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ABSTRACT

The acceleration transients and the asymptotic stability of the balanced
3 - phase induction motor operating from a balanced single frequency voltage supply .
have been investigated by a combination of numerical fecHniques and analytical
methods. A critical review is given for the various reference frame formulations of‘
the induction motor dynamics and the efficiency of the methods for ;olving the dynamic
equations has beer: assessed. The modal approach is presented as a comprehensive
framework around which the numerical results are systematically organized and such
disparate subjects as acceleration transients, asymptotic stability and nonsimultaneous

switching are unified.

;Defailed attention is given to the identification of the physical modes
and to understanding their behavioral changes as a function of rotor speeds. Asymptotic
stability is studied by linearization through small signal perturbations. Quadratic Lia-
punov Functions are proposed and it is shown that a Liapunov Function assqciafed with
the Total Energy can be used to prove Asymptotic Stability in the Large. Eigenvalue
sensitivity with respect to system parameters is also presented. The m.m.f. space-
vector viewpoint is presented to give a physical description of the modes, the airgap
magnetic field interactions in the production of transjent torque, and the possibility

of supersynchronous speeds during transients.
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CLAIM OF ORIGINALITY

To the best of the author's knowledge the following contributions are

- .

original.

1. The application of modal analysis to solve and classify the
constant speed transients of the induction motor and an ex-
planation of controlled nonsimultaneous switching in terms

of mode suppression.

2, Investigation of the behaviour of the induction motor modes
as they interact with rotor speed ; and proof for the damping

coefficients sum invariance with respect to rotor speed.

3. Identification of the physical modes through sub-primitive
approximations ; and proof that the induction motor modes
approximate asymptotically the modes of the loss-less sub~

primitive at high rotor speeds.

4, Proof for the Eigenvector Rotational Property ; and repre-
sentation of the physical modes through m.m.f. space-

vectors associated with the eigenvector.

5. Derivation of a formula which expresses the damping coeffi-
cient as components of energy storage and power dissipation

associated with the mode.

- 6. The application of the Direct Method of Liapunov to explore
the region of asymptotic stability, and proof that whenever
the total energy of the induction motor can be shown to be
a Liapunov Function, then the equilibrium point is asympto-

tically stable in the large.



Unification of switching transient studies with stability studies

through eigenvalues identification.

Investigation of eigenvalue sensitivities with respect to motor .
parameters and development of efficient computer methods

for the calculation of the sensitivity indices.

The physical interpretation of switching fr;:nsienfs, super-
synchronous rotor speeds, and modes through m.m.f. space
vectors ; and the definition of the instantaneous airgap
power in terms of the angular velocity of the resultant airgap

magnetization space vector.
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framework around which the numerical results are systematically organized and such
disparate subjects as acceleration transients, asymptotic stability and nonsimultaneous

switching are unified.

Detailed attention is given to the identification of the physical modes

and to understanding their behavioral ch;:mges as a function of rotor speeds. .' Asymptotic
stability is studied by linearization through small signal perturbations. Quadratic Lia-
“punov Functions are proposed and it is shown th‘af a Liapunov Function associated with
the Total Energy can be used. to prove Asymptotic Stability in the Large. Eigenvalue
sensitivity with respect to system parameters is also presented. The m.m.f. space-
vector viewpoint is presented to give a physical description of the modes, the airgap
magnetic field interactions in the production of transient torque, and the possibility

of supersynchronous speeds during transients.



- ACKNOWLEDGEMENTS

My sincere cppreciation is extended to the following persons :

Dr. T.H. Barton, who is my research supervisor. He has expedited
this research with substantial assistance and has guided and encouraged me with a

wise and nice mix of direction and latitude.

Drs. Belanger, R.E. Burridge, T.E. Dy Liacco, T.C. Lim and

Peter Morrison, for many helpful and fruitful discussions.

The Nakra's, the Hamblin's, the Taal's and the Yu's, for their

friendship and good counse!. -

Mrs. P. Hyland and Mrs. Soulellis for their patience and skill

in the preparation of this manuscript.



ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF ILLUSTRATIONS

NOMENCLATURE

CHAPTER I

CHAPTER "

2-10
2-11
2-12
2-13

CHAPTER |

3-1
3-2

3-4
3-5
3-6
3-7

TABLE OF CONTENTS

INTRODUCTION

Induction Motor Dynamic Problems in Industry
Historical Review
Outline of the Problem

REFERENCE FRAMES

Basic Induction Motor Equations - abc Frame
3 - Phase Digital Model

Three-Phase to Two-Phase Transformations
The o - B Reference Frame

The d - q Reference Frame

Common Reference Frame Transformations
The Synchronously Rotating Frame

The Complex Transformations
Instantaneous Symmetrical Components -
Cylindrical Symmetry

Space-Vector Representation

Space-Vector Viewpoint of Electromagnetic Torque
Space Vector Viewpoint in Synchronously Rotat-

ing Frame

NONLINEAR SWITCHING TRANSIENTS

Statement of the Problem

Nature of Dynamic Equations

Constant Speed Approximations
Approximations for Variable Speed Torques
Analogue Computer Solutions

Solutions by Numerical Integration
Numerical Integration with Digital Computers

vii

12
12
14
16
18
19
22
22
24
25
28

29

30.

30
31
32
32
33



Page
3-8 Choice of Reference Frame 36
3-9  Choice of Integration Subroutines 40
3-10 . Choice of Strategy in Integration Step-Size Control 45
3-11  Modified Integration Algorithms 50
3-12  Terminal Voltage and Initial Value Problems 5]
3-13 Numerical Examples 59
3-14  Torque Transients in-Synchronous Switching 60
3-15  Supersynchronous Motoring Torque 66
3-16 Instantaneous Airgap Power 67
CHAPTER v MODAL ANALYSIS OF CONSTANT SPEED

INDUCTION MOTOR EQUATIONS 72
4-1 Introduction : , 72
4-2 Constant Speed Linearization 73
4-3  The Constant Speed Induction Motor Equations 74
4-4  The Modal Analysis 77
4-5 Eigenvalues and Eigenvectors : 80
4-6 Eigenvalue and Eigenvector Subroutines 82
4-7 Constant Speed Transients in Induction Moftors 83
4-8 A Numerical Example 83
4-9  Transient Solutions 87
4-10  Components of Electromechanical Torque 92
4-11  Constant Speed Eigenvalue Loci 96
4~12  Patterns of Constant Speed Transient Torques 98
4-13  Modal Excitation Due to Initial Currents 107
4-14  Modal Excitation by Voltage Supply 110
4-15  Mode Suppression and Nonsimultaneous Switching 110

CHAPTER \' IDENTIFICATION, BEHAVIOUR AND INTERPRE-

TATION OF INDUCTION MOTOR MODES 115
5-1 Introduction 115
5-1-1 Damping Coefficients Sum Invariance 119
5-2  Natural Frequencies of Oscillation Sum 119
5-3  The Transient Subprimitives 121
5-4  The Transformer Subprimitive 123
5-56  The Magnetization Subprimitive 125
5-6  The Lossless Subprimitive 128
5-6-1 Asymptotic Approximation 133
5-7 Eigenvector Rotational Property 135
5-8 Mode Representation by Eigenvectors 136
5-8-1 Space Vector Diagrams 138
5-9 Modal Representation in Free Motion 146
5-10  Damping Factor Structure 147

5-10-1 Negative Dissipation 148



CHAPTER

CHAPTER

CHAPTER

APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

APPENDIX

5-10-2
5-11
5-11-1

Vi

- 6-1

6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9

6-10

Vii

7-2
7-3
7-4
7-5

Vil

8-2
8-3

o O

m

Damping Factor Variations with Speed
Structure of Natural Frequency of Oscillation
Natural Frequency Variation with Speed

INDUCTION MOTOR STABILITY

Introduction

Induction Motor Equation for Stability Study
Small Signal Linear Approximation

Stability of the Operating Point

Stability of Operating Points Over Speed Range
Eigenvalue Identification

The Direct Method of Liapunov

Total Energy as a Liapunov Function
Asymptotic Stability in the Large in Induction
Motors

Stability Bounds from Quadratic Liapunov
Functions

PARAMETRIC SENSITIVITY

Introduction

Eigenvalue Sensitivity

Calculation of Eigenvalue Sensitivity
Numerical Example

Significance of Eigenvalue Sensitivity Indices

SUMMARY AND CONCLUSIONS

Summary
Conclusions
Suggestions for Future Work

INDUCTION MOTOR POWER EQUATION
INSTANTANEOUS AIR-GAP POWER
EIGENVALUE ROTATIONAL PROPERTY
MODE OSCILLATOR FREQUENCY

A METHOD OF CONSTRUCTING THE
POSITIVE DEFINITE [P] MATRIX

SIMULTANEOUS EQUATIONS FOR SOLVING
QUADRATIC LIAPUNOV FUNCTIONS

Page

149
154
158

162
162
163
167
167
168
176
183
186

189
191

198

198
198
199
201
204

207

207
208
213

215
217
220

223
225

227



APPENDIX

REFERENCES

G

INDUCTION MOTOR PARAMETERS

Vi

' Pdge

230

231



Figure No.

2-1 (a)l (b)r (c)
3-1

3-2

3-3

3-4(a)

3-4b)

3-4(c)

3-5(@)

3-5(b)

3-5(c)

4-2
4-3()

4-36)
4-4(a)

LIST OF ILLUSTRATIONS

M. M. F. Space Vectors

Reswitching Sequences

Torque and Speed Transients in Simultaneous
Switching for J; = 0.0006 Kg. - m2

Switching Current Referred to d - q Frame
and Synchronously Rotating ¥~ & Frame

Simultaneous Switching Transients for
J, =0.06 Kg.-m2

Magnitudes of Space-Vectors in Simultaneous
Switching Transient

Space-Vector Angles Referred to Synchronous
Reference Frame

Switching Transients Showing the Occurrence
of Supersynchronous Speed and Motoring Torque

Rotor Angular Velocity and Instantaneous Angu-
lar Velocity of Magnetization Flux Vector

Airgap Power and Electromechanical Power
Output

Flow Chart of Program to Solve for Induction
Motor Transient at a Constant Speed

d-gq Axes Eigenvalue Loci of Induction Motor

Electromechanical Torque at Simultaneous
Switching - Rotor at Standstill

Components of Torque - Rotor at Standstill

Electromechanical Torque in Simultaneous
Switching - Rotor at 0.5 p.u. Synchronous Speed

vii

Page

27

56
61
62

63

65
68
69
7
84

97

99

100

102



Figure No.

4-4(b)

4-5()

4-5()

4-6

5-5(a)
5-5(b)
5-6(a)

5-66)

Title

Components of Torque Rotor at 0.5p.u.
Synchronous Speed

Electromechanical Torque in Simultaneous
Switching - Rotor at 0.9 p.u. Synchronous Speed

Components of Torque - Rotor at 0.9 p.u.
Synchronous Speed

Free Motion of Induction Motor Modes at Rotfor
Standstill (@) Magnetization Mode ()\2) ,
) Leakage Inductance Mode ()\])

Switching Torque and Speed Pattern when the
Magnetization Mode is Suppressed by Non-
simultaneous Switching

Variation of Damping Factors with Rotor Speed

Variation of Natural Frequencies with Rotor Speed

(@) Equivalent Circuit of Transformer Subprimitive
(b) The Leakage Inductance Mode

(c) The Magnetization Inductance Mode

M.M.F. Vector Representation of Modes
0.0 rad. fsec.

1

(@) Rotor Speed

() Rotor Speed = 0.04 p.u.
(c) Rotor Speed = 0.1 p.u.
(d) Rotor Speed = 0.4 p.u.
) Rotor Speed = 0.48 p.u.

(f) Rotor Speed = 1.0 p.u.
Dissipative Components of o,
Energy Storage Components of o4
Dissipative Components of o,

Energy Storage Components of oy

viii

Page

103

105

106

108

113

118

120

124

139
140
141
142
143
144

150
151
152

153



ix

Figure No. Title - Page
5-7 ’ Structural ‘Companents of Wy / 9 159
5-8 Structural Components of w, / w 160
6-1 Small Perturbation Eigenvalues in Sfationary 169

Reference Frame

6-2 Induction Motor Torque - Speed Characteristics 170
of Different Supply Frequencies

6-3(a) Damping Factor of Heavily Damped Electrical 172
Mode as a Function of Operating Point

6~3(b) Natural Frequency of Heavily Damped Electrical 173
Mode as Function of Operating Point

6-4 (a) Damping Factor of Lightly Damped Magnetization 174
Mode as Function of Operating Point

6-4(b) Natural Frequency of Lightly Damped Magnetiza- 175
tion Mode as Function of Operating Point

6-5 Damping Factor of Mechanical Mode as Function 177
of Operating Point

6-6 Estimate of Mechanical Damping Factor from 178
Tangent of Torque Speed Curve

6-7 @) Dependence of the Damping Factors of the Electri- 181
cal Modes on the Moment of Inertia

6-7 () Dependence of the Natural Frequencies of Oscilla~ 182
tion of the Electrical Modes on the Moment of Inertia

- 6-8 'Operafing Points M N Defined by Intersection of 190
Motor Torque - Speed Curve and Load Line



NOMENCLATURE

- Complex conjugate.

Transpose .

lnver.se .

Subscripts of 3 - phase quantities.

(—%- + i"/-73) Equation 2 - 17

3 x 5 matrix of linearized perturbation equations of
induction motor about an operating point.

4 x 4 matrix of the induction motor at a constant speed

referred to d -q axes, ¥- & axes .

5 x 5 matrix of energy storage elements defined in

Equation 6 - 25,

4 x 4 matrix coupling state to forced excitation, in
d -q axes (Equation4-3), in ¥-§& axes
(Equation 4 - 7).

5 x 5 matrix defined in Equation 6 - 30,

Connection matrices defined in Equations .2 - 5, -

2-9, 2-12.

Subscripts for direct and quadrature axes.

Vectors of stator and rotor voltages in a, b, ¢ frame.



F (Y, 1)
(G me

[H”], [lel,

[H2]], [H22]

- ¥6

xi
Instantaneous voltage in stator direct axis,

in rotor - axis.

Vector of voltages in a -8, d-q and ¥-§

axes frames.

Peak of sinusoidal time varying voltage excitation.
Steady-state voltage vector in §-§& frame.
Supply frequency Hertz.

Viscous damping.

Vector of nonlinear terms of perturbation variables,

Equation 6 - 11,

Magnitudes of space vectors representing the stator,
the rotor and the resultant airgagp m.m.fs. (Equations

2-19, 2-20, 2-21).

~ Vector of a general function in Y and t .

4 x 4 motional inductance matrix (Equation 6 - 2).

Submatrices of [ A] (Equation 6 - 6) .

Integration'stepsize.

Vector of steady-state currents in Y- & frame.
Instantaneous current.

General current vector.



General current vector at +=0 .
Numerical index.
Unit square matrix.
= ‘V - ] ]

. 2
Moment of inertia of motor (Kg -m™.)

Coefficient of coupling between two coils of

the stator, rotor.

Stator, rotor self inductance of one phase in

abec frc.me.

Stator, rotor self inductance in 2 phase equivalents.
General inductance matrix.

Sf&for, rotor leakage inductance.

Maximum mutual inductance between a stator phase

and a rotor phase in a b ¢ frame.

Maximum mutual inductance between one phase and a

rotor phase in 2 - phase equivalent.
Subscript for mechanical quantities.
Number-of pole - pairs.

Subscript for negative sequence (Equation 2 - 16).

~ Subscript for zero sequence (Equation 2 - 16).



P
ag

rk 7 sk

AU 9 93 Y

=1+ =2t =ss

dq

Subscript for positive sequence (Equation 2 - 16).

d
i

5 x. 5 positive definite matrix (Equation 6 - 35) .
The jth parameter of the system.

Airgap power.

Defined Equation 5 - 57 , Equation 5 - 58.
Subscript for quadrature axis.

Modal variables.

Modal vector of solutions in 1st mode, 2nd mode

and steady-state .

Stator, rotor resistance of phase._

General resistance matrix.

Subscript for rotor

Subscript for stator.

Eigenvector matrix in - & frame, d -q frame.
Electromechanical torque (Newton-metre).

Load torque (Newton-metre).

Superscript denotes transpose .

6 components of transient torque.

xifi



t Time (second).

b f] + Instant before, after disconnection.

f2_ ’ f2+ Instant before, after reconnection.

(1] Matrix defined in Equation 4 - 39.

AT Differential change of torque in torque speed curve.

U k Eigenvector of the kth eigenvalue.

_L_] Eigenvector of the transpose of [A].

U_1 Unit step function.

V x) Liapunov Function.

Vo Minimum value of V (x) on W (x) = 0.

[v] 5 x 5 symmetric matrix proposed for Liapunov
Function Equation 6 - 33. |

é General voltage vector.

w (i) Time derivative of Liapunov Function Equation 6 —'27..

[wl Matrix defined in Equation 4 - 41,

x 5x 1 column of perturbation state variables obtained
from small signal linearization about equilibrium opera-
fing point.

Y () General time function vector.

Yn the nth sequence of Y.



z ()

Z &)

dk

Xv

General time function vector.
Scalar function defined in Equation 6 ~ 40,
Subscript for a - axis.

Switching angle at which two phases of the motor

are connected to the three-phase supply .

The Kth coefficient.

- Subscript for B-axis.

Delay angle in nonsimultaneous switching at which the

third phase of the moror is connected to the three-phase

supply .

Constant coefficients.

Subscript for & - axis.

Subscript for & - axis.

Rotor position (radians).

ith eigenvalue.

Diagona! matrix of eigenvalues in ¥'-86, d - q frame.
Constant,

Spectral radius of the matrix A .

Real part of )\i , damping factor.

Total dissipation of kth mode.



[&]

e

Total energy storage of kth mode.

Dummy variable.

Space phase angles of the stator, the rotor and the

resultant airgap m.m.f. vectors.

Angular velocity of resultant airgap m.m.f. space

vector.

Rotational matrix defined in Equation 5 - 36.
General flux linkage vector.

Rotor angular velocity.

Operating rotor angular velocity.

Line frequency.
Angular velocity of rotating common reference frame.

Differential change in rotor angular velocity in

torque-speed curve.

xvi



CHAPTER |

INTRODUCTION

1-1  Induction Motor Dynamic Problems in Industry

At least two recent developments have made the study of the induction

motor dynamics both relevant and important.

(@) The increasing use of large horse -power induction

motors with direct-on-line switching.

b) The development of solid-state variable frequency
inverters which make variable speed induction motor

operation economically feasible.

The problem associated with the first application is the existence of
large pulsating transient torques. For example, strain gauge measurements on a
200 H P experimental pulp refiner at the Pulp and Paper Research [nstitute,
Pointe Claire, have recorded torques which are as high as 20 times the rated torque
of the motor. Undoubtedly, these large transient torques have contributed to the

frequent shaft key failures in pulp refiners.

The problem related to the use of the induction motor as a variable
speed drive is one of stability. Although the induction motor is known to be highly
stable at 60 Hz operation, there have been reports of unstable or very lightly

damped operating points at low frequency operations.



Because of the topical and the practical nature of the problems,

research on the dynamics of the induction motor has been an area of active interests.

1-2 Historical Review -

The patent for the induction motor was granted to Nikolai Tesla in
1888. The study of its dynamic characteristics, however, had to wait until the
development of dynamic circuit theory of electric machinery by Kron [1], his pre-
cursors [2-3] and successors [4-7]. Unfortunately, dynamic circuit theory merely
formulates the problem in the differential form and the ensuing task of solving the non-

linear equations had to await the development of powerful digital computers.

Attempts at solving the nonlinear.differenfial equation in its entire
form were made since the 1940's, at first t;sing the differential analysers [8-11], then
'using the analogue computers [12-147], and in the late 1960's using numerical techni-
ques in conjunction with the digital computer [15-181. Those who favoured the
aﬁalyficcl solution have found it possible to linearise the system equations by making
the constant speed assumption and subsequently using the Laplace Transform to solve
for the electrical transients [16 and 19-221. Solution of the variable speed problem
has also been found to be analytically possible by assuming the stator resistance to be
negligible, an assumption which corresponds to using the constant flux linkage

theorem [23].

Most of the papers have been of a theoretical nature and have been

concerned with the speed and current transients. It is not until around 1965 that



suitable torque recording equipment produced confirmable experimental results which
establish the dynamic induction equations with confidence, especially in respect to

the pattern of transient torques.

To date, the experimentally confirmable knowledge on switching forque
transients resides mainly in the publications of three research groups, Wood et al

[15, 22, 291, Enslin et al [21] and Smith et al [i 6,17] . Their research which

followed almost on identical lines, consisted of :

@) producing experimental transient torque patterns which

correlated closely with the digital computer solutions and

b) using the characteristic roots of the constant speed linear

equations to classify and explain the torque components.

It was around 1965 that the stability problem becomes of interest. Moti-
- vated by a practical problem involving the stability of mill-motors, G.J. Rogers [24]
analysed the small-perturbation linearised dyndmic equations using the root-locus
technique. He found that the motor understudy becomes very lightly damped at low
frequency operation but is still stable. Since then, Nelson Lipo and Krause [25]
and Fallside and Wortley [26] have found parameter combinations for which the induc—
tion motor can be truly electrically unstable. The paper by Fallside and Worfley'
contains correlated experimental and theoretical stability boundaries. This paper
together with the experimental and theoretical studies on power synchro dynamics by

' :

Burridge and Barton [27 ] confirm the soundness of using small perturbation lineariza-

tion for stability studies in induction motors.



In' closing this historical survey, it is worthwhile itemizing some of the
important physical phenomena which have been discovered in the dynamic studies
throughout the years, but for which there has been no adequate explanation in exist-

ing induction motor theory.

(@) Since 1941 [281, it has been noted that during a switching

transient, the induction motor may exceed the synchronous

speed.

®) By controlled nonsimultaneous switching, it is possible to
suppress undesirable fransient torque components. [13,21,

22, 291].

(c) The characteristic roots of the linearised constant speed
equations change with the rotor spee.d. [21, 22]. In
particular the damping factor of the dominant root decreases
with speed suggesting its inter-relationship with instability
at low frequency operation and prolonged switching tran-

"sients.

1-3° OQutline of the Problem

Although the literature shows that there has been extensive research on
induction motor dynamics, much of the results exist in the raw, undigested and frag-
mentary form. Different facets of the problem have been solved in isolation, each

unrelafed to the other. The methods employed are of varying merits and there is a



need to review their effectiveness from points of view of efficiency, accuracy and

~modern practice. There is need to find a mathematical formulation with sufficient
scope to provide a unifying viewpoint. Furthermore there are still vast patches of
ignorance to be explored especially with respect to the curious dynamic phenomena

itemized above. Finally, there has been a general lack of physical interpretation.

In an attempt to remedy some of these deficiencies and to contribute

towards the development of the theory of induction motor dynamics, there are four

objectives which are interwoven in the chapters of this thesis.

(@ Review

The existing literature is reviewed with the purpose of evaluating the
merits of each reference frame formulation of the dynamic equations (Chapter [I) and

assessing the efficacy of the methods for solving them (Chapter IlI).

. (b) Presenting a Unified Viewpoint

~ Throughout this thesis, the results of modern control theory are used as
the unifying mathematical language for the description, classification and analysis of
the induction motor dynamics. The sfufe-;space formulations, the modal approach,
the concepts of eigenvalues and eigenvectors have served as a comprehensive frame-
work on which such disparate studies as nnnlinear transients (in Chapter 111) and

stability studies (in Chapter V1) can be unified.

(c) Contributions to Knowledge

This thesis has sought to map the following areas of ignorance :



@) A basic understanding of the dependence of the eigenvalues
on the rotor speed. (Chapter V is devoted entirely to the

clarification of this problem).

(i) The dependence of dynamic characteristics and performance
with each of the motor parameters. (Chapter VIl develops
the eigenvalue sensitivity indices to provide the supplemen-

tary information otherwise concealed by the numerical methods).

@iii) The stability of an operating point with respect to large per-
turbations. (The Direct Method of Liapunov is applied to

the stability studies in Chapter VI with limited success).

Because of the many predecessors on this problem, many of the contri-
butions consist of filling in gaps which are the necessary connectives between
established areas of knowledge. An example of this, is the physical identification
of the eigenvalues in Chapter VI which enable stability studies to be related to the

transient torque studies in Chapters Il and IV .

d)  Physical Interpretation

In the discussion on "Transient Effects on Induction Motors", M.G. Say
[30] made a just criticism that "a defect common to all papers" is "the lack of a
physical explanation". In pursuance of this remedy, the magnetic field viewpoint of
Fitzgerald and Kingsley [31] is adopted and developed to provide a physical under-

standing of the electromechanical interactions as they occur in the motor airgap. By



' developing the concepts of the space=-vectors which represent the airgap m.m.f.s,

it is possible to obtain a comprehensive picture for
M the production of transient torque and’

(i7) the physical interpretation of the damping factors and the

oscillating frequency of the transient modes.

Besides the physical interpretations, the m.m.f. space-vectors have also proved to
be theoretically fruitful in clarifying the interesting transient phenomenon of the
existence momentary motoring torque with the rotor at super-synchronous speed.

Note that in this thesis, details of computer programs used have not been

included because of space limitations.



CHAPTER I

REFERENCE FRAMES

The purpose of this chapter is to review the many reference frames in
which the induction motor dynamic equations can be expressed and to assess their
suitability with respect to the methods for ;olving them. Thus, whenever the analogue
computer is used, it is necessary to formulate the equations so that they can be easily '
simulated by the standard hardware such as adders, multipliers and integrators. On
the other hand, whenever the digital computer is used the preferred formulation is one

which offers minimum computation time for maximum accuracy.

The first desirable feature is to be able to reduce the order of the system
equations. In the most general form the industrial wound-rotor induction motor is dy-
namically described by an 8-order system of differential equations : 3 for the

| 3-phase stator currents, 3 for the 3-phase rotor currents, and 2 additional equations

for mechanical motion.

In the squirrel cage motor, the number of phases in the rotor is equal to
the number of rotor bars per pole pair. This increases the dimensionality of the system
equations. However, it has been shown by Barton and Dunfield [32] that the squirrel
cage is dynamically equivalent to a set of ideal, short-circuited 2-phase windings.

This fact enables an otherwise high~order system to be reduced to a 7-order system.

In many industrial applications, the stator and the rotor neutral points
are not connected so that the zero sequence component cannot exist. In such cases,

it is possible to specialize the equations by transforming from a 3-phase system to a



2-phase system, and ultimately reducing the 8-order to a 5-order system = such

as in the d-q and o-f frames.

2-1 Basic Induction Motor Equations = a b c Frame

Making the usual assumptions of

@) uniform airgap ;
b) negligible core losses, saturation and hysteresis effects ;
(c) distributed windings producing only a fundamental sin-

soidal distribution of airgap flux ;

the dynamic equations of the 3-phase induction motor are described by Equations

2-1(@) and (b).
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Because of the complex coupling and the dependence on trigonometric
functions, these equations are not suited for the analogue computer. If they have to

be solved, then the digital computer is more suitable.

Because the six electrical equations in Equation 2-1(a) and the two
mechanical equations in Equation 2-1(b) bear a direct rélaﬁonship to the real machine,
‘a general computer program based on it can handle all conceivable applications of the
induction motor. This is particularly attractive in transient studies of the composite
inverter ~induction motor system where successive phases can be open circuit and com-
plicated terminal current constraints have to be matched. Unfortunately a program
based on Equation 2-1 is inherently slow since it requires the matrix inversion of the
[L] matrix (which is position dependent) at each integration step. This is because
Equation 2;1 must be expressed in the standard form of Equation 2-3 so that it can be

handled by a numerical integration subroutine.

Equation 2~1 is rewritten as

v = RIi+[]pi | 2-2
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which yields the standard form

pi = LT v+ 017 RI: 2-3

2-2  3-Phase Digital Model

It is possible to eliminate the position dependence of the [L] matrix
and at the same time retain the direct relationship of the stator currents with the real
machine by transforming the rotor equations from the 3-phase slip-ring to the 3-
phase commutator equivalent. This 3-phase commutative mode! has been proposed

by Barton [33], and Robertson and Hebbar [34].

Essentially, the 3-phase commutator equivalent is obtained by using a
power invariant transformation of the type relating the a—B frame to the d-q frame
in which the trigonometric functions of rotor positions in Equation 2-1 are replaced by
speed voltages. Hence the FL] matrix is a constant mairix and the advantage of this

model is that repeated matrix inversion is not necessary at each integration step.

2-3 Three-Phase to Two-Phase Transformations

Since the airgap flux from the balanced three phase motor can be repro-

duced by a combination of

@) an equivalent set of currents in a two-phase (a , B) wind-

- ing in space quadrature, together with
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(b) Q zero sequence component, it is often times con-
venient to transform from the a b ¢ variables to the

Oa B variables by use of the following transformation [36]

. _ [.abd .
-l-OaB - COqBJ tabc
) 2-4
_ [_abc
yOBp B _COC(QJ Yobe
where the orthogonal connection matrix is
(abe] _ 2 [v2 w2 v2 ]
OaB 3 Z 2z . Vi 2-5
1 1
! 2 T7
0 WA _ /3
2 2

In a large number of applications, there is no zero sequence components
since the neutral of the stator windings and that of the rotor windings are not connected
to a return wire.  Consequently it is possible to reduce the order of the electrical
equations from 6 to 4 'by transforming to the 2 - phase o - B system. From the a - B |
frame it is possible to perform further power ipvaricmf fwc;—;.iwase transformations, e .gA.
to the d - q and the synchronously rotating frames. The theory behind fhese power in-
variant axis frame transformations are fully described in many excellent texts [1] , [5-71

and will not be discussed here. If is useful to be reminded that the three-phase and two-

phase parameters under such orthogonal transformation are related as follows :
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Two - Phase Three - Phase
R® = R®
R' = R'
° = "
" = "
M = % M]

and that the two-phase quantities can be obtained directly from the per-phase values

calculated from the standard no-load and locked rotor tests [35] .

2-4 The a - B Reference Frame

When there is no zero-sequence component, the 3 to 2-phase trans-

formation yields the o - B frame equations [36]:

[~ k| r . o] -]
ez = | R°+L° p 0 p (M cosn Gm) p Msinn Gm) ( iz
: 0 R+ L°p -p Msinn®)p (Mcosn® ) i
eCI | P -p sinn® ) p cosn® i
) r r r
e . .
a p(M cos n9m> pMsmnOm R +Lp 0 i
r \ r r .
_ eI3 | i p(MsmnOm> p Mcos an 0 R +L p 11 Iﬁ

2-6(a)
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= n T LI '
J]pwm+f]mm+TL nM[(|[3 iy iy lq)cosnGm
2-6(b)
0 .5 N g— .
(Ia iyt nB |q)smn9m ]
me T “m

Because of the trigonometric functions of rotor angles, these equations
are difficult to simulate in the analogue computer and consequently have not been
widely used. When these equations are considered in the context of the digital com-
pufér, the positional dependence of the [L] matrix in Equation 2-6(@) means that
at each integration-step, the [L] - mairix inversion has to be performed so that the
standard form of Equation 2-3 can be ‘obfained. So, at first sight, it seems that the
“a - B frame would suffer the same disadvantage as the basic motor equation, Equation
2-1. However, because the [L] matrix is now a 4 x 4 matrix with certain symmetric

properties, it can be inverted by hand in an algebraic form to give

L 0 -M cosn© -Msinn©
~1 1 m m
L -m r '
0 L Msinn© -Mcosnb
m m
-Mcosn© MsinnG. Ls 0
m m
-Msinn© -Mcosn© 0 Ls
m m
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Becausé this matrix inversion is solved algebraically before hand, the
evaluation of the right hand side of Equation 2-3 is a matter of straight-forward sum and
product computer operations. As Table 3-1 shows, the computation time in the
a - B frame is only marginally slower than in the d -q frcurﬁe because of the addi-

tional time required to evaluate the trigonometric functions of rotor positions.

The rotor position dependence and the trigonometric functions can be eli-
minated by transforming to one of the common reference frames. Aswill be seen, the
d - q axis frame and the synchronously rotating reference frame are two important

particular cases of the common reference frames.

2-5 The d -q Reference Frame

The d -q axis frame or the commutative primitive is the historical
and logical next step from the a - B frame or the slip~ring primitive. This is

obtained by the transformations B3], [38]:

faq " [cond i | 2-8(a)
' a
Sdq [Cdgjfas | 2-8(b)

where the connection matrix is



17

[ cgﬁ*J = | 0 0 0 2-9
q
0 1 0 ' 0
0 0 cos n O sinn 6
m m
0 0 -sin n® cos n &
| . m m

This transformation yields the system equations listed as Equation 2-10(a) and (b).

- 4T - r oA

ez = Rs+Lsp 0 Mp 0

o w

[72]

0 R®+L°p 0 Mp i

Q wn
o]

e | Mp ~Mno_ RM+L p -U'na_ i
e Mno Mp Lrnw Rr+Lrp i
q m m q
| i - |
2-10(0)
_ ST f S _
J]pwm+f]wm+TL—nM(|d|q 'd'q) 2-10(b)

There are two ifnportanf features to note about the d - q réference
frame . |
(i)  When Equation 2-10(a) is written in the form of Equation 2-2, the induc-
tance matrix [L] is a constant matrix. Thus an integration routine using
this frame would save time since [L] would have to be evaluated only

once and no trigonomeiric functions are involved.
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Whereas in the basic motor equations (Equation 2-1(b)) and

in the o - B frame (Equation 2-6(b)), it takes two equations

to describe the mechanical dynamics, the d - q frame needs

- only a single equation (Equation 2-10(b)). This reduction of

system order does not imply a loss or degeneracy of information
when transforming to the d - q frame. It implies that the
rotor angle position Qm is merely a description of the rotor

a - B frames in Equation 2-6 and unlike the v.elocity w Gm
does not enter into the dynamics of electromechanical interac-
tion. This system reduction represents an important result arising

from the cylindrical symmetry of the motor and will be discussed

more fully in Section 2-10.

- ommon hetrterenc rame ;ran rma ions
2-6 C on Ref eF Transformat

Equation 2-10 in the d - q frame can be transformed to a moving frame [39]

which rotates at electrical radians , by the following power invariant transformations.

where

i = dq H ‘ -
15 [Crs] _ndq 2-11(@)
= [c9q ; .
® 5 [CXSJ—'-dq 2-11()
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dgq _ r o e ‘ ]
[ st ] =1 cos ucf sin wct 0 0
sinw cosw t . 0 . 0
c c
0 0 , cos w t - sin o t
c c
0 0 sin w_t cos w_t
c c
2-12
which yield
-1 T S T [
| = | R+pl° stc M p M iy
s s s s .S
e -L W, RP+plL —ch Mp is
e; Mp M (mc -n wm) R + P L’ L’ (wc - nwm) i‘;
r r r r i
eSJ -M(wc -n wm) Mp -L (uc T-nwm) R +P L 8
2-13(a)
_ N N I _
J]pum+f]wm+TL-nM(l ig lsl) 181) . 2-13(b)

Of the infinite number of common reference frames [25] which may be
chosen, only two are of practical interest :

i) o =0. bThis reverts back to the d - q axis frame in

Section 2-5.
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(it) W, = o This is the synchronously rotating reference frame
“of Section 2-7 where the frames rotate at the supply

frequency W -

2-7 The Synchronously Rotating Frame

The synchronously rotating frame is most advantageously used in solving
switching transients with balanced symmetrical voltage supplies which in the d ~ g

frame is expressed as

- -

qu = Ep cos (mff + as) v ® 2-14
-Epsin (wft + as)
0

0

]

By transforming to the synchronously rotating frame, the sinusoidally time

varying voltage sources of Equation 2~14 are now expressed as d.c. voltages :

= [ | -
e Ep cos o v Q) 2-15

-E sin a
s




are d.c.

10,

(i)

@iii)

currents.

Consequently, the steady-state current solutions to Equation 2-13

The transient current solutions are less oscilllcfory than
these in the d = q frame. Hence it becomes possible

to use larger integration step-size for the same computa-
tion accuracy and in our experience its solutions is at least
twice as fast as in the other frames. In the limiting case
when the transients are damped out and the constant steady

state solutions are reached, the step-size can be infinite.

In Section 6-2, the local stability of the induction motor

af each operating point will be studied by Iin;acrizing the
system equations through a method of small signal pertur-
bation which produces a dynamic system equation of the
form f = [Alx. The synchronously rotating frame is
the only frame which yields a constant [A] matrix for sym-

metrical balanced voltage sources.

The synchronously rotating frame offers a clearer physical
insight to the electromechanical interaction than the other
frames. This is because their solutions are slowly time vary-
ing quantities which consist of (o) the steady-state solutions
which are d.c. quantities and (b) the transient solutions
superimposed on them. In contrast the d -q solutions are
ina maze: of sinusoids with iihe transients being barely distin-

guishable as envelopes.

There are three important results which follow from this :

21
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In Section 3-15-2 by combining the concepts of m.m.f. space vectors
and the synchronously rotating reference frames, it becomes possible to follow the

sequence of electromechanical interaction during an induction motor transient.

2-8 Complex Transformations

Hitherto all the frame transformations have been real transformations to
which can be attached some physical significance. The next task is to review the
complex transformations such as the instantaneous symmetric component transformation
introduced by W.Y. Lyon in his book [9], and like-wise examine their merits in terms

of numerical integration.

2-9 Instantaneous Symmetrical Components

The method of instantaneous symmetrical component has been used by
[.R. Smith and S. Sriharan [16] to transform the induction motor equations from
three -phase to a form which is efficient for solving the transients numerically. Thus,

by using the complex transformation

1 ] 2 1 [, ]
'p = 3 1 a a iy
] 2 ] (2-16)
i 1 a a iy
i 1 1 1 i
| 9] B J L c
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where a = exp (i 23—“) | 2-17

it is possible to decompose the inducﬁon motor equatfons to zero sequence, positive
sequence and negative sequence component equations. For motors with unconr'lecfed
star points, there is no zero-sequence components. Also, the negative sequence

. equations are the complex conjugate of those in fhé positive sequence. Consequenfly,
it is possible to retain only the positive sequence components without loss of informa-

tion. The positive sequence equations are :

[ s ] [ s s T T.s B

e = IR + L M i

p P P P

e exp |0 Mp -] ) Rr+Lr(p-' ) i expj®

el ino inw L exp i |
2-18

where the voltage and the current vectors are complex quantities.

Although Equation 2-18 appears compact, it in fact embodies 4 elec-
trical system equations which are obtained by equating the real and the imaginary parts
of Equation 2-18. On expansion Equation 2-18 yields Equation 2-10 which is the
d - q frame equations. As such there is; no computational advantage in using complex

transformations for numerical integration of the induction motor transients.

It can be conclpded that the equations in the common reference frames
e.g. the d - q and the synchronously rotating frame) represent the very bare essen-
tials in the description of the induction motor dynamics. Since the digital computer
programmes based on these would not contain redundancies in the %ormulaﬁon, they

can at best be equaled by using the complex transformations.
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2-10 Cylindrical Symmetry

In the transformation from the a-p frame (Selcfion 2-4) to the d - q
frame in (Section 2-5) it has been observed that the two mechanical equations in
Equation 2-6(b) reduces to a single equation in Equation 2-10(b). This result is a
«;:on§equence of the cylindrical symmetry arising from the idealised model in Section
2-1 which assumes (a) a uniform airgap and (b) balanced, symmetrical sinusoidally

distributed windings. Because of this idealization, one rotor position Om is
N

electromagnetically indistinguishable from another position Qm S

2

A corollary of the cylindrical symmetry is that the starting torque pattern
is independent of the assigned initial rotor positions Qm when using the a - B equa-
tions, Equation 2-6. This has been verified by digital computer runs of the transient

torque using different initial values for Gm .

A second corollary is that when the inert induction motor is simultaneously
switched (i.e. all the line contactors close simultaneously on the balanced symmeiri-
cal voltage source), the transient torque pattern is independent of i;he switching angle
a - In the 2-phase common reference frame, the simultanous switching and the
.swifching angle o, are the mathematically expressed as the sfep-forcing functions of
Equation 2-14 or Equation 2-15. Because of the uniform airgap and the idealised
windings, the rotating electromagnetic fields set up in the airgap by the symmefric'al
voltage source always follow fhe; same fimé and space pattern except for an angular -
position shiftAof a electrical radians.  Since the electromechanical torque is depen-
dent on the stator m.m.f., fhe. rotor m.m.f. and the spﬁce-phase angle between them,
the angle a merely represents a shift of the reference axis and does not affecf‘“fhe |

torque pattern at all.  This result has also been verified by digital computer runs.

R
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2-11 Space ~ Vector Representation

Hithetto this sfgdy‘ has been engrossed in reviewing the reference frames
with the purpose of finding formulations which lend themselves to easy solutions.
Once the solutions are found it becomes necessary to interpret and organize them into
a comprehen;v.ible body of knowledge. Left in their original form the inter-relations
of the solutions are difficult to follow. Thus, the solutions in the d ~q frame are
a tangle of sinusoidal currents and their relationship with the torque pattern are diffi-

cult to discern.

It is found that the m.m.f.space vector representation yields the most
meaningful presentation of the output solution. The m.m.f. space vector viewpoint
is an extention of the concepts developed in Fitzgerald and Kingsley [31] and it is

applied here to dynamic studies.

Basically three quantities are defined : the stator, the rotor and the
magnetization current vectors which are at all instants of time related directly to the
spatial m.m.f. and flux-density waves which occur in the uniform airgap of the induc-

tion motor. This vector representation is possible because
@) the airgap is uniform ,

) the orthogonal windings are sinusoidally distributed at
a fundamental space harmonic and as such vector addi-

tions are permissible.

In the d - q reference frame, the three space=-vectors are defined as follows :
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Stator Current Vector &_ L;Zs

2 2.1/
3 = [id +i_ 1 2-19
s q
. S
@ = arctan 'q
s 5
i
q

Rotor Current Vector 3r L ﬁr

2 2
5 = [ o+ 1172 2-20
r d q
il‘
¢r = arctan -;?-
q
Magnetization Current Vector 3m LQ(m
2
- S F .S r2.1/2
3m_[(|d+|d)+(|q+nq)] : 2-21
.5 . '
i + 1
@ = arctan d d
m .S r
l + 1
q q

These vectors have each a magnitude and a space-dngle with respect to
the coil windings as illustrated in Figure 2-1 (@) to (c) . Note that of the six
quantities defined in Equations 2-19 to 2-21, only four quantities are independent.
Thus as shown in Figure 2-1 (c) the magnefization current vector is the resultant of

the stator and the rotor vectors.
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FIGURE 2.1l (a)
STATOR SPACE VECTOR

FIGURE 2.1(b)
ROTOR SPACE VECTOR

F

m

FIGURE 2.I(c)
MAGNETIZATION SPACE
VECTOR

Pm
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Furthermore, it should be noted that Equations 2-19 to 2-21 imply
that both the stator and the rotor currents are referred to the stator and consequently

the turns ratio have been taken care of .

2-12 Space Vectors Viewpoint of Electromagnetic Torque

The importance of the space-vector viewpoint is established when the

electromechanical torque can be expressed in terms of the space vectors. The electro-

mechanical torque of Equation 2-13(b)

_ ST .S LT -
Tem = nM (lK ig ig lx) ' 2-22

are written for orthogonal axes frames. On transformation to the polar co-ordinate

frames of the space=-vector representation it becomes :

= & H - -
Tem nM 3m . sin (Q(m Qr) 2-23()
or Tem = nM 35 3m sin (Qs - Q(m) 2-23(b)
or Tem = nM 35 3r sin (Q(S - ﬁr) 2-24

Thus the electromechanical torque is n M times the area contained in
the vector parallelogram of Figure 2-1(c). The torque is positive whenever (gm - ;Xr)

and (ﬁs - Vr) lie in the first and second quadrant and negative when these angles

exceed 180° .
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2-13 Space Vector Viewpoint in Synchronously Rofafiﬁg Frame

When the supply is a balanced polyphase voltage source, the space
vectors 33 ;& and :im rotate with an average speed which is the synchronous
speed of the supply frequency. As such the synchronously rotating frame.is the best

frame to view the interactions of the space-vectors in producing the motor torque.
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CHAPTER HI

NONLINEAR SWITCHING TRANSIENTS

3-1 Statement of the Problem

In industrial applications of the induction motor, electrical and mechani-
cal transients occur when the machine is switched from one steady state to another.

Some examples of transient occurrences are :

(@) The inert motor at standstill is accelerated to full speed after

being switched on to the power source.

®) The induction motor with load operating at rated speed is

transferred from one busbar to another.

(c) Two of the line voltages are reversed so as to reverse the

direction of rotation or to '"plug” the motor to standstill.

d) The induction motor is dynamically braked by injecting a

d. c. voltage into the stator windings.

All these, and miscellaneous induction motor transient problems can be

viewed comprehensively in terms of the differential equation, Equation 2-1(a) and (b)

and of finding the solutions to a particular forcing function e:bc and a particular
of
. abc
' [ s
et of initial t i
set of initial currents i b ©)
T
o
_'clbc ©)




31

3-2 Nature of Dynamic Equations

The thaﬂons 2-1(@) and 2-1() ar;a not at all easy to han&le and
whenever the induction motor is of the Y connection with unconnected neufr;zl, a
transformation to one of the common frames (as discussed in Chapter II) is favoured
because of the advan’rage.in system order reduction from 8 to 5. Thusinthe d -q
axis frame, the problem consists of finding the solutions to the differential equations

of Equation 2-10 (@) and 2-10() for a specification of forcing function voltages

—ez (t)T Equation 3-1(@) and initial currents: Pisd (0)- Equation 3-1(b)
e, © | @

e, () iy 0

e, ® 1iq ©

_TL _ | _um (0).

Reduced to this most simplified form, the induction motor equation
remains intractable to analytic solution because of the mathematical nonlinearity.

This nonlinearity consists of quadratic products of the state-variables, i.e. of the kind

i' in the
q

Q. »

w i:l in the electrical equations’, Equation 2-10(@) and of the kind i

mechanical equations, Equation 2-10(b).

Faced with this analytical impasse, past engineering practice has been

to use approximations.
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3-3 Constant Speed Approximations

A good approximation consists of assuming a constant rotor speed W in
which case the electrical equations of Equation 2-10(@) are linear and can be solved by
the Laplace Transform techniques. The solutions of the current variables are used in

Equation 2-10(b) to calculate the torque.

This is a very good approximation in the first few cycles of the switching
transients especially in cases of very large inertia and the motor torque can only produce
low accelerations. Furthermore, since the most severe torque occurs in the first few

cycles of switching, a good estimate of the maximum torque can be made from such an
approximate solution.

Because of the importance of this linear approximation, Chapter IV will

be devoted to its discussion.

3-4 Approximations for Variable Speed Torques

An analytical method [23] which computes the motor torque while taking

the variable speed into account is possible by assuming :

(@) negligible stator resistance which results in using the

"constant flux linkage theorem®,

b) a specification of the rotor speed.
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This method has been used to study the effect of an abrupt change in
slip, sinusoidal change in slip, rotor oscillation about a mean position and motor

dynamic stability

3-5 Analogue Computer Solutions

Essentially the analogue computer solutions consist of simulating the
differential equations of the induction motor by the electronic integrators, adders,
multipliers and function generators of the analog;Je computer. Most prevfous studies
[;IZ - 14] have used the d - q axes frame which has the advantages (a) of being
easily simulated and (b) being versatile enough to include study of the induction

motor under unconventional operation.

When the induction motor transients are to be studied under balanced
symmetrical voltage supplies only, then the synchronously rotating frame equations of
Equation 2-13 offers the added advantage that the supplies are the d.c. voltages of
Equation 2;15 and time sinusoidal function generators need not be used to simulate the

d - q axis voltages of Equation 2-14. Once again versatility can be exchanged for

economy .
The analogue computer is readily "plugged” together and fast. However

its serious defect is in the poor accuracy.  Although the speed and the current transient
solutions are themselves tolerably accurate, the formulation of the torque expression in
Equation 2-10(b) inherently prevents high accuracy for the torque solution. This is be~

s . S
cause by Lenz's Law, iy %—i; and ¥ ~ —1; and hence the torque expression is the



difference of two nearly equal terms. As such unless the current solutions are accurate
to many significant figures (which is not usually achieved by the dnalogue. computer) the

percentage error in the torque prediction is necessarily quite high.

3-6 Solutions by Numerical Integration

Because of the general availability of fast, large memory computers, it
has become feasible to solve a system of nonlinear differential equations by numerical
integration algorithms. Generally the numerical integration methods of solving a set

~of first order non-linear differential equations

PY® =F Y, | 3-5
with the initial conditions Y (o) fall under two broad classifications.

@) One Step Methods

The algorithm for evaluating the (0 + 1)th integration step is

Y =Y +h¢ 3-6

—n+] —n <n

where @ is calculated from information based only on Yn , fn , and h is the
step-size. When ﬂn is calculated from m evaluations of F { . .) this method is

called m substitution method. Thus the fourth-order Runge-Kutta is a 4 - substitution

method.
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The Runge=Kutta methods and the method developed by Wiederholt,
Fath and Wertz [40] belong to this category-.' The theory of the Runge-Kutta methods
are ‘described in the standard numerical analysis texts [41], B3] . In the aigifal
computer applications, the Gill's modification to the Runge~Kutta method is most
favoured since (@) the Runge-Kutta constants for evaluating g , can be solved re-

cursively and () the storage requirements and accumulated round=off errors are small.

®) Multi~Step Methods

In the multi-step methods, numerical integration is achieved through a

formula of the kind

When By = 0, Equation 3-7 is explicit, which means to say that the

desired function at the (n+1) integration step is predicted from available information

from the previous increments, i.e. n, n-1, n-2, ..., n-l.

This predicted value is subsequently combined in Equation 3-7 for the
implicit case, i.e. [3_] # 0 to improve the estimate of Yn+l .. Generally the
formula is used iteratively in the predictor .~ corrector process. Each time Equation
3-7 is used, only one re-evaluation of F () is necessary and consequently an al-
gorithm which makes use of R iterations is faster than an m - substitution one step
method if R+1) < m, i.e. provided the increment h remains the same for both
methods. However there is no assurance that to achieve the same accuracy, both the

one=-step and the multi-step methods will use the same increment size h .
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The Hamming'§ Predictor = Corrector Method [447, [45], the Adams -
Moulton Method [42], [46] fall under this classification and the theory is covered in

standard texts on numerical integration.

3-7 Numerical Integration with Digital Computers

The constraints placed on digital computer usage are (@) economy of
computational time and (b) economy of memory sforoge'. In the studies of a single
machine in transient, the system order is at most of 8 variables and over-concern
with these economies are not justifiable . Nevertheless economy practised in the

single machine case can be extended to multi-machine studies.

Generally, the following three=factors determine such economies in the

numerical solution of a single motor in transient.
(@) Choice of Reference Frames.
(b) Choice of Integration Subroutines.

©) Choice of strategy in integration step-size control.

3-8 Choice of Reference Frame

Chapter Il has discussed fhe‘mony reference frames in which the system

dynamics of the induction motor can be written. The following observations can be

made :
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. - @) The computation time &t each integrafio.n step can be economised
when the inductance matrix [L] Equation 2-2 is not a function
of position or fime (os it is in Equation 2-1 and Equation 2-6)
so that it is not necessary to invert it by the computer each time.
Thus the digital model based on the 3-phase commutator equiva-
lent is preferred to the a-b-c frame , Equation 2-1 in the three-
phase equations. Likewise, the common axes frame equations
d - q in Equation 2-10 and Y - & in Equation 2-13) are pre-

ferred to o - B frame Equation 2-6 in the two phase model.

®b) Whenever the induction motor has an unconnected neutral in the Y
’ connection, system reduction (from 8 to 15) can be achieved by
transforming Equation 2-1 to a common reference 2-phase frame

(Equation 2-10, Equation 2-13) .

(c) By choosing the appropriate frame it is possible to increase the inte-
gration step-size and thus hasten the numerical integration process.
Thus in the cases where the voltage supply is balanced, symmetrical
and at a single fundamental frequency, the synchronous reference
frame (Section 2-7) is very much faster than the solutions in the d - q

axis.

. 3-8-1 Comparison of Two=Axis Frame Transformations

Table 3-1 gives the computation times for solving an identical induc-
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tion motor switching problem by the three reference frames. The problem consists of
an acceleration run from standstill by simultaneous switching to a balanced symmetrical
voltage source at a single supply frequency . The programs for each framé are ‘written
so as fo minimise computer time . Thus for example the first line in Equation 2-3 in

the d - q frame is programmed in FORTRAN IV as

DERY (1) = D (1) * SIN (D 24) * X + D (25)) =D @) * Y (1)

-DR*YE Y@+ .. 3-8
where DERY (1) =’ P iy
Y (1) = i:
Y@ = :;
Y@ =i

where the constant coefficients D (1), D @), D (3) are clusters of motor parameters

which are written algebraically and evaluated by a separate sub—program beforehand.

Thus for example

R LS ' . :
D@ = T 3-9
L -M
In comparing the merits of the reference frames, it should be noted that

the a - B frame is only marginally slower than the d -¢q frame. This is because,

the position dependence [L] matrix of Equation 2-6(a) can be inverted by hand al-



TABLE 3-1. AXES FRAME. COMPUTATIONAL TIME.

39

Computation * | Steady-State . Steady-State Maximum [ntegration
Axes Frame | Time (minutes) | Stator Frequency Rotor Frequency | Step-size Used
o -B 0.61 ) w x slip 0.0005 sec.
d-q 0.54 0 w 0.0005
synchronous
Y-8 0.24 d.c d.c. 0.005 sec.

* HPCG Subroutine : Switching from O = 1.0 sec. Initial step-size 0.001 sec.
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gebraically to give Equation 2-7. Thus it is possible to write Equation 2-3 in the form
" of Equations 3-8 and 3-9. Consequently, the a - B frame is slower only by the ne-

cessity to evaluate the trigonometric functions of angular position.

The computation time for the synchronous reference frame is less than
half that of the d - q reference frame. This is because, given the same accuracy
tolerance, the numerical integration is performed at a larger integration step-size. Thus

as has been presented in Table 3-1, a maximum of 0.005 sec. increment has been used

in the synchronously rotating frame.

Figure 3-3 shows graphically why a larger integration step-size is possible.
Figure 3-3 plots a typical current solution for the d - q axis frame and the synchronously
rotating frame. In the d ~q axis the current solution is highly oscillatory. In con-
‘trast there is a large steady state d.c. component in the transient solutions in the
synchronously rotating frame. As such, for the same percentage accuracy, it is possible

to take a larger step=-size since the instantaneous gradients are lower.

3-9  Choice of Integration Subroutines

Since the development of integration subroutines is not the purpose of this
study, reliance has been placed on the IBM Scientific Subroutine Packages viz the
RKGS and the HPCG which are general programs for solving a system of first order

. nonlinear differential equations. If should be pointed out that the system nonlinearities

which appear in the induction motor are of the quadratic product form and it may be
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possible to develop specialised integration subrouﬁnes‘ for the induction motor which
exploit this structural properfyt In fact L.F. Wiederholt, A.F. Fath and H.J. Wertz
[40] have developed a numerical solution technique based on this insight and for

. which they claimed "a time reduction of about fen™ over the convention roytines.
Accordingly this study has examined and cli;eveloped such a quadratic nonlinearity

program and compared it with the RKGS and the HPCG .

As a subroutine package, the HPCG and the RKGS have importanf.
internal differences which are of no consequence to the users. The RKGS uses the
Runge -Kutta method with Gill's modification and is described in Reference 477 .

The HPCG uses the Hamming's modified predictor ~ corrector method and is described
in Reference [48] . As in all multi-step methods it is not self starting and it uses a

special Runge-Kutta procedure to obtain the starting values.

3-9-1  Comparison of Subroutines

From the user's viewpoint, the following observations can be made with

respect to the merits of the SSP - RKGS and the SSP - HPCG .

Computational Time

Test runs whose results are listed in Table 3-2 show that the RKGS is
as fast and sometimes faster than the HPCG in solving an identical problem. This is
surprising in view of the fact that the RKGS is a 4 - substitution method and requires

4 evaluations of the state functions per integration step when compared to 2 evalua-
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TABLE 3 -2. PERFORMANCE FIGURES OF INTEGRATION SUBROUTINES.

Subroutines Computation Time Step- Size Taken Auxiliary Storage Array ‘
IBM SSP - HPCG |  0.54 minutes 0.0005 sec. 16 x 5
IBM SSP -RKGS |  0.49 minutes 0.001 sec. 8x5
Test runs based on
@) Solution of induction motor transient in d - q frame.

b) Test run 0 - 1.0 sec. with initial step-size of 0.001 sec.

(c) Computer [BM = 360 .
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tions per step in the HPCG. The reason for the speed of the RKGS becomes

obvious when the step-sizes for an in'regra‘fion run are printed out. It is found that

for fBe same accuracy and strategy in step-size control, the RKGS can take a larger
step-size (sometimes twice as large) than the HPCG. This fact has also been reported

by Prabhashanker and Janischewsyj [45] .

Because the RKGS does not have any formula estimates relating local
truncation error with the step-size, the reason why the RKGS can take a larger step-

size is not apparent. This can be an interesting subject for research by the numerical

analysts.

Whilst the subroutine packages such as the HPCG and the RKGS have
proved to be fast, reliable and accurate, it may be possible to develop faster integra-
tion subroutines based on the special nature of the problem. One such attempt is
outlined in Reference [40] and has the objective of enabling small digital computers

to solve problems of induction motor transients.

3-9-2  Special Integration Subroutines for Quadratic Nonlinearity

The algorithm developed in Reference [40] exploits the fact that the in-
duction motor nonlinearity consists of quadratic products of the state-variables, i.e.

each of the first order differential equations can be written in the form

P Y1 = q Y] + b‘ Y2 Y3 3-10

where ay = constant coefficient of linear term,



, bl = constant coefficient of nonlinear quadratic

product term,

and 1 denotes the first row .

The method consists using a truncated Taylor series expansion of the state variables
about a given time instant. Thus, for a third order system, the Taylor series expan-

sion of each of the state variables is
©
_ k
Y, = ) By h 3-11
k=o '

for i=1,2,3

where Bik = K th order Taylor coefficient of X, .

The method consists of substituting the Taylor series expansions of
Equation 3-11 into the system dynamic equations of the form in Equation 3-10 and
evaluating the Taylor coefficients by equating the coefficients of the same powers of
h . The success of this method lies in the nonlinearity being quadratic, in which case
it is possible to obtain a recursion formula where every Taylor coefficient can be found

from the preceding terms. The recursion formula based on Equation 3-10 is

' K

- 1 . -

Bl TPk Tl IZ By ri-i- Ps, 1) 3-12
=0

The recursion formula starts from the 0 - order Taylor coefficients

which is the initial condition and all the other coefficients up to any order can be
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obtained from it. By choosing the step size h and the approximate truncated series,
the solution for the (n+1) increment is obtained from the n - increment solutions

which are used as the 0 - order Taylor coefficients.

A program based on this principle has been developed in this study. For
comparison purposes, the same step-size control as the HPCG and the RKGS sub-
routines has been used. Unfortunately, it is found that the RKGS and the HPCG
are far superi&r in speed and in accuracy to this program. This does not necessarily
reflect on the merit of the rﬁethod, but rather on the relative skill of the programmers.
Although no definite conclusions can be drawn, the following observations can be -

made :

@) The IBM SSP packages are efficiently programmed. For
example in the RKGS, the Gill's version is used and as
such the Runge=-Kutta constants are solved in a recursive
manner. Hence the recursive formula of Eéuaﬁon 3-12

does not have a competitive edge over the RKGS.

®) It is found that in order to achieve comparable accuracy
at the RKGS, for the same-step size, fairly high orders

of the Taylor series in Equation 3-11 have to be used.

3-10 Choice of Strategy in Integration Step-Size Control

In practice, the economical step-size is determined by the kind of

accuracy desired for the solutions. Since the total computation time is dependent
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on the step-size, it is important to ensure that the step~=size is not smaller than is
demanded by'fhe accuracy. Generally speaking, the step-size needs to be very

small when the time rate of change of the solution is very large and coﬁverse’ly when the
solutions have small gradie;ﬁs, it is possible to take large step=sizes. In Section 3-8
and in Figure 3-3 it has been shown that by choosing the synchronously rotating frame
it is possible to obtain a solution which has less curvature than the solution in the

d - q axis and as such the step-sizes can increase to the extent of halving the integra~

tion time.

In continuing to examine the current solution |; in Figure 3-3, it can
be noted that from the curvature argument, the integration step-size needs to be very
small in the first few milliseconds. However as soon as this leakage inductance mode
(see Section 5-4) becomes damped out, it is possible to increase the step-size because

the curvature is lower. As such, the strategy of step-size conirol should be able to

decrease and increase the step-size as the need arises.

3-10-1 Accuracy and Step-Size Control

A grave disadvantage of the One=-Step Method such as the Runge -Kutta
algorithms and of the special integration subroutines of Section 3—9-2) is that the
truncation error cannot be estimated in the course of the calculations. The accuracy
is estimated by comparing the results obtained from a step size 2 h and the results

from twice the step-size h .
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The multi-step method such as the HPCG have formulae for the

local truncation error and the calculation procedure includes an estimate of the

accuracy .

@

k)

In both the HPCG and the RKGS the step-size control is as follows :

When the estimated truncation error for a step-size h
is excessive of the accuracy tolerance, the result is
rejected, the step size is halved and the computation
is repeated and successively tested and halved until

the accuracy tolerance is met.

When the truncation error is less than the accuracy to-
lerance, the result is accepted as correct. Whenever

. L3 ]
the truncation error is less than 5g X aceuracy tolerance,

the next step is computed for a doubled increment, i.e.

2h.

This strategy has proved to be reliable and stable, although the step-

o s | e o
size increase based on g X aceuracy tolerance may be on the conservative side.

The strategy used by Wiederholt, Fath and Wertz in Reference [40]

is more complex. It consists of changing (a) the step-size and (b) the order of

the Taylor series approximation, in response to accuracy requirements at each inte-

gration step.

Besides simple logic tests as to whether the step-size and the order

of the Taylor series need to be increased or decrecsed, there are memory statements

as to whether the step-size and the Taylor series expansion were changed in the

previous step.
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3-10-2 Step~-Size and the Spectral Radius

Hitherto, the term "curvature” in the solution has been used to express
intuitive notions as to why the integration step-size needs to be large or small.

Mathematically a measure of this curvature is known as "spectral radius".

In a dynamic linear system of eqﬁaﬁons
pY=T[AlY ~ 3-13

where [ A ] is a constant square matrix with eigenvalues in the left half of the com-

plex plane only, the spectral radius is defined as

p(LAJ) = max | A | 3-14

i=1,2, .., m

where A ) S )\m are the eigenvalues of [ A ]

It is possible to prove [50] that in solving the linear system Equation
3-14 by numerical integration, the solution would be numerically unstable if the step-

size h is excessively large, i.e.

h > 2 3-15
p(LA])

Equation 3-15 can be interpreted to mean that when a component of the
solution is a highly damped and/or oscillatory mode, the step size must be very small.

Returning to Figure 3-3 again, the first few milliseconds correspond to a highly damped
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leakage inductance mode for which the spectral radius is very high and consequently

the h must be small.

Of course Figure 3-3 corresponds to the solution of the nonlinear
equations, Equation 3-5 and not to the linear equations, Equation 3-13. Nevertheless
it is possible to extend the concept of §pectra| radius to the nonlinear equations by re-
placing the constant [ A ] matrix with the Jacobian of F (Y , t) to give the spectral
radius p ( [%]) . As the numerical integration proceeds, p ( [% 1y changes

and ideally the step-size can lengthen or contract in unison with the spectral radius.

[+ must be emphasized that in actual fact, the step-size is usually limited
by the accuracy tolerance before the numerical stability constraint is violated. Hence
the spectral radius is only a rough guide based on a spacious argument that if the numeri-
cal stability constraint permits an increase in step-size, then a step-size increase is also

likely to be permitted by the accurac:s constraint.

Many times, it is permissible to increase the step-size based on accuracy
constraint although the spectral radius point of view would argue against it. Thus for
example, we take again the linear equations, Equation 3-13 to which Equation 3-15
sets a bound on the step-size. [t is’possible that (a) the mode of the eigenvalue from
which p (LA ]) is taken is not excited and (b) that this mode is highly damped. In
such a situation, the step-size h can be increased when (a) this particular mode is
unexcited or (b) when the mode is damped out. Equation 3-15 assumes a fixed step-
size strategy for the entire numerical integration run and of course is inferior to the

dynamic strategies described in Section 3-10-1.
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In spite of the lack of rigour and other limitations the spectral radius
remains an important tool as (@) a plausible measure by which step-size changes
can be discussed and more importantly (b) in showing how new and faster integration

algorithms can be derived.

3~11 Modified Integration Algorithms

In Section 3-9, it has been found that by transforming from the d - q to
the synchronously rotating Y- & frame, it is possible to increase the integration step -
size and hence improve that computation time. K.N. Stanton and S.N. Talukdar [50]
have presented both theoretical and preliminary investigations of a general method of -
obtaining larger step-sizes through suitable mathematical transformations. Basically

the method consists of transforming Equation 3-5 to

PZO=F 2®. 3-16
9 F]
where a larger step-size can be used because the spectral radius p ([ 1)

] :
of F' is smaller than that of F in Equation 3-5 .

The authors showed how this mathematical transformation can be achieved
and have incorporated the transformation into modified Runge-Kutta and modified
"Adams type" algorithms for which they claim five to ten times improvements in

step-size.
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3-12 Terminal Voltage and Initial Value Problems

Hitherto, only the methods of solving the nonlinear induction motor
equations have been discussed. In this section, it will be shown how the mef.hods
and the system equations (as presented in Chapter 1) can be used to study the variety
of switching and reswitching proBIems (as listed in Section 3-1). Because of its sim-

plicity only the d -q frame equations will be used.

In the literature, the problems have been classified as: the switching
and the reswitching problems. As used by many authors [16], [29], the switching
problem is used to describe the closing of a three~phase line to an inert induction motor
at standstill.  When the three contactors close simultaneously, the name simultaneous

switching is given to it. Otherwise it is called nonsimultaneous switching.

The reswitching problem is used to describe the case when the induction
motor operating under steadystate is inferrupfed and then a reswitching voltage is applied
to it. This may occur in transferring the supply to another bus-bar (reconnection), or
in bringing the motor to a halt by dynamic braking or plugging. Since the reswitching
operation cannot be performed instantaneously, it consists of two interruptions : (a) at
the point of disconnection and (b) at a point of reconnection. Between these two
interruptions, the induction motor equations become degenerate and the transients need

to be solved separately.

Essentially at each interruption, the following situations have to be dealt

with :

@) circuit topology changes,
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®) terminal voltage constraint changes,

()  the matching of physically continuous quantities, this may

be mechanical velocity, winding currents or magnetic flux.

3-12-1 Simultaneous Switching

The electrically inert induction motor is described by the initial values
S .8 Lr T _ T -
[|dl|ql ldl lql wm] = [0, 0, 0, 0, wm] ‘ 3-16

In simultaneous switching, the driving functions for Equations 2-10(a) and

- - - 1
s
eq | = cos (wc t + as) U_] ) 3-17
s =sin (W t + a)
% in (o :
e; | 0
e 0
q
T
TL L

As discussed in Section 2-10, as a consequence of the cylindrical symmetry,
the torque pattern is independent of the switching angle a and the rofor position in

simultaneous switching.
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3-12-2  Nonsimultaneous Switching

In most practical cases, the switching contactors do not close simul-
taneously. At the time the second contactor closes, it forms a continuous electrical
circuit with the first contactor and activates a system of dynamic equations which is

a degenerate form of .Equai'ions 2-10@) and (), i.e.

~ - —

M o]
& P LN 0 Mp ] s
9 L 3-18(a)
r , ro.r r : R
ey anm R +Lp -L ne. iy
r r ro.r .r
eq Mp L n © R+L p lq
_ . U -
J]pwm+f]wm+TL-— andlq 3-18(b)
These equations are solved for the initial conditions
[+ ,i,, i, 1=0[0,0,0, 4 ] 3-19
q d’” q m m '
and for the driving functions
S - -
eq = - sin (wc t o+ cxs) U_] ® 3-20
e; 0
e 0.
q
T T
L L] i L i




Equation 3-18 describes a degeneracy which consists of the d - axis
stator winding being in the open circuit. - By the time the third contactor closes, at a

phase angle B, after the switching described by Equation 3-20, the solution of Equation

3-18 is

.S .r T T _
C 'q (fl _)l 'd (f.] _)l |q (f'l _) ’ wm (f] _) ] 3-21
p
where fl =3 - 3-22
- wc

At the point of the closing of the third contactor, the complete system

equations of Equation 2-10 will be used. Shifﬁng the time origin to this instant, the

forcing function is described by

res-‘ ‘=.P cos (w_t + « +[3)—U ¢ ~-t)
d . c s s -1 1
s ) 3-23
eq - sin (wct +oa o+ Bs) :
e; 0
e; 0
T T
L t J

From continuity considerations, the initial conditions of Equation 2-10

are the final values described by Equation 3-21, i.e.:

S r r
Li, &) i‘; ) ig 6 i ) u () 1T=ro, :: ) iy ¢ ), i; ¢ )w 601

3-24
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Depending on the switching angles o and B, @ family of torque
patterns will be produced. The influence of the switching angles has been studied

by Enslin [21], Wood, Flynn and Shanmugasundaram [29] .

- 3-12-3  Reswitching Problems

The reswitching problem in the induction motor is pictorially described
in Figure 3-1 where the disconnect and the reconnect switching interruptions at time

instants t, and ty break the problem into 3-piece-wise time segments.

(@) Before Disconnection t < 2

Prior to this disconnection the induction motor operates at a particular

voltage specification [ e:qu ]] to which the complete system equation, Equation 2-10

is applicable. In many applications, this voltage specification is Equation 2-14 and

by the time t. the system has arrived at the electro-mechanical steady-state. At the

1

point of disconnection, the state is describable by the vector

r

0806, ) £¢), @), i ¢, w ¢)17
d Y1 ql d i q 1 m 1

b) Disconnected Interval f] <t < t

In the disconnected interval, the stator windings are in open circuit be~-

cause of the finite time it takes to switch on the second voltage supply [ es;q ]”

after the first one has been removed. Since iz = i; = 0, the system equations
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FIGURE 3-1. RESWITCHING

Y

SEQUENCES.

System Equations

Equation 2-10

Continuity Equations

Initial values

Forcing Functions

Equation 2-14

= Equation 3-25

Equation 3-26
Continuity of airgap flux
and speed

Stator open circuited

- -
ed =10
r

q 0

——=j=——  Equation 2-10

Equation 3-27

Continuity of winding currents

_and speed

Busbar Transfer

Reversing, Plugging Equation 3-28 (b)
Dynamic Brdking Equation 3-28(c)

Y®)

Equation 3-28 @) &



degenerate to

K = ’-Rr+Lrp -nl o (.; .
3-25(a)
0 nL o R\ + L p i
- v e m . v e q—
Jyp w o+ f] 0+ TL =0 4 3-25(b)

In this interval, the magnetic flux associated with the rotor currents
decays and likewise the rotor decelerates because of the load TL and viscous friction
f .

1
Before the numerical integration of Equation 3-25 can proceed, it is

necessary to know the initial values of the system. Arguing that the airgap flux can-

not change instantaneously, we have the initial conditions as

) 1= a0 s e ]
.r .S .

Iq (fl-l-) lq (f]_) + |q (f'l_)

“m. (f1+) J “m ¢ ")

At the instant of reswitching, the state-vector after decay is

Lif t,) i; () s o () 1T,



(c) Reconnection t > ty

At the instant of reconnection t2 , the initial values are

. B T
fgl) | = | O 3-27
i; (t,) 0

iy ) iy )

i; ) | i; t,)

-wm' ty +)J i o () |

The system equations, Equation 2-10 are then solved for the forcing
functions described by the supply voltages [ezrq J” . The different specifications of

the reswitching voltages are :

Busbar Transfer

dq

-E sin(lw t + a)
p c sl

0
0
| Reversing and Plugging
[esr ]” = TE cos(w_t + a- U t -t,) |
dq p cos(ug g Ya 2 . 3-280)

E -
P_sm(uct + “s?

[ ]” = Ep cos (wc t o+ qs])— U-l t - f2) 3-28(a)

R
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‘ ' Dynamic Braking
st 411 [ 1 | -
Leq = B | YUa ) 3-28 c)
o
Ed.c.
\
0
0

3-13  Numerical Examples

Programs have been written which solve the dynamic equations of the
. induction motor under switching and reswitching constraints.  The rest of this chapter
will be concerned with presenting the solutions for a few practical examples related

to synchronous switching.

Since this thesis has interests in discovering the physical nature of the
transients, subroutines have been incorporated which analyse and display the solutions
in terms of power exchange, energy storage and m.m.f. space-vectors. It is found
that the m.m;f. space-vechrs viewpoint has been most rewarding, especially in cor-

relating the production of transient torque from current solutions.

The solutions presented are for a typical induction motor, the parameters

of which are listed in Appendix G .
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s U314 | Torque Transients in Synchronous Switching

3-14-1 d -q Currents Viewpoint

Figures 3-2 and 3-3 show examples of synchronous switching transients
for Ep = 300 volts, f] = 0,01 newfon-métre-sec., TL =0.0. Figure 3-2, which is
for a moment of inertia J, = 0.006, shows the acceleration torque pattern consisting
of two parts : (a) the electrical transient portion 0 - 0.1 sec., which has a 60 Hz
oscillating component and (b) a mechanical transient portion 0.1 - 0.2 sec.,

" which indicates that the acceleration is in accordance to the static torque-speed

_characteristics of conventional theory.

Figure 3-3 which is a larger moment of inertia Jl = Q.06 “shows on an |
enlarged time scale, (a) the ele.cfromechanical torque, (b) the rofof §peed and. (c)
a typical stator current i::l , for the first portion of the transient. All the other state-
variables are not presented because they are similar except for phase shifts and besides
they cannot reveal the relationship of torque to the motor currents. Visually it is baff-‘
ling that although the stator currents seem to have subsided by the first or second cycle,
the transient torque persists in oscillating. A complete explanation of this is given in
Chapter [V where the nonlinear equations are linearised by assuming a constant speed.

For the present, the m.m.f. viewpoint is instructive.

3-14-2 Space=-Vector Viewpoint of Transient Torque

Figure 3-4(b) displays the magnitude of 35 , 3r and M 3m which are

constructed from the state-currents solutions of the numerical integration subroutines.
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Figure 3-4(c) displays the phase-angles Q(r , Qs , ¢m as viewed from the synchron-
ously rotating frame. The space vector quantities are defined in Equations 2-19 to
2-21. With these space-vectors and using the electromagnetic equation, Equations 2-22
to 2-23, it is possible to relate the production of transient torque with the physical quan-

tities as they occur in the airgap of the induction motor.

On a qualitative basis, it can be said that as soon as the voltage is
switched on, the stator currents build up very quickly to produce a stator m.m.f. which

remains roughly constant in magnitude and which rotates synchronously with the supply.

In response to Lenz's law the induced rotor currents flow to produce a rotor m.m.f.which .

fs slightly less in magnitude and in an opposite direction to the stator m.m.f. vector.
Thus the displays show | X | = | 3 | and Q(s - er ~ 180° electrical. The dif-
ference between the vector 35 and 3r is the magnetization current vector 3m . M 3m
represents the magnetization flux in the airgap space and in the period of the osc.illcﬁng
electromagnetic forque,. it is this qucnﬁfx which oscillates in magnitude and in angle with
respect to the synchronously rotating frame. Using the torque equations, Equation 2-23
or Equation 2-24, the torque pattern of Figure 3-4(a) can be correlated with the space-
vectors of Figure 3-4(b) and Figure 3-4(c). In particular it is interesting to note the

negative torques occur when sin (ﬁs - Qm) becomes negative.

3-15 °  Supersynchronous Motoring Torque

A well-documented and interesting fact in acceleration transients of the

induction motor is that the me chanical speed can exceed the supply synchronous speed
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[28], [30] . This phenomenon is investigated in the numerical example in which

J, = 0.0006 is assigned to the rotor inertia and the rotor exceeds the synchronous

1

speed in the second cycle. The surprising fact here is that the torque Tom €ON be

positive when O e - This appears in the numerical integration solution shown

in Figure 3-7/a) in time segment 0.018 < t < 0.025 sec.

This existence of a super-synchronous motoring torque requires fundamental
revision of established induction motor theory. In conventional theory, the airgap
power is associated with the synchronous speed, W, and a conventional argument

against the possibility of Tom = 0 when O > w is summarised by the question :

Where would the power come from ?

In answering this question it is proposed that the airgap power be associated
with gm , the instantaneous angular velocity of the magnetization airgap flux, rather

than the synchronous speed W -

3-16 Instantaneous Airgap Power

The angular velocity of the airgap flux vector Vm can be obtained by

differentiating Equation 2-21 (b)

= [P s 7 SP T 3-29

and the airgap power is defined as
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P = T g . 3-30

This definition comprehends the conventional definition because in

the steady state Qm = w_ -

Figure 3-5(b) shows the time sequence of 0 and Q(m for the same
acceleration transient as in Figure 3-5(a).  Although w exceeds the synchronous

speed W, the airgap flux can still have a higher velocity.

More convinving still, Figure 3=5(c) shows the airgap power Tem Qfm
besides the mechanical power output Tem © - In the regions of negative torque, the
direction of airgap power transfer is reversed, i.e. the kinetic energy in the rotor in-
ertia is transferred back to the stator. Although, Tom @ - mm) can be negative at

m

many instants, the time integral is always positive, i.e.

t [
fo T (9 -0)dT 20 3-31
Figures 3-5(b) and (c) illustrate the feasibility of the definition of airgap
power. In Appendix B, it will be demonsirated that the induction motor differential
equdﬁons imply such a definition for the airgap power. Finally by translating the lumped
parameter formulation of the induction motor into an electromagnetic field problem, it

can be shown that the definition of Equation 3-30 is required by airgap power transfer

considerations using the Poynting's Theorem.
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CHAPTER IV

MODAL ANALYSIS OF CONSTANT SPEED

INDUCTION MOTOR EQUATIONS

4-1 Introduction

Although the numerical solutions generated by the digital .compufer sub-
routines described in Chapter 11l are accurate, their lack of analytical insight is a
serious disadvantage. It is possible to sacrifice accuracy for insight if the induction
motor equations are linearised by making the constant speed assumption. M;:my studies
[161, [211, [22], have usefully pursued this line of attack and have chqracterised
the dynamic behaviour of the induction motor from the roots of the constant speed linear
equations. These studies employAfhe Laplace Transform technique which reduces the
linear differénﬂal equations info an algebraic characteristic equation of the fourth order.
Typically it is not possible to find the 4 characteristic roots o £jw ., 0, *j Wy
explicitly in terms of the system parameters. Since the roots are ultimately solved
numerically, much of the advantages claimed for the analytical solution are in fact

lost.

The modal approach which is presented here is mathematically equivalent
to the Laplace Transform method. It has the advantage that it offers a compact and
elegant matrix formulation, exploits fully the capabilities of the digital computer, and
present the eigenvector matrix and its inverse as tools for undersfondiﬁg the inter-relation=

ship of modes and excitations.
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The modal analysis consists essentially of transforming the linear system
equations from the current-coordinates to a set of fictitious normal coordinates which
are in the directions of the system eigenvectors. The theory of such a transformation

is described in many standard texts of the state space approach to linear systems [51 - 53],

4-2 Constant Speed Linearization

By assuming that the rotor shaft speed 0 is constant, the electrical
system equation, Equation 2-10(a) becomes mathematically linear. The mechanical
equation, Equation 2-10(b), is considered to be decoupled, i.e. although the electri-
cal currents produce an electromechanical torque, the rotor shaft speed cannot change

since an infinite inertia is implicitly assumed.

In many switching transients where the angular acceleration is small by
virtue of the large mechanicdl inertia, it is instructive to divide the accelerating tran~
sient into as many time segments as the accuracy demands. In each of the time segment,
the rotor speed w is incremented to a constant value representative of the rotor speed.
The electrical equations are solved as linear equations in that time segment for the re-
presentative 9 - The connection between the two adjacent time segments are : the
final state of the previous time segment becomes the initial values of the present time
segment. Although this method will not be as efficient and as accurate as the numerical
integration subroutines, it offers valuable qualitative insight beca.use the roots of the
linearized electrical equations form a very useful basis for characterizing the induction

motor dynamics.
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The importance of these ;'oofs will be apparent again in Chapter VI which
is a study of the stability of the induction motor at each operating point. There, it will
be'shown that of the 5 eigenvalues which characterize the dynamic properties of a
steady -state operating point, 4 of them are identifiable with those of the constant

speed electrical equations.

4-3 The Constant Speed Induction Motor Equations

The electrical equation, Equation 2-10(a) expressed in the standard state-

variable form is :

P lag = [Agg) Laq * Byl g 4-1
where
(A, 1=~ ]r 5 ’—LrRs n M2 o - MR nML o
L’L - M m
M LR -nML'w ~-MFR
m . m
-MR -nMmLl L* R -nl’L o
m _ m
nMLPw -MR A A L* R\
m m

and



I
[qu]—[L] = ey L

dynamic system behaviour is determined by its eigenvalues.
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_ ‘r o -M 0 4-3
L -m
0 L 0 -M
-M 0 N 0
0 -M 0 L°

Since [A dq ] is a constant mairix when 0 is assumed constant, the

It is possible to proceed

directly to the modal frame from a knowledge of the eigenvectors of [ Adq] . How~

ever, after setting up the d - q axis frame equations, it is preferable to proceed to

the synchronous reference frame for two reasons.

@

®)

For motor standstill transients 0 = o, [A dq 1 contains
two pairs of coincident real roots. These represent com-
plications and require separate treatment in the modal
analysis. It will be assumed throughout this study that the
eigenvalues are distinct where the treatment is simpler.
Although the synchronously rotating frame does not guarantee
that the eigenvalues are always distinct for all W it does
guarantee it for the very important practical case of switching

from rotor standstill, i.e. 0, = 0.

For a symmetrical single frequency voltage supply, the syn-
chronously rotating reference frame voltages are d.c.
voltages (see Equation 2-15) and the algebraic solutions

can be solved very simply.
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The synchronous reference frame equation, Equation 2-13(a) is

written in the standard form as :

pi—IS=[A88]L¥8+[BX5]EX8 ' 4-4
where
1 r.s s.r 2 r r
[AXSJ= — | LR -LL -M 5)(.,f MR ML wf(S-])
L -Mm .
Ik L"-'MZS)(.,f S MUa(1-5) MR
MR’ ML® u (1-5) L° R _-(LSLrS-MZ)wf
MLS(.,f s-) - MFR (|.‘°‘|_'s-r»/\2)..,f -°F
| C 45
|
where the slip S is defined as
W, "" N w
s = 1 m 4-6
Y
- and
: _ dg AT -1 dq
['BXSJ [Cm] (L] [CXSJ
-1 ' ' . .
= [L] | 47

It must be noted that there is one slight disadvantage in considering the

modes of [ A ‘s ] viz: the efgenvalues are not physical. Although the real part




corresponds to the damping coefficient of the measured currents (in the stationary

d - q frame), the imaginary part of the eigenvalue of [ A ¥s 1 must be interpreted

as the natural frequency of oscillation with respect to the synchronously rotating re-

ference frame. The dependence of the imaginary part of the eigenvalues on the velocity

of the reference frame can be viewed as a Doppler effect phenomenon.

4-4 The Modal Analysis

In Equation 4-1 and Equation 4-4, one sees that in spite of the fact
that they are linear differential equations they are still difficult to solve because

neither [Adq J nor [A,_] isadiagonal matrix and there is intercoupling between

§8
all the state-variables. Essentially the modal approach consists of a linear transforma-

tion which achieves this diagonalization and hence decoupling. This is possible if we

can find [AXSJ and [st ] such that :

_ -1 '_
[AXSJ— [st”Axs] [s“] 4-8
N -1
[A.KSJ—[SXSJ [A 7“5][52”5] 4-9
where
1
[sygdlsygd =111 4-10

and
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TA,_ ] =] A

LK 1 ' , 4-11

where only the diagonal terms )\] ’ )\2 ’ )\3 » Ny are non-zero and distinct.

Hence defining a set of modal state=variables, _qz 5 which are re-

lated to the current variables by the transformations,

. -1 -

Ay = [st] igs 4-12()

iys = [syglays 4-126)
Equation 4-4 can be transformed to

Pays - Myl gy * Yy 4-13
where the modal driving function is

v, = Is, T L1l e . . 4-14

-¥8 L3 R £

and the modal initial condition. is

ays©@ = [s s L s © 4-15
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For simplicity, numerical notations will be used, in describing the modal quantities :

T 4l
R -
-'53’8 = [v],vz, .u3,v4] 4-17

Equation 4-13. which is the system equation written in the modal frame,
constitutes the objective of our transformations. Since LA ¥s ] is a diagonal matrix,

the modal co-ordinates are decoupled and Equation 4-13 can be solved separately row

by row. Each row is of the form :

Pae = >‘K 9 + VK {t) 4-18
for K =1, 2, 3, 4.
The solution of Equation 4-18 for an initial modal value d (o) is
‘-
a © = a @ ep At | e N =Ty (1) dT 419
-

The first term of Equation 4-19 is the transient response excited by the
initial conditions. The second term is a convolution integral of the impulse response

of the Kth mode with the modal driving function VK ® .

In the restricted case of the balanced single frequency voltage supply,

Vg ® = FK is a constant complex number when using the synchronously rotating re=-



80

ference frame. As such, the formidable expression of the convolution integral can

be avoided and Equation 4-19 simplifies io :

. —K . -E-K )
A " = [qK (©) + XK—J exp AKf - —E | 4-20

>

~ Closed form expressions of Equation 4-19 can be obtained for a large class
of practical voltage supplies especially when they can be expressed as sinusoidally time

varying functions and their harmonics.

Once the modal solutions of Equation 4-19 or Equation 4-20 have been

solved, the solutions in the original reference frame can be transformed back through

0 Equation 4-12,

The key to the modal analysis is the possibility of finding the matrices

A )’83 and [S 3'8] which satisfy the equations, Equations 4-8 to 4-11.

4-5 Eigenvalues and Eigenvectors

In many standard text-books on linear systems using the state-space
approach [51], [52], the basic mathematical relationships of Equation 4-8 to Eq-
uation 4-11 are discussed. It suffices only to restate the important definitions and

results.
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The Eigenvalue Matrix

.['A'B'Sj is the eigenvalue matrix of [A 58] and each of the diagonal
elements }\] r Ny s )\3, }\4 are the eigenvalues. It is to be recalled that each of

the eigenvalues A is a complex number which satisfies the determinant equation

K

det ([ A 28J-.>'§K[|])=o ' 4-21

It is assumed that the eigenvalues are distinct.

The Eigenvector Matrix

[s ys
of | (s b'S] is the corresponding eigenvector of Xl , }\2 , }\3 , )\4 , that is

] is the eigenvector matrix of [ A ¥s 1. Each of the columns

[s yed=T[U, U, o Ug ° y,l 4-22
and by definition, the eigenvector is the non-zero vector which satisfies the equation
A lJ u = U 4-23

In assuming that all the 4 eigenvalues )\K of [A 58] are'disfinct,

- then all the 4 eigenvectors UK are linearly independent.
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4-6  Eigenvalue and Eigenvector Subroutines

The modal analysis would have been an academic exercise had it not been
for the existence of fast digital computer subroutines which can solve for the eigenvalues

and the eigenvectors of a general matrix, quickly and accurately.

The program used throughout this study is the DAL 4 which is available
in the SHARE Program Library (SDA 3385). This program computes in double precision
the eigenvalues, and optionally the eigenvectors of a real general matrix of size up to
30 x 30. By adapﬁné the input and output statements, the DAL 4 has been changed
into a subroutine well suited to the induction motor problem. The numerical method in
the subroutine consists of using the Leverrier method of finding the coefficients of a
characteristic polynomial and the roots are calculated by means of Newton-Raphson

Method [54] .

It is found that double-precision is essénﬁal to acc;‘epfable results. For
example, attempts have been made to use the single precision ALLMAT subroutine which
is available in the McGill Computer Library. Although the eigenvalues are acceptable,
the eigenvectors are insufficiently accurate because the complex eigenvectors do not

come out in complex conjugate pairs.

To give an estimate of the computation time, it takes altogether 2.4
seconds in the IBM 7094 (@) to calculate [ A ¥s 1 from the system parameters ,
() to use the DAL 4 to solve for the eigenvalue matrix [ A.b,s ] and the eigenvector
matrix [ S ¥s 1, () tousea complex inversion matrix to obtain [ § 3’8]-] and

d) finally to reconstruct [ A 6’8j from Equation 4-8 to test for accuracy.
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4-7  Constant Speed Transients in Induction Motor

Figure 4-1 is a flow-chart of a digital computer program which solves
;fhe same constant speed inducfipn motor transients as previous workers [16], [21]
and [22] have done. But unlike the Laplace ‘Transform methods, a minimum of
algebra is requirel:l of the programmer. . Fur’rhermorcle because of the unwieldy algebraic
expressions of the Laplace Transform methods, previous workers have been daunted from
solving any but the simplest switching problems. However the modal method enables
a combination of initial value and voltage problems to be solved, by reading in the
appropriate initial values into the cbmpu’rer. The treatment of the initial conditions
is especially significant in considering accelerating transients from the viewpoint of
constant speed linear equations. The initial currents enable one set of linearised solu~-

tions to be related to the next set solved for an incremented speed.

4-8 A Numerical Example

The foregoing concepts will now be illustrated by a numerical example.
The analysis is presented for the locked rotor transients of a typical induction motor
whose parameters are listed in Appendix G. At rotor standstill (wm =0), Equation

4-4 for a two pole machine becomes :
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READ MOTOR PARAMETERS, INITIAL CURRENTS, APPLIED VOLTAGE |
.. ‘ ¥ -
CONSTRUCT [A xs] EQUATION 4-5

CALL EIGENVALUE AND EIGENVECTOR SUBROUTINES (DAL4)
.~ TO SOLVE FOR [Axs]' [s a’s]

CALL COMPLEX_IINVERSION SUBROUTINE TO SOLVE
FOR [S y,]

V%

TEST FOR ACCURACY R
PRINT OUT [S XS] L J\%] [s Xs]
N

(

"TRANSFORM INITIAL CURRENTS AND APPLIED VOLTAGE TO
MODAL FRAME. EQUATION 4 - 12(a), EQUATION 4 - 14

Y

INITIATE TIME + = 0 - At
Y
INCREMENT TIME t+ = t + At
. J

SOLVE FOR MODAL TRANSIENT EQUATION 4 -20

A\

TRANSFORM MODAL SOLUTIONS TO_ ¥-6 SOLUTIONS
EQUATION 4 -12 (b)

\
CALCULATE TORQUE AND TORQUE COMPONENTS
TABLE 4 -1

v

NO

HAS SPECIFIED TIME INTERVAL BEEN COMPLETED ?

CALL EXIT

FIGURE 4 -1.  FLOW CHART OF PROGRAM TO SOLVE FOR INDUCTION
MOTOR TRANSIENT AT A CONSTANT ROTOR SPEED .
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= - 96.6 - 377.0 92.0 0.0 iy
377.0 - 96.6 0.0  92.0 i
92.0 0.0 -96.6  -377.0 iy
- 0.0 92.0 377.0  -96.6 i
L ' 4 L .
— T -
+ 96.6 0.0 E cosa
p s
0.0 96.0 -E_sina
' s
-92.0 0.0
| 0.0 -92.0 J 4-24
This problem becomes comple'te' when the initial values i 3’8(0) ,
In transforming to the modal frame, Equation.4-24 becomes |
r-189 + j377 0 0 0 rq]
0 -4.60 + {377 0 0 q,
0 0 -4.60 - {377 0. |la,
0 0 0 189 - 377 q4'J
L r _ 'L
+ |j94.3 -94.3 E_ cos a
p s
-i2.3 2.3 E_sina
p s
A
i2.3 2.3
-i94.3  -94.3 . 4-25
L | .J
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The _fransformations to and from the modal frame in accordance to

Equation 4-12, are :

- - 'r .
q, = io0.5
9, -j0.5
q3 0.5
a4 - 0.5
L L

where the columns are the

[~ 7 [~

iy =| 0.0-j0.5
i 0.5+ 'b 6
is . i0.
I .

iy 0.0+j0.5
i 0.5+{0.0
is . i 0. |

.

-~ 0.5

0.5

0.5

- 0.5

0.0+ 0.5

0.5+] 0.0
0.0 + 0.5

0.5+j 0.0

eigenvectors.

- 0.5

- 0.5

0.5

0.5

0.0

0.5
0.0

0.5

+

0.5
0.5

0.5

0.5

[ 0.5

0.5

i 0.0

iy
.S
's
T
iy
il’
- X 84
4-26
0.0 +j 0.5
-0.5+0.0
0.0 -j0.5
0.5+j0.0
1L
427

The decoupling of the state variables in the modal frame becomes quite

apparent in Equation 4-25.

For example, the second row

Pa, = (-4.60+i377)q2 - 2.3Ep(icosas+sinas)

428
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consists only of the state variable q, and the constant forcing function.  Its solution

is well known as :

2,.3E (ina + jcosa) :
q2(f) = [q2 ©) - P S sJexp(-4-.6()+i377)1'
(-4.60 +j 377) . '

2.3E (ina + | cos as)
+ P > | 4-29

(-4.60 + [377)

In this numlerical example, it is interesting and important to note that
the eigenvalues, the eigenvectors and the reciprocal base vectors exist in complex
conidgqfe pairs. Like-wise, fhe modal frame initial conditions 94s (©) and the
forcing functions v ys ore also in complex conjugate pairs.  As such the digital
computer language should be capable of handling complex numbers. [t should also
be noted that when the modal solutions are transformed back to the current frame through
Equation 4-27, the imaginary parts are mutually self-cancelling and disappear, thus

leaving the real parts for the current solutions.

4-9  Transient Solutions

Since it is desirable to gain some analytical insight into the solutions,
a systematic method of classifying the transient components according o the modes

will be presented here .
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4-9-1 Modal Frame Solutions

" It can be recognized from the numerical examples listed from Equation
J

4-25 to Equation 4-29 that each.complex conjugate pair of eigenvalues should be

treated as a single entity and the modal solution of Equation of Equation 4-13 should

be classified as follows :

q xs(t) = 9_“ () + Q0 +Q @ 4-30

The modal transient components 9” ") and 921_ (f) are

, - | .
Q,, = fq]f ® Eq. 4-31 (@) and Q, ) =70
b 994 (t)
0 Gy O *
i A+ G)*J | | i 0 ' __l
' 4-31(b)
where
E, | _.
G t = [q“ ©) + -x]] exp At 4-32
qp, ) = [q2t ©) + —)\—2-] exp A, () | 4-33'

The steady-state component of the total solution is
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- -
st ® = qlss ) 4-34
Qoss ®
dpe 1) *
Nss t) *
E E,
where Des ®w = - K and CT ©H = - ->-\-2-

The modal frame solutions are complex numbers and it is difficult to
attach physical significance to them. A physical interpretation can be sought by

transferring Equation 4-30 into the real current frames.

4-9-2 ¥ - & Current Solutions

Using the inverse transformation of Equation 4-12 (b), the &~ 8§ solu-

tion is :

i K'S(f) =[5 4610, 0+ [s 7@, ®+[s,1Q 0
‘ 4-35

.For the numerical example of Section 4-8, Equation 4-35 becomes
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. _ : r
s " = k] exp ( 189 1) cos (377 t + 9])

sin (377 t +0,)

cos (377 t+ + Ql)

sin (377 t +G]) ]

+ k2 exp (-4.60%). [ cos 377+ + 92 T+ [ k4- 4-36
sin 377 t + 92 k5
cos 377 t + 92 | k6
sin 377 t + 92 l$
o e , - A -
where 'k] R l<2 R k7 are constant coefficients and 9] and 92 are the phase
angles.

The current frame solutions are real and admit of physical interpretation.
The real part of the eigenvali:e becomes the damping factor and the imaginary part be-
comes the natural frvequency of oscillation. Each of the current solutions consists of two
transient components (for the fourth order system) and a steady-state term. It is signifi-
cant to note that in the synchronously rotating frame, the steady-state term is d. c. and

for a constant rotor speed w = 0 , the transient components have a natural frequency of

= 377 rad/sec., i.e. the synchronous angular velocity. Furthermore, the

“ T %
. x and the § axis components of the same mode are 90° out of phase in time and the

space-vector associated with each mode is rotating physically with respect to the reference

frames ot 377 radians per second in a direction opposite to that of the supply frequency.
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¥s

Using the connection matrix [ C dq 1, Equation 4-36 is transformed

to

i—dq ® = kl exp (-180.0 t) - cos 9] +.l<2 exP (-4.60 1) | cos 92
- sin 9] . sip 92
cos 9] cos 92
i sin 9] | _sin 92 i
+ | k4 - cos 377t + k5 sin 377 t 4-37
—k4 sin 377 + k5 cos 377 ¢
k6 cos 377 k7 sin 377
:ké sin 377 t |$ cos 377 t _

The stator currents in the stationary d - q reference frame correspond to
those which are measured in the induction motor itself and hence the interpretation of

the eigenvalues and modes from this frame has more engineering significance.

It is recalled that the eigenvalues in Equation 4-25 correspond to the
¥-6 frame [ A 3’8] - By comparing the eigenvalues, Equations 4-36 and 4-37 ,
it can be concluded that the real part of the eigenvalue corresponds to the damping
facfolr for all common reference frames. However, the imaginary parts of the eigen-
value require some careful interpretation. Whereas the ¥ - § transient modes have a

natural frequency at 377 rad/sec., the corresponding d - q transient components are
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non-oscillatory . It is also important to note ‘fhaf the ¥-8 steady-state components
are direct currents and conversely the d - q steady-state components oscillate at sﬁpply
frequency: These indicate that the imaginary part of the eigenvalue is in fact the
natural frequency, but as in all frequency quantities there is the Doppler effect related

-to the velocity reference frame.

The imaginary parts of the eigenvalues in Equation 4-25 make physical
sense because the 377 radians/sec. natural frequenc.:y in the &~ & frame corresponds
to the stator and the rotor mmfs rotating at the 377 radians/sec. in the backward
direction. But the ¥-§ axes are themselves rotating at a synchronous speed in the
forward direction. Therefore the mmfs have a net zero speed with respect to the station-
ary frame. This of course agrees with Equation 4-37 where the transient components

are non-oscillatory.

From this physical argument, it can be concluded that if A] =0+ i )
is an eigenvalue of [ A 58] which has w_ as the speed of the reference frame, the
corresponding eigenvalue for the d - q stationary frame matrix [Adq 1 s
A o= oy + i (mc + w]) . Whether ©; should have the positive sign or the negafivé

sign is evident only in examining the direction of rotation of the eigenvectors. This will

be treated in Chapter V .

4-10  Components of Electromechanical Torque

Section 4~9 has considered the total solution of the currents as the sum of

the steady-state component and the two transient components which are associated with
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the two natural modes. Since the electromechanical torque consists of quadratic pro-
ducts of the winding currents, it can be analysed into 6 independent components along

the modal classification as shown in Table 4-1.

The purpose here is to derive a formulation which enables the dlglfal
compufer to handle the torque component analysis directly from the modal frame.

Firstly, the torque equation

_ S T s , _
Tem =nM (IE ig ig 13,) 4-38
is written in the matrix form
T =i _VI[T71i | 4-38(a)
em — Y8 - Y5 .
where .
[t] = ro 0 0 0 4-39

_— -
Substituting Equation 4-12(b)
T :
Tem =q .XS [w] 9 ys 4-40
where
. _ T . :
EWJ—[sst LTI Ds 4l 4-41
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© TABLE 4 -1

CONSTANT SPEED INDUCTION MOTOR TORQUE COMPONENTS

Torque Mode Classification e Formulae for Instantaneous
Component | "Value
T steady ~state Q T [W la
1 y -~ ss —s5
T exp 2 Ot Q T [wla
2 2 =2t =2t
T exp 2 O, t Q T LwilaQ
3 1 =1t =1t
T T
Ty [exp (07 + 0, t ] [cos () - w )t] Q, twilg, +q, [wlq,
T [exp 0t 1 [ cos ay t ] Q, [wla +.Q! [wila
5 P % 2 =2t —ss =ss =2t
T [expo, t ] [cosw, t ] al [w1lQ +Ql (wlaQ
6 1 1 -1t =ss =55 =1t
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The formufa fo‘r the 6 torque components listed in Table 4-1 is obtained
by substituting Equation 4-30 into Equation 4-40 and thereafter grouping the terms
~ in their appropriate classifications. The importance of this classification lies in that
the damping factors o, , o, agd the natural frequencies of oscillations ©p v,
¢vhich are the real and the imaginary parts of the eigenvalues )\] , >\2 ) constitute
a common language which is familiar to everyone knowle'dgeable in dynamic linear
systems theory. It is interesting to note that this classification is independent of the

chosen reference frame. Thus if the currents in the stationary d - q frame are used, the

torque equation is

_ . T .
Tem = iy [t]i dq 4-42
¥é
But lgg = [cqu [s y5d a 45 : 4-'43
and substituting Equation 4-43 into Equation 4-42,
T = g, IW] A 444
em ~¥8 1ys
because
¥s
T £ :
chqJ (1] [cdq]- (1] . 4-45

Thus Equation 4-44 s identical to Equation 4-40.

It is instructive to examine how a particular torque component, say T5 p

is constituted from the currents in each of the reference frames. T5 consists of the
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‘scalar products of _C_ta and gss in Equation 4-35. Inthe ¥=-§ synchronously
rotating reference frame solution of Equation 4-36, both the damping factor o, and
the natural frequency of oscillation wy (= 377 rad/sec.) belong to the transient

solution of the first complex mode. The corresponding steady~-state terms are d. c.

currents.

In contrast, the same torque component T 5 when viewed from the
stationary d - q reference frame is formed from the product of (a) the transient
solution term which carries the damping fac*or 9, only, and (b) the steady-state
component which oscillates with the supply frequency (377 rad/sec.). Thus from this
viewpoint, the frequency shift of the eigenvalues with respect to the velocity of the
reference frame ( al: = o * wk) is necessary to preserve fhe. invariance of the com-
ponent torques and hence is a consequence of the power invariance fransformation

§8
[Cyq?-

4-11 Constant Speed Eigenvalue Loci

Figure 4-2 shows the continuous plots of two of the eigenvalues for rétor
speed from standstill to 0 = 377 rad/sec. The other two eigenvalue loci are merely
conjugate images in the lower half of the complex s—plane and have been omitted.

The stationary d - q frame has been used and as such, at rotor standstill, the eigenvalues
are r.eal and the éomplex conjugate pairs are coincident. Because a numerical example

has been chosen inwhich R° = R* and L° = L some sort of symmetry in the loci
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appears; In particular around w = 0.49p.u., )\] appears to coincide with )\2 .
For simplicity, this very interesting case will be isolated from this study. The occurrence,
the treatment and the implications of such coincident eigenvalues should in itself be an

interesting and important subject for further investigation.

In Chapter V, a physical undersfcnaing of the speed dependence of the
eigenvalues will bé developed. In this section, interest is focussed on the relationship
of the eigenvalue loci on the torque patterns. As such, the simultaneous switching torque
patterns will be considered for : (a) the very important case of rotor standstill, i.e.

0 = 0.0, ®) © = 0.5 p.u. and (c) 0, = 0.9 p.u.

4-12  Patterns of Constant Speed Transient Torques

Figure 4-3(a) to Figure 4-5(a) show the simultaneous switching forque
patterns produced when the rotor is kept at a constant speed : (i') wm‘ =0,
i) I 0.5 p.u., (i) 0. = 0.9 p.u. Figure 4-3b) to Figure 4-5(b)

show the torque analysed into the compcnent classification of Table 4-1 .

Case (i) @ =0.0

With 0 = 0, the d - and the q - axis of Equation 4-1 are decoupled
and each decoupled axis equation is that of a transformer.  As such, the modes are all
real and as will be shown in Chapter V, the eigenvalues )\2 = -4,60 correspond to

the magnetization mode associated with the mutual inductance M. The very heavily
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damped mode )\] = =189 can be identified with the leakage inductances

Figure 4-3(b) shows that the important torque components are the steady-
sfafé component T] and the 60 Hz component T5 associated with the mcngﬁefizaﬁon
flux. The magnetization mode is very lightly damped because of the large mutual in-
ductance with respect to the winding resistances. In contrast the components T 4 and
T6 which are associated with the leakage inductance mode are damped away within
0.02 sec. This is because the leakage inductances are small in comparison with the

winding resistances. |n this instance of simultaneous switching T2 and T3 are

relatively too small to be shown in the graph.

By comparing Figure 4-3(a) with the case for the accelerating rotor in
Figure 3-2, it can be seen that the linear modal is a good approximation forflr;e first
few cycles of switching. The discrepancies become serious thereafter because as the
rotor picks up spefed( both the eigenvalues (see Figure 4-2) and the eigenvectors (see

Figure 5-4) change with speed.

Case (i) © = 0.5p. u.

At 1800 r.p.m. ©0.5p. u.) , the eigenvalues are >\2 ==96.6 £j 73.8

and )\] = =96.6%]114 . Because of the speed interactions, the cross axes windings

are coupled together and both the damping factors are very large. It is ssgmfucanf to

contrast the relahve time period within which the transient torques are damped out in

Figure 4-3(a) and Figure 4-4(@). As fhls result is related to the accelerating transients
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of Figure 3-2, it can be concluded that the speed interactions contribute to damp out

the initial 60 Hz transient torque component.

It is important to note that the vertical scale in Figure 4-4 (b) has been
changed to accommodate the large components of T2 p T3 and T 4" Roughly speakir;ng,
the large component Ty is cancelled by the sum of Ty and Ty s and Ts and Te
are in opposite phase. These leave a resulfcnf‘which. is of the same order of maéni-

tude as in Figure 4-3 (@) and Figure 4~5().

Case (iii) o =0.9p. u.

At 3240 r.p.m. (0.9 p. u.), the eigenvalues are )\2 ==-96.6 £j 27.1
and )\] = =96.6 £] 312 . The initial negative torque in Figure 4-5(a) is typical
for simultaneous switching at high rotor speeds. [41,[5].

The damping factors for the two modes have remained constant and equal .
The interesting departures arise from the frequencies of the two modes, i.e. io]—> 0

and ) >« . which make Ty and Ts highly oscillatory.

Each of the three cases studied have illustrated the kinds of transient com-
ponents which can exist. As the rotor speed changes, the eigenvalues move along fhe'
loci as shown in Figure 4-2 and these significantly change the damping factors and the
natural frequency of oscillation of the torque component. But the details concerning
the relative contributions of a torque component would hav.e to depend on the excitation

voltage _E-p , the switching angle a . the initial currents i {8 (©) and in what
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manner they become coupled to the modes. The information with respect to the coupling

is borne by the eigen'vecfor matrix [S X6 1.

Since the system equation is linear, the two forms of modal excitations will
be treated spearately : | (@) initial current excitation and (b) switching voltage ex-
citation. Thereafter it is possible to combine both forms of excitations using the prin-
ciple of superposition. The case of the standstill rotor will be used as an illustrative
example and it will be shown how the magnetization mode can be suppressed by a com~-

bination of initial currents and switching voltages.

4-13 Modal Excitation Due to Initial Currents

The physical model consists of all the motor windings short-circuited and
the voltage sources removed. At the switching instant, it will be assumed that the coil
windings bear a set of currents i XS(O) . The interest is centred on the behavior of the

winding currents as they decay with time. The initfial currents would excite the kth

mode if q) (0) is non-zero. Since
-1 . :
&88(°)= (s XSJ i KS(O) 4-46

both the structure of [S 0'8]-] and the relationship of i s (©) with it are important

in understanding the excitation of the modes.

It is possible, using the property of the linear independence of the eigen—

vectors of [S ¥5 1, to excite preferentially a mode in exclusion to the others. It is
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a well known fact from the standard textbooks on linear tluedry [51 - 52] that the
kth mode is exclusively excited if i s () lie in the plane defined by the vector
representing the real part and the vector representing the imaginary part of the kth

eigenvector.

Thus, the oscillatory mode corresponding to - 189 * | 377 of Equation

4-24 will be exclusively excited by initial currents

: i ] [ . 1 '
-l_ XS (O) m.l 0 . + m2 y 0.5 . 4_47
0.5 0.0
0 : 0.5
0.5 0.0
L — S p—

where m, and m, are any arbitrary real numbers which are multiplied to the real -

1 2

and the imaginary parts of the eigenvectors of Equation 4-26.

The free-motion of this leakage inductance mode as viewed from the
stationary d - q axes is shown in Figure 4-6(@) . Inthe d-q frame, the free

modal motion is damped and non-oscillatory.

Likewise Figure 4-6(b) shows the exclusive excitation of the magnetiza-

tion mode (~4.60 * | 377) by the initial currents. '

. - m [ 05 ] 0.0 | .
LIS ©) m, 0.5 + omy 0.0 4-48
0.0 0.5
0.5 1 0.0
0.0 0.5
| _ L -
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4-14  Modal Excitation By Voltage Supply

From Equation 4-18, the kth eigenvalue is excited if Y (t) is non-

zero. -In general the modal driving function v ¥s is related to e

e Y8 by Equation

4-14. For the particular example of the rotor at standstill

v 55 j 94.3 -94.3 Ep cos a 4-49
-72.3 2.3 -E sin a
S P s
i2.3 2.3
-i94.3  -94.3

It can be concluded that in the simultaneous switching of the inert motor, all the modes
are excited and no matter what switching angle o is used, it is impossible to make
any row zero. As such mode suppression can only be achieved by a combination of

voltage and initial currents.

4-15 Mode Suppression

From Equation 4~20, the transient component of the kth eigenvalue can

be suppressed if it is possible to design for a a9 ©) and a E—k such that

>"| K'ml
=

4@ + =0 : 4-50
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This modal suppression has many important applications. Thus if in
switching from standstill + it is desirable @) to lower the peak of the fransient torque
and /or (b) to eliminate the 60 Hz oscil lating ;orque component (belcause the shaft
has mechanical resonant frequency arc;und 60 Hz), then a suitable method consists of
suppressing the slowly decaying magnetization mode. This is the mode of

)\2 =-4,60 +] 377 in Equation 4-24 of the example.

From Equation 4-29, the necessary condition for this is

2.3E (ina + jcos a) '
q, 0) = P : s | | 4-51
(-4.60 + j377)

For the switching angle a = 0, and because 4.60 ‘is negligible com-

pared to 377,

2.3E

= P -
qp ©) a3 0) ~ — 4-52

This corresponds to the switching condition

2.3E
= P

Ly T s | O] | - 4-58@)

295~ | | . 4-53(b)
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The conditions o.f Equatfo.n 4-53 can be realised physicdlly by injecting
an initial set of currents and switching on the supply at the correct phasé. The cir- |
cuftry required fo acéomplish it, ,howevef, would be expensive. An approximate
. although engineeringly more satisfying method consists of nonsimultaneous swjtching

of the supplies at the correct sequence as proposed by Wood, Flynn and Shanmugasundaram

[297.

4-15-1  Mode Suppression by Non-=-simultaneous Switching

Non-simultaneous switching is accomplished in two switching sequences.
In the first sequence, two of the three stator terminals are switched on to two of the
three-phase lines at the appropriate phase of the supply cycle such that ho magnetiza-

tion transient is produced.

Thus if the three-phase voltages are

poe — Y

v = /3 Vp sin (ot + as) 4-54
v sin (.t + a - 2w
|l b f s 3
. : 2x
_uc* —s.ln(wff+as+—3—-)—

and the terminals A and C are switched at t =0, then a = 90° is the approxi-

mate switching angle to cancel the magnetization flux.

The second switching sequence occurs at we t = [3s when the B phase

is switched on. For the magnetization mode to be suppressed in this second switching
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sequence, the approximate switching angle is Bs = 90°. Figure 4=7 shows the

' torque pattern using this form of non-simultaneous switching.

Although this method of mode suppression is only mathematically

approximate, the switching c.ircuifory would be easier to accomplish.



s

CHAPTER V

IDENTIFICATION, BEHAVIOR AND [NTERPRETATION

OF INDUCTION MOTOR MODES

5-1 Introduction

Chapter IV has described a method of characterising the induction
motor transient torques based on analysing the linear constant speed induction
equations along the natural modes of behavior of the system. It has been shown
through the eigenvalues loci of Figure 4-2 that the damping and the natural frequency
of oscillation of each mode change with the rotor speed. By following the eigen-
values loci, it is possible to understand, qualitatively at least, the torque pattern of
an accelerating transient as in Figure 3-2. At this point, a number of questions pre-
sent themselves: What are the physical meaning of these modes ? Are there any

physical explanations for their behavior ?

Unfortunately because of the complex intercoupling of the system equations
it is impossible to obtain an explicit expression of the eigenvalues in terms of the
system parameters and the rotor speed w All frontal attacks are met with a fourth
order algebraic characteristic equation which is surmountable only by numerical tech-

niques. Once the numerical method is used, all physical relationships become lost.

In the face of this impasse, this study has resorted to three indirect

approaches, each of which has yielded some fruitful fragments of knowledge .
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(@) Eigenvalue Invariance with Rotor Speed

Inspection of the eigenvalue loci in Figure 4-2 yields some simple
conclusions with respect to the sum invariance properties of the damping factors and

the natural frequencies at all rotor speeds, viz :

)] o+ 0, = éons‘ranf 5-1
(i) ot ey = e 5-2

The results from this typical motor has led to finding the proofs of the

general case from the characteristic equations.

(b) Mode Identification from Sub-primitives

The second method consists of investigating the dynamic characteristics of
the many degenerate forms of the Kron's commutator primitive. Each degenerate form

consists of assuming one or more of the system parameters to be negligible. Thus, in

what shall be called the magnetization sub-primitive, it is assumed that both the stator

and the rotor leakage inductances (Is , Ir) are zero and thereby some simplification is
achieved. By this artifice, attention is focussed on the interaction of rotor speed and the
airgap magnetization flux. Consequently, it is possible to peer into the "physical me-
chanism"” which ﬁroduces the oscillation in the magnetization modes. The philosophy

of this approach is : degeneracy enables the order of complexity of the interacting

parameters to be reduced sufficiently for a simple physical picture to appear. Each of
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the simple physical pictures is, of course, only valid and approached asymptotically
under restricted conditions in the real machine. In spite of these restrictions, one
finds that (i) the lossless sub-primitive, (ii) the transformer modes and  (iii) the

magnetization sub-primitive have prdved to be important sign-posts in the studies of the

modes.

() Eigenvector Interpretation

The last method con;isfs of using the complex numerical values in the
eigenvector columns to interpret the behavior and to construct the physical picture of
a mode. From a basic rotational symmetry in the complex numbers in the eigenvectors,
it is possible to admit of a physical picture of a mode in terms of modal space vectors
35 ' ?fr and 3m rotating spirally in the airgap space under free motion. These
space vectors are attenuated exponentially with a damping factor % and the an-
gular velocity of rotation is W v The iotational property, furthermore, er;ables a
physical correlation of the damping factor 0, in terms of the magnetic storage energy
and the dissipative power associated with the mode. Likewise the natural frequency of

oscillation G can be correlated with the modal space vectors although a physical inter-

pretation is less obvious.

By a combination of these three methods, it is possible fo obtain a physical

picture which correlates with the eigenvalue loci of Figure 4-2.

Throughout this chapter, the study has adhered to the d - q reference
frames because (a) the eigenvalue loci in the d - q reference frame are closer to
laboratory experience and (b) the algebra in the many proofs which will be presented

" here are less complicated in the d = q axes formulation.
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5-1-1 Damping Coefficients Sum Invariance

Figure 5-1 shows a plot of f-he damping coefficients o, 0 and
| their sum o + 02 asa funcfi'on of the r.ofor speed for the same induction motor as
described in Chapter [V. The constant sum o + 0, is not restricted to a fortuitous
choice of motor parameters in the numericai example but is general result which can
be expressed as

R+ R 5.3
T s or 2 -
L - M

This result is obtained by equating the characteristic equation to the de-

terminant equation as shown in Equation 5-4

()\'+q] +iw]) (>\+cr] -iw]) ()\+0'2+iw2) (>\+O'2-iu2)

=def(>\[I]-[A'dq:|) 5-4

The coefficient of )\3 in the left-hand side of Equation 5-4 is
2 (cr] + 0'2) and Equation 5-3 follows by equating it to the coefficient of }\3 inthe’

determinant equation..’

5-2  Natural Frequencies of Oscillation Sum

Likewise Figure 5-2 shows a plot of the natural frequencies of oscillation

W s Wy and their sum . Wt oy . The frequency sum



‘120

o

O
o

O
[$))

o
D

O
N

Natural Frequency of Osciliation (x377 rad. /sec.)

@
O

00 0.2 0.4 0.6 0.8 1.0
Rotor Speed (x377 Electrical rad./sec.)

FIGURE 5.2. VARIATION OF NATURAL FREQUENCIES
WITH ROTOR SPEED



121

Loy | <o and || <o 5-6

is a significant and simple relationship which has been reported and proved by Slater

and Wood [22].

The inequalities of Equation 5-6 have an important theoretical signifi-
cance which will be discussed fully in Section 5-10-1 . It implies that since the speed
of the magneﬁ; flux of each mode is always slower than the mechanical speed of the
rotor, then there is a generating countertorque associated with each of the constant

speed modes.

5-3 The Transient Sub-Primitives

Because of the many parameters and the intercoupling of the four current
equation in Equation 4-2, the commutator primitive in its entirety is too complicated
to yield any physical insight. However by judiciously dropping out selected parameters,
it is possible to simplify the system equations sufficiently to reveal some basic physics.
It is found that the following three such degenerafe systems have been extremely mean-

“ingful in identifying the modes :
() the transformer sub—primitive ,
(ii)) the magnetization sub-primitive,

(iii) the loss-less sub-primitive.
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The transformer sub-primitive describes and .idenﬁfvies the magnetization and .the .|ec||<uge
inducfcmce modes for fhe> case of.the rotor af standstill (um = 0) . Referring to
Figufe 5-1 and Figure 5-2, the rrzagneﬁzaﬁon mode (02) is very lightly damped
whilst the leakage inductance mode, (0']) is heavily dahped, and neither of them has

an oscillatory component.

It can be seen that as the speed increases the damping factors change and
the modes now become oscillatory. Initially the natural frequencies of oscillation is
half the angular velocity of the rotor. What is it in the rotor speed interactions which
ncquse" the original transformer modes to break into oscillations ? The magnetization
sub-primitive is created to understand the rotor speed interaction with the magnetization

mode in "causing" the oscillations.

The loss-less sub-primitive is proposed to identify the modes in the other
end of the speed range and in fact as w“—‘-> o , Kron's commutator primitive approaches
the loss-less sub-primitive asymptotically. The features distinguishing the modes in the

. fast speed range are now the frequencies. As Figure. 5-2 suggests that as wrﬁ © ,
"'2_> 0 and w]—> 0

Thus broadly speaking, it is possibie to fhink of the induction motor modes .
as changing with speed from those of the transformer sub-primitive to those of the loss—-
less sub-primitive. The transition fron;n one sub-primitive to the other is followed and

described in detail usiﬁg eigenvector representations in Sections 5-10 and 5-11 .
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5-4  The Transformer Sub-Pri:ﬁifive

- At Q. = 0, Equation 4-1 decéuple into two sets of transformer
equations, one set each for the d - axis windings and the q - axis windings.

Assuming for simplicity that R® = RR=Rand I° =1

= |, the equations of the

d - axis unexcited short-circuited transformer is :

M+l M p | =] -®r 0 iz 5-6
M M+ | i 0 -R it
. _ —d - . _ _L _d_J

The q - axis transformer is, of course, identical and it suffices to

discuss Cquation 5-6 only.

The eigenvector columns in Equation 4-26 suggest an odd and even sy-

mmetry for the modes in Equation 5-6, and a transformation based on the following

sfe;:;s can be made :

(i)  subtract the second row from the first row,

(ii) add the second row to the first row.

This yields
i 0 p IZ - = [|-R i; -
q
0 2M+l i;+i; -R |




124

FIGURE 5.3(a). EQUIVALENT CIRCUIT OF TRANSFORMER

SUBPRIMITIVE '
R z z R

FIGURE 5.3(b). THE LEAKAGE INDUCTANCE MODE

FIGURE 5.3(c). THE MAGNETIZATION INDUCTANCE MODE
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Defining the modal variables

The physical identification of each of the modes can be obtained from
the modal transformation equation of Equation 5-8 inlconiuncfion with the transformer
equivalent circuit of Figure 5-3(). The mode of d; consists of curren.’r flowing in
the circuit topology as shov.vn in Figure 5-3(). It is a heavily damped mode because
the storage elements consist of the leakage inductances only. In contrast the damping
factor for the mode of 9, is very lightly damped, because as shown in Figure 5-3(c),

this mode is associated with the large mutual inductance M .

5-5 The Magnetization Sub-Primitive

The leakage inductances are assumed to be zero in the magnetization
sub-primitive, and therefore =1 = M. Assuming R® = R = R, the sub-

primitive dynamic equation is :
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R + Mp o Mp 0 | i:l = 0 5-10
0 . R+Mp 0 . Mp i; 0

| Mp -Mo_ R + Mp -Ma || 1] 0
Mo Mp Mo | Mp i; 0

Equation 5-10 is a degenerate set of equations and should be reduced
to a second order system in terms of the d - and the q - axis magnetization currents

as follows :

. [ T _
a1 =1 ig + iq 5-11
. S oF
1 =11 +

| mq | | q q

Adding the first to the third row of Equation 5-10 and the second
to the fourth row and thereafter substituting Equation 5-11, the magnetization sub-

primitive equations in terms of the magnetization currents are

p |i = |-R Cm i 5-12
md M T2 md |
g =im R ||
| 7 M L™
: -R “m
- The eigenvalues of Equation 5-12 are A = i i— -

Figure 5-2 shows that the oscillating frequency of the sub-primitive term agrees very

well with the magnetization mode of the real machine. The'damping term, however,
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r
!

a_ e - ’ - . . S
is in serious error and the reason lies in the assumption of I’ = =0,

Since the objective here is to gain a physical "feel" for the production
of the oscillating term, the resistance R will now be dropped from Equation 5-12.

This leaves the differential equations of the harmonic oscillator of a natural frequency

.wm
at —2— :

N 5&

' 5-13

pl i ={ 0

md md

o

mq T B mq_J

Equation 5-13 focusses on the interactions of the magnetization flux

with the speed voltage in the production of the harmonic oscillations.

It is important to note that there is a directionality of rotation in the

magnetization m.m.f., associated with these currents :

— — — -—
(Jm .
mm
Imq = Ssin '2— t N
L - . -

is a solution to Equation 5-13 while the solution

)
. _ m _
lmd = cos 5 . 5-15
. W
mq sin -211- t
N — _JL

is not.
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Using Equations 5-13 and 5-14. %f is possible to ébfain a qualifa'ﬁve
description of the oscillation of the magnetization mode in terms of storage energy
éxchanges between the cross-axis mutual inductances. The medium of power trans-
fer is through the speed voltages. The direcfional'ify of rotation of the magnetization
flux is determinéd by the sign coefficients of —(.2,2 in Equation 5-13 which expresses

the polarity of induced voltage with respect to direction of the flux and the direction

.of the rotor speed.

5-6 The Lossless Sub-Primitive

In the lossless sub-primitive, the stator and the rotor resistances are as-
sumed to be zero. As there is no dissipative component, the modes are never damped
away, and as in Section 5-5 the usefulness of the sub-primitive comes from using the

natural frequencies to identify the modes.'

The dynamic equations of the lossless sub-primitive are :

p 0 M p 0 i =] o 5-16
0 Lsp 0 Mp i 0
q
M p -Ma_ L'p -Uo i 0
r r ' T
Mwm Mp L © Lp .‘ Iq 0
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The eigenvalues found from the roots of the characteristic equation of

Equation 5-16

det [(A[L]l+w [GI1=0 5-17

m

are A =0 : 0, ium and - iwm . Referring to Figure 5-2 it can be seen the

frequencies of the lossless sub-primitive are approached asymptotically by the real
machine in the region of large rotor speeds, i.e. as ©—> 0, ‘*’2."'> 0 and
The physical modes can be identified for the sub-primitive by rewriting

Equation 5-16 as a flux-linkage equation. Thus using the following transformation :

Vg = [LD by 5-18()
or
KR s T o s
q =|L 0 M 0 y 5-18 (b)
ve 0 N 0 M i
q q
r r Ny
\yd M 0 L 0 iy
A\Pr 0 M 0 Lr i
g | - 4 L 9

and Equation 5-16 becomes



P r-“l". Z- =o
Yq 0
Y o 0
tal Lo

0 0

0 0

0 w

m

- 0
m o

which can be expressed in the diagonalised form

where the eigenvalue matrix is

Al = Jo o
0 o0
0 0
0 o0

the eigenvector matrix is

“rs1= [ 0
0 1
0 0
0 0

o ' -

H_.o

S

1

P Yaq = [SILADLsT P
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5-19

5-20

5-21

5-22
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and the reciprocal base vector matrix is

[s1. 2 [ 0 o 0o ' 5-23
0 1 0 0
o o L
J2 2
0 0 L
V2 2

Using the knowledge of the eigenvectors in Equation 5-22 and Section

4-13, the following two flux-vectors

'_‘jid'q =1 1| 5-24

_‘jid;q =1 o - | | 5-25

N2 'cos(w""t + g-)

._:\/2 sin (wm t + %) i

are two possible free motion solutions associated with each of the modes of eigenvalues

0.0 and *j @ respectively. Transforming these modal solutions from the d - g
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frame to the slip=ring primitive a'= B frame using the connection matrix [.C:; ],

i.e.
Y o= rch1 Yy | | 5-26
‘ of of dq
Equations 524 and 5-25 become

= 1 . _ B 5-27

W ="

' € -€ —€'
Q" a «wow

1

¢ 1= Jo1 5-28
Yaf |°

Yal |

:l’.

r
P

The flux-linkage solu‘tiqns in the a - B frame iden'rify the lossless
sub-primitive modes as the stator mode (Equation 5-27) and the rotor mode (Equation
5-28). In the free motion of each mode, the winding currents flow so as to preserve
the constant flux linkage theorem. The rotor mode when viewed from the stationary
windings of the stator has of course a frequency of W which is the speed at which

the constant rotor flux is "cutting" the stator windings.
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Translating Eéuaﬁon 5-20 back to the current d - q axis frame

Pig = LT IsITAILST tLdi, 529

the eigenvector matrix is

oo r M- _ M
(Ll [sl-= L . © - - 5-30
Y v 2 V2 ~
0 L i.ﬂ "i—M—-
A2 A2
S S
-M 0 L L
A2 N2
S S
0 -M -i_L_. i_L__
A2 Ny

it will be shown subsequently in Section 5-11 that just as the modal
oscillating frequencies of the induction motor approach those of the lossless subprimi-
tive, likewise the eigenvectors Equation 5-30 are also approached asymptotically at

high speeds.

5-6-1 Asymptotic Approximation

The asymptotic approximation of the induction motor modes to those of
lossless, sub-primitive at high rotor speed can be demonstrated analytically. Firstly,

since A = jo_ is an eigenvalue of the lossless sub-primitive, it is a solution to the
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characteristic equation, Equation 5-17, i.e.

det[jo [L1+o [GI]1= 0 R 5431

Since 0 is a nonzero scalar, it can be factored out, leaving

det [jfL]1+[G11=0 | 5-32

The eigenvalues of the complete first commutator primitive must satisfy

the characteristic equation, Equation 5-4, i.e.
det[)\[L]+[R]+wm[G]]=0 5-33

Substituting A\ = iwm and again factoring out W Equation 5-33

becomes
det [ [R1+i[L]+[GIl>det[j[LI+[GII=0
m
5-34 -
as wm——>oo.

This asymptotic property is borne out by the eigenvalues and the eigen-

vectors numerically solved from the digital computer subroutires.
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- 5-7 Eigenvector Rotational Property

‘Since each of the eigenvectors consists a column of 4 complex
" numbers, there are altogether 8 real numbers defining their real parts and the
imaginary parts. However, because of a rotational symmetry in [ A dq ] of

Equation 4-2, there are actually 4 independent real numbers, and the kth

eigenvector can be written as

U, = u +jl®lu 5-35
- -r =r .
— —_
where - [®] =] 0 -1 0 0 A , 5-36
1 0 0 0
0 0 0 ~1
0 0 1 0
and v = [u,u,, U, Ul | 5-37
= 17 =27 3’ 4
where U] ’ U2 ’ U3 ’ U4 are any real numbers .

The square matrix [ ® ] bears the information of the forward rotation
of the mode. The transpose of [ ® ] describes a backward rotation, and the synchro-
nous frame eigenvectors in the matiix of Equation 4-26 is a good example which states

that the modes are rotating backwards with respect to the ¥- & reference frame.

The basic rotational property of the eigenvector in Equation 5-35 is
is proved in Appendix C . It is a significant result which enables the mode repre-

sentation and interpretation based on the eigenvector to follow .
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5-8  Mode Representation by Eigenvectors

The geometrical interpretation of an oscillatory mode is the plane in

. a mulfi—diméns.ional sub-space supported by l_j_r and Lii which are respectively

. the real parts and the imaginary parts of the eigenvector. The free motion of the
excited mode is described by a state-point in the modal plane spiralling towards the
origin. Besides this mathematical interpretation, the mod;as of the induction motor
admit of a physical interpretation in terms of the m.m.f.'s in the motor airgap space.
In Section 2-i1, the airgap m.m.f.'s have been represented in magnitudes and
directions by the space-vectors 35 ; 3r and Em . The objective here is, fhereforei,

to present the space vectors as a physical representation of the modes.
The geometrical state-point lying on the modal plane of the kth mode

of [Aqu is

i = bu'r-+ du. ' 5-38

where b and d are any real constants. Substituting Equation 5-35 into

Equation 5-38

-l—dq = ’b U] + d - U2 5-3?
U, Y
U3 - U4
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Using the stator and rotor current vectors representation of Equation

2-19 and defining vector magnitudes and phases as

T T .
U] = ?isk sin
U2 Z”gk cos
Us T Sin

i U4~ i 3rk cos

Equation 5-39 can be expressed as

.

= C %k

%

3rk

S

where C] and ﬁo are the magnitudes and the reference angle of the polar

sk
P

sk

%o |

sin ( ﬁsk

cos ( st

- 9)
- 9)

sin (grk - go)

cos (9, - 9) |

representations of the arbitrary constants b and d, i.e.

C]A = O + d7)

b = C.l cos ﬁo'

d = (C, sin p(o

2 9 1/2

5-40

5-41

5-42
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Using Equation 5-41 and Figure 2-1 .if becomes possible to
ideﬁﬁfy a mode in terms of the space=vectors in the motor airgﬁp. As the point
|n the eigenvector modal plane is shifted, b and d take on other arbitrary values.
This has the effect of changing the multiplying constant C] and the reference angle
ﬁo in Equation .5-4l,lbuf essentially the parallelogram defined b)f :Fsk and 3r|<

retains its similar geometry in Figure 2-1 despite the changes in magnification

and orientation.

Now that a representation is possible, the next section will be devoted

to examining the space=-vectors of the modes for different speeds of the induction motor.

5-8-1 Space Vector Diagrams

Figure 5-4(a) to (f) show a series of space vector diagrams of the
two modes of the induction motor described in Appendix G. The p. u. speed for
a 60 Hz supply is 377 electrical radians per second and the rotor speeds in the

diagrams are for 0.0, 0.04, 0.1, 0.4, 0.48 and 1.0 p.u. respectively.

Figure 5-4(a) shows the vectors for the magnetization and the leakage
inductance modes for the motor at standstill. In the magnetization mode the three
vectors, 3;2 and 'Jirz are co-Iiﬁ_ear and pointing in the same direction thus giving
a very large resultant 3m2 . In contrast the leakage inductance vectors B‘;] and

3r] are equal and opposite so that their sum 3m] =0.
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Fig. 5-4 (f). Rotor Speed= 1.0 p.u.
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Figure 5-4(f), on the other hand, shows the two modes at 1.0 p.u.
speed and these approach the stator and the rotor modes of the lossless sub-primifive.
The feature which distinguishes them are the relative directions of 3ml which points

towards 3‘” and 3m2 which points fowards the stator space-vector 352 .

It is instructive to follow the vé;:for diagrar'ns from Figure 5-4(a) to
Figure 5-4(f) as a continuous chcl'mge with rotor speed. From w. = 0.0 to
0 = 0.48 p.u. the leakage inductance mode which has EmI] = 0.0 at 0y = 0.0
develops a finite 3m1 and (gsl - ¢r2) moves from 180° into the third quadrant.
Meanwhile &, in the magnetization mode collapses as '@52 - ng) decreases
from 360° to the third quadrant. Around w = 0.48 p.d., the two modes become
coincident and likewise the space-vectors of the two modes are indistinguishable.
From o = 0.49p.u. -speed upwards one mode moves towards the stator mode of the
lossless sub-primitive and the other develops into the rotor mode. Because of the
coincident eigenvalues in this numerical example it is not possible to identify whether

the rotor mode is continuous from the magnetization or from the leakage inductance

mode.
Hitherto the space-vector diagrams have been used as physical inter-

pretation and representation of each mode. The next section will further show that

the space-vectors can also be used to describe the dynamics of an excited mode.
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5-9 Modal Representation in Free Motion

A set of initial currents which satisfy Equation 5-38 would excite
the kth mode exclusively. On release, the currents would oscillate in the short-

circuited windings and would ultimately be damped up as the state follows a trajectory

described by :

qu '=-;-exp ot [qosmkf+isinukt]{lir_-l-. i[@]gr}

+%—exp O‘kt[coswkf - isinwkf]{g_r-i [@]L_J_r}

= exp O t cos  t U] -exp O t sin @ t [ UZ—‘
U2 Yy
Uy - Uy

| Y4l | Ys_

5-43

Usiﬁg the space-vector representation in Equation 5-41, the modal

currents can be expressed as

-i-dq = exp q t ., sin (@t + Q;k)_-
3‘;k cos (uk t + st) o 5-44

3!"(' sin .(wk t + Vrk)

B 3rk cos (wkf + qu)_J
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The magnitudes of the space-vectors in Equation 5-44 aré damped
exponentially at a rate % and the axes rotate physically in the airgap space at an
 angular velocity ) in the forward direction. A picture of the vector parallelo-

grams of Figure 5-4. spirally in the airgap space is a valid physical interpretation.

5-10 Damping Factor Structure

This section. is devoted to establishing a physical correlation between the
damping factor and tHe modal space-vectors. The daﬁping factor is, of course, re-
lated to energy stored in the winding inductances and how quickly this energy is
dissipated away by the stator and the rotor resistances. At any given instant in the tra-
jectory of an exclusively excited mode, described by Equation 5-44, damping occurs

because the net dissipated power is depleting the energy storage.

Under free-motion, the power balance equation derived in Appendix A

s o2 r ' l .
R 35 + R 3‘2r +nMum'3'fs3ism(¢s —(pr)

+p_12_(|532 2

s

+1"32 s M3y =0 5-45
r m
Substituting Equation 5-44 into Equation 5-45, and performing the

differentiation = —‘-j— , it is possible to factor out the damping factor ¢, ,
P =7 P k
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2

S . 2 r ' ' . - .
a,=_] R?’fsk+R3rk+ numM3"sk3rksm(¢s-¢r)
k 2

1 s .2 T .,r 2 1 2
gV g Tt B+ MI

2 | o

- -3 & | . 546
T ,

where I dk and zsk are respectively the sum of the dissipative and storage components.

The denominator consists of the sum of the energy stored in the Ieaka.ge
inductances and the mutual inductance and the numerator consists of dissipation in the
stator and rotor resistance and mechanical power. Each of fEe space vector magnitudes
3sk , 3rk ' 3mk is obtained from the eigenvector components gr , and Equation 5-46
is a display of the structure of the damping in terms of the distribution of the modal cur-
rents flowing in each system parameter. All the components of Equation 5-46 are

positive except the mechanical power term which does become negative.

5-10-1 Negative Dissipation

The term n M 3sk 3rk sin (Qs - (Xr) in Equation 5-46 is the space=vector
expression of electromechanical torque. Whenever (¢s - (pr) lies in the 3rd or 4th
quadrant, a negative torque exists and power is fed from the constant speed source into
the short-circuited motor windings. There is effectively mechanical power converted
into electrical power.. In circuit theory this is represented by a negative resistance and
the power associated with it is the negative dissipation. It has been remarked in Section

5-2 that since | W | < © the rotor speed is always faster than the speed of the
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rotating airgap flux of the mode and roughly from the conventional steady-state theory -

the generating counter-torque always exist.

This negative dissipation is borne out in the structural analysis.in
Section 5-10-2. Furthermore from the space-vector diagrams in Figure 5-4 (@) to

Figure 5-4 (f) ((ps - (ar) always lie in the 3rd or 4th quadrant.

5-10-2 Damping Factor Variations with Speed

It is intended that by the study of the structural components of Equation
5-46, some physical understanding can be gained for the variafioﬁ of O} with speed
as shown in Figure 5-1. Figure 5-5() and () display the dissipative and the stored
energy components respectively of the mode A = o) * i Wy 3 and likewise Figure 5-6

(@) and (b) display those for the mode, A\ = 0y * iu2 .

Figure 5-5(b) shows that the total energy stored in the windings is sub-
stantially constant for the mode of o) . It should be noted that the contributions due to
the mutual inductance is negligible and the stored energy resides in mainly the leakage
inductances. Figure 5-5(a) shows that the sum.of the stator and the rotor dissipative
components remain constant with speed. The.fccfor which contributes principally to
the cha.nge from the highly damped o = -188 (at 0. = 0) to o = - 96.5 (for

0 > 0.49 p.u.) in Figure 5-1 is the negative dissipation.

The behavior of the components of o, is displayed in Figure 5-6. At

rotor standstill, the bulk of the energy of the magnetization mode is stored mutual in-
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ductance. As the speed increases, the magnetization vector 3m2 collapses and
the energy stored in the mutual inductance decreases to negligible values for

urﬁ > 0.49p.u. Thereaffer the energy of the leakage inductances predommafes
- Figure 5-6(a) shows that the sum of the resistive components is subsfanflally constant,
and for 0 = w < 0.49, the negative di;sipaﬁon becomes important. In all, the
collapse of 3m2 overwhelms the influence of negative dissipation and the net result
is the increase in damping with speed from W= 0 to w = 0.49 “as is shown in
ngure 5-1.

The components of Equation 5-46 are evaluated from the eigenvector com-
ponents U, , U, , Uy and Uy which solved by the eigenvector subroutine of DAL4 .
Since the eigenvector is not unique it has been r';ecessary fo "normalize” it so that the

continuous curves of Figure 5-4 and Figure 5-5. can be plotted.

5-11  Structure of Natural Frequency of Oscillation in Mode

From the physicci viewpoint, a mode is oscillatory because the energy
associated with it is continuously being exchanged among the various storage elements.
The frequency of oscillation is related to the rate of this exchange. The magnetization
sub-primitive is simplified enough to offer a view of the physical details of the inter-
action of the speed voltages and the magnetization flux. In the induction motor, the
details of the energy exchanges are more complicated, but as the modal represenfaffon
in Section 5-9 shows, this is the energy of the magnetic f.ields associated with the r<I>-

tating space vectors 3sk and 3rk .
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At any time instant in the free motion of the kth mode, the velocity

of .the stator and the rotor current space vectors must each be equal to the natural

frequency, i.é.
G =P % =POh | | 547

Using the definitions in Equations 2-19 and 2-20

.S -
i opi,-i,pi
= _ q d d
w =p @, = 5-48
k sk (iz)Z N 65)2
i pi, - i, pi
= -9 _d d" g |
“% " P grk (ir)? v (ir)2 5-49
d q
Combining Equations . 5-48 and 5-49 into Equation 5-47
S ol - it o+ i pil - T
- 4a d d " q q _d d P q 5-50

“k )2 T2

(5% a;>2 v G+ )

: Equation 5-50 is valid only when i dq is of the form of Equation 5-39,
i.e. it is an instantaneous value in the free motion of the mode. The time differential

quantities p i; ;P i; etc. can be obtained from

Pidg = LAgql iy . 5-51

Substituting Equation 4-2 and Equation 5-39 into Equation 5-50 and making the
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BN

‘normalization of the eigenvector components (U]2 + "U22 + U32 + U

-2

2.
o L‘_FT—z[(R -R)M(U u, 3)+nw{LL(U3+U4)
2 ﬁ
-ME u? + U ML) U Uy +U U))]
5-52
or expressed in the space vector forms
L——————T [(R "R) M3 3 5'"(¢k'grk)
L -
s r.2 2 .2
tne {LLgrk-M 3sk
M 2 2 2
+_2—(Ls l'r)(gmk_gskmgrk}:, 5-53
or
_ 1 s _ of . _
“% T s.r 2 L (R R) M 3sk 3rk sin (qsk ’er)

LL -M

+no {32 (M2+lM. T T
m rk

2 2 1 s T
'3k(M+—2-M.|"|)

+'3:k(212‘M (|5-|')} ] 5-54
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' These expressions show that the natural frequency arises from the intei'-

action of the rotor speed 0 and the electromechanical torque.

For-the numerical example presented throughout this thesis, R =R = R

and I° = L" =L, and Equation 5-53 simplifies to

W
m 2 .2 2 .2
G-z 2 (b T T M ) 5-55

or

=w (P ) 4' 5-56

Qk m rk-P

sk

where : 2 92

k | 5-58

In this specialised case, ), is solely dependent on W - Thus at

rotor standstill, both the eigenvalues have zero imaginary parts since 9 = 0.

At very high rotor velocities, the modes approach those of the lossless
sub-primitive. Using the eigenvector components of Equation 5-30, the natural fre-
quencies as cc;.llc.ulafed from Equation 5-55 correlate with the asymptotic values
approached in Figure 5-2. Thus Table 5-1 lists the "normalised" 3sk2 and 3”3

as calculated from the Equation 5-30 and W, as evaluated from Equation 5-37.



158 .

TABLE 5 -1
| Stator Mode Rotor Mode
% L, iV
L+ M L+ M
32 M2 L2
rk 2+ M2 2+ M2
o = (Eq. 5-35) 0 0

The derivation of Equation 5-50 is based on physical arguments on the
properties of the space vector. In Appendix D, the same results will be derived
from the definitions of the eigenvector. This provides a useful check against faulty

intuition.

5-11-1 Natural Frequency Variation with Speed

Figure 5-7 and Figure 5-8 show plots of the components of Equation
5-56 which correlate with the natural frequency variations with speed in Figure 5-2.

and P$ defined in Equation 5-57 and Equation 5-58 are normalised quantities

Prk k

(with respect to wm) and they bear information as to the relative contributions of '&’rk
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©
‘ "~ and Z"t;k . The normalised frequency e is of course the difference between

. | ‘ m
P, and P
s

rk k *
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CHAPTER VI

INDUCTION MOTOR STABILITY

6-1 Introduction

The basic problem in‘sfability analysis of the induction motor is‘ to

_ establish whether the steady-state solution to Equation 2-1 is a stable equilibrium
point, i.e. will the motor return fo its steady state after the occurrence of a small
system disturbance ? Furthermore, if it is a stable equilibrium point, how ‘lcrge a

)
disturbance will it tolerate ?

The first question can be answered by eigenvalue analysis of the small
perturbation linearised equations about an equilibrium operating point.  But this
method has the short~coming that the stability is guaranteed only for an infinitesi-

mally small region where the small perturbation assumptions hold.

In order to answer the more diffilculf question of stability with large per-
turbations, if is necessary fo‘use the Second or the Direct Method of Liapunov to
grapple with the system nonlinearity. This method consists of generating a "Lia-
punov function® and using the Liapunov function to map the region of asymptotic
stability around the stable equilibrium point. Unfortunately, a priori, the Liapunov
function is not known and much ingenuity has to be exercised in guessing the Liapunov
function which can describe the stability boundary exactly. Furthermore the Liapu-

" nov function gives only a sufficient condition for stability. This means that if the |

conditions for the stability are not satisfied, it does not necessarily follow that the
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point is unstable, but simply that perhaps a better Liapunov function can be proposed.

Tl;le objectives of this chapter are therefore to apply these methods to
the stability of the induction motor. Fi;'stly the eigenvalue subroutines are applied
to the linearised equations of the induction moto.r to determine the stability of the
operating point. Subsequently the Direct Method is used to explore the stability -
boundary around a stable equilibrium point. Because of the dimensions ~(5th order)
of the system, the Liapunov functions investigated are restricted fo the quadratic

functions.

6-2 Induction Motor Equafién for Stability Study

Throughout this stobili’ry.sfudy , the synchronously rotating frame is chosen
because the steady-state currents for a balanced voltage supply Equation 2-15 are

d.c. currents and consequently the system equations are autonomous. Equation

2-13 can be rewritten as

EXS':[L]pi—b’8+[R]LKS+[Gum]L'55 6-1(a)
and
J]pwm+flwm+TL=nM(i} ;;-r; iy ) 6-1(b)

where
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[L] = ’_Ls 0O M O [R] =1 R 0 0 0
o * 0 M 0 R 0 0
M 0 Lt o 0 o R o
o M o0 0 o 0o R
6-2
— .
and [Gw ] =1]0 st 0 M o
m f . f
S
-L o .0 . - M W 0
r-_. -
0 M ((.)f n wm) 0 L (wf n mm)
._--M(wf-num) 0 N (wf -n wm) 0 N

Before the methods of Liapunov can be applied, it is necessary to remove
the forcing functions e Xs and TL from Equation 6-1. This can be done by solving
for the steady-state solutions of the operating point and translating the system equations

to a new origin at the operating point.

For a specified supply voltage E ¥s and a load TL , the operating point

is obtained by solving for the d. c. currents | is and the constant speed C)'m from

the steady~-state versions of Equation 6-1, i.e.

Eys = RI1 s+ (G T1 6-3(a)
ffo = nM (1} lg - 158 I;) - T | 6-3(b)

Defining a new set of variables x
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. x = Xy = i; - Fl; 6-4

.S ;

X2 's 5
. r

x3 I‘ IK
. r

%4 's 3

X5 0 Em

Equation 6=1 can be expressed as
p§=[AJ§+in h o 6-5
where [A] isa 5x 5 constant matrix and -f-n isa 5x1 column consisting

. of sums of quadratic products of x's,” .. The importance of Equation 6-5 is

that the system dynamics are now expressed in terms of the free motion of the state and

the Liapunov Methods are directly applicable to such a formulation.
The constant [A ] matrix is most informative if it is examined in its
4 - partitioned parts.

[A] =
[H]2] 6-6

The 4x 4 [H” ] matrix is none other than the constant speed equation

‘ : in Equation 4-5.



[H”J = [A 5’5]

" The 1x1 [H22 ] matrix relates the viscous friction f

moment of inertia J]

1
[H22]

(H,1= 20

12 S.T

: _nM r

The nonlinear part of Equation 6-5 isa 5x 1 column

—n -k
.i_l__
. . n xg

-M(MIZ + LM

r
5)
MM + L 1p)
ll'

s s r
-L (M18+L 8)

| S

r S

S

-M (Mx2 + L
M Mx, + L

-5 M Xy + L

N Mx, + L

S S r .r
LMy + L II;)J

et
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6-8

6-9

6-11

6-12
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- and f = 5 (IR fx2x3)' . 613

6-3 Small Signal Linear Approximation

The nonlinear dynamic equation in Equation 6-5 is written as the sum
of a linear principal part [A] x " and the nonlinear part f n Since the nonlinearities
consist of quadratic sums of the state variables, it is possible to approximate it for

small signals by reductions to Equation 6-14 which is equivalent to it from point of

view of stability.

px=1[A]x ' 6-14

6-4 Stability of the Operating Point

The linear criterion of stability [40] is: "the equilibrium of Equation
6-14 is asymptotically stable if all the eigenvalues of [A] have negative real parts”.
The Nyquist [55 - 571, the root-locus [24] and many standard techniques of linear

theory are available to ascertain the system stability based on this criterion.

The method used in this investigation is to evaluate the eigenvalues of the
matrix [A] by the DAL4 eigenvalue subroutine discussed in Section 4-6. The

eigenvalue method gives a more detailed picture of the dynamics of the operating
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point than the Nyquist and the l-'oot‘-locus methods. Thus, the real parts of the

- .. eigenvalues bears informaﬁon.n.ofl only with respect to the system stability but also

fo the order of damping of the system. This has mucH importance in induction motor
stability investigation where often-times the operating point is in fact stable but lightly

~damped [24] .

6-5 Stability of Operating Points Over Spéed Range

As an example, the sfabilify of the operating points of an induction motor
controlled by variable frequency is investigated. The motor parameters are listed in
Appendix G with the additional information that J] = 0.006 kg - m2
f, = 0.01 Nw-m=sec.’/ rad. The supply voltages referenced to the synchronously

1 :
rotating frame are : ES = gig—of—f ’ E : = 0. Since a variable frequency

{

supply voltage is used, the slip and w. in the [AJ matrix must always be referred to

the supply.
The procedures for the solution are as follows :

@ Fora specified frequency f, operating speed ;m , and
voltage E s the steady-state currents | 55 ore solved

from the simultaneous linear equations in Equation 6-3(a).

b) Using Z,'m and | x5’ the dynamic matrix [A] is formed.

) The DAL4 eigenvalue subroutine is used to find the eigen-

valves of [A].
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Corresponding to the 5 x 5 [A] matrix there are 5 éigenvalues.
Of these there are two complex conjugate pairs and a fifth real eigenvalue. Since
the [A] matrix yields the eigenvalues in the synchronous reference it is necessary
to reduce them to a stationary reference frame (see Section 4-9) which besides

being physical serves as a common basis for comparing eigenvalues for different fre-

quency operating points.

Figure 6=1 shows the 5 eigenvalues inthe stationary reference frame for
an operating point defined by f=10Hz and um =500 r.p.m. Since all the eigen-

values are on the left-half of the complex plane, the operating point is stable.

Figure 62 shows the forque—spéed curves for the speed ranges for supply
frequencies from 5 Hz to 25 Hz . An operating point in the torque-speed curve is
defined by the frequency and the rotor speed. The dynamic properties of these operating
points are displayed in Figures 6-3, 6-4 and 6-5. Figures 6-3(a), 6-4() and
6-5(a) show the real parfs} of the eigenvalues ; and Figures 6-3(b) and 6-4(b) show

the imaginary parts expressed in Hertz in the stationary reference frame. -

Figures 6-3 and 6-4 are the plots for the two complex eigenvélué pairs
which will be identified with the electrical modes of Chapters IV and V . In this
particular motor, the real parts are always negatively damped. However as Nelson,
Lipo and Krause have shown [25] instability arising from negatively damped electri-

cal modes can occur in some machine parameter combinations, especially with very
small rotor inertia J, .
The only instability occurs for the fifth real eigenvalue which can be

identified with the mechanical equation of motion. Comparing the damping factor
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§f Figure 6-5 with fhe torque-speed curves of Figure 6-2, it can be concluded that
the negative damping and insfability occurs on the operating region to the left of the
;;»eak of the torque-speed curves. Instability of this kind which is associated with a
positive accelerating torque speed ratio (%%) is well known in trgdiﬁbnal induction

motor theory and is predictable from the static torque-speed curve.

6-6 Eigenvalues Identification

6-6-1 The Mechanical Mode

The fifth eigenvalue is related to the mechanical equation of motion.
Firstly, it can be stated that when the system is electromechanically uncoupled, the

linearised mechanical equation becomes

Jpxs +foxg =0 j . 615

f

and the damping factor is o 5= " 7;
1

In the general case, besides this damping due to viscous friction, there is
electromechanical damping which is approximately related to slope of the torque speed
curve. The fifth row of Equation 6-14 which is

_ r _f s s _
Jl P Xg +f] Xg = nM('le i x5 st3 + 'K x4) 616‘

can be approximated by
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| ., AT o R
Jl Pxg + fl X ® xu . %5 o | | 6-]7
: o AT
where the acceleration torque-speed ratio Ay, s defined in Figure 6~6 and the
mechanical damping factor is approximately
1 AT 6-18

% ~ 3 (3s "W
m

As a numerical check of Equation 618, the operating point defined

by w, = 1350 r.p.m., f=25 Hz in Figure 6=2 has a slope :

AT _ _0.243 newton metre sec. / rad.
Ao
m
Since J] = 0.006, f1 = 0.01 , Equation 6-18 gives
05 = =42.2
The eigenvalue routine DAL4 has a solution 05 = -47.7 .

Another good check comes from relating the peaks of the torque speed
f

curve of Figure 6-2 with the speed at which 05 = - j!- in Figure 6-6.
: 1

6-6-2 The Electrical Modes

In Figures 6-3 and 6-4, the speed variations of o s Oy r W and

wy of the short—circuited motor of Chapters IV and V are plotted in dashed lines

179
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besude the dampmg factors and osc:llcmng frequencies of the excited induction motor
operating points. From these plofs and from arguments based on continuity fhe com=

plex eigenvalues of the 5x 5 [A] - matrix can be identified with the modes of the

4 x 4 matrix of Equation 4-5 .

The connection is apparent if it is noted that the sub-matrix [H” 1=T[A ¥ 8]
and when the motor is unexcited and with the stator windings short-circuited, Equation

6-6 is reduced to

f
! .
— | -
[A] = [Am] | | 6-19

The eigenvalues of this matrix are those of LA Jand \. = - 2
g 5 J;

However, as the stator windings are excited and as the excitation currents
1 xs increase, the column sub-matrix [H]2] and [H2]:| grow, the eigenvalues of
Equation 6-19 become numerically perturbed. The eigenvalues of Equation 6-6 can
thus be thought of, as being continuously shifted by the continuous growth of the elements
in the off-diagonal sub-matrices. From Equations. 6~9 and 6-10, the extent of this
numerical perfurbation would depend on the operating-point currents | Xs and the

moment of inertia J] . !

in this context, Figures 6-3 and 6-4 can be viewed as a perturbation

of the short~circuited modes by the steady-state currents | .o - The successive shifts
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‘ from the dashed-line by supply frequency changes is minimum for the oscillating fre-
_quencies in Figures 6-3(b) and 6-4(). The mode associated with the mutual
inductance whose damping factor is shown in Figure 6-4(a) becomes less lightly |
damped when excited by a 10 Hz supply. This fact is siénificanf in this stability

investigation.

For a given motor, the moment of inertia is fHe other facfor‘which confri-
butes to the electrical eigenvalue shifts. Figures 6-7 (@) and (b) show the real parts
of the two electrical modes as a function of Jy s which is presented in a Iogarifhmic
scale. This result shows that the me.chunical parameters are only very lightly cbupled

to the electrical damping factors.

6-7 The Direct Method of Liapunov

- The linear stability criterion of Section 6-4 is valid only for small signal
- disturbances. In practice it is necessary to be assured that the région of asymptotic
stability around the equilibrium is extensive so that the motor will return to the operating
point after a sizeable system disturbance. In such considerations, the nonlinear terms
-f-n can no longer be negligible and the stability investigation must deal with Equation -

6-5 intoto. The Direct Method of Liapunov is well suited to handle stability pro-

blems of nonlinear systems.

The Direct Method is very well treated in many standard control engineering

. textbooks [59 - 607 and it is only necessary here to restate the method and the pro-
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perties of the Liapunov function. Basic to this method is the construction of the
Liapuriov function V (x) which a priori is not known. This Liapunov function is
then used with respect to the system equations to map out the region of asymptotic
stability .

The Liapunov function V (x) must be a positive definite scalar function

with the following properties:

@ V and its first partial derivatives are together continuous

in a certain domain D which contains the origin.

& V@ =0 -  for x=0 6-20
and
Ve >0 for x #0 6-21

For V (x) to be a Liapunov function of the induction motor, then its

time derivative along the trajectory of the system Equation 6-5 is negative definite,

1.€.

W) =

OV x. < 0 S 6-22

in the domain D .

A systematic method of constructing a Liapunov function for Equation
" 6-5 is possible by the method of Zubov [62, 64 - 651 provided that the [A]

matrix has negative real parts for all the eigenvalues.  Since the nonlinearity part



185

fn in Equation 6-5 consists simply of qua&rafic product terms, a Liapunov function

made up of an infinite series of homogeneous terms can be proposed

V(§)=v2+v3+..v.vm+'.;.f | '6-_23
and the coefficients of the series .tei'ms solved from a recursive relationship. This
infinite series would describe exactly the boundary of the region of asymptotic stability.
In practice the infinite series is approximated by a truncated series to the mth order

of the homogeneous term. Unfortunately, as Undril [66] has pointed out, the size of
the set of simultaneous equations which must be solved to obtain the truncated series
increases rapidly with the order of the series ar:dfhe dimension of the system equations.
For the 5 - variable system of the induction motor, Table 6~1 shows the number of

simultaneous equations which must be solved, in order to generate a Liapunov function

truncated at the mth order [66] .

TABLE 6 - 1.
Order of Homo- : .
geneous Series m = 2 3 4 5 6 8 10 12 14
Number of Simul= ‘
taneous Equations 15 35 70 126 210 495 1001 1820 3060

Thus dimensionality is an inherent difficulty in applying Zubov's method to

the induction motor. Furthermore as Margolis and Vogt [64] have pointed out there
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is no knowledge as to what order m would yield the optimum approximation to the
stability boundary. They have shown examples where a higher order approximation

can describe a more conservative stability region than a lower order approximation.

In the face of these difficulties, the invesfigatfon using the Direct Method

will be restricted to Liapunov Functions of the quadratic form.

6-8 Total Energy as a Liapunov Function

Since the Liapunov function is a generalization of the energy concept, and
the Direct Method is an extension of the intuitive notion that a stable equilibrium is
associated with decreasing energy of the system, it is natural to consider a Liapunov

function which consists of the sum of the storage energy associated with the perturbed

variables, i.e.
VK = x [B]x 6-24

where [B]=;-LOM0 0
o I 0 M O . 625

an& ‘.[B] = [B]T. | 6-26
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Equation 6-24 satisfies the partial derivative continuity requirements and also

-Equations 6-20 and 6-21.

Susbstituting Equations 6-5 and 6-25 into Equation 6-22

W =prPVR
x' [AT [81x + x [B1[A)x + £ TBIx + x'8 f_

6-27
A very important result is that the last two terms containing the nonlinear part f 0

vanish when they are expanded algebraically, i.e.

f TIx+x B1f =0 6-28
—nN — — —-—N .
Hence
where [cl = [AT [B] + [B] [A]
N N s ' N ro ]
= | -2r 0 0 . -nMu_ nM I
0 -2 ¢ nAMe 0 -nM Iy
0 n Mo -2R 0 nl [
. m )
-nMe_ O O -2 ¢ -nL' Iy
m
r ro.rr roro _
an8 —nMIJnL l8 nlL l‘ 2fl

6-30
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Wheﬁ [c] isa negative definite matrix then Equation 6-22 is satisfied
and the V (x) is indeed a Liapu.ﬁov function. Furthermore the domain D extends
to all space and the operating point is asymptoﬁcglly stable fn the large: (ASIL). The
broof for this very strong condition of stability isi possible because the energy Liapuﬁov
function causes vthe confrfbuﬁon of the nonlinear term f , fo be zero as Equation 6-28

shows.

A computer test for the negative definiteness of [:C ] is to show that the
successive prihcip;al minors of - [C] to have positive determinants [67].. | A more
instructive test consists of completing the squares for Equation 6=29. Thus W (x) is
negative definite if for any six real numbers bl ' b2 c e bé the following inequali-

ties are satisfied.

b2+b4-2R < 0
' nMme 2 r 4
(—rz-——) +b5-2R-<O . 6-3]
I"M""mz 2 r
(—r]-—-) +b6 -2R <0
r r rr ror
nM182 an‘2 L. 2 nLIx2

(45— +(T) +(—r£) +(—56—) -2f, < O
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6-9  Asymptotic Stability in the Large in Induction Motors

' Firsfly, it ca‘n be.,suid-that any ;szmpfoﬁcully Sfablé operafing point is . _._.
in generdl not ASIL for the induction motor. For example, Figure 6-8 shows a |
load curve which intersects the torque-speed cufve at points M and N. The point
M is an asymptotically stable equﬂibrium point ; but frbm steady-state arguments, the
region of asymptotic stability around it is not global. This is because fhe..sys.fem on
being displaced to an operating point to the left of N would continue to decelerate

fo @ = =0, never to return to M.

-~ As such it ig not surprising fhaf [C] in Equation 6-30 is negative definite
only under very restricted conditions. In particular using the algebraic inequalities of
Equation 6-31 it can be concluded that for the system to be ASIL the dissipative ele-
;nenfs R , R and fl in the diagonal of [CJ] matrix must dominate the off-diagonal
terms. This, of course, corresponds to the physical notion that it is always possible to
make a system very stable provided sufficient dissipation is added. It should also be
noted that ASIL is more likely to occur at low operating speeds since the terms n M @

in Equations 6-30 and 6-31 would be small and would be dominated by the dissipative
ferms.
Thus in the numerical example of Section 6-5, the induction motor operating

at 540 r.p.m. froma 10 Hz supply would be ASIL if the stator and the rotor resis-

tances are increased to R° = R = 4.18. This is because from Equation 6-30
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| | o a8 3.0 o 0.0
o 3.0 4.8 o 20,019
30 0 0 418 -0.03
20.0i8 . -0.034 -0.019  -0.03 0.01
6-32

is negative definite.

The increase of the rotor resistance has the effect of shifting the peak of
the torque speed curve of Figure 6-8 to the region of negative speed and consequently

the motor curve will not intersect the load curve again at N, thus offering the possibility

of ASIL .

Although the motor can be proved to be ASIL by increasing the dissipative

elements, the steady state performance characteristics deteriorates.

Since the Total Energy Liapunov Function can only prove ASIL, it cannot
be used with those operating points where a bound to the asymptotic stability region is.
suspected to exist. In such cases a different quadratic Liapunov Function can be con-

structed mathematically.

6-16 Stability Bounds from Quadratic Liapunov Functions

When the equilibrium of Equation 6-5 is asymptotically stable, a quad-

ratic Liapunov function [63] can always be constructed for the linear part, i.e.
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Equation 6-14. The proposed qQadrafic Liapunov function is of the form

Ve = S VIx . ed

where [V] is an unknown matrix and [V]T = [v].

The total derivative, using Equation 6-22 and Equation 6-14 is

W) = xlT [Pl x - | - 6-34

Al ovla+ vl Al 635

where - [p]

[P] is a positive definite matrix, if V (x) is to be a Liapunov function of Equation
6-14, Equation 6-35 represents a system of n (n+1) /2 linear equations from which
the unknown elements of [V can be solved from any arbitrary positive definite matrix

[p].

In investigating the stability bounds of the equilibrium point, the total time
derivative of Equation 6-22 is formed from the constructed Liapunov function Equation
6-33 and the complete nonlinear system equation, Equation 6-5. When W (x) is
negative throughout the whole space, ASIL can be concluded. Whenever W) = 0,
for x # 0 the conclusion of ASIL cannot be made. But according to Hahn [61],
"so long as one of the hypersurfaces" \'4 (5) = constant Iies;'completely in the interior of
the domain determined by W (x) = 0, then it belongs to the domain of attraction of
the 6rigfn".

The quadratic Liapunov functions appear to have applicability to the case of

the induction motor. [t is proposed to apply the principles to the induction motor discussed
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v.",:in Section 6=5. The operdﬁng hbint chésén is ‘def’ined by the frequehéy = 60 Hz R

and 6§erafiné speed. 'Jm = 3240 r.p.m. ‘THe obiecfive.is to investigate »whe’th»er .»
.fhe hypersurface V x = 'Vo of the‘ quddraﬁc Liapunov function is adequdfé ines-
'fimatiﬁg the stability region around the operating point. The method is implemen-fed.

.. along the following steps : -

Step 1. - Formation of the Positive Define [PJ] - matrix

The simplest form of a positive definite matrix is a diagonal matrix in which

all the diagonal elements are real and positive, e.g.

| [ N
Pl = | 1 0 0 0 0
0 1 0 o 0 6-36
0 0 1 0 0
0 0 0 1 0
0 0 0 0 10

Appendix E shows how other positive definite matrices can be formed by rotational

_ transformations.

Step 2. Formation of Liapunov [V ] - matrix

The [AJ - matrix for the induction motor operating at 60 Hz, 3240 f.p.m.

and viscous friction f] =0,0 is:
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[A] =| -9.6  -3687.  92.0 - 3476 ~ -45.6
3687.0 -96.6 3476  92.0 = ~-15.2
92.0 76 - 96;6_ 3272 7.9
_M76.0  92.0 - 3272 - 96.6 15.9
- 0.011 0.033 -0.0198 0.0319 0.0

L 6-37

Appendix F shows the details of how [V] can be solved from Equofionv 6-35. The |

solution of the 15 simultaneous equations for the 15 unknowns in [V] yields

vl =| 2.116  0.00431 2.114 0.00185 -0.973
0.00431 2.117 ©0.00729  2.115 0.580
2.114 0.00729 2.116  0.00485 -1.05
0.00185  2.115 0.00485  2.117 0.611
-0.973 0.580 -1.05  0.611 1828
- | ]

Step 3.  Asymptotic Stability Domain Estimate

With the [V] matrix determined in Equation 6-38, the Liapunov function
of Eguafion 6-33 'is used in conjunction with the original nonlinear equation, Equation

6-5 to form the total time derivative of Equation 6-22 which becomes :



195

We = -x"PIx+2x IVIE . ed9
Since f n consists of quadraﬁ;: terms, the last term in Equai.'ion 6=39 is
a cubic scalar.  As such for an infinifeéimqlly small region around the origin, W (x)

is negative and because the negative definite term - iT [p] x dominates the higher

_ order terms. This is the Direct Method justification for the stability analysis based on

linearization fhrobgh small signal clssumpﬁon‘s‘ in Section 6-5.

But for Iargevsignal perturbations, ‘W (x) can become positive whenever
2 é(_T A f n is positive and dominates over the negative quadratic term in Equation
6-39. Thus, for example, in the case of the motor operating at M in Figure 6-6 it
is found that for a number of Liapunov functions constructed in the manner specified
above, the point N lieson W (x) =0 dnd all points to the left of N have positive

values of W (.’i) .

However, the domain of asymptotic stability is guaranteed only for the
closed region inside the surface V &) = Vo which contacts the surface W x) = 0
from the inside. To find \ the problem becomes one of minimization and can be

stated as : Find the minimum of V () = >_<_T [v] x which lieson'W (x) = 0.

6-10-1 Minimization of Liapunov Function

The minimization of V (x) = 3<_T ] x under a constraint W (x) =0

can be reduced to the problem of minimization of a new unconstrained function
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Z@ =V +pW e 6~40

where p is a constant which ultimately must tend to infinity.

The optimization vof multivariable functions such as Equation 6-40 are
discussed fully in Reference [68] . In this study, the IBM FMFP subroutine [49]
h§s been used to find the local minimum of Eciuaﬁon 6-40 by the method of Fletcher
qnd Powell [69]. The technique of using the minimization subroutine consists of
(@) making ar; initial guess of the local minimum, () estimating a trial value of p
and (c) using the FMFP subroutine to locate the local minimum. When the approxi= '
mate local minimum is found, 'p is increased and a better estimate is found on an

iterative process for each successively increased value of u .

It is found that for a large number of trial initial valuves, the FMFP con-
‘verges towards the origin. This leads to a conclusion that the Liapunov Function using

Equation 6-38 can only guarantee a very smdll region of asymptotic stability.

6-10-2 Merit of Quadratic Liapunov Function

The [V1] - matrix of Equation 6-38 indicates why it contributes to form

such a poor Liapunov Function for estimating the stability region. For example at

V) =[x x31 [2.116 2.114 | [x, 6-41

2,114 | 2.116 Xq
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It is important to note that 2.116 and 2,114 differs only at the fourth significant

place and the contours of Equc-:fion 6-41 are long thin ellipses which are hardly dis-

tinguishable in single precision from those of

Ve = 2.114 (x]'+>;3)2

which describe a family of straight lines.

Likewise at X = Xg = X5 = 0

V& = [x2 x4J 2.117

2.115

have contours which are also long thin ellipses.

6-42

2.115] 'x. ] 6-43

2.117 X

Because the Direct Method of Liapunov gives a sufficiency condition of

stability only, the minuscule region of asymptotic stability of Equation 6-38 is more

likely to reflect on the poorness of the method.

After all the induction motor at 60 Hz

operation at low slip operation is generally known to be highly stable. Although many

different positive definite [P] matrices have been tried, each of which yielding the

same poor results, there is an infinity move which could have been tested. As such the

de-merit of the quddratic Functions can only be concluded for the specific examples

studied.



198

CHAPTER VII

* PARAMETRIC SENSITIVITY

7-1 Introduction

In addition to ca‘lculafing the; torque patterns and solviﬁg for the eigén-
values, the engineer is interested in the influence of machine parameters on the sysfefn
‘performance.  Thus one is concerned fhéf the stability of an equilibrium point is not
critically sensitive to slight changes in the system components. From a synthesis point
of view, one is interested in knowing yvhich parameters to change in order to design for

a particular torque transient.

Because numerical techniques have been used throughout there is no ex-
plicit inter-relationship between the numerical solutions and the system parameters.
However, by developing the concepts of parametric sensitivity coefficients and evaluat-

ing them numerically, it is possible to provide this important supplementary information.

This investigation consists of defining and developing an efficient
method of calculating the eigenvalue sensitivity coefficients of the induction motor.
In this chapter, the motor parameters, R%;. R etc. will be denoted by the numerically

indexed symbols p a; i=1,2...).

7-2  Eigenvalue Sensitivity

In Chapter VI, the [ AJ matrix is determined by a specification
of (p ay s P9, ... poli “ e pah) and the operating point state solutions.

Basically, the engineer is interested in the effect of changes in the Kth eigenvalue
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for a small change in the jth parameter. This information is embodied in the notion

of the eigenvalue sensitivity which is defined as

d A E ‘
)‘k = Lim k : 7-1
apmi Apal%o Ap ai

7-3  Calculation of Eigenvalue Sensitivity
oA

The eigenvalue sensitivity -g-p—; can, of course, be calculated by .
i

forming a new [ AJ matrix for the parameters ' (p ays Py ... P ai + Ap ai ’

... pan) , computing the eigenvalues )\i + A)\i i=1,2, ...5, and

using the limiting definition Equation 7-1 to approximate the sensitivity coefficients.

The re-computation of eigenvalues to obtain the sensiﬂvity coefficients
of each of the n - parameters is time consuming and the following method described
by Van Ness, Boyle and Imad [70], and Faddeev and Faddeeva [71] is more
economical. This method requires the evaluation of the eigenvalues and the eigen-
;recfors of the [ A] matrix and its transpose [ A ]T only once. Essentially the
economy is achieved by recognizing certain basic properties of the matrix [A ] and
' [A ]T. For example, [A JT has identical eigenvalues as [A] but the eigenvectors

gk of [A] are different from U, of [A ]T . From the definition of eigen-

=k

vectors :

]
>

[ATy, y



~

. T _ ~
[AT U, = N U,

. The eigenvalue sensitivity coefficient is obtained by differentiating-

Equation 7-2 partially with respect to p ai

. dU, 3
3 [A] d o =k k
5p<:|i U * (A 'Tpaigk = N op ai+ Bpai Yk

Premultiply Equation 7-4 by y_l

~ ~ ouU ~_ 00U oA ~
T 3[Al T -k T =k k T
Uy 3pa Y t Y (A X N Y ospet Bpaigk Y

but from Equation 7-2

- 9- U _ T 0
u a-,;aifk = U [A] 3pa Uy

A~ -

M
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7-4

7-6

Substituting Equation 7-6 for the first term of the right hand side gives, Equation 7-1

AT -~
a"k gk 3[A] U

k
opa, Bpai
' T
U U

“k =

.77

From Equation 7-7 it can be seen that at every operating point it is only

necessary to solve for the eigenvectors Uy and y—k of [A] and .[A]T. _ As the sen-

sitivities of the different parameters are considered, it is only necessary to compute

3 [Al
op ai

by numerical differentiation.
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It is found that it is physically more meaningful to consider eigenvalue

sensitivity in terms of percentage Lhanges of parameters. Hence in the numerical

examples following, the eigenvalue sensitivity index A\ ki has been used for 1 %

parameter changes, i.e.

A)\ki = x 0.01 pai 7-8

7-4  Numerical Example

As an example, the eigenvalue sensitivity indices of the motor in
Chapter VI will be developed here. The operating point is defined by we = 10 Hz

and mr;‘ = 540 r.p.m. for which |

A= | -96.6 - 614.0 92.0 -~ 579 50.4
614, - 96.6 579 . 92.0 3_.5? 7-9
92.0 579. - 96.6 545 53.0
- 579. 92.0  -545 -9.6. -3.75
4.31 60.8 - 86.8 70.4 -1.67

Table 7-1 and Table 7-2 list the eigenvalues and the corresponding
eigenvector components for the [AJ matrix and the transpose TAIT matrix

respectively which are solved by the subroutine DAL4 .
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Electrical Modes

Mechanical Mode

Eigenvalue A - 3.63%j 39.4 - 169 £37.7 - =0.410
Eigenvector U,. 0.144 £§ 0.206 - 0.485+j 0.157 | - 0.409
U, 0.154+ 0.389 - 0.0378 + j 0.455] - 0.142
Uy - 0.067 +j0.321 0.481 +j 0.154| - 0.387
U, - 0.245+j0.319 | 0.0431 +j 0.455| 0.182
Ug 0.701 0.257 0.793
TABLE 7 - I
[A]] - MATRIX
(i) - (iif)
Eigenvalue A - 3.63%+j39.4 - 169 =i 37.7 - 0.410
Eigenvectors U, 0.181 +j 0.481 0.117 +| 0.467 - 0.165
U, -0.418 £ 0.251 0.515 +j 0.0582 0.664
Uy | 0.170 +0.482 -0.0259 + j 0.423 - 0.230
u, | -0.413%j0.253 0.528 +i 0.195 - 0.684
0.0306 0.044 0.104
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Each of the matrices :‘E_Aa] (i=1,2, ...n) canbe computed

- i
numerically from :

[A(DOi + Apai)] - [A]

md

o [A
opa

7-10

& Lim

Ap ai-ao ' Ap ai

The matrix [ A (p ai + Ap ai) 1 is constructed by infinitesimally
incrementing the jth parameter only. Besides the explicit terms of p ai in [A],
it should be noted that the steady-state solutions | ¥s have also to be solved for the

parameter change. Generally, Equation 7-10 is a sparse matrix, e.g.

[ ]

IAl =l 96 0 0 0 5.47

3R |
0 ~96.6 0 0 5.84 7-11
92.0 0 0 0 -5.74
0 ) 92.0 0 0 ~6.14
7.05  -6.59 17.3 3.6 0

or

3 IAl _ | 0 0 0 0

37,
0 0 0 o' o 7-12
0 0 0 0 0
0 0 0 0 0
0 0 0 0 -166.7
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However, Equation 7-10 can be a full matrix as in the case of the

inductance parameters, e.g.

23 s an s 2. -10.1
oM _ :
112, -17.8 112, 17.8 1.27 7-13
17.8 112, -17.8 .”2. 10.1
-112. | 17.8 -112. -17.8 -1.29
0.737 1.05 0.009 1.55 0.0
Table 7-I11 lists the eigenvalue sensitivity indices for + 1 % change

in the motor parameters which are calculated from Equation 7-8 and Equation 7-7.

It should be noted that the eigenvalues and the eigenvectors are calculated only once
and these are presented in Tables 7=1 and 7-2. The information of eigenvalue sensi-
tivity with respect to each parameter is borne by matrices such as shown in Equation 7-11

to Equation 7-13 and these are readily computed.

7-5  Significance of Eigenvalue Sensitivity Indices

Table 7-I11 summarizes in an economical format 40 items of quantitative
information with respect to the 5 eigenvalues and the 8 system parameters. By in-
spection, the damping factors of all the modes are most sensitive to the mutual inductance
M. This result corresponds to the physical interpretation developed in Chapter V where
it is shown that the mutual inductance M plays a dominant role in the transient charac-

teristics at low speeds.
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Electrical Modes

Mechanical Mode

-3.63 ] 39.3

- 169 £{37.7

-41.0

Parameters / Eigenvalues
s

R (1.0 ohm)
.

R (1.0 ohm)

I*  (0.0053 H)

I”  ©0.0053 H)

M (0.106 H)

4

. f] (0.01 newton-m=-sec)
El 5 (40 volts)

-0.0117 +j 0.131

-0.0178 % j 0.0818
-0.0119 £ i 0.0029

- 0.0113 + j 0.0045

0.510 + | 0.0275

(0006 newton-m-sec2) -0.00546 ¥ | 0.0571

-0.00237 + j 0.0004

0.0159 %i 0.113

- 1.11 £j 0.149
- 1.01 +j 0.238
0.964 £ | 0.0284
0.966 ] 0.0474

- 38.6 +j 1.51

= 0.171 +j 0.0129

0.00158 # j 0.00048

0.340 % j 0.0252

0.327
0.605
-0.0168
-0.231
0.762

0.371
0.015

- 007]2
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At 540 r.p.m, the lightly damped mode (A= - 3.63 ] 39.3) has
~ been identified appfoximai'ely with the mutual inductance and the positive sign before
the sensitivity index +0.510 bears this out. Likewise, the heavily damped electrical
mode (\ = =169 £j 37.7) has real positive sensitivity indices (+0.964 and
+ 0.966) with respect to the leakage inductan;:es I° and 1" and this again correlates
‘wiih the identification of this mode with the léakage inductances.

Examining the me.chanical mode for instance, the 'paramete;rs in order of
importance are: M, E ¥s’ J] p RS .... It should be noted that an increase in
E ¥s dampens the mode while an increase in M, J and R® have the reverse effect
of decfeasiﬁg the damping. The sensitivity indices confirms an earlier statement that :
;:llfhough the electrical parameters can affect the mechanical mode significantly, the '

mechanical parameters 3y f] do not influence the electrical modes seriously.

It should be stressed that the eigenvalue sensitivity coefficients and in-
dices so developed, are restricted to small parameter changes only. When the effects
of large parameter changes are desired, it is necessary to solve for the eigenvalues for

the changed parameters in the manner described in Chapter VI .
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

8-1 Summary

This thesis has been a theoretical study of the transient torque and the
stability of the balanced, symméfrical polyphase induction motor operating from a
balanced single~frequency voltage supply. The study has been organized on a subject
basis beginning with a review of the different reference frame formulations of the motor
eqbaﬁons and an assessment of the methods for solving the transient torque patterns.
This has been followed by the development of the modal methods to solve the linear
constant speed equations ; the application of the eigenvalue method to dete..iine local
stability ; the use of the Direct Method of Liapunov to explore the stability region and
finally the investigation of the effects of parameters on performance through sensitivity

studies.

The results of this study have been organized around the central theme of
* the constant speed modes : with the eigenvalues providing the rational basis of torque
components classification, and the eigenvectors bearing the information as to how each of -
the modes is coupled to the excitations. In this context, the phenomena of controlled
nonsimultaneous switching is simply an example of mode suppression. Although the
accelerating transient is strictly a nonlinear problem, it has been possible to correlate
the torque patterns with the- dependence of modes on the rotor speed. Furthermore by
mode identification, the results from stability studies have been unified with the studies |

on the switching transients.
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Because the modes constffufe the éenfral and unifying theme in the dy- -
namic studies, this thesis has devoted much research to clarifying their characteristics
and physical nature e;pecially in regard to their variations with rotor speed. By a
combination of methods : using approkimafe sub=-primitive models, prob'ing the charac-
teristic equation, and exploiting the properties of the eigenvectors, a theory of the

induction modes complete with physical interpretation has been developed.

Throughout this thesis, physical explanations have been developed using
space -vectors representing the airgap m.m.f's. This has proved to be pictorially satisfy-
ing as well as theoretically fruitful, especially in explaining the phenomenon of super- -

synchronous speed and in representing the physical modes.

8-2 Conclusions

The conclusions listed below include those results which are felt to be of
particular significance and are believed to be extensions of existing knowledge in in-

duction motor studies.

Extension of Mothem‘oﬁcal Methods

1.  The modal analysis has been introduced to solve the linear con-
stant speed transient. The power and scope of this computer-

aided analysis enable the initial value problems to be included

with the solution of the voltage excitation problems.



The eigenvalue method has been applied to test for the

induction motor stability of the equilibrium points.

The Direct Method of Liapunov has been applied to in-
vestigate the region of asymptotic stability using quadratic
Liapunov Functions. It is found that whenever the total
energy of the induction motor can be shown to be a Lia-
punov function, then the equilibrium point is asymptotically

stable in the large.

Eigenvalue parameter sensitivities has been investigated. A
method is introduced which calculates the eigenvalue sensiti-

vity coefficients efficiently by exploiting the properties of

_the eigenvectors of the [A] - matrix and its transpose.

The usefulness of the m.m.f. space-vector representation as

both a mathematical tool and a physical interpretation has been

demonstrated. .

The method of sub-primitive approximation has been developed

to investigate the properties of the induction motor in the limiting

speed condition.

209
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‘ , “Extension of Induction Motor Theory

l.

The eigenvalues of the constant speed linear equations have been
shown to provide the basis for the characterizing and classification
of switching torque components.  Although the imaginary parts
(natural frequency) of the eigenvalues have been shown to change
with the chosen velocity of the common reference frame (Doppler
effect), nevertheless the torque cémponenfs in the classification

remain invariant.

The eigenvectors have been shown to yield information as to how
the modes are coupled to the voltage excitations and the initial~-

value currents.

The application of controlled nonsimultaneous switching has been
explained in terms of mode suppression by cancelling the voltage

excitation with an appropriate set of initial-value currents.

The eigenvectors have been proved to bear rotating symmetry. This
rotating property has permitted the representation of a'physical in-
duction motor mode and the derivation of many important results.
The free motion of an independently excited mode has been viewed
in terms of the airgap m.m.f's., rotating with the angular velocity
of the natural frequency and spiralling to zero as the magnitudes are

damped out.



In the investigation on the speed dependence of the electrical

modes the following conclusions have been drawn.

0

ii)

@iv)

)

~ The sum of the damping factors of the two complex modes

is a constant for all rotor speeds.

The sum of the natural frequencies is equal to the rotor

speed expressed in electrical radians per second.

At rotor standstill, the induction motor modes are the
same as the nonoscillatory modes of the transformer.
These are the lightly damped magnetization mode and the

heavily damped leakage inductance mode.

At high rotor speeds, the induction motor modes approach
those of the lossless subprimitive. These are the stator
mode and the rotor mode which are related to maintaining
the constant flux linkage theorem at the stator and the rotor

windings respectively. Consequently these modes are iden-

tifiable with the natural frequencies ©) =0 and Uy =@ .

The speed dependence of the modes can be viewed as the
continuous transition from the transformer modes at standstill
to the lossless modes at infinite speed. The details of this
transformation has been followed by the m.m.f space-vector

diagram representing the modes in the sequences shown in

Figure 5-5.

211
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(vi) The changes of modes with speed (';:;e accompanied by ch‘anges
in the damping factors and the natural frequencies.  Thus the
lightly damped magnetization mode becomes more heavily |
‘damped because of fhé collapsé of fhé magnetization m.m.f,
vector 3m with speed increase. Correspondingly the leakage

~inductance mode becomes less heavily damped because of the

negative dissipation.

To study these changes in detail, a formula has been derived which
expresses the damping factor in terms of how quickly the energy in the storage elements
become dissipated in the lossy parameters. Because the mode currents can be related
to the eigenvectors, it has been possible to analyze the composiffon of energy storage
and power dissipation for a mode and correlate a physical understanding for the speed

changes of the damping factor.

6.  The dynamics of the small signal perturbations about an equili-
brium point of the induction motor is characterized by 5
eigenvalues. The two complex conjugate pairs have been
identified as the same electrical modes of the constant speed
equations. The fifth real eigenvalue relates to the mechanical
equation of motion and can be approximated from the static
torque-speed curve. Instability in the mechanical mode occurs

when operating on the ascending portion of the torque-speed curve .,
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Instability due to the electrical modes has not been found in the

specific motor parameters studied although the magnetization

" mode becomes lightly damped at low frequency operation.

The eigenvalue sensitivity studies has given a quantitative evalua-

tions which correlate with the physical interpretation of modes.
For example, at low speed operation, the magnetization mode
dominates and this has expressed itself as the highest sensitivity

of the damping factor with respect to the mutual inductance.

The concept of instantaneous airgap power has been defined and
its usefulness demonstrated. The association of airgap po;/ver with
the instantaneous angular velocity of the resultant airgap m.m.f.
explains the transient phenomenon of supersynchronous rotor speed

and at the same time comprehends the traditional association with

the supply frequency.

Suggestions for Future Work

The areas for further investigation based on this thesis are :

The treatment of coincident eigenvalues from the modal view-

" point and investigation of the physical significance.



)

)

Stability investigation for unbalanced supply and /or

supply with harmonic content.

Further development of Liapunov functions for the in-

duction motor.
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S APPENDIX A

" INDUCTION MOTOR POWER EQUATION

L ‘The po\.over'eqdafioin can Be derived from Equ.‘aﬁén_":2-]0 by: fo'rm,ing

”thé'scalar*p‘roduc’t T
N
[iz,ls, i;,.i; wm] e;
. .
e
q
0.
0 -
|
which yields
s . s .S s 52 5.2 - P2
ed|d+eq|q=R(|d+|q)+R(id+|q)
+ f 2'+T +nMe_ (i -7 . + []Is('52+-'52)
19 LY T "M iy g "q'd ply "G, i)
1 r‘ r2 r2
+-2-| (ld +lq) .
' 'l. S 2 s .r 2y 1] 2 | :
+§-M{(.|d+ld) + (iq+lq))+EJlum ] A-1

This can be written in space~vectors defined in Equations 2-19 to 2-21 as

r‘2 2
+R3r +f]wm +TLmm

s .S s .s _ 5.2
edld+eqlq—R3;



M E TG e, v r (gl

t2

l|r

32 4
T
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- APPENDIX B

INSTANTANEOUS AIRGAP POWER

g

em’m
n

It is demonstrated that the instantaneous airgap power Pc|g =

The power equation of the induction motor will be examined in two successive stages.

Stator Powér

The first two lines of Equation 2-10 can be written as

s .S s .5 _ 5 o2 1 52 s .S .r
ed'd+eq'q—R35+P7|35+'<:IMP('d+'d)
s s r
+i Mp (i +i B-1
g Mp ( q q)
s .2 1 s .2 N .
R 35 and 7' 35 are the stator resistance dissipative loss and the magnetic

energy stored in the stator leakage.inductance respectively. Hence from the energy
balance considerations, the last two terms consist of power which is (a) transferred
to the rotor and (b) in part stored in the mutual i.nductance M. In order to identify
these components, the vector representations of Figure 2-5 and the definition in

Equations 2 - 19 to 2 =21 will be made.

:i:, Mp(iz + i‘;)+ i'; M p a: + i;)

= M[&ssinﬁsp(a‘msinﬂ'm) + 3scos%p(3msin9(m)]

]

-M(':rscos(;xs -g)p3_+ 3 3msi}1(¢s - an)iim) B -2
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Substituting Equation B ~ 2 - back into Equation B - 1 and substituting

for the torque term of Equatibn 2-23 (b), the stator power balance equation is :

S .$‘+
ed Id e

QO @

_ 2 1s 2 '
=R 3s +p(§-| 3:s)-",’\A';";s'c":’s(‘Xs Vm)p3m

g

'Tem- m o
+ — B-3
n

_Rotor Power

Likewise, the power associated with rofor can be written by forming the

scalar product with the third and fourth rows of Equation 2 - 10,

2 1 .r_2 .
0=R:’ir +p(f|3r)+M3rcos(Q(m-Q(r)p3m
g

em “m
o T e e B-4
m ‘em n _

From the trigonometric relationships of Figure 2 - 5 (c) ,
3rcos(ﬁm-¢r)+ Fgcc?s(ﬁs.-ﬁm) = 3m | B-5
and hence when Equation B - 3 to Equation B -4 are added, the terms

' | ) R
M 3 cos (B - G)p3 + M3 cos (F -F)pT = p(sM32)
B-6

and the sum yields the complete power equation, Equation A -=2. It is noted that



7 the term =

B A

m

| "

. . : : . s 'v'..-v‘ ... . . m .b'. v
- cancels out. Therefore from physical considerations; -'-%——— is the airgap

power. -

has Qp’boﬁfte signs in ‘Eqdaﬁbn‘ B -3-and E.quafion,“B -4 and - . BRI
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APPENDIX C

| EIGENVECTOR ROTATIONAL PROPERTY

Assertion '
If Ok + . is the eigenvalue of [Adq] in Equation 42,
' ~ then the corresponding eigenvector can be written in the form

Y = gr +jle] U where [ &] is defined in Equation 5 - 36 .

Proof
From definition, the eigenvector gk = gr + igi satisfies the

equation

[Adq]ij:(ék +iuk)_l_1k C-1

In practice the 8 unknown components in Y, are solved for the set
of 8 simultaneous linear algebraic equations which is obtained by equating the real

and the imaginary parts of Equation C-1, i.e.

1

— : ——( - —0—

4 [Ad ]-ok[|]l uk[IJ uil-= :

| 0

e ————— - - 2

] . 0

4 - uk[lJ ll [Adq]-ék“] _L_Jl .

| l I O | 0
C-2

However [ A d'q] has basic rotation symmetric properties because of

its ‘form
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N N 7]
[Adq] = m n - : p r
| -n m ] = P c-3
R |
f X I y z
|
- X t i -z Y
- ' -

Equéﬁon C-3 expresses [A dq] in algebraic components m , n etc., to emphasize
the rofational symmetry in each partition. Because of the special form of Equation C-3

the following substitution is made for Equation C~2

in which case Equation C-2 reduces to

[[Adq]-ék[|J+uk[¢]]gr=o C-5

. and

[[Adq][q:]—Ok[aIv]_-wk[l]Jgr:o C-6

Hence it is required to show that the same 4 numbers in
91; = [ Uy s Uy, Ug, U4] satisfy both Equation C - 5 and Equation C = 6 simul-

taneously . Equation C - 5 expands to



and Equation C - 6 expands to

— . T
m—Ok n-o o P r U
- Y .m-Okl -r P U
t x y-ok z = u

J_*_- x ._ t ' = (Z‘Uk) R4 -GL _U4

[ n = 9 = (m "Ok) r -p —
m -0, n=-w | ) B r
x | -t z-a -(y-Ok)
|t x y =0, =mo |

,

-
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By inspection, Equation C -8 is the same set of simultaneous equations

as Equation C =7 except for the interchange of the first and the second rows, and the

interchange of the third and fourth rows. . This proves that -qk =U Pt il&] gr is

indeed the eigenvector of Equation C - 3 .
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APPENDIX D

MODE OSCILLATING FREQUENCY

The natural frequency of oscillation oY is expressed explicitly in terms

of the induction motor parameters and the components of the eigenvector U, .

From definition of eigenvector

[Aqul_Jk=((’)k+iwk) Y, | D-1

but from Appendix C

U

_k=_L_Jr+i[<I>]L_Jr ‘ D-2

Premultiply D -1 by the transpose of the complex conjugate of L.lk , i.e.

uk=u-i[<1>JU ' - D-3
-— -l -1 ..

" and this yields the scalar product
T ) : 7 | )
Y [Ty, = (ék+.wk)gk U, D-4
T . Trgql : ) : T T .T
,{gr -'.9" [@J} [Adq](gr+| [‘I’]L_J} = .(6k+|wk) (gr -y, [ds])
(L_J_r+i[§]9r} D-5

Equating the imaginary parts of Equation D - 5

T T T _ T T T .
Y, [Adq][@‘]gr-gr[tb] [Adq]gr- U,y +u el [&ly

“k

r —

-6du! [ely -ullse1y
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But from the propeity of [ <I>] in Equation 5 - 36, it can be shown that

uf 817y, = o D-7
T _ |
u [e]Ju = 0 D-8
-T Ll §

and ng [@]T [&] u, = _l.!;r u. D-9

Substituting Equation D =7 to Equation D = 9 into Equation D - 6, the
coefficients of o, become zero and w, can be expressed explicitly as follows

uT (o, 1081y -ul (817 (A, JU
—_r q —r -r dq bl §

v = 2 ul U
=r =g

D-10

Equation 5 = 52 follows from substituting the matrix [Adq] » U, and

"normalizing” UT u =1.
= -=r

. ri.:



APPENDIX E

' A METHOD OF CONSTRUCTING THE POSITIVE DEFINITE [P] MATRIX

formula :
(P]

where

(k]

and where ki >0 for i

Each [ En 1 is of the form

_ T T T.
[E]] [EZJ....[I:nJ [k] [En] [E2] [E]]

]

[.En] = ] 0
i 0 cos ©
n
0 0
i 0 -sin6
n
0 0
j _—

A systematic method of generating the [P] matrix is through the

k5
. 5 L]
i
0 0
sin © 0
n
0 0
cos O 0
n
0 1
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where
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isa 5x 5 unit matrix with the following changes

= E, = cosP
il
E -4
= -E,, = sin O

On is any arbitrary angle.

Using Equation E-1, >_iT tr] x is a function of a hyper-ellipsoid in

5 - dimensional space. The values of ki in Equation E - 2 specify the relative

magnitudes of the principal axes for the ellipsoid. The matrices ‘[En ] rotate the

ellipsoid at an angle On in the plane of the ith and jth axes. By varying ki

and Gn , a positive definite matrix [P] is generated from which the quadratic

Liapunov Function is constructed using Equation 6 - 35,
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- APPENDIX F

SIMULTANEOUS EQUATIONS FOR' SOLVING

 QUADRATIC LIAPUNOV FUNCTIONS

fad

The symmetric [V] matrix of Eq:uaﬁon 6-35 consists of 15 unknowns

WiV -e Y5
- —
vl = Y, v, vy v, v F -1
V2 v 5 V7 V8 V9
s % Yo i Y12
s« B Yn M3 Vi
s Y% Y2 Yu  Us

The positive definite [P] matrix in Equation 6 = 36 is specified by

the elemenl’slpI 1Py -+ Ps in

[pl = Py Py P P4 Ps F-2
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The unknown values of the [V] matrix are solved using the relationship
of Equation 6 - 35 which is expanded to a 15 - order simultaneous equation as shown

in Equation F - 3, where aii are the elements of Equation 6 - 5.



12

%4

15

%2

94

15

931 .°41
921
%21

%2 %
922%933 %3
a 34 022'1'0 44
935 %5
923
94 %3
925

924

925

51

921955

931 W %
92 %42 %
) %2 95
93 %2 92
93 %3 %3

935 934 945 94495 954

%35 %5 955




~ APPENDIX G

~ INDUCTION MOTOR PARAMETERS

A typical induction motor whose parameters are listed below, have

been used throughout in the numerical examples '

R =R =1 ohm.

1* = L' = 0.1113 henry.
M = 0,106 henry.

LN
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