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Abstract

In the nineteenth century, Cayley proved that a smooth cubic surface has exactly
27 lines over the complex field. Schläfli and others showed furthermore that the
number of real lines could be 27, 15, 7, or 3. These results were found using the
algebraic geometry techniques of the time. In this thesis, we solve this classic
real enumeration problem using two different techniques. One method is group
theoretic, and the other uses characteristic classes. Part of our goal is to show
how these methods are related to each other as well as to the classical results. In
particular, we give a description of important signs, which arise in both the classical
and characteristic class approaches, in terms of our group theoretic approach.

We also solve two other classic real enumerative problems using the group
theoretic approach: the number of bitangent lines to a quartic plane curve, and
the number of tritangent planes to a twisted sextic curve.



Résumé

Pendant le dix-neuvième siècle, Cayley a prouvé qu’une surface cubique lisse
contient exactement 27 droites sur le corps complexe. De plus, Schläfli et d’autres
ont demontré que le nombre de droites réelles pourait être 27, 15, 7, ou 3. Ces
résultats ont été découverts à travers des techniques de la géométrie algébrique
de l’époque. Dans cette thèse, nous résolvons ce problème classique en utilisant
deux techniques différentes. La première méthode utilise la théorie des groupes, et
l’autre utilise des classes charactéristique. Notre but est, en partie, de démontrer
comment ces méthodes sont reliées entre eux et, de plus, leurs relation aux résultats
classiques. En particulier, nous donnons une description de signes importants, pro-
venant de l’approche classique ainsi que l’approche des classes charactéristiques,
du point de vu de la théorie des groupes.

De plus, en utilisant l’approche des groupes, nous résolvons deux autres pro-
blèmes classiques en geométrie énumérative réelle : l’énumération des droites bi-
tangentes à une courbe quartique du plan, et l’énumération des plans tritangents
à une courbe tordu sextique.
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Chapter 1

Introduction

1.1 Motivation and results

The goals of this thesis are the following:

1. Solve real enumerative problems from both a group theoretic approach
as well as a characteristic class approach.

2. Make connections between these two approaches.

3. Find a group theoretic interpretation of signs which naturally arise in
real enumeration.

The main problem that we deal with is the enumeration of lines on a cubic
surface. This is a classic problem which was first studied, and solved, in the
nineteenth century by Cayley [3], Schläfli [25], and many others. If we are
working over the complex field, the number of lines is 27. When working
over the real field, the number of lines is either 27, 15, 7, or 3 [25], [26].

This phenomenon of having different cases for the real enumeration is
typical. Consider for example the number of roots of a degree d polynomial.
It is well known this number is d if we work over the complex field (assuming
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Figure 1.1: Roots with a sign for a cubic polynomial f

the polynomial has no repeated roots). Over the real field, however, the
number of roots is d− 2k for some k ≤ d/2.

There is, at least in some cases, a way to count real objects with a sign to
get an invariant number. For the lines on the cubic surface, this real invariant
is implicit in the work of Segre [26], as pointed out by [20] and [10]. Segre
divided the real lines into two classes, called hyperbolic real lines and elliptic
real lines, based on some geometric considerations. The number of hyperbolic
real lines minus the number of elliptic real lines is always 3. As another
example, for a real polynomial f of degree d, we can count the each real root
xi with the sign of f ′(xi), then we have that |∑i sgn(f ′(xi))| = d mod 2. See
figure 1.1 for an example. More recently, Welschinger has given a method for
counting real J-holomorphic curves with a sign to give an invariant number,
[28], [19].

We will return to this issue of signs later. But before that, with reference
to our first goal, we ask how to find the real enumeration of lines on cubic
surfaces. Classically, this was done in a very direct approach by manipulating
the equations and by geometric visualization.

Our approach, on the other hand, is to use the fact that there is a group
W (E6) which acts in a natural way on the set of lines. This action can
be described as the action of this Weyl group on the vertices of a certain

2



polytope, [5]. The complex conjugation associated to any real surface in-
duces an involution in the Weyl group. The real lines will be the fixed points
of this involution. We can therefore compute the number of real lines by
counting the number of fixed vertices under all the conjugacy classes of in-
volutions in W (E6). Furthermore, there is a connection between the groups
W (E7),W (E8) and two other classic enumerative problems: the number of
bitangent lines to a quartic curve; and the number of tritangent planes to
a twisted sextic curve. Again, these objects can be represented by certain
polytopes, [8]. Using the same principle of finding fixed points, we obtain the
same results as Zeuthen [29] for the number of real bitangent lines, and as
Comessatti [4] for the number of real tritangent planes, which they obtained
using classical algebraic geometry methods. Our first result is therefore the
following:

Proposition 1.1. The real enumeration of lines on the cubic surface; bi-
tangent lines to a quartic curve; and tritangent planes to a twisted sextic
curve can be found by counting the fixed vertices of certain polytopes under
conjugacy classes of involutions in the groups W (E6), W (E7) and W (E8),
respectively.

A similar idea was used by Wall to find the number of real lines on Del
Pezzo surfaces [27], which are very much related to the real tritangent planes
of a sextic curve; the real bitangent lines of a quartic curve; and in fact are
exactly the real lines of cubic surfaces (for degree 3 Del Pezzo surfaces), as
we will describe in chapter 2. The proof of proposition 1.1 and our method
for computing the number of fixed points is the subject of chapter 4.

After we describe how the objects in proposition 1.1 are related to their
respective Weyl groups, it will be clear that the complex structure on a cu-
bic surface, quartic curve, or twisted sextic must induce an involution in
W (E6),W (E7) or W (E8), respectively. However, that any involution actu-
ally comes from a complex structure is not immediate. In the case of cubic
surfaces and W (E6), we can work out from the combinatorics that every in-

3



volution corresponds to a type of cubic surface as classified by Schläfli (see
section 2.1). In the case of the quartic curves and twisted sextic, every invo-
lution is also realized, but there turns out to be some redundancy. That is,
every involution comes from some complex structure, but there are different
topological types of these objects (quartic curves and twisted sextics) which
can not be distinguished by their involutions. We cover this in section 4.4.

Next, let us discuss the method of characteristic classes, which are a
generalization of the methods Schubert used to solve enumeration problems
in projective geometry, [14]. As a motivating example, consider once again
the example of counting roots of a polynomial. We consider elements of
C[x0, x1] which are homogeneous polynomials. These can be considered as
global sections of the bundle Sd(U∨) over CP, where U is the tautological
bundle, U∨ is its dual, and Sd refers to the d-th symmetric power. This
bundle is commonly referred to as O(d). The first Chern class of this bundle
gives us the class of the zero locus of any section:

c1(Sd(U∨)) = c1(U∨ ⊗ · · · ⊗ U∨) = d · c1(U∨). (1.1)

After checking that c1(U∨)([CP]) = 1, and assuming our polynomial (and
corresponding section) has isolated zeros, we recover the result that there
are in fact d zeros.

We also have a real bundle Sd(U∨) over RP = S1. The first Stiefel-
Whitney class w1(Sd(U∨)) is an element of H1(S1,Z/2Z) which vanishes
if there exists nowhere vanishing section, and is nontrivial otherwise. The
bundle U∨ has a twist in it, so we can see that Sd(U∨) = U∨ ⊗ · · ·U∨ has a
twist if d is odd and is trivial if d is even. Therefore,

w1(Sd(U∨))([S1]) = d mod 2, (1.2)

telling us, once again, we must have at least one root when d is odd.
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Along the same lines, we can construct a certain vector bundle so that a
cubic surface induces a section of it, and the zeros of this section represent
the lines on the cubic surface. The top Chern number of this bundle is
27, which gives us the number of complex lines. We can also construct the
analogous real bundle and compute its Euler number, giving us 3. The Euler
class counts the zeros of a section with a sign, called the Euler index, which
is similar to the sign of the derivative in our polynomial example. One would
expect that this index corresponds to the hyperbolic and elliptic classification
given by Segre, which is in fact the case. We prove these things in chapter 6,
which we summarize in the following proposition:

Proposition 1.2. Let U∨ denote the dual tautological bundle over either
G2(C4) or G2(R4), where G2 is the Grassmannian of 2-planes. A homoge-
neous cubic polynomial f , defining a smooth cubic surface, induces a section
sf of S3(U∨). This section has a zero at l, precisely when l is a line of the
surface. For the complex bundle we have:

c4(S3(U∨))[(G2(C4)] = 27. (1.3)

For the real bundle we have:

e(S3(U∨))[(G2(R4)] = 3, (1.4)

and the Euler index at l is positive or negative according to whether l is a
real hyperbolic or real elliptic line.

We have now seen that the signs come to play from the classic work of
Segre as well as in the modern characteristic class point of view. To link
these with our Weyl group approach, we ask how the signs can be described
in terms of W (E6) and the polytope representing the lines. In section 4.3 we
show the following:

Proposition 1.3. Let r1, ..., r4 be four orthogonal roots in Φ(E6). Up to
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conjugation, any involution of τ ∈ W (E6) can be written as R1 · · ·Rk for
k ≤ 4 where Ri is the reflection in the root ri. Let L be the 27 vertices of the
polytope representing the 27 lines. As previously mentioned, the real lines Lr

are the fixed points of τ . The real hyperbolic lines Lh are the elements of Lr

orthogonal to the root 1
2(r1 + r2 + r3 + r4), that is

Lh = Lr∩ < r1 + r2 + r3 + r4 >
⊥ . (1.5)

This description of the hyperbolic and elliptic lines in terms of roots of
E6 seems to be new.

Overall, we have results connecting ideas from Weyl groups, character-
istic classes, and classical geometry: The fixed points of a polytope when
acted on by involutions in W (E6) correspond to zeros of sections in the bun-
dle S3(U∨) → G2(R4). Furthermore the Euler index of these zeros, whose
sign corresponds to a geometric condition given by Segre, depend on the
orthogonality to a root in Φ(E6).

An extension of this work would be to give a characteristic class calcu-
lation for the real enumeration of bitangent lines and tritangent planes and
to find some notion of sign. In the complex case, the number bitangent lines
to a quartic curve can be calculated using the theory of Gromov-Witten in-
variants [1], which gives a modern derivation of the classic Plücker formulas
[11]. There may be some real analogue of this Gromov-Witten calculation.
In the case of the tritangent planes to a sextic curve, we do not know of
any characteristic class computation, even in the complex case, to find their
number.

1.2 Outline of thesis

In chapter 2, we give the history of the enumeration of lines on cubic surfaces,
and explain what are the symmetry groups of the lines on a cubic surface,
the bitangent lines to a quartic curve, and the tritangent planes to a twisted
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sextic.
In chapter 3, we give the reflection group theory needed to study these

symmetry groups, and in chapter 4 we find the involutions of these groups
and the number of fixed points to determine the real enumeration. We also
describe the group theoretic interpretation of Segre’s classification of real
lines into hyperbolic and elliptic types.

In chapter 5, we give the necessary theory for the Euler and Chern classes.
In chapter 6, we construct vector bundles whose zeros correspond to lines on
the cubic surface, and we compute the number of zeros in the real and com-
plex cases. Finally, we describe hyperbolic and elliptic real lines geometrically
and show this corresponds to the Euler index.
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Chapter 2

The group of lines on a cubic
surface

Our goal in this chapter is to establish the link between the lines on a cu-
bic surface and the group W (E6). This group is the group of substitutions
among the lines which preserves their intersection properties. The lines can
be represented by the vertices of a certain polytope with 27 vertices, and
the group W (E6) acts as the symmetry group of this polytope. Further-
more, we will show how to represent the bitangent lines to a quartic curve
by a polytope with W (E7) symmetry, as well as the tritangent planes to a
twisted sextic curve by a polytope with W (E8) symmetry group. The back-
ground concerning reflection groups and polytopes is given in chapter 3 but
we assume some familiarity in this chapter.

First we give some history about the enumeration of lines on the cubic
surface. Then we will talk about the configuration of the lines so that we
can describe the group of substitutions. In section 2.3 we use the more
general approach of divisors to describe the groups of the bitangent lines and
tritangent planes.
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2.1 History of lines on a cubic surface

A cubic surface is an algebraic surface given by a cubic polynomial. For
example:

x3 + y3 + u3 + v3 = 0 (2.1)

is a cubic surface where [x : y : u : v] are homogeneous coordinates. This
polynomial is real, so it defines a real surface in RP3. If we allow the variables
to take on complex values, it also defines a complex surface in CP3.

In 1849, Cayley (with credit also given to Salmon) found that a nonsin-
gular cubic surface always has 27 lines when working over an algebraically
closed field, such as C [3]. For example, the lines on the surface in the
preceding example are given by permutations of

x+ αy = 0

u+ βv = 0,
(2.2)

where α3 = β3 = 1. There are 3 choices for α, β, and y (we can switch y with
u or v), giving 33 = 27 lines in total. A priori, it may seem that you have
to count the algebraic multiplicity of each line to get this number 27, similar
to how you must count the algebraic multiplicity of roots of polynomials.
However, for nonsingular cubic surfaces (that is, surfaces with well a defined
tangent plane at every point) the situation is nice:

Proposition 2.1. A nonsingular cubic surface has only isolated lines.

Proof. (This argument comes from [23]) Let l be a line on the cubic surface,
and P be a plane containing l. Choose coordinates so that P is given by
v = 0 and l ⊂ P is given by u = v = 0. Let f be the equation of the surface.
For l to have multiplicity greater than 1 implies f is of the form

f = u2g(x, y, u, v) + vh(x, y, u, v). (2.3)

But this surface has a singular point v = u = h = 0 where the derivatives
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# of real lines # real tritangent planes # e # h
27 45 12 15
15 15 6 9
7 5 2 5
3 7 0 3
3 13 0 3

Table 2.1: Types of smooth real cubic surfaces; their number of real lines;
real tritangent planes; and elliptic and hyperbolic lines.

∂f
∂x
, ∂f

∂y
, ∂f

∂u
, ∂f

∂v
all vanish, a contradiction.

Nonsingular algebraic varieties are smooth manifolds, so we will refer to
them as smooth cubic surfaces.

In 1863, Schläfli classified all the types of real cubic surfaces based on the
their singularities and their number of real lines and real tritangent planes
[25]. In particular, he found 5 types of nonsingular cubic surfaces.

In 1942, Segre classified nonsingular cubic surfaces by showing there are 5
connected components of the moduli space [26] (also shown by Klein in 1873
[15]). Each of these connected components corresponds to one of the types
described by Schläfli. Segre further classified the real lines into two types,
elliptic and hyperbolic, based on a geometric condition (see section 6.3). The
difference in the number of these is always 3, which will come into play in the
Euler class calculation in chapter 6. We summarize the types of real cubic
surfaces in table 2.1.

2.2 Configuration of the lines

An important fact, which we will soon see, is that the way the lines intersect
is independent of the cubic surface. We can then talk about the group that
substitutes the lines in such a way to preserve their intersection properties.
First we will describe this configuration, and then give a way to name the
lines so that we can talk about this group of substitutions.
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Finding the configuration arises naturally when trying to prove there are
27 lines using classic algebraic geometry. The most difficult part of this proof
is actually showing that there exists a least 1 line, see for example [23]. But
using this fact, it is not too difficult to show there are in fact 27. First we
give a lemma.

Lemma 2.2 (See also [16]). Any line on a smooth cubic surface intersects
exactly 10 others.

Proof. Let x, y, u, v be projective coordinates. Choose them so that a line l
is given by x = y = 0. Then the equation of the surface must be of the form

xf + yg = 0, (2.4)

where f and g are quadratic polynomials in x, y, u, v. Take the intersection
of the surface and a plane containing l. This plane has equation y = cx. The
intersection is

x(f̃ + cg̃) = 0 (2.5)

where f̃ , g̃ are obtained by substituting y = cx into f, g. Part of the inter-
section is the line x = 0, the other part is a conic section f̃ + cg̃. We want
to find values of c so that this conic degenerates into 2 lines. Write the conic
in matrix form

vTAv (2.6)

where v = (x, u, v). This conic degenerates into two lines when det(A) = 0.
For a generic g̃, the coefficients of x2 are quadratic in c, the coefficients of
xu, xv are linear in c, and the other coefficients have no c. The entries in A,
corresponding to the form f̃ + cg̃, are one greater in degree than those in the
matrix for g̃. We write the degree of c in each entry of the matrix A:

3 2 2
2 1 1
2 1 1

 . (2.7)
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So det(A) is of degree five in c. Each of the five roots give a pair of lines
intersecting l. So there are 10 in total. Roots with higher multiplicity would
lead to lines with higher multiplicity, which is not allowed by proposition 2.1.

Next we can show that there are in fact 27 lines:

Proposition 2.3. A smooth cubic surface has 27 lines

Proof. Take 3 intersecting lines on the surface of the cubic, lA, lB, lC (the
existence of such sets of lines was shown in the proof of the lemma). Any
other line l on the surface must intersect the plane spanned by these 3 lines.
Furthermore, this intersection must occur somewhere on this set of 3 lines,
since they are the complete intersection of the plane with the surface. Thus
l is either lA, lB or lC , or one of the 10 − 2 = 8 lines other than lB or lC
meeting lA, or one of the 8 lines other than lA or lC meeting lB, or one of the
8 lines other than lA or lB meeting lA. So there are 8 · 3 = 24 other lines.
These 24 others are all distinct since if one of them meets two of lA, lB, lC , it
would have to be in the plane spanned by those two, so it would be lA, lB, or
lC , a contradiction. We have 3 lines plus 24 more giving a total of 27.

We have now actually seen a important configuration of lines called a
tritangent plane. These are planes which are tangent to 3 points on the
surface. Since two lines through a point of the surface lie in the tangent plane
to that point, and this plane must further intersect the surface in another
line, we see that a tritangent plane is just a plane which contains 3 lines of
the surface. Conversely, each set of 3 intersecting lines will necessarily give
rise to a tritagent plane of the cubic surface, although it is possible that the
3 points of intersection degenerate into one single point, called an Eckardt
point. It is not possible, however, to have only two of the points degenerate
to one point, because this will give a double line and by proposition 2.1 will
violate smoothness. The two possible types of tritangent planes are shown
in figure 2.1.
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Figure 2.1: The possible configurations of lines in a tritangent planes: 3 lines
intersecting at 3 points or 3 lines intersection at an Eckardt point. The plane
is tangent to the points of intersection

Implicit in our discussion so far is that some of the lines actually do not
intersect, but rather are skew. In fact, any line is skew to 26− 10 = 16 other
lines. A fact which we will not prove here (although it can be seen from
the discussion of divisors in section 2.3 of this chapter) is that the maximum
number of mutually skew lines on a cubic surface is six. We call a set of
six skew lines a sextuplet. Each sextuplet has a well defined complementary
sextuplet (to be explained shortly) and together the sextuplets form what is
called a double six. These double sixes were discovered by Schläfli and were
an important tool in his classification. It is traditional to denote a double
six by a Greek letter, and to use the following notation:

α =
a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

 . (2.8)

Here, α is a double six, and each ai and bi represent a line. Together, the
ai’s form a sextuplet of skew lines, as do the bi’s, and these sextuplets are
complementary to each other. The complementary condition is that ai is skew
to bi and intersects bj for i 6= j. The pairs {ai, bi} are called corresponding
lines of the double six. Any pair of corresponding lines completely determines
the double six to which it belongs. After naming a double six in the preceding
way, we can immediately give a name to the other 15 lines: cij, i 6= j. The
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line cij is the line of intersection of the planes given by aibj and ajbi. It is the
unique line which intersects ai, aj, bi, and bj. The lines cij and ckl intersect
if no indices are the same, and are skew otherwise. For example, c12 is skew
to c13 but intersects c34.

There are 36 double sixes in total. We can denote
(

6
2

)
= 15 of them by

δij, for example:

δ12 =
a1 b1 c23 c24 c25 c26

a2 b2 c13 c14 c15 c16

 . (2.9)

We can name the other
(

6
3

)
= 20 of them by γijk, for example:

γ123 =
a1 a2 a3 c56 c46 c45

c23 c13 c12 b4 b5 b6

 . (2.10)

From this double six construction, we can also deduce the existence of
the previously mentioned tritangent planes. Recall that these are planes
containing 3 intersecting lines. Using the notation we have developed, we
can see that, for example, the set of lines {c12, a1, b2} or {c12, c34c56} each
make up tritangent planes. Any two intersecting lines determine a tritangent
plane, so there are (27 · 10)/3! = 45 in total.

2.2.1 Group of the 27 lines

Now that we have a way to name the 27 lines, ai, bi, cij, we can describe the
group G of substitutions among the lines which preserve their configuration.
For example, if we send l to l′ we must send any line skew to l to a line skew
to l′. Since a double six completely determines the naming of the lines, the
action of an element in G is completely determined by where it sends the
elements of a double six. These new elements must of course form another
double six. In other words, a double six must be sent to one of the 36 double
sixes. We also have the freedom to permute the 6 columns of a double six in
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any way we like, or switch the rows. Therefore, |G| = 36 · 6! · 2 = 51840.
Let R(δ) be the group operation which exchanges corresponding lines of a

double six α. Since R(δ)2 = 1, we will call these reflections. The whole group
is actually generated by these 36 reflections. Using the double six notation
as before, the operator R(δ12) acts like the transposition (12) on the indices
naming the lines, since its action on any line is given by switching the index
accordingly. For example, R(δ12)a1 = a2, R(δ12)c13 = c23, etc. Likewise, we
could write R(α) = (ab) since it switches all the letters a with b. For example,
R(α)a5 = b5.

This group can be in fact generated by certain sets of only 6 of these
reflections, for example

R(δ12), R(δ23), R(δ34), R(δ45), R(δ56), R(γ123). (2.11)

Proposition 2.4. The generators in equation 2.11 generate the group G

Proof. We need to show that these generators allow us to do two things:
send a double six, say α, to any of the other 35 double sixes; and permute
the columns and rows of this double six α.

First we notice that R(γ123)α = γ456, and by further using R(δij) = (ij)
we can send α to any γijk. Next, we notice that R(γ123)γ124 = δ34, and
by further application of (ij)’s so we can send α to any of the δij. So we
have shown that we can send α to any of the other double sixes using these
generators. We can permute the columns of α by using the R(δij)’s. Lastly,
we need to show how to get the element R(α) which switches the rows of α.
Notice that if η is any double six, and g ∈ G, then

R(gη) = gR(η)g−1. (2.12)

This follows from a general property of permutation groups (G being a sub-
group of S27), or by a property of reflection groups (see chapter 3). Now
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since R(γ123)γ456 = α, we have

R(α) = R(γ123)R(γ456)R(γ123). (2.13)

And we have already shown that we can generate a g so that gα = γ456,
therefore

R(α) = R(γ123)gR(γ123)g−1R(γ123). (2.14)

So these generators do in fact generate the whole group.

Furthermore, we have the following relations for these generators:

(R(δ12)R(δ23))3 = 1,

(R(δ23)R(δ34))3 = 1,

(R(δ34)R(δ45))3 = 1,

(R(δ45)R(δ56))3 = 1,

(R(δ34)R(γ123))3 = 1,

(2.15)

and all other generators commute. These are the same relations as the gen-
erators for W (E6), which gives further justification to call our generators
reflections in the first place. We can draw the Coxeter diagram:

δ12 δ23 δ34 δ45 δ56

γ456

The 72 roots of this reflection group correspond to the 72 sextuplets. The
27 lines are represented by the 27 vertices of the polytope given by
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We will call this polytope P6. The size of the polytope can be normalized so
that the distance between any two vertices is either 1 or

√
2.

Two vertices with distance 1 apart are connected by a edge and represent
a pair of skew lines. A sextuplet of lines make up a 5-simplex polytope:

For any double six, there is a subgroup of G = W (E6) isomorphic to S6×Z2

preserving it. The S6 permutes the columns and the Z2 switches rows.
If two vertices are

√
2 distance apart, they are not connected by an edge

and they represent intersecting lines. A tritangent plane is represented by
a set of 3 vertices a distance

√
2 apart. For any such set, there is a sub-

group W (D4)oS3 ⊂ W (E6) preserving it, where W (D4) stabilizes the three
vertices, and S3 permutes them.

2.3 Blow-ups and Lines on Del Pezzo surfaces

Next, we wish to talk about the group acting on the the bitangent lines to
a quartic curve, and the tritagent planes to a twisted sextic curve. Since
the bitangent lines lie in a plane, they will always intersect, and likewise the
twisted sextic lies in 3-space, so the tritangent planes will always intersect as
well. Therefore, defining a symmetry group which preserves the intersection
of these objects, as we did for the lines on the cubic surface, would seem at
first to be pretty meaningless. However, it will make sense if we consider the
intersection of divisors in a linear system. A classic reference is from Duval
[8] who related the lines, bitangents, and tritangents to certain polytopes.

We first mention that another approach to studying cubic surfaces is by
blowing up 6 points on the plane. It can be shown that this blow up is
isomorphic to a smooth cubic surface. References for this include [11, Ch.
4], and [12, Ch. 5, section 4]. We will follow the more general treatment of
Demazure [7] which considers the blow up of more than 6 points. From this
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approach, we will also be able to get the polytopes of DuVal. We will discuss
blow-ups again in section 4.4 with regards to real surfaces.

By blowing up a plane in k points (provided the points fall within a
certain generic position, specifically: no three on a line, no six on a conic,
and no eight of them on a cubic having a node at one of them), we obtain
what is called a Del Pezzo surface, Xk. The degree of the Del Pezzo surface
is 9 − k. We are most interested in the Del Pezzo surfaces of degree 3, 2,
and 1 (k = 6, 7, and 8). Let us denote by Pic(Xk) the group of divisors on
Xk, otherwise known as the Picard group. The group Pic(k) is generated by
H,E1, ..., Ek where H is the divisor of a line on the plane (not through any k
points of the blow up) and the Ei’s are the exceptional divisors of the blow
ups. The surface Xk has a canonical divisor

ωk = −3H + E1 + ...+ Ek. (2.16)

The intersection of divisors turns Pic(Xk) into a inner product space with
signature (1, k). The basis H,Ei satisfies

H ·H = 1,

Ei · Ei = −1,

Ei · Ej = 0, i 6= j,

H · Ei = 0.

(2.17)

And for further reference we have

ωk ·H = −3,

ωk · Ei = −1,

ωk · ωk = 9− k.

(2.18)

The set
Ik = {D ∈ Pic(Xk) : D ·D = −1, D · ωk = −1} (2.19)
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represents the lines (or the (−1)-curves) on Xk. The divisors in the set

Φk = {D ∈ Pic(Xk) : D ·D = −2, D · ωk = 0} (2.20)

are called the roots. For k ≤ 8, the intersection product restricted to the
orthogonal complement of ωk is (negative) definite. This makes it a euclidean
space.

Proposition 2.5 (See [7]). The group of automorphisms (isometries) of
Pic(Xk) leaving ωk fixed is the the Weyl group W (Φk).

In particular, for k = 6, 7, 8, the groups are W (Φk) = W (Ek). Next we
want an object representing the lines which live in this the Euclidean space of
these Weyl groups. We will show shortly how the lines on Del Pezzo surfaces
correspond to the lines, bitangent lines, and tritangent planes.

Proposition 2.6. For k = 6, 7, 8, the projection onto the orthogonal com-
plement of ωk sends the divisors in the set Ik to the vertices of the polytopes
P6, P7, P8 described in chapter 4.

Proof. This is a matter of finding the elements of Ik and then computing their
projection with respect to some basis of ω⊥k . For another way, let V = 〈ωk〉
and decompose

Pic(Xk) = V ⊕ V ⊥, (2.21)

we know that W (Φk) leaves everything in V fixed. From the work of [8], the
projection onto V ⊥ must give the polytopes Pk.
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2.3.1 Lines on a cubic surface

The Del Pezzo surfaces of degree 3 are exactly the smooth cubic surfaces,
[11], [24],[27]. The 27 elements of I6 are the following

ai = Ei,

cij = H − Ei − Ej,

bi = 2H −
∑
j 6=i

Ej.

(2.22)

The ai’s come from the blowups of each point, the cij’s come from the blowup
of a line through the points marked by i and j, and the bi’s come from a conic
through 5 of the points. Our notation here is compatible with section 2.2,
that is, a1 is skew to b1 (since ai ·bi = 0), etc... We can also see the double six
configurations. For example, we have a double six given by {ai, bi : i ∈ 1..6}.

2.3.2 Bitangent lines to a smooth quartic curve

The surface X7 is a double cover of the projective plane branched along
a quartic curve. The involution of this double cover is called the Geiser
involution ([24], [27]) and its action on Pic(X7) is given by

D 7→ (D · ω7)w7 −D. (2.23)

pairs of this involution are mapped to bitangent lines of the quartic curve.
This can be seen in the following way.

Given a quartic curve with local equation f(x, y) = 0, we can write the
double cover locally as z2 = f(x, y). The covering map is given by projecting
onto z = 0. Now if l = 0 is a bitangent line of the quartic, then f = l · c+ q2

where c is a cubic and q is a quadratic. The points of bitangency are given
by the double roots of q2. Then on the double cover, we have two curves
given by l = 0, z = ±q which are mapped to the same bitangent line l of the
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Real curve # of bitangents
4 ovals 28
3 ovals 16

2 non-nested ovals 8
1 oval 4

2 nested ovals 4
empty curve 4

Table 2.2: Types of real quartic curves and their number of bitangent lines.

plane quartic curve f = 0.
Considering the Picard group again, when we project orthogonally from

ω7 we see that πD 7→ −πD under the Geiser involution, and so the bitangent
lines are represented by the vertices of P7/ ± 1 (although the quotient isn’t
really a polytope, we will still refer to its vertices).

The 56 elements of I7 are 28 = 7 +
(

7
2

)
of the form

E1, ..., E7,

H − Ei − Ej,
(2.24)

and the other 28 given by the action of the Geiser involution on these,

3H − 2Ei −
∑
j 6=i

Ej,

2H −
∑

k 6=i,j

Ek.
(2.25)

Zeuthen classified the possible topological types of real quartic curves and
their number of bitangent lines in [29]. We give give a summary these results
in table 2.2.
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Real twisted sextic # of tritangent planes
1 ellipse + 4 ovals 120
1 ellipse + 3 ovals 64
1 ellipse + 2 ovals 32

1 ellipse + 2 disjoint ovals 24
3 ellipses 24

1 ellipse + 1 oval 16
1 ellipse 8

Table 2.3: Types of real sextic curves and their number of tritangent planes

2.3.3 Tritangent planes to a smooth twisted sextic curve

The surface X8 is a double cover of a quadric cone branched along a twisted
sextic curve (the intersection of a quadric cone with a cubic). The involution
of this cover is called the Bertini Involution ([24], [27]), its action on Pic(X8)
is given by

D 7→ 2(D · ω8)ω8 −D. (2.26)

When we project orthogonally from ω8 we see that πD 7→ −πD under the
Bertini involution, and so the bitangent lines are represented by the vertices
of P8/± 1.

Comessatti classified the real sextic curves by their topological type and
their number of tritangent planes in [4]. The two topological components
of the twisted sextic are: ovals which do not pass around the vertex of the
quadric cone, and ellipses, which are the intersection of a plane (not passing
through the vertex) and the conic. We summarize in table 2.3.
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Chapter 3

Reflection (Weyl) group
preliminaries

In this chapter we give the preliminaries concerning reflection groups, Coxeter
diagrams and the construction of polytopes. Most of the properties given in
this chapter can be found in [13]. For more on polytopes, see [6].

3.1 Basic definitions and properties

Reflection groups are finite groups generated by reflections in a euclidean
space. Weyl group is the name traditionally given to reflection groups whose
root system is related to a Lie algebra.

Definition 3.1. Given a euclidean space (V, ·), the reflection in the hyper-
plane orthogonal to v (or simply the reflection in v) is defined as:

R(v)u := u− 2u · v
v · v

v. (3.1)

Here are some basic properties:

1. R(v) ∈ O(V ).
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2. R(v)u = u if and only if u · v = 0. We define the reflection hyperplane
as Hv := {u : v · u = 0}.

3. For T ∈ GL(V ), R(Tv) = TR(v)T−1. In particular R(tv) = R(v) for
all t ∈ R.

4. If the angle from Hu to Hv is θ, then R(v)R(u) is a rotation (in the
plane spanned by u, v) of 2θ.

Definition 3.2. A root system Φ ⊂ V is a finite set of non-zero vectors that
satisfies

1. Φ ∩ Rv = v,−v,∀v ∈ Φ,

2. R(v)Φ = Φ, ∀v ∈ Φ,

3. ∗ The additional requirement that 2u·v
v·v ∈ Z gives a crystallographic root

system. This has no effect on the group, but it is a constraint which
comes into play when classifying semisimple Lie algebras.

The elements of Φ are referred to as roots.

The group generated by {R(v) : v ∈ Φ} is called the reflection group with
root system Φ. We may denote it by W (Φ), or just W if it is clear which
root system we are using.

Definition 3.3. Let Φ be a root system, andW the reflection group generated
by Φ. Two roots v1, v2 ∈ Φ are said to be conjugate if there exists g ∈ W

such that gv1 = v2.

Notice that roots are conjugate in Φ if and only if their reflections are
conjugate in W .

Definition 3.4. A subset ∆ of Φ is called a simple system if:

1. ∆ is a basis for V.
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Figure 3.1: Root system, simple roots, and Weyl Chamber

2. Any vector in Φ can be written as a linear combination of vectors in ∆
with coefficients all the same sign (all non-positive or all non-negative).

We call the roots in the simple system the simple roots.

A simple system exists for any root system. It is not unique, but any two
simple systems are conjugate. By the second condition above, we see that a
choice of simple system splits the roots into two sets Φ+ and Φ− of positive
and negative roots. Simple systems have the following properties (see [13]):

1. Let W (∆) be the group generated by reflections R(v), v ∈ ∆. Then
W (∆)∆ = Φ, and therefore W (∆) = W (Φ), i.e the group is generated
by reflections in the simple roots.

2. Simple systems define a fundamental domain in a natural way (Weyl
Chambers, see following paragraph).

3. For any v ∈ Φ there exists a g in the reflection group such that gv ∈ ∆.

4. For any u, v ∈ ∆, u 6= v, u · v ≤ 0.

The fundamental domain, or Weyl chamber, is the open subset of V bounded
by the reflection hyperplanes of the simple roots. A different choice of simple
roots will give another Weyl chamber. The reflection group acts simply and
transitively on these Weyl chambers. A choice of simple roots is equivalent
to a choice of Weyl chamber.
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3.2 Coxeter diagrams

Coxeter groups are groups with presentations of the form

〈r1, ..., rk|r2
i = (rirj)mij = 1〉, (3.2)

with mii = 1. By considering how they are constructed from their simple
roots, it is easy to see that reflection groups are Coxeter groups. Let si be
a simple roots, and ri = R(si). The numbers mij are the period for the
rotations rirj.

From the group presentation we can construct a diagram consisting of a
node for each generator and an edge labelled by mij connecting the vertices
ri and rj. For example:

〈r1, r2, r3, r4|(r1r2)3 = (r2r3)4 = (r3r4)3 = 1〉, (3.3)

with all other products having period 2. This group has the following dia-
gram:

4
r1 r2 r3 r4

When the period is 2 we don’t draw any edge, and since the period 3 occurs
so often, we don’t write it.

Writing down a Coxeter diagram gives you a group presentation and vice
versa. However, not all diagrams give you a finite group. If we assume
the diagram comes from a reflection group (with the generator ri = R(si)
corresponding to a reflection in the simple root si), then writing the euclidean
dot product in the basis given by the simple roots will be a positive definite
symmetric matrix, i.e. Bij = si · sj = −|si||sj| cos(π/mij) is positive definite.
Any diagram whose associated matrix Bij is positive definite defines a finite
reflection group (and these are exactly the finite Coxeter groups, [13]). There
are 3 families of increasing dimension: An, Bn, Dn; a 2-dimensional family
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I2(m); and six exceptional ones: E6, E7, E8, F4, H3, H4. Any finite Coxeter
group is a direct product of these irreducible ones.

3.2.1 Polytopes

Polytopes are the generalization of polygons and polyhedra to arbitrary di-
mension. You can give a recipe for making a polytope by putting dots inside
nodes of the Coxeter diagram. The construction is to start with a point in
the euclidean space that is orthogonal to every simple root on the diagram
except the ones with dots. We will call this point a generator of the poly-
tope. You then act the the whole reflection group on this point and take the
convex hull of these points to be your polytope. We repeat this definition
more formally

Definition 3.5 (Polytope and generator). Let a Coxeter diagram coming
from a reflection group with simple roots s1, ..., sn be given. Let the nodes
associated to si, i ∈ I have dots in them. Then the polytope associated to this
diagram is constructed as follows: Let v be a vector in ∩i/∈IHsi

(where Hsi
is

the hyperplane orthogonal to si) that is equidistant to Hi for all i ∈ I. We
call this vector a generator. The set of vertices of the polytope is taken to be
{gv : g ∈ W} (where W is the reflection group associated to the roots), and
the polytope is the convex hull of this set.

The equidistant condition ensures that what we get is a uniform polytope
(that is, all its facets are uniform, with uniform polygons being the regular
ones). If we removed this condition, we would still obtain polytopes, only
with less symmetry.

As an example of this construction, take the diagram

which represents a triangle. More generally, the diagram
1 2 n
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represents a regular n-simplex (where the numbers are labelling the nodes,
and not the edges in between). As another example, we have

4

which gives an octahedron. Adding another dot gives what is called a trun-
cated octahedron

4
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Chapter 4

Real enumeration with
reflection (Weyl) groups

In this chapter, we will enumerate the real lines on the cubic surface by
finding the conjugacy classes of involutions in the group W (E6) and finding
the number of fixed vertices in P6 under each involution. We do the same
thing with E7 and E8 for the bitangent lines and tritangent planes.

In section 4.3 we identify which vertices correspond to the hyperbolic and
elliptic lines of the cubic surface. In doing this, we also give a convenient
way to visualize all 27 vertices of P6.

Finally, we compare our real enumeration results to the classical results
given in chapter 2.

4.1 Choice of roots and coordinates for the
polytopes

To make things more concrete, we will work with fixed representations of
the root systems. We will consider the systems E6, E7, E8 all as subsets of
R8. The roots of Φ(E8) are given by all the combinations ±ei ± ej, i 6= j,
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and 1
2(±e1 ± ... ± e8) where ei are the standard basis vectors. The root

system Φ(E7) is given by those roots of Φ(E8) which are contained in the
subspace orthogonal to e1 + ...+e8, and the roots of Φ(E6) ⊂ Φ(E7) ⊂ Φ(E8)
are those contained in the subspace orthogonal to e1 + ... + e6 and e7 + e8.
Notice that the inclusion of root systems gives us an inclusion of groups
W (E6) ⊂ W (E7) ⊂ W (E8).

The Coxeter diagram for Ek, k = 6, 7, 8 is
s2 s3 s4 s5 sk

s1

with a specific choice of simple roots for Φ(Ek) given by s1 to sk in the
following set:

s1 = 1
2(e1 + e2 + e3 − e4 − e5 − e6 − e7 + e8),

s2 = −e1 + e2,

s3 = −e2 + e3,

s4 = −e3 + e4,

s5 = −e4 + e5,

s6 = −e5 + e6,

s7 = −e6 + e7,

s8 = −(e7 + e8).

(4.1)

In the next three subsections, we will describe the polytopes Pk corre-
sponding to the diagrams:

s2 s3 s4 s5 sk

s1
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4.1.1 The polytope P6

The polytope P6 has 27 vertices. Recall the definition of a generator, defini-
tion 3.5. A particular generator for this polytope is the vector

g6 = −e1 − e2 − e3 − e4 − e5 + 5e6 − 3e7 + 3e8. (4.2)

Of these 27 vertices, 6 · 2 = 12 of these vertices have the same form as g6

with e6 permuted with e1, ..., e6 and e7 permuted with e7, e8. There are an
additional

(
6
2

)
= 15 of vertices the form

2e1 + 2e2 + 2e3 + 2e4 − 4e5 − 4e6 (4.3)

under permutations of e5, e6 with e1, ..., e6.

4.1.2 The polytope P7

The polytope P7 has 56 vertices. A particular generator for this polytope is
the vector

g7 = e1 + e2 + e3 + e4 + e5 + e6 − 3e7 − 3e8. (4.4)

All the vertices are obtained by the
(

8
2

)
= 28 permutations of e7, e8 and the

negatives of these. There is an important connection between P7 and P6

given by the following proposition:

Proposition 4.1. The polytope P7 contains two affine copies of the polytope
P6. For any pair of vertices {v,−v}, there is a subgroup isomorphic toW (E6)
which fixes both vertices of this pair.

Proof. Let π be the projection onto the Φ(E7) to the Φ(E6) subspace. The
generator g7 is actually perpendicular to the Φ(E6) subspace, so W (E6)g7 =
g7. The group W (E7) acts transitively on the vertices of P7, so this holds
for any pair {v,−v} ∈ Φ(E7). Furthermore, g6 =

[
1
2π ◦R(s7)

]
g7, or in other

words, R(s7)g7 = 2g6 + p, where p is some vector perpendicular to the Φ(E6)
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subspace. Then we see that the orbit of R(s7)g7 under the action of W (E6)
gives an affine copy of the vertices of the polytope P6. The negative of these
vertices along with {g7,−g7} give all 56 vertices.

4.1.3 The polytope P8

The polytope P8 has 240 vertices. A particular generator for this polytope
is the vector

g7 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8. (4.5)

This is in fact one of the roots of Φ(E8), so the vertices of P8 represent the
roots of Φ(E8).

4.2 Involutions and fixed points

Our basic tool for finding involutions is the following

Lemma 4.2 ([13]). Any involution in a reflection group can be written as a
product of orthogonal reflections.

This lemma allows us to find conjugacy classes of involutions by finding
conjugacy classes of sets of orthogonal vectors (recall definition 3.3). That
is, let v = {v1, ..., vk} be a set of k orthogonal roots, and v′ = {v′1, ..., v′k} be
another. Then R(v1) · · ·R(vk) ∼ R(v′1) · · ·R(v′k) if and only if there exists a
g such that gv = v′.

In finding the involutions, we will also need to use the following lemma:

Lemma 4.3. For k = 6, 7, 8, all the roots in Φ(Ek) are conjugate. That is,
for any two roots r1, r2 ∈ Φ(Ek) there exists g ∈ W (Ek) such that gr1 = r2.

Proof. By the third property of simple systems given in section 3.1, any
root is conjugate to a simple root, so we only need to show that all the
simple roots are conjugate. We start with E6. The simple roots s2, ..., s6
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are conjugate since they form a system A5 whose group is isomorphic to
S6 (the symmetric group on 6 elements) by identifying the R(si)’s with the
generating permutations. Or, to see the conjugacy more explicitly, take gi =
R(si−1) · · ·R(s2)R(si) · · ·R(s3) (for 2 ≤ i ≤ 6), then gis2 = si. Now we only
need to show that s1 is conjugate to one of the five other roots (and hence all
of them). The transformation R(s4)R(s1)R(s4) sends s1 to s4. This shows all
the roots in Φ(E6) are conjugate. Now for E7, all the simple roots s1, ..., s6

are conjugate in E6, so they are conjugate in E7 as well. The transformation
gi extends to include i = 7 so we are done. For E8, the transformation
R(s7)R(s8)R(s7) sends s8 to s7.

4.2.1 W (E6) and P6

Proposition 4.4. There are five conjugacy classes of involutions in W (E6).
They are represented by:

1,

R1,

R1R2,

R1R2R3,

R1R2R3R4,

(4.6)

where {r1, r2, r3, r4} is a set of orthogonal roots in Φ(E6) and Ri = R(ri).

Proof. The maximum number of orthogonal roots in Φ(E6) is four. Any two
sets of up to four orthogonal roots are conjugate by the following argument:

• All roots are conjugate in Φ(E6) (see lemma 4.3), so we can transform
our first orthogonal root into r1. The roots in Φ(E6) orthogonal to r1

form a root system Φ(A5).

• All roots in Φ(A5) are conjugate, so we can transform our second or-
thogonal root into r2 by an element of W (A5) all the while fixing r1.
The roots in Φ(A5) orthogonal to r2 form a root system Φ(A3).
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• All roots in Φ(A3) are conjugate, so we can transform our third orthog-
onal root into r3 by an element ofW (A3) all the while fixing r1, r2. The
roots in Φ(A3) orthogonal to r3 form a root system Φ(A1).

• Φ(A1) has only two roots, which are negatives of each other and con-
jugate in Φ(A1), so we can transform our fourth orthogonal root into
r4 while fixing r1, r2, r3. There are no more orthogonal roots.

The proof can be summarized by saying we have a sequence of root systems,

Φ(E7) ⊃ Φ(A5) ⊃ Φ(A3) ⊃ Φ(A1), (4.7)

where each root system is the orthogonal complement of some root in its
parent system, and where each associated reflection group acts transitively
on its roots.

For concreteness, we give an explicit choice of orthogonal roots compatible
with our previous descriptions:

r1 = −e1 + e2,

r2 = −e3 + e4,

r3 = −e5 + e6,

r4 = −e7 + e8.

(4.8)

The roots r1, r2, r3 are in the simple system we chose, r4 is not.

Corollary 4.5. The number of fixed vertices of P6 under the possible invo-
lutions described by proposition 4.4 is given by:
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Involution # of fixed vertices
1 27
R1 15
R1R2 7
R1R2R3 3
R1R2R3R4 3

Proof. The proof is simply a matter of using the explicit form of the roots
and vertices given and counting how many vertices are orthogonal to a given
set of roots.

4.2.2 W (E7) and P7

Proposition 4.6. There are five conjugacy classes of involutions inW (E7)/±
1. They are represented by:

1,

R1,

R1R2,

R1R2R3,

R1R2R3R4,

(4.9)

where {r1, r2, r3, r4} is a set of orthogonal roots in Φ(E7) and Ri = R(ri).
These orthogonal roots are actually contained in a root system Φ(E6).

Proof. We have a sequence of root systems:

Φ(E7) ⊃ Φ(D6) ⊃ Φ(D4 + A1), (4.10)

where each subsystem is the orthogonal complement of some root in the
parent system. We pick orthogonal roots r1 ∈ Φ(E7), r2 ∈ Φ(E6), r3 ∈ Φ(D4),
and r7 ∈ Φ(A1). The roots in Φ(D4) orthogonal to r3 form a root system
Φ(D2 + A1) = Φ(A1 + A1 + A1). Choose r4, r5, r6 ∈ Φ(A1 + A1 + A1). A
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particular choice of orthogonal roots is the following:

r1 = −e1 + e2,

r2 = −e3 + e4,

r3 = −e5 + e6,

r4 = −e7 + e8,

r5 = 1
2(−e1 − e2 + e3 + e4 + e5 + e6 − e7 − e8),

r6 = 1
2(e1 + e2 − e3 − e4 + e5 + e6 − e7 − e8),

r7 = 1
2(e1 + e2 + e3 + e4 − e5 − e6 − e7 − e8).

(4.11)

Notice that the first four roots are the same we used for Φ(E6). The product
of reflections in these (or any other) seven orthogonal roots gives the central
inversion, R1R2R3R4R5R6R7 = −1. From this we see that any four orthog-
onal reflections is conjugate to the negative of three orthogonal reflections.

The reflection group W (D4 + A1) does not act transitively on its roots,
so we have, at most, two classes of three orthogonal roots, represented by
{r1, r2, r3} and {r1, r2, r7}. To see that these classes are indeed disjoint under
W (E7) we notice that a transformation of {r1, r2, r3} into {r1, r2, r7} would
give us a transformation of {r4, r5, r6, r7} into {r3, r4, r5, r6}. But the sum
1
2(r3 + r4 + r5 + r6) is a root whereas 1

2(r4 + r5 + r6 + r7) is not, so this is
impossible.

Furthermore, we claim that R1R2R7 ∼ −R1R2R3R4. There is an equality
R1R2R3R4 = −R5R6R7. The only question is whether R5R6R7 is conjugate
to R1R2R3 or to R1R2R7. We observe that 1

2(r1 + r2 + r3 + r4) is a root so
R5R6R7 ∼ R1R2R7.

Corollary 4.7. The number of fixed vertices of P56/ ± 1 under the possible
involutions described by proposition 4.6 is given by:
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Involution # of fixed vertices
1 28
R1 16
R1R2 8
R1R2R3 4
R1R2R3R4 4

Proof. Using proposition 4.1 and the fact that the Ri are contained inW (E6)
we immediately find that the enumeration is the same as the E6 case plus
one for the fixed ± pair of vertices.

4.2.3 W (E8) and P8

Proposition 4.8. There are six conjugacy classes of involutions inW (E8)/±
1. They are represented by:

1,

R0,

R0R1,

R0R1R2,

R0R1R2R3,

R0R1R2R7,

(4.12)

where {r0, r1, r2, r3, r4, r7} is a certain set of orthogonal roots (to be described
in the proof) and Ri = R(ri).

Proof. All the roots in Φ(E8) are conjugate. We can pick our first orthogonal
root to be

r0 = 1
2(e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8). (4.13)

The roots orthogonal to r0 form a root system Φ(E7). We choose r1, ..., r7 the
same way as we for the E7 case in equation 4.11. We have the central inversion
given by R0R1R2R3R4R5R6R7 = −1, and so we only need to consider up to
four orthogonal roots. In this case, we have potentially two different classes
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given by {r0, r1r2, r3} and {r0, r1, r2, r7}. That we indeed have two different
classes can be seen by the fact that 1

2(r0 + r1 + r2 + r7) is a root, whereas
1
2(r0 + r1 + r2 + r3) is not.

Corollary 4.9. The number of fixed vertices of P8/ ± 1 under the possible
involutions described by proposition 4.8 is given by:

Involution # of fixed vertices
1 120
R0 64
R0R1 32
R0R1R2 16
R0R1R2R3 8
R0R1R2R7 24

Proof. Recall that the vertices of the polytope P8 are actually the root vectors
of Φ(E8). We also recall the sequences of root systems:

Φ(E8) ⊃ Φ(E7) ⊃ Φ(D6) ⊃ Φ(D4 + A1),

Φ(D4) ⊃ Φ(A1 + A1 + A1),

(4.14)

with orthogonal roots r0 ∈ Φ(E8), r1 ∈ Φ(E7), r2 ∈ Φ(D6), r3 ∈ Φ(D4), and
r7 ∈ Φ(A1). For the identity, the number of fixed points is |E8|/2 = 120. For
R0, the number of fixed points is

1 + |E7|/2 = 1 + 63 = 64, (4.15)

where the contribution of 1 comes from r0 and the contribution of |E7|/2
comes from the roots orthogonal to r0 modulo ±1. In a similar fashion, the
number of fixed points for R0R1 is

2 + |D6|/2 = 2 + 30 = 32. (4.16)
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For R0R1R2, the number of fixed points is

3 + |D4 + A1|/2 = 3 + (24 + 2)/2 = 16. (4.17)

For R0R1R2R3, the number of fixed points is

4 + |A1|/2 + |A1 + A1 + A1|/2 = 4 + 1 + 3 = 8. (4.18)

For R0R1R2R7, the calculation is a bit special. The answer is

4 + |D4|/2 + 8 = 4 + 24/2 + 8 = 24. (4.19)

The extra contribution of 8 comes from the roots 1
2(±r0± r1± r2± r7) which

are fixed modulo −1. There are 24/2 = 8 of these.

4.3 Hyperbolic and elliptic lines on cubic sur-
faces

Segre divided the lines into two species called hyperbolic and elliptic. We
give his definition in section 6.3. Here we describe which vertices of P6

correspond to hyperbolic and elliptic lines. Recall the involutions given in
proposition 4.4.

There is a planeH0 orthogonal to the 4 roots of the involutions r1, r2, r3, r4.
This plane contains 3 vertices of the polytope P6. Let Hij be the plane
spanned by ri, rj. Note that we have a decomposition of our space into
H0 ⊕i<j Hij. Every one of the other 24 vertices has a non zero projection
onto one and only one Hij. Furthermore, for a given i, j, there are ex-
actly 4 vertices which project non-trivially onto Hij and the projection of
these 4 vertices onto P0 are the same. Call this point of projection pij. If
{i, j, k, l} = {1, 2, 3, 4}, then pij = pkl. To summarize, we have 3 vertices
contained in H0 and 4 others contained in H0 ⊕Hij for each i, j. See figures
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h

h

h

pij

H0

Figure 4.1: The plane H0 orthogonal to r1, r2, r3, r4. 3 vertices lie in this
plane, and they represent real hyperbolic lines. Theses vertices are

√
2 dis-

tance apart and are not connected by an edge. The open circles represent
the projections pij of the vertices in H0 ⊕Hij not contained in H0.

rj

ri

eh

he

Hij

Figure 4.2: The plane Hij spanned by ri, rj. The vertices a distance 1 apart
are connected by an edge. These lines represented by these vertices are real
if the involution does not involve Ri, Rj.

4.1 and 4.2.
If all the lines are real, according to Segre [26], the elliptic lines make up a

double six. Up to conjugation, we can take this double six to be represented
by the root 1

2(r1 + r2 + r3 + r4), and so the hyperbolic lines are the vertices
orthogonal to this root. Thus the 3 vertices in H0 represent hyperbolic lines.
They are

√
2 distance apart and therefore represent intersecting lines. When

the involution is nontrivial, let Lr be the set of vertices representing real lines,
then hyperbolic lines are represented by the intersection of (r1 +r2 +r3 +r4)⊥

with Lr.
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Involution Real lines Lr # Real lines # Hyperbolic
1 L 27 3 + 6 · 4/2 = 15
R1 (H0 ⊕H34 ⊕H23 ⊕H24) ∩ L 3 + 3 · 4 = 15 3 + 3 · 4/2 = 9
R1R2 (H0 ⊕H34) ∩ L 3 + 4 = 7 3 + 4/2 = 5
R1R2R3 H0 ∩ L 3 3
R1R2R3R4 H0 ∩ L 3 3

Table 4.1: Vertices representing real lines, where L is the set of vertices of P6.
Half the vertices in each H0⊕Hij (not contained in H0) represent hyperbolic
lines.

4.4 Comments on real enumeration

We have found the possible involutions inW (E6), along with the enumeration
of fixed points, but it remains to show the following:

Proposition 4.10. Every involution inW (E6) arises from the complex struc-
ture of some cubic surface.

We will do two things. The first is simply comparing our fixed point
combinatorics to the table given by Schläfli. Each type of real surface is
determined by the number of real lines and real tritangent planes. This
shows that all our involutions do indeed come from a certain cubic surface.
As a second thing, we recall from section 2.3 the construction of a cubic
surface from the blow up of 6 points in a plane (with no 3 in a line, and not
all 6 on a conic). We can chose these points in a certain way so that the real
part of the blow up is a real cubic surface of the desired type. For the first
four types, this is relatively straightforward. For the fifth type, we need to
put a special complex structure on the blowup. More details concerning the
real blow ups are found in [22, Theorem 1.2].

Proof. We go through each type:

1. The first kind of surface has 27 real lines. The involution in W (E6) is
the identity. This surface can be obtained by blowing up 6 real points
in the plane.
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2. The second kind of surface has 15 real lines. The involution in W (E6)
is R1. This surface can be obtained by blowing 4 real points and a pair
of complex conjugate points.

3. The third kind of surface has 7 real lines. The involution in W (E6) is
R1R2. This surface can be obtained by blowing up 2 real points and
two pairs of complex conjugate points.

4. The fourth kind of surface has 3 real lines and 7 real tritangent planes.
The involution is R1R2R3. Recall that tritangent planes are represented
by a set of 3 vertices all a distance

√
2 apart. The 7 real tritangent

planes are given by: 1 tritangent plane correspoding to the 3 vertices
contained in H0; The 2 pairs of vertices opposite (distance

√
2 apart) in

each of H12, H23, H13 (which are exchanged in the involution so that as
a set they are preserved) along with the vertex inH0 a distance

√
2 from

each member of the 2 pairs respectively, giving 2 · 3 = 6 more. This
surface can be obtained by blowing up 3 pairs of complex conjugate
points.

5. The fifth kind of surface has 3 real lines and 13 tritangent planes. The
involution is R1R2R3R4. The 13 tritangent planes are the 7 given in the
previous type along with 6 more coming from pairs of opposite vertices
in H14, H24, H34. A real cubic surface can be obtained by giving a new
complex structure to the blow up of 6 particular points in the plane.
These 6 points are chosen in the following way: take five real points
p1, ..., p5. These lie on a real conic. Take the sixth point to be real
and lie on the tangent line to the conic at p5. For any point p in the
plane, consider the (unique) conic containing p1, p2, p3, p4, p. Define an
involution by sending this point to the intersection of this conic with
the line from p to p6. This involution extends to an involution on the
blow up of the 6 points p1, ..., p6 and, roughly speaking, the real surface
is the quotient of the blow up by that involution. See [22, Theorem
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1.2] for the details.

We can also explain what is happening in terms of the double-six notation.
Let a1, ..., a6 be a sextuplet associated to the exceptional divisors as in 2.3.1,
i.e. associate a1, ..., a6 to the 6 points in the plane. In the first type of
surface, these are all real points. In the second type, we take a2 = a1, so
that the involution is the permutation (12). In the third type, we can also
take a4 = a3, so that the involution is the permutation (12)(34). For the
fourth type, take furthermore a6 = a5, so that the involution is (12)(34)(56).
For the fifth type, the only other permutation that is orthogonal to these
three is (ab). This switches a point (more correctly, the blow up of a point)
with the image of the conic through this point e.g. a6 ↔ b5 (where b5 is the
conic through a1, a2, a3, a4, a6). This is why that special complex structure
was needed.

Next, we discuss real quartic curves. For the number of real bitangent
lines, all the possible numbers of fixed points in proposition 4.6 are the ones
found in table 2.2. However, in the latter there are 3 different topological
types of real quartics with 4 bitangent lines, while there are only 2 involutions
which fix 4 lines. The reason for this can be seen from the following. There
are other structures associated to the quartic curve called Cayley octads and
Steiner complexes which this group preserves, for definitions see for example
[21]. The real enumeration of these is given in the following table. Although
the last two curves have different topological types, there is no difference
from the point of view of the group action. Steiner octads can be used to
define the group of the 28 bitangent lines in a similar way that double sixes
were used to define the group of 27 lines, see for example [16].

In the case of sextic curves, once again there are two topological types,
each with 24 tritangent planes, which are not distinguished by the group
action.
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Real curve # of bitangents # points in C.O. # S.C.
4 ovals 28 8 63
3 ovals 16 6 31

2 non-nested ovals 8 4 15
1 oval 4 2 7

2 nested ovals 4 0 15
empty curve 4 0 15

Table 4.2: Number of bitangents, points in the Cayley octad (C.0.), and
Steinter complexes (S.C.) for real quartic curves.

All these topological types can be found from the classification of real Del
Pezzo surfaces, for example [24].
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Chapter 5

Characteristic class
preliminaries

We are interested in enumerating the zero locus of generic sections in the
bundle. We will see that the Euler and Chern classes allow us to do this.
Performing calculations with these classes will require knowing the cohomol-
ogy ring structure. In the case of Grassmannians, which we are mainly inter-
ested in, the manipulation of the cohomology ring is referred to as Schubert
calculus.

It turns out that in nice situations, the product in cohomology has a useful
geometric interpretation. Our approach therefore, following [11] and [9], is
to start with the notion of intersection of cycles and of homology classes, and
to use that this intersection is Poincare dual to the cohomology product. We
will then be able to derive the Schubert calculus for CPn and G2(C4) in a
relatively intuitively way.

In sections 5.3 and 5.4 we introduce the Euler and Chern classes. Our goal
is to describe the geometric interpretation of these classes, making use of the
intersection theory we introduced in section 5.1. For the general definitions
of these classes, we refer to [2], or [18].

Finally, at the end of the last section, we compute the Chern classes of
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the dual universal subbundle over a Grassmannian. Our approach makes this
a simple matter of linear algebra. The Chern classes of this bundle, along
with the Schubert calculus of G2(C4), will be used in chapter 6, to enumerate
lines on cubic surfaces.

5.1 Intersection theory

Let X be a smooth oriented n-dimensional manifold. Let A and B be two
piecewise smooth cycles.

Definition 5.1 (Transverse Intersection). We say that A and B are trans-
verse, or intersect transversely if

dim(A ∩B) = dim(A) + dim(B)− n. (5.1)

If the sum of the dimensions of A and B is less than n, then they are
transverse if and only if their intersection is empty. If A and B are of comple-
mentary dimension (dim(A) + dim(B) = n), A ∩B is zero dimensional, and
there is an isomorphism TpA ⊕ TpB ' TpX given by (a, b) 7→ a + b. Given
the orientations of A and B, we can give a natural orientation to TpA⊕ TpB

and ask if the pushforward of this orientation gives the orientation for TpX.
This leads us to the following notion of intersection index:

Definition 5.2 (Intersection index). Let A,B be transverse cycles of comple-
mentary dimension. Given an oriented basis a1, ..., ak for TpA, and b1, ..., bn−k

for TpB, we say the intersection index Ip(A · B) of A with B at the point
p ∈ A ∩B is 1 if a1, ..., ak, b1, ..., bn−k gives an oriented basis for TpX and is
−1 otherwise.

We can now define an intersection number between homology classes in
complementary dimension,

Hk(X,Z)×Hn−k(X,Z)→ Z, (5.2)
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by finding representative cycles which intersect transversely. Let α ∈ Hk(X,Z)
and β ∈ Hn−k(X,Z), and let A,B be cycles intersecting transversely such
that [A] = α, [B] = β. The intersection number is defined as

#(α · β) := #(A ·B) :=
∑

p∈A∩B

Ip(A ·B). (5.3)

The intersection number is well defined on homology classes: If A = ∂C,
then #(A ·B) = 0 for all B.

Fixing a k cycle in the intersection number gives a map Hn−k(X,Z) →
Z, or in other words, an element of the cohomology Hn−k(X,Z). If X is
compact, there is an isomorphism Hk(X) ' Hn−k(X) which is commonly
known as the Poincare duality. Using the de Rham isomorphism, another
way to state the Poincare duality is: Given a cycle A, there exists a cocyle
ηA such that

#(A ·B) =
∫

B
ηA. (5.4)

Even when X is not compact, there is a version of the Poincare duality using
compactly supported cohomolgy. In particular, for the case when X is a
vector bundle see [2, p. 59ff].

When the dimensions of the two cycles are not complementary, we can
still define an intersection product

Hn−k(X,Z)×Hn−l(X,Z)→ Hn−k−l(X,Z). (5.5)

If a ∈ Hn−k(X,Z), b ∈ Hn−k(X,Z), we find representative cycles A,B inter-
secting transversely almost everywhere. We give C = A ∩ B an orientation
such that if v1, ...vn−k−l is a positively oriented basis for TpC at a smooth
point p, we can complete it to a positively oriented basis

a1, ..., al, v1, ..., vn−k−l, b1, ..., bk (5.6)
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of TpX so that
a1, ..., al, v1, ..., vn−k−l (5.7)

gives a positively oriented basis of TpA and

v1, ..., vn−k−l, b1, ..., bk (5.8)

gives a positively oriented basis of TpB. We denote this product as A ·
B. When A and B are complementary dimension, evaluating A · B by the
canonical generator of H0(X,Z) gives the intersection number.

The wedge product in cohomology is Poincare dual to the intersection
product [14], [11, p. 59]. Given cycles A,B and their respective duals ηA, ηB,
we have

η(A·B) = ηA ∧ ηB. (5.9)

When A,B have complementary dimension,

#(A ·B) =
∫

B
ηA =

∫
A
ηB =

∫
X
ηA ∧ ηB. (5.10)

We will often suppress the wedge symbol and use a dot or juxtaposition to
represent the cohomology product

5.1.1 Analytic cycles

Let us now consider analytic cycles. These are cycles which are complex
analytic subvarieties of a compact complex manifold X. If A is given locally
as the zeros of m independent analytic functions then we say A has codi-
mension m, or codim(A) = m. The Poincare dual of A gives an element
of H2m(X,Z). Two analytic cycles intersect transversely if codim(A ∩ B) =
codim(A) + codim(B). Notice that for real cycles, we might have A · B =
−B · A and there is no natural way to orient A ∩ B. For analytic cycles
however, we can assign an orientation in a natural way, and with this orien-
tation, transverse cycles always intersect in a positively in the sense given by
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the following proposition (keep in mind, however, that it is sometimes the
case that there are no representative analytic cycles meeting transversely).

Proposition 5.3 (Positive intersection of analytic cycles). Let A and B be
analytic cycles of codimension k and l, respectively, in a compact complex n-
dimensional manifold. Suppose they intersect transversely, then A∩B is an
analytic cycle and giving everything their natural orientations, A·B = A∩B.

Proof. Choose coordinates in a neighbourhood of p so that A is given by
zn−k = ... = zn = 0 and B is given by z1 = ... = zl. Writing zi = xi + iyi,
the natural orientation of the whole manifold is given by the real basis for
Tp(X): (

∂

∂x1
,
∂

∂y1
, ...,

∂

∂xn

,
∂

∂yn

)
. (5.11)

The coordinates for A are z1, ..., zn−k, and the natural orientation is given by
(
∂

∂x1
,
∂

∂y1
, ...,

∂

∂xn−k

,
∂

∂yn−k

)
. (5.12)

Similarly, we have the orientation for B given by(
∂

∂xl+1
,

∂

∂yl+1
, ...,

∂

∂xn

,
∂

∂yn

)
. (5.13)

The natural orientation for A ∩B is given by(
∂

∂xl+1
,

∂

∂yl+1
, ...,

∂

∂xn−k

,
∂

∂yn−k

)
. (5.14)

We these orientations, we have A · B = B · A = A ∩ B. Basically, this
proposition follows from the fact that the real dimension of a complex object
is even.
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5.2 Schubert calculus

Our goal in this section is to derive the Schubert calculus for projective space
and the Grassmannian G2(C4). Our approach in both cases is to find a cell
decomposition of the space, and then to take as generators for the homology
the closure of these cells. It turns out that these are analytic cycles called
Schubert cycles. The cohomology ring is generated by their Poincare duals.
We find the ring structure by using the intersection interpretation of the
product.

The Schubert calculus has been derived in general for all Grassmannians,
see [14], but since we will only actually need it for G2(C4) we will derive it
directly.

5.2.1 Schubert calculus for CPn

Projective space has a cell decomposition

CPn = Cn t Cn−1 t · · · t C0. (5.15)

These cells are only even dimensional, so the boundary maps are all zero and
the closures σk = Cn−k ∼ CPn−k give cycles which generate the homology
groups H2[n−k](CPn,Z). We will use the same symbol to refer to its Poincare
dual, σk ∈ H2k(CPn,Z). These are analytic cycles since they are the zero set
of k linear equations.

The cycle σ0 represents the whole space so its intersection with any other
cycle is just the cycle itself. In this way σ0 = 1 in the cohomology ring. The
cycle σ1 represents a hyperplane (projective hyperplane). Next, σ2 is the
intersection of two hyperplanes, so σ1 · σ1 = σ2. Continuing in this way, we
have (σ1)k = σk.

Proposition 5.4 (Cohomology ring of CPn). The cohomology ring of CPn is
generated by σ1 which represents the class of a hyperplane. The only relation
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is (σ1)n+1 = 0.

5.2.2 Schubert calculus for G2(C4)

Let G2(C4) be the Grassmannian of 2-planes in C4. Any plane is determined
by two linearly independent vectors in C4. We can make a matrix with two
row vectors v11 v12 v13 v14

v21 v22 v23 v24

 . (5.16)

However, this matrix representation is not unique. We reduce our matrix,
and generically we expect it to take the form

W0,0 =
∗ ∗ 1 0
∗ ∗ 0 1

 . (5.17)

There are, however, 5 other possibilities:

W1,0 =
∗ 1 0 0
∗ 0 ∗ 1

 , (5.18)

W1,1 =
∗ 1 0 0
∗ 0 1 0

 ,W2,0 =
1 0 0 0

0 ∗ ∗ 1

 , (5.19)

W2,1 =
1 0 0 0

0 ∗ 1 0

 , (5.20)

W2,2 =
1 0 0 0

0 1 0 0

 . (5.21)

The Wi,j’s are all disjoint and each one is homeomorphic to C4−[i+j]. This
gives a cell decomposition

G2C4 = W0,0 tW1,0 tW1,1 tW2,0 tW2,1 tW2,2. (5.22)
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Since there are only cells in even real dimension, the boundary maps are zero.

Proposition 5.5. The integral homology of G2(C4) is freely generated in
dimension 2k for k = 0...4 by the Schubert cycles σi,j = Wi,j with i+j = 4−k.
It other dimensions, the homology is zero.

An alternative way to describe the Schubert cycles is as follows. Let
Vi be the span of the standard basis vectors e1, ..., ei, and consider the flag
V = (V1 ⊂ · · · ⊂ V4). The Schubert cycles can be defined as

σi,j(V ) = {Λ : dim(Λ ∩ V3−i) ≥ 1, dim(Λ ∩ V4−j) ≥ 2} . (5.23)

For a general Grassmannian Gk(Cn), we have Schubert cycles σa where a =
(a1, ..., ak) is a non increasing set of integers between 0 and n− k, and a flag
V = (V1, ..., Vn). The cycles are defined as

σa(V ) = {Λ : dim(Λ ∩ Vn−k+i−ai
) ≥ i}. (5.24)

For any other flag V ′, there exists a g ∈ GL(C4) such that gV ′ = V . Fur-
thermore, GL(C4) is connected and we can continuously transform V ′ to V ,
hence σi,j(V ) ∼ σi,j(V ′). In other words, the class of the Schubert cycle is
completely determined by the subscripts, see [14, 4.].

We can gain some intuition about these cycles by considering G2(C4) as
the set of lines in CP 3. We fix a flag p ⊂ l0 ⊂ h, where p is a point, l0 a line,
and h a hyperplane. Then the Schubert cycles are

σ0,0 = {l} = G2(C4),

σ1,0 = {l : l ∩ l0 6= ∅},

σ1,1 = {l : l ∈ h},

σ2,0 = {l : l ∩ l0 6= ∅},

σ2,1 = {l : p ∈ l ⊂ h},

σ2,2 = {l0}.

(5.25)
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Proposition 5.6. The cohomology ring of G2(C4) has the following rela-
tions:

σ2
1,0 = σ1,1 + σ2,0,

σ1σ1,1 = σ1,0σ2 = σ2,1,

σ1σ2,1 = σ2
1,1 = σ2

2 = σ2,2,

σ1,1σ2,0 = 0.

(5.26)

By considering the cycles as sets of lines in projective three space, cal-
culating the intersections is rather straightforward in most of the cases. In
order to see the generic intersection behaviour we will consider two flags
V = (p ∈ l0 ⊂ h) and V ′ = (p′ ∈ l0 ⊂ h′), and denote σi,j(V ) and σi,j(V ′)
as σi,j and σ′i,j respectively. There is a theorem due to Kleiman which tells
us that these different flags are generically transverse, [9, 4.2]. Although we
defined them from a topologically point of view, it turns out that Schubert
cycles are analytic cycles. Grassmannians can be embedded in a higher di-
mensional projective space (the Plücker embedding), and the Schubert cycles
are intersections of this embedding with linear subspaces, [14]. We can then
just consider the set theoretic intersection and we know the sign must be
positive from the positivity of intersecting analytic cycles in proposition 5.3.

Proof. First of all, σ0,0 = 1 in the ring since intersecting a cycle with the
whole space gives you the cycle again. Next we look at cycles in complemen-
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tary dimensions:

σ1,0 · σ
′

2,1 = {l : l ∩ l0 6= ∅, p
′ ∈ l ⊂ h

′}

= {the unique line passing through p′ and l0 ∩ h′}

∼ σ2,2,

σ2,0 · σ
′

2,0 = {l : p ∈ l, p′ ∈ l}

= {the unique line passing through p and p′}

∼ σ2,2,

σ1,1 · σ
′

1,1 = {l : l ⊂ h, l ⊂ h′}

= {the unique line h ∩ h′}

∼ σ2,2.

(5.27)

For the remaining complementary dimension product, we have σ2,0 · σ
′
1,1 = 0

since their intersection is the set of lines passing through a point p and
contained in a plane h′, but generically p is not in h′ so this is empty.

We can use the same technique for two other products as well:

σ1,0 · σ
′

1,1 = {l : l ∩ l0 6= ∅, l ⊂ h′}

= {l : l0 ∩ h′ ∈ l ⊂ h′}

∼ σ2,1,

σ1,0 · σ
′

2,0 = {l : p′ ∈ l, l ∩ l0 6= ∅}

= {l : p′ ∈ l ⊂ the plane l0p′}

∼ σ2,1.

(5.28)

Unfortunately, this approach is not helpful for computing (σ1,0)2. However,
we know purely by the dimension that (σ1,0)2 = ασ1,1 + βσ2,0 for some α, β.
We can then multiply this with each of σ1,1 and σ2,0 and use our previous
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results to find the coefficients. On the one hand,

σ1,1 · σ2
1,0 = ασ1,1σ1,0 + βσ1,1σ2,0

= ασ2,2
(5.29)

On the other hand,

σ1,1 · σ2
1,0 = (σ1,1 · σ1,0) · σ1,0 = σ2,1 · σ1,0 = σ2,2 (5.30)

so α = 1. By the same argument, this time multiplying by σ2,0, we find β = 1
as well.

5.3 Euler class

The Euler class of a rank k oriented real vector bundle E → X is an element
e(E) ∈ Hk(X,Z). We are primarily interested in this class because it can
tell us something about the zero locus of sections.

For the precise construction, we refer to [2, 18], but the idea is the fol-
lowing: The base manifold X is naturally included in the total space E as
the zero section, and the image of X under a generic section gives another
manifold S. Assume that X is compact and oriented (and hence so is S),
then X and S are cycles and we can take their intersection [X] · [S] in E.
This intersection is contained in X, and the Euler class is the Poincare dual
in X of this intersection. In fact, S is homotopic to X so the Euler class is
Poincare dual to the self intersection [X] · [X].

When the rank of the bundle is the same as the dimensional of the man-
ifold, we can evaluate the euler class on the homology class of the manifold,
e(E)([X]). We will call this the Euler number, and it is nothing but the
intersection number #(X ·X). If the intersection is transverse, there is nice
way to calculate the intersection index:

Proposition 5.7 (Euler index). Let p be a point of transverse intersection of
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the section s with the zero section. The intersection index Ip(s) is +1 or −1
according to whether the determinant of the Jacobian matrix ds is positive
or negative.

Proof. Let x1, ..., xn be local coordinates around p, and e1, ..., en a basis for
the local trivialization such that ∂

∂x1
, ..., ∂

∂xn
, e1, ..., en is positively oriented

in TpX ⊕ TpRn ' TpE. Let S be the image of X under s. Write s =
sie1 + ...+ snen where the si’s are functions of x1, ..., xn. The tangent space
TpS has an oriented basis ∂s

∂x1
, ..., ∂s

∂x1
. The change of basis matrix from ei to

the ∂s
∂xi

is just the Jacobian matrix ds given by

ds :=


∂s1
∂x1

· · · ∂s1
∂xn... ...

∂sn

∂x1
· · · ∂s1

∂xn

 , (5.31)

the determinant of which is positive or negative according to whether ds is
orientation preserving or reversing.

The intersection index of a zero is referred to as the Euler index. The
following proposition follows from our intersection theory:

Proposition 5.8 (See, for example, [2, Theorem 11.17] ). Let E → X be
an oriented rank n real vector bundle over a compact oriented n-dimensional
manifold. Let s be a section of E with isolated zeros zi. The Euler number
is equal to the sum of the indices of the zeros,

e(E)([X]) :=
∫

X
e(E) =

∑
i

Izi
(s) (5.32)

An Euler index can also be defined for non transverse intersections as
long as the zeros are isolated, see [17, p.35 Poincare-Hopf theorem]. In this
case, the index can take on other values, but proposition 5.8 still holds with
these indices.
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The following are some basic properties of the Euler class (see [18, p.
98]):

• e(f ∗E) = f ∗e(E).

• e(E ⊕ F ) = e(E) ∧ e(F ).

• e(−E) = −e(E) where −E is the vector bundle E with opposite ori-
entation.

• If E has a nowhere zero section, e(E) = 0.

5.4 Chern classes

The Chern classes are defined for complex vector bundles. For a bundle E
of rank k, there is an i-th Chern class

ci(E) ∈ H2i(X,Z). (5.33)

The 0-th Chern class is always 1. The k-th Chern class is equal to the Euler
class of the underlying rank 2k real bundle. Note that the real underlying
bundle is always orientable. If e1, ..., ek is a complex basis, e1, ie1, ..., ek, iek

gives an oriented real basis. Furthermore, for a real bundle F of rank k,
F ⊗ C is a complex bundle of rank k, and

ck(F ⊗ C) = e(F ⊗ C) = (−1)re(F ⊕ F ) = (−1)re(E)2. (5.34)

where r = k(k − 1)/2 accounts for the difference in orientation. For i > k,
ci(E) = 0. We call the sum

c(E) = 1 + c1(E) + ...+ ck(E) (5.35)

the total Chern class.
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For bundles over complex manifolds with enough sections, we have the
following characterization of Chern classes, which we will use later to compute
the Chern classes of the dual universal subbundle. As we already mentioned,
the top Chern class ck(E) is equal to the Euler class of the underlying real
bundle, and so it is Poincare dual to

Z(s1) = {x ∈ X : s1(x) = 0}. (5.36)

Where s1 is a section transverse to the zero section. If we have another
section s2, the class ck−1 is Poincare dual to

Z(s1 ∧ s2) = {x ∈ X : s1(x) ∧ s2(x) = 0}, (5.37)

the locus where s1 and s2 fail to be linearly independent. To see that this
should have (complex) codimension k − 1, consider the bundle E/〈s1〉 of
rank k − 1 over X \ Z(s1) , and let s′2 be the section in E ′ induced by s2.
Then we see that Z(s1 ∧ s2) is the closure of Z(s′1). We say that a collection
s1, ..., si of sections is transverse if Zi = Z(s1∧...∧si) indeed has codimension
k − i+ 1, and in this case ck−i+1 is the poincare dual of Zi, the locus where
these sections fail to be linearly independent.

The following properties of Chern classes are important for our subsequent
calculations (see [9, 5.3]).

• The Chern classes commute with pullbacks. Let f : X → Y ,

c(f ∗E) = f ∗c(E). (5.38)

• For an exact sequence of vector bundles

0 −→ E −→ F −→ G −→ 0, (5.39)

the total Chern classes are related by c(F ) = c(E)c(G). In particular,

58



we have the Whitney sum formula

c(E ⊕G) = c(E)c(G). (5.40)

• If A and B are line bundles, then the line bundle A⊗B has total Chern
class

c(A⊗B) = 1 + c1(A) + c1(B). (5.41)

An invaluable tool for performing calculations is the splitting principle. In
practical terms, this allows us to compute the Chern class of a bundle as if
it were a direct sum of line bundles.

Lemma 5.9. (Splitting Principle) For a vector bundle E over a smooth
variety X there exists a smooth variety Y and a morphism f : Y → X with
the properties:

1. The induced map f ∗ : H∗(X)→ H∗(Y ) is injective

2. The pullback bundle f ∗E splits into a direct sum of line bundles E1, ..., Ek.

The splitting principle is used in the following way: Suppose we have a
vector bundle E or rank 2, whose Chern classes we know, but we would like
to compute the Chern classes of some construction involving this bundle,
say, the second symmetric power S2E. We proceed as follows. Let f be the
morphism described in the theorem. Then

f ∗E = A⊕B. (5.42)

For some line bundles A and B. Taking the total Chern class gives us

1 + f ∗c1(E) + f ∗c2(E) = (1 + a)(1 + b), (5.43)

where a = c1(A), b = c1(B), and we have commuted the pullback. From this
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we obtain the relations
f ∗c1(E) = a+ b,

f ∗c2(E) = ab.
(5.44)

There is an isomorphism S2(A⊕B) = (A⊗A)⊕ (A⊗B)⊕ (B⊗B), so using
the sum and tensor product properties,

f ∗c(S2E) = c((A⊗ A)⊕ (A⊗B)⊕ (B ⊗B))

= (1 + 2a)(1 + a+ b)(1 + 2b)

= (1 + a+ b))(1 + 2a+ 2b+ 4ab)

= (1 + f ∗c1(E))(1 + 2f ∗c1(E) + f ∗c2(E)).

(5.45)

By expanding this out, and using the fact that f ∗ is injective, we conclude

c(S2E) = 1 + 3c1(E) + [2c1(E)2 + c2(E)] + c1(E)c2(E). (5.46)

In practice, it is not necessary to make reference to the morphism f , rather
we can simply assume that our vector bundle splits.

To finish this section, we also include another lemma that will be useful
in calculating characteristic classes. First, a definition:

Definition 5.10 (Conjugate Bundle). If E is a complex vector bundle, then
the conjugate bundle E is defined to be the complex vector bundle with the
same underlying real vector bundle, but with the opposite complex structure.
Thus, the identity map f : E → E is conjugate linear,

f(αx) = αf(x). (5.47)

Lemma 5.11 ([18, Lemma 15.4]). For any complex vector bundle E, let
ER be the underlying real vector bundle. The complexification ER ⊗ C is
canonically isomorphic to E ⊕ E.

Proof. For a real vector space V , V ⊗C can be identified with the direct sum
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V ⊕ V . The complex structure on V ⊕ V is given by J(x, y) = (−y, x).
Let V = FR where F is a typical fibre of a complex vector bundle. The

map
g : x 7→ (x,−ix) (5.48)

from F to V⊕V is complex linear. In other words, g(ix) = J(g(x)). Similarly,
the map

h : x 7→ (x, ix) (5.49)

is conjugate linear. Every point (x,y) of V ⊕ V = FR ⊗ C can be written
uniquely as a sum

g
(
x+ iy

2

)
+ h

(
x− iy

2

)
. (5.50)

Therefore, the map F ⊕ F → V ⊕ V = FR ⊗ C given by

(x, y) 7→ 1
2 (g(x) + h(y)) (5.51)

is a complex linear isomorphism (the inverse of (x, y) ∈ FR ⊗ C is given by
(x, y) ∈ F⊕F ). To check complex linearity, let λ ∈ C, (x, y) ∈ F⊕F . Notice
that λ(x, y) = (λx, λy), and this maps to

1
2
(
g(λx) + h(λy)

)
= λ

1
2 (g(x) + h(y)) (5.52)

by the conjugate linearity of h.

5.4.1 Chern classes of the dual universal subbundle

Let U be the universal subbundle (also known as the tautological bundle)
over Gk(Cn),

U = {(p, v) ⊂ Gk(Cn)× Cn : v ∈ p}. (5.53)

The dual bundle U∨ has nontrivial global sections given by the restriction of
linear forms in Cn∨ to each plane p. We will compute the Chern classes by
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finding where a generic collection of sections are linearly dependent.
Let l1, ..., lm ∈ Cn∨ . Let v1, ..., vk be a basis for the plane p. Let Hi

be the hyperplane in Cn representing the kernel of li. Consider the m by k
matrix M having entries

Mij = li(vj). (5.54)

The sections are linearly dependent on p if the null space of this matrix is non
trivial. Recall the rank-nullity theorem : rank(M) + nullity(M) = k. Said
another way, the sections are linearly dependent if at p if rank(M) ≤ m− 1.
Notice also that the null space is equal to p ∩H1 ∩ ... ∩Hm, and so

dim(p ∩H1 ∩ ... ∩Hm) ≥ k −m+ 1. (5.55)

Lemma 5.12. The set of planes satisfying equation 5.55, that is, cm(U∨),
is the Schubert cycle σ1,...,1 (k −m+ 1 subscripts).

Proof. Recall the definition of Schubert cycles in terms of a flag V = (V1, ..., Vn):

σa(V ) = {p : dim(p ∩ Vn−k+i−ai
) ≥ i} , (5.56)

where i runs from 1 to k and the ai are non-increasing. The intersection of
hyperplanes H1 ∩ ... ∩Hm is Vn−m. When i = k −m+ 1, we get

dim(p ∩ Vn−m+1−ak−m+1) ≥ k −m+ 1 (5.57)

In order for 5.55 to hold, we must have ak−m+1 = 1. The largest Schubert
cycle satisfying this condition is σ1,...,1 where there are k −m+ 1 subscripts
(every other Schubert cycle satisfying the condition is contained in this one).

Proposition 5.13. The total Chern class of U∨ is

c(U∨) = 1 + σ1 + ...+ σ1,...,1 (up to k subscripts). (5.58)
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Proof. Add up the cycles from the lemma as m ranges from 1 to k.
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Chapter 6

Real enumeration with
characteristic classes

Our goal in this Chapter is to enumerate real lines using characteristic classes.
We will first construct a complex vector bundle which allows us to enumerate
the complex lines by computing the top Chern class. The real invariant num-
ber 3 can be found from the Euler class of the real analogue of this bundle.
We will compute this Euler class way by embedding the real Grassmannian in
projective space, using the polar correspondence. In the last section we give
Segre’s definition of hyperbolic and elliptic lines and show that this notion
corresponds to the Euler index of a zero in the bundle.

6.1 Complex lines

The lines in CP3 are parametrized by the grassmannian of planes in C4,
G2(C4). That is, any line in CP3 corresponds to a plane in C4 and, con-
versely, any plane in C4 corresponds to a line in CP3 so that in fact this
parametrization is one-to-one.

Let U be the universal subbundle (also known as the tautological bundle)
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over G2(C4),
U = {(p, v) ⊂ G2(C4)× C4 : v ∈ p}. (6.1)

Now let us consider the third symmetric power of the dual bundle to U ,
S3(U∨). A homogeneous polynomial f(x, y, u, v) is a section of S3(C4∨) and
naturally induces a section sf of S3(U∨) by restriction to each fibre. That
is, let x(s, t), ..., v(s, t) be a parametrization for the plane p, then

sf (p) = f(x(s, t), ..., v(s, t)) = (...)s3 + (...)s2t+ (...)st2 + (...)t3. (6.2)

The symmetric forms s3, s2t, st2, t3 form a basis for the fibre. We have a rank
4 bundle over a 4 dimensional manifold.

Lemma 6.1. Let a cubic surface be given by f = 0. This surface contains a
line l if and only if sf (p) = 0 where p is the plane in C4 induced by l.

Proof. If the line l lies on the surface f = 0, then any parametrization of l
plugged into the cubic f will satisfy f = 0 identically. As mentioned before,
the line l corresponds to a plane p, and this (projective) parametrization
of l gives a parametrization of the plane p. The condition that sf (p) = 0
is equivalent to the condition that the parametrization identically satisfies
f = 0.

Next we will compute the fourth Chern class of S3(U∨) to find out how
many zeros we should expect from a section sf . By the previous lemma, this
will tell us how many lines will lie on the surface f = 0.

Using the splitting principle we can assume U∨ splits into a direct sum of
line bundles A ⊕ B with respective total Chern classes 1 + a, 1 + b. Setting
c(U∨) = c(A)c(B), we get the relation

1 + σ1 + σ1,1 = 1 + (a+ b) + ab, (6.3)

or in other words σ1 = a+ b, σ1,1 = ab. The symmetric bundle S3(A⊕B) is
isomorphic to A⊗3 ⊕ (A⊗2 ⊗B)⊕ (A⊗B⊗2)⊕B⊗3, the total Chern class of
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which is
(1 + 3a)(1 + 2a+ b)(1 + a+ 2b)(1 + 3b)

=(1 + 9ab)(1 + 3(a+ b) + 2(a+ b)2 + ab)

=(1 + 9σ1,1)(1 + 3σ1 + 2σ2
1 + σ1,1)

=(1 + 9σ1,1)(1 + 3σ1 + 3σ1,1 + 2σ2)

=1 + 3σ1 + 12σ1,1 + 2σ2 + 27σ2,1 + 27σ2,2.

(6.4)

So we see that c4(S3(C4∨)) = 27σ2,2, or 27 times the class of a point. We
are assuming our cubic surface is smooth, so that the lines have multiplicity
one (see proposition 2.1), or in terms of the bundle, all the zeros are isolated.
Therefore, a smooth cubic surface will have 27 lines.

6.2 Real lines

We have a real Grassmannian, G2(R4) parametrizing lines in RP3. Once
again, we have the universal subbundle:

U = {(p, v) ⊂ G2(R4)× R4 : v ∈ p}. (6.5)

We have sections sf in S3(R4∨) induced by homogeneous polynomials. We
would like to know how many zeros a section of S3(R4∨) by computing its
Euler class. We will do this by identifying the Grassmmanian of oriented
planes, G̃2(Rn+2) with a subvariety of CPn+1. This is called the polar corre-
spondence, [10], which we will describe in what follows.

6.2.1 Polar correspondence

Let Qn be the quadric in CPn+1 defined by x2
0 + ... + x2

n+1 = 0. Note that
this quadric has no real points. A plane p ⊂ Rn+2 defines an oriented line in
RP n+1. This real line lR splits its complexification lC into two halves. One of
these halves bounds the orientation of the real line (in the following picture,
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the top half bounds the orientation).

lR

	

	

lC

The complexification lC ⊂ CPn+1 intersects Qn in two complex conjugate
points. Let q be the point the half which bounds the orientation of lR. The
map which sends the plane p ⊂ Rn+2 to the the point q ∈ Qn ⊂ CPn+1 is a
diffeomorphism

φ : G̃2(Rn+2)→ Qn. (6.6)

The inverse maps looks like the following: A point q ∈ Qn is represented
by some vector vq ∈ Cn+2, and hence by a line Cvq. Project this line to a
real plane by the map 1

2(v + v). Note that this map is never zero because a
purely imaginary vector in Cvq implies q is projectively equivalent to a real
point (multiply by i), but Qn has no real points. Finally, to orient the plane
we pushforward the orientation of the complex line.

6.2.2 Euler class computation

Now let τ be the restriction to Qn of the tautological line bundle over CPn+1

(where the fibre over a line in CPn+1 is just the line itself in Cn+1). The polar
correspondence identifies Ũ∨ with the real 2-bundle underlying L = φ?τ∨.
Therefore, we have Ũ∨ ⊗ C = L ⊕ L (see 5.11). Taking the symmetric
powers, we have

Sk(Ũ∨)⊗ C = Sk(Ũ∨ ⊗ C)

= Sk(L⊗ L)

= L⊗k ⊕ L⊗(k−1)L⊕ · · · ⊕ L⊗k
.

(6.7)
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The total Chern class is therefore:

(1 + kc1(L))(1 + [k − 1]c1(L)− c1(L)) · · · (1− kc1(L))

=(1 + kc1(L))(1 + [k − 2]c1(L)) · · · (1− kc1(L)).
(6.8)

The Euler class of Sk(Ũ∨) will square to this, see 5.34 (modulo (−1)(k+1)k/2

where k + 1 is the rank of the bundle). Now we take the specific case where
k = 3. The total Chern class is

c(S3(Ũ∨)⊗ C) = (1 + 3c1(L))(1 + c1(L))(1− 3c1(L)(1− c1(L))

= (1− 9c1(L)2)(1− c1(L)2)
(6.9)

The top Chern class is 9c1(L)4, therefore e(S3(Ũ∨)) = 3c1(L)2. Now, c1(L) is
an element ofH2(G2(Rn+2),Z). We want to evaluate this on the fundamental
homology class [G2(Rn+2)]. But we have c1(L) = c1(φ∗τ∨) = φ∗c1(τ∨). If we
push everything forward by the polar correspondence φ we have

c1(L)[G2(Rn+2)] = c1(τ∨)[Qn]. (6.10)

Now c1(τ∨) is just the hyperplane class σ1. Now taking n = 2, σ2
1 is the class

of a line in in CP2+1. A line will intersect the quadric Q2 in two points, so
σ2

1[Q2] = 2. In other words,

e(Sk(Ũ∨))[G̃2(R4)] = 3c1(τ∨)2[Q2]

= 3σ2
1[Q2]

= 3 · 2.

(6.11)

Since G̃2(R4) is a double cover of G2(R4), we have

e(Sk(U∨))[G2(R4)] = 3. (6.12)
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6.3 Hyperbolic and elliptic lines

Consider a real line on the cubic surface. The tangent plane to any point on
this line will intersect the surface in the line itself and a further residual conic
(perhaps another pair of lines). This residual conic will intersect the line in
two points, one of which being the point where we took the tangent plane
from. We define an involution on the line by exchanging these two points of
intersection. The fixed points of this involution are called parabolic points
[26]. It is possible that the parabolic points only exist in the complexification.
The real line is called a hyperbolic line if the involution has two real parabolic
points. The real line is called an elliptic line if it has a pair of complex
conjugate parabolic points.

More concretely, choose projective coordinates x, y, u, v on RP3 so that
the line l is given by x = y = 0. Then the defining polynomial of the surface
has the form

f = u2L11 + 2uvL12 + v2L22 + uQ1 + vQ2 + C, (6.13)

where Lij, Qi and C are of degree one, two, and three in x, y. Any plane
containing l is given by the equation bx − ay = 0 for projective coordinates
a, b. The pairs of involution for the plane (the intersection of l and residual
conic) are given by the roots of the projective quadratic in u, v

u2L11 − 2uvL12 + v2L22, (6.14)

with Lij being evaluated at x = a, y = b. A parabolic point is given by the
unique root of this quadratic when its discriminant L2

12−L11L22 is zero. This
discriminant is a quadratic form in x = a and y = b. Let us call it F . If
F is indefinite, there are two real values of [a : b] which make F zero, each
of these planes give a real parabolic point by plugging into 6.14 and finding
the root. If F is definite, there are two complex conjugate values of [a : b]
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making F zero, which give the complex conjugate parabolic points. If we let
Lij = lijx+mijy, then the F is explicitly

(l212 − l11l22)x2 + (2l12m12 − l11m22 − l22m11)xy + (m2
12 −m11l22)y2. (6.15)

Write this as F = Ax2+Bxy+Cy2. F is definite (l is elliptic) if B2−4AC < 0
and indefinite (l hyperbolic) if B2 − 4AC > 0.

Now we compute the index of a zero in in a section of S3(U∨). A projec-
tive line l′ ∈ G2(R4) in a neighbourhood of l intersects the projective planes
v = 0 and u = 0 at some points [x1 : y1 : 1 : 0] and [x2 : y2 : 0 : 1].
The values x1, x2, y1, y2 give local coordinates around l in the Grassman-
nian. We can parametrize the plane in R4 corresponding to l′ as (u, v) 7→
u(x1, y1, 1, 0) + v(x2, y2, 0, 1). The value of a section sf (l′) is defined by sub-
stituting x = ux1 + v and y = uy1 + vy2 into the polynomial f. We have a
frame u3, u2v, uv2, v3 and base coordinates (x1, x2, x3, x4). The Jacobi matrix
of sf at l (xi = yi = 0) is

dsf (l) =


l11 0 m11 0
2l12 l11 2m12 m11

l22 2l12 m22 2m12

0 l22 0 m22

 . (6.16)

The determinant, whose sign gives the index Il(sf ), is

l211m
2
22 − 4l11m22l12m12 − 2l11l22m11m22 − 4l12l22m11m12+

L2
22m

2
11 + 4l11l22m

2
12 + 4l212m11m22. (6.17)

This is equal to B2 − 4AC. Therefore, the index Il(sf ) for a line l is +1
for a hyperbolic line and −1 for an elliptic line. There is the issue of the
orientation of the bundle which would reverse the signs of the index, but the
important thing is that the index corresponds to Segre’s notion of hyperbolic
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and elliptic lines. Provided the Euler number is +3 (and not −3), the indices
will correspond as we said.
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