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August 2023

A thesis submitted to McGill University in partial fulfillment of the requirements of the

degree of Master of Science

© Johanna Schwartzentruber, 2023



Abstract

Beluga is a proof assistant designed for the mechanization of programming languages

and other formal systems. An interactive tactic-based prover Harpoon was recently de-

ployed, and though it was designed to ease usability for Beluga’s users, much human

interaction is still required for its proof developments.

We develop a theoretical foundation for a semi-automated proof search procedure within

Beluga in the form of a two-level focusing calculus and implement it through the tactic

auto-invert-solve. The focusing calculus is sound and complete with respect to the se-

quent calculus for the fragment that we are automating. Once a case analysis has been

conducted, auto-invert-solve searches for a focused uniform proof of a subgoal via a

bounded depth-first search by using all available assumptions. Upon completion of a proof,

auto-invert-solve produces a proof witness in the form of a program that is indepen-

dently type-checked against the subgoal and subsequently spliced into the proof script.

Our aim is to automate the tedious cases of proof development, leaving only the inter-

esting cases to the user. We have utilized auto-invert-solve to simplify several common

theorems including type preservation and value soundness for MiniML, weak-head normaliza-

tion for the simply-typed lambda-calculus, and the Church-Rosser theorem for the untyped

lambda-calculus. In these case studies, we demonstrate that auto-invert-solve reduces

the amount of user interaction needed to complete large and complex proofs by automatically

solving simple subgoals and helper lemmas.
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Résumé

Beluga est un assistant de preuve conçu pour la mécanisation de languages de program-

mation et autres systèmes formels. Récemment, un prouveur interactif basé sur les tactiques

Harpoon a été déployé, et malgré qu’il ait été conçu pour faciliter l’utilisation de Beluga,

il nécessite tout de même beaucoup d’interaction de la part de l’utilisateur afin de produire

des preuves.

Nous développons un fondement théorique pour une procédure de recherche de preuve

semi-automatisée dans Beluga sous la forme d’un calcul à deux niveaux avec focus, et

nous l’implémentons en tant que la tactique auto-invert-solve. Ce calcul avec focus est

correct et complet par rapport au fragment du calcul des séquents que nous automatisons.

Lorsqu’une analyse par cas est effectuée, auto-invert-solve cherche une preuve uniforme

par le focusing pour un sous-objectif au moyen d’un parcours en profondeur limitée qui utilise

toutes les hypothèses disponibles. Lorsque la preuve est terminée, auto-invert-solve pro-

duit une démonstration sous la forme d’un programme dont le type est vérifié indépendamme-

nt avec celui du sous-objectif, puis le programme est inséré dans la preuve.

Notre objectif est d’automatiser les cas fastidieux du développement de preuves, et de

ne laisser que les cas intéressants pour l’utilisateur. Nous avons utilisé auto-invert-solve

pour simplifier plusieurs théorèmes communs, incluant la préservation des types et la cohéren-

ce des valuers dans MiniML, la normalisation weak-head du lambda-calcul à types simples, et

le théorème de Church-Rosser pour le lambda-calcul sans types. Par ces études de cas, nous

démontrons que auto-invert-solve réduit la quantité d’interactions nécessaires de la part

de l’utilisateur pour compléter des preuves larges et complèxes en résolvant automatiquement

des sous-objectifs simples ainsi que des lemmes auxiliaires.
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Chapter 1

Introduction

Since the first personal computer came to market in the early seventies, society has shifted

to incorporate technology in every sector possible. Among those include government, edu-

cation, law-enforcement, banking, entertainment, and health care. Recently, the COVID-19

pandemic forced millions of students to participate in e-learning, with some as old as five

having to learn how to operate a computer.

Our dependency on technology then makes it crucial that the software we employ per-

forms as intended. To ensure this, we count on various forms of software verification, one

of which is formal verification. Formal verification is the process of proving that a system

upholds some property using formal methods. One common method is theorem proving.

Often this involves modelling the system of interest in some logic, called the specification

logic and proving statements about the behaviour of the system within another logic, called

the reasoning logic. It is common practice to construct these formal proofs within computer

programs specifically designed to aid users in constructing mathematical proofs, i.e. proof

assistants. The reason for their use is to minimize human errors made during verification,

which is essential when working to ensure trust in software.

Formal verification has been used to verify the correctness of the behaviour of a number
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of software systems. One notable example is the CompCert C verified compiler: a high-

assurance compiler for nearly all of the C language [Leroy, 2009]. It is mechanized in the

Coq proof assistant [Bertot and Castéran, 2004], making it the first verified compiler for a

realistic language. Its ingenuity was put to the test by researchers Yang et al. who found

that it produced no middle-end bugs, which were found in every other tested C compiler

[Yang et al., 2011]. Having a verified compiler eliminates one of the sources of bugs in code,

bringing us closer to writing error-free programs.

There are numerous processes to verify within the software layer of computer systems.

One of interest is the programming language (PL) itself that one uses to write programs

in. There are certain properties programming languages can uphold which guarantees that

programs written in them perform as they should. For example, in the context of statically-

typed languages there is a notion of type safety which ensures that any well-typed program

cannot “go wrong”. In other words, any well-typed expression must evaluate to a value of the

appropriate type and not get stuck. The concepts of “value”, “evaluation”, and “well-typed”

are formally defined by the syntax and semantics specific to each PL.

When developing proofs about a theory we are performing meta-reasoning, which differs

from developing proofs within a theory. Constructing meta-theoretic proofs about PLs in

particular is tricky as it involves careful consideration about proof infrastructure such as: how

to represent variables, substitutions, contexts, and derivations. At present, there is still no

canonical way to support these concepts in proof assistants. In 2005, a set of PL researchers

became determined to bring together the PL and automated proof assistant communities.

With the desire to make proof assistants commonplace in PL research, these scientists created

the POPLmark challenge [Aydemir et al., 2005]: a set of benchmark problems intended to

investigate the current state of the art, as well as stimulate innovation within the field. These

problems were designed to highlight some of the known difficulties that arise in PL theory

proofs. Despite its potential, the POPLmark challenge did not push existing systems to

their limits. All systems already had enough infrastructure to be able to complete the tasks
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[Aydemir et al., 2012]. One in particular was Beluga [Pientka and Dunfield, 2010].

Beluga is a proof assistant designed for the mechanization of programming languages

whose sophisticated infrastructure makes for simple and concise formalizations. Some fea-

tures of Beluga include its first-class support for substitutions and contexts, its use of

contextual objects, and employing higher-order abstract syntax (HOAS) in its specification

logic, an implementation of the logical framework LF [Harper et al., 1993]. These features

reduce the amount of infrastructure one needs to build manually and allow for more concise

and elegant mechanizations. Users of Beluga formalize their systems within LF and sub-

sequently prove properties about them in Beluga’s reasoning logic: a dependently typed

first-order logic. Since reasoning about a formal system often involves also reasoning within

one, proof search in Beluga requires proof search over two logics. Beluga represents

theories and meta-theories using the propositions-as-types perspective, that is, propositions

are encoded as types of the (meta-)theory, and their proofs as objects or programs within

that theory. We focus our attention on proofs by structural induction. Those proofs are

implemented as recursive dependently-typed programs and checking the correctness of them

reduces to type checking the corresponding program. In order to assist with proof develop-

ment, an interactive tactic-based prover was recently deployed for Beluga, called Harpoon

[Errington et al., 2021]. Conducting proofs in Beluga now requires one to apply tactics

to a goal until no subgoals remain. These tactics are meant to mimic the natural large

steps one usually takes in written proofs making proof development more familiar for users

which in turn improves their experience. While proving a theorem interactively, Harpoon

simultaneously builds a proof script that, upon completion of the proof, gets translated to a

Beluga program and presented to the user. Therefore Beluga proofs are verifiable.

Even with the help of interactive theorem proving (ITP), developing formal proofs often

still requires much assistance from a user with a high level of domain specific knowledge and

familiarity with the proof assistant. Many formal theorems have numerous helper lemmas

and theorems that precede them, many of which are tedious to construct and offer no real
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substance to the main proof. Even main theorems often only include a small number of

interesting cases that are worth investigating, with the rest being simple, almost trivial.

These are examples of cases and theorems we would like to prove automatically. This would

allow users to focus their energy on the parts of the proofs that offer insight.

Currently, Twelf is the only HOAS-based proof assistant designed for mechanizing pro-

gramming languages which is fully automated [Pfenning and Schürmann, 1999]. Why bother

then providing more automation to Beluga? There are several shortcomings of Twelf that

are addressed by features of Beluga. Most notably, Beluga’s logic is more expressive: unlike

Twelf, Beluga supports inductive and co-inductive types allowing for encodings of recursive

definitions about LF objects. Further, Twelf does not produce proof witnesses, providing

no way to verify the correctness of a proof. It is therefore of interest to extend Beluga’s

automatic proof search capabilities which would make it an ideal candidate for formal system

verification.

In this thesis I present the theoretical foundation and implementation of the tactics

auto-invert-solve and inductive-auto-solve for Harpoon. The goal of these tactics

is to ease proof development for Beluga users by allowing them to by-pass many of the

simpler proofs. auto-invert-solve is the implementation of a two-level focusing calculus.

The tactic is meant to be employed once all variable splits for a subgoal have been made.

auto-invert-solve either finishes a proof or fails, in which case the user is asked for

another tactic. If auto-invert-solve finishes a proof for a subgoal, the program that

is generated is spliced into the proof script, and Harpoon continues to the next subgoal

if any remain. The tactic inductive-auto-solve is an extension of auto-invert-solve,

which when called automatically performs induction on the user-specified argument and calls

auto-invert-solve on each produced subgoal. We demonstrate the usefulness of these

tactics by employing them on a number of notable case studies such as type preservation

and value soundness for MiniML, weak-head normalization for the simply typed lambda

calculus, and the Church-Rosser theorem for the untyped lambda calculus. We show that
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they allow for automatic completion of many of the simpler lemmas and subcases of these

theorems, so long as the proof state falls within our subset of interest. This subset includes

all of Beluga’s logic excluding substitution and parameter variables, and block context

schemas in the specification logic, and inductive types, (automatic) recursion, and pattern

matching in the reasoning logic.

1.1 Contributions

The contribution of this work is three-fold. First, we develop a two-layer focusing calculus de-

signed for proof search over a subset of Beluga’s logic. We prove it sound and complete with

respect to the corresponding sequent calculus in Chapter 3. Second, we implement this focus-

ing calculus in the form of two tactics, auto-invert-solve and inductive-auto-solve

in Chapter 4. Third, we demonstrate the effectiveness of our work using a number of popular

case studies within PL theory (see also Chapter 4).

1.2 Contribution of Authors

This thesis is based in part on the previously published paper accepted at the International

Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, cited here

[Schwartzentruber and Pientka, 2023]. I have permission from my co-author to use the work

in my thesis.

The literature review presented in Chapter 2 is of my own work. The sequent calculus

for contextual LF presented in Chapter 3.2 is an extension of that presented in Nanevski

et al. [2008] with the addition of explicit substitutions, context variables, and universal

statements. The sequent calculus for the computation level also presented in Chapter 3.2 is

my own creation and also based off the work in Nanevski et al. [2008], especially the 2R and

2L rules. The admissibility of cut and contextual cut for the computation level was proven
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by myself.

The focusing cacluli presented in Chapter 3.3 was my own work and the soundness and

completeness theorems and proofs were all proven by myself.

The theorem prover for contextual LF in Beluga was implemented by Jacob Errington

which I then extended with proof search over substitutions. I implemented the meta-theorem

prover and tested it on a number of interesting examples which are illustrated in Chapter

4.3.
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Chapter 2

Background

As theorem proving relies on encodings, we begin in Chapter 2.1 with a discussion of the

different approaches used to encode languages, and in particular, on the sophisticated ap-

proach taken by Beluga. In Chapter 2.2 we introduce Beluga by providing an overview

of its interesting aspects which impact our proof search algorithm and motivate our work by

showcasing the large amount of user interaction needed to interactively build proofs using

Harpoon. Finally, to situate our work, we survey similar proof assistants along with their

automation statuses, comparing them to Beluga.

2.1 Techniques to Encode Formal Systems

Meta-reasoning is limited to how effective an encoding is. Stronger meta-languages allow

for more direct encodings, and the more direct the encoding, the easier it is reason about.

Therefore it is crucial for proof assistant designers to think carefully about how they plan to

implement encodings of object-languages.
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2.1.1 Encoding Binders

Reasoning about languages poses a unique challenge that does not arise when reasoning

about other inductive data structures, such as lists or trees. Languages, like the simply

typed lambda-calculus (STLC), incorporate a special concept, namely bindings.

A STLC is a small formal system that can be used to model computation based on two

simple ideas: function abstraction and application. These concepts appear everywhere in

computation, and as such, this core calculus has been used extensively as the logical basis for

studying programming languages. Therefore, we use it as the running example throughout

this thesis.

Its syntax is simple: consisting of a set of types and terms. There is a finite set of type

constants from which new types are created using the function-type constructor. Terms are

either variables, constants, or constructed through function application and abstraction.

Base Types P ::= b
Types A,B ::= P | A → B
Terms M,N ::= x | c | λx : A. M | MN

Figure 2.1: Grammar of a STLC.

Seemingly simple, this small calculus poses quite the challenge for proof assistant design-

ers. A reoccurring issue when building a proof assistant for PL theory is determining how

to represent variable binders, like the abstraction operator, in an implementation. In the

expression λx : A.M , the λ operator binds the variable x of type A in the term M . There are

several ways to encode the concept of binding, each with their own benefits and implications.

First-Order Approaches

These techniques restrict the quantifier to quantifying solely over individuals, as below.

In the implementation of the untyped lambda-calculus below, variables are represented as

strings and the λ operator is implemented as the constructor abs.
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var = string
term =

| abs : var → term → term
| app : term → term → term

Often using these approaches make it easy to directly formalize systems but at the cost

of providing manual support for keeping track of and renaming bound variables and avoiding

variable capture. Such processes are used when applying substitutions and deciding if terms

are α-equivalent, which happens regularly when reasoning about PL theory.

A few common first-order approaches include nominal [Pitts, 2001], de Bruijn [de Bruijn,

1972], and locally nameless representations, also conceived by de Bruijn. Nominal represen-

tations are most similar to what we write on paper; bound variables are given a name and

terms are equivalent based on α-conversion, making it simple to read. The downside to using

this method is that much infrastructure is needed to deal with substitution.

A more straightforward technique to use in implementations are De Bruijn encodings.

Variables are represented as positions indicating their distance from their binding construc-

tor. Take for instance the term λx.λy.xy. Using de Bruijn indices this would be expressed

as λ.λ.2 1. The benefit to this approach is that there is no need to handle α-conversions

since each term has a unique representation. On the other hand, these formulations can be

difficult to read for humans and since terms and their indices are highly dependent on the

context, much consideration is needed when moving terms between different contexts.

Locally nameless encodings provide the best of both worlds [de Bruijn, 1972]. Bound

variables are represented by de Bruijn indices and free variables by explicit names. Therefore

α-equivalence classes do not exist and there is no need to shift indices when introducing free

variables. Despite these benefits, much overhead is still required to construct proofs. In fact,

Xavier Leroy’s locally-nameless solution to the POPLmark challenge was more verbose than

a pure de Bruijn solution [Leroy, 2007].
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Higher-Order Abstract Syntax

The higher-order approach implements the object-level λ operator as a higher-order function

that takes as input some function f which maps lambda-terms to lambda-terms. Abstractions

may be implemented as: abs f. Now the argument is viewed as a function at the meta-level,

that is, object-level variables and binders are represented by variables and abstractions in

the meta-language.
term =

| abs : (term → term) → term
| app : term → term → term

Issues of renaming, α-conversion, and substitution are also passed to the meta-language,

which already has designated infrastructure to handle these operations. The drawback to

this method is that the implementation logic must be able to express higher-order types,

which not all can. Nevertheless, by reusing the infrastructure in the meta-language, HOAS

allows for more elegant and concise formalizations.

2.1.2 Logical Frameworks

Logical frameworks are (often simple) meta-logics used to present or define deductive systems

in a uniform way by encoding them into a signature. There are several properties a logic

should posses in order to be a “good” logical framework. First, it must be possible for

an implementation to validate proofs within a specification of a deductive system. Second,

it should be possible to specify adequate encodings to ensure the derivations within the

specification are correct. An adequate encoding is one that offers a safe translation between

object-level expressions and their encodings. This ensures that after we operate on meta-

level expressions, we may translate the results back into the object-language for correct

interpretation. Further, for HOAS-based systems, adequacy actually guarantees a bijection

between object-level expressions and their encodings.
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We discuss Beluga’s logical framework of choice, the Edinburgh Logical Framework (LF)

[Harper et al., 1993], and its logic programming interpretation, hereditary Harrop formulas

[Miller et al., 1991].

Hereditary Harrop Formulas

Higher-order hereditary Harrop formulas are the higher-order extension of hereditary Harrop

formulas [Miller et al., 1991]. These sets of formulas in intuitonistic logic are generalizations

of Horn clause logic [Emden and Kowalski, 1976] which makes them better suited for encoding

PLs. These subsets are interesting because they possess a special property which makes them

ideal candidates as logical frameworks.

G ::= ⊤ | A | G ∧G | G ∨G | D → G | ∀x : τ.G | ∃x : τ.G
D ::= A | G → D | D ∧D | ∀x : τ.D

Figure 2.2: Grammar of hereditary Harrop formulas.

The logic consists of two mutual recursively defined sets of formulas. A program (or later

referred to as an environment) is a set closed of D-formulas and a goal is a closed G-formula.

In this setting, proof search corresponds to deducing a given goal G from a given program

P .

Constructing proofs in intuitonistic logic can be highly non-deterministic. Hereditary

Harrop formulas possess a special property in which proof construction in their theories is

more directed. In particular, these classes exhibit the existence of uniform proofs for all

provable goal formulas [Miller et al., 1991]. Uniform proofs are discussed in more detail in

Chapter 3.3, but for now it is enough to know they are proofs whose structure obeys a set

of conditions. Restrictions on proof structure help to simplify the search procedure which is

especially important for automating proof search.
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The Edinburgh Logical Framework

The Edinburgh Logical Framework (LF) is a simple meta-logic created by Robert Harper,

Furio Honsell, and Gordon Plotkin in the nineties [Harper et al., 1993]. LF is based on a

dependently-typed lambda-calculus with support for higher-order types thereby allowing for

encodings using HOAS. There are three levels of terms in LF: objects, types, and kinds. By

viewing hereditary Harrop formuals as the logic programming interpretation of LF types,

specifications are encoded using the propositions-as-types perspective. Therefore proofs are

validated by type checking the corresponding proof object. Since Beluga has an implemen-

tation of LF which it uses as its specification language, we discuss it here in more detail.

To demonstrate how theories are encoded in LF (and similarly in Beluga), we encode

a STLC with one base type, making use of HOAS encodings which LF permits. We choose

an intrinsically-typed representation to simplify our discussion.

LF tp : type =
| b : tp
| arr : tp → tp → tp
;

LF term : tp → type =
| app : term (arr A B) → term A → term B
| abs : tp → (term A → term B) → term (arr A B)
| c : term b
;

Note that the types for the constructors app and abs contain free variables in them

(A, B). We consider such variables as being implicitly universally quantified over. We

continue to omit inferable universal abstractions in LF declarations for better readability.

We use the keyword LF to specify LF encodings. LF kinds, types, and objects are printed

in black, pink, and blue respectively. In the above encoding, tp is an LF type which has the

LF kind type. tm is an LF type which has the LF kind Πx:tp. type. This type has three

constructors. The LF object c is a nullary constructor, and represents an object with type

term b. The LF object app is a binary constructor which when applied to two LF objects of

type term (arr A B) and term A, outputs an LF object of type term B. As an example,

if λx : A. M is a term of type A → B and N is some term of type A then we implement the

function application (λx : A. M)N as app (abs A λx. M) N which is an LF object of type
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term B.

The reductions of lambda terms define their operational semantics. Reduction is often

formalized as a set of possible steps a term can take. We define this semantics using the

relation step:
LF step : term A → term A → type =
| beta : step (app (abs A M) N) (M N)
| stepapp : step M M’ → step (app M N) (app M’ N)
;

The relation step is an LF type which relates two LF objects of the same type. Viewing

this from the propositions-as-types perspective, we have for any two encodings of lambda

terms M and N the type step M N if the term M steps or reduces to the term N. This type

has two constructors. As an example, the LF object beta has type:

ΠA: tp. B: tp. M: term A → term B. N: term A. step (app (abs A M) N) (M N)

Viewing this from the proofs-as-objects perspective, we treat beta as a proof of the propo-

sition encoded as its type, which we translate to mean: for any types A and B, and any

terms M and N of types A → B and A respectively (i.e. M = λx : A. M ′), the lambda term

(λx : A. M ′)N steps to the term [N/x]M ′. This is exactly beta-reduction, where object-level

substitution is modelled by LF application.

We use these LF constructors to construct lemmas within the logic. For example, if c is

a constant in our object language with base type b, the proposition stating that the term

((λx : b → b.(λy : b. x y)) (λw : b. w)) c reduces to ([(λw : b. w)/x](λy : b.(x y))) c is

encoded as:

step (app (app (abs (arr b b) (λx. abs b (λy. app x y)))

(abs b (λw. w))) c) (app ((λx. abs b (λy. app x y)) (abs b (λw. w))) c)

In order to “prove” this statement, we need to find an LF object with this type. After some

thought, we can see that the object:

stepapp b b (app (abs (arr b b) (λx. abs b (λy. app x y)))

(abs b (λw. w))) ((λx. abs b (λy. app x y)) (abs b (λw. w))) c
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(beta (arr b b) (arr b b) (λx. abs b (λy. app x y)) (abs b (λw. w)))

inhabits this type. Therefore this object represents a proof of the statement

((λx : b → b.(λy : b. x y)) (λw : b. w)) c reduces to ([(λw : b. w)/x](λy : b.(x y))) c. In

fact this is the only proof of this fact within our encoding, but this is not always the case.

2.2 Beluga System Overview

Proofs in PL theory are usually syntactic. The difficulty of these proofs comes from the

extensive amount of infrastructure that is required to formalize and reason about formal

systems.

In the previous section we explored different ways to encode formal systems. First-order

approaches require additional mechanisms (written in the object-level) to deal with variable

renaming and applying substitutions. These operations must be manually programmed for

each new object language encoding. On the other hand, using HOAS encodings allow us to

pass these issues off to the meta-level (specification logic), which already has the required

infrastructure to support these operations.

Beluga is a proof assistant designed for mechanizing the meta-theory of formal systems

[Pientka and Dunfield, 2010]. It includes an implementation of LF which users can use to

encode their system of interest. Reasoning about these LF encodings takes place in Beluga’s

meta-logic for LF, which we call the reasoning logic. In order to perform meta-reasoning, we

embed these LF objects within the reasoning logic using a modal box (necessity) operator

2 [Pientka, 2008]. Consequently, this reasoning logic exists on a different level above the

specification logic LF.

We explore this notion in more detail as well as other key Beluga features. We then

showcase how meta-theorems are formalized and proven in Beluga as well as interactively

using Harpoon. This provides an informal description of the reasoning logic of Beluga.
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2.2.1 Beluga: Contextual Modal Type Theory Extended

There are two levels of logic within the Beluga system. Beluga’s specification logic

is a generalization of LF called contextual LF and its reasoning logic is analogous to a

dependently-typed first-order logic [Pientka, 2008]. This two-level logic is based on de-

pendent contextual modal type theory (CMTT) [Nanevski et al., 2008] and resembles the

constructive modal logic S4. To simplify our discussion, we only focus here on simple types.

In traditional CMTT we maintain notions of truth and validity. We consider a proposition

to be valid, represented by the judgment C valid, if its truth does not depend on the

truth of other propositions. This concept is generalized to contextual validity, written with

box-syntax: [Ψ ⊢ C] and represented by the judgment C valid Ψ where Ψ is short for

C1 true, . . . , Cn true. We take this to mean that the truth of C may depend only on the

truth of assumptions in Ψ (and contextually valid assumptions which are assumed to always

be true). Hypothetical judgments contain two contexts: a modal context ∆ which contains

contextually valid assumptions and a local context (Γ or Ψ) which contains ordinary bound

variables. The general judgment takes the form:

A1 valid Ψ1, . . . , An valid Ψn;B1 true, . . . , Bm true ⊩ C true

To prove contextual validity [Ψ ⊢ C] is to prove C using only assumptions from Ψ and

∆.

∆; Ψ ⊩ C true

∆; Γ ⊩ [Ψ ⊢ C] true

Figure 2.3: Definition of contextual validity.

We call the assumptions in the modal context contextual or meta assumptions, and we

denote them as u. We may use such an assumption C valid Ψ to deduce C true, but only if

we verify Ψ. Later, we see this is achieved by finding a substitution from Ψ into the current

local context in which the contextual assumption is to be used. As a consequence, we pair
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contextual variables with an explicit postponed substitution, representing a closure. We then

apply the substitution once we know what the meta-variable should stand for. We use the

judgment ∆; Γ ⊩ Ψ to denote that all the propositions in Ψ are true using only assumptions

from ∆ and Γ.

∆, u :: C valid Ψ; Γ ⊩ Ψ
∆, u :: C valid Ψ; Γ ⊩ C true

In Beluga’s application of CMTT, two different languages are used for terms inside and

outside a box, unlike the single one used in our discussion of CMTT thus far. In Beluga,

contextual LF is the language used inside the box and is the one in which users encode their

formal systems. Meta-reasoning about such contextual objects is then done in Beluga’s

reasoning logic, the language used outside the box.

Now, we use Ψ to denote LF (specification-level) contexts when reasoning within LF and

Γ to denote local contexts in our reasoning or computation logic. We continue to use ∆

as before. There are now two judgments to consider: we take ∆; Ψ ⊢ A to mean LF type

A is provable using assumptions in ∆ and Ψ, and ∆; Γ ⊩ τ to mean computation type τ

is provable using assumptions in ∆ and Γ. Our new definition of contextual validity then

becomes:

∆; Ψ ⊢ A

∆; Γ ⊩ [Ψ ⊢ A]

Figure 2.4: Definition of contextual validity in Beluga.

We can then conclude that if in our specification logic we derive the type A under

assumptions from ∆ and Ψ we then have a derivation in our reasoning logic of the contextual

type [Ψ ⊢ A] under assumptions from ∆ and any computation-level context we choose. We

then may use these contextual types to construct properties about such LF derivations.

When we turn this definition into an inference rule in our proof system and apply it in

bottom-up search, we must remember that none of the assumptions from Γ may be used to
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prove A. These assumptions reside on a different level/logic and thus make no sense in LF.

We discuss Beluga’s specification logic in more detail. Contextual LF extends LF by

providing explicit support for contextual objects and first-class contexts. These concepts

allow us to concisely formalize and reason about open LF objects which depend on as-

sumptions. As a result, we can encode an entire (closed) hypothetical judgment within a

contextual object. Extensions made to Beluga also allow inductive reasoning over such

contextual objects and contexts [Pientka and Abel, 2015].

Support for first-class contexts gives us the ability to quantify and reason abstractly over

them. This is done through the use of context variables. Quantification over contexts is

required for many meta-theorems, and being able to do so explicitly gives the user more

control over proof development. Further, having this direct support for contexts and hypo-

thetical derivations allows for more compact proofs as it eliminates the need to build and

maintain contexts explicitly and it gives us substitution lemmas for “free”.

2.2.2 Specifying Meta-Theories

We focus here on constructing two lemmas needed to prove weak-head normalization for the

STLC to highlight key aspects of Beluga. For simplicity we do not reduce inside abstrac-

tions. Interested readers may check out [Cave and Pientka, 2013] for the full mechanization

of the theorem.

We build on the specification started in Section 2.1.2, all of which may be implemented in

Beluga. We extend our semantics with a multi-step relation, steps. We say steps M M’

if M steps to M’ in some finite number of steps.
LF steps : term A → term A → type =
| id : steps M M
| sstep : step M M’ → steps M’ M’’ → steps M M’’
;

In Beluga, users need not provide arguments for parameters that are implicitly univer-
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sally quantified.

We denote which terms in our language are values. Values are considered to be those

terms which do not step to a syntactically different term, in other words, they cannot be

reduced. We also define what it means for a term to halt, that is, it steps to a value.
LF val : term A → type =
| val/c : val c
| val/abs : val (abs A M)
;

LF halts : term A → type =
| halts/m : steps M M’ → val M’ → halts M
;

Finally, we encode the notion of reducibility using a logical predicate or in other words a

(unary) logical relation [Tait, 1967]. Proofs using logical relations are a common technique

used when typical induction, say over the structure of the type, does not provide a strong

enough induction hypothesis. We formalize the predicate in Beluga’s computation logic, as

it requires a strong, computational function space unlike the weak function space of LF. It

is represented using an indexed recursive type which allows us to define inductive properties

about contextual objects, contextual types, and contexts [Cave and Pientka, 2012]. Our type

is stratified by its index tp.
stratified Reduce : {A:[ ⊢ tp]}{M:[ ⊢ term A]} ctype =
| I : [ ⊢ halts M] → Reduce [ ⊢ b ] [ ⊢ M]
| Arr : [ ⊢ halts M]

→ ({N:[ ⊢ term A]} Reduce [ ⊢ A] [ ⊢ N] → Reduce [ ⊢ B ] [ ⊢ app M N])
→ Reduce [ ⊢ arr A B ] [ ⊢ M]

;

Notation wise, we denote computation-level types and terms in red and teal coloured font

respectively. Our predicate Reduce acts on closed terms (note the empty LF context in the

description of M). The constructor I states that a term or base type reduces to base type if

it halts. The constructor Arr states that M reduces to the function type arr A B if it halts,

and for every term N that reduces to type A, the application of M to N reduces to type B. The

keyword stratified indicates that our type is recursive but not strictly positive.

There are two types of recursive datatype definitions used in Beluga [Pientka and

Cave, 2015]. Typical inductive definitions, defined using the keyword inductive, must
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follow a positivity condition, that is, no inductive occurrences may appear to the left of

an implication. Other recursive datatypes that do not obey this rule are defined with the

keyword stratified. In order to be a valid stratified datatype, there must be a smaller index

argument that decreases in each recursive occurrence of the definition, as in our definition

of Reduce (A and B are smaller types than arr A B).

Writing Proofs as Programs

Next, we present a trivial result that will aid us in the construction of our main helper

lemma.
rec halts_step : [ ⊢ step M M’] → [ ⊢ halts M’] → [ ⊢ halts M] =
fn s, h =>

let [ ⊢ halts/m MS V] = h in let [ ⊢ S] = s in [ ⊢ halts/m (sstep S MS) V]
;

We leave the contextual variables M, M’, and M’’ implicitly universally quantified as

Beluga is able to reconstruct their type. We use Beluga’s simple function space to

formalize our implication statement. The proof is straightforward and presented above.

Recall proofs are programs in Beluga, therefore proof development proceeds in a functional

manner.

We begin by stating the theorem name and statement, prefixed with the keyword rec.

The proof starts by peeling off the implication antecedents (fn s, h =>). Working back-

wards, we know we must use halts/m to construct our desired term as it is currently the

only constructor for terms of type halts, therefore we must solve its subgoals, namely that

there is a value that M steps to. We first invert assumption h as it has only one possible

constructor. This reveals that it is actually the contextual object [⊢ halts/m MS V] where

MS and V are LF terms of type steps M’ N and val N (for some implicit meta-variable N)

respectively. It may appear we have every piece of the puzzle required to solve our goal: we

have a value that our term M steps too. Recall however that once we transition to the LF

level to build our LF proof term, we do not have access to our computation-level context, in
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which s resides. Therefore, we must first unbox said assumption.

We are now ready to prove that reducibility is closed under expansion. In other words,

if we have that term M steps to term M’ and M’ reduces to some type A, then so will M. The

proof proceeds by structural induction on the object [ ⊢ A]. Extensions made to Beluga

allow for totality checking and structural recursion over contextual LF objects [Pientka and

Abel, 2015].
rec bwd_closed : {A:[ ⊢ tp]} {M: [ ⊢ term A]} {M’: [ ⊢ term A]} [ ⊢ step M M’]

→ Reduce [ ⊢ A] [ ⊢ M’] → Reduce [ ⊢ A] [ ⊢ M] =
/ total a (bwd_closed a m m’) /
mlam A, M, M’ => fn s, r =>

case [ ⊢ A] of
| [ ⊢ b] => let I h = r in I (halts_step s h)
| [ ⊢ arr T T1] =>

let [ ⊢ S] = s in
let Arr h f = r in
Arr (halts_step s h)

(mlam N => fn rn => bwd_closed _ _ _ [ ⊢ stepapp S] (f [ ⊢ N] rn))
;

Totality checking is employed by specifying the induction variable (total a) along with

its index in the theorem (bwd_closed a m m’). We begin again by peeling off the universally

quantified variables (mlam A, M, M’ =>) and implication antecedents. We indicate which

variable we are to perform case analysis on (case [ ⊢ A] of). If the specified variable

is inductive, the respective induction hypotheses are automatically generated and made

available for use in each respective inductive case. There are two constructors for the type

tp therefore there are two subgoals to prove.

In the case [ ⊢ A] is the base type, type inference tells us that r has type

Reduce [ ⊢ b] [ ⊢ M’]. Since this type has only one constructor, we invert r revealing

its constructor. We then construct our desired term using the previous lemma.

In the inductive case, [ ⊢ A] is the term [ ⊢ arr T T1] where T and T1 are both of

type tp. We first unbox assumption s to have it available for constructing lf proof terms.

Then again, r has one constructor so we invert it. In order to construct a term of type
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Reduce [ ⊢ arr T T1] [ ⊢ M] we must use the constructor Arr as it is the only construc-

tor for this type. To solve the first subgoal of Arr we simply use the previous lemma again.

The second subgoal is of function type, therefore we must construct a Beluga function.

Since the type of arr is inductive, induction hypotheses are automatically generated for

each subterm in the pattern [ ⊢ arr T T1]. In particular, we would like to find a term of

type Reduce [ ⊢ T1] [ ⊢ app M N], thus we employ the induction hypothesis generated

for subterm T1 by making a recursive call to bwd_closed. Due to type inference, we do not

need to make explicit every parameter to the call. Instead, we only need to supply enough

type information so that Beluga can infer the rest.

In the next sub-chapter, we introduce and provide motivation for Harpoon by demon-

strating how one would use it to prove bwd_closed.

2.2.3 Harpoon: Constructing Proofs Interactively

Interactive theorem proving (ITP) comes in many forms, whether its simply a program that

checks a human constructed proof or a user-guided computer generated proof. Whenever

one uses a proof assistant to construct proofs they are likely using some sort of ITP. ITP

differs from automated theorem proving, whereby a computer develops proofs with no user

input. Programming an automated prover is a more difficult task due to the large size

of proof search spaces and more importantly, because of the non-deterministic nature of

proof search. That is why more often than not, proof assistants opt for an interactive proof

development setting.

In order to have ITP, there needs to be a language that the user can use to communicate

with the system. Often times this will be a high-level language that is more natural for users

at the cost of involving some sort of automation. Normally, users interact with the system

through the use of tactics. Tactics are like commands, which instruct the system on how to

build a proof.
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We provide a short overview of Harpoon, Beluga’s interactive theorem proving envi-

ronment [Errington et al., 2021]. Harpoon users develop proofs using a small set of tactics

that manipulate the proof goal. Types of subgoals are closed thereby allowing users to solve

subgoals in any order, independent of each other. This, along with the ability to undo incor-

rect actions and replace them by correct ones, makes proof development in Harpoon closely

resemble proof development on paper. While users develop proofs, Harpoon builds a proof

script that, upon completion of the proof, gets translated into a Beluga program which

is then type-checked ensuring validity. Harpoon has been applied to a range of examples

that cover all features supported by Beluga.

Tactics

The tactics within Harpoon mimic the proof steps often taken in informally written proofs.

Harpoon supports building proofs via forwards and backwards reasoning, induction, and

case-analysis. A few of the main tactics are presented below.

Tactics T ::= msplit X | split I | by I as y | suffices by I to show τ | solve E

Figure 2.5: Harpoon tactic language.

There are two splitting tactics, msplit and split which split the specified (meta-)

variable into a covering set of cases, initiating case analysis. If the variable was specified as

an inductive variable, then induction hypothesis are automatically generated for each sub-

case. To introduce a lemma or appeal to an induction hypothesis, by is used and binds the

result to some computational variable. Optionally, users can instead add the assumption

to the meta-context by adding unboxed to the end of their by call. To conduct backwards-

reasoning, users invoke suffices on a constructor or lemma. Users finish the proof a subgoal

by providing the respective proof term as argument to the tactic solve.
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As an option, there are tactics that get employed automatically depending on the goal.

For example, if the goal is ever a function type (dependent or ordinary) then the tactic

auto-intros is automatically deployed which strips the assumptions off the goal and adds

them to their respective contexts. Further, if the goal can be trivially solved simply by using

an assumption in the contexts, auto-solve-trivial will finish the proof automatically.

Interactive Proof Development

We walk-through how the theorem bwd_closed from Section 2.2.2 would be constructed

within Harpoon. The proof-session begins by loading the file containing our formalized

theory of the simply typed lambda-calculus and its meta-theory which consists of the lemma

halts_step. We are then asked by Harpoon to provide a theorem name and statement,

along with the index of the argument we will perform induction on (if any).
Name of theorem: bwd_closed
Statement of theorem: {A:[ ⊢ tp]} {M: [ ⊢ term A]} {M’: [ ⊢ term A]} [ ⊢ step M M’]

→ Reduce [ ⊢ A] [ ⊢ M’] → Reduce [ ⊢ A] [ ⊢ M]
Induction order (empty for none): 1

Harpoon then asks us if there is another theorem name we would like to provide. This

is used when we would like to prove multiple statements via mutual induction. Since we

do not, we leave this blank. Harpoon presents us with our initial goal state, whereby

assumptions have been automatically collected and placed in the respective contexts. Our

goal is therefore Reduce [ ⊢ A] [ ⊢ M].
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Meta-context:
A : (⊢ tp)
M : ( ⊢ term A)
M’ : ( ⊢ term A)

Computational context:
s : [ ⊢ step M M’]
r : Reduce [ ⊢ A] [ ⊢ M’]

Reduce [ ⊢ A] [ ⊢ M]
> msplit A

(case arr)
Meta-context:

T : ( ⊢ tp)
T1 : ( ⊢ tp)
M : ( ⊢ term (arr T T1))
M’ : ( ⊢ term (arr T T1))

Computational context:
s : [ ⊢ step M M’]
r : Reduce [ ⊢ arr T T1] [ ⊢ M’]

Reduce [ ⊢ arr T T1] [ ⊢ M]
> unbox s as [ ⊢ S]

(case arr)
Meta-context:

T : ( ⊢ tp)
T1 : ( ⊢ tp)
M : ( ⊢ term (arr T T1))
M’ : ( ⊢ term (arr T T1))
S : ( ⊢ step M M’)

Computational context:
s : [ ⊢ step M M’]
r : Reduce [ ⊢ arr T T1] [ ⊢ M’]

Reduce [ ⊢ arr T T1] [ ⊢ M]
> invert r

The first few steps follow exactly as in our written proof. We begin by splitting on the

meta-variable A. We are presented with the induction case first, namely arr and our new

goal, Reduce [ ⊢ arr T T1] [ ⊢ M]. We then unbox our boxed assumption s, introducing

the new meta-variable S into the meta-context.

(case arr)
Meta-context:

T : ( ⊢ tp)
T1 : ( ⊢ tp)
M : ( ⊢ term (arr T T1))
M’ : ( ⊢ term (arr T T1))
S : ( ⊢ step M M’)

Computational context:
s : [ ⊢ step M M’]
r : Reduce [ ⊢ arr T T1] [ ⊢ M’]
f : {N : ( ⊢ term T)}

Reduce [ ⊢ T] [ ⊢ N] →
Reduce [ ⊢ T1] [ ⊢ app M’ N]

h : [ ⊢ halts M’]

Reduce [ ⊢ arr T T1] [ ⊢ M]
> suffices by Arr toshow _, _

(case arr)
Meta-context:

T : ( ⊢ tp)
T1 : ( ⊢ tp)
M : ( ⊢ term (arr T T1))
M’ : ( ⊢ term (arr T T1))
S : ( ⊢ step M M’)
N : ( ⊢ term T)

Computational context:
s : [ ⊢ step M M’]
r : Reduce [ ⊢ arr T T1] [ ⊢ M’]
f : {N1 : ( ⊢ term T)}

Reduce [ ⊢ T] [ ⊢ N1] →
Reduce [ ⊢ T1] [ ⊢ app M’ N1]

h : [ ⊢ halts M’]
r’ : Reduce [ ⊢ T] [ ⊢ N]

Reduce [ ⊢ T1] [ ⊢ app M N]
> solve (bwd_closed _ _ _

[⊢ stepapp S]
(f [⊢ N] r’))

(case arr)
Meta-context:

T : ( ⊢ tp)
T1 : ( ⊢ tp)
M : ( ⊢ term (arr T T1))
M’ : ( ⊢ term (arr T T1))
S : ( ⊢ step M M’)

Computational context:
s : [ ⊢ step M M’]
r : Reduce [ ⊢ arr T T1] [ ⊢ M’]
f : {N : ( ⊢ term T)}

Reduce [ ⊢ T] [ ⊢ N] →
Reduce [ ⊢ T1] [ ⊢ app M’ N]

h : [ ⊢ halts M’]

[ ⊢ halts M]
> solve (halts_step s h)

After inverting r we are presented with two new assumptions, f and h. We perform

backwards reasoning by invoking suffices on the term Arr which can only be used once we
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solve the two subgoals, the first being: Reduce [ ⊢ T1] [ ⊢ app M N]. We appeal to one

of the induction hypotheses by making a recursive call to bwd_closed, omitting arguments

that Beluga can infer during type reconstruction. Our second subgoal, [ ⊢ halts M] can

easily be discharged by applying the halts_step lemma.

(case b)
Meta-context:

M : ( ⊢ term b)
M’ : ( ⊢ term b)

Computational context:
s : [ ⊢ step M M’]
r : Reduce [ ⊢ b] [ ⊢ M’]

Reduce [ ⊢ b] [ ⊢ M]
> invert r

(case b)
Meta-context:

M : ( ⊢ term b)
M’ : ( ⊢ term b)

Computational context:
s : [ ⊢ step M M’]
r : Reduce [ ⊢ b] [ ⊢ M’]
h : [ ⊢ halts M’]

Reduce [ ⊢ b] [ ⊢ M]
> solve (I (halts_step s h))

Our base case ([ ⊢ A] = [ ⊢ b]) is solved exactly as in the user-supplied proof. At

the completion of the proof we are presented with the proof script, and translated Beluga

program.

Harpoon makes it simple for users to interact with Beluga’s proof engine and allows

them to develop proofs similarly to how they would develop them on paper. Unfortunately,

much human interaction is still required to construct a proof even for simple lemmas like

bwd_closed.

2.3 Other Meta-Theoretic Proof Assistants

We separate our discussion of meta-theoretic proof assistants based on those that use HOAS

encodings and those that do not. Those most similar to Beluga being Twelf [Pfenning

and Schürmann, 1999] and Abella [Gacek, 2008] utilize HOAS. We also discuss the more

established proof assistants Coq [Bertot and Castéran, 2004] and Isabelle/HOL [Paulson,

1994].

There is a significant difference in the automation efforts between established general
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purpose proof systems and those supporting HOAS encodings. As we will see, automation

in Twelf and Abella is less sophisticated than in Coq or Isabelle. As such, it is therefore of

interest to investigate automated reasoning over HOAS encodings and their meta theories.

2.3.1 HOAS-Based Languages

Twelf Proof Assistant

Twelf currently provides the most automation out of all HOAS-based proof assistants de-

signed to formalize programming languages, although for a fragment that is more restrictive

than all others. Its fully automatic and simple proof search loop has been used to prove many

interesting examples, including the Church-Rosser theorem for the untyped lambda-calculus

and cut-elimination for full first-order intutionistic logic [Schürmann, 2000]. Its search loop

alternates between three stages that Pfenning and Schürmann call filling, recursion, and

splitting [Pfenning and Schürmann, 2002]. It begins with filling; a bounded direct search

for witnesses to existential quantifiers. If the goal is not solved it proceeds to recursion, in

which induction hypotheses are applied (with smaller arguments). Finally the loop moves to

bounded splitting; where a heuristic is used to determine which variable to conduct a case

split on. The loop continues on each subgoal and finishes with either completion or failure,

which occurs when none of the stages are possible.

A drawback to having a completely automated theorem prover is that proving capabili-

ties of the system are limited by its heuristic choices. Further, the system does not support

backtracking and commits to the decisions it makes, even if they are the wrong ones. There-

fore there is no way to prove a theorem for which the search loop fails on. Adding support

for backtracking and interactive theorem proving would aid users when constructing more

difficult proofs.

As previously mentioned, Twelf’s prover does not produce proof terms and therefore

provides no way to verify its proofs. Such a choice requires more trust from users.
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Another important design choice to consider is contexts. Although directly supported,

contexts are kept implicit throughout a derivation in Twelf. Therefore derivations maintain

a single implicit context across their developments. Consequently, theorems which reference

terms dependent on different contexts are inexpressible.

The logic of Twelf is more restrictive compared to Beluga. Firstly, it is only capable

of expressing Π2 statements, which are simple implications from universally quantified ar-

guments to existentially quantified outputs. Secondly, there is no way to define recursive

data-type definitions about LF objects, as Twelf’s logic does not support inductive or co-

inductive types. Therefore it cannot present proofs that proceed via logical relations, as

statements require recursive definitions and nesting of implications. Logical relations are a

common proof technique in PL theory, and can sometimes provide the most direct proofs,

as was the case in the extensional equivalence proof involving singleton types for the mech-

anization of Standard ML [Stone and Harper, 2006; Lee et al., 2007; Abel et al., 2019].

Lastly, there is no support to reason about open (contextual) LF objects or simultaneous

substitutions.

Abella Proof Assistant

Abella is another proof assistant with the capabilities to mechanize meta-theoretic proofs

about programming languages [Gacek, 2008]. It is based on G, an intuitionistic higher-

order logic with (co)induction using fixed-points [Gacek et al., 2008]. Formal systems are

specified within an implementation of the logic of hereditary Harrop formulas in G, which

allows for specifications using HOAS. Reasoning is performed over these encodings using

the nabla (▽) quantifier of G, a generalization of the ∀ operator to model variable binding.

Semi-automation exists in Abella provided in the form of tactics that are similar to the ones

implemented in Harpoon. Expanding automation using a focusing proof search strategy

has been proposed in [Chaudhuri et al., 2018] but has yet to be implemented.
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Contexts and (simultaneous) substitutions in Abella are not treated as first-class like

they are in Beluga. This means that in order to use such constructs, users must manually

define them and any properties they wish to utilize about them (e.g. context weakening).

These can further add to the complexity of formal theorem proving. Abella also does not

construct proof objects during proof development so there is no way to independently type-

check proofs. Thus users have no way to determine if their proofs are valid.

2.3.2 Other Languages

The proof assistants surveyed below do not contain built-in methods to handle encoding

languages with variable binders as Beluga, Twelf, or Abella do. Instead, these tools depend

on extensions (like packages and libraries) which allow them to handle such encodings.

Coq Proof Assistant

Perhaps the most well-known proof assistant, the logic of Coq is based on the Calculus of

Inductive Constructions [Bertot and Castéran, 2004]. Although this rich higher-order logic

supports dependent types, inductive definitions, pattern matching, and structural recursion,

it does not have much built-in support for meta-theoretical reasoning; contexts must be han-

dled explicitly and HOAS encodings are not supported. However there are many extensions

and libraries to Coq which allow for specialized mechanizations and in different logics, like

Hybrid [Ambler et al., 2002; Momigliano et al., 2008] and Autosubst [Schäfer et al., 2015].

Hybrid aims to provide support for encoding formal systems using full HOAS and Autosubst

is a library for working with de Bruijn indices and parallel substitutions. Although Coq’s

library approach offers more flexibility, there is much more to learn. Therefore it may benefit

some users, especially novice ones, to construct their mechanizations in smaller systems like

Beluga or Twelf. On the other-hand Coq provides polymorphism unlike Beluga which

allows for reuse of code.
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On the theorem-proving side, Coq has extensive tactic languages and proof term con-

struction capabilities. As users develop proofs using tactics, Coq builds a proof term from

a set of terms that represent each primitive inference. Once completed, the proof term is

checked independently by Coq’s type checker, which reduces to verifying the correctness of

each individual primitive inference.

The tactics of Harpoon are largely inspired by those in Coq. Both allow for forward and

backward reasoning, introduction of assumptions, case analysis, and inductive reasoning. A

big difference between the two systems is that Coq also supports the use of tacticals. These

are tactics which act on other tactics. That is, we can actually build our own tactics from

primitive ones. As an example, the repeat tactical repeatedly applies the supplied tactic

until it fails. The automation status of Coq is impressive given its application to a wide

range of mechanizations. Currently automated proof search tactics (auto, eauto, iauto and

jauto) do not conduct any case analysis (including inversions), inductions, or rewritings, and

are intended to finish a proof instead of complete it entirely [Pierce et al., 2022].

Isabelle/HOL Proof Assistant

Similar to Coq, Isabelle is a generic proof assistant that provides a meta-logic which can

be used to encode various logics including higher-order logic (HOL) making it suitable to

prove meta-theoretic properties about formal systems [Paulson, 1994]. Isabelle/HOL is the

generalization of Isabelle for HOL and is one of the many implementations of HOL [Gordon

and Melham, 1993; Harrison, 2009]. Like Coq, HOAS encodings are not directly supported

but instead added through the Hybrid system [Ambler et al., 2002].

Users have the option, and are encouraged, to develop proofs within Isar (Intelligent

semi-automated reasoning), which allows for the construction of more human-readable proofs

[Wenzel, 1999]. Otherwise, users can use the standard technique of developing proofs using

a set of low-level single-step tactics, similar to those in Coq. Users also have the ability to
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build their own tactics through the use of tacticals.

For much of its automation, Isabelle elicits the help of several external solvers. Sledge-

hammer [Paulson and Susanto, 2007], for example, takes a goal and heuristically chooses from

Isabelle’s libraries containing various lemmas, definitions, and axioms, a few hundred appli-

cable ones to perform search over. Then, translates the goal and each of these assumptions to

SMT (first-order logic) and sends the query off to an external SMT or resolution-based solver.

It can also generate counterexamples using Quickcheck [Claessen and Hughes, 2000] and Nit-

pick’s [Blanchette and Nipkow, 2010] countermodel generation and testing capabilities. In

its own system, Isabelle performs various general-purpose proof search methods which help

discharge simple parts of a proof allowing users to focus on the main ones [Blanchette et al.,

2011]. They also have several strengthened endgame tactics which are meant to finish a

proof but perform slower due to the increased automation and provide no hints upon failing.
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Chapter 3

Theoretical Foundation of Proof

Search in Beluga

Full automation for Beluga requires automatic case-splitting, generation of induction hy-

potheses if necessary, and, since the underlying logic of Beluga is a two-level logic, proof

search on each of these two levels. This is a significant task. As such, in this thesis I only be

focus on the fragment of Beluga that has been semi-automated. This fragment excludes

substitution and parameter variables, block context schemas, inductive types, recursion, and

pattern-matching. For a more in depth discussion of these features in Beluga, readers are

invited to checkout these papers [Cave and Pientka, 2012; Pientka, 2008].

3.1 The Beluga Language

We begin by presenting the core of Beluga’s specification logic: a dependently-typed version

of contextual LF [Pientka, 2008]. We say an LF term is canonical if no beta- or eta-redexes

are possible. Following [Harper and Pfenning, 2005], we only characterize canonical objects

due to the fact that LF encodings admit a compositional bijection between object-level terms
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and the canonical LF objects, ensuring adequate encodings. We separate the presentation

of contextual LF into two grammars, one for an extended LF and one for the meta-level.

Kinds K ::= type | Πx : A. K
Atomic Types P,Q ::= a

−→
M

Types A,B ::= P | Πx : A. B
Neutral Terms R ::= x | c | RN | u[σ]
Normal Terms M,N ::= R | λx. M
Substitutions σ ::= · | idψ | σ,M
Signatures Σ ::= · | Σ, c : A | a : K
Contexts Ψ,Φ ::= · | Ψ, x : A | ψ
Contextual Variables X ::= u[σ] | ψ

Figure 3.1: Grammar of LF with contextual variables.

We extend LF terms to include meta-variables u[σ]. Meta-variables denote possibly open

objects that come paired with a post-poned simultaneous substitution σ (by convention

written to the right of a term) that gets applied as soon as we know what the variable u

stands for. We separate terms into two categories, neutral and normal. We characterize

neutral terms to be those that do not cause beta-redexes when they are applied in function

application. Terms are classified by types, and are either type constants a that may be

indexed by terms M1, ..,Mn or dependent types. We write A → B in place of Πx : A.B

when x does not occur in B.

Simultaneous substitutions σ provide a mapping from one context of variables Φ to

another Ψ. We do not always make the domain of the substitution explicit, but one can

think of the i-th element of σ corresponding to the i-th declaration in Φ. We write [σ]Ψ for

the substitution with domain Ψ. We assume all substitutions are hereditary substitutions

[Watkins et al., 2004]. Hereditary substitutions continue to reduce terms in the presence of

beta-reductions, which guarantees that the resulting type be in beta-normal form. They are

also by definition capture-avoiding.

Variables in a contextual LF expression may be bound by one of two contexts. There is
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the LF context Ψ that holds typings for ordinary variables, and there are is a meta-context

∆ (introduced in Figure 3.3) which holds typings for contextual variables, uniformly denoted

by X. Contextual variables include meta-variables u[σ] and context variables ψ. Context

variables are an interesting aspect of this logic, providing a way to abstract over contexts

which is required for recursion over HOAS specifications.

Following Pientka and Dunfield [2008] and Beluga’s implementation, we present a bi-

directional type system where types are synthesized for neutral terms and checked against

normal terms. judgments have access to two explicit contexts, ∆ and Ψ, as well as the

implicit signature Σ. Variable and constant declarations in contexts and signatures are

unique, therefore when we write Ψ, x : A we assume x is not already declared in Ψ. We

present the principal judgments below. We omit judgments on types, kinds, contexts, and

definitional equality.

∆; Ψ ⊢ M ⇐ A Normal term M checks against type A

∆; Ψ ⊢ R ⇒ A Neutral term R synthesizes type A

∆; Ψ ⊢ σ ⇐ Φ Substitution σ has domain Φ and range Ψ

The typing rules for LF extended with contextual variables are given in Figure 3.2 and

are straightforward. All contexts are ordered due to type dependencies and we assume they

are well-formed. We make use of hereditary substitutions [Watkins et al., 2004], written

[N/x]AB.

We pair LF objects with contexts, creating contextual objects. From Ψ we construct Ψ̂,

which contains only variable names. The contextual object (Ψ̂ ⊢ R) describes a neutral LF

term R whose free LF ordinary variables are bound by Ψ̂, thus all contextual objects are

closed. Contextual objects are useful because they allow us to write compact and elegant

proofs since we can store an entire hypothetical derivation within one (closed) object.

In order to uniformly abstract over meta-objects, we lift contextual LF objects to meta-
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Neutral Terms ∆; Ψ ⊢ R ⇒ A

Σ(c) = A

∆; Ψ ⊢ c ⇒ A

Ψ(x) = A

∆; Ψ ⊢ x ⇒ A

∆; Ψ ⊢ R ⇒ Πx : A.B ∆; Ψ ⊢ N ⇐ A

∆; Ψ ⊢ RN ⇒ [N/x]AB
∆(u) = (Φ ⊢ P ) ∆; Ψ ⊢ σ ⇐ Φ

∆; Ψ ⊢ u[σ] ⇒ [σ]ΦP

Normal Terms ∆; Ψ ⊢ M ⇐ A

∆; Ψ ⊢ R ⇒ P P = Q

∆; Ψ ⊢ R ⇐ Q

∆; Ψ, x : A ⊢ M ⇐ B

∆; Ψ ⊢ λx.M ⇐ Πx : A.B

Substitutions ∆; Ψ ⊢ σ ⇐ Φ

∆; Ψ ⊢ · ⇐ ·
∆; Ψ ⊢ σ ⇐ Φ ∆; Ψ ⊢ M ⇐ [σ]ΦA

∆; Ψ ⊢ σ,M ⇐ Φ, x : A ∆;ψ,Ψ ⊢ idψ ⇐ ψ

Figure 3.2: Typing rules for LF with contextual variables.

Context Schemas G ::= ∃
−−−−−→
(x : Ao). A | G+ ∃

−−−−−→
(x : Ao). A

Meta Terms C ::= (Ψ̂ ⊢ R) | Ψ
Meta Types U ::= (Ψ ⊢ P ) | G
Meta Substitutions θ ::= · | θ, C/X
Meta Contexts ∆ ::= · | ∆, X : U

Figure 3.3: Grammar of meta-level.

types U and meta-terms C. Our meta language’s terms include contextual terms as well as

LF contexts. The meta-type (Ψ ⊢ P ) denotes the type of a meta-variable u and stands for

a contextual term. Context schemas G are constructed from schema elements ∃
−−−−−→
(x : Ao).A

using +. We say a context Ψ checks against schema G if each of the declarations in Ψ are

an instance of an element in G. As an example, the context x: exp nat , y: exp bool

checks against the schema ∃T : tp. exp T .
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∆ ⊩ C ⇐ U Check meta-term C against meta-type U in meta-context ∆

∆ ⊩ θ ⇐ ∆′ Check that meta-substitution θ has domain ∆′ and range ∆

Meta Terms ∆ ⊩ C ⇐ U

∆; Ψ ⊢ R ⇐ P

∆ ⊩ (Ψ̂ ⊢ R) ⇐ (Ψ ⊢ P ) ∆ ⊩ · ⇐ G

∆(ψ) = G

∆ ⊩ ψ ⇐ G

∆ ⊩ Ψ ⇐ G ∃
−−−−→
(x : B′).B ∈ G A = [σ] −−−→

(x:B′)
B ∆; Ψ ⊢ σ ⇐

−−−−→
(x : B′)

∆ ⊩ Ψ, x : A ⇐ G

Meta-Substitutions ∆ ⊩ θ ⇐ ∆′

∆ ⊩ · ⇐ ·
∆ ⊩ θ ⇐ ∆′ ∆ ⊩ C ⇐ [[θ]]∆′U

∆ ⊩ θ, C/X ⇐ ∆′, X : U

Figure 3.4: Typing rules for meta-level.

In order to check that a meta-term has a valid meta-type, we revert to LF type checking.

LF contexts must be well-formed and check against a context schema.

The single meta-substitution [[C/X]]U(∗), where ∗ = A,M, σ, or Ψ is defined inductively

on the structure of X. The most common case is when X stands for a meta-variable u

and so C stands for a contextual-object (Ψ̂ ⊢ R). This substitution gets pushed through λ-

expressions and gets applied only when we reach a meta-variable u[σ]. In this case, we apply

the meta-substitution [[(Ψ̂ ⊢ R)/u]] to σ, obtaining R[σ′], and then finally apply σ′ to R. We

also have the notion of simultaneous substitutions for meta-substitutions, denoted [[θ]]∆U .

More discussion on simultaneous substitutions and the full definitions of meta-substitutions

can be found previously described in Cave and Pientka [2012]; Pientka [2008].

We present some properties about meta-substitutions with respect to the typing systems
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above.

Lemma 1 (Meta-Substitution Properties for Contextual LF Typings).

a) If ∆ ⊩ C ⇐ U and ∆, X : U ; Ψ ⊢ R ⇒ A then ∆; [[C/X]]Ψ ⊢ [[C/X]]R ⇒ [[C/X]]A

b) If ∆ ⊩ C ⇐ U and ∆, X : U ; Ψ ⊢ M ⇐ A then ∆; [[C/X]]Ψ ⊢ [[C/X]]M ⇐ [[C/X]]A

c) If ∆ ⊩ C ⇐ U and ∆, X : U ; Ψ ⊢ σ ⇐ Φ then ∆; [[C/X]]Ψ ⊢ [[C/X]]σ ⇐ [[C/X]]Φ

Proof. By mutual induction on the structure of the second typing derivation.

On top of the specification layer is the reasoning layer, whose logic is comparable to a

dependently typed first-order logic. It is here that we omit inductive types, recursion, and

pattern-matching.

Types τ ::= [Ψ ⊢ P ] | τ1 → τ2 | Π2X : U. τ
Synthesized Expressions I ::= y | I E | I ⌈C⌉ | (E : τ)
Checked Expressions E ::= I | [Ψ̂ ⊢ R] | fn y.E | λ2X.E | let box X = I in E
Computation-level Contexts Γ ::= · | Γ, y : τ

Figure 3.5: Grammar of the computational logic.

This layer, also called the computational layer, is used to describe the programs that

operate on data. The computation types include atomic boxed-types [Ψ ⊢ P ], computation

level function abstraction, as well as abstraction over various contextual objects.

We separate computations based on whether we synthesize their types or check them

against types. Ordinary functions are created using fn y.E and applied using I E. Dependent

functions are created by abstracting over meta-objects λ2X.E and applied to meta-objects

using I ⌈C⌉.

∆; Γ ⊩ I ⇒ τ Expression I synthesizes type τ
∆; Γ ⊩ E ⇐ τ Expression E checks against type τ
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Synthesized Expressions ∆; Γ ⊩ I ⇒ τ

Γ(y) = τ

∆; Γ ⊩ y ⇒ τ

∆; Γ ⊩ I ⇒ τ ′ → τ ∆; Γ ⊩ E ⇐ τ ′

∆; Γ ⊩ I E ⇒ τ

∆; Γ ⊩ I ⇒ Π2X : U.τ ∆ ⊩ C ⇐ U

∆; Γ ⊩ I⌈C⌉ ⇒ [[C/X]]Uτ
∆; Γ ⊩ E ⇐ τ

∆; Γ ⊩ (E : τ) ⇒ τ

Checked Expressions ∆; Γ ⊩ E ⇐ τ

∆; Γ ⊩ I ⇒ τ τ = τ ′

∆; Γ ⊩ I ⇐ τ ′

∆ ⊩ (Ψ̂ ⊢ R]) ⇐ (Ψ ⊢ P )
∆; Γ ⊩ [Ψ̂ ⊢ R] ⇐ [Ψ ⊢ P ]

∆; Γ, y : τ1 ⊩ E ⇐ τ2
∆; Γ ⊩ fn y.E ⇐ τ1 → τ2

∆; Γ ⊩ I ⇒ [Ψ ⊢ P ] ∆, X : (Ψ ⊢ P ); Γ ⊩ E ⇐ τ

∆; Γ ⊩ let box X = I in E ⇐ τ

∆, X : U ; Γ ⊩ E ⇐ τ

∆; Γ ⊩ λ2X.E ⇐ Π2X : U.τ

∆; Γ ⊩ I ⇒ τ ′ ∆; Γ, y : τ ′ ⊩ E ⇐ τ

∆; Γ ⊩ [I/y]E ⇐ τ

Figure 3.6: Typing rules for computations.

The typings for computations are mostly all straightforward. An interesting case is

checking a boxed meta-term [Ψ̂ ⊢ R] against a boxed meta-type [Ψ ⊢ P ] in two contexts

∆ and Γ. Since meta-objects can only depend on other meta-objects, this simply reverts to

checking (Ψ̂ ⊢ R) in the presence of the meta-context.

3.2 Sequent Calculus

Given the grammar for Beluga’s core in the previous chapter we now wish to assign meaning

to the connectives with respect to the rules of deduction, and ultimately describe Beluga’s

proof system.

The sequent calculus is a style for presenting the rules of a proof system, first introduced

by Gerhard Gentzen in 1935 [Gentzen, 1935; Szabo, 1969]. It is ideal for presenting inference
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rules which are to be implemented in proof assistants because of its characterization of

normal proofs, which limits the non-determinism in proof search, and is preferred to natural

deduction due to its handling of assumptions. As such, we present our proof system using

two sequent calculi.

On the specification level, we encode propositions into hereditary Harrop formulas [Miller

et al., 1991]. Viewing types as propositions allows us to assign a logic programming inter-

pretation to LF types. Atomic types a
−→
M correspond to atomic propositions, non-dependent

function types A → B correspond to implications, and dependent function-types Πx : A. B

correspond to universal statements. As such, moving forward we distinguish between de-

pendent and non-dependent function types in LF. The fragment corresponding to hereditary

Harrop formulas used for logic programming in contextual LF is thus:

Types A,B ::= P | A → B | Πx : A. B
Environment Ψ ::= · | Ψ, x : A
Contextual Environments ∆ ::= · | ∆, X : (Ψ ⊢ P )

Recall, P ranges over atomic propositions a
−→
M . We extend typical logic programming over

LF with the addition of contextual environments which hold contextual LF assumptions. In

order to use such an assumption (Ψ ⊢ P ), we must find a substitution from Ψ to the local

context in which it will be used. We can interpret this substitution as a verification of Ψ.

We build proof terms, representing proof witnesses, simultaneously when developing proofs.

We present the sequent calculus for contextual LF, which is based off of the sequent

calculus for intuitionistic contextual modal logic presented in Nanevski et al. [2008]. Contexts

take the traditional form as ordered lists. As the order in our contexts matter (due to type

dependencies), they only allow for weakening and contraction. We say that everything to

the left of =⇒ can be used to construct a proof of the proposition(s) to the right of =⇒. We

assume all sequents are well-formed.

The right rules introduce variable declarations into the local context Ψ. However, those

introduced via the ΠR rule are simply parameters that are not used during proof search,
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∆; Ψ =⇒ M : A M is a proof of the proposition A using assumptions from ∆ and Ψ
∆; Ψ =⇒ σ : Φ σ is a proof of the propositions in Φ using assumptions from ∆ and Ψ

c : A ∈ Σ
∆; Ψ =⇒ c : A initΣ

∆; Ψ, x : A =⇒ x : A initΨ ∆; Ψ, x : A =⇒ M : B
∆; Ψ =⇒ λx.M : Πx : A. B ΠR

∆; Ψ, x1 : Πx : A. B ⊢ M ⇐ A ∆; Ψ, x1 : Πx : A. B, x2 : [M/x]B =⇒ N : A′

∆; Ψ, x1 : Πx : A. B =⇒ [x1M/x2]N : A′ ΠL

∆; Ψ, x1 : A → B =⇒ M : A ∆; Ψ, x1 : A → B, x2 : B =⇒ N : A′

∆; Ψ, x1 : A → B =⇒ [x1M/x2]N : A′ → L

∆; Ψ, x : A =⇒ M : B
∆; Ψ =⇒ λx.M : A → B

→ R ∆; Ψ =⇒ · : · sub1

∆;ψ,Ψ =⇒ idψ : ψ sub2
∆; Ψ =⇒ σ : Φ ∆; Ψ =⇒ N : [σ]B

∆; Ψ =⇒ (σ,N) : (Φ, x : B) sub3

∆, u : (Φ ⊢ P ); Ψ =⇒ σ : Φ ∆, u : (Φ ⊢ P ); Ψ, x : [σ]P =⇒ M : A
∆, u : (Φ ⊢ P ); Ψ =⇒ [u[σ]/x]M : A reflect

Figure 3.7: Sequent calculus for contextual LF.

unlike those introduced via → R. Similarly, to use a universally quantified assumption (i.e.

a dependent function type) as in ΠL, we require that M checks against type A. In practice,

we do not search for the term M but introduce meta-variables for such universally quantified

variables which are later instantiated via unification. In contrast, using an assumption of

ordinary function type, as in → L, involves searching for a proof term of type A.

In the reflect rule we may use the contextually valid assumption (Φ ⊢ P ) to deduce P

in the context Ψ if we can verify Φ. In order to verify Φ we need to find a substitution

which maps all the variables in Φ to terms that make sense in Ψ. There are several ways to

construct such a substitution, depending on the shape of Φ. If it is empty, we simply use

an empty substitution (as P is closed). If it is a context variable ψ and we simply want to
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use (ψ ⊢ P ) in a weaker context, we apply the identity substitution. Otherwise, Φ contains

a variable declaration x : B which requires proof search in order to find a term in Ψ of type

[σ]B which will replace x in P .

We show some results which will be used in later proofs. First, to make derivations

simpler, we show that the general init rule is admissible if we restrict the rule to apply only

to atomic formulas.

Lemma 2 (Admissibility of initΨ).

If ∆; Ψ, x : P =⇒ P then for all ∆,Ψ, and A such that ∆ ⊢ Ψ and ∆; Ψ ⊢ A, we have

∆; Ψ, x : A =⇒ A

Proof. By induction on the structure of A.

We show that our meta-substitution properties for contextual LF extend to the sequent

calculus formulation.

Lemma 3 (Meta-Substitution Properties in the Sequent Calculus for Contextual LF).

a) If ∆ ⊩ C ⇐ U and ∆, X : U,∆′; Ψ =⇒ M : A then

∆, [[C/X]]∆′; [[C/X]]Ψ =⇒ [[C/X]]M : [[C/X]]A

b) If ∆ ⊩ C ⇐ U and ∆, X : U,∆′; Ψ =⇒ Φ : σ then

∆, [[C/X]]∆′; [[C/X]]Ψ =⇒ [[C/X]]Φ : [[C/X]]σ

Proof. By mutual induction on the structure of the second sequent. Uses Lemma 1.

To prove contextual cut, we also require a lemma for contextual LF typings, related to

the sequent calculus.

Lemma 4 (More Meta-Substitution Properties for Contextual LF Typings).

a) If ∆; Ψ =⇒ R : P and ∆, X : (Ψ ⊢ P ) ⊩ C ⇐ U then

∆ ⊩ [[(Ψ̂ ⊢ R)/X]]C ⇐ [[(Ψ̂ ⊢ R)/X]]U

b) If ∆; Ψ =⇒ R : P and ∆, X : (Ψ ⊢ P ); Φ ⊢ R ⇒ A then
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∆; [[(Ψ̂ ⊢ R)/X]]Φ ⊢ [[(Ψ̂ ⊢ R)/X]]R ⇒ [[(Ψ̂ ⊢ R)/X]]A

c) If ∆; Ψ =⇒ R : P and ∆, X : (Ψ ⊢ P ); Φ ⊢ M ⇐ A then

∆; [[(Ψ̂ ⊢ R)/X]]Φ ⊢ [[(Ψ̂ ⊢ R)/X]]M ⇐ [[(Ψ̂ ⊢ R)/X]]A

d) If ∆; Ψ =⇒ R : P and ∆, X : (Ψ ⊢ P ); Φ ⊢ σ ⇐ Φ′ then

∆; [[(Ψ̂ ⊢ R)/X]]Φ ⊢ [[(Ψ̂ ⊢ R)/X]]σ ⇐ [[(Ψ̂ ⊢ R)/X]]Φ′

Proof. By mutual induction on the structure of the second sequent.

We turn our attention to proof search over computations. Computation-level contexts

possess the properties of contraction and weakening, along with exchange. We assume all

sequents are well-formed.

∆; Γ =⇒ E : τ E is a proof of τ using assumptions from ∆ and Γ

∆; Γ, y : τ =⇒ y : τ initΓ ∆, X : U ; Γ =⇒ E : τ
∆; Γ =⇒ λ2X.E : Π2X : U. τ Π2R

∆ ⊩ C ⇐ U ∆; Γ, y1 : ΠX : U. τ ′, y2 : [[C/X]]τ ′ =⇒ E : τ
∆; Γ, y1 : ΠX : U. τ ′ =⇒ [y1⌈C⌉/y2]E : τ Π2L

∆; Γ, y : τ1 =⇒ E : τ2
∆; Γ =⇒ fn y. E : τ1 → τ2

→ R

∆; Γ, y1 : τ1 → τ2 =⇒ E ′ : τ1 ∆; Γ, y1 : τ1 → τ2, y2 : τ2 =⇒ E : τ
∆; Γ, y1 : τ1 → τ2 =⇒ [y1E

′/y2]E : τ → L

∆ =⇒ (Ψ̂ ⊢ R) : (Ψ ⊢ P )
∆; Γ =⇒ [Ψ̂ ⊢ R] : [Ψ ⊢ P ]

2R
∆, X : (Ψ ⊢ P ); Γ, y : [Ψ ⊢ P ] =⇒ E : τ

∆; Γ, y : [Ψ ⊢ P ] =⇒ let box X = y in E : τ 2L

Figure 3.8: Sequent calculus for the computation logic.

Our inference rules are mostly standard for a first-order logic. The 2R rule is the

transition rule between contextual LF and computation-level proofs. In 2L, we unbox a

boxed assumption, thus adding it to ∆. We note that no assumptions in ∆ are dependent
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on unboxed assumptions. Therefore we may exchange such assumptions within ∆. Using

computation assumptions as in Π2L and → L is similar to how contextual LF assumptions

are used. To use a universally quantified assumption (as in Π2L), we require that C checks

against U . Again, this term C is not explicitly constructed but found instead through

unification.

We show more results which will be used later on. Similar to LF, we show that the

general init rule is admissible if we restrict the rule to apply only to atomic formulas.

Lemma 5 (Admissibility of initΓ).

If ∆; Γ, y : [Ψ ⊢ P ] =⇒ [Ψ ⊢ P ] then for all ∆,Γ, and τ such that ∆ ⊢ Γ and ∆; Γ ⊢ τ , we

have ∆; Γ, y : τ =⇒ τ

Proof. By induction on the structure of τ .

We present a property about meta-substitutions in the computation logic which will be

used to prove cut elimination.

Lemma 6 (Meta-Substitution Property in the Sequent Calculus for the Computation Logic).
If ∆ ⊩ C ⇐ U and ∆, X : U,∆′; Γ =⇒ E : τ then

∆, [[C/X]]∆′; [[C/X]]Γ =⇒ [[C/X]]E : [[C/X]]τ

Proof. By induction on the structure of the second sequent. Uses Lemma 3.

We now show that the cut rule is admissible at both the meta-level and computation-

level for the computation logic. These theorems were previously shown for contextual LF in

[Nanevski et al., 2008], Theorem 3.1. Admissibility of cut has several corollaries including

consistency of the logic. We prove the following theorem through mutual induction. For

simplicity, when it is permitted we omit proof terms from our sequents.

Theorem 1 (Admissibility of Cut in the Computation Logic).

a) (Cut) If
D

∆; Γ =⇒ τ and
E

∆; Γ, y : τ =⇒ τ ′ then ∆; Γ =⇒ τ ′
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b) (Contextual Cut) If
D

∆; Ψ =⇒ R : P and
E

∆, X : (Ψ ⊢ P ),∆′; Γ =⇒ τ then

∆, [[(Ψ̂ ⊢ R)/X]]∆′; [[(Ψ̂ ⊢ R)/X]]Γ =⇒ [[(Ψ̂ ⊢ R)/X]]τ

Proof of Theorem 1.a. The proof proceeds by structural induction on the cut formula τ and

the derivations of the premises D and E . In particular, we perform an outer induction over

the structure of τ and an inner induction over the structures of D and E . We appeal to the

induction hypothesis using either a strictly smaller cut formula or an identical cut formula

with only one strictly smaller derivation.

Case: D is an initial sequent.

D = ∆; Γ, y : τ =⇒ τ initΓ

1. ∆; Γ, y : τ, y′ : τ =⇒ τ ′ Derivation E (assumption)

2. ∆; Γ, y : τ =⇒ τ ′ By contraction 1

Case: E is an initial sequent that uses the cut formula.

E = ∆; Γ, y : τ =⇒ τ initΓ

∆; Γ =⇒ τ Derivation D (assumption)

Case: E is an initial sequent that doesn’t use the cut formula.

E = ∆; Γ, y : τ, y′ : τ ′ =⇒ τ ′ initΓ

∆; Γ, y : τ ′ =⇒ τ ′ By initΓ

Case: the cut formula τ is the principal formula of the final inference in both D and E .

Subcase: τ = Π2X : U. τ
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D =

D′

∆, X : U ; Γ =⇒ τ

∆; Γ =⇒ Π2X : U. τ Π2R

and

E =

E1
∆ ⊩ C ⇐ U

E2
∆; Γ, y : Π2X : U. τ, y′ : [[C/X]]τ =⇒ τ ′

∆; Γ, y : Π2X : U. τ =⇒ τ ′ Π2L

1. ∆; Γ, y′ : [[C/X]]τ =⇒ Π2X : U. τ By weakening D

2. ∆; Γ, y′ : [[C/X]]τ =⇒ τ ′ By I.H. on Π2X : U. τ , 1, and E2

3. ∆; [[C/X]]Γ =⇒ [[C/X]]τ By Lemma 6 on U , E1, and D′

4. ∆; Γ =⇒ [[C/X]]τ By fact X does not appear in Γ

5. ∆; Γ =⇒ τ ′ By I.H. on [[C/X]]τ , 4, and 2

Subcase: τ = τ1 → τ2

D =

D′

∆; Γ, y1 : τ1 =⇒ τ2
∆; Γ =⇒ τ1 → τ2

→ R

and

E =

E1
∆; Γ, y : τ1 → τ2 =⇒ τ1

E2
∆; Γ, y : τ1 → τ2, y2 : τ2 =⇒ τ

∆; Γ, y : τ1 → τ2 =⇒ τ
→ L
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1. ∆; Γ =⇒ τ1 By I.H. on τ1 → τ2, D, and E1

2. ∆; Γ =⇒ τ2 By I.H. on τ1, 1, and D′

3. ∆; Γ, y2 : τ2 =⇒ τ1 → τ2 By weakening D

4. ∆; Γ, y2 : τ2 =⇒ τ By I.H. on τ1 → τ2, 3, and E2

5. ∆; Γ =⇒ τ By I.H. on τ2, 2, and 4

Subcase: τ = [Ψ ⊢ P ]

D =

D′

∆; Ψ =⇒ P

∆; Γ =⇒ [Ψ ⊢ P ] 2R E =

E ′

∆, X : (Ψ ⊢ P ); Γ, y : [Ψ ⊢ P ] =⇒ τ ′

∆; Γ, y : [Ψ ⊢ P ] =⇒ τ ′ 2L

1. ∆, X : (Ψ ⊢ P ); Γ =⇒ [Ψ ⊢ P ] By weakening D

2. ∆, X : (Ψ ⊢ P ); Γ =⇒ τ ′ By I.H. on [Ψ ⊢ P ], 1, and E ′

3. ∆; Γ =⇒ τ ′ By Contextual Cut on (Ψ ⊢ P ), D′, and 2,

and fact X does not appear in Γ and τ ′

Case: the cut formula τ is not the principal formula of the final inference in D.

Subcase: D =

D1
∆ ⊩ C ⇐ U

D2
∆; Γ, y1 : Π2X : U. τ ′′, y2 : [[C/X]]τ ′′ =⇒ τ

∆; Γ, y1 : Π2X : U. τ ′′ =⇒ τ
Π2L

1. ∆; Γ, y1 : Π2X : U. τ ′′, y3 : τ =⇒ τ ′ Derivation E (assumption)

2. ∆; Γ, y1Π2X : U. τ ′′, y2 : [[C/X]]τ ′′, y3 : τ =⇒ τ ′ By weakening and exchange E

3. ∆; Γ, y1 : Π2X : U. τ ′′, y2 : [[C/X]]τ ′′ =⇒ τ ′ By I.H. on τ , D2, and 2

4. ∆; Γ, y1 : Π2X : U. τ ′′ =⇒ τ ′ By Π2L on D1 and 3
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Subcase: D =

D1
∆; Γ, y1 : τ1 → τ2 =⇒ τ1

D2
∆; Γ, y1 : τ1 → τ2, y2 : τ2 =⇒ τ

∆; Γ, y1 : τ1 → τ2 =⇒ τ
→ L

1. ∆; Γ, y1 : τ1 → τ2, y3 : τ =⇒ τ ′ Derivation E (assumption)

2. ∆; Γ, y1 : τ1 → τ2, y2 : τ2, y3 : τ =⇒ τ ′ By weakening and exchange E

3. ∆; Γ, y1 : τ1 → τ2, y2 : τ2 =⇒ τ ′ By I.H. on τ , D2, and 2

4. ∆; Γ, y1 : τ1 → τ2 =⇒ τ ′ By → L on D1 and 3

Subcase: D =

D′

∆, X : (Ψ ⊢ P ); Γ, y : [Ψ ⊢ P ] =⇒ τ

∆; Γ, y : [Ψ ⊢ P ] =⇒ τ
2L

1. ∆; Γ, y : [Ψ ⊢ P ], y′ : τ =⇒ τ ′ Derivation E (assumption)

2. ∆, X : (Ψ ⊢ P ); Γ, y : [Ψ ⊢ P ], y′ : τ =⇒ τ ′ By weakening E

3. ∆, X : (Ψ ⊢ P ); Γ, y : [Ψ ⊢ P ] =⇒ τ ′ By I.H. on τ , D′, and 2

4. ∆; Γ, y : [Ψ ⊢ P ] =⇒ τ ′ By 2L on 3

Case: the cut formula τ is not the principal formula of the final inference in E .

Subcase: E =

E ′

∆, X : U ; Γ, y : τ =⇒ τ ′

∆; Γ, y : τ =⇒ Π2X : U. τ ′ Π2R

1. ∆; Γ =⇒ τ Derivation D (assumption)

2. ∆, X : U ; Γ =⇒ τ By weakening D

3. ∆, X : U ; Γ =⇒ τ ′ By I.H. on τ , 2, and E ′

4. ∆; Γ =⇒ Π2X : U. τ ′ By Π2R on 3
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Subcase: E =

E ′

∆; Γ, y : τ, y′ : τ1 =⇒ τ2
∆; Γ, y : τ =⇒ τ1 → τ2

→ R

1. ∆; Γ =⇒ τ Derivation D (assumption)

2. ∆; Γ, y′ : τ1 =⇒ τ By weakening D

3. ∆; Γ, y′ : τ1 =⇒ τ2 By I.H. on τ , 2, and E ′ (with exchange)

4. ∆; Γ =⇒ τ1 → τ2 By → R on 3

Subcase: E =

E ′

∆; Ψ =⇒ P

∆; Γ, y : τ =⇒ [Ψ ⊢ P ] 2R

∆; Γ =⇒ [Ψ ⊢ P ] By 2R on E ′

Proof of Theorem 1.b. The proof proceeds by structural induction on derivation E . The

proof is very similar to the above, therefore we only present the interesting cases.

Case: E =

E ′

∆, X : (Ψ ⊢ P ), X ′ : U ′; Γ =⇒ τ

∆, X : (Ψ ⊢ P ); Γ =⇒ Π2X ′ : U ′. τ
Π2R

1. ∆; Ψ =⇒ R : P Derivation D (assumpt.)

2. ∆, X ′ : [[(Ψ̂ ⊢ R)/X]]U ′; [[(Ψ̂ ⊢ R)/X]]Γ =⇒ [[(Ψ̂ ⊢ R)/X]]τ By I.H. on (Ψ ⊢ P ), D,

and E ′

3. ∆; [[(Ψ̂ ⊢ R)/X]]Γ =⇒ Π2X ′ : [[(Ψ̂ ⊢ R)/X]]U ′. [[(Ψ̂ ⊢ R)/X]]τ By Π2R on 2

4. ∆; [[(Ψ̂ ⊢ R)/X]]Γ =⇒ [[(Ψ̂ ⊢ R)/X]] Π2X ′ : U ′. τ By def. of meta-sub.

Case: E = ∆, X : (Ψ ⊢ P ); Γ, y1 : ΠX ′ : U ′. τ ′ =⇒ τ in
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E1
∆, X : (Ψ ⊢ P ) ⊩ C ⇐ U ′

E2
∆, X : (Ψ ⊢ P ); Γ, y1 : ΠX ′ : U ′. τ ′, y2 : [[C/X ′]]τ ′ =⇒ τ

∆, X : (Ψ ⊢ P ); Γ, y1 : ΠX ′ : U ′. τ ′ =⇒ τ
Π2L

1. ∆; Ψ =⇒ R : P Derivation D (assumpt.)

2. ∆; [[(Ψ̂ ⊢ R)/X]](Γ, y1 : ΠX ′ : U ′. τ ′, y2 : [[C/X ′]]τ ′) By I.H. on (Ψ ⊢ P ), D,

=⇒ [[(Ψ̂ ⊢ R)/X]]τ and E2

3. ∆; [[(Ψ̂ ⊢ R)/X]]Γ, y1 : ΠX ′ : [[(Ψ̂ ⊢ R)/X]]U ′. [[(Ψ̂ ⊢ R)/X]]τ ′, By def. of meta-sub.

y2 : [[[[(Ψ̂ ⊢ R)/X]]C/X ′]][[(Ψ̂ ⊢ R)/X]]τ ′) =⇒ [[(Ψ̂ ⊢ R)/X]]τ

4. ∆ ⊩ [[(Ψ̂ ⊢ R)/X]]C ⇐ [[(Ψ̂ ⊢ R)/X]]U ′ By Lemma 4a.

5. ∆; [[(Ψ̂ ⊢ R)/X]]Γ, y1 : ΠX ′ : [[(Ψ̂ ⊢ R)/X]]U ′. [[(Ψ̂ ⊢ R)/X]]τ ′ By Π2L on 4 and 3

=⇒ [[(Ψ̂ ⊢ R)/X]]τ

6. ∆; [[(Ψ̂ ⊢ R)/X]](Γ, y1 : ΠX ′ : U ′. τ ′) =⇒ [[(Ψ̂ ⊢ R)/X]]τ By def. of meta-sub.

Case: E =

E ′

∆, X : (Ψ ⊢ P ); Φ =⇒ Q

∆, X : (Ψ ⊢ P ); Γ =⇒ [Φ ⊢ Q] 2R

1. ∆; Ψ =⇒ R : P Derivation D (assumption)

2. ∆; [[(Ψ̂ ⊢ R)/X]]Φ =⇒ [[(Ψ̂ ⊢ R)/X]]Q By I.H. on (Ψ ⊢ P ), E ′, D

3. ∆; [[(Ψ̂ ⊢ R)/X]]Γ =⇒ [[[(Ψ̂ ⊢ R)/X]]Φ ⊢ [[(Ψ̂ ⊢ R)/X]]Q] By 2R on 2

4. ∆; [[(Ψ̂ ⊢ R)/X]]Γ =⇒ [[(Ψ̂ ⊢ R)/X]][Φ ⊢ Q] By definition of meta-subst.
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Case: E =

E ′

∆, X : (Ψ ⊢ P ), X ′ : (Φ ⊢ Q); Γ, y : [Φ ⊢ Q] =⇒ τ

∆, X : (Ψ ⊢ P ); Γ, y : [Φ ⊢ Q] =⇒ τ
2L

1. ∆; Ψ =⇒ R : P Derivation D (assumption)

2. ∆, X ′ : [[(Ψ̂ ⊢ R)/X]](Φ ⊢ Q);

[[(Ψ̂ ⊢ R)/X]](Γ, y : [Φ ⊢ Q]) =⇒ [[(Ψ̂ ⊢ R)/X]]τ By I.H. on (Ψ ⊢ P ), D, and E ′

3. ∆, X ′ : [[(Ψ̂ ⊢ R)/X]](Φ ⊢ Q);

[[(Ψ̂ ⊢ R)/X]]Γ, y : [[(Ψ̂ ⊢ R)/X]][Φ ⊢ Q]

=⇒ [[(Ψ̂ ⊢ R)/X]]τ By definition of meta-subst.

4. ∆; [[(Ψ̂ ⊢ R)/X]]Γ, y : [[(Ψ̂ ⊢ R)/X]][Φ ⊢ Q]

=⇒ [[(Ψ̂ ⊢ R)/X]]τ By 2L on 3

5. ∆; [[(Ψ̂ ⊢ R)/X]](Γ, y : [Φ ⊢ Q]) =⇒ [[(Ψ̂ ⊢ R)/X]]τ By definition of meta-subst.

Using the cut theorems, we can prove invertibility of some of the inference rules of our

calculi. The proofs are simple, and in addition to cut make use of weakening, init, and the

respective left-rules.

Lemma 7 (Invertibility in the sequent calculi).

a) (ΠR) If ∆; Ψ =⇒ Πx : A.B then ∆; Ψ, x : A =⇒ B

b) (→ R) If ∆; Ψ =⇒ A → B then ∆; Ψ, x : A =⇒ B

c) (Π2R) If ∆; Γ =⇒ Π2X : U.τ then ∆, X : U ; Γ =⇒ τ

d) (→ R) If ∆; Γ =⇒ τ1 → τ2 then ∆; Γ, y : τ1 =⇒ τ2

e) (2L) If ∆; Γ, y : [U ] =⇒ τ then ∆, X : U ; Γ, y : [U ] =⇒ τ

Notice that the modal box operator is invertible on the left. This causes implications in

the focusing calculus.

58



3.3 Focused-Based Search

Using a sequent calculus is an excellent way of presenting readable inference rules for a

logical system used to construct proofs (on paper) in a way that closely resembles how

we normally perform deduction due to its characterization of normal proofs, thus limiting

non-determinism in proof construction. However for an automated prover, the amount of

remaining non-determinism in the logic still prevents it from being a practical calculus to

implement. Therefore we instead turn our attention to building uniform proofs [Miller et al.,

1991] over a focusing calculus [Andreoli, 1992].

Uniform proofs were developed by a group of researchers in the early 90’s as a foundation

for logic programming. It is a well-known proof building technique in which the logical

connectives are perceived as search instructions for proof search. Uniform proofs abide by a

set of rules. In particular, if the goal formula of a sequent in a proof is not atomic then it must

be the lower sequent in the introduction (or right) rule of the goals’s top-most connective.

As a consequence, we can not work on assumptions or access the program until we have

reached an atomic goal, and the procedure to reach such an atomic goal is deterministic.

The technique of focusing was first introduced by Jean-Marc Andreoli in 1992 for classical

linear logic [Andreoli, 1992]. He intended to limit the amount of non-determinism within

proof search by describing a procedure that produced proofs in some normal form. It is

known that there is redundancy in proofs, in the sense that the order that some inference

rules are applied does not matter. We call these “don’t care” rules. The resulting calculus

by Andreoli is one in which these “don’t care” rules are grouped together into a macro-rule

and performed in one step, in any order. Once all these “don’t care” rules are applied, a

choice must be made. A single formula is chosen successively from the list of assumptions to

focus on. This chosen formula is then decomposed into the atoms it defines without utilizing

any other assumption. Thus, focusing provides a systematic procedure to deal with the

non-invertible rules of a logic, making it better suited for proof-finding implementations.
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3.3.1 Focusing on Two Levels

Focusing systems have been designed for various logics as focusing provides a systematic

and logical way to reduce non-deterministic choices during proof development and turn

proof search into a more directed procedure. We have created a focusing calculus for the un-

derlying logic of Beluga which we have used to design larger inference rules for Harpoon.

This work extends the work done on uniform proofs, as constructing uniform proofs only

(deterministically) instructs us on how to compute an atomic goal. We then use focusing to

systematically handle the non-deterministic choices that follow.

Focusing can be seen as alternating applications of collections of inference rules. Neg-

ative phases consist of applying invertible rules, while positive phases consist of applying

non-invertible rules. We also use this terminology, positive (also known as synchronous)

and negative (also known as asynchronous), to classify logical connectives based on their

behaviour during proof search. We consider those connectives with invertible right rules to

be negative on-the-right (OTR) and those with non-invertible right rules to be positive OTR.

Typically, if a connective is negative OTR it is positive on-the-left (OTL), and vice-versa.

This leads to the classification of formulas within a sequent: a formula in a sequent is con-

sidered negative (respectively positive) if its top-most connective is negative (respectively

positive). We can then give a classification of formulas in our reasoning logic, based on

Lemma 7.

Positive Right Formulas ::= [Ψ ⊢ P ]
Negative Right Formulas ::= τ1 → τ2 | Π2X : U.τ
Positive Left Formulas ::= τ1 → τ2 | Π2X : U.τ
Negative Left Formulas ::= [Ψ ⊢ P ]

Since the box connective is invertible OTL, atomic box formulas are negative left formulas

(and therefore positive right formulas). Although not mentioned in our grammar, we consider

recursive types (like Reduce in Chapter 2.2.2) to be atomic computation-level propositions

which are positive right and negative left formulas.
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The two connectives, → and Π, in contextual LF both have invertible right rules and

therefore construct negative right formulas. Since the assignment to atoms has no affect on

provability [Miller and Saurin, 2007], for simplicity we choose to classify atomic LF formulas

(a−→
M) as positive left and positive right formulas.

Positive Right Formulas ::= a
−→
M

Negative Right Formulas ::= A → B | Πx : A. B
Positive Left Formulas ::= a

−→
M | A → B | Πx : A. B

This provides us a way to describe a homogeneous proof procedure for both layers of our

logic. It proceeds as follows: we begin with a negative phase, applying all invertible rules.

This phase ends when we have both a positive formula OTR and only positive formulas OTL.

We then switch to the positive phase, where we elicit focusing by sequentially analyzing

assumptions.

In our calculi, the uniform and focusing stages take the place of the negative and positive

phases respectively. The focusing calculus we designed is actually two separate focusing

calculi with a transition step in between. This again is due to the fact the logic we are

dealing with is a two-level logic.

The goal of this logic is to formalize the proof search procedure that is implemented

within Harpoon. This loop is fully automatic and therefore requires that non-determinism

be handled with ease. The sequent calculus presented in Chapter 3.2 does not suffice as

the rules do not provide any inherent direction for proof search. The rules of the following

calculi guide better proof development. They are intended to be read bottom-up, which

consequently forces proof search to develop bottom-up. We build uniform proofs by applying

all invertible rules first and not working on assumptions until our goal is atomic. We then

handle non-invertible rules systematically through focusing.
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Focusing in LF

The focusing calculus for contextual LF consists of two main phases- a uniform and focusing

phase. The uniform proof stage consists of applying the invertible right-rules to our goal

until we reach on positive right formula. During focusing, we iterate through assumptions

in the meta (∆) and LF (Ψ) contexts. We omit proof terms for readability when permitted.

We assume well-formedness of all sequents.

∆; Ψ u=⇒ A There exists a uniform proof of A in ∆ and Ψ
∆; Ψ u=⇒ σ : Φ σ is a uniform proof of Φ in ∆ and Ψ
∆; Ψ > x : A⇒ P There exists a focused proof of P in ∆ and Ψ with focus on A

∆; Ψ, x̂ : A u=⇒ B

∆; Ψ u=⇒ Πx̂ : A. B
ΠR

∆; Ψ, x : A u=⇒ B

∆; Ψ u=⇒ A → B
→ R

∆(X) = (Φ ⊢ Q) ∆; Ψ u=⇒ σ : Φ [σ]Q = P

∆; Ψ u=⇒ P
transition∆

Ψ(x) = A ∆; Ψ > x : A⇒ P

∆; Ψ u=⇒ P
transitionΨ

∆; Ψ u=⇒ · : ·
empty

∆;ψ,Ψ u=⇒ idψ : ψ
id

∆; Ψ u=⇒ σ : Φ ∆; Ψ u=⇒ N : [σ]B

∆; Ψ u=⇒ (σ,N) : (Φ, x : B)
sub

∆; Ψ > x : P ⇒ P initΨ
∆; Ψ u=⇒ A ∆; Ψ > x′ : B ⇒ P

∆; Ψ > x : A → B ⇒ P
→ L

∆; Ψ ⊢ M ⇐ A ∆; Ψ > x′′ : [M/x̂]B ⇒ P

∆; Ψ > x′ : Πx̂ : A. B ⇒ P
ΠL

Figure 3.9: Focusing calculus for contextual LF.

This focusing calculus is mostly straightforward. We now distinguish between parameters

that are introduced from the ΠR rule, labelled x̂, and assumptions introduced from the → R,
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labelled x, which are used in proof search. Proof development begins with the uniform phase

in which parameters and assumptions are collected and placed in the LF context, concluding

with an atomic positive goal P . We then try to find a solution by focusing on assumptions

from the different contexts. It does not matter which context we attempt to focus on first. In

the transition∆ rule, using an assumption from ∆ to complete a proof requires a simultaneous

substitution (σ) to be constructed so that the assumption Q makes sense in the current LF

context Ψ. We find such a substitution through uniform proof search. When focusing on

assumptions from Ψ of function-type, we search for a proof of A if our assumption is of

non-dependent function type. Otherwise the assumption is of dependent function type, in

which case M is found via unification.

Focusing on the Computation Level

Similarly to focusing in LF, we perform all invertible rules first until we must make a choice

on what to focus on. Unlike in LF proof search, proof search over computations requires two

separate phases of inversions since the box connective has an invertible left rule. Further,

the choices we have during the focusing phase increase as we may now also choose to conduct

LF proof search to solve our goal, which corresponds to focusing on the right.

∆; Γ R=⇒ τ There is a uniform right proof of τ in ∆ and Γ
∆; Γ ≫ Γ′ L=⇒ [Ψ ⊢ P ] There is a uniform left proof of [Ψ ⊢ P ] in ∆ and Γ,Γ′

∆; Γ > y : τ ⇒ [Ψ ⊢ P ] There is a focused proof of [Ψ ⊢ P ] in ∆ and Γ with focus τ

There are four transition inference rules- left to right, focus to uniform, level, and blur.

From these, it should be simple to determine which way proofs are constructed. We begin

with a uniform right phase which ends with a positive goal formula, [Ψ ⊢ P ]. From there we

transition to a uniform left phase, ending with only positive assumptions in Γ. The sequent

depicting the uniform left phase is novel. We use the symbol ≫ as a way to distinguish

positive assumptions (to the left of ≫) from (possibly) negative ones (to the right of ≫)
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that have yet to be unboxed. Recall that the order of assumptions in Γ does not matter,

therefore it is acceptable that the order reverses each time we complete a uniform left phase.

∆; Γ, y : τ1
R=⇒ τ2

∆; Γ R=⇒ τ1 → τ2
→ R

∆, X : U ; Γ R=⇒ τ

∆; Γ R=⇒ Π2X : U. τ
Π2R

∆; · ≫ Γ L=⇒ [Ψ ⊢ P ]

∆; Γ R=⇒ [Ψ ⊢ P ]
left to right

∆, X : (Φ ⊢ Q); Γ ≫ Γ′ L=⇒ [Ψ ⊢ P ]

∆; Γ ≫ Γ′, y : [Φ ⊢ Q] L=⇒ [Ψ ⊢ P ]
2L

τ ̸= [Φ ⊢ Q] ∆; Γ, y : τ ≫ Γ′ L=⇒ [Ψ ⊢ P ]

∆; Γ ≫ Γ′, y : τ L=⇒ [Ψ ⊢ P ]
shift

Γ(y) = τ ∆; Γ > y : τ ⇒ [Ψ ⊢ P ]
∆; Γ ≫ · L=⇒ [Ψ ⊢ P ]

focus to uniform
∆; Ψ u=⇒ P

∆; Γ ≫ · L=⇒ [Ψ ⊢ P ]
level

∆ ⊩ C ⇐ U ∆; Γ > y′ : [[C/X]]τ ⇒ [Ψ ⊢ P ]
∆; Γ > y : Π2X : U. τ ⇒ [Ψ ⊢ P ] Π2L

∆; Γ R=⇒ τ1 ∆; Γ > y′ : τ2 ⇒ [Ψ ⊢ P ]
∆; Γ > y : τ1 → τ2 ⇒ [Ψ ⊢ P ] → L

∆; · ≫ Γ, y′ : [Φ ⊢ Q] L=⇒ [Ψ ⊢ P ]
∆; Γ > y′ : [Φ ⊢ Q] ⇒ [Ψ ⊢ P ] blur

Figure 3.10: Focusing calculus for the computation logic.

The uniform phases should be straight-forward- we collect assumptions and unbox boxed

assumptions so they may be used during LF proof search. This is done because when we

shift levels we only bring with us assumptions that are true across all levels (those in ∆),

as computation assumptions do not make sense on the LF level. After the uniform proof

stages, we are left with a positive goal and assumptions, so we enter into focusing. Focusing

on the right, i.e. LF proof search, can only be applied if the goal is of box-type (which is

currently the only atomic proposition in our logic). Focusing on the left is standard. Focusing

commences once we have decomposed the focused formula to its atom ([Φ ⊢ Q]) as in the

blur rule. At this point, we add the atomic formula to our computation assumptions and

restart the process from the uniform left stage. In practice, we implement backtracking when

focusing. If, for example, we cannot find a proof while focusing on the right, we backtrack
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and try focusing on the left. In the blur rule, we only add the new assumption to Γ if it

has not been previously added. Otherwise, we backtrack and attempt to find a new, unique

assumption.

In [Heilala and Pientka, 2007], Heilala and Pientka present proof search procedures over

the propositional fragment of the intuitionistic modal logic IS4. They investigate modal

logics that use the traditional meaning of validity, that is, no contextual validity. They too

develop focused sequent calculi with the intention of presenting a fully automatic search

procedure, but instead of loop detection, utilize bidirectional proof search. The idea behind

this technique is to construct a set of inference rules that may be needed to solve a goal prior

to conducting traditional proof search. These inference rules are intended to take the place

of the left rules and are found via forward proof search techniques. This technique has yet

to be explored for first- and higher-order modal logics such as the logics behind Beluga.

Soundness and Completeness

We show that, with respect to the sequent calculi presented in Figures 3.7 and 3.8, the

focusing calculi presented above are sound and complete. The soundness proofs are straight-

forward and therefore their proofs are omitted.

Theorem 2 (Soundness).

a) If ∆; Ψ u=⇒ A then ∆; Ψ =⇒ A

b) If ∆; Ψ u=⇒ σ : Φ then ∆; Ψ =⇒ σ : Φ

c) If ∆; Ψ > x : A⇒ P then ∆; Ψ, x : A =⇒ P

d) If ∆ > X : U ; Ψ ⇒ P then ∆, X : U ; Ψ =⇒ P

e) If ∆; Γ R=⇒ τ then ∆; Γ =⇒ τ

f) If ∆; Γ ≫ Γ′ L=⇒ [Ψ ⊢ P ] then ∆; Γ,Γ′ =⇒ [Ψ ⊢ P ]

g) If ∆; Γ > y : τ ⇒ [Ψ ⊢ P ] then ∆; Γ, y : τ =⇒ [Ψ ⊢ P ]

Proof. a) - g) By structural induction on the given derivation.
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Before we prove completeness, there are a number of lemmas that are required. First,

the completeness proofs for contextual LF rely on some postponement results. Their proofs

are straightforward.

Lemma 8 (Contextual LF Postponement 1).

a) If ∆; Ψ, x1 : Πx̂ : A. B ⊢ M ⇐ A and ∆; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B,Ψ′ u=⇒ A′ then

∆; Ψ, x1 : Πx̂ : A. B,Ψ′ u=⇒ A′

b) If ∆; Ψ, x1 : Πx̂ : A. B ⊢ M ⇐ A and ∆; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B > x′ : A′ ⇒ P

then ∆; Ψ, x1 : Πx̂ : A. B > x′ : A′ ⇒ P

c) If ∆; Ψ, x1 : Πx̂ : A. B ⊢ M ⇐ A and ∆ > X : U ; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B ⇒ P

then ∆ > X : U ; Ψ, x1 : Πx̂ : A. B ⇒ P

d) If ∆; Ψ, x1 : Πx̂ : A. B ⊢ M ⇐ A and ∆; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B u=⇒ Φ then

∆; Ψ, x1 : Πx̂ : A. B u=⇒ Φ

Proof. a) - d) By mutual structural induction on the second sequent.

Lemma 9 (Contextual LF Postponement 2).

a) If ∆; Ψ, x1 : A → B
u=⇒ A and ∆; Ψ, x1 : A → B, x2 : B,Ψ′ u=⇒ A′ then

∆; Ψ, x1 : A → B,Ψ′ u=⇒ A′

b) If ∆; Ψ, x1 : A → B
u=⇒ A and ∆; Ψ, x1 : A → B, x2 : B > x′ : A′ ⇒ P then

∆; Ψ, x1 : A → B > x′ : A′ ⇒ P

c) If ∆; Ψ, x1 : A → B
u=⇒ A and ∆ > X : U ; Ψ, x1 : A → B, x2 : B ⇒ P then

∆ > X : U ; Ψ, x1 : A → B ⇒ P

d) If ∆; Ψ, x1 : A → B
u=⇒ A and ∆; Ψ, x1 : A → B, x2 : B u=⇒ Φ then ∆; Ψ, x1 : A → B

u=⇒ Φ

Proof. a) - d) By mutual structural induction on the second sequent.

Lemma 10 (Contextual LF Postponement 3).

a) If ∆, X : (Φ ⊢ P ); Ψ, x : [σ]P,Ψ′ u=⇒ A and ∆, X : (Φ ⊢ P ); Ψ u=⇒ σ : Φ then

∆, X : (Φ ⊢ P ); Ψ,Ψ′ u=⇒ A
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b) If ∆, X : (Φ ⊢ P ); Ψ, x : [σ]P > x′ : A⇒ P ′ and ∆, X : (Φ ⊢ P ); Ψ u=⇒ σ : Φ then

∆, X : (Φ ⊢ P ); Ψ > x′ : A⇒ P ′

c) If ∆, X : (Φ ⊢ P ) > X ′ : U ′; Ψ, x : [σ]P ⇒ P ′ and ∆, X : (Φ ⊢ P ); Ψ u=⇒ σ : Φ then

∆, X : (Φ ⊢ P ) > X ′ : U ′; Ψ ⇒ P ′

Proof. a) - c) By mutual structural induction on the second sequent.

The proofs for completeness of the computation logic require similar postponement lem-

mas.

Lemma 11 (Computation logic Postponement 1).

a) If ∆; Γ, y1 : τ1 → τ2
R=⇒ τ1 (τ2 ̸= [Ψ ⊢ P ]) and ∆; Γ, y1 : τ1 → τ2, y2 : τ2,Γ′ R=⇒ τ then

∆; Γ, y1 : τ1 → τ2,Γ′ R=⇒ τ

b) If ∆; Γ, y1 : τ1 → τ2
R=⇒ τ1 (τ2 ̸= [Ψ ⊢ P ]) and ∆; Γ1, y2 : τ2,Γ2 ≫ Γ3

L=⇒ [Ψ ⊢ P ]

(resp. ∆; Γ1 ≫ Γ2, y2 : τ2,Γ3
L=⇒ [Ψ ⊢ P ]) where y1 ∈ Γ1,Γ2,Γ3, then

∆; Γ1,Γ2 ≫ Γ3
L=⇒ [Ψ ⊢ P ] (resp. ∆; Γ1 ≫ Γ2,Γ3

L=⇒ [Ψ ⊢ P ])

c) If ∆; Γ, y1 : τ1 → τ2
R=⇒ τ1 (τ2 ̸= [Ψ ⊢ P ]) and ∆; Γ, y1 : τ1 → τ2, y2 : τ2 > y : τ ⇒ [Ψ ⊢ P ]

then ∆; Γ, y1 : τ1 → τ2 > y : τ ⇒ [Ψ ⊢ P ]

Proof. a) - c) By mutual structural induction on the second sequent.

Lemma 12 (Computation logic Postponement 2).

a) If ∆; Γ, y1 : τ1 → [Φ ⊢ Q] R=⇒ τ1 and ∆, X : (Φ ⊢ Q),∆′; Γ, y1 : τ1 → [Φ ⊢ Q],Γ′ R=⇒ τ then

∆,∆′; Γ, y1 : τ1 → [Φ ⊢ Q],Γ′ R=⇒ τ

b) If ∆; Γ, y1 : τ1 → [Φ ⊢ Q] R=⇒ τ1 and ∆, X : (Φ ⊢ Q); Γ1 ≫ Γ2
L=⇒ [Ψ ⊢ P ] where

y1 ∈ Γ1,Γ2 then ∆; Γ1 ≫ Γ2
L=⇒ [Ψ ⊢ P ]

c) If ∆; Γ, y1 : τ1 → [Φ ⊢ Q] R=⇒ τ1 and

∆, X : (Φ ⊢ Q); Γ, y1 : τ1 → [Φ ⊢ Q] > y : τ ⇒ [Ψ ⊢ P ] then

∆; Γ, y1 : τ1 → [Φ ⊢ Q] > y : τ ⇒ [Ψ ⊢ P ]

Proof. a) - c) By mutual structural induction on the second sequent.
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Lemma 13 (Computation logic Postponement 3).

a) If ∆ ⊩ C ⇐ U and ∆, X ′ : [[C/X]]τ ′,∆′; Γ, y′ : Π2X : U.τ ′,Γ′ R=⇒ τ ([[C/X]]τ ′ = [Φ ⊢ Q])

then ∆,∆′; Γ, y′ : Π2X : U.τ ′,Γ′ R=⇒ τ

b) If ∆ ⊩ C ⇐ U and ∆, X ′ : [[C/X]]τ ′; Γ1 ≫ Γ2
L=⇒ [Ψ ⊢ P ] ([[C/X]]τ ′ = [Φ ⊢ Q]) where

Π2X : U.τ ′ ∈ Γ1,Γ2 then ∆; Γ1 ≫ Γ2
L=⇒ [Ψ ⊢ P ]

c) If ∆ ⊩ C ⇐ U and ∆, X ′ : [[C/X]]τ ′; Γ, y′ : Π2X : U.τ ′ > y : τ ⇒ [Ψ ⊢ P ]

([[C/X]]τ ′ = [Φ ⊢ Q]) then ∆; Γ, y′ : Π2X : U.τ ′ > y : τ ⇒ [Ψ ⊢ P ]

Proof. a) - c) By mutual structural induction on the second sequent.

Lemma 14 (Computation logic Postponement 4).

a) If ∆ ⊩ C ⇐ U and ∆; Γ, y1 : Π2X : U.τ ′, y2 : [[C/X]]τ ′,Γ′ R=⇒ τ ([[C/X]]τ ′ ̸= [Φ ⊢ Q])

then ∆; Γ, y1 : Π2X : U.τ ′,Γ′ R=⇒ τ

b) If ∆ ⊩ C ⇐ U and ∆; Γ1, y2 : [[C/X]]τ ′,Γ2 ≫ Γ3
L=⇒ [Ψ ⊢ P ]

(resp. ∆; Γ1 ≫ Γ2, y2 : [[C/X]]τ ′,Γ3
L=⇒ [Ψ ⊢ P ]) ([[C/X]]τ ′ ̸= [Φ ⊢ Q]) where

Π2X : U.τ ′ ∈ Γ1,Γ2,Γ3 then ∆; Γ1,Γ2 ≫ Γ3
L=⇒ [Ψ ⊢ P ]

(resp. ∆; Γ1 ≫ Γ2,Γ3
L=⇒ [Ψ ⊢ P ])

c) If ∆ ⊩ C ⇐ U and ∆; Γ, y1 : Π2X : U.τ ′, y2 : [[C/X]]τ ′ > y : τ ⇒ [Ψ ⊢ P ]

([[C/X]]τ ′ ̸= [Φ ⊢ Q]) then ∆; Γ, y1 : Π2X : U.τ ′ > y : τ ⇒ [Ψ ⊢ P ]

Proof. a) - c) By mutual structural induction on the second sequent.

We have that the reflect rule holds for the uniform right phase of our focusing calculus

for the computation logic. This result is also required for the completeness proof.

Lemma 15 (Reflect for Focusing).

If ∆, X : (Ψ ⊢ P ),∆′; Γ, y : [Ψ ⊢ P ],Γ′ R=⇒ τ then ∆,∆′; Γ, y : [Ψ ⊢ P ],Γ′ R=⇒ τ

Proof. By structural induction on the given derivation.
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We also require an intermediate lemma for our completeness theorem. To see why,

consider the completeness of focused proofs for the computation logic. At first thought,

we may take the theorem to be: “if ∆; Γ =⇒ [Ψ ⊢ P ] then ∆; Γ > y : τ ⇒ [Ψ ⊢ P ] for

some τ ∈ Γ”, but recall during focusing, Γ must only contain positive assumptions, which

this statement does not guarantee. Therefore we must prove something different. We first

show that in fact it does not matter in which context atomic assumptions appear. That

is, if there is a proof in our sequent calculus of [Ψ ⊢ P ] (possibly) using some assumption

y : [Φ ⊢ Q] in Γ then there is also a proof of [Ψ ⊢ P ] where y is omitted but under the

added assumption X : (Φ ⊢ Q) in ∆. This lemma helps allows us to properly rephrase our

completeness theorem.

Before we begin, we introduce new notation.

Definition 3.3.1 (∆−
∆,Γ).

Given ∆ and Γ such that ∆ ⊢ Γ, define ∆−
∆,Γ to be

• if Γ = ·, then ∆

• if Γ = (Γ′, y : [Ψ ⊢ P ]), then (∆−
∆,Γ′ , X : (Ψ ⊢ P ))

• if Γ = (Γ′, y : τ), τ ̸= [Ψ ⊢ P ], then ∆−
∆,Γ′

Definition 3.3.2 (Γ+
∆,Γ).

Given ∆ and Γ such that ∆ ⊢ Γ, define Γ+
∆,Γ to be

• if Γ = ·, then ·

• if Γ = (Γ′, y : [Ψ ⊢ P ]), then Γ+
∆,Γ′

• if Γ = (Γ′, y : τ), τ ̸= [Ψ ⊢ P ], then (Γ+
∆,Γ′ , y : τ)

Essentially, ∆−
∆,Γ is ∆ extended with the negative assumptions from Γ unboxed, and Γ+

∆,Γ

contains only the positive assumptions from Γ. We may then present our lemma:
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Lemma 16.

If ∆; Γ =⇒ τ then ∆−
∆,Γ; Γ+

∆,Γ =⇒ τ

Proof. By straightforward structural induction on the given derivation.

Now, part of our completeness theorem is reformulated as “if ∆; Γ =⇒ [Ψ ⊢ P ] then

∆−
∆,Γ; Ψ u=⇒ P”. This however is not true. There may not necessarily be a right-focused

proof using ∆−
∆,Γ. It could be the case that the right-focused proof requires a meta-context

with more assumptions which may be derived from Γ. This may be best explained using an

example.
LF nat : type =
| z : nat
| s : nat → nat
;

LF less_than : nat → nat → type =
| lt : less_than N1 N2

→ less_than (s N1) (s N2)
;

Given a specification of natural numbers along with an (incomplete) theory of the less

than relation, consider the following sequent, derivable in our sequent calculi:

·; y : (Π2N : (⊢ nat). [⊢ less than z N ]) =⇒ [⊢ less than (sz) (s(sz))]

There is however no right-focused from ∆−
∆,Γ. To derive a right-focused proof requires

the assumption (⊢ less than z (sz)) be in the meta-context during LF proof search. This

assumption may be introduced into Γ through the Π2L and blur rules, and subsequently

added to ∆ via 2L. Only then may we transition of focusing on the right, and solve the

goal.

For simplicity, we use C in place of the formula Π2N : (⊢ nat).[⊢ less than z N ] and

le z sz in place of the LF type less than z (sz), and le sz ssz in place of the goal formula

less than (sz) (s(sz)). We also highlight the principal formula in each sequent.
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...
X : ( ⊢ le z sz); · u=⇒ le sz ssz

X : ( ⊢ le z sz); y : C ≫ · L=⇒ [ ⊢ le sz ssz]
level

X : ( ⊢ le z sz); · ≫ y : C L=⇒ [ ⊢ le sz ssz]
shift

·; · ≫ y : C, y′ : [ ⊢ le z sz] L=⇒ [ ⊢ le sz ssz]
2L

·; y : C > y′ : [ ⊢ le z sz] ⇒ [ ⊢ le sz ssz] blur

·; y : C > y : C ⇒ [ ⊢ le sz ssz] Π2L

·; y : C =⇒ [ ⊢ le sz ssz] focus to unif.

Due to the nature of this two-level proof search, we must reformulate the theorem so that

it accounts for these derivable assumptions when it comes time to focus on the right. We

are then ready to state the completeness theorem:

Theorem 3 (Completeness).

a) If
D

∆; Ψ =⇒ A then ∆; Ψ u=⇒ A

b) If
D

∆; Ψ =⇒ σ : Φ then ∆; Ψ u=⇒ σ : Φ

c) If
D

∆; Ψ =⇒ P then either ∆; Ψ > x : A⇒ P for some A ∈ Ψ or ∆ > X : U ; Ψ ⇒ P

for some U ∈ ∆

d) If
D

∆; Γ =⇒ τ then ∆−
∆,Γ; Γ+

∆,Γ
R=⇒ τ

e) If
D

∆; Γ =⇒ [Ψ ⊢ P ] then ∆−
∆,Γ; Γ+

∆,Γ ≫ · L=⇒ [Ψ ⊢ P ]

f) If
D

∆; Γ =⇒ [Ψ ⊢ P ] then either ∆−
∆,Γ; Ψ u=⇒ P or ∆−

∆,Γ; Γ+
∆,Γ > y : τ ⇒ [Ψ ⊢ P ] for some

y : τ ∈ Γ+
∆,Γ

Proof. Parts a-e are proven by mutual structural induction on the given derivations. Part f

is proven by structural induction on derivation D.

Part a):

Case: D = ∆; Ψ, x : A =⇒ A initΨ
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By lemma 2.

Case: D =
∆; Ψ, x̂ : A =⇒ B

∆; Ψ =⇒ Πx̂ : A. B ΠR

By induction hypothesis and ΠR.

Case: D = ∆; Ψ, x1 : Πx̂ : A. B =⇒ A′ in
D1

∆; Ψ, x1 : Πx̂ : A. B ⊢ M ⇐ A
D2

∆; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B =⇒ A′

∆; Ψ, x1 : Πx̂ : A. B =⇒ A′ ΠL

1. ∆; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B u=⇒ A′ By I.H. D2

2. ∆; Ψ, x1 : Πx̂ : A. B u=⇒ A′ By lemma 8a.

Case: D =
∆; Ψ, x : A =⇒ B

∆; Ψ =⇒ A → B
→ R

By induction hypothesis and → R.

Case: D =

D1
∆; Ψ, x1 : A → B =⇒ A

D2
∆; Ψ, x1 : A → B, x2 : B =⇒ A′

∆; Ψ, x1 : A → B =⇒ A′ → L

1. ∆; Ψ, x1 : A → B
u=⇒ A By I.H. D1

2. ∆; Ψ, x1 : A → B, x2 : B u=⇒ A′ By I.H. D2

3. ∆; Ψ, x1 : A → B
u=⇒ A′ By lemma 9a.
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Case: D =

D1
∆, X : (Φ ⊢ P ); Ψ =⇒ σ : Φ

D2
∆, X : (Φ ⊢ P ); Ψ, x : [σ]P =⇒ A

∆, X : (Φ ⊢ P ); Ψ =⇒ A
reflect

1. ∆, X : (Φ ⊢ P ); Ψ u=⇒ σ : Φ By I.H. D1

2. ∆, X : (Φ ⊢ P ); Ψ, x : [σ]P u=⇒ A By I.H. D2

3.∆, X : (Φ ⊢ P ); Ψ u=⇒ A By lemma 10a.

Part b):

Trivial.

Part c):

Case: D = ∆; Ψ, x : P =⇒ P initΨ

1. ∆; Ψ, x : P > x : P ⇒ P By initΨ

Case: D = ∆; Ψ, x1 : Πx̂ : A. B =⇒ P in
D1

∆; Ψ, x1 : Πx̂ : A. B ⊢ M ⇐ A
D2

∆; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B =⇒ P

∆; Ψ, x1 : Πx̂ : A. B =⇒ P
ΠL

Subcase: ∆; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B > x′ : A′ ⇒ P , x′ ∈ Ψ, x1, x2

1. ∆; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B > x′ : A′ ⇒ P By I.H. D2

2. ∆; Ψ, x1 : Πx̂ : A. B > x′ : A′ ⇒ P By lemma 8b.
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Subcase: ∆ > X : U ; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B ⇒ P,X ∈ ∆

1. ∆ > X : U ; Ψ, x1 : Πx̂ : A. B, x2 : [M/x̂]B ⇒ P By I.H. D2

2. ∆ > X : U ; Ψ, x1 : Πx̂ : A. B ⇒ P By lemma 8c.

Case: D =

D1
∆; Ψ, x1 : A → B =⇒ A

D2
∆; Ψ, x1 : A → B, x2 : B =⇒ P

∆; Ψ, x1 : A → B =⇒ P
→ L

1. ∆; Ψ, x1 : A → B
u=⇒ A By I.H. D1

Subcase: ∆; Ψ, x1 : A → B, x2 : B > x′ : A′ ⇒ P, x′ ∈ Ψ, x1, x2

2. ∆; Ψ, x1 : A → B, x2 : B > x′ : A′ ⇒ P By I.H. D2

3. ∆; Ψ, x1 : A → B > x′ : A′ ⇒ P By lemma 9b.

Subcase: ∆ > X : U ; Ψ, x1 : A → B, x2 : B ⇒ P,X ∈ ∆

2. ∆ > X : U ; Ψ, x1 : A → B, x2 : B ⇒ P By I.H. D2

3. ∆ > X : U ; Ψ, x1 : A → B ⇒ P By lemma 9c.

Case: D =

D1
∆, X : (Φ ⊢ P ); Ψ =⇒ σ : Φ

D2
∆, X : (Φ ⊢ P ); Ψ, x : [σ]P =⇒ P ′

∆, X : (Φ ⊢ P ); Ψ =⇒ P ′ reflect
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Subcase: ∆, X : (Φ ⊢ P ); Ψ, x : [σ]P > x′ : A′ ⇒ P ′, x′ ∈ Ψ, x

1. ∆, X : (Φ ⊢ P ); Ψ u=⇒ σ : Φ By I.H. D1

2. ∆, X : (Φ ⊢ P ); Ψ, x : [σ]P > x′ : A′ ⇒ P ′ By I.H. D2

3. ∆, X : (Φ ⊢ P ); Ψ > x′ : A′ ⇒ P ′ By lemma 10b.

Subcase: ∆, X : (Φ ⊢ P ) > X ′ : U ′; Ψ, x : [σ]P ⇒ P ′, X ′ ∈ ∆, X

1. ∆, X : (Φ ⊢ P ); Ψ u=⇒ σ : Φ By I.H. D1

2. ∆, X : (Φ ⊢ P ) > X ′ : U ′; Ψ, x : [σ]P ⇒ P ′ By I.H. D2

3. ∆, X : (Φ ⊢ P ) > X ′ : U ′; Ψ ⇒ P ′ By lemma 10c.

Part d):

Case: D = ∆; Γ, y : τ =⇒ τ initΓ

By lemma 5.

Case: D =

D′

∆; Γ, y : τ1 =⇒ τ2
∆; Γ =⇒ τ1 → τ2

→ R

Subcase: τ1 ̸= [Ψ ⊢ P ]

Trivial.
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Subcase: τ1 = [Ψ ⊢ P ]

1. ∆−
∆,Γ, X : (Ψ ⊢ P ); Γ+

∆,Γ
R=⇒ τ2 By I.H. D′

2. ∆−
∆,Γ, X : (Ψ ⊢ P ); Γ+

∆,Γ, y : [Ψ ⊢ P ] R=⇒ τ2 By weakening

3. ∆−
∆,Γ; Γ+

∆,Γ, y : [Ψ ⊢ P ] R=⇒ τ2 By lemma 15.

4. ∆−
∆,Γ; Γ+

∆,Γ
R=⇒ τ1 → τ2 By → R

Case: D =

D1
∆; Γ, y1 : τ1 → τ2 =⇒ τ1

D2
∆; Γ, y1 : τ1 → τ2, y2 : τ2 =⇒ τ

∆; Γ, y1 : τ1 → τ2 =⇒ τ
→ L

Subcase: τ2 = [Ψ ⊢ P ]

1. ∆−
∆,Γ, X : (Ψ ⊢ P ); Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ By I.H. D2

2. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ1 By I.H. D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ By lemma 12a.

Subcase: τ2 ̸= [Ψ ⊢ P ]

1. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2, y2 : τ2
R=⇒ τ By I.H. D2

2. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ1 By I.H. D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ By lemma 11a.

Case: D =

D′

∆, X : U ; Γ =⇒ τ

∆; Γ =⇒ Π2X : U. τ Π2R

Trivial.
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Case: D =

D1
∆ ⊩ C ⇐ U

D2
∆; Γ, y : Π2X : U. τ ′, y′ : [[C/X]]τ ′ =⇒ τ

∆; Γ, y : Π2X : U. τ ′ =⇒ τ
Π2L

Subcase: [[C/X]]τ ′ = [Ψ ⊢ P ]

1. ∆−
∆,Γ, X : (Ψ ⊢ P ); Γ+

∆,Γ, y : Π2X : U. τ ′ R=⇒ τ By I.H. D2

2. ∆−
∆,Γ ⊩ C ⇐ U By weakening D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U. τ ′ R=⇒ τ By lemma 13a.

Subcase: [[C/X]]τ ′ ̸= [Ψ ⊢ P ]

1. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U. τ ′, y′ : [[C/X]]τ ′ R=⇒ τ By I.H. D2

2. ∆−
∆,Γ ⊩ C ⇐ U By weakening D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U. τ ′ R=⇒ τ By lemma 14a.

Case: D =

D′

∆; Ψ =⇒ P

∆; Γ =⇒ [Ψ ⊢ P ] 2R

1. ∆; Ψ u=⇒ P By I.H. D′

2. ∆−
∆,Γ; Γ+

∆,Γ ≫ · L=⇒ [Ψ ⊢ P ] By level and weakening

3. ∆−
∆,Γ; · ≫ Γ+

∆,Γ
L=⇒ [Ψ ⊢ P ] By shift

4. ∆−
∆,Γ; Γ+

∆,Γ
R=⇒ [Ψ ⊢ P ] By left to right
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Case: D =

D′

∆, X : (Ψ ⊢ P ); Γ, y : [Ψ ⊢ P ] =⇒ τ

∆; Γ, y : [Ψ ⊢ P ] =⇒ τ
2L

1. ∆−
∆,Γ, X : (Ψ ⊢ P ), X ′ : (Ψ ⊢ P ); Γ+

∆,Γ
R=⇒ τ By I.H. D′

2. ∆−
∆,Γ, X : (Ψ ⊢ P ); Γ+

∆,Γ
R=⇒ τ By contraction

Part e):

Case: D = ∆; Γ, y : [Ψ ⊢ P ] =⇒ [Ψ ⊢ P ] initΓ

1. ∆−
∆,Γ, X : (Ψ ⊢ P ) > X : (Ψ ⊢ P ); Ψ ⇒ P By init∆

2. ∆−
∆,Γ, X : (Ψ ⊢ P ); Ψ u=⇒ P By transition∆

3. ∆−
∆,Γ, X : (Ψ ⊢ P ); Γ+

∆,Γ ≫ · L=⇒ [Ψ ⊢ P ] By level

Case: D =

D1
∆ ⊩ C ⇐ U

D2
∆; Γ, y : Π2X : U. τ ′, y′ : [[C/X]]τ ′ =⇒ [Ψ ⊢ P ]
∆; Γ, y : Π2X : U. τ ′ =⇒ [Ψ ⊢ P ] Π2L

Subcase: [[C/X]]τ ′ = [Φ ⊢ Q]

1. ∆−
∆,Γ, X

′ : [[C/X]]τ ′; Γ+
∆,Γ, y : Π2X : U.τ ′ ≫ · L=⇒ [Ψ ⊢ P ] By I.H. D2

2. ∆−
∆,Γ ⊩ C ⇐ U By weakening D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U.τ ′ ≫ · L=⇒ [Ψ ⊢ P ] By lemma 13b.
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Subcase: [[C/X]]τ ′ ̸= [Φ ⊢ Q]

1. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U.τ ′, y′ : [[C/X]]τ ′ ≫ · L=⇒ [Ψ ⊢ P ] By I.H. D2

2. ∆−
∆,Γ ⊩ C ⇐ U By weakening D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U.τ ′ ≫ · L=⇒ [Ψ ⊢ P ] By lemma 14b.

Case: D =

D1
∆; Γ, y1 : τ1 → τ2 =⇒ τ1

D2
∆; Γ, y1 : τ1 → τ2, y2 : τ2 =⇒ [Ψ ⊢ P ]

∆; Γ, y1 : τ1 → τ2 =⇒ [Ψ ⊢ P ] → L

Subcase: τ2 = [Φ ⊢ Q]

1. ∆−
∆,Γ, X : τ2; Γ+

∆,Γ, y1 : τ1 → τ2 ≫ · L=⇒ [Ψ ⊢ P ] By I.H. D2

2. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ1 By I.H. D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2 ≫ · L=⇒ [Ψ ⊢ P ] By lemma 12b.

Subcase: τ2 ̸= [Φ ⊢ Q]

1. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2, y2 : τ2 ≫ · L=⇒ [Ψ ⊢ P ] By I.H. D2

2. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ1 By I.H. D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2 ≫ · L=⇒ [Ψ ⊢ P ] By lemma 11b.

Case: D =

D′

∆; Ψ =⇒ P

∆; Γ =⇒ [Ψ ⊢ P ] 2R

1. ∆; Ψ u=⇒ P By I.H. D′

2. ∆−
∆,Γ; Γ+

∆,Γ ≫ · L=⇒ [Ψ ⊢ P ] By level and weakening
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Case: D =

D′

∆, X : (Φ ⊢ Q); Γ, y : [Φ ⊢ Q] =⇒ [Ψ ⊢ P ]
∆; Γ, y : [Φ ⊢ Q] =⇒ [Ψ ⊢ P ] 2L

1. ∆−
∆,Γ, X : (Φ ⊢ Q), X ′ : (Φ ⊢ Q); Γ+

∆,Γ ≫ · L=⇒ [Ψ ⊢ P ] By I.H. D′

2. ∆−
∆,Γ, X : (Φ ⊢ Q); Γ+

∆,Γ ≫ · L=⇒ [Ψ ⊢ P ] By contraction

Part f):

Case: D = ∆; Γ, y : [Ψ ⊢ P ] =⇒ [Ψ ⊢ P ] initΓ

1. ∆, X : (Ψ ⊢ P ) > X : (Ψ ⊢ P ); Ψ ⇒ P By init∆

2. ∆, X : (Ψ ⊢ P ); Ψ u=⇒ P By transition∆

Case: D =

D1
∆ ⊩ C ⇐ U

D2
∆; Γ, y : Π2X : U. τ ′, y′ : [[C/X]]τ ′ =⇒ [Ψ ⊢ P ]
∆; Γ, y : Π2X : U. τ ′ =⇒ [Ψ ⊢ P ] Π2L

Subcase: [[C/X]]τ ′ = [Φ ⊢ Q]
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Subcase: ∆−
∆,Γ, X

′ : [[C/X]]τ ′; Ψ u=⇒ P

1. ∆−
∆,Γ, X

′ : [[C/X]]τ ′; Ψ u=⇒ P By I.H. D2

2. ∆−
∆,Γ, X

′ : [[C/X]]τ ′; Γ+
∆,Γ, y : Π2X : U. τ ′ ≫ · L=⇒ [Ψ ⊢ P ] By level on 1

3. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U. τ ′ ≫ y′ : [[C/X]]τ ′ L=⇒ [Ψ ⊢ P ] By 2L on 2

4. ∆−
∆,Γ; · ≫ Γ+

∆,Γ, y : Π2X : U. τ ′, y′ : [[C/X]]τ ′ L=⇒ [Ψ ⊢ P ] By shift and exchange on 3

5. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U. τ ′ > y′ : [[C/X]]τ ′ ⇒ [Ψ ⊢ P ] By blur on 4

6. ∆−
∆,Γ ⊩ C ⇐ U By weakening D1

7. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U. τ ′ > y : Π2X : U. τ ′ ⇒ [Ψ ⊢ P ] By Π2L on 5 and 6

Subcase: ∆−
∆,Γ, X

′ : [[C/X]]τ ′; Γ+
∆,Γ, y : Π2X : U.τ ′ > y′′ : τ ⇒ [Ψ ⊢ P ],

y′′ ∈ Γ+
∆,Γ, y

1. ∆−
∆,Γ, X

′ : [[C/X]]τ ′; Γ+
∆,Γ, y : Π2X : U.τ ′ > y′′ : τ ⇒ [Ψ ⊢ P ] By I.H. D2

2. ∆−
∆,Γ ⊩ C ⇐ U By weakening D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U.τ ′ > y′′ : τ ⇒ [Ψ ⊢ P ] By lemma 13c.

Subcase: [[C/X]]τ ′ ̸= [Φ ⊢ Q]

Subcase: ∆−
∆,Γ; Ψ u=⇒ P

1. ∆−
∆,Γ; Ψ u=⇒ P By I.H. D2

Subcase: ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U.τ ′, y′ : [[C/X]]τ ′ > y′′ : τ ⇒ [Ψ ⊢ P ],
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y′′ ∈ Γ+
∆,Γ, y, y

′

1. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U.τ ′, y′ : [[C/X]]τ ′ > y′′ : τ ⇒ [Ψ ⊢ P ] By I.H. D2

2. ∆−
∆,Γ ⊩ C ⇐ U By weakening D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y : Π2X : U.τ ′ > y′′ : τ ⇒ [Ψ ⊢ P ] By lemma 14c.

Case: D =

D1
∆; Γ, y1 : τ1 → τ2 =⇒ τ1

D2
∆; Γ, y1 : τ1 → τ2, y2 : τ2 =⇒ [Ψ ⊢ P ]

∆; Γ, y1 : τ1 → τ2 =⇒ [Ψ ⊢ P ] → L

Subcase: τ2 = [Φ ⊢ Q]

Subcase: ∆−
∆,Γ, X : τ2; Ψ u=⇒ P

1. ∆−
∆,Γ, X : τ2; Ψ u=⇒ P By I.H. D2

2. ∆−
∆,Γ, X : τ2; Γ+

∆,Γ, y1 : τ1 → τ2 ≫ · L=⇒ [Ψ ⊢ P ] By level on 1

3. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2 ≫ y2 : τ2
L=⇒ [Ψ ⊢ P ] By 2L on 2

4. ∆−
∆,Γ; · ≫ Γ+

∆,Γ, y1 : τ1 → τ2, y2 : τ2
L=⇒ [Ψ ⊢ P ] By shift and exchange on 3

5. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2 > y2 : τ2 ⇒ [Ψ ⊢ P ] By blur on 4

6. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ1 By Theorem 3.d. on D1

7. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2 > y1 : τ1 → τ2 ⇒ [Ψ ⊢ P ] By → L on 5 and 6
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Subcase: ∆−
∆,Γ, X : τ2; Γ+

∆,Γ, y1 : τ1 → τ2 > y : τ ⇒ [Ψ ⊢ P ], y ∈ Γ+
∆,Γ, y1

1. ∆−
∆,Γ, X : τ2; Γ+

∆,Γ, y1 : τ1 → τ2 > y : τ ⇒ [Ψ ⊢ P ] By I.H. D2

2. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ1 By I.H. D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2 > y : τ ⇒ [Ψ ⊢ P ] By lemma 12c.

Subcase: τ2 ̸= [Φ ⊢ Q]

Subcase: ∆−
∆,Γ; Ψ u=⇒ P

1. ∆−
∆,Γ; Ψ u=⇒ P By I.H. D2

Subcase: ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2, y2 : τ2 > y : τ ⇒ [Ψ ⊢ P ], y ∈ Γ+
∆,Γ, y1, y2

1. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2, y2 : τ2 > y : τ ⇒ [Ψ ⊢ P ] By I.H. D2

2. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2
R=⇒ τ1 By I.H. D1

3. ∆−
∆,Γ; Γ+

∆,Γ, y1 : τ1 → τ2 > y : τ ⇒ [Ψ ⊢ P ] By lemma 11c.

Case: D =

D′

∆; Ψ =⇒ P

∆; Γ =⇒ [Ψ ⊢ P ] 2R

1. ∆; Ψ u=⇒ P By Theorem 3.a. on D′

2. ∆−
∆,Γ; Ψ u=⇒ P By weakening 1

Case: D =

D′

∆, X : (Φ ⊢ Q); Γ, y : [Φ ⊢ Q] =⇒ [Ψ ⊢ P ]
∆; Γ, y : [Φ ⊢ Q] =⇒ [Ψ ⊢ P ] 2L

83



Subcase: ∆−
∆,Γ, X : (Φ ⊢ Q), X ′ : (Φ ⊢ Q); Ψ u=⇒ P

1. ∆−
∆,Γ, X : (Φ ⊢ Q), X ′ : (Φ ⊢ Q); Ψ u=⇒ P By I.H. D′

2. ∆−
∆,Γ, X : (Φ ⊢ Q); Ψ u=⇒ P By contraction 1

Subcase: ∆−
∆,Γ, X : (Φ ⊢ Q), X ′ : (Φ ⊢ Q); Γ+

∆,Γ > y : τ ⇒ [Ψ ⊢ P ], y ∈ Γ+
∆,Γ

1. ∆−
∆,Γ, X : (Φ ⊢ Q), X ′ : (Φ ⊢ Q); Γ+

∆,Γ > y : τ ⇒ [Ψ ⊢ P ] By I.H. D′

2. ∆−
∆,Γ, X : (Φ ⊢ Q); Γ+

∆,Γ > y : τ ⇒ [Ψ ⊢ P ] By contraction
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Chapter 4

The Tactic Implementation

In the previous chapter we presented the theoretical foundation behind our tactics. We

now provide a summary of the implementation work that has been done. In Chapters 4.1

and 4.2 we outline the automated proof search procedures for contextual LF and its meta-

logic implemented in Beluga. These search procedures are encompassed within the tactics

auto-invert-solve and inductive-auto-solve. In Chapter 4.3 we present an overview

of the applications of our tactics, and discuss the limitations of their use in Chapter 4.4.

4.1 Theorem Prover for Contextual LF

It is well-known that meta-theoretic reasoning often also involves reasoning within theories.

Therefore in order to achieve automated meta-theorem proving, we must also automate

theorem proving within theories. As such, Beluga includes an automated theorem prover

for (a subset of) contextual LF. As theories are encoded in LF using the propositions-as-types

perspective, proof search proceeds by searching for a proof term with the appropriate type.

We examine the contextual LF theorem prover by walking through two examples which will

highlight its solving capabilities. Although proof terms are constructed during proof search,
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we will omit them here for readability. We begin by analyzing the halts_step lemma,

previously presented in Chapter 2.2.2. This proof will highlight proof search over LF types.

rec halts_step : [ ⊢ step M M’] → [ ⊢ halts M’] → [ ⊢ halts M] =
fn s, h =>

let [ ⊢ halts/m MS V] = h in let [ ⊢ S] = s in [ ⊢ halts/m (sstep S MS) V]
;

We concentrate on the construction of the final proof term:

[ ⊢ halts/m (sstep S MS) V]

Just before solving this subgoal, the state of the proof search in Beluga looks like:

MS: ( ⊢ steps M’ V’), V: ( ⊢ val V’), S: ( ⊢ step M M’)
;
⊢ [ ⊢ halts M]

where unbound meta-variables are left implicit. We present the state of proof search in

Beluga in this way. With the two contexts appearing to the left of the sequent, meta-

context denoted first, and separated by a semicolon. The goal will appear to the right of the

sequent.

Beluga first attempts to look for a proof in LF, that is, by focusing on the right. By

executing the level rule we transition to proof search in LF and the new goal then becomes:

MS: ( ⊢ steps M’ V’), V: ( ⊢ val V’), S: ( ⊢ step M M’)
;
⊢ halts M

Since the goal above is a positive formula, the uniform stage is trivially complete. The

algorithm then proceeds to the LF focusing stage. The algorithm first attempts focusing on

assumptions in ∆, executing the transition∆ rule. In Beluga, all assumptions (both LF and

computation-level) are compiled into hereditary Harrop formulas which consists of a head,

subgoals, and bound variables. For example, the type of the term halts/m:
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ΠA : tp. ΠM : term A. ΠM ′ : term A. steps M M ′ → val M ′ → halts M

where A,M, and M ′ are implicit, is viewed as the horn clause:

(steps M M ′ ∧ val M ′) → halts M

which gets compiled to:

{ head = halts M
; subgoals = steps M M’, val M’
; boundVars = A: tp, M: term A, M’: term A }

This form allows easy access to the head of assumptions. As subgoals are independent

of one another, they are solved from right-to-left, but the constructed proof term maintains

the order in which they occur in the goal formula.

In the implementation, we only focus in LF on assumptions whose head unifies with the

goal. Therefore, the algorithm does not proceed with focusing on any assumption in ∆. Next

we look for a solution in the dynamic assumptions in Ψ. Since Ψ is empty here, we then

move on to focusing on assumptions from our signature Σ. These focusing rules are exactly

like the focusing rules presented for Ψ. There is one constructor for halts in Σ, namely

halts/m. Since the head of halts/m unifies with the goal we proceed with focusing on this

assumption.

The list of bound variables in the assumption is non-empty, which implies that the

assumption is of Π type. In the implementation of the ΠL rule, a substitution is created

which holds instantiations for the bound variables in the assumption. This substitution is

composed of meta-variables which represent existential variables that are to be instantiated

during unification later.

Beluga then checks if there are any subgoals, implying that the focus is on an assump-

tion of → type. Starting with the right-most assumption, Beluga searches for a uniform

proof for each subgoal, following the → L rule. This process restarts the search loop for each

subgoal.
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MS: ( ⊢ steps M’ V’), V: ( ⊢ val V’), S: ( ⊢ step M M’)
;
⊢ val ?V

where ?V stands for a meta-variable yet to be instantiated. This assumption is discharged

by focusing on V in ∆ which unifies ?V with V’. The algorithm then proceeds to the next

subgoal:

MS: ( ⊢ steps M’ V’), V: ( ⊢ val V’), S: ( ⊢ step M M’)
;
⊢ steps M V’

If no solution to this subgoal can be found, the algorithm backtracks to the previous

state in the proof and resumes finding a proof of val ?V.

Returning to the search, no solution is found when focusing on ∆ or Ψ, so it proceeds to

look into Σ. Here, the only constructor with such whose head unifies with the goal is sstep.

Repeating the steps above, the algorithm builds a substitution which holds the instantiations

of the bound variables of sstep and proceeds to solving its first subgoal:

MS: ( ⊢ steps M’ V’), V: ( ⊢ val V’), S: ( ⊢ step M M’)
;
⊢ steps ?M V

This subgoal is discharged by focusing on MS which unifies ?M with M’. The final subgoal

to sstep is:

MS: ( ⊢ steps M’ V’), V: ( ⊢ val V’), S: ( ⊢ step M M’)
;
⊢ step M M’

which can be discharged with assumption S. This ends the proof.

In the implementation, proof search in LF is bounded in order to ensure the procedure

terminates. We bound search by the depth of the search tree. That is, we increment depth
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when we attempt to solve the first subgoal for an assumption. Therefore if an assumption

has more than one subgoal, the depth only increases once. By default, the depth is set to 3

for LF proof search, which in most cases is high enough.

The next example we present highlights the search in LF for substitutions. Recall, we

need to build substitutions whenever we want to use a meta-assumption. In the previous

example, we made this search implicit as all of the goals and meta-assumptions had empty

local contexts. Therefore the substitution needed to use the meta-assumptions in all cases

was the empty substitution, which can be solved trivially and is left implicit in the proof

term.

To showcase this aspect of the solver, we introduce a new example. We show type

preservation for the STLC. This property states that the typing of a term is preserved after

the term has been evaluated. To show this, we require an extrinsically typed representation:

LF tp : type =
| b : tp
| arr : tp → tp → tp
;

LF exp : type =
| c : exp
| abs : tp → (exp → exp) → exp
| app : exp → exp → exp
;

We encode typing and evaluation rules:
LF oft : exp → tp → type =
| tp_c : oft c b
| tp_abs : ({x:exp} oft x T1 → oft (E x) T2)

→ oft (abs T1 (λx . E x)) (arr T1 T2)
| tp_app : oft E2 T2 → oft E1 (arr T2 T1)

→ oft (app E1 E2) T1
;

LF eval : exp → exp → type =
| ev_c : eval c c
| ev_abs : eval (abs T (λx. E x)) (abs T (λx. E x))
| ev_app : eval E1 (abs T (λx. E x)) → eval E2 V2

→ eval (E V2) V → eval (app E1 E2) V
;

Our type preservation theorem and proof then takes the form:
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rec pres: {E : ( ⊢ exp)} {V : ( ⊢ exp)} {T : ( ⊢ tp)} [ ⊢ eval E V]
→ [ ⊢ oft E T] → [ ⊢ oft V T] =

/ total e (pres x v t e) /
mlam E, V, T ⇒ fn e, o ⇒ case e of

| [⊢ ev_c] ⇒ o
| [⊢ ev_abs] ⇒ o
| [⊢ ev_app E1 E2 E3] ⇒

let [ ⊢ tp_app O1 O2] = o in
let [⊢ X] = pres [ ⊢ _] [ ⊢ _] [ ⊢ _] [ ⊢ E2] [ ⊢ O1] in
let [⊢ tp_abs (λx. λz. O3)] =

pres [ ⊢ _] [ ⊢ _] [ ⊢ arr _ T] [ ⊢ E1] [ ⊢ O2] in
pres [⊢ _] [⊢ _] [⊢ _] [⊢ E3] [⊢ O3[_, X]]

;

In the proof above, notice that the meta-assumption in the final proof term

([⊢ O3[_, X]]) is paired with an explicit substitution. We will focus our attention to the

construction of this term. Our proof state just before this point, and once transitioning to

proof search in LF, is:

V: (⊢ exp), T: ( ⊢ tp), E1: (⊢ eval X1 (abs T1 (λx. X3 x))), E2: ( ⊢ eval X2 V2),
E3: ( ⊢ eval (X3 V2) V), O1: (⊢ oft X2 T1), O2: (⊢ oft X1 (arr T1 T)),
X: (⊢ oft V2 T1), O3: (x: exp, z: oft x T1 ⊢ oft (X3 x) T)
;
⊢ oft (X3 V2) T

Focusing in ∆ first, there is one assumption whose head unifies with the goal, namely

O3. Unlike the previous examples above, O3 has a non-empty local context. Since we would

like to use this assumption in our current goal state in which Ψ is empty, we must find the

required substitution σ where ∆; · ⊢ σ : (x : exp, z : oft x T1).

Solving for LF substitutions is one area of incompleteness in the implementation. Cur-

rently, we may only search for the appropriate substitution terms in ∆. Fortunately, this is

enough for us to complete this goal.

Once Beluga focuses on O3, it executes the sub rule. Again, a substitution is created

in which the bound variables x and z are replaced by meta-variables, but this time we must

search for the instantiations. The algorithm searches ∆ to solve the subgoals, starting with

the right-most one:
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V: (⊢ exp), T: ( ⊢ tp), E1: (⊢ eval X1 (abs T1 (λx. X3 x))), E2: ( ⊢ eval X2 V2),
E3: ( ⊢ eval (X3 V2) V), O1: (⊢ oft X2 T1), O2: (⊢ oft X1 (arr T1 T)),
X: (⊢ oft V2 T1), O3: (x: exp, z: oft x T1 ⊢ oft (X3 x) T)
;
⊢ oft V2 T1

The assumption X discharges this goal. The final goal, (⊢ exp) is then instantiated with

V2. Since this assumption is implicit in ∆, it appears as an underscore in the final proof

term.

These two examples demonstrate the automated prover in Beluga for contextual LF. As

it searches for a proof, this solver also constructs proof terms for LF types and substitutions.

It executes a bounded search which backtracks upon encountering failure.

4.2 Beluga’s Meta-Theorem Prover

The automated meta-theorem search procedure for Beluga is composed of two operations:

search and split. The search phase proceeds similarly to proof search in LF, described in

the previous chapter. The split phase may take several directions, depending on what the

user or Beluga requests. They may request to do any type of (meta-)variable split, only

inversions, or no splits at all. The search procedure is again bounded by the depth of the

search tree, and implements backtracking if it encounters failure.

To demonstrate the capabilities of the meta-theorem prover, we examine how Beluga

automatically solves the bwd_closed lemma previously presented in Chapter 2.2.2. We show

the procedure which allows for any split to be made. The solver takes as input the goal state,

consisting of the relevant contexts, the goal type, split index, and depth bound. A proof

term is simultaneously constructed during the search, but we omit it in our example. We

begin with empty contexts, an induction argument index of 1, and a depth bound of 3. The

index is given with respect to the (meta-)variable’s position in the overall goal, counted from

left-to-right.
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;
⊢ {A:[ ⊢ tp]} {M: [ ⊢ term A]} {M’: [ ⊢ term A]}

[ ⊢ step M M’] → Reduce [ ⊢ A] [ ⊢ M’] → Reduce [ ⊢ A] [ ⊢ M]

The search procedure begins with the uniform phase, beginning with uniform right. This

concludes with the following proof state:

A: (⊢ tp), M: (⊢ term A), M’: (⊢ term A)
; s: [⊢ step M M’], r: Reduce [⊢ A] [⊢ M’]
⊢ Reduce [ ⊢ A] [ ⊢ M]

Once a positive goal is reached, Beluga enters into the uniform left phase. This con-

cludes when Γ contains only positive assumptions.

A: (⊢ tp), M: (⊢ term A), M’: (⊢ term A), S: (⊢ step M M’)
; r: Reduce [⊢ A] [⊢ M’]
⊢ Reduce [ ⊢ A] [ ⊢ M]

Since we explicitly stated a split index, the implemented search procedure detours from

the theoretical procedure and splits on the respective variable immediately. As tp has two

constructors, there are two cases to solve. Solving for the case of A = b the goal becomes:

M: (⊢ term b), M’: (⊢ term b), S: (⊢ step M M’)
; r: Reduce [⊢ b] [⊢ M’]
⊢ Reduce [ ⊢ b] [ ⊢ M]

After a split, the procedure immediately applies any inversions (splits that result in one

subgoal). It first inverts r, introducing the assumption h: [⊢ halts M’] then immediately

inverts h, introducing assumptions SS: (⊢ steps M’ N) and V: (⊢ val N) for implicit

term N: (⊢ term c). Finally, it inverts V, which introduces no new assumptions. The

resulting proof state is then:

M: (⊢ term b), M’: (⊢ term b), S: (⊢ step M M’), SS: (⊢ steps M’ N)
;
⊢ Reduce [ ⊢ b] [ ⊢ M]

92



Once all inversions have been made, we return to the search process and proceed with

focusing. We start with a blur phase that is skipped here as it is inapplicable, but will

be discussed in the next example. Continuing with focusing, since the goal is not of box

type, we cannot focus on the right. The algorithm then proceeds with focusing on the left,

beginning with the computational signature, then local context Γ, ending with the available

induction hypotheses. When focusing, assumptions whose head unifies with the goal are

prioritized. It then focuses on the constructor I in the computational signature. This time,

a meta-substitution is built, following the Π2 rule, which holds the instantiations of the

bound meta-variables in the assumption. Beluga then checks if there are any subgoals to

the assumption. There is one subgoal to solve, namely [⊢ halts M].

M: (⊢ term b), M’: (⊢ term b), S: (⊢ step M M’), SS: (⊢ steps M’ c)
;
⊢ [⊢ halts M]

The procedure then restarts, this time with no explicit split index stated. Since the goal

and assumptions are already all positive and no split index is specified, we advance straight

to the focusing phase. We do not blur when solving subgoals coming from focusing. As the

goal is of box-type, it tries first to focus on the right. There, the matching proof term is

constructed: [ ⊢ halts/m (sstep S SS) val/c].

In the second case, A = arr T1 T2, the proof state begins at:

T1: (⊢ tp), T2: (⊢ tp), M: (⊢ term (arr T1 T2)), M’: (⊢ term (arr T1 T2))
, S: (⊢ step M M’)
; r: Reduce [⊢ arr T1 T2] [⊢ M’]
⊢ Reduce [⊢ arr T1 T2] [⊢ M]

Similarly to above, immediately after splitting comes inversions. After the inversions we

are left with:
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T1: (⊢ tp), T2: (⊢ tp), M: (⊢ term (arr T1 T2)), M’: (⊢ term (arr T1 T2))
, S: (⊢ step M M’), SS: (⊢ steps M’ (abs T1 N’))
; f: {N1: (⊢ term T1)} Reduce [⊢ T1] [⊢ N1] → Reduce [⊢ T2] [⊢ app M’ N1]
⊢ Reduce [⊢ arr T1 T2] [⊢ M]

Focusing on the left, on the term Arr, presents us with two new subgoals. Subgoals are

again solved from right-to-left.

T1: (⊢ tp), T2: (⊢ tp), M: (⊢ term (arr T1 T2)), M’: (⊢ term (arr T1 T2))
, S: (⊢ step M M’), SS: (⊢ steps M’ (abs T1 N’))
; f: {N1: (⊢ term T1)} Reduce [⊢ T1] [⊢ N1] → Reduce [⊢ T2] [⊢ app M’ N1]
⊢ {N: (⊢ term T1)} Reduce [⊢ T1] [⊢ N] → Reduce [⊢ T2] [⊢ app M N]

After the uniform phase, the proof state is:

T1: (⊢ tp), T2: (⊢ tp), M: (⊢ term (arr T1 T2)), M’: (⊢ term (arr T1 T2))
, S: (⊢ step M M’), SS: (⊢ steps M’ (abs T1 N’)), N: (⊢ term T1)
; f: {N1: (⊢ term T1)} Reduce [⊢ T1] [⊢ N1] → Reduce [⊢ T2] [⊢ app M’ N1]
, y: Reduce [⊢ T1] [⊢ N]
⊢ Reduce [⊢ T2] [⊢ app M N]

When focusing on the left, the only assumption with a head that unifies with the goal is

an induction hypothesis/schema. In Beluga this schema looks like:

bwd_closed [ ⊢ T2] : {M1 : ( ⊢ term T2)}{M2 : ( ⊢ term T2)} [ ⊢ step M1 M2]
→ Reduce [ ⊢ T2] [ ⊢ M2] → Reduce [ ⊢ T2] [ ⊢ M1]

These assumptions are treated the same as others, and get compiled into hereditary

Harrop formulas. A meta-substitution is then created from the bound meta-variables (M1

and M2). Since the assumption is of → type, there are subgoals to solve.

T1: (⊢ tp), T2: (⊢ tp), M: (⊢ term (arr T1 T2)), M’: (⊢ term (arr T1 T2))
, S: (⊢ step M M’), SS: (⊢ steps M’ (abs T1 N’)), N: (⊢ term T1)
; f: {N1: (⊢ term T1)} Reduce [⊢ T1] [⊢ N1] → Reduce [⊢ T2] [⊢ app M’ N1]
, y: Reduce [⊢ T1] [⊢ N]
⊢ Reduce [⊢ T2] [⊢ ?M]
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The uniform stage is completed, trivially, so we move to focusing. The head of assumption

f (i.e. Reduce [⊢ T2] [⊢ app M’ N1]) unifies with our goal so we focus on f. There is

then one subgoal to solve.

T1: (⊢ tp), T2: (⊢ tp), M: (⊢ term (arr T1 T2)), M’: (⊢ term (arr T1 T2))
, S: (⊢ step M M’), SS: (⊢ steps M’ (abs T1 N’)), N: (⊢ term T1)
; f: {N1: (⊢ term T1)} Reduce [⊢ T1] [⊢ N1] → Reduce [⊢ T2] [⊢ app M’ N1]
, y: Reduce [⊢ T1] [⊢ N]
⊢ Reduce [⊢ T1] [⊢ ?N]

Focusing on assumption y finishes this branch in the search tree. We move on to the

second subgoal of the induction hypothesis.

T1: (⊢ tp), T2: (⊢ tp), M: (⊢ term (arr T1 T2)), M’: (⊢ term (arr T1 T2))
, S: (⊢ step M M’), SS: (⊢ steps M’ (abs T1 N’)), N: (⊢ term T1)
; f: {N1: (⊢ term T1)} Reduce [⊢ T1] [⊢ N1] → Reduce [⊢ T2] [⊢ app M’ N1]
, y: Reduce [⊢ T1] [⊢ N]
⊢ [⊢ step (app M N) (app M’ N)]

Again, the goal is positive, so we proceed to focusing. Since the goal is of box-type, we

first attempt to focus on the right. LF proof search finds a matching proof term, namely

[⊢ stepapp S], which completes the proof of the first subgoal of Arr.

T1: (⊢ tp), T2: (⊢ tp), M: (⊢ term (arr T1 T2)), M’: (⊢ term (arr T1 T2))
, S: (⊢ step M M’), SS: (⊢ steps M’ (abs T1 N’)), N: (⊢ term T1)
; f: {N1: (⊢ term T1)} Reduce [⊢ T1] [⊢ N1] → Reduce [⊢ T2] [⊢ app M’ N1]
, y: Reduce [⊢ T1] [⊢ N]
⊢ [⊢ halts M]

The next subgoal is also solved from focusing on the right, with the proof term

[⊢ halts/m (sstep S SS) ( val/abs )]. The final proof term Beluga constructs looks

like:
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mlam A, M, M’ ⇒ fn s, r ⇒
let [ ⊢ S] = s in
case [ ⊢ A] of
| [ ⊢ b] =>

let I h = r in
let [ ⊢ halts/m SS V] = h in
let [ ⊢ val/c] = [ ⊢ V] in I [ ⊢ halts/m (sstep S SS) val/c]

| [ ⊢ arr T1 T2] =>
let (Arr h f : Reduce [ ⊢ arr T1 T2] [ ⊢ M’]) = r in
let ([ ⊢ halts/m SS V] : [ ⊢ halts M’]) = h in
let [ ⊢ val/abs ] = [ ⊢ V] in
Arr [ ⊢ halts/m (sstep S SS) (val/abs )]

(mlam N => fn y =>
bwd_closed [ ⊢ T2] [ ⊢ app M N] [ ⊢ app M’ N] [ ⊢ stepapp S]

(f [ ⊢ N] y))

Our last example showcases the applications of the blur rule. This rule is applied when

the assumption we focus on is atomic but does not unify with the goal. In this case, the

atomic assumption is added to Γ and we resume focusing. This purpose of this rule is to

introduce lemmas that are needed for LF proof construction.

For simplicity, we choose a basic example: value soundness for the the theory of natural

numbers.

LF nat : type =
| z : nat
| suc : nat → nat
;

LF val : nat → type =
| v_z : val z
| v_s : val N → val (suc N)

;

LF eval : nat → nat → type =
| ev_z : eval z z
| ev_s : eval N V

→ eval (suc N) (suc V)
;

The soundness lemma and proof then take the form:
rec sound : {N : ( ⊢ nat)} {V : ( ⊢ nat)} [ ⊢ eval N V] → [ ⊢ val V] =
/ total e (sound n v e) /
mlam N, V => fn e => case e of

| [ ⊢ ev_z] =>
[ ⊢ v_z]

| [ ⊢ ev_s E’] =>
let y = sound [ ⊢ _] [ ⊢ _] [ ⊢ E’] in
let [ ⊢ Z] = y in [ ⊢ v_s Z]

;

This property may be proved fully automatically in Beluga by induction on the third

argument, e. The proof state at the start of the proof looks like:
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N: (⊢ nat), V: (⊢ nat)
; e: [⊢ eval N V]
⊢ [⊢ val V]

We then call upon Beluga’s theorem prover to finish the proof. The uniform right stage

is trivially complete, so it moves on to the uniform left stage. Since we indicated that we are

to perform induction on e, this argument is not unboxed for simplicity. We then immediately

split. We are presented with the first case, when e is [ ⊢ ev_z].

;
⊢ [⊢ val z]

This goal is easily discharged by performing LF proof search, or focusing on the right. We

then move to the inductive case, that is, when e is [ ⊢ ev_s E’] for E’: [⊢ eval N’ V’].

E’: (⊢ eval N’ V’)
;
⊢ [⊢ val (suc V’)]

There is one induction hypothesis generated, namely:

sound [ ⊢ _] [ ⊢ _] [ ⊢ E’] : [ ⊢ val V’]. There are no inversions to be made, so

the search loop restarts. The uniform phase is completed trivially; moving on to focusing.

Before heading to proof search in LF, there is a blurring/lemma application phase that

occurs. During this phase, we focus on the assumptions whose head does not necessarily

unify with our goal and attempt to introduce the atoms they define. We begin by blurring on

the assumptions in Γ. There are none, so we move on to the induction hypotheses; focusing

on the only hypothesis. This hypothesis contains no universally quantified variables that

require instantiation nor does it have any subgoals that require solving, thus the assumption

[ ⊢ val V’] is easily introduced.
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E’: (⊢ eval N’ V’)
; y: [⊢ val V’]
⊢ [⊢ val (suc V’)]

In the case that there are universally quantified variables requiring instantiation, the loop

attempts to instantiate the variables with all possible combinations of meta-variables from

∆. In the case that there are subgoals to be solved, the prover will attempt to solve each

subgoal by calling upon the search loop enforcing a search depth of 1. Therefore only trivial

lemmas may be introduced.

Once the blurring phase is complete, we enter back into the uniform left phase, unboxing

any newly introduced box-type assumptions.

E’: (⊢ eval N’ V’), Z: (⊢ val V’)
;
⊢ [⊢ val (suc V’)]

Finally, the loop enters the standard focusing phase, beginning with focusing on the right,

in which it finds the desired proof term: v_s Z.

The lemma application rule is implemented naively, meaning we introduce every possible

lemma that can be found. Unfortunately this sometimes means that too many assumptions

are introduced that remain unused during proof development, which clutters proofs.

This completes our description of Beluga’s meta-theorem prover. These examples show-

cased the main capabilities of the solver. In both examples, we used the tactic

inductive -auto - solve which performs automatic induction on the specified argument,

along with proof search on each case. We did not showcase any uses of the tactic

auto -invert -solve, which is meant to be applied to the easily solvable subgoals of a com-

plex proof. We discuss some of the uses of this tactic in the next subchapter.
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4.3 Evaluation

The proof search procedures behind inductive-auto-solve and auto-invert-solve are

the beginning of the implementation of the focusing calculi presented in Chapter 3.3. There

are several areas of incompleteness that may be improved in the future. Nevertheless, the

tactics are able to prove a number of interesting theorems both semi- and fully-automatically.

We provide a summary of these case studies here.

Case study Automation Difficulty Interesting proof features
MiniML/fix type
preservation Full Advanced Solving substitutions,

I.H. appeal, inversions
MiniML/fix value
soundness Full Basic I.H. appeal

STLC weak-head
normalization
lemmas

Full Intermediate Inversions, depth bound,
higher-order solving, I.H. appeal

STLC type
uniqueness Partial Basic I.H. appeal, inversions

Untyped lambda-
calculus ordinary
and parallel
reduction lemmas

Full/Partial Basic I.H. appeal

Table 4.1: Overview of case studies

We highlight our case studies by the amount of automation that may be successfully

applied. Theorems are proven with full automation using inductive-auto-solve, or with

partial automation using auto-invert-solve. Partial automation is used on induction

proofs when not all the cases fall within the prover’s applicable subset. All proofs proceed

by induction along with various features that we have outlined.

We use our tactics to prove key lemmas required to prove weak-head normalization for the

STLC. These include in particular the termination property (halts_step) and backwards

closed (bwd_closed) lemmas. The backwards closed lemma is particularly interesting as it

requires bounded depth search, and higher-order function type solving. Type uniqueness for

99



the STLC can be proven semi-automatically as two of its cases involve parameter variables

and context block schemas.

We prove all lemmas regarding ordinary reduction for the untyped lambda-calculus auto-

matically, and all but one lemma regarding parallel reduction automatically. These lemmas

are used to prove equivalence of the ordinary and parallel reductions, and ultimately the

Church-Rosser theorem for each reduction procedure.

For MiniML without fixpoints, we are able to prove type preservation and value soundness

fully-automatically. Preservation in particular showcases the solvers ability to solve for

substitutions.

Beluga’s level of automation does not yet surpass that of Twelf’s. However, Beluga is

able to reason directly using logical relations, unlike Twelf. Certain properties, like normal-

ization theorems, are most commonly proven using logical relations. In Twelf, users must

find alternative proof methods [Schürmann and Sarnat, 2008; Abel, 2008], which may be

conceptually different from on-paper formulations and require more work from the user to

construct additional machinery. In Beluga, such logical relations may be directly trans-

lated from on-paper formulations and their proofs become simplified with the use of our

automation tactics.

4.4 Limitations

As is the case with automated theorem provers, there are limits to what may be solved

with our tactics. Some of these limitations are due to incompleteness and overall design of

Beluga. We discuss a few of those here. It is important for users to understand the scope

of what is provable with our tactics, so that they make the best use of them.

Incompleteness We previously mentioned that one area of incompleteness comes from

fact that we do not perform full proof search when searching for a verifying substitution in
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the transition∆ rule from the focusing calculus for LF. When we require a substitution of

type x1 : B1, ..., xn : Bn we only search in ∆ for the matching terms. This choice prevents us

from automatically proving properties that require for example assumptions from Ψ to build

substitutions, as in the proof of the admissibility of cut for intuitionistic sequent calculus.

Another area of incompleteness arises from the blur rule in the focusing calculus for the

computation logic. Currently, we only apply this rule on assumptions from Γ or induction

hypotheses. We only focus on assumptions from the signature if the head of their compiled

clauses unifies with our goal, as in LF proof search. Showing the equivalence of ordinary

and parallel reductions for the untyped lambda calculus requires lemma application (which

results from blurring) of previously proven theorems in the signature. Currently, we cannot

prove such a theorem automatically.

Beluga design In order to use the tactics to assist in induction proofs, the goal formula

should uphold certain conditions. For one, users must ensure they only quantify over vari-

ables that are bound within the body of the theorem. As an example, it is fine to write

theorems as Π2 X1 : U. Π2 X2 : (Ψ ⊢ P ). τ where X2 doesn’t appear in τ . If we were to

perform induction on X1 however, this will cause issues for the prover if we choose to focus

on an induction hypothesis. Applying the Π2L rule, there will never be an instantiation for

the meta-variable replacing X2 found as it does not occur in τ . This results in uninstanti-

ated meta-variables being left in the final proof term. Therefore users must be conscientious

when formulating their meta-theorems. Users should also formulate their theorems in a

way that if their induction variable is an ordinary variable, it should be the left-most an-

tecedent. That is, if we want to induct on the assumption [⊢ eval E V] in the theorem

[ ⊢ oft E T] → [ ⊢ eval E V] → [ ⊢ oft V T] then we should instead formulate the

theorem as: [ ⊢ eval E V] → [ ⊢ oft E T] → [ ⊢ oft V T]. This is because issues

can arise in the generation of the induction hypotheses. Induction schema generation is still

an area of active development in Beluga.
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Chapter 5

Conclusion

5.1 Future Work

We discuss here possible implementation improvements that may be made to the Beluga

theorem prover. We do not include extensions that would make the prover complete with

respect to the logic presented in this thesis.

Support other meta-types

In Beluga’s implementation of contextual LF, meta-types also include parameter and sub-

stitution variables [Cave and Pientka, 2013]. Parameter variables allow users to reference

assumptions within LF contexts. Substitution variables allow for the first-class treatment of

substitutions, providing a richer, more expressive logic. Substitution variables have shown

to be particularly useful for implementing normalization proofs [Cave and Pientka, 2013].

Currently, Beluga’s theorem prover lacks support for such meta-types. This also limits the

theorem prover’s expressive power. Extending both the prover but also the logic presented

in this thesis with these meta-types would be interesting future research, and due to the

uniform treatment of meta-types in Beluga’s logic, this extension should be straight for-
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ward. Supporting these meta-types would allow for more automatic reasoning about open

LF objects, which is required for many interesting theorems.

Context blocks

The implementation is also lacking support for another interesting aspect of Beluga’s

logic, context block schemas. Such a schema is a generalization of regular context schemas

whereby each schema element is constructed from a Σ-type, which allows grouping of multiple

declarations. These too are used to reason about open LF objects. This extension would

however be less straightforward due to Beluga’s induction hypothesis generation. During

this process, blocks are flattened and thus lose their schema’s shape. Therefore more research

will need to be done to correctly incorporate these schemas into the automated prover.

Automatic splitting

A more experimental aspect of the prover that we have not discussed yet is its ability to

conduct case analysis and inductions automatically. This feature is far from being robust but

would be an interesting addition to make. Currently, there is an option to allow automatic

splitting to occur whenever a loop of the search procedure has conducted and no proof has

been found. In this case, a variable is chosen using a basic heuristic and the solver attempts

to solve each subgoal. The problem of choosing the right variable to split on is infamously

difficult, and currently there seems to be no simple way to solve this. Therefore it is crucial

the solver handles failure well.

Improved failure handling

Planning for failure is something all theorem proving designers must keep in mind when

creating their systems. If not, a search may easily result in a non-terminating loop, which

deters users. Ideally, if a proof does not exist for a proposition, the solver will fail quickly.
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This is of course easier said then done. Currently, the practices in place to plan for failure

in Beluga include bounding the search tree depth, and bounding the number of times a

case analysis or induction may occur. There are more sophisticated techniques researchers

have studied which have the potential to improve failure handling in Beluga that would

be interesting to explore.

Memoization is one such technique used to speed up computation by reusing subcom-

putations [Michie, 1968; Pientka, 2003, 2005]. Normally in proof search if a branch of the

search tree is taken and found to not be the correct one, the system backtracks and for-

gets everything learned while computing that branch. Using memoization, the system stores

learned information within a table and can refer to it later, like caching. This technique

can also be used to detect loops, also a way to speed up search (and failure). Implementing

memoization in Beluga would probably take extensive work, but it has the potential to

make the system much more robust.

Machine learning has also been applied to theorem provers in various settings [Denzinger

et al., 1997; Meng and Paulson, 2009; Goller, 1997]. One such way is to determine the

best heuristic to use during search. Algorithms can find similarities and differences between

the structures of propositions and from these, determine the possible proof structure of an

unproven statement. As research in this field progresses, it may be worth exploring the

application of machine learning to meta-theorem provers, such as Beluga.

5.2 Summary

In closing, we have presented the the theorem and meta-theorem provers behind Beluga.

These provers perform proof search over a core subset of Beluga’s logic which allows for

the automatic completion of many simple lemmas and cases of PL theory proofs. Users of

Beluga may now bypass these simple proof and focus their energy on the interesting cases.

This is the first step in adding full automation to Beluga. Along with our implementation,
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we provide a theoretical foundation for our solvers in the form of a cut-free sequent calculus,

which is easy to understand, and a sound and complete focusing calculus, which closely

reflects our implementation. These provide us with a way to study our implementation and

ensure its correctness.

Our next steps are to expand the solver so that its proving capabilities are equivalent

to that of the logic presented in this thesis. After that, we plan to add support for context

block schemas, and substitution and parameter variables, which should bring its proving

power up to that of Twelf’s.
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