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Abstract

We investigate both directed and elliptic flow and linear momentum transfer in inter-
mediate energy heavy ion collisions. The model that we have adapted for this work
is the BUU transport equation solved with a momentum-dependent lattice Hamilto-
nian algorithm. We introduce an extension of this transport model that consistently
takes into account the momentumn-dependent in-medium modification of the nucleon-
nucleon collision cross section. Comparison with linear momentum transfer data
favours a soft momentum-dependent nuclear mean field of compressibility K=215
MeV. Analyvsis of higher energy elliptic flow data favours a momentum-dependent
over that of a momentum-independent nuclear mean field. Furthermore. we find
that both the linear momentum transfer and elliptic flow data favour an in-medium

nucleon-nucleon cross section over the free space cross section.
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Résumeé

Nous étudions le flot dirigé. le flot elliptique et le transfert d’'impulsion linéaire
dans les collisions d’ions lourds aux énergies intermédiaires. Pour ce faire, nous
avons utilisé un modele BUU avec un algorithme hamiltonien sur réseau et un champ
moyen qui dépend de l'impulsion. Nous généralisons le modeéle en introduisant une
évaluation self-consistante de la section efficace nucléon-nucléon dans le milieu. Des
comparaisons avec des données sur le transfert d'impulsion linéaire suggerent un
champ moven qui dépend de I'impulsion. avec une compressibilité d’environ 215 MeV.
Des résultats conséquents sont obtenus en examinant les résultats de flot elliptique a
plus haute énergie. Nous constatons un raprochement global des résultats du modéle
avec les données expérimentales avec l'usage de sections efficaces qui découlent du

champ moven avec une dépendance en impulsion.
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This work completes a five vear investigation of intermediate energy heavy ion colli-
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are contained in the momentum-dependent lattice Hamiltonian solution for the mean
fields. This is the first implementation of such a model and as such has increased
the predictive power of the BUL model at low energies. In addition we have, for the
first time. implemented a self-consistent in-medium nucleon-nucleon scattering cross
section. thus consistently taking into account the effects a momentum-dependent po-

tential has on both the mean field and the in-medium nucleon-nucleon cross section.
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Chapter 1

Introduction

For the past two decades. the study of heavy ion collisions has been very popular.
The impetus for this trend arose from the need to better understand the behaviour of
matter at extreme densities and/or temperatures. Extreme in this case is defined as
matter at and around several times the density of an atomic nucleus. Early nuclear
physics experinmients led to the discoverv of the lacter to be about 0.16 nucleons per
cubic fm (1 fm=10"'" m)[1]. In addition. theoretical modeling of supernova and
neutron stars implied the need to understand the behaviour of matter up to ten
times this density[2. 3. 4]. In these studies. the matter is typically characterized
by the compressibility[5. 6. 7] of the equation of state.! Furthermore. more recent
advances in high energy nuclear physics have predicted the existence of a new state of
matter. the quark-gluon plasma. which is also expected to appear at high densities
and/or temperatures[3. 9]. Thus. there are many active areas in nuclear physics
and astrophysics where the need to understand high density matter is imperative

and thus a study of the properties of nuclear rnatter® is warranted. To date, the

1From here-on we refer to the incompressibility coefficient as the compressibility K. This quantity

is a measure of the change in volume of a system with respect to changes in pressure.
2Nuclear matter is formally defined as a uniform collection of an equal number of neutrons and

protons extending out to infinity and is an idealization meant to approximate the conditions inside

a large nucleus.



Chapter 1: Introduction 2

most practical avenue to embark on a study of dense nuclear matter is via heavy ion
collisions.

The term “heavy ion” generally refers to an atomic nucleus with a mass in excess
of the alpha particle (nucleus of a helium atom) mass of A = 4. Typically how-
ever. it refers to an atomic nucleus with 10—200 or more nucleons. A schematic
diagram of a heavy ion collision is presented chapter 5 in figure 5.1 on page 82.
Traditionally, the study of heavy ion collisions was conducted with a single beam
of nuclei directed on a fixed target. As higher centre of mass energies were desired,
collider geometries were adopted. The energy range available today spans a region
of about 5 orders of magnitude from the Coulomb barrier (a few MeV per nucleon)
to nucleon-nucleon centre of mass energies of ~ 200 GeV. As the energy range at
which collisions of heavy nuclei can be studied is large. many physical mechanisms
can enter the picture: from sub-Coulomb barrier fusion at low energies. to single and
composite particle production at intermediate energies. to high energy particle pro-
duction accompanied by complete disassociation of the nuclei at high energies. At
ultra-relativistic energies. QCD predicts a phase transition to a new state of matter:
the quark-gluon plasma[8]. In an attempt to gain an understanding of the physics
at work in these various scenarios. many dvnamical models have been developed in
the past and we will touch on a few of them.

The Fireball model{10. 11. 12] was an early realization that treated the collid-
ing nuclei thermodynamically. In general. the participant regions were assumed
to completely fuse in the initial stages of the collision. The total centre of mass
energy present in this quasi-compound-nucleus was then shared among its con-
stituents. The quasi-compound-nucleus was then allowed to expand to some pre-
scribed freeze-out density after which the nucleons were assumed to stream freely
into vacuum. The temperature of the system at the freeze-out density determined
the momentum spectrum of the system. The Cascade model[13, 14] attempted to

include two-body scattering process not present in the Fireball model by treating
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the nucleus-nucleus collision as a succession of binary nucleon-nucleon collisions.
Although this model does have some success at high energies (in fact, a more so-
phisticated realization of this idea is presently used to model collisions of ultra-
relativistic nuclei), the exclusion of bulk nuclear properties. such as nucleon binding
energies results in unrealistic behaviour at low energies. as is also the case with the
Fireball inodel. Other models which have attempted to incorporate effects of the
nuclear potential are the time-dependent Hartree-Fock model (TDHF)[15, 16. 17],
the quantum-molecular-dynamics model (QMD)[18. 19, 20]. and the Boltzmann-
Cehling-Uhlenbeck model (BUU)[21. 22|. In the QMD model. the cascade algorithm
(for two-body and higher scattering processes) is used in conjunction with a nuclear
many-body potential calculated by summing nucleon-nucleon two-body and three-
body interactions. The TDHF model treats the nuclear potential in the Hartree-Fock
mean field approximation[23. 24. 23| originally used in the study of electron plasmas
and does not contain erplicit two-body interactions. The BUU model also uses a
mean field nuclear potential. Coupled to this is a cascade algorithm that attempts
to build in the nucleon-nucleon collisions. This is the model we adopt in this work.

The main features of the BUU model are the inclusion of a mean (potential
energy) field and a cascade algorithm which attempts to model individual nucleon-
nucleon collisions. The first accounts for the fact that a nucleon inside a nucleus
feels a force due to the presence of the other nucleons. Any realistic description of
a nucleus demands this scheme. The nuclear potential in this model is implemented
via a mean field which. for a single nucleon, is computed by averaging the potential
energy contributions fron: all neighbouring (not necessarily nearest neighbors only)
nucleons. The mean field in this case will have nuclear, Coulomb and isospin con-
tributions. Traditionally, the latter two which serve to distinguish the differences
between a neutron and a proton were ignored as the BUU model was applied at
energies where such effects were minimal. However. for low energy studies, these two

effects can become significant and their inclusion is thus necessary. We will discuss
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the mean field potential in greater depth in a forthcoming chapter. For now, we
point out that although many authors utilize a BUU mean field that depends solely
on density. there is strong experimental evidence in favour of a nuclear mean field
that depends on both density and momentum[26]. In addition, comparison of BUU
model simulations with experiment are strongly in favour of a mean field that in-
cludes density and momentum dependence as opposed to just a density dependence.
We return to this point in chapter 3. For the cascade input. nucleon-nucleon colli-
sions are permitted to occur under certain circumstances. One of these for instance
is directly related to the nucleon-nucleon cross section, as the transition rate for
two-nucleon scattering processes is directly tied to this quantity. As we shall see
shortly. the value of the nucleon-nucleon cross section is modified in the presence of
the nuclear medium. In particular. this modification will also depend on the form
of the mean field potential{27]. In this work. we adopt a parameterization of the in-
medium nucleon-nucleon cross section that is unique to momentum-dependent mean
field potentials and show tor the first time its relevance in the dynamics of heavy
ion collisions. The other condition which must be met is included in order to satisfy
symmetry properties of the nucleons. which are half-integer spin fermions. This fea-
ture is generally referred to as “Pauli blocking”. as it attempts to prevent scattering
into occupied states.

The BUU model is typically solved via the test-particle method(22. 28], in which
the nucleon phase space distribution is projected onto a collection of point particles.
The nucleon dynamics are then realized by the correspondence between the nucleons
and the test particles. The test-particle solution for the BUU equation has in the
past shown success in describing observables derived from heavy ion collisions in the
energy range of a few hundred Me\" to about 2 GeV per nucleon[22]. However, the
test-particle method can do a poor job at conserving energy. and for low energy
collisions. this presents potentially important technical problems. In particular, for

momentum-dependent mean field potentials, the energy non-conservation can be
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quite drastic[29].

The lattice Hamiltonian algorithmi30| is a generalization of the test-particle
method that has provided for solutions of the BUU equation which exhibit ex-
cellent energy conservation. This method has in the past been implemented for a
momentum-independent nuclear mean field potential[30]. However, due to its numer-
ical complexity. a latrice Hamiltonian algorithm for momentum-dependent nuclear
mean fleld potentials has in the past not surfaced. In this work, we extend, for the
first time. the lattice Hamiltonian algorithm to incorporate momentum-dependent
potentials® and apply the model thus realized to the study of low to intermediate
energy heavy ion collisions.

Before we move on. it is instructive to consider some typical observables for heavy
ion collisions as the validity of our model will be based on its ability to reproduce
experimentallv measured signals. Ve first consider a form of large scale collective
motion. which is denoted by “flow™ (for example. see [32]). In the course of a
heavy ion collision. one of the main characteristics observed from experiments is
the evidence of large scale collective motion indicative of fluid-like behaviour. An
example of collective motion can be visualized by considering the compression of
a sealed balloon along one axis. In rthis case. the balloon expands along the free
axes. that is the axes where there is no compression. This expansion/compression
is an example of a collective effect. Collisions of heavy nuclei also can display this
behaviour. The head-on collision of two nuclei for example will produce a similar
effect. For collisions with a non-zero impact parameter (c.f. figure 5.1) however,
the direction of expansion is no longer syvmmetric about the reaction plane. As
the spectator matter is predominantly in the reaction plane. early expansion in the
latter is hindered and expansion is generally favoured out of the reaction plane. This
asymmetry in the expansion pattern is known as elliptic flow[33]. We discuss the

elliptic flow in more detail in chapter 6. In addition to the elliptic flow. colliding nuclei

3After our work was completed. we became aware of a parallel realization of this model [31].
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can exhibit both attractive and repulsive flow. To imagine this, consider two nuclei
on a collision path with a non-zero impact parameter. As the nuclei collide, several
mechanisms can take place. For instance. the nuclei can “bounce off” one another,
thus being deflected off their original paths. attaining momenta transverse to the
beam direction. As thev (the nuclei) still carry some of their forward momentum.
the net effect is a flow of nucleons away from the interaction region. This is the
commonly used “text-book™ picture used to describe the scattering of two particles
and is shown schematically in figure 3.1. This is an an example of repulsive directed
flow. In addition to this repulsive behaviour. at low energies the attractive part of
the nuclear mean field can dominate. Thus. instead of the nuclei being deflected
away from one another. theyv temporarily exist in a bound meta-stable state and
partially orbit as theyv pass by one another. Eventually. the nuclei release. This is a
case of attractive directed flow. Both of these two flow mechanisms are also known
as directed in-plane flow: that is to say most of the dynamics takes place in the
reaction plane. In this work. we investigate the elliptic flow at intermediate energies.
and show that this observable serves to distinguish the functional character of the
nuclear mean field. It can also serve to characterize the in-medium nucleon-nucleon
collision cross section. The study of directed flow has also served to characterize
these two features of nuclear matter. We also perform a study of directed flow at
low energies.

Another observable often studied in heavy ion collisions is the linear momen-
tum transfer{34. 35. 36]. This observable mainly concerns itself with the opacity (or
inversely. the transparency) of nuclear matter. This quantity essentially character-
izes the ability of nuclear martter to absorb momenta and as such can be useful in
extracting the in-medium nucleon-nucleon cross section. In addition, the momentum-
dependence may also play a role in the linear momentum transfer. We will perform
a study of this behaviour in a forthcoming chapter.

The remainder of this work is organized as follows. Chapter 2 introduces the
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many-body nuclear problemn anc presents us with a transport equation to be utilized
for a dyvnamical description of nuclear matter. Namely, the BUU equation. Chapter
3 presents us with the ingredients necessary for obtaining a solution of the BUU
transport equation. that is. the mean field potential and nucleon-nucleon collision
cross section. The bulk of these first two chapters serves to provide the theoretical
background material necessary for further development of the model presented here.
Chapter 3 concludes by introducing the in-medium nucleon-nucleon cross section
we have adopted that is specific to monientum-dependent nuclear mean field poten-
tials. In chapter 4. we show how we adapt the nuclear matter idealization to finite
nuclei. In addition. this chaprer presents the momentum-dependent Lattice Hamil-
tonian (numerical) solution we have chosen in this work. Furthermore we address
some of the performance issues present in the numerical solution in terms of energy
and momentum conservation. \We also examine qualitative features of the model as
applied to collisions of heavy ions. Once our model has been developed. we go on
to test its validity in terms of comparison with experimentally measured signals. In
chapter 5 we examine both directed flow and linear momentum transfer in the energy
regime of £y /4 ~ 20 — 150 MeV and test the predictive power of our model against
recent experimental measurements[37]. In chapter 6 we perform an investigation of
elliptic flow in the energy regime of £;/4 ~ 200 — 1000 MeV and compare with

some recently measured elliptic fiow signals(38]

pe



Chapter 2

The TDHF and BUU equations

In this chapter., we introduce the basic tools required for a transport description
of heavy ion collisions. We first show what our input wave function should look
like along with the corresponding operators required to extract observables. Then.
we present the time-dependent Hartree-Fock equation (TDHF) as a mean field ap-
proximation to this many-body svstem with a non-zero interaction potential. We
also extend the TDHF equation to a semi-classical regime which is governed by the
Vlasov equation. Finally. we write an extension of the Vlasov equation which at-
tempts to re-incorporate inter-particle correlations that have been integrated out via
the mean field. This extension is referred to as the Boltzmann-Uehling-Uhlenbeck

(BUT) equation.

2.1 Basic Ingredients

2.1.1 Many-Body Wave Function

One of the main goals in describing transport phenomena in heavy ion collisions is
to describe the time evolution of a large system of nucleons subject to some physical
constraints such as conservation laws and the reproduction of bulk nuclear properties.

The quantum nature of such a system demands that it be describable in terms of a

8



Chapter 2: The TDHF and BUU equations 9

wave function whose evolution is given by the time-dependent Schrédinger equation

(TDSE):
iﬁ—-.cz-kll{v"‘.f) = HU(F. t). (2.1)
ot :

Here, H is the Hamiltonian operator and ¥(7.t) is the wave function of the many-
body system. As the wave function contains information about all particles in our
svstem and their murtual interactions. solutions of (2.1) are in general difficult if
not impossible to construct. We thus have to abandon solving (2.1) from a first-
principles approach and adopt phenomenological methods. To aid us here. we adopt
the Hartree-Fock approximation[23. 24. 25]. In this picture. it is assumed that the
total wave function can be separated into independent particle wave functions. Fur-
thermore. since this total wave function represents a collection of spin 1/2 nucleons. it
must obey Fermi statistics. and thus exhibit the proper anti-symmetrized behaviour!.
The Slater determinant provides rhe means with which we can construct our wave
function{39]. In the following. we mean 0,(7,) to be a single-particle wave function
characterized by generalized coordinate g; with quantum numbers a. The totally

anti-symirnetric many-body wave function for a system of A fermions reads:

Oalqt) o3(q) -+ oulq)
\ 1 i 9a(q2) 03(q2! --- o.(q2
U(g1-g2-- 7 Ga) = —=| ! 3(,q (_Q)
v.-i.i -
1 Valga) 03(ga) - ou(ga)
1 , ) :
= ﬁ;(:l)”’P(oa(ql)oa(qz)---ou(qA)), (2.2)

where P is the permutation operator and we must sum over all permutations. The

factor of (£1)? in the last step forces ¥ to be totally antisvmmetric and is equal

!The original Hartree approximaticn used a simple product of wave functions. thus neglecting
the fermionic nature for half-integer spin particles present in this theory. The anti-symmetrized

version of the Hartree approximation is known as the Hartree-Fock approximation.
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to (-)+1 for (odd) even permutations. The time-dependence in the above wave

function(s) from here-on is assumed.

2.1.2 Kinetic and Potential energy operators

In the previous section. we introduced one of the ingredients necessary for describing
our many-body svstem. naniely. the wave function. From equation (2.1) we will
also need the specific form of our Hamiltonian operator. We will work in second
quantization(40]. In this notation. the Fermion creation and annihilation operators

satisfv the anti-commurtation relations:

{ca. a..i} = da3
{aa.a3} = 0
{al.a}} = 0. (2.3)

where {a,.u3} means aqu; + aza, and the Greek letters specifvy any complete basis.
The total kinetic energy operator. which is a one-body operator reads:

-

T = Z<a{f[;]>a£a5
ad
= Ztojal;aj. (2.4)
ad

For the potential energy operator. we must consider two or more single-particle state
functions. as this operator speaks in terms of interactions. In other words. the
potential energy operator - operates hetween two (in general. this can be extended
to many) single-particle states®. In second quantized notation, for the two-body

potential energy operator. we have:

<a3le}v6> alalasa,

ad~d

Vo=

N

| =

= : Z Ua3+yé afla'jaaa.,. (2.0
ad~é

*In the interest of simplicity. we consider for now two-body potentials only.
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We now have our kinetic and potential energy operators as well as our many-body

wave function. This puts us in a position to calculate the energy expectation values.

2.1.3 Expectation Values

The measurable elements of a quantum mechanical system are the expectation values
of the system. They are probabilistic quantities which represent the average value (of
a particular observable) that we would expect by performing the same measurement
on a svstem many times. [n the language of quantum mechanics, expectation values
can be shown to be the product of the wave function probability density times
the eigenvalue we wish to measure integrated over all possibilities, where the total
probability is normalized ro one. We wish to find the expectation values for the

operators discussed in the previous section. The total kinetic energy expectation
. value is
<T> = <¥T|¥>

= Y to3 <¥lalaz¥>
ad

= Ztajpjo' (2.6)
ad

In the above. the one-body density matriz is identified as p,3 =< lI'[a:[,aml‘l[l > and
plays the role of the quantum analogue of the classical phase space density. For a
detailed discussion on the one-body density matrix. the reader is referred to [11].

For the potential energy expectation value we write using (2.5)

<V'> = <¥|V|¥>
1 . _
= 3 Z Uag~é <‘I’§a3agu§a,?|\ll> . (2.7)
~ advd
’ Notice that it appears as though we do not have a one-body density analogous to the

Kinetic energy case. In this expression. we have a two-body density matrix. However,

since our total state function |¥ > is written as a Slater determinant. the two-body
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density matrix is factorizable as one-body density matrices as shown in the appendix

A.l. The result for the potential energy expectation value is shown below,

<V'> = > Uadvé (PvaPs3 — PsaPrg)- (2.8)

EE:; y

N for—

We see from equations (2.6; and (2.8) that we can specify the total energy of our
svstem completely in terms of the one-body density matrix. This is not an accident.
but is a direct consequence of the toral wave function. which is a Slater determinant.
As previously mentioned. by assuming that we could specify the many-body system
with a collection of single-particle wave functions. we have adopted a mean field
approach. This approach allows one to treat any particle interactions as an average
or mean arising from all the particles in the system. \We will exploit the ability of
the one-body density matrix to rotally describe the system to gain insight into the

dynamics of the many-body problem.

2.2 The TDHF equation

Starting from the one-body density matrix
Pos =< Wlalag|V>. (2.9)

we write the time derivative as:

Pa3 = (% <‘Il[) abaa|¥ > + < \Illaga(1 (%[‘I’ >)
The terms in the brackets can be taken directly from the (state space representa-
tion) time-dependent Schrodinger equation. where in this picture, all dvnamical in-
formation is contained in the wave function and the operators are time-independent.
Insertion of equation (2.1) and its complex conjugate into the above along with the
use of the Jacobi identity [A. BC] = [4. B]C + B{A. C] gives the following result:

) 1 T : v
faz == < ¥|[a}. Hlaa + alfan, H]|T> . (2.10)
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In the above result. H = T + V¥ where the kinetic and potential energy operators
are given by equations (2.4) and (2.3) respectively. The right hand side of equation
(2.10) can be recast in terms of the one-bodyv density matrix and single-particle
kinetic and potential energy operators by use of the fermion creation and annihilation
anti-commutation relations already introduced and by the single-particle potential
energy operator? which we now introduce as:

Ues =< i3 >= Z(uaud‘, — Vauw3d)Puy- (2.11)

uy

With the single-particle Hamiltonian (operator) h = =i where £ and @ are the single-
particle kinetic and potential energy operators respectively, and following appendix

A.2. the time derivarive of the one-body density matrix now reads:
i 1 . .
Pas == (<alhlp> pus = pau <ulhl3>). (2.12)
-+

We see that both ¢ and & from above act as one-body operators. The fact that the
potential operator is written as a sum over basis states and the two-particle potential
energy operator evaluated over all pairs of states reflects the mean field nature already
discussed. Equation (2.12) is the time-dependent Hartree-Fock (TDHF') equation for
the one-body density matrix. This is a purely quantum mechanical result which
uses a mean fleld to characterize the total potential energy in the system. It is a
non-linear self-consistent* equation used in the context of many-electron atoms[42].
It has also been used in the past in the study of electron plasmas[25] and heavy ion
physics [16. 22. 43]. For an alternate derivation of the TDHF equation using the
Ritz variational procedure. the reader is referred to the references [25, 44, 45].
Before we go on. we mention that the total energy of our system is obtained from

the expectation value of the total Hamiltonian. that is, E=<H >=<T> + <V >.

3This is the so-called Hertree-Fock potential energy operator.
iThis can be seen most easily by considering the close connection that equations (2.12) and

2.1) share. In the TDSE. the potential energy expectation value is obtained once we have an
eigenfunction of this operator. However. since the operator itself depends on this eigenfunction. we

have a self-consistency requirement.
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where the total kinetic and potential energy expectation values are from equations
(2.6) and (2.8). We note the connection between the total energy of the system and

the single-particle energies via the functional derivative:
———— = a3 + Ua3 = haj. (2.13)

where and u,3 is the Hartree-Fock potential energy operator from equation (2.11).
The hqs is the single-particle Hamiltonian. Note that it is the <H > that gives the
total energy in the system. The single-particle Hamiltonian £ is the energy a particle
would have in the presence of many other particles. It has been termed the “energy

of removal” by Koopmans([46. 47. 48].

2.2.1 The Vlasov Equation

The previous section showed how we can describe the time evolution of a many-
body system characterized by single-particle wave functions in terms of the one-body
density matrix. We can expand on this result a lictle further to obtain another closely
related transport equation. Recall that the TDHF equation (2.12) is written in terms
of a general basis ja >. If we male a basis transformation to a continuous basis |€>
(where for example :£> can be the configuration space basis [7> or the momentum

space basis [p>). the TDHF equation then reads:

pEg) = /13‘” (h(€.€M)p(E". &) — p(E.EMR(E".§)) . (2.14)

Now let us consider a Wigner integral transform of the continuous basis one-body

density matrix. The two transforms below are equivaient.

o3l
'“u
Nl"o

fo(F.5) = () /d?\e-ls g s

_ 3 _-ip:5/h
- (2ﬁh)3 [&s e

In the above. we have introduced the compact notation ps = p(7,7'). Taking

(2.15)

»iwy
B
|
Whey

the time derivative of the Wigner integral transform and using equation (2.14), we
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obtain the following two equations where we have used the first of (2.15) for the

kinetic contribution and the second for the potential contribution.

fhing = = L 1 +iFF,
ff"‘(r.p} = i—hm—n);‘//dasdsp’e /h

X (ti-i-s'/‘.’..ﬁ"pﬁ",ﬁ'—;'/'.’ — Pp-i/25 tp".i—s‘/'.))

fpat | = = 1 1 : —i55)
fENF. D) ;Em;//dlsdar'e ps/h

x (UF—'-;/Q,F',OF',‘—’/'_' = PF-s5 27 llr".f-'-s'/-z) (2.16)

-

tyesog = 5—9(F+5/2-p").
For the potential terin. if we assume that & is local. that is. & is a function of position
only®%. then we can write the matrix element for the potential term as:

Ur g/ = U(l-'lits(l-.‘{" .;/.7. - F’) (217)

From here. the kinetic and potential terms are relatively straightforward to calculate.
However. for the potential term. we must go through a bit of algebra (see appendix

A.3) and use the single-particle mean field potential introduced in equation (2.17)

to obtain:
Sin g — — o -
femep) = - ("‘—"') fulF )
m
. 2 h
fEUFp) = ESin(;Vp"Vr‘) u(F) fulT. D). (2.18)

Now. we will make a semi-classical approximation that £ is small. so that only the

first term in the sin function above survives’. This approximation also requires u(7).

5Note that we have already Jdone this in writing equation (2.16).
51 is said to be diagonal in the coordinate space basis used here. In principle, it can also depend
on momentum. In this case. the momentum-independent part of i is evaluated for fixed § as given

on the left hand side of equation {2.16) in f,f,'"(f". D).
"Note that in this semi-classical approximation, we have only kept terms linear in k in the

operators. the Wigner function however still contains £ to all orders.
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to be a slowly varving function of 7 (i.e. so that the high order derivatives are
negligible). We now arrive at the Vlasov equation for the Wigner function f, (7, p).
ofulr.p) P

- LS (7 B) - Cru(R) - SafulFP) = 2
S LS (R B - VruR) - SafulFB) =0 (2.19)

Recall that we have assumed a single-particle potential that depends only on
position. To generalize this to a potential which includes some momentum depen-
dence. the following steps are taken. Split the potential into terms containing no
momentunm-dependence and the other terms containing momentum-dependence. For
the latter. we follow the same procedure in evaluating the time derivative of the
Wigner transform as was done for the kinetic term . With this. the g/m in equa-
tion (2.19) is replaced with V;/i. the momentum space gradient of the single-particle

Hamiltonian A. The latter is written as

!
M

hMr.p) =

+u({r.p). (2.20)

4t

m

which in general contains both position and momentum-dependent terms in the
single-particle potential. As there is no dependence upon position in the kinetic
energy term. we can also replace the Vru(F) in equation (2.19) with V-h. Note that
equation (2.20) is the continuous basis representation of equation (2.13).

The Vlasov equation is essentiallv the TDHF equation in a semi-classical trunca-
tion scheme. Both equations imply the same self-consistency requirement. The essen-
tial difference is in the generating “function”: density matrix in TDHF and Wigner
function in Vlasov. Both the TDHF and Vlasov equations are time-dependent solu-
tions to the many-fermion problem. The reader is referred to {49, 50] for a discussion
of the Vlasov equation. and to [50. 51. 52] for a discussion of the TDHF equation.

The question arises as to whyv we introduced the Vlasov equation at all when
we already had the TDHF equation. To answer this, we turn back to the Wigner
transforms already introduced. Consider the following properties of f,, integrated

separately over momentum and configuration space:

. 1 —iFs)i
/d:"wa("-,.D) = m//dapdase P51 pes s, 7—512
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r - 1 : +iSF
-/ dSrfw(?Z p o= ‘('E_TBF / f drdise’ /hpﬁ-i-s'/‘l.ﬁ-*i'/‘l

= g(p)

In the above. notice that p(7) is the ordinary configuration space density, while
g(p) is the ordinary momentum space density. So, it is evident that the Wigner
transform of the one-body density matrix behaves in some respects like a classical
phase space density®. In short. the Wigner transformn acts as a transition from
quantum to classical mechanics. See [33. 54. 35. 36] for a discussion. With this
correspondence between the Wigner function and the classical phase space density,
the Vlasov equation is then written as a transport equation for f(r.p), the classical

phase space density.

. 2.3 The BUU equation

In the previous section. we introduced the semi-classical Vlasov equation which de-
scribes the time evolution of the continuous classical phase space density®. The
Vlasov equation (2.19) tells us how the latter will deform over time due to both
particle!® momenta (the second term in the Vlasov equation. also known as the
streaming term) and a force term (third term in the Vlasov equation). In the anal-
vsis up to now. we have neglected an additional term that can alter f(7.p). Specif-

ically. this term arises from hard!! collisions between the discrete particles. each

STt is understood that the Wigner transform is not positive definite, whereas the classical phase
space density is. It is assumed that this will not be problematic (see the supplied references for a
discussion).

9Strictly speaking. f(7.7) is built up from a collection of many discrete particles each with a
well defined position and morientum.

10Particle here means a point in the classical phase space density.
. !By hard collisions. we mean collisions processes higher than one-body processes. The interaction

of the nucleons with the mean field is an example of the latter. In contrast, hard collisions can be
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Figure 2.1: Two-particle scattering process taking the initial momentum

states p and p) to the final momentum states 5’ and p'.

with well-defined phase space coordinates. We note that the adoption of the mean
field (one-body term) has averaged out these interactions (two-body and higher pro-
cesses). We consider our collisions to take place at the same point in configuration
space {i.e. local collisions). In this work we are mainly concerned with low energy
and density scenarios. For this reason. we consider only binary elastic collisions. In
figure 2.1 we display such a scattering process. Consider a volume in phase space
Q = §3rd3p . such that p resides inside this volume element. If these two particles
scatter such that the final momenta of 5. namely p’. lies outside €. then this repre-
sents a loss term to the phase space density f(7. 7). The rate at which particles leak

out of Q will be proportional to the following quantities:

e the density of particles located at both f(7.p) and f(7.p1) that can undergo

the scattering process in figure 2.1.
o the rate at which the scattering process in figure 2.1 takes place.

e the number of empty sites (phase space regions) in the final state. namely

(1= Bf(75") and (1~ £ (7. 57)).

two (and-higher) nucleon scattering processes for example.
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The last condition is a restatement of the Pauli exclusion principle which in this
case states that the scattering process in figure 2.1 cannot take place if the final
state phase space is already maximally populated. In the above. h3 is the volume of
a 6-dimensional phase space element and ¢ is the nucleon spin/isospin degeneracy.
Without providing here a formal derivation (c.f. [57, 538]). we show the loss term

below:

fr(Fp) = /ch[dQ

_é’__ﬁ'_l do(P+pr = D' +P1)
m m dQ

3
x f(ﬁﬁ)f«.f.mu—%f(ﬁﬁ'))(l——g-f(aﬁa)). (2.22)

This result is easily understood: the first two terms in the integrand. the first two
distribution functions and the last two terms in brackets are the scattering rate, the
density of initial states and the number of empty final states respectively. There is
also a corresponding gain term. which will account for the inverse of the collision
depicted in figure 2.1. In this case. the scattering process scatters a particle that was

originally outside € into this volume element. This gain term reads:

4 —~! hed § e 4 - -
2= = [ B o P _ Py (deB"+ D) = P+ D)
fT(F.p) /dpd--m m( )
- = — =t h3 ~ - h‘3 - e RS
< JEPVEPNE = —f(EENA = —fFA)- (2:23)

These loss and gain terms replace the zero on the right hand side of the Vlasov

equation {2.19). This new equarion then reads:

Of(F.5
L) s oS 5) ~ Sk A7)
d . .
= /dapx dQ) (Urez X fg) (f'f{ffl - fhf f) . (2.24)
where
fe = f(F.p)
fi = f(F.p;
- h3

fi = 1-—f(7.p).
g
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and we have assumed that the inverse collision takes on the same differential cross
section as the original collision. In addition. since we are dealing with elastic collisions
only. the relative velocity terms in equations (2.22) and (2.23) are equal and are
written as U, in equation (2.24). The new transport equation is the Vlasov equation
supplemented with a (binary) collision integral that respects the symmetry properties
of the particles that make up the phase space distribution function. The study of
this equation was first initiated by Nordheim[59] and implemented by Uehling and
Uhlenbeck [60. 61] in the contexr of electron plasmas. Equation (2.24) is known as
the BUU (Boltzmann-Uehling-Uhlenbeck) equation'?. As we have written it. the
BUU equation describes the rate of change of the phase space density due to both
mean field and binary elastic collision effects. For further reference. we note that
an attempt to include collision effects in the TDHF equation has been made by
Wong[62. 63].

As it stands. the BUU equation now requires inputs via the single-particle poten-
tial (which includes the mean field) and the differential binary collision cross section.

This is the subject of the following chapter.

'2It is also known in the literature as the Boltzmann-Nordheim-Vlasov (BNV) equation and the

Vlasov-Nordheim equation.



Chapter 3

BUU model inputs

This chapter serves to present us with the mean field putentials and binary differential
scattering cross section that will be incorporated into our many-body nuclear system.
In the previous chapter. we recall that the transport equation we have chosen is the
BUU equation with its associated mean field (Hartree-Fock) single-particle potential.
We have not however presented a detailed analysis that gives us the functional form of
the latter. In this chapter. we will further investigate the Hartree-Fock approximation
introduced thus far and present some ean fields suitable for a description of nuclear
matter. Comparisons with recent microscopic calculations of the many-body nuclear
potential and equations of state will be addressed. Finally. we will re-address the
nucleon-nucleon cross section presented in section 2.3 as the former requires some

modification dependent on the choice of nuclear mean field.

3.1 The Hartree-Fock Potential

Recall from section 2.2. we had introduced the Hartree-Fock potential so that we
could write the single-particle Hamiltonian as a sum of two one-body operators (see
equations (2.4) and (2.11)). Namely. the kinetic and potential terms. There are

some consequences associated with this that have yvet to be expanded upon. To see

21
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this. we consider equation (2.14). and write the configuration space one-body density
matrix as:
p(F. 7)) = <Tla'(Fa(F)|¥ >

= 'S‘o( Yo, (F) < Piala;|¥ >

To (7)o (F). (3.1)

where we have performed an expansion in the single-particle wave functions o;(7).
Inserting this and its time derivative into the configuration space basis representation
of the TDHF equation. we arrive at the TDHF equation for the single-particle wave

function.
zfljto,(r) = (—— -:’4-/d“‘r't(f" Fp(F )) 0i(T)
= [T T 0 os(F). (3.2)

J

The above result is realized by considering the orthogonality of the single particle
wave-functions after insertion of the continuous one-body density matrix in equation
(3.1). In equation (3.2). v is the configuration space analogue of the potential energy
operator in equation (2.3). The first term in brackets in equation (3.2) is the kinetic
energy operator. the second term is known as the direct or Hartree term. and arises
as a result of adopting the mean field. The third term is the erchange or Fock term.
[t represents a non-local contribution to the total potential energy operator and is a
consequence of the fermion anti-commurtation relations as well as the aforementioned
mean field approximation. In general. the two-bodyv potential energy operator v
is non-trivial and conrains many contriburions to the nucleon-nucleon interaction.
These contributions manifest themselves in terms of boson exchange forces and thus
contain spin and isospin dependencies which have been absorbed into the i and j
indices in equation (3.2). As a calculation of this magnitude is beyond the scope of
this work. we adopt an illustrative picture and judge its merits a posteriori. Details

regarding the nucleon-nucleon potential energy operator can be found in [64. 65].
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In the foregoing analysis. we suppress any spin and isospin dependence and treat
the v as a phenomenological potential. We will adopt the one-boson exchange model
in which the two-body interacticn potential arises from the exchange of a massive
virtual boson. As the lifetime of this exchange particle is governed by the Heisenberg
uncertainty principle. it necessarily has an effective range (the strong force is short
range). Adoption of this picture thus leads to the Yukawa potential (see [64. 66] for
example). The two-body interaction potential thus reads:

—AjF=F"

€
NGO

-

v(F.F') = =13

(3.3)

where 1 measures the strength of the two-body interaction potential and A is a
measure of the interaction range. To evaluate the integral for the direct term in
equation (3.2) with 13.3). we remind the reader that we are working in the nuclear
matter approximation in which the density is constant over all space. We thus arrive
at the following single-particle porential for the direcr term:
p(7)
Po

L[ID)'\F} - /d3rl LU_-{ r-,-f;p(f.’!) =4 (3-4)

where the factor of 4 = 471;py/.\% has absorbed all integration constants.

Before tackling the exchange potential. we first note that as we are attempting
to reproduce bulk nuclear properties. the total energy (which is negative for a bound
svstem such as the one we have here) in the svstem given by equations (2.13) and
(2.20) must possess a minimum. For the density-dependent single-particle potential
presented above. this saturation condition clearly cannot be satisfied, as the total
potential energy corresponding to equation (3.4} is linear in p (c.f. equation (2.13))
and the total kinetic energv' goes as p*/® and is a positive quantity. As we show
below however. we can meet this condition if we consider in addition to the two-

body interaction potential®. a three-body interaction potential. We adopt a purely

! This is proportional to the Fermi kinetic energy.
“Recall in section 2.1.2 that the choice of a two-body interaction potential only was chosen in

the interest of simplicity.
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phenomenological approach and use a three-body contact interaction. With this, we

get an additional term to be added to the single-particle potential, namely.

uP(F) = [ o F () e

1

We then write the total direct terin as a sum of the two-body and three-body inter-
action terms to get a term linear in the density and a term quadratic in the density.
Note that continuing in this manner we will have terms that are the n®* power of
density for an {(n + 1)-body interaction. However. it is customary to generalize the
two- and three-body result to an n-body result by setting the power of p in the
three-body result to a variable parameter (which we will later fix to bulk nuclear
properties). This generalization leads to

PUF) = 4 (LF)) +B (ESF—))U (3.3)

Po Po

As the constants appearing in the above equation can differ in sign. we can then
achieve a minimum in the rotal energy. that is. saturation. In fact this is a condition
used to fix the value of one of rhe parameters introduced thus far. The density-
dependent single-particle potential in equation (3.3) has been utilized extensively in
the past and has been referred ro as the Skyrme or Zamick interaction[21. 67, 68. 69].
In the past. it was derived by using a contact interaction for both the two-body term
as well as the generalized three-body term. We will adopt this densitv-dependent
single-particle potential from here-on.

Next we turn to the exchange term. It is instructive to consider the properties
of the system which we seek to describe. As previously mentioned, we are working
in the nuclear matter approximation. In this case, the system is uniform and of
infinite extent (see footnote on page 1) with definite momenta ascribed to each

nucleon. Thus. the single-particle wave functions are plane waves. Suppressing spin
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and isospin dependence (the indices i and j below now label momentum states), the

exchange term thus reads:

T N B S BT
Ie.rchange ~ _Y‘/dlirl L'(I'.F’)E ky -7 e.sz re-rtL.r X (6 ik re-r:L‘r)
J

= — | X [ e(m e BB =0 ) ()
J

. (E), =\ =
= lerchange X U, (F)o:i(F).

We note inr this case. the single-particle potential for the exchange term is a Fourier
transform of the two-body interaction potential and thus in general is momentum-
dependent. That is. the non-local exchange term is reflected in a momentum-
dependent single-particle potential. For the two-body interaction potential. we again

use the Yukawa interaction from equation (3.3). With this. the single-particle po-

. tential for the exchange term reads:
\ - C’—'\' P~ CoE PI
U(E’(F.A') - ‘Y/(lal'l _‘;)r _ . e«;-x(k-kj).(r -7)
= MF =7
1=y, 1
D e (3.6)
T+ (5E)

From section 2.2.1 outlining the transition to a continuous transport equation (i.e.
the Vlasov equation for the continuous classical phase space density) and equations
(3.5) and (3.6). we can then write the continuous total single-particle potential as

WF.F) = A (P(F,“) +B (P(F?) +£/d3p,__f(_’-"e_f"')_?’ (3.7)
Po . Po po 1+(&\21)’

which contains both density and momentum-dependent terms. The constant C in
the above has been chosen for convenience. Here. the u(7,7) corresponds to that in
equation (2.20). From the short discussion at the end of section 2.2, we mentioned
' that the total energy of the system niust be obtained from the total Hamiltonian.
and not the single-particle Hamiltonian. As we will need the total energy, we must

be able to write down a potential energy (density) that corresponds to the above
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single-particle potential. With the distribution function f(7.5), we can relate the
single-particle potential to the total potential energy density:
- oVi{(F)
u(F'.p) = T == (38)
o f(F.p)

The corresponding porential energy density thus reads:

viF = 2U B O € f py SERIGER) g
2 -1 g o 1+ (L—\L)
The five coefficients 4. B.o. C and .\ in equations (3.7) and (3.9) are to be determined
from observed properties of heavy nuclei (as an approximation to nuclear matter[70}]).
Equations (3.7} and (3.9) are known as the MDYT-potential (Momentum-Dependent
Yukawa Interaction) and have been previously investigated in simulations of heavy
ion collisions[71. 72. 73]. The use of the MDYT potential in numerical simulations
of heavy ion collisions places heavy constraints on the assumed numerical algorithm
as solving equation (3.7) can be verv time-consuming. As such. Gale et al. [T4]
introduced an approximation to equation (3.7) by replacing the p’ in the denomi-

nator of the integrand in the third term of equation (3.9) by it local average. This

approximation reads:

3,/ f(Fﬁ') ~ 1 / 3 !l N p(F)
/dp - (5__\2__) = 1+(-<§(;)>)2 &*p f(r.p') = 1*"(';-('1(?»)2

where

[PV F(FE)
&P (75"

Substituting this into the MDYT potential energy density in equation (3.9). and using

< PiF) >=

equation (3.8). we arrive at the following expressions for the potential energy density

and single-particle potential at equilibrium:

V(F) = Ap(FP? + B p{F)ert  Cp(F) /dap, f(F.p")
2 po o+l p§ Po 1+(p1§p‘_>)

(3.10)

&
..

3The reader may wish to notice the connection with equation (2.13)
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S p(F"x\ p(Fi\°
u(f.p) = 4 + B
Po
/ds / p) + Cp(r) 1 5 (3-11)
Po -: >) Po 1+ (L_P_-<\ >)

where it is understood that < g >=< p(7) >. Equations (3.10) and (3.11) are known
as the GBD-potential (Gale-Bertsch-Das Gupta) and have also been investigated in
the simulations of heavy ion collisions[74. 75. 76]. In this work. we will from here-on
be concerned with the Skyrme (densitv-dependent) interaction given by equation
(3.5) as well as both the MDYI-type and GBD-tyvpe realizations of the momentum-
dependent mean field given by equations (3.7) and (3.11) respectively. These are
the input single-particle potentials that are coupled to the kinetic energy to give
the single particle Hamiltonian 2 given in equation 2.20). That is. we separately
use these three parameterizations of the nuclear mean field potential in order to
perform simulations of colliding heavy ions. We stress however. that the momentum-
dependent potentials are far superior to the momentum-independent potentials as
the former are more realistic. We address this point in the next section. Before
leaving this section. note that other functional forms for momentum-dependence

have been used in the past in [77] and [T8].

3.1.1 Mean Field parameterizations

Thus far. we have shown from a phenomenological point of view some functional
forms of the single-particle potential that arise from adopting the Hartree-Fock ap-
proximation. The momentum-dependent term arose naturally as a consequence of
the exchange term. It is also known from nucleon-nucleus scattering experiments
that the real part of the single-particle (optical) potential is strongly momentum-
dependent[26. 79]. We can use this experimental information to help constrain the
parameters introduced in the GBD and MDYTI-type potentials. As the Skyrme in-
teraction is not momentum-dependent. the coefficients can be constrained without

knowledge of the momentum-dependence of the optical potential. To begin, we en-
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sure that the potentials we adopt can reproduce bulk properties of nuclear matter{70).
Namely. we require that the total energy per rfucleon E/A in cold nuclear matter at
saturation density pg is -16 MeV. A second criterion is that nuclear matter attain
equilibrium at saturation density. This is equivalent to demanding that the pressure*
P vanish at po and T = 0 Me\". The last condition (zero temperature) holds for all
cases as we constrain our svstem to match the properties of cold nuclear matter. We
will examine the properties of hot nuclear matter shortly. The compressibility,®> K.
of nuclear matter can also serve to characterize our system (c.f. monopole breath-
ing modes{70. 80]). Thus far. we have three conditions to satisfy and have specified
enough information to determine the momentum-independent mean field parame-
terization which contains three parameters. For a more detailed description of the
procedure. the reader is referred to [22]. Before we present the parameterizations. we
first mention that the dependence on momentum in our GBD and MDYT potentials
implies that the nucleons will have an effective mass({70] that is in general different
from the free nucleon mass. The effective mass m* is defined so that:
P

g -
— ==+ Njsulp.p). 12
ne m - pu(p P) (3.1 )

where we have written the single-particle potential as:

w7 §) = u(p(F). 5) = u(p.P).

We will use this notation interchangeably.

To fix the momentum-dependent potentials. we need to specify two additional
parameters: C and .\. For exaniple. we can choose to fix two of {C.\.m"/m.,U(p.5)}.
Table 3.1 shows all the potentials we will use in this work and some of the coefficients
that define the potential. In this table. we have shown in bold face, the imposed

conditions. For all potentials listed. E/A = —16 MeV and d(E/A)/dp =0 at p = pgg.

*The zero temperature pressure is formally defined as P = *9(E/A)/dp-
3The compressibility coefficient is a measure of the change in volume of a system with respect

to changes in pressure and is formally defined as K = 9gP/dp.
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[ Potential | o [ a/p® [ m>/m || Clpo.p=0) | Ulpo.p=p) | Ulpo.oc) || K | Ret |

s 1167 - 100 -53.0 -33.0 53.0 || 200 || [22

H 2.000 - 1.00 -53.5 -53.5 535 | sso || [22
GBD || 1167 | 1.50 | 0.70 -76.3 -53.3 134 25 || [74]
NGBD || 1.091 | 138 . 0.67 735 514 +30.5 | 210 | (81
MDYT || 1210 | 158 | os7 -75.0 0.0 (see caption) | +30.5 || 215 || [71]
NMDYI | 1091 | 138 | 0.67 724 514 +30.5 || 210 || [81]
HMDYI || 2270 | 138 | 067 |  -m24 514 +30.5 || 873 || [81)

Table 3.1: Coefficients and properties of the single-particle potentials. For
all mean fields presented above. the conditions £/4 = —16 MeV and
d(E/A)/dp = 0 at p = p, are satisfied. For the momentum-independent
parameterizations (S and H). this leaves only one more condition to com-
pletely specify the mean field. This condition is the compressibility and is
shown in bold-face rvpe. For the momentuni-dependent parameterizations
(all others). we require three additional conditions. these are also shown
in bold face type. For the MDYTI potential (sixth row), the constraint
(shown in the sixth column) was for {"(pg.p*>/2m = 300 MeV) and not

U(pe-p= p}o') as listed for all other potentials.

All conditions were applied to cold nuclear matter at saturation density pg. The
potentials labelled S and H are the momentum-independent Skyrme potential. The
S (H) is meant to represent a choice of the parametrization that gives a soft (stiff)
equation of state. For the momentum-dependent potentials. there is only one which
results in a stiff EOS. this is the HMDYT potential presented in table 3.1.

In table 3.1 we note rhat for sonie potentials. the compressibility (KA was fixed.
For the soft potentials (S.NDYT!. the value of K here was motivated by monopole
breathing modes[30] already mentioned and prompt supernova explosion mech-
anisms(82. 83]. both of which favour a soft equation of state (low value of the nuclear

compressibility). The stiff parametrizations are chosen to facilitate comparisons be-
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tween mean fields of different compressibilities. The bottom four potentials listed
in table 3.1 have specified a value of the single-particle potential to constrain the
parametrization. This was done by close examination of the real part of the nu-
clear optical potential extracted from nucleon-nucleus scattering experiments. The
mean field was then fixed at points which match the observed value of the former.
In figure 3.1. we present a compilation of various experimental extractions of the
single-particle potential (or real part of the optical potential®) up to energies ~1000
MeV /A obtained from nucleon-nucleus scattering experiments. We also show in this
plot four of the momentuni-dependent mean fields used in this work. As indicated
by the figure. with the exception of the GBD (A = 215 MeV) potential (continu-
ous shaded line). we have quite remarkable agreement with the data over the whole
energy range presented. e see that with a suitable choice of parameters for the
momentum-dependent mean fields used here. that excellent agreement with the ob-
served optical potential is obtained.

For the comparison of our momentum-dependent interaction with the optical
analysis from nucleon-nucleus scattering experiments. the mean fields were calculated
at saturation density pg. as for these experiments. the density is not expected to
differ too much from this value. One can imagine however. that in the course of
a collision of two heavy ions for instance. densities other than that of saturation
will most likely play a role. It is thus valuable to understand the behaviour of
the GBD and MDYT-tvpe potentials away from saturation density, as we ultimately
intend to apply our model to a study of heavy ion collisions. Since we are somewhat
censored from directly examining this quantity in the lab, we will have to turn to
more descriptive calculations of the nuclear mean field. where the density dependence
is clearly evident. Ve present in figures 3.2 and 3.3 the single-particle potential

as a function of momentum for densities ranging from sub-saturation to ~2.3 times

SWe note that the construction of the real part of the optical potential from scattering data is

model dependent however. These dependencies are somewhat reflected in the dispersion among the

data points shown.
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Figure 3.1: Extraction of the real part of the nuclear optical potential from
nucleon-nucleus scattering data as a function of total energy. The open
(solid) circles are for proton {neutron) beams incident on a variety of heavy
nuclei ( 2Si,0Ca. *¥*Ca.®*Ni.9Zr.2°*Pb) taken from[84]. The solid diamonds
are for proton on **Ca.**Ca.’®Ni.%Zr reactions taken from([85]. The open
squares are for proton-*Cla reactions taken from[86]. The dark (shaded)
lines are for the MD\YT (GBD)-tvpe momentum-dependent parametrization
of the mean field. The solid (dashed) lines are tfor a compressibility of
A =215 MeV (210 MeV). as shown in table 3.1. The mean fields calculated

in this figure are for T = 0 MeV at saturation density pg.
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Figure 3.2: Nucleon single-particle potential as a function of momentum

for different densities. We present the single-particle potential felt by a

nucleon in cold nuclear matter for densities of p = 0.1,0.2,0.3 and 0.4 fm™!

starting from the lowest curve (at high momentum) to the highest curve

in all panels. The GBD and MDYI-type potentials are computed using

the coefficients given in table 3.1 and are given by the dashed lines. The

thin shaded solid lines are the parameterizations from Wiringa[87] for the
UV14+UVII potential.
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saturation density for the four momentum-dependent mean fields used in this work.
We note that for all nuclear collisions studied in this work (c.f. chapters 5 and 6) the
maximum density attained never exceeds this limit. As a comparison, we show the
parameterization{37]. of the results of a microscopic calculation of the single-particle
potential used in the calculation of neutron star masses[38]. These single-particle
potentials were obtained with a variational procedure which uses a detailed nucleon-
nucleon two-body interaction[89] and a phenomenological three nucleon interaction
term[90. 91. 92]. Both of these interactions closely reproduce the nucleon optical
potential presented in figure 3.1 as well as reproducing some neutron star data.
However. the compressibility of ' = 224 (269) MeV for the interaction labelled
UV14+UVII in figure 3.2 (UV14+TNI in figure 3.3) of this parameterization is
too stiff to allow for prompt supernova explosion mechanisms[88]. The two figures 3.2
and 3.3 differ in the phenomenological three-nucleon interaction term. From these
figures. we see that our potentials agree quite nicely with the microscopic calculations
at saturation density. As we move (above) this density region. the agreement is not
as good. However. the trends are remarkably similar considering the simplifications
used to obtain the MDYT and GBD potentials. VWe note that all potentials become
more repulsive as both density is increased and as momentum is increased above
the Fermi surface. which is &y ~ 1.33 fm™! at nuclear saturation density pp. Note
also that the microscopic calculations of the nuclear matter potentials become more
uncertain at higher densities. as their parameters are fitted to measured nuclear
properties.

More recent nuclear matter calculations have been perfomed in the context of the
neutron star matter equation of state[93. 94]. In these model calculations. an im-
provement over the microscopic potentials displaved in figures 3.2 and 3.3 is obtained

by considering a modern’ two-nucleon interaction term{95] that closely matches

"Modern here means that fits to nucleon-nucleon scattering from the Nijmegan database yield

* per degree of freedom less than 1.
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Figure 3.3: Same as figure 3.2 for the UV14+TNTI potential of Wiringal[88,
87]-
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nucleon-nucleon scarttering phase shift analysis from the Nijmegen database[96] as
well as incorporating relativistic corrections to the two-nucleon interaction term[97].
The phenomenological three-nucleon interaction is taken from [98] where the calcu-
lated binding energies of light (A<6) nuclei were accurately reproduced. For compar-
ison with the momentum-dependent potentials used in this work, we show in figures
3.4 (for k' = 213 MeV) and 3.3 {for A” = 210 MeV) the nuclear matter equation
of state obtained with our GBD and MDYT potentials as well as the improved mi-
croscopic treatment in [93. 94]. Note that the MDYT (A" = 215 MeV) and NMDYT
(A" = 210 MeV') do not differ significantly in neither the single-particle potential nor
in their equation of state. However. the GBD (A" = 215 MeV) and NGBD (A = 210
MeV) differ significantly in the single-particle potential at high energy (momentum).
For completeness. we present all rhese four potentials in figures 3.4 and 3.5. In addi-
tion to the zero temperarure behaviour of the momentum-dependent potentials we
have adopted. we also show the finite temperature behaviour of these potentials in
terms of the equation of state. The equartion of state for the microscopic study is
shown for zero temperature and corresponds to a compressibility of A" = 260 MeV.
From the figures we see that excellent agreement between our phenomenological po-
tentials and the microscopic treatment is obtained for zero temperature matter up
to ~2.5 times nuclear saturation density. We repeat that for all nuclear collisions
studied in this work the maximum densitv attained never exceeds this limit. The
MDYT. NMDYT and GBD potentials slightly underestimate the energy per nucleon
above p ~ 2pg. The NGBD potential slightly overestimates E/A above p ~ py/2.
For the pressure. the MDYT. NMDYT and GBD potentials slightly underestimate
the pressure at zero temperature for p greater that ~ 2py as compared with the
microscopic calculation. The NGBD potential agrees quite well with the microscopic
calculation for the entire density range displaved in the figure.

Up to now. all cases presented are for symmetric nuclear matter. That is, matter

with an equal number of neutrons and protons. As we will eventually be interested
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Figure 3.4: Nuclear matter equation of state for cold symmetric matter for
the A18+dv+UIN" as calculated in [93. 94] (thin shaded solid line). From
the bottom in each panel. we present the equation of state for svmmetric
nuclear matter with a GBD and MDYI-type potential for T = 0,10,20 and
30 MeV (dashed lines). Both of the latter potentials are for a compress-
ibility of K" = 215 Me\" as shown in table 3.1. The microscopic calculation
corresponds to a compressibility of A" = 260 MeV. We also show the bind-
ing energy per nucleon obtained with the microscopic calculation of the

mean fields from figures 3.2 and 3.3. The solid (open) circles are for the

UV14+UVII (UV14+TNI) interaction.

36



’ Chapter 3: BUU model! inputs

NMDY! NGBD
;60 1 I ) | l 1 ‘ T 1 [ L ‘ T [ 1
\ 4\ .
=40 “ _7TN _
. N - L S - e
< - \
7 7
~20 ~\ 7\ 70
= ~ _ - N ,
A -~ /"\ : //‘
N (s Y 4 TR P A
- \»\1___3/ L \\i\_ - 4
l 1 I J $ l “l J A l 1

> i /4
é 20 ///7_ ///¢

Figure 3.5: Same as figure 3.4 for GBD and MDYT potentials of compress-
ibility K* = 210 Me\" as shown in table 3.1. The microscopic calculations

are as in figure 3.4.
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in the properties of nuclear matter far from the isospin zero case, we now introduce
a new term in our single-particle potential to take into account this (isospin asym-
metry) aspect. In reference[99'. several phenomenological parametrizations for this
isospin term were given. In reference{100] it was shown that a more detailed analysis
of the parametrizations in [99] favours a linear dependence of the symmetry energy
on density. We chose to adoprt this functional form for the symmetry energy added
to the single-particle energy presented in equartion (2.20). Our symmetry term thus

reads:
o 2D - -
o (r.m) = -7'3?0- (Pn(T) = pp(7)) - , (3.13)

In the above. 73 is the third component of the nucleon isospin and is equal to +1/2
(—1/2) for protons (neutrons). The p, and p, are local neutron and proton densities
respectively. The strength of the isospin potential is given by D. Empirically. it is
found that D = 30 = 4 Me\'. furthermore. support for D ranging from 27 — 40 MeV
is found from various phenomenological calculations [100, and references therein].
We adopt the value of 32 MeV\ used by several authors[101. 102] in the context of
simulations of colliding heavy ions. Equation (3.13) indicates that the attractive
part of the single-particle potential for protons (neutrons) will be stronger (weaker)
for matter with a neutron density in excess of a proton density, weaker (stronger)
vice-versa. With this additional isospin term. we present the pure neutron matter
equation of state in figure 3.6 both for the GBD and MDYI-type mean fields as well
as the work in [93. 94]. It is evident from this figure that our isospin-modified mean
field potentials are able to reproduce quite well the recent microscopic calculation.
We note that introducing the above isospin term in effect restores this dependence
of the nucleon-nucleon potential energy interaction term that was omitted in section
3.1. albeit in a phenomenological manner. For the above comparison, cold nuclear
matter is assumed. Note that the pure neutron matter equation of state is much
stiffer than the corresponding nuclear matter equation of state.

From the analysis presented in this section, we conclude that the momentum-



Chapter 3: BUU mode! inputs

80 ——r—————— 60 —
¥
60 45 |
c E
<40 >30
< =z |
j<>1
o |
20 15
0 2 . i 0 .
00 01 02 03 04 00 01 02 03 04
p (fm™) p (Im™)

Figure 3.6: Pure neutron matter equation of state at T = 0 MeV as cal-
culated in [93. 94] (thin solid line). The thick lines show the pure neutron
matter equation of state at T = 0 MeV for the GBD and MDYT-type po-
tentials used in this work. The thick dark lines are for the MDYT (solid)
and NMDYT (dashed) mean field. The thick shaded lines are for the GBD
(solid) and NGBD tdashed) mean field. \We also show the binding energy
per neutron for pure neutron matter obtained with the microscopic calcu-
lation of the mean fields from figures 3.2 and 3.3. The solid (open) circles

are for the UV144UVII (UV14+TNI) interaction.
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dependent parameterizations of the mean field for both the MDYI and GBD type
potentials display excellent agreement with detailed microscopic calculations of the
many-body nucleon interaction. These are shown both for the equation of state
calculated with modern nucleon-nucleon interactions as well as the optical poten-
tial (single-particle potential). We note that the density-dependent (momentum-
independent) mean field potentials {not shown) also closely reproduce the equation
of state as calculated microscopically. However. the momentum-independent mean
field cannot correctly reproduce the optical potential and as such presents serious
drawbacks. In addition. we note that all comparisons performed here are done
for equilibrium nuclear matter. In forthcoming chapters. we will investigate non-
equilibrium behaviour of the mean fields presented here by considering dynamical

simulations of colliding heavy ions.

3.2 Nucleon-Nucleon Cross Sections

We next turn to the other input required for the BUU equation. As we have al-
ready seen in section 2.3. the BUU equation is the Vlasov equation extended to in-
clude (two-body) nucleon-nucleon scattering processes. In that section, the nucleon-
nucleon cross section which serves as an input for calculating the effects due to these
scattering processes. has vet to have been discussed. Traditionally, the free-space
nucleon-nucleon total cross section has been used. however, there are some modi-
fications that are necessarv due to the (momentum-dependent) mean field that we
introduced in section 3.1. To see this explicitly let us consider the expression for the
nucleon-nucleon cross section. which is given by:

transition rate
incident fluxr =
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Using Fermi's golden rule for a transition from an initial state “i" to a group of final

states ~f". the transition rate is:

=*I'.T

”},‘— thle .

where Dy is the density of final states and ty; is the transition matrix element between
initial and final states. Identifving the incident flux as the initial state density times
the relative velocity of the colliding partners. we then obtain an expression for the

total cross section:

22V Dy,

y= Lk
h Lrelf

where v, is the initial relative velocity of the colliding partners. The above cross
section is for two particles colliding in vacuum. In our case however. collisions occur
not in vacuum. but in the nuclear medium. Thus we must replace the above cross

section with the following:

o=

-h‘ Df
h

[fll’

Urel

where the starred quantities represent in-medium values. Many-body investigations
support the fact that t;, ~ t;27. and refs. therein]. We will follow this line of
thought here. In {27]. the in-medium cross-section is calculated as is here. however a
simplified momentum-dependence in the mean field potential was used. We rewrite

the in-medium elastic scattering cross section as:

(0) Df

. rel

g =
. 0]
Lrel Dl

(3.14)

Thus. we obtain an expression for the in-medium cross section in terms of the ratios
of the free space and in-medium values of D and t,.; and the free space cross section.
To evaluate equation (3.14). will work in the nucleon-nucleon centre of mass frame.

Thus. the momenta depicted in figure 2.1 are relabeled to the following:

P = +p
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pr — —p;
po—= +py
7 = =Py

The relative velocities can be obtained immediately from equation (3.12), they read:

Ip-:

(0) <Di

Vil = —
m

o, = i Di_ +< P +Vp-‘u(p1.—ﬁ}))|. (3.15)
Im-(ft) m (—pi)

The density of final states will be proportional to the number of momentum states
Py satisfving energy and momentum conservation laws for the two-particle scatter-
ing process. Symbolically. we write the following, where C is some proportionality

constant.
D; = C/cﬂp' Bpl S5 — 50l — e’ =¢h)) (3.16)

In the above equation. ¢ is a fixed number that gives the total single-particle energies

in the initial state. That is.

i _ . (=m) .
€ = -+ u(pr. Pi) + ( 5 + u(par. —pi)-
=m m

In order to proceed any further. we note that a closed form solution for equations
{3.15) and (3.16) can be obtained if we assume an equilibrium nuclear matter distri-

bution. In this case. u(p. 5} = u(pg. |p|) and we then arrive at

1t as =
D; = Cﬂg-(ﬁl / dQ5(8 — 6")é(0 — ") (3.17)
where the p” is chosen to satisfy the energy conserving delta function in equation
(3.16). For the elastic collisions we consider in this work. p” = p;. Using equations
(3.14). (3.15) and (3.17). an expression for the in-medium cross section in equilibrium

nuclear matter is thus obrained. We get:

o = (m‘)z x o. (3.18)

m
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Figure 3.7: Nucleon etfective mass as a function of momentum and density
in nuclear matter at temperatures of 7 = 0.10.20 and 30 MeV from the
lower to the upper curves respectively. The dashed (solid) lines are for
the MDYT (GBD)-type momentum-dependent mean field of compressibility
R = 210 MeV. Note that for the GBD potential. all temperature curves

are indistinguishable.

We thus find that the modification to the in-medium cross section involves only the
nucleon effective mass and since the nucleon effective mass is equal to the real mass
for momentum-independent potentials. there is no modification of this tvpe to the
free-space cross section with momentuni-independent potentials.

The effective mass will. in general. be a function of density and momentum. This
is a reflection of the single-particle potential which is also a function of the said
variables. We show these functional relationships for both the GBD and MDYT-type
mean fields for zero and finite temperature equilibrium nuclear matter in figure 3.7.
This figure indicates that for both potentials. the effective mass approaches the free
space value in the high momentum and low density limit. In addition, the MDYI-
tvpe mean field produces an effective mass which approaches the free space value as
the temperature is increased. Note that this behaviour is absent for the GBD-type

mean field. This can be seen by inspection of equation (3.11). Here we see that the
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Figure 3.8: Ratio of the in-medium to that of the free space elastic cross
section in cold equilibrium nuclear matter obtained with the MDYI-type

mean field potential as a function of both density and momentum.

temperature dependence enters via the third term in that expression, and in that
term. anyv j dependence is integrated out. Hence. there is no temperature dependence
of the effective mass with this potential. In figure 3.8 we show the ratio of the in-
medium to that of the free space elastic cross section for cold equilibrium nuclear
matter obtained with the MDYI-tvpe mean field parameterization as a function of
both density and momentum. We note that the right panel of figure 3.7 indicates that
the nucleon effective mass decreases with increasing density. One would thus expect
the equation of state to permit superluminal behaviour at high density. We find that
this is indeed the case for densities above ~ 5pg, and thus carries no consequences
for our work.

So far. we have neglected to mention the actual value of the free space nucleon-

nucleon elastic cross section® . Cugnon{103] has presented a parameterization of

8From here-on. we will refer to the entrance channels in which |73}{=1 as the isospin symmetric
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the latter for both the isospin symmetric channel (pp — pp and nn — nn) and
the isospin antisvmmetric channel (np — np) based on world data compilations.
We present this parameterization in the left panel of figure 3.9. Below kcay ~
0.5 fm™!. the cross sections increase approximately as kc‘»ﬁ,. As collisions at these
low energies are well below the Fermni surface. most of them are Pauli blocked (c.f.
section 4.3.2. where Pauli blocking efficiency for cold nuclei is ~96%). We thus
introduce an artificial truncation of the cross section at 150 mb (1 mb = 1073 m?)
as shown in the figure. This corresponds to kcy ~0.263 fm~! (0.348 fm™!) for
the isospin symmetric (anti-symmetric) elastic scattering channel. The cross section
presented in the left panel is the free space value. In the right panel, we re-plot the
parameterization for the isospin antisvmmetric channel along with the in-medium
value for cold equilibrium nuclear matter obtained from the p = pg slice in figure
3.8. As previously mentioned. the momentum-independent parameterization of the
mean fleld does not give a value for the in-medium cross section different to that
of the free space value as we have calculared it. However. in order to account for a
decrease in the former. some authors have used a constant scaling factor{104. 103]
and others have included a phenomenological densityv-dependent reduction based on
the first term in a Tayvlor expansion of the cross section in terms of density[106. 107].

This parameterization takes the form:
o' ={1—-ap/py)o. (3.19)

We have also shown in figure 3.9. the in-medium cross section for this parameteri-
zation for a value of a@ = 0.20. In view of the momentum-dependent self-consistent
calculation of the in-medium nucleon-nucleon cross-section presented in this work.
the parameterization presented in equation (3.19) is clearly oversimplified. However.
as this in-medium cross section has been used extensively throughout the literature.

we will also examine the above parameterization in this work. In section 4.3.2 we

channel (pp — pp or nn — nnj. and entrance channels with |[73]=0 as the isospir anti-symmetric

channel (np — np), where 73 is the third component of isospin of the nucleon-nucleon system.
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Figure 3.9: Parameterization of the elastic nucleon-nucleon cross section
as presented by Cugnon(103]. left panel. The solid line corresponds to
pp — pp and nn — nn collisions and the dashed line corresponds to
np — np collisions. The abscissa is the momenta of one of the colliding
pairs in the collision centre of mass frame. In the right panel, we re-plot the
np — np parameterization (thin dashed line) along with the momentum-
dependent modification for zero temperature equilibrium nuclear matter
{thick solid line) and a modification obtained with a density-dependent

phenomenological reduction of coefficient a = 0.20 (thick dashed line) as

described in the text.
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will return to a detailed comparison of the two in-medium cross-sections presented

here.



Chapter 4

Vlasov/BUU Solution for Finite

Nuclei

The previous chapters have presented the problem we wish to address. namely a
solution of the BUU equation. along with the necessary inputs. In this chapter we
address the numerical techniques used to solve (2.19). the Vlasov equation as a first
approximation to the BUU equation (2.24). Furthermore. we address the limitations
(in terms of numerical accuracy) that we are presented with in attaining such a
solution. We then show how we introduce nucleon-nucleon collisions and the self-
consistent modification to the free space cross section. thus giving the BUU solution.
As our ultimate goal is a simulation of colliding heavy ions. we must provide a
description of how we use the nuclear matter many-body techniques presented so far
to describe finite nuclei. \We thus begin this chapter by showing how we make this

connection.

4.1 Finite Nuclei

The methods we have developed so far. in particular, the solution of the nuclear

matter many-body problem. have made no mention of finite nuclei. In this section,
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we make a connection between the two.

The nuclear matter description presented so far has neglected the Coulomb poten-
tial. We remind the reader that in the nuclear matter approximation. one attempts
to obtain an expression for the energy density of the system due to the short range
nuclear force. As a nucleus contains charged nucleons, it will then be necessary to
include the Coulomb term into our description of finite nuclei. Having said this, we

then rewrite the potential energy density to include for this effect:
['ﬁ — ‘,‘:uc + ‘“zso + ‘,;C'ou[’ (-l].)

where 1%¢ can be the Skyrme. MDYT or GBD potential energy density from section
3.1. V% is the isospin potential energy density derived from equation (3.13), and
1 € is the new Coulomb potential energy density contribution to the total energy
density. The index a labels a configuration space point. Calculation of the Coulomb
potential field is accomplished by numerically solving the Poisson equation on a
three-dimensional grid[103!. We stress that the addition of these terms is introduced
in order to better approximate finite nuclei. The §** that we use in equation (4.1)
is taken from the nuclear matter approximation which neither takes into account
Coulomb interactions nor any dependence upon isospin. By introducing these terms.
we have effectively given the protons and neutron separate identities. We note that in
general. the nuclear part of the mean field is about 6 times greater than the Coulomb
term and about 30 times greater than the isospin term. However, depending on the
mass and atomic numbers of the nuclei and also on the collision dynamics between
nuclei. these ratios may vary.

In order to generate a nucleus. we must specify a phase space initialization of the
nucleons. That is. we must assign positions and momenta to each nucleon within
the nucleus. We use the observed properties of nuclei to aid us here. In particular,
nucleon-nucleus scattering experiments (c.f. Rutherford scattering, nuclear a decay,

pion atomic transitions [109]) provides us with a mass-radius relationship for nuclei.
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Specifically,
R, = Ry A3, (4.2)

where R, is the matter radius for a nucleus containing A nucleons, and Ry is a
parameter determined trom the aforementioned scattering experiments. We use the
experimentally determiined value of Ry = 1.14 fm. Initialization of the nuclei is then
accomplished in the following manner. Each nucleon in the A nucleon nucleus, is
randomly assigned a position in a sphere of radius R4. Note that 4 hard-packed
spheres in a spherical volume of radius R = Ro.-lli implies a nucleon hard-sphere
radius of 0.80R,. e reject the assigned position of a nucleon if its centre falls
within 2dy of the centre of another nucleon. where dy = 0.80Ry. This process gives
the nucleus an initially smooth density profile.

Once the configuration space distribution of the nucleons is determined, the local
density is determined for each. From this density. the (local) Fermi momenta (c.f.

[109]) is then determined via

Gr* 3
pr = ( £ ) (4.3)
g

Where g is the degeneracy of a nucleon (g = 4 accounts for the two spin and isospin
states of the nucleon). Assigning of momenta for the nucleons is then carried out
in the same manner as for positions. replacing the R4 with the local p; for each
nucleon. No minimum separation distance in momentum space is enforced for this
initialization. This is the procedure carried out by many authors and it known as
the local Thomas-Fermi procedure. See {22] for example.

It should be mentioned that an initial state could also be chosen as a stationary
point of the Vlasov equation. That is. the initial phase space density should satisfy
the time-independent Vlasov equation. The latter is obtained by setting the time
derivative of the phase space density to zero in equation (2.19). This is known as

the Thomas-Fermi solution!. For the momentum-dependent potentials chosen in this

' As opposed to the local TF procedure mentioned above.



Chapter 4: Vlasov/BUU Solution for Finite Nuclei 51

work. this initialization procedure is somewhat time-consuming and we have chosen

the much simpler initialization procedure outlined above.

4.1.1 Matter and Charge Radii for Isospin Asymmetric Nu-

clei

Nuclei with low mass numbers typically have neutron and proton numbers that do
not stray too far from one-another. For heavier nuclei however, the ratio of neutron
number to proton number for stable nuclei can be as large as ~ 1.5 for Au, and even
higher for radioactive nuclei. We thus define the isospin asymmetry of a nucleus
to be (.V — Z)/A. where N. Z and A are the neutron. proton and mass numbers
of a nucleus respectively. [t is a well known experinental fact. that nuclei with a
non-zero isospin asvinmetry have different neutron and proton radii. In general. the
neutron radii exceeds that of the proton radii. A recent relativistic mean field theory
calculation by Warda(110|. gives parameterization of the two latter radii for nuclei
with mass numbers in excess of A = 60. In figure 4.1 we show the skin thickness.
At = R, — R,. where R, and R, are respectively the neutron and proton radii
obtained from [I110]. As we will later be concerned with nuclei with mass numbers
smaller than 60 in addition to heavier nuclei. we have used an extrapolation of the
parameterization in [110] tor mass numbers smaller than 60 that is linear in mass
and expanded in powers of the isospin asymmetry term up to third order. This
extrapolation matches the results from [110] at mass number 60 and vanishes for
zero mass number and zero asvmmetry parameter.

To account for the finite skin thickness present in heavy nuclei, the initialization
pracedure described in section 4.1 is modified. We define the new (neutron and

proton) radii for a mass A nucleus as:

At At
Rn=R_,;+‘—)‘ Rp:RA_T.

-

The configuration space distribution of the neutrons (protons) is then carried in the
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Figure 4.1: Neutron skin thickness for several nuclei as a function of the

isospin asymmetry. The skin thickness here is as defined in [110].

same manner as in section 4.1. except we now use R, (f,) in place of R 4. In addition.
the momentum initialization is carried out separately for neutrons and protons using
equation (4.3). with a value of g =2 to account for the spin degeneracy of the neutron
and proton. In figure 4.2. we show the average neutron and proton radii from 10
separate initializations for both a ***Pb and a S nuclei. The figure indicates that the
initialization procedure just mentioned gives the Pb nucleus a neutron skin thickness
of ~ 0.6 fm (about 25% of the total Pb volume)-. and no neutron skin thickness for
the isospin symmetric S nucleus. The density in this figure was calcuilated by counting
the number of nucleons (neutron and protons separately) in a thin spherical shell at a
given distance from the centre of the nucleus and dividing by the volume of this shell.
We note that we do not see a sharp edge in the radii since we are sampling a finite
number of particles®. This isospin-dependent initialization procedure is carried out
only when we include an isospin term in our potential. Without this term. the nuclei
are initialized as discussed in the previous section. Also in figure 4.2 we show the

experimentally determined charged radius for the Pb and S nuclei. We find a small

2This value assumes a hard-sphere cut-off.

3See section 4.2.1 for more explanation of this point.
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Figure 4.2: Nuclear profiles for heavy (2°Pb. left panel) and light (328,
right panel) nuclei. The solid curve is for total nucleon density and the
dashed (dotted) curve is tor neutron (proton) density. The curves shown
are the average values obtained after 10 independent initializations as de-
. scribed in the text. The neutron skin thickness for the larger nuclei is
~ 0.6 fm. The shaded dotted line is the experimentally measured charge

density{114].

discrepancy between the (charge) density obtained in this work and the measured
charge density.

We generate our nuclei with finite neutron skins. It has been shown that the
inclusion of the neutron skin for heavy nuclei in simulations of low energy (~ ¢f)
heavy ion collisions is essential for explaining some observed experimental signals.
In particular. the study of low energy directed flow[{111. 112. 113] at high impact
parameter is difficult to explain without the initial isospin-dependent nuclear profiles.
Finallyv. in order to remain consistent with our choice of including isospin effects in
the nuclear mean field as well as in the nucleon-nucleon collision cross section, we

choose to adopt the isospin-dependent initialization for the nuclear profiles.
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4.2 Solutions of the Vlasov equation

4.2.1 Test Particle Solution

We recall in section 2.2.1. we presented the Vlasov equation (2.19) as a semi-classical
solution to the nuclear many-body problem. From this equation, we wish to find
solutions which describe the trajectory of points in classical phase space. As an
analvtical solution of the Vlasov equation is prohibitive, we seek a numerical one. An
often used solution is the “test-particle” solution[21. 28. 115]. This method consists
of projecting the (continuous) semi-classical phase space density onto a collection
of test particles. each with a well defined position and momentum as outlined in
the previous section. The test particles do not necessarily have to have a one-to-one
correspondence with nucleons. In fact. to give a better representation of phase space.
it can be advantageous to use a very large number of test particles. In addition.
energy conservation considerations demand that the number of test particles (per
nucleon) to be large (~ 100 — 1000). \We define this number to be .V = A x Vg,
where A4 is the actual number of real nucleons in our svstem, and V,,, is some
positive integer that represents the number of ensembles in our system.

To begin our analysis. we first note that for a collision-less system (such as the
one governed by Vlasov dynamics). Liouville’s theorem tells us that the total time
derivative of the phase space densityv is zero:

df(F.5) _Of\(FF) _OF . .. 05
pramiaianyrentl vV AGY Dl v

Direct comparison of this with the Vlasov equation leads to the following set of

Vsf(7.5) = 0. (4.4)

conditions:

or - ap - -
i Vsh(F. D) 5= —\V=h(7. p). (4.3)
These are Hamilton's equations of motion for a particle at 7 with momentum p,
where (7. p) is the single-particle Hamiltonian. Thus. if we evolve our test parti-

cles respecting these equations. we will have a (test particle) solution of the Vlasov
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[ ]]
(41}

equation. Due to the finite sampling of phase space, the test particle method does
suffer from fluctuations. This can be clearly understood if we examine the density for
example. The discretized version of equation (2.21) for the test particle distribution

reads:

p(F): v Z (.)(F—I‘i).
-vens i

Clearly for finite .V,,,. the density will fluctuate. Since the (momentum-independent

for example) single-particle portential depends solely on the density, one can then

expect {(unwanted large) tluctnations in the former. This problem can be somewhat

circumvented by using a large .V,,, and introducing an artificial smoothing via a

configuration space lattice. In this case. on a lattice of spacing éz. where z, is the

centre of cell a. in one dimension. the density then reads:

U S nedE . 6
P(I}—pn—m Lj_ (,—2'-}1’&—1’) (?—lla_l‘jl)e (4.6)

where the first step function picks out the cell a where position r is located. and
the second step function selects all particles in cthis cell. Thus. a given (test) particle
contributes to configuration space with a finite width. It (test particle) is in fact
spread out evenly over the entire configuration space cell. This prescription reduces
fluctuations. but is an somewhat ad-hoc prescription. Note that with this method. a
particie contributes to its local cell irrespective of its position relative to the centre
of the cell. We will instead turn to a more formal grid-based method. in the next

section.

4.2.2 Lattice Hamiltonian Solution

The last section introduced the test particle method as a solution to the Vlasov equa-
tion. Although quite useful. it suffers somewhat from fluctuations arising from finite

statistics. A more general grid-based method is the Lattice Hamiltonian method[30]
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which assumes from the beginning a phase space density projected onto a finite con-
figuration space grid of spacing Jdr. In this method. the contribution to the phase
space distribution function at a cell a due to a collection of test particles is:
AxNens
fF.p) = f(Fa.P) — falP) = Z R(fa — 73)0(p — pi)- (4.7)
i

That is. for a given p. phase space is defined up to a configuration space lattice site a.
In the above equation. R is a configuration space form factor and the delta function
is the momentum space form factor. In addition. f,(p) is defined such that particle

number is conserved. That is.

A=00'Y [ & falp). (4.8)

With this. the (Lattice Hamiltonian) method asserts that the equations of motion

of the test particles ~/™ are obtained through

ar, I, A
= =SnH 2 = —VAH. (4.9)
where A is now the total NV particle Hamiltonian derived from the discrete phase

space density fo(p ). H reads:

AxNens - .2
H=Y % = Nens(67)3 S Vi (4.10)
J - a

where 1, is the potential energy density at site «a for the A-body system as given in
equation (4.1). For the MDYT* potential introduced in section 3.1. the corresponding
discretized version of the single-particle potential and potential energy density read:
g — -
- ) Pa 2C ~ R(fa —75)
ua(pi) = -'1//)—0 - (‘p—) o > —?—i——ﬁ'
0 0 051+ (_\_.L)
iﬁ B Pa—l C R(Fa - FJ)R(FQ - Fk)

Iy = ~ —_ 4+ — — . (4.11
a 2p o+1 g8 Pa % 1+(pz--\m)‘ )

iSee appendix B for the GBD potential.
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With this, the Lattice Hamiltonian equations of motion then read:
or; Bi | ox . = _
_a—t— = E + -'\/ens(ox)s Za: R(ra - ri)V-'.ua(p,-)
Wi _ v e o R = i1
o = = Nens(02)* Y ualBi) VA R(Fa — F) (4.12)

a
As we initially desired a solution to the Vlasov equation., we need to establish a
correspondence of these equations with the test particle equations of motion, which
are a solution of the former. We note that the test-particle equations of motion are
a solution to the Vlasov equation that assumes an infinitesimal grid spacing. In this
infinitesimal grid spacing limit. the configuration space form factor in the Lattice
Hamiltonian method is R(F, — 7)) = N;ld6(Fa — 7). Equations (4.12) then re-
duce to the test particle equations of motion (4.3). Thus, the Lattice Hamiltonian
method can be seen as a grid-based generalization of the test particle solution. The
lattice Hamiltonian method considerably reduces fluctuations which plague the test
particle method and in general gives much better energy conservation for both the
momentum-independent[29. 30] as well as the momentum-dependent[29] mean field
potentials. From here-on. we adopt this method. We note that this is this first imple-
mentation of the lattice Hamiltonian method for momentum-dependent nuclear mean
field potentials(116. 117} which has been developed in parallel with [31. 118]. In that
reference. however. a different functional dependence of the mean field on momenta
was used. Greco[119] has also recently implemented the momentum-dependent Lat-
tice Hamiltonian with the GBD-type potential discussed in this work. However, the
mean field used in that work (c.f. the GBD-type potential in table 3.1 and figure 3.1)

does not exhibit the observed saturation of the optical potential at high momenta.

4.2.3 Interpolating Functions

Up to now. we have introduced the Lattice Hamiltonian method via the finite form
factor R. However. we have avoided any specific functional form to be used. Simple

parameterizations have been used in the past. However, as will be shown, the degree
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to which energy and linear momentum are conserved is in general sensitive to this
choice. As a starting point. we turn to reference [120]. In this work, a family of
central B splines{121]> were studied in the context of smooth particle methods for
hydrodynamic simulations{122. 123]. We borrow from that work in an attempt to
make a satisfactory selection for our smoothing function.

The central B splines provide for an interpolation from the continuous test par-
ticle positions r; to the grid points whose centres are located at discrete r,. For a
configuration space lattice of spacing dr. the general formula for the n*® order central

B spline is:

(n = 1)!M,(z.0x) = ¢ ( : ) (1'+ %O_r)n—-l B ( ,: )

Taking a normalized (c.f. equation (4.8)) M, for positive r gives us the following one
dimensional configuration space form factors which we rename as R, to emphasize

their connection to configuration space:

- 1 1 . . .
Ri(xy) = ——=(20xr— o4} 0< 1 <2z
-4
- . 1 %1-.1"—1'? OSIIS%
R;;(.l’[) = 0.—3 . > N
T (36 - o) <<
2:3 ¢ 2 I
- 1 301‘ —-O.I‘.L't-:-—.,L OSI[SJI
Ri(zi) = — . s
T 1 (20r — ;) 0z < 11 < 20z

3These are also referred to as the Bernstein Polynomials or Basis splines.
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Figure 4.3: Nucleon form factors for several spline forms taken from [120]
(dark lines in left panel) and the first derivative of the former (dark lines
in right panel). The solid. long-dashed. short-dashed and dotted lines are
for R,. R;. Ry and R; respectively. Also shown in the two figures is a
Woods-Saxon parameterization (shaded lines in both figures) as discussed

in the text.
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where the configuration space form factor in equation (4.7) is given by R = Ry./Nouns,
where the R, is one of the profiles given above and r; = |x, — z;|. We show in the
left panel of figure 4.3 the above form factors. For each. the value of dz is adjusted
such that all the {(spline) form factors have the same range. that is, for z; >1.5 fm
the form factor is zero®. In [124]. in the context of test-particle BUU simulations

for colliding ions. it was shown (using Gaussian form factors) that for a grid spacing

Note that this is slightly larger than the nucleon hard-sphere cutoff of 0.80Ro fm used to

determine the nuclear radius (c.f. equation (4.2)). This in effect provides for a smooth nucleon
surface of ~ 0.36 fm.
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dr larger than the form factor width. the directed flow depended unphysically on
the latter. For grid spacings smaller than the form factor width, this dependence
vanished. We thus choose our spline form factors to extend over at least two grid
sites in the radial direction. With this constraint. for R», R3, R; and Rs, dx is 0.75,
1.00. 0.75 and 0.60 fm respectively. In the same figure, the right panel shows the
first derivative for all of the above form factors. Note that this derivative enters
directly into the Latrice Hamiltonian equations of motion as seen in equation (4.12).
Also in that figure, we show for comparison a Woods-Saxon parameterization for the
configuration space form factor. This functional form reads:

N

et +1

Ry sir) = . (4.13)

where V. ro and .\ are 2/3. 0.75 and 0.25 respectively. Figure 4.3 indicates that the
spline form factors drop to zero at r = 1.5 fm (as alreadv mentioned. this has been
adjusted by hand). In addition. R3. R4 and R5 have a continuous first derivative in
that interval. In general. the spline of order n has a continuous derivative of order
n — 2. We also note for future reference that as the order of the spline increases.
so does the area under the first derivative curve. In contrast to the splines. the
Wood-Saxon parameterization does not smoothly drop to zero at r = 1.5 fm. it does
however have a continuous derivative inside the interval 0 < r < 1.5 fm to all orders.
Note that the area under the first derivative curve for this form factor is lower than
all of the splines presented here. \We will come back to an analysis of these form
factors in section 4.4. Before this. however. we will discuss the implementation of

the numerical procedure used to solve the Vlasov and BUU equation.
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4.3 Numerical Implementation

4.3.1 Mean Field

The last few sections have presented us with all the ingredients necessary to embark
on a numerical solution. The procedure we use here is accomplished by introduc-
ing a discrete time step ot and solving the lattice Hamiltonian equations using the
Verlet- Velocity algorithn. This is a variant of the leap-frog method which is often
used. however. the former gives us access to the particle positions and momenta at
equal time intervals’. The Verlet-Velocity algorithm in general gives slightly better
accuracy than the corresponding leap-frog algorithm. For a full discussion on these
methods. the reader is referred to 123]. The discretized equations of motion are

calculated as follows:

rit - ot)
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c(t—oty = o(t) +

where the forces and velocities are calculated from equation (4.12). the lattice Hamil-
tonian equations of motion. We note that a fourth order Runge-Kutta integration
scheme which involves four velocity (acceleration) terms in the first (second) of the
above equations. increases the computation time by at least a factor of 3. For all
numerical investigations in this work. we have used .V.,; = 100 and a time step of
ot = 0.33 fm/c. which implies that a given test particle remains within a given lattice

site for at least two time steps for all the grid sizes previously given.

4.3.2 Binary nucleon-nucleon collisions

So far. our solution has ignored the Uehling-Uhlenbeck collision term presented in

section 2.3. We now re-introduce this term into our numerical procedure. We follow

“In general. the leap-frog method allows access to configuration space values at integer time

steps (ndt) and momentum space values at half integer time steps (n + 1/2)dt.
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the work of [21] for elastic collisions only as we are mainly concerned with interme-
diate energy collisions where elastic scattering dominates over inelastic scattering.
In this procedure. only collisions between test-particles that belong to the same en-
semble are allowed. This is known as the ensemble method. Between time steps. all
test particles belonging to a given ensemble are compared. The distance of closest
approach?® is caleculated. and if this distance is greater than /o/#. where o is the
total elastic energv-dependent cross section. then the two test particles cannot scat-
ter. For closest approach distances less than this value. the particles are allowed to
scatter elastically. New momenta are then assigned to these particles. Next. the
phase space density around both scattered particles is calculated. If this is greater
than some prescribed value. then scattering is forbidden and the momenta are reset
to pre-collision values. This procedure in effect calculates the Pauli blocking factors
that appear in the Uehling-Uhlenbeck collision integral in equation (2.24). This is a
known procedure and fuil details can be found in the reference provided and also in
reference [22]. We find that for isolated cold nuclei. collisions are Pauli blocked with
an efficiency of ~96%. In addition. for collisions of nuclei at lab kinetic energies of
Ei./A = 50 MeV/A. collisions with kcyy <0.70 fm~! are blocked with an efficiency
of 96%. This justifies the 150 mb truncation of the elastic cross section as presented
in figure 3.9. Furthermore. we note that we also prevent binary collisions between
test particles from the same nucleus unless one of tliern has already undergone an
unblocked collision.

Previously we mentioned that the elastic cross-section requires modification due
to the presence of a momentum-dependent term in the nuclear mean field potential.
The method we have adopted in this work does differ from those in the literature
in that we perform a direct calculation of this modification (presented in section
3.2). In that section. we provided a closed form solution to this modification for

equilibrium nuclear matter. In the case of colliding heavy ions, however, we do

8Note that knowledge of the position and momentum at time ¢t and t + ¢ are thus required.
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expect non-equilibrium? processes to be at work. We thus cannot take advantage of
the closed form solution for the in-medium modification to the elastic cross section
obtained in the aforementioned section. \We alternatively have to explicitly calculate
the density of final states (and relative velocity) numerically for each test-particle
collision process. This involves a direct calculation of equation (3.14). where u(p,p) =
u(po.|p|) is in general no longer true. As this is calculated using the nucleon form
factors introduced for the lattice Hamiltonian method, it is a considerable numerical
task. Careful consideration of storage issues can have drastic improvements in code
performance. With our implementation of the self-consistent in-medium cross section
run times are typically increased by a modest 15%. Once Dy and v, have been
computed. the new. modified cross section is then calculated and compared with the
pre-collision closest approach value. If this value is now larger than what the new
cross section allows. then the collision is forbidden and the test particles are reset to
their pre-collision momenta. We restate that since the equilibrium configuration is
in general no longer present. the in-medium cross section presented in figure 3.8 is
no longer valid. However. it is useful for illustrative purposes.

Before moving on. we will summarize the model presented so far. We have im-
plemented a momentum-dependent lattice Hamiltonian solution of the BUU equa-
tion for modeling the collision of heavv ions. In particular. the lattice Hamiltonian
method is applied to the evolution of the mean fields and as such solves the Vlasov
part of the BUU equation. To supplement this. we have introduced a cascade al-
gorithm that takes into account two-body nucleon-nucleon collisions. In-between
collisions. the nucleons move on curved trajectories as calculated by the Vlasov part
of the BUU equation. In addition. we have implemented a correction to the nucleon-
nucleon scattering cross section {used in the BUU implementation) that consistently

takes into account the nuclear medium in which the nucleon-nucleon collisions take

9With non-equilibrium processes. the momentum distribution of the nucleons will not exhibit
spherical symmetry. This is the symmetry thar allowed us to write down a closed form solution for

the self-consistent in-medium modification to the nucleon-nucleon cross section.
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place. This correction is particular to momentum-dependent nuclear mean fields.

We now move on to investigate qualitative features of the model presented thus far.

4.3.3 Dynamical Features

We now provide a qualitative examination of our numerical solution by considera-
tion of the configuration space evolution of two colliding '°“Au nuclei. We remind
the reader that more detailed quantitative investigations with the model we have
developed here are to be made in chapters 3 and 6.

In figure 4.4 we show the evolution of the test-particle distribution for three dif-
ferent BUU propagation schemes with the MDYI-type momentum-dependent mean
field potential. Isospin and Coulomb effects were included in all simulations. Note
that all calculations were performed in the nucleon-nucleon centre of mass frame.
For all cases. the incident laboratory bombarding energy!® (beam direction is the
2 direction) was Ex/4 = 30 MeV for a normalized impact parameter (£ direc-
tion) of 6/bmary = 0.20. The left. middle and right column is for a collision-less
Vlasov propagation. BUU propagation and BUU propagation coupled with the self-
consistent in-medium cross secrion. respectively. Each panel from the top to the
bottom is a snapshot of the test-particle distribution projected onto the reaction
plane at At = 100 fm, ¢ intervals. The main qualitative differences are seen when we
move from the Vlasov to BUU picture. In the former. the two nuclei exhibit large
transparency and for the most part pass through each other. Note that for this case.
the two nuclei partiallv orbit each other in an attractive manner. That is. the projec-
tile (initial negative = and positive r in the figure) is deflected to negative z values.
When we turn on the nucleon-nucleon collisions in the second column, we see that
the transparency present in the Vlasov picture is now lost. In fact, the nucleons from

the two nuclei pile up and the large compound quasi-nucleus then emits particles in

19This quantity is traditionally defined as the lab frame kinetic energy per projectile nucleon

incident on a fixed target.
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a more or less isotropic manner. We do note that the projectile in this case is slightly
deflected to positive r values, in contrast to the former case. Finally, for the BUU
simulation with the additional self-consistent in-medium effect, we see a compromise
between the previous two pictures. That is, the test-particle distribution is more
(less) elongated in the Z direction then that of the BUU (Vlasov) simulation. In
addition. we note that the presence of nucleon-nucleon collisions tends to reduce the
size of the final state fragments.

We can gain deeper insights into the dvnamical differences in the above collisions
by examining the evolution of the nucleon dens:ty. In figure 4.5, we show the reac-
tion plane density corresponding to the test-particle distributions shown in figure 4.4.
In this figure. we only consider test-particles within a 1.5 fm thick slice about the
reaction plane. First of all we note that at ¢ = 0 fm/c. there are some density fluctu-
ations in the nuclei. This effect is due to the finite sampling of phase space. For all
simulations. we see that at ¢ = 100 fm/c. the compound system is at sub-saturation
density levels. As the system expands (predominantly along the beam line direction
for the Vlasov simulation). small pockets of low density collect and build up to pro-
duce small regions of nucleons at saturation density levels (¢ ~ 200 fm/c). We note
that without nucleon-nucleon collisions. these regions are considerably larger. When
we turn on the collisions (middle panel). we see (from the test-particle distribution
in figure 4.4). that the approximately isotropic emission of nucleons from the centre
of mass of the svstem does not lend itself to produce small clusters. We do note
however. the density slices about the reaction plane presented in this figure ignores
many free nucleons and clusters that have been emitted out of the reaction plane.
Although at this bombarding energy the fraction of these nucleons is small. they
are nonetheless present as is easily seen from the clusters present in the test-particle
distribution presented in figure 4.4.

To gain a qualitative picture of the early reaction dynamics in a nucleus-nucleus

collision, we show in figure 1.6 the in-plane density distribution for Au+Au collisions
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Figure 4.4: Test particle distribution for a simulated Au+Au collision at
50 MeV/A for an impact parameter of b/b,qr = 0.20. The rows represent
At = 100 fm/c time slices at 0. 100. 200 and 300 fm/c from top to bottom.
The left panels are for a collision-less Vlasov (mean field only) propagation,
the middle is for a BUU (mean field plus free space nucleon-nucleon cross
section) simulation and the right is for a BUU simulation with the self-
consistent in-medium cross section modification. For all cases the MDYI-
tvpe momentum-dependent mean field supplemented with Coulomb and

Isospin effects was used. We show a representative sample of 3 ensembles.
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Figure 4.5: In-plane density distribution from Au+Au collisions at 50
MeV' /A corresponding to the test particle distribution from figure 4.4. The
contours levels are at 0.05. 0.5. 1.0 and 1.5 times the nuclear saturation

density pg. Starting from the top. the time slices are 0. 100 ,200 and 300

fm/c.
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Figure 4.6: In-plane density distribution from Au+Au collisions at 150
MeV /A for time slices of t = 10, 20. 30 and 60 fm/c. For all cases. the
contours levels are for 0.1. 0.3. 0.6. 1.1. 1.4 and 1.6 times the nuclear

saturation density pg. The columns are as in figure 4.4.
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at an incident lab bombarding energy of 150 MeV per nucleon. As this is a higher
energy than the last example. the dyvnamical features we examine here take place on
smaller time scales. In this figure, the time slices are now for A¢=10. 20, 30 and 60
fm/c. The columns are as in figure 4.4. The Vlasov propagation scheme (left panels)
indicates that the nuclei exhibit large transparency. In fact, at 60 fm/c, the slightly
inflated nuclei have almost passed completely through each other. Comparison with
the BUU propagation scheme {middle panels) shows that the nuclei are stopped in
the centre of mass at early stages and an expansion transverse to the beam direction
follows. Furthermore from the figure it is evident that turning on the nucleon-nucleon
collisions results in a density overlap region that is higher and more compressed than
in the Vlasov case. This is due to early stage nucleon-nucleon collisions which pile
up in the overlap region. Again. when we turn on the in-medium cross section (right
panels). a compromise between these two scenarios (Vlasov and BUU) is reached.
The dynamical picture presented here has served as a qualitative tool to aid
in understanding the gross features of heavy ion collisions with our model. The
BUU propagation scheme is more realistic than the Vlasov scheme as evidenced by
the effect that nucleon-nucleon collisions have on the dynamics. That is to say.
nucleon-nucieon collisions play a sizeable role. Having said this. we then expect the
BUU scheme supplemented with the in-medium cross section an even more realistic
picture. as it consistently takes into account the momentum-dependent modification
to the latter. We will make definite quantitative conclusions on these statements in

chapters 5 and 6.

4.3.4 In-medium effects

As seen in the previous section. the in-medium nucleon-nucleon cross section does
influence the dynamics of the heavy ion collision. The qualitative pictures presented
in that section show that this effect manifests itself in terms of enhanced trans-

parency. This is primarily due to the reduced number of collisions resulting from
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Figure 4.7: Total number of unblocked nucleon-nucleons collisions from
simulated Au+Au collisions at 150 MeV/A corresponding to figure 4.6.
The solid (dashed) line is tor the free-space (self-consistent in-medium)

nucleon-nucleon scattering cross section.

the reduced in-medium cross section. I[n figure 4.7, we show the total number of
unblocked collisions from the Au+Au collision presented in figure 4.6. As the figure
indicates. the effect of the in-medium cross section does indeed reduce the number
of nucleon-nucleon collisions. This effect is most dramatic when the nuclear overlap
region is largest (¢t ~ 30 — 40 fm/c). Also. as we shall see shortly the effect of the
self-consistent modification is strongly momentum-dependent and is largest for low
energy (momentum) collisions.

As an example of the dynamical behaviour of this new modified cross section.
we show in figure 4.3 the average value of the ratio of the in-medium to free-space
cross section for zero impact parameter “%*Bi+Bi collisions at laboratory incident
bombarding energies of £;/4 = 25. 150. 500 and 1000 MeV. As a comparison. we

also show this ratio for the density-dependent in-medium cross section discussed in
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Figure 4.8: Ratio of the in-medium elastic cross section to that of the
free space cross section for simulations of collisions of *Bi+Bi at zero
impact parameter for various initial bombarding energies as a function of
time. The left panel show the results obtained with the self-consistent
method for obtaining the in-medium cross section and the right panel is
for a phenomenological densitv-dependent parameterization of coefficient
a = 0.20 as described in section 3.2. All simulations were done with the
MDYI-type momentum-dependent mean field. Coulomb and isospin effects

were not included.
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section 3.2. All collisions contributing to this figure are unblocked collisions. There
are several characteristics to note from this figure. We first discuss the momentum-
dependent self-consistent in-medium modification results in the left panel. For higher
bombarding energies. we see that the in-medium cross section is closer to the free
space cross section than compared to that at lower energy collisions. This aspect is
also reflected early on in the collision process. In this case, thermalization'! has yet
to take place and thus we expect that binary nucleon-nucleon collisions take place
at large relative momenta. As the two nuclei coalesce, the initially large separation
of the momentum space spheres reduces. The relative momenta and the in-medium
cross section will thus lower. This is retlected in the surface plot of figure 3.8 which
indicates that we expect a smaller value of the in-medium cross section at low relative
momenta. Figure 3.8 also indicates however. that we should expect a lower in-
medium cross section for large densities. As we expect a larger density to develop
for a higher energy collision. this should manifest itself as a reduction in the in-
medium cross section. As figure 4.8 is contrarv to this scenario. we conclude that the
momentum dependence in the in-medium cross section dominates over the density
dependence. The quantitative picture we get from this analysis is that early on
in nucleus-nucleus collisions, the in-medium nucleon-nucleon cross section behaves
like a free-space cross section. in that the reduction in the former is small. As the
nuclei begin to inter-penetrate. the in-medium cross section drops. Thus, initially,
the surfaces of the two nuclei are met with resistance from a large nucleon-nucleon
collision cross section. This initial resistance drops as the nuclear surfaces begin to
inter-penetrate.

Also shown in the right panel of figure 4.8 is the ratio of the in-medium to that of
the free space cross section obtained with a density-dependent parameterization of

the in-medium cross section given by equation (3.19). This figure shows behaviour

By this we mean that the momentum distribution of the nucleons has not achieved spherical
P

symmetry as not enough nucleon-nucieon collision have taken place yet.
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Figure 4.9: Momentum-dependent in-medium elastic cross section coeffi-

cient for the time slice ¢t : 10 — 20. taken from figure 4.8. From left to
right. the four panels are for incident bombarding energies of E;/A = 25,
150. 500 and 1000 Me\. The simulations were performed with the MDYI-
. tvpe mean fleld potential, and the in-medium nucleon-nucleon elastic cross
section calculated as described in the text. [n addition. in each panel we
show a density-dependent parameterization of equation (3.19) for two val-
ues of a as shown in each panel. The abscissa values represent the local

density at the collision site.

that is in general opposite to the self-consistent method of calculating the in-medium
cross section. That is. at early stages in the nucleus-nucleus collision process. the
initially large density buildup results in a low value of the in-medium cross section.
Since the higher energy collision produces a larger density. the resulting in-medium
cross section is further decreased. These two modifications to the free-space elastic
cross section thus show very dissimilar behaviour for a given incident bombarding
energy. We investigate the consequences of these differences on linear momentum
transfer and elliptic flow in heavy ion reactions in chapters 3 and 6 respectively.
. In addition to figure 4.8. we next consider the unblocked collisions in the time slice

oft : 10 — 20 fm/c from figure 1.8. In figure 4.9, we present a scatter plot of the ratio
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of the in-medium to the free space nucleon-nucleon cross section for the MDYI mean
field potential as a function of density for several incident bombarding energies. The
in-medium cross section in this case is calculated self-consistently and the density
presented in that figure is the local density at the collision site. This figure indicates
that for a given density. the in-medium cross section can take on different values.
This is due to the additional momentum-dependence on the latter. Furthermore,
in figure 4.9. we also show the value of the in-medium cross section that would be
obtained with the density-dependent prescription already mentioned. but for two
different values of the coefficient « in equation (3.19). We note that as the values for
the in-medium cross section presented in this figure are for a given time slice, that the
values of a that bracket these points {for the densitv-dependent parameterization) are
valid only for this time slice. In addition. a must be adjusted for a particular incident
bombarding energy. Thart is. the Jensitv-dependent parameterization requires that a
vary with both the incident energy and the elapsed time during the nucleus-nucleus
collision. In figure 4.3. the value of a for the densitv-dependent parameterization
is fixed at 0.20 for the entire nucleus-nucleus collision. as one cannot know a priori
how it should vary during the course of a heavy ion collision. We thus find that the
linear dependence on density in equation (3.19) to be a very rough approximation.
We will return to an analyvsis of these two in-medium cross sections in chapters
5 and 6 where we perform systematic comparisons with experimentally measured

signals.

4.4 Energy and Momentum Conservation

We now return to the connguration space form factors introduced in section 4.2.3.
and examine their energy and momentum conservation properties. In general, grid-
based simulations do not exactly conserve energy and momentum. Instead, one tries

to minimize the effects of violating conservation laws, and one selects a solution that
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will not too heavily bias results. To this end. we investigate our numerical scheme to
test its sensitivity to the configuration space form factor already introduced. First. we
examine linear momentum couservation for a single non-interacting nucleus. For this
test. we considered a *“Ca nucleus. and neglected Coulomb. isospin and collisional
effects. We are thus concerned with only the behaviour of the nuclear part of the
potential. As this is by far the largest contribution to the potential energy. our
results should be generally reflective of the case with full Coulomb and isospin terms
included. All the form factors presented in section 4.2.3 are considered here. The
nucleus was initialized as described in section 4.1 and placed on a grid of lattice
spacing dr as described in section 4.2.3. An initial kinetic energy boost (in the 2
direction) was then given to the nucleus and it was allowed to traverse a grid of
length Ar = 25 fm. Upon completion of this travel, the final linear momentum
(P- 2) finai of the nucleus was measured and compared to the initial boost momentum
(P - 2)iniar- We define the lattice friction as the momentum loss per transit time
At over the distance Ar. that is. ((F- 3)finat — (7 - 2)initiat)/At. For a discussion
of lattice friction in grid-based siniulations. see {125]. Figure 4.10 shows the results
thus obtained for initial bombarding energies ranging from Er/A4d : 20 — 200 MeV
for both momentum-independent and momentum-dependent mean field potentials.
The figure indicates that for all energies. form factors and potentials. lattice friction
is present. That is. in all cases. the nuclei have lost linear momentum. The situation
is the worst at low energies. The momentum-independent simulation is also more
sensitive to lattice friction than is the momentum-dependent simulation?. The figure
indicates that friction is decreased as we go to higher orders in the spline form factor.
As the latter have smoother higher order derivatives and differ in the magnitude of
the first derivative. there are two possibilities for the decreasing of lattice friction

with an increasing order in the {spline) form factor. However. the Woods-Saxon form

12Note that due to the effective mass m* /m < 1 for the momentum-dependent potential, nucleons
in this mean field will have a larger velocity for a given momentum than those in the momentum-

independent mean field.
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Figure 4.10: Percentage of initial linear momentum lost for a *°Ca nucleus
traversing a grid over a distance of Ar = 25 fm as a function of initial
bombarding energyv for the form factors used in this work. All curves
correspond to those presented in figure 4.3. The solid. long-dashed. short-
dashed and dotted lines are for the spline form factors. R>. R3. R; and
Rs respectively. The shaded curve is the Woods-Saxon form factor. The
left panel is for a momentum-independent mean field and the right is for a

MDYTI-type momentum-dependent mean field.

factor results in momentum-conservation that rivals the best of the splines presented
here. Common to these (Woods-Saxon and higher order splines) is smoothness in
the high order derivatives. We thus cunclude that lattice friction can be reduced
with form factors that have high order non-zero smooth derivatives. In reference
[120. 122 it was also found thart higher order central B splines gave better accuracy
in smooth particle hvdrodynamics simulations.

Next we turn to energy conservation. For the Ca nuclei examined in the momen-
tum conservation scenario. we now calculate the change in total energy. The lattice
friction effect is not present in this analvsis. as the total energy is calculated in

the rest frame of the nucleus. We show in figure 4.11. the change in total energy
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per At = 100 fm/c time intervals!® for the momentum-dependent mean field only.
The figure indicates that that as we go to higher order splines. the nucleus gains
energy at an increasingly faster rate and is only weakly dependent on the initial
kinetic energy. We also note that energy conservation is better for larger nuclei. The
Woods-Saxon form factor gives the best energyv conservation and the highest order
spline gives the worst. Comparison of figure 4.11 with the right panel of figure 4.3.
we find that the energy gain increases as the area under the first derivative of the
form factor increases. In fact. there is approximately a one-to-one correspondence
between the two. Thus. good energy conservation for a momentum-dependent sim-
ulation requires that the form factor must be slowly varying over its range. That is.
as the maximum slope of a spline increases with its order (c.f. right panel of figure
4.3). so does the energy non-conservation. The Woods-Saxon form factor which has.
on average. the most gradual slope provides for the best energy conservation. We
note that the energy conservation for momentum-independent potentials was better
that 0.200 Me\'/A for the Ca nucleus at all energies and for all form factors. For M4
and M3. the energy gain in this case was as low as 0.023 MeV/A at 100 fm/c time
intervals. Compared to earlier test-particle realizations of the density-dependent
and momentum-dependent mean fields. the energy and momentum conservation we
observe here is a substantial improvement[29].

So far. we have investigated linear momentum and energy conservation for single.
non-interacting nuclei. However. we are in fact interested in collisions of heavy
ions. In this scenario. we find that utilization of the Woods-Saxon form factor
no longer conserves energyv to the accuracy we observe with single non-interacting
nuclei. We illustrate this for both the Woods-Saxon and the spline form factors
used thus far. Figure 4.12 shows the change in energy as a function of time for an
1021+ 108 A¢ collision at £;/4 = 100 MeV/A. The nuclear potential in this case is

momentum-independent. The figure indicates that for colliding nuclei, the splines

3The energy increase that we have observed here is approximately linear in time.
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Figure 4.11: Energy gain per At = 100 fm/c intervals for a single nucleus
traversing a grid over a distance of Ar = 23 fm obtained with a MDYI-type
momentum-dependent mean field for the form factors presented in figure
4.3. The stars. open and solid circles and are for a *Ca, **Ne and 2®Pb
nucleus respectively. The lower (upper) edge of the error bars is the energy

gain obtained for a nucleus with a kinetic energy of 200(20) MeV/A.
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Figure 4.12: Energy change for simulations of collisions of Ar+Ag at
Ei/4 = 100 MeV as a function of time. All dark curves correspond to
the splines presented in figure 4.3. The shaded curves correspond to the
Woods-Saxon parameterization for various values of .\ as displayed on the
plot. The value of .\ = 0.25 (0.15) has the largest (smallest) discontinuity

at its edge.

result in energy conservation far better than the Woods-Saxon parameterization
used thus far. In an attempt to understand this behaviour. two other Woods-Saxon
parameterizations are used. For these. the parameter A has been adjusted to reduce
the size of the discontinuity at the form factor edge. We also note that adjusting
-\ also changes the maximum slope of the form factor. For all the Woods-Saxon
parameterizations used here. the total area under this slope curve is less than that
for all spline parameterizations (c.f. figure 4.3). We conclude from this figure. that a
form factor which smoothly goes to zero at its edge is crucial for conserving energy
in stmulations of colliding ions.

To summarize. we find that lattice friction can be substantiallv reduced with a

form factor that has continuous derivatives to high orders. This applies to both
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momentum-independent and momentum-dependent mean field potentials as pre-
sented in figure 4.10. For non-interacting nuclei with the momentum-dependent
mean field potential. we find energy is conserved better with a form factor that does
not change too rapidly over its range. See for example, the momentum-dependent
results displayved in figure 4.11. We repeat that for momentum-independent simula-
tions. energy conservation is better than 0.200 MeV/A for all form factors. Finally.
for interacting nuclei. energy conservation improves with a form factor that smoothly
drops to zero in a continuous manner at its edge as displayed in figure 4.12 for Ar+Ag
collisions. From this analyvsis. we find that the ideal form factor must be slowly vary-
ing with high-orders of continuous derivatives and must also smoothly drop to zero

at its boundary.



Chapter 5

Observables and Model

Comparisons I

In this chapter we will present the results of our model predictions with several recent
experimental observables in the energy regime of £} /4 ~ ¢; — 200MeV. For the
first comparison. we investigate the so-called “flow inversion™ for a N+Sm system.
This first comparison is used as a test bed for examining qualitative features of our
model. For a second comparison we will examine nuclear stopping phenomena in
an Ar+Ag system. This observable is closely related to linear momentum transfer
and serves to characterize the opacity of nuclei as a function of incident bombarding
energy. These two investigations are complementary: the first examines ejecta with
projectile-like rapidity produced in low energy peripheral collisions and the second
examines large fragments at target-like rapidity for relatively semi-central impact
parameters. also at low energies. For the calculations performed in the following
chapters we have used nucleon form factors appropriate to the physical problem at

hand. including run-time considerations.
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pre-collision post collision
Figure 5.1: Schematic diagram illustrating directed flow in a heavy ion
collision. In the initial stage. before the collision on the left hand side. the
projectile (entering from the left) approaches the target with a non-zero
impact parameter "b". After the collision we are left with a mixed and
expanding participant region and two separated pseudo-spectator regions.
In this case. the spectators (projectile-like moving toward the right and
. target-like moving towards the left) are slightly deflected away from the
interaction region. [n the figure. the 2 axis points to the right and the #

axis points up: the reaction plane is the plane of the figure.
5.1 Flow Inversion in N+Sm Collisions

As a first comparison. we examine directed flow. This observable gives us insight
into large scale collective motion. For example, one can determine in the course of
a reaction whether nucleons are (on average) deflected away from, or attracted to
the directed overlap region. For a head-on (peripheral) collision, the overlap region
is maximal (minimal). Figure 5.1. shows an example where the target and projectile
“caps are slightly deflected away from the collision region. In this picture. the
directed flow is positive. For attractive scattering. the directed flow is negative. The
transition from attractive to repulsive scattering (or vice-versa) in known as “flow
. inversion” .

Recent flow inversion data has been taken at MSU-NSCL (37]. The system
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studied there was *N+'*Sm at bombarding energies of Ex/A = 35 — 155 MeV.
Traditional flow measurements determine only the magnitude and not the sign of
the flow and the inversion is inferred from a local minimum in the flow magnitude
[126. 127. 128. 129. 130. 131. 132]. The measurement made in this experiment was
of the v polarization from the electromagnetic decay of the residual Sm target in
coincidence with light charged particles. The sign of the polarization measured in
conjunction with light charged particles tells us the nature of the nuclear interaction.
that is. repulsive or attractive. The mechanism at work here can be easily pictured
by considering the schematic diagram shown in figure 5.1. For the system under
investigation. the projectile on the left side of the picture is much smaller than the
target (beam direction is to the right). After the collision. there is essentially no
target spectator cap as the energies employved here are to low for shearing effects!.
The grazing action of the projectile sets the target spinning, and is thus excited
with some angular momentum L. The excited target residue can then decay elec-
tromagnetically. The direction of the angular momentum vector will be a function
of the initial geometry. which is not known a priori in the experimental set-up. For
the diagram presented here however. the angular momentum of the residual excited
target nucleus points into the page. For more details. the reader is referred to [37].

The niodel that we have developed in this work does not permit electromagnetic
transitions as this feature has not been incorporated. ‘e can however, observe
a flow inversion signal by analysis of the transverse momenta (transverse to the
beam) of the final state products. Comparisons between theory and experiment can
be made if we note that positive (negative) v polarization corresponds to negative
(positive) transverse momenta for forward moving final state products (this is the
sign convention adopted in reference [37]). Note however, that as these two signals

(experimental and theoretical) are not the same quantity, the best we can hope for

1Such a situation is encountered at high energy where the projectile/target overlap region (partic-
ipant region) is suddenly disconnected from the original nuclei. The slight rotation of the spectators

in figure 5.1 implies that these are really pseudo-spectators.
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Figure 5.2: Temporal evolurion of transverse momentum as a function of
time for simulated collisions of N+Sm at E;/4 = 110 MeV and & = 0.45.
< pr/4 > is calculated for all nucleons with positive centre of mass rapidity.

This result is for the MDYT potential of compressibility 215 MeV.

is a qualitative level of agreement. In order to make a comparison with our model.
we required the simulation to run until transverse momenta saturates. Figure 5.2
shows the growth of transverse momentum per nucieon in the forward hemisphere
(positive centre of mass rapidity® ) at Ex/4 = 110 MeV and b= b/bmar = 0.45. In
this figure. saturation is artained at ~ 175 fm/c. In general, this value varies with
both incident energy and impact parameter. We made several runs at energies
of Ex/A = 40.75.110 and 150 MeV at impact parameters of b = 0.45 and 0.90.
Our choice of input potential was the MDYI-tvpe momentum-dependent potential
of compressibility 215 Me\. Average transverse momenta per nucleon was computed
fer free and bound protons (excluding the residual target protons) within an angular
gate of 25° <O < 35° in the lab frame as dictated by the experimental acceptances.

The results are displayed in the left panel of figure 5.3. The experimentally measured

Rapidity is defined as y = n((E +p:)/(E —p:)) and is a measure of the longitudinal velocity.
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Figure 5.3: Average {negative) transverse momenta per proton for collisions
of N+Sm as a function of lab bombarding energy from simulations[116]
(left panel) and measured;37] + polarization in coincidence with ejected «
particles (right panel). Open (solid) points are for peripheral (semi-central)

Impact parameters.

~ polarization for mid-central (0.2 < b < 0.6) and peripheral (5 > 0.6) events is
displaved in the right panel of the same figure. Experimental impact parameter
selection was achieved via measured charged particle multiplicity.

Both the theoretical and experimental results indicate that there is a sign change
from negative transverse momenta (positive polarization) to positive transverse mo-
menta (negative polarization) for both impact parameters as the incident energy is
increased. This is an indication that the system experiences an attractive mean field
at low energies which becomes repulsive as we increase the bombarding energy. In
other words. there is a flow inversion. The energy at which the flow changes sign has
traditionally been called the ~balance energy”. Furthermore the results indicate that
the balance energy increases with impact parameter. That the balance energy in-
creases with impact parameter has been observed throughout the literature on both
experimental and theoretical fronts {111. 133. 134, 135, 136. 137].

For an explanation of the numerical results, we will first consider the mid-central

impact parameter and then the peripheral impact parameter. Let us now focus on



Chapter 3: Observables and Model Comparisons 86

the former. The balance energy here is £, ~ 85 MeV. The simulations indicate that
that the final state for all energies studied in this work consisted of one heavy excited
(target) residue and a spray of isolated nucleons. Below (above) E, the protons had
an average negative (positive) transverse momenta. [f we make some consideration of
the dvnamics involved in the collision process. an understanding of processes at work
will surface. As the two nuclei begin to inter-penetrate, there is a density build-up ia
the overlap region. In the complete absence of collisions (nucleon-nucleon) and mean
field effects. this density will be twice the nuclear saturation density. Dynamical
effects arising from the inclusion of the mean field typically reduce this value to
approximatelv 1.2 — 1.6 times the saturation density. The presence of collisions can
also alter the density. If we allow the nucleons to scatter off one another during the
inter-penetration stage. the (approximately) straight line trajectories of the nucleons
will be lost as the nucleons bounce around off one another. This creates a density
build-up that will be larger than in the absence of collisions as late coming nucleons
run into this stochastic region and pile up?® (see the ¢t = 20 fm/c time slice in figure
4.6 for example). In addition. depending on the initial projectile energy. the number
of collisions will vary. At low energy. the Pauli exclusion principle suppresses many
nucleon-nucleon collisions as phase space is relatively dense. However. as the energy
is increased. scattering above the Fermi surface is more abundant. This in effect
produces gaps in phase space which in turn permit more collisions to occur. This
will cause the density in the overlap region to build up even more. We find that
increasing the energy from 40 to 75 MeV increases the net number of collisions by a
factor of about 2 early on in the collision. Partially owing to the increased frequency
of collisions. we then expect the overlap density to also be increased. We find that
there is about a 5% increase in the maximum density when the bombarding energy

is increased from 40 to 75 MeV.

3For a collision-less region of nuclear matter. the nucleons move such that they satisfy the
Liouville equation, i.e. the density of phase space is kept constant. As mentioned in chapter 2, the

inclusion of collisions can modify the latter.
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With these two mechanisms at work, let’s consider collisions below the balance
energy. Here. nucleon-nucleon collisions are limited. The density build-up in the
overlap region effectively raises the potential well (the potential well becomes shal-
lower) the nucleons experience and they slowly evacuate this region in favour of the
regions near saturation density. The spatially growing overlap region exits the far
side of the target as a slow moving, weakly bound dilute blob that is slightly attracted
to the potential well of the target upon exit and is thus scattered to negative angles.
Slow disassembly of the blob then takes place and we are left with a mist of nucleons
that has an average negative transverse momenta. In addition, a substantial fraction
of the slowly moving projectile nucleons become trapped in the potential well of the
target.

The situation above the balance energy is different. In this case. the increased
frequency of nucleon-nucleon collisions effectively creates an overlap density in excess
of that which occurs below the balance energy. This causes the nucleons to evacuate
this region attaining larger momenta than in the low energy case'. We find that
this extra momentum is sufficient to cause nucleons to exit at the top of the system
(top as in figure 5.1. in the reaction plane). carrving with them a fraction of their
initial forward momentuin that has not vet been absorbed by the target. These
nucleons escape as free particles to positive scattering angles. Nucleons that exit
the overlap region into the target are re-scattered and eventually meld with residual
target. Thus. the transverse momentum changes from negative to positive values
as the bombarding energy is increased. In addition. the larger incident projectile
energy allows for a fraction of the energetic projectile nucleons to punch through the
target.

The dvnamics of the peripheral collision are different. Nucleon-nucleon collisions
do not play a large role here. \We find that for the peripheral impact parameter at

3 MeV'. the number of nucleon-nucleon collisions drops by a factor of about 5 as

*The potential gradient is steeper than in the low energy case.
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compared to the mid-central collision. For this collision, the impact parameter is
near maximal and the overlap region is that of two nuclear skins, both of which are
at sub-saturation levels (c.f. figure 4.2). Thus. the overlap produces a density that
is not far removed from that of saturation density. This resuits in the formation of
a bridge through which the nuclei can exchange nucleons and feel a net attractive
force towards one another®. As the projectile moves past the target, the system
partially orbits and the projectile is eventually released and scatters to small angles.
As the projectile releases from the target. a few nucleons are kicked up as they try to
decide which nucleus to join and are left behind. streaming into vacuum. For higher
energies. the region that these nucleons are kicked up in is shifted up and to the left
{see right hand side of figure 5.1) and are thus scattered into transverse momenta
states that are more positive than in the low energy case.® The scenario presented
here implies that the final state consists of two excited remnants: the target and
projectile residue. This is in contrast to the mid-central collision. In fact, we find
that for all energies studied here at large impact parameter, there is a projectile
remnant which is scattered to small angles.

Finally. we note that the measurement we have made here is an inclusive one.
That is to say. except for the angular acceptance imposed by the experimental setup.
all other variables such as rapidity and azimuthal angle have been integrated over.
We have thus potentiallv hid information that may provide us with deeper insights
into the dynamics of the collision. Ve present figure 5.4. as an example of this.
Here we see that the transverse momenta as a function of rapidity is non-trivial.
and there are effects that are washed out if we sum over all rapidity as we have

done in figure 5.3. In particular for the peripheral collision. we note that < p./A >

At energies of ~ 5 — 10 MeV'/A above the Coulomb barrier this bridge can exist for long times

(> 5000 fm/c) as the quasi-compound nucleus goes through several rotations.
5The larger angular momentum present in this system causes the orbit to be less tightly bound

than in the lower energy case. thus the projectile releases itself from the target at an earlier stage

in its trajectory.
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Figure 5.4: N+Sm differential flow for b = 0.43 {left panel) and b = 0.90
(right panel) at a lab bombarding energy of E;/4 = 110 MeV. < p./4 >
(points) is shown for all nucleons. The solid curves in both figures give the
number of nucleons per unity rapidity. Rapidity is shown in the lab frame
and is normalized to the beam rapidity. The scale on the y-axis for the
rapidity curve only is arbitrary. The difference in scatter in the two plots

is due to statistics.
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changes sign. going from negative at mid-rapidity to positive at near projectile-
rapidity. In fact. the traditional method of extracting the flow signal is to plot
transverse monienta as a function of rapidity as is done in figure 5.4 and take the
slope at mid-rapidity{133. 139. 140]. However. our analysis has shown, at least on
a qualitative level. that our model reproduces so far the observed flow inversion as
well as the impact parameter dependence of the balance energy. In chapter 6 we
address an observable that has a non-trivial dependence on the azimuthal angle o.
The investigation in that chapter is thus a differential flow analysis and provides for

a finer level of resolution into the nuclear dyvnamics.

5.2 Nuclear Stopping in Ar+Ag Collisions

For out next comparison. we turn towards some splintering results taken at the MSU-
NSCL cyclotron[141]. Here. beams of *®Ar impinging on a % Ag target at laboratory
bombarding energies ranging from E; /4 =8 — 115 MeV were produced.

Before we begin. it will be instructive to first consider the dynamics involved
in such processes. As the energy region probed in this analvsis is similar to that
investigated in section 3.1. we can borrow from the ideas presented there to get an
overall picture of the physics involved in this situation. Since we are concerned with
mid-central impact parameters. we encounter a scenario similar to that encountered
in the N+Sm system at an impact parameter of b = 0.45. However. as the system
asvmmetry is smaller here. subtle differences will arise. In fact. for the N+Sm system
(mid-central impact parameter) the ratio of the volume overlap to that of the target
volume was about 0.1. For the Ar—Ag syvstem studied in this section, this ratio is
about 3.7 times greater. Thus. as the nuclei have inter-penetrated one another, the
region in which the nuclear potential well depth is reduced is a sizeable fraction of
the total target volume. As previously explained. the super-saturated density in this

region causes nucleons to evacuate to regions where the density is near saturation.
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As in the N+Sm case. at low energy. this evacuation is slow and the overlap region
gradually inflates. spilling particles and their associated projectile-like momenta both
into vacuum as well as into the lower portion of the target. This results in a relatively
large target residue and a large loosely bound nuclear matter blob released from the
target. The decay channel for the emitted blob consists of a few light clusters and
many light particles. As the energy is increased. these decay channels shift towards
lower masses and thus produce more light particles and more light clusters with
smaller masses. That is. more nucleons are liberated from the mean field. The
residual target in the case of higher energy collisions becomes populated with higher
energy refugees from the overlap region and is thus excited to higher energy states.
This results in decay channels similar to that in the participant. However. the shift
to lower mass channels occurs at higher incident energy as the majority of the initial
projectile energy is deposited into the target outside of this (target residue) region’.
So the overall picture is that of a large excited target residue with a few clusters
and many light particles at low energy. to a smaller excited target residue. smaller
and more numerous light clusters and more light particles at higher energies. For
lower energies. the small number of ejected nucleons and clusters carry with them
only a small portion of the initial momenta. thus the target inherits a large portion
of the initial projectile momentum. For higher energies, a large fraction of the initial
projectile momentum is carried off by the more numerous light particles ejected
from the interaction region as the potential well there is no longer deep enough to
keep particles inside. Note that the larger kinetic energy of the target implies that
nucleons in the overlap region will on average have a larger kinetic energy. Thus, the
heaviest remnant in this case inherits less momentum from the initial projectile.

To illustrate this process. we show in the left panel of figure 5.5 the total mass

number bound in the residual target. other clusters and free nucleons from simula-

“The residual target is. in general. in a lower energy excitation state than that of the overlap

region.
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Figure 3.5: Distribution of masses from Ar+Ag collisions at incident lab
energies ranging from E; /4 = 30 — 120 MeV. In the left panel we show the
number of nucleons present in the largest final state residue (solid circles).
the total number of nucleons bound in clusters smaller than the largest
final state residue (solid diamonds) and the total number of free nucleons
(open circles). In the right panel. we show the total number of clusters

smaller than the largest remnant.

tions of Ar+Ag collisions with a4 Inomentum-independent mean field of compressibil-
ity 380 Me\" at an impact parameter of b = 0.20. \We define our clusters at the end
of the simulation. For each test particle. we transformed to the centre of momentum
of its local configuration space cell. The total energy (single particle potential plus
kinetic) of the particle is calculated in this frame. In this way, we define a particle
to be free if its total energy in this frame is positive. Otherwise, it is considered to
be a bound particle. Next. we need to isolate the fragments. In order to do this.
we performed a search on the three-dimensional configuration space grid to locate
the density centroid of groups of test particles that were clustered together. Once
this centroid was located. we selected concentric spherical shells about this point and

calculated the shell density. where only bound test particles contribute. Once this

shell density drops below a critical value (we used p/pg = 0.05. however, we found

little sensitivity to this value for p/pg < 0.13) we stop counting particles. Any bound
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test particles inside this sphere are considered to be part of the cluster.

From figure 5.5. it is evident that the largest (smallest) mass for the large residue
is obtained for the lowest (highest) energy as described in the previous paragraph.
In addition. the number of free nucleons increases with energy. For all others (these
are nucleons bound in clusters where the cluster mass is smaller than the heaviest
residue), it appears as though the cluster mass increases as a function of energy.
Presented this way. the figure is a bit misleading as it does not account for the
number of small clusters in the final state. For this reason, we show in the right
panel of figure 5.5 the number of small clusters produced as a function of energy.
We see that as the total mass bound in clusters increases, so does the number of
clusters. For E;./A = 20. 30 and 10 MeV', we find one small cluster of approximately
7.3. 9.5 and 10.5 mass number respectively. For higher energies, we see more clusters.
[t would be incorrect to divide the total mass of nucleons bound in clusters by the
number of clusters here. since they are not all of equal mass. However, on average,
we see that as the number of small clusters increases, the mass per cluster decreases.
This is just what we have described in the previous paragraph. We note that the
qualitative features presented in figure 5.5 do not change appreciably when we use
a soft and/or momentum-dependent mean field. For a discussion of the mechanisms
encountered here. the reader is directed to the references{34. 35. 36], which describe
splintering behaviour from an experimental point of view.

We now turn towards some recent experimental MSU-NSCL results from the
Ar+Ag svstem([141]. We will concern ourselves with the semi-central impact pa-
rameters examined in that work. The measurement made was of the longitudinal
velocity of the heaviest final stare remnant. In order to compare with our simula-
tions, we required run times to extend until this observable saturated. In figure 5.6
we show the evolution of the final longitudinal velocity of the heaviest remnant as
a function of time for a momentum-independent and a momentum-dependent mean

field potential. In that figure. the initial laboratory energy was Ei/A = 60 MeV
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and the impact parameter was b = 0.33. We see that saturation is obtained at
t ~ 275 fm/c. In general. this number varies with both incident energy and impact
parameter. To test the sensitivity to the mean field and in-medium cross section
of the observables investigated in this work. we also made several runs for both
soft (v =200 MeV and A" =213 MeV for momentum-independent and momentum-
dependent mean fields respectively) and stiff (A° =380 MeV and A" =373 MeV for
momentum-independent and momentum-dependent mean fields respectively) mean
field potentials as well as free space and in-medium cross sections. For the latter, we
emploved the self-consistent method for the momentum-dependent mean field and
a density-dependent reduction in equation (3.19) with scaling factor a = 0.33 as
described in chapter 3. For the experimental data, impact parameter selection was
achieved through event classification according to measured charged particle multi-
plicity (a relatively large (small) multiplicity implies a relatively small (large) impact
parameter). This selection criterion produced an impact parameter of b=0.25. In
an attempt to bracket the data. we ran the simulations at impact parameters of
b=0.20 and b = 0.33. In figure 5.7. we show the value of the mass of the heaviest
remnant that we obtained from or simulations compared to the experimentally mea-
sured values. We find satisfactory agreement with the data. The stopping results
from both the data and the calculations are shown in figures 5.8 and 5.9. Note that
the larger error bars obtained with the GBD-type potential for the more central im-
pact parameter (see middle panels in figure 5.8) are due to poor mass resolution for
the heaviest remnant. This aspect was not present with the MDYI-type potential.
The large error bars present in the MDYT calculation are statistical in origin.

The results presented here indicate that the final longitudinal velocity of the
heaviest remnant is sensitive to the nuclear marcter compressibility only for the
momentum-independent mean field (c.f. figures 5.8 and 5.9). There is only a very

weak sensitivity to the compressibility for the MDYI-tvpe momentum-dependent
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Figure 5.6: Temporal evolution of the largest remnant longitudinal veloc-
ity for simulated Ar+Ag at an energy of E;./4 = 60 MeV and impact
parameter of b = 0.33. The open (solid) points are for a soft momentum-

independent (dependent) simulation. in this case. t;,,, ~ 275 fm/c.

mean field.® Furthermore. we note that the inclusion of the (reduced) in-medium
cross section results in a reduced value of the final longitudinal velocity. That is
to say. the nuclei exhibit enhanced transparency with a reduced cross section (i.e.
the coupling between the projectile and target is weaker). This effect is more pro-
nounced for the momentuni-dependent in-medium cross section than for that of the
momentuni-independent one as well as for the more central impact parameter.

On the quantitative side. the stiff parameterization of the momentum-independent
mean field indicates that the simulations provide too much stopping for the free space
cross sections and just bracket the data at high energy for the in-medium cross sec-
tion. The soft momentum-independent mean field result brackets the data at higher

energies and just overshoots the data at low energies. For the GBD momentum-

8 simple explanation for this behaviour is that the momentum-independent mean field depends
only on density. whereas the momentum-dependent mean field delegates the potential field to both

the density and the local momenta.
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Figure 5.7: Mass of the heaviest remnant from experiment and simula-
tions as a function of incident laboratory energy for Ar+Ag collisions. The
squares are the experimental measurements{141j. and all circles are the re-
sults obtained from the simulationsi117]. Fragment selection is as described
in the text. The solid circles are for an impact parameter of b = 0.20 and
the open circles are for an impact parameter of b = 0.33. The dark cir-
cles are for the MDY] momentum-dependent mean field of compressibility

R = 215MeV and the shaded points are for a momentum-independent

mean field of compressibility: A" = 380Me\".
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Figure 3.8: Fractional longitudinal laboratory frame velocity of the heaviest

post-collision remnant as a function of laboratory bombarding energy. The
experimental{141] results are shown by solid squares and are the same in
every panel. The simulation results[117! are shown with open (solid) circles
for an impact parameter of b = 0.33 (b = 0.20). The top two panels are
for a stiff momentum-independent Skyrme interaction of compressibility
K = 380 MeV. The middle {bottom) panels are for a soft GBD (MDYI)-
tvpe momentum-dependent mean field of compressibility A" = 215 MeV.
All left panels are for free space nucleon-nucleon cross sections and all
right panels are for an in-medium cross section. The in-medium cross
section for the momentum-independent mean field is obtained through a
phenomenological density-dependent reduction with a scaling factor of @ =
0.33. The momentum-dependent in-medium cross sections are calculated

self-consistently as described in chaprter 3.
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Figure 53.9: Same as figure 3.8 but for a soft momentum-independent mean
field of compressibility ' = 200 MeV (left panel) and a stiff (K = 37
MeV) momentum-dependent mean field of the MDYI-type. All results are

shown for a free space nucleon-nucleon cross secrion.

dependent mean field. we note the the data are just bracketed from above (below)
for a free-space (in-medium) nucieon-nucleon cross section. The MDYI-type poten-
tial overshoots the data ar low energy. The larger immpact parameter matches the
data at high energy. Inclusion of the in-medium cross section in this case produces
results that agree fairly well with the data. We find that the soft MDY momentum-
dependent mean field gives slightly better agreement with the data than the stiff one.
In general. we find fairly good agreement with the data for a soft equation of state
(compressibility of A" = 200 Me\ for momentum-independent and A" = 215 MeV for
momentum-dependent parameterizations of the mean field). with only subtle differ-
ences between the momentum-independent and momentum-dependent mean fields.
For both momentum-dependent parameterizations however, we have slightly better
agreement with the data when we incorporate the in-medium cross section. Inclusion
of the in-medium cross section for the momentum-independent mean field produces
only subtle changes in the results.

These results favour a soft equation of state as well as an in-medium cross sec-
tion as calculated self-consistently for the momentum-dependent mean fields. In

passing. we note that a calculation similar to the one presented here has been done
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in reference(142]. In that work. the momentum-dependent mean field was intro-
duced by means of the Gogny-tvpe force[78] which uses a sum of two Gaussians for
the momentum-dependent term. A free-space nucleon-nucleon cross section was used
in that work and thus effects due to the in-medium cross section are lacking. We
find similar behaviour for the momentum-independent mean field as far as compress-
ibility is concerned. For the miomentum-dependent mean field however, we find less

sensitivity to the nuclear matter compressibility.
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In this chapter we will present the results of our model comparisons with several
recent experimental observables at energies higher than those examined in the previ-
ous chapter. The analysis presented here is more detailed than that of the previous
chapter in that it is a differential analvsis. We consider collisions of Bi+Bi and probe
the high energy (£%, 4 ~ 200 — 1000 Me\') region to investigate the validity of our

model.

6.1 Elliptic Flow in Bi+Bi Collisions

Recall in section 3.1 we invesrigated tlow inversion in the N+Sm system. This was
actually an example of what is known as in-plane flow. In that case. for the larger
impact parameter. the projectile was deflected around the target to negative (posi-
tive) scattering angles below (above) the balance energv. In addition, the motion of
the projectile was predominantly in-plane. That is to say. the projectile remained
for the most part in the reaction plane. The dvnamics studied at those energies

do not in fact translate directly to higher energies. In this case. the situation is
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changed as larger forces (due to compressional energies for example) can produce
out of plane emission in addition to in-plane emission[33. 143]. The term adopted in
the literature for out-of plane emission is “squeeze-out”, as the name suggests. The
azimuthal distribution (about the reaction plane) of emitted nucleons serves to illus-
trate this phenomena[l44. 143, 146. 147]. Tyvpically, the quantity that is discussed is
the ratio of out-of-plane to that of in-plane emission. From here-on, we will refer to
this ratio as the anisotropy ratio. Studies on its behaviour indicate that it is greater
than unity for beam energies above ~ 100 MeV /A, and peaks at ~ 400 MeV/A. It
remains larger than one until beam energies of ~ 5 GeV/A are reached[148]. Nu-
merical simulations have shown that this turnover back to in-plane-flow is largely
a function of the geometry of the participant region{146, 149]. For a study of the
behaviour of flow phenomena in this energy range. the reader is directed to the pa-
per by Ollitrault[150]. As an aside. we note that since higher energies (compared to
that studied in sections 5.1 and 3.2) are required to probe out-of-plane flow. this ob-
servable provides a good testing bed for our momentum-dependent in-medium cross
section as the latter approaches the free-space cross section as energy is increased.
Furthermore. as the seif-consistent and densitv-dependent parameterizations differ
substantially at higher energies (c.f. figure 4.8). this energy regime is well suited to
study the dynamical differences between the two parameterizations.

A schematic diagram will be helpful in gaining a qualitative understanding of
the anisotropy we are concerned with here. Figure 6.1 presents us with a picture of
(one of) the mechanisms at work in producing squeeze-out. Recall in section 5.2,
we alluded to the density build up in the nucleus-nucleus interaction zone. In that
picture. the density buildup was responsible for eventual particle emission. The same
idea holds here. except we are dealing with higher energies (200—1000 MeV/A).
As this excited (overlap) region expands it encounters spectator matter which is

predominantly located in the reaction plane. Thus the in-plane expansion (at mid-
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Figure 6.1: Schemartic diagram illustrating squeeze-out for the collision of
two mass svinmetric nuclei. The plane of the figure is the £y plane. The
beam axis points into or out of the page. The shaded region is the nuclear
overlap region with a density greater than that of saturation. The arrows

indicate the direction of expansion of the excited matter.

. rapidity) is suppressed due to “shadowing™!.

Expansion out of plane however is
not hampered by the presence of matter. The net effect is a preferred squeeze
out of matter out of the reaction plane. As time passes during the collision. the
spectators eventually pass by one another and the participant matter (partially de-
excited overlap region) is then free to expand in all directions. Thus, the preferred
out of plane emission is favoured early on in the collision. and is thus sensitive to non-
equilibrium effects which we present early on in the collision. In addition, nucleons
which are emitted at earlier stages in the collision should contain pre-equilibrium
signatures. The latter can manifest themselves in terms of high momenta nucleons
which have vet to be significantly slowed by the mean field and intra-nuclear nucleon-

nucleon collisions. This results in a preferred emission of high energy nucleons early

on in the collision®. Thus. we expect that the squeeze-out preferably manifests

'For a reduced in-medium cross section. we expect shadowing to be less effective as in this case,

the nuclear matter exhibits increased transparency as discussed in section 3.2.
. 2In contrast, for late emission times. equilibrium distributions will result in fewer nucleons with

large momentum.
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Figure 6.2: Mid-rapidity free proton azimuthal distribution obtained from

simulated Bi+Bi events at E; = 400 MeV. The left panel is for a
momentum-independent mean field and the right is for a MDYI-type
monientum-dependenr mean field. Both are for soft equations of state.
The distributions are plotted in transverse momenta bins. The lower.
middle and upper curves are for 300 MeV/e< p, <400 MeV/c, 400
MeV/e< p: <3500 MeV/c and 300 MeV /c< p, <600 MeV/c respectively.
The solid lines are fits obtained by minimizing \* per degree of freedom

with respect to the fitting function in equation (6.1).

itself with high energyv nucleons at the early stages in the collision over that of low or
intermediate energy nucleons in the later stages of the collision. We can visualize this
squeeze-out phenomena further by examining the azimuthal anisotropy of emitted
nucleons. We show in figure 6.2 this quantity for collisions of 2%°Bi+Bi at 400
MeV'/A and b = 0.64 for three regions of transverse momentum. From this figure.
it is evident that the anisotropy peaks for values of © = £90° and is minimum for
o = 0°.180°. This is a case in which out-of-plane emission is preferred to that of
in-plane emission. Note that o is the azimuthal angle out of the reaction plane.

For a quantitative picture of the anisotropy ratio, one typically fits the mid-
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rapidity azimuthal distribution with a Fourier series [151. 152] of the form

N
% = A (1 + pycos(0) + pacos(20) +---). (6.1)

The coefficient p; characterizes the strength of the in-plane flow and the coefficient
p2 characterizes the strength of the anisotropy ratio. For preferred in (out) plane
emission p; > 0 (pa < 0) as can be inferred from figure 6.2 and equation (6.1). With
this definition of p». the anisotropy ratio is defined as R = (1 —p2)/(1 +p2). As a by-
product of figure 6.2. we note that higher transverse momenta bins produce a larger
anisotropy ratio. This seems to concur with the qualitative picture we presented in
the previous paragraph. It has been suggested [76] that this increasing anisotropy
ratio with p; could be used to differentiate between momentum-independent and
momentum-dependent mean fields. This hints at a differential analysis which we
alluded to earlier in section 3.1. We will return to this shortly.

In section 3.1. recall that we examined momentum-dependent mean fields only.
Section 3.2 examined the behaviour of both momentum-dependent as well as momen-
tum-independent mean fields. In that case we found that the two parameterizations
of the mean field did not give drastically different results. It turns out that the ellip-
tic flow however. provides an excellent test bed to exploit the differences which arise
from the two parameterizations of the mean field. For this, we show in figure 6.3 the
ellipticity coefficient p» as a function of impact parameter for collisions of 3¢Fe+Fe at
Ei/A = 100 MeV for both momentum-independent as well as momentum-dependent
mean fields. This figure indicates that while the two mean fields show similar be-
haviour at low impact parameter the high impact parameter behaviour is drastically
different. In particular. p, for the momentum-independent mean field is only weakly
dependent on the impact parameter as compared to the momentum-dependent mean
field. the latter decreasing with impact parameter. This result agrees with the work
in [31] for all impact parameters. Another systemaric comparison[153] with data
from Au+Au events[134] agrees with our result except for very high impact pa-

rameters. In that work p, showed a decrease for both momentum-independent and
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Figure 6.3: p» values extracted from equation (6.1) for simulated Fe+Fe
events at £;/A = 100 MeV as a function of impact parameter. The circles
(diamonds) are for a momentum-independent (dependent) mean field. For
the latter. we used a MDYT-tvpe parameterization. For the momentum-
independent mean field. the solid {open) points are for a stiff (soft) equation
of state. The MDYT stiff mean field potential gives slightly larger (negative)

value of p» than that of the soft equation of state at high impact parameter

only.
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momentum-dependent mean fields at b > 0.60 and higher. The observed behaviour
of p» as a function of transverse momenta at high impact parameter will serve to
discriminate the two mean fields under investigation in this work.

For a systematic comparison with a measured elliptic flow signal, we now turn to
a WAOS mieasurement of the proton anisotropy ratios[38]. This data set consisted
of observations of Bi+Bi collisions at E/A = 400,700 and 1000 MeV and impact
parameters ranging from b ~ 1.6 — 11 fm. In that work. a differential analysis was
done. as the investigation presents the anisotropy ratio as a function of transverse
momenta for several impact parameter bins. As we are interested in peripheral
collisions. we selected measurements for the impact parameters b = 8.7, 8.6. 9.0
at incident energies of E./A = 400. 700. 1000 Me\" respectively. The estimated
impact parameters have an associated uncertainty of £0.3 fm. The values of p»
extracted from our simulations have been calculated by fitting® the mid-rapidity
proton distributions as shown in figure 6.2. The results for 400 MeV are displayed
in figure 6.4. Here we show. as a tunction of transverse momenta. the anisotropy
ratios obrtained for both momentuni-independent and momentum-dependent mean
fields for both soft and stiff equations of state. We also show the results obtained
when using an in-medium cross-section (density-dependent reduction of coefficient
a=0.20 for momentum-independent mean fields and self-consistent for momentum-
dependent mean fields). The experimental data indicate that the anisotropy ratio
steadily increases with p,.

Let us first consider the resuits obtained with the free-space cross section {(top
panel). We find that both the momentum-independent and the momentum-dependent
mean fields produce anisotropy ratios that also increase with p,. with the momentum-
dependent result increasing faster compared to that of the momentum-independent
result. The momentum-independent results show no sensitivity to the equation of

state while the momentum-dependent results show a weak sensitivity. producing a

3For all fits presented in this figure. the \? per degree of freedom varied from ~ 0.5 = 2.5.
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P, (MeV/c)
Figure 6.4: Experimental and simulated mid-rapidity free proton
anisotropy ratios for Bi+Bi collisions at 400 MeV'. The top (bottom) panel
is for free-space (in-medium) nucleon-nucleon cross sections as described in
the text. The circles are for momentum-independent mean fields. The di-
amonds are for MDYT-type momentum-dependent potentials and the open
boxes are for GBD-type potentials. Open (solid} points are for soft (stiff)
parameterizations of the mean field. The filled squares are the experimen-

tal results[38]. Note that a value of R, < 1 implies preferred in-plane

. emission.
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slightly higher anisotropy ratio for large transverse momenta with the stiff equation
of state. This trend is in qualitative agreement with [153]. In addition, the GBD-
tvpe mean field also results in a larger anisotropy ratio than that of the MDY]I-type
mean field*. The figure indicates that the momentum-independent mean fields fit the
observed anisotropy ratio for p. < 450 MeV/c and underestimates it for p; > 450
MeV/e. All momentum-dependent mean fields produce anisotropy ratios that over-
shoot the data.

We now turn to the results obtained with the in-medium cross section. we find
that inclusion of the latter leads to dropping anisotropy ratios for all mean fields.
Thus. the agreement with the momentum-independent mean field is worse and the
agreement with the momentum-dependent mean field is better than without the in-
medium cross section. Also. note that differences in the equation of state for the
momentum-dependent interaction are smaller with an in-medium cross section than
without (in fact. there is only an indistinguishable statistical difference at the high-
est transverse momenta of p, = 650 Me\'/c). The GBD-type momentum-dependent
mean field still gives a larger anisotropy ratio than the MDYI-type mean field. Note
that the GBD-type potential is inore repulsive than the MDYI-tvpe potential at high
momenta as evidenced in figures 3.2 and 3.3. All momentum-dependent mean field
results produce the same trends as seen in the dara for all transverse momenta. Qual-
itativelyv. the simulations slightly over-predict the anisotropy ratio for all transverse
momenta. For the momentum-independent mean field however neither the trend
nor the magnitude of the data is reproduced when medium effects are included into
the nucleon-nucleon cross section. From this figure. we find that the best agreement
with the data is provided by the MDYI-tvpe mean field (either stiff or soft) with an
in-medium cross section. This analysis of Bi+Bi elliptic flow data was also analyzed
with a transport model by Danielewicz[31]. In that work a different parameterization

of the momentum-dependent mean field was used. The mean field used there also

See figures regarding the optical potential for MDYT and (N)GBD.
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reproduces the measured nuclear oprtical potential as displayed in figure 3.1. Our re-
sults agree with the results presented in that analysis for the momentum-independent
mean field and for the momentum-dependent mean field with an effective mass of
m*/m = 0.63 at the Fermi surface.

The picture we have presented so far has accounted for the increasing mid-rapidity
anisotropy ratio with transverse moinenta. However. an explanation of the enhanced
squeeze-out observed for monentum-dependent over that of momentum-independent
mean field potentials has vet to surface. Consideration of the functional dependence
on momenta that the momentum-dependent potentials respect indicates that the
attractive momentum-dependent term is minimum when the denominator is max-
imum. The latter corresponds to (5 — p') for MDYT®. assuming a maximum (c.f.
equations (3.7) and (3.11)). Thus. leading® projectile and target nucleons will ex-
perience a rapid drop in the attractive part of the potential just as the two nuclei
begin to interpenetrate. Compared to the potential experienced by a nucleon with
a momentum-independent mean field. the potential for the momentum-dependent
mean field at this point is more repulsive. In addition. figures 3.2 and 3.3 indicate
that. for momentum-dependent potentials. the loss in the attractive part is stronger
for larger momenta. Thus. for momentum-dependent potentials. higher momentum
particles are less tightly bound to the surrounding nuclear medium than compared
with the momentum-independent mean field potentials. In this scenario. we thus ex-
pect high momentum particles to escape more effectively from the former potential.
This picture was indeed found to be the case.

Larionov [153] has also investigated the elliptic flow in this energy regime in con-
junction with data from '°* Au+Au collisions from the FOPI-LAND collaboration[154].
In that work. a MDYT-type momentum-dependent potential was employed using the

(Gaussian smoothed) test-particle method. however. they have to our knowledge

5For the GBD potential. this condition is for (f— < 7' >).
8The leading nucleons are more sensitive to the non-equilibrium situation present at the begin-

ning of the collision.
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assumed a local zero temperature nuclear matter distribution for the nuclei at all
times. Thus. one might expect non-equilibrium effects to have a smaller effect in
that model. Furthermore, as we do observe sensitivity to saturation properties (at
densities greater than normal nuclear matter densities) of the momentum-dependent
mean field potential (c.f. the GBD and MDYT differences in the mean field as shown
in figures 3.2 and 3.3 | this observable would seem to provide a nice test bed for
different implementations of momentum-dependent potentials used in the literature.
We stress that the effect observed in this work is a non-equilibrium effect that is
not observed with the momentum-independent potential. In fact, the latter depends
solely on density and does not care about the local momentum distribution. and is
thus insensitive to the non-equilibrium momentum distribution of the nucleons.
Previously. we had mentioned that the self-consistent in-medium nucleon-nucleon
cross section developed here gave substantially different predictions (for in-medium
cross sections) than that of the simple density-dependent parameterization. Fur-
thermore. we showed that these differences are more pronounced at higher energies.
Thus. we turn to measurements of the Bi+Bi elliptic flow for laboratory bombarding
energies of Ei./4 = T00 and 1000 MeV/A. As we are interested in the behaviour of
the in-medium cross section. we consider only the MDYT-tvpe mean field of compress-
ibility A" = 210 MeV. In figure 6.3. we present the results we have thus obtained
with the MDYI-type momentum-dependent mean field with and without the self-
consistent in-medium cross section for energies of E./4 = 200. 400, 700 and 1000
MeV. For 400 MeV /A. the results from figure 6.4 have been re-plotted. Our results
indicate that at 700 Me\"/A. we obtain excellent agreement with the data both with
and with-out the in-medium cross section. At 1000 MeV/A. both parameterizations
of the cross section agree with the data only for p. < 700 MeV/c. For transverse
momenta larger than this. our results start to diverge from the data trend. As far as
the differences between the free space and in-medium cross sections are concerned,

we find as expected, that the effect of the self-consistent in-medium correction to the
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Figure 6.5: Same as figure 6.4 for the MDYI-type momentum-dependent

mean field with and without the self-consistent in-medium cross section.

We have used the soft equation of state of compressibility A" = 210 MeV.

Moving from left to right and top to bottom the laboratory bombard-

ing energies shown are 200. 400. Y00 and 1000 MeV per nucleon respec-

tively.

The filled squares are as in figure 6.4. The open circles. dark

solid circles and shaded solid circles are for a free-space. self-consistent

and density-dependent reduction in the in-medium nucleon-nucleon cross

section. There are no data points available at Er./A = 200 MeV.
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free space cross section decreases with increasing bombarding energy. That is. the
reduction of the elastic cross section due the self-consistent in-medium correction is
more pronounced at low energies.

We have also emploved the density-dependent modification to the in-medium
cross section as discussed in section 3.2. The results for these calculations are also
displayed in figure 6.5. Inspection of this figure indicates that this parameterization
of the in-medium cross section is more pronounced at high energies, in contrast to the
self-consistent in-medium cross section. This is as expected, since higher densities
are probed at higher energies. As far as the anisotropy ratios are concerned. we find
that (for E./A = 400. 700. and 1000 MeV') the density-dependent in-medium mod-
ification differs from the self-consistent modification for high momentum nucleons
only. However. for the lowest energy case (E£;/4 = 200 MeV). the self-consistent
in-medium modification produces a considerably smaller anisotropy ratio for all nu-
cleons with transverse momenta in excess of 300 MeV /c. These results are consistent
with figure 3.8. In addition. these results are also consistent with the spectator shad-
owing scenario previously mentioned. In this case. a smaller value of the in-medium
cross section results in a larger nucleon mean free path which allows nucleons to

escape into the reaction plane through the spectator matter with greater ease.
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Conclusion

The problem presented in this work. namely. a solution to the many-fermion prob-
lem for dynamical studies of collisions of heavy nuclei has been realized with a
momentum-dependent lattice Hamiltonian solution of the BUU equation. This is
the first realization of this model as applied to heavy ion collisions and as such
represents significant advancement in continuing the predictive power of the BUU
equation for low energy studies of collisions of heavy ions.

Of the main features. we have implemented a momentum-dependent mean field
that closely matches the experimentally observed nucleon optical potential as well as
modern detailed microscopic calculations of the nuclear equation of state. Further-
more. we have refined the two-body collision term by incorporating an in-medium
effect on the nucleon-nucleon cross section that consistently takes into account the
momentum-dependence of the nuclear mean field. This is the first time such an
approach has been implemented in the study of heavy ion collisions and adds con-
siderable flexibility to our model.

We have implemented our model at energies ranging from ~ €; to 1000 MeV /A.
As previous implementations of the momentum-dependent BUU model at low en-
ergies had been plagued with energy conservation issues, the lattice Hamiltonian

solution that we have adopted here for momentum-dependent mean fields represents
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a great leap in the predictive power of the BUU equation in this energy regime. In
particular. we have attained energy conservation far better than previous attempts
with a momentum-dependent mean fleld. And as such the model developed here
represents a state-of-the-art code suitable for low energy studies.

The experimental results that we have addressed in this work range from directed
flow inversion and linear momentum transfer in the energy range of Ei/4 : 20 —
150 MeV/A. to elliptic flow in the energy range of Ex/A : 200 — 1000 MeV/A.
We have qualitatively reproduced the observed flow inversion at low energy. For
the linear momentum transfer data. comparison with our model favours a MDYI-
tvpe momentum-dependent nuclear mean field of compressibility X' = 215 MeV.
In addition. these same observables are in better agreement with our model when
we incorporate the self-consistent in-medium modification to the nucleon-nucleon
cross section. For the higher energy elliptic flow data. we find that at energies of
Ei/A = 100 and 700 MeV/A. the MDYT mean field potential supplemented with the
self-consistent in-medium cross section successfully reproduces the experimentally
observed signals. At the highest energy Fi/A = 1000 MeV. our model shows good
agreement with the data for low transverse momenta. At high transverse momenta
and high energy we begin to see our model breakdown.

We have demonstrated that the momentum-dependence (along with its implied
in-medium modification of the nucleon-nucleon cross section) of the nuclear mean
field plays a strong role in the study of elliptic flow. However, for all studies presented
in this work. the compressibility has played a minor role. It has been shown that
the directed flow inversion at low energy is however sensitive to all three aspects
of the nuclear many body problem considered here: compressibility. momentum-
dependence and in-medium nucleon-nucleon cross section. However, as these three
aspects combine in a highly non-linear fashion. it is difficult to disentangle the role
each plays. Since the self-consistent in-medium cross section with a momentum-

dependent mean field is most heavily influenced at low momenta. further low energy
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studies with our model should prove valuable.

To summarize. we have for the first time implemented a momentum-dependent
lattice Hamiltonian solution to the BUU transport equation. Furthermore, we have
also for the first time coupled this equation to a numerical solution of the self-
consistent in-medium modification to the nucleon-nucleon cross section and obtained

results that show good agreement with experiment.



Appendix A

TDHF and Vlasov equation

formalisms

A.1 Two-Body Density Matrix

Starting from the totally anti-symimetric many-body wave function for an A nu-
cleon system. from equation (2.2) written in the single-particle basis (c.f. [40] for a

discussion|). we have:
¥ >=alal---dJ0> . (A.1)

Let us transform the creation and annihilation operators from the general basis to

the same basis that the many-body wave function is written as shown above. This

vields

ag = Z Cmﬂz
i
t t
az = Z ijaj
J
a = Z C5xCk
k
a, = Y car (A.2)
14
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First. lets examine what the one-body density matrix looks like. Substituting equa-

tions (A.1) and (A.2) into the one-body density matrix. we get:

Paz = <Ulaha,|¥>

= eyl <Uldlaalal---af---alj0>

-
]

i)
Y eseni~1)"t <Wlalalad - -al_jal,, - alijo>
t)

= Z csich, < V)alal -- -a|0>
l
=¢ paj = Z cdic:u,' ("\‘3)
H
a sum of overlaps.

Now. we turn to the two-bady density wmarrix from equation (2.7). Performing

exactly the sanie steps for the one-body case we get:

<¥lalalasa,|¥> = Y caics,Cincly < ‘Dlafa;ukulufla; ---aljo>
gLk
- - —_— k-
= Z Cmcdjc.ikcwl(_l)l H—1)*t
3143

X < ‘[’|GEU;‘1§“£ - 'alt'—la;c-é-l e alt—la{-é-l " 'a.f-l{0>

= Z CarC3;C5Co <‘[’!a;a.§ = '(LL|0> (O5k0i — 0;10x)

tjlk
= Z CalCay Z CanCop — Z CakChk Z cacy
{ & k t
= Prafi3 T Péafq3- (‘A"“)

So we see that the two-body density matrix can be factorized into a linear combina-
tion of products of one-body density matrices. The above result was obtained using

the fermion creation/annihilation commutation relations from equation (2.3).

A.2 TDHF Derivation

Starting from equation (2.10), and using equation (2.11), our aim is to show equation
(2.12). We will break up the two terms in equation (2.10) into a kinetic and potential

part and calculate them separately.
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A.2.1 Kinetic term
Setting V=0 H=T+V. equat:on (2.10) becomes:

. 1 - -

faz = == < ¥|{al. Taq + al[aa, T]|¥ > . (A.3)
Expanding the commutators in the above and using equation (2.4). we obtain:

“kin 1 -y

Paz = l_Z <#ft|l’>

x <¥|-a a,,a‘,acx + ajanafa,,[‘ll> )

Using the commutation relations from equation (2.3) to normal order the creation

and annihilation operators and cancelling some terms. we obtain:

1 ) )
s = =3 (<aliln> pus = pau <plil3>) . (A.6)
m

A.2.2 Potential term

Setting T = 0 in place of the 1" = 0 from the last section, the TDHF equation

becomes:
. 1 [ ot T = -
Pa3 = E<‘DI‘LGJ"/IGQ fﬂj[aa."“‘p>- (A")

Next. insert equation (2.3) for the total potential energy operator into the above and
normal order the creation and annihilation operators. Rearranging indices. we arrive

at the following result:

11
- pot . R t
B =3 Y (tavou — tvaou) <¥laalaua,|¥ >
= pov

- (Uuudc - U.uua':i) < ‘I’Ia;aiaaaalq’ >)

Insertion of equation (A.4) into the above and collecting some terms we have the

intermediate step:

. 1 , \
adt = ik ((Z(Uouua - '-'ova';x)pau) Pui — Pap (Z(‘Upvﬂa' = Upvod )Pcru)) . (A.8)
" ov

(224



APPENDIX A. TDHF AND VLASOV EQUATION FORMALISMS 119

We now utilize the single-particle potential energy operator introduced in equation
(2.11). Pulling out these factors from the above equation, the time derivative of the

potential part of the one-body density matrix reads:

-po 1 . . -

b = 72 (<aldlp> pus = pau <plElB>). (A.9)
n

Combining the results from equations {A.6) and (A.9). we arrive at the desired result

given by equation (2.12).

A.3 Time derivative of the Wigner Transform

In this section. we seek to reduce the potential part of the time derivative of the
Wigner function given in equation {2.16). We will use the assumption in equation
(2.17). which asserts that our potential depends on position only (see footnote on

page 13). With this assumption. we have:

. 1 1 ==
pot( = — 3. ,—ip-Sih
fE(r.p) AREAE d3se
X (u(F+5/2) — u(F — §/2)) presjar-ss2 (A.10)

If we assume that the potential is infinitely differentiable. we can expand it about 7

using the exponential form for the Taylor series expansion (where D = d/dxr)

o o) nDn
flz+a) =3 —f(r) =e*P f(2).
n=0
Writing
g —ip§/h ﬂ T e Wik
2° =3 e

equation (A.10) becomes:

1 }—_/dss (e+in/'zv,;-\‘-,- - e—ih/zv‘,.v,-) u(F)e—iFIn

X Prysi2,7—5/2s
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with the caveat that Vr acts only on the potential u(r). and the V; acts only on the
exponential e~'7%/* appearing in the above equation!. Moving the quantity in large
brackets and u(r) outside the integral. we then arrive at equation (2.18), the desired

result.

1As we have suppressed any momentum-dependence appearing in u. this is obvious, however, it

must be kept in mind that our single-particle potential u allows for momentum-dependent terms.



Appendix B

Lattice Hamiltonian solution for

GBD

B.1 Equations of Motion

Starting from the continuous version of the GBD mean field potential energy density
from equarion (3.10). and substituting equation (4.7) for the discrete form factor.

the discretized version of the former reads:

1°GBD _ ;P_?l__ B Pg:l + Epa 5 R("’ia_ :}) . (B.1)
2p9 o+1 g3 Po 1+(pz ip>.,)
where
B, ¥, R(F = 75) 5

< p >“= (B.Z)

Z} R(F a FJ)
The GBD single-particle potential can be obtained from the potential energy density
by unfolding one single-particle distribution function from the latter. This is the
equivalent of taking the functional derivative of equation (3.11), with respect to
f(7.p). After substitution of the Lattice Hamiltonian phase space form factor from

equation (4.7). we arrive at:

Pa Po
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+ C R(ra — FJ) . Cpa 1
po T 1+ (z—ipm.) M Po 1_{_(21-?\23‘,)2’

(B.3)

Now solving the equations of motion given by equation (4.9). using equations (B.1),

(B.2) and (B.3) we get the following:

ofi _ b

Eﬂ_:; -+ en:l ().l YR(IQ—
. (T uSBP(5) + (1 _ R(fe - rz)) -'a)
Pa
ap;
Et— = - en.a X ;
x (uGBD(pt) (i < 7 >a) - Fa) VaR(Fa — 7). (B.4)
where
’C'\' -GG - <P >a ) .
B.
; (A +(Fj— <7 >a)°)? (5-3)

If we now replace the finite form factor R(7, — ;) in equation (B.5) with the delta
function form factor N;1d(7, — 7). and keeping in mind that for an infinitesimal grid

< P >a= Pa. then the F, in equations (B. -1) is zero'. and we obtain the test-particle

'In order for this to remain true. we must assume that no two particles have ezactly the same

configuration space coordinate 7.



Bibliography

[1] Bohr and Mottelson. Nuclear Structure. Volume 1 (Benjamin. New York.
1969).

[2] G. Baym and C. Pethick. Ann. Rev. Astron. Astrophys. 17. 415 (1979).

[3] S. E. Woosley and T. A. Weaver. Ann. Rev. Astron. Astrophys. 24, 205 (1986).
[4] M. Prakash et al.. Phys. Rep. 280. 1 (1997).

[3] V. R. Pandharipande. Phys. Lett. B 31. 635 (1970).

(6] J. P. Blaizot. D. Gogny, and B. Grammaticos. Nucl. Phys. A 265. 315 (1976).
[

71 J. P. Blaizot. J. F. Berger. J. Deschargé. and M. Girot. Nucl. Phys. A 591.
435 (1995).

[8] H. Satz. Nucl. Phys. A 344c. 371 (1992).
[9] H. Mever-Ortmanns. Rev. Mod. Phys. 68. 174 {1996).
[10] G. D. Westfall et ¢l.. Phys. Rev. Lett. 37, 1202 (1976).
[11] S. Das Gupta and C. S. Lam. Phys. Rev. C 20. 1192 (1979).
[12] S. Das Gupta and A. Z. Mekjian, Phys. Rep. 72. 131 (1981).
[13] R. Serber. Phys. Rev. 72. 1114 (1947).
[14] J. Cugnon. T. Mizatani. and J. Vandermeulen. Nucl. Phys. A 352. 505 (1981).
[15] P. Bonche. S. E. Koonin. and J. \WW. Negele, Phvs. Rev. C 13, 1226 (1976).
{16] R. Y. Cusson et al.. Phyvs. Rev. Lett. 36. 1166 (1976).
[17] P. Quentin and H. Flocard. Ann. Rev. Nucl. Sci. 28, 523 (1978).
[18] J. Aichelin and H. Stdcker. Phys. Lett. B 176, 14 (1986).
[19] J. Aichelin et al.. Phys. Rev. C 37, 2451 (1988).

123



. BIBLIOGRAPHY 124

[20] J. Aichelin. Phys. Rep. 202. 233 (1991).

[21] G. F. Bertsch. H. Kruse. and S. Das Gupta. Phys. Rev. C 29. 673 (1984).
[22] G. F. Bertsch and S. Das Gupta, Phys. Rep. 160. 189 (1988).
[2

23] J. C. Slater. Quantum theory of atomic structure (McGraw-Hill Book Company.
Inc.. New York. 1960).

[24] N. H. March. Self-consistent fields in atoms. Hartree and Thomas-Fermi Atoms
(Permagon Press. Oxford. 1973).

[25] E. K. U. Gross. E. Runge. and O. Heinonen. Many Particle Theory (Adam
Hilger. Philadelphia. 1991).

[26] B. Friedmann and V. R. Pandharipande. Phys. Lett. B 100. 205 (1981).
[27] V. R. Pandharipande and S. C. Pieper. Phys. Rev. C 45. 791 (1992).
[28] C.-Y. Wong. Phys. Rev. C 25. 1460 (1982).

[29] D. Persram and C. Gale. nucl-th/9901019 (1999).

[30] R. J. Lenk and V. R. Pandharipande. Phys. Rev. C 39. 2242 (1989).
[31] P. Danielewicz. Nucl. Phys. A 673. 375 (2000).
[

32] L. P. Csernai. Introduction to Relativistic Heavy Ion Collisions (Wiley. New
York. 1994).

[33] W. Scheid. H. Miiller. and \W. Greiner. Phys. Rev. Lett. 32, 741 (1974).
134] V. E. Viola et al.. Phys. Rev. C 26. 178 (1982).

{35] M. Fatyga et al.. Phys. Rev. C 32. 1496 {1985).

[36] A. Fahli et al.. Phyvs. Rev. C 34. 161 (1936).

[37] R. C. Lemmon et al.. Phys. Lett. B 446. 197 (1999).

133] D. Brill et al.. Z. Phys. A 355. 61 (1996).

[39] J. C. Slater. Phyvs. Rev. 34. 1293 (1929).

[40] P. Ring and P. Schuck. The nuclear many-body problem (Springer-Verlag, New

‘ York. 1980).

[41] U. Fano. Rev. Mod. Phyvs. 29, T4 (1957).



BIBLIOGRAPHY 12

o

[42] D. R. Hartree. Proc. Cambridge Phil. Soc. 24, 39 (1928).

[43] G. F. Bertsch. in: Frontiers of Nuclear Dynamics (Plenum Press, New York.
1983).

[44] J. W. Negele. Rev. Mod. Phys. 34. No. 4 (1982).

[45] G. E. Brown. Unified Theory of Nuclear Models (North-Holland Publishing
Company, Amsterdam. 1964).

[46] T. Koopmans. Physica 1. 104 (1934).
[47] W. H. Bassichis and M. R. Stanger. Ann. Phys. 66. 457 (1971).
[48] H. Kohler and Y. C. Lin. Nucl. Phys. A 167. 305 (1971).

[49] A. A. Vlasov. Many Particle Theory and its application to Plasma (Gordon
and Breach. Science Publishers Inc.. New York. 1961).

[30] C. Grégoire. in Vuclear Matter and Heavy [on Collisions. edited by M. Soyeur.
H. Flocard. B. Tamain. and M. Porneuf (Plenum Press. New York. 1989).

[51] C. Y. Wong. T. A. Welton. and J. A. Maruhn. Phys. Rev. C 15, 1538 (1977).
[52] C. Y. Wong and J. A. McDonald. Phys. Rev. C 16. 1196 (1977).
[33] E. Wigner. Phys. Rev. 40. 749 (1932).

[34] M. Hillery. R. F. O'Connell. M. O. Scully. and E. P. Wigner. Phys. Rep. 106.
121 (1934).

[35] E. A. Remler. Ann. Phys. 95. 455 (19753).

[56] E. Wigner et al.. in Lecture Notes in Physics: The Physics of Phase Space.
edited by Y. S. Kim and W. \V. Zachary (Springer-Verlag, Berlin. 1986).

[(57] G. M. Welke. Ph.D. thesis. SUNY. 1990.

(58] J. Randrup and B. Remaud. Nucl. Phys. A 514, 339 (1990).

[39] L. W. Nordheim. Proc. Roy. Soc. A119. 689 (1928).

[60] E. Uehling and G. Uhlenbeck. Proc. Roy. Soc. London A119. 259 (1930).
61] E. Uehling and G. Uhlenbeck. Phys. Rev. 43. 552 (1933).

[62] C. Y. Wong and H. H. K. Tang. Phys. Rev. Lett. 40, 1070 (1978).

[63] C. Y. Wong and H. H. K. Tang. Phys. Rev. C 20. 1419 (1979).



. BIBLIOGRAPHY 126

[64] G. E. Brown and A. D. Jackson. The Nucleon-Nucleon Interaction (North-
Holland Publishing Company, Amsterdam, 1976).

[65] R. Machleidt. in Adv. Nucl. Phys. 19. edited by J. Negele and E. Vogt (Plenum
Press. New York. 1989).

[66] H. Yukawa. Proc. Phys. Math. Soc. Japan 17. 48 (1935).

[67] T. H. R. Skyrme. Nucl. Phys. 9. 615 (1939).

(68] D. Vantherin and D. M. Brink. Phys. Rev. C 5. 626 (1972).

69] L. Zamick. Phys. Lert. 45B. 313 (1973).

[70] J. P. Blaizot. Phys. Rev. 64. 171 (1930).

[71] G. M. Welke et al.. Phys. Rev. C 38. 2101 (1988).

[72] C. Gale et al.. Phys. Rev. C 41. 1545 (1990).

[73] L. P. Csernai. G. Fai. C. Gale. and E. Osnes. Phys. Rev. C 46. 736 (1992).
[74] C. Gale. G. Bertsch. and S. Das Gupta. Phys. Rev. C 35, 1666 (1987).

[73] M. Prakash. T. T. S. Kuo. and S. Das Gupta. Phys. Rev. C 37. 2253 (1988).
[76] Q. Pan and P. Danielewicz. Phys. Rev. Lett. 70. 2062 (1993).

[77] J. Aichelin et al.. Phys. Rev. Lett. 58. 1926 (1987).

(78] F. Haddad et al.. Phys. Rev. C 52. 2013 (1993).

[79] P. Hodgson. The Nuclear Optical Potential (World Scientific. singapore. 1994).
[80] M. M. Sharma et al.. Phys. Rev. C 38. 2562 (1988).

[81] J. Zhang. S. Das Gupra. and C. Gale. Phys. Rev. C 50. 1617 (1994).

[82] E. Baron. J. Cooperstein. and S. Kahana. Phys. Rev. Lett. 55. 126 (1985).
[83] E. Baron et al.. Phys. Rev. Lett. 59. 736 (1987).

[84] C. M. Perry and F. G. Perry. At. Data Nucl. Data Tables 17. 1 (1976).

[85] M. Bauer. E. Herndndez-Sladafia. P. E. Hodgson. and J. Quintanilla, J. Phys.
PS G. 525, 525 (1952).

[86] L. G. Arnold et al.. Phys. Rev. C 25. 936 (1982).
[87] R. B. Wiringa. Phys. Rev. C 38, 2967 (1988).



BIBLIOGRAPHY 12

=1

[88] R. B. Wiringa. V. Fiks. and A. Fabrocini, Phys. Rev. C 38, 1010 (1988).
[89] L. E. Lagaris and V. R. Pandharipande. Nucl. Phys. A 359, 331 (1981).

[90] J. Carlson. V. R. Pandharipande. and R. B. Wiringa, Nucl. Phys. A 401, 59
(1983).

[91] R. Schiavilla. V. R. Pandharipande. and R. B. Wiringa, Nucl. Phys. A 449.
219 (1936).

[92] B. Friedmann and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981).
[93] A. Akmal and V. R. Pandharipande. Phys. Rev. C 56. 2261 (1997).

[94] A. Akmal. V. R. Pandharipande. and D. G. Ravenhall. Phys. Rev. C 58, 1804
(1998).

[95] R. B. Wiringa. V. G. J. Stoks. and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

96] V. G. J. Stoks. R. A. M. Klomp. M. C. M. Rentmeester. and J. J. de Swart.
Phys. Rev. C 48. 792 (1983).

(97] J. L. Forest. \'. R. Pandharipande. and J. L. Friar. Phys. Rev. C 52. 568
(1995).

[98] B. S. Pudliner. V. R. Pandharipande. J. Carlson. and R. B. Wiringa. Phys.
Rev. Lett. 74. 4396 (19935).

[99] M. Prakash. T. L. Ainsworth. and J. M. Lattimer, Phys. Rev. Lett. 61, 2518
(1988).

[100] C. H. Lee. T. T. S. Kuo. G. Q. Li, and G. E. Brown, Phys. Rev. C 57. 3488
(1998).

[101] M. B. Tsang. G. F. Bertsch. W. G. Lynch. and M. Tohyvama, Phys. Rev. C 40.
1685 (1989).

102] B.-A. Li and S. J. Yennello. Phys. Rev. C 52. 1746 (1995).
103} J. Cugnon. D. L'Héte. and J. Vandermeulen. NIM B111. 215 (1996).
104] G. F. Bertsch. W. G. Lynch. and M. B. Tsang, Phys. Lett. B 189. 384 (1987).

[

[

[

[105] C. A. Ogilvie et al.. Phys. Rev. C 42. 10 (1990}.

[106] G. D. Westfall et al.. Phys. Rev. Lett. 71, 1936 (1993).
[

107] D. Klakow. G. Welke, and W. Bauer. Phys. Rev. C 48, 1982 (1993).



BIBLIOGRAPHY 128

[108] H. Feldmeier and P. Danielewicz (unpublished).
[109] S. S. Wong. Introductory Nuclear Physics (Prentice Hall, New Jersey. 1990).

[110] M. Warda. B. Nerlo-Pomorska. and K. Pomorski. Nucl. Phys. A 635. 484
(19983).

111} B.-A. Li. Z. Ren. C. M. Ko. and S. Yennello. Phys. Rev. Lett. 76. 4492 (1996).

[

[112] R. Pak et al.. Phys. Rev. Lett. 78. 1022 (1997).
[113] R. Pak et al.. Phys. Rev. Lett. 78. 1026 (1997).
|

114] C. W. de Jager. H. de \Ties. and C. de \Ties, At. Data Nucl. Data Tables 14.
179 (1974).

[115] J. Aichelin and G. F. Bertsch. Phys. Rev. C 31. 1730 (1985).

[116] D. Persram and C. Gale. in Toward the Theory of Everything: MRST98.
edited by J. Cline. M. Knutt. G. Mahlon. and G. Moore (American Institute
of Physics. Woodbury. New York. 1993).

[117] D. Persram and C. Gale. in High Energy Physics at the Millennium: MRST’99.
edited by P. Kalyniak. S. Godfrev. and IX. Kamal (American Institute of
Physics. Melville. New York. 1999).

[118] P. Danielewicz et ul.. Phys. Rev. Lett. 81. 2438 (1993).

[119] V. Greco. A. Guarnera. M. Colonna. and M. D. Toro. Phys. Rev. C 59, 810
(1999).

[120] J. J. Monaghan. Comp. Phys. Rep. 3. 71 (1983).
[121] I. J. Schoenberg. Quart. J. Appl. Math IV 401. 45 (1946).

[123] C. E. Aguiar. T. Kodama. T. Osada. and Y. Hama, hep-ph/0006239 (2000).
[124] D. Klakow. G. \Welke. and W. Bauer. nucl-th/9304008 (1993).

[125] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Clarendon
Press. Oxford. 1937).

[126] D. Kroftcheck et al.. Phys. Rev. Lett. 63. 2028 (1939).
[127] J. P. Sullivan et al.. Phys. Letc. B 249. 8 (1990).
[128] C. A. Ogilvie et al.. Phys. Rev. C 42, R10 (1992).



BIBLIOGRAPHY 129

[129] D. Kroftcheck et al.. Phys. Rev. C 43. 350 (1991).

[130] G. D. Westfall et al.. Phys. Rev. Lett. 71, 1986 (1993).

[131] R. Pak et al., Phys. Rev. C 53. R1469 (1996).

[132] R. Pak et al.. Phys. Rev. C 54. 2457 (1996).

[133] G. F. Bertsch, W. G. Lynch. and M. B. Tsang, Phys. Lett. B 189. 384 (1987).
[

134] V. de la Mota. F. Sebille. B. Remaud, and P. Schuck, Phys. Rev. C 46. 677
(1992).

(135] S. Soff et al.. Phys. Rev. C 51. 3320 (1995).

[136] C. Liewen. Z. Fengshou. and J. Genming, Phys. Rev. C 58, 2283 (1998).
[137] S. Kumar. M. K. Sharma. and R. K. Puri. Phys. Rev. C 58. 3494 (1998).
[138] P. Danielewicz and G. Odyniec. Phys. Lett. B 157. 146 (1985).

[139] B. Schirmann and W. Zwermann. Phys. Rev. Lett. 59. 2848 (1987).

(140] P. Danielewicz et «l.. Phys. Rev. C 38. 120 (1938).

(141] E. Conlin et al.. Phys. Rev. C 57. 1032 (1998).

{142] F. Haddad et al.. Phys. Rev. C 53. 1437 (1996).

[143] H. Stocker. J. A. Maruhn. and W. Greiner. Phys. Rev. Lett. 44. 725 (1980).
[144] H. Gutbrod et al.. Phys. Lett. B 216. 267 (1989).

[145] H. Gutbrod et al.. Phys. Rev. C 42. 640 (1990).

[146] Y. Ollitrault et al.. Phys. Rev. D 46. 229 (1992).

[147] M. B. Tsang et al.. Phys. Rev. C 53. 1959 (1996).
[148] J. Barrette et al.. Phys. Rev. Lett. 73. 2532 (1994).
149] P. Danielewicz. Phys. Rev. C 51. 716 (1995).

150] Y. Ollitrault. Nucl. Phys. A 638. 195¢ (1998).

[

[

[151] S. Voloshin and Y. Zhang. Z. Phys. C 70. 665 (1996).

[152] A. M. Poskanzer and S. A. Voloshin. Phys. Rev. C 58. 1671 (1998).
[

153] A. B. Larionov. W. Cassing. C. Greiner. and U. Mosel, Phys. Rev. C 62, 06461
(2000).

(154] D. Lambrech ef al.. Z. Phys. A 350, 115 (1994).



