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Abstract

Matrix factorizations are among the most important and basic tools in numerical

linear algebra. Perturbation analyses of matrix factorizations are not only important

in their own right, but also useful in many applications, e.g. in estimation, control

and statistics. The aim of such analyses is to show what effects changes in the data

will have on the factors. This thesis is concemed with developing new general purpose

perturbation analyses, and applying them to the Cholesky, QR and LU factorizations,

and the Cholesky downdating problem.

We develop a new approach, the so called 'matrix-vector equation' approach,

to obtain sharp results and true conqition numbers for the above problems. Our

perturbation bounds give significant improvements on previous results, and could

not be sharper. Aiso we use the so called 'matrix equation' approach originated by

G. W. Stewart to derive perturbation bounds that are usually weaker but easier to

interpret. This approach allows efficient computation of satisfactory estimates for

the true condition numbers derived by our approach. The combination of these two

approaches gives a powerful understanding of these problems. Although first-order

perturbation bounds are satisfactory for all but the most delicate work, we also give

sorne rigorous perturbation bounds for sorne factorizations.

We show that the condition of many such factorizations is significant1y improved

by the standard pivoting strategies (except the L factor in the LU factorization), and

provide firmly based theoretical explanations as to why this is sa. This extremely

important information is very useful for designing more reliable matrix algorithms.

Our approach is a powerful general "tool, and appears to be applicable to the

perturbation analysis of any matrix factorization.
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Résumé

Les factorisations de matrices sont parmi les outils les plus importants et les

pl~s fondamentaux de l'algèbre linéaire numérique. Les analyses de perturbation

des factorisations de matrices sont non seulement importantes en elles-mêmes, mais

ils sont aussi utiles dans maintes applications, par exemple dans les domaines de

l'estimation, du contrôle et des statistiques. Ces analyses ont pour but de démontrer

quels effets les changements dans les données produiront sur les facteurs. Cette thèse

s'intéresse au développement de nouvelles analyses genénérales des perturbations,

et à leur application au..x factorisations de Cholesky, QR et LU, et au problème de

Inodification çle factorisation de Cholesky.

Nous développons une nouvelle approche que nous nommons l'approche équation

luatrice-vecteur, afin d'obtenir des résultats précis et des vrais nombres de condition­

nement pour les problèmes mentionnés Ci-dessus. Nos bornes sur les perturbations

apportent des améliorations significatives aux résultats G.Iltérieurs et ne pourraient

être plus précises. De plus, nous utilisons l'approche équation matrice développée par

G. W. Stewart pour dériver des bornes sur les perturbations qui sont généralement

plus faibles mais plus faciles à interpréter. Cette approche permet des calculs effi­

caces d'estimés satisfaisants pour les vrais nombres de conditionnement qui dérivent

de notre approche. La combinaison de ces deux approches donne une compréhension

profonde de ces .problèmes. Bien que des bornes sur les perturbations de premier

ordre soient satisfaisantes ·pour tout travail, sauf pour le plus. délicat, nous donnons

également des bornes rigoureuses sur les perturbations pour certa ines factorisations.

Nous démontrons que la condition de plusieurs de ces factorisations est améliorée

de façon significative par les stratégies usuelles de pivotage (sauf en ce qui con­

cerne le facteur L dans la factorisation LU), et nous fournissons des explications

théoriques solidement fondées pour démontrer pourquoi il en est ainsi. Cette infor­

mation extrêmement importante est des pl~s utiles pour c.onstruire des algorithmes
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plus sûrs pour les matrices.

Notre approche est un outil général puissant, et semble pouvoir s'appliquer aux

analyses de perturbation de n'importe quelle factorisation de matrice.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

This thesis is concerned with the perturbation analysis for the Cholesky, QR, and LU

factorizations, and for the Cholesky downdating problem. These matrix factorizations

are among the most fundamental and important tools in numerical linear algebra

(see for example Golub and Van Loan [26, 1996]). The goal of such an analysis is

to determine bounds for the changes in the factors of a matrix when the matrix is

perturbed.

We first give sorne motivation for our concerns. Suppose A is a given matrix, and

has a factorization

A=BC, (1.1.1 )

where B and C are the factors of A. As in any topie of matrix perturbation theory,

there are three main considerations in perturbation theory for matrix factorizations.

First, the elements of A rnay he determined from physical measurement, and therefore

be subject to errors of observation. The true matrix is A + .âA, where .âA is the

observation error. Suppose the same factori~ationfor A + ÂA is

( A +.âA = (B + ÂB)(C + ÂC).

1

(1.1.2)
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We are thus 100 immediately to the consideration of the perturbations ~B and .dC.

Second, even if the elements of A can be defined exactly by mathematical formulae,

usually these can not efficiently be represented exactly by a digital computer due ta

its finite precision. The matrix stored in a computer is A + .dA, with IL1AI ~ ulAI,
where u is the unit roundolf. So we are faced with much the same problem as before.

Finally, backward rounding error analysis throws back eITors made in executing ah

algorithm on the original data, see Wilkinson [52, 1963]. Suppose for a stored matrix

A, a b'lckward rounding error analysis_shows the computed factors ÈJ and ë of ..4 are

the exact factors of A + L1A, i.e.,

A + L1A =Bë,

where a bound on Il .dA Il (or I.dA!) is known, then perturbation theory is used ta

assess the effects of these backward eITors on the accuracy of the computed factors,

i.e., give bounds on /lB - BI! and lIë - Cil (or lB - BI and lë - CI).

Although in solving linear equations the sensitivity of factors may not be of cen­

tral interest, it is important when the factors have significance. For example in the

estinlation problem with m x n A of full column rank and m dimensional y given

(where ê (.) indicates the expected value) t

y = Ax+v, t'Cv) = 0,

(

if we obtain the QR factorization A = QR then solving RX = QTY gives the best

linear unbiased estimate (BLUE) x of x, and

sa R is the factor ofwhat has been called in the engineering literature the 'information

matri..x'. This is important in its own right (see for example Paige [34, 1985]), and we

are interested in how changes in A affect R.



In general we regularly use the fact that the columns of Q in the QR factorization

of A forrn an orthonormal basis for R(A), and we are concerned with how changes in

A affect Q.

In sorne statistical applications, if certain matrices A and B have QR factorizations

(
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then the singular values of Q~QB give what are called the 'canonical correlations'

(more generally these give the angles between the subspaces R(A) and 'R(B)), see for

example Bjorck and Golub [4, 1973]. Thus the sensitivity of Q in the QR factorization

can be used directly to answer the following important problems: "How do changes

in A and B affect 'R(A) and R(!3) and the angles between these (or the canonical

correlations)" .

We thus see the area is an interesting and useful one to study in general. This

area has been an active area of research in recent years. Most of the existing results

have been incorporated in Higham [30, 1996).

Realizing most of the published results on the sensitivity of factorizations, such as

LU, Cholesky, and QR, wer~ extremely weak for certain classes of matrices, Chang,

under the supervision of Chris Paige, see the commentary in Chang, Paige and Stew­

art [14, 1996], originated an approach ta obtaining provably sharp results and corre­

sponding condition nurnbers for the Cholesky factorization. He also realized that the

condition of the problern was signi~cantly improved by pivoting, and provided the

first firmly based theoretical explanations as to why this was 50. Even though the

original work was only about the Cholesky factorization, the approach is a general

approach, and thus can be applied ta almost all well-known matrix factorizations.

From (1.1.1) and (1.1.2) we have by dropping the second-arder term that

LlA ~ BLlC + tlBC, (1.1.3)

(
The basic idea of this approach is to write the approximate matrix equation (1.1.3)

as.a matrix-vector equation by using the special structure and· properties of B and



C, then get the vector-type expressions for 11B and 11C. So we will calI this the

"matrix-vector equation' approach.

Stewart [44, 1995) \Vas stimulated by Chang's work on the Cholesky factorization

ta understand this more deepIy, and present simple explanations for 'what was going

on. Before Chang's work, the most used approach to perturbation analyses of factor­

izatians was what we will caU the 'matrix equation' approach, which keeps equations

like (1.1.3) in their matrix-matrix forma Stewart [44] (alsa see Chang, Paige and

Stewart [13, 1996]) used an elegant construct, partIy illustrated by the 'up' and 'law'

notation in Section 1.2, which makes the matrix equation approach a far more usable

and intuitive tool. He combined this with deep insights on scaling to produce the new

matrix equation analysis which is appeaIingly c1ear, and provides excellent insights

into the sensitivities of the LU and Cholesky factorizations. This new matrix equa­

tian analysis does not in general provide tight results like the matrix-vector equation

analyses do, but they are usually more simple, and provide practical estimates for the

true condition numbers obtained from the latter. This approach is aIso fairly general,

but for each factorization a particular treatment is needed. This is different from the

matrix-vector equation approach, which can be applied to any factorization directly

without any difliculty. .

vVe combined these two approaches to give a deep underStanding of the sensitivity

of the Cholesky factorization, see Chang, Paige and Stewart [13, 1996). We aIso

applied the two approaches ta the QR factorization and the Cholesky downdating

pr6blem, see Chang, Paige and Stewart [14, 1996], and, Chang and Paige [10, 1996]~·

The interplay of the two approaches goes through the whole thesis.

The main purpose of this thesis is ta establish first-order perturbation bounds

that are as tight as possible for the factorizations mentioned above, present the cor­

responding condition numbers, give sorne condition estimators, and shed light on the

effect of the standard pivoting on the conditioning. Although first-order perturbation

- bounds ar~ satisfactory for all but the most delicate wor~, we aIso give sorne rigorous

(

(
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perturbation bounds for sorne factorizations. Sorne results in this thesis have been

presented in the papers mentioned above. Sorne other new results here have not yet

been published.
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1.2 Notation and basics

First we describe sorne mostly standard notation, and define sorne elernentary con­

cepts used throughout this thesis.

• Rmxn denotes the vector space of all m x n real matrices, and Rn = Rnx 1.

• A matrix is always denoted by a capital letter, e.g. A. The corresponding

lowercase letter with the subscript j and ij refers to the the jth column and

(i,j)th entry respectively, e.g. aj, aij' Aiso the notation (A)ij designates the

(i,j)th entry. A(i,:) denotes the ith row of A and A(:,j) the jth column.

• A vector is represented by a lowercase letter, e.g. b. The lndividual components

are denoted with single subscripts, e.g. bi .

• n(A) denotes the space spanned by the columns of A.

• ..\(A) denotes an eigenvalue of a matrix A; p(A) denotes the spectral radius of

A, i.e. p(A) = max I.\(A)I.

• lT(A) denotes a nonzero singular value of a matrix A; CTmax(A) and lTmin(A)

denote the largest and smallest nonzero singular values of A, respectively.

• Let A = (aij) be an m x n matrix, then lAI is defined by lAI = (Iaij/).

• Let t be a scalar and let A(t) = (aij(t)) he an m x n matrix. If aij(t) is a

differentiahle function of t for all i and j, then we say A(t) is differentiahle with
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respect to t and define

• "." denotes a vector norm or matrix norm.

6

• 11·11 is a monotone..and consistent matrix norm if lAI ~ IBI implies IIAII ~ IIBII,
and 1I~4BII ~ IIAIIIIBII·

• The I-norm, 2-norm (or Euclidean norm), and co-norm of an n-dimension vector

x are defined respectively by

n

IIxlll = Llxd,
i=1

n

IIxll2 _= CL IXiI2)1/2,
i=l

• The S-norm (S for summation), F-norm (or Frobenius norm), and M-norm (lvl

for maximum) of an m x n matrix A are defined respectively by

IIAlls == L /aiil,
i,j

IIAIIF = CL laiiI2)1/2,
iJ

• The I-norm, 2-nonn (or spectral norm), and oo-norm of an m x n matrix A

defined by

are given respectively by

(

• KvCA) = IIA t ll v IIAllv denotes the standard condition number of matrix A and

condv(A) = iliAtllAlllv the Bauer-Skeel condition number of matrix A when

norm Il . IIv is used, where At is the Moore-Penrose generalized inverse of A. If

A is nonsingular, then Kv(A) = IIA-IllvIlAl/v and condv(A) = IIIA-II/Alllv.



(
CHAPTER 1. INTRODUCTION AND PRELIMINARIES

• Let C = [Cl, C2,·· . ,en] be an m x n matrix, then vec(C) is defined by

vec(C) =

Now \ve describe sorne special notation used throughout this thesis.

7

• D n aIways denotes the set of all n x n real positive definite diagonal matrices.

• Let .X· = (xii) he an n x n matrix. The upper triangular part, strictly lower

triangular part and strictly upper triangular part of X are denoted respectively

by

ut( ...\"") =

o 0 . Xnn

slt(X) = X - ut(X), sut(X) = slt(XT)T,

(1.2.1 )

and the diagonal of X is denoted by

diag(X) =diag(xu, X22, •• ·, Xnn). (1.2.2)

• For any n x n matrix X = (Xii), we define the upper and lower triangular

matrices

l
X122XU Xl n

up(x) =
0 ~X22 X2n

0 0 1
2'Xnn

low(X) = up(XT)T = X - up(X),

(
(1.2.3)
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• For any n x n matrix C = [Cl, ... , en], denote by C~l) the vector of the first i

elements of ci, and by cjD the vector of the last i elements of ci' \Vith these,

we define ('u' denotes •lipper', 'si' denotes 'strictly lower')

(1) (.-1)
Cl C-l

(2) (.-2)

uvec(C) = C2
slvec(C) = C2

(1.2.4)

c(n) (JJ
n

C.. _ 1

They are the vectors formed by stacking the columns of the upper triangular

part of Cinto one long vector and by stacking the columns of the strictly lower

triangular part of C inta one long vector, respectively.

The 'low' and 'up' have the following basic properties. For general X E Rnxn

ma..x{lIlow (X)IIF, Il UP(X)/IF} < IIXIIF,

IIX - up()( + X T )IIF = IIlow(~\'") - [low(X)]TIIF ~ V2I1XIIF.

For symmetric X E Rnxn

(1.2.5)

(1.2.6)

1
211 up(X)II} = 211Iow(X)II} = IIX/I} - 2(xîl + x~ + ... + x~n) $IIXII}. (1.2.7)

The following well-known theorem obtained by van der Sluis [51, 1969] will often

be referred to when we discuss the effect of scaling on the condition estimators in this

thesis.

Theorem 1.2.1 Let S, T E Rnxn and let S be nortsingular, and define

Drp = diag(IIS(i, :)IIp), Dcp = diag(IIS(:,j)/Ip), p = 1, 2.

Then

(

IIITllSllloo = IITDrdloo IID;ï1Slloo =minDeD. IITDlloo IID-1Slloo,

Il ISIITIIh = IISDci
l
lllll D cl T lb = minDeD. IISD - I llt IIDTlh,

IITDr2 112 IID~ISII2 < vn infDeD./ITD1I2 II D - 1SII2,

IlSD~11l2I1Dc2TII2 ~ fi infDeD.lIsn-11l2I1DTli2.

(1.2.8)

(1.2.9)

(1.2.10)

(1~2.11)
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Thus ~fT = S-l, then

condoo(S) = K,oo(D~lS) = minDED. K oo(D-1S),

condl(S-l) = Kl(SDci l
) == minDED. Kl(SD- 1

),

K,2(D;:i S) ~ .;n infDED. K2(D- 1S),

K.2(SD;~}) ~ .;n infDED. K2(SD- 1
).

9

(1.2.12)

(1.2.13)

(1.2.14)

(1.2.15)

Particularly, if 5 is symmetric positive definite J define D. = diag(5)1/2, then

o (1.2.16)

vVe will often use the following results when discussing the effect of standard

pivoting on the condition numbers.

Theorem 1.2.2 Let T E Rnxn be a nonsingular upper triangular matrix satisfying

Then with n == diag(T),

KF(n-1T) =II(D- 1T)-1IiF IIn- l TIIF ~ y'2n(n + 1)(4n + 6n - 1)/6,

K.1,oo(D-lT) =Il (n-1T)-11/1,oo "D- 1Tlll,oo ~ n2n- 1
,

condF(T) ="IT-11ITIII F ~ ";4"+1 - 3n - 4/3,

condl,oo(T) = II/T-l//TI 1/1,00 ~ 2" - 1.

Ali of the upper bounds above can be reached for the n x n matrix

(1.2.1i)

(1.2.18)

{1.2.19)

(1.2.20)

(1.2.21 )

1 -1 -1 -1

1 -1 -1

T= (1.2.22)

1 -1

(
1
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Proof. Let T =D-1T. Then we have 1 = Itiil ~ /fui. It is easy to show that

Thus

10

(1.2.23)

IITII} < n(n + 1)/2, IIT/l I ,co ~ n,

(

n-l n n

"f'-lll~ ~ L L (2i - i
-

1)2 + L 1 = (4 n + 6n - 1)/9,
i=l j=i+l i=l

n-l n

liT-lib ~ L 2n -
i
-
1+ 1 = 2n

-
1, 111'-1 1100 ~ 1 + L 2j

-
2 = 2n

-
1

•

~l i~

From these (1.2.18) and (1.2.19) follow.

By (1.2.23) we have for j > i,

j i
(IT-Il/Tl)ii = (1f'-lIlTl)ij = L I(f'-l)ikllfkil ~ 1 + L: 2k- i- 1

• 1 = 2i - i
.

k=i k=i+l

Thus
n-l n n

IIIT- IIITI ,,~ ~ L L (2i - i )2 + L 1 = (4n +1
- 3n - 4)/9,

i=l j=i+l i=l

n n

Il IT-lIITI lb ~ L 2n
-

i = 2n
- 1, IIIT-l IIT llloo ~ L 2n-j = 2n

- 1,
i=l j=l

which give (1.2.20) and (1.2.21).

1 1 2

If T has the form of (1.2.22), then we easily verify T-l .:...

1 1

1

i.e., I(T- 1)ijl = 2j - i
- 1 for j > i. It is easy to see from the foregoing proof that ail

of the inequalities in (1.2.18), (1.2.19), (1.2.20) and (1.2.21) become equalities with

D=I. 0



(
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Chapter 2

The Cholesky Factorization

2.1 Introduction

The Cholesky factorization is a fundamental tool in matrix computations: given an

n x n real symmetric positive definite matrix A, there exists a unique upper triangular

matrix R with positive diagonal entries such that

R is called the Cholesky factor.

There are different algorithmic forms of Cholesky factorization. The following

algorithnl is the 'bordered' forme

Algorithm CHOL: Given a symmetric positive definite A E Rnxn this algorithm
computes the Cholesky factorization A = R T R.

for j = 1 : n
for i = 1 : j - 1

rij = (aij - E~~ll r/r:irkj)/rii
end

. 1 1
rjj = (Qjj - 2:i:l r~j)l 2

end-

Il
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(

Let LlA E Rnxn be a symmetric matrix such that A + .dA is still symmetric

positive definite, then A + ~A has the unique Cholesky factorization

A + LlA = (R + LlR)T(R + ~R).

The goal of the perturbation analysis for the Cholesky factorization is to deterrnine

a bound on I/LlRII (or I~RI) in terms of (a bound on) II~AII (or I.dA!).

The rest of this chapter is organized as follows. In Section 2.2 we consider the case

_where only a bound on IILlAIi is known. We refer ta these as 'norm-bounded changes in

A'. First-order and rigorous tight bounds are presented by the so called matrix-vector

equation approach, and somewhat weaker but more insightful and computationally

applicable bounds are aIso given by the 50 called rnatrix equation approach. In

Section 2.3 we make a similar analysis to that in Section 2.2 for the case where a

bound on I~AI is known. vVe refer to these as 'component-bounded changes in A'. In

both of the sections, we derive useful upper bounds on the condition of the problem

when we use pivoting, and give numerical results to confirm our theoreticaI analyses.

FinaIly we summarize our findings and point out future work in Section 2.4.

This Cholesky analyses (and particularly Section 2.2.1) may aIso be taken as

an introduction to the general approach to perturbation analysis of factorizations

proposed by this thesis.

2.2 Perturbation analysis with norm-bounded

changes in A

There have been severa! papers dealing with the perturbation analysis for the Cholesky

factorization with norm-bounded changes in A. The first result was that of Stew­

art [39, 1977]. It was further modified and improved by Sun [46, 1991), who in­

cluded a first-order perturbation result. Using a different approach, Stewart [41,

1993] obtained the same first-order perturbation result. Recently Drmac·, Omladic
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(
and Veselié [20, 1994] presented perturbation results of a different flavor. They

made a perturbation analysis for the Cholesky factorization of H = D;lAD;l with

De =diag(a:/2
), instead of A. The advantage of their approach is that a good bound

can be obtained when .dA corresponds to backward rounding errors. So their result

will be referred to in the next section.

The main goal of this section is to establish new first-order bounds on the norm

of the perturbation in the Cholesky factor, smaller than those of Sun [46, 1991] and

Stewart [41, 1993], and present a condition number which more c10sely reflects the

true sensitivity of the problem. Also, we give rigarous perturbation bounds. Many

of the results have been presented in Chang, Paige and Stewart [13, 1996].

2.2.1 First-order perturbation bounds

vVe first obtain an equation and an expression for R(O) in the Cholesky factorization

.4. + tG = RT(t)R(t), then we use these to obtain our new first-order perturbation

bounds by the matrix-vector equation approach and the matrix equation approach.

The first approach will provide a sharp bound, resulting in the condition number

for the Cholesky factorization with norm-bounded changes in A, while the second

approach provides results that are usuaIly weaker but easier to interpret, and allows

efficient computation of satisfactory estimates for the actual condition number.

Rate of change of R

Here we derive the basic results on how R changes as A changes. We then derived

Sun's [46, 1991] results. The following theorem summarizes the results we use later.

Theorem 2.2.1 Let A E Rnxn be symmetric positive definite, with the Cholesky

factorization A = RT R, let G E Rnxn be symmetric, and let L1A = foC, for sorne

€ ~ O. If

(
p(~-li1A) < 1, (2.2.1)
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then A + LlA has the Cholesky factorization

A + LlA = (R + IJ.R)T(R + L1R),

with .t1R satisfying

where R(a) is defined by the unique Cholesky factorization

14

(2.2.2)

(2.2.3 )

A + tG = RT(t)R(t),

and sa satisfies the equations

(2.2.4)

RT R(O) + R.T(O)R = G,

R(O) = up(R-TGR-1)R,

where the 'up 7 notation is defined by (1.2.3).

(2.2.5 )

(2.2.6)

(

Praof. If (2.2.1) holds, then for all Itl ~ € the spectral radius of tR-T GR- 1 satisfies

Therefore for aIlltl ~ €, A+tG = RT (! +tR-TGR-1)R is symmetric positive definite

and sa has the unique Cholesky factorization (2.2.4). Notice that R(O) = R and

R(€) = R + L1R, so (2.2.2) holds.

It is easy to verify that R(t) is twice continuously differentiahle for Itl ~ € from

the algorithm for the Cholesh.~ factorization. If we differentiate (2.2.4) and set t = 0

in the result, we obtain (2.2.5) which we will see is a linear equation uniquely defining

the elements of upper triangular R(O) in terms of the elements _of G. From upp~r

triangular R(O)R- 1 in

we see with the 'up' notation in (1.2.3) that (2.2.6) holds; Finally the Taylor expansion

for R(t) about t = 0 gives (2.2.3) at t = €. 0
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(
Using Theorem 2.2.1 we can now easily obtain the first-order perturbation bound

due to Sun [46, 1991], and also proved by Stewart [41, 1993] by a different approach.

Theorem 2.2.2 Let A E Rnxn be symmetric positive definite, with the CholesJ..~

factorization A = RT R, and let LlA be a real symmetric n x n matrix satisfying

(2.2.7)

then A + .âA has the Cholesky factorization

where

(2.2.8)

Proof. Let G =L1A/E (if E = 0, the theorem is trivial). Then

(2.2.9)

Since

the assumption (2.2.7) implies that (2.2.1) holds. 50 the conclusion of Theorem 2.2.1

hoIds here. By using the fact that Il up(X)IIF ~ ~IIXIIF for any symmetric X (see

(1.2.7)), we have from (2.2.6) that

(

which, \Vith (2.2.9) and IIR-llI~ = IIA-1 1l 2 , gives

IIR(O)IIF < _1 (A)
IIRII2 - ..j2K2 .

Then (2.2.8) follows iminediately from the Taylor expansion (2.2.3). o

(2.2.10)

(2.2.11)
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(
Clearly from (2.2.8) we see ~K2(A) can be regarded as a measure of the sensitivity

of the Cholesky factorization. Sînce a condition number as a function of a matrix of a

certain class has ta be from a bound which is attainable ta first-order for any matrix

in the given class (see (2.2.19) for a more formai definition of the condition number of

the Cholesky factorization with norm-bounded changes in A) we will use this rigorous

terminology, and use a qualified term condition estimato"f when this criterion is Dot

met. For general A. the first-order bound in (2.2.8) is not attainable~ in other words,

we are not always able ta choose a symmetric L1A satisfying IILlAIIF ~ € IIAII2 to make

(2.2.11) an equality. We could use a simple example ta illustrate this, but we chonse

not to do sa here~ as it will be obvious after we obtain the actual condition number.

Therefore we say ~K2(A) is a condition estimator for the Cholesky factorization.

vVe have seen the basis for deriving first-order perturbation bounds for R is the

equation (2.2.5) (or the expression (2.2.6) of its solution), which will be used later.

Our following analyses will be based on the same assumptions as in Theorem 2.2.2.

Matrix-vector equation analysis

Now we would like to derive an attainable first-order perturbation bound.

The upper and lower triangular parts of the matrix equation (2.2.5) contain iden­

tical information. The upper 'triangular part can be rewritten in the fol1owing form

by using the 'uvee' notation in (1.2.4) (for the derivation, see the Appendix of Chang,

Paige and Stewart [13, 1996]):

(

W R uvec(R(O)) = uvec(G), (2.2.12)
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"( .. +1) ,,(,,+1). •
where W R E R-;2- X :2 1S the lower triangular matrix

17

(2.2.13)

Note that for any upper triangular X, lIuvec(X)1I2 = IIXIIF. Ta help our norm

analysis, for any matrix C E Rnxn we define

where

duvec(C) =V F uvec(C), (2.2.14)

. t;; 10 10 {;:; . {;:; {;:; {;:; "(rl+l) n("+1)
1JF =dlag(l,~, ... ,y2, v2,~.. , v2, 1.." ... , ..v2, v2,~.. , v2, 1) E R :2 X 1 •

2 j n

Thus for any symmetric matrix G we have IIduvec(G)1I2 = IIGIIF. For our norm-based

analysis, we rewrite (2.2.12) as

WR uvec(R(O)) = duvec(G), (2.2.15)

(

Since R is nonsingular, WR is aIso, and from (2.2.15)

uvec(R(O}) = WR"l d~vec{G). (2.2.16)
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so taking the 2-norm and using IiGIIF ~ IIAI\2 from (2.2.9), we obtain

18

IIR(O)IIF - Il JtVnl duvec(G)l12

< II Wn1Ibl\duvec(G)IIF (2.2.17)

- IIWnl lb IIGIIF

~ IIWnI
1l2/1A lb,

where for any nonsingular upper triangular R, equalities can be obtained by choosing

G such that duvec{G) lies in the space spanned by the right singular vectors corre­

sponding to the largest singular value of "",;1 and IIGII F = I/AII2. Using the Taylor

expansion (2.2.3) and IIA\l2 = IIRII~, we see

"~~II~F ::;; IIWJÏ% IIAII~/2€ + O(~), (2.2.18)

and this bound is attainable to first-order in €. Thus for the Cholesky factoriza­

tion with norm-bounded changes in A the condition number (with respect to the

combination of the F- and 2-norms)

Kc(A) == !~sup {I~~~I:: :A + LlA = (R + LlR)T(R + LlR), IILlAI/F ::;; ""A "2}
(2.2.19)

is given by

Obviously with the definition of Kc(A) we have from (2.2.8) that

1
Kc(A) ~ /2 K2(A).

(2.2.20)

(2.2.21 )

This upper bound on Kc(A) is achieved if R is an n x n identity matrix with n > 2,

and so is tight.

We now derive a lower bound on Kc(A). Observe that the n x n bottom right

hand corner of W R is just di~g(l, l, ... , l, 2)RT , 50 that WR has the fonn

c·
_ [x 0 ]W R =
- x D/J.T '

(2.2.22)
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where

ÎJ == diag (h~ J2, . .. , .../2,2).

Therefore we have

--1 [x 0 ]ltVR = .
X R-T b-1

l t follows that

thus

19

(2.2.23)

(2.2.24)

(

This bound is tight for any n, since equality will hold by taking R = diag(rii), with

o < V2Tnn ~ Tii, i =1 n.

vVe summarize these results as the fol1owing theorem.

Theorem 2.2.3 With the same assumptions as in Theorem 2.2.2, A + LiA has the

unique Cholesky factorization

such that
IIL1RIIF

IIRII2 ~ Kc(A)€ + O(~), (2.2.25)

1 1/2 12" K2 (A) ~ Kc(A) ~ .j2l'i:2(A) , (2.2.26)

where Kc(A) = IIWRlIl2I1AII~f2, and the first-order bound in (2.2.25) is attainable.

o

From (2.2.26) we know the new first-order bound in (2.2.25) is at least as good

as that in (2.2.8), but it suggests the former may he considerably smaller than the

latter. Consider the following example.
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Example 1: Let A = diag(1,62 ). Then R = diag(1,6), WR = diag(2, V2,26).

\Vhen 0 < 6 :::; 1/.;2, we obtain

o

We see that the first-order perturbation bound (2.2.8) can severely overestimate the

effect of a perturbation in A.

But it is possible that I\:c(A) has the same order as K2(A), as we now show.

Example 2: If.4 =-[ 6; :] with small6 > 0, then R = [~ ~]. Sorne simple

computations give

o

(

Suppose the Cholesky factorization of A is approached by using the standard

symmetric pivoting strategy: PApT = RT R, where P is an n x n permutation matrix

designed 50 that rows and columns of A are interchanged, during the computation of

the reduction, to make the leading diagonal elements of R as large as possible. Let

the Cholesky factorization of P(A+LlA)pT be P(A+i1A)pT = (R+i1R)T(R+LlR).

Then by Theorem 2.2.3 we have

and
1 1/2 T 12K2 (A) $ K.c(PAP ) $ y'2K2(A).

Note that the first-order bound in (2.2.8) does not change when the Cholesky factor-.

ization of A is approached by using any pivoting strategy. Clearly the perturbation

bound (2.2.25) more closely refiects the structure of the problem. Many numeri­

cal experiments with the standard pivoting strategy suggest that Kc(PApT) usually

has the same order as ~/2(A), and in fact K:c(PApT) can he bounded above by
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(
K.;/2(A) Jn(n + 1)(4n + 6n - 1)/6, see (2.2.39). Using the standard symmetric pivot­

ing strategy in Example 2 gives

_[V2 ~6]R- ,
o ~6

(

and Kc(PApT ) = O(l/b), showing how pivoting can improve the condition of the

problem (as measured by our condition number) by an arbitrary amount.

There have been several techniques for estimating the 2-norm of the inverse of a

triangular matrix, e.g., Cline et al [16, 1979], Cline et al [15, 1982] and Dixon [18,

1983]. A comprehensive, comparative survey on thci;e techniques has been given by

Higham [27, 1987]. Using these techniques, /IWR" 1 1l2 could be estimated at the cost

of solving a few linear systems with matrices IVR and WI. Ta solve the former is

equivalent to solving RT~'( + X T R = G (G is symmetric) for upper triangular )(,

and the cost is O(n3 ). Even thaugh WkY = c is not the transpose of the above

matrix equation, it can also be solved in OCn 3 ) by using the special structure of }Îl;{.

However since the Cholesky factorization costs O(n3 ), snch a computation would

rarely be considered feasible. Of course if it is known that K,c(PApT) ~ K~/2(A), as

usually happens when we use the standard symmetric pivoting, then we need only

estimate K~/2(A) = K2(R) for this case, and this can be done in O(n2). For a practical

approach to the generai case, see the following matrix equation analysis.

Matrix equation analysis

As we saw, Kc(A) is unreasonably expensive to compute or estimate directly with

the usuaI approach, except when we use pivoting, in which case Kc(PApT) usually

approaches its lower bound ~/2(A)/2, see (2.2.39). Fortunately, the approach of

Stewart [44, 1995] can he extended to ohtain an excellent upper hound on X:c(A), and

also give considerable insight into what is going on, and lead ta efficient and practical

condition estimators even when we do not use pivoting.
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In Theorem 2.2.2 we used the expression of R(O) in (2.2.6) to derive Sun's first­

arder perturbation bound. Now we again look at (2.2.6), repeated here for clarity.

A useful observation is that for any matrix B E Rnxn and diagonal matrix D E Rnxn,

up(B)D = up(BD).

Let D n be the set of all n x n real positive definite diagonal matrices. Far any

D = diag(b l , •.• , bn ) E D n we can take R = DR, giviIÎg

which leads ta cancel1atian of the D-l with D:

(2.2.2ï)

and since for any matrix E, "up(B)IIF ~ I/BIIF,

(2.2.28)

Using IIGIIF ~ I/A1I2 = IIRII~ we get

IIR(O)IIF - -l')
I/R1I2 ~ K2(R)K2(R) = K2(R)/'i,2(D R) =K.c(A, D , say. (2.2.29)

(

Since this is true for all D E D n , we may choose D ta minimize Kc(A, D),

which gives the encouraging resul t

Then from the Taylor expansion (2.2.3) we have

(2.2.30)

(2.2.31)

(2.2.32)



(2.2.31) shows 1/V2 times the first-order bound in (2.2.32) is at least as good as that

in (2.2.8), the first-order perturbation bound in Sun [46, 19911 and Stewart [41, 19931.

"Vith (2.2.19), the definition of Kc(A), we see from (2.2.32) that Kc(A) ~ x:'c(A).

But it is useful to praye this more delicately, and 50 obtain sorne indication of how

weak Kc(A) is as an approximation ta Kc(A). We know G can he chosen ta make

(2.2.17) an equality, so that for such a G we have

(
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Thus for any D E D n in R = DR

IIWilll211GIIF ~ "up(R-T GR-1)IIF I/RI/2

< K2(R)IIR- l ll 2 I1GIIF,

or

which implies

23

(2.2.33)

(2.2.34)

(2.2.35)

(2.2.36)

for any D E D n • Note the two inequalities (2.2.33) and (2.2.34) in going from Kc(A)

ta '<c(A, D).

Now we summarize the abave results as the following theorem.

Theorem 2.2.4 With the same the assumptions as in Theorem 2.2.2, A + LlA has

the Cholesky factorization

A + L1A = CR + L1R)T(R + L1R),

such that

(2.2.37)

(2.2.38)

( where -Kc(A) is as. in (2.2.29) and (2.2.30). o
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This matrix equation approach is very simple yet gives considerable insight into

why the Cholesky factorization can be far more well-conditioned than we previously

t?ought. For example, if the ill-conditioning of R is mostly due to bad scaling of the

rows, then correct choice of D in R = DR can give K2(R) very near one, sa Kc(A, D)

will approach twice the lower bound ~/2(A)/2 on Kc(A). As an illustration suppose

[
1 6] -R = ~ then for small 6 > 0, K2(R) = O(l/b). But if we set D = diag(l, 0),
o 6

then 1\.2(D) = 1/6 and K2(R) = 0(1), 50 that Kc(A, D) is close to the lower bound on

Kc(A). Note how almost all the ill-conditioning was revealed by the diagonal of R.

This aiso provides another explanation as to why the standard symmetric piv­

oting of A is 50 successful, making Kc(PApT } approach its lower bound in nearly

aIl cases. If A is ill-conditioned (sa there is a large distance between the lower and

upper bounds on Kc(A)) and the Cholesky factorization is computed with standard

symmetric pivoting, the iH-conditioning of A will usually reveal itself in the diagonal

elements of R. Stewart [43, 1995] has shown that such upper triangular matrices

are artificially ill-conditioned in the sense that they can be made well-conditioned by

scaling the rows via D. This implies that Kc (PApT, D), and therefore (as we shaH

show) Kc(PApT), will approach its lower bound. We support this mathematically in

the following.

Theorem 2.2.5 Let A E Rnxn be symmetric positive definite with the Cholesky fac­

torization P ApT = RTR when the standard sy~metric pivoting strategy is used.

Then

i4 2
(A) :$ K-c(PApT) :$ K-~(PApT) :$ K.:l/2(Â) V2n(n + 1)(4n -+ 6n - 1)/6,

(2.2.39)

and from this

(
(2.2.40)



Proof We need only prove the last inequality of (2.2.39). In fact standard pivoting

ensures rri ~ Lk=i T& for all j ~ i, so Iriil ~ Irul. Since for any D E D n ,

(
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the inequality follows immediately from K2(R) = ~/2(A) and (1.2.18) in Theo-

rem 1.2.2 with D = diag(R). 0

One may not he impressed by the 4n factor in the upper bound in (2.2.39), and

may wonder if the upper bound can significantIy be improved. In fact the upper bound

can nearly be-approximated by a parametrized family of matrices A = }('I(fJ)Kn(B),

where
1 -c -c . -c

1 -c . -c

1 . -c (2.2.41)

1

with c = cas(B) and s = sin(O), were introduced by Kahan [32, 1966]. Notice here

the permutation P corresponding ta the standard symmetric pivoting strategy is the

identity. Taking D = diag(Kn (8)) = diag(l, s,·'· t sn-l), then by the_Iast part of

Theorem 1.2.2 we have

as 8 -+ o.KF(D- 1Kn(B)) --+ v'2n(n + 1)(4n + 6n -1)/6

Let Dr = diag(llKn(B)(i, :)112), then

Dr =Ddiag( JI + (n - l)c2,···, \1"1 + c2, 1).

Renee

(2.2.42)

(
. _KF(D- 1Kn(fJ)) = K,F(D-1DrD;lK n(8)) $ K.F(D- 1Dr) K.2(D;1 K n(8))

.~ -..;n. vn(n + 1)/2· K2(D;1K n (8)),



(
CHAPTER 2. THE CHOLESKY FACTORIZATION

or

K2(D;1 K n(8)) ~ ..; 1 KF(D- 1Kn(fJ)).
,;no n(n+l)/2 .

But by (1.2.14) in van der Sluis's Theorem 1.2.1 we have

Thus

K~(PApT) ~ 1 x:~/2(A) KF(D- 1Kn(B»).
nvn(n + 1){2

Then it follows from (2.2.42) that as B --+ 0,

x:~(PApT) 2: ~/2(A) v'4~ + 6n - 1.
6n

26

(

This indicates the upper bound in (2.2.39) is nearly tight.

Many computational experiments show with standard symmetric pivoting that

l'i.c(PAPT) is usually qilite close ta the lower bOllnd of x:à/2(A), see Section 2.2.3

Tables 2.2.1 and 2.2.2, but can significantly larger for the matrices whose Cholesky

factors are Kahan matrices, see Section 2.2.3 Table 2.2.3 as weIl as the comments.

In the latter case, something like a rank-revealing pivoting strategy such as that in

Hong and Pan [31, 1992]) will most likely be required to make the condition number

close to its lower bound.

The practical outcome of this simple analysis is that we now have an O(n2) condi­

tion estimator for the Cholesky factor. By (1.2.14) in van der Sluis's Theorem 1.2.1,

l'i.2(R) will be nearly optimal when the rows of Rare equilibrated in the 2-norm. Thus

the estimation procedure for the condition of the Cpolesky fa.ctorizat.ion is to choose

D = Dr = diag(IIR(i, :)1/2) in R = DR, and use a standard condition estimator (for

matrix inversion) to estimate K2(R) and X:2(R) in (2.2.29).

Finally we give a new perturbation bound which does not involve any scaling

matrix D, by using a monotone and consistent matrix norm II· Il (see Section 1.2).
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Theorem 2.2.6 Let A E Rnxn he symmetric positive definite, tuith the Cholesky

factorization A = RT R, and let LlA E Rnxn he a symmetric matrix satisfying IILlAIi :5

€ IIAII for sorne monotone and çonsistent matrix nOml. If K.(A)€ < l, then

II~RII TIl RI! :5 K.(R )cond(R)€ + O(~).

Praof. Let G =LlA/€ (if € = 0 the theorem is trivial). Since

(2.2.43)

(

Theorem 2.2.1 is applicable here. If wé take /1 . Il on both sides of (2.2.6), we have

Combining this with IICI! :5 liAI! :s IIRT IIIIRII, we obtain

IIR(O)II < K(RT)cond(R)
IIRII - ,

which with the Taylor expansion (2.2.3) gives (2.2.43). 0

Note coud(R) is invariant under the row scaling of R, in other words, the pertur­

bation bound (2.2.43) provides the scaling automatically. This makes (2.2.43) look

simpler than (2.2.37). Also from (1.2.12) in van der Sluis's Theorem 1.2.1, we know

for the 00-norm,

where D~1R has rows of unit 1-norm (Drl = diag(IIR(i, :)Ih). This gives the condition

estimator KI (R)Koo(D;il R) with respect ta the oo-oorm.

2.2.2 Rigorous perturbation bounds

Usuallya flrst-order bound is satisfactory, but sometimes more careful work is needed.

In this section, we will present rigorous perturbation bounds (with no higher order
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terms) for the Cholesky factor by the matrix-vector equation approach and the matrix

equation approach.

Let .4 = RT R. If A +~A = (R + t1R)T(R + ~R), then we have

(2.2.44)

or

which gives

(2.2.45)

(

We will use (2.2.44) and (2.2.45) in deriving rigorous perturbation bounds as weIl

as the foIlowing lemma.

Lemma 2.2.1 (A trivial variant of Theorem 3.1 in Stewart [38, 1973]. and Theorem

2.11 in Stewart and Sun [45, 1990]) Let T be a bounded linear operator on a Banach

space B. Assume that T has a bounded inverse, and set {) = IIT-l lI- l . Let cp : B -+ B

be a function that satisfies

and

/l'P(X) - ep(y)1I < 21]max{lI x ll, lIyll}l/x - yI!

for sorne '1 ~ O. For any 9 E B, let T = IIT-lglI. If p =TT}/{)-< 1/4, then the equation

Tx=g+<p(x)

has a unique solution x that satisfies

2,
Ilxll < < 2,. 0

- 1 + Jl- 4p-

First we give a rigorons perturbation bound· by the matrix-vector equation ap­

proach.
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can be rewritten as

TRX = LlA - <tJ(X).

By using Lemma 2.2.1 we can prove the following theorem.

(2.2.46)

Theorem 2.2.7 Let A E Rnxn be symmetric positive definite, with the Cholesh."Y

factorization A = R T R. Let LlA E Rn Xn be symmetric. If

then A + dA has the Cholesky jactorization

where

(2.2.4ï)

(2.2.48)

21!Wi1 duvec(L1A) 112
<

1 + VI - 41!Wi 11!21! Wi 1duvec(LlA)112

< 211Wi1 duvec(LlA)1!2 ~ 2I!WilIl21!L1AI!F' (2.2.49)

Obvio'Usly, the weakest bound above can be rewritten in the following elegant jorm:

(2.2.5P)

Prao/. See Chang, Paige and Stewart [13, 1996]. o

(

From (2.2.23) and (2.2.35), it follows that for any D E D n

In randomly perturbed problems we expect

Thus the assumption (2.2.47) is generally stronger than (2.2.7), and may be greatly

50. Following the s~e argument as Stewart [41, 1993], however, (2.2.47) is néeded



to guarantee that the bound on IILlRIIF will not explode. Furthermore, if the ilI­

conditioning of R is mostly due to bad scaling of the rows, then correct choice of D

~an give h2(D-1R) very near one. In particular, if the standard symmetric pivoting

is used in computing the Cholesky factorization, then IIWR"11l2 and ~ IIA-11I~/2 will

usually be of similar magnitude, see (2.2.40); that is, /IWRl I/ 2 I/WRI duvec(LlA)lh

and ~IIA-11l2 /ILlAIIF will usually have similarmagnitude. So the condition (2.2.47) is

not too constraining. Numerical experiments suggest that (2.2.49) is better than the

equivalent result in Sun [46, 1991], see Chang, Paige and Stewart [13, Section 3.2].

(
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Now we use the matrix equation approach to derive a weaker but practical rigorous

perturbation bound. Let R = nit then from (2.2.45) we have

(2.2.51 )

Let ..Y = LiRR-1, and define 4>(~Y) = up(D-1 ...yTX). Then (2.2.51) can he rewritten

as

J: = up(R-T LiAR-1) - </J(X).

Applying Lemma 2.2.1 ta (2.2.52) we obtain the following result.

(2.2.52)

Theorem ~.2.8 Let A E nnxn be symmetric positive definite, with the CholesA,.y

factorization A =_ R T R. Let LlA E 'R,nxn be symmetric, and assume D E D n · If

(

then A + LlA has the Cholesky jactorization

A +.dA =: (R + LlR)T(R + .dR),

where

Il.dRIIF ~ 2I1R-TLlAR-
l
D/lF/ln-

1
RII2

I+ VI - 4I1R-TLlAR-1nIlFIID-1 1l 2

If the assumption (2.2.53) is strengthened to

(2.2.53)

(2.2.54)

(2.2.55)

°(2.2.56)
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then

2x: (R)x: (D- 1R) IILlAIIF< 2 2 IIAII2

1 + VI - 4X:2(R)!IRII2I1R-IDlb "D-11l2"tA11~F

< 2 '(A D)IILlAIIF
"'c' IIAlb·

Praof. 1t is easy ta see that the function cP(X) = up(D-1X T X) satisfies

and for any upper triangular matrices X and Y,

31

(2.2.57)

(2.2.58)

c-

50 we takeT] = IID-1 1l 2 . By the assumption (2.2.53), we have p = TT/lb < 1/4, with

T = Il up(R-TLlAR- l D)IIF ~ IIR-T LlAR- l DIIF, 1] = IID-1 1l 2 , and lJ = 1 since here T

is an identity operator. Thus, by Lemma 2.2.1, (2.2.52) has a unique upper triangular

solution, say .tJ.RR-1, where R =RD-l, that satisfies

IILlRR- l li
F

< 211 up(R-TLlAR-
1

) 112
1 + JI - 411 up(R-TLlAR-l)IIFlln-1 1l 2

2I1R-T LlAR-11!2
< (2.2.59)

1 + VI - 4I1R-T.tJ.AR-1 II F I!D- 11l 2
thus (2.2.54) and (2.2.55) fallow, the latter using IILlRIIF $ IILlRR- l II F IIRII2.

But R + LlR in (2.2.54) must have positive diagonal ta satisfy our definition of

the Cholesky factorization, ~here R was given and LlRR- l solves (2.2.52). We now

praye the positivity. From (2.2.59) and (2.2.53) it follows that

Thus R + LlR is nonsingular for any t E [0, 1], and by continuity of elements, R + LlR

has positive diagonaL

If (2.2.56) holds, then (2.2.57) can easily be obtained from (2.2.59) and I/LlRIIF ::5

IIL\RR-lIIFIIRII~ by using IIAII2 = IIRII~ . 0
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If we take D = J in Theorem 2.2.8, the assumption (2.2.56) can be weakened to

(2.2.60)

(2.2.61 )

(

and we have the following perturbation bound, which is due to Sun [46, 1991],

,j2 (A) IILlAI!F
I/L1RIIF < X:2 IIAII2 < J2K2(A) II LlAIiF.

IIRII2 - 1 + 1 _ 2x: (A) IILlAIIF - IIAlb
2 IIAlb

This is a slightly stronger than (2.2.57) where D is replaced by J. The proof is similar

to that of Theorem 2.2.8. The only difference is using the fact that Il up(X)IIF ~

~II.1YÎIF for an)' symmetric .IY..E Rnxn.

As we know from (1.2.14) in van der Sluis's Theorem 1.2.1 that if we take D =
Dr = diag(I/R(i, :)112) in ~c(A, D), Kc(A, Dr) will be nearly minimal. Thus possibly

the bound (2.2.57) is much smaller than (2.2.61). But the assumption (2.2.56) with

D = Dr is possibly much more constraining than (2.2.60).

2.2.3 Numerical experiments

In Section 2.2.1, we made first-order perturbation analyses for the Cholesky fac­

torization with norm-bounded changes in A using two different approaches, pre­

sented X:c(A) = IIWRlIl211.411~/2 as the corresponding condition number, and sug­

gested /ic(A) could he approximated in practice by Kc(A, Dr) = X:2(R)K2(D;1 R)

with Dr = diag(IIR(i, :)112), which could he estimated by a standard condition esti­

mator (see for example Higham [30, 1996, Ch. 14)) in O(n2 ). Also we showed the

condition of the problem cao usuaIly he (significantly) improved by standard symmet­

rie pivoting. In Section 2.2.2 rigorous perturbation bounds were obtaioed. In arder to

confirm our theoretical analyses, we have carried out severa! numerical experiments

to compute the following measures of the sensitivity of the Cholesky factorization,

which satisfy (see (1.2.14), (2.2.26), (2.2.30) and (2.2.31))



(
CHAPTER 2. THE CHOLESKY FACTORIZATION 33

(

The computations were performed in Matlab. Here we give three sets of numerical

6xamples.

(1) The matrices in the first set have the fonn

where Q E Rnxn is an orthogonal matrix obtained from the QR factorization of

a random n x n matrix, A=diag(rI, ... , ';'71-2, 6, 6) with rI, ..., r 71 -2 random positive

numbers and 0 < 6 ~ 1. We generated different matrices by taking all combinations of

n E {5, 10,15,20, 25} and 6 E {l, 10-1, ... , 10-lO}. The results for n = 25,6 = lü- i ,

i=O, 1, ... , 10 are shovln in Table 2.2.1, where P is a permutation corresponding to

the standard symmetric pivoting. Results obtained by putting the two 6's at the top

of A were mainly similar.

(2) The second set of matrices are n x n Pascal matrices (with elements alj ­

ail = 1, aij = ai,j-l + ai-lJ ), n = 1, ..., 15. The results are shown in Table 2.2.2,

where P is a permutation corresponding to the standard symmetric pivoting.

(3) The third set of matrices are n x n A = ~«(J)Kn«(J), where Kn((}) are Kahan

matrices, see (2.2.41). The results for n = 5,10,15,20,25 with (} = 1r/4 are shown

in Table 2.2.3, where II is a permutation such that the first column and row are

moved to the last column and row positions, and the remaining columns and rows

are moved left and up one position - this permutation II corresponds ta the rank­

revealing pivoting strategy, for details, see Hong and Pan [31, 199"2]. The permutation'

P corresponding to the standard symmetric pivoting is the identity, so the standard

symmetric pivoting does not bring any changes to our condition number and condition

estimators.

We give sorne comments on the results.

• The experiments confirm that K.2(A)/.j2 can he much luger than K.c(A) for ill­

conditioned problems, 50 the first-order bound in (2.2.25) may he much smaller
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Table 2.2.1: Results for matrix A = QAQT of arder 25, A = PApT, D = Dr

6
~/'1(A)

Kc(À) "'c(À, D) K-c(A) K'c(A,D) 1C2(A) 2ICfCÂ)
2 72 IC~ 1(A)

1.0 2.0e+00 4.3e+OO 1.3e+Ol 4.8e+OO I.Se+Ol 1.2e+Ol 2.1
1.0e-Ol 4.0e+OO 1.1e+OI 4.3e+Ol 1.2e+OI 4.8e+Ol 4.5e+Ol 2.8
I.Oe-02 4.ge+OO I.Se+OI 6.8e+Ol 2.2e+Ol 8.0e+Ol 6.8e+OI 3.1
1.Oe-03 1.6e+01 4.2e+OI 1.8e+02 1.3e+02 4.7e+02 7.0e+02 2.7
1.Oe-04 4.ge+OI 1.5e+02 6.8e+02 1.le+03 S.2e+03 6.8e+03 3.0
I.Oe-05 1.5e+02 4.Se+02 1.7e+03 S.6e+02 2.2e+03 6.7e+04 _ 2.9
1.Oe-06 5.0e+02 l.4e+03 S.Oe+03 l.4e+04 4.ge+04 7.0e+OS 2.9
1.0e-07 1.6e+03 4.4e+03 2.0e+04 1.7e+04 6.3e+04 7.0e+06 2.8
1.0e-08 5.0e+03 1.3e+04 9Ae+04 1.2e+05 6.Se+OS 7.1e+07 2.6
I.Oe-09 1.5e+04 5.3e+04 2.4e+OS 1.ge+05 8.5e+OS 6.7e+08 3.4
1.0e-10 5.0e+04 lAe+OS SAe+OS 2.0e+06 1.0e+07 7.0e+09 2.8

Table 2.2.2: Results for Pascal matrices, .À = P ApT, D = Dr

n
rt!,/1 (A)

K,c(À) Kc(À, D) /'i,c(A) Kc(A, D) IC~) 2I(f(..1)
~

~ 2(A)2

1 5.0e-01 S.Oe-OI 1.Oe+OO S.Oe-OI 1.Oe+OO 7.1e-Ol 1.0
2 1.3e+00 1.5e+00 4.2e+OO 2.1e+OO 6.3e+OO 4.8e+OO 1.2
3 3.ge+OO 5.1e+00 1.6e+OI 9.7e+OO 5.0e+Ol 4.4e+Ol 1.3
4 1.3e+Ol 2.2e+Ol 8.0e+Ol 5.Se+Ol 4.8e+02 4.ge+02 1.7
5 4.6e+01 8.3e+Ol 3.3e+02 3.5e+02 6.0e+03 6.0e+03 1.8
6 1.7e+02 2.5e+02 1.3e+03 2.Se+03 5.2e+04 7.8e+04 1.5
7 6.1e+02 9Ae+02 S.le+03 1.ge+04 S.7e+OS 1.1e+06 1.5
8 2.3e+03 4.0e+03 2.4e+04 1.Se+05 6.3e+06 l.Se+07 1.8
9 8.5e+03 1.6e+04 1.Oe+OS 1.3e+06 7.0e+07 2.1e+OS 1.9
10 3.2e+04 7.6e+04 4.7e+OS 1.le+07 7.ge+08 2.ge+09 2.4
Il 1.2e+OS 2.4e+OS 1.8e+06 9.8e+07 9.0e+09 4.2e+l0 1.9
12 4.7e+OS 8.3e+OS 8.2e+06 8.7e+08 I.Oe+l1 6.2e+ll 1.8
13 1.8e+06 3.2e+06 3.1e+07 7.8e+09 1.2e+12 9.1e+12 1.8
14 6.ge+06 1.3e+07 1.2e+08 7.le+l0 1.4e+13 1.3e+14 1.9
15 2.7e+07 5.4e-t07 4.ge+08 6.5e+ll 1.6e+14 2.0e+15 2.0

(



CHAPTER 2. THE CHOLE5KY FACTORIZATION 35

(
Table 2.2.3: Results for A = KI(8)Kn (B), 0 = 1[/4, .4 = rIAnT, D = Dr

n
1t~)2(A)

Kc(À) Kc(À., D) Kc(A) Kc(A, D) 1t2(A) 2Itf(A)
2 ~ It~ 2(A)

5 1.7e+01 2.2e+01 1.0e+02 8.7e+01 3.1e+02 8.5e+02 1.3
10 2.1e+03 2.6e+03 2.8e+04 1.Se+05 7.3e+OS 1.3e+07 1.2
15 2.2e+05 2.8e+05 4.8e+06 2.3e+08 1.4e+09 1.4e+11 1.2
20 2.2e+07 2.7e+07 6.6e+08 3.2e+11 2.5e-r-12 1.3e+15 1.2
25 2.0e+09 2.5e+09 8.0e+10 4.4e+14 3.8e+15 1.2e+19 1.2

than that in (2.2.8) .

• The standard symmetric pivoting almost always gives an improvement on K:c(A)

and Kc(A, Dr). Table 2.2.2 indicates the improvement can be sigrüficant. Our

experiments suggest that if the Cholesky factorization of A is approached using

the standard symmetric pivoting strategy, then the condition number of the

Cholesky factorization K:c(PAPT) will usually have the same order as its lower

limit ~/2(A)/2 (the ratio in the last columns of Table 2.2.1 and Table 2.2.2 was

never larger than 4). But Table 2.2.3 shows the ratio can be large. However such

examples are rare in practice, and furthermore if we adopt the rank-revealing .

pivoting strategy, we see from Table 2.2.3 the ratio 2K:c(nAnT)/~/2(A) is again

small .

(

• Note in Table 2.2.1 and Table 2.2.3 K:'c(A, Dr) (Kc(PApT,Dr ), Kc(IL~nT,Dr))

is a very good approximation of Kc(A) ( ~c(PAPT), Kc(IIArrT)). In Table 2.2.2,

the results with pivoting also show this. For n = 15 without pivoting in Ta­

ble 2.2.2 Kc(A, Dr) overestimates Kc(A) by a factor of about 250, bùt is much

better for low n. A study of the n = 2 case shows Kc(A) cao never be much

larger than Kc(A), and we have not found an example which shows Kc(A, Dr)

can be much larger than Kc(A) for n > 2, sa we suspect Kc(A) and léc(A, Dr)

are at worst Kc(A) times sorne function of n alone (probably involving some-



thing like 2n
) in general. From Theorem 2.2.5 we know this is true when the

standard symmetric pivoting strategy is used.
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2.3 Perturbation analysis with component-bounded

changes in A

In this section we consider the case where a bound on I~AI is given. There have been

a few papers dealing with such problems. Sun [47, 1992] first presented a rigorous

perturbation bound on ILlRI in terms of.ILlAI, which was improved by Sun [48,

1992]. For LlA corresponding ta the backward rounding error in A resulting from

Ilumerical stable computations, e.g. Aigorithm CHüL, on finite precision fioating

point computers, Drmac, Omladic and Veselié [20,1994] presented a nice norm-based

perturbation result using their H = n;lAD;l approach. Sun in [47] and [48] also

included component perturbation bounds for a different and a somewhat cornplicated

form of the backward rounding error in A.

The main purpose of this section is ta establish new perturbation bounds when LlA

corresponds to the backward rounding error, which are sharper than the equivalent

results in [20]. Most of the results have been presented in Chang [8, 1996]. Also we

present first-order perturbation bounds for sorne other kinds of bounds on IL1AI.

In Section 2.3.1 we establish first-order perturbation bounds with a general bound

I~AI :::; €E, and apply such results to a special case: ILlAI :::; € lAI. The motivation

for considering this special form is that possibly the relative error in each element

of A has the same reasonable known bound, for example, often the elements of A

can not be stored exactly on a digital computer, and the matrix actually stored

is A + L1A with ILlA/ :::; ulAI, where u is the unit roundoff. In Section 2.3.2 and

Section 2.3.3 we respectively derive first-order and rigorous perturbation bounds with

ILiA/ :::; € dcfI', where di = aJ/2
: -which cornes from the backward rounding error
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analysis, see Demmel [17, 1989]. In our analyses we use both the matrix-vector

equation approach and the matrix equation approach.

2.3.1 First-order perturbation bound with I.dAI < é lAI

First we give the following result by using the matrix-vector equation approach.

Theorem 2.3.1 Let A E Rnxn be symmetric positive definite, with the Cholesky

factorization A = R..T R. Let L1A E Rnxn be a symmetric matrix satisfying ILlAI ~ fE

for some nonnegative matrix E with nonnegative f. If

(2.3.1)

where 1/ .1/ denotes a monotone and consistent matrix nOT11l, then A + LlA has the

Cholesky factorization

A + ~A = (R + LlR)T(R + LlR),

such that

uvec(ILlRI)1 ::; € IWnll uvec(E) + O(~), (2.3.2)

I/LlRl/v < "IWnll uvec(IE/)/Iv O( -2) = F M SIIRII... - I/RH... f + E-, V , • " (2.3.3)

where IIXIIM =max;J IXiil and I/XlIs = LiJ IXiil, and for the M-norm the first-order

bound in (2.3.3) is attainable. Thus, in particular, if E = lAI, then

C'

uvec(ILlRI)1 ~ flWnll uvec(IAI) + O(~),

Il LlRII... III~VRll uvec(IAI)II... O(f?-) = F M S
IIRII... < IlR1/... f. + ,v , , ,

and for the M-norm the first-order bound in (2.3.5) is attainable.

Proof. Let G =LlA/ f (if f. = 0 the theorem is trivial). Since

(2.3.4)

(2.3.5 )



the conclusion of Theorem 2.2.1 holds. Then from (2.2.12), the matrix-vector equation

farm of (2.2.5), we have

(
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This with the Taylor expansion (2.2.3) gives (2.3.2), from which (2.3.3) fo110\\·5. For

the Nl-norm the first-order bound is attained for L1A satisfying

uvec(~A) = €Vuvec(E), v = diag«(j),

Theorem 2.3.1 implies that for the Cholesky factorization under relative changes

in the elements of A the condition number (with respect to the M-norm)

is given by

(2.3.6)

vVe see J1c(A) is not very intuitive, and is expensive to estimate directly by any

presently known approach. Fortunately by the matrix-equation approach we have the

following practical results.

Theorem 2.3.2 With the same assumptions as in Theorem 2.3.1, A + .dA has the

Cholesky factorization

where

(2.3.7)

In particular, if E = lAI, then

( (2.3..8)
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and for a monotone and consistent matrix nonn Il . Il,

39

IILiRIi . _ ?Il RI! ~ mln{cond(RT)cond(R), cond(RT)cond(R l)}€+O(r), (2.3.9)

and for the M-norm,

(2.3.10)

where

(2.3.11)

(2.3.12)

(

Prao/. (2.3.7) can easily be proved by using (2.2.6) and (2.2.3). Notice lAI ~ IRTIIRI,
then (2.3.8) follows immediately from (2.3.7), and (2.3.9) is obtained by taking the

norm Il . Il and using

Il up(IR-TIIRTIIRIIR-11)IRIII < IIIR-T IIRTIIRIIR-1IIRIII

< {"IR-TIiRTIII.IIRII'"IR-IIIRIII,
IIIR-TIIRTIII·IIIRIIR-111I·IIRII·

Similarly (2.3.10) can be obtained by taking the M-norm and using

Il up(IR-TIIRTIIRIIR-11)IRIIIM < IIIR-TIIRT IIRIIR-1IIRIIiM (2.3.13)

~ {III R-
T/lRTlllool/RIIMIIIR-1IIRIII1, (2.3.14)·

IIIR-T/lRT lllooIlIRIIR-11Il oo IIRILu,

where we used the fact that IIABIIM < IIAIIMIIBlh, IIAlloolIBIIM for any A E Rmxp

and B E RPxn, which can easily be verified. From the definition of Jlc(A) and (2.3.10),-

we see the inequality (2.3.12) holds. 0

The quintuple matrix product in (2.3.8) is nice, as it counteracts the effect of

poor column scaling in R (the first product and the third product), and" poor row

scaling (the fourth product). This is reflected in both of the first-order bounds in



(2.3.9) and (2.3.10). The significance of this theorem is now we can estimate a bound

on the relative change in R in O(n2 ) by using the standard condition estimators.

~umerical experiments suggest usually J.L~(A) is a reasonable upper bound on the

condition number ILc(A). But the former can be arbitrarily larger than the latter.

For example, if A == ( 1 6 ] with small fJ > 0, then R = (1 {)]. Simple
8 82 + {)4 0 82

conlputations give

(
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ILc(A) =0(1), IL~(A) = O( ~).

(

It is easy to check the overestimation was caused by the inequality 1up(B)1 ::; IBI

used in deriving (2.3.10). Clearly the strictly lowei triangular of IBI can be arbitrarily

larger than that of 1up(B)I. Hence (2.3.10) can sometimes overestimate the true

sensitivity of the problem, sa can (2.3.9) for the same reason. \Ve also can give an

exal11ple ta show J.L~(.4) can overestimate J.Lc(A) due ta the inequality (2.3.14).

A careful reader may have noticed the following fact: in the proof of Theo­

rem 2.2.37 we also used the inequality 1up(B)1 ::; IBI (see (2.2.28» but we men­

tioned in Section 2.2.3 that we have not found an exarnple ta show K~(A) can be

arbitrarily larger than Kc(A), and furthermore initial investigations suggest probably

~c(A)/K c(.4) can be bounded above by a function of n. Why does the inequality

appear to have different effects? The reason is that here B is the function of only R

and so has a special structure, whereas in (2.2.28) B has a parameter matrix G, and

for any R possibly G cau be chosen snch that IIBI! is close to 1/ up(B)II.

Comparing the first-order bound in (2.3.9) with that in (2.2.43), we see the former

is at least as small as the latter since cond(RT) ::; K(RT). If the ill-conditioning of

R is mostly due to bad scaling of the columns, then cond(RT ) « K(RT ), that is to

say the former can be much smaller than the latter. That is not surprising since

the assumption I.dAI ::; E lAI in Theorem 2.3.2 provides more information about the

perturbations in data than the assumptièm IldAIi ::; € IIAII in Theorem 2.2.6.
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(
The standard pivoting strategy can usually improve Jlc(A), just as it can usually

improve Kc(A). In fact we have the fol1owing theorem.

.Theorem 2.3.3 Let A E Rnxn be symmetric positive definite with the Cholesky fac­

torization PApT = RTR when the standard pivoting strategy is used. Then

(2.3.15)

c

Praof. Standard pivoting ensures Irid ~ Iriil for all j ~ i. Then from the definition of

fL~(A) in (2.3.11), (2.3.15) is immediatelyobtained by using (1.2.21) in Theorem 1.2.2.

o

From (2.3.15) it is natura1 to raise the fol1owing question: is it possible that

the standard pivoting makes condoo(RT ) much worse than that without pivoting,

50 that J.L~(PAPT) is actually much worse than Jl~(A)? The answer is no. In fact

we can show any pivoting can not bring an essential change to condoo(RT ). Let

PApT = RTR, where P is any permutation matrix. Let Dl = diag(IIRT(i, :)lId and

let D 2 = diag(IIRT(i, :)112). Then /IDi l Ddloo $ vn and II D ï 1D2 /1oo ::; 1. By using

van der Sluis's Theorem 1.2.1, we have

condoo(RT
) - IIR-TDlllooIID11RTlloo = IIR-TD2D;IDdloo

< nl/R-T D2/12 = nl/D2PA-lpTD211~/2.

Notice that D2 = diag(I/RT(i, :)//2) = diag(PApT)1/2 = Pdiag(A)1/2 pT, then

where H =diag(A)-1/2 Adiag(A)-1/2. On the other hand, we have

condoo(RT
) = IIR-T D2D2"1Ddloo ~ Jn IIWTD2112/IIDï1D21100 > Jn IIH-111~/2.

Notice IIH-1112 is independe~t of P, thus permutation has no significant effect on

condoo ( RT ).



Using the same approaches as in Section 2.2.2 we could easily provide rigorous

perturbation bounds with ILiAI :5 E lAI. But we choose not to do so here in arder to

keep the material and the basic ideas as brief as possible.

c
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2.3.2 First-order perturbation bounds with backward round-

ing errors

In this section we first use the matrix-vector equation approach ta derive tight per­

turbation bounds, leading ta the condition number Xc(A) for perturbations having

bounds of the farro of the equivalent backward rounding error for the Cholesky fac­

torization, then use the ulatrix equation approach ta derive a practical perturbation

bound, leading ta a practical estimator Xc(A) of Xc(A). We aIso compare Xc(A) with

Kc(A), and x'c(A) with Kc(A). FinaIly we show how standard pivoting improves the

condition number Xc(A).

Before proceeding we introduce the following result due to Demmel [17, 1989],

also see Higham [30, 1996, Thearems 10.5 and 10.7].

Lemma 2.3.1 Let A =DeRDe E Rnxn be a symmetric positive definite floating

point matrix, where De = diag(A) 1/2 . If

(2.3.16)

where E = (n + l)uj(l - 2(n + l)u) with u being the unit round-off, then the Cholesky

factorization applied to A succeeds (barring underftow and overfiow) and produces a

nonsingular R, which satisfies

-r ­
A+LlA = R R, (2.3.17)

(
This lemma is applicable not only ta Aigorithm CHOL but also ta its standard

. mathematically equivalent variants.
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Based on Lemma 2.3.1, we can establish the following bound for the computed

Cholesky factor R.

- 'Fheorem 2.3.4 With A = R T R and the same assumptions as in Lemma 2.3.1, for

the perturbation LiA and result il in (2.3.17) we have

uvec(ILlRJ) ::; € IWill uvec(ddT
) + O(~),

Il LlRllv II/Will uvec(dJT)lIv O( 2)
IIRllv ~ IIRllv € + €, V = M, S,

I/LlRIIF < nl/VcWi 1
1/2 € + O(~)

IIRI/2 - IIAII~/2 '

where L1R =R- R,

_. 1/2 1/2 1/2 1/2 1/2 1/2 "(~+l) x "(~+1)De = dlag (au, a22 ,a22 , ... , ann ,ann , ... , ann ) ER,
, .... " ;p:: ,

2 n

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21 )

R = RD;I, and Wk is Just W R in (2.2.15) with each entry rij replaced by rij. The

first-order bound in (2.3.19) is attainable for the M-nonn, and the first-orner bound

in (2.3.20) is approximately attainable.

Proof. Let G = LlA/€. By (2.3.17) and (2.3.16), we have

p(A- ILlA) < p(D;lH- 1n;lLlA) = p(H-1n;1L1.AD;1)

< IIH-1112I1D;I LlAD;11l2 ::; € I/H-11/2 IID;ld&D;IIlF

< n€ IlH- 11b < 1.

Then as we did in the proof of Theorem 2.3.1 we can apply Theorem 2.2.1 to show

(2.3.18) and (2.3.19) hoId and the first-order bound in (2.3.19) is attainable for the

M-norm.

1t remains to show (2.3.20) and its attainability. From (2.2.5) in Theorem 2.2.1

and R = RDc , we have

( (2.3.22)
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(
As we know (2.2.5) can be rewritten as the matrix-vector equation form (2.2.15), sa

similarly (2.3.22) can be rewritten as the following matrix-vector equation form

(2.3.23)

It is easy ta verify that uvec(R(O)D;l) = V;l uvec(R(O)) with De as in (2.3.21), then

from (2.3.23) we have

(2.3.24)

which with ICI = I.dA/El $ dcfT gives

(2.3.25)

(2.3.26)

(

Thus (2.3.20) is obtained immediately from the Taylor expansion (2.2.3).

Obviously there exists a symmetric matrix F E Rnxn such that

Then by taking G = (minftj;éO didj/l/ijI)F, we have I-dAI $ EdtfT and from (2.3.24)

that

IIR(O)IIF = (min didj/I/ijl) IIVeWillbIlD;lFD;lIlF ~ /IDeWilll2'
fil ,/:0

which shows the first-order bound in (2.3.20) is approximately attained for such G.

o

It is easy ta verify that De =diag(a:!2) = diag(IIR(:,j)1I2). Thus R, the Cholesky

factor of H (H =D;l AD;l = D;l RT RD;l =RT R), has col~mns of unit Euclidean

length. That is the reason that we use the notation De, where cc' denote Lcolumn'.

Since the first-order bound in (2.3.20) is approximately attainable, the quantity

A = nll1JcWi l
ll2

Xc( ) - IIAII~/2

can he thought of as the the condition number for the Cholesky factorization with

the "fonu of backward rounding error satisfying (2.3.17) w-hen the combination of F-
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and 2-norms is used. Notice here we have rela.xed a little the requirement a condition

number should satisfy. Strictly the condition number should be defined by

- _ . { 1/ L1 R Il F . _ T T _ 1/2}
Xc(A) = !~JSUp €IIRII2 . A+LlA - (R+LlR) (R+L1R), IL1AI $ €dd , di - a ji •

But [ranI the proof of Theorem 2.3.4 we see

IIVcWi 1
ib < - A < nllVcW âl

ll 2

Il.411~/2 - Xc( ) - IIAII~/2

50 such rela..xing is harmless. The main reason for introducing the condition number

with respect to the combination of the F- and 2-norms- rather than the wl-norm is

that we are interested in the comparison of the results given in this section \"ith thase

given in Section 2.2.

\Ve now giye a la\ver bound on Xc(A). Since Wil has the fonn (cf. (2.2.22))

-- [ x 0 ]IV- -
R - x DR? '

where

b = diag( fi, V2, ... ,v2, 2),

we have

(2.3.27)

(2.3.28)

Hence we get the fol1owing lower bound on Xc(A)

(A) > na~~2 IIR-1b-1 1l 2
Xc - IIAII~/~ .

This bound is tight for any n, since equality will hold by taking R = diag( Ti;), \Vith

o < rii :::; r nn, i :f. n. But it is a little complicated. In fact we can get a slightly

weaker but simpler lower bound. Since

( (2.3.29)
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we have from (2.3.28) that

1 1/2
(A) > _ nann IIH-1 11

1
/ 2

XC - 2 IIAII~/2 2 .

46

Numerical experiments suggest that usually Xc(A) is smaller or much snlaller than

K:c(A), the condition number for a generai perturbation LlA, defined by (2.2.20). We

now relate these two condition numbers mathematically for the general case. For the

case where standard pivoting is used in computing the Cholesky factorization. see the

comlnent following Theorem 2.3.9.

Theorem 2.3.5

Proof. Since R = RDe , it is easy to verify by the the structure of W R that

where V e is defined by (2.3.21) and

(2.3.30)

(2.3.31) .

Thus using (2.3.31) and ma.Xï aii ~ IIAII27 we have

Xc(A) - nIlVcWkI112/IIAII~/2 = nIlWRIVcIl2/IIAII~/2

< nllWi 1"2I1AII~/2 I/Vc ll2/IIAII2 = nKc(A)m~aiill/AI/2. .

< nKc(A).

vVe now prove the second inequality. Using (2.3.31) and IIAII2 < n maJei aii, we obtain

Kc(A) _ IIWR1 1/2 "AII~/2 = IIVcWklV;11l2I1AII~/2

< IIAII2I1V;11l2111JcWklIl2/IIAII~/2:::;~:::: Xc(A).

( The proof is complete. o
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1 The first inequality in (2.3.30) is attainable, since equality will hold by taking

A = cl with c > O. The second inequality is at least nearly attainable. In fact by

taking A = RT R, with R = diag(bn-l, bn-2, ... , b, 1) + ele~ with small 8 > 0, we

easily obtain

max· a·· 2 1
• • U Xc(A) = C? _20(1) = OC C? -2)'mIni aii u-n o_n

This example also suggests that possibly Kc(A) is much larger than Xc(A) if the

maximum element is much larger then the minimum element on the diagonal of A.

A reader might want to know why the first inequality in (2.3.30) is not Xc(A) :5

Kc(.4). This cao easily be explained. For a general .dA, we have by Theorem 2.2.3

that II-dRIIF/IIRII2 ;S Kc(A)€, where € satisfies Il.dAIIF :5 € IIAII2. For the backward

rounding error LlA, we have by Theorem 2.3.4 that IILlRilFIIIRII2 ;S Xc(A)€, where €

satisfies ILlAI $ € drfT (see (2.3.17)), from which it follows that IIL\AIIF :5 € I/dcP'IlF =
€ IIRH}, where IIRIIF satisfies attainable inequalities IIAII2 :5 IIRII} :5 nllAII2'

Like Kc(A), Xc(A) is difficult to estimate directly. Now we derive practical per­

turbation bounds by using the matrix equation approach.

Theorem 2.3.6 With A = R T R and the same assumptions as in Lemma 2.3.1, for

the perturbation LlA and result R in (2.3.17) we have

(

ILiRI $ € up(IJ~-TleeTIR-lI)IRI + O(~),

Il LiRIIF < X' (A)€ + O(€2) .IIR/l2 - c ,

Xc(A) :5 X~(A),

where LlR := R- R, R=RD;l, and

x'c(A) =infDED" x'c(A, D),

Xc(A, D) =nllk- l ll2 I1R-1DII2I1D-lRII2/11R/b·

(2.3.33)

(2.3.34)

(2.3.35)

(2.3.36)

(2.3.37)
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(
Proof. Let G =fj,A/€. Since p(A-1fj,A) < 1 (see the proof of Theorem 2.3.4), we

can apply Theorem 2.2.1 here. From (2.2.6) with R = RDc , it follows that

(2.3.38)

which with IGI ~ dlfT gives

Then by the Taylor expansion (2.2.3), (2.3.33) follows immediately.

AIso from (2.3.38) we have for any D E D n that

Thus taking the Frobenius norm we have

(2.3.39)

which with JGI ~ dlfT gives

Since this holds for any D E D n , (2.3.34) follows by using Taylor expansion (2.2.3).

It remains to prove (2.3.35). From (2.3.24) and (2.3.39) we have

IIVc WR" lduvec(D;lGD;l )112 ~ IIR- 1 /l 2 I1 D;lGD;1IlF I/Êl-lD1I211D-1R/l2.

. (2.3.40)

Actually this holds for any symmetric G E Rnxn since it was essentially obtained

from Othe matrix equation RTX + X T R = G with X triangular by the two different

approaches. Notice IIduvec(D;lGD;1)1I2 = IIn;lGD;lIlF, thus from (2.3.40) we

must have

( which implies (2.3.35). 0-
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Notice that 1/ up( ...Y)IIF :5 ~IIXIIF for any symmetric X (see (1.2.7)), and IIRII~ =

IIHII2, then from (2.3.38) it is easy to obtain

(2.3.41 )

which is essentially the first-order bound of Drmae, Omladic and Veselié [20, Theorem

3.1], except that their bound is rigorous and only the 2-norm is used. But this bound

cao severely overestimate the true relative errors of the computed Cholesky factor.

In fact

X~(A) :5 X~(A, 1) = nIlH-1 1l 2 , (2.3.42)

and nIIH-~ 112 can be arbitrarily larger than Xc(A). For example, if A = [ 1 l ]
1 1+62

with small {j > 0, then R = [~ ~]. Talee D = diag(J2, e), then simple computa­

tions give

X~(A) :5 X~(A, D) =0(1/6),

(2.3.43)

(

Thus the new approximation Xc(A) to the condition number Xc(A) is a significant

improvement on that of Dnnac et al. Furthermore, it is easy to see "H-1 1l 2 is invariant

if pivoting is used in computing the Cholesky factorization of A, whereas Xc(A)

and x'c(A) depend on any pivoting. Thus the new hounds (2.3.20) and (2.3.34)

more closely reflect the true sensitivity of the Cholesky factorization than (2.3.41).

However, if the ill-conditioning of R is mostly due to bad scaling of its columns, then

n1lH- 11l 2 is small, and is as good as Xc(A).

We see (2.3.42) implies n1lH-1 1l 2 is also an upper hound on Xc(A). In fact we

have the fol1owing stronger result

Xc<A) :5: ~nIlH-11l2'

which cau easily he proved by using (2.3.24), (2.3.38) and the fact that for any

symmemc X, Il Up(X)"F ~ ~IIX"F' That is to say the first-ord~rbound in (2.~.20)
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(
is at least as small as that in (2.3.41). The example above suggests the former can

be much smaller than the latter.

The practical outcome of Theorem 2.3.6 is that X~(A) is quite easy ta estimate.

According ta (1.2.10) in van der Sluis's Theorem 1.2.1, all we need to do is to choose

D = Dr = diag(IIR(i, :)112) in Xc(A, D) in (2.3.37), then use norm estimators (see for

example Higham [30,1996, Ch. 141) to estimateXc(A,Dr) in O(n2).

Numerical experiments suggest usually X~(A) is a reasonable approximation to

Xc(A). But the following example shows X~(A) can still he much larger than xdA.),

~ven though it can be much smaller than nllH-1 1l 2 • Let A = [ 1 5 ] , then
6 fJ2 + 64 -

R = [1 fJ]. It is easy to show
o 52

Xc(A) = 0(1), X~(A) = 0(1/8),

In Theorem 2.3.6 the F- and 2-norms are used. If we use a monotone and consistent

matrix norm 11·11, then from (2.3.38) it is straightforward to show we have the following

perturbation bound instead of (2.3.34),

IIL.1RII IIeeT llllk- l ll Il IR-il/RI Il O( 2)
/IR" ~ /lRII € + €.

The advantage here is that the bound does not involve the scaling matri.x D.

In Theorem 2.3.5 we established a relationship (2.3.30) between Xc(A) and KdA)

defined in Theorem 2.2.3. Is there a similar relationship between Xc(A, D) (or Xc(.4))

and Kc(A, D) (or K'c(A)) defined in Theorem 2.2.47 The answer is yeso

Theorem" 2.3.7

(

and from this,

1 , ) '( ) méLXtaii '( D)-Xc(A,D ~ K c A,D <. Xc A, ,
n mIni aii

1 1 () 1 () m8Xt aii 1 ( )-Xc A. ~ "'c A ~. Xc A .
n - mIni aii

(2.3.44)

(2.3.45 )
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Proof·

2.X~(A,D) _ IIk- 11l2Ilil- 1DlbIlD- I RII2/IIRII2
n

- IIDcR-11l2IIDcR-1 Dib IIn-l R1I2/IIR1I2

< IIDcll~ IIR- 1Ib IIR- 1D1I211n- 1R1I2/IIR1I2

< IIRII2I1R- 1
1/ 2 I1R- 1DII2 IIn- l Rib (using IIDc lb $ IIRlb)

_ K~(.4, D).

On the other hand,

K~(A,D) _ IIRI/2IIR- 11l 2I1R-1nll211D-1RII2

- I/RI/2IID;1 k-1lb IIn;lÊl-lD1I211D-1RII2

$ IIRII~ IID;lll~ IIR-1 1l 2 I1Êl-1DII2 IIn-1RII2/I/Rlb

- ~IIAlb IIn;lll~ X~(A, D)
n
ma.:<t a··

$ . 11 X~(A, D), (using IIAlb $ n méLXt aid.
mIni aii

The proof is complete. 0

51

The standard pivoting strategy cao usually imprave Xc(A) tao. In fact we have

the following theorem.

Theorem 2.3.8 Let A E Rnxn be symmetric positive definite with the Cholesky fac­

torization P ApT = RTR when the standard pivoting stmtegy is used. Then

(2.3.46)

(

where PApT =DcHDe with Dc =diag(PApT)1/2.

Proof. Since R =RDc and /IDclI2 $ IIR/l2' we have
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and so from (2.3.37) we obtain

(2.3.47)

Standard pivoting ensures ITiil ~ ITiil for all j ~ i. Then (2.3.46) follows immediately

by IIR- 1Ih = I/H-l/lY2 and (1.2.18) in Theorem 1.2.2. 0

In Theorem 2.2.5 we have

By van der Sluis's result (1.2.16),

where it is possible that

if A is badly scaled-the columns of Rare badly scaled. But 1 $ IIHI/2 < n since H

is positive definite with hii = 1, hence

and it is possible that .

if R has ba(lly scaled columns. Thus it is expected that Xc(PAPT) ~an be arbitrarily

smaller than K c(P ApT).

Suppose the Cholesky factorization of A be approached by u~ing the standard.

symmetric pivoting strategy: PApT = RTR. If the permutation matrix P is known

beforehand and the Cholesky factorization is applied to P ApT directly, i t is easy to

observe that Lemma 2.3.1 still hoIds except that now De and H should be redefined

as

(
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and A + ~A = R.Til in (2.3.17) should he replaced by

P(A + LlA)pT = RT R.

Thea by Theorem 2.3.4 we have

53

This with (2.3.46) suggests that the computed Cholesky factor R has high accuracy.

However. usually the permutation matrix P for A is not known beforehand. The

pernlutation matrix for A + .dA, which is produced in the computing process, is

possibly different from that for A. Fortunately, Higham [30, 1996, Lemma 10.11]

-showed that if there are no ties in the pivoting strategy for P ApT = RT R, then for

sufficiently small .dA, the two permutation matrices are the same. Thus the Cholesky

factorization with standard symmetric pivoting will most likely gives an if. which is

about as accurate as possible.

2.3.3 Rigorous perturbation bound with backward rounding

errors

Drma<:, Omladic and Veselié [20, 1994] obtained rigorous perturbation bounds. For

comparison here we aIso present our rigorous perturbation bounds, which can be

obtained by applying the results in Section 2.2.2.

Theorem 2.3.9 Let A E Rnxn be a symmetric positive definite fioating point matrix,

with the exact Cho!esky factorization A = R T R. Define De = diag(A)1/2 and R =
RD;l. If

(2.3.48)

(

wheTe € =(n + l)u/(l - 2(n + 1)u) with u being the unit round-off, and 'De is tj.efined

by (2.3.21), then. the Cholesky. factorization ~pplied to A succeeds (barring undërjlotll.-
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and overfiow) and produces a nonsingular R, which satisfies

54

< 2né!l'DeWil ll 2
1 + VI - 4né IIVeWklll~/ mini aii

-1< 2né Il 'DeWi 112, (2.3.49)

where !1R = il - R. Obviously the weaker bound above can be rewritten in the

following form:

(2.3.50)

Proo/. Let H =D;l.4D;l as before. Then H = RT R. From (2.3.29) and (2.3.27),

we get

IIH-1/l2 = IIR-III~ ::; 411'DeWilll~/ann :5 4I1VeWklll~/ minaii,

which with the assumption (2.3.48) implies that (2.3.16) holds. Thus by Lemma 2.3.1

the Cholcsky factorization applied to A succeeds and the computed Cholesky factor

R satisfies
-T -

.4 + LlA = R R,

(

1/2 - - -where di = aii . Then using WH =VeWilV;1 (see (2.3.31)) and uvec(D;lLlAD~l)=
V;luvec(.:1A), which is easily verified, we have

IIWn11!2I!W;lduvec(L1A)1I2 < Il'DcWA"1i);lll211vJvilIl2I1V;lduvec(odA)1I2

< € "'DeWklll~ IIV;11l2I1D;ldcfTD;!IIF

~ n€IIVcWklll~/minaii'

which with the assumption (2.3.48) implies that the condition (2.2.47) of Theo- .

rem 2.2.7 is satisfied. Then (2.3.49) is immediately obtained by using Theorem 2.2.7.

o

Theorem 2.3.10 Let A E Rnxn he a symmetric positive definitefioating point matrix

with the exact Chole.sky factorization A = R T R. Define De =diag(A)lj2 and R .
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RD;l. Assume D E Dn. If

55

(2.3.51 )

where € = (n + l)u/(1 - 2(n + l)u) with u being the unit round-off, and R= RD;l ~

then Cholesky factorization applied to A succeeds (barring underfiow and overfiow)

and produces a nonsingular R, which satisfies

2n€ IIR- l ll 2 I1R- l D1I211D-1RI/2/IIRII2<
1 + JI - 4n€ IIR-11l2I1R-IDIl2I1D-1 1l 2

< 2X~(A, D)€,

(2.3.52)

(2.3.53 )

where f1R =il - R.

Proof. Let H == D;lAD;l. Since

which with (2.3.51) implies that (2.3.16) holds. Thus by Lemma 2.3.1 Cholesky

factorization applied to A succeeds and the computed Cholesky factor R satisfies

-r ­
A + dA = R R,

d 1/2where i = aii . Then

I/R-T ~AR-IDIIF IID- I 112 < IIR-11/2I1D;1i1AD;1IlF IIR-1DIIF IID-1
1l 2

< nE IIk-1
1!2 I/R-1DII2I1D- l

I!2 <114.

He~ce the bound (2~3.52) can be easily obtained from (2.2.55) in Theorem 2.2.8.

o

If we take D = l, it is easy to show by using the fact that Il up(X)IIF ~ ~IIXIIF

for any symmetric X E Rnxn that the assumption (2.3.51) can he weaken ta .

( (2.3.54)
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Table 2.3.1: Results for Pascal matrices without pivoting

n Xc(A) Xc(A, Dr) Kc(A) Kc(A,Dr) ;!ïnIlH-11l 2
1 5.0e-01 1.0e+OO S.Oe-01 1.0e+OO 7.1e-Ol
2 2.2e+OO 6.0e+OO 2.1e+OO 6.3e+OO 4.8e+OO
3 8.ge+OO 3.6e+01 9.ïe+OO 5.0e+Ol 3.6e+Ol
4 3.ge+Ol 2.3e+02 5.5e+Ol 4.8e+02 3.0e+02
5 1.7e+02 1Ae+03 3.5e+02 4.ge+03 2.5e+03
6 7.Se+02 9.2e+03 2.5e+03 5.2e+04 2.2e+04
7 3.5e+03 S.8e+04 1.ge+04 S.7e+OS 2.0e+05

- 8 1.fie+04 3.7e+05 1.5e+05 fi.3e+Ofi 1.7e+06
9 7.7e+04 2.3e+Ofi 1.3e+Ofi 7.0e+07 1.5e+07
10 3.6e+05 1.5e+07 1.le+07 7.ge+08 1.4e+08
Il 1.7e+Ofi 9.1e+Oï 9.8e+07 9.0e+09 1.2e+09
12 8.4e+Ofi 5.6e+08 8.7e+08 1.0e+l1 1.1e+IO
13 4.1e+07 3.5e+09 7.8e+09 1.2e+12 9.8e+lO
14 2.0e+OS 2.2e+10 7.1e+lO 1.4e+13 8.8e+l1
15 9.7e+08 1.3e+11 6.5e+l1 1.6e+14 7.ge+12

and we have the following bound:

IIL1RIIF < V2nI/H-
1

l/ 2e < J2nI/H-1Ibe,
I/RII2 - 1+ JI - 2nI!H-11l 2 € -

which is a slightly stronger than (2.3.54) where D = l. An equivalent rigorous bound

where only the 2-norm is used was obtained by Drmae, Omladic and Veselié [20,

1994}.

As we pointed out in the comment fol1owing Theorem 2.3.fi, with a correct choice

of D, e.g., D = Dr == diag(II(R(i, :)112), possibly x'c(A, D) can be much smaller than

IIH- l ll2. So the bou!ld (2.3.55) is potentially weak, although the condition (2.3.54)

is not as constraining as (2.3.51).

2.3.4 Numerical experiments

(
In Sections 2.3.2 and 2.3.3 we presented new first-order and rigorous perturbation

bounds for the changes ·caused by baGkward rounding errors for the Cholesky fac-
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(
Table 2.3.2: Results for Pascal matrices with pivoting, .4 =P .4pT

n Xc(A) Xc(A, Dr) Kc(A) Kc(A, Dr) 7in Il H - l ll2
1 5.0e-01 1.Oe+OO 5.0e-Ol 1.Oe+OO 7.1e-Ol
2 1.6e+OO 4.ge+OO 1.5e+OO 4.2e+OO 4.8e+OO
3 4.1e+OO 1.8e+Ol 5.1e+OO 1.6e+Ol 3.6e+OI
4 1.3e+Ol 6.1e+Ol 2.2e+Ol 8.0e+OI 3.0e+02
5 3.6e+OI 2.1e+02 8.3e+Ol 3.3e+02 2.5e+03
6 7.7e+Ol 6.7e+02 2.Se+02 1.3e+03 2.2e+04
7 1.8e+02 2.2e+03 9.4e+02 S.le+03 2.0e+05
8 4.8e+02 7.8e+03 4.0e+03 2.4e+04 1.7e+06
9 1.2e+03 2.7e+04 1.6e+04 1.0e+OS 1.5e+07
10 3.6e+03 9.0e+04 7.6e+04 4.7e+OS 1.4e+08
Il 7.Se+03 2.7e+05 2.4e+OS 1.8e+06 1.2e+09
12 1.8e+04 9.2e+05 8.3e+05 8.2e+06 1.1e+lO
13 3.ge+04 2.ge+06 3.2e+06 3.le+07 9.8e+10
14 9.4e+04 8.Se+06 1.3e+07 1.2e+08 8.8e+11
15 2.2e+05 2.8e+07 5.4e+07 4.ge+08 7.ge+12

torization using two different approaches, defined Xc(A) =nllVcWillb/llAII~/2 as

the condition number of the problem, and suggested that usually Xc(A) could be

estimated in practice by x'c(A, Dr) = nll1~-11l2I1R-1Dr ll211D;1Rlh/1lR1I2, with Dr =

diag(IIR(i, :)1/2), which can be estimated by standard norm estimators in O(n2
). Our

bounds are potentially much smaller than the equivalent bound in Drmae, Omladic

and Veselié [20, 1994]. Aiso we compare Xc(A) with Kc(A), and compare corre­

sponding estimators Xc(A, D) with K'c(A, D) as weIl. These condition numbers and

condition estimators satisfy the following inequalities (see (1.2.10), (2.3.30), (2.3.35),

(2.3.36), "(2.3.42), (2.3.43); and (2.3.44)):

Xc(A) $ Xc(A) < Xc(A, Dr),

Xc(A) < ~nIlH-11l2' JnXc(A, Dr) < XcCA) $ nIlH-11l 2 ,

(
l (A) < K CA) < maxa;; (A)nXc - C - mina•• Xc ,



Now we give a set of examples to show our findings. The matrices are n x n Pascal

matrices, n = 1,2, ... , n. The results are shown in Table 2.3.1 without pivoting and

in Table 2.3.2 with pivoting.

Note in Tables 2.3.1 and 2.3.2 how ~nIlH-11l2 can be worse than Xc(A). In

Table 2.3.2 pivoting is seen to give a significant improvement on Xc(A). Also we

observe from both Tables 2.3.1 and 2.3.2 that x'c(A) is a ïeasonable approximation

of Xc(A). vVe see Xc(A) is smaller than Kc(A) for n > 2.

(
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2.4 Summary and future work

Although with norm-bounded changes in A the Sun [46, 1991J and Stewart [41, 1993]

first-order perturbation bound (2.2.8) is relevant in the sense that sorne problems do

attain close to the indicated condition, we have shown that it gives a large over-bound

for rnost problems. The more refined bound (2.2.25) obtained by the matrLx-vector

equation approach is usually significantly stronger, and is never weaker, and the re­

sulting condition number Kc(A) more accurately refiects the true sensitivity of the

problem. Further, the sizes of our condition numbers depend on any symmetric pivot­

ing used, and numerical results and analyses show that the standard symmetric pivot­

ing strategy usually leads to a near optimally conditioned factorization for a given A

in PApT = RTR. Because of the difficulty in understanding and computing Kc(A),

there was need for, and fortunately we have been able to give by the matrix-equation

approach, a simpler bound. Although the new bound (2.2.29) is somewhat weaker,

it provides a computationally practical and useful estimate K'c(A, Dr) of Kc(A), and

at the same time gives us insight into why the Cholesky factorization is often less

sensitive than we thought, and adds to our understanding as to why the standard

pivoting usually gives a condition number approaching its lower bound !~/2(A).

For the perturbation L1A which cornes from the backward rounding error analysis,

we first presented first-order (nearly) attainable bounds (see Theorems 2.3.4) by the



matrix-vector equation approach, then gave computationally practical bounds (see

Theorem 2.3.6) by the matrix equation approach. Even though the latter are weaker

than the former, both of them are (potentially) stronger than the corresponding

equivalent bound (2.3.41) of Drmae et al. Our condition number Xc(A) more closely

refiects the true sensitivity of the problem. Alsa numerical experiments and analysis

show that usually the standard symmetric pivoting strategy can significantly improve

the condition number Xc(A). So the computed Cholesky factor most likely has high

accuracy when the standard symmetric pivoting is used.

With the relative changes in the elements of A (i.e. IL1AI :5 fiAI) we presented

first-order perturbation analyses, which resulted in the condition number f.lc( A) and

a practical and useful upper bound f.l~(A) on /lc(A).

In the future we would like to

(
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(

• Investigate the ratio K.c(A)fKc(A), which we suspect is bounded by the function

of n alone, probably involving something like 2n
•

• Explore the effect of rank-revealing pivoting on Kc in both theory and compu­

tations, and study the optimization problem miDp Kc(PApT).

• Give a better approximation to Xc(A) than our current x'c(A), which can some­

times overestimate Xc(A), or alternatively look for other methods to estimate

Xc(A) efficiently.

• Give a better approximation to JLc(A) than our current JL~(A), which can some­

times overestimate Jlc(A), or alternatively look for other methods to estimate

Jlc(A) ëfficiently.



(
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Chapter 3

The QR- factorization

3.1 Introduction

The QR factorization is an important tool in matrix computations: given an m x n

real matrix A with full column rank, there exists a unique m x n real matrix Q with

orthonormal columns, and a unique nonsingular upper triangular n x n real matrix

R with positive diagonal entries such that

A=QR.

The matrix Q is referred to as the orthogonal factor, and R the triangular factor.

Let LlA he a real m x n matrix such that A + L\A is still of full column rank, then

.4 + LlA has a unique QR factorization

A + L1A = (Q + ~Q)(R + L1R).

The goal of the perturbation analysis for the QR factorization is to determine a bound

on IILlQII (or ILlQI) and I/LlRII (or lodRI) in terms of (a bound on) lIodAI! (or ILlA/).

The perturbation analysis for the QR factorization has been considered by several

authors. Given IIL\AII, the first result was presented by Stewart [39, 1977}. That was

further modified and improved by-Sun [46, 1991}: Using different approaches SUD [46,

60
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(

1991] and Stewart [41, 1993] gave first-order perturbation analyses. Recently a new

rigorous perturbation bound for Q alone was given by Sun [49, 1995J. Given IL1AI,
Sun [48, 1992] presented a rigorous analysis for the components of Q and R. For .dA

which has the form of the equivalent backward rounding error (componentwise form)

from a numerically stable computation of the QR factorization, Zha [55, 1993] gave

cr first-order analysis.

The main goal of this chapter is to establish new first-order perturbation bounds

given a bound on II~AII, which are sharper than the equivalent results for the R factor

in SUll [46, 1991] and Stèwart [41, 1993], and more straightforward than the sharp

result in Sun [49, 1995] for the Q factor, and present the corresponding condition

llumbers which· more closely refiect the true sensitivity of the problem.

The rest of this chapter is organized as follows. In Section 3.2 we obtain expres­

sions for Q(O) and R(O) in the QR factorization A + tG = Q(t)R(t). These basic

sensitivity expressions will be used to obtain our new perturbation bounds in Sec­

tions 3.3 and 3.4, but in Section 3.2 they are also used to derive Sun's results on the

sensitivity of Rand Q. In Section 3.3 we give a refined perturbation analysis for Q,

showing in a simple way why the standard column pivoting strategy for A can he

heneficial for certain aspects of the sensitivity of Q. In Section 3.4 we analyze the

perturbation in R, first by the detailed and tight matrix-vector equation approach,

then by the straightforward matrix equation approach. We give numerical results

and suggest practical condition estimators in Section 3.5. Finally we su~marize our

findings and point out future work in Section 3.6.



CHAPTER 3. THE QR FACTORlZATION 62

3.2 Rate of change of Q and R, and previous

results

Our perturbation bounds for Q will be tighter if we bound separately the perturba­

tions along the column space of A and along its orthogonal complement. Thus we

introduce the following notation. For real m x n A, let Pl be the orthogonal projector

auto n(A), and P2 be the orthogonal projector onto 'R.(A)l-. For real m x n ~A define

(3.2.1 )

(3.2.2)

SO f2 = fi + f~.

Here we derive the basic results on how Q and R change as A changes. We thén

derive the first-order results obtained by Sun [46, 1991][49, 1995}. The fol1owing

theorem summarizes the results we use later.

Theorem 3.2.1 Let A E Rmxn he of full column mnk n with the QR factorization

A = QR, let G be a real m x n matrix, and let ~A = €G, for sorne € 2: O. If

(A) IIPI.dAII2 1
K2 IIAII2 <,

where K2(A) =IIA t ll 211AII2 and Pl is the o.rthogonal projector onto 'R(A), then A+LiA

has the unique QR jactorization

(

A + ~A = (Q + LiQ)(R + ~R),

with L1R and ~Q satisfying

~R = eR(O) + O(€2),

~Q = €Q(O) + O(€2),

where R(O) and Q(O) are defined by the unique QR jactorization

A(t) =A + tG = Q(t)R(t), QT(t)Q(t) = l, Itl $ €,

(3.2.3) .

(3.2.4)

(3.2.5)

(3.2.6)
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and sa satisfy the equations

RTR(O) + RTCO)R = RTQTG + CTQR,

R(O) = up[QTGR-1 + CQTCR-1)T]R,

Q(O) = GR-1- Q up[QTGR- l + (QTGR-1)T],

where the 'up' notation is defined by (1.2.3).

63

(3.2.7)

(3.2.8)

(3.2.9)

(

Proof. Take any Qsuch that [Q, QJ is square and orthogonal, then for aIlltl ~ f

- _ [R] _ [R + tQTG ]A + tG == (Q,Q] +tG = [Q,QJ _ .
o tQTG

From the inequality (3.2.2) we see IItQT GII2 =:; CTmin(A) =CTmin(R) for aHltl ~ f. Thus

A + tG has full colurnn rank and the unique QR factorization (3.2.6). Notice that

R(O) == R, R(€) = R + L1R, Q(O) = Q and Q(E) == Q + ÂQ, so (3.2.3) holds.

It is easy to verify that Q(t) and R(t) are twice continuously differentiahle for

Itl ~ € from the algorithm for the QR factorization. If we differentiate R(t)TR(t) ==

A(t)TA(t) with respect to t and set t == 0, and use A = QR, we obtain (3.2.7) which

we will see is a linear equation uniquely defining the elements of upper triangular

R(O) in terms of the elements of QTG. From upper triangular R(0)R- 1 in

we see with the 'up'. notation (see (1.2.3» that (3.2.8) holds. Next differentiating

(3.2.6) at t == 0 gives

G = QR(O) + Q(O)R,

and combining this with (3.2.8) gives-C3.2.9). Finally the Taylor expansions for R(t)

and Q(t) about t == 0 give (3.2.4) and (3.2.5) at t = €. 0

By Theorem 3.2.1 we can easily obtain the fust-order perturbation bound for R

given by Sun [46, 1991] and aIso by Stewart [41, 1993], and the first-order bound for

Q given by Sun [49, 1995].
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Theorem 3.2.2 Let A E Rmxn be of full column Tank n with the QR factorization

A = QR, and let L1A be a real m x n matrix. Define € =II L1AIIF/IIAII2 and €1 =
IIQQT.dAIIF/I/AII2' see (3.2.1). If (3.2.2) holds, then A + LiA has the unique QR

jactorization

A + LiA = (Q + LlQ)(R + LlR),

where
IIL1RIIF
IIRlb ::; V2K2(A)él + O(~).

Il.iQIIF ::; V2K2(A)é + 0(é2
).

Proof. Let G =LiA/é (if € = 0, the theorem is trivial), then

(3.2.10)

(3.2.11)

(3.2.12)

Clearly aIl the conclusions of Theorem 3.2.1 hold here. From (3.2.8) and the fact that

for symmetric X, Il up(J'Y)IIF ~ ~IIJ'YIIF (see (1.2.7)) wc have

IIR(O)IIF < ~ IIQTGR-1+ (QTGR-1fIlF IIRII2

< v'2I1QTGR-1II F IIRII2 ~ V2 K2(R)IIQTGIIF,

and since

IIR(O)I/F
IIRII2 ~ V2K.2(A)€1/€'

Thus (3.2.10) follows from the Taylor expression (3.2.4).

If [Q, Q] is square and orthogonal, then from (3.2.9) we have

(3.2.13)

(3.2.14)

(3.2.15)

(

"Q(O)II~ _ IIQTQ(O)II~ + IIQTQ(O)II}

_ IIQTGR-1 - up[QTGR- l + (QTGR-l)T],,~ + IIQTGR-lII~

< 2I1QTGR-llI~ + IIQTGR-11I} (using (1.2.6))

< 2I1GR-11I},
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thus \vith (3.2.12),
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\yhich, with the Taylor expression (3.2.5), gives the hound (3.2.11) for the Q factor.

o

\Ve s@e v'2K'2(A) is a measure for the sensitivity of both Rand Q, but it is not

the act uai condition number since for general A the first-order bounds in (3.2.10) and

(3.2.11) are not attainable. Thus V2K2(A) is a condition estimator for both Rand

Q in the QR factorization.

3.3 Refined -analysis for Q

The results of Sun [49, 1995} give about as good as possible overall bounds on the

change .dQ in Q. But by looking at how 11Q is distributed between R(Q) and its

orthogonal complement, and fol1owing the ideas in the proof of Theorem 3.2.2, we

are able to obtain a result which is tight but, unlike the related tight result in [49J,

easy ta follow. It makes clear exactly where any ill-conditioning lies. From (3.2.5)

with Q = [Q, Q} square and orthogonal,

and the key is to bound the first term on the right separately from the second. Note

from (3.2.9) with G = 11A/€ and (3.2.1) that

where G cao he chosen to give equality here for any given A. Hence

(

(3.3.1)
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(
and for that part of IJ.Q in 'R.(Q) the condition number (with respect to the combi­

nation of the F- and 2-norms)

. _ . {IIP2L1QIIF .
h:Q.L(A) = ~~sup €211Q1I2 . A + LlA = (Q + IJ.Q)(R + IJ.R),

€ = IIL1AIIF/IlAlb, €2 = IIP2L1AIIF/IIAII2}

is given by

KQ.L(A) = K2(A).

:\ow for the part of IJ.Q in R(Q). We see from (3.2.9) that

QTQ1(O) _ QT GR-1 - up[QTGR-1 + (QT GR-1)T]

_ low(QT GR-1) - [low(QTGR-1»)T, (3.3.2)

which is skew syrnmetric with cIearly zero diagonal. If we partition Q, G and R as

fo110\\l5
n-1 1

n -1 1 n -1 1 R =[ Rn -1 T] ,Q =[Qn-1, qJ, G =[Gn - 1, g],
Tnn

then from (3.3.2) we have

QTQ(O) = low([QTGn_1R;;~1,QT(-Gn_1R~~1T + g)/rnn ]) (3.3.3)

- {low([QTGn-lR;:~l'QT.<-Gn-lR;;~lr + g)/Tnn]}}T

- low([QTGn-lR;~l' 0]) - {low([QTGn-lR;~I' O]}}T.

Thus taking the Frobenius norm and using (1.2.6) and (3.2.15) gives

It is easy to verify for any Rn-l that equalities are obtained by taking G = (qnyT, 0),

with y nonzero such that 1IR;':lyll2 = 1IR;:11!2I1y!l2. It follows that the first-order

bound is attainable in

( (3.3.4)
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sa for that part of L1Q in R(Q) the condition number

~ _. {" PI LlQIF .
1i:Q (A) = !~IIJsup fdlQII2 . A +.dA = (Q + .dQ)(R + L1R),

€ = IlLiAIIF/IIAII2, €l = II P l.dAIIF/II A /l2}

is given by
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(3.3.5 )

In sorne problems we are rnainly (in fact only, if A is square and nonsingular)

interested in the change in Q lying in R(Q), and this result shows its bound can be

smaller than we previously thought.- In particular if A has only one small singular

value, and we use the standard column pivoting strategy in computing the QR fac­

torization, then Rn - 1 wilLusually be quite well-conditioned compared with R, and

we will have !IR;':dI2!1AII2 ~ K2(A). However for sorne special cases this may not he

true, for exarnple the Kahan matrix in Section 3.5, and then a rank revealing pivot­

ing strategy such as in Hong and Pan [31, 1992] would be required to obtain such an

improvement.

We now summarize the above results as the following theorem.

Theorem 3.3.1 Let.4 = [Q, Q) [ :] be the QR jactorization of .4 E Rmxn with

full column mnk, and let LiA be a real m X n matrix. Let € =Il LiA Il F/ Il A 112, € 1 =
IIQQTLîAIIF/IIAII2 and €2 = /IQQTLiAIIF/IIAII2. If (3.2.2) holds, then there is a

unique QR factorization satisfying

A + LiA = (Q + LiQ)(R + .dR),

where

IIQQTLîQI/F :5 KQ(A)€1 + O(è),

IIQQT.dQIIF :5 K2(A)e2 + O(~),

with

'C
o
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3.4 Perturbation analyses for R

68

In Section 3.2 we saw the key to deriving first-order perturbation bounds for R in

the QR factorization of full column rank A is the equation (3.2.7). Like in Chapter

2 for the Cholesky factor, we will now analyze the equation in two ways. The first,

the matrix-vector equation approach, gives a sharp bound leading to the c0.!1dition

number KR(A) for R in the QR factorization of A; while the second. the matrix

equation approach, gives a clear improvement on (3.2.10), and provides an upper

bound on K:R(A). Both approachës provide efficient condition estimators (see Chang

and Paige [9, 1995J for the matrix-vector equation approach), and nice results for

the special case of AP = QR, where P is a permutation matrix giving the standard

column pivoting, but we will only derive the matrix equation versions of these. The

tighter but more complicated matrix-vector equation analysis for the case of pivoting

is given in [9], and only the results will be quoted here. AIl our analyses in this section

are based on the same assumptions as in Theorem 3.2.2. Most of the results ta be

given here have been presented in Chang, Paige and Stewart [14, 1996].

3.4.1 Matrix-vector equation analysis for R

The matrix-vector equation approach views the ·matrix equation (3.2.7) as a large

matrix-vector equation. The upper and lower triangular parts of (3.2.7) contain iden­

tical information. By using the 'uvee' notation defined by (1.2.4) and ~vec' notation,

we ean easily show the upper triangular part can be rewritten in the following forro

(for the derivation, see [14]):

(

(3.4.1)
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h W
'f") n( .. +1) X "("+1) •

W ere R E l'--:Z :2 15

.. ( .. +1) 2
and Zn E n 2 Xn is

69

(

TU

TI2 T22 TU

T12 T22

TIn T2n Tnn rU

TIn T2n Tnn T12 r22

Tin T2n rnn

Since R is nonsingular, WR is also, and from (3A.l)

Remembering R(D) is upper triangular, we see

(3.4.2)
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< IIWilZRII2 I/vec(QTG)1I2 = IIWR" l ZRI!2I!QTGIIF

- II Wi l ZRII211Rlh fl/f, (using (3.2.15))

70

. where for any nonsingular upper triangular R, equality can be obtained by choosing

G such that vec(QTG) lies in the space spanned by the right singular yectors corre­

sponding to the largest singular value of Will ZR. Therefore we see from the Taylor

expansion (3.2.4),

IILlRIIF i 1 2IIRlh :::; II IVi ZRI2 fI + O(E ),

and this bound is attainable to first order in E. This implies for R in the QR fac­

torization of A the condition number (with respect to the combination of the F- and

2-norms) defined by

. {" LlRI/FKR(A) =~~sup EIIIRlh: (A + LiA) = (Q + LiQ)(R + ~R)

E = IILiAIIF/lIAII2, El = IIPILlA/lF/IIAII2} (3.4.3)

is given by

From the definition of KR(A.) and the Sun's first-order perturbation bound (3.2.10)

we easily observe

This upper bound is achieved if R is an identity matrix, and 50 is tight.

The structure of WR and ZR reveals that ea.ch column of W R is one of the columns

of ZR, and 50 Wi1ZR has an n(n + 1)/2 square identity submatrix, ·giving

(3.4.4)

c

We now summarize these results as the fol1owing theorem.

Theorem 3.4.1 With the same assumptions as in Theorem 3.2.2, A + ~A has the

unique QR factorization

. A + ~A = (Q + LiQ)(R + LiR),
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where with W R and ZR as in (3.4.1),

IIL\RIIF 2IIRII2 ~ KR(A)fl + O(f ),

1 ::; KR(A) = IIWnl ZRlb ~ V2K 2(A),

and the first-order bound in (3.4.5) is attainable. 0
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(3.4.5)

(3.4.6)

Unity is the best constant lower bound on KR(A) we can obtain, as can be seen

fronI the following example.

Example 1. Let R = diag(l, 6, ... , 6n
-

L), 0 < <5 ~ 1. We can easily show

o (3.4.7)

FraIn (3.4.6) we know the first-order perturbation bound in (3.4.5) is at least as

good as as that in (3.2.10). In fact it can be better by an arbitrary factor. Consider

Exanlple 1,

K2(A) = 1/6,

(

and
V2K2(A) ..j2
------.;~ ""J - as 6 -+ O.

KR(A) 6

'VVe see the first-order perturbation bound (3.2.10) can severely overestimate the effect

of a perturbation in A.

Suppose we use the standard column pivoting strategy in AP = QR, where P

is a permutation matrix designed 50 that columns of A are interchanged, during the

computation of the reduction, ta make the leading diagonal elements of R as large

as possible, see Golub and Van Loan [26, 1996, §5.4] for details. We see K2(A) in

(3.2.10) does not change, but KR(A) does change. The fol1owing result was shawn by

Chang and Paige [9, 1995].
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Theorem 3.4.2 Let.4 E Rmxn be of full column rank, with the QR factorization

AP = QR when the standard column pivoting strategy is used. Then

If R = I{n(fJ), where Kn(f}) are the Kahan matrices (see (2.2.41)), then

(3.4.8 )

1 1 2 4
_4n +1 + -n2 + -n - - as 8 --+ o.
2ï 3 9 2ï

o

(

Theorem 3.4.2 shows that when the standard column pivoting strategy is used,

KR(AP) is bounded for med n no matter how large K2(A) is. Many numerical ex­

periments with this strategy suggest that KR(AP) is usually close to its lower bound

of one. But it is not for the Kahan matrices. Fortunately such examples are rare

in practice, and furthermore if we adopt the rank-revealing pivoting strategy, the

condition number will most likely be close to its lower bound, see Section 3.5.

3.4.2 Matrix equation analysis for R

As far as we cao see, KR(A) is unreasonablely expensive to compute or estimate

directly with the usual approach, except when we use pivoting, in which case KR(AP)

usually approaches its lower bound of 1. Fortunately, by the matrix equation approach

we can obtain an excellent upper bound on KR(A).

In the proof of Theorem 3.2.2 we used the expression of R(D) in (3.2.8) to derive

Sun's first-order perturbation bound. Now we again look at (3.2.8), repeat~d here for

clarity:

Let On be the set of all n x n real positive definite diagonal matrices. For any

D = diag(oll ... ,8n ) E D n , let R = DR. Note that for any matrix B we have

up(B)D = up(BD). Hence ifwe define B =QT GR-l, then
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\Vith obvious notation, the upper triangular matrix up(B) + D-l up(BT)D has (i,j)

element bij + bjiDj / Di for i < j, and (i, i) element bii . To bound this, we use:

. I;emma 3.4.1 For B E Rnxn and D = diag(61, •.. ,6n ) E D n ,

where

Proof. Clearly

(3.4.10)

(3.4.11)

n n j-l D'
</12 < :L b;i + :L L(b~j + b;i)(1 + (6~ )2)

i=l j=2 i=l ~

- IIBII}. +t ~(b;j + b;i)(;?
j=2i=1 1

< IIB/I} + Ç~IIBII}·

From this (3.4.10) follows. 0

We cau now bound R(O) of (3.4.9)

(3.4.12)

(

IIR(O)IIF < 4>. IIRII2 ~ JI + <1I1BIIFIIRII2

- JI +~ I!QT GR- 1II F IIRI!2 < JI +~ K2(R)IIQT GIIF (3.4.13)

- JI +~ K2(D- 1R)/IRI/2 EliE, (using (3.2.15))

or
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But this is true for all D E D n , sa that

IIR(O)I/F < ~R(A)€l/€, (3.4.14)
IIRII2
~R(A) - inf ~~(A,D), (3.4.15)

DeD.

K~(A,D) - JI + ~ K2(D- 1R}, (3.4.16)

where (D is defined in (3.4.11). This gives the encouraging result

(3.4.17)

(3.4.18)

Hence from the Taylor expansion (3.2.4) we have

/1 LiRIiF 1 _2
IIRII2 :5 KR(A)El + O(~),

where from (3.4.17) this is never worse than the bound (3.2.10).

Clearly KR(A) is a measure of the sensitivity of R in the QR factorization. Since

KR(A) is the condition number for R (see the definition (3.4.3)), certainly we have

(3.4.19)

Usually (3.4.19) is a strict inequality, but if R is diagonal equality will hold. In fact,

take D = R, and let (D = rjj/rii' j > i, then K'R(A, D) = JI + <]. On the other

hand, it is straightforward to show KR(A) = JI +~. 50 "ReA) = K~(A, D), which

implies KR(A) = "'R(A). For another proof for this, see Chang, Paige and Stewart [14,

1996, Remark 5.1].

Now we summarize the above results as the fol1owing theorem.

Theorem 3.4.3 With the same assumptions as in Theorem 3.2.2, A + LiA kas the

unique QR factorization satisfying

A + LiA = (Q + LiQ)(R + LiR),

(

where with KR(A) as in (3.4.15) and (3.4.16),

IlLiRIIF 1 _2
I/RII2 :5 K R (A)€l + OCr), - (3.4.20)
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(3.4.21)

and if R is diagonal the first inequality in (3.4.21) will become an equality. 0

From (3.4.21) we know the first-order perturbation bound (3.4.20) is at least as

good as (3.2.10). In fact it can he better by an arbitrary factor, as can also he seen

from Example 1. Taking D = R, we have

If we take R = diag(6 l - n
, ••. ,6, 1), 0 < 6 ~ 1, we see K:2(R) = K:2(A) = 6I - n

,

while

K: R (.4) = K:~(A) = K:~(A, D) = VI + 82-2n ,

which is close to the upper bound V2K2(A) for small 6. This shows that relatively

small early diagonal elements of R cause poor condition, and suggests if we do not

use pivoting, then there is a significant chance that the condition of the problem will

approach its upper bound, at least for randomly chosen matrices.

\Vith the standard column pivoting strategy in AP = QR, P a permutation

matrix, this analysis also leads simply ta a very nice result, even though it is a bit

weaker than the tight result (3.4.8).

Theorem 3.4.4 Let A E R mxn be of full column rank, with the QR factorization

AP = Q R when the standard column pivoting strategy is used. Then

(3.4.22)

(

Praof. Standard column pivating ensures Iriil ~ Iriil and Iriil ~ Irjjl for all j ~ i.

Sînce for any D E Dn ,

K:~(AP) ~ K~(A, D) = JI + CB K;2(D- 1R),

(3.4.~2) is immediately obtained from (1.2.18) in Theorem 1.2.2 by taking D ­

diag(R). - 0



This analysis gives sorne insight as to why R in the QR factorization is less sensitive

than the earlier condition estimator V2K2(A) indicated. If the ill-conditioning of R

is nlostly due to bad scaling of its rows, then correct choice of D cao give K2(D-l R)

very near one. If at the sarne time (D is Dot large, then Kn(A., D) in (3.4.16) can

be much smaller than J2K2(R), see (3.4.17). Standard pivoting always ensures that

such a D exists, and in fact gives (3.4.22).

The significance of this analysis is that it provides an excellent upper bound on

h:R(A). Kn(A) is quite easy to estimate. AIl we n~ed to do is choose a suitable D in

h:~(A, D) in (3.4.16). vVe consider how to do this in the next section.

(
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3.5 Numerical experiments

In Section 3.4 we presented new first-order perturbation bounds for the R factor of

the QR factorization using two different approaches, obtained the condition number

l'\:n(.4) = IIH/;lZRI12 for the R factor, and suggested KR(A) could he estimated in

practice by K'R(A., D). Our new first-order results are sharper than previous results

for R, and at least as sharp for Q, and we give sorne numerical experiments to il1ustrate

bath this, and the possible estimators for Kn(A).

vVe would like to choose D such that "'n(A, D) is a good approximation to the

minimUlll KR(A) in (3.4.15), and show that this is a good estimate of the condition

Humber KR(A). Then a procedure for obtaining an O(n2) condition estimator for

R in the· QR factorization (i.e. an estimator for KR(A)), is to choose such a D,

use a standard condition estimator (see for example Higham [27, 1987]) to estimate

K2(D-l R), and take KR(A, D) in (3.4.16) as the appropriate estimate.

By van der Sluis's Theorem 1.2.1, K2(D-l R) will be nearly minimal when the

rows of D-1R are equilibrated. But this could lead. to a large (D in (3.4.16). There

_ are three obvious possibilities for D. The first one is choosing D ta equilibrate R

prcci§ely. SpecificaJly, take 6i = VEj=i Tri for i = 1, ... , n. The second one is



choosing D to equilibrate R as far as possible while keeping (D :5 1. Specifically,

take 61 = JEf=l T'fi' 6i = JEj=i Tri if vEi=i T~ :5 6i - l otherwise 6i = 6i- l , for

i = 2, ... , n. The third one is choosing 6i = Tii. Computations show that the

third choice can sometimes cause unnecessarily large estimates, sa we will not give

any results for that choice. We specify the diagonal matrix D obtained by the first

method and the second method by Dl and D 2 respectively in the following.

\Ve give three sets of examples.

(1) The first set of matrices are n x n Pascal matrices, n = 1,2, ... , 15. The

results are shown in Table 3.5.1 without pivoting, and in Table 3.5.2 with standard

column pivoting. Table 3.5.1 illustrate how the upper bound V2K2(A) can be far

worse than the condition number KR(A), which itself cau be much greater than its

lower bound of 1. In Table 3.5.2 standard column pivoting is seen ta give a significant

improvement on KR(A), bringing KR(AP) very close to its lower bound, but of course

V2K2(AP) = ..;21\:2(A) stilL Aiso we observe from Table 3.5.1 that both KR(A, DI)

and K'R(A, D 2 ) are very good estimates for KR(A). The latter is a little better than

the former. In Table 3.5.2 KR(AP, Dl) == KR(AP, D 2 ) (in fact Dl = D 2 ), and they are

also gaad estimates for KR(AP).

(2) The second set of matrices are 10 x 8 Aj , j = 1,2, ... ,8, which are aIl obtained

from the same random 10 x 8 matrix (produced by the MATLAB function randn),

but with its jth column multiplied by 10-8 to give Aj • The results are shawn in

Table 3.5.3 without pivoting. AIl the results with pivoting are similar ta that for

j = 8 in Table 3.5.3, and 50 are not given here. For j. = 1,2 ... , 7, KR(A) and

KQ(A) are bath close ta their upper bound V2K2(A), but for j = 8, both KR(A)

and Kq(A) are significantly smaller than V2K2(A). AIl these results are what we

expected, since the matrix R is ill-conditioned due to the fact that Tjj is very small,

but for j = 1,2, ... ,7 the rows of R are already essentially equilibrated, and we do

not expect KR(A) ta be much better than v'2~2(A). AIso for the first seven cases

the smallest-singular value of the leading part Rn-l is close to that _of R, 50 that

(

{
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Table 3.5.1: Results for Pascal matrices without pivating, A =QR

J21\:2(A)Tl Kn(A) Kn(A,Dr) Kn(A,D2) KQ(A)
1 1.Oe+OO 1.4e+OO 1.4e+OO l.4e+OO
2 1.ge+OO 3.4e+OO 1.ge+OO 2.6e+OO 9.7e+OO
3 4.6e+OO 1.4e+01 l.4e+Ol 1.ge+Ol 8.8e+Ol
4 1.4e+01 6.1e+Ol 6.1e+Ol 1.6e+02 9.8e+02
5 5.0e+Ol 2.6e+02 2.6e+02 1.6e+03 1.2e+04
6 1.8e+02 1.1e+03 1.1e+03 1.8e+04 1.6e+05
f 6.7e+02 4.5e+03 4.2e+03 2.2e+05 2.1e+06
8 2.Se+03 1.8e+04 1.7e+04 2.8e+06 2.ge+07
9 9.4e+03 7.4e+04 6.6e+04 3.6e+07 4.1e+OS
10 3.6e+04 3.0e+OS 2.6e+05 4.8e+OS 5.ge+09
Il 1.4e+05 1.2e+06 1.le+06 6.6e+09 8.Se+10
12 S.2e+OS 4.ge+06 4.2e+06 9.1e+10 1.2e+12
13 2.0e+06 2.0e+Oï 1.7e+07 1.3e+12 1.8e+13
14 7.8e+06 8.0e+07 6.6e+07 l.8e+13 2.7e+14
15 3.0e+Oï 3.2e+08 2.6e+08 2.6e+14 4.0e+lS

(

KQ(A.) could nat be much better than V2K2(A). For j = S, even though R is still

ill-conditianed due ta the fact that rs,s is very small, it is not at aIl equilibrated,

and becomes well-conditioned by row scaling. Notice at the same time (D is close

to l, so Kn(A, Dd, Kn(A, D2 ), and therefore KR(A) are much better than V2K2(A).

In this case, the smallest singular value of R is significantly smaller than that of

Rn - l • Thus KQ(A), the condition number for the change in Q lying in the range of

Q, is spectacularly better than v'2K2(A). This is a contrived example, but serves to

emphasize the henefits of pivoting for the condition of both Q and R.

- (3) The third set of matrices are n x n Kahan matrices A = Kn(B); see (2.2.41).

Of course without pivoting Q = 1 here, but the condition numbers depend on R

only, and these are all we are interested in. The results for n = 5,10,15,20,25 with

() = 7r/8 are shawn in Table 3.5.4, where Il is a permutation such that the first calumn

is maved ta the last column position, and the remaining columns are moved ta left
. -
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Table 3.5.2: Results for Pascal matrices with pivoting, AP = QR

\l21C2(A)n ICR(AP) KR(AP,D1 ) KR.(AP, D2 ) ICQ(AP)
1 l.Oe+OO lAe+OO 1Ae+OO lAe+OO
2 1.2e+OO 1.Se+OO 1.8e+OO 1.7e+OO 9.7e+OO
3 1.3e+OO 2.2e+OO 2.2e+00 1.3e+Ol 8.8e+01
4 1.7e+OO 3Ae+OO 3.4e+OO 1.1e+02 9.8e+02
5 1.Se+OO 4.1e+OO 4.1e+OO l.Oe+03 1.2e+04
6 2.2e+OO 4.7e+OO 4.7e+OO 7.5e+03 1.6e+05
7 2.1e+OO 5.1e+OO 5.1e+OO 8.5e+04 2.le+06
8 2.6e+OO 6.5e+OO 6.5e+OO 1.2e+06 2.ge+07
9 3.5e+OO 8.Se+OO 8.8e+OO 1.5e+07 4.1e+08
10 3Ae+OO 9Ae+OO 9Ae+OO 2.4e+08 5.ge+09
Il 3.4e+OO 9.2e+OO 9.2e+OO 2.3e+09 8.Se+lO
12 3.3e+OO 9.7e+OO 9.7e+OO 3.0e+l0 1.2e+12
13 3.3e+OO 1.1e+Ol l.le+OI 3.5e+l1 1.8e+13
14 3.6e+OO 1.2e+ül 1.2e+OI 5.4e+12 2.7e+14
15 3.3e+OO l.2e+Ol 1.2e+01 8.6e+13 4.0e+15

Table 3.5.3: Results for 10 x 8 matrix A j , j = l, ... ,8, without pivoting -

79

(

1 l.ge+Q8
2 1.3e+08
3 1.ge+08
4 1.4e+OB
5 1.2e+08
6 B.8e+07
7 9.3e+07
8 2.3e+OO

4.0e+OS
2.ge+08
4.Se+OS
3.1e+08
3.1e+08
2.2e+08
2.1e+08
S.Se+OO

3.0e+OS
2.7e+OB
3.ge+OB
2.6e+08
2.4e+OB
1.7e+OS
1.7e+OB
4.ge+OO

3.0e+08
2.6e+08
4.7e+08
2.ge+08
3.ge+08
3.5e+08
4.4e+08
6.6e+OO

4.8e+08
3.8e+OB
S.Se+DB
4.Se+08
4.2e+OB
3.ge+OB
5.5e+OB
6.2e+08
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Table 3.5.4: Results for Kahan matrices, () = 'Ir/8, A.Il = QR

. n K:R(AIl) KR(ATI, Dd K:Q(AII) ~R(A.) KR(A, Dl) K,Q(A) J2K 2(A)
5 2.3e+00 5.6e+OO 3.ge+00 8.0e+OO 1.7e+Ol 2.2e+02 1.1e+03
10 3.5e+OO 1.4e+Ol 6.Se+03 2.le+02 6.1e+02 1.0e+06 5.1e+06
15 4.ge+OO 2.3e+Ol 1.0e+06 5.5e+03 2.1e+04 4.0e+09 2.0e+l0
20 5.3e+OO 3.2e+Ol 1.4e+08 1.5e+05 6.5e+05 1.5e+13 Î.5e+13
25 6.1e+OO 4.le+Ol 2.0e+lO 4.3e+06 2.0e+Oï 5.4e+16 2.7e+17

one position-- this permutation Il is adopted in the rank-revealing QR factorization

for Kahan matrices, see Hong and Pan [31, 1992]. Again we found Dl = D2 , and

only list the results corresponding ta Dl. As we know the Kahan matrices correspond

to corrcctly pivoted A by standard column pivoting. From Table 3.5.4 'ove see that

in these extreme cases, with large enough n, K:R(A) can be large even with standard

pivoting. This is about as bad a result as we can get with standard column pivoting

(it gets a bit worse as () -+ 0 in R), since the Kahan matrices make the upper bound

on II~VRIZR/IF approximately reachable, see Theorem 3.4.2. However if we use the

rank-revealing pivoting strategy, we see from Table 3.5.4 K:R(AIT) is again close ta its

lower bound of 1. Aiso we see K,Q(AIl) is significantly smaller than K,Q(A). This is

due ta the fact that the smallest singular value of Rn-l is much small than that of

Rn-l, the leading n - 1 square part of Êl in Ail = QR. For both of the cases with

and without rank-revealing pivoting, KR(A, Dd still estimates K,R(A) excellently.

In all these examples we see KR(A, Dd and KR(A, D2 ) gave excellent estimates for

K:R(A), with KR (A, D2 ) being marginally preferable.

3.6 Summary and future work

(

The first-order perturbation analyses presented here show just what the sensitivity

(condition) of each of Q and Ris. in the QR fac~orizationof full column rank A, and
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in sa doing provide their condition numbers (with respect ta the measures used, and

for sufficiently small .dA), as well as efficient ways of approximating these. The key

norm-based condition numbers we derived for A + L1A = (Q + L1Q)(R + L1R) are:

• ~Q.L = 1\:2(.4) for that part of ~Q in n(A)l., see (3.3.1),

• ~Q(A) = V2IlR;~db"Alb for that part of ~Q in n(A), see (3.3.4),

• the estimate for I\:R(A), that is K'R(A) =infDeD
R

K'R(A, D),

where KR(A, D) =JI + <5 K2(D- 1R), see (3.4.3).

The condition numbers obey

for Q, while for R

see (3.4.6) and (3.4.21). The numerical examples, and an analysis of the n = 2 case

(not given here) , suggest that KR(A, D), with D chosen ta equilibrate il :: D-1R

subject to (D ~ 1, gives an excellent approximation ta ~R(A) in the general case.

In the special case of A with orthogonal columns, 50 R is diagonal, then by taking

D=R,

see Theorem 3.4.3. For general A when we use the standard column pivoting strateg);

in the QR factorization, AP = QR, we saw from (3.4.8) and (3.4.22) that

1 1 2 4
KR(AP) < _4n +1 + -n2 + -n - -.

2ï 3 9 2ï~

K~(AP) < vn(n + 1)(4n + 6n - 1)/3.
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As a resul t of these analyses we see bath R and in a certain sense Q can be less

sensitive than was thought from previous analyses. The condition numbers depend on

any column pivoting of A, and show that the standard pivoting strategy often results

in much less sensitive R, and sometimes leads to a much smaller possible change of

Q in the range of Q, for a given size of perturbation in A.

By fol1owing the approach of Stewart [38, 1973,Th. 3.11, see also [45, 1990,Th. 2.11],

it would be straightforward, but detailed and lengthy, to extend our first-order re­

sults to provide strict perturbation bounds, as was done in Chapter 2. Our condition

numbers and resulting bounds are asymptotically sharp, sa there is less need for strict

bounds.

In the fu t ure wc would like to

• Explore the effect of rank-revealing pivoting on K- R in bath theory and compu­

tations, and study the optimization problem minp K-R.(PApT).

• Extend our analysis to the case where .dA has the equivalent componentwise

form of backward rounding errors. In fact a new perturbation bound has been

given by Chang and Paige [9, 1995]. Also sorne other results have been obtained

by Chang and Paige [11].
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Chapter 4

The LU factorization

4.1 Introduction

The LU factorization is a basic and effective tool in numericallinear algebra: given

a real n x n matrix A whose leading principal submatrices are all nonsingular, there

exist a unique unit lower triangular matrix L and an upper triangular matrix U such

that

A=LU.

Notice here we require the diagonal elements of L to be 1. L and U are referred to

as the LU factors. The LU factorization is a "high-level" algebraic description of the

Gaussian elimination. Simple examples shows the standard algorithms for the LU

factorization are not numerically stable. In arder to repair this shortcoming of the

algorithms, partial pivoting or complete pivoting is introduced in the computation.

For aIl of these details, see for example Wilkinson [53, 1965,ChapA], Higham [3D,

1996,Chap.9] and Golub and Van Loan [26, 1996,Chap.3]).

Let .dA he a sufficiently small n X n matrix such that the leading principal subma­

trices of A+.dA are still all nonsingular, then A+LlA has the unique LU factorization

A;.. ~A = (L + ~L)(U + ~U).

83
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The goal of the sensitivity analysis for the LU factorization is to determine a bound

on I/LlLII (or ILlL!) and a bound on IILlUI! (or ILlUI) in terms of (a bound on) IILlAII
(or ILlA!).

The perturbation analysis of the LU factorization has been considered by a fe\v

authors. Given ULlA", the first rigorous normwise perturbation bound was presented

by Barrland [2, 1991]. Using a different approach, Stewart [41, 1993] gave first-order

perturbation bounds, which recently were improved by Stewart [42, 1995]. In [-!2], L

was not assumed to be unit lower triangular, and a parameter p was used to control

how much of the perturbation is attached to the diagonals of L and U. Given ILlA!,

the first rigorous componentwise perturbation bounds were given by Sun (48, 1992].

The main .purpose of this chapter is to establish new first-order perturbation

bounds given a bound on ULlAlI, present the condition numbers, give the condition

estimators, and shed light on the effect of the partial pivoting and complete pivoting

on the sensitivity of the problem.

The rest of this chapter is organized as follows. In Section 4.2 we obtain expres­

sions for L(O) and U(O) in the LU factorization A + tG = L(t)U(t). These basic

sensitivity expressions will be used to obtain our new perturbation bounds in Section

4.3. In Section 4.3 we present perturbation results, first by the so called matrix­

vector equation approach, which leads to sharp bounds, then by the so called matrix

equation approach, which leads to weaker but practical bounds. We give numerical

examples in Section 4.4. Finally we hriefly summarize our findings and point out

future work in Section 4.5.

4.2 Rate of change of L and U

Here we derive the basic results on how Land U change as A changes, which will he

used later.
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Theorem 4.2.1 Let A E Rnxn have nonsingular leading k x k principal submatrices

for k = l, ... , n with the LU factorization A = LU, let G is a real n x n matrix,

and let LlA = fG, for sorne f 2::: o. If f is sufficiently small such that ail leading

·principal submatrices of A + tG are nonsingular for alIltl ~ €, then A + LlA has the

LU factorization

A + LlA = (L + L\L)(U + ~U),

with DL and ~U satisfying

LlL = f L(O) + O(E2
),

LlU = f V(O) + O(€2),

where L(O) and Ù(O) are defined by the unique LU factorization

(4.2.1)

(4.2.2)

(4.2.3)

A + tG = L(t)U(t), (4.2.4)

and so satisfy the equations

LÙ(DJ + L(D)U = G,

L(O) = Lslt(L-lGU-1 ),

U(O) = ut(L-1GU- 1)U.

(4.2.5 )

(4.2.6)

(4.2.7)

(

Proof. Since alileading principal submatrices of A +tG are nonsingular for alliti ~ E,

A+tG has the unique LU factorization (4.2.4). Note that L(D) = L, L(E) = L+~L,

U(O) == U and U(€) == U + LlU. When t. = E, (4.2.4) becomes (4.2.1). It is easy ta

observe that L(t) and U(t) are twice continuously differentiable for Itl ~ E from a

standard algorithm for the LU factorization. If we differentiate (4.2.4) and set t = 0

in the result, we obtain (4.2.5), which we will see is a linear equation uniquely defining

the elements of strictly lower triangular L(D) and and upper triangular Ù(O) in terms

of the elements of G. From (4.2.5) we have

L -1 L(O) + Û(O)U- l = ~-lGU-1 .
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1
Note that L -1 i(o) is strictly lower triangular and Ù(O)U- 1 is upper triangular, thus

we have

which give (4.2.6) and (4.2.7). Finally the Taylor expansions for L(t) and U(t) about

t = 0 give (4.2.2) and (4.2.3). 0

4.3 New perturbation results

The basis for deriving flrst-order perturbation bounds is the equation (4.2.5) (or the

expressions (4.2.6) and (4.2.7) of its solutions). As in the proceeding ehapters, we will

now analyze the equation in two ways. The first, the matrix-vector equation approach,

provides sharp bounds, resulting in the condition numbers of the problem; while the

second, the matrix equation approach, gives practical bounds, resulting in condition

estimators. Throughout this section we suppose all assumptions in Theorem 4.2.1

hold, 50 we can use its conclusions. Aisa we assume IILlAIIF < € IIAIIF, hence IIGIIF =
Il.dAI!F/€ :::; IIAIIF (if € = 0, aIl results we will present are obviously true). One

exception is in Theorem 4.3.3 we assume IILlAlh,oo $ € IIA!l1,oo'

4.3.1 Matrix-vector equation analysis

It is not diffieult to show that with the 'uvee' notation and 'slvec' notation in (1.2.4)

the matrix equation .C4.2.5) can be rewritten in the following farro:

(

[
uvee(Ù(O)) ]

W . = vec(G),
slvec(L(O))

(4.3.1 )



c
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2 "("+1) .
where W =[WL , WU] with W L E 'Rn X 2 berng

--
1

1

1

1

1..... _1 1

87
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• 1 ,.(,.-1) •
and ~vu E Rn x-2 - belng

Un

Ull

Ull

-
U12

U12 U22

U12 U22

...

Ul n

Ul n U2n

...

Ul n U 2 ,. U .. _ 1.,.
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It is easy to observe that after appropriate column permutations, [WL1 Wu] wil! be­

come lower triangular with diagonal elements

l, U Il, U Il 1 • • • , U Il, l, l, U22, • • • 1 U22, • • • • • • , 1, l, . . . , l, 1 .
, .... t", ~ , '-... ri

n n n

Since U is nonsingular, W is also, and from (4.3.1)

(

[
uvec(U(O)) ] -1. = W vec(G).
slvec(L(O))

Partitioning W-l into two blocks, W-l =[~ ], we have

slveê(L(O» = Yi. ve~(G), uvec(U(O» = Yu vec(G).

(4.3.2)
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so taking the 2-nonn and using IIGIIF $ IIAIIF gives

IIL(O)IIF < "YLII2I1GI!F ~ IIYLI/2I/AIIF,

IIÙ(O)"F $ Il Yu 112 IICIIF $ IlYu lb /IAIIF,

89

(4.3.4)

(4.3.5)

where equalities can be obtained by choosing G such that vec(G) lies in the space

spanned by the right singular vectors corresponding to the largest singular value of YL

and Yu, respectively, and IIGIIF = IIAIIF' Therefore we see from the Taylor expansions

(4.2.2) and (4.2.3) that

I/~LIIF < IIYL lb II A IIF + O( 2) ( )IILIIF - IILIIF € (, 4.3.6

II~UIIF < IIYull2!1AI!F + O( 2) (437)
IIU/IF - IIUIIF € ~ , ••

and for the L factor and the U factor the condition numbers (with respect to the

F-nonn)

KL(A) =!~Jsup {1~t~:I: :(A + LlA) = (L + LlL)(U + LlU), IILlAIIF ::; € IIAIIF}'

Ku(A.) =!~sup {1~t~:I: :(A + LlA) = (L + LlL)(U + LlU), IILlAIIF ::; € IIAIIF}

are respectively given by

\Ve summarize these results as the following theorem.

Theorem 4.3.1 Suppose aIl the assumptions of Theorem 4.2.1 hold, and let IILlAIIF $

( Il A" F 1 then A + .dA has the unique LU factorization

(

A + L1A = CL + L1L)(U + L1U),

wher~ with 1\. (A) - IIYLII211AIIF and K (A) - IIYull21!AIIF
L - IILIIF U - IIUIIF '

IIL\LIIF
IILIIF ~ KL(A)f + OCr),

IIL\UIIF
lIulfF ~ ~u(A)€+ O(~),

and these bounds are attainable tà first-order in ·f. 0

(4.3.8)

(4.3.9)
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4.3.2 Matrix equation analysis
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In Section 4.3.1 we derived sharp perturbation bounds for the L factor and U factor,

·and presented the corresponding condition numbers. But it is difficult to estimate

the condition numbers by using the usuaI approach. Now we use the matrix equation

approach to derive practical perturbation bounds, learling to the condition estimators.

First we derive a perturbation bound for the L factor. Let Un - 1 denote the leading

[

Un-l u](n - 1) x (n - 1) black of U. If we write U = , then fr<:m (4.2.6)
o tLnn

. [U- 1
. _U- 1

/ ] [U- 1 0]L(O) = Lslt(L- I G n-l n-l
u

U
nn

) = Lslt(L-lG n-l 0 ). (4.3.10)
o 1/unn 0

Denote by D n the set of ail n x n real positive definite diagonal matrices. Let D =
diag(ol," ., on) E D n . Note that for any n x n matrix B we have D slt(B) = slt(DB),

then from (4.3.10) we obtain

. [ U-
1

L(O) = LD-1slt(DL-lG ~-l

Note IIslt(B)IIF $ I/BIIF for any B E Rnxn, 50 we have

(4.3.11)

which with IIGIIF ~ IIA/IF gives

IIL(O)f1F < (LD- 1) IIU;:11l2I1AIIF
IILIIF - "-2 IILIIF'

Since this is true for all D E D n , by the Taylor expansion (4.2.2) we have

(4.3.12)

where

( (4.3.13)
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(4.3.14)

From the definition of Kc.(A) and the perturbation bound (4.3.12) we easily see

(4.3.15)

Also we can obtain a lower bound on 1\:c.(A). Let v E Rn-l be such that IIU;!l vll2 =

IIU;~dI2I1vlb. In (4.3.10), take G = [envT,O), where en = (0, ... ,0, l)T E Rn. Then

it is easy to verify that

50

Combining this with the first equality of (4.3.3), we have for this special G that

which gives

(4.3.16)

or

(4.3.17)

We would like to point out that (4.3.16) can also be derived directly from the structure

of W in (4'.3.1).

Now we derive a practical perturbation bound for the U factor. Notice for any

B E Rnxn and D E D n we have ut(BD) = ut(B)D, then from (4.2.7) we obtain

Thus

(

(4.3.18) ._
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which with "CIIF :5 /IA/IF gives

IIU(O)IIF < (D-IU) II L -
I
/l2I1AIIF

IIUIIF - 1\:2 IIUIIF'

Since this is true for all D E D n , by the Taylor expansion (4.2.2) we have

\vherc
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(4.3.19)

I\:~(A) = inf K~(A,D), _ (4.3.20)
DED..

K' (A D) = K (D-IU) II L -
1

1l2I1 A I/F ()
u , - 2 IIUI/F' 4.3.21

From the definition of Ku(A) and the perturbation bound (4.3.19) we see

(4.3.22)

Aiso we can get a lower bound on Ku(A). Let v E nn he sucb that /IL -lv/l2 =
/IL-1IbllvIl2, and take C = ve~ in (4.2.7), then combining (4.2.7) and the second

equality of (4.3.3) we can easily show

(4.3.23)

or
II'" (A) > ilL-1/12 IIAIIF
"'U - !IUI!F . (4.3.24)

Like (4.3.16), (4.3.23) can also be showed directly from the structure of W in (4.3.1).

These results lead to the following theorem.

Theorem 4.3.2 With the same assumptions as in Theorem 4.3.1, A + L1A has the

unique LU factorization

A + L1A = (L + L1L)(U + t1U),

where for the L factor,-

( (4.3.25) .
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IIU;-~dI2I1AIIF < K (A) < K' (A) = inf 1'\.' (A D)
IILIIF - L - L DED" L , ,

with K~(A, D) =K2(LD- 1)IIU;-~dI2I1AIIF/IILIIF, and for the U factor,

IILlUIIF 1 2
IIUIIF ::; Ku(A)€ + O(~),

IIL-
l

ll2I1AI/F < K (A) < ",' (A) = inf K' (A D)
IIU!lF - u - u DED.. u , ,

with Ku (.4, D) == K2(D- 1U)IIL- LII2!1AIIF//IUIIF. 0

\Ve might want ta simplify KL(A, D) and K'u(A, D). If we use

then we have

K~(A,D) ~ K2(L.D- 1)I/UII2 "U;~llb,

K~(A, D) ~ K2(L)K2(D- 1U).
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(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

(4.3.31 )

As we knaw in practice K2( L) is usually smaller or much smaller than K2(U). So these

bounds suggest the L factor may be more Gensitive than the U factor in practice.

However both of the right hand sides of (4.3.30) and (4.3.31) can be arbitrarily larger

than corresponding left band sides due to the inequality (4.3.29).

If we take D = 1 in bath KL(A, D) and Ku(A, D) and use II L II2 ~ IILIIF, /lUII2 ::;
HUI!F and IIU;~dl~ ~ I/U- 1 1l2 , we have

KL(A) ~ "'L(A, 1) ~ K2(L)IIU;~dI2I1AIIF/IILIIF ~ IIL-11l2I1U~11l21IAIIF, (4.3.32)

K~(A) ::; Ku(1, 1) ~ K2(U)IIL-~"2I1AIIF/IIUIIF ::Ç IIL-1 1l 2 IIU-1 1l 2 /IAIIF. (4.3.33)

(

Thus from (4.3.25) and (4.3.27) we have

II~~~F ;S IIL-% IIU-1112I1AIIF€,

II~~~ ;S ilL-llbIlU-% IIAIIF l',

(4.3.34)

(4.3.35)



which are due ta Stewart [41, 19931. These perturbation bounds are simple, but

can overestimate the true sensitivity of the problem. By using the scaling technology,

Stewart [42, 1995] obtained. significant improvements on the above results. In [42], the

diagonal elements of L were not assumed to he 1's, and the diagonal elements of .dL

nlay not be D's, and a parameter p was used to control how much of the perturbation

is attached to the diagonals of L and U. The perturbation bounds given in [42] are

equivalent to

(
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(

Il.6LIIF < l
IIL/IF '" K,2(LD- )K2(U), (4.3.36)

I!.dUIIF < ) 1
liVI/ F '" K.2(L K2(n- V). (4.3.37)

These bounds were derived by using the inequality (4.3.29), 50 they are unnecessarily

weak as we pointed out in the preceding comment. (4.3.30) suggests that under the

usuaI assulnption that the diagonal elements of L are always 1's, a better bound than

(4.3.36) could be obtained.

As we know it is expensive to estimate K,e,(A) and Ku(A) directly by the usuaI

approach. Fortunately we now have other methods ta do this. By van der Sluis's

Theorem 1.2.1, K,2(LD- 1) will be nearly minimum when each column of LD-1 has

unit 2-norm, 50 in practice we choose n = DL = diag(IIL(:,j)1I2), then use a standard

condition estimator and a norm estimator to estimate K.'L(A, DL)' which costs O(n2 ).

Similarly, K2(D-1V) will be nearly minimum when each row of D-1V has unit 2­

nOrIn, then we choose D = Du = diag(IIU(i, :)112), and use a standard condition

estimator and a norm estimator to estimate Ku(A, Du), which costs O(n2 ). NumericaI

experiments showed K,~(A, DL) and Ku(A, Du) are good approximations of K,L(A) and

ICu{A).

When we use the 1- and co-norms, we can get perturbation bounds without in­

volving the scaling matrix D.

Theorem 4.3.3 Suppose ail the-assumptions of Theo:em 4.2.1 hold and let Il.dAllp :5
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EIIAllp1 P = 1,00, then A + L1A has the unique LU jactorization

A + L1A = (L + LlL)(U + L1U),

where

95

(4.3.38)

(4.3.39)

(4.3.40)

(4.3.41)

(

Proof. Let G = L1A/~ (if E = 0, the theorem is trivial), then IIGllp $ IIAll p , p = 1,00.

From (4.3.10) we have

50 taking the p-norm (p = 1,00) gives

Then (4.3.38) follows immediately from the Taylor expansion (4.2.2). By using

IIAllp ~ II L llp IIUllp, (4.3.39) follows.

The results (4.3.40) and (4.3.41) can similarly he proved. 0

Note condp(L-1) is invariant under the column scaling of L and condp(U) is in­

variant under the row scaling of U. These make (4.3.38) and (4.3.40) look simpler

than (4.3.8) and (4.3.9)t respectively, wh~re the Frobenius norm is used.

As we know the standard algorithms for LU factorization with no pivoting are not

numerically stable. In order to repair this shortcoming of the algorithms, partial or

complete pivoting should be incorporated in the computation. Do these two pivoting

strategies have effects on the sensitivity of the fa.ctorization? Let us see the fol1owing

theorem.



Theorem 4.3.4 If partial pivoting is used in the LU factorization: PA = LU, where

P is a permutation matrix. Then

•
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(

-/n(n: 1) IIU;!llb IIAIIF :5 "L(PA) < "L(PA) :5 ~v'4n + 6n - 1I1U;!db 1I·4.IIF,
(4.3.42)

(4.3.43)

If cornplete pivoting is used in the LU factorization: PAQ = LU, where P and Q are

permutation matrices. Then

Jn(n: 1) IIU;!db IIAIIF :5 "L(PAQ) < ,,~(PAQ) < ~v'4n + 6n - 1 IIU;!dI2 IIAIIF.

(4.3.44)

1 ~ Ku(PAQ) ~ K.~(PAQ) < n(n + 1)(4n + 6n - 1)/18. (4.3.45)

Proof. If partial pivoting or complete pivoting is used in computing the LU factoriza­

tian, then lij ~ 1 for i > j. Since Iii = 1, I(LT)id ~ I(LT)iil for all j > i. By the proaf

of Theorem 1.2.2 we see IIL-1 1l 2 $ .j4n + 6n - 1/3. Aiso note I/LIIF ::; vn(n + 1)/2.

Then (4.3.42) and (4.3.44) follow from (4.3.26) by taking D = J.

Note Ku(A,D) ::; K2(L)K2(D- 1U) (see(4.3.31» and IIUI/F = IIL-1AIIF ~ IIL-11l2I1AIIF,
then (4.3.43) fallows from (4.3.28). If complete pivoting is used, then luül ~ IUi;1 for

aIl j > i. Thus by Theorem 1.2.2 we have K2(D-1U) ::; v2n(n + 1)(4n + 6n - 1)/6

with D = diag(U). Then from (4.3.43) we obtain the much better result (4.3.45).

o

When partial pivoting or complete pivoting is used, K2(L) is bounded by a function

of n, but possibly IIU;!lll may become larger, thus from (4.3.42) and (4.3.44) we

cannat see that "'L(PA) and KL(PAQ) are larger or smaller than KL(A). (4.3.42) and

(4.3.44) also suggest there is no big difference between the effects of partial pivoting

and complete pivoting on the sensitivity of the L factor. Similarly from (4.3.43) we

are not quite sure if Ku(A) will become-larger or smaller when partial pivoting is used.

But note there is an essential difference between the upper bound on Ku(PA) and



CHAPTER 4. THE LU FACTORIZATION 9ï

(

(

that on x:r..(PA) - the former has a choice D, which may make infDED" K2(D- I U) not

incrcase much, so the possibility that Ku(A) will become smaller seems high. From

(4.3.45) we see complete pivoting can give a significant improvement on Ku(A).

4.4 N umerical experiments

In Section 4.3 we presented first-order sharp perturbation bounds for the LU factors,

obtained the corresponding condition numbers Kr.(A) and Ku(A), and suggested /'\:L(A)

and l'Cu(A) could be respectively estimated in practice by K'L(A, Dd and Ku (.4, Du)

with DL = diag(llL(:,j)1I2) and Du = diag(IIU(i, :)112). The condition numbers and

condition estimators satisfy the following inequalities (see (1.2.14), (1.2.15), (4.3.26),

(4.3.28), (4.3.32), and (4.3.33»:

IIU;~dI2I1AIIF/IILIIF~ Kr.(A) S; Kr.(A) ~ II L- I I!2I1U- 1 1l2 I/AIIF,

KL(A) ~ K;~(A, DL) ~ vnKl.(A),

ilL-lIb I!AI/F/!IUI/F ~ Ku(A) ~ Ku(A) ::; I!L- 1 1l2 /1U- 1 !l2I!AIIF,

Ku(A) ::; Ku(A, Du) ::; vnKu(A).

Also we discussed the effects of partial pivoting and complete pivoting on those con­

dition numbers.

Now we give sorne numerical experiments ta il1ustrate our theoretical analyses.

The matrices have the fo~ A = D 1BD2 , where Dl = diag(l, dl,"" dï-1
), D2 =

diag(l, d2 , ••. , d2- I
) and B is an n x n random matrix (produced by the MATLAB

function randn). The results for n = 10, dI,.d2 E {0.2,1,2} and the same matrix

B are shawn in Table 4.4.1 without pivoting, in Table 4.4.2 with partial pivoting,

and in Table 4.4.3 with complete pivoting, where {3L = IIU~dI2I1A/lF/IILI/F, {Ju =
II L- 11l2I!AI!F/I/UIIF and {3 =/IL- 1

1l 2 I1U- 1
1l 2 I1AIIF.

'vVe give sorne comments on the results.
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Table 4.4.1: Results without pivoting, A = LU

dl d2 (3L KL(A) KL(A,D L ) l3u Ku(A) Ku(A, Du) (3
0.2 0.2 2.4e+09 204e+09 1.7e+l0 3.8e+00 8.7e+OO 1.Se+Ol 1.5e+12
0.2 1 1.4e+05 1./e+05 9.7e+05 2.Se+OO 2.0e+02 7.3e+02 1.7e+07
0.2 2 5.3e+06 7.2e+06 3.8e+07 1.2e+OO 2.7e+04 1.2e+05 ï.ge+OS
1 0.2 2.8e+03 3.4e+04 4.2e+05 4.ge+01 Lle+02 2.3e+02 1.1e+07
1 1 4.5e+OO 2.2e+02 6.7e+02 2.Se+OO 1.ge+02 7.3e+02 4.1e+03
1 2 7.ge+02 3.7e+04 1.2e+OS 1.5e+00 3.2e+04 1o4e+05 7.2e+05
2 0.2 2.6e+Ol 3.4e+04 1.0e+06 3.1e+05 3.2e+05 1.4e+06 2.6e+OS
2 1 3.2e+00 3.2e+04 1.3e+05 3.2e+02 3.6e+03 S.2e+04 3.2e+07
2 2 2.7e+02 2.7e+06 1.Oe+07 6.7e+Ol 1.6e+05 604e+06 2.7e+09

Table 404.2: Results with partial pivoting, À =PA = Lû

dl d2 (3L KL(A) KLCA,Dd l3u Ku(A) Ku(A, Du) 13
0.2 0.2 3.Se+09 3.5e+09 8.5e+09 1.6e+00 L7e+OO 3.1e+OO 6.6e+l1
0.2 1 2.0e+05 204e+05 4.Se+OS 1.6e+OO 2.2e+Ol 8.Be+Ol 7.Se+06
0.2 2 7.7e+06 1.0e+07 1.ge+07 1.6e+00 3.5e+03 2.1e+04 3.4e+OB
1 0.2 1.1e+OS 2.1e+OS· 6.2e+OS 4.7e+OO 4.7e+OO 6.7e+00 3.ge+06
1 1 7.1e+OO 1.3e+Ol 4.0e+Ol 2.5e+OO 1.2e+Ol 4.3e+Ol 8.5e+Ol
1 2 8.0e+02 1o4e+03 4.5e+03 1.6e+OO 1.5e+03 6.0e+03 9.8e+03
2 0.2 8.2e+06 1.2e+07 2.7e+07 2.1e+OO 2.1e+OO 3.2e+OO 2.6e+OS
2 1 4.ge+02 6.3e+02 1.6e+03 1.7e+OO L8e+Ol 7.Be+Ol 5.0e+03
2 2 2.2e+04 2.7e+04 704e+04 1.7e+OO 2.7e+03 1.4e+04 1.7e+OS
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(
Table 4:.4.3: Results with complete pivoting, Â =P AQ = LLI

o dl d2 PL ~e.(A) KL(A, DL) f3u Ku(A) K'u(A, Du) j3
0.2 0.2 3.5e+09 3.5e+09 8.5e+09 1.6e+OO 1.7e+00 3.1e+OO 6.6e+ll
0.2 1 lAe+05 1.4e+05 2.0e+05 1.2e+OO 2.5e+00 6.6e+OO 5.6e+OG
0.2 2 2.6e+06 2.6e+06 5.8e+06 l.4e+OO 1.5e+OO 4.4e+OO 2.ge+08
1 0.2 1.le+OS 2.1e+05 6.2e+05 4.7e+OO 4.7e+OO 6.7e+OO 3.ge+OG
1 1 2.8e+OO 5.0e+OO 1.ge+Ol 3.4e+OO 4.ge+OO 1.4e+Ol 6.Îe+Ol
1 2 1.4e+02 3.3e+02 1.2e+03 5.0e+OO 7.0e+OO 1.6e+01 5.8e+03
2 0.2 8.2e+06 1.2e+07 2.7e+07 2.1e+OO 2.1e+OO 3.2e+OO 2.6e+08
2 1 3.1e+02 3.4e+02 9.6e+02 - 1.8e+OO 3.0e+OO 1.3e+01 3.ge+03
2 2 1.1e+04 1.2e+04 4Ae+04 2.2e+OO 3.0e+OO Î.5e+OO 1.3e+05

• The results confirm that (3 = ilL-11/2I/U-11l2/1A/IF can be much larger than

~l.(A) and ~u(A), especially for the latter, so the first-order bounds (4.3.34)

and (4.3.35) can significantly overestimate the true sensitivity of the LU factor-

ization.

• KL(A, De.) and Ku(A, Du) are good approximations of K.e.(A) and K.u(A), respec­

tively, no matter whether pivoting is used or note This is aIso confirmed by our

other numerical experiments.

• Bath KL(PA) and KL(PAQ) can be much larger or smaller than I\:L(A). 50

partial pivoting and complete pivoting can make the L factor more sensitive or
.

less sensitive. But from Tables 4.4.1-4.4.2 we see partial pivoting can give a

significant improvement on the condition of the U factor. In fact here ~u(PA.) $

~u(A) for all cases. From Table 4.4.3 we see th~t complete pivoting can give a

more significant improvement.

• It cau be seen for most cases the L factor is more sensitive than the U factor

no matter whether pivoting is used or not.

Co • When partial pivoting or complete pivoting is used, we see both KI. and Ku are
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close ta their lower bounds 13L and {lu, respectively.
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.4..5 Summary and future work

(

The first-order perturbation analyses presented here show what the sensitivity of each

of L and U is in the LU factorization of A, and in so doing provide their condition

numbers Kt(A) and X:u(A) (with respect to the measures used, and for sufficiently

snlall .dA), as weIl as efficient ways of approximating these.

As we know K:2(L) is usually (much) smaller than K:2(U), especially in practice

when we use partial pivoting in computing the LU factorization. So we can expect

that the computed solution of the linear system Lx = b will usually be more accurate

than that of the linear system Uy = b. However our analysis and numerical exper­

iments suggest that usually the L factor is more sensitive than the U factor in the

LU factorization, so we expect U is more accurate than L. This is an interesting

phenomenon. Also we see the effect of partial pivoting and complete pivoting on the

sensitivity of L is uncertain - bath K:L(PA) and Ku(PAQ) can be much larger or

smaller than KL(A). But partial pivoting can usually improve the condition of U, and

complete pivoting can give significant improvement.

In the future we would like to

• Extend our analysis to the case where I.dAI $ EIAI..In fact sorne results have

been obtained by Chang and Paige [12].
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Chapter 5

The Cholesky downdating

problem

5.1 Introduction

In this chapter we give perturbation analyses of the fol1owing problem: given an

upper triangular matrix R E Rnxn and a matrix X E Rkxn such that RT R - X T X

is positive definite, find an upper triangular matrix U E Rnxn with positive diagonal

elenlents such that

(5.1.1)

(

This problem is called the black Cholesky downdating problem, and the matrix U

is referred to as the do:wndated Cholesky factor. The block Cholesky downdating

problem has many important applications, and the case for k=l has been extensively

studied in the literature (see [l, 5,6, 19,-25, 24, 36, 37, 40]).

Let L1R and L1X be real n x n and k x n matrices, respectively, such that (R +
~R)T(R + ~R) - (X + LlX)T(X + LlX) is still positive definite, then this has the

unique Cholesky factorization

101
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1

(

The goal of the perturbation analysis for the Cholesky downdating problem is to

determine a bound on I/L1UII (or I.dU!) in terms of IIL1RII (or ILlRI) and I/L1XII (or

I.dXI).

The perturbation analysis for the Cholesky downdating problem with norm-bounded

changes in R and )( has been considered by severa! authors. Stewart [40, 1979] pre­

sented perturbation results for single downdating (i.e. k = 1). Eldén and Park [22,

1994] made an analysis for block downdating. But these two papers just considered

the case that only R or .J'y is perturbed. More complete analyses, with both R and .J'Y

being perturbed, were given by Pan [35, 1993] and Sun [50, 1995]. Pan [35, 1993] gave

first-order perturbation bounds for single downdating. Sun [50, 1995] gave rigorous,

also first-order perturbation bounds for single downdating and first-order perturba­

tion bounds for black downdating. Recently Eldén and Park [23, 1996] gave new

first-order perturbation bounds for block downdating. Unfortunately there was an

error in their paper when the result of Sun [46, 1991] was applied in deriving the

perturbation bound. Because of this, the results presented in [23] will not he cited in

this chapter.

The main purpose of this chapter is to establish new first-order perturbation re­

sults and present new condition numbers which more closely refiect the true sensitivity

of the problem. In Section 5.2 we will give the key result of Sun [50, 1995], and a

new result using the approach of these earlier papers. In Section 5.3 we present new

perturbation results, first by the matrix-vector equation approach, then by the ma­

trix equation approach. We give numerical results and suggest practical condition

estimators in Section 5.4. Finally we briefiy summarize our findings and point out

future work in Section 5.5. Most of the results have been presented in Chang and

Paige [10, 1996].

Previous work by others implied the change ~R in R was upper triangular, and

Sun [50, 1995] said this, but neither he nor the others.made use of this facto In fact a

backward stable algqrithm for computing U given R and X _would produce ·the exact



result Uc =U + i1U for nearby data R + L1R and X + odX, where it is not clear that

!1R would be upper triangular - the form of the equivalent backward rounding error

l1R would depend on the algorithm, and if it were upper triangular, it would require

arounding error analysis to show this. Thus for completeness it seems necessary to

consider two separate cases - general odR and upper triangular f1R. vVe do this

throughout Sections 5.3-5A, and get stronger results for upper triangular L1R than

in the general case.

In any pert urbation analysis it is important ta examine how good the results are.

In Section 5.3.1 we produce provably tight bounds, leading ta the true condition

numbers (for the norms chosen). The numerical example in Section 5.4 indicates how

much better the results of this new anal)Œis can he compared with sorne earlier ones,

but a theoretical understanding is also desirable. By considering the asymptotic case

as )( -+ 0, the results simplify, and are easily understandable. vVe show the new

results have the correct properties as X -+ 0, in contrast to earlier results.

•
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5.2 Basics, previous results, and an improvement

Let r satisfy rTr = In - R-T ..-yT j'YR-1 (sa r would be the Cholesky factor of In ­

_R-TXTXR-l), and let un(r) be the smallest singular value of f. Notice that for

fixed R, rTr -+ In as jY -+ 0, SO O"n(f) -+ 1. First we derive sorne relationships

among U, R, ..'Y and r.
1) From (5.1.1) obviously we have

(5.2.1)

•

2) From (5.1.1) it follows that
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so that taking the 2-norm gives

-1 1
IIRU 1/2 = O"ncr)·

3) From (5.1.1) we have

which, conlbined with (5.2.2), gives

4) From (5.1.1) we have

which, combined with (5.2.2), gives

IIXW
l

1l 2 = J1 - a~;n(UR-l) = 1 - IIR~-ll1~ = J1 - a~(r).

5) By (5.2.2) we have

IIRII2 = IIRU- 1UII2 < IIRU-%llUlb = ~~~2).

6) Finally from (5.2.4) we see

IIXII2 < IIXR-iii = JI - q2(r)IIRlb - 2 n·

Now we derive the basic result on ho\v U changes as R and X change.

104

(5.2.2)

(5.2.3)

(5.2.4)

(5.2.6)

Theorem 5.2.1 Suppose. we have an upper. triangular matrix R E Rnxn and a matrix

)( E R k x n with the Cholesky factorization urU = RT R - )(l'X, where U E Rn xn is

upper triangular with positive diagonal elements. Let G be a real n x n matrix, and

let F be a real k x n matrix. Assume L1R = €G and L1X = €F, for sorne € 2:: Q. If

(
I/XR-11l2 + IIL1XR-1

1/2 1
1 - I/L1RR-ll/2 <,. (5.2.7)
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then t/Lere is a unique Cholesky factorization
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with 11U satisfying

where U(0) is defined by the unique Cholesky factorization

UT(t)U(t) = (R + tG)T(R + tG) - (.IY + tF)T(X + tF),

and so satisfies the equations

Itl ~ f,

(5.2.9)

(5.2.10)

urU(O) + iJT(O)U = RTG + (fI' R - X TF - FT)(,

U(O) = up[U-T(RTG + (fI'R - X T F - FT.IY)U-1]U,

w/zere the 'up' notation is defined by (1.2.3).

(5.2.11)

(5.2.12)

(

Pr·ooJ. If /ILlRR- 11l 2 ~ l, then it is easy ta show R+tG is nonsingular for alliti ~ f.

Notice for aU Itl ~ f,

(R + tG)T(R + tG) - (_y + tF)T(X + tF)

= (H + tG)T[In - (R + tG)-T(X + tF)T(X + tF)(R + tG)-l](R + tG),

and

II(X"+tF)(R+tG)-l/l2 - II(XR-~+tFR-l)(I+tGR-l)-llb

< IIXR-ll/2+ II~XR-l/l2

1 -IILlRR-lI!2

then if (5.2.7) holds, (R+tG)T(R+tG)-(X+tF)T(X+tF) is positive definite and has

the unique Cholesky factorization (5.2.10). Notice that U(O) = U and U( €) = U+LlU,

50 (5.2.8) holds.

It is easy to verify that U(t) is t'Yice continuously differentiable for Itl ~ f from

the- algorithm for the Cholesky factorization. If we dif{erentiate (5.2.10) and set t = 0
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(
in the result, we obtain (5.2.11), which, like (2.2.5), is a linear equation uniquely

defining the elements of upper triangular 0(0) in terms of the elements of Gand F.

\Vith the 'up' notation in (1.2.3) we see (5.2.12) holds. Finally the Taylor expansion

for U(t) about t = 0 gives (5.2.9) at t = f.. 0

By Theorem 5.2.1 we derive a new first-order perturbation bounds for the black

Cholesky downdating problem, from which the first-orcler perturbation bound given

by SUIl [50, 1995] follows.

Theorem 5.2.2 Suppose we have a..n upper triangular matrix R E Rnxn and a matTix

~Y E Rkxn with the Cholesky factorization uru = RT R - X T ~Y, where U E Rnxn is

upper triangular with positive diagonal elements. Let L1R be a real n x n matrix, and

let L1__\ be a real k x n matrix. Define ER =IIL1RIIF/IIRlb and Ex =IID~\'ïIF/IIXIl2.

Set E = ma..x{ ER' Ex}. If

(1 + €x)IIXII2I1R-1Ib 1
1 - K:2(R)ER <, (5.2.13)

then t/Lere is a unique Cholesky factorization

where

IIL1UIIF < ~2"U-llbIlRII2 M2 JI - (j~(r)"U-11l2//XIl2 O( 2)
IIU//

2
- VL. CTn(r) ER + VL. CTncr) Ex + E. (5.2.14)

Proo/. Let G = L1R/E and F = L1X/€ Cif E = 0, the theorem is trivial), then

(5.2.15)

(

It is easy ta verify that (5.2.13) implies that (5.2.7) holds, 50 Theorem 5.2.1 is applica­

ble here. From (5.2.12) and the fact that for any symmetric B, Il up(B)IIF ~ 72I1BIIF

(see (1.2.7)) we have with (5.2.15) that

IIU(O)I/F < _1 IIU-T(RTG+GTR-XTF-FTX)U-1/lFIIUIl2
.j2

< v'2//UIl2 I1U-1 1l2 (IIRU-11l2I/G/IF + IIXU-1Ih IIFI/F),

- v'2I1UI/2 /1U- 1l/2C//RU";l/l2 //R/l2 €R/€o+ IIXU-1Ih IIXll2 Ex/!)
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which, cambined with (5.2.2) and (5.2.3), gives

IIU(O)IIF ~ .,f211U1~:~~~% (IJRlh ER/E + JI - a~(r)IIXlb Ex/E)

-Then (5.2.14) follows from the Taylor expansion (5.2.9). 0

Fronl (5.2.14) we see

IOï

(5.2.16)

can be regarded as the condition estimators far U with respect to relative changes in

Rand )(, respectively. Notice from (5.2.1) we see tPR > cPx, 50 we can define a new

overall condition estimator

(5.2.1 ï)

(5.2.18)

Ifwe rewrite (5.2.14) as

I!LlUIIF < J2I1 U-
1

1l2 I1 R II2( + _/1 _ (j2(f) IIXII2 E ) + O(E2 )
IIUll2 - V L. O"n(r) ER V n IIRII2 x ,

and combine it with (5.2.5) and (5.2.6), then we abtain Sun's bound

!ILlUIIF ~ K,2(U) 2 _2
IIUll

2
~ v2 a~(r) (ER + (1 - O"nCf))EX) + O(e),

which leads ta the overaIl condition estimator proposed by Sun:

{3 = V2 K~«U)) , (5.2.19)
an r

We have seen the right hand side of (5.2.14) is never worse than that of (5.2.18), and

also

(5.2.20)

(

Although </J is a minar improvement on {3, it is still not what we want. We can

see this from the asymptotic behavior of these condition estimators. The Cholesky

factorization is unique, 50 as X -+ 0, U -t R, and X T LlX -+ 0 in (5.2.8). Now

for any upper triangular perturbation L1R in R, LlU -+ LlR, 50 the true condition

number should approach unity. Here P,'f/! -t V2K2(R). The next section shows how

we can 'overcome this inadequacy.
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(
5.3 New perturbation results

In Section 5.2 we saw the key to deriving first-order perturbation bounds for U in

the block Cholesky downdating problem is the equation (5.2.11). We will now ana­

lyze it by two approaches. The first approach, the matrLx-vector equation approach,

gives sharp pert~rbation bounds, which lead to the condition numbers for the block

Cholesky downdating problem, while the second, the the matrix equation approach,

gives a clear improvement on other earlier results, and provides practical condition

estimators for the true condition numb~rs. AIl our discussion is based on the same

assumptions as in Theorem 5.2.2.

5.3.1 Matrix-vector equation analysis

The nlatrix-vector equation approach views the matrix equation (5.2.11) as a large

matrix-vector equation.

First assume L:1R is a general real n x n matrix. It is easy to show (5.2.11) can be

rewritten in the following matrix-vector form (cf. Chapter3):

(

Wu uvec(U(O)) = ZR vec(G) - Yx vec(F), (5.3.1)
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n( .. +I) n("+1)
where lVu E R-1- X

:: is

Ull

U12 Un

U12 U22

U13 Uu

U13 U23 Ul2 U22

Ul3 U23 U33
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Ul n U2n

Z R~xn2R E 2 IS

Ul3 U23 U33

(

TU

r12 T22 TU

Tl2 T22

rl n T2n Tnn TU

TIn T2n Tnn T12 T22

rl n T2n Tnn
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.. ( .. +1) kn
and y~ E R-2- X is

Xll X2l Xkl

Xl2 X22 Xk2 Xll X2l XH

X12 X22 Xk2

.
-

Xl n X2n Xkn Xll X2l X~'l

Xl n X2n Xkn X12 X22 Xkn

Xl n X2n Xnn

Since U is nonsingular, Wu is also, and from (5.3.1)

Remenlbering V(O) is upper triangular, we see

110

(5.3.2)

IIU(O)IIF < IIWu1ZR/l21!GIIF + II Wü- lYxIl2I!FIIF, (5.3.3)

IllVUl ZR/l21/RII2 ER/E + IIWü1Yx1l211..-Y1I2 Ex/E, (using (5.2.15))

where for any Rand )( equality can be made by choosing G and F such that

or

I/Wu! ZR vec(G) 112 = II Wul ZRlb IIGIIF, F = 0,

G = 0, IIWu~Yx vec(F) 112 = lIWü lYx1l21/FIIF'

(5.3.4)

(5.3.5)

Then from the Taylor expansion (5.2.9), we see

(5.3.6)

(

and the condition numbers for U with respect to relative changes in R and X are

(here subscript G refers to general L1R, and later the subscript Twill refer to upper

triangular LlR)



(
CHAPTER 5. THE CHOLESKY DOWNDATING PROBLEM III

KRcCR, X) - !~sup {1I€~gllll: : (U + é>ujT(U + é>U) = (R + i1R)T(R + i1R)

- X T X, € = IILlRIIF/IIRII2} (5.3.7)

II Wul ZRII211Rlb
IIUII2

and

. {lI dU IIF T( ) TKx(R, ..'Y) - 1~sup €IIUll
2

: (U + .!lU) U+ LlU = R R

- (...Y + LiX)T(X + LlX), € = IILlXIIF/II.YIl2} (5.3.8)

I/ltVü I Yx-1!211 ...YII2
IIUll 2

respectively. Then a whole condition number for the Cholesky downdating problem

with general L1R can be defined as

(5.3.9)

By the definitions of "'Rc(R, ...Y:) and "'x(X, R), it is easy to verify from (5.2.14)

and (5.2.16) that

(5.3.10)

therefore

(5.3.11)

It is easy ta observe that if X ~ 0, "'cDc(R, X) -+ IIWi1 ZR112' where WR is

just Wu with each entry Uij replaced by rij. If R was found using the standard

pivoting strategy in the Cholesky factorization, then IIWil ZR/l2 has a bound which

is a function of n alone (see Theorem 3.4.2). Sa in this case our condition number

l'CeDC( R, X) also has a bound which is a function of n alone as X -+ o.
Now we consider the case where LiR is upper triangular. (5.2.11) can now be

rewritten in the following matrix-vector form: .

Wu uvec(U(O)) = WR uvec(G) - Yx vec(F), (5.3.12)
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(
h l R "("+I) "("+1) d _(.+1) xkn fi cl

w ere ,VU E 2 X 1 an }x E R 2 are de ne as befare. and W n E
.. ( .. +l) ,,(,,+1)

R-2-x -1- is just Wu with each entry Uij replaced by Tij. Since U is llonsingular,

. ~u is also, and from (5.3.12)

(5.3.13)

sa taking the 2-norm gives

"Ù(O)II F < Il vVull'VRII2 "Cil F + IIl-Vljlyx lb II F I/F, (5.3.14)

II Wü l l-VRII2I1RII2€x/€ + /IWcï1Yx/l2€R/€' (using (5.2.15))

where, like (5.3.3), (5.3.14) will become an equality ifwe choose Gand F as in (5.3.4)

and (5.3.5) with Zn there replaced by-WR • Then from the Taylor expansion (5.2.9),

we see

(5.3.15)

and the condition numbers far U with respect to relative changes in Rand )( are

(subscript T indicates upper triangular ~R)

KRT(R,X) = !~sup{IIE~gllll; : (U+L1U)T(U+L1U)=(R+L1Rf(R+LlR)

- XTX, € = II~RIIF/IIRI12} (5.3.16)

IIWü1WR II2/1RII2
IIUlb

and

Kx(R,X) _ limsup {II~UIIF : (U + L1U)T(U + L1U) = RT R
(-0 €IIUII2 - .

- (..-Y + L1X)T(X + ~X), € = IlLiXIIF/IIXI12} (5.3.17)

Il wu1yx lb Il..-Y Il 2

IIUI/2

(

respectively. Note Kx(R, ..-Y) is the same as that defined in (5.3.8). Then a whole

canditio~ number for the Cholesky downdating problem with upper triangular 6.R
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can be defined as

Since ~RG(R,X) is for a general L1R, certainly we have
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(5.3.18)

(5.3.19)

which can aIso be proved directly by the fact that the columns of W R form a proper

subset of the columns of ZR' Thus from (5.3.9) and (5.3.18) we see

(5.3.20)

If as well )( --. 0, then since U --. R, WUl WR --. 1"("+1), and /\'CDT( R, ...Y) ~ l.
2

So in this case the Cholesky downdating problem becomes very weIl conditioned no

lnatter how ill-conditioned R or U is.

Finally we summarize the results above as the following theorem.

Theorem 5.3.1 With the same assumptions as in Theorem 5.2.2, there is a unique

Cholesky factorization

wherc for general L1R,

I!L1UIIF/lUll
2

:5 "'RG(R, "'\)€R + Kx(R, X)€x + O(E2)

< "'cDG(R, X)( fR + f x ) + O(f2
),

and for upper triangular L1R,

!IL1UI!F
/1 Ull

2
< K. RT( R, "'Y)€R + K x (R, X)fx + O((2)

< K CDT(R, X)( f R + f x ) + O(€2).

There are the following relationships among the various measures of sensitivity of the

problem (see (5.3.10), (5.3.11), (5.3.19) and (5.3.20)) :

(
KCDT(R, X) $ "'cDG(R, X) $ <p. - 0
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5.3.2 Matrix equation analysis
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.-\5 far as we see, the condition numbers obtained in the last section are expensive

.to. compute or estimate directly with the usual approach. We now use the matrix

equation approach to obtain practical condition estimators.

In Theorem 5.2.2 we used the expression of li(O) in (5.2.12) to derive a new first­

order perturbation bound (5.2.14), from which Sun's bound was derived. Now we

again look at (5.2.12), repeated here for clarity:

(5.3.21)

(

Let D n be the set of aIl n x n real positive definite diagonal matrices. For any

D = diag(81: ••• , 8n ) E Dn, let U = DU.. Note that for any matrix B we have

up(BD- 1 ) = up(B)D- 1 and up(D- 1B) = n-1 up(B).

First with general L1R wc have from (5.3.21) that

Ù(O) = {up(U-T RTCÜ-1) + D-1up(Ü-TCT RU-1)D}Ü

- {up(U-T ...yTFÜ- 1) + n-1up(U-T FT ...YU- 1)D}Ü,

50 taking the F-norm gives

IIU(O)IIF < /Iup(U-TRTCÜ-1 ) + n-1up(Ü-TCTRU-1)DIIF IIÜ lb

+ Ilup(U-T X T F(j-l) + D-1up(Ü-T FTXU-1)DIIF IIÜlb. (5.3.22)

Lenlma 3.4.1 shows for any B E Rnxn

IIÙ(O)I!F < /1 + (~ (IIU-T RT GÜ-1Il F + IIU-T X T FÜ-11/ 2 )//ÜIl 2

< /1 + (~ K2(U)(I/RU- 1 1l2 I1CI!F + IIXU-1
1l2I1FI!F).

- /1 +~ ::~~~ (I/G/IF + /1 - lT~(r) IIF/lF), (using (5.2.2), (5.2.3))

- /1 + <Ê ::~~~ (/IRlb ERIE + /1 - lT~(r) /IXlb Ex/€) (using (5.2.15))
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which leads to the following perturbation bound in terms of relative changes
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I!LlUIIF
IIUll 2

Naturally we define the following two quantities as condition estimators for U with

respect to relative changes in R and X, respectively:

K.~(R, X) = inf K~(R, J'Y, D),
DEDn

(5.3.24)

(

where

Then an overall condition estimator can be defined as

where

K,~DG(R, J'Y, D) = K.~G(R, .Y, D) ~ K.~(R,X, D),

which gives

K.~DG(R, X) = K.~G(R, X) ~ K'x(R, X).

Therefore with these, we have from (5.3.23) that

I/LlUIIF2/lUll
2

< K.~G(R, X) ER + K.~(R, X) Ex + G(c)

< K.~DG(R,X)(ER + Ex) + O(E
2

).

(5.3.25)

(5.3.26)

(5.3.27)

(5.3.28)

(5.3.29)
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Clearly if we take D = In, (5.3.23) will become (5.2.14), and
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(5.3.31)

It is not difficult to give an example to show </> can he arbitrarily larger than KCDC(R, ....Y),

as can be seen from the following asymptotic behaviour.

If ): -+ 0 \ve saw U -+ R and un(f) -+ l, so

It is shown in Theorem 3.4.4 that with an appropriate choice of D, JI + (~li2(D-1R)

has a bound which is a function of n only, if R was found using the standard pivoting

strategy in the Cholesky factorization, and in this case, we see KCDC(R, ....\'") is bounded

independelltly of K2(R) as .J'y -+ 0, for general ~R. At the end of this section we give

an even stronger result when )( -+ 0 for the case of upper triangular tiR. Note in

the case here that if; in (5.2.17) can be made as large as we like, and thus arbitrarily

larger than KCDC (R, ..Y).

By the definitions of liRC(R, )() and Kx(R, X) respectively in (5.3.7) and (5.3.8),

we can easily verify from (5.3.29) that

therefore

Kx(R, X) :5 K'x(R, X), (5.3.32)

(5.3.33)

In the case where L1R is upper triangular (so Gis upper triangular), we can reflne

the analysis further. From (5.3.21) we have

(

ri(O) = [up(U-TRTGU-l+U-TCTRU-l)

- up(U-TXT FU-1+ U-TFTXU-1)]U.

(5.3.34)
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Notice with the 'slt', 'sut' and 'diag' notation defined in (1.2.1) and (1.2.2),

117

(

u-T RT GU-1 + U-T GT RU-1

_ [slt(U-T RT ) + diag(U-T RT)JGU-1 + U-TGT[sut(RU- 1 ) + diag(RU- 1)]

_ diag(U-T RT ) • GU- 1 + U-T GT • diag(RU- I )

+ slt(U.-TRT) . GU- I + U-TCT
. sut(RU-1). (5.3.35)

But for any upper triangular matrix T we have

up(T) + up(TT) = T,

50 that if we define T =diag(U-T RT ) . GU-l, then

Thus from (5.3.34), (5.3.35) and (5.3.36) we obtain

Ù(O)' = diag(U-T RT ) . C + {up[slt(U-T RT ). GU- l + U-TCT . sut(RU- 1)]

-' up(U-T x T FU- 1 + u-T FTXU-l)}u. (5.3.37)

As before, let U = DU, where D = diag(81, ••• , 8n ) E D n . From (5.3.37) it fol1ows

that

IIU(O)IIF ~ IIdiag(U-T RT )I/2I1CIIF

+ I/up[slt(U-T RT) . G.Ü- I
] + n-1up[Ü-TCT

• sut(RU-1)]D/lF IIÜlb

+ lIup(U-T X T FÜ- 1) + D-1up(Ü-T pTXU-1)n/l F 1/0112,

Then, applying (5.3.2) to this, \ye have

/IU(O)IIF ~ I/diag(U-T RT )/I2I1CI/F + VI + (b K2(Ü)I/sut(RU-1)1I2/1G/IF

+ VI + (b K2(Û)/lXU-1 /l 2 I1FI!F
~ (lIdiag(RU-1)1I2 + JI + (iJ K2(U)IIsut(RU-1)1I2)/lR/l2 €R/€

+ JI + (b K2(Ü)IIXU-11l 2 IIXII2 Ex/E, (using (5.2.15))"
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which leads to the following perturbation bound
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::; (lidiag(RU- 1)112 + JI + (b K2(D- 1
U)lIsut(RU-

1)112) ::~::: ER

+ JI + Ç'b K2(D- 1
U)II X U-

11l2 \\~II: Ex + O(E
2

) (5.3.38)

Comparing this with (5.3.23) and noticing (5.2.3), we see the coefficient multiplying (.x

does not change, 50 K!x{R, JY) defined in (5.3.24) can still be regarded as a condition

estimator for U with respect to changes in J"(. But we now need to define a ne"~'

condition estimator for U with respect to upper triangular changes in R, that is

'~~T(R,X) = inf K!RT(R, X, D),
DeD.

where

Thus an overall canditian estimator can be defined as

K.~DT{R,X)= inf K~DT(R,X,D),
DeD..

where

obviously we hn.ve

\Vith these, we have from (5.3.38) that

(5.3.40)

(5.3.41)

(5.3.42)

(

What is the 'r~lationshipbetween KCDT(R, X) and KCDG(R, X) = If!RG(R, X)? For

any n x n upper triangular matrix T = (tij), observe the following two facts:
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(
1) tiil i = 1,2, ... , n are the eigenvalues of T, sa that Itiil ~ IITII2. From this it

follows that

2)

(Note: In fact we can prave a slightly sharper inequality IIsut(T)1I2 ~ vn=I IITII2).
Therefore

K~T(R,X, D) - (IIdiag(RU-l)l/~ + Ji +~ K2(D- 1U)l/sut(RU- 1HI2) ::~:::

< (IIRU-
1Ib ~ v'nJl +~ "'2(D-1

U)IIRU-
1

1/2 ) ::~:::

< (1 + v'n)Jl +~ K2(D-
1
U)I/RU-

1 Ib ::~:::

_ (1 + vn) ·/1 + <] K2(D-
1
U) IIRII2 (using (5.2.2))

V D un(f) IIU!l2
(1 + .;Ti) K~G(R, X, D),

so that

(5.3.43)

Thus we have from (5.3.28) and (5.3.41) that

(5.3.44)

(

On the other hand, K!CDT(R ,X) can he arhitrarily smaller than K!cDG(R, X). This

can he seen from the asymptotic hehaviour, which is important in its own right. As

X ~ 0, sinee U ~ R, un(f) ~ 1 and RU-1 -. In, we. have

sa for upper triangular changes in R, whether pivoting was used in finding R or not,



Thus when X -+ 0, the bound in (5.3.42) refiects the true sensitivity of the problem.

For the case of general L1R, if we do not use pivoting it is straightforward to make

J\.~DG(R, ...\'") in (5.3.27) arbitrarily large even with X = 0, see (5.3.25).

By the definition of K RT(R, JY) in (5.3.16), we can easily verify from (5.3.42) that
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(5.3.45)

Thus from this and the second inequality in (5.3.32), it follows with (5.3.18) and

(5.3.41) that that

(5.3.46)

(

Now we summarize these resnlts as the fol1owing theorem.

Theorem 5.3.2 With the same assumptions as in Theorem 5.2.2, there is a unique

Cholesky factorization

where for general L1R,

!IL1UII F , ) .J ( 2I!U!l2 < "'RGCR, X i R+ ~x R, X)ix + O(i )

~ "'~DG(R,X)(iR + ix) + O(~),

and for upper triangular L1R,

IIL1UII F '( ) , ( ) ( 2)IIU!l2 < "'RT R,X i R+ "'x R,X ix+ O c

< "'~DT(R,X)(iR + ix) + O(~).

There are the following relations.hips among the various measures of sensitivity of

the pToblem (see (5.3.28), (5.3.30), (5.3.32), (5.3.33), (5.3.43), (5.3.44), (5.3.45) and

(5.3.46)) :

KRC(R,J\'") ~ ""Rc(R,X) < KRG(R, X, In) = ifJR' KRT(R,X) ~ KRT(R, X),

Kx(R, X) ~ ""x(R, X) < Kx(R, X, In) = ifJx, Kx(R, X) ~ ""RG(R, X),

""RT(R, X) ~ (1 4- y1ï) KRG(R, X), K!CDT(R, X) < (1 + y1ï) ""cDG(R, X),

KCDG(R, X) ~ '<cDc(R, X),. K~DT(R,X) ~ ""cDT(R, X). 0
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Our numerical experiments suggest KCDG(R, X) is usually a good approximation

to KCDG (R, JY). But the following example shows KCDC(R, X) can sometimes he arbi-

trariIy larger than KCDG(R,X).

2 1 0 0

0 1 0 0
,X= [~ 2/-/3 0 o) . 3 0R= o ' U =dlag(l, 8, 8 ,6-),

0 0 83 0 J2/3 - 62 0

0 0 0 82

where 8 is a small positive number. It is not diflicqlt to show

But K'cDG(R, ...Y) has an advantage over KCDG(R, X) - it can be quite easy to estimate

- aIl we need to do is to choose a suitable D in KCDG(R, X, D). We consider how to do

this in the next section. In contrast KCDC(R, X) is, as far as we can see, nnreasonably

expensive to compute or estimate.

Numerical experiments aiso suggest KlCDT(R, X) is usually a good approximation

ta K.CDT(R, )(). But sometimes KCDT(R, X) can he arhitrarily larger than KCDT(R, X).

This can aiso be seen from the exarnple above. In fact, it is nat difficult to obtain

(

Like KCDG(R, X)t ~CDT(R,X) is difficult to compute or estimate. But ""cDT(R, X) is

easy to estimate, which is discussed in the next section.

5.4 Numerical experiments

In Section 5.3 we presented new first-order perturbation bounds for the the downdated

Cholesky factor U using first the matrix-vector equation approach, and then the

matrix equation approach. We defined KCDG(R, X) for general t1R, and KCDT(R, X)

for upper ~riangularL1R, as the overall condition numhers of the probiem. Aiso we .
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gave two corresponding practical but weaker condition estimators ""cDG(R, X) and

KCDT(R, X) for the two jjR cases.

\Ve would like to choose D such that KCDC(R, X, D) and KCDT(R, X, D) are good

approximations ta KcDG(R, X) and KCDT(R, X), respectively. We see from (5.3.25),

(5.3.26) and (5.3.39) that we want to find D snch that VI +~ 1(2(D-1U) approx­

imates its infimum. That is the same problem we faced in Section 3.5. We adopt

the bcst rnethod of choosing D proposed there. Specifically take (1 = JE;=1 uri'

(à = VEj=i uri if J'Ei=i U;j ~ (i-l otherwise (à = (i-l, for i = 2, ... , n. Then we use

a standard condition estimator to estimate K:2(D- 1U) in O(n2) operations.

Notice from (5.2.4) we have un(f) = VI -IIXR-III~. Usually k, the number of

rows of X, is much smaller than n, so O"n(r) can he computed in O(n2 ). If k is not

much smaller than n, then we use a standard narm estimator ta estimate Il..\"R- I I!2 in

O(n2
). Similarly IIUll 2 and IIRlb can he estimated in O(n2

). So finally KCDG(R,-"Y,D)

can be estimated in O(n2 ). Estimating KCDT(R, X, D) is not as easy as estimating

KCDG(R,-"Y,D). The part IIdiag(RU-l)1I2 in KRT(R,X,D) can easily be computed

in O(n), since diag(RU-l) = diag(rll/uU, ... ,rnn/unn ). The part IIsut(Ru- r)1/2 in

KRT(R, J'Y, D) can roughly be estimated in O(n2), based on

-./n1_lllsut(RU-I)IIF ~ IIsut(RU-I)lb ~ IIsut(RU- I )IIF,

IIsut(RU-I)IIF = VI/RU-III} -lIdiag(RU-1)1I},

and the fact that IIRU- 1IIF can he estimated hy a standard norm estimator in O(n2 ).

The value of IIXU- 1112 in Kx(R,X, D) can he calculated (if k « n) or estimated

by a standard estimator in O(n2
). AIl the remaining values IIRII2' IIXI/2 and IIU!l2

can also be estimated by a standard norm. estimator in O(n2 ). Hence KRT(R, X, D)t

Kx(R, X, D), and thus KCDT(R, X, D) can he estimated in O(n2). For standard con­

dition estimators and norm estimators, see Chapter 14 of Higham [30, 1996}.

The relationships among_the varions overall measures of sensitivity of the Cholesky
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downdating problem presented in Section 5.2 and Section 5.3 are as follows.

/3 ~ 4J ~ KCDG(R, ..-Y) ~ K,cDG(R,..-Y) ~ KCDT(R: ..-Y),

(1 + vn)K~DG(R,X) ~ KCDT(R,X) ~ KCDT(R, X).

123

(

Now we give one numerical example to illustrate these. The example, quoted from

Sun [50, 1995), is as follows.

1 -c -c -c -c 0.240

0 1 -c -c -c -0.899

R = diag(l s s2 s3 S4) 0 0 1 -c -c , )(T = 1 0.899" , ,

0 0 0 1 -c 1.560

0 0 0 -0 1 2.390

where c = 0.95, s = /1 - c2 • The results obtained using MATLAB are shown in

Table 5.4.1 for various values of 1:

Tl = 1.00401500G005433e - 2, 12 = 1.003021021209640e - 2,

13 = 9.036225416303058e - 3,

and 14 = T3 . e - 01, 15 = 13 . e - 03, 76 = 13 . e - 5.

Table 5.4.1: Results for the example in Sun's paper

T Tl 72 73 74 T5 76

Ii..-YR- 1/2 0.99999 0.999 0.9 . 0.09 0.0009 0.000009
(J 2.25e+10 2.25e+07 2.60e+04 2.72e+03 2.6ge+03 2.6ge+03
</J 1.01e+08 1.01e+06 1.14e+04 2.71e+03 2.6ge+03 2.6ge+03

K'cDc(R, ..-Y, D) 3.60e+03 3.6Ie+02 3.7ge+OI 1.7ge+Ol 1.78e+01 1.78e+Ol
KCDG(R, ..-Y) 1.66e+03 1.66e+02 1.71e+OI 8.42e+OO 8;41e+00 8.41e+OO

K'cDT(R, X, D) 2.12e+03 2.12e+02 1.7ge+OI 1.07e+OO 1.OOe+OO 1.OOe+OO
KCDT(R,X) 2.43e+02 2.43e+Ol 2.44e+OO 1.01e+OO 1.OOe+OO 1.00e+OO

Note in Table 5.4.1 how /3 and <p can he far worse than the condition nUffi­

bers KCDC(R, X) and KCDT(R, X), although <P is not as bad às /3. Also we" observe
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that KCDC(R, X, D) and KCDT(R, JY, D) are very good approximations to KCDC(R, X)

and f':CDT( R, X), respectively. When JY become small, ail of the condition num­

bers and condition estimators decrease. The asymptotic behavior of KCDC(R, )(, D),

KCDT(R, )(, D), KCDC(R, X) and "'CDT(R, )() coincides with our theoretical results:

when X --+ 0, KCDC(R, .X) and KCDC(R, X.. ) will be bounded in terms of n since here

R is actually Ks(arccos(0.95», a Kahan matrix, which corresponds ta the Cholesky

factor of a correctly pivoted A, and KCDT(R, X), KCDT(R, JY) --+ 1.

5.5 Summary and future work

The first-order perturbation analyses presented here show just what the sensitivity of

the Cholesky downdating problem is, and in so doing provide the condition numbers,

as weIl as efficient ways of approximating these. The key measures of the sensitivity

of the problem we derived are:

• For general ~R:

- overall condition number: KCDC(R, X), see (5.3.9),

- overall condition estimator: KCDC(R, X) == infDED,. KCDC(R, X, D), see

(5.3.2i),

• For triangular L1R:

- overall condition number: KCDT(R, X), see (5.3.18),

- overall condition estimator: KCDT(R, X) =infDED,. KCDT(R, X, D), see

(5.3.40).

These quantities and the condition estimators 4> (see (5.2.17») and {3 (see (5.2.19»

obey

KCDT(R,X) :s; "'cDc(R,X) :5 KCDC(R,X) :5 4>:5 {3,

f':CDT(R, X) :s; KCDT(R;X) ::; (1 + :Jiï)KCDC(R, X).
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For the asymptotic case as X ~ 0, "'cDc(R, X) and KCDC(R, X) will be bounded in

terms of n, and K-CDT(R, X), KCDT(R, D) ~ 1, while 13 and 4J have no such properties.

Recently Stewart [42, 1995] presented a bacl-ward rounding error analysis for the

block downdating algorithm presented by Eldén and Park. It would be straightfor­

ward to combine our results here with Stewart 's result to give a forward error estimate

for the computed U. But wc choose rrot ta do this here in arder to keep the nlaterial

as simple as possible.

In the fu ture we would like ta

• Give better approximations to K-cDG(R, X) and K-CDT(R, .LY) than KCDC(R, JY)

and KCDT(R, .LY).

• Extend our analyses here ta other cases, snch as that when L1R and .d.Y come

from a componentwise backward rounding eITor analysis.
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Chapter 6

Conclusions and future research

A new approach, the 50 called 'matrix-vector equation approach' has been developed

here for the perturbation analysis of matrL'"{ factorizations. The basic idea of this

approach is ta write the perturbation matrix equation as a matrix-vector equation by

using the special structure and properties of the factors. Using this approach we ob­

tained tight first-order perturbation results and condition numbers for the Cholesky,

QR and LU factorizations, and for the Cholesky downdating problem. Our pertur­

bation bounds give significant improvements on the previous results, and could not

be sharper.

Also we used the 50 called 'matrix equation approach' originated by G. W. Stew­

art to obtain perturbation bounds that are usually weaker but easier to interpret,

leading to condition estimators which are easily estimated by the standard condition

estimators (for matrix inversion) or Dorm estimators. Our experiments suggested

that for the Cholesky, QR and LU factorizations with Dorm-bounded changes in the

original matrices the condition estimators are very good approximations of the cor­

responding condition numbers. Aiso our numerical experiments suggested for the

Cholesky factorization with component-bounded changes in the original matrix and

the Cholesky downdating problem witb: norm-bounded changes in the original matri­

ces, the condition estimators are usually good approxÏIpations of the corresponding

126
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condition numbers, even though sorne counter-exarnples were found.

The matrix-vector equation approach is a powerful general tool, and appears to

be applicable to the perturbation analysis of any matrix factorization. The matrix

equation approach is also fairly general, but for each factorization a particular treat­

ment is needed. The combination of these two approaches gives a deep understanding

of these problems. Although first-order perturbation bounds are satisfactory for aIl

but the most delicatc work, we also gave sorne rigorous perturbation bounds for the

Cholesky factorization.

In computing these factorizations, standard pivoting is often used to improve the

stability of the algorithrns. We showed that the condition of these factorizations is

significantly improved by the standard pivoting strategies (except the L factor in the

LU factorization), and provided firmly based theoretical explanations as to why this

is 50. This cxtremely important information is very useful for designing more reliable

rnatrix algorithms.

In the future we hope to continue this research in several directions:

• Ta analyze the Cholesky, LU and QR factorizations, and Cholesky downdating

of general matrices, where perturbations have special structure, for example, by

a.ssumin~ the perturbation has the form of the equivalent backward rounding

error from a numerically stable computation of the factorization (sorne results

for the Cholesky factorization have been given in this thesis). Such structure

leads ta improved sensitivity results.

• To analyze other factorizations of general matrices for both general perturba­

tions and structured perturbations.

• Ta extend our approach to the factorizations of special matrices. In many ap­

plications matrices and the resulting factorizations used to solve the problems

in a numerically stable way have sorne special structure. Applying the existing
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general perturbation results to these special problems will re~ult in overestima­

tian of the true sensitivity. Our new approach to such perturbation analyses

can make full use of the structure, so should lead to results which closely reflect

the true sensitivity of the problems.
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