
THE PERFO~~CE OF THREE 

FITTING CRITERIA FOR 

MULTIDIMENSIONAL SCALING 

MARION McGI,YNN 

Department of Psychology 

McGill University, Montreal 

July, 1990 

A Thesis submitted to the Faculty of Graduate Sturties and Research 

in partial fulfillment of the requirements for 

the degree of Master of Science 

© Marion A. McGlynn, 1990 



( 

( 

i 

ABSTRACT 

A Monte Carlo study was performed to investigate the 

ability of MSCAL to recover by Euclidean metric multi­

dimensional scal~ng (MDS) the true structure for dissimilarity 

data with different underlying error distributions. Error 

models for three typical error distributions: normal, 

lognormal, and squared normal are implemented in MSCAL through 

data transformations incorporated into the criterion function. 

Rec~very of the true configuration and true distances for i) 

single replication data with low error levels and ii) matrix 

conditional data with bigh error levels was studied as a 

function of the type of error distribution, fitting criterion, 

and dimensionality. Results indicat€d that if the dat a conform 

to the error distribution hypotheses, then the corresponding 

fitting criteria provide improved recovery, but only for data 

with low error levels when the true dimensionality 1s known. 
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RESUME 

La méthode de Monte Carlo a été utilisée pour examiner la 

capacité du programme MSCAL à recouvrer par le MDS (multi­

dimensional scaling), la structure spatiale réelle des données 

de dissimilarités, lorsque différentes distributions d'erreur 

sont utilisées. On peut utiliser trois distributions d'erreur 

courantes (normale, log-normale, et normale-carr6e) avec 

MSCAL, par le biais d'un processus de transformat ion des 

données inclut dans la fonction critère. L'obtention de la 

configuration et des distances réelles pour i) des données de 

matrices simples avec un taux d'erreur faible, et ii) des 

données de matrices conditionnelles avec un taux d'erreur 

élevé, a été examinée selon le type de distribut.ion de 

l'erreur, la fonction critère, et la dimension de l'espace de 

la solution. Les résultats indiquent, que lorsque les données 

se conforment aux hypothèses de distribution de l'erreur, les 

fonctions critères correspondantes améliorent le recouvrement, 

mais seulement dans le cas de données à faible taux d'erreur, 

et lorsque la dimension de l'espace est connue. 
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CHAPTER 1 

INTRODUCTION 

1 

The program MSCAL (Clarkson, 1988a & b) from IMSL, Inc. 

embodies a number of different multidimensional scaling (MDS) 

models, using both metric and non-metric procedures. However, 

this investigation focuses on the error models provided by the 

program which are associated with Euclidean metric MDS. Three 

typical error distributions a~e available to the user: normal, 

lognormal, and squared normal, corresponding to the data 

transformations used in the criterion function for least­

squares estimation. Data of known configuration and error will 

be used to evaluate the performance of MSCAL in satisfactorily 

recovering configurations and distances for dissimilarity 

data, using the different er~or models. 

1.1 Description of the MSCAL program 

MSCAL provides a number of distance models, as well as 

various forms of the stress function to be optimized for the 

different types of dissimilarity data. There are a large 

number of possible models due to the man y options available in 

the program. Careft..l consideration is required to choose 

those which give appropriate measures and models for the data 

being analyzed. 

Input parameters allow one to specify the level of 

measurement of the data as nominal, ordinal or lnterval. As 
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weIl, the initial configuration may be either input or 

computed. The distance transformations used to compute tne 

criterion function permit squared distances, distances, or the 

log of the distances. It is these transformations which are 

under scrutiny in this study because of their relationship to 

MDS error models. The various models and parameters of MSCAL 

are discussed in the next chapter, in the context of the 

design of this study. 

1.2 Theoretical Aspects of Scaling Models 

According to Takane (1981) a scaling procedure should do 

more than just scale the data. It should also represent the 

data by an appropriate model. Takane distinguishes between the 

representation model, error model and response model. 

The representation model indicates the kind of perceptual 

relationship ascribed to t.he data. Thus, the scal ing or 

transformation of the data should reflect sorne reasonable 

assumptions about one's concept of dissimilarity. Data 

representation models typically use Euclidean distance in MDS 

to represent the dissimilarity of two stimuli in space. 

Although distances, other than straight-line, are also used. 

Various types of data may require different error models. 

Not only is the magnitude of the measurement error important 

for modelling subjects' judgments of dissimilarity, but also 

its distribution and associated characteristics. A single 

error distribution is generally assumed. 
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Different types of judgments require different mental 

operations by the subject. Reasonable assumptions are needed 

about the "psychological processes involved in a specifie task 

situation which generates a specifie type of data" (Takane, 

1981, p.11). This is the response model which specifies the 

main charaeteristics of the data generating processes and 

gives an explicit account, in mathematical terms, of the 

subjects' transformatïons in tr,e psychological space that 

produce the dissimilarity judgments. Hence, the response model 

ineludes the representation and error models, as weIl as their 

parameters, as a complete description of the observed data. 

1.2.1 The Representation Mode~ 

Most MDS models for proximity (i.e. dissimilarity) data 

use sorne form of the Minkowski distance function given as: 

n 1 

dij - (!: IXia-Xjalr) r 
a-1 

to refer to the theoretieal distance between coordinates for 

a set of stimuli i and j in a space of given dimensionality, 

n. Euclidean distan~e (r=2) is commonly used for perceptually 

"unitary" stimuli su ch as homogenous colours. The city-block 

metric (r=l) is preferred for "analyzable" stimuli such as 

geometrieal shapes which differ in a number of dimensions 

(i.e. size, orientation, etc ... ) or for stimuli judged with 

more than one sense (Shepard, 1980; Sehiffman, Reynolds, & 

Young, 1981). MSCAL provides only weighted or unweighted 
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Euclidean distance models, thus favouring perceptually unitary 

stimuli for dissimilarity data models. 

1.2.2 Error Models 

Data typically contain appreciable amounts of measurernent 

error. Estimation rnethods are affected by various sources of 

error in the data, such that large enough error will obscure 

the underlying structure of the data and lead to worthless 

solutions. Yet, as Ramsay (1978) points out, the distribution 

of residuals or errors is usually only implicitly defined in 

most MDS models. An explicit form provides an opportunity to 

tune the analysis by subsequent revision of the choice of 

error model. 

The additive and multiplicative error models are two 

typical exarnples given by Takane (1981): 

is the true distance between 

stimuli i and j, ô* ijm denotes the corresponding perturbed 

distance for the m-th subject, and eijm is the random normal 

deviate representing the error. These models allow individual 

differences in the variance. If subjects are taken as repli­

cations then there is a single common variance. 

The additive error model assumes that the error is 

normally distributed over replications of judgments with 
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constant variance for each subject. The multiplicative model 

given ab ove is equivalent to the lognormal ctistribution of the 

error explicit in MULTISCALE (Ramsay, 1977). The lognormal 

model reflects two features associated with dissimilarity 

data: values are naturally positive and variability increases 

with magnitude (Ramsay, 1982a). 

There is empirical evidence to support a non-linl~ar 

monotonie relation between dissimilarity and distétnce. In 

psychophysics, subjective assessments of physically measurable 

properties with a rational origin often display a power 

relation between judgments of disslmilarity and distance 

(Ramsay, 1982a). 

MSCAL provides three separate error models through its 

data transformation option, when a least-squares fit is used. 

The first two :1lodels has normally distributed error with 

constant within-subject variance about the distances and 

squared distances, respectively. Similarly, the third model 

has constant within-subject variance for the logarithm of the 

distances as in multiplicative model mentioned previously. 

An important benefit derived from making the error an 

explicit part. of the model is the opportunity it gives to 

identify the sources of variation in the data. The major 

dividing line between two-way and three-way MDS models is how 

they view subject differences: two-way models treat Individual 

variation as incorrect judgments, sa that individual differ-

ences are part of the error model; three-way models, on the 
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other hand, address these differences as reflections of 

different personal judgments or psychological measures in the 

representation model by using a weighted distance model. 

Meulman (1986) suggested using the subject weight matrices "as 

a means of filtering out undesired variability" (p.176), 

presumably when the individual differences are not important 

or interesting. 

Building good models requires identifying the sources of 

variation in the data which reflect the nature of the judg­

ments subjects make and their ability to do so, from a 

psychological perspective. Subjects will be more or less adept 

at making judgments and sorne measure of individual idiosyn­

crasies should be reflected in the error model. Also, stimuli 

may have greater or lesser distinctiveness or salience for a 

given dimension or attribute. Thus, by varying the types of 

weights and distance models used, one can produce response 

models with different variance components so as to recognize 

the many sources of variation in subjects' judgments apart 

from the "true" dissimilarities between stimuli. 

Three different types of variance components comprise 

MOLTISCALE (Ramsay, 1982b): pair-wise, stimulus-wise and 

subject-wise. Pair-wise variance allows for separate est imates 

for each pair of stimuli, assuming they will be different. 

Stimulus-wise variance takes into account the varying famili­

arity of stimuli to the subject. MSCAL permits two components 

of variation: subject weights and stimulus weights for each 
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dimension, so that the metric can vary from subject to subject 

and/or stimulus to stimulus. Schiffman, Reynolds and Young 

(1981) refer to the stimulus standard error weights, used in 

MULTISCALE, as measures of "cognitive uncertainty" of 

subjects' perceptions of each stimulus. MSCAL' s stimulus 

weights might be viewed as measures of the perceptual 

differences in the stimuli themselves. 

1.2.3 Individual Differences 

As pointed out by Takane, Young, and DeLeeuw (1977), 

individual differences models are of three psychologically 

distinct types: those that arise from response bias, those 

that result from a judgmental process (either perceptual or 

cognitive), and sorne combination of the two. One can allow for 

each type through model weights and/or data conditionality, 

regardless of the measurement level of the data. Individual 

differences due to response bias are effected by assuming 

replicated data are conditional; individual differences in the 

judgmental processes are reflected by the weights in the 

weighted distance model. Thus, even if an unweighted distance 

model is used, individual differences can still be represented 

by allowing different response transformations for each 

subject. The MSCAL program has an option for the level of 

stratification in the data permitting unconditional, matrix 

conditional, and column conditional (i.e. appropriate only for 

the asymmetrical case) data. 
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-' On the other hand, the non-individual difference model 

"assumes that replications arise from subjects with identical 

judgmental and response processes" (Takane, Young, & DeLeeuw 

(1977), p.52). This applies to single matrix data as weIl, as 

replicated data, by treating the data as unconditional. 

1.3 Estimation Methods 

Generally, MDS procedures use one of two methods for 

measuring the fit of a model: least squares and maximum 

likelihood. The former relies on minimizing the discrepancies 

for the chosen criterion function; hence, sorne kind of 

badness-of-fit index is used. Maximum likelihood methods 

-. require statistical assumptions about the random variation in 

the data and estimates of the model parameters are those whjch 

give the largest probability or likelihood of occurring with 

the observed data for a given set of the model values. 

MSCAL minimizes a loss function which allows the user to 

specify the power of the estim~tes. The only restriction is 

that the power be at least one. Users would normally select 

one of the followlny types of estirnates: least-squares, 

minimum absolute deviation, or the surn of the 1.5 power of the 

errors, a typical expcnent for dissirnilarity data (Ramsay, 

1982a, p.288). The maximum likelihood method is not used in 

MSCAL. However, rnetric scaling of dissimilarities assumed to 

be independently normally distributed with constant residual 
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variance produces normal distribution theory maximum 

likelihood estimates. 

Different MDS programs fit different transforms of the 

data. MULTISCALE fits distances directly. Because ALSCAL 

(Takane, Young, & DeLeeuw, 1977) fits squared distances 

instead of distances, the program tends to fit mostly large 

discrepancies, sacrificing fit in the smaller and moderate 

discrepancies. ALSCAL performs best when error is least and 

distributed mostly in the smaller proximities; only when error 

in the larger squared distances approximates that in the 

smaller squared distances is ALSCAL's performance unaffected 

by error (Ball, 1982). While INDSCAL (Carroll & Chang, 1972) 

uses the same weighted Euclidean model as ALSCAL, it fi ts 

scalar products that have been converted from squared 

proximities. Ball's (1982) study notes that INDSCAL' s 

performance is much less affected by the level of error, its 

distribution and the underlying error model, than when ALSCAL 

is employed. 

Using least squares estimation, programs should perform 

best when error is normally distributed about the measures 

being fit. Thus, when squared distances are fit, the best 

results should occur when error is normally distributed about 

the squared distances. Similarly, the same re&30ning should 

apply when fitting distances, scalar products and the 

logarithm of the distances. Ball's (1982) evaluation of 

MULTISCALE (Ramsay, 1977) attributes the lack of such findings 



10 

for lognormal data to the program' s frequent fallure to 

converge rather than to how the response model interacts with 

the data. 

The alternating least-squares method approach used in 

MSCAL sequentially fits the distance component and the spatial 

component. The expected effects of error and its distribution 

on recovery of the distance component has been di scussed 

above; however, the effects of error on the spatial component 

need to be addressed. 

1.4 Initial Configuration Estimation 

Converting distances to scalar products and then using a 

decomposition of the scalar products matrix to estimate the 

coordinates of the configuration leads to a number of 

problems, as Ramsay (1982a) points out: dissimilarity must be 

measured to within a scale factor and random disturbances, as 

found in real data, are exaggerated by squaring in the 

double-cent ring transformation used to convert distances to 

scalar products. MSCAL uses this classical MDS approach, which 

double-centres the squared distances, and appl ies matrix 

factoring throug~l eigen-analysis of the product moment 

matrices to arrive at the initial configuration. As Spence and 

Lewandowsky (1989) show, the Young-Householder-Torgerson 

(Young & Householder, 1938; Torgerson, 1<)58) procedure i8 

sensitive to the effects of outliers and provides a "poorer 

starting position than a random configuration" (p.SOS). Thus, 
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local minima are a possible problem to be considered when 

evaluating MSCAL. 

1.5 Use of Monte Carlo Methods 

Monte Carlo methods have come to be used "in any 

situation where a complete mathematical analysis of a problem 

ls difficult or intractable." (Spence, 1983, p.406) Computer 

simulaLions using the Monte Carlo method are designed 

experiments, requiring thoughtful planning and precise 

execution. A factorial design becomes increasingly complex as 

the number of factors and/or levels of factors are added. For 

this reason, most Monte Carlo investigations have beE'n limited 

! in their scope and their results are only suggestive of the 

underlying relationships between the independent and dependent 

variables. Nevertheless, the practical demands of MDS 

techniques, require sorne empirical guidelines for the use of 

the various programs. Studying the effects of various 

controlled factors using Monte Carlo simulations helps to 

assess the solutirns and measures of fit which these scaling 

procedures provide. 

1.6 MeS and Monte Carlo Studies 

Inevi tably, real psychological data contain error or 

"noise". The capability of various programs to recover the 

r 
true structure of empirical data will depend upon how 

successfully they deal with noise. Monte Carlo studies using 
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known stimulus configuration wi th data perturbed by random 

error, have been important in determining the behaviour of 

various programs and in evaluat ing the goodness of fit of 

metric, as t'Tell as non-metric, methods. The Monte Carlo 

approach is ideally suited to this study because of the ease 

with which error models can be imposed upon the data. 

1.7 Review of Monte Carlo Studies for Two-way Scalinq 

Wagenaar and Padmos (1971) studied the behaviour of 

Kruskal' s non-metric M-D-SCAL (1964a, b) program, by measuring 

the stress values for random configurations of a small number 

of points with various levels of error and true 

dimensionality. Their results were intended as bases of 

comparison to estimate true dimensionality and measurement 

error of empirical data. Unlike previous studies, Wagenaar and 

Padmos used a different error model. Random normal deviates 

were multiplicatively applied to the error-free Euclidean 

distances instead of the coordinate points. However, negat ive 

distances were possible with such a method, and negative 

random elements had to be rejected. 

Isaac and Poor (1974) also investigated the problem of 

determining the true underlying dimens ional i t Y of 

error-perturbed data using M-D-SCAL (Kruskal, 1964a, b) . Three 

separate measures of recovery were used as the dependent 

variables: Kruskal's Stress Formula 2, the index of metric 

determinacy, and a new measure introduced as Constraint. This 

~ ~- --~--------~ --------------
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measure was the difference between the expected stress value 

for random data and the stress value of a typical 

configuration in the same dimensionality with the same number 

of points. The manipulated factors were typically: the number 

of points, the true dimensionality, the amount of error, and 

the dimensionality of the solution. The error generation was 

similar to Young's (~970) study, where random error was added 

to the coordinates. However, Isaac and Poor used higher levels 

of error. The results were consistent with those of Young and 

confirmed the inadequacy of stress in identifying the true 

dimensionality of data with error. 

Sherman (1972) produced an extensive study of metric 

determinacy of the non-metric scaling program, TORSCA (Young, 

1968), employing a large number of factors. In addition to 

studying the effects of the number of points in the config-

uration, true dimensionality, and error level as had Young 

(1970), Sherman included the Minkowski constant, r, in the 

distance function and the number of dimensions used in 

scaling. Young had considered only Euclidean distances. 

Sherman varied the Minkowski r-metric (r=1,2,&3) but scaled 

the data assuming it had been measured with a Euclidean 

distance function (r=2) to determine the effects of mis-

estimating the distance function. 

As Sherman noted, the overall trends found in the two 

studies were the same. Differences notwithstanding, the 

results related to the additional factors in Sherman's study 
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indicated that there was good metric determinacy: 1) if the 

dimensionality of the recovered configuration was not less 

than the dimensionality of the true structure and 2) the 

accurate estimation of the MinkowsKi constant led to a better 

model only if the dimensionality has been properly estimated. 

Sherman further qualified the choice of the Minkowski 

constant, r. If the stimuli under study had percept ually 

distinct attribute8 (for example, height) then using 

city-block distance provided a better model. Otherwise, for 

stimuli with interacting attributes (i.e. hue and brightness) 

r values greater than one lead to better models. 

One major Objection raised by Cohen and Jones (1974) was 

that previous studies, such as Sherman (1972), had based their 

findings of the effects of dimensionality on the recovery of 

distances and not of the true configuration itself. Their 

results qualified the implications of dimensionality such that 

"partial information on any dimension will be recovered to the 

extent that it is available in the data when the solution is 

in a sufficiently high dimensional ir \' Il (p. 88) Underestimation 

of dimensionality is associated wi~ :OS8 of information and 

possible distortion of the solution dimensions. 

Spence (1972) employed a comparative approach arr,ong three 

popular non-metric algorithms, M-D-SCAL (Kruskal, 1964a, b), 

SSA-I (Lingoes, 1965), and TORSCA (Young, 1968) ta assess 

their performance. Using Ramsay's model (1969), Spence added 

random error independently to each of the randomly generated 
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coordinates. This method of generating dissimilarities was 

the same as that used by other investigators (Sherman, 1972; 

Young, 1970). 

The performance of the three procedures in obtaining 

initial and final configurations was assessed by Kruskal' s 

stress measure and the index of metric determinacy, M, the 

correlation between true and recovered distances. Thus, 

recovery of configurations were not measured directly. A 

complicated design was used involving 18 distinct configura­

tions, with varying number of dimensions and datapoints, four 

separate error le,,~els and fi ve 

dimensio'1ality. 

levels of recovered 

The results showed relatively small differences between 

the solutions of the different algorithms. However, each of 

the algorithms were susceptible to 5ub-optimal solution 

problems. M-D-SCAL produced the largest number of deviant 

solutions, while very few of the SSA-I and TORSCA solutions 

were unsatisfactory. For aIl algorithms problems were severe 

in one dimension. 

Spence identified the quality of the initial configura­

tion as the major factor in avoiding local minima in the 

configuration. TORSCA's success was attributed to its ability 

to generate a good initial configuration, one close to the 

global optimum. Also, not aIl algorithms improved the fit; 

sometimes, it was worsened. It is believed that such 

non-convergent programs display local optimum problems more 
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frequently than convergent programs (Schiffman, Reynolds, & 

Young, 1981). 

Graef and Spence (1979) investigated whether small, 

medium, or large distances were most important in determining 

the recovery performance of TORS CA (Young, 1968). An important 

feature of this Monte Carlo study was the inclusion of two 

separate error models: the Ramsay (1969) model and the 

Wagenaar-padmos (1971) model, each with two levels of error. 

The two error models were used principally because they were 

thought to represent the extremes encountered with real data. 

Results indicated that large distances were critical to good 

performance in recovery of the true distances; whereas small 

and medium distances had a less crucial role, independent of 

the error models used. 

Spence and Lewandowsky (1989) studied the effects of 

outliers on various MDS procedures, including their procedure 

TUFSCAL, using Monte Carlo simulations with a lognormal error 

model. Their results indicated that metric procedures such as 

Young-Householder-Torgerson metric scaling (Young & 

Householder, 1938; Torgerson, 1958) , KYST-2 (Kruskal, Young, & 

Seery, 1978) in metric mode, and MUI.oTISCALE (Ramsay, 1977; 

1982b) generally perform worse than the non-metric procedures, 

ALSCAL (Takane, Young, & DeLeeuw, 1977; Young & Lewyckyj, 

1981) in the non-metric model and KYST-2 in non-metric mode, 

when outliers were present and, with the exception of 

MULTISCALE when the data also had moderate background error. 
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Despite genèral resistance to the effects of outliers, 

TUFSCAL' s performance was less good in sorne cases than others, 

for which higher percent ages of outliers gave perfect 

recovery. Such instances were attributed to "particular 

patterns of outliers" for which perfect recovery was not 

possible, r~ther than to occurrences of local minima. From 

this viewpoint, it is sometimes the particular nature of the 

error in data that may be limiting recovery, rather chan the 

algorithm. 

By using a "cross"-shaped true configuration, Spence and 

Lewandowsky (1989) provided yardstick measures of what 

constitutes good recovery correlations: configurations whose 

'f recovery correlations were less than 0.7 had little 
J .. 

resemblance to the true configuration and generally those 

configuJ: ations associated wi th correlations less than or equal 

to 0.9 were judged to be unsatisfactory. 

In general, Monte Carl~ studies have shown that two-way 

non-metric procedures perform best when the true dimension-

ality is low, the number of points is large and the error 

level is moderate. The minimum number of points suggested per 

dimension is six to avoid the problem of degenerate solutions 

(Spence, 1983). These results are assumed to apply equally to 

metric and non-metric models. Various error models have been 

considered, including those which add error to the distances. 

AIso, it is important to measure both recovery of distances 

and configuration to get a true picture of performance. 
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Depending on the nature of the error in the data, various 

interactions are ex?ected for the different error models. 

1.8 Interaction of True and Predicted Error Models 

It is natural to expect that MSCAL will perform best when 

the predicted error model matches the error distribution of 

the data. For a least-squares fit it is assumed that the 

absolute errors are distributed uniformly across the data. 

Specifically, random normal error is distributed uni formly 

acro~s distances for a normal error model and across squared 

distan~es, if a squared normal error distribution is present 

in the data. However, for lognormal error, it is the relative 

error (i.e. relative to the magnitude of the distances) that 

is scattered uniformly across the range of distances. 

When the data has a normal error distribution and a log 

transformation is used, as in the case where the predicted 

error model is lognormal, a least squares fit will tend to 

minimize the error in the smaller distances over that in the 

larger distances. On the other hand, if a squared transforma­

tion is used, estimation will concentrate on the larger 

distances, since errors in the larger proximities are expanded 

by squaring. However, if the actual values of the distances 

are more or less equal, then all transformations should give 

the similar results. 

When the data has error with a squared normal 

distribution, a least squares fit assuming a normal error 
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l model will tend to overfit the larger and smaller distances. 

If a lognormal transformation is used, it will tend to overfit 

the smaller distances. However, as in the case of normal 

error, if the actual distances are about equal and close ta 

one then all transformations should give approximately equal 

recovery. 

In the case of data with lognormal error, larger absolute 

errors are concentrated in the larger distances. If the 

predicted error model assumes a normal distribution, 

least-squares estimation will concentrate on fitting the 

larger distances and the smaller distances will have less of 

an influence. If a squared normal error model is assumed, 

squared distances are fit to the squared disparities. Again, 

there is a tendency to fit error in the larger error-perturbed 

values, since errors in the larger distances are expanded by 

squaring. 

1.9 Simulating Typical Osers' Needs 

One last point needs to be made wi th respect to the 

design of Monte Carlo studies. The needs of a typical user 

should be considered. Spence (1972) in evaluating non-metric 

MDS programs suggested the following guidelines to simulate 

circumstances encountered in an experimental situation: 1) The 

range of stimuli should be realistic. 2) Standard default 

options should be used to simulate what the average user 

typically selects. 3) The maximum number of iterations should 
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be 15-30 to allow an algorithm to reach a minimum according to 

experience of sorne investigators. 4) Spaces of differing true 

dimensionality should be explored, as weIl as the effect of 

error in the data. 5) One should look for interactions between 

the programs and the error level, the number of stimuli, and 

the true and recovered dimensionalities. (Spence, 1972, p.468) 

Following this advice, the next chapter provides the detailed 

methodology for the present Monte Carlo study. 
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The performance of the MSCAL program will evaluated in 

terms of two separate measures: 1) recovery of the true 

configuration and 2) recovery of the true distances. Starting 

from a true configuration, the corresponding true proximities 

are calculated. Using the Monte Carlo method, random error is 

added to the true distances according to the error models 

established by the three fitting criteria in the MSCAL 

program. The study will include two parts: the first analyzes 

data with a single matrix for which no individual differences 

are possible, and the second allows for individual differences 

in response style using a replicated analysis. 

Since MSCAL is a new multidimensional scaling program, 

this study will concentrate on its basic capabilities, and 

leave evaluation of other aspects for future consideration. 

Metric multidimensional scaling will be used for square 

symmetric data with ratio measurement level, the strictest 

condition on optimal scaling, using an unweighted model and 

least-squares estimation. Also, a simple linear model 

relating the true distances and the dissimilarity data of the 

form f(a· ijm) - f(dijm) + eijmis assumed to make the simulations 

as similar as possible across the different error 

dist!lbutions imposed on the data. 
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A weighted distance model, wlth either subject or 

stimulus weights, would add more complexity to the problem of 

assessing performance of the fitting criteria. However, MSCAL 

does permit individual differences in response style for an 

unweighted Euclidean distance model, depending on the 

conditionality of the data, through the stratification level 

option. A stratification level indicating matrix conditional 

data (i.e. each stratum will correspond to a single subject, 

reflecting individual differences in variance) will be used to 

improve the fit of replicated data. Accordingly, single 

matrix dissimilaLities data will be treated as unconditional 

by MSCAL. 

The general stress function optimized by metric MSCAL is 

given as: 

where ~ denotes the predicted distances, ~. denotes the dis-

similarities, vhis the stratum weight, f is one of the data 

transformations (f(x) -X, f(x) -ln (x) 1 or f(x) _x2 ) 1 ex h is the 

stratum intercept, Phis the scaling factor and h indexes the 

strata (for matrix condi tional data, h=m, the index for 

subjects) and p=2 for least squares estimation. 

2.1 Choice of MSCAL Parameters 

The type of the data transformation specified for the 

stress function is the main variable of interest in this 
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study. The number of options available for the program 

parameters are man y and their selection must be compatible 

within the framework of these fitting criteria, as weIl as the 

data. 

Given the choice of representation model and the measure-

ment level of the data, the stratum intercepts ah were not 

necessary. To eliminate overparameterization, MSCAL places 

restrictions related to the fitting criteria on the scaling 

factors, Ph' A normal or squared normal fitting criterion 

requires: 1) Ph-l for unconditional data and 2)EP h
2." for 

h 

matrix conditional data, where "is the nurnber of subjects. 

To avoid differences in the criterion function optirnized for 

the different error models, only the configuration coordinates 

will be estimated. 

MSCAL perrnits three different stratum weights in the 

stress function: stratum variance, the sums of the squared 

disparities, or unconditional variance. The norrnalizing factor 

which corresponds to the surn of the squared disparities 

corresponds LO the stress function, ~lgiven by: 

~l - L v h E (f ( ô· ijm) - f (ô ijm) ) 2 , 
h 1,j 

where v h - E (f(ô· ijm» 2 ,h=m for matrix conditional data. For 
i,j 

a metric model, 4>2 the stress function weighted by uncondit-

ional stratum variance, is related to ~las follows: 

~l - ~2 
E E (f ( ô * ijm) -7: ( Ô * ... ) ) 2 

h 1,j 
-.;;;;~~=--==--------- ; L ~ (f(a· ljm) ) 2 

h t;j 
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where I(~· )is the mean transformed dissimilarities in the 

stratum. For simplicity, the stress function ~lwas chosen. 

Moreover, when a squared transformation is used for the 

fitting criterion, ~1 is proportional to SSTRESS in ALSCAL 

(rakane, Young, & DeLeeuw, 1977). The third stratum weighting 

option, conditional variance, was not chosen because it 

resulted in the following criterion function: 

where nh is the nurnber of disparities in stratum h. It was 

unclear how the optimization would be affected by the logar-

ithrn of the stress function when the underlying error dis-

tribution and fitting criterion do not match. 

2.2 Generation of the ~rue Data 

The true stimulus configurations and the corresponding 

true proxirnities were selected from configurations output by 

MUL~ISCALE II for two sets of data: 1) data for 32 stimuli of 

occupations (Coxon, 1982), and 2) dissimilarity ratings on a 

9-category rating scale of 14 emotions from 15 rnembers of an 

MDS Workshop (J.a.Ramsay, personal communication, 1990). The 

original datasets represent two basic types of applications: 

the Coxon data have only a single matrix of dissimilarities, 

and the emotions data are replicated. 

The chosen configuration populations are not artificial, 

unlike other Monte Carlo studies whose results have uncertain 
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applicability to empirical data. The number of datapoints in 

each dataset should be sufficient for analysis and are typical 

in size. Inasmuch as these datasets have been previously 

analyzed, they are reasonable choices for this study. There is 

no claim that the conclusions of this study will apply to all 

datasets, but rather only to datasets of comparable size. 

2.2.1 True Stimulus Configurations 

The output configuration from a MULTISCALE II analysis 

using an under1ying normal error distribution and scale 

transformation of the Coxon data was used as the common 

stimulus space for occupations. The configuration derived from 

an analysis using a lognormal error distribution and scale 

transformation was used for the emotions common stimulus space 

for the 15 subjects. For both sets of data, three dimensional 

solutions were chosen, since previous MULTISCALE II analyses 

indicated the data sets were both three-dimensional. Figures 

1 and 2 give the corresponding true configurations. The 

corresponding population configuration matrices are given in 

Appendix A Tables 13 and 14. 

2.2.2 True Proximities 

The true proximities were the associated n(n-l)/2 

inter-stimulus distances for the two true configurations 

derived using the unweighted Euclidean distance model in the 

original analyses. The corresponding population proximities 

matrices are given in Appendix A Tables 15 and 16. 
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2.3 Error Models 

Error was generated according to Monte Carlo techniques. 

The random normal number generator, RNNOR, from IMSL STAT/ 

LIBRARY (1987) was used to produce the error. 

Random normal deviates, with a mean of zero and constant 

variance for each subject, were added to each of the true 

proximities in accordance with the three error models. A 

replication factor of 25 was chosen so that the study would be 

of reasonable size. This number of replications was expected 

to be sufficient to produce the kinds of effects that are 

important to sample variability. 

2.3.1 Normal Error Model 

Random normal deviates eijm were added to each of the 

n (n-l) /2 true distances d ijm for m subjects and n stimuli to 

give the perturbed proximities & ijmreflecting an underlying 

normal error distribution as follows: 

In this case, there is no relationship betvleen the 

magnitude of the distance and error, with the exception that 

for error-perturbed valu~s less than or equal to zero are set 

to the value of O. 01 for the Coxon data and 0.1 for the 

emotions data. Th~se values were chosen after inspection of 

the data, to be small relative to the distances generated. 

This will have sorne effect on the distribution of error for 

small distances and on the expected values of the estimated 

configuration matrix. 
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2.3.2 Lognormal Error Model 

Random lognormal error was added to the true inter-

stimulus distances as follows: 

~ ijm - exp [ln (djjm) + 6 jjm] • 

The typical error is proportional to the true distances. No 

zero perturbed distances were generated. 

2.3.3 Squared Normal Error Model 

Random normal deviates were added to the squared dis-

tances and the square root of each sum gave the following 

perturbed proximities: 

It should be noted that when the error added to the squared 

true distance gave a negative or zero value the perturbed 

distance was set as described for the normal error model. 

In total, 3 (error model types) X 3 ( data transformation 

types) X 25 (replications) proximities matrices for m subjects 

were generated for the Coxon (m=l) and emotions (m=15) data. 

2.4 Subject Standard Error 

Within-subject variances were assumed to be constant; 

however for the emotions data, error variance varied across 

subjects, as is typical for observed data. Subject standard 

errors for the Coxon and the emotions data were taken from the 

MULTISCALE II estimates that provided the true configurations 

and proximities described above. The within-subject standard 

, 

1 
• 
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errors estimated by MOLTISCALE II for these configurations are 

presumed to reflect realistic standard error weights for each 

subject for these datasets. The standard error for the Coxon 

data, 0.091, with a normal error distribution represents a low 

error condition, while the average standard error for the 

emotions data, 0 . 397, wi th a lognormal error di stribut ion 

indicates a high level of error. 

Population standard error values for the two remaining 

error models were determined as follows: Regression with no 

intercept of the squared dissimilarities on the squared true 

distances for each subject gave residual standard errors which 

were used to generate the appropriate perturbed proximities 

with squared normal error for both sets of data. Similarly, 

for the emotions data with normal error, the original 

dissimilarities data for each subject were regressed on the 

true distances. The unbiased standard error estimated by 

MULTISCALE II, for a lognormal error distribution and scale 

transformation analysis of the original Cox on data, was used 

to generate Coxon data with lognorrnal error. Thus, for both 

the Coxon and emotions data, three sets of subject standard 

error weights were provided for the correspondLlg error 

models. 

2.5 Standardization of Error Levels 

Comparison of the results from the various MSCA.T ... analyses 

required standardization of the error levels in the generated 

1 
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data. It was otherwise unclear how to take into account the 

standard error levels. The measure chosen to equate error 

levels in the generated data was the proportion-of-variance of 

error (PVE) , one minus the squared correlation between the 

n (n-l) /2 true proximi ties and the corresponding perturbed 

proximities. This procedure was used by BalI (1982). 

After adjustment the mean PVE for the Coxon data was 

0.17, using standard deviations of: 0.111, 0.186 and 0.096 for 

normal, lognormal, and squared normal error, respectively. 

However, the emotions data required 15 subject standard error 

weights for each type of error. The sets of initial subject 

standard error weights, given above, ~ere scaled to produce 

roughly equivalent global levels of error as measured by the 

proportion-of-variance statistic. Multiple runs for the 

emotions data were necessary to produce mean PVE values of 

0.50 for squared normal error, 0.53 for lognormal error and 

o .54 for normal error. It was difficult to obtain exact 

equivalence. 

Also, it is important to note where the error tends to be 

distributed for the various distributions. The mean correlat-

ion between the absolute magnitude of error and the true 

distances (FCE) is reported for the three types of error 

distributions: 0.03, 0.46, and -0.43 for the Coxon data, and 

0.05, 0.37, and -0.31 for the emotions data, for normal, 

lognormal, and squared normal, respectively. A positive FCE 

value indicates the extent to which larger error is present in 
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larger distances whereas a negative value indicates more error 

in the smaller distances. Thus, error is distributed quite 

differently for lognormal and squared normal data. 

2.6 MSCAL proqram Parameter Values 

The version provided by D. Clarkson is a test copy for 

batch processing of the MSCAL program from IMSL, Inc. MS CAL 

(Clarkson, 1988a & bl has a number of options available which 

determine the type of distance, error and overall response 

models in use for any given multidimensional scaling analysis, 

as previously noted. 

Fot' the two sets of data in the study, the NSUB, NROW and 

NCOL parameters were set to the appropriate values for the 

number of subjects and stimuli for these datasets. The 

following parameters and chosen values were used in the 

analyses: 

IFORM=O - square symmetric matrices; 
ICNVRT=O - dissimilarity matrices are input and 
no conversion is necessary; 
ISTRAT=l - data are matrix conditional (a single 
matrix 1s treated as matrix unconditional); 
IDISP=O - ratio or interval level datai 
IMOD1=3 - requests initial estimates of the 
configuration; 
IEST=O - indicates ratio level data are usedi 
ISTRS=l - selects the stress criterion 
weighted by the inverse of the sum of the p-th 
powered disparities and is related ta the use of 
matrix conditional data; 
POWER=2 - indicates least-squares estimation; and 
EPS=O.OOl - the default convergence criterion. 
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Levels of two of the parameters manipulated according to 

the design of the study were set according to the following: 

NTRANS - the selected transformation function: 
o - squared distances, 
1 - distances (no transformation) , 
2 - log of the distances); and 

ND lM - the dimensionality of the solution. 

Dimensionality was treated as a repeated measure, such that 

each simulation dataset were analyzed by MSCAL three times 

corresponding to: a} the true dimensionality or dimensionality 

of the true configuration, NDlM=3; b) the underfit case, 

NDlM=2; and c) the overfit case, NDIM=4. It was included in 

the design because a number of Monte Carlo studies have 

Indicated a relationship between the criterion or stress 

function that is minimized and the dimensionality of the 

solution, as mentioned earlier. 

2.7 Convergence of the Algorithm 

The default convergence criteria in MSCAL is 0.001. 

Moreover, the documentation of the MSCAL program indicates 

that "iterations in MSCAL can have linear convergence prope-

rties. For this reason a relatively large value (say 0.001) 

should be used." (p.5 MSCAL documentation, 1988) Therefore, 

this default convergence value was used. 

2.8 Dependent Variables 

For metric scaling, MSCAL incorporates the dissimilarit-

ies directly into the criterion or stress function according 
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to the data transformation or fitting criterion selected. 

Therefore, recovery of the proximities depends upon the 

estimation of the stimulus coordinates and optimization of the 

stress function. Both coordinates and proximities recovery 

were measured to assess performance of the MSCAL program. 

Mean-square error and bias were also calculated for true 

dimensionality estimates, as additional information with which 

to assess recovery. 

2.8.1 Recovery of the Stimulus Configuration 

Sorne means of measuring configuration recovery is 

necessary for dimensionalities other than the true one. 

MATFIT (Ramsay, 1989) allows the comparison of two matrices, 

using linear mappings into the necessary subspace of common 

variation. Specifically, MATFIT provides a correlational 

measure for any two configuration matrices without requiring 

either to be a fixed target. 

The correlational measure used to optimally compare: A, 

the true configuration matrix of dimensionality a and B, the 

recovered configuration matrix of dimensionality b, is given 

by: 

tr (S'A'ET) 2 

tr (S'A'AS) tr (T'B'BT) 
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where Sand T are the two transformation matrices of dimen-

sions a by sand b by s, respectively. The size s of the 

subspace is determined by: 1 ~ s ~min (a,b). Since MDS config-

urations can only be rotated, the two transformation matrices 

were constrained to be column orthonormal. Sand Tare defined 

by the singular value decomposi tion A/B- SDT/. 

The mean-square error of the stimulus coordinates 

recovery when b~a was calculated as follows: 

25na 

and 

y - BTS/N / r r 

where X is the normalized true configuration matrix, Ne' the 

normalization matrix for replication r. Yr is the associated 

matrix of standard scores of the transformed recovered config-

uration, and n is the number of stimuli. For both X and Yr' 

there were independent normalizations of each dimension. 

Similarly, squa~ed bias was calculated as follows: 

Bias 2 
cf - na 
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where 

2.8.2 Recovery of Proximities 

The recovery of proximities was measured by correlating 

the recovered proximities, determined from each of the 

unnormalized, untransformed recovered configurations, with the 

n(n-l)/2 true proximities. As for the coordinates recovery, 

mean-square error and squared bias were calculated. The mean 

square error for proximities is given by: 

MSEpI -
I~n-l)n/2 

and the squared bias is as follows: 

--, 

Bias 2 
-:pI (n-l) n/2 

where D is the matrix of true inter-stimulus distances, A is 

the matrix of mean recovered distances across r=25 replicat-

ions. 

2.9 Summary of the Design 

The design is mixed with two independent-groups factors: 

error model and predicted error model or fitting criterion, 

and one repeated-measures factor, dimensionality. The levels 

of both the error model and fitting criteria factors are the 

same: normal, lognormal and squared normal. The three 

dimensionalities are 2, 3 (the true dimensionality) and 4. Two 
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sets of experiments were run using this design, corresponding 

to two different populations: the Coxon and the emotions 

configurations. 

The distances used to simulate dissimilarities data were 

calculated from the corresponding true configuration using a 

unweighted Euclidean model. Error was added to each of the 1 
n(n-l)/2 inter-stimulus distances according to one of three ~ , 

error models. The levels of error for the Coxon and emotions 

data were approximately 17% and 52% error, respectively. 

A replication factor of 25 was used to generate both sets 

of data samples, for each of the 9 treatment conditions, 

giving a total of 225 in each set. Each dataset in the Coxon 

batch with only one lower triangular 32 X 32 matrix of 

dissimilarities provided simulated input to MSCAL corres-

ponding to a single subject. For the emotions set of data, 

there were 15 lower triangular 14 X 14 matrices of perturbed 

distances for each simulation of replicated data corresponding 

to 15 imaginary subjects' dissirnilarities. 

Ratio level dissimilarities were indicated for each MSCAL 

run, and estimation of the initial configuration using rnetric 

scaling was requested with optimization of the specified 

criterion function. Recovery estimates of the configuration 

and proxirnities were assessed according to their correlation 

to the true values. Mean-square error and squared-bias were 

provided as additional measures for estimates with true 

dimensionality . 
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Chapter 3 

RESULTS FOR THE COXON DATA 

Both of the dependent variables, coordinates recovery and 

proximities recovery, were analyzed with a 3 X 3 X 3 ANOVA, 

using a two-between and one-within design. 

The distributions of cell means for the correlations 

between the true and recovered stimulus configurations 

indicated sorne non-normality and heterogeneous variances among 

the between-groups. Therefore, a transformation was used to 

give the following badness-of-fit index of recovery: 

BOF - log (1-r 2 ) 

where r is the correlation measuring recovery. 

3.1 Recovery of Stimulus Coordinates 

According to Table 1, there was a triple interact ion 

between dimensionality, true error model and the predicted 

error model. The interaction of the true and predicted error 

models was significant at each of t~~ three dimensionalities. 

The results of the ANOVA are difficult to interpret since aIl 

the simpll~ main effects were significant. Tukey post hoc tests 

were performed to discover any significant interactions of 

true and predicted error models for each dimensionality. 

3.1.1 Recovery in 3-Dimensions 

For the true dimensionality of the data, the best fit was 

produced when the criterion function matched the appropriate 
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Table 1 

Stimulus space recovery Analysis of Variance 
for Coxon Data on 32 Occupations 

Effect df 

Between-datasets-effects 

True error models 
Predicted error models 
True X predicted models 
"Between" denominator 

2 
2 
4 

216 

Within-datasets-effects 

Dimensions 2 
Dims X true error models 4 
Dims X pred. err. models 4 
Dims X true X pred. err. 8 
"Within" denominator 432 

Simple interaction effects 

True err X pred. 
at dim=2 

Denominator 
at dim=3 

Denominator 
at dim=4 

Denominator 

err models 
4 

216 
4 

216 
4 

216 

MS 

1.02 
12.84 
22.20 

0.28 

14.17 
2.00 
3.06 
0.98 
0.14 

4.84 
0.07 

13.10 
0.24 
6.21 
0.25 

F-Tatio 

3.7 
45.8 
79.2 

99.1 
14.0 
21.4 

6.8 

66.9 

54.8 

24.4 

* using Greenhouse-Geisser conservative test. 

p<0.03 
p<O.Ol 
p<O.Ol 

p<O. 01 * 
p<O.Ol* 
p<O.Ol* 
p<O.Ol* 

p<O.Ol 

p<O.Ol 

p<O.Ol 

39 
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underlying error model. However, Figure 3a shows that the 

recovery is about the same for aIl three underlying error 

distributions using a normal fit. In fact, there were no 

significant differences between these interactions (p>.05) in 

the context of the other post hoc pair-wise comparisons. 

However, the lognormal and squared normal fitting criteria, 

when used inappropriately, gave significantly worse (p<.05) 

recovery compared to that obtained when the fitting criterion 

matched the underlying error distribution. 

3.1.2 Recovery in 2-Dimensions 

When the data were underfit, again a normal fit provided 

good recovery which was not significantly different for the 

three error distributions. The lognormal criterion gave the 

worst results of the three types of fit (see Figure 4a). In 

particular, It produced the worst fit in 2 dimensions, for 

squared normal data. A lognormal fit of lognormal data was not 

significantly better (p>.05) than when a normal or squared 

normal fit was used. AIso, the normal fit of normal data was 

not significantly better (p>.05) than when a squared normal 

fit was used. Only the squared normal fit produced recovery 

that was significantly better (p<. 05) for the appropr iate 

error model. In fact, this combination gave the best fit in 

any of the 3 dimensionalities. Squared normal data showed a 

large reduction in recovery when a lognormal transformation 

was used . 
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3.1 3 Recovery in 4-Dimensions 

From Figure Sa, it is apparent that normal and lognormal 

error distributions were equally poorly fit, regardless of the 

fitting criterion used. There was one exception: normal data 

were significantly better fit (p<. 05) by a squared normal 

criterion than were the lognormal data. The squared normal 

model gave the best fit for the appropriate error distrib-

ut ion, comparable to that gi ven for dimensionality three. 

However, it was not a significant improvement over a normal 

fit of the squared normal data. Only the lognormal fitting 

criterion gave poor recovery with squared normal error. 

Using higher dimensionality produced solutions with the 

worst recovery for normal and lognormal data, relative to the 

other two dimensions used. The recovery of squared normal data 

was relatively insensitive to dimensionality. In addition, a 

lognormal fit of squared normal data consistently gave the 

worst recovery in each of the three solution dimensions. 

3.1.4 Mean-Square Error for 3-Dimensions 

It is apparent from Figure 6a that amount of the stimulus 

recovery in three dimensions was satisfactory for the amount 

of error in the data, mean PVE=O. 17. The maximum mean squared 

discrepancy was approximately 0.24 between the normalized true 

and recovered configurations. However, the largest mean-square 

error for a normal fit was 0.12, indicating much less discrep-

ancy for this particular fit. On average, the variance of the 
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estimate accounted for approximately 90% of the mean-square 

error (see Figure 7a). The largest ratio of squared bias to 

mean-square error was 0.24 for squared normal data fit by a 

lognormal model, the worst recovery condition as can be seen 

in Figure 3a. 

3.1.5 Loose Convergence 

Solutions which were poor relative (i . e . recovery 

correlations < 0.9) to the other replications were rerun using 

a criterion of 0.0001, an order of magnitude higher than the 

default, to ensure that instances of poorer recovery were not 

due to a loose convergence. Since two measures of recovery 

were used, reruns were made for any replication whose 

coordinate and/or proximity recovery correlations were less 

than 0.9. Both correlations were recalculatedi however, only 

coordinates recovery are reported here. 

A total of 33 replications were redone, seven of which 

had both coordinat es and proximities recovery correlations 

less than 0.9. Table 2 indicates the number of error 

model/fitting criterion conditions which had coordinates 

recovery correlations less than 0.9. Rerunning these analyses 

with a tighter convergence criterion made little difference. 

The largest increase in recovery correlation for a given error 

and fitting criterion combination in any dimension was a 

0.001. 

, 

, 
-



'rable 2 

Number of MSCAL Coordinates Recovery Correlations 
Less Than 0.9 for Coxon Data 

by Error/Fitting Criteria Condition and Dimensionality 

Condition 
Error/Fitting Criteria 

Norm. /Norm. 
Norm. /Lognorm. 
Norm./Sq. Norm. 

Lognorm. /Norm. 
Lognorm./Lognorm. 
Lognorm./Sq. Norm. 

Sq. Norm. /Norm. 
Sq. Norm./Lognorm. 
Sq. Norm./Sq. Norm. 

2 

0 
0 
0 

0 
0 
0 

0 
0 
0 

Dimensionality 

3 4 

0 0 
0 0 
0 0 

2 5 
1 1 
0 2 

0 0 
0 1 
0 0 

48 
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3.1.6 Starting Configurations 

A good starting configuration is generally accepted as 

one rneans for irnproving recovery. To this end, the analyses of 

replication 5, the worst case coordinates recovery in three 

dimensions, were repeated as before but the true configuration 

was the starting configuration. Table 3 indicates that the 

starting configuration had a large effect on recovery. For aIl 

three dimensionalities the recovery correlations were alrnost 

1.0 wi th a perfect start. This particular set of data was 

perhaps less well-defined for sorne stimuli, given that the 

Coxon data is not replicated. 

3.2 Recovery of Proximities 

There was a similar picture produced for the recovery of 

proximi ties. Figures 3b and 4b for two- and three- dirnensional 

recovery of proximities closely parallel their counterparts in 

coordinates recovery. Yet, the magnitude of the recovery in 

these two dimensionalities is less for proximities. However, 

when the data were overfit the results differed from those 

corresponding to coordinates recovery. In particular, the 

lognorrnal criterion did not fare as badly, nor squared normal 

fitting fare as weIl, as in the case of coordinates recovery 

(see Figures Sa & Sb) . Furthermore, recovery was comparable in 

magnitude to that of the coordinates. Lognormal fit gave the 

l' 
best recovery of lognormal data which was significantly better 

• (p<.OS) than for either of the other two types of error. This 
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Table 3 

MSCAL Coordinates Recovery Correlations of a Single Replication 
for the Worst Case Error/Fitting Criteria Condition 
of Dimensionality 3 with Default and Perfect Starts 

Data 

Emotions* 

Coxon+ 

Start 

Default 
Perfect 

Default 
Perfect 

2 

0.97 
0.87 

0.98 
0.99 

Dimensionality 

3 4 

0.89 0.87 
1. 00 1. 00 

0.85 0.91 
0.99 0.99 

Note: Results are rounded to 2 decima1 points. 

* Worst case is replication 19 for lognormal error/lognormal fit [or 
dimensionality 3. 

+ Worst case is replication 5 for lognormal error/normal fit for 
dimensionality 3. 



Table 4 

Proximities Recovery Analysis of Variance 
for Coxon Data on 32 Occupations 

Effect df 

Between-datasets-effects 

True error models 2 
Predicted error models 2 
True X predicted models 4 
"Between" denominator 216 

Within-datasets-effects 

Dimensions 2 
Dims X true error models 4 
Dlms X pred. err. models 4 
Dims X true X pred. err. 8 
"Within" denominator 432 

Simple interaction effects 

True err X pred. err 
at dlm=2 

Denominator 
at dim=3 

Denominator 
at dlrn=4 

Denominator 

models 
4 

216 
4 

216 
4 

216 

MS 

0.57 
10.83 
18.82 

0.21 

22.53 
0.08 
0.91 
1.14 
0.11 

2.05 
0.02 

12.35 
0.17 
6.70 
0.23 

F-ratio 

2.8 
52.6 
91. 5 

211.7 
0.7 
8.5 

10.7 

120.6 

72 .0 

29.2 

* using Greenhouse-Geisser conservative test. 

p<0.06 
p<O.Ol 
p<O.Ol 

p<O.Ol* 
p<0.56* 
p<O. 01 * 
p<O. 01 * 

p<O.Ol 

p<O.Ol 

p<O.Ol 
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contrasts with the corresponding case in coordinates recovery. 

Moreover, for overfit data, only the lognormal cl-iterion 

produced significantly better recovery (p<.05) when the 

appropriat~ model was used to fit the data. These results 

were very similar to those of proximities recovery in three 

dimensions, although recovery was better in three dimensions. 

Overall, recovery of proximities was the worst in two 

dimensions. 

3.2.1 Mean-Square Error for 3-Dimensions 

Figure 6b indicates that the recovery of proximities was 

good. The mean squared discrepancy showed little variation 

across the various treatment conditions and was approximately 

0.16 for the unnormalized proximities (i.e. proximity 

magnitudes were less than 2.6) Squared bias accounted for 

~ost of the discrepancy, which was approximately 90% of the 

mean-square error (see Figure 8b), unlike the recovery of 

coordinates which had little squared bias with respect to the 

mean-square error. 

3.2.2 Loose Convergence 

Solutions with a proximities recovery correlation less 

than 0.9 were rerun using a tighter convorgence criteria of 

O. 0001, as in the case of coordinates recovery. Alse, the 

corresponding proximities recovery correlations recalculated 

for coordinates recovery that were rerun are included here. 

Table 5 shows the number of replications with recovery 
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Table 5 

Number of MSCAL proximities Recovery Correlations 
Less Than 0.9 for Coxon Data 

by Error/Fitting Criteria Condition and Dimensionality 

Condition 
Error/Fitting Criteria 

Norm. /Norm. 
Norm./Lognorm. 
Norm./Sq. Norm. 

Lognorm. /Norm. 
Lognorm./Lognorm. 
Lognorm./Sq. Norm. 

Sq. Norm. /Norm. 
Sq. Norm./Lognorm. 
Sq. Norm./Sq. Norm. 

2 

0 
0 
0 

0 
0 
1 

0 
3 
0 

Dimensionality 

3 4 

0 0 
0 0 
0 0 

2 2 
1 3 
1 5 

0 0 
0 0 
0 0 
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correlations less than 0.9. The use of a tighter convergence 

criterion gave little improvement in recovery. In fact, the 

correlations often worsened. The single largest increase for 

a given combination of error and fitting criterion was a 0.01. 

3.2.3 Starting Configurations 

Results were consistent with those obtained for stimulus 

coordinates recovery using a perfect starting configuration 

for the same replication and are shown in Table 6. However, 

only for dimensionality 3 was there an improvement in the 

correspùnding proximities recovery correlation. It appears 

that the starting configuration has less effect on proximities 

recovery than for configuration recovery in this case. It is 

reasonable to expect that providing an initial configuration 

will benefit coordinates recovery more than proximities 

recovery. 

3.3 MSCAL Perfo~ance 

Table 7 contains sorne overall measures of performance. 

The squared correlations for coordinates recovery were good in 

aIl 3 dimensions; they were slightly less so for proximities 

recovery. The mean elapsed times were mostly less than 1 CPU 

second. There ~re two notable exceptions: lognormal fit and 

squared normal fit, of normal data in 4 dimensions. This is 

surprisiIlg because these conditions did not show the worst 

recovery. Nevertheless, these times do indicate that the 
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Table 6 

MSCAL Proximities Recovery Correlations of a Single Replication 
for the Worst Case Error/Fitting Criteria Condition 
of Dimensionality 3 with Default and Perfect Starts 

Data 

Emotions* 

Coxon+ 

Start 

Default 
Perfect 

Default 
Perfect 

2 

0.92 
0.61 

0.96 
0.96 

Dimensionality 

3 4 

0.91 0.90 
1. 00 1. 00 

0.88 0.98 
0.98 0.98 

Note: Results are rounded to 2 decimal points. 

* Worst case is replication 19 for lognormal error/lognormal fit for 
dimensionality 3. 

+ Worst case is replication 5 for lognormal error/normal fit for 
dimensionality 3. 
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Table 7 

MSCAL Mean Performance on 27 datasets 
across 25 replications 

for Coxon Data for 32 Occupations 

True error Fit Dim Squared Correlations* Elapsed Time** No.+ 
model model Coordinates Proximities in secs. Iter. 

Normal Normal 2 0.97 0.91 0.63 3.8 
Normal Lognormal 2 0.94 0.86 0.84 9.6 
Normal Sq.normal 2 0.97 0.89 0.51 3.2 

Lognormal Lognormal 2 0.95 0.90 0.30 8.8 
Lognormal Normal 2 0.97 0.92 0.05 5.0 
Lognormal Sq.normal 2 0.95 0.86 0.08 3.3 

, 
'{ 

Sq.normal Sq.normal 2 0.98 0.92 0.36 3.1 
Sq.normal Normal 2 0.97 0.91 0.22 3.9 
,sq. normal Lognorma] 2 0.91 0.81 0.54 9.6 

Normal Normal 3 0.97 0.96 0.78 3.9 
Normal Lognormal 3 0.95 0.93 0.80 10.9 

," Normal Sq.normal 3 0.95 0.93 1. 37 3.2 '1 
l 

Lognormal Lognormal 3 0.97 0.96 0.56 7.1 
Lognormal Normal 3 0.95 0.94 0.77 4.5 
Lognormal Sq.normal 3 0.90 0.88 0.57 3.6 

Sq.normal Sq.normal 3 0.97 0.96 0.85 3.0 
Sq.normal Normal 3 0.96 0.95 1. 02 3.6 
Sq.normal Lognormal 3 0.89 0.85 0.16 9.6 

Normal Normal 4 0.34 0.94 0.28 5.2 
Normal Lognormal 4 0.93 0.92 0.15 14.0 
Normal Sq.normal 4 0.94 0.91 0.49 3.1 

Lognormal Lognormal 4 0.92 0.92 0.12 8.0 
Lognormal Normal 4 0.89 0.93 2.65 4.8 
Lognormal Sq.normal 4 0.88 0.93 0.20 3.9 

Sq.normal Sq.normal 4 0.97 0.94 1. 50 2.9 
Sq.normal Normal 4 0.96 0.94 2.22 4.1 
Sq.normal Lognormal 4 0.88 0.86 1. 89 9.6 

* These are mean R-Squared values for coordinate & proximities recovery. 
**These are mean elapsed times of execut ion of the DMSCAL subroutine. 
+ These are mean number of iterations. 

4f 

.... 
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algorithm worked well on the SUN-3/60 without use of the 

floating-point accelerator. It is interesting to nOl.e for aIl 

3 dimensionalities that larger mean nurnber of iterations were 

necessary for lognorrnal fiti however, this was not always 

reflected in the mean elapsed times. 

The average ratio of mean elapsed time to rnean nurnber of 

iterations across the nine conditjons was 0.09, 0.19 and 0.26 

for dirnensionality of 2, 3, and 4 respect i vely, increas i11g in 

an essentially uniform manner with dirnensionality, as 

expected. 
{ , 
! 
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Chapter 4 

RESULTS FOR THE EMOTIONS DATA 

The dependent variables, coordinates recovery and 

proximities recovery, were analyzed with a 3 X 3 X 3 ANOVA, 

using a two-between and one-within design. 

The distributions of cell means for the correlations 

between the true and recovered stimulus indicated sorne 

non-normali ty and hetr;rogeneous variances among the 

between-groups. Therefore, a transformation was employed, 

using the same badness-of-fit index of recovery as the Coxon 

data. 

4.1 Recovery of Stimulus Coordinates 

There was a triple interaction between dimensionality, 1 , 
.i 

1 
true error model and the predicted error model (see Table 8) . 

The simple interactions of the true and predicted error models 
, 

were significant for each of the three dimensions used. Tukey 

post hoc tests were done on these two-way interactions and the 

results are explained below. 

4 . 1 . 1 Recovery in 3-Dimensions 

For the true dimensionality, the best fit was produced 

\'Jhen the criterion function matched the appropriate underlying 

error model in only the squared normal case. The best recovery 

r 
using a normal fittlng criterion WdS given for squared normal 

.. data but it was not significantly different (p>.05) from that 



Table 8 

Stimulus space recovery Analysis of Variance 
for Emotions Data from MDS Workshop Members 

Effect df 

Between-datasets-effects 

True errer models 
Predicted error models 
True X predicted models 
"Between" denominator 

2 
2 
4 

216 

Within-datasets-effects 

Dimensions 2 
Dims X true error models 4 
Dims X pred. err. models 4 
Dims X true X pred. err. 8 
"Within ll denominator 432 

Simple main effects 

True err X pred. 
at dim=2 

Denominator 
at dim=3 

Denomina tor 
at dim=4 

Denominater 

err models 
4 

216 
4 

216 
4 

216 

MS 

12.64 
11.48 

3.28 
0.34 

5.31 
2.62 
2.83 
0.38 
0.14 

0.68 
0.11 
2.53 
0.30 
0.84 
0.21 

F-ratio 

37.1 
33.7 

9.6 

37.2 
18.3 
19.8 

2.7 

6.1 

8.4 

4.0 

* using Greenhouse-Geisser conservative test. 

p<O.Ol 
p<O.Ol 
p<O.Ol 

p<O.Ol* 
p<O. 01 * 
p<O. 01 * 
p<O. 01 * 

p<O.Ol 

p<O.Ol 

p<O.Ol 

60 
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for normal data (see Figure 9a). There were no significant 

differences (p>. 05) between the lognormal fit of the three 

data types. 

The worst recovery was for lognormal data using a squared 

normal fit; however, there were no significant improvements 

(p>.05) in fit for lognormal data using a normal or lognormal 

error model (see Figure 9a). It appears that squared normal 

data were recovered equally weIl using the distance and 

squared distance transformat ion but recovery was significant ly 

worse (p<.05) using the lognormal transformation. Normal data 

were best fit by the normal model but not significantly 

(p>.O':") better than by the lognormal or squared normal models. 

4.1.2 Recovery in 2-Dimensions 

When the data were underfit, the lognormal fitting was 

the worst of the three types of fit and recovery was 

significantly worse (p<.05) than for the other two fitting 

criteria. Also, aIl three types of data were equally poorly 

fit (p>0.5) by the lognormal model (see Figure 10a). There 

were no significant differences in recovery using a normal fit 

for the three data types. Squared normal fit gave the best fit 

overall in two dimensions. The fit was significantly better 

(p<.05) for squared normal data than lognormal data but nOL 

better than for normal data. 

4.1.3 Recovery in 4-Dimensions 

Overfitting in higher dimensionality produced clearcut 

results for the three data types. From Figure lIa, it is 
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apparent that lognormal data had poor recovery regardless of 

the fitting criteria used, and differences were nonsignificanl 

(p>.05). Similarly, there were no significant differences 

(p>.05) in recovery for normal data using the three fitting 

criteria. Squared normal data was the best recovered in 

comparison to the other data types. Squared normal data werc 

equally well fit using the normal model as the squared normal 

model (p>.05) but showed significantly better recovery than 

when a lognormal fit was used. Matching fitting criteria to 

the error distributions did not improve recovery in four 

dimensions. 

4.1.4 Mean-Square Error for 3-Dimensions 

Figure 12a indicates that the amount of stimulus recovery 

was more than adequate given the amount of error in the data, 

mean PVE=0.52. The maximum discrepancy was approximately 0.12 

fo.c the normalized recovery configurations. Also, the 

mean-square error for normal data was constant at 0.05 for the 

three fitting criteria. Squared normal d~ta had the lowest 

MSE, 0.03, using ei-her a normal or squared normal fitting 

criterion. This discrepancy was slightly higher using a 

lognormal fit. 

Most of the mean-square discrepancy was accounted for by 

the variance, which was approximately 90% of the mean-square 

error for all error and fitting criterion conditions. Since 
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the mean-square error '"ras small, the amount of bias VoTas 

considered negligible in the coordinates recovery in three 

dimensions. 

4.1.5 Loose Convergence 

Solutions with recovery correlations, for either 

coordinates or proximities, less than 0.9 were rerun using a 

convergence criterion of 0.0001. For dimension 2, there were 

no coordinates recovery correlations less than 0.9. Table 9 

contains the number of replications for which the recovery 

correlations were below 0.9. Rerunning using a tighter conver-

gence criteria made li ttle difference. The largest increase 

for a given combination of error and fitting criterion was 

0.009. Correlations often decreased rather than increased. 

4.1.6 Starting Configurations 

Improvement in recovery was sought by providing a "good" 

starting configuration. The analyses of replication 19 for the 

lognormal error and fit condition were repeated with the true 

configuration input as a starting configuration. This repli-

cation was chosen because it gave the worst coordinates 

recovery correlation for dimensionality 3. 

A perfect starting configuration imFroved recovery for 

dimensional i ties 3 and 4 su ch that perfect correlations 

resulted (see Table 3). However, the recovery correlation in 

two dimensions worsened when a perfect starting configuration 

was provided. This is in sharp contrast to the improvement a 
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Table 9 

Number of MSCAL Coordinat es Recovery Correlations 
Less Than 0.9 for Emotions Data 

by Error/Fitting Criteria Condition and Dimensionality 

Condition 
Error/Fitting Criteria 

Norm . /Norm . 
Norm. iLognorrn. 
Norrn./Sq. Norrn. 

Lognorrn. /Norm. 
Lognorm./Lognorm. 
Lognorrn./Sq. Norm. 

Sq. Norm./Norm. 
Sq. Norm./Lognorm. 
Sq. Norm./Sq. Norm. 

2 

0 
0 
0 

0 
0 
0 

0 
0 
0 

Dimensionality 

3 4 

0 0 
0 0 
0 0 

0 0 
1 1 
1 2 

0 0 
0 1 
0 0 
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perfect starting configuration gave to the worst case 

replication of the Coxon data. It seems unlikely that the 

starting configuration itself accounted for the reduction in 

recovery. 

It was not unexpected that the worst case of recovery in 

three dimensions, for both the Coxon and emotions data, 

involved lognormal data since error is proportional to the 

magnitude of the true distances. Presumably it was the error 

distribution for the particular replication that led to a 

sub-optimal local minimum. 

Figures 13 and 14 plot the relative error against the 

true distances for the worst case replications of the COXOll 

and emotions data, respectivelYi the error distances were the 

differences between the true distances and the error-perturbed 

distances. The two statistics provided for each plot are the 

proportion-of-variance of error (PVE) and the correlation 

between the absolute magnitude of error and the true distances 

(FCE). A positive FCE value indicates the extent to which 

larger error is present in larger distances. The FCE values 

indicate that more error was present in the larger distances 

in the emotions data, for the two replications considered. 

It is apparent from Figure 13 that the relative error for 

replication #5 of the Coxon data was less than 1 and evenly 

distributed across all true distances. On the other hand, 

Figure 14 of the emotions data indicates that replication 19, 

with lognormal error and the matching fitting criteria, had 
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very large error components: the largest relative error was 

approximately 5.5 times the true distance of about 5. There 

were also a number of other datapoints with large relative 

error. In this case, they were probably outliers in the data 

due to the simulation which might not occur in actual data. 

Since it was only for dimensionrtlity 2, the underfit 

case, that recovery worsened dramatically given a perfect 

f'tart ing configuration, i t i s probably due to "the particular 

pattern of outliers", suggested by Spence and Lewandowsky 

(1989) for somewhat simi lar resul ts, that made a perfect 

recovery unattainable for this replication in a given 

dimensionality. This assumes very different patterns of error 

were possible in different dimensionalities. It is to MSCAL's 

credit that it managed to avoid local minima problems in the 

default case, if indeed outliers were present. Results by 

Spence and Lewandowsky (1989) showed that programs using the 

Young-Householder-Torgerson procedure as a starting 

configuration, as MSCAL does, were badly affected by outliers. 

4.2 Recovery of Proximities 

The results produced for the recovery of proximities were 

similar to those for coordinates recovery, although recovery 

magnitudes were smaller for proximities in ail solution 

dimensions. Further differences were noted. When the data were 

underfit, recovery was not very good relative to the other two 

dimensions for any error distribution and fitting 
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Table 10 

Proximities Recovery Analysis of Variance 
for Emotions Data from MDS Workshop Members 

Effect df 

Between-datasets-effects 

True error models 2 
Predicted error models 2 
True X predicted models 4 
"Between" denominator 216 

Within-datasets-effects 

Dimensions 2 
Dims X true error models 4 
Dims X pred. err. models 4 
Dims X true X pred. err. 8 
"Within" denominator 432 

Simple main effects 

True err X pred. 
at dim .... 2 

Denominator 
at dim=3 

Denominator 
at dim=4 

Denominator 

err models 
4 

216 
4 

216 
4 

216 

MS 

9.17 
2.30 
1. 64 
0.21 

45.17 
1. 20 
0.05 
0.30 
0.10 

0.09 
0.03 
1. 49 
0.22 
0.67 
0.17 

F-ratio 

42.7 
10.7 
7.6 

457.9 
12.2 
0.5 
3.1 

3.0 

7.0 

4.0 

* using Greenhouse~Geisser conservative test. 

p<O.Ol 
p<O.Ol 
p<O.Ol 

p<O.Ol* 
p<O. 01 A 

p<0.75* 
p<O.Ol* 

p<0.02 

p<O.Ol 

p<O.Ol 

-''' .. 
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criterion combination (see Figure lOb). Also, there was no 

significant improvement (p>O.5) when the appropriate model was 

used to fit any of the three data types. For the case of 

overfitting, the resul~s parallel those of thè corr~sponding 

coordinates recovery (see Figures 11a & b) 

4.2.1 Mean-Square Error for 3-Dimensions 

Figure 12b indicates that the amount of recovery of 

proximities was less than satisfactory, given that MSE ranged 

from approximately 21 to 24 for unnormalized proximities whose 

magnitudes were less than 2.0. The mean-square error for 

normal and squared normal fitting criteria were approximately 

22 and 21, respect i vely, for the three data types. In aIl 

cases, 100% of the mean-square discrepancy was accounted for 

by squared bias, unlike the results for coordinates recovery 

which had little bias. 

4.2.2 Loose Convergence 

The number of solutions with recovery correlations less 

than 0.9 which were rerun using a convergence criterion of 

0.J001 are given in Table 11. Stricter convergence criterion 

made little difference. The largest single increase in 

correlation for a given replication was 0.02. 

4.2.3 Starting Configurations 

Results were similar to those obtained for stimulus 

coordinates recovery using a perfect starting configuration 

for the corresponding worst case replication in dimensionality 

3 and are shown in Table G. Once more, the disastrous effect 
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Table 11 

Number of MSCAL Proximities Recovery Correlations 
Less Than 0.9 for Emotions Data 

by Error/Fitting Criteria Condition and Dimensionalily 

Condition 
Error/Fitting Criteria 

Norm. /Norm. 
Norm. /Lognorm. 
Norm. /Sq. Norm. 

Lognorm. /Norm. 
Lognorm./Lognorm. 
Lognorm./Sq. NQrm. 

Sq. Norm./Norm. 
Sq. Norm./Lognorm. 
Sq. Norm./Sq. Norm. 

2 

0 
1 
0 

2 
2 
3 

0 
1 
0 

Dimensionality 

3 4 

0 0 
0 0 
0 0 

1 1 
2 3 
0 0 

0 0 
0 1 
0 0 

- -- - ----

---- ---

----- --- -
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a p~rfect staLting configuration had on the corresponding 

coordinates recovery for dimensionality 2 was magnified for 

proximities. 

4.2.4 MSCAL P~rformance 

Table 12 contains several overall measures of the 

program's performance. The squared correlations for 

coordinates recovery were good in aIl 3 dimensions; they were 

l ess so for proximities recovery in 2 dimensions and for 

lognormal error models in 4 dimensions. This agree3 with 

previous results. The mean elapsed times were almost aIl less 

than 1 CPU second on the SUN-3/60 without the floating-point 

accelerator. The average ratios of elapsed time to number of 

iterations were 0.10, 0.16 and 0.21 for dimensionality of 2, 

3, and 4 respectively. This ratio increased by about 0.05 as 

,the dimensionality increased, corresponding to the increased 

number of datapoints to be estimated with each increase in 

dimensionality. It should be noted that a single iteration 

included aIl the steps associated in estimating the various 

parameters as defined in the documentation (Clarkson, 1988a). 



t 
76 

-------------------_.---------_. __ ._- ---- -

True error 
model 

Normal 
Normal 
Normal 

Lognormal 
Lognormal 
Lognormal 

Sq.normal 
Sq.normal 
Sq.normal 

Normal 
Normal 
Normal 

Lognormal 
Lognorma1 
Lognormal 

Sq.normal 
Sq.normal 
Sq.normal 

Normal 
Normal 
Normal 

Lognormal 
Lognorma1 
Lognormal 

Sq.normal 
Sq.normal 
Sq.normal 

Table 12 

MSCAL Mean Performance on 27 datasets 
across 25 replications 

for Emotions Data from MDS Workshop Members 

Fit 
model 

Dim Squared Correlations* Elapsed Time·· NO.I 

Coordinates Proximi ties in secs. l U'r. 

Normal 2 
Lognormal 2 
Sq. normal 2 

Lognormal 2 
Normal 2 

Sq .norma1 2 

Sq.normal 2 
Normal 2 

Lognormal 2 

Normal 3 
Lognormal 3 
Sq. normal 3 

Lognormal 3 
Normal 3 

Sq . normal 3 

Sq.normal 3 
Normal 3 

Lognormal 3 

Normal 4 
Lognormal 4 
Sq.normal 4 

Lognormal 4 
Normal 4 

Sq.normal 4 

Sq.normal 4 
Normal 4 

Lognormal 4 

0.97 
0.95 
0.98 

0.95 
0.97 
0.97 

0.98 
0.97 
0.93 

0.97 
0.97 
0.97 

0.95 
0.95 
0.94 

0.98 
0.98 
0.95 

0.96 
0.95 
0.97 

0.92 
0.94 
0.92 

0.98 
0.97 
0.95 

0.88 
0.87 
0.87 

0.85 
0.87 
0.86 

0.88 
0.89 
0.85 

0.95 
0.94 
0.95 

0.92 
0.91 
0.91 

0.96 
0.97 
0.?3 

0.93 
0.92 
0.93 

0.89 
0.89 
0.89 

0.95 
0.95 
0.92 

0.22 
0.47 
0.06 

0.46 
0.41 
0.36 

0.35 
0.42 
0.50 

0.43 
0.33 
0.35 

0.43 
0.68 
0.34 

0.49 
0.23 
0.81 

0.05 
0.33 
0.15 

1. 37 
0.61 
0.53 

0.58 
0.63 
0.60 

3.b 
3.9 
'3.1 

S./ 
3.1 
1. l 

3.2 
3.~ 
3. f) 

3.0 
3.2 
2.S 

3.E; 
3.0 
2.8 

7.8 
2.8 
3.1 

2.5 
2.9 
2.3 

3.2 
2.8 
2.6 

2.4 
2.6 
2.8 

* These are mean R-Squared values for coordinate & proximities recovery. 
**These are mean elapsed times of execution of the DMSCAL subroutine. 
+ These are mean number of iterations. 
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Chapter 5 

DISCUSSION 

The interaction between the fitting criteria and error 

distributions in MSCAL have been explored. The implications of 

this study are confined to analyses with a least squares fit 

of ratio level data using a unweighted distance model. Also, 

the effects of different levels of error were not considered. 

Nevertheless, an attempt was made to study situations modelled 

on two applications of high quality and scope. 

The fitting criteria provide improved fit for the 

appropriate error distributions when the correct number of 

solution dimensions is used in the analysis. Lognormal fitting 

of squared normal data and squared normal fitting of lognormal 

data gave poorer recovery, as expected. The assumptions of 

both models, with respect to where error is distributed most 

heavily, were at odds with the actual error in the data, as 

measured by the FeE values. 

In the lower dimensionality case, a lognormal fitting 

criterion generally gives poorer recovery, while a squared 

normal fit produces better recovery, especially for the 

emotions data which had greater level of error. The squared 

normal fitting criteria was expected to do better when most of 

the error was in the smaller distances. This corresponds with 

the expectation that larger distances are decreased in lower 

dimensionality. When overfitting, normal and squared normal 
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fitting criteria generally do better except for data wHh 

lognormal error. 

Given that the error distribution and dimensionality of 

the data in practice are unknown, an assumption of normal 

error or rather, no transformation of dissimilarities and 

distances in the fitting criterion, is a cautious and sare 

initial step. Under this assumption, both coordinates and 

proximities estimates are quite satisfactory for the underfit 

and overfit dimension 301utions, in addition to those for the 

true dimensionality. 

The configuration estimates for the true dimensionality 

appear to be relatively unbiased. However, the opposite is 

seen for the proximities which tend to be highly biased. The 

algorithm gives close correspondence between configuration and 

distance recov€ry for t rue dimensional i ty and the overf i t: 

case, but proximities recovery is less satisfactory for lower 

dimensionality. This is explained Dy the associated loss of 

information in lower dimensionality which directly affect_s thc> 

distances. For those cases tested, a stricter convergence 

criterion seems to have little effect on improving the 

solutions. 

Although direct comparison of single replication and 

multiple replication data analyses cannot be m3de since two 

different datasets were used, there do not appear to be any 

major differences in their performance. Resul ts seem t0 

parallel each other for the two S2tS vf data. Al though the 
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replicated data seem to show more variability in the estim-

ates, more error was present in the data which was magnified 

for data with lognormal error. 

5.1 Further Research 

As ment ioned eariier there are man y more options to be 

tested in MSCAL. Certainly non -metric methods need to compared 

with metric. Further research for the current models studied 

might inciude investigation of the role of the starting 

configuration in performance. In particular, random starts 

wouid indicate whether MSCAL' s performance is particular to 

certain configurations, number of dimensions, and/or error 

levels. 

It is also of interest whether the choice of weighting of 

the criterion function would give different results, sinee 

diffc .:ent functi0ns would be optimized. Specifically, allowing 

the stress function to be weighted by the stratum variance 

could have interesting consequences for the optimization 

procedure when error and fitting criteria do not match. 
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APPENDIX A 

Table 13 

Population Configuration Matrix of 
Coxon Data for 32 Occupations 

Stimulus Dimension 

1 2 3 
-------------------------------

1 -0.429 -0.046 0.201 
2 -0.451 -0.160 -0.075 
3 0.295 0.261 0.046 
4 0.460 -0.198 0.053 
5 -0.427 -0.108 0.170 
6 -0.284 -0.148 -0.199 
7 0.313 0.273 0.074 
8 0.349 -0.083 -0.153 
9 -0.245 -0.034 0.150 

10 -0.432 -0.062 -0.119 
11 0.276 0.271 0.078 
12 -0.118 -0.085 -0.194 
13 -0.092 -0.242 -0.035 
14 -0.356 -0.193 -0.171 
15 0.495 -0.127 0.129 
16 0.034 -0.153 -0.238 
17 -0.414 0.086 0.195 
18 0.029 0.305 -0.225 
19 0.521 -0.090 0.132 
20 0.302 0.11.6 -0.018 
21 -0.204 0.164 0.244 
22 -0.207 0.318 -0.248 
23 0.258 0.179 -0.068 
24 0.421 -0.197 -0.059 
25 -0.412 0.112 0.140 
26 -0.271 -0.271 0.150 
27 0.476 -0.076 0.137 
28 0.439 -0.065 -0.079 
29 -0.505 0.051 0.051 
30 -0.247 0.196 -0.196 
31 -0.041 0.160 0.132 
32 0.468 -0.155 -0.006 
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Table 14 

Population Configuration Matrix of 
Emotions Data 

Stimulus Dimension 

1 2 3 

1 -5.284 -0.016 -0.516 
2 -2.303 2.005 -0.868 
3 -0.885 1. 583 2.304 
4 -2.333 -1.720 1. 449 
5 -4.661 0.431 0.537 
6 -1. 985 -1. 341 -0.611 
7 -3.179 -0.930 -1.859 
8 2.669 -3.040 0.536 
9 2.267 2.330 1. 656 

10 2.850 2.320 -0.002 
11 2.834 1. 354 -2.559 

..,.'" 12 3.405 -0.961 -1.722 1., 

-'" 13 2.617 -1.455 1. 889 
14 3.987 -0.559 -0.234 

-
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Table 15 

Population Proximities Matrix 
(Lower Triangle) of Coxon Data 

2 0.30 
3 0.80 0.86 
4 0.91 0.92 0.49 
5 0.07 0.2S 0.82 0.90 
6 0.44 0.21 0.75 0.79 0.40 
7 0.82 0.89 0.04 0.49 0.84 0.78 
8 0.86 0.81 0.40 0.26 0.84 0.64 0.42 
9 0.19 0.33 0.62 0.73 0.20 0.37 0.64 0.67 

10 0.32 0.11 0.81 0.92 0.29 0.19 0.84 0.78 0.33 
11 0.78 0.86 0.04 0.50 0.80 0.75 0.04 0.43 0.61 0.81 
12 0.51 0.36 0.59 0.64 0.48 0.18 0.62 0.47 0.37 0.32 0.60 
13 0.46 0.37 0.64 0.56 0.42 0.27 0.66 0.48 0.32 0.39 0.64 

0.22 
14 0.41 0.14 0.82 0.85 0.36 0.09 0.85 0.71 0.37 0.16 0.82 

0.26 0.30 
15 0.93 0.97 0.44 0.11 0.92 0.85 0.44 0.32 0.75 0.96 0.46 

0.69 0.62 0.90 

r 16 0.65 0.51 0.57 0.52 0.62 0.32 0.60 0.33 0.49 0.49 0.58 
... 0.17 0.25 0.40 0.59 

17 0.13 0.37 0.15 0.93 0.20 0.48 0.76 0.86 0.21 0.35 0.72 
0.52 0.51 0.46 0.94 0.67 

18 0.72 0.68 0.38 0.72 0.73 0.55 0.41 0.51 0.58 0.60 0.39 
0.42 0.59 0.63 0.73 0.46 0.65 

19 0.95 1. 00 0.43 0.15 0.95 0.87 0.42 0.33 0.77 0.99 0.44 
0.72 0.65 0.93 0.05 0.62 0.95 0.73 

f 
l. 
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20 0.78 0.80 0.16 
0.50 0.53 0.74 

21 0.31 0.52 0.55 
0.51 0.51 0.57 

22 0.62 0.56 0.58 
0.42 0.61 0.54 

23 0.77 0.79 0.15 
0.48 0.55 0.72 

24 0.90 0.87 0.49 
0.57 0.52 0.79 
0.41 

25 0.17 0.35 0.73 
0.49 0.51 0.44 
0.70 0.91 

26 0.28 0.31 0.78 
0.42 0.26 0.34 

"""'" 0.73 0.73 0.41 
"J 27 0.91 0.95 0.39 

0.68 0.62 0.89 
0.39 0.24 0.91 

28 0.91 0.90 0.38 
0.57 0.56 0.81 
0.30 0.13 0.90 

29 0.19 0.25 0.83 
0.48 0.51 0.36 
0.78 0.96 0.14 

30 0.50 0.43 0.60 
0.31 0.49 0.40 
0.52 0.79 0.38 

31 0.44 0.56 0.36 
0.42 0.44 0.56 
0.36 0.61 0.37 

32 0.93 0.92 0.45 
0.62 0.57 0.84 
0.40 0.08 0.93 

-

Table 15 (cont'd) 

Population Proxirnities Matrix 
(Lower Triangle) of Coxon Data 

0.36 0.79 0.67 0.18 0.24 
0.34 0.44 0.75 0.39 0.34 
0.78 0.36 0.55 (J.5b 0.72 
0.77 0.62 0.23 0.54 0.78 
0.90 0.64 0.47 0.61 0.69 
0.91 0.53 0.54 0.24 0.92 
0.44 0.78 0.65 0.18 0.29 
0.43 0.44 0.73 0.30 0.43 
0.12 0.88 0.72 0.50 0.16 
0.21 0.43 0.92 0.66 0.24 

0.93 0.22 0.45 0.75 0.84 
0.94 0.64 0.06 0.60 0.96 

0.74 0.23 0.37 0.80 0.72 
0.78 0.51 0.39 O.Ît:> 0.81 

0.15 0.90 0.83 0.39 0.32 
0.06 0.59 0.91 0.69 0.05 
0.77 
0.19 0.90 0.74 0.39 0.12 
0.22 0.44 0.91 0.57 0.23 
0.77 0.22 
1. 00 0.21 0.39 0.85 0.89 
1. 02 0.64 0.17 0.65 1. 04 
0.41 0.99 0.96 
0.85 0.51 0.35 0.63 0.66 
0.87 0.45 0.44 0.30 0.88 
0.58 0.84 0.74 0.38 
0.62 0.47 0.51 0.38 0.54 
0.61 0.49 0.39 0.39 0.62 
0.49 0.57 0.57 0.48 0.39 
0.07 0.91 0.78 0.46 0.20 
0.14 0.49 0.94 0.67 0.16 
0.76 0.16 0.12 1. 00 0.82 

87 

0.59 0.76 0.18 

0.22 0.48 0.52 
0.57 
0.53 0.46 0.59 
0.59 0.52 
0.59 0.73 0.17 
0.09 0.56 0.52 
0.72 0.87 0.51 
0.34 0.78 0.83 

0.22 0.31 0.71 
0.73 0.24 0.48 

0.24 0.38 0.77 
0.71 0.45 0.71 

0.72 0.94 0.40 
0.30 0.73 0.88 

0.72 0.87 0.41 
0.24 0.76 0.77 

0.29 0.22 0.81 
0.81 0.37 0.50 

0.42 0.33 0.60 
0.58 0.44 0.14 

0.28 0.51 0.34 
0.38 0.20 0.44 

0.74 0.91 0.47 
0.32 0.78 0.86 
0.61 
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Table 16 

Population Proximities Matrix 
(Lower Triangle) of Emotions Data 

2 3.62 
3 5.47 3.50 
4 3.93 4.39 3.71 
5 1. 30 3.16 4.33 3.30 
6 3.56 3.37 4.27 2.12 3.41 
7 2.66 3.22 5.38 3.50 3.13 1. 78 
8 8.57 7.22 6.09 5.25 B .11 5.08 6.66 
9 8.20 5.23 3.30 6.13 7.27 6.06 7.26 5.50 

10 8.48 5.23 4.45 6.73 7.76 6.09 7.10 5.39 1. 76 
11 8.48 5.45 6.13 7.23 8.16 5.85 6.47 5.38 4.36 2.73 
12 8.82 6.49 6.41 6.60 8.49 5.52 6.59 3.16 4.85 3.75 2.53 
13 8.38 6.62 4.65 4.98 7.64 5.24 6.92 2.08 3.81 4.23 5.27 ,{ 3.73 
14 9.29 6.82 5.90 6.64 8.74 6.03 7.36 2.91 3.86 3.10 3.22 

1. 65 2.68 

,. 
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