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Abstract

DNA methylation is an essential epigenetic modification that regulates gene activity and

contributes to tissue differentiation and disease susceptibility. Identifying disease-associated

changes in DNA methylation can help us gain a better understanding of disease etiology.

Bisulfite sequencing allows the generation of high-throughput methylation profiles at the

single-base resolution of DNA. However, optimally modelling and analyzing these sparse and

discrete sequencing data is still challenging due to variable read depth, missing data patterns,

long-range correlations, data errors, and confounding from cell type mixtures. This thesis

consists of three manuscripts about developing methods to better estimate regional associa-

tion patterns in bisulfite sequencing-derived DNA methylation data, particularly useful for

analyzing data from targeted custom capture sequencing libraries.

In the first manuscript, I develop a novel hierarchical varying coefficient regression method

called SmOoth ModeliNg of BisUlfite Sequencing (SOMNiBUS), which allows covariate ef-

fects to vary smoothly along genomic positions. I build a specialized Expectation-Maximization

algorithm, which allows for measurement errors in the outcomes (i.e. methylated counts) and

leads to both regional measures of association and pointwise tests and confidence intervals.

Simulations show that the proposed method provides accurate estimates of covariate effects

and captures the major underlying methylation patterns with excellent power. I also apply

this method to analyze data from cell type-separated blood samples taken from rheumatoid

arthritis patients and controls.

In the second manuscript, I extend SOMNiBUS to allow the outcomes to exhibit extra-

parametric variation by proposing a hierarchical quasi-binomial varying coefficient mixed

model. This model allows for both multiplicative and additive dispersion, thereby providing

a plausible representation of realistic dispersion trends observed in regional methylation data.

I also propose a hybrid Expectation-Solving algorithm to estimate this model, which explic-

itly accounts for measurement errors in the outcomes and results in a regional association

test statistic with a simple F limiting distribution. I demonstrate the theoretical proper-
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ties of the resulting estimators, as well as their marginal and conditional interpretations. I

also apply the proposed method to two sets of methylation data, both containing subjects

sampled from the CARTaGENE biobank (www.cartagene.qc.ca). The two datasets were

both designed to compare individuals with high and low anti-citrullinated protein antibody

levels, a biomarker associated with rheumatoid arthritis. Results from simulations and data

applications show that the new approach provides accurate estimates of covariate effects and

detects covariates that influence methylation levels with excellent power.

The third manuscript focuses on developing a sparse high-dimensional varying coefficient

model, intending to identify a subset of the genetic variants with local influence on regional

methylation levels. To enable variable selection in varying coefficient models, I propose a

composite sparse penalty that encourages both sparsity and smoothness for the varying/non-

linear covariate effects. I also present an efficient proximal gradient descent algorithm to

obtain the penalized estimation of the varying regression coefficients. Extensive simulations

are conducted to evaluate the performance of the proposed approach in terms of estimation,

prediction and variable selection.

The methods proposed in the first two manuscripts have been implemented in an R Biocon-

ductor package SOMNiBUS. The method developed in the third manuscript has been imple-

mented in a prototype R package sparseSOMNiBUS, available in Github.
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Abrégé

La méthylation de l’ADN est une modification épigénétique essentielle qui régule l’activité

des gènes et contribue à la différenciation des tissus et à la susceptibilité aux maladies.

L’identification des modifications de la méthylation de l’ADN associées aux maladies peut

nous aider à mieux comprendre l’étiologie des maladies. Le séquençage au bisulfite permet

de générer des profils de méthylation à haut débit à la résolution d’une seule base d’ADN.

Cependant, la modélisation et l’analyse optimales de ces données de séquençage éparses et

discrètes restent un défi en raison, notamment, de la variation dans la profondeur de lecture,

de données manquantes, des corrélations spatiales entre les régions génomiques adjacentes,

des erreurs de données et des facteurs confondants due aux mélanges de types de cellules.

Cette thèse consiste en trois manuscrits portant sur le développement de méthodes permet-

tant de mieux estimer les patrons d’association régionaux dans les données de méthylation de

l’ADN issues du séquençage au bisulfite, particulièrement utiles pour l’analyse des données

provenant de librairies de séquençage de capture personnalisées et ciblées.

Dans le premier manuscrit, je mets au point une nouvelle méthode de régression hiérar-

chique à coefficients variables appelée SOMNiBUS (de l’anglais, SmOoth ModeliNg of BisUl-

fite Sequencing), qui permet aux effets des covariables de varier de façon régulière le long

des positions génomiques. Je conçois un algorithme spécialisé d’espérance-maximisation,

qui tient compte des erreurs de mesure dans la variable réponse (c’est-à-dire les comptes

méthylés). Cet algorithme est à la fois capable de détecter des associations à l’échelle d’une

région génomique au complet ainsi que produire des tests ponctuels pour chaque position

génomique et des intervalles de confiance. Les simulations montrent que la méthode proposée

fournit des estimations précises des effets des covariables et capture les principaux patrons de

méthylation sous-jacents avec une excellente puissance. J’applique également cette méthode

à des données provenant d’échantillons sanguins séparés par type de cellule, prélevés chez

des patients atteints de polyarthrite rhumatoïde et des témoins.

Dans le second manuscrit, je réalise une extension de SOMNiBUS pour permettre à la vari-
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able réponse de présenter une variation extra-paramétrique en proposant un modèle mixte

hiérarchique quasi-binomial à coefficients variables. Ce modèle permet une dispersion à la

fois multiplicative et additive, fournissant ainsi une représentation plausible des tendances

réalistes de dispersion observées dans les données régionales de méthylation. Je propose

également un algorithme hybride basé sur la technique “Expectation-Solving” pour estimer

ce modèle. Cet algorithme tient compte explicitement des erreurs de mesure dans la variable

réponse et mène à une statistique de test d’association régionale avec une distribution limite,

F, standard. Je démontre les propriétés théoriques des estimateurs résultants, ainsi que leurs

interprétations marginales et conditionnelles. J’applique également la méthode proposée à

deux ensembles de données de méthylation, contenant tous deux des sujets échantillonnés

dans la biobanque CARTaGENE (www.cartagene.qc.ca). Les deux ensembles de don-

nées ont été conçus pour comparer des individus présentant des niveaux élevés et faibles

d’anticorps anti-protéines citrullinés, un biomarqueur associé à la polyarthrite rhumatoïde.

Les résultats des simulations et des applications de données montrent que la nouvelle ap-

proche fournit des estimations précises des effets des covariables et détecte les covariables

qui influencent les niveaux de méthylation avec une excellente puissance.

Le troisième manuscrit se concentre sur le développement d’un modèle éparse à coefficients

variables en présence de données de grande dimension, dans le but d’identifier un sous-

ensemble de variants génétiques ayant une influence locale sur les niveaux de méthylation à

une région sous étude. Pour permettre la sélection des variants dans un tel modèle à coeffi-

cients variables, je propose une pénalité éparse composite qui encourage à la fois la sélection

des variables importantes et le lissage de leurs effets non linéaires. Je présente également un

algorithme efficace de descente de gradient proximal pour obtenir l’estimation pénalisée des

coefficients de régression variables. Des simulations approfondies sont réalisées pour évaluer

les performances de l’approche proposée en termes d’estimation, de prédiction et de sélection

des variables.

Les méthodes proposées dans les deux premiers manuscrits ont été mises en œuvre dans une

ix
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librairie R Bioconductor SOMNiBUS. La méthode développée dans le troisième manuscrit

a été implémenté dans un prototype de la librairie R sparseSOMNiBUS, disponible sur

Github.
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Chapter 1

Introduction

Although genome-wide association studies have provided valuable insights into the genetic

basis of a wide range of human diseases (Buniello et al., 2019; MacArthur et al., 2017), there is

still a gap between disease heritability and heritability attributable to genetic variation (Ober

& Vercelli, 2011). Environmental exposures are suggested to play a crucial role in explaining

the “missing” heritability (Maher, 2008; Trerotola et al., 2015; A. I. Young et al., 2018).

Plausibly, such exposures, in interaction with genetic predisposition, may lead to epigenetic

modification, which alters gene regulation without changing genome sequence (Jaenisch &

Bird, 2003). The rapidly evolving field of epigenetics is contributing to our understanding

of gene-environment interactions (Barros & Offenbacher, 2009), and providing novel insights

into disease etiology (L. Gu et al., 2015; Z. Zhang et al., 2014) and possible therapies (Jones

et al., 2019; Tough et al., 2016).

DNA methylation is the most studied epigenetic modification and involves the addition of

a methyl group to the DNA, mostly at cytosine-phosphate-guanine (CpG) sites. Aberrant

DNA methylation has been linked to a plethora of human diseases, including neurological

disorders (Miranda-Morales et al., 2017; J. I. Young et al., 2019; Zulet et al., 2017), au-

toimmune disorders (Mazzone et al., 2019; Zouali, 2020) and cancer (Kulis & Esteller, 2010;
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Locke et al., 2019).

Measuring large-scale DNA methylation at single-nucleotide resolution is possible owing to

the development of bisulfite sequencing protocols (Frommer et al., 1992), which can be

implemented either genome-wide or in targeted regions. This thesis focuses on data from

targeted custom capture sequencing libraries, with methylation levels measured for CpGs in

a set of targeted regions.

The sequencing platforms measure the methylation level at a single site as a pair of counts:

the number of methylated reads and the total number of reads aligned to the site, i.e. read

depth. Many existing methods convert the counts into proportions and model them using

continuous distributions, such as normal distribution (Hansen et al., 2012; Korthauer et al.,

2018) or beta distribution (Hebestreit et al., 2013). This conversion, however, can lead to

information loss, as it fails to distinguish between noisy and accurate measurements and dis-

regards the discrete nature of the data. In addition, optimally modelling and analyzing these

discrete sequencing data can be greatly hindered by the many missing values, the possibility

of data errors, and the confounding from cell type mixtures (Khavari et al., 2010; McGregor

et al., 2016) or genetic variations (Gaunt et al., 2016; Hannon et al., 2018). The principal

focus of this thesis is on developing statistical methods to address these challenges for better

estimating regional association patterns in bisulfite sequencing-derived DNA methylation

data.

The main content of this thesis is comprised of three manuscripts, corresponding to Chapters

3-5. Each manuscript is presented as a standalone piece of literature. Overall, this thesis is

structured as follows. Chapter 2 presents a brief literature review, outlining several unique

features in bisulfite sequencing-derived DNA methylation measures, as well as the flexible

modelling approaches and their extensions used in this thesis. In Chapter 3, I develop a novel

hierarchical varying coefficient regression method called SmOoth ModeliNg of BisUlfite Se-

quencing (SOMNiBUS) for modelling the association between regional methylation patterns
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and multiple covariates. I also build a specialized Expectation-Maximization algorithm,

which allows for measurement errors in the outcomes (i.e. methylated counts) and leads to

both regional measures of association and pointwise tests and confidence intervals. In Chap-

ter 4, I extend SOMNiBUS to allow the outcomes to exhibit extra-parametric variation by

proposing a hierarchical quasi-binomial varying coefficient mixed model. This model allows

for both multiplicative and additive dispersion, thereby providing a plausible representation

of realistic dispersion trends observed in regional methylation data. I also propose a hybrid

Expectation-Solving algorithm accompanied by a plug-in estimator for the scale parameter

to estimate this model, which explicitly accounts for measurement errors in the outcomes and

results in a regional association test statistic with a simple F limiting distribution. Chapter

5 focuses on a high-dimensional extension to the standard SOMNiBUS, intending to iden-

tify a subset of the genetic variants with local influence on regional methylation levels. To

enable variable selection, I propose a high-dimensional generalized varying coefficient model

accompanied by a composite penalty function that encourages both sparsity and smoothness

for the varying coefficients. I also present an efficient proximal gradient descent algorithm

to estimate such a model. Finally, Chapter 6 summarizes the contributions of the thesis and

discusses future research avenues.

Chapter 3 has been published in Biometrics (Zhao et al., 2020). Chapters 4 and 5 will be

submitted for publication shortly after the submission of the thesis. The methods proposed in

Chapters 3 and 4 have been implemented in an R Bioconductor package SOMNiBUS (https://

www.bioconductor.org/packages/release/bioc/html/SOMNiBUS.html). The method de-

veloped in Chapter 5 has been implemented in a prototype R package sparseSOMNiBUS,

available in Github (https://github.com/kaiqiong/sparseSOMNiBUS).
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Chapter 2

Literature Review

This literature review consists of four sections. Section 2.1 briefly describes how measure-

ments of an individual’s methylation profiles can be obtained. Section 2.2 provides a short

overview of generalized additive models, emphasizing their smoothing techniques, estima-

tion and inference methods and underlying assumptions. In Section 2.3, I discuss the phe-

nomenon, termed overdispersion, arising when the variance in the data exceeds the nominal

variance predicted by the presumed model. Section 2.4 presents two sparse penalization

approaches, namely the LASSO and the group LASSO, upon which the methodology de-

velopment in Chapter 5 builds. Additional discussion of literature relevant to each of the

manuscript is provided within the introduction and method sections of Chapters 3-5.

2.1 Measuring DNA methylation

DNA methylation is the most studied epigenetic modification and involves the addition of a

methyl group to the DNA, mostly at CpG sites. Approximately, there are 28 million CpG

dinucleotides in the human genome, of which 60-80% are methylated (Ziller et al., 2013). It

has been demonstrated that CpG sites are unevenly distributed over the genome, and their
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methylation patterns are associated with genomic contexts. For example, CpG sites located

within gene promoters with high guanine-cytosine (GC) frequencies are generally unmethy-

lated (Choy et al., 2010). Such CpG-dense regions are termed as CpG islands. Typically,

hypermethylation of CpG islands in promoters can silence gene expression by preventing

transcriptional factor binding to DNA (Choy et al., 2010). In contrast, distal regulatory ele-

ments (e.g. enhancers) have relatively low CpG density and hypo- to hemimethylated profiles

with more inter-individual and inter-tissue variation (Grundberg et al., 2013; Irizarry et al.,

2009). Gene body regions are CpG-poor and vastly methylated (Bock et al., 2012); their

hypermethylation can correlate with increased gene expression (Ball et al., 2009). Generally

speaking, DNA methylation can either activate or repress gene expression, depending on

whether the mark inactivates a positive or negative regulatory element (Jones, 1999). No-

tably, these methylation patterns can also vary substantially between cell types (Khavari et

al., 2010; McGregor et al., 2016), environmental exposures (Karabegović et al., 2021; Stenz

et al., 2018) and disease conditions (Robertson, 2005; Skvortsova et al., 2019).

2.1.1 Targeted custom capture bisulfite sequencing

In contrast to microarray-based assays, which primarily target CpG-rich regions such as pro-

moters, whole-genome bisulfite sequencing (WGBS) allows a comprehensive characterization

of the genome-wide methylation landscape and is the current gold standard for DNA methy-

lation profiling. However, WGBS is not cost-effective for large-scale studies as only 20% or

less of CpGs are known to have variable methylation across individuals or tissues (Ziller et

al., 2013). To improve efficiency, Allum et al. (2015) have developed Methylation capture

sequencing (MCC-Seq), a next-generation sequencing capture approach for interrogating

functional (i.e. regulatory active) CpGs in disease-targeted tissues or cells. Its customizable

and flexible design allows prior selection of biologically relevant CpG regions and easy elimi-

nation of invariable CpG sites across individuals. For example, its blood cell-specific immune
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panels cover the majority of human gene promoters, active regulatory regions observed in

blood, blood-cell-lineage-specific enhancer regions, CpGs from Illumina Human Methylation

450 Bead Chips, as well as published autoimmune-related single nucleotide polymorphisms

(SNPs) and SNPs in their LD regions (Shao et al., 2019). In summary, such a platform

produces DNA methylation levels for comprehensive subsets of informative CpGs, thus cap-

turing epigenomic dysregulation at a much lower cost than WGBS.

Studies using MCC-Seq have yielded encouraging results. For example, with MCC-Seq,

Allum et al. (2015) have identified novel methylation variation within enhancers that are

strongly associated with plasma triglyceride and HDL-cholesterol. Using phased methylation

measurements from both MCC-Seq and WGBS, Cheung et al. (2017) have demonstrated the

significant utility of MCC-Seq over WGBS and identified genetically regulated methylation

loci that reveal novel epigenetic alterations in the human genome. Shao et al. (2019) have

detected rheumatoid arthritis-relevant DNA methylation changes in anti-citrullinated protein

antibodies (ACPA)-positive asymptomatic individuals using MCC-Seq.

2.1.2 Possible data errors in bisulfite sequencing

During the bisulfite sequencing experiment, sodium bisulfite treatment of DNA converts

unmethylated cytosines (C) to uracils, which are subsequently read as thymines (T) after

polymerase chain reaction (PCR)-amplification. In contrast, methylated cytosines are kept

unmodified. After proper alignment and data processing (Krueger et al., 2012; Wreczycka et

al., 2017), the methylation level at a single cytosine can therefore be inferred by counting the

number of C-to-T conversions and the sum of Ts and Cs in the aligned reads. Specifically,

the number of C (T) reads is referred to as the (un)methylated count, the total number of

Cs and Ts is known as the read depth, and the ratio of methylated count over the read depth

measures the methylation proportion at each site.

In fact, the observed counts of methylated and unmethylated reads could be contaminated
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by errors arising from various steps of the sequencing processes (Adusumalli et al., 2015;

Krueger et al., 2012). For example, the bisulfite conversion may be incomplete, whereby

not all unmethylated cytosines are converted to thymines. Misinterpreting the insufficient

conversion of unmethylated cytosines as methylated can introduce false-positive methylation

calls. In contrast, excessive bisulfite treatment can lead to increased incidences of methylated

Cs converting to Ts (Laird, 2010; R. Y.-H. Wang et al., 1980), thus resulting in false-negative

methylation calls. One way to measure conversion rates is to add spike-in sequences of DNA

known in advance to be methylated or unmethylated.

Moreover, the DNA segments after bisulfite treatment do not precisely match the unmodified

reference genome, and the numbers of mismatches depend on the underlying methylation

status. Such errors can be minimized by using methylation-aware alignment algorithms; see

overviews in Krueger et al. (2012); Wreczycka et al. (2017). Furthermore, high throughput

sequencing technologies have a non-negligible error rate in base calls, particularly on the ends

of sequencing segments, or in genomic regions such as highly-repetitive sequences (DePristo et

al., 2011). These miscalled bases can be erroneously counted as C-T conversions and thus bias

the methylation level measurements. Trimming off these low-quality base calls before read

alignments can lead to not only reduced methylation call errors but also increased mapping

efficiency (Krueger et al., 2012). Nevertheless, despite high-quality data-cleaning protocols,

there will inevitably be remaining sequencing errors. Also, it is hard to disentangle the errors

arising from the pre-treatment steps and the ones from the sequencing step. Therefore, it is

preferable to consider overall error rates when analyzing bisulfite sequencing data, such as

analytical models introduced in Cheng & Zhu (2013); Lakhal-Chaieb et al. (2017).

2.1.3 Differentially methylated regions

Once the methylation measurements at each cytosine are available, the general task in

genome-wide DNA methylation analysis is to identify differentially methylated cytosines
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(DMCs) or differentially methylated regions (DMRs) that are associated with phenotypes

or traits. This thesis focuses on examining methylation changes at the regional level rather

than at each CpG site. The motivation is multi-fold. First, various studies have shown that

methylation levels are strongly correlated across the genome. For instance, Eckhardt et al.

(2006) have established a significant spatial correlation of comethylation, described as the

percentage of CpGs with similar methylation levels, especially for CpGs located within 1

kilobase pairs (kb). By performing an ultra-deep targeted bisulfite sequencing analysis on

different tissues from multiple species (human, mouse and zebrafish), Affinito et al. (2020)

have shown that closer CpG sites are more likely to share the same methylation status, in-

dependent of tissue types and species. Joint modelling of regional methylation levels allows

us to borrow information from this local correlation structure, thus coping naturally with

missing values or low counts, of which univariate analyses are incapable. Furthermore, many

functionally relevant methylation changes have been found in genomic regions rather than in-

dividual CpGs, such as CpG islands (Jaenisch & Bird, 2003), genomic blocks (Hansen et al.,

2011) or generic 2kb regions (Lister et al., 2009). These synergistic changes in methylation

across a region often convey more substantial regulatory influence (Rackham et al., 2017). In

addition, region-based analyses are natural choices for targeted bisulfite sequencing data, the

data type that is the focus in this thesis, which are measured in a set of predefined regions.

Also, the resulting DMRs can be subsequently explored and annotated easily by examining

their overlap with other known genomic features to provide context and perspective of the

potential methylation events.
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2.2 Generalized additive models

2.2.1 Motivation

Due to the stochastic nature of sequencing and alignment, read depth varies substantially

across CpG sites and individual samples, which leads to wide-ranging precision for methyla-

tion proportions and many missing values. The spatial correlation of methylation between

neighbouring CpG sites suggests that the raw methylation measures, especially the ones

with low read-depth, can be improved by smoothing. Taking this into account, many ex-

isting methods (Hansen et al., 2012; Hebestreit et al., 2013; Korthauer et al., 2018; Lakhal-

Chaieb et al., 2017) use kernel smoothing (i.e. local likelihood estimation) to obtain the

smoothed methylation proportions for each sample. They then use these smoothed values

to test for differential methylation. These two-step approaches are convenient but may suf-

fer from two major drawbacks. First, the smoothed methylation measures are treated as if

they are equally precise, but some might be derived from poor-quality samples (e.g. with

few measured CpGs). Second, these methods fail to recognize that the smoothed values are

estimated quantities and can lead to underestimating sources of variation.

Generalized additive models (GAM) (Hastie & Tibshirani, 1987; Wood, 2017) are flexible

regression tools in which a response variable is related to smooth functions of some predic-

tor variables. GAM provides a unified modelling framework that collapses smoothing and

testing steps into a single step and allows to estimate covariate (disease status or other pheno-

types of interest) effect from the raw regional methylation measures. This flexible regression

approach can be easily applied to non-normal response distributions and simultaneously

estimate multiple covariate effects.

In Chapters 3, 4 and 5, I use a special type of GAM, a generalized varying coefficient model,

to represent the regional methylation measures derived from bisulfite sequencing, and I

have developed various extensions and improvements based upon GAM for better-estimating
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regional association patterns. The rest of this section outlines some major rationale about

GAM, emphasizing its smoothing techniques, estimation and inference methods.

2.2.2 Model

Throughout this literature review chapter, I will use GAM with binomial outcomes for

demonstration, though the outlined methodology can be directly carried over to any expo-

nential families.

Specifically, I consider DNA methylation measures over a targeted genomic region from N

independent samples. Let mi be the number of CpG sites for the ith sample, i = 1, 2, . . . N .

Write tij for the genomic position (in base pairs) for the ith sample at the jth CpG site,

j = 1, 2, . . . ,mi. The set of genomic positions captured in different samples do not have to

be identical because each sample has an individual profile of covered CpG sites, due to read

depth variability. Methylation levels at a site are quantified by the number of methylated

reads and the total number of reads. Define Xij as the total number of reads aligned to CpG

j from sample i, of which Sij reads are truly methylated. Furthermore, I assume that I have

the information on P covariates for the N samples, denoted as Zi = (Zi1, Zi2, . . . ZiP ), for

i = 1, 2, . . . N .

To model the relationship between Sij and sample-level covariates Zi across the region, a

natural choice is a generalized varying coefficient model

Sij | Zi, Xij ∼ Binomial(Xij, πij),

log

(
πij

1− πij

)
= β0(tij) +

P∑
p=1

βp(tij)Zip. (2.1)

The benefit of using such a varying coefficient model is extensively discussed in Chapters

3, 4 and 5. Here, I focus on the existing methodologies on the estimation and inference for

βp(t)s.
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2.2.3 Smoothness penalty

Let f(Sij | β(t)) be the probability density function for Sij. Here I simply write β(t) for a col-

lection of the functional parameters {βp(t)}Pp=0. Assuming that Sij are independent, given Zi

and tij, the log-likelihood function for model (2.1) is ℓ(β(t)) =
∑

i,j log f(Sij | β(t)). Without

further constraint on the shapes of β(t), the solution β̂(t) = argmaxβ(t) ℓ(β(t)) is not unique;

any β(t) with the same evaluated values on each tij would yield equal likelihood.

To avoid this identifiability issue, a constraint with more structure on β(t) is needed. One

commonly used assumption is that β(t) are smooth, which is reasonable considering that

the regional methylation proportions often exhibit long-range correlation structure (Affinito

et al., 2020; Eckhardt et al., 2006). A mathematical characterization of smoothness is the

integrated squared second derivative (Reinsch, 1967). Using such a smoothness penalty, the

selection of candidate β̂(t) that are smoothest in between the tij values, can be achieved by

optimizing the penalized log likelihood (Green & Silverman, 1994),

β̂(t) = argmax
β(t)

{
ℓ(β(t))− 1

2

P∑
p=0

λp

∫ (
β′′
p (t)

)2
dt

}
. (2.2)

Here, the weights λp, i.e. the smoothing parameters, are positive parameters that establish

a tradeoff between the closeness of the curve to the data and the smoothness of the fitted

curves. Imposing such a penalty is equivalent to putting upper bounds on the values of∫ (
β′′
p (t)

)2
dt, with λp/2 playing the role of Lagrange multipliers.

2.2.4 Basis functions

The optimization problem in (2.2) requires searching an infinite-dimensional function space,

which is hardly computable. Basis functions allows the use of finite numbers of parameters

to yield estimates and inference for infinite-dimensional function parameters. Specifically,
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for a single smooth term β(t) (here the subscript p is dropped for notational simplicity)

β(t) =
K∑
l=1

θlBl(t), (2.3)

where {Bl(·)}Kl=1 denotes the basis functions, and θ = (θ1, . . . θK)
T ∈ RK are the coefficients

to be estimated. Each basis function Bl(t) has known fixed form. It generally defines a

linear combination among the locations within the function, and thus establishing a specific

framework for borrowing strength (Morris, 2015).

Natural cubic splines

In Chapters 3, 4 and 5, I have used the natural cubic splines as basis functions to expand the

functional parameters. A detailed description of natural cubic spline basis functions can be

found in Section C.1. Specifically, equations (C.1) and (C.2) define the natural cubic spline

basis functions with K knots placed at t1 ≤ t2 ≤ . . . ≤ tK .

An appealing property of natural cubic splines is that they are the smoothest interpola-

tors. Consider a simple one-dimensional model for smoothing a continuous response variable

{yi}ni=1 with respect to a predictor variable {ti}ni=1. Of all continuous functions that have

absolutely continuous first derivatives, the solution

f̂(t) = argmin
f(t)

{
n∑

i=1

{yi − f(ti)}2 + λ

∫
f ′′(t)2dt

}
, (2.4)

is a natural cubic spline with knots at distinct observed values of ti; the proof can be found

in Green & Silverman (1994). Note that this result holds when substituting the negative log

likelihood for the residual sum of squares in (2.4) (Wood, 2017).
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Smoothing splines

Such types of splines, which arise from optimizing objective functions with a smoothness

penalty and have dimensions as the number of unique observations of the predictor variable,

are also called smoothing splines (Parker & Rice, 1985; Wahba, 1980). The property in

(2.4) suggests any smooth terms in statistical models can be closely approximated using

smoothing splines. However, one drawback of smoothing splines is that the number of free

parameters is of the same magnitude as the number of data to be smoothed, which will

undoubtedly impose severe computation expense, especially when more than one smooth

term is present.

(Reduced rank) penalized regression splines

A compromise between retaining the good properties of smoothing splines and computational

efficiency is to use reduced rank penalized regression splines (Parker & Rice, 1985; Wahba,

1980). Let N be the number of unique tij. Specifically, penalized regression splines have K

knots distributed on the complete set of tij, where K < N . Studies have shown that the

basis dimension K can grow rather slowly with sample size to achieve statistical performance

asymptotically indistinguishable from full smoothing splines (Claeskens et al., 2009; Hall &

Opsomer, 2005; Kauermann et al., 2009), which demonstrates the capacity of penalized

regression splines. In Chapters 3, 4 and 5, I have used the natural cubic penalized regression

splines with basis dimension less than the number of unique tijs.

P-splines

An alternative type of spline basis, which is closely related to penalized regression splines,

is P-spline (Eilers & Marx, 1996; Eilers et al., 2015; Ruppert et al., 2003). The idea of

P-spline is to use B-spline bases (de Boor, 1978) for representing smooth terms, and then
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impose a difference penalty on the basis coefficients, such as
∑

l (θl+1 − 2θl + θl−1)
2. Like the

derivative-based smoothness penalty in (2.2), this difference penalty quantifies the roughness

of the fitted curve. This difference penalty can be written as a quadratic form with respect

to basis coefficients, α, and thus has connection with (Gaussian) random effects—a good

property possessed by smoothness penalty as well (see details in Section 4.3.1).

Beyond spline-type basis functions

Splines are suited to modelling smooth functions. When the underlying additive terms are

irregular functions with spikes or abrupt changes, other types of basis expansions, such as

Fourier series or wavelets, can be explored instead. Fourier series can effectively model peri-

odic shapes (Bilodeau, 1992). Wavelets are capable of characterizing spatially heterogeneous

data (Donoho & Johnstone, 1995; Morris & Carroll, 2006). For these basis functions, the

smoothness penalty in Section 2.2.3 is no longer appropriate, and other types of regulariza-

tion constraints should be imposed instead (Antoniadis & Fan, 2001).

Kernel smoothers (Hastie & Tibshirani, 1987), which estimate a real-valued function as the

local weighted average, can also be thought of as spline-type basis functions (Morris, 2015).

For example, Silverman (1984) has demonstrated that for independent data, kernel methods

and spline methods are asymptotically equivalent.

2.2.5 Estimation and inference

The original model-fitting method for GAM is the backfitting algorithm (Hastie & Tibshirani,

1987, 1993; Yee & Wild, 1996). This algorithm cycles through the smooth components in the

model and estimates each of the components by iteratively smoothing the partial residuals

with respect to the covariate(s) involved in the smooth term. The partial residuals for the

pth smooth term are obtained by subtracting the current estimates of the ‘linear’ predictor
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without the contribution of the pth term from the (linearized transformed) response variable.

The backfitting algorithm has the advantage that it allows the component functions to be es-

timated using various types of smoothing or regression techniques, such as smoothing splines,

kernel smoothing, or boosting (Schmid & Hothorn, 2008; Tutz & Binder, 2006). However,

it is challenging to integrate the estimation of smoothness degrees into this approach. In

practice, users need to set the values of degrees of freedom for each smooth component in

the model or select among a modest set of predefined smoothness degrees.

On the other hand, approaches have been developed for integrating the multiple smoothing

parameter estimations with flexible regression model-fitting. The first such developments

date back to C. Gu (1992); C. Gu & Wahba (1991), who proposed to optimize the generalized

cross-validation (GCV) score for estimating smoothing parameters in GAM (represented

with smoothing splines). Subsequently, Wood (2000) proposed to use reduced rank penalized

regression splines for expanding the smooth terms and provided a much more efficient method

for optimizing the GCV criterion. Later on, Wood (2011) demonstrated the capacity of using

restricted maximum likelihood (REML) and marginal likelihood maximization to estimate

smoothing parameters. This seminal study provides a fast computation algorithm that

yields improvement in numerical robustness over the GCV-based methods. The method of

Wood (2011) has been used in Chapters 3 and 4 for estimating smooth covariate effects

for the complete data (i.e. the methylated counts are measured without error); a detailed

description of this approach is also presented in Sections 3.2.3 and 4.3.2.

Furthermore, there is a natural link between GAM with smoothing or penalized splines

and generalized linear mixed model (GLMM). After applying the basis expansion βp(t) =∑K
l=1 θplBl(t), the smoothness penalty becomes

P∑
p=0

λp

∫ (
β′′
p (t)

)2
dt =

P∑
p=0

λpθp
TAθp, (2.5)

where As are K × K positive semidefinite matrices with the (l, l′) element A(l, l′) =
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∫
b′′l (t)b

′′
l′(t)dt. Imposing such smoothness penalty can be also viewed as assuming Gaussian

random effects for basis coefficients θp. Therefore, the inference for GAM with smoothing or

penalized regression splines can employ the existing methods for fitting GLMM. Specifically,

the Laplace approximation (Shun & McCullagh, 1995) for GLMM is used in Chapters 3

and 4; see details in Section A.1.3 and Section 4.3.1. Studies (Handayani et al., 2017; Ju

et al., 2020) have shown that the Laplace approximation method shows better properties in

terms of convergence rate, bias and coverage, compared to other widely used approximation

methods for GLMM, including penalized quasi-likelihood (Breslow & Clayton, 1993) and

adaptive Gauss-Hermite quadrature (Rabe-Hesketh et al., 2002).

2.3 Overdispersion

In model (2.1), methylated counts are assumed to follow binomial distributions, dependent

on the read-depths. Under this assumption, the variance of methylated counts are entirely

determined by its mean,

Var(Sij) = Xijπij(1− πij).

This assumption is fairly strict. However, in practice, the data might exhibit greater vari-

ability than assumed by this mean-variance relationship, which is known as overdispersion.

Similarly, underdispersion implies that the empirical variance in the data is less than that

predicted by the binomial model. Underdispersion can occur when the binary variates that

constitute the methylated counts are negatively correlated. For example, underdispersion

can arise when the reads obtained at a CpG site originate from distinct cell types.

One way that under- or overdispersion arises is through a violation of the binomial’s in-

dependence assumption. Model (2.1) assumes that, given tij and Zi, the binary random

variables {Sijk}
Xij

k=1 are mutually independent. When Cor(Sijk, Sijk′) = ρ > 0 for any
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k ̸= k′ ∈ {1, 2, . . . , Xij}, the variance of Sij becomes

Var(Sij) = Xijπij(1− πij) [1 + ρ(Xij − 1)] .

In this case, ρ > 0 leads to overdispersion relative to a binomial model and ρ < 0 leads to

underdispersion. One way to account for this scenario is to incorporate a multiplicative scale

factor, ϕ > 0, in the variance of response, i.e. assuming

Var(Sij) = ϕXijπij(1− πij).

The type of dispersion, which can be characterized by a generalized variance function ob-

tained from multiplying the standard variance function by a free parameter, is referred to as

multiplicative dispersion in Chapter 4. To adequately address the multiplicative dispersion,

the regression model can be fitted using quasi-likelihood approaches, with ϕ estimated by

generalizations of moment methods (McCullagh & Nelder, 1989a).

Overdispersion can also occur due to complex correlation structures in hierarchical, clustered,

or spatial data (Browne et al., 2005; Grueber et al., 2011). Model (2.1) assumes that given tij

and Zi, the methylated counts Sij are independent across samples and positions. Although

the smoothing techniques in GAM can implicitly account for the spatial correlations among

neighbouring CpGs, there are additional correlations among methylation measurements on

the same subject. Therefore, the binomial variation assumed in model (2.1) can be only

a tiny part of the overall data variability. This type of overdispersion is referred to as an

additive dispersion in Chapter 4. One way to address it is to add a subject-level random

effect. Studies have demonstrated the use of random effect models for overdispersed count

data (Harrison, 2014; Molenberghs et al., 2012).

Mis-specifying the systematic part of the model can also lead to excess variation around

the fitted values, which is termed as apparent overdispersion (Hilbe, 2011). Possible sources
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of apparent overdispersion include missing important covariates, missing interaction terms,

inappropriate functional form of the mean or the presence of outliers (Berk & MacDonald,

2008). Residual diagnostics can be used for identifying the sources, and if possible, the model

should be amended accordingly to account for such overdispersion.

2.4 Sparsity penalties

The smoothness penalty
∑P

p=0 λpθp
TAθp is a generalized Ridge penalty (Hoerl & Kennard,

1970). It places bounds on the square of the (transformed) basis coefficients θp (ℓ2 penalty)

and leads to penalized estimates of the regression coefficients. However, Ridge penalty cannot

shrink the coefficients to exactly 0, and might fail to provide parsimonious models (Friedman

et al., 2001). This limitation can be overcomed by using sparse penalty functions; one well-

known example is the least absolute shrinkage and selection operator (LASSO) (Tibshirani,

1996). This section will present the penalty functions defined in LASSO and one of its

generalizations, named group LASSO.

For the varying coefficient model in (2.1), the regression coefficients to be estimated are a

collection of basis coefficients. Let θp ∈ RK be the basis coefficients for βp(t), p = 0, 1, . . . P .

The regression coefficient, denoted as θ, is the vectorization of (P + 1) × K-dimensional

coefficient matrix Θ = (θ0,θ1, . . . ,θP )
T by row, i.e. θ = vec(Θ).

2.4.1 LASSO

LASSO places constraint on the sum of absolute values (ℓ1 norm) of the regression coeffi-

cients. For model in (2.1), its LASSO estimator is defined by

θ̂
lasso

= argmax
θ

ℓ(θ), subject to
(P+1)K∑
j=K+1

|θj| ≤ C, (2.6)
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where θj is the jth element of θ. Here, the coefficients for the intercept β0(t) is left out of

the sparsity constraint. One can also write constrained optimization problem in (2.6) in the

equivalent Lagrangian form

θ̂
lasso

= argmax
θ

⎧⎨⎩ℓ(θ)− λ

(P+1)K∑
j=K+1

|θj|

⎫⎬⎭ . (2.7)

A one-to-one correspondence can be established between the parameters λ in (2.7) and C in

(2.6).

For a sufficiently large λ (i.e. small C), the LASSO method will yield solution θ̂j = 0 for

∀j ∈ {K + 1, . . . (P + 1)K}, leading to an intercept-only model. In general, larger λ leads

to less number of nonzero θj.

2.4.2 Group LASSO

With basis expansion, there is a natural grouping structure of the coefficient vector θ, θ =

(θT
0 ,θ

T
1 , . . . ,θP

T )T . Thus, the selection of important varying coefficients βp(t) amounts to

the selection of groups of coefficients in the basis expansions. However, the LASSO estimator

ignores this grouping structure and can yield less interpretable solutions in this context.

To take into account the group structure in θ, Yuan & Lin (2006) have proposed the group

LASSO estimator, defined by

θ̂
groupLasso

= argmax
θ

{
ℓ(θ)− λ

P∑
p=1

√
θT
p θp

}
. (2.8)

The solution from this group LASSO-penalized likelihood will also display a grouping struc-

ture; the elements of θ̂p (p ≥ 1) will be either all zero or all nonzero. Notably, the LASSO

method in (2.7) can be viewed as a special case of group LASSO in (2.8) with each coefficient

falling in its own group.
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Chapter 3

Manuscript I: A novel statistical method

for modelling covariate effects in bisulfite

sequencing derived measures of DNA

methylation

Preamble to Manuscript I: Bisulfite sequencing allows the generation of high-throughput

methylation profiles at the single-base resolution of DNA. However, optimally modelling and

analyzing these sparse and discrete sequencing data is challenging due to variable read depth,

missing data patterns, data errors, and confounding from cell type mixtures. The spatial

correlation of methylation between neighbouring CpG sites can be exploited to improve the

raw methylation measures. Thus, many existing methods (Hansen et al., 2012; Hebestreit

et al., 2013; Korthauer et al., 2018; Lakhal-Chaieb et al., 2017) use kernel smoothing (i.e.

local likelihood estimation) to obtain the smoothed methylation proportions for each sample.

Typically, they then use these smoothed values to test for differential methylation. These

two-step approaches are convenient but could lead to biased uncertainty estimates.
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To overcome the limitations and challenges of existing methods, we proposed a unified anal-

ysis framework that collapses smoothing and testing steps into a single step and can achieve

accurate statistical uncertainty assessment of differential methylation. In addition, our ap-

proach simultaneously addresses the discrete nature of the data, regional testing, estima-

tion of multiple covariate effects, adjustment for read-depth variability and experimental

errors.

This manuscript was published in Biometrics in May 2020, and the article was accompanied

by a freely available R Bioconductor package called SOMNiBUS (https://www.bioconductor

.org/packages/devel/bioc/html/SOMNiBUS.html).

Note that the supporting material for this chapter can be found in Appendix

A.
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Abstract

Identifying disease-associated changes in DNA methylation can help us gain a better under-

standing of disease etiology. Bisulfite sequencing allows the generation of high-throughput

methylation profiles at single-base resolution of DNA. However, optimally modelling and

analyzing these sparse and discrete sequencing data is still very challenging due to variable

read depth, missing data patterns, long-range correlations, data errors, and confounding

from cell type mixtures. We propose a regression-based hierarchical model that allows co-

variate effects to vary smoothly along genomic positions and we have built a specialized EM

algorithm, which explicitly allows for experimental errors and cell type mixtures, to make

inference about smooth covariate effects in the model. Simulations show that the proposed

method provides accurate estimates of covariate effects and captures the major underlying

methylation patterns with excellent power. We also apply our method to analyze data from

rheumatoid arthritis patients and controls. The method has been implemented in R package

SOMNiBUS.
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3.1 Introduction

Heritability is high for a wide range of human diseases (Maurano et al., 2012), but only a

portion of it is attributable to additive genetic variation (Ober & Vercelli, 2011). Maher

(2008) suggested that environmental exposures play an important role in explaining the

“missing” heritability. Plausibly, such exposures, in interaction with genetic predisposition,

may lead to epigenetic modification which alters gene regulation without changing genome

sequence (Jaenisch & Bird, 2003). For example, differences in epigenetic profiles may explain

how risk factors like age (Horvath, 2013) and smoking (Teschendorff et al., 2015) impact

disease susceptibility. Consequently, examining how epigentic profiles contribute to disease

development and are influenced by environmental factors, can provide novel insights into

disease etiology and possible therapies (Feinberg, 2007).

The most-studied epigenetic mark is DNA methylation which primarily occurs at a cytosine-

guanine dinucleotide (i.e. CpG site) (Lister et al., 2009). Localized differential methylation is

a characteristic feature of many diseases, such as diabetes (Nilsson et al., 2014), Alzheimer’s

disease (De Jager et al., 2014) and autoimmune disorders (Liu et al., 2013).

Measuring large-scale DNA methylation at single nucleotide resolution is now possible owing

to the development of bisulfite sequencing protocols (Frommer et al., 1992), which can be

implemented genome-wide or in a set of targeted regions. Targeted Custom Capture Bisulfite

Sequencing (TCCBS) platforms produce DNA methylation levels for comprehensive subsets

of informative CpGs. Thus, epigenomic dysregulation can be captured at a much lower

cost than whole-genome bisulfite sequencing (WGBS). This approach’s capacity to detect

novel disease associations has been demonstrated (Allum et al., 2015; Li et al., 2015). In

this work, we focus on analysis of predefined regions targeted by TCCBS, with the aim to

identify differentially methylated regions (DMRs) that are associated with phenotypes or

traits.
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Methods for extracting interpretable results from the raw methylation data derived from

either WGBS or TCCBS are greatly hindered by the variability in read depths, the many

missing values and the possibility of data errors. Specifically, due to the stochastic nature of

sequencing and alignment, coverage – the total number of reads spanning a CpG site – varies

substantially across sites and individual samples, which leads to wide-ranging precision for

methylation proportions, and to many missing values. In fact, estimates of DNA methylation

are correlated with read depths (Stephens et al., 2016). Furthermore, the observed counts of

methylated and unmethylated reads could be contaminated by errors arising from excessive

or insufficient bisulfite treatment, and from misalignment of reads or other aspects of the

sequencing processes. Studies show that ignoring these errors could bias inference about the

associations of interest (Cheng & Zhu, 2013; Lakhal-Chaieb et al., 2017).

Additionally, due to cell type specific differences in methylation levels, variability in cell

type mixture proportions has a strong effect on observed levels of methylation from mixed

tissue samples. This mixture, as well as factors known to alter methylation levels, such as

age (Horvath, 2013), can confound associations of interest. Hence, it is essential to develop

methods to adjust methylation signals for multiple covariates.

Moving in this direction, approaches have been proposed for identifying DMRs from bisulfite

sequencing data; see overviews in Shafi et al. (2017) and Yu & Sun (2016a). Typically, to

account for spatial correlations of methylation between neighboring CpG sites, strategies

include Hidden Markov models (HMM) (Shokoohi et al., 2018; Sun & Yu, 2016; Yu & Sun,

2016b), hierarchical models with autoregressive or random walk correlation structures (Ko-

rthauer et al., 2018; Rackham et al., 2017), and kernel-based smoothing methods (Hansen

et al., 2012; Hebestreit et al., 2013; Lakhal-Chaieb et al., 2017). However, none of these

methods meet all the desirable objectives simultaneously : regional testing, estimation of

multiple covariate effects, adjustment for read depth variability and experimental errors.

For example, several of the current HMM-based (Sun & Yu, 2016; Yu & Sun, 2016b) and hi-
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erarchical methods (Rackham et al., 2017) only test for differential methylation between two

independent groups of samples and do not allow for the adjustment of multiple covariates.

Approaches using a binomial mixed model for DNA methylation analysis (Lea et al., 2015;

Weissbrod et al., 2017) allow for multiple covariates and can capture sample correlations, but

were only designed for single site analysis. BSmooth (Hansen et al., 2012), a kernel-based

method, detects differential methylation after converting the methylated and total counts

to proportions. However, this conversion could lead to reduced power since it disregards

read depth variability and fails to distinguish between noisy and accurate measurements

(Rackham et al., 2017). Moreover, most of the existing methods ignore experimental errors.

On the other hand, the only approach accounting for data errors, the Smooth Methylation

Status Call (SMSC) (Lakhal-Chaieb et al., 2017), is only developed for data from a single

cell type.

More importantly, most of the existing methods are of a two-stage nature (Hansen et al.,

2012; Hebestreit et al., 2013; Lakhal-Chaieb et al., 2017). Typically, they first smooth the

raw methylation data for each sample separately, and then, in the second stage, they estimate

covariate effects by modelling the smoothed methylation data. These per-sample smoothing

strategies do not take advantage of information contained across samples and fail to fully

exploit the fact that samples with similar covariate profiles (eg. disease status, cell type

composition or other phenotypes of interest) can be expected to share similar methylation

patterns. In addition, separating smoothing and inference steps results in biased uncertainty

estimates. In summary, it would be highly desirable to develop a general framework of

analysis, which collapses smoothing and testing steps into a single step, and simultaneously

addresses regional testing, estimation of multiple covariate effects, adjustment for read depth

variability and experimental errors.

In this paper, we propose such a general framework. Our strategy allows information to

be shared not only between nearby CpGs, but also across samples, thus providing greater
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sensitivity for capturing patterns common to several samples of similar characteristics (rather

than one sample).

Specifically, our approach is built on a hierarchical regression model that describes bisulfite

sequencing data. We assume, as in Lakhal-Chaieb et al. (2017) and Cheng & Zhu (2013), that

the observed read counts arise from an unobserved latent true methylation state compounded

by errors. These true methylation counts are then modeled by a binomial distribution, de-

pendent on read depth. Note that the probability parameter of this binomial distribution

depends on the sample-level covariates of interest, such as cell-type mixture proportions and

the trait of interest, but also nearby methylation information. To capture realistic methy-

lation patterns across regions, we additionally allow baseline methylation levels, covariate

effects and adjustment effects to vary smoothly along genomic positions: this is done by using

splines. This amounts to borrowing information from the local correlation structures between

methylation levels, and allows us to remedy local information gaps due to missingness. This

formulation naturally allows for any number of covariates in the model.

This article is organized as follows. Section 3.2 describes the proposed model along with its

estimation and inference procedures. A motivating data example from a study of cases with

rheumatoid arthritis and controls is described in Section 3.3. Simulation studies evaluating

the performance of our proposed method and comparing our type I errors and power to

existing methods are summarized in Section 3.4. The paper concludes with a discussion in

Section 3.5.
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3.2 Method

3.2.1 Notation and data

We consider DNA methylation measures over a targeted genomic region from N independent

samples. Let mi be the number of CpG sites for the ith sample, i = 1, 2, . . . N . We write tij

for the genomic position (in base pairs) for the ith sample at the jth CpG site, j = 1, 2, . . . ,mi.

The set of genomic positions captured in different samples do not have to be identical because

each sample has an individual profile of covered CpG sites, due to read depth variability.

Methylation levels at a site are quantified by the number of methylated reads and the total

number of reads. We define Xij as the total number of reads aligned to CpG j from sample i.

The tissue samples sent for bisulfite sequencing experiments from most studies will normally

be composed of a mixture of cell types. For example, common cell types are, in blood:

granulocytes, T cells, B cells, monocytes, neutrophils, and eosinophils; in adipose tissues:

adipocyte, preadipocyte, endothelial and mural cells. Thus, the reads obtained at a CpG site

are likely to capture contributions from different cell types; the true underlying methylation

statuses are probably different across these Xij reads. We denote the true methylation status

for the kth read obtained at CpG j of sample i as Sijk, where k = 1, 2, . . . Xij. Sijk is binary

and we define Sijk = 1 if the corresponding read is methylated and Sijk = 0 otherwise. In

the presence of experimental errors in sequencing or preprocessing, the observed methylation

status, written as Yijk, can be distinct from the true underlying information Sijk. We denote

Yijk = 1 if the corresponding read is observed as methylated and Yijk = 0 otherwise. We

additionally denote the true and observed methylated counts at CpG j for sample i with

Sij =
∑Xij

k=1 Sijk and Yij =
∑Xij

k=1 Yijk, respectively. Furthermore, we assume that we have

the information on P covariates for the N samples, denoted as Zi = (Z1i, Z2i, . . . ZPi), for

i = 1, 2, . . . N .
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3.2.2 Model

We built here on concepts introduced in Cheng & Zhu (2013) and Lakhal-Chaieb et al.

(2017) to account for experimental errors. We assume that, depending on the true underlying

methylation status Sijk, the observed status Yijk is a Bernoulli variable with parameters p0

or p1, i.e.

p0 = P(Yijk = 1 | Sijk = 0),

p1 = P(Yijk = 1 | Sijk = 1). (3.1)

Here, these two parameters capture errors; p0 is the rate of false methylation calls, and

1 − p1 is the rate of false non-methylation calls. These rates are assumed to be constant

across all reads and positions. The error parameters p0 and p1 can be estimated by looking

at raw sequencing data at CpG sites known in advance to be methylated or unmethylated

(Wreczycka et al., 2017). We assume hereafter that p0 and p1 are known. Implications of

such an assumption is discussed later in the Supporting Information Section A.2.2.

We then assume the true methylated counts Sij follows a binomial distribution with a methy-

lation proportion parameter πij that depends on the sample-level covariates Zi, and on

nearby methylation patterns. Specifically,

Sij | Zi, Xij ∼ Binomial(Xij, πij),

g(πij) = β0(tij) +
P∑

p=1

βp(tij)Zpi, (3.2)

where g(·) is a logit link function and β0(tij) and {βp(tij)}Pp=1 are functional parameters

for the intercept and covariate effects. This amounts to assuming smoothly varying methy-

lation levels and covariate effects on methylation levels across our targeted small genomic

regions. In practice, to estimate Model (3.2), the functions βp(tij) can be represented by the
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coefficients of a chosen spline bases of rank Lp,

βp(tij) =

Lp∑
l=1

αplB
(p)
l (tij), for p = 0, 1, . . . P,

where
{
B

(p)
l (·)

}Lp

l=1
denotes the spline basis, and αp = (αp1, . . . αpLp)

T ∈ RLp are the coeffi-

cients to be estimated. In this way, model (3.2) becomes a generalized linear model (GLM),

g(π) = Xα, where π = (π11, . . . π1m1 , π21, . . . π2m2 , . . . πNmN
)T ∈ [0, 1]M with M =

∑N
i=1 mi,

α ∈ RK with K =
∑P

p=0 Lp, and X is the spanned design matrix of dimension M × K,

stacked with elements B
(p)
l (tij) × Zpi; for detailed forms see Supporting Information Ap-

pendix A.1.1.

To avoid over-fitting, we penalize departure from smoothness, using penalized regression

splines (Parker & Rice, 1985; Wahba, 1980). Specifically, we use a comparatively large

number of knots (equivalent to large Lp) and a penalization, quantified by the integrated

squared curvature of the splines, is added as an extra term in the log-likelihood function

(loss function),

LPenalization =
P∑

p=0

λp

∫ (
β′′
p (t)

)2
dt =

P∑
p=0

λpαp
TApαp. (3.3)

In equation (3.3), Ap
′s are Lp × Lp positive semidefinite matrices with the (l, l′) element

Ap(l, l
′) =

∫
B(p)′′

l (t)B
(p)′′

l′(t)dt; these are fixed quantities given the specified set of basis

functions. The weights λp, i.e. the smoothing parameters, are positive parameters which

establish a tradeoff between the closeness of the curve to the data and the smoothness of the

fitted curves. Note that there is one smoothing parameter per covariate in our model. The

smoothing process across targeted regions is accomplished by adding the penalization terms

in equation (3.3) to the model in equation (3.2).
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3.2.3 Estimation

Penalized complete likelihood

If the true methylated counts Sij were available, model (3.2) with penalization (3.3) would

be estimated by maximizing the penalized log-likelihood,

lcomplete(S;α,λ) = l(S;α)− 1

2

P∑
p=0

λpα
T
pApαp = l(S;α)− 1

2
αTAλα,

where l(S;α) =
∑N

i=1

∑mi

j=1 {Sij log(πij) + (Xij − Sij) log(1− πij)}, and Aλ is a K×K pos-

itive semidefinite block diagonal matrix of the form Aλ = Diag {λ0A0, λ1A1, . . . , λPAP }.

This is also the complete-data log-likelihood of the joint distribution of Y and S, i.e.

log (f(S)) + log (f(Y | S)); indeed, f(Y | S) only depends on the known error rates p0

and p1, and bears no information on the parameters of interest.

Smoothed E-M algorithm

In practice, the true methylation data, Sij, are unknown and one only observes Yij, which is

a mixture of binomial counts arising from both the truly methylated and truly unmethylated

reads. The EM algorithm (Dempster et al., 1977) allows us to estimate model (3.2) based

on the observed data Yij, by repeatedly replacing a trial estimate (α⋆,λ⋆) by a new (α,λ),

which is a maximum of the function

Q(α | α⋆) = E
{
lcomplete(S;α,λ) | Y ,α⋆

}
= l(η⋆;α)− 1

2
αTAλα. (3.4)

E step In equation (3.4) η⋆ = (η⋆11, . . . , η
⋆
1m1

, η⋆21, . . . , η2m⋆
2
, . . . , η⋆NmN

)T ∈ RM are condi-

tional expectations of Sij given Yij evaluated at the trial estimates (α⋆,λ⋆); in our case these
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take the form

η⋆ij = E (Sij | Yij;α
⋆,λ⋆) =

Yijp1π
⋆
ij

p1π⋆
ij + p0(1− π⋆

ij)
+

(Xij − Yij) (1− p1)π
⋆
ij

(1− p1)π⋆
ij + (1− p0)(1− π⋆

ij)
, (3.5)

with π⋆
ij = g−1(Xα⋆), which depends on λ⋆ via the dependence of α⋆ on λ⋆. Calculating

these conditional expectations η⋆ij from (3.5) constitutes the E step of our algorithm.

M step Each M step involves maximizing the Q function in (3.4) to update α and λ. This

is a penalized (GLM) likelihood maximization problem with multiple quadratic penalties,

previously studied in Wood (2011); Wood & Fasiolo (2017); Wood et al. (2016). Our compu-

tational strategy for estimating smoothing parameters λ is a nested optimization procedure

(Wood, 2011), with an outer iteration for optimizing λ and an inner P-IRLS iteration to

estimate α given the trial value of λ from the outer iteration.

For given values of smoothing parameters λ = (λ0, λ1, . . . λP ), a unique maximizer of expres-

sion (3.4) is readily computed by penalized iteratively reweighted least squares (P-IRLS); see

more details in the Supporting Information Appendix A.1.2. Specifically, the outer iteration

involves maximizing a restricted likelihood for smoothing parameters λ, which is obtained

by integrating α out of the joint likelihood for λ and α. We rely on the work done by Wood

(2011) and use a Laplace approximated restricted likelihood; see more details in the Sup-

porting Information Appendix A.1.3. Since the analytical forms for derivatives and Hessians

of this restricted likelihood are also available, the optimization for λ in the outer iteration

can be readily achieved via Newton’s method.

Although the combination is undoubtedly computationally complex, for models with prop-

erly defined likelihoods, the nested iterations will guarantee convergence provided that the

number of smooth terms increasing at no higher rate than N1/3 (Shun & McCullagh, 1995;

Wood, 2011; Wood et al., 2016).
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E-M iteration We iterate between the E and M steps until convergence to obtain α̂ and λ̂.

Given the estimates of basis coefficients αp, for p = 0, 1, . . . P , the functional parameters βp(t)

can be thus estimated by β̂p(t) =
{
B(p)(t)

}T

{α̂p} , where t is a genomic position lying within

the range of the input positions {tij}, and B(p)(t) =
(
B

(p)
1 (t), B

(p)
2 (t), . . . B

(p)
Lp
(t)
)T
∈ RLp is a

column vector with nonrandom quantities obtained from evaluating the set of basis functions{
B

(p)
l (·)

}
l
at position t.

3.2.4 Inference for smooth covariate effects

To obtain a quantification of the uncertainty accompanying the smoothed EM estimates for

the covariate effects {β1(t), β2(t), . . . βP (t)}, we additionally estimate their pointwise con-

fidence intervals (CI) in Section 4.3.4, and obtain tests of hypotheses for these effects in

Section 4.3.4. This inference is carried out conditional on the values of smoothing parameter

λ; i.e. the uncertainty in estimating λ is not accounted for. The potential bias associated

with this assumption is shown to be small; see the pointwise confidence interval coverage in

Figure 3.4 and the distribution of region-based p-values under the null in Figure 3.5.

Confidence interval estimation

Analytical derivation for standard errors usually involves calculating the observed Fisher

information for parameters α from the marginal log-likelihood for Y . However, in this case,

a direct calculation of the observed Fisher information is analytically intractable because the

observed Y follows a mixture of two binomial distributions. To circumvent this problem,

we rely on the work of Louis (1982) and Oakes (1999), which showed that this Fisher infor-

mation can be calculated solely from the Q function (3.4), without referring to the marginal

distribution of Y .

Theorem 1. Under the usual regularity conditions for maximum likelihood, we have the
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following asymptotic results for the estimators α̂ obtained from the smoothed-EM algorithm,

√
M (α̂−α)

L−→MV NK(0,I−1), as M →∞.

Here, K is the dimension of the spline coefficients α, and I = E [−Hij(α)]. Specifically

Hij(α) has the form

Hij(α) = XT
(l,) (−Xijwij + δijwij)X(l,) −Aλ,

where X(l,) is the lth row of the design matrix X, which corresponds to the CpG j of sample

i, wij = πij(1− πij) is the element of the weight matrix, and

δij =
Yijp1p0[

p1πij + p0(1− πij)
]2 +

(Xij − Yij) (1− p1)(1− p0)[
(1− p1)πij + (1− p0)(1− πij)

]2 .
The proof of Theorem 1 is given in the Supporting Information Appendix A.1.4. Theorem

1 provides the desired variance-covariance matrix of the EM estimators α̂, which can be

estimated using the observed Fisher information

V̂ar(α̂) = {−H(α̂)}−1 ,

where H(α̂) =
∑

i,jHij(α̂). Let V denote this variance estimator and Vp be the diag-

onal blocks of V corresponding to αp, with dimensions Lp × Lp. Since β(t) is a linear

combination of coefficients αp, the estimated variance of β̂p(t) takes the form V̂ar(β̂p(t)) ={
B(p)(t)

}T

Vp

{
B(p)(t)

}
. Therefore, the confidence interval for βp(t) at significance level ν

can be estimated by β̂p(t)± Zν/2

√
V̂ar(β̂p(t)), for any t in the range of interest, where Zν/2

is ν/2 (upper-tail) quantile of a standard normal distribution.
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Hypothesis testing for a regional zero effect

We can also construct a region-wide test of the null hypothesis

H0 : βp(t) = 0, for any t in the genomic interval.

This test depends on the association between covariate Zp and methylation levels across the

region, after adjustment for all the other covariates, and the null hypothesis is equivalent to

H0 : αp = 0. A Wald-type statistic can be naturally proposed as

Tp = α̂p
T {Vp}−1 α̂p,

where {Vp}−1 denotes inverse if Vp is nonsigular; for singular V p, the inverse is replaced by

the Moore-Penrose inverse {Vp}−. If αp is a vector of unpenalized coefficients, under the null

hypothesis, Tp asymptotically follows a Chi-square distribution with degrees of freedom Lp.

In the presence of smoothness penalization, Lp should be replaced by the effective degrees

of freedom (EDF), τp, which depends on the magnitude of smoothing parameter λp and is

smaller than Lp. Motivated by the work of Wood (2013a), we define the EDF τp as

τp =

bp∑
l=ap

(2F − FF )(l,l) , for p = 0, 1, . . . P, (3.6)

where ap =
∑p−1

m=0 Lm + 1 if p > 0 and ap = 1 if p = 0, bp =
∑p

m=0 Lm for any p, and

(•)(l,l) stands for the lth leading diagonal element of a matrix. In (3.6), F is the smoothing

matrix of our model, which has the form F = (XTŴX + Aλ̂)
−1XTŴX, where Ŵ is the

weight matrix whose diagonal is Xijπ̂ij(1 − π̂ij). The definition for EDF in (3.6) stems

from the smoothing-bias-corrected estimate for θ = log (π/(1− π)). It takes the form

θ̂ + (θ̂ − F θ̂) = (2F − FF )η̃, where η̃ = log (η̂/(1− η̂)) is the adjusted/pseudo outcome.

The detailed derivation for (3.6) can be also found in Wood (2013a). A joint null hypothesis
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that evaluates the effects of multiple covariates can be defined in a similar way.

Hereafter we refer the proposed novel method including the region-wide test and the smooth

covariate estimation as SOMNiBUS (SmOoth ModeliNg of BisUlfite Sequencing).

3.3 DNA methylation data from a rheumatoid arthritis

study

To illustrate our method, we report our analysis on data from a rheumatoid arthritis study

(Hudson et al., 2017). DNA methylation profiles of cell-separated blood samples of 22

rheumatoid arthritis (RA) patients and 21 healthy individuals were measured with custom

captured targeted bisulfite sequencing. We focus on one targeted region on chromosome 4

near gene BANK1, which is known to show cell-type-specific DNA methylation levels (Hillier

et al., 2005). Three additional targeted regions from the same dataset are also analyzed in

the Supporting Information Section A.3. In this BANK1 region, DNA methylation levels

are available at 123 CpG sites. There are 25 samples from circulating T cells and 18 samples

from monocytes. We consider two binary covariates—RA status and cell type—and study

their impact on DNA methylation pattern in this region.

To fit SOMNiBUS, we specified error parameters p0 = 0.003 and 1−p1 = 0.1; the value 0.003

was reported by Prochenka et al. (2015) as insufficient conversion rate and 0.1 was estimated

as the average excessive conversion rate in our data using the method proposed by Lakhal-

Chaieb et al. (2017). We used cubic splines of rank Lp = 5 to expand the smooth terms in

the model. Figure 3.1 (A) shows the estimated smooth covariate effects on DNA methylation

levels in the targeted BANK1 region. The panel “Intercept" displays the DNA methylation

pattern (on the logit scale) for control samples with the monocyte cell type. The panel “Effect

of RA” displays the pattern of DNA methylation difference (on the logit scale) between RA

samples and control samples with the same cell type. This figure suggests that RA patients
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show slightly higher DNA methylation levels in the middle part of the region, compared to

controls. The panel “Effect of Tcell" represents the difference of DNA methylation levels (on

the logit scale) between T cell samples and monocyte samples with the same disease status.

This effect curve, along with the confidence interval bands, clearly shows a highly significant

increase of DNA methylation in T cells relative to monocytes. Figure 3.1 (B) displays the

predicted DNA methylation proportions in the 4 groups of samples, defined by cell type and

RA status. Overall, Figure 3.1 demonstrates the smoothness of the fits, the ability to use

multiple covariates simultaneously, and the ease of interpretation of results across the region.

Region-wide tests of significance for the 2 covariates are highly significant (Figure 3.1). We

also applied five alternative methods, described in Section 4; see Table A.3 in the Supporting

Information.

3.4 Simulation study

We conducted simulation to i) demonstrate that the proposed inference of smooth covariate

effects is valid, and to ii) compare the performance of our method with five existing methods:

BiSeq (Hebestreit et al., 2013), BSmooth (Hansen et al., 2012), SMSC (Lakhal-Chaieb et al.,

2017), dmrseq (Korthauer et al., 2018) and GlobalTest (Goeman et al., 2006), in terms of

type I error and power. The first three methods are typical examples of two-stage analytic

approaches. In the first stage, kernel smoothing (local likelihood estimation) is applied to

the DNA methylation data of each sample separately. In the second stage, the smoothed

methylation data are further analyzed. Specifically, BiSeq calculates the average of Wald

statistics from single-site beta regression models, while BSmooth and SMSC calculate the

sum of t-statistics across loci; these statistics are used to test for differential methylation

of a region. In contrast, dmrseq and GlobalTest are one-stage approaches which fit their

models directly to the raw methylation proportions in a region. Specifically, dmrseq assesses

the strength of the covariate effect using a Wald test statistic within a generalized least
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Figure 3.1: (A) The estimates (solid red lines) and 95% pointwise confidence intervals (dashed
red lines) of the intercept, the smooth effect of rheumatoid arthritis (RA) and cell type (T
cells versus monocytes) on DNA methylation levels. (B) The predicted DNA methylation
levels in the logit scale (left) and proportion scale (right) for the 4 groups of samples with
different disease and cell type status. The region-based p-values for the effect of RA status
and cell type are calculated as 1.11E − 16 and 6.37E − 218, respectively.
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square regression model, while GlobalTest uses an improved score test in a linear regression

model.

Notably, like SOMNiBUS, both GlobalTest and BiSeq are primarily tailored to targeted bisul-

fite sequencing data with previously identified regions, whereas BSmooth, SMSC and dmrseq

are designed for WGBS data. Specifically, BSmooth and SMSC define DMRs at adjacent CpG

sites with absolute t-statistics above a defined threshold. The final product from the original

software of BSmooth is a list of DMRs that are ranked by the sum of t-statistics; however,

BSmooth does not provide region-based p-values. To allow comparisons with SOMNiBUS, we

estimated the empirical regional p-values for BSmooth by permuting the values of the covari-

ate of interest 1000 times. When analyzing WGBS data, dmrseq first constructs candidate

regions based on a user-defined cutoff of the smoothed methylation proportion differences,

and then fits a generalized least squares regression model with autoregressive error structure

to the transformed methylation proportions. Furthermore, the inference inside dmrseq is

drawn from permutations – its approximate null distribution is generated by pooling a set

of region-level statistics of many candidate regions from all permutations. To better adapt

dmrseq to a single targeted region: i) we used a small cutoff of methylation differences

(1E − 5) for detecting candidate (sub)regions, which ensures fewer CpG sites to be filtered

out; ii) we applied a relatively large number of permutations (B = 500) to generate a null

distribution of test statistics; iii) we reported the raw p-values without the multiplicity cor-

rections. Note that in some simulations, dmrseq reported more than one DMR in the region.

Therefore, for a fairer comparison, we calculated the dmrseq’s p-value as the minimum over

the reported chunks’ p-values.

Among the five competitive methods, dmrseq, GlobalTest and BiSeq allow adjustment for

multiple covariates. SMSC is the only approach accounting for experimental errors; however,

it is conceptually restricted to data from a single cell type.
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3.4.1 Simulation design

Our simulation design is inspired by the data example described in Section 3.3. Methylation

regions of the same size and with the same CpG distribution as the BANK1 region were

simulated under various settings. We first generated the read depth Xij by resampling the

read depth values of all positions and samples in the BANK1 data, with replacement. To

specify covariates Zp and their effect curves βp(t), we then considered the following two

scenarios.

Scenario 1 – Multiple covariates In this case, P = 3 binary covariates Z1, Z2, and Z3

were generated independently for each sample. Z1 and Z2 were simulated from Bernoulli

distributions with proportions 0.51 and 0.58, which were the proportions of RA and T cell

samples in the RA dataset. The functional parameters for intercept and covariate effects,

β0(t), β1(t) and β2(t), were specified to have the same shapes as seen in the BANK1 region

(Figure 3.1 (A)). Covariate Z3 was generated from a Bernoulli distribution with proportion

parameter 0.5 and had zero effect on methylation, i.e. β3(t) = 0, for all t in the region.

The inference results for the effect of the null covariate, Z3, provide information on type I

error.

Scenario 2 – Single covariate We also considered the case of a single binary covariate

(P = 1), generated from Bernoulli (0.5), with a variety of regional effect curves. The forms

of the functional parameters β0(t) and β1(t) were specified to yield methylation proportion

parameters π0(t) and π1(t) as depicted in Figure 3.2, where π0(t) and π1(t) denote the

methylation parameters for samples with Z = 0 and Z = 1 at position t. As shown in Figure

3.2, these 14 settings of π0(t) correspond to varying levels of closeness between methylation

patterns from the two groups.The corresponding values of β0(t) and β1(t) under these 14

settings are shown in the Supporting Information Figure A.1. We defined the maximum

deviation (MD) as the maximum difference between π1(t) and π0(t), for t in the section
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indicated by the dashed lines in Figure 3.2, where the curves of π1 and π0 mainly differ.

Simulation scenario 2 is aimed at investigating the power for detecting DMRs at varying

levels of maximum derivations.
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Figure 3.2: The 14 simulation settings of methylation parameters π(t) in Scenario 2. Methy-
lation parameters for samples with Z = 1 (red dotted-dashed curve) are fixed across settings,
whereas the methylation parameters for samples from group Z = 0 (black solid lines) vary
across simulations corresponding to different degrees of closeness between methylation pat-
terns in the two groups.

Given the values of {Z1, . . . ZP} and {βp(t), p = 0, 1, . . . P} under each setting, the true

methylation counts Sij were simulated from the model specified in (3.2). We then generated

the observed methylated counts Yij according to equation (3.1), which implies

Yij | Sij ∼ Binomial(Sij, p1) + Binomial(Xij − Sij, p0).

We considered two settings for error parameters p0 and p1: (1) p0 = 0.003 and 1− p1 = 0.1,

and (2) p0 = 1− p1 = 0.

Under each scenario and setting, we generated data sets with sample sizes N = 40, 100, 150

and 400, each 1000 times. We then applied SOMNiBUS along with methods BiSeq, dmrseq,
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BSmooth, SMSC and GlobalTest to the simulated data sets. Unless otherwise stated, default

settings were used for the five alternative methods. For our approach SOMNiBUS, we used

cubic splines with dimension Lp = 5 to parameterize the smooth terms of interest. We also

assumed that the correct values of error parameters p0 and p1 were known, although we con-

ducted sensitivity analyses to this assumption (see Discussion and Supporting Information

Section A.2.2 ). All simulation parameters are summarized in the Supporting Information

Table A.1.

3.4.2 Simulation results
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Figure 3.3: Estimates of smooth covariate effects (gray) over the 100 simulations in Scenario
1, using SOMNiBUS. The red curves are the true functional parameters used to generate the
data. Data with sample size N = 40 were generated with error.

Figure 3.3 presents the estimates of the functional parameters β0(t), β1(t), β2(t) and β3(t)

over 100 simulations, obtained from SOMNiBUS; here, data were generated under Scenario 1,
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with sample size N = 40 and error parameters p0 = 0.003 and 1− p1 = 0.1. It demonstrates

that the proposed method provides unbiased curve estimates for all the four functional

parameters in the model, and it can correctly capture both linear and nonlinear smooth

covariate effects.
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Figure 3.4: Coverage probability of confidence intervals over 1000 simulations under different
sample sizes (N = 40, 100, 150, 400). Data were generated with error, under simulation
Scenario 1.

Figure 3.4 displays the empirical coverage probabilities of CIs over 1000 simulations of Sce-

nario 1. The empirical coverage probabilities are defined as the percentage of simulations

where the analytical 95% confidence interval (proposed in Section 3.2.4) covers the true value

of the parameter. Overall, the coverage probabilities for β2(t) and β3(t) with linear shapes

are closer to the nominal level 95% than the two nonlinear shapes for β0(t) and β1(t). This

result can be expected, because nonlinear patterns require more parameters, which leads to

less accurate inference results than linear patterns, given the same amount of information.

When sample size is 40, the coverages for β1(t) tend to be less than 95%, especially at the

boundaries. This may be because β1(t) has a nonlinear shape with relatively small effect

45



sizes across the region, which poses extra difficulties in estimation compared to the shapes

that are away from the null, such as β0(t). In summary, Figure 3.4 shows that the cover-

ages of our 95% confidence intervals attain their nominal values in most of the simulation

settings. This suggests that the proposed CI estimation approach quantifies the underlying

uncertainty in the smoothed-EM estimates with reasonable accuracy, although it ignores the

uncertainty from estimating the smoothing parameters.
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Figure 3.5: Quantile-Quantile (Q-Q) plots of the region-based p-values for the null co-
variate Z3, obtained from the six methods, over 1000 simulations. Data were gener-
ated without error with a range of sample sizes (N = 40, 100, 150, 400), under simula-
tion Scenario 1. Here, the Expected p-values are uniformly distributed numbers, equal
to = (1/1001, 2/1001, . . . , 1000/1001).

Figures 3.5 and 3.6 further demonstrate the performance of the proposed regional test, de-

scribed in Section 3.2.4. The results of type I error rate and power from our smoothed-EM

method are compared to the five existing methods GlobalTest, dmrseq, BSmooth, SMSC and

BiSeq. Figure 3.5 shows the distributions of p-values for the regional effect of the null co-
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Figure 3.6: Powers to detect DMRs using the six methods for the 14 simulation settings in
Scenario 2 under different levels of maximum deviation between π0(t) and π1(t), calculated
over 100 simulations. (Sample size N = 100).

variate Z3, obtained from the six methods. Because none of GlobalTest, dmrseq, BSmooth

nor BiSeq accounts for the presence of experimental errors, for a fair comparison, the sim-

ulated data used in Figure 3.5 were generated without error (i.e. p0 = 1 − p1 = 0). The

corresponding results for data generated with error are shown in the Supporting Informa-

tion Figure A.2. Figure 3.5 shows that the region-based p-values for Z3, calculated from

our smoothed-EM approach (black dots), are uniformly distributed, under all sample sizes

considered. In contrast, the distributions of p-values from dmrseq, BiSeq and GlobalTest

are biased away from what would be expected under the null. Because the inferences for

BSmooth and SMSC are drawn from permutations, both methods are able to control type

I error. Similar results were observed when data were generated with error. The results

demonstrate that the distribution of the SOMNiBUS region-based statistics under the null

is well calibrated even at a relatively small sample size N = 40, indicating the proposed

regional zero effect test can correctly control the type I error. Figure 3.6 shows the powers of

the six methods for detecting DMRs under the 14 settings of methylation patterns displayed

in Figure 3.2. In Figure 3.6, the left panel presents the results obtained from data with error

(p0 = 0.003 and 1 − p1 = 0.1); the right panel presents results obtained from data without
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error (p0 = 1 − p1 = 0). Figure 3.6 shows that the proposed smoothed-EM method has a

higher power than the five alternative methods; this superiority is even more pronounced

when the data were generated with error.

In summary, SOMNiBUS provides accurate estimates for smooth covariate effects; when com-

pared with the existing methods considered here, SOMNiBUS exhibits greater power to detect

DMRs, while correctly controlling type I error rates.

3.5 Discussion

Currently, there are no tools for estimating smooth covariate effects for bisulfite sequencing

data. In this paper, we propose and evaluate a method, SOMNiBUS, that aims to fill this gap.

Our contribution is three-fold. First, we develop a novel model to represent the bisulfite

sequencing data from multiple samples, which naturally accounts for variable read depth,

experimental errors and a mixture of cell types. Second, we provide a formal inference for

smooth covariate effects across a region of interest, where outcomes may be contaminated by

errors. Third, we construct a region-based statistic with a simple chi-squared limiting distri-

bution for jointly testing multiple coefficients in the presence of penalization. Results from

simulations and one real data example show that the new method captures important un-

derlying methylation patterns, provides accurate estimates of covariate effects, and correctly

quantifies the underlying uncertainty in the estimates. The method has been implemented

in R package SOMNiBUS, which will be submitted to CRAN.

Our method assumes that the error parameters p0 and p1 are known and do not vary across

the region of interest. While it is conceptually feasible to estimate these parameters by an

EM-type approach, the added computational burden in the E step would be substantial,

because the complete-data likelihood is not linear in the methylated counts. Moreover, there

are cases in which these parameters can actually be measured, for example by adding spike-
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in sequences of DNA that are known in advance to be methylated or unmethylated into the

bisulfite sequencing procedure. The results from the sensitivity analyses (Supplementary

Information Figures S3 and S4) show that misspecified error rates can introduce a minor

bias in regional p-values; however, this is not likely to affect the power of our tests, as

demonstrated in the Supporting Information Table A.2. An extension worth exploring in

the future will be to accommodate variations of p0 and p1 across genomic positions into

our model. For example, the error rates could be modeled to depend on prior annotation

information, CG content, or on the experimental quality in the test region.

Another potential limitation of our inference procedures is the treatment of the smoothing

parameters as fixed, disregarding the uncertainty in estimating them. However, our simu-

lation results show that both the confidence interval coverage at each site and the type I

error rates at the region level, are close to their nominal value; hence, our compromise does

not lead to a major efficiency loss. Nevertheless, this uncertainty could be accounted for

by adding in our method an approximate correction, as proposed by Kass & Steffey (1989),

or considering a full Bayesian inference where one could specify a prior distribution for the

smoothing parameters λ.

There is a substantial computational burden in our estimation algorithm, because the M

step includes two inner iteration schemes: P-IRLS for updating smooth covariate effects,

and Newton’s optimization for updating smoothing parameters. A summary of runtimes

for SOMNiBUS and the five alternative methods is displayed in the Supporting Information

Figure A.5. This figure shows that SOMNiBUS requires longer computational times than

GlobalTest, BSmooth, SMSC and BiSeq, but less than dmrseq. Note that our proposed

method, SOMNiBUS, is capable of estimating the effects of multiple covariates simultaneously,

whereas, other methods require repeating the analysis for each covariate, which will multiply

the runtimes. Our algorithm could be sped up by transforming the methylation proportions

into a continuous-type variable, as in Korthauer et al. (2018), which allows us to replace
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the P-IRLS with the ordinary least square, and mitigate any instability in estimation of

methylation levels near the boundaries (proportions of zero or one). However, transforming

the count outcome into a continuous variable causes extra difficulties in the Expectation

step, for which no closed-form exact expression is available.

The proposed approach is tailored to targeted bisulfite sequencing data. Another future

direction is to extend our method to WGBS data. This requires first partitioning whole

genome into regions or using a sliding window; optimal partitioning or choices of window

sizes are challenges to be met. We recommend for the moment that algorithms such as

BSmooth or dmrseq be used to find interesting regions. These regions could then be re-

analyzed with SOMNiBUS to more comprehensively and simultaneously estimate covariate

influences on methylation.
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Chapter 4

Manuscript II: A hierarchical

quasi-binomial varying coefficient mixed

model for detecting differentially

methylated regions in bisulfite

sequencing data

Preamble to Manuscript II: In Chapter 3, I introduced a new method SOMNiBUS for

the analysis of regional associations in sequencing-derived DNA methylation data. This

method explicitly accounts for measurement errors in the methylated counts and leads to

both regional measures of association and pointwise tests and confidence intervals. However,

it had an important limitation: its underlying binomial assumption may be overly restrictive

and only applicable when data exhibit variability levels similar to those anticipated based

on a binomial distribution. The goal of the second manuscript in this thesis is to extend the

standard SOMNiBUS to allow the outcomes to exhibit extra-parametric variations.
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To achieve that, I propose a hierarchical quasi-binomial varying coefficient mixed model.

This model allows for both multiplicative and additive dispersion, thereby providing a plau-

sible representation of realistic dispersion trends observed in regional methylation data. In

addition, the new approach can provide reliable inference for differential methylation at

the region level. The methodology improvement has been implemented in the R Biocon-

ductor package SOMNiBUS (https://www.bioconductor.org/packages/devel/bioc/html/

SOMNiBUS.html).

Note that the supporting material for this chapter can be found in Appendix

B.
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Abstract

Identifying disease-associated changes in DNA methylation can help to gain a better un-

derstanding of disease etiology. Bisulfite sequencing technology allows the generation of

methylation profiles at single base of DNA. We previously developed a method for estimat-

ing smooth covariate effects and identifying differentially methylated regions (DMRs) from

bisulfite sequencing data, which copes with experimental errors and variable read depths;

this method utilizes the binomial distribution to characterize the variability in the methy-

lated counts. However, bisulfite sequencing data frequently include low-count integers and

can exhibit over or under dispersion relative to the binomial distribution. We present a sub-

stantial improvement to our previous work by proposing a quasi-likelihood-based regional

testing approach which accounts for multiplicative and additive sources of dispersion. We

demonstrate the theoretical properties of the resulting tests, as well as their marginal and

conditional interpretations. Simulations show that the proposed method provides correct

inference for smooth covariate effects and captures the major methylation patterns with

excellent power.
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4.1 Introduction

Conceptually, the emergence of a disease phenotype is believed to stem from the combined ef-

fects of genetic predisposition and environmental exposures (Ober & Vercelli, 2011). A plau-

sible mechanism behind this gene-environment interplay is epigenetic modification, which

regulates gene activity through modifications of DNA accessibility. Epigenetics may ex-

plain how exposures leave heritable marks on the genome that impact disease susceptibility

(Jaenisch & Bird, 2003). Therefore, increased understanding of epigenetic-disease associ-

ation could lead to novel insights into disease causation and possible therapies (Feinberg,

2007).

The most studied epigenetic mark is DNA methylation, which involves the covalent addition

of a methyl group to a cytosine nucleotide. DNA methylation, in the mammalian genomes,

occurs predominantly at cytosine-guanine dinucleotides (i.e. CpG sites) (Lister et al., 2009).

Methylation of CpG-rich promoters can silence gene expression by preventing transcriptional

factor binding to DNA (Choy et al., 2010). More generally, DNA methylation has the

potential to activate or repress gene expression, depending on whether the mark inactivates

a positive or negative regulatory element (Jones, 1999). Known or suspected drivers behind

methylation alterations include genetic variations (McRae et al., 2014), environmental toxins

(Hanson & Gluckman, 2008), external stressors (Dolinoy et al., 2007) and aging (Horvath,

2013). There is also evidence that localized abnormal methylation is strongly linked to many

diseases, including breast cancer (Hu et al., 2005), autism spectrum disorder (Dunaway et

al., 2016), and systemic autoimmune disease (Kato et al., 2005).

High-resolution, large-scale measurement of DNA methylation is now possible with recent

advances in bisulfite sequencing (BS-seq) protocol, which is implemented either genome-

wide or in targeted regions. Although whole-genome bisulfite sequencing (WGBS) allows a

comprehensive characterization of the methylation landscape, it is inefficient for large-scale

studies as only 20% or less of CpGs are thought to have variable methylation across individ-
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uals or tissues (Ziller et al., 2013). On the other hand, Targeted Custom Capture Bisulfite

Sequencing (TCCBS) platform enables a comprehensive yet cost-effective interrogation of

functional CpGs in disease-targeted tissues or cells (Allum et al., 2015). This approach has

been successfully used to identify novel disease-associated epigenetic variants (Allum et al.,

2019; Shao et al., 2019; Ziller et al., 2016). In this work, we aim to improve sensitivity to

detect, among all the regions targeted by TCCBS, differentially methylated regions (DMRs)

that are associated with phenotypes or traits.

Like other sequencing experiments, the raw data from TCCBS are short sequence reads.

After proper alignment and data processing, the methylation level at a single cytosine can

be summarized as a pair of counts: the number of methylated reads and the total number of

reads covering the site, i.e. read depth. Such data possess several challenges for statistical

analysis. Typically, read depth varies drastically across sites and individuals, which leads to

measures with wide-ranging precision and many missing values (Sims et al., 2014). Additional

statistical challenges are created by the strong spatial correlations observed in methylation

levels at neighboring CpG sites (Hansen et al., 2012; Korthauer et al., 2018; Rackham et al.,

2017; Shokoohi et al., 2018), as well as the possibility of data errors, arising from excessive or

insufficient bisulfite treatment or other aspects of the sequencing processes (Cheng & Zhu,

2013; Lakhal-Chaieb et al., 2017). Furthermore, in addition to the trait of interest (e.g.

disease or treatment group), other factors, such as age (Horvath, 2013), batch effects (Leek

et al., 2010), or cell-type mixture proportions (for mixed tissue samples) (McGregor et al.,

2016) have effects on methylation levels. Hence, it is desirable to adjust methylation signals

for multiple covariates simultaneously.
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Figure 4.1: Illustration of observed dispersion in a targeted region that underwent bisulfite
sequencing. (A) Observed methylation proportions in one region for two groups of samples
(yellow and blue); data are fully described in Section 4.4. (B) Estimated dispersion for each
CpG site from a single-site quasi-binomial GLM. (C) Single-site p-values for methylation
difference between the two groups. Horizontal axis are the p-values estimated from either
binomial (ignoring dispersion) or quasi-binomial (accounting for dispersion) GLMs. Vertical
axis shows the empirical p-values computed from 199 permutations; the empirical p-value is
a benchmark for valid statistical tests. (Single-site beta-binomial regression models generate
similar dispersion estimate pattern and p-value distribution to quasi-binomial GLM).

To detect truly differentially methylated regions without finding false associations, it is

crucial to accurately account for the sources of variability across individuals. We ran into

this issue in a recent analysis of methylation profiles and anti-citrullinated protein antibodies

58



(ACPA). Figure 4.1 (A) illustrates methylation proportions in a targeted region for samples

from this study. (A full description of the study, referred to as the ACPA dataset, is in

Section 4.4). Clearly, dispersion is much larger between samples in the blue group. In panel

(C), it can be seen that p-values testing for methylation differences, assuming a binomial

mean-variance relationship are much too small. In contrast, allowing for dispersion through

a quasi-binomial model provides p-values in line with null expectation for this region. As

such, the restrictive mean-variance relationship implied by a binomial generalized linear

model (GLM) may not adequately accommodate the data variability, and thus can lead to

inflation of false positives. This is known as over or underdispersion, i.e. data presenting

greater or lower variability than assumed by a GLM model.

Moving in this direction, we have developed a SmOoth ModeliNg of BisUlfite Sequencing

(SOMNiBUS) method to detect DMRs in targeted bisulfite sequencing data (Zhao et al.,

2020). The method provides a general framework of analysis, and simultaneously addresses

regional testing, estimation of multiple covariate effects, adjustment for read depth vari-

ability and experimental errors. Specifically, Zhao et al. (2020) proposed a hierarchical

binomial regression model, which allows covariate effects to vary smoothly along genomic

position. A salient feature of SOMNiBUS is its one-stage nature. Several existing methods

first smooth methylation data and then, in a second stage, estimate covariate effects based

on the smoothed data (Hansen et al., 2012; Hebestreit et al., 2013; Lakhal-Chaieb et al.,

2017), and this two-stage framework could lead to biased uncertainty estimates. In contrast,

SOMNiBUS collapses smoothing and testing steps into a single step, and achieves accurate

statistical uncertainty assessment of DMRs. That said, its underlying binomial assumption

may be overly restrictive and is only applicable when data exhibit variability levels that

are similar to those anticipated based on a binomial distribution (such as data from inbred

animal or cell line experiments). In this work, we propose an extension of SOMNiBUS,

which maintains all the good properties of the standard SOMNiBUS, and at the same time

explicitly allows the variability in regional methylation counts to exceed or fall short of what
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binomial model permits.

The importance of accounting for dispersion in BS-seq data has been well recognized in

analysis of single CpG sites. Faced with dispersion in discrete data analysis, one commonly

used option is to convert the methylated and total counts to proportions. In this way,

testing of differentially methylated single CpG sites can be done via the two sample t-test

(Hansen et al., 2012) or beta regression (Hebestreit et al., 2013), both of which allow direct

computation of (within-group) sample variation. However, this conversion loses information,

since it fails to distinguish between noisy and accurate measurements (Wu et al., 2015),

often as a consequence of the stochasticity of read depth, and also disregards the discrete

nature of the data (Lea et al., 2015). On the other hand, there are approaches for DNA

methylation analysis that directly model counts while accounting for dispersion. These

count-based approaches use either additive overdispersion models, or multiplicative under-

or overdispersion models to describe the variation driving the dispersion (Browne et al.,

2005). In a multiplicative model, one includes a multiplicative scale factor, i.e. the dispersion

parameter, in the variance of the binomial response. Thus, the dispersion inflates or deflates

the variance estimates of the covariate effect by the multiplicative factor. Such approaches

include the quasi-binomial regression model (Akalin et al., 2012) and the beta-binomial

regression model (Dolzhenko & Smith, 2014; Feng et al., 2014; Park et al., 2014; Park & Wu,

2016). In contrast, additive overdispersion methods add a subject-level random effect (RE) to

capture the extra-binomial variation among individual observations. Both ABBA (Rackham

et al., 2017) and MACAU (Lea et al., 2015), that use binomial mixed effect models fall in

this category. An advantage of the multiplicative approach, particularly the quasi-binomial

model, is that it naturally allows for both overdispersion and underdispersion, whereas the

additive model only allows overdispersion. On the other hand, the additive overdispersion

approach links directly with a multilevel model and can be readily extended to analyze data

with a hierarchical or clustering structure.
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Figure 4.2: A byproduct of introducing a subject-level RE, on top of a multiplicative dispersion
parameter, to a model with smooth covariate effects is a regional dispersion pattern of varying
degree. Estimated dispersion for each CpG site obtained from a single-site quasi-binomial
GLM, for two simulated regional methylation datasets: (A) data were simulated from a
multiplicative-dispersion-only model (ϕ = 3, σ2

0 = 0), and (B) data were simulated from a
model with both a multiplicative dispersion and a subject-level RE (ϕ = 3, σ2

0 = 3); see
Section 4.2 for detailed model formulations and notation definitions.

The challenge of accounting for dispersion when detecting DMRs is further complicated by

several factors. Firstly, even within a small genomic region, different CpG sites may exhibit

different levels of dispersion and strong spatial correlation (Figure 4.1 B). Hence, a multi-

plicative dispersion model with a common dispersion parameter does not adequately capture

the dispersion heterogeneity across loci (Figure 4.2 A). In addition, challenges are presented

by the complex correlation structure in the regional methylation data. Apart from the spatial

correlations among neighboring CpGs, there are additional correlations among methylation

measurements on the same subject. Ignoring this within-subject correlation could lead to

overestimation of precision and invalid statistical tests (Cui et al., 2016). One means to

accommodate such a correlation structure is to add a subject-level RE that can also capture

the overdispersion induced by independent variation across different subjects. Furthermore,

when modelling discrete data with a hierarchical structure, extra non-structural specific

random dispersion can arise, beyond that introduced by the subject-level RE (Breslow &
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Clayton, 1993; Molenberghs et al., 2007; Vahabi et al., 2019), and thus, often, parametric

distributions with restrictive mean-variance relations poorly describe the outcomes for indi-

vidual subjects (i.e. the conditional distribution of outcome given the RE) (Ivanova et al.,

2014; Molenberghs et al., 2010, 2012). Hence, properly addressing both multiplicative and

additive sources of dispersion in methylation data is essential for making reliable inference

at the region level.

Table 4.1: List of existing DNA methylation analytical methods and our proposal with their
capabilities.

Method regional one-
stage

count-
based

read-depth
variability

adjust for
confounding

within-subject
correlation

non-structural
dispersion

varying levels
of dispersion
across loci

experimental
errors

dSOMNiBUS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SOMNiBUS ✓ ✓ ✓ ✓ ✓ ✓
BSmooth ✓ ✓ – ✓ ✓
SMSC ✓ ✓ – ✓ ✓ ✓
dmrseq ✓ ✓ ✓ ✓ ✓ ✓
Biseq ✓ ✓ – ✓ ✓ ✓ ✓
GlobalTest ✓ ✓ ✓ NA† NA† NA†

ABBA ✓ ✓ ✓ ✓ ✓ ✓ ✓
MACAU ✓ ✓ ✓ ✓ NA‡ ✓ ✓
✓ –: These three methods are of a two-stage nature. Their smoothing stage indeed accounts for read-depth variability, but their

testing stage, which relies on t-test or beta regression, ignores the read-depth variability.
† : GlobalTest treats methylation levels at multiple loci as covariates and trait of interest as outcome. It is not necessary for

GlobalTest to account for the three features on covariance structure of methylation across samples and loci.
‡ : MACAU is a single-site method and within-subject correlation is irrelevant when analyzing individual sites

one at a time.

Given our preliminary exploration of dispersion in the ACPA dataset, we recognized the

need for a regional one-stage method of analysis that accommodates both the hierarchically-

induced overdispersion (and/or correlation) and the extra unstructured individual dispersion.

This desired method should also simultaneously address discrete nature of the data, varying

strength of dispersion across a region, estimation of multiple covariate effects, adjustment

for read depth variability and experimental errors. However, to the best of our knowledge,

none of the existing methods meet all aforementioned objectives (Table 4.1). For example,

dmrseq (Korthauer et al., 2018), which fits a generalized least squares regression model with

autoregressive error structure to the transformed methylation proportions, accommodates

both within-subject correlation and non-structural dispersion, but it assumes a constant

dispersion parameter for all loci in a region. Biseq (Hebestreit et al., 2013) is capable of
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capturing the covariance structure of regional methylation data (by estimating the variogram

of site-specific test statistics). However, this method separates smoothing and inference steps

and its final significance assessment does not account for the uncertainty in the smoothing

step.

To overcome the limitations and challenges of existing methods, we propose a novel approach

for identifying DMRs, dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg of BisUlfite Se-

quencing). Our strategy directly models raw read counts while accounting for all (known)

sources of data variability and varying degree of dispersion across loci, thus providing accu-

rate assessments of regional statistical significance.

Specifically, we propose a quasi-binomial mixed model to describe bisulfite sequencing data,

which allows covariate effects to vary smoothly along genomic positions, and specially, cap-

tures the extra-binomial variation by the combination of a subject-specific RE (i.e an additive

overdispersion) and a multiplicative dispersion. The RE term accounts for between-sample

heterogeneity, and at the same time enables flexible dispersion patterns in a region (Fig-

ure 4.2 B), which is highly plausible in methylation data (Figure 4.1 B). The multiplicative

dispersion, on the other hand, explicitly allows the variability in individual subject’s methy-

lation levels to exceed or fall short of what binomial distribution assumes, and thus captures

the extra dispersion that cannot explained by RE. We also demonstrate their marginal and

conditional interpretations.

In addition, our approach accounts for possible data errors in the observed methylated

counts. Specifically, we assume that the observed read counts arise from an unobserved

latent true methylation state compounded by errors. To estimate such a hierarchical model,

we build a hybrid Expectation-Solving (ES) algorithm, which has a special treatment for

the multiplicative dispersion parameter and results in a regional association test statistic

with a simple F limiting distribution. We have demonstrated the properties of the resulting

estimators using both simulation evaluations and data applications.
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4.2 A hierarchical quasi-binomial varying coefficient mixed

model

4.2.1 Notation and data

We consider DNA methylation measures over a targeted genomic region from N independent

samples. Let mi be the number of CpG sites for the ith sample, i = 1, 2, . . . N . We write tij

for the genomic position (in base pairs) for the ith sample at the jth CpG site, j = 1, 2, . . . ,mi.

Methylation levels at a site are quantified by the number of methylated reads and the total

number of reads. We define Xij as the total number of reads aligned to CpG j from sample

i. We denote the true methylation status for the kth read obtained at CpG j of sample

i as Sijk, where k = 1, 2, . . . Xij. For a single DNA strand read, Sijk is binary and we

define Sijk = 1 if the corresponding read is methylated and Sijk = 0 otherwise. In the

presence of experimental errors, the observed methylation status, written as Yijk can be

different from the true underlying information Sijk. We define Yijk = 1 if the corresponding

read is observed as methylated and Yijk = 0 otherwise. We additionally denote the true and

observed methylated counts at CpG j for sample i with Sij =
∑Xij

k=1 Sijk, and Yij =
∑Xij

k=1 Yijk,

respectively. Furthermore, we assume that we have the information on P covariates for the

N samples, denoted as Zi = (Z1i, Z2i, . . . ZPi), for i = 1, 2, . . . N .

4.2.2 A hierarchical quasi-binomial varying coefficient mixed model

In the presence of experimental errors, the true methylation data, Sij are unknown and one

only observes Yij. We assume the following error mechanism

P (Yijk = 1 | Sijk = 0) = p0

P (Yijk = 1 | Sijk = 1) = p1. (4.1)
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Here, p0 is the rate of false methylation calls, and 1− p1 is the rate of false non-methylation

calls. These rates are assumed to be constant across all reads and positions. The error

parameters p0 and p1 can be estimated by looking at raw sequencing data at CpG sites

known in advance to be methylated or unmethylated (Wreczycka et al., 2017). We assume

hereafter that p0 and p1 are known.

We then propose a quasi-binomial varying coefficient mixed effect model to describe the

relationship between the true methylated counts, Sij for j = 1, 2, . . .mi, and the sample-

level covariates Zi. Specifically,

log
πij

1− πij

= β0(tij) +
P∑

p=1

βp(tij)Zpi + ui, (4.2)

ui
iid∼ N(0, σ2

0)

Var(Sij | ui) = ϕXijπij(1− πij) (4.3)

where πij = E (Sij | ui) /Xij is the individual’s methylation proportion (i.e. the conditional

mean), β0(tij) and {βp(tij)}Pp=1 are functional parameters for the intercept and covariate

effects on πij, and σ2
0 is the random effect variance. In this model, we assume the underlying

proportion of methylated reads for the ith sample at the jth CpG site, πij, depends on

covariates Zi and on nearby methylation patterns through a logit link function. In addition,

each πij incorporates a subject-specific random intercept (i.e. an additive overdispersion) ui

that is normally distributed and independent across samples. The inclusion of ui allows for

sample heterogeneity in baseline methylation patterns, and at the same time accounts for

the correlation among methylation measurements taken on the same sample. Moreover, we

assume the variance of Sij for individual samples to be a product of a multiplicative dispersion

parameter ϕ and a known mean-variance function implied by a binomial distribution (i.e.

V (πij) = Xijπij(1− πij)).

Both the random effects u = (u1, u1, . . . uN)
T and the multiplicative dispersion parameter ϕ
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capture extra-binomial dispersion. However, they address two different aspects of dispersion:

u models the variation that is due to independent noise across samples, while ϕ aims to relax

the assumption of the conditional distribution of Sij given u such that it is not confined to

a binomial distribution. In fact, our model generalizes the binomial-based model in Zhao et

al. (2020) by introducing both the additive dispersion term u and multiplicative dispersion

term ϕ. Specially, imposing ϕ = 1 in model (4.2) leads to an additive-dispersion-only model

and σ2
0 = 0 corresponds to a multiplicative-dispersion-only model. When σ2

0 = 0 and ϕ = 1,

our model reduces to the binomial-based model in Zhao et al. (2020).

4.2.3 Marginal interpretations

A key feature of the mixed effect model in (4.2) is that the regression coefficients βp(tij) need

to be interpreted conditional on the value of random effect ui. For example, βp(tij) describes

how an individual’s methylation proportions in a region depend on covariate Zp. If one

desires estimates of such covariate effects on the average population, it is more appropriate

to determine the marginal model implied by (4.2). After applying a cumulative Gaussian

approximation to the logistic function and taking an expectation over ui, it can be shown

that the marginal mean, πM
ij , has the form

πM
ij = E(Sij)/Xij ≈ g

(
P∑

p=0

a βp(tij)Zpi

)
, (4.4)

where g(x) = 1/ (1 + exp(−x)), Z0i ≡ 1, and the constant a = (1 + c2σ2
0)

−1/2 with c =
√
3.41/π; see detailed derivations in Appendix B.1.1. The approximation in (4.4) is quite

accurate with errors ≤ 0.001. Thus, the marginal mean induced by our mixed effect model

depends on the covariates Zp through a logistic link with attenuated regression coefficients

aβp(tij). Although the smooth covariate effect parameters βp(tij) have no marginal inter-

pretation, they do have a strong relationship to their marginal counterparts. Hence, the

66



results from hypothesis testing H0 : βp(tij) = 0 describe the significance of the covariate

effect on both the population-averaged and an individual’s DNA methylation levels across a

region.

Similarly, the marginal variance of Sij does not coincide with its conditional counterpart as

shown in (4.3). Specifically, our mixed effect model implies a marginal variance of Sij defined

as

Var(Sij) ≈ Xijπ
⋆
ij(1− π⋆

ij)
{
ϕ+ σ2

0 (Xij − ϕ) π⋆
ij(1− π⋆

ij)

+ σ2
0/2(1− 2π⋆

ij)
2
[
1 + σ2

0π
⋆
ij(1− π⋆

ij)(Xij − ϕ− 1/2)
]}

, (4.5)

where π⋆
ij = g

(∑P
p=0 βp(tij)Zpi

)
; see detailed derivations in Appendix B.1.1. Note that

π⋆
ij is the mean methylation proportion when setting random effects ui to zero and is

related to the marginal mean πM
ij via π⋆

ij = g
(
g−1

(
πM
ij

)
/a
)
. Equation (4.5) illustrates

that, under the dSOMNiBUS model, the marginal variance of methylated counts at a CpG

site is approximately the variance of the binomial model multiplied by a dispersion factor

ϕ⋆ = ϕ+σ2
0 (Xij − ϕ)π⋆

ij(1−π⋆
ij)+σ2

0/2(1−2π⋆
ij)

2
[
1 + σ2

0π
⋆
ij(1− π⋆

ij)(Xij − ϕ− 1/2)
]
, which

depends on the combined effect of ϕ, the multiplicative dispersion for the conditional variance

given the RE, and σ2
0, the variance of the subject-level RE. Notably, the marginal dispersion

factor ϕ⋆ also depends on genomic position tij via the dependence of π⋆
ij on tij. Conse-

quently, our dSOMNiBUS model in (4.2) naturally allows dispersion levels to vary across

loci, whereas a multiplicative-dispersion-only model (i.e. σ2
0 = 0) can only accommodate

constant dispersion in a region, as illustrated in Figure 4.2. It is also clear from Equation

(4.5) that an additive-dispersion-only model (i.e., ϕ = 1) only allows for overdispersion, and

the combination of additive and multiplicative dispersion naturally accounts for both over-

and underdispersion.
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4.3 Inference

In this section, we present the methodology details on how to make inference about covariate

effects βp(tij) and simultaneously estimate the additive and multiplicative dispersion param-

eters ϕ and σ2
0 in our smoothed quasi-binomial mixed model (4.2). We start with the case

where true methylation counts Sij are available, and determine the complete data marginal

quasi-likelihood function in Section 4.3.1. Then we describe the estimating algorithms for

the complete and contaminated data in Sections 4.3.2 and 4.3.3, respectively. We additional

estimate the pointwise CIs for covariate effects βp(tij) and obtain tests of hypotheses for

these effects in Section 4.3.4.

4.3.1 Laplace-approximated marginal quasi-likelihood function

Basis representation

In model (4.2), the function parameters βp(tij) can be represented by the coefficients of chosen

spline bases of rank Lp, βp(tij) =
∑Lp

l=1 αplB
(p)
l (tij), for p = 0, 1, . . . P. Here

{
B

(p)
l (·)

}Lp

l=1

denotes the spline basis, and αp = (αp1, . . . αpLp)
T ∈ RLp are the coefficients to be estimated.

In this way, we can write the conditional mean in (4.2) in a compact way as

g−1(π) = X(B)α+ X(1)u,

where π = (π11, . . . π1m1 , π21, . . . π2m2 , . . . πNmN
)T ∈ [0, 1]M with M =

∑N
i=1 mi, α =

(
αT

0 ,

αT
1 , . . .α

T
p

)T ∈ RK with K =
∑P

p=0 Lp, and u = (u1, u2, . . . uN)
T . X(B) is the spanned design

matrix for α of dimension M ×K, stacked with elements B(p)
l (tij)×Zpi with Z0i ≡ 1. X(1) is

a random effect model matrix of dimension M×N , with element 1 if the corresponding CpG

site in the row belongs to the sample in the column, and 0 otherwise. If we write the overall

spanned design matrix X =
[
X(B), X(1)

]
∈ RM×(K+N) and B = (αT ,uT )T , the conditional
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mean can be further simplified as

g−1(π) = XB.

Smoothness penalty

To impose the assumption that the true covariate effect function is more likely to be smooth

than jumpy, we add a smoothness penalty for each βp(t), p = 0, 1, . . . P . The total amount

of such penalty is an aggregate from all smooth terms, i.e.

LSmooth =
P∑

p=0

λp

∫ (
β′′
p (t)

)2
dt =

P∑
p=0

λpαp
TApαp = αTAλα, (4.6)

where Ap
′s are Lp × Lp positive semidefinite matrices with the (l, l′) element Ap(l, l

′) =∫
B(p)′′

l (t)B
(p)′′

l′(t)dt, which are fixed quantities given the specified set of bases. The weights

λp, i.e. the smoothing parameters, are positive parameters which establish a tradeoff between

the closeness of the curve to the data and the smoothness of the fitted curves. Aλ is a K×K

positive semidefinite block diagonal matrix of the form Aλ = Diag {λ0A0, λ1A1, . . . , λPAP }.

Random-effect view of the smoothness penalty. As justified in Wahba (1983) and

Silverman (1985), employing such smoothing penalty (4.6) during fitting is equivalent to

imposing random effects for spline coefficients α. Specifically, α is assumed to follow a

(degenerate) multivariate normal distribution with precision matrix Aλ,

α ∼MVN(0,Aλ
−),

where Aλ
− is the pseudoinverse of Aλ. From a Bayesian viewpoint, imposing smoothness

is equivalent to specifying a prior distribution on function roughness. This random-effect

formulation of the smooth curve estimation problem opens up the possibility of estimating λ

and ϕ using marginal (quasi-)likelihood maximization. In addition, under such a formulation,
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it requires no extra effort to estimate the ‘actual’ RE term u in our model (4.2), once the

inference procedure for α is well established. In the rest of inference steps, we treat α as

random effects.

Conditional quasi-likelihood function

We first consider specifying the conditional “distribution” of S given the values of REs B.

Following the notion of extended quasi-likelihood (McCullagh & Nelder, 1989b, Section 9.6),

we define the following conditional quasi-likelihood

qL(S|B)(B, ϕ) ∝ exp

{
− 1

2ϕ

∑
i,j

dij (Sij, πij)−
M

2
log ϕ

}
, (4.7)

where

dij(Sij, πij) = −2
∫ πij

Sij/Xij

Sij −Xijπij

πij(1− πij)
dπij

is the quasi-deviance function corresponding to a single observation. It can be easily checked

that this quasi-likelihood exhibits the properties of log-likelihood, with respect to B. Such

properties approximately hold for the dispersion parameter ϕ, provided that ϕ be small and

κr = O(ϕr−1), where κr is the rth-order cumulant of S | B (Efron, 1986; Jørgensen, 1987;

McCullagh & Nelder, 1989b). Let ql(S|B)(B, ϕ) = log
[
qL(S|B)(B, ϕ)

]
denote the conditional

log-quasi-likelihood. It should be noted that the integral inside ql(S|B)(B, ϕ) rarely needs to

be evaluated for the estimation of B, because the inference described later only requires the

computation of its first and second derivatives, i.e.

∂ql(S|B)(B, ϕ)

∂B =
1

ϕ
XT (S −ΛXπ) ,

∂2ql(S|B)(B, ϕ)

∂B∂BT
= −1

ϕ
XTWX,
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where ΛX ∈ RM×M is the diagonal matrix with values of read-depths, and W is the weight

matrix whose diagonal is Xijπij(1− πij).

Joint quasi-likelihood functions

For notational simplicity, we write Θ = (λ, σ2
0) for the parameters involved in the covariance

structure of random effects B. Combining the conditional ‘distribution’ S | B with the

marginal distribution of B, we obtain the following joint log-quasi-likelihood of the observed

data S and unobserved random effects B

qℓ(S,B)(B, ϕ,Θ) = ql(S|B)(B, ϕ)−1

2
αTAλα−

1

2σ2
0

uTu  
− 1

2ϕ
BTΣΘB

+
1

2
log {|Aλ|+}+

N

2
log
(
1/σ2

0

)
  

1/2 log{|ΣΘ/ϕ|+}

, (4.8)

where ΣΘ = diag {ϕAλ, ϕ/σ
2
0IN} ∈ R(K+N)×(K+N), and |•|+ denotes the generalized de-

terminant of a matrix, i.e. the product of its non-zero eigenvalues. Here we introduce the

scaling by ϕ in ΣΘ merely for later convenience, and this allows us to factor out the disper-

sion parameter ϕ in the penalized quasi-score in (4.12). In such way, the point estimates of

random effects B are independent of the estimate of ϕ.

This joint log-quasi-likelihood is composed of three parts: 1) the outcome ‘distribution’

depending on B and ϕ, 2) multiple quadratic penalties for B depending on regularization

parameters Θ, and 3) fixed regularized terms for Θ. Our goals are to estimate the variance

component parameters Θ, the dispersion parameter ϕ, and also predict the values of random

effects B. When ϕ = 1, this fits a generalized linear mixed model (GLMM).
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Laplace-approximated marginal quasi-likelihood function

A legitimate (quasi-)likelihood is the marginal ‘density’ evaluated at the observed data S

only, which is obtained by integrating out random effects B from the joint quasi-likelihood

of S and B,

qLM(ϕ,Θ) =

∫
exp

{
qℓ(S,B)(B, ϕ,Θ)

}
dB. (4.9)

Conceptually, maximizing qLM(ϕ,Θ) yields the maximum quasi-likelihood estimators for Θ,

and ϕ. However, the analytical solutions for this high-dimensional integral are not easy to

find, and an approximation approach is needed.

As in Wood (2011), we use the Laplace approximation to evaluate the integral inside the

marginal quasi-likelihood. Let B̂Θ be the value of B maximizing the joint quasi-likelihood

qℓ(S,B)(B, ϕ,Θ) given the values of variance component parameters Θ, i.e.

B̂Θ = argmax

{
ql(S|B)(B, ϕ)− 1

2ϕ
BTΣΘB

}
, (4.10)

where terms not dependent on B have been dropped from the joint quasi-likelihood. The

objective function in (4.10) is often referred to as the penalized (quasi-)likelihood. A second-

order Taylor expansion of qℓ(S,B)(B, ϕ,Θ), around B̂ (the subscript Θ has been dropped for

notational simplicity), gives

qℓ(S,B)(B, ϕ,Θ) ≈ qℓ(S,B)(B̂, ϕ,Θ)− 1

2

(
B − B̂

)T
HB̂

(
B − B̂

)
,

where HB̂ = −∇2
B qℓ(S,B)(B̂, ϕ,Θ) =

1

ϕ

(
XTŴX+ΣΘ

)
. Therefore, the marginal quasi-
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likelihood in (4.9) can be approximately written as

qLM(ϕ,Θ) ≈ exp
{
qℓ(S,B)(B̂, ϕ,Θ)

}∫
exp

{
−1

2

(
B − B̂

)T
HB̂

(
B − B̂

)}
dB

≈ exp
{
qℓ(S,B)(B̂, ϕ,Θ)

} √
2π

K+N⏐⏐⏐⏐XTŴX+ΣΘ

ϕ

⏐⏐⏐⏐1/2
∝ ϕ−M/2 exp

(
−
∑

i,j d̂ij

2ϕ

)
exp

(
− 1

2ϕ
B̂

T
ΣΘB̂

)
|ΣΘ/ϕ|1/2+

⏐⏐⏐⏐XTŴX+ΣΘ

ϕ

⏐⏐⏐⏐−1/2

.

(4.11)

In equation (4.11), d̂ij = dij(Sij, π̂ij), where π̂ij = g−1(X(l,)B̂) and l is the row in the model

matrix X corresponding to CpG j for sample i. We denote this Laplace-approximated

marginal quasi-likelihood in (4.11) as qLLaplace(ϕ,Θ; B̂) and simply write Laplace(ϕ,Θ; B̂)

= log[qLLaplace(ϕ,Θ; B̂)], which depends on Θ via the dependence of ΣΘ and B̂ (and thus

Ŵ and d̂) on Θ.

4.3.2 Estimation algorithm for the complete data

The essence of estimating Θ,B, and ϕ, is to optimize the Laplace-approximated marginal

quasi-likelihood in (4.11). Note that such approximation requires calculating the maximum

of the penalized quasi-likelihood in (4.10), B̂, along with its corresponding Hessian HB̂,

which is only feasible for given values of the penalty parameters Θ. To disentangle the

complicated dependence of B̂ on Θ, we adopt a nested-optimization strategy proposed by

Wood (2011). Specifically, the algorithm has an outer iteration for updating Θ and ϕ,

with each iterative step supplementing with an inner iteration to estimate random effects B

corresponding to the current Θ, as summarized in Algorithm 1. This Section proceeds with

the detailed description of each step in Algorithm 1.
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Algorithm 1: Algorithm to find (B̂, ϕ̂, Θ̂) = argmaxB,ϕ,Θ ℓ(S,B) (B, ϕ,Θ) using data
{S,Z,Y }

Initialize Θ(0), ϕ(0) ; Choose ε = 10−6; Set s = 0;
repeat

Step 1. Solve U(B;Θ(s)) = 0 (4.12) to obtain B(s) ;
Step 2. Newton’s update for the Laplace-approximated marginal likelihood
(log(ϕ), log(Θ))(s+1) = (log(ϕ), log(Θ))(s) −

[
∇2Laplace(B(s))

]−1

∇Laplace(B(s));

s← s+ 1;
until ∥B(s) −B(s−1)∥2 < ε;
Return Θ(s),B(s), ϕ(s) ;
Step 3: Calculate ϕ̂Fle using B(s)

Inner iteration: estimate B given the current Θ

Given the estimates of penalty parameters Θ, B̂ can be computed as the solution to

U (B) =
1

ϕ

{
XT (S −ΛXπ)−ΣΘB

}
= 0, (4.12)

where U (B) is the quasi-score for the penalized quasi-likelihood in (4.10) with respect to

B. We use the Newton’s method to solve these system of nonlinear equations. Specifically

we compute the gradient of U (B),

∇U (B) = −XTWX+ΣΘ

ϕ
,

and a single update from step l to step l + 1 for B thus takes the form

B(l+1) = B(l) +
(
XTWX+ΣΘ

)−1
[
XT
(
S −ΛXπ(l)

)
−ΣΘB(l)

]
.

We then iteratively update B until convergence, which constitutes iteration Step 1 in Algo-

rithm 1.
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Outer iteration: maximize the Laplace-approximated marginal quasi-likelihood

The outer iteration, which aims to maximize the Laplace-approximated marginal quasi-

likelihood in (4.11), is also achieved by a Newton’s method. Wood (2011) has derived the

derivatives and Hessian of Laplace(ϕ,Θ; B̂) with respect to ρ = (log(Θ), log(ϕ)), using a

mixture of implicit and direct differentiations. We denote these first and second derivatives

as ∇Laplace(ρ; B̂) and ∇2Laplace(ρ; B̂), respectively. Relying on the work of Wood (2011),

the maximization in the outer iteration can be readily achieved via

ρ(s+1) = ρ(s) −
[
∇2Laplace

(
ρ(s); B̂

(s)
)]−1

∇Laplace
(
ρ(s); B̂

(s)
)
. (4.13)

Here, B̂
(s)

are the estimated mean parameters given the current Θ(s), obtained from the inner

iteration in Section 4.3.2. Each update in (4.13) constitutes iteration Step 2 in Algorithm 1.

We iterate between the Step 1 and Step 2 until convergence to obtain B̂, Θ̂ and ϕ̂.

Estimating ϕ using the moment-based estimator

As described in the previous section, the dispersion parameter ϕ can be estimated as part of

the outer iteration of the marginal quasi-likelihood maximization. We refer to this estimator

as likelihood-based dispersion estimator, denoted as ϕ̂Lik.

In generalized linear models, it is common to estimate ϕ by dividing Pearson’s lack-of-

fit statistic by the residual degrees of freedom, and this is known as the moment-based

scale/dispersion estimator. We can apply the similar ideas here. Instead of using ϕ̂Lik, we

take one step further and estimate ϕ using the final estimate B̂ (and thus π̂). Specifically,

Pearson’s dispersion estimator can be written as

ϕ̂P =
1

M − τ

∑
i,j

(
Sij −Xijπ̂ij√
Xijπ̂ij(1− π̂ij)

)2

.
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Here τ is the effective degrees of freedom (Wood, 2017), defined as

τ = trace (F ) , with F =
(
XTŴX+ΣΘ̂

)−1

XTŴX. (4.14)

However, ϕ̂P can be unstable at finite sample sizes, especially when a few Pearson residuals

are huge (Farrington, 1995; Fletcher, 2012). For example, in our model, π̂ij close to 0 can

lead to a huge Pearson residual, even though the deviance dij(Sij, π̂ij) in (4.7) is modest.

Therefore, we adopt an improved version of the Pearson estimator, i.e. the Fletcher estimator

(Fletcher, 2012), which is designed to mitigate this problem. The Fletcher’s dispersion

estimator ϕ̂Fle is defined as

ϕ̂Fle =
ϕ̂P

1 + a
, where aij =

1− 2π̂ij

Xijπ̂ij(1− π̂ij)
(Sij −Xijπ̂ij) and a =

1

M

∑
i,j

aij.

If the mean model is adequate, then approximately we have

(M − τ)ϕ̂Fle

ϕ
∼ χ2

M−τ (4.15)

(Fletcher, 2012; McCullagh, 1985). Therefore, ϕ̂Fle provides an unbiased estimator for ϕ,

which is also confirmed by simulation results as shown in Supporting Information Figure B.9.

In contrast, the estimation using ϕ̂Lik can be considerably biased (Supporting Information

Figure B.9). Hence, we calculate the moment-based estimate for the dispersion parameter,

which constitutes the Step 3 in Algorithm 1.

4.3.3 Estimating algorithm for the contaminated data

In the presence of experimental errors, the true methylation data, Sij are unknown and one

only observes Yij, which is assumed to be a mixture of binomial counts arising from both

the truly methylated and truly unmethylated reads. When Sij is modeled by a parametric
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distribution, like in Zhao et al. (2020), the EM algorithm (Dempster et al., 1977) provides

accurate estimation of the smooth covariate effects even though the true methylation data

are missing. Motivated by the work of Elashoff & Ryan (2004), we propose an extension of

the EM algorithm with special treatment for the multiplicative dispersion parameter ϕ, to

the case of quasi-likelihood-based analyses.

Expectation-Solving algorithm

Elashoff & Ryan (2004) proposed an extension of the EM algorithm, called Expectation-

Solving (ES) algorithm, to accommodate missing (or mis-measured) data when a natural

set of estimating equations exists for the complete data setting. Specifically, the E step

computes the conditional expectation of the estimating equations given the observed data,

and S step solves these expected estimating equations.

To apply the ES algorithm to our case, we need to evaluate the conditional expectation of

three sets of estimating equations:

U(B;Θ(s),S) =
1

ϕ

[
XT
(
S −ΛXπ(s)

)
−ΣΘ(s)B

]
= 0

∇ΘLaplace(Θ, ϕ;B(s),S) =
1

ϕ

∑
i,j

{
Sij −Xijπ

(s)
ij

π
(s)
ij (1− π

(s)
ij )
×

dπ
(s)
ij

dΘ

}
+ f1(Θ, ϕ;B(s)) = 0

∇ϕLaplace(Θ, ϕ;B(s),S) =
1

ϕ2

∑
i,j

∫ π
(s)
ij

Sij/Xij

Sij −Xijπij

πij(1− πij)
dπij + f2(Θ, ϕ;B(s)) = 0,

for B,Θ and ϕ, respectively. Here, Θ(s), B(s), and π(s) are estimates from the previous

iterations, f1(·) and f2(·) denote the components that are independent of S.

E step for B and Θ. The estimating equations for B and Θ are linear in the latent methy-

lated counts S, and thus their expectations equal U(B;Θ(s),η⋆) and∇ΘLaplace(Θ, ϕ;B(s),η⋆),

respectively. Here, η⋆ ∈ RM are the conditional expectations of S given Y evaluated at the
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trial estimates (B⋆,Θ⋆), and for our model, take the form

η⋆ij = E (Sij | Yij;B⋆,Θ⋆) =
Yijp1π

⋆
ij

p1π⋆
ij + p0(1− π⋆

ij)
+

(Xij − Yij) (1− p1)π
⋆
ij

(1− p1)π⋆
ij + (1− p0)(1− π⋆

ij)
, (4.16)

where π⋆
ij = g−1(X(l,)B⋆) and l is the row in the model matrix X corresponding to CpG j for

sample i. These expected estimating equations can then be solved using the direct nested

iteration method in Algorithm 1.

E step for ϕ. However, the estimating equation for ϕ is not linear in the unknown methy-

lated counts S; see details in Appendix B.1.2. Therefore, the closed-form exact expression

for ES|Y ;B⋆,Θ⋆(∇ϕLaplace(Θ, ϕ;B(s),S)) is not available, and the E-S algorithm cannot be

readily applied to estimating ϕ from the contaminated data. To circumvent this problem,

we propose a direct method to estimate ϕ without undergoing the E-S iteration.

A plug-in estimator for ϕ

Specifically, we estimate ϕ by exploiting its relationship with the dispersion for the observed

outcome Y , denoted as ϕY
ij , which is defined as

ϕY
ij =

Var(Yij | ui)

XijπY
ij (1− πY

ij )
, with πY

ij = E(Yij | ui) = πijp1 + (1− πij)p0.

Based on our assumed mean-variance relationship (4.3) and error model (4.1), we can express

ϕY
ij in terms of ϕ, πij and error parameters p0 and p1,

ϕY
ij = 1 + (ϕ− 1)

(πY
ij − p0)(p1 − πY

ij )

πY
ij (1− πY

ij )
; (4.17)

see detailed derivations in Appendix B.1.2. Although we assume a constant dispersion ϕ

for the true outcome S, the observed outcome Y implied by our error model, possesses

dispersion parameter ϕY
ij varying with each CpG site, when ϕ ̸= 1.
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Directly running the nested iteration method (Algorithm 1) on the observed data {Y, Z,X}

reports a constant dispersion estimate ϕ̂Y and π̂Y
ij for all i and j, along with other useful

estimates. We assume that ϕ̂Y is an estimate for the mean of individual dispersions ϕY
ij ,

i.e.
1

M

∑
i,j

ϕY
ij = 1 + (ϕ− 1)

1

M

∑
i,j

(πY
ij − p0)(p1 − πY

ij )

πY
ij (1− πY

ij )
; (4.18)

empirical results show that this is a reasonable assumption, as shown in Supporting In-

formation Figure B.11. We then propose to estimate ϕ by plugging in the error-prone

outcome-related estimates ϕ̂Y and π̂Y
ij to the relation in (4.18):

ϕ̂ = (ϕ̂Y − 1)

[
1

M

∑
i,j

(π̂Y
ij − p0)(p1 − π̂Y

ij )

π̂Y
ij (1− π̂Y

ij )

]−1

+ 1.

A hybrid ES algorithm

We propose a hybrid ES algorithm to estimate our model using the error-prone outcomes

Y . We first estimate ϕ using the aforementioned plug-in approach and then estimate B

and Θ using ES iterations assuming ϕ is fixed and known; detailed steps are summarized

in Algorithm 2. We denote the final estimates from our algorithm as ϕ̂, B̂ and Θ̂. The

components of α̂ inside the vector of B̂ leads to estimates of the functional parameters βp(t),

for p = 0, 1, . . . , P :

β̂p(t) =
{
B(p)(t)

}T

{α̂p} ,

where t is a genomic position lying within the range of the input positions {tij}, and B(p)(t) =

(B
(p)
1 (t), B

(p)
2 (t), . . . B

(p)
Lp
(t))T ∈ RLp is a column vector with nonrandom quantities obtained

from evaluating the set of basis functions {B(p)
l (·)}l at position t.
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Algorithm 2: A hybrid ES algorithm to estimate the smoothed quasi-binomial mixed
model with error-prone outcomes.

Step 1: run Algorithm 1 on {Y, Z,X}; return π̂Y , ϕ̂Y , B̂, and Θ̂;
Step 2: calculate the plug-in estimator ϕ̂ ;
Step 3: E-S iterations with ϕ fixed at ϕ̂ to estimate B and Θ; specifically Initialize
Θ(0) = Θ̂, ,B(0) = B̂; Choose ε = 10−6; Set ℓ = 0;

repeat
• E step: η

(ℓ)
ij = E(Sij | Yij;B(ℓ));

• S step: (B(ℓ),Θ(ℓ)) = argmaxB,Θ ℓ(B,Θ)
(
B,Θ; η

(ℓ)
ij , ϕ̂

)
. Specifically repeat

• Solve U(B;Θ(s);η(ℓ)) = 0 to obtain B(s) using data η
(ℓ)
ij ;

• Newton’s update for the Laplace approximated marginal likelihood evaluated
at data η

(ℓ)
ij :

(logΘ)(s+1) = (logΘ)(s) −
[
∇2

ΘLaplace(B(s))
]−1

∇ΘLaplace(B(s));

s← s+ 1;
until ∥B(s) −B(s−1)∥2 < ε;
ℓ← ℓ+ 1;

until ∥B(ℓ) −B(ℓ−1)∥2 < ε;
Return Θ(ℓ),B(ℓ) ;

4.3.4 Inference for smooth covariate effects

We then estimate the pointwise confidence intervals (CI) for the smoothed covariate effects

{β1(t), β2(t), . . . , βP (t)}, and obtain tests of hypotheses for these effects. Note that the

inference is carried out conditional on the values of variance component parameters Θ and

dispersion parameter ϕ, i.e. the uncertainty in estimating them is not accounted for.

Estimating the variance of the resulting parameter estimates

As did in Elashoff & Ryan (2004), we can re-express the E step as the solution to the following

M-dimensional estimating equation:

U (2)(S) = S − η̂ = 0,
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where η̂ are the conditional expectations in (4.16) evaluated at the current estimate π̂. In

this way, the overall ES algorithm can be viewed as solving an expanded set of equations of

dimension K +N +M , whose first K +N components are U (B) = 0 in (4.12) and whose

second M components are U (2)(S) = 0.

Under this formulation, we use the established theory for estimating equations (Heyde &

Morton, 1996; Lindsay, 1982; Small et al., 2003), and propose a model-based variance es-

timator for B̂. Specifically, under correct specification of the first two moments of S, the

asymptotic variance of B̂ can be written as

Var(B̂) =
[
(−D)−1

]
(B,B)

,

where D is the first order derivative of the expanded estimating equations for B and S, and

[ • ](B,B) stands for the matrix block corresponding to B. In our case, D takes the form

D = −

⎡⎢⎣1ϕXTWX+
1

ϕ
ΣΘ −1

ϕ
XT

WδX −IM .

⎤⎥⎦
Here, Wδ is a diagonal matrix with elements Xijδij, where

δij =
Yijp1p0[

p1πij + p0(1− πij)
]2 +

(Xij − Yij) (1− p1)(1− p0)[
(1− p1)πij + (1− p0)(1− πij)

]2 ,
and reduces to a zero matrix when p0 = 1− p1 = 0. Then, the asymptotic variance of B̂ can

be simplified as

Var(B̂) =
[
XT (W −Wδ)X+ΣΘ

]−1
ϕ. (4.19)

Therefore, the desired variance estimator of B̂ can be obtained by plugging in the final

estimates B̂, Θ̂ and ϕ̂ into equation (4.19).
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Confidence interval estimation

Let V̂ denote the aforementioned variance estimator and V̂p be the diagonal blocks of V̂

corresponding to αp, with dimensions Lp × Lp. We then immediately have the estimated

variance of β̂p(t): V̂ar(β̂p(t)) =
{
B(p)(t)

}T

V̂p

{
B(p)(t)

}
. Therefore, the confidence interval

for βp(t) at significance level ν can be approximately estimated by β̂p(t)±Zν/2

√
V̂ar(β̂p(t)),

for any t in the range of interest, where Zν/2 is ν/2 (upper-tail) quantile of a standard normal

distribution.

Hypothesis testing for a regional zero effect

We can also construct a region-wide test of the null hypothesis

H0 : βp(t) = 0, for any t in the genomic interval.

This test depends on the association between covariate Zp and methylation levels across the

region, after adjustment for all the other covariates, and the null hypothesis is equivalent to

H0 : αp = 0. We propose the following region-based F statistic

Tp =
α̂p

T
{
V̂p

}−1

α̂p

τp
,

where {V̂p}−1 denotes inverse if V̂p is nonsigular; for singular V̂ p, the inverse is replaced

by the Moore-Penrose inverse {V̂p}−. Here, τp is the effective degrees of freedom (EDF) for

smooth term βp(t), which depends on the magnitude of smoothing parameter λ and random

effect variances σ2
0. Motivated by the work of Wood (2013b), we define the EDF τp as

τp =

bp∑
l=ap

(2F − FF )(l,l) , for p = 0, 1, . . . P,
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where ap =
∑p−1

m=0 Lm + 1 if p > 0 and ap = 1 if p = 0, bp =
∑p

m=0 Lm for any p, and (•)(l,l)

stands for the lth leading diagonal element of a matrix. F is the smoothing matrix of our

model, as defined in (4.14), which can be viewed as the matrix mapping the pseudo data to

its predicted mean.

Let V p = V̂ p · ϕ/ϕ̂ be the variance estimator for αp when the dispersion parameter ϕ is

known. Zhao et al. (2020) have shown the following asymptotic results under the null

α̂p
T {Vp}−1 α̂p ∼ χ2

τp .

Combining with the property of moment-based dispersion estimator in (4.15), we can con-

clude that, under the null hypothesis, Tp asymptotically follows a F distribution with degrees

of freedom τp and M − τ , i.e. Tp ∼ Fτp,M−τ .

4.4 Illustration of performance of dSOMNiBUS in the

ACPA dataset

We first apply our approach to targeted bisulfite sequencing data from a rheumatoid arthri-

tis study (Shao et al., 2019). Participants were sampled from the CARTaGENE cohort

(https://www.cartagene.qc.ca/), a population-based cohort including 43,000 general pop-

ulation subjects aged 40 to 69 years in Quebec, Canada. The study aims to investigate

association between DNA methylation and the levels of anti-citrullinated protein antibodies

(ACPA), a marker of rheumatoid arthritis (RA) risk that often presents prior to any clinical

manifestations (Forslind et al., 2004).

Firstly, the serum ACPA levels were measured for a randomly sampled 3600 individuals

from the CARTaGENE cohort, based upon which individuals were classified as either ACPA

positive or ACPA negative. Then, the whole blood samples of the ACPA positive individuals,
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and a selected subset of age-sex-and-smoking-status-matched ACPA negative individuals

were sent for Targeted Custom Capture Bisulfite Sequencing. Specifically, the sequencing

used blood cell-specific immune panels that cover the majority of human gene promoters,

active regulatory regions observed in blood, blood-cell-lineage-specific enhancer regions and

CpGs from Illumina Human Methylation 450 Bead Chips. Cell type proportions in the blood

samples were also measured at the time of the sampling (Shao et al., 2019).

Using this sampling approach, two batches of data, referred to as data 1 and data 2, were

collected in 2017 and 2019, respectively. Notably, the classification criteria for ACPA status

are slightly different between data 1 and 2. When sampling data 1, subjects with serum

ACPA levels greater than 20 optical density (OD) units were called as ACPA postive and

samples with ACPA levels less than 20 OD were defined as ACPA negative. After data

cleaning, data 1 consisted of 69 ACPA positive subjects and 68 ACPA negative subjects.

In contrast, the sampling of data 2 was based on more extreme cutoffs for ACPA levels,

and resulted in 60 ACPA positive subjects (ACPA levels ≥ 60 OD) and 60 ACPA negative

subjects (ACPA levels < 20 OD). This change in decision is reflected in the different distri-

butions of serum ACPA levels between data 1 and 2, as shown in Supporting Information

Figure B.1. Average sequence read depths in targeted regions were 5 and 35 in data 1 and

2, respectively (Supporting Information Figure B.2), due to improvement in the sequencing

protocols implemented between the two experiments.

In this article, we restricted our attention to regions with at least 50 CpG sites. In addition,

we excluded regions with more than 95% CpGs having median read depth 0 or having median

methylation proportion as 0. Overall, we analyzed 10,759 regions in dataset 1 and 12,983

regions in dataset 2. We excluded the samples who reported a diagnosis of RA before the

CARTaGENE study started. Subjects with missing information on cell type proportions were

also removed from our analysis. Supplementary Table S1 presents the sample characteristics

in data 1 and 2.
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We apply our approach to both data 1 and 2, with the aim to identify the differentially

methylated regions that show association with ACPA, after adjustment for age, sex, smoking

status and cell type composition. Specifically, we assumed no data errors in the datasets

(p0 = 1− p1 = 0). We used natural cubic splines to expand the smooth terms in the model,

and its rank Lp was approximate as the number of CpGs in a region divided by 10 for β0(t),

and divided by 20 for βp(t), p ≥ 1. Since we place the knots at the empirical quantiles of tij,

this choice of Lp guarantees that approximately 20 CpGs are available for interpolation on

each interval between two consecutive knots of βp(t), p ≥ 1. The intercept β0(t) generally

has a more flexible shape than the covariate effects βp(t), p ≥ 1, and is therefore assigned a

larger rank L0.

4.4.1 Both additive and multiplicative dispersion is present in the

data

Figure 4.3 presents the distribution of estimated multiplicative dispersion ϕ and additive

dispersion σ2
0 for all test regions in dataset 1 and 2. Overall, widespread overdispersion is

observed; 98.5% regions show multiplicative dispersion ϕ greater than 1 and 51.2% regions

show additive dispersion σ2
0 greater than 0.05. The Pearson correlation coefficient between

the estimated ϕ and σ2
0 is −0.015. There exist 49.8% regions with both multiplicative

dispersion ϕ > 1 and additive dispersion σ2
0 > 0.05.

4.4.2 Ignoring either type of dispersion leads to inflated type I er-

rors

Figure 4.4 shows quantile-quantile (QQ) plots for the regional p-values for the effect of ACPA

on the 292 regions of Chromosome 18 in the two datasets. Detailed inference steps are given

in Section 4.3. The results are compared among four different approaches: (1) dSOM-
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Figure 4.3: Distribution of the estimated multiplicative dispersion parameter ϕ and additive
dispersion parameter σ2

0, for all test regions in dataset 1 and 2. Panel (A) shows the 2-
dimensional histogram for ϕ̂ and σ̂2

0, where the color intensity represents the number of
regions with a particular combination of values of ϕ̂ and σ̂2

0. Panels (B) and (C) show the
rotated kernel density plots (i.e. violin plots) for ϕ̂ and σ̂2

0 (in a natural logarithmic scale),
separately.

NiBUS which models both the multiplicative and additive dispersion, (2) the multiplicative-

dispersion-only model, (3) the additive-dispersion-only model, and (4) the standard SOM-

NiBUS which ignores any extra-binomial variation. Figure 4.4 reveals that, when ignoring

either type of dispersion, the distribution of regional p-values is biased away from what would

be expected under the null. The inclusion of both multiplicative and additive dispersion is

important for correct type I error control.
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Figure 4.4: QQ plot for regional p-values, obtained from models addressing different types
of dispersion.

4.4.3 Our inference procedure provides well-calibrated p-values
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Figure 4.5: Comparison between the observed regional p values from our approach and the
permulation-based p values from parametric bootstrap.

To test DMRs, we propose a region-based statistic with a F limiting distribution; see details
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in Section 4.3.4. To test the validity of our inference, we compare our regional p-values to

bootstrap-based p-values, whose null distribution is constructed by parametric bootstraps

(Davison & Hinkley, 1997) and does not rely on any distributional assumptions. Figure

4.5 shows the distributions of bootstrap-based and our analytical p-values for the targeted

regions on chromosome 18, demonstrating that our inference method generates p-values in

line with the bootstrap-based results. Thus, dSOMNiBUS provides accurate tests for DMRs

without requiring extensive computational time.

4.5 Simulation study

We conducted simulations to assess the proposed inference of smooth covariate effects, and

to compare the performance of our method with five existing methods: BiSeq (Hebestreit

et al., 2013), BSmooth (Hansen et al., 2012), SMSC (Lakhal-Chaieb et al., 2017), dmrseq

(Korthauer et al., 2018) and GlobalTest (Goeman et al., 2006), in terms of type I error and

power. Detailed descriptions of these five methods are given in Supplementary Section 3.2.

We also made special modifications for the implementations of BSmooth, SMSC and dmrseq,

which are primarily designed for WGBS data, to make them as appropriate as possible for

targeted regions. see details in Supporting Information Section B.2.1.

4.5.1 Simulation design

We adopt similar simulation parameters as described in Zhao et al. (2020), and simulated

methylation regions with 123 CpG sites under various settings. We first generated the vector

of read depth for each sample, (Xi1, . . . , Xi123), by adding 123 independent Bernoulli random

variables (with proportion 0.5) to a pre-specified regional read-depth pattern (Supporting

Information Figure B.3). In this way, the spatial correlation of read depth observed in real

data was well preserved in the simulated data. The rest of simulation parameters were
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defined in Table 4.2.

Table 4.2: Simulation settings for the functional parameters βp(t), sample size N , error
parameters p0 and p1, multiplicative parameter ϕ and RE variances σ2

0.

Simulation Possible values
parameters
βp(t) Scenario 1: three covariates: Z1 ∼ Bernoulli(0.51), Z2 ∼ Bernoulli(0.58) and Z3 ∼ Bernoulli(0.5)

with effects β1(t), β2(t) and β3(t) and intercept β0(t), shown in the red curves in Figure 4.7.
Here, Z3 is the null covariate with effect β3(t) ≡ 0.

Scenario 2: one covariate: Z ∼ Bernoulli(0.5)
with 15 different settings of (β0(t), β1(t)), which yield methylation proportion parameters
as depicted in Figure 4.6.

N 100
(p0, p1) (0.003, 0.9)† or (0, 1)
ϕ (1, 3)

σ2
0 (0, 1, 3, 9), and the corresponding subject-specific RE ui

i.i.d∼ N(0, σ2
0) for i = 1, 2, . . . N

† the value 0.003 was reported by Prochenka et al. (2015) as insufficient Bisulfite conversion rate and 0.1 was
estimated as the average excessive conversion rate from a (single-cell-type) bisulfite dataset in
Hudson et al. (2017) using the method SMSC (Lakhal-Chaieb et al., 2017).
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Figure 4.6: The 15 simulation settings of methylation parameters π0(t) and π1(t) in Scenario
2. Here, π0(t) and π1(t) denote the methylation parameters for samples with Z = 0 and
Z = 1 at position t, respectively. Under this scenario, π1(t) (red dotted-dashed curve) is
fixed across settings, whereas π0(t)s (black solid lines) vary across settings corresponding to
different degrees of closeness between methylation patterns in the two groups.

Simulate dispersed-binomial counts. Given the values of {Z1, . . . ZP}, {βp(t), p =

0, 1, . . . P} and {ui, i = 1, 2, . . . N} under each setting, the individual’s methylation pro-
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portion, πij, can be readily calculated from the mean model in (4.2). We then generated the

true methylation counts Sij from a beta-binomial distribution with proportion parameter

µ = πij, correlation parameter ρ =
ϕ− 1

Xij − 1
, and size parameter n = Xij. Specifically, Sij

were drawn from the following probability mass function

P (Sij = k | µ, ρ, n) =

⎛⎜⎝n

k

⎞⎟⎠ B(k + α, n− k + β)

B(α, β)

where α = µ(1 − ρ)/ρ, β = (1 − µ)(1 − ρ)(1 − µ)/ρ, and B(·, ·) is the beta function. The

variance of Sij can be thus derived as

Var(Sij) = [1 + (n− 1)ρ] [nµ(1− µ)] = ϕXijπij(1− πij),

which coincides with our assumed mean-variance relationship in (4.3). We then generated

the observed methylated counts Yij according to the error model in (4.1), which implies

Yij | Sij ∼ Binomial(Sij, p1) + Binomial(Xij − Sij, p0).

Under each scenario and setting, we generated data sets with sample sizes N = 100, each

1000 times. We then applied dSOMNiBUS along with methods BiSeq, dmrseq, BSmooth, SMSC

and GlobalTest to the simulated data sets. For our approach dSOMNiBUS, we used cubic

splines with dimension Lp = 5 to parameterize the smooth terms of interest. We also assumed

that the correct values of error parameters p0 and p1 were known.
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Figure 4.7: Estimates of smooth covariate effects (gray) over the 1000 simulations in Scenario
1, using dSOMNiBUS. The red curves are the true functional parameters used to generate
the data. Data were generated with error using ϕ = 3 and σ2

0 = 3.

4.5.2 Simulation results

dSOMNiBUS provides accurate inference for smooth covariate effects

Figure 4.7 presents the estimates of the functional parameters β0(t), β1(t), β2(t) and β3(t)

over 1000 simulations, obtained from dSOMNiBUS; here, data were generated under Scenario

1, with multiplicative dispersion parameter ϕ = 3, RE variance σ2
0 = 3, and error parameters

p0 = 0.003 and 1 − p1 = 0.1. Figure 4.7 demonstrates that the proposed method provides

unbiased curve estimates for smooth covariate effects when the regional methylation counts

exhibit extra-parametric variation and are measured with errors.

Figure 4.8 and 4.9 demonstrate the performance of the proposed pointwise confidence in-
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Figure 4.8: Empirical coverage probability of the analytical 95% CIs for β3(t) over 1000
simulations, under different vales of ϕ and σ2

0. The empirical coverage probabilities are
defined as the percentage of simulations where the analytical CIs cover the true value of β3(t).
Data were generated with error, under simulation Scenario 1. The results from dSOMNiBUS
(green) and the additive-dispersion-only model (purple) are indistinguishable in all settings
but σ2

0 = 0 and ϕ = 3 and dSOMNiBUS (green) and the multiplicative-dispersion-only model
(orange) are indistinguishable when σ2

0 = 0.

terval (CI) estimates (Section 4.3.4) and regional test (Section 4.3.4), respectively. The

results from dSOMNiBUS are compared to the multiplicative-dispersion-only model and the

additive-dispersion-only model. Figure 4.8 displays the empirical coverage probabilities of

the analytical 95% CIs for β3(t), under different settings of ϕ and σ2
0. Figure 4.9 shows

the QQ plots for the regional p-values when the null hypothesis H0 : β3(t) = 0 is correct.

The results show that ignoring the presence of additive dispersion (i.e. the multiplicative-

dispersion-only model) leads to substantial estimation bias, poor CI coverage probabilities

and highly inflated type I errors. Although the additive-dispersion-only model provides rela-

tively accurate pointwise CIs, the distributions of its regional p-values are biased away from
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Figure 4.9: QQ plot for regional p-values for the test H0 : β3(t) = 0, obtained from dSOM-
NiBUS, the multiplicative-dispersion-only model and the additive-dispersion-only model.
Data were simulated with error, under simulation Scenario 1. When ϕ = 1, the results from
dSOMNiBUS (green) and the additive-dispersion-only model (purple) are indistinguishable.
When σ2

0 = 0, the lines for the multiplicative-dispersion-only model (orange) and dSOM-
NiBUS (green) are indistinguishable.

what would be expected under the null, when multiplicative dispersion ϕ > 1. Overall,

dSOMNiBUS provides pointwise CIs attaining their nominal levels, and region-based statis-

tics whose distribution under the null is well calibrated, regardless of the types and degrees

of dispersion that data exhibit. Similar results were observed when data were generated

without error (Supplementary Figures S5 and S6).
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Figure 4.10: QQ plot for regional p-values for the test H0 : β3(t) = 0, obtained from
dSOMNiBUS, GlobalTest, dmrseq, BSmooth, SMSC, and BiSeq. Data were simulated with
error, under simulation Scenario 1.

dSOMNiBUS exhibits greater power to detect DMRs while correctly controlling

type I error rates

Figures 4.10 and 4.11 further demonstrate the performance of the proposed regional test,

when compared with the existing methods GlobalTest, dmrseq, BSmooth, SMSC, and BiSeq.

Here, data were simulated with error parameters p0 = 0.003 and 1 − p1 = 0.1. Figure 4.10

shows the distributions of p-values for the regional effect of the null covariate Z3. Because

we estimated the empirical regional p-values for BSmooth and SMSC by permutations, both

methods are able to control type I errors, under all settings of ϕ and σ2
0. Both BiSeq and

dmrseq show deflated type I error rate when σ2
0 = 0 and inflated type I error rate when

σ2
0 > 0. The distributions of p-values from GlobalTest are well calibrated when the within

subject correlation σ2
0 > 0, but are slightly biased away from the uniform distribution when
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Figure 4.11: Powers to detect DMRs using the six methods for the 15 simulation settings
in Scenario 2 under different levels of maximum methylation differences between π0(t) and
π1(t) in the region, calculated over 100 simulations.

σ2
0 = 0. When σ2

0 = 0 and ϕ = 3, dSOMNiBUS provides slightly conservative type I errors;

this bias vanishes when the data were generated without error (Supplementary Figures S7).

Figure 4.11 shows the powers of the six methods for detecting DMRs under the 15 settings

of methylation patterns displayed in Figure 4.6. Here, methylation difference is defined as

the maximum difference between π1(t) and π0(t) in the region. When data exhibit neither

additive nor multiplicative dispersion, dSOMNiBUS and BSmooth provide the highest power,

followed by dmrseq, BiSeq, GlobalTest, and SMSC. When σ2
0 = 0 and ϕ = 3, BSmooth and

dmrseq are more powerful than other methods. When there are correlations among methy-

lation measurements on the same subject, i.e. σ2
0 > 0, dSOMNiBUS clearly outperforms

the five alternative methods; this superiority remains when the data were generated with-

out error (Supplementary Figures S8). In summary, dSOMNiBUS exhibits greater power

to detect DMRs, while correctly controlling type I error rates, especially when the regional

methylation counts exhibit (additive) extra-binomial variation.
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4.6 Discussion

We have proposed and evaluated a novel method, called dSOMNiBUS, for estimating smooth

covariate effects for BS-seq data. We demonstrate that our model, which incorporates both

multiplicative and additive sources of data dispersion, provides a plausible representation of

realistic dispersion trends in regional methylation data. In addition, dSOMNiBUS simulta-

neously accounts for experimental errors, estimation of multiple covariate effects, and flexible

dispersion patterns in a region. Also, we provide a formal inference for smooth covariate

effects and construct a region-based statistic for the test of DMRs, where outcomes might

be contaminated by errors and/or exhibit extra-parametric variations. Results from simula-

tions and real data applications show that the new method captures important underlying

methylation patterns with excellent power, provides accurate estimates of covariate effects,

and correctly quantifies the underlying uncertainty in the estimates. The method has been

implemented in the R package SOMNiBUS, which has been submitted to R Bioconductor.

Our model captures dispersion in the regional count data via the combination of a subject-

specific RE and a multiplicative dispersion. The latter aims to capture the extra random

dispersion beyond that introduced by the subject-to-subject variation. An alternative way

to add multiplicative despersion might be to add locus-specific REs. Such model would avoid

the problem of estimating ϕ, but would result in substantially increased number of REs, in

which case our Laplace approximation is unlikely to provide well-founded inference (Shun

& McCullagh, 1995). In addition, such a model only captures overdispersion. In contrast,

our quasi-binomial mixed effect model provides an adequate representation of any kind of

dispersion without much increase in computational complexity.

An extension worth exploring in the future is to model the dispersion parameter ϕ as a

function of covariates. For example, the methylation variation across cancer samples has

been found to be higher than for normal samples (Hansen et al., 2011; Schoofs et al., 2013).

Identification of such disease-associated methylation variation changes might provide further
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insights into the biological mechanisms. This extension would also allow modelling of the

hypothesis that some individuals are more sensitive to their environment (Meaney & Szyf,

2005).

Our proposed methods can also be applied to other types of next-generation sequencing

data. For example, allele-specific gene expression (ASE) measured from RNA-seq data are

quantified by the numbers of reads originating from the two alleles for that site (J. Fan et

al., 2020). Such data share a similar structure to bisulfite sequencing data and could be

analyzed by dSOMNiBUS. From the methodology point of view, our proposal of combining

quasi-likelihood with random effects can be generally applied to any type of count data for

a more comprehensive representation of dispersion.
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Chapter 5

Manuscript III: A sparse

high-dimensional generalized varying

coefficient model for identifying genetic

variants associated with regional

methylation levels

Preamble to Manuscript III: In Chapter 4, I introduced a flexible quasi-binomial mixed

model to account for the excess variation (relative to a binomial model) observed in the

methylated counts in a region. This remedy addresses overdispersion by reformulating the

stochastic component of the binomial model. In practice, the problem of overdispersion can

be also caused by an error in the systematic part of the regression model, such as missing

crucial covariates in the conditional mean. If one indeed has the measurements for these

crucial covariates, one natural remedy for overdispersion is to include them in the regression

model.
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Studies have shown that genetic variants or SNPs can massively influence methylation vari-

ations (Gaunt et al., 2016; Hannon et al., 2018). Another solution for overdispersion is to

include SNPs as covariates in the SOMNiBUS model developed in Chapter 3. However,

there are hundreds or thousands of SNPs surrounding or within a methylation region and

all of them are candidate contributing factors to methylation. In addition, our sample sizes

tend to be small due to the cost of sequencing and the challenges associated with obtain-

ing samples. In such a high-dimensional setting, the statistical methods in Chapter 3 show

important limitations (Chouldechova & Hastie, 2015; J. Fan et al., 2014).

Therefore, the goal of the third manuscript in this thesis is to extend the standard SOM-

NiBUS for high-dimensional settings. The new approach automatically selects important

variables among an extensive collection of covariates and can be applied to identifying the

subset of genetic variants associated with regional methylation levels. This method has been

implemented in a prototype R package sparseSOMNIBUS (https://github.com/kaiqiong/

sparseSOMNiBUS).

Note that the supporting material for this chapter can be found in Appendix

C.
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Abstract

Varying coefficient models offer the flexibility to learn the dynamic changes of regression co-

efficients. Despite their good interpretability and diverse applications, in high-dimensional

settings, existing estimation methods for such models have important limitations. For exam-

ple, we routinely encounter the need for variable selection when faced with a large collection

of covariates with nonlinear/varying effects on outcomes, and no ideal solutions exist. One

illustration of this situation could be identifying a subset of genetic variants with local in-

fluence on methylation levels in a regulatory region. To address this problem, we propose a

composite sparse penalty that encourages both sparsity and smoothness for the varying coef-

ficients. We present an efficient proximal gradient descent algorithm to obtain the penalized

estimation of the varying regression coefficients in the model. A comprehensive simulation

study has been conducted to evaluate the performance of our approach in terms of estima-

tion, prediction and selection accuracy. We show that the inclusion of smoothness control

yields much better results than having the sparsity-regularization only.
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5.1 Introduction

DNA methylation is an essential epigenetic modification that regulates gene activity and con-

tributes to tissue differentiation and disease susceptibility. It primarily occurs at a cytosine-

guanine dinucleotide (i.e. CpG site) and involves the covalent addition of a methyl group to

a cytosine. Notably, DNA methylation variation has a vital genetic component (Gaunt et

al., 2016; Hannon et al., 2018). Loci harbouring genetic variants that influence methylation

levels are called methylation quantitative trait loci (mQTLs). Identifying mQTLs can pro-

vide important insight into the underlying molecular events within multiple human tissues

and thus enhance our understanding of the genetic basis of disease development (Taylor et

al., 2019). However, mQTLs may also confound the association between methylation levels

and phenotype of interest (Hannon et al., 2016; Van Dongen et al., 2016). Therefore, it is

essential to identify mQTLs and adjust for their effects when testing the methylation sig-

nals. Analyses that identify genetic effects on DNA methylation levels is usually referred to

as mQTL mapping.

Recent advances in bisulfite sequencing (BS) technology have enabled high-resolution large-

scale measurements of DNA methylation. Such sequencing platforms measure the methyla-

tion level at a single site as a pair of counts: the number of methylated reads and the total

number of reads aligned to the site, i.e. read depth. Studies performing mQTL mapping

using BS data have yielded encouraging results (Banovich et al., 2014; Cheung et al., 2017;

Schmitz et al., 2013). However, existing mQTL approaches have identified the genetic loci or

single nucleotide polymorphisms (SNPs) associated with each CpG site separately (Y. Fan

et al., 2019; Zhou & Stephens, 2014) and ignore the spatial correlation structure of methy-

lation at neighbouring CpG sites. In practice, researchers are often interested in exploring

the genetic contribution to localized methylation patterns within a functional genomic re-

gion or a regulatory element rather than at individual sites (Gutierrez-Arcelus et al., 2015).

We have recently proposed a novel varying coefficient (VC) model, SOMNiBUS (Zhao et
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al., 2021, 2020), to analyze regional BS-derived methylation data, enabling comprehensive

and simultaneous estimates of covariate effects which are smoothly varying along genomic

positions. It adopts the fitting framework for generalized additive models proposed by Wood

(2011)—first expanding the varying coefficients using spline-type basis functions and then

maximizing the penalized likelihood with quadratic smoothness penalties for the basis co-

efficients. This penalty function is quantified by the integrated squared second derivatives

of the varying coefficients, summed over all covariates. Specially, the smoothness/penalty

parameters, which determine the appropriate amount of smoothness of individual varying

coefficients (i.e. function complexity), are estimated by restricted maximum likelihood. This

method allows us to borrow information from the local correlation structures and offers good

interpretability.

A natural solution for regional mQTL analysis is to include SNPs as covariates in such a VC

model. However, we routinely face hundreds or thousands of candidate SNPs within or near

a regulatory region and sample sizes tend to be small due to the cost of sequencing and the

challenges associated with obtaining samples. Many traditional statistical methods, includ-

ing Wood (2011), face significant challenges when estimating the varying coefficients in such

a high-dimensional setting (Chouldechova & Hastie, 2015; J. Fan et al., 2014). In addition,

only a small subset of the candidate SNPs is expected to influence the methylation patterns

in a region of interest. In contrast, the traditional VC models using quadratic smoothness

penalties cannot provide sparse solutions for the varying coefficients, and are thus unsuitable

for regional mQTL mapping. In this paper, we propose a novel sparse high-dimensional vary-

ing coefficient model, which automatically selects important variables among an extensive

collection of covariates with varying/nonlinear coefficients and can therefore be seamlessly

applied to regional mQTL mapping.

There has been extensive literature on using sparse penalized regression methods to enable

variable selection in high-dimensional VC models. The proposed methods mainly differ in
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their choices of penalty functions. Major classes of the method are based upon LASSO (Lin

& Zhang, 2006), group LASSO (Barber et al., 2017; Gertheiss et al., 2013; Huang et al.,

2010; Meier et al., 2009; Ravikumar et al., 2009; H. Wang & Xia, 2009; Wei et al., 2011),

group smoothly clipped absolute deviation penalty (SCAD) (Noh & Park, 2010; L. Wang et

al., 2007, 2008) and L0-penalization (Xue & Qu, 2012). Notably, on top of the regularization

imposed by these sparse penalty functions, estimations of nonparametric models (e.g. VC

models) inevitably require regularization for function complexity, i.e. the smoothness of the

nonparametric component. The smoothness regularization is even crucial if we use an un-

necessarily large number of basis functions to expand the functional coefficients. However,

most of the existing sparse nonparametric regression methods fail to address the smoothness

regularization adequately. For example, Huang et al. (2010); Ravikumar et al. (2009); Xue

& Qu (2012) control the smoothness by employing fixed numbers of truncation dimensions.

But it is not always feasible to perceive the appropriate complexity levels for the functional

parameters of interest, making their methods less straightforward to use in practical appli-

cations. For more refined control of smoothness, one can start with a comparatively large

number of basis functions and then impose the quadratic smoothness penalty in the estima-

tion, as in penalized regression splines or smoothing splines. In this way, the exact value

of the basis dimension, which sets an upper limit on the function complexity, becomes less

critical for the final fitted model, although this strategy alone does not meet our objective

for sparsity.

Additionally, some methods disentangle the two regularization tasks—sparsity and smooth-

ness. For example, L. Wang et al. (2008) treat the number of basis functions as the tuning pa-

rameter for smoothness, and separately use the usual shrinkage parameter to control sparsity.

They propose to tune both regularization parameters using the generalized cross-validation

criterion. H. Wang & Xia (2009) first select the optimal bandwidth (i.e. the smoothness

parameter for the local polynomial nonparametric fitting method) using cross-validation

assuming no sparsity penalization is present, and then separately tune the shrinkage param-
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eter under the selected bandwidth. However, it is desirable to have a unified penalization

method that simultaneously controls the overall sparsity of the model and the smoothness

of the nonzero functional coefficients.

In this paper, we propose such a unified framework for estimating high-dimensional general-

ized varying coefficient models. Our strategy combines the appealing features of smoothing

splines and sparse penalties, thus providing sparse varying coefficient estimates that are less

dependent on basis dimensions.

Specifically, we propose a sparse high-dimensional binomial varying coefficient model for

regional mQTL mapping. Here, we model the regional methylation counts by a binomial

distribution, dependent on read depth. Effects of each candidate SNP are modelled as

functional coefficients varying along genomic positions. To encourage both sparsity and

smoothness for the varying coefficients, we propose a composite sparse penalty, which is

inspired from the penalty function developed in high-dimensional additive models (Meier et

al., 2009). This penalty function incorporates two tuning parameters, separately controlling

the overall model complexity and smoothness of the nonzero functional coefficients. We then

develop an efficient proximal gradient descent algorithm to obtain the penalized estimation

of the varying regression coefficients, where the tuning parameters are chosen via cross-

validation. Our unified estimating procedure can simultaneously select important mQTLs

and estimate their corresponding varying effects across a methylation region of interest. An

R package called sparseSOMNiBUS that implements our method is freely available on GitHub

and it provides a routine to fit high-dimensional varying coefficient models for non-binary

binomial outcomes.

The remainder of the article is organized as follows. We describe the data and present the

proposed sparse high-dimensional binomial varying coefficient model in Section 5.2. In Sec-

tion 5.3, we provide a detailed description of our estimating algorithm. Section 5.4 contains

an adaptive penalized estimation method for our model. Simulation experiments evaluating
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the performance of our method are summarized in Section 5.5. The paper concludes with a

discussion in Section 5.6.

5.2 High-dimensional binomial varying coefficient mod-

els

5.2.1 Notation and data

We consider DNA methylation measures over a genomic region from N independent samples.

Let mi be the number of CpG sites for the i-th sample, i = 1, 2, . . . N . Let tij be the

genomic position (in base pairs) for the i-th sample at the j-th CpG site, j = 1, 2, . . . ,mi.

Methylation levels at a site are quantified by the number of methylated reads and the total

number of reads. We define Xij as the total number of reads aligned to CpG j from sample

i and Sij as the methylated counts at CpG j for sample i. Furthermore, we assume that

we have the genotype information on P candidate SNPs for the N samples, denoted as

Zi = (Zi1, Zi2, . . . ZiP ) ∈ RP , for i = 1, 2, . . . N . For mQTL analysis, one typical choice

of the candidate SNPs would be loci located within and 20kb up- and downstream of the

methylation region. Hence, the number of candidate SNPs is usually greater than sample

size N .

5.2.2 Model

We assume the methylated counts Sij follows a binomial distribution with a methylation

proportion parameter πij that depends on the genetic variants Zi, and nearby methylation
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patterns. Specifically,

Sij | Zi, Xij ∼ Binomial(Xij, πij),

g(πij) = β0(tij) +
P∑

p=1

βp(tij)Zip, (5.1)

where g(x) = log (x/(1− x)) is a logit link function, πij = E(Sij)/Xij is the methylation

proportion for CpG j from sample i, and β0(tij) is the intercept term . Here {βp(tij)}Pp=1 are

functional parameters for the genetic effects. This amounts to assuming smoothly varying

methylation levels and genetic effects on methylation levels across our targeted small genomic

regions. Sensitivity analysis to explore implications of such a smoothness assumption is

conducted and discussed later in Section 5.5.

We express each function coefficient βp(tij) in terms of natural cubic spline functions. With-

out loss of generality, we use the same expansion dimension K for all the functional coeffi-

cients in (5.1), i.e.

βp(t) = θT
pB(t) =

K∑
k=1

θp,kbk(t), for p = 0, . . . P,

where B(t) = (b1(t), . . . , bK(t))
T consists of K natural cubic basis functions bk(t) : R → R

and θp = (θp,1, . . . θp,K)
T is a vector of coefficients with θp,k being the coefficient for the k-th

basis of the p-th covariate. Specific expressions for basis functions bk(t) can be found in

equation (C.5). We use a comparatively large number of basis functions for the expansion

to capture varying coefficients with possibly high complexity.

Let θ be the parameter vector to be estimated and specifically it is the vectorization of

(P + 1) ×K-dimensional coefficient matrix Θ = (θ0,θ1, . . . ,θP )
T by row, i.e. θ = vec(Θ).

We can then write the mean function in (5.1) in a compact way,

g−1(π) = Xθ,
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where π = (π11, . . . , π1m1 , π21, . . . , π2m2 , . . . , πNmN
)T ∈ [0, 1]M with M =

∑N
i=1 mi. X =

[X0 | X1 | . . . |XP ] is the spanned design matrix of dimension M × (P + 1)K, where Xp is

the M ×K design matrix for the pth covariate, whose kth column is stacked with elements

bk(tij)× Zpi where Z0i ≡ 1.

5.2.3 The sparsity-smoothness penalty

In practice, only a small subset of the candidate SNPs is expected to influence the methy-

lation patterns in the test region. It is therefore desirable to produce functional estimators

that are sparse, i.e. β̂p(t) = 0 for some p ∈ {1, . . . , P}. At the same time, we would like to

avoid too rough estimators for those nonzero βp(t) that can arise from a large K. To this

end, we consider a composite sparse penalty that simultaneously controls the sparsity and

smoothness for the varying coefficients. This proposed penalty is inspired from the so-called

sparsity-smoothness penalty (SSP) which was first introduced by Meier et al. (2009) for

variable selection in high-dimensional additive models. Specifically, we define the penalty

function as

LSSP(θ) = λ
P∑

p=1

√
(1− α)J1 (βp(t)) + αJ2 (βp(t)), (5.2)

where

J1(βp(t)) = ∥βp(t)∥22 =
∫

(βp(t))
2 dt

quantifies the L2-norm of the functional coefficients βp(t), and

J2(βp(t)) = M2

∫ (
β′′
p (t)

)2
dt

controls the smoothness of βp(t). The squared root over both J1 and J2 enables the sparsity

of βp(t) at the function level. Notably the definition in (5.2) is slightly different from the
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original proposal in Meier et al. (2009) and they used an empirical L2-norm of βp(t), i.e.

J1(βp(t))
Meier =

1

M
θT
pB

TBθp,

where B = (B(t11), . . . ,B(t1mi
),B(t21), . . . ,B(t2mi

), . . . ,B(tNmN
))T is the basis expansion

matrix of dimension M ×K.

The amount of penalization in (5.2) is jointly controlled by two tuning parameters, λ ≥ 0 and

0 ≤ α < 1. Specifically, λ controls the overall model complexity, and α separately controls

the smoothness of the functional estimators. When α = 0, no smoothness constraint would

be imposed, and as α approaches to 1, smoother estimates would be favoured. Here, we

add the scaling constant M2 in J2(βp(t)) merely for convenience when specifying candidate

values for α in cross-validation.

Plugging in the basis expansion for βp(t), we can equivalently write

J1 (βp(t)) = θT
pΩ

(1)θp and J2 (βp(t)) = θT
pΩ

(2)θp,

where Ω(1) and Ω(2) are two K×K matrices with the (k, k′)-th element [Ω(1)]k,k′ =
∫
bk(t)bk′(t)dt,

and [Ω(2)]k,k′ = M2
∫
b′′k(t)b

′′
k′(t)dt, for k, k′ ∈ {1, . . . , K}, respectively. Notably, the sparsity-

penalty matrix Ω(1) and the (unscaled) smoothness-penalty matrix Ω(2)/M2 have fixed quan-

tities given the specified set of basis functions and do not vary with covariates Zi or outcomes

{Sij, Xij}. We have derived the closed-form expression for Ω(1) when using natural cubic

spline basis functions with K knots placed at t1, t2, . . . tK ; see Theorem 3 in Appendix C.1.

The smoothness-penalty matrix Ω(2)/M2 appears in the regularization for many traditional

smoothing spline type methods (Parker & Rice, 1985; Wahba, 1980; Wahba et al., 1995;

Wood, 2011) and can be directly calculated from existing R packages like mgcv (Wood,

2017).
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We can then rewrite the sparsity-smoothness penalty (5.2) in a more compact way,

LSSP(θ) = λ
P∑

p=1

√
θT
pHαθp (5.3)

where Hα = (1−α)Ω(1)+αΩ(2) and this is a general group lasso penalty (Yuan & Lin, 2006)

for any fixed α.

Relations with other regularization methods The composite sparsity-smoothness

penalty function in (5.3) encompasses a class of regularization methods for high-dimensional

generalized additive models. When fixing α = 0, the SSP penalty is closely related to the

SpAM (Ravikumar et al., 2009) and the method of Wei et al. (2011). This formulation

decouples the choice of smoother complexity from the sparsity constraint, and its estimation

accuracy can be sensitive to the choice of basis dimensions (see Figure 5.3). When Hα equals

an identity matrix, the SSP penalty is reduced to an ordinary group Lasso problem and is

related to the method of Huang et al. (2010). In this case, the sparsity penalty is imposed

directly on the basis coefficients θp, other than the entire functional component βp(t).

5.3 Computational algorithm

Model (5.1) with penalization in (5.3) would be estimated by optimizing

θ̂ = argmin
θ

{
ℓ(θ) + λ

P∑
p=1

√
θT
pHαθp

}
, (5.4)

where ℓ(θ) is the twice negative log likelihood for model (5.1) and takes the form

ℓ(θ) = −2
N∑
i=1

mi∑
j=1

{Sij log(πij) + (Xij − Sij) log(1− πij)} . (5.5)
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We refer to θ̂ in (5.4) as the SSP estimator.

5.3.1 Proximal gradient descent algorithm

In this section, we present a proximal gradient descent algorithm for solving the optimization

problem in (5.4). Proximal gradient descent algorithm (Nesterov, 2013; Parikh & Boyd, 2014)

is commonly used to optimize composite objective function that can be written as a sum of

two terms: one is differentiable (e.g. ℓ(θ)) and another is a general closed convex function

that can be nonsmooth (e.g. λ
∑P

p=1

√
θT
pHαθp). It consists of a gradient descent step

followed by a proximal mapping step. For many important penalty functions, such as lasso

and (genera)l group lasso penalty, the proximal mapping can be computed analytically, thus

improving computational efficiency.

To solve the optimization problem in (5.4), we first decompose Hα = LT
αLα, where Lα is an

upper triangular matrix with positive diagonal entries. Define θ̃p = Lαθp and X̃p = XpL
−1
α .

We can thus rewrite the optimization problem in (5.4) simply as

ˆ̃
θ = argmin

θ̃

{
ℓ(θ̃) + λ

P∑
p=1

√
θ̃
T

p θ̃p

}
,

where ℓ(θ̃) is defined in (5.5) with π = [1 + exp(X̃θ̃)]−1. We will first use proximal gradient

descent to find ˆ̃θp, and then obtain θ̂p = L−1
α
ˆ̃
θp, for p = 0, 1, . . . P .

After initialization of θ̃
(0)

, at the s-th iteration we update θ̃
(s)

by the following updating

formula

θ̃
(s)
←− proxts

[
θ̃
(s−1)

− ts∇ℓ(θ̃
(s−1)

)
]
, (5.6)

for s = 1, 2, 3, . . ., until the convergence of θ̃. In (5.6) the proximal operator proxf : RPK →
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RPK is defined as

proxt(u) = argmin
θ̃

(
1

2t
∥u− θ̃∥22 + λ

P∑
p=1

√
θ̃
T

p θ̃p

)
.

This optimization problem has an analytical solution that can be efficiently computed.

Specifically, it is easy to show that

[proxt(u)]p =

⎛⎝1− tλ√
uT
p up

⎞⎠
+

up, for p = 1, . . . , P

where [proxt(u)]p ∈ RK is the sub-vector corresponding to the p-th group of proxt(u). There-

fore, we have proxt(u) = ([proxt(u)]
T
1 , . . . , [proxt(u)]

T
p )

T .

Backtracing line search for the step size To guarantee convergence, we determine the

step size ts at each iteration s in (5.6) using backtracking line search. Define the generalized

gradient

Gt(θ̃) =
1

t

[
θ̃ − proxt(θ̃ − t∇ℓ(θ̃))

]
.

Using the notation of Gt(θ̃), the update in (5.6) can be equivalently written as θ̃
(s)

= θ̃
(s−1)
−

tsGts(θ̃
(s−1)

). The backtracing line search works as follows. We first initialize t = tinit > 0

and repeatedly shrink t with t← δt for some pre-specified 0 < δ < 1 until

ℓ
(
θ̃
(s−1)

− tGt(θ̃
(s−1)

)
)
≤ ℓ(θ̃

(s−1)
)− t∇ℓ(θ̃

(s−1)
)TGt(θ̃

(s−1)
) +

t

2
∥Gt(θ̃

(s−1)
)∥22. (5.7)

Once (5.7) is satisfied by some t, we set ts ← t and update θ(s) using (5.6) with this chosen

step size. The proposed overall estimating algorithm is summarized in Algorithm 3.
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Algorithm 3: Proximal gradient algorithm with backtracking line search.

Initialize θ̃
(0)

= 0; Choose some 0 < δ < 1; Choose ε = 10−6; Set s = 0;
repeat

s← s+ 1;
Initialize t = tinit;
repeat

t← δt;

until ℓ(θ̃
(s−1)

− tGt(θ̃
(s−1)

)) ≤ ℓ(θ̃
(s−1)

)− t∇ℓ(θ̃
(s−1)

)TGt(θ̃
(s−1)

) +
t

2
∥Gt(θ̃

(s−1)
)∥22;

Set ts = t;

Update θ̃
(s)
←− proxts

[
θ̃
(s−1)

− ts∇ℓ(θ̃
(s−1)

)
]

as defined in (5.6);

until ∥θ̃
(s)
− θ̃

(s−1)
∥2 < ε;

Return θ̃
(s)

;

5.3.2 Choosing the tuning parameters

The algorithm in the previous section computes the estimates for θ for given values of

tuning parameters λ and α. We use cross-validation (CV) to select the values of λ and α

by minimizing the averaged prediction errors in the validation sets, called mean CV errors.

In our case, the prediction error in the validation set for the oth CV fold, Vo, is quantified

by the mean deviance
1

Mo

∑
i,j∈Vo {−2 [Sij log(π̂ij) + (Xij − Sij) log(1− π̂ij)]}, where Mo is

the total number of observations in Vo. In our package sparseSOMNiBUS, we also allow users

to select the value of λ based on the “one-standard-error” rule (1-SE-rule) (Friedman et al.,

2010). Specifically, we select the largest value of λ such that the mean CV error is within 1

SE of the minimum. This strategy generally favors parsimonious models.

For a given value of α, we can derive the smallest λ that gives the entire effect vector

θ̂1 = θ̂2 = . . . = θ̂P = 0 in our optimization problem (5.4). Such value is the so-called

λmax in the regularization path for λ. We first derive the expression of λmax, then present a

computationally efficient way for computing θ̂s under a sequence of λ.
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Derive λmax

The derivation of λmax relies on calculating the optimality conditions for the nonlinear pro-

gramming problem in (5.4). Such conditions test whether a solution is optimal and are also

called Karush-Kuhn-Tucker (KKT) conditions. Write f(θ) = ℓ(θ) + λ
∑P

p=1

√
θT
pHαθp for

our objective function. Its optimality condition simply states that θ⋆ is a minimizer of f(θ)

if and only if 0 is a subgradient of f(θ) at θ⋆.

The (sub)gradient for the differential part ℓ(θ) in f(θ) is

∇ℓ(θ) = −2
[
XT (S −ΛXπ)

]
,

where S ∈ RM is the vector concatenating Sij, and ΛX ∈ RM×M is the diagonal matrix with

values of read-depths Xij. The subgradient for the non-differential part h(θp) =
√
θp

THαθp

can be shown as

∂h(θp) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hαθp√
θp

THαθp

, θp ̸= 0

{
g ∈ RK :

√
gTH−1

α g ≤ 1
}
, θp = 0;

see detailed derivations in Appendix C.2. Therefore, the KKT conditions for a solution θ to

be optimal for our nonlinear programing problem in (5.4) are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ap = λ

Hαθp√
θp

THαθp

, if θp ̸= 0

√
aT
pH

−1
α ap ≤ λ, if θp = 0,

(5.8)

where ap = 2
[
XT

p (S −ΛXπ)
]
∈ RK denotes the sub-vector of −∇ℓ(θ) corresponding to θp

and p = 1, 2, . . . P . The condition for p = 0 is simply a0 = 0.

Considering the case when the optimal minimizer for (5.4) is a vector of θ with components
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θ1 = θ2 = . . . = θP = 0, the optimality conditions in (5.8) imply that

λ ≥
√
bTpH

−1
α bp, for ∀p ∈ {1, 2, . . . , P} .

Here, bp = 2
[
XT

p (S −ΛXπ0)
]

is the sub-vector of −∇ℓ(θ) corresponding to θp evaluating

from an intercept-only model, where π0 ∈ RM has elements [1+exp(−β0(tij))]
−1. Therefore,

we show that the smallest λ that gives θ1 = θ2 = . . . = θP = 0 takes the form

λmax = max
p∈{1,2,...P}

{√
bTpH

−1
α bp

}
.

The warm start strategy

For a given α, we construct a sequence of L values for λ decreasing from λmax to τλmax on

the log scale, where τ is a small constant. The defaults in our package are set to L = 100,

τ = 0.01 if M < (P + 1)K, and τ = 0.001 if M ≥ (P + 1)K, following Friedman et al.

(2010). We then fit a sequence of models from λmax to τλmax using the warm start strategy

(Friedman et al., 2007). That is, the solution for the lth λ is used as the initial value for the

(l + 1)th λ. This strategy provides a good initialization for the optimization problem at a

new λ and leads to considerable computational speedups.

5.4 The adaptive sparsity-smoothness penalty

Similar to the adaptive LASSO (Zou, 2006), we can introduce weights to allow for different

amounts of penalties for individual functional components in the model. Specifically, we

define the adaptive sparsity-smoothness penalty function as

LSSP,adp(θ) = λ
P∑

p=1

√
w1,p(1− α)J1 (βp(t)) + w2,pαJ2 (βp(t)), (5.9)
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where w1,p and w2,p are data-adaptive weights (Meier et al., 2009). A typical choice for the

weights would be

w1,p =
1√

J1

(
β̂p,int(t)

) and w2,p =
1√

J2

(
β̂p,int(t)

) ,

where β̂p,int(t) is the ordinary SSP estimator. We then compute the estimator for θ similarly

as described in Section 5.3. We refer to the estimator obtained from this adaptive approach

as adaptive SSP estimator.

5.5 Simulation study

We conducted simulations to assess the finite-sample properties of our proposed estimator. In

addition to the general SSP estimator that involves both sparsity and smoothness penalties,

we consider its two special cases — SSP0 estimator, which involves no smoothness penalty

(i.e. α = 0), and group LASSO (gLASSO) estimator obtained by fixing Hα = I. We

compared their performances with the method implemented in mgcv (Wood, 2011), which

is commonly used for fitting generalized additive models (GAM) but imposes no sparsity

constraints. We also applied the adaptive SSP and the SSP with 1-SE-rule to some of our

simulation examples.

5.5.1 Simulation design

Our simulation design was inspired by a methylation region described in the data example in

Zhao et al. (2020). We simulated methylation regions of the same size (123 CpGs) and with

the same CpG distribution as the BANK1 region in Zhao et al. (2020). We considered four

simulation examples with various settings for the functional parameters βp(t), sample size

N , total number of candidate SNPs P , and the number of true mQTLs Ptrue, as summarized
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in Table 5.1.

Table 5.1: The shapes of the nonzero βp(t)s associated with covariates Z1 to Z5 in our four
simulation examples. βp(t) = 0 for all remaining covariates except for the illustrated ones.

Example 1: (smooth, N = 50, Ptrue = 5, P = 100 or 1000)
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Example 2: (nonsmooth, N = 50, Ptrue = 5, P = 100 or 1000)
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Example 3: (smooth, N = 20, Ptrue = 5, P = 50, 100, 150, 200 or 1000);
Similar to Example 1 but with smaller effect sizes for Z1, Z3 and Z5 and smaller sample sizes.

−
0.

4
0.

0
0.

4
0.

8

β1(t)

 

−
0.

4
0.

0
0.

4
0.

8

β2(t)

 

−
0.

4
0.

0
0.

4
0.

8

β3(t)

 

−
0.

4
0.

0
0.

4
0.

8

β4(t)

 

−
0.

4
0.

0
0.

4
0.

8

β5(t)

 

Example 4: (smooth, N = 20, Ptrue = 10, P = 50, 100, 150, 200 or 1000)
The same βp(t) for p = 1, . . . 5 as Example 3 and βp(t) = βp−5(t) for p = 6, 7, . . . 10.

We first simulated the minor allele frequencies for each candidate SNP independently from

a uniform distribution, i.e. fp ∼ Uniform(0.1, 0.5), for p = 1, 2, . . . P . We then generated

genotype Zp from the truncated multivariate normal distribution with correlation matrix

Σ ∈ RP×P and appropriate thresholding for the mean such that

P (Zp = 0) = (1− fp)
2, P (Zp = 2) = f 2

p , and P (Zp = 1) = 2fp(1− fp).
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We specified Σ as a block diagonal matrix, consisting of sub-matrices Σsub ∈ R20×20 of the

form Σsub = (1−ρ)I+ρ1, where I ∈ R20×20 is an identify matrix, 1 ∈ R20×20 is a matrix with

all elements as 1. Here ρ is the correlation coefficient and we explored the settings ρ = 0, 0.3

or 0.7, corresponding to no, moderate and strong dependence among SNPs. To simulate

realistic read depths Xij, we first extracted a spatially correlated read-depth pattern from

the real data, denoted as fX(t), by fitting a cubic spline to the median read-depth across

positions. We then generated the read depth Xij by adding Bernoulli random variables

(with proportion 0.5) to fX(t). Given the values of {Z,X} and {βp(t), p = 0, 1, . . . , P}

under each example and setting, we simulated the methylated counts Sij from the model

in (5.1). In addition, an independent test set of the same size was generated for model

validation purposes. A total of R = 100 simulation runs were used.

When fitting the sparsity-based approaches (i.e. SSP, SSP0 and group LASSO), we used

5-fold cross-validation to select the values of tuning parameters. Specifically, we specified a

grid of λ of size 100, using the strategies described in Section 5.3.2, and used a grid of α of size

12, α = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99), when applying the SSP method.

Natural cubic splines of rank K = 10 were used to expand the functional parameters in the

model for all the approaches, unless otherwise stated.

Performance measures

We compared the performances of SSP, SSP0, group LASSO and GAM in terms of their

estimation, prediction and variable selection accuracy. Note that the GAM method (imple-

mented in mgcv) uses quadratic smoothness penalties and cannot provide sparse solutions.

Thus, the variable selection performances were only compared among the sparsity-based

approaches.
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Estimation To compare the estimation accuracies, we used the Monte Carlo estimates of

the integrated mean squared error (IMSE), along with the integrated squared bias (IBIAS2),

and integrated variance (IVAR) for each βp(t). Specifically, let
{
β̂(r)(t), r = 1, . . . , R

}
be the

estimates for β(t) over the R simulation runs, where the subscript p is dropped for notational

simplicity. We define the simulation-based mean estimates for β(t) as Ê(t) =
1

R

∑R
r=1 β̂

(r)(t).

Thus, we can calculate the three estimation measures

IBIAS2 =
∑
t

{[
Ê(t)− β(t)

]2}
, IVAR =

∑
t

{
1

R

R∑
r=1

[
β̂(r)(t)− Ê(t)

]2}
,

and IMSE =
∑
t

{
1

R

R∑
r=1

[
β̂(r)(t)− β(t)

]2}
,

for all the functional coefficients βp(t) in the model.

Prediction We used the hold-out test sets to calculate four prediction measures—deviance

error, root mean squared error (RMSE), and correlation between the predicted and observed

proportions in the raw and transformed scales (shortly denoted as CorRaw and CorTrans,

respectively). The deviance error is defined as
1

M

∑
i,j∈test [ℓ(π̂ij;Sij, Xij)− ℓ(πij;Sij, Xij)],

where ℓ(π;Sij, Xij) = −2 [Sij log(π) + (Xij − Sij) log(1− π)], π̂ij and πij are the predicted

and true mean for the jth CpGs from the ith sample in the test set, respectively. We

define the RMSE as
{

1

M

∑
i,j∈test [h(π̂ij)− h(Sij/Xij)]

2

}0.5

, where h(π) = arcsin(2π − 1) is

a variance stabilizing transformation of binomial variables (Korthauer et al., 2018). Similarly,

CorRaw is calculated as the sample correlation between π̂ij and Sij/Xij, and CorTran is the

correlation between h(π̂ij) and h(Sij/Xij). We reported the mean and standard deviation

(SD) of these four measures over all simulation runs to compare different methods.

Selection We used the number of true positives (TP) and false positives (FP) at each

simulation run for evaluating the variable selection performances.
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5.5.2 Simulation results

A catalogue of the results on the three evaluation themes under different simulation examples

and settings is shown in Supporting Table C.3. We first compare the performance of SSP

with the two sparsity-only methods SSP0 and gLASSO and discuss the role of smoothness

control in Section 5.5.2. We then demonstrate the importance of sparsity control in Section

5.5.2. The results from two extensions of ordinary SSP are shown in Section 5.5.2.
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Figure 5.1: Estimates of the first 6 varying coefficients of one simulation run of Example 1
(P = 100, ρ = 0), using the SSP, SSP0, group LASSO and GAM approaches. The red curves
are the true βp(t) used to generate the data. The results over 100 simulation runs are shown
in Supporting Figures C.1-C.4.

The role of the smoothness control in SSP

Figure 5.1 displays the estimated functions from one simulation run of Example 1 (P =

100, ρ = 0). It clearly shows that when the true underlying function is smooth, estimates

from SSP0 and gLASSO are too wiggly compared to the truth. The estimation plots over 100
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simulation runs are shown in Supporting Figures C.1-C.3, and the values of the corresponding

IBIAS2, IVAR and IMSE are given in Table 5.2. The results confirm that for this example,

adding the smoothness control reduces both estimation bias and variance compared to the

methods that only control the sparsity (i.e SSP0 and gLASSO), which is consistent when

ρ > 0 (Supporting Table C.4 and C.5) and P = 1000 (Supporting Table C.14). In this case,

compared to SSP0 and gLASSO, SSP also shows smaller prediction errors (top 2 panels

in Table 5.3 and Supporting Table C.8), slightly increased numbers of TPs and decreased

numbers of FPs (top 2 panels in Table 5.4). This superiority remains for Examples 3 and 4

(smaller sample sizes and effect sizes than Example 1) under various settings of P and Ptrue;

see estimation results in Supporting Tables C.16-C.18, prediction results in Supporting Table

C.15 and selection results in Table 5.5.

Table 5.2: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 10 varying coefficients of Example 1 (P = 100, ρ = 0),
using SSP, SSP0, group LASSO and GAM.

IBIAS2 IVAR IMSE
SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

β1(t) 0.260 0.497 0.589 4.681 0.182 0.284 0.320 3.745 0.441 0.781 0.910 8.426
β2(t) 0.671 1.289 1.165 1.052 0.183 0.241 0.232 3.570 0.854 1.530 1.397 4.623
β3(t) 0.567 1.114 1.081 12.110 0.287 0.439 0.467 8.101 0.855 1.554 1.548 20.211
β4(t) 0.473 0.740 0.917 0.066 0.154 0.183 0.158 2.432 0.627 0.922 1.075 2.498
β5(t) 0.951 0.961 1.026 0.473 0.298 0.368 0.365 2.174 1.249 1.329 1.391 2.647
β6(t) 4.2e-05 1.6e-04 8.7e-05 3.5e-02 1.3e-02 1.4e-02 1.3e-02 1.800 1.3e-02 1.4e-02 1.3e-02 1.835
β7(t) 2.0e-04 2.4e-04 7.7e-05 1.1e-02 6.8e-03 6.4e-03 5.3e-03 2.451 7.0e-03 6.6e-03 5.4e-03 2.462
β8(t) 1.1e-04 1.6e-04 1.1e-04 7.6e-03 9.5e-03 9.4e-03 8.1e-03 2.014 9.6e-03 9.6e-03 8.2e-03 2.022
β9(t) 1.2e-04 1.1e-04 1.3e-04 4.4e-02 7.2e-03 8.5e-03 7.2e-03 1.735 7.3e-03 8.6e-03 7.4e-03 1.779
β10(t) 1.2e-04 1.1e-04 9.0e-05 1.3e-02 7.1e-03 7.7e-03 6.8e-03 2.228 7.2e-03 7.8e-03 6.9e-03 2.241
†∑100

1 2.931 4.613 4.787 21.429 1.939 2.464 2.401 225.656 4.870 7.077 7.188 247.085
†: sum of the corresponding estimation measures across all varying coefficients in the model

When the true underlying functions are nonsmooth (for Example 2), the estimation results

are similar for all the three methods, SSP, SSP0 and gLASSO, as shown in Figure 5.2 and

Supporting Table C.13. In this case, the benefit of adding the smooth control is minimal. All

the three approaches show considerable bias in estimating the nonsmooth βp(t)s and greater

prediction errors (see Table 5.3), compared to their performances for Examples 1. This result

could have been expected because splines are suited to modelling smooth functions and are

less ideal for irregular functions with spikes or abrupt changes. Nevertheless, their variable
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Table 5.3: Average values of the deviance error and RMSE over 100 simulations for simulation
examples 1 and 2. Standard deviations are given in parentheses.

Deviance RMSE
ρ SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

Example 1 (smooth, Ptrue = 5, P = 100)
0 0.026(0.010) 0.037(0.015) 0.038(0.016) 1.527(0.930) 0.412(0.007) 0.414(0.009) 0.415(0.009) 0.582(0.582)

0.3 0.027(0.014) 0.037(0.018) 0.039(0.019) 1.573(1.135) 0.411(0.007) 0.414(0.008) 0.415(0.008) 0.581(0.581)
0.7 0.026(0.013) 0.036(0.021) 0.040(0.024) 1.559(1.077) 0.409(0.007) 0.412(0.008) 0.413(0.008) 0.575(0.575)
Example 1 (smooth, Ptrue = 5, P = 1000)

0 0.049(0.027) 0.064(0.035) 0.068(0.038) NA† 0.417(0.009) 0.420(0.011) 0.421(0.011) NA
0.3 0.043(0.031) 0.054(0.035) 0.058(0.036) NA 0.416(0.010) 0.418(0.011) 0.419(0.011) NA
Example 2 (nonsmooth, Ptrue = 5, P = 100)

0 0.175(0.039) 0.176(0.039) 0.165(0.037) 0.977(0.581) 0.425(0.010) 0.425(0.010) 0.424(0.010) 0.515(0.515)
0.3 0.158(0.041) 0.160(0.042) 0.152(0.040) 1.235(0.615) 0.424(0.011) 0.425(0.011) 0.423(0.010) 0.545(0.545)
Example 2 (nonsmooth, Ptrue = 5, P = 1000)

0 0.204(0.066) 0.205(0.066) 0.196(0.066) NA 0.430(0.013) 0.431(0.013) 0.430(0.013) NA
† GAM involves no sparsity regularizations and cannot estimate a model with 1000 smooth components for N = 50.

Table 5.4: Average values of the number of TP and FP for simulation examples 1 and 2.
Standard deviations are given in parentheses.

TP FP
ρ SSP SSP0 gLASSO SSP SSP0 gLASSO
Example 1 (smooth, Ptrue = 5, P = 100)
0 5.00(0.00) 4.97(0.17) 4.97(0.17) 38.17(8.12) 42.66(7.41) 40.78(7.06)
0.3 4.97(0.23) 4.94(0.28) 4.94(0.28) 34.68(7.84) 37.89(6.89) 36.97(6.72)
0.7 4.95(0.22) 4.89(0.35) 4.88(0.36) 31.86(8.89) 35.73(7.39) 33.22(6.70)
Example 1 (smooth, Ptrue = 5, P = 1000)
0 4.84(0.37) 4.80(0.41) 4.77(0.45) 82.51(16.07) 91.97(14.83) 90.57(15.12)
0.3 4.91(0.28) 4.82(0.46) 4.80(0.50) 77.49(18.30) 83.24(14.41) 83.81(16.57)
Example 2 (nonsmooth, Ptrue = 5, P = 100)
0 5.00(0.00) 5.00(0.00) 5.00(0.00) 47.39(8.18) 46.94(8.15) 40.12(7.13)
0.3 5.00(0.00) 5.00(0.00) 5.00(0.00) 46.68(6.67) 45.67(6.87) 38.96(7.17)
Example 2 (nonsmooth, Ptrue = 5, P = 1000)
0 4.98(0.14) 4.98(0.14) 4.98(0.14) 105.73(18.71) 101.63(18.00) 88.05(14.95)

Table 5.5: Average values of the number of TP and FP for simulation examples 3 and 4
(N = 20). Standard deviations are given in parentheses.

TP FP
P Ptrue SSP SSP0 gLASSO SSP SSP0 gLASSO

50 5 4.60(0.64) 4.42(0.76) 4.40(0.77) 16.48( 4.79) 18.16( 4.61) 16.77(4.24)
10 8.54(1.09) 8.24(1.22) 8.23(1.25) 20.38(4.02) 21.14(3.40) 20.43(3.11)

100 5 4.22(0.84) 3.96(0.86) 3.91(0.93) 23.28(6.93) 24.38(6.76) 23.57(6.70)
10 7.50(1.11) 7.28(1.20) 7.04(1.23) 30.66(5.32) 31.76(5.43) 30.85(6.23)

150 5 3.96(0.78) 3.72(0.81) 3.72(0.80) 27.56(6.00) 29.16(6.48) 28.13(6.80)
10 6.62(1.28) 6.36(1.26) 6.36(1.17) 35.98(5.49) 37.94(5.35) 36.06(5.25)

200 5 3.82(0.87) 3.68(0.89) 3.62(0.90) 29.80(7.35) 30.84(7.07) 29.66(6.79)
10 6.18(1.35) 5.80(1.34) 5.55(1.38) 39.80(7.33) 41.36(7.52) 39.34(7.35)

1000 5 2.42(1.20) 2.34(1.14) 2.29(1.10) 45.28(11.28) 44.78(8.58) 44.84(8.64)
10 3.66(1.33) 3.36(1.44) 3.13(1.50) 60.64(10.74) 60.26(10.19) 55.64(13.45)
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selection performances are less compromised. For example, on average, gLASSO identifies

4.98 TPs and 88.05 FPs when fitting the nonsmooth example with Ptrue=5 and P = 1000,

which are similar to the corresponding results for the smooth example (Table 5.4). We also

observe that gLASSO shows slightly smaller prediction errors and reduced numbers of FPs

than SSP and SSP0, for the nonsmooth Example 2.
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Figure 5.2: Estimates of the first 6 varying coefficients of one simulation run of Example 2
(P = 100, ρ = 0), using the SSP, SSP0, group LASSO and GAM approaches. The red curves
are the true βp(t) used to generate the data. The results over 100 simulation runs are shown
in Supporting Figures C.5-C.8.

Figure 5.3 further demonstrates the role of the smoothness control when the underlying

functions are smooth. We compare the results of SSP, SSP0 and gLASSO when using

a relatively large number of basis function, K = 30, to expand βp(t)s. For illustration

purposes, we have also plotted the performance measures based on K = 10. The results

show that the performances of SSP0 and gLASSO deteriorate when using an unnecessarily

large number of basis functions; they show increased values of estimation errors, deviance

errors, and FP numbers compared to the results from K = 10. In contrast, the SSP method
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that imposes smoothness penalty is less sensitive to the exact value of the basis dimension

and generates almost identical performance measures for K = 10 and K = 30. In practice,

many basis functions are necessary to capture potentially complex functional relationships,

such as genetic effects on relatively large methylation regions. SSP can handle this situation

and produce smooth estimates by using a more refined control of the smoothness.
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Figure 5.3: Performance measures of SSP, SSP0 and gLASSO when using 10 or 30 basis
functions to expand βp(t), labeled as “df=10” and “df=30”. Data were generated from Ex-
ample 1 (Ptrue = 5, P = 100, ρ = 0). The top three panels show the values of IBIAS2, IVAR
and IMSE aggregated from all the 100 varying coefficients in the model. The bottom left
panel displays the distribution of deviance errors. The “TP” and “FP” panels display the
mean values of TP and FP numbers, as well as their SD (indicated by the error bar), over
100 simulation runs.

Sparsity-based methods outperform GAM

Now, we compare the sparsity-based methods SSP, SSP0 and gLASSO with GAM to demon-

strate the role of sparsity regularization in estimating high-dimensional VC models. Table
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5.2 clearly shows that without the sparsity constraint, GAM has substantially greater esti-

mation variance, which is consistent for the nonsmooth Example 2 (Supporting Table C.13)

and Examples 3 and 4 with sample size 20 (Supporting Table C.18). In addition, overall,

GAM displays a more significant estimation bias than SSP. Such differences are less pro-

nounced when the actual functions are nonsmooth (Supporting Table C.13) and P is smaller

(Supporting Table C.18). GAM also shows worse prediction performance than sparsity-

based methods, as shown in Table 5.3, Supporting Tables C.8 and C.15. Notably, GAM

cannot estimate models with P that are much larger than N and fails to fit the models

with P = 1000. In contrast, the sparsity-based methods maintain reasonable prediction

accuracies as P increases, as indicated by the deviance errors in Supporting Table C.15. In

addition, GAM with quadratic smoothness penalties does not shrink regression coefficients

to 0 and thus cannot enable variable selections.

Two extensions of SSP substantially improve variable selection accuracy

Figure 5.4 presents the results obtained from two types of extensions of SSP: the SSP using

the 1-SE-rule for choosing λ, as described in Section 5.3.2 and the adaptive SSP, as de-

scribed in Section 5.4. We also applied these extensions to the two special cases of SSP—the

SSP0 and gLASSO approaches. The exact performance measures can be found in Support-

ing Tables C.6-C.7 and Tables C.9-C.12. The results show that the adaptive approaches

generally outperform the ordinary counterparts, and they show reduced estimation bias,

prediction errors, and the number of FPs. The estimation variance and the numbers of TPs

are similar between the adaptive and ordinary approaches. As expected, the 1-SE-rule can

substantially reduce the number of FPs at the cost of increased estimation and prediction

errors. The number of TPs using 1-SE-rule is slightly decreased compared to the ordinary

approaches.
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Figure 5.4: Performance measures using the ordinary, 1SE rule and adaptive version of SSP,
SSP0 and gLASSO. Data were generated from Example 1 (Ptrue = 5, P = 100, ρ = 0). The
top three panels show the values of IBIAS2, IVAR and IMSE aggregated from all the 100
varying coefficients in the model. The bottom left panel displays the distribution of deviance
errors. The “TP” and “FP” panels display the mean values of TP and FP numbers, as well
as their SDs (indicated by the error bars), over 100 simulation runs.

5.6 Discussion

We have proposed a sparse high-dimensional generalized varying coefficient model for iden-

tifying genetic variants associated with regional methylation levels. With different regu-

larization for the sparsity and the smoothness of the functional coefficients, our approach

can simultaneously select important mQTLs and estimate their corresponding genetic effects

across a methylation region of interest. Furthermore, we present a computationally efficient

proximal gradient descent algorithm to estimate the model. A comprehensive simulation

study has been conducted to evaluate the performance of our approach in terms of estima-

tion, prediction and selection accuracy. We demonstrate that the inclusion of smoothness

control yields much better results than having the sparsity-regularization only if the under-

lying effects are smooth. When the underlying effects are irregular functions with spikes or
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abrupt changes, one can use other types of basis functions, such as Fourier series or wavelets,

to achieve higher estimation and prediction accuracy. In addition, we show that combining

the sparsity and smoothness regularization provides sparse varying coefficient estimates that

are less dependent on basis dimensions.

On the other hand, we have shown that our approach is well suited for high-dimensional cases

where the number of covariates is much larger than the sample size, thereby significantly

outperforming the traditional smoothing spline-based approach, GAM. Furthermore, using

an adaptive version of our penalty function, we can achieve notable additional gains in

estimation, prediction and selection accuracy. We have also implemented the 1-SE-rule

for selecting the shrinkage parameter λ, which acknowledges that the deviance/risk obtained

from cross-validation is subject to estimation errors. We show that this strategy substantially

improves variable selection accuracy.

The method has been implemented in R package sparseSOMNiBUS (https://github.com/

kaiqiong/sparseSOMNiBUS). This tool fills the gap in the existing software for fitting penal-

ized regression models for non-binary binomial outcomes. Moreover, our code has options to

specify a class of penalty functions, including the general sparsity-smoothness penalty (SSP),

the sparsity-only penalty (SSP0), and the simple group LASSO penalty, thereby providing

users more flexibility.

Our model assumes that the observed counts of methylated reads represent the true un-

derlying methylation status. However, errors arising from excessive or insufficient bisulfite

treatment or other aspects of the sequencing processes can contaminate the observed data.

This contamination is unlikely to affect the variable selection results in that covariates with

zero effect on the true outcomes are not predictive of the mismeasured outcomes either. Nev-

ertheless, ignoring the measurement error can bias the estimation for the nonzero varying

effects on the true methylation status. An extension worth exploring in the future will be

to accommodate mismeasured outcomes into our high-dimensional model. Using the error
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model in Zhao et al. (2021, 2020), the required developments incorporate theories of adding

sparsity penalties to hierarchical binomial regression models whose outcome is dependent on

an unobserved latent variable.

Another potential restriction of our method is the distributional assumptions for the out-

comes. It could be helpful to set up an additional set of simulations assuming over-dispersed

data, such as methylated counts from a beta-binomial distribution, and to see how this af-

fects the estimation, variable selection and predictive performances of our approach. Moving

in this direction, another topic worth exploring in the future would be variable selection for

quasi-likelihood-based regression models. Such an approach would automatically relax the

distributional assumptions for penalized regression models. Furthermore, due to the equiva-

lence between smoothness penalty and (Gaussian) random effects (Silverman, 1985; Wahba,

1983), the idea of adding a square root to the quadratic penalty can be generally applied to

random effect selection for mixed effect models.
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Chapter 6

Conclusion

6.1 Summary

This thesis presents a body of work that addresses regional association estimation and se-

lection in bisulfite sequencing-derived DNA methylation data. Particularly, the datasets

concerned in this thesis are from targeted custom capture sequencing platforms, which pro-

duce DNA methylation levels for CpGs in a set of predefined regions. This thesis consists

of three original scholarly manuscripts, presented in Chapters 3, 4 and 5, about developing

novel methods for better analyzing these targeted methylation regions.

In Chapter 3, I propose a novel framework for the estimation of covariate effects as smooth

functions varying along genomic positions within a region of interest. Here, the regional

methylation counts are modelled by a binomial distribution, dependent on read depth. This

estimation framework, called SOMNiBUS, simultaneously addresses the discrete nature of

the data, the possibility of experimental errors, and the estimation of multiple covariate

effects. In addition, SOMNiBUS provides a formal inference for both regional and pointwise

tests of differential methylation. Simulation results show that SOMNiBUS provides accurate

estimates of covariate effects and has greater power to detect differentially methylated regions
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than existing methods. However, one main limitation of SOMNiBUS is that its underlying

binomial assumption may be overly restrictive. One sign of violation of such an assumption

is overdispersion, arising when data exhibit greater variability than those anticipated based

on a binomial regression model. Thus, in the next chapter, I pursue an extension to the

standard SOMNiBUS to account for potential overdispersion.

In Chapter 4, I propose a hierarchical quasi-binomial varying coefficient mixed model, called

dSOMNiBUS, to allow the outcomes to exhibit extra-binomial variation. This model accom-

modates both multiplicative and additive dispersion, thereby providing a plausible represen-

tation of realistic dispersion trends observed in regional methylation data. Like SOMNiBUS,

dSOMNiBUS assumes the observed read counts arise from an unobserved latent true methy-

lation state compounded by errors. To estimate such a hierarchical model, I build a hybrid

Expectation-Solving algorithm and propose a special plug-in estimator for the multiplica-

tive dispersion parameter. The properties of the resulting estimators are evaluated using

both simulations and data applications. Results show that dSOMNiBUS can provide reli-

able inference for differential methylation at the regional level, regardless of the types and

degrees of overdispersion that data exhibit. The R package implementing both the stan-

dard SOMNiBUS and its extension dSOMNiBUS, has been published in R Bioconductor

(https://www.bioconductor.org/packages/release/bioc/html/SOMNiBUS.html).

Finally, in Chapter 5, I pursue a high-dimensional extension to the standard SOMNiBUS.

The problem concerned here is identifying a subset of the genetic variants with local in-

fluence on regional methylation levels, i.e. identifying methylation quantitative trait loci

(mQTLs). Such analyses are challenging because one routinely faces hundreds or thousands

of candidate SNPs within or surrounding a methylation region and sample sizes tend to be

small due to the cost of sequencing. To address this problem, I propose a high-dimensional

generalized varying coefficient model accompanied by a composite penalty function that

encourages both sparsity and smoothness for the varying coefficients. I also present an
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efficient proximal gradient descent algorithm to estimate such a high-dimensional model.

Finally, a comprehensive simulation study is conducted to evaluate the performance of

the proposed approach in terms of estimation, prediction and variable selection. Results

show that this new approach can simultaneously select important mQTLs and estimate

their corresponding varying effects across a methylation region with excellent accuracy.

A prototype R package for this method, named sparseSOMNiBUS, is available in Github

(https://github.com/kaiqiong/sparseSOMNiBUS).

6.2 Future work

There are many potential areas for future development to advance the work done in the

three main chapters.

The first extension worth exploring will be to accommodate more rich correlation struc-

tures for the residual errors in our regression models. Regional methylation measurements

can be viewed as functional data, whose observation units are functions or curves defined

across a targeted region. This extension amounts to exploring different ways to capturing

within-function correlations. For the current work in this thesis, such correlations are ac-

commodated through basis functions and smoothness regularization; this is equivalent to

assuming that the within-function covariance has a fixed structure up to multiple constants,

i.e. smoothing parameters. On top of that, the method in manuscript II (Chapter 4) adds a

curve-level random effect to capture curve-to-curve deviations, leading to a compound sym-

metry correlation structure for the residual errors. Nevertheless, other types of correlation

structures could be explored for the residual errors, such as assuming continuous autoregres-

sive correlation structures or adding curve-level random effects that are functions depending

on genomic positions. For models with such complex correlation structures, Bayesian meth-

ods are preferred for estimation and inference. More generally, in the functional regression
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context, it would be helpful to carefully study the benefit of accounting for complex within-

function correlation structures beyond the use of basis functions, and the consequences of

ignoring it. In addition, it would help to develop innovative inference or estimation proce-

dures that are less dependent on the correct specification of covariance structures underlying

the functional regression models in Chapters 3-5.

All of the methods in Chapters 3-5 are built on the assumption that samples are independent.

In practice, one might encounter data sets with correlated samples, such as methylation levels

for individuals belonging to the same family, or methylation levels for the same individual

measured at different ages. Correlations can also be expected when multiple tissues are

sampled on the same individual. These inter-sample (or inter-function) correlations must

be appropriately taken into account in the analysis to obtain accurate estimates of the

statistical significance of associations. Therefore, another area for future development will be

to extend the methods in Chapters 4-5 to allow for correlated samples. One solution would be

incorporating additional sets of random effects to capture the between-function correlations

induced by the multilevel designs or longitudinally sampled functional observations.

The methods proposed in this thesis are tailored to targeted bisulfite sequencing data.

Another future direction is to extend these methods to whole-genome bisulfite sequencing

(WGBS) data. This development requires first segmenting the whole genome into regions or

using sliding windows. The optimal segmentation definitions or choices of window sizes are

challenges to be faced.

Furthermore, in this thesis, I consider the genome as a linear sequence of nucleotides and

model covariate effects on methylation as functions defined on that linear sequence, i.e. one-

dimensional (1D) functions. In fact, inside the nucleus, the genome does not exist as a

linear entity but has a three-dimensional (3D) structure. Payne et al. (2021) have recently

developed an in situ genome-sequencing technique that allows simultaneous sequencing and

imaging of the genome and provides direct information on 3D genomic coordinates in single
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cells. As the technology evolves, more refined information on the 3D spatial localization of

DNA in intact samples will be expected. Therefore, one promising direction for future work

will be developing statistical methods to estimate functional parameters defined on higher

dimensional domains, such as on 3D spaces.

6.3 Concluding remarks

Combining DNA bisulfite treatment with high-throughput sequencing technologies has opened

new avenues for understanding the role of DNA methylation in disease development. How-

ever, extracting interpretable results from raw sequencing data is challenging. This thesis has

provided novel analytical tools to estimate and test association patterns in bisulfite sequenc-

ing data. Furthermore, the methods developed in these three manuscripts complement the

existing statistical literature on the flexible modelling for mismeasured (and overdispersed)

binomial outcomes or high-dimensional covariates. This work could be of great value con-

sidering the massive popularity of DNA methylation studies in the last decades.

133



Appendix A

Supporting Information for Chapter 3

This Supporting Information includes detailed derivations, proofs, additional simulation and

data application results, and software and data guidance.
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A.1 Detailed derivations and proofs

A.1.1 Appendix A: the form of the spanned design matrix

The design matrix X
[M×K]

=
(
B(Z0),B(Z1), . . .B(ZP )

)
consists of the blocks

B(Zp)

(M×Lp)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B
(p)
1 (t11)× Zp1 . . . B

(p)
Lp
(t11)× Zp1

...
...

B
(p)
1 (t1m1)× Zp1 . . . B

(p)
Lp
(t1m1)× Zp1

B
(p)
1 (t21)× Zp2 . . . B

(p)
Lp
(t21)× Zp2

...
...

B
(p)
1 (t2m2)× Zp2 . . . B

(p)
Lp
(t2m2)× Zp2

...
...

B
(p)
1 (tNmN

)× ZpN . . . B
(p)
Lp
(tNmN)× ZpN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for p = 0, 1, . . . P,

where Z0i ≡ 1 for i = 1, 2 . . . N .

A.1.2 Appendix B: the P-IRLS step given the values of smoothing

parameters

One update in the P-IRLS estimation from step r to step r + 1 is

α(r+1) = (XTW (r)X+Aλ)
−1XTW (r)S̃

(r)
,

where W (r) = Diag{w11, . . . w1m1 , w21, . . . w2m2 , . . . wNmN
} ∈ RM×M with wij = π

(r)
ij (1−π

(r)
ij )

is the weight matrix, and S̃
(r)

=
(
S̃
(r)
11 , . . . S̃

(r)
1m1

, S̃
(r)
21 , . . . S̃

(r)
2m2

, . . . S̃
(r)
NmN

)
∈ RM with S̃

(r)
ij =

g
(
π
(r)
ij

)
+ g′

(
π
(r)
ij

) (
η⋆ij − π

(r)
ij

)
is the vector of adjusted response (also called pseudo

response) variables.
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A.1.3 Appendix C: Laplace approximated restrictive log-likelihood

In the outer optimization, λ is estimated by maximizing the Laplace approximated restricted

likelihood (Wood, 2011), denoted by lr(λ),

2lr(λ) = 2l(α̂λ) + log (|Aλ|)− α̂λ
T
Aλα̂λ − log (|H + Aλ|) +MAlog(2π)

with H = −∂2l(α)/∂α∂αT = XTΛXWX. Here, l(α) is the log-likelihood derived from the

binomial distribution as defined in the main manuscript, and ΛX = Diag{X11, . . . , X1m1 , X21,

. . . , X2m2 , . . . , XNmN
} is the diagonal matrix with values of read-depths. H depends on the

vector λ via the dependence of Aλ and α̂ on α, and MA is the dimension of the null space

of Aλ.

A.1.4 Appendix D: Proof of Theorem 1

The proof of Theorem 1 is based on Lemmas 1 and 2. Lemma 1 shows the second derivatives

of the conditional log-likelihood Q(α | α⋆), and Lemma 2 obtains the Hessian matrix of the

marginal log-likelihood of Y .

Lemma 1. The second derivative of the conditional log-likelihood function Q(α | α⋆) with

respect to α is
∂2Q(α | α⋆)

∂α ∂αT
= −XTΛXWX−Aλ, (A.1)

where W = Diag{w11, . . . w1m1 , w21, . . . , w2m2 , . . . wNmN
} ∈ RM×M is the weight matrix with

element wij = πij(1− πij), and ΛX = Diag{X11, . . . , X1m1 , X21, . . . , X2m2 , . . . , XNmN
} is the

diagonal matrix with values of read-depths. The mixed second derivatives of Q(α | α⋆) with

respect to α and α⋆ are

∂2Q(α | α⋆)

∂α ∂α⋆T
= XTΛ⋆

ηW
⋆X (A.2)
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where W ⋆ is the weight matrix evaluated at π⋆, which is the current iteration estimates and

Λ⋆
η is a diagonal matrix with diagonal elements δ⋆ij, defined as,

δ⋆ij =
Yijp1p0[

p1π⋆
ij + p0(1− π⋆

ij)
]2 +

(Xij − Yij) (1− p1)(1− p0)(
(1− p1)π⋆

ij + (1− p0)(1− π⋆
ij)
)2 . (A.3)

Proof. The Q function takes the form

Q(α | α⋆) =
N∑
i=1

mi∑
j=1

{
η⋆ijθij −Xij log(1 + eθij)

}
− 1

2
αTAλα,

where θij = log (πij/ (1− πij)). The first term is the binomial log-likelihood function evalu-

ated at η⋆(α⋆), the conditional expectations of the true outcome Sij.

We derive the first and second derivatives of Q(α | α⋆) with respect to α and α⋆. First, it

is easy to show that

∂Q(α | α⋆)

∂α
=
∑
(i,j)

{[
η⋆ij −Xijπij

] [
(X)(l,·)

]T}
−

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ0A0α0

λ1A1α1

. . .

λPAPαP

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (A.4)

Here we use (X)(l,·) to denote the lth row of the design matrix, which is the row corresponding

to the CpG j of sample i.

Differentiation of equation (A.4) with respect to α and α⋆ yields respectively

(
∂2Q(α | α⋆)

∂α ∂αT

)
(m,m′)

=
∑
(i,j)

{
−Xijπij(1− πij) (X)(l,m) (X)(l,m′)

}
− λp̃ (Ap)(k,k̃) I(m,m′),(A.5)

(
∂2Q(α | α⋆)

∂α ∂α⋆T

)
(m,m′)

=
∑
(i,j)

{
∂η⋆ij
∂π⋆

ij

π⋆
ij(1− π⋆

ij) (X)(l,m) (X)(l,m′)

}
, (A.6)

for m,m′ = 1, 2, . . . K. In the above formulas, (•)(m,m′) represents the (m,m′) entry of

137



a matrix. I(m,m′) = 1 if αm and αm′ are the basis coefficients for the same functional

parameter βp(t), and I(m,m′) = 0 otherwise. For the pairs (m,m′) that satisfy I(m,m′) = 1,

we use k and k̃ to denote the index of the bases associated with coefficients αm and αm′ ; in

other words, αm and αm′ are the kth and k̃th basis coefficients in the linear expansion that

are used to represent functional parameter βp(t). In addition, the ∂η⋆ij/∂π
⋆
ij in the formula

(A.6) equals to δ⋆ij, as defined in (A.3). The values of δij reduce to 0 when error parameters

p0 = 1− p1 = 0.

Finally, we rewrite the expressions in (A.5) and (A.6) in a compact way using matrices

ΛX ,W ,Λ⋆
η, and obtain the expressions in (A.1) and (A.2).

Lemma 2. The Hessian matrix of the marginal log-likelihood of Y has the form

H(α) = XT (−ΛX +Λη)WX−Aλ,

where Λη is a diagonal matrix with elements δij, which is of the similar form as δ⋆ij in (A.3)

but replacing π⋆
ij with πij.

Proof. Due to the presence of the latent methylation state Sij, the observed counts Yij follow

a mixture of two binomial distributions. A direct calculation of the observed Fisher informa-

tion (Hessian matrix) from this marginal distribution is analytically intractable. However,

Oakes (1999) showed that, although the marginal log-likelihood itself is not expressible, its

observed Fisher information, can be expressed in terms of the Q function (i.e. the condi-

tional expectation of the log-likelihood of Sij given the observed data Yij) and its derivatives.

Specifically, we rely on the work done by Oakes (1999) and calculate the Hessian matrix of

the marginal log-likelihood of Y for parameter α, H(α), as the sum of two second derivatives

of the Q function,

H(α) =

{
∂2Q(α | α⋆)

∂α ∂αT
+

∂2Q(α | α⋆)

∂α ∂α⋆T

}⏐⏐⏐⏐
α⋆=α

.
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Using the results in Lemma 1, it can be easily shown that the Hessian matrix H(α) of the

marginal log-likelihood of Y is

H(α) = XT (−ΛX +Λη)WX−Aλ.

The diagonal matrix Λη will be equal to 0 when error parameters p0 = 1 − p1 = 0, which

corresponds to the case with no experimental error present in the data.

Theorem 2. Under the usual regularity conditions for maximum likelihood, we have the

following asymptotic results for the estimators α̂ obtained from the smoothed-EM algorithm,

√
M (α̂−α)

L−→MV NK(0,I−1), as M →∞.

Here, K is the dimension of the spline coefficients α, and I = E [−Hij(α)]. Specifically

Hij(α) has the form

Hij(α) = XT
(l,) (−Xijwij + δijwij)X(l,) −Aλ, (A.7)

where X(l,) is the lth row of the design matrix X, which corresponds to the CpG j of sample

i, and wij = πij(1− πij) is the element of the weight matrix.

Proof. Based on the results in Lemma 2, we can show that the Hessian matrix calculated

from the individual contribution from observation i at position j, Hij(α), can be expressed

as in equation (A.7).

Hence, the asymptotic result follows from the fact that smoothed-EM estimate α̂ is a MLE

of α for the marginal distribution of Y (Dempster et al., 1977), and Hij(α) is the Hessian

matrix of α for the marginal distribution of Y ij (Oakes, 1999).
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A.2 Additional simulation results

In this section, we present additional Figures and Tables referenced in Sections 4 and 5 in

the main manuscript.

A.2.1 Simulation settings and additional results for Type I Error

assessment

Figure A.1 displays the 14 simulation settings of functional parameters β0(t) and β1(t) in

Scenario 2. Each pairs of β0(t) and β1(t) correspond to the 14 settings for π0(t) and π1(t)

shown in Figure 2 in the main manuscript (the black solid lines). Once we fixed the shapes

of π0(t) and π1(t) (in Figure 2 in the main manuscript), β0(t) and β1(t) have the forms

β0(t) = log
π0(t)

1− π0(t)

β1(t) = log
π1(t)

1− π1(t)
− β0(t).

Table A.1: Simulation settings outlined in Section 4.1 in the main manuscript, for the
functional parameters βp(t), sample size N , and error parameters p0 and p1.

Simulation Possibilities
parameters
βp(t) Scenario 1: three covariates: Z1 ∼ Bernoulli(0.51), Z2 ∼ Bernoulli(0.58) and Z3 ∼ Bernoulli(0.5)

with effects β1(t), β2(t) and β3(t) and intercept β0(t), shown in the red curves in Figure 1 of the
main manuscript.

Scenario 2: one covariate Z ∼ Bernoulli(0.5)
with 14 different settings of (β0(t), β1(t)), as shown in Figure A.1 in the Supporting Information.

N (40, 100, 150, 400)
(p0, p1) p0 = 0.003; p1 = 0.9
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Figure A.1: The 14 simulation settings of functional parameters β0(t) and β1(t) in Scenario
2, which correspond to the 14 settings for π0(t) shown in Figure 2 in the main manuscript.

Table A.1 summarizes the simulation settings outlined in Section 4.1 in the main manuscript.

Figure 3.5 shows the distribution of p-values for the regional effect of the null covariate Z3

when data were generated with error.
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Figure A.2: Quantile-Quantile (Q-Q) plots of the region-based p-values for the null co-
variate Z3, obtained from the six methods, over 1000 simulations. Data were gener-
ated with error with a range of sample sizes (N = 40, 100, 150, 400), under simulation
Scenario 1. Here, the Expected p-values are uniformly distributed numbers, equal to
= (1/1001, 2/1001, . . . , 1000/1001) and both axes are transformed with −log10(p).

A.2.2 Sensitivity to Bisulfite Sequencing Error Parameters

We explored additional simulation scenarios where the error parameters p0 and p1 were mis-

specified. Specifically, the data were generated subject to errors p0 = 0.003 and 1− p1 = 0.1

but analyses were conducted using a grid of values for p0 and p1, constructed from p0 =

(0, 0.003, 0.005, 0.1, 0.2) and p1 = (0.88, 0.89, 0.9, 0.95, 1). We considered the 14 settings of

Scenario 2 that were described in Section 4.1 and graphed in Figure 2 in the main manuscript.

These results are shown in columns named S1-S14 in Table A.2. We also included one

simulation with a null covariate effect and with varying error parameters, and these results are

shown in a column named S0 in Table A.2. These 15 settings S0-S14 correspond to increasing

levels of differences between methylation patterns from two groups, i.e. with increasing

maximum deviation (MD) between the methylation levels of Z = 0 and Z = 1.
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The powers to detect DMRs for different configurations of p0 and p1 under each simulation

setting (S0-S14) were given in Table A.2 (note that the power under S0 is the type I error

rate). The actual region-based p-values from the 100 simulations for setting S1 with small

methylation differences, and setting S14 with large methylation differences, were displayed in

Figure A.3 and Figure A.4, respectively. In Figures A.3 and A.4, the region-based p-values

using the (mis)specified p0 and p1 (vertical axis) were plotted against the ones using the

correct p0 and p1 (horizontal axis).

Figure A.3 and Figure A.4 show that misspecified error rates can lead to minor differences

in regional p-values from the ones with correctly-specified error rates. This difference tends

to be greater when the effect size of the covariate of interest is large and when the bias in the

error parameters are big. Despite the differences in the actual regional p-values, the powers

under various misspecified error rates are shown to be similar to the case with known error

rates, as demonstrated in Table A.2. In addition, when the error rates are specified with

strong bias, the EM algorithm will not converge. For example, for the simulation scenarios

considered in Table A.2, the analyses using p1 ≤ 0.88 failed to converge. This also provides

a sign of error misspecification.

143



Table A.2: Powers to detect DMRs using SOMNiBUS when the error parameters p0 and p1 were
specified differently, under the 14 settings as shown in Figure 2 in the main manuscript (S1-S14)
and 1 setting under Null (S0). The powers were calculated over 100 simulations and the data were
generated based on the error parameters p0 = 0.003 and p1 = 0.9 (in gray shade), and sample size
N = 100.

p1 p0 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

0.88

0 0.04 0.13 0.24 0.38 0.59 0.71 0.85 0.94 0.97 0.99 1 1 1 1 1
0.003 0.04 0.13 0.24 0.38 0.59 0.71 0.85 0.94 0.97 0.99 1 1 1 1 1
0.005 0.04 0.13 0.24 0.38 0.59 0.71 0.85 0.94 0.97 0.99 1 1 1 1 1
0.1 0.04 0.13 0.24 0.38 0.59 0.7 0.85 0.95 0.98 1 1 1 1 1 1
0.2 0.04 0.13 0.24 0.38 0.58 0.7 0.85 0.95 0.98 1 1 1 1 1 1

0.89

0 0.04 0.12 0.21 0.39 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1
0.003 0.04 0.12 0.21 0.39 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1
0.005 0.04 0.12 0.21 0.39 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1
0.1 0.04 0.12 0.21 0.39 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1
0.2 0.04 0.12 0.21 0.38 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1

0.9

0 0.04 0.14 0.22 0.37 0.53 0.65 0.77 0.87 0.94 0.99 1 1 1 1 1
0.003 0.04 0.14 0.22 0.37 0.53 0.65 0.77 0.87 0.94 0.99 1 1 1 1 1
0.005 0.04 0.14 0.22 0.37 0.53 0.65 0.77 0.87 0.94 0.99 1 1 1 1 1
0.1 0.04 0.14 0.23 0.37 0.53 0.65 0.77 0.87 0.94 0.99 1 1 1 1 1
0.2 0.04 0.14 0.23 0.37 0.52 0.65 0.77 0.87 0.93 0.99 1 1 1 1 1

0.95

0 0.06 0.12 0.2 0.31 0.44 0.58 0.7 0.78 0.87 0.94 0.97 1 1 1 1
0.003 0.06 0.12 0.2 0.31 0.43 0.58 0.7 0.78 0.87 0.94 0.97 1 1 1 1
0.005 0.06 0.12 0.2 0.31 0.43 0.58 0.7 0.78 0.87 0.94 0.97 1 1 1 1
0.1 0.06 0.12 0.2 0.3 0.44 0.59 0.68 0.77 0.88 0.95 0.98 1 1 1 1
0.2 0.06 0.11 0.2 0.32 0.43 0.59 0.68 0.78 0.87 0.95 0.99 1 1 1 1

1

0 0.06 0.13 0.18 0.29 0.42 0.54 0.67 0.75 0.87 0.91 0.97 1 1 1 1
0.003 0.06 0.13 0.18 0.29 0.42 0.54 0.67 0.75 0.87 0.91 0.97 1 1 1 1
0.005 0.06 0.13 0.18 0.29 0.42 0.54 0.67 0.75 0.87 0.91 0.97 1 1 1 1
0.1 0.06 0.13 0.18 0.29 0.42 0.54 0.65 0.75 0.87 0.91 0.98 1 1 1 1
0.2 0.06 0.13 0.18 0.27 0.42 0.52 0.66 0.75 0.86 0.91 0.97 1 1 1 1

A.2.3 Runtime Comparison

Figure A.5 shows the runtime when fitting a single covariate using the methods under in-

vestigation. For dmrseq, we used three different numbers of permutations for comparison

(10, 100 and 500). “SOMNiBUS No Error” refers to assuming no sequencing errors in SOM-

NiBUS, which reduces the full model to a pure generalized additive model. Figure A.5 shows

that SOMNiBUS requires longer computational times than GlobalTest, BSmooth, SMSC and

BiSeq, but less than dmrseq. Note that our proposed method, SOMNiBUS, is capable of es-

timating the effects of multiple covariates simultaneously, whereas, other methods require

repeating the analysis for each covariate, which will multiply the runtime by the number of

covariates.
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Figure A.3: Scatter plots of the region-based p-values using the specified p0 and p1 (vertical
axis) compared to the region-based p-values using the correct p0 and p1 (horizontal axis), for
various settings of p0 and p1 specified in the facet labels, under 100 simulations. Here, data
were simulated under S1 where MD between the methylation curves in two groups is 0.01 –
small effect size.

A.3 Additional data application results

In addition to the BANK1 region (Orozco et al., 2009), described in Section 3 in the main

manuscript, we considered three more regions which overlap with genes BLK, HLA-DRB

and PTPN22. These genes have been known associated with risk of rheumatoid arthritis

(RA) (Balsa et al., 2010; Hinks et al., 2006; H. Zhang et al., 2012). We applied our method

SOMNiBUS, along with the five alternative methods—BiSeq, BSmooth, SMSC, dmrseq and
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Figure A.4: Scatter plots of the region-based p-values using the specified p0 and p1 (vertical
axis) compared to the region-based p-values using the correct p0 and p1 (horizontal axis),
for various settings of p0 and p1 specified in the facet labels, under 100 simulations. Here,
data were simulated under S14 where MD between the methylation curves in two groups is
0.06 - large effect size.

GlobalTest—to each targeted region of interest. Table 3.3 presents the region-based p-

values for covariate effects on the four methylation regions. This table shows that SOMNiBUS

reports smaller regional p-values, and exhibits an improved power to detect these RA-related

methylation regions, as compared to the alternative methods.
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SOMNiBUS

SOMNiBUS No Error

GlobalTest

dmrseq_nperm_10

dmrseq_nperm_100

dmrseq_nperm_500

BSmooth

SMSC

BiSeq

1e+03 1e+04 1e+05 1e+06

Time [milliseconds]

Figure A.5: Summary of runtime under 100 replications. Time axis is presented on the log
scale. Data were generated from the S1 of Scenario 2 (with small maximum deviance among
the 14 settings in Figure 1) and subject to error p0 = 0.003 and p1 = 0.9. (Sample size N =
100)
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A.4 Software and data

R-package for SOMNiBUS routine: R-package SOMNiBUS contains code to perform

the methods described in the article. (GNU zipped tar file) (https://github.com/

kaiqiong/SOMNiBUS)

SOMNiBUS Vignette: A user guide of how to use SOMNiBUS package. The vignette also

contains the codes for replicating the data example results in this article. (Rmd and

HTML files) (https://github.com/kaiqiong/SOMNiBUS/tree/master/vignettes)

Simulation Codes: Codes to replicate the simulation results in the article are deposited

in the Github repository https://github.com/kaiqiong/SOMNiBUS_Simu.
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Appendix B

Supporting Information for Chapter 4

This Supporting Information includes detailed derivations, proofs, additional simulation and

data application results.
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B.1 Detailed derivations and proofs

B.1.1 Appendix A: Marginal interpretations for dSOMNiBUS

Marginal mean

The latent variable representation of the logistic mixed effect model in (4.2) is

S⋆
ijk = ηij + ϵij + ui

Sijk =

⎧⎪⎪⎨⎪⎪⎩
1, if S⋆

ijk ≥ 0

0, if S⋆
ijk < 0

where S⋆
ijk is the unobserved latent variable, ηij =

∑P
p=0 βp(tij)Zpi is the linear predictor

calculated from all the fixed effect, ϵij are iid error terms following a logistic distribution,

and ui is the subject-specific random effect as defined in Section 4.2. In addition, the error

term ϵij and RE ui are mutually independent. Specifically, the cumulative distribution

function (cdf) for ϵ takes the form g(x) = 1/(1 + exp(−x)). The calculation of marginal

mean πM
ij = P(ηij + ϵij + ui ≥ 0) requires integration over the joint distribution of ϵij and

ui, which has no closed-form solution. Instead, we can approximate the logistic cdf g(x) by

a normal cdf (Johnson et al., 1995, p. 119), which will lead to a more analytically tractable

solution. Specifically, we have

g(x) ≈ Φ(cx), with c =
√
3.41/π,

where Φ(x) is the cdf of the standard normal distribution. For any x value, the maximum

absolute difference of this approximation is 0.00948.

Therefore, we can approximately view ϵij as a normal random variable, ϵij ∼ N(0, 1/c2).

Since ϵij and ui are independent, we have ϵij + ui ∼ N(0, 1/c2 + σ2
0). The marginal mean
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can be thus derived as

πM
ij = P(ϵij + ui ≥ −ηij) = P

(
ϵij + ui√
1/c2 + σ2

0

≥ −ηij√
1/c2 + σ2

0

)

≈ Φ

(
ηij√

1/c2 + σ2
0

)
≈ g

(
ηij√

1 + c2σ2
0

.

)

Marginal variance

We will use the mixed effect model formulation in (4.2) to derive the marginal variance.

Using the law of total variance, the marginal variance of Sij is the sum of two parts:

Var(Sij) = E {Var(Sij | ui)}+ Var {E(Sij | ui)}

= ϕXijE {πij(1− πij)}+X2
ijVar (πij) , (B.1)

where πij = g(ηij + ui) is the conditional mean dependent on ui. The exact closed-form

formula does not exist for either E (πij) or Var (πij). Nevertheless, we can work on the

second-order Taylor expansion of πij around ui = 0, i.e. πij = g (ηij + ui) ≈ g (ηij) +

g′ (ηij)ui + g′′ (ηij)u
2
i /2. Thus, we have E(πij) ≈ g(ηij) + g′′ (ηij)σ

2
0/2,

Var (πij) ≈ E

{[
g′(ηij)ui +

g′′(ηij)

2

(
u2
i − σ2

0

)]2}

= σ2
0 [g

′(ηij)]
2
+

σ4
0

2
[g′′(ηij)]

2
,

and E
(
π2
ij

)
≈ σ2

0 [g
′(ηij)]

2 +
σ4
0

2
[g′′(ηij)]

2 +

[
g(ηij) +

g′′t(ηij)

2
σ2
0

]2
. Substituting the above

approximations into (B.1) yields the results in equation (4.5).
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B.1.2 Appendix B: Estimate ϕ from the contaminated data

No exact expression available for the E step for ϕ

Once evaluated the integral in the quasi-deviance dij(Sij, πij) (4.7), the estimating equation

for ϕ takes the form

∇ϕLaplace(Θ, ϕ;B(s),S) =
1

ϕ2

∑
i,j

∫ π
(s)
ij

Sij/Xij

Sij −Xijπij

πij(1− πij)
dπij + f2(Θ, ϕ;B(s))

=
1

ϕ2

∑
i,j

{
(Xij − Sij) log(1− π

(s)
ij ) + Sij log(π

(s)
ij )

−(Xij − Sij) log(1− Sij/Xij)− Sij log(Sij/Xij)
}
+ f2(Θ, ϕ;B(s)).

This estimating equation is not linear in terms of the unknown methylated counts S. Thus,

replacing Sij by η⋆ij = E (Sij | Yij;B⋆,Θ⋆) does not necessarily provide an accurate estimate

for ES|Y ;Θ⋆,B⋆(∇ϕLaplace(Θ, ϕ;B(s),S)), and the exact expression for this expectation is not

readily available from the first two moments of the distribution of Sij.

The relation between ϕY
ij and ϕ

All the expectation and variance in this section are conditional on the values of random

effects ui. For notational simplicity, we drop ui from all the derivations in this section.

The variance of Yij depends on its mean πY
ij as well as the joint probability P(Yijk = 1, Yijk′ =

1), i.e. observing methylated signals at both the kth and k′th reads, where k, k′ = 1, 2, . . . Xij

153



and k ̸= k′:

Var(Yij) = E(Y 2
ij)− [E(Yij)]

2 = E

⎧⎨⎩
⎛⎝Xij∑

k=1

Yijk

⎞⎠2⎫⎬⎭−X2
ij(π

Y
ij )

2

=

Xij∑
k=1

E(Y 2
ijk) + 2

Xij∑
k=1

k−1∑
k′=1

E(YijkYijk′)−X2
ij(π

Y
ij )

2

= Xijπ
Y
ij −X2

ij(π
Y
ij )

2 + 2

Xij∑
k=1

k−1∑
k′=1

P(Yijk = 1, Yijk′ = 1). (B.2)

By the law of total probability, we have

P(Yijk = Yijk′ = 1) =
1∑

s1=0

1∑
s2=0

P(Sijk = s1, Sijk′ = s2)P(Yijk = Yijk′ = 1 | Sijk = s1, Sijk′ = s2).

Joint distribution of the bivariate outcomes (Sijk, Sijk′). Note that, under our as-

sumed mean-variance relationship in (4.3), Sijk and Sijk′ are not necessarily independent.

Define aijkk′ = P(Sijk = 1, Sijk′ = 1). The joint probability mass function of (Sijk, Sijk′) can

be thus written as

P(Sijk = 1, Sijk′ = 1) = aijkk′

P(Sijk = 1, Sijk′ = 0) = πij − aijkk′

P(Sijk = 0, Sijk′ = 1) = πij − aijkk′

P(Sijk = 0, Sijk′ = 0) = 1− 2πij + aijkk′.

We now can write the probability of observing two methylated reads as

P(Yijk = Yijk′ = 1) = p20(1− 2πij + aijkk′) + 2p0p1(πij − aijkk′) + p21aijkk′.

Here, we assume that given the true methylation states Sijk and Sijk′ , the observed methy-

lation states Yijk and Yijk′ are independent.
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Derive the values of aijkk′. From first principle, we can express the variance of Sij =∑Xij

k=1 Sijk,

Var(Sij) =

Xij∑
k=1

Var(Sijk) + 2

Xij∑
k=1

k−1∑
k′=1

Cov(Sijk, Sijk′)

= Xijπij(1− πij) + 2

Xij∑
k=1

k−1∑
k′=1

E(SijkSijk′)− 2

Xij∑
k=1

k−1∑
k′=1

E(Sijk)E(Sijk′)

= Xijπij(1− πij) + 2

Xij∑
k=1

k−1∑
k′=1

P(Sijk = 1, Sijk′ = 1)−Xij(Xij − 1)π2
ij

= Xijπij(1− πij) + 2

Xij∑
k=1

k−1∑
k′=1

aijkk′ −Xij(Xij − 1)π2
ij.

On the other hand, we have Var(Sij) = ϕXijπij(1 − πij). Equating these two quantities

gives

2

Xij∑
k=1

k−1∑
k′=1

aijkk′ = (ϕ− 1)Xijπij(1− πij) +Xij(Xij − 1)π2
ij

Derive Var(Yij) and ϕY . Now, we can plug the expression of P(Yijk = Yijk′ = 1) in (B.2)

and write Var(Yij) in terms of ϕ

Var(Yij) = Xijπ
Y
ij −X2

ij(π
Y
ij )

2 + 2

Xij∑
k=1

k−1∑
k′=1

[
p20(1− 2πij + aijkk′) + 2p0p1(πij − aijkk′) + p21aijkk′

]
= Xijπ

Y
ij −X2

ij(π
Y
ij )

2 +Xij(Xij − 1)
{
p20(1− 2πij) + 2p0p1πij

}
+ 2(p0 − p1)

2

Xij∑
k=1

k−1∑
k′=1

aijkk′.

= Xijπ
Y
ij −X2

ij(π
Y
ij )

2 +Xij(Xij − 1)
{
p20(1− 2πij) + 2p0p1πij

}
+(p0 − p1)

2
{
(ϕ− 1)Xijπij(1− πij) +Xij(Xij − 1)π2

ij

}
= Xijπ

Y
ij (1− πY

ij ) + (p0 − p1)
2(ϕ− 1)Xijπij(1− πij)

The multiplicative dispersion parameter for the mis-measured outcome Y is thus

ϕY
ij =

Var(Yij)

XijπY
ij (1− πY

ij )
= 1 + (ϕ− 1)

πij(1− πij)

πY
ij (1− πY

ij )
(p0 − p1)

2.

155



Plugging in πij =
πY
ij − p0

p1 − p0
leads to the relation in (4.17).

B.2 Additional methods and materials

B.2.1 Existing methods used in the simulation

We compared the performance of our method with five existing methods: BiSeq (Hebestreit

et al., 2013), BSmooth (Hansen et al., 2012), SMSC (Lakhal-Chaieb et al., 2017), dmrseq

(Korthauer et al., 2018) and GlobalTest (Goeman et al., 2006), in terms of type I error and

power. BSmooth, SMSC, Biseq are typical examples of two-stage analytic approaches. In the

first stage, kernel smoothing (local likelihood estimation) is applied to the methylation data

of each sample separately. In the second stage, the smoothed methylation data are further

analyzed. Specifically, BiSeq calculates the average of Wald statistics from single-site beta

regression models, while BSmooth and SMSC calculate the sum of t-statistics across loci; these

statistics are used to test for differential methylation of a region. In contrast, dmrseq and

GlobalTest are one-stage approaches which fit their models directly to the raw methylation

proportions in a region. Specifically, dmrseq assesses the strength of the covariate effect using

a Wald test statistic within a generalized least square regression model, while GlobalTest

uses an improved score test in a linear regression model.

Notably, like SOMNiBUS, both GlobalTest and BiSeq are primarily tailored to targeted bisul-

fite sequencing data with previously identified regions, whereas BSmooth, SMSC and dmrseq

are designed for WGBS data. Specifically, BSmooth and SMSC define DMRs at adjacent CpG

sites with absolute t-statistics above a defined threshold. The final product from the original

software of BSmooth is a list of DMRs that are ranked by the sum of t-statistics; however,

BSmooth does not provide region-based p-values. To allow comparisons with SOMNiBUS, we

estimated the empirical regional p-values for BSmooth by permuting the values of the covari-
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ate of interest 1000 times. When analyzing WGBS data, dmrseq first constructs candidate

regions based on a user-defined cutoff of the smoothed methylation proportion differences,

and then fits a generalized least squares regression model with autoregressive error structure

to the transformed methylation proportions. Furthermore, the inference inside dmrseq is

drawn from permutations – its approximate null distribution is generated by pooling a set

of region-level statistics of many candidate regions from all permutations. To better adapt

dmrseq to a single targeted region: i) we used a small cutoff of methylation differences (10−5)

for detecting candidate (sub)regions, which ensures that most CpGs are retained; ii) we ap-

plied a relatively large number of permutations (B = 500) to generate a null distribution of

test statistics; iii) we reported the raw p-values without the multiplicity corrections. Note

that in some simulations, dmrseq reported more than one DMR in the region. Therefore, for

a fairer comparison, we calculated the dmrseq’s p-value as the minimum over the reported

chunks’ p-values. Among the five competitive methods, dmrseq, GlobalTest and BiSeq

allow adjustment for multiple covariates. SMSC is the only approach accounting for experi-

mental errors; however, it is conceptually restricted to data from a single cell type.

B.3 Additional data example results

data 1
(N =116 )

data 2
(N = 102)

ACPA Positives 55 48
ACPA Negatives 61 54
Number of targeted regions
(with at least 50 CpGs) 10,759 12,985

Table B.1: Sample characteristics in dataset 1 and 2.

B.4 Additional simulation results
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Figure B.1: Distribution of ACPA levels in dataset 1 and 2.
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Figure B.3: The read-depth pattern used in the simulation. Median read depths were calcu-
lated for one targeted region that underwent bisulfite sequencing in a dataset described in
(Zhao et al., 2020, Section 3). For the simulation, we then fit a cubic spline with 10 knots
to the median read depths.
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Figure B.4: The 15 simulation settings of functional parameters β0(t) and β1(t) in Scenario
2, which correspond to the 15 settings for π0(t) shown in Figure 6 in the main manuscript.
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Figure B.5: Empirical coverage probability of the analytical 95% pointwise CIs for β3(t) over
1000 simulations, under different vales of ϕ and σ2

0. The empirical coverage probabilities are
defined as the percentage of simulations where the analytical CIs cover the true value of
β3(t). Data were generated without error, under simulation Scenario 1. The results from
dSOMNiBUS and the additive-dispersion-only model are indistinguishable in all settings but
σ2
0 = 0 and ϕ = 3.
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Figure B.6: QQ plot for regional p-values for the test H0 : β3(t) = 0, obtained from dSOM-
NiBUS, the multiplicative-dispersion-only model and the additive-dispersion-only model.
Data were simulated without error, under simulation Scenario 1. When ϕ = 1, the re-
sults from dSOMNiBUS and the additive-dispersion-only model are indistinguishable. When
σ2
0 = 0, the lines for the multiplicative-dispersion-only model and dSOMNiBUS are indistin-

guishable.
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Figure B.7: QQ plot for regional p-values for the test H0 : β3(t) = 0, obtained from dSOM-
NiBUS, GlobalTest, dmrseq, BSmooth, SMSC, and BiSeq. Data were simulated without
error, under simulation Scenario 1, and ϕ was estimated using the moment-based estimator.
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Figure B.8: Powers to detect DMRs using the six methods for the 14 simulation settings in
Scenario 2 under different levels of maximum methylation differences between π0(t) and π1(t)
in the region, calculated over 100 simulations. Data were simulated without error, under
simulation Scenario 1, and ϕ was estimated using the moment-based estimator.
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Figure B.9: Moment-based (ϕ̂Fle) and likelihood-based (ϕ̂Lik) estimates of the multiplicative
dispersion parameter ϕ. Data were simulated without error, under simulation Scenario 1.
There is less bias in ϕ̂Fle than ϕ̂Lik.
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Figure B.10: QQ plot for regional p-values for the test H0 : β3(t) = 0, obtained from
dSOMNiBUS using the moment-based dispersion estimator ϕ̂Fle and the likelihood-based
dispersion estimator ϕ̂Lik. Data were simulated without error, under simulation Scenario 1.
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φ̂Y

(B) ϕ = 3
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Figure B.11: Scatter plots of the estimated constant dispersion ϕ̂Y and the mean of the truth
of individual dispersion ϕY

ij . Data were generated with errors p0 = 0.003 and 1 − p1 = 0.1,
and ϕ = 1 (A) or ϕ = 3 (B). Here ϕ̂Y denotes the estimated dispersion parameter when
ignoring the presence of error, and individual ϕY

ijs are calculated from equation (4.17) using
the true πij, ϕ, p0 and p1 that were used to simulate the data. ϕ̂Y can be roughly viewed as
an estimate of the average of individual dispersion ϕY

ij .
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Appendix C

Supporting Information for Chapter 5

This Supporting Information includes detailed derivations, proofs, and additional simulation

results.

C.1 Natural cubic spline and its sparsity-penalty matrix

Ω(1)

Splines are polynomial pieces jointed at certain values (i.e. knots). Cubic spline is the most

commonly used one, which is represented by piecewise cubic polynomial with continuous

first and second derivatives at the knots. To avoid erratic behaviors (high variance) of cubic

fit near the boundaries, a natural cubic spline adds additional constrains that the function

is linear beyond the two end-points. In this work, we use natural cubic regression spline to

represent the functional parameters βp(tij). Without loss of generality, we drop the subscript

p from the notations here and consider defining a natural cubic spline function β(t), with K

given knots, t1, t2, . . . tK .

There are many equivalent bases definitions that can be used to expand the cubic spline
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β(t). We adopt the basis used in the R package mgcv (Wood, 2017), where the spline is

parameterized in terms of its values at the knots. One advantage of this basis definition

is that it does not require any re-scaling of the predictor variable t. Let θj = β(tj) and

δj = β′′(tj), j = 1, 2, . . . K. Then the spline β(t) can be written as

β(t) = a−j (t)θj + a+j (t)θj+1 + c−j (t)δj + c+j (t)δj+1, if tj ≤ t ≤ tj+1. (C.1)

Let hj = tj+1 − tj, the ‘basis’ functions a−j , a
+
j , c

−
j and c+j in (C.1) are defined as

a−j (t) =
tj+1 − t

hj

, c−j (t) =
1

6

[
(tj+1 − t)3

hj

− hj(tj+1 − t)

]
,

a+j (t) =
t− tj
hj

, c+j (t) =
1

6

[
(t− tj)

3

hj

− hj(t− tj)

]
. (C.2)

As explained in Section 2.3, a core part in the sparsity-penalty is the squared L2-norm of the

function β(t), which can be written as a quadratic form in terms of θ and penalty matrix

Ω(1), ∫ tK

t1

(β(t))2 dt = θTΩ(1)θ.

In the rest of this section, Ω(1) is derived under the basis representation in (C.1).

C.1.1 Relation between spline values θ and their second derivatives

δ

The conditions that the spline should be continuous to second derivatives, at each interior

knots tj, and have zero second derivative at t1 and tK imply a deterministic relation between

function values θ = (θ1, . . . θK) and second derivatives δ = (δ1, . . . , δK),

δ = Fθ. (C.3)
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The mapping matrix F ∈ RK×K takes the form

F =

⎡⎢⎢⎢⎢⎣
0

B−1D

0

⎤⎥⎥⎥⎥⎦ , (C.4)

where matrices B ∈ R(K−2)×(K−2) and D ∈ R(K−2)×K have non-zero elements,

Di,i =
1

hi

, Di,i+1 = −
1

hi

− 1

hi+1

, Di,i+2 =
1

hi+1

Bi,i =
hi + hi+1

3
, i = 1, . . . k − 2

Bi,i+1 =
hi+1

6
Bi+1,i =

hi+1

6
i = 1, . . . k − 3.

The detailed derivation for (C.4) can be found in (Wood, 2017, Section 5.3.1). Thus, the

expansion in (C.1) can be rewritten entirely in terms of θ as

β(t) = a−j (t)θj + a+j (t)θj+1 + c−j (t)Fjθ + c+j (t)Fj+1θ, if tj ≤ t ≤ tj+1,

where Fj is the jth row of matrix F . The expansion can be further expressed in a more

compact way, β(t) =
∑K

i=1 bi(t)θi, where basis functions bi(t) are

bi(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a+i−1(t) + c−i−1(t)Fi−1,i + c+i−1(t)Fi,i if ti−1 ≤ t ≤ ti

a−i (t) + c−i (t)Fi,i + c+i Fi+1,i if ti ≤ t ≤ ti+1

c−k (t)Fk,i + c+k Fk+1,i if tk ≤ t ≤ tk+1, and k ̸= i or i− 1.

(C.5)

Writing b(t) as the vector with ith element bi(t), it is easy to show that

∫ tK

t1

(β(t))2 dt = θT

{∫ tK

t1

b(t)b(t)Tdt

}
θ,
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which immediately implies Ω(1) =
∫ tK
t1

b(t)b(t)Tdt. However, it is quite complicated, al-

though possible, to evaluate this integral analytically, because bi(t) takes non-zero values in

each of the intervals between two knots. To mitigate the problem, instead of working on the

expansion solely in terms of θ, we seek to calculate the integral based on the expansion in

terms of both θ and δ, i.e. the expression in (C.1). Then, we can determine the sparsity

penalty matrix Ω(1) by transforming δ back to θ.

C.1.2 L2-norm of a natural cubic spline

Theorem 3. Suppose β(t) is a natural cubic spline function, with K knots at t1, t2, . . . tK,

and basis expansion defined in (C.1). We have the following result for the L2-norm of β(t),

∥β(t)∥22 =
∫ tK

t1

(β(t))2 dt = θTΩ(1)θ.

Here θ is a vector with basis coefficients for θj = β(tj), for j = 1, 2, . . . K and Ω(1) takes the

form

Ω(1) = A11 + F TA12
T +A12F + F TA22F .

Specifically, A11,A12,A22 ∈ RK×K are tri-diagonal matrices with elements defined in Ta-

ble C.1, and F is the matrix mapping the function values at the knots onto their second

derivatives, as given in (C.4).

Proof. The basis expansion of β(t) in (C.1) can be re-expressed as

β(t) =
K∑
i=1

di(t)θi +
K∑
i=1

ei(t)δi,

where the sets of ‘basis’ functions di(t) and ei(t) are defined in the Table C.2

Evaluating the integral involving di(t) and ei(t) is much easier compared to evaluating bi(t),
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Table C.1: Elements in the tri-diagonal matrices A11,A12,A22 ∈ RK , which are used to
define the L2-norm of natural cubic spline. hi = ti+1 − ti.

(1, 1) (i, i), i = 2, 3, . . . K − 1) (K,K) (i, i− 1) and (i− 1, i)

A11
h1

3

hi−1

3
+

hi

3

hK−1

3

hi−1

6

A12 −h3
1

45
−
h3
i−1

45
− h3

i

45
−
h3
K−1

45
− 7

360
h3
i−1

A22
4

315
h5
1

4

315

(
h5
i−1 + h5

i

) 4

315
h5
K−1

31

15120
h5
i−1

Table C.2: Definitions of basis functions di(t) and ei(t) used to define a natural cubic regres-
sion spline β(t).

i = 1 i = 2, 3, . . . K − 1 i = K

di(t) = a−1 (t)1(t1 ≤ t ≤ t2)
a+i−1(t) if ti−1 ≤ t ≤ ti
a−i (t) if ti ≤ t ≤ ti+1

0 otherwise
a+K−1(t)1(tK−1 ≤ t ≤ tK)

ei(t) = c−1 (t)1(t1 ≤ t ≤ t2)
c+i−1(t) if ti−1 ≤ t ≤ ti
c−i (t) if ti ≤ t ≤ ti+1

0 otherwise
c+K−1(t)1(tK−1 ≤ t ≤ tK)

because di(t) and ei(t) are non-zero over no more than 2 consecutive intervals.

Concatenate the coefficients vectors θ and δ into a 2K− dimensional vector α = (θ, δ)T and

define q(t) as the basis vector joining di(t) and ei(t), q(t) = (d1(t), . . . dK(t), e1(t), . . . eK(t))
T .

We can thus rewrite the L2-norm of β(t) as

∫ tK

t1

(β(t))2 dt = αT

∫ tK

t1

q(t)q(t)Tdt α. (C.6)

It is clear that
∫ tK
t1

q(t)q(t)Tdt is symmetric, by construction, and consists of four blocks,
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A11,A12,A
T
12 and A22, as defined below,

∫ tK

t1

q(t)q(t)Tdt =

⎡⎢⎣∫ tK
t1

d(t)d(t)Tdt
∫ tK
t1

d(t)e(t)Tdt∫ tK
t1

e(t)d(t)Tdt
∫ tK
t1

e(t)e(t)Tdt

⎤⎥⎦ :=

⎡⎢⎣A11 A12

AT
12 A22

⎤⎥⎦ .

Calculating A11 A11 is tri-diagonal because each di(t) is non-zero over only 2 intervals.

The ith leading diagonal element, for i = 2, . . . K − 1, is given by

[A11]i,i =

∫ tK

t1

di(t)
2dt =

∫ ti

ti−1

(
t− ti−1

hi−1

)2

dt+

∫ ti+1

ti

(
ti+1 − t

hi

)2

dt

=
(t− ti−1)

3

3h2
i−1

⏐⏐⏐⏐ti
ti−1

− (ti+1 − t)3

3h2
i

⏐⏐⏐⏐ti+1

ti

=
hi−1

3
+

hi

3
.

The first and last leading diagonal elements are

[A11]1,1 =
h1

3
and [A11]K,K =

hK−1

3
.

Similarly, the off-diagonal elements [A11](i−1,i) and [A11](i,i−1), where i = 2, . . . K, are given

by ∫ tK

t1

di(t)di−1(t)dt =

∫ ti

ti−1

a+i−1(t)a
−
i−1(t)dt =

∫ ti

ti−1

(
t− ti−1

hi−1

)(
ti − t

hi−1

)
dt =

hi−1

6
.
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Calculating A12 A12 is also tri-diagonal because both di(t) and ei(t) are non-zero over

only 2 intervals. The ith leading diagonal element, for i = 2, . . . K − 1, is given by

[A12]i,i =

∫ tK

t1

di(t)ei(t)dt =

∫ ti

ti−1

a+i−1(t)c
+
i−1(t)dt+

∫ ti+1

ti

a−i (t)c
−
i (t)dt

=

∫ ti

ti−1

(
t− ti−1

hi−1

)
1

6

[
(t− ti−1)

3

hi−1

− hi−1(t− ti−1)

]
dt

+

∫ ti+1

ti

(
ti+1 − t

hi

)
1

6

[
(ti+1 − t)3

hi

− hi(ti+1 − t)

]
dt

= −
h3
i−1

45
− h3

i

45

The first and last leading diagonal elements of A12 are given by

[A12]1,1 = −
h3
1

45
and [A12]K,K = −

h3
K−1

45
.

Similarly, the off-diagonal elements [A12](i−1,i) and [A12](i,i−1), where i = 2, . . . K, where

i = 2, . . . K can be obtained as

[A12](i,i−1) =

∫ tK

t1

di(t)ei−1(t)dt =

∫ ti

ti−1

a+i−1(t)c
−
i−1(t)dt+

=

∫ ti

ti−1

(
t− ti−1

hi−1

)
1

6

[
(ti − t)3

hi−1

− hi−1(ti − t)

]
dt

=

∫ ti

ti−1

(t− ti−1) (ti − t)3

6h2
i−1

dt−
∫ ti

ti−1

(t− ti−1) (ti − t)

6
dt

=
h3
i−1

120
−

h3
i−1

36
= − 7

360
h3
i−1
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[A12](i−1,i) =

∫ tK

t1

di−1(t)ei(t)dt =

∫ ti

ti−1

a−i−1(t)c
+
i−1(t)dt+

=

∫ ti

ti−1

(
ti − t

hi−1

)
1

6

[
(t− ti−1)

3

hi−1

− hi−1(t− ti−1)

]
dt

=

∫ ti

ti−1

(t− ti−1)
3 (ti − t)

6h2
i−1

dt−
∫ ti

ti−1

(t− ti−1) (ti − t)

6
dt

=
h3
i−1

120
−

h3
i−1

36
= − 7

360
h3
i−1

Calculating A22 The ith leading diagonal element of A22 , for i = 2, . . . K− 1, is given by

[A22]i,i =

∫ tK

t1

ei(t)
2dt =

∫ ti

ti−1

c+i−1(t)
2dt+

∫ ti+1

ti

c−i (t)
2dt

=

∫ ti

ti−1

{
1

6

[
(t− ti−1)

3

hi−1

− hi−1(t− ti−1)

]}2

dt

+

∫ ti+1

ti

{
1

6

[
(ti+1 − t)3

hi

− hi(ti+1 − t)

]}2

dt

=
4

315

(
h5
i−1 + h5

i

)
The first and last leading diagonal elements of A12 are given by

[A12]1,1 =
4

315
h5
1 and [A12]K,K =

4

315
h5
K−1.
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Similarly, the off-diagonal elements [A22](i−1,i) and [A22](i,i−1), where i = 2, . . . K, where

i = 2, . . . K can be obtained as

[A22](i,i−1) = [A22](i−1,i) =

∫ tK

t1

ei(t)ei−1(t)dt

=

∫ ti

ti−1

c+i−1(t)c
−
i−1(t)dt+

=

∫ ti

ti−1

1

6

[
(t− ti−1)

3

hi−1

− hi−1(t− ti−1)

]
1

6

[
(ti − t)3

hi−1

− hi−1(ti − t)

]
dt

=
31

15120
h5
i−1

Re-express the L2-norm of β(t) Using the relation between θ and δ, δ = Fθ, we can

re-express the L2-norm in (C.6) as

∫ tK

t1

(β(t))2 dt = (θT ,θTF T )

⎡⎢⎣A11 A12

AT
12 A22

⎤⎥⎦ (θ,Fθ)

= θT
(
A11 + F TA12

T +A12F + F TA22F
)
θ.

Therefore, the sparsity-penalty matrix Ω(1) is given by A11 +F TA12
T +A12F +F TA22F .

This completes the proof.

C.1.3 Natural cubic spline and its smoothness-penalty matrix Ω(2)

As derived in (Wood, 2017, Section 5.3.1), the unscaled smoothness-penalty matrix takes

the form

Ω(2)/M2 = DTB−1D,

which can be readily extracted using smooth.construct.cr() from mgcv package.
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C.2 Subgradient of h(θ) =
√
θTHθ, h : RK → R

When θ ̸= 0, the subgradient of h(θ) coincides with its gradient, and we have

∂h(θ) =
Hθ√
θTHθ

, for θ ̸= 0.

By the definition, a subgradient of h(·) at 0 is any g ∈ RK such that,

h(θ) ≥ h(0) + gTθ, ∀θ ∈ RK ,

which implies √
θTHθ ≥ gTθ ∀θ ∈ RK .

Write the Cholesky decomposition of positive semidefinite matrix H as H = LTL, where

L is an upper triangular matrix with positive diagonal entries. Define x = Lθ ∈ RK , then

we have

θTHθ = θTLTLθ = xTx = ∥x∥22.

Thus, the set of subgradients ∂h(0) can be rewritten as

{
g ∈ RK :

gTθ

∥x∥2
≤ 1 ∀θ ∈ RK .

}
.

We can also rewrite the inner product gTθ in terms of x,

gTθ = gTL−1x =
[(
L−1

)T
g
]T

x.

By the Cauchy-Schwarz inequality, we have

[(
L−1

)T
g
]T

x ≤ ∥
(
L−1

)T
g∥2∥x∥2 =

√
gTL−1

(
L−1

)T
g · ∥x∥2 =

√
gTH−1g · ∥x∥2,
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for ∀x ∈ RK . In other words, we have derived the upper bound of
gTθ√
θTHθ

for any θ as√
gTH−1g. Therefore, the subgradient of h(θ) at 0 is the set

∂h(0) =

{
g ∈ RK :

√
gTH−1g ≤ 1

}
.

C.3 Additional simulation results

Table C.3: A catalogue of all the simulation results

Evaluation themes Examples & Settings Results
Methods: SSP, SSP0, gLASSO, and GAM

Estimation

Example 1 (P = 100, ρ = 0) Table 5.2; Figures C.1-C.4
Example 1 (P = 100, ρ = 0.3) Table C.4
Example 1 (P = 100, ρ = 0.7) Table C.5
Example 1 (P = 1000) Table C.14
Example 2 Table C.13; Figures C.5-C.8
Examples 3 and 4 Table C.16; Table C.17; Table C.18

Prediction Examples 1 and 2 Table 5.3; Table C.8
Examples 3 and 4 Table C.15

Selection Examples 1 and 2 Table 5.4
Examples 3 and 4 Table 5.5

Methods: aSSP, aSSP0, agLASSO — the adaptive versions
Estimation Example 1 (P = 100, ρ = 0) Table C.6
Prediction Example 1 (P = 100, ρ = 0) Table C.9
Selection Example 1 (P = 100, ρ = 0) Table C.11
Methods: SSP1SE, SSP01SE, gLASSO1SE — with the 1-SE-rule
Estimation Example 1 (P = 100, ρ = 0) Table C.7
Prediction Example 1 (P = 100, ρ = 0) Table C.10
Selection Example 1 (P = 100, ρ = 0) Table C.12
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Figure C.1: SSP estimates of the first 6 varying coefficients (gray) in Example 1 (P =
100, ρ = 0) over 100 simulation runs. The red curves are the truth.

Table C.4: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 10 varying coefficients of Example 1 (P = 100, ρ =
0.3), using SSP, SSP0, group LASSO and GAM.

IBIAS2 IVAR IMSE
SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

β1(t) 0.223 0.421 0.554 3.245 0.243 0.374 0.460 5.150 0.466 0.795 1.014 8.395
β2(t) 0.744 1.280 1.264 1.425 0.264 0.318 0.320 3.561 1.008 1.597 1.584 4.986
β3(t) 0.532 0.987 0.980 7.943 0.273 0.410 0.449 9.100 0.805 1.396 1.429 17.043
β4(t) 0.679 0.905 0.977 0.459 0.176 0.203 0.210 2.745 0.856 1.108 1.187 3.205
β5(t) 0.900 0.798 0.882 0.344 0.354 0.422 0.428 3.491 1.254 1.220 1.310 3.835
β6(t) 1.0e-03 1.3e-03 1.4e-03 1.2e-02 1.5e-02 1.6e-02 1.8e-02 1.654 1.6e-02 1.8e-02 1.9e-02 1.665
β7(t) 9.3e-04 1.0e-03 9.6e-04 4.3e-02 9.4e-03 1.2e-02 1.1e-02 2.646 1.0e-02 1.3e-02 1.2e-02 2.689
β8(t) 1.7e-03 1.7e-03 1.5e-03 2.8e-02 1.4e-02 1.7e-02 1.8e-02 1.851 1.6e-02 1.8e-02 1.9e-02 1.879
β9(t) 3.7e-04 5.0e-04 6.2e-04 2.2e-02 8.0e-03 1.1e-02 1.1e-02 2.611 8.3e-03 1.2e-02 1.1e-02 2.633
β10(t) 1.4e-03 1.6e-03 1.4e-03 2.0e-02 1.6e-02 1.8e-02 1.8e-02 3.177 1.7e-02 1.9e-02 1.9e-02 3.197
†∑100

1 3.097 4.412 4.676 16.374 2.031 2.536 2.600 251.761 5.128 6.948 7.276 268.135
†: sum of the estimation measures across the 100 varying coefficients
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Figure C.2: SSP0 estimates of the first 6 varying coefficients (gray) in Example 1 (P =
100, ρ = 0) over 100 simulation runs. The red curves are the truth.

Table C.5: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 10 varying coefficients of Example 1 (P = 100, ρ =
0.7), using SSP, SSP0, group LASSO and GAM.

IBIAS2 IVAR IMSE
SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

β1(t) 0.258 0.489 0.691 4.223 0.403 0.625 0.756 6.143 0.661 1.115 1.447 10.367
β2(t) 0.916 1.521 1.528 1.192 0.305 0.372 0.383 4.842 1.221 1.894 1.911 6.034
β3(t) 0.710 1.269 1.317 7.269 0.347 0.529 0.572 11.026 1.056 1.799 1.890 18.295
β4(t) 0.917 1.109 1.108 0.755 0.204 0.223 0.231 4.967 1.121 1.332 1.340 5.722
β5(t) 1.177 0.968 1.137 0.333 0.548 0.632 0.631 4.914 1.725 1.601 1.768 5.248
β6(t) 3.6e-03 4.7e-03 4.2e-03 1.1e-01 1.9e-02 2.5e-02 2.5e-02 4.389 2.3e-02 2.9e-02 2.9e-02 4.497
β7(t) 2.5e-03 3.1e-03 2.8e-03 2.8e-02 1.5e-02 2.1e-02 2.0e-02 4.244 1.7e-02 2.4e-02 2.3e-02 4.273
β8(t) 4.3e-03 5.1e-03 3.9e-03 9.5e-02 2.5e-02 3.2e-02 2.6e-02 2.102 2.9e-02 3.7e-02 3.0e-02 2.197
β9(t) 1.2e-03 2.4e-03 2.8e-03 1.7e-01 1.7e-02 2.3e-02 2.0e-02 3.504 1.9e-02 2.5e-02 2.3e-02 3.674
β10(t) 3.1e-03 4.1e-03 3.9e-03 7.0e-02 2.1e-02 2.5e-02 2.3e-02 2.432 2.4e-02 2.9e-02 2.7e-02 2.501
†∑100

1 4.022 5.415 5.840 17.318 2.661 3.342 3.438 359.066 6.684 8.757 9.278 376.385
†: sum of the estimation measures across the 100 varying coefficients
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Figure C.3: Group LASSO estimates of the first 6 varying coefficients (gray) in Example
1 (P = 100, ρ = 0) over 100 simulation runs. The red curves are the truth.

Table C.6: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 10 varying coefficients of Example 1 (P = 100, ρ = 0),
using the adaptive SSP, SSP0, and group LASSO.

IBIAS2 IVAR IMSE
aSSP aSSP0 aSSP-fixα‡ agLASSO aSSP aSSP0 aSSP-fixα agLASSO aSSP aSSP0 aSSP-fixα agLASSO

β1(t) 0.022 0.033 0.023 0.029 0.248 0.371 0.239 0.412 0.270 0.404 0.262 0.442
β2(t) 0.090 0.264 0.078 0.377 0.245 0.358 0.226 0.355 0.335 0.623 0.304 0.732
β3(t) 0.037 0.085 0.035 0.080 0.299 0.453 0.283 0.486 0.336 0.539 0.318 0.566
β4(t) 0.161 0.297 0.165 0.467 0.246 0.325 0.247 0.323 0.407 0.622 0.412 0.790
β5(t) 0.214 0.126 0.257 0.180 0.341 0.384 0.377 0.439 0.555 0.510 0.634 0.619
β6(t) 1.1e-04 1.6e-04 1.1e-04 1.4e-04 1.6e-02 1.4e-02 1.6e-02 1.4e-02 1.7e-02 1.5e-02 1.6e-02 1.4e-02
β7(t) 9.6e-05 9.5e-05 1.0e-04 3.6e-05 5.3e-03 3.8e-03 5.1e-03 5.0e-03 5.4e-03 3.9e-03 5.2e-03 5.0e-03
β8(t) 8.3e-05 1.4e-04 9.4e-05 1.5e-04 1.0e-02 1.0e-02 1.1e-02 9.9e-03 1.1e-02 1.0e-02 1.1e-02 1.0e-02
β9(t) 4.9e-05 3.9e-05 4.6e-05 1.1e-04 8.0e-03 5.1e-03 7.5e-03 8.4e-03 8.1e-03 5.2e-03 7.5e-03 8.5e-03
β10(t) 7.9e-05 1.7e-05 9.7e-05 7.1e-05 8.4e-03 2.8e-03 8.7e-03 5.9e-03 8.5e-03 2.8e-03 8.8e-03 6.0e-03
†∑100

1 0.533 0.812 0.565 1.142 2.191 2.536 2.177 2.833 2.723 3.348 2.742 3.975
†: sum of the estimation measures across the 100 varying coefficients.
‡: adaptive SSP with fix α. Here we use the α selected by the ordinary SSP method and only tune the values of λ.
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Figure C.4: GAM estimates of the first 6 varying coefficients (gray) in Example 1 (P =
100, ρ = 0) over 100 simulation runs. The red curves are the truth.

Table C.7: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 10 varying coefficients of Example 1 (P = 100, ρ = 0),
using the 1 SE rule for SSP, SSP0, and group LASSO.

IBIAS2 IVAR IMSE
SSP1SE SSP01SE gLASSO1SE SSP1SE SSP01SE gLASSO1SE SSP1SE SSP01SE gLASSO1SE

β1(t) 1.142 1.593 1.872 0.195 0.278 0.348 1.337 1.871 2.220
β2(t) 2.356 2.881 2.358 0.199 0.208 0.213 2.556 3.089 2.570
β3(t) 2.198 3.019 2.829 0.374 0.512 0.575 2.571 3.531 3.404
β4(t) 1.513 1.584 1.562 0.080 0.080 0.079 1.593 1.663 1.641
β5(t) 3.186 2.879 2.656 0.390 0.419 0.423 3.576 3.298 3.079
β6(t) 4.1e-07 6.4e-07 7.5e-06 4.5e-04 2.2e-04 7.4e-04 4.5e-04 2.2e-04 7.5e-04
β7(t) 4.7e-07 5.9e-06 1.3e-06 4.7e-05 5.9e-04 1.3e-04 4.7e-05 5.9e-04 1.3e-04
β8(t) 2.6e-08 1.0e-06 1.4e-06 5.1e-06 8.6e-05 1.6e-04 5.1e-06 8.7e-05 1.7e-04
β9(t) 3.1e-11 4.0e-07 4.3e-08 3.1e-09 1.4e-04 4.3e-06 3.1e-09 1.4e-04 4.3e-06
β10(t) 0.0e+00 4.3e-07 5.2e-07 0.0e+00 4.1e-05 2.2e-04 0.0e+00 4.2e-05 2.2e-04∑100

1 10.396 11.956 11.276 1.265 1.532 1.678 11.661 13.489 12.954
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Figure C.5: SSP estimates of the first 6 varying coefficients (gray) in Example 2 (P =
100, ρ = 0) over 100 simulation runs. The red curves are the truth.

Table C.8: Average values of the CorRaw and CorTrans over 100 simulations for simulation
Examples 1 and 2. Standard deviations are given in parentheses.

CorRaw CorTrans
ρ SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

Example 1 (smooth, Ptrue = 5, P = 100)
0 0.790(0.020) 0.788(0.020) 0.787(0.020) 0.552(0.111) 0.769(0.020) 0.766(0.020) 0.765(0.020) 0.542(0.109)

0.3 0.789(0.018) 0.787(0.018) 0.786(0.018) 0.528(0.145) 0.773(0.019) 0.771(0.019) 0.770(0.019) 0.526(0.144)
0.7 0.789(0.017) 0.788(0.017) 0.787(0.017) 0.525(0.147) 0.780(0.017) 0.778(0.018) 0.778(0.017) 0.533(0.144)
Example 1 (smooth, Ptrue = 5, P = 1000)

0 0.788(0.019) 0.785(0.020) 0.783(0.020) NA 0.766(0.019) 0.763(0.020) 0.761(0.021) NA
0.3 0.789(0.015) 0.787(0.016) 0.786(0.015) NA 0.773(0.016) 0.770(0.016) 0.769(0.016) NA
Example 2 (nonsmooth, Ptrue = 5, P = 100)

0 0.655(0.019) 0.655(0.019) 0.658(0.019) 0.467(0.082) 0.658(0.023) 0.658(0.023) 0.661(0.021) 0.479(0.080)
0.3 0.669(0.019) 0.668(0.019) 0.670(0.020) 0.418(0.105) 0.669(0.022) 0.669(0.022) 0.670(0.023) 0.428(0.106)
Example 2 (nonsmooth, Ptrue = 5, P = 1000 )

0 0.645(0.024) 0.645(0.024) 0.648(0.025) NA 0.649(0.026) 0.648(0.026) 0.651(0.027) NA
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Figure C.6: SSP0 estimates of the first 6 varying coefficients (gray) in Example 2 (P =
100, ρ = 0) over 100 simulation runs. The red curves are the truth.

Table C.9: Average values of the deviance errors, RMSE CorRaw and CorTrans over 100
simulations using the adaptive SSP, SSP0 and gLASSO. Standard deviations are given in
parentheses.

Example 1 (smooth, Ptrue = 5, P = 100, ρ = 0)
Deviance RMSE

ρ aSSP aSSP0 aSSP-fixα agLASSO aSSP aSSP0 aSSP-fixα agLASSO
0 0.016(0.007) 0.020(0.008) 0.016(0.008) 0.023(0.010) 0.408(0.006) 0.409(0.007) 0.408(0.408) 0.410(0.007)

CorRaw CorTrans
aSSP aSSP0 aSSP-fixα agLASSO aSSP aSSP0 aSSP-fixα agLASSO

0 0.791(0.019) 0.790(0.019) 0.791(0.019) 0.790(0.019) 0.771(0.020) 0.770(0.020) 0.771(0.020) 0.769(0.020)
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Figure C.7: Group LASSO estimates of the first 6 varying coefficients (gray) in Example
2 (P = 100, ρ = 0) over 100 simulation runs. The red curves are the truth.

Table C.10: Average values of the deviance errors, RMSE CorRaw and CorTrans over 100
simulations using the the 1 SE rule for SSP, SSP0 and gLASSO. Standard deviations are
given in parentheses.

Example 1 (smooth, Ptrue = 5, P = 100, ρ = 0)
Deviance RMSE

ρ SSP1SE SSP01SE gLASSO1SE SSP1SE SSP01SE gLASSO1SE

0 0.060(0.028) 0.070(0.033) 0.070(0.032) 0.420(0.011) 0.422(0.012) 0.422(0.012)
CorRaw CorTrans

ρ SSP1SE SSP01SE gLASSO1SE SSP1SE SSP01SE gLASSO1SE

0 0.785(0.020) 0.783(0.021) 0.783(0.021) 0.762(0.021) 0.761(0.021) 0.760(0.021)

Table C.11: Average values of the number of TP and FP for simulation examples 1 and 2,
using the adaptive SSP, SSP0, and gLASSO. Standard deviations are given in parentheses.

Example 1 (smooth, Ptrue = 5, P = 100, ρ = 0)
TP FP

ρ aSSP aSSP0 aSSP-fixα agLASSO aSSP aSSP0 aSSP-fixα agLASSO
0 4.99(0.10) 4.98(0.14) 4.99(0.10) 4.95(0.22) 16.18(6.53) 15.56(5.38) 16.38(6.72) 15.97(4.79)
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Figure C.8: GAM estimates of the first 6 varying coefficients (gray) in Example 2 (P =
100, ρ = 0) over 100 simulation runs. The red curves are the truth.

Table C.12: Average values of the number of TP and FP for simulation examples 1 and
2, using the 1 SE rule for SSP, SSP0, and gLASSO. Standard deviations are given in
parentheses.

Example 1 (smooth, Ptrue = 5, P = 100, ρ = 0)
TP FP

ρ SSP1SE SSP01SE gLASSO1SE SSP1SE SSP01SE gLASSO1SE

0 4.58(0.61) 4.59(0.62) 4.68(0.55) 1.77(1.98) 3.10(3.29) 2.93(3.26)
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Table C.13: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 10 varying coefficients of Example 2 (non smooth),
using SSP, SSP0, group LASSO and GAM.

IBIAS2 IVAR IMSE
ρ SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

Example 2 (nonsmooth, P = 100)

0

β1(t) 3.641 3.698 3.353 4.095 0.235 0.234 0.208 1.839 3.876 3.931 3.562 5.934
β2(t) 4.874 4.900 4.956 4.949 0.235 0.242 0.264 1.553 5.109 5.142 5.220 6.501
β3(t) 4.460 4.248 4.030 3.794 0.315 0.301 0.321 1.741 4.775 4.548 4.352 5.535
β4(t) 3.089 3.463 2.969 2.734 0.352 0.382 0.302 3.495 3.441 3.845 3.271 6.230
β5(t) 0.385 0.438 0.534 3.977 0.296 0.316 0.294 3.626 0.682 0.754 0.828 7.603
β6(t) 1.7e-04 1.4e-04 6.3e-05 3.8e-02 1.4e-02 1.4e-02 9.6e-03 1.641 1.4e-02 1.4e-02 9.7e-03 1.679
β7(t) 7.2e-05 1.2e-04 1.4e-04 3.7e-02 8.6e-03 8.9e-03 8.4e-03 0.903 8.6e-03 9.1e-03 8.5e-03 0.940
β8(t) 1.6e-04 2.3e-04 2.1e-04 1.5e-02 1.3e-02 1.4e-02 1.1e-02 1.659 1.3e-02 1.4e-02 1.1e-02 1.674
β9(t) 1.1e-04 1.2e-04 1.3e-04 4.4e-02 9.2e-03 1.0e-02 5.9e-03 0.902 9.3e-03 1.0e-02 6.1e-03 0.946
β10(t) 4.6e-05 6.9e-05 4.7e-05 1.6e-03 1.1e-02 1.1e-02 5.9e-03 1.214 1.1e-02 1.1e-02 6.0e-03 1.215∑100

1 16.460 16.757 15.851 21.327 2.470 2.525 2.104 119.279 18.930 19.282 17.955 140.606

0.3

β1(t) 3.905 3.964 3.481 3.519 0.281 0.285 0.290 3.552 4.186 4.249 3.771 7.072
β2(t) 5.033 5.081 5.141 4.807 0.327 0.329 0.357 2.140 5.359 5.410 5.498 6.947
β3(t) 4.400 4.226 3.899 3.772 0.328 0.313 0.298 2.112 4.728 4.540 4.197 5.883
β4(t) 3.594 4.033 3.080 3.168 0.558 0.599 0.418 4.366 4.152 4.632 3.498 7.534
β5(t) 0.415 0.471 0.638 3.394 0.328 0.354 0.386 4.819 0.743 0.825 1.025 8.212
β6(t) 6.0e-04 6.1e-04 5.5e-04 5.3e-03 9.9e-03 9.5e-03 8.0e-03 1.799 1.0e-02 1.0e-02 8.6e-03 1.804
β7(t) 4.1e-04 4.2e-04 4.6e-04 4.4e-03 1.3e-02 1.2e-02 1.2e-02 1.700 1.3e-02 1.3e-02 1.2e-02 1.705
β8(t) 5.1e-04 4.1e-04 3.3e-04 5.0e-03 1.2e-02 1.1e-02 8.4e-03 1.338 1.3e-02 1.2e-02 8.7e-03 1.343
β9(t) 3.5e-04 3.9e-04 4.4e-04 6.1e-02 1.2e-02 1.3e-02 9.9e-03 1.513 1.2e-02 1.3e-02 1.0e-02 1.573
β10(t) 1.2e-03 1.2e-03 9.6e-04 1.5e-02 1.4e-02 1.4e-02 1.3e-02 1.797 1.5e-02 1.5e-02 1.4e-02 1.812∑100

1 17.368 17.797 16.255 20.825 2.940 2.974 2.522 175.293 20.308 20.770 18.777 196.118
Example 2 (nonsmooth, P = 1000)

0

β1(t) 4.283 4.358 4.001 NA 0.308 0.306 0.310 NA 4.591 4.664 4.311 NA
β2(t) 5.448 5.476 5.601 NA 0.357 0.366 0.392 NA 5.805 5.842 5.993 NA
β3(t) 4.975 4.752 4.464 NA 0.319 0.313 0.325 NA 5.293 5.066 4.789 NA
β4(t) 4.653 5.201 4.098 NA 0.585 0.603 0.539 NA 5.238 5.804 4.637 NA
β5(t) 1.035 1.112 1.250 NA 0.421 0.437 0.470 NA 1.456 1.550 1.720 NA
β6(t) 6.5e-06 6.1e-06 5.2e-06 NA 9.5e-04 8.1e-04 7.8e-04 NA 9.5e-04 8.1e-04 7.8e-04 NA
β7(t) 7.4e-06 5.5e-06 5.7e-06 NA 1.5e-03 1.7e-03 1.1e-03 NA 1.6e-03 1.7e-03 1.1e-03 NA
β8(t) 5.5e-06 3.3e-06 1.4e-06 NA 6.8e-04 7.2e-04 2.4e-04 NA 6.8e-04 7.2e-04 2.4e-04 NA
β9(t) 1.1e-05 1.0e-05 1.4e-05 NA 1.4e-03 1.3e-03 1.2e-03 NA 1.4e-03 1.3e-03 1.2e-03 NA
β10(t) 1.7e-05 1.7e-05 8.5e-06 NA 1.2e-03 1.4e-03 1.4e-03 NA 1.2e-03 1.4e-03 1.4e-03 NA∑1000

1 20.404 20.909 19.423 NA 2.910 2.940 2.784 NA 23.314 23.850 22.206 NA
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Table C.14: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 10 varying coefficients of Example 1 (P = 1000),
using SSP, SSP0, and group LASSO.

IBIAS2 IVAR IMSE
ρ SSP SSP0 gLASSO SSP SSP0 gLASSO SSP SSP0 gLASSO

0

β1(t) 0.947 1.362 1.560 0.409 0.539 0.641 1.356 1.901 2.201
β2(t) 1.356 1.960 1.845 0.284 0.292 0.310 1.641 2.252 2.156
β3(t) 1.345 2.013 2.113 0.586 0.745 0.802 1.931 2.757 2.915
β4(t) 0.966 1.241 1.365 0.134 0.116 0.104 1.100 1.357 1.469
β5(t) 1.898 2.233 2.261 0.343 0.407 0.401 2.241 2.640 2.662
β6(t) 8.7e-07 3.8e-06 2.6e-06 2.4e-04 5.1e-04 4.7e-04 2.4e-04 5.1e-04 4.8e-04
β7(t) 2.1e-06 1.4e-05 1.4e-05 9.7e-04 2.0e-03 1.4e-03 9.7e-04 2.0e-03 1.5e-03
β8(t) 5.3e-06 1.1e-05 1.1e-05 8.8e-04 1.0e-03 1.5e-03 8.9e-04 1.0e-03 1.5e-03
β9(t) 8.1e-06 7.4e-06 2.1e-05 6.6e-04 4.7e-04 7.0e-04 6.7e-04 4.8e-04 7.2e-04
β10(t) 9.6e-06 8.8e-06 5.7e-06 1.2e-03 7.1e-04 4.9e-04 1.3e-03 7.2e-04 4.9e-04∑1000

1 6.523 8.819 9.156 2.623 3.070 3.197 9.146 11.889 12.353

0.3

β1(t) 0.636 0.908 1.165 0.487 0.623 0.733 1.123 1.531 1.899
β2(t) 1.461 2.014 1.908 0.332 0.351 0.357 1.793 2.365 2.265
β3(t) 1.070 1.590 1.641 0.354 0.479 0.530 1.424 2.070 2.172
β4(t) 0.893 1.093 1.141 0.149 0.157 0.149 1.042 1.249 1.290
β5(t) 1.291 1.368 1.356 0.487 0.554 0.537 1.778 1.922 1.893
β6(t) 2.5e-04 3.7e-04 3.9e-04 2.8e-03 4.2e-03 4.7e-03 3.1e-03 4.5e-03 5.1e-03
β7(t) 3.4e-04 3.4e-04 2.1e-04 3.8e-03 4.5e-03 4.2e-03 4.1e-03 4.9e-03 4.4e-03
β8(t) 2.5e-04 4.2e-04 5.3e-04 7.6e-03 1.0e-02 1.4e-02 7.8e-03 1.1e-02 1.4e-02
β9(t) 2.0e-04 2.6e-04 2.8e-04 3.6e-03 4.8e-03 4.6e-03 3.8e-03 5.1e-03 4.9e-03
β10(t) 5.5e-04 7.5e-04 9.2e-04 6.3e-03 8.3e-03 9.6e-03 6.8e-03 9.1e-03 1.0e-02∑1000

1 5.360 6.984 7.224 2.493 2.950 3.100 7.853 9.934 10.324
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Table C.15: Average values of the deviance errors, RMSE, CorRaw and CorTrans over 100
simulations for simulation Examples 3 and 4. Standard deviations are given in parentheses.

Deviance RMSE
P Ptrue SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

50 5 0.049(0.021) 0.064(0.025) 0.063(0.023) 0.634(0.405) 0.405(0.009) 0.408(0.010) 0.409(0.010) 0.482(0.046)
10 0.148(0.047) 0.169(0.047) 0.162(0.041) 0.690(0.345) 0.429(0.013) 0.433(0.014) 0.431(0.013) 0.495(0.038)

100 5 0.071(0.032) 0.080(0.030) 0.077(0.023) 0.593(0.243) 0.412(0.010) 0.414(0.010) 0.414(0.010) 0.483(0.030)
10 0.190(0.069) 0.204(0.068) 0.194(0.050) 0.915(0.671) 0.438(0.016) 0.440(0.016) 0.439(0.014) 0.520(0.063)

150 5 0.072(0.030) 0.084(0.032) 0.083(0.028) 0.596(0.346) 0.413(0.011) 0.415(0.011) 0.414(0.010) 0.483(0.038)
10 0.192(0.068) 0.202(0.063) 0.192(0.047) 0.918(0.401) 0.439(0.018) 0.441(0.018) 0.439(0.016) 0.525(0.046)

200 5 0.087(0.040) 0.098(0.042) 0.092(0.035) 0.598(0.276) 0.415(0.012) 0.417(0.013) 0.416(0.011) 0.484(0.034)
10 0.236(0.104) 0.242(0.092) 0.227(0.070) 0.804(0.416) 0.444(0.021) 0.445(0.020) 0.443(0.018) 0.511(0.046)

1000 5 0.108(0.038) 0.115(0.036) 0.113(0.032) NA 0.415(0.010) 0.417(0.009) 0.417(0.009) NA
10 0.272(0.076) 0.272(0.073) 0.274(0.073) NA 0.447(0.018) 0.447(0.017) 0.447(0.017) NA

CorRaw CorTrans
P Ptrue SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

50 5 0.757(0.023) 0.753(0.023) 0.753(0.022) 0.634(0.079) 0.729(0.022) 0.725(0.022) 0.725(0.021) 0.608(0.079)
10 0.710(0.039) 0.703(0.039) 0.703(0.039) 0.569(0.087) 0.677(0.038) 0.669(0.038) 0.670(0.038) 0.542(0.084)

100 5 0.749(0.026) 0.747(0.026) 0.748(0.025) 0.616(0.067) 0.720(0.026) 0.717(0.025) 0.718(0.025) 0.588(0.065)
10 0.700(0.035) 0.695(0.036) 0.696(0.034) 0.521(0.136) 0.665(0.035) 0.659(0.035) 0.661(0.033) 0.493(0.131)

150 5 0.751(0.024) 0.749(0.023) 0.748(0.023) 0.633(0.051) 0.723(0.023) 0.720(0.022) 0.720(0.022) 0.606(0.050)
10 0.702(0.036) 0.699(0.035) 0.698(0.036) 0.513(0.113) 0.668(0.034) 0.664(0.033) 0.663(0.034) 0.487(0.108)

200 5 0.751(0.025) 0.749(0.025) 0.749(0.025) 0.630(0.065) 0.722(0.025) 0.719(0.024) 0.719(0.024) 0.601(0.063)
10 0.695(0.048) 0.692(0.048) 0.692(0.047) 0.533(0.102) 0.660(0.047) 0.657(0.046) 0.656(0.046) 0.505(0.098)

1000 5 0.747(0.027) 0.745(0.027) 0.745(0.027) NA 0.717(0.026) 0.716(0.026) 0.716(0.026) NA
10 0.683(0.047) 0.682(0.046) 0.679(0.045) NA 0.647(0.045) 0.646(0.044) 0.643(0.043) NA

Table C.16: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 5 varying coefficients of Examples 3 and 4 (N =
20, P = 50, 100), using SSP, SSP0, group LASSO and GAM.

IBIAS2 IVAR IMSE
P Ptrue SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM
50 5 0.568 0.870 1.090 2.426 3.0e-01 3.9e-01 4.2e-01 1.6e+00 0.868 1.256 1.512 4.048
50 5 1.480 2.165 2.083 1.359 5.8e-01 5.8e-01 5.9e-01 3.6e+00 2.057 2.744 2.675 4.977
50 5 0.584 0.946 1.091 1.709 4.2e-01 5.1e-01 5.4e-01 2.8e+00 1.005 1.451 1.627 4.477
50 5 0.921 1.169 1.290 0.308 2.9e-01 2.7e-01 2.3e-01 1.7e+00 1.211 1.441 1.523 2.017
50 5 0.864 1.152 1.241 0.160 2.9e-01 2.7e-01 2.3e-01 2.2e+00 1.156 1.419 1.470 2.387
50 10 0.829 1.058 1.174 1.662 6.7e-01 7.0e-01 7.0e-01 2.3e+00 1.499 1.760 1.872 3.986
50 10 1.530 2.066 2.075 2.016 7.5e-01 7.6e-01 7.0e-01 3.1e+00 2.283 2.828 2.775 5.083
50 10 0.974 1.212 1.317 1.216 7.4e-01 8.2e-01 8.2e-01 2.4e+00 1.712 2.028 2.138 3.650
50 10 1.047 1.191 1.301 0.319 3.6e-01 3.2e-01 2.7e-01 1.7e+00 1.403 1.514 1.568 2.033
50 10 0.974 1.172 1.316 0.206 4.4e-01 3.9e-01 3.4e-01 1.9e+00 1.417 1.565 1.654 2.071
100 5 1.200 1.402 1.554 3.159 4.4e-01 4.3e-01 4.3e-01 6.9e-01 1.644 1.832 1.984 3.848
100 5 1.563 2.280 2.189 3.557 5.6e-01 5.1e-01 5.2e-01 1.5e+00 2.121 2.790 2.706 5.025
100 5 1.045 1.392 1.500 3.480 5.1e-01 5.3e-01 5.5e-01 9.2e-01 1.551 1.920 2.049 4.403
100 5 1.129 1.412 1.513 0.281 2.0e-01 1.6e-01 1.5e-01 1.5e+00 1.330 1.567 1.665 1.815
100 5 1.289 1.515 1.603 0.474 1.7e-01 1.5e-01 1.2e-01 8.9e-01 1.464 1.661 1.719 1.361
100 10 1.878 2.048 2.203 2.964 4.7e-01 4.5e-01 4.3e-01 9.2e-01 2.349 2.493 2.631 3.880
100 10 1.460 1.955 1.998 3.284 7.6e-01 7.4e-01 6.8e-01 1.5e+00 2.215 2.697 2.677 4.798
100 10 1.656 1.904 2.071 2.517 6.2e-01 5.9e-01 5.7e-01 2.2e+00 2.272 2.499 2.640 4.766
100 10 1.329 1.519 1.621 0.647 2.5e-01 2.0e-01 1.8e-01 1.5e+00 1.580 1.715 1.801 2.117
100 10 1.391 1.542 1.634 0.461 2.3e-01 1.9e-01 1.5e-01 1.3e+00 1.619 1.734 1.788 1.728
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Table C.17: Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR) and Integrated
Mean Square Error (IMSE) of the first 5 varying coefficients of Examples 3 and 4 (N =
20, P = 150, 200, 1000), using SSP, SSP0, group LASSO and GAM.

IBIAS2 IVAR IMSE
P Ptrue SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM
150 5 1.326 1.638 1.849 3.720 3.6e-01 3.9e-01 3.9e-01 4.2e-01 1.684 2.027 2.238 4.144
150 5 1.818 2.566 2.501 3.287 4.3e-01 4.1e-01 4.2e-01 1.3e+00 2.249 2.981 2.922 4.610
150 5 1.314 1.678 1.817 3.623 5.6e-01 5.3e-01 5.4e-01 6.8e-01 1.879 2.212 2.352 4.299
150 5 1.464 1.647 1.726 0.614 1.5e-01 1.1e-01 8.7e-02 8.7e-01 1.611 1.760 1.813 1.483
150 5 1.266 1.531 1.585 0.460 2.0e-01 1.5e-01 1.3e-01 7.9e-01 1.467 1.678 1.717 1.249
150 10 2.311 2.473 2.531 3.117 3.8e-01 3.9e-01 4.1e-01 9.9e-01 2.695 2.863 2.940 4.106
150 10 1.853 2.460 2.514 3.619 6.1e-01 5.5e-01 5.0e-01 1.7e+00 2.467 3.013 3.016 5.317
150 10 1.887 2.068 2.164 3.644 6.2e-01 6.2e-01 6.1e-01 9.8e-01 2.507 2.691 2.772 4.628
150 10 1.434 1.572 1.677 0.879 2.3e-01 2.0e-01 1.6e-01 1.1e+00 1.668 1.775 1.832 2.007
150 10 1.445 1.616 1.703 0.764 1.8e-01 1.6e-01 1.4e-01 1.2e+00 1.626 1.774 1.847 1.945
200 5 1.552 1.757 1.917 4.151 5.6e-01 5.4e-01 5.0e-01 2.3e-01 2.110 2.292 2.417 4.381
200 5 1.670 2.438 2.290 4.455 4.3e-01 4.1e-01 4.3e-01 8.1e-01 2.102 2.851 2.718 5.265
200 5 1.629 2.030 2.115 4.433 4.1e-01 4.0e-01 4.1e-01 3.2e-01 2.035 2.426 2.525 4.751
200 5 1.494 1.665 1.735 0.957 1.6e-01 1.3e-01 1.2e-01 6.4e-01 1.657 1.793 1.851 1.601
200 5 1.536 1.727 1.751 0.705 9.5e-02 6.7e-02 6.8e-02 9.0e-01 1.631 1.793 1.820 1.604
200 10 2.147 2.276 2.390 3.570 5.8e-01 5.3e-01 4.9e-01 5.7e-01 2.726 2.803 2.876 4.137
200 10 2.153 2.664 2.685 4.331 6.2e-01 5.6e-01 5.4e-01 9.2e-01 2.777 3.229 3.221 5.248
200 10 2.832 3.002 3.092 4.917 4.4e-01 4.3e-01 4.2e-01 2.4e-02 3.275 3.433 3.511 4.941
200 10 1.648 1.738 1.799 1.139 2.2e-01 1.8e-01 1.5e-01 7.2e-01 1.868 1.921 1.948 1.864
200 10 1.613 1.721 1.798 1.064 1.3e-01 1.0e-01 8.6e-02 5.9e-01 1.745 1.824 1.884 1.659
1000 5 3.157 3.334 3.448 NA 2.3e-01 2.0e-01 1.7e-01 NA 3.385 3.532 3.618 NA
1000 5 2.676 3.262 3.189 NA 4.4e-01 4.0e-01 4.0e-01 NA 3.114 3.659 3.584 NA
1000 5 3.028 3.184 3.320 NA 3.7e-01 3.5e-01 3.1e-01 NA 3.403 3.530 3.627 NA
1000 5 1.862 1.953 1.997 NA 5.3e-02 4.2e-02 3.3e-02 NA 1.915 1.995 2.031 NA
1000 5 1.862 1.945 1.972 NA 6.2e-02 4.6e-02 4.0e-02 NA 1.925 1.992 2.012 NA
1000 10 3.936 3.961 3.986 NA 1.8e-01 1.6e-01 1.6e-01 NA 4.114 4.123 4.149 NA
1000 10 3.338 3.622 3.830 NA 4.9e-01 4.5e-01 4.1e-01 NA 3.825 4.069 4.236 NA
1000 10 3.642 3.750 3.885 NA 2.8e-01 2.5e-01 2.3e-01 NA 3.921 3.998 4.114 NA
1000 10 1.949 1.999 2.018 NA 3.5e-02 2.4e-02 2.3e-02 NA 1.984 2.023 2.041 NA
1000 10 1.934 1.955 1.976 NA 7.6e-02 7.9e-02 6.8e-02 NA 2.010 2.034 2.044 NA

Table C.18: The aggregated Integrated Squared Bias (IBIAS2), Integrated Variance (IVAR)
and Integrated Mean Square Error (IMSE) across all the varying coefficents of Examples
3 and 4 (N = 20), using SSP, SSP0, group LASSO and GAM.

IBIAS2 IVAR IMSE
P Ptrue SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM SSP SSP0 gLASSO GAM

50 5 4.447 6.330 6.819 8.742 3.141 3.278 3.161 67.968 7.588 9.608 9.979 76.710
10 12.162 14.919 15.893 13.916 8.636 8.631 7.924 80.401 20.798 23.550 23.817 94.317

100 5 6.256 8.031 8.385 13.132 3.274 3.124 3.041 56.516 9.530 11.155 11.426 69.648
10 16.753 19.262 20.084 22.470 8.684 8.165 7.609 82.141 25.436 27.428 27.693 104.610

150 5 7.221 9.090 9.506 13.391 3.181 3.028 2.998 52.189 10.402 12.118 12.504 65.580
10 19.276 21.556 22.272 27.436 8.313 7.857 7.274 76.277 27.589 29.413 29.547 103.712

200 5 7.909 9.644 9.833 16.301 3.009 2.835 2.690 54.774 10.918 12.479 12.523 71.075
10 21.991 24.006 24.711 31.823 7.784 7.308 6.770 69.310 29.776 31.314 31.481 101.133

1000 5 12.617 13.707 13.954 NA 2.761 2.521 2.369 NA 15.379 16.228 16.323 NA
10 30.592 31.621 32.434 NA 5.945 5.494 4.860 NA 36.537 37.116 37.295 NA
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