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Abstract

Matrix factorizations are among the most important and basic tools in numerical
linear algebra. Perturbation analyses of matrix factorizations are not only important
in their own right, but also useful in many applications, e.g. in estimation, control
and statistics. The aim of such analyses is to show what effects changes in the data
will have on the factors. This thesis is concerned with developing new general purpose
perturbation analyses, and applying them to the Cholesky, QR and LU factorizations,
and the Cholesky downdating problem.

We develop a new approach, the so called ‘matrix-vector equation’ approach,
to obtain sharp results and true condition numbers for the above problems. Our
perturbation bounds give significant improvements on previous results, and could
not be sharper. Also we use the so called ‘matrix equation’ approach originated by
G. W. Stewart to derive perturbation bounds that are usually weaker but easier to
interpret. This approach allows efficient computation of satisfactory estimates for
the true condition numbers derived by our approach. The combination of these two
approaches gives a powerful understanding of these problems. Although first-order
perturbation bounds are satisfactory for all but the most delicate work, we also give
some rigorous perturbation bounds for some factorizations.

We show that the condition of many such factorizations is significantly improved
by the standard pivoting strategies (except the L factor in the LU factorization), and
provide firmly based theoretical explanations as to why this is so. This extremely
important information is very useful for designing more reliable matrix algorithms.

Our approach is a powerful general tool, and appears to be applicable to the

perturbation analysis of any matrix factorization.
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Résumé

Les factorisations de matrices sont parmi les outils les plus importants et les
plus fondamentaux de ’algébre linéaire numérique. Les analyses de perturbation
des factorisations de matrices sont non seulement importantes en elles-mémes, mais
ils sont aussi utiles dans maintes applications, par exemple dans les domaines de
I'estimation, du controle et des statistiques. Ces analyses ont pour but de démontrer
quels effets les changements dans les données produiront sur les facteurs. Cette these
s'intéresse au développement de nouvelles analyses genénérales des perturbations,
et a leur application aux factorisations de Cholesky, QR et LU, et au probléme de
modification de factorisation de Cholesky.

Nous développons une nouvelle approche que nous nommons I’approche équation
matrice-vecteur, afin d’obtenir des résultats précis et des vrais nombres de condition-
nement pour les problemes mentionnés ci-dessus. Nos bornes sur les perturbations
apportent des améliorations significatives aux résultats antérieurs et ne pourraient
étre plus précises. De plus, nous utilisons |’approche équation matrice développée par
G. W. Stewart pour dériver des bornes sur les perturbations qui sont généralement
plus faibles mais plus faciles a interpréter. Cette approche permet des calculs effi-
caces d’estimés satisfaisants pour les vrais nombres de conditionnement qui dérivent
de notre approche. La combinaison de ces deux approches donne une compréhension
profonde de ces probléemes. Bien que des bornes sur les perturbations de premier
ordre soient satisfaisantes pour tout travail, sauf pour le plus.délicat, nous donnons
également des bornes rigoureuses sur les perturbations pour certa ines factorisations.

Nous démontrons que la condition de plusieurs de ces factorisations est améliorée
de facon significative par les stratégies usuelles de pivotage (sauf en ce qui con-
cerne le facteur L dans la factorisation LU), et nous fournissons des explications
théoriques solidement fondées pour démontrer pourquoi il en est ainsi. Cette infor-

mation extrémement importante est des plus utiles pour construire des algorithmes
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plus sirs pour les matrices.
Notre approche est un outil général puissant, et semble pouvoir s’appliquer aux

analyses de perturbation de n’importe quelle factorisation de matrice.
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Chapter 1

Introduction and Preliminaries

1.1 Introductioﬁ

This thesis is concerned with the perturbation analysis for the Cholesky, QR, and LU
factorizations, and for the Cholesky downdating problem. These matrix factorizations
are among the most fundamental and important tools in numerical linear algebra
(see for example Golub and Van Loan [26, 1996]). The goal of such an analysis is
to determine bounds for the changes in the factors of a matrix when the matrix is
perturbed.

We first give some motivation for our concerns. Suppose A is a given matrix, and
has a factorization

A= BC, (1.1.1)

where B and C are the factors of A. As in any topic of matrix perturbation theory,
there are three main considerations in perturbation theory for matrix factorizations.
First, the elements of A may be determined from physical measurement, and therefore
be subject to errors of observation. The true matrix is A + AA, where AA is the

observation error. Suppose the same factorization for A + AA is

A+ AA=(B+ AB)(C + AC). - - (1.1.2)
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We are thus led immediately to the consideration of the perturbations AB and AC.
Second, even if the elements of A can be defined exactly by mathematical formulae,
usually these can not efficiently be represented exactly by a digital computer due to
i;s finite precision. The matrix stored in a computer is A + AA, with [AA| < u]A|,
where u is the unit roundoff. So we are faced with much the same problem as before.
Finally, backward rounding error analysis throws back errors made in executing 4n
algorithm on the original data, see Wilkinson [52, 1963]. Suppose for a stored matrix
A, a backward rounding error analysis shows the computed factors B and C of A are

the exact factors of A + AA, i.e.,
A+ AA = BC,

where a bound on ||AA|| (or |AA|) is known, then perturbation theory is used to
assess the effects of these backward errors on the accuracy of the computed factors,
i.e., give bounds on || B — B|| and {{C — C|| {or |B — B| and |C - C|).

Although in solving linear equations the sensitivity of factors may not be of cen-
tral interest, it is important when the factors have significance. For example in the
estimation problem with m x n A of full column rank and m dimensional y given

(where £(-) indicates the expected value),
y = Az + v, E(v) =0, E(vvT) = 0?1,

if we obtain the QR factorization A = QR then solving RE = QTy gives the best

" linear unbiased estimate (BLUE) % of z, and
RE{(% — z)(z — z)T}RT = oI,

so R is the factor of what has been called in the engineering literature the ‘information
matrix’. This is important in its own right (see for example Paige [34, 1985]), and we

are interested in how changes in A affect R.
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In general we regularly use the fact that the columns of Q in the QR factorization
of A form an orthonormal basis for R(A), and we are concerned with how changes in
A affect Q.

In some statistical applications, if certain matrices A and B have QR factorizations

A= QARA, B = QBRB’

then the singular values of Q%4 Qp give what are called the ‘canonical correlations’
(more generally these give the angles between the subspaces R(A) and R(B)), see for
example Bjorck and Golub [4, 1973]. Thus the sensitivity of Q in the QR factorization
can be used directly to answer the following important problems: “How do changes
in A and B affect R(A) and R(B) and the angles between these (or the canonical
correlations)”.

We thus see the area is an interesting and useful one to study in general. This
area has been an active area of research in recent years. Most of the existing results
have been incorporated in Higham [30, 1996].

Realizing most of the published results on the sensitivity of factorizations, such as
LU, Cholesky, and QR, were extremely weak for certain classes of matrices, Chang,
under the supervision of Chris Paige, see the commentary in Chang, Paige and Stew-
art {14, 1996), originated an approach to obtaining provably sharp results and corre-
sponding condition numbers for the Cholesky factorization. He also realized that the
condition of the problem was significantly improved by pivoting, and provided the
first firmly based theoretical explanations as to why this was so. Even though the
original work was only about the Cholesky factorization, the approach is a general
approach, and thus can be applied to almost all well-known matrix factorizations.

From (1.1.1) and (1.1.2) we have by dropping the second-order term that
AA = BAC + ABC, (1.1.3)

The basic idea of this approach is to write the approximate matrix equation (1.1.3)

as a matrix-vector equation by using the special structure and properties of B and
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C, then get the vector-type expressions for AB and AC. So we will call this the
‘matrix-vector equation’ approach.

) Stewart [44, 1995] was stimulated by Chang’s work on the Cholesky factorization
to understand this more deeply, and present simple explanations for what was going
on. Before Chang’s work, the most used approach to perturbation analyses of factor-
izations was what we will call the ‘matrix equation’ approach, which keeps equations
like (1.1.3) in their matrix-matrix form. Stewart [44] (also see Chang, Paige and
Stewart [13, 1996]) used an elegant construct, partly illustrated by the ‘up’ and ‘low’
notation in Section 1.2, which makes the matrix equation approach a far more usable
and intuitive tool. He combined this with deep insights on scaling to produce the new
matriz equation analysis which is appealingly clear, and provides excellent insights
into the sensitivities of the LU and Cholesky factorizations. This new matrix equa-
tion analysis does not in general provide tight results like the matrix-vector equation
analyses do, but they are usually more simple, and provide practical estimates for the
true condition numbers obtained from the latter. This approach is also fairly general,
but for each factorization a particular treatment is needed. This is different from the
matrix-vector equation approach, which can be applied to any factorization directly
without any difficulty.

We combined these two approaches to give a deep understanding of the sensitivity
of the Cholesky factorization, see Chang, Paige and Stewart {13, 1996]. We also
applied the two approaches to the QR factorization and the Cholesky downdating
problem, see Chang, Paige and Stewart [14, 1996], and, Chang and Paige [10, 1996].
The interplay of the two approaches goes through the whole thesis.

The main purpose of this thesis is to establish first-order perturbation bounds
that are as tight as possible for the factorizations mentioned above, present the cor-
responding condition numbers, give some condition estimators, and shed light on the
effect of the standard pivoting on the conditioning. Although first-order perturbation

- bounds are satisfactory for all but the most delicate work, we also give some rigorous
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perturbation bounds for some factorizations. Some results in this thesis have been
presented in the papers mentioned above. Some other new results here have not yet

been published.

1.2 Notation and basics

First we describe some mostly standard notation, and define some elementary con-

cepts used throughout this thesis.

¢ R™*" denotes the vector space of all m x n real matrices, and R* = R"*!.

¢ A matrix is always denoted by a capital letter, e.g. A. The corresponding
lowercase letter with the subscript j and ij refers to the the jth column and
(,7)th entry respectively, e.g. a;, a;;. Also the notation (A);; designates the
(7,7)th entry. A(t,:) denotes the ith row of A and A(:, j) the jth column.

¢ A vector is represented by a lowercase letter, e.g. . The individual components

are denoted with single subscripts, e.g. b;.
¢ R(A) denotes the space spanned by the columns of A.

o )\(A) denotes an eigenvalue of a matrix A; p(A) denotes the spectral radius of
A, ie. p(A) = max|A(A)].

e 0(A) denotes a nonzero singular value of a matrix A; onax(A) and omin(A)

denote the largest and smallest nonzero singular values of A, respectively.
o Let A = (a;;) be an m x n matrix, then |A| is defined by |A| = (|a;j])-

e Let ¢t be a scalar and let A(t) = (a;;(¢)) be an m x n matrix. If a;;(t) is a

differentiable function of ¢ for all i and j, then we say A(t) is differentiable with



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 6

respect to t and define

AW = 540 = (G500 = (@5(0),

dt
e || - || denotes a vector norm or matrix norm.
e |- || is a monotone and consistent matrix norm if |A| < |B| implies | A]| < || B,

and {|AB|| < [ A} B]-

e The 1-norm, 2-norm (or Euclidean norm), and oo-norm of an n-dimension vector

z are defined respectively by

n n
Izl =2 1zl llzlle= Qo =D)Y2 2l = max fzil.
=1 =1

1<i<n

¢ The S-norm (S for summation), F-norm (or Frobenius norm), and M-norm (M

for maximum) of an m x n matrix A are defined respectively by
lalls =3 legl,  HAllr = QClesl)% llAllm = max]ay].
g J

¢ The 1-norm, 2-norm (or spectral norm), and oo-norm of an m X n matrix A

defined by
14ll, = St;g(llAzllp/ lzlls), p=1,2 00

are given respectively by

4l = max Zlaul 14l = oiac(4), 1 4lleo = max. Zlaul

e x,(A) = ||AY, | A||. denotes the standard condition number of matrix A and
cond,(A4) = |||A||A] ]|, the Bauer-Skeel condition number of matrix A4 when
norm || - ||, is used, where A' is the Moore-Penrose generalized inverse of A. If

A is nonsingular, then «,(4) = ||A7}||.||4]l, and cond,(4) = || |A7I]|A] ..
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e Let C =[c,c, -+, ¢n] be an m X n matrix, then vec(C) is defined by
-
5]
c
vec(C) = 2
e C" -

Now we describe some special notation used throughout this thesis.
e D, always denotes the set of all n x n real positive definite diagonal matrices.

e Let X = (z;;) be an n X n matrix. The upper triangular part, strictly lower

triangular part and strictly upper triangular part of X are denoted respectively

by
I Ii2 Tin
0 . n
ut(X) = T2 T gg(X) = X - ut(X), sut(X) = slt(XT)7,
| 0 0 Tnn |
(1.2.1)
and the diagonal of X is denoted by
dlag(X) = diag(.'ru,:z:n,...,xm,). (122)

e For any n X n matrix X = (z;;), we define the upper and lower triangular

matrices
—%In Ti2 - Zin .

ap(X)=| 22 T . low(X) = up(XT)T = X — up(X),
0 o0 - %:r,m

(1.2.3)
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e For any n x n matrix C = [cy,...,¢,], denote by cgi) the vector of the first ¢
elements of c;, and by c§~D the vector of the last i elements of c;. With these,

we define (‘u’ denotes ‘upper’, ‘sl’ denotes ‘strictly lower’)

[ 0(11) 1 [ c(lm) ]
(2) (»-2)
wee(C)= | 2 |, svectC)=| % | (1.2.4)
| cfl") ] | CS.{), J

They are the vectors formed by stacking the columns of the upper triangular
part of C into one long vector and by stacking the columus of the strictly lower

triangular part of C into one long vector, respectively.
The ‘low’ and ‘up’ have the following basic p.roperties. For general X € R"*"
max{|| low(X)||F, [[up(X)llr} < [ X]|F, (1.2:5)
IX = up(X + XT)[r = [ low(X) - [low(X)7[lr < VEIX[p.  (1:26)
For symmetric X € R**"
21| up(X)% = 2[1ow(XO)IE = IXIE = (e + o + - +22) S IXIE. (127
The following well-known theorem obtained by van der Sluis [51, 1969] will often

- be referred to when we discuss the effect of scaling on the condition estimators in this

thesis.

Theorem 1.2.1 Let S, T € R"*" and let S be nortsingular, and define

D,, = diag([[S(i,:)ll), Dep = diag([ISG,i)llp), P =1, 2.
Then

1ITNIS fleo = ITDrtlloe 1 D1 Slleo = minpepn ITDllos 1D Sllos, ~ (1.2.8)

HSUTH = IISDZ 11 I1DaTll: = minpep. I1SD-2 i IDT,  (1.2.9)

ITDr2ll2 || D' Sll2 < /7 infpep, ITD|l2 ||D2S|2, (1.2.10)

ISDZ 2 | De2T 2 < V7 infpep, ISD||2 [| DT 2. (1.2.11)
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Thus if T = S, then

condoy(S) = Keo(D5'S) = minpen, Keo(DLS), (1.2.12)
cond;(S!) = x,(SD;") = minpep, x1(SD7Y), (1.2.13)
r2(D3' S) < /n infpep, k2(D7'S), (1.2.14)
#2(SDZ') £ V7 infpep, k2(SDY). (1.2.15)

Particularly, if S is symmetric positive definite, define D. = diag(S)'/?, then

ko(D7'SD7Y) < n inf Ko(D7ISD™Y). o (1.2.16)

We will often use the following results when discussing the effect of standard

pivoting on the condition numbers.
Theorem 1.2.2 Let T € R**" be a nonsingular upper triangular matriz satisfying
lt,;g’ > Itijl fOT all] > 1. (1217)

Then with D = diag(T),

ke(DT'T) = (D7) Yp [D7'T|F < /20(n + 1)(4 + 60— 1)/6,  (1.2.18)

Kool D7'T) = I(D7'T) Yoo | P Thioo < n2771, {1.2.19)
cond(T) = || |T7Y|T) ||F € V4**+! — 3n — 4/3, (1.2.20)
cond; oo(T) = [ |T7YIT| hoo < 2" - 1. (1.2.21)

All of the upper bounds above can be reached for the n X n matriz

(1 -1 -1 - —1]
1 -1 - -1
T = ST (1.2.22)
1 -1
- i 1 |
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Proof. Let T = D~'T. Then we have 1 = |{;;] > [t;;]. It is easy to show that
(T~ <2777 for j > i (1.2.23)

Tilus
ITHE < n(n + 1)/12 IT)1.00 <,
1743 < Z Z (27712 4 21 = (4" +6n —1)/9,

=1 j=i+l1
TR S e PR E D rar ol
i=1 j=2
From these (1.2.18) and (1.2.19) follow.
By (1.2.23) we have for 7 > ¢,

(T T = (ATHIT s ZI(T Daellfi]l < 1+ Z gk=i=1.1 = 9i=i,

k=i+1
Thus
I 1T~ 7 <Z Z 277%) +Zl~ (4"*! — 3n —4)/9,

i=1 j=i+l1

T T €327 =27 =1, [T YT oo < 3277 =27 — 1,

which give (1.2.20) and (1.2.21).

(11 2 gn~2
1 1 PR
If T has the form of (1.2.22), then we easily verify T—! = o S
1 1
1

e, |(T71)| = 2771 for j > i. It is easy to see from -the_foregoing proof that all
of the inequalities in (1.2.18), (1.2.19), (1.2.20) and (1.2.21) become equalities with
D=1 a



Chapter 2

The Cholesky Factorization

2.1 Introduction

The Cholesky factorization is a fundamental tool in matrix computations: given an
n X n real symmetric positive definite matrix A, there exists a unique upper triangular

matrix R with positive diagonal entries such that
A=RTR.

R is called the Cholesky factor.
There are different algorithmic forms of Cholesky factorization. The fovllowing

algorithm is the ‘bordered’ form.

Algorithm CHOL: Given a symmetric positive definite A € R**" this algorithm
computes the Cholesky factorization A = RTR.
forj=1:n
fori=1:5-1 .
rij = (ai; — iy rkithy)/Tii
end _
ri; = (aj; — Tizi m8;)
end"

1/2

11
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Let AA € R"*" be a symmetric matrix such that A + AA is still symmetric

positive definite, then A + AA has the unique Cholesky factorization
A+ AA=(R+AR)T(R+ AR).

The goal of the perturbation analysis for the Cholesky factorization is to determine
a bound on [|AR]| (or |AR|) in terms of (a bound on) ||AA|| (or |AA|).
The rest of this chapter is organized as follows. In Section 2.2 we consider the case
_where only a bound on ||AAlf is known. We refer to these as ‘norm-bounded changes in
A’. First-order and rigorous tight bounds are presented by the so called matrix-vector
equation approach, and somewhat weaker but more insightful and computationally
applicable bounds are also given by the so called matrix equation approach. In
Section 2.3 we make a similar analysis to that in Section 2.2 for the case where a
bound on |AA| is known. We refer to these as ‘component-bounded changes in A’. In
both of the sections, we derive useful upper bounds on the condition of the problem A
when we use pivoting, and give numerical results to confirm our theoretical analyses.
Finally we summarize our findings and point out future work in Section 2.4.
This Cholesky analyses (and particularly Section 2.2.1) may also be taken as
an introduction to the general approach to perturbation analysis of factorizations

proposed by this thesis.

2.2 Perturbation analysis with norm-bounded
changes in A

There have been several papers dealing with the perturbation analysis for the dholesky
factorization with norm-bounded changes in A. The first result was that of Stew-
art {39, 1977). It was further modified and improved by Sun [46, 1991], who in-
cluded a first-order perturbation result. Using a different approach, Stewart [41,

1993] obtained the same first-order perturbation result. Recently Drmag, Omladi&
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and Veseli¢ [20, 1994] presented perturbation results of a different flavor. They
made a perturbation analysis for the Cholesky factorization of H = D-!AD! with
D, = diag(a}! 2), instead of A. The advantage of their approach is that a good bound
ca:n be obtained when AA corresponds to backward rounding errors. So their result
will be referred to in the next section.

The main goal of this section is to establish new first-order bounds on the norm
of the perturbation in the Cholesky factor, smaller than those of Sun [46, 1991] and
Stewart [41, 1993, and present a condition number which more closely reflects the
true sensitivity of the problem. Also, we give rigorous perturbation bounds. Many

of the results have been presented in Chang, Paige and Stewart [13, 1996].

2.2.1 First-order perturbation bounds

We first obtain an equation and an expression for R(0) in the Cholesky factorization
A +tG = RT(t)R(t), then we use these to obtain our new first-order perturbation
bounds by the matrix-vector equation approach and the matrix equation approach.
The first approach will provide a sharp bound, resulting in the condition number
for the Cholesky factorization with norm-bounded changes in A, while the second
approach provides results that are usually weaker but easier to interpret, and allows

efficient computation of satisfactory estimates for the actual condition number.

Rate of change of R

Here we derive the basic results on how R changes as A changes. We then derived

Sun’s [46, 1991] results. The following theorem summarizes the results we use later.

Theorem 2.2.1 Let A € R™**" be symmetric positive definite, with the Cholesky
factorization A = RTR, let G € R"*" be symmetric, and let AA = ¢G, for some
e>0.If

- p(A~1AA) < 1, (2.2.1)
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then A + AA has the Cholesky factorization
A+AA=(R+AR)T(R + AR), (2.2.2)
with AR satisfying
AR = € R(0) + O(€?), (2.2.3)

where R(0) is defined by the unique Cholesky factorization

A +tG = RT(t)R(t), t] <, (2.2.4)

and so satisfies the equations

RTR(0) + RT(0)R = G, (2.2.5)
R(0) = up(R-TGR V)R, (2.2.6)

where the ‘up’ notation is defined by (1.2.3).
Proof. If (2.2.1) holds, then for all |¢| < € the spectral radius of tR~TGR™! satisfies
p(tR"TGR™") = p(tR'R™TG) = p(tA”1G) < 1.

Therefore for all |t| < €, A+tG = RT(I+tR-TGR™')R is symmetric positive definite
and so has the unique Cholesky factorization (2.2.4). Notice that R(0) = R and
R(e) =R+ AR, so (:2.2.2) holds.

It is easy to verify that R(t) is twice continuously differentiable for |t} < € from
the algorithm for the Cholesky factorization. If we differentiate (é.2.4) and set t =0
in the result, we obtain (2.2.5) which we will see is a linear equation uniquely defining
the elements of upper triangular R(0) in terms of the elements of G. From upper

triangular R(0)R™! in
(ROYR™HYT + R(O)R™! = R"TGR™,

we see with the ‘up’ notation in (1.2.3) that (2.2.6) holds: Finally the Taylor expansion
for R(t) about t = 0 gives (2.2.3) at t = . | '
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Using Theorem 2.2.1 we can now easily obtain the first-order perturbation bound

due to Sun {46, 1991], and also proved by Stewart (41, 1993] by a different approach.

Theorem 2.2.2 Let A € R™*" be symmetric positive definite, with the Cholesky
factorization A = RTR, and let AA be a real symmetric n x n matriz satisfying
HAAllr < elfAll2. If

ra(A)e < 1, (2.2.7)

then A + AA has the Cholesky factorization
A+ AA=(R+ AR)T(R + AR),

where

lAR|lF _ 1 2 .
TRl < —5ralA)e +OCe ). (2.2.8)

Proof. Let G = AA/e (if € = 0, the theorem is trivial). Then

IGllr < [IAll2- (2.2.9)

Since

P(ATLAA) < AT AAll2 < k2(A)e,

the assumption (2.2.7) implies that (2.2.1) holds. So the conclusion of Theorem 2.2.1
holds here. By using the fact that ||up(X)||r < 71§||X||p for any symmetric X (see
(1.2.7)), we have from (2.2.6) that

1

3 ) 1
RO)||F < R TGR™! < —IR7YEZ IR |G, 2.2.10
IRO)|F < ﬁll lellRll2 < ﬁllR I3 1Rl |Gl ( )
which, with (2.2.9) and [|[R7Y||3 = ||JA~!||2, gives
IRO)F _ 1
WRUNE o« 2k (A). 2.9.11
e S vz (2:2.11)

Then (2.2.8) follows immediately from the Taylor expansion (2.2.3). a
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Clearly from (2.2.8) we see 71§nz(A) can be regarded as a measure of the sensitivity
of the Cholesky factorization. Since a condition number as a function of a matrix of a
certain class has to be from a bound which is attainable to first-order for any matrix
i;l the given class (see (2.2.19) for a more formal definition of the condition number of
the Cholesky factorization with norm-bounded changes in A) we will use this rigorous
terminology, and use a qualified term condition estimator when this criterion is not
met. For general A the first-order bound in (2.2.8) is not attainable, in other words,
we are not always able to choose a symmetric AA satisfying || AA||r < €{|4[|2 to make
(2.2.11) an equality. We could use a simple example to illustrate this, but we choose
not to do so here, as it will be obvious after we obtain the actual condition number.
Therefore we say %KQ(A) is a condition estimator for the Cholesky factorization.

We have seen the basis for deriving first-order perturbation bounds for R is the
equation (2.2.5) (or the expression (2.2.6) of its solution), which will be used later.

Our following analyses will be based on the same assumptions as in Theorem 2.2.2.

Matrix-vector equation analysis

Now we would like to derive an attainable first-order perturbation bound.

The upper and lower triangular parts of the matrix equation (2.2.5) contain iden-
tical information. The upper triangular part can be rewritten in the following form
by using the ‘uvec’ notation in (1.2.4) (for the derivation, see the Appendix of Chang,
Paige and Stewart [13, 1996]):

Wg uvec(R(0)) = uvec(G), (2.2.12)
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” n(n l! n(n+1) |
where Wi € R T

7 is the lower triangular matrix
l 21"“

Ti2 i

2T12 27‘22

713 T11

T3 Ta3 Tia

27‘[3 21‘23 27‘33

(2.2.13)
Tin : Ti1
Tin  T2n Ti2 T22
Tin  T2n  T3n ™13 723 T33
L 2rln 2T2n 2T3n : 2’rnn ]
Note that for any upper triangular X, |fluvec(X){l2 = || X|lr. To help our norm
analysis, for any matrix C € R"*" we define

duvec(C) = Dguvec(C), (2.2.14)

where

DF:diag(lv\/5911"',ﬁ)‘/§,~"1\/—2-)];1"-)\\/§1\/§1---,\/§9 ER@Xﬂ%LQ

—

2 ] n

Thus for any symmetric matrix G we have ||duvec(G)||2 = ||G||r. For our norm-based

analysis, we rewrite (2.2.12) as
Wruvec(R(0)) = duvec(G),  Wg = DeWhk. (2.2.15)
Since R is nonsingular, Wg is also, and from (2.2.15)

uve(;(R(O)) = Wg! duvec(G). (2.2.16)
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so taking the 2-norm and using ||G||r < || A}z from (2.2.9), we obtain

12O = [[Wg'duvec(G)lls
< [Wz'i2 llduvec(G)ir (2.2.17)
= |Wz'IIGllF
< [Wz'l2 1Al -

where for eny nonsingular upper triangular R, equalities can be obtained by choosing
G such that duvec{G) lies in the space spanned by the right singular vectors corre-
sponding to the largest singular value of W5;! and ||G||r = ||A||2. Using the Taylor
expansion (2.2.3) and ||A[l2 = |R||3, we see

[AR]lF
I &ll2

and this bound is attainable to first-order in e. Thus for the Cholesky factoriza-

< [Wg'll2 14112 % + O(e), (2.2.18)

tion with norm-bounded changes in A the condition number (with respect to the

combination of the F- and 2-norms)

ko(A) = limsup { I "R”: A+ AA=(R+ AR)T(R+ AR), |[AA|F < €[|All2}
(2.2.19)
is given by
re(4) = [Wz'll2 [|All2"%. (2.2.20)

Obviously with the definition of kc(A) we have from (2.2.8) that

ko(A) < % ka(A). (2.2.21)

This upper bound on xc(A) is achieved if R is an n X n identity matrix with n > 2,
and so is tight.
We now derive a lower bound on x.(A4). Observe that the n x n bottom right

hand corner of Wk is just diag(l,1,...,1,2)RT, so that Wr has the form

x 0
x DRT

——




CHAPTER 2. THE CHOLESKY FACTORIZATION 19

where

D = diag(v2,V2,...,V2,2).

Therefore we have

—_ X 0
Wy' = .
x RTD-!
It follows that
— - 1 _
IWz'll2 2 IR"TD 2 2 S IR Y2, (2.2.23)
thus
= 1S 1
re(A) = W'l (46" 2 5 1R 2 IRll2 = 5 52"*(4). (2.2.24)

This bound is tight for any n, since equality will hold by taking R = diag(r;}, with
0< \/érnn Sriisi#n'

We summarize these results as the following theorem.

Theorem 2.2.3 With the same assumptions as in Theorem 2.2.2, A + AA has the

unique Cholesky factorization

A+ AA=(R+AR)T(R + AR),

such that
ARl < ke(A)e + O(%), (2.2.25)
| Rll2
1 1
552 (A4) < Ke(4) < 52 A), (2.2.26)

where kc(A) = W7l lA|3”%, and the first-order bound in (2.2.25) is attainable.
a

From (2.2.26) we know the new first-order bound in (2.2.25) is at least as good
as that in (2.2.8), but it suggests the former may be considerably smaller than the

latter. Consider the following example.
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Example 1: Let 4 = diag(1,62). Then R = diag(l,6), Wg = diag(2, V2, 26).
When 0 < 6 < 1/v/2, we obtain

1 1
I{C(A) = %’ Kz(A) = 35 ]

We see that the first-order perturbation bound (2.2.8) can severely overestimate the

effect of a perturbation in A.

But it is possible that xc(A) has the same order as x3(A), as we now show.
62 1

Example 2: If A =
01

)
} with small 6 > 0, then R =
6 2

} . Some simple

computations give
1 1
ke(4)=0(g),  #(4)=0(5). DO

Suppose the Cholesky factorization of A is approached by using the standard
symmetric pivoting strategy: PAPT = RTR, where P is an n X n permutation matrix
designed so that rows and columns of A are interchanged, during the computation of
the reduction, to make the leading diagonal elements of R as large as possible. Let
the Cholesky factorization of P(A+AA)PT be P(A+ AA)PT = (R+AR)T(R+AR).
Then by Theorem 2.2.3 we have

A )
L”g"'L—F < ke(PAPT)e + O(€2),

and

1 1
En;’Z(A) < ke(PAPT) < E,cz(A).

Note that the first-order bound in (2.2.8) does not change when the Cholesky factor-_
ization of A is approached by using any pivoting strategy. Clearly the perturbation
bound (2.2.25) more closely reflects the structure of the problem. Many numeri-
cal experiments with the standard pivoting strategy suggest that xc(PAPT) usually
has the same order as xy'2(A), and in fact kc(PAPT) can be bounded above by
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fc;ﬁ(A)\/n(n +1)(4" + 6n — 1)/6, see (2.2.39). Using the standard symmetric pivot-

ing strategy in Example 2 gives

01, R=\/§71§6‘
1 0 0 56

P=

and kc(PAPT) = O(1/6), showing how pivoting can improve the condition of the
problem (as measured by our condition number) by an arbitrary amount.

There have been several techniques for estimating the 2-norm of the inverse of a
triangular matrix, e.g., Cline et al [16, 1979], Cline et al [15, 1982] and Dixon (18,
1983]. A comprehensive, comparative survey on these techniques has been given by
Higham [27, 1987]. Using these techniques, ||[Wg!||2 could be estimated at the cost
of solving a few linear systems with matrices Wg and WZ. To solve the former is
equivalent to solving RTX + XTR = G (G is symmetric) for upper triangular X,
and the cost is O(n3). Even though WZy = c is not the transpose of the above
matrix equation, it can also be solved in O(n3) by using the special structure of WJ.
However since the Cholesky factorization costs O(n?), such a computation would
rarely be considered feasible. Of course if it is known that k.(PAPT) =~ xé/ 2(A), as
usually happens when we use the standard symmetric pivoting, then we need only
estimate !Célz(A) = k3(R) for this case, and this can be done in O(n?). For a practical

approach to the general case, see the following matrix equation analysis.

Matrix equation analysis

As we saw, kc(A4) is unreasonably expensive to compute or estimate directly with
the usual approach, except when we use pivoting, in which case kc(PAPT) usually
approaches its lower bound x;’ 2(A)/2, see (2.2.39). Fortunately, the approach of
Stewart [44, 1995] can be extended to obtain an excellent upper bound on x.(A), and
also give considerable insight into what is going on, and lead to efficient and practical

condition estimators even when we do not use pivoting.
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In Theorem 2.2.2 we used the expression of R(0) in (2.2.6) to derive Sun’s first-
order perturbation bound. Now we again look at (2.2.6), repeated here for clarity.
R(0) = up(R"TGR™)R.

A useful observation is that for any matrix B € R**" and diagonal matrix D € R"*",

up(B)D = up(BD).

Let D, be the set of all n x n real positive definite diagonal matrices. For any

D = diag(6y,...,6,) € D, we can take R = DR, giving
R(0) = up(R""GR™'D™)DR,
which leads to cancellation of the D~! with D:
R(0) = up(R"TGR™Y)R, : (2.2.27)
and since for any matrix B, [[up(B)|r < |[Bllr,
1RO)|Ir < llup(RTTGR™)(|r [|Rll2 < IR 12 |Gl #2(R)- (2.2.28)

Using {|Gllr < ||All2 = [[RI} we get

|R(O)}| ¢
I &ll2

Since this is true for all D € D,, we may choose D to minimize (A, D),

< kao(R)ka(R) = ka( R)ka(D™'R) = k(A, D), say. (2.2.29)

KkL(A) = Dié%'“ x.(A, D), (2.2.30)
which gives the encouraging result
Ko(A) < Ko(A, 1) = K(R) = ra( A). (2:231)
Then from the Taylor expansion (2.2.3) we have

lARIE _ . |
TRl < kL(A)e + O(é). (2.2.32)
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(2.2.31) shows 1//2 times the first-order bound in (2.2.32) is at least as good as that
in (2.2.8), the first-order perturbation bound in Sun [46, 1991] and Stewart [41, 1993].

With (2.2.19), the definition of k-(A), we see from (2.2.32) that kc(A) < «L(A).
But it is useful to prove this more delicately, and so obtain some indication of how
weak x(A) is as an approximation to k.(A). We know G can be chosen to make

(2.2.17) an equality, so that for such a G we have

IROF = IWz 2 IGllF = lfup(R-TGR™")R]|r,

Thus for any D € D, in R = DR

IWz'20Gle < Nup(RTTGR™)||r (IRl (2.2.33)
< rRIRY2IGHF, (2.2.34)
or
[Wztlla < ko( R)IR™Yl2, (2.2.35)
which implies
ke(A) = [Willz | Rll2 < 2(R)xa(R) = K(A, D), (2.2.36)

for any D € D,,. Note the two inequalities (2.2.33) and (2.2.34) in going from «.(A)
to x.(A, D).

Now we summarize the above results as the following theorem.

Theorem 2.2.4 With the same the assumptions as in Theorem 2.2.2, A + AA has
the Cholesky factorization

A+AA=(R+AR)T(R+ AR),

such that
1aR] < KL (A)e + O(€2). (2.2.37)
| Rll2
ke(A) < ke(A) < K2(A) (2.2.38)

where kl.(A) is as in (2.2.29) and (2.2.30). O
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This matrix equation approach is very simple yet gives considerable insight into
why the Cholesky factorization can be far more well-conditioned than we previously
thought. For example, if the ill-conditioning of R is mostly due to bad scaling of the
rows, then correct choice of D in R = DR can give x2(R) very near one, so x.(A, D)

will approach twice the lower bound rc;/ %(A)/2 on kc(A). As an illustration suppose

1§ -
R = [ } , then for small § > 0, ko(R) = O(1/6). But if we set D = diag(1,6),
0 6

then xo(D) = 1/6 and k9(R) = O(1), so that (A, D) is close to the lower bound on
kc(A). Note how almost all the ill-conditioning was revealed by the diagonal of R.
This also provides another explanation as to why the standard symmetric piv-
oting of A is so successful, making x.(PAPT) approach its lower bound in nearly
all cases. If A is ill-conditioned {so there is a large distance between the lower and
upper bounds on k-(A)) and the Cholesky factorization is computed with standard
symmetric pivoting, the ill-conditioning of A will usually reveal itself in the diagonal
elements of R. Stewart [43, 1995] has shown that such upper triangular matrices
are artificially ill-conditioned in the sense that they can be made well-conditioned by
scaling the rows via D. This implies that <. (PAPT, D), and therefore (as we shall
show) kc(PAPT), will approach its lower bound. We support this mathematically in

the following.

Theorem 2.2.5 Let A € R"*" be symmetric positive definite with the Cholesky fac-

torization PAPT = RTR when the standard symmetric pivoting strategy is used.

Then

1 - -
5 Ky 2(A) < ko(PAPT) < K, (PAPT) < x*(A) /2n(n + 1)(4% + 6n — 1)/6,

(2.2.39)
and from this

1 — ;
5 1AL < W'z < AT y2n(n + 1)(4" + 60 ~ 1)/6. (2.2.40)
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Proof. We need only prove the last inequality of (2.2.39). In fact standard pivoting

ensures 1% > Yh_. rfJ for all j > 1, so |ri| > |ri;|. Since for any D € D,

k. (PAPT) < k.(PAPT,D) = ko(R)x2(D™'R) < ka(R)kr(D™'R),

the inequality follows immediately from xo(R) = x3/?(A) and (1.2.18) in Theo-
rem 1.2.2 with D = diag(R). a

One may not be impressed by the 4" factor in the upper bound in (2.2.39), and
may wonder if the upper bound can significantly be improved. In fact the upper bound

can nearly be-approximated by a parametrized family of matrices A = K7 (8)K,(9),

where )
1 —¢ —-c - —c
1 —c¢ - —c
Ka(8) = diag(1,s,---,s"") 1 - —c (2.2.41)
1

with ¢ = cos(f) and s = sin(6), were introduced by Kahan [32, 1966]. Notice here
the permutation P corresponding to the standard symmetric pivoting strategy is the
identity. Taking D = diag(K,.(8)) = diag(l,s,---,s""!), then by the last part of

Theorem 1.2.2 we have

Kp(D™'Kq(6)) — y/2n(n +1)(4" +6n—1)/6  as 6 — 0. (2.2.42)
Let D, = diag(“l{n(a)(i, )ll2), then
D, = Ddiag(y/1+ (n — 1)&,---,VI+ &,1).
Hence

" kp(DT'K,(8)) = kp(D7'D.D:'K,(6)) < kp(D'D,) ko( DK, (6))

) . < \/T_l, \/n(n+1)/2"€2(D:lKn(0))v
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or
1

Vi y/n(n+1)/2

But by (1.2.14) in van der Sluis’s Theorem 1.2.1 we have

K2(D7 Ka(8)) 2

kr(D KA (6)).

KL (PAPT) > —lﬁné’zu) ka(DT K o(6)).

Thus
Ko(PAPT) > —— L U2(4) kp(D Ko(8)).

ny/n(n + 1)/2K2

Then it follows from (2.2.42) that as § — 0,

K (PAPT) 2 kb/2(4) Y2 z:n -1
This indicates the upper bound in (2.2.39) is nearly tight.

Many computational experiments show with standard symmetric pivoting that
kc(PAPT) is usually quite close to the lower bound of x3'2(A), see Section 2.2.3
Tables 2.2.1 and 2.2.2, but can significantly larger for the matrices whose Cholesky
factors are Kahan matrices, see Section 2.2.3 Table 2.2.3 as well as the comments.
In the latter case, something like a rank-revealing pivoting strategy such as that in
Hong and Pan [31, 1992}) will most likely be required to make the condition number
close to its lower bound.

The practical outcome of this simple analysis is that we now have an O(n?) condi-
tion estimator for the Cholesky factor. By (1.2.14) in van der Sluis’s Theorem 1.2.1,
ka(R) will be nearly optimal when the rows of R are equilibrated in the 2-norm. Thus
the estimation procedure for the condition of the Cholesky factorization is to choose
D = D, = diag(||R(,:)||2) in R = DR, and use a standard condition estimator (for

matrix inversion) to estimate xp(R) and x5(R) in (2.2.29).

Finally we give a new perturbation bound which does not involve any scaling

matrix D, by using a monotone and consistent matrix norm || - || (see Section 1.2).
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Theorem 2.2.6 Let A € R™*" be symmelric positive definite, with the Cholesky
factorization A = RTR, and let AA € R™*" be a symmetric matriz satisfying [|AA|| <

e||A|l for some monotone and consistent matriz norm. If k(A)e < 1, then

% < k(RT)cond(R)e + O(€2). (2.2.43)
Proof. Let G = AA/e (if € = 0 the theorem is trivial). Since
p(ATIAA) < |ATTAA| S k(A)e < 1,
Theorem 2.2.1 is applicable here. If we take || - || on both sides of (2.2.6), we have
IRO)] = lup(R"TGR™MR|| < IHR"TGRT'RI I < IRTTIIGH I RTHIRI |-

Combining this with |G| < ||A[| < ||RT|| | R||, we obtain

1RO T
< k(R" )cond(R),
Ry < <R )cond(®)
which with the Taylor expansion (2.2.3) gives (2.2.43). o

Note cond(R) is invariant under the row scaling of R, in other words, the pertur-
bation bound (2.2.43) provides the scaling automatically. This makes (2.2.43) look
simpler than (2.2.37). Also from (1.2.12) in van der Sluis’s Theorem 1.2.1, we know

for the oo-norm,
c'ondoo(R) = gég]; KN(D_IR) = Kco(DalR):

where D;' R has rows of unit 1-norm (D,; = diag(||R(Z, :)||1). This gives the condition

estimator & (R)kq (D! R) with respect to the co-norm.

2.2.2 Rigorous perturbation bounds

Usually a first-order bound is satisfactory, but sometimes more careful work is needed.

In this section, we will present i'igorous perturbation bounds (with no higher order
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terms) for the Cholesky factor by the matrix-vector equation approach and the matrix

equation approach.

Let A=RTR. If A+ AA=(R+ AR)T(R + AR), then we have

RTAR+ ARTR = AA— ARTAR, (2.2.44)

or
(ARRY + ARR™!' = R"T(AA - ARTAR)R™!,
which gives ]
ARR™' = up[R™T(AA -~ ARTAR)R™Y]. (2.2.45)

We will use (2.2.44) and (2.2.45) in deriving rigorous perturbation bounds as well

as the following lemma.

Lemma 2.2.1 (A trivial variant of Theorem 3.1 in Stewart {38, 1973]. and Theorem
2.11 in Stewart and Sun (45, 1990]) Let T be a bounded linear operator on a Banach
space B. Assume that T has a bounded inverse, and set§ = || T!||"'. Letyp: B — B

be a function that satisfies

llo(z)ll < nliz|f?
and

llo(z) = (W)l < 2pmax{liz]}, ll¥ll}Hz -yl
for somen > 0. For anyg € B, let7 = ||T"g||. If p = mn/é-< 1/4, then the equation
Tz =g + ¢(z)
has a unique solution x that satisfies

2T
< —— < 21. a
bl < =g =%

First we give a rigorous perturbation bound by the matrix-vector equation ap-

proach.
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Let X = AR, and define TgX = RTX + XTR and HX) = XTX. Then (2.2.44)
can be rewritten as

TrX = AA — $(X). (2.2.46)

By using Lemma 2.2.1 we can prove the following theorem.

Theorem 2.2.7 Let A € R"*" be symmetric positive definite, with the Cholesky
factorization A = RTR. Let AA € R™*" be symmetric. If

IW3ll2 [|[W5! duvec(AA))2 < 1/4, - (2.2.47)
then A + AA has the Cholesky factorization
A+ AA=(R+AR)T(R+ AR), (2.2.48)

where

2 ||Wg! duvec(AA)|2

lAR|F < L
1+ /1 — 4| W (12 [W5! duvec(AA)]}
< 2|Wrlduvec(AA)|lz < 2[[Wz!ll2 |AA] F- (2.2.49)

Obviously, the weakest bound above can be rewritten in the following elegant form:

IAR|F IAAllF
< 2ko(A 2.2.50
TR < WA, (22:30)
Proof. See Chang, Paige and Stewart [13, 1996]. o

From (2.2.23) and (2.2.35), it follows that for any D € D,
147 L llAAlF < TR B IAALE < DT R)IA™ 2 A4l
In randomly perturbed problems we expect
IWz"ll2 [Wr" duvec(AA)[lz ~ [Wg' I | AAllF.

Thus the assumption (2.2.47) is generally stronger than (2.2.7), and may be greatly
so. Following the same argument as Stewart [41, 1993], however, (2.2.47) is néeded
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to guarantee that the bound on {|AR||r will not explode. Furthermore, if the ill-
conditioning of R is mostly due to bad scaling of the rows, then correct choice of D
can give Ko(D7'R) very near one. In particular, if the standard symmetric pivoting
is used in computing the Cholesky factorization, then ||[Wz'||; and %][A‘l”;/ ? will
usually be of similar magnitude, see (2.2.40); that is, |W5!|l2 ||W5! duvec(AA)|l
and %[|A7||2 ||AA| ¢ will usually have similar magnitude. So the condition (2.2.47) is
not too constraining. Numerical experiments suggest that (2.2.49) is better than the
equivalent result in Sun [46, 1991], see Chang, Paige and Stewart (13, Section 3.2].

Now we use the matrix equation approach to derive a weaker but pr-actical rigorous

perturbation bound. Let R = DR. then from (2.2.45) we have
ARR™' = up(R"TAAR™') — up(R"TARTARR™). (2.2.51)

Let X = ARR™!, and define ¢(X) = up(D~'XTX). Then (2.2.51) can be rewritten
as

X = up(R"TAAR™) — ¢(X). (2.2.52)

Applying Lemma 2.2.1 to (2.2.52) we obtain the following result.

Theorem 2.2.8 Let A € R"™ " be symmetric positive definite, with the Cholesky
factorization A = RTR. Let AA € R™*" be symmetric, and assume D € D,. If

|R"TAART'D|||D7H 2 < 1/4, (2.2.53)

then A + AA has the Cholesky factorization

A+ AA=(R+AR)T(R+ AR), (2.2.54)
where
2 ~-T -1 -1
lAR|F < IR AAR” DlirllD”_ s (2.2.55)
1+4/1-4][R-TAAR-'D||¢||D"|
If the assumption (2.2.53) is strengthened to
_ _ie 1AA _

5o BBl IR Dl (D~ ASALE < 14, (2.2.56)

| All2
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then
- AA
IAR] 2r2(R)so( D™ R)ITLE (2257
o <
1Bl ™ 141 — s RRI2 IR Dl | D1 1AL
< ox (a4, p)I12AlE (2.2.58)
1412

Proof. Tt is easy to see that the function ¢(X) = up(D~!XT X) satisfies

leCOllr < 1D~ 2 IX 1V

and for any upper triangular matrices X and Y,

16(X) = 8(X)lr < 20D~ o max{|X[|e. IV }HIX = ¥l

so we take n = |[D~!||o. By the assumption (2.2.53), we have p = Tn/§ < 1/4, with
7= ||lup(R"TAAR'D)||r < |[R"TAAR'D|r,n=]|D7Y|2, and 6 = 1 since here T
is an identity operator. Thus, by Lemma 2.2.1, (2.2.52) has a unique upper triangular
solution, say ARR™!, where R = RD™!, that satisfies
2 [lup(R"TAART)|
1++4/1—4[lup(R-TAAR)[ D!,
2|[R"TAAR™Y|,
1+ /1 - 4|[R-TAARY £ D2

IARR™Y|r <

< (2.2.59)

thus (2.2.54) and (2.2.55) follow, the latter using |AR|r < |ARR™Y|¢||R]|2-

But R+ AR in (2.2.54) must have positive diagonal to satisfy our definition of
the Cholesky factorization, where R was given and ARR™! solves (2.2.52). We now
prove the positivity. From (2.2.59) and (2.2.53) it follows that

IARR™Y|r < |ARR7Y[ID7 Y2 < 2[|IR"TAART|p||D7|2 < 1/2.

Thus R+ AR is nonsingular for any t € [0, 1], and by continuity of elements, R+ AR
has positive diagonal.

If (2.2.56) holds, then (2.2.57) can easily be obtained from (2.2.59) and ||AR||F <
|ARR-#|RIl, by using ||l = [IRI}. O -
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If we take D = I in Theorem 2.2.8, the assumption (2.2.56) can be weakened to

KZ(A)“ﬁ:”EF <1/2, (2.2.60)

and we have the following perturbation bound, which is due to Sun [46, 1991,

|ARls VIR 184l

"R”2 1+ \/1 _ 2K2(A)ull71££ "A”

(2.2.61)

This is a slightly stronger than (2.2.57) where D is replaced by I. The proof is similar
to that of Theorem 2.2.8. The only difference is using the fact that |[—up(X MWe <
7l Xl F for any symmetric X € R™*".

As we know from (1.2.14) in van der Sluis’s Theorem 1.2.1 that if we take D =
D, = diag(||R(z,:)||2) in x.(A, D), £-(A, D,) will be nearly minimal. Thus possibly
the bound (2.2.57) is much smaller than (2.2.61). But the assumption (2.2.56) with

D = D, is possibly much more constraining than (2.2.60).

2.2.3 Numerical experiments

In Section 2.2.1, we made first-order perturbation analyses for the Cholesky fac-
torization with norm-bounded changes in A using two different approaches, pre-
sented ko(A) = [[Wr'2llAllz’* as the corresponding condition number, and sug-
gested kc(A) could be approximated in practice by (A, D,) = xy(R)k2(D'R)
with D, = diag(||R(,:)||2), which could be estimated by a standard condition esti-
mator (see for example Higham [30, 1996, Ch. 14]) in O(n?). Also we showed the
condition of the problem can usually be (significantly) improved by standard symmet-
ric pivoting. In Section 2.2.2 rigorous perturbation bounds were obtained. In order to
confirm our theoretical analyses, we have carried out several numerical experiments
to compute the following measures of the sensitivity of the Cholesky factorization,

which satisfy (see (1.2.14), (2.2.26), (2.2.30) and (2.2.31))

Ly 4) < re(A) < Ko(A) < K(A,Dy),
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Ko(A4) € Jpra(A),  iRe(A, D)) < K(A) < ol A).

The computations were performed in Matlab. Here we give three sets of numerical
examples.

(1) The matrices in the first set have the form

A=QAQ7, -

where Q € R™ " is an orthogonal matrix obtained from the QR factorization of
a random n X n matrix, A=diag(ry,..., n-2,6,8) with ry, ..., r,_» random positive
numbers and 0 < § < 1. We generated different matrices by taking all combinations of
n € {5,10,15,20,25} and é € {1,107},...,1071%}. The results for n = 25, § = 107,
1=0, 1, ..., 10 are shown in Table 2.2.1, where P is a permutation corresponding to
the standard symmetric pivoting. Results obtained by putting the two é’s at the top
of A were mainly similar.

(2) The second set of matrices are n x n Pascal matrices (with elements a;; =
ai1 =1, a;; = a;j1 +ai—1j ), n =1, ..., 15. The results are shown in Table 2.2.2,
where P is a permutation corresponding to the standard symmetric pivoting.

(3) The third set of matrices are n x n A = KT (8)K,(8), where K,(6) are Kahan
matrices, see (2.2.41). The results for n = 5,10,15,20,25 with § = w/4 are shown
in Table 2.2.3, where IT is a permutation such that the first column and row are
moved to the last column and row positions, and the remaining columns and rows
are moved left and up one position — this permutation II corresponds to the rank-
revealing pivoting strategy, for details, see Hong and Pan [31, 1992]. The permutation
P corresponding to the standard symmetric pivoting is the identity, so the standard
symmetric pivoting does not bring any changes to our condition numbér and condition
estimators.

We give some comments on the results.

e The experiments confirm that x5(A4)/v/2 can be much larger than k¢ (A) for ill-
conditioned problems, so the first-order bound in (2.2.25) may be much smaller
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Table 2.2.1: Results for matrix A = QAQT of order 25, A=PAPT D= D,

34

6 A (d) KA D) K(4) K(4,D) Hf  Zed

1.0 2.0e+00 4.3e4+00 1.3e+01 4.8e+00 1.5e+01 1.2e4+01 2.1
1.0e-01 4.0e+00 1.le4+01 4.3e+01 1.2e+01 4.8e+01 4.5e+01 2.8
1.0e-02 4.9e+00 1.5e+01 6.8e+01 2.2e+01 8.0e+01 6.8e+01 3.1
1.0e-03 1.6e+01 4.2e+01 1.8e+02 1.3e+02 4.7e+02 7.0e+02 2.7
1.0e-04 4.9e+01 1.5e+02 6.8e+02 1.1le4+03 5.2e4+03 6.8e+03 3.0
1.0e-05 1.5e+02 4.5e+02 1.7e+03 5.6e+02 2.2e+03 6.7e+04 . 2.9
1.0e-06 5.0e4+02 1.4e+03 5.0e+03 1.4e+04 4.9e+04 7.0e+05 2.9
1.0e-07 1.6e+03 4.4e+03 2.0e+04 1.7e+04 6.3e+04 7.0e+06 2.8
1.0e-08 5.0e+03 1.3e+04 9.4e+04 1.2e+05 6.5e+05 7.le+07 2.6
1.0e-09 1.5e+04 5.3e4+04 2.4e+05 1.9e+05 8.5e+05 6.7e+08 3.4
1.0e-10 5.0e+04 1.4e+05 5.4e+05 2.0e+06 1.0e+07 7.0e+09 2.8

Table 2.2.2: Results for Pascal matrices, A = PAPT, D = D,

n LA (d) K(AD) kl(4) w(AD) = gl

1 5.0e-01 5.0e—-01 1.0e4+00 5.0e—~01 1.0e4+00 7.1e—-01 1.0

2 1.3e+00 1.5e+00 4.2e+00 2.1e4+00 6.3e+00 4.8e+00 1.2

3 3.9e+00 5.1e+00 1.6e+01 9.7e+00 5.0e4+01 4.4e+01 1.3

4 1.3e4+01 2.2e+01 8.0e+01 5.5e+01 4.8e4+02 4.9e+02 1.7

5 4.6e+01 8.3e+01 3.3e+02 3.5¢e+02 6.0e+03 6.0e+03 1.8

6 1.7e+02 2.5e+02 1.3e+03 2.5e+03 5.2e+04 7.8e+04 1.5

7 6.1e+02 9.4e+02 5.1e+03 1.9e+04 5.7e+05 1.le+06 1.5

8 23e+03 4.0e+03 2.4e+04 1.5e+05 6.3e+06 1.5e+07 1.8

9 8.5e+03 1.6e+04 1.0e+05 1.3e+06 7.0e4+07 2.1e+08 1.9

10 3.2e+04 7.6e+04 4.7e+05 1.1e4+07 7.9e+08 29e+09 24

11 1.2e4+05 2.4e+05 1.8e+06 9.8e+07 9.0e+09 4.2e+10 1.9

12 4.7¢e4+05 8.3e+05 8.2e+06 8.7e+08 1.0e+1l1 6.2e+11 1.8

13 1.8e+06 3.2¢+06 3.1e+07 7.8e+09 1.2¢e+12 9.le+12 1.8

14 6.9e+06 1.3e4+07 1.2e4+08 7.1e+10 1l.4e+13 13e+14 1.9

15 2.7e+07 5.4e+07 4.9e+08 6.5e+11 1.6e+14 2.0e+15 2.0
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Table 2.2.3: Results for A = KT(8)K,(8), § = /4, A=TIANIT, D = D,

i i A G
n 2(A) ko(A)  ko(A,D)  ke(A) ke(A,D) 2(;) '2‘-17 CIE:)

5 1.7e+01 2.2e401 1.0e+02 8.7e+01 3.1e+02 8.5e+02 1.3
10 2.1e4+03 2.6e+03 2.8e+04 1.5e+05 7.3e+05 1.3e+07 1.2
15 2.2e+05 2.8e+05 4.8e+06 2.3e+08 1.4e+09 1.4e+11l 1.2

20 2.2e+4+07 2.7e407 6.6e4+08 3.2e+11 2.5e+12 1.3e+15 1.2
25 2.0e+09 2.5e+09 8.0e+10 4.4e+14 3.8e+15 1.2e+19 1.2

than that in (2.2.8).

e The standard symmetric pivoting almost always gives an improvement on kc(A)

and (A, D,). Table 2.2.2 indicates the improvement can be significant. Qur
experiments suggest that if the Cholesky factorization of A is approached using
the standard symmetric pivoting strategy, then the condition number of the
Cholesky factorization xc(PAPT) will usually have the same order as its lower
limit xy'%(A)/2 (the ratio in the last columns of Table 2.2.1 and Table 2.2.2 was
never larger than 4). But Table 2.2.3 shows the ratio can be large. However such
examples are rare in practice, and furthermore if we adopt the rank-revealing -
pivoting strategy, we see from Table 2.2.3 the ratio 2k (ITAIIT)/ x3/*(A) is again
small.

Note in Table 2.2.1 and Table 2.2.3 (4, D,) ( k.(PAPT,D,), .(I1AIIT, D,))
is a very good approximation of Kc(A) ( K&c(PAPT), <(I[1AIIT)). In Table 2.2.2,
the results with pivoting also show this. For n = 15 without pivoting in Ta-
ble 2.2.2 k.(A, D,) overestimates kc(A) by a factor of about 250, but is much
better for low n. A study of the n = 2 case shows k,(A) can never be much
larger than x-(A), and we have not found an example which shows «[.(A, D)
can be much larger than x-(A) for n > 2, so we suspect «.(A) and (A4, D,)

are at worst kc(A) times some function of n alone (probably involving some-
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thing like 2") in general. From Theorem 2.2.5 we know this is true when the

standard symmetric pivoting strategy is used.

2.3 Perturbation analysis with component-bounded
changes in A

In this section we consider the case where a bound on |AA| is given. There have been
a few papers dealing with such problems. Sun [47, 1992] first presented a rigorous
perturbation bound on |AR| in terms of |AA|, which was improved by Sun [48,
1992]. For AA corresponding to the backward rounding error in A resulting from
numerical stable computations, e.g. Algorithm CHOL, on finite precision floating
point computers, Drma&, Omladi¢ and Veselié¢ [20, 1994] presented a nice norm-based
perturbation result using their H = D;!AD;! approach. Sun in [47] and [48] also
included component perturbation bounds for a different and a somewhat complicated
form of the backward rounding error in A.

The main purpose of this section is to establish new perturbation bounds when AA
corresponds to the backward rounding error, which are sharper than the equivalent
results in [20]. Most of the results have been presented in Chang (8, 1996]. Also we
present first-order perturbation bounds for some other kinds of bounds on |AA|.

In Section 2.3.1 we establish first-order perturbation bounds with a general bound
|AA| < €E, and apply such results to a special case: |AA| < €|A|. The motivation
for considering this special form is that possibly the relative error in each element
of A has the same reasonable known bound, for example, often the elements of A
can not be stored exactly on a digital computer, and the matrix actually stored
is A + AA with |AA| < u|A], where u is the unit roundoff. In Section 2.3.2 and

Section 2.3.3 we respectively derive first-order and rigorous perturbation bounds with

it

|AA| < edd?, where d; = a'/?, which comes from the backward rounding error
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analysis, see Demmel [17, 1989]. In our analyses we use both the matrix-vector

equation approach and the matrix equation approach.

2.3.1 First-order perturbation bound with [AA4| < €|A]
First we give the following result by using the matrix-vector equation approach.
Theorem 2.3.1 Let A € R"*™ be symmetric positive definite, with the Cholesky

factorization A = RTR. Let AA € R™*" be a symmetric matriz satisfying |AA| < €E

for some nonnegative matriz E with nonnegative €. If

ell|A7E] <1, (2.3.1)
where || - || denotes a monotone and consistent matriz norm, then A + AA has the
Cholesky factorization

A+ AA=(R+ AR)T(R+ AR),
such that
uvec(|AR|)| < €|Wg!|uvec(E) + O(€?), (2.3.2)
1AR[. _ IWg'|uvec(|EDIL
< e+0(), v=F, M, S, (2.3.3)
IRl | RH.

where || X||p» = max; j|zi;| and || X||s = X;; [zi5], and for the M-norm the first-order
bound in (2.3.3) is attainable. Thus, in particular, if E = |A|, then

uvec(|AR|)| < e|Wz!| uvec(|4]) + O(€), (2.3.4)

ARl _ [1Wg'[avec(JA]I.
IR, — IRl
and for the M-norm the first-order bound in (2.3.5) is attainable.

e+0(?), v=F, M, S, (2.3.5)

Proof. Let G = AA/e (if € = 0 the theorem is trivial). Since

p(AT'AA) < [ATTAAl < AT Elle < 1,
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the conclusion of Theorem 2.2.1 holds. Then from (2.2.12), the matrix-vector equation

form of (2.2.5), we have
luvec(R(0))] = |Wgltuvec(G)| < [Wg'|uvec(|G|) < |[Wg!|uvec(E).

This with the Taylor expansion (2.2.3) gives (2.3.2), from which (2.3.3) follows. For

the M-norm the first-order bound is attained for AA satisfying
uvec(AA) = e Duvec(FE), D = diag((;),
where (; = sign(Wg5')i; and || [Wg'| uvec(E)||lpm = (Wi uvec(E))x. m]

Theorem 2.3.1 implies that for the Cholesky factorization under relative changes

in the elements of A the condition number (with respect to the M-norm)

pe{A) = limsup {”—Afh : (A+AA) = (R+ AR)T(R+ AR), |AA| < ¢|A]}
=0 ell Rl ae
is given by
W—l
He(A) = || [Wg | uvec(|A|)lx (2.3.6)

| Rllae
We see uc-(A) is not very intuitive, and is expensive to estimate directly by any

presently known approach. Fortunately by the matrix-equation approach we have the

following practical results.

Theorem 2.3.2 With the same assumptions as in Theorem 2.3.1, A + AA has the

Cholesky factorization
A+ AA=(R+ AR)T(R+ AR),

where

|AR| < e up(|R™T| E|R7|)|R| + O(€%). (2.3.7)

In particular, if E = |A|, then

|AR| < e up(JR™T||RT||RIIR')IR| + O(?),  ~ (2.3.8)
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and for a monotone and consistent matriz norm || - ||,

—-—”féﬁ” < min{cond(RT) cond(R), cond(RT)cond(R~!)}e + O(?), (2.3.9)
and for the M-norm,
A
[| Rl e ]
where
Hc(A) = min{condes(RT) condy(R), conde(RT)cond(RT)}, (2.3.11)
#e(A) < pe(A). (2.3.12)

Proof. (2.3.7) can easily be proved by using (2.2.6) and (2.2.3). Notice |A4| < |RT||R|,
then (2.3.8) follows immediately from (2.3.7), and (2.3.9) is obtained by taking the

norm || - || and using

Tup(IR-T|IRTIIRIIRTIDIRIN < NIRTTHRTIIRIIRTYIR]

{ [ [R-T|[RT| |-\ RI-ILRMRI ],
L[R-TIRT||[-| [RIR - R].-

Similarly (2.3.10) can be obtained by taking the M-norm and using

Hep(IR"TIRTIRIIRT' MR e < [HIRTTIRTIRIIRTY|RY || ae (2.3.13)

{ HETIRT ool Rllacll IRBL 1,

o . (2.3.14) -
HETTNRY ool [RIIR™Y ol Rl ar

where we used the fact that |[AB||m < ||Allm||Bll1, l|Alleol|Bllar for any A € R™xP
and B € RP*", which can easily be verified. From the definition of u-(A) and (2.3.10),
we see the inequality (2.3.12) holds. a

The quintuple matrix product in (2.3.8) is nice, as it counteracts the effect of
poor column scaling in R (the first product and the third product), and poor row

scaling (the fourth product). This is reflected in both of the first-order bounds in
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(2.3.9) and (2.3.10). The significance of this theorem is now we can estimate a bound
on the relative change in R in O(n?) by using the standard condition estimators.
- Numerical experiments suggest usually p{.(A) is a reasonable upper bound on the

condition number u-(A). But the former can be arbitrarily larger than the latter.

1 6
with small 6 > 0, then R = ] Simple

6 &%+ & 0 &

1
For example, if A = [

computations give
1
pe(A) =0(1),  ui(4) = O(3).

It is easy to check the overestimation was caused by the inequality |up(B)| < |B]
used in deriving (2.3.10). Clearly the strictly lower triangular of | B} can be arbitrarily
larger than that of [up(B)|. Hence (2.3.10) can sometimes overestimate the true
sensitivity of the problem, so can (2.3.9) for the same reason. We also can give an
example to show p(A) can overestimate uc(A) due to the inequality (2.3.14).

A careful reader may have noticed the following fact: in the proof of Theo-
rem 2.2.37 we also used the inequality |up(B)| < |B| (see (2.2.28)) but we men-
tioned in Section 2.2.3 that we have not found an example to show x_(A) can be
arbitrarily larger than x-(A), and furthermore initial investigations suggest probably
KL(A)/kc(A) can be bounded above by a function of n. Why does the inequality
appear to have different effects? The reason is that here B is the function of only R
and so has a special structure, whereas in (2.2.28) B has a parameter matrix G, and

for any R possibly G can be chosen such that ||B|| is close to || up(B)]|.

Comparing the first-order bound in (2.3.9) with that in (2.2.43), we see the former
is at least as small as the latter since cond(RT) < k(RT). If the ill-conditioning of
R is mostly due to bad scaling of the columns, then cond(RT) <« «(R7), that is to
say the former can be much smaller than the latter. That is not surprising since
the assumption |AA| < €|A]| in Theorem 2.3.2 provides more information about the

perturbations in data than the assumption ||AA|| < €||A|| in Theorem 2.2.6.
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The standard pivoting strategy can usually improve uo(A), just as it can usually

improve kc(A). In fact we have the following theorem.

"Theorem 2.3.3 Let A € R**" be symmetric positive definite with the Cholesky fac-
torization PAPT = RTR when the standard pivoting strategy is used. Then

pc(PAPT) < yl (PAPT) < (2" — 1) cond(RT). T (2.3.13)

Proof. Standard pivoting ensures |r;| > |r;;| for all 7 > ¢. Then from the definition of
p(A)in (2.3.11), (2.3.15) is immediately obtained by using (1.2.21) in Theorem 1.2.2.
a

From (2.3.15) it is natural to raise the following question: is it possible that
the standard pivoting makes cond.(R”T) much worse than that without pivoting,
so that pul (PAPT) is actually much worse than u/.(A)? The answer is no. In fact
we can show any pivoting can not bring an essential change to conde(RT). Let
PAPT = RTR, where P is any permutation matrix. Let D, = diag(]|R7(%,:)||:) and
let Dy = diag(]|R%(4,:)||2)- Then ||[D;'Dijlec < /7 and ||[D7!D;)lc < 1. By using

van der Sluis’s Theorem 1.2.1, we have

conde(R") = [[RT"Dilleoll D' BT loo = IR™TD2D3" Di [l
< n||[R"TDyla = n||D:PA™ PT D3/

Notice that D, = diag(||R”(i,:)||2) = diag(PAPT)!/? = P diag(A)'/? PT, then
condeo(RT) < n||Pdiag(A)Y2 A~  diag(A)V2 PT|)3* = n||H 1|53,
where H = diag(A)~'/2 Adiag(A4)~!/2. On the other hand, we have
conde(RT) = |[R"TD2D;' Dy l|oo > \/— —= |[R™" Da|l2/I| D7 " Dallow > f [Pzl i

Notice ||H~!||, is independent of P, thus permutation has no significant effect on

c-ondoc(RT).
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Using the same approaches as in Section 2.2.2 we could easily provide rigorous
perturbation bounds with |AA| < €|A|. But we choose not to do so here in order to

keep the material and the basic ideas as brief as possible.

2.3.2 First-order perturbation bounds with backward round-
ing errors

In this section we first use the matrix-vector equation approach to derive tight per-
turbation bounds, leading to the condition number x-(A) for perturbations having
bounds of the form of the equivalent backward rounding error for the Cholesky fac-
torization, then use the matrix equation approach to derive a practical perturbation
bound, leading to a practical estimator x,.(A) of xc(A). We also compare xc(A) with
kc(A), and xL(A) with &_(A). Finally we show how standard pivoting improves the
condition number xo(A).

Before proceeding we introduce the following result due to Demmel [17, 1989},

also see Higham [30, 1996, Theorems 10.5 and 10.7].

Lemma 2.3.1 Let A = D.HD. € R"*" be a symmetric positive definite floating
point matriz, where D, = diag(A)Y/2. If

nel|H ', < 1, (2.3.16)

where € = (n+ 1)u/(1 — 2(n + 1)u) with u being the unit round-off, then the Cholesky
factorization applied to A succeeds (barring underflow and overflow) and produces a

nonsingular R, which satisfies

A+ AA = RTR, |AA| < eddT, (2.3.17)

1/2 o

i

where d; = a

This lemma is applicable not only to Algorithm CHOL but also to its standard

‘mathematically equivalent variants.
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Based on Lemma 2.3.1, we can establish the following bound for the computed

Cholesky factor R.

- Pheorem 2.3.4 With A = RTR and the same assumptions as in Lemma 2.3.1, for

the perturbation AA and result R in (2.3.17) we have

uvec(|]AR|) < €|Wgz!|uvec(dd”) + O(€?), (2.3.18)
AR|, Wa 1 uvec(ddT)|f,
lARF _ nlDW5'|l2
< € 2.3.
Bl = ||A||;/2 e+ O(e), (2.3.20)
where AR=R - R,
D. = diag(a}{®, adf’ a3’ ..., al/2,a}2, .. alf?) e R*FHFE . (2.3.21)

2 n
R = RD:!, and Wiz is just Wg in (2.2.15) with each entry r;; replaced by 7;;. The
first-order bound in (2.3.19) is attainable for the M-norm, and the first-order bound

in (2.3.20) is epprozimately attainable.
Proof. Let G = AA/e. By (2.3.17) and (2.3.16), we have

p(A7'AA) < p(DI'HT'D;'AA) = p(H*'D;'AADY)

IA

MH 2 1D AAD 12 < €[|H |2 || D7 dd™ DM

< nel|H Y2 < 1.

Then as we did in the proof of Theorem 2.3.1 we can apply Theorem 2.2.1 to show
(2.3.18) and (2.3.19) hold and the first-order bound in (2.3.19) is attainable for the
M-norm.

It remains to show (2.3.20) and its attainability. From (2.2.5) in Theorem 2.2.1
and R = RD,, we have

RTR(0)D:! + D7'RT(0)R-= D7'GDE. (2.3.22)
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As we know (2.2.5) can be rewritten as the matrix-vector equation form (2.2.15), so

similarly (2.3.22) can be rewritten as the following matrix-vector equation form
- LT/R uvec(R(0)D') = duvec(D;'GDY). (2.3.23)

It is easy to verify that uvec(R(0)D;1) = D! uvec(R(0)) with D, as in (2.3.21), then
from (2.3.23) we have

uvec(R(0)) = D W' duvec(D;'GD ), (2.3.24)
which with |G| = |AA/e| < ddT gives
IRO)||r < IDW 7 [l2IIDZ'dd™ DY p = n[| DW 7 |l2- (2.3.25)

Thus (2.3.20) is obtained immediately from the Taylor expansion (2.2.3).

Obviously there exists a symmetric matrix F € R"*" such that
IDW 5 duvec(DZ' FD7)l2 = (DWW 2 1D FD | -

Then by taking G = (miny, 0 did;/| fi;|)F, we have |AA| < edd” and from (2.3.24)
that

HOIEE (min did; /| ;1) 1DV 2 1D FD e > DWW s
which shows the first-order bound in (2.3.20) is approximately attained for such G.
a

It is easy to verify that D, = diag(a;/?) = diag(||R(:, j)||2). Thus R, the Cholesky
factor of H (H = D;'AD:' = D-'RTRD;' = RTR), has columns of unit Euclidean
length. That is the reason that we use the notation D., where ‘c’ dencte ‘column’.

Since the first-order bound in (2.3.20) is approzimately attainable, the quantity

"'"Dcw‘—l"?
Xo(A) = ——F—
IAl12"

can be thought of as the the condition number for the Cholesky factorization with

(2.3.26)

the form of backward rounding error satisfying (2.3.17) when the combin.ation of F-
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and 2-norms is used. Notice here we have relaxed a little the requirement a condition

number should satisfy. Strictly the condition number should be defined by

Rel(4) = limsup { ” ”R”’ A+AA = (R+AR)T(R+AR), |AA| < edd”, d; = ¢,/*}.

But from the proof of Theorem 2.3.4 we see

1DV Y] n[| DVl
R < je(A) § ———£ 2
45" 1Al

so such relaxing is harmless. The main reason for introducing the condition number

?

with respect to the combination of the F- and 2-norms rather than the M-norm is
that we are interested in the comparison of the results given in this section with those

given in Section 2.2.

— X 0
Wiz = . ,
x DRT
where
D = diag(V2,V72,...,V2,2),
we have
— X 0
DW= o
! x aY2R-TD-!
IDW 5 2 2 atZ|R™TD 7o (2.3.27)

Hence we get the following lower bound on xc(A)

1/2 "R ID 1"2
IAl)5"

This bound is tight for any n, since equality will hold by taking R = diag(r;;), with

Xc(A) 2 (2.3.28)

0 < ry4 < Tan, t # n. But it is a little complicated. In fact we can get a slightly

weaker but simpler lower bound. Since

a L oa 1, - 1 _ A
IRT'D o > 2 [|R7 Y2 = §I|H 12, (2.3.29)
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we have from (2.3.28) that

c petiy

II H' 1"

Numerical experiments suggest that usually x-(A) is smaller or much smaller than
kc(A), the condition number for a general perturbation AA, defined by (2.2.20). We
now relate these two condition numbers mathematically for the general case. For the
case where standard pivoting is used in computing the Cholesky factorization, see the

comment following Theorem 2.3.9.

Theorem 2.3.5
max; a;;
min,- i

1
n Xc(A) < ke(A) < xc(A). (2.3.30)
Proof. Since R = RD., it is easy to verify by the the structure of WR that

Wg = D. W D, (2.3.31)°

where D, is defined by (2.3.21) and

D.= diag(y/aia11, vanaz, V22022, - - -5 //@11@nn, v/@228nn; - - - \/annanrl)- (2.3.32)

—p—

2 n

Thus using (2.3.31) and max; a; < [|Al[2, we have

xe(A) = D o/l Al = nll Wz Dellz/ | All"

< nllWg'llz 14" I Della/ | All2 = nkc(A) maxai/||All2

< nkc(A).
We now prove the second inequality. Using (2.3.31) and [|Al|2 € nmax; a;;, we obtain

b
Wzt ll2 Al = ID.-W 5 D 2 | Ally
ma&au
2y o(A).

- !

kc(A)

il

< Al D2 12 D2 2/ Al <

The proof is complete. =~ O
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The first inequality in (2.3.30) is attainable, since equality will hold by taking
A = ¢l with ¢ > 0. The second inequality is at least nearly attainable. In fact by
taking A = RTR, with R = diag(é6™1,6"2,...,6,1) + e;eT with small § > 0, we

easily obtain

1 maX; ag; _ 2 _ 1
?‘m)’ min.- ai; XC(A) - 62n—20(1) - 0(62,,_2)'

KC(A) = O(

This example also suggests that possibly xc(A) is much larger than xc(A) if the
maximum element is much larger then the minimum element on the diagonal of A.

A reader might want to know why the first inequality in (2.3.30) is not xc(A4) <
ke(A). This can easily be explained. For a general AA, we have by Theorem 2.2.3
that |AR||s/||R|l2 £ kc(A)e, where € satisfies ||AA||r < €]|A]|2. For the backward
rounding error AA, we have by Theorem 2.3.4 that |AR||r/||R]l2 £ xc(A)e€, where €
satisfies |AA| < eddT (see (2.3.17)), from which it follows that ||AA|lr < €[|ddT||F =
€ ||R||%, where [|R| r satisfies attainable inequalities [|A]ls < |R||% < nl|4]2-

Like xc(A4), xc(A4) is difficult to estimate directly. Now we derive practical per-

turbation bounds by using the matrix equation approach.

Theorem 2.3.6 With A = RTR and the same assumptions as in Lemma 2.3.1, for

the perturbation AA and result R in (2.3.17) we have

|AR| < € up(|R™T|eeT|R}|)|R| + O(€?), (2.3.33)
-___”ﬁf”'if < Xo(A)e+0(&), (2:3.34)
xc(A) £ xc(4), (2.3.35)

where AR=R— R, R= RDZ!, and

c

X’c(A) = in-fDED,l X,c(A, D)7 (2336)
X-(A, D) = n||RY2 | R~ Dl|2 | D~ R][2/|| Rl|2- (2.3.37)
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Proof. Let G = AA/e. Since p(A7!AA) < 1 (see the proof of Theorem 2.3.4), we
can apply Theorem 2.2.1 here. From (2.2.6) with R = RD., it follows that

R(0) = up(R™TD;'GD-'R™YHR, (2.3.38)
which with |G| < ddT gives
|R(0)| < up(|R~T|ee™|R7|)|R].

Then by the Taylor expansion (2.2.3), (2.3.33) follows immediately.
Also from (2.3.38) we have for any D € D,, that

R(0) = up(R"TD;'GD-'R™'D)D'R.
Thus taking the Frobenius norm we have
1RO)le < 18712 I1D7'GDZ e 1R Dll2 ID7' Rlfe, (2.3.39)
which with |G| < dd7T gives
12(0)|lF < nl[R[l2 |R™* Dl [|ID~* Rlf2.

Since this holds for any D € D,,, (2.3.34) follows by using Taylor expansion (2.2.3).
It remains to prove (2.3.35). From (2.3.24) and (2.3.39) we have

IDWg'duvec(D;'GD Y2 < IRl ID7*GD | IF IR Dl2 | D' B2
- (2.3.40)
Actually this holds for any symmetric G € R"*" since it was essentially obtained
from the matrix equation RTX + XTR = G with X triangular by the two different
approaches. Notice [[duvec(D;'GD )|, = ||D7'GDCY||F, thus from (2.3.40) we
must have

IDW gl < IRY|2 |R D)2 [ D Rll2, -

which implies (2.3.35). o
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Notice that || up(X)||r < 715||X||p for any symmetric X (see (1.2.7)), and || R|l3 =
I|H||2, then from (2.3.38) it is easy to obtain

[AR|lr _ 1 -1

1 < —n||H Yae + O(2), 2.3.41
which is essentially the first-order bound of Drmaé&, Omladi¢ and Veselié¢ [20, Theorem
3.1], except that their bound is rigorous and only the 2-norm is used. But this bound

can severely overestimate the true relative errors of the computed Cholesky factor.

In fact )
Xo(A) € Xe(A,1) = nl|[H 2, (2.3.42)
and n||H~!||; can be arbitrarily larger than x/,(A4). For example, if A = i 1 -i(SQ J
with small § > 0, then R = 0 sl Take D = diag(v/2,¢), then simple computa-
tions give
Xe(A) < Xe(A,D)=0(1/8),  [[H |2 =0(1/8).

Thus the new approximation y,(A) to the condition number y-(A) is a significant
improvement on that of Drmad et al. Furthermore, it is easy to see || H ||, is invariant
if pivoting is used in computing the Cholesky factorization of A, whereas xc(A)
and x.(A) depend on any pivoting. Thus the new bounds (2.3.20) and (2.3.34)
more closely reflect the true sensitivity of the Cholesky factorization than (2.3.41).
However, if the ill-conditioning of R is mostly due to bad scaling of its columns, then
n||H 1|, is small, and is as good as x,(A).

We see (2.3.42) implies n||H~!||, is also an upper bound on xc(A4). In fact we

have the following stronger result

1 _
xc(A) £ 7§"||H 2y (2.3.43)

which can easily be proved by using (2.3.24), (2.3.38) and the fact that for any
symmetric X, ||up(X)fir < Z5l1X||r. That is to say the first-order bound in (2.2.20)
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is at least as small as that in (2.3.41). The example above suggests the former can
be much smaller than the latter.

The practical outcome of Theorem 2.3.6 is that x.(A) is quite easy to estimate.
‘ f-\ccording to (1.2.10) in van der Sluis’s Theorem 1.2.1, all we need to do is to choose
D = D, = diag(||R(z,:)||2) in x.(A, D) in (2.3.37), then use norm estimators (see for
example Higham (30, 1996, Ch. 14]) to estimate x.(4, D,) in O(n?).

Numerical experiments suggest usually x-(A) is a reasonable approximation to

Xc(A). But the following example shows x.(A) can still be much larger than xc(A),
6

, then
6 6%+ 6

even though it can be much smaller than n||H~!||;. Let A =

1 4
0 &2

R =

} . It is easy to show

Xc(A)=0(1),  xc(4)=0(1/6), |H |2 =0(1/6).

In Theorem 2.3.6 the F- and 2-norms are used. If we use a monotone and consistent
matrix norm |[|-||, then from (2.3.38) it is straightforward to show we have the following
perturbation bound instead of (2.3.34),

IAR] _ Jlee IR IR IR
(P44 - IRl

The advantage here is that the bound does not involve the scaling matrix D.

€ + O(€).

In Theorem 2.3.5 we established a relationship (2.3.30) between x.(A) and £q(A)
defined in Theorem 2.2.3. Is there a similar relationship between x..(A4, D) (or x-(A))
and k_(A, D) (or «,(A)) defined in Theorem 2.2.4? The answer is yes.

Theorem 2.3.7

1 ’ ’ maxy a;; 7
- < A, D), 2.3.44
an(Aa D) = K’c(Aa D) = ‘min; ag Xc( ) ( )
and from this, .
1, ’ max; ai , .
Xe(A) < R(A) < Ty (), (23.45)
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Proof.

IR I2 1R~ Dll2 | D" Rll2/1I Rll2

DR~ l2 | DR D2 D' Rl2/ (| Rl

D3 IR~ 2 IR~' Dll2 1D~ Rll2/|| Rll2

IRl IR}z |R™' Dll2 1D~ Rll2 (using [[Dll2 < [|Rll2)
ko(4, D).

1 '
;Xc(Av D)

IN AN

HI

On the other hand,

ke(4,D) = |R2[IR7' |2 IR Dll2)|D' Rl
= |RI2|DZ'R7Y|2 | DI R D2 1D R
< RIZIDZZ IR 2 R D2 [|ID~" Rll2/ || Rll2
= ~lAlL D13 (4, D)
< 1:3::2:: Xo(A, D), (using ||All2 € nmax; a;;).
The proof is complete. 0O

The standard pivoting strategy can usually improve x-(A) too. In fact we have

the following theorem.

Theorem 2.3.8 Let A € R"*" be symmetric positive definite with the Cholesky fac-
torization PAPT = RTR when the standard pivoting strategy is used. Then

Xc(PAPT) < Xo(PAPT) < ||[H 'y ?ny/2n(n + 1)(4" + 6n — 1)/6,  (2.3.46)
where PAPT = D _HD, with D. = diag(PAPT)'/2.
Proof. Since R = RD. and ||D.||2 < ||R||2, we have

|R™'D|l; = [[D.R™'Dl|2 < ||Rll2 [|R™* D2,
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and so from (2.3.37) we obtain
Xo(PAPT) < n inf |R™YY2 k2(D'R). (2.3.47)

Standard pivoting ensures {r;;| > |r;;| for all j > ¢. Then (2.3.46) follows immediately
by [|R~!]l> = |[H~"||5/* and (1.2.18) in Theorem 1.2.2. 0

In Theorem 2.2.5 we have

. ke(PAPT) < kL(PAPT) < r3/*(A)y/2n(n + 1)(4" + 6n — 1)/6.
By van der Sluis’s result (1.2.16),
ro*(H) < v iy/*(4),

where it is possible that

) < 7 (4)

if A is badly scaled—the columns of R are badly scaled. But 1 < ||H||; < n since H

is positive definite with h; = 1, hence
—1y1/2 1/2
IHY13? < Vrwy'?(A),

and it is possible that -
IH13? < x3/%(4)

if R has badly scaled columns. Thus it is expected that xyo(PAPT) can be arbitrarily
smaller than kc(PAPT).

Suppose the Cholesky factorization of A be approached by using the standard
symmetric pivoting strategy: PAPT = RTR. If the permutation matrix P is known
beforehand and the Cholesky factorization is applied to PAPT directly, it is easy to
observe that Lemma 2.3.1 still holds except that now D, and H should be redefined

as

D. = diag(PAPT)'2,  H=DI'PAPTD]!
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and 4 + A4 = RTR in (2.3.17) should be replaced by
P(A+ AA)PT = RTR.
'i“hen by Theorem 2.3.4 we have
IR — Rlle/IRllz S xe(PAPT)e.

This with (2.3.46) suggests that the computed Cholesky factor R has high accuracy.
However, usually the permutation matrix P for A is not known beforehand. The
permutation matrix for A + AA, which is produced in the computing process, is
possibly different from that for A. Fortunately, Higham [30, 1996, Lemma 10.11]
“showed that if there are no ties in the pivoting strategy for PAPT = RTR, then for
sufficiently small AA, the two permutation matrices are the same. Thus the Cholesky
factorization with standard symmetric pivoting will most likely gives an R which is

about as accurate as possible.

2.3.3 Rigorous perturbation bound with backward rounding

errors

Drmag, Omladi¢ and Veseli¢ [20, 1994] obtained rigorous perturbation bounds. For
comparison here we also present our rigorous perturbation bounds, which can be

obtained by applying the results in Section 2.2.2.

Theorem 2.3.9 Let A € R"*" be a symmetric positive definite floating point matriz,
with the exact Cholesky factorization A = RTR. Define D. = diag(A)? and R =
RDY. If

ne | DV |13/ mina; < 1/4, (2.3.48)

where € = (n+ 1)u/(1 — 2(n + 1)u) with u being the unit round-off, and D, is defined
by (2.3.21), then the Cholesky factorization applied to A succeeds (barring underflow
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and overflow) and produces a nonsingular R, which satisfies
2ne [IDCW};l 2
1+ /1 — 4ne[|[DW ;|3 / min; ai
< 2ne||DW; o, (2.3.49)

{AR|]2 <

where AR = R — R. Obviously the weaker bound above can be rewritten in the

following form:

A
IAR] < 2xc(A)e. (2.3.50)
- |R]|2

Proof. Let H = D7'AD-! as before. Then H = RTR. From (2.3.29) and (2.3.27),
we get

1Az = |R7 < 41DV 13/ ana < 41DWZ |13/ minas,

which with the assumption (2.3.48) implies that (2.3.16) holds. Thus by Lemma 2.3.1
the Cholesky factorization applied to A succeeds and the computed Cholesky factor
R satisfies

A+ AA=R"R, [AA| < eddT,
where d; = a}{?. Then using Wg = D, W;D! (see (2.3.31)) and uvec(D7'AAD!) =

D-luvec(AA), which is easily verified, we have

IWztl2 W duvec(AA)]|,

IA

IDWZ D 2 D3 2 D7 duvec(AA) |2

IN

e[DWZ B ID: Iz | D7 dd” D i
< nel|DW3' |5/ minas,
which with the assumption (2.3.48) implies that the condition (2.2.47) of Theo- .

rem 2.2.7 is satisfied. Then (2.3.49) is immediately obtained by using Theorem 2.2.7.
a

Theorem 2.3.10 Let A € R™"*" be a symmetric positive definite floating point matriz
with the ezact Cholesky factorization A = RTR. Define D, = diag(A)"/? and R =
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RD:!. Assume D e D,. If
neR2 |B'Dll2 D72 < 1/4, (2.3.51)

where € = (n + 1)u/(1 — 2(n + 1)u) with u being the unit round-off, and R = RD_!,
then Cholesky factorization applied to A succeeds (barring underflow and overflow)

and produces a nonsingular R, which satisfies
IAR|lF _  2nellR~" |R-'Dlz ||lD~'Rll2/ | R[>

1Bl = 14 /1~ 4nel|R-1|2 | R-2Dl2 [ D-1|2
< 2x.(A, D)e, (2.3.53)

(2.3.52)

where AR=R - R.
Proof. Let H= D;'AD_!. Since
IH Y2 = [|R7M3 < IR IR D2 ID~H 2,

which with (2.3.51) implies that (2.3.16) holds. Thus by Lemma 2.3.1 Cholesky

factorization applied to A succeeds and the computed Cholesky factor R satisfies
A+AA=RTR, |AA| < edd”,
where d; = a},-/2. Then
_NRTTAARTD|p (D72 < IIR_FIlz IDZ*AADZ I IR Dl D72
< ne||R7Y IR D2 |D7 2 < 1/4.

Hence the bound (2.3.52) can be easily obtained from (2.2.55) in Theorem 2.2.8.
O

If we take D = I, it is easy to show by using the fact that || up(X)|[r < [ X||F
for any symmetric X € R"*" that the assumption (2.3.51) can be weaken to

" nllH Y2e <1/2, (2.3.54)
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Table 2.3.1: Results for Pascal matrices without pivoting

xc(A)  Xe(4,D;) &o(A) (A, D) 71571”H_T”‘2
5.0e—01 1.0e+00 5.0e-01 1.0e+00 7.1e-01
2.2e+00 6.0e+00 2.1e+00 6.3e+00 4 8e+00
8.9e+00 3.6e+01 9.7e4+00 5.0e+01 3.6e+01
3.9e+01 2.3e+02 5.5e+01 4.8e+02 3.0e+02
1.7e402 1.4e4+03 3.5e+02 4.9e+03 2.5e+03
7.8e+02 9.2e+03 2.5e+03 5.2e+04 2.2e+04
3.5e+03 5.8e+04 1.9e+04 5.7e+05 2.0e+05
1.6e+04 3.7e+05 1.5e4+05 6.3e+06 1.7e+06
7.7e4+04 2.3e+06 1.3e+06 7.0e+07 1.5e+07
3.6e+05 1.5e+07 1.1e+07 7.9e+08 1.4e+08
1.7e+06 9.1e4+07 9.8e+07 9.0e+09 1.2e+09
8.4e4+06 5.6e+08 8.7e+08 1.0e+11 1l.1le+10
4.1e+07 3.5e+09 7.8e+09 1.2e+12 9.8e+10
2.0e+08 2.2e+10 7.le+10 1.4e+13 8.8e+11
9.7e4+08 1.3e+11 6.5e+11 1.6e+14 7.9e+12

el S e~ V=T - CREN [ N R L R U

and we have the following bound:

IAR|F _ V2n||HY||ae
IRll2 = 14 /1 — 2nf HY|e

< V2n|[H Y|, (2.3.55)

which is a slightly stronger than (2.3.54) where D = I. An equivalent rigorous bound
where only the 2-norm is used was obtained by Drmag, Omladi¢ and Veselié¢ [20,
1994].

As we pointed out in the comment following Theorem 2.3.6, with a correct choice
of D, e.g., D = D, = diag(]|(R(1,:)||2), possibly x.(A,D) can be much smaller than
|H~]|2- So the bound (2.3.55) is potentially weak, although the condition (2.3.54)

is not as constraining as (2.3.51).

2.3.4 Numerical experiments

In Sections 2.3.2 and 2.3.3 we presented new first-order and rigorous perturbation

bounds for the changes-caused by backward rounding errors for the Cholesky fac-
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Table 2.3.2: Results for Pascal matrices with pivoting, A = PAPT

- n xc(A) xu(A,D.) ko(A) «L(AD,) Zn|H Y
1 5.0e-01 1.0e+00 5.0e01 1.0e+00 7.1e-01
2 1.6e+00 4.9e+00 1.5e+00 4.2e+00 4.8e+00
3 4.1e+00 1.8e+01 5.1e4+00 1.6e+01 3.6e+01
4 1.3e+01 6.1e+01 2.2e+01 8.0e+01 3.0e+02
5 3.6e+01 2.1e+02 8.3e+01 3.3e+02 2.5e+03
6 7.7e+01 6.7e+02 2.5e+02 1.3e+03 2.2e+04
7 1.8e+02 2.2e+03 9.4e+02 5.1e+03 2.0e+05
8 348e+02 7.8e+03 4.0e+03 2.4e+04 1.7e+06
9 1.2e+03 2.7e+04 1.6e+04 1.0e+05 1.5e+07
10 3.6e+03 9.0e+04 7.6e+04 4.7e+05 1.4e+08
11 7.5e+03 2.7e+05 2.4e+05 1.8e+06 1.2e+09
12 1.8e+04 9.2e4+05 8.3e+05 8.2e+06 1l.1e+10
13 3.9e+04 2.9e+06 3.2e4+06 3.1e407 9.8e+10
14 9.4e+04 8.5e4+06 1.3e+07 1.2e¢+08 8.8e+11
15 2.2e+05 2.8e+07 5.4e4+07 4.9e+08 7.9e+12

torization using two different approaches, defined x.(A) = nIIDcf/r/'}gl||f_;/||A||é/2 as
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the condition number of the problem, and suggested that usually xc(A) could be
estimated in practice by X.(A, D,) = n[|R~Y|2 |R~1D.|l2 |D7 R|l2/||Rll2, with D, =

diag(||R(%,:)||2), which can be estimated by standard norm estimators in O(n?). Qur

bounds are potentially much smaller than the equivalent bound in Drmac¢, Omladi¢

and Veseli¢ [20, 1994]. Also we compare xc(A) with kc(A), and compare corre-

sponding estimators x.(A, D) with « (A, D) as well. These condition numbers and

condition estimators satisfy the following inequalities (see (1.2.10), (2.3.30), (2.3.35),
(2.3.36), (2.3.42), (2.3.43), and (2.3.44)):

Xc(A4) < Xe(A) £ xe(4, D),
xc(A) £ ZznllH M2, Jexe(A, Dr) < Xo(A) < nllH M2,

Lyc(A) < mo(A) < Bessiy (A4), Lx(A,D,) < Ko(A,D,) < Zexeu

minag;

minag

x=(A, D,).
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Now we give a set of examples to show our findings. The matrices are n x n Pascal
matrices, n = 1,2,...,n. The results are shown in Table 2.3.1 without pivoting and
in Table 2.3.2 with pivoting.
o Note in Tables 2.3.1 and 2.3.2 how 7‘§n||H"l”2 can be worse than yxco(A). In
Table 2.3.2 pivoting is seen to give a significant improvement on x-(A). Also we
observe from both Tables 2.3.1 and 2.3.2 that x/.(A) is a Teasonable approximation
of xc(A). We see xc(A) is smaller than kc(A) for n > 2.

2.4 Summary and future work

Although with norm-bounded changes in A the Sun [46, 1991] and Stewart {41, 1993]
first-order perturbation bound (2.2.8) is relevant in the sense that some problems do
attain close to the indicated condition, we have shown that it gives a large over-bound
for most problems. The more refined bound (2.2.25) obtained by the matrix-vector
equation approach is usually significantly stronger, and is never weaker, and the re-
sulting condition number kc(A) more accurately reflects the true sensitivity of the
problem. Further, the sizes of our condition numbers depend on any symmetric pivot-
ing used, and numerical results and analyses show that the standard symmetric pivot-
ing strategy usually leads to a near optimally conditioned factorization for a given A
in PAPT = RTR. Because of the difficulty in understanding and computing x-(A),
there was need for, and fortunately we have been able to give by the matrix-equation
approach, a simpler bound. Although the new bound (2.2.29) is somewhat weaker,
it provides a computationally practical and useful estimate x.(A4, D, ) of k-(A), and
at the same time gives us insight into why the Cholesky factorization is often less
sensitive than we thought, and adds to our understanding as to why the standard
pivoting usually gives a condition number approaching its lower bound %;cé/ 2(A).
For the perturbation AA which comes from the backward rounding error analysis,
we first presented first-order (nearly) attainable bounds (see Theorems 2.3.4) by the
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matrix-vector equation approach, then gave computationally practical bounds (see
Theorem 2.3.6) by the matrix equation approach. Even though the latter are weaker
than the former, both of them are {potentially) stronger than the corresponding
e:quivalent bound (2.3.41) of Drmag et al. Qur condition number x-(A) more closely
reflects the true sensitivity of the problem. Also numerical experiments and analysis
show that usually the standard symmetric pivoting strategy can significantly improve
the condition number xc(A). So the computed Cholesky factor most likely has high
accuracy when the standard symmetric pivoting is used.

With the relative changes in the elements of A (i.e. |AA| < €|A|) we presented
first-order perturbation analyses, which resulted in the condition number p-(A) and
a practical and useful upper bound pl(A) on pc(A).

In the future we would like to

o Investigate the ratio kc(A)/xL(A), which we suspect is bounded by the function

of n alone, probably involving something like 2".

¢ Explore the effect of rank-revealing pivoting on k. in both theory and compu-

tations, and study the optimization problem minp xc(PAPT).

e Give a better approximation to xc(A) than our current x.(A), which can some-
times overestimate xc(A), or alternatively look for other methods to estimate

xc{A) efficiently.

¢ Give a better approximation to c(A) than our current ui.(A), which can some-
times overestimate puc(A), or alternatively look for other methods to estimate

tc(A) efficiently.



Chapter 3

The QR factorization

3.1 Introduction

The QR factorization is an important tool in matrix computations: given an m x n
real matrix A with full column rank, there exists a unique m x n real matrix Q with
orthonormal columns, and a unique nonsingular upper triangular n x n real matrix

R with positive diagonal entries such that
A=QR.

The matrix Q is referred to as the ox:thogonal factor, and R the triangular factor.
Let AA be a real m x n matrix such that A + AA is still of full column rank, then
A + AA has a unique QR factorization ’

A+ AA=(Q+ AQ)R + AR).

The goal of the perturbation analysis for the QR factorization is to determine a bound
on ||AQ|| (or [AQ]) and ||AR]} (or |AR|) in terms of (a bound on) ||AA]| (or |AA]).

The perturbation analysis for the QR factorization has been considered by several
authors. Given ||AA|, the first result was presented by Stewart [39, 1977]. That was
further modified and improved by-Sun [46, 1991]. Using different approaches Sun [46,

60
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1991] and Stewart [41, 1993] gave first-order perturbation analyses. Recently a new
rigorous perturbation bound for Q alone was given by Sun [49, 1995]. Given [AA],
Sun [48, 1992] presented a rigorous analysis for the components of Q and R. For A4
‘Wilich has the form of the equivalent backward rounding error (componentwise form)
from a numerically stable computation of the QR factorization, Zha [55, 1993] gave
a first-order analysis.

The main goal of this chapter is to establish new first-order perturbation bounds
given a bound on ||AA||, which are sharper than the equivalent results for the R factor
in Sun [46, 1991] and Stewart [41, 1993], and more straightforward than the sharp
result in Sun [49, 1995] for the @Q factor, and present the corresponding condition
numbers which- more closely reflect the true sensitivity of the problem.

The rest of this chapter is organized as follows. In Section 3.2 we obtain expres-
sions for Q(0) and R(0) in the QR factorization A + tG = Q(t)R(t). These basic
sensitivity expressions will be used to obfain our new perturbation bounds in Sec-
tions 3.3 and 3.4, but in Section 3.2 they are also used to derive Sun’s results on the
sensitivity of R and Q. In Section 3.3 we give a refined perturbation analysis for @Q,
showing in a simple way why the standard column pivoting strategy for A can be
beneficial for certain aspects of the sensitivity of . In Section 3.4 we analyze the
perturbation in R, first by the detailed and tight matrix-vector equation approach,
then by the straightforward matrix equation approach. We give numerical results
and suggest practical condition estimators in Section 3.5. Finally we summarize our

findings and point out future work in Section 3.6.



CHAPTER 3. THE QR FACTORIZATION 62

3.2 Rate of change of () and R, and previous

results

Our perturbation bounds for Q will be tighter if we bound separately the perturba-
tions along the column space of A and along its orthogonal complement. Thus we
introduce the following notation. For real m xn A, let P; be the orthogonal projector

onto R(A), and P, be the orthogonal projector onto R(A)*L. For real m x n AA define

e = ||AAllr/|Allz, e = ([P AAlR/|All2, €2 = [1P2AA[F/[[All2, (3.2.1)

2 2, 2
SO €° = €] T €5.

Here we derive the basic results on how @ and R change as A changes. We then
derive the first-order results obtained by Sun [46, 1991][49, 1995]. The following

theorem summarizes the results we use later.

Theorem 3.2.1 Let A € R™*" be of full column rank n with the QR factorization
A=QR, let G be a real m x n matriz, and let AA = ¢G, for some € > 0. If

PLAA|;
llAll2

where ko( A) = ||AY|2]lAll2 and Py is the orthogonal projector onto R(A), then A+ AA

K2(A )" <1, (3.2.2)

has the unique QR factorization
A+ AA =(Q+ AQ)(R + AR), (3.2.3) -
with AR and AQ satisfying

AR = eR(0) + O(e?), (3.2.4)
AQ = eQ(0) + O(e?), (3.2.5)

where R(0) and Q(0) are defined by the unique QR factorization

Alt) = A+tG=Q()R(t), QT()Q(t)=1I, |t <e, (3.2.6)
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and so satisfy the equations

RTR(0) + RT(0)R = RTQTG + GTQR, (3.2.7)
o ' R(0) = up[QTGR™! + (QTGR™ VTR, (3.2.8)
Q(0) = GR™' - Qup[QTGR™! + (QTGR™1)T], (3.2.9)

where the ‘up’ notation is defined by (1.2.3).

Proof. Take any Q such that [Q, Q)] is square and orthogonal, then for all [t| < ¢

R+tQ7G

A+tG=(Q,Q] TG

+1G =(Q, Q]

R
0

From the inequality (3.2.2) we see [[tQTG||2 < Omin(A) = Omin(R) for all [t| < e. Thus
A + tG has full column rank and the unique QR factorization (3.2.6). Notice that
R(0) =R, R(e) = R+ AR, Q(0) = Q and Q(¢) = Q + AQ, so (3.2.3) holds.

It is easy to verify that Q(t) and R(%) are twice continuously differentiable for
|t| < € from the algorithm for the QR factorization. If we differentiate R(t)T R(t) =
A(t)T A(t) with respect to t and set ¢t = 0, and use A = QR, we obtain (3.2.7) which
we will see is a linear equation uniguely defining the elements of upper triangular

R(0) in terms of the elements of QTG. From upper triangular R(O)R™!'in
R(O)R™' + (R(O)R™ )T = QTGR™' + (QTGR™)T,
we see with the ‘up’ notation (see (1.2.3)) that (3.2.8) holds. Next differentiating
(3.2.6) at t = 0 gives _
G = QR(0) + Q(O)R,
and combining this with (3.2.8) gives'(3.2.9). Finally the Taylor expansions for R(t)
and Q(t) about ¢t = 0 give (3.2.4) and (3.2.5) at t = €. O

By Theorem 3.2.1 we can easily obtain the first-order perturbation bound for R
given by Sun [46, 1991] and also by Stewart [41, 1993], and the first-order bound for
Q given by Sun [49, 1995]. ' ' .
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Theorem 3.2.2 Let A € R™*" be of full column rank n with the QR factorization
A = QR, and let AA be a real m x n matriz. Define € = [|[AA||r/]|All2 and ¢, =
1QRT AA|£/||All2, see (3.2.1). If (3.2.2) holds, then A + AA has the unique QR

. fa’c torization
A+ AA=(Q+AQ)R+ AR),
where )
IAR] e < V2ka(A)er + O(€%). (3.2.10)
| 2ll2
1AQ|lF < V2ka(A)e + O(€2). (3.2.11)

Proof. Let G = AA/e¢ (if € = 0, the theorem is trivial), then
iGllr = [|Allz =l Rl|2. (3.2.12)

Clearly all the conclusions of Theorem 3.2.1 hold here. From (3.2.8) and the fact that
for symmetric X, || up(X)llr < Z5lIX|l# (see (1.2.7)) we have

12O)lle € —5IQ"GR™ + (@GR I Rl (3.2.13)
< V2|QTGR™YF |IRll2 < V2R R)IQT Gl F, (3.2.14)
and since
1Q7Gllr = QT AAllr/e = | Allz 1 /e = | Rll2 /¢ (3.2.15)
and ka(R) = Ka(A), .
"ﬁg’ﬁg £ < Vary(A)erfe.

Thus (3.2.10) follows from the Taylor expression (3.2.4).
If [Q, Q] is square and orthogonal, then from (3.2.9) we have

IRO)IE = QTR+ 1QTQO)IIF

IQTGR™ — up[Q"GR™! + (QTGR™')T|IIF + IQTGR™'|I}
< 2|1QTGR7Y %+ IQTGR™Y%  (using (1.2.6))

< 2MGR7ME,
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thus with (3.2.12),

1Q0)][r < V2ra(A),
~ which, with the Taylor expression (3.2.5), gives the bound (3.2.11) for the Q factor.
]

We see V/2k2(A) is a measure for the sensitivity of both R and Q, but it is not
the actual condition number since for general A the first-order bounds in (3.2.10) and
(3.2.11) are not attainable. Thus v/2k2(A) is a condition estimator for both R and

Q in the QR factorization.

3.3 Refined -analysis for @

The results of Sun [49, 1995] give about as good as possible overall bounds on the
change AQ in Q. But by looking at how AQ is distributed between R(@Q) and its
orthogonal complement, and following the ideas in the proof of Theorem 3.2.2, we
are able to obtain a result which is tight but, unlike the related tight result in [49],
easy to follow. It makes clear exactly where any ill-conditioning lies. From (3.2.5)

with Q = [Q, Q] square and orthogonal,

AQ = eQQTQ(0) + eQQTQ(0) + O(€%),

and the key is to bound the first term on the right separately from the second. Note

from (3.2.9) with G = AA/e and (3.2.1) that

1QQTQ1(0)llF = IQQTGR™ Ir < IR7'12IQQTGl|F = ra(A)ex/e,
where G can be chosen to give equality here for any given A. Hence

1QQTAQ||F < r2(A)ez + O(€2), (3.3.1)
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and for that part of AQ in R(Q) the condition number (with respect to the combi-

nation of the F- and 2-norms)

2AQ|| r :

Kot(A) = hmsup{” N TaR

A+ AA=(Q+AQ)R+ AR),
e = |AAl|r/||All2, & = | P AAl /]| Al
is given by -
Koi(A) = Ka(A).
Now for the part of AQ in R(Q). We see from (3.2.9) that
QTQ:1(0) = QTGR™ — uwp[Q"GR™' +(Q"GR™)T]
= low(QTGR™) = [low(QTGR™ )T, (3.3.2)

which is skew symmetric with clearly zero diagonal. If we partition Q, G and R as

follows el 1
Q=dnd, ¢ =gl R=| }
then from (3.3.2) we have
QTQ0) = 1ow([QTGa1R7L,, QT (=Gt R + 9)/Tan]) (33.3)

— {1ow([QTGuo1R:L ), QT (=Gt RL T + 9)/Tan))}T
= low([QTGn.—1R;1,,0]) — {low([QTGnoy R, OD}T.

n—-11
Thus taking the Frobenius norm and using (1.2.6) and (3.2.15) gives
1RQTQONIr = IQTROIF < V2I1QTGu1 R IIF
< V201QTGllr IRl = V2IRL Iz | All2 €2 /e.
It is easy to verify for any R,_; that equalities are obtained by taking G = (¢g.37,0),

with y nonzero such that [|R;% vll2 = IR 2 llyll2- It follows that the first-order

bound is attainable in

1QQTAQlF < V2IIR:L ll2 Il Allz &1 + O(€?), (3.3.4)
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so for that part of AQ in R(Q) the condition number

I1P.AQIlF
) = limsu : A+ AA=(Q + AQ) R + AR),
limsup { = = (Q+AQ)( )
- e = [|AAllp/lAllzs & = |PLAAE/l|All2}
is given by
_ ka(A) = V2[R |2 [|All2- (3.3.5)

In some problems we are mainly (in fact only, if A is square and nonsingular)
interested in the change in @ lying in R(Q), and this result shows its bound can be
smaller than we previously thought: In particular if A has only one small singular
value, and we use the standard column pivoting strategy in computing the QR fac-
torization, then R,_; will.usually be quite well-conditioned compared with R, and
we will have [|R;L, |2/l All2 < x2(A). However for some special cases this may not be
true, for example the Kahan matrix in Section 3.5, and then a rank revealing pivot-
ing strategy such as in Hong and Pan [31, 1992] would be required to obtain such an
improvement.

We now summarize the above results as the following theorem.

| R
Theorem 3.3.1 Let A = [Q, Q)] [ be the QR factorization of A € R™*™ with
0

full column rank, and let AA be a real m x n matriz. Let € = ||AA||r/||All2, €1 =
IQQTAA|lr/||All2 and &2 = |QQTAA|F/||All2- If (3.2.2) holds, then there is a

unique QR factorization satisfying

A+ AA=(Q+AQ)R+ AR),
where

1QQTAQ|lF < Ko(A)er + O(€?),

IQQTAQI[F < Ky(A)ez + O(?),
with

Ko(A) = V2IIRZL 2 Al < V28o(4). O
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3.4 Perturbation analyses for R

In Section 3.2 we saw the key to deriving first-order perturbation bounds for R in
- the QR factorization of full column rank A is the equation (3.2.7). Like in Chapter
2 for the Cholesky factor, we will now analyze the equation in two ways. The first,
the matrix-vector equation approach, gives a sharp bound leading to the condition
number kz(A) for R in the QR factorization of A; while the second. the matrix
equation approach, gives a clear improvement on (3.2.10), and provides an upper
bound on x,z(A). Both approaches provide efficient condition estimators (see Chang
and Paige (9, 1995] for the matrix—vector equation approach), and nice results for
the special case of AP = QR, where P is a permutation matrix giving the standard
column pivoting, but we will only derive the matrix equation versions of these. The
tighter but more complicated matrix—vector equation analysis for the case of pivoting
is given in (9], and only the results will be quoted here. All our analyses in this section
are based on the same assumptions as in Theorem 3.2.2. Most of the results to be

given here have been presented in Chang, Paige and Stewart [14, 1996].

3.4.1 Matrix-vector equation analysis for R

The matrix-vector equation approach views the -matrix equation (3.2.7) as a large
matrix-vector equation. The upper and lower triangular parts of (3.2.7) contain iden-
tical information. By using the ‘uvec’ notation defined by (1.2.4) and ‘vec’ notation,
we can easily show the upper triangular part can be rewritten in the following form

(for the derivation, see [14]):

Wguvec(R(0)) = Zgvec(QTG), (3.4.1)
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n(n Yo win .
where Wg € REGFE < o

-
Ti1
T2 | T11
Ti2 T2
T13 ri
[ T3 T3 (Ti2 T22
T3 Te23 733
Tin T11
Tin T2n Ti2 T22
Tin T2an T3n T3 T23 T33
L Tin T2n T3n Tan i
nintl) 2.
and Zp e R~z ** is
711
T2 T22 T11
Ti2 To2
Tin T2n Tnn T11
4 Tin T2n Tan Ti2 722
| Tin T2n Tnn

Since R is nonsingular, Wy, is also, and from (3.4.1)
uvec(R(0)) = W' Zp vec(Q7G). (3.4.2)
Remembering R(0) is upper triangular, we see

IROlr = lJluvec(R(O))ll2 = [Wg' Zr vec(Q"G)ll2
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< |IWg'Zgll2 lvec(QTG)ll2 = W' Zgll2 Q" Gl
IWR'Zrll2 || Rll2€1/e,  (using (3.2.15))

- where for any nonsingular upper triangular R, equality can be obtained by choosing
G such that vec(Q7G) lies in the space spanned by the right singular vectors corre-
sponding to the largest singular value of W;'Zp. Therefore we see from the Taylor

expansion (3.2.4),
IAR|r
iRl

and this bound is attainable to first order in e. This implies for R in the QR fac-

< IWg'Zgll2e1 + O(€?),

torization of A the condition number (with respect to the combination of the F- and
2-norms) defined by

IAR]F

Kp(A) = ll_r.résup { T :

(A+ AA)=(Q +AQ)} R+ AR)
e = |AA|lr/l|All2, & = |PLAA]F/l|All2} (3.4.3)
is given by

ra(A) = [[Wg' Zgll2.

From the definition of k5(A) and the Sun’s first-order perturbation bound (3.2.10)
we easily observe

kr(A) < V2k(A).

This upper bound is achieved if R is an identity matrix, and so is tight.
The structure of Wg and Zg reveals that each column of Wk is one of the columns

of Zg, and so W;!Zg has an n(n + 1)/2 square identity submatrix, giving
Wr'Zgll2 2 1. (3.4.4)
We now summarize these results as the following theorem.

Theorem 3.4.1 With the same assumptions as in Theorem 3.2.2, A + AA has the

unique QR factorization

A+ AA=(Q+AQ)R+AR),
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where with Wg and Zg as in (3.4.1),

|lAR| F 2 -
< kp{A)er + O(€°), 3.4.5
1 < kp(A) = |Wr'Zgll2 < V2r9(A), (3.4.6)
and the first-order bound in (3.4.5) is attainable. m|

Unity is the best constant lower bound on kz(A) we can obtain, as can be seen
from the following example.

Example 1. Let R = diag(1,6,...,6" 1), 0 < § < 1. We can easily show
1< ||Wg'Zgllo=V1+62 =1 as 6§ — 0. 0 (3.4.7)

From (3.4.6) we know the first-order perturbation bound in (3.4.5) is at least as
good as as that in (3.2.10). In fact it can be better by an arbitrary factor. Consider
Example 1,

ka(A) = V1+ 682,  ky(A)=1/6,

and

V2rko(A) V2

We see the first-order perturbation bound (3.2.10) can severely overestimate the effect

of a perturbation in A.

Suppose we use the standard column pivoting strategy in AP = QR, where P
is a permutation matrix designed so that columns of A are interchanged, during the
computation of the reduction, to make the leading diagonal elements of R as large
as possible, see Golub and Van Loan [26, 1996, §5.4] for details. We see k(A) in
(3.2.10) does not change, but xz(A) does change. The following result was shown by
Chang and Paige [9, 1995].
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Theorem 3.4.2 Let A € R™*" be of full column rank, with the QR factorization
AP = QR when the standard column pivoting strategy is used. Then

1 2 4
"1 < ka(AP) = |[Wg'Zglla < IWR'ZRllF < \/_4""'1 + 3712 + 5“ o7 (3.4.8)

If R = RK,(0), where K,(8) are the Kahan matrices (see (2.2.41)), then

2 4
“WRIZR”F—’\/ 4"+1+ n2+9n—§; as § — 0. a

Theorem 3.4.2 shows that when the standard column pivoting strategy is used,
Kr(AP) is bounded for fixed n no matter how large x5(A) is. Many numerical ex-
periments with this strategy suggest that x5(AP) is usually close to its lower bound
of one. But it is not for the Kahan matrices. Fortunately such examples are rare
in practice, and furthermore if we adopt the rank-revealing pivoting strategy, the

condition number will most likely be close to its lower bound, see Section 3.5.

3.4.2 Matrix equation analysis for R

As far as we can see, Kg(A) is unreasonablely expensive to compute or estimate
directly with the usual approach, except when we use pivoting, in which case kz(AP)
usually approaches its lower bound of 1. Fortunately, by the matrix equation approach
we can obtain an excellent upper bound on kg(A).

In the proof of Theorem 3.2.2 we used the expression of R(0) in (3.2.8) to derive
Sun’s first-order perturbation bound. Now we again look at (3.2.8), repeated here for
clarity:

R(0) = up[QTGR™ ' + (QTGR™')T|R.

Let D, be the set of all n x n real positive definite diagonal matrices. For any
D = diag(é,,...,6,) € D,, let R = DR. Note that for any matrix B we have
up(B)D = up(BD). Hence if we define B = QTGR™!, then

"R(0) = up[QTGR™' + DY (QTGR')TD|R = [up(B) + D~' up(BT)D]R. (3.4.9)
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With obvious notation, the upper triangular matrix up(B)+ D~ up(BT)D has (i, ;)

element b;; + b;,6;/6; for 1 < j, and (,:) element b;;. To bound this, we use:

" Lemma 3.4.1 For B € R**" and D = diag(61,...,%,) € Dy,

6 = [|up(B) + D~ up(BT)Dllr < {1+ G IBllr, (3.4.10)
where
(p = qlaf&n{é /6} (3.4.11)

Proof. Clearly

- ib £33 50+ ’b,.)2

j=2i=1

But by the Cauchy-Schwarz theorem, (b;; + -J-b‘,‘)2 < (% +02)(1 + (%)2), so

# < PRSI0+
=1 j=21=1 3
= IBI% +zzz(b2+b2)(§{>2

< Bl + GlIBIIE- (3.412)
From this (3.4.10) follows. a

We can now bound R(0) of (3.4.9)

IRONF < ¢-lIRll2 < y1+GIBIFIRI2
= 1+ GIQTGR | FIRI2 < 1+ G x(R)IQTGllF (3.4.13)
Y1+ G ra(D7'R)||Rll2€1/e, (using (3.2.15))

or

”R(O)”F A% G ra(D™)
IR"2 (D R)€1/€
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But this is true for all D € D, so that

”—}J%k < Ki(A)a /e, (3.4.14)
- K (A) = Dienlg kh(A, D), (3.4.15)
Ky(A,D) = J1+2ro(D'R), (3.4.16)

where ( is defined in (3.4.11). This gives the encouraging result
Ko(A) < /(A ) = V2ky(R) = V2k2(A). (3.4.17)

Hence from the Taylor expansion (3.2.4) we have

IARIF
IRl

where from (3.4.17) this is never worse than the bound (3.2.10).

< ’y(A)er + O(€2), (3.4.18)

Clearly k,(A) is a measure of the sensitivity of R in the QR factorization. Since

Kr(A) is the condition number for R (see the definition (3.4.3)), certainly we have
ka(4) < Ky(A), (3.4.19)

Usually (3.4.19) is a strict inequality, but if R is diagonal equality will hold. In fact,
take D = R, and let {, = rj;/riy, 7 > i, then kK, (A,D) = \/1_-_{-(_[2,. On the other
hand, it is straightforward to show kgx(A) = \/TIFD So xr(A) = k,(A, D), which
implies kz(A) = £%,(A). For another proof for this, see Chang, Paige and Stewart [14,
1996, Remark 5.1].

Now we summarize the above results as the following theorem.

Theorem 3.4.3 With the same assumptions as in Theorem 3.2.2, A + AA has the

unique QR factorization satisfying
A+AA=(Q+ AQ)(R+ AR),
where with k%(A) as in (3.4.15) and (3.4.16),

I1AR]F _ :
T2l < K(A)e + O(é?), - (3.4.20)
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kr(A) < KR(A) < V2ry(A4), (3.4.21)
and if R is diagonal the first inequality in (3.4.21) will become an equality. O

From (3.4.21) we know the first-order perturbation bound (3.4.20) is at least as
good as (3.2.10). In fact it can be better by an arbitrary factor, as can also be seen

from Example 1. Taking D = R, we have
ke(A) = kL (A) = K (4, D) = V1 + 62, ko(A) =1/6.

If we take R = diag(6'™",...,6,1), 0 < § < 1, we see ka(R) = Ka(4) = 677,
while

ku(A) = Ko(A) = Ky(A, D) = VI ¥ 857,

which is close to the upper bound v/2x5(A) for small §. This shows that relatively
small early diagonal elements of R cause poor condition, and suggests if we do not
use pivoting, then there is a significant chance that the condition of the problem will
approach its upper bound, at least for randomly chosen matrices.

With the standard column pivoting strategy in AP = QR, P a permutation
matrix, this analysis also leads simply to a very nice result, even though it is a bit

weaker than the tight result (3.4.8).

Theorem 3.4.4 Let A € R™*" be of full column rank, with the QR factorization
AP = QR when the standard column pivoting strategy is used. Then

Kr(AP) < KL(AP) < \/n(n + 1)(4" + 6n ~1)/3. (3.4.22)

Proof. Standard column pivoting ensures |ry| > |ry;| and |ri| > [rj;] for all 7 > 1.

Since for any D € D,

Kn(AP) < Kip(A,D) = /1 + (2 ko(D™'R),

(3.4.22) is immediately obtained from (1.2.18) in Theorem 1.2.2 by taking D =
diag(R). ~ O ’
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This analysis gives some insight as to why R in the QR factorization is less sensitive
than the earlier condition estimator v/2x5(A) indicated. If the ill-conditioning of R
is mostly due to bad scaling of its rows, then correct choice of D can give x2(D™'R)
Véry near one. If at the same time (, is not large, then (A, D) in (3.4.16) can
be much smaller than /2x3(R), see (3.4.17). Standard pivoting always ensures that
such a D exists, and in fact gives (3.4.22).

The significance of this analysis is that it provides an excellent upper bound on
re(A4). K,(A) is quite easy to estimate. All we need to do is choose a suitable D in

x" (A, D) in (3.4.16). We consider how to do this in the next section.

3.5 Numerical experiments

In Section 3.4 we presented new first-order perturbation bounds for the R factor of
the QR factorization using two different approaches, obtained the condition number
Ka(A) = ||Wr'Zg|la for the R factor, and suggested xz(A) could be estimated in
practice by ~}(A, D). Our new first-order results are sharper than previous results
for R, and at least as sharp for @), and we give some numerical experiments to illustrate
both this, and the possible estimators for x5(A).

We would like to choose D such that «,(A, D) is a good approximation to the
minimum «%(A) in (3.4.15), and show that this is a good estimate of the condition
number kz(A). Then a procedure for obtaining an O(n?) condition estimator for
R in the-QR factorization (i.e. an estimator for xg(A)), is to choose such a D,
use a standard condition estimator (see for example Higham [27, 1987]) to estimate
ko(D™'R), and take «%,(A, D) in (3.4.16) as the appropriate estimate.

By van der Sluis’s Theorem 1.2.1, x3(D!R) will be nearly minimal when the
rows of D™!R are equilibrated. But this could lead to a large , in (3.4.16). There

. are three obvious possibilities for D. The first one is choosing D to equilibrate R

n 2
j=iTi

precisely. Specifically, take 6 = Z for i = 1,...,n. The second one is
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choosing D to equilibrate R as far as possible while keeping {, < 1. Specifically,
take & = \/Xii 7}, & = /Tird if /Tty < 6y otherwise § = 6;_y, for

i = 2,...,n. The third one is choosing §; = r;. Computations show that the

third choice can sometimes cause unnecessarily large estimates, so we will not give
any results for that choice. We specify the diagonal matrix D obtained by the first
method and the second method by D, and D, respectively in the following.

We give three sets of examples.

(1) The first set of matrices are n x n Pascal matrices, n = 1,2,...,15. The
results are shown in Table 3.5.1 without pivoting, and in Table 3.5.2 with standard
column pivoting. Table 3.5.1 illustrate how the upper bound v/2k3(A) can be far
worse than the condition number xz(A), which itself can be much greater than its
lower bound of 1. In Table 3.5.2 standard column pivoting is seen to give a significant
improvement on k,(A), bringing x(AP) very close to its lower bound, but of course
V2ka(AP) = /2k9(A) still. Also we observe from Table 3.5.1 that both (A, D)
and «,(A, D,) are very good estimates for kz(A). The latter is a little better than
the former. In Table 3.5.2 kx(AP, D)) = kp(AP, D3) (in fact D; = D,), and they are
also good estimates for kz(AP).

(2) The second set of matrices are 10X 8 A;, j = 1,2,..., 8, which are all obtained
from the same random 10 x 8 matrix (produced by the MATLAB function randn),
but with its jth column multiplied by 1078 to give A;. The results are shown in
Table 3.5.3 without pivoting. All the results with pivoting are similar to that for
J = 8 in Table 3.5.3, and so are not given here. For j = 1,2...,7, kz(A) and
ko(A) are both close to their upper bound v/2x3(A), but for j = 8, both k.(A)
and kqo(A) are significantly smaller than /2x3(A). All these results are what we
expected, since the matrix R is ill-conditioned due to the fact that r;; is very small,
but for j = 1,2,...,7 the rows of R are already essentially equilibrated, and we do
not expect kz(A) to be much better than v/2x3(A4). Also for the first seven cases
the smz-).llest.singular value of the leading part R,_; is close to that of R, so that
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Table 3.5.1: Results for Pascal matrices without pivoting, A = QR

ka(A) K (A, D)) K, (A,Dy) ko(A) V2ko(A)
1.0e+00 1.4e+00 1.4e+00 — 1.4e+00
1.9e+00 3.4e+00 1.9¢e+00 2.6e+00 9.7e+00
4.6e+00 1.4e+01 1.4e+01 1.9e+01 8.8e+01
l4e+01 6.1e+01 6.1e4+01 1.6e402 9.8e+02
5.0e+01 2.6e+02 2.6e+02 1.6e+03 1.2e+04
1.8e+02 1.1e+03 1.1e4+03 1.8e4+04 1.6e+05
6.7e+02 4.5e+03 4.2e+03 2.2e+05 2.1e+06
8 2.5e+03 1.8e+04 1.7e+04 2.8e+06 2.9e+07
9 94e+03 7.4e+04 6.6e+04 3.6e+07 4.1e+08
10 3.6e+04 3.0e+05 2.6e+05 4.8e+08 35.9e+09
11 1.4e+05 1.2e+06 1.1e4+06 6.6e+09 8.5e+10
12 5.2e+05 4.9e+06 42e+06 9.le+10 1.2e+12
13 2.0e+06 2.0e+07 1.7e+07 1.3e+12 1.8e+13
14 7.8e+06 8.0e+07 6.6e4+07 1.8e+13 2.7e+14
15 3.0e+07 = 3.2e+08 2.6e+08 2.6e+14 4.0e+15

~) O Ut W= L N =3

rq(A) could not be much better than /2k3(A). For j = 8, even though R is still
ill-conditioned due to the fact that rgg is very small, it is not at all equilibrated,
and becomes well-conditioned by row scaling. Notice at the same time (, is close
to 1, so &4(A4, Dy), &4(A, D3), and therefore xz(A) are much better than \/2xa(A).
In this case, the smallest singular value of R is significantly smaller than that of
Rn_1. Thus ko(A), the condition number for the change in @ lying in the range of
Q,- is spectacularly better than \/§rc2(A). This is a contrived example, but serves to
emphasize the benefits of pivoting for the condition of both @ and R.

- (3) The third set of matrices are n X n Kahan matrices A = K,(6); see (2.2.41).
Of course without pivoting @ = I here, but the condition numbers depend on R
only, and these are all we are interested in. The results for n = 5,10, 15, 20,25 with
¢ = w/8 are shown in Table 3.5.4, where II is a permutation such that the first column

is moved to the last column position, and the remaining columns are moved to left
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Table 3.5.2: Results for Pascal matrices with pivoting, AP = QR

n  ka(AP) K,(AP,D;) K,(AP,D;) &ko(AP) /2ky(A)
1 1.0e+00 1.4e+00 1.4e+00 — 1.4e+00
2  1.2e+00 1.8e+00 1.8e+00 1.7e+00 9.7e+00
3 13e+00 2.2e+00 2.2e+00 1.3e+01 8.8e+01
4 1.7e+400 3.4e+400 3.4e+00 1.1e4+02 9.8e+02
5 1.8¢+00 4.1e+00 4.1e+00 1.0e+03 _1.2e+04
6 2.2e+00 4.7e+00 4.7e+00 7.5e+03 1.6e+05
7 21e+00 5.1e+00 5.1e+00  8.5e+04 2.1e+06
8 2.6e+00 6.5e+00 6.5e+00 1.2e406 2.9e+07
9 3.5e+00 8.8e+00 8.8e+00 1.5e+4+07 4.1e+08
10 3.4e+00 9.4e+00 9.4e+00 2.4e+08 5.9e+09
11  3.4e+00 9.2e+00 9.2e+00 2.3e+09 8.5e+10
12 3.3e+00 9.7e+00 9.7e+00 3.0e+10 1.2e+12
13 3.3e+00 1.1e+01 1.1e4+01 3.59e+11 1.8e+13
14 3.6e+00 1.2e+01 1.2e+01 S.de+12 2.7e+14
15 3.3e+00 1.2e+01 1.2e+01 8.6e+13 4.0e+15

Table 3.5.3: Results for 10 x 8 matrix A4;, j = 1,...,8, without pivoting -

kr(A)  ’p(A,D1) Kp(A,Dy)  Ko(A)  V2ky(A)
1.9e+08 4.0e+08 3.0e+08 3.0e+08 4.8e+08
1.3e+08 2.9e+08 2.7e+08 2.6e+08 3.8e+08
1.9e+08 4.5¢e+08 3.9e+08 4.7e+08 5.5e+08
1.4e+08 3.1e+08 2.6e+08 2.9e+08 4.5¢+08
1.2e+08 3.1e+08 2.4e+08 3.9¢e+08 4.2e+08
8.8e+07 2.2e+08 1.7e408 3.5e+08 3.9e+08
9.3e+07 2.1e+08 1.7e+08 4.4e+08 5.5e+08
2.3e+00 5.5e+00 4.9e+00 6.6e4+00 6.2¢e+08

00O~ O Ui W N S,
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Table 3.5.4: Results for Kahan matrices, § = 7/8, AIl = QR

-1 Kka(AIl) WL(Al, D)) ko(AIl) kep(A4) Ko (A,D)) ko(A) V2ky(A)
5 2.3e+00 5.6e+00 3.9e+00 8.0e+00 1.7e4+01 2.2e+02 1.1e+03
10 3.5¢+00 1.4e+01 6.8¢e+03 2.1e+02 6.1e+02 1.0e+06 5.1e+06
15 4.9e+00 2.3e+01 1.0e+06 5.5¢e+03 2.1e+04 4.0e+09 2.0e+10
20 5.3e+00 3.2e+01 1.4e+08 1.5e+05 6.5¢+05 1.5e+13 7.5e+13
25 6.1e+00 4.1e+01 2.0e+10 4.3e+06 2.0e+07 S.4e+16 2.7e+17

one position — this permutation II is adopted in the rank-revealing QR factorization
for Kahan matrices, see Hong and Pan [31, 1992]. Again we found D; = D,, and
only list the results corresponding to D,. As we know the Kahan matrices correspond
to correctly pivoted A by standard column pivoting. From Table 3.5.4 we see that
in these extreme cases, with large enough n, k,(A) can be large even with standard
pivoting. This is about as ba(i a result as we can get with standard column pivoting
(it gets a bit worse as § — 0 in R), since the Kahan matrices make the upper bound
on ||[Wg!Zg|lr approximately reachable, see Theorem 3.4.2. However if we use the
rank-revealing pivoting strategy, we see from Table 3.5.4 kz(AIl) is again close to its
lower bound of 1. Also we see ko(AIl) is significantly smaller than kq(A). This is
due to the fact that the smallest singular value of R,,_, is much small than that of
Ra_1, the leading n — 1 square part of R in AIl = QR. For both of the cases with
and without rank-revealing pivoting, (A, D) still estimates xz(A) excellently.

In all these examples we see k7,(A, D;) and (A, D;) gave excellent estimates for

kr(A), with (A, Do) being marginally preferable.

3.6 Summary and future work

The first-order perturbation analyses presented here show just what the sensitivity

(condition) of each of @ and R is in the QR factorization of full column rank A4, and -
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in so doing provide their condition numbers (with respect to the measures used, and
for sufficiently small AA), as well as efficient ways of approximating these. The key

norm-based condition numbers we derived for A + AA = (Q + AQ)(R + AR) are:
¢ Kou = Kry(A) for that part of AQ in R(A)*, see (3.3.1),
o ko(4) = V2||R;L|l2]lAll2 for that part of AQ in R(A), see (3.3.4),
o Kp(A)= ”W'EIZRHQ for R, see Theorem 3.4.1,

o the estimate for xz(A4), that is k,(A) = infpep, K(A4, D),
where x},(A, D) = /1 + (2 k2( D' R), see (3.4.3).

The condition numbers obey
V2IIR (2 (lAll2 £ V2ry(A)
for @, while for R
1 < ke(4) = [Wi' Zrll2 < #a(4) < V2ry(4),

see (3.4.6) and (3.4.21). The numerical examples, and an analysis of the n = 2 case
(not given here), suggest that x%(A, D), with D chosen to equilibrate R = D™'R
subject to {p, < 1, gives an excellent approximation to xz(A) in the general case.
In the special case of A with orthogonal columns, so R is diagonal, then by taking
D =R,

rr(A) = Kp(A) = Kp(4, D) = /1 + (2 < V2ry(D) = V2ko(A),

see Theorem 3.4.3. For general A when we use the standard column pivoting strategy

in the QR factorization, AP = QR, we saw from (3.4.8) and (3.4.22) that

2 4
< —4ntl 4 _n2 4 - —
kp(AP) < \/ —4 n +9n 57

Ky(AP) < yn(n+ 1)(4n +6n —1)/3. -
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As a result of these analyses we see both R and in a certain sense @ can be less
sensitive than was thought from previous analyses. The condition numbers depend on
any column pivoting of A, and show that the standard pivoting strategy often results
in much less sensitive R, and sometimes leads to a much smaller possible change of
Q in the range of Q, for a given size of perturbation in A.

By following the approach of Stewart [38, 1973,Th. 3.1], see also [45, 1990,Th. 2.11],
it would be straightforward, but detailed and lengthy, to extend our first-order re-
sults to provide strict perturbation bouﬁds, as was done in Chapter 2. Our condition
numbers and resulting bounds are asymptotically sharp, so there is less need for strict
bounds.

In the future we would like to
e Investigate the ratio kp(A)/k,(A).

e Explore the effect of rank-revealing pivbting on Kz in both theory and compu-

tations, and study the optimization problem minp xz(PAPT).

e Extend our analysis to the case where AA has the equivalent componentwise
form of backward rounding errors. In fact a new perturbation bound has been
given by Chang and Paige [9, 1995]. Also some other results have been obtained
by Chang and Paige [11].



Chapter 4

The LU factorization -

4.1 Introduction

The LU factorization is a basic and effective tool in numerical linear algebra: given
a real n x n matrix A whose leading principal submatrices are all nonsingular, there
exist a unique unit lower triangular matrix L and an upper triangular matrix U such
that

A=LU.

Notice here we require the diagonal elements of L to be 1. L and U are referred to
as the LU factors. The LU factorization is a “high-level” algebraic description of the
Gaussian elimination. Simple examples shows the standard algorithms for the LU
factorization are not numerically stable. In order to repair this shortcoming of the
algorithms, partial pivoting or co;nplete pivoting is introduced in the computation.
For all of these details, see for example Wilkinson [53, 1965,Chap.4], Higham [30,
1996,Chap.9] and Golub and Van Loan [26, 1996,Chap.3]).

Let AA be a sufficiently small n X n matrix such that the leading principal subma-
trices of A+ AA are still all nonsingular, then A+ AA has the unique LU factorization

A+ AA=(L+AL)U + AU).

83
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The goal of the sensitivity analysis for the LU factorization is to determine a bound
on ||AL|| (or |AL|) and a bound on [JAU}| (or [AU]) in terms of (a bound on) ||AAl
(or |AA]).

" The perturbation analysis of the LU factorization has been considered by a few
authors. Given ||AA]|, the first rigorous normwise perturbation bound was presented
by Barrland [2, 1991]. Using a different approach, Stewart [41, 1993] gave first-order
perturbation bounds, which recently were improved by Stewart {42, 1995]. In [42], L
was not assumed to be unit lower triangular, and a parameter p was used to control
how much of the perturbation is attached to the diagonals of L and U. Given |AA|,
the first rigorous componentwise perturbation bounds were given by Sun {48, 1992].

The main purpose of this chapter is to establish new first-order perturbation
hounds given a bound on ||AA]|, present the condition numbers, give the condition
estimators, and shed light on the effect of the partial pivoting and complete pivoting
on the sensitivity of the problem. '

The rest of this chapter is organized as follows. In Section 4.2 we obtain expres-
sions for L(0) and U(0) in the LU factorization A + tG = L(t)U(t). These basic
sensitivity expressions will be used to obtain our new perturbation bounds in Section
4.3. In Section 4.3 we present perturbation results, first by the so ;:alled matrix-
vector equation approach, which leads to sharp bounds, then by the so called matrix
equation approach, which leads to weaker but practical bounds. We give numerical
examples in Section 4.4. Finally we briefly summarize our findings and point out

future work in Section 4.5.

4.2 Rate of change of L and U

Here we derive the basic results on how L and U change as A changes, which will be

used later.
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Theorem 4.2.1 Let A € R**" have nonsingular leading k x k principal submatrices
for k = 1,...,n with the LU factorization A = LU, let G is a real n x n matriz,
and let AA = G, for some € > 0. If € is sufficiently small such that all leading
principal submatrices of A +tG are nonsingular for all |t| < €, then A+ AA has the

LU factorization

A+AA=(L+AL)U + AU), (4.2.1)

with AL and AU satisfying

AL = € 1(0) + O(&), (4.2.2)
AU = eU(0) + O(é?), (4.2.3)

where L(0) and U(0) are defined by the unique LU factorization
A+tG = L(t)U(t), [t] <e, (4.24)

and so satisfy the equations

LU0y + L(O)U =G, (4.2.5)
L(0) = Lslt(L~'GU™Y), (4.2.6)
U(0) = ut(L-'GU-YHYU. (4.2.7)

Proof. Since all leading principal submatrices of A+tG are nonsingular for all |t| < e,
A +tG has the unique LU factorization (4.2.4). Note that L(0) = L, L(e) = L+ AL,
U(0) = U and U(e) = U + AU. When t = ¢, (4.2.4) becomes (4.2.1). It is easy to
observe that L(t) and U(t) are twice continuously differentiable for [¢| < € from a
standard algorithm for the LU factorization. If we differentiate (4.2.4) and set t =0
in the result, we obtain (4.2.5), which we will see is a linear equation uniquely defining
the elements of strictly lower triangular L(0) and and upper triangular {/(0) in terms

of the elements of G. From (4.2.5) we have

L7'L0) +T(0) U = L7lGU
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Note that L~!L(0) is strictly lower triangular and U(0)U~-! is upper triangular, thus
we have

L7YL(0) = slt(L7'GU™Y), U™ = ut(L~'GU™Y),

which give (4.2.6) and (4.2.7). Finally the Taylor expansions for L(t) and U(t) about
t =0 give (4.2.2) and (4.2.3). ]

4.3 New perturbation results

The basis for deriving first-order perturbation bounds is the equation (4.2.5) (or the
expressions (4.2.6) and (4.2.7) of its solutions). As in the proceeding chapters, we will
now analyze the equation in two ways. The first, the matrix-vector equation approach,
provides sharp bounds, resulting in the condition numbers of the problem; while the
second, the matrix equation approach, gives practical bounds, resulting in condition
estimators. Throughout this section we suppose all assumptions in Theorem 4.2.1
hold, so we can use its conclusions. Also we assume ||AA||r < €||A||r, hence ||G||r =
lAA|lr/e < ||A]lr (if € = 0, all results we will present are obviously true). One
exception is in Theorem 4.3.3 we assume [|AA||; 00 < €]|A]l1,00-

4.3.1 Matrix-vector equation analysis

It is not difficult to show that with the ‘uvec’ notation and ‘slvec’ notation in (1.2.4)

the matrix equation (4.2.5) can be rewritten in the following form:

W [ uvec(U(0))

. } = vec(G), (4.3.1)
slvec(L(0))
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where W = (W, Wy] with W, € R x 2 being

-~ 1 9
. Iy
lnl
1
Hhy 1
lnl ln2

1
la; 1
ln—l.l ln—l,z Tt 1
_ U O A
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n{n-~1)

and Wy € R¥** 7 being

.- upn
un
Uil
up2 )
U2 U
U2 U992
Uin
Uin U2n
uln uZn un«—l,n

88

It is easy to observe that after appropriate column permutations, [W;, Wy] will be-

come lower triangular with diagonal elements

lyullyulh'”au11v1117u221"'1u227 """ il’]".'.ilal'

N ——

n n n

Since U is nonsingular, W is also, and from (4.3.1)

uvec(U(0)) = W~ vec(G).
slvec(L(0))

Partitioning W~! into two blocks, W-! = , we have

YL

slvec(L(0)) = Yy vee(G),  uvec(U(0)) = Yy vec(G).

(4.3.2)

- (4.3.3)
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so taking the 2-norm and using ||G||r < [[Al|r gives

ILO)llr < IYZl2 IGHF < (I¥zl2 lAllF, (4.3.4)
- - ITONF < 1Yol Gl < 1Yoz llAlle, (4.3.5)

where equalities can be obtained by choosing G such that vec(G) lies in the space
spanned by the right singular vectors corresponding to the largest singular value of Y;
and Y7, respectively, and ||G||g = || A||r. Therefore we see from the Taylor expansions
(4.2.2) and (4.2.3) that

IALlr _ HYill2|Alle

< € + O(€%), (4.3.6
e = foe )
lAU]lF _ [Yull2 Al
< €+ 0(é), (4.3.7)
WUllF IUlle
and for the L factor and the U factor the condition numbers (with respect to the
F-norm)
. AL
K (A) = EEI&SUP{ILI|L|:I:  (A+AA) = (L+ AL)U + AU), ||AA|llr £ e”A”p},
| AU B
wo(4) = limsup {1220E (4 + 44) = (L + ALYU + 4V, 1441 - < )

are respectively given by

_IYzll2 [All e
(A=

We summarize these results as the following theorem.

[Yull2 1ALl

(4) =0

Theorem 4.3.1 Suppose all the assumptions of Theorem 4.2.1 hold, and let || AA||r <
ellA|lr, then A + AA has the unique LU factorization

A+AA = (L+AL)U + AU),
where with Ko (A) = elzlAlle ong ¢ (A4) = DollzlAllr

HLllF Wwis
|AL|l <
Zrs < k. (A)e + O(), (4.3.8)
AU £
T0Te < ky(A)e + O(€?), (4.3.9)

and these bounds are attainable to first-order in‘e. O
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4.3.2 Matrix equation analysis

In Section 4.3.1 we derived sharp perturbation bounds for the L factor and U factor,
-and presented the corresponding condition numbers. But it is difficult to estimate
the condition numbers by using the usual approach. Now we use the matrix equation
approach to derive practical perturbation bounds, leading to the condition estimators.

First we derive a perturbation bound for the L factor. Let U,,_, denote the ieading

Un-
(n —1) x (n — 1) block of U. If we write U = [ ' , then from (4.2.6)
0 unn -
L(0) = Lst(L™'G ' u/ ) = Lslit(L™'G ! ). (4.3.10)
0 1/%nn 0 O

Denote by D, the set of all n x n real positive definite diagonal matrices. Let D =
diag(dy,...,8,) € D,. Note that for any n x n matrix B we have Dslt(B) =slt(DB),

then from (4.3.10) we obtain
. - AUk 0
L(0) = LD 'slt(DL™'G ).
0 o0

Note |[sit(B)||r < ||Bl|r for any B € R"*", so we have
1L(0)llr < HLD M2 (DL M2 U1 M2 Gl e, (4.3.11)

which with ||G||r < ||A]|F gives

1L Uz Al
2 < ko(LD ]
TP 17

Since this is true for all D € D, by the Taylor expansion (4.2.2) we have

|AL| F
ILllF

< K, (A)e+ O(é2), (4.3.12)

where

- "(4) = iaf K, (4,D), (4.3.13)
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-1
K, (A, D) = ky(LD™) Uatall2 1Al

Ll
From the definition of x,(A) and the perturbation bound (4.3.12) we easily see

(4.3.14)

ko(A) < K, (A). (4.3.15)

Also we can obtain a lower bound on x,(A4). Let v € R*"! be such that |[U;Tjv]j2 =
NU 2 [lv]l2- In (4.3.10), take G = [eqv7, 0], where e, = (0,...,0,1)T € R*. Then
it 1s easy to verify that

L(0) = e, [vTUL,, 0],
S0
ILOMe = 0TUZ 2 = U2 vl = 1T 2 Gl e

Combining this with the first equality of (4.3.3), we have for this special G that
[Yzvee(G)ll2 = IU24 12 |Gl e,

which gives
IYzll2 2 U2 M2, (4.3.16)

or
IYall2lAlls o [Vl Al

WLl = ILlF
We would like to point out that (4.3.16) can also be derived directly from the structure

of W in (4.3.1).

k. (A) =

(4.3.17)

Now we derive a practical perturbation bound for the U factor. Notice for any

B € R*™™ and D € D, we have ut(BD) = ut(B)D, then from (4.2.7) we obtain
U(0) = ut(L~'GU'D)D~'U.

Thus
N0O)r < NIL7 Y U D2 | DU |2 |Gl F, (4.3.18) ~
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which with ||Gllr < [|A||F gives

o o L Al
BAJIE oy (p-iy) e 12 U40E
TP 7]

Since this is true for all D € D,,, by the Taylor expansion (4.2.2) we have
1atlle

01 - < kl,(A)e + O(D), (4.3.19)
where
ky(A) = Diean K, (A, D), _ (4.3.20)
/ _ o p-tiy I M2 1Al F
K D =K L —_— . D,
v(A,D) = xy(D7U) TUT- (4.3.21)

From the definition of x,(A) and the perturbation bound (4.3.19) we see
ku(A) < ki, (A). (4.3.22)

Also we can get a lower bound on ky(A4). Let v € R" be such that |[L~1v[, =
|L=*Y2 llvil2, and take G = vel in (4.2.7), then combining (4.2.7) and the second

equality of (4.3.3) we can easily show

IYullz > 172, (4.3.23)
" . L~ 2 (1Al
o(A4) > 7P (4.3.24)

Like (4.3.16), (4.3.23) can also be showed directly from the structure of W in (4.3.1).

These results lead to the following theorem.

Theorem 4.3.2 With the same assumptions as in Theorem 4.3.1, A+ AA has the

unique LU factorization
A+ AA=(L+ AL)U + AU),

where for the L factor,
1AL o a3 + 0(e), (4.3.25)
(120 V-
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1V, Al ' e
_— < < = <
”L”F _— KL(A) —_ KL(A) Dlenlgg "'L(Ai D)’
with &,(A, D) = ko( LD VWU |2 |All /I L]l ) and for the U factor,
] |AU|[F
< Kk (A)e + O(€%),

. Izl AllF S AN = g S
with &, (A, D) = o(DU)||L 72 |All /11Ul - O

We might want to simplify <, (A, D) and «,,(A, D). If we use
IAlle < WLA# WUz L2 U1y
then we have

£ (A, D) < k(LD YU UL I,
Kk, (A, D) < ko(L)ko(D7'U).

93

(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)
(4.3.31)

As we know in practice k(L) is usually smaller or much smaller than «2(U). So these

bounds suggest the L factor may be more sensitive than the U factor in practice.

However both of the right hand sides of (4.3.30) and (4.3.31) can be arbitrarily larger

than corresponding left hand sides due to the inequality (4.3.29).

If we take D = I in both k7,(A, D) and «,,(A, D) and use || Llj2 < ||L||F, U2 £

IUllF and U241z < [UYl2, we have

K (A) S KA D) < ma(DUZ 2 NANE/ILNF < 127 M2 W02 1AL, (4.3.32)
ro(A) < 5y (A ) < (UL 2 MANlE/IWUNE < IL7HNIT 2 [|AllE. (4.3.33)

Thus from (4.3.25) and (4.3.27) we have

AL|fp _ -
L L e VI
1zl

1Al e

SN Y2 N2 NAllF €, -

(4.3.34)

(4.3.35)
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which are due to Stewart [41, 1993]. These perturbation bounds are simple, but
can overestimate the true sensitivity of the problem. By using the scaling technology,
Stewart [42, 1995] obtained significant improvements on the above results. In [42], the
’di;lgonal elements of L were not assumed to be 1’s, and the diagonal elements of AL
may not be 0’s, and a parameter p was used to control how much of the perturbation
is attached to the diagonals of L and U. The perturbation bounds given in [42] are

equivalent to
HAL|F

< ko (LD NYa(U), (4.3.36)
1T
b S salLysa(DD). (43.37)

These bounds were derived by using the inequality (4.3.29), so they are unnecessarily
weak as we pointed out in the preceding comment. (4.3.30) suggests that under the
usual assumption that the diagonal elements of L are always 1’s, a better bound than
(4.3.36) could be obtained.

As we know it is expensive to estimate k,(A) and x,(A) directly by the usual
approach. Fortunately we now have other methods to do this. By van der Sluis’s
Theorem 1.2.1, ko(LD™!) will be nearly minimum when each column of LD™! has
unit 2-norm, so in practice we choose D = D, = diag(||L(:, 7)||2), then use a standard
condition estimator and a norm estimator to estimate «),(A, D.), which costs O(n?).
Similarly, k,(D~!U) will be nearly minimum when each row of D~!U has unit 2-
norm, then we choose D = D, = diag(||U(,:)|]2), and use a standard condition
estimator and a norm estimator to estimate «},(A4, Dy ), which costs O(n?). Numerical
experiments showed &/, (A4, D.) and «,(A, Dy) are good approximations of x,(A) and
Ky(A).

When we use the 1- and oco-norms, we can get perturbation bounds without in-

volving the scaling matrix D.

Theorem 4.3.3 Suppose all the-assumptions of Theorem 4.2.1 hold and let | AA[|, <
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€llAllp, p = 1,00, then A+ AA has the unique LU factorization

A+AA=(L+ AL)(U + AU),

" where
AL, iy [zl Al
”L”p < CODdP(L [)——"W' €+ 0(62) (4338)
< condy(L) U U, llp € + O(ed), (4.3.39)
HAU]lp LMo A 2
TR < | cond,(U) ||Up||,, P e+ O(e), (4.3.40)
< Kp(L)cond,(U) e + O(€?), (4.3.41)

Proof. Let G = AA/e (if € = 0, the theorem is trivial), then |G|, < ||All, p = 1, c0.
From (4.3.10) we have

|L(0)} < |Z|IL7HIG )

Uzl o ]

so taking the p-norm (p = 1, c0) gives
ILQO)llp < condp(L™")[Un—1]lp IGllp < condp(L™")iUn1llp | All5-

Then (4.3.38) follows immediately from the Taylor expansion (4.2.2). By using
IAllp < [iLll U ][5, (4.3.39) follows.
The results (4.3.40) and (4.3.41) can similarly be proved. m]

Note cond,(L™!) is invariant under the column scaling of L and cond,(U) is in-
variant under the row scaling of U. These make (4.3.38) and (4.3.40) look simpler
than (4.3.8) and (4.3.9), respectively, where the Frobenius norm is used.

As we know the standard algorithms for LU factorization with no pivoting are not
numerically stable. In order to repair this shortcoming of the algorithms, partial or
complete pivoting should be incorporated in the computation. Do these two pivoting
strategies have effects on the sensitivity of the factorization? Let us see the following

theorem.
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Theorem 4.3.4 If partial pivoting is used in the LU factorization: PA = LU, where

P 1is a permutation matriz. Then

o n(n+1)” Ll |4l F € k.(PA) < K, (PA) < \/———4%6”_ UL (2 1Al e,
(4.3.42)

d 1 n _ : -1
1 < ky(PA) < &, (PA) < 6\/211(11 +1)(4" +6n—1) inf m(D7'V). (4.3.43)

If complete pivoting is used in the LU factorization: PAQ = LU, where P and Q are

permutation matrices. Then

n( Y — 1022 1AllF < 5. (PAQ) < K, (PAQ) < \/4" +6n — LU Iz [|All
(4.3.44)
1 < ky(PAQ) < 6, (PAQ) < n(n+1)(4" +6n — 1)/18. (4.3.45)

Proof. If partial pivoting or complete pivoting is used in computing the LU factoriza-
tion, then {;; < 1 for ¢ > j. Since l; = 1, [(LT)i| > |(LT);;| for all 7 > i. By the proof

of Theorem 1.2.2 we see |L7!||; < V4™ + 6n — 1/3. Also note |[L]jr < m
Then (4.3.42) and (4.3.44) follow from (4.3.26) by taking D = I.

Note k7,(A, D) < rao(L)ko(DU) (see (4.3.31)) and [[U]|r = [ILAllr < ||L7HI2 | All,

then (4.3.43) follows from (4.3.28). If complete pivoting is used, then |u;| > |u;;| for

all j > i. Thus by Theorem 1.2.2 we have x3(D~'U) < y/2n(n + 1)(4" + 6n — 1)/6
with D = diag(U). Then from (4.3.43) we obtain the much better result (4.3.45).

(]

When partial pivoting or complete pivoting is ﬁsed, x2(L) is bounded by a function
of n, but possibly |[U;},|| may become larger, thus from (4.3.42) and (4.3.44) we
cannot see that x,(PA) and k,(PAQ) are larger or smaller than «,(A). (4.3.42) and
(4.3.44) also suggest there is no big difference between the effects of partial pivoting
and complete pivoting on the sensitivity of the L factor. Similarly from (4.3.43) we
are not quite sure if ky(A4) will become larger or smaller when partial pivoting is used.

But hote there is an essential difference between the upper bound on x,(PA) and
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that on x,(PA) — the former has a choice D, which may make infpep, £2(D~'U) not
increase much, so the possibility that «,(A) will become smaller seems high. From

(4.3.45) we see complete pivoting can give a significant improvement on k,{A).

4.4 Numerical experiments

In Section 4.3 we presented first-order sharp perturbation bounds for the LU factors,
obtained the corresponding condition numbers k,(A) and k,(A), and suggested x,(A)
and xy(A) could be respectively estimated in practice by (A, D.) and «,(A4,Dy)
with D, = diag(||L(:, j)||2) and Dy = diag(||U(4,:)||2)- The condition numbers and
condition estimators satisfy the following inequalities (see (1.2.14), (1.2.15), (4.3.26),
(4.3.28), (4.3.32), and (4.3.33)):

WU 2 lAL /L] - < Ka(A) < K(A) < 1L Uz [1AlLF,
K,(A) < K4(A,D,) < VK, (4),

1L o ANl /U1 F < Ko(A) < Ku(A) < 1L U2 Al
Ky (A) < K, (A, Dy) < VAK,(A).

Also we discussed the effects of partial pivoting and complete pivoting on those con-
dition numbers.

Now we give some numerical experiments to illustrate our theoretical analyses.

The matrices have the form A = Dy BD,, where D, = diag(1,d,,...,d}™"), D, = |
diag(1l,ds,...,d3”!) and B is an n x n random matrix (produced by the MATLAB
function randn). The results for n = 10, dy, dy € {0.2,1,2} and the same matrix
B are shown in Table 4.4.1 without pivoting, in Table 4.4.2 with partial pivoting,
and in Table 4.4.3 with complete pivoting, where 8, = [[U. 2|2 l[All/I e, By =
IL= 2 1 Alle /Ul and B = IL7H 2 U I2 HAllp-

We give some comments on the results.
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Table 4.4.1: Results without pivoting, A = LU

d, da B, k. (A) K, (A,D,) Bu ky(A)  ky(A, Dy) Ji}

0.2 0.2|24e4+09 2.4e+09 1.7e+10 3.8e+00 8.7e+00 1.8e+01 1.5e+12

0.2 1 {14e+05 1.7e4+05 9.7e+05 2.8e+00 2.0e+02 7.3e+02 1.7e+07

0.2 2 {53e+06 7.2e+06 3.8e+07 1.2e+00 2.7e+04 1.2e+05 7.9e+08
1 0.2]28e+03 3.4e+04 4.2e4+05 4.9e+01 1.1e+02 2.3e+02 1.1e+07
1 1 | 45e+00 2.2e+02 6.7e+02 2.8e+00 1.9e+02 7.3e+02 4.1e+03
1 2 [ 79e+02 3.7e+04 1.2e+05 1.5e+00 3.2e+04 1.4e+05 7.2e+05
2 0.2(26e+01 3.4e4+04 1.0e+06 3.1e+05 3.2e+05 1.4e+06 2.6e+08
2 1 |3.2e+00 3.2e+04 1.3e+05 3.2e+02 3.6e+03 8.2e+04 3.2e+07
2 2 | 2.7e+02 2.7e+06 1.0e+07 6.7e+01 1.6e+05 6.4e+06 2.7e+09

Table 4.4.2: Results with partial pivoting, A = PA = LU

dl d2 ﬁL K (A) KIL (A’ DL) ,Bu KU(A) Klu(Aa DU) ﬂ

0.2 0.2]35e+09 3.5e+09 8.5e+09 1.6e+00 1.7e+00 3.1e+00 6.6e+11

0.2 1 |20e+05 2.4e+05 4.8e+05 1.6e+00 2.2e+01 8.8e+01 7.5e+06

0.2 2 | 7.7e406 1.0e+07 19e+07 1.6e+00 3.5e+03 2.1e+04 3.4e+08
1 0.2]1.1le+05 2.1e+05 6.2e+05 4.7e+00 4.7e4+00 6.7e+00 3.9e+06
1 1 | 7.1e+00 1.3e+01 4.0e+01 2.5e+00 1.2e+01 4.3e+01 8.5e+01
1 2 | 8.0e+02 1.4e4+03 4.5e+03 1.6e+00 1.5e+03 6.0e+03 9.8e+03
2 0.2]82e+06 1.2e4+07 2.7e+07 2.1e+00 2.1e+00 3.2e+00 2.6e+08
2 1 |49e+02 6.3e+02 1.6e+03 1.7e+00 1.8e+01 7.8e+01 5.0e+03
2 2 | 2.2e+04 2.7e+04 7.4e+04 1.7e+00 2.7e+03 1.4e+04 1.7e+05
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Table 4.4.3: Results with complete pivoting, A = PAQ = LU
- dp dy B Kk (A) KIL(A, DL) By KU(‘;{) 'C’u(""iy Dy) J¢)
0.2 0.2]3.5e+09 3.5e+09 8.5e+09 1.6e+00 1.7e+00 3.1e+00 6.6e+11
0.2 1 |14e+05 1.4e+05 2.0e+05 1.2e+00 2.5e+00 6.6e+00 5.6e+06
0.2 2 |26e+06 2.6e+06 58e+06 1.4e+00 1.5e+00 4.4e+00 2.9e+08
1 02{1.1e405 2.1e+05 6.2e4+05 4.7e4+00 4.7e4+00 6.7e+00 3.9e+06
1 1 |28e+00 5.0e+00 1.9e+01 3.4e4+00 4.9e+00 1.4e+01 6.7e+01
1 2 | 14e+02 3.3e+02 1.2e4+03 5.0e4+00 7.0e+00 1.6e+01  5.8¢+03
2 0.2]82e+06 1.2e+07 2.7e+07 2.1e+00 2.1e4+00 3.2e4+00 2.6e+08
2 1 |3.1e+02 3.4e+02 9.6e+02 - 1.8e+00 3.0e4+00 1.3e+01 3.9e+03
2 l.le+04 1.2e+04 4.4e+04 2.2e4+00 3.0e+00 7.5e+00 1.3e+05
e The results confirm that 8 = [[L7}||2|[U7Y|2 ||Allr can be much larger than
K.(A4) and ky(A), especially for the latter, so the first-order bounds (4.3.34)
and (4.3.33) can significantly overestimate the true sensitivity of the LU factor-
ization.
o «.(A,D,)and k},(A, D) are good approximations of x,{A) and x,(A), respec-

tively, no matter whether pivoting is used or not. This is also confirmed by our

other numerical experiments.

Both x,(PA) and x,(PAQ) can be much larger or smaller than x.(A4). So
partial pivoting and complete pivoting can make the L factor more sensitive or
less sensitive. But from Tables 4.4.1-4.4.2 we see partial pivoting can give a
significant improvement on the condition of the U factor. In fact here x,(PA) <
ky{A) for all cases. From Table 4.4.3 we see that complete pivoting can give a

more significant improvement.

It can be seen for most cases the L factor is more sensitive than the U factor

no matter whether pivoting is used or not.

‘o When partial pivoting or complete pivoting is used, we see both x, and &, are
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close to their lower bounds 5, and (., respectively.

4.5 Summary and future work

The first-order perturbation analyses presented here show what the sensitivity of each
of L and U is in the LU factorization of A, and in so doing provide their condition
numbers «,(A) and ky(A) (with respect to the measures used, and for sufficiently
small AA), as well as efficient ways of approximating these.

As we know xo(L) is usually (much) smaller than «»(U), especially in practice
when we use partial pivoting in computing the LU factorization. So we can expect
that the computed solution of the linear system Lz = b will usually be more accurate
than that of the linear system Uy = b. However our analysis and numerical exper-
iments suggest that usually the L factor is more sensitive than the U factor in the
LU factorization, so we expect U is more accurate than L. This is an interesting
phenomenon. Also we see the effect of partial pivoting and complete pivoting on the
sensitivity of L is uncertain — both «,(PA) and x,(PAQ) can be much larger or
smaller than x,(A). But partial pivoting can usually improve the condition of U, and
complete pivoting can give significant improvement.

In the future we would like to
o Investigate the ratios k,(A)/k,(A) and &, (A)/x;(A).

o Extend our analysis to the case where |AA| < €|A|. .In fact some results have

been obtained by Chang and Paige [12].



Chapter 5

The Cholesky downdating

problem

5.1 Introduction

In this chapter we give perturbation analyses of the following problem: given an
upper triangular matrix R € R**" and a matrix X € R¥*" such that RTR — XTX
is positive definite, find an upper triangular matrix U € R"*" with positive diagonal
elements such that

UTU=RTR-XTX. (5.1.1)

This problem is called the block Choleslf:y downdating problem, and the matrix U
is referred to as the downdated Cholesky factor. The block Cholesky downdating
problem has many important applications, and the case for k=1 has been extensively
studied in the literature (see [1, 5, 6, 19,-25, 24, 36, 37, 40]).

Let AR and AX be real n x n and & X n matrices, respectively, such that (R +
AR)T(R+ AR) — (X + AX)T(X + AX) is still positive definite, then this has the

unique Cholesky factorization
(U+ AU)T(U + AU) = (R+ AR)T(R+ AR) — (X + AX)T(X + AX).
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The goal of the perturbation analysis for the Cholesky downdating problem is to
determine a bound on |AU]|| (or |AU|) in terms of ||JAR|| (or [AR|) and [|[AX]|| (or
|AX]).

" The perturbation analysis for the Cholesky downdating problem with norm-bounded
changes in R and X has been considered by several authors. Stewart {40, 1979] pre-
sented perturbation results for single downdating (i.e. kK = 1). Eldén and Park [22,
1994} made an analysis for block downdating. But these two papers just considered
the case that only R or X is perturbed. More complete analyses, with both R and X
being perturbed, were given by Pan (35, 1993] and Sun [50, 1995]. Pan [35, 1993] gave
first-order perturbation bounds for single downdating. Sun [50, 1995] gave rigorous,
also first-order perturbation bounds for single downdating and first-order perturba-
tion bounds for block downdating. Recently Eldén and Park {23, 1996] gave new
first-order perturbation bounds for block downdating. Unfortunately there was an
error in their paper when the result of Sun [46, 1991] was applied in deriving the
perturbation bound. Because of this, the results presented in [23] will not be cited in
this chapter.

The main purpose of this chapter is to establish new first-order perturbation re-
sults and present new condition numbers which more closely reflect the true sensitivity
of the problem. In Section 5.2 we will give the key result of Sun [50, 1995], and a
new result using the approach of these earlier papers. In Section 5.3 we present new
perturbation results, first by the matrix-vector equation approach, then by the ma-
trix equation approach. We give numerical results and suggest practical condition
estimators in Section 5.4. Finally we briefly summarize our findings and point out
future work in Section 5.5. Most of the results have been presented in Chang and
Paige [10, 1996).

Previous work by others implied the change AR in R was upper triangular, and
Sun (50, 1995] said this, but neither he nor the others.made use of this fact. In fact a

backward stable algorithm for computing U given R and X would produce the exact
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result U, = U 4+ AU for nearby data R+ AR and X + AX, where it is not clear that
AR would be upper triangular — the form of the equivalent backward rounding error
AR would depend on the algorithm, and if it were upper triangular, it would require
" a rounding error analysis to show this. Thus for completeness it seems necessary to
consider two separate cases — general AR and upper triangular AR. We do this
throughout Sections 5.3-5.4, and get stronger results for upper triangular AR than
in the general case.

In any perturbation analysis it is important to examine how good the results are.
In Section 5.3.1 we produce provably tight bounds, leading to the true condition
numbers (for the norms chosen). The numerical example in Section 5.4 indicates how
much better the results of this new analysis can be compared with some earlier ones,
but a theoretical understanding is also desirable. By considering the asymptotic case
as X — 0, the results simplify, and are easily understandable. We show the new

results have the correct properties as X — 0, in contrast to earlier results.

5.2 Basics, previous results, and an improvement

Let I satisfy [T = I, — R-TXTXR™! (so I would be the Cholesky factor of I, —
_RTXTXR™), and let 0,(I") be the smallest singular value of I'. Notice that for
fixed R, I''T — I, as X — 0, so 0,(') — 1. First we derive some relationships
among U, R, X and I'.

1) From (5.1.1) obviously we have

WUllz < IRll2, _ I1XMl2 < IR]l2- (5.2.1)
2) From (5.1.1) it follows that

RUT'TRT = (I, - RTXTXR™)™,
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so that taking the 2-norm gives

1

IBU e = .

" 7 3) From (5.1.1) we have

U TXTXU-'=UTRTRU ' - I,

which, combined with (5.2.2), gives

J1—o2(T 1
XU = TR -1 = Y- = /TG DRY

4) From (5.1.1) we have
"RTXTXR'=1I,-RTTUTUR™,
which, combined with (5.2.2), gives

B I
IXR| = /1 — 0%, (UR) = \/1 ~EUE y1-0o%(T).

5) By (5.2.2) we have

U2
aa(T)

IRll2=|RUT'Ull2 < |RUY[2/|U]l2 =

6) Finally from (5.2.4) we see

'I%HE < IXR™l2 = /1 - 03(D).
2

Now we derive the basic result on how U changes as R and X change.
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(5.2.4)

(5.2.6)

Theorem 5.2.1 Suppose we have an upper triangular matriz R € R"*" and a matriz
X € RF*™ with the Cholesky factorization UTU = RTR — XTX, where U € R™*" is

upper triangular with positive diagonal elements. Let G be a real n x n matriz, and

let F' be a real k x n matriz. Assume AR = ¢G and AX = ¢F, for somee > 0. If

IXRMl2 + |AXR™ ||,

ARR™ Y, <1

<1,.

(5.2.7)
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then there is a unique Cholesky factorization
(U+AU) (U +AU)=(R+ AR)T(R+ AR) - (X + AX)T(X + AX), (5.2.8)

| u-)ith AU satisfying
AU = eU(0) + O(é%), (5.2.9)

where U(0) is defined by the unique Cholesky factorization
UT(t)U(t) = (R+tG)T(R +tG) — (X +tF)T(X + tF), It <e,  (5.2.10)
and so satisfies the equations

UTU(0) + UT(0)U = RTG + GTR - XTF — FTX, (5.2.11)
U(0) = up[U-T(RTG + GTR - XTF - FTX)U YU, (5.2.12)

where the ‘up’ notation is defined by (1.2.3).

Proof. If |ARR™!||s < 1, then it is easy to show R+ tG is nonsingular for all [t| < .
Notice for all |t| < ¢,
(R+tG)T(R+1tG) — (X +tF)T(X +tF)
=(R+tG)T[I, = (R+tG) (X +tF)T(X +tF)(R +tG)"|(R +tG),

and
(X +tF)R+tG) 2 = |(XR'+tFR™)(I +tGR™)™'||,
< I XR~ 2+ |AXR™2
- 1—||ARR- Y|, ’

then if (5.2.7) holds, (R+tG)T (R+tG)—(X +tF)T (X +tF') is positive definite and has
the unique Cholesky factorization (5.2.10). Notice that U(0) = U and U(¢) = U+ AU,
so (5.2.8) holds.

It is easy to verify that U(t) is fwice continuously differentiable for |¢t| < € from

the algorithm for the Cholesky factorization. If we differentiate (5.2.10) and set ¢ = 0



CHAPTER 5. THE CHOLESKY DOWNDATING PROBLEM | 106

in the result, we obtain (5.2.11), which, like (2.2.5), is a linear equation uniquely
defining the elements of upper triangular U (0) in terms of the elements of G and F.
With the ‘up’ notation in (1.2.3) we see (5.2.12) holds. Finally the Taylor expansion
A f;)r U(t) about ¢t = 0 gives (5.2.9) at t = €. O

By Theorem 5.2.1 we derive a new first-order perturbation bounds for the block
Cholesky downdating problem, from which the first-order perturbation bound given

by Sun [50, 1995] follows.

Theorem 5.2.2 Suppose we have an upper triangular matriz R € R"*" and ¢ matrir
X € R**™ with the Cholesky factorization UTU = RTR — X7 X, where U € R™** is
upper triangular with positive diagonal elements. Let AR be a real n X n matriz, and
let AX be a real k x n matriz. Define e, = ||AR||r/||R||2 and ex = ||AX || /]| X|]2-
Set e = max{eg, €x}. If

(1 + el X2 IRl
1 — ka(R)eg

then there is a unique Cholesky factorization

Ka(R)er <1,

<1, (5.2.13)

(U + AU (U + AU) = (R+ AR)T(R+ AR) — (X + AX)T(X + AX),

where
1-— 2 1" U 1 X
”ﬁ[?hlip \/—”U n||(2||)R||2 ‘/—\/ a2( nl(lr) 21X ]2 (4O, (5.214)

Proof. Let G = AR/e and F = AX /e (if € = 0, the theorem is triviai), then
IGle = IRlzexfe,  IFllr = I Xll2ex/e. (5.2.15)

It is easy to verify that (5.2.13) implies that (5.2.7) holds, so Theorem 5.2.1 is applica-
ble here. From (5.2.12) and the fact that for any symmetric B, || up(B)|/r < 715”3”5‘
(see (1.2.7)) we have with (5.2.15) that

: 1
IUO)lir < EIIU
< V2|Ul Ul IRV 2 IGllr + I XU 2 [ F L),
V2|Ullz U Iz (IRU Iz | Rllz €/ + I XU iz 1 X ||z €x/€)

TRTG+GTR-XTF - FTX)U £ IU|2

Il
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which, combined with (5.2.2) and (5.2.3), gives

10l < VAL g, e+ T= 22D e/

“Then (5.2.14) follows from the Taylor expansion (5.2.9). =

From (5.2.14) we see
- J1 - o2 U-t 2
bn = ﬁ% by = vz Y1 7D l(lr) 2 1lXT (5.2.16)

can be regarded as the condition estimators for U with respect to relative changes in

R and X, respectively. Notice from (5.2.1) we see ¢z > @y, so we can define a new

overall condition estimator

¢ = ¢r —f”—U——l—I(zrll)—Ru?. (5.2.17)

If we rewrite (5.2.14) as

1AUlF 1T 2 1Rl 112 )
T S V2 iy (et /1= 0B(D) g ex) + O,

and combine it with (5.2.5) and (5.2.6), then we obtain Sun’s bound

1AU]r ra(U) o2
<V2 R+ I))ex) + O(€%), 5.2.18
which leads to the overall condition estimator proposed by Sun:
_ 3l -
B =2 23 (T)’ (5.2.19)

We have seen the right hand side of (5.2.14) is never worse than that of (5.2.18), and
also
¢ < B. ) (5.2.20)

Although ¢ is a minor improvement on g, it is still not what we want. We can
see this from the asymptotic behavior of these condition estimators. The Cholesky
factorization is unique, so as X — 0, U — R, and XTAX — 0 in (5.2.8). Now
for any upper triangular perturbation AR in R, AU — AR, so the true condition
number should approach unity. Here §,¢ — v/2x2(R). The next section shows how

we can ‘overcome this inadequacy.
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5.3 New perturbation results

In Section 5.2 we saw the key to deriving first-order perturbation bounds for U in
- the block Cholesky downdating problem is the equation {5.2.11). We will now ana-
lyze it by two approaches. The first approach, the matrix-vector equation approach,
gives sharp perturbation bounds, which lead to the condition numbers for the block
Cholesky downdating problem, while the second, the the matrix equation approach,
gives a clear improvement on other earlier results, and provides practical condition
estimators for the true condition numbers. All our discussion is based on the same

assumptions as in Theorem 5.2.2.

5.3.1 Matrix-vector equation analysis

The matrix-vector equation approach views the matrix equation (5.2.11) as a large
matrix-vector equation.
First assume AR is a general real n x n matrix. It is easy to show (5.2.11) can be

rewritten in the following matrix-vector form (cf. Chapter3):

Wy uvec(U(0)) = Zg vee(G) — Yy vec(F), (5.3.1)
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n(n+l) n(ntl) |
where Wy e R™2 *T = is

ZreR

nin+1)
2

Uy
U2 | Uy
U2 U
U3 U
Uz Uaz | U2 U2
Uiz U2z Us3
Uin up
Uin U2n U2 U2
Uip U2n U3n U3 U3z U3y
Uipn Un U3y Unn
xn? is
[ |
T11
Ti2 Ta2 ™
T2 T22
Tin To2n * Tan 11
Tin T2n ° Tan Tia To2
L Tin T2n Tnn ]
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n(n+1) .
and Yy e R™z7 *kn jg

Tyt T21 - Tkl
CT Iyi2 T2 - Ti2|Tnn ZT21 - Tkl
T2 ZI22 - ZIg2
Zin T2n ° ZTkn Ty T2y - Tkl
Tin Z2n ° ZTkn T2 Z22 - Tin
Zin T2n ° ZTnn
Since U is nonsingular, Wy is also, and from (5.3.1)
uvec(U(0)) = W' Zg vec(G) — Wi ' Yx vec(F). (5.3.2)
Remembering U(0) is upper triangular, we see
IOOr < IW5'Zell (Gl + W5 Yxll2 |1 F |l (5.3.3)

Wi Zalla I Rll2 enfe + W5 Yl [ X lla ex/e,  (using (5.2.15))

where for any R and X equality can be made by choosing G and F such that

W' Zgvec(G)|l2 = W5 Zgll2 IGllr,  F =0, (5.3.4)
or G =0, Wy Yx vec(F)|l2 = W5 ' Yx(l2 [ Fll - (5.3.5)

Then from the Taylor expansion (5.2.9), we see

AUl HWJ‘ZnIlzllRllze'R IWg ' Yx|l2ll X1l
U ~ U1l iUl

and the condition numbers for U with respect to relative changes in R and X are

ex + O(€%), (5.3.6)

(here subscript ¢ refers to general AR, and later the subscript = will refer to upper

triangular AR)
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kra(R,X) = limsup {1217 ! IIUIII|F (U + AU (U + AU) = (R + AR)T(R + AR)
o ~ XX, ¢ =||AR]¢/||Rll2} (53.7)
Wo ' Zall2l| Rll2
U= ’
and
Kv(R, X)) = lmésup{“ |g||||F (U +AU)T(U + AU) = RTR

- (X +AX)T(X + AX) e = |AX|r/I X2} (5.3.8)

W5 Y20l X |2
U |2 '

respectively. Then a whole condition number for the Cholesky downdating problem

with general AR can be defined as
K'CDG(RxX) = ma-x{ffnc(R,X), Kx(Ra X)} (5-3‘9)

By the definitions of kc(R, X) and kx(X, R), it is easy to verify from (5.2.14)
and (5.2.16) that

ERG(R,"Y) S ¢Ra KX(R:X) S ¢X1 (53'10)
therefore

kooe(R, X) < &. (5.3.11)

It is easy to observe that if X — 0, kcpe(R,X) — ||[Wz'Zg|l2, where Wy is
just Wy with each entry u;; replaced by r;;. If R was found using the standard
pivoting strategy in the Cholesky factorization, then [|Wg!Zg[|2 has a bound which
is a function of n alone (see Theorem 3.4.2). So in this case our condition number
Kcpe(R,X) also has a bound which is a function of n alone as X — 0.

Now we consider the case where AR is upper triangular. (5.2.11) can now be

rewritten in the following matrix-vector form:

Wy uvec(U(0)) = Wg uvec(G) — Yy vee(F), . (5.3.12)
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n{n ! n!u ) -!n !
where Wy € R 7 7 and Yy € R Fxkn are defined as before, and Wy €
n{n+1) n(n+l) . . . ro. .
SR g just Wy with each entry u;; replaced by r;;. Since U is nonsingular,

’ PYU is also, and from (5.3.12)
uvec(U(0)) = W' Wguvec(G) — Wy 'Yy vec(F), (5.3.13)
so taking the 2-norm gives

0Ol < IWs' Well2 1G] + W5 Yxllz [ Flls, (5.3.14)
= W' Wallz [ Rllzex/e + [W5'Yxllzex/e, (using (5.2.15))

where, like (5.3.3), (5.3.14) will become an equality if we choose G and F as in (5.3.4)
and (5.3.5) with Zg there replaced by Wx. Then from the Taylor expansion (5.2.9),

we see

1AUlF ||WJIWR”2”R||2€ W5 Yxll2 1 X |l
WUl ~ U]]2 " U2

and the condition numbers for U with respect to relative changes in R and .\ are

€x + O(€). (5.3.15)

(subscript r indicates upper triangular AR)

kpr(R,X) = limsup {” |U|'1|F (U + AUYT(U + AU) = (R + AR)T(R + AR)
- XTX, e=||AR||r/lIR].} (5.3.16)
W ' Whll2l|Rll2
1U1l2
and
kx(R, X) = ll_rgsup{ll ”U|I|IF (U+AU)'(U+AU)=R"R
— (X +AX)(X + AX), e= "AX”F/"XHQ} (5.3.17)
W' Yxll2[l X |2
U2 ’

respectively. Note xx(R,X) is the same as that defined in (5.3.8). Then a whole
condition number for the Cholesky downdating problem with upper triangular AR
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can be defined as

kepr(R, X) = max{sxr(R, X), kx(R, X)}. (5.3.18)
- - Since Kpe(R, X) is for a general AR, certainly we have
Ker(R, X) < kae(R, X), (5.3.19)

which can also be proved directly by the fact that the columns of Wg form a proper

subset of the columns of Zz. Thus from (5.3.9) and (5.3.18) we see
Keor{R, X) < Kepe(R, X). (5.3.20)

If as well X — 0, then since U — R, W;'Wg — I.w+y, and Kepr(R, X) — 1.
2
So in this case the Cholesky downdating problem becomes very well conditioned no
matter how ill-conditioned R or U is.

Finally we summarize the results above as the following theorem.

Theorem 5.3.1 With the same assumptions as in Theorem 5.2.2, there is a unique

Cholesky factorization
(U + AU)T(U + AU) = (R+ AR)T(R+ AR) — (X + AX)T(X + AX),

where for general AR,
1AUIF
Wl =
< Kepo(R, X)(€r + €x) + 0(62),

kro(R, X)€r + kx(R, X)ex + O(€?)

and for upper triangular AR,

AU "y
llw_”‘LE S KRT(R,JY)GR + KX(R, X)fx + 0(6-)

< keor(R, X)(€r + €x) + O(€2).

There are the following relationships among the various measures of sensitivity of the

problem (see {5.3.10), (5.3.11), (5.3.19) and (5.3.20)) :

KRT(Ra X) S KRG(R,X) S ¢R: KX(R,X) S ¢Xl

K:CDT(Ra X) < K'CDG(Ra X) <¢. - O
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5.3.2 Matrix equation analysis

As far as we see, the condition numbers obtained in the last section are expensive
to_compute or estimate directly with the usual approach. We now use the matrix
cquation approach to obtain practical condition estimators.

In Theorem 5.2.2 we used the expression of U(0) in (5.2.12) to derive a new first-
order perturbation bound (5.2.14), from which Sun’s bound was derived. Now we
again look at (5.2.12), repeated here for clarity:

U0) = up[U"T(RTG +GTR - XTF ~ FTX)U|U. (5.3.21)

Let D, be the set of all n x n real positive definite diagonal matrices. For any
D = diag(é;,...,6,) € Dy, let U = DU.. Note that for any matrix B we have
up{BD~!') = up(B)D~! and up(D~!B) = D' up(B).

First with general AR we have from (5.3.21) that

U@©) = {up(UTRTGT")+ D 'up(U-TGTRU-Y)D}U
—{up(UTXTFU) + D~Yup(U~TFTXU)D}U,

so taking the F-norm gives

10ONr < [lup(U"TRTGU™") + D~'up(U~TGTRU)D| ¢ ||U]l2

+ [[up(U~TXTFU") + D lup(U-TET XU D¢ ||T).. (5.3.22)

Lemma 3.4.1 shows for any B € R**"

lup(B) + D~*up(BT)D||r < {1+ G |Bllr,
where (, = maX;<icj<n{6;/8:}. Thus from (5.3.22) we have
Iw©lr < 1+ UUTRTGU |Ip + U-TXTFT )02
< 1+ m(@)IRU 2 IGHF + IXU |2 || F Il ).

JI+ "2(U)(||G||p + /1= (D) [|F|lr), (using (5.2.2),(5.2.3))
- /it G "“@%(HRHQ xfe+ T 02T [ Xllzex/€) (using (5.2.15))
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which leads to the following perturbation bound in terms of relative changes

AU ka(D-U) | Rlla
e < i+ €
TR G 10"
- KQ(D-IU) [1X |2

+/1+ 21 -02(I) e R O(e?). (5.3.23)

Naturally we define the following two quantities as condition estimators for U with

respect to relative changes in R and X, respectively:

Kol RX) = inf Koo(RX, D), &(RX)= jof &(RX.D), (5324)

where
) £a(D~U) || Rl -
Kr,.(R,X,D) = 1+ , 5.3.25
, ko D) ||X .
Ke(R,X,D) = /14241 —o2(T) 25} ) ) '||{Ul|||22. (5.3.26)
Then an overall condition estimator can be defined as
Kepe(R,X) = Dienlg,. Kpe(R, X, D), (5.3.27)
where
K,CDG(R’/Y9 D) = ma.x{h:’,w(R,X, D)? K'IX(R7X’D)}
Since ||X|[2 < JIR}|2, we see
K,CDG(R’fx's D) = K;lG(Rv .X, D) 2 K’X(Ri X’ D)1
which gives
Kepe(R, X) = Kpo(R, X) > £ (R, X). (5.3.28)
Therefore with these, we have from (5.3.23) that
“fll(zl”F < Kho(R, X)er + K\ (R, X) €x + O(€®) (5.3.29)
2 -

< KLpo(R, X)er + €x) + O(€D).
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Clearly if we take D = I, (5.3.23) will become (5.2.14), and

KR, X) S Koo(R, X, 1) = ¢p, K (R, X) < K (R, X, ) = &y, (5.3.30)
CT Kepe (R, X) < Kepo(R, X, In) = ¢ (5.3.31)

It is not difficult to give an example to show ¢ can be arbitrarily larger than x. (R, X),
as can be seen from the following asymptotic behaviour.

If X - 0wesaw U — R and 0,(I') — 1, so

N’CDG(Rv X,D) - \/1 + C% KQ(D_I.R).

It is shown in Theorem 3.4.4 that with an appropriate choice of D, MI’CQ(D-IR)
has a bound which is a function of n only, if R was found using the standard pivoting
strategy in the Cholesky factorization, and in this case, we see k., (R, X') is bounded
independently of ko(R) as X — 0, for general AR. At the end of this section we give
an even stronger result when X — 0 for the case of upper triangular AR. Note in
the case here that ¢ in (5.2.17) can be made as large as we like, and thus arbitrarily
larger than &, . (R, X).

By the definitions of kxc(R, X) and x4 (R, X) respectively in (5.3.7) and (5.3.8),

we can easily verify from (5.3.29) that
k(R X) € Koo R, X),  kx(R,X) < K (R, X), (5.3.32)

therefore

Kepa(R,X) < kL peo(R, X). (5.3.33)

In the case where AR is upper triangular (so G is upper triangular), we can refine

the analysis further. From (5.3.21) we have

U@©) = [up(UTRTGU' +UTGTRU™) (5.3.34)
—wp(UTXTFU ! + U TFTXU)U.
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Notice with the ‘slt’, ‘sut’ and ‘diag’ notation defined in (1.2.1) and (1.2.2),

U TRTGU' + U TGTRU™!
© = [sI(UTTRT) + diag(U " TRT)|GU' + U"TGT [sut(RU™!) + diag(RU ')
= diag(UTRT)-GU™' + U™ TG" - diag(RU™)
+slt(TRT) - GU ™ + UTTGT - sut(RU™Y). (5.3.35)

But for any upper triangular matrix T we have
up(T) + up(T7) =T,
so that if we define T = diag(U~TRT) - GU™!, then
up[diag(U~TRT)- GU™! + b'-TGT -diag(RU™")| = diag(U~"TRT) - GU™'. (5.3.36)
Thus from (5.3.34), (5.3.35) and (5.3.36) we obtain
U(0) = diag(U TRT)-G + {up[sit(U"TRT)-GU™' + U"TGT - sut(RU™)]
- uwp(UTXTrU-' + U TFT XU YH}U. (5.3.37)

As before, let U = DU, where D = diag(é;,...,6,) € D,. From (5.3.37) it follows

that

1U0)llF < lldiag(U~TR)|2 1G]l ¢
+ lup[slt(U~TRT) - GU~Y] + D~tup[U~TGT - sut(RU-Y) DI [Tz
+ lup(U-TXTFU™Y) + D~ 'up(U~TFT XU )D| ¢ |U 2.

Then, applying (5.3.2) to this, we have

IOO)F < IdiagU TR IGllr + /1 + B x2(T)lIsut(RU)|l2 |Gl
+ 1+ G m@)IXU 2 | Fll¢
< (ldiag(RU™ll2 + /1 + (B wa(0)lIsut(RU)||2) | Rllz €n/ €
+ 1+ G r(D)XU 2 I Xl|2ex/e, (using (5.2.15))
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which leads to the following perturbation bound

AU . _ _ Ril»
IZAE < (jaiag(RU™ e + T+ a0 O)sut(RU ) L2
o + 1+ 3 ro( DT XTU 2 X1l ex + O(€?) (5.3.38)

U1l
Comparing this with (5.3.23) and noticing (5.2.3), we see the coefficient multiplying ex
does not change, so ¥.(R, X) defined in (5.3.24) can still be regarded as a condition
estimator for U with respect to changes in X. But we now need to define a new

condition estimator for U with respect to upper triangular changes-in R, that is

KR, X) = Digg Kpr(R, X, D),

where
, ) _ - _ R
khr(R, X, D) = (||diag(RU™||2 + 1 + B ra( D~IU)|Isut(RU)||2) ”U”Z (5.3.39)
Thus an overall condition estimator can be defined as
Keor(R,X) = B Kopr(R, X, D), (5.3.40)
where
'{’cor(R’ X,D)= ma*x{'clnr(R-X’ D), le(RaX’D)}-
Obviously we have
Keor(R, X) = max{Kyr(R, X}, &x(R, X)}. (5.3.41)
With these, we have from (5.3.38) that
A
"”U[.J””F < Kor(R, X)en + £y (R, X)ex + O(€%) (5.3.42)
2

< Ko (R, X)(er + €x) + O(€%).

What is the relationship between . ,.(R, X) and & (R, X) = £/c(R,X)? For

any n X n upper triangular matrix T = (t:;), observe the following two facts:
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1) ty, i = 1,2,...,n are the eigenvalues of T, so that |t;| < ||T]|l2. From this it
follows that
l|diag(T)l2 < [IT|2-
2)
Isut(T)ll2 < llsut(T)lir < [Tlle < VR T2

(Note: In fact we can prove a slightly sharper inequality ||sut(T)|l < vn —1||T|2)

Therefore
Ger(R,X,D) = (Idiag(RUls + T+ G oD~ RU L2
< (IR a + VayT+ G (DO RU ) L2
< (1+ VW1 + G ra(DT'U)RU o ::3“2
= vy T+ GBI (ing (52
= (14 VA R X,D),
so that
KB, X) < (14 VAWyo(B, X). (5343
Thus we have from (5.3.28) and (5.3.41) that
oor( B, X) € (1 + VA0 R, X). (5.3.44)

On the other hand, «[,.(R,X) can be arbitrarily smaller than «,,.(R,X). This
can be seen from the asymptotic behaviour, which is important in its own right. As

X — 0,since U = R, 6,(I') = 1 and RU™! — I, we have
Keor(Bo X, In) = 1,
so for upper triangular changes in R, whether pivoting was used in finding R or not,

Koor(R. X) = 1.
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Thus when X — 0, the bound in (5.3.42) reflects the true sensitivity of the problem.
For the case of general AR, if we do not use pivoting it is straightforward to make
Kepe(R,X) in (5.3.27) arbitrarily large even with X = 0, see (5.3.25).

CcDG

By the definition of kzr( R, X) in (5.3.16), we can easily verify from (5.3.42) that
KR’I’(R*nX) S KIRT(R':X)' (5345)

Thus from this and the second inequality in (5.3.32), it follows with (5.3.18) and
(5.3.41) that that
kepr(R, X) < ke pr(R, X). T (5.3.46)

Now we summarize these results as the following theorem.

Theorem 5.3.2 With the same assumptions as in Theorem 5.2.2, there is a unique

Cholesky factorization
(U + AUYT(U + AU) = (R+ AR)T(R+ AR) — (X + AX)T(X + AX),

where for general AR,

AU F
(1 -
< Kopo(R, X)(er + €x) + O(€2),

Koo(R, X)er + £ (R, X)ex + O(€?)

and for upper triangular AR,
AU
| “U”[';‘ < KR, X)en + K (R, X)ex + O()

< KL (R, X)(er + €x) + O(€2).

There are the following relationships among the various measures of sensitivity of
the problem (see (5.3.28), (5.3.30), (5.3.32), (5.3.33), (5.3.43), (5.3.44), (5.3.45) and
(5.3.46)) :

’{RG(RPX) S KIRG(R3X) S K’RG(R! Xv In) = ¢R7 KRT(R’X) S KIRT(R'X)’
Kx(R,X) < k\(R, X) < kx(R, X, 1) = ¢x, wy(R,X) < Kkfhe(R, X),
Rer(R, X) < (14 /) Kag(R, X), Kapr(R, X) < (14 V/E) Kopg(R, X),

Kepe(R, X) < Kgpo(R, X),. K(;'DT(Rv X) < kepr(R, X). o
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Our numerical experiments suggest «.,.(R, X) is usually a good approximation
to Kepe(R,X). But the following example shows . .(R, X) can sometimes be arbi-

trarily larger than kcpc(R, X).

(21 0 0]

010 0 V3 2/V3 00 ,
R= , X = /3 , U =diag(1,6,8% 6%),

00 & 0 0 2/3-6 00

00 0 6|

where § is a small positive number. It is not difficult to show
, 1 1
chc(va) :0(5_2)’ KCDG(R1X) = 0(3)

But . ,.(R, X) has an advantage over kcpe( R, X) — it can be quite easy to estimate

coG
— all we need to do is to choose a suitable D in &, (R, X, D). We consider how to do
this in the next section. In contrast kKcpc(R, X) is, as far as we can see, unreasonably
expensive to compute or estimate.

Numerical experiments also suggest «.,.(R, X) is usually a good approximation

to Kepr(R, X). But sometimes k7,.(R, X) can be arbitrarily larger than kcpr(R, X).

This can also be seen from the example above. In fact, it is not difficult to obtain
, 1 1
K'CDT(Rs X) = O(gﬁ)a '{CDT(RPX) = 0(3)

Like kcpe(R, X), Kcpr(R, X) is difficult to compute or estimate. But <, ,.(R, X) is

easy to estimate, which is discussed in the next section.

5.4 Numerical experiments

In Section 5.3 we presented new first-order perturbation bounds for the the downdated
Cholesky factor U using first the matrix-vector equation approach, and then the
matrix equation approach. We defined kgpe(R, X) for general AR, and kcpr(R, X)

for upper triangular AR, as the overall condition numbers of the problem. Also we ~



CHAPTER 5. THE CHOLESKY DOWNDATING PROBLEM 122

gave two corresponding practical but weaker condition estimators «,.(R, X) and
Kepr (R, X) for the two AR cases.

We would like to choose D such that &, (R, X, D) and «[,,(R, X, D) are good
a-pproximations to k-,c(R, X) and &, +(R, X), respectively. We see from (5.3.25),
(5.3.26) and (5.3.39) that we want to find D such that m’CQ(D_IU) approx-
imates its infimum. That is the same problem we faced in Section 3.5. We adopt
the best method of choosing D proposed there. Specifically take (; = /37, ufj,

G = \/Z;-‘:. ul; if \/i}':.' u; < G-y otherwise §; = (;_y, for i =2,...,n. Then we use

a standard condition estimator to estimate xka(D~!U) in O(n?) operations.

Notice from (5.2.4) we have 0,(I') = \/1 — [IXR~Y|3. Usually k, the number of

rows of X, is much smaller than n, so 0,(I') can be computed in O(n?). If k is not
much smaller than n, then we use a standard norm estimator to estimate | X R™!||, in
O(n?). Similarly ||U||2 and [|R]|2 can be estimated in O(n?). So finally «.,.(R, X, D)
can be estimated in O(n?). Estimating ., (R, X, D) is not as easy as estimating
Kpc(R,X,D). The part ||diag(RU™!)||2 in (R, X, D) can easily be computed
in O(n), since diag(RU™!) = diag(r11/u11,.--,Tan/Unn)- The part ||sut(RU™){2 in
&r(R, X, D) can roughly be estimated in O(n?), based on

S llsut(RUY|F < [[sut(RUY)||2 < [lsut(RU-Y)| ¢,
Isut(RU-Y{lr = /|IRU-|% — ||diag(RU-1)|2,

and the fact that ||RU"!||r can be estimated by a standard norm estimator in O(n?).
The value of | XU~!||2 in (R, X,D) can be calculated (if & < n) or estimated
by a standard estimator in O(n?). All the remaining values ||R||2, || X||2 and ||U]2
can also be estimated by a standard norm estimator in O(n2?). Hence x4 (R, X, D),
& (R,X, D), and thus . ,-(R, X, D) can be estimated in O(n2). For standard con-
dition estimators and norm estimators, see Chapter 14 of Higham [30, 1996].

The relationships among the various overall measures of sensitivity of the Cholesky
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downdating problem presented in Section 5.2 and Section 5.3 are as follows.
:B 2 ¢ 2 KICDG(RV /Y) 2 KCDG(Rv‘Y) 2 KCDT(Re X)v
- - (1+ VKl pe (R, X) 2 KLpr(R,X) > Kepr(R, X).

Now we give one numerical example to illustrate these. The example, quoted from

Sun [50, 1995], is as follows. .

(1 —¢ —¢ —c —c| [ 0.240 |
0 1 —¢c —-c -c —0.899
R = diag(l,s,s2,s%,s)| 0 0 1 —c —c|, XT=7| 0899 |,
0 0 0 1 —c 1.560
(0 0 0 -0 1| | 2.390

where ¢ = 0.95, s = V1 — c2. The results obtained using MATLAB are shown in

Table 5.4.1 for various values of 7:

71 = 1.004015006005433e — 2, 7» = 1.003021021209640e — 2,

73 = 9.036225416303058¢ — 3,
and 3y =713-e—01l, 75 =73-¢—03, 7 =73-€ — 5.

Table 5.4.1: Results for the example in Sun’s paper

T T T2 73 T4 Ts T6
IXR2 0.99999 0.999 09 - 0.09 0.0009  0.000009
Jé) 2.25e+10 2.25e+07 2.60e+04 2.72e+03 2.69e+03 2.69e+03
o) 1.01e4+08 1.0le+4+06 1.14e4+04 2.71e+03 2.69e+03 2.69e+03
Kepe(R,X,D) | 3.60e+03 3.61e+02 3.79e+01 1.79e+01 1.78e+01 1.78e+01
Kecpe(R,X) |1.66e+03 1.66e+02 1.71e+01 8.42e+00 8:41e+00 8.41e+00
Kepr(R, X, D) | 2.12e+03 2.12e+02 1.79e+01 1.07e+00 1.00e+00 1.00e+00
Keor(R,X) |243e402 2.43e+01 2.44e+00 1.01e+00 1.00e+00 1.00e+00

Note in Table 5.4.1 how # and ¢ can be far worse than the condition num-

bers rcpc(R, X) and kcpr(R, X), although ¢ is not as bad as §. Also we observe



CHAPTER 5. THE CHOLESKY DOWNDATING PROBLEM 124

that s ,.(R, X, D) and «,.(R, X, D) are very good approximations to kKcpc(R, X)
and kcpr(R,X), respectively. When X become small, all of the condition num-

bers and condition estimators decrease. The asymptotic behavior of k., (R, X, D),

- -

Kepr(R, X, D), kcpe(R,X) and kepr(R,X) coincides with our theoretical results:
when X — 0, «_,.(R, X) and kcpe(R, X) will be bounded in terms of n since here
R is actually Kjs(arccos(0.95)), a Kahan matrix, which corresponds to the Cholesky

factor of a correctly pivoted A, and (R, X), kcpr(R,X) — 1.

5.5 Summary and future work

The first-order perturbation analyses presented here show just what the sensitivity of
the Cholesky downdating problem is, and in so doing provide the condition numbers,
as well as efficient ways of approximating these. The key measures of the sensitivity

of the problem we derived are:

e For general AR:

— overall condition number: xcps(R, X), see (5.3.9),
— overall condition estimator: k., (R,X) = infpep, k.pc(R, X, D), see
(5.3.27),

e For triangular AR:

— overall condition number: kcpr(R, X), see (5.3.18),

— overall condition estimator: kL,.(R,X) = infpep, k.pr (R, X, D), see

(5.3.40).
These quantities and the condition estimators ¢ (see (5.2.17)) and G (see (5.2.19))
obey
Keor(R X) < Kopo(R, X) < Ropo(R,X) < 6 < B,
Koor(R, X) < Kopr(R X) S (1 + V)Kp0(R, X).
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For the asymptotic case as X — 0, kcpe(R, X) and (R, X) will be bounded in
terms of n, and kcpr(R, X), k5 (R, D) — 1, while 8 and ¢ have no such properties.

Recently Stewart [42, 1995] presented a backward rounding error analysis for the
block downdating algorithm presented by Eldén and Park. It would be straightfor-
ward to combine our results here with Stewart’s result to give a forward error estimate
for the computed U. But we choose mot to do this here in order to keep the material
as simple as possible.

In the future we would like to

e Give better approximations to Kepg(R,X) and scpr(R,X) than &, .(R, X)
and k., (R, X).

e Extend our analyses here to other cases, such as that when AR and AX come

from a componentwise backward rounding error analysis.



Chapter 6

Conclusions and future research

A new approach, the so called ‘matrix-vector equation approach’ has been developed
here for the perturbation analysis of matrix factorizations. The basic idea of this
approach is to write the perturbation matrix equation as a matrix-vector equation by
using the special structure and properties of the factors. Using this approach we ob-
tained tight first-order perturbation results and condition numbers for the Cholesky,
QR and LU factorizations, and for the Cholesky downdating problem. Our pertur-
bation bounds give significant improvements on the previous results, and could not
be sharper.

Also we used the so called ‘matrix equation approach’ originated by G. W. Stew-
art to obtain perturbation bounds that are usually weaker but easier to interpret,
leading to condition estimators which are easily estimated by the standard condition
estimators (for matrix inversion) or norm estimators. Our experiments suggested
that for the Cholesky, QR and LU factorizations with norm-bounded changes in the
original matrices the condition estimators are very good approximations of the cor-
responding condition numbers. Also our numerical experiments suggested for the
Cholesky factorization with component-bounded changes in the original matrix and
the Cholesky downdating problem with norm-bounded changes in the original matri-

ces, the condition estimators are usually good approximations of the corresponding

126
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condition numbers, even though some counter-examples were found.

The matrix-vector equation approach is a powerful general tool, and appears to
be applicable to the perturbation analysis of any matrix factorization. The matrix
-eq—uation approach is also fairly general, but for each factorization a particular treat-
ment is needed. The combination of these two approaches gives a deep understanding
of these problems. Although first-order perturbation bounds are satisfactory for all
but the most delicate work, we also gave some rigorous perturbation bounds for the
Cholesky factorization.

In computing these factorizations, standard pivoting is often used to improve the
stability of the algorithms. We showed that the condition of these factorizations is
significantly improved by the standard pivoting strategies (except the L factor in the
LU factorization), and provided firmly based theoretical explanations as to why this
is so. This extremely important information is very useful for designing more reliable
matrix algorithms. '

In the future we hope to continue this research in several directions:

e To analyze the Cholesky, LU and QR factorizations, and Cholesky downdating
of general matrices, where perturbations have special structure, for example, by
assuming the perturbation has the form of the equivalent backward rounding
error from a numerically stable computation of the factorization (some results
for the Cholesky factorization have been given in this thesis). Such structure

leads to improved sensitivity results.

e To analyze other factorizations of general matrices for both general perturba-

tions and structured perturbations.

e To extend our approach to the factorizations of special matrices. In many ap-
plications matrices and the resulting factorizations used to solve the problems

in a numerically stable way have some special structure. Applying the existing
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general perturbation results to these special problems will result in overestima-
tion of the true sensitivity. Our new approach to such perturbation analyses
can make full use of the structure, so should lead to results which closely reflect

the true sensitivity of the problems.
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