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ABSTRACT

A Monte Carlo study was performed to investigate the
ability of MSCAL to recover by Euclidean metric multi-
dimensional scaling (MDS) the true structure for dissimilarity
data with different underlying error distributions. Error
models for three typical error distributions: normal,
lognormal, and squared normal are implemented in MSCAL through
data transformations incorporated into the criterion function.
Recnvery of the true configuration and true distances for i)
single replication data with low error levels and ii) matrix
conditional data with bigh error levels was studied as a
function of the type of error distribution, fitting criterion,
and dimensionality. Results indicated that if the data conform
te the error distribution hypotheses, then the corresponding
fitting criteria provide improved recovery, but only for data

with low error levels when the true dimensionality is known.
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RESUME

La méthode de Monte Carlo a été utilisée pour examiner la
capacité du programme MSCAL a recouvrer par le MDS (multi-
dimensional scaling), la structure spatiale réelle des données
de dissimilarités, lorsque différentes distributions d’erreur
sont utilisées. On peut utiliser trois distributions d’erreur
courantes (normale, log-normale, et normale-carrée) avec
MSCAL, par le biais d’un processus de transformation des
données inclut dans la fonction criteére. L’obtention de la
configuration et des distances réelles pour i) des données de
matrices simples avec un taux d’erreur faible, et 1ii) des
données de matrices conditionnelles avec un taux d’erreur
élevé, a été examinée selon le type de distribution de
l’erreur, la fonction critére, et la dimension de l’espace de
la solution. Les résultats indiquent, que lorsque les données
se conforment aux hypothéses de distribution de l’erreur, les
fonctions criteéres correspondantes améliorent le recouvrement,
mais seulement dans le cas de données a faible taux d’erreur,

et lorsque la dimension de 1l’espace est connue.
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CHAPTER 1

INTRODUCTION

The program MSCAL (Clarkson, 1988a & b) from IMSL, Inc.
embodies a number of different multidimensiocnal scaling (MDS)
models, using both metric and non-metric procedures. However,
this investigation focuses on the error models provided by the
program which are associated with Euclidean metric MDS. Three
typical error distributions are available to the user: normal,
lognormal, and squared normal, corresponding to the data
transformations used in the criterion function for least-
squares estimation. Data of known configuration and error will
be used to evaluate the performance of MSCAL in satisfactorily
recovering configurations and distances for dissimilarity

data, using the different error models.

1.1 Description of the MSCAL Program

MSCAL provides a number of distance models, as well as
various forms of the stress function to be optimized for the
different types of dissimilarity data. There are a large
number of possible models due to the many options available in
the program. Careful consideration is required to choose
those which give appropriate measures and models for the data
being analyzed.

Input parameters allow one to specify the level of

measurement of the data as nominal, ordinal or interval. As
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well, the initial configuration may be either input or
computed. The distance transformations used to compute the
criterion function permit squared distances, distances, or the
log of the distances. It is these transformations which are
under scrutiny in this study because of their relationship to
MDS error models. The various models and parameters of MSCAL
are discussed in the next chapter, in the context of the

design of this study.

1.2 Theoretical Aspects of Scaling Models

According to Takane (1981) a scaling procedure should do
more than just scale the data. It should also represent the
data by an appropriate model. Takane distinguishes between the
representation model, error model and response model.

The representation model indicates the kind of perceptual
relationship ascribed to the data. Thus, the scaling or
transformation of the data should reflect some reasonable
assumptions about one’s concept of dissimilarity. Data
representation models typically use Euclidean distance in MDS
to represent the dissimilarity of two stimuli in space.
Although distances, other than straight-line, are also used.

Various types of data may require different error models.
Not only is the magnitude of the measurement error important
for modelling subjects’ judgments of dissimilarity, but also
its distribution and associated characteristics. A single

error distribution is generally assumed.
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Different types of judgments require different mental
operations by the subject. Reasonable assumptions are needed
about the "psychological processes involved in a specific task
situation which generates a specific type of data" (Takane,
1981, p.l1). This is the response model which specifies the
main characteristics of the data generating processes and
gives an explicit account, in mathematical terms, of the
subjects’ transformations in the psychological space that
produce the dissimilarity judgments. Hence, the response model
includes the representation and error models, as well as their
parameters, as a complete description of the observed data.
1.2.1 The Representation Model
Most MDS models for proximity (i.e. dissimilarity) data
use some form of the Minkowski distance function given as:

n EA
d.ij - (le_m—xjalr) r

a=1

to refer to the theoretical distance between coordinates for
a set of stimuli I and j in a space of given dimensionality,
n. Euclidean distance (r=2) is commonly used for perceptually
"unitary" stimuli such as homogenous colours. The city-block
metric (r=1) is preferred for "analyzable" stimuli such as
geometrical shapes which differ in a number of dimensions
(i.e. size, orientation, etc...) or for stimuli judged with
more than one sense (Shepard, 1980; Schiffman, Reynolds, &

Young, 1981). MSCAL provides only weighted or unweighted
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Euclidean distance models, thus favouring perceptually unitary
stimuli for dissimilarity data models.
1.2.2 Error Models

Data typically contain appreciable amounts of measurement
error. Estimation methods are affected by various sources of
error in the data, such that large enough error will obscure
the underlying structure of the data and lead to worthless
solutions. Yet, as Ramsay (1978) points out, the distribution
of residuals or errors is usually only implicitly defined in
most MDS models. An explicit form provides an opportunity to
tune the analysis by subsequent revision of the choice of
error model.

The additive and multiplicative error models are two

typical examples given by Takane (1981):

8" jim=diy*Cyym:

where e,;,"N(0,02%,) and

8" 3m=di3 €150

where 1lne,;,"N(0,0%,) .The dj, is the true distance between
stimuli i and j, &', denotes the corresponding perturbed
distance for the m-th subject, and e;,is the random normal
deviate representing the error. These models allow individual
differences in the variance. If subjects are taken as repli-
cations then there is a single common variance.

The additive error model assumes that the error is

normally distributed over replications of Jjudgments with
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constant variance for each subject. The multiplicative model
given above is equivalent to the lognormal distribution of the
error explicit in MULTISCALE (Ramsay, 1977). The lognormal
model reflects two features associated with dissimilarity
data: values are naturally positive and variability increases
with magnitude (Ramsay, 1982a).

There is empirical evidence to support a non-linear
monotonic relation between dissimilarity and distance. In
psychophysics, subjective assessments of physically measurable
properties with a rational origin often display a power
relation between judgments of dissimilarity and distance
(Ramsay, 1982a).

MSCAL provides three separate error models through its
data transformation option, when a least-squares fit is used.
The first two models has normally distributed error with
constant within-subject variance about the distances and
squared distances, respectively. Similarly, the third model
has constant within-subject variance for the logarithm of the
distances as in multiplicative model mentioned previously.

An important benefit derived from making the error an
explicit part of the model is the opportunity it gives to
identify the sources of variation in the data. The major
dividing line between two-way and three-way MDS models is how
they view subject differences: two-way models treat individual
variation as incorrect judgments, so that individual differ-

ences are part of the error model; three-way models, on the
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other hand, address these differences as reflections of
different personal judgments or psychological measures in the
representation model by using a weighted distance model.
Meulman (1986) suggested using the subject weight matrices "as
a means of filtering out undesired wvariability" (p.176),
presumably when the individual differences are not important
or interesting.

Building good models requires identifying the sources of
variation in the data which reflect the nature of the judg-
ments subjects make and their ability to do so, from a
psychological perspective. Subjects will be more or less adept
at making judgments and some measure of individual idiosyn-
crasies should be reflected in the error model. Also, stimuli
may have greater or lesser distinctiveness or salience for a
given dimension or attribute. Thus, by varying the types of
weilights and distance models used, one can produce response
models with different variance components so as to recognize
the many sources of variation in subjects’ Jjudgments apart
from the "true" dissimilarities between stimuli.

Three different types of variance components comprise
MULTISCALE (Ramsay, 1982b): pair-wise, stimulus-wise and
subject-wise. Pair-wise variance allows for separate estimates
for each pair of stimuli, assuming they will be different.
Stimulus-wise variance takes into account the varying famili-
arity of stimuli to the subject. MSCAL permits two components

of variation: subject weights and stimulus weights for each
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dimension, so that the metric can vary from subject to subject
and/or stimulus to stimulus. Schiffman, Reynolds and Young
(1981) refer to the stimulus standard error weights, used in
MULTISCALE, as measures of "cognitive uncertainty" of
subjects’ perceptions of each stimulus. MSCAL’s stimulus
weights might be viewed as measures of the perceptual
differences in the stimuli themselves.

1.2.3 Individual Differences

As pointed out by Takane, Young, and DelLeeuw (1977),
individual differences models are of three psychologically
distinct types: those that arise from response bias, those
that result from a judgmental process (either perceptual or
cognitive), and some combination of the two. One can allow for
each type through model weights and/or data conditionality,
regardless of the measurement level of the data. Individual
differences due to response bias are effected by assuming
replicated data are conditional; individual differences in the
judgmental processes are reflected by the weights in the
weighted distance model. Thus, even if an unweighted distance
model is used, individual differences can still be represented
by allowing different response transformations for each
subject. The MSCAL program has an option for the level of
stratification in the data permitting unconditional, matrix
conditional, and column conditional (i.e. appropriate only for

the asymmetrical case) data.
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On the other hand, the non-individual difference model
"assumes that replications arise from subjects with identical
judgmental and response processes" (Takane, Young, & DelLeeuw
(1977), p.52). This applies to single matrix data as well, as

replicated data, by treating the data as unconditional.

1.3 Estimation Methods

Generally, MDS procedures use one of two methods for
measuring the fit of a model: least squares and maximum
likelihood. The former relies on minimizing the discrepancies
for the chosen criterion function; hence, some kind of
badness-of-fit index is used. Maximum 1likelihood methods
require statistical assumptions about the random variation in
the data and estimates of the model parameters are those which
give the largest probability or likelihood of occurring with
the observed data for a given set of the model values.

MSCAL minimizes a loss function which allows the user to
specify the power of the estimates. The only restriction is
that the power be at least one. Users would normally select
one of the following types of estimates: least-squares,
minimum absolute deviation, or the sum of the 1.5 power of the
errors, a typical expcnent for dissimilarity data (Ramsay,
1982a, p.288). The maximum likelihood method is not used in
MSCAL. However, metric scaling of dissimilarities assumed to

be independently normally distributed with constant residual
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variance produces normal distribution theory maximum
likelihood estimates.

Different MDS programs fit different transforms of the
data. MULTISCALE fits distances directly. Because ALSCAL
(Takane, Young, & DelLeeuw, 1977) fits squared distances
instead of distances, the program tends to fit mostly large
discrepancies, sacrificing fit in the smaller and moderate
discrepancies. ALSCAL performs best when error is least and
distributed mostly in the smaller proximities; only when error
in the larger squared distances approximates that in the
smaller squared distances is ALSCAL’s performance unaffected
by error (Ball, 1982) ., While INDSCAL (Carroll & Chang, 1972)
uses the same weighted Euclidean model as ALSCAL, it fits
scalar products that have been converted from squared
proximities. Ball’s (1982) study notes that INDSCAL’Ss
performance is much less affected by the level of error, its
distribution and the underlying error model, than when ALSCAL
is employed.

Using least squares estimation, programs should perform
best when error is normally distributed about the measures
being fit. Thus, when squared distances are fit, the best
results should occur when error is normally distributed about
the squared distances. Similarly, the same recsoning should
apply when fitting distances, scalar products and the
logarithm of the distances. Ball’s (1982) evaluation of

MULTISCALE (Ramsay, 1977) attributes the lack of such findings
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for 1lognormal data to the program’s frequent failure to
converge rather than to how the response model interacts with
the data.

The alternating least-squares method approach used in
MSCAL sequentially fits the distance component and the spatial
component . The expected effects of error and its distribution
on recovery of the distance component has been discussed
above; however, the effects of error on the spatial component

need to be addressed.

1.4 Initial Configuration Estimation

Converting distances to scalar products and then using a
decompesition of the scalar products matrix to estimate the
coordinates of the configuration leads to a number of
problems, as Ramsay (1982a) points out: dissimilarity must be
measured to within a scale factor and random disturbances, as
found in real data, are exaggerated by squaring in the
double-centring transformation used to convert distances to
scalar products. MSCAL uses this classical MDS approach, which
double-centres the squared distances, and applies matrix
factoring throughh eigen-analysis of the product moment
matrices to arrive at the initial configuration. As Spence and
Lewandowsky (1989) show, the Young-Householder-Torgerson
(Young & Householder, 1938; Torgerson, 1958) procedure is
sensitive to the effects of outliers and provides a "poorer

starting position than a random configuration" (p.505). Thus,




by

5 -4

11
local minima are a possible problem to be considered when

evaluating MSCAL.

1.5 Use of Montea Carlo Methods

Monte Carlo methods have come to be used "in any
situation where a complete mathematical analysis of a problem
is difficult or intractable." (Spence, 1983, p.406) Computer
simulations using the Monte Carlo method are designed
experiments, requiring thoughtful planning and precise
execution. A factorial design becomes increasingly complex as
the number of factors and/or levels of factors are added. For
this reason, most Monte Carlo investigations have been limited
in their scope and their results are only suggestive of the
underlying relationships between the independent and dependent
variables. Nevertheless, the practical demands of MDS
techniques, require some empirical guidelines for the use of
the wvarious programs. Studying the effects of various
controlled factors using Monte Carlo simulations helps to
assess the soluticns and measures of fit which these scaling

procedures provide.

1.6 MDS and Monte Carlo Studies

Inevitably, real psychological data contain error or
"noise". The capability of various programs to recover the
true structure of empirical data will depend wupon how

successfully they deal with noise. Monte Carlo studies using

Ak Tt e gon v b
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known stimulus configuration with data perturbed by random
error, have been important in determining the behaviour of
various programs and in evaluating the goodness of fit of
metric, as well as non-metric, methods. The Monte Carlo
approach is ideally suited to this study because of the ease

with which error models can be imposed upon the data.

1.7 Review of Monte Carlo Studies for Two-way Scaling

Wagenaar and Padmos (1971) studied the behaviour of
Kruskal’s non-metric M-D-SCAL (1964a, b) program, by measuring
the stress values for random configurations of a small number
of points with various levels of error and true
dimensionality. Their results were intended as bases of
comparison to estimate true dimensionality and measurement
error of empirical data. Unlike previous studies, Wagenaar and
Padmos used a different error model. Random normal deviates
were multiplicatively applied to the error-free Euclidean
distances instead of the coordinate points. However, negative
distances were possible with such a method, and negative
random elements had to be rejected.

Isaac and Poor (1974) also investigated the problem of
determining the true underlying dimensionality of
error-perturbed data using M-D-SCAL (Kruskal, 1964a, b) . Three
separate measures of recovery were used as the dependent
variables: Kruskal’s Stress Formula 2, the index of metric

determinacy, and a new measure introduced as Constraint. This
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measure was the difference between the expected stress value
for random data and the stress value of a typical
configuration in the same dimensionality with the same number
of points. The manipulated factors were typically: the number
of points, the true dimensionality, the amount of error, and
the dimensionality of the solution. The error generation was
similar to Young’s (.970) study, where random error was added
to the coordinates. However, Isaac and Poor used higher levels
of error. The results were consistent with those of Young and
confirmed the inadequacy of stress in identifying the true
dimensionality of data with error.

Sherman (1972) produced an extensive study of metric
determinacy of the non-metric scaling program, TORSCA (Young,
1968), employing a large number of factors. In addition to
studying the effects of the number of points in the config-
uration, true dimensionality, and error level as had Young
(1970), Sherman included the Minkowski constant, r, in the
distance function and the number of dimensions used 1in
scaling. Young had considered only Euclidean distances.
Sherman varied the Minkowski r-metric (r=1,2,&3) but scaled
the data assuming it had been measured with a Euclidean
distance function (r=2) to determine the effects of mis-
estimating the distance function.

As Sherman noted, the overall trends found in the two
studies were the same. Differences notwithstanding, the

results related to the additional factors in Sherman’s study
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indicated that there was good metric determinacy: 1) if the
dimensionality of the recovered configuration was not less
than the dimensionality of the true structure and 2) the
accurate estimation of the Minkowski constant led to a better
model only if the dimensionality has been properly estimated.
Sherman further qualified the choice of the Minkowski
constant, r. If the stimuli under study had perceptually
distinct attributes (for example, height) then using
city-block distance provided a better model. Otherwise, for
stimuli with interacting attributes (i.e. hue and brightness)
r values greater than one lead to better models.

One major objection raised by Cohen and Jones (1974) was
that previous studies, such as Sherman (1972), had based their
findings of the effects of dimensionality on the recovery of
distances and not of the true configuration itself. Their
results qualified the implications of dimensionality such that
"partial information on any dimension will be recovered to the
extent that it is available in the data when the solution is
in a sufficiently high dimensionalit+ " (p.88) Underestimation
of dimensionality is associated wi: ~oss of information and
possible distortion of the solution dimensions.

Spence (1972) employed a comparative approach among three
popular non-metric algorithms, M-D-SCAL (Kruskal, 1964a, b),
SSA-I (Lingoes, 1965), and TORSCA (Young, 1968) to assess
their performance. Using Ramsay’s model (1969), Spence added

random error independently to each of the randomly generated
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coordinates. This method of generating dissimilarities was

the same as that used by other investigators (Sherman, 1972;
Young, 1970).

The performance of the three procedures in obtaining
initial and final configurations was assessed by Kruskal’s
stress measure and the index of metric determinacy, M, the
correlation between true and recovered distances. Thus,
recovery of configurations were not measured directly. A
complicated design was used involving 18 distinct configura-
tions, with varying number of dimensions and datapoints, four
separate error levels and five levels of recovered
dimensionality.

The results showed relatively small differences between
the solutions of the different algorithms. However, each of
the algorithms were susceptible to sub-optimal solution
problems. M-D-SCAL produced the 1largest number of deviant
solutions, while very few of the SSA~I and TORSCA solutions
were unsatisfactory. For all algorithms problems were severe
in one dimension.

Spence identified the quality of the initial configura-
tion as the major factor in avoiding local minima in the
configuration. TORSCA’s success was attributed to its ability
to generate a good initial configuration, one close to the
global optimum. Also, not all algorithms improved the fit;
sometimes, it was worsened. It 1is believed that such

non-convergent programs display local optimum problems more
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frequently than convergent programs (Schiffman, Reynolds, &
Young, 1981).

Graef and Spence (1979) investigated whether small,
medium, or large distances were most important in determining
the recovery performance of TORSCA (Young, 1968). An important
feature of this Monte Carlo study was the inclusion of two
separate error models: the Ramsay (1969) model and the
Wagenaar-Padmos (1971) model, each with two levels of error.
The two error models were used principally because they were
thought to represent the extremes encountered with real data.
Results indicated that large distances were critical to good
performance in recovery of the true distances; whereas small
and medium distances had a less crucial role, independent of
the error models used.

Spence and Lewandowsky (1989) studied the effects of
outliers on various MDS procedures, including their procedure
TUFSCAL, using Monte Carlo simulations with a lognormal error
model. Their results indicated that metric procedures such as
Young-Householder-Torgerson metric scaling (Young &
Householder, 1938; Torgerson,1958), K¥ST-2 (Kruskal, Young, &
Seery, 1978) in metric mode, and MULTISCALE (Ramsay, 1977;
1982b) generally perform worse than the non-metric procedures,
ALSCAL (Takane, Young, & DelLeeuw, 1977; Young & Lewyckyij,
1981) in the non-metric model and KYST-2 in non-metric mode,
when outliers were present and, with the exception of

MULTISCALE when the data also had moderate background error.
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Despite general resistance to the effects of outliers,
TUFSCAL’s performance was less good in some cases than others,
for which higher percentages of outliers gave perfect
recovery. Such instances were attributed to "particular
patterns of outliers" for which perfect recovery was not
possikle, reother than to occurrences of local minima. From
this viewpoint, it is sometimes the particular nature of the
error in data that may be limiting recovery, rather than the
algorithm.

By using a "cross"-shaped true configuration, Spence and
Lewandowsky (1989) provided vyardstick measures of what
constitutes good recovery correlations: configurations whose
recovery correlations were less than 0.7 had 1little
resemblance to the true configuration and generally those
configurations associated with correlations less than or equal
to 0.9 were judged to be unsatisfactory.

In general, Monte Carl» studies have shown that two-way
non-metric procedures perfocrm best when the true dimension-
ality is low, the number of points is large and the error
level is moderate. The minimum number of points suggested per
dimension is six to avoid the problem of degenerate solutions
(Spence, 1983). These results are assumed to apply equally to
metric and non-metric models. Various error models have been
considered, including those which add error to the distances.
Also, it is important to measure both recovery of distances

and configuration to get a true picture of performance.
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Depending on the nature of the error in the data, wvarious

interactions are expected for the different error models.

1.8 Interaction of True and Predicted Error Models

It is natural to expect that MSCAL will perform best when
the predicted error model matches the error distribution of
the data. For a least—-squares fit it 1is assumed that the
absolute errors are distributed uniformly across the data.
Specifically, random normal error 1is distributed uniformly
across distances for a normal error model and across squared
distan.es, if a squared normal error distribution is present
in the data. However, for lognormal error, it is the relative
error (i.e. relative to the magnitude of the distances) that
is scattered uniformly across the range of distances.

When the data has a normal error distribution and a log
transformation is used, as in the case where the predicted
error model is lognormal, a least squares fit will tend to
minimize the error in the smaller distances over that in the
larger distances. On the other hand, if a squared transforma-
tion is wused, estimation will concentrate on the larger
distances, since errors in the larger proximities are expanded
by squaring. However, if the actual values of the distances
are more or less equal, then all transformations should give
the similar results.

When the data has error with a squared normal

distribution, a least squares fit assuming a normal error




L3

L

P

19
model will tend to overfit the larger and smaller distances.
If a lognormal transformation is used, it will tend to overfit
the smaller distances. However, as in the case of normal
error, if the actual distances are about equal and close to
one then all transformations should give approximately equal
recovery.

In the case of data with lognormal error, larger absolute
errors are concentrated in the larger distances. If the
predicted error model assumes a normal distribution,
least~-squares estimation will concentrate on fitting the
larger distances and the smaller distances will have less of
an influence. If a squared normal error model is assumed,
squared distances are fit to the squared disparities. Again,
there is a tendency to fit error in the larger error-perturbed
values, since errors in the larger distances are expanded by

squaring.

1.9 Simulating Typical Users’ Needs

One last point needs to be made with respect to the
design of Monte Carlo studies. The needs of a typical user
should be considered. Spence (1972) in evaluating non-metric
MDS programs suggested the following guidelines to simulate
circumstances encountered in an experimental situation: 1) The
range of stimuli should be realistic. 2) Standard default
options should be used to simulate what the average user

typically selects. 3) The maximum number of iterations should
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be 15-30 to allow an algorithm to reach a minimum according to
experience of some investigators. 4) Spaces of differing true
dimensionality should be explored, as well as the effect of
error in the data. 5) One should look for interactions between
the programs and the error level, the number of stimuli, and
the true and recovered dimensionalities. (Spence, 1972, p.468)
Following this advice, the next chapter provides the detailed

methodology for the present Monte Carlo study.
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Chapter 2

DESIGN OF THE STUDY

The performance of the MSCAL program will evaluated in
terms of two separate measures: 1) recovery of the true
configuration and 2) recovery of the true distances. Starting
from a true configuration, the corresponding true proximities
are calculated. Using the Monte Carlo method, random error is
added to the true distances according to the error models
established by the three fitting criteria in the MSCAL
program. The study will include two parts: the first analyzes
data with a single matrix for which no individual differences
are possible, and the second allows for individual differences
in response style using a replicated analysis.

Since MSCAL is a new multidimensional scaling program,
this study will concentrate on its basic capabilities, and
leave evaluation of other aspects for future consideration.
Metric multidimensional scaling will be used for square
symmetric data with ratio measurement level, the strictest
condition on optimal scaling, using an unweighted model and
least-squares estimation. Also, a simple linear model
relating the true distances and the dissimilarity data of the
form f£(8*,,,) = £(dyy,) +e;y,is assumed to make the simulations
as similar as possible across the different error

distributions imposed on the data.
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A weighted distance model, with either subject or
stimulus weights, would add more complexity to the problem of
assessing performance of the fitting criteria. However, MSCAL
does permit individual differences in response style for an
unweighted Euclidean distance model, depending on the
conditionality of the data, through the stratification level
option. A stratification level indicating matrix conditional
data (i.e. each stratum will correspond to a single subject,
reflecting individual differences in variance) will be used to
improve the fit of replicated data. Accordingly, single
matrix dissimilarities data will be treated as unconditional
by MSCAL.
The general stress function optimized by metric MSCAL is

given as:

¢ - th Elf(biijm) "ah'phf(aijm)lp
h 1,3

where 8 denotes the predicted distances, 8* denotes the dis-
similarities, v,is the stratum weight, f is one of the data
transformations (f(x)=x,f(x)=1ln(x), or f(x)=x%), @, 1is the
stratum intercept, f,is the scaling factor and h indexes the
strata (for matrix conditional data, h=m, the index for
subjects) and p=2 for least squares estimation.
2.1 Choice of MSCAL Parameters

The type of the data transformation specified for the

stress function is the main variable of interest in this




23
study. The number of options available for the program
parameters are many and their selection must be compatible
within the framework of these fitting criteria, as well as the
data.

Given the choice of representation model and the measure-
ment level of the data, the stratum intercepts &, were not
necessary. To eliminate overparameterization, MSCAL places
restrictions related to the fitting criteria on the scaling
factors, B,. A normal or squared normal fitting criterion
requires: 1) B,=1for unconditional data and 2)Y B,2=n for
matrix conditional data, where 1 is the number hof subjects.
To avoid differences in the criterion function optimized for
the different error models, only the configuration coordinates
will be estimated.

MSCAL permits three different stratum weights in the
stress function: stratum variance, the sums of the squared
disparities, or unconditional variance. The normalizing factor
which corresponds to the sum of the squared disparities

corresponds to the stress function, ¢,given by:
4’1'2"}12(f(b‘ijm)_f(bijm))z'
h 13

where v, = E (£(8*4,))2,h=m for matrix conditional data. For
1,3
a metric model, ¢, the stress function weighted by uncondit-

ional stratum variance, is related to ¢,as follows:

EZ (f(b.ijm) ‘T(al))z
4)1 = ¢2 2 i'jz (f(b* ))2
o g; ijim

.
r
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where F(8* )is the mean transformed dissimilarities in the
stratum. For simplicity, the stress function ¢,was chosen.
Moreover, when a squared transformation is used for the
fitting criterion, ¢, is proportional to SSTRESS in ALSCAL
(Takane, Young, & Deleeuw, 1977). The third stratum weighting
option, conditional variance, was not chosen because it

resulted in the following criterion function:
¢0 - ;nhln [izj (f(b‘ljm) "f(a ijm) )2] ’

where n, is the number of disparities in stratum h. It was
unclear how the optimization would be affected by the logar-
ithm of the stress function when the underlying error dis-

tribution and fitting criterion do not match.

2.2 Generation of the True Data

The true stimulus configurations and the corresponding
true proximities were selected from configurations output by
MULTISCALE II for two sets of data: 1) data for 32 stimuli of
occupations (Coxon, 1982), and 2) dissimilarity ratings on a
9-category rating scale of 14 emotions from 15 members of an
MDS Workshop (J.0O.Ramsay, personal communication, 1990). The
original datasets represent two basic types of applications:
the Coxon data have only a single matrix of dissimilarities,
and the emotions data are replicated.

The chosen configuration populations are not artificial,

unlike other Monte Carlo studies whose results have uncertain
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applicability to empirical data. The number of datapoints in
each dataset should be sufficient for analysis and are typical
in size. Inasmuch as these datasets have been previously
analyzed, they are reasonable choices for this study. There is
no claim that the conclusions of this study will apply to all
datasets, but rather only to datasets of comparable size.
2,2.1 True Stimulus Configurations

The output configuration from a MULTISCALE II analysis
using an underlying normal error distribution and scale
transformation of the Coxon data was used as the common
stimulus space for occupations. The configuration derived from
an analysis using a lognormal error distribution and scale
transformation was used for the emotions common stimulus space
for the 15 subjects. For both sets of data, three dimensional
solutions were chosen, since previous MULTISCALE II analyses
indicated the data sets were both three-dimensional. Figures
1 and 2 give the corresponding true configurations. The
corresponding population configuration matrices are given in
Appendix A Tables 13 and 14.

2.2.2 True Proximities

The true proximities were the associated n(n-1)/2
inter-stimulus distances for the two true configurations
derived using the unweighted Euclidean distance model in the
original analyses. The corresponding population proximities

matrices are given in Appendix A Tables 15 and 16.
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The True Configuration
for the Emotions Data
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2.3 Error Models

Error was generated according to Monte Carlo techniques.
The random normal number generator, RNNOR, from IMSL STAT/
LIBRARY (1987) was used to produce the error.

Random normal deviates, with a mean of zero and constant
variance for each subject, were added to each of the true
proximities in accordance with the three error models. A
replication factor of 25 was chosen so that the study would be
of reasonable size. This number of replications was expected
to be sufficient to produce the kinds of effects that are
important to sample variability.

2.3.1 Normal Error Model

Random normal deviates e;;,were added to each of the
n(n-1)/2 true distances d,;, for m subjects and n stimuli to
give the perturbed proximities biﬁgeflecting an underlying

normal error distribution as follows:

8 yim = dijn + €1m-

In this case, there is no relationship between the
magnitude of the distance and error, with the exception that
for error-perturbed values less than or equal to zero are set
to the value of 0.01 for the Coxon data and 0.1 for the
emotions data. These values were chosen after inspection of
the data, to be small relative to the distances generated.
This will have some effect on the distribution of error for
small distances and on the expected values of the estimated

configuration matrix.
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2.3.2 Lognormal Error Model
Random lognormal error was added to the true inter-

stimulus distances as follows:

bijm - eXp [1n(dijm) + eijm] .

The typical error is proportional to the true distances. No
zero perturbed distances were generated.
2.3.3 Squared Normal Error Model

Random normal deviates were added to the squared dis-
tances and the square root of each sum gave the following

perturbed proximities:

diim = \/ dijm * Cigm +

It should be noted that when the error added to the squared
true distance gave a negative or zero wvalue the perturbed
distance was set as described for the normal error model.

In total, 3 (error model types) X 3 ( data transformation
types) X 25 (replications) proximities matrices for m subjects

were generated for the Coxon (m=1) and emotions (m=15) data.

2.4 Subject Standard Error

Within-subject variances were assumed to be constant;
however for the emotions data, error variance varied across
subjects, as 1is typical for observed data. Subject standard
errors for the Coxon and the emotions data were taken from the
MULTISCALE II estimates that provided the true confiqgurations

and proximities described above. The within-subject standard
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errors estimated by MULTISCALE II for these configurations are
presumed to reflect realistic standard error weights for each
subject for these datasets. The standard error for the Coxon
data, 0.091, with a normal error distribution represents a low
error condition, while the average standard error for the
emotions data, 0.397, with a lognormal error distribution
indicates a high level of error.

Population standard error values for the two remaining
error models were determined as follows: Regression with no
intercept of the squared dissimilarities on the squared true
distances for each subject gave residual standard errors which
were used to generate the appropriate perturbed proximities
with squared normal error for both sets of data. Similarly,
for the emotions data with normal error, the original
dissimilarities data for each subject were regressed on the
true distances. The unbiased standard error estimated by
MULTISCALE II, for a lognormal error distribution and scale
transformation analysis of the original Coxon data, was used
to generate Coxon data with lognormal error. Thus, for both
the Coxon and emotions data, three sets of subject standard
error weights were provided for the correspondiilg error

models.

2.5 Standardization of Error levels

Comparison of the results from the various MSCAN analyses

required standardization of the error levels in the generated
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data. It was otherwise unclear how to take into account the
standard error levels. The measure chosen to equate error
levels in the generated data was the proportion-of-variance of
error (PVE), one minus the squared correlation between the
n(n-1) /2 true proximities and the corresponding perturbed
proximities. This procedure was used by Ball (1982).

After adjustment the mean PVE for the Coxon data was
0.17, using standard deviations of: 0.111, 0.186 and 0.096 for
normal, lognormal, and squared normal error, respectively.
However, the emotions data required 15 subject standard error
weights for each type of error. The sets of initial subject
standard error weights, given above, ere scaled to produce
roughly equivalent global levels of error as measured by the
proportion-of~variance statistic. Multiple runs for the
emotions data were necessary to produce mean PVE values of
0.50 for squared normal error, 0.53 for lognormal error and
0.54 for normal error. It was difficult to obtain exact
equivalence.

Also, it is important to note where the error tends to be
distributed for the various distributions. The mean correlat-—
ion between the absolute magnitude of error and the true
distances (FCE) 1is reported for the three types of error
distributions: 0.03, 0.46, and -0.43 for the Coxon data, and
0.05, 0.37, and -0.31 for the emotions data, for normal,
lognormal, and squared normal, respectively. A positive FCE

value indicates the extent to which larger error is present in
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larger distances whereas a negative value indicates more error
in the smaller distances. Thus, error is distributed quite

differently for lognormal and squared normal data.

2.6 MSCAL Program Parameter Values

The version provided by D. Clarkson 1s a test copy for
batch processing of the MSCAL program from IMSL, Inc. MSCAL
(Clarkson, 1988a & b) has a number of options available which
determine the type of distance, error and overall response
models in use for any given multidimensional scaling analysis,
as previously noted.

For the two sets of data in the study, the NSUB, NROW and
NCOL parameters were set to the appropriate wvalues for the
number of subjects and stimuli for these datasets. The

following parameters and chosen values were used in the

analyses:
IFORM=(Q - square symmetric matrices;
ICNVRT=0 - dissimilarity matrices are input and
no conversion is necessary;
ISTRAT=1 - data are matrix conditional (a single
matrix is treated as matrix unconditional) ;
IDISP=0 - ratio or interval level data;
IMOD1=3 - requests initial estimates of the
configuration;
IEST=0 - indicates ratio level data are used;
ISTRS=1 ~ selects the stress criterion

weighted by the inverse of the sum of the p-th
powered disparities and is related to the use of
matrix conditional data;

POWER=2 - indicates least-squares estimation; and
EPS=0.001 - the default convergence criterion.
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Levels of two of the parameters manipulated according to
the design of the study were set according to the following:

NTRANS - the selected transformation function:
0 - squared distances,
1 - distances (no transformation),
2 - log of the distances); and
NDIM - the dimensionality of the solution.

Dimensionality was treated as a repeated measure, such that
each simulation dataset were analyzed by MSCAL three times
corresponding to: a) the true dimensionality or dimensionality
of the true configuration, NDIM=3; Db) the underfit case,
NDIM=2; and c) the overfit case, NDIM=4, It was included in
the design because a number of Monte Carlo studies have
Indicated a relationship between the criterion or stress
function that is minimized and the dimensionality of the

solution, as mentioned earlier.

2.7 Convergence of the Algorithm

The default convergence criteria in MSCAL is 0.001.
Moreover, the documentation of the MSCAL program indicates
that "iterations in MSCAL can have linear convergence prope-
rties. For this reason a relatively large value (say 0.001)
should be used." (p.5 MSCAL documentation, 1988) Therefore,

this default convergence value was used.

2.8 Dependent Variables
For metric scaling, MSCAL incorporates the dissimilarit-

ies directly into the criterion or stress function according
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to the data transformation or fitting criterion selected.
Therefore, recovery of the proximities depends upon the
estimation of the stimulus coordinates and optimization of the
stress function. Both coordinates and proximities recovery
were measured to assess performance of the MSCAL program.
Mean-square error and bias were also calculated for true
dimensionality estimates, as additional information with which
to assess recovery.
2.8.1 Recovery of the Stimulus Configuration

Some means of measuring configuration recovery is
necessary for dimensionalities other than the true one.
MATFIT (Ramsay, 1989) allows the comparison of two matrices,
using linear mappings into the necessary subspace of common
variation. Specifically, MATFIT provides a correlational
measure for any two configuration matrices without requiring
either to be a fixed target.

The correlational measure used to optimally compare: A,
the true configuration matrix of dimensionality a and B, the
recovered configuration matrix of dimensionality b, is given

by:

tr (S'A’'BT) 2
tr(s'a’As) tr(T/B/BT)

PP =
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where 8 and T are the two transformation matrices of dimen-
sions a by s and b by s, respectively. The size s of the
subspace is determined by: 1< s smin(a,b). Since MDS config-
urations can only be rotated, the two transformation matrices
were constrained to be column orthonormal. S and T are defined
by the singular value decomposition A/B=SDT’.

The mean-square error of the stimulus coordinates

recovery when b=-a was calculated as follows:

n a

25
E Z Z (X g 1) 2

w] Jwl k=1
MSEge = = 25na

and

Y, = BTS'N/
where X is the normalized true configuration matrix, N,, the
normalization matrix for replication r. Y, is the associated
matrix of standard scores of the transformed recovered config-
uration, and n is the number of stimuli. For both X and Y.,
there were independent normalizations of each dimension.

Similarly, squa.ced bias was calculated as follows:

n a
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__ 25
where Y= Y Y,/25.

2.8.2 Recov;;; of Proximities

The recovery of proximities was measured by correlating
the recovered proximities, determined from each of the
unnormalized, untransformed recovered configurations, with the
n(n-1) /2 true proximities. As for the coordinates recovery,

mean-square error and squared bias were calculated. The mean

square error for proximities is agiven by:

-] 1=
MSE,, = £

and the squared bias is as follows:

n i-1

Y Y (dy;-8,,)2

Bias? = 2=2J1
pr (n-1)n/2

where D is the matrix of true inter-stimulus distances, A is
the matrix of mean recovered distances across r=25 replicat-

ions.

2.9 Summary of the Design

The design is mixed with two independent-groups factors:
error model and predicted error model or fitting criterion,
and one repeated-measures factor, dimensionality. The levels
of both the error model and fitting criteria factors are the
same: normal, lognormal and squared normal. The three

dimensionalities are 2, 3 (the true dimensionality) and 4. Two
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sets of experiments were run using this design, corresponding
to two different populations: the Coxon and the emotions
configurations.

The distances used to simulate dissimilarities data were
calculated from the corresponding true configuration using a
unweighted Euclidean model. Error was added to each of the
n(n-1)/2 inter-stimulus distances according to one of three
error models. The levels of error for the Coxon and emotions
data were approximately 17% and 52% error, respectively.

A replication factor of 25 was used to generate both sets
of data samples, for each of the 9 treatment conditions,
giving a total of 225 in each set. Each dataset in the Coxon
batch with only one lower triangular 32 X 32 matrix of
dissimilarities provided simulated input to MSCAL corres-
ponding to a single subject. For the emotions set of data,
there were 15 lower triangular 14 X 14 matrices of perturbed
distances for each simulation of replicated data corresponding
to 15 imaginary subjects’ dissimilarities.

Ratio level dissimilarities were indicated for each MSCAL
run, and estimation of the initial configuration using metric
scaling was requested with optimization of the specified
criterion function. Recovery estimates of the configuration
and proximities were assessed according to their correlation
to the true values. Mean-square error and squared-bias were
provided as additional measures for estimates with true

dimensionality.

P I S P T .
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Chapter 3

RESULTS FOR THE COXON DATA

Both of the dependent variables, coordinates recovery and
proximities recovery, were analyzed with a 3 X 3 X 3 ANOVA,
using a two-between and one-within design.

The distributions of cell means for the correlations
between the true and recovered stimulus configurations
indicated some non-normality and heterogeneous variances among
the between-groups. Therefore, a transformation was used to

give the following badness-of-fit index of recovery:

BOF = log(1-r?)

where r is the correlation measuring recovery.

3.1 Recovery of Stimulus Coordinates

According to Table 1, there was a triple interaction
between dimensionality, true error model and the predicted
error model. The interaction of the true and predicted error
models was significant at each of tbhe three dimensionalities.
The results of the ANOVA are difficult to interpret since all
the simple main effects were significant. Tukey post hoc tests
were performed to discover any significant interactions of
true and predicted error models for each dimensionality.
3.1.1 Recovery in 3-Dimensions

For the true dimensionality of the data, the best fit was

produced when the criterion function matched the appropriate
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Table 1

Stimulus space recovery Analysis of Variance
for Coxon Data on 32 Occupations

Effect df MS F-ratio

Between-datasets-effects

True error models 2 1.02 3.7 p<0.03
Predicted error models 2 12.84 45.8 p<0.01
True X predicted models 4 22.20 79.2 p<0.01 .
"Between" denominator 216 0.28 .
Within-datasets—-effects %
Dimensions 2 14.17 99.1 p<0.01* §
Dims X true error models 4 2.00 14.0 p<0.01%* 3
Dims X pred. err. models 4 3.06 21.4 p<0.01* M
Dims X true X pred. err. 8 0.98 6.8 p<0.01+*
"Within" denominator 432 0.14
Simple interaction effects
True err X pred. err models

at dim=2 4 4.84 66.9 p<0.01
Denominator 216 0.07

at dim=3 4 13.10 54.8 p<0.01
Denominator 216 0.24

at dim=4 4 6.21 24 .4 p<0.01
Denominator 216 0.25

* using Greenhouse-Geisser conservative test.
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underlying error model. However, Figure 3a shows that the
recovery is about the same for all three underlying error
distributions using a normal fit. In fact, there were no
significant differences between these interactions (p>.05) in
the context of the other post hoc pair-wise comparisons.
However, the lognormal and squared normal fitting criteria,
when used inappropriately, gave significantly worse (p<.05)
recovery compared to that obtained when the fitting criterion
matched the underlying error distribution.
3.1.2 Recovery in 2-Dimensions

When the data were underfit, again a normal fit provided
good recovery which was not significantly different for the
three error distributions. The lognormal criterion gave the
worst results of the three types of fit (see Figure 4a). In
particular, it produced the worst fit in 2 dimensions, for
squared normal data. A lognormal fit of lognormal data was not
significantly better (p>.05) than when a normal or squared
normal f£it was used. Also, the normal fit of normal data was
not significantly better (p>.05) than when a squared normal
fit was used. Only the squared normal fit produced recovery
that was significantly better (p<.05) for the appropriate
error model. In fact, this combination gave the best fit in
any of the 3 dimensionalities. Squared normal data showed a
large reduction in recovery when a lognormal transformation

was used.
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3.1 3 Recovery in 4-Dimensions

From Figure 5a, it is apparent that normal and lognormal
error distributions were equally poorly fit, regardless of the
fitting criterion used. There was one exception: normal data
were significantly better fit (p<.05) by a squared normal
criterion than were the lognormal data. The squared normal
model gave the best fit for the appropriate error distrib-
ution, comparable to that given for dimensionality three.
However, it was not a significant improvement over a normal
fit of the squared normal data. Only the lognormal fitting
criterion gave poor recovery with squared normal error.

Using higher dimensionality produced solutions with the
worst recovery for normal and lognormal data, relative to the
other two dimensions used. The recovery of squared normal data
was relatively insensitive to dimensionality. In addition, a
lognormal fit of squared normal data consistently gave the
worst recovery in each of the three solution dimensions.
3.1.4 Mean-Square Error for 3-Dimensions

It is apparent from Figure 6a that amount of the stimulus
recovery in three dimensions was satisfactory for the amount
of error in the data, mean PVE=0.17. The maximum mean squared
discrepancy was approximately 0.24 between the normalized true
and recovered configurations. However, the largest mean-square
error for a normal fit was 0.12, indicating much less discrep-

ancy for this particular fit. On average, the variance of the
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estimate accounted for approximately 90% of the mean-square
error (see Figure 7a). The largest ratio of squared bias to
mean-square error was 0.24 for squared normal data fit by a
lognormal model, the worst recovery condition as can be seen

in Figure 3a.

3.1.5 Loose Convergence

Solutions which were poor relative (i.e. recovery
correlations < 0.9) to the other replications were rerun using
a criterion of 0.0001, an order of magnitude higher than the
default, to ensure that instances of poorer recovery were not
due to a loose convergence. Since two measures of recovery
were used, reruns were made for any replication whose
coordinate and/or proximity recovery correlations were less
than 0.9. Both correlations were recalculated; however, only
coordinates recovery are reported here.

A total of 33 replications were redone, seven of which
had both coordinates and proximities recovery correlations
less than 0.9. Table 2 indicates the number of error
model/fitting criterion conditions which had coordinates
recovery correlations less than 0.9. Rerunning these analyses
with a tighter convergence criterion made little difference.
The largest increase in recovery correlation for a given error
and fitting criterion combination in any dimension was a

0.001.
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Table 2

Number of MSCAL Coordinates Recovery Correlations
Less Than 0.9 for Coxon Data
by Error/Fitting Criteria Condition and Dimensionality

Condition Dimensionality

Error/Fitting Criteria

2 3 4
Norm./Norm. 0 0 0
Norm./Lognorm. 0 0 0
Norm./Sqg. Norm. 0 0 0
Lognorm. /Norm. 0 2 5
Lognorm./Lognorm, 0 1 1
Lognorm./Sqg. Norm. 0 0 2

Sq. Norm./Norm. 0
Sqg. Norm./Lognorm, 0 0 1
Sqg. Norm./Sq. Norm. 0
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3.1.6 Starting Configurations
A good starting configuration is generally accepted as
one means for improving recovery. To this end, the analyses of
replication 5, the worst case coordinates recovery in three
dimensions, were repeated as before but the true configuration
was the starting configuration. Table 3 indicates that the
starting configuration had a large effect on recovery. For all
three dimensionalities the recovery correlations were almost
1.0 with a perfect start. This particular set of data was
perhaps less well-defined for some stimuli, given that the

Coxon data is not replicated.

3.2 Recovery of Proximities

There was a similar picture produced for the recovery of
proximities. Figures 3b and 4b for two- and three~- dimensional
recovery of proximities closely parallel their counterparts in
coordinates recovery. Yet, the magnitude of the recovery in
these two dimensionalities is less for proximities. However,
when the data were overfit the results differed from those
corresponding to coordinates recovery. In particular, the
lognormal criterion did not fare as badly, nor squared normal
fitting fare as well, as in the case of coordinates recovery
(see Figures 5a & 5b) . Furthermore, recovery was comparable in
magnitude to that of the coordinates. Lognormal fit gave the
best recovery of loghormal data which was significantly better

(p<.05) than for either of the other two types of error. This
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Table 3

MSCAL Coordinates Recovery Correlations of a Single Replication
for the Worst Case Error/Fitting Criteria Condition
of Dimensionality 3 with Default and Perfect Starts

Data Start Dimensionality

2 3 4
Emotions* Default 0.97 0.89 0.87
Perfect 0.87 1.00 1.00
Coxon+ Default 0.98 0.85 0.91
Perfect 0.99 0.99 0.99

Note: Results are rounded to 2 decimal points.

* Worst case is replication 19 for lognormal error/lognormal fit for
dimensionality 3.

+ Worst case is replication 5 for lognormal error/normal fit for
dimensionality 3.




Table 4

Proximities Recovery Analysis of Variance

for Coxon Data on 32 Occupations

Effect df

Between-datasets-effects

True error models 2
Predicted error models 2
True X predicted models 4
"Between" denominator 216

Within-datasets-effects

Dimensions

Dims X true error models
Dims X pred. err. models
Dims X true X pred., err.
"Within" denominator 43

N OO BN

Simple interaction effects

True err X pred. err models

at dim=2 4
Denominator 216
at dim=3 4
Denominator 216
at dim=4 4
Denominator 216

ONOMNON

MS

.53
.08
91

W11

.05
.02
.35
.17
.70
.23

52.

91.

211.

10.

120.
72.

29.

(62 o) oo

F-ratio

~uo 33

p<0.
p<0.
p<0.

p<0.
p<0.
p<0.
p<0.

p<0

p<0.

p<0.

06
01
01

01+
56*
01~
01+

.01

01

01

* using Greenhouse-Geisser conservative test.
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contrasts with the corresponding case in coordinates recovery.
Moreover, for overfit data, only the 1lognormal criterion
produced significantly Dbetter recovery (p<.05) when the
appropriate model was used to fit the data. These results
were very similar to those of proximities recovery in three
dimensions, although recovery was better in three dimensions.
Overall, recovery of proximities was the worst in two
dimensions.

3.2.1 Mean-Square Error for 3-Dimensions

Figure 6b indicates that the recovery of proximities was
good. The mean squared discrepancy showed little variation
across the various treatment conditions and was approximately
0.16 for the wunnormalized proximities (i.e. proximity
magnitudes were less than 2.6). Squared bias accounted for
most of the discrepancy, which was approximately 90% of the
mean-square error {see Figure 8b), unlike the recovery of
coordinates which had little squared bias with respect to the
mean-square error.
3.2.2 Loose Convergence

Solutions with a proximities recovery correlation less
than 0.9 were rerun using a tighter convorgence criteria of
0.0001, as in the case of coordinates recovery. Alsc, the
corresponding proximities recovery correlations recalculated
for coordinates recovery that were rerun are included here.

Table 5 shows the number of replications with recovery
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Table 5

Number of MSCAL Proximities Recovery Correlations
Less Than 0.9 for Coxon Data
by Error/Fitting Criteria Condition and Dimensionality

Condition Dimensionality

Error/Fitting Criteria

2 3 4
Norm./Norm. 0 0 0
Noxrm./Lognorm. 0 0 0
Norm./Sqg. Norm. 0 0 0
Lognorm. /Norm. 0 2 2
Lognorm. /Lognorm, 0 1 3
Lognorm./Sq. Norm. 1 1 5
Sq. Norm./Norm. 0 0 0
Sq. Norm./Lognorm. 3 0 0
Sg. Norm./Sg. Norm. 0 0 0
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correlations less than 0.9. The use of a tighter convergence
criterion gave little improvement in recovery. In fact, the
correlations often worsened. The single largest increase for

a given combination of error and fitting criterion was a 0.01.

3.2.3 Starting Configurations

Results were consistent with those obtained for stimulus
coordinates recovery using a perfect starting configuration
for the same replication and are shown in Table 6. However,
only for dimensionality 3 was there an improvement in the
corresponding proximities recovery correlation. It appears
that the starting configuration has less effect on proximities
recovery than for configuration recovery in this case. It is
reasonable to expect that providing an initial configuration
will benefit coordinates recovery more than proximities

recovery.

3.3 MSCAL Performance

Table 7 contains some overall measures of performance.
The squared correlations for coordinates recovery were good in
all 3 dimensions; they were slightly less so for proximities
recovery. The mean elapsed times were mostly less than 1 CPU
second. There ~re two notable exceptions: lognormal fit and
squared normal fit, of normal data in 4 dimensions. This is
surprising because these conditions did not show the worst

recovery. Nevertheless, these times do indicate that the
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Table 6

MSCAL Proximities Recovery Correlations of a Single Replication
for the Worst Case Error/Fitting Criteria Condition
of Dimensionality 3 with Default and Perfect Starts

Data Start Dimensionality

2 3 4
Emotions* Default 0.92 0.91 0.90
Perfect 0.61 1.00 1.00
Coxon+ Default 0.96 0.88 0.98
Perfect 0.96 0.98 0.98

Note: Results are rounded to 2 decimal points.

* Worst case is replication 19 for lognormal error/lognormal fit for
dimensionality 3.

+ Worst case is replication 5 for lognormal error/normal fit for
dimensionality 3.
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MSCAL Mean Performance on 27 datasets
across 25 replications
for Coxon Data for 32 Occupations i

Table 7

True error Fit Dim Squared Correlations* Elapsed Time** No.+
model model Coordinates Proximities in secs. Iter.

Normal Normal 2 0.97 0.91 0.63 3.8 4

Normal Lognormal 2 0.94 0.86 0.84 9.6 :

Normal Sq.normal 2 0.97 0.89 0.51 3.2 1‘

Lognormal  Lognormal 2 0.95 0.90 0.30 8.8 §

Lognormal Normal 2 0.97 0.92 0.05 5.0 i

Lognormal Sg.normal 2 0.95 0.86 0.08 3.3 4

Sg.normal Sg.normal 2 0.98 0.92 0.36 3.1

Sqg.normal Normal 2 0.97 0.91 0.22 3.9

Sq.normal Lognormal 2 0.91 0.81 0.54 9.6

Normal Normal 3 0.97 0.96 0.78 3.9

Normal Lognormal 3 0.85 0.93 0.80 10.9

Normal Sq.normal 3 0.95 0.93 1.37 3.2 :
]

Lognormal Lognormal 3 0.97 0.96 0.56 7.1

Lognormal Normal 3 0.95 0.94 0.77 4.5

Lognormal Sqg.normal 3 0.90 0.88 0.57 3.6 :
:

Sqg.normal Sg.normal 3 0.97 0.96 0.85 3.0

Sqg.normal Normal 3 0.96 0.95 1.02 3.6

Sg.normal Lognormal 3 0.89 0.85 0.16 9.6

Normal Normal 4 0.24 0.94 0.28 5.2

Normal Lognormal 4 0.93 0.92 0.15 14.0

Normal Sq.normal 4 0.94 0.91 0.49 3.1 ;

Lognormal Lognormal 4 0.92 0.92 0.12 8.0

Lognormal Normal 4 0.89 0.93 2.65 4.8

Lognormal Sq.normal 4 0.88 0.93 0.20 3.9

Sqg.normal Sg.normal 4 0.97 0.94 1.50 2.9

Sg.normal Normal 4 0.96 0.94 2.22 4.1

Sg.normal Lognormal 4 0.88 0.86 1.89 9.6

* These are mean R-Squared values for coordinate & proximities recovery.
**These are mean elapsed times of execution of the DMSCAL subroutine.
+ These are mean number of iterations.
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algorithm worked well on the SUN-3/60 without use of the
floating-point accelerator. It is interesting to note for all
3 dimensionalities that larger mean number of iterations were
necessary for lognormal £fit; however, this was not always
reflected in the mean elapsed times.

The average ratio of mean elapsed time to mean number of
iterations across the nine conditions was 0.09, 0.19 and 0.26
for dimensionality of 2, 3, and 4 respectively, increasing in

an essentially wuniform manner with dimensionality, as

expected.
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Chapter 4

RESULTS FOR THE EMOTIONS DATA

The dependent variables, coordinates recovery and
proximities recovery, were analyzed with a 3 X 3 X 3 ANOVA,
using a two-between and one-within design.

The distributions of cell means for the correlations
between the true and recovered stimulus indicated some
non-normality and hetarogeneous varlances among the
between-groups. Therefore, a transformation was employed,

using the same badness-of-fit index of recovery as the Coxon

data.

4.1 Recovery of Stimulus Coordinates

There was a triple interaction between dimensionality,
true error model and the predicted error model (see Table 8).
The simple interactions of the true and predicted error models
were significant for each of the three dimensions used. Tukey
post hoc tests were done on these two-way interactions and the
results are explained below.
4.1.1 Recovery in 3-Dimensions

For the true dimensionality, the best fit was produced
when the criterion function matched the appropriate underlying
error model in only the squared normal case. The best recovery
using a normal fitting criterion was given for squared normal

data but it was not significantly different (p>.05) from that
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Table 8

Stimulus space recovery Analysis of Variance
for Emotions Data from MDS Workshop Members

Effect df MS F-ratio

Between-datasets—-effects

True error models 2 12.64 37.1 p<0.01
Predicted error models 2 11.48 33.7 p<0.01
True X predicted models 4 3.28 9.6 p<0.01
"Between" denominator 216 0.34
Within-datasets-effects
Dimensions 2 5.31 37.2 p<0.01*
Dims X true error models 4 2.62 18.3 p<0.01*
Dims X pred. err. models 4 2.83 19.8 p<0.01+*
Dims X true X pred. err. 8 0.38 2.7 p<0.01~*
"Within" denominator 432 0.14
Simple main effects
True err X pred. err models

at dim=2 4 0.68 6.1 p<0.01
Denominator 216 0.11

at dim=3 4 2.53 8.4 p<0.01
Denominator 216 0.30

at dim=4 4 0.84 4.0 p<0.01
Denominator 216 0.21

* using Greenhouse-Gelsser conservative test.
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for normal data (see Figure 9a). There were no significant
differences (p>.05) between the lognormal fit of the three
data types.

The worst recovery was for lognormal data using a squared
normal fit; however, there were no significant improvements
(p>.05) in fit for lognormal data using a normal or lognormal
error model (see Figure 9a). It appears that squared normal
data were recovered equally well using the distance and
squared distance transformation but recovery was significantly
worse (p<.05) using the lognormal transformation. Normal data
were best fit by the normal model but not significantly
(p>.0%) better than by the lognormal or squared normal models.
4.1.2 Recovery in 2-Dimensions

When the data were underfit, the lognormal fitting was
the worst of the three types of fit and recovery was
significantly worse (p<.05) than for the other two fitting
criteria. Also, all three types of data were equally poorly
fit (p>0.5) by the lognormal model (see Figure 10a). There
were no significant differences in recovery using a normal fit
for the three data types. Squared normal fit gave the best fit
overall in two dimensions. The fit was significantly better
(p<.05) for squared normal data than lognormal data but not
better than for normal data.

4.1.3 Recovery in 4-Dimensions
Overfitting in higher dimensionality produced clearcut

results for the three data types. From Figure 1lla, it is
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apparent that lognormal data had poor recovery regardless of
the fitting criteria used, and differences were nonsignificant
(p>.05) . Similarly, there were no significant differences
{(p>.05) in recovery for normal data using the three fitting
criteria. Squared normal data was the best recovered in
comparison to the other data types. Squared normal data were
equally well fit using the normal model as the squared normal
model (p>.05) but showed significantly better recovery than
when a lognormal fit was used. Matching fitting criteria to
the error distributions did not improve recovery in four
dimensions.
4.1.4 Mean-Square Error for 3-Dimensions

Figure 12a indicates that the amount of stimulus recovery
was more than adequate given the amount of error in the data,
mean PVE=0.52, The maximum discrepancy was approximately 0.12
for the normalized recovery configurations. Also, the
mean-square error for normal data was constant at 0.05 for the
three fitting criteria. Squared normal data had the lowest
MSE, 0.03, using ei-her a normal or squared normal fitting
criterion. This discrepancy was slightly higher using a
lognormal fit.

Most of the mean-square discrepancy was accounted for by
the variance, which was approximately 90% of the mean-square

error for all error and fitting criterion conditions. Since




65

Badness-of-fit

Emotions Data

— Sqrd Normal Error
Lognormal Err.
Normal Error
Figure 11a; n Coorgi ates Recov Figure 11b: Mean Proxjmities Recove
2 im.) wit Sg% Con lc?ence ntervaefgy 4g dim.) with 9@’2 Congldence Interval?
< o
Qi 7] Qi ]
o ) _
Qi ] X
QA 7] s
© D ey
o g I T T B T ey
o _ g_ ......................
0 NG i
° [
' 2 - <
< § l 4 § \.\'\ l
- /7 -
@ < L ~
© ' R ~.
3 - Vd ~.
™ o I ~
«© q) 7 /'/
2 s
o o
¥ @
[ i I 1 1 1
1 2 3 1 2 3
Fit Type Fit Type

1: Normal, 2: Lognormal, 3: Sqrd Normal

1: Normal, 2: Lognormal, 3: Sgrd Normal



T

Emotions Data

e e Sqrd Normal Error
""""""""""""""""" Lognormal Err.
Normal Error
Figure 12a: MSE for Coordinates Figure 12b:FMSE for Proximities
ecovery ecovery
S - 3 -
o
2 ™
e e
R
§ $_> d 2 S o
c?)- o P ;3)' o
5 .3 g
2 LT \'\_ 2
8 T e 1 —
o ] 1 /./' \'\. N
3~ T3
o | (@)
o ad 7
I ] i 1 1 i
1 2 3 1 2 3
1: Normal, 2: Logrltto-ll:x‘Pa?, 3: Sard Normal 1: Normal, 2: Logri\to-!::xei‘?, 3: Sgrd Normal




P‘...

67
the mean-square error was small, the amount of bias was
considered negligible in the coordinates recovery in three
dimensions.

4.1.5 Loose Convergence

Solutions with recovery correlations, for either
coordinates or proximities, less than 0.9 were rerun using a
convergence criterion of 0.0001. For dimension 2, there were
no coordinates recovery correlations less than 0.9. Table 9
contains the number of replications for which the recovery
correlations were below 0.9. Rerunning using a tighter conver-
gence criteria made little difference. The largest increase
for a given combination of error and fitting criterion was
0.009. Correlations often decreased rather than increased.
4.1.6 Starting Configurations

Improvement in recovery was sought by providing a "good"
starting configuration. The analyses of replication 19 for the
legnormal error and fit condition were repeated with the true
configuration input as a starting configuration. This repli-
cation was chosen because it gave the worst coordinates
recovery correlation for dimensionality 3.

A perfect starting configuration improved recovery for
dimensionalities 3 and 4 such that perfect correlations
resulted (see Table 3). However, the recovery correlation in
two dimensions worsened when a perfect starting configuration

was provided. This is in sharp contrast to the improvement a
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Table 9

Number of MSCAL Coordinates Recovery Correlations
Less Than 0.9 for Emotions Data
by Error/Fitting Criteria Condition and Dimensionality

Condition Dimensionality
Error/Fitting Criteria

2 3 4
Norm./Norm, 0 0 0
Norm./Lognorm. 0 0 0
Norm./Sq. Norm. 0 0 0
Lognorm. /Norm. 0 0 0
Lognorm, /Lognorm. 0 1 1
Lognorm./Sq. Norm. 0 1 2
Sq. Norm./Norm, 0 0 0
Sqg. Norm./Lognorm. 0 0 1
Sq. Norm./Sq. Norm. 0 0 0
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perfect starting configuration gave to the worst case
replication of the Coxon data. It seems unlikely that the
starting configuration itself accounted for the reduction in
recovery.

It was not unexpected that the worst case of recovery in
three dimensions, for both the Coxon and emotions data,
involved lognormal data since error is proportional to the
magnitude of the true distances. Presumably it was the error
distribution for the particular replication that led to a
sub-optimal local minimum.

Figures 13 and 14 plot the relative error against the
true distances for the worst case replications of the Coxon
and emotions data, respectively; the error distances were the
differences between the true distances and the error-perturbed
distances. The two statistics provided for each plot are the
proportion-of-variance of error (PVE) and the correlation
between the absolute magnitude of error and the true distances
(FCE). A positive FCE value indicates the extent to which
larger error is present in larger distances. The FCE values
indicate that more error was present in the larger distances
in the emotions data, for the two replications considered.

It is apparent from Figure 13 that the relative error for
replication #5 of the Coxon data was less than 1 and evenly
distributed across all true distances. On the other hand,
Figure 14 of the emotions data indicates that replication 19,

with lognormal error and the matching fitting criteria, had
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very large error components: the largest relative error was
approximately 5.5 times the true distance of about 5. There
were also a number of other datapoints with large relative
error. In this case, they were probably outliers in the data
due to the simulation which might not occur in actual data.

Since it was only for dimensionality 2, the underfit
case, that recovery worsened dramatically given a perfect
ctarting configuration, it is probably due to "the particular
pattern of outliers", suggested by Spence and Lewandowsky
(1989) for somewhat similar results, that made a perfect
recovery unattainable for this replication in a given
dimensionality. This assumes very different patterns of error
were possible in different dimensionalities. It is to MSCAL’s
credit that it managed to avoid local minima problems in the
default case, if indeed outliers were present. Results by
Spence and Lewandowsky (1989) showed that programs using the
Young—-Householder-Torgerson procedure as a starting

configuration, as MSCAL does, were badly affected by outliers.

4.2 Recovery of Proximities

The results produced for the recovery of proximities were
similar to those for coordinates recovery, although recovery
magnitudes were smaller for proximities in all solution
dimensions. Further differences were noted. When the data were
underfit, recovery was not very good relative to the other two

dimensions for any error distribution and fitting




Table 10

Proximities Recovery Analysis of Variance
for Emotions Data from MDS Workshop Members

Effect df MS F-ratio

Between-datasets-effects

* using Greenhouse-Geisser conservative test.

True error models 2 9,17 42.7 p<0.01
Predicted error models 2 2.30 10.7 p<0.01
True X predicted models 4 1.64 7.6 p<0.01
"Between" denominator 216 0.21
Within-datasets—~effects
Dimensions 2 45,17 457.9 p<0.01~*
Dims X true error models 4 1.20 12.2 p<0.01*
Dims X pred. err. models 4 0.05 0.5 p<0.75*

‘ Dims X true X pred. err. 8 0.30 3.1 p<0.01*
"Within" denominator 432 0.10

; Simple main effects

% True err X pred. err models

] at dim=2 4 0.09 3.0 p<0.02

: Denominator 216 0.03

¢ at dim=3 4 1.49 7.0 p<0.01

: Denominator 216 0.22

: at dim=4 4 0.67 4.0 p<0.01

: Denominator 216 0.17

]

}
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criterion combination (see Figure 10b). Also, there was no
significant improvement (p>0.5) when the appropriate model was
used to fit any of the three data types. For the case of
overfitting, the results parallel those of the corresponding
coordinates recovery (see Figures 1lla & Db).

4.2.1 Mean-Square Error for 3-Dimensions

Figure 12b indicates that the amount of recovery of
proximities was less than satisfactory, given that MSE ranged
from approximately 21 to 24 for unnormalized proximities whose
magnitudes were less than 2.0, The mean-square error for
normal and squared normal fitting criteria were approximately
22 and 21, respectively, for the three data types. In all
cases, 100% of the mean-square discrepancy was accounted for
by squared bias, unlike the results for coordinates recovery
which had little bias.
4.2.2 Loose Convergence

The number of sclutions with recovery correlations less
than 0.9 which were rerun using a convergence criterion of
0.0001 are given in Table 11. Stricter convergence criterion
made little difference. The largest single increase in
correlation for a given replication was 0.02.
4.2.3 Starting Configurations

Results were similar to those obtained for stimulus
coordinates recovery using a perfect starting configuration
for the corresponding worst case replication in dimensionality

3 and are shown in Table 6. Once more, the disastrous effect
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Table 11

Number of MSCAL Proximities Recovery Correlations
Less Than 0.9 for Emotions Data
by Error/Fitting Criteria Condition and Dimensioconality

Condition Dimensionality
Error/Fitting Criteria

2 3 4

Norm, /Norm. 0 0 0
Norm./Lognorm. 1 0 0

Norm./Sqg. Norm. 0 0 0

Lognorm. /Norm. 2 1 1

Lognoxm, /Lognorm. 2 2 3

Lognorm. /Sq. Norm. 3 0 0

Sq. Norm./Norm. 0 0 0

. Sg. Norm./Lognorm. 1 0 1
Sq. Norm./Sq. Norm. 0 0 0
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a perfect starting configuration had on the corresponding
coordinates recovery for dimensionality 2 was magnified for
prozximities.
4.2.4 MSCAL Parformance
Table 12 contains several overall measures of the
program’s performance. The squared correlations for
coordinates recovery were good in all 3 dimensions; they were
less so for proximities recovery in 2 dimensions and for
lognormal error models in 4 dimensions. This agrees with
previous results. The mean elapsed times were almost all less
than 1 CPU second on the SUN-3/60 without the floating-point
accelerator. The average ratios of elapsed time to number of
iterations were 0.10, 0.16 and 0.21 for dimensionality of 2,

3, and 4 respectively. This ratio increased by about 0.05 as

_the dimensionality increased, corresponding to the increased

number of datapoints to be estimated with each increase in
dimensionality. It should be noted that a single iteration
included all the steps associated in estimating the various

parameters as defined in the documentation (Clarkson, 1988a).
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Table 12

MSCAL Mean Performance on 27 datasets
across 25 replications
for Emotions Data from MDS Workshop Members

True error Fit Dim Squared Correlations* Elapsed Time** No.t
model model Coordinates Proximities in secs. [ter,
Normal Normal 2 0.97 0.88 0.22 36
Normal Lognormal 2 0.95 0.87 0.47 3.9
Normal Sg.normal 2 0.98 0.87 0.06 3.1
Lognormal Lognormal 2 0.95 0.85 0.46 5.7
Lognormal Normal 2 0.97 0.87 0.41 3.
Lognormal Sqg.normal 2 0.97 0.86 0.36 3.1
Sqg.normal Sg.normal 2 0.98 0.88 0.35 3.2
Sg.normal Normal 2 0.97 0.89 0.42 3.4
Sqg.normal Lognormal 2 0.93 0.85 0.50 3.6
Normal Normal 3 0.97 0.95 0.43 3.0
Normal Lognormal 3 0.97 0.94 0.33 3.2
Normal Sqg.normal 3 0.97 0.95 0.35 2.5
Lognormal Lognormal 3 0.95 0.92 0.43 3.6
Lognormal Normal 3 0.95 0.91 0.68 3.0
Lognormal Sq.normal 3 0.94 0.91 0.34 2.8
Sq.normal Sg.normal 3 0.98 0.96 0.49 2.8
Sg.normal Normal 3 0.98 0.97 0.23 2.8
Sq.normal Lognormal 3 0.95 0.¢3 0.81 3.1
Normal Normal 4 0.96 0.93 0.05 2.5
Normal Lognormal 4 0.95 0.92 0.33 2.9
Normal Sg.normal 4 0.97 0.93 0.15 2.3
Lognormal Lognormal 4 0.92 0.89 1.37 3.2
Lognormal Normal 4 0.94 0.89 0.61 2.8
Lognormal Sg.normal 4 0.92 0.89 0.53 2.6
Sq.normal Sg.normal 4 0.98 0.95 0.58 2.4
Sg.normal Normal 4 0.97 0.95 0.63 2.6
Sg.normal Lognormal 4 0.95 0.92 0.60 2.8

* These are mean R-Squared values for coordinate & proximities recovery.

**These are mean elapsed times of execution of the DMSCAL subroutine.

+ These are mean number of iterations.
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Chapter 5

DISCUSSION

The interaction between the fitting criteria and error
distributions in MSCAL have been explored. The implications of
this study are confined to analyses with a least squares fit
of ratio level data using a unweighted distance model. Also,
the effects of different levels of error were not considered.
Nevertheless, an attempt was made to study situations modelled
on two applications of high quality and scope.

The fitting criteria provide improved fit for the
appropriate error distributions when the correct number of
solution dimensions is used in the analysis. Lognormal fitting
of squared normal data and squared normal fitting of lognormal
data gave poorer recovery, as expected. The assumptions of
both models, with respect to where error is distributed most
heavily, were at odds with the actual error in the data, as
measured by the FCE values.

In the lower dimensionality case, a lognormal fitting
criterion generally gives poorer recovery, while a squared
normal fit produces Dbetter recovery, especially for the
emotions data which had greater level of error. The squared
normal fitting criteria was expected to do better when most of
the error was in the smaller distances. This corresponds with
the expectation that larger distances are decreased in lower

dimensionality. When overfitting, normal and squared normal
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fitting criteria generally do better except for data with
lognormal error.

Given that the error distribution and dimensionality of
the data in practice are unknown, an assumption of normal
error or rather, no transformation of dissimilarities and
distances in the fitting criterion, is a cautious and safe
initial step. Under this assumption, both coordinates and
proximities estimates are quite satisfactory for the underfit
and overfit dimension solutions, in addition to those for the
true dimensionality.

The configuration estimates for the true dimensionality
appear to be relatively unbiased. However, the opposite is
seen for the proximities which tend to be highly biased. The
algorithm gives close correspondence between configuration and
distance recovery for true dimensionality and the overfit
case, but proximities recovery is less satisfactory for lower
dimensionality. This is explained by the associated loss of
information in lower dimensionality which directly affects the
distances. For those cases tested, a stricter convergence
criterion seems to have little effect on improving the
solutions.

Although direct comparison of single replication and
multiple replication data analyses cannot be made since two
different datasets were used, there do not appear to be any
major differences in their performance. Results seem to

parallel each other for the two ssts of data. Although the
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replicated data seem to show more variability in the estim-—
ates, more error was present in the data which was magnified

for data with lognormal error.

5.1 Further Research

As ment ioned earlier there are many more options to be
tested in MSCAL. Certainly non-metric methods need to compared
with metric. Further research for the current models studied
might include investigation of the role of the starting
configuration in performance. In particular, random starts
would indicate whether MSCAL’s performance is particular to
certain configurations, number of dimensions, and/or error
levels.

It is also of interest whether the choice of weighting of
the criterion function would give different results, since
diffc cent functicns would be optimized. Specifically, allowing
the stress function to be weighted by the stratum variance
could have interesting c¢onsequences for the optimization

procedure when error and fitting criteria do not match.
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APPENDIX A

Table 13

Population Configuration Matrix of
Coxon Data for 32 Occupations

Stimulus Dimension
1 2 3

1 -0.429 -0.046 0.201

2 -0.451 ~0.160 -0.075

3 0.295 0.261 0.04¢

4 0.460 -0.198 0.053

5 ~0.427 -0.108 0.170

6 -0.284 -0.148 -0.199

7 0.313 0.273 0.074

8 0.349 -0.083 -0.153

9 -0.245 -0.034 0.150
10 -0.432 -0.062 -0.119
11 0.276 0.271 0.078
12 -0.118 -0.085 -0.194
13 -0.092 -0.242 ~-0.035
14 -0.356 -0.193 -0.171
15 0.495 -0.127 0.129
16 0.034 ~-0.153 -0.238
17 -0.414 0.086 0.195
18 0.029 0.305 -0.225
19 0.521 -0.090 0.132
20 0.302 0.116 -0.018
21 -0.204 0.164 0.244
22 -0.207 0.318 -0.248
23 0.258 0.179 -0.068
24 0.421 -0.197 -0.059
25 -0.412 0.112 0.140
26 -0.271 -0.271 0.150
27 0.476 -0.076 0.137
28 0.439 ~0.065 -0.079
29 -0.505 0.051 0.051
30 -0.247 0.196 -0.196
31 -0.041 0.160 0.132
32 0.468 -0.155 -0.006




Table 14

Population Configuration Matrix of
Emotions Data

Stimulus Dimension
1 2 3
1 ~-5.284 -0.016 -0.516
2 -2.303 2,005 -0.868
3 -0.885 1,583 2.304
4 -2.333 -1.720 1.449
5 ~4.661 0.431 0.537
6 -1.985 -1.341 -0.611
7 -3.179 -0.930 -1.859
8 2.669 -3.040 0.536
9 2.267 2.330 1.656
10 2.850 2.320 -0.002
11 2.834 1.354 ~-2.559
12 3.405 ~-0.961 -1.722
13 2.617 ~-1,455 1.889
14 3.987 -0.559 -0.234
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Table 15

Population Proximities Matrix
(Lower Triangle) of Coxon Data

2 0.30
3 0.80 0.86
4 0.91 0.92 0.49
5 0.07 0.25 0.82 0.90
6 0.44 0.21 0.75 0.79 0.40
: 7 0.82 0.89 0.04 0.49 0.84 0.78
! 8 0.86 0.81 0.40 0.20¢ 0.84 0.64 0.42
£ 9 0.19 0.33 0.62 0.73 0.20 0.37 0.64 0.67
g 10 0.32 0.11 0.81 0.%92 0.29 0.19 0.84 0.78
F 11 0.78 0.86 0.04 0.50 0.80 0.75 0.04 0.43
‘ 12 0.51 0.36 0.59 0.64 0.48 0.18 0.62 0.47
13 0.46 0.37 0.64 0.56 0.42 0.27 0.66 0.48
0.22
14 0.41 0.14 0.8 0.85 0.36 0.09 0.85 0.71
0.26 0.30
15 0.93 0.97 0.44 0.11 92 0.85 0.44 0.32
0.69 0.62 0.90
{ lé 0.65 0.51 0.57 0.52 0.62 0.32 0.60 0.33
4 0.17 0.25 0.40 0.59
17 0.13 0.37 0.75 0.93 0.20 0.48 0.76 0.86
0.52 0.51 0.46 0.94 0.67
18 0.72 0.68 0.38 0.72 0.73 0.55 0.41 0.51
0.42 0.59 0.63 0.73 0.46 0.65
19 0.95 1.00 0.43 0.15 0.95 0.87 0.42 0.33
0.72 0.65 0.93 0.05 0.62 0.95 0.73

OO OO
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Population Proximities Matrix
(Lower Triangle) of Coxon Data

Table 15 (cont’d)
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Table 16

Population Proximities Matrix
(Lower Triangle) of Emotions Data

2 3.62
3 5.47 3.50
4 3.93 4.39 3.7
5 1.30 3.16 4.33 3.30
6 3.56 3.37 4.27 2.12 3.41
7 2.66 3.22 5.38 3.50 3.13 1.78
8 8,57 7.22 6,09 5.25 8,11 5.08 6.66
9 8.20 5.23 3.30 6.13 7.27 6.06 7.26 5.50
10 8.48 5.23 4.45 6.73 7.76 6.09 7.10 5.39 1.76
11 8.48 5.45 6.13 7.23 8.16 5.85 6.47 5.38 4.36 2.73
12 8.82 6.49 6.41 6.60 8,49 5.52 6.59 3.16 4.85 3.75 2.53
13 8.38 6.62 4.65 4.98 7.64 5.24 6.92 2.08 3.81 4.23 5.27
3.73
14 9.29 6.82 5.90 6.64 8.74 6.03 7.36 2.91 3.86 3.10 3.22
1.65 2.6
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