| 2
T

(
SDLS

T
DL ⊗ S̃S̃T

)
φ̄. (5.35)

Again, the matrix SDLS
T
DL ⊗ S̃S̃T is sparse. In fact, by the definition of the Kronecker

product, the matrix is block diagonal with each block pentadiagonal. Thus the matrix itself
is pentadiagonal.

5.2 Boundary Constraints and Lagrange Multipliers

In this section, we impose constraints on the solution of the PDE and show how they are
related to the boundary terms from the weak form. First, consider the term

ˆ T

0

[
N̄ (x, t)α (x) ∂φ

∂x

]b

x=a

dt =
ˆ T

0
N̄ (b, t)α (b) ∂φ

∂x
(b, t) dt−

ˆ T

0
N̄ (a, t)α (a) ∂φ

∂x
(a, t) dt (5.36)

107

as well as the boundary conditions φ (a, t) = 0 and φ (b, t) = 0. Let us first impose the
boundary condition at x = b using the linear combination of basis functions in space and
time. That is,

φ (b, t) = vec
(
N̄ (b) N̄ (t)T

)T
φ̄ (5.37)

= vec
(
N̄ (b) N̄ (t)T ILt+1

)T
φ̄ (5.38)

=
[(
ILt+1 ⊗ N̄ (b)

)
vec

(
N̄ (t)T

)]T
φ̄ (5.39)

= N̄ (t)T
(
ILt+1 ⊗ N̄ (b)T

)
φ̄ (5.40)

where we have used properties (5.13

.

) and (5.11

.

) of the vectorization operator and the Kro-
necker product. Note that N̄ (b) = 1√

2 (ē1 + ē2) since x = b maps to u = 1, so to impose the
boundary condition, we require that

N̄ (t)T

(
ILt+1 ⊗ 1√

2
(ē1 + ē2)T

)
φ̄ = 0. (5.41)

Since this must hold for all time t, and the vector N̄(t) contains a linearly independent set
of functions, this is equivalent to requiring(

ILt+1 ⊗ 1√
2

(ē1 + ē2)T

)
  

C1

φ̄ = 0 (5.42)

which constitutes our first set of constraint equations.
Returning to the boundary term in our Galerkin method, we see that N̄ (b, t) arises.

From our derivation of the Dirichlet boundary condition, we know that

N̄ (b, t) = CT
1 N̄ (t) (5.43)

which means that
ˆ T

0
N̄ (b, t)α (b) ∂φ

∂x
(b, t) dt =

ˆ T

0
CT

1 N̄ (t)α (b) ∂φ
∂x

(b, t) dt (5.44)

= CT
1

ˆ T

0
N̄ (t)α (b) ∂φ

∂x
(b, t) dt  

ν̄1

(5.45)

where we have defined our first set of Lagrange multipliers ν̄1. Their physical meaning
is less clear than those found in the one-dimensional BVP, but we can still interpret their

108

significance. Each Lagrange multiplier corresponds to the inner product in time of a temporal
basis function with the flux α∂φ

∂x
at x = b.

Similarly, we now impose the boundary condition φ (a, t) = 0. We replace N̄ (b) with
N̄ (a) = 1√

2 (ē1 − ē2) since x = a maps to u = −1 to get a second set of constraints

(
ILt+1 ⊗ 1√

2
(ē1 − ē2)T

)
  

C2

φ̄ = 0. (5.46)

From these constraints, we see that N̄ (a, t) = CT
2 N̄ (t) and conclude that the boundary term

−
ˆ T

0
N̄ (a, t)α (a) ∂φ

∂x
(a, t) dt = −

ˆ T

0
CT

2 N̄ (t)α (a) ∂φ
∂x

(a, t) dt (5.47)

= CT
2

[
−
ˆ T

0
N̄ (t)α (a) ∂φ

∂x
(a, t) dt

]
  

ν̄2

. (5.48)

This means that the second set of Lagrange multipliers correspond to the negative inner
product in time of a temporal basis function with the flux at x = a.

The final term to address in the weak form is
ˆ b

a

[
N̄ (x, t) ∂φ

∂t

]T

t=0
dx =

ˆ b

a

N̄ (x, T) ∂φ
∂t

(x, T) dx−
ˆ b

a

N̄ (x, 0) ∂φ
∂t

(x, 0) dx (5.49)

and the remaining two boundary conditions to formulate constraints for are the initial con-
ditions φ (x, 0) = φ0 (x) and ∂

∂t
φ (x, 0) = φ′

0 (x). Let us derive the associated constraint
equations for each. First, consider

φ (x, 0) = vec
(
N̄ (x) N̄ (0)T

)T
φ̄ (5.50)

= vec
(
ILx+1N̄ (x) N̄ (0)T

)T
φ̄ (5.51)

=
[(
N̄ (0) ⊗ ILx+1

)
N̄ (x)

]T
φ̄ (5.52)

= N̄ (x)T
(
N̄ (0)T ⊗ ILx+1

)
φ̄. (5.53)

Since t = 0 maps to τ = −1, we have N̄ (0) = 1√
2 (ē1 − ē2) and

φ (x, 0) = N̄ (x)T

(
1√
2

(ē1 − ē2)T ⊗ ILx+1

)
φ̄. (5.54)

Remark that here ē1 and ē2 are vectors of length Lt + 1. This differs from the lengths of

109

ē1 and ē2 in constraint matrices C1 and C2 (which were vectors of length Lx + 1). We now
specify how to set φ(x, 0) equal to the initial condition φ0 (x). We compute the first Lx + 1
Legendre coefficients for the function φ0 on the interval (a, b) so that

φ0 (x) ≈ p̄ (x)T φ̄0 (5.55)

and set this equal to (5.54

.

). This gives

N̄ (x)T

(
1√
2

(ē1 − ē2)T ⊗ ILx+1

)
φ̄ = p̄ (x)T φ̄0 (5.56)

p̄ (x)T S̃T

(
1√
2

(ē1 − ē2)T ⊗ ILx+1

)
φ̄ = p̄ (x)T φ̄0 (5.57)

and, since this must hold for all x and p̄ (x) contains a linearly independent set of functions,
this is equivalent to

S̃T

(
1√
2

(ē1 − ē2)T ⊗ ILx+1

)
φ̄ = φ̄0 (5.58)(

1√
2

(ē1 − ē2)T ⊗ ILx+1

)
  

C3

φ̄ = S̃−T φ̄0  
d̄3

(5.59)

which corresponds to a third set of constraint equations. The inversion of S̃T is performed
using backward substitution since S̃T is upper triangular. In fact, since S̃ only has two
nonzero diagonals, this inversion requires O (Lx) operations which is negligible in compari-
son to computing the Legendre coefficients φ̄0 (which we compute using the fast algorithm
described in Appendix A

.

). Also, note that to obtain accurate solutions to the wave equation,
it is imperative to choose Lx large enough such that the Legendre coefficients of the initial
condition φ0 (x) sufficiently decay.

We are now prepared to address the boundary term

−
ˆ b

a

N̄ (x, 0) ∂φ
∂t

(x, 0) dx. (5.60)

We recognize from the derivation of the third set of constraints that N̄ (x, 0) = CT
3 N̄ (x)

110

which gives

−
ˆ b

a

N̄ (x, 0) ∂φ
∂t

(x, 0) dx = −
ˆ b

a

CT
3 N̄ (x) ∂φ

∂t
(x, 0) dx (5.61)

= CT
3

[
−
ˆ b

a

N̄ (x) ∂φ
∂t

(x, 0) dx
]

  
ν̄3

(5.62)

and leads to the interpretation that each Lagrange multiplier corresponds to the negative
inner product in space of a spatial basis function with the initial condition for the time
derivative.

To deal with the second initial condition, we follow the same procedure as before, but
now must take into account the time derivative of φ. This amounts to considering

∂

∂t
φ (x, 0) = 2

T

∂

∂τ
φ (x,−1) (5.63)

= 2
T

∂

∂τ

[
vec

(
N̄ (x) N̄ (τ)T

)T
φ̄
]

τ=−1
(5.64)

= 2
T

⎡⎣vec
(
N̄ (x) ∂

∂τ
N̄ (τ)T

)T

φ̄

⎤⎦
τ=−1

(5.65)

= 2
T

vec
(
N̄ (x) (SDLp̄ (−1))T

)T
φ̄. (5.66)

We now introduce the identity matrix and apply the vectorization and Kronecker product
properties (5.13

.

) and (5.11

.

) to obtain

∂

∂t
φ (x, 0) = 2

T
vec

(
ILx+1N̄ (x) (SDLp̄ (−1))T

)T
φ̄ (5.67)

= 2
T

[
(SDLp̄ (−1) ⊗ ILx+1) N̄ (x)

]T
φ̄ (5.68)

= 2
T
N̄ (x)T

(
p̄ (−1)T ST

DL ⊗ ILx+1
)
φ̄ (5.69)

which we can set equal to the Legendre expansion of φ′
0 (x) ≈ p̄ (x)T φ̄′

0. This gives

2
T
N̄ (x)T

(
p̄ (−1)T ST

DL ⊗ ILx+1
)
φ̄ = p̄ (x)T φ̄′

0 (5.70)
2
T
p̄ (x)T S̃T

(
p̄ (−1)T ST

DL ⊗ ILx+1
)
φ̄ = p̄ (x)T φ̄′

0 (5.71)

111

which reduces to

2
T
S̃T

(
p̄ (−1)T ST

DL ⊗ ILx+1
)
φ̄ = φ̄′

0 (5.72)(
p̄ (−1)T ST

DL ⊗ ILx+1
)

  
C4

φ̄ = T

2 S̃
−T φ̄′

0  
d̄4

(5.73)

using the orthonormality of the Legendre polynomials p̄ (x). Unfortunately, there is no
boundary term in the weak form that makes use of ∂

∂t
N̄ (x, 0) = CT

4 N̄ (x). To preserve
symmetry of constraint matrices with Lagrange multiplier matrices, we introduce the zero
vector to the Galerkin equation by adding CT

4 ν̄4 where ν̄4 is a zero vector of Lagrange
multipliers. To understand why ν̄4 can be no other vector, we note that since the rank of
C4 is Lx + 1 and rank (C4) = rank(CT

4), we can use the rank-nullity theorem to confirm
that null(CT

4) = 0, meaning that the only vector ν̄4 that gives CT
4 ν̄4 = 0 is the zero vector.

This means that we can check if the approximate solution to the wave equation is correct
by verifying whether ν̄4 ≈ 0.

Now that we have treated all of the constraints, we are left with a single boundary term
unaddressed in the Galerkin method, given by

ˆ b

a

N̄ (x, T) ∂φ
∂t

(x, T) dx. (5.74)

To discretize this term, we use (5.53

.

) and (5.69

.

), replacing N̄ (0) with N̄ (T) and p̄ (−1) with
p̄ (1). This gives

N̄ (x, T) =
(
N̄ (T) ⊗ ILx+1

)
N̄ (x) (5.75)

=
(

1√
2

(ē1 + ē2) ⊗ ILx+1

)
N̄ (x) (5.76)

and
∂

∂t
φ (x, T) = 2

T
N̄ (x)T

(
p̄ (1)T ST

DL ⊗ ILx+1
)
φ̄. (5.77)

Substituting these expressions into the boundary term gives

ˆ b

a

N̄ (x, T) ∂φ
∂t

(x, T) dx =

|Ξ| 2
T

ˆ 1

−1

(
1√
2

(ē1 + ē2) ⊗ ILx+1

)
N̄ (u) N̄ (u)T

(
p̄ (1)T ST

DL ⊗ ILx+1
)
φ̄ du (5.78)

112

which, after integration, results in
ˆ b

a

N̄ (x, T) ∂φ
∂t

(x, T) dx = |Ξ| 2
T

(
1√
2

(ē1 + ē2) ⊗ ILx+1

)
S̃S̃T

(
p̄ (1)T ST

DL ⊗ ILx+1
)
φ̄.

(5.79)
This term is sparse, but not symmetric. To see why, we use the same approach as in (5.27

.

)
to multiply S̃S̃T into the other Kronecker product terms using the multiplication property
(5.12

.

) to see that

ˆ b

a

N̄ (x, T) ∂φ
∂t

(x, T) dx = |Ξ| 2
T

(
1√
2

(ē1 + ē2) (SDLp̄ (1))T ⊗ S̃S̃T

)
φ̄. (5.80)

The matrix 1√
2 (ē1 + ē2) (SDLp̄ (1))T is an outer product matrix with nonzeros only in the first

and second row. Thus, by the definition of the Kronecker product, the Kronecker product
of the outer product matrix with S̃S̃T has nonzero blocks only in the first two block rows,
and each block has the pentadiagonal sparsity pattern of S̃S̃T .

To complete the formulation, we combine (5.30

.

), (5.35

.

), and (5.80

.

) and define the oper-
ator matrix

A = |Ξ| Ξ−2T

2
(
S̃S̃T ⊗ SDLαS

T
DL

)
− |Ξ| 2

T

(
SDLS

T
DL ⊗ S̃S̃T

)
+ |Ξ| 2

T

(
1√
2

(ē1 + ē2) (SDLp̄ (1))T ⊗ S̃S̃T

)
. (5.81)

We also construct the constraint matrix, constraint right hand side vector, and Lagrange
multiplier vector

C =

⎡⎢⎢⎢⎢⎢⎢⎣
C1

C2

C3

C4

⎤⎥⎥⎥⎥⎥⎥⎦ , d̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
d̄3

d̄4

⎤⎥⎥⎥⎥⎥⎥⎦ , ν̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
ν̄1

ν̄2

ν̄3

ν̄4

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.82)

so that we obtain the saddle point system⎡⎣ A CT

C 0

⎤⎦⎡⎣ φ̄

ν̄

⎤⎦ =
⎡⎣ 0
d̄

⎤⎦ . (5.83)

There are two subtleties hidden by this saddle point notation. The first is that although
this saddle point system has the same block structure as those found in earlier chapters, the
matrix A in this case is not symmetric due to the free boundary term at time t = T . The
second, and more important point is that the matrix C does not have full rank and, as a

113

consequence, the saddle point system is singular. Taken separately, each constraint matrix
Ck with k = 1, 2, 3, 4, has full rank but, when combined, there are four redundant equations.
To understand why, consider the fact that constraint matrices C1 and C2 force φ to be zero
at x = b and x = a respectively. Constraint matrix C3 forces φ to match φ0 (x) for a ≤ x ≤ b

and t = 0. Suppose now that φ0 (a) ̸= 0 or φ0 (b) ̸= 0. Then constraints C1 and C2 can be in
direct conflict with C3: we have specified the solution φ at the points (a, 0) and (b, 0) twice.
The correct approach is thus to remove the constraints either in C1 and C2 or C3 at those
points. Since only the first two basis functions in the time dimension and the first two in the
space dimension have any impact on the solution at the points (a, 0) and (b, 0), it is enough
to eliminate the first two equations in both C1 and C2 to restore full rank to C. Note that
this is not the only choice that restores the full rank property to C, but it is the simplest
when generalizing to multiple elements in space. Once this issue is clarified, we can solve for
the space-time solution φ by inverting the saddle point system. We can also certify that our
solution is accurate by measuring ∥ν̄4∥2 and verifying that the coefficients in φ̄ have decayed
to the user specified tolerance in both space and time.

5.3 Space-Time Reflection of a Gaussian Pulse

To test that this formulation is correct, we apply the method to a classical wave propagation
problem in one spatial dimension. Consider Maxwell’s equations under the assumptions that
the electric and magnetic field intensities reduce to

Ē =

⎡⎢⎢⎢⎣
0

Ey (x, t)
0

⎤⎥⎥⎥⎦ , H̄ =

⎡⎢⎢⎢⎣
0
0

Hz (x, t)

⎤⎥⎥⎥⎦ . (5.84)

Then the Faraday and Ampère laws in the absence of current and charge densities, given by

∇ × Ē = −µ ∂
∂t
H̄, (5.85)

∇ × H̄ = ϵ
∂

∂t
Ē, (5.86)

can be reduced to the one-dimensional wave equation

− ∂

∂x

(
1
ϵ

∂

∂x
Hz

)
+ µ

∂2

∂t2
Hz = 0. (5.87)

114

This equation can be transformed to a dimensionless one with the change of variables

t̂ = 1
L

√
ϵ0µ0

t, x̂ = 1
L
x, Ĥz = 1

Hnorm
Hz, Êy = 1

Hnorm

√
ϵ0

µ0
Ey, (5.88)

where L is some characteristic length (often associated with wavelength) and Hnorm is a
normalizing magnetic field strength. Performing this change of variables and dropping the
circumflex notation, we obtain

− ∂

∂x

(
1
ϵr

∂

∂x
Hz

)
+ µr

∂2

∂t2
Hz = 0 (5.89)

and, if we let µr = 1, we recover the wave equation (5.1

.

) where α (x) = 1/[ϵr (x)] and φ = Hz.
For our test case, we choose ϵr = 1 with initial conditions

H0 (x) = exp
[
−1

2

(
x− x0

∆x

)2
]
, (5.90)

∂

∂t
H0 (x) = − 1

(∆x)2 (x− x0) exp
[
−1

2

(
x− x0

∆x

)2
]
, (5.91)

with x0 = 0 and ∆x = 1/8. We also set a = −1 and b = 1 which ensures that H0 has decayed
to machine precision at the boundaries. Since the boundary conditions at a and b require
that Hz be zero for all time, we expect the Gaussian pulse to propagate in the negative x
direction, and perfectly reflect at each boundary. We choose T = 4 so that the pulse reflects
at both endpoints and returns to its original position (the wave has unit speed in the unitless
system). To illustrate the sparsity of the saddle point system, we set Lx = Lt = 10 (see
Figure 5.1

.

) but we choose Lx = Lt = 100 when computing an accurate solution to the wave
problem. The saddle point system is solved using a sparse direct solver. The computed
solution is accurate to machine precision (this can be verified since the exact solution to
this problem is known). In addition, the Lagrange multipliers ν̄4 are zero to within machine
precision.

Figure 5.2

.

illustrates the space-time distribution of the magnetic field intensity of the
Gaussian pulse. The interpretation of space-time distributions may seem to be ambiguous
to the uninitiated. A point (x, t) on the plot has a corresponding value Hz (x, t) represented
in color by red for positive one and blue for negative one (with intermediate values taken
from a color gradient between red and blue with white as zero). If one takes a horizontal
slice of the space-time distribution, say at time t = t⋆, then the slice gives Hz (x, t⋆) which is
the profile of the spatially one-dimensional wave (in this case, a Gaussian pulse) which one
typically sees from a time-stepping visualization. Alternatively, one can take a vertical slice,

115

say at x = x⋆, which corresponds to tracking the value of Hz at a fixed point in space over
the full duration of time, that is, Hz (x⋆, t). For the particular example depicted in Figure
5.2

.

, one can think of the space-time plot as corresponding to a more detailed version of a
reflection diagram one might typically find for transmission-line circuits in electromagnetic
fields and waves books (see [135

.

], for example).

5.4 Space-Time Simulation of a Fiber Bragg Grating

As a second example, consider the case where ϵr is now a function of space. In particular,
let us choose a = 0 and b = 6 up to a final time T = 4 with a relative permittivity given by

ϵr (x) =
{

1
2 exp

[
−1

2

(
x− x0,r

∆xr

)2
]

[cos (2πωr (x− x0,r)) + 1] + 1
}2

(5.92)

where ∆xr = 3/8, ωr = 10, and x0,r = 5/2. This relative permittivity can be thought of
as corresponding to a Gaussian apodized fiber Bragg grating [136

.

]. Let us consider two
problems. First, we take the initial conditions

H0 (x) = exp
[
−1

2

(
x− x0

∆x

)2
]
, (5.93)

∂

∂t
H0 (x) = − 1

(∆x)2 (x− x0) exp
[
−1

2

(
x− x0

∆x

)2
]
, (5.94)

with ∆x = 1/8 and x0 = 5 which corresponds to a Gaussian pulse traveling in the negative
x direction. Second, we take the initial conditions

H0 (x) = cos (2πω (x− x0)) exp
[
−1

2

(
x− x0

∆x

)2
]
, (5.95)

∂

∂t
H0 (x) = −2πω sin (2πω (x− x0)) exp

[
−1

2

(
x− x0

∆x

)2
]

− 1
(∆x)2 (x− x0) cos (2πω (x− x0)) exp

[
−1

2

(
x− x0

∆x

)2
]
, (5.96)

with the same ∆x and x0 as in the first set of initial conditions and with frequency ω = 3.8197.
This corresponds to a modulated Gaussian pulse traveling in the negative x direction. Figure
5.3

.

shows the reciprocal of the relative permittivity α (x) = 1/[ϵr(x)] along with the second
initial condition. Note that α (x) is a smooth function and can be approximated to machine
precision by a Legendre expansion. Unfortunately, in this case Kα—the number of required
terms to represent α—is large (roughly 500). Thus, if we solve this problem using a single

116

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

Figure 5.1: Sparsity pattern for the single element space-time formulation corresponding
to the saddle point system (5.83

.

) with Lx = Lt = 10. We show this reduced-size case to
emphasize key features of the sparsity pattern that become difficult to see when Lx = Lt =
100. The band of nonzeros along the top of the plot corresponds to the nonsymmetric term
in A. When Lx = Lt = 100, there are (10, 601)2 total entries in the matrix (roughly 110
million) whereas there are only 130, 497 nonzeros.

117

x

t

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Space-time solution of the one-dimensional wave equation with perfect reflecting
boundary conditions. A Gaussian pulse travels to the left and reflects at the boundary
x = −1 at time t = 1, travels to the right and reflects at the boundary x = 1 at time t = 3,
then finally travels to the left and returns to its initial state at time t = 4.

118

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

x

1/ǫr (x)
Hz (x, 0)

Figure 5.3: Plot of α (x) = 1/[ϵr(x)] corresponding to the Gaussian apodized fiber Bragg
grating as well as the modulated Gaussian wave packet used as initial condition Hz (x, 0).

element, the sparsity of the saddle point system degrades since the first term in (5.81

.

) is
block pentadiagonal with each block having bandwidth Kα (assuming Kα is smaller than
the degree Lx, otherwise the block is full).

To avoid compromising sparsity, we introduce several elements in space. Each element
is permitted to have different spatial degree Lx but all elements share the same temporal
degree Lt. Only minor modifications of the single element approach are required to include
multiple elements. In assembling the saddle point system, we replace A with a block diagonal
matrix containing each element’s corresponding local A matrix, as in Section 4.4

.

. In addition,
we impose the initial conditions on each element and the homogeneous Dirichlet boundary
conditions on the two boundary elements that share points at x = a and x = b. Finally, if
two elements share a boundary, say at point xj where x−

j is the right boundary of element j
and x+

j is the left boundary of element j + 1 (assuming elements are ordered by increasing
number from left to right), then we impose continuity by requiring

φ(x−
j , t) = φ(x+

j , t) (5.97)

which, from our previous discussion of imposing Dirichlet boundary conditions in the single

119

element case, reduces to

C1φ̄j = C2φ̄j+1 (5.98)
[
C1 −C2

] ⎡⎣ φ̄j

φ̄j+1

⎤⎦ = 0 (5.99)

where φ̄j is the block of unknowns corresponding to those basis functions defined on the jth
element. When there are more than two elements, we pad the constraint matrix with blocks
of zeros corresponding to unknowns for other elements so that a typical continuity constraint
between two neighboring elements is given by

[
0 · · · 0 C1 −C2 0 · · · 0

]
φ̄ = 0. (5.100)

As with the single element case, we remove the first two rows in this inter-element continuity
constraint to ensure that the complete constraint matrix C has full rank. We then perform
h-adaption so as to preserve a specified bandwidth Kα in space. In our example, we set
Kα = 10, which results in a non-uniform partition of the interval (0, 6) into 109 elements.
We then set Lx = 10 for all elements, except those that require more degrees of freedom
to represent the initial conditions to machine precision. The time degree is set such that
Lt = 150 for all elements.

Figure 5.4

.

shows the typical sparsity of a space-time finite element saddle point system
where we have reduced the number of elements to six so that the structure in the matrix
can be observed. Figure 5.5

.

illustrates the computed space-time solutions (obtained using
a sparse direct solver) for the first and second sets of initial conditions. Note that the fine
structure of the scattered solution for the modulated Gaussian pulse for the second set of
initial conditions would require high order polynomial basis functions for a single element
solution which is expensive when Kα must be large (on the order of 500).

120

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

Figure 5.4: Sparsity pattern for a typical six-element space-time formulation corresponding
to the saddle point system (5.83

.

) with Lt = 10. We show this reduced-size case to emphasize
key features of the sparsity pattern that become difficult to see when Lt = 150. Note how
A is now built from six local versions of (5.81

.

) along the main block diagonal. In addition,
the constraint matrix now imposes two homogeneous Dirichlet boundary conditions, five
inter-element continuity conditions, and six sets of initial conditions.

121

x

t

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

−1

−0.5

0

0.5

1

x

t

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

−1

−0.5

0

0.5

1

Figure 5.5: Space-time distribution of Hz (x, t) for the fiber Bragg grating problem. The
first set of initial conditions yields the top plot while the second set of initial conditions
yields the bottom plot. Note that the magnitude of the reflected wave in the bottom plot
is an order of magnitude larger than the reflected wave in the top plot (the exact difference
cannot be observed by eye). This agrees with the typical behavior of fiber Bragg gratings
which can be designed to reflect specific frequency bands.

122

Chapter 6

Extension to Higher Spatial
Dimensions

The remainder of the thesis extends the finite element method described in Chapter 4

.

for
the prototypical one-dimensional BVP (3.1

.

)-(3.3

.

) to an analogous method for the PDE

− ∇ · (α∇φ) + βφ = f in Ω, (6.1)

subject to boundary conditions

φ = p on ΓD, (6.2)

n̄T (α∇φ) + γφ = q on ΓR, (6.3)

where: Ω is a specified d-dimensional domain; φ is a scalar function of x̄ ∈ Ω ⊂ Rd; α ∈ Cd×d

is a symmetric matrix dependent upon spatial variables x̄; β, f , p, γ, and q are complex
scalar functions of x̄; and n̄ ∈ Rd is the outward pointing unit normal to Ω. The two
boundary components ΓD and ΓR are disjoint; that is, ΓD ∩ ΓR = ∅. Furthermore, the
boundary of Ω, denoted ∂Ω, is given by the union of the two boundary components ΓD and
ΓR (which may themselves be composed of disconnected components). Each component is
a codimension-1 open set (curves in R2, surfaces in R3, etc.). This means that when ∂Ω is
described as the union of ΓD and ΓR, the understanding is that ∂Ω\(ΓD ∪ ΓG) may be a
nonempty set of codimension-2 (points in R2, curves in R3, etc.). That is, ∂Ω is equivalent
to ΓD ∪ ΓG modulo a set of codimension-2. This union property combined with the disjoint
nature of the boundary components ΓD and ΓR will be referred to as a disjoint union in the
remainder of the thesis.

This chapter, for the most part, leaves d > 1 unspecified but uses d = 2 and occasionally

123

d = 3 as examples. Note that d = 1 reduces to the BVP already treated in Chapter 4

.

. To
mirror the development in one dimension, this chapter describes how to solve the forward
problem: find φ given α, β, f , p, γ, and q as well as a geometric description of Ω, ΓD, and ΓR.
Equation (6.1

.

) subsumes several interesting PDEs for the electrical engineer. For example,
when φ is the electrostatic potential, α = ϵ is the permittivity tensor, β = 0, and f = ρ is the
volume charge density, then (6.1

.

) corresponds to the differential form of Gauss’ law. Solving
such an equation (called Poisson’s equation) gives insight into the electrostatic behavior of
potentially complicated devices. While this is the prototypical example, even time-harmonic
wave problems with d = 2 fit into this framework. Equation (6.2

.

) corresponds to a Dirichlet
boundary condition whereas (6.3

.

) corresponds to a Robin boundary condition (Neumann
boundary conditions can be set if γ = 0). Not all practical problems contain both types of
boundary conditions, but both are included for generality.

Higher-dimensional problems admit different approaches towards a finite element method,
just as one-dimensional problems did. This chapter considers both the Ritz and Galerkin
approaches and highlight their similarities. The development mirrors the one-dimensional
development presented in Chapter 3

.

. As in Chapter 3

.

, the material is classical, but presented
with an emphasis on constraints which will be useful in subsequent chapters. In addition,
comments regarding choices of geometry of the element in higher dimensions which are not
present in one dimension are made. These comments motivate the choice to use quadrilateral
elements instead of triangular ones for the examples presented in this thesis.

6.1 The Variational Formulation

To use the Ritz approach, we need to write an equivalent variational formulation for the
PDE. In particular, we can pose (6.1

.

)-(6.3

.

) as a variational problem

δF (φ) = 0, (6.4)

φ (x̄) = p (x̄) for x̄ ∈ ΓD, (6.5)

φ ∈ H1 (Ω) , (6.6)

where
F (φ) = 1

2

ˆ
Ω

(∇φ) T (α∇φ) + βφ2 − 2fφ dΩ + 1
2

ˆ
ΓR

γφ2 − 2qφ dΩ (6.7)

is the functional whose first variation we set to zero and H1 (Ω) is the space of functions
whose gradient is square integrable (for practical purposes we can think of this as the set of
functions that are continuous and piecewise smooth). To see that this problem is equivalent

124

to (6.1

.

)-(6.3

.

), we take the first variation

δF = lim
ϵ→0

F (φ+ ϵ δφ) − F (φ)
ϵ

(6.8)

of the functional F where δφ is an arbitrary function in H1 (Ω) satisfying δφ (x̄) = 0 for all
x̄ ∈ ΓD, and ϵ is a small positive real number. Evaluating the functional at φ+ ϵ δφ yields

F (φ+ ϵ δφ) = 1
2

ˆ
Ω

(∇φ+ ϵ∇δφ)T (α∇φ+ ϵα∇δφ) + β (φ+ ϵ δφ)2 − 2f (φ+ ϵ δφ) dΩ

+ 1
2

ˆ
ΓR

γ (φ+ ϵ δφ)2 − 2q (φ+ ϵ δφ) dΩ (6.9)

which, when exploiting the fact that α = αT , gives

F (φ+ ϵ δφ) = 1
2

ˆ
Ω

(∇φ)T (α∇φ) + ϵ
[
2 (∇φ)T (α∇δφ)

]
+ ϵ2

{
(∇δφ)T (α∇δφ)

}
+ βφ2 + ϵ [2βφ δφ] + ϵ2{β δφ2} − 2fφ− ϵ [2f δφ] dΩ

+ 1
2

ˆ
ΓR

γφ2 + ϵ [2γφ δφ] + ϵ2{γ δφ2} − 2qφ− ϵ [2q δφ] dΩ. (6.10)

Notice that all terms multiplied by ϵ are in square brackets, whereas all terms multiplied by
ϵ2 are in curly brackets. All other remaining terms exactly cancel with those in F (φ) when
taking the difference F (φ+ ϵδφ) − F (φ). Dividing this difference by ϵ and evaluating the
limit yields

δF = 1
2

ˆ
Ω

2 (∇φ)T α∇δφ+ 2βφ δφ− 2f δφ dΩ + 1
2

ˆ
ΓR

2γφ δφ− 2q δφ dΩ (6.11)

=
ˆ

Ω
(∇φ)T α∇δφ+ βφ δφ− f δφ dΩ +

ˆ
ΓR

γφ δφ− q δφ dΩ (6.12)

which consists of only those terms that were in square brackets (those in curly brackets were
all multiplied by a factor of ϵ which went to zero in the limit).

Only the first term in (6.12

.

) does not include a factor of δφ, but instead its gradient.
We use integration by parts (really a d-dimensional analogue) by combining the divergence
theorem and a simple vector identity due to the product rule to isolate δφ. In particular, we
need the divergence theorem applied to a differentiable vector function Ā given by

ˆ
Ω

∇ · Ā dΩ =
˛

∂Ω
n̄T Ā dΩ (6.13)

125

as well as the identity

∇ · (bĀ) = (∇b)T Ā+ b∇ · Ā (6.14)

= ĀT ∇b+ (∇ · Ā)b (6.15)

for some arbitrary differentiable scalar function b. Taking Ā = α∇φ and b = δφ, the product
rule becomes

∇ · (δφα∇φ) = (α∇φ)T ∇δφ+ ∇ · (α∇φ) δφ (6.16)

= (∇φ)T α∇δφ+ ∇ · (α∇φ) δφ (6.17)

from which we identify the term

(∇φ)T α∇δφ = ∇ · (δφα∇φ) − ∇ · (α∇φ) δφ. (6.18)

Taking the volume integral and applying the divergence theorem to the first term on the
right hand side yields

ˆ
Ω

(∇φ)T α∇δφ dΩ =
ˆ

Ω
∇ · (δφα∇φ) − ∇ · (α∇φ) δφ dΩ (6.19)

=
˛

∂Ω
n̄T (δφα∇φ) dΩ −

ˆ
Ω

∇ · (α∇φ) δφ dΩ (6.20)

=
˛

∂Ω
n̄T (α∇φ) δφ dΩ −

ˆ
Ω

∇ · (α∇φ) δφ dΩ. (6.21)

Since the boundary of Ω is assumed to be composed of two disjoint surfaces ΓD and ΓR, we
can split the surface integral accordingly to obtain
ˆ

Ω
(∇φ)T α∇δφ dΩ =

ˆ
ΓD

n̄T (α∇φ) δφ dΩ  
0

+
ˆ

ΓR

n̄T (α∇φ) δφ dΩ −
ˆ

Ω
∇ · (α∇φ) δφ dΩ

(6.22)
with the first term equal to zero because δφ = 0 everywhere on ΓD. Finally, substituting
this expression into (6.12

.

) gives

δF =
ˆ

Ω
[−∇ · (α∇φ) + βφ− f] δφ dΩ +

ˆ
ΓR

[n̄T (α∇φ) + γφ− q]δφ dΩ (6.23)

and, since our variational formulation states that the first variation vanishes and that this

126

equation must hold for all possible δφ, we recover the two PDE conditions

−∇ · (α∇φ) + βφ− f = 0 in Ω, (6.24)

n̄T (α∇φ) + γφ− q = 0 on ΓR. (6.25)

In a situation where α changes discontinuously, we need to be careful about where we
apply the divergence theorem. In particular, the divergence theorem assumes that the vector
field in question is continuously differentiable inside the region Ω. When this does not hold,
we need to break the integral into two subregions, one on each side of the discontinuity, and
apply the divergence theorem on each side separately. This yields, in a simple case with
adjacent components (ignoring all other boundary contributions which would be handled in
the way already described),

ˆ
Ω

(∇φ)T α∇δφ dΩ =
ˆ

Γ+

n̄T
+ (α+∇φ) δφ dΩ +

ˆ
Γ−

n̄T
− (α−∇φ) δφ dΩ

−
ˆ

Ω+

∇ · (α+∇φ) δφ dΩ −
ˆ

Ω−

∇ · (α−∇φ) δφ dΩ (6.26)

where Ω+ and Ω− are the two regions inside which α+ and α− are smooth enough and
Γ+ = Γ− is the shared boundary along which α is discontinuous. Note that φ and δφ must
be continuous along this boundary in order to belong to H1 (Ω) and that the unit normal
appearing upon use of the divergence theorem always points away from either region. This
means that at the boundary Γ+ = Γ− and n̄+ = −n̄−. This allows us to combine the
boundary integrals to obtain
ˆ

Ω
(∇φ)T α∇δφ dΩ =

ˆ
Γ+

[
n̄T

+ (α+∇φ) − n̄T
+ (α−∇φ)

]
δφ dΩ −

ˆ
Ω

∇ · (α∇φ) δφ dΩ (6.27)

where the last integral on the right hand side needs to be understood in a generalized sense.
That is, the divergence only exists in a piecewise defined way. In this weak sense, we get the
following three conditions when setting the first variation to zero:

−∇ · (α∇φ) + βφ− f = 0 in Ω, (6.28)

n̄T (α∇φ) + γφ− q = 0 on ΓR, (6.29)

n̄T
+ (α+∇φ) − n̄T

+ (α−∇φ) = 0 on Γ+ = Γ−. (6.30)

Thus, we satisfy the PDE in the region Ω in a weak sense, and also have continuity of the
flux density α∇φ in the normal direction across boundaries of discontinuous α.

127

6.2 The Ritz Method

If we wish to use this variational framework to find an approximation to the solution of the
PDE, we assume φ can be expressed as a linear combination of “simple” functions which we
collect in the vector N̄ (x̄). The precise nature of the functions determines the type of method
we use to solve the PDE (choosing functions—typically polynomials—that are nonzero only
on small subdomains whose disjoint union spans Ω yields a finite element method). Without
specifying the exact choice of functions, we have

φ (x̄) = φ̄T N̄ (x̄) (6.31)

= N̄ (x̄)T φ̄ (6.32)

where φ̄ ∈ CM is a vector of coefficients which we seek. Substituting this expression into the
functional (6.7

.

) yields

F (φ) = 1
2

ˆ
Ω

(
J N̄ (x̄)T φ̄

)T (
αJ N̄ (x̄)T φ̄

)
+ φ̄T N̄ (x̄) βN̄ (x̄)T φ̄− 2φ̄T N̄ (x̄) f dΩ

+ 1
2

ˆ
ΓR

φ̄T N̄ (x̄) γN̄ (x̄)T φ̄− 2φ̄T N̄ (x̄) q dΩ (6.33)

where J N̄ (x̄) ∈ RM×d is the Jacobian matrix with entries

[J N̄ (x̄)]ij = ∂Ni

∂xj

(x̄) , (6.34)

Ni is the ith function in the vector N̄ (x̄), and xj is the jth spatial variable in d dimensions.
Collecting quadratic and linear terms in φ̄ yields

F (φ̄) = 1
2 φ̄

T

[ˆ
Ω
J N̄ (x̄)αJ N̄ (x̄)T dΩ +

ˆ
Ω
N̄ (x̄) βN̄ (x̄)T dΩ +

ˆ
ΓR

N̄ (x̄) γN̄ (x̄)T dΩ
]

  
A

φ̄

− φ̄T

[ˆ
Ω
N̄ (x̄) f dΩ +

ˆ
ΓR

N̄ (x̄) q dΩ
]

  
b̄

. (6.35)

That is, once the solution is represented as a linear combination of functions in N̄ (x̄), the
functional becomes a quadratic function of the coefficients φ̄ in the combination. As in the
one-dimensional case, if the functions are not continuous over the whole domain Ω, we need
to explicitly enforce continuity. In addition, we also need to enforce Dirichlet boundary

128

conditions. As we will see, this can be accomplished using a constraint matrix C such that

Cφ̄ = d̄. (6.36)

Note that by introducing Lagrange multipliers ν̄, we can find stationary points of the dis-
cretized functional subject to the continuity and Dirichlet constraints by solving the saddle
point system ⎡⎣ A CT

C 0

⎤⎦⎡⎣ φ̄

ν̄

⎤⎦ =
⎡⎣ b̄

d̄

⎤⎦ . (6.37)

It is important to understand that this saddle point system and the one presented in (3.38

.

)
differ by the contents of their submatrices and subvectors but that the process to derive
them is identical (we start form the Lagrangian and compute its gradient with respect to φ̄
and ν̄).

6.3 The Galerkin Method

As in the one-dimensional case, there is an analogous interpretation of the saddle point
system that can be obtained through Galerkin’s method of weighted residuals. In particular,
we can derive meaning for the Lagrange multipliers and obtain, at least from an abstract
point of view, the specific form of the constraint matrix C. To do so, we begin by integrating
the product of (6.1

.

) with a test function ψ to obtain
ˆ

Ω
ψ [−∇ · (α∇φ) + βφ] dΩ =

ˆ
Ω
ψf dΩ (6.38)

−
ˆ

Ω
ψ∇ · (α∇φ) dΩ +

ˆ
Ω
ψβφ dΩ =

ˆ
Ω
ψf dΩ. (6.39)

Applying (6.18

.

) with ψ in place of δφ yields

− ψ∇ · (α∇φ) = (∇φ)T α∇ψ − ∇ · (ψα∇φ) (6.40)

so that the weighted equation becomes
ˆ

Ω
(∇φ)T α∇ψ dΩ −

ˆ
Ω

∇ · (ψα∇φ) dΩ +
ˆ

Ω
ψβφ dΩ =

ˆ
Ω
ψf dΩ. (6.41)

Using the divergence theorem on the second integral gives
ˆ

Ω
(∇φ)T α∇ψ dΩ −

˛
∂Ω
ψn̄T (α∇φ) dΩ +

ˆ
Ω
ψβφ dΩ =

ˆ
Ω
ψf dΩ (6.42)

129

and, using the Robin boundary condition (6.3

.

), we obtain
ˆ

Ω
(∇φ)T α∇ψ dΩ−

ˆ
ΓD

ψn̄T (α∇φ) dΩ−
ˆ

ΓR

ψ [q − γφ] dΩ+
ˆ

Ω
ψβφ dΩ =

ˆ
Ω
ψf dΩ (6.43)

which we rewrite as
ˆ

Ω
(∇ψ)T α∇φ dΩ +

ˆ
Ω
ψβφ dΩ +

ˆ
ΓR

ψγφ dΩ −
ˆ

ΓD

ψn̄T (α∇φ) dΩ =
ˆ

Ω
ψf dΩ +

ˆ
ΓR

ψq dΩ.

(6.44)
By making the substitution

φ = N̄ (x̄)T φ̄ (6.45)

in (6.44

.

) and repeating the equation M times with ψ = Ni (x̄) for i = 1, 2, ...,M , we obtain
the equations

[ˆ
Ω
J N̄ (x̄)αJ N̄ (x̄)T dΩ +

ˆ
Ω
N̄ (x̄) βN̄ (x̄)T dΩ +

ˆ
ΓR

N̄ (x̄) γN̄ (x̄)T dΩ
]

  
A

φ̄

−
ˆ

ΓD

N̄ (x̄) n̄T (α∇φ) dΩ =
[ˆ

Ω
N̄ (x̄) f dΩ +

ˆ
ΓR

N̄ (x̄) q dΩ
]

  
b̄

. (6.46)

To determine the nature of the remaining boundary integral term, suppose that we expand
the normal flux density as

− n̄T (α∇φ) = N̄B (x̄)T ν̄ (6.47)

using its own set of basis functions N̄B (x̄). Then the weighted equations become

Aφ̄−
ˆ

ΓD

N̄ (x̄) n̄T (α∇φ) dΩ = b̄ (6.48)

Aφ̄+
ˆ

ΓD

N̄ (x̄) N̄B (x̄)T dΩ  
CT

ν̄ = b̄. (6.49)

Thus, the Lagrange multipliers ν̄ are precisely the coefficients in a linear combination of basis
functions N̄B used to expand the normal flux density −n̄T (α∇φ) at the Dirichlet boundary.
Under this interpretation, we obtain the equation Aφ̄ + CT ν̄ = b̄ which arises as the first
block row of the saddle point system (6.37

.

).
In fact, this gives us a natural way to interpret the Dirichlet boundary condition which

must be explicitly enforced. For symmetry, we enforce the Dirichlet boundary condition

130

(6.2

.

) in the weak sense
ˆ

ΓD

N̄B (x̄) [φ− p] dΩ = 0 (6.50)
ˆ

ΓD

N̄B (x̄)φ dΩ =
ˆ

ΓD

N̄B (x̄) p dΩ. (6.51)

Making the substitution φ = N̄ (x̄)T φ̄ yields
ˆ

ΓD

N̄B (x̄) N̄ (x̄)T dΩ  
C

φ̄ =
ˆ

ΓD

N̄B (x̄) p dΩ  
d̄

(6.52)

which was precisely the form of the constraint equation Cφ̄ = d̄ in the second block row of
(6.37

.

).
In fact, the same saddle point form holds true for situations where α is discontinuous. In

such cases, we gain pairs of terms
ˆ

Γ+

ψ
[
n̄T

+ (α+∇φ) − n̄T
+ (α−∇φ)

]
dΩ (6.53)

in the Galerkin weighted residual which give rise to additional columns in CT . We then
enforce continuity of φ explicitly along those boundaries resulting in additional rows of
constraint equations ˆ

Γ+

N̄+ (x̄) [φ+ − φ−] dΩ = 0 (6.54)

in the matrix C. As we will see in later chapters, this particular weak form of continu-
ity enforcement can become quite powerful when considering nonconforming finite element
methods.

6.4 The Canonical Element in Higher Dimensions

Recall that to solve the prototypical BVP (3.1

.

)-(3.3

.

) using a finite element method, we
partitioned the one-dimensional domain Ω = (a, b) into a disjoint union of subintervals
(which we called elements). This was done so that φ could be approximated on each element
using a polynomial basis. In higher dimensions, the choice of element becomes less clear. In
particular, there is no unique generalization of the canonical interval (−1, 1). For example,
one could think of the reference domain as a one-dimensional ball of radius 1, in which case,

131

the generalization to higher dimensions is the domain

Bp (0, 1) =
{
x̄ ∈ Rd : ∥x̄∥p < 1

}
(6.55)

where 1 ≤ p ≤ ∞. When d = 1, the set ∥x̄∥p < 1 is −1 < x1 < 1 for all p. In higher
dimensions, the choice of p changes the geometry of Bp (0, 1) substantially. In fact, only
p → ∞ (a hypercube) or the intersection of B∞ (0, 1) and ēT x̄ < 2 − d (where ē is the vector
of all ones giving rise to a simplex) find widespread use (actually we can rephrase everything
that applies for p → ∞ in terms of p = 1 because these norms are dual). Other cases of
p do not work because, in general, tiling Rd without overlap is not possible (think of tiling
R2 using only disks corresponding to p = 2); only the 1-norm and infinity-norm unit balls
have planar faces. To make matters worse, the choice of element need not be restricted to
hypercubes or simplices. For example, recently, there has been a trend toward polyhedral
elements [137

.

, 138

.

, 139

.

]. Faced with this myriad of possible element choices, one needs to
carefully consider their pros and cons.

First, in dimensions d > 1 there is the difficulty of partitioning the domain Ω that
must be considered. In one dimension, partitioning the domain Ω = (a, b) into disjoint
subdomains is straightforward; simply split the interval into disjoint subintervals which are
all affine transformations of the canonical interval (−1, 1). In higher dimensions (say d =
2, 3), simplices have historically been favored as there exist robust algorithms for producing
unstructured triangulations of d-dimensional domains [140

.

]. Each resulting simplex in the
triangulation can then be interpreted as the image of an affine map from a canonical simplex
(for example, the intersection of B∞ (0, 1) and ēT x̄ < 2 − d, although there is no universally
agreed upon canonical simplex). Hypercube meshes have lagged behind in this respect but
there are several approaches that find use (advancing front methods, grid superposition
methods, hypercubes by means of simplex combination, etc.) [62

.

]1

.

.
On the other hand, since we are interested in extending the framework of Chapter 4

.

,
in extending ideas to higher dimensions, we must also consider which types of elements
preserve the properties observed in one dimension. The key properties exploited for one-
dimensional problems are the ability to analytically compute the integral of triple products
of Legendre polynomials, as well as to produce Legendre expansions of smooth functions
to high accuracy. Thus, to extend such an approach to the hypercube or simplex, we need
to consider orthogonal polynomials on these domains. To gauge whether the hypercube or
the simplex may be better suited to such a treatment, we consider comparing orthogonal

1I am not aware of automatic mesh generation for arbitrary polyhedral elements beyond using Voronoi
diagrams.

132

polynomials in d = 2 dimensions on the square

H2 =
{
x̄ ∈ R2×1 : ∥x̄∥∞ < 1

}
(6.56)

= (−1, 1)2 (6.57)

and the triangle

S2 =
{
x̄ ∈ R2×1 : ∥x̄∥∞ < 1, ēT x̄ < 0

}
(6.58)

= (−1, 1)2 ∩ {x1, x2 ∈ R : x1 + x2 < 0} . (6.59)

On the square H2, the polynomials

pij (x̄) = pi (x1) pj (x2) (6.60)

are orthonormal where p with a single subscript is the usual orthonormal Legendre polyno-
mial on the interval (−1, 1). That is, the two-dimensional polynomials pij and pi′j′ satisfy
the orthogonality property

ˆ
H2

pij (x̄) pi′j′ (x̄) dΩ = δii′δjj′ (6.61)

which we obtain through separation of variables:
ˆ

H2

pij (x̄) pi′j′ (x̄) dΩ =
ˆ 1

−1

ˆ 1

−1
pi (x1) pj (x2) pi′ (x1) pj′ (x2) dx1dx2 (6.62)

=
ˆ 1

−1
pi (x1) pi′ (x1) dx1  

δii′

ˆ 1

−1
pj (x2) pj′ (x2) dx2  

δjj′

. (6.63)

In contrast, the orthonormal polynomials on the triangle S2 are given by

pij (x̄) =
√

2pi

(
21 + x1

1 − x2
− 1

)
p

(2i+1,0)
j (x2) (1 − x2)i (6.64)

where p(2i+1,0)
j (x2) is the jth orthonormal Jacobi polynomial on the interval (−1, 1) with

respect to weight function (1 − x2)2i+1 (see [38

.

, 141

.

, 142

.

, 143

.

], for example). To see that
these polynomials are orthogonal on S2, we compute

ˆ
S2

pij (x̄) pi′j′ (x̄) dΩ (6.65)

133

by performing the change of variables

y1 = 21 + x1

1 − x2
− 1, (6.66)

y2 = x2, (6.67)

whose Jacobian is given by

J x̄ =

⎡⎢⎢⎢⎣
∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

⎤⎥⎥⎥⎦ . (6.68)

This transformation takes the right triangle S2 to the square H2. Rewriting the change of
variables for x1 and x2 in terms of y1 and y2 yields

x1 = (y1 + 1) (1 − y2)
2 − 1, (6.69)

x2 = y2, (6.70)

which gives the corresponding Jacobian

J x̄ =
⎡⎣ 1−y2

2 −y1+1
2

0 1

⎤⎦ (6.71)

whose determinant is
det (J x̄) = 1 − y2

2 . (6.72)

The orthogonality test becomes
ˆ

S2

pij (x̄) pi′j′ (x̄) dΩ =
ˆ

H2

pij (ȳ) pi′j′ (ȳ) det (J x̄) dΩ, (6.73)

or, more explicitly,

ˆ 1

−1

ˆ 1

−1

√
2pi (y1) p(2i+1,0)

j (y2) (1 − y2)i
√

2pi′ (y1) p(2i′+1,0)
j′ (y2) (1 − y2)i′ 1 − y2

2 dy1dy2 =
ˆ 1

−1
pi (y1) pi′ (y1) dy1  

δii′

ˆ 1

−1
p

(2i+1,0)
j (y2) p(2i′+1,0)

j′ (y2) (1 − y2)i+i′+1 dy2 (6.74)

which demonstrates that under this change of variables, polynomials (6.64

.

) become separable.
When i ̸= i′, the integral is zero, regardless of the value of the integral with respect to y2.

134

0 200 400 600 800 1000 1200

0

100

200

Figure 6.1: The first six frontal slices of the triple product integral tensor for the simplex
corresponding to a degree 2 polynomial for the material coefficients and a degree twenty
polynomial for basis functions on the triangle.

Assuming i = i′, we obtain
ˆ

S2

pij (x̄) pij′ (x̄) dΩ =
ˆ 1

−1
p

(2i+1,0)
j (y2) p(2i+1,0)

j′ (y2) (1 − y2)2i+1 dy2  
δjj′

(6.75)

and thus ˆ
S2

pij (x̄) pi′j′ (x̄) dΩ = δii′δjj′ . (6.76)

Recall however that the sparsity preserving schemes developed in one dimension in Chap-
ter 4

.

relied on properties of triple products of orthonormal polynomials. Under the same
change of variables, the triple product on the triangle S2 yields

ˆ
S2

pij (x̄) pi′j′ (x̄) pi′′j′′ (x̄) dΩ =
√

2
ˆ 1

−1
pi (y1) pi′ (y1) pi′′ (y1) dy1

·
ˆ 1

−1
p

(2i+1,0)
j (y2) p(2i′+1,0)

j′ (y2) p(2i′′+1,0)
j′′ (y2) (1 − y2)i+i′+i′′+1 dy2 (6.77)

with the integral with respect to y1 giving the triple product of Legendre polynomials as
in the one-dimensional case. However, the second integral is a great deal more complicated
(see [144

.

] for exact expressions2

.

). See Figure 6.1

.

for an example of the sparsity of the
triple product integral tensor for the triangle (analogous to the tensor computed for one-
dimensional Legendre polynomials) and Figure 6.2

.

for the sum of the frontal slices of those
tensors emulating a variable coefficient problem. The entries in the tensor were computed
via Gauss-Legendre quadrature and set to zero whenever a resulting integral’s absolute value
was less than an absolute tolerance of 10−12.

The difficulty in evaluating the triple products becomes even more pronounced when
considering the orthogonal polynomials on the d-dimensional simplex Sd [39

.

]. There, using
2My own direct implementation of the formulae contained in that reference is not numerically stable.

135

0 50 100 150 200

0

50

100

150

200

Figure 6.2: Sum of the first six frontal slices from Figure 6.1

.

.

our notation, the polynomials are given by

pᾱ (z̄) = N (ᾱ, d)
d∏

j=1

(
2 − j −∑j

i=1 zj

3 − j −∑j−1
i=1 zj

)∑d

i=j+1 αi

p

(
2
∑d

i=j+1 αi+d−j,0
)

αj

(
2 zj + 1

3 − j −∑j−1
i=1 zj

− 1
)

(6.78)
where N is a normalization constant, ᾱ is a vector of indices indexing the multivariate
polynomials, and empty summations are taken to be zero. To recover the two-dimensional
case, substitute zj → xd+1−j and α1 → j, α2 → i. If we take d = 3 for example (see
[37

.

, 145

.

]), then we need to perform integrals of the form
ˆ 1

−1
pi (y1) pi′ (y1) pi′′ (y1) dy1, (6.79)

136

ˆ 1

−1
p

(2i+1,0)
j (y2) p(2i′+1,0)

j′ (y2) p(2i′′+1,0)
j′′ (y2) (1 − y2)i+i′+i′′+1 dy2, (6.80)

ˆ 1

−1
p

(2i+2j+2,0)
k (y3) p(2i′+2j′+2,0)

k′ (y3) p(2i′′+2j′′+2,0)
k′′ (y3) (1 − y3)j+k+j′+k′+j′′+k′′+2 dy3, (6.81)

in order to populate the triple product tensor. These integrals can be computed using Gauss-
Legendre quadrature, but this can compromise the efficiency of our method. In addition,
the integrals increase in number and difficulty for dimensions four and higher.

In contrast, the orthonormal polynomials on hypercubes are

pᾱ (x̄) =
d∏

j=1
pαj

(xj) , (6.82)

giving rise to triple product integrals
ˆ 1

−1
pi (xj) pi′ (xj) pi′′ (xj) dxj, j = 1, ..., d. (6.83)

Thus, computing the triple product integrals of orthonormal polynomials for a d-dimensional
hypercube only requires the computation of a single set of one-dimensional triple product
integrals due to the simple separable form of the orthonormal polynomials (they are the
tensor product of one-dimensional polynomials). This means that the triple product tensor
can be assembled using the entries of the one-dimensional triple product tensor T from
Section 4.3

.

. It is primarily for this simplicity that we choose to focus on the hypercube
for our extension of the finite element method described in Chapter 4

.

. In the upcoming
chapters, we use the two-dimensional case (d = 2) as an example to show how this extension
can be made possible.

137

Chapter 7

A Single Square Element

Chapter 6

.

avoided specifying the dimension d of the problem, the geometry of the domain Ω,
the types of basis functions N̄ (x̄) used to approximate φ, and the types of weight functions
N̄B (x̄) used to impose boundary constraints. This chapter specializes to the d = 2 domain
Ω = (−1, 1)2. In later chapters, this domain will be used as a canonical domain for special
curvilinear domains, as well as for subdomains in a finite element method. This chapter
focuses on the two-dimensional case to highlight key differences between solving d = 1 and
d > 1 PDEs. Because of the separability of orthonormal polynomials on the hypercube, the
techniques outlined in this chapter apply with only minor modification in higher dimensions
(one can think of the (d+ 1)-dimensional hypercube as the tensor product of a d-dimensional
hypercube and a 1-dimensional hypercube). The two-dimensional case is chosen to concretely
describe all involved computations in the simplest way possible for d > 1 applications.

7.1 Problem Specification and Basis Functions

In this chapter, we look to solve

− ∇ · (α∇φ) + βφ = f, x̄ ∈ (−1, 1)2 , (7.1)

subject to boundary conditions

φ = p on ΓD, (7.2)

n̄T (α∇φ) + γφ = q on ΓR, (7.3)

where n̄ is the outward pointing unit normal to the square. For now, we reserve choosing
which portions of the boundary ∂Ω belong to the Dirichlet boundary component ΓD and to

138

the Robin boundary component ΓR. Note that ∂Ω can be described as the disjoint union of
boundary components Γ1, Γ2, Γ3, and Γ4, which are the sets

Γ1 =
{
x̄ ∈ R2 : x1 = −1, x2 ∈ (−1, 1)

}
, (7.4)

Γ2 =
{
x̄ ∈ R2 : x1 = +1, x2 ∈ (−1, 1)

}
, (7.5)

Γ3 =
{
x̄ ∈ R2 : x1 ∈ (−1, 1) , x2 = −1

}
, (7.6)

Γ4 =
{
x̄ ∈ R2 : x1 ∈ (−1, 1) , x2 = +1

}
. (7.7)

Boundary component Γ1 corresponds to the left edge, Γ2 to the right edge, Γ3 to the bottom
edge, and Γ4 to the top edge of Ω. We assume that ΓD and ΓR satisfy ∂Ω = ΓD ∪ ΓR,
ΓD ∩ ΓR = ∅, and that they are each comprised of a union of a subset of Γ1, Γ2, Γ3, and Γ4.
This last assumption eliminates the possibility of a single edge sharing more than one type
of boundary condition.

Applying either the Ritz or the Galerkin approach, we expand the unknown function φ

using a tensor product of integrated Legendre polynomials. This means that the vector of
basis functions can be written as

N̄ (x̄) = N̄ (x2) ⊗ N̄ (x1) (7.8)

where N̄ (xj) = S̃p̄ (xj) for j = 1, 2. Note that we could have just as easily interchanged the
order of N̄ (x1) and N̄ (x2) in the tensor product; the choice is arbitrary although we will see
later that it is not without consequence. As in Chapter 5

.

, in the coming sections we make
extensive use of the three properties of the Kronecker product given by (5.11

.

), (5.12

.

), and
(5.13

.

). Due to (5.12

.

), we can write the basis functions as

N̄ (x̄) = S̃p̄ (x2) ⊗ S̃p̄ (x1) (7.9)

=
(
S̃ ⊗ S̃

) (
p̄ (x2) ⊗ p̄ (x1)

)
  

p̄(x̄)

. (7.10)

Note that in the rest of this chapter, matrices or vectors that appear on the left of the
Kronecker product symbol ⊗ are associated with operations regarding the variable x2 whereas
matrices and vectors on the right are related to operations regarding the variable x1. If we
allow for the possibility of different polynomial degrees Lxj

in the xj directions then matrices
have dimensions (Lxj

+ 1) × (Lxj
+ 1) and vectors have dimensions (Lxj

+ 1) × 1. That is,
even though we do not often specify the size of matrices, matrices appearing to the left of
the ⊗ symbol may be a different size than those on the right. In all cases, the represented

139

matrix products are always conforming and well-defined.
Using such a basis, we can write φ as a linear combination of basis functions:

φ (x̄) = φ̄T
(
N̄ (x2) ⊗ N̄ (x1)

)
(7.11)

=
(
N̄ (x2)T ⊗ N̄ (x1)T

)
φ̄. (7.12)

One useful representation of φ arises if we define the matrix φ ∈ C(Lx1 +1)×(Lx2 +1) (in higher
dimensions this matrix is actually a d-dimensional tensor) such that vec(φ) = φ̄. Then, by
property (5.13

.

),

φ (x̄) =
(
N̄ (x2)T ⊗ N̄ (x1)T

)
vec(φ) (7.13)

= vec
(
N̄ (x1)T φN̄ (x2)

)
(7.14)

= N̄ (x1)T φN̄ (x2) (7.15)

where we can remove the vectorization operator in the final equation since the result is a
scalar. This representation is particularly useful once we have solved for φ̄ (and by proxy
φ) when evaluating the solution at arbitrary points x̄ (we simply evaluate this “quadratic
form”). In addition, examining the decay of entries in the matrix φ can reveal how accurate
a given solution is (doing so is also possible with the vector φ̄ but requires careful indexing).

7.2 Legendre Expansions for Spatially Varying Coeffi-
cients

In addition to these expressions for the potential φ, we also need to represent the functions
α, β, f , γ, q, and p in terms of polynomials. This allows us to explicitly calculate the
matrices A and C, as well as the vectors b̄ and d̄ for the saddle point system. In Chapter
5

.

, we accomplished this by computing a Legendre expansion for each given function. For
functions γ, p, and q which need only be defined on boundaries, we continue to use such
expansions. That is, we construct expansions of type

γ (xj) =
Kγ∑
k=0

γkpk (xj) , (7.16)

q (xj) =
Kq∑
k=0

qkpk (xj) , (7.17)

140

for a given edge requiring a Robin boundary condition, or

p (xj) =
Kp∑
k=0

p̂kpk (xj) (7.18)

for a given edge requiring a Dirichlet boundary condition. We compute the expansion co-
efficients using the methods of Section 4.3

.

and Appendix A

.

. Note that since there are four
boundary edges, we need up to four sets of coefficients (the particular sets depend on the
problem specification).

This leaves the task of representing α, β, and f , which are all functions of two variables,
rather than a single variable. For the square domain, a natural approach towards representing
these functions (which extends the one-dimensional approach) is to seek expansions of the
form

f (x̄) =
∑
i,j

f̂ijpi (x1) pj (x2) (7.19)

= p̄ (x1)T F̂ p̄ (x2) . (7.20)

In this thesis, we go one step further and require that F̂ be expressed in the form

F̂ = UΣV T (7.21)

where Σ ∈ CK×K and is a diagonal matrix, U ∈ C(Kx1 +1)×K , and V ∈ C(Kx2 +1)×K . While
this looks like a rank K singular value decomposition of F̂ , we do not require the columns
of U and V to be orthonormal, nor do we require the entries on the diagonal of Σ to decay.
Why the requirement (7.21

.

) is necessary will only become clear once we discuss computing
the entries of A or b̄ involving terms associated with ∇φTα∇φ, φβφ, or φf . For now, this
requirement allows us to write

F̂ =
[
ū1 ū2 · · · ūK

]
  

U

⎡⎢⎢⎢⎢⎢⎢⎣
σ1

σ2
. . .

σK

⎤⎥⎥⎥⎥⎥⎥⎦
  

Σ

⎡⎢⎢⎢⎢⎢⎢⎣
v̄T

1

v̄T
2
...

v̄T
K

⎤⎥⎥⎥⎥⎥⎥⎦
  

V T

(7.22)

=
K∑

k=1
σkūkv̄

T
k . (7.23)

141

Combining (7.20

.

) and (7.23

.

) yields

f (x̄) = p̄ (x1)T

[
K∑

k=1
σkūkv̄

T
k

]
p̄ (x2) (7.24)

=
K∑

k=1
σk p̄ (x1)T ūk  

fk,x1 (x1)

v̄T
k p̄ (x2)  

fk,x2 (x2)

. (7.25)

In words, we have written the two-dimensional function f (x̄) as the sum of K separable
functions fk,x1 (x1) fk,x2 (x2) and refer to such a function as a rank K function. Occasionally,
it is useful to write

vec [f (x̄)] = vec
[
p̄ (x1)T F̂ p̄ (x2)

]
(7.26)

f (x̄) = vec
[
p̄ (x1)T

(
UΣV T

)
p̄ (x2)

]
(7.27)

=
(
p̄ (x2)T ⊗ p̄ (x1)T

)
vec

(
UΣV T

)
(7.28)

where we have used property (5.13

.

).
We use two distinct methods to compute the factors U , Σ, and V . The first approach,

which we call direct, is useful when Kx1 and Kx2 are small, or when K is known to be
comparable in size withKx1andKx2 . The idea is to first compute F̂ via numerical integration,
then to compute the factors U , Σ, and V via singular value decomposition of F̂ . To determine
the entries of F̂ , consider multiplying (7.19

.

) by pi′ (x1) pj′ (x2) and integrating over Ω. The
result is
ˆ 1

−1

ˆ 1

−1
pi′ (x1) pj′ (x2) f (x̄) dx1dx2 =

∑
i,j

f̂ij

ˆ 1

−1

ˆ 1

−1
pi (x1) pi′ (x1) pj (x2) pj′ (x2) dx1dx2  

δii′ δjj′

(7.29)ˆ 1

−1

ˆ 1

−1
pi′ (x1) pj′ (x2) f (x̄) dx1dx2 = f̂i′j′ , (7.30)

thus the entries of F̂ can be calculated by evaluating two-dimensional integrals. Since f is an
arbitrary function, we apply numerical integration. We use two one-dimensional quadrature
rules of the form ˆ 1

−1
g (z) dz ≈

Km∑
m=0

wmg (zm) = w̄T ḡ (7.31)

where w̄ is the vector of known quadrature weights and ḡ is the vector whose entries are g

142

evaluated at the quadrature nodes zm. Using such a rule for each integral in (7.30

.

) yields

f̂ij =
ˆ 1

−1

ˆ 1

−1
pi (x1) pj (x2) f (x̄) dx1dx2 (7.32)

=
ˆ 1

−1
pj (x2)

Kx1∑
m=0

wmpi (x1,m) f (x1,m, x2) dx2 (7.33)

=
Kx2∑
n=0

wnpj (x2,n)
Kx1∑
m=0

wmpi (x1,m) f (x1,m, x2,n) (7.34)

=
Kx1∑
m=0

Kx2∑
n=0

pi (x1,m)wmf (x1,m, x2,n)wnpj (x2,n) . (7.35)

We have arranged the final equation in this symmetric fashion to emphasize that there is
a vectorized form that allows us to compute all entries of F̂ simultaneously. After careful
consideration, one can check that

F̂ = P x1diag (w̄)Fdiag (w̄)P T
x2 (7.36)

where the entries of F are given by (F)mn = f (x1,m, x2,n), and

P xj
=
[
p̄ (xj,0) p̄ (xj,1) · · · p̄(xj,Kxj

)
]
, j = 1, 2. (7.37)

Alternatively, since diag (w̄)Fdiag (w̄) = F ◦ w̄w̄T (where ◦ denotes the Hadamard product),
we can compute

F̂ = P x1(F ◦ w̄w̄T)P T
x2 (7.38)

instead. We can choose either the Gauss-Legendre or Clenshaw-Curtis quadrature nodes and
weights to perform the numerical integration. It is difficult to know how many quadrature
points Kxj

+ 1 to select a priori. A posteriori, we can verify whether the coefficients in
F̂ have decayed sufficiently. To do so, we verify whether the last two rows and last two
columns of F̂ have decayed below a user specified tolerance (say 100ϵmachine). In practice, if
the coefficients have not decayed sufficiently, we can double Kxj

and compute F̂ again1

.

.
Alternatively, we can use a method which is more efficient when K is small when com-

1If one is seriously concerned about efficiency, the Clenshaw-Curtis quadrature nodes with Kxj
and 2Kxj

are nested. Thus if the error tolerance is not met using a matrix P xj
with Kxj

+ 1 columns, one can double
the number of quadrature points and reuse the Kxj

+1 columns of P xj
to construct a new P xj

with 2Kxj
+1

columns.

143

pared to Kx1 and Kx2 based closely on the method described in [50

.

]. The method constructs

f (x̄) =
K∑

k=1
σkfk,x1 (x1) fk,x2 (x2) (7.39)

where

fk,x1 (x1) = p̄ (x1)T ūk, (7.40)

fk,x2 (x2) = v̄T
k p̄ (x2) , (7.41)

are each one-dimensional Legendre expansions. Our approach differs from the one in [50

.

]
only in that we require Legendre expansions rather than Chebyshev expansions to facilitate
integration later. To make conversion between samples of the functions fk,xj

(xj) and their
coefficients in a basis of orthogonal polynomials, the authors of [50

.

] use Chebyshev poly-
nomials T̄ (xj) in place of orthonormal Legendre polynomials p̄ (xj). In addition, to exploit
matrix computations, the authors of [50

.

] require that all vectors ūk be of the same length so
as to form a matrix U (and similarly for vectors v̄k and matrix V). We do the same. The
method requires O (K2 (Kx1 +Kx2) +K3) operations for a fixed user specified tolerance (the
more stringent the tolerance, the larger the constant hidden by the O notation). Thus, if
the function can be represented by a small number of separable functions, the method will
be much faster asymptotically as the degrees Kx1 and Kx2 grow, than the direct method
which requires computing the SVD of a (Kx1 + 1) × (Kx2 + 1) matrix (which would require
O(Kx1Kx2 (Kx1 +Kx2) +K3

x2) operations [25

.

]).
While we leave most details of the implementation of the algorithm to [50

.

], we take this
opportunity to describe what we feel are its most crucial aspects. The algorithm operates
in two stages. The first stage is designed to determine the number of separable functions
required to represent f . In this stage, the function f(x̄) is sampled on a tensor product grid
of Chebyshev nodes

xi = − cos
(
π

2l+2 i
)

(7.42)

where i = 0, 1, 2..., 2l+2, so that there are (2l+2 +1)2 points in the grid. The additional factor
of 2 in the exponent is used to avoid undersampling the function. In practice, l is an integer
which we take to be between 6 and 8. We think of the function sampled on this grid as a
matrix F on which we perform Gaussian elimination with complete pivoting. Starting with

144

iteration k = 1 and F 0 = F , we find the pivot indices and value

(ik, jk) = arg max
i,j

|(F k)ij| , (7.43)

fk = (F k)ik,jk
, (7.44)

then we perform one step of Gaussian elimination

F k = F k−1 − 1
fk

f̄jk
f̄T

ik
(7.45)

where f̄jk
is the jkth column of F k and f̄T

ik
is the ikth row of F k. We repeat this process for

k ≤ 2l + 1 or until ∥F k∥F < ϵtol, that is, until the Frobenius norm of F k is less than a user
specified tolerance ϵtol. If we have not met the tolerance, we restart the process on a grid
that is twice as fine in both directions. We use k ≤ 2l + 1 so that in a worst case,

k = 2l + 1 (7.46)

log2 (k − 1) = l (7.47)

and the size of the sampled matrix F is

2l+2 + 1 = 2log2(k−1)+2 + 1 (7.48)

= 2log2(k−1)22 + 1 (7.49)

= 4 (k − 1) + 1 (7.50)

= O (k) . (7.51)

This means that we perform at most k steps of Gaussian elimination on a matrix with O (k)
rows and columns, yielding a total cost of O (k3) operations in the first stage. Let us call
this maximal k capital K, which will coincide with K as in (7.23

.

).
The second stage aims to accurately resolve the K separable functions using Chebyshev

expansions. In this second stage, the algorithm operates on a K-skeleton of the matrix F

(that is, we only store and manipulate the K rows and K columns that were used as pivot
rows and columns during Gaussian elimination). We create the K-skeleton with double the
number of points in both the x1 and x2 directions and perform the K steps of Gaussian
elimination on the K-skeleton using the same pivots as determined in the first phase of the
algorithm. This is possible since the Chebyshev nodes are nested when we double their
number and so the pivot locations are still present in the finer sampling. Since the nodes
in each direction are the Chebyshev nodes, we can use an FFT to compute Chebyshev

145

coefficients for each row and column (see Section A.1

.

of Appendix A

.

for details on how this
is performed). We then check if the final two entries in all of the row expansions have fallen
below the user specified tolerance. If yes, we conclude that the x1-dependent components of
the separable functions are sufficiently well resolved to represent f to user satisfaction and
we stop refining the grid in the x1 direction. We perform a similar check for the columns. If
either the rows or the columns are not sufficiently refined, we double the number of Chebyshev
points in the appropriate direction and repeat the process. If degree Kx1 polynomials are
needed to resolve the rows and degree Kx2 polynomials are needed to resolve the columns,
then the function f has to be sampled at a maximum of K (Kx1 +Kx2) locations. Performing
K steps of Gaussian elimination on the K-skeleton requires O (K2 (Kx1 +Kx2)) operations.

This two stage process creates a representation of f of the form

f (x̄) =
K∑

k=1

1
fk

(
T̄ (x1)T ũk

) (
ṽT

k T̄ (x2)
)

(7.52)

where T̄ (xj) is a vector of Chebyshev polynomials. Finally, we apply the method described
in Section 4.2

.

and Appendix A

.

to convert the Chebyshev coefficients ũk and ṽk to orthonor-
mal Legendre coefficients ūk and v̄k. Since the Chebyshev to Legendre transform for a degree
n expansion can be performed in O(n (log2 n)2) operations, this conversion can be performed
in O

(
K(Kx1 (log2 Kx1)2 +Kx2 (log2 Kx2)2)

)
operations. This does not compromise the effi-

ciency of the method. As a result, after relabeling, we obtain the expansion

f (x̄) =
K∑

k=1
σk

(
p̄ (x1)T ūk

) (
v̄T

k p̄ (x2)
)

(7.53)

where we have set σk = 1/fk.

7.3 Assembling the Operator Matrix

We now have the requisite Legendre expansions to address assembly of the matrices and
vectors A, C, and b̄, d̄. We do so by going term by term through (6.46

.

) and (6.52

.

), starting
with the operator matrix A. Let us begin with

ˆ
Ω
J N̄ (x̄)αJ N̄ (x̄)T dΩ. (7.54)

146

This is the most complicated term in A but can be decomposed into a set of simpler terms
if we carry out the matrix product. To see why, it is easier to take a step back and consider

ˆ
Ω

∇ψTα∇φ dΩ (7.55)

which gave rise to (7.54

.

). Expanding the integrand gives

∇ψTα∇φ =
[
∂ψ

∂x1

∂ψ

∂x2

] ⎡⎣ α11 (x̄) α12 (x̄)
α21 (x̄) α22 (x̄)

⎤⎦
⎡⎢⎢⎣
∂φ

∂x1
∂φ

∂x2

⎤⎥⎥⎦ (7.56)

=
2∑

i=1

2∑
j=1

∂ψ

∂xi

αij (x̄) ∂φ
∂xj

(7.57)

or, written explicitly,

∇ψTα∇φ = ∂ψ

∂x1
α11 (x̄) ∂φ

∂x1
+ ∂ψ

∂x1
α12 (x̄) ∂φ

∂x2
+ ∂ψ

∂x2
α21 (x̄) ∂φ

∂x1
+ ∂ψ

∂x2
α22 (x̄) ∂φ

∂x2
. (7.58)

This form demonstrates how to compute the integral (7.54

.

), which we write as

ˆ
Ω
J N̄ (x̄)αJ N̄ (x̄)T dΩ =

ˆ
Ω

[
∂

∂x1
N̄ (x̄)

]
α11 (x̄)

[
∂

∂x1
N̄ (x̄)

]T

dΩ

+ 2 sym
⎛⎝ˆ

Ω

[
∂

∂x1
N̄ (x̄)

]
α12 (x̄)

[
∂

∂x2
N̄ (x̄)

]T

dΩ
⎞⎠

+
ˆ

Ω

[
∂

∂x2
N̄ (x̄)

]
α22 (x̄)

[
∂

∂x2
N̄ (x̄)

]T

dΩ. (7.59)

Note that in this last expression, we have made use of the fact that α = αT so that α12 = α21

and that for any matrix A,
sym (A) = 1

2(A+ AT). (7.60)

As in the one-dimensional case, we aim to evaluate these integrals using triple products
of Legendre polynomials. To do that, we need to express the derivatives of basis functions
in terms of Legendre polynomials (this is similar to the approach outlined in Chapter 5

.

). As
an example, consider taking the partial derivative of the basis functions with respect to x1.
Then

147

∂

∂x1
N̄ (x̄) = ∂

∂x1

[(
S̃ ⊗ S̃

) (
p̄ (x2) ⊗ p̄ (x1)

)]
(7.61)

=
(
S̃ ⊗ S̃

)(
p̄ (x2) ⊗ ∂

∂x1
p̄ (x1)

)
. (7.62)

Using the one-dimensional result

∂

∂xj

p̄ (xj) = D̃p̄ (xj) , j = 1, 2, (7.63)

and S̃D̃ = SDL, we obtain

∂

∂x1
N̄ (x̄) =

(
S̃ ⊗ S̃

) (
p̄ (x2) ⊗ D̃p̄ (x1)

)
(7.64)

=
(
S̃ ⊗ S̃

) (
I ⊗ D̃

) (
p̄ (x2) ⊗ p̄ (x1)

)
(7.65)

=
(
S̃ ⊗ S̃D̃

) (
p̄ (x2) ⊗ p̄ (x1)

)
(7.66)

=
(
S̃ ⊗ SDL

) (
p̄ (x2) ⊗ p̄ (x1)

)
(7.67)

where we have used property (5.12

.

). A similar procedure yields

∂

∂x2
N̄ (x̄) =

(
SDL ⊗ S̃

) (
p̄ (x2) ⊗ p̄ (x1)

)
. (7.68)

Since
N̄ (x̄) =

(
S̃ ⊗ S̃

) (
p̄ (x2) ⊗ p̄ (x1)

)
, (7.69)

we note that all three of N̄ (x̄), ∂
∂x1
N̄ (x̄), and ∂

∂x2
N̄ (x̄) have the same generic form

(
F ⊗ E

) (
p̄ (x2) ⊗ p̄ (x1)

)
(7.70)

where E and F can be either S̃ or SDL. In this generic form, all four integrals

ˆ
Ω

[
∂

∂x1
N̄ (x̄)

]
α11 (x̄)

[
∂

∂x1
N̄ (x̄)

]T

dΩ, (7.71)
ˆ

Ω

[
∂

∂x1
N̄ (x̄)

]
α12 (x̄)

[
∂

∂x2
N̄ (x̄)

]T

dΩ, (7.72)
ˆ

Ω

[
∂

∂x2
N̄ (x̄)

]
α22 (x̄)

[
∂

∂x2
N̄ (x̄)

]T

dΩ, (7.73)

148

and ˆ
Ω
N̄ (x̄) β (x̄) N̄ (x̄)T dΩ, (7.74)

have the form
ˆ

Ω

(
F ⊗ E

) (
p̄ (x2) ⊗ p̄ (x1)

)
s (x̄)

[(
H ⊗G

) (
p̄ (x2) ⊗ p̄ (x1)

)]T
dΩ (7.75)

where s is some specified scalar function and E, F , G, and H are some known matrices.
To evaluate this generic integral, we find the separable Legendre representation of s given

by

s (x̄) =
K∑

k=1
σk

(
p̄ (x1)T ūk

) (
v̄T

k p̄ (x2)
)
. (7.76)

Since s is a scalar function, its vectorization is simply itself. In addition, using the linearity
of the vectorization operator yields

vec [s (x̄)] = vec
[

K∑
k=1

σk

(
p̄ (x1)T ūk

) (
v̄T

k p̄ (x2)
)]

(7.77)

s (x̄) =
K∑

k=1
σkvec

[(
p̄ (x1)T ūk

) (
v̄T

k p̄ (x2)
)]
. (7.78)

If we treat the argument of each vectorization operation as the product of three matrices
p̄ (x1)T , ūkv̄

T
k , and p̄ (x2), we obtain

s (x̄) =
K∑

k=1
σkvec

[
p̄ (x1)T (ūkv̄

T
k)p̄ (x2)

]
(7.79)

=
K∑

k=1
σk

(
p̄ (x2)T ⊗ p̄ (x1)T

)
vec(ūkv̄

T
k) (7.80)

=
K∑

k=1
σk

(
p̄ (x2)T ⊗ p̄ (x1)T

) (
v̄k ⊗ ūk

)
. (7.81)

Thus, due to the separable representation of s, we can write s as the sum of K terms each
in a Kronecker product form. Substituting this form into (7.75

.

) gives

ˆ
Ω

(
F ⊗ E

) (
p̄ (x2) ⊗ p̄ (x1)

) [K∑
k=1

σk

(
p̄ (x2)T ⊗ p̄ (x1)T

) (
v̄k ⊗ ūk

)]

·
(
p̄ (x2)T ⊗ p̄ (x1)T

) (
HT ⊗GT

)
dΩ. (7.82)

149

Taking the sum outside the integral yields

K∑
k=1

σk

ˆ
Ω

(
F ⊗ E

) (
p̄ (x2) ⊗ p̄ (x1)

) (
p̄ (x2)T ⊗ p̄ (x1)T

) (
v̄k ⊗ ūk

)
·
(
p̄ (x2)T ⊗ p̄ (x1)T

) (
HT ⊗GT

)
dΩ (7.83)

which, using (5.12

.

), gives

K∑
k=1

σk

ˆ
Ω

(
F p̄ (x2)

[
p̄ (x2)T v̄k

]
p̄ (x2)T HT ⊗ Ep̄ (x1)

[
p̄ (x1)T ūk

]
p̄ (x1)T GT

)
dΩ. (7.84)

Note that the terms in square brackets can be written in summation form as

p̄ (x2)T v̄k =
Kx2∑
i=0

vikpi (x2) , (7.85)

p̄ (x1)T ūk =
Kx1∑
i=0

uikpi (x1) , (7.86)

so that
ˆ 1

−1
p̄ (x2)

[
p̄ (x2)T v̄k

]
p̄ (x2)T dx2 =

ˆ 1

−1
p̄ (x2)

⎡⎣Kx2∑
i=0

vikpi (x2)
⎤⎦ p̄ (x2)T dx2 (7.87)

=
Kx2∑
i=0

vik

ˆ 1

−1
pi (x2) p̄ (x2) p̄ (x2)T dx2 (7.88)

=
Kx2∑
i=0

vikT i (7.89)

and similarly ˆ 1

−1
p̄ (x1)

[
p̄ (x1)T ūk

]
p̄ (x1)T dx1 =

Kx1∑
i=0

uikT i (7.90)

where T i is the ith frontal slice of the tensor T containing integrals of triple products of
Legendre polynomials (recall Section 4.3

.

). As a result,

ˆ
Ω

(
F ⊗ E

) (
p̄ (x2) ⊗ p̄ (x1)

)
s (x̄)

[(
H ⊗G

) (
p̄ (x2) ⊗ p̄ (x1)

)]T
dΩ =

K∑
k=1

σk

⎛⎝F
⎡⎣Kx2∑

i=0
vikT i

⎤⎦HT ⊗ E

⎡⎣Kx1∑
i=0

uikT i

⎤⎦GT

⎞⎠ (7.91)

and we can write the explicit entries of each of (7.71

.

)-(7.74

.

) once we have computed the

150

separable forms of α11, α12, α22, and β, respectively2

.

. The relevant matrices are

ˆ
Ω

[
∂

∂x1
N̄ (x̄)

]
α11 (x̄)

[
∂

∂x1
N̄ (x̄)

]T

dΩ =

K(α11)∑
k=1

σ
(α11)
k

⎛⎜⎝S̃
⎡⎢⎣K

(α11)
x2∑
i=0

v
(α11)
ik T i

⎤⎥⎦ S̃T ⊗ SDL

⎡⎢⎣K
(α11)
x1∑
i=0

u
(α11)
ik T i

⎤⎥⎦ST
DL

⎞⎟⎠ , (7.92)

ˆ
Ω

[
∂

∂x1
N̄ (x̄)

]
α12 (x̄)

[
∂

∂x2
N̄ (x̄)

]T

dΩ =

K(α12)∑
k=1

σ
(α12)
k

⎛⎜⎝S̃
⎡⎢⎣K

(α12)
x2∑
i=0

v
(α12)
ik T i

⎤⎥⎦ST
DL ⊗ SDL

⎡⎢⎣K
(α12)
x1∑
i=0

u
(α12)
ik T i

⎤⎥⎦ S̃T

⎞⎟⎠ , (7.93)

ˆ
Ω

[
∂

∂x2
N̄ (x̄)

]
α22 (x̄)

[
∂

∂x2
N̄ (x̄)

]T

dΩ =

K(α22)∑
k=1

σ
(α22)
k

⎛⎜⎝SDL

⎡⎢⎣K
(α22)
x2∑
i=0

v
(α22)
ik T i

⎤⎥⎦ST
DL ⊗ S̃

⎡⎢⎣K
(α22)
x1∑
i=0

u
(α22)
ik T i

⎤⎥⎦ S̃T

⎞⎟⎠ , (7.94)

and

ˆ
Ω
N̄ (x̄) β (x̄) N̄ (x̄)T dΩ =

K(β)∑
k=1

σ
(β)
k

⎛⎜⎝S̃
⎡⎢⎣K

(β)
x2∑

i=0
v

(β)
ik T i

⎤⎥⎦ S̃T ⊗ S̃

⎡⎢⎣K
(β)
x1∑

i=0
u

(β)
ik T i

⎤⎥⎦ S̃T

⎞⎟⎠ . (7.95)

Before moving on, we comment on the sparsity patterns of these matrices. Notice that
in each Kronecker product term, we have one of four types of expressions, two of which have
appeared in Section 4.3

.

. In particular, we have already seen that matrices of the form

SDL

[
Kα∑
i=0

αiT i

]
ST

DL, S̃

⎡⎣Kβ∑
i=0

βiT i

⎤⎦ S̃T , (7.96)

have bandwidths Kα and Kβ + 2 respectively. Terms of the form

S̃

⎡⎣Kγ∑
i=0

γiT i

⎤⎦ST
DL, SDL

⎡⎣Kδ∑
i=0

δiT i

⎤⎦ S̃T , (7.97)

2If we allow each vector ūk and v̄k to be of different lengths, then we can avoid adding unnecessary slices
of the tensor. In practice, I do not do this, judging the simplicity of representation to outweigh any small
computational gains.

151

have bandwidths Kγ +1 and Kδ +1 respectively. To understand how these sparsity patterns
affect the Kronecker product, let us refer to the bandwidth in the x2 related matrices (which
appear first in the Kronecker product) as BWx2 and the bandwidth of x1 related matrices as
BWx1 . By definition of the Kronecker product, a matrix of size (Lx1 + 1)2 × (Lx2 + 1)2 with
bandwidth BWtotal = (Lx1 + 1) BWx2 + BWx1 results when taking the Kronecker product of
a matrix of size (Lx2 + 1) × (Lx2 + 1) with bandwidth BWx2 , together with a matrix of size
(Lx1 + 1) × (Lx1 + 1) with bandwidth BWx1 . This is because the corresponding Kronecker
product possesses Lx2 + 1 block rows and columns, with a block bandwidth of BWx2 . Each
nonzero block is populated by a (Lx1 + 1) × (Lx1 + 1) sized matrix of bandwidth BWx1 .
Combining these two observations yields the bandwidth of the whole matrix. For the four
matrices (7.71

.

)-(7.74

.

), the bandwidths are (Lx1 + 1) (K(α11)
x2 +2)+K(α11)

x1 , (Lx1 + 1) (K(α12)
x2 +

1)+K(α12)
x1 +1, (Lx1 + 1)K(α22)

x2 +K(α22)
x1 +2, and (Lx1 + 1) (K(β)

x2 +2)+K(β)
x1 +2, respectively.

Since the operator matrix A is a sum of banded matrices, some of which possess these
four specified bandwidths, the total operator matrix is itself a banded matrix with band-
width given by the maximal bandwidth of these four matrices (ignoring Robin boundary
conditions). Of course, comparing these bandwidths is only possible once the associated
Legendre expansions for a given problem are computed. However, assuming a problem with
constant α11, α12, α22, and β, they reduce to 2 (Lx1 + 1), Lx1 + 2, 2, and 2 (Lx1 + 1) + 2,
with the term associated with β dominating (as it did in the one-dimensional case).

Notice that the convention of using basis functions N̄ (x̄) = N̄ (x2) ⊗ N̄ (x1) rather
than N̄ (x̄) = N̄ (x1) ⊗ N̄ (x2) plays a role in the sparsity pattern of these matrices. If we
switch the order of basis functions, we modify the bandwidth of the resulting Kronecker
product matrices, yielding an alternative bandwidth BWalt = (Lx2 + 1) BWx1 +BWx2 which
may be smaller than BWtotal for certain spatially varying coefficients and certain choices of
polynomial degree. Finally, we note that when the Legendre expansions require high degree
polynomials to represent α11, α12, α22, or β, the bandwidths of these matrices grow, possibly
resulting in full matrices in a worst case scenario.

To complete the operator matrix A, we also need to consider any contributions from
Robin boundary conditions. Thus we must take into account terms of the form

ˆ
ΓR

N̄ (x̄) γN̄ (x̄)T dΩ (7.98)

where ΓR is a subset of the four edges Γ1, Γ2, Γ3, or Γ4 of the square domain. Since we
have not specified any edges in particular, and since we ultimately would like to produce a
method capable of handling any combination of these edges, we show the form of this matrix
assuming ΓR = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. Since this union is disjoint (there is no overlap between

152

edges), the integral becomes
ˆ

Γ1

N̄ (x̄) γN̄ (x̄)T dΩ+
ˆ

Γ2

N̄ (x̄) γN̄ (x̄)T dΩ+
ˆ

Γ3

N̄ (x̄) γN̄ (x̄)T dΩ+
ˆ

Γ4

N̄ (x̄) γN̄ (x̄)T dΩ.

(7.99)
It is convenient to treat the first and second integrals simultaneously and the third and fourth
in a similar fashion. To see why, note that by definition of Γ1 and Γ2, x1 = ∓1, respectively,
and likewise, for Γ3 and Γ4, x2 = ∓1. Rather than write ∓1, we use (−1)i with i = 1, 2, 3, 4,
instead.

Evaluating the basis functions along edges Γ1 and Γ2 gives

N̄
(
(−1)i, x2

)
= N̄ (x2) ⊗ N̄

(
(−1)i

)
(7.100)

= S̃p̄ (x2) ⊗ 1√
2
(
ē1 + (−1)iē2

)
. (7.101)

If we compute one-dimensional Legendre expansions of γ along both edges, then for i = 1, 2,
we obtain

γ
(
(−1)i , x2

)
=

K
(i)
γ∑

k=0
γ

(i)
k pk (x2) (7.102)

where the required degree K(i)
γ and the coefficients γ(i)

k may differ on either edge. For i = 1, 2,
we get

ˆ
Γi

N̄ (x̄) γN̄ (x̄)T dΩ =
ˆ 1

−1

(
S̃p̄ (x2) ⊗ 1√

2
(
ē1 + (−1)i ē2

))⎡⎢⎣K
(i)
γ∑

k=0
γ

(i)
k pk (x2)

⎤⎥⎦
·
(
S̃p̄ (x2) ⊗ 1√

2
(
ē1 + (−1)i ē2

))T

dx2 (7.103)

which, when applying the transpose and multiplying the scalar expression in square brackets
into the rightmost term, gives

ˆ
Γi

N̄ (x̄) γN̄ (x̄)T dΩ =
ˆ 1

−1

(
S̃p̄ (x2) ⊗ 1√

2
(
ē1 + (−1)i ē2

))

·

⎛⎜⎝
⎡⎢⎣K

(i)
γ∑

k=0
γ

(i)
k pk (x2)

⎤⎥⎦ p̄ (x2)T S̃T ⊗ 1√
2
(
ē1 + (−1)i ē2

)T

⎞⎟⎠ dx2. (7.104)

153

Finally, multiplying the Kronecker product matrices and computing the integral yields

ˆ
Γi

N̄ (x̄) γN̄ (x̄)T dΩ =

⎛⎜⎝S̃
⎡⎢⎣K

(i)
γ∑

k=0
γ

(i)
k T k

⎤⎥⎦ S̃T ⊗ 1
2
(
ē1 + (−1)i ē2

) (
ē1 + (−1)i ē2

)T

⎞⎟⎠ .
(7.105)

An analogous treatment for boundary components Γ3 and Γ4 requires Legendre expansions
for i = 3, 4, such that

γ
(
x1, (−1)i

)
=

K
(i)
γ∑

k=0
γ

(i)
k pk (x1) . (7.106)

The boundary integrals become

ˆ
Γi

N̄ (x̄) γN̄ (x̄)T dΩ =

⎛⎜⎝1
2
(
ē1 + (−1)i ē2

) (
ē1 + (−1)i ē2

)T
⊗ S̃

⎡⎢⎣K
(i)
γ∑

k=0
γ

(i)
k T k

⎤⎥⎦ S̃T

⎞⎟⎠ .
(7.107)

To summarize,

ˆ
Γ1

N̄ (x̄) γN̄ (x̄)T dΩ =

⎛⎜⎝S̃
⎡⎢⎣K

(1)
γ∑

k=0
γ

(1)
k T k

⎤⎥⎦ S̃T ⊗ 1
2 (ē1 − ē2) (ē1 − ē2)T

⎞⎟⎠ , (7.108)

ˆ
Γ2

N̄ (x̄) γN̄ (x̄)T dΩ =

⎛⎜⎝S̃
⎡⎢⎣K

(2)
γ∑

k=0
γ

(2)
k T k

⎤⎥⎦ S̃T ⊗ 1
2 (ē1 + ē2) (ē1 + ē2)T

⎞⎟⎠ , (7.109)

ˆ
Γ3

N̄ (x̄) γN̄ (x̄)T dΩ =

⎛⎜⎝1
2 (ē1 − ē2) (ē1 − ē2)T ⊗ S̃

⎡⎢⎣K
(3)
γ∑

k=0
γ

(3)
k T k

⎤⎥⎦ S̃T

⎞⎟⎠ , (7.110)

ˆ
Γ4

N̄ (x̄) γN̄ (x̄)T dΩ =

⎛⎜⎝1
2 (ē1 + ē2) (ē1 + ē2)T ⊗ S̃

⎡⎢⎣K
(4)
γ∑

k=0
γ

(4)
k T k

⎤⎥⎦ S̃T

⎞⎟⎠ . (7.111)

These Robin boundary matrices are considerably more sparse than those associated with
(7.71

.

)-(7.74

.

) due to terms of the form Ri = 1
2

(
ē1 + (−1)i ē2

) (
ē1 + (−1)i ē2

)T
. A similar

analysis for bandwidth applies, although it is less illuminating because matrices Ri only
possess four nonzeros, which are located in the first two rows and columns, thus they are
banded matrices, but not banded matrices whose bandwidths are full.

154

7.4 Computing the Forcing Term

Next, we focus on computing terms associated with the forcing vector b̄. The first type of
contribution comes from the the function f in the form of the integral

ˆ
Ω
N̄ (x̄) f dΩ. (7.112)

Again, we compute a separable two-dimensional Legendre expansion of f given by

f (x̄) =
K(f)∑
k=0

σ
(f)
k

(
p̄ (x2)T ⊗ p̄ (x1)T

) (
v̄

(f)
k ⊗ ū

(f)
k

)
(7.113)

=
(
p̄ (x2)T ⊗ p̄ (x1)T

)
vec

(
U (f)Σ(f)V

T
(f)

)
(7.114)

where the form of the second expression was derived earlier in (7.28

.

). In addition, we use
the definition of the basis functions

N̄ (x̄) =
(
S̃ ⊗ S̃

) (
p̄ (x2) ⊗ p̄ (x1)

)
(7.115)

to find that
ˆ

Ω
N̄ (x̄) f dΩ =

ˆ
Ω

(
S̃ ⊗ S̃

) (
p̄ (x2) ⊗ p̄ (x1)

) (
p̄ (x2)T ⊗ p̄ (x1)T

)
vec

(
U (f)Σ(f)V

T
(f)

)
dΩ

(7.116)

=
(
S̃ ⊗ S̃

)
vec

(
U (f)Σ(f)V

T
(f)

)
. (7.117)

Using the relationship (5.13

.

) between vectorization and the Kronecker product, we observe
that this last expression corresponds to

ˆ
Ω
N̄ (x̄) f dΩ = vec

(
S̃U (f)Σ(f)V

T
(f)S̃

T
)

(7.118)

= vec
[
(S̃U (f))Σ(f)(S̃V (f))T

]
. (7.119)

These expressions for the forcing vector are only correct when the expansion for f shares
the same degrees Kx1 and Kx2 as the basis functions used to represent φ (Lx1 and Lx2). If
Kx1 ̸= Lx1 or Kx2 ̸= Lx2 , we can pad the matrices U (f) and V (f) with zero rows or remove
rows to match the degrees (always padding or removing at the last rows of either matrix).
This padding or removal must be performed to ensure that matrix products conform.

The second type of contribution to the forcing vector b̄ comes from Robin boundary

155

conditions. In particular, we must evaluate integrals of the form
ˆ

ΓR

N̄ (x̄) q dΩ. (7.120)

As in the operator case, recall (7.99

.

), we consider contributions to this integral from all edges
of the boundary of the square. Thus, we assume ΓR = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 so that
ˆ

ΓR

N̄ (x̄) q dΩ =
ˆ

Γ1

N̄ (x̄) q dΩ +
ˆ

Γ2

N̄ (x̄) q dΩ +
ˆ

Γ3

N̄ (x̄) q dΩ +
ˆ

Γ4

N̄ (x̄) q dΩ. (7.121)

Like the operator terms due to Robin boundary conditions, it is convenient to group these
integrals in pairs according to boundaries Γ1 and Γ2, as well as Γ3 and Γ4. We begin with
the first pair where x1 = (−1)i for i = 1, 2. Then

N̄
(
(−1)i , x2

)
= N̄ (x2) ⊗ N̄

(
(−1)i

)
(7.122)

= S̃p̄ (x2) ⊗ 1√
2
(
ē1 + (−1)i ē2

)
. (7.123)

If we compute one-dimensional Legendre expansions of q along both edges, then for i = 1, 2,
we obtain

q
(
(−1)i , x2

)
= p̄ (x2)T q̄(i) (7.124)

where the q̄(i) are vectors of Legendre coefficients. We assume that the degree in each
expansion agrees with the degree Kx2 of the basis functions N̄ (x̄). If that is not the case, we
pad or truncate the vectors q̄(i) so that all future matrix-vector manipulations are conforming.
For i = 1, 2, we have

ˆ
Γi

N̄ (x̄) q dΩ =
ˆ 1

−1

(
S̃p̄ (x2) ⊗ 1√

2
(
ē1 + (−1)i ē2

)) [
p̄ (x2)T q̄(i)

]
dx2. (7.125)

Since the expansion in square brackets is a scalar, we can multiply it into the Kronecker
product to obtain

ˆ
Γi

N̄ (x̄) q dΩ =
ˆ 1

−1

(
S̃p̄ (x2) p̄ (x2)T q̄(i) ⊗ 1√

2
(
ē1 + (−1)i ē2

))
dx2 (7.126)

=
(
S̃q̄(i) ⊗ 1√

2
(
ē1 + (−1)i ē2

))
(7.127)

where we have made use of the fact that the integral of the outer product of orthonormal
Legendre polynomials yields the identity matrix.

156

Similarly, by using

N̄
(
x1, (−1)i

)
= N̄

(
(−1)i

)
⊗ N̄ (x1) (7.128)

= 1√
2
(
ē1 + (−1)i ē2

)
⊗ S̃p̄ (x1) (7.129)

with i = 3, 4, and expanding q on those edges as

q
(
x1, (−1)i

)
= p̄ (x1)T q̄(i), (7.130)

we obtain ˆ
Γi

N̄ (x̄) q dΩ =
(

1√
2
(
ē1 + (−1)i ē2

)
⊗ S̃q̄(i)

)
. (7.131)

To summarize, Robin boundary conditions give rise to forcing vectors
ˆ

Γ1

N̄ (x̄) q dΩ =
(
S̃q̄(1) ⊗ 1√

2
(ē1 − ē2)

)
, (7.132)

ˆ
Γ2

N̄ (x̄) q dΩ =
(
S̃q̄(2) ⊗ 1√

2
(ē1 + ē2)

)
, (7.133)

ˆ
Γ3

N̄ (x̄) q dΩ =
(

1√
2

(ē1 − ē2) ⊗ S̃q̄(3)

)
, (7.134)

ˆ
Γ4

N̄ (x̄) q dΩ =
(

1√
2

(ē1 + ē2) ⊗ S̃q̄(4)

)
. (7.135)

7.5 Enforcing Dirichlet Boundary Conditions

As described in Section 6.3

.

, Dirichlet boundary conditions give rise to auxiliary equations
ˆ

ΓD

N̄B (x̄) N̄ (x̄)T dΩ  
C

φ̄ =
ˆ

ΓD

N̄B (x̄) p dΩ  
d̄

. (7.136)

To be more precise, in this section, we show how to choose the weight functions N̄B (x̄)
along each edge so as to yield sparse constraint matrices. We enforce Dirichlet boundary
conditions in a weak sense by requiring the Legendre moments

ˆ
Γi

p̄ (x2)
[
φ
(
(−1)i , x2

)
− p (x2)

]
dx2 = 0, i = 1, 2, (7.137)

ˆ
Γi

p̄ (x1)
[
φ
(
x1, (−1)i

)
− p (x1)

]
dx1 = 0, i = 3, 4, (7.138)

157

to vanish along edges Γi. Of course, it is only necessary to impose such conditions on the
edges that belong to ΓD, although in this section we develop conditions for all four edges.

Let us begin with edges Γ1 and Γ2. To do this, we need expressions for φ
(
(−1)i , x2

)
and

p (x2). For φ we use

N̄
(
(−1)i , x2

)
= N̄ (x2) ⊗ N̄

(
(−1)i

)
(7.139)

= S̃p̄ (x2) ⊗ 1√
2
(
ē1 + (−1)i ē2

)
(7.140)

to describe its basis functions, but where we isolate the p̄ (x2) term. To accomplish this, we
use property (5.13

.

) of the vectorization operator to obtain

N̄
(
(−1)i , x2

)
= vec

(
1√
2
(
ē1 + (−1)i ē2

) [
S̃p̄ (x2)

]T)
(7.141)

= vec
(

1√
2
(
ē1 + (−1)i ē2

) [
S̃p̄ (x2)

]T
I

)
(7.142)

=
(
I ⊗ 1√

2
(
ē1 + (−1)i ē2

))
vec

([
S̃p̄ (x2)

]T)
(7.143)

=
(
I ⊗ 1√

2
(
ē1 + (−1)i ē2

))
S̃p̄ (x2) . (7.144)

We also evaluate the function p (x2) along either edge using one-dimensional Legendre ex-
pansions

p (x2) = p̄ (x2)T p̄(i). (7.145)

Next, we compute the Legendre moment equations
ˆ

Γi

p̄ (x2)φ
(
(−1)i , x2

)
dx2 =

ˆ
Γi

p̄ (x2) p (x2) dx2 (7.146)
ˆ

Γi

p̄ (x2) N̄
(
(−1)i , x2

)T
φ̄ dx2 =

ˆ
Γi

p̄ (x2) p̄ (x2)T p̄(i)dx2 (7.147)
ˆ

Γi

p̄ (x2) p̄ (x2)T S̃T

(
I ⊗ 1√

2
(
ē1 + (−1)i ē2

)T
)
dx2 φ̄ =

ˆ
Γi

p̄ (x2) p̄ (x2)T dx2 p̄(i) (7.148)

S̃T

(
I ⊗ 1√

2
(
ē1 + (−1)i ē2

)T
)
φ̄ = p̄(i) (7.149)

where we have used the orthogonality of the Legendre polynomials along edges Γ1 and Γ2.

158

We make a minor modification by premultiplying both sides of (7.149

.

) by
√

2S̃−T to obtain
(
I ⊗

(
ē1 + (−1)i ē2

)T
)

  
Ci

φ̄ =
√

2S̃−T p̄(i)  
d̄i

. (7.150)

Note that the term S̃−T p̄(i) has a specific meaning. In particular, since N̄ (x2) = S̃p̄ (x2), this
means that S̃−T p̄(i) corresponds to a vector of coefficients in the basis N̄ (x2) for the function
p (x2). That is, S̃−T converts from coefficients in a Legendre expansion to coefficients in
an integrated Legendre expansion. We multiply by the factor

√
2 to make the constraint

matrices Ci rational (in fact they only contain zeros, ones, or negative ones). Thus the
constraint equations

Ciφ̄ = d̄i (7.151)

correspond to matching the coefficients of basis functions representing φ along a given edge
to modes of the Dirichlet function p. A similar analysis for edges Γi with i = 3, 4, transforms
the moment constraints

ˆ
Γi

p̄ (x1)
[
φ
(
x1, (−1)i

)
− p (x1)

]
dx1 = 0 (7.152)

into the linear equations ((
ē1 + (−1)i ē2

)T
⊗ I

)
  

Ci

φ̄ =
√

2S̃−T p̄(i)  
d̄i

(7.153)

where we had to evaluate the two Legendre expansions

p (x1) = p̄ (x1)T p̄(i). (7.154)

To summarize, the constraint equations for the four Dirichlet boundary conditions are

(
I ⊗ (ē1 − ē2)T

)
φ̄ =

√
2S̃−T p̄(1), (7.155)(

I ⊗ (ē1 + ē2)T
)
φ̄ =

√
2S̃−T p̄(2), (7.156)(

(ē1 − ē2)T ⊗ I
)
φ̄ =

√
2S̃−T p̄(3), (7.157)(

(ē1 + ē2)T ⊗ I
)
φ̄ =

√
2S̃−T p̄(4). (7.158)

Notice that the constraint equations are extremely sparse, owing to the fact that the inte-
grated Legendre polynomials along a given edge are for the most part zero. In fact, only

159

2 (Lx2 + 1) functions are nonzero on each of Γ1 and Γ2. Similarly, only 2 (Lx1 + 1) functions
are nonzero on each of Γ3 and Γ4.

Recall that in using the Galerkin method, we obtained (6.46

.

) which contains a term of
the form

−
ˆ

ΓD

N̄ (x̄) n̄T (α∇φ) dΩ. (7.159)

Suppose we concentrate on edges Γi, i = 1, 2, for the moment. If we expand

− n̄i
T (α∇φ) =

√
2p̄ (x2)T S̃−1ν̄(i) (7.160)

where ν̄(i) are two vectors of unknown coefficients to be determined, then

−
ˆ

Γi

N̄
(
x1, (−1)i

)
n̄T (α∇φ) dx2 =

ˆ
Γi

N̄
(
x1, (−1)i

)
p̄ (x2)T dx2

√
2S̃−1ν̄(i). (7.161)

Notice that after this substitution, the remaining integral is the transpose of (7.147

.

), thus,
by virtue of the scaling

√
2S̃−1, (7.159

.

) is discretized as CT
i ν̄(i). The same type of observation

holds for edges Γi when i = 3, 4. Let us define the constraint matrix and vector as

C =

⎡⎢⎢⎢⎢⎢⎢⎣
C1

C2

C3

C4

⎤⎥⎥⎥⎥⎥⎥⎦ , d̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
d̄1

d̄2

d̄3

d̄4

⎤⎥⎥⎥⎥⎥⎥⎦ , (7.162)

or, alternatively, C and d̄ with certain block rows removed in cases where ΓD does not include
all four edges (for example, if ΓD does not include Γ3, we omit blocks C3 and d̄3 from C

and d̄). Then, with the interpretation of the normal flux density at the Dirichlet boundary
expressed as Legendre expansions with vector

ν̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
ν̄1

ν̄2

ν̄3

ν̄4

⎤⎥⎥⎥⎥⎥⎥⎦ , (7.163)

(again allowing for the same block rows to be absent as in C and d̄) we obtain the saddle
point system ⎡⎣ A CT

C 0

⎤⎦⎡⎣ φ̄

ν̄

⎤⎦ =
⎡⎣ b̄

d̄

⎤⎦ (7.164)

160

where A is assembled using matrices from Section 7.3

.

and b̄ is constructed as in Section 7.4

.

.
Before we move on to some examples, there is a crucial detail we have glossed over. We

must ask if the saddle point system is solvable. Recall, from Section 3.4

.

, that the saddle
point matrix is invertible if: A is symmetric positive semidefinite; C has full rank; and
null (A) ∩ null (C) = {0}. It turns out that for certain combinations of matrices Ci, the
constraint matrix C obtained by concatenation of rows is not full rank (similar behavior was
observed in Chapter 5

.

). To see why, consider imposing Dirichlet boundary conditions on
edge Γ1, followed by edge Γ3 (the order is not important). Imposing a Dirichlet boundary
condition on edge Γ1 restricts φ along that edge to match the Legendre expansion used to
approximate p along the edge. Since φ restricted to the edge is comprised of functions that
are integrated Legendre polynomials, two of the functions are nonzero at a given vertex on
the edge3

.

. Similarly, we also restrict the solution to agree with the Legendre expansion
of p along edge Γ3. The two edges meet at vertex (−1,−1). By imposing the constraints
separately, we have twice specified the value of φ at the common vertex. Note that this
would be acceptable if p was continuous at the vertex since the system of equations would
be consistent, however, this causes the constraint matrix to contain a redundant equation.
To correct this, we can eliminate the first equation from the constraint matrix C3 which
restores full row rank4

.

.
Fortunately, there is a simple way of correcting this rank deficiency. One approach to

doing so is to begin with an empty constraint matrix C and vector d̄ and to update them by
considering each edge Γi for i = 1, 2, 3, 4, sequentially while keeping and updating a list of
vertices (−1,−1), (1,−1), (−1, 1), and (1, 1) and the edges connected to them. That is, for
the square, we have a list of the form shown in Table 7.1

.

. To impose Dirichlet constraints, we
sequentially check edges to see if a Dirichlet boundary condition should be imposed. If yes,
we go to the vertex-to-edge incidence list and mark that edge Γi in all locations it appears.
We then add the constraints Ci and d̄i by appending their rows to C and d̄. For every list
associated to a node that becomes fully marked, we have a redundant equation. If only one
equation is redundant, we remove the first equation from the constraint matrix and vector
Ci and d̄i that we would otherwise append to the already present constraint matrix and
vector. If we happen to empty two lists simultaneously, we remove the first two equations.
This procedure ensures that the final constraint matrix C has full rank.

3Since Γi are open sets, they do not actually include the vertices. Thus, function values at vertices should
be interpreted through a limiting process.

4There are a variety of cases where we lose full rank. If we impose Dirichlet constraints on all edges, we
have four redundant equations. If we impose three Dirichlet constraints, we have two redundant equations. If
we impose two Dirichlet constraints, we may have either one or zero redundant equations (for no redundant
equations, consider imposing Dirichlet constraints on edges Γ1 and Γ2 for example).

161

Table 7.1: Vertex-to-edge incidence list for the square.
Vertex Edges

(−1,−1) Γ1, Γ3
(+1,−1) Γ2, Γ3
(−1,+1) Γ1, Γ4
(+1,+1) Γ2, Γ4

One may wonder why this approach is presented to correct the rank when there are only
four types of cases giving rise to redundant equations. The answer is that the same type
of redundant equations arise when we have more than a single quadrilateral element. In
that case, the list must include all vertices in the mesh, along with all edges incident to the
vertices. In addition, we can also lose full rank when imposing continuity constraints between
elements (we will see later that, like in Chapters 4

.

and 5

.

, continuity constraints are very
similar to Dirichlet constraints). That being said, the algorithm to correct for possible rank
deficiency remains the same when elements come from a conforming mesh and requires only
minor modification for the type of nonconforming meshes that we will use in later chapters,
which is why it is described here.

7.6 Examples

To demonstrate the applicability of the proposed scheme, we begin by reproducing the results
of three examples from [116

.

]. We solve these problems to emphasize that the method we
have described is a spectral method of comparable accuracy to those that employ Chebyshev
polynomials. These examples impose Dirichlet boundary conditions on all four edges Γ1, Γ2,
Γ3, and Γ4 and have constant coefficients α, β. As a result, they do not exercise the full range
of possible problems that our framework supports. Unfortunately, they do not have known
exact solutions against which we can compare quantitatively (but qualitative agreement is
observed). In order to make a quantitative assessment of the method, we reproduce a test
problem from [146

.

] which contains a variable coefficient β. In addition, we use our own
example to test imposition of Robin boundary conditions. These last two examples do have
known exact solutions so that we can compute errors to show the accuracy of the method. In
all examples, the user is required to specify the functions α11, α12, α22, β, and f , as well as
the type of boundary condition (Dirichlet or Robin) on each edge Γi, and the corresponding
one-dimensional boundary functions p(i) (in the case of Dirichlet boundaries) or q(i) and
γ(i) (in the case of Robin boundaries). A user specified tolerance ϵtol is also required. All
Legendre expansions are computed to this tolerance. The resulting saddle point systems for
each example can be solved using a sparse direct solver [147

.

] or with methods described in

162

Appendix B

.

.
For the first example, we solve Poisson’s equation

∂2φ

∂x2
1

+ ∂2φ

∂x2
2

= 10 sin (8x1 (x2 − 1)) (7.165)

subject to zero Dirichlet boundary conditions. This corresponds to taking α = −I, β = 0,
f = 10 sin (8x1 (x2 − 1)) and p = 0 (since this is a purely Dirichlet problem, we do not need
to specify γ or q). Note that since α and β are constant, Legendre expansions for α11 and
α22 have K(α11) = K(α22) = 1 terms with K(α11)

x1 = K(α11)
x2 = K(α22)

x1 = K(α22)
x2 = 0 degree

expansions in directions x1 and x2. Similarly, since α12 and β are zero, their expansions have
K(α12) = K(β) = 1 terms which are just zero. The forcing function f is not separable, but
to a tolerance of ϵtol = 10−12 has rank K(f) = 17, with degree K(f)

x1 = 41 and K(f)
x2 = 28

polynomial expansions required in each direction. All of these Legendre expansions are
computed automatically once the functions and tolerance are specified.

Figure 7.1

.

illustrates an approximate solution with degree Lx1 = Lx2 = 41 obtained by
solving the appropriate saddle point system assembled as described in Sections 7.3

.

, 7.4

.

, and
7.5

.

, along with the decay of coefficients used to represent the solution (plotted by computing
the entrywise logarithm of absolute values log10 |φ|). Note that the two first rows and columns
of the coefficient matrix are zero (indicated by -16 on the log plot instead of −∞) since we
have imposed zero Dirichlet boundary conditions. In addition, every odd numbered row is
also zero to machine precision. This reflects the fact that there is even symmetry of the
solution in the x1 direction. The sparsity of the saddle point system is illustrated in Figure
7.2

.

for a reduced polynomial degree so as to clearly show its structure. Each 11-by-11 block
in Figure 7.2

.

corresponds to a 42-by-42 block with the same type of sparsity pattern. We
show the smaller degree version to clearly illustrate the sparsity of these submatrices. The
sparsity pattern of the saddle point system is tied to the operator matrix

A = −
(
S̃S̃T ⊗ SDLS

T
DL

)
−
(
SDLS

T
DL ⊗ S̃S̃T

)
(7.166)

for the (1, 1) block and the constraint matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎣

(
I ⊗ (ē1 − ē2)T

)(
I ⊗ (ē1 + ē2)T

)(
(ē1 − ē2)T ⊗ I

)(
(ē1 + ē2)T ⊗ I

)

⎤⎥⎥⎥⎥⎥⎥⎦ (7.167)

for the (2, 1) block (actually the first two rows of the third and fourth block of C have been

163

removed to guarantee full rank, as described in Section 7.5

.

). The transpose of C appears in
the (1, 2) block.

For the second example, we solve Helmholtz’s equation

∂2φ

∂x2
1

+ ∂2φ

∂x2
2

+ k2φ = exp
{

−10
[(
x1 − 1

2

)2
+ (x2 − 1)2

]}
(7.168)

subject to zero Dirichlet boundary conditions where wavenumber k = 9. Using our notation,
α = −I, β = k2, f = exp{−10[(x1 − 1/2)2 + (x2 − 1)2]}, and p = 0. Here, the expansions
for α and β are straightforward to compute. Note that f is not a separable function of x1

and x2 but on the domain (−1, 1)2 it has rank 1. Using the same tolerance as for our first
example, we obtain K(f) = 1 with K(f)

x1 = 38 and K(f)
x2 = 35.

Figure 7.3

.

illustrates a degree Lx1 = Lx2 = 38 approximate solution along with the decay
of coefficients used to represent the solution. Note that we still have the first two rows
and columns in the coefficient matrix equal to zero to impose the zero Dirichlet boundary
condition, but now that the solution has no symmetries, the remainder of the coefficients are
nonzero. Figure 7.4

.

demonstrates a sample sparsity pattern of the saddle point system used
to compute the solution in Figure 7.3

.

. There is only a minor modification to the sparsity
introduced by adding the term k2φ to the operator. This makes the operator matrix A have
three terms so that

A = −
(
S̃S̃T ⊗ SDLS

T
DL

)
−
(
SDLS

T
DL ⊗ S̃S̃T

)
+ k2

(
S̃S̃T ⊗ S̃S̃T

)
. (7.169)

This explains why the three bands in the sparsity pattern observed for the Poisson equation
are now each pentadiagonal instead of diagonal, pentadiagonal, and diagonal respectively.

For the third example, we solve Laplace’s equation

∂2φ

∂x2
1

+ ∂2φ

∂x2
2

= 0 (7.170)

subject to the inhomogeneous Dirichlet boundary conditions

φ (−1, x2) = 0, (7.171)

φ (1, x2) = 1
5 sin (3πx2) , (7.172)

φ (x1,−1) = 0, (7.173)

φ (x1, 1) =

⎧⎪⎨⎪⎩[sin (πx)]4 x1 ≤ 0

0 otherwise.
(7.174)

164

x1

x
2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Polynomial degree in x2

P
o
ly
n
o
m
ia
l
d
eg
re
e
in

x
1

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 7.1: (top) Solution to Poisson’s equation (7.165

.

) subject to zero Dirichlet boundary
conditions. (bottom) Log base ten of the absolute value of the entries of the coefficient
matrix φ.

165

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

Figure 7.2: Example sparsity pattern of the saddle point system used to compute an
approximate solution to (7.165

.

) for a degree Lx1 = Lx2 = 10 solution (the solution in Figure
7.1

.

is degree 41).

166

x1

x
2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Polynomial degree in x2

P
o
ly
n
o
m
ia
l
d
eg
re
e
in

x
1

5 10 15 20 25 30 35

5

10

15

20

25

30

35

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 7.3: (top) Solution to Helmholtz’s equation (7.168

.

) subject to zero Dirichlet bound-
ary conditions. (bottom) Log base ten of the absolute value of the entries of the coefficient
matrix φ.

167

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

Figure 7.4: Example sparsity pattern of the saddle point system used to compute an
approximate solution to (7.168

.

) for a degree Lx1 = Lx2 = 10 solution (the solution in Figure
7.3

.

is degree 38).

168

Here, it takes K(1)
p = 0, K(2)

p = 27, K(3)
p = 0, and K(4)

p = 509 degree Legendre expansions
to meet the ϵtol = 10−12 requirement for the Dirichlet boundary conditions. The condition
on Γ4 is particularly difficult because the function along that edge is not smooth (its fourth
derivative is not continuous).

Figure 7.5

.

illustrates an approximate solution to this problem along with the decay of
the coefficients used to represent the solution. We do not provide a sparsity diagram for
this example since its pattern is identical to the one found in Figure 7.2

.

(although here we
have degree Lx1 = Lx2 = 509). Note that our solution exhibits the maximum principle
associated with Laplace’s equation [148

.

] although it is not explicitly enforced; its maximum
and minimum are both achieved on the boundary.

For the fourth example, constructed to test spatially varying PDE coefficients, we solve
the variable coefficient Helmholtz problem

∂2φ

∂x2
1

+ ∂2φ

∂x2
2

+ βφ = f (7.175)

where α = −I,

β (x̄) =
[
x2

1 + (x2 + 1)2
]

sin
[
x1 (x2 + 1)2

]
, (7.176)

f (x̄) =
[
x2

1 + (x2 + 1)2
]

cos [x1 (x2 + 1)] sin {cos [x1 (x2 + 1)]} , (7.177)

with inhomogeneous Dirichlet boundary conditions

p (x̄) = cos {cos [x1 (x2 + 1)]} (7.178)

on all boundary edges. Note that the solution to this equation is

φexact (x̄) = cos {cos [x1 (x2 + 1)]} . (7.179)

In fact, this solution has been obtained via the method of manufactured solutions [149

.

]. That
is, upon selecting a sufficiently complicated expression for β and a desired solution φexact,
we substitute the specification into the PDE and compute f so that the PDE is satisfied
by construction. Finally, we select boundary conditions that the solution φexact satisfies
exactly. The choice of β in this case was made such that it is not separable. The choice of
φexact was made to excite several polynomial modes in the approximate solution. For this
example, we use a tolerance of ϵtol = 10−14 (to match the accuracy in [146

.

]) and find that
we need K(β) = 64 with K(β)

x1 = 20 and K(β)
x2 = 17, as well as K(f) = 64 with K(f)

x1 = 32
and K(f)

x2 = 22. Note that we have actually limited K to 64 in our Legendre expansion

169

x1

x
2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Polynomial degree in x2

P
o
ly
n
o
m
ia
l
d
eg
re
e
in

x
1

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 7.5: (top) Solution to Laplace’s equation (7.170

.

) subject to inhomogeneous Dirichlet
boundary conditions. (bottom) Log base ten of the absolute value of the entries of the
coefficient matrix φ.

170

implementation which explains why β and f are both expressed as 64 separable terms each.
This does not adversely effect the accuracy of our computed solution.

Figure 7.6

.

illustrates the computed solution and the decay of coefficients in the degree
Lx1 = Lx2 = 32 polynomial used to represent the solution. Figure 7.7

.

illustrates the pointwise
error |φ − φexact| between the computed and exact solutions (sampled with 201 uniformly
spaced points in each coordinate), and the sparsity pattern of the saddle point system used
to perform all calculations. Note that, in contrast to the previous examples presented in
this chapter, the coefficients decay to somewhere between 10−13 and 10−14 in the highest
order modes. This means that there is little to gain by increasing the degree of polynomial
basis when computing a solution in double precision. This is borne out by computing the
pointwise error |φ− φexact| which is accurate to 14 digits throughout the domain (in many
locations as good as 15 or 16 digits). Note that the sparsity of the saddle point matrix is
severely compromised due to how large K(β)

x1 and K(β)
x2 are. This is because

A = −
(
S̃S̃T ⊗ SDLS

T
DL

)
−
(
SDLS

T
DL ⊗ S̃S̃T

)

+
K(β)∑
k=1

σ
(β)
k

⎛⎜⎝S̃
⎡⎢⎣K

(β)
x2∑

i=0
v

(β)
ik T i

⎤⎥⎦ S̃T ⊗ S̃

⎡⎢⎣K
(β)
x1∑

i=0
u

(β)
ik T i

⎤⎥⎦ S̃T

⎞⎟⎠ (7.180)

and the bandwidth of each term

S̃

⎡⎢⎣K
(β)
x2∑

i=0
v

(β)
ik T i

⎤⎥⎦ S̃T , S̃

⎡⎢⎣K
(β)
x1∑

i=0
u

(β)
ik T i

⎤⎥⎦ S̃T , (7.181)

depends, as we have seen in one dimension, on the number of terms in the sum.
For the final example, we construct our own manufactured solution in order to test Robin

boundary conditions, as well as variable α. We solve

− ∇ · (α∇φ) + βφ = f (7.182)

with

α =
⎡⎣ x1 x1x2

x1x2 x3
2

⎤⎦ , β = k2, (7.183)

where wavenumber k = 10. We take the exact solution to be

φexact (x̄) = exp
[
− (x̄− c̄)T (x̄− c̄)

]
, c̄ =

⎡⎣ 1
2

−1
4

⎤⎦ , (7.184)

171

x1

x
2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Polynomial degree in x2

P
o
ly
n
o
m
ia
l
d
eg
re
e
in

x
1

5 10 15 20 25 30

5

10

15

20

25

30

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 7.6: (top) Computed solution of the variable coefficient problem (7.175

.

). (bottom)
Log base ten of the absolute value of the entries of the coefficient matrix φ.

172

x1

x
2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 7.7: (top) Pointwise error log10 |φ− φexact| between the computed solution in Figure
7.6

.

and the exact solution. (bottom) Sparsity pattern of the saddle point system used to
compute the solution.

173

so that
f = −∇ · (α∇φexact) + βφexact (7.185)

and impose Dirichlet boundary conditions on edges Γ1 and Γ4 requiring φ = φexact. In
addition, we impose Robin boundary conditions on edges Γ2 and Γ3 requiring

q(i) = n̄T
i (α∇φexact) + γ(i)φexact (7.186)

where we specify γ(2) = sin (x2) and γ(3) = exp (−x1). Here, the Legendre expansions
computed to a tolerance ϵtol = 10−14 require

K(α11) = 1, K(α11)
x1 = 1, K(α11)

x2 = 0,

K(α12) = 1, K(α12)
x1 = 1, K(α12)

x2 = 1,

K(α22) = 1, K(α22)
x1 = 0, K(α22)

x2 = 3,

K(β) = 1, K(β)
x1 = 0, K(β)

x2 = 0,

K(f) = 3, K(f)
x1 = 23, K(f)

x2 = 24,

K(1)
p = 19, K(4)

p = 20,

K(2)
q = 23, K(3)

q = 22,

K(2)
γ = 13, K(3)

γ = 13.

Recall that all of these expansions are computed automatically once the user has specified
the associated functions so, while their number may seem intimidating, very little work on
the part of the user is required: they must simply supply a tolerance, as well as functions
that take as input a vector x̄ and return associated scalar values.

Figure 7.8

.

illustrates the computed solution φ and the associated decay of coefficients
φ. Figure 7.9

.

illustrates the pointwise error |φ− φexact| (sampled with 201 uniformly spaced
points in each coordinate), and the sparsity pattern of the associated saddle point system.
Note that while the solution may appear to the eye to vary slowly, the error plot shows that
it oscillates in a complicated way about the exact solution. The eye does not pick up on this
variation since the computed solution is accurate to roughly 13 digits over the domain (in
many places it is more accurate). A degree Lx1 = Lx2 = 24 polynomial is sufficient to achieve
this level of accuracy. The sparsity of the operator can again be analyzed. The first two-by-
two dense blocks arise from the Robin boundary condition on edge Γ3 whereas the sprinkling
of nonzero entries off the main diagonal band arise due to the Robin boundary condition on
edge Γ2. The seven diagonal bands arise mostly from terms involving α although the term

174

involving β does contribute. The operator matrix is given by

A = σ
(α11)
1

(
S̃
[
v

(α11)
01 T 0

]
S̃T ⊗ SDL

[1∑
i=0

u
(α11)
i1 T i

]
ST

DL

)

+ σ
(α12)
1

(
S̃

[1∑
i=0

v
(α12)
i1 T i

]
ST

DL ⊗ SDL

[1∑
i=0

u
(α12)
i1 T i

]
S̃T

)

+ σ
(α22)
1

(
SDL

[3∑
i=0

v
(α22)
i1 T i

]
ST

DL ⊗ S̃
[
u

(α22)
01 T 0

]
S̃T

)

+ k2
(
S̃S̃T ⊗ S̃S̃T

)
+
(
S̃

[13∑
k=0

γ
(2)
k T k

]
S̃T ⊗ 1

2 (ē1 + ē2) (ē1 + ē2)T

)

+
(

1
2 (ē1 − ē2) (ē1 − ē2)T ⊗ S̃

[13∑
k=0

γ
(3)
k T k

]
S̃T

)
(7.187)

which we write out in detail here to illustrate how complicated such matrices can be. The
process of assembling this matrix is automated.

175

x1

x
2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Polynomial degree in x2

P
o
ly
n
o
m
ia
l
d
eg
re
e
in

x
1

5 10 15 20 25

5

10

15

20

25
−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 7.8: (top) Computed solution of the variable coefficient problem (7.182

.

) with Robin
boundary conditions. (bottom) Log base ten of the absolute value of the entries of the
coefficient matrix φ.

176

x1

x
2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 7.9: (top) Pointwise error log10 |φ− φexact| between the computed solution in Figure
7.8

.

and the exact solution. (bottom) Sparsity pattern of the saddle point system used to
compute the solution.

177

Chapter 8

A Single Curvilinear Quadrilateral
Element

Chapter 7

.

demonstrated that the solution of a wide variety of PDEs can be computed reliably
to high accuracy using a single element on the domain (−1, 1)2. This chapter extends the
ideas of Chapter 7

.

by considering the solution of PDEs on domains Ω ⊂ R2 which arise as
specific planar polynomial mappings x̄ : (−1, 1)2 → Ω from the canonical domain (−1, 1)2.
The notation ū ∈ (−1, 1)2 is used to denote spatial variables in the canonical domain and
x̄ (ū) ∈ Ω to denote spatial variables in the curvilinear domain. If x̄ is the identity map, then
x̄ (ū) = ū and the methods of the previous chapter are recovered. This chapter considers
polynomial maps of a specific form. These maps originate from computational geometry
contexts related to surface modeling [150

.

], and have been used to approximate functions [151

.

]
and mesh certain geometries [152

.

]. The approach goes by several names (Coons patches,
for example) but the name transfinite interpolation which appears in [152

.

] is used in this
thesis. The computational geometry text [153

.

] provides a clear, and practical overview of
the matter.

The subsequent section describes how to compute the transfinite interpolation map given
a description of the boundary of Ω by either parametric curves or implicit functions. The
chapter goes on to show that the modifications required to extend the techniques from the
previous chapter to curvilinear domains described by transfinite interpolation are straight-
forward; one simply replaces parameters α, β, f , p, γ, and q by effective parameters that
take into account the map x̄(ū).

178

8.1 Transfinite Interpolation

Before describing transfinite interpolation maps, we consider conventional isoparametric
maps as in [12

.

] (one of many finite element texts that uses such a map to model curved
geometry) and argue why such maps may be poorly suited for our purpose. The name
isoparametric means to use the same basis functions to represent the solution φ as we do to
represent the components in the map x̄. This makes the most sense when the basis func-
tions representing φ are interpolatory since, in that case, we can place interpolation nodes
on the curved boundary of the geometry we wish to approximate with the polynomial map.
Because we use a modal basis which is not interpolatory to represent φ, we consider an
“isoparametric” map1

.

given by
x̄ (ū) = Xl̄ (ū) (8.1)

where
X =

[
x̄1 x̄2 · · · x̄(Nu1 +1)×(Nu2 +1)

]
(8.2)

is a matrix whose columns are coordinates of interpolation nodes and

l̄ (ū) = l̄ (u2) ⊗ l̄ (u1) (8.3)

are tensor products of one-dimensional Lagrange interpolating polynomials with degree Nu1

polynomials in the u1 coordinate and degree Nu2 polynomials in the u2 coordinate. The diffi-
culty with such a formulation is that although it may be straightforward to determine where
to interpolate along the four curvilinear boundaries of the domain Ω (although even this
may not be obvious), it leaves the additional task of having to specify internal interpolation
nodes inside Ω. To avoid dealing with the interior of Ω, we use transfinite interpolation.

The name transfinite interpolation arises because if the boundary of Ω is specified by four
parametric functions each describing one curvilinear edge, then the map x̄ reproduces the
edges exactly. Thus the trans- prefix for transfinite means that we go beyond interpolating
at a finite number of points. To see how such a map is produced, suppose that there is some
function Ḡ (ū) that satisfies Ḡ : (−1, 1)2 → Ω. Now, define the function

[P1Ḡ] (ū) = 1 − u1

2 Ḡ (−1, u2) + 1 + u1

2 Ḡ (1, u2) . (8.4)

Note that the functions (1 −u1)/2 and (1 +u1)/2 are the degree one interpolatory Lagrange
polynomials, thus they are equal to 1 and 0 respectively when u1 = −1, and 0 and 1

1We put isoparametric in quotation marks here to stress that we are not exactly matching the basis
functions used to represent the geometry with the basis functions to represent the solution φ. That being
said, the basis functions we are using to describe the geometry are the standard isoparametric basis functions.

179

respectively when u1 = 1. As a consequence, the function P1Ḡ is exactly equal to Ḡ (−1, u2)
when u1 = −1 and exactly equal to Ḡ (1, u2) when u1 = 1. When −1 < u1 < 1, P1Ḡ

smoothly blends the two boundary functions together. We can define a second function

[P2Ḡ] (ū) = 1 − u2

2 Ḡ (u1,−1) + 1 + u2

2 Ḡ (u1, 1) (8.5)

which performs a similar blending operation, but applied to the edges corresponding to
u2 = −1 and u2 = 1.

To construct a function that matches Ḡ on all four edges, we follow a two step process.
If we take the difference between Ḡ and P1Ḡ, we obtain an error function

Ē1 = Ḡ− P1Ḡ (8.6)

which, by construction, is zero on the edges corresponding to u1 = −1 and u1 = 1. Note
however that the behavior on the edges corresponding to u2 = −1 and u2 = 1 may still be
nonzero. We can then apply the same approach to zero the edges corresponding to u2 = −1
and u2 = 1 using the function P2Ē1. This gives

Ē2 = Ē1 − P2Ē1 (8.7)

= (Ḡ− P1Ḡ) − P2(Ḡ− P1Ḡ) (8.8)

= Ḡ− P1Ḡ− P2Ḡ+ P2(P1Ḡ). (8.9)

Note that the function Ē2 is now zero on all four edges of the domain, although, on the
interior, it may still be nonzero. Thus on the boundary of (−1, 1)2 and, consequently, on the
boundary of Ω, we have

0 = Ḡ− P1Ḡ− P2Ḡ+ P2(P1Ḡ) (8.10)

Ḡ = P1Ḡ+ P2Ḡ− P2(P1Ḡ). (8.11)

Since

P1Ḡ+ P2Ḡ− P2(P1Ḡ) = 1 − u1

2 Ḡ (−1, u2) + 1 + u1

2 Ḡ (1, u2)

+ 1 − u2

2 Ḡ (u1,−1) + 1 + u2

2 Ḡ (u1, 1)

− 1 − u1

2
1 − u2

2 Ḡ (−1,−1) − 1 + u1

2
1 − u2

2 Ḡ (1,−1)

− 1 − u1

2
1 + u2

2 Ḡ (−1, 1) − 1 + u1

2
1 + u2

2 Ḡ (1, 1) , (8.12)

180

we see that this interpolant only requires that we specify Ḡ on the boundary. Thus, if we
have four parametric representations x̄1 (−1, u2), x̄2 (1, u2), x̄3 (u1,−1), and x̄4 (u1, 1), of the
four curvilinear edges of Ω, we can define a transfinite map

x̄ (ū) = 1 − u1

2 x̄1 (−1, u2) + 1 + u1

2 x̄2 (1, u2)

+ 1 − u2

2 x̄3 (u1,−1) + 1 + u2

2 x̄4 (u1, 1)

− (1 − u1) (1 − u2)
4 x̄1 (−1,−1) − (1 + u1) (1 − u2)

4 x̄2 (1,−1)

− (1 − u1) (1 + u2)
4 x̄1 (−1, 1) − (1 + u1) (1 + u2)

4 x̄2 (1, 1) (8.13)

where the choice of which edges to use in evaluation at the vertices of the domain is not
unique (we assume that pairs of adjacent curvilinear edges meet at the their shared vertices
so that this ambiguity is removed). This approach can be extended to higher dimensions as
needed.

8.2 Polynomial Representation for Explicit and Im-
plicit Boundaries

We choose to represent each parametric curve as a polynomial

x̄1 (−1, u2) = X1l̄ (u2) , (8.14)

x̄2 (1, u2) = X2l̄ (u2) , (8.15)

x̄3 (u1,−1) = X3l̄ (u1) , (8.16)

x̄4 (u1, 1) = X4l̄ (u1) , (8.17)

where each matrix X i contains Ni + 1 interpolation nodes x̄i for a degree Ni interpolating
polynomial basis. Comparing this representation of the domain with the isoparametric rep-
resentation discussed earlier shows that interpolation is performed on codimension-1 objects
rather than in the full space. In two dimensions, the transfinite interpolation with polyno-
mial edges requires one-dimensional interpolation along curves representing the boundary
∂Ω whereas isoparametric interpolation requires two-dimensional interpolation inside the
domain Ω. As in Chapter 2

.

, we can always convert these Lagrange polynomials to Legen-
dre polynomials through the identity l̄ (uj) = Ṽ −T p̄ (uj) should the need arise. In fact, the
final representation for the curves that we work with uses Legendre polynomials. In such a

181

setting, the four boundary curves take the form

x̄1 (−1, u2) = X̃1p̄ (u2) , (8.18)

x̄2 (1, u2) = X̃2p̄ (u2) , (8.19)

x̄3 (u1,−1) = X̃3p̄ (u1) , (8.20)

x̄4 (u1, 1) = X̃4p̄ (u1) . (8.21)

If the boundary curves are specified explicitly by parametric curves there is a straight-
forward way of determining an accurate polynomial representation. We repeat the same
process for each boundary curve. We start by sampling the given parametric curve x̄i (t) at
Chebyshev points

tk = − cos
(
π

Ni

k
)

(8.22)

for k = 0, 1, ..., Ni, where t is either u1 or u2, depending on the boundary edge. We then
convert these samples into two sets of Chebyshev coefficients (one for each component of
the curve) using the FFT (as described in Section A.1

.

of Appendix A

.

) and verify whether
the coefficients have decayed below a user specified tolerance ϵtol (note that the decay must
be met for both components of the curve). If we have not met the tolerance, we increase
the number of samples and repeat the process until the tolerance has been met, or until a
maximum polynomial degree is attained (this can be user specified). We finally convert from
Chebyshev coefficients to Legendre coefficients using the techniques described in Section 4.2

.

and Appendix A

.

. This yields the appropriate matrix X̃ i that captures the behavior of the
boundary edge.

If the boundary components are specified implicitly by level set functions (which will be
the case for the methods we investigate in later chapters), then we use a different algorithm
to compute the interpolation nodes. Given a starting node x̄start and ending node x̄end that
both lie on the implicit curve (how they may be specified is described in the next chapter),
we construct the line segment connecting the two points

ȳ (t) = 1 − t

2 x̄start + 1 + t

2 x̄end (8.23)

with −1 ≤ t ≤ 1. Generally, this line segment does not lie entirely in the boundary edge
defined by the level set function Φ (x̄) whose zero contour

Γ =
{
x̄ ∈ R2 : Φ (x̄) = 0

}
(8.24)

defines the curvilinear boundary edge we wish to represent with polynomials. On that line

182

segment, we define a set of Chebyshev nodes by sampling ȳ (t) at the points (8.22

.

). We then
project the sampled points ȳk = ȳ (tk) onto the set Γ using the initial iterate x̄(0)

k = ȳk and
iteration

x̄
(i+1)
k = x̄

(i)
k − Φ(x̄(i)

k)
∥∇Φ(x̄(i)

k)∥2
2
∇Φ(x̄(i)

k). (8.25)

Note that the subscript k ranges over all nodes but that this iteration does not couple the
nodes (and thus the iteration can be performed in parallel for all k). We iterate until a max-
imum number of iterations is achieved or until all points satisfy |Φ(x̄(i+1)

k)| < ϵtol where ϵtol

is a user defined tolerance2

.

. If such a condition is met, all of the projected nodes are deemed
to lie sufficiently close to the boundary. Finally, we construct the interpolating polynomial
curve Xj l̄ (uj) using these nodes (the nodes form the columns of Xj). Unfortunately, in
performing this iteration, the nodes have lost their Chebyshev spacing so there is no fast
transform available. Therefore, either we sample this polynomial at Chebyshev nodes and
perform the transform to Legendre coefficients to check for sufficient decay, or we oversample
the polynomial curve (say by a multiplicative factor of 10) and check that all sample points
meet the tolerance |Φ (x̄)| < ϵtol. If this tolerance is met, we compute the matrix X̃j of
Legendre coefficients used to represent the boundary edge.

A few comments on the implicit boundary approach are needed. First, this outlined
scheme is far from robust, particularly in cases where the boundary between points x̄start

and x̄end cannot be written explicitly as a function in coordinates given by the line segment
ȳ. That is, we need an implicit function theorem relative to line segment ȳ to hold for
the boundary Γ [155

.

]. In practice, we construct cases where this is always true so that the
method is useful. In addition, there is no guarantee that the projection of the nodes from the
line segment to the boundary are distributed in such a way that the resulting interpolatory
polynomial does not oscillate inappropriately. In practice, because the nodes along the line
segment are clustered near the endpoints, for simple curved boundaries, the projected points
also cluster near the endpoints and the interpolation does not oscillate inappropriately.

Further comment is also warranted regarding the projection iteration (8.25

.

). In particu-
lar, the iteration comes from a first order approximation to the solution of the optimization

2The projection scheme (8.25

.

) is exact and only requires one iteration when the level set function Φ is
a smooth signed distance function. A signed distance function is a level set function satisfying ∥∇Φ∥2 = 1
almost everywhere. In such a case the update equation is

x̄(1) = x̄(0) − Φ(x̄(0))∇Φ(x̄(0)). (8.26)

Note that, for signed distance functions, Φ(x̄(0)) returns the signed distance to the zero level set (its sign
depends on whether x̄(0) satisfies Φ(x̄(0)) < 0 or Φ(x̄(0)) > 0) and ∇Φ(x̄(0)) is directed normal to the
boundary. These two properties explain why only one iteration is required to find the closest point to x̄(0)

on the boundary for such level set functions. For more detail, see [154

.

].

183

problem

min
∆x

1
2∥∆x∥2

2 (8.27)

s.t. Φ(x̄(i) + ∆x) = 0

where we have dropped the subscript k since each node can be treated independently. Such
an optimization problem seeks the vector ∆x which, when added to the known vector x̄(i),
causes x̄(i) + ∆x to lie on the zero level contour of Φ and which also minimizes the distance
from x̄(i) to the contour. The method is first order because we replace the equality constraint
with a first order Taylor approximation. That is, we expand

Φ(x̄(i) + ∆x) = Φ(x̄(i)) + ∇Φ(x̄(i))T ∆x+ · · · (8.28)

and ignore the quadratic and higher order terms. To solve the optimization problem, we
write the Lagrangian of (8.27

.

) as

L = 1
2∥∆x∥2

2 + νΦ(x̄(i) + ∆x) (8.29)

with Lagrange multiplier ν and use the Taylor series approximation to obtain

L ≈ 1
2∥∆x∥2

2 + ν
[
Φ(x̄(i)) + ∇Φ(x̄(i))T ∆x

]
. (8.30)

To minimize such a function, we require that the KKT conditions (noted in Section 3.2

.

)
be satisfied. That is, the gradient with respect to ∆x of the Lagrangian must be zero and
equality constraints must be satisfied. The first condition yields

∇∆xL = ∆x+ ν∇Φ(x̄(i)) = 0 (8.31)

so that
∆x = −ν∇Φ(x̄(i)). (8.32)

The second condition stipulates that

Φ(x̄(i)) + ∇Φ(x̄(i))T ∆x = 0. (8.33)

Substituting (8.32

.

) into the equality constraint yields

Φ(x̄(i)) + ∇Φ(x̄(i))T
[
−ν∇Φ(x̄(i))

]
= 0 (8.34)

184

which we solve for the Lagrange multiplier

ν = Φ(x̄(i))
∥∇Φ(x̄(i))∥2

2
. (8.35)

Combining this expression with (8.32

.

) gives the required update

x̄(i+1) = x̄(i) + ∆x (8.36)

= x̄(i) − Φ(x̄(i))
∥∇Φ(x̄(i))∥2

2
∇Φ(x̄(i)). (8.37)

In practice, we do not always have access to the gradient of the implicit function Φ. As a
result, we compute the gradient using first order finite differences where the jth component
of the gradient is approximated as

∂Φ
∂xj

≈ Φ(x̄(i) + ϵ
1/2
machineēj) − Φ(x̄(i))
ϵ

1/2
machine

. (8.38)

For a second order update scheme which is more involved, see [64

.

]. Note that although this
scheme is first order, it is first order in computing the closest point on the boundary to
the starting point ȳk. Since we are really only interested in projecting the point ȳk to the
boundary for the purposes of later interpolating, as long as the point is on the boundary
to high precision, we do not need the point to be closest to ȳk. As a result, this first order
scheme is sufficient and does not typically degrade the accuracy of subsequent computed
PDE solutions.

8.3 Solving PDEs on Curvilinear Quadrilaterals

Now that we have seen how to construct a map x̄ : (−1, 1)2 → Ω, we consider the question
of how to solve the PDE

− ∇ · (α∇φ) + βφ = f in Ω, (8.39)

subject to boundary conditions

φ = p on ΓD, (8.40)

n̄T (α∇φ) + γφ = q on ΓR. (8.41)

The key is to perform all operations on the canonical domain (−1, 1)2 rather than on the
more complicated curvilinear domain Ω. Doing so modifies the various quantities α, β, f , p,

185

γ, and q.
Recall that, while applying Galerkin’s method, we found the weighted residual equation

(6.44

.

) which we repeat here for ease of reference:
ˆ

Ω
∇ψTα∇φ dΩ +

ˆ
Ω
ψβφ dΩ +

ˆ
ΓR

ψγφ dΩ −
ˆ

ΓD

ψn̄T (α∇φ) dΩ =
ˆ

Ω
ψf dΩ +

ˆ
ΓR

ψq dΩ.

(8.42)
In addition, we also enforced Dirichlet boundary conditions via the integral constraint

ˆ
ΓD

ψB (φ− p) dΩ = 0. (8.43)

In the following section, we consider how to transform each of these integrals back to the
canonical domain via the map x̄ (ū). We find that we can write each integral on the canonical
domain in precisely the same form as in Chapter 7

.

but with new effective coefficients αeff,
βeff, feff, peff, γeff, and qeff, that depend on the original coefficients, along with factors that
depend on the map x̄ (ū). As a result, constructing the associated matrices and vectors to
compute approximate solutions to the PDE on Ω is identical to constructing them for the
canonical domain (−1, 1)2, differing only in the Legendre expansions required to accurately
represent the variable coefficients.

Before we treat each term in the weighted residual formulation, we begin by specifying
how the gradient of a function transforms under the map x̄ (ū). We will call the components
of the map x1 and x2 since they correspond to coordinates in the domain Ω. Using polynomial
interpolation to represent the curvilinear boundaries of domain Ω, as in Section 8.2

.

, we have
the transfinite interpolation map

x̄ (ū) = 1 − u1

2 X̃1p̄ (u2) + 1 + u1

2 X̃2p̄ (u2)

+ 1 − u2

2 X̃3p̄ (u1) + 1 + u2

2 X̃4p̄ (u1)

− (1 − u1) (1 − u2)
4 X̃1p̄ (−1) − (1 + u1) (1 − u2)

4 X̃2p̄ (−1)

− (1 − u1) (1 + u2)
4 X̃1p̄ (1) − (1 + u1) (1 + u2)

4 X̃2p̄ (1) . (8.44)

Using the chain rule we obtain

∂φ

∂u1
= ∂φ

∂x1

∂x1

∂u1
+ ∂φ

∂x2

∂x2

∂u1
, (8.45)

∂φ

∂u2
= ∂φ

∂x1

∂x1

∂u2
+ ∂φ

∂x2

∂x2

∂u2
. (8.46)

186

Rewriting this expression with matrices and vectors yields

⎡⎢⎢⎣
∂φ

∂u1
∂φ

∂u2

⎤⎥⎥⎦
  

∇ūφ

=

⎡⎢⎢⎣
∂x1

∂u1

∂x2

∂u1
∂x1

∂u2

∂x2

∂u2

⎤⎥⎥⎦
  

JT
x̄

⎡⎢⎢⎣
∂φ

∂x1
∂φ

∂x2

⎤⎥⎥⎦
  

∇x̄φ

(8.47)

where ∇ūφ is the gradient of φ with respect to the ū variables, ∇x̄φ is the gradient of
φ with respect to the x̄ variables, and J x̄ is the Jacobian matrix for the transformation
x̄ : (−1, 1)2 → Ω. Since the gradients in the integrands of (8.42

.

) are taken with respect to
variables x̄ in Ω, we multiply by the inverse transpose of the Jacobian to obtain

∇x̄φ = J−T
x̄ ∇ūφ. (8.48)

As a consequence, the integral ˆ
Ω

∇x̄ψ
Tα∇x̄φ dΩ (8.49)

becomes ˆ
Ω

[
J−T

x̄ ∇ūψ
]T
α
[
J−T

x̄ ∇ūφ
]
dΩ =

ˆ
Ω

∇ūψ
T
[
J−1

x̄ αJ−T
x̄

]
∇ūφ dΩ. (8.50)

Next, we change variables to the canonical domain and find that
ˆ

(−1,1)2
∇ūψ

T
[
J−1

x̄ αJ−T
x̄

]
∇ūφ |det (J x̄)| dΩ. (8.51)

Since the absolute value of the determinant is a scalar function of ū, we can group it with
the matrix in square brackets such that
ˆ

Ω
∇x̄ψ

Tα∇x̄φ dΩ =
ˆ

(−1,1)2
∇ūψ (ū)T

[
|det (J x̄)| J−1

x̄ α (x̄ (ū)) J−T
x̄

]
  

αeff

∇ūφ (ū) dΩ. (8.52)

In other words, we can compute this integral on the canonical domain by replacing α by
a new effective coefficient matrix αeff as long as we choose to approximate φ by a linear
combination of polynomial basis functions N̄ (u2) ⊗ N̄ (u1) in the canonical domain and
substitute those same basis functions for ψ. Note that even though we approximate the
solution φ using polynomials in the canonical domain, the transformation x̄ (ū) generally
transforms these functions in ways that can be quite complicated. For example, they may
not be polynomial in domain Ω.

The entries of the new αeff can be approximated by Legendre expansions, as before.

187

Since α is symmetric, the new effective matrix is also symmetric. The explicit entries of the
effective coefficient matrix can be obtained from the entries of the inverse Jacobian. Since
J x̄ is a two-by-two matrix, its inverse is

J−1
x̄ = 1

det (J x̄)

⎡⎢⎢⎣
∂x2

∂u2
−∂x1

∂u2

−∂x2

∂u1

∂x1

∂u1

⎤⎥⎥⎦ (8.53)

and
det (J x̄) = ∂x1

∂u1

∂x2

∂u2
− ∂x1

∂u2

∂x2

∂u1
. (8.54)

Note that these derivatives are all computable from the transfinite map (8.44

.

). For reference,
the derivatives are

∂x̄

∂u1
= −1

2X̃1p̄ (u2) + 1
2X̃2p̄ (u2) + 1 − u2

2 X̃3D̃p̄ (u1) + 1 + u2

2 X̃4D̃p̄ (u1)

+ 1 − u2

4 X̃1p̄ (−1) − 1 − u2

4 X̃2p̄ (−1) + 1 + u2

4 X̃1p̄ (1) − 1 + u2

4 X̃2p̄ (1) (8.55)

and

∂x̄

∂u2
= 1 − u1

2 X̃1D̃p̄ (u2) + 1 + u1

2 X̃2D̃p̄ (u2) − 1
2X̃3p̄ (u1) + 1

2X̃4p̄ (u1)

+ 1 − u1

4 X̃1p̄ (−1) + 1 + u1

4 X̃2p̄ (−1) − 1 − u1

4 X̃1p̄ (1) − 1 + u1

4 X̃2p̄ (1) (8.56)

where D̃ is the Legendre polynomial differentiation matrix from Chapter 2

.

with entries given
by (2.95

.

). Note that derivatives of the transfinite map are columns of the Jacobian matrix

J x̄ =
[
∂x̄

∂u1

∂x̄

∂u2

]
(8.57)

and contain all of the partial derivatives needed to specify the inverse Jacobian and its
determinant. Computing the entries of the effective parameter matrix yields

αeff = |det (J x̄)| J−1
x̄ αJ−T

x̄ (8.58)

= |det (J x̄)|
[det (J x̄)]2

⎡⎢⎢⎣
∂x2

∂u2
−∂x1

∂u2

−∂x2

∂u1

∂x1

∂u1

⎤⎥⎥⎦
⎡⎣ α11 α12

α12 α22

⎤⎦
⎡⎢⎢⎣

∂x2

∂u2
−∂x2

∂u1

−∂x1

∂u2

∂x1

∂u1

⎤⎥⎥⎦ (8.59)

= sign [det (J x̄)]
det (J x̄)

⎡⎣ α11,eff α12,eff

α12,eff α22,eff

⎤⎦ (8.60)

188

where

α11,eff = α11

(
∂x2

∂u2

)2

− 2α12
∂x1

∂u2

∂x2

∂u2
+ α22

(
∂x1

∂u2

)2

, (8.61)

α12,eff = −α11
∂x2

∂u1

∂x2

∂u2
+ α12

(
∂x1

∂u1

∂x2

∂u2
+ ∂x1

∂u2

∂x2

∂u1

)
− α22

∂x1

∂u1

∂x1

∂u2
, (8.62)

α22,eff = α11

(
∂x2

∂u1

)2

− 2α12
∂x1

∂u1

∂x2

∂u1
+ α22

(
∂x1

∂u1

)2

. (8.63)

Note that all entries of α must be evaluated at x̄ (ū) when evaluating this effective matrix.
The partial derivatives themselves are already specified as functions of ū.

The remaining integrals to compute in (8.42

.

) are less complicated. To compute
ˆ

Ω
ψβφ dΩ (8.64)

we evaluate ˆ
(−1,1)2

ψ (ū) β (x̄ (ū))φ (ū) |det (J x̄)| dΩ (8.65)

which means that we can use

βeff = β (x̄ (ū)) |det (J x̄)| . (8.66)

Similarly, we replace f with
feff = f (x̄ (ū)) |det (J x̄)| . (8.67)

For terms involving boundary integrals, the integrals transform differently (they are line
integrals). In addition, the integrals transform differently depending on the particular edge.
Note that each edge is described by a polynomial parametrization given by one of (8.18

.

)-
(8.21

.

). The boundary integrals are all scalar line integrals, so they each transform as one
of

ˆ
Γi

η dΩ =
ˆ 1

−1
η
(
X̃ ip̄ (u2)

)
∥X̃ iD̃p̄ (u2) ∥2du2, i = 1, 2, (8.68)

ˆ
Γi

η dΩ =
ˆ 1

−1
η
(
X̃ ip̄ (u1)

)
∥X̃ iD̃p̄ (u1) ∥2du1, i = 3, 4, (8.69)

where η (x̄) is a generic placeholder function. Thus, for Robin boundary integrals, the

189

coefficient γ becomes

γ
(i)
eff =

⎧⎪⎨⎪⎩γ
(
X̃ ip̄ (u1)

)
∥X̃ iD̃p̄ (u1) ∥2 i = 1, 2,

γ
(
X̃ ip̄ (u2)

)
∥X̃ iD̃p̄ (u2) ∥2 i = 3, 4,

(8.70)

and q becomes

q
(i)
eff =

⎧⎪⎨⎪⎩q
(
X̃ ip̄ (u1)

)
∥X̃ iD̃p̄ (u1) ∥2 i = 1, 2,

q
(
X̃ ip̄ (u2)

)
∥X̃ iD̃p̄ (u2) ∥2 i = 3, 4.

(8.71)

In principle, one should expect similar effects arising when imposing Dirichlet boundary
conditions via the weak form ˆ

ΓD

ψB (φ− p) dΩ = 0. (8.72)

We note that p can be replaced by

p
(i)
eff =

⎧⎪⎨⎪⎩p
(
X̃ ip̄ (u1)

)
i = 1, 2,

p
(
X̃ ip̄ (u2)

)
i = 3, 4,

(8.73)

in which the additional factor ∥X̃ iD̃p̄ (uj) ∥2 has been ignored. This is because along an
edge, we can always choose the weight functions ψB to cancel this parametrization factor.
Similarly, we can do the same for the term

−
ˆ

ΓD

ψn̄T (α∇φ) dΩ (8.74)

by lumping the parametrization factor in with the normal derivative. We do this to save
on additional computations. This modification of the weight function to cancel undesirable
terms is similar to the choice of using

√
2S̃−T p̄(xj) rather than p̄(xj) as weight functions in

the preceding chapter.

8.4 A Prototypical Curvilinear Example

To illustrate how the curvilinear map can be integrated into the PDE formulation of Chapter
7

.

, we solve the simple constant coefficient Poisson equation

∇ · ∇φ = f (8.75)

190

on a domain Ω whose four vertices are

x̄1 =
⎡⎣ 1

10

0

⎤⎦ , x̄2 = 1√
2

⎡⎣ 9
10
1
5

⎤⎦ , x̄3 =
⎡⎣ 0

1

⎤⎦ , x̄4 = 1√
2

⎡⎣ 1
1

⎤⎦ , (8.76)

and whose interior is the region

Ω =
{
x̄ ∈ R2 : n̄T

1 (x̄− x̄1) < 0, n̄T
2 (x̄− x̄1) < 0, n̄T

3 (x̄− x̄2) < 0, ∥x̄∥2 < 1
}

(8.77)

where

n̄T
1 (x̄3 − x̄1) = 0, (8.78)

n̄T
2 (x̄2 − x̄1) = 0, (8.79)

n̄T
3 (x̄4 − x̄2) = 0. (8.80)

This region has boundary components Γ1, Γ2, and Γ3 defined by straight line segments and
Γ4 defined by a circular arc. We choose three of the sides to be straight line segments for this
example because the types of meshes that we focus on in later chapters are constructed in
such a way that typically only one edge of each element is curvilinear. That being said, the
method is not restricted to such a case and can handle curvilinear boundaries on all edges.
In addition, we have chosen α = −I and β = 0 so as to emphasize the effect of the map on
the effective parameter αeff which is not constant with respect to ū even though α itself is.
This way, we can comment on the reduction in sparsity of the operator matrix. In order to
avoid Robin boundary conditions further obfuscating the effect of the map on sparsity, we
set Dirichlet boundary conditions on each edge. We choose a manufactured solution

φexact (x̄) = exp
[
− (x̄− c̄)T (x̄− c̄)

]
, c̄ =

⎡⎣ 0
1

⎤⎦ , (8.81)

with boundary data p = φexact and forcing function f = ∇ · ∇φexact.
For a tolerance ϵtol = 10−12, the Legendre expansions have rank and degree

K(α11) = 9, K(α11)
x1 = 18, K(α11)

x2 = 12,

K(α12) = 9, K(α12)
x1 = 18, K(α12)

x2 = 11,

K(α22) = 10, K(α22)
x1 = 18, K(α22)

x2 = 12,

K(β) = 1, K(β)
x1 = 0, K(β)

x2 = 0,

191

K(f) = 11, K(f)
x1 = 18, K(f)

x2 = 14,

K(1)
p = 13, K(2)

p = 11, K(3)
p = 10, K(4)

p = 17,

where all ranks and degrees are for the effective parameters. Notice that to represent αeff,
we require high order polynomials to capture the effect of the map x̄ (ū) on α even though
α was representable in terms of constants on Ω. In addition, to reproduce the curvilinear
edge represented by the implicit function Φ (x̄) = ∥x̄∥2 − 1, whose zero level set corresponds
to Γ4, we use the projection method described in Section 8.2

.

. The edges are represented by
degree N1 = 1, N2 = 1, N3 = 1, and N4 = 8 polynomials (straight edges only require linear
polynomials and the circular arc can be represented to the desired tolerance by a degree
eight polynomial).

Figure 8.1

.

illustrates the approximate solution to this problem corresponding to an Lu1 =
Lu2 = 18 degree polynomial representation, along with the decay of coefficients used to
represent the solution (plotted by computing the entrywise logarithm of absolute values
log10 |φ|). Figure 8.2

.

illustrates the pointwise error log10 |φ − φexact| (sampled with 201
uniformly spaced points in each coordinate of the canonical domain ū ∈ (−1, 1)2) which
shows that, in a worst case, the approximate solution is exact to 11 digits (reducing the
tolerance yields more accurate solutions at greater cost). For this example, the condition
number of the saddle point system is roughly κ1 (S) ≈ 4, 715. Finally, Figure 8.2

.

also
illustrates the sparsity of the saddle point matrix. Even though this problem is a constant
coefficient Poisson problem, the curvilinear map introduces a significant number of nonzeros.

192

Polynomial degree in x2

P
o
ly
n
o
m
ia
l
d
eg
re
e
in

x
1

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 8.1: (top) Computed solution of the curvilinear problem (8.75

.

) with Dirichlet bound-
ary conditions. (bottom) Log base ten of the absolute value of the entries of the coefficient
matrix φ.

193

Figure 8.2: (top) Pointwise error log10 |φ− φexact| between the computed solution in Figure
8.1

.

and the exact solution. (bottom) Sparsity pattern of the saddle point system used to
compute the solution.

194

Chapter 9

A Non-Conforming Finite Element
Method

In Chapters 7

.

and 8

.

, the PDE

− ∇ · (α∇φ) + βφ = f (9.1)

was solved on the canonical domain (−1, 1)2, and on mappings of this domain x̄ : (−1, 1)2 →
Ω, subject to various boundary conditions. This chapter solves (9.1

.

) on more general domains
Ω that cannot be expressed by a single curvilinear quadrilateral map. The approach, as in
the one-dimensional case, is to partition the domain Ω into a finite set of disjoint subdomains
Ωj (with a total of Ne such subdomains) so that Ω = ⋃Ne

j=1 Ωj with Ωj ∩Ωj′ = ∅ for all j ̸= j′.
Each subdomain Ωj (called an element) is required to result from a map x̄j : (−1, 1)2 → Ωj,
each of which is of the transfinite interpolation type described in Chapter 8

.

.
There are many ways one can construct a partition of a domain Ω into quadrilaterals. The

literature [62

.

, 156

.

] cover a wide variety of methods, including structured and unstructured
partitions (which are called meshes). According to [62

.

], a structured mesh is one where
“each vertex [...] can be readily defined as an array of indices” and, “by extension, any mesh
having a high degree of ordering (for example a Cartesian grid) is said to be structured.”
This definition is ambiguous by design and allows for the possibility of irregularity in the
mesh. In addition, it does not specify the geometry of individual elements. In this thesis,
only a subset of structured meshes are considered. In particular, only Cartesian structured
meshes (whose elements must belong to an orthogonal Cartesian grid) and near-Cartesian
structured meshes with a large number of elements taken from an orthogonal Cartesian grid
with possible exceptions occurring near the boundary of the domain Ω (and possibly at
interfaces) are distinguished. Mesh generation algorithms to produce such meshes belong to

195

the class of superposition methods [157

.

].
This chapter describes a particular superposition algorithm that can be used to mesh

domain Ω. The method starts from a partition of Ω into subdomains Ω̂i, each defined by the
zero level set of a function Φi. A uniform Cartesian structured mesh is laid over Ω. Elements
from this mesh sufficiently near interfaces between subdomains Ω̂i and sufficiently near the
boundary of Ω are identified. The vertices of identified elements are projected to these
interfaces. Then additional elements are added at the interfaces to improve the quality of
the mesh in these regions [158

.

]. A smoothing [66

.

] and mesh optimization step [67

.

, 68

.

] follow
to produce a conforming mesh that is near-Cartesian (it is structured away from boundaries
and interfaces). As a final step, structured elements in the mesh are grouped together to form
larger elements. Then edges of elements on curvilinear boundaries or interfaces are made
curvilinear using the projection technique described in Chapter 8

.

. This method produces a
final non-conforming mesh.

The remainder of the chapter explains how to solve (9.1

.

) on such a mesh. The techniques
described in Chapters 7

.

and 8

.

can be applied to each element Ωj of the mesh to produce
local operator matrices. Since many elements come from a structured Cartesian grid, their
local operator matrices tend to be sparse. Near interfaces the operator matrices tend not to
be sparse, but these elements are needed to produce accurate solutions wherever parameters
α or β are discontinuous. In addition, local operator matrices tend not to be sparse near
boundaries of the domain, however these elements are needed to accurately represent the
geometry of the problem. Once local operator matrices are computed, the basis functions
across element subdomains are connected together by imposing continuity constraints. Non-
conforming edges in the mesh require special attention. The chapter describes a systematic
approach to impose continuity along all edges of the mesh and emphasizes how to produce
a global constraint matrix of full rank.

Finally, the chapter concludes with examples from electrostatics and electromagnetic
scattering. The examples use hp-adaption to showcase the fact that basis functions on
adjacent elements can have different polynomial degrees, and that the mesh can be non-
conforming. In both types of problems, the method provides accurate solutions.

9.1 Quadrilateral Mesh Generation

To generate a near-Cartesian mesh, we employ a four step process. To specify this four
step process, we require the user to provide: a tolerance 0 < ϵtol ≪ 1 to which iterative
computations are performed (unless otherwise specified); a set of fixed vertices {x̄fixed,k}
which are usually corners in the geometry where a vertex in the mesh is required (this set

196

may be empty); a set of implicit functions Φi such that

Ω̂i =
{
x̄ ∈ R2 : Φi (x̄) < 0

}
, (9.2)

which specifies the partition of domain Ω; and the base point vertex x̄bound and side length H
of an axis-aligned bounding box Ωbox whose other vertices are x̄bound+Hē1, x̄bound+Hē2, and
x̄bound + H(ē1 + ē2). The bounding box should contain Ω (that is, Ω ⊂ Ωbox). The implicit
functions Φi need not be signed distance functions, but we use them wherever possible1

.

. The
user should also specify how many steps of smoothing and mesh optimization to perform
(usually some small number less than five), as well as the minimum and maximum level
of refinement of the bounding box (denoted lmin and lmax respectively). We consider the
box itself to be level 0 and each additional level corresponds to a uniform refinement of the
previous level. Refinement is performed by dividing each square belonging to a given level
into four similar squares (level 1 has four squares, level 2 has sixteen, etc., as in a quadtree).
The mesh corresponding to the maximum level of refinement is used as a starting Cartesian
structured mesh in the algorithm and the minimum level is used at the end of the algorithm
when grouping structured elements into larger elements (elements are grouped only up to
elements belonging to the minimum level). The choice of these parameters is crucial in
constructing a useful mesh and a poor choice can lead to a poor mesh. For example, if the
maximum level is not chosen large enough, the mesh may not properly resolve fine features
in the geometry of the problem.

To illustrate the steps in the algorithm, we use an example with tolerance ϵtol = 10−12

and no fixed vertices. We specify

Φ1(x̄) = ∥x̄∥2 − 1, (9.3)

Φ2(x̄) = −Φ1(x̄), (9.4)

so that Ω̂1 corresponds to the interior of the unit circle, and Ω̂2 corresponds to the exterior.
We choose bounding box parameters

x̄bound =
⎡⎣ −2

−2

⎤⎦ , H = 4, (9.5)

so that Ωbox = (−2, 2)2. We set the number of smoothing and optimization steps to 3 and
specify a maximum refinement level lmax = 4 and a minimum level lmin = 0. As we will see,

1For a calculus of signed distance functions that can be used to build more complicated domains from
simple implicit functions, see [154

.

].

197

the maximum level is chosen fine enough to resolve the unit circle adequately.

Step 1 Classify Elements and Project Vertices onto Interfaces

In the first step of the algorithm, we begin with the Cartesian mesh obtained from
performing uniform refinements of the initial box Ωbox. The vertices in such a mesh
are given by

x̄m,n = x̄bound + h(mē1 + nē2) (9.6)

where h = H · 2−lmax and m,n = 0, 1, 2, ..., 2lmax . We view each set of points x̄m,n,
x̄m,n+1, x̄m+1,n, and x̄m+1,n+1 as the vertices of a square element Ωj in the mesh. We
sample each implicit function Φi at all vertices. If an element has all four of its vertices
satisfying Φi(x̄) < 0, then we classify this element as belonging to subdomain Ω̂i.
Those elements that lie entirely outside of Ω are discarded in the process (these are
elements for which Φi(x̄) ≥ 0 for all i).

After such a process, there will be small bands of unclassified elements intersecting the
boundaries of subdomains Ω̂i. To classify those elements, we perform a more careful
check by computing an approximate area fraction of the element that lies inside each
subdomain. If |Ωj| is the area of Ωj, then the area fraction of Ωj contained in Ω̂i is

A
(f)
ij = 1

|Ωj|

ˆ
Ωj

1Ω̂i
dΩ (9.7)

= 1
|Ωj|

ˆ
Ωj

[1 − u(Φi(x̄))]dΩ (9.8)

where 1Ω̂i
is the unit indicator function on Ω̂i which we represent using the Heaviside

step function u(t). In practice, we use a first order approximation to the Heaviside
step function [154

.

] given by

u(t) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 t < −ϵ
1
2 + t

2ϵ + 1
2π sin

(
πt

ϵ

)
−ϵ ≤ t ≤ ϵ

1 ϵ < t.

(9.9)

We choose ϵ = 1.5h and compute integral (9.8

.

) numerically using Gauss-Legendre
quadrature with six nodes along each dimension. Since

A
(f)
0j +

∑
i

A
(f)
ij = 1 (9.10)

198

where A(f)
0j corresponds to the area fraction outside of Ω, once we have computed all

A
(f)
ij for i > 0, we also know A

(f)
0j . We then classify the boundary elements by largest

area fraction.

Note that these classification checks are a potential weak point of the algorithm. For
example, it is possible for an element to satisfy the four vertex conditions but still
intersect the boundary. One potentially costly fix is to sample more points along edges
of each element. Instead, we choose this inexpensive test and require the user to choose
lmax to be large enough, and consequently the spacing h to be small enough, to capture
the finest features of the boundaries of Ω̂i. In particular, one should choose h as a
function of the curvature of the boundary. Regions of high curvature require smaller
h. This can sometimes have negative effects because the resulting mesh is uniform.
Thus, if the boundary has only a few regions of large curvature, but otherwise mostly
small curvature, then the mesh must be fine to resolve those regions of high curvature,
and will be over-refined in regions of low curvature. At the end of the algorithm,
we show how to avoid these effects in the interior of subdomains. However, this still
causes the boundary to be refined to the same level everywhere, even where this level
of refinement may not be needed.

The classification of elements is used to determine which vertices of the Cartesian
mesh to project onto the boundaries of Ω̂i. A vertex sharing four elements of the same
classification is considered fixed while others are projected. The projection is computed
using the same approach as in Chapter 8

.

. That is, if a free vertex belongs to subdomain
Ω̂i (we have already checked which subdomain each vertex belongs to), then we use Φi

in iteration (8.25

.

). If we do not know the gradient of Φi, we approximate its gradient
using (8.38

.

). If the norm of the gradient is zero at some point during the iteration,
we perturb the unit vector in the gradient computation by a random direction (each
component uniformly distributed on the interval (0, 1)). This is acceptable because we
simply want to project the vertex onto the boundary of Ω̂i and are not concerned with
whether the vertex is projected to the nearest point on the boundary. We terminate
the iteration if the distance between the projected vertex and the boundary falls below
the user specified tolerance ϵtol or if a number of iterations exceeding 20 is reached.
Typically the number of iterations required for convergence is much smaller2

.

. We then
compute the distance of the projected vertices to the user specified set of fixed points

2As a safety precaution, if the iteration terminates having reached 20 iterations without converging, we
use bisection to compute the projection onto the boundary. This is slower, but is more robust, particularly
for functions Φi that are not differentiable. Starting with vertex x̄, we compute the normalized direction
d̄ = ∇Φi(x̄)/∥∇Φi(x̄)∥2 and solve for the scalar τ such that Φi(x̄ + τ d̄) = 0. This is a one-dimensional
root-finding problem. We search for the root τ ∈ (−

√
2h,

√
2h).

199

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

Figure 9.1: Structured Cartesian mesh after projection of vertices onto interfaces.

{x̄fixed,k}. We set the closest projected vertex to its corresponding fixed point to ensure
that all points in the fixed set belong to the set of vertices in the mesh.

Figure 9.1

.

illustrates the result of this first step of the algorithm as applied to the
unit circle example. Note that elements away from the interface remain structured but
vertices near the interface have been projected onto the unit circle. All elements are
quadrilateral, but many of the elements that include projected vertices are degenerate
because of the projection phase.

Step 2 Add Pillow Layer Elements

Next, new elements are added to the mesh along all boundaries of subdomains Ω̂i.
These elements are added to the mesh in layers by a process called pillowing [158

.

].
Every vertex x̄ on the boundary of Ω̂i is duplicated, then projected a distance

√
2h/4

away from the boundary (one fourth of the length of the diagonal of a structured
element in the mesh) and into Ω̂i using

x̄new = x̄−
√

2
4 h

∇Φi(x̄)
∥∇Φi(x̄)∥2

. (9.11)

200

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

Figure 9.2: Addition of pillow layers. Original elements from the structured Cartesian
mesh are shown with black edges while new elements in the pillow layers are shown with red
dashed edges.

It is important to replace x̄ with x̄new for all elements belonging to Ω̂i. This process
is repeated for every Ω̂i, resulting in a layer of new elements on boundaries of Ω and
double layers of elements on interfaces. We make sure to classify the new elements
appropriately according to the same classification scheme as in Step 1.

Figure 9.2

.

shows the mesh for the unit circle example after the pillow layer step. Note
that since the unit circle is an interface, there are two layers of elements added. By
virtue of using the same points on the shared interface, the pillow layer elements are
conforming across the interface even though the original projected mesh was not. Ele-
ments from the original mesh connecting to the pillow layer continue to be degenerate.

The connectivity of new elements and of the original mesh should be determined. We
generate four arrays that do this. The first array X lists the locations of the Nv vertices
in the mesh as an R2×Nv matrix. The second array V lists which four vertices belong
to each of the Ne elements. To do this, we use an NNe×4 array. The row number in
this array implicitly refers to the element while the column number implicitly refers
to the local vertex number as illustrated in Figure 9.3

.

. The entry V i,j corresponding

201

Figure 9.3: Local canonical element vertex numbering and edge numbering. Vertices have
coordinates x̄1 = −ē1 − ē2, x̄2 = ē1 − ē2, x̄3 = −ē1 + ē2, and x̄4 = ē1 + ē2 and edges have
unit normals n̄1 = −ē1, n̄2 = ē1, n̄3 = −ē2, and n̄4 = ē2.

to local vertex j of the ith element is an integer k that refers to the coordinates of
the kth global vertex stored in column k of X. We produce another NNe×4 array E

that stores the neighbors of each element across each edge. The row number in this
array implicitly refers to the element while the column number implicitly refers to the
local edge number as illustrated in Figure 9.3

.

. Here, the entry Ei,j corresponding to
local edge j of the ith element is an integer k that refers to element k that shares that
edge. If no element shares edge Ei,j, we store a zero instead. Similarly, we also store
an NNe×4 array E(n) which specifies the local number of the shared edge. The row
number and column number implicitly encode the same data as in E but the entry
E

(n)
i,j specifies the local edge number of the neighboring edge (an integer between 1 and

4). If the edge is not shared, we store a zero instead.

Step 3 Perform Smoothing and Local Mesh Optimization

To improve the quality of elements near the boundary, we begin by applying Laplacian
smoothing [66

.

]. That is, for every vertex x̄m adjacent to or on a boundary, we compute
its new location

x̄new =
∑

n∈Nm

x̄n (9.12)

where Nm is the set of indices corresponding to vertices x̄n sharing an edge connecting
to vertex x̄m. We do this for every relevant vertex, then project those vertices that be-

202

longed to boundaries and interfaces back onto their respective interfaces or boundaries
using the projection scheme of Step 1. Vertices that were part of the user defined set
of fixed nodes are not changed.

A small number of iterations of Laplacian smoothing is effective for meshes of a sin-
gle convex domain Ω but can result in meshes with inverted elements otherwise (for
example, when meshing a re-entrant corner). An inverted element is one whose Ja-
cobian determinant (corresponding to the transfinite interpolation map) changes sign.
To return the mesh to a state with no inverted elements, we use a mesh untangling
algorithm [67

.

]. Typically, only a small number of vertices result in inverted elements.
To identify these vertices, we visit every element with a vertex that was projected in
Step 1, along with all pillow layer elements. For each element, we compute four signed
areas corresponding to triangles in the quadrilateral. Triangle 1 has local vertices 1, 2,
and 3; triangle 2 has local vertices 2, 4, and 1; triangle 3 has local vertices 3, 1, and
4; and triangle 4 has local vertices 4, 3, and 2 (these are right triangles correspond-
ing to each vertex in the local canonical element in Figure 9.3

.

with vertices ordered
counterclockwise). If a triangle has vertex coordinates p̄1, p̄2, and p̄3 numbered coun-
terclockwise, then its edges are given by vectors p̄2 − p̄1 and p̄3 − p̄1. In addition, its
signed area is

A(t) = 1
2 det(T), T =

[
p̄2 − p̄1 p̄3 − p̄1

]
. (9.13)

We compute the four signed areas of the four triangles defined for a single quadrilateral
element. If any of the signed areas is negative, the element is possibly inverted.

The untangling algorithm is performed for every vertex belonging to possibly inverted
elements, except those vertices belonging to a boundary or to the user specified set of
fixed nodes. Once a vertex x̄ is chosen, we perform the untangling algorithm on the
set of elements that share this vertex. In practice, this is a small number of elements.
The algorithm begins by solving an optimization problem to find a location x̄untangled

to move the vertex x̄ to in order to make all signed areas of the triangles corresponding
to the adjacent elements positive. Suppose elements j ∈ J share vertex x̄. Then we
solve

x̄untangled = arg min
x̄

∑
j∈J

i=1,2,3,4

|A(t)
ij − βA| − (A(t)

ij − βA) (9.14)

where A(t)
ij is the area of the ith triangle corresponding to the jth element (computed

according to (9.13

.

)), β = ϵ
1/4
tol is a tolerance that we choose to avoid finding a new

vertex position x̄untangled that leaves certain areas A(t)
ij equal to zero, and A is the

average area of the elements in J . We choose β this way because we terminate the

203

iterative optimization routine used to solve this problem when a tolerance ϵ1/2
tol is met

(x̄ is used as the initial iterate). Evidently, some A(t)
ij and A depend on the location of

vertex x̄. This objective function is inspired by the objective

∑
j∈J

i=1,2,3,4

|A(t)
ij | − A

(t)
ij (9.15)

which is zero when all triangles have positive signed area and which is greater than
zero when any signed area is negative. Unfortunately, if some signed areas are zero
while others are positive, this simpler objective is minimized, but can correspond to a
mesh with degenerate elements. To avoid this situation, we add the term βA to obtain
(9.14

.

). In practice, we compute the average area A using

A = 1
2|J |

∑
j∈J

i=1,2,3,4

A
(t)
ij (9.16)

where |J | is the total number of elements sharing vertex x̄. We divide by 2 because
performing ∑4

i=1 A
(t)
ij for a given quadrilateral j double counts its area. We solve this

optimization problem using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
with backtracking line search and gradients approximated by finite differences [90

.

].

If the untangling algorithm succeeds, we use a second mesh optimization algorithm to
improve the quality of the elements that were untangled. This optimization method
belongs to the target-matrix paradigm of mesh optimization methods [68

.

]. The method
works when all elements are untangled. We solve the optimization problem

x̄optimized = arg min
x̄

∑
j∈J

i=1,2,3,4

µ(T ij) (9.17)

with initial iterate x̄untangled. The matrices T ij are those that arise when computing
the area of triangle i for element j as in (9.13

.

) and, as a consequence, are functions of
location x̄. We choose the shape metric

µ(T) =

⎧⎪⎨⎪⎩condF (T) det(T) > 0

∞ otherwise
(9.18)

where condF (T) = ∥T∥F ∥T−1∥F is the condition number in the Frobenius norm. This
tends to produce elements of roughly the same shape (in terms of angles and aspect

204

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

Figure 9.4: Mesh after three iterations of Laplacian smoothing followed by mesh untangling
and mesh optimization.

ratio) and disregards size and orientation properties. The optimization is performed
using the same tolerance and BFGS method as for the untangling method.

In practice, we perform a small number of iterations (less than or equal to five) of
Laplacian smoothing followed by the mesh optimization procedure (here one applica-
tion of Laplacian smoothing (9.12

.

) followed by one optimization phase is considered
one iteration). Figure 9.4

.

illustrates the mesh for the unit circle example after this
smoothing and optimization step. Element quality near the interface has improved
when compared with Figure 9.2

.

.

Step 4 Coarsen the Mesh and Construct Curvilinear Edges

Next, we coarsen the mesh by grouping elements that belong to the structured part of
the mesh. We only group elements according to a quadtree structure. That is, if we
are grouping elements on level l of the tree, we want the group to be an element on
level l−1 of the tree. For example, it would be possible to group the first two elements
of the bottom two rows of Figure 9.4

.

but not the second and third elements on the
bottom two rows. In addition to this grouping rule, we also make sure to only group
elements that all belong to the same classification. This prevents grouping elements

205

across interfaces. We repeat the grouping phase for each level in the tree, starting from
level lmax and backtracking to level lmin. We do not impose a 2:1 rule common in most
quadtree meshes for finite element methods [62

.

]. We maintain a tree structure which
indicates which elements in the tree are leaves (i.e. elements) in the coarsened mesh.

Finally, we generate curvilinear edges for all elements that have an edge on a boundary
or interface (these are always elements on the finest level of the tree lmax). We compute
a curvilinear edge for any edge shared with the boundary of Ω (corresponding to
a boundary edge) or for any edge shared with a neighbor of different classification
(corresponding to an interface edge). We use the connectivity array E to determine
boundary edges (a zero entry) and neighbors (a nonzero entry). Curvilinear edges are
constructed using the projection-based approach for implicitly defined boundaries as
described in Section 8.2

.

. For each edge, the vertices serve as the points x̄start and x̄end

for the curvilinear projection scheme (we always specify the vertices in increasing local
numbering order). We store the matrix X̃(j)

i of Legendre coefficients for element j and
edge i. For each straight edge in the mesh,

X̃
(j)
i =

[
x̄start x̄end

]
Ṽ −T (9.19)

where Ṽ is the degree one generalized Vandermonde matrix of Legendre polynomials
evaluated at points −1 and 1, as given in (2.32

.

). With this information, each element
has a well defined transfinite interpolation map x̄j : (−1, 1)2 → Ωj.

Figure 9.5

.

illustrates the final mesh for the unit circle example after the coarsening
and curvilinear edge construction step. Notice how elements away from the interface
are grouped together. Here, elements on level lmax = 4 have been grouped and exist
on levels l = 2, 3. No elements exist on levels l = 0, 1, despite lmin being set to
zero because there is no opportunity for such coarsening (the interface prevents this
possibility). The elements in the corners of Figure 9.5

.

show that the 2:1 rule has not
been adhered to. In addition, while it may be difficult to see, upon close inspection,
the edges of elements shared with the interface are curvilinear whereas they were not
in any of the previous steps of the algorithm.

This four step procedure results in a mesh for which, typically, a large number of elements
are structured. In addition, because all steps were performed to a specific user specified
tolerance, the mesh represents the desired geometry to this tolerance. This is crucial when
computing high accuracy solutions because errors in the representation of the geometry can
have a significant effect on accuracy. In the event that a conforming mesh is desired, we
simply leave out the coarsening portion of Step 4.

206

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

Figure 9.5: Final mesh after quadtree coarsening and computation of curvilinear edges.

9.2 A Conforming Finite Element Method

Before addressing the full generality of the finite element method on a non-conforming mesh,
it is helpful to first see how to treat the method on a conforming mesh. This will be a
special case of the method presented later for non-conforming meshes. By separating the
presentation, we can identify which aspects differ when adding non-conformity to the mesh.
In order to solve (9.1

.

) on a potentially complicated domain Ω, we begin by computing a
conforming near-Cartesian structured quadrilateral mesh, as in Section 9.1

.

(without the
coarsening procedure), resulting in arrays X, V , E, and E(n) which describe its connectivity,
along with matrices X̃(j)

i used to describe the geometry of the edges of each element. From
the connectivity data, we produce a linked list with Nv nodes. Each node corresponds to
a vertex in the mesh and points to an array containing all edges that are incident to the
vertex (the edges are labeled by the element to which they belong, as well as their local
edge number). We call this the vertex-to-edge incidence list and will use it to ensure that
the constraint matrix we assemble remains full rank (this is similar to the vertex-to-edge
incidence list in Chapter 7

.

but contains more data now that the mesh is comprised of more
than one element).

We assign each element subdomain Ωj its appropriate parameters α, β, and f . We do

207

this for boundary functions γ, q, and p as well, but only for edges in the connectivity array
E that contain a zero entry (these are the edges that belong to the boundary of domain Ω).
As a final preparatory step, we compute Legendre expansions for each element’s effective
parameters αeff, βeff, feff, as well as for boundary functions γeff, qeff, peff. We can do this
because each element has its transfinite interpolation map x̄j : (−1, 1)2 → Ωj defined at the
conclusion of the mesh generation phase.

Using the maps x̄j, we define effective sets of basis functions

N̄j (x̄) =

⎧⎪⎨⎪⎩N̄ (uj,2 (x̄j)) ⊗ N̄ (uj,1 (x̄j)) x̄ ∈ Ωj

0 otherwise
(9.20)

where ūj : Ωj → (−1, 1)2 is the inverse map of x̄j. Each set of basis functions is nonzero on
its corresponding subdomain Ωj and consists of transformed polynomials of degree Lj,u1 and
Lj,u2 . In practice, the inverse of each transfinite interpolation map is not explicitly known
and therefore we only work with the forward map3

.

. If we concatenate all basis functions
together and write φ as a linear combination with coefficients φ̄ such that

N̄ (x̄) =

⎡⎢⎢⎢⎢⎢⎢⎣
N̄1 (x̄)
N̄2 (x̄)
...

N̄Ne (x̄)

⎤⎥⎥⎥⎥⎥⎥⎦ , φ̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
φ̄1

φ̄2
...

φ̄Ne

⎤⎥⎥⎥⎥⎥⎥⎦ , (9.21)

and then apply, for example, Galerkin’s method, the operator matrix partitions into a block
diagonal matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
A1

A2
. . .

ANe

⎤⎥⎥⎥⎥⎥⎥⎦ (9.22)

3Occasionally the inverse map is needed to evaluate a basis function at a specified point x̄desired. In such a
case, we must apply root-finding techniques to the function f̄j (ū) = x̄desired −x̄j (ū) to find the corresponding
ūdesired that yields f̄j (ūdesired) = 0. Because the transfinite interpolation is a vector function of polynomials,
there are root-finding possibilities beyond the standard iterative fixed point techniques (which subsume
Newton’s method) [50

.

]. However, all of the computations in this chapter are performed without solving this
nonlinear problem.

208

and the forcing term partitions into

b̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
b̄1

b̄2
...

b̄Ne

⎤⎥⎥⎥⎥⎥⎥⎦ (9.23)

where each block corresponds to a local operator matrix and local forcing term assembled
as described in Chapters 7

.

and 8

.

. To see why this block structure arises, we evaluate the
weighted residual ˆ

Ω
ψ [−∇ · (α∇φ) + βφ] dΩ =

ˆ
Ω
ψf dΩ. (9.24)

Computing the integral split over each subdomain yields

Ne∑
j=1

ˆ
Ωj

ψ [−∇ · (α∇φ) + βφ] dΩ =
Ne∑
j=1

ˆ
Ωj

ψf dΩ (9.25)

Ne∑
j=1

ˆ
Ωj

∇ψTα∇φ+ ψβφ dΩ −
˛

∂Ωj

ψn̄Tα∇φ dΩ =
Ne∑
j=1

ˆ
Ωj

ψf dΩ. (9.26)

Applying Robin boundary conditions gives

Ne∑
j=1

ˆ
Ωj

∇ψTα∇φ+ ψβφ dΩ +
ˆ

ΓR,j

ψγφ dΩ  
terms associated with Aj

−
ˆ

∂Ωj\ΓR,j

ψn̄Tα∇φ dΩ =

Ne∑
j=1

ˆ
Ωj

ψf dΩ +
ˆ

ΓR,j

ψq dΩ  
terms associated with b̄j

. (9.27)

Substituting φ = N̄(x̄)T φ̄ with N̄(x̄) and φ̄ as in (9.21

.

) and repeating the equation with ψ

replaced by every entry in N̄(x̄) yields

Aφ̄+ CT ν̄ = b̄. (9.28)

All off-diagonal blocks of A are zero because none of the subdomains Ωj intersect each other
and each set of basis functions in N̄(x̄) is only nonzero on a single subdomain. As we have
seen in Chapter 6

.

, the remaining unassigned boundary terms in (9.27

.

) contribute to CT ν̄.
To construct the constraint matrix C, we explicitly enforce Dirichlet boundary conditions,

as well as inter-element continuity. To do so, we consider all j = 1, 2, ..., Ne, elements

209

sequentially, and for each element consider each edge i = 1, 2, 3, 4, in turn. If edge i of
element j belongs to ΓD, we append the set of equations

[
0 · · · 0 Ci 0 · · · 0

]
φ̄ = d̄i (9.29)

to the matrix C and vector d̄. Here, the nonzero Ci block belongs to the jth block column,
and Ci and d̄i are assembled as in Chapters 7

.

and 8

.

. To ensure that we have not introduced
any redundant equations in performing this operation, we remove this edge from all vertex
lists in the vertex-to-edge incidence list. As in Section 7.5

.

, we remove the first row of (9.29

.

)
if one vertex list in the incidence list becomes empty. If two vertex lists become empty, we
remove the first two rows of (9.29

.

). This preserves the full row rank of the constraint matrix
C.

Enforcing inter-element continuity is related but slightly more complicated. As in Chap-
ter 6

.

, continuity between elements sharing boundary Γi can be enforced in a weak sense
via ˆ

Γi

N̄B (x̄) [φj (x̄) − φj′ (x̄)] dΩ = 0 (9.30)

where φj is used to signify the solution on element j and φj′ the solution on its neighboring
element j′ that shares common boundary Γi, with i denoting the ith local boundary for
element j (element j′ has a corresponding local element edge number i′). N̄B is a vector of
weight functions along edge Γi that we specify. Given this edge labeling, a convenient way
to write the boundary integral is

ˆ
Γi

N̄B (x̄)φj (x̄) dΩ −
ˆ

Γi′

N̄B (x̄)φj′ (x̄) dΩ = 0. (9.31)

Without loss of generality, we let element j have degree Lj,u1 and Lj,u2 polynomial basis
functions whereas we let element j′ have degree Lj′,u1 and Lj′,u2 polynomial basis functions.
When the degrees on both elements match, we can choose N̄B to be a weighted vector of
Legendre polynomials on the shared edge and use the results from Section 7.5

.

for Dirichlet
boundary conditions to obtain

[
0 · · · 0 Ci 0 · · · 0 −Ci′ 0 · · · 0

]
φ̄ = 0 (9.32)

where Ci appears in the jth block column and −Ci′ appears in the j′th block column4

.

.
4It may also be necessary to change the sign of entries associated with odd basis functions in the second

constraint block if the parametrizations of the edges on each element are oriented opposite to each other.
This is simple to check by taking the inner product of the two edge vectors. Since the inner product returns
the magnitude of the two edge vectors multiplied by the cosine of the angle between them, we know that

210

As with Dirichlet boundary conditions, we append this block row equation to the existing
constraint matrix C and vector d̄. The forms of the block entries are identical to those
arising from Dirichlet boundary constraints, and we need to follow the same procedure to
ensure that we preserve full rank. When imposing this continuity constraint, we remove the
element-edge combinations (j, i) and (j′, i′) from the vertex-to-edge incidence list wherever
they appear and modify the corresponding constraint equations if a vertex list in the vertex-
to-edge incidence list becomes empty.

Unfortunately, when the polynomial degree on neighboring elements differ, we must mod-
ify the matrices Ci used to compute the inter-element continuity constraints. This is because
the number of rows in Ci and Ci′ differ when the degree of the basis functions differ. To
find conforming matrices, we interpret lower degree polynomial expansions as being embed-
ded into higher degree polynomial expansions so that both φj (x̄) and φj′ (x̄) can be written
using a common number of basis functions. We accomplish this by using new matrices of
coefficients

φj,pad = P j,u1φjP
T
j,u2 , (9.33)

φj′,pad = P j′,u1φj′P T
j′,u2 , (9.34)

where

Pm,un =
⎡⎣ I

0

⎤⎦ (9.35)

has identity block I with size (Lm,un + 1) × (Lm,un + 1) and zero block with size (Lun,max −
Lm,un) × (Lm,un + 1), where Lun,max = max (Lj,un , Lj′,un) and m = j or j′ and n = 1 or 2.
By padding the coefficient matrices in this way, we can use expansions

φj (ū) =
(
N̄ (u2) ⊗ N̄ (u1)

)T
vec

(
P j,u1φjP

T
j,u2

)
, (9.36)

φj′ (ū) =
(
N̄ (u2) ⊗ N̄ (u1)

)T
vec

(
P j′,u1φj′P T

j′,u2

)
, (9.37)

where the basis functions N̄ (u2) are of degree Lu2,max and N̄ (u1) are of degree Lu1,max.
Since the number of basis functions are now common to both elements, we can specify N̄B

compatibly as weighted Legendre polynomials of the same degree.
As an example, consider the first term in the boundary integral (9.31

.

) on edge Γi with
i = 1, 2, given by

ˆ
Γi

N̄B (x̄)φj (x̄) dΩ =
ˆ

Γi

p̄ (u2)
(
N̄ (u2) ⊗ N̄((−1)i)

)T
vec

(
P j,u1φjP

T
j,u2

)
dΩ. (9.38)

the edge parametrizations point in opposite directions if the returned value is negative.

211

Using property (5.13

.

), we obtain
ˆ

Γi

N̄B (x̄)φj (x̄) dΩ =
ˆ

Γi

p̄ (u2)
(
N̄ (u2) ⊗ N̄((−1)i)

)T (
P j,u2 ⊗ P j,u1

)
φ̄jdΩ. (9.39)

Then, using the same manipulations as in (7.147

.

)-(7.149

.

), along with property (5.12

.

), we
find that

ˆ
Γi

N̄B (x̄)φj (x̄) dΩ = 1√
2
S̃T

(
P j,u2 ⊗

(
ē1 + (−1)i ē2

)T
P j,u1

)
  

Cp,ij

φ̄j. (9.40)

A similar analysis yields
ˆ

Γi

N̄B (x̄)φj (x̄) dΩ = 1√
2
S̃T

((
ē1 + (−1)i ē2

)T
P j,u2 ⊗ P j,u1

)
  

Cp,ij

φ̄j (9.41)

for boundary edges Γi with i = 3, 4. Since the second integral in (9.31

.

) is of the same form,
we find that the appropriate constraint equations are

[
0 · · · 0 Cp,ij 0 · · · 0 −Cp,i′j′ 0 · · · 0

]
φ̄ = 0 (9.42)

which take into account any possible polynomial degree mismatch between elements. We
are able to remove the factor 1√

2 S̃
T by multiplication by its inverse. As in the matching

polynomial degree case, we need to check for rank deficiency when appending such matrices to
the global constraint matrix C and vector d̄. This is because the padding of coefficients never
changes the lower order equations, which are those which cause rank problems. The same
procedure for modifying equations to preserve full rank using the vertex-to-edge incidence
list continues to apply. Once the global constraint matrix and vector have been assembled,
we solve the saddle point system⎡⎣ A CT

C 0

⎤⎦⎡⎣ φ̄

ν̄

⎤⎦ =
⎡⎣ b̄

d̄

⎤⎦ (9.43)

which is not singular. Note that each block in the saddle point matrix is composed of blocks
derived from the analysis of a single element as performed in Chapters 7

.

and 8

.

.

212

9.3 Including Non-Conforming Constraints

When we solve (9.1

.

) using a non-conforming mesh produced using the procedure described in
Section 9.1

.

, the details regarding the assembly of the operator matrix A and forcing vector
b̄ remain unchanged. In addition, imposing Dirichlet boundary conditions also remains
unchanged. The added difficulty arises in imposing inter-element continuity constraints
between adjacent elements.

To fix ideas, we consider imposing a single set of continuity constraints between two
adjacent elements. Without loss of generality, we will assume that element j belongs to a
coarser level of the quadtree than element j′. We also allow for both elements to belong to
the same level. This case has already been handled by the conforming continuity constraints
of the previous section but we will see that our formulation coincides with this result as a
special case. We consider constraints of the form

ˆ
Γi′

N̄B(x̄)[φj(x̄) − φj′(x̄)]dΩ = 0 (9.44)

where Γi′ corresponds to the i′th edge of the finer element j′. This edge makes up only a
portion of the edge Γi corresponding to edge i of the coarser element j. We perform the
same type of padding as in (9.36

.

)-(9.37

.

) to represent φj(x̄) and φj′(x̄) with the same number
of basis functions. We choose the weight functions

N̄B(x̄) = ∥X̃ i′D̃p̄ (uk′) ∥−1
2

√
2S̃−T p̄(uk′) (9.45)

with k′ = 2 if i′ = 1, 2, and k′ = 1 if i′ = 3, 4. These are the same weight functions we have
used previously to obtain constraint matrices Cp,ij in the conforming case (the norm term
is used to cancel the variable transformation when computing the line integral and the term
√

2S̃−T simplifies the constraints). With this choice,
ˆ

Γi′

N̄B(x̄)φj′(x̄) dΩ = Cp,i′j′φ̄j′ (9.46)

which provides the discretization for the second term in (9.44

.

). Thus far, this is no different
from the development for the conforming case.

The difficulty arises when considering the first term in (9.44

.

). In particular, the local
coordinate uk′ ∈ (−1, 1) appearing in the weight functions N̄B(x̄) is not the same as the
local coordinate uk on edge Γi of the coarser element. This means that we cannot directly
use Cp,ijφ̄j when discretizing the first term in (9.44

.

). The key idea is to relate the two sets
of coordinates. We can write uk = auk′ + b where constants a and b are chosen so that

213

uk′ ∈ (−1, 1) parametrizes only the shared portion of edges Γi′ and Γi (we will later explain
how to select a and b for elements in a quadtree mesh). To fix ideas, suppose that, for now,
k = 2 (which means that i = 1, 2). Then φj restricted to either of those two edges can be
written as

φj(x̄) =
(
N̄ (u2) ⊗ N̄((−1)i)

)T
vec

(
P j,u1φjP

T
j,u2

)
(9.47)

=
(
N̄ (auk′ + b) ⊗ N̄((−1)i)

)T
vec

(
P j,u1φjP

T
j,u2

)
. (9.48)

In our development, we will exploit the fact that

p̄(ax+ b) = Lp̄(x) (9.49)

where L is a lower triangular matrix, x ∈ (−1, 1), and a and b are chosen so that ax+ b lies
inside (−1, 1). We will explain how to compute the entries of L shortly. Since N̄(x) = S̃p̄(x)
and N̄(ax+ b) = S̃p̄(ax+ b), multiplying (9.49

.

) by S̃ yields

N̄(ax+ b) = S̃Lp̄(x) (9.50)

= S̃L S̃−1S̃  
I

p̄(x) (9.51)

= S̃LS̃−1  
L̃

N̄(x). (9.52)

Therefore, if we know L, combining (9.52

.

) with x = uk′ and (9.48

.

) gives

φj(x̄) =
(
L̃N̄(uk′) ⊗ N̄((−1)i)

)T
vec

(
P j,u1φjP

T
j,u2

)
(9.53)

which we can use to evaluate the first term in (9.44

.

).
Using properties (5.11

.

)-(5.13

.

), we write

φj(x̄) =
(
L̃S̃p̄(uk′) ⊗ 1√

2
(
ē1 + (−1)iē2

))T

vec
(
P j,u1φjP

T
j,u2

)
(9.54)

=
(
p̄(uk′)T S̃T L̃T ⊗ 1√

2
(
ē1 + (−1)iē2

)T
)

vec
(
P j,u1φjP

T
j,u2

)
(9.55)

=
(
p̄(uk′)T S̃T L̃T ⊗ 1√

2
(
ē1 + (−1)iē2

)T
)(

P j,u2 ⊗ P j,u1

)
vec(φj) (9.56)

=
(
p̄(uk′)T S̃T L̃TP j,u2 ⊗ 1√

2
(
ē1 + (−1)iē2

)T
P j,u1

)
φ̄j. (9.57)

214

We substitute this last equation into the first term of (9.44

.

) along with (9.45

.

) to obtain
ˆ

Γi′

N̄B(x̄)φj(x̄) dΩ =
ˆ 1

−1
S̃−T p̄(uk′)

(
p̄(uk′)T S̃T L̃TP j,u2 ⊗

(
ē1 + (−1)iē2

)T
P j,u1

)
φ̄j duk′

(9.58)

=
(
L̃TP j,u2 ⊗

(
ē1 + (−1)iē2

)T
P j,u1

)
φ̄j. (9.59)

Notice that this matrix is similar to Cp,ij. In fact, using (5.27

.

), we have
ˆ

Γi′

N̄B(x̄)φj(x̄) dΩ =
(
L̃T ⊗ 1

)(
P j,u2 ⊗

(
ē1 + (−1)iē2

)T
P j,u1

)
  

Cp,ij

φ̄j (9.60)

= L̃TCp,ijφ̄j. (9.61)

Similar manipulations when k = 1 and i = 3, 4, yields
ˆ

Γi′

N̄B(x̄)φj(x̄) dΩ =
((
ē1 + (−1)i ē2

)T
P j,u2 ⊗ L̃TP j,u1

)
φ̄j (9.62)

=
(
1 ⊗ L̃T

)((
ē1 + (−1)i ē2

)T
P j,u2 ⊗ P j,u1

)
  

Cp,ij

φ̄j (9.63)

= L̃TCp,ijφ̄j. (9.64)

Thus, to account for non-conforming constraints, the only change to the conforming con-
straint matrices is to take the product with the transpose of L̃. To summarize, (9.44

.

) is
discretized as

L̃TCp,ijφ̄j − Cp,i′j′φ̄j′ = 0 (9.65)

or, when there are multiple elements, as

[
0 · · · 0 L̃TCp,ij 0 · · · 0 −Cp,i′j′ 0 · · · 0

]
φ̄ = 0 (9.66)

where L̃TCp,ij appears in block column j and −Cp,i′j′ appears in block column j′. When
edges are conforming L̃ = I and we have the same constraint equations as presented in the
previous section.

To fully characterize (9.66

.

), we need to compute L in (9.49

.

). A direct approach is to
multiply (9.49

.

) by p̄(x)T from the right. Integrating, we obtain

L =
ˆ 1

−1
p̄(ax+ b)p̄(x)Tdx. (9.67)

215

This expression confirms that L is in fact lower triangular, because the entry in the ith row
and jth column is given by

(L)ij =
ˆ 1

−1
pi−1(ax+ b)pj−1(x) dx. (9.68)

When j > i, polynomial pi−1(ax + b) has degree strictly smaller than pj−1(x) and, as a
consequence, they are orthogonal (meaning that the integral is zero). This means that the
strict upper part of L is zero. Rather than directly evaluate the remaining nonzero entries,
we use the three-term recurrence relation (2.36

.

) to devise a recursive algorithm to compute
L.

To do so, we rewrite the recurrence relation by isolating the term xpk. This gives

xpk(x) = k + 1√
(2k + 1)(2k + 3)

pk+1(x) + k√
(2k − 1)(2k + 1)

pk−1(x), k = 0, 1, 2, ... (9.69)

Repeating this expression for k = 0, 1, ..., n, yields the equation

xp̄(x) = Jn+1p̄(x) +
√
βn+1pn+1(x)ēn+1 (9.70)

where

Jn+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
β1√

β1 0
√
β2

√
β2 0 . . .

. . .
. . .

√
βn√

βn 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.71)

is the truncated Jacobi matrix and
√
βk = k/

√
(2k + 1)(2k − 1). Typically, (9.70

.

) is en-
countered when computing Gauss-Legendre quadrature rules via eigenvalue routines [159

.

].
Instead, here we rewrite (9.70

.

) with the argument ax+ b to obtain

(ax+ b)p̄(ax+ b) = Jn+1p̄(ax+ b) +
√
βn+1pn+1(ax+ b)ēn+1, (9.72)

then substitute (9.49

.

) to get

(ax+ b)Lp̄(x) = Jn+1Lp̄(x) +
√
βn+1pn+1(ax+ b)ēn+1. (9.73)

216

Using (9.70

.

) to remove the term xp̄(x) yields

aL[Jn+1p̄(x) +
√
βn+1pn+1(x)ēn+1] + bLp̄(x) = Jn+1Lp̄(x) +

√
βn+1pn+1(ax+ b)ēn+1. (9.74)

Finally, multiplying from the right by p̄(x)T and integrating over (−1, 1) yields the matrix
equation

aLJn+1 + bL = Jn+1L+ ēn+1

√
βn+1

ˆ 1

−1
pn+1(ax+ b)p̄(x)Tdx  

p̄T
n+1

. (9.75)

The term
√
βn+1pn+1(x)ēn+1 has vanished because pn+1(x) is orthogonal to all entries in p̄(x).

Letting Â = Jn+1 − bI and B̂ = aJn+1 shows that

ÂL− LB̂ = −ēn+1p̄
T
n+1 (9.76)

which is a Sylvester equation for L [25

.

].
Since entry (L)11 = 1 (because p0(ax + b) = p0(x) = 1/

√
2), Â and B̂ are tridiagonal,

and ēn+1p̄
T
n+1 is almost entirely zero, we can solve for the rows of L sequentially without

computing p̄n+1. If we denote the kth row of L by l̄Tk , we note that row k of (9.76

.

) is

(Â)k,k−1l̄
T
k−1 + (Â)k,k l̄

T
k + (Â)k,k+1l̄

T
k+1 − l̄Tk B̂ = 0 (9.77)

as long as k is not the last row (then the right hand side would be nonzero). Since we know
that l̄T1 = ēT

1 , this allows us to compute

l̄Tk+1 = 1
(Â)k,k+1

[
l̄Tk B̂ − (Â)k,k l̄

T
k − (Â)k,k−1l̄

T
k−1

]
(9.78)

sequentially for k = 1, 2, ... (we ignore zero indexed terms). To compute the last row, simply
enlarge L, Â, and B̂ by one row and column but stop the recurrence relation one iteration
short of completion. This is a stable algorithm requiring O(n2) computations and storage
to obtain the O(n2) entries in L. This complexity is comparable to the method in [69

.

].
We also take this opportunity to remark that it is possible to perform the matrix-vector

product with L efficiently when n is large. This is because L has displacement rank 1
(the right hand side of (9.76

.

) is a rank 1 matrix). Note that Â and B̂ are simultaneously
diagonalizable. In particular, computing the eigenvalue decomposition

Jn+1V = V Λ (9.79)

217

of Jn+1 where V is the matrix whose columns are eigenvectors of Jn+1 and Λ is the diagonal
matrix with corresponding eigenvalues along the diagonal, we directly obtain the eigenvectors
of both Â and B̂. Their eigenvalues are ΛÂ = Λ − bI and ΛB̂ = aΛ respectively. Note
that since Jn+1 is symmetric, the eigenvector matrix V can be chosen orthonormal so that
V TV = I. If we multiply (9.76

.

) from the left by V T , from the right by V , and substitute
L = V L̂V T , we obtain

V T ÂV L̂ V TV  
I

−V TV  
I

L̂V T B̂V = −V T ēn+1  
ê

p̄T
n+1V  

p̂T

. (9.80)

Since ÂV = V ΛÂ and B̂V = V ΛB̂, we have

ΛÂL̂− L̂ΛB̂ = −êp̂T (9.81)

from which we can directly express the entries of L̂. They are

(L̂)ij = − (ê)i(p̂)j

(λÂ)i − (λB̂)j

. (9.82)

Matrices of this form are called Cauchy-like [25

.

] and their matrix-vector product can be com-
puted in O(n) operations using the fast multipole method (FMM) [58

.

, 59

.

, 60

.

, 61

.

]. Similarly,
the matrix-vector products with V and V T can also be accelerated by FMM since Jn+1 is
tridiagonal [55

.

]. For details regarding the FMM as applied in this and other contexts, see
Appendix B

.

. For this method to be efficient, we have to be able to compute vector p̄n+1

efficiently. Recall that this vector is a scaled vector of Legendre coefficients for the function
pn+1(ax + b). We can sample this function efficiently using O(1) evaluation of Legendre
polynomials [160

.

] and use those samples as in Section 4.2

.

and Appendix A

.

to compute the
Legendre coefficients with O(n(log n)2) operations.

Now that we have a way to compute matrix L given parameters a and b, we can use
it to assemble all constraint equations in a non-conforming mesh as produced in Section
9.1

.

. Like with the conforming case, (9.66

.

) has full row rank when taken alone, but can lead
to redundant equations when taken together in a global constraint matrix. A systematic
procedure can be followed to restore full row rank in the global case (similar to the method
described in the previous section). First, we construct a set of vertex-to-edge incidence lists
(one for each level of the quadtree) which enumerate distinct vertices that belong to elements
of a given level of the tree and track which edges of elements on that level are incident to
each vertex. Then, we construct the global constraint matrix in a local fashion, visiting
each element edge (beginning with all elements belonging to the finest level of the tree, then

218

moving to the next coarser level, etc.) and imposing continuity to an adjacent leaf element
in the tree. The tree data structure allows us to determine the parameters a and b in the
map along each edge so as to compute the appropriate change of basis matrix L. Each time
continuity is imposed along an edge, we verify if all edges on that given level of the tree have
been visited for a given vertex in the vertex-to-edge incidence list. For each vertex whose
list has been completely visited, we have one redundant equation in the global constraint
matrix, and can remove the lowest order equation from the new set of local constraints to
restore full rank to the global system.

There is also the possibility of losing global full rank when multiple fine elements share a
common edge with a single coarse element. In particular, when an edge must be constrained
to match a lower polynomial degree on an adjacent element, we zero certain basis functions
through the padding matrices (9.35

.

). If a second set of constraint equations requires a
similar reduction in the degree along the edge, naively imposing the local constraints leads
to a second set of redundant constraints zeroing the same basis functions. Instead, we track
which basis functions have been zeroed on an edge and discard those constraints which would
lead to redundancy. These are always the higher order equations in the local constraint and
do not interfere with the removal of the lowest order constraints described above.

It remains to explain how parameters a and b are selected at each edge. By virtue of
sequentially imposing constraints element by element starting at the finest level of the tree
and moving to the next level of the tree after all finer element constraints have been imposed,
we always impose constraints in the form (9.66

.

) (that is, always from the perspective of a
finer element connecting to a coarser element). The quadtree lets us query the neighbor of
an element on the same level of the tree (which may not be a leaf). We can then trace up
the quadtree (by going to the parent of the neighbor, then its parent, etc.) until a leaf is
found. If no leaf is found, this edge corresponds to a coarse edge relative to a previous finer
level and has already been constrained. If a leaf is found, we must impose the constraint.
We keep track of the sequence of nodes in the quadtree that were visited in finding the leaf
to compute a and b. Because each level of the quadtree is comprised of squares constructed
by subdividing a square on the previous level into four squares, the transformation used to
represent the coarse basis functions in terms of fine basis functions is of the form

ax+ b = {[(x+ s1)/2 + s2]/2 + · · · }/2. (9.83)

The signs si ∈ {−1, 1} in this composition of functions (x + si)/2 depend on the sequence
of nodes used to find the neighbor leaf node starting from the fine neighbor. Figure 9.6

.

illustrates one possible configuration of fine and coarse elements and the sequence of signs

219

Figure 9.6: (left) Example quadtree mesh where continuity between a fine element (shaded)
and neighboring element above it (dashed outline) must be imposed. (right) Schematic
illustrating the selection of signs si for the associated edge configuration: s3 is negative
because the fine element shares a portion of the left bisection of the coarse edge, s2 is positive
because the fine element shares a portion of the right bisection of the previous bisection, and
s1 is positive because the fine element edge corresponds to the right bisection of the previous
bisection.

required to determine a and b for a given edge constraint. If there is a difference of m levels
between the fine element to the coarse leaf neighbor, then

a = 1
2m
, b = 1

2m

m∑
i=1

si2i−1, (9.84)

where s1 is the sign corresponding to the first step up the quadtree and sm corresponds to
the mth step required to finally reach the neighboring leaf.

With the global constraint matrix C assembled, we obtain a saddle point system of form
(9.43

.

) where each block depends upon multiple elements (rather than a single element). One
benefit of such a construction is that the change of basis matrix L̃ along each edge yields a
quantitative way of assessing whether the saddle point system is invertible in finite precision.
In particular, it quantifies whether the mismatch in adjacent polynomial degree and element
size is too severe, leading to extreme ill-conditioning of the global saddle point system and
suggests what type of refinement to avoid in order to compute accurate solutions.

This ill-conditioning arises because the matrix L̃ tends to have decaying diagonal entries
when the number of levels m between coarse and fine element is sufficiently large and/or the

220

polynomial degree is high enough. The diagonals decay because row k + 1 of L corresponds
to the coefficients in a Legendre expansion of the function pk(ax + b). When x ∈ (−1, 1)
and a and b are chosen as in (9.84

.

), then ax + b represents a small subinterval of (−1, 1)
(particularly when the number of levels m is large). As a consequence, pk(ax+b) varies slowly
over (−1, 1) compared to pk(x) and only a small number of low degree Legendre polynomials
make a significant contribution to the expansion (higher degree polynomials contribute, but
substantially less) causing entries near the diagonal of L to decay in magnitude. Matrix L̃

inherits this property from L.
Since the constraints along edges involve the product of the transpose of L̃ (which is

upper triangular with entries in the final rows possibly decaying), corresponding rows of the
global constraint matrix C may become near zero, causing an effective loss of full row rank
in finite precision when certain combinations of polynomial degree and edge refinements are
present. Introducing a 2:1 mesh refinement rule common to quadtree-based finite element
meshes can alleviate this problem with low or moderate degree polynomials on neighboring
elements, but is ineffective at high polynomial degree (even at degree 32, the diagonal has
decayed to approximately 10−10). Instead, we can monitor the magnitude of the diagonal and
discard any constraints which have decayed below a user specified threshold. This results in
a non-conforming finite element method. Alternatively, we can use the diagonal to indicate
where in the mesh to prohibit further refinement of degree or element size.

9.4 Adaptive Finite Element Considerations

In practice, when a solution φ is not known a priori, we may need to solve a sequence of
saddle point problems, each assembled using the methods of the previous section, to produce
an approximate solution which is accurate to a given tolerance. For this purpose, we describe
an hp-adaptive algorithm similar to the one described towards the end of Section 4.4

.

. First,
we need to compute an error indicator on each element j, which we label ηj. We sum the
magnitude squared of each entry in the last two rows and columns of the coefficient matrix
φj and take the square root. This is a measure of how much the coefficients have decayed in
each local expansion which we use as indicator ηj. Note that this is one possible extension of
the one-dimensional error indicator which took the square root of the squares of the last two
entries in the coefficient vector φ̄j. As in one-dimension, we use two rows and two columns
instead of only one to avoid mischaracterizing error when the solution has certain even or
odd symmetries. If all error indicators ηj fall below the user specified tolerance ϵtol, we stop
the hp-adaptive process. If they do not, we use a refinement criterion to determine which
elements to refine (for simplicity, in the following we set Lj,u1 = Lj,u2).

221

Different refinement criteria exist, each suitable for a different class of problem. Here we
describe three possible criteria. We describe the first two briefly so as to motivate the third
which we use in practice in the examples to follow. The first refinement criterion is uniform
refinement, in which all elements in the mesh are refined, regardless of the error indicators ηj.
This type of refinement scheme may not efficiently distribute degrees of freedom, particularly
for solutions with large regions of slow variation and small regions with rapid variation. In
these situations, uniform refinement requires more degrees of freedom than necessary to
reach a specified error tolerance.

The second refinement criterion computes the total error

η2 =
Ne∑
j=1

η2
j (9.85)

and finds the elements with largest contributions to η2. Then elements corresponding to the
smallest possible set of element indices Jmax that add to a fixed percentage Θ of the total
error

Θ ≈ 1
η2

∑
j∈Jmax

η2
j (9.86)

are chosen for refinement. The user must specify their choice of 0 < Θ ≤ 1 before the
algorithm begins. This method is intended to allow for a more efficient use of degrees of
freedom in meeting a required error tolerance. Unfortunately, for problems with singular
behavior, the method may only refine a small number of elements at each iteration, caus-
ing each solution step of the saddle point matrix to contain roughly the same number of
unknowns5

.

.
Finally, a third refinement criterion refines a fixed fraction of the total number of elements

at each step. This is the method we use in our examples. In this type of refinement strategy,
we sort elements by decreasing error indicator ηj. We then refine a fixed fraction of the total
number of elements (those with the largest error indicators). By choosing a fixed fraction,
we can ensure that we always have a significant number of additional degrees of freedom
after each refinement step, but we will not have an optimal mesh requiring the least number
of degrees of freedom for a given error tolerance. Typically, the choice of fraction, which we
denote 0 < ϱ < 1, is made so that the final cost of the hp-adaptive algorithm is twice the
cost of the final solve of the saddle point system. If N is the initial number of degrees of
freedom, the choice of ϱ depends on the asymptotic cost of the solution process O(Nϖ), as

5The refinement criterion described in Section 4.4

.

behaves similarly. Recall that this criterion finds the
element with the largest indicator ηmax and uses it to select elements with indicators larger than ζηmax for
refinement (ζ < 1 is a user specified threshold).

222

well as a multiplier mhp for how many additional degrees of freedom are used per refined
element (for example, if a refinement results in four times as many degrees of freedom for a
given element, then mhp = 4).

To see how to choose ϱ, we begin by counting the number of degrees of freedom at each
iteration. In the initial phase of the algorithm, we have N0 = N degrees of freedom. In the
first iteration, we have

N1 = (1 − ϱ)N +mhpϱN (9.87)

since ϱN counts how many degrees of freedom belong to the elements that must be refined,
mhpϱN counts how many degrees of freedom are now used for those refined elements, and
(1 − ϱ)N counts the number of degrees of freedom belonging to unrefined elements. It is
useful to write

N1 = [(1 − ϱ) +mhpϱ]  
ς

N. (9.88)

By doing so, we note that in the second iteration, there are

N2 = ςN1 (9.89)

= ς2N (9.90)

degrees of freedom, so that, in general, the kth iteration has Nk = ςkN degrees of freedom.
At each iteration, we perform a linear system solve that costs O(Nϖ

k) operations. Thus,
roughly speaking, the total cost Ctotal of the hp-adaptive algorithm after M solves is

Ctotal ≈
M−1∑
k=0

Nϖ
k (9.91)

=
M−1∑
k=0

(ςkN)ϖ (9.92)

= Nϖ
M−1∑
k=0

ςkϖ (9.93)

which is equivalent to

Ctotal ≈ Nϖ 1 − ςMϖ

1 − ςϖ
(9.94)

after computing the geometric sum. Multiplying both sides by the denominator and simpli-
fying the right hand side gives

(1 − ςϖ)Ctotal ≈ Nϖ − ςMϖNϖ. (9.95)

223

We notice that the initial solve costs Cinitial ≈ Nϖ and that the final solve costs

Cfinal ≈ Nϖ
M−1 (9.96)

= (ςM−1N)ϖ (9.97)

= ς(M−1)ϖNϖ (9.98)

which can be written as Cfinal ≈ ς−ϖςMϖNϖ. This last equation shows that

ςMϖNϖ ≈ ςϖCfinal (9.99)

which we use in (9.95

.

) to see that

(1 − ςϖ)Ctotal ≈ Cinitial − ςϖCfinal. (9.100)

If we choose ςϖ = 2, then
Ctotal ≈ 2Cfinal − Cinitial (9.101)

and the total cost of the hp-adaptive algorithm is approximately twice the cost of the final
linear system solve.

We now choose ϱ and ϖ so that ςϖ = 2. For static problems and low frequency problems,
it is possible using multigrid methods or domain decomposition methods to have ϖ = 1 so
that the cost of the linear system solve is linear in the number of degrees of freedom [71

.

, 72

.

].
In such a case, ςϖ = 2 implies

(1 − ϱ) +mhpϱ = 2 (9.102)

which we solve for ϱ to obtain
ϱ = 1

mhp − 1 . (9.103)

In this thesis, we always refine so that mhp = 2d where d is the dimension of the problem.
That is, in one dimension, we always doubled the number of degrees of freedom when refining
an element and, in this chapter, we will always quadruple the number of degrees of freedom
when refining an element. Thus the fixed fraction of elements to refine in such a two-
dimensional scenario is one third if we want the approximate total cost of the hp-adaptive
algorithm to be twice that of the final linear system solve. Note that by modifying the
choices we have made, we can devise alternative fixed fraction schemes.

To complete the description of the hp-adaptive algorithm, we need to specify how to
choose between h- and p-refinement once an element is marked for refinement according
to the fixed fraction refinement criterion above. We use an approach similar to the one

224

described in Section 4.4

.

. That is, we estimate the rate of decay of Legendre coefficients for
each element selected for refinement using a least squares method. If the rate of decay is
judged rapid, then we perform p-adaption, otherwise we choose h-adaption. We double the
polynomial degrees Lj,u1 and Lj,u2 when performing p-adaption (resulting in a quadrupling of
the number of degrees of freedom for the element) or subdivide the element into four elements
by bisecting each edge of the original element and setting the polynomial degree of the new
elements to the same degree as the original element when performing h-adaption (again
resulting in a quadrupling of the number of degrees of freedom). This is where mhp = 2d

with d = 2 arises.
To estimate the decay rate, for each element j to refine, we compute Legendre coefficients

φj,Leg = S̃TφjS̃ (9.104)

from the integrated Legendre coefficients. We then assume that

|(φj,Leg)mn| ≈ θ
√

m2+n2
. (9.105)

This is the two-dimensional analog to (4.156

.

). There is no theory paper that directly ad-
dresses such decay for Legendre expansion coefficients in two dimensions, however, there
is such a paper for Chebyshev polynomials [161

.

] which mirrors the one-dimensional result
[109

.

] and which supports such an assumption. In practice, such decay of Legendre expansion
coefficients is observed for smooth functions similar to those considered in [161

.

]. Taking the
logarithm yields

log |(φj,Leg)mn| ≈
√
m2 + n2 log θ  

a1

. (9.106)

We estimate a1 using the linear least squares fit log |(φj,Leg)mn| ≈
√
m2 + n2a1 + a2. If

(M)mn =
√

(m− 1)2 + (n− 1)2, we construct

W =
[

vec(M) ē
]
, ā =

⎡⎣ a1

a2

⎤⎦ , ȳ = vec(log |φj,Leg|), (9.107)

where ē is the vector of all ones and log | · | is meant to be applied entrywise to φj,Leg.
Then Wā ≈ ȳ and we solve this over-determined system using QR factorization. Once a1

is estimated, we compute θ = ea1 and choose p-refinement if θ is less than a user specified
threshold 0 < θt < 1. Otherwise, h-refinement is performed. In our examples, we choose
θt = 1/2.

225

9.5 Bounded Electrostatic Examples

In this section, we solve three examples to illustrate how the hp-adaptive method behaves for
static problems. Each example naturally lends itself to a two-dimensional model and analysis.
In particular, we begin with a simple Poisson problem that computes an eigenmode of the
unit disk [4

.

]. Since the solution to this problem is known, we use it to show that the method
is accurate. For the second and third examples, we solve electrostatic problems from [12

.

] to
illustrate how the hp-adaptive method behaves in the presence of re-entrant corners.

9.5.1 Eigenfunction of the Laplacian on a Disk

For the first example, we solve the Poisson equation

− ∇ · ∇φ = χ2
m,nJm (χm,n∥x̄∥2) cos (m atan2 (x2, x1)) (9.108)

on the domain Ω = {x̄ ∈ R2 : ∥x̄∥2 < 1} subject to zero Dirichlet boundary conditions. Here,
Jm is the Bessel function of the first kind of integer order m, χm,n is the nth zero of Jm, and
atan2 (x2, x1) is used to denote the angle in cylindrical coordinates measured from the x1

axis (commonly denoted as ϕ). For our particular example, we choose m = 6 and n = 2 so
that χ6,2 ≈ 13.589290170541217 (this is correct to 17 significant figures). Using the notation
for our prototypical PDE, this Poisson equation has α = I, β = 0,

f = χ2
m,nJm (χm,n∥x̄∥2) cos (m atan2 (x2, x1)) , (9.109)

Dirichlet data p = 0 on ∂Ω, and an exact solution φexact = f/χ2
m,n. Thus, φexact is an

eigenfunction of the Laplacian with eigenvalue χ2
m,n.

To solve this problem, we perform five iterations of hp-adaption with a fixed fraction
refinement of one third starting from a mesh produced using the procedure described in
Section 9.1

.

. We use distance function Φ1(x̄) = ∥x̄∥2 − 1 to describe the single subdomain Ω̂1

for this problem. We choose bounding box parameters

x̄bound =
⎡⎣ −1.5

−1.5

⎤⎦ , H = 3, (9.110)

and choose maximum level of refinement lmax = 4 and minimum level of refinement lmin =
0. We do not specify any fixed vertices for the mesh. Two iterations of smoothing and
mesh optimization are used. All computations are performed to a tolerance of ϵtol = 10−12.
Figure 9.7

.

illustrates the computed solution using the finite element method described in this

226

chapter, as well as the polynomial degree Lj,u1 = Lj,u2 used on each element to represent φ
after five iterations of hp-adaption. Degree Lj,u1 = Lj,u2 = 8 basis functions on each element
were used on the starting mesh. We note that the adaption algorithm favors p-adaption in
this case as one would expect for a smooth solution. In fact, no element was refined using
h-adaption at any iteration of the algorithm.

Figure 9.8

.

illustrates the pointwise error log10 |φ−φexact| between the computed solution
φ and the exact solution φexact (sampled with 21 uniformly spaced points in each coordinate
of the canonical domain ū ∈ (−1, 1)2 for each element), as well as the sparsity pattern of
the associated saddle point system used to compute φ. The error plot demonstrates that the
approximate solution φ is accurate to 11 digits or better throughout the domain Ω. Note that
this accuracy is achieved despite the fact that the circular boundary is not perfectly modeled
by the mesh. The error is a complicated function of the accuracy of resolving the boundary,
accuracy in computing the entries of the saddle point matrix via Legendre expansions, and
ability of the basis functions on the mesh to represent the exact solution. When any of these
three factors is compromised, the total error increases.

9.5.2 Shielded Microstrip Line

As a second example, we solve for the electrostatic potential φ of an infinitely long shielded
microstrip line whose schematic representation is given on page 99 of [12

.

]. Figure 9.9

.

illus-
trates a portion of the shielded microstrip line. The structure consists of: an infinitely
long base conductor of width 2b = 10; a dielectric layer (called the substrate) of thickness
a = b/5, which lies directly upon the base conductor; and, an infinitely long, thin conducting
strip of width 2a and thickness c = a/10, which lies directly upon the dielectric, centered
along the midline of the structure. This system is translationally symmetric along its length
in terms of geometry and electrostatic behavior, and possesses mirror symmetry about its
midline; it is modeled and analyzed based on half of its two-dimensional cross section. The
electrostatic potential φ is governed by

− ∇ · (ϵr∇φ) = 0. (9.111)

The resulting simplified two-dimensional domain Ω, as illustrated in Figure 9.9

.

, is defined
using two subdomains. The implicit functions

Φ̃1 (x̄) = max {max [max (−x2 + a, x1 − b) , x2 − b] ,−x1} , (9.112)

Φ̃2 (x̄) = max (x2 − a− c, x1 − a) , (9.113)

227

Figure 9.7: (top) Approximate solution φ to Poisson’s equation (9.108

.

) with zero Dirichlet
boundary conditions. (bottom) Polynomial degree Lj,u1 = Lj,u2 of the basis functions used
to represent φ on each element after five iterations of hp-adaption.

228

Figure 9.8: (top) Pointwise error log10 |φ − φexact| of the approximate solution in Figure
9.7

.

. (bottom) Sparsity pattern for the saddle point matrix used to compute the approximate
solution. The scales of the row number and column number axes are in thousands.

229

are used to define the first subdomain Ω̂1 described by implicit function

Φ1 (x̄) = max(Φ̃1 (x̄) ,−Φ̃2 (x̄)). (9.114)

The second subdomain Ω̂2 is described using the implicit function

Φ2(x̄) = max {max [max (−x2, x1 − b) , x2 − a] ,−x1} (9.115)

and corresponds to the dielectric substrate. To compute an initial non-conforming mesh,
we use a global bounding box with parameters

x̄bound = b

2lmax

⎡⎣ −1
−1

⎤⎦ , H = b+ 2 b

2lmax
, (9.116)

with maximum level of refinement lmax = 7 and minimum level of refinement lmin = 0. The
maximum level of refinement is chosen so that the mesh spacing is fine enough to resolve
the inner conductor of the microstrip line (limited by dimension c). Since the geometry has
corners, we provide a list of fixed vertices that must appear in the mesh. The fixed vertices
are

{x̄fixed,k} =

⎧⎨⎩
⎡⎣ b

b

⎤⎦ ,
⎡⎣ 0
b

⎤⎦ ,
⎡⎣ 0
a+ c

⎤⎦ ,
⎡⎣ a

a+ c

⎤⎦ ,
⎡⎣ a

a

⎤⎦ ,
⎡⎣ b

a

⎤⎦ ,
⎡⎣ 0

0

⎤⎦ ,
⎡⎣ b

0

⎤⎦ ,
⎡⎣ 0
a

⎤⎦⎫⎬⎭ .
(9.117)

The boundary projections for the problem are computed to a tolerance ϵtol = 10−12 and two
iterations of smoothing and mesh optimization are performed.

For our problem, in subdomain Ω̂1 we have ϵr,1 = I whereas in subdomain Ω̂2 we have
ϵr,2 = 10I. Since (9.111

.

) is homogeneous, we can ignore the scale factor ϵ0. In the notation of
our generic PDE, α = ϵr, β = 0, and f = 0. We impose a homogeneous Neumann boundary
condition on

ΓR =
{
x̄ ∈ R2 : x1 = 0

}
(9.118)

with parameters γ = q = 0. We do this because x1 = 0 is a plane of symmetry. Similarly,
we impose a homogeneous Dirichlet boundary condition on

ΓD,1 =
{
x̄ ∈ R2 : x1 = b or x2 = 0 or x2 = b

}
(9.119)

where p1 = 0 and an inhomogeneous Dirichlet boundary condition on

ΓD,2 =
{
x̄ ∈ R2 : 0 < x1 < a and x2 = a or 0 < x1 < a and x2 = a+ c

}
(9.120)

230

Figure 9.9: (top) Three-dimensional geometry of the shielded microstrip line. The line
is infinite in the x3 dimension but has been truncated for visualization. (bottom) Two-
dimensional cross section of the shielded microstrip line exploiting mirror symmetry about
the x1 = 0 plane.

where p2 = 1. The first Dirichlet boundary condition grounds the electrostatic potential φ
on the outer conductor (we use reference potential zero) while the second Dirichlet boundary
condition sets the inner conductor to a potential of one volt.

To compute an approximate solution, we perform five iterations of hp-adaption using
the fixed fraction refinement criterion in Section 9.4

.

(we refine one third of all elements
at each iteration). The elements begin with polynomial degree Lj,u1 = Lj,u2 = 4 basis
functions. Figure 9.10

.

illustrates the computed solution using the finite element method
described in this chapter, as well as the polynomial degree Lj,u1 = Lj,u2 used on each element
to represent φ. The mesh and solution were computed using the same specified tolerance
ϵtol = 10−12. Notice that the hp-adaptive algorithm prioritizes p-adaption away from the

231

Figure 9.10: (top) Approximate solution φ to the variable coefficient Laplace equation for
the shielded microstrip line. (bottom) Polynomial degree Lj,u1 = Lj,u2 of the basis functions
used to represent φ on each element after five iterations of hp-adaption.

232

Figure 9.11: Sparsity pattern for the saddle point matrix used to compute the approximate
solution to the shielded microstrip line problem. The scales of the row number and column
number axes are in thousands.

re-entrant corner of the inner conductor and favors h-adaption near the re-entrant corner.
The corner corresponds to a region where the solution varies less smoothly. This example
illustrates a mesh with a variety of non-conforming edge configurations. The solution in
Figure 9.10

.

shows that continuity is correctly imposed along those non-conforming edges.
In addition, Figure 9.11

.

shows the sparsity pattern of the associated saddle point system
used to compute φ. The final saddle point system describes 538,365 linear equations. Note
that the constraint matrix can become quite complicated, but that the systematic procedure
described in Section 9.3

.

ensures that this matrix has full rank so that the saddle point system
has a unique solution.

9.5.3 Coaxial Waveguide Discontinuity

As a third example, we solve for the electrostatic potential φ in an axisymmetric geometry
whose schematic representation is given on page 102 of [12

.

]. Figure 9.12

.

reproduces this
geometry, illustrating a portion of two coaxial waveguides with identical outer conductors but
different inner conductor radii joined together. The inner conductors are solid (not hollow).
This problem is axisymmetric about its central axis in terms of geometry and electrostatic

233

behavior; it is modeled and analyzed based on half of its two-dimensional cut-section. The
electrostatic potential φ is governed by

− ∇ · (ϵr∇φ) = 0 (9.121)

with all derivatives expressed in cylindrical coordinates, where x1 and x2 represent the axial
and radial coordinates respectively.

To specify the cut-section model, the domain Ω, as illustrated in Figure 9.12

.

, is implicitly
defined by taking the set difference of two regions. These regions are

Ω̃1 =
{
x̄ ∈ R2 : 0 < x1 < b, c < x2 < a+ c

}
, (9.122)

Ω̃2 =
{
x̄ ∈ R2 : x1 > b/2, x2 < a

}
, (9.123)

respectively, with lengths a = 2, b = 5, and c = 1. Then Ω = Ω̃1\Ω̃2. The corresponding
implicit functions for these regions are

Φ̃1 (x̄) = max {max [max (−x1, x1 − b) , c− x2] , x2 − a− c} , (9.124)

Φ̃2 (x̄) = max (b/2 − x1, x2 − a) , (9.125)

so that the implicit function describing Ω = Ω̂1 is

Φ1 (x̄) = max(Φ̃1 (x̄) ,−Φ̃2 (x̄)) (9.126)

which we use to generate the mesh. Since the geometry has corners, we provide a list of
fixed vertices

{x̄fixed,k} =

⎧⎨⎩
⎡⎣ 0
c

⎤⎦ ,
⎡⎣ b/2

c

⎤⎦ ,
⎡⎣ b/2

a

⎤⎦ ,
⎡⎣ b

a

⎤⎦ ,
⎡⎣ b

a+ c

⎤⎦ ,
⎡⎣ 0
a+ c

⎤⎦⎫⎬⎭ . (9.127)

We use a bounding box with parameters

x̄bound =
⎡⎣ −1.1

−1.1

⎤⎦ , H = 8, (9.128)

and a maximum level of refinement lmax = 6 with minimum level of refinement lmin = 0.
Projections are computed to a tolerance ϵtol = 10−12 and two iterations of smoothing and
mesh optimization are performed.

For our problem, we choose ϵr = 10I which we treat as a scalar (as in the previous

234

Figure 9.12: (top) Three-dimensional geometry of the coaxial waveguide problem. The
line is infinite in the x1 dimension but has been truncated for visualization. (bottom) Two-
dimensional cross section in the axial x1 and radial x2 plane. Axisymmetric symmetry is
exploited and the domain is truncated using homogeneous Neumann boundary conditions
away from the discontinuity.

235

example, there is no need to include the permittivity of free space in our calculations). In
the notation of our generic PDE, α = x2ϵr, β = 0, and f = 0 (note that α varies spatially).
We impose homogeneous Neumann boundary conditions on

ΓR =
{
x̄ ∈ R2 : x1 = 0 ∪ x1 = b

}
(9.129)

with parameters γ = q = 0. We do this to approximate the fact that far enough away from
the discontinuity of the waveguide, the solution should not vary substantially in the axial
direction. Similarly, we impose a homogeneous Dirichlet boundary condition on

ΓD,1 =
{
x̄ ∈ R2 : x2 = a+ c

}
(9.130)

where p1 = 0 and an inhomogeneous Dirichlet boundary condition on

ΓD,2 =
{
x̄ ∈ R2 : 0 < x1 < b/2, x2 = c ∪ x1 = b/2, c < x2 < a ∪ b/2 < x1 < b, x2 = a

}
(9.131)

where p2 = 1. The first Dirichlet boundary condition grounds the electrostatic potential φ
on the outer conductor to zero and the second sets the inner conductor to a potential of one
volt.

To compute an approximate solution, we perform five iterations of hp-adaption using the
fixed fraction refinement criterion as described in Section 9.4

.

. The elements begin with poly-
nomial degree Lj,u1 = Lj,u2 = 4 basis functions. Figure 9.13

.

illustrates the computed solution
using the finite element method described in this chapter, as well as the polynomial degree
Lj,u1 = Lj,u2 used on each element to represent φ. The mesh and solution were computed
using the same specified tolerance ϵtol = 10−12. Note that, like the shielded microstrip line
example, h-adaption is preferred near the re-entrant corner whereas p-adaption dominates
away from the corner where the solution varies smoothly. In addition, Figure 9.14

.

illustrates
the sparsity pattern of the associated saddle point system used to compute φ. The saddle
point system describes 65,048 linear equations.

9.6 Unbounded Time-Harmonic Scattering Example

In the final part of this chapter, we address time-harmonic electromagnetic scattering from
perfect electric conductors. The finite element method described in this chapter solves
problems on bounded domains. To extend methods that compute solutions on bounded
domains to approximate solutions on unbounded domains, two common approaches are
typically used [12

.

]. The first type of approach imposes absorbing boundary conditions at

236

Figure 9.13: (top) Approximate solution φ to the variable coefficient Poisson equation for
the waveguide discontinuity problem which describes the electromagnetic behavior within
two mismatched coaxial waveguides in the vicinity of their junction interface. (bottom)
Polynomial degree Lj,u1 = Lj,u2 of the basis functions used to represent φ on each element
after five iterations of hp-adaption.

a fictitious surface that bounds the region of interest. The second type, rather than use a
fictitious surface, adds a fictitious layer. Among the many possible layer techniques, Perfectly
Matched Layers (PML) have received widespread attention [86

.

]. We choose to use a PML
formulation in this thesis because introducing absorbing boundary conditions requires that
we modify the boundary conditions, which leads to additional terms in the local operator
matrices of elements adjacent to the boundary whereas, as we will show, the PML can be
imposed by modifying the coefficient α for a band of boundary adjacent elements. In the
latter case, the boundary condition imposed on the fictitious boundary can be a simple
homogeneous boundary condition of the types we have already seen.

237

Figure 9.14: Sparsity pattern for the saddle point matrix used to compute the approximate
solution to the waveguide discontinuity problem. The scales of the row number and column
number axes are in thousands.

9.6.1 Perfectly Matched Layers

For now, we consider a one-dimensional PML description as in [87

.

] to motivate the complex
coordinate stretching interpretation of PML. We consider a sinusoidal traveling wave

v (z, t) = cos (ωt− kz) (9.132)

= ℜ{e−kzeωt} (9.133)

and work only with its phasor representation V (z) = e−kz (this wave travels in the pos-
itive z direction) where  denotes the imaginary unit. We then consider performing the
transformation

z = z̃ − f (z̃) (9.134)

where f (z̃) > 0 and both f and z̃ are real valued. This gives

V (z̃) = e−k(z̃−f(z̃)) (9.135)

= e−kz̃e−kf(z̃) (9.136)

238

which contains an oscillatory factor e−kz̃ of the same form as V (z), along with an exponential
damping factor e−kf(z̃). Thus, under this type of transformation, a purely oscillatory traveling
wave becomes a damped oscillatory wave

v (z̃, t) = e−kf(z̃) cos (ωt− kz̃) . (9.137)

In particular, if we choose the damping function to be linear, i.e., f (z̃) = az̃, with a damping
factor a = σz/k, we obtain a frequency independent exponential decay

v (z̃, t) = e−σz z̃ cos (ωt− kz̃) . (9.138)

The amplitude of σz determines how rapidly the wave decays as it travels in the positive
z̃ direction. If the wave is traveling in the negative z direction, we apply the same trans-
formation. This results in an exponential factor of eσz z̃ multiplying the oscillatory factor
ejkz̃. While counterintuitive, this is still exponential damping, not growth, because the cor-
responding wave travels in the negative direction. Note that if the function f vanishes for
certain values of z̃, then—for those values of z̃—the purely oscillatory function V (z) re-
mains purely oscillatory (the transformation is an identity map). Thus, we can simulate
unbounded wave problems by performing a transformation with f (z̃) = 0 in regions where
we are interested in the wave-like behavior of solutions, and f (z̃) > 0 in layers adjacent to
this region to have the waves exponentially attenuate. At the edge of these layers, we can
impose any boundary conditions deemed appropriate as they will effectively be acting on
waves of zero amplitude.

The macroscopic Faraday and Ampère laws for media satisfying the linear constitutive
relations D̄ = ϵĒ and B̄ = µH̄ are

∇ × Ē = −∂B̄

∂t
, (9.139)

∇ × H̄ = J̄ + ∂D̄

∂t
, (9.140)

where Ē is the electric field intensity, H̄ is the magnetic field intensity, D̄ is the electric flux
density, B̄ is the magnetic flux density, and J̄ is the current density. If we set the current
density to zero and choose time-harmonic solutions

Ē (x̄, t) = ℜ{Ē (x̄) eωt}, (9.141)

H̄ (x̄, t) = ℜ{H̄ (x̄) eωt}, (9.142)

239

we obtain the time-harmonic equations

∇ × Ē = −ωµH̄, (9.143)

∇ × H̄ = ωϵĒ, (9.144)

which exhibit wave-like solutions in unbounded domains6

.

. To include PML for the two curl
equations, we perform one-dimensional PML transformations in each of the three spatial
variables x1, x2, and x3. That is, we let

xi = x̃i − fi (x̃i) (9.145)

where each function fi is real and nonnegative and i = 1, 2, 3. To treat the curl operators,
we also need to determine how partial derivatives transform. We apply the chain rule to a
generic scalar function g (x̄) to obtain

∂g

∂x̃i

=
3∑

j=1

∂g

∂xj

∂xj

∂x̃i

. (9.146)

Using the transformations (9.145

.

) gives

∂g

∂x̃i

=
3∑

j=1

∂g

∂xj

∂

∂x̃i

[x̃j − fj (x̃j)] (9.147)

= ∂g

∂xi

[1 − f ′
i (x̃i)] . (9.148)

Thus, partial derivatives in physical space x̄ transform like

∂g

∂xi

= 1
1 − f ′

i (x̃i)
∂g

∂x̃i

. (9.149)

Let si = 1 − f ′
i (x̃i). Then the curl operator transforms from

∇ × Ē (x̄) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − ∂

∂x3

∂

∂x2
∂

∂x3
0 − ∂

∂x1

− ∂

∂x2

∂

∂x1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ex1 (x̄)

Ex2 (x̄)

Ex3 (x̄)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9.150)

6We often leave out the explicit dependence on space and/or time for Ē (x̄, t) or H̄ (x̄, t) (respectively
Ē (x̄) or H̄ (x̄)) when the context is clear.

240

to

∇̃s × Ē (x̃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
s3

∂

∂x̃3

1
s2

∂

∂x̃2
1
s3

∂

∂x̃3
0 − 1

s1

∂

∂x̃1

− 1
s2

∂

∂x̃2

1
s1

∂

∂x̃1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ex1 (x̃)

Ex2 (x̃)

Ex3 (x̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (9.151)

If we define the vector s̄ with entries si, and the diagonal matrices

S = diag (s̄) , Λ = S−1 det (S)S−1, (9.152)

then
∇̃s × Ē (x̄) = S−1Λ−1∇̃ ×

[
SĒ (x̄)

]
. (9.153)

To confirm this fact, we multiply these matrices and operators. First,

S−1Λ−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s1

0 0

0 1
s2

0

0 0 1
s3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2s3
0 0

0 s2

s1s3
0

0 0 s3

s1s2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.154)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s2s3

0 0

0 1
s1s3

0

0 0 1
s1s2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.155)

Then

∇̃ ×
[
SĒ (x̃)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − ∂

∂x̃3

∂

∂x̃2
∂

∂x̃3
0 − ∂

∂x̃1

− ∂

∂x̃2

∂

∂x̃1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
s1 0 0

0 s2 0

0 0 s3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ex1 (x̃)

Ex2 (x̃)

Ex3 (x̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9.156)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −s2
∂

∂x̃3
s3

∂

∂x̃2

s1
∂

∂x̃3
0 −s3

∂

∂x̃1

−s1
∂

∂x̃2
s2

∂

∂x̃1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ex1 (x̃)

Ex2 (x̃)

Ex3 (x̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9.157)

241

where we have used the fact that si is only a function of x̃i which allows the factors of si to
commute with the partial differential operators. Finally, combining these results gives

S−1Λ−1∇̃ ×
[
SĒ (x̃)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s2s3

0 0

0 1
s1s3

0

0 0 1
s1s2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −s2
∂

∂x̃3
s3

∂

∂x̃2

s1
∂

∂x̃3
0 −s3

∂

∂x̃1

−s1
∂

∂x̃2
s2

∂

∂x̃1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ex1 (x̃)

Ex2 (x̃)

Ex3 (x̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9.158)

which yields

S−1Λ−1∇̃ ×
[
SĒ (x̃)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
s3

∂

∂x̃3

1
s2

∂

∂x̃2
1
s3

∂

∂x̃3
0 − 1

s1

∂

∂x̃1

− 1
s2

∂

∂x̃2

1
s1

∂

∂x̃1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ex1 (x̃)

Ex2 (x̃)

Ex3 (x̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (9.159)

This last equation agrees with (9.151

.

).
Now that we have shown (9.153

.

), we substitute this identity into the transformed time-
harmonic Faraday law

∇̃s × Ē (x̃) = −ωµH̄ (x̃) (9.160)

to obtain

S−1Λ−1∇̃ ×
[
SĒ (x̃)

]
= −ωµH̄ (x̃) (9.161)

∇̃ ×
[
SĒ (x̃)

]
= −ωΛSµH̄ (x̃) . (9.162)

If S and µ commute (which is the case, for example, when µ is diagonal), then

∇̃ ×
[
SĒ (x̃)

]
  

ĒPML(x̃)

= −ω
[
Λµ
]

  
µPML

[
SH̄ (x̃)

]
  

H̄PML(x̃)

. (9.163)

A similar procedure applied to

∇̃s × H̄ (x̃) = ωϵĒ (x̃) (9.164)

yields
∇̃ × H̄PML (x̃) = ωϵPMLĒPML (x̃) (9.165)

242

with ϵPML = Λϵ. By performing these operations, we have rewritten Faraday and Ampère’s
laws using the PML coordinate transformations but in a form where the curl operators do
not involve the transformation parameters si. In fact, any formulation capable of solving
anisotropic Maxwell’s equations with complex coefficients can incorporate PML by solving
for the auxiliary fields H̄PML and/or ĒPML by modifying the permittivity and permeability
tensors. Actually, in the region of interest, S = I since si = 1 − f ′

i (x̃i) (this is because fi

appearing in xi = x̃i − fi (x̃i) is zero there, and by consequence, so is its derivative). This
means that in the physical domain

H̄PML (x̃) = SH̄(x̄+ f̄ (x̃)) (9.166)

= IH̄ (x̄) (9.167)

= H̄ (x̄) (9.168)

and similarly, ĒPML (x̃) = Ē (x̄). Thus there is no need to perform any transformation to
compute the physical solution after solving the PML equations. Of course, the solution
H̄PML and/or ĒPML is nonphysical wherever the functions fi (x̃i) are nonzero.

9.6.2 Scattering from an Infinite Circular Cylinder

In this final section, we solve a two-dimensional electromagnetic scattering problem where
we assume that the scatterer is infinitely long in the x3 direction and that its unit normal
n̄ is orthogonal to this axis of translation. This means Ē and H̄ are independent of x3. By
making such an assumption, the Faraday and Ampère laws decouple into two sets of three
equations each rather than yield a set of six coupled equations. These two sets are called
the TMx3 and TEx3 mode equations respectively. In this section, we choose to focus on the
TEx3 mode although an analogous development applies for the TMx3 mode as well. In the
TEx3 mode, Ē and H̄ satisfy

Ē (x̄) =

⎡⎢⎢⎢⎣
Ex1 (x1, x2)
Ex2 (x1, x2)

0

⎤⎥⎥⎥⎦ , H̄ (x̄) =

⎡⎢⎢⎢⎣
0
0

Hx3 (x1, x2)

⎤⎥⎥⎥⎦ . (9.169)

Then rewriting Ampère’s law as
ϵ−1∇ × H̄ = ωĒ, (9.170)

taking the curl, and substituting Faraday’s law yields

∇ ×
(
ϵ−1∇ × H̄

)
= ω2µH̄. (9.171)

243

Evaluating the inner curl first, we obtain

∇ × H̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − ∂

∂x3

∂

∂x2
∂

∂x3
0 − ∂

∂x1

− ∂

∂x2

∂

∂x1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

0

Hx3 (x1, x2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Hx3

∂x2

−∂Hx3

∂x1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.172)

Then, restricting ϵ to be diagonal,

ϵ−1∇ × H̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ϵ11

∂Hx3

∂x2

− 1
ϵ22

∂Hx3

∂x1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.173)

Applying the second curl gives

∇ ×
(
ϵ−1∇ × H̄

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − ∂

∂x3

∂

∂x2
∂

∂x3
0 − ∂

∂x1

− ∂

∂x2

∂

∂x1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ϵ11

∂Hx3

∂x2

− 1
ϵ22

∂Hx3

∂x1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.174)

which yields

∇ ×
(
ϵ−1∇ × H̄

)
=

⎡⎢⎢⎢⎢⎢⎣
0
0

− ∂

∂x1

(
1
ϵ22

∂Hx3

∂x1

)
− ∂

∂x2

(
1
ϵ11

∂Hx3

∂x2

)
⎤⎥⎥⎥⎥⎥⎦ (9.175)

since the vector ϵ−1∇ × H̄ is independent of x3. As a consequence, for the TEx3 mode, H̄
satisfies

− ∂

∂x1

(
1
ϵ22

∂Hx3

∂x1

)
− ∂

∂x2

(
1
ϵ11

∂Hx3

∂x2

)
= ω2µ33Hx3 (9.176)

and an identical result holds when we replace Hx3 , ϵ11, ϵ22, and µ33 with their corresponding
PML counterparts H̄PML, ϵPML, and µPML.

Using a normalization similar to the one-dimensional case described in Section 5.3

.

, we

244

substitute

t̂ = 1
L

√
ϵ0µ0

t, x̂ = 1
L
x̄, Ĥ = 1

Hnorm
H̄, Ê = 1

Hnorm

√
ϵ0

µ0
Ē, (9.177)

and corresponding angular frequency ω̂ = L
√
ϵ0µ0ω (a direct consequence of the change

of variable from time t to t̂) to render (9.176

.

) dimensionless. Typically, we associate L

with the wavelength of the phenomena, and Hnorm with the peak amplitude of H̄. Through
this normalization, ϵ11, ϵ22, and µ33 become their corresponding components of the relative
permittivity and permeability tensors and factors ϵ0 and µ0 from the absolute permittivity
and permeability are scaled out (we drop the circumflex notation from now on and perform
all computations in the dimensionless space).

We denote the scatterer’s cross section in the x1x2-plane by Ωs with boundary Γs and
the surrounding space by Ω = R2\Ωs. Rather than solve for the total field Hx3 in Ω, we will
assume a given incident field Hi and solve for the scattered field Hs such that Hx3 = Hi +Hs.
For our example, we choose a plane wave in free space

Hi (x̄) = e−ωk̄T x̄ (9.178)

where

k̄ =
⎡⎣ kx1

kx2

⎤⎦ =
⎡⎣ cos (ϕi)

sin (ϕi)

⎤⎦ (9.179)

is a unit vector describing the direction of propagation of the wave and ϕi is the angle of
incidence measured from the x1 axis. Since Hx3 satisfies (9.176

.

) in Ω, we must solve the
PDE

− ∂

∂x1

(
1
ϵ22

∂Hs

∂x1

)
− ∂

∂x2

(
1
ϵ11

∂Hs

∂x2

)
− ω2µ33Hs = f (9.180)

where, restricting ϵ to be independent of x̄,

f = ∂

∂x1

(
1
ϵ22

∂Hi

∂x1

)
+ ∂

∂x2

(
1
ϵ11

∂Hi

∂x2

)
+ ω2µ33Hi (9.181)

= ω2
(

− 1
ϵ22
k2

x1 − 1
ϵ11
k2

x2 + µ33

)
Hi. (9.182)

Equation (9.180

.

) can be rewritten in the form of the generic PDE

− ∇ · (α∇φ) + βφ = f (9.183)

245

with

α =

⎡⎢⎢⎣
1
ϵ22

0

0 1
ϵ11

⎤⎥⎥⎦ , β = −ω2µ33, f = −(ω2k̄Tαk̄ + β)Hi, φ = Hs, (9.184)

and solved using the techniques described in this chapter once we have specified the appro-
priate boundary conditions (this is an anisotropic form of Helmholtz’s equation).

Since the scatterer is a perfect electric conductor, the appropriate boundary condition
for the scatterer is

n̄× Ē = 0 on Γs. (9.185)

We must express this boundary condition in terms of H̄ because (9.176

.

) is written in terms
of Hx3 . We do so by using (9.170

.

) to replace Ē in the boundary condition to obtain

n̄×
(

1
ω
ϵ−1∇ × H̄

)
= 0 on Γs. (9.186)

We ignore the factor 1/ω since this boundary condition is homogeneous. By explicit com-
putation, we find that

n̄×
(
ϵ−1∇ × H̄

)
=

⎡⎢⎢⎢⎣
0 0 n2

0 0 −n1

−n2 n1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ϵ11

∂Hx3

∂x2

− 1
ϵ22

∂Hx3

∂x1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.187)

simplifies to

n̄×
(
ϵ−1∇ × H̄

)
= −

(
n1

1
ϵ22

∂Hx3

∂x1
+ n2

1
ϵ11

∂Hx3

∂x2

)
(9.188)

= −n̄T (α∇Hx3) (9.189)

so that the perfect electric boundary condition can be applied as a Robin boundary condition.
Using the total field Hx3 = Hi +Hs yields

n̄T (α∇Hx3) = 0 (9.190)

n̄T (α∇Hs) = −n̄T (α∇Hi) (9.191)

= −
(
n1

1
ϵ22

∂Hi

∂x1
+ n2

1
ϵ11

∂Hi

∂x2

)
. (9.192)

246

Substituting the incident field gives

n̄T (α∇Hs) = ω
(
n1

1
ϵ22
kx1 + n2

1
ϵ11
kx2

)
Hi (9.193)

= ωn̄Tαk̄Hi (9.194)

so that γ = 0 and q = ωn̄Tαk̄Hi on Γs.
Because we only consider time-harmonic solutions, there is an additional boundary con-

dition on the scattered solution Hs needed at infinity for this PDE to be well-posed [29

.

].
When ϵ = ϵI and µ = µI, the Silver-Müller radiation condition

lim
∥x̄∥2→∞

∥x̄∥2
[
∇ × H̄s + ω

√
µϵx̂× H̄s

]
= 0 (9.195)

must hold uniformly in all unit directions x̂. This boundary condition removes the possibility
of incoming waves which would not be physically relevant for a scattered wave (the scattered
wave should originate at the scatterer Ωs and propagate away from it, not towards it).
However, since the finite element method described in this chapter holds only for bounded
domains Ω, rather than attempt to impose such a boundary condition, we instead enclose
the scatterer Ωs with PML.

To fix ideas, we consider an incident wave with angle ϕi = 0 and angular frequency ω = 2π
(corresponding to a normalized wavelength of 1) incident upon an infinitely long circular
cylinder surrounded by free space (this means that nondimensional ϵ11 = ϵ22 = µ33 = 1).
The cylinder boundary Γs is the unit circle centered at the origin whose signed distance
function is

Φ1 (x̄) = 1 − ∥x̄∥2. (9.196)

This function can be used to describe the domain

Ω =
{
x̄ ∈ R2 : ∥x̄∥2 > 1

}
. (9.197)

To approximate this unbounded domain, we consider the truncated domain

Ωtruncated = Ω ∩
{
x̄ ∈ R2 : ∥x̄∥∞ < Lbox

}
(9.198)

where Lbox = 5 and construct a mesh with bounding box parameters

x̄bound =
⎡⎣ −Lbox

−Lbox

⎤⎦ , H = 2Lbox, (9.199)

247

maximum level of refinement lmax = 5, and minimum level of refinement lmin = 3. During
the meshing procedure we do not project boundary edges that lie on the boundary of the
bounding box. Projections to Γs are computed to a tolerance ϵtol = 10−12. The domain
Ωtruncated is an axis-aligned square with side lengths 2Lbox, centered at the origin, with the
unit disk removed.

We then specify the PML functions

si = 1 − f ′
i (xi) (9.200)

with

f ′
i (xi) =

⎧⎪⎨⎪⎩
σi

ω
xi > Lbox − wi or xi < −Lbox + wi

0 otherwise
(9.201)

where σi is a constant whose magnitude determines how scattered waves decay in the PML
and wi is the thickness of the PML. The factor ω in the denominator means that the attenu-
ation in the PML is independent of frequency. For our example, we choose wi = 1.25 which
suggests that

σi = − log(ϵtol)
2wi

≈ 12 (9.202)

is a good choice to have the wave decay to the appropriate tolerance after traveling into and
out of the PML. Using such PML results in four regions with different values for α, β, and f .
The free space region has both s1 = 1 and s2 = 1, whereas region 2 has s1 = 1 and s2 ̸= 1,
region 3 has s1 ̸= 1 and s2 = 1, and region 4 has both s1 ̸= 1 and s2 ̸= 1. In region 1, we set
the forcing function to

f = −(ω2k̄Tαk̄ + β)Hi (9.203)

as described earlier, with forcing functions in the other regions set to zero. The boundary
condition on Γs is given by (9.194

.

) and the boundary condition on ∂Ωtruncated\Γs is a homo-
geneous Neumann boundary condition. We have chosen the PML thicknesses wi, attenuation
coefficients σi, and the PML’s distance to the scatterer such that this boundary condition
has a negligible effect on the scattered solution.

The exact solution to this scattering problem is known [4

.

, 8

.

]. Briefly, it is obtained
by solving Helmholtz’s equation in cylindrical coordinates via separation of variables which
results in an expansion of Bessel functions in the radial direction, multiplied by sinusoids
in the angular direction, for the scattered field. Imposing the radiation condition at infinity
forces linear combinations of Bessel functions that yield Hankel functions of the second kind.
By expanding the plane wave Hi in a cylindrical wave expansion, applying the boundary
condition on the unit circle, and matching coefficients in the incident and scattered field, we

248

find that

Hx3 =
∞∑

n=0
dn

−n
[
Jn (ω∥x̄∥2) + cnH

(2)
n (ω∥x̄∥2)

]
cos (n atan2 (x2, x1)) (9.204)

where

dn =

⎧⎪⎨⎪⎩2 n > 0

1 n = 0,
cn = − J ′

n (ω)
H

(2)′
n (ω)

, (9.205)

and Jn is the Bessel function of the first kind of integer order n, H(2)
n is the Hankel function

of the second kind of integer order n, and J ′
n and H(2)′

n are their derivatives with respect to
their arguments. Derivatives of these special functions are evaluated using

J ′
0 (z) = −J1 (z) , (9.206)

H
(2)′
0 (z) = −H(2)

1 (z) , (9.207)

and
C ′

n (z) = 1
2 [Cn−1 (z) − Cn+1 (z)] (9.208)

where Cn is either Jn or H(2)
n , and z is a generic argument, as described in [162

.

]. When
used for comparison to the computed solution, we take a finite number of terms from the
expansion. This expansion converges in a disk whose radius increases when increasing the
number of terms taken from the series. In our experiments, we take the first 75 terms for a
solution accurate to 13 digits or better throughout the domain Ωtruncated.

Figure 9.15

.

illustrates the approximate solution Hx3 = Hi +Hs as well as the mesh after
five iterations of the hp-adaptive algorithm. Degree Lu1 = Lu2 = 4 polynomials were used
on the initial mesh. In practice, we solve for φ = Hs and then add it to the known incident
field Hi to get the total field represented in the figure. Note that in the initial mesh, there
are one element thick PML surrounding the domain. In the approximate solution, along the
interface between the PML and free space, one can observe the rapid decay of the scattered
field Hs (whose magnitude is roughly one quarter the magnitude of the incident field at that
interface) because, to the eye, Hx3 simply appears to be the incident field Hi in the PML.
Since the factors si enter into the coefficients α and β, the choice of PML function that
we have made leads to this rapid variation in the computed field φ. A smooth transition
between 0 and σi/ω can reduce this rapid variation. We elect to keep the PML transition
sharp to demonstrate that high polynomial degree is sufficient to resolve the rapid decay.

Figure 9.16

.

illustrates the pointwise error log10 |Hx3 − Hx3,exact| between the computed
solution Hx3 and the exact solution Hx3,exact (sampled with 21 uniformly spaced points in

249

Figure 9.15: (top) Approximate solution Hx3 = Hi +Hs to the scattering problem for the
circular cylinder obtained by adding (9.178

.

) to the solution of (9.183

.

). (bottom) Mesh used
to compute the solution after five iterations of hp-adaption.

250

each coordinate of the canonical domain ū ∈ (−1, 1)2 on each element), as well as the sparsity
pattern of the associated saddle point system used to compute Hs. The solution is accurate
to 9 digits or better throughout the free space region, but grossly incorrect inside the PML.
This is expected because the PML attenuate the scattered field in those regions. Note that
the error tends to be larger over elements with degree 16 than elements with degree 32.
Subsequent iterations in the hp-adaptive algorithm identify this fact and reduce the error
accordingly. There are 214 element refinements performed during the five iterations of hp-
adaption, only 9 of which are of h-type. This is expected because the solution is smooth
everywhere and in such situations, p-adaption is preferred. This adaptive process results in
a final saddle point system describing 79,918 linear equations.

One frequently computed quantity of interest associated with scattering solutions is the
radar cross section (RCS). In two dimensions, the RCS is given by

σ2D (ϕ, ϕi) = lim
∥x̄∥2→∞

2π∥x̄∥2
|Hs|2

|Hi|2
(9.209)

and is a function of the observation angle ϕ as well as the angle of incidence ϕi of the incident
wave Hi [4

.

]. Since our scatterer is invariant under rotations, there is no need to compute this
quantity for various ϕi and we fix it to zero. A convenient way to calculate this quantity is
through Green’s representation formula for Helmholtz’s equation (see [163

.

] for a derivation
and the relevant integral equation theory). The formula is

Hs (x̄) =
˛

Γs

(
n̄′T ∇′G2D (x̄, x̄′)

)
Hs (x̄′) −

(
n̄′T ∇′Hs (x̄′)

)
G2D (x̄, x̄′) dΩ′ (9.210)

for x̄ ∈ Ω where
G2D (x̄, x̄′) = − 

4H
(2)
0 (ω∥x̄− x̄′∥2) (9.211)

is the Green’s function for Helmholtz’s equation in two dimensions and integration is per-
formed with respect to the primed coordinates (as are derivatives). Using the large argument
asymptotic expression [164

.

]

lim
z→∞

H(2)
n (z) ≈

√
2
πz
e−(z−n π

2 − π
4) (9.212)

in Green’s representation formula yields

lim
∥x̄∥2→∞

Hs (x̄) =
√

ω

8π∥x̄∥2
e−ω∥x̄∥2

˛
Γs

[
x̂T n̄′ Hs (x̄′) − 1

ω

(
n̄′T ∇′Hs (x̄′)

)]
eωx̂T x̄′

dΩ′

  
Hfar

(9.213)

251

Figure 9.16: (top) Pointwise error log10 |Hx3 − Hx3,exact| of the approximate solution in
Figure 9.15

.

. (bottom) Sparsity pattern for the saddle point matrix used to compute the
approximate solution. The scales of the row number and column number axes are in thou-
sands.

252

which gives the scattered far field in terms of the scattered near field. Taking the magnitude
gives

|Hs|2 =
√

ω

8π∥x̄∥2
e−ω∥x̄∥2Hfar

[√
−ω

8π∥x̄∥2
eω∥x̄∥2H∗

far

]
(9.214)

= ω

8π∥x̄∥2
|Hfar|2. (9.215)

Similarly, the magnitude of the incident field is

|Hi|2 = e−ωk̄T x̄[eωk̄T x̄] = 1 (9.216)

which means that

σ2D (ϕ, ϕi) = lim
∥x̄∥2→∞

2π∥x̄∥2

[
ω

8π∥x̄∥2
|Hfar|2

]
(9.217)

= ω

4 |Hfar|2. (9.218)

Thus, to calculate the RCS, we first compute Hs for a given incident wave (in our case
with incidence angle ϕi = 0), then we compute the far field integral

Hfar (ϕ) =
˛

Γs

[
x̂T n̄′ Hs (x̄′) − 1

ω

(
n̄′T ∇′Hs (x̄′)

)]
eωx̂T x̄′

dΩ′ (9.219)

where

x̂ =
⎡⎣ cos (ϕ)

sin (ϕ)

⎤⎦ (9.220)

is the only quantity in the integrand that depends on ϕ. To calculate the RCS from the
finite element solution we have already computed, we split the integral across the NΓ elements
whose curvilinear edges represent the scatterer:

Hfar (ϕ) =
NΓ∑
j=1

ˆ
Γj

[
x̂T n̄′ Hs (x̄′) − 1

ω

(
n̄′T ∇′Hs (x̄′)

)]
eωx̂T x̄′

dΩ′. (9.221)

Each of these integrals are parametrized along their respective edges using their respective
element’s transfinite interpolation map as described in Chapter 8

.

. To illustrate, suppose
that one of these edges is parametrized by

x̄1 (−1, u2) = X̃1p̄ (u2) (9.222)

253

(see Chapter 8

.

for the other possible parametrizations). Then its corresponding integral can
be expressed as
ˆ 1

−1

[
x̂T n̄′ Hs

(
X̃1p̄ (u2)

)
− 1
ω

(
n̄′TJ−T

x̄′ ∇ūHs

(
X̃1p̄ (u2)

))]
eωx̂T x̄′∥X̃1D̃p̄ (u2) ∥2du2.

(9.223)
One-dimensional numerical integration can then be applied to resolve this integral. In prac-
tice, this integrand is smooth and high order Clenshaw-Curtis quadrature can be used to
guarantee that the error in computing the integral is smaller than the error in the near field
solution Hs [110

.

].
To assess the accuracy of the computed RCS, we also compute the RCS σ2D,exact using

the exact solution (9.204

.

). Again, we only need to compute the integral for Hfar. In this
case, since the boundary Γs is smooth and the integrand for Hfar is periodic (the integral is
performed around a closed loop for a continuous function), we can use the Trapezoidal rule to
obtain exponential convergence [165

.

]. Figure 9.17

.

illustrates 10 log10 (σ2D) (the approximate
RCS measured in decibels (dB)) as well as the pointwise error log10 |σ2D − σ2D,exact| between
the approximate RCS σ2D and the exact RCS σ2D,exact. For both calculations, we compute
the RCS at 1000 equally spaced points in the observation angle ϕ. The approximate RCS is
verified to have approximately 12 digits or better of accuracy.

254

0 60 120 180 240 300 360

-25

-20

-15

-10

-5

0

5

10

15

0 60 120 180 240 300 360

-14.5

-14

-13.5

-13

-12.5

-12

Figure 9.17: (top) Radar cross section (9.209

.

) of the circular cylinder in decibels. (bottom)
Pointwise error log10 |σ2D − σ2D,exact| in the radar cross section.

255

Chapter 10

Domain Decomposition for
Non-Conforming Problems

The solutions produced in the previous chapter were computed using sparse direct solvers
[147

.

]. These methods are suitable for problems with smaller numbers of unknowns. In
such cases, the amount of additional memory required by fill-in during the LU factorization
does not tend to exceed the total amount of random access memory (RAM) of a workstation
running the computations. The eigenfunction of the disk, the coaxial join, and the scattering
problem from the previous chapter are good examples of this kind of behavior. However,
the shielded microstrip line problem from the previous chapter comes close to exceeding the
working memory of the four core Intel Xeon E5-1603 processor workstation used to compute
the solution. The final factorization in the hp-adaption algorithm for that example costs close
to 14.5 gigabytes (GB) of RAM (the workstation itself has 32 GB, some of which is needed
to run the operating system and other applications). Note that the number of unknowns
in the shielded microstrip line example is only about ten times as many as required for the
other examples.

This type of memory constraint is particularly stringent for high frequency scattering
problems. In such problems, a large number of unknowns are needed to capture the wave-
like nature of the solution throughout the computational domain. This chapter explains
how to solve the saddle point system produced in the previous chapter using an iterative do-
main decomposition algorithm. The domain decomposition method requires significantly less
memory to solve the saddle point system and can be applied to problems with significantly
more unknowns as a result. It is a type of FETI-DP algorithm [79

.

] that is more general
than the standard approach used for static problems [78

.

, 80

.

]. The generalization is required
so that the number of iterations of the method depends only weakly on the frequency for
Helmholtz problems.

256

The first part of this chapter describes how FETI-DP is related to classic null space
and range space methods [114

.

] used to solve saddle point systems and their associated pre-
conditioners [166

.

]. It then explains how to construct a sparse basis for the null space of
the constraint matrix for a saddle point system with non-conforming continuity constraints.
This, or a partial basis for the null space, is needed in any FETI-DP type domain decom-
position algorithm, including the one developed in this chapter. The particular structure of
the basis for the null space permits additional structure to be exploited in the algorithm.
The final theory section of the chapter explains how to choose the partial basis for the null
space when solving Poisson or Helmholtz problems. The choice is made so that the number
of iterations of the method depends only weakly on the frequency of the problem. The fi-
nal part of the chapter uses test problems to demonstrate the convergence behavior of the
algorithm and applies the algorithm to challenging high frequency scattering problems.

10.1 The Dual-Primal Algorithm

The goal of this chapter is to solve the saddle point system⎡⎣ A CT

C 0

⎤⎦⎡⎣ φ̄

ν̄

⎤⎦ =
⎡⎣ b̄

d̄

⎤⎦ (10.1)

arising from the non-conforming finite element method described in Chapter 9

.

. We have seen
in previous chapters that such a system can be obtained from either a variational formulation
or the method of weighted residuals. In a variational formulation, the discretized Lagrangian
is

L(φ̄, ν̄) = 1
2 φ̄

TAφ̄− φ̄T b̄+ ν̄T (Cφ̄− d̄) (10.2)

where φ̄ are called primal variables and ν̄ are called dual variables (also called Lagrange
multipliers) [88

.

]. Rather than solve for the primal variables directly as in a classical finite
element method using the null space method, a dual-primal algorithm first explicitly enforces
a subset of the constraints, then solves for a remaining set of dual variables from which the
primal variables are finally obtained. This is where the abbreviation DP (which stands for
Dual-Primal) in FETI-DP comes from1

.

.
The dual-primal algorithm proceeds as follows. First, the constraint matrix is partitioned

1The dual-primal algorithm should not be confused with the important class of numerical optimization
algorithms called primal-dual methods which solve simultaneously for the primal and dual variables [90

.

].

257

so that (10.1

.

) becomes ⎡⎢⎢⎢⎣
A CT

p CT
d

Cp 0 0
Cd 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
φ̄

ν̄p

ν̄d

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b̄

d̄p

d̄d

⎤⎥⎥⎥⎦ (10.3)

where ν̄ and d̄ have been partitioned accordingly. We will assume that the constraint equa-
tions corresponding to the block Cp are meant to be explicitly enforced. To enforce these
constraints, we use a partial null space method where we let

φ̄ = Zφ̄p + φ̄z (10.4)

with CpZ = 0 such that Z is a basis for the null space of Cp. We call this a partial null
space method because the standard null space method would choose Z as the basis for the
null space of the entire constraint matrix C. Substituting (10.4

.

) into the second block row
of (10.3

.

) yields

Cp(Zφ̄p + φ̄z) = d̄p (10.5)

CpZ  
0

φ̄p + Cpφ̄z = d̄p (10.6)

so that choosing φ̄z to satisfy
Cpφ̄z = d̄p (10.7)

reduces the size of the saddle point system to solve. In particular, performing the same
substitution into the first block row of (10.3

.

) and multiplying from the left by ZT gives

ZTA(Zφ̄p + φ̄z) + ZTCT
p  

0

ν̄p + ZTCT
d ν̄d = ZT b̄ (10.8)

ZTAZφ̄p + ZTCT
d ν̄d = ZT (b̄− Aφ̄z). (10.9)

Similarly, substituting (10.4

.

) into the third block row of (10.3

.

) yields

Cd(Zφ̄p + φ̄z) = d̄d (10.10)

CdZφ̄p = d̄d − Cdφ̄z. (10.11)

Equation (10.9

.

) together with (10.11

.

) yields the reduced saddle point system
⎡⎣ ZTAZ ZTCT

d

CdZ 0

⎤⎦⎡⎣ φ̄p

ν̄d

⎤⎦ =
⎡⎣ ZT (b̄− Aφ̄z)

d̄d − Cdφ̄z

⎤⎦ . (10.12)

258

We abbreviate the entries as Â = ZTAZ, Ĉ = CdZ, b̂ = ZT (b̄−Aφ̄z), and d̂ = d̄d −Cdφ̄z so
that ⎡⎣ Â ĈT

Ĉ 0

⎤⎦⎡⎣ φ̄p

ν̄d

⎤⎦ =
⎡⎣ b̂

d̂

⎤⎦ . (10.13)

In order to compute the right hand side of this saddle point system, we need to compute φ̄z.
Since Cpφ̄z = d̄p and Cp has full row rank (C has full row rank by construction and Cp is
comprised of a subset of its rows), its Moore-Penrose pseudoinverse is

C+
p = CT

p (CpC
T
p)−1. (10.14)

This means that choosing φ̄z = C+
p φ̃ requires that φ̃ satisfy

Cpφ̄z = d̄p (10.15)

CpC
+
p φ̃ = d̄p (10.16)

CpC
T
p (CpC

T
p)−1  

I

φ̃ = d̄p. (10.17)

In other words, we can choose
φ̄z = C+

p d̄p (10.18)

in the right hand side of the reduced saddle point system (10.13

.

).
In the dual-primal algorithm, rather than solve the reduced saddle point system directly,

we use the range space method [114

.

] to solve for the dual variables ν̄d. That is, we consider
cases for which Â is invertible (it is in all of the problems that we solve in this chapter) and
isolate φ̄p in the first block row of (10.13

.

). This is done by multiplying the first block row
by Â−1 from the left to obtain

Â−1Â  
I

φ̄p + Â−1ĈT ν̄d = Â−1b̂. (10.19)

We then multiply by Ĉ from the left which gives

Ĉφ̄p  
d̂

+ĈÂ−1ĈT ν̄d = ĈÂ−1b̂ (10.20)

where we have used the second block row of (10.13

.

) to simplify the first term. We obtain a

259

linear system in dual unknowns ν̄d given by

ĈÂ−1ĈT ν̄d = ĈÂ−1b̂− d̂. (10.21)

This is equivalent to performing one step of block Gaussian elimination on (10.13

.

) to zero
the Ĉ block. In a dual-primal algorithm, we solve (10.21

.

) first, then solve

Âφ̄p = b̂− ĈT ν̄d (10.22)

for φ̄p. These two solves consist of applying block backward substitution after the block
Gaussian elimination step has been performed. Finally, to construct the original primal
unknowns, we substitute φ̄p into (10.4

.

).
In practice, (10.21

.

) is solved using an iterative preconditioned Krylov subspace method
[167

.

]. Instead of using the left preconditioner

P−1 = (Ĉ+)T ÂĈ+ (10.23)

(see, for example, [166

.

]) we use a modified preconditioner. Since

P−1ĈÂ−1ĈT = (Ĉ+)T Â Ĉ+Ĉ  
projection

Â−1ĈT , (10.24)

we replace Ĉ+ = ĈT (ĈĈT)−1 in P−1 with

Ĉ⋆ = WĈT (ĈWĈT)−1 (10.25)

to obtain
P−1 = (Ĉ⋆)T ÂĈ⋆. (10.26)

We choose Ĉ⋆ this way so that Ĉ⋆Ĉ preserves the projection property of Ĉ+Ĉ. Any matrix
M satisfying M2 = M is a projection matrix and

(Ĉ⋆Ĉ)2 = [WĈT (ĈWĈT)−1Ĉ]  
Ĉ⋆Ĉ

[WĈT (ĈWĈT)−1Ĉ]  
Ĉ⋆Ĉ

(10.27)

= WĈT (ĈWĈT)−1  
Ĉ⋆

(ĈWĈT)(ĈWĈT)−1  
I

Ĉ (10.28)

= Ĉ⋆Ĉ. (10.29)

Note that when W = I, Ĉ⋆ = Ĉ+ and Ĉ+Ĉ is a projector onto the range of ĈT . This

260

projector is orthogonal (since it is equal to its transpose). Other choices of W result in
projections that are not orthogonal, but that produce more effective preconditioners. That
is, they reduce the number of iterations required by the preconditioned Krylov subspace
method to converge to a given tolerance. As a final note, in the preconditioner we follow the
common practice [70

.

] of using only the part of Â corresponding to the operator −∇ · (α∇φ)
rather than the full operator. This means that we leave out any contributions from the term
βφ or the Robin boundary conditions when forming Â in P−1.

10.2 A Sparse Basis for the Null Space

In order to complete the description of the dual-primal algorithm, we need to choose how
to partition the constraint equations into blocks Cp and Cd and describe how to construct
an associated basis Z for the null space of Cp. These choices will inform how to choose
the weight matrix W in the preconditioner. One particularly important constraint on the
basis Z is that it should be sparse, otherwise we risk taking the original sparse finite element
problem and transforming it into a dense problem. Fortunately, such a basis exists and can
be computed in a straightforward manner.

Choosing the subset of constraints Cp to enforce explicitly depends on how we wish to
perform domain decomposition. In the following, we will consider each element to belong to
its own domain in the decomposition algorithm. We restrict our attention to this case be-
cause we are describing a finite element method aimed at computing high accuracy solutions
with potentially high polynomial degree on each element. This is not typical of domain de-
composition algorithms applied to finite element methods of low polynomial degree because
the number of unknowns for a single element in such cases is small. Instead, several elements
are grouped together into domains and the solution of the resulting local problems may be
computed efficiently using direct methods in parallel.

In a typical FETI-DP method, the constraint matrix Cp corresponds to constraints en-
forcing continuity at cross points of the decomposition (vertices where several domains meet)
and may include continuity of the average of the solution along boundaries between domains
[71

.

]. By virtue of imposing continuity constraints in the way described in Chapter 9

.

, we have
a hierarchy of constraints along each edge whose lowest order constraints fit into the stan-
dard FETI-DP framework. To enforce continuity at vertices between elements, we include
the first constraint equation along each edge to form Cp. Note that care must be taken in
situations where certain constraints were discarded in assembling C. Having been discarded,
no constraint from the associated edge should be added to Cp.

However, in contrast with a standard FETI-DP method, the hierarchy of constraints along

261

each edge means that we can include however many constraints we wish along a given edge. In
practice, we keep this number, called l, fixed across the whole mesh (with the understanding
that if the first ldiscard constraints have been discarded along an edge, we only include l−ldiscard

constraints corresponding to that edge). Note that if l exceeds the polynomial degree for
all elements, then Cp = C and the domain decomposition method reduces to the null space
method. That is, we globally assemble the finite element problem and there is no domain
decomposition to speak of. If l = 0, then Cd = C and the domain decomposition method
reduces to the range space method, but then the domain decomposition method does not
possess a coarse space and the number of iterations required for the Krylov subspace method
to converge can be large2

.

. Later, we will select l to control the number of iterations required
by the domain decomposition algorithm.

Once Cp is chosen, we construct a basis for its null space. Since C+
p Cp is a projector onto

the range of CT
p , I − C+

p Cp is a projector onto the null space of Cp. To see why,

Cp(I − C+
p Cp) = Cp(I − CT

p (CpC
T
p)−1Cp) (10.30)

= Cp − CpC
T
p (CpC

T
p)−1  

I

Cp (10.31)

= 0 (10.32)

so that the columns of I − C+
p Cp are all in the null space of Cp. Unfortunately, there are

more columns in I − C+
p Cp than required for a basis for the null space. This is because

Cp ∈ Rm×n with m < n. Since Cp has full row rank, rank(Cp) = m. The rank-nullity
theorem states that

rank(Cp)  
m

+null(Cp) = n (10.33)

meaning that a basis for the null space should have null(Cp) = n−m columns. The matrix
I −C+

p Cp is square with n columns, so that there are m dependent columns if we are to use
it to construct a basis for the null space.

It turns out that a simple change of basis makes selecting columns for the basis of the
null space a straightforward process. The change of basis is related to the one given in
(4.69

.

) which converted the two first integrated Legendre polynomial basis functions into
2For example, in Section 10.5.2

.

, we solve a test Helmholtz problem to understand how convergence behaves
as a function of element degree, number of elements in the mesh, and parameter l for different wavenumbers
k. For a low frequency problem with k = 1 and degree p = 8 elements, the number of iterations grows as the
number of elements is increased when l = 0 (even exceeding 1000 iterations when there are 1024 elements).
In addition, even though the relative residual decreases, the difference between the computed solution and
a solution computed via direct solver is O(1). When l = 1 for this same problem, the number of iterations
never exceeds 25 and the computed solutions agree up to 10 digits.

262

interpolatory polynomials. On a given element, the two-dimensional basis functions are
related to one-dimensional basis functions N̄(uk) = BÑ(uk) for k = 1, 2, via the tensor
product. This means that to convert to integrated Legendre polynomials with first two basis
functions interpolatory, the expansion

φj(x̄) =
(
N̄(u2) ⊗ N̄(u1)

)T
φ̄j (10.34)

=
(
N̄(u2)T ⊗ N̄(u1)T

)
φ̄j (10.35)

becomes

φj(x̄) =
(
Ñ(u2)TBT ⊗ Ñ(u1)TBT

)
φ̄j (10.36)

=
(
Ñ(u2)T ⊗ Ñ(u1)T

)
(B ⊗B) φ̄j  

φ̃j

(10.37)

where we have used (5.12

.

) and the fact that B = BT . If each element has its own polynomial
degree, it is necessary to change the size of B accordingly to obtain

φ̃j = Bjφ̄j (10.38)

where Bj = B⊗B with the size of B chosen appropriately. Then the block diagonal matrix

Bz =

⎡⎢⎢⎢⎢⎢⎢⎣
B1

B2
. . .

BNe

⎤⎥⎥⎥⎥⎥⎥⎦ (10.39)

can be used to convert all coefficients φ̄ from coefficients in the usual basis functions to
coefficients φ̃ = Bzφ̄ in the interpolatory basis functions. Since Bz is block diagonal, and
each Bj is a Kronecker product of matrices B, the matrix Bz inherits the orthogonality,
symmetry, and involutory properties of B. In particular, Bz = BT

z and B−1
z = Bz. Among

other things, this last property means that φ̄ = Bzφ̃.
We use this change of basis to construct a basis for the null space of Cp. Rather than

work with Cp directly, we start from the second block row of (10.3

.

) and use φ̄ = Bzφ̃ to
obtain

CpBz  
Cint

φ̃ = d̄p (10.40)

which is a set of constraints on the unknowns corresponding to interpolatory basis functions.

263

If we compute the projector onto the null space of C int, we obtain

I − C+
intC int = I − (CpBz)T [(CpBz)(CpBz)T]−1(CpBz) (10.41)

= I −BzC
T
p (CpBzBzC

T
p)−1CpBz (10.42)

where we have used Bz = BT
z . Since BzBz = I,

I − C+
intC int = I

BzBz

−BzC
T
p (Cp BzBz  

I

CT
p)−1CpBz. (10.43)

Then factoring Bz from both the left and right, and replacing C+
p = CT

p (CpC
T
p)−1 yields

I − C+
intC int = Bz(I − CT

p (CpC
T
p)−1Cp)Bz (10.44)

= Bz(I − C+
p Cp)Bz. (10.45)

Because of the correspondence of columns of this matrix with interpolatory basis functions,
we can keep a subset of the columns of this matrix corresponding to distinct edges in the
mesh to obtain a basis for the null space of C int, which we call Z int. Denoting the set of
columns to keep by J , we have

Z int = [Bz(I − C+
p Cp)Bz]I(:,J) (10.46)

where I(:,J) corresponds to the columns of the identity matrix given by the set J . Since
C intZ int = 0 and C int = CpBz, we have

Cp BzZ int  
Z

= 0. (10.47)

This means that the basis for the null space Z of the original constraint matrix Cp is

Z = (I − C+
p Cp)BzI(:,J). (10.48)

Thus, to form Z, we select columns J from Bz, then apply the projector onto the null space
of the constraint matrix Cp to those columns3

.

. In practice, Z constructed in this way is
sparse.

Choosing the set J can be performed systematically because of the direct correspondence
3I am not aware of a systematic way to directly sample the columns of I −C+

p Cp without first performing
this change of variables. Since a basis for the null space is not unique, there may be other valid approaches
to construct Z that I am not aware of.

264

between edge unknowns in the interpolatory basis and columns of (10.45

.

). Starting from
the finest level of the quadtree, we visit each element. For each element, we visit each edge
(we keep track of each edge that has been visited). We then check if the edge belongs to
a boundary where a boundary condition is meant to be imposed. If it does, and the edge
requires a Dirichlet boundary condition, we discard the first l− 1 edge unknowns along that
edge. If the edge does not require a boundary condition and it has yet to be visited, we find
its neighbor. If the neighbor is on the same level of the tree, then we keep the first l − 1
edge functions of the element and discard the first l − 1 edge functions of the neighbor. If
the neighbor is on a coarser level of the tree, then we discard the first l − 1 edge functions
of the element and keep all edge functions of the neighbor.

We must also consider the vertex unknowns. If the neighbor is on a coarser level, we dis-
card the vertex unknowns of the element corresponding to that shared edge. If the neighbor
is on the same level or the current edge has multiple smaller neighbors on a finer level, then
one vertex unknown per vertex must be kept, but all other vertex unknowns correspond-
ing to the same vertex must be discarded. We classify all of these kept unknowns as type
2. They are associated with explicitly enforcing the constraints in Cp along edges and at
vertices. All interior unknowns are kept and all edge unknowns that were not discarded or
already classified are kept. We classify these unknowns as type 1. They are unknowns that
are only coupled through the matrix Cd or that are coupled only with other unknowns on
an element-by-element basis. We make sure that the splitting into two types of unknowns is
reflected in the index set J so that

Z =
[
Z1 Z2

]
(10.49)

is partitioned into two blocks.
As an example, Figure 10.1

.

illustrates which edge and vertex unknowns to keep in set J
for a given quadtree mesh. For this example, we have assumed that the boundaries of the
square have Dirichlet boundary conditions imposed. The particular set of unknowns shown
in Figure 10.1

.

is selected by following a z-ordering of the quadtree from the finest level up
to the coarsest level (indicated by the numbering). The edges for each element are visited in
the local order defined in Figure 9.3

.

. For clarity, the edge and vertex diagrams are separated,
but in practice, the edges and vertices can be tracked simultaneously.

265

Figure 10.1: (left) Illustration of edge unknowns to keep when constructing Z. The first
l − 1 edge unknowns are discarded on edges marked with an × and kept on edges marked
with a X. A double X indicates edges where all edge unknowns are kept. (right) Illustration
of vertex unknowns to keep. An × indicates that the corresponding vertex unknown is
discarded whereas a X indicates that it is kept. The first edge and vertices visited by the
algorithm are highlighted in yellow.

10.3 Consequences of this Choice of Basis for the Null
Space

The splitting of C into Cp and Cd and the construction of the sparse basis Z for the null space
of Cp as described in the previous section leads to additional structure in the reduced saddle
point system (10.13

.

). In particular, by virtue of the partitioning (10.49

.

) of Z, component
Â = ZTAZ can be written as

Â =
[
Z1 Z2

]T
A
[
Z1 Z2

]
(10.50)

=
⎡⎣ ZT

1

ZT
2

⎤⎦A [Z1 Z2

]
(10.51)

=
⎡⎣ ZT

1AZ1 ZT
1AZ2

ZT
2AZ1 ZT

2AZ2

⎤⎦ , (10.52)

component Ĉ = CdZ can be written as

Ĉ = Cd

[
Z1 Z2

]
=
[
CdZ1 CdZ2

]
, (10.53)

266

and component b̂ = ZT (b̄− Aφ̄z) can be written as

b̂ =
⎡⎣ ZT

1

ZT
2

⎤⎦ (b̄− Aφ̄z) (10.54)

=
⎡⎣ ZT

1 (b̄− Aφ̄z)
ZT

2 (b̄− Aφ̄z)

⎤⎦ . (10.55)

We give the submatrices in these expressions shorthand notation Aij = ZT
i AZj, Cj = CdZj,

and b̄i = ZT
i (b̄− Aφ̄z) so that

Â =
⎡⎣ A11 A12

AT
12 A22

⎤⎦ , Ĉ =
[
C1 C2

]
, b̂ =

⎡⎣ b̄1

b̄2

⎤⎦ . (10.56)

By construction, A11 is block diagonal with each block corresponding to edge and interior
unknowns for a given element that have not been constrained by Cp. Ideally, we would
like to exploit this structure when solving (10.21

.

) using a Krylov subspace method with
preconditioner (10.26

.

).
First, we consider (10.21

.

). To do so, we need to compute the block matrix inverse of Â.
This can be done by starting from the augmented block matrix⎡⎣ A11 A12 I 0

AT
12 A22 0 I

⎤⎦ (10.57)

and performing block matrix operations to transform the left portion of the augmented
system into the identity matrix (as one would do in a simpler case to obtain the inverse of
a two-by-two matrix). Subtracting AT

12A
−1
11 times the first block row from the second gives

⎡⎣ A11 A12 I 0
0 A22 − AT

12A
−1
11 A12 −AT

12A
−1
11 I

⎤⎦ . (10.58)

Letting K = A22 − AT
12A

−1
11 A12, and multiplying the second block row by K−1 gives
⎡⎣ A11 A12 I 0

0 I −K−1AT
12A

−1
11 K−1

⎤⎦ . (10.59)

Subtracting A12 times the second block row from the first block row gives⎡⎣ A11 0 I + A12K
−1AT

12A
−1
11 −A12K

−1

0 I −K−1AT
12A

−1
11 K−1

⎤⎦ . (10.60)

267

Finally, multiplying the first block row by A−1
11 gives

⎡⎣ I 0 A−1
11 + A−1

11 A12K
−1AT

12A
−1
11 −A−1

11 A12K
−1

0 I −K−1AT
12A

−1
11 K−1

⎤⎦ (10.61)

so that ⎡⎣ A11 A12

AT
12 A22

⎤⎦−1

=
⎡⎣ A−1

11 + A−1
11 A12K

−1AT
12A

−1
11 −A−1

11 A12K
−1

−K−1AT
12A

−1
11 K−1

⎤⎦ . (10.62)

Using this block matrix inversion formula, we find that

ĈÂ−1ĈT =
[
C1 C2

] ⎡⎣ A−1
11 + A−1

11 A12K
−1AT

12A
−1
11 −A−1

11 A12K
−1

−K−1AT
12A

−1
11 K−1

⎤⎦⎡⎣ CT
1

CT
2

⎤⎦ (10.63)

yields

ĈÂ−1ĈT =

C1[A−1
11 + A−1

11 A12K
−1AT

12A
−1
11]CT

1 − C1A
−1
11 A12K

−1CT
2 − C2K

−1AT
12A

−1
11 C

T
1 + C2K

−1CT
2 .

(10.64)

Similarly,

ĈÂ−1b̂ =
[
C1 C2

] ⎡⎣ A−1
11 + A−1

11 A12K
−1AT

12A
−1
11 −A−1

11 A12K
−1

−K−1AT
12A

−1
11 K−1

⎤⎦⎡⎣ b̄1

b̄2

⎤⎦ (10.65)

which gives

ĈÂ−1b̂ = C1[A−1
11 +A−1

11 A12K
−1AT

12A
−1
11]b̄1 −C1A

−1
11 A12K

−1b̄2 −C2K
−1AT

12A
−1
11 b̄1 +C2K

−1b̄2.

(10.66)
Using these expressions in (10.21

.

) yields

{
C1[A−1

11 + A−1
11 A12K

−1AT
12A

−1
11]CT

1 − C1A
−1
11 A12K

−1CT
2 − C2K

−1AT
12A

−1
11 C

T
1 + C2K

−1CT
2

}
ν̄d

= C1[A−1
11 + A−1

11 A12K
−1AT

12A
−1
11]b̄1 − C1A

−1
11 A12K

−1b̄2 − C2K
−1AT

12A
−1
11 b̄1 + C2K

−1b̄2 − d̂.

(10.67)

In a Krylov subspace method, we only need to compute the action of ĈÂ−1ĈT on a vector. In
this last equation, we see that the main computational cost in doing so arises from computing
the action of A−1

11 and K−1 on a vector. Since A11 is block diagonal, its inverse applied to

268

a vector can be performed in parallel across all elements. Appendix B

.

describes how to
apply the inverse of each block efficiently. In contrast, K = A22 − AT

12A
−1
11 A12 is not block

diagonal, and the size of this square matrix is governed by the choice of parameter l. As
a rule of thumb, the number of rows in K is equal to l times the number of edges in the
mesh. For many problems, this is considerably smaller than the total number of unknowns.
In addition, K is sparse so that a sparse direct factorization can be applied [147

.

].
Next, we consider the preconditioner (10.26

.

). To do so, we need to choose the weight
matrix W in (10.25

.

). We choose

W =
⎡⎣ W 1 W 2

0 I

⎤⎦ (10.68)

with W 1 a particular block diagonal matrix related to A11 and W 2 related to A11 and A12. To
better understand how to choose W 1 and W 2 for a problem with a non-conforming mesh, it is
informative to first consider a problem with a conforming mesh. This considerably simplifies
our development thus far because, in such a case, the matrix C2 is zero. In a conforming
mesh, the remaining constraints in Cd after applying the partial null space method are
independent of the constraints in Cp because each set of constraints along an edge involves
only one other edge. In addition, the constraints along each edge are hierarchical so do not
involve unknowns already constrained. However, when non-conforming edges are present,
there is coupling between different sets of fine edge constraints through their shared coarse
edge. The coupling causes previously constrained unknowns to enter into constraints that
have yet to be explicitly imposed. Since C2 = 0 in the conforming case, (10.67

.

) reduces to

C1[A−1
11 +A−1

11 A12K
−1AT

12A
−1
11]CT

1 ν̄d = C1[A−1
11 +A−1

11 A12K
−1AT

12A
−1
11]b̄1 −C1A

−1
11 A12K

−1b̄2 − d̂

(10.69)
which has the same structure as the system of equations arising in the FETI-DP method
(the matrices themselves can differ depending on our choice of parameter l). For this reason,
our choice of W 1 in (10.68

.

) will be related to the Dirichlet preconditioner used for FETI-DP
[78

.

]. Combining (10.26

.

) with (10.25

.

) yields the preconditioner

P−1 = (ĈWĈT)−T ĈW T ÂWĈT (ĈWĈT)−1. (10.70)

There are two components to the preconditioner. The first is

ĈWĈT =
[
C1 C2

] ⎡⎣ W 1 W 2

0 I

⎤⎦⎡⎣ CT
1

CT
2

⎤⎦ . (10.71)

269

When C2 = 0, this simplifies to

ĈWĈT = C1W 1C
T
1 . (10.72)

The second component is

ĈW T ÂWĈT =
[
C1 C2

] ⎡⎣ W T
1 0

W T
2 I

⎤⎦ ⎡⎣ A11 A12

AT
12 A22

⎤⎦⎡⎣ W 1 W 2

0 I

⎤⎦⎡⎣ CT
1

CT
2

⎤⎦ . (10.73)

When C2 = 0, this simplifies to

ĈW T ÂWĈT = C1W
T
1A11W 1C

T
1 . (10.74)

Together, the two components form the preconditioner

P−1 = (C1W 1C
T
1)−TC1W

T
1A11W 1C

T
1 (C1W 1C

T
1)−1 (10.75)

which is the form of preconditioner encountered in the FETI-DP method.
In literature regarding the FETI-DP method [71

.

], the lumped preconditioner corresponds
to choosing W 1 = I. This preconditioner is not very effective at keeping the number of
iterations in a Krylov subspace method small. However, it is inexpensive to apply to a
matrix, in particular because the matrix C1C

T
1 is diagonal for conforming meshes (and thus

its inverse is simple to compute). The lumped preconditioner is not effective because the
product C1A11C

T
1 only involves entries in A11 related to edge unknowns and ignores entries

that correspond to interior unknowns (this is because C1 only constrains edge unknowns
when imposing continuity constraints). Recall that A11 is a block diagonal matrix whose
blocks A(j) correspond with unknowns for the jth element. If we partition A(j) as

A(j) =
⎡⎣ A(j)

ee A
(j)
ei

(A(j)
ei)T A

(j)
ii

⎤⎦ (10.76)

where subscript e denotes entries corresponding to edge unknowns and subscript i denotes
entries corresponding to interior unknowns, then the product with C1 only involves the
blocks A(j)

ee . However, if we choose the weight matrix W 1 to be block diagonal with blocks

W (j) =
⎡⎣ I 0

−(A(j)
ii)−1(A(j)

ei)T 0

⎤⎦ , (10.77)

270

then the product W T
1A11W 1 results in a block diagonal matrix with blocks

W (j)TA(j)W (j) =
⎡⎣ I −A(j)

ei (A(j)
ii)−1

0 0

⎤⎦ ⎡⎣ A(j)
ee A

(j)
ei

(A(j)
ei)T A

(j)
ii

⎤⎦⎡⎣ I 0
−(A(j)

ii)−1(A(j)
ei)T 0

⎤⎦ . (10.78)

In this last equation, note that the matrix A11 is symmetric so that (A(j)
ii)−1 is its own

transpose. Multiplying these matrices yields

W (j)TA(j)W (j) =
⎡⎣ A(j)

ee − A
(j)
ei (A(j)

ii)−1(A(j)
ei)T 0

0 0

⎤⎦ (10.79)

which has transferred the effect of the interior entries to the edge entries. This choice of
W 1 corresponds to the Dirichlet preconditioner in the FETI-DP method. The Dirichlet
preconditioner tends to require fewer iterations to converge compared with the lumped pre-
conditioner, but also involves solving a block diagonal system with blocks A(j)

ii (see Appendix
B

.

for details on how to apply the inverse of each block efficiently). Note that C1W 1C
T
1 con-

tinues to reduce to C1C
T
1 since the edge-edge block in (10.77

.

) is the identity matrix.
Often, a diagonal scaling is introduced to the weight matrix when dealing with problems

where parameter α is discontinuous [168

.

]. This is done by taking (10.77

.

) and scaling by a
diagonal matrix to obtain

W
(j)
scaled =

⎡⎣ I 0
−(A(j)

ii)−1(A(j)
ei)T 0

⎤⎦⎡⎣ D(j) 0
0 I

⎤⎦ (10.80)

=
⎡⎣ D(j) 0

−(A(j)
ii)−1(A(j)

ei)TD(j) 0

⎤⎦ . (10.81)

Note that

W
(j)T
scaledA

(j)W
(j)
scaled =

⎡⎣ D(j)[A(j)
ee − A

(j)
ei (A(j)

ii)−1(A(j)
ei)T]D(j) 0

0 0

⎤⎦ . (10.82)

In the following, we are going to use a heuristic argument to explain how to choose D(j). To
do so, imagine that block matrices D, Aee, Aei, and A−1

ii are formed so that

W T
1A11W 1 = D(Aee − AeiA

−1
ii A

T
ei)D. (10.83)

Then the preconditioner (10.75

.

) becomes

P−1 = (C1DC
T
1)−TC1D(Aee − AeiA

−1
ii A

T
ei)DCT

1 (C1DC
T
1)−1. (10.84)

271

Compare this expression with the second matrix term in (10.69

.

) given by

C1[A−1
11 A12K

−1AT
12A

−1
11]CT

1 = C1[A−1
11 A12(A22 − AT

12A
−1
11 A12)−1AT

12A
−1
11]CT

1 . (10.85)

Since P−1 is supposed to behave like the inverse of the coupling term (10.85

.

) in (10.69

.

), we
chooseD to behave like Â−1. Then (C1DC

T
1)−T in (10.84

.

) scales like Â (C1 is unitless), whose
counterpart in (10.85

.

) is A−1
11 . Similarly, D in (10.84

.

) scales like Â−1, whose counterpart in
(10.85

.

) is A12. Finally, Aee − AeiA
−1
ii A

T
ei in (10.84

.

) has counterpart (A22 − AT
12A

−1
11 A12)−1 in

(10.85

.

). Choosing
D(j) = [diag(A(j)

ee)]−1 (10.86)

is one simple way to achieve this scaling4

.

.
Now that we have seen how to select the weight matrix (10.68

.

) in preconditioner (10.70

.

)
for a conforming mesh, we consider the non-conforming case. We will continue to choose W 1

in the way specified for the conforming case by selecting the Dirichlet preconditioner for W 1

(possibly with diagonal scaling) but now need to select W 2. We choose W 2 to simplify the
product W T ÂW in (10.70

.

) to a block diagonal matrix whose second term counteracts the
term C2K

−1CT
2 in (10.67

.

). That is,

W T ÂW =
⎡⎣ W T

1 0
W T

2 I

⎤⎦⎡⎣ A11 A12

AT
12 A22

⎤⎦ ⎡⎣ W 1 W 2

0 I

⎤⎦ (10.87)

=
⎡⎣ W T

1A11W 1 W T
1 (A11W 2 + A12)

(W T
2A11 + AT

12)W 1 W T
2A11W 2 + AT

12W 2 +W T
2A12 + A22

⎤⎦ . (10.88)

For this to be block diagonal,
A11W 2 + A12 = 0, (10.89)

which means that W 2 = −A−1
11 A12. Then

W T ÂW =
⎡⎣ W T

1A11W 1 0
0 K

⎤⎦ (10.90)

since

W T
2A11W 2 + AT

12W 2 +W T
2A12 + A22 =

AT
12A

−1
11 A11A

−1
11 A12 − AT

12A
−1
11 A12 − AT

12A
−1
11 A12 + A22 (10.91)

4Other authors choose to scale differently [78

.

]. I have found that these different scalings lead to similar
behavior in terms of the number of iterations required for the Krylov subspace method to converge.

272

and K = A22 − AT
12A

−1
11 A12. Using this expression in (10.73

.

) gives

ĈW T ÂWĈT =
[
C1 C2

] ⎡⎣ W T
1A11W 1 0

0 K

⎤⎦ ⎡⎣ CT
1

CT
2

⎤⎦ (10.92)

= C1W
T
1A11W 1C

T
1 + C2KC

T
2 . (10.93)

Similarly, (10.71

.

) becomes

ĈWĈT =
[
C1 C2

] ⎡⎣ W 1 −A−1
11 A12

0 I

⎤⎦ ⎡⎣ CT
1

CT
2

⎤⎦ (10.94)

= C1W 1C
T
1 + C2C

T
2 − C1A

−1
11 A12C

T
2 . (10.95)

In practice, we omit the term C1A
−1
11 A12C

T
2 when using ĈWĈT in preconditioner (10.70

.

)
as we have found empirically that it has no significant impact on the number of iterations
of the Krylov subspace method, nor on the accuracy of the computed solution to the PDE.
We note that removing the term C2C

T
2 can have a significant impact on both the number of

iterations and accuracy of the solution, worsening both considerably. Curiously, removing
the term C2KC

T
2 does not have a significant impact on the number of iterations, but causes

the solution to be inaccurate at non-conforming edges5

.

. For these reasons, we use the
preconditioner

P−1 = (C1W 1C
T
1 + C2C

T
2)−T (C1W

T
1A11W 1C

T
1 + C2KC

T
2)(C1W 1C

T
1 + C2C

T
2)−1 (10.96)

in practice for non-conforming mesh problems with W 1 chosen as in a Dirichlet precondi-
tioner. Notice that the term C2KC

T
2 in the preconditioner tends to behave in the opposite

manner as the term C2K
−1CT

2 in the system (10.67

.

) that is to be solved. We note that
in the non-conforming case, the matrix C2C

T
2 is not diagonal (as opposed to the matrix

C1W 1C
T
1). It is possible to recover this diagonal property by grouping elements sharing a

non-conforming edge together into a single subdomain of the domain decomposition6

.

.
5For example, in Section 10.6.1

.

, the solution with this term is accurate to 10 digits throughout the domain
but removing this term causes the solution accuracy to degrade to 4 digits along non-conforming edges. In
either case, the residual used to determine when to stop the Krylov subspace method decreases in the same
way so that both methods appear to be equally effective, but only a look at the true error reveals the
weakness of the second approach.

6I do not do this in this thesis. Instead, each block in the block diagonal matrix A11 corresponds to a
single element so that the structure of the element operator matrices can be exploited.

273

10.4 Considerations for the Helmholtz Equation

The domain decomposition method, as described thus far, is effective for Poisson problems
with α positive definite and parameters γ = β = 0 subject to Dirichlet boundary conditions
for any choice of parameter l greater than zero. In such a case, the matrix ĈÂ−1ĈT in system
(10.21

.

) and its associated preconditioner P−1 are both symmetric, positive definite. As a
result, we use the preconditioned conjugate gradients method (PCG) as a Krylov subspace
method [167

.

] to solve (10.21

.

). When l = 1 and all elements possess degree p on a conforming
mesh, we find experimentally that

κ2(LT
P ĈÂ

−1ĈTLP) ≤ C(1 + log(p2))2 (10.97)

with C > 0 a constant independent of degree p, mesh size h, and parameter α (we never
compute the Cholesky decomposition P−1 = LPL

T
P in practice). This bound shows that the

number of iterations of PCG depends weakly on the polynomial degree, and consequently,
the size of the discrete problem to solve7

.

. This type of convergence result is similar to the
standard FETI-DP method [78

.

]. Unfortunately, this result does not hold for the Helmholtz
problem with β = −k2 when the wavenumber k > 0 becomes large. However, unlike a
standard FETI-DP method, it is possible to recover such behavior with our method by
increasing parameter l as a function of mesh size h and wavenumber k.

The key is to control dispersion errors for the coarse problem

Âφ̄p = b̂. (10.98)

This coarse problem arises from (10.13

.

) when ignoring the additional constraints Ĉφ̄p = d̂

and dual variables ν̄d. On a uniform mesh of infinite extent with mesh size h, this is possible
as long as

l ≥ 1
2[kh+ (kh)1/3 − 1]. (10.99)

In practice, we set l to the ceiling of the right hand side of (10.99

.

) since l must be an integer.
In addition, we make sure that l is never zero so that the partial null space method actually
provides a loosely coupled coarse problem (when l = 0, there is no coupling between elements
in the coarse problem). The constraint (10.99

.

) is based on Theorem 3.3 from [14

.

]. There,
7In fact, this bound can be used to estimate the number of iterations required for the PCG iteration to

meet a desired error tolerance; see Corollary 2.2.1 and Lemma 2.3.2 along with the discussion of Section 2.3
of [167

.

]. In practice, since the condition number of the preconditioned system is small, I use the relative
residual as a surrogate for the relative error measured in the LT

P ĈÂ−1ĈT LP norm.

274

the criterion appears as
p ≥ 1

2[kh+ (kh)1/3 − 1] (10.100)

where p is the polynomial degree of the elements in the uniform mesh. The relation comes
from analyzing the error in the discrete dispersion relation. This error enters a regime of
superexponential decay only for p satisfying this criterion. If this criterion is not met, the
error does not decay, and may even increase for particular values of p. In practice, we observe
experimentally that a similar phenomenon holds when solving (10.98

.

) on finite meshes, even
when p is larger than l so long as criterion (10.99

.

) holds. For non-conforming meshes, we
choose l using the largest element size h in the mesh8

.

.
To illustrate this phenomenon, we consider a hypothetical Helmholtz problem with α = I,

β = −k2, k = 10.75, and f = 0 on domain Ω = (−1, 1)2 with Dirichlet boundary conditions
such that

p(x̄) = − 

4H
(2)
0 (k∥x̄− x̄c∥2) (10.101)

on ∂Ω with

x̄c =
⎡⎣ −2

1

⎤⎦ . (10.102)

The solution φ(x̄) on Ω is p(x̄). We subdivide Ω into four square elements of equal size using
degree 64 polynomials on each element to represent φ. Figure 10.2

.

illustrates the computed
solution solving (10.98

.

) when l is set to five and six. Condition (10.99

.

) is satisfied when
l & 5.9785 so that the coarse problem poorly approximates the true solution in the first case,
but is suitable for the second. Notice that in both cases the solution is not continuous across
the element boundaries, but that this discontinuity is much more pronounced in the l = 5
case. Figure 10.2

.

also illustrates the eigenvalues of the associated preconditioned problem.
When l is less than five, these eigenvalues are less clustered (some are even negative) and
their corresponding solutions are less effective at capturing the true solution. We have chosen
to show the l = 5 case to demonstrate that condition (10.99

.

) is relatively sharp.
Increasing parameter l increases the size of matrix K whose inverse applied to a vector

is required when using PCG applied to (10.67

.

). The size of matrix K reflects how connected
the coarse problem is (recall that the coarse problem arises from imposing some, but not
all, continuity conditions between elements) and, for this reason, we often refer to K as the
coarse problem. In a sense, this method is similar to the FETI-DPH method [81

.

] which is a
modification of the FETI-DP method meant to address Helmholtz problems. In the FETI-
DPH method, convergence for high frequency Helmholtz problems is achieved by adding
additional constraints to the original FETI-DP formulation. In the method presented in this

8There may be room for substantial improvement regarding this choice.

275

0 1 2 3 4 5 6 7 8

-1

0

1

0 1 2 3 4 5 6 7 8

-1

0

1

Figure 10.2: (top left) Real part of the solution to the coarse problem when l = 5. (top
right) Real part of the solution to the coarse problem when l = 6. (bottom left) Eigenvalues
of the preconditioned problem when l = 5. (bottom right) Eigenvalues of the preconditioned
problem when l = 6.

thesis, we have a natural hierarchy of constraints along all edges that makes it straightforward
to increase the connectedness of the coarse problem. Standard FETI-DP does not exploit
such a hierarchy. Therefore, the FETI-DPH method appends constraint equations to C

of the form QT
b C which are then eliminated when applying the range space method (and

consequently grow the size of the coarse problem). The matrix Qb consists of plane waves
sampled along edges in the domain decomposition. In practice, because it is unclear a priori
how to choose the directions of these plane waves, many are chosen along each edge and
rank-revealing QR factorizations are performed to select a set of orthogonal columns for Qb

such that it is not rank deficient.
As with the FETI-DPH method, increasing the size of the coarse problem is not the only

change to the domain decomposition method required for the iterative method to converge.
Equation (10.67

.

) becomes indefinite for large enough k so that PCG should be replaced
with the preconditioned generalized minimum residual method (PGMRES) or some other
suitable Krylov subspace method (for example, the biconjugate gradient stabilized method)
[167

.

]. In addition, the domain decomposition method is susceptible to spurious resonant
frequencies associated with each domain in the decomposition. This is problematic because

276

at such frequencies, the matrix A11 is singular, whereas the original saddle point system is
not. One possible solution is to choose the domains in the decomposition small enough so
that all domains have resonances at frequencies larger than k. This is the approach used in
FETI-DPH [81

.

].
Alternatively, instead of limiting the size of domains, it is possible to change the dis-

cretization in such a way that each subdomain problem becomes uniquely solvable without
changing the primal solution [84

.

, 85

.

]. The idea is to add a Robin boundary condition with
γ = ±k on a portion of each element’s boundary. The signs are chosen so that on a shared
edge between two elements, one element edge has positive sign while the other has negative
sign. This creates a transmission boundary condition between the two elements.

To describe how this works within the framework of the current domain decomposition
method, consider a domain Ω partitioned into two elements Ω1 and Ω2 that share a common
boundary Γ. If φ1 represents the solution in element 1 and φ2 represents the solution in
element 2, then continuity along Γ implies

φ1 = φ2 (10.103)

and continuity of the normal flux implies

n̄T
1 α∇φ1 = n̄T

1 α∇φ2 (10.104)

= −n̄T
2 α∇φ2 (10.105)

where n̄1 denotes the unit outward normal from domain Ω1 and n̄2 denotes the unit outward
normal from domain Ω2. In the standard finite element formulation, we have imposed the
continuity constraint explicitly through constraint equations and imposed the normal flux
continuity weakly. We can just as easily impose a linear combination of these two constraints
weakly. As long as the strong continuity condition together with the new weak condition
imply the original weak condition, the solution to the finite element problem will be the
same. For example, adding k times (10.103

.

) to (10.104

.

) yields

n̄T
1 α∇φ1 + kφ1  

q1

= −n̄T
2 α∇φ2 + kφ2  

−q2

. (10.106)

Then (10.103

.

) and (10.106

.

) imply (10.104

.

).
To see how such a condition changes the weak form, we start with

ˆ
Ω
ψ[−∇ · (α∇φ) − k2φ]dΩ =

ˆ
Ω
ψf dΩ (10.107)

277

and split the integral over the two elements. Using the product rule and the divergence
theorem for each domain yields

ˆ
Ω1

∇ψT
1 α∇φ1 − k2ψ1φ1dΩ −

˛
∂Ω1

ψ1n̄
T
1 α∇φ1 dΩ

+
ˆ

Ω2

∇ψT
2 α∇φ2 − k2ψ2φ2dΩ −

˛
∂Ω2

ψ2n̄
T
2 α∇φ2 dΩ =

ˆ
Ω1

ψ1f dΩ +
ˆ

Ω2

ψ2f dΩ. (10.108)

Focusing on the boundary terms on the left hand side that are common to the shared edge
Γ, we replace

n̄T
1 α∇φ1 = q1 − kφ1, (10.109)

n̄T
2 α∇φ2 = q2 + kφ2, (10.110)

as per (10.106

.

). This gives
ˆ

Γ
ψ1n̄

T
1 α∇φ1 dΩ +

ˆ
Γ
ψ2n̄

T
2 α∇φ2 dΩ =

ˆ
Γ
ψ1(q1 − kφ1) dΩ +

ˆ
Γ
ψ2(q2 + kφ2) dΩ (10.111)

which we split into four integrals

ˆ
Γ
ψ1n̄

T
1 α∇φ1 dΩ +

ˆ
Γ
ψ2n̄

T
2 α∇φ2 dΩ =

− k

ˆ
Γ
ψ1φ1 dΩ + k

ˆ
Γ
ψ2φ2 dΩ +

ˆ
Γ
ψ1q1 dΩ +

ˆ
Γ
ψ2q2 dΩ. (10.112)

The first two terms on the right hand side are precisely the type of terms that contribute
to the local operator matrices when imposing Robin boundary conditions (with parameters
γ1 = k and γ2 = −k). Unlike in the Robin boundary treatment of earlier chapters, we
must have q1 = −q2 for the solution to exhibit the correct behavior at the boundary. In
addition, we do not know the precise values of either q1 or q2, meaning that we cannot treat
these terms as forcing terms like standard Robin boundary conditions. However, letting
νnew = q1 = −q2, we note that

ˆ
Γ
ψ1q1 dΩ +

˛
Γ
ψ2q2 dΩ =

ˆ
Γ
ψ1νnew dΩ −

ˆ
Γ
ψ2νnew dΩ (10.113)

=
ˆ

Γ
(ψ1 − ψ2)νnew dΩ. (10.114)

This is precisely of the same form as boundary terms obtained in the original weak formu-

278

lation where

n̄T
1 α∇φ1 = ν, (10.115)

n̄T
2 α∇φ2 = −ν, (10.116)

with νnew replacing ν. Thus, to add the transmission condition to an edge between elements,
we add a Robin term with γ = ±k to each element’s local operator matrix Aj (the signs must
be opposite to each other) and otherwise keep the saddle point system structure regarding
constraint matrices unchanged. Notice that the meaning of the primal solution φ has not
changed, but the Lagrange multiplier functions have changed so that νnew = ν + kφ.

When there are more than two elements, we must choose the signs for the Robin boundary
coefficients appropriately so that every element has at least one edge where a transmission
condition is imposed. In addition, we make sure to do so in such a way that no element has
a mix of positive and negative coefficients. This is because the proof of uniqueness for the
interior Helmholtz problem with real k depends on γ being a nonzero constant on the subset
of the boundary where the Robin boundary condition is imposed. In particular, to see why,
start with the Helmholtz equation

− ∇ · ∇φ− k2φ = f in Ω (10.117)

subject to boundary conditions

φ = p on ΓD, (10.118)

n̄T ∇φ+ γφ = q on ΓR, (10.119)

where Ω is a bounded domain and k is real. Assume two solutions φ1 and φ2 satisfy these
three conditions and take their difference to obtain the homogeneous equation

− ∇ · ∇φ⋆ − k2φ⋆ = 0 in Ω (10.120)

subject to homogeneous boundary conditions

φ⋆ = 0 on ΓD, (10.121)

n̄T ∇φ⋆ + γφ⋆ = 0 on ΓR, (10.122)

where φ⋆ = φ1 − φ2. By showing that φ⋆ = 0, we find that φ1 = φ2 so that a solution to the
original inhomogeneous Helmholtz problem is unique. To do so, we substitute φ⋆ and (φ⋆)∗

279

into Green’s second identity where ∗ denotes the complex conjugate. This gives
ˆ

Ω
φ⋆∇ · ∇(φ⋆)∗ − (φ⋆)∗∇ · ∇φ⋆dΩ =

˛
∂Ω
φ⋆n̄

T ∇(φ⋆)∗ − (φ⋆)∗n̄T ∇φ⋆dΩ. (10.123)

Using (10.120

.

) to remove the divergence and gradients on the left hand side and (10.121

.

) on
the right hand side gives

ˆ
Ω
φ⋆(−k2φ⋆)∗ + (φ⋆)∗(k2φ⋆) dΩ =

ˆ
ΓR

φ⋆n̄
T ∇(φ⋆)∗ − (φ⋆)∗n̄T ∇φ⋆dΩ (10.124)

0 =
ˆ

ΓR

φ⋆n̄
T ∇(φ⋆)∗ − (φ⋆)∗n̄T ∇φ⋆dΩ. (10.125)

Now using (10.122

.

) to replace the normal derivatives yields
ˆ

ΓR

φ⋆(−γφ⋆)∗ + (φ⋆)∗(γφ⋆) dΩ = 0 (10.126)
ˆ

ΓR

(γ − γ∗)|φ⋆|2dΩ = 0. (10.127)

Since γ−γ∗ = 2ℑ{γ} where ℑ{γ} is the imaginary part of γ, and γ is a constant of a single
sign, we can factor it out of the integral to obtain

2ℑ{γ}
ˆ

ΓR

|φ⋆|2dΩ = 0 (10.128)

which implies that φ⋆ = 0 on ΓR if ℑ{γ} ̸= 0. If γ was not a constant of a single sign,
we would not be able to factor it out of the integral to show that φ⋆ = 0 on a portion
of the boundary. A similar substitution of (10.122

.

) to replace φ⋆ and (φ⋆)∗ in (10.125

.

)
yields n̄T ∇φ⋆ = 0 on ΓR. Since both φ⋆ and its normal derivative are zero on a portion
of the boundary, Holmgren’s theorem states that φ⋆ must be identically zero inside Ω (see
Theorems 2.1, 2.2, and 2.3 in [169

.

] for a proof of this fact for the Helmholtz equation using its
corresponding Green’s representation formula). Since φ⋆ = 0 in Ω, this means that φ1 = φ2

for the inhomogeneous Helmholtz problem and that the solution is unique. Existence follows
from the Green’s representation formula.

There are different ways to ensure that each element in the mesh has at least one edge
with a Robin boundary condition imposed and that all such Robin boundary conditions for
a given element share the same sign. One method is described in [85

.

]. A second method
follows from the fact that a mesh can be represented as an undirected graph where each
element corresponds to a vertex in the graph and adjacent elements are connected in the

280

graph via an edge. Assigning signs to all elements such that each element has at least one
neighbor with a different sign is equivalent to the weak 2-coloring problem [170

.

]. All graphs
have a weak 2-coloring. One way to produce such a coloring (which is not unique) is to
construct a spanning tree of the graph (choose an arbitrary vertex in the graph and perform
a breadth-first-search). Label all elements in even levels of the tree with one sign and all
other elements with the opposite sign (or vice versa). This produces the weak 2-coloring.
When imposing the Robin boundary conditions, only do so along edges that are shared by
elements of opposite sign and use the appropriate sign for γ = ±k that was determined in
the coloring process. This algorithm guarantees that each local element problem is solvable.
It should be noted that there are other methods involving two Lagrange multipliers that can
also be used to guarantee uniqueness of the local element problems (the basic approach is
described in [85

.

]). However, we do not use such an approach because it modifies the structure
of the constraint matrix and does not fit into the framework of the domain decomposition
method described thus far.

The resulting saddle point system after adding Robin boundary terms at element inter-
faces possesses the same structure as (10.1

.

). That is, only the A block has been modified
by the Robin terms (all other terms remain unchanged, although the interpretation of the
Lagrange multipliers has changed). However, such a modification makes an original real
symmetric Helmholtz problem complex symmetric. In practice, applying the same domain
decomposition method to this modified saddle point system requires roughly twice as many
iterations to converge than for the unmodified saddle point system. However, the modified
method converges even at spurious resonant frequencies where the unmodified approach can
fail catastrophically. If one must use the modified approach for robust simulation, it is pos-
sible to increase l to reduce the number of iterations in the domain decomposition method
at the cost of increasing the size of the coarse problem.

10.5 Convergence Tests

In the previous section, we have made some unsubstantiated claims regarding the conver-
gence behavior of the domain decomposition method. In this section, we provide numeri-
cal evidence for these claims. We begin by demonstrating that the domain decomposition
method behaves like the standard FETI-DP method [78

.

] when applied to the Poisson equa-
tion but that it has the added flexibility to increase the size of the coarse problem which
effectively reduces the number of iterations required for convergence. Similar tests are used
for the Helmholtz equation to show that increasing the size of the coarse problem is necessary
to retain small numbers of iterations when the wavenumber is increased. In the following

281

discussion, we use the zero vector for initial iterate in all applications of PCG or PGMRES.

10.5.1 Convergence Tests for the Poisson Equation

We begin by demonstrating the number of iterations required for the domain decomposition
method to solve (6.1

.

) with α = ρ(x̄)I and β = 0 on Ω = (−1, 1)2 subject to zero Dirichlet
boundary conditions on ∂Ω. We also report the maximum eigenvalue of the preconditioned
system. We use a test problem based on the one presented in Table 2 of [78

.

] where the element
size and polynomial degree are varied. The test problem is not identical to that in [78

.

] in
the sense that we test higher polynomial degrees, and also larger numbers of elements (in
part because of the quadtree structure of our mesh which forces certain numbers of elements
when performing uniform refinement). This test shows that the number of iterations depends
weakly on discontinuities in parameter ρ, the element degree, and the number of elements
in the mesh. This favorable performance matches the performance presented in [78

.

].
In our tests, the domain Ω is partitioned into a regular grid of N = 22n elements

(where n = 1, 2, 3, 4, 5) with each element possessing a local degree p expansion (where
p = 8, 16, 32, 64). If the elements in the grid are numbered as k = i + (j − 1)2n for
i, j = 1, 2, ..., 2n, then the parameter ρ is chosen to be piecewise constant with correspond-
ing value ρij = 106(i−j)/32 over each element so that, on the finest grid, the maximum and
minimum values of ρ are 106 and 10−6 respectively9

.

. For all problems, we set the right hand
side b̄ randomly. That is, each entry is randomly sampled from the uniform distribution on
the open interval (0, 1). We use the Dirichlet preconditioner for W 1 with diagonal scaling
and report the number of iterations required for the relative residual to be reduced by ten
orders of magnitude. We also compute the maximum eigenvalue λmax of the preconditioned
matrix P−1ĈÂ−1ĈT . In all tests, the smallest eigenvalue is 1 to within at least two digits
so we do not list it. We repeat the test using parameter l = 1, 2, 3, 4. Table 10.1

.

shows the
number of iterations and maximum eigenvalue for each combination of degree p, number of
elements N , and parameter l.

We note that for a given l and p, the number of iterations converges to some fixed
value as the number of elements increases. The same behavior is observed in the maximum
eigenvalue which controls the range of the spectrum of the preconditioned system. In fact,
the two quantities are intimately related. This is because, for any symmetric, positive definite

9This is another way in which our test differs from the one in [78

.

]. In that paper, ρij = 10(i−j)/4. We
have modified parameter ρ so that on our finest grid, the maximum and minimum values of ρ coincide with
the maximum and minimum values on their finest grid. Their finest grid contains 576 elements whereas ours
contains 1024.

282

Table 10.1: Number of iterations for PCG to reach convergence and maximum eigenvalue
λmax of the preconditioned system as functions of degree p, number of elements N , and
parameter l for the Poisson test problem.

l = 1 l = 2 l = 3 l = 4
p N Iterations λmax Iterations λmax Iterations λmax Iterations λmax

8 4 9 4.02 8 1.54 6 1.23 6 1.10
16 18 4.91 11 1.70 8 1.30 6 1.12
64 23 5.11 11 1.75 8 1.32 7 1.13

256 23 5.16 11 1.76 8 1.33 7 1.13
1024 23 5.18 11 1.76 8 1.33 7 1.13

16 4 11 5.84 10 2.08 8 1.61 7 1.38
16 20 7.27 13 2.31 10 1.71 8 1.44
64 27 7.62 13 2.37 11 1.75 9 1.45

256 28 7.70 13 2.39 11 1.76 9 1.46
1024 28 7.73 13 2.40 11 1.76 9 1.46

32 4 12 8.14 11 2.79 9 2.17 9 1.86
16 22 10.25 15 3.08 12 2.30 10 1.94
64 33 10.75 16 3.17 13 2.34 11 1.96

256 33 10.87 15 3.19 13 2.36 11 1.97
1024 33 10.91 16 3.20 13 2.36 11 1.97

64 4 16 10.94 12 3.67 11 2.91 10 2.51
16 26 13.83 17 4.03 14 3.06 12 2.61
64 38 14.53 18 4.13 15 3.11 13 2.64

256 39 14.71 18 4.15 15 3.13 13 2.65
1024 39 14.73 18 4.16 15 3.13 13 2.65

system
Ax̄ = b̄, (10.129)

the relative residual is related to the eigenvalues of A by

∥b̄− Ax̄k∥2

∥b̄∥2
≤
√
λmax

λmin
max

z∈σ(A)
|pk(z)| (10.130)

where x̄k is the kth iterate, σ(A) is the set of all eigenvalues of A, and pk is any degree
k polynomial such that pk(0) = 1 (combine Corollary 2.2.1 with Lemma 2.3.2 in [167

.

], for
example). This inequality holds when x̄0 = 0 (which is the case in all of our examples) and
is a statement related to the fact that the relative residual measured in the 2-norm is less
than the square root of the condition number of A measured in the 2-norm times the relative
error in the solution measured in the A norm. In our problem, A is the preconditioned

283

matrix LT
P ĈÂ

−1ĈTLP with corresponding right hand side. In such a scenario, λmin = 1 and
all eigenvalues are contained within the interval [1, λmax] so that

∥b̄− Ax̄k∥2

∥b̄∥2
≤
√
λmax max

z∈[1,λmax]
|pk(z)|. (10.131)

We can estimate the size of the relative residual by choosing the polynomial

pk(z) =
(λmax+1

2 − z)k

(λmax+1
2)k

(10.132)

which is zero at the midpoint of the interval [1, λmax], and satisfies pk(0) = 1. This polynomial
has its maximum absolute value at either endpoint of the interval, meaning that

max
z∈[1,λmax]

|pk(z)| =
⏐⏐⏐⏐⏐(

λmax−1
2)k

(λmax+1
2)k

⏐⏐⏐⏐⏐ (10.133)

=
⏐⏐⏐⏐⏐λmax − 1
λmax + 1

⏐⏐⏐⏐⏐
k

. (10.134)

Thus
∥b̄− Ax̄k∥2

∥b̄∥2
≤
√
λmax

⏐⏐⏐⏐⏐λmax − 1
λmax + 1

⏐⏐⏐⏐⏐
k

. (10.135)

The right hand side of this inequality is a monotonically increasing function of λmax ≥ 1 for
any k. Thus the smaller λmax is, the smaller the relative residual is after k iterations. Since
our stopping criterion is based on the relative residual being smaller than 10−10, this shows
that the maximum eigenvalue controls the number of iterations. It is possible to improve
this estimate [167

.

] to obtain

∥b̄− Ax̄k∥2

∥b̄∥2
≤ 2

√
λmax

⏐⏐⏐⏐⏐
√
λmax − 1√
λmax + 1

⏐⏐⏐⏐⏐
k

(10.136)

although the conclusion is the same in both cases.
Returning to Table 10.1

.

, we also note that for fixed p and N , the number of iterations can
be reduced by increasing l (although the cost of each iteration increases because increasing
l increases the size of matrix K which must be factored). If N and l are fixed, increasing p
leads to a mild increase in the number of iterations. To explain this increase, we consider
another test based on Table 6 and Figure 4 in [78

.

]. This test demonstrates that (10.97

.

)
holds. In particular, we set α = I and fix n = 6. We then compute λmax for p ranging from
6 to 32 in increments of 2. We repeat this process for l = 1, 2, 3, 4. Figure 10.3

.

illustrates
how λmax increases as a function of degree p for each possible l. The figure also illustrates

284

least squares fits to the data such that
√
λmax ≈ A+B log10(p2) (10.137)

where we only use data with p ∈ {14, 16, ..., 32} to obtain the fit. We do this because the
data for l = 3, 4, does not appear to have entered the asymptotic regime for smaller values
of p. Having computed parameters A and B for the least squares fit, we can change the base
of the logarithm to determine constant C in (10.97

.

). To do so,

A+B log10(p2) = A+ A
B

A
log10(p2) (10.138)

= A
[
1 + B

A
log10(p2)

]
(10.139)

= A

[
1 + B

A
log10(p2) log10(D)

log10(D)

]
(10.140)

= A

[
1 + B

A
log10(D) log10(p2)

log10(D)

]
. (10.141)

Since
log10(p2)
log10(D) = logD(p2), (10.142)

we choose D such that
B

A
log10(D) = 1. (10.143)

This gives
D = 10A/B. (10.144)

Having chosen the base D, we find that (10.137

.

) becomes
√
λmax ≈ A

[
1 + logD(p2)

]
(10.145)

λmax ≈ A2
[
1 + logD(p2)

]2
. (10.146)

Since λmin = 1,
κ2(LT

P ĈÂ
−1ĈTLP) = λmax

λmin
= λmax (10.147)

so that by (10.146

.

), C = A2 in (10.97

.

). The least squares fits become

κ2(LT
P ĈÂ

−1ĈTLP) ≈ C(1 + logD(p2))2 (10.148)

with constants C ≈ 0.473, 0.354, 0.244, 0.191 and bases D ≈ 6.15, 31.6, 26.8, 23.1 for l =

285

2 2.5 3

1

1.5

2

2.5

3

Figure 10.3: Dependence of the maximum eigenvalue of the preconditioned system λmax
on polynomial degree p for the Poisson problem as a function of parameter l. Lines represent
linear least squares fits to the data ignoring the first 4 data points from each set.

1, 2, 3, 4, respectively.
Note that increasing l from 1 to 2 appears to change the slope of the fits in Figure 10.3

.

but
that further increases in l tend primarily to decrease the offset of the fits. This is reflected in
constants C and D as well as in the number of iterations in Table 10.1

.

. That is, the number
of iterations are roughly halved when changing l from 1 to 2 but only decrease mildly when
going from 2 to 3 or 4. This means that for relatively low degree p, there is little value in
increasing l beyond 2 when solving Poisson problems. This result is not true when solving
Helmholtz problems.

10.5.2 Convergence Tests for the Helmholtz Equation

We now perform similar tests for the Helmholtz equation and address the added complexities
involved. We solve (6.1

.

) with α = I, β = −k2, and f = 0 on Ω = (−1, 1)2 subject to
the same Dirichlet boundary condition on ∂Ω described in Section 10.4

.

. We use the same
discretizations as described in Section 10.5.1

.

and vary element degree p, number of elements
N , and parameter l in the same ways. We repeat this process for several values of k from

286

Table 10.2: Number of iterations for PGMRES to reach convergence as a function of degree
p, number of elements N , parameter l, and wavenumber k, for the Helmholtz test problem.

k = 11 k = 21 k = 31
p N l = 1 l = 2 l = 3 l = 4 l = 1 l = 2 l = 3 l = 4 l = 1 l = 2 l = 3 l = 4

8 4 61 42 29 22 69 58 47 35 72 58 50 40
16 79 42 20 9 - - 69 42 - - - 95
64 88 27 10 7 - - 30 10 - - 98 34

256 - 15 9 7 - 51 11 7 - - 26 9
1024 - 12 8 6 - 21 9 7 - 54 11 7

16 4 65 45 32 24 - 93 76 61 - - - -
16 85 43 21 12 - - 73 46 - - - -
64 - 32 13 9 - - 33 12 - - - 36

256 - 19 11 9 - 62 13 9 - - 30 11
1024 - 15 11 8 - 26 11 9 - 67 13 9

32 4 67 46 34 25 - 94 78 63 - - - -
16 91 46 24 14 - - 78 49 - - - -
64 - 34 15 11 - - 37 15 - - - 38

256 - 22 13 11 - 72 15 11 - - 33 13
1024 - 17 13 11 - 31 13 11 - 79 15 11

64 4 69 47 35 26 - 95 80 64 - - - -
16 - 53 27 15 - - 83 52 - - - -
64 - 38 16 14 - - 42 17 - - - 43

256 - 25 15 13 - 75 18 14 - - 37 16
1024 - 20 15 12 - 36 15 13 - 89 18 13

1 to 101 in increments of 10. We do not use spatially varying α so that the effect of k
on the number of iterations is clear. Table 10.2

.

shows the number of iterations required
to reduce the relative residual by ten orders of magnitude for the cases k = 11, 21, 31. We
use the unmodified domain decomposition method without adding Robin boundary terms.
Problems where the number of iterations exceeds 100 are marked with a dash. Problems
where condition (10.99

.

) is satisfied are marked in bold. In Table 10.2

.

, we do not show the
eigenvalue with maximum absolute value because it is not necessarily an indicator of the
condition number of the preconditioned system now that the problem can be indefinite.

We note that when N is small (the first and sometimes second row for each new value of
p in Table 10.2

.

) the method converges but requires a relatively large number of iterations.
This is not the regime we are interested in because the solutions corresponding to these
simulations tend not to be accurate. For high accuracy, condition (10.99

.

) does a good job
of predicting which problems tend to converge with a small number of iterations. However,

287

there is a small number of cases where this criterion is met, but the method fails to converge
in under 100 iterations. In our data set (which includes the data shown in Table 10.2

.

along
with similar data for k up to 101) there are 26 such failures out of a total of 252 cases where l
meets the criterion. It is interesting to note that, in every failure case, increasing l by 1 leads
to convergence within 100 iterations. We attribute these failures to the fact that criterion
(10.99

.

) is based on dispersion analysis for an infinite grid and holds only when kh ≫ 1 [14

.

].
For a more refined criterion, the same paper contains the exact dispersion relation on an
infinite grid. We find that the numbers of iterations in Table 10.2

.

are small wherever the
dispersion errors are small (taking care to replace p by l in the exact dispersion relation,
as was done in Section 10.4

.

). These observations suggest that for the preconditioner to be
effective, dispersion errors must be controlled for the coarse problem. Similar behavior is
observed using criteria from [17

.

] where dispersion error is controlled on finite unstructured
grids (although the criteria depend on two implicit constants).

As a final comment on the data in Table 10.2

.

, it is important to consider the dispersion
errors of the coarse problem rather than the global problem when determining the efficacy
of the preconditioner. For example, if we use criterion (10.100

.

) instead of (10.99

.

) to choose
when to use the domain decomposition method, then there are 445 tests which fail to converge
out of a total of 724 cases satisfying the global dispersion criterion. Increasing l by 1 in such
failure cases does not lead to convergence.

The data in Table 10.2

.

was collected using grids and wavenumbers that avoid spurious
resonant frequencies. In our last convergence test, we construct an example to illustrate
that spurious resonant frequencies can adversely affect convergence. First, we solve the
same PDE as in the previous test, but with N = 64, p = 32, l = 3, and k = 16.55 with
both the unmodified domain decomposition method and the modified method with added
Robin boundary terms. The wavenumber is close to, but not exactly, the spurious resonant
frequency k ≈ 16.56157163134991 (which was computed numerically). Parameter l was
chosen to satisfy (10.99

.

). Figure 10.4

.

illustrates the relative residual as a function of number
of iterations for both methods. We terminate both methods when the relative residual has
decreased by ten orders of magnitude. The behavior in Figure 10.4

.

is typical in the sense
that the modified method requires more iterations to converge than the unmodified method
(roughly twice as many). In both cases, the error in the computed solution measured in the
H1 norm is on the order of 10−16.

Next, we repeat the same experiment but with k set to the spurious resonant frequency.
The unmodified method fails catastrophically after one iteration and returns a solution with
error on the order of 105. Additional iterations can reduce the norm of the preconditioned
residual but do not succeed in reducing the error. The modified method converges largely in

288

0 5 10 15 20 25 30 35

Iteration

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
la

ti
v

e
 R

e
s
id

u
a
l

Unmodified

Modified

Figure 10.4: Preconditioned relative residual ∥P−1r̄k∥2/∥P−1r̄0∥2 versus iteration number
for the unmodified and modified domain decomposition method applied to a test Helmholtz
problem. Vector r̄k is the residual vector corresponding to (10.67

.

) at the kth iteration.

the same way as depicted in Figure 10.4

.

with a solution whose error is on the order of 10−16.

10.6 Unbounded Time-Harmonic Scattering Examples

In this section, we apply the domain decomposition method to challenging Helmholtz prob-
lems. We use the unmodified domain decomposition method with W 1 set to the Dirichlet
preconditioner with no diagonal scaling rather than the modified method with added Robin
boundary conditions because, in practice, using the method at spurious resonant frequencies
is rare. In addition, in light of the discussion in the previous section regarding criterion
(10.99

.

), we choose parameter l such that

l ≥ 1
2[kh+ (kh)1/3 − 1] + 1 (10.149)

where we have built in a safety factor of 1 with h chosen as the longest edge length in the
mesh and l rounded up to the nearest integer greater than or equal to 1. Unlike with the

289

convergence tests in the previous section, all examples in this section use non-conforming
meshes.

For the first four examples, we solve unbounded two-dimensional TMx3 mode electro-
magnetic scattering problems. We assume that ϵ and µ are diagonal but spatially varying.
The derivation of the governing PDE for the TMx3 mode mirrors the derivation for the TEx3

mode presented in Section 9.6.2

.

. Rather than repeat a similar derivation, exchanging the
roles of Ē with H̄ and ϵ with µ in (9.176

.

) gives

− ∂

∂x1

(
1
µ22

∂Ex3

∂x1

)
− ∂

∂x1

(
1
µ11

∂Ex3

∂x2

)
= ω2ϵ33Ex3 (10.150)

which is the Helmholtz equation governing the TMx3 mode. As in Section 9.6.2

.

, we use
the same change of variables (9.177

.

) to make quantities in (10.150

.

) dimensionless. We also
assume that the total field Ex3 = Ei + Es can be written as the sum of a known incident
field Ei and unknown scattered field Es. Substituting this expression into (10.150

.

) yields

− ∂

∂x1

(
1
µ22

∂Es

∂x1

)
− ∂

∂x1

(
1
µ11

∂Es

∂x2

)
−ω2ϵ33Es = ∂

∂x1

(
1
µ22

∂Ei

∂x1

)
+ ∂

∂x1

(
1
µ11

∂Ei

∂x2

)
+ω2ϵ33Ei

(10.151)
which can be written in the generic form

− ∇ · (α∇φ) + βφ = f (10.152)

with

α =

⎡⎢⎢⎣
1
µ22

0

0 1
µ11

⎤⎥⎥⎦ , β = −ω2ϵ33, f = ∇ · (α∇Ei) − βEi, φ = Es. (10.153)

Since the problems are unbounded, we use the same PML technique as described in Section
9.6.1

.

to solve these unbounded problems on bounded domains.

10.6.1 Dielectric Cylinder

We begin with a classical example of scattering from an infinitely long dielectric cylinder
[8

.

] which we use to demonstrate the accuracy of the method for a non-conforming mesh.
The cylinder is coaxial with the x3 axis, has radius a = 1, and is enclosed inside domain
Ω = (−4, 4)2. We choose ϵ33 = 4 inside the cylinder and e33 = 1 outside. Both µ11 = µ22 = 1

290

throughout the domain. We select an incident plane wave

Ei = e−ωk̄T x̄ (10.154)

with unit vector k̄ so that
f = ω2(ϵ33 − k̄Tαk̄)Ei. (10.155)

The forcing function f is only non-zero inside the cylinder since outside ϵ33 = 1 and k̄Tαk̄ = 1.
We choose k̄ = ē1 corresponding to propagation of the incident field in the positive x1

direction and set ω = 4 · 2π so that the wavelength outside the cylinder is λ = 1/4. This
means that Ω is 32λ× 32λ in size.

To absorb the scattered wave, we use PML with thicknesses wi = 1 and decay rates
σi = 15. The PML modify ϵ33, µ11, and µ22 wherever σi are nonzero. Decay rate σ1 is
nonzero in the two bands x1 ∈ (−4,−3) and x1 ∈ (3, 4) whereas σ2 is nonzero in bands
x2 ∈ (−4,−3) and x2 ∈ (3, 4). The mesh (shown in Figure 10.5

.

) is constructed as in Section
9.1

.

using 6 levels of refinement as a maximum level and 4 levels of refinement as a minimum
level. All boundary projections and Legendre expansions are computed to a tolerance of
10−12. Each element in the mesh uses a degree 32 polynomial expansion to represent the
scattered field. We solve the discrete problem using the domain decomposition method and
terminate the iterative process when the preconditioned relative residual has decreased by
10 orders of magnitude.

Figure 10.5

.

illustrates the relative residual reduction as a function of iteration number for
this problem. There is a total of 640,332 unknowns in φ̄ and the coarse problem matrix K
is square with 9,909 rows. Factorization of this matrix represents the main bottleneck of the
domain decomposition method for high frequency problems because the size of the coarse
problem grows as the frequency is increased. This is because l is one factor that determines
the size of K and l must grow as the frequency grows to continue to satisfy the dispersion
criterion (10.149

.

).
Figure 10.6

.

shows the real part of the computed scattered field Es and the associated
logarithm of the pointwise error |Es − Es,exact|. The exact solution is computed using the
classical method of eigenfunction expansions (see, for example, [8

.

]) using the sum

Es,exact(ρ, ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

∞∑′

i=0
aiH

(2)
i (ωρ) cos(iϕ) ρ ≥ a

−Ei + 2
∞∑′

i=0
ciJi(ωrρ) cos(iϕ) ρ < a

(10.156)

291

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25

Iteration

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
la

ti
v

e
 R

e
s
id

u
a
l

Figure 10.5: (top) Non-conforming mesh used to solve the dielectric cylinder problem.
(bottom) Preconditioned relative residual as a function of the number of iterations used to
compute the scattered field for the dielectric cylinder problem.

292

where

ai = −−i J ′
i(ωa)Ji(ωra) − √

ϵrJi(ωa)J ′
i(ωra)

H
(2)′
i (ωa)Ji(ωra) − √

ϵrH
(2)
i (ωa)J ′

i(ωra)
, (10.157)

ci = −(i+1)

πωa

2
H

(2)′
i (ωa)Ji(ωra) − √

ϵrH
(2)
i (ωa)J ′

i(ωra)
, (10.158)

and ωr = √
ϵrω, ϵr = 4, ρ = ∥x̄∥2, and ϕ = atan2(x2, x1). Recall that Ji is the order i Bessel

function of the first kind and H(2)
i is the order i Hankel function of the second kind. Primes

on the Bessel and Hankel functions denote the derivative with respect to their arguments,
and primes on the summation symbols require halving the i = 0 term. In computing the
error, we use 75 terms in the expansion which is enough to have the series converge in a disk
large enough to include domain Ω. In both the solution and error figures, we have shown
the PML region to emphasize that the scattered field decays to zero (in most later examples,
we do not show the PML since the solution is not physically relevant there). Note that the
error is computed to approximately 10 digits of accuracy throughout the physical domain.
The error in the PML is large, but this is expected because the computed field is unphysical
there. To achieve such high accuracy, it is necessary to capture the curvilinear boundary
and to use PML with parameters wi and σi chosen appropriately (as we have done here).

In addition to the scattered field, Figure 10.7

.

illustrates the computed RCS of the dielec-
tric cylinder and its corresponding error, each computed at 1000 evenly spaced observation
angles. The RCS is given by

σ2D(ϕ, ϕi) = lim
∥x̄∥2→∞

2π∥x̄∥2
|Es|2

|Ei|2
(10.159)

= ω

4 |Efar|2 (10.160)

with the far field integral

Efar(ϕ) =
˛

Γ
[x̂T n̄′Es(x̄′) − (ω)−1n̄′T ∇′Es(x̄′)]eωx̂T x̄′

dΩ′ (10.161)

and

x̂ =
⎡⎣ cos(ϕ)

sin(ϕ)

⎤⎦ . (10.162)

This RCS is effectively the same as the one presented in Section 9.6.2

.

with Ē replacing H̄.
We integrate over the boundary Γ of the cylinder. Like in Section 9.6.2

.

, the dielectric cylinder
is invariant under rotations about the x3 axis so that the RCS need only be computed for a
single incident angle ϕi. Therefore, the solution in Figure 10.6

.

is used to compute the RCS

293

Figure 10.6: (top) Real part of the scattered field ℜ{Es} for the dielectric cylinder problem.
(bottom) Logarithm of the absolute value of the error in the scattered field log10 |Es−Es,exact|
for the dielectric cylinder problem.

294

shown in Figure 10.7

.

. The computed RCS and the exact RCS are calculated in the same
way as in Section 9.6.2

.

. Figure 10.7

.

shows that the RCS determined from the computed
scattered field is accurate to roughly 9 digits.

10.6.2 Luneburg Lens

For the next two examples, we consider lens problems based on those in [171

.

]. We use these
examples to demonstrate that the method can be applied to problems with more complicated
spatial variation of permittivity. In addition, we show how the method behaves when the
frequency of the problem is high (respectively, the wavelength is small) compared to the
size of the domain. First, we consider a two-dimensional Luneburg lens which has spatially
varying permittivity that focuses incident plane waves to a single point. We solve for the
scattered field in the TMx3 mode due to the same incident field as in Section 10.6.1

.

but now
with frequency ω = 24 · 2π so that the wavelength of the incident field is λ = 1/24. We
solve for the scattered field in domain Ω = (−1.25, 1.25)2 which is 60λ × 60λ in size. The
permittivity of the lens is given by

ϵ33 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 −

(
∥x̄∥2

a

)2

∥x̄∥2 ≤ a

1 otherwise
(10.163)

with radius a = 0.45. The PML used to terminate the domain have thicknesses wi = 0.3125
and decay rates σi = 44 in the bands where the PML are nonzero. All elements use degree
20 expansions. Otherwise, all other parameters are the same as in Section 10.6.1

.

.
Figure 10.8

.

illustrates the real part of the computed total field Ex3 = Ei + Es for the
Luneburg lens. The PML region is not shown. Clearly, the plane wave has been focused to
the point

x̄ =
⎡⎣ a

0

⎤⎦ . (10.164)

The figure also shows the preconditioned relative residual as a function of the number of
iterations of the domain decomposition method. The criterion (10.149

.

) leads to a small
number of iterations. There are 310,464 unknowns in φ̄ with 18,281 rows in the coarse
problem matrix K. Compared to the coarse problem in Section 10.6.1

.

, K is now roughly
twice as large because of the near doubling of the problem size in terms of wavelength λ.

295

0 60 120 180 240 300 360

-20

-15

-10

-5

0

5

10

15

20

0 60 120 180 240 300 360

-12

-11.5

-11

-10.5

-10

-9.5

-9

Figure 10.7: (top) RCS of the dielectric cylinder. (bottom) Logarithm of the absolute
value of the error in the RCS of the dielectric cylinder.

296

0 5 10 15 20

Iteration

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
la

ti
v

e
 R

e
s
id

u
a
l

Figure 10.8: (top) Real part of the total field ℜ{Ex3} for the Luneburg lens problem.
(bottom) Preconditioned relative residual as a function of the number of iterations used to
compute the scattered field for the Luneburg lens problem.

297

10.6.3 Eaton Lens

The second lens example is a two-dimensional Eaton lens that is meant to bend electromag-
netic beam fields by 90 degrees. Again, we work with the TMx3 mode. The lens has spatially
varying permittivity

ϵ33 =

⎧⎪⎨⎪⎩[n(∥x̄∥2)]2 ∥x̄∥2 ≤ a

1 otherwise
(10.165)

where the radially symmetric index of refraction n satisfies

n2 = a

n∥x̄∥2
−

√(a

n∥x̄∥2

)2

− 1. (10.166)

We use radius a = 0.45 and compute n for a given ∥x̄∥2 when needed using Newton’s method
with initial iterate set to 1. We use an incident Gaussian beam

Ei = H
(2)
0 (ω∥x̄− x̄c∥2)e−ω/2 (10.167)

with complex center

x̄c =
⎡⎣ −0.76 − 0.5

0.275

⎤⎦ (10.168)

and frequency ω = 48 · 2π. This corresponds to a wavelength λ = 1/48 outside the lens. We
solve for the scattered field in domain Ω = (−0.75, 0.75)2 which is 72λ× 72λ in size.

The PML have thicknesses wi = 0.1875 and decay rates σi = 37. Since the index of
refraction is singular at the origin, we truncate it at a radius of 1/30 and leave it constant
inside that radius (we choose the constant so that ϵ33 is continuous). We resolve both this
artificial radial interface and the radial interface of the lens using a mesh that is one level
finer than the meshes in Sections 10.6.1

.

and 10.6.2

.

. We do this to avoid computing large
Legendre expansions for β (which is not smooth at these two radii, only continuous). We
compute the Legendre coefficients at a weaker error tolerance of 10−6. We also terminate
the domain decomposition algorithm once the relative residual has decreased by 6 orders of
magnitude. We use these less stringent tolerances for this example since we have already
compromised the accuracy of the solution by truncating the index of refraction. Degree 24
polynomial expansions are used for all elements. All other parameters are the same as used
in Section 10.6.2

.

.
Figure 10.9

.

illustrates the real part of the total field Ex3 = Ei + Es for the Eaton lens
problem. Clearly, the Gaussian beam is bent by 90 degrees around the origin. The figure also
shows the preconditioned relative residual as a function of the number of iterations. Again,

298

a modest number of iterations is required to compute the solution. There are 1,717,500
unknowns in φ̄ with 58,629 rows in the coarse problem matrix K. This growth in the size
of K relative to the Luneburg lens problem in Section 10.6.2

.

is due to two factors. First,
increasing the problem size in terms of λ causes K to increase in size. Second, increasing
the number of elements (the mesh for this problem is finer) introduces new edges which also
contribute to increasing the size of K.

10.6.4 Photonic Crystal Waveguide

In the next example, we consider a photonic crystal waveguide with geometry described in
[172

.

]. In that paper, the dielectric rods that constitute the photonic crystal are spatially
varying Gaussian cylinders. We choose to replace those cylinders with conventional dielectric
cylinders of constant permittivity (see, for example, [173

.

]). Our method is capable of han-
dling both problems, but the circular rods are more challenging. This is because the mesh
must resolve the circular boundary of each cylinder in the circular rod problem whereas the
mesh need not do so for the Gaussian cylinders. We use this example to show how the do-
main decomposition method behaves when many fine geometric features must be captured
by the mesh.

The photonic crystal is comprised of a 20×20 array of dielectric cylinders, each of radius
a = 4/475. These cylinders are located inside domain Ω = (−0.8, 0.8)2. The centers of the
rods are spaced uniformly in the region [−0.4, 0.4]2. A channel is removed along the 11th row
and 15th column so as to form a type of waveguide bend. See the field plot in Figure 10.11

.

for
a schematic depiction of the centers of the rods. The rods each have permittivity ϵ33 = 12.25
corresponding to silicon and are immersed in free space with ϵ33 = 1. Again, we work in the
TMx3 mode. The incident field is a plane wave with frequency ω = 50 corresponding to a
free space wavelength λ ≈ 1/8 so that the domain is approximately 13λ× 13λ in size. This
frequency is chosen to lie in the first bandgap of the photonic crystal.

The PML have thicknesses wi = 0.2 and decay rates σi = 37. The mesh has a maximum
level of refinement of 9 and a minimum level of refinement of 4. All elements have degree
8 polynomial basis functions and all Legendre expansions are computed to a tolerance of
10−6. The iterative method is terminated once the relative residual is reduced by 6 orders
of magnitude. All other unspecified parameters are chosen as in Section 10.6.1

.

.
Figure 10.10

.

illustrates the mesh used to resolve the photonic crystal waveguide problem.
The mesh is very fine near dielectric cylinders and coarse away from them. The figure shows
a detailed view of the mesh in the vicinity of one of the cylinders. Curvilinear elements are
used to model the circular boundary. Similar mesh detail is used to model the boundaries

299

0 5 10 15 20 25 30 35 40

Iteration

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

R
e
la

ti
v

e
 R

e
s
id

u
a
l

Figure 10.9: (top) Real part of the total field ℜ{Ex3} for the Eaton lens problem. (bottom)
Preconditioned relative residual as a function of the number of iterations used to compute
the scattered field for the Eaton lens problem.

300

-0.425 -0.4125 -0.4 -0.3875 -0.375
0.375

0.3875

0.4

0.4125

0.425

Figure 10.10: Mesh used to compute the scattered field due to a photonic crystal waveguide.
A detailed view of the mesh near one dielectric rod is shown on the left with the full mesh
on the right.

of the remaining 375 cylinders.
Figure 10.11

.

shows the total field Ex3 = Ei + Es for the photonic crystal waveguide
problem. By virtue of choosing an incident field with frequency in the first bandgap of
the photonic crystal, the total field is attenuated in the crystal, but propagates through
the waveguide channel. The figure also shows the reduction in the preconditioned relative
residual for the domain decomposition method used to produce the solution. There are
3,662,658 unknowns in φ̄ with 324,387 rows in the coarse problem matrix K. A weakness of
the domain decomposition method is evident in this example. In particular, when the mesh
must capture many fine features, the size of the coarse problem can grow rapidly. This is
because each edge in the mesh contributes roughly l rows to the size of the coarse problem
and the number of edges is much larger when fine geometric features are present in the mesh.

10.6.5 Perfect Electric Conducting Ogival Cylinder

In the next example, we consider the TEx3 mode rather than the TMx3 mode for an exam-
ple of scattering from an infinitely long, perfect electric conducting ogival cylinder. We use
this example to show that the domain decomposition method can be applied to geometries
including corners and to provide comparisons to the existing literature [12

.

]. We have previ-
ously considered an example in the TEx3 mode in Section 9.6.2

.

and refer the reader to the
development there regarding the appropriate PDE problem to solve and the accompanying
boundary conditions. We write the total field Hx3 = Hi + Hs in terms of a known incident

301

0 1 2 3 4 5 6 7 8

Iteration

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

R
e
la

ti
v

e
 R

e
s
id

u
a
l

Figure 10.11: (top) Real part of the total field ℜ{Ex3} for the photonic crystal waveguide
problem. (bottom) Preconditioned relative residual as a function of the number of iterations
used to compute the scattered field for the photonic crystal waveguide problem.

302

field Hi and unknown scattered field Hs, then solve the PDE problem

− ∇ · (α∇φ) + βφ = f (10.169)

with corresponding parameters

α =

⎡⎢⎢⎣
1
ϵ22

0

0 1
ϵ11

⎤⎥⎥⎦ , β = −ω2µ33, f = ∇ · (α∇Hi) − βHi, φ = Hs, (10.170)

for Hs subject to boundary condition

n̄T (α∇Hs) = −n̄T (α∇Hi) (10.171)

on the perfect electric conductor boundary.
The two boundary components of the ogive are circular arcs. Defining parameters

ho = 2.07
2 , wo = 5

2 , ρo = h2
o + w2

o

2ho

, (10.172)

both arcs have radius ρo. The upper arc is comprised of points satisfying x2 ≥ 0 on the circle
with center

x̄c,upper =
⎡⎣ 0
ho − ρo

⎤⎦ (10.173)

whereas the lower arc is comprised of points satisfying x2 ≤ 0 on the circle with center

x̄c,lower =
⎡⎣ 0

−(ho − ρo)

⎤⎦ . (10.174)

The ogive measures 2wo along the x1 axis and 2ho along the x2 axis. We let Ωo be the interior
of the ogive and solve for the scattered field in domain Ω = (−3.5, 3.5)2 \ Ωo. We assume
free space conditions ϵ = I and µ = I throughout Ω. We choose the incident field to be the
plane wave given by

Hi = eωk̄T x̄ (10.175)

with unit vector

k̄ =
⎡⎣ cos(ϕi)

sin(ϕi)

⎤⎦ (10.176)

and incident angle ϕi. Since Hi is a plane wave and the problem is in free space, the forcing
function f is zero. We choose frequency ω = 2π for the incident wave, but will vary the unit

303

vector k̄ using the incidence angle ϕi. The Neumann boundary condition (10.171

.

) can be
enforced with parameters

γ = 0, q = −ωn̄Tαk̄Hi, (10.177)

with inward pointing normal to the ogive (which is outward pointing to Ω) given by

n̄(x̄) = −1√
x2

1 + (x2 ± (ho − ρo))2

⎡⎣ x1

x2 ± (ho − ρo)

⎤⎦ (10.178)

where the sign changes depending on if the point x̄ belongs to the upper or lower arc of the
ogive.

A PML region with thicknesses wi = 0.4375 and decay rates σi = 16 is chosen to attenuate
the scattered field. The mesh uses a maximum level of refinement of 7 and a minimum level
of refinement of 4 with fixed points

{x̄fixed,k} =

⎧⎨⎩
⎡⎣ wo

0

⎤⎦ ,
⎡⎣ −wo

0

⎤⎦⎫⎬⎭ (10.179)

corresponding to the corners of the ogive. The mesh is illustrated in Figure 10.12

.

. In all
results, the solution is computed with degree 16 polynomials on all elements, and coefficient
expansions and boundary representations are computed to a tolerance of 10−6. The domain
decomposition algorithm is terminated once the preconditioned relative residual is reduced
by 6 orders of magnitude.

First, we show results for a single angle of incidence ϕi = 0. Figure 10.12

.

shows the
preconditioned relative residual as a function of the number of iterations for the domain
decomposition method while Figure 10.13

.

illustrates the real part of the scattered field.
There are 269,926 unknowns in φ̄ with 6,158 rows in the coarse problem matrix K.

Next, we compute the RCS of the ogive. We do so for 360 equally spaced incident angles
ϕi and 360 observation angles in [0, 2π). The RCS is computed in the same way as in Section
9.6.2

.

. We choose the boundary of the ogive as Γ when computing the far field integral. Since
the ogive is not invariant under rotations about the x3 axis, we compute the bistatic RCS
illustrated in Figure 10.13

.

. We do so by computing Hs for a given incident angle ϕi using
the domain decomposition method, then compute Hfar in (9.213

.

) and σ2D in (9.218

.

) at the
360 observation angles ϕ. We repeat this process for all 360 incident angles.

Finally, for comparison purposes, we reproduce Figure 4.23(b) and 4.25(b) in [12

.

]. The
first of these figures demonstrates the ratio of the magnitude of the total field |Hx3| and
the incident field |Hi| observed at the surface of the ogive for the incident angle ϕi = 0.
Figure 10.14

.

reproduces Figure 4.23(b) in [12

.

] where s is the distance along the upper arc

304

-3.5 -2.5 0 2.5 3.5

-3.5

-1.035

0

1.035

3.5

0 2 4 6 8 10 12 14 16 18

Iteration

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v

e
 R

e
s
id

u
a
l

Figure 10.12: (top) Non-conforming mesh used to solve the perfect electric conducting
ogival cylinder problem. (bottom) Preconditioned relative residual as a function of the
number of iterations used to compute the scattered field for the perfect electric conducting
ogival cylinder problem.

305

Figure 10.13: (top) Real part of the scattered field ℜ{Hs} for the perfect electric conduct-
ing ogival cylinder problem. (bottom) Bistatic RCS for the perfect electric conducting ogival
cylinder problem.

306

of the ogive (or lower arc due to symmetry of the solution) measured from its leading edge
(the rightmost corner of the ogive). We also include the monostatic RCS (where incident
and observation angles are equal) for angles between 0 and 90 degrees in Figure 10.14

.

. This
corresponds to sampling the bistatic RCS in Figure 10.13

.

along the line ϕi = ϕ. Only angles
0 to 90 are required to characterize the monostatic RCS because of symmetries of the ogive.
No symmetries were exploited when computing the bistatic RCS, but Figure 10.13

.

shows
that such symmetries exist. The monostatic RCS in Figure 10.14

.

can be directly compared
with Figure 4.25(b) in [12

.

]; the result is visually indistinguishable.

10.6.6 Electromagnetic Cloak

As a final example, we consider the electromagnetic cloak in [174

.

]. We use this example to
show how the method behaves with anisotropic, spatially varying permittivity and perme-
ability and again demonstrate the accuracy of the method. The cloak is meant to eliminate
scattering from objects inside an infinite cylinder coaxial with the x3 axis that has radius R1.
It is comprised of a layer of anisotropic and spatially varying permittivity and permeability
immediately adjacent to the outer surface of the cylinder. In practice, anything can be placed
inside the cylinder, but we will assume that the cylinder is a perfect electric conductor. The
layer has outer radius R2 > R1 and its permittivity tensor in cylindrical coordinates has
components

ϵρ = ρ−R1

ρ
, (10.180)

ϵϕ = 1
ϵρ

, (10.181)

ϵ33 =
(

R2

R2 −R1

)2
ϵρ, (10.182)

where ρ = ∥x̄∥2 and ϕ = atan2(x2, x1) are the standard cylindrical coordinates. To obtain
the permittivity tensor in Cartesian coordinates, we use the transformation⎡⎢⎢⎢⎣

Ex1

Ex2

Ex3

⎤⎥⎥⎥⎦
  

Ēx̄

=

⎡⎢⎢⎢⎣
cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

⎤⎥⎥⎥⎦
  

RT

⎡⎢⎢⎢⎣
Eρ

Eϕ

Ex3

⎤⎥⎥⎥⎦
  

Ēρ̄

(10.183)

from vectors Ēρ̄ expressed with unit vectors in cylindrical coordinates to vectors Ēx̄ expressed
with unit vectors in Cartesian coordinates. Note that the transformation matrix RT is a

307

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

0 30 60 90

-20

-10

0

10

20

Figure 10.14: (top) Ratio of the absolute values of the total field and the incident field ob-
served at the surface of the perfect electric conducting ogival cylinder. (bottom) Monostatic
RCS for the perfect electric conducting ogival cylinder.

308

rotation matrix that is orthogonal. This means that RTR = RRT = I. Since the constitutive
relation using cylindrical unit vectors is

D̄ρ̄ = ϵρ̄Ēρ̄ (10.184)

where ϵρ̄ is the permittivity tensor in cylindrical coordinates, we find that multiplying from
the right by RT and using (10.183

.

) gives

RT D̄ρ̄  
D̄x̄

= RT ϵρ̄Ēρ̄. (10.185)

In addition, multiplying (10.183

.

) by R gives Ēρ̄ = RĒx̄ so that substituting this last expres-
sion into (10.185

.

) yields
D̄x̄ = RT ϵρ̄R  

ϵx̄

Ēx̄. (10.186)

Therefore, to obtain the permittivity tensor ϵx̄ in Cartesian coordinates, we compute

ϵx̄ = RT ϵρ̄R (10.187)

=

⎡⎢⎢⎢⎣
cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ϵρ 0 0
0 ϵϕ 0
0 0 ϵ33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

⎤⎥⎥⎥⎦ (10.188)

=

⎡⎢⎢⎢⎣
ϵρ cos(ϕ) −ϵϕ sin(ϕ) 0
ϵρ sin(ϕ) ϵϕ cos(ϕ) 0

0 0 ϵ33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

⎤⎥⎥⎥⎦ (10.189)

=

⎡⎢⎢⎢⎣
ϵρ cos2(ϕ) + ϵϕ sin2(ϕ) (ϵρ − ϵϕ) sin(ϕ) cos(ϕ) 0
(ϵρ − ϵϕ) sin(ϕ) cos(ϕ) ϵρ sin2(ϕ) + ϵϕ cos2(ϕ) 0

0 0 ϵ33

⎤⎥⎥⎥⎦ (10.190)

so that

ϵ =

⎡⎢⎢⎢⎣
ϵ11 ϵ12 0
ϵ12 ϵ22 0
0 0 ϵ33

⎤⎥⎥⎥⎦ (10.191)

309

with

ϵ11 = ϵρ cos2(ϕ) + ϵϕ sin2(ϕ), (10.192)

ϵ12 = (ϵρ − ϵϕ) sin(ϕ) cos(ϕ), (10.193)

ϵ22 = ϵρ sin2(ϕ) + ϵϕ cos2(ϕ). (10.194)

The cloak also has permeability µ = ϵ. These expressions for the permittivity and perme-
ability are valid inside the layer where R1 < ρ ≤ R2. Note that ϵϕ is singular as ρ approaches
R1. In our computations, we replace ϵϕ in (10.181

.

) with

ϵϕ = ρ

ρ−R1 + δ
(10.195)

where δ = 10−8 is a small perturbation that smooths ϵϕ at the singularity. By including the
regularization parameter δ, we compromise the electromagnetic cloak’s ability to mask the
perfect electric conductor but, as we will see, the effect is small. Outside of the cloak, where
ρ > R2, we have free space with ϵ = µ = I.

Even though the permittivity and permeability are no longer diagonal, their structure
(10.191

.

) continues to permit separate analysis of the TMx3 and TEx3 modes. We will focus
on the TEx3 mode; analysis for the TMx3 mode is analogous. Following the same procedure
as outlined in Section 9.6.2

.

, but using the new structure of the permittivity and permeability
tensors, we obtain

− ∇ · (α∇φ) + βφ = f (10.196)

with corresponding parameters

α = 1
ϵ11ϵ22 − ϵ2

12

⎡⎣ ϵ11 ϵ12

ϵ12 ϵ22

⎤⎦ , β = −ω2µ33, f = ∇ · (α∇Hi) − βHi, φ = Hs.

(10.197)
The parameter α simplifies considerably because

ϵ11ϵ22 − ϵ2
12 = [ϵρ cos2(ϕ) + ϵϕ sin2(ϕ)][ϵρ sin2(ϕ) + ϵϕ cos2(ϕ)] − [(ϵρ − ϵϕ) sin(ϕ) cos(ϕ)]2.

(10.198)
Multiplying, squaring, and collecting like terms gives

ϵ11ϵ22 − ϵ2
12 = ϵρϵϕ[cos4(ϕ) + 2 sin2(ϕ) cos2(ϕ) + sin4(ϕ)] (10.199)

= ϵρϵϕ [cos2(ϕ) + sin2(ϕ)]2  
1

. (10.200)

310

In fact, using (10.180

.

) and (10.181

.

) shows that

ϵρϵϕ = 1 (10.201)

and that
ϵ11ϵ22 − ϵ2

12 = 1. (10.202)

When regularizing ϵϕ, this equality is only approximate10

.

. For this reason, we use

α =
⎡⎣ ϵ11 ϵ12

ϵ12 ϵ22

⎤⎦ (10.203)

in our calculations.
The formulation in terms of the standard PDE (10.196

.

) is incomplete. This is because
the weak form of (10.196

.

) weakly enforces continuity of the normal flux

n̄Tα∇φ = n̄Tα∇Hs (10.204)

of the scattered field Hs whereas continuity must be enforced for the flux of the total field
Hx3 = Hi + Hs. This has not been a problem for other scattering examples in this thesis
because those examples have continuous α. When α is continuous, continuity of the flux
(10.204

.

) implies that the gradient ∇Hs itself is continuous across element interfaces, and
since the gradient of the incident field is continuous, so too is the gradient of the total field
and consequently the total flux. In this example, parameter α is discontinuous where the
cloak layer and free space meet so we cannot conclude that the gradient of the scattered
field is continuous across that interface. Therefore, we must make sure that the weak form
weakly forces the continuity condition

n̄× (Ē1 − Ē2) = 0 (10.205)

where Ē1 denotes the electric field intensity outside the cloak layer, Ē2 denotes the field
inside the cloak layer, and n̄ is the unit normal vector pointing into the cloak. We saw
in Section 9.6.2

.

that n̄ × Ē can be written in terms of the normal flux of Hx3 so that the
tangential continuity condition (10.205

.

) becomes

n̄T [α2∇(Hx3)2 − α1∇(Hx3)1] = 0. (10.206)
10To recover the equality, ϵρ needs to also contain the regularization parameter. In practice, both ap-

proaches produce effective electromagnetic cloaks.

311

To see how to enforce this condition, we start from the functional for the total field and
reduce it to one for the scattered field.

The functional for the Helmholtz equation for the total field is given by

F (Hx3) = 1
2

ˆ
Ω
(∇Hx3)Tα∇Hx3 + βH2

x3dΩ. (10.207)

For clarity of exposition, we ignore boundary conditions in our derivation, although they can
be added without difficulty. In Chapter 6

.

, we saw that finding the stationary point of such
a functional implied that

−∇ · (α∇Hx3) + βHx3 = 0 in Ω, (10.208)

n̄T [α2∇(Hx3)2 − α1∇(Hx3)1] = 0 on Γ, (10.209)

where Γ was an interface internal to domain Ω where α was discontinuous. This functional
imposes the correct continuity condition on the total field. Substituting Hx3 = Hi +Hs into
the functional gives

F (Hs) = 1
2

ˆ
Ω
(∇(Hi +Hs))Tα∇(Hi +Hs) + β(Hi +Hs)2dΩ (10.210)

= 1
2

ˆ
Ω
(∇Hs)Tα∇Hs + βHs

2dΩ +
ˆ

Ω
(∇Hs)Tα∇Hi + βHsHidΩ (10.211)

where we have ignored terms that are independent of Hs (they will vanish when taking the
first variation with respect to the unknown scattered field Hs). Applying integration by
parts to remove the gradient from Hs in the second integral yields

F (Hs) = 1
2

ˆ
Ω
(∇Hs)Tα∇Hs +βHs

2dΩ+
ˆ

Ω
Hs[−∇· (α∇Hi)+βHi]dΩ+

ˆ
Γ
Hsn̄

T (α∇Hi)dΩ.
(10.212)

Notice how the first integral contains the contributions for the operator matrix and the
second integral contains the contribution of the forcing function in (10.197

.

) for (10.196

.

).
The remaining boundary integral is what is missing from our formulation. When there is a
discontinuity in α, two such terms arise (one from each side of the interface) so that

ˆ
Γ
Hsn̄

T (α2 − α1)∇HidΩ (10.213)

must be added to the functional. For the cloak problem, we add a Robin boundary condition
with parameters

γ = 0, q = n̄T (α2 − α1)∇Hi, (10.214)

312

on the interface between the cloak and free space regions in addition to the standard explicit
continuity condition on Hs. This amounts to adding a forcing term to the right hand side
of the saddle point system (in other words, we modify the forcing vector b̄ but can leave the
operator matrix A, constraint matrix C, and constraint vector d̄ unchanged).

As usual, there is an equivalent formulation using the weighted residual method. We start
from the standard weighted residual for the scattered field equation, but add a boundary
term involving the normal flux of the incident field at the boundary where α is discontinuous
to both sides of the equation. The term added to the side of the equation with the operator
terms is lumped together with the preexisting boundary term and only changes the meaning
of the Lagrange multipliers. In the original scattered field equations, the Lagrange multipliers
represent the flux of the scattered field, but with this added term, the Lagrange multipliers
now represent the flux of the total field. The term added to the side of the equations
associated with forcing terms is discretized and gives rise to the same added forcing term as
in the variational formulation.

In our example, we choose a plane wave incident field

Hi = e−ωk̄T x̄ (10.215)

with unit vector k̄ = ē1 and frequency ω = 20 · 2π corresponding to a free space wavelength
λ = 1/20. This choice leads to the imposition of Robin boundary conditions with parameters

γ = 0, q = −ωn̄T (α2 − α1)k̄Hi, (10.216)

on the interface between the cloak and free space regions (with n̄ pointing into the cloak, α1

corresponding to free space, and α2 corresponding to the cloak). Another Robin boundary
condition with parameters

γ = 0, q = ωn̄Tαk̄Hi, (10.217)

must be applied to the boundary of the perfect electric conducting cylinder (as in Section
9.6.2

.

). The forcing function outside the cloak is zero, but inside has the form

f = ∇ · (α∇Hi) − βHi (10.218)

= ∇ · (α[−ωk̄Hi]) − βHi. (10.219)

Since

αk̄ =
⎡⎣ ϵ11 ϵ12

ϵ12 ϵ22

⎤⎦⎡⎣ 1
0

⎤⎦ =
⎡⎣ ϵ11

ϵ12

⎤⎦ , (10.220)

313

and β = −ω2µ33, the forcing function becomes

f = −ω
{
∂

∂x1
(ϵ11Hi) + ∂

∂x2
(ϵ12Hi)

}
+ ω2µ33Hi (10.221)

= −ω
{
∂ϵ11

∂x1
Hi + ϵ11

∂Hi

∂x1
+ ∂ϵ12

∂x2
Hi + ϵ12

∂Hi

∂x2

}
+ ω2µ33Hi (10.222)

where we have taken the divergence and applied the product rule. Taking the partial deriva-
tives of Hi, this gives

f = −ω
{
∂ϵ11

∂x1
Hi + ϵ11(−ωHi) + ∂ϵ12

∂x2
Hi

}
+ ω2µ33Hi (10.223)

=
[
ω2(µ33 − ϵ11) − ω

{
∂ϵ11

∂x1
+ ∂ϵ12

∂x2

}]
Hi. (10.224)

The partial derivatives of ϵ11 and ϵ12 must also be evaluated. Using the product rule applied
to (10.192

.

) gives

∂ϵ11

∂x1
= ∂ϵρ

∂x1
cos2(ϕ) + ϵρ

∂

∂x1
[cos2(ϕ)] + ∂ϵϕ

∂x1
sin2(ϕ) + ϵϕ

∂

∂x1
[sin2(ϕ)]. (10.225)

Applying the chain rule to each derivative term, we obtain

∂ϵ11

∂x1
= ∂ϵρ

∂ρ

∂ρ

∂x1
cos2(ϕ) + ϵρ

∂

∂ϕ
[cos2(ϕ)] ∂ϕ

∂x1
+ ∂ϵϕ

∂ρ

∂ρ

∂x1
sin2(ϕ) + ϵϕ

∂

∂ϕ
[sin2(ϕ)] ∂ϕ

∂x1

(10.226)

= ∂ϵρ

∂ρ

∂ρ

∂x1
cos2(ϕ) + ϵρ[−2 cos(ϕ) sin(ϕ)] ∂ϕ

∂x1
+ ∂ϵϕ

∂ρ

∂ρ

∂x1
sin2(ϕ) + ϵϕ[2 sin(ϕ) cos(ϕ)] ∂ϕ

∂x1

(10.227)

= ∂ρ

∂x1

[
∂ϵρ

∂ρ
cos2(ϕ) + ∂ϵϕ

∂ρ
sin2(ϕ)

]
+ 2 ∂ϕ

∂x1
(ϵϕ − ϵρ) cos(ϕ) sin(ϕ). (10.228)

Similarly, using the product rule and chain rule on (10.193

.

) gives

∂ϵ12

∂x2
=
(
∂ϵρ

∂x2
− ∂ϵϕ

∂x2

)
sin(ϕ) cos(ϕ) + (ϵρ − ϵϕ) ∂

∂x2
[sin(ϕ) cos(ϕ)] (10.229)

=
(
∂ϵρ

∂ρ

∂ρ

∂x2
− ∂ϵϕ

∂ρ

∂ρ

∂x2

)
sin(ϕ) cos(ϕ) + (ϵρ − ϵϕ) ∂

∂ϕ
[sin(ϕ) cos(ϕ)] ∂ϕ

∂x2
(10.230)

=
(
∂ϵρ

∂ρ
− ∂ϵϕ

∂ρ

)
∂ρ

∂x2
sin(ϕ) cos(ϕ) + (ϵρ − ϵϕ)[cos2(ϕ) − sin2(ϕ)] ∂ϕ

∂x2
. (10.231)

314

To complete the description of these derivatives, we evaluate

∂ρ

∂x1
= ∂

∂x1
[∥x̄∥2] (10.232)

= x1

∥x̄∥2
, (10.233)

as well as

∂ρ

∂x2
= ∂

∂x2
[∥x̄∥2] (10.234)

= x2

∥x̄∥2
, (10.235)

and

∂ϕ

∂x1
= ∂

∂x1
atan

(
x2

x1

)
(10.236)

= − x2

∥x̄∥2
2
, (10.237)

as well as

∂ϕ

∂x2
= ∂

∂x2
atan

(
x2

x1

)
(10.238)

= x1

∥x̄∥2
2
. (10.239)

In addition, using (10.180

.

), we have

∂ϵρ

∂ρ
= ∂

∂ρ

[
ρ−R1

ρ

]
(10.240)

= R1

ρ2 , (10.241)

and, using (10.195

.

),

∂ϵϕ

∂ρ
= ∂

∂ρ

[
ρ

ρ−R1 + δ

]
(10.242)

= δ −R1

(ρ+ δ −R1)2 . (10.243)

Since ρ = ∥x̄∥2 and ϕ = atan2(x2, x1), combining (10.224

.

), (10.228

.

), (10.231

.

), and (10.232

.

)-
(10.243

.

) gives f in terms of known functions of x̄ (µ33 and ϵ11 are given by (10.182

.

) and
(10.192

.

) respectively while Hi is given by (10.215

.

)).

315

In our example, we choose the radius of the perfect electric conducting cylinder as R1 =
0.1 and the outer radius of the cloak as R2 = 2R1. We solve for the scattered field Hs

in domain Ω = (−0.8, 0.8)2 \ Ωc where Ωc is the interior of the perfect electric conducting
cylinder of radius R1. The domain Ω is 32λ × 32λ in size. A PML region with thicknesses
wi = 0.2 and decay rates σi = 70 is chosen to attenuate the scattered field. The mesh uses
a maximum of 6 levels or refinement and a minimum of 4 levels of refinement. Degree 10
polynomials are used for basis functions outside the cloak layer and the degree is increased
to 20 in a graded fashion approaching the perfect conducting cylinder. The grading is
determined by the polynomial degree used to compute the Legendre expansions to represent
the forcing function on each element (but limited to a maximum degree of 20). The degree
distribution and mesh are shown in Figure 10.15

.

. All Legendre expansions to represent
variable parameters and curvilinear boundaries are computed to a tolerance of 10−12.

The domain decomposition method is run until the preconditioned relative residual is
reduced by ten orders of magnitude. Figure 10.15

.

also shows the preconditioned relative
residual as a function of the number of iterations used to compute the scattered field. There
are a total of 117,791 unknowns in φ̄ and 9,676 rows in the coarse problem matrix K. Figure
10.16

.

illustrates the real part of the computed total field Hx3 = Hi+Hs for the cloak problem
as well as the magnitude of the scattered field. The magnitude of the scattered field is the
error in the total field outside the cloak layer since the exact solution there is the incident
field. Note that, as expected, the error in the cloak is large (on the order of 1 depicted in
yellow) but that, immediately outside the cloak, the error is on the order of 10−5 (depicted in
green) and that the error decays to zero in the PML (depicted in blue). The fact that we only
recover 5 digits of accuracy is a consequence of the choice of the regularization parameter
δ and not the finite element method itself. Decreasing δ decreases the error, but makes
computing the Legendre expansions near the cylinder increasingly costly. The error is small
in the PML because the PML cause the scattered wave to decay to zero which happens to
be the desired solution for this example (in almost all other scattering problems, this decay
would cause the error in the PML to be large; see Sections 9.6.2

.

or 10.6.1

.

for examples).
Finally, Figure 10.17

.

shows the RCS of the cloak, computed in the same way as in Section
9.6.2

.

. We choose the surface for the far field integral to be the interface between the cloak and
free space regions. The RCS confirms that the cloak is effective at reducing reflected waves,
as expected based on the device design. In fact, the solution computed here is significantly
more accurate than the one computed in [174

.

].

316

0 5 10 15 20 25 30 35

Iteration

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

R
e
la

ti
v

e
 R

e
s
id

u
a
l

Figure 10.15: (top) Non-conforming mesh used to solve the electromagnetic cloak prob-
lem. Color denotes the polynomial degree of basis functions on each element. (bottom)
Preconditioned relative residual as a function of the number of iterations used to compute
the scattered field for the electromagnetic cloak problem.

317

Figure 10.16: (top) Real part of the total field ℜ{Hx3} for the electromagnetic cloak
problem. (bottom) Logarithm of the absolute value of the scattered field log10 |Hs| for the
electromagnetic cloak problem.

318

0 60 120 180 240 300 360

-113

-112

-111

-110

-109

-108

-107

-106

Figure 10.17: RCS of the electromagnetic cloak.

319

Chapter 11

Conclusion

The objective of the research reported in this thesis was to develop a high accuracy finite
element method for the solution of Poisson and Helmholtz problems related to Maxwell’s
equations. This work has explored how to achieve this objective from first principles. In par-
ticular, the thesis first describes the development of a one-dimensional, single element spec-
tral method dependent upon integrated Legendre basis functions and Legendre expansions
computed using the fast Legendre transform. Then this single domain method is extended to
a finite element method whose worst case computational complexity is O(N(logN)2) where
N is the total number of unknowns.

The remainder of the thesis is focused on extending these results to higher-dimensional
problems. First, the analog of the one-dimensional method for a single element is extended to
a single square element, then to a planar curvilinear quadrilateral. Since curvilinear elements
possess undesirable local sparsity patterns, a mesh generation procedure using curvilinear
quadrilaterals only near curvilinear interfaces and boundaries was developed. To allow for
h-adaption, a crucial component of the one-dimensional finite element method, the quadri-
lateral mesh is permitted to be non-conforming. This required a systematic development
of constraint equations capable of handling continuity constraints between elements with
arbitrary polynomial degree basis function mismatch and levels of refinement. To solve the
associated saddle point system arising from the resulting finite element method, a domain
decomposition method was also developed. This domain decomposition method leverages
the fact that local element subproblems can be solved exploiting the structure of the one-
dimensional basis functions. Finally, challenging high frequency electromagnetics problems
were modeled and analyzed to demonstrate the ability of the finite element method to com-
pute high accuracy solutions.

The main contributions of the theories and methods presented in this thesis are:

1. To utilize Legendre expansions to represent spatially varying parameters in a one-

320

dimensional finite element method and to use the fast Legendre transform to efficiently
compute these expansions, and expansions for forcing functions.

2. To develop a systematic approach to allow arbitrary element refinement and polyno-
mial degree mismatch between elements in higher-dimensional extensions of the one-
dimensional finite element method in Contribution 1.

3. To develop a domain decomposition method specially tailored to the type of discretiza-
tions arising from Contribution 2 which can be used to efficiently solve the associated
linear systems iteratively.

4. To explain and demonstrate how the domain decomposition method in Contribution
3 is suitable for both static and high frequency electromagnetic problems.

These contributions were essential to meeting the objective of this thesis: the development of
a high accuracy finite element method for the solution of Poisson and Helmholtz problems.

11.1 Future Work

Since the domain decomposition method in this thesis is a generalization of the FETI-DP
method and shares features similar to the FETI-DPH method meant to solve Helmholtz
problems, it suffers from a similar computational bottleneck. In particular, the size of the
coarse problem can be large for problems with fine mesh features or for high frequency
problems. For this reason, future work is aimed towards reducing the size of the coarse
problem. One way to do so when fine mesh features are present is to relax the constraint
that each element belong to its own subdomain. This is particularly important near corner
singularities, where a large number of refinements in an hp-adaptive method results in a high
concentration of small elements near the singularity, but where the polynomial degree of
basis functions need not be high. In such a scenario, it makes sense to treat these low degree
elements together in a single subdomain of the domain decomposition, like in traditional
domain decomposition methods [71

.

], rather than each element as an independent subdomain.
Another approach towards reducing the size of the coarse space involves varying the number
of constraints explicitly imposed along edges in the mesh (denoted by parameter l). In this
thesis, the parameter l is constant across the entire mesh, selected in accordance with the
largest edge in the mesh. For non-uniformly refined meshes, this restriction may be more
costly than needed and future work includes verifying whether l can be varied from edge to
edge without significantly degrading the performance of the domain decomposition method.

321

In addition, the mesh generation procedure described in this thesis focuses on reducing
the number of elements whose transfinite interpolation maps are not affine. The problem
with such an approach is that the quality of the elements near curvilinear boundaries and in-
terfaces can be poor. The number of terms in the Legendre expansions representing effective
parameters for each element quantify this quality. Ideally, these Legendre expansions should
have a small number of terms if the original parameters are smooth. However, if a curvilinear
element has a transfinite map which is far from affine, the effective parameter will need to
represent this variation and the resulting Legendre expansion can require many terms. This
slows the convergence of fast solvers. Future work includes allowing more elements from the
mesh to possess non-affine transfinite interpolation maps, but whose overall quality is higher
than those in the current mesh generation procedure.

All computations in this thesis have been performed using MATLAB on a workstation
with a four core Intel Xeon E5-1603 processor and 32 GB of RAM. Future work includes
implementing the domain decomposition algorithm in C/C++ using MPI so as to test the
parallel scalability of the method. This is particularly crucial when implementing three-
dimensional problems with higher polynomial degree basis functions than those used in this
thesis.

In three dimensions, Poisson and Helmholtz problems can be discretized similarly to
their two-dimensional counterparts because of the tensor-product nature of basis functions.
For each element, one obtains operator matrices comprised of sums of terms of the form
A⊗B⊗C rather than A⊗B where the individual matrices A, B, or C are matrices arising
in the one-dimensional formulation. These systems can also be solved using the fast method
of [49

.

]. Three-dimensional Legendre expansions can also be computed similarly using one-
and two-dimensional techniques previously described [175

.

]. In addition, the mesh generation
techniques in this thesis are not dimension dependent, so they too can be generalized to three
dimensions. Quadtrees are replaced by octrees and transfinite interpolation extends easily
to three dimensions. All projections required to compute curvilinear boundaries in the mesh
are dimension independent. Furthermore, continuity constraints are treated in much the
same way as in two dimensions, although rather than impose constraints along edges, one
must impose constraints along faces. The same one-dimensional properties of Legendre
polynomials are used when imposing continuity along non-conforming faces. Finally, the
domain decomposition method remains unchanged, although in three dimensions one must
decide which constraints to use to form the coarse problem (face constraints, in addition
to the usual vertex and edge constraints may need to be considered). In fact, the methods
described in this thesis were developed specifically with an extension to higher dimensions
in mind so that the main difficulty between a two- and three-dimensional implementation

322

would be one of book-keeping and programming rather than of new mathematical theory.
However, there are added theory complications when extending the method to the curl-

curl equation for three-dimensional electromagnetic problems. In particular, crucial to the
success of the method in this thesis is the development of a strong understanding of weak
imposition of continuity constraints for non-conforming meshes. For the curl-curl equation,
the appropriate inter-element continuity constraints must be tangential, and future work
involves adapting the techniques from this thesis to such a setting.

323

Bibliography

[1] United Nations, International year of light and light-based technologies, 2015., http://
www.light2015.org/Home/About/Resources.html

.

, [Online; accessed February 2014].
Cited on pages 14

.

and 21

.

.

[2] J. C. Maxwell, On physical lines of force, Philosophical Magazine 21-23 (1861) 161–174,
281–291, 338–348, 12–24, 85–95. Cited on page 14

.

.

[3] O. Heaviside, Electrical Papers: Volume I, MacMillan, 1892, Ch. 30, p. 449. Cited on
page 14

.

.

[4] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 2012.
Cited on pages 14

.

, 226

.

, 248

.

, and 251

.

.

[5] J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi (Eds.), Electromagnetic Acoustic
Scattering by Simple Shapes, North-Holland Publishing Company, 1969. Cited on
page 14

.

.

[6] R. F. Harrington, Time-Harmonic Electromagnetic Fields, IEEE Press, 2001. doi:
10.1109/9780470546710

.

. Cited on page 14

.

.

[7] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, 1999. Cited on page 14

.

.

[8] J.-M. Jin, Theory and Computation of Electromagnetic Fields, IEEE Press, 2010.
doi:10.1002/9780470874257

.

. Cited on pages 14

.

, 248

.

, 290

.

, and 291

.

.

[9] J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941. doi:10.1002/
9781119134640

.

. Cited on page 14

.

.

[10] A. Bondeson, T. Rylander, P. Ingelstrom, Computational Electromagnetics, Springer,
2000. doi:10.1007/978-1-4614-5351-2

.

. Cited on page 14

.

.

[11] R. F. Harrington, Field Computation by Moment Methods, IEEE Press, 1993. doi:
10.1109/9780470544631

.

. Cited on page 14

.

.

324

http://www.light2015.org/Home/About/Resources.html
http://www.light2015.org/Home/About/Resources.html
http://dx.doi.org/10.1109/9780470546710
http://dx.doi.org/10.1109/9780470546710
http://dx.doi.org/10.1002/9780470874257
http://dx.doi.org/10.1002/9781119134640
http://dx.doi.org/10.1002/9781119134640
http://dx.doi.org/10.1007/978-1-4614-5351-2
http://dx.doi.org/10.1109/9780470544631
http://dx.doi.org/10.1109/9780470544631

[12] J. Jin, The Finite Element Method in Electromagnetics, 3rd Edition, Wiley, 2014.
Cited on pages 14

.

, 18

.

, 19

.

, 19

.

, 22

.

, 55

.

, 59

.

, 60

.

, 76

.

, 103

.

, 179

.

, 226

.

, 227

.

, 233

.

, 236

.

, 301

.

, 304

.

,
304

.

, and 307

.

.

[13] A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference
Time-Domain Method, Artech House, 2000. Cited on page 14

.

.

[14] M. Ainsworth, Discrete dispersion relation for hp-version finite element approxima-
tion at high wavenumber, SIAM J. Numer. Anal. 42 (2004) 553–575. doi:10.1137/
S0036142903423460

.

. Cited on pages 15

.

, 21

.

, 274

.

, and 288

.

.

[15] M. Ainsworth, H. A. Wajid, Dispersive and dissipative behavior of the spectral element
method, SIAM J. Numer. Anal. 47 (2009) 3910–3937. doi:10.1137/080724976

.

. Cited
on page 15

.

.

[16] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer, 1991. doi:
10.1007/b98828

.

. Cited on page 15

.

.

[17] J. M. Melenk, S. Sauter, Wavenumber explicit convergence analysis for Galerkin dis-
cretizations of the Helmholtz equation, SIAM J. Numer. Anal. 49 (2011) 1210–1243.
doi:10.1137/090776202

.

. Cited on pages 15

.

and 288

.

.

[18] A. A. Oberai, P. M. Pinksy, A numerical comparison of finite element methods for
the Helmholtz equation, Journal of Computational Acoustics 8 (2000) 211–221. doi:
10.1142/S0218396X00000133

.

. Cited on page 15

.

.

[19] L. Zhu, H. Wu, Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz
equation with high wave number. Part II: hp version, SIAM J. Numer. Anal. 51 (2013)
1828–1852. doi:10.1137/120874643

.

. Cited on page 15

.

.

[20] A. Lieu, G. Gabard, H. Bériot, A comparison of high-order polynomial and wave-
based methods for Helmholtz problems, Journal of Computational Physics 321 (2016)
105–125. doi:10.1016/j.jcp.2016.05.045

.

. Cited on page 15

.

.

[21] W. F. Mitchell, How high a degree is high enough for high order finite elements?,
Procedia Computer Science 51 (2015) 246–255. doi:10.1016/j.procs.2015.05.235

.

.
Cited on page 15

.

.

[22] P. E. J. Vos, S. J. Sherwin, R. M. Kirby, From h to p efficiently: Implementing finite
and spectral/hp element methods to achieve optimal performance for low- and high-
order discretizations, Journal of Computational Physics 229 (2010) 5161–5181. doi:
10.1016/j.jcp.2010.03.031

.

. Cited on page 15

.

.

325

http://dx.doi.org/10.1137/S0036142903423460
http://dx.doi.org/10.1137/S0036142903423460
http://dx.doi.org/10.1137/080724976
http://dx.doi.org/10.1007/b98828
http://dx.doi.org/10.1007/b98828
http://dx.doi.org/10.1137/090776202
http://dx.doi.org/10.1142/S0218396X00000133
http://dx.doi.org/10.1142/S0218396X00000133
http://dx.doi.org/10.1137/120874643
http://dx.doi.org/10.1016/j.jcp.2016.05.045
http://dx.doi.org/10.1016/j.procs.2015.05.235
http://dx.doi.org/10.1016/j.jcp.2010.03.031
http://dx.doi.org/10.1016/j.jcp.2010.03.031

[23] M. J. Gander, G. Wanner, From Euler, Ritz, and Galerkin to modern computing,
SIAM Review 54 (2012) 627–666. doi:10.1137/100804036

.

. Cited on page 16

.

.

[24] P. P. Silvester, Finite element solution of homogeneous waveguide problems, Alta Fre-
quenza 38 (1969) 313–317. Cited on page 18

.

.

[25] G. H. Golub, C. F. V. Loan, Matrix Computations, 4th Edition, John Hopkins Uni-
versity Press, 2012. Cited on pages 18

.

, 22

.

, 54

.

, 104

.

, 144

.

, 217

.

, 218

.

, 343

.

, 362

.

, 368

.

, 369

.

,
385

.

, 387

.

, 387

.

, 390

.

, and 392

.

.

[26] J. C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315–341. doi:
10.1007/bf01396415

.

. Cited on page 18

.

.

[27] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.
doi:10.1016/s0168-2024(08)x7014-6

.

. Cited on pages 18

.

and 22

.

.

[28] P. P. Silvester, R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd Edition,
Cambridge University Press, 1996. doi:10.1017/cbo9781139170611

.

. Cited on pages
19

.

, 22

.

, 55

.

, and 60

.

.

[29] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press,
2003. doi:10.1093/acprof:oso/9780198508885.001.0001

.

. Cited on pages 19

.

, 22

.

,
and 247

.

.

[30] L. Demkowicz, P. Monk, L. Vardepetyan, W. Rachowicz, de Rham diagram for hp
finite element spaces, Computers and Mathematics with Applications 39 (2000) 29–38.
doi:10.1016/s0898-1221(00)00062-6

.

. Cited on page 19

.

.

[31] M. Ainsworth, J. Coyle, Hierarchic finite element bases on unstructured tetrahedral
meshes, International Journal for Numerical Methods in Engineering 58 (2003) 2103–
2130. doi:10.1002/nme.847

.

. Cited on page 19

.

.

[32] F. Fuentes, B. Keith, L. Demkowicz, S. Nagaraj, Orientation embedded high order
shape functions for the exact sequence elements of all shapes, Computers and Mathe-
matics 70 (2015) 353–458. doi:10.1016/j.camwa.2015.04.027

.

. Cited on page 19

.

.

[33] P. Solin, K. Segeth, I. Dolezal, High-Order Finite Element Methods, Chapman-
Hall/CRC, 2004. doi:10.1201/9780203488041

.

. Cited on pages 19

.

and 22

.

.

[34] J. P. Webb, Hierarchal vector basis functions of arbitrary order for triangular and
tetrahedral finite elements, IEEE Transactions on Antennas and Propagation 47 (1999)
1244–1253. doi:10.1109/8.791939

.

. Cited on page 19

.

.

326

http://dx.doi.org/10.1137/100804036
http://dx.doi.org/10.1007/bf01396415
http://dx.doi.org/10.1007/bf01396415
http://dx.doi.org/10.1016/s0168-2024(08)x7014-6
http://dx.doi.org/10.1017/cbo9781139170611
http://dx.doi.org/10.1093/acprof:oso/9780198508885.001.0001
http://dx.doi.org/10.1016/s0898-1221(00)00062-6
http://dx.doi.org/10.1002/nme.847
http://dx.doi.org/10.1016/j.camwa.2015.04.027
http://dx.doi.org/10.1201/9780203488041
http://dx.doi.org/10.1109/8.791939

[35] A. Zdunek, W. Rachowicz, J. Kurtz, L. Demkowicz, M. Paszyriski, D. Pardo, Com-
puting with hp-Adaptive Finite Elements: Volume 2, Chapman-Hall/CRC, 2008.
doi:10.1201/9781420011692

.

. Cited on page 19

.

.

[36] S. J. Sherwin, G. E. Karniadakis, A triangular spectral element method; applications to
the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics
and Engineering 123 (1995) 189–229. doi:10.1016/0045-7825(94)00745-9

.

. Cited
on page 19

.

.

[37] G. E. Karniadakis, S. J. Sherwin, Spectral/hp Element Methods for CFD, Oxford
University Press, 1999. doi:10.1093/acprof:oso/9780198528692.001.0001

.

. Cited
on pages 19

.

, 20

.

, 75

.

, and 136

.

.

[38] M. Dubiner, Spectral methods on triangles and other domains, Journal of Scientific
Computing 6 (1991) 345–390. doi:10.1007/bf01060030

.

. Cited on pages 19

.

and 133

.

.

[39] C. F. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge Univer-
sity Press, 2001. doi:10.1017/cbo9781107786134

.

. Cited on pages 19

.

and 135

.

.

[40] C. Canuto, A. Quarteroni, M. Y. Hussaini, T. A. Zang, Spectral Methods: Fundamen-
tals in Single Domains, Springer, 2006. doi:10.1007/978-3-540-30726-6

.

. Cited on
pages 19

.

and 39

.

.

[41] E. A. Coutsias, T. Hagstrom, D. Torres, An efficient spectral method for ordinary
differential equations with rational function coefficients, Mathematics of Computation
65 (1996) 661–635. doi:10.1090/s0025-5718-96-00704-1

.

. Cited on page 19

.

.

[42] L. Greengard, Spectral integration and two-point boundary value problems, SIAM
Journal of Numerical Analysis 28 (1991) 1071–1080. doi:10.21236/ada199805

.

. Cited
on page 19

.

.

[43] J. Shen, T. Tang, L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applica-
tions, Springer, 2011. doi:10.1007/978-3-540-71041-7

.

. Cited on page 19

.

.

[44] S. Beuchler, J. Schoberl, New shape functions for triangular p-FEM using integrated
Jacobi polynomials, Numerische Mathematik 103 (2006) 339–366. doi:10.1007/
s00211-006-0681-2

.

. Cited on page 19

.

.

[45] S. Beuchler, V. Pillwein, J. Schoberl, S. Zaglmayr, Numerical and Symbolic Scientific
Computing, Springer, 2012, Ch. Sparsity optimized high order finite element functions
on simplices, pp. 21–44. doi:10.1007/978-3-7091-0794-2_2

.

. Cited on page 19

.

.

327

http://dx.doi.org/10.1201/9781420011692
http://dx.doi.org/10.1016/0045-7825(94)00745-9
http://dx.doi.org/10.1093/acprof:oso/9780198528692.001.0001
http://dx.doi.org/10.1007/bf01060030
http://dx.doi.org/10.1017/cbo9781107786134
http://dx.doi.org/10.1007/978-3-540-30726-6
http://dx.doi.org/10.1090/s0025-5718-96-00704-1
http://dx.doi.org/10.21236/ada199805
http://dx.doi.org/10.1007/978-3-540-71041-7
http://dx.doi.org/10.1007/s00211-006-0681-2
http://dx.doi.org/10.1007/s00211-006-0681-2
http://dx.doi.org/10.1007/978-3-7091-0794-2_2

[46] C. Canuto, R. Nochetto, M. Verani, Contraction and optimality properties of adaptive
Legendre-Galerkin methods: The one-dimensional case, Computers & Mathematics
with Applications 67 (2014) 752–770. doi:10.1016/j.camwa.2013.05.025

.

. Cited on
page 19

.

.

[47] C. Canuto, V. Simoncini, M. Verani, Contraction and optimality properties of an
adaptive Legendre-Galerkin method: The multi-dimensional case, Journal of Scientific
Computing 63 (2014) 769–798. doi:10.1007/s10915-014-9912-3

.

. Cited on page 19

.

.

[48] B. Szabó, I. Babuška, Finite Element Analysis, Wiley, 1991. Cited on pages 19

.

, 22

.

,
62

.

, and 75

.

.

[49] J. Shen, Efficient spectral-Galerkin method I. Direct solvers for the second and fourth
order equations using Legendre polynomials, SIAM J. Sci. Comput. 15 (1994) 1489–
1505. doi:10.1137/0915089

.

. Cited on pages 20

.

, 20

.

, 62

.

, 75

.

, 322

.

, 378

.

, and 385

.

.

[50] A. Townsend, L. N. Trefethen, An extension of Chebfun to two dimensions, SIAM J.
Sci. Comput. 35 (2013) C495–C518. doi:10.1137/130908002

.

. Cited on pages 20

.

, 144

.

,
144

.

, 144

.

, 144

.

, 144

.

, and 208

.

.

[51] A. Townsend, M. Webb, S. Olver, Fast polynomial transforms based on Toeplitz and
Hankel matrices, Mathematics of Computation 87 (2018) 1913–1934. doi:10.1090/
mcom/3277

.

. Cited on pages 20

.

, 62

.

, 78

.

, 342

.

, 342

.

, 342

.

, 343

.

, 359

.

, 366

.

, and 376

.

.

[52] J. A. Gaunt, The triplets of helium, Philosophical Transactions of the Royal Society
of London. Series A, Containing Papers of a Mathematical or Physical Character 228
(1929) 151–196. doi:10.1098/rspa.1929.0037

.

. Cited on pages 20

.

and 80

.

.

[53] C. F. Borges, W. B. Gragg, A parallel divide and conquer algorithm for the general-
ized real symmetric definite tridiagonal eigenproblem, Tech. rep., Naval Postgraduate
School (1992). doi:10.21236/ada262297

.

. Cited on pages 20

.

, 388

.

, 388

.

, and 394

.

.

[54] M. Gu, S. C. Eisenstat, A stable and efficient algorithm for the rank-one modification
of the symmetric eigenproblem, SIAM J. Matrix Anal. Appl. 15 (1994) 1266–1276.
doi:10.1137/S089547989223924X

.

. Cited on pages 20

.

, 388

.

, 388

.

, 400

.

, and 401

.

.

[55] M. Gu, S. C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiag-
onal eigenproblem, SIAM J. Matrix Anal. Appl. 16 (1995) 172–191. doi:10.1137/
S0895479892241287

.

. Cited on pages 20

.

, 218

.

, 388

.

, 388

.

, and 400

.

.

328

http://dx.doi.org/10.1016/j.camwa.2013.05.025
http://dx.doi.org/10.1007/s10915-014-9912-3
http://dx.doi.org/10.1137/0915089
http://dx.doi.org/10.1137/130908002
http://dx.doi.org/10.1090/mcom/3277
http://dx.doi.org/10.1090/mcom/3277
http://dx.doi.org/10.1098/rspa.1929.0037
http://dx.doi.org/10.21236/ada262297
http://dx.doi.org/10.1137/S089547989223924X
http://dx.doi.org/10.1137/S0895479892241287
http://dx.doi.org/10.1137/S0895479892241287

[56] R.-C. Li, Solving secular equations stably and efficiently, Tech. rep., University of
California at Berkeley (1993). doi:10.21236/ada608792

.

. Cited on pages 20

.

and 388

.

.

[57] J. D. Rutter, A serial implementation of Cuppen’s divide and conquer algorithm for the
symmetric eigenvalue problem, Tech. rep., University of California at Berkeley (1994).
Cited on pages 20

.

, 388

.

, and 388

.

.

[58] J. Carrier, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm for particle
simulations, SIAM J. Sci. Stat. Comput. 9 (1988) 669–686. doi:10.1137/0909044

.

.
Cited on pages 20

.

, 218

.

, 405

.

, and 418

.

.

[59] H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three
dimensions, Journal of Computational Physics 155 (1999) 468–498. doi:10.1006/
jcph.1999.6355

.

. Cited on pages 20

.

, 218

.

, 405

.

, and 418

.

.

[60] A. Dutt, M. Gu, V. Rokhlin, Fast algorithms for polynomial interpolation, inte-
gration, and differentiation, SIAM J. Numer. Anal. 33 (1996) 1689–1711. doi:
10.1137/0733082

.

. Cited on pages 20

.

, 218

.

, 405

.

, and 421

.

.

[61] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, Journal of Compu-
tational Physics 135 (1987) 280–292. doi:10.1006/jcph.1997.5706

.

. Cited on pages
20

.

, 218

.

, 405

.

, and 416

.

.

[62] P. J. Frey, P.-L. George, Mesh Generation: Application to Finite Elements, 2nd Edi-
tion, ISTE and Wiley, 2008. doi:10.1002/9780470611166

.

. Cited on pages 20

.

, 132

.

,
195

.

, 195

.

, and 206

.

.

[63] R. Schneiders, A grid-based algorithm for the generation of hexahedral element meshes,
Engineering with Computers 12 (1996) 168–177. doi:10.1007/BF01198732

.

. Cited on
page 20

.

.

[64] P.-O. Persson, Mesh generation for implicit geometries, Ph.D. thesis, Massachusetts
Institute of Technology (2005). http://hdl.handle.net/1721.1/27866

.

. Cited on
pages 20

.

and 185

.

.

[65] S. J. Owen, M. L. Staten, M. C. Sorensen, Parallel hex meshing from volume fractions,
in: W. R. Quadros (Ed.), Proceedings of the 20th International Meshing Roundtable,
Springer, 2011. doi:10.1007/978-3-642-24734-7_9

.

. Cited on page 20

.

.

[66] Y. Ohtake, A. Belyaev, I. Bogaevski, Mesh regularization and adaptive smoothing,
Computer-Aided Design 33 (2001) 789–800. doi:10.1016/S0010-4485(01)00095-1

.

.
Cited on pages 20

.

, 196

.

, and 202

.

.

329

http://dx.doi.org/10.21236/ada608792
http://dx.doi.org/10.1137/0909044
http://dx.doi.org/10.1006/jcph.1999.6355
http://dx.doi.org/10.1006/jcph.1999.6355
http://dx.doi.org/10.1137/0733082
http://dx.doi.org/10.1137/0733082
http://dx.doi.org/10.1006/jcph.1997.5706
http://dx.doi.org/10.1002/9780470611166
http://dx.doi.org/10.1007/BF01198732
http://hdl.handle.net/1721.1/27866
http://dx.doi.org/10.1007/978-3-642-24734-7_9
http://dx.doi.org/10.1016/S0010-4485(01)00095-1

[67] P. M. Knupp, Hexahedral and tetrahedral mesh untangling, Engineering with Com-
puters 17 (2001) 261–268. doi:10.1007/s003660170006

.

. Cited on pages 20

.

, 196

.

,
and 203

.

.

[68] P. Knupp, Introducing the target-matrix paradigm for mesh optimization via node-
movement, in: S. Shontz (Ed.), Proceedings of the 19th International Meshing
Roundtable, Springer, 2010, pp. 67–83. doi:10.1007/978-3-642-15414-0_5

.

. Cited
on pages 20

.

, 196

.

, and 204

.

.

[69] H. E. Salzer, A recurrence scheme for converting from one orthogonal expansion into
another, Communications of the ACM 16 (1973) 705–707. doi:10.1145/355611.
362548

.

. Cited on pages 20

.

and 217

.

.

[70] H. Yserentant, Preconditioning indefinite discretization matrices, Numer. Math. 54
(1988) 719–734. doi:10.1007/BF01396490

.

. Cited on pages 20

.

and 261

.

.

[71] A. Toselli, O. Widlund, Domain Decomposition Methods – Algorithms and Theory,
Springer, 2005. doi:10.1007/b137868

.

. Cited on pages 20

.

, 224

.

, 261

.

, 270

.

, and 321

.

.

[72] W. Hackbusch, Multi-Grid Methods and Applications, Springer, 2003. doi:10.1007/
978-3-662-02427-0

.

. Cited on pages 20

.

and 224

.

.

[73] L. L. Thompson, A review of finite-element methods for time-harmonic acoustics, J.
Acoust. Soc. Am. 119 (2006) 1315–1330. doi:10.1121/1.2164987

.

. Cited on page 20

.

.

[74] Y. A. Erlangga, Advances in iterative methods and preconditioners for the
Helmholtz equation, Arch. Comput. Methods Eng. 15 (2008) 37–66. doi:10.1007/
s11831-007-9013-7

.

. Cited on page 20

.

.

[75] B. Engquist, L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierar-
chical matrix representation, Communications on Pure and Applied Mathematics 64
(2011) 697–735. doi:10.1002/cpa.20358

.

. Cited on page 21

.

.

[76] J. Poulson, B. Engquist, S. Li, L. Ying, A parallel sweeping preconditioner for het-
erogeneous 3D Helmholtz equations, SIAM J. Sci. Comput. 35 (2013) C194–C212.
doi:10.1137/120871985

.

. Cited on page 21

.

.

[77] C. Farhat, F.-X. Roux, A method of finite element tearing and interconnecting and its
parallel solution algorithm, International Journal for Numerical Methods in Engineer-
ing 32 (1991) 1205–1227. doi:10.1002/nme.1620320604

.

. Cited on page 21

.

.

330

http://dx.doi.org/10.1007/s003660170006
http://dx.doi.org/10.1007/978-3-642-15414-0_5
http://dx.doi.org/10.1145/355611.362548
http://dx.doi.org/10.1145/355611.362548
http://dx.doi.org/10.1007/BF01396490
http://dx.doi.org/10.1007/b137868
http://dx.doi.org/10.1007/978-3-662-02427-0
http://dx.doi.org/10.1007/978-3-662-02427-0
http://dx.doi.org/10.1121/1.2164987
http://dx.doi.org/10.1007/s11831-007-9013-7
http://dx.doi.org/10.1007/s11831-007-9013-7
http://dx.doi.org/10.1002/cpa.20358
http://dx.doi.org/10.1137/120871985
http://dx.doi.org/10.1002/nme.1620320604

[78] A. Klawonn, L. F. Pavarino, O. Rheinbach, Spectral element FETI-DP and BDDC
preconditioners with multi-element subdomains, Comput. Methods Appl. Mech. Engrg.
198 (2008) 511–523. doi:10.1016/j.cma.2008.08.017

.

. Cited on pages 21

.

, 256

.

, 269

.

,
272

.

, 274

.

, 281

.

, 282

.

, 282

.

, 282

.

, 282

.

, and 284

.

.

[79] J. Mandel, B. Sousedík, BDDC and FETI-DP under minimalist assumptions, Com-
puting 81 (2007) 269–280. doi:10.1007/s00607-007-0254-y

.

. Cited on pages 21

.

and 256

.

.

[80] D. Stefanica, FETI and FETI-DP methods for spectral and mortar spectral elements:
a performance comparison, Journal of Scientific Computing 17 (2002) 629–638. doi:
10.1023/A:1015130915856

.

. Cited on pages 21

.

and 256

.

.

[81] C. Farhat, P. Avery, R. Tezaur, J. Li, FETI-DPH: a dual-primal domain decomposition
method for acoustic scattering, Journal of Computational Acoustics 13 (2005) 499–524.
doi:10.1142/S0218396X05002761

.

. Cited on pages 21

.

, 275

.

, and 277

.

.

[82] M. J. Gander, H. Zhang, Domain decomposition methods for the Helmholtz equation:
A numerical investigation, in: R. Bank, M. Holst, O. Widlund, J. Xu (Eds.), Domain
Decomposition Methods in Science and Engineering XX, Vol. 91 of Lecture Notes in
Computational Science and Engineering, Springer, 2013, pp. 215–222. doi:10.1007/
978-3-642-35275-1_24

.

. Cited on page 21

.

.

[83] F. B. Belgacem, The mortar finite element method with Lagrange multipliers, Nu-
merische Mathematik 84 (1999) 173–197. doi:10.1007/s002110050468

.

. Cited on
page 21

.

.

[84] J.-D. Benamou, B. Desprès, A domain decomposition method for the Helmholtz equa-
tion and related optimal control problems, Journal of Computational Physics 136
(1997) 68–82. doi:10.1006/jcph.1997.5742

.

. Cited on pages 21

.

and 277

.

.

[85] C. Farhat, A. Macedo, M. Lesoinne, F.-X. Roux, F. Magoulès, A. de La Bourdonnaie,
Two-level domain decomposition methods with Lagrange multipliers for the fast iter-
ative solution of acoustic scattering problems, Comput. Methods Appl. Mech. Engrg.
184 (2000) 213–239. doi:10.1016/S0045-7825(99)00229-7

.

. Cited on pages 21

.

, 277

.

,
280

.

, and 281

.

.

[86] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves,
Journal of Computational Physics 114 (1994) 185–200. doi:10.1006/jcph.1994.
1159

.

. Cited on pages 21

.

and 237

.

.

331

http://dx.doi.org/10.1016/j.cma.2008.08.017
http://dx.doi.org/10.1007/s00607-007-0254-y
http://dx.doi.org/10.1023/A:1015130915856
http://dx.doi.org/10.1023/A:1015130915856
http://dx.doi.org/10.1142/S0218396X05002761
http://dx.doi.org/10.1007/978-3-642-35275-1_24
http://dx.doi.org/10.1007/978-3-642-35275-1_24
http://dx.doi.org/10.1007/s002110050468
http://dx.doi.org/10.1006/jcph.1997.5742
http://dx.doi.org/10.1016/S0045-7825(99)00229-7
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1006/jcph.1994.1159

[87] S. Johnson, Notes on perfectly matched layers (PMLs), Tech. rep., Massachusetts
Institute of Technology (2010). http://math.mit.edu/~stevenj/notes.html

.

. Cited
on pages 21

.

and 238

.

.

[88] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi:10.1017/CBO9780511804441

.

. Cited on pages 22

.

, 48

.

, and 257

.

.

[89] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, 1987. doi:
10.1002/9781118723203

.

. Cited on page 22

.

.

[90] J. Nocedal, S. Wright, Numerical Optimization, Springer, 2006. doi:10.1007/b98874

.

.
Cited on pages 22

.

, 204

.

, and 257

.

.

[91] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1996. doi:10.1137/1.
9781611971446

.

. Cited on pages 22

.

, 390

.

, and 392

.

.

[92] L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM, 1997. doi:10.1137/1.
9780898719574

.

. Cited on page 22

.

.

[93] D. S. Watkins, Fundamentals of Matrix Computations, John Wiley & Sons, 2002.
doi:10.1002/0471249718

.

. Cited on page 22

.

.

[94] P. B. Bochev, M. D. Gunzberger, Least-Squares Finite Element Methods, Springer,
2009. doi:10.1007/978-3-540-70529-1_330

.

. Cited on page 22

.

.

[95] S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer, 2008. doi:10.1007/978-1-4757-4338-8_7

.

. Cited on page 22

.

.

[96] L. Demkowicz, Computing with hp-Adaptive Finite Elements: Volume 1, Chapman-
Hall/CRC, 2007. doi:10.1201/9781420011685

.

. Cited on page 22

.

.

[97] K.-J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
Cited on page 22

.

.

[98] W. B. Bickford, A First Course in the Finite Element Method, Irwin, 1994. Cited on
page 22

.

.

[99] O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method: Volume 1, Butterworth-
Heinemann, 2000. Cited on page 22

.

.

[100] G. Szego, Orthogonal Polynomials, American Mathematical Society, 1975. doi:10.
1090/coll/023

.

. Cited on pages 22

.

, 30

.

, and 31

.

.

332

http://math.mit.edu/~stevenj/notes.html
http://dx.doi.org/10.1017/CBO9780511804441
http://dx.doi.org/10.1002/9781118723203
http://dx.doi.org/10.1002/9781118723203
http://dx.doi.org/10.1007/b98874
http://dx.doi.org/10.1137/1.9781611971446
http://dx.doi.org/10.1137/1.9781611971446
http://dx.doi.org/10.1137/1.9780898719574
http://dx.doi.org/10.1137/1.9780898719574
http://dx.doi.org/10.1002/0471249718
http://dx.doi.org/10.1007/978-3-540-70529-1_330
http://dx.doi.org/10.1007/978-1-4757-4338-8_7
http://dx.doi.org/10.1201/9781420011685
http://dx.doi.org/10.1090/coll/023
http://dx.doi.org/10.1090/coll/023

[101] S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists,
McGraw-Hill, 2012. Cited on page 24

.

.

[102] S. C. Chapra, R. P. Canale, Numerical Methods for Engineers, McGraw-Hill, 1998.
Cited on page 24

.

.

[103] S. S. Rao, Applied Numerical Methods for Engineers and Scientists, Prentice Hall,
2002. Cited on page 24

.

.

[104] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in
C, Cambridge University Press, 1988. Cited on page 24

.

.

[105] A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, Dover, 2001. Cited
on page 24

.

.

[106] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer, 2000. doi:
10.1007/b98885

.

. Cited on pages 24

.

and 26

.

.

[107] E. Isaacson, H. B. Keller, Analysis of Numerical Methods, Dover, 1994. Cited on pages
24

.

and 38

.

.

[108] M. Cox, Reliable determination of interpolating polynomials, Numerical Algorithms 5
(1993) 133–154. doi:10.1007/bf02215677

.

. Cited on pages 25

.

and 55

.

.

[109] L. N. Trefethen, Approximation Theory and Approximation Practice, Cambridge Uni-
versity Press, 2012. Cited on pages 28

.

, 56

.

, 61

.

, 61

.

, 79

.

, and 225

.

.

[110] L. N. Trefethen, Is Gauss Quadrature better than Clenshaw-Curtis?, SIAM Review 50
(2008) 67–87. doi:10.1137/060659831

.

. Cited on pages 28

.

and 254

.

.

[111] J. Waldvogel, Fast construction of the Fejer and Clenshaw-Curtis quadrature rules,
BIT Numerical Mathematics 43 (2003) 001–018. doi:10.1007/s10543-006-0045-4

.

.
Cited on page 32

.

.

[112] N. Higham, Stability analysis of algorithms for solving confluent Vandermonde-like
systems, SIAM Journal of Applied Matrix Analysis 11 (1990) 23–41. doi:10.1137/
0611002

.

. Cited on pages 32

.

and 77

.

.

[113] R. Courant, D. Hilbert, Methods of Mathematical Physics: Volume 1, John Wiley &
Sons, 1989. doi:10.1002/9783527617210

.

. Cited on page 46

.

.

333

http://dx.doi.org/10.1007/b98885
http://dx.doi.org/10.1007/b98885
http://dx.doi.org/10.1007/bf02215677
http://dx.doi.org/10.1137/060659831
http://dx.doi.org/10.1007/s10543-006-0045-4
http://dx.doi.org/10.1137/0611002
http://dx.doi.org/10.1137/0611002
http://dx.doi.org/10.1002/9783527617210

[114] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta
Numerica 14 (1999) 1–137. doi:10.1017/s0962492904000212

.

. Cited on pages 51

.

, 53

.

,
257

.

, and 259

.

.

[115] J.-P. Berrut, L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Review 46
(2004) 501–517. doi:10.1137/s0036144502417715

.

. Cited on page 56

.

.

[116] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000. doi:10.1137/1.
9780898719598

.

. Cited on pages 61

.

and 162

.

.

[117] Symmetries of orthogonal polynomials, http://dlmf.nist.gov/18.6

.

, [Online; ac-
cessed August 2015]. Cited on page 69

.

.

[118] I. Bogaert, Iteration-free computation of Gauss–Legendre quadrature nodes and
weights, SIAM Journal on Scientific Computing 36 (2014) A1008–A1026. doi:
10.1137/140954969

.

. Cited on page 78

.

.

[119] B. K. Alpert, V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions,
SIAM Journal on Scientific and Statistical Computing 12 (1991) 158–179. doi:10.
1137/0912009

.

. Cited on pages 78

.

and 342

.

.

[120] N. Hale, A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using
an asymptotic formula, SIAM Journal on Scientific Computing 36 (2014) A148–A167.
doi:10.1137/130932223

.

. Cited on pages 78

.

and 342

.

.

[121] D. Potts, G. Steidl, M. Tasche, Fast algorithms for discrete polynomial trans-
forms, Mathematics of Computation 67 (1998) 1577–1590. doi:10.1090/
s0025-5718-98-00975-2

.

. Cited on pages 78

.

and 342

.

.

[122] T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM Review 51
(2009) 455–500. doi:10.1137/07070111x

.

. Cited on page 80

.

.

[123] Properties of the 3j symbol, http://dlmf.nist.gov/34.3

.

, [Online; accessed August
2015]. Cited on page 80

.

.

[124] J. C. Adams, On the expression of the product of any two Legendre’s coefficients
by means of a series of Legendre’s coefficients, Proc. R. Soc. Lond. 27 (1878) 63–71.
doi:10.1098/rspl.1878.0016

.

. Cited on page 80

.

.

[125] P. Houston, E. Süli, A note on the design of hp-adaptive finite element methods for
elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg. 194 (2005)
229–243. doi:10.1016/j.cma.2004.04.009

.

. Cited on pages 91

.

and 91

.

.

334

http://dx.doi.org/10.1017/s0962492904000212
http://dx.doi.org/10.1137/s0036144502417715
http://dx.doi.org/10.1137/1.9780898719598
http://dx.doi.org/10.1137/1.9780898719598
http://dlmf.nist.gov/18.6
http://dx.doi.org/10.1137/140954969
http://dx.doi.org/10.1137/140954969
http://dx.doi.org/10.1137/0912009
http://dx.doi.org/10.1137/0912009
http://dx.doi.org/10.1137/130932223
http://dx.doi.org/10.1090/s0025-5718-98-00975-2
http://dx.doi.org/10.1090/s0025-5718-98-00975-2
http://dx.doi.org/10.1137/07070111x
http://dlmf.nist.gov/34.3
http://dx.doi.org/10.1098/rspl.1878.0016
http://dx.doi.org/10.1016/j.cma.2004.04.009

[126] C. Bernardi, Indicateurs d’erreur en h-n version des éléments spectraux, Modélisa-
tion Mathémathique et Analyse Numérique 30 (1996) 1–38. doi:10.1051/m2an/
1996300100011

.

. Cited on page 91

.

.

[127] P. J. Davis, Interpolation and Approximation, Dover Publications, 1975. Cited on
page 91

.

.

[128] T. P. Wihler, An hp-adaptive strategy based on continuous Sobolev embeddings,
Journal of Computational and Applied Mathematics 235 (2011) 2731–2739. doi:
10.1002/pamm.201110004

.

. Cited on page 92

.

.

[129] B. Gustafsson, H.-O. Kreiss, J. Oliger, Time Dependent Problems and Difference Meth-
ods, Wiley-Interscience, 1995. doi:10.1002/9781118548448

.

. Cited on page 102

.

.

[130] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equa-
tions, SIAM, 2007. doi:10.1137/1.9780898717839

.

. Cited on page 102

.

.

[131] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff
Problems, Springer, 1993. doi:10.1007/978-3-540-78862-1

.

. Cited on page 102

.

.

[132] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, Springer, 1996. doi:10.1007/978-3-642-05221-7

.

. Cited on
page 102

.

.

[133] D. A. French, A space-time finite element method for the wave equation, Computer
Methods in Applied Mechanics and Engineering 107 (1993) 145–157. doi:10.1016/
0045-7825(93)90172-t

.

. Cited on page 102

.

.

[134] G. M. Hulbert, T. J. R. Hughes, Space-time finite element methods for second-order
hyperbolic equations, Computer Methods in Applied Mechanics and Engineering 84
(1990) 327–348. doi:10.1016/0045-7825(90)90082-w

.

. Cited on page 102

.

.

[135] D. K. Cheng, Field and Wave Electromagnetics, Addison-Wesley, 1989. Cited on page
116

.

.

[136] R. Kashyap, Fiber Bragg Gratings, Elsevier, 2010. doi:10.1016/c2009-0-16830-7

.

.
Cited on page 116

.

.

[137] S. Martin, P. Kaufmann, M. Botsch, M. Wicke, M. Gross, Polyhedral finite elements
using harmonic basis functions, in: Proceedings of the Symposium on Geometry Pro-
cessing, 2008. doi:10.1111/j.1467-8659.2008.01293.x

.

. Cited on page 132

.

.

335

http://dx.doi.org/10.1051/m2an/1996300100011
http://dx.doi.org/10.1051/m2an/1996300100011
http://dx.doi.org/10.1002/pamm.201110004
http://dx.doi.org/10.1002/pamm.201110004
http://dx.doi.org/10.1002/9781118548448
http://dx.doi.org/10.1137/1.9780898717839
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1007/978-3-642-05221-7
http://dx.doi.org/10.1016/0045-7825(93)90172-t
http://dx.doi.org/10.1016/0045-7825(93)90172-t
http://dx.doi.org/10.1016/0045-7825(90)90082-w
http://dx.doi.org/10.1016/c2009-0-16830-7
http://dx.doi.org/10.1111/j.1467-8659.2008.01293.x

[138] T. Mukherjee, J. P. Webb, Hierarchical bases for polygonal finite elements, IEEE
Transactions on Magnetics 51 (2015) 1–4. doi:10.1109/TMAG.2014.2345497

.

. Cited
on page 132

.

.

[139] T. Mukherjee, J. P. Webb, Polygonal finite elements of arbitrary order, IEEE Transac-
tions on Magnetics 52 (2016) 1–4. doi:10.1109/TMAG.2015.2487245

.

. Cited on page
132

.

.

[140] S.-W. Cheng, T. K. Dey, J. R. Shewchuk, Delaunay Mesh Generation, CRC Press,
2012. doi:10.1201/b12987

.

. Cited on page 132

.

.

[141] G. Munschy, P. Pluvinage, Résolution de l’équation de Schrodinger des atomes à deux
électrons. ii. Méthode rigoureuse. États s symétriques, J. Phys. Radium 18 (1957)
157–160. doi:10.1051/jphysrad:01957001803015700

.

. Cited on page 133

.

.

[142] J. Proriol, Sur une famille de polynomes à deux variables orthogonaux dans un triangle,
CR Acad. Sci. Paris 245 (1957) 2459–2461. Cited on page 133

.

.

[143] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in:
R. A. Askey (Ed.), Theory and Application of Special Functions, Academic Press,
1975, pp. 435–495. doi:10.1016/b978-0-12-064850-4.50015-x

.

. Cited on page 133

.

.

[144] S. Alisauskas, Coupling coefficients of SO(n) and integrals involving Jacobi and Gegen-
bauer polynomials, J. Phys. A: Math. Gen. 35 (2002) 7323–7345. doi:10.1088/
0305-4470/35/34/307

.

. Cited on page 135

.

.

[145] J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, Springer,
2008. doi:10.1007/978-0-387-72067-8

.

. Cited on page 136

.

.

[146] A. Townsend, S. Olver, The automatic solution of partial differential equations using
a global spectral method, Journal of Computational Physics 299 (2015) 106–123. doi:
10.1016/j.jcp.2015.06.031

.

. Cited on pages 162

.

and 169

.

.

[147] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006. doi:10.1137/
1.9780898718881

.

. Cited on pages 162

.

, 256

.

, and 269

.

.

[148] L. C. Evans, Partial Differential Equations, American Mathematical Society, 1997.
doi:10.1090/gsm/019

.

. Cited on page 169

.

.

[149] P. J. Roache, Code verification by the method of manufactured solutions, J. Fluids
Eng. 124 (2001) 4–10. doi:10.1115/1.1436090

.

. Cited on page 169

.

.

336

http://dx.doi.org/10.1109/TMAG.2014.2345497
http://dx.doi.org/10.1109/TMAG.2015.2487245
http://dx.doi.org/10.1201/b12987
http://dx.doi.org/10.1051/jphysrad:01957001803015700
http://dx.doi.org/10.1016/b978-0-12-064850-4.50015-x
http://dx.doi.org/10.1088/0305-4470/35/34/307
http://dx.doi.org/10.1088/0305-4470/35/34/307
http://dx.doi.org/10.1007/978-0-387-72067-8
http://dx.doi.org/10.1016/j.jcp.2015.06.031
http://dx.doi.org/10.1016/j.jcp.2015.06.031
http://dx.doi.org/10.1137/1.9780898718881
http://dx.doi.org/10.1137/1.9780898718881
http://dx.doi.org/10.1090/gsm/019
http://dx.doi.org/10.1115/1.1436090

[150] S. A. Coons, Surfaces for computer-aided design of space forms, Tech. rep., Mas-
sachusetts Institute of Technology (1967). doi:10.21236/ad0663504

.

. Cited on page
178

.

.

[151] W. J. Gordon, Blending-function methods of bivariate and multivariate interpolation
and approximation, SIAM J. Numer. Anal. 8 (1971) 158–177. doi:10.1137/0708019

.

.
Cited on page 178

.

.

[152] W. J. Gordon, C. A. Hall, Construction of curvilinear co-ordinate systems and applica-
tions to mesh generation, International Journal for Numerical Methods in Engineering
7 (1973) 461–477. doi:10.1002/nme.1620070405

.

. Cited on pages 178

.

and 178

.

.

[153] G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical
Guide, Academic Press, 1997. doi:10.1016/c2009-0-22351-8

.

. Cited on page 178

.

.

[154] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer,
2003. doi:10.1007/b98879

.

. Cited on pages 183

.

, 197

.

, and 198

.

.

[155] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976. Cited on page
183

.

.

[156] G. F. Carey, Computational Grids: Generation, Adaptation, and Solution Strategies,
Taylor & Francis, 1997. Cited on page 195

.

.

[157] R. Schneiders, Algorithms for quadrilateral and hexahedral mesh generation, in: Pro-
ceedings of the VKI Lecture Series on Computational Fluid Dynamics, 2000. Cited on
page 196

.

.

[158] S. J. Owen, T. R. Shelton, Validation of grid-based hex meshes with computational
solid mechanics, in: J. Sarrate, M. Staten (Eds.), Proceedings of the 22nd International
Meshing Roundtable, Springer, 2014, pp. 39–56. doi:10.1007/978-3-319-02335-9_
3

.

. Cited on pages 196

.

and 200

.

.

[159] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford Uni-
versity Press, 2004. Cited on pages 216

.

and 425

.

.

[160] I. Bogaert, B. Michiels, J. Fostier, O(1) computation of Legendre polynomials and
Gauss–Legendre nodes and weights for parallel computing, SIAM Journal on Scientific
Computing 34 (2012) C83–C101. doi:10.1137/110855442

.

. Cited on page 218

.

.

337

http://dx.doi.org/10.21236/ad0663504
http://dx.doi.org/10.1137/0708019
http://dx.doi.org/10.1002/nme.1620070405
http://dx.doi.org/10.1016/c2009-0-22351-8
http://dx.doi.org/10.1007/b98879
http://dx.doi.org/10.1007/978-3-319-02335-9_3
http://dx.doi.org/10.1007/978-3-319-02335-9_3
http://dx.doi.org/10.1137/110855442

[161] L. N. Trefethen, Multivariate polynomial approximation in the hypercube, Proceedings
of the American Mathematical Society 145 (2017) 4837–4844. doi:10.1090/proc/
13623

.

. Cited on pages 225

.

and 225

.

.

[162] Recurrence relations and derivatives of Bessel functions, http://dlmf.nist.gov/10.
6

.

, [Online; accessed December 2016]. Cited on page 249

.

.

[163] D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, Wiley-
Interscience Publication, 1983. doi:10.1137/1.9781611973167

.

. Cited on page 251

.

.

[164] Definitions of Bessel functions, http://dlmf.nist.gov/10.2

.

, [Online; accessed July
2018]. Cited on page 251

.

.

[165] L. N. Trefethen, J. A. C. Weideman, The exponentially convergent trapezoidal rule,
SIAM Review 56 (2014) 385–458. doi:10.1137/130932132

.

. Cited on page 254

.

.

[166] H. C. Elman, Preconditioning for the steady-state Navier-Stokes equations with
low viscosity, SIAM J. Sci. Comput. 20 (1999) 1299–1316. doi:10.1137/
S1064827596312547

.

. Cited on pages 257

.

and 260

.

.

[167] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 2004.
doi:10.1137/1.9781611970944

.

. Cited on pages 260

.

, 274

.

, 274

.

, 276

.

, 283

.

, and 284

.

.

[168] D. J. Rixen, C. Farhat, A simple and efficient extension of a class of substruc-
ture based preconditioners to heterogeneous structural mechanics problems, Inter-
national Journal for Numerical Methods in Engineering 44 (1999) 489–516. doi:
10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z

.

. Cited
on page 271

.

.

[169] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd
Edition, Springer, 2013. doi:10.1007/978-1-4614-4942-3

.

. Cited on page 280

.

.

[170] M. Naor, L. Stockmeyer, What can be computed locally?, SIAM J. Comput. 24 (1995)
1259–1277. doi:10.1137/S0097539793254571

.

. Cited on page 281

.

.

[171] F. Vico, L. Greengard, M. Ferrando, Fast convolution with free-space Green’s func-
tions, Journal of Computational Physics 323 (2016) 191–203. doi:10.1016/j.jcp.
2016.07.028

.

. Cited on page 295

.

.

[172] A. Gillman, A. H. Barnett, P.-G. Martinsson, A spectrally accurate direct solution
technique for frequency-domain scattering problems with variable media, BIT Numer.
Math. 55 (2015) 141–170. doi:10.1007/s10543-014-0499-8

.

. Cited on page 299

.

.

338

http://dx.doi.org/10.1090/proc/13623
http://dx.doi.org/10.1090/proc/13623
http://dlmf.nist.gov/10.6
http://dlmf.nist.gov/10.6
http://dx.doi.org/10.1137/1.9781611973167
http://dlmf.nist.gov/10.2
http://dx.doi.org/10.1137/130932132
http://dx.doi.org/10.1137/S1064827596312547
http://dx.doi.org/10.1137/S1064827596312547
http://dx.doi.org/10.1137/1.9781611970944
http://dx.doi.org/10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z
http://dx.doi.org/10.1007/978-1-4614-4942-3
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1016/j.jcp.2016.07.028
http://dx.doi.org/10.1016/j.jcp.2016.07.028
http://dx.doi.org/10.1007/s10543-014-0499-8

[173] A. Sharkawy, S. Shi, D. W. Prather, Implementations of optical vias in high-density
photonic crystal optical networks, Journal of Micro/Nanolithography, MEMS, and
MOEMS 2 (2003) 300–308. doi:10.1117/1.1610480

.

. Cited on page 299

.

.

[174] S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, Full-wave simulations
of electromagnetic cloaking structures, Physical Review E 74 (2006) 036621(1–5). doi:
10.1103/physreve.74.036621

.

. Cited on pages 307

.

and 316

.

.

[175] B. Hashemi, L. N. Trefethen, Chebfun in three dimensions, SIAM J. Sci. Comput. 39
(2017) C341–C363. doi:10.1137/16M1083803

.

. Cited on page 322

.

.

[176] C. V. Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.
doi:10.1137/1.9781611970999

.

. Cited on pages 343

.

and 352

.

.

[177] J. G. Proakis, D. G. Manolakis, Digital Signal Processing, Prentice-Hall, 1996. Cited
on page 343

.

.

[178] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press,
1999. doi:10.1017/cbo9781107325937

.

. Cited on pages 353

.

, 354

.

, and 354

.

.

[179] Interrelations and limit relations of orthogonal polynomials, https://dlmf.nist.gov/
18.7

.

, [Online; accessed May 2018]. Cited on page 353

.

.

[180] Recurrence relations and derivatives of orthogonal polynomials, https://dlmf.nist.
gov/18.9

.

, [Online; accessed May 2018]. Cited on page 356

.

.

[181] C. F. V. Loan, The ubiquitous Kronecker product, Journal of Computational and Ap-
plied Mathematics 123 (2000) 85–100. doi:10.1016/s0377-0427(00)00393-9

.

. Cited
on page 379

.

.

[182] V. Simoncini, Computational methods for linear matrix equations, SIAM Review 58
(2016) 377–441. doi:10.1137/130912839

.

. Cited on page 379

.

.

[183] D. Fortunato, A. Townsend, Fast Poisson solvers for spectral methods, preprint (2017).
https://arxiv.org/abs/1710.11259

.

. Cited on page 379

.

.

[184] E. Jarlebring, G. Mele, D. Palitta, E. Ringh, Krylov methods for low-rank com-
muting generalized Sylvester equations, Numerical Linear Algebra with Applications
(2018). doi:10.1002/nla.2176

.

. Cited on page 379

.

.

339

http://dx.doi.org/10.1117/1.1610480
http://dx.doi.org/10.1103/physreve.74.036621
http://dx.doi.org/10.1103/physreve.74.036621
http://dx.doi.org/10.1137/16M1083803
http://dx.doi.org/10.1137/1.9781611970999
http://dx.doi.org/10.1017/cbo9781107325937
https://dlmf.nist.gov/18.7
https://dlmf.nist.gov/18.7
https://dlmf.nist.gov/18.9
https://dlmf.nist.gov/18.9
http://dx.doi.org/10.1016/s0377-0427(00)00393-9
http://dx.doi.org/10.1137/130912839
https://arxiv.org/abs/1710.11259
http://dx.doi.org/10.1002/nla.2176

[185] J.-P. Chehab, M. Raydan, An implicit preconditioning strategy for large-scale gener-
alized Sylvester equations, Applied Mathematics and Computation 217 (2011) 8793–
8803. doi:10.1016/j.amc.2011.03.148

.

. Cited on page 379

.

.

[186] A. Bouhamidi, K. Jbilou, A note on the numerical approximate solutions for general-
ized Sylvester matrix equations with applications, Applied Mathematics and Compu-
tation 206 (2008) 687–694. doi:10.1016/j.amc.2008.09.022

.

. Cited on page 379

.

.

[187] B. Bialecki, G. Fairweather, A. Karageorghis, Matrix decomposition algorithms for
elliptic boundary value problems: a survey, Numer Algor 56 (2011) 253–295. doi:
10.1007/s11075-010-9384-y

.

. Cited on page 385

.

.

[188] S. Li, X. Liao, J. Liu, H. Jiang, New fast divide-and-conquer algorithms for the symmet-
ric tridiagonal eigenvalue problem, Numer. Linear Algebra Appl. 23 (2016) 656–673.
doi:10.1002/nla.2046

.

. Cited on page 388

.

.

[189] J. W. Demmel, O. A. Marques, B. N. Parlett, C. Vömel, Performance and accuracy
of LAPACK’s symmetric tridiagonal eigensolvers, SIAM J. Sci. Comput. 30 (2008)
1508–0526. doi:10.1137/070688778

.

. Cited on page 392

.

.

[190] T. Z. Boulmezaoud, J. M. Urquiza, On the eigenvalues of the spectral second or-
der differentiation operator and application to the boundary observability of the
wave equation, Journal of Scientific Computing 31 (2007) 307–345. doi:10.1007/
s10915-006-9106-8

.

. Cited on page 422

.

.

[191] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University
Press, 1922. Cited on pages 422

.

, 422

.

, 422

.

, and 428

.

.

[192] J. Gard, E. Zakrajšek, Method for evaluation of zeros of Bessel functions, Inst. Maths
Applics 11 (1973) 57–72. doi:10.1093/imamat/11.1.57

.

. Cited on page 423

.

.

[193] Definitions and basic properties of spherical Bessel functions, https://dlmf.nist.
gov/10.47

.

, [Online; accessed July 2018]. Cited on page 426

.

.

[194] Relations to other functions for Bessel functions, https://dlmf.nist.gov/10.16

.

,
[Online; accessed July 2018]. Cited on page 426

.

.

[195] K. F. Lee, R. Wong, Asymptotic expansion of the modified Lommel polynomi-
als hn,ν(x) and their zeros, Proceedings of the AMS 142 (2014) 3953–3964. doi:
10.1090/s0002-9939-2014-12134-4

.

. Cited on page 430

.

.

340

http://dx.doi.org/10.1016/j.amc.2011.03.148
http://dx.doi.org/10.1016/j.amc.2008.09.022
http://dx.doi.org/10.1007/s11075-010-9384-y
http://dx.doi.org/10.1007/s11075-010-9384-y
http://dx.doi.org/10.1002/nla.2046
http://dx.doi.org/10.1137/070688778
http://dx.doi.org/10.1007/s10915-006-9106-8
http://dx.doi.org/10.1007/s10915-006-9106-8
http://dx.doi.org/10.1093/imamat/11.1.57
https://dlmf.nist.gov/10.47
https://dlmf.nist.gov/10.47
https://dlmf.nist.gov/10.16
http://dx.doi.org/10.1090/s0002-9939-2014-12134-4
http://dx.doi.org/10.1090/s0002-9939-2014-12134-4

[196] G. Matviyenko, On the evaluation of Bessel functions, Applied and Computational
Harmonic Analysis 1 (1993) 116–135. doi:10.1006/acha.1993.1009

.

. Cited on page
430

.

.

[197] Uniform asymptotic expansions for large order Bessel functions, https://dlmf.nist.
gov/10.20

.

, [Online; accessed July 2018]. Cited on page 430

.

.

341

http://dx.doi.org/10.1006/acha.1993.1009
https://dlmf.nist.gov/10.20
https://dlmf.nist.gov/10.20

Appendix A

The Fast Legendre Transform

This appendix describes the Fast Legendre Transform (FLT) which converts an approxi-
mation of a continuous function φ(x) defined for x ∈ (−1, 1) via interpolatory Lagrange
polynomials li(x) at Chebyshev nodes

xi = cos
(
π

n
i
)
, i = 0, 1, 2, ..., n, (A.1)

into an equivalent expansion in terms of orthonormal Legendre polynomials pi(x). That is,
the algorithm converts between samples φ(xi) of the function and Legendre coefficients φi,Leg

so that the two representations

φ(x) ≈
n∑

i=0
φ(xi)li(x), φ(x) ≈

n∑
i=0

φi,Legpi(x), (A.2)

are equivalent. Many such algorithms exist to perform this task with near linear compu-
tational complexity [119

.

, 120

.

, 121

.

]. In particular, the method described in [51

.

] performs
this task with near linear computational complexity O(n(log n)2). The method exploits the
Fast Fourier Transform (FFT) and connections between Chebyshev polynomials, Legendre
polynomials, and interpolation in Chebyshev nodes to perform the transform1

.

. In this doc-
ument, we focus on the transform taking samples to coefficients because the reverse process
is similar. For details regarding the inverse transform, see [51

.

].
The key steps in the algorithm are to:

1. Sample the function at the Chebyshev nodes

2. Use an FFT to calculate Chebyshev coefficients from the samples

3. Convert the Chebyshev coefficients into Legendre coefficients through a series of FFTs.
1I favor the method of [51

.

] because of its simple implementation.

342

Steps 1 and 2 describe a Fast Chebyshev Transform (FCT). The FCT converts function values
f(xi) evaluated at Chebyshev nodes into coefficients φi,Cheb in the Chebyshev expansion

φ(x) ≈
n∑

i=0
φi,ChebTi (x) (A.3)

where Ti (x) are the Chebyshev polynomials of the first kind. If φ̄Leg is the vector containing
the Legendre coefficients and φ̄Cheb the vector containing the Chebyshev coefficients, then
Step 3 exploits the fact that

φ̄Leg = D2(H ◦ T T)D1φ̄Cheb (A.4)

where D1 and D2 are diagonal matrices, H is a numerically low rank symmetric Hankel
matrix that is almost positive semidefinite (we will elaborate later on precisely how it almost
possesses this property), T is a Toeplitz matrix, and ◦ denotes the Hadamard product
(multiplication entrywise). The method first computes a rank-revealing LDLT decomposition
of H that exploits its Hankel and positive semidefinite nature to obtain a factorization

H ≈
r∑

k=1
dk l̄k l̄

T
k (A.5)

where r is the numerical rank of the matrix. Then using this factorization, (A.4

.

) becomes

φ̄Leg = D2

[
r∑

k=1
dkdiag(l̄k)T T diag(l̄k)

]
D1φ̄Cheb. (A.6)

All multiplications with diagonal matrices are performed with O(n) operations and each
multiplication with the Toeplitz matrix is performed using an FFT with O(n log n) operations
by embedding the Toeplitz matrix inside a larger circulant matrix. In [51

.

], the authors prove
that r is approximately log n for the matrix H arising in the FLT, so that the total cost of
this approach is O(n(log n)2).

In the following, we will take for granted the fact that the Discrete Fourier Transform
(DFT) and its inverse, which we will define shortly, can be computed efficiently using the
FFT and inverse FFT. The interested reader unfamiliar with how the FFT implements the
DFT efficiently may find the following matrix computations and digital signal processing
literature helpful [25

.

, 176

.

, 177

.

]. Otherwise, we will work from first principles, using only a
handful of special function relations to describe the algorithm given by Steps 1, 2 and 3.

343

A.1 The Fast Chebyshev Transform

We begin with a description of the FCT. The goal is to find a Chebyshev expansion in terms
of Chebyshev polynomials of the first kind Tj(x) = cos(j cos−1(x)) that interpolates the
function φ at the Chebyshev nodes. We can determine the coefficients in the expansion by
writing out the n+ 1 interpolation equations

φ(xi) =
n∑

j=0
φj,ChebTj(xi), i = 0, 1, 2, ..., n, (A.7)

where the nodes xi satisfy (A.1

.

). In matrix form, letting φ̄ be the vector containing the
samples φ(xi) and V the Vandermonde matrix with entries (V)ij = Tj−1(xi−1), we have

φ̄ = V φ̄Cheb. (A.8)

This shows that solving the linear system (A.8

.

) yields the vector of Chebyshev coefficients
φ̄Cheb, as desired from the FCT. Unfortunately, without exploiting the special structure of
V , solving the system is not fast.

To exploit this structure, first, we notice that the entries of the Vandermonde matrix are

(V)ij = cos
(

(j − 1) cos−1
(

cos
(
π

n
(i− 1)

)))
(A.9)

= cos
(
π

n
(j − 1)(i− 1)

)
. (A.10)

Next, we compare these entries with the entries in a DFT matrix. A DFT matrix Fm of size
m×m has entries

(Fm)ij = ω(i−1)(j−1)
m (A.11)

with ωm = e−2π/m. Choosing m = 2n, the DFT matrix has entries

(F 2n)ij = ω
(i−1)(j−1)
2n (A.12)

=
(
e−2π/2n

)(i−1)(j−1)
(A.13)

= e−(π/n)(i−1)(j−1) (A.14)

= cos
(
π

n
(j − 1)(i− 1)

)
−  sin

(
π

n
(j − 1)(i− 1)

)
. (A.15)

Notice how the real part of F 2n for i, j = 0, 1, 2, ..., n is equivalent to the Vandermonde
matrix V . We will exploit this fact to compute the FCT. That is, instead of solving the
system (A.8

.

), we will find a way to relate this problem to multiplication with the matrix

344

F 2n, which can be performed in O(n log n) operations using the FFT.
In doing so, we will need three fundamental properties of Fm. The first property is that

Fm = F T
m (A.16)

since interchanging i and j in (A.11

.

) gives (Fm)ij = (Fm)ji. The second property is that

F ∗
mFm = mI (A.17)

so that
F−1

m = 1
m
F ∗

m (A.18)

where ∗ denotes the conjugate transpose. This second property follows from multiplying the
conjugate transpose of the (p+ 1)th column of Fm with the (q + 1)th column. This gives

[
(ω0·p

m)∗ (ω1·p
m)∗ (ω2·p

m)∗ · · · (ω(m−1)·p
m)∗

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0·q
m

ω1·q
m

ω2·q
m

...

ω(m−1)·q
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

m−1∑
k=0

e
2π
m

k(p−q). (A.19)

If p = q, then

m−1∑
k=0

e
2π
m

k(p−q) =
m−1∑
k=0

1 (A.20)

= m (A.21)

whereas, if p ̸= q, the geometric sum yields

m−1∑
k=0

e
2π
m

k(p−q) =
1 −

[
e

2π
m

(p−q)
]m

1 − e
2π
m

(p−q)
(A.22)

= 1 − e2π(p−q)

1 − e
2π
m

(p−q)
. (A.23)

Since p − q is an integer, e2π(p−q) = 1 and the numerator of (A.23

.

) is zero. This directly
proves (A.17

.

) since p and q are arbitrary integers. Finally, the third property is that

TmFm = F ∗
m, (A.24)

FmTm = F ∗
m, (A.25)

345

where

Tm =
⎡⎣ 1 0

0 Em−1

⎤⎦ , Em−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

. .
.

1

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.26)

and Em−1 has m− 1 rows and columns. By direct computation,

(TmFm)ij =

⎧⎪⎨⎪⎩ω
0·(j−1)
m i = 1

ω(m−i+1)(j−1)
m i > 1.

Since
ω(m−i+1)(j−1)

m = ωm(j−1)
m  

1

ω−(i−1)(j−1)
m  (

ω
(i−1)(j−1)
m

)∗

, (A.27)

this gives (A.24

.

). Similar direct computation gives

(FmTm)ij =

⎧⎪⎨⎪⎩ω
(i−1)·0
m j = 1

ω(i−1)(n−j+1)
m j > 1

from which (A.25

.

) follows.
To use the DFT matrix to compute the FCT, we study the structure of F 2n in greater

detail. First, from (A.15

.

), the first row has entries

(F 2n)1j = cos
(
π

n
(j − 1)(1 − 1)

)
−  sin

(
π

n
(j − 1)(1 − 1)

)
(A.28)

= cos (0) −  sin (0) (A.29)

= 1. (A.30)

The (n+ 1)th row has entries

(F 2n)n+1,j = cos
(
π

n
(j − 1)(n+ 1 − 1)

)
−  sin

(
π

n
(j − 1)(n+ 1 − 1)

)
(A.31)

= cos (π(j − 1)) −  sin (π(j − 1)) (A.32)

= (−1)j−1 (A.33)

which oscillate between plus and minus one. Similar properties hold for the corresponding
columns by the transpose property (A.16

.

). Defining the cosine matrix C and sine matrix S

346

with entries

(C)ij = cos
(
π

n
(j − 1)(1 − 1)

)
, (S)ij = sin

(
π

n
(j − 1)(1 − 1)

)
, (A.34)

respectively, valid for 2 ≤ i, j ≤ n, then F 2n has the block structure

F 2n =

⎡⎢⎢⎢⎢⎢⎢⎣
1 ēT 1 ēT

ē C − S v̄ XT

1 v̄T (−1)n ȳT

ē X ȳ Z

⎤⎥⎥⎥⎥⎥⎥⎦ (A.35)

where ē is the vector of all ones, and v̄ has alternating entries (v̄)i = (−1)i. Matrices X, Z
and vector ȳ remain to be determined. To determine them, we use property (A.24

.

) with

T 2n =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0 0 E

0 0 1 0
0 E 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (A.36)

partitioned in accordance with (A.35

.

) and E defined as in (A.26

.

), chosen with appropriate
size. Taking the product T 2nF 2n yields⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 E

0 0 1 0
0 E 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1 ēT 1 ēT

ē C − S v̄ XT

1 v̄T (−1)n ȳT

ē X ȳ Z

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 ēT 1 ēT

Eē EX Eȳ EZ

1 v̄T (−1)n ȳT

Eē E(C − S) Ev̄ EXT

⎤⎥⎥⎥⎥⎥⎥⎦
(A.37)

which we compare to

F ∗
2n =

⎡⎢⎢⎢⎢⎢⎢⎣
1 ēT 1 ēT

ē C + S v̄ X∗

1 v̄T (−1)n ȳ∗

ē (XT)∗ (ȳT)∗ Z∗

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.38)

Comparison of the (2,2) blocks gives

EX = C + S (A.39)

X = E(C + S) (A.40)

347

since E2 = I. Similarly, comparison of the (2,3) blocks gives

Eȳ = v̄ (A.41)

ȳ = Ev̄ (A.42)

and comparison of the (2,4) blocks, together with (A.40

.

) gives

EZ = X∗ (A.43)

Z = E[E(C + S)]∗ (A.44)

= E(C − S)E. (A.45)

Thus

F 2n =

⎡⎢⎢⎢⎢⎢⎢⎣
1 ēT 1 ēT

ē C − S v̄ (C + S)E
1 v̄T (−1)n v̄TE

ē E(C + S) Ev̄ E(C − S)E

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.46)

To relate this matrix to the Vandermonde matrix V , we apply a transform to separate the
C and S matrices. The transform is related to conjugate even vectors: vectors ȳ satisfying
the property that the complex conjugate of ȳ is equal to Tmȳ. That is, ȳ∗ = ȳTTm. This
property is relevant in the context of the DFT because the DFT of a real vector is conjugate
even. For example, if ȳ = Fmx̄ with x̄ ∈ Rm, then

ȳ∗ = x̄∗F ∗
m (A.47)

= x̄TFmTm (A.48)

= x̄TF T
mTm (A.49)

= ȳTTm (A.50)

where the second line follows from (A.25

.

) and the third line follows from (A.16

.

). When
m = 2n, then an arbitrary conjugate even vector

ȳ =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 + b1

ā2 + b̄2

a3 + b3

ā4 + b̄4

⎤⎥⎥⎥⎥⎥⎥⎦ (A.51)

348

has real components a1, ā2, a3, ā4, b1, b̄2, b3, b̄4 constrained by ȳ∗ = ȳTT 2n. That is,
⎡⎢⎢⎢⎢⎢⎢⎣
a1 − b1

ā2 − b̄2

a3 − b3

ā4 − b̄4

⎤⎥⎥⎥⎥⎥⎥⎦

T

=

⎡⎢⎢⎢⎢⎢⎢⎣
a1 + b1

ā2 + b̄2

a3 + b3

ā4 + b̄4

⎤⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0 0 E

0 0 1 0
0 E 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (A.52)

=

⎡⎢⎢⎢⎢⎢⎢⎣
a1 + b1

E(ā4 + b̄4)
a3 + b3

E(ā2 + b̄2)

⎤⎥⎥⎥⎥⎥⎥⎦

T

(A.53)

so that, equating like entries gives

b1 = 0, (A.54)

ā4 = Eā2, (A.55)

b̄4 = −Eb̄2, (A.56)

b3 = 0, (A.57)

with a1, ā2, a3, and b̄2 free. This means that for (A.51

.

) to be conjugate even, it must be of
the form

ȳ =

⎡⎢⎢⎢⎢⎢⎢⎣
a1

ā2 + b̄2

a3

Eā2 − Eb̄2

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.58)

Rather than have ā2 and b̄2 appear twice in ȳ, it is convenient to work with the vector

ȳce =
[
a1 āT

2 a3 b̄T
2

]T
. (A.59)

The two representations are connected via the linear transformation

ȳ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 I 0 I

0 0 1 0
0 E 0 −E

⎤⎥⎥⎥⎥⎥⎥⎦
  

U2n

ȳce. (A.60)

349

The inverse transformation is

U−1
2n =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1

2I 0 1
2E

0 0 1 0
0 − 

2I 0 
2E

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.61)

Finally, if we have ȳ = F 2nx̄, then we can rewrite this expression in terms of ȳce = U−1
2n ȳ and

x̄ce = U−1
2n x̄ through the process

U−1
2n ȳ = U−1

2nF 2nx̄ (A.62)

ȳce = U−1
2nF 2n U2nU

−1
2n  

I

x̄ (A.63)

= U−1
2nF 2nU2nx̄ce. (A.64)

Our approach to computing the inverse of V lies in the observation that

U−1
2nF 2nU2n =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1

2I 0 1
2E

0 0 1 0
0 − 

2I 0 
2E

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1 ēT 1 ēT

ē C − S v̄ (C + S)E
1 v̄T (−1)n v̄TE

ē E(C + S) Ev̄ E(C − S)E

⎤⎥⎥⎥⎥⎥⎥⎦U2n (A.65)

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 ēT 1 ēT

ē C v̄ CE

1 v̄T (−1)n v̄TE

0 −S 0 SE

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 I 0 I

0 0 1 0
0 E 0 −E

⎤⎥⎥⎥⎥⎥⎥⎦ (A.66)

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 2ēT 1 0
ē 2C v̄ 0
1 2v̄T (−1)n 0
0 0 0 −2S

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.67)

Notice how the upper three by three block is closely related to V for the FCT. In fact,

V =

⎡⎢⎢⎢⎣
1 2ēT 1
ē 2C v̄

1 2v̄T (−1)n

⎤⎥⎥⎥⎦
  

Ṽ

⎡⎢⎢⎢⎣
1 0 0
0 1

2I 0
0 0 1

⎤⎥⎥⎥⎦
  

D

(A.68)

350

so that V −1 = D−1Ṽ −1. Inverting D is trivial (it is diagonal), and we perform the inverse
of Ṽ by selecting only those rows and columns relevant to the upper three by three block of
the inverse of U−1

2nF 2nU2n. That is,

Ṽ −1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 I 0 0
0 0 1 0

⎤⎥⎥⎥⎦ (U−1
2nF 2nU2n

)−1

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 I 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.69)

Since
(
U−1

2nF 2nU2n

)−1
= U−1

2nF
−1
2nU2n, we obtain

Ṽ −1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 1

2I 0 1
2E

0 0 1 0

⎤⎥⎥⎥⎦F−1
2n

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 I 0
0 0 1
0 E 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.70)

Alternatively, one can use

Ṽ −1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 I 0 0
0 0 1 0

⎤⎥⎥⎥⎦F−1
2n

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 I 0
0 0 1
0 E 0

⎤⎥⎥⎥⎥⎥⎥⎦ (A.71)

which is equivalent due to certain symmetries.
To summarize, solving the system (A.8

.

) is equivalent to applying the transformations

φ̄Cheb =

⎡⎢⎢⎢⎣
1 0 0
0 2I 0
0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0
0 I 0 0
0 0 1 0

⎤⎥⎥⎥⎦F−1
2n

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 I 0
0 0 1
0 E 0

⎤⎥⎥⎥⎥⎥⎥⎦ φ̄ (A.72)

where we partition

φ̄ =

⎡⎢⎢⎢⎣
φ0

φ̃

φn

⎤⎥⎥⎥⎦ . (A.73)

351

In practice, we do not form these intermediate matrices. Instead, we use the vector⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 I 0
0 0 1
0 E 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
φ0

φ̃

φn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
φ0

φ̃

φn

Eφ̃

⎤⎥⎥⎥⎥⎥⎥⎦ (A.74)

as input to an inverse FFT routine (noting that Eφ̃ is a reversal of order of the entries in
φ̃), then postprocess the output by

⎡⎢⎢⎢⎣
1 0 0
0 2I 0
0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0
0 I 0 0
0 0 1 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0 0
0 2I 0 0
0 0 1 0

⎤⎥⎥⎥⎦ (A.75)

which is equivalent to discarding the last n − 1 entries of the output vector, and scaling
the 2nd to nth entries by a factor of two. Since the inverse FFT can be computed in
O(2n log(2n)) = O(n log(n)) operations, this is a fast method for converting samples at
Chebyshev nodes into Chebyshev coefficients. There are more efficient methods which exploit
additional symmetries of the vector (A.74

.

) which are called Fast Cosine Transforms, but we
direct the interested reader to [176

.

] for details.

A.2 Legendre to Chebyshev Connection Coefficients

The last section explained how to efficiently convert from samples of a function φ̄ at Cheby-
shev nodes to Chebyshev coefficients φ̄Cheb. In this section, we describe how Chebyshev
coefficients are related to Legendre coefficients φ̄Leg. For now, we will talk only about or-
thogonal Legendre polynomials, not orthonormal ones. Switching between the two is trivial
and will be done only at the end of our development. To begin, we define vectors of Cheby-
shev polynomials and Legendre polynomials

T̄ (x) =

⎡⎢⎢⎢⎢⎢⎢⎣
T0(x)
T1(x)
...

Tn(x)

⎤⎥⎥⎥⎥⎥⎥⎦ , P̄ (x) =

⎡⎢⎢⎢⎢⎢⎢⎣
P0(x)
P1(x)
...

Pn(x)

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.76)

respectively. Since we have computed a polynomial

p(x) = φ̄T
ChebT̄ (x) (A.77)

352

in the previous section, we now investigate how to rewrite this polynomial as

p(x) = φ̄T
LegP̄ (x). (A.78)

Equating the two expressions, multiplying from the right by P̄ (x)T , and integrating yields

φ̄T
ChebT̄ (x) = φ̄T

LegP̄ (x) (A.79)

φ̄T
Cheb

ˆ 1

−1
T̄ (x)P̄ (x)Tdx  

L̃

= φ̄T
Leg

ˆ 1

−1
P̄ (x)P̄ (x)Tdx  

D

(A.80)

where L̃ is a lower triangular matrix, and D is a diagonal matrix. Then taking the transpose
and isolating φ̄Leg yields

(φ̄T
ChebL̃)T = (φ̄T

LegD)T (A.81)

L̃T φ̄Cheb = Dφ̄Leg (A.82)

D−1L̃T  
LT

φ̄Cheb = φ̄Leg. (A.83)

The key to computing LT φ̄Cheb is thus understanding the structure of L. In special functions
literature [178

.

], the entries in L are called the connection coefficients between the Chebyshev
and Legendre polynomials. This is because

T̄ (x) = LP̄ (x), (A.84)

which describes precisely how to express each Chebyshev polynomial in terms of a linear com-
bination of Legendre polynomials. To confirm that this L is the same as the one connecting
the coefficients, multiply (A.84

.

) by P̄ (x)T and integrate, as in (A.80

.

).
Both Chebyshev and Legendre polynomials can be viewed as special cases of a more

general family of polynomials called the ultraspherical (or Gegenbauer) polynomials Cλ
i (x).

Here, λ is a parameter which differentiates between families of polynomials. In particular,
when λ = 1/2, the ultraspherical polynomials coincide with the Legendre polynomials. That
is, C1/2

i (x) = Pi(x). Similarly, (see [179

.

], for example)

lim
λ→0

1
λ
Cλ

i (x) = 2
i
Ti(x), i ≥ 1. (A.85)

For this reason, in this section, we derive the connection coefficients between ultraspherical
polynomials of two different parameters λ and µ, then specialize to the Chebyshev and

353

Legendre case by taking the limit as λ approaches zero and setting µ = 1/2.
The starting point is the generating function [178

.

] for ultraspherical polynomials

(1 − 2xr + r2)−λ =
∞∑

i=0
Cλ

i (x)ri. (A.86)

Letting x = cos θ = (eθ + e−θ)/2, we note that

1 − 2xr + r2 = 1 − (eθ + e−θ)r + r2 (A.87)

= (1 − reθ)(1 − re−θ). (A.88)

Then
(1 − 2 cos θr + r2)−λ = (1 − reθ)−λ(1 − re−θ)−λ (A.89)

and we can apply the binomial theorem to each term separately to obtain

(1 − reθ)−λ =
∞∑

k=0

(
−λ
k

)
(−reθ)k (A.90)

=
∞∑

k=0

(−λ)k

k! (−1)krkekθ (A.91)

where (−λ)k = (−λ)(−λ− 1) · · · (−λ− k + 1) is the Pochhammer symbol. Similarly,

(1 − re−θ)−λ =
∞∑

l=0

(
−λ
l

)
(−re−θ)l (A.92)

=
∞∑

l=0

(−λ)l

l! (−1)lrle−lθ. (A.93)

Multiplying these two series, and collecting terms containing ri, we obtain

Cλ
i (cos θ)ri =

i∑
j=0

(
(−λ)j

j! (−1)jrjejθ

)(
(−λ)i−j

(i− j)! (−1)i−jri−je−(i−j)θ
)

(A.94)

=
i∑

j=0

(
(−λ)j(−1)j

j!
(−λ)i−j(−1)i−j

(i− j)! e(2j−i)θ
)
ri. (A.95)

If Γ(z) denotes the Gamma function [178

.

] satisfying Γ(z + 1) = zΓ(z), then

(−λ)j(−1)j = Γ(j + λ)
Γ(λ) , (−λ)i−j(−1)i−j = Γ(i− j + λ)

Γ(λ) , (A.96)

354

j! = Γ(j + 1), (i− j)! = Γ(i− j + 1), and

Cλ
i (cos θ) = 1

[Γ(λ)]2
i∑

j=0

Γ(j + λ)
Γ(j + 1)

Γ(i− j + λ)
Γ(i− j + 1) e

(2j−i)θ. (A.97)

Making one additional adjustment, we recognize that if i is odd, there are an even number
of terms to sum, and we can group them together in pairs. That is, for example, if j = 0
and j = i, we have the two terms

Γ(λ)
Γ(1)

Γ(i+ λ)
Γ(i+ 1) e

(−i)θ

  
j=0 term

+ Γ(i+ λ)
Γ(i+ 1)

Γ(i− i+ λ)
Γ(i− i+ 1) e

(2i−i)θ

  
j=i term

(A.98)

appearing in the sum. They simplify to

Γ(λ)
Γ(1)

Γ(i+ λ)
Γ(i+ 1) e

−iθ + Γ(i+ λ)
Γ(i+ 1)

Γ(λ)
Γ(1) e

iθ = Γ(λ)
Γ(1)

Γ(i+ λ)
Γ(i+ 1) (e−iθ + eiθ) (A.99)

= Γ(λ)
Γ(1)

Γ(i+ λ)
Γ(i+ 1) 2 cos(iθ). (A.100)

Similar simplification applies to all pairs j = k and j = i− k, giving

Γ(k + λ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 1) e

(2k−i)θ

  
j=k term

+ Γ(i− k + λ)
Γ(i− k + 1)

Γ(i− (i− k) + λ)
Γ(i− (i− k) + 1) e

(2(i−k)−i)θ

  
j=i−k term

(A.101)

which becomes
Γ(k + λ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 1) 2 cos((i− 2k)θ). (A.102)

When i is even, there is an odd number of terms to sum. Similar pairings occur, leaving the
j = i/2 term alone. However, this term has the form

Γ(i/2 + λ)
Γ(i/2 + 1)

Γ(i− i/2 + λ)
Γ(i− i/2 + 1) e

(0)θ (A.103)

which means that we can write it as

Γ(k + λ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 1) cos((i− 2k)θ) (A.104)

with k = i/2 (notice the factor of 2 missing). This gives

Cλ
i (cos θ) = 1

[Γ(λ)]2
i/2∑
k=0

νk
Γ(k + λ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 1) cos((i− 2k)θ) (A.105)

355

where

νk =

⎧⎪⎨⎪⎩1 k = i/2, i even,

2 otherwise.
(A.106)

In the next step of our process, we find a way to replace the cosine functions in (A.105

.

)
with ultraspherical polynomials Cµ

j where µ need not be the same as λ. The key is to take
the derivative of (A.105

.

) with respect to θ. Since (see [180

.

], for example)

d

dx
Cλ

i (x) = 2λCλ+1
i−1 (x), (A.107)

we have

d

dθ
Cλ

i (cos θ) = 1
[Γ(λ)]2

i/2∑
k=0

νk
Γ(k + λ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 1)

d

dθ
cos((i− 2k)θ) (A.108)

2λCλ+1
i−1 (cos θ)(− sin θ) = 1

[Γ(λ)]2
⌊i/2⌋∑
k=0

2Γ(k + λ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 1) (− sin((i− 2k)θ)(i− 2k))

(A.109)

Cλ+1
i−1 (cos θ) = 1

λ[Γ(λ)]2
⌊i/2⌋∑
k=0

(i− 2k)Γ(k + λ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 1)

sin((i− 2k)θ)
sin θ .

(A.110)

Since the k = i/2 term is constant, its derivative is zero. This causes the sum to run to the
floor of i/2 denoted as ⌊i/2⌋ and allows us to replace all remaining νk with 2. Also, note
that

Ui−2k−1(cos θ) = sin((i− 2k)θ)
sin θ (A.111)

is the definition of the order i − 2k − 1 Chebyshev polynomial of the second kind and that
the Chebyshev polynomial of the second kind is an ultraspherical polynomial with λ = 1.
This means that

Cλ+1
i−1 (x) = 1

λ[Γ(λ)]2
⌊i/2⌋∑
k=0

(2k − i)Γ(k + λ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 1)C

1
i−2k−1(x) (A.112)

where we have used x = cos θ. We can set λ+ 1 → λ and i− 1 → i to obtain

Cλ
i (x) = 1

(λ− 1)[Γ(λ− 1)]2
⌊i/2⌋∑
k=0

(i+ 1 − 2k)Γ(k + λ− 1)
Γ(k + 1)

Γ(i− k + λ)
Γ(i+ 1 − k + 1)C

1
i−2k(x). (A.113)

Note that the upper index of the sum does not increase because i− 2k− 1 is negative when

356

k ≥ i/2, meaning that terms exceeding this index drop out of the sum. We now repeat a two
step process of differentiation with respect to x, and raising and lowering of indices. This
yields the sequence

Cλ
i (x) = 1

(λ− 1)(λ− 2)[Γ(λ− 2)]2

·
⌊i/2⌋∑
k=0

(i+ 2 − 2k)Γ(k + λ− 2)
Γ(k + 1)

Γ(i− k + λ)
Γ(i+ 2 − k + 1)(1)C2

i−2k(x), (A.114)

Cλ
i (x) = 1

(λ− 1)(λ− 2)(λ− 3)[Γ(λ− 3)]2

·
⌊i/2⌋∑
k=0

(i+ 3 − 2k)Γ(k + λ− 3)
Γ(k + 1)

Γ(i− k + λ)
Γ(i+ 3 − k + 1)(1)(2)C3

i−2k(x), (A.115)

Cλ
i (x) = 1

(λ− 1)(λ− 2)(λ− 3)(λ− 4)[Γ(λ− 4)]2

·
⌊i/2⌋∑
k=0

(i+ 4 − 2k)Γ(k + λ− 4)
Γ(k + 1)

Γ(i− k + λ)
Γ(i+ 4 − k + 1)(1)(2)(3)C4

i−2k(x), (A.116)

and so on which gives rise to the pattern summarized by

Cλ
i (x) = 1

Γ(λ)
Γ(µ+ 1)
µΓ(λ− µ)

⌊i/2⌋∑
k=0

(i+ µ− 2k)Γ(k + λ− µ)
Γ(k + 1)

Γ(i− k + λ)
Γ(i+ µ− k + 1)C

µ
i−2k(x) (A.117)

for µ an integer. The validity of this expression can be proved via induction. Since the right
hand side of (A.117

.

) is a rational function of µ which holds at infinitely many integers and
the left hand side is independent of µ, we conclude that the equation must hold for all real
values of µ, including µ = 1/2.

At this point, we have determined the connection coefficients between ultraspherical
polynomials Cλ

i (x) and Cµ
i (x) (they are the coefficients in the sum (A.117

.

)). Equipped with
(A.117

.

), we are ready to specialize to the case connecting Chebyshev polynomials of the first
kind to Legendre polynomials. To do so, we let µ = 1/2 to obtain Legendre polynomials on
the right hand side. This gives

Cλ
i (x) = 2

Γ(λ)
Γ(3/2)

Γ(λ− 1/2)

⌊i/2⌋∑
k=0

(i+1/2−2k)Γ(k + λ− 1/2)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 3/2)Pi−2k(x). (A.118)

357

We then divide by λ and take the limit as λ approaches zero to recover Chebyshev polyno-
mials on the left hand side. Choosing i ≥ 1, this gives

lim
λ→0

1
λ
Cλ

i (x) = lim
λ→0

2
Γ(λ+ 1)

Γ(3/2)
Γ(λ− 1/2)

·
⌊i/2⌋∑
k=0

(i+ 1/2 − 2k)Γ(k + λ− 1/2)
Γ(k + 1)

Γ(i− k + λ)
Γ(i− k + 3/2)Pi−2k(x) (A.119)

which becomes

2
i
Ti(x) = 2

Γ(1)
Γ(3/2)

Γ(−1/2)

⌊i/2⌋∑
k=0

(i+ 1/2 − 2k)Γ(k − 1/2)
Γ(k + 1)

Γ(i− k)
Γ(i− k + 3/2)Pi−2k(x) (A.120)

Ti(x) = i

Γ(1)
Γ(3/2)

Γ(−1/2)

⌊i/2⌋∑
k=0

(i+ 1/2 − 2k)Γ(k − 1/2)
Γ(k + 1)

Γ(i− k)
Γ(i− k + 3/2)Pi−2k(x). (A.121)

We now use properties of the Gamma function

Γ(1) = 1, Γ(−1/2) = −2
√
π, Γ(3/2) =

√
π/2, (A.122)

to see that

Ti(x) = − i

4

⌊i/2⌋∑
k=0

(i+ 1/2 − 2k)Γ(k − 1/2)
Γ(k + 1)

Γ(i− k)
Γ(i− k + 3/2)Pi−2k(x). (A.123)

Changing index so that i− 2k = j (and consequently replacing k by (i− j)/2 for i− j even),
we obtain

Ti(x) = − i

4
∑
j≤i

i−j even

(j + 1/2)
Γ
(

i−j
2 − 1

2

)
Γ
(

i−j
2 + 1

) Γ
(

i+j
2

)
Γ
(

i+j
2 + 3

2

)Pj(x) (A.124)

for i ≥ 1. The case i = 0 is trivial, because both T0(x) = P0(x) = 1. This completes
the characterization of connection coefficients between Chebyshev polynomials Ti(x) and
Legendre polynomials Pi(x).

Combining (A.124

.

) with the i = 0 case allows us to explicitly describe the entries of L
such that T̄ (x) = LP̄ (x). The entries are

(L)i+1,j+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j = 0

−1
4i(j + 1/2)

Γ
(

i−j
2 − 1

2

)
Γ
(

i−j
2 + 1

) Γ
(

i+j
2

)
Γ
(

i+j
2 + 3

2

) j ≤ i, i− j even

0 otherwise

(A.125)

358

with 0 ≤ i, j ≤ n. The key insight of [51

.

] is to observe that this L can be factorized as

L = D1(H ◦ T)D2 (A.126)

where

D1 = −1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4√
π

1
2

. . .

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D2 = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

5
. . .

2n+ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.127)

and

(T)i+1,j+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γ
(

i−j
2 − 1

2

)
Γ
(

i−j
2 + 1

) j ≤ i, i− j even

0 otherwise,
(H)i+1,j+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 i = j = 0

Γ
(

i+j
2

)
Γ
(

i+j
2 + 3

2

) otherwise.

(A.128)
Note that, from (A.125

.

), D1 arises from the term −1
4i, D2 arises from the term j + 1

2 =
(2j + 1)/2, and the Hankel matrix H and Toeplitz matrix T cover the remaining Gamma
functions. Hankel matrices have constant antidiagonals (arising from terms containing the
sum of indices i+ j) whereas Toeplitz matrices have constant diagonals (arising from terms
with the difference i − j). The first entry in D1 is chosen after specifying D2, H, and T so
that (L)11 = 1, as required by (A.125

.

). We remark that T is lower triangular and that H is
symmetric.

A.3 Factorization of the Hankel Part

In order to perform the multiplication LT φ̄Cheb quickly for large n, we need to exploit the
structure of matrix H. To do so, we first show that a large portion of this matrix is positive
semidefinite. This can be done using the Beta function

B(x, y) =
ˆ 1

0
tx−1(1 − t)y−1dt (A.129)

defined for ℜ{x},ℜ{y} > 0. The Beta function is related to the Gamma function through
the relation

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) (A.130)

359

which we use with x = (i+ j)/2 and y = 3/2 to obtain

B
(
i+ j

2 ,
3
2

)
=

Γ
(

i+j
2

)
Γ
(

3
2

)
Γ
(

i+j
2 + 3

2

) . (A.131)

We see that an alternative expression for the entries in the Hankel matrix H is given by

Γ
(

i+j
2

)
Γ
(

i+j
2 + 3

2

) =
B
(

i+j
2 ,

3
2

)
Γ
(

3
2

) . (A.132)

Because of the restriction on the real part of (i+ j)/2, we will leave out the case i = j = 0.
Thus we treat only cases satisfying 1 ≤ i, j ≤ n (in theory we could allow one of i or j to be
zero, but this will not lead to a square submatrix of H). Using (A.129

.

), we have

Γ
(

i+j
2

)
Γ
(

i+j
2 + 3

2

) = 1
Γ
(

3
2

) ˆ 1

0
t(i+j−2)/2(1 − t)1/2dt. (A.133)

Making the substitution t = x2 with dt = 2x dx, we obtain

Γ
(

i+j
2

)
Γ
(

i+j
2 + 3

2

) = 1
Γ
(

3
2

) ˆ 1

0
xi+j−2(1 − x2)1/22x dx (A.134)

= 4√
π

ˆ 1

0
xi+j−1(1 − x2)1/2dx (A.135)

where we have used (A.122

.

). Partitioning H as

H =
⎡⎣ h11 h̄T

21

h̄21 H22

⎤⎦ (A.136)

by separating the first row and column from the rest of H, we have just shown that the
entries of H22 can be written as

(H22)ij = 4√
π

ˆ 1

0
xi+j−1(1 − x2)1/2dx. (A.137)

We use this expression to show that H22 is positive semidefinite. Choosing an arbitrary
vector ȳ, we have

ȳTH22ȳ =
n∑

i,j=1
yiyj(H22)ij (A.138)

360

which gives

ȳTH22ȳ =
n∑

i,j=1
yiyj

4√
π

ˆ 1

0
xi+j−1(1 − x2)1/2dx. (A.139)

Bringing the sum into the integral and writing xi+j−1 = xixjx−1, we have

ȳTH22ȳ = 4√
π

ˆ 1

0

⎡⎣ n∑
i,j=1

yiyjx
ixj

⎤⎦x−1(1 − x2)1/2dx (A.140)

= 4√
π

ˆ 1

0

[
n∑

i=1
yix

i

]2

x−1(1 − x2)1/2dx. (A.141)

Finally, [∑n
i=1 yix

i]2 x−1 is a polynomial in x and both this polynomial and (1 − x2)1/2 are
positive over the interval (0, 1), meaning that the integral itself must be greater than or equal
to zero. From this, we conclude that

ȳTH22ȳ ≥ 0 (A.142)

which is precisely what is meant by matrix H22 being positive semidefinite.
The fact that we have partitioned H does not prevent fast multiplication of LT φ̄Cheb. If

we partition T accordingly, we have

T =
⎡⎣ t11 0
t̄21 T 22

⎤⎦ (A.143)

with T 22 lower triangular and also Toeplitz. Then

LT φ̄Cheb = [D1(H ◦ T)D2]T φ̄Cheb (A.144)

= D2(H ◦ T)TD1φ̄Cheb (A.145)

= D2(H ◦ T T)D1φ̄Cheb (A.146)

since H is symmetric. Applying the diagonal matrices is simple, so we need only consider
the matrix multiplication of H ◦ T T with a vector. Since

H ◦ T T =
⎡⎣ h11 h̄T

21

h̄21 H22

⎤⎦ ◦

⎡⎣ t11 t̄T21

0 T T
22

⎤⎦ (A.147)

=
⎡⎣ h11t11 h̄T

21 ◦ t̄T21

0 H22 ◦ T T
22

⎤⎦ , (A.148)

361

its multiplication with a vector yields⎡⎣ h11t11 h̄T
21 ◦ t̄T21

0 H22 ◦ T T
22

⎤⎦⎡⎣ φ1

φ̄2

⎤⎦ =
⎡⎣ h11t11φ1 + (h̄21 ◦ t̄21)T φ̄2

(H22 ◦ T T
22)φ̄2

⎤⎦ . (A.149)

The first entry on the right hand side can be computed in O(n) operations since it involves
an inner product and a small number of scalar operations. We now focus on how to compute
the second vector component efficiently.

To do so, as stated in the introduction of this chapter, we are going to exploit the fact
that H22 is symmetric, positive semidefinite to compute its factorization into a sum of rank
1 terms. We use a pivoted LDLT algorithm to compute the rank-revealing factorization.
The algorithm is based on Sections 4.2.7 and 4.2.8 of [25

.

]. First, we set H(0)
22 = H22 and find

the entry (H22)ij with largest magnitude. Then, we use this entry as a pivot to compute

H
(1)
22 = H

(0)
22 − 1

(H22)ij

H22(:, j)H22(i, :) (A.150)

where H22(:, j) denotes the jth column of H22 and H22(i, :) denotes the ith row. This process
is then repeated to produce a sequence of matrices H(0)

22 , H(1)
22 , H(2)

22 ,..., until the pivot at the
rth step is below a user specified tolerance (we choose 10−14 log n).

In practice, since H22 is symmetric, positive semidefinite, the pivot always comes from
the diagonal. This is because for any symmetric, positive semidefinite matrix A satisfying
x̄TAx̄ ≥ 0,

|aij| ≤ aii + ajj

2 . (A.151)

To see why, choose x̄ = ēi + ēj where ēi is the ith unit vector and ēj is the jth unit vector.
Then

(ēi + ēj)TA(ēi + ēj) ≥ 0 (A.152)

aii + 2aij + ajj ≥ 0. (A.153)

Similarly, choosing x̄ = ēi − ēj yields

(ēi − ēj)TA(ēi − ēj) ≥ 0 (A.154)

aii − 2aij + ajj ≥ 0. (A.155)

Inequality (A.153

.

) yields
aij ≥ −aii + ajj

2 (A.156)

362

whereas (A.155

.

) yields
aij ≤ aii + ajj

2 . (A.157)

Taken together, these two inequalities yield (A.151

.

). Now, using (A.151

.

),

max
i,j

|aij| ≤ max
i,j

aii + ajj

2 . (A.158)

By choosing x̄ = ēi or x̄ = ēj in x̄TAx̄ ≥ 0, we know that aii ≥ 0 and ajj ≥ 0. Thus to
maximize the sum of aii and ajj, we simply choose i = j and find that

max
i,j

|aij| ≤ max
i
aii. (A.159)

This maximum is achieved for i = j so that

max
i,j

|aij| = max
i
aii (A.160)

for any positive semidefinite matrix.
In addition, the matrices H(0)

22 , H(1)
22 , H(2)

22 ,..., are each symmetric, positive semidefinite,
and their rank decreases by 1 after each iteration. To see why, assume without loss of
generality that the pivot is a11 in a positive semidefinite matrix A (we can always perform
a symmetric permutation of A to make this last statement true). Then partition A as

A =
⎡⎣ a11 āT

ā A22

⎤⎦ (A.161)

and perform the step⎡⎣ a11 āT

ā A22

⎤⎦− 1
a11

⎡⎣ a11

ā

⎤⎦ [a11 āT
]

=
⎡⎣ 0 0

0 A22 − 1
a11
āāT

⎤⎦ . (A.162)

In the setting of our algorithm, this corresponds to, for example, taking H(0)
22 and computing

H
(1)
22 . If A had full rank, by virtue of introducing a zero row and column, A22 − 1

a11
āāT has

at most one rank less. In addition, A22 − 1
a11
āāT appears in the factorization

⎡⎣ a11 āT

ā A22

⎤⎦ =
⎡⎣ 1 0

1
a11
ā I

⎤⎦
  

B

⎡⎣ a11 0
0 A22 − 1

a11
āāT

⎤⎦
  

C

⎡⎣ 1 0
1

a11
ā I

⎤⎦T

. (A.163)

363

From this last equation, we note that

x̄TAx̄ = x̄TBC BT x̄  
ȳ

(A.164)

for arbitrary real x̄. Then, since A is positive semidefinite, we have

ȳTCȳ ≥ 0. (A.165)

Note that B is invertible (it has unit entries on the diagonal and is lower triangular), which
means that we can produce any real ȳ by choosing x̄ = B−T ȳ. Thus C is also positive
semidefinite. Finally, choosing

ȳ =
⎡⎣ 0
z̄

⎤⎦ (A.166)

with z̄ real and arbitrary, we observe that

z̄T
(
A22 − 1

a11
āāT

)
z̄ ≥ 0. (A.167)

In the context of our algorithm, this shows that H(1)
22 is positive semidefinite given H

(0)
22

positive semidefinite and the same holds for each subsequent matrix H(2)
22 , H(3)

22 , etc.
Taking these two observations into account, a naive implementation of the rank revealing

LDLT algorithm is presented in Algorithm A.1

.

which can terminate before n iterations when
the rank of A is less than n. The algorithm yields a factorization

A =
r∑

k=1
dk l̄k l̄

T
k (A.168)

which can also be written as A = LDLT with D a diagonal matrix containing the inverse
of the pivot values and L =

[
l̄1 l̄2 · · · l̄r

]
containing the pivot columns. The method is

naive because the computational complexity of line 20 is O(rn2) which we can reduce if the
rank r of A is much smaller than n. We do this in practice by not updating (A.150

.

) in its
entirety. Instead, we only update the diagonal and those columns needed in the factorization.

To see how this is done, suppose that at iteration k, the algorithm decides that index p
contains the pivot. To update the diagonal of A, we need to set

aii = aii − aipaip/app. (A.169)

This has linear computational complexity since i runs from 1 to n. If the rank of A is r, this

364

Algorithm A.1 Naive implementation of the pivoted LDLT factorization for a symmetric,
positive semidefinite matrix A.

1 n = size(A ,1);
2 tol = 10^ -14* log(n);
3
4 d = [];
5 L = [];
6 for k = 1:n
7 % Compute the pivot and pivot index
8 [pivot ,index] = max(diag(A));
9

10 % Terminate the iterative process if the pivot is small
11 if pivot < tol
12 break;
13 end
14
15 % Store the pivot and pivot column
16 L = [L, A(:, index)];
17 d = [d; 1./ pivot];
18
19 % Update the matrix
20 A = A - A(:, index)*A(index ,:)./ pivot;
21 end

costs O(rn) operations since we repeat this computation at each iteration, and there are a
total of r iterations. To take advantage of this fact, we store the diagonal separately and
update it in this way. Similarly, instead of updating the rest of A, we only update columns
that become selected by the new pivot. To do this, we note that at iteration k, column p of
the updated A (denoted by āp) is of the form

āp −
k−1∑
j=1

1
dj

l̄j(l̄j)p (A.170)

so that, once we come to such an iteration, we perform this summation, then store this new
vector as l̄k. Algorithm A.2

.

shows pseudocode describing this process. In particular, the
diagonal update is performed on line 25, and the pivot column update is performed on lines
18 to 22. Note that the complexity of the pivot column update is now approximately

r∑
k=1

⎧⎨⎩
k−1∑
j=1

2n

⎫⎬⎭ = 2n [r(r + 1)/2 − r] (A.171)

365

Algorithm A.2 Faster implementation of the pivoted LDLT factorization for a symmetric,
positive semidefinite matrix A. The algorithm is fast when the rank r of A is much smaller
than size n of the matrix.

1 n = size(A ,1);
2 tol = 10^ -14* log(n);
3
4 d = [];
5 L = [];
6 diagonal = diag(A); % Only compute the diagonal in practice
7 for k = 1:n
8 % Compute the pivot and pivot index
9 [pivot ,index] = max(diagonal);

10
11 % Terminate the iterative process if the pivot is small
12 if pivot < tol
13 break;
14 end
15
16 % Store the pivot and pivot column
17 d = [d; 1./ pivot];
18 L = [L, A(:, index)];
19 for j = 1:k-1
20 % Update the pivot column accordingly
21 L(:,end) = L(:,end) - L(:,j)*L(index ,j)*d(j);
22 end
23
24 % Update the diagonal
25 diagonal = diagonal - (L(:,end).^2)./ pivot;
26 end

which is O(r2n) computations rather than O(rn2) as in the naive approach. The paper
[51

.

] shows that H22 has rank O(log n) so that applying Algorithm A.2

.

costs O(n(log n)2)
operations when applied to H22.

Finally, we note that we have not exploited the fact that H22 is Hankel. We do so to
avoid storing all of H22. This is because a Hankel matrix is fully characterized by a vector
of 2n− 1 entries (n entries along the first column and n− 1 entries along the last row so as
to avoid double counting the last entry in the first column). Thus, in practice, we compute
these 2n − 1 entries and store them in a vector h̄22 (we use an ordering beginning with the
first column, then appending the n− 1 entries from the last row). From this vector, we can
obtain column j of H22 by choosing entries j to j + n− 1 of h̄22. In addition, we can select
the diagonal of H22 by choosing odd entries of h̄22 from 1 to 2n − 1 (there are a total of n

366

such entries). An algorithm in the style of Algorithm A.2

.

suitable for Hankel matrices would
index the columns and diagonal of A in this way (and may eliminate the inner loop in favor
of a vectorized implementation).

A.4 Fast Toeplitz Products

With the factorization of
H22 =

r∑
k=1

dk l̄k l̄
T
k (A.172)

as computed by the rank revealing LDLT algorithm in Section A.3

.

, we consider the final
problem of performing the matrix-vector product

(H22 ◦ T T
22)φ̄2 (A.173)

from (A.149

.

). Using the factorization, we have

H22 ◦ T T
22 =

(
r∑

k=1
dk l̄k l̄

T
k

)
◦ T T

22 (A.174)

=
r∑

k=1
dk(l̄k l̄Tk ◦ T T

22) (A.175)

which is a sum of Hadamard products of rank one matrices and a Toeplitz matrix. We can
distribute the Hadamard product because for any three matrices A, B, and C,

(A+B) ◦ C = A ◦ C +B ◦ C. (A.176)

This is because the Hadamard product is an entrywise product (the entry (A ◦B)ij = aijbij

and scalar multiplication is distributive). Since the entries of a rank one term are (l̄k l̄Tk)ij =
(l̄k)i(l̄k)j, then

(l̄k l̄Tk ◦ T T
22)ij = (l̄k)i(l̄k)j(T T

22)ij (A.177)

which corresponds to a scaling of rows of T T
22 by (l̄k)i and scaling of columns by (l̄k)j. Thus,

rather than writing a Hadamard product, we can equivalently write

l̄k l̄
T
k ◦ T T

22 = diag(l̄k)T T
22diag(l̄k) (A.178)

where the diagonal matrices perform the row and column scaling. This means that

H22 ◦ T T
22 =

r∑
k=1

dkdiag(l̄k)T T
22diag(l̄k) (A.179)

367

so that, in a matrix-vector product, the crucial operation is the matrix-vector product of the
Toeplitz matrix with a vector (products with the diagonal matrices diag(l̄k) only cost O(n)
operations, as does scaling by dk). Thus our focus is on performing the r Toeplitz vector
products with T T

22 efficiently.
Rather than explain how to perform the multiplication with T T

22, we will start by using
a generic Toeplitz matrix T , then later specialize to T T

22. The idea is to embed the Toeplitz
matrix T inside a larger circulant matrix C for which fast matrix-vector multiplies exist that
exploit the FFT. That is, we construct

C =
⎡⎣ T C12

C21 C22

⎤⎦ (A.180)

so that ⎡⎣ T C12

C21 C22

⎤⎦⎡⎣ x̄

0

⎤⎦ =
⎡⎣ T x̄

C21x̄

⎤⎦ . (A.181)

Notice that we obtain the Toeplitz matrix-vector product T x̄ as long as we consider only the
first n rows of the output of this circulant matrix-vector product.

How then does one embed the Toeplitz matrix T into a larger circulant matrix C? Recall
that a Toeplitz matrix has constant diagonals, whereas a circulant matrix is a special type
of Toeplitz matrix with “wraparound” [25

.

]. For example,

T =

⎡⎢⎢⎢⎣
t0 t−1 t−2

t1 t0 t−1

t2 t1 t0

⎤⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c4 c3 c2 c1

c1 c0 c4 c3 c2

c2 c1 c0 c4 c3

c3 c2 c1 c0 c4

c4 c3 c2 c1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.182)

Notice how T is specified by 2n−1 numbers (for example, its first column and first row taking
care not to repeat the overlap of the two vectors) whereas C is specified by its first column
only. Using this small example of T , we show how to perform the embedding (A.180

.

). We
can write

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 t−1 t−2 t2 t1

t1 t0 t−1 t−2 t2

t2 t1 t0 t−1 t−2

t−2 t2 t1 t0 t−1

t−1 t−2 t2 t1 t0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.183)

which shows that the seed to the circulant matrix (its first column) should be the first column

368

of T augmented by the reversal of the first row (excluding its first entry). If T is square with
n rows, then C will be square with 2n−1 rows (it is possible to embed T into larger circulant
matrices, but we will always choose this approach). We will refer to the first column of C
as c̄ which we call the seed vector.

We now explain how to perform the matrix-vector product with C efficiently following
[25

.

]. We will assume C is an m×m circulant matrix with seed vector

c̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1

c2
...

cm−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.184)

The key is to write C as the sum of m shift matrices, each appropriately scaled. That is,
defining

Dm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.185)

as the m×m circular downshift matrix, we can write

C =
m−1∑
k=0

ckDk
m (A.186)

where D0
m = I. If we knew the eigendecomposition Dm = V ΛV −1 with V the matrix

whose columns are eigenvectors of Dm and Λ = diag(λ̄) where λ̄ is the vector containing the
eigenvalues of Dm, then

Dk
m = (V ΛV −1)(V ΛV −1) · · · (V ΛV −1)  

k times

(A.187)

= V ΛV −1V  
I

ΛV −1V  
I

· · ·V −1V  
I

ΛV −1 (A.188)

= V ΛkV −1. (A.189)

369

Using this fact in (A.186

.

) yields

C =
m−1∑
k=0

ckV ΛkV −1 (A.190)

= V

[
m−1∑
k=0

ckΛk

]
V −1. (A.191)

Notice that the sum is taken over diagonal matrices so that this last expression is itself an
eigendecomposition of C. That is, C is diagonalized by the same eigenvectors as Dm. In
addition, we note that

m−1∑
k=0

ckΛk = diag
[

m−1∑
k=0

ckλ̄
k

]
(A.192)

where λ̄k is to be understood in an entrywise sense. That is,

λ̄k = λ̄ ◦ λ̄ ◦ · · · ◦ λ̄  
k times

. (A.193)

Then we can write
m−1∑
k=0

ckλ̄
k =

[
λ̄0 λ̄1 λ̄2 · · · λ̄m−1

]
  

Ṽ

c̄. (A.194)

We now show that the eigenvectors and eigenvalues of Dm, and consequently C are related
to the DFT so that products with V , Ṽ , and their inverses can be performed using the FFT.
Take column j + 1 of the DFT matrix Fm from (A.11

.

) and multiply by Dm. This gives

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0·j
m

ω1·j
m

ω2·j
m

...

ω(m−1)·j
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

v̄j

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω(m−1)·j
m

ω0·j
m

ω1·j
m

...

ω(m−2)·j
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.195)

Now rewrite the right hand side as a scalar times the original vector. In particular, notice
that

ω−j
m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0·j
m

ω1·j
m

ω2·j
m

...

ω(m−1)·j
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω(−1)·j
m

ω0·j
m

ω1·j
m

...

ω(m−2)·j
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.196)

370

and that the first entry can be rewritten as ω(m−1)·j
m since

ω(m−1)·j
m = ωm·j

m  
1

ω(−1)·j
m . (A.197)

We have just shown that Dmv̄j = ω−j
m v̄j so that v̄j is an eigenvector of Dm with corresponding

eigenvalue ω−j
m . This holds for all integers 0 ≤ j ≤ m− 1 so that, arranging the columns v̄j

into a matrix gives V = Fm. Similarly, the eigenvalues can be arranged to produce

λ̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
ω−0

m

ω−1
m

...

ω−(m−1)
m

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.198)

From (A.194

.

), we see that Ṽ has entries

Ṽ =

⎡⎢⎢⎢⎢⎢⎢⎣
ω−0·0

m ω−0·1
m · · · ω−0·(m−1)

m

ω−1·0
m ω−1·1

m · · · ω−1·(m−1)
m

...
...

. . .
...

ω−(m−1)·0
m ω−(m−1)·1

m · · · ω−(m−1)·(m−1)
m

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.199)

This is precisely the complex conjugate of Fm. Since Fm is symmetric (recall (A.16

.

)),
Ṽ = F ∗

m. Finally, using (A.18

.

), we see that Ṽ = mF−1
m .

Equipped with this knowledge regarding V and Ṽ , we proceed to compute the matrix-
vector product ȳ = Cx̄. Given (A.191

.

)-(A.194

.

), we compute the product in stages. That
is,

ȳ = Cx̄ (A.200)

= V diag(Ṽ c̄
w̄

)V −1x̄  
z̄

. (A.201)

First, we compute z̄ by applying an inverse FFT to x̄. We also compute w̄ by applying an
inverse FFT to c̄ and scaling by m. Then we compute the product diag(w̄)z̄ = w̄ ◦ z̄ and
take the FFT of this resulting vector. This process gives ȳ.

We now specialize to the case where T = T T
22. Since T T

22 is an n × n matrix, the
corresponding circulant matrix has size m = 2n − 1. Each FFT and inverse FFT costs
O(m logm) = O(n log n) operations. The Hadamard product of w̄ and z̄ costs O(m) = O(n)
operations so that the total cost of multiplying T T

22 with a vector is O(n log n) operations.

371

In practice, we only need to apply the inverse FFT to compute w̄ once, but need to perform
the circulant matrix-vector product r times (recall (A.179

.

)). This leads to an overall cost
of O(rn log n) for this stage of the algorithm, and since r ≈ log n, we continue to have
O(n(log n)2) computational complexity overall.

A.5 Computing the Hankel and Toeplitz Seed Vectors

We have made one glaring omission in presenting the algorithm. The entries (A.128

.

) in
the Hankel and Toeplitz matrices depend on the evaluation of the Gamma function. In the
algorithms that we have presented thus far, we only have to evaluate the first column and
last row of H and the first row of T T to characterize each matrix. However, we have to
make sure that we can perform these calculations with near linear complexity, otherwise the
O(n(log n)2) algorithm will not be of any use. The key will be to use

Γ(z + 1) = zΓ(z) (A.202)

allowing a recursive algorithm with computational complexity O(n).
We start with the Hankel matrix. For now, we ignore the i = j = 0 entry and focus on

Γ
(

i+j
2

)
Γ
(

i+j
2 + 3

2

) (A.203)

for the first column of H. In the first column, j = 0 so that entries are of the form

hi =
Γ
(

i
2

)
Γ
(

i
2 + 3

2

) (A.204)

with i ≥ 1. Note that if we try to compute

hi+2 =
Γ
(

i+2
2

)
Γ
(

i+2
2 + 3

2

) =
Γ
(

i
2 + 1

)
Γ
(

i
2 + 3

2 + 1
) , (A.205)

we can use (A.202

.

) in both the numerator and denominator to obtain

hi+2 =
Γ
(

i
2

)
Γ
(

i
2 + 3

2

)
  

hi

i
2(

i
2 + 3

2

) (A.206)

372

where we have identified the recursion. Simplifying this expression yields

hi+2 = hi
i

i+ 3 (A.207)

which indicates that at each iteration of the recursion, we multiply by a number smaller than
1 whose value approaches 1 in the limit i → ∞. This recursion is stable. For the recursion
to be of any use, we need to explicitly compute the base cases h1 and h2. The first is

h1 =
Γ
(

1
2

)
Γ (2) =

√
π (A.208)

while the second is
h2 = Γ (1)

Γ
(

5
2

) = 4
3
√
π
. (A.209)

Both can be computed from knowledge of Γ(1) = 1, Γ(1
2) =

√
π, and property (A.202

.

). In
theory, we also need to compute the last row of H. Rather than index i from 1 to n−2 (used
to compute the first column of H) we index from 1 to 2n− 2. This change includes the last
row of H. We can add the i = j = 0 entry h0 = 1 to the beginning of this vector to obtain
the complete Hankel matrix seed vector of length 2n + 1. Although we have computed the
seed for H, it is trivial to obtain the corresponding seed for the submatrix H22 needed in
the LDLT factorization; simply leave out the first two entries of the seed.

Next, we consider the Toeplitz matrix T T . Recall that the first row and column of T T

are needed to specify the Toeplitz matrix. From (A.128

.

), we note that since T is lower
triangular, its transpose (which is upper triangular) has zeros in its first column. This gives
ti = 0 for i > 0 in (A.182

.

). Thus we need only compute the first row of T T . By taking the
transpose, we interchange i and j in (A.128

.

) giving

Γ
(

j−i
2 − 1

2

)
Γ
(

j−i
2 + 1

)
when j − i is even. The first row has i = 0 so that when j is even, we have

t−j =
Γ
(

j
2 − 1

2

)
Γ
(

j
2 + 1

) (A.210)

(the negative subscript on t agrees with the description of Toeplitz matrices in (A.182

.

)). We

373

explicitly compute

t0 =
Γ
(
−1

2

)
Γ (1) = −2

√
π (A.211)

and notice that the remaining entries have already been computed in the seed for H. In
particular,

t−j =

⎧⎪⎨⎪⎩hj−1 j even

0 otherwise
(A.212)

and 0 < j ≤ n. With t0 and ti = 0 for 0 < i ≤ n we have fully specified the seed vector for
T T (the vector has 2n+ 1 entries). In practice, we also need the seed for the submatrix T T

22

but this can be obtained directly from the seed for T T by eliminating tn and t−n, giving a
seed of length 2n− 1.

A.6 Finalizing the Algorithm

Given the theoretical development of the previous five sections, we are prepared to state how
the fast algorithm is implemented in practice. Roughly speaking, the steps are:

1. Sample the function φ at Chebyshev nodes.

2. Take the inverse FFT of the samples concatenated with the reversal of the interior
samples.

3. Keep the first set of entries and scale all but the first and last by 2 to obtain Chebyshev
coefficients.

4. Construct the Hankel seed vector recursively and use it to populate the Toeplitz seed
vector.

5. Scale the Chebyshev coefficients by the entries in scaling matrix D1 (see (A.127

.

)).

6. Take the inner product of that vector with the first row of H ◦T T and store this scalar
y1.

7. Compute the rank revealing LDLT factorization of the submatrix H22.

8. Compute the inverse FFT of the seed to the circulant matrix that embeds the submatrix
T T

22.

9. For all r ≈ log n rank 1 components of the LDLT factorization: take the vector from
Step 5, scale by the rank 1 vector, compute the multiplication by T T

22 (pad the vector

374

with zeros, take the inverse FFT, scale by the vector in Step 8, take the FFT, then
discard the padded entries), and scale by the rank 1 vector.

10. Sum all r vectors from Step 9 scaled by their respective pivots to obtain vector ȳ2.

11. Concatenate y1 from Step 6 and ȳ2 from Step 10 and scale by the entries in the scaling
matrix D2 (see (A.127

.

)).

Steps 1-3 produce Chebyshev coefficients φ̄Cheb from a vector of samples at Chebyshev nodes.
Then Steps 4-11 compute Legendre coefficients φ̄Leg = D2(H ◦ T T)D1φ̄Cheb. No step has
computational complexity exceeding O(n(log n)2) and, in practice, it is possible to combine
steps to avoid certain storage costs. In a MATLAB implementation of the fast algorithm,
the method is only faster than the direct method described in Section 4.2

.

when n exceeds
256, so we switch between the two algorithms accordingly.

The astute reader will recall that, in this appendix, we have computed the Legendre
coefficients for an expansion in orthogonal Legendre polynomials, whereas in the thesis, an
expansion in orthonormal Legendre polynomials is required. To obtain such an expansion
we note that orthonormal Legendre polynomials pk(x) are related to orthogonal Legendre
polynomials Pk(x) via the relation

pk(x) = Pk(x)
∥Pk(x)∥L2

(A.213)

where

∥Pk(x)∥L2 =
(ˆ 1

−1
[Pk(x)]2dx

) 1
2

(A.214)

=
√

2
2k + 1 . (A.215)

Thus, forming the vector p̄(x) of orthonormal Legendre polynomials and the diagonal matrix
D, given by

p̄(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
p0(x)
p1(x)
...

pn(x)

⎤⎥⎥⎥⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
2
1 √

2
3

. . . √
2

2n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (A.216)

respectively, we have P̄ (x) = Dp̄(x). A function p(x) expanded in orthogonal Legendre poly-
nomials can then be converted to an expansion in terms of orthonormal Legendre polynomials

375

as follows:

p(x) = φ̄T
LegP̄ (x) (A.217)

= φ̄T
LegD  

φ̄T
Leg,n

p̄(x). (A.218)

This means that the coefficients in the orthonormal expansion are φ̄Leg,n = Dφ̄Leg. This
scaling is performed in O(n) operations, which is negligible compared to the cost of the fast
transform.

To conclude this appendix, we note that at the core of the FLT is the idea of applying
a matrix-vector product of the form D2(H ◦ T)D1x̄ with D1 and D2 diagonal, H Hankel,
symmetric, positive semidefinite, and numerically low rank, and T Toeplitz. The connection
coefficients between Chebyshev and Legendre polynomials satisfy such properties, as do their
inverse coefficients, as well as connection coefficients between other classes of polynomials
[51

.

]. We take this opportunity to mention that the tensor T of integrals of triples of Legendre
polynomials from Section 4.3

.

also exhibits this property. That is, each frontal slice T k of T
can be written in the form D2(H ◦ T)D1. In particular, we can choose

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
1
2 √

3
2

. . . √
2n+1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , D2 = 2
√

2k + 1
2 D1, (A.219)

and

(T)i+1,j+1 =

⎧⎪⎨⎪⎩A(s− i)A(s− j) i+ j + k even, |i− j| ≤ k,

0 otherwise,
(A.220)

with

(H)i+1,j+1 =

⎧⎪⎪⎨⎪⎪⎩
A(s− k)

(2s+ 1)A(s) i+ j + k even, i+ j ≥ k,

0 otherwise,
(A.221)

for 0 ≤ i, j ≤ n where A and s are defined as in Section 4.3

.

. One can check that T is a
symmetric, Toeplitz matrix of bandwidth k. Additionally, H is a symmetric, Hankel matrix
of low rank. When k is small, this is of virtually no use because k is the bandwidth of T k

and a naive fast matrix-vector product is already possible. However, when k is large, this
may be useful. This is interesting because we have explicitly constructed our algorithms to
avoid scenarios with large k, but exploiting this factorization may allow us to loosen the

376

restriction on large k. We have not exploited this structure in the thesis, but aim to conduct
additional investigations along these lines in future work.

377

Appendix B

Fast Legendre Solvers

This appendix describes how fast Legendre solvers can be applied to solve the local subprob-
lems that arise in the domain decomposition method proposed in Chapter 10

.

. While the
appendix focuses on these solvers in the context of domain decomposition, they are equally
applicable to the single domain problems presented in Chapters 7

.

and 8

.

. In fact, the central
idea of the method, partial diagonalization via eigendecomposition, was initially proposed
to solve Poisson and Helmholtz problems using single domain spectral methods [49

.

]. Since
Chapter 10

.

focused on Poisson and Helmholtz problems, this appendix also focuses on these
types of problems.

B.1 Generalized Sylvester Equations

Throughout the thesis, we have encountered systems of the form

K∑
i=1

(
BT

i ⊗ Ai

)
φ̄ = f̄ (B.1)

where matrices Ai and Bi and right hand side f̄ = vec(F) were known, and vector φ̄ = vec(Φ)
was unknown. For example, the construction of such a linear system subject to additional
constraint equations was the focus of Chapter 7

.

and the techniques developed there were
used in Chapters 8

.

through 10

.

. For some explicit examples, see Section 7.6

.

where each
operator matrix is described in the form

A =
K∑

i=1

(
BT

i ⊗ Ai

)
. (B.2)

378

Notice that (B.1

.

) can be obtained by applying the vectorization operator vec(·) to the matrix
equation

K∑
i=1

AiΦBi = F (B.3)

using the property (5.13

.

) to introduce Kronecker products. Equation (B.3

.

) is called a gen-
eralized Sylvester equation [181

.

]. Only certain cases of (B.3

.

) have corresponding efficient
solution techniques [182

.

]. Finding new techniques to solve these types of equations is an
active area of research [183

.

, 184

.

]. Typical specializations include methods applicable when
the number of terms K in (B.3

.

) is small (at most three, typically) or when the matrices in
(B.3

.

) have specific low rank properties. When systems do not meet these types of special-
ized criteria, Krylov subspace methods and other iterative techniques are used [185

.

, 186

.

]. In
these methods, the choice of preconditioner is crucial.

Since the systems (B.3

.

) in this thesis do not always have special rank properties, we will
use a Krylov subspace method to solve them. We use PCG or PGMRES as in Chapter 10

.

to
do so. It is important to note that there is no need to form the matrix (B.2

.

) explicitly when
performing matrix vector products. Instead, the product is performed using one-dimensional
matrices Ai and Bi only. That is,

Aφ̄ = vec
(

K∑
i=1

AiΦBi

)
. (B.4)

Since Ai and Bi are typically banded matrices, as long as their bandwidth is small compared
to the size L+1 of the matrix Φ, their product with Φ can be computed in O(L2) operations.
This is linear in the number of entries in vector φ̄. In this way, the matrix-vector product
Aφ̄ can be computed efficiently. In the following section, we describe how to precondition
such a Krylov subspace method.

B.2 Preconditioners for the Helmholtz Problem

As preconditioner, we use direct solvers for special three term generalized Sylvester equations.
We will consider two special cases: one designed to solve the Helmholtz problem on a square
domain subject to homogeneous Dirichlet boundary conditions, and one designed to solve the
same problem with homogeneous Neumann boundary conditions. The first case is required
when applying the Dirichlet preconditioner from Chapter 10

.

(used for each local subproblem),
and the second case is required when applying A−1

11 in the domain decomposition algorithm
in Chapter 10

.

(used as a component of the preconditioner for each local subproblem).

379

In the first case, we must solve the saddle point system⎡⎣ SDLS
T
DL ⊗ S̃S̃T + S̃S̃T ⊗ SDLS

T
DL − k2S̃S̃T ⊗ S̃S̃T CT

C 0

⎤⎦⎡⎣ φ̄

ν̄

⎤⎦ =
⎡⎣ b̄

0

⎤⎦ (B.5)

where constraints Cφ̄ = 0 impose homogeneous Dirichlet boundary conditions on the bound-
ary of the canonical square domain (see Section 7.6

.

for such an example). To solve this system
using the null space method, we let

φ̄ = Zφ̄p + φ̄z (B.6)

with CZ = 0 and Cφ̄z = 0. For this problem, the choice

Z =
⎡⎣ 0
I

⎤⎦
  

ZI

⊗

⎡⎣ 0
I

⎤⎦ , φ̄z = 0, (B.7)

satisfies both conditions when the zero block in ZI is 2-by-(L−1) where L is the polynomial
degree (equal in both the x1 and x2 dimensions) of the basis used to represent the solution
on the square and I is the (L− 1)-by-(L− 1) identity matrix. A simple way to see how this
choice for Z and φ̄z makes sense is to rewrite (B.6

.

) as

vec(Φ) = (ZI ⊗ ZI) vec(Φp) (B.8)

where φ̄p = vec(Φp). Then using (5.13

.

), we note that

vec(Φ) = vec(ZIΦpZ
T
I) (B.9)

Φ = ZIΦpZ
T
I . (B.10)

This means that

Φ =
⎡⎣ 0
I

⎤⎦Φp

[
0 I

]
(B.11)

=
⎡⎣ 0 0

0 Φp

⎤⎦ . (B.12)

In words, the null space method zeros the coefficients in Φ corresponding to basis functions
that are nonzero on the boundary of the square, and leaves the coefficients that correspond to
basis functions that are zero on the boundary free. Carrying the null space method forward,

380

we obtain

(ZI ⊗ ZI)T (SDLS
T
DL ⊗ S̃S̃T + S̃S̃T ⊗ SDLS

T
DL − k2S̃S̃T ⊗ S̃S̃T) (ZI ⊗ ZI) φ̄p =

(ZI ⊗ ZI)T b̄. (B.13)

Using properties (5.11

.

) and (5.12

.

) gives

(B ⊗ Ad + Ad ⊗B − k2Ad ⊗ Ad)φ̄p = (ZI ⊗ ZI)T b̄ (B.14)

where Ad = ZT
I S̃S̃

TZI and B = ZT
I SDLS

T
DLZI . Then, if b̄ = vec(F̂), using (5.13

.

), we obtain

AdΦpB +BΦpAd − k2AdΦpAd = ZT
I F̂ZI  

F d

. (B.15)

This matrix equation is a three term generalized Sylvester equation (compare with (B.3

.

))
for the unknown Φp. The matrices Ad and B are truncated versions of S̃S̃T and SDLS

T
DL

respectively. This is because

ZT
I HZI =

[
0 I

] ⎡⎣ H11 H12

HT
12 H22

⎤⎦⎡⎣ 0
I

⎤⎦ (B.16)

= H22 (B.17)

for any symmetric matrix H and both Ad and B are formed by this type of product. Thus, by
truncated version, we mean specifically that Ad and B are submatrices obtained by discarding
the first two rows and columns of S̃S̃T and SDLS

T
DL respectively. Since SDLS

T
DL = I − ē1ē

T
1 ,

this means that B = I. The matrix equation (B.15

.

) becomes

AdΦp + ΦpAd − k2AdΦpAd = F d (B.18)

using this observation. In addition, Ad is pentadiagonal (it inherits this structure from S̃S̃T).
In the homogeneous Neumann boundary case, a similar generalized Sylvester equation

arises. In that case, we must solve

(SDLS
T
DL ⊗ S̃S̃T + S̃S̃T ⊗ SDLS

T
DL − k2S̃S̃T ⊗ S̃S̃T)φ̄ = b̄ (B.19)

subject to no constraints. The corresponding matrix equation is

S̃S̃T ΦSDLS
T
DL + SDLS

T
DLΦS̃S̃T − k2S̃S̃T ΦS̃S̃T = F n (B.20)

381

where b̄ = vec(F n). To solve a problem with the same form as (B.18

.

), we need to exploit
the fact that

SDLS
T
DL =

⎡⎣ 0 0
0 I

⎤⎦ (B.21)

where the first diagonal entry is scalar, and the identity matrix is L-by-L. To do so, we
partition

S̃S̃T =
⎡⎣ 1 s̄T

s̄ S

⎤⎦ , Φ =
⎡⎣ φ11 φ̄T

12

φ̄21 Φ22

⎤⎦ , F n =
⎡⎣ f11 f̄T

12

f̄21 F 22

⎤⎦ , (B.22)

accordingly. We then multiply (B.20

.

) by

G =
⎡⎣ 1 0

−s̄ I

⎤⎦ (B.23)

from the left and by its transpose on the right. Under this product, the first term in (B.20

.

)
is

GS̃S̃T ΦSDLS
T
DLG

T =
⎡⎣ 1 0

−s̄ I

⎤⎦⎡⎣ 1 s̄T

s̄ S

⎤⎦⎡⎣ φ11 φ̄T
12

φ̄21 Φ22

⎤⎦ ⎡⎣ 0 0
0 I

⎤⎦⎡⎣ 1 −s̄T

0 I

⎤⎦ (B.24)

=
⎡⎣ 1 s̄T

0 S − s̄s̄T

⎤⎦⎡⎣ φ11 φ̄T
12

φ̄21 Φ22

⎤⎦⎡⎣ 0 0
0 I

⎤⎦ (B.25)

=
⎡⎣ 1 s̄T

0 S − s̄s̄T

⎤⎦⎡⎣ 0 φ̄T
12

0 Φ22

⎤⎦ (B.26)

=
⎡⎣ 0 φ̄T

12 + s̄T Φ22

0 (S − s̄s̄T)Φ22

⎤⎦ . (B.27)

Similarly, the second term is

GSDLS
T
DLΦS̃S̃TGT =

⎡⎣ 0 0
0 I

⎤⎦ ⎡⎣ φ11 φ̄T
12

φ̄21 Φ22

⎤⎦⎡⎣ 1 0
s̄ S − s̄s̄T

⎤⎦ (B.28)

=
⎡⎣ 0 0
φ̄21 Φ22

⎤⎦⎡⎣ 1 0
s̄ S − s̄s̄T

⎤⎦ (B.29)

=
⎡⎣ 0 0
φ̄21 + Φ22s̄ Φ22(S − s̄s̄T)

⎤⎦ , (B.30)

382

and the third term is

GS̃S̃T ΦS̃S̃TGT =
⎡⎣ 1 s̄T

0 S − s̄s̄T

⎤⎦ ⎡⎣ φ11 φ̄T
12

φ̄21 Φ22

⎤⎦⎡⎣ 1 0
s̄ S − s̄s̄T

⎤⎦ (B.31)

=
⎡⎣ φ11 + s̄T φ̄21 φ̄T

12 + s̄T Φ22

(S − s̄s̄T)φ̄21 (S − s̄s̄T)Φ22

⎤⎦⎡⎣ 1 0
s̄ S − s̄s̄T

⎤⎦ (B.32)

=
⎡⎣ φ11 + s̄T φ̄21 + φ̄T

12s̄+ s̄T Φ22s̄ (φ̄T
12 + s̄T Φ22)(S − s̄s̄T)

(S − s̄s̄T)(φ̄21 + Φ22s̄) (S − s̄s̄T)Φ22(S − s̄s̄T)

⎤⎦ . (B.33)

The right hand side is given by

GF nG
T =

⎡⎣ 1 0
−s̄ I

⎤⎦⎡⎣ f11 f̄T
12

f̄21 F 22

⎤⎦ ⎡⎣ 1 −s̄T

0 I

⎤⎦ (B.34)

=
⎡⎣ f11 f̄T

12

f̄21 − s̄f11 F 22 − s̄f̄T
12

⎤⎦⎡⎣ 1 −s̄T

0 I

⎤⎦ (B.35)

=
⎡⎣ f11 f̄T

12 − f11s̄
T

f̄21 − s̄f11 F 22 − s̄f̄T
12 − f̄21s̄

T + s̄f11s̄
T

⎤⎦ . (B.36)

Combining (B.27

.

), (B.30

.

), (B.33

.

), and (B.36

.

) according to (B.20

.

) gives four matrix equations
in the unknowns Φ22, φ̄21, φ̄T

12, and φ11. They are

(S − s̄s̄T)Φ22 + Φ22(S − s̄s̄T) − k2(S − s̄s̄T)Φ22(S − s̄s̄T) =

F 22 − s̄f̄T
12 − f̄21s̄

T + s̄f11s̄
T , (B.37)

and

φ̄T
12 + s̄T Φ22 − k2(φ̄T

12 + s̄T Φ22)(S − s̄s̄T) = f̄T
12 − f11s̄

T , (B.38)

φ̄21 + Φ22s̄− k2(S − s̄s̄T)(φ̄21 + Φ22s̄) = f̄21 − s̄f11, (B.39)

−k2(φ11 + s̄T φ̄21 + φ̄T
12s̄+ s̄T Φ22s̄) = f11. (B.40)

The equations are ordered in this way because the first can be solved independently of the
other three, and its solution used to solve the subsequent two, whose solutions can then be
used to solve the fourth.

Letting An = S − s̄s̄T , it becomes clear that (B.37

.

) is a generalized Sylvester equation
for Φ22 given by

AnΦ22 + Φ22An − k2AnΦ22An = F 22 − s̄f̄T
12 − f̄21s̄

T + s̄f11s̄
T , (B.41)

383

whose right hand side is known. In addition, since

s̄ = − 1√
3
ē2, (B.42)

the matrix An is pentadiagonal (the submatrix S is pentadiagonal, and An = S−(1/3)ē2ē
T
2).

Note that this generalized Sylvester equation is of the same form as the Dirichlet problem
(B.18

.

). To solve (B.38

.

), we isolate terms with φ̄T
12 to obtain

φ̄T
12(I − k2An) = f̄T

12 − f11s̄
T − s̄T Φ22(I − k2An). (B.43)

Multiplying by the inverse of I − k2An yields

φ̄T
12 = (f̄T

12 − f11s̄
T)(I − k2An)−1 − s̄T Φ22. (B.44)

Since I − k2An is pentadiagonal, its inverse applied to a vector can be performed with linear
computational complexity in the degree L. Similarly, in (B.39

.

) we isolate for φ̄21 to obtain

(I − k2An)φ̄21 = f̄21 − s̄f11 − (I − k2An)Φ22s̄ (B.45)

and multiply by the same inverse to get

φ̄21 = (I − k2An)−1(f̄21 − s̄f11) − Φ22s̄. (B.46)

Finally, φ11 is obtained from (B.40

.

) giving

φ11 = −f11

k2 − s̄T φ̄21 − φ̄T
12s̄− s̄T Φ22s̄. (B.47)

In both the Dirichlet and Neumann cases, when k = 0, we obtain a solver for Poisson
equations. However, care must be taken in the Neumann case because (B.47

.

) is invalid
under those circumstances (since f11/k

2 results in division by zero). The correct approach
in such a situation is to reconsider (B.40

.

) and see that the compatibility condition f11 = 0
must hold when k = 0. This leaves φ11 unspecified, which represents the coefficient of the
constant function in the expansion of the solution. We are free to choose any constant for
φ11 as constant functions are in the null space of the discretized Laplacian when subject to
homogeneous Neumann boundary conditions1

.

.
In practice, solving the Neumann problem is only a building block used to invert A11

1I choose φ11 = 0.

384

(the block diagonal matrix arising from the domain decomposition method in Chapter 10

.

).
This is because A11 = ZT

1AZ1 where A is block diagonal with each block corresponding to
a homogeneous Neumann problem. Ideally, we could treat this in the same way that the
Dirichlet case was treated, but the structure of Z1 is not necessarily of Kronecker product
form. For this reason, we use ZT

1A
+Z1 as a preconditioner to A11 where A+ is shorthand for

applying the process outlined above for solving a homogeneous Neumann problem for each
element. When A is composed of blocks of the matrix in (B.19

.

), then this preconditioner
converges in a small number of iterations independent of the polynomial degree of basis
functions. The number of iterations does depend on the choice of parameter l in the domain
decomposition method. When l is small, the problem is close to a homogeneous Neumann
problem, whereas when l is large, it is close to a homogeneous Dirichlet problem (when l is
zero, the problem is a homogeneous Neumann problem and when l is equal to the polynomial
degree of basis functions, then it is a homogeneous Dirichlet problem). For example, when l
is one or two, this method converges in 4 iterations, independent of the polynomial degree.

B.3 Partial Diagonalization

In either the Dirichlet or Neumann case, the key step to solving each subdomain problem is
to solve a matrix equation of the form

AΦ + ΦA− k2AΦA = F (B.48)

where A is a pentadiagonal matrix related to S̃S̃T , Φ is a matrix of unknown coefficients, k
is the wavenumber of the Helmholtz problem, and F are known coefficients related to the
forcing function (see (B.18

.

) and (B.41

.

) respectively). We use a partial diagonalization tech-
nique presented in [49

.

] to do so efficiently. The method is part of a family of techniques [187

.

]
which includes the well known fast Poisson solver [25

.

] (a method that solves the Sylvester
equation arising from a second order finite difference discretization of Poisson’s equation).
The idea behind these methods is to exploit the eigenvalue decomposition of A. In our case,
we compute

AV = V Λ. (B.49)

Since A is symmetric, the eigenvalues in the diagonal matrix Λ are real and the eigenvectors
in V are orthonormal. This means that

V TAV = Λ. (B.50)

385

To solve the generalized Sylvester equation, we let

Φ = XV T (B.51)

where X is a new unknown matrix. Substituting this expression into (B.48

.

) gives

AXV T +XV TA− k2AXV TA = F . (B.52)

Multiplying from the right by V leads to

AX V TV  
I

+X V TAV  
Λ

−k2AX V TAV  
Λ

= FV
F̂

(B.53)

which explains our choice of substitution (B.51

.

). This also explains why we call this a partial
diagonalization method because we have only diagonalized matrices on the right in each term
of the generalized Sylvester equation. A full diagonalization would repeat a similar process
to diagonalize matrices on the left as well. To solve for X, we partition

X =
[
x̄1 x̄2 · · · x̄n

]
, F̂ =

[
f̄1 f̄2 · · · f̄n

]
, (B.54)

and note that each column of X can be solved for independently. The number of columns n
is either L− 1 or L depending on whether this is a Dirichlet or Neumann problem. We can
solve for each column of X independently because (B.53

.

) becomes

[
Ax̄1 Ax̄2 · · · Ax̄n

]
+
[
λ1x̄1 λ2x̄2 · · · λnx̄n

]
− k2

[
λ1Ax̄1 λ2Ax̄2 · · · λnAx̄n

]
=
[
f̄1 f̄2 · · · f̄n

]
(B.55)

under the column partitioning. In other words,

Ax̄j + λjx̄j − k2λjAx̄j = f̄j (B.56)

[λjI + (1 − k2λj)A]x̄j = f̄j (B.57)

for j = 1, 2, ..., n. Notice that the matrix λjI + (1 − k2λj)A inherits the structure of A,
which was pentadiagonal. This means that it costs O(n) operations to solve each of these
systems. Since there are a total of n such systems, the total cost of this step is O(n2).
This is linear in the number of unknowns since X is an n-by-n matrix. However, this is
only effective if computing the eigenvalues and eigenvectors in (B.49

.

) and performing the

386

eigenvector multiplications
F̂ = FV , Φ = XV T , (B.58)

can be done efficiently. If done naively, it costs O(n3) operations to compute the eigenvalues
and eigenvectors, and O(n3) operations to compute the multiplications with eigenvectors
[25

.

]. For this reason, we now investigate how to compute the eigenvalues and eigenvectors
efficiently when n is large. To do so, we need to exploit the structure of A.

B.4 Divide and Conquer Eigensolvers

Rather than work directly with A, we begin by permuting its rows and columns. That is,
rather than directly solve (B.48

.

), we let

Φ = P 2,n/2Φ̃P T
2,n/2 (B.59)

where P p,r is the mod-p perfect shuffle permutation matrix of size pr [25

.

]. The particular
shuffle matrix that we use is given by

P T
2,n/2 = I([(1 : 2 : n), (2 : 2 : n)], :) (B.60)

using a MATLAB-like notation to index the rows of the identity matrix. Making such
a substitution has the effect of separating odd entries from even entries in (B.48

.

) when
multiplying by P T

2,n/2 from the left and by P 2,n/2 from the right. That is (B.48

.

) becomes

P T
2,n/2AP 2,n/2Φ̃P T

2,n/2P 2,n/2 + P T
2,n/2P 2,n/2Φ̃P T

2,n/2AP 2,n/2

− k2P T
2,n/2AP 2,n/2Φ̃P T

2,n/2AP 2,n/2 = P T
2,n/2FP 2,n/2 (B.61)

which is
ÃΦ̃ + Φ̃Ã− k2ÃΦ̃Ã = F̃ (B.62)

with Ã = P T
2,n/2AP 2,n/2 and F̃ = P T

2,n/2FP 2,n/2. The structure of Ã is now

Ã =
⎡⎣ T 1 0

0 T 2

⎤⎦ (B.63)

with T 1 and T 2 both symmetric and tridiagonal matrices. Thus, by performing this odd-even
perfect shuffle permutation, we have obtained a problem where Ã is symmetric tridiagonal,
and in fact, block diagonal with two blocks each tridiagonal.

387

We will apply the partial diagonalization method of Section B.3

.

to (B.62

.

) because fast
eigensolvers exist for symmetric tridiagonal matrices [53

.

, 54

.

, 55

.

, 57

.

]. Since Ã is block diag-
onal, we can compute its eigendecomposition by computing the eigendecomposition of each
block. That means that

ÃṼ = Ṽ Λ̃ (B.64)

can be computed as ⎡⎣ T̃ 1 0
0 T̃ 2

⎤⎦⎡⎣ Ṽ 1 0
0 Ṽ 2

⎤⎦ =
⎡⎣ Ṽ 1 0

0 Ṽ 2

⎤⎦⎡⎣ Λ̃1 0
0 Λ̃2

⎤⎦ (B.65)

by performing the independent eigendecompositions T̃ 1Ṽ 1 = Ṽ 1Λ̃1 and T̃ 2Ṽ 2 = Ṽ 2Λ̃2. For
this reason, we consider how to solve the generic symmetric tridiagonal eigendecomposition
problem TV = V Λ which alllows us to treat the block diagonal case.

There are several fast methods to perform the eigendecomposition

TV = V Λ (B.66)

efficiently, including the method of multiple relatively robust representations and divide
and conquer algorithms [188

.

]. In this appendix, we focus on a particular divide and conquer
algorithm (there are several variations on the main idea) which treats a symmetric tridiagonal
matrix T as the sum of a block diagonal matrix and a rank 1 term. The method is closest to
the ones described in [54

.

, 57

.

], but uses the root-finding techniques described in [53

.

] and the
eigenvector matrix product acceleration idea of [55

.

]. Other root-finding techniques, such as
the method described in [56

.

] could be used instead.
For now, we will let n = 2m so that the matrix T can be split into two parts of equal size.

When this is not the case, a similar algorithm applies, although the splitting will no longer
result in submatrices of equal size. To derive a divide and conquer algorithm, we rewrite

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1

b1 a2
. . .

. . .
. . . bm−1

bm−1 am bm

bm am+1 bm+1

bm+1 am+2
. . .

. . .
. . . b2m−1

b2m−1 a2m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.67)

388

as

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1

b1 a2
. . .

. . .
. . . bm−1

bm−1 am − bm 0
0 am+1 − bm bm+1

bm+1 am+2
. . .

. . .
. . . b2m−1

b2m−1 a2m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ bm
ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

1
1
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

1
1
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(B.68)
which is of the form

T =
⎡⎣ T 1 0

0 T 2

⎤⎦+ ρ

⎡⎣ ēm

ē1

⎤⎦⎡⎣ ēm

ē1

⎤⎦T

(B.69)

with T 1 and T 2 both symmetric, tridiagonal matrices of half the size of T . For the moment,
suppose that we can compute the eigendecompositions

T 1U1 = U1Λ1, (B.70)

T 2U2 = U2Λ2, (B.71)

then forming

U =
⎡⎣ U1 0

0 U2

⎤⎦ (B.72)

and multiplying (B.69

.

) from the left by UT and from the right by U yields

UTTU =
⎡⎣ UT

1 0
0 UT

2

⎤⎦⎡⎣ T 1 0
0 T 2

⎤⎦⎡⎣ U1 0
0 U2

⎤⎦+ ρ

⎡⎣ UT
1 0

0 UT
2

⎤⎦⎡⎣ ēm

ē1

⎤⎦⎡⎣ ēm

ē1

⎤⎦T⎡⎣ U1 0
0 U2

⎤⎦
(B.73)

=
⎡⎣ UT

1 T 1U1 0
0 UT

2 T 2U2

⎤⎦+ ρ

⎡⎣ UT
1 ēm

UT
2 ē1

⎤⎦ [ēT
mU1 ēT

1U2

]
. (B.74)

By (B.70

.

) and (B.71

.

), the first term is diagonalized, giving

UTTU =
⎡⎣ Λ1 0

0 Λ2

⎤⎦+ ρ

⎡⎣ UT
1 ēm

UT
2 ē1

⎤⎦ [ēT
mU1 ēT

1U2

]
. (B.75)

389

Letting ū1 = UT
1 ēm and ū2 = UT

2 ē1 with

D̂ =
⎡⎣ Λ1 0

0 Λ2

⎤⎦ , û =
⎡⎣ ū1

ū2

⎤⎦ , (B.76)

we obtain
UTTU = D̂ + ρûûT . (B.77)

Suppose that we use a permutation P to order the diagonal entries of D so that d1 < d2 <

· · · < dn. Then
P TUTTUP = P T D̂P  

D

+ρ (P T û)  
ū

(ûTP)  
ūT

(B.78)

is a diagonal plus rank 1 matrix whose eigenvalues and eigenvectors can be computed effi-
ciently (we will see how to do so in a moment). Suppose that the eigendecomposition

V̂ T (D + ρūūT)V̂ = Λ̂ (B.79)

is computed, then (B.78

.

) becomes

V̂ TP TUTTUPV̂ = Λ̂. (B.80)

Comparing with (B.66

.

) shows that the eigenvalues Λ = Λ̂ and that the eigenvectors V =
UPV̂ (this last fact is true because each matrix is orthogonal so that the product is as well).

Notice that to compute such a decomposition, we need to compute the two smaller
decompositions (B.70

.

) and (B.71

.

), as well as the larger decomposition (B.79

.

). To compute
the smaller decompositions, we apply this approach recursively. We can do so because T 1

and T 2 are both symmetric tridiagonal matrices, just like the original matrix T . In practice,
we perform this divide step until the matrices T 1 and T 2 become smaller than some fixed
size2

.

. For these small tridiagonal matrices, we compute their eigendecompositions directly
using the QR iteration [25

.

].
The larger decomposition is computed exploiting the structure of D + ρūūT where d1 <

d2 < · · · < dn and ρ < 0. In our application of the method, ρ is always negative because
it comes from the off-diagonal of the pentadiagonal matrix S̃S̃T which is all negative. This
is true at every step of the recursive process since only two entries on the diagonal of the
submatrices, not off-diagonal, are modified when performing the divide step (see (B.68

.

)). To
2I choose m = 32, although the choice depends on the implementation of the method and the hardware

used to perform the computations. For example, [91

.

] uses m = 25.

390

compute the eigenvalues of D + ρūūT , we find values of λ such that

det(D + ρūūT − λI) = 0. (B.81)

Suppose D − λI is invertible (meaning that λ ̸= di for any di), then

det(D + ρūūT − λI) = det(D − λI + ρūūT) (B.82)

= det
(
(D − λI)(I + ρ(D − λI)−1ūūT)

)
(B.83)

= det(D − λI)det(I + ρ(D − λI)−1ūūT). (B.84)

Since D − λI is invertible, det(D − λI) ̸= 0, which means that

det(I + ρ(D − λI)−1ūūT) = 0. (B.85)

To express this determinant in a form amenable to root-finding techniques, notice that for
any x̄ and ȳ,⎡⎣ I 0

ȳT 1

⎤⎦⎡⎣ I + x̄ȳT x̄

0 1

⎤⎦⎡⎣ I 0
−ȳT 1

⎤⎦ =
⎡⎣ I + x̄ȳT x̄

ȳT + ȳT x̄ȳT ȳT x̄+ 1

⎤⎦⎡⎣ I 0
−ȳT 1

⎤⎦ (B.86)

=
⎡⎣ I x̄

0 ȳT x̄+ 1

⎤⎦ . (B.87)

Taking the determinant of both sides, we note that

det
⎛⎝⎡⎣ I 0

ȳT 1

⎤⎦⎡⎣ I + x̄ȳT x̄

0 1

⎤⎦ ⎡⎣ I 0
−ȳT 1

⎤⎦⎞⎠ = det
⎛⎝⎡⎣ I x̄

0 ȳT x̄+ 1

⎤⎦⎞⎠ (B.88)

det
⎛⎝⎡⎣ I 0

ȳT 1

⎤⎦⎞⎠det
⎛⎝⎡⎣ I + x̄ȳT x̄

0 1

⎤⎦⎞⎠det
⎛⎝⎡⎣ I 0

−ȳT 1

⎤⎦⎞⎠ = det
⎛⎝⎡⎣ I x̄

0 ȳT x̄+ 1

⎤⎦⎞⎠ (B.89)

det
⎛⎝⎡⎣ I + x̄ȳT x̄

0 1

⎤⎦⎞⎠ = ȳT x̄+ 1 (B.90)

where the last step comes from noting that the determinant of a triangular matrix is the
product of its diagonal entries. Expanding the determinant along the bottom row gives
det(I + x̄ȳT) = ȳT x̄+ 1 which, if we let x̄ = ρ(D − λI)−1ū and ȳ = ū, yields

det(I + ρ(D − λI)−1ūūT) = ūTρ(D − λI)−1ū+ 1. (B.91)

391

Thus, when D − λI is invertible, the eigenvalues of D + ρūūT satisfy

1 + ρūT (D − λI)−1ū = 0 (B.92)

which can be written as
f(λ) = 1 + ρ

n∑
i=1

u2
i

di − λ
= 0. (B.93)

This is called the secular equation.
Note that the derivative of the secular equation

f ′(λ) = ρ
n∑

i=1

u2
i

(di − λ)2 (B.94)

is always negative since ρ < 0 and u2
i and (di − λ)2 are both positive. This means that f(λ)

is monotonic and decreasing (except at the poles di). For this to be possible, there must be
a root f(λk) = 0 between each pair of poles so that

λ1 < d1 < λ2 < d2 < λ2 < · · · < λn < dn. (B.95)

This last statement gives all n roots of the secular equation only when all di are distinct
(otherwise two terms in (B.93

.

) coincide) and when all ui are nonzero (otherwise a term
in (B.93

.

) vanishes). These two cases can be handled separately using deflation [25

.

, 91

.

].
For certain matrix classes, deflation leads to significant work savings in LAPACK [189

.

].
An optimal implementation of divide and conquer should perform deflation3

.

. All other
eigenvalues are computed using a root-finding technique applied to the secular equation.

Once the eigenvalues are computed, the eigenvectors can be determined. Since each
eigenvector must satisfy

(D + ρūūT)v̄ = λv̄, (B.96)

we observe that

(D − λI + ρūūT)v̄ = 0 (B.97)

(D − λI)(I + ρ(D − λI)−1ūūT)v̄ = 0. (B.98)

Since D − λI is invertible,
(I + ρ(D − λI)−1ūūT)v̄ = 0 (B.99)

3In my implementation, I have not used deflation since it is not necessary to obtain accurate eigende-
compositions for the class of matrices encountered in this thesis. However, I suspect deflation can play an
important role for these types of matrices and intend to use it in the future.

392

which gives

v̄ = −ρ(D − λI)−1ū(ūT v̄) (B.100)

= −ρ(ūT v̄)(D − λI)−1ū. (B.101)

Since eigenvectors can be scaled arbitrarily, we ignore the scalar factors and use

v̄j = (D − λjI)−1ū

∥(D − λjI)−1ū∥2
(B.102)

as an orthonormal eigenvector associated with eigenvalue λj. Notice that entry i in v̄j is
given by

(v̄j)i =

ui

di − λj√ n∑
k=1

u2
k

(dk − λj)2

(B.103)

so that the eigenvector matrix

V̂ =
[
v̄1 v̄2 · · · v̄n

]
(B.104)

can be written as
V̂ = diag(ū)Ĉdiag(n̄)−1 (B.105)

where the entries of n̄ are given by ∥(D − λiI)−1ū∥2 and Ĉ is a Cauchy matrix with entries
1/(di − λj). Note that it costs O(n2) operations to compute the entries of n̄ directly (by
evaluating the sums in the denominator of (B.103

.

)). This cost can be reduced to O(n)
operations using the fast multipole method (FMM), but we do not do this here since the
method in Section B.3

.

requires the computation of O(n2) elements anyway4

.

. Matrix-vector
multiplication with V̂ or its transpose can also be computed in O(n) operations when the
FMM is used. Here we do exploit the FMM because we will need to multiply O(n) vectors
by V̂ , which results in a total cost of O(n2) operations. We reserve discussion of the FMM
in this context for Section B.5

.

.

B.4.1 Numerical Considerations for Divide and Conquer

In practice, we must solve the secular equation using a numerical root-finding algorithm and
compute the associated eigenvectors. To do so in a numerically stable way is crucial. To

4In practice, I have not performed enough tests to determine if it is worth using the FMM in this context.

393

compute eigenvalues, we solve the nonlinear secular equation

f(λ) = 1 + ρ
n∑

i=1

u2
i

di − λ
= 0 (B.106)

using the method of Borges and Gragg [53

.

]. The idea is, for each eigenvalue dk < λk+1 < dk+1,
to approximate f by a simpler rational function

g(λ) = c1 + c2

dk − λ
+ c3

dk+1 − λ
(B.107)

where the coefficients c1, c2, and c3 are determined by choosing the function g, its derivative,
and second derivative to match those of f at a point λ(j)

k+1 and to use the root of this simpler
function as an new approximation to λk+1, called λ

(j+1)
k+1 . Borges and Gragg show that this

iterative process converges monotonically to the eigenvalue λk+1 so that the iteration can be
stopped when the change in the iterate λ(j)

k+1 − λ
(j+1)
k+1 changes sign (at which point round-

off effects dominate improvements to the iterate). The method converges cubically to the
eigenvalue λk+1 so that in practice only a small number of iterations (usually less than 5)
are needed for convergence. The method is practical since the roots of g can be found by
solving a quadratic equation. The new iterate λ(j+1)

k+1 is chosen as the root that belongs to
the interval (dk, dk+1). This method is similar to Newton’s method since one interpretation
of Newton’s method is to find the root of g(λ) = b1 +b2λ, called λ(j+1)

k+1 , with b1 and b2 chosen
such that g and its first derivative at λ(j)

k+1 agree with those of f .
To use the method of Borges and Gragg, we first compute the coefficients c1, c2, and c3

by solving the system of equations

g(λ(j)
k+1) = f(λ(j)

k+1), (B.108)

g′(λ(j)
k+1) = f ′(λ(j)

k+1), (B.109)

g′′(λ(j)
k+1) = f ′′(λ(j)

k+1). (B.110)

To save on notation, we will simply write λ instead of λ(j)
k+1 in the following derivation. This

gives

c1 + c2

dk − λ
+ c3

dk+1 − λ
= f(λ), (B.111)

c2

(dk − λ)2 + c3

(dk+1 − λ)2 = f ′(λ), (B.112)

c2

(dk − λ)3 + c3

(dk+1 − λ)3 = 1
2f

′′(λ). (B.113)

394

Letting δk = 1/(dk − λ) and δk+1 = 1/(dk+1 − λ), we obtain the 3-by-3 linear system
⎡⎢⎢⎢⎣

1 δk δk+1

0 δ2
k δ2

k+1

0 δ3
k δ3

k+1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(λ)
f ′(λ)

1
2f

′′(λ)

⎤⎥⎥⎥⎦ . (B.114)

In practice, it can dangerous to solve this system directly using a computer due to round-off
errors. Instead, we solve the system by hand. First, we examine the precise form of the right
hand side terms

f(λ) = 1 + ρ
n∑

i=1

u2
i

di − λ
, (B.115)

f ′(λ) = ρ
n∑

i=1

u2
i

(di − λ)2 , (B.116)

f ′′(λ) = 2ρ
n∑

i=1

u2
i

(di − λ)3 , (B.117)

which we write as ⎡⎢⎢⎢⎣
f(λ)
f ′(λ)

1
2f

′′(λ)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 + ρ

∑n
i=1 u

2
i δi

ρ
∑n

i=1 u
2
i δ

2
i

ρ
∑n

i=1 u
2
i δ

3
i

⎤⎥⎥⎥⎦ (B.118)

where δi = 1/(di − λ). Performing one step of Gaussian elimination on (B.114

.

), we obtain
⎡⎢⎢⎢⎣

1 δk δk+1

0 δ2
k δ2

k+1

0 0 δ3
k+1 − δkδ

2
k+1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(λ)
f ′(λ)

1
2f

′′(λ) − δkf
′(λ)

⎤⎥⎥⎥⎦ (B.119)

which shows that

c3 = 1
δ2

k+1(δk+1 − δk)

[1
2f

′′(λ) − δkf
′(λ)

]
(B.120)

= 1
δ2

k+1(δk+1 − δk)

[
ρ

n∑
i=1

u2
i δ

3
i − δkρ

n∑
i=1

u2
i δ

2
i

]
(B.121)

using (B.118

.

). Combining the sums gives

c3 = ρ

δ2
k+1(δk+1 − δk)

n∑
i=1

u2
i δ

2
i (δi − δk) (B.122)

= ρ

δ2
k+1(δk+1 − δk)

n∑
i=1
i ̸=k

u2
i δ

2
i (δi − δk) (B.123)

395

with the last line arising because

δi − δk = 1
di − λ

− 1
dk − λ

(B.124)

= dk − di

(di − λ)(dk − λ) (B.125)

is zero when i = k. Note also that the i = k + 1 term can also be isolated from the sum to
give

c3 = ρ

⎡⎢⎢⎣u2
k+1 + 1

δ2
k+1(δk+1 − δk)

n∑
i=1

i ̸=k,k+1

u2
i δ

2
i (δi − δk)

⎤⎥⎥⎦ . (B.126)

Thus, to compute c3, we compute

c3 = ρu2
k+1 + ρ(dk+1 − λ)2 (dk − λ)(dk+1 − λ)

dk − dk+1

n∑
i=1

i ̸=k,k+1

u2
i

1
(di − λ)2

dk − di

(di − λ)(dk − λ) (B.127)

= ρu2
k+1 + ρ

(dk+1 − λ)3

dk − dk+1

n∑
i=1

i ̸=k,k+1

u2
i

dk − di

(di − λ)3 (B.128)

where we have replaced the δ terms with their original definitions.
Similarly, from (B.119

.

) together with (B.118

.

) and (B.123

.

), we find that

c2 = 1
δ2

k

[
f ′(λ) − δ2

k+1c3
]

(B.129)

= 1
δ2

k

⎡⎢⎢⎣ρ n∑
i=1

u2
i δ

2
i − δ2

k+1
ρ

δ2
k+1(δk+1 − δk)

n∑
i=1
i ̸=k

u2
i δ

2
i (δi − δk)

⎤⎥⎥⎦ (B.130)

= ρ

δ2
k

⎡⎢⎢⎣ n∑
i=1

u2
i δ

2
i − 1

(δk+1 − δk)

n∑
i=1
i ̸=k

u2
i δ

2
i (δi − δk)

⎤⎥⎥⎦ (B.131)

= ρ

δ2
k

⎡⎢⎢⎣u2
kδ

2
k +

n∑
i=1
i ̸=k

u2
i δ

2
i − 1

(δk+1 − δk)

n∑
i=1
i ̸=k

u2
i δ

2
i (δi − δk)

⎤⎥⎥⎦ . (B.132)

Grouping the summation terms together yields

c2 = ρ

δ2
k

⎡⎢⎢⎣u2
kδ

2
k + 1

(δk+1 − δk)

n∑
i=1
i ̸=k

u2
i δ

2
i (δk+1 − δi)

⎤⎥⎥⎦ . (B.133)

396

Note that δk+1 − δi = 0 when i = k + 1 so that

c2 = ρ

⎡⎢⎢⎣u2
k + 1

δ2
k(δk+1 − δk)

n∑
i=1

i ̸=k,k+1

u2
i δ

2
i (δk+1 − δi)

⎤⎥⎥⎦ . (B.134)

Replacing the δ terms with their definitions gives

c2 = ρu2
k + ρ(dk − λ)2 (dk+1 − λ)(dk − λ)

dk − dk+1

n∑
i=1

i ̸=k,k+1

u2
i

1
(di − λ)2

di − dk+1

(dk+1 − λ)(di − λ) (B.135)

= ρu2
k + ρ

(dk − λ)3

dk − dk+1

n∑
i=1

i ̸=k,k+1

u2
i

di − dk+1

(di − λ)3 . (B.136)

Finally, (B.119

.

) together with (B.118

.

), (B.134

.

), and (B.126

.

) yields

c1 = 1 + ρ
n∑

i=1
u2

i δi − δkρ

⎡⎢⎢⎣u2
k + 1

δ2
k(δk+1 − δk)

n∑
i=1

i ̸=k,k+1

u2
i δ

2
i (δk+1 − δi)

⎤⎥⎥⎦

− δk+1ρ

⎡⎢⎢⎣u2
k+1 + 1

δ2
k+1(δk+1 − δk)

n∑
i=1

i ̸=k,k+1

u2
i δ

2
i (δi − δk)

⎤⎥⎥⎦ . (B.137)

Canceling the ρδku
2
k and ρδk+1u

2
k+1 terms gives

c1 = 1 + ρ

⎡⎢⎢⎣ n∑
i=1

i ̸=k,k+1

u2
i δi − 1

δk(δk+1 − δk)

n∑
i=1

i ̸=k,k+1

u2
i δ

2
i (δk+1 − δi)

− 1
δk+1(δk+1 − δk)

n∑
i=1

i ̸=k,k+1

u2
i δ

2
i (δi − δk)

⎤⎥⎥⎦ (B.138)

and collecting summations together yields

c1 = 1+ρ
1

δkδk+1(δk+1 − δk)

n∑
i=1

i ̸=k,k+1

u2
i δi [(δk+1 − δk)δkδk+1 − δiδk+1(δk+1 − δi) − δiδk(δi − δk)] .

(B.139)
It is possible to factor the term in square brackets since

(δk+1 − δk)δkδk+1 − δiδk+1(δk+1 − δi) − δiδk(δi − δk) = (δk+1 − δk)(δi − δk)(δi − δk+1). (B.140)

397

This means that
c1 = 1 + ρ

1
δkδk+1

n∑
i=1

i ̸=k,k+1

u2
i δi(δi − δk)(δi − δk+1) (B.141)

which gives

c1 = 1 + ρ(dk − λ)(dk+1 − λ)
n∑

i=1
i ̸=k,k+1

u2
i

1
(di − λ)

dk − di

(di − λ)(dk − λ)
dk+1 − di

(di − λ)(dk+1 − λ) (B.142)

= 1 + ρ
n∑

i=1
i ̸=k,k+1

u2
i

(dk − di)(dk+1 − di)
(di − λ)3 (B.143)

when the δ terms are replaced with their definitions.
When computing c1, c2, and c3 using (B.143

.

), (B.136

.

), and (B.128

.

) respectively, each
summation should be split into two sums, one for i < k and another for i > k + 1. This is
done to avoid catastrophic cancellation when adding a mix of positive and negative numbers
together. For example, in (B.143

.

), if i < k and λ = λ
(j)
k+1, then

dk − di > 0, (B.144)

dk+1 − di > 0, (B.145)

di − λ < 0, (B.146)

so that each term
u2

i

(dk − di)(dk+1 − di)
(di − λ)3 (B.147)

with i < k is negative, whereas when i > k + 1,

dk − di < 0, (B.148)

dk+1 − di < 0, (B.149)

di − λ > 0, (B.150)

so that each term (B.147

.

) is positive.
Once the coefficients c1, c2, and c3 are computed, we solve (B.107

.

) for the next iterate
λ

(j+1)
k+1 . However, in practice, solving for λ(j+1)

k+1 directly can lead to catastrophic cancellation
in one of the differences dk − λ

(j+1)
k+1 or dk+1 − λ

(j+1)
k+1 . To avoid such a scenario, we begin

the iterative process with initial iterate λ(0)
k+1 = (dk + dk+1)/2, which is the midpoint of the

interval (dk, dk+1). Since the Borges and Gragg method converges monotonically to the root,
if the next iterate λ(1)

k+1 is smaller than the initial iterate, serious cancellation can only occur

398

with the difference dk − λ
(j)
k+1 and we let τ (j)

− = dk − λ
(j)
k+1 and only compute with τ

(j)
− rather

than the difference. Otherwise, we let τ (j)
+ = dk+1 − λ

(j)
k+1 and only compute with τ

(j)
+ . If

the eigenvalue is needed for later computations, it can be recovered as long as we store the
final τ± and the choice of pole dk or dk+1 (indicated by ±). Note that the first eigenvalue
λ1 is not bracketed between two poles. In that case, we use d1 and d2 to form (B.107

.

) and
always choose d1 as the pole closest to λ1 when choosing τ . A good initial guess in this
special case is zero since the smallest eigenvalue for the tridiagonal matrix we consider is
very close to zero (this would not be the case for a general symmetric tridiagonal matrix).
Unfortunately, in this case, convergence is not guaranteed to be monotonic so an alternative
stopping criterion is needed. Usual stopping criteria for Newton’s method can be applied.

When we choose τ (j)
− = dk −λ

(j)
k+1, and we wish to find the zeros of (B.107

.

), we must solve

c1 + c2

τ
(j+1)
−

+ c3

dk+1 − (dk − τ
(j+1)
−)

= 0. (B.151)

Letting ∆ = dk+1 − dk, we have

c1 + c2

τ
(j+1)
−

+ c3

∆ + τ
(j+1)
−

= 0 (B.152)

τ
(j+1)
− (∆ + τ

(j+1)
−)

⎡⎣c1 + c2

τ
(j+1)
−

+ c3

∆ + τ
(j+1)
−

⎤⎦ = 0 (B.153)

τ
(j+1)
− (∆ + τ

(j+1)
−)c1 + (∆ + τ

(j+1)
−)c2 + τ

(j+1)
− c3 = 0 (B.154)

c1(τ (j+1)
−)2 + (∆c1 + c2 + c3)τ (j+1)

− + ∆c2 = 0. (B.155)

This last equation is a quadratic equation in τ
(j+1)
− with coefficients

a = c1, (B.156)

b = ∆c1 + c2 + c3, (B.157)

c = ∆c2. (B.158)

Similarly, if we choose τ (j)
+ = dk+1 − λ

(j)
k+1 instead, then (B.107

.

) becomes

c1 + c2

dk − (dk+1 − τ
(j+1)
+)

+ c3

τ
(j+1)
+

= 0. (B.159)

Using the same definition for ∆, we obtain

c1 + c2

τ
(j+1)
+ − ∆

+ c3

τ
(j+1)
+

= 0 (B.160)

399

which yields the quadratic equation

c1(τ (j+1)
+)2 + (−∆c1 + c2 + c3)τ (j+1)

+ − ∆c3 = 0 (B.161)

with coefficients

a = c1, (B.162)

b = −∆c1 + c2 + c3, (B.163)

c = −∆c3. (B.164)

In either case, one must solve for the roots of a quadratic polynomial. Solving such
an equation numerically should be handled with care, again to avoid catastrophic cancella-
tion. In particular, one can start by normalizing the coefficients a, b, and c by dividing by
max({|a|, |b|, |c|}). If a = 0, then the quadratic is linear and the single root is τ = −c/b.
Otherwise, when b ≥ 0, the roots are

τ1 = 2c
−b−

√
b2 − 4ac

, τ2 = −b−
√
b2 − 4ac

2a , (B.165)

and when b < 0, the roots are

τ1 = −b+
√
b2 − 4ac

2a , τ2 = 2c
−b+

√
b2 − 4ac

. (B.166)

This choice avoids cancellation when combining b with the discriminant. Once the two roots
are calculated, we determine which of the two causes λ(j+1)

k+1 to belong to the interval (dk, dk+1)
and set τ (j+1)

± accordingly.
When computing eigenvalue λk+1 iteratively, the most costly step of each iteration is

the computation of c1, c2, and c3. Each coefficient requires O(n) operations to compute
their respective sums. All other computations (solving the quadratic equation) require O(1)
operations. There are only a small number of iterations (almost always less than five)
required to compute each eigenvalue. This means that O(n2) operations are required to
compute all n eigenvalues. This can be reduced to O(n) operations using the FMM if the
sums to compute c1, c2, and c3 are performed for all eigenvalues simultaneously [55

.

] (although
this is not necessary).

This leaves the computation of the associated eigenvectors. Unfortunately, computing
(B.102

.

) directly can lead to a loss of orthogonality. The authors of [54

.

] explain how to
compute the eigenvectors in a way that preserves orthogonality. The key idea is to find a

400

new vector ūnew such that the computed eigenvalues are the exact eigenvalues of the matrix
D + ρūnewū

T
new since they are not the exact eigenvalues of the original matrix D + ρūūT due

to the limited precision of our computations. Then the eigenvectors

v̄j = (D − λjI)−1ūnew

∥(D − λjI)−1ūnew∥2
(B.167)

will be the exact eigenvectors of the new problem. As long as the new problem is close to
the original problem (which [54

.

] proves is true), then the eigenvectors computed in this way
will be orthogonal to high relative accuracy for the original problem. To compute ūnew, we
use the fact (derived earlier in (B.84

.

)) that

det(D + ρūūT − λI) = det(D − λI)det(I + ρ(D − λI)−1ūūT). (B.168)

Since
det(D + ρūūT − λI) =

n∏
i=1

(λi − λ) (B.169)

where λi are the eigenvalues of D + ρūūT ,

det(D − λI) =
n∏

i=1
(di − λ) (B.170)

since D is diagonal, and

det(I + ρ(D − λI)−1ūūT) = 1 + ρ
n∑

i=1

u2
i

di − λ
(B.171)

by our earlier derivation of the secular equation (B.93

.

), we have that

n∏
i=1

(λi − λ) =
n∏

i=1
(di − λ)

[
1 + ρ

n∑
i=1

u2
i

di − λ

]
. (B.172)

Extracting the i = k term from the sum gives

n∏
i=1

(λi − λ) =
n∏

i=1
(di − λ)

⎡⎢⎢⎣1 + ρ
n∑

i=1
i ̸=k

u2
i

di − λ

⎤⎥⎥⎦+ ρu2
k

n∏
i=1
i ̸=k

(di − λ). (B.173)

If we let λ = dk, then ∏n
i=1(di − dk) = 0 and

n∏
i=1

(λi − dk) = ρu2
k

n∏
i=1
i ̸=k

(di − dk) (B.174)

401

which implies that

u2
k = 1

ρ

∏n
i=1(λi − dk)∏n
i=1
i ̸=k

(di − dk) (B.175)

= λk − dk

ρ

n∏
i=1
i ̸=k

λi − dk

di − dk

. (B.176)

By (B.95

.

), λi − dk < 0 if i < k and λi − dk > 0 if i > k. Similarly, di − dk < 0 if i < k and
di − dk > 0 if i > k. Since ρ < 0, this implies that the right hand side of (B.176

.

) is positive,
so that

uk =
√λk − dk

ρ

n∏
i=1
i ̸=k

λi − dk

di − dk

. (B.177)

Thus, to compute the entries of ūnew, we use this expression with λi given by the computed
eigenvalues.

It costs O(n) operations to compute the product in (B.177

.

) and there are n such entries
in the vector ūnew so that the total cost to compute ūnew is O(n2) operations. It is important
to use the computed differences τ rather than d−λ wherever appropriate in doing so. Since
one begins with ū, it is trivial to change the signs of entries in ūnew to match those in ū.
It is possible, but not necessary, to accelerate the computation of ūnew using the FMM. As
mentioned at the end of Section B.4

.

, the multiplication of these eigenvectors with another
vector can be performed using the FMM. For this reason, we do not explicitly compute the
eigenvectors, but rather, only store the vector ūnew, the normalization vector n̄ (whose com-
putation has been previously discussed), and the information regarding eigenvalues (which
are not stored directly, but through their offsets τ̄ from the vector d̄ and a vector of flags
indicating which entry in d̄ to use as pole for each entry in τ̄). This has the added benefit
of reducing the storage requirements for eigenvectors from O(n2) to O(n) double precision
floating point numbers.

B.4.2 Finalizing the Divide and Conquer Algorithm

Now that we have seen how to compute the eigenvalues and eigenvectors of a diagonal plus
rank 1 matrix, we can show how to use the divide and conquer algorithm in practice, and
consider its computational complexity. Given the symmetric tridiagonal matrix T of size n,
we choose a maximum block size nb for which we are willing to perform a direct eigenvalue
decomposition (for example, nb = 32). We divide n by two repeatedly until the result is
smaller than nb. The number of times we have divided will be referred to as the maximum

402

level of recursion lmax. This means that

nb >
n

2lmax
(B.178)

or that
lmax =

⌈
log(n) − log(nb)

log(2)

⌉
(B.179)

where ⌈·⌉ denotes the ceiling function. We perform the divide step from Section B.4

.

lmax

times which guarantees that the 2lmax remaining tridiagonal matrices all have dimension
smaller than nb. If n is even, it is possible to subdivide the matrix into two matrices of equal
size, but otherwise, we can assign either block to be one row larger. Even when n is even,
once it has been subdivided, its submatrices may have odd sizes and so a systematic way
to assign block sizes is needed5

.

. This process leads to submatrices at the maximum level
that have almost equal sizes (the even/odd issue means that they do not all have exactly
the same size). The size is between nb/2 and nb and depends on the value of n.

Once the blocks have been determined at the maximum level, we compute the 2lmax

small eigendecompositions directly using the QR iteration and store the eigenvalues and
eigenvectors. We then proceed to determine the eigenvalue and eigenvector data associated
with pairs of these matrices via their diagonal plus rank 1 connection. To do this, we multiply
the unit vectors ēm and ē1 with the eigenvectors to form û. Then we sort the eigenvalues of
the two matrices (taken together) in ascending order, storing the permutation required to do
so (it is stored as a vector of integers rather than a matrix). The permutation is applied to û
to obtain ū and the eigenvalue and eigenvector data for the diagonal plus rank 1 matrix are
computed via the secular equation. This is performed 2lmax−1 times. The process is repeated
at the next level 2lmax−2 times, and so on, until we reach the root level which is the full
size of the matrix. At the intermediate levels j, to compute ū(j), we need to multiply the
unit vectors not just by the eigenvector matrices at the maximum level, but all intermediary
eigenvector matrices as well. This is a type of hierarchical matrix-vector product

ū(j) =
(
V (fine)P (lmax)V (lmax)P (lmax−1)V (lmax−1) · · ·P (j−1)V (j−1)

)T
ē(j) (B.180)

where each V (j) and P (j) is block diagonal and ē(j) represents the particular combination
of unit vectors and their corresponding value ρ(j). The blocks increase in size until level 1
where they are the full size of the matrix. The first matrix V (fine) is different from the other
intermediate matrices in that it is comprised of the directly computed eigenvectors at the
maximum level, whereas all other matrices are computed via the diagonal plus rank 1 update

5In practice, at each subdivision step, I choose the first submatrix to be larger.

403

method. The final eigenvector matrix for the symmetric tridiagonal matrix T is given by

V = V (fine)P (lmax)V (lmax)P (lmax−1)V (lmax−1) · · ·P (1)V (1) (B.181)

but is never explicitly computed. Instead, the blocks in V (fine) are stored explicitly (but are
all of size smaller than nb), while each permutation matrix is stored as an integer array, and
each block in V (j) is stored as a set of vectors ū, n̄, d̄, τ̄ with a vector of flags indicating
which pole in d̄ to use to recover the intermediate eigenvalues λ̄ from d̄ and τ̄ . This data can
be stored in a binary tree data structure to facilitate retrieval. Whenever the eigenvector
matrix is required for a matrix-vector product, the product (B.181

.

) is multiplied against a
vector in sequence.

To determine the computational complexity of the algorithm, we note that computing
the eigenvalues and eigenvectors at the maximum level requires O(2lmaxn3

b) operations. Since
2lmaxnb ≈ n, this requires O(n2

bn) operations, which is linear in n. We then take into
account the cost of computing the eigenvalues and eigenvectors for each diagonal plus rank
1 subproblem. We have seen that each of these problems requires a quadratic number
of operations in the size of the associated matrix. This means that O(n2) operations are
required at the root level, O((n

2)2) operations are required at the next level (performed
twice), and so on. Altogether, this gives an approximate number of operations

n2 +
(
n

2

)2
· 2 +

(
n

22

)2
· 22 + · · · +

(
n

2lmax

)2
· 2lmax = n2

lmax−1∑
i=0

(1
2

)i

(B.182)

= n2 1 − (1
2)lmax

1 − (1
2) (B.183)

= n2(2 − 21−lmax) (B.184)

where we have evaluated the geometric sum. Note that this is O(n2) operations since 2 −
21−lmax tends towards 2 as lmax increases.

We also need to determine how much each matrix-vector product with (B.181

.

) costs.
Assuming that each matrix V (j) is multiplied with a vector using the FMM, the cost is
linear in the dimension of the matrix. This means that to multiply by V (1) requires O(n)
operations, to multiply by V (2) costs O(n

2) operations twice, and so on. The approximate
total number of operations is then

n+ n

2 · 2 + n

22 · 22 + · · · + n

2lmax
· 2lmax = nlmax. (B.185)

Since lmax ≈ log2 n, this means that to multiply by the first lmax matrices V (j) requires

404

O(n log n) operations. In addition, there is the additional cost of multiplying by V (fine).
This requires O(2lmaxn2

b) operations since there are 2lmax matrices of size nb at the maximum
level and direct matrix-vector multiplication is quadratic in the size of these matrices. Since
2lmaxnb ≈ n, this means that O(nbn) operations are required for this final step of multi-
plication. Thus the total cost of a matrix-vector multiplication with (B.181

.

) is O(n log n)
operations.

We have neglected to comment on the cost of computing the intermediate ū vectors.
They are computed in a similar fashion as described for the matrix-vector product. Since
there are

lmax−1∑
i=0

2i = 2lmax − 1 (B.186)

such intermediate vectors, and 2lmax ≈ n/nb, the number of operations to compute these
products can be no greater than O(n2 log n). It is possible to improve upon this result but
we do not bother here because in the partial diagonalization algorithm of Section B.3

.

, we
compute the matrix-vector product with (B.181

.

) n times, which means the total number of
operations for that algorithm is O(n2 log n). This matches the cost of computing the eigen-
decomposition so that we have described a near linear (there are n2 unknowns to compute
in Section B.3

.

) method for partial diagonalization, as desired.

B.5 The Fast Multipole Method

In order to achieve the near linear computational complexity of the previous section, we must
be able to perform matrix-vector products Ĉx̄ with Cauchy matrices Ĉ in O(n) operations
where n is the length of vector x̄. The entries of Ĉ are given by

Ĉij = 1
di − λj

(B.187)

and related to the intermediate diagonal plus rank 1 matrices that arise in the divide and
conquer algorithm. Recall, from Section B.4

.

, that the values di (which we will call target
points) arise from the diagonal matrix D and the values λj (which we will call source points)
arise from the eigenvalues of D+ρūūT at each step of the divide and conquer method. In this
section, we will use the FMM to perform the matrix-vector multiplication in O(n) operations
[58

.

, 59

.

, 60

.

, 61

.

]. The FMM interprets the matrix-vector product

ȳ = Ĉx̄ (B.188)

405

as point evaluations of a linear combination of kernel functions. That is, by defining the
kernel function

K(d, λj) = 1
d− λj

, (B.189)

the entries yi of the matrix-vector product (B.188

.

) can be written as

yi =
n∑

j=1
xj

1
di − λj

(B.190)

=
n∑

j=1
xjK(di, λj) (B.191)

where xj are considered source strengths or coefficients in a linear combination of kernel
functions due to the source locations λj evaluated at the target point di. Without loss of
generality, we will assume that all di and λj belong to the interval (0, 1). This is the case for
the Dirichlet problem, but not for the Neumann problem of Section B.2

.

. In the Neumann
case, the problem can be scaled and treated as though such conditions hold.

The FMM exploits the fact that the kernel function has simple local Taylor series ex-
pansions away from the source singularities and simple multipole expansions centered about
those same singularities. Rather than work with the kernel directly, these expansions are
used wherever they converge rapidly. The key to the FMM is to partition the interval where
the source and target points reside using a binary tree structure so that a partition (possibly
non-uniform) of the original interval is obtained where each subinterval contains roughly
the same number of sources and targets. Then multipole expansions are computed for each
subinterval. These expansions are centered at the midpoint of each subinterval, but only
converge rapidly away from their respective subintervals. Other subintervals that are suffi-
ciently far away are said to be well-separated. The FMM aggregates multipole expansions
of two subintervals in the tree to form a multipole expansion centered at the midpoint of
their parent subinterval. This is performed for the whole tree in an upward pass. Then
local Taylor expansions are computed from the multipole expansions for subintervals that
are well separated on each level. The local expansions for coarse levels of the tree are used to
create local expansions on finer levels in a downward pass. The final evaluation of (B.191

.

) is
performed by direct evaluation for sources belonging to each subinterval and its two neigh-
bor subintervals, then adding the contribution of the local expansion to account for sources
belonging to all other subintervals. By performing this process carefully (there are certain
subintervals in a non-uniform partition that must be treated differently), this process can
be performed in O(n) operations for a given tolerance specified by the user. The tolerance
changes how many source points should be contained in each subinterval and how many

406

terms should be used in each multipole and local Taylor expansion. In addition, the toler-
ance changes the constant hidden by the O notation, but not the fact that the matrix-vector
product can be performed with linear computational complexity.

In order to describe the FMM, we first need to see how multipole and local Taylor
expansions are computed. We begin with the multipole expansion of K(d, λj) centered at
point λ⋆. We rewrite

1
d− λj

= 1
d− λ⋆ + λ⋆ − λj

(B.192)

= 1
(d− λ⋆)

[
1 + λ⋆−λj

d−λ⋆

] (B.193)

= 1
d− λ⋆

1
1 − λj−λ⋆

d−λ⋆

(B.194)

and assume that ⏐⏐⏐⏐⏐λj − λ⋆

d− λ⋆

⏐⏐⏐⏐⏐ < 1 (B.195)

so that, by Taylor series, we have

1
d− λj

= 1
d− λ⋆

∞∑
m=0

(
λj − λ⋆

d− λ⋆

)m

(B.196)

=
∞∑

m=0
(λj − λ⋆)m 1

(d− λ⋆)m+1 . (B.197)

This Taylor series converges when |λj −λ⋆| < |d−λ⋆|, meaning that d must be farther away
from the center λ⋆ than the source λj is from the center. Next, we use this type of multipole
expansion in (B.191

.

) to obtain

yi =
n∑

j=1
xj

[∞∑
m=0

(λj − λ⋆)m 1
(di − λ⋆)m+1

]
. (B.198)

Notice how the multipole expansion splits into terms dependent on sources xj and source
locations λj and terms that are independent of both. By rearranging the sums, we can
exploit this fact:

yi =
∞∑

m=0

⎡⎣ n∑
j=1

xj(λj − λ⋆)m

⎤⎦ 1
(di − λ⋆)m+1 . (B.199)

If a large number of terms indexed by m are needed for this expression to be accurate, then
the expansion is not efficient. We can determine how many terms p are needed by performing

407

an error analysis. We do so by noting that⏐⏐⏐⏐⏐⏐
n∑

j=1
xj

1
d− λj

−
p−1∑
m=0

⎡⎣ n∑
j=1

xj(λj − λ⋆)m

⎤⎦ 1
(d− λ⋆)m+1

⏐⏐⏐⏐⏐⏐  
ϵ

=

⏐⏐⏐⏐⏐⏐
∞∑

m=p

⎡⎣ n∑
j=1

xj(λj − λ⋆)m

⎤⎦ 1
(d− λ⋆)m+1

⏐⏐⏐⏐⏐⏐
(B.200)

where ϵ is the absolute error incurred by using only the first p terms in the multipole expan-
sion. Using the triangle inequality, we have

ϵ ≤
∞∑

m=p

n∑
j=1

|xj| |λj − λ⋆|m
1

|d− λ⋆|m+1 . (B.201)

If |λj − λ⋆| ≤ r and |d− λ⋆| ≥ αr with α ≥ 1 and r > 0, then

1
|d− λ⋆|

≤ 1
αr
. (B.202)

Using these inequalities in the error estimate yields

ϵ ≤
∞∑

m=p

n∑
j=1

|xj| rm 1
(αr)m+1 (B.203)

≤
∞∑

m=p

n∑
j=1

|xj|
1

rαm+1 . (B.204)

Factoring terms dependent on j, and rearranging the remaining sum, we have

ϵ ≤
n∑

j=1
|xj|  

∥x̄∥1

1
αr

∞∑
m=p

(1
α

)m

(B.205)

≤ ∥x̄∥1
1
αr

⎡⎣ ∞∑
m=0

(1
α

)m

−
p−1∑
m=0

(1
α

)m
⎤⎦ . (B.206)

Since α ≥ 1, these geometric sums yield

ϵ ≤ ∥x̄∥1
1
αr

[
1

1 − α−1 − 1 − α−p

1 − α−1

]
(B.207)

≤ ∥x̄∥1
1
r

[
α−p

α− 1

]
. (B.208)

In the FMM, α = 3 when r corresponds to the radius of a subinterval. This is the well
separated condition, meaning that multipole expansions are only used on subintervals that

408

are at least one neighbor away from the subinterval containing the center λ⋆. In such a case,

ϵ ≤ ∥x̄∥1
1
2r

1
3p

(B.209)

and p is chosen to make ϵ as small as desired.
We cannot use this bound to determine p because it depends on r, meaning that the

absolute error increases with decreasing size of subinterval r. However, the relative error
does not. This is because ⏐⏐⏐⏐⏐⏐

n∑
j=1

xj
1

d− λj

⏐⏐⏐⏐⏐⏐ ≤
n∑

j=1
|xj|

1
|d− λj|

(B.210)

and |d− λj| ≥ 2r. This means that
⏐⏐⏐⏐⏐⏐

n∑
j=1

xj
1

d− λj

⏐⏐⏐⏐⏐⏐ ≤
∑n

j=1 |xj|
2r (B.211)

≤ ∥x̄∥1

2r . (B.212)

This is an upper bound, which means that dividing (B.209

.

) by ∥x̄∥1/(2r) does not yield
an upper bound on the relative error. However, in practice, it is typically observed that
the upper bound (B.212

.

) is attained so that dividing (B.209

.

) by (B.212

.

) yields the useful
approximation

ϵrel ≈ 1
3p

(B.213)

which can be used to select the truncation order p. Taking logarithms, we obtain the rule
of thumb

p ≈
⌈
− log(ϵrel)

log(3)

⌉
. (B.214)

Thus, to compute a multipole expansion accurate to a relative tolerance ϵrel of machine
epsilon in double precision we choose p = 33. When we perform such a truncation, (B.199

.

)
becomes

yi =
p−1∑
m=0

⎡⎣ n∑
j=1

xj(λj − λ⋆)m

⎤⎦
  

cm

1
(di − λ⋆)m+1 (B.215)

which costs O(pn) operations to compute the multipole coefficients cm and O(pn) operations
to evaluate the sum at each yi once the coefficients cm are known. If n is much larger than
p, then this drastically reduces the cost of performing a matrix-vector multiplication since
both sets of operations are linear in n. Compared with directly evaluating the matrix-vector

409

product, which requires O(n2) operations, this savings can be substantial when n ≫ p.
Unfortunately, when the source and target points are not well separated (they are not

well separated in our application), then a single multipole expansion as described cannot be
used alone to achieve such speedups. A careful use of several multipole expansions about dif-
ferent centers, as well as local Taylor expansions are needed to obtain similar computational
complexity results. For this reason, we consider how to convert one multipole expansion
about center λ(1)

⋆ to another multipole expansion centered about λ(2)
⋆ . This can be achieved

by a particular linear transformation applied to the coefficients of the multipole expansion.
To see why, let λ⋆ = λ

(1)
⋆ and cm = c(1)

m and consider rewriting (B.215

.

) about a new center
λ

(2)
⋆ . This gives

yi =
p−1∑
m=0

c(1)
m

1
(di − λ

(1)
⋆)m+1

(B.216)

=
p−1∑
m=0

c(1)
m

1
(di − λ

(2)
⋆ + λ

(2)
⋆ − λ

(1)
⋆)m+1

(B.217)

=
p−1∑
m=0

c(1)
m

1[
1 + λ

(2)
⋆ −λ

(1)
⋆

di−λ
(2)
⋆

]m+1
1

(di − λ
(2)
⋆)m+1

. (B.218)

Using the binomial theorem, we obtain

yi =
p−1∑
m=0

c(1)
m

⎡⎢⎣ ∞∑
k=0

(−1)k (m+ k)!
k!m!

⎛⎝λ(2)
⋆ − λ

(1)
⋆

di − λ
(2)
⋆

⎞⎠k
⎤⎥⎦ 1

(di − λ
(2)
⋆)m+1

(B.219)

=
p−1∑
m=0

c(1)
m

⎡⎢⎣ ∞∑
k=0

(m+ k)!
k!m!

⎛⎝λ(1)
⋆ − λ

(2)
⋆

di − λ
(2)
⋆

⎞⎠k
⎤⎥⎦ 1

(di − λ
(2)
⋆)m+1

. (B.220)

Compared with the multipole expansion

yi =
p−1∑
m=0

c(2)
m

1
(di − λ

(2)
⋆)m+1

, (B.221)

we observe, by equating coefficients with like powers of di − λ
(2)
⋆ , that

c
(2)
0 = c

(1)
0 , (B.222)

c
(2)
1 = ∆λc(1)

0 + c
(1)
1 , (B.223)

c
(2)
2 = (∆λ)2c

(1)
0 + 2∆λc(1)

1 + c
(1)
2 , (B.224)

c
(2)
3 = (∆λ)3c

(1)
0 + 3(∆λ)2c

(1)
1 + 3∆λc(1)

2 + c
(1)
3 , (B.225)

410

and so on, where ∆λ = λ
(1)
⋆ − λ

(2)
⋆ . This means that the vectors

c̄(1) =

⎡⎢⎢⎢⎢⎢⎢⎣
c

(1)
0

c
(1)
1
...

c
(1)
p−1

⎤⎥⎥⎥⎥⎥⎥⎦ , c̄(2) =

⎡⎢⎢⎢⎢⎢⎢⎣
c

(2)
0

c
(2)
1
...

c
(2)
p−1

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.226)

are connected by the linear transformation

c̄(2) = Am
mc̄

(1) (B.227)

with matrix entries

(Am
m)ij =

⎧⎪⎪⎨⎪⎪⎩
(∆λ)i−j

(
i− 1
j − 1

)
i ≥ j

0 otherwise.
(B.228)

We use the notation Am
m to signify that this matrix takes multipole coefficients to other

multipole coefficients. This notation is useful because we will encounter similar matrices
which take multipole coefficients to local Taylor coefficients, as well as matrices which take
local Taylor coefficients to other local Taylor coefficients.

For the local Taylor expansions, we repeat a similar process to the one used to derive the
multipole expansion, but assume that the convergence condition (B.195

.

) is reversed. That
is, we rewrite

1
d− λj

= 1
d− λ⋆ + λ⋆ − λj

(B.229)

= 1
(λ⋆ − λj)

[
d−λ⋆

λ⋆−λj
+ 1

] (B.230)

= 1
λ⋆ − λj

1
1 − d−λ⋆

λj−λ⋆

(B.231)

and assume that |d− λ⋆| < |λj − λ⋆| so that a Taylor series gives the convergent expression

1
d− λj

= 1
λ⋆ − λj

∞∑
m=0

(
d− λ⋆

λj − λ⋆

)m

(B.232)

=
∞∑

m=0

−1
(λj − λ⋆)m+1 (d− λ⋆)m. (B.233)

In this case, the series converges when d is closer to the center λ⋆ than the source λj is to
the center. Similar relative error bounds can be derived for local expansions as for multipole

411

expansions. For this reason, we also truncate the local expansion after p terms. Then a local
Taylor expansion for

yi =
n∑

j=1
xj

1
di − λj

(B.234)

is given by

yi =
n∑

j=1
xj

⎡⎣ p−1∑
m=0

−1
(λj − λ⋆)m+1 (di − λ⋆)m

⎤⎦ (B.235)

=
p−1∑
m=0

⎡⎣ n∑
j=1

−xj

(λj − λ⋆)m+1

⎤⎦
  

bm

(di − λ⋆)m (B.236)

where we have rearranged the summations to exploit similar indexing properties we ob-
served with the multipole expansion. In particular, by computing the local Taylor expansion
coefficients bm using O(pn) operations, it is possible to evaluate the n entries yi by O(pn) op-
erations. Compared with the original sum which requires O(n2) operations, this can require
significantly fewer operations when p ≪ n.

As with multipole expansions, it is useful to be able to convert local Taylor expansion
coefficients b(1)

m for an expansion centered at λ(1)
⋆ to coefficients b(2)

m for a local Taylor expansion
centered at λ(2)

⋆ . We rewrite (B.236

.

) with bm = b(1)
m and λ⋆ = λ

(1)
⋆ in terms of the center λ(2)

⋆

to obtain

yi =
p−1∑
m=0

b(1)
m (di − λ(1)

⋆)m (B.237)

=
p−1∑
m=0

b(1)
m (di − λ(2)

⋆ + λ(2)
⋆ − λ(1)

⋆)m. (B.238)

Grouping di −λ
(2)
⋆ together and λ(2)

⋆ −λ
(1)
⋆ together, we apply the binomial theorem to obtain

yi =
p−1∑
m=0

b(1)
m

[
m∑

k=0

(
m

k

)
(di − λ(2)

⋆)m−k(λ(2)
⋆ − λ(1)

⋆)k

]
. (B.239)

Since we want to find the coefficients b(2)
m in the local Taylor expansion

yi =
p−1∑
m=0

b(2)
m (di − λ(2)

⋆)m, (B.240)

412

we equate coefficients corresponding to like powers of di − λ
(2)
⋆ to obtain

b
(2)
0 =

(
0
0

)
b

(1)
0 +

(
1
1

)
(−∆λ)b(1)

1 +
(

2
2

)
(−∆λ)2b

(1)
2 +

(
3
3

)
(−∆λ)3b

(1)
3 + · · · (B.241)

b
(2)
1 =

(
1
0

)
b

(1)
1 +

(
2
1

)
(−∆λ)b(1)

2 +
(

3
2

)
(−∆λ)2b

(1)
3 + · · · (B.242)

b
(2)
2 =

(
2
0

)
b

(1)
2 +

(
3
1

)
(−∆λ)b(1)

3 + · · · (B.243)

b
(2)
3 =

(
3
0

)
b

(1)
3 + · · · (B.244)

and so on. If we let

b̄(1) =

⎡⎢⎢⎢⎢⎢⎢⎣
b

(1)
0

b
(1)
1
...

b
(1)
p−1

⎤⎥⎥⎥⎥⎥⎥⎦ , b̄(2) =

⎡⎢⎢⎢⎢⎢⎢⎣
b

(2)
0

b
(2)
1
...

b
(2)
p−1

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.245)

then
b̄(2) = Al

lb̄
(1) (B.246)

with

(Al
l)ij =

⎧⎪⎪⎨⎪⎪⎩
(−∆λ)j−i

(
j − 1
i− 1

)
j ≥ i

0 otherwise.
(B.247)

As a final matter, we consider converting the coefficients cm in a multipole expansion
about center λ(1)

⋆ into coefficients for a local Taylor expansion with coefficients bm centered
at λ(2)

⋆ . Since we are dealing with the multipole expansion

yi =
p−1∑
m=0

cm
1

(di − λ
(1)
⋆)m+1

(B.248)

and want a local expansion

yi =
p−1∑
m=0

bm(di − λ(2)
⋆)m, (B.249)

we use the Taylor series

1
(d− λ

(1)
⋆)m+1  

f(d)

=
∞∑

k=0

f (k)(λ(2)
⋆)

k! (d− λ(2)
⋆)k (B.250)

413

to convert the multipole expansion into local expansion form. The derivatives f (k)(d) are
given by

f (k)(d) = (−m− 1)(−m− 2) · · · (−m− k)(d− λ(1)
⋆)−m−1−k (B.251)

= (−1)k (m+ k)!
m!

1
(d− λ

(1)
⋆)m+k+1

. (B.252)

Substituting (B.252

.

) into (B.250

.

), then substituting the resulting expression into (B.248

.

)
gives

yi =
p−1∑
m=0

cm

[∞∑
k=0

(−1)k (m+ k)!
m!k!

1
(λ(2)

⋆ − λ
(1)
⋆)m+k+1

(di − λ(2)
⋆)k

]
(B.253)

=
p−1∑
m=0

cm

[∞∑
k=0

(−1)k

(
m+ k

k

)
1

(−∆λ)m+k+1 (di − λ(2)
⋆)k

]
(B.254)

which we compare with (B.249

.

) to see that

b0 = c0(−1)0
(

0
0

)
1

(−∆λ)1 + c1(−1)0
(

1
0

)
1

(−∆λ)2 + c2(−1)0
(

2
0

)
1

(−∆λ)3 + · · · (B.255)

b1 = c0(−1)1
(

1
1

)
1

(−∆λ)2 + c1(−1)1
(

2
1

)
1

(−∆λ)3 + c2(−1)1
(

3
1

)
1

(−∆λ)4 + · · · (B.256)

and so on. If

b̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
b0

b1
...

bp−1

⎤⎥⎥⎥⎥⎥⎥⎦ , c̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
c0

c1
...

cp−1

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.257)

then
b̄ = Al

mc̄ (B.258)

with
(Al

m)ij = (−1)i−1
(
i+ j − 2
i− 1

)
1

(−∆λ)i+j−1 . (B.259)

Note that when converting multipole coefficients to other multipole coefficients (using Am
m),

local coefficients to other local coefficients (using Al
l), or multipole coefficients to local coef-

ficients (using Al
m), we always perform a matrix-vector multiplication with a p-by-p matrix.

This means that the complexity of converting these types of expansions to other expansions
is O(p2).

We now have the tools required to implement the FMM. To understand how the FMM

414

works, let us consider a simplified example where source and target points are the same
and are distributed uniformly over the interval (0, 1). The FMM begins by bisecting this
interval, and the resulting subintervals until each subinterval contains no more than q < n

points (we will choose q by analyzing the cost of the algorithm). Suppose that the original
interval is labeled as belonging to level 0 of the binary tree used to represent the partitioning
process. The two subintervals produced by bisecting the interval on level 0 belong to level
1 and so on. Since the points are uniformly distributed, the final partition is comprised of
all subintervals belonging to level l − 1. There are 2l−1 subintervals on level l − 1 so that
n ≈ 2l−1q.

The FMM proceeds as follows. First, we compute multipole expansions for each subinter-
val on level l−1 (all multipole expansions are centered at the midpoint of their corresponding
subinterval). Since the coefficients of each expansion can be computed in O(qp) operations
(there are only q sources per subinterval instead of n) and there are a total of 2l−1 subinter-
vals, this costs O(2l−1qp) operations.

Second, we compute multipole expansions centered at the midpoints of the parent subin-
tervals. We do this using the multipole to multipole operator Am

m. For example, to compute
the multipole coefficients for a subinterval on level l − 2, we use two multipole to multipole
operators (one for each child of the given subinterval) to convert multipole coefficients from
level l − 1 to ones on level l − 2. We repeat this process starting from the finest level and
ending at the root of the tree. This is repeated

2l−1 + 2l−2 + · · · + 21 =
l−1∑
i=1

2i (B.260)

= 1 − 2l

1 − 2 − 1 (B.261)

= 2l − 2 (B.262)

times and each application of the multipole to multipole operator requires O(p2) operations.
Third, we use the multipole to local operator Al

m to transfer the effect of well separated
subintervals to each subinterval. A subinterval is well separated from another subinterval if
they belong to the same level of the tree, their parents are neighbors, but they themselves are
not neighbors. There are at most 3 well separated subintervals for each subinterval. We use
the multipole to local operator three times, summing the contribution of each together and
store the corresponding local Taylor expansion coefficients for each subinterval. This means
that we perform O(p2) operations 3(2l − 2) times (there are a total of 2l − 2 subintervals to
perform this step for and each one requires at most 3 multipole to local operators).

Fourth, we use the local to local operator Al
l to transfer the local contributions from a

415

parent subinterval to its children. We do this starting from the root of the tree (although
the root has no local expansion) level by level working toward the leaves of the tree. This
costs O(p2) operations per operator and is applied to all 2l − 2 subintervals.

Finally, we evaluate the local expansion at each leaf subinterval. This costs O(qp) oper-
ations for each subinterval and there are 2l−1 leaves. This computes the contribution of each
source outside the corresponding subinterval and its (at most) two neighbor leaf subintervals.
To obtain the contribution of sources in these remaining three subintervals, we compute the
sum directly, which costs O(q2) operations per subinterval, or 3q2 operations for the three
taken together. Since there are 2l−1 leaves, the total cost of this final step is 2l−1 ·3q2 +2l−1qp

operations.
The approximate total cost of the algorithm as described is

2l−1qp  
step 1

+ (2l − 2)p2  
step 2

+ 3(2l − 2)p2  
step 3

+ (2l − 2)p2  
step 4

+ 2l−1 · 3q2 + 2l−1qp  
step 5

. (B.263)

Since n ≈ 2l−1q, this means that
2l ≈ 2n

q
(B.264)

so that the total number of operations is approximately

np
step 1

+ 2n
q
p2

  
step 2

+ 32n
q
p2

  
step 3

+ 2n
q
p2

  
step 4

+ 3nq + np  
step 5

. (B.265)

If we choose q = p, then this simplifies to

np
step 1

+ 2np
step 2

+ 6np
step 3

+ 2np
step 4

+ 3np+ np  
step 5

= 15np (B.266)

which is linear in the number of source/target points. This is how the FMM achieves linear
computational complexity. The source [61

.

] is the first to describe such a FMM for two-
dimensional electrostatic problems. The development here applies their ideas to the Cauchy
matrix-vector multiplication problem.

In practice, the source and target points need not be the same. In our application,
they are different, but are distributed similarly. In addition, they need not be uniformly
distributed. In such a case, one uses an adaptive FMM. By this, we mean that the same
binary tree is used to partition the interval (0, 1), but that the leaf subintervals may belong to
different levels of the tree. We simply stop refining the tree once a subinterval has fewer than
q = p source points. An adaptive FMM must take into account the non uniform refinement,

416

and does so by categorizing subintervals using a set of four lists (each subinterval has four
lists). The first list is a list of neighbor subintervals (this list was needed in the simplified
FMM as well). The second list is a list of the well separated subintervals for each subinterval
(this list was also used in the simplified FMM). The third and fourth lists only arise in
an adaptive FMM. The third list is a list of subintervals that are smaller than the current
subinterval but whose multipole expansions converge quickly on the subinterval (these are
well separated but not by the strict definition given earlier). Finally, the fourth list is a
list of subintervals larger than the current subinterval whose multipole expansions cannot
be used on the current subinterval (these are not well separated but are also not neighbors).
To populate these lists, on each level l, we refer to subintervals 0 to 2l − 1 listed from left to
right.

To populate List 1, we find a leaf subinterval on level l called j. We then set the left
neighbor to j′ = j − 1. If the left neighbor is less than 0, then there can be no left neighbor.
Otherwise, if the neighbor is a leaf subinterval, we store it in List 1 for subinterval j on level
l and terminate the search for the left neighbor. If the neighbor does not exist (the tree was
not refined to this level), then we need to reduce the level to l − 1 and compute the parent
of the left neighbor (given by ⌊j′/2⌋ where ⌊·⌋ indicates the floor function). Otherwise, we
need to search for the neighbor on level l + 1 with the child subinterval indexed by 2j′ + 1.
We repeat this check until a neighbor is found, or we have determined that no left neighbor
exists. A similar process is performed to find the right neighbor. In that case, the neighbor
is initialized as j′ = j + 1. There is no neighbor if j′ > 2l − 1. Going up the tree, we set the
next candidate neighbor to 2j′, whereas going down, we set it to ⌊j′/2⌋.

To populate List 2, for every subinterval j on level l, we compute the parent i = ⌊j/2⌋
on level l− 1. The neighbors of the parent are iR = i+ 1 and iL = i− 1. Their children are
j′ = 2i⋆ and j′ = 2i⋆ + 1 where i⋆ can be either iR or iL. When j is even, then the possible
members of List 2 are 2iL, 2iR, or 2iR + 1 whereas when j is odd, the possible members are
2iL, 2iL + 1, or 2iR + 1. When determining which members are required, we ignore members
outside the range 0 to 2l − 1, and any member that was not part of the refinement process
of the tree.

To populate List 3, we find a leaf subinterval on level l with index j. Its left neighbor is
j′ = j− 1. If j′ is less than zero, we stop adding subintervals to List 3. Otherwise, if we find
another subinterval that is a leaf, we also stop. If the neighbor is not a leaf but belongs to
the tree, we add descendant 2j′ to List 3 and continue the search with descendant 2j′ + 1 on
level l + 1. If the neighbor does not belong to the tree, we stop the search process. We also
have to perform a similar search for the right neighbor j′ = j+ 1. In this case, we terminate
if j′ > 2l − 1, if j′ is a leaf subinterval, or if j′ does not belong to the tree. If j′ is not a leaf,

417

but belongs to the tree, we add descendant 2j′ + 1 to List 3 and continue the search with
descendant 2j′ on level l + 1.

Finally, to populate List 4, we use List 3. For every List 3 at level l for subinterval j that
is not empty, we add an entry to List 4. If List 3 contains an entry j′ on level l′, then List 4
for subinterval j′ on level l′ should contain subinterval j on level l.

The adaptive FMM proceeds as follows. First, we compute the multipole coefficients
at each leaf subinterval. Then we use the multipole to multipole operator Am

m to compute
multipole coefficients on parent subintervals by starting from the leaf subintervals and work-
ing up the tree. Next, we compute the local expansion coefficients for each subinterval in
the tree using the multipole expansions for subintervals in List 2. This uses the multipole
to local operator Al

m. So far, this is precisely the same as the simplified FMM, although
List 2 may be different from the set of well separated subintervals in the simplified FMM.
Then contributions from subintervals in List 4 are added to the local expansion by directly
computing the local expansion from the sources inside those subintervals. Next, the local to
local operator Al

l is used to compute local expansion coefficients in a downward pass, as in
the simplified FMM. For each leaf subinterval, the contributions from subintervals in List 3
are added to the local expansion coefficients using the multipole to local operator Al

m. Fi-
nally, the local expansion is evaluated at target points on each leaf subinterval. In addition,
the contributions of subintervals in List 1 and of the leaf subinterval itself are evaluated
directly. The sources [58

.

, 59

.

] describe in detail how the adaptive FMM method applies for
electrostatic potential problems in two and three dimensions. The adaptive FMM described
here for the Cauchy matrix is adapted from these sources.

In practice, each multipole and local expansion uses a center of subinterval j on level l
of the tree corresponding to

λ⋆ = 2j + 1
2l+1 . (B.267)

In addition, the radius of a subinterval (half its length) on level l is given by

r = 1
2l+1 . (B.268)

In our development of the FMM, the radius of a subinterval has not been used. However,
in practice, we actually work with scaled multipole and local coefficients to avoid overflow.
It turns out that an appropriate scaling depends on the radius of subintervals. To see why
scaling becomes necessary, consider the entries (B.259

.

) of Al
m. The term

(
i+j−2

i−1

)
grows large

rapidly. In addition, so too does (−∆λ)−(i+j−1) when ∆λ becomes small. When the tree
for the adaptive FMM requires many levels, the conversion of multipole expansions at fine
levels to local expansions can overflow, causing the algorithm to fail.

418

To avoid overflow, we rewrite the multipole expansion (B.215

.

) as

yi =
p−1∑
m=0

⎡⎣ n∑
j=1

xj
(λj − λ⋆)m

(βr)m+1

⎤⎦
  

ĉm

(
βr

di − λ⋆

)m+1

(B.269)

so that βr/(di − λ⋆) is O(1). Typically, we choose β to be a small integer since |d − λj| ≥
2r. This means that the scaled multipole coefficients are related to the original multipole
coefficients by

ĉ = (βr)−1D−1
βr c̄ (B.270)

where

ĉ =

⎡⎢⎢⎢⎢⎢⎢⎣
ĉ0

ĉ1
...

ĉp−1

⎤⎥⎥⎥⎥⎥⎥⎦ , c̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
c0

c1
...

cp−1

⎤⎥⎥⎥⎥⎥⎥⎦ , Dβr =

⎡⎢⎢⎢⎢⎢⎢⎣
1

βr
. . .

(βr)p−1

⎤⎥⎥⎥⎥⎥⎥⎦ . (B.271)

Similarly, we rewrite the local expansion (B.236

.

) as

yi =
p−1∑
m=0

⎡⎣ n∑
j=1

−xjr
m

(λj − λ⋆)m+1

⎤⎦
  

b̂m

(
di − λ⋆

r

)m

. (B.272)

In this case, there is no need to include a scale factor like β because |di − λ⋆| < r. Then the
scaled local coefficients are related to the original local coefficients by

b̂ = Drb̄ (B.273)

where

b̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
b̂0

b̂1
...

b̂p−1

⎤⎥⎥⎥⎥⎥⎥⎦ , b̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
b0

b1
...

bp−1

⎤⎥⎥⎥⎥⎥⎥⎦ , Dr =

⎡⎢⎢⎢⎢⎢⎢⎣
1

r
. . .

rp−1

⎤⎥⎥⎥⎥⎥⎥⎦ . (B.274)

Using the connections (B.270

.

) and (B.273

.

), we can derive scaled multipole to multipole,

419

local to local, and multipole to local operators. For example, from (B.227

.

), we obtain

(β(2)r(2))−1D−1
β(2)r(2) c̄

(2) = (β(2)r(2))−1D−1
β(2)r(2)A

m
m(β(1)r(1))Dβ(1)r(1)  

Âm
m

(β(1)r(1))−1D−1
β(1)r(1) c̄

(1)

(B.275)

ĉ(2) = Âm
mĉ

(1). (B.276)

Based on (B.228

.

), we find that the scaled entries are

(Âm
m)ij =

⎧⎪⎪⎨⎪⎪⎩
(β(2)r(2))−i(β(1)r(1))j(∆λ)i−j

(
i− 1
j − 1

)
i ≥ j

0 otherwise.
(B.277)

By computing the ratios

γ = r(2)

r(1) , δ = ∆λ
r(1) , (B.278)

the entries become

(Âm
m)ij =

⎧⎪⎪⎨⎪⎪⎩
(β(1)γ)−i(β(2))j(δ)i−j

(
i− 1
j − 1

)
i ≥ j

0 otherwise
(B.279)

which are independent of the absolute sizes of the subintervals and only dependent on their
relative sizes. Similarly, for the local to local operator (B.246

.

) we obtain

Dr(2) b̄(2) = Dr(2)Al
lD

−1
r(1)  

Âl
l

Dr(1) b̄(1) (B.280)

b̂(2) = Âl
lb̂

(1) (B.281)

with entries (B.247

.

) becoming

(Âl
l)ij =

⎧⎪⎪⎨⎪⎪⎩
(r(2))i−1(r(1))−(j−1)(−∆λ)j−i

(
j − 1
i− 1

)
j ≥ i

0 otherwise.
(B.282)

Using the scaling

γ = r(2)

r(1) , δ = −∆λ
r(1) , (B.283)

420

gives

(Âl
l)ij =

⎧⎪⎪⎨⎪⎪⎩
γi−1δj−i

(
j − 1
i− 1

)
j ≥ i

0 otherwise
(B.284)

which is independent of the absolute sizes of the subintervals. Finally, for the multipole to
local operator (B.258

.

) we obtain

Dr(2) b̄ = Dr(2)Al
m(β(1)r(1))Dβ(1)r(1)  

Âl
m

(β(1)r(1))−1D−1
β(1)r(1) c̄ (B.285)

b̂ = Âl
mĉ (B.286)

with entries (B.259

.

) becoming

(Âl
m)ij = (r(2))i−1(β(1)r(1))j(−1)i−1

(
i+ j − 2
i− 1

)
1

(−∆λ)i+j−1 . (B.287)

Using the scaling (B.283

.

) gives

(Âl
m)ij = γi−1(β(1))j

δi+j−1 (−1)i−1
(
i+ j − 2
i− 1

)
(B.288)

which is independent of the absolute sizes of the subintervals. For similar scaling used in the
context of adaptive FMM, see [60

.

].
To complete our discussion of the FMM, we remark that in the divide and conquer

algorithm of Section B.4

.

, we also need to multiply by the transpose of Cauchy matrices. The
Cauchy matrix Ĉ with entries

Ĉij = 1
di − λj

(B.289)

has a corresponding transpose matrix ĈT with entries

(ĈT)ij = 1
dj − λi

. (B.290)

Thus to multiply by ĈT , we use the same FMM but interchange the source and targets and
multiply the final result by −1. It is crucial that the direct evaluation code used for the self
interactions and those of the neighbors in the FMM use the accurately calculated differences
τ̄ rather than λ̄ directly, otherwise large errors can occur when the FMM is used together
with the divide and conquer algorithm. This care is not needed when forming multipole
or local coefficients from sources because these expansions are always used away from near

421

singularities in the Cauchy matrix entries.

B.6 Properties of the Dirichlet Eigensystem

In this appendix, we have described a way to perform the local computations required in
the domain decomposition method of Chapter 10

.

using a near linear number of operations.
The method relies on a divide and conquer eigendecomposition algorithm and the FMM
to compute the eigenvalues and eigenvectors of a symmetric tridiagonal matrix efficiently.
In fact, the method described works, with minor modifications, to compute the eigenvalues
and eigenvectors of an arbitrary symmetric tridiagonal matrix, not just those arising from
the finite element method in this thesis. For this reason, in this final section of Appendix
B

.

, we consider the structure of the pentadiagonal matrix for the Dirichlet problem and
its associated two symmetric tridiagonal matrices to see if alternative, more specialized
algorithms can be exploited.

Recall from Sections B.2

.

and B.3

.

that the Dirichlet problem requires the eigensystem
corresponding to the matrix Ad which is the matrix S̃S̃T with the first two rows and columns
removed. The appendix of [190

.

] shows that the eigenvalues of Ad can be related to the roots
of Lommel polynomials (see page 294 of [191

.

], for example). Lommel polynomials Rm,ν(z)
(which are actually polynomials in z−1) satisfy a recurrence

Rm−1,ν(z) +Rm+1,ν(z) = 2(ν +m)
z

Rm,ν(z) (B.291)

with certain useful base cases

R1,ν(z) = 2ν
z
, R0,ν(z) = 1, R−1,ν(z) = 0, R−2,ν(z) = −1, (B.292)

given on page 299 of [191

.

]. The Lommel polynomials are intimately related to Bessel func-
tions. Later, we will use the fact that

2 sin(νπ)
πz

Rm,ν(z) = Jν+m(z)J−ν+1(z) + (−1)mJ−ν−m(z)Jν−1(z) (B.293)

where Jn(z) is the Bessel function of the first kind of order n. In addition,

Jν+m(z) = Jν(z)Rm,ν(z) − Jν−1(z)Rm−1,ν+1(z). (B.294)

These last two relations are given on page 295 of [191

.

]. In our manipulations, we treat m as
an integer and ν as a real number.

422

To see how Lommel polynomials are related to the matrix Ad, we use the method in [192

.

]
(which is for roots of Bessel functions) to construct an eigenvalue problem for the roots of
Lommel polynomials. That is, we let m = n− 1 in (B.291

.

) to obtain

Rn−2,ν(z) +Rn,ν(z) = 2(ν + n− 1)
z

Rn−1,ν(z) (B.295)
1

(ν + n− 1) [Rn−2,ν(z) +Rn,ν(z)] = 2
z
Rn−1,ν(z). (B.296)

Similarly, we let m = n+ 1 in (B.291

.

) to obtain

Rn,ν(z) +Rn+2,ν(z) = 2(ν + n+ 1)
z

Rn+1,ν(z) (B.297)
1

(ν + n+ 1) [Rn,ν(z) +Rn+2,ν(z)] = 2
z
Rn+1,ν(z). (B.298)

We then add (B.296

.

) to (B.298

.

) to find that

1
(ν + n− 1) [Rn−2,ν(z) +Rn,ν(z)] + 1

(ν + n+ 1) [Rn,ν(z) +Rn+2,ν(z)]

= 2
z

[Rn−1,ν(z) +Rn+1,ν(z)] (B.299)

where another application of (B.291

.

) on the right hand side yields

Rn−2,ν(z) +Rn,ν(z)
(ν + n− 1) + Rn,ν(z) +Rn+2,ν(z)

(ν + n+ 1) = 2
z

[
2(ν + n)

z
Rn,ν(z)

]
(B.300)

Rn−2,ν(z)
(ν + n− 1) + 2(ν + n)Rn,ν(z)

(ν + n− 1)(ν + n+ 1) + Rn+2,ν(z)
(ν + n+ 1) = 4(ν + n)

z2 Rn,ν(z). (B.301)

Dividing by 4(ν + n) gives

Rn−2,ν(z)
4(ν + n)(ν + n− 1) + Rn,ν(z)

2(ν + n− 1)(ν + n+ 1) + Rn+2,ν(z)
4(ν + n)(ν + n+ 1) = 1

z2Rn,ν(z) (B.302)

which is a three-term recurrence relation for Lommel polynomials.
Next, we show how this recurrence is related to the matrix Ad. To do so, we need to

consider the two tridiagonal matrices T 1 and T 2 arising from the permuted matrix

P T
2,n/2AdP 2,n/2 =

⎡⎣ T 1 0
0 T 2

⎤⎦ (B.303)

where P 2,n/2 is the usual perfect shuffle matrix that takes the pentadiagonal matrix to

423

two tridiagonal matrices of half the size (see Section B.4

.

for details). We will obtain each
tridiagonal matrix by considering (B.302

.

) with a different value of ν. In each case, we choose
n = 2k + 1 with k = 0, 1, 2, ..., K, which gives equations

R−1,ν(z)
4(ν + 1)(ν) + R1,ν(z)

2(ν)(ν + 2) + R3,ν(z)
4(ν + 1)(ν + 2) = 1

z2R1,ν(z), (B.304)

R1,ν(z)
4(ν + 3)(ν + 2) + R3,ν(z)

2(ν + 2)(ν + 4) + R5,ν(z)
4(ν + 3)(ν + 4) = 1

z2R3,ν(z), (B.305)

up to

R2K−1,ν(z)
4(ν + 2K + 1)(ν + 2K) + R2K+1,ν(z)

2(ν + 2K)(ν + 2K + 2)

+ R2K+3,ν(z)
4(ν + 2K + 1)(ν + 2K + 2) = 1

z2R2K+1,ν(z), (B.306)

which we can write using matrix notation as

T νR̃ν(z) + 1
4(ν + 2K + 1)(ν + 2K + 2)R2K+3,ν(z)ēK+1 = 1

z2 R̃ν(z) (B.307)

where we have used the fact that R−1,ν(z) = 0 and defined

T ν =

⎡⎢⎢⎢⎢⎢⎣
1

2(ν)(ν+2)
1

4(ν+1)(ν+2)

1
4(ν+3)(ν+2)

1
2(ν+2)(ν+4)

. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ , R̃ν(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,ν(z)
R3,ν(z)
R5,ν(z)

...

R2K+1,ν(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.308)

where T ν is tridiagonal. Notice that when zj is a root ofR2K+3,ν(z) such thatR2K+3,ν(zj) = 0,
we obtain the eigenvalue equation

T νR̃ν(zj) = 1
z2

j

R̃ν(zj) (B.309)

with eigenvector R̃ν(zj) and corresponding eigenvalue 1/z2
j . For T ν to be related to T 1 and

T 2, we need to make T ν symmetric. To do so, we scale R̃ν(zj) by a diagonal matrix such
that

R̄ν(zj) = DνR̃ν(zj) (B.310)

424

with

Dν = (−1)ν− 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√

1 + ν
√

3 + ν

−
√

5 + ν
. . .

(−1)K
√

2K + 1 + ν

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.311)

Multiplying (B.309

.

) by Dν and using D−1
ν Dν = I gives

DνT νD
−1
ν DνR̃ν(zj)  

R̄ν(zj)

= 1
z2

j

DνR̃ν(zj)  
R̄ν(zj)

(B.312)

with

DνT νD
−1
ν =

⎧⎪⎨⎪⎩T 1 ν = 1
2

T 2 ν = 3
2 .

(B.313)

Thus the eigenvalues of T 1 are 1/z2
j for R2K+3, 1

2
(zj) = 0 with eigenvectors R̄ 1

2
(zj) and the

eigenvalues of T 2 are 1/z2
j for R2K+3, 3

2
(zj) = 0 with eigenvectors R̄ 3

2
(zj). The union of the

two sets of eigenvalues provides the eigenvalues of Ad, and the eigenvectors of Ad are the
perfect shuffle permutation P 2,n/2 applied to the eigenvectors of each of T 1 and T 2 when
padded with zeros (recall that P 2,n/2 is roughly twice the size of R̄ 1

2
(zj) or R̄ 3

2
(zj)). Note

that this development is similar to the classical orthogonal polynomial treatment of Gauss
quadrature rules via the truncated Jacobi matrix (see Section 9.3

.

for an example and [159

.

]
for more details) although the Lommel polynomials are less well known.

This development suggests that an alternative method to computing the eigenvalues and
eigenvectors of Ad is to better understand the Lommel polynomials. In particular, one must
be able to compute their roots numerically to obtain eigenvalues, and one must determine if
it is possible to efficiently multiply by the eigenvector matrix

V ν = Dν

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,ν(z1) R1,ν(z2) R1,ν(z3) · · · R1,ν(zK)
R3,ν(z1) R3,ν(z2) R3,ν(z3) · · · R3,ν(zK)
R5,ν(z1) R5,ν(z2) R5,ν(z3) · · · R5,ν(zK)

...
...

...
. . .

...

R2K+1,ν(z1) R2K+1,ν(z2) R2K+1,ν(z3) · · · R2K+1,ν(zK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

Rν

(B.314)

where Rν is a type of generalized Vandermonde matrix. To see if this is possible, we use

425

(B.293

.

) to write Lommel polynomials in terms of more familiar functions. In particular,
letting ν = 1

2 , we obtain

2 sin(π
2)

πz
Rm, 1

2
(z) = Jm+ 1

2
(z)J 1

2
(z) + (−1)mJ−m− 1

2
(z)J− 1

2
(z) (B.315)

Rm, 1
2
(z) = πz

2
[
Jm+ 1

2
(z)J 1

2
(z) + (−1)mJ−m− 1

2
(z)J− 1

2
(z)
]

(B.316)

which shows that the Lommel polynomials we are interested in are related to spherical Bessel
functions (since the order of the Bessel functions are integers shifted by one half). Since

Ym+ 1
2
(z) = (−1)m+1J−m− 1

2
(z) (B.317)

= −(−1)mJ−m− 1
2
(z) (B.318)

and

J 1
2
(z) =

√
2
πz

sin(z), (B.319)

J− 1
2
(z) =

√
2
πz

cos(z), (B.320)

(see [193

.

] and [194

.

] for these relations), the Lommel polynomial can be written as

Rm, 1
2
(z) = πz

2

⎡⎣Jm+ 1
2
(z)
√

2
πz

sin(z) − Ym+ 1
2
(z)
√

2
πz

cos(z)
⎤⎦ (B.321)

=
√
πz

2
[
Jm+ 1

2
(z) sin(z) − Ym+ 1

2
(z) cos(z)

]
. (B.322)

Similarly, letting ν = 3
2 in (B.293

.

) and using the same spherical Bessel function properties
gives

2 sin(3
2π)

πz
Rm, 3

2
(z) = Jm+1+ 1

2
(z)J− 1

2
(z) + (−1)mJ−m−1− 1

2
(z)J 1

2
(z) (B.323)

Rm, 3
2
(z) = −πz

2

⎡⎣Jm+1+ 1
2
(z)
√

2
πz

cos(z) + Ym+1+ 1
2
(z)
√

2
πz

sin(z)
⎤⎦ (B.324)

= −
√
πz

2
[
Jm+1+ 1

2
(z) cos(z) + Ym+1+ 1

2
(z) sin(z)

]
. (B.325)

Thus, to compute the eigenvalues and eigenvectors of Ad, we must study the properties of
spherical Bessel functions.

Before doing so, we take this opportunity to explain why one might expect Lommel

426

polynomials to arise in this context. We note that the eigenvalue problem

Adφ̄k = 1
λk

φ̄k (B.326)

arises when computing eigenfunctions of the BVP

d2φk

dz2 + λkφk(z) = 0 (B.327)

subject to homogeneous Dirichlet boundary conditions φk(±1) = 0. It is well known that
the nonzero eigenfunctions of (B.327

.

) are

φk(z) = sin
(
kπ

2 (z + 1)
)

(B.328)

with k = 1, 2, 3, ..., and corresponding eigenvalues

λk =
(
kπ

2

)2

. (B.329)

To see why this problem is related to matrix Ad, we let φk(z) = N̄(z)T φ̄ and discretize
the weak form of (B.327

.

) using the method of weighted residuals. This gives the discrete
problem

− SDLS
T
DLφ̄+ λkS̃S̃

T φ̄ = 0. (B.330)

Since the first two entries of φ̄ must be zero for the homogeneous Dirichlet boundary condi-
tions to hold, this reduces to

− Iφ̄k + λkAdφ̄k = 0 (B.331)

which gives the discrete eigenvalue problem

Adφ̄k = 1
λk

φ̄k. (B.332)

This development is relevant because analyzing the eigenfunctions (B.328

.

) using the
addition formulas

cos(ζ cos(θ)) = 2νΓ(ν)
∞∑

m=0
(−1)m(ν + 2m)Jν+2m(ζ)

ζν
Cν

2m(cos(θ)), (B.333)

sin(ζ cos(θ)) = 2νΓ(ν)
∞∑

m=0
(−1)m(ν + 2m+ 1)Jν+2m+1(ζ)

ζν
Cν

2m+1(cos(θ)), (B.334)

427

from page 369 of [191

.

] reveals the connection to Lommel polynomials. Here, Γ is the Gamma
function, and Cν

n is an ultraspherical (Gegenbauer) polynomial. We need to use both addition
formulas because, like with the splitting of T 1 and T 2, our analysis splits into two sets of
eigenfunctions, those that are even, and those that are odd. To begin, we consider the
eigenfunctions with k = 2l. Letting ζ = lπ, cos(θ) = z, and ν = 1

2 in (B.333

.

) gives

cos(lπz) =
√

2Γ
(1

2

) ∞∑
m=0

(−1)m
(1

2 + 2m
) J2m+ 1

2
(lπ)

√
lπ

C
1
2
2m(z) (B.335)

=
√

2
l

∞∑
m=0

(−1)m
(1

2 + 2m
)
J2m+ 1

2
(lπ)P2m(z) (B.336)

where we have used the facts that Γ(1
2) =

√
π and C

1
2
n (z) = Pn(z) where Pn(z) is an orthogo-

nal (not orthonormal) Legendre polynomial. Since orthonormal Legendre polynomials pn(z)
are related to orthogonal Legendre polynomials by Pn(z) =

√
2

2n+1pn(z), we have

cos(lπz) =
√

2π
∞∑

m=0
(−1)m

(1
2 + 2m

)
J2m+ 1

2
(lπ)

√
2

2(2m) + 1p2m(z) (B.337)

=
√

2
l

∞∑
m=0

(−1)m

√
2m+ 1

2J2m+ 1
2
(lπ)p2m(z). (B.338)

Integrating both sides with respect to z yields

ˆ z

−1
cos(lπz′)dz′ =

√
2
l

∞∑
m=0

(−1)m

√
2m+ 1

2J2m+ 1
2
(lπ)
ˆ z

−1
p2m(z′)dz′ (B.339)

sin(lπz)
lπ

=
√

2
l

∞∑
m=0

(−1)m

√
2m+ 1

2J2m+ 1
2
(lπ)N2m(z) (B.340)

where Nn(z) are the integrated Legendre polynomials. Since

sin(lπ(z + 1)) = sin(lπz + lπ) (B.341)

= (−1)l sin(lπz), (B.342)

we have

(−1)l sin(lπ(z + 1))
lπ

=
√

2
l

∞∑
m=0

(−1)m

√
2m+ 1

2J2m+ 1
2
(lπ)N2m(z) (B.343)

sin(lπ(z + 1)) = lπ

√
2
l

∞∑
m=0

(−1)l+m

√
2m+ 1

2J2m+ 1
2
(lπ)N2m(z). (B.344)

428

To finalize our derivation, we need to rewrite J2m+ 1
2
(lπ) using Lommel polynomials. We use

(B.294

.

) to find that

J 1
2 +2m(lπ) = J 1

2
(lπ)R2m, 1

2
(lπ) − J− 1

2
(lπ)R2m−1, 3

2
(lπ). (B.345)

Since

J 1
2
(lπ) =

√
2
lπ2 sin(lπ)  

0

, (B.346)

J− 1
2
(lπ) =

√
2
lπ2 cos(lπ)  

(−1)l

, (B.347)

we have that

J2m+ 1
2
(lπ) = (−1)l+1

π

√
2
l
R2m−1, 3

2
(lπ). (B.348)

Substituting this expression into (B.344

.

) gives

sin(lπ(z + 1)) = lπ

√
2
l

∞∑
m=0

(−1)l+m

√
2m+ 1

2
(−1)l+1

π

√
2
l
R2m−1, 3

2
(lπ)N2m(z) (B.349)

= 2
∞∑

m=0
(−1)m+1

√
2m+ 1

2R2m−1, 3
2
(lπ)N2m(z). (B.350)

Since the m = 0 term is zero (R−1, 3
2
(z) = 0 for any z), this gives

sin(lπ(z + 1)) = 2
∞∑

m=1
(−1)m+1

√
2m− 1 + 3

2R2m−1, 3
2
(lπ)N2m(z). (B.351)

This last expression shows that when k is even in (B.328

.

), Lommel polynomials and inte-
grated Legendre polynomials can be used to represent eigenfunctions of the second derivative
operator. Compare this expression with the eigenvector R̄(zj). The term

(−1)m+1

√
2m− 1 + 3

2R2m−1, 3
2
(lπ) (B.352)

is closely related to R̄(zj) because zj ≈ lπ for small j. This means that the finite sum∑
m cmR2m−1, 3

2
(zj)N2m(z) with appropriate constants cm tends to accurately represent the

eigenfunctions sin(lπ(z+1)) for small frequencies as one would expect for eigenvectors arising
from a second derivative matrix.

A similar derivation holds for k = 2l − 1 by letting ζ = (2l − 1)π
2 , cos(θ) = z, and ν = 1

2

429

in (B.334

.

). Rather than repeat a similar derivation, the result is

sin
(

(2l − 1)π2 (z + 1)
)

= 2
∞∑

m=0
(−1)m+1

√
2m+ 1 + 1

2R2m+1, 1
2

(
(2l − 1)π2

)
N2m+1(z)

(B.353)
which shows that when k is odd in (B.328

.

), we obtain a similar representation in terms of
Lommel polynomials and integrated Legendre polynomials. In this case, we get

(−1)m+1

√
2m+ 1 + 1

2R2m+1, 1
2

(
(2l − 1)π2

)
(B.354)

corresponding closely with the other set of eigenvectors. By showing these two addition
formulas, we gain intuition as to why the discrete eigenfunctions for Ad behave the way that
they do.

Finally, we close this section with certain suggestions for exploiting the rich analytical
structure of the eigenvalues and eigenvectors of Ad. In theory, the eigenvalues of Ad can
be computed using Newton’s method for each root of R2K+3, 1

2
(z) and R2K+3, 3

2
(z) using a

small number of iterations. Since these functions can be written using Bessel and sinusoidal
functions according to (B.322

.

) and (B.325

.

), they can also be evaluated in O(1) operations
(their derivatives can also be evaluated with the same complexity). For Newton’s method to
converge, suitable initial iterates are required. Initial iterates are simple to find for smaller
roots because of the addition formula derivations above but are not obvious for large roots6

.

.
Once the eigenvalues are computed, fast multiplications with the eigenvector matrices

V ν are required. The key is determining how to perform the matrix-vector product Rν x̄

efficiently. As an example, consider the ν = 1
2 case. Then using (B.322

.

) and the definition
of Rν yields

R 1
2

= JDs − Y Dc (B.355)

where J is a matrix containing Bessel functions of the first kind of odd order plus one half
evaluated at the roots of Lommel polynomials, Y is a matrix containing Bessel functions of
the second kind of odd order plus one half evaluated at the roots of Lommel polynomials,
and Ds and Dc are diagonal matrices with sines and cosines multiplied by

√
πz
2 , all evaluated

at roots of Lommel polynomials. It is difficult to perform the matrix-vector products with
J and Y efficiently. Since Dc is effectively zero for a portion of its diagonal entries, it is
possible to only compute a portion of Y , avoiding singular behavior. It remains to be seen
whether uniform asymptotic expansions for Bessel functions [196

.

, 197

.

] can be leveraged to
perform matrix-vector products with J and Y with near linear computational complexity.

6For large roots, a good asymptotic approximation is needed, which can be found in [195

.

].

430

	Title Page
	Contents
	List of Figures
	List of Tables
	Abstract
	Résumé
	Acknowledgements
	Introduction
	Historical Overview
	Relation to Prior Work
	Thesis Outline

	Preliminaries
	Interpolation-based Numerical Integration
	Interpolation-based Numerical Differentiation

	One-Dimensional Finite Element Methods
	The Variational Formulation
	The Ritz Method
	The Galerkin Method
	Solving the Saddle Point System
	The Classical Finite Element Method
	Adaptive Finite Element Considerations

	A Fast Adaptive Finite Element Method
	Sparsity of the Operator Matrix
	Computing the Forcing Term
	Spatially Varying Parameters
	A Sparsity-Aware Finite Element Method
	Numerical Results

	A Space-Time Finite Element Method
	Space-Time Galerkin Methods
	Boundary Constraints and Lagrange Multipliers
	Space-Time Reflection of a Gaussian Pulse
	Space-Time Simulation of a Fiber Bragg Grating

	Extension to Higher Spatial Dimensions
	The Variational Formulation
	The Ritz Method
	The Galerkin Method
	The Canonical Element in Higher Dimensions

	A Single Square Element
	Problem Specification and Basis Functions
	Legendre Expansions for Spatially Varying Coefficients
	Assembling the Operator Matrix
	Computing the Forcing Term
	Enforcing Dirichlet Boundary Conditions
	Examples

	A Single Curvilinear Quadrilateral Element
	Transfinite Interpolation
	Polynomial Representation for Explicit and Implicit Boundaries
	Solving PDEs on Curvilinear Quadrilaterals
	A Prototypical Curvilinear Example

	A Non-Conforming Finite Element Method
	Quadrilateral Mesh Generation
	A Conforming Finite Element Method
	Including Non-Conforming Constraints
	Adaptive Finite Element Considerations
	Bounded Electrostatic Examples
	Unbounded Time-Harmonic Scattering Example

	Domain Decomposition for Non-Conforming Problems
	The Dual-Primal Algorithm
	A Sparse Basis for the Null Space
	Consequences of this Choice of Basis for the Null Space
	Considerations for the Helmholtz Equation
	Convergence Tests
	Unbounded Time-Harmonic Scattering Examples

	Conclusion
	Future Work

	Bibliography
	The Fast Legendre Transform
	The Fast Chebyshev Transform
	Legendre to Chebyshev Connection Coefficients
	Factorization of the Hankel Part
	Fast Toeplitz Products
	Computing the Hankel and Toeplitz Seed Vectors
	Finalizing the Algorithm

	Fast Legendre Solvers
	Generalized Sylvester Equations
	Preconditioners for the Helmholtz Problem
	Partial Diagonalization
	Divide and Conquer Eigensolvers
	The Fast Multipole Method
	Properties of the Dirichlet Eigensystem

