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ABSTRACT 

The acceleration transients and the asymptotic stability of the balanced 

3 - phase induction motor operating from a balanced single frequency voltage supply . 

have been investigated by a combination of numerical techniques and analytical 

methods. A critical review is given for the various reference frame formulations of 

the induction motor dynamics and the efficiency of the methods for solving the dynamic 

equations has been assessed. The modal approach is presented as a comprehensive 

framework around wh ich the numerical resul ts are systematically organized and such 

disparate subjects as acceleration transients, asymptotic stability and nonsimultaneous 

switching are unified. 

Detai led attention is given to the identification of the physical modes 

and to understanding their behavioral changes as a function of rotor speeds. Asymptotic 

stability is studied by linearization through small signal perturbations. Quadratic lia­

punov Functions are proposed and it is shown that a Liapunov Function associated with 

the Total Energy con be used to prove Asymptotic Stability in the large. Eigenvalue 

sensitivity with respect to system parameters is also presented. The m.m. f. space­

vect~r ~iewpoint is presented to give a physical description of the modes, the airgap 

magnetiè field interactions in the production of transient torque, and the possibility 

of supersynchronous speeds during transients. 
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CLAIM OF ORIGINALITY 

To the best of the author's knowledge the following contributions are 
A 

original. 

1. The application of modal analysis to solve and classify the 

constant speed transients of the induction motor and an ex­

planation of controlled nonsimultaneous switching in terms 

of mode suppression. 

2. Investigation of the behaviour of the induction motor modes 

as they interact with rotor speed ; and proof for the damping 

coefficients sum invariance with respect to rotor speed. 

3. Identification of the physical modes through sub-primitive 

approximations ; and proof that the induction motor modes 

approximate asymptotically the modes of the loss-Iess sub­

primitive at high rotor speeds. 

4. Proof for the Eigenvector Rotational Property ; and repre­

sentation of the physical modes through m.m.f. space­

vectors associated with the eigenvector. 

5. Derivation of a formula which expresses the damping coeffi­

cient as co~ponents of energy storage and power dissipation 

associated with the mode. 

6. The application of the Direct Method of Liapunov to explore 

the region of asymptotic stability, and proof that whenever 

the total energy of the induction motor can be shown to be 

a Liapunov Function, then the equilibrium point is asympto­

tically stable in the large. 



7. Unification of switching transient studies with stability studies 

through eigenvalues identification. 

8. Investigation of eigenvalue sensitivities with respect to motor 

parameters and development of efficient computer methods 

for the calculation of the sensitivity indices. 

9. The physical interpretation of switching transients, super­

synchronous rotor speeds, and modes through m • m • f. space 

vectors ; and the definition of the instantaneous airgap 

power in terms of the angular veloci.ty of the resultant airgap 

magnetization space vector. 
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CHAPTER 1 

INTRODUCTION 

1-1 Induction Motor Dynamic Problems in Industry 

At least two recent developments have made the study of the induction 

motor dynamics both relevant and importanh 

(a) The increasing use of large horse -power induction 

motors with direct-on-line switching. 

(b) The deve lopment of solid-state variable frequency 

inverters which make variable speed induction motor 

operation economically feasible. 

The problem associated with the first application is the existence of 

large pulsating transient torques. For example, strain gauge measurements on a 

200 H P experimental· pulp refiner at the Pulp and Paper Research Institute, 

Pointe Claire, have recorded torques which are as high as 20 times the rated torque 

of the motor. Undoubtedly, these large transient torques have contributed to the 

frequent shaft key fail·ures in pulp refiners. 

The problem related to the use of the induction motor as a variable 

speed drive is one of stability. Although the induction motor is known to be highly 

stable at 60 Hz operation, there have been reports of unstable or very lightly 

damped operating points at low frequency operations. 



e. 

2 

Because of the topical and the practical nature of the problems, 

research on the dynamics of the induction motor has been an area of active interests. 

1-2 Historical Review 

The patent for the induction motor was granted to Nikolai Tesla in 

1888. The study of its dynamic characteristics, however, had to wait until the 

development of dynamic circuit theory of electric machinery by Kron [1 J , his pre­

cursors [2-3J and successors [4-7J. Unfortunately, dynamic circuit theory merely 

formulates the problem in the differential form and the ensuing task of solving the non­

linear equations had to await the development of powerful digital computers. 

Attempts at solving the nonlinear differential equation in its entire 

form were made since the 1940's, at first using the differential analysers [8-11 J, then 

using the analogue computers [12-14J, and in the late 1960's using numerical techni­

ques in conjunction with the digital computer [15-18 J. Those who favoured the 

analytical solution have found it po~sible to linearise the system equations by making 

the constant speed assumption and subsequently usihg the Laplace Transform to solve 

for the electrical transients [16 and 19-22 J . Solution of the variable speed problem 

has also been found to be analytically possible by assuming the stator resistance to be 

negligible, an assumption which corresponds to using the constant flux linkage 

theorem [23]. 

Most of the papers have been of a theoretical nature and have been 

concerned with the speed and current transients. It is not until around 1965 that 
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e" suitable torque recording "equipment produced confirmable experimental results which 

establish the dynamic induction equations with confidence, especially in respect to 

the pattern of transient torques. 

To date, the experimentally confirmable knowledge on switching forque 

transients resides mainly in the publications of three research groups, Wood et al 

[15, 22, 29J , Enslin et al [21 J and Smith et al [16,17J. Their research which 

followed almost on identical lines, consisted of : 

(a) producing experimental transient torque patterns which 

correlated closely with the digital comp~ter solutions and 

(b) using the characteristic roots of the constant speed linear 

equations to classify and explain the torque components. 

ft was around 1965 that the stabi 1 ity problem becomes of interest. Moti-

vated by a practical problem involving the stability of mill-motors, G.J. Rogers [24J 

analysed the small-perturbation linearised dynamic equations using the root-Iocus 

technique. He found that the motor understudy becomes very lightly damped at low 

frequency operation but is still stable. Since then, Nelson Lipo and Krause [25J 

and Fallside and Wortfey [26J have found parameter combinations for which the induc-

tion motor con be truly electrically unstable. The paper by Fallside and Wortley 

contains correlated experimental and theoretical stability boundaries. This paper 

together with the experimental and theoretical studies on power synchro dynamics by 
1 

Burridge and Barton [27 J confirm the soundness of using small perturbation 1 ineariza-

tion for stabil ity studies in induction motors. 
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ln' closing this historical survey, it is worthwhile itemizing sorne of the 

important physical phenomena which have been discovered in the dynamic studies 

throughout the years, but for which there has been no adequate explanation in exist­

ing induction motor theory. 

(0) Since 1941 [28 J 1 it hos been noted thot during a switching 

transie nt, the induction motor may exceed the synchronous 

speed. 

(b) By controlled nonsimultaneous switching, it is possible to 

suppress undesirable transient torque components. D 3,21, 

22, 29J. 

(c) The characteristic roots of the linearised constant speed 

equations change with the rotor speed. [21, 22 J. In 

particular the damping factor of the dominant root decreoses 

with speed suggesting its inter-relationship with instability 

at low frequency operation and prolonged switching tran-

, sients. 

1-3 Outline of the Problem 

Although the literature shows that there has been extensive research on 

induction motor dynamics, much of the results exist in the raw, undigested and frag­

mentary form. Different facets of the problem have been solved in isolation, each 

un're'lafed to the other. The methods employed are of varying merits and there is a 
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need to review their effectiveness from points of view of efficiency, accuracy and 

modern practice. There is need to find a mathematical formulation with sufficient 

scope to provide a unifying viewpoint. Furthermore there are sti Il vast patches of 

ignorance to be explored especially with respect to the curious dynamic phenomena 

itemized above. Finally, there has been a general lack of physical interpretation. 

ln an attempt to remedy sorne of these deficiencies and to contribute 

towards the development of the theory of induction motor dynamics, there are four 

objectives which are interwoven in the chapters of th is the sis • 

(a) Review 

The existing Iiterature is reviewed with the purpose of evaluating the 

merits of each reference frame formulation of the dynamic equations (Chapter Il) and 

assessing the efficacyof the methods for solving them (Chapter III). 

(b) Presenting a Unified Viewpoint 

Throughout this thesis, the results of modern control theory are used as 

the unifying mathematical language for the descripHon, classification and analysis of 

the induction motor dynamics. The state-space formulations, the modal approach, 

the concepts of eigenvalues and eigenvectors have served as a comprehensive frame­

work on which su ch disparate studies as nl"'lnlinear transients (in Chapter III) and 

stabi lit y studies (in Chapter VI) can be unified. 

(c) Contributions to Knowledge 

e This thesis has sought to map the following areas of ignorance: 



(i) A basic understanding of the dependence of the eigenvalues 

on the rotor speed. (Chapter V is devoted entire Iy to the 

clarification of this problem). 

(ii) The dependence of dynamic characteristics and performance 

with each of the motor parameters. (Chapter VII develops 

the eigenvalue sensitivity indices to provide the supplemen­

tary information otherwise concealed by the numerical methods). 

(iii) The stabil ity of an operating point with respect to large per­

turbations. (rhe Direct Method of Liapunov is appl ied to 

the stability studies in Chapter VI with limited success). 

6 

Because of the many predecessors on this problem, many of the contri­

butions consist of filling in gaps which are the necessary connectives between 

established areas of knowledge. An example of this, is the physical identification 

of the eigenvalues in Chapter VI which enable stability studies to be related to the 

transient torque studies in Chapters III and IV. 

(d) Physical Interpretation 

ln the discussion on "Transient Effects on Induction Motors ", M. G. Say 

[30J made a just criticism that lia defect common to ail papers" is "the lack of a 

physical explanation ". In pursuance of this remedy, the magnetic field viewpoint of 

Fitzgerald and Kingsley [31 J is adopted and deve loped to provide a physical under­

standing of the electromechanical interactions as they occur in the motor airgap. By 



develo~ing the concepts of the space-vectors which represent the airgap m.m.f.s, 

it is possible to obtain a comprehensive picture for 

(1) the production of transie nt torque and· 

(ii) the physical interpretation of the damping factors and the 

oscillating frequency of the transient modes. 

Basides the physical interpretations, the m.m.f. space-vectors have also proved to 

be theoretically fruitful in c1arifying the interesting transient phenomenon of the 

existence momentary motoring torque with the rotor at super-synchronous speed. 

7 

Note that in this thesis, details of computer programs used have not been 

included because of space 1 imitations. 



CHAPTER Il 

REFERENCE FRAMES 

8 

The purpose of this chapter is to review the many reference frames in 

which the induction motor dynamic equations can be expressed and to assess their 

suitabipty with respect to the methods for solving them. Thus, whenever the analogue 

computer is used, it is necessary to formulate the equations so that the y can be easily 

simulated by the standard hardware such as adders, multipliers and integrators. On 

the other hand, whenever the digital computer is used the preferred formulation is one 

which oHers minimum computation time for maximum accuracy. 

The first desirable feature is to be able to reduce the order of the system 

equations. In the most general form the industrial wound-rotor induction motor is dy­

namically described byan 8-order system of differential equations : 3 for the 

3-phase stator currents, 3 for the 3-phase rotor currents, and 2 additional equations 

for mechanical motion. 

ln the squirre 1 cage motor, the number of phases in the rotor is equal to 

the number of rotor bars per pole pair. This increases the dimensionality of the system 

equations. However, it has been shown by Barton and Dunfield [32J that the squirrel 

cage is dynamically equivalent to a set of ideal, short-circuited 2-phase windings. 

This fact enables an otherwise high-order system to be reduced to a 7-order system. 

ln many industrial applications, the stator and the rotor neutral points 

are not connected so that the zero sequence compone nt cannot exist. In such cases, 

it is possible to specialize the equations by transforming from a 3-phase system to a 



2-phase system, and ultimately reducing the 8-order to a 5-order system - such 

as in the d-q and a-~ frames. 

2-1 Basic Induction Motor Equations - abc Frame 

Making the usual assumptions of 

(a) uniform airgap ; 

(b) negligible core losses, saturation and hysteresis effects 

(c) distributed windings producing only a fundamental sin­

soidal distribution of airgap flux ; 

the dynamic equations of the 3-phase induction motor are described by Equations 

2-1(a) and (b). 

9 
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-- J1 P (,,)m + f1 (,,)m + TL = T em 

T - nM (i
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+ .s .r .s {) sin n 9 = 1 lb lb + 1 
em a a c c m 

- nM (i
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• 
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a c a c m 3 
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m m 

Because of the complex coupling and the dependence on trigonometric 

functions, the se equations are not suited for the analogue computer. If they have to 

be solved, then the digital computer is more suitable. 

Because the six electrical equations in Equation 2-1 (a) and the two 

mechanical equations in Equation 2-1 (b) bear a direct relationship to the real machine, 

a general computer program based on it can handle ail conceivable applications of the 

induction motor. This is particularly attractive in transie nt studies of the composite 

inverter -induction motor system where successive phases can be open circuit and com-

plicated terminal current constraints have to be matched. Unfortunately a program 

based on Equation 2-1 is inherently slow since it requires the matrix inversion of the 

[L] matrix (which is position dependent) at each integration step. This is because 

Equation 2-1 must be expressed in the standard form of Equation 2-3 so that it can be 

handled by a numerical integration subroutine. 

Equation 2-1 is rewritten as 

v = [R] i + [LJ P i 2-2 
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which yields the standard form 

P i 
-1 -1 = [L ] l) + [L ] IR ] i 2-3 

.. ...... 2-2 3-Phase Digital Mode 1 

It is possible to el iminate the position dependence of the [LJ matrix 

and at the same time retain the direct relationship of the stator currents with the real 

machine by transforming the rotor equations from the 3-phase si ip-ring to the 3-

phase commutator equivalent. This 3-phase commutative model has been proposed 

by Berton [33], and Robertson and Hebbar [34] • 

Essentially, the 3-phase commutator equivalent is obtained by using a 

power invariant transformation of the type relating the a-~ frame to the d-q frame 

in which the trigonometric functions of rotor positions in Equation 2-1 are replaced by 

speed voltages. Hence the [LJ matrix is a constant matrix and the advantage of this 

mode 1 is that repeated matrix inversion is not necessary at each i ntegrati on step. 

2-3 Three-Phase to Two-Phase Transformations 

Since the airgap flux from the balanced three phase motor can be repro­

duced by a combination of 

(a) an equivalent set of currents in a two-phase (a , ~) wind-

ing in space quadrature, together with 
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(b) a zero sequence component 1 it is often times con-

venient to transform from the abc variables to the 

o a ~ variables by use of the fo"o~ing transformation [36] : 

= 

2-4 

li 
-O~~ 

= 

where the orthogonal connection matrix is 

,)2 ,)2 
-Z ~ 2-5 

1 1 
-2" --2 

';3 ,)3 
"2 - 2" 

o 

ln a large number of applications, there is no zero sequence components 

since the neutral of the stator windings and that of the rotor windings are not connected 

to a return wire. Consequently it is possible to reduce the order of the electrical . 
-equations from 6 to 4 'by tra/llsformingtQ.the 2 - phase a - ~ system. From the a - ~ 

r 

fra.me it is possible to perform further power invariant two-phase transformations, e .g. 

to the d - q and the synchronously rotating frames. The theory behind these power in-

variant axis frame transformations are fully descrihed in many excellent texts [1 ] , [5-7 ] 

and will not he discussed here. It is useful to be reminded that the three-phase and two-

phase parameters under such orthogonal transformation are related as follows : 
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Two - Phase Three - Phase 

R
S = R

S 

R
r = R

r 

I
S = Ir 

{ = Ir 

M 
3 Ml = 2" 

and that the two-phase quantities can be obtained directly from the per-phase values 

calculated from the standard no-Ioad and locked rotor tests [35J • 

2-4 The a - ~ Reference Frame 

When there is no zero-sequence compone nt ,the 3 to 2-phase trans-

formation yields the a - ~ frame equations [36] : 

s 
e 
q 

r 
e a 

r 
e~ 

o p (M cos.n eJ p (M sin ne) 
m 

o -p (M sin n 9 ) p (M cos n 9 ) m m 

p(Mcosn9 )-pMsinn9 R
r + L

r 
p 

m m 
o 

p(Msinn9) p Mcos n9 
nI m 

o 

2-6(a) 

.s 
1 
q 

.r 
1 
a 

.r 
I~ 
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= n M [(i~ i
d
s 

- { iS
) cos n G . 

i'" a q m 

( .r.s .r.s). f\ ] 
- la Id + 113 Iq smnt7m 

2-6(b) 

p G = Ca) 
m m 

Because of the trigonometri c functions of rotor angles, these equations 

are difficult to simulate in the analogue computer and consequently have not been 

widely used. When these equations are considered in the context of the digital com­

puter, the positional dependence of the [L] matrix in Equation 2-6(a) means that 

at each integration-step, the [L] - matrix inversion has to be performed 50 that the 

standard form of Equation 2-3 can be obtained. $0, at first sight, it seems that the , 

. a - ~ frame would suffer the sa me disadvantage as the basic motor equation, Equation 

2-1. However, because the [L] matrix is now a 4 x 4 matrix with certain symmetric 

properties, it can be inverted by hand in an algebraic form to give 

L
r 0 -M cos n G - M sin n G 

[L]-l m m 
= 

LS Lr _ M2 
0 L

r 
M sin n G - M cos n G 

m m 

-McosnG Msin n G L
S 0 

m m 

-Msin n G -McosnG 0 L
S 

m m 

2-7 
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Because this matrix inversion is solved algebraically before hand, the 

evaluation of the right hand side of Equation 2-3 is a matter of straight-forward sum and 

product computer operations. As Table 3-1 shows, the computation time in the 

a - ~ frame is only marginally slower than in the d - q frame because of the addi-

tional time required to evaluate the trigonometric functions of rotor positions. 

The rotor position dependence" and the trigonometri c functions can be e Ii-

minated by trc;Jnsforming to one of the common reference frames. As will be seen, the 

d - q axis frame and the synchronously rotating reference frame are two important 

particular cases of the common reference frames. 

2-5 The d - q Reference Frame 

The d - q axis frame or the commutative primitive is the historical 

and logical next step from the a - ~ frame or the slip-ring pÏ"imitive. This is 

obtained by the transformations [3], [38]: 

i = [Ca~ ] i 
-dq dq - a13 2-8 (a) 

2-8 (b) 

where the connection matrix is 

e"" 
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- [ ca~] = 0 0 0 2-9 
dq 

0 1 0 0 

0 0 cos n 9 sin n 9 
m m 

0 0 -sin n 9 cos n 9, 
m m 

This transformation yields the system ,equations listed as Equation 2-10(a) and (b). 

s s s 
0 Mp 0 

.s 
e

d = R + L P Id 

s 
0 R

S 
+ L

S 
p 0 Mp 

.s 
e 1 

q q 

r 
Mp - Mn (,J R

r 
+ L

r 
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r .r 
e

d 
-L n (,J Id m m 

'r r 
R
r 

+ L
r 

p 
.r e Mn (,J Mp L n w 1 

q m m q 

2-10(a) 

2-10(b) 

There are two important features to note about the d - q reference 

frame. 

fi) When Equation 2-10 (a) is written in the form of E':juation 2-2, the induc-

tance matrix [LJ is a constant matrix. Thus an integration routine using 

this frame would save time since [LJ would have to be evaluated only 

once and no trigonometric functions are involved. 



e. 

(ii) Whereas in the basic motor equations (Equation 2-1 (b» and 

. in the a - ~ frame (Equation 2-6(b», it takes two equations 

to describe the mechanical dynamics, the d - q frame needs 

onlya single equation (Equation 2-10(b». This reduction of 

system order does not imply a loss or degeneracy of information 

when transforming to the d - q frame. It impl ies that the 

rotor angle position G is merely a description of the rotor 
m 

a - ~ frames in Equation 2-6 and unlike the velocity (,J , 9 
m m 

does not enter into the dynamics of electromechanical interac-

tion. This system reduction represents an important result arising 

from the cylindrical symmetry of the motor and will be discussed 

more fully in Section 2-10. 

2-6 Comme,il Reference Frame Transformations 
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Equation 2-10 in the d - q frame can be transformed to a moving frame [39J 

which rotates at electrical radians c.> by the following power invariant transformations. 
c 

1.16 = [C
dq J i 2-11 (a) lS -dq 

=-lS 
= [Cdq J i 2-11 (b) rs -dq 

where 
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2-13(a) 

2-13(b) 

Of the infinite number of common reference frames [25J which may be 

chosen, only two are of practical interest : 

(i) w = 0 . 
c 

This reverts back to the d - q axis frame in 

Section 2-5. 
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(ii) (,J 
c 
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This is the synchronously rotating reference frame 

. of Section 2-7 where the frames rotate at the supply 

frequency (,Jf • 

2-7 The Synchronously Rotating Frame 

The synchronously rotating frame is most advantageously used in solving 

switching transients with balanced symmetrical voltage suppl ies which in the d - cl 

frame is expressed as 

e = -dq 
Ecos «,Jf t + a) 
p s 

2-14 

o 

o 

By transforming to the synchronously rotating frame, the sinusoidally time 

varying voltage sources of Equation 2-14 are now expressed as d.c. voltages: 

=-t8 = E cos a u -1 (t) 2-15 
p s 

-E sin a 
p s 

0 

0 



Consequently, the steady-state current sol utions to Equation 2-13 

are d.c. currents. There are three important results which follow from this : 

(i) The transient current solutions are less oscillatory than 

these in the d - q frame. Hence it becomes possible 

to use larger integration step-size for the same computa­

tion accuracy and in our experience its solutions is at least 

twice as fast as in the other frames. In the limitiilg case 

when the transients are damped out and the constant steady 

state solutions are reached, the step-size can be infinite. 

(H) ln Section 6-2, the local stability of the induction motor 

at each operating point will be studied by linearizing the 

system equations through a method of small signal pertur­

bation which produces a dynamic system equation of the 

form ~ = [A] x • The synchronously rotating frame is 

the only frame which yields a constant [A] matrix for sym­

metrical balanced voltage sources. 

(iii) The' synchronously rotating frame oHers a clearer physical 

insight to the electromechanical interaction than the other 

frames. This is because their solutions are slowly time vary­

ing quantities which consist of (a) the steady-state solutions 

which are d.c. quantities and (b) the transient solutions 

superimposed on them. In contra st the d - q solutions are 

in a maze of sinusoids with the transients being barely distin­

guishable as envelopés. 

21 
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ln Section 3-15-2 by combining the concepts of m.m.f. space vectors 

and the synchronously rotating reference frames, it becomes possible to follow the 

sequence of electromechanical interaction during an induction motor transie nt'. 

2-8 Complex Transformations 

Hitherto ail the frame transformations have been real transformations to 

which can be attached sorne physical significance. The next task is to review the 

complex transformations such as the instantaneous symmetric component transformation 

introduced by W. y. Lyon in his book [9] , and like-wise examine their merits in terms 

of numerical integration. 

2-9 Instantaneous Symmetrical Components 

The method of instantaneous symmetrical .component has been used by 

I.R. Smith and S. Sriharan [16] to transform the induction motor equations from 

three-phase to a form which is efficient for solving the transients numerically. Thus, 

by using the complex transformation 

1 
i = "3 a p 

i 1 
2 

a 
n 

i 1 
0 

2 
a 

a 

i a 

i 
c 

(2-16) 



where (. 2 'Ir) 
a = exp 13 2-17 

it is possible to de compose the induction motor equations to zero sequence, positive 
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sequence and negative sequence component equations. For motors with unconnected 

star points, there is no zero-sequence components. Also, the negative sequence 

equations are the complex conjugate of those in the positive sequence. Consequently, 

it is possible to retain only the positive sequence components without loss of informa-

tion. The positive sequence equations are : 

s 
e 

p 

s .9 e exp 1 
p 

M(p-jnt.> ) 
m 

Mp 

where the voltage 'and the current vectors are complex quantities. 

.s 
1 
P 

i
r 

exp i 9 
p 

2-18 

Although Equation 2-18 appears compact, it in fact embodies 4 elec-

trical system equations which are obtained by equating the real and the imaginary parts 

of Equation 2-18. On expansion Equation 2-18 yields Equation 2-10 which is the 

d - q frame equations. As such there is no computational advantage in using complex 

transformations for numerical, integration of the induction motor transients. 

It can be concluded that the equations in the common reference frames 

(e.g. the d - q and the synchronously rotating frame) represent the very bare essen-

tials in the description of the induction motor dynamics. Since the digital computer 

programmes based on these would not contain redundancies in the formulation, they 

can at best be equaled by using the complex transformations. 
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2-10 Cylindrical Symmetry 

ln the transformation from the 0 - ~ frame (Section 2-4) to the d - q 

frame in (Section 2-5) it has been observed that the two mechanical equations in 

Equation 2-6(b) reduces to a single equation in Equation 2-10(b). This result is a 

consequence of the cyl indri cal symmetry arising from the idealised model in Section 

2-1 which assumes (a) a uniform airgap and (b) balanced, symmetrical sinusoidally 

distributed windings. Because of this idealizai'ion, one rotor position G is 
ml 

electromagnetically indistiriguÏlshable from another position 9. 
m2 

A corollary of the cyl indri cal symmetry is that the starting torque pattern 

is independent of the assigned initial rotor positions 9 when using the a - ~ equQ-, m 

tions, Eq!Jation 2-6. This has been verified by digital computer runs of the transient 

torque using different initial values for 9 • 
rn 

A second corollary is that when the inert induction motor is simultaneously 

switched (i"e. ail the line contactors close simultaneously on the balanced symmetri-

cal voltage source), the transient torque pattern is independent of the switching angle 

o • In the 2-phase common reference frame, the simultanous switching and the 
s 

switching angle.o are the mathematically expressed as the step-forcing functions of 
s , 

Equation 2-14 or Equation 2-15. Because of theuniform airgap and the idealised 

windings, the rotating electromagnetic fields set up in the oirgap by the symmetrical 

voltage source always follow the same time and space pattern except for an angular ' 

position shift of 0 electrical radians. Since the electromechanical torque is depen-
, s 

_ dent on the stator m.rn.f., the rotor rn.rn.f. and the space-phase angle between thern, 
" 

the angle Os merely represents a shift of the reference, axis and does not affect the 

torque pattern at ail. This result has also been verified by digital computer runs. 



2-11 Space - Vector Representation 

Hithetto this study has been engrossed in reviewing the reference frames 

with the purpose of finding formulations which lend themselves to easy solutions. 

Once the solutions are found it becomes necessary to interpret and organize them into 

a comprehensible body of knowledge. left in their original form the inter-relations 

of the solutions are difficult to follow. Thus, the solutions in the d - q frame are 

a tangle of sinusoidal currents and their relationship with the torque pattern are diffi­

cult to discern. 

It is f9und that the m.m .f.space vector representation yields the most 

meaningful presentation of the output solution. The m.m.f. space vector viewpoint 

is an extention of the concepts developed in Fitzgerald and Kingsley [31] and it is 

applied here to dynamic studies. 
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Basically three quantities are defined : the stator, the rotor and the 

magnetization current vectors which are at ail instants of time related directly to the 

spatial m.'m.f. and flux-density waves which occur in the uniform airgap of the induc­

tion motor. This vector representation is possible because 

(a) the airgap is uniform , 

(b) the orthogonal windings are sinusoidally distributed of' 

a fundamental space harmonie and as such vector addi­

tions are permissible • 

ln the d - q reference frame, the three space-vectors are defined as follows : 



Stator Current Vector 3' L '1. 
s s 

2 2 1/2 
3' [ ,s ,s] 
s = Id + 1 q 

,s 

'l. Id - arctan s -
,s 
1 
q 

Rotor Current Vector 3' L 'l. 
r r 

2 2 
'I}!' = ['Ir + 'Ir ]1~ 
tJ'r d q 

'r 

~. = 
Id 

aretan -r, 

Magnetization Current Vector 

,r 
1 • 
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3' L,/ 
m m 
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s = + Id + m q 

,s 
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,r 
Id Id 
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+ 

,r 
1 1 
q q 
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2-19 

2-20 . 

+ {)2] 1/2 
q 

2-21 

These vectors have each a magnitude and a space-angle with respect to 

the coil windings as illustrated in Figure 2-1 (a) to (c), Note that of the six 

quantities defined in Equations 2-19 to 2-21, only four quantities are independent, 

Thus as shown in Figure 2-1 (c) the magnetization current vector is the resultant of 

the stator and the rotor vectors. 



FIGURE 2.1 (a) 
STATOR SPACE VECTOR 

FIGURE 2 . 1 (b) 

ROTOR SPACE VECTOR 

FIGURE 2.1 (c) 

MAGNETIZATION SPACE 
VECTOR 
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Furthermore, it should be n~ted that Equations 2-19 to 2-21 imply 

that both the stator and the rotor currents are referred to the stator and consequently 

the tun~s ratio have been taken care of • 

2-12 Space Vectors Viewpoint of Electromagnetic Torque 

The importance of the space-vector viewpoint is establ ished when the 

28 

electromechanical torque can be expressed in terms of the space vectors. The electro-

mechanical torque of Equation 2-13(b) 

T 
em M (Os.r .s.r ) 

= n 1« IS - IS It 2-22 

are written for orthogona 1 axes frames. On transformation to the polar co-ordi nate 

frames of the space-vector representation it becomes : 

T = nM 3< 3< sin (~m - ~) em m r r 
2-23 (a) 

or T = nM 3< 3< sin ( 9'5 9'm) em 5 m 
2-23(b) 

T = nM 3< 3< sin (ft - fi) em 5 r 5 r 
2-24 or 

Thus the electromechanical torque is n M times the area contained in 

the vector parallelogram of Figure 2-1 (c). The torque is positive whenever (fi, - ft.) 
m r 

and (fi, - fi) lie in the first and second quadrant and negative when these angles 
5 r 

exceed 180°. 
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2-13 Space Vector Viewpoint in Synchronously Rotating Frame 

When the supply is a balanced polyphase voltage source, the spa ce 
. 

vectors 3 1 3 and ~Ji rotate with an average speed which is the synchronous 
s r m 

speed of the supply frequency. As such the synchronously rotating frame· is the best 

frame to view the interactions of the space-vectors in producing the motor torque • 

• 
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CHAPTER III 

NONLINEAR SWITCHING TRANSIENTS 

3-1 Statement of the Problem 

ln industrial applications of the induction motor, electrical and mechani-

cal transients occur when the machine is switched from one steady state to another. 

Some examples of transie nt occurrences are: 

(a) The inert motor at standstill is accelerated to full speed after 

being switched on to the power source. 

(b) The induction motor with load operating at rated speed is 

transferred from one busbar to another. 

(c) Two of the line voltages are reversed so as to reverse the 

direction of rotation or to IIplug ll the motor to standstill. 

(d) The induction motor is dynamically braked by injecting a 

d. c. voltage into the stator windings. 

Ali these, and miscellaneous induction motor transient problems can be 

viewed comprehensively in terms of the differential equation, Equation 2-1 (a) and (b) 

and of finding the solutions to a particular forcing function [:~bcl 
abc 

and a particular 

set of initial currents 
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3-2 Nature of Dynamic Equations 

The Equations 2-1 (a) and 2-1 (b) are not at ail easy to handle and 

whenever the induction motor is of the Y connection with unconnected neutral, a 

transformation to one of the common frames (as discussed in Chapter Il) is favoured 

because of the advantage in system order reduction from 8 to 5. Thus in the d - q 

axis frame, the problem consists of finding the solutions to the differential equptions 

of Equation 2-10 (a) and 2-10(b) for a specification of forcing function voltages 

s 
e

d 
(t) Equation 3-1 (a) and initial currents i

S

d 
(0) Equation 3-1 (b) 

eS (t) 
q 

i
S (0) 
q 

r .r (0) ed(t) Id 

r .r (0) e (t) 1 
q q 

TL '" (0) 
m 

Reduced to this most simplified form, the induction motor equation 

remains intractable to analytic solution because of the mathematical nonlinearity. 

This nonlinearity consists of quadratic products of the state-variables, i.e. of the kind 

"'m i~ in the electrical equations', Equation 2-10(a) and of the kind i~ i~ in the 

mechanical equations, Equation 2-10(b). 

Faced with this analytical impasse, past engineering practice has been 

to use approximations. 



3-3 Constant Speed APproxim'ctions 

A good approximation consists of assuming a constant rotor speed t.I m 
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in 

which case the electrical equations of Equation 2-10(a) are linear and can be solved by 

the Laplace Transform techniques. The solutions of the current variables are used in 

Equation 2-10(b) to calculate the torque. 

This is a very good approximation in the first few cycles of the switching 

tran;ients especially in cases of very large inertia and the motor torque can only produce 

low accelerations. Furthermore, since the most severe torque occurs in the first few 

cycles of switching, a good estimate of the maximum torque can be made from su ch an 

approximate solution. 

Because of the importance of this linear approximation, Chapter IV will 

be devoted to its discussion. 

3-4 Approximations for Variable Speed Torques 

An analytical method [23J which computes the motor torque while taking 

the variable speed into account is possible by assuming : 

(a) negligible stator resistance which results in using the 

l'constant flux linkage theorem", 

(b) a specification of the rotor speed. 
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This method has been used to study the effect of an abrupt change in 

slip, sinusoidal change in slip, rotor oscillation about a mean position and motor 

dynamic stability" 

3-5 Analogue Computer Solutions 

Essentially the analogue computer solutions consist of simulating the 

differential equations of the induction motor by the electronic integrators, adders, 

multipliers and function generators of the analogue computer. Most previous studies 

[12 - 14J have used the d - q axes frame which has the advantages (a) of being 

easily simulated and (b) being versatile enough to include study of the induction 

motor under unconventional operation. 

When the induction motor transients are to be studied under balanced 

symmetrical voltage supplies only, then the synchronously rotating frame equations of 

Equation 2-13 oHers the added advantage that the supplies are the d.c. voltages of 

Equation 2-15 and time sinusoidal function generators need not be used to simulate the 

d - q axis voltages of Equation 2-14. Once again versatility can be exchanged for 

economy. 

The analogue computer is readily "plugged" together and fast. However 

its serious defect is in the po or accuracy. Although the speed and the current transient 

solutions are themselves tolerably accurate, the formulation of the torque expression in 

Equation 2-10(b) inherently prevents high accuracy for the torque solution. This is be-

cause by Lenz's Law, i~ .r d.s 
~-I an 1 ~ 

d q 
-{ and hence the torque expression is the 

q . 
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difference of two nearly equal terms. As such unless the current solutions are accurate 

to many significant figures (which is not usually achieved by the ànalogue. computer)' the 

percentage error in the torque prediction is necessarily quite high. 

3-6 Solutions by Numerical Integration 

Because of the general availability of fast, large memory computers, it 

has become feasible to solve a system of nonlinear differential equations by num,erical 

integration algorithms. Generally the numerical integration methods of solving a set 

of first order non-linear differential equations 

p y (t) = F ~ , t) 3-5 

with the initial conditions ~ (0) fall under two broad classifications. 

(a) One Step Methods 

The algorithm for evaluating the (n + l)th integration step is 

y =Y +hp' 
-n+l -n -n 

3-6 

where p' is calculated from information based only on Y , t , and h is the 
-n -n n 

step-size. When p' is calclJlated from m evaluations of F (. .) this method is 
-n -

called m substitution method. Thus the fourth-order Runge-Kutta is a 4 - substitution 

method. 



·e 

35 

The Runge:"Kutta methods and the method developed by Wiederholt, 
.. 

Fath and Wertz [40] belong to this category. The the ory of the Runge-Kutta methods 

are described in the standard numerical analysis texts [41 ] , 0-3 J. In the digital 

computer applications, the Gill 's modification to the Runge-Kutta method is most 

favoured since (a) the Runge-Kutta constants for evaluating r;t can be solved re­
-n 

cursively and (b) the storag6 requirements and accumulated round-off errors are small • 

(b) Multi-Step Methods 

ln the multi -step methods, numerical integration is achieved through a 

formula of the kind 

y 
-n+1 

1 

=L 
k=o 

1 
\' 
L ~Ki 

k=-l 
~ n-k' tn- k ) 3-7 

When ~-1 = 0, Equation 3-7 is explicit, which means to say that the 

desired function at the (n+1) integration step is predicted from available information 

from the previous increments, i.e. n, n-1, n-2, ••• , n-I. 

This predicted value is subsequently combined in Equation 3-7 for the 

implicit case, i.e. ~ 1 :/ 0 to improve the estimate of Y 1. Generally the 
- n+ 

formula is used iteratively in the predictèr .- corrector process. Each time Equation 

3-7 is used, only one re-evaluation of i ( ) is necessary and consequently an al-

gorithm which makes use of R iterations is faster thon an rn-substitution one step 

method if (R + 1) < m, i.e. provided the increment h remains the same for both 

methods. However there is no assurance that to achieve the sorne accuracy, both the 

one-step and the multi-step methods will use the same increment size h • 
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The Hamming's Predictor - Corrector Method [44 J, [45J, the Adams­

Moulton Method [42 J, [46 J fa" under this classification and the the ory is covered in 

standard texts on numerical integration. 

3-7 Numerical Integration with Digital Compùters 

The constraints placed on digital computer usage are (a) economyof 

computational time and (b) economy of memory storage. In the studies of a single 

machine in transient 1 the system order is at most of 8 variables and over-concern 

with these economies are not justifiable. Nevertheiess economy practised in the 

single machine case can be extended to multi -machine studies. 

Generally, the following three-factors determine such economies in the 

numerical solution of a single motor in transient. 

(a) Choice of Reference Frames. 

(b) Choice of Integration Subroutines. 

(c) Choice of strategy in integration step-size control. 

3-8 Choice of Reference Frame 

Chapter Il has discussed the many reference frames in which the system 

dynamics of the induction motor can be written. The foIJowing observations can be 

made: 



.(a) The computation time àt each integration step can be economised 

when the inductance matrix [L] Equation 2-2 is not a function 

of position or time (as it is in Equation 2-1 and Equation 2-6) 

so that it is not necessary to invert it by the computer each time. 

Thus the digital model based on the 3-phase commutator equiva­

lent is preferred to the a-b-c frame, Equation 2-1 in the three­

phase equations. Likewise, the common axes frame equations 

(q - q in Equation 2-10 and t - ô in Equation 2-13) are pre-

ferred to a - ~ frame Equation 2-6 in the two phase mode 1. 

(b) Whenever the induction motor has an unconnected neutral in the Y 

connection, system reduction (from 8 to 15) can be achieved by 

transforrriing Equation 2-1 to a common reference 2-phase frame 

(Equation 2-10, Equation 2-13) . 

(c) By choosing the appropriateframe it is possible to increase the inte­

gration step-size and thus hasten the numerical integration process. 

Thus in the cases where the voltage supply is balanced, symmetrical 

and at a single fundamental frequency, the synchronous reference 

frame (Section 2-7) is very much faster than the solutions in the d - q 

axis. 

3-8-1 Comparison of Two-Axis Frame Transformations 

Table 3-1 gives the computation times for solving an ident,ical induc-

37 
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tion motor switching problem by the· three reference frames. The problem consists of 

an acceleration run from standstill by simultaneous switching to a balanced symmetrical 

voltage source at a single supply frequency: The programs for each frame are 'written 

so as to minimise computer time. Thus for example the first 1 ine in Equation 2-3 in 

the d - q frame is programmed in FORTRAN IV as 

DERY (1) = D (1) * SIN ( D (24) * X + D (25) - D (2) * y (1) 

. ~.. -- . . -
- D (3) * Y (5) * Y (2) + . . . . . . 3-8 

where DERY (1) 
.s 

= p 'd 

Y (1) 
.s 

= 'd 
.. ' 

y (2) .5 
= , 

q 

y (3) .r 
= 'd 

where the constant coefficients D (1), D (2), D (3) are clust~rs of motor parameters 

which are written algebrai cally and evaluated by a separate sub-program beforehand. 

Thùs for example 

D (2) 3-9 

ln comparing the merits of the reference frames, it should be noted that 

the a - ~ frame is only marginally slower than the d - q frame. This is because, 

the position dependence [LJ matrix of Equation 2-6(a) can be inverted by hand al-
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TABLE 3-1. AXES FRAME COMPlrtATIONAL TlME. 

Computation * Steady-State Steady-State Maximum Integràtion 

Axes Frame Time (minutes) Stator Frequency Rotor Frequency Step-size Used 

a-~ 0.61 Co) Co) x slip 0.0005 sec. 

d-q 0.54 Co) Co) 0.0005 

synchronous 

'(-5 0.24 d-.c d.c. 0.005 sec. 

* HPCG Subroutine: Switching from 0 - 1.0 sec. Initial step-size 0.001 sec. 
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gebraically to give Equation 2-7. Thus it is possible to write Equation 2-3 in the form 

of Equations 3-8 and 3-9. Consequently, the a - ~ frame is slower only by the ne­

cessity to evaluàte the trigonometric functions of angular position. 

The computation tÎme for the synchronous reference frame is less than 

half that of the d - q reference frame. This is because, given the same accuracy 

tolerance, the numerical integration is performed at a larger in.tegration step-size. Thus 

as has been presented in Table 3-1, a maximum of 0.005 sec. increment has been used 

in the synchronously rotating frame. 

Figure 3-3 shows graphically why a larger integration step-size is possible. 

Figure 3-3 plots a typical current solution for the d - q axis frame and the synchronously 

rotating frame. In the d - q axis the current solution is highly oscillatory. In con-

. trast there is a large steady state d. c. compone nt in the transient solutions in the 

synchronously rotating frame. As such, for the same percentage accuracy, it is possible 

to take a larger step-size since the instantaneous gradients are lower. 

3-9 Choice of Integration Subroutines 

Since the development of integration subroutines is not the purpose of this 

study, reliance has been placed on the IBM Scientific Subroutine Packages viz the 

RKGS and the HPCG which are general programs for solving a system of first order 

. nonlinear differential equations. If should be pointed out that the system nonlinearities 

which appear in the induction motor are of the ~uadratic product form and it may be 
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possible to develop specialised integration subroutines for the induction motor which 

exploit this structural property. In fact LF. Wiederholt, A.F. Fath and H.J. Wertz 

[40J have developed a numerical solution technique based on this insight and' for 

which they claimed lia time reduction of about ten'l over the convention rOl/tines. 

Accordingly this study has examined and developed such a quadratic nonlinearity 

program and compared it with the RKGS and the HPCG. 

As a subroutine package, the HPCG and the RKGS have important 

internai differences which are of no consequence to the users. The RKGS uses the 

Runge-Kutta method with Gillis modification and is described in Reference [47J • 

The HPCG uses the Hammingls modified predictor - corrector method and is described 

in Reference [48J. As in ail multi-step methods it is not self starting and it uses a 

special Runge-Kutta procedure to obtain the starting values. 

3-9-1 Comparison of Subroutines 

From the user:ls viewpoint, the following observations can be made with 

respect to the merits of the SSP - RKGS and the SSP - HPCG • 

Computational Time 

Test runs whose results are listed in Table 3-2 show that the RKGS is 

as fast and sometimes faster than the HPCG in solving an identical problem. This is 

surprising in view of the fact that the RKGS is a 4 - substitUtion method and requires 

4 evaluations of the state functions per integration step when compared to 2 evalua-
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TABLE 3 - 2. PERFORMANCE FIGURES OF INTEGRATION SUBROUTINES. 

Subroutines Computation Time Step Size Taken Auxiliary Storage Array 

IBM SSP - HPCG 0.54 minutes 0.0005 sec. 16 x 5 

IBM SSP - RKGS 0.49 minutes 0.001 sec. 8x5 

Test runs based on 

(a) Solution of induction motor transient in d - q frame. 

(b) Test run 0 - 1.0 sec. with initial step-size of 0.001 sec. 

(c) Computer 1 BM - 360 • 

e· 
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tions per step in. the HPCG. The reason for the speed of the RKGS becomes 

obvious when the step-sizes for an integration run are printed out. It is found that 

for the same accuracy and strategy in step-size control, the RKGS can take a larger 

step-size (sometimes twice as· large) than the HPCG • This fact has also been reported 

by Prabhashanker and Janischewsyj [45] • 

Because the RKGS does not have any formula estimates relating local 

truncation error with the step-size, the reason why the RKGS can take a larger step­

size is not apparent. This can be an interesting subject for research by the numerical 

analysts. 

Whilst the subroutine packages such as the HPCG and the RKGS have 

proved to be fast, re liable and accurate, it may be possible to deve lop faster integra­

tion subroutines based on the special nature of the problem. One such attempt is 

outlined in Reference [40] and has the objective of enabling small digital computers 

to solve problems of induction motor transients. 

3-9-2 Special Integration Subroutines for Quadratic Nonlinearity 

The algorithm developed in Reference [40] exploits the fact that the in­

duction motor nonlinearity consists of quadratic products of the state-variables, i.e. 

each of the first order differential equations can be written in the form 

3-10 

where al = constant coefficient of linear term, 



and 

b
1 

= constant coefficient of nonlineor quadratic 

product term, 

1 denotes the first row • 
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The method consists using a truncated Taylor series expansion of the state variables 

about a given time instant. Thus, for a third order system, the Taylor series expan-

sion of each of the state variables is 

where ~ik 

co 

Yi = l ~ ik h
k 

k=o 

for i = l, 2, 3 

= K th order Taylor coefficient of x. 
1 

The method consists of substituting the Taylor series expansions of 

3-11 

Equation 3-11 into the system dynamic equations of the form in Equation 3-10 and 

evaluating the Taylor coefficients by equating the coefficients of the same powers of 

h. The success of this method lies in the nonlinearity being quadratic, in which case 

it is possible to obtain a recursion formula where every Taylor coefficient can be found 

from the preceding terms. The recursion formula based on Equation 3-10 is 

K 

~l,k+1 = k~1[a1 ~l,K + b1 L. ~2'K-i: ~3, 1 ] 
1=0 

" The recursion formula starts from the 0 - order Taylor coefficients 

which is the initial condition and ail the other coefficients up to any order can be 

3-12 



45 

obtained from it. By choosing the step size h and the approximate truncated series, 

the solution for the (n+1) increment is obtained from the n - increment solutions 

which are used as the 0 - order Taylor coefficients. 

A program based on this princip le has been developed in this study. For 

comparison purposes, the same step-size control as the HPCG and the RKGS sub­

routines has been used. Unfortunately, it is found that the RKGS and the HPCG 

are far superior in speed and in accuracy to this program. This does not necessarily 

reflect on the merit of the method, but rather on the relative skill of the programmers. 

Although no definite conclusions can be drawn, the following observations can be . 

made: 

(a) The IBM SSP packages are efficiently programmed. For 

example in the RKGS, the GilPs version is used and as 

such the Runge-Kutta constants are solved in a recursive 

manner. Hence the recursive formula of Equation 3-12 

does not have a competitive edge over the RKGS. 

(b) It is found that in order to achieve comparable accuracy 

at the RKGS, for the same-step size, fairly high orders 

of the Taylor series in Equation 3-11 have to be used. 

3-10 Choice of Strategy in Integration Step-Si.ze Control 

ln practice, the economical step-size is determined by the kind of 

accuracy desired for the solutions. Since the total computation time is dependent 



on the step-size, it is important to ensure that the step-size is not smaller than is 

demanded by the accuracy. Generally speaking, the step-size needs to be very 
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small when the time rate of change of the solution is very large and conversély when the 

solutions have small gradients, it is possible to take large step-sizes. In Section 3-8 

and in Figure 3-3 it has been shown that by choosing the synchronously rotating frame 

it is possible to obtain a solution which has less curvature than the solution in the 

d - q axis and as such the step-sizes can increase to th~ extent of halving the integra­

tion time. 

ln continuing to examine the current solution il in Figure 3-3, it can 

be noted that from the curvature argument, the integration step-size needs to be very 

smalt in the first few milliseconds. However as soon as this leakage inductance mode 

(see Section 5-4) becomes damped out, it is possible to increase the step-size because 

the curvature is lower. As such, the strategy of step-size control should be able to 

decrease and increase the step-size as the need arises. 

3-10-1 Accuracy and Step-Size Control 

A grave disadvantage of the One-Step Method such as the Runge-Kutta 

algorithms and of the special integration subroutines of Section 3-9-2) is that the 

truncation error cannot be estimated in the course of the calculations. The accuracy 

is estimated by comparing the results obtained from a step size 2 h and the results 

From twice the step-size h • 
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The multi-step method such as the HPCG have formulae for the 

local truncation error and the calculation procedure i~cludes an estimate of the 

accuracy. 

ln both the HPCG and the RKGS the step-size control is as follows : 

(a) When the estimated truncation error for a step-size h 

is excessive of the accuracy tolerance, the resu It is 

rejected, the step size is halved and the computation 

is repeated and successively tested and halved until 

the accuracy tolerance is met. 

(b) When the truncation error is less than the accuracy to-

lerance, the result is accepted as correct. Whenever 

1 
the truncation error is less than 50 x accuracy tolerance, 

the next step is computed for a doubled increment, i.e. 

2 h • 

This strategy has proved to be re liable and stable, although the step­

size increase based on ~O x accuracy tolerance may be on the conservative side. 

The strategy used by Wiederholt, Fath and Wertz in Reference [40 ] 

is more complex. It consists of changing (a) the step-size and (b) the order of 

the Taylor series approximation, in response to accuracy requirements at each inte-

gration step. Besides simple logic tests as to whether the step-size and the order 

of the Taylor series need to be increased or decreased, there are memory statements 

as to whether the step-size and the Taylor series expansion were changed in the 

previous step. 

.. 



48 

3-10-2 Step-Size and the Spectral Radius 

Hitherto, the term "curvature Il in the solution has been used to express 

intuitive notions as to why the integration step-size needs to be large or small. 

Mathematically a measure of this curvature is known as "spectral radius". 

ln a dynamic Iinear system of equations 

p~= [AJ~ 3-13 

where [A ] is a constant square matrix with eigenvalues in the left half of the com-

plex plane only, the spectral radius is defined as 

p ( [A ]) = max 1 À. 
1 

i = 1, 2, .., m 

where À
1 

' À
2

, •• , Àm are the eigenvalues of [A ] 

3-14 

It is possible to prove [50] that in solving the Iinear system Equation, 
i 

3-14 by numerical integration, the solution would be numerically unstable if the step-

size h is excessive Iy large, i.e. 

h > 2 
3-15 

il ([A J) 

Equation 3-15 can be interpreted to mean that when a component of the 

solution is a highly damped and/or oscillatory mode, the step size must be very small. 

Returning to Figure 3-3 again, the first few milliseconds correspond to a highly damped 
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leakage inductance mode for which the spectral radius is very h'igh and consequently 

the h must be small. 

Of course Figure 3-3 corresponds to the solution of the nonlinear 

equations, Equation 3-5 and not to the linear eq'uations, Equation 3-13. Nevertheless 

it is possible to extend the concept of spectral radius to the nonlinear equations by re-

placing the constant [A] matrix with the Jacobian of ! ~ , t) to give the spectral 

. oF oF 
radius P ([ 0 yJ). As the numerical integration proceeds, p ([ oY J) changes 

and ideally the step-size can lengthen or contract in unison with the spectral radius. 

It must be emphasized that in actual fact, the step-size is usually 1 imited 

by the accuracy tolerance before the num~rical stability constraint is violated. Hence 

the spectral radius is only a rough guide based on a spacious argument that if the numeri-

cal stability constraint permits an increase in step-size, then a step-size increase is also 

Iike Iy to be permitted by the accurac:' constraint. 

Many times, it is permissible to increase the step-size based on accuracy 

constraint although the spectral radius point of view would argue against it. Thus for 

example, we take again the Iinear equations, Equation 3-13 to which Equation 3-15 

sets a bound on the step-size. It is 'possible that (a) the mode of the eigenvalue from 

which 'p ( [A J) is taken is not excited and (b) that this mode is highly damped. In 

such a situation, the step-size h can be increased when (a) this particular mode is 

unexcited or (b) when the mode is damped out. Equation 3-15 assumes a fixed step-

size strategy for the entire numerical integration run and of course is inferior to the 

dynamic strategies described in Section 3-10-1. 
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ln spite of the lack of rigour and other limitations' the spectral radius 

remains an important tool as (a) a plausible measure by which step-size changes 

can be discussed and more importantly (b) in showing how new and faster integration 

algorithms can be derived. 

3-11 Modified Integration Aigorithms 

ln Section 3-9, it has been found that by transforming from the d - q to 

the synchronously rotating y - 5 frame, it is possible to increase the integration step -

size and hence improve that computation time. K. N. Stanton and S. N. Talukdar [50 ] 

have presented both theoretical and preliminary investigations of a general method of 

obtaining larger step-sizes through suitable mathematical transformations. Basically 

the method consists of transforming Equation 3-5 to 

p ~ Ct) = i 1 (~ (t) , ~) 

where a larger step-size can be used because the spectral radius 

1 
of F. is smaller than that of !:. in Equation 3-5 • 

The authors showed how this mathematical transformation can be achieved 

and have incorporated the transformation into modified Runge-Kutta and modified 

"Adams type" algorithms for which they claim five to ten times improvements in 

step-size. 
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3-12 Terminal Voltage and Initial ValueProblems 

Hitherto, only the methods of solving the nonlinear induction motor 

equations have been discussed. In this section, it will be shown how the methods 

and the system equations (as presented in Chapter II) can be used to study the variety 

of. switching and reswitching problems (as listed in Section 3-1). Because of its sim­

plicity only the d - q frame equations will be used. 

ln the literature, the problems have been classified as: the switching 

and the reswitch ing problems. As used by many authors [16], [29], the switch ing 

problem is used to describe the closing of a three-phase line to an inert induction motor 

at standsti Il. When the three contactors close simultaneously, the name simultaneous 

switching is given to it. Otherwise it is called nonsimultaneous switching. 

The reswitching problem is used to describe the case when the induction 

motor operating under steadystate is interrupted and then a reswitching voltage is applied 

to it. This may occur in transferring the supply to another bus-bar (reconnection), or 

in bringing the motor to a hait by dynamic braking or plugging. Since the reswitching 

operation cannot be performed instantaneously, it consists of two interruptions: (a) at 

the point of disconnection and (b) at a point of reconnection. Between these two 

interruptions, the induction motor equations become degenerate and the transients need 

to be solved separately. 

Essentially at each interruption, the following situations have to be dealt 

with : 

(a) circuit topology changes, 
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(b) terminal voltage constraint changes, 

Cc) the matching of physically continuous quantities, this may 
, .. ~. 

be mechanical velocity, winding currents or magnetic flux 0 

3-12-1 Simultaneous Switching 

The electrically inert induction motor is described by the initial values 

[ Os oS or 
Id"q' Id' 

or 
l , 
q 

[0, 0, 0, 0, w ] T 
m 

3-16 

ln simultaneous switching, the driving functions for Equations 2-10(a) and 

(b) are 

s 
cos (w t + a ) U_1 

(t) 3-17 e
d = c s 

s 
-sin (w t + a ) e 

q c s 

r 0 e
d 

r 0 e 
q 

TL T 
L 

As discussed in Section 2-10, as a consequence of the cylindrical symmetry, 

the torque pattern is independent of the switching angle a and the rotor position in 
s 

simultaneous switchingo 
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3-12-2 Nonsimultaneous Switching 

ln most practical cases, the switching contactors do not close simul-

taneously. At the time the second contactor closes, it forms a continuous e lectrical 

circuit with the first contactor and activates a system of dynamic equations which is 

a degenerate form of 'Equations 2-10 (a) and (b), i.e. 

s 
R

S 
L

S 
p 0 

.s 
e = + Mp 1 

q q 3-18(a) 
r 

-Mn R
r 

+ L
r 

p _ Lr .r 
e

d 
w n W Id m m 

r r 
R

r 
+ L

r 
p 

.r 
e Mp L n w 1 

q m q 

J1 P wm + f 1 wm + TL = - n M i~ i~ 3-18(b) 

These equations are solved for the initial conditions 

[ s .r.r ] [ 0 0 0 i , Id' l ,w = '" w q q m m 
] 3-19 

and for the driving functions 

s 
- sin (w t a ) U -1 (t) 3-20 e = + q c s 

r 
0 e

d 

r 
O. e 

q 

e TL TL 
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Equation 3-18 describes a degeneracy which consists of the d - axis 

stator winding being in the open circuit. By the time the third contactor closes, at a 

phase angle ~ after the switching described by Equation 3-20, the solution of Equation 
s 

3-18 is 

where 
~s 
w 

c 

3-21 

3-22 

At the point of the closing of the third contactor, the complete system 

equations of Equation 2-10 will be used. Shifting the time origin to this instant, the 

forcing function is described by 

s 
cos (w t + ~ ) U -1 (t - t 1) ed = + a 

c s s 

s 
- sin (w t ~s) 

3-23 
e + a + 

q c s 

r 
0 ed 

r 
0 e 

q 

TL TL 

From continuity considerations, the initial conditions of Equation 2-10 

are the final values described by Equation 3-21, i.e.· 

] T = [0, i
S 

(t
1 

), id
r 

(t
1 

), { (t
1 

) w (t
1 

) i 
q - - q -m-

3-24 
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Depending on the switching angles a and ~ a family of torque 
s s 

patterns will be produced. The influence of the switching angles has been studied 

by Ens/in [21 J , Wood, Flynn and Shanmugasundaram [29J • 

3-12-3 Reswitching Problems 

The reswitching problem in the induction motor is pictorially described 

in Figure 3-1 where the disconnect and the reconnect switching interruptions at time 

instants t 1 and t
2 

break the problem into 3-piece-wise time segments. 

(a) Before Disconnection t < t
1 

Prior to this disconnection the induction motor operates at a particular 

voltage specification [e~q ] 1 to which the complete system equation, Equation 2-10 

is applicable. In many applications, this voltage specification is Equation 2-14 and 

by the time t 1 the system has arrived at the e lectro-mechani cal steady-state. At the 

point of disconnection, the state is describable by the vector 

{ (t
1 

), (.) (t
1

) ] T 
q - m -

(b) Disconnected Interval t 1 < t < t
2 

ln the discon~ected interval, the stator windings are in open circuit be­

cause of the finite time it takes to switch on the second voltage supply [e S~q ] 11 

after the first one has been removed. Since i~ = i~ = 0, the system equations 
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t2 
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Continuity of winding currents 

. and speed 

y (t) 

Busbar Transfer Equation 3-28 (a) ~ 

Reversing, Plugging Equation 3-28(b) 

Dynamic Braking Equation 3-.28(c) 
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degenerate to 

r lr p r .r 0 = R + - n l (,,) Id m 
3-25 (a) 

0 
r 

R
r 

+ lr p .r n l (,,) 1 m q-

= 0 3-25(b) 

ln this interval, the magnetic flux associated with the rotor currents 

decays and likewise the rotor decelerates because of the load Tl and viscous friction 

Before the numerical integration of Equation 3-25 can proceed, it is 

necessary to know the initial values of the system. Arguing that the airgap flux can-

not change instantaneously, we have the initial conditions as 

i~ (t 1) 
.s 

(t1 J + 
.r 

(t1 J = Id Id 3-26 

{ (t ) .s 
(t1J + 

.r 
(t1 J 1 1 

q 1+ q q 

(,,) (t 1 ) t.) (t1 J m + m 

At the instant of reswitching, the state-vector after decay is 
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(c) Reconnecti on t > t 2 .. 

At the instant of reconnection t2 , the initial values are . 

i~ (t2) = 0 
3-27 

i
S 

(t
2 

) 0 
q + 

i~ (t2) i~ (t2) 

{ (t2 ) q + 
{ (t

2 
) 

q -

wm (t2) w
m 

(t
2

) 

The system equations, Equation 2-10 are then solved for the forcing 

functions described by the supply voltages [e~q J11. The different specifications of 

the reswitching voltages are : ~ 

Busbar Transfer 

Reversing and Plugging 

= 

Ep cos (wc t + as1~ 

-Ep sin (wc t + as 1) 

o 

o 

o 

3-28 (a) 

3-28(b) 
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Dynamic Braking 

= 
3-28(c) 

o 

o 

3-13 Numerical Examples 

Programs have been written which solve the dynamic equations of the 

induction motor under switching and reswitching constraints. The rest of this chapter 

will be concerned with presenting the solutions for a few practical examples related. 

to syrichronous switching. 

Since this thesis has interests in discovering the physical nature of the 

transients, subroutines have been incorporated which analyse and display the solutions 

in terms of power exchange, energy storage and m. m. f. space -vectors. It is found 

that the m.m.f. space-vectors viewpoint has been most rewarding, especially in cor-

relating the production of transient torque from current solutions. 

The solutions presented are for a typical induction motor, the parameters 

of which are listed in Appendix G . 
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Torque Transients in Synchronous Switching 

3-14-1 d - q Currents Viewpoint 

Figures 3-2 and 3-3 show examples of .synchronous switching transients 

for Ep = 300 volts, f
1 

= 0.01 newton-metre-sec., TL = 0.0. Figure 3-2, which is 

for a moment of inertia J
1 

= 0.006, shows the acceleration torque. pattern consisting 

of two parts: (a) the electrical transient portion 0 - 0.1 sec., which has a 60 Hz 

oscillating compone nt and (b) a mechanicaltransient portion 0.1 - 0.2 sec., 

. which indicates that the acceleration is in accordance to the static torque-speed 

. characteristics of conventional the ory • 

Figure 3-3 which is a larger moment of inertia J
1 

= ~.06 . shows on an 

enlarged time scale, (a) the electromechanical torque, (b) the rotor speed and. (c) 

a typical stator current i~, for the first portion of the transient. Ali the other state­

variables are not presented because they are simllar except for phase shifts and besides 

they cannot reveal the relationship of torque to the motor currents. Visually it is baff-

ling that although the stator currents seem to have subsided by the first or second cycle, 

the transient torque persists in oscillating. A complete explanation of this is given in 

Chapter IV where the nonlinear equations are Iinearised by assuming a constant speed. 

For the present, the m.m.f. viewpoint is instructive. 

3-14'-2 Space-Vector Viewpoint of Transient Torque 

Figure 3-4(b) displays the magnitude of 3i , 3i and M 3i which are 
s r m 

constructed from the state-currents solutions of the numerical integration subroutines. 

." 1 
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Figure 3-4(c) displays the phase-angles ~ , fi , fi os viewed from the synchron-
r s m 

ously rotating frame. The space vector quantities are defined in Equations 2-19 to 

2-21. With these space-vectors and using the electromagnetic equation, Equations 2-22 
" 

to 2-23, it is possible to relate the production of transient torque with the physical quan-

tities as they occur in the airgap of the induction motor. 

On a qualitative basis, , it can be said that as soon as the voltage is 

switched on, the stator currents build up very quickly to produce a stator m.m.f. which 

remains roughly constant in magnitude and which rotates synchronously with the supply. 

ln response to lenz's law the induced rotor currents flow to produce a rotor m.m. f. which 

is 'slightly ,Jess in magnitude and in an opposite direction to the stator m.m.f. vector. , 

Thus the displays show 1 3' 1 ~, 1 3' 1 and 9: - ~ ~ 180
0 

electrical. The dif-s r s r 

ference between the vector 3' and 3' is the magnetization current vector 3' • M 3' 
s r m m 

represents the magnetization flux in the airgap spa ce and in the period of the oscillating 

electromagnetic torque, it is this quantity which oscillates in magnitude and in angle with 

respect to the synchronously rotating frame. Using the torque equations, Equation 2-23 

or Equation 2-24, the torque pattern of Figure 3-4(a) can be correlated with the space-

vectors of Figure 3-4(b) and Figure 3-4(c). In particular it is int,eresting to note the 

negative torques occur when sin (~ - 9'. ) becomes negative • 
s m 

3-15 . Supersynchronous Motoring Torque 

A well-documented and interesting fact in acceleration transients of the 

induction motor is that the mechanical speed can exceed the supply synchronous speed 
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[28], [30]. This phenomenon is investigated in the numerical example in which 
• o' 

J
1 

= 0.0006 is assigned to the rotor inertia and the rotor exceeds the synchronous 

speed in the second cycle. The surprising fact here is that the torque T can be 
em 

positive when la) > la) • 
m c 

This appears in the numerical integration solution shown 

in Figure 3-7{a) in time segment 0.018 < t < 0.025 sec. 

This existence of a super-synchronous motoring torque requires fundamental 

revision of established induction motor theory. In conventional theory, the airgap 

power is associated with the synchronous speed, la) and a conventional argument 
c 

against the possibility of T > 0 when la) > la) is summarised by the question: 
em m c 

Where wou Id the power come from ? 

ln answering this question it is proposed that the airgap power be associated 

with !1
m

, the instantaneous angular velocity of the magnetization airgap flux, rather 

than the synchronous speed la) • 
c 

3-16 Instantaneous Airgap Power 

The angular velocity of the airgap flux vector !1
m 

can be obtained by 

differentiating Equation 2-21 (b) 

. 
9'm = p 9'm 

3' 3' 3' 3' 
r p s - s p r = 

3' 2 
3-29 

m 

and the airgap power is defined as 
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P = T f1 3-30 
ag em m 

This definition comprehends the conventional definition because in 
. 

the steady state f1 = la) • 
m c 

Figure 3-5(b) shows the time sequence of la)m and 9'm for the same 

acceleration transient as in Figure 3-5(a). Although w exceeds the synchronous 
m 

speed w ,the airgap flux can still have a higher velocity. 
c 

More convinving still, Figure 3-5(c) shows the airgap power T
em 

9'm 

besides the mechanical power output T Ia). In the regions of negative torque, the 
em m 

direction of airgap power transfer is reversed, i.e. the kinetic energy in the rotor in-

ertia is transferred back to the stator. Although, T ~. - w ) can be negative at 
em m m 

many instants, the time integral is always positive, i.e. 

t 

J • 
T (9' - w ) d "C ~ 0 

em m m 
3-31 

o 

Figures 3-5(b) and (c) illustrate the feasibility of the definition of airgap 

power. In Appendix B, it will be demonstrated that the induction motor differential 

equations imply such a definition for the airgap power. Finally by translating the lumped 

parameter formulation of the induction motor into an electromagnetic field problem, it 

can be shown that the definition of Equation 3-30 is required by airgap power transfer 

considerations using the Poynting's Theorem. 
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Although the numerical solutions generated by the digital computer sub­

routines described in Chapter III are accurate, their lack of analytical insight is a 

serious disadvantage. It is possible to sacrifice accuracy for insight if the induction 

motor equations are 1 inearised by making the constant speed assumption. Many studies 

[16], [21], [22], have usefully pursued this line of attack and have characterised 

the dynamic behaviour of the induction motor from the roots of the constant speed 1 inear 

equations. These studies employ the Laplace Transform technique which reduces the 

linear differential equations into an algebraic characteristic equation of the fourth order. 

Typically it is not possible to find the 4 characteristic roots 0'1 ± i (.)1 ' 0'2 ± i (.)2 

explicitly in terms of the system parameters. Since the roots are ultimately solved 

numerically, mu ch of the advantages claimed for the analytical solution are in fact 

lost. 

The modal approach which is presented here is mathematically equivalent 

to the Laplace Transform method. It has the advantage that it offers a compact and 

elegant matrix formulation, exploits fully the capabilities of the digital.computer, and 

present the eigenvector matrix and its inverse as tools for understanding the inter-relation­

ship of modes and excitations. 
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The modal analysis consists essentially of transforming the 1 inear system 

equations from the current-coordinates to a set of fictitious normal coordinates which 

are in the directions of the system e igenvectors. The theory of such a transformation 

is described in many standard texts of the state spa ce approach to linear systems [51 - 53]. 

4-2 Con'stant Speed linearization 

By assuming that the rotor shaft speed (0) is constant, the ele'ctri cal 
m 

system equation, Equation 2-10(a) becomes mathematicalty linear. The mechanical 

equation, Equation 2-10(b), is considered to be decoupled, i.e. altbough the electri-

cal currents produce an electromechanical torque, the rotor shaft speed cannot change 

since an infinite inertia is implicitly assumed. 

ln many switching transients where the angular acceleration is smalt by 

virtue of the large mechanical inertia, it is instructive to divide the accelerating tran-

sient into as many time segments as the accuracy demands. In each of the time segment, 

the rotor speed (0) is incremented to a constant value representative of the rotor speed. 
m 

The electrical equations are solved as linear equations in that time segment for the re-

presentative (0) • The connection between the two adjacent time segments are: the 
m 

final state of the previous time segment becomes the initial values of the present time 

segment. Although this method will not be as efficient and as accurate as the numerical 

integration subroutines, it offers valuable quai itative insight because the roots of the 

Iinearized electrical equations form a very useful basis for characterizing the induction 

motor dynamics. 
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The importance of these roots will be apparent again in Chapter VI which 

is a study of the stability of the induction motor at each operating point. There, it will 

~. shown that of the 5 eigenvalues which characterize the dynamic properties of a 

steady-state operating point, 4 of them are identifiable with those of the constant 

speed electrical equations. 

4-3 The Constant Speed Induction Motor Equations 

The electrical equation, Equation 2-10(a) expressed in the standard state-

variable form is : 

P i 
-dq = [Ad Ji d + [Bd Je d q - q q - q 

where 

2 
-n M (d L

r 
R

S 

m 

- M R
S 

-n M L
S 

(d 
m 

s 
n ML (d -M R

S 

m 

and 

r 
-nML (d . m 

4-1 

5 r 
- nL L (d m 

4-2 
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[BdqJ [L ]-1 1 
L
r 

0 -M 0 4-3 = = 
LS Lr _ M2 

0 L
r 

0 -M 

-M 0 L
S 

0 

0 -M 0 L
S 

Since [Ad ] is a constant matrix when la) is assumed constant 1 the q m 

dynamic system behaviour is determined by its eigenvalues. It is possible to proceed 

directly to the modal frame from a knowledge of the eigenvectors of [A
dq

]. How­

ever 1 after setting up the d - q axis frame equations, it is preferable to proceed to 

the synchronous reference frame for two reasons. 

(a) For motor standsti Il transients la)m = 0, [A
dq 

] contains 

two pairs of coincident real roots. These represent com-

plications and require separate treatment in the modal 

analysis. It will be assumed throughout this study that the 

eigenvalues are distinct where the treatment is simpler. 

Although the synchronously rotating frame does not guarantee 

that the eigenvalues are always distinct for ail la) , it does 
- m 

guarantee it for the very important practical case of switching 

from rotor standsti Il, i.e. la) = 0 • 
m 

(h) For a symmetrical single frequency voltage supply 1 the syn-

chronously rotating reference frame voltages are d.c. 

voltages (see Equation 2-15) and the algebraic solutions 

can be solved very simply. 
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·e The synchronous reference frame equation, Equation 2-13(a) is 

written in the standard form as : 

p !.. lS = [A 21 S] !.. YS + [B lS] e rS 4-4 

where 

--1 

[A
IS

]= 1 _ Lr RS 
- (L S L r - M 

2 
S) W 

r r 
MR ML w

f
(S-l) 

LS Lr _ M2 f 

(Ls L
r 

- M
2

S)w _ Lr RS r 
M R

r 
ML w

f
(l-S) 

f 

M R
S s _Ls Rr S r ~ ML w

f 
(l-S) -(L L S-M W 

f k/c 
.. 

S 
M R

S 
(LsL

r
S-M2)w _ LS Rr 

ft 
ML w

f 
(S-1) 

f 

4-5 
~ 

where the slip S is defined as 

w
f 

- n W 

S 
m .4-6 = 

w
f 

. and 

r. B rs ] = [Cdq ] T [ L ] -1 [Cdq ] 
(S rs 

= [L ]-1 4-7 

It mus·t be noted that there is one slight disadvantage in considering the 

modes of [A t S ] viz: the eigenvalues are not phy'sical. Although the real part 
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corresponds to the damping coefficient of the measured currents (in the stationary 

d - q frame), the imaginary part of the eigenvalue of [A (f ô] must be interpreted 

as the natural frequency of oscillation with respect to the synchronously rotating re-

ference frame. The dependence of the imaginary part of the eigenvalues on the velocity 

of the reference frame can be viewed as a Doppler effect phenomenon. 

4-4 The Moda 1 Ana 1 ysi s 

ln Equation 4-1 and Equation 4-4, one sees that in spite of the fact 

that they are linear differential equations the y are still difficult to solve because 

neither [A
dq

] nor [Al ô] is a diagonal matrix and there is intercoupling between 

ail the state-variables. Essentially the modal approach consists of a linear transforma-

tion which achieves this diagonalization and hence decoupling. This is possible if we 

can find LA)'ôJ and [5 r 5 ] such that : 

[A)f5] = [5 ~ôJ [..A.~ôJ [5 a'5 J-
1 4-8 

[ ] [ 5 J-1 ] [ ] A~5 = ~ 5 [A '(5 5 a" 5 4-9 

where 

. [5 \' ô ] [5 r 5 ] -1 = [1 ] 4-10 

and 
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4-11 

where only the diagonal terms À1 ' ~, À3 ' À4 are non-zero and distinct. 

Hence defining a set of modal state-variables, ..9~ ô which are re­

tated to the current variables by the transformations, 

= 4-12(a) 

= 4-12(b) 

Equation 4-4 can be transformed to 

= 4-13 

where the modal driving function is 

li ~ Ô = [S g' ô r 1 
[L ] -1 =- r ô . 4-14 

and the modal initial condition is 

= [ s J-1 q tô (0) tô tô (0) 4-15 
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For simplicity, numerical notations will be used, in describing the modal quantities : 

T 
qrô = 4-16 

T 
~ oô = 4-17 

Equation 4-13. which is the system equation written in the modal frame, 

constitutes the objective of our transformations. Since [.A ~ s ] is a diagonal matrix, 

the modal co-ordinates are decoupled and Equation 4-13 can be solved separately row 

by row. Each row is of the form : 

= 4-18 

for K = 1, 2, 3, 4. 

The solution of Equation 4-18 for an initial modal value qK (0) is 

-/;' 

qK (t) = qK (0) exp À
K 

t + J exp À
K 

(t - r) rl
K 

(r) d r 4-19 
-0:> 

The first term of Equation 4-19 is the transient response excited by the 

initial conditions. The second term is a convolution integral of the impulse response 

of the K th mode with the modal driving function ri K (t) • 

ln the restricted case of the balanced single frequency voltage supply 1 

rl
K 

(t) = E
K 

is a constant complex number when using the synchronously rotating re-
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ference frome. As such, the formidable expression of the convolution integral can 

be avoided and Equation 4-19 simplifies to : 

4-20 

Closed form expressions of Equation 4-19 can be obtained for a large class 

of practical voltage supplies especially when the y can be expressed as sinusoidally time 

varying functions and their harmonics. 

Once the modal solutions of Equation 4-19 or Equation 4-20 have been 

solved, the solutions in the original reference frame can be transformed back through 

Equation 4-12. 

The key to the modal analysis is the possibility of finding the matrices 

[..A- rs ] and [S b' s ] which satisfy the equations, Equations 4-8 to 4-11. 

4-5 Eigenvalues and Eigenvectors 

ln many standard text-books on 1 inear systems using the state-space 

approach [51 ] 1 [52], the basic mathematical relationships of Equation 4-8 to Eq-

uation 4-11 are discussed. It suffi ces only to restate the important definitions and 

results. 



81 

The Eigenvalue Matrix 

(Ars J is the eigenvalue matrix of [A 0 s J and each of the diagonal 

elements À
1 

' À2 ' À3' À4 are the eigenvalues. It is to be recalled that each of 

the eigenvalues À
K 

is a complex number which satisfies the determinant equation 

det ( [A t s J - .À K [1 J) = 0 4-21 

It is assumed that the eigenvalues are distinct. 

The Eigenvector Matrix 

[5 fSJ istheeigenvectormatrixof [A 0&]. Each of the columns 

of [5 ts J is the corresponding eigenvector of À
1 

' ~ , À3' À4' that is 

U • U ] 
-3 -4 

4-22 

and by definition, the eigenvector is the non-zero vector which satisfies the equation 

4-23 

ln assuming that 011 the 4 eigenvalues À
K 

of [A t S] are distinct, 

. then 011 the 4 eigenvectors ~K are linearly independent. 
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4-6 Eigenvalue and Eigenvector Subroutines 

The modal analysis would have been an academic exercise had it not been 

for the existence of fast digital computer subroutines which can solve for the eigenvalues 

and the eigenvectors of a general matrix, quickly and accurately. 

The program used throughout this study is the DAL 4 which is availa~le 

in the SHARE Program Library (SDA 3385). This program computes in double precision 

the eigenvalues, and optionally the eigenvectors of a real general matrix of size up to 

30 x 30. By adapting the input and output statements, the DAL 4 has beeri changed 

into a subroutine weil suited to the induction motor problem. The numerical method in 

the subroutine consists of using the Leverrier method of finding the coefficients of a 

characteristic polynomial and the roots are calculated by means of Newton-Raphson 

Mèthod [54] • 

It is found that double-precision is essential to acceptable results. For 

example, attempts have been made to use the single precision ALLMAT subroutine which 

is available in the McGill Computer Library. Although the eigenvalues are acceptable, 

the eigenvectors are insufficiently accurate because the complex eigenvectors do not 

come out in complex conjugate pairs. 

To give an estimate of the computation time, it takes altogether 2.4 

seconds in the IBM 7094 (a) to calculate [A ~ 5 ] from the system parameters , 

(b) to use the DAL 4 to solve for the eigenvalue matrix [A. 15] and the eigenvector 

] ] -1 matrix [S t 5 ' (c) to use a complex inversion matrix to obtain [S r 5 and 

(d) finally to reconstruct [A 05] from Equation 4-8 to test for accuracy. 



83 

4-7 Constant Speed Transients in Induction Motor 

Figure 4-1 is a flow-chart of a digital computer program which solves 

the same constant speed induction motor transients as previous workers [16 J, [21 J 

and [22] have done. But unJ.ike the Laplace Transform methods, a minimum of 

algebra is required of the programmer •. Furthermor~ because of the unwieldy algebraic 

expressions of the Laplace Transform methods, previous workers have been daunted from 

solving any but the simplest switching problems. However the modal method enables 

a combination of initial value and voltage problems to be solved, by reading in the 

appropriate initial values into the computer. The treatment of the initial conditions 

is especially significant in considering accelerating transients from the viewpoint of 

constant speed linear equations. The initial currents enable one set of Iinearised solu-

tions to he related to the next set solved for an incremented speed. 

4-8 A Numerical Example 

The foregoing concepts will now be illustrated bya numerical example. 

The analysis is presented for the locked rotor transients' of a typical induction motor 

whose parameters are listed in Appendix G. 

4-4 for a two pole machine becomes : 

At rotor standstill (t.) = 0), Equation 
m 
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'. 
READ MOTOR PARAMETERS, INITIAL CURRENTS, APPLIED VOLTAGE 

'JI -
,-

CONSTRUCT [A ~S J EQUATION 4-5 

'f 
CALL EIGENVALUE AND EIGENVECTOR SUBROUTINES (DAL4) 

, TO SOLVE FOR [ 1\ ts J , [S tô ] 

~ 
CALL COMPLEX_/NVERSION SUBROUTINE TO SOLVE 
FOR [S )(SJ 

t 
TEST FOR ACCURACY 

, J-1 PRINT OUT [S )fô] [ J\ô
J [ S 

d'ô 

r 
'TRANSFORM INITIAL CURRENTS AND APPLIED VOLTAGE TO J MODAL FRAME. EQUATION 4 - 12(0), EQUATION 4 - .14 

r -
~1~N~IT~I~A~TE~T~I~M=E~t __ =_O __ -~A_t~ ______________________ ~1 ' 

f 
l'INCREMENT TIME t = t + A t 

-f 
SOLVE FOR MODAL TRANSIENT EQUATION 4 - 20 

t 
TRANSFORM MODAL SOLUTIONS TO }{ - ô SOLUTIONS 
EQUATION 4 - 12 (b) 

t 
CALCULATE TORQUE AND TORQUE COMPONENTS 
TABLE 4 - 1 

NO 
-f 

'. 
-=HAS SPEdFIED TlME INTERVAL BEEN COMPLETED ? 

VES 
'V 

CALL EXIT 

FIGURE 4 - 1. FLOW CHART OF PROGRAM TO SOLVE FOR INDUCTION 

MOTOR TRANSIENT AT A CONSTANT ROTOR SPEED • 

l 
1 

1 

. 



.s 
- 96.6 - 377.0 92.0 0.0 .s p '1 = o,l)' 

.s 
377.0 96.6 0.0 92.0 .s· 

'6 - '6 
.r 

92.0 0.0 -96.6 -377.0 .r , 
'1 

.r 
0.0 92.0 377.0 -96.6 .r 

'6 '6 
~ 

+ 96.6 0.0 E cos a p s 

0.0 96.0 -E sin a 
'p s 

-92.0 0.0 

0.0 -92.0 

This problem becomes complete when the initial values !. r 6 (0) 0' 

E and a are specified o' p s 

ln transforming to the modal frame, Equation 04:-24 becomes 

p cq. = -189 + j377 0 0 0 q1 

q2 0 -4.60 + j377 0 0 q2 

q3 0 0 -4.60 - j377 0 q3 

q4 0 0 0 . -189 - j3 q . 
. 4 

+ ; 94.3 -94.3 E cos a p s 

- j2.3 2.3 -E sin a p s 

;2.3 2.3 

-j 94.3 -94.3J 

85 

4-24 

r 

.4-25 
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The transformations to and from the modal frame in accordance to 

Equation 4-12, are : 

ql = i 0.5 "!' 0.5 - jO.5 0.5 

q2 -jO.5 0.5 - jO.5 0.5 
.s 
IS 

.r 
Ir q3 .j 0.5 0.5 jO.5 0.5 

q4 -j 0.5 
.r 

.IS - 0.5 jO.5 0.5 

4-26 

where the rows are the reciprocal base vectors and 

.s 0.0 - j 0.5 0.0+jO.5 0.0 - j 0.5 0.0 +" j 0.5 It = ql 

.s -0.5 + j 0.0 0.5 + i 0.0 0.5 + j 0.0 -0.5+jO.0 
IS q2 

.r 0.0+jO.5 0.0 + i 0.5 0.0 - j 0.5 . 0.0-jO.5 lb' q3 

.r 0.5 + j 0.0 0.5 + j 0.0 0.5 + j 0.0 0.5+jO.0 
IS q4 

4-27 

where the columns are the eigenvectors. 

The decoupling of the state variables in the modal frame becomes quite 

apparent in Equation 4-25. For example, the second row 

e· P q2 = (- 4.60 + j 377) q2 - 2.3 E (i cos a + sin a ) p s 5 
. 4-28 . 
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consists only of the state variable q2 and the constant forcing function. Its solution 

is weil known as : 

2.3 E (sin à + i cos a ) 
p s s ] exp (- 4.60 + i 377) t 

( - 4.60 + j 377) 

+ 
2 • 3 E (si n a + i cos a ) p s s 

4-29 
( - 4.60 + j 377) 

ln this numerical example, it is interesting and important to note that 

the eigenvalues, the eigenvectors and the reciprocal base vectors exist in complex 

conjugate pairs. like-wise, t~e modal frame initial conditions .9. ! 5 (0) and the 

forcing functions ~ ~5 are also in complex conjugate pairs. As such the digital 

computer language should be capable of handling c,omplex numbers. It should alsq 

be noted that when the modal solutions are transformed back to the current frame through 

Equation 4-27, the imaginary parts are mutually self-cancelling and disappear, thus 

leaving the real parts for the current solutions. 

4-9 Transient Solutions 

Since it is desirable to gain some analytical insight into the solutions, 

a systematic method of classifying the transient components according to the modes 

will be presented here. 



e 

-" 

4-9-1 Modal Frame Solutions 

. It çan be recognized from the numerical examples listed from Equation 
) 
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4-~5 to Equation 4-29 that each.complex coniugate pair of eigenvalues should be 

treated as a single entity and the modal solution of Equation of Equation 4-13 should 

be classified as follows : 

4-30 

The modal transient components 9 1 t (t) and 9 2t (t) 
are 

9 1 ~ (t) 
1 

92t (t) = q1t (t) Eq. 4-31 (a) and = 0 

0 q2t (t) 

0 
,.. 

(t) * q2t 

qlt (t)* 0 

4-31 (b) 

where 

qlt (t) [qlt (0) + 
El 

4-32 = -J exp Àl t 
Àl 

q2t (t) [q2t (0) + 
E2 

exp À
2 

(t) 4-33 = -çJ 

The steady-state component of the total solution is 



·e 

e. 

Q (t) = qlss (t) 4-34 -ss . 

q2ss (t) 

q2ss (t) * 

qlss (t) * 

where qlss (t) 
El 

and q2ss (t) 
E2 = Xl = 
À
2 

The modal frame solutions are complex numbers and it is difficult to 

attach physical significance to them. A physical interpretation can be sought by 

transferring Equation 4-30 into the real current frames. 

4-9-2 

tion is : 

K - S Current Solutions 

Using the inverse transformation of Equation 4-12 (b), the X - S solu-

!.. a' S (t) = [S ~ S ] 9 1t (t) + [S <YS ] 92t (t) + [S ts J 9ss (t) 

4-35 

·for the numerical example of Section 4-8, Equation 4-35 becomes 

89 



!.. l8 Ct) = k1 exp (-189 t) - cos (377 t + 9
1
) 

- sin (377 t + 9
1
) 

cos (377 t + 9
1
) 

sin (377 t + 9
1
) 

+ k
2 

exp (-4.60t) cos 377 t + 9
2 

sin 377 t + 9
2 

cos 377 t + 9
2 

sin 377 t + 9
2 

"1- k4 4-36 

k5 

k6 

~ 

where -k
l 

1 k
2 

• . . ~ are constant coefficients and 9
1 

and 9
2 

are the phase 

angles. 

The current frame solutions are real and admit of physical interpretation. 

The real part' of the eigenvalue becomes the damping factor and the imaginary part b~-

90 

comes the natural frequency of oscillation. Each of the current solutions consists of two 

transient components (for the fourth order system) and a steady-state term. It is signifi-

cant to note that in the synchronously rotating frame 1 the steady-state term is d. c. and 

for a constant rotor speed lA) = 0 1 the transient components have a natural frequency of 
m , 

lA) = lA) = 377 rad/sec., i.e. the synchronous angular velocity. Furthermore 1 the 
1 2 

( and the 8 axis components of the same mode are 90
0 

out of phase in time and the 

space-vector associated with each mode is rotating physically with respect to the reference 

frames at 377 radians per second in a direction opposite to that of the supply frequency. 
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4-9-3 

to 

i (t) = 
-dq 

91 

éf .:.. 'q 'Current 'Solutions 

, tô 
Using the connection matrix [Cd ] 1 Equation 4-36, is transformed 

,q 

k
1 

exp (-180.0 t) - cos 9
1 

+ k
2 

exp (-4.60 t) ,cos 9
2 

- sin 91 sin 9
2 

cos 9
1 

cos 9
2 

sin 9
1 

sin 92 

+ k4 ,cos 377 t + k5 sin 377 t 4-37 

-k 
4 

sin 377 t + k5 cos 377 t 

k6 cos 377 t + ,~ sin 377 t 

-k 
6 

sin 377 t + ~ cos 377 t 

The stator currents in the stationary d - q reference frame correspond to 

those which are measured in the induction motor itself and hence the interpretation of 

the eigenvalues and modes from this frame has more engineering significance. 

If is recalled that the eigenvalues in Equation 4-25 correspond to the 

K - S frame [A 0 S]. By comparing the eigenvalu~s, Equations 4-36 and 4-37 1 

it can be concluded that the real part of the eigenvalue corresponds to the damping 

factor for ail common reference frames. However, the imaginary parts of the eigen-

value require some careful interpretation. Whereas the t - S transient modes have a 

natural frequency at 377 rad/sec. 1 the corresponding d - q transient components are 



non-oscillotory. It is olso important to note that the '1- ô steadi-state components 

are direct currents and. conversely the d - q steady-state components oscillate at supply 

frequency. These indicate that the imaginary part of the eigenvalue is in fact the 

natural frequency, but as in ail frequency quantities there is the Doppler effect related 

,te the velocity reference frame. 

The imaginary parts of the eigenvalues in Equation 4-25 make physical 

sense because the 377 radians/sec. natural frequenc~ in the 0- ô frame corresponds 

to the stator and the rotor mmfs rotating at the 377 radians/sec. in the bac.kward 

direction. But the l)- ô axes are themselves rotating at a synchronous speed in the 

forward direction. Therefore the mmfs have a net zero speed with respect to the station-

ary fra'me. This of course agrees with Equation 4-37 where the transient components 

are non-oscillatory. 

From this physical argument, it can be concluded that if À
1 

= 0'1 + j (,,)1 

is an e i genval ue of [A 0 ô ] wh i ch has (J c as the speed of the reference frame, the 

corresponding eigenvalue for the d - q stationary frame matrix [A
dq 

] is 

À~ = 0'1 + j «(Jc :1: (Jl)' Whether (,,)1 should have the positive sign or the negative 

sign is evident only in examining the direction of rotation of the eigenvectors. This will 

be treated in Chapte r V • 

4-10 Components of Electromechanical Torque 

Section 4-9 has considered the total solution of the currents as the sum of 

the steady-state component and the two transient components which are associated with 
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the two natural modes. Since the electromechanical torque consists of quadratic pro-

ducts of the winding currents, it can be analysed into 6 independent components along 

t~e modal classification as shown in Table 4-1. 

The purpose here is to derive a form~lation which enables the digital 

computer to handle the torque compone nt analysis directly from the modal frame. 

Firstly, the torque equation 

4-38 

• is written in the matrix form 

T ~ OÔ 
T 

[T J ~ '(ô 4-38 (a) e = 
em 

where 

[T J = 0 0 0 0 4-39 

0 0 0 ,0 

0 -nM 0 0 

nM 0 0 0 

Substituting Equation 4-12(b) 

T 
T = q [W J 9."~ô 4-40 
em a'ô 

where 

[W J = [ S tô JT [T J [S ~ôJ 4-41 
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TABLE 4 - 1 

CON'STÀNT SPEED INDUCTION MOTOR TORQUE COMPONENTS 

Torque Mode Classification Formulae for Instantaneous 

,Compone nt Value 

Tl steady-state Q T 
- ss 

[wJQ 
-ss 

T2 
exp 2 a

2 
t T 

9 2t [ w J 9 2t 

T3 
exp 2 al t 

T 
9 lt [ w J 9 lt 

- T4 
[exp (al + a

2 
t J [cos (w

l 
- (

2
)t J T 

9 lt 
T 

[ w ] 92t + 9 2t [ WJ 9 l t' 

T5 
[exp a

2 
t J [ cos w

2 
t J T [wJQ , Q T 

[W J 92t 9 2t 
+. 

-ss -ss 

T6 [exp al t ] [ cos w
1 

t J T [wJQ + QT [W J 9 1t 9 1t -ss -ss 

-, 
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The formula for the 6 torque components listed in Table 4-1 is obtained 

by substituting Equation 4-30 into Equation 4-40 and thereafter grouping the terms 

in their appropriate classifications. The importance of this classification lies in that 

the damping factors al ' a2 and the natural frequencies of oscillations ·(,)1 ' (,)2 

(which are the real and the imaginary parts of the eigenvalues Àl ' À
2

) constitute 

a common language which is familiar to everyone knowledgeable in dynamic linear 

systems the ory • It is interesting to note that this classification is independent of the 

chosen reference frame. Thus if the currents in the stationary d - q frame ,are used, the 

torque equation is 

T = ~qT [T ] i· 
em -dq 

4-42 

rs 
But i = [ C

dq 
] [s 05] 9.2(5 -dq 

4-43 

and substituting Equation 4-43 into Equation 4-42, 

T em 
= T 

9. lf 5 [W] 9. t5 4-44 

because 
~s 

[ C ] T [T ] [C ~5] = [T ] 
. dq dq 

4-45 

Thus Equation 4-44 is id~ntical t.o Equation 4-40. 

It is instructive to examine how a particular torque component, say T 5 ' 

is constituted from the currents in each of the reference frames. T 5 consists of the 



scalar products of 92t and 9
ss 

in Equation 4-35. In the X - 5 synchronously 

rotating reference frame solution of Equation 4-36, both the damping factor 0'2 and 

the natural frequency of oscillation 1.1
2 

(= 377 rad/sec.) belong to the transient 

solution of the first complex mode. The corresponding steady-state terms are d. c. 

currents. 

ln contrast, the same torque compone nt T 5 when viewed from the 

stationary d - q re.ference frame is formed from the product of (a) the transient 

96 

solution term which carries the damping factor 0'2 only, and (b) the steady-state 

compone nt which oscillates with the supply frequency (377 rad/sec.). Thus from thi.s 

viewpoint, the frequency shift of the eigenvalues with respect to the velocity of the 

reference frame ( (.)~ = Wc ± w
k
) is necessary to preserve the invariance of the com­

ponent torques and hence is a consequence of the power invariance transformation 
~5 

[ C dq ] • 

4-11 Constant Speed Eigenvalue Loci 

Figure 4-2 shows the continuous plots of two of the eigenvalues for rotor 

speed from standstill to 1.1 = 377 rad/sec. The other two eigenvalue loci are merely 
m 

conjugate images in the lower half of the complex s-plane and have been omitted. 

The stationary d - q frame has been used and as such, at rotor standstill, the eigenvalues 

are real and the complex conjugate pairs are coincident. Because a numerical example 

has been chosen in which R
S = R

r 
and L

S = L
r 

sorne sort of symmetry in the loci 
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appears. Inparticulararound Ca)m = 0.49p.u., ~1 appearstocoincidewith ~. 

For simplicity, this very interesting case will be isolated from this study. The occurrence, 

the treatment and the implications of such coincident eigenvalues shollid in itself be an 

interesting and important subject for further investigation. 

ln Chapter V, a physical understanding of the speed dependence of the 

eigenvalues will be developed. In this section, interest is focussed on the relationship 

of the eigenvalue loci on the torque patterns. As such, the simultaneous switching torque, 

patterns will be considered for: (a) the very important case of rotor standstill, i.e. 

Ca) = 0.0 , 
m 

(b) c.J = 0.5 p. u. 
m 

and (c) Ca) = 0.9 p. u. 
m 

4-12 Patterns of Constant Speed Transient Torques 

Figure 4-3(0) to Figure 4-5(0) show the simultaneous switching torque 

patterns produced when the rotor is kept at a constant speed: (i) Ca) = 0 
m ' 

(ii) Ca) = 0.5 p. u., 
m 

(iii) Ca) = 0.9 p. u. 
m 

Figure 4-3(b) to Figure 4-5(b) 

show the torque analysed into the compcnent classification of Table 4-1 . 

Case (i) Ca) =0.0 
m 

With Ca) = 0, the d - and the q - axis of Equation 4-1 are decoupled 
m 

and each decoupled axis equation is that of a transformer. As su ch , the modes are 011 

real and as will be,shown in Chapter V, the eigenvalues ~ = - 4.60 correspond to 

the magnetization mode associated with the mutual inductance M. The very heavily 
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damped mode À
1 

= -189 can be identified with the leakage inductances 

I
S = { = LS 

- M . 
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Figure 4-3(b) shows that the important torque components are the steady-

state compone nt T 1 and the 60 Hz compone nt T 5 associated with the magnetization 

flux. The magnetizati~n mode is very lightly damped because of the large mutual in-

ductance with respect to the winding resistances. In contrast the components T 4 and 

T
6 

which are associated with the leakage inductance mode are damped away within 

0.02 sec. This is because the leakage inductances are small in comparison with the 

winding resistances. In this instance of simultaneous switching T 2 and T 3 are 

relatively too small to be shown in' the graph. 

By comparing Figure 4-3(a) with the case for the accelerating rotor in 

Figure 3-2, it can be seen that the linear modal is a good approximation forthe first 

few cycles of switching. Thè discrepancies become serious thereafter because as the 

rotor picks up sp~ed, both the eigenvalues (see Figure 4-2) and the eigenvectors (see 

Figure 5-4) change with speed. 

Case (ii) Co) = 0.5 p. u. m 

At '1800 r.p.m. ,(0.5 p. u.) , the eigenvalues are À
2 

= -96.6:1:j 73.8 

and À
1 

= -96.6:1:.j 114. Because of the speed interactions, the cross axes windings 

are coupled together and both ~he damping factors are very large. It is significant to 

contrast the relative time period within which the transient torques are damped out in , , . 
Figure 4-3 (a) and Figure 4-4 (a) • As this result is related to the accelerating trarisients 
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of Figure 3-2, it can be concluded that the speed interactions contribute to damp out 

the initial 60 Hz transient torque compone nt • 

It is important to note that the vertical scale in Figure 4-4(b) has been 

changed to accommodate the large components of T 2 ' T 3 and T 4. Roughly speaking, 

the large compone nt T 4 is cance lied by the sum of T 2 and T 3 ; and T 5 and T 6 

are in opposite phase. These leave a resultant which is of the same order of magni-

tude as in Figure 4-3 (a) and Figure 4-5 (a) • 

Case (iii) '" =0.9p. u. 
m 

At 3240 r.p.m. (0.9 p. u.)~ the eigenvalues are ~ = -96.6 ± i 27 ~1 

and .. À
1 

= -96.6 ± i 312. The initial negative torque in Figure 4-5(a) is typical 

for simultaneous switching at high rotor speeds. [4J, [5J • 

The damping factors for the two modes have remained constant and equal. 

The interesting departures arise from the frequencies of the two modes, i.e. (.,1-70 

and (,,)2 ~ "'m ' which make T 4 and T 5 highly oscillatory. 

Each of the three cases studied have illustrated the kinds of transient com-

ponents which can exist. As the rotor speed changes, the eigenvalues move along the 

loci as shown in Figure 4-2 and these significantly change the damping factors and the 

natural frequency of oscillation of the torque component. But the details conceniing 

the relative contributions of a torque compone nt would have to depend on the excitation 

voltage Ëp' the switching angle as' the initial currents !.. 0 ô (0) and in what 



30 

20 

- 10 en 
"-cu ..... 
cu 
E 

e. 1 
c: 0 0 ..... 
3: cu 
z _. 
~-IO 
0-
s... 

~ 

-20 

-30 

105 

0.03 0.04 0.05 O.OE 

Time (Seconds) 

FIGURE 4.5 (a). ELECTROMECHANICAL TORQUE IN SIMULTANEOUS 

SWITCHING. ROTOR AT 0.9 P.U. SYNCHRONOUS SPEED 



60 

50 

40 

30 

-U) 

~20 
+-
Q) 

E 
1 

c: 
0 

- ~IO 
z -
Q) 
::s 
0" 0 '-

~ 

- 10 

-20 

-30 

-40 

li 

0.04 0.05 
Time ( Seconds) 

FIGURE 4.5(b). COMPONENTS OF TORQUE 

ROTOR AT 0.9 P.U. SYNCHRONOUS SPEED 

106 

0.01 



107 

manner the y become coupled to the modes. The information with respect to the coupling 
, 

is borne by the eigenvector matrix [S Ifô J . 

Since the system equation is linear, the two forms of modal excitations will 

be treated spearately: (a) initial current excitation and (b) switching voltage ex-

citation. Thereafter it is possible to combine both forms of excitations using the prin-

ciple of superposition. The case of the standstill rotor will be used as an illustrative . 

example and it will be shown how the magnetization mode can be suppressed bya com-

bination ~f initial currents and switching voltages. 

4-13 Modal Excitation Due to Initial Currents 

The physical model consists of ail the motor windings short-circuited and 

the voltage sources removed. At the switching instant, it will be assumed that the coil 

windings bear a set of currents !.. 0 ô (0). The interest is centred on the behavior of the 

winding currents as they decay with time. The initial currents would excite the kth 

mode if qk (0) is non-zero. Since 

= [S ]-1 
q ! ô (0) tô 4-46 

both the structure of [S tôJ-1 and the relationship of ..!. oô (0) with it are important 

in understandi ng the excitation of the modes. 

It is possible, using the property of the linear independence of the eigen-

vectors of [S ()' ô J , to excite preferentially a mode in exclusion to the others. It is 
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a weil known fact from the standard textbooks on linear theory [51 - 52] that the 

kth mode is exclusively excited if .!.. t 6 (0) lie in the plane defined by the vector 

representing the real part and the vector representing the imaginary part of the kth 

eigenvector. 

Thus, the oscillatory mode corresponding to - 189 ± i 3n of Equation 

4-24 will be exclusively excited by initial currents 

~ ~6 (0) = ml o 

-0.5 

o 

0.5 

~ 0.5 

0.0 

0.5 

0.0 

4-47 

where ml and m
2 

are any arbitrary real numbers which are multiplied to the real 

and the imaginary parts of the eigenvectors of Equation 4-26. 

The free-motion of this leakage inductance mode as viewed from the 

stationary d - q axes is sh~wn in Figure 4-6(a). In the d - q frame, the free 

modal motion is damped and non-oscillatory. 

Likewise Figure 4-6(b) shows the exclusive excitation of the magnetiza-

tion mode (-4.60 ± i 377) by the initia 1 currents. ' 

(0) = 
6 

0.5 

0.0 

0.5 

0.0 

0.0 

0.5 

0.0 

0.5 

4-48 
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.. 
4-14 Modal Excitation By Voltage Supply 

zero. 

4-J.4. 

From Equation 4-18, the kth eigenvalue is excited if .!::k (t) is non­

-In general the modal driving function !: rô is related to !. b' ô by Equation 

For the particular example of the rotor at standstill 

!: 1 S = i 94.3 - 94.3 E cos a 4-49 
p s 

- i 2.3 2.3 -E sin a 
p s 

i 2.3 2.3 

- i 94.3 - 94.3 

It can be concluded that in the simultaneous switching of the inert motor, ail the modes 

are excited and no matter what switching angle a is used, it is impossible to make 
s 

any row zero. As such mode suppression can only be achieved bya combination of 

voltage and initial currents. 

4-15 Mode Suppression 

From Equation 4-20, the transient compone nt of the kth eigenvalue con 

be suppressed if it is possible to design for a qk (0) and a Ëk su ch that 

4-50 



111 

This modal suppression has many important applications. Thus if in 

switch ing from standsti", it is desirable (a) to lower the peak of the transie nt torque 

and / or (b) to eliminate the 60 Hz ,oscillating torque component (because the shaft 

has mechanical resonant frequency around 60 Hz), then a suitable method consists of 

suppressing the slowly decaying magnetization mode. This is the mode of 

~ = -4.60 :1: j 377 in Equation 4-24 of the exa~ple. 

From Equation 4-29, the necessary condition for th is is 

2.3E (sina +jcosa) 
) P s s q2 (0 = ----=--------

( - 4.60 + j 377) 
4-51 

For the switching angle a = 0, and because 4.60 'is negligible com-s ' 
pared to 3TI, 

2.3 E 
p 

377 

This corresponds to the switching condition 

2.3 E 
= ........,,=-:...p 

377 

=. 05. = E p 

0 

0 

0 

o 
1 

o 

4-52 

4-53 (a) 

4-53(b) 
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The conditions of Equation 4-53 can be realised physically by injecting 

an initial s.et of currents and switching on the supply at the correct phase. The cir-

cuitry required to accomplish it, however, would be expensive. An approximate 

although engineeringly more satisfying method consists of nonsimultaneous switching 

of the supplies at the correct sequence as proposed by Wood, Flynn and Shanmugasundaram 

[29J. 

4-15-1 Mode Suppression by Non-simultaneous Switching 

Non-simultaneous switching is accomplished in two switching sequences. 

ln the first sequence, two of the three stator terminais are switched on to two of the 

three-phase lines at the approprie te phase of the supply cycle such that no magnetiza-

tion trensient is produced. 

.. .. 

Thus if the three-phese voltages are 

V 
a 

= J3 V 
p 

4-54 

and the terminais A end C are switched at t = 0, then a = 90
0 

is the epproxi­
s 

mate switching angle to cancel the magnetization.flux. 

The second switching sequence occurs at t.J
f 

t = ~s when the B phase 

is switched on. For the magnetization mode to be suppressed in this second switching 
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sequence, the approximate switching angle is f3 = 90
0

• Figure 4-7 shows the 
s 

. torque pattern using this form of non-simultaneous switching. 

Although this method of mode suppression is only mathematica"y 

approximate 1 the switching circuitory would be easier to accomplish. 
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CHAPTER V 

IDENTIFICATION, BEHAVIOR AND INTERPRETATION 

OF INDUCTION MOTOR MODES 

5-1 Introduction 

Chapter IV has described a method of characterising the induction 

motor transient torques based on analysing the linear constant speed induction 

equations along the natural modes of behavior of the system. It has been shown 

through the eigenvalues loci of Figure 4-2 that the damping and the natural frequency 

of oscillation of each mode change with the rotor speed. By following the eigen-

values loci, it is possible to understand, qualitatively at least, the torque pattern of 

an accelerating transient as in Figure 3-2. At this point, a number of questions pre-

sent themselves~ What are the physical meaning of the se modes? Are there any 

physical explanations for their behavior ? 

Unfortunately because of the complex intercoupling of the system equations 

it is impossible to obtain an explicit expression of the eigenvalues in terms of the 

system parameters and the rotor speed lA) • Ali frontal attacks are met with a fourth 
m 

order algebraic characteristic equation which is surmountable only by numerical tech-

niques. Once the numerical method is used, ail physical relationships become lost. 

ln the face of this impasse, this study has resorted to three indirect 

approaches, each of which has yielded some fruitful fragments of knowledge • 
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niques. Once the numerical method is used, ail physical relationships become lost. 
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approaches, each of which has yielded some fruitful fragments of knowledge • 



(a) Eigenvalue Invariance with Rotor Speed 

Inspection of the eigenvalue loci in Figure 4-2 yields sorne simple 

conclusions with respect to the sum inv~riance properties of the damping factors and 

the natural frequencies at ail rotor speeds, viz : 

(i) 

fa i) c.J1 + 

= constant 

= (.,) 
m 

5-1 

5-2 

The results from this typical motor has led to finding the proofs of the 

general case from the characteristic equations. 

(b) Mode Identification from Sub-primitives 
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The second method consists of investigating the dynamic characteristics of 

the many degenerate forms of the Kron's commutator primitive. Each degenerate form 

consists of assuming one or more of the system parameters to be negligible. Thus, in 

what shall be called the magnetization sub-primitive, it is assumed that both the stator 

and the rotor leakage inductances (1 ,1) are zero and thereby some simplification is 
s r 

achieved. By this artifice 1 attention is focussed on the interaction of rotor speed and the 

airgap magnetization flux. Consequently 1 it is possible to peer into the "physical me-

chanism" which produces the oscillation in the magnetization modes. The philosophy 
. , 

of this approach is: degeneracy enables the order of complexity of the interacting 

parameters to be reduced sufficiently for a simple physical picture to appear. Each of 
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the simple physical pictures is, of course, only valid and app'roached asymptotically 

under restricted conditions in the real machine. In spite of these restrictions, one 

finds that (i) the lossless sub-primitive, Oi) the transformer modes and (tii) the 

magnetization sub-primitive have proved to be important sign-posts in the studies of the 

modes. 

(c) Eigenvector Interpretation 

The last method consists of using the complex numerical values in the 

eigenvector columns to interpret the behavior and to construct the physical picture of 

a mode. From a basic rotational symmetry in the complex numbers in the eigenvectors, 

it is possible to admit of a physical picture of a mode in terms of modal space vectors 

~ , ~ and ~ rotating spirally in the airgap space under free motion. These 
s r m 

space vectors are attenuated exp~nentially with a damping factor O'k and the an­

gular velocity of rotation is (,)k~' The rotational property, furthermore, enables a 

physical corre lation of the damping factor O'k in terms of the magnetic storoge energy 

and the dissipative power ossociated with the mode. Likewise the natural frequency of 

oscillation (,)k can be correlated with the modal spa ce vectors olthough a physical inter­

pretation is less obvious. 

Bya combination,of these three methods, it is possible to obtain 0 physicol 

picture which correlates with the eigenvalue loci of Figure 4-2. 

Throughout this chapter, the study has adhered to the d - q refererice 

frames because (0) the eigenvalue loci in the d - q reference frame are closer to 

laboratory experience and (1)) the algebra in the many proofs which will be presented 

here are less complicoted in the d - q axes formulation. 



·._." 

-

nUlur,.ùpeea \X ::J {( l:.Iectncal. raOd.'S'sec.) 
. 00 0.2.·. 0.4· 0.6 . 1.0 118 

-20 

-40 

-60 

-80 ... 
0 
"0 
If 
0'-100 
c: .-c. 
E 
c 
Cl 

-120 

-140 

-160 

-ISO 

-200 

Ci 
CT

2 

FIGURE 5.1. VARIATION OF DAMPING FACTORS 
WITH ROTOR SPEED 

..... -----------------0; + <T2 



_ .. 

119 

5-1-1 Darnping Coefficients Sum Invariance 

Figur~ 5-1 shows a plot of the damping coefficients 0'1 1 0'2 and 

their surn 0'1 + 0'2 as a function of the rotor speed for the sarne induction motor as 

described in Chapter IV. The constant sum al + 0'2 is not restricted to a fortuitous 

choice of motor parameters in the nurnerical example but is a general result which can 

be expressed as 

R
S 

L
r 

+ R
r 

L
S 

LS Lr _ M2 5-3 

This result is obtained by equating the characteristic equation to the de-

terminant equation as shown in Equation 5-4 

= det (À [ 1 ] - [A dq J) 5-4 

The coefficient of À 
3 

in the left-hand side of Equation 5-4 is 

2 (0'1 + 0'2) and Equation 5-3 follows by equating it to the coefficieht of' )..3 inlhe' 

cfeterminant equat.ion.: . 

5-2 Natural Frequencies of Osci lIation. Sum 

Likewise Figure 5-2 shows a plot of the natural frequencies of oscillation 

"'1 l "'2 and their surn . (0)1 + (0)2. The frequency sum 
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"1 + "2 = "m 

< " 'm 
and 

J' 

< " m 

5-5 

5-6 

is a significant and simple relationship which has been reported and proved by Slater 

and Wood [22 ] • 

The inequalities of Equation 5-6 have an important theoretical signifi-
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cance which will be discussed fully in Section 5-10-1. It implies that since the speed 

of the magnetic flux of each mode is always slower than the mechanical speed of the 

rotor, then there is a generating countertorque associated with each of the constant 

speed modes. 

5-3 The Transient Sub-Primitives 

Because of the many parameters and the intercoupling of the four current 

equation in Equation 4-2, the commutator primitive in its entirety is too complicated 

to yield any physical insight. However by judiciously dropping out selected parameters, 

it is possible to simplify the system equations sufficiently to reveal sorne basic physics. 

It is found that the following three such degenerate systems have been extremely mean-

ingful in identifying the modes: 

0) the transformer sub-primitive 1 

(ii) the magnetization sub-primitive 1 

(iii) the loss-Iess sub-primitive. 
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The transformer sub-primitive describes and identifies the magnetization and the leakage 

inductance modes for the case of the rotor at standstill (Ca) = 0). Referring to 
m 

Figure 5-1 and Figure 5-2, the magnetization mode (fJ
2
) is very lightly damped 

whilst the leakage inductance mode, Pl) is heavily damped, and neither of them has 

an os ci Ilatory compone nt • 

It can he seen that as the speed increases the damping factors change and 

the modes now become oscillatory. Initially the natural frequencies of oscillation is 

half the angular velocity of the rotor. W.hat is it in the rotor speed interactions which 

"cause" the original transformer modes to break into oscillations? The magnetization 

sub-primitive is created to understand the rotor speed interaction with the magnetization 

mode in "causing" the oscillations. 

The loss-Iess sub-primitive is proposed to identify the modes in the other 

end of the speed range and in fact as Ca)=-7 ex>, Kron's commutator primitive approaches 
m 

the loss-Iess sub-primitive asymptotically. The features distinguishing the modes in the 

. fast speed range are now the frequencies. As Figure 5-2 suggests that as Ca)~ co , 

Thus broadly speaking, it is possible to think of the induction motor modes. 

as changing with speed from those of the transformer sub-primitive to those of the loss-

less sub-primitive • The transition from one sub-primitive to the other is followed and 

described in detail using eigenvector representations in Sections 5-10 and 5-11 • 



5-4 The Transformer Sub-Primitive 

. At Co) =.0, Equation 4-1 decouple into two sets of transformer 
m 

equations, one set each for the d - axis windings and the q - axiS windings. 
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Assuming for simplicity that R
S 

= R
r 

= Rand I
S 

= ( = l, the equations of the 

d - axis unexcited short-circuited transformer is : 

M + 1 M 
.s 

, \ .s 
Id = -R 0 Id 5-6 p 

M M+I 
.r 0 -R .r 
Id Id 

The q - axis transformer is, of course, identical and it suffices to 

discuss Equation 5-6 only. 

The eigenvector columns in Equation 4-26 suggest an odd and even sy-

mmetry for the modes in Equation 5-6, and a transformation based on the fo"owing 

steps can be made : 

(i) subtract the second row from the first row, 

(ii) add the second row to the first row. 

This yields 

0 
.s .s -R 

.s .s 
p Id - 1 = Id - 1 

q q 

0 2 M+I 
.s 

+ 
.s -R 

.s 
+ 

.s 
Id 1 Id 1 

q q 

5-7 
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Defining the modal variables 

= 1 -1 .s 
Id 

1 1 

and substituting into Equation 5-7, th~ decoupled modal equations a~~ : 

-R 5-9 p q1 = 1 q1 

-R· 
q2 

2 M+I 
q2 

The physical identification of each of the modes can be obtained from 

the modal transformation equation of Equation 5-8 in conjunction with the transformer 

equivalent circuit of Figure 5-3(a). The mode of q1 consists of current flowing in 

the circuit topology as shown in Figure 5-3(b). It is a heavily damped mode because 

the storage elements consist of the leakage inductances only. In contra st the damping 

factor for the mode of q2 is very lightly damped, because as shown in Figure 5-3(c), 

this mode is associated with the large mutual inductance M. 
, . 

5-5 The Magnetization Sùb-Primitive 

The leakage inductances are assumed to be zero in the magnetization 

sub-primitive, and therefore L
S = L

r = M. Assumin.9 R
S = R

r = R, the sub-

primitive dynamic equation is : 
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e .s 
R +Mp' 0 Mp 0' Id = 0 5-10 

0 R+Mp 0 Mp 
.s 0 1 
q 

Mp -Mw R +Mp - M w 
.r 0 

m m Id 

Mw Mp Mw Mp 
.r 0 1 

m m q 

Equation 5-10 is a degenerate set of equations and shou Id be reduced 

to a second order system in terms of the d - and the q - axis magnetization currents 

as follows : 

i 
.s 

+ 
.r 5-11 = Id Id md 

-- .s .r i = 1 + 1 
mq q q 

Adding the first to the third row of Equation 5-10 and the second 

ta the fourth row and thereafter substitutÎi'lg Equation 5-11, the magnetization sub-

primitive equations in terms of the magnetization currents are 

R 
w 

i = m 
i 5-12 p 

md M ""2 md 

i w -R i - m 
mq ""2 M 

mq 
~ 

w 
The eigenvalues 'of Equation 5-12 are À = - ~ ± i ~ . 

Figure 5-2 shows that the oscillating frequency of the sub-primitive term agrees very 

weil with the magnetization mode of the real machine. The damping term, however, 
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is in serious error and the reason 1 ies in the assumption of I
S 

= Ir = O. 

Since the objective here is to gain a physical "feel" for the production 

of the oscillating term, the resistance R will now be dropped from Equation 5-12. 

This leaves the differential equations of the harmonie oscillator of a natural frequency 
-'r.,' 

at ~ 
"2 

Co) 

i 0 
m 

i 5-13 p = "2 md md 

Co) 

i 
m 0 i 

mq -2 mq 

Equation 5-13 focusses on the interactions of the magnetization flux 

with the speed voltage in the production of the harmonie oscillations. 

It is important to note that there is a directionality of rotation in the 

magnetization m.m.f., associated with these currents: 

i 
mq 

- Co) 

cos m t 
2" 

Co) 
• m, 

-sm 2 t 

is a solution to Equation 5-13 while the solution 

is not. 

i ' mq 

= cos 
Co) 

m 
2"t 

Co) 
. m 

sm rt 

5-14 

5-15 
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e' , 
Using Equations 5-13 and 5-14 it is possible to obtain a qualitative 

description of the oscillation of the magnetization mode in terms of storage energy 

exchanges between the cross-oxis mutual inductances. The medium of power trans-

fer is through the speed voltages. The directionality of rotation of the magnetization 
. f.) 

flux is determined by the sign coefficients of -; in Equation 5-13 which expresses 

the polarity of induced voltage with respect to direction of the flux and the direction 

. of the rotor. speed • 

. . 

5-6 The Lossless Sub-Primitive 

_ ln the lossless sub-primitive, the stator and the rotor resistances are as-

sumed to be zero. As there is no dissipative compone nt , the modes are never damped 

away, and as in Section 5-5 the usefulness of the sub-primitive cornes from using the 

natural frequencies to identify the modes.' 

The dynamic equations of the lossless sub-primitive are: 

L
S 

p 0 Mp 0 .s 0 5-16 Id = 

0 
s 

0 
s 

0 L p Mp i 
q 

Mp - M f.) L
r 

p 
r .r 0 - L f.) Id m m 

Mf.) Mp L
r 

f.) L
r 

p 
.r 0 1 

m m q 
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The eigenvalues found from the roots of the characteristic equation of 

Equation 5-16 

det [À [l ] +' w [ G ] ] = 0 5-17 
m 

are À = 0, 0, i w and - i w • Referring to Figure 5-2 it can be seen the m m 

frequencies of the lossless sub-primitive are approached asymptotically by the real 

machine in the region of large rotor speeds, i.e. as Wm-7 00, WQ:~, 0 ~nd 

The physical modes can be identified for the sub-primitive by rewriting 

Equation 5-16 as a flux-linkage equation. Thus using the fo lIowing transformation: 

ï dq 
= [l ] i· 

-dq 
5-18(a) 

or 

't'~ lS 0 M 0 .s 
= Id 5-18(b) 

~s 0 L
S 

0 M 
.s 
1 

q q 

1J'~ M 0 L
r 

0 .r 
Id 

'l'r 0 M 0 lr .r 
1 

q- q 

e· and Equation 5-16 becomes 
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s 
~~ P ~d = 0 0 0 0 5-19 

s 0 0 0 0 
s 

fq lfJ q 

r~ 0 0 0 Co) 1Jl~ m 

~~ 0 O· -Co) 0 tpr 
m - q 

which can be expressed in the diagonalised form 

w = [5] [A] [5 ] -1 
P .Ldq ~dq 

5-20 

e. 
where the eigenvalue matrix is 

[A] = 0 0 0 0 5-21 

0 0 0 0 

0 0 i Co) 0 m 

0 0 ·0 - i Co) m 

the eigenvector mafrix is 

[ 5 ] = 1 0 0 0 5-22 

e 0 0 0 

0 0 
1 1 

J2 J2 

0 0 - i i 
J2 J2 
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and the recïprocal base vector matrix is 

[s ]-1 = 0 0 0 5-23 

0 1 0 0 

0 0 1 -i -
J2 J2 

0 0 
1 _i_ -

J2 J2 

Using the knowledge of the eigenvectors in Equation 5-22 and Section 

4-13, the following two flux-vectors 

f.dq 
= 1 5-24 

o 

o 

îd~ = 0 5-25 

0 

J2 cos (c.J' t 
m + i> 

J2 sin (c.J t + 'Ir > 
m 4· 

are two possl'ble free motion solutions associated with each of the modes of eigenvalues 

:1: 0.0 and :1: i c.J
in 

respectively. Transforming these modal solutions from the d - q 
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frame to the slip-ring primitive a'- ~ frame using the connection matrix [c:; ] , 
i.e. 

lIJ [Cdq J W 
..La~ = a~ L dq 5-26 

Equations 5-24 and 5-25 become 

r s 
1 5-27 = d 

r s 
q 1 

r 
f a 0 

e r r 

f3 0 

i' 
s 0 5-28 = 
d 

r s 0 
q 

r 
f a 

1 

r· 
r 

1 
f3 

The flux-linkage solutions in the a - ~ frame identify the lossless 

sub-primitive modes as the stator mode (Equation 5-27) and the rotor mode (Equation 

5-28). In the free motion of each mode, the winding currents flow so as to preserve 

the constant flux linkage theorem. The rotor mode when viewed from the stationary 

windings of the stator has of course a frequency of la) , which is the speed at which 
m 

the constant rotor flux is "cutting Il the stator windings. 



Translating Equation 5-20 back to the current d - q axis frame 

P i 
-dq 

the eigenvector matrix is 

-1 . 
[L] [sJ= 1 o 

o 

-M o 

·0 -M 

M' --
J2 
M 

,/2 

M --
J2 
.M 

-1-· 
,j2 

,j2 ,j2 
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.5-29 

5-30 

It will he shown subsequently in Section 5-11 that just as the modal 

oscillating frequencies of the induction motor approach those of the lossless subprimi-

tive, likewise the eigenvectors Equation 5-30 are also approached asymptotically at 

hi gh speeds. 

5-6-1 Asymptotic Approximation 

The asymptotic approximation of the induction motor modes to those of 

lossless, subj)rimitive at high rotor speed can be demonstrated analytically. Firstly, 

since " = j fi) is an e igenvalue of the lossless subj)rirnitive, it is a solution to the 
m 



characteristic equation, Equation 5-17, i .• e. 

det [ i (,) [L] + (,) [ G ] ] = 0 
m m 

Since la) is a nonzero scalar, it can be factored out, leaving 
m 

det [i [L ] + [G ] ] = 0 

5-31 

5-32 

The eigenvalues of the complete first commutator primitive must satisfy 

the characteristic equation, Equation 5-4, i.e. 

det [ À [L ] + [R] + la) [G]]=O 
m 

5-33 

Substituting À = i la) and again factoring out (,) , m m Equation 5-33 

becomes 

det [_1_ [R ] + [ L'] + [G ] ]~ de t [i [ L ] + [ G ] ] = 0 
la) 
m 

as la) ~ CD • 
m 

5-34 . 

This asymptotic property is borne out by the e igenvalues and the e igen-

vectors numerically solved from the digital computer subroutines. 
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5-7 Eigenvector Rotatiorial Property 

Since each of the eigenvectors consists a column of 4complex 

numbers, there are altogether 8 real numbers defining their real parts and the 

imaginary parts. However, because of a rotational symmetry in [A
dq

] of 

Equation 4-2, there are actually 4 independent real numbers, and the kth 

eigenvector can be written as 

= u +i[~]U 
-r -r 

where . [~] = 0 -1 o o 

1 o o o 

o o o -1 

o o 1 o 

and 

where U
1 

' U2 1 U3 , U 4 are any real numbers • 
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5-35 

5-36 

5-37 

The square matrix [~] bears the information of the forward rotation 

of the mode. The transpose of [4>] describes a backward rotation, and the synchro-

nous frame eÎgenvectors in the mati"ix of Equation 4-26 is a good example which states 

that the modes are rotating backwards with respect to the 't - S reference frame. 

The basic rotational property of the eigenvector in Equation 5-35 is 

~s proved in Appendix C. It is a significant result which enables the mode repre-

sentation and Înterpretation based on the eigenvector to follow • 



136 

5-8 Mode Representation by Eigenvectors 

The geometrical interpretation of an oscillatory mode is the plane in 

. a multi-dimensional sub-space supported by U and U. which are respectively 
-r -1 

. the real parts and the imaginary parts of the eigenvector. The free motion of the 

excited mode is described by a state-point in the modal plane spiralling towards the 

origin. 8esides this mathematical interpretation, the modes of the induction motor 

admit of a physical interpretation in terms of the m.m.f.ls in the motor airgap space. 

ln Section 2-11, the airgap m.m.f.ls have been represented in magnitudes and 

directions by the space-vectors 3' , 3' and 3' • The objective here is, therefore, 
s r m 

to present the space vectors as a physical representation of the modes. 

The geometrical state-point Iying on the modal plane of the kth mode 

of [A
dq 

] is 

i = bU·+dU. -dq -r -1 
5-38 

where band d are any real constants. Substituting Equation 5-35 into 

Equation 5-38 

i = b U1 + d - U 5-39 
-dq 2 

U2 U1 

U3 - U 4 

"e" U4 U3 
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Using the stator and rotor current vectors representation of Equation 

2-19 and defining vector magnitudes and phases as 

Ul 
= ~k sin ~k 5~O 

U2 ~k cos f1sk 

U3 
:J
rk 

sin f1sk 

U4 
:J
rk 

cos f1sk 

Equation 5-39 can be expressed as 

e ~q = Cl :J
sk 

sin ( f1sk f10 ) 5~1 

:J
sk 

cos ( f1sk - f1 ) 0 

:J
rk 

sin ( f1rk f10 ) 

3'rk cos ( f1rk - f1o) 

where Cl and f10 are the magnitudes and the reference angle of the polar 

representations of the arbitrary constants b and d, i.e. 

~2 d
2

) 
l~ 

Cl = + 

5~2 
b = Cl cos f10 . 

- d = Cl sin f10 
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Using Equation 5-41 and Figure 2-1 it becomes possible to 

identify 0 mode in terms of the space-vectors in the motor oirgap. As the point 

În the eÎgenvector modal plane is shifted, band d take on other arbitrary values. 

This has the effect of changing the multiplying constant Cl and the reference angle 

fi: in Equation 5-41, but essentially the parallelogram defined by :J k and :J k 
o s r 

retains its similor geometry in Figure 2-1 despite the changes in magnificat ion 

and orientation. 

Now that a representation is possible, the next section will !Je devote~ 

to examining the space-vectors of the modes for different speeds of the induction motor. 

5-8-1 $pace Vector Diagrams 

Figure 5-4 (a) to (f) show a series of spa ce vector diagrams of the 

two modes of the induction motor described in Appendix G. The p. u. speed for 

a 60 Hz supply is 377 electrical radians per second and the rotor speeds in the 

diagrams are for. 0.0, 0.04, 0.1, 0.4, 0.48 and 1.0 p.u. respectively. 

Figure 5-4 (a) shows the vectors for the magnetization and the leakage 

inductance modes for the motor at standstill. In the magnetization mode the three 

vectors, :J
2 

and :J
2 

are co-linear and pointing in the same direction thus giving 
sr· 

a very large resultant :J
m2

• In contra st the leakage inductance vectors :J
s1 

and 

:Jr1 are equal and opposite so that their sum :J
m1 

= 0 • 
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Fig. 5-4 (b) Rotor Speed = 0.04 p.u. 
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Fig. 5-4(c).Rofor Speed=O.1 p.u. 
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Fig. 5-4 (d).Rotor Speed=O.4 p.U. 
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Fig. 5 - 4 (f) . Rotor Speed = 1.0 p.u. 
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Figure 5-4 (f), on the other hand, shows the two modes at 1.0 p. u. 

speed and these approach the stator and the rotor modes of the lossless sub-primitive. 

The feature which distinguishes them are the relative' directions of d< 1 which points , m 

towards ~1 and d<m2 which points towards the stator space-vector d<s2 • 

It is instructive to follow the vector diagrams From Figure 5-4(a) to 

Figure 5-4(f) as a continuous change with rotor speed. From W = 0.0 to 
m 

W
m 

= 0.48 p.u. the leakage inductance mode which has d<m1 = 0.0 at w
m 

= 0.0 

develops a finite d<ml and (P'sl - 9'r2) moves from 180
0 

into the third quadrant. 

Meanwh i le d< m2 in the magneti zation mode collapses as '(p's2 - 9'r2) decreases 

o 
from 360 to the third quadrant. Around c.J = 0.48 p. u ., the two modes become 

m 

coincident and likewise the space-vectors of the two modes are indistinguishable. 

From c.J = 0.49 p. u. speed upwards one mode moves towards the stator mode of the 
m 

lossless sub-primitive and the other develops into the rotor mode. Because of the 

coincident eigenvalues in thi.s numerical example it is not possible to identify whether 

the rotor mode is continuous From the magnetization or from the leakage inductance 

mode. 

Hitherto the space-vector diagrams have been used as physical inter-

pretation and representation of each mode. The next section' will further show that 

the space-vectors can also be used to describe the dynamics of an excited mode. 



146 

5-9 Modal Representation in Free Motion 

A set of initial currents which satisfy Equation 5-38 would excite 

~he kth mode exclusively. On release, the currents would oscillate in the short-

circuited windings and would ulfimately be damped up as the state follows a trajectory 

!.. dq ,,-} exp '\ t[ cos "k t + i sin "k t ] { \!. ,+ i [ ~ ] ~J 

+ i exp O'k t [coswkt - jSinwktJ{~r-i [ctJ~r} 

- exp 0' k t sin w
k 

t -u 2 

. - U 
4 

5-43 

Using the space-vector representation in Equation 5-41, the modal 

currents can be expressed as 

~q = exp O'k t ~ sin (w
k 

t 
+ ~k)l sk 

3
sk . cos (wk t + 9'sk) 5-44 

3 
rk· sin (wk t + 9'rk) 

3
rk 

cos (w
k 

t + 9'rk) 
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The magnitudes of the space-vectors in Equation 5-44 are damped 

exponentiaUy at a rate O"k and the axes rotate physically in the airgap space at an 

angular velocity (,,)k in the forward direction. A picture of the vector parallelo­

grams of Figure 5-4:' spirally in the airgap space is a valid physical interpretation. 

5-10 Damping Factor Structure 

This section. is devoted to establishing a physical correlation between the 

damping factor and the modal space-vectors. The damping factor is, of course, re-

lated to energy stored in the winding inductances and how quickly this energy is 

dissipated away by the stator and the rotor resistances. At any given instant in the tra-

jectory of an exclusively excited mode, described by Equation 5-44, damping occurs 

because the net dissipated power is depleting the energy storage. 

, 
Under free-motion, the power balance equation derived in Appendix A 

is 

RS "J2 + {.; + n M (,,) "J "J sin (fi. C{Jr) 
s r m s r s 

5-45 

Substituting Equation 5-44 into Equation 5-45, and performing the 

differentiation p 
d =-, dt it is possible to factor out the damping factor O'k' 
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- R
S 3<s~ + { 31ri + ~ Ca) M 3< k 3< k sin (!1. -!1.) 1 m s r s r 

O'k = --2 
.!. IS 3<2 .!.( 2 .!. M 3<2 
2 sk 

+ 2 3<rk + 2 mk 

1 r dk 
5-46 = 

2 
rsk 

where I:
dk 

and I:
sk 

are respectively the sum of the dissipative and storage components. 

The denominator consists of the sum of the energy stored in the leakage 

inductances and the mutual inductance and the numerator consists of dissipation in the 

stator and rotor resistance and mechanical power. Each of the space vector magnitudes 

3< k 1 3< k 1 31 k is obtained from the eigenvector components U 1 and Equation 5-46 
s r m -r 

is a display of the structure of the damping in terms of the distribution of the modal cur-

rents flowing in each system parameter. Ail the components of Equation 5-46 are 

positive ex ce pt the mechanical power term which does become negative. 

5-10-1 Negative Dissipation 

The term n M ;; k ;; k sin (!1. - 9:) in Equation 5-46 is the space-:vector 
s r s r 

expression of electromechanical torque. Whenever (Cp - tp) lies in the 3rd or 4th 
s r 

quadrant, a negative torque exists and power is fed from the constant speed source into 

the short-circuited motor windings. There is effectively mechanical power converted 

into electrical power •. In circuit the ory this is represented bya negative resistance and 

the power associated with it is the negative dissipation. It has been remarked in Section 

5-2 that since ! ~ 1 < Ca) , 
m 

the rotor speed is always faster than the speed of the 
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rotating airgap flux of the mode and roughly from the conventional steady-state theory . 

the generating counter-torque always exist. 

This negative dissipation is ~orne out in the structural analysis. in 

Section 5-10-2. Furthermore from the space-vector diagrams in Figure 5-4 (a) to 

Figure 5-4 (f) (cp - CI') always 1 ie in the 3rd or 4th quadran·t. 
s r 

5-10-2 Damping Factor Variations with Speed 

It is intended that by the study of the structural components of Equation 

5-46, some physical understanding can be gained for the variation of O'k with speed 

as shown in Figure 5-1 . Figure 5-5 (a) and (b) display the dissipative and the stored 

energy components respectively of the mode À = 0'1 :1: i (,,)1 ; and likewise Figure 5-6 

(a) and (b) display those for the mode, À = 0'2 :1: i (,,)2 . 

Figure 5-5(b) shows that the total energy stored in the windings is sub-

stantially constant for the mode of 0'1' It should be noted that the contributions due to 

the mutual inductance is negligible and the stored energy resides in mainly the leakage 

inductances. Figure 5-5 (a) shows that the sum. of the stator and the rotor dissipative 

components remain constant with speed. The factor which contributes principally to 

the change from the highly damped 0'1 = -188 (at (,,)m = 0) to 0'1 = - 96.5 (for 

(,,) > 0.49 p.u.) in Figure 5-1 is the negative dissipation. 
m 

The behavior of the components of 0'2 is displayed in Figure 5-6. At 

rotor standstill, the bulk of the energy of the magnetization mode is stored mutual in-
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ductance. As the speed increases, the magnetization vector ~m2 collapses and 

the energy stored in the mutuel inductance decreases to negligible values for 

fA) > 0.49 p.u. Thereafter the energy of the leakage inductances 'predominC;;tes. 
m 
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Figure 5-6(a) shows that the sum of the resistive components is substantially constant, 

and for 0 S Ca) < 0.49, the negative dissipation becomes important. In ail, the 
m 

collapse of 30
m2 

overwhelms the influence of negative dissipation and the net result 

is the increase in damping with speed from Col = 0 to Ca) = 0.49 as is shown in 
m m 

Figure 5-1 • 

", 

The components of Equation 5-46 are evaluated from the eigenvector com-

ponents U1 ' U2 ' U3 and U 4 which solved by the eigenvector subroutine of DAL4. 

Since the eigenvector is not unique it has been necessary to "normalize" it so' that the 

continuous curves of Figure 5-4 and Figure 5-5, can be plotted. 

5-11 Structure of Natural Frequency of Oscillation in Mode 

From the physicd viewpoint, a mode is oscillatory because the energy 

associated with it is continuously being exchanged among the various storage elements. 

The frequency of oscillation is related to the rate of this exchange. The magnetization 

sub-primitive is simplified enough to offer a view of the physical details of the inter-

action of the speed voltages and the magnetization flux. In the induction motor, the 

details of the energy exchanges are more complicated, but as the modal representation 

1 
in Section 5-9 shows, this is the energy of the magnetic fields associated with the ro-

tating space vectors 3'sk and 3'rk· 
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At any time instant in the free motion of the kth mode, the velocity 

of.the stator and the rotor current space vectors'must each be equal to the natural 

frequency, i. e • 

Ca) = 
k P ~k = p J1rk 

5-47 

Using the definitions in Equations 2-19 and 2-20 

.5 .s .5 .5 
1 q P Id - Id P 1 

Ca)k = P J1sk = q 5-48 
( .5)2 (is)2 

Id + q 

.r .r .r .r 
Iq p Id - Id P Iq 

Ca)k = P ~k = 5-49 
(i~)2 (ir)2 + q 

Combining Equations. 5-48 and 5-49 into Equation 5-47 

.5 .s .s .5 .r .r .r .r 
= Iq P Id - Id P Iq + Iq P Id - Id P Iq 

Ca)k ( .5 )2 5 )2 r )2 (.Ir )2 
Id + (iq + (id + q 

5-50 

Equation 5-50 is valid only when i is of the form of Equation 5-39, 
-dq 

i.e. it is an instantaneo~s value in the free motion of the mode. The time differential 

quantities p i~, P i~ etc. can be obtained from 

pi d = [Ad ] i d - q q - q 
5-51 

Substituting Equation 4-2 and Equation 5-39 into Equation 5-50 and making the 
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normalization of the eigenvector components ~~ + U; + Ui + U i) = 1 

1 [( s r) (U U U U) {LS r (2 U·
4
2 ) L)k = S r 2 R - R M 1 4 - 2 3 + n L)m L U 3 + 

L.I.., - M 

5-52 

or expressed in the space vector fonns 

1 IrRs - Rr ) M-:J -:J • (ri ri) sk rk sm . Y'sk - Y'rk 

+M{L -L){-:J 2
k 2 s r m 

5-53 

or 

61'sk - 9'rk) 

{2 2 + n L)m -:Jrk {M + 
1 
2" M. IS + 3 Ir + IS Ir 

_ -:J 2 (M
2 1 • IS _ Ir ) 

sk +2"M 

5-54 
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. These expressions show that the natural frequency arises from the inter-

action of the rotor speed w and the electromechanical torque. 
m 

s r 
For'the numerical example presented throughout this thesis, R = R = R 

and L
S 

= L
r 

= L, and Equation 5-53 simplifies to 

w 
( L

2 ~2 M
2 ~2) m 

wk = 
L2 _ M2 -rk sk 5-55 

or 

wk = w (Prk - Psk ) m 
5-56 

where 
L
2 ~2 

rk 
Prk = 

L
2 _ M2 5-57 

M
2 ~2 

Psk 
sk = 

L2 _ M2 5-58 

ln this specialised case, w
k 

is solely dependent on w
m

• Thus at 

rotor standstill, both the eigenvalues have zero imaginary parts since c.I = 0 • , m 

At very high rotor velocities, the modes approach those of the lossless 

sub-primitive. Using the eigenvector components of Equation 5-30, the natural fre-

quencies as calculated from Equation 5-55 correlate with the asymptotic values 

approached in Figure 5-2. Thus Table 5-1 lists the "normalised" ~s~ and ~r~ 

as calculated from the Equation 5-30 and c.l
k 

as evaluated from Equation 5-37. 



TABLE 5 - 1 

Stator Mode 

:J2 L
2 

sk 
L
2 

+ M
2 

:J2 M
2 

rk L
2 

+ M
2 

IA)k = (Eq. 5-35) o 

Rotor Mode 

M2 

L
2 + M2 

L
2 

L
2 

+ M
2 

lA) 
m 

158 

The derivation of Equation 5-50 is based on physical arguments on the 

properties of the space vector. In Appendix D, the same results will be derived 

from the definitions of the eigenvector. This provides a useful check against faulty 

intuition. 

5-11-1 Natural Frequency Variation with Speed 

Figure 5-7 and Figure 5-8 show plots of the components of Equation 

5-56 which correlate with the natural frequency variations with speed in Figure 5-2. 

Prk and P
sk 

defined in Equation 5-57 and Equation 5-58 are normalised quantities 

(with respect to lA) ) and the y bear information as to the relative contributions of :J k 
m r 
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and ~k • 
Wk 

The normal ised frequency is of course the difference between 
W m 



6-1 Introduction 

CHAPTER VI 

INDUCTION MeTeR STABILITY 
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The basic problem in stability analysis of the induction motor is to 

establish whether the steady-state solution to Equation 2-1 is a stable equilibrium 

point, i.e. will the motor return to its steady state after the occurrence of a small 

system disturbance? Furthermore, if it is a stable equi librium poi nt, how large a 

disturbance will it tolerate ? 

The first question can be answered by eigenvalue analysis of the small 

perturbation linearised equations about an equilibrium operating point. But this 

method has the short-coming that the stability is guaranteed only for an infinitesi­

mally small region where the small perturbation assumptions hold. 

ln order to answer the more difficult question of stability with large per­

turbations, it is necessary to use the Second or the Direct Method of Liapunov to 

grapple with the system nonlinearity. This method consists of generating a "Lia­

punov function ll and using the Liapunov function to map the region of asymptotic 

stability around the stable equilibrium point. Unfortunately, à priori, the Liapunov 

function is not known and much ingenuity has to be ,exercised in guessing the Liapunov 

function which can describe the stability boundary exactly. Furthermore the Liapu­

nov function gives only a sufficient condition for stabi lity. This means that if the 

conditions for the stability are not satisfied, it does not necessarily follow that the 
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point is unstable, but simply that perhaps a better Liapunov function can be proposed. 

The objectives of this chapter are therefore to apply these methods to 

the stability of the induction motor. Firstly the eigenvalue subroutines are applied 

to the linearised equations of the induction motor to determine the stability of the 

operating point. Subsequently the Direct. Method is used to explore the stability 

boundary around a stable equilibrium point. Because of the dimensions (5th order) 

of the system, the Liapunov functions investigated are restricted to .the quadratic 

functions. 

6-2 Induction Motor Equation for Stability Study 

Throughout this stabil ity study, the synchronously rotating frame is chosen 

because the steady-state currents for a balanced voltage supply Equation 2-15 are 

d. c. currents and consequently the system equations are autonomous. Equation 

2-13 can be rewritten as 

! 2)ô = [l J p !..oô + [R ] !.. ~ + [G (.)m ]!.. ~ô 6-1 (a) 

and 

6-1 (b) 

where 
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[L] = L
S 

0 M 0 [ R ] = RS 
0 0 0 

0 L
S 0 M 0 RS 

0 0 

M 0 L
r 

0 0 0 Rr 
0 

0 M 0 L
r 

0 0 0 Rr 

6-2 

and [G w ] 0 
s 

0 M w
f = l wf m 

s 
0 -Mw 0 - L w f f 

0 M (wf - n t.)m) 0 L r.. (t.) - n W ) 
f m 

-M(w -nw ) 
f m 

0 _Lr (w - n w ) 
f m 

0 

8efore the methods of Liapunov can be applied, it is necessary to remove 

the forcing functions ~ 2) Sand TL from Equation 6-1. This can be done by solving 

for the steady-state solutions of the operating point and translating the system equations 

to a new origin at the operating point. 

For a specified supply voltage É. lS and a load TL' the operating point 

is obtained by solving for the d. c. currents.!. as and the constant speed t.)m from 

the steady-state versions of Equation 6-1, i.e. 

s r s r 
= n M (1" 'S - '5 '4') - TL 6-3(b) 

Defining a new set of variables x 
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.s 'r x = xl - I~ 6-4 

.s ,S 
oX

2 15 5 

.r { x
3 16 ~ 

.r { x
4 15 5 

x
5 '" '" m m 

Equation 6-1 can be expressed as 

p~ = [A] x + f - -n 6-5 

where [A] is a 5 x 5 constant matrix and f is a 5 x 1 column consisting 
-n 

of SUfR6 of quodratic. products of x's .0 The importance of Equation 6-5 is 

that the system dynamics are now expressed in terms of the free motion of the state and 

the Liapunov Methods are directly applicable to such a formulation. 

The constant [A] matrix is most informative if it is examined in its 

4 - partitioned parts. 

[A] = 

6-6 

1 --t---
1 
: [ H22 ] 
1 

The 4 x4 [H
ll

] matrix is none other than the constant speed equation 

in Equation 4-5. 



The 1 x 1 [H
22 

Jmatrix relates the viscous friction f 1 and the 

moment of inertia J
1 

[H
22 

J = 
[- fJl1 J' 

n 
- M (M I~ + L

r I~) 

- L s (M I~ + L
r {s) 

L
S 

(M I} + L
r I~ ) 

s 
- 1 -t fi 

s 
Ir J 

The nonlinear part of Equation 6-5 is a 5 x 1 column 

where ~ -M (M x
2 

+ L
r 

x
4

) 

M (M xl + L
r 

x
3

) 

_ LS 
(M x

2 

. r 
+ L x

4
) 

L
S 

(M xl :.- L
r 

x
3

) 
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6-7 

6-8 

6-9 

6-10 

6-11 

6-12 
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and 6-13 

6-3 Small Signal Linear Approximation 

The nonlinear dynamic equation in Equation 6-5 is written as the sum 

of a linear principal part [AJ x' and the nonlinear part f • Since the nonlinearities 
- -n 

consist of quadratic su ms of the state variables, it is possible to approximate it for 
. . 

small signais by reductions to Equation 6-14 which is equivalent to it from point of 

vi ew of stabi 1 ity • 

p x = [A J x 6-14 

6-4 Stabi lity of the Operating Point 

The linear criterion of stability [40J is: "the equilibrium of Equation 

6-14 is asymptotically stable if ail the eigenvalues of CAJ have negative real parts". 

The Nyquist [55 - 57J , the root-Iocus [24J and many standard techniques of linear 

theory are available to ascertain the system stability based on this criterion. 

The method used in this investigation is to evaluate the eigenvalues of the 

matrix [A] by the DAL4 eigenvalue subroutine discussed in Section 4-6. The 

eigenvalue method gives a more detailed picture of the dynamics of the operating 
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point than the Nyquist and the root-Iocus methods. Thus, the real parts of the 

eigenvalues bears information not only with respect to the system stability but also 

to the order of damping of the system. This has much importance in induction motor 

stability investigation where often-times the operating point is in fact stable but lightly 

.. damped [24]. 

6-5 Stability of Operating Points Over Speed Range 

k. an example, the stability of the operating points of an induction motor 

controlled by variable frequency is investigated. The motor parameters are 1 isted in 

2 
Appendix G with the additional information that J1 = 0.006 kg - m 

f 1 = 0.01 Nw~ -sec. j rad.. The supp Iy vo Itages referenced to the synchronously 

. s 240 x f s 
rotatmg frame are: E t = 60 ' E 5 = O.. Since a variable frequency 

supply voltage is used, the slip and Id
f 

in the [A] matrix must always be referred to 

the supply. 

(a) 

The procedures for the solution are as follows : 

For a specified frequency f, operating speed c:; " and . m 

voltage ~ ~ S' the steady-state currents .! ~ 5 are solved 

from the simultaneous Iinear equations in Equation 6-3 (a) • 

(b) Using w
m 

and .! ~S' the dynamic matrix [A] is formed. 

(c) The DAL4 eigenvalue subroutine is used to find the eigen-

values of [A]. 
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Corresponding to the 5 x 5 [A 1 matrix there are 5 eigenvalues. 

Of these there are two complex conjugate pairs and a fifth real eigenvalue. Since 

the [A] matrix yields the eigenvalues in the synchronous reference it is necessary 

to reduce them to a stationary reference frame (see Section 4-9) which besides 

being physical serves as a common basis for comparing eigenvalues for different fre-

quency operating points. 

Figure 6-1 shows the 5 eigenvalues inthe stationary reference frame for 

an operating point defined by f = 10 Hz and (., = 500 r.p.m. Since ail the eigen­
m 

values are on the left-half of the complex plane, the operating point is stable. 

Figure 6-2 shows the torque-speed curves for the speed ranges for supply 

frequencies from 5 Hz to 25 Hz. An operating point in the torque-speed curve is 

defined by the frequency and the rotor speed. The dynamic properties of these operating 

points are displayed in Figures 6-3, 6-4 and 6-5. Figures 6-3(a), 6-4(a) and 

6-5 (a) show the real parts of the eigenvalues ; and Figures 6-3(b) and 6-4(b) show 

the imaginary parts expressed in Hertz in the stationary reference frame. 

Figures 6::'3 and 6-4 are the plots for the two complex eigenvalue pairs 

which will be identifjed with the electrical modes of Chapters IV and V. In this 

particular motor, the real parts are always negatively damped. However as Nelson, 

Lipo and Krause have shown [25] instability arising from negatively damped electri-

cal modes can occur in sorne machine parameter combinations, especially with very 

small rotor inertia J1 • 

The only instability occurs for the fifth real eigenvalue which can be 

identified with the mechanical equation of motion. Comparing the damping factor 
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of Figure 6-5 with the torque~peed curves of Figure 6-2, it can be concluded that 

the negative damping and instability occurs on the operating region to the left of the 

peak of the torque-speed curves. Instability of this kind which is associated with a 

positive accelerating torque speed ratio (~ T) is weil known in traditional induction 
. ~m· 

motor theory and is predictable from the static torque-speed curve. 

6-6 Eigenvalues Identification 

6-6-1 The Mechanical Mode 

_ The fifth eigenvalue is related to the mechanical equation of motion. 

Firstly, it can be stated that when the system is e lectromechanically uncoupled, the 

linearised mechanical equation becomes 

f 
and the damping factor is a 5 = - -} 

1 

6-15 

ln the general case, besides this damping due to viscous friction, there is 

electromechanical damping which is approximately related to slope of the torque speed 

curve. The fifth row of Equation 6-14 which is 

6-16 

can be approximated by 
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AT 
where the acceleration torque-speed ratio ~ is defined in Figure 6-6 and the 

mechanical damping factor is approximately 

CI ~ 1 (AT f) 
5 Ji""XW

m 
- 1 

6-18 

As a numerical check of Equation 6-18, the operating point defined 

by L)m = 1350 r.p.m., f = 25 Hz in Figure 6-2 has a slope : 

AT 

AL) 
= - 0.243 newton metre sec. / rad. 

m 

Since J
1 

= 0.006, Equation 6-18 gives 

0'5 = - 42.2 

The eigenvalue routine DAL4 has a solution CI 5 = - 47.7 • 

Another good check comes from relating the peaks of the torque speed 
f
1 

curve of Figure 6-2 with the speed at which 0'5 = - - in Figure 6-6. 
J1 

6-6-2 The Electrical Modes 

ln Figures 6-3 and 6-4, the speed variations of 0'1' 0'2' L)1 and 

~ of the short-circuited motor of Chapters IV and V are .plotted in dashed lines 

179 
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beside the damping factors and oscillating frequencies of the excited induction motor 

operating points. From these plots and from arguments based on continuity the com-

plex eigenvalues of the 5 x 5 [A] - matrix can be identified with ~he modes of the 

4 x 4 matrix of Equation 4-5 • 

The connection is apparent if it is noted that the sub-matrix [H 11 ] = [A (f 6] 

and when the motor is unexcited and with the stator windings short-circuited, Equation 

6-6 is reduced to 

[A] = 
__ ..L __ 

-f 
1 

11 

The èigenvalues of this matrix are those of [A ~ 6 ] and À5 

6-19 

However, as the stator windings are excited and as the excitation currents 

.! ~6 increase, the column sub-matrix [H
12

] and [H
21

] grow, the eigenvalues of 

Equation 6-19 become numerically perturbed. The eigenvalues of Equation 6-6 can 

thus be thought of, as being continuously shifted by the continuous growth of the e lements 

in the off-diagonal sub-matrices. From Equations" 6.-9 and 6-10, the extent of this 

numerical perturbation would depend on the operating-point currents l ~ 6 and the 

moment of inertia J
1 

• 

ln this context, Figures 6-3 and 6-4 can be viewed as a perturbation 

of the short-circuited modes by the steady-state currents ! ~ s. The successive shifts 
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from fhe dashe~line by supply frequency changes is minimum for the oscillating fre-:-

quencies in Figures 6-3(b) and 6-4(b). The mode associated with the mutual 

inductânce whose damping factor is shown in Figure 6-4(a) becomes less lightly 

damped when excited by tJ 10Hz supply. This fact is significant in this stabil ity 

investigation. 

For a given motor, the moment of inertia is the other factor which contri-

butes to the electrical eigenvalu~ shifts. Figures 6-7(a) and (b) show the real parts 

of thetwo electricàl modes as a function of J
1 

' which is presented in a logarithmic 

scale. This result shows that the mechanical parameters are only very Iightly coupled 

to the electrical damping factors. 

6-7 The Direct Method of Liapunov 

. The linear stability criterion of Section 6-4 is valid only for small signal 

disturbances. In practice it is necessary to be assured that the region of asymptotic 

stability around the equilibrium is extensive so that the motor will return to the operating 

point after a sizeable system disturbance. In such considerations, the nonlinear terms 

f can no longer be negligible and the stability investigation must deal with Equation 
-n 

6-5 in toto. The Direct Method of Liapunov is weil suited to handle stability pro-

blems of nonlinear systems. 

The Direct Method is very weil treated in many standard control engineering 

textbooks [59 - 60] and it is only necessary here to restate the method and the pro-
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perties of the Liapunov function. Basic to this method is the construction of the 

Liapunov function V (x) which à priori is not known. This Liapunov function is 

then used with respect to the system equations to map out the region of asymptotic 

stability • 

The Liapunov function V ~ must be a positive definite scalar function 

with the following properties:. 

(a) V and its first partial derivatives are together continuous 

in a certain domain D which contains the origin. 

(b) V (x) = 0 for x = 0 6-20 

and 

V (x) > 0 for ~ 1 0 6-21 

For V ~ to be a Liapunov function of the induction motor, then its 

time derivative along the trajectory of the system Equation 6-5 is negative definite, 

i.e. 

w (x) = p V ~ 

5 èV 
= r -.or- px. < 0 

ex· 1 1=1 4 

in the domain D. 

6-22 

A systematic method of constructing a Liapunov function for Equation 

6-5 is possible by the method of Zubov [62, 64 - 65J provided that the [AJ 

matrix has negative real parts for ail the eigenvalues. Since the nonlinearity part 



·e 
f in Equation 6-5 consists simply of quadratic product terms, a Liapunov function 
-n 

madeup of an infinite series of homogeneous terms can be proposed 

v ~ = V 2 + V 3 + . . • V m + • ~ • . 6-23 

and the coefficien~s of the series terms solved from a recursive relationship. This 
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infinite series would describe exactly the boundary of the region of asymptotic stability. 

ln practice the infinite series is approximated by a truncated series to the mth order 

of the homogeneous term. Unfortunately, as Undril [66J has pointed out,the size of 

the set of simultaneous equations which must be solved to obtain the truncated series 

increases rapidly with the order of the series andthe dimension of the system equations. 

For the 5 - variable system of the induction motor, Table 6-1 shows the number of 

simultaneous equations which must be solved, in order to generate a Liapunov function 

truncated at the mth order [66 J . 

Order of Homo­
geneous Series m = 

Number of Simul­
taneous Equations 

2 3 

15 35 

TABLE 6 - 1. 

4 5 

70 126 

6 8 10 12 14 

210 495 1001 1820 3060 

Thus dimensionality is an inherent difficulty in applying Zubov's method to 

the induction motor. Furthermore as Margolis and Vogt [64J have pointed out there 



is no knowledgeas to what order m would yield the optimum approximation to the 

stability boundary. They have shown examples where a higher order approximation 

ca'n describe a more conservative stability region than a lower order approximation. 

. . 
ln the face of these difficulties, the investigation using the Direct Method 

will be restricted to Liapunov Functions of the quadratic form. 

6-8 Total Energy as a Liapunov Function 

Since the Liapunov function is a general ization of the ,energy concept, and 

the Direct Method is an extension of the intuitive notion that a stable equil ibrium is 

associated with decreasing energy of the system, it is natural to consider a Liapun~v 

function which consists of the sum of the storage energy associated with the perturbed 

variables, i.e. 

V('iJ T [B] x = x 6-24 

where [B] 1 
L

S 0 M 0 0 = 2" 

0 L
S 

0 M 0 6-25 

M 0 L
r 0 0 

0 M 0 L
r 

0 

0 0 0 0 J1 

and 6-26 
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. Equation 6-24 satisfies the partial derivative continuity requirements and also 

. Equations 6-20 and 6-21 . 

SusbstitutingEquations 6-5 and 6-25 into Equation 6-22 

w (x) = p V ~ 

= xT [Ai [B] x + xT [B] [A] x + f T ra] x + xT B f 
. - -n - - --n 

6-27 

A very important result is that the last two terms containing the nonlinear part f 
-n 

vanish when they are expanded algebraically, i.e. 

f T [B] x + x T [B] f = 0 6-28 
-n -n 

Hence 

W (x) 
T CC] x = x 6-29 

where [C] = [A]T [B] + [B] [A] 

'1 
- 2 R

S 0 0 -nM w = 2" m 
r 

n M 15 

0 -.2 RS 
n Mw 0 

m 
-n M I~ 

0 n Mw - 2 R
r 0 

m 
n L

r { 
5 

- n Mw 0 0 - 2 R
r 

m 
r 

Ir -nL 

r 
{ n Lr { Lr { n M 15 -n M - n '! 1 5 

-2f 
1 

6-30 
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When [C] is a negative definite matrix then Equation 6-22 is satisfied 

and the V (x) is indeed a Liapunov function. Furthermore the domain D extends 

to 011 space and the operating point is asymptotically stable in the large' (AS IL) • The 

proof for this very strong condition of stability is possible because the energy Liapunov 

function causes the contribution of the nonlinear term f to be zero as Equation 6-28 
-n 

shows. 

A computer test for the negative definiteness of [C J is to show that the 

successive principal minors of - [cJ to have positive determinants [67J., A more 

instructive test consists of completing the squares for Equation 6-29. Thus W (~is 

negative definite if for any six real numbers b
1 

1 b
2 

••• b
6 

the following inequali­

ties are satisfied. 

b~ + b ~ - 2 R
S 

< 0 

2 b2 _ 2 RS 0 b
2 

+ < 4 

nMw 2 2 
( m~ r < 0 6-31 b

2 
+ b5 

- 2 R . 

nMw 2 2 r 
( b1 

m~ + b6 - 2 R < 0 

r r 
n L

r 
{ 2 n L

r Ir 2 n M 16 2 n M ~ 2 
( b ) + ( b ~ + ( 6) + ( b ) - 2 f < 0 

3 4 b
5 6 1 
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6-9 Asymptotic Stability in the Large in Induction Motors 

, Firstly, it can besaid that any asymptotically stable operating point is 

in general not ASIL for the induction motor. For example, Figure 6-8 shows a 

lood' curve which intersects the torque-speed curve at points M and N. The point 

M is an asymptotically stable equilibrium point; but from steady-state arguments, the 

region of asymptotic stability around if is not global. This is because the system on 

being displaced to an operating point to the left of N would continue to decelerate 

fo fA) =,.. CD, never to return to M. 
m 

k such it is not surprising that [C] in Equation 6-30 is negative definite 

only under very restricted conditions. In particular using the algebraic inequalities of 

Equation 6-31 it can be concluded that for the system to be ASIL the dissipative ele­

ments R
S 

, R
r 

and f
1 

in the diagonal of [C] matrix must dominate the off-diagonal 

terms. This, of course, corresponds to the physical notion that it is always possible to 

make a system very stable provided sufficient dissipation is added. It should also be 

noted that ASIL is more Iikely to occur at low operating speeds since the terms n M Co) 
m 

in Equations 6-30 and 6-31 would be small and would be dominated by the dissipative 

ferms. 

Thus in the numerical example of Section 6-5, the induction motor operating 

at 540 r.p.m. from a 10 Hz supply would be ASIL if the stator ,and the rotor resis­

tances are increased to R
S = R

r 
= 4.18. This is because from Equation 6-30 

.-_. 



'. ,.' . .' 

O,~.O~O;': .. ·.::':· 
.. 

. ;. 

, 0' 

....... ,: . 
, .'. 

" " , '. 

.... " . 

': "" '.' 

.' .. ', 
" .;. , 

, .,', ' "... ' .. '>. 
, 190 ., . 

, ..... ' 
", -:", 

1.0 

0.8 

-. 
~ 0.6 a. -ci) 
:::J 
CT 5 0.4 

F 

0.2 

, .; 

" " .. . ';', ' 

-:." ' 

, ", , . '. . ,'. 

, , ,\ 

M 
Load Hne 

o ------------~~----------~~-----
o 0.2 0.4 0.6 0.8 1.0 

Synchronous Speed (p.u.> 

FIGURE 6.8. OPERATING POINTS M • N DEFINED BY INTERSECTION 
. OF MOTOR TORQUE SPEED CURVE a LOAD LINE 

, ',: 



ë 

191 

[C] = 4.18 0 0 3.0 -0.018 

O· 4.18 -3.0 0 -0.034 

0 -3.0 4.18 0 ..:o~019 

3.0 0 '0 4.1S -0.036 . 

-0.018 -0.034 -0.019 -0.036 0.01 

.6-32 

is negative definite. 

The increase of the rotor resistance has the effect of shifting the peak of 

the torque speed curve of Figure 6-8 to the region of negative speed and consequently 

the motor curve will not intersect the load curve again at N, thus offering the possibility 

of ASIL • 

Although the motor can be proved to be ASIL by increasing the dissipative ~ 

elements, the steady state performance characteristics deteriorates. 

Since the Total Energy Liapunov Functioncan only prove ASIL, it cannot 

be used with those operating points where a bound to the asymptotic stabil ity region is 

suspected to exist. In such cases a different quadratic Liapunov Function can be con­

structed mathematically. 

6-10 Stabil ity Bounds from Quadratic Liapunov Functions 

When the equilibrium of Equation 6-5 is asymptotically stable, a quad­

ratic Liapunov function [63] can always be constructed for the linear part, i.e. 
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_ . Equation 6-14. The proposed quadratic Liapunov function is of the form 

v ~ =. xT [V] x .. 6-33 

where [V] is an unknown matrix and [V] T = [V] •. 

The total derivative, using Equation 6-22 and Equation 6-14 is 

w~ 
T = x [p] x 6-34 

where - [p] = [A]T [V] + [V] [A] 6-35 

[p] is a positive definite matrix, if V (~ is to be a Liapunov function of Equation 

6-14. Equation 6-35 represents a system of n (n+1) /2 linear equations from vAl ich 

the unknown elements of [V] can be solved From any a~bitrary positive definite matrix 

[p] • 

ln investigatin9 the stability bounds of the equilibrium point, the total time 

derivative of Equation 6-22 is formed from the constructed Liapunov function Equation 

6-33 and the complete nonlinear system equation, Equation 6-5. When W (~ is 

negative throu9hout the whole space, ASIL can be concluded. Whenever W~= 0, 

for ~ ~ 0 the conclusion of ASIL cannot be made. But accordin9 to Hahn [61], 

"S0 lon9 as one of the hypersurfaces V ~ = constant lies 'completely in the interior of 

the domain determined by W ~ = 0, then it belon9s to the domain of attraction of 

the origin ll
• 

The quadratic Liapunov functions appear to have applicability to the case of 

the induction motor. It is proposed to apply the principles to the induction motor discussed 



.e· in Section 6-5. The operating point chosen is defined by the frequency = 60 Hz 

and operating speed. r:; = 3240 r.p.m. The objective is to investigate whether 
. m 
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the hypersurface V (x) = V of the quadratic Liapunov function is adequate in es-
.- 0 . 

timating the stabil ity region around the operating point. The method is implemented 

. along the following steps : 

Step 1. Formation of the Positive Define [p] - matrix 

The simplest form of a positive definite matrix is a diagonal matrix in which 

ail the diagonal elements are real and positive, e.g. 

[p] = 1 o o o o 

o 1 o o o 6-36 

o o 1 o o 

o o o 1 o 

o o o o 10 

Appendix E shows how other positive definite matrices can be formed by rotational 

transformations. 

Step 2. Formation of Liapunov [V] - matrix 

The [A] - matrix for the induction motor operating at 60 Hz, 3240 r.p.m. 

and viscous friction f
1 

= 0.0 is: 

( 
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-- [A] - 96.6 - 3687. 92.0 - 3476 - 45.6 = 
3687.0 - 96.6 3476 92.0 - 15.2 

. 
92.0 3476 - 96.6 3272 47.9 

- 3476.0 92.0 - 3272 - 96.6 15.9 
- . 

- 0.011 0.033 _ - 0.0198 0.0319 0.0 

6-37 

Appendix F shows the detai Is of how [V] can be solved from Equation 6-35. The 

solution of the 15 simultaneous equations for the 15 unknowns in [V] yields 

Step 3. Asymptotic Stability Domain Estimate 

With the [V] matrix determined in Equation 6-38, -the Liapunov function 

of ~quation 6-33 -is used in conjunction with the original nonlinear equation, Equation 

6-5 to form the total time derivative of Equation 6-22 which becomes : 
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w (;<) = - x T [p] x + 2 x T [V] f 6-39 . -n 

- . 
Since f consists of quadratic terms, the last term in Equation 6':.;39 is 

-n " . 

a cubic scalar. As such for an infinitesimally small region around the origin, W ~ 

is negative and because the negative definite term - x T [p] ~ dominates the higher 

order terms. This is the Direct Method justification for the stability analysis based on 

linearization through small signal assumptions in Section 6-5. 

But for large signal perturbations, W (x) can become positive whenever 

2 x T [V] f is positive and dominates over the negative quadratic term in Equation 
- -n ' 

6-39. Thus, for example, in the case of the motor operafing at M in Figure 6-6 it 

is found that for a number of Liapunov functions constructed in the manner specified 

above, the point N lies on W ~ :::. 0 and ail points to the left of N have positive 

values of W (x) • 

However, the domain of asymptotic stability is guaranteed only for the 

closed region inside the surface V (x) = V which contacts the surface. W (x) = 0 
- 0 -

from the insi de. To find V , the problem becomes one of minimization and can be 
o 

stated as : Find the minimum of V (x) = ~T [V] ~ which lies on . W ~ = o. 

6-10-1 Minimization of Liapunov Function 

The minimization of V ~ = x T [V] ~ under a constraint W ~ = 0 

can be reduced to the problem of minimization of a new unconstrained function 



·e· 

e 

z (x) 
2 = V (x) + JJ W ~. 

where J.I is a constant which ultimately must tend to infinity. 

6-40 

The optimization of multivariable functions su ch as Equation 6-40 are 

discussed fully in Reference [68 J. In this study, the IBM FMFP subroutine [49] 
. . 

has been used to find the local minimum of Equation 6-40 by the method of Fletcher 

and Powell [69J. The technique of using the minimization subroutine consists of 

(a) making an initial guess of the local minimum, (b) estimating a trial value of JJ 
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and (c) using the FMFP subroutine to locate the local minimum. When the approxi-

mate local minimum is found, . JJ is increased and a better estimate is found on an 

iterative process for each successively increased value of JJ • 

It is found that for a large number of trial initial values, the FMFP con-

verges towards the origine This leads to a conclusion that. the Liapunov Function using 

Equation 6-38 can only guarantee a very smcilt region of asymptotic stability. 

6-10-2 Merit of Quadratic Liapunov Function 

The [vJ - matrix of Equation 6-38 indicates why it contributes to form 

such a poor Liapunov Function for estimating the stability region. For example at 

x
2 

= x
4 

= x
5 

= 0, 

Vit:) = [ xl x
3 

J 

G
0116 2.114 

[::1 
6-41 

2.114 2.116 
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It is important to note that 2.116 and 2,114 differs only at the fourth significant 
.' 

place and the contours of Equation 6-41 are long thin ellipses which are hardly dis-

tinguishable in single precision from those of 

v (x) 

which describe a family of straight lines. 

likewise at xl = x3 = x
5 

= 0 

r·117 

l3. 115 

have contours which are also long thin ellipses. 

6-42 

::::J [:J 6-43 

Because the Direct Method of Liapunov gives a sufficiency condition of 

stability only, the minuscule region of asymptotic stability of Equation 6-38 is more 
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likely to reflect on the poorness of the method. After ail the induction motor at 60 Hz 

operation at low slip operation is generally known to be highly stable. Although many 

different positive definite [p J matrices have heen tried, each of which yielding the 

some poor results, there is an infinity move which could have been tested. As such the 

de-merit of the qucidratic Functions can only he concluded for the specific examples 

studied. 



198 

CHAPTER VII 

PARAMETRIC SENSITIVITY 

7-1 Introduction 

ln addition to calculating the torque patterns and solving for the eigen-

values, the engineer is interested in the influence of machine parameters on the system 

performance· •. Thus one is concerned that the stability of an equilibrium point is not 

critically sensitive to slight changes in the system components. From a synthesis point 

of view, one is interested in knowing which parameters to change in order to design for 

a particular torque transient. 

Because numerical techniques have been used throughout there is no ex-

plicit inter-re lationship between the numerical solùtionsand the system parameters. 

However, by developing the concepts of parametric sensitivity coefficients and evaluat-

ing them numerically, it is possible to provide this important supplementary information. 

This investigation consists of defining and developi·ng an efficient 

method of calculating the eigenvalue sensitivity coefficients of the induction motor. 

ln this chapter, the motor parameters, R\. R
r 

etc. will be denoted by the numerically 

indexed symbols p ai a = 1, 2 ••• ). 

7-2 Eigenvalue Sensitivity 

ln Chapter VI, the [A] matrix is determined by a specification 

••• pa. • •• pa·) and the operating point state solutions. 
1 n 

Basically, the engineer is interested in the effect of changes in the Kth eigenvalue 
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for a small change in the jth parameter. This information is embodied in the notion 

of the eigenvalue sensitivity which is defined as 

op a. 
1 

= Lim 
âp a~o âp a. 

1 1 

7-3 Calculation of Eigenvalue Sensitivity 

à~ 

7-1 

The eigenvalue sensitivity r can, of course, be calculated by 
paj 

forming a new [A] matrix for the parameters . (p al' p a2 ••• p ai + 

• • • pa), computing the eigenvalues ~ + Il.À. (i = 1, 2, ••• 5) , 
n 1 1 

IIp a. , . 1 

and 

using the limiting definition Equation 7-1 to approximate the sensitivity coefficients. 

The re-computation of eigenvalues to obtain the sensitivity coefficients 

of each of the n - parameters is time consuming and the following method described 

by Van Ness, Boyle and Imad [70], and Faddeev and Faddeeva [71] is more 

economical. This method requires the evaluation of the eigenvalues and the eigen­

vectors of the [A] matrix and its transpose [A] T only once. Essentially the 

economy is achieved by recognizing certain basic properties of the matrix [A] and 

[A] T. For example, [A] T has identical eigenvalues as [A] but the eigenvectors 
,. T 

U k of [A] are different from U k of [A] • From the definition of eigen-

vectors : 

= 7-2 



The eigenvalue sensitivity coefficient is obtained by differentiating' 

Equation 7-2 partially with respect to p a. 
1 

Premultiply Equation 7-4 by UT -k 
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7-3 

7-4 

'" T 0 [A] U "'T 0 ~k "'T 0 ~k 0 Àk "'T 
~k + Uk [A] doëi = Àk U - + -- U U 7-5 op a. -k p a. 0 p a. 0 pa. -k -k 

1 1 1 1 

but from Equation 7-2 

"'T 0- U 
Àk Uk - k opa.-

r 
7-6 

Substituting Equation 7-6 for the first term of the right hand side gives, Equation 7-1 

"'T '" 
0\ ~k o [A] ~k 
op a. = op a. ,7-7 1 

1 AT 
~k Qk 

From Equation 7-7 it con be seen that at every operating point it is only 

... T 
necessary to solve for the eigenvectors ~k and ~ k of [A] and [A] ., As the s,en-

sitivities of the different parameters are considered, it is only necessaryto compute 

o [A] 
-.:0-- by numerical differentiation. 
op a. 

1 
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It Îs found that it is physically more meaningful to consider eigenvalue 

sensitivity in terms of percentage l.hanges of parame te rs • Hence in the numerical 

examples following , the eigenvalue sensitivity index ÂÀki has been used for 1 % 

parameter changes, i.e. 

0\ 
- -:::l.- x 0.01 p Q. 

vp ai 1 

7-4 Numerical Example 

As an example, the eigenvalue sensitivity indices of the motor in 

Chapter VI will be developed here. The operating point is defined by w
f 

= 10Hz 

and W = 540 r.p.m. for which 
m 

[A] = - 96.6 - 614.0 92.0 - 579 50.4 

7-8 

614. - 96.6 579 92.0 3.57 7-9 

92.0 579. - 96.6 545 53.0 

-579. 92.0 -545 - 96.6 - 3.75 

4.31 60.8 - 86.8 70.4 - 1.67 

Table 7-1 and Table 7-2 list the eigenvalues and the corresponding 

eigenvector components for the [A] matrix and the transpose TAJ T matrix 

respectively which are solved by the subroutine DAL4. 
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TABLE 7 - 1 

[A] - MATRIX 

Electrical Modes Mechanical Mode 

Eigenvalue À - 3.63:1: i 39.4 - 169 :1: 37.7 - 0.410 
, " '.', . '. , ' 

Eigenvector U
1

, O. 144 :1: i O. 206 - 0.485,:1: i 0.157 - 0.409 

U2 0.154 ~ i 0.389 - 0.0378 :1: i 0.455 - 0.142 

U3 - 0.067'+ i 0.321 0.481 .+ i 0.154 - 0.387 

U4 
- 0.245:1: i 0.319 0.0431 "+ i 0.455 0.182 

U5 
0.701 0.257 0.793 

TABLE 7 - " 

[Ai - MATRIX 

.(i) ( ii) ( iii) 

Eigenvalue À - 3 • 63 :1: i 39.4 - 169 :l:i 37.7 - 0.410 

A 

Eigenvectors U1 
0.181 :1: i 0.481 0.117'+ i 0.467 - 0.165 

A 

U2 
-0.418 :1: i 0.251 0.515 + i 0.0582 0.664 

A 

U3 
0.170:1: i 0.482 -0.0259'+ i 0.423 - 0.230 

A 

U4 -0 .413 :1: i O. 253 o . 528 .; i O. 1 95 - 0.684 
A 

U5 
0.0306 0.044 0.104 

'" ; 



-

e, 

Each of the matrices ~ [A] (j = l, 2, .•. n) can be computed 
op a. 

1 
'numerically from : 

" '. 

o [A] [ A 6l a. + Âp a.} J - [A] 
- ~ Lim 1 1 
op o. A A 1 P a~o pa. 

1 1 

The matrix [A (p a. + Ap a.) ] is constructed by infinitesimally 
1 1 
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7-10 

incrementing the jth parameter only. Besides the explicit terms of p a. in [A], 
l , 

it should be noted thàt the steady-state solutions ! ~ S have also to be solved for the 

parameter change. Generally, Equation 7-10 is a sparse matrix, e.g. 

o [A] 
- 96.6 0 0 0 5.47 = 

oRs 
0 - 96.6 0 0 5.84 7-11 

92.0 0 0 0 -5.74 

0 ) 92.0 0 0 -6.14 

7.05 - 6.59 17.3 3.66 0 

or 

o [A] = 0 0 0 0 0 
of) 

0 0 0 0 0 7-12 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 -166.7 
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However, Equation 7-10 can be a full matrix as in the case of the 

inductance parameters, e .g. 

~ [A] 
10

3 
x ~17.8 -112. 17.8 -112. -10.1 = ~M 

112. -17.8 112. 17.8 1.27 7-13 

17.8 112. -17.8 112. 10.1 

-112. 17.8 -112. -17.8 -1.29 

0.737 1.05 0.009 L55 0.0 

Table 7-111 Iists the eigenvalue sensitivity indices for + 1 % change 

in the motor parameters which are calculated from Equation 7-8 and Equation 7-7. 

It should be noted that the eigenvalues and the eigenvectors are calculated only once 

and these are presented in Tables 7-1 and 7-2. The information of eigenvalue sensi-

tivity with respect to each parameter is borne by matrices such as. shown in Equation 7-11 

to Equation 7-13 and these are readi Iy computed. 

7-5 Significance of Eigenvalue Sensitivity Indices 

Table 7-111 summarizes in an econoinical format 40 items of quantitative 

information with respect to the 5 eigenvalues and the 8 system parameters. By in-

spection, the damping factors of ail the modes are most sensitive to the mutual inductance 

M. This resuIt corresponds to the physical interpretation developed in Chapter V where 

it is shown that the mutual inductance M p·lays a dominant role in the transient charac-

teristics at low speeds. 



e···· TABLE 7 - 1/1 . 

. ' 
EIGENVAlUE SENSITIVITY INDICES A~ki 

Electrical Modes Mechanical Mode 

i Parameters / Eigenvalues - 3.63 :: i 39.3 - 169 :: i 37.7 - 41.0 

1 R
S (1.0 ohm) -0.0117 -+iO.131 - 1.11. ::i 0.149 0.327 

2 R
r 

(1.0 ohm) - 0.0178 :: i 0.0818 - 1.01 .+ i 0.238 0.005 

3 IS 
~.0053 H) - 0.0119 :: i 0.0029 0.964 :: i 0.0284 - 0.0168 

4 Ir ~.0053 H) - 0.0113 .+ i 0.0045 0.966 :: i 0.0474 - 0.231 

5 M ·~.106 H) 0.510 :: i 0.0275 - 38.6 -+ i 1.51 0.762 

6 JI (Q.006 'newton-m-sec
2) -0.00546'+ i 0.0571 ;. 0.171 -+ i 0.0129 0.371 

7 fI (0.01 newton-m-sec) -0.00237 ± i 0.0004 0.00158 ± i 0.00048 0.015 

8 E,ô (40 volts) 0.0159 :: i 0.113 0.340 :: i 0.0252 - 0.712 
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At 540 r.p.m. the lightly damped mode (À = - 3.63 ± i 39.3) has 

been identified approximately with the mutual inductance and the positive sign before 

the sensitivity index + 0.510 bears this out. Likewise, the heavily damped electrical 

mode (À = - 169 ± i 37.7)" has real positive sensitivity indices (+ 0.964 and 

+ 0.966) with respect to the leakage inductances ,
S 

and ,r and this again correlates 

with the identification of this mode with the leakage inductances. 

Examining the mechanical mode for instance 1 the ·parameters in order of 

importance are: M, 
s 

E lô 1 J1 1 R •••• It should be noted that an increase in 

E rô dampens the mode while an increase in M, J and R
S 

have the reverse effect 

of decreasing the damping. The sensitivity indices confirmsan earlier statementthat : 

although the electrical parameters can affect the mechanical mode significantly 1 the 

mechanical parameters J
1

, f 1 do not influence the electrical modes seriously. 

It should be stressed that the eigenvalue sensitivity coefficients and in-

dices so developed , are restricted to ~mall parameter changes only. When the effects 

of large parameter changes are desired, it is necessary to solve for the eigenvalues for 

the changed parameters in the manner described in Chapter VI • 
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

8-1 Summary 

This thesis has been a theoretical study of the transient torque and the 

stability of the balanced, symmetrical polyphase induction motor operating from a 

balanced single-frequency voltage supply. The study has been organized on a subject 

basis beginning with a review of the different reference frame formulations of the motor 

equations and an assessment of the methods for sol ving the transient torque patterns. 

This has been followed by the development of the modal methods to solve the linear 

constant speed equations ; the application of the eigenvalue method to dete. ,['Lne local 

stability ; the use of the Direct Method of Liapunov to explore the stabil ity region and 

finally the investigation of the effects of parameters on performance through sensitivity 

studies. 

The results of this study have been organized around the central theme of 

. the constant speed modes: with the eigenvalues providing the rational basis of torque 

components classification, and the eigenvectors bearing the information as to how 'each of·· 

the modes is coupled to the excitations. In this context, the phenomena of controlled 

nonsimultaneous switching is simply an example of mode suppression. Although the 

accelerating transient is strictly a nonlinear problem, it has been possible to correlate 

the torque patterns with the dependence of modes on the rotor speed. Furthermore by 

mode identification, the results from stability studies have been unified with thestudies 

on the switching transients. 
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Because the modes constitute the central and unifying theme in the dy­

nam~c studies, this thesis has devoted much research to c1arifying their characteristics 

and physical nëture especially in regard to their variations with rotor speed. By a 

combination of methods: using approximate sub-primitive models, probing the charac­

teristic equation, and exploiting the properties of the eigenvectors, a theory of the 

induction modes complete with physical interpretation has been developed. 

Throughout this thesis, physical explanations have been developed using 

space-vectors representing the airgap m.m.fls. This has proved to be pictorially satisfy­

ing as weil as theoretically fruitful, especially in explaining the phenomenon of super­

synchronous speed and in representing the physi cal modes. 

8-2 Conclusions 

The conclusions Iisted below include those results which are felt to be of 

particular significance and are believed to be extensions of existing knowledge in in­

duction motor studies. 

Extension of Mathematical Methods 

1. The modal analysis has been introduced to solve the linear con­

stant speed transie nt. The power and scope of th is computer­

aided analysis enable the initial value problems to be included 

with the solution of the voltage excitation problems. 



2. The eigenvalue method has been applied to test for the 

induction motor stability of the equilibrium points. 

3. The Direct Method of Liapunovhc:is been applied to in­

vestigate the region of asymptotic stability using quadratic 

Liapunov Functions. It is found that whenever the total 

energy of the induction motor can be shown to be a Lia­

punov function, then the equilibrium point is asymptotically 

stable in the large. 

4. Eigenvalue parameter sensitivities has been investigated. A 

metho~ is introduced which calculates the eigenvalue sensiti­

vity coefficients efficiently by exploiting the properties of 

. the eigenvectors of the [A] - matrix and its transpose. 

5. The usefulness of the m.m.f. space-vector representation as 

both a mathematical tool and a physical interpretation has been 

demonstrated •. 

6. The method of sub-primitive approximation has been developed 

to investigate the properties of the induction motor in the limiting 

speed condition. 
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. Extension of Induction Motor Theory 

1. The eigenvalues of the constant speed linear equations have been 

shown to provide the basis for the characterizing and classification 

of switching torque components. Although the imaginary parts 

(natural frequency) of the eigenvalues have been shown to change 

with the chosen velocity of the common reference frame (Doppler 

effect), nevertheless the torque components in the classification 

remain invariant • 

. 2. The eigenvectors have been shown to yield information as to how 

the modes are coupled to the voltage excitations and the initial­

value currents. 

3. The application of controlled nonsimultaneous switching has been 

explainedin terms of mode suppression by cancelling the voltage 

excitation with an appropriate set of initial-value currents. 

4. The eigenvectors have been proved to bear rotating symmetry. This 

rotating property has permitted the representation of a physical in­

duction motor mode and the derivation of many important results. 

The free motion of an independently excited mode has been viewed 

in terms of the airgap m.m.fls., rotating with the angular velocity 

of the natural frequency and spiralling to zero as the magnitudes are 

damped out. 
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5. ln the investigation on the speed dependence of the electrical 

modes the following conclusions have been drawn. 

(i) The sum of the dampingfactors of the two complex modes 

is a constant for a Il rotor speeds. 

(ii) The sum of the natural frequencies is equal to the rotor 

speed expressed in electrical radians per second. 

(iii) At rotor standsti", the induction motor modes are the 

some as the nonosci Ilatory modes of the transformer. 

These are the lightly damped magnetization mode and the 

heavily damped leakage inductance mode. 

(iv) At high rotor speeds, the induction motor modes approach 

those of the lossless subprimitive • These are the stator 

mode and the rotor mode which are related to maintaining 

the constant flux linkage theorem at the stator and the rotor 

windings respectively. Consequently these modes are iden­

tifiable with the natural frequencies (dl = 0 and (d2 = (dm • 

(v) T~e speed dependence of the modes can be viewed as the 

continuous transition from the transformer modes at standstill 

to the lossless modes at infinite speed. The details of this 

transformation has been followed by the m.m.f space-vector 

diagram representing the modes in the sequences shown in 

Figure 5-5. 
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(vi) The changes of modes with speed are accompanieèl by changes 

in the damping factors and the natural frequencies. Thus the 

lightly damped magnetization mode becomes more heavily 

damped because of the collapse of the magnetization m. m. f • 

vector :J with speed increase. Correspondingly the leakage 
m 

inductance mode becomes less heavily damped because of the 

negative dissipati on. 

To study the se changes in detail, a formula has been derived which 
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expresses the damping factor in terms of how quickly the energy in the storage elements 

become dissipated in the lossy parameters. Because the mode currents can be related 

to the eigenvectors, it has been possible to analyze the composition of energy storage 

and power dissipation for a mode and correlate a physical understanding for the speed 

changes of the damping factor. 

6. The dynamics of the small signal perturbations about an equili-

brium point of the induction motor is characterized by 5 

eigenvalues. The two complex conjugate pairs have been 

identified as the same electrical modes of the constant speed 

equations. The fifth real eigenvalue relates to the mechanical 

equation of motion and can be approximated from the static 

torque-speed curve. Instability in the mechanical mode occurs 

when operating on the ascending portion of the torque-speed curve. 
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·e· Instability due to the electrical mode~ has not been found in the 

specific motor parameters stucUe.d although the magnetization 

mode becomes lightly damped at low frequency operation. 

7. The eigenvalue sensitivity studies has given a quantitative evalua.-
.. 

tions which correlate with the physical interpretation of modes. 

For example, at low speed operation, the magnetization mode 

dominates and this has expressed itself as the highest sensitivity 

of the damping factor with respect to the mutual inductance. 

8. The concept of instantaneous airgap power has been defined and 

its usefulness demonstrated. The association of airgap power with 

the instantaneous angular velocity of the resultant airgap m.m.f. 

explains the transient phenomenon of supersynchronous rotor speed 

and at the same time comprehends the traditional association with 

the supply frequency ~ 

8-3 Suggestions for Future Work 

The areas for further investigation based on this thesis are: 

(a) The treatment of coïncident eigenvalues from the modal view-

point and investigation of the physical significance. 

e· 



(h) Stability investigation for unbalanced supply and /or 

supply with harmonic content. 

" 

{cl Further development of Liapunov functions for the in­

duction motor. 
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. APPENDIX A 

INDUCTION MOTOR POWER EQUATION 

.. The power equation can be derived From Equation 2-10 by forming 

the scalarproduct 

which yields 

Co) J 
m 

s 
e 

q 

o 

o 

-T L 
, 

2 2 2 2 
= RS (.s .IS ) Rr r.r .r) 

1 d + q + \Id + Iq 

2 
+ { ) 

q 

1 M {< .s .r' )2 r.s .r ) 2) 1 J 2 J 
+ 2' .Id + Id + \Iq + Iq + 2" 1 Co)m 

This con he written in space,..vectors defined in Equations 2-19 to 2-21 as 

A -1 



• i" 00. 
" :," 

':: ,.. 
. ,0 

, ,', 
• '0 

,-:.,'. ': 1 216,0 

00,.' 
00 + n M 3 3 sin (JI. - 9:> Co) + P (!. 15 32 + !. Ir 32 + !. M 3 2 . ' 
'0 ,sor 00 5 r m 2 5 2 or 2 m 

A-2° 

e. 
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APPENDIX B 

INSTANTANEOUS AIRGAP POWER 

It is demonstrated that the instantaneous airgap power P 
ag 

2·17 

= 

The power equation of the induction motor will be examined in two successive stages .• 

Stator Power 

The first two lines of Equation 2-10 can be written as 

R
s '% 2 1 IS '%2 .s M (.s .r ) 

- as + p 2 as + Id P Id + Id 

+ jS M P (i
s + {) 

q q q 
B - 1 

R
S 

:J2 and .!. I
S 

:J2 are the stator resistance dissipative loss and the magnetic 
s 2 s 

energy stored in the stator leakage inductance respectively. Hence from the energy 

balance considerations, the last two terms consist of power which is (a) transferred 

to the rotor and (b). in part stored in the mutual inductance M. In order to identify 

these components, the vector representations of Figure 2-5 and the definition in 

Equations 2 - 19 to 2 - 21 will be made. 

oi~ M p O~ + i~) + i~ M p (i~ + i~) 

= M [;} sin ~ p (:J sin '1 ) + :J cos ~ P (:J sin ~ ) J 
s s m mss mm . 

=. M { :J s cos ('Is -' ft m) p :J m + ;} s :J m si n ('Is - '1 ni '1 m ) B - 2 
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·e Substituting Equation B -2· back into Equation B - 1 and substituting 

for the torque term of Equation 2 - 23 (b), the stator power balance equation is : 

8-3 n 

. Rotor Power 

Likewise, the power associated with rotor can be written by forming the 

scalar product with the third and fourth rows of Equation 2 - 10. 

e. o = { 3
2 + P (2.!.. Ir 3

2
) + M 3· cos (p' - ft) P 3 r r r m r m 

+ (,,) T 8 -4 m em 

From the trigonometric relationships of Figure 2 - 5 (c)., 

:J cos (ft - ft ) + :J cos (ft - fi ) = :J r m r s. sm m 8-5 

and hence when Equation 8 - 3 to Equation 8 - 4 are added, the terms 

M 3 cos (ft - ft ) p:J + M :J cos s s m m r 
1 2 (~ - fi ) p:J = P (2 M :Jm· ) m r m. 

8-6 

and the sum yields the complete power equation, Equation A - 2. It is noted that 
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Tri' ..•... ' . .' 
the terni em

n 
ri1ha~ opposite signs in Equa~i~n B - 3 'and Equation B - 4 and . 

. ; T
em 

$1~ 
cancels out. Therefore From physical c~:msiderationsi is the airgap 

n 

power •. ": " 

. ', .. ",'.:. 

," 

.C 



APPENDIX C 

EIGENVECTOR ROTATIONAL PROPERTY 

Assertion 

Proof 

If 6 k + i L)k is the eigenvalue of [A dq] in Eql,lation 4-2, 

then the corresponding eigenvector can be written in the form 

U
k 

= U + i [1fJ] U 1 where [~J is defined in Equation 5 - 36 • 
- -r -r 

220 

From definition, the eigenvector U
k 

= ~r + i ~ i satisfies the 

equation 

C - 1 

ln practice the 8 unknown components in ~k are solved for the set. 

of 8 simultaneous linear algebraic equations which isobtained by equating the real 

and the imaginary parts of Equation C-l, i.e. 

4 4 
r 

4 [ A dq ] - 6 k [ 1 ] : L)k [ 1 ] 

1 - - - -- -- - - -- --

4 -"'k~I] [À
dq

] ':6
k 

[1] 

1 

U = -r 

U. 
-1 

1 

o 
• · 
o 

o 
• 
• o 

C -2 

However [A
dq

] has basic rotation symmetric properties because of 

ifs form 
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, , 
m n' p r 

1· 
-n m, -r p C-3 

- - - - ~I- - -.- - --
t x y z 

-x t ~z y 

Equation C-3 expresses [A
dq

] in algebraic components m , n etc'., to emphasize 

the rotational symmetry in each partition. Because of the special form of Equation C-3 

the following substitution is made for Equation C-2 

u. = [4t] U C-4 
-1 -r 

in which case Equation C-2 reduces to 

C -5 

. and 

C-6 

Hence it is required to show that the same 4 numbers in 

U ~ = [U1 ' U2 ' U3 ' U 4] satisfy both Equation C - 5 and Equation C - 6 simul-

taneously. Equation C - 5 expands to 
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,-

m-6 n - '\ . p r U1 
= 0 C-7 

k 

- (n - 'i< m-6 -r .p U2 
0 

k 

t x y':'6
k Z - '" .k U3 

0 

- x t - (z-"'k) y -6 k U4 
0 

and Equation C - 6 expands to 

n - '" - (m -6 ) r - p -u = o- C -8 
k k l 

m-6 n - '\ p r U2 
0 

k 

x -t Z - Co) 
k 

-(y -6
k
) U3 

0 

t x Y -6k 
Z - Co) 

k 
U4 

0 

By inspection, Equation C - 8 is the same set of simultaneous equations 

as Equation C - 7 except for the if!terchange of the first and the second rows, and the 

interchange of the third and fourth rows •. This proves that U k = ~ r + i [ 4' ] Ur is 

indeed the eigenvector of Equation C - 3 • 
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APPENDIX D 

MODE OSCILLATING FREQUENCY 

The natural frequency of oscillation w
k 

is expressed explicitly in terms 

of the induction motor parameters and the components of the eigenvector ~k • 

From definition of eigenvector 

D -1 

but from Appendix C· 

_U
k 

= U + j [ ~] U . 
-r -r 

0-2 

Premultiply D - 1 by the transpose of the complex conjugate of ~k' i.e. 

* 
~k = U -j[cf>]U 

-r -r D-3 

and this yie Ids the· scalar product 

·*T 6. *T 
Uk [ Adq ] ~ k = ( k + 1 wk) ~ k !:! k D -4 

. . 

{!:!r
T 

- i !:!~ [ 4>] J [Adq] (!:!r + i [4>] U1 = <6 k + i "1.:) (!:!~ - i !:!~ [ '" ]T) 

~r+i.[4>]!:!rJ 0-5 

Equating the imaginary parts of .Equation D - 5 
. . 

UT [Ad ] [ ~J U - UT [ ~] T [Ad ] U = 
-r q -r -r q -r 

+ UT [cf>JT[~Jü 
-r -r 

[cf>] U - UT [~]U 
-r -r -r 

1· ... • 
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But from the propei"ty of [cP J in Equation 5 - 36, it can be shown that 

D-7 

UT [4>J U = 0 D-8 
-r -r 

and D - 9 

Substituting Equation D - 7 to Equation D - 9 into Equation D - 6, the 

coefficients of O"k become zero and "'k can be expressed explicitly as follows 

~ ~ [Adq J [ ~ ] ~ r - ~ ~ [~J T [A dq J ~ r 
"'k= 2U T U 

D -10 

-r -r 

Equation 5 - 52 follows from substituting the matrix [A
dq 

J, ~ rand 

"normali:iing" U T U = 1 • 
-r -r 
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APPENDIX E 

A METHOD OF CONSTRUCTING THE POSITIVE DEFINITE Cp] MATRIX 

A systematic method of generating the [p] matrix is through the 

formula: 

E - 1 

[K] = E - 2 

and where k. > 0 for i = 1 , 2 , ... 5 . 
1 

Each [ E ] is of the form 
_.~_ .... n 

- . - -
i 

LEn] = 1 0 0 C5 0 E - 3 

i 0 cos 9 0 sin 9 0 
n n 

0 0 1 0 0 - 0 - sin 9 0 cos 9 0 
n n 

0 0 0 0 1 



·' 

i.e. [E ] is a 5 x 5 unit matrix with the following changes 
n 

. E •• = E •• = cos 9 
Il Il n 

E •• = -E •• = sin 9 
Il Il n 

where 9 is any arbitrary angle. 
n 

E 

Using Equation E-l, xT [p] ~ is a function of a hyper-ellipsoid in 

5 - dimensional space. The values of k. in Equation E - 2 specify the relative· 
1 

magnitudes of the principal axes for the ellipsoid. The matrices· [E ] rota te the 
n 

ellipsoid at an angle 9 in the plane of the ith and jth axes. By varying k. 
n 1 

and 9 , a positive definite matrix [p] is generated from which the quadratic 
n 

Liapunov Function is constructed using Equation 6 - 35. 
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-4 
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[v] = 

ÀPPENDIX F 

SIMULTANEOÜS ËQUATIONS FOR SOLVING 

QUADRATIC LIAPUNOV FUNCTIONS 
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,'" 

The symmetric [V] matrix of Equation 6-35 consists of 15 unknowns 

111 112 113 114 115 F - 1 

112 116 117 lia 119 

113 117 1110 11
11 

1112 

114 lia 11
11 

1113 
1114 

115 119 1112 
11
14 1115 

The positive definite [p] matrix in Equation 6 - 36 is specified by 

the e lements Pl 'P2 ••• P15 in 

Cp] = Pl P2 P3 P4 P5 F-2 

P2 P6 P7 Pa P9 

P"3 " -pi PlO Pll P12 

P4 Pa Pll P13 P14 

P5 P9 P12 P14 PIS 

J _ 
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The unknown values of the [V] matrix are solved using the relationship 

of Equation 6 - 35 which is expanded to a 15 - order simultaneous equation as shown 

in Equation F - 3, where a •• are the elements of Equation 6 ~ 5. 
Il 



e ·e e 
°21 °31 °41 °51 ~l= 1 Pl' 

°1 (1'022 °32 °42 °52 °21 °31 °41 °51 Il 2 P2 2 

°23 °11+033 °43 °53 °21 °31 °41 °51 'v 2 P3 3 

°24 °34 °11+044 °54 °21 °31 °41 °51 . 1 
'V 

2P4 4 

°25 °35 °45 °l1i<155 °21 °31 °41 °51 1 
V 2~5 5 

°12 °22 °32 °42 °52 1 ~ 1 1· P 6 

°13 °12 °23 °22+033 °43 °53 °32 . °42 °52 1 
V 

P7 7 

°14 °12 °24 °34 °22+044 °54 °32 °42 ' °52 1 va Pa 

°15 °12 °25 °35 °45 °22+055 °32 °42 °52 
V 

P9 9 

°13 °23 
-

°33 °43 . °53 
V • PlO 10 

°14 °13 °24 °23 °34 . °33+044 °54 °43 °53 
V 

P11 11 

°15 °13 °25 °23 °35 °45 °33+055 °43 Q53 . v 
P12 12 

°14 °24 °34 °M °54 
,v • P13 13 

°15 °14 °25 °24 °35 °34 °45 °44+055 °54 
.v 

P14 14 

°15 °25 °35 °45 °5U L v15 P15 

.... ., .. 



APPENDIX G 

INDUCTION MOTOR PARAMETERS 

A typical induction motor whose parameters are Iisted below, have 

been used throughout in the numerical examples 

-. 
R

S = Rr = 1 ohm. 

LS = Lr = 0.1113 henry. 

M = 0.106 henry. 

n = 1 . 

( 
Ji 

JI 

230. 
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