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Abstract

In the modeling of piezoelectric vibrators, one of the universally used

assumptions is that the exterior electroquasistatic field due to the electric tlux

leakage through the piezoelectric-air interface cao be neglected. This

approximation, valid for materials with large dielectric constants, can introduce a

significant error in the simulation of piezoelectric crystals whose pennittivity is

comparable with that of ftee space. Because models that take into account the

electric tlux leakage are virtually non-existent, the objective of this thesis is to

develop a solution ofthe three-dimensional piezoelectric problem which is referred

to, by analogy with electromagnetics, as electrically unbounded.

To begin with, the general piezoelectric boundary-value problem with open

electric boundaries is stated in the form of difFerential, variational, and projective

equations. The latter fonnulation serves to construct the finite element solution of

the system of piezoelectric equations. Tetrahedral elements of high order,

assembled by means of universal matrices, are used ta approximate the coupled

mechanical and electric fields in the interior region. The exterior infinitely

extending electric field is modeled by a single 'superelement', obtained by the

ballooning method, and automatically compatible with the interior finite element

discretization. After imposing electrical, static or homogeneous, boundary

conditions on the matrix equations, the associated detenninistic problem is solved

for the full piezoelectric static capacitance using the preconditioned conjuIJate

gradient method, while the eigenvalue problems are solved for the two resonant

frequencies by a variant of the Lanczos method. Convergence and computer

implementation of bath methods, as weB as of the associated data structures are

described in detail.

The effect of the extemal electric field on static and motional parameters is

studied for various types of rectangular piezoelectric vibrators. mustrative

examples involving different geometries, materials, electrode shapes and modes

show that the leakage field increases the static capacitance, reduces the effective

piezoelectric coupling and the spacing between the two resonant ftequencies, and

activates many spurious modes.



•

•

Résumé

Dans la modelisation des vibrateurs piézoélectriques l'une des suppositions

universellement utilisée consiste à négliger le champ électroquasistatic exterieur dû

à la fuite du déplacement électrique à travers l'interface piézoélectrique-air. Cette

approximation, valide pour les matériaux avec des constantes diélectriques élevées,

peut introduire une erreur importante dans la simulation des cristaux

piézoélectriques dont les modules diélectriques sont comparables à celui du vide.

Vu que les modèles qui tiennent compte de la fuite du déplacement électrique sont

pratiquement non-existant, l'objectif de cette thèse consiste à développer une

solution du problème piézoélectrique tridimensionnel qui est appelée ici, par

analogie avec l'électromagnétique, électriquement illimité.

Pour commencer, le problème piézoélectrique général aux frontières

électriques ouvertes est exposé en forme d'équations différentielles, variationnelles,

est projectives. Cette dernière formulation sert à construire la solution du système

des équations piézoélectriques en terme d'éléments finis. Les tétraèdres d'ordres

élevés, assemblés par le moyen des matrices universelles, sont utilisés pour

approximer les champs mécaniques et électriques couplés dans le domaine

intérieur. Le champ électrique extérieur étendu à l'infini est modelé par un seul

'super-élément', obtenu par la méthode de ballonnement et automatiquement

compatible avec la discrétisation en éléments finis du domain intérieur. Après

l'imposition des conditions aux limites électriques - statiques ou homogènes ­

sur les équations matricielles, le problème associé du type défini est résolu pour la

capacitance piézoélectrique statique complète en utilisant la méthode des gradients

conjugués, tandis que les problèmes aux valeurs propres sont résolus pour les deux

fréquences résonnantes par une variante de la méthode de Lanczos.

L'effect du champ électrique extérieur sur les paramètres statiques et

dynamiques est étudié pour de divers types de vibrateurs piézoélectrique

rectangulaires. Les examples explicatifs, impliquant de différents géométries,

matériaux, formes d'électrodes et modes, démontrent que le champ de fuite

électrique augmente la capacitance statique, réduit le coefficient du couplage

piézoélectrique effectif et l'espacement entre les deux fréquences résonnantes, et

active plusieurs modes parasits.
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Original contributioDI to knowledge

(1) The three-dimensional piezoelectric problem is posed for the first time as a

problem with open electric boundaries and stated in the fonn of differential
7

projective, and variational equations.

(2) A finite element method for solving the unbounded problem bas been

developed. The intinite exterior electroquasistatic field is modeled by a single

'superelement,' obtained from the three-dimensional ballooning method, and

automatically compatible with the discretization ofthe interior piezoelectric region

in tetrahedra of high order. Qnly a minor part of the superelement matrix is added

to the global element assembly, since MOst ofits entries are very small.

(3) It bas been established numerically that the effect of the leakage field on

piezoelectric vibrations consists in the reduction of the effective coupling

coefficient and of the separation between the two resonant frequencies. This is

attributed to the considerable inCfease in the resonator static capacitance and the

respective decrease in the antiresonance frequency. The exterior electric field is

also responsible for the appearance ofmany, normally inactive, spurious responses.

Although the above essential contnoutions constitute the solution of the

piezoelectric problem with open electric boundaries, the foUowing by-products of

the research significantly improve its quality and are also claimed to be original
work:

(a) The popular one-dimensional model of thickness vibrations is extended to

include the electric flux leakage across the major surfaces of the piezoelectric plate
sa that the existing resonance and antiresonance equations cao be obtained as

special cases ofa unique frequency equation.

(b) To avoid numerical integration, universal, or pre-computed, matrices used to

assemble the piezoelectric stifthess matrices for high-order tetrahedral elements

have been derived for the piezoelectric continuum.
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(c) For three-dimensional rectangular piezoelectric vibrators~ the superelement

matrices are generated more economically by the developed block ballooning

algorithm that exploits the symmetry ofthe region.

(d) The three..dimensional capacitance of a piezoelectric plate is determined ftom

the solution of the full piezoelectric static problem by the preconditioned conjugate

gradient method with a special stopping criteriOD.

(e) The Lanczos algorithm for the generalized eigenvalue problem was modified to

avoid the factorization ofthe semi--definite mass matrix.
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Introduction

In piezoelectric materials, the application of mechanical stress produces an

electric polarization proportional to the stress and changing direction with it (direct

piezoelectric effect); similarly, an applied electric field deforms the piezoelectric

body, i.e. produces strain (converse piezoelectric effect). This phenomenon,

experimentally discovered by the brothers Curie in 1880, is observed in sorne

noncentrosymmetric ionic crystals, whose lattices of positive and negative ions are

deformed differendy under the action of extemal forces, thus leading ta a

separation of negative and positive charges. A straightforward application of

piezoelectricity consisted in estimating pressure by rneasuring electric charges

accumulated on the surfaces of the crystal. The piezoelectric effect was utilized in

this minor way until Langevin proposed to use the mechanical resonance in quartz

plates excited by an altemating electric field to generate ultrasound. Although as

ultrasound transducers quartz crystals were subsequently abandoned in favor of

stronger piezoelectrics, they still rernain, due to their unique mechanical and

electrical properties, irreplaceable for controlling stable ftequency oscillators and in

selective ftequency filters. Besides being universally used in telecommunication,

piezoelectric resonators serve as timing elements in MOst clocks, watches,

microprocessors, and computers. Their charaeteristics such as a high quality

factor, broad range of operating ftequencies, time and temperature stability of

parameters, small size, and low fabrication oost far exceed that of other types of

electromechanical resonators or Le circuits. Piezoelectric materials have also been
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2 Introduction

widely used in sensors and aetuators, in transducers for medical imaging and

nondestruetive evaluation, in acousto-optic delay lines, and in various surface

acoustic wave devices. Most of the experimental and theoretical papers reporting

progress in these fields are published in the IEEE Transactions on Ultrasonics,

Fe"oelectrics, and Frequency Control (formerly IEEE Transactions on Sonics

and Œtrasonics), the Proceedings of the Œtrasonics Symposium and the Annual

Symposium on Frequency Control.

The wide frequency range - from a few kilohertz ta a gigahertz - is achieved

by a great variety of piezoelectric device designs. In modem engineering, their

development is often aided by computer simulation, typically used ta prediet the

mechanical and electrical behavior of the piezoelectric device, to optimize its

design, to evaluate new crystalline materials and ta study new types of devices.

The simulation of a piezoelectric device implies finding an approximate distribution

of mechanical and electrical fields in the domain of interest, and recasting it in
terms of praetically important parameters. The mechanical and electrical fields are

govemed by the system of piezoelectrically coupled elastic equations of motion

and Maxwen's equations of electromagnetism, and satisfy the imposed mechanical

and electrical conditions. As any model of a real system, the piezoelectric

boundary-value problem is typically based on some simplifying assumptions, made

about the piezoelectric continuum (linearity, perfeet insulation, absence of

acoustical and electrical lasses) or boundary conditions (perfectly conductive and

intinitesimally thin electrodes, stress-free boundaries). One of the commonest

assumptions consists in neglecting the eleetroquasistatic field distribution outside

the piezoeleetric crystal. Surely, ignoring the electric flux propagation through the

uncovered surfaces of the piezoeleetric is justified when the dieleetric permittivity

of the material E is much greater than that of free space as in the case of

piezoelectric ceramics; however, this condition does not hold for ManY crystals,

particularly those used in high precision frequency control. Therefore, the

approximation of a zero nonnal electric flux at the piezoelectric-air (vacuum)

interface can introduce a signiticant error in the models of piezoelectric devices.

The aim of tms thesis is to develop a solution of the piezoelectric boundary-value

problem that takes into account the nonzero electric flux leakage.

The problem of modeling tinite regions surrounded by infinitely extending free

space are frequently encountered in computational electromagnetics, and are
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referred to as open-boundary or unbounded problems. In ract. the idea to

fonnulate and solve the piezoelectrie problem with OPen electrie boundaries arose

trom a random visual association between the cross-section of a microstrip

transmission line on a dielectrie substrate and the cross-section of a strip-shaped

piezoelectrie resonator. A review of the literature (Chapter 2) showed that

previous attempts to extend the problem domain beyond the boundary of the

piezoelectrie body were limited to the simplest one-dimensional models of

extensional vibrations of piezoelectrie rods; the extension of existing one­

dimensional models of thiekness vibrations to include the exterior field was

developed as a by-product ofthis review. Although many conventional devices are

weil approximated by one- or two-dimensional models, with the modem tendency

towards miniaturization, the use of composite materials and higher trequencies,

MOst practical configurations require a fuR three-dimensional treatment. A

numerical solution based on the three-dimensional finite element approximation of

the coupled elastie and electrie fields is developed in Chapter 1 and 3. Finite

elements are weil suited for piezoelectrie problems because of their capability to

handle anisotropie domains of complex shapes and complicated boundary

conditions; moreover, special elements and techniques exist that model infinitely

extending exterior regions. Sïnce the algebraic equations resulting trom the three­

dimensional finite element discretization of the interior and exterior regions are

very large, their solution required implementation of special data structures and

modifications in existing numerical algorithms (Chapter 4). The etrect of the

electrie field leakage on the statie and modal solutions is iIlustrated on a variety of

example problems (Chapter 5), involving different piezoelectrlc materials, crystal

shapes, and electrode configurations.
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The piezoelectric boundary-value problem

1. Introduction
This chapter was designed to provide the necessary theoretical background

for the finite element analysis of the piezoelectric problem with open electric

boundaries. Because no particular application bas been aime<!, the problem is

formulated in the most general fonn of three-dimensional differential and

projective piezoelectric equations. The latter is subsequendy used to obtain the

system of finite element equations, while the variational formulation is presented

here as an alternative, and physical1y more meaningful, way ofderiving them. The

equivalent impedance and admittance representations, discussed at the end of this

chapter for a general piezoelectric vibrator, a1low the finite element approximate

solutions to be recast in terms of lumped electrical pararneters, thus providing a

bridge to electric circuit analysis techniques.

A few points should be observed about the notation. In this chapter, ail

physical quantities are represented by bold face letter symbols, rather that indexed

components. Dots and colons denote ordinary and double scalar products (i.e.

sununation over one and two subscripts respectively); the Hamilton (V) notation is

used to symbolica1ly represent di1ferentiai operations. Customary in modem

electromagnetics, the described fonnalism is rarely employed in elasticity, where

the trend is towards tensor subscript notation. One of the reasons for this is that

symbolic notation fails to discriminate between vectors and tensors ofhigher rank,

i.e. the rank of a variable cao be established from ilS physical identity only.

Nevertheless, this inconvenience was found to be outweighed by the compactness

and clarity resulting from the reduced amount of detail in symboüc notation. This

is particularly important given the concurrent system of variable subscripts arising
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ftom the finite element discretization. Additionally, this formalism makes the

analogy between electromagnetic and elastic quantities more explicit. Therefore,

following Auld (1990a) who promoted its use in piezoelectric theory, ail quantities

and equations are written out and manipulated in symbolic notation. The subscript

notation - full and abbreviated - appears in later chapters as more detailed

calculations become necessary.
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z. Governing equatioDs ofpiezoeiectromapetislD

The state of a piezoelectric body is characterized by the interaction of
acoustical and electromagnetic fields govemed by the elastic equation of motion

(or equilibrium) and Maxwell's equations respectively. Mechanical and

electromagnetic variables are coupled through the piezoelectric constitutive

equations. Together with the field equations they form the goveming equations of
piezoelectromagnetism. This system is accompanied by the interface mies, used

subsequently to derive boundary conditions required for the solution of the
piezoelectric boundary-value problem.

2.1 Field equations

Acoustic and electromagnetic fields in an insulator cao be described by the
following basic state parameters:

mechanical displacement u
mechanical stress T
mechanical strain S
electric field intensity E
electric flux density D
magnetic field intensity H
magnetic flux density B

meter,
newtonlmet~ ,
unity,
volt/meter,
coulomb/meter,
amperelmeter,
weber/mete~ .

(2.1)

•

AlI parameters are funetions of time t and Cartesian position vector r. As is weil
known from the mathematical theory of elasticity (Love, 1926), the mechanical
variables are related by the stress equation ofsmall motion1

tflu
V·T+F=p ôtJl'

where p is the mass density, and F is the body force per unit volume; and the
compatibility equationfor strain

V x S x V = o. (2.2)

1 For a general displacement II, the total tilDe derivaûve d2u/dt2should be used in the
inertia force term in (2.1). However, for infinitesimal cleformations, a particle remains
close to the mean position and one can approximate the total tilDe derivative by cPu/8t?-.
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Note that in Eq. (2.2), symbol S x V denotes the conjugate curl of the diadic S,

Le. EikjÔSIcI/ÔZj, where ~ikj is the a1ternating tensor (Chou and Pagano, 1967).

Electric and magnetic quantities adhere to the system of Maxwell's equations,

written here for noncondueting media (i.e. J - the electric cuneot density - is

set ta zero),

ôB
VxE=-- (2.3)

Bt'

V·B=O, (2.4)

ôD
VxH=- (2.5)

ôt'

V·O=p (2.6)e'

where Pe is the electric charge density.

Equation (2.1) is the differential form of the balance of Iinear momentum

equation. The stress tensor T should a1so obey the conservation law ofthe angular

momentum (Tiersten, 1969); in its differential form this requirement results in the

syrnmetry condition for the stress tensor T:

(T) = 0, (2.7)

where (T) denotes the rotation vector ofT (Nadeau, 1964). The symmetry of the

strain teosor S foUows from its definition as the symmetric part orthe dyadic Vu:

1
S = 2(Vu + uV) (2.8)

•

with uV (ÔUj/ÔZi) denoting the transpose of Vu (ÔUï/ÔZj), Le. the conjugate

gradient of u. The strain S in (2.8) satisfies identically the compatibility equation

(2.2), and cao be seen as its general solution; in tum, Eq. (2.2) can be interpreted

as the integrability condition for (2.8). Similarly, the electric field cao be derived

from the magnetic vector potential A and the electric scalar potential cp:

BA
E = - ôt - Vep, (2.9)
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50 that (2.9) identically satisfies the first pair ofMaxweU's equations2. Il should be

noted that neither the mechanical displacement u nor potentials A and cp are

unique, Le. any constant cm be added to them without eff'ect on S and E.

2.2 Constitutive relations
The constitutive relations describe the macroscopic properties of the

piezoelectric medium, and represent an additional set of relationships between

acoustic and electromagnetic field variables. These relations foUow from the first

law ofthermodynamics

dU = 6Q+6W, (2.10)

(2.12)

that postulates the existence ofthe internai energy density function U(8, S, D, B),

with 8 denoting the absolute temperature. The variation dU is given by the sum of

the beat 6Q transmitted to unit volume and the elementary work c5W done by

applied mechanical, electrical, and magnetic forces:

6W=T:dS+E·dD+H·dB. (2.11)

For an adiabatic system (6Q = 0)

au au au
dU= as :ds+ aD ·dD+ aB ·dB

cao be equated with «5W, tbus producing the first group ofconstitutive relations:

T= (~~)~B' E= (:~)u' H= (:~)~D' (2.13)

To use other sets of variables (different from S, D, B) as tbe independent ones,

new thermodynamic functions bave to be defined3:

G = U - S : T - E . D, (2.14)

•
2

J

Traditionally, the system ofmecbanica1 equatioDS is made up from Eqs. (2.1), (2.7) and
(2.8). Here, the compatibility condition for S (2.2), not its detinition (2.8), wu used as a
basic equation. This bas been done for the sake of analogy with electromagnetic theory,
where it is more customary to consider E in (2.9) as a general solution of.Maxwell's
equatiODS rather than viewing (2.9) as the definition ofE, and deducing (2.3) and (2.4)
from it (e.g. Landau and Lifshitz, 1968).
Because ooly nonmagnetic materials (i.e. B = PoB) will be considered further. the
produet ft . B is not included in the thermodyDamic functiODS.
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G 1 = U -S: T,

G2 = U -E -D,

9

(2.15)

(2.16)

that under isothennal conditions (dB = 0) have the meaning of the Gibbs free,

elastic and electric enerKY funetions respectively. These functions give rise to

three other sets ofconstitutive equations:

T= (8G2
)as E'

o=_(aG)
8E T'

E = (
8GI)
ôD T'

D = _(8G2 )
BE s'

(2.17)

(2.18)

(2.19)

that use (T, E), (T, D), and (8, E) as independent variables.

Which system is preferable depends on the particular boundary-value problem

to be solved. Because the piezoelectric boundary conditions are more often given

in tenns of displacement u and potential cp, relations (2.8) and (2.9) privilege the

set ofvariables (S, E). Assuming that one deal with a linear piezoelectric medium,

the appropriate thermodynamic fiJnction - the Gibbs electric energy - is

constructed as a homogeneous quadratic fonn

G2 = i s : cE : S - E . e : S - i E . eS . E, (2.20)

transfonning the constitutive relations (2.19) ioto

T = eE
: S - E - e, (2.21)

(2.22)

•
For nonmagnetic rnaterials Eqs. (2.21) and (2.22) should be supplemented by

B = PoH, (2.23)

where Po is the penneability offtee space. The introduced coefficients are the
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elastic stiflhess tensor at constant electric field cE = (Ci;I") newtonlmeter2,

piezoelectric stress tensor e = (e.;k) coulomb/meter2,

permittivity tensor at constant strain ES = (€i;) farad/meter,

(2.24)

where subscripts i,j, k, 1 in the index notation ofmaterial tensors run trom 1 to 3.

Their symmetry properties

Ci;kl = Cïjlk = Cjikl = Cklij, }

~;k =~j,

€i; = €ji

follow ftom the symmetry of tensors T and S, as weU as trom the independence of

G2'S second derivatives with respect to S or E ofthe order ofditrerentiation.

2.3 Interface conditions

The interface conditions for field variables are derived by integrating

differential equations (2.1}-{2.6) over the surface (divergence equations) or loop

(curl equations), enclosing an area or a boundary belonging to the discontinuity

surface. Consequently, there are two mechanical and four electromagnetic

conditions that must hold at the interface between two distinct materials. Ifby D

one denotes the unit normal vedor directed from medium 2 into medium l, the

boundary rules cao be written as foUows:

•

normal stress T (the traction force) is continuous,

D' (Tl - T2 ) = 0;

tangential strain S is continuous,

D x (SI - ~) X D = 0;

normal electric flux D is discontinuous by the surface charge density CT,

D • (Dl - ~) = fT;

tangential electric field E is continuous,

ft x (El -~) = 0;

normal magnetic flux B is continuous,

(2.25)

(2.26)

(2.27)

(2.28)
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(2.29)

tangential magnetic field ft is continuous at the interface between two

nonconducting medi~

Taking into account expressions (2.8), (2.9) and the relation

B=Vx~

(2.30)

(2.31)

a similar integration of Eqs. (2.2) and (2.3) leads to the condition of continuity

across the material interface of the displacement u, scalar potential t/J and

tangential vector potential A:

(2.32)

(2.33)

(2.34)

•

These interface conditions for field variables and potentials will be used to derive

conditions at the extremities of the piezoelectric boundary-value problem after

choosing the boundary shape.
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3. Wave equatioDs
As shown in the previous section, the interaction between acoustic and

electromagnetic fields in a piezoelectric body cm be descnDed by a system of six

equations, Le. Eqs. (2.1}-{2.6), in two mechanical variables S and T, and four

electric variables E, D, H, B, ail coupled by linear constitutive relations (2.21)­

(2.23). For praetical reasons it is desirable to reduce the number of equations and

variables involved in the solution. One way of simplifYing the boundary-value

problem is to eliminate unnecessary variables by substituting constitutive relations

in the system of field equations, and, therefore, to fonnulate the problem in terms
ofwave equations.

3.1 Coupledfieldwoves equations

The MaxweU curl equations (2.3) and (2.5) cao be combined into a single

difFerential equation of second order in E and 0 by eliminating magnetic vector

variables B and R:

~D
V x V x E = -J1.o ai?- . (3.1)

(3.2)

The substitution of Iinear constitutive relations (2.21}-{2.23) into the stress

equation of motion (2.1) with no body forces (F = 0) and into Eq. (3.1) yjelds the

system of nonhomogeneous piezoelectric wave equations (Auld, 1990a) involving

ooly two vector fields u and E:

V· (CE: Vu) - p ~; = V· (E· e)4,

s azE ;Y-u
V x V x E + J1.oE • at,2 = -/l1)e : V ai?- . (3.3)

•

For nonpiezoelectric rnaterials (e = 0) the system faUs into two independent wave

equations for u and E alone, goveming the propagation of purely elastic and
purely electromagnetic waves in an anisotropie crystal; otherwise, the two wave

equations are coupled by the piezoelectrie 'source' terms V· (E· e) and

4 The symmetry of the stiffiJess tensor e permits the double scalar dyadic produet
cE : S = cE : (Vu + .V)/2 to be simply recast as cE : Vu.
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-JJoe: V(tY-u/Bt2), and their solutions cao he regarded as hybrid acousto­

electromagnetic waves, having both the acoustic and electromagnetic field

components. More specifically, the solutions of (3.2) and (3.3) are the acoustic

waves propagating at speed V and accompanied by electromagnetic field - the

'slow' acousto-electromagnetic waves, as weU as an electromagnetic wave

propagating at speed v ~ lOsV and accompanied by mechanical defonnation ­

the 'fast' acousto-electromagnetic wave (Baranskii, 1991; Dieulesaint and Royer,

1974). Because piezoelectric devices are conceived on the basis of either elastic

wave propagation or resonance, attention will be subsequently focused only upon

acoustic solutions of the piezoelectric wave equations which are considered in

more detail in Section 3.3 ofthis chapter.

3.2 Potential wave equations

An alternative approach to simplifying the obtained wave equations is to

formulate the problem in terms of potentials rather than fields themselves.

Substituting (2.23) and (2.31) ioto the MaxweU's curl equation (2.5) for H gives a

wave equation in A

ôD
V x V x A= II_­

ru ôt' (3.4)

similar to (3.1). The piezoelectric tenn in the constitutive relation for D (2.22)

couples (3.4), which cao be rewritten in this case as

ôu s ôE
V x V x A = Poe : V ôt + PoE . ôt' (3.4a)

to the acoustic wave equation (3.2). The electric field E may be eliminated from

both the acoustic (3.2) and electromagnetic (3.4a) wave equations, by substituting

its value as derived trom the potentials (2.9). The resulting system of

nonhomogeneous potential wave equations in u, cp, and A

•
E (fu (BA )V . (c : Vu) - p éJt2 = -V· (Vrp· e) - V . ôt· e

s (fA s Bep ôu
V x V x A + 1J.oE • éJt2 = -JI.oE . V ôt + Iloe : V ôt

(3.5)

(3.6)



• 14 l The piezoelectric bcnmdory-value problem

•

can he used as an alternative to (3.2) and (3.3), especially when the boundary

conditions are given in potentials rather than fields.

To fully define the veetor potential A in a finite region of space, both its curl

and divergence need to he specified. Equation (2.31) fixes oRly the cori ofA, while

the divergence of A is typically given by some gouge condition (Silvester and

Fe~ 1996). It is appropriate in the present case to use the gauge (Auld, 1990a)

V . (eS .~) = 0; (3.7)

substituted into (2.6) with no body charge (Pe = 0), it produces an equation in u

andq;:

V· (e: Vu - €s . Vq;) = 0, (3.8)

thus decoupling potentials A and cp. Variables u, A, and cp are now uniquely

determined trom the system fonned by the pair of coupled wave equations

(3.5}-(3.6), and the supplementary equation (3.8). The latter cao be used to

eliminate the potential cp from the system by expressing it in terms of mechanical

displacement u. Substituted into Eqs. (3.5) and (3.6), it produces an acoustic wave

equation for u with a source tenn in A_ a10ne and an electromagnetic wave

equation for A with a source tenn in u a1one. Borrowing the terminology trom

electromagnetics, the vector potential A produced by the gauge (3.7) May be

referred to as the modiftedvector potential (Webb, 1995).

With tbis choice ofgauge (3.7), the interface conditions (2.34) applicable to A

must be supplemented by the requirement of the continuity of the normal
components of (ES . A) across the boundary:

D· (Ef . Al - ef .A2) = O. (3.9)

This implies that at the interface between two regions with different pennittivities
(ef :/= 4) the normal component of A is discontinuous. The tangential

components of A, as weU as the scalar potential cp, remain continuous under any

choice ofgauge.
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•

3.3 Coupled-wave behavior

The representation of electric field E in terms of vector A and scalar fj)

potentials bas yet another advantage: it aIlows separating E into rotational
V x E(r) =1 0 and irrotational V x E(i) = 0 parts

E = E(r) + E(i). (3.10)

Now, the contribution ofthese two ditrerent types ofelectric fields that aceompany

the propagation of an acoustic wave in a piezoelectric medium - the rotational
field E(r) = -aAjat, which is the characteristic ofelectromagnetic waves, and the

irrotational, or potential, field E(i) = -Vcp, which is associated with the static

bound electric charge distnDution - cao be considered individually.

According to the constitutive relation (2.22), the mechanical strain S (2.8)

associated with a u-polarized acoustic wave (Fig. 1.1) contributes through the

piezoelectric part nP = e : Vu ofthe total electric tlux density

D = DP + DEt'r) + DEt'i), (3.11)

where the last two terms constitute the electric contnoution E· eS to D from

rotational and irrotational electric fields respectively. From the system of wave

equations (3.6), (3.8) one can see that vector nP is responsible for generating an

electromagnetic wave, characterized by the vector potential A, through the source
tenn Po (aDP j ât) = Poe: V (aujât) in (3.6):

a'-A aDEt'à) BDP

V x V x A + Poe
s

. ail = J.'o at + Polit' (3.12)

as weil as a scalar potential wave, characterized by fj), through the 'charge'

V· oP = V· (e: Vu) in (3.8):

V· (es. Vcp) = -V· DP . (3.13)

The latter, piezoelectrically induced scalar field, cao a1so contribute to the

generation of an electromagnetic wave through the source tenn
Po (aoE.'à) jât) = -J.'oES • V(Bfj)jat) in (3.6). In tum, the rotational and

irrotational electric fields may alter the mechanical displacement u by means of
'body forces' V· T(i) = -V . (Vcp· e) and V· T(r) = -V . «BAjôt) . e) in

(3.5):



• 16 1 The piezoeleetrie boundory-value problem

V. (CE: VU) - p~ = V· '('lil + V· '('lrl, (3.14)

thus coupling the acoustie wave with the statie electrie and electromagnetie fields.

•

Fig 1.1 Electromagnetic wave and bound electric charge distribution associated with a

u-polarized acoustic wave propagating in the direction given by the unit vector m.

FinaIly, when DP reduces to zero, the displacement field u is not coupled to

any type of electrie field, and the piezoelectric hybrid wave degenerates into a

purely acoustic one.

3.4 Quasi-statie approximation

A very important case of the solution of coupled wave equations in the
form ofuniform plane waves bas been considered in Appendix 1. These results are

used here to introduce the quasi-statie approximation in the piezoelectrie

boundary-value problem formulation. The anaIysis of mechanical charaeteristies of

uniform plane waves demonstrated that the piezoelectrie coupling between

acoustie and electromagnetie waves is negligible in comparison with the effect of
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piezoelectric stiffening, i.e. the coupling between the acoustic wave and the

irrotational electric field. Equations (1.10) and (1.12) ofAppendix 1 cao be used to

show a similar result for electric charaeteristics ofcoupled waves:

(3.15)

which proves that the rotational electric field in the quasi-acoustic wave is much

weaker than the potential field in the stifFened wave:

Il:Il « IIVY'II (3.16)

•

Consequently, the varying magnetic flux B, created by the rotational electric field

(2.3) propagating with acoustic velocity V, is negligible, and cao be dropped,

along with the magnetic field R, from the system of Maxwell's equations.

Therefore, under assumption (3.16), the electric field is considered as being

entirely irrotational E = E(i), in the sense that it cao be derived from the scalar

potential VJ alone, as in electrostatics, and treated as satisfying the static field

equations exactly. This field is not purely static but e/ectroquasistatic because of

the coupling with the time-varying acoustic wave. Thus, onder the quasi-static

approximatio~ the quasi-acoustie wave is regarded as nonpiezoelectrie, or purely

acoustie, while the stiffened acoustie wave (1.13) of Appendix 1 satisfies the

quasi-statie approximation exaetly.

Although derived for uniform plane waves, assomption (3.16) cao clearly be

applied to most piezoelectrie boundary-value problems. In problems dealing with

wave propagatio~ the quasi-starie approximation is justitied by invoking the faet

that acoustie and electromagnetie velocities differ by approximately five orders of

magnitude. When piezoelectric resonance is considered, the same argument is

typically given in terms of wavelength: the quasi-static approximation is valid

because the elastic wavelength A, defined by the eharacteristie dimension of the
bounded regio~ is much smaller than the electromagnetic wavelength À ~ 105A of

the same frequency (Tiersten, 1969). In either case, the quasi-statie approximation

simplifies the fonnulation ofthe problem by alIowing the magnetic vector potential

A to be dropped from the system ofwave equations.
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(4.1)

4. Differentiai formulation
In the previous two sections, the basic equations ofpiezoelectromagnetism

were introduced both in the fonn of field equations coupled by piezoelectric

constitutive relations, and piezoelectric wave equations. It was a1so demonstrated

that the quasi-static approximation, wbich considerably simplifies the problem by

eliminating magnetic variables, is valid for the acousto-electromagnetic interaction
in piezoelectric media. To complete the fonnulation of the piezoelectric boundary­

values problem, it remains now to detine the boundary shape and boundary

conditions for field variables. The static and time-hannonic problems will be
developed as specializations ofthe general problem given below.

4.1 Finite piezoe/ectric body with open e/ectric boundaries

Consider a piezoelectric body of volume V, bounded by surface S, and

surrounded by vacuum (or air) occupying the space V, as shown in Fig. 1.2. Let D

be the unit nonnal vector pointing outward. In the absence of volume forces
(F = 0) and volume charges <Pe = 0), Eqs. (2.1) and (2.6) governing field

variables T and D inside the volume V cao be written as follows:

V . T = p 8'-u in V
ôt2 '

V·B = 0 in V. (4.2)

The mechanical strain S, as given by (2.8), and the quasi-static electric field E are

directly expressed as spatial variations of the mechanical displacement u and scalar

electric potential cp r!spectively:

S = i<vu + uV) in V, (2.8)

E=-Vcp inV+V. (4.3)

•
Constitutive equations (2.19) relates ail four field variables by means of the Gibbs

electric energy potential G2 :

T = (8G2 ) = _(aG2 ) • Vas E' B BE sm .
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•
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Fi11.2 Piezoelectric body in unbounded fn:e space.

Outside V - in V - it is assumed that ail mechanical variables vanish identically.

The electric vectors D and E are govemed by Eqs. (4.2) and (4.3) which are

coupled through the constitutive equation

D = €oE in V, (4.4)

where €o is the permittivity of the free space. Combining Eqs. (4.2) and (4.3), one

obtains Laplace's equation for the electric potential in the outer space V:

V2fP = 0 in V. (4.5)

To construet the boundary-value problem, mechanical and electric boundary

conditions must be specified at every point of surface S. However, for electrical

variables, the boundary S is, rather, an interface between the piezoelectric medium

and the vacuum; an artificial boundary Soo (Fig. 1.2), that models the electrical

extremities of the problem domain, must a1so be considered. Both the mechanical

and eleetrical boundary conditions are derived ftom the interface conditions

(2.2S}-(2.28). They cao be stated either in terms of prescribed surface tractions i
and charges u - the Neumann boundary conditions:

D • T = i on Si, (4.6)
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D· [D] = u on Sq, (4.7)

where [D] stands for the jump in the electric flux density vector (DV- DV )

across S, or in tenns of prescribed surface displacements u or electric potentials cp

- the Dirichlet boundary conditions:

u = u on Siï,

cp = cp on S;p,

(4.8)

(4.9)

(4.10)

where parts Si and Sü, Sq and S'fi constitute the surface S: Si U Sü = S and

Sq U S'fi = S, but do not overlap: Si n Siï = 0 and Sq n Sfi = 0.
For linear piezoelectric materials equations (4.1) and (4.2) cao be written more

economica1ly in the fonn ofwave equations:

V . (cE : Vu) + V . (V", . e) = p ':; in V,

V· (e: Vu) - V . (Vcp· ES) = 0 in V. (4.11)

Similarly, the Neumann boundary conditions (4.6)-(4.7) may be expressed directly

in mechanical displacement u and electric potential cp:

D· (cE: Vu + V'cp. e) = i onSi, (4.12)

D· [e: Vu - Vcp· (ES - EoI)] = -u on Sq. (4.13)

The set of boundary conditions will be complete if one assumes that E and cp

vanish at large distances trom S, i.e. on Soo:

lim E = 0,
r-oo

lim cp = o.
r-oo

(4.14)

(4.15)

•
The solution of the stated piezoelectric problem with open e/ectric boundoriesS

consists in finding the distribution of the mechanical displacement u(r,t) in the

When the piezoelectric boundary-value problem is regarded as a closed bOllndary
problem, D and E are set to zero in V, and the boundaly condition (4.7) transforms into
ft • DV = Ci on 571•
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region V bounded by the surface S and of the electric potential f{) (r,t) in the

infinitely extending region V UV, satisfYing the goveming equations in V and V,
and boundary conditions imposed on S and Soo. In general, the initial conditions

for u, aulât, f{), Ôf{)1ôt need also to be specified at ail points of the body; in

practice, for the two common problems considered below, their explicit imposition

can be avoided.

4.2 Static problem

The static problem can be derived nom the general formulation by

assuming that the mechanical and electric field variables, as weil as boundary

conditions, are time-independent. The equilibrium equation is obtained tram the

equation ofmotion (4.1) by setting the inertia force to zero:

V· T = 0 in V. (4.16)

The remaining equations given in the previous section still hold as do boundary

conditions (4.6)-(4.15), where the driving terms i, fT, U, and f{) are now constant in

time.

The boundary conditions can be further simplified to fit practical boundary

configurations. Typically, the piezoelectric body is supported in such a way that its

surface is traction-nee, i.e. the mechanical boundary conditions are given as

ft • T = 0 on S, (4.17)

or, in tenns ofmechanical displacement and electric potential,

ft . (CE : Vu + V f{) • e) = 0 on S. (4. 17a)

•

The piezoelectric body is assumed to be partially covered by one or several

electrodes, occupying a portion ofthe surface Se, as shawn in Fig. 1.3.
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Figl.3 Partially plated piezoeledric body in unbounded Cree space.

This partition is relevant for the electrical boundary conditions ooly since the

electrodes are considered to be infinitesimaUy thin and their mechanical properties

nonexistent. Assuming that these electrodes behave as perfect conductors, it

becomes possible to rewrite conditions (4.7) and (4.9) in terms of the total electric
charge Q:

rD.[D)dS=Q, (4.18)Jsc

and ofthe electrode potential CPe:

cp = CPe on Se (4.19)

•

respectively. Which of these boundary conditions should be used depends on the

way the electrical energy is supplied to the driving electrode: the former is

employed for a current source, while the latter for a voltage source. For linear

materials, [Dl in (4.18) can be expanded to yield

rD' [e: Vu - V<p· (ES - EoI)] dB = -Q. (4.20)Js.
On the remaining, ftee of plating, part of the surface Su, the continuity

conditions for the normal electric flux density and the electric potential apply
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v DYD • D = D • on Su,

rpV = cpY on Su.

(4.21)

(4.22)

As before, for Iinear materials condition (4.21) may be expressed in tenns of

mechanical displacement u and electrie potential cp:

D • (e : Vu - Vcp . ES) = -8· Vcp EO on Su. (4.23)

Boundary conditions (4.14) and (4.15), that force the potential and its normal

derivative to vanish on 8 00 , must also be added ta complete the fonnulation of the

statie boundary-value problem. The latter consists in finding the distnoutions u (r)

and cp (r) in the piezoelectrie body in the state of equilibrium under the action of

statie voltages or statie electrie charges applied to the electroded parts of the

traction-free surface S.

4.3 Time-harmonic problem

Another practically important type of boundary-value problem arises trom

the assumption that the displacement vector u and the scalar potential cp cao be

represented as products of two factors, one depending ooly upon the position

vector r and the other - ooly upon time t:

where the generie symbol J replaces either u or cp. Sueh a partition is possible for

piezoelectric material with linear and time-invariant properties, 50 that the

remaining field variables (T, S, E, D), derived from u and cp, cao also be

represented as (4.24). Indeed, substituting u in the fonn of(4.24) ioto the aeoustie

wave equation (4.10), and separating space- and time-dependent members, yields a

time-harmonie solution for j(t): j(t) = e%U, where w is the angular frequency.

Therefore, u(r,t) and cp (r,t) cao be sought as real parts of U(r)e±iwt and

~(r)e±iwt respectively, with spatial parts Uer) and ~(r) obeying the foUowing

differential equations:

•

J(r,t) = X(r)j(t),

v . (cE: VU) + V . (VcJ . e) +~U = 0 in V,

(4.24)

(4.25)
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V2~ =0 inV.

(4.26)

(4.27)

According to the type of boundary condition, time-harmonic problems can be

subdivided into eigenvalue and deterministic. The former corresponds to free

vibrations of the piezoelectric body depicted in Fig. 1.3, the latter to forced

vibrations. The solution of an eigenvalue problem, a1so referred to as a resonance

problem, consists in tinding the proper ftequencies w" (eigenftequencies) as well as

the associated proper funetions (U", ~,,) (eigenfunetions) that satisfy Eqs. (4.25)­

(4.27) and homogeneous boundary conditions. As in the static case, the present

fonnulation will he restricted to piezoelectric bodies with traetÏon-ftee surfaces.

This implies that the mechanical Neumann boundary conditions are a1ways

homogeneous on the entire surface S and given by Eqs. (4.17) or (4. 17a). Keeping

in mind that zero boundary conditions have been imposed on the outer surface Soo,

one cao conclude tbat it is the zero electrical boundary conditions on Se that set up

conditions for ftee piezoelectric vibrations. Depending on which variable is zero on

Se, one cao distinguish at least two types of resonance: the first occurs when the

electrode potential is set to zero:

'Pe = 0 on Se, (4.28)

while the second takes place for the zero total charge Q:

Q = 0 onSe . (4.29)

•

Finally, the continuity of the normal electric flux (4.21) and electric potential

(4.22) must be preserved across Su, the unelectroded part ofS.

Other eigenvalue problems can arise if the surface of the piezoelectric

resonator (Fig. 1.3) is covered by more than one electrode, namely, those where

zero potential is specified on some electrodes and zero total charge on the

remainder. Note that for a piezoelectric problem with closed electric boundaries

the reference potential cao he associated with any ofthe electrodes. In this case, an

eigenvalue problem is detined if a certain number ofelectrodes are short-circuited

(zero potential), while the remainder are open-circuited (zero total charge) (Lloyd,

1967).
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•

Deterministic, or drïven, problems require non-homogeneous electric boundary

conditions that must allow the separation of time and space variables, Le. Q = Q

e±w or CPe = ~e e±i...t must be applied to Se. However, there is no need to

explicidy solve a deterministic problem for every w. Because the eigenfunctions
(Ua, ~a) farro an orthogonal set (Lewis, 1961; Lloyd, 1967), forced vibrations of

a piezoelectric body can be expressed in tenns of the eigensolutions Wa and

(Un, Wn ), associated with any ofthe eigenvalue problems mentioned above. Such
a representation is discussed in Section 7 ofthis thesis.
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S Projective fOnDulation

The stated piezoelectric boundary-value problem can a1tematively be

represented in the form of projective equations. Projective formulations have the

advantage of leading to approximate solutions that possess weaker continuity

properties and fewer boundary constraints than those associated with differential

formulations. Projective approximation techniques, and particularly Galerkin's

approach, fonn the mathematical basis for the finite element method, adopted in

this thesis to derive a numerical solution for the piezoelectric problem. A1though in

piezoelectricity the traditional approach to finite element anaIysis is variatio~ in

this chapter, priority is given to the projective formulation since it allows the

solution to be constructed without recourse to any variational principle.

5.1 Weak approximation to the solution ofthe generalpiezoelectric boundory­

value problem

For equations (4.1) and (4.2) to hold in a weak sense, their left and right

sides must have equal inner produet projections onto any vector w E W3 and

scalar 8 E W functions respectively:

r(V .T) ·wdV = rp {fu ·wdV, Vw E W3 (5.1)
lv lv !Jt2

r _(V . 0)8 dV = 0,
lv+v

V8 EW (5.2)

(5.4)

(5.3)

r _V.(D8)dV=- ( n·[D]8dS- ( n·D8dS.
lv+v Js Jsoo

where W is a Hilbert space fonned by square-integrable functions. This

formulation allows the ditrerentiation operator V to be transferred trom the

unknown fields variables T and 0 to the chosen functions w and 8, thus relaxing

the differentiability requirements for fimctions used to approximate the u- and cp­

field distributions. This operation is accomplished by applying the divergence

theorem to volumes V and V + V-

I V·(T-w)dV= LaoTowdS,

•
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Since the electric field vanishes at infinity, the integral over Soo cao be dropped

from (5.4), simplifying it to:

r _V. (D8) dV = - rD' [Dl8dS. (S.S)lv+v Js
Expressions (S.3) and (5.S) cao be transformed by means ofthe foUowing product

ditrerential rules

into

V . (T . w) = (V . T) . w + T : vw6,

V· (D8) = (V· D)8 + D· V8

(S.6)

(S.7)

•

Iv (V' -T) -wdV + Iv T: V'wdV = L a-T-wdS, (5.8)

r _(V. D)8dV + f _D· V8dV = - f D' [Bl8dS, (S.9)lv+v Jv+v Js
allowing equations (5.1) and (5.2) to be rewritten as

IvT:V'WdV+ip~ -wdV= LaoT-WdS. (5.10)

f _D. V8dV = - rD' [Dl8dS. (5.11)lv+v ls
A similar system of projective equations has been obtained for the piezoelectric

problem with closed electric boundaries by Naillon et al (1983). The present

fonnulation is extended to include the extemal electric field by taking the volume

integral in (5.11) over the entire space V + V and replacing the electric flux D in
the surface integral by its jump [Dl across S. For linear piezoelectric materials, the

substitution ofconstitutive Eqs. (2.21)-{2.22) makes Eqs. (S.IO) and (5.11) into a

projective version of the piezoelectric wave (4.IO)-{4.11) and Laplace's (4.S)

equations:

6 The symmetty oftensor T is implicidy assumed.
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[(~: Vu+Vrp·e): VwdV + [p~ ·wdV

=LD· T· wdS, (5.12)

[ (e: Vu - Vrp· ES) . V8dV - €() IvV<p . V8dV

= - LD • [D]8dS. (5.13)

(5.14)

To develop a numerical solution of (5.12)-(5.13), the unknown mechanical

displacement uer) and electric potential cp(r) are approximated by the basis, or

trial, functions {cri(r)1 i = 1, ...,N} and {cr~(r)1 i = 1,...,N'} respectively. Tbese

functions form the spanning sets ofN- and N'-dimensionallinear subspaces ofW:

N

uer) ~ LUi criCr), r E V,
i=1

N'

cp(r) ~L cp, cr~(r), r e V + V,
i=1

(5.15)

with vectors Ui and sca1ars CPi in the role of the numerical coefficients to be
determined trom the solution. Similarly, functions w(r) and 8Cr) may be expressed
as Iinear combinations ofweighting', or testing, funetions {~j(r)1 j = 1,...,M} and
{,Bj(r)1j = 1,...,M'}, spanning M- and M'-dimensional Iinear subspaces of W

respectively:

M

w(r) ~ L Wj ~j(r), r E V,
;=1

M'

8 (r) ~ L8j ,8j(r) r EV + v.
;=1

(5.16)

(5.17)

• 7 The present formulation cao be seen as a special case ofthe projective weigbted residual
method.
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For approximations (5.14) and (5.15) to be the weak solutions of the goveming

equations with respect to subspaces WM and WM " Eqs. (5.12) and (5.13) must he
satisfied for each function {Ji and l3j respectively. On substitution of(5.14)-{5.15),

they turn into a system of M linear equations in 2N + N' coefficients iii,

fil1Ii/ôP, and 'Pi:

and M' linear equations in N + N' coefficients iii and 'Pi:

t ( f V~ . e . V Qi dV) .li; - t (r _V Q~ • E • V l3j dV) 'Pi
i=l Jv i=l Jv+v

= -L ft· [D]f3jdS,

j = 1, ... , M' (5.19)

where

{
Sin V

E- :01 in V (5.20)

A few points should be observed about the properties of the basis and

weighting funetions. First, since Eqs. (5.18) and (5.19) involve only gradients ofQi

(QD and {Ji <Pi), both the basis and weighting funetions need be only once

differentiable. Second, the basis funetions ai(aD are chosen such that

approximations uer) and 'P(r) do not a priori satisfY the goveming equations but

do satisfy the Dirichlet boundary conditions (4.8)-(4.9)8; otherwise, the zero

•
B ln the alternative approac, knawn as baundary solution, or TreDlz, procedure

(Zienkiewicz et al., 1977), the basis functiODS Q;(Q~) are chosen in such a manner that
uer) and rp(r} a pria,; satisfy the goveming equations. This metbod is typica11y used to
model simple homogeneous stnIetures for which Green's fonctions are derivable in
closed forme
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projections of the latter fs. (u - u) . w dB = 0 and f$ys (cp - cp) 8 dB = 0 would

have to be added to the system (5.12)-(5.13). To examine how the

nonhomogeneous Neumann boundary conditions (4.6}-{4.7) are treated under the

projective formulation, consider their weighted residuals

- r (D. [D] - (T)~dS = - f D· [D]~dS+ r u/f;d8.JSw J J~ J J5;, J

(5.21)

(5.22)

•

Theoretically, to satisfy the Neumann boundary conditions in a projective sense,
equations (5.18) and (5.19) must be supplemented by residuals (5.21) and (5.22),
set to zero. However, in this formulation, this is not necessary. By choosing !Jj and
{f; appropriately, integrals fSt D • T !Jj dS in (5.21) and JS;r D • [D] f3j dS in (5.22)

annihiIate the boundary integrals over Si and Sa in the right-hand sides of Eqs.

(5.18) and (5.19), rewritten here as

rD. T,B· dB = rD. T ,8. dS + rD. T ~. dS, (5.23)J8 J Js. J Js. J

- rD.[D]~dS=- rD.[D]~.dS- f D.[D]~dS. (5.24)k J J~ J J$ys J

The remaining integrals over Sü and Sv; in (5.23) and (5.24), on which u and ep are"'

fixed while D· T and D· [D] are arbitrary, cao be eliminated by forcing the
weighting funetions /3j and f3j to vanish on the Dirichlet boundaries Sii and Sv;

respectively. By assigning zero 'weights' to these parts ofS, the spatial derivatives
Vu and Vep, that enter the expressions for D· T and D· [D], are also eliminated
from (5.23) and (5.24). As a consequence, the approximate solutions (5.14)-(5.15)

are not required to satisfY the Neumann boundary conditions, which considerably

simplifies the choice of the basis functions ai (aD. This distinguishes the weak

solution trom the strong one that requires funetions u(r) and ep(r) to satisfy aU the

boundary conditions besides ofbeing twice dift"erentiable.

As a result, the nonhomogeneous Neumann boundary conditions are solely
represented by the integrals JSt i Pj dS and JSz, u f3j dS. The surface traction i and
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charge (T in the latter are commonly approximated by the surtàce basis functions ai

and ~ that fonn the subsets of {Cki(r)1 i = 1,...,N} and {aHr)1i = 1,...,N'}
mentioned earlier:

Ns

i ~ LtiCki,
i=l

(5.25)

(5.26)

•

where li and (Ti are known since i and CT are prescribed. This pennits projective

equations (5.18) and (5.19) to be rewritten in the following fonn

t (r Va.· cE. V/3jdV) . u; + t (r Va~· e· V/3jdV)CPi
~l Jv ~1 Jv
+t (p ra./3j dV) a;;. = t (r adJj dB) lj,

~l ~ ~l ~
j = 1, ..., M, (5.27)

t (rV.Bi. e . VQi dV) .U; - t (r _Va~ . E • V.Bi dV) tpi
i=1 Jv i=1 Jv+V

=-È(l ~~dS)lTj,
,FI ~

j = 1, ... , M' (5.28)

5.2 GaJer/dn's approach
In MOst cases, it is convenient to select the weighting funetions {Jj ftom the

set of basis fimetions ai (Galerkin's method). With this choice, the system of

projective equations (5.27}-{5.28) becomes a symmetric matrix equation of order

N+N'

(5.29)



• 32 1 The piezoelectric boundœy-value prohlem

with vectors of unknowns U = (Ui)i=I,...,N' • = (CPi)i=I,...,N" and
a2u/ât?' = (a2Ui/ôf-)i=I,...,N. The matrices ~, I(U'P, KfPP and Min (5.29) are

respeetively

- the elastic stiffness matrix made up of3 x 3 matrix blocks

~j = (1 Va;·~ . VQ;dV). _ (5.30)
V a=1,...,N. ]=1,...,N,

- the piezoelectric sti.ffness matrix made up of3 x 1 vector blocks

~1Irf = ( r Va'.· e· VQi dV)
1 111 1 ..,V a=l ,...,N. ]=1, ...,N ,

(5.31)

- the dielectric stiffness matrix extended to the outer region V with scalar
elements

IŒ" = (r Va~· E· va'.dV)
'1 111 -' 1V +v i=1,...,N'. j=1,...,N',

- the mass matrix with 3 x 3 block elements

~j = I(P1a;a;dV)
v i=1,...,N. j=1, ...,N.

(5.32)

(5.33)

where 1 is a 3 x 3 identity matrix. The right-hand side vectors F = (fi)i=I,...,N and

Q = (qi)i=I,...,N' contain respectively the components of the mechanical force

acting upon Si

(5.34)

and ofthe electric charges distributed over Sq

(5.35)

•
Consider a piezoelectric body with traetion-ftee, partially plated surface as

shown in Fig. 1.3. This configuration, tbat had been used to formuIate the static

and time-harmonic piezoelectric problems, leads to a further simplifications of the

projective matrix equation (5.29). First, the mechanical force term F disappears
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trom its right-hand side since homogeneous Neumann boundary condition (4.17)

holds on the whole surface S. Secon~ ooly one variable - CPe - is needOO to

characterize the Ne potential degrees of treedom on the electroded part of the

surface Se. The corresponding part ee ofthe vector ofpotential coefficient vector

• = (.', _e)T cao be written as -e = 'Pei, where i = (1, ..., I)T is an Ne"
dimensional vector with unit coordinates. Therefore, the Ne rows and columns of

(5.29) associated with ee cao be summed up to fonn a new matrix equation with a

condensed electric part:

-~~'i ] [~,]
-iTKP.'Pori C{Je

[MO 0] [8
2

U] [0]
+ ~ ~ ~ ! = ~' (5.36)

where Q is the total charge on Se. It should be notOO that there is no charge vector

Q' in the right-hand side of (5.36) associated with .' as a result of the

homogeneous Neumann boundary condition (4.21) imposed on the unelectroded

part ofthe surface Su.

As mentioned in Section 4, on the electroded part of the surface Se either the

total electric charge Q or the potential cpe cao be specified. In the tirst case, the

electrode Se cao be seen as a Neumann electric boundary Se = Sr;. The matrix

equation (5.36) appües to this situation with Q = Q, and its solution provides the

unknown U, .', and cpe' In the second case, the Dirichlet boundary condition fixes
the electric potential Cl'e = CPe on Se = SV;, thus excluding the last equation

containing the variable CPe trom the system (5.36), which bas now the vector

cpe ( - KIIrp· i, ~'Por i)T as driving term:

[
f{'I'I Karl ][U] [M 0] [a2

U] _[-KUcp.i ]
~u -KIvi .' + 0 0 et = Cl'e rJ'Pci

(5.37)

•
After solving (5.37) for U and .', the total electric charge on Se cao be

determined as
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(5.38)

(5.39)

fram the last equation of(5.36).

The systems (5.36) and (5.37) are the two basic matrix equations that can be

used to determine the approximations to the weak solution of the piezoelectric

problem when either the total electric charge Q or the potential CPe are specified on

the plated part of the surface Se. To adapt these equations to the static problem,
the dynamic term M (a2u/éJt2) must be dropped from the system; in the case of

time-hannonic field distributions uer) and rp(r), M(ô2U/at2) is replaced by

-u?MU and combined with the stiffhess matrix. Thus, the time-hannonic

counterparts of(5.36) and (5.37) are the equations:

Karl

-Kff/l
_iT((V'ef/l

and

(5.40)

solved for the spatial parts offunctions uer) and rp(r) with time-harmonic driving

charge Q = Qeiwt or potential rpe = ()e eiJ.. If the boundary conditions are

homogeneous, i.e. Q = 0 or ~e = 0 in (5.39) and (5.40) respectively, these matrix

equations describe the two eigenvalue problems associated with the partially plated

piezoelectric body from Section 4.3 .

•
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6. Variation" formulatioD
An alternative way of obtaining the matrix equation (5.29) is ta formuIate

the piezoelectric boundary-value problem in the form of variational equations,
derived from a variationalprincip/e. The variational approach can be applied since
the düferential system (5.1}-(5.2) is self-adjoint. Goveming equations and

boundary conditions stem ftom the variational principle as stationary conditions of

an energy relatedjùnctional. Although Eq. (5.29), that fumishes the basis for the

finite element analysis, bas been already obtained by the Galerkin's method, the
variational approach is also considered. It bas the advantage of relYing on the

energy functions, thereby providing the mathematical procedure that led to (5.29)

with a definite physical meaning.

6.1 Varlationa/ princip/es

In elasticity, the basis of variational fonnulation is the princip/e of virtua/

work (Washizu, 1968). According to this principle, the sum ofaU the virtual work

done by external and intemal forces applied to a mechanical system in equilibrium
during an imaginary infinitesimal (virtual) displacement 6u satisfYing the prescnoed
constraint is zero:

6Wezt + 6Wint = o. (6.1)

(6.2)

(6.3)

•

For dynamic problems, one must integrate (6.1) over the time interval [to, t] and

take into account the virtual work done by the inertia forces (d'Alembert's
principle):

r a2
u

6Winert = - Jv P at2 -6u dV.

Since 6u is required to vanish at to and t, tbis work is equal, upon integration with
respect to t, to the variation ofthe kinetic energy:

118uau
6T=6 -p---dV.

v2 ôt at

If it is further assumed that the internai forces are derived from a potential
funetion.u = l1(r, t) such that

c5Wint = -c5ll, (6.4)
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the dynamic principle ofvirtual work tums into the Hamilton's principle

6l.t

Ldt = 6l (T -11+ W_)dt = 0, (6.5)

where the function L = T - U + Wen is the Lagrangian of the system. The

principle states tbat the true motion makes the integral of the Lagrangian over the

time interval [ta, t] stationary, provided the virtual displacement 6u is consistent

with the constraints, i.e. vanishes at ta and t, and at those parts ofthe piezoelectric

on which u is prescnbed.

The piezoelectric etTect cao be incorporated into the above principles by

including the virtual work done by external and internai electrical charges.

Consider, for example, the general problem defined in the differential form in

Section 4.1. In the absence ofvolume forces (F) and charges (Pe), the virtual work

of extemal forces 6Wen reduces to the work done by the prescribed surface

traction i during a virtual displacement 6u and by the surface charge lr during a

variation ofelectrical potential 6cp:

e5W_ = ! i· 6udS - 1. tT6I{JdS,9 (6.6)

where 6u and 6cp are chosen such that they satistY the Dirichlet boundary
conditions (4.8) and (4.9), i.e. 6u = 0 on Sa and 6cp = 0 on SV;- The virtual work

done by the constant internai volume V . T and surface stress n . T forces, as weB

as volume V . D and surface D • [D] charges during the same variations 6u and 6cp

is

e5Wint = - i (-V· T) . 6udV - ! u· T· 6udS

+ f _(V. D)6cpdV + f ft· [D]6cpd8,
lv+v J~

(6.7)

•
9 The electrical part of the virtual work enters the expression with a negativc sign

because. as it will be shawn subsequently, for a given pair of independent variables
S = Seul and E = E(ep) this is the the electric entbalpy G2 , not the internai energy U,
tbat takes the place of the potential funClion 11 (Tierste11, 1969).
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•

where the wode of internai forces is taken with the opposite sign compared to the

virtual work of external forces. The volume integrals in (6.7) can be transfonned

by means ofthe integration by parts formulae for dyadics and vectors respectively

Iv (V· T)· 6udV = - Iv T: V6udV +LD' T· 6udS, (6.8)

f _(V. D)6epdV = - f _D. (V6ep)dV - f D· [D]6cpdS, (6.9)
1v+v 1v+v 15

which indicate that the differential operators are fonnally self-adjoint (Gould,

1955). Taking into account that 6u and 6ep vanish at those parts ofthe boundary S

where u and cp are prescribed, the principle ofvirtual work for the given problem is

written as

where 6S = 1/2 (Vc5u + 6uV) and 6E = -V6ep. Since the present fonnulation

uses the mechanical strain S = S(u) and electric field E = E(ep) as independent

variables, the corresponding potential function is the Gibbs electric energy (electric

enthalpy) G2 , whose density was defined by (2.16). Using constitutive relations

(2.19), variational equation (6.10) leads to the Hamilton's principle for the dYDall1Ïc

piezoelectric problem

.f [6(T - G2 + U_) + L. i· 6u dS - LU6<PdS] dt = 0, (6.11)

which differs ftom the principle of virtual work by Tiersten (1969) by the

additional exterior electric energy term

Uezt = !. €o f Vrp· VepdV. (6.12)
2 J'V

An earlier version ofthe Lagrangian for piezoelectric vibrations is due ta Eer Nisse

(1967), Ronand and Eer Nisse (1969), who claimed having derived it by 'trial and
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•

error'. Lee (1990) extended (6.11) to include magnetic variables, thus obtaining a

variational equation equivalent to the equations ofpiezoelectromagnetism given in

Section 2.

The choice of independent variables detennines which equations are derived

from the variational principle, and which are considered as additional constraints.

In the present example, the goveming Eqs. (4.1), (4.2) and Neumann's boundary

conditions (4.6), (4.7) follows from Hamilton's principle (6.11) as a condition of

stationarity ofthe time integral (6.5) ofthe Lagrangian

L(u, <p, t) = T - G2 + U_ + fs. i· udS - L. tT<pdS, (6.13)

provided the arbitrary variations 6u and 6'1' satistY relations (2.8) and (4.3), and

the Dirichlet boundary conditions (4.8) and (4.9). Therefore, the Neumann

boundary conditions (4.6), (4.7) are implicit to the funetional (6.13) and cao be

seen as natural boundory conditions (Hilderbrand, 1965), while the Dirichlet

boundary conditions (4.8), (4.9) must he preassigned and, therefore, are essential

to (6.13). Another feature of (6.13) is that its extremum, as pointed out by Eer

Nisse (1967), is of a saddle point nature. This occors because the electric enthalpy

G2 is not a positive definite function in contrast to the internai energy U which is

part of the functional a-l (Table 1.1), stationary under the variations ofS and D. As

shown in Table 1.2, in tbis latter case, 68 and 6D satisfy Eqs. (2.8), (4.2), and

boundary conditions (4.8), (4.7) respectively, while Eqs. (4.1), (4.3) and boundary

conditions (4.6) and (4.9) result from the extremization of ~l. The two other

stationary functionals, a-2 and ~3, based on the Gibbs free (G) and elastic (GI )

energy funetions respeetively, are drawn to demonstrate alternative combinations

ofgoverning equations and boundary conditions.
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fun - naITblllS -a e . tationarv ctio s
Constitutive relations Piezoelectrle Lagrangian function

au E=ôU ~l = T - U - uezt + L. i· udS + { fTrpdST=-
as aD
ôG 8G

~2 = T - G +U
ezt

- L. t· udS - .L. fTrpdSs=-- D=--
aT aE

s= _ aGI E= aGI ~3 = T - Gl - uezt - L. t· udS + { fTrpdSôT aD

T= aG2 D=_8G2 ~4 = T-~+uezt+1i· udS-l fTrpdSôs BE St ~

di-db dd - alT bl 1 Z 'l . li nal . - 1a e . ana 0 pnnClpl es an eqwv ent equattons an oun lary con nons
Variational Equations Boundary conditions

principle imposed derived essential natural

1 ô"u
D-T=t6~1 =0 S = ï(Vu+uV) V-T=p tJt2 u=u

V-D=O E = -Vcp D- [Dl = (T cp=cp

ô"u 1
D-T=i6~2 =0 V-T=p at;2 S = 2(Vu + uV) u=u

E= -Vcp V-D=O cp=cp ft· [Dl = (T

6~3 =0
ô"u 1

D-T =iV·T=p- S = 2(Vu + uV) u=uat;2
D· [Dl = (T cp=cpV-D=O E = -Vcp

6~4 =0
1 ô"u

D-T=iS = ï(Vu + uV) V·T=p tJt2 u=u

E= -Vf{) V-D=O f{)=ep ft· [Dl = u

Note: For the sake of brevity, the tilDe integral bas been omitted in the first column, i.e. the

variation ofa funetional 6i should be read as 6J~ ,.

•
A more complete tist of variational principles, derived especially for statie

piezoelectric problems, may be found in the review by Vekovischeva (1971).

Among them, the MOst important are the generalized variational principle that

considers ail variables as being independent, and the piezoelectric HeUinger­

Reissner principle, used in the theory of plates and sheDs (Shulga and Bolkisev,
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1990). The former puts ail the assumptions (governing equations, constitutive

relations and boundary conditions) into the ftamework of the variational

expression by means ofLagrange undetermined multipliers; any other principle cao

be derived trom it by adding constraints to the field variables. In particular, in the

HeUinger-Reissner principle, variables S and E are no longer considered

independent, and are eliminated trom the generalized principle by means of

constitutive relations (1.18).

6.2 Stationaryfunetionals for statie and lime-harmonie problems

Among the mentioned variational principles the one expressed by Eq.

(6.11) bas the most important practical application as a basis for the approximate

solution techniques. Indeed, because this principle relies on the set of variables

S = S(u) and E = E(cp) used in the differential fonnulation, it is convenient to use

(6.11) to obtain the variational equation for the static and time-harmonic

specializations ofthe general piezoelectric problem.

The static variational principle, derived by omitting the time integral and the

kinetic energy term trom (6.11), states that the Lagrangian

L(u, rp) = G2 - U_ - L. i· uelS + L. tTrpelS, (6.14)

is stationary for a piezoelectric body in equilibrium under the action ofthe constant

surface traction i and surface charge fT. For the specific boundary conditions

(4.17)-(4.19) considered in Section 4.2, this Lagrangian reduces to

L(u, cp) = G2 - Uezt + QCPe. (6.15)

As in the differential and projective formulation, one will be interested in linear

piezoelectric materials ooly; therefore, the electrical enthalpy G 2 in (6.15) is a

quadratic function (2.20) ofV'u and V'cp:

G2 = iL(Va: eE
: Vu + 2 Vrp . e: Vu - Vrp· CS • Vrp)dV. (6.16)

while the energy density Uezt ofthe exterior electrie field is given by (6.12).

For the time-harmonie fields, the spatial part ofthe La8rangian, is written as

L(U,~) = Gz - T - Uezt + Q~e, (6.17)
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where 02, Uezt, and T = 1/2 p w2 u .U are the time-averaged electric enthalpy

G2, exlerior electric energy Ue:rh and kinetic energy

T = 1/2p{8u·lat)· (Bu/ât) densities. Functional (6.17) is stationary for the

true solution of the system (4.2S}-(4.27) with time-hannonic driving charge

Q = QeU or potential f{)e = ~e eitMt applied to Se. In particular, when the

boundary conditions imposed on Se are homogeneous (Q = 0 or ~e = 0), the

solution of (4.2S}-{4.27) makes the Rayleigh quotient for free piezoelectric

vibrations

À(U,~) = ~2 - Uezt ,
f -pU.UdV

Jv 2

(6.18)

À = ur, stationary at the resonant frequencies w" ofthe piezoelectric vibrator.

After establishing the equivalence between the f;lifferential and variational

fonnulations, the approximate solution of the piezoelectric problem can be

obtained by perfonning a numerical extremization of stationary functionals. The

usual procedure consists, first, in substituting the trial solutions (5.14) and (5.15)

into the Lagr-Jlgian (6.14), which, due to (6.16) and (6.12), becomes a quadratic
function of N + N' unknown coefficients Di and f{)j; and, second, in detennining

the stationary point ofL trom the system oflinear equations

BL
-=0
BUi '

BL
-=0
8cpj ,

i = 1,2, ...,N,

j = 1, 2, ... , N' .
(6.19)

•

It cao be veritied that system (6.19) leads to exactly the same matrix equations

(5.29), obtained by means ofthe Galerkin method in Section 5.2.

6.3 Energy relationsfor stationary solutions

To conclude this section, severa! integral relations that characterize the

balance of energy in the piezoelectric vibrator are derived for the stationary

solutions.

Replacing 6u with U and 6f{) with ~ in (6.8) and (6.9) respectively, and taking

ioto account that the exact solution (U, ~) satisfies the goveming equations of
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piezoelectric Vibrations, V . T +~U = 0 and V . D = 0, the integration by part

identities are recast as

-f ~U . U dV = - fT: S dV +LD • T . U dB,

0= r _D.EdV - r D· [D]C)dS.
Jv+v Js

(6.20)

(6.21)

As before, for the traction..ftee boundary surface and equipotential electrode, this

system simplifies to

f~U.UdV=f T : SdV,

Q<)e= f _D·EdV.
Jv+v

Denoting the spatial parts ofmechanical, dielectric, and mutual energies as

Umech = ! f VU: cE: VUdV,
2Jv

1 f S
Udiel = 2Jv V<)· E • V<)dV,

Umut = ~f VCJ.i· e: VUdV,

respectively, relations (6.22) and (6.23) caR he rewritten in the forro

T = Umech - Umut,

Q <)e = Umut + Udiel + Uezt.

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

•

Addition of(6.27) and (6.28) yields the equation ofthe conservation ofenerKY

Q~e = U + Uezt - T, (6.29)

which states that the sum of potential energy, made up of interior

U = Umech + Udiel and exterior part Uezt, and the kinetic energy T is equal to the

energy supplied by the applied voltage ~e or current 1 = jwQ.
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For free vibrations (Q = 0 or ~e = 0) there is no energy supply to the

piezoelectrie vibrator, and, consequendy, the total stored energy is constant. From

(6.29) it foUows that the instantaneous potential energy is 1800 out of phase with

the instantaneous kinetie energy

U+ Ue:d = T, (6.30)

(6.31)

(6.32)

and, therefore, the total energy stored in the vibrator cao be caleulated solely trom

its kinetie or potential fonn. Substituting (6.24) and (6.25) into (6.0), and

rearranging tenns, one obtain the stationary value ofthe Rayleigh quotient (6.18)

rVUn:eE:VUndV+ r _Vepn.e.V~ndV
2 Jv lv+v

W" = [PU". U"dV •

for ftee vibrations eharacterized by the set of eigenfrequencies W n and

. eigenfunctions (Un, ~n). With e detined by (5.20) over the entire space, equation

(6.31) represents an open electrie boundary analogue of the stationary Rayleigh

quotient derived earlier by Lewis (1961) and Eer Nisse (1968) for piezoelectrie

vibrations.

6.4 Electromechanical coupling coefficient

The electromechanical coupling coefficients k, or simply coupling factors,

are introduced to eharacterize the strength of the piezoelectrie interaction between

mechanical and electrical fields. Seing dimensionless, they are particularly useful

for the comparison of the piezoelectrie efficiency of different materials. A critical

review ofvarious definitions ofk can be found in Ikeda (1996).

The squared coupling coefficient k2 is often defined as

k2 = ~ut .
UmechUdiel

Fonnally, it foUows ftom (6.32), (6.27), and (6.28) that the starie coupling

coefficient (T = 0) is given by

•
k 2 _ Umeela
st-u li'

diel + e:d
(6.33)
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while the dynamie coefficient at resonance (Qtle = 0) is derived ftom

k 2 _ Udiel + Uezt
dp - U

meeh
(6.34)

(6.35)

In this thesis, however, the statie and modal coupüog coefficients are calculated

using expressions

k2 _ Umech
st - U '

total

and

k
2 _ Udiel + Uezt
d -
P Utotal

(6.36)

(6.37)

•

respectively, where Utotal denotes the total (interior and exterior) energy U + Ue:zt.

Equations (6.35) and (6.36) are more consistent with the latest (IEEE, 1987)

definition of k as a measure of the capability of a piezoelectrie crystal to convert

energy ftom an electrical source to mechanical work (electrically-driven statie

piezoelectric problem), and ftom a mechanical source to electrical work

(piezoelectrie vibrations). Clearly, the coupling coefficients depends on the

mechanical and electrical fields configurations, determined by the crystal geometry

and boundary conditions. The dYQamic coupling coefficient is typically smaller than

the static one because the latter is associated with more uniform field distributions.

Very often the dynamie coupling coefficient is calculated as

k 2 _ 11- lit
ell - /1 '

where IR and lA are the Iinear ftequencies at resonance and antiresonance - the

two characteristie electrical situations discussed in the foUowing section.
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(7.2)

•

7 Equivalent electricaI p.......eters
Because the piezoelectric vibrators are typically used as two- or multi­

tenninal passive components, it is highly desirable to represent and analyze them in

the form of an equivalent electrical circuit, i.e. a circuit consisting of frequency­

independent inductors, capacitors and resistors, and possessing an identical

impedance (admittance) function. The approximate solutions ofthe static and free­

vibration problems discussed earlier cao be utilized to determine the equivalent

impedance (admittance) of forced piezoelectric vibrations. Their expansion in
terms of static and proper solutions is based on integral relations derived ftom the

piezoelectric reciprocity theorem considered in the next section.

7.1 Reciprocity relation and mode orthogonality

One of the most practically important integral relations between two

possible solutions of the goveming equations is the piezoelectric reciprocity

theorem (Auld, 1990b). The reciprocity relation for the forced piezoelectric

vibrations was first introduced by Lewis (1961), who used it as a principal tool for

deriving the passive electrical circuit equivalent in its electrica1 behavior to the

piezoelectric vibrator (Fig. 1.3).

For the body with a traction-ftee surface, in the absence ofvolume forces and

charges, the reciprocity relation cao be written as

(~-wn[PUt' U2 dV = ~elQ2 - ~e2Q1> (7.1)

where the indices 1 and 2 refer to two pairs of solution of forced piezoelectric

vibrations; the static reciprocity relation may be seen as a special case of(7.1) with

Wl = W2 = O. In the case of free vibrations, (7.1) yields the orthogonality

condition

[PUt. U2 dV = 0

for two different solutions (Wl :1= "-"2) of the same eigenset. Expression (7.2)

constitutes the basis for the modal ana/ysis of piezoelectric vibrators by allowing

the expansion ofan arbitrary forced vibration (U,w) in terms ofstatic (Us, ~s) and

proper (Un, ~n) solutions:
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(7.3)

The decomposition coefficient an is detennined to satistY the equation of motion

V . T +~U = 0 alone, and is found to be

r.rIv pU•. U" dV
an = v; (7.4)

(~ - r.r)Iv pU" . U" dV

the remaining goveming equation and boundary conditions are identically satisfied

by (7.3). Applying (7.1) to the sets of solution (Us, ~s) and (Un, ~n, wn), the

numerator in (7.4) can be expressed in tenns of statie and proper electrode

potential and charge: (~es. Qen) and (~en. Qu). For the two types of eigenvalue

problem - when ~en = 0 and Qcn = 0 - one obtain

w2~uQen ( )
an = (w; _ ~)Tn ~en = 0 , (7.5)

and

(Qen = 0), (7.6)

•

where T" = ~Iv pU" . U" dV denotes the double of the kinetic, i.e. total - see

(6.0), energy ofn-th mode ofvibration.

7.2 Electrical admittance and impedance matrices

Defore deriving an equivalent electrical admittance or impedance function

for the forced piezoelectric vibrations, it would be convenient to view the

piezoelectric vibrator as a multi-electrode structure. Configurations with one

electrode, considered 50 far for the sake of simplicity, two electrodes (e.g.

resonators) or several pairs of electrodes (e.g. monolithic crystal filters) represent

special cases ofthe generalized resonator shown in Fig. 1.4.
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Fig 1.4 Piezoelectric Vlbrator with an arbitrary number ofeledrOdes.

An L-terminal vibrator is driven now by the vectors of electrode potentials
• = (Wep)P=l,...,L and charges Q = (Q')P=l,...,L; its electrical behavior cao be

charaeterized by the admittance and impedance matrices V and Z, defined

respectively as

and

I=V., (7.7)

(7.8)

where 1 = jû.JQ. These matrices can he construeted by expressing the driving

veetors Q and • in terms ofstatic and eigensolutions:

•
The decomposition coefficient On is the same as in (7.3), i.e.

uJ(.~Qn - .~Q.)
an = (2 2)

\Wn -w- T"

(7.9)

(7.10)
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because of the Iinearity of the piezoelectric material. In the fonn (7.10), an is

applicable to any combination of homogeneous boundary conditions (Le. when
zero potential is specified on some electrodes <lep = 0lpl,...,L' and zero total

charge QI' = OIp=L'+l,...,L on the remainder), and represents a generalization of

Eqs. (7.5}-(7.6). On the substitution of (7.10) ioto expansions (7.9), the latter

become

Defining the symmetric matrix ofstatic capacitance coefficients Cs as

Qs = C s • s ,

(7.11)

(7.12)

(7.13)

and using (7.7) and (7.8), one obtain the eqwvalent admittance Y and impedance Z

matrices in the fonn

z= -!..{C-1 _ ~ w2 (F _ETC-I )}
. s L..J2 2 n ns .

]C.rJ n=I Wn. - W

(7.14)

(7.15)

In Eqs. (7.14}-{7.15), symbols Cn , Fn , En denote respectively the symmetric

matrices

(7.16)

•

and

(7.17)

and the dimensionless matrix En,
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(7.18)

Clearly, the matrix En vanishes identically for the two extreme cases of the

eigenvalue problem associated with Fig. 1.4, i.e. when ail electrodes are set to zero

potential or when ail are open circuited. For the former configuration

(.n = 0 'In), the electrical behavior is represented solely by the symmetric

admittance matrix

• { 00 w'len }
y = JW Cs + L ~ _ûl- '

n=1 Rn

(7.19)

where the corresponding eigenftequencies WRn are referred to as the resonance

frequencies; the eigensolutions associated with the latter eigenproblem

(Qn = 0 Vn) are used to expand the equivalent impedance matrix Z in a series

about the antiresonance ftequencies WAn

1 {-1 ~ ~Fn }Z = -. Cs - LJ~ _ uJ .
JW n=1 An

(7.20)

Therefore, a lossless piezoelectric vibrator is charaeterized by two sets of critical

frequencies: the resonance WRn, at which the admittance tends to infinity and the

impedance vanishes, and the antiresonance WAn, at which the impedance is infinite

while the admittance vanishes. In the fonn of (7. 19) and (7.20), the equivalent Y­

and Z-matrices have been obtained and analyzed by Lloyd (1967) as an extension

of the work ofLewis (1961), who derived the admittance and impedance funetions

for a vibrator with one pair ofelectrodes. For this latter configuration, matrices Cs

and Cn reduce to the ordinary staticCs and motional Cn capacitances between the

driving electrodes.

By introducing a new matrix ofshunt capacitances

•

00

Co =Cs - LCn
n=1

the admittance matrix (7.19) cao be recast as

(7.21)
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Y . {c ~ winCn }
=JW o+L,...~ -uJ .

n=l Rn

(7.22)

q ••--------------------------

•

This alIows its elements 1Ipq to be represented as an electrical network (second

Foster fonn) as shown in Fig 1.5.

Fig leS Network realization of the equivalent admittance funetion Y = (ypq)p.q=l•...•L in

the foOD of the second Foster scheme. Hele Co = (Co )JIIl' Cm = (Cn )pq.

Lm = l/(~mCm).

Similarly, an element of the impedance matrix Z (7.20) - zpq - cao be realized

through the tirst Foster fonn, with parameters defined in Fig. 1.6.

~ ~ ~

p....------.;.~~------L:J---i
~ -+ L', L'z L'1ft:

1
1__ 1

Fig 1.6 Network rea1jzation of the equivalent impedanœ funetionZ = (Zpq)p.q=l•...•L in

the form of the first Foster scbeme. Herc C~ = l/(C.)pq. C:n = l/(Fn)pq.

L:" = l/(w2AmC:n).
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Waves and vibrations with open electric
boundaries

1. Introduction

This chapter presents a short survey ofpast methods, or rather attempts, to

model tinite piezoelectric regions embedded in an infinitely extending free space. It

shows how the external electric field bas been taken into account for both wave

propagation and resonance - the two basic phenomena that underlie the operation

of ail piezoelectric devices. The review is drawn to demonstrate that there is a

demand for the solution of the piezoelectric problem referred to, by analogy with

electromagnetics, as electricaUy unbounded.

Wave propagation is typically associated with relatively simple geometrical

configurations such as a piezoelectric half-space or an infinite plate. Solution cao

often be sought as a superposition of uniform plane waves with amplitudes

determined to satisfy mechanical and electrical boundary conditions. However, this

approach is rarely suitable for the analysis of piezoelectric resonators. The

modeling of external electric fields also becomes increasingly more complicated as

the number of finite lateral dimensions grows. Except for a few special classes of

problems that permit one-dimensional approximations of isolated modes (thickness

and longitudinal), no senous attempt to take into consideration the leakage of the

electric flux into the outer space has been reported in the Iiterature. The most

effective two-dimensional approximation technique - the Mindlin's power series

expansion in the plate thickness - is not, by its very nature, compatible with the

large sizes required by the 'openness' ofthe electric boundaries.

Because practical vibrator geometries are irreducibly three-dimensional, they

cao only be attacked by various numerical techniques, among which the finite
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e/ement method is by far the most popular. It bas been widely used in piezoelectric

anaIysis for its capacity to model anisotropie materials and arbitrary shapes.

Although 'mechanically' open piezoelectric problems, such as the radiation tram

sonar transducers into an acoustic medium of infinite extent, have been a common

application of the finite elements (Smith, Hunt, and Barac~ 1973), there is no

indication in the Iiterature that this approach bas been used in combination with

any model of the exterior electric field. Special numerical techniques required to

model the infinite exterior electric field distnDution cao be imported tram

engineering electromagnetics. A critical review ofavailable methods is given in this

chapter to provide ground for the choice of the method of ba//ooning, which has

been retained for the use with the tinite element model ofthe piezoelectric region.
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2. Wave propagation
Plane waves propagating in an unbounded medium (Appendix 1) are of

great importance because they are used as building blocks to construet solutions in

bounded regions (Autel, 1981). In the method referred to as superposition of

partial waves, ail possible plane wave solutions having a common wave vector

component along a given propagation direction - partial waves - are

superimposed with amplitudes chosen to satisfy mechanical and electrical boundary

conditions. Such a superposition of plane waves simultaneously satisties the wave

equations and the boundary conditions, i.e. is a correct solution of the boundary­

value problem. The partial wave method, is suitable for analyzing planar structures

such as a piezoelectric substrate, an infinite plate, or a layer over a substrate (Auld,

1990b). Recause the problem of wave propagation is beyond the scope of this

thesis, no attempts are made to survey in detail the influence ofelectrical boundary

conditions encountered in praetical configurations.

2.1 Surface acoustic waves

The surface acoustic wave (SAW) is defined as a wave propagating parallel

to the surface of a solid (Fig. 2.1) with the amplitude of ail the associated

displacements and potential rapidly decreasing into the depth of the substrate

(X2 --. 00).

o~_Xs_.....
1
1
1

1

·Xz

•
Fig 2.1 Coordinate system for the surface acoustic wave propagating in the direction ID.

Recause three mechanical and one electrical boundary conditions must be specified

on the boundary of a piezoeleetric substrate, the fields in the surface wave are
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(2.1)

sougbt as a linear combinatioo of four straight-crested (i.e. 00 dependence on the

%3 coordinate) waves propagating in the direction m = (1, n4T ),O)T:

(u) 4 (OU(T»). . ~= LA,. (T) e~fJrZ2eiJ.sJ(t- v),
cp r=l cpo

where PT = (WN)~T) is the component of the wave vector in the depth direction.

The electric potential above the substrate is taken as

(2.2)

(2.3)

80 that it satisfies Laplace's equation, vanishes as %2 --.. -00, and is equal to

CPs = cp(XI, 0, X3) on the boundary X2 = o. The weighting coefficients A,. in (2.1),

or amplitudes of the partial waves, are determined from the stress-free boundary

condition and the condition of continuity of either electric potential or normal

component of the electric flux density on the boundary. Substituting solution (2.1)

into the boundary conditions gives a system of four homogeneous equations,

whose determinant ~SAW must be zero in order for nontrivial solutions to exist.

For instance, if the continuity of D is imposOO, the elements of tbis boundary­

condition matrix will be

~~AW = {n. cE . (m(T)Ou(T» + m(T) • e· Dcp(T)} i = 123
IT' 0 i' , ,

~::tw = D • e : (m(T)Ou(T» - D • (ES - iEoI) . m(T)cp<;),

where D = (0, -1, O)T is a unit vector normal to the surface. The component m<;)
of the propagation vector meT) is determined trom the fun piezoelectric Christoffel

equation1 that cao be regarded as an eighth-order a1gebraic equation with real

coefficients in ~); the phase velocity V enters this equation as a parameter. To

insure that the displacement vanishes as %2 -+ -00, ooly four roots ~) with
negative imaginary parts and the associated eigenvectors (OU(T), cp~» T are

retained.

•
1 The sec:ular equation associated with the system in the form of Eq. (1.14) from

Appendix 1 is not suitable for this purpose becallse the elimination of electric potential
as an expücit variable gives rise to the sti1fened constants defined by Eq. (1.16) of the
same appendix. As demonstrated by FameU (1970), stitfened CODSlallts are not valid for
the analysis of SAW since the complex component fn2 of DI is initially undefined and
takes four different values.
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Because it is rarely possible to analytically solve the Christoffel equation and
express n4"), °u{r), and cp~) as functions ofV, the phase velocity is typicaUy found

from an automatic procedure that changes its value untiI the corresponding rr4'"),
°u{r), and cp~} make 6,SAW equal zero. In gene~ the resulting phase velocity

corresponds to a complex piezoelectric Rayleigh wave. However, when the sagittal

plane (plane %1--%2 in Fig. 2.1) is perpendicular to a six-fold crystallographic axis,

two velocities are acceptable. The tirst one is associated with a non-piezoelectric

Rayleigh wave, while the second corresponds to a piezoelectric Bleustein-Gulyaev

wave, created by two partial waves and polarized perpendicular to the sagittal

plane. For the latter case both the Christoffel equation and Eq. (2.3) simplify

considerably, 50 that anaIytical solution cao he obtained (Dieulesaint and Royer,

1974). For example, the velocity of the %3-polarized Blustein-Gulyaev wave

propagating on an unplated surface is given by

VBG =• (2.4)

(2.5)

•

with k2 = e~5/(Ef1~) and~ = ~ + e~5/Ef1·

As it follows ftom the solution scheme outlined above, the propagation of

SAW cao a1ways be viewed as a problem with open electric boundaries. The

influence of the electrical boundary conditions is typically characterized by the

coupling coefficient Ka for SAW

K 2 = 2(Va - Va)
a y.'

where V. and Va are the velocities of the waves on the free and fulIy metallized

surfaces respectively; and the surface impedance Z. defined by

cp y2
-~.- = i-Z.. (2.6)
n·D. w

For sorne simple electrical boundary configurations analytical expressions for Za
cao be easily derived nom (2.6). For example, if the space above the substrate is

free or if an infinitesimally thin perfect conduetor is placed at the distance h fram
the substrate, the impedance simplifies to Z. = iI{VEa}, and Za = (i/Ea)tanh(~h)
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respectively. An alternative definition of the coupling coefficient is due to

Ingebrigtsen (1969):

K 2 = 2(Voo - Vo) 7)
00 V

oo
' (2.

where the wave velocity V00 corresponds to the infinite surface impedance

Zs = 00. According to (2.6), the condition of an infinite Zs is met when the

electrie flux above the piezoelectrie substrate is zero, i.e. when the fringing field is

neglected. This means that K oo is associated with an electrically ~elosed' modelof

SAW propagation, and, therefore, the ratio

K 2 _K2 1
00 s
K~ - -1-+-€4-j-e-

o
(2.8)

can be regarded as a measure ofthe influence ofthe external portion ofthe electrie

field on SAW propagation, where e 4 = J el1E22 - Ef2 is the effective permittivity

ofthe anisotropie substrate in the given coordinate system (Morgan, 1985).

2.2 Guidedwaves

The partial wave approaeh cao be extended directIy, Le. without inereasing

algebraie complexity, to the analysis of isotropie infinite plates. For the

piezoelectrie plates, however, this is possible ooly for cuts with special synunetries

that allows the displacement to be separated ioto a shear horizontal (Sil) wave and

Lamb waves (the combination of shear vertical (SV) and longitudinal (P) waves),

supported by isotropie plates (Auld, 1990b). These two familles of modes are

retlected at the two stress-free boundaries %2 = ± h (Fig. 2.2) into waves of the

same type, thus aIlowing the solution to be expressed in terms ofa finite number of

sueh waves.

x.= h

•
Fig 2.2 ParûaI wave ref1ection paUem in an infinite plate ofthickness 2h.



• §2. Wave propagation 57

In this case~ solution is constnacted ftom partial waves (2.1) propagating within the

plate with vectors k = (Q~ ±l3r~ 0)T, symmetric with respect to the medium plane.

To satisfy the electrically open boundary conditions at %2 = ± h, the electric

potential is taken outside the plate as

cp = cp e-CkIZ2-lale-iCk%l 1xl> h
s ' 2 - , (2.9)

•

thus obeying Laplace's equation and evanescent in the direction %2.

The guided wave solution cao be obtained from the procedure similar to that

employed for SAW. However~ the imposition of boundary conditions at the two

boundaries of the plate fixes the dispersion relation between Q and the frequency

w, which is determined by solving the Christoffel equation for wave numbers I3r
simultaneously with the boundary-condition equation (~G = 0). Examples of such

solutions in the plane with a 6mm symmetry cao he found in Auld (1990b) and

Ikeda (1996). Dispersion relations in the form of transcendental equations are

given for the electrical boundary conditions commonly encountered in planar

problems (e.g. unplated and plated plate). In the high...ftequency limit the guided

wave velocity tends to that ofthe surface wave propagating in the same direction.
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3 Piezoelectrie vibrations
In general, the problem of piezoelectric vibrations of a three-dimensional

body cannat be solved in terms of a finite number of partial waves: an arbitrary

incident plane wave, when retlected back at the stress-ftee piezoelectric boundary,

generates waves of other types that must be included into the anaIysis. Therefore,

for a tnJ1y three-dimensional configuration it is always more practical ta apply

numerical methods, reviewed in a separate section below, rather than attempting to

approximate the solution by an infinite series of partial waves. Nevertheless, the

partial wave approacb, or a mode-matching method, as it is often termed in

resonator problems, can still be applied to the analysis of some simple geometries

such as an infinite plate or a long narrow strip. The solution cao then be

represented as a superposition of standing waves which are formed from positive...

and negative-traveling acoustic waves propagating in the thickness and length

directions respectively. Explicit ftequency equations are available for the resulting

one-dimensional models of thickness and longitudinal vibrations, thus facilitating

the estimation of the leakage field etTect on the characteristic ftequencies. As for

the finite piezoelectric plates, Mindlin's two-dimensional approximation of

combined modes remained the most powerfW tool for modeling piezoelectric

vibrations prior to using numerical methods. Although no applications of this

theory to electrically open problems are known, this technique, being very

important, is briefly outlined at the end ofthis section.

3.1 Simple modes

Piezoelectric cesonators are typically fabricated in the fonn of rectangular

or circular plates, strips and bars. As mentioned above, even resonators of such

elementary shapes possess an infinite number of vibrations, many of which belong

to the families of modes characterized by simple displacements shown in Table 2.1.

Simple modes can often be realized ifone ofthe dimension ofthe resonator differs

significandy from the others, thus defining an isolated vibration which can be

described by one-dimensional models. The piezoelectric boundary-value problem is

then reduced to a system of ordinary ditTerentiai equations with sets ofmechanical

and electrical boundary conditions at the two extremities of the characteristic size.
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Because most of the resonators are designed to operate on one particular mode2

and suppress ail the other, unwanted, vibrations, such models have proved very

useful in predicting the resonance ftequency (Meeker, 1985). They considerably

simplifY the anisotropy analysis of the coupling and temperature coefficients of

frequency for new piezoelectric materials (Détaint and Lançon, 1976; Fujiwara et

al., 1985), and are invaluable when material coefficients are determined from the

resonance ftequency measurements (IEEE, 1987).

Table 2.1 Principal types ofvibrational modes
Mode Shape Frequencyrange

Flexure

Torsional

1~100kHz

5~500kHz

0.7--600 kHz
\; ..._...d'

~ .

Contour 150-600 kHz
(face-extensional
+ face-shear)

1Thickness-shear
-.. l 0.5-1600 MHz
~

... ... ...
Thickness-extentional IL il 1 MHz-6GHz

t t r--

Longitudinal

• 2 In some case the resooanc:e is realized by 'coupling' two simple modes as it was done
for the GT<ut quartz resonator to ac:bieve a very bigb frequency stability over a wide
temperature range.
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The problem of electrical flux leakage is of different significance for the basic

classes of resonance modes. As illustrated in Fig. 2.3 (a), in the case of contour

vibrations, the two major surfaces are typically fully covered by electrodes, which

minimize the fringing field. For other types' of vibration, the size of the driving

electrode is an important factor in the optimization of resonator parameters. For

instance, for the tbickness-shear vibrations of the strip-type resonator, shown in

Fig. 2.3 (b), the electrode length is chosen to suppress the anharmonic overtones

(MiIsom et al., 1983), and is often less than the haIfofthe plate length. Moreover,

the tendency is that the stronger the piezoelectric coupling, the shorter the

electrode, thus leaving a considerable part of resonator major faces unplated.

Partial electrodes are also typical for longitudinal and flexural vibrations. Hermann

(1975) attributed the discrepancy of approximately 7% between the experimental

and theoretical values of static capacitance to, in part, the neglect of the external

electrostatic field in bis model of tlexural and length-extensional vibrations. The

flux leakage through the plate surfaces is particularly serious when longitudinal or

thickness modes are excited by a lateral electric field, as indicated in Fig. 2.3 (c).

(a) (b) (c)

•

Fig 1.3 Typical electrode patterns: (a) contour Vibrations; thickness-shear vibrations

with perpendic:ular (b) and lateral (c) field excitations.

In principle, one-dimensional models of piezoelectric vibrations cannot take

into account the influence of the electrode size, except maybe for a few

configurations when, as for the longitudinal mode, the electrode is extended in the

direction of the plate characteristic size (Zelenka, 1986). However, the two

extreme cases of fuUy metallized and totally free plates, encountered in the models

of surface and guided waves propagation, cao still be treated within the scope of
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one-dimensional approximations. To give an idea of how the electric field leakage

anay affect the ftequency and the electromechanical parameters of the resonator,

two types of vibrations - the longitudinal and the thickness - are considered in

more detail.

(3.1)

Thiclcness vibration

The simple thickness-mode vibrations of a plate are characterized by the

displacements that are fimctions of the plate thickness coordinate %2 alone (Fig.

2.2); the goveming wave equations3 ofthe plate are therefore one-dimensional:

E d2
uIt: d2

",
C2j1t:2 d~ + e22j d%~ - pcJ-Uj = 0,

d2
uIt: S d2cp

e 221t:-
d

2 -E22
d

2 =0.
%2 2:2

A.

The general solution cao be written as a Iinear combination of three positive- and

negative traveling waves k = (0, ± (Jr, 0)T propagating in the thickness direction

ofthe plate with phase velocities Vr and amplitudes °u(r), or, as is more customary

in resonator theory, in the fonn ofa superposition of antisymmetric and SYmmetric

solutions:

3

U = L (A,.°u(r)ei ,8rZ2 + Br°u(r)e-i ,8rZ2),

r=l
3

= L (~oU(r)Sin{jrZ2 + B~0g(r) COS (jrZ 2)

r=l

(3.2)

with coefficients ~, B~ determined from the six stress-free boundary conditions

T2j = 0, j = 1,2,3 at %2 = ± h. The substitution of (3.2) ioto (3.1) yields the

dispersion curves, which, in this case, are represented simply by three straight lines

(nondispersive waves). To satisfy the two continuity conditions for D2 and cp al

%2 = ± h within the scope of the one-dimensional model, it is not sufficient to

take cp as a superposition of partial waves (Bq. (1.12), Appendix 1): a static

• 3 In the following, the harmonie tenu e ÎllJt is omitted from ail variables and slimmation is
assumed for repeated indices.



• 62 2 Waves and vibrations with open e/ectric boundaries

solution is a1so required. The electric potential is therefore obtained by integrating

the second equation in (3.1):

(3.3)

(3.4)

•

with coefficient At.t Bi determined from the electrical boundary conditions.

The ftequency equations for the piezoelectric thickness vibrations of an infinite

plate with electrodes coated on both surfaces was derived by Tiersten (1969). In

his formulatio~ the resonance frequencies (<PIZ2=±1L = 0) of the three coupled

thickness modes are detennined trom the transcendental equation

1(
- a a h e22je 22k. Q h)o (r)1
C2jk2 JJrZ 2 cos 1Jr - ef2 sm JJr Uk = 0,

while their antiresonance frequencies (D2 1%2=±1L = 0) are obtained from

cos 13rh = 0, (3.5)

where Pr = wJp/ër, and Cr and °u(r) are respectively the rth eigenvalue and

eigenvector of the Christoffel system with 'stiffened' elastic constants
C2jk2 = ~k2 + e22je 22k / E~2· An alternative formulation reported by Yamada and

Nûzeki (1971), who derived the frequency equations in a slightly simpler fonn,

compared to (3.4), from the electric admittance of the plate. Additionally, an

admittance expression for the configuration with an air gap between the electrodes

and the plate surface was also given. In the same paper, Yamada and Nüzeki

considered the case of a lateral field excitatio~ and obtained the corresponding

frequency equations that were found to be reciprocal ta the perpendicular field

case. The résumé of characteristic equations for the two field orientations is given

in Table 2.2.

The theory ofthickness vibrations, even io its simplest one-dimensional version

is very important for praetical applications since most ofthe mass-produced crystal

resonators operate on a thickness-shear mode. A1though weil documented, and

being, a10ng with the longitudinal vibrations, part of the IEEE Standard on

Piezoelectricity (1987), the present models ofthickness vibrations do not take ioto

account the electric flux leakage. However, the imposition of open electric

boundaries causes no difficulty in the one-dimensional case. Tiersten's approach

outlined above was extended in tbis thesis to an uncoated piezoelectric plate by
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setting D2
4 equal to EoEo at Z2 = ± h, where Eo is the constant electrostatic field

generated in the outer space IZ21 > h by the thickness vibrations of the ftee

piezoelectric plate. The constant Aï in (3.3) is determined trom the continuity

condition ofelectric potential cp{ ± h) = 'Po{ ± hl, where CPo(Z2) = AoZ 2 + Bo is
a solution of the one-dimensional Laplace's equation outside the plate. Recause

there is no way to make this potential distribution evanescent, it is important to

stress that the whole approximation is valid ooly when the thickness ofthe plate is

smal1 compared with other dimensions, i.e. when the plate is assumed infinite.

uations for thickness vibrations
Perpendicular (E Il k) Lateral (E J... k)

Electrode
configuration

Dispersion
relation

Resonance

Antiresonance

COUpÜDg
coefficient

h--h _L....-._7fI&--_Jr
X, h

-h

The derivation of the ftequency equation for an uncoated piezoelectric plate

follows closely that of Tiersten for a totally metallized plate. Omitting details, the

• 4 In orcier to saûsfy the Gauss equation V· D = 09 the electric tlux component D2 in one­
dimensional piezoeledric problems can only be constant and uniforme
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resulting equation that gives the three characteristic frequencies ~ of the one­

dimensional thickness vibrations with open electric boundaries can he written as

1
(

- t:I h t:I h e22je22k. R h) 0 (r) 1 0
C2jk2 JJr cos JJr - T Ef2 sm flr 'Uk = , (3.6)

with

1
(3.7)

Note that both the resonance and antiresonance frequency equations for a coated

plate cao be obtained as special cases ofEq. (3.6) by setting Eo ---t> 00 (electrodes

short-circuited, E2 = 0) and Eo = 0 (electrodes open-circuit~ D2 = 0)

respectively. Since 0 < T < 1, the resonant frequency of a bare plate is

Wo < W s < WeXh where Wo and Woo denote, by analogy with SAW notation, the

solutions ofEqs. (3.4) and (3.5) respectively, i.e. the resonance and antiresonance

frequencies ofa completely plated crystal.

For the purpose ofanalysis, it is more convenient to recast Eq. (3.6) ioto

1 - ~ k2 tan{3rh = 0 (3.8)
L.JT r Rh '
r=l flr

which makes it consistent with those of Table 2.2. For many practical crystal

orientations, shown in Table 2.3, ooly one of the three thickness modes is

piezoelectricaUyactive (1er =1= 0) or predominant. In tms case, Eq. (3.8) simplifies

to

(3.9)

•

For a small piezoelectric coupling coefficient, the fundamental solution ofEq. (3.9)

is weB approximated by

Ph = ; (1- :2 -rk2
). (3.10)

(Kantor, 1977) or, using the solution ofEq. (3.5) Woo = 1r/(2h)V,
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(3.11)

Because the resonance ftequency ofa wholly coated plate Wo is given by a similar
expression W o = (1 - (4/r)k2 )woo but without T, the relative ftequency shift

due to the open electric boundaries cao be approximated for materials with small

piezoelectric coupling k 2 by

Woo -Wo
=T. (3.12)

•

Under the same assumptions, the relative decrease of the effective coupling

coefficient is given by the expression

k2 _ k2

ook2 S = T, (3.13)
00

identical to Eq. (2.8) for SAW. As seen ftom Table 2.3, the shift for some typical

crystal orientations ranges ftom 2 to 18 percent, and might be higher for materials

with lower permittivity.

Table 1.3 Values of". for common crystal cuts.
Material Cut ".

Quartz AT (35.25°-ro18tOO Y) 0.18

GaP°4 AT (33.02°-ro18ted Y) 0.14

L~B407 51°-rotatOO Y 0.10
LiTa03 8.5°-rotatOO X 0.023
LiNb03 163°-rotated Y 0.023

Having a good estimate of w. is important for the design of re5Onator

operating on trapped-energy modes (Onoe et al, 1965; Shockley et al., 1967). In

such resonators the electrode size is chosen 50 that the energy distribution

associatOO with the thickness vibration is concentrated almost entirely in the

electrodOO region and rapidly decays in the uncoated portion of the plate, thus

giving împroved resonance characteristics. This phenomenon can be explained in

terms of a guided propagation of thickness vibrations along the Zl- or x3-axis of

the plate (Fig. 2.2), characterized by a cut-ofF ftequency below which their
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amplitudes decrease exponentially with distance. Due to the mass-Ioading and

different electrical boundary conditioDS, the coated and uncoated portions of the

plate have different cut-off frequencies, equal respectively to Wo and W s defined

above. When the resonance frequency ofa partially plated crystal w is below W o or

above W s , the thickness mode cannot propagate in either region; however, ifw falls

in the range between Wo and ws, the thickness mode propagates and fonns standing

waves in the electroded portion ofthe plate, but rapidly decays in the unelectroded

part.

The resonance of the 'trapped' wave is determined not ooly by the relative

decrease in frequency, or the plate back, defined by

A _ W s -Wo
~s-

Ws
(3.14)

but also by the lateral dimension of the electroded region 21e . Therefore, a whole

series of resonances cao occur between Wo and ws • The optimization of a trapped­

energy resonator consists in eliminating ail the anharmonic resonances, except for

the lowest, or fundamenta1, thickness mode. This condition is met when the

electrode length satisfies the foUowing condition

(3.15)

where À is a theoretical constant related to the wave number in the lateral

direction. The calculation of the plate back ~ in (3.15) is typically based on
ftequency woo, thus leading to a slightly lower estimate of (le/h) 00 = 2/(>"'"~oo),

where ~oo = (woo - wo)/woo is greater than Ws . Ideally, this is Ws that must be

used as a cut-off frequency for the unplated region since it gives a more realistic

upper bound for w. IfW s is not available, (le/h)oo cao be corrected using (3.12) to

obtain {le/h)s as foUows

(3.16)

•
Finally, the MOst important electric flux leak:age is expected in the case of

thickness vibrations excited by a lateral electric field. Mindlin (1973) and later Lee

(1988) studied the electromagnetic radiation trom the face of an AT-cut quartz

plate excited by face-shear traction and lateral electric field respectively. Because
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only the wave solution was ofinterest, the authors did not consider the quasi-static

electric field in the surrounding vacuum. By solving the one-dimensional equations

of piezoelectromagnetism, they obtained an anticipated correction of the order of

10-5 to the wave numbers, thus measuring the eff'ect of the quasi-static

approximation on the thickness-shear mode. Yamada and N'üzeki (1971) also

neglected the electrostatic field outside the plate, when considering the lateral

excitation. They assumed the applied electric field to be strictly paraDel to the

major faces of the plate, .which represents a rough approximation for such an
electrode configuration unIess high permittivity crystals are used.

As earlier for the Tiersten's solution, the formulation by Yamada and N'IÏZeki

was modified here to include the external electrostatic field. In this case, the

frequency equation for the piezoelectric resonance of the structure shown in Table

2.2 (column E 1- k), was round to be identical with Eq. (3.6). This result is

consistent with the one-dimensional model of thickness vibrations since the lateral

component Ea of the electric field is considered constant across the plate (i.e.

independent of %3). Particularly, if Ea is set to zero (resonance), the difference

between the thickness vibrations excited by a lateral field and those of a free

piezoelectric plate disappears. Because, under the assumption of a zero leakage

field, the resonance frequency corresponding to the lateral electrode configuration

is obtained from the same Eq. (3.5) as the antiresonance frequency of the totally

coated plate, the resonance frequency shift due to the open electric boundaries is

equal to (woo - ws ). To obtain the corresponding shift in the antiresonance

frequency, the latter cao be determined ftom the derived equation

1
(
-. t:I h t:I h+ (ë32jë32k - e22je22k) • Q h) 0 (r) 1 = 0
C2]k2 IJr cos flr -& r s sm flr UA: ,

~33 E22
(3.17)

•

where the corrected piezoelectric and dielectric constants are

_ )e22jE~ • e22j~
e32j = e32j - (1 - T S = e32j + r s '

E22 E22

_ S ( ) (E~)2 • (E~)2
E33 = E33 - 1 - r s = E33 + r s

E22 E22

(3.18)
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B. Longitudinal vibration

Simple longitudinal vibrations are rea1ized when one of the plate

dimensions is much larger that the others. In this case, the equation of motion

becomes one-dimensional (Xl), and ftee-edge conditions for the only component
of stress Tnl±l = 0 cao be satisfied by two partial waves k = ( ± a, 0, 0)T,

traveling in the direction ofthe plate length (21):

Ut = Asinaxi +Bcosaxl. (3.19)

The ftequency equations (Masan, 1964) derived for two basic eleetrode
configurations are summarized in Table 2.4.

uations for Ion .tudinal vibrations

a=wv'PSKa=wv'PS[

EJ...k

/...

Electrode
configuration

Dispersion
relation

Resonance cosal = 0

Antiresonance 1 + k2 tanal - 0 cos al = 0
3t al -

Coupling
coefficient

Note: Malerial coefficients involved in the above equatiODS are defined by the
foUowiog systems ofconstitutive relations

{
Su = SflT U + d31Ea , {Sn = S~Tll + 911Dl .
D3 = d31Tu + E[,E3 El = -911Tu + riftDl

They replace Eqs. (2.21H2.22) ofChapter 1 be<:ause for the given boundary conditions it
is more conveoicnt to use (T, E) and (T,D) iostead of(S,E) as sets ofindependent variables.

•
It is more compticated to impose open electric boundary conditions in this

model since the electric flux associated with longitudinal vibrations varies in the
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(3.22)

•

direction of the length. Its exterior part is not uniform, as it was in the case of

thickness vibrations; rather, it is descnbed by Eq. (2.9), thus adding another

dimension to the problem. Ogawa (1969) and, later, Ikeda (1996) treated the effect

offlux leakage in terms ofa depolarizationfactor N, defined as

p
E = -N-, (3.20)

fO

where E and P are respectively the scalar components of electric field and

polarization in the piezoelectric plate. It takes into account the correction to the

depolarization field - P/fo (Ikeda, 1996) due to the nonuniformity of P in the

plate cross-section. An estimate of the two-dimensional factor N cao be obtained

if this cross-section is approximated by an ellipse, for which the polarization is

uniform and assumed to be equal to P in the thickness-direction of the plate. For

instance, if the thickness of the plate is not s~ the electric flux will expand in

the transverse direction %2 (see Table 2.4, column E .1 k). In this situation, E33 is

replaced by E33/r, where the introduced factor r is gjven by

r = 1/(1 + 1~N:J. (3.21)

The admittance of the plate, ftom which the ftequency equations anaIogous to

those of column E.l k in Table 2.4 are derived, is transformed by means of the

depolarizing factor into

• 1 ( ... 2 tanal)y = jwCs 1 + fc31 ----;;,- ,

where c~ = c./r and k~l = k~lr are the modified static capacitance and

coupling coefficient respectively. It is seen ftom Eq. (3.22) that the resonance

ftequency is not affected by this modification, while the antiresonance ftequency is

decreased. The second field orientation (E Il k), for which both characteristic

ftequencies diminish in the presence of leakage field, cao be treated in terms of a

dynamic depolarization factor N'. Factor N', in contrast to the previous static

depolarizing factor N, takes into account the sinusoidal field variation a10ng the

length direction, and is, therefore, function of the wavelength. Obviously, for
w -+ 0, N' -+ N .
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3.2 MindJin's theory

Mindlin's approximation technique is best. suited to prediet resonances in
thin piezoelectric plates. It consists in reducing the three-dimensional goveming

equations of piezoelectricity into two dimensions by, firstly, expanding the

mechanical and electrical displacements in Cauchy's power series of the thickness

coordinate ofthe plate %2

(
U ) 00 (u(n) )
D = ~x~ D(n) ,

(3.23)

with coefficients u(n) and D(n) are independent of %2. The series (3.23) are

truncated after a smaU number of tenns, typicaUy n = 0, 1, 2, and then substituted

into the three-dimensional equations in ditrerential or variational forms. These

equations are intesrated with respect to the expansion variable %2 ta produce a

series of two-dimensional (%1, %3) equations in stress- and electric-potential

resultants

(T(n») 11& (T)
cp(n) = _1& %~ cp d%2,

with surface driving terms

(F(n») = [ n(D' T)] 1&
()(n) %2 UJ

'T -Il

(3.24)

(3.25)

•

respeetively (Tiersten, 1969)5. This operation increases the number of parameters

to be determined, but the resulting equations are simpler ta solve, and closed form

solutions are often available. FinalIy, to compensate, in part, for the truncation in
(3.23), the material constants are premultiplied by some correction factors. The

values of the latter are chosen from a comparison of a selected approximate

solution, such as a thickness-shear mode, with a reference exact solution of three­

dimensional equations (e.g. infinite plate).

In contrast, a revised version of the same tbeory~ 1972} starts with the
expansion of the mecbanical displacements u and electric potential VJ in~r series,
which yields the two--dimensional equaliODS in resultants T(n) and D(n) = f~h~D d:l:2,
and surface cbarges D'(n) = [%~n)D. 0] ~h'



• §3. Piezoeleetric vibrations 71

The modes that Mindlinls approximation is able to encompass are determined

by the displacement terms uCn) retained in the ~ansion (3.23). The theo7 was
initially developed to study the coupled flexure (t40» and thickness-shear ~U~l»)

modes in a rotated Y-eut quartz plate (Mindlin, 1952), as functions of one

coordinate Xl (the width ofthe plate was neglected) in the direction ofthe digonal

axis of quartz. This approach bas been sub~ently extended to include
resonances of the extension ( u~o»), face-shear ( -u!)0»), and thickness-twist (t41»)
modes propagating in both the directions Xl and X3 in a rectangular quartz plate

(Mindlin and Spencer, 1967), as shown in Fig. 2.4, and, finally complemented by a
thickness-stretch (t41» mode (Mindlin, 1984).
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Fig %.4 Displaœments and dispersion curves for the five modes propagating along the

:1:1 and %3 directions in an infinite AT-eut quartz plate (Mindlin and Spencer. 1967).

Here. {} is the normalized frequency. and 1er. and Icï are respectively the real and

imaginary parts of the wave number.

Although resonance frequencies are well approxîmated by Mindlin's theory, the

aetual mode shapes cannot be detennined because of the pre-assigned
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displacement dependence (3.23) on %2. Similarly, since the stress T and potential rp

are not detined at a point but appear in the plate equations ooly as resultants

(3.24), it becomes rather difticult to impose boundary conditions. The latter are

now partitioned into the edge and interior boundary conditions, and involve the

displacement coefficients, resultants and surface driving terms (3.23)-(3.25)

(Tiersten and Mindlin, 1962). The mechanical effects of the electrodes (mass,

stiffitess, size), can be incorporated in the Mindlin's model by means of the surface

loadings t(n) (Mindlin, 1963; Mindlin and Lee, 1966; Tierste~ 1969). It is,

meanwhile, more complicated to accommodate electrical boundary conditions for

bath the electric potentials and charges may be specified on the plate surfaces.

Indeed, since the two-dimensional equations contain ooly the surface potential
~(n), a relation between ~(n) and the surface charges Ul±h is required; by the

same token, if the surface charge densities O'(n) enter the equations (as in the

revised version of the theory), it needs ta be related to the surface potentials f{J 1±h..

Except for the simplest cases of a fuDy coated or totally ftee plate, such

relationships are not easy ta derive for the general electrical boundary conditions,

no mention open electric boundaries.
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4 Nu.erical solutions
The main advantage of the approximation techniques described in the

previous section consists in their relative simplicity: frequency equations cao often

be obtained in a closed form, and solutions cao he analyzed and interpreted as

functions of ftequency determining parameters. Although many resonator modes

are weil approximated by these methods, their applications are limited to simple

geometries (e.g. thin plates or narrow thin bars) with trivial boundary conditions.

Attempts to analyze a number of selected modes in three-dimensional resonators

by partial waves methods lead to cumbersome expressions (Milsom et al., 1983).

ln Mindlinls approach, it is difficult to impose complicated boundary conditions,

whether mechanical or electrical.

Three-dimensional resonators or resonators with unconventional shapes and

boundary conditions cao only be tackled by sorne numerical method (e.g. finite

differences, finite elements, and boundary elements) whose development was

gready stimulated by the growth of computer facilities. The tirst part of this

section describes the evolution of the finite element method, which bas been the

principal numerical tool for modeling piezoelectric resonators since the early

seventies. Because none of the described finite element applications is adapted to

include the electric field induced in the outer space by the piezoelectric vibrations,

the second part of this section reviews the corresponding methods that have been

designed to cope with unbounded regions in electromagnetics.

4.1 Piezoelectric problems

The application of finite elements to piezoelectric problems is often said to

date from the paper by Allik and Ruges (1970), who reported a general

fonnulation of piezoelectric vibrations in terms of tetrahedral finite elements.

Rowever, the underlYing piezoelectric variational principle had been given earlier

in the work by Eer Nisse (1967), and Rolland and Eer Nisse (1968), who

developed the variational technique to calculate the normal modes in ferroelectric

ceramic parallelepipeds and in thick piezoelectric disks by approximating the

mechanical displacement and electric potential with the produets of sinusoidal and

Bessel funetions. The finite element formulation generalized this approach by

replaciog these g10bally defined, and therefore inconvenient for complex

geometries, trial funetions, by the interpolation functions defined on the finite
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subregions, or elements. The choice of the latter, dietated by the geometry of the

structure and the accuracy required, is very wide and bas been constandy

broadened with new applications.

Although the finite element method quickly gained popularity, it could not be

immediately applied to model three-dimensional motion in piezoelectric resonators

because of the large computational resources required, and bas been preceded by

various one- and two-dimensional approximations. An important contnDution was

made by Kagawa and bis co-authors, who applied the finite element method to a

large variety ofpiezoelectric structures. Startïng from the one-dimensional anaIysis

of tlexural vibrations in composite electromechanical vibrators (Kagawa and

Gladwell, 1970) and filters (Kagawa, 1971), he subsequently extended the finite

element approach to approximate the lowest modes in partially plated rectangular

ferroelectric ceramic plates (Kagawa and Yamabuchi, 1974) and the thickness

vibrations in circular and plano-bevel quartz plates (Kagawa et al., 1975). In the

latter thin plate applications, the problem was reduced to two-dimensions by

assuming the displacement is independent of the thickness coordinate or changes

sinusoidally along the thickness direction respectively; the mechanical

displacements in lateraI directions were approximated on triangles ofsecond order.

The same type of elements was used more recently to prediet the frequency­

temperature charaeteristics of rectangular and plano-convex quartz plates and to

model piezoelectric ceramic gyroscopes (Kagawa et al., 1996). Kagawa was also

the first to employ triangular ring elements for the axisymmetric vibrations of

piezoelectric circular rods (Kagawa and Yamabuchi, 1976).

A significant number of publications arose from the combination of the finite

element method and the Mindlin's approximation technique. In tbis approach,

MindIin's two-dimensional plate equations are not solved explicidy for a limited

number of modes but, rather, written in a variational form, are discretized into

finite elements. This facilitates the imposition ofboundary conditions and broadens

the range of geometries Mindlin's approximation cao be applied to. Cowley and

Wdlis (1974) used triangular elements to discretize a circular AT-cut quartz plate

with partial electrodes and calcu1ated resonance frequencies around the

fundamental thickness-shear mode. Mochizuki (1978) employed triangular prism

elements to obtain the frequency spectrum for a variety ofcircular and rectangular

quartz plates. More recently, the finite element method based on Mindlin's plate
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equations was used to study the ftequency shift in quartz plates due to the

electrode mass-Ioading and shape (Lee et al., 1982), temperature (Yong, 1987a),

acceleration (Lee and Tang, 1987; Lee and Guo, 1991), or the piezoelectric etrect

itself (Yong and Zhaog, 1993) if the basic model was purely mechanical. An

interesting approach that combines the finite element, Mindlin's and the partial

wave methods was described by Sekimoto and bis associates. They proposed to

satistY the two-dimensional Mindlin's equations by a linear combination of

eigenmodes (partial waves) guided in the width direction of the plate, while their

amplitudes being approximated by one-dimensional finite elements in the length

direction. This technique, that appears to be both computationally efficient and

accurate, was employed to study spurious resonances and their equivalent

electrical parameters in the miniature rectangular quartz resonators (Sekimoto et

al., 1990, 1992).

As mentioned earlier, the full three-dimensional simulation of piezoelectric

resonators represents a challenging task. Sïnce MOst resonators operate with high

ftequency thickness modes, a large number offinite elements is required to capture

the mechanical and electrical field distributions a10ng the lateral dimensions of the

plate. Problems with 104-105 degrees offteedom (Lobitz et al., 1990; Trümpyand

Zingg, 1993) are routinely encountered. For this reason, three-dimensional finite

elements have been principaUy used to model low-frequency piezoelectric devices

such as tuning fories for wrist-watch resonators (Tomikawa et al., 1978; Yong,

1987b) and other tlexure-type quartz vibrators (Sôderkvist, 1990), ultrasonic

transducers for sonar applications (Allik et al., 1974; Decarpigny et al., 1985) and

medical ima8Îng (Boucher et al., 1981; NaiUon et al., 1983, Lerch, 1990), as well

as composite transducers with periodic structure (Hossack and Hayward, 1991;

Huang and Boucher, 1994). In many cases, the autbors carried out the entire

piezoelectric analysis using existing commercial finite element packages with added

piezoelectric capabilities such as ANSYS (Ostergaard and Pawlak, 1986),

NASTRAN (McDearmo~ 1984), or ATll..A (Decarpigny et al., 1985); or adapted

their code to the solver, pre- and post-processing parts ofPATRAN, ABAQUS,

MODULEF (Chalande, 1990), and FINEL (Guo et al., 1992) finite element

software. In other cases, self-developed piezoelectric programs based on either

standard tetrahedron and hexabedron elements with polynomial interpolation or

custom designed elements (Raoelijaona and Dulmet, 1994) have been developed.
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In any case, because MOst transducers are typically made of rnaterials with very

high pennittivity constants, the problem of modeling the tiinging electric field bas

never been raised in the context ofthree-dimensional finite element analysis.

Ta conelude this section, some alternative numerical methods should also be

mentioned. The method of finite differences was used in the late sixties to study

low frequency contour modes in quartz plates (Lloyd and Redwood, 1966), but

bas subsequently given way to a more versatile finite element method. Il bas the

advantage ofyielding linear systems that are much more sparse, and is still applied

trom time to time to two.dimensional structures with regular boundaries

(Campbell and Weber, 1992) or to the time-domain models of acoustic wave

propagation (Kostek and Ran~ 1994) or vibrations (Yamada and Sato, 1998).

The boundary element method represents a potential interest for the piezoelectrie

problem with open electric boundaries since it is ideally suited ta modeling intinite

regions. However, its application implies the knowledge of the Greenls funetion

and its tirst spatial derivatives which are difficult ta obtain in a elosed form for

piezoelectric 5Olids, and were evaluated 50 far ooly numerically (Chen and Lin,

1995). More appropriate for complex piezoelectric structures is the hybrid finite

element-boundary integral method, applied in the early seventies to study the

vibrations of sonar transducers immersed in an infinite acoustic medium (Smith et

al., 1973); unfortunately, such methods often lead to unsymmetric global matrices

in contrast to the pure finite element analysis (Lerch, 1992).

4.2 Open-boundary electromagnetic prohlems

Many efficient numerical methods have been developed in electromagneties

to model open-boundary problems. It is, therefore, natural to choose among them

an appropriate one that could be used in conjunetion with the finite element

representation of the piezoelectric part of the problem. Several good surveys of

these methods (Emson, 1988; Silvester and Pelosi, 1995; Webb, 1995) facilitate

the selection. Although aIl methods are very different both from the point ofview

of the underlying mathematical principles and computing requirements, one cao

typically distinguish

the methods suited for quasi-static and wave problems. The range of

techniques tbat cao model the smoothly decaying quasi-statie field is, c1early, much
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wider than that of methods designed to approximate the wave behavior at infinity.

Qnly the former will be considered here;
the global and local, or elemental, methods. The authors of the surveys

attribute different meaning to these tenns which leads not only to a confusion but

to, sometimes mutuallyexclusive, grouping ofmethods. Webb (1995) related this

classification with the sparsity of the system coefficient matrix Kat arising trom

the modeling of the exterior region. With this approach, global methods are those
that couple the surface unknowns thus yielding a dense matrix Kat, white the local

methods keep it sparse.
Varlous, more detailed, schemes of classification exist. Loosely, the numerical

techniques suitable for modeling the unbounded exterior quasi-static fields cao be

grouped into the following families:

a) In the simple truncation or simple constraint methods the hypothetical
boundary r, that separates the interior and exterior parts of the problem (Fig 2.5),
is placed far enough ftom the sources to aIIow setting ail fields to zero or assuming

a decay outside of r according to a predetermined (e.g. exponential) law. The

extended interior region is modeled by a finite element mesh.

Fig 2.5 PartitioDÎDg of the problem domain into interior and exterior pans.

b) Hybrid methods represent the field outside of r in terms of an integral

expression, white the interior region Oinl is modeled by finite elements. Silvester
and Pelosi (1995) classified various hybrid methods according to the type ofbasis

funetions (polynomials or eigenfunetions) employed to approximate the exact

boundary conditions on r expressed in tenns of the ftee-space Green function and

its derivatives. For this reason, this family of methods includes not only the
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'classical' hybrid finite element-boundary integral method reported in the papers

by Silvester and Hsieh (1971) for the two-dimensional Laplace equation and by

McDonald and Wexler (1972) for the Helmholtz equation, but a1so the semi­

anaIytical transjinite element method (Lee and Cendes, 1987) that employs the

expansion in Fourier series for approximating the continuity condition for the

electric potential and its normal derivative on a circular (spherical) boundary r.
c) The recursive condensation methods treat the exterior region as a single

'superelement', obtained ftom the successive enIargement of the boundary r to

infinite size r00 by attaching geometrically similar layers of elements until zero­

potential boundary conditions can be applied to r 00. This boundary increase is

accompanied by an elimination of ail nodes between adjacent layers leaving ooly

those on r, 50 that the total number of the variables remains unchanged. The first

method of this group appeared under the narne of 'ballooning' (Silvester et al.,

1977), in wbich a very remote boundary r00 was reached after a few iterations.

This method was refined to its limiting cases by the 'infinite substructuring'

(Dasgupta, 1984) and the 'infinite scaling' (Hurwitz, 1984) techniques that

improved its numerical accuracy by using an intinite number of recursive steps and

an infinite sequence ofintinitesimal steps respectively.

d) The transformation methods use special coordinate transformations to map

the exterior unbounded regjon onto the region of finite volume that can be

subdivided into regular finite elements in the same way as the interior problem. The

shape ofthe inner boundary r, transfonned into itself in tbis operation, detennines,

in part, the transformation rule. The simplest circular or spherical boundary r is

associated with the weil known Kelvin transformation, used by Freeman and

Lowther (1989) to solve axisymmetric and three-dimensional problems; a general

mapping that corresponds to an arbitrary star-shaped r was described by Stochniol

(1992).

AlI these techniques are sufficiently documented in the mentioned references,

and no attempts are made here to discuss them in more detail; instead, their

principal features are summarized in Table 2.5 to explain the choice of method

suitable for the use with the finite element model ofpiezoelectric structures.
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Table 2.5 The features ofnumerical techniques ofmodeling the exterior

unbounded quasi-statie fields
Methods

79

-Simple
constraint
-Transformation

-sparse coefficient matrix
-simple to implement
-compatible with existing FE codes
-potential values calculated
or recovered at aU points

-introduce additional
degreesoffteedom
-accuracy depends on
the ehoice orr

•

f~i t.~~ifi:jK;:::.; ;:~·:::::~:<~·.::~~·~~~;Œ~î\~ &~~l:~t~ttf!}~~SUH tt·: ;~~X::;' ;:~ :;:;.. ::~: .·~::i;~:·~ ~~1:~~:Y;tjit~~E3~~ ;;:~;;:: :):: :j~~iŒ~t~Œm?g1~~~0~~~;~~~I~~~t~mI~m
-allow an arbitrary choice ofr

AIl
(shape and eloseness to S)

-full coefficient matrix-additional variables may be
avoided

-Hybrid
-evmuationof~eeds

-no iterative caleulation involved integrals with strong(polynomial)
singularities

-exterior potentials

-Ballooning
-a1gorithm is simple not caleulated
to implement -matrix inversion at

eaeh step ofrecursion

-Infinite -e~eriorpotenti~scan -solution ofa quadratie
substrueturing be recovered ftom the solution eigenvalue problem

-Infinitesimal -high accuracy in the modeling
-solution ofa nonIinear
ordinary differential

scaling ofe~erior region
matrix equation

Initially, the method of ballooning was selected as one of the easiest to

program. Its implementation aIIowed performing rapid tests to demonstrate the

substantial influence of the exterior quasi-statie field on piezoelectrie vibrations.

Subsequendy, the choice a global method was confirmed when sorne of the ftee

space was ineludes into the interior domain Oint to visualize the fiinge field.
Numerical tests showed that even an element..tbiek layer between r and the

surface of the piezoelectric region considerably increases the size of the finite

element equations, which limits the spectrum of problems that cao be modeled at

the present level of computer facilities. Therefore, for reasons ofstorage economy,

the numerica1 techniques belonging to the category of local methods were
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temporarily put aside since they inevitably introduce additional degrees offteedom.

The hybrid methods, in which the placement of boundary r is a1so arbitrary,

represent an alternative to the recursive condensation techniques. However, the

calculation of the exterior element implies a numerical or symbolic evaluation of

integrals with Green's functions kemel, which cannot be done accurately unIess

special measures that aUeviate the associated singularities are taken. It was judged
that obtaining the exterior element by the method of ballooning was

computationally more straightforward than adapting these special schemes to

various functions that might be used to approximate the boundary potential. As for
other recursive condensation methods, only the infinite restrueturing oWers a real

improvement compared to ballooning: it aIlows the exterior electric potential

distribution to be recovered ftom the solution but, unfortunately, at the priee ofan

increased computational complexity. Taking aU these considerations into account,
it was decided to keep the baUooning technique as a principal tool for solving

Laplace's equation in the unbounded space surrounding the piezoelectric solid.
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5 Statement of probleDl
The above review shows that for problems with simple plaoar boundaries

the exterior potential distribution constitutes an integral part of the analytical

solution for either surface or guided waves. For praetical vibrator configurations:J

the piezoelectric problem with open electric boundaries must be tackled as a three­

dimensional one, whose solution can ooly he accomplished by applying some

numerical technique. No such method had been developed yet. The reported three­

dimensional finite element models do not take into account the quasi-static electric

field that surrounds the defonned piezoelectric solid. This can be explain~ in

p~ by the fact that most of these models deal with rnaterials possessing high

relative permittivity coefficients, such as piezoeleetric ceramics for transducer

applications. In this case, the neglect of the fringing field can be justified; however,

it can introduce a significant error in the anaIysis ofcrystals with low eS/ fO. Such

materiais are predominant in devices for frequency control, where high precision is

required not ooly at the design stage but also while modeling parameters of these

devices.
As was demonstrated:J previous attempts to include the exterior electric field

were limited to one-dimensional models of piezoelectric vibrations. Even these

simples models suggest that the equivalent eleetrical parameters (Cs, C"):J coupling

coefficient k 2
, and antiresonance ftequency la., Le. those characteristics that

depend on electrical boundary conditions, can be especially inaccurate if

approximate solutions negleet the extemal electric field. Moreover, some modes:J

piezoelectrically inactive for a given electrode configuratio~ can be excited

electrically by this fiinging field. It iS:J therefore:J felt that ifthe latter were included

ioto the problem domain, a more realistic model of piezoelectrlc vibrations would

result. The objective of this thesis is to develop a finite-element based numerical

solution of the three-dimensional piezoeleetric problem with open electric

boundaries.
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Finite element formulation

1. Introduction

This chapter develops an approximate solution based on the finite element

representation of projective equations derived in Chapter 1. In this approach, the

unknown quantities are~ first, approximated on geometrical subregions, or

elements, of the problem domain. Second, an approximate solution for the entire
region is built up by enforcing some or fun continuity requirements between the

elements. One ofthe main advantages ofthis approach is that the resulting stiflhess

and mass matrices, fonned on the element-by-element basis, are sparse, which is

crucial for a fast computer solution ofthe associated system ofequations.

However, the numerical properties of assembled, large scale finite element

models will be addressed in the next chapter; the present one deals with local, or

elemen~ matrices~ i.e. with the matrix representations of individual elements. Such
matrices are construeted for the tetrahedra1 elements in the piezoelectric part ofthe

problem domain, and for the bordering 'toblerone' elements, used to discretize

some of the surrounding free space prior to starting the process of recursive

condensation. Because the piezoelectric problem always aUows a formulation in

terms of 'potential' funetions u and f{J~ bath continuous across material interfaces,
the scalar, or nodal, finite elements seems to be the most appropriate. The method

of universal matrices, extended here for piezoelectric media, is used to derive local

matrices for high-order tetrahedra; the bordering elements are fonned by ordinary

numerical integration.



• §2. Finite element modellingofthe unboundedproblem 83

(2.1)

2. Finite ete.ent .odeling ofdie uabounded proble.
In this section, the symmetric matrices (S.30}-{S.33) of Chapter 1 arising

from the Galerkin approach are recast to integrate the finite element method of

approximating the mechanical and electrical field distributions. Different types of

finite elements are employed for the inner and outer parts of the problem domain,

i.e. for the piezoelectric body and the infinitely extending free space around it. The

interior region is modeled by conventional tetrahedral elements with interpolative

approximation. The exterior quasi-static electric field is represented by a single

infinite element, or superelement., resulting from a recursive condensation process

described in this section.

2.1 The finite element approximation

In the expansions (5.14) and (s.lS) ofChapter 1 it was tacidy assumed that

funetions aiCr) and a~ (r) had been defined on the entire problem space - V and

V + V respectively. In contrast to this global approach., the finite element method

uses piecewise basis functions, defined on a union of non-overlapping subregions.,
or elements, ~ that fill the problem domain: V + V = ~~. The unknown

(e)

quantities u and cp are uniquely represented within each element as:

M
u(e)(r) ~ L u!:)a~)(r),

m=l

M
cp(e)(r) ~L <p~)a~)(r),

m=l

(2.2)

•

where M is the number ofbasis functions a~)(r), r E ~. Equations (2.1)-{2.2)

ensure that as soon as parameters u~) and <p!:) are detennined from the solution,

the approximated quantities u and cp cao be calculated everywhere in V and

V + V respectively.

Because the present finite element modeling is based on nodal simplex
elements (Appendix 3), the numerical coefficients u!:) and <p~) in (2.1) and (2.2)

have the physical meaning of field values at node rm, provided the interpolative

polynomial a~) bas unity value at rm and vanishes at the rest ofthe element Dodes:

a~) (rn) = 6mn.. If the same arder of polynomial interpolation is used in ail
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elements, the interelement continuity of the approximated quantities u and cp is,
therefore, enforced by setting equal values to the unknown u!:) and rp~) associated

with nodes shared by several elements. This is accomplished by assigning the same
global index: ig to the common node m. The integer function ig = ig(e, m) maps
the local, i.e. proper to the element e, index: m = 1, ..., M onto a unique global
Dode number ig = 1, ..., ni so that approximations (2.1) and (2.2) cao be rewritten

as

M

U(e) Cr) ~ E Uig(e,m)(t~) (r),

m=l

M

c,o{e)(r) ~E rpig(e,m)Q~)(r),
m=l

(2.3)

(2.4)

(2.5)

where Uig and c,oig are the globally numbered quantities ftom the projective

equation (5.29) in Chapter 1.

The global stiflhess K and mass M matrices in (5.29) cao now be assembled
trom E local, or elemen~matrices K(e) and M(e) as foUows

E M M

Kïg(i),ig(j) = E E E I4j),
e=l i=l j=l

E M M

Mig(i),ig(j) = E E E M~j) .
e=l i=l i=I

(2.6)

(2.7)

The local matrices K(e) and M(e) are defined as their global counterparts

(5.30}-(5.33) of Chapter 1, except that the integrals are now taken over the

element volume ~:

~i) = (l. VŒi • t . VQjdV) i=l ••..•M. j=l•...,M,

•
1 Because Eqs. (2.1) and (2.2) imply that the sets ofbasis fimetions Q~ and O!ï used 10

approximate the mechaDicai displaœment and electric potential in Eqs. (5.14)-(5.15) of
Cbaptcr 1 are identical, il foUows that N = N' = n, and the array ofglobal indexes ig
is the same for both field variables.
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(2.8)

(2.9)

where a generic tensor t stands for tensors cE, e, and eS in the elastic,

piezoelectric, and dielectric stiffitess matrices respectively, and 1 is a 3 x 3 identity

matrix. Because the nodal variables Dm and 'Pm are directly linked only to the

nodal variables of the same element (through the local matrix) or neighboring

elements (through global indexing), the element-by-element assembly in (2.5) and

(2.6) Yields sparse and, provided an efficient global numbering is used, handed

stiffiless and mass matrices.

The dielectric stifthess matrix I{'PP is formed in two steps. First, its interior

part, i.e. the part associated with the piezoelectric material, is made up of element

matrices of type (2.7) with t = eS:

M M
~),ig(j) = EEE <K1j)(e).

(el i=1 j=1

Second, the symmetric superelement matrix S"sxns2 is added to the part of Krpp

that corresponds to the surface nodes:

Ils "s

Ki;(i),igS(i) = Ki;{i),ig8(j) +E E Sij,
i=1 j=1

(2.10)

•

where array igs(i) maps the surface node index i = 1, ..., ns onto the global index

igs. The recursive condensation process, that produces the superelement matrix S,

is described below.

2.2 The superelementfor the exterior region

The three-dimensional version of the recursive condensation is a

straightforward extension of its two-dimensional ballooning method described in

Silvester et al (1977). The strengths and weaknesses ofthis technique have been

discussed in Section 4.2, Chapter 2 in connection with other methods of modeling

large empty spaces. In particular, the recursive condensation process, although

2 Starting from tbis cbapter the symbol S, used ealÜer to denote the mechanical strain
tensof, will be reserved for the superelement matrix.
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reduCÏDg the sparsity of the global dielectric stit1hess matrix (2.10), bas the

advantage ofnot adding new degrees offteedom to the problem.

The most significant difFerence between the two- and three-dimensional

implementations of the balloon algorithm is the size of matrices to be recursively

inverted during the process of condensation. Since no interface separates the

interior region ftom the superelement, the dimension of such matrices is exaetly

equal to the Dumber of surface Dodes ns, which tends to be large for ·many

geometries. It is, therefore, not very practical to attempt to generate the

superelement matrix without seeking simpHfying assumptions. The latter will be

discussed in Chapter 4 along with the convergence properties of the three­

dimensional baUoon recursion. The algorithm itself is described in great details in

Silvester and Ferrari (1996) 50 that only the main stages that lead to the matrix S

are outlined below.
1. The construction of the superelement starts with an enIargement of the

interior part of the problem domain 0 by a bordering region 0(1), whose outer

surface aO(l) is obtained by scaling the boundary an by a factor TI> 1 about the

point 0 E n, as shown in Fig. 3.1.

Fig 3.1 Cross-seaiOD of the interior region n of volume V enlargecl by two successive

coDCCntric sheUs ~l) and r!<le).

To ensure the continuity of electric potential rp across the boundary an, the region
n(l) must be made up of elements compatible with those in n, i.e. the
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approximating functions over an must be the same for adjoin elements from
regions 0 and 0(1). An example ofsuch elements is considered in Section 4 ofthis

chapter. Ifelements ofhigh order are used to build 0(1)' ail interior nodes between
ao and an(l) are to be etiminated by the process of static condensation. If no

condensation of unwanted potentials associated with interior nodes is to be
performed, S(l) can be viewed as a global matrix (2.9) for the space bounded by a
n and a0(1). In either case, the assembly of elements in 0(1) produces the first

superelement matrix S(I) .

2. The bordering region 0(1) is augmented by a layer O(le) - an enlarged

copY of0(1) obtained by scaling the boundary aO(I) by fi. Because the new region

O(le) is geometrically similar to 0(1)' the corresponding matrix s(le), as an

inspection of(2.7) shows, can be obtained from S(I) as foUows:

s(le) = 'IS(l) . (2.11)

3. Regions n(l) and f!(le) are combined into a larger one n 2 = n(l) U n(le),

and unwanted potentials .an1 associated with Rodes on an l are eliminated (static

condensation) from the system

([
S~~
S

(l)
21
o

(2.12)

to produce the element matrix S(2) that approximates Laplace's equation in region

(}2:

(2.13)

•

The new dense matrix S(2) inherits the size RS x RS and the symmetry of the

original matrix S(l), 50 that S~~ = S~~T.

4. Steps 2 and 3 are repeated iteratively until the outer boundary aO(k+l) is

moved far enough from ao. At the kth iteration, the distance from the origin 0 to
a point on a0(10+1) increases in the power series

(T = TJ?!', (2.14)
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50 tbat, even for a scaling factors '1 close to unity, typically six or seven iterations

suffice to impose the infinity boundary condition (Bq. (4.15), Chapter 1) on
aO(k+l). At every successive condensation, the superelement matrix S(k) is

replaced by S(k+l) which models a larger portion of the exterior empty space. Its

submatrices can be are expressed in tenns of submatrices of S{k) and the distance

(2.14) as foUows:

Si~+I) = S~~) - [o-lsi~)T]T[O-IS~~)T], (2.15)

S(k+l) _ S(k) 2 [D-1S(k>]T [O-IS(k)]
22 - q 22 - q 12 12 ,

where D is the Choleski factor ofthe matrix

S~~) + q S~~) = DOT.

(2.16)

(2.17)

(2.18)

5. At the last iteration, only submatrix Sil needs to be calculated and stored.

Submatrices 812 and Sn are of no practical interest unless other than zero

potential boundary conditions are imposed at infinity. Therefore, Sil represents the

final superelement matrix S that models the exterior quasi-static field:

S~ao = o. (2.19)

•

Recause the recursive node condensation leads to a dense matrix S, ail surface

electric potentials ~80 are coupled to each other. It will be shown in Chapter 4

that no significant error is introduced in the solution by negJecting the coupling

between distant nodes. Therefore, many entries of S cao be discarded, and orny a

smaU part ofS is added to the interior dielectric global matrix K'PP in (2.10).
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3. Tetrabedral demeDa for the interior regïOD
Scalar tetrahedral elements have been chosen to discretize the interior

piezoelectric region. Tetrahedra inherit ail the geometrical and a1gebraic virtues of

simplex elements among which the most important are the foUowing:

- any polyhedral shape can be represented as a union oftetrahedra;

- interpolation polynomials of any degree N are easily construeted on

simplex elements (Appendix 3). These polynomials fonn a complete set, 50 that

any polynomial ofdegree N and lower cao be expressed as a linear combination of

its elements. This results in the 'geometric Î5Otropy' of simplex elements - a

property of being independent (e.g. from the point of view of the accuracy of

approximation) of the orientation within the global coordinate system (Silvester

and Ferrari, 1996);

- the continuity ofapproximating functions is automatically satisfied between

elements of the same order for sets of regularly spaced interpolation nodes

coincide for adjacent faces or edges;

- because differential and integration operations involved in the construction

of simplex elements are carried out in homogeneous coordinates, a considerable

part ofalgebraic calculations (Appendix 3) cao be done only once - for a generic

tetrahedron - and applied afterwards to any element. This property is best

illustrated on the example ofuniversal matrices considered below.

3.1 Stiffness and mass matrices

The traditional way of evaluating matrices (2.7) and (2.8), inherited trom

structural mechanics, is by numerical integration, using quadrature formulae for

tetrahedra (e.g. Hammer, Marlowe, and Stroud, 1956). Since produets
'\lai· t· '\lai and QaQj have to be recomputed at Many integration points, this

approach is computationally costly and potentially inaccurate, particularly for

elements of high-order. With advances in syrnbolic algebra packages, it became

possible to derive closed-fonn expressions for (2.7) and (2.8) (Moetakef:

Lawrence, Joshi et al, 1995). In this approach, the calculation of the mass matrix

causes no problem since the result is purely numerical. Moreover, for the first two

orders of tetrahedra, having explicit expressions for the stiflhess matrix elements

reduces the computation time and round-off error as against the numerical

integration. However, for tetrahedra of order higher that two, the symboüc
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(3.1)

•

generation of the stifthess matrix takes a lot of rime and produces very lengthy

expressions that are handled with difticulty by the symbolie computation programs

themselves, and, later, by some compilers, when integrated with the tinite element

code. This suggests that both the numerical and the anaIytie integrations of the

entire stifthess matrix are not very practical for high-order tetrahedra.

An alternative approach to setting up tetrahedral elements, is ta use the

pre-computed, or universal, matrices. Very popular in electromagnetie finite

element applications, the pre-computed matrices had proved helpful in aeoustic

problems as weB, saon after their introduction by Silvester (1969). Stone (1973)

used five different types ofmatrices to assemble high-order triangular elements for

modeling the surface acoustie wave propagation in isotropie guiding structures.

A1though Stone's work elearly demonstrated the elegance and efticiency of this

approach, to the best of the author's knowledge, no further applications of

universal matrices in acoustie problems, and ail the more in the piezoelectrie finite

element analyses, have been reported since. The abject of this section is ta derive

such matrices for piezoelectrie tetrahedra ofhigh order.

The idea behind this method is ta separate material properties, as well as

geometric coefficients and volume of the tetrahedron, trom terms containing

interpolation polynomials and their derivatives. The former are problem specifie

and cao be combined into the weighting coefficients; the latter are independent of

the tetrahedron shape and size, and, when integrated in local coordinates, fonn

purely numerical (universal) matrices that can be pre-computed and tabulated. The

element matrices are then generated as weighted row and column permutations of

universal matrices with exaetly the same computational efforts for elements of any

arder.

Consider fust the element stiflhess matrix (2.7). The gradient operator in local

coordinates has been derived in Eq. (3.2), Appendix 3 and is gjven by

1 ~ (m) ÔO:i
VO:i = -L.JI --

GVm=l ô'm'

where V is the tetrahedron volume, and r!m) denotes the array of geometric

coefficients [bm Cm dm ]T, detined by Eq. (1.4) of the same appendix. The

block-element ofthe stifthess matrix is now represented in the discrete form
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(3.2)K!1d) = 1 2ttw(mft) f Ba. Ba; dV
~ (6V) m=l n=l Jv 8(m 8(n '

where the weighting coefficient w(mn) is defined by the double scalar product of

geometric and material parameters

w(mn) = I(m) 0 t og{n). (3.3)

Factor w(mn) is respectivelya 3 x 3 matrix, a 3-dimensional vector, and a scalar

when t stands for tensors cE, e, and ES; expanded expressions (3.3) are tabulated

in Appendix 4 for ail these tensors. The weighting factors w(mn) are linearly

dependent:

4

Ew(mn) = 0, m = l, ...,4,
n=l

(3.4)

just as the geometric coefficients bm, Cm, dm are (Eq. (1.6) of Appendix 3).
Another property ofw{mn) foUows immediately from its definition (3.3):

w(nm) = W(mn)T. (3.5)

(3.6)

•

On combining equations (3.4) and (3.5), it becomes clear that ooly six out of

sixteen factors w(mn) are 'independent', and need to be calculated for every

tetrahedron; the remaining coefficients cao be found ftom the system

W(ll) + W(12) + W(13) + W(14) = 0,

W(12)T + W(22) + W(23) + W(24) = 0,
W(13}T + W(23}T + W(33) + W(34) = 0,

W{14}T + W(24)T + W(34)T + W(44) = 0,

and Eq. (3.5).

The integral in (3.2) cao be made independent of the tetrahedron shape and

volume by performing the integration with respect to the local coordinates. For

tetrahedra this transformation requires premultiplying (3.2) by 6V (Eq. (4.2),

Appendix 3). The block-elements of the stiflhess matrix K cao therefore be

calculated as a weighted combination
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(3.7)

of purely numerical matrices .(mn) whose elements are evaluated by integrating

polYn0miais (BOti/Ô'm){ÔOt;/ô'n) over a tetrahedron n afunit volume

~~~n) = r ôa. BOt; d"- d"- dl" (3.8)
'J Jo ô(m ô'n ~1 ~2 ~3'

Equation (3.7) cao be written in matrix notation by invoking the tensor product3 of

two matrices:

1 4 4
K(tet) = -EE w(mn) ® .(mn) .

6Vm=l 11=1
(3.9)

This implies that if the weighting factor w(mn) is a p x q matrix and .(mn) is a

M x M one, the resulting pM x qM stiffiless matrix K(tel) will he partitioned into
M 2 blacks K!7tJ ofsize p x q each, defined by Eq. (3.7).

The number of terms in (3.9) can be reduced byeliminating one of the four

local coordinates (e.g. Ct) using Eq. (1.3) of Appendix 3. The discrete form ofthe

gradient operator (3.1) can now be replaced by

1 3 (ôOt- ôOti)\lai = -Eg(m) --' - - ,
6V m=1 ô(m Ô'4

(3.10)

according to Eq. (3.4) of Appendix 3. This change tums (3.9) into a nine-term

summation

3 3
K(/et) = 1:-E Ew(mn) ® œ(mn),

6Vm=l 11=1

and gives rise to a new set ofnumerical matrices .(mn) defined by

œ~~n) = L(ÔOti - ôOti ) (ÔOt; _ ÔOti) d~ dÇ d~
'J ô~ ô~ ô"- a~ ~l 2 ~3'o ~m ~4 ~n ~4

(3.11)

(3.12)

• 3 This kind ofmatrix operation is also referred to as Kronecker or direct produet
(M.Marcus and H. Mine, 1964).
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An alternative way of condensing the discrete representation of the stiftÏ1ess

matrix is to eliminate diagonal members m = n trom (3.9) by expressing them in

terms of off-diagonal ones using system (3.6). After some rearrangement, this

yields a twelve-term expansion

1
3

"K(lel) = -E E (w(mn) ® 4t(mn) + W(mn)T ® 4t(nm» (3.13)
6V m=l n=m+l

with numerical matrices 4t(mn) whose elements are detennined as foUows

~~~n) = _ ( ôa. (aa j _ ôaj ) d" d" d"
I.} Jo a(m a(m ô(n ~l ~2 ~3'

(3.14)

A similar approach led Silvester (1972) to define a symmetrie numerical matrix
Q(mn) (Eq. (2.3), Appendix 4) that was employed in the solution of the three­

dimensional scalar Helmholtz equation for isotropie media; the weighting

coefficient matrix reduces then to a scalar symmetric array
w(mn) = bmbn + CmCn + clmdn = w(nm) . Because for the piezoelectric

tetrahedral elements the weighting factors w(mn) are, in general, neither scalar nor
symmetrie, nonsymmetric matrices 4t(mn) and 4t(nm) in (3.13) cannot be combined

to form one symmetrie matrix Q(mn). The relationship between matrices Q and 4t

is given by Eq. (2.4) ofAppendix 4.

FinaUy, the mass matrix (2.8) is easily obtainable from the numerical matrix~,

~j = ln OïQjd(l dÇ2dC:J, (3.15)

a1so caIled a metric ofthe interpolation polYnomial basis {ai}, as

M(lel) = 6VptL ® 1. (3.16)

•

As it follows trom the above discussion, to generate the tetrahedral elements,

ooly two types matrices are needed - the metric matrix~ and one ofthe matrices

ta, m, and 4t; in principle, either of the three equations (3.9), (3.11), and (3.13)
cao be employed to assemble the stifthess matrix K(lel). However, the symmetry

properties of ta, !B, and 4t, that are discussed in the foUowing section, May be

dccisive in the choice of the numerical matrix to be retained for the computer

implementation ofthe finite element anaIysis.
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3.2 Symmetry andpermutation properties ofuniversal matrices

The numerical matrices !X, !8, ft, and ~, defined in the previous section,

are ail universal in the sense that their elements are exactly the same for any real

tetrahedral element. They can be computed up to any reasonable order of

interpolation polynomials and stored in the fonn of integer numbers with a

common integer denominator. By explicitly writing {tri} in tenns of auxiliary

polYn0mials (Bq.(2.1), Appendix 3), the integrals (3.8), (3.12), (3.14), and (3.15)

are best evaluated anaIytically using a symbolic algebra prosram. Altematively, the

matrices !X, œ, and ft can be derived trom a basic set of universal matrices

(Silvester, 1982a; Silvester, Minhas, and Csendes, 1981), which counts among its

members the already known metric matrix~ and the finite differential operator S),

fonned by the derivatives of polYn0mials tri with respect to the local coordinates

8a./a(m evaluated at the interpolation nodes P; (a.(P;) = 1 for i = j, and

cti(P;) = 0 for i =1= 1):

S)~j) = ÔÔQi 1 . (3.17)
(m Pj

Equations (3.8), (3.12), (3.14) May now be rewritten in matrix fonn

.(mn) = S)(m)~S)(n)T, (3.18)

(3.19)

(3.20)

Therefore, as saon as the fundamental matrices S)(m) and ~ are calculated and

tabulated, any of the matrices !X, !8, and ~ cao he generated ftom them at will. It

is also evident ftom the above equations that the matrices !Il and ft are related to

fa:

•
~(mn) = .(ma) _ fa(mm)

(3.21)

(3.22)
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(3.23)

(3.24)

•

It fonows trom (3.18) and (3.19) that the property (3.5) of weighting

coefficients appües to the universal matrices Il and !Il as weB

.(nm) = l(mn)T,
!B(nm) = œ(mn)T

Taking ioto account that (A ® B)T = AT ® BT, this observation leads to the

following relation

W{nm) ® I(nm) = (WCmn) ® I(mn»)T,

W(nm) ® œ(nm) = (w(mn) ® !B(mn» T,

which reduces the number of numerical matrices a(mn) or m(mn) that enter into

expansions (3.9) and (3.11) to ten and six respectively.

Because summations (3.9) and (3.11) involve fewer terms than (3.13) it might

seem that it is more economical to use the matrices 1( or !8 to construct the
stifthess matrix K(lel). At this stage, storage requirement should be considered

more closely. Indeed, not ail the universal matrices need to be calculated and

tabulated: most of them are obtainable from one another by applying various

permutation operators assaciated with a regular tetrahedron (Silvester, 1982b)

such as
- rotation about the tetrahedron centroid (cyclic permutation of all four

vertices);

- rotation about one ofthe tetrahedron three-fold axes (cyclic permutation of

three vertices lying in the plane perpendicular ta this axis);

- mirroring or 'tlip' permutation (exchange oftwo vertices).

One way of deriving permutation rules for universal matrices is ta identify them

with tetrahedron vertices and edges (Silvester and Ferrari, 1990). Using this

geometric anaIogy, it becomes evident that the symmetric matrices .(mm) can be

generated from one matrix 1(11) byapplying any permutation operation that maps

vertex 1 onto vertex m; the nonsymmetric matrices .(mn), m :1= n, associated with

the edge mrl cao be obtained trom one matrix, e.g. .(12), by employing

tetrahedron permutations that transform the edge~ into edge mn'. The same
geometric argument applies to matrices m(mn). This means that in both cases at
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least two starting matrices need to he tabulated in order to generate complete sets

ofuniversal matrices. and !B ftom expansion (3.9) and (3.11).

In contrast, Eq. (3.13) does not contain any diagonal term (m = n); in other

words, the universal matrices involved in this expansion are associated with
tetrahedron edges ooly. This suggest that aU the required matrices 4t(mn) cao be

generated ftom the basic matrix .c(12) a10ne by successively applying the same

permutations that relate edges mrt to the edge -u+. An example of such

permutations is shown in Fig. 3.2.

3

2

1

1
R,

..
4 3

2
4

R2 ..
2

Fig 3.1 Rigbt-handed rotations RI and R2 of the tetrabedron about (1- and (2-axes

respectively.

(3.25)

Rotations RI and R2, that map the edge -u+ onto edges~ and~
respectively, relabel the tetrahedron vertices according to the foUowing matrices

[

1 0 0 0]000 1
RI = 0 1 0 0 '

o 0 1 0

•
Matrices (3.25) cao be used directly for tetrahedra of first order to obtain the
matrices ~13) and ~42) as row and column permutations of~12):

«t<13) = RI~12)RI, ~42) = R2~12)~. (3.26)

The diagram in Fig. 3.3 shows that these two rotations are sufficient to obtain the

remaining universal matrices.
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~12)

~
1 ft<32) 1

Ry
1 C43

) 1

~
1 ~(31) 1

~
1 4é42

} 1
Ry

1 ft<23) 1

~
1 ~21) 1

Ry
1 ~24) 1

Ry
1 ~13) 1

~
1 ft<41) 1

Ry
1 ~34) 1

RJ/
1 ~14) 1

Fig3.3 Derivation ofnumerical matrices ~(mn) , m :F n, from matrix C I2).

•

For elements of order higher than the first, rotation matrices must take into

account the relabeling of all the tetrahedron nodes. Such matrices have been

generated up to the forth order and compaetly stored in the fonn of one­

dimensional arrays RI and R2 whose entries indicate the column numbers of the

nonzero element in each row of RI and R2 respectively. Examples of such arrays

for a tetrahedron ofsecond order are given in Section 3, Appendix 4.

Following the described scheme, the stifIÏ1ess matrix K(Iet) cao be derived from

the row and column permutations of only one numerical matrix ft<12), and six
weighting coefficients W(l2), W(13), W(l4), W(23), W(24), W(34). While ~12) is

constant for a given arder of interpolation, the weighting factors are recalculated

for every real tetrahedral element. Using the permutation arrays RI and R2 , the

element of the stiflhess matrix is calculated as shown in Eq. (3.27). The number of

operations involved in (3.27) is fix~ and does not depend on the element order.

This sets practically no limit on the arder of tetrahedra used in the analysis, which

distinguishes the method of universal matrices from other methods of computing

element matrices.

Equations (3.16) and (3.27) were implemented in the aetual finite element

code. The required universal matrices ft<12) and ~ were calculated and tabulated
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up to the fourth order. Example of these matrices for tetrahedral elements of
second order are given by Equations (2.1) and (2.2) ofAppendix 4.

Kft~t) = ~{W<12)<!:Ç!2)
1 6V IJ

•

(3.27)
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4. Bordering ete.eau
The basic requirement for elements in the bordering region n(l) is that they

be compab"ble with tetrahedral elements used to subdivide the interior piezoelectric

region. The skew triangular prism, or skew 'toblerone' element, shown in Fig. 3.4,

arises naturally from the enIargement of border an. The element shape is defined

by two similar triangles ABC and A'B'C' connected by straight edges A-A',

B-B', C-e'. Because vertices A(zl, YI' Zl), B(:l:2' Y2' Z2), and C(:l:3, Y3' Z3) of
the surface triangle are also common ta an interior tetrahedron ABCD (Fig. 3.4),

the continuity of approximating funetions across the surface is automatically

guaranteed, provided the same arder ofinterpolation over ABC is employed.

,,------ c·

Fig 3.4 Skew 'toblerone' element - the building black for the bordering tegion ~I)'

Nodes A'(X4, Y4' Z4), B'(xs, Ys, zs), and C'(X6, Y6' %fi) are generated by the
mapping

OA' oB' OC'
OA = OB = OC =11 (4.1)

with respect ta the point O(xo, !lo' zo) 50 that their coordinates are derived from

their surface counterparts as
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i = 1, 2, 3. (4.2)

To construct the bordering element, it is possible to further subdivide the

described triangular prism into four tetrah~ and to employ approximating
functions already derived for the interior region. However, this would imply using

the same order of interpolation on the surface, which is determined by the interior

tetrahedra, and in the radial direction. This could be particu1arly inconvenient if

high-order interpolation is needed to model the field variations inside the

piezoelectric domain, while lower degree polYn0miais might be sufficient to

approximate the electric field decay near the surface; moreover, high-order
interpolation generates nodes inside the bordering region !l(I) which must be

removed by the computationally costly procedure of static condensation. Instead,

it was decided to define the basis function over the whole prisme This allow

combining ditferent interpolation orders over triangles ABC and A'B'C', and

along the radial edges A-A', B-B', and C-C', thus providing for more flexibility

in modeling the interior and exterior field distnoutions.

4.1 Approximation on the 'toblerone' element

Let the Lagrangian polynomials a t «(1' (2' (3) of degree Nt and aS (~1 , ~2)

of degree N s be associated with the line segment and base triangle respectively.

Because both shapes are special cases of simplexes, the interpolation polynomials
a f and aS can be expressed in terms of auxiliary polynomials Hm using the multi­

index numbering:

a:nno«(l' (2' (3) = Rm(Nt , (I)Rn(Nt, (2)Ro(Nt, (3),
m+n+o=Nt ,

(4.3)

(4.4)

e.

As is evident trom the definition of Rm (Eq. (2.2), Appendix 3), funetions a t and

aS have zeros at Mt = (Nt + 1)(Nt + 2)/2 and Ms = (Ns + 1) equispaced

points (Fig. 3.4) respectively. In a single-index notation, the Lagrangian

interpolation on the 'toblerone' element cao be defined as a product ofpolynomials
a t and aS:
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(4.5)

where the correspondence between the index i = 1, ... , MtM. and indices j and k
may be established in the foUowing manner

i=(k-l)Mt+j, j=l, ...,Mt , k=l, ...,M.. (4.6)

The unknown potential can thus be approximated in terms of independent
interpolation functions al and a· by

MtM.

cp(z,y,z) = E ~ia~((I'(2'(3)ak(el,e2)
i=l

(4.7)

(4.8)

(4.9)

(4.10)

•

The same type of functions (4.5) is used to approximate the element shape
transformation, required subsequendy to express the Jacobian J associated with

the element. Because ail the prism edges are straight, it is sufficient to employ

ÜRear (with respect to each local variable) interpolating polynomials

{
(iel , i = l, 2, 3,

ai = (i-3e2' i = 4, 5,6.

The element geometric shape is, therefore, approximated similarly to Eq. (4.7),

where the potential nodal values cli are replaced by the prism's vertex coordinates

(Xi, Yi' Zi):

x = (XI (1 + X2(2 + Z3(3)el + (X4(1 + X5(2 + X6(3)e2, }
y = (YI (1 + Y2(2 + Y3(3)el + (Y"(l + Y5(2 + Y6(3)e2, .
z = (Zl(1 + Z2(2 + Z3(3)el + (Z"(l + ZS(2 + Z6(3)e2,

If orders Nt or Ns in (4.7) are greater then one, which is typically the case, the
constructed 'toblerone' can be seen as a subparametric element.

4.2 Stiffness matrix

On setting E = EoI in Eq. (5.32) ofChapter l, the elements ofthe stitlhess

matrix becomes

K[;»J = foIvVa;· VajdV,
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where the gradients of interpolating functiODS Va. are expressed with respect to

the Cartesiao or global coordinates z, y, z. Because funetions lti are given in tenns

of local, or simple)4 coordinates (l' (2' (2' el, e2:r among which only the three (1'

(2' el will be considered as independent, it is easier to perform the differentiation

with respect to (1' (2' el by invoking the Jacobian J of the coordinate

transformation:

1 [Bai
Vai=r 8(1 (4.11)

•

Taking into account that (1 + (2 + '3 = 1 and el + e2 = 1, the stifthess matrix

cao be evaluated in local coordinates as

where indices m, n, 0 refer to the multi..index notation, while the single indices

i,j, k are related by Eq. (4.6). Derivatives of the auxiliary polynomials R were

obtained in Appendix 3, Eq. (3.5).

4.3 Calculation ofthe Jacobian

The substitution of Eqs. (4.2) and (4.9) into the Jacobian matrix

J = 8(z,y, Z)/8«(1' (2' el) and some rearrangement yields
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where the introduced variables are

(4.14)

(4.15)

Note that the last three equations of (4.15) represent the approximation of the

shape ofthe surface triangle ABC (Fig. 3.4). The determinant of the Jacobian., Le.

its magnitude, is readily expressed as

with lAI and IBI denoting the detenninants

(4.16)

XI YI ZI

lAI = X2 Y2 Z2,

X3 Y3 Z3

XI - 2':3 YI - Y3 ZI - Z3

IBI = X2 - 2':3 Y2 -113 Z2 - Z3 .

2':0 110 Zo

(4.17)

•

It is evident trom (4.15}-(4.17) that, since lAI and lB1 are constant, the

determinant IJI is a function ofthe local coordinate el alone.

The Iacobian of the inverse transformation Ô«(1'(2,el)/Ô(X,y,z), equal to
the inverse of the Jacobian of the forward transformation J-I, can he evaluated

anaIytically which is due to the relatively simple form of IJI :
Cn Cl2 CI3

e e e
1 1 C21 C22 C23

(4.18)r = IAI-IBI ë ë ë
C31 C32 C33

-(11- 1) -(11- 1) -(11-1)

where elements ofthe auxiliary matrix C are given by
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cil = (Y2 - Y3)Z - (Z2 - Z3)1/,

cil = - (X2 - X3)Z + (Z2 - Z3)X,

clil = (X2 - X3)Y - (7/2 -113)%,

c;l = (YI - X3)Z - (Zl - Z3)Y,
c;,.l = (Xl - X3)Z - (Zl - Z3)X,

enl
= -(Xl - X3)Y + (YI - 1/3)X,

cïl = (lit -1/3)(Z2 - Z3) - (Zl - z3)(112 - 7/3),

CJi = (Zl - Z3)(X2 - X3) - (Xl - X3)(7I2 - 7/3),

enl
= (%1 - %3)(Y2 - 713) - (lh - 7I3)(X2 - X3)'

(4.19)

4.4 Numerical integration over the 'toblerone'

Although closed-form expressions have been derived for Jacobian matrices
(4.14) and (4.18), associated with the forward and inverse coordinates

transformations respectively, they are not constant as their simplex counterparts

(Eqs. (1.7) and (1.8) of Appendix 3). Attempts to evaluate the stifthess matrix

(4.12) symbolicaUy or establish some kind of universal matrices proved to be not

very practical; it is more efficient to perform the integration numerically, using

Gaussian integration formulae.

The examination of Eq. (4.12) reveals that the integrand represents a

polynomial in coordinates (1' (2' and el for which the Gaussian scheme with an
appropriate number of points yields exact integration. Indeed, it cao be seen from
Eqs. (4.15), (4.18) and (4. 19)that the matrix J- l can be partitioned as foUows

1
=C1

J-1 = 1 e (4.20)
lAI - IBI _ 1 C

2(11- 1)

where the matrix Cl is funetion of local coordinates (l' (2' while entries ofC2 are
constant for a given element. CoUecting aU the Jacobian related tenns, the

foUowing matrix is obtained:

• (4.21)



whose elements are the Iinear combinations of polynomial terms «(~(~ )2
t

i + j = 1, and e~.
The minimum number of integration points 1. and I t required for an exact

numerical integration over the line segment and triangle is a1so determined trom
the arder of interpolation functions aj and Ok- According to (4.13), the

components of V'1'2~1ai are formed by the polynomials (~(2n~ t

m + n + 0 < Nt + Nil - 1, with max{m + n) = Nt and max(o) = Nil. Taking
into account (4.21), the degree ofthe polynomial function

l'ii = (V'1'2~lQi)TTT.rlV'1'2elQj IJI, (4.22)

is at MOst 2Nt + 2 in both variables (1 and (2' and at most 2Ns + 2 in el. The
number ofintegration point along with their weights w and coordinates Zt a, (3, 'Y

are supplied in Section 4, Appendix 4 for the first few Nt and Nil. Elements ofthe

stif1hess matrix KCPP are then evaluated by successively applying Gaussian

integration formulae for the line segment and triangle:
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•

1. l,xr: = €oE E W:'W~Pij(Zm' Qn' Pn, 'rn)
m=l n=l

(4.23)
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4

Computer implementation

1. IntrodUCtiOD

Numerical solution of the three-dimensional piezoelectric problem with

open electric boundaries is accomplished in two stages: the generation ofa suitable

superelement matrix S and subsequent solution of the piezoelectric - static or
vibrational - problem itself Once matrix S is generated by a separate program, it

cao be applied to a great variety of interior problems provided that the continuity

of electric potential across the boundary is preserved. The overaU solution is

computationally very demanding because of large matrices arising trom the three­

dimensional finite element discretization of both the interior and exterior domains.

It is typically very difficult to isolate the numerical methods trom the rest of the

application. Thereforet most of the research efforts were devoted to tinding
appropriate data structures and selecting methods of implementation that suit best

the computing a1gorithms used. It was a1so found important to exploit the

symmetry properties of the region and the special structure of matrices whenever

possible.
This chapter describes practical computational aspects of the numerical

solution, which comprises the foUowing stages:

- generation ofthe tinite element mesh;

- assembly of the global finite element matrices trom their local
representations - expressed by Eqs. (3.16)t (3.27) of Chapter 3 and the

superelement matrix S - accompanied by a simultaneous imposition of boundary

conditions;
- solution of the tinite element equations associated with the detenninistic

(static) and eigenvalue (vibration) problems.
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2. Mesh generation
An automatic mesh generation program was designed to discretize a three­

dimensional rectangular region into high order tetrahedral elements. Rectangular

shapes are typical for piezoelectric vibrators and a1so most convenient trom the

point of view of programming simplicity. The number of elements Ex, Ey, Ez
a10ng the edges and the order of interpolation N are the ooly input parameters

required. The very same procedure is used by the program that implements the

ballooning a1gorithm to create the inner boundary of the superelement. Iodee<!, a

set ofsurface triangles arises naturally trom the discretization ofthe interior region

into tetrahedra Provided the input parameters are the same for both programs, the

identical element topologies on the surface of the rectangular region automatically

guarantee the continuity of approximating funetions across the surface when the

superelement is combined with the interior model.

The program starts by generating a set of uniformly distributed nodes that

partition the interior region ioto Ex x Ey x Ez rectangular prisms, or 'brick'

elements, as shown in Fig. 4.1.

Fig 4.1 Rectangular region subdivided into Ex x Ey x E z (here Ex = 12, Ey = 8,

E z = 4) 'brick' elements.

Each 'brick' is then dissected into five tetrahedra according to one ofthe two basic

schemes (Fig. 4.2), which must be properly a1ternated in the mesh in order to

preserve the continuity of approximating functions across the element faces.

Therefore, the division of the whole region involves Ev = 5ExEyEz tetrahedral

elements for the solution of the ioterior problem and

Es = 4(ExEy + ExEz + EyEz) triangular elements on the surface to build the
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superelement. For a given arder of interpolation N, each tetrahedron is
represented by M = (N + 1)(N + 2)(N + 3)16 nodes, thus producing the total
of MEv nodes over the entire set of elements. Their Cartesian (global)

coordinates (Xi, Yi' Zï), i = 1, ..., M are easily determined tram the local

coordinates (:, (~, (~, (~ and the tetrahedron vertex coordinates by using Eq. (1.5),
Appendix 3. Because the nodes homogeneous coordinates (:n, m = 1, ... , 4 are

independent of the tetrahedron shape and size, they cao be calculated once (Bq.

(2.3), Appendix 3) and stored as anays of integer quotients of the type ilN,
where i = 0, ... , N.

A

B

B

A

•

Fig 4.2 Brick partition into two types (A and B) of tetrahedra arrangements and their

respective position in the mesh.

The obtained elements are disjoint in the sense that a shared node has as Many
different indexes as the number oftetrahedra it belongs to. This means that several

sets of variables (u, cp) may be associated with the same node. To create the finite

element mesh (i.e. an assembled set of elements and nodes), and to enforce the
continuity of approximated physical values across the element boundaries, a

conjoint, or global, node numbering must be employed. This cao be accomplished

by hashing the Iist of ~disjoint' nodes idis = 1, ... , MEv by their Cartesian

position r = (Xidis, Yidis' Zidis)T in order to eliminate those with identical r. A
possible hashing function is
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3

h(idis) = E Pk rïe(k),
k=l

109

(2.1)

•

where Pl' 1'2, P3 are the weighting coefficients, and ie is the index table ofthe array
(Ex, Ey, Ez), rearranged into ascending order. For example, if Ex = 6, Ey = 4,

E z = 8, then ie(l) = 2, ie(2) = 1, ie(3) = 3, and (2.1) becomes

h(idis) = PlYitlis + P2Zidis + P3Zidis. On 50rting the array h, those nodes idis

that have the same value of h, i.e. the same location r, are assigned a common
global index ig(idis). The global node numbering ig = 1, ... , n is then used to

update the Iists of Ev tetrahedra and Es surface triangles 50 that they be defined

by uniquely numbered nodes.
However, the role of funetion h is not limited to interconnecting elements. Its

second objective is to order nodes, and therefore variables, in a way to reduce the

bandwidth of the finite element matrices for the interior problem. By making a

special choice of weighting coefficients Pi, 50 that they satisfY, in particular,

condition Pt < Pl < P3, the reanangement of array h in ascending order gives
priority to Rodes located in the direction charaeterized by the minimum number of
elements Eïe(l) a10ng the edge, while those in the direction of the maximum.
number of elements Eïe(3) are numbered Iast, Le. with the highest indices. This

guarantees that nodes are indexed in a consistent, though not necessarily optimal,

manner and the maximum node number difference does not exceed
N 2(Eïe(1) + 1)(Eie(2) + 1). Obviously, such an approach favors meshes elongated

in one particular direction (strip geometry) for which Eïe(3) » Eie(2) ~ Eïe(l) .
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3 Siock baUooDiDl Dlethod for reetangular regiODS

The general three-dimensional ballooning a1gorithm for modeling Laplace's

equatioD was described in Chapter 3. As soon as the global finite element matrix

for the bordering region 0(1) is assembled trom the 'toblerone' matrices and ail the

interior nodes are eliminated by the process of statie condensation, the method

amounts to implementing Eqs. (2.14)-{2.18) of the same chapter. For the mesh

size ns (Le. the number of surface nodes), the overall storage requirement

includes:

two symmetric matrices Sil,~

one unsymmetric matrix S12
one triangular matrix D
two unsymmetric matrices »-IS12, D-1 sT2

. 2 x ns(ns + 1)/2,
2ns,

ns(ns + 1)/2,
2 x n},

•

Le. 9ni/2 locations in total. In practice, there is no need to keep ail these matrices

in the fast-access memory. Indeed, inspection of Eqs. (2.14}-(2.17) of Chapter 3

shows that, without impairing computational efficiency, it suffices to aIlocate ooly

Sn}/2 memory to store two unsynunetric matrices and one Iinear array to house a

symmetric matrix. The greatest storage requirement (2ni) is due to matrices

»-IS12 and D-1sI2 that are accessed simultaneously at each step ofthe ballooning

recursion. The lower triangles of symmetric matrices Sil and ~ are a1temately

generated in the one-dimensional array (ni /2), and subsequendy copied to a

secondary storage device (disk) to be retrieved during the next iteratioD. The same

array is used to house the triangular factor D. On calcu1ation, the matrix S12

overwrites one of the unsymmetrie matrices, and cao immediately be used to form

the new matrices 0-IS12 and 0-lsI2'

The computing time for each iteration is proportional to the total number of

tloating-point operations, orflopsl, required for

In this cbapter a ~traditional' definition ofa Oop, as one floatingepoint multiplication
and one addition or substraction (Waddos, 1991), is used. Iftbe oC\\' definition oftlop
was used (00100 and Van Loan, 1989), the oumber ofarithmetic operations would
double.
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one Choleski factorization ofO'S11 +~
two forward substitutions 0-1ST2, 0-1S12

two symmetric [»-1 S~~)T] T[0-1S~~)T] and

[0-1S~~)]T[»-1si~)] ~ and one unsymmetric

[0-1S1~)T]T[0-1s1~)] matrix multiplications

n}/6,
. 2 x (n;' /2 x ns),

: 2 x (n}/2) + n}.

•

Therefore, if applied directly, the a1gorithm would require Sn;'/2 memory and

19n}/6 x iter ~ 3n} x iter computing lime, where iter is the number of

iterations, typically six or seven. These core memory requirements and computing

time estimates increase rapidly with ns but cao be minimized significantly for

rectangular regions. In this case, superelement matrices possess certain

symmetries, 50 that ooly a part ofthe matrix needs to be calcu1ated and stored.

3.1 Handling ofsymmetry

A rectangular paraUelepiped bas at least three symmetry planes that

subdivide it into eight equivalent parts, or octants, numbered as shown in Fig. 4.3.

If the origin point ro = ro(xo, 110 , zo) (i.e. the point with respect to which the

successively ballooned boundaries are concentric) is placed at the geometric center
of the region of interest and the numbers of elements along edges Ex, Ey, Ez are

even, the mesh of nodes inherits the same symmetry. Nevertheless, it is not

sufficient to consider ooly one octant of the problem domain as cao be done for

isotropie problems. Because the interior piezoelectrie regjon is always anisotropie,

symmetry must be imposed explicitly on the whole superelement matrix. This leads

to a bloek balloon recursion procedure described below.

.-4 ~,.8

2~--_+_---~

___-+-__....,7

1

Iïg4.3 Basic one-eigbtb part ofa rectangular region.
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Based on their Cartesian position r, aU nodes cm be partitioned into eight

equivalent sets, corresponding to the eight symmetrical parts of the surface (Fig.

4.3). With this Dode ordering, a generic submatrix S (e.g. Su, S12, or S22)

involved in the ballooning recursion is composed ofeight independent blocks Sel) ~

6(2), ..., S(8) distnèuted inside S according to the permutation table shown in Fig.

4.4. Because an element Si; ofmatrix S cao be interpreted as the potential at Dode

i due to the source located at node j, these submatrices have the foUowing

meanings: Sel) incorporates electrostatic interactions between Rodes within the

same symmetrical parts 1-1~... ~ 8-8; the block e(2) - between octants 1-2~ 3-4,

5-6, 7-8~ and so on; finally, S(8) retlects the interaction between parts 1-8~ 2-7,

3-6~ 4-5~ symmetric about the origin point. Moreover, the blacks e(ioct) ~

ioct = 1, ... , 8 of symmetric matrices Stl and ~2 are a1so symmetric~ while for the

unsymmetric matrix St2 they are respectively unsymmetric.

ft:sJ ]~~~;]~~ :~j:.. :1: ~~~~~.{ ::;;~.~~;: ~:~:~~. :::~ .::;: .i:· ~ ~:.. J~
2 1 4 3 6 S 8 7
3 4 1 2 7 8 S 6
4 3 2 1 8 7 6 S
S 6 7 8 1 2 3 4
6 S 8 7 2 1 4 3
7 8 S 6 3 4 1 2
8 7 6 S 4 3 2 1

Fig 4.4 The stnIetura1 symmetly of matrices Su. S12. and Sz2 arising from a special

node numbering. Only the sbadowcd part needs to be calculated and stored.

The equivalence between Dodes belonging to differeDt octants is established by

means of air - r 0 l-based hashing function. Because symmetrical nodes are

located at equal distances ftom the origin, they are easily identified on sorting the

associated hashing array as those having identical value of this function. A surface

node igs and its seven symmetrical counterparts are assigned the same index iloc,
referred to as 'local' by anaIogy with the assembly of the global matrix S ftom the

element matrices, which, in this case, are represented by the blocks e(ioct). A

special two-dimensional array i8(1 .. ns, 1 .. 2) maps the global surface node index

igs onto the
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octant number ioct = 1,...,8:

i8(igs, 1) = ioct;

- local node index iloc = 1, ...,noct:

i8(igs, 2) = iloc,

113

(3.1)

(3.2)

(3.3)

•

where nad is the number of ~independent' nodes that belongs to the tirst, for

instance, octant shown in Fig. 4.3. The index array i8 and the permutation matrix

P, which is an exact repüca of the table shown in Fig. 4.4, aIlow reconstituting the
entire matrix S trom its eight independent blocks e(ioct) as foUows:

for igs = 1, ... ,ns
for jgs = 1, ..., ns

[

ioct = i8(igs, 1), joct = i8(jgs, 1)
iloc = i8(igs, 2), jloc = i8(jgs, 2)

P(ioct,joct)
Sigs.jgs = 6 iloe.jloc .

Since the number of Rodes in one octant nad is roughly equal to ns/8, matrices

Su, S12, and S22 occupy approximately one eighth of the storage required had
their symmetry not been exploited.

3.2 Block recursive process

The structural symmetry of baUooning matrices aIIows a1so minimizing the

computing time, evaluated at 3n} per iteration for the general a1gorithm. First, this

reduction is related to the very same Caet that only one eighth of matrices Su, S12,

and S22 entries needs to be calculated thus diminisbing the amount of operations
associated with matrix multiplications by 1/8. Another, less obvious, simplification

arises trom the observation that the inverse symmetric matrix (S22 + USll)-I,

represented by its Choleski factorization O-TD-1, possesses the symmetry of

matrices Sil and ~.2 However, no attempt to invert S22 + USll blockwise will
be made here; rather, tms fact is used to conclude that the matrices (D-TD-1)S{2

and (D-TD-1)S12 a1so inherit the symmetry pattern shown in Fig. 4.4, both being

products of matrices with identical block structures. They are thereby

2 This cao easily be verified by generalizing the Frobenious fonnula for the 2 x 2 block
inverse (Gantmacber. 1988) ta an 8 x 8 black maIrix.
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characterized by the same permutation matrix P and index anay i8, that are used

to describe the distnbution ofelements in Su, S12, and S22 (Eq. (3.3».
It becomes more convenient to recast Eqs. (2.14)-(2.16) from Chapter 3 as

S~~+I) = S~~) - S~~) [D-TD-1S~~)T], (3.4)

S(k+l) - _ S(k) [D-TO-1s(k)]12 - fT 12 12 ,

S(k+l) _ S(k) _2S(k)T [O-TO- 1S(k)]
22 - fT 22 - u- 12 12 ,

(3.5)

(3.6)

•

since matrices D-1S~~)T and D-1S~~) are never formed explicitly, which would

inevitably destroy the block structure ofEqs. (3.4)-(3.6). Therefore, ail the matrix

multiplications in (3.4)-(3.6), as weB as the forward elimination and back
substitution D-TD-lS~~)T and D-TD-1S~~) can be perfonned only on a one-eighth

f . S(k) " ."gh . d d bl ks ~(ioct) h . F· 4 5o matnx 12' I.e. on Its el t m epen ent oc ~12 ' as s own m Ig. . .

Fig 4.5 Acœssed parts of matrices used to form the products s~~T) [D-TD-1S~~T)] .

In this new recursion scheme, the core memory is redistributed among the

eight symmetric blocks(n}/l6) to store a1ternately e~~) and e&~),

ioct = 1, ... ,8;

two sets of eight unsymmetric blocks (2 x n} /8) to simultaneously access
the 'old' (k) and store 'new' (k + 1) submatrices e~~);

- triangular factor D (n} /2),

which gives the total of 13n}/16 ~ 3n}/4 data elements - approximately one

third of the initial 5n~/2. Note that one auxiliary ns-vector is now sufticient to
house the result of the forward elimination and back substitution D-TD-lS~;,T)
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since it is used only once during an iteration and needs not be generated in a

matrix.

Except for the Choleski factorization of O'SII + Sn, for which the arithmetic
(n} /6) remains unaltered, the amount ofwork required to execute one loop of the

baUooning recursion (3.4}-(3.6) is oomposed now of the oost oftwo partial, i.e.

involving ns /8 columns, forward eliminations and back substitutions

(2 x n}/2 x ns /8), and of two (a1sa partial) symmetric (2 x n}/16) and one

unsymmetric (n}/8) matrix multiplications. As a result, the overall computing time

for the block balloon recursion reduces to 2n~/3 per iteration, which is

approximately five times less than that required if the full matrices Su, S12, and

S22 were handled. For instance, on a Pentium n 400 MHz computer, the time

required to generate a final Sil matrix after seven iterations ranges from 12

minutes for the mesh size RS = 866 to 12 hours for RS = 3458 respectively.

It is also imponant to note that in the developed computer programs single

precision (32-bit) arithmetic was employed to store arrays ofdata, while aU the dot

product operations were performed in double precision (64-bit) to diminish the
roundoff error.
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4 AsseDlbly ofglobal Dlatrices

Each node ig ofthe finite element mesh ofn nodes is associated with four
variables: the three components of mechanical displacement u~, ut, u~ and one
electric potential CPig. If aU the mechanical variables U are numbered first, and aU

the electrical potentials • - Iast, i.e. when the mapping between the nodal set of
variables (u, cp)ig and the vector x = (U, .)T ofaU the unknowns is

(

Zig)
Xig+n= ,

Xig+2n

Xig+3n

(4.1)

the 4n x 4n global stifthess K and mass M matrices3 cao be partitioned

respectively as

K= [~ -'t].

M= [~ ~l

(4.2)

(4.3)

In (4.3) the size of the nonsingular submatrix Mau of the mass matrix is 3n x 3n,
an~ in faet, the term 'mass matrix' will be employed in the present section to

denote precisely Mau. For n typically ranging in a three-dimensional mesh trom
103 to 104, the dimensions of the unconstrained stifthess nK = 4n and mass
nM = 3n matrices are quite large. Moreover, because (4.2) and (4.3) are

assembled from the element matrices, they are very sparse, so that it is impractical,

and often impossible, to store them fully.
The choice of data structures for large sparse symmetric matrices is intimately

related to the numerical techniques employed for solving the finite element
equations. Both the storage mode and numerical methods must exploit the special
structure of the global matrices to minimize the computing time and storage

requirements. That is why the two conventional storage schemes - sparse and

• 3 Note tbat indices u and VJ have been sbifted to the lower position since in the present
cbapter the elastic, piezoelectric, and dielectric submatrices will not be addressed
elementwise.
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profile - considered in the present section are best regarded integrally with the

conjugate gradient and Lanczos methods descnùed in Section 5.

A point ta note is that, among other factors discussed below, the number of

elements in the global stifthess matrix K depends on the material properties of the

piezoelectric crystal. Although it varies only slighdy with materials and crystal

orientations, it should still be mentioned that, for the sake of consistency, aU tbe

illustrative examples given throughout this and the foUowing sections were

generated for the AT-cut ofquartz.

4.1 Sparse storage

The sparse scheme stores ooly nonzero elements ofmatrix A of size n x n

in a one-dimensional array sa, and some additional, or overhead, information

about the location of tbese elements. Typically the sparse storage is used in

conjunction with iterative algorithms that regard A as an operator: A is trequendy

referenced through the matrix-vector product AI but never modified in the course

of iteratioDs. A speedy retrieval of AiS elements ftom its compact storage is best

accomplished by storing indices of the Donzero elements in an integer one­

dimensional array ija, thus avoiding an expensive searching through sa by means

of sorne indexing function (Silvester, 1993). In this respect, the row-indered

sparse storage mode (press et al., 1992) is one of the most economical and also

most commooly used.

In the sparse storage mode,

the first n locations of sa store Ais diagonal entries; location n + 1 is not

used. Starting trom position n + 2, the array bouses A's nonzero otf­

diagonal elements, ordered by rows, and, within each row, ordered by

columns. For A symmetric, ooly the nonzero entries trom its lower

triangular part need to be stored;

the first fi, locations of ija store pointers to anay sa, i.e. indices of sa

where the new row begins; as foUows trom the description of sa,

ija(l) = n + 2, and ija(n + 1) equals the total number of nonzero

elements in A. Starting trom position n + 2, the array ija stores the

column number ofthe corresponding element in sa.
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If the nonzero elements of A are stored in sa as 4-byte real numbers~ and the

corresponding column indices - as 2-byte integers~ the overhead storage for the

above scheme (array ija) is haIf the storage requieed for sa. The descooed data
structure is best illustrated on the example of a symmetric matrix-vector

multiplication y = As:

for i = 1, ..., n
y(i) = sa(i)x(i)
for k = ija(i), ..., ija(i + 1) - 1

[

j = ija(k)
y(i) = y(i) + sa(k)x(j)
yU) = yU) + sa(k)x(i).

Typically, the global matrices are sa large that not only do they need to be

manipulated in sparse format, but have ta be generated directly in this format, thus

bypassing the full storage mode. As will be clear tram the next section that deals

with the superelement, the sparsity patterns of K is not known in advance, and,
therefore, the element matrices cannot be simply embedded in the connected

(global) assembly of elements as shawn in Eq. (2.5) ofChapter 3. Thus, a generic

global matrix A must be assembled one row at a time, or variable-by-variable, sa

that for each row i, aIl the corresponding nonzero positions
ija(i), ... , ija(i + 1) -1 are filled prior to starting row i + 1. Because the number

of nonzero locations in A does not depend on the variable numbering, i.e. the
mapping betweeo the variable (1J,~~ u~, u~ or CPig) at node ig and the unknown

xCi) is irrelevant for the sparse format, this is equivalent to performing matrix

assembly in a node-by-node fashion.

To assemble the row corresponding to a given oode, the contribution tram aIl

the elements that contain this oode must be taken iota account. This implies that
for each node ig~ one must detennine the set of elements eh e2, ..., et the oode
belongs ta. This task is, in a sense, inverse to that of interconnecting elemeots by

assigning a global node index ig ta the node shared by k elements. It is, therefore,

oatural to invoke the 'disconnected' Dode indices idis because of the unique

correspondence between them and the elements. In particular~ in the regular mesh

described in Section 2, index idis is assigned in a consistent manner



• §4. Assembly ofglobal matrices 119

(4.6)

•

idis = eM - 1 + m to a Dode occupying POSitiOD m among the M Dodes of the

element e. This indicates that values m and e cm easily be recovered trom idis as

m = .id.is mod M }
"d"s - ml. (4.5)

e= M +

The sparse assembly of row ig ofthe global matrix A amounts ta looping over the

list ofdisconnected nodes idis = 1, ..., MEv, and, for ail idis that share the same

global index ig, coUecting nonzero elements trom the row m of ets local ma~

where m and e are determined as in (4.5). As they arrive, the nonzero elements are

first accumulated in a separate array srow aIong with the corresponding column

numbers jg, stored in a parallel integer array icol. After scanning aU the elements

that meet at node ig, i.e. elements which contribute to the row ig of the global

matrix, icol is sorted in ascending order and attached to the indexing array ija.

Theo, elements srow(icol(i», i = 1, ... , sig, where sig is the total number of

nonzeros in row ig, are added to the array sa, and ija(ig + 1) is set to

ija(ig) + sig. If the fastest sorting technique quicksort is used, the process of

sorting the array icol requires O(sigIOg(Sig» worle; therefore, the assembly of the

entire matrix is least a O(nslog(s» process, where s denotes the average number

ofnonzero elements per row.

The value of s is an important charaeteristic of the sparse storage mode. As

foUows trom the description of the indexing array ija, it cao be calculated for a

given matrix as

ija(n + 1)s=----
n

Through the sparsity structure of the element matrices, s depends on the

tetrahedron arder N (Table 4.1) and, in the case ofthe stifthess matrix, on material

properties. For meshes which are large enough to have the number of interior

(fully connected) nodes clearly superior to that of surface Dodes (partially

connected), s is practically indePendent of the variable numbering. Il is interesting

to note, that there is almost no increase in s for the mass matrix as the element

order changes tram 2 ta 3. This is explained by the faet that the tetrahedral mass

matrix for N = 3 bas a certain amount of zero entries, in contrast to other
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practical element orders (at least the tint tive), for which the local mass matrices

are full. This suggests that if higher accuracy needs to be achieved without

increasing the sparse storage of the mass matrix, this peculiarity of tetrahedra of

third order caR prove usefuH

Table 4.1 Average number ofnonzeros s per row.
Orderof s

tetrahedron N Stiffitess matrix K Mass matrix M
1 27 6
2 48 12
3 80 13
4 121 32

Table 4.1 also demonstrates that since the nodal variables u 1, u 2, u3 are related in

the local stiflhess matrix by the elastic tensor cE and coupled to cp by piezoelectric

coefficients e, the average number of nonzero entries per row sK and SM for

matrices K and M, respectively, are approximately in the ratio 4:1 (except for

elements oforder N = 3). Because s is independent orthe mesh configuration, for

a given element order N the number of elements in the sparse storage of global

matrices ~nx4n and ~nx3n are functions of the number of nodes n alone (Fig.
4.6).

1e+06 ....-------------.~-......--.......---.....----,
ge+05

Se+05

t 7e+05
~ 6e+05
.; 5e+05
; 4e+05

1 3e+05
z

2e+05
1e+05
Oe+OO 451.::::1:::....:- 010.-_......... -1

o

Fig ".li The number of nonzero elements in global matrices for the clement order

N=2.
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It should be noted that despite the elastic and piezoelectric coupling ofvariables in

the stiflhess matrix, its sparse storage is 50 economical that for a wide range ofn it

occupies less than 1% ofthe full matrix storage.

4.2 Inclusion ofthe superelement matrix

The superelement, represented by the final matrix Sil of the ballooning

recursion, is added ta the global stifthess matrix K as a regular element detined by

the set of the surface nodes ns. For each node ig belonging to the surface, the

corresponding row is of matrix Sil is appended ta K along with the contribution

from tetrahedral elements that also share the node ig. Because the surface node

number Îs = 1, ... , ns is found by searching (quicksort) the array igs (Chapter 3,

Section 2.1) for index ig, the addition of the whole superelement is a
o (n~log(ns» process.

The eight independent blacks of matrix Sil are retrieved to an auxiliary array

from the disk, where they have been previously stored by the program that

perfonns the recursive condensation. Any element of the whole matrix Sil cao be

restored from its independent blocks according ta Eq. (3.3). However, it saon

becomes clear that a considerable part of Sll'S elements cao be discarded on the

basis of their magnitude without any significant impact on the solution ofthe open­

boundary problem. Therefore, it is impractical to add the full matrix Sil ta the

element assembly since, for typical ns, its storage requirements outweighs that for

K for the interior problem. To discard or retain SII'S elements in a systematic way,

a threshold value thres is introduced for their nonnalized, with respect to the
RS

average S = ESll/ns of diagonal entries, magnitudes. In other words, ooly
i=l

those entries of matrix Sil are alIowed into K whose relative magnitude exceeds

thres, i.e.

(4.7)

•
The influence of thres on the numerical solution is demonstrated on the

example of the static capacitance of a quartz cube with top and bottom surfaces

are half-covered byelectrodes, as shown in Fig. 4.7(a).
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Mesh 8x8x8,
n=4401
nK = 17444,
Electrodes 4 x 4

c:r- = 3S.9 pF,

N=2

ns = lS38
(two sicles)

c~ = 27.7pF

(a)

90

80

70
LI-
~

fi 60
g
~ 50 •:lJ
~ca
0 40

30

il
• •, 1

1 1
• 1
~ 1

l- I
(b),

1

--'~
t
1 .
•
t. .

20 '-- --ll--_......._--' ....... ---'

1e-12 1.10 1.08 1e-06 18-04 1.02 1e+00 18+02

1.7e+06 ,....-....."...-----,,.....--.......---------------.
1.6e+06

1.5e+06

~ 1.4e+06

11.3e+06

-I1.2e+06
~ 1.1e+06 (c)

~ 1.0e+06
z

9.0e+05

8.0e+05
7.0e+05 '--_-A-_-...I ......... ~__..._ ....~

1e-12 1.10 1.08 1e-06 18-04 1.02 1e+00 1e+02
threshold value

•

Fig 4.7 Parameters of the piezostatic problem as functions of the tbresbold value thres

for the elements of the ballooning matrix Su. (a) Problem description. (b) Slatie

capacitanee of the open-boundaly problem. (c) Sparse storage requirements for the

global stiffiless matrix.

The problem was initia11y solved with open and closed electric boundaries, i.e. with

and with no matrix Sil added, and, subsequendy, for several interrnediate fillieveis
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of Sil prescribed by thres. Figure 4.7 shows how the static capacitance C& (h)

and the number of nonzero locations in K (c) change as the threshold value

increases and more elements of Sil are discarded. The capacitance curve begins
with C~, and maintains this level until thres reaches the value ofapproxinlately
10-4 . For the same thres intervaL the storage requirements for the stifthess matrix

K drop trom 1.64· 106 to 0.86· 106 words, thus diminishing by almost 50010.

Between thres = 10-4 and thres = 1 the solution bas no physical meaning: the

curve behavior simply reflects how the numerical value of static capacitance
deteriorates as larger elements disappear trom Sil. Starting trom thres = 1, the
capacitance becomes that of a closed-boundary problem CC;O&ed, which indicates

that no elements tram Sil are left in K. The storage requirements for K stabilize at
the level of a closed...boundary problem, Le. 0.7· 106 locations, even earlier - at
thres = 10-2 . This means that the entries of matrix Sil whose magnitude lies
within 10-2 < 1sl/i /s < 1 are either diagonal, or fit into the sparsity pattern of

the 'closed' global matrix.
The above example demonstrates that ooly 0.16· 106 out of 1.18· 106

locations, i.e. 14% ofmatrix Sn, need to be added to the global matrix ta achieve

the full accuracy in calculating the capacitance of the open-boundary problem. AlI
the elements sIl, IsI/I/s < 10-4, associated with electrostatic interaction

between relatively distant nodes, can be discarded without a1tering C~. For the

element order N = 2, the remaining entries ofS•• increase the average number on
nonzeros in the stifthess matrix K trom Selo$etJ = 48 to Sopen = 59, thus leaving K

largely sparse. Experiments with other baUooning matrices suggest that
thres = 10-4 seems to be a reasonable compromise between accuracy and starage

requirements, and is adopted further as a default value for numerical tests and

illustrative problems.

4.3 Profile storage

In the profile, a1so termed envelope or skyline, storage mode the symmetric

matrix A is written Înto an one-dimensional array env 50 that for each row i of its
lower triangle, ooly entries located between the leftmost nonzero element il(i) and

the diagonal i are stored. Therefore, the method alIocates storage for aU the
members of the envelope {(i, j)1 i = 1, ... , n; j = il(i), ..., il, even though sorne

of them are zero. This approach implies solving the systems of linear equations by
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some sort of elimination (direct method) which involves a complete faetorization

of matrix A. Indeed, although the Ais triangular factor L will have a different

sparsity pattern because of the fill-in during the factorization, it will have the same

profile 50 that it can overwrite A. Moreover, for A stored in env by rows, the

bordered form ofthe factorization (Watk:ins, 1991) is the most appropriate.

The data structure associated with the profile storage scheme is much simpler

than its sparse counterpart. It requires

an array env whose first n positions store the diagonal entries ofA, and ­

starting from position n + 1 - Ais envelope, one row after the other;

an integer anay il oflength n to bouse the column number il(i) ofthe first

nonzero element in the row i;

an integer array ienv of length n + 1 to store pointers to env: its element

ienv(i) indicates the position in env where the first nonzero entry of row i

is stored. If the row is represented only by its diagonal element, then

ienv(i) = ienv(i + 1). It a1so foUows from the above that

ienv(l) = n + 1 and ienv(n + 1) equals the total number of locations in

env.

Again, a pseudocode for the symmetric matrix..vector produet y = AI is drawn to

illustrate the descnoed storage:

for i = 1, ... , n
y(i) = env(i)z(i)
k = ienv(i)
for j = il(i), ... , i - 1

[

y(i) = y(i) + env(k )x(j)
y(j) = y(j) + env(k )x(i)
k=k+l

Because the last stored element of row i is a1ways diagonal, tbe components of

anay ienv cao be derived ftom il as foUows

ienv(i + 1) = ienv(i) + i - il(i), (4.9)

50 that, in principle, it suffices to bave the array il a1one. However, it is convenient

to record ienv to avoid recalculating (4.9) any time matrix A is accessed.
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(4.11)

•

Therefore, the profile scheme cao he implemented with a fixed overhead storage

of 2n + 1 integer locations, wbich is negligible compared to the primary storage

for the anay env. The assembly of global matrices is a1sa considerably simplified.

Indeed, array il, and consequently ienv, cao be determined in advance (e.g. by

nmning a dummy loop over ail elements), sa that the global matrices are formed in
a usual, element-by-element, manner.

The envelope of a symmetric matrix A is characterized by the average

semiband width p, calculated as

ienv(n+ 1)
p = . (4.10)

n

With tbis definition of p, the envelope size becomes a Mear function np of the

problem dimension n, and cao be compared to the sparse storage (ns). In contrast

to the average number ofnonzero elements per row (s), p depends on the order in

which unknowns are numbered. In Section 2, a special hashing function was

designed to help ordering nodes in a way to minimize the maximal node number

difference over aU elements. These efforts would be fruitless if the variables were

numbered as shown in (4.1). Fortunately, this was required ooly for the purpose of

partitioning matrices K and M ioto physically meaningful blocks (Eqs. (4.2)­

(4.3»; in practice, mechanica1 and electrical variables are intermixed within the

global matrices accordiog to the foUoWÎDg scheme

1

:t _(=::=:)
U~g - Z4ig-l .

'Pig X4ig

In tbis way, the variable number difference taken over ail elements and,

respectively, Ais envelope are minimized simultaneously with the node number

difference.

Table 4.2 iIIustrates some typical values of p obtained with the variable

numbering (4.11) for square plate and strip geometries. The two problems were

discretized with tetrahedra (N = 2) in a way to make the number of nodes n in

the meshes alike. Because the adopted node numbering favors the strip

configuration, the corresponding storage requirements is aImost less by haIf than
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that ofthe square plate. Bearing in mind tbat for the same element order the sparse

storage mode - for which the variable numbering is immaterial - produces an

average of 48 elements per row, one cao see that even for the 'optimal' strip

geometry ooly one-eighth of the envelope is fiUed; clearly, K's envelope becomes

sparser as elements ofthe ballooning matrix are added.

Table 4.2 The average semiband width p ofglobal matrices.
Mesh Nodes K M

ExxEyxEz
electric

n nK P boundary nM P

~ 2837 11348
690 closed

8511 517

12 x 12 x 2 1105 open

2897 11588
374 closed

8691 281

24x6x2 633 open

The proportion of 'wasted' space is even greater for the profile of the mass

matrix M, for which the average number of nonzeros per row is ooly 12. To

reduce the memory requirements, Yong and Zhang (1994) proposed a storage

scheme that exploits the special structure of M. They observed that the associated

till-in happens along the same discrete subdiagonals where the few M's nonzero

elements are initially located. In three-dimensional finite element models (Yong

and Cho, 1994), this a priori knowledge of the till-in pattern allows alIocating

storage ooly for the one third of the mass matrix envelope. However, as it will be

demonstrated later in this chapter, by modifYing the Lanczos algorithm the

faetorization of the mass matrix, and therefore its profile storage and handling, cao

be avoided, thus giving way to a more efficient sparse scheme.

4.4 Imposition ofhoundary conditions

The finite element matrix equations were derived trom the projective and

variational fonnulations under which ail the boundary conditions feU ioto essential

and natural. This constitutes one of the principal advantages of the finite element
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method since ooly essential boundary conditions need to be explicidy imposed on

the nodal variables. The homogeneous natural conditions are satisfied

approximately, in a weighted sense, while the nonhomogeneous natural conditions

make up the driving terms, i.e. the right-hand side ofthe finite element equations.

The choice offunctional ~4 in the variational fonnulation (Section 6.1, Chapter

1) makes the Dirichlet boundary conditions to aet as essential, and the Neumann

conditions - as natural. The former are enforced by constraining the mechanical

displacements and electric potentials on some parts of the surface. Because it was

agreed to consider only problems with traetïon-ftee boundaries, and alsa because

at any point of the surface the Dirichlet and Neumann conditions are mutually

exclusive, the mechanical conditions are purely homogeneous Neumann, and no

driving term is associated with them. Therefore, ooly the electric Dirichlet and

nonhomogeneous Neumann boundary conditions need to he taken into account. In

the ftamework of the present finite element model, this amounts to prescribing

either eleetric potentials or electric charge densities at some of the boundary

nodes.

To introduce boundary conditions iota the tinite element equations, the

problem variables x and, correspondingly, the source tenns q must be numbered in

a way ta distinguish prescribed nodal potentials or charge densities, trom their ftee

counterparts. Clearly, numbering (4.11) is suitable ooly if all the nodal values are

unconstrained; otherwise, it needs to be modulated in order ta fit specific types of

boundary constraints. For instance, ail the electric boundary conditions, discussed

in Section 5.2 Cftapter 1, involve electrodes. Due to the conducting nature of the

latter, only one electric variable should be associated with each electrode. In this

way, the boundary conditions are imposed on ail the electrode nodes coUectively,

either in terms of the total electrode charge Q = Q (Neumann) or electrode

potential -le = ()e (Dirichlet), thus giving rise to matrix equations (5.39) or (5.40)

of Chapter 1. Therefore, the first step in the variable numbering would consist in

identifying nodes that belongs to the same electrode, and assigning a unique index

to the corresponding nodal potentials (or charges).
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The way in which these electrode's variables are bandled is problem specific. If

solution is 50ugbt in the fonn of proper vibrations4, either CIe or Q is zero. In

particular, when the problem is solved for resonance (~e = 0), the electrode

potentials are simply eliminated trom, or rather not included in, S, 50 that no rows

of the stiffiless matrix are associated with them. To obtain the antiresonance
solution (Q = 0), the electrode potentials are treated as one unknown, and the

corresponding rows of K's lower triangle ofthe stiffbess matrix are summed up to

form a unique row. In either case, the right-band side vector q is zero, and the

numerical solution is detennined trom an eigenvalue problem. In contrast, the

static problem requires a driving vector which is formed by assigning a constant

nonzero values to either CIe or Q. Because the static solution is typicaUy recast in

the form ofcapacitance Cs (or, in the case ofmultiple electrodes, in the matrix of

capacitance coefficients Cs), it is convenient, foUowing the definition of Cs, to

specifY opposite charges of equal amounts on the electrodes Q = ( + Q, _Q)T,

and detennine their potentials by solving the corresponding system of Iinear
equations. Therefore, among the four possible combinations ofelectrical boundary

conditions summarized in Table 4.3, ooly three (nonshaded) are implemented in the

present anaIysis.

Table 4.3 Vectors of unknowns x and sources q for different types of boundary

conditions
Vectorof Boundary
unknowns conditions homogeneous nonhomogeneous

I= [~]
Dirichlet

resonance
q=O

static

I= [::]
Neumann

antiresonance

q= [!]q=O

• 4 As in Cbapter 1, for the sake ofsimplicity the imposition ofboundary conditions is
discussed for a system with one electrode.
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5 NUlDerical solution ofraite e1elDeDt equations
After assembling the global matrices K and M and imposing boundary

conditions, the tinite element procedure amounts to solving either the generalized

eigenvalue problem

or the system of linear equations

KI=q

(5.1)

(5.2)

•

for the Vibration and static problems respectively. The global matrices K and M of

size n, partitioned as shown in Eqs. (4.2) and (4.3), are both real and symmetric

since they were assembled trom symmetric element matrices with real entries. As

mentioned in the previous chapter, the interface conditions for variables s are

enforced by the continuity of approximating funetions across element interfaces,

including the superelement, 50 that no additional, possibly unsymmetric, coupling

terms are introduced during the matrix assembly.
Among other characteristics that determine numerical properties of systems

(5.1) and (5.2), it is important to mention that the stiftbess matrix K is indeftnite

as the underlYing energy function - the electric enthalpy G2 - is. Its submatrices
Kuu and~ are both positive definite which is directly related to the positiveness
of the strain !UTKauU and dielectric ~.T~. energies for any nontrivial

displacement U and potential •. The matrix K is singular unless electrical

boundary conditions, in one of the fonns shown in Table 4.3, are introduced into

it. In contrast, the mass matrix M is a1ways singular since no time-derivative is
associated with the scalar electric potential. The kinetic energy ~UTMuuU being

positive, the Mis nonsingular submatrix Mau is positive definite, and the whole

matrix M is said to be positive semi-definite.

For the computer implementation, it is especiaUy relevant that the global

matrices K and M are typicaUy large and very sparse. In other words, it is

important to use a1gorithms that take advantage ofK and Mis sparsity because the

latter are large. To date, the most efficient a1gorithms for solving (5.2) and (5.1)

are the preconditioned conjugate gradient and the Lanczos methods respectively.

After a briefreview ofalternative approaches, the application ofboth techniques to
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the piezoelectric static and vibration problems are considered at greater length in

this section.

5.1 Review ofpost methods

The earliest solution to the piezoelectric problem was that of AIlik and

Hughes (1970),. and consisted io reducing the latter to the ordinary structural

dynamics equations by a static condensation of electrical degrees of fteedom.

Removing the unspecified electric potentials.' ftom Eq. (5.39), Chapter 1

.' = IÇ~ (K,puU - Kprep.i <bel, (5.3)

recasts the vibration problem ioto

(5.4)

where

(5.5)

(5.6)

(5.7)

•

are the condensed stifthess, piezoelectric and dielectric matrices respectively.

The resonant ftequencies W,. À = ur, and mode shapes U has always been of

prime interest to piezoelectric device designers. For free vibrations, system (5.4)

transforms ioto the generalized eigenvalue problem

I(..u = ulM.U, (5.8)

where u:.. = Bau for ~e = 0 and u:.. = H... + lfu,p.ïiT~./(iTIlp.ep) for

Q = O. Because M... is positive-definite, it admits the Choleski decomposition

M... = LLT,. and (5.8) cao be recast ioto an equivalent standard symmetric

eigenvalue problem

L-1I(..L-Ty = c,;V (5.9)
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with same eigenvalues and the transformed eigenvectors Y = LTU. Ifrequired, the

condensed potentials .' can be recovered from (5.3) after obtaining U (and ~e, if
solved for the antiresonance) from the numerical solution of(5.9).

An obvious drawback of this approach is that sparsity is destroyed in the

process of static condensation. The Householder reduction to tridiagonal form

foUowed by the bisection metbod appüed to the Sturm sequence (Watkins, 1991)

is typically the best way to determine a few specified eigenvalues of a dense

matrix. The static condensation is, therefore, useful for tbree-dimensional problems

of modest size, as those associated with low ftequency transducer modeling. In an
attempt to aUeviate the solution, Boucher et al. (1981), and more recently Yang

and Zhaog (1993), proposed to solve (5.9) for purely mechanical modes

<u:. = K..) and treat piezoelectricity as a perturbation - a method barely

suitable for materials with strong piezoelectric coupling. In general, large systems

of piezoelectric equations are better solved directly by numerical methods tbat

preserve the sparsity or profile of their matrices. At this point it is important to

note tbat because M is singular, problern (5.1) bas only nM eigenvalues, where nM

is the size ofM...; the remaining nK - nM eigenvalues associated with electrical

degrees of fteedom are regarded as infinite. For the sarne reason, the generalized
eigenvalue problem (5.1) cannot he reduced to the form (5.9). This difficulty is

typicaUy overcome by applying the standard reduetion to the reciproca1 problem

1
Mx = À lU. (5.10)

With this substitution, the infinite eigenvalues are mapped onto zeros, and the

problem (5.10) has the full set ofnK eigenvalues.

Among the numerous techniques (parlett, 1980; Pissanetsky, 1984) suitable for

fineling a few lowest eigenvalues and eigenvectors of large sparse symmetric

generalized eigenvalue problems in the form (5.10), the inverse iteration, suhspace

iteration, and Lanczos method are Most widely used in the finite element

applications; aU these methods cao be combined with sbifting (fT) to detennine the

eigenpairs in any specified region ofthe spectnun.

Startîng from a given veetor So, the inverse iteration finds and scales (to avoid

overtlow or undertlow) the new approximation to the eigenvector Sk+l :
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[
(K - U'M)Sk+l = Msk,

III Il k = 0,1,2...
Ik+l = Ik+l Sk+l 2·

(5.11)

•

The procedure is repeated until the corresponding approximation to the eigenvalue

Àk satisfies sorne convergence criterion. The ith eigenpair converges linearly with
the rate 1(Ài - U')1(Ài+1 - U') 1 (Watkins, 1991), which is rapid ooly if

IÀi - 0'1 « IÀi +1 - (TI, i.e. when shift fT is a good approximation to Ài - To

accelerate the process (5.11), the shift can be refined and set equal to the Rayleigh
quotient U'k+l = sIKxkl(sIMxk) at each step, thus giving rise to the Rayleigh­

Ritz iteration characterized by cubic convergence. The subspace iteration method

(Bathe and Wdson, 1973) cao be viewed as a generalization of the Rayleigh-Ritz

procedure to the subspace of M-orthogonal vectors Xk. In this case, the
convergence rate of the tirst q eigenpairs IÀq1Àh+ll is determined by the subspace

dimension h, and cao be hastened by choosing a larger block of Xk. However, the

increase of b also increases both the number of matrix-vector oPerations and

storage requirements, which may render the rnethod inefficient if h is not properly

selected. A careful choice of the starting block Xo is also very important since
convergence cao he very fast if Xo is close to the least dominant subspace. The

subspace iteration method has been very popular among engineers, including the
piezoelectric community (Yong, 1987b; Lerch, 1990; Trümpy and Zingg, 1993),

since its introduction in the early seventies, and has been a standard eigenvalue
solver for many finite element programs. Nowadays, however, it is progressively

replaced by the rival Lanczos method, which is superior to simultaneous iteration

in both speed and storage (Nour-Omid el al., 1983). Although the algorithm is still

often associated with instability and ghost eigenvalues, Many piezoelectric

engineers adopted il, largely through the finite element packages available to them,
as a tool for solving the eigenvalue problems arising in their applications

(Decarpigny et al., 1991; Yong and Stewart, 1991; Guo et al., 1992).

In contrast to the frequently encountered modal analyses of piezoelectric

structures, the Iiterature is mute on the numerical solution of the full piezostatic

problem under electric load. It is very Iikely that what is buried under the name of

~static anaIysis' in the finite element packages, supplemented with piezoelectricity,

performs this task (Sôderkvist, 1998). However, the review of technical papers
(Boucher et al., 1981; Naillon et al., 1983; Johnson, 1990) indicates that, at best,
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the statie solution (w = 0) in the fonn ofstatie capacitance Cs is obtained as a by­

produet ofthe vibration problem as

Cs = 1lp.'Pc- (5.12)

In the modem piezoelectrie finite element analysis sueh an approach to calculating

Cs is untenable for several reasons. First, on using sparse eigensolvers, the dense
matrix IÇ~ in (5.7), and therefore ~I!'P.' are never formed explicidy. Second, the

inspection ofthe eleetrical equation in (5.4)

(5.13)

reveals that (5.12) takes into account ooly the dielectric contnbution to the static

capacitance. The neglect of the statie displacement U in (5.13) cao introduce a

large error in Cs for materials with strong piezoeleetrie coupling. Finally, the

extemal electric field bas never been taken into account by any existing

approximation to the statie capacltance, although among other electrical

parameters it is precisely Cs that is most atTected by it.

Clearly, from computational and physical considerations, Eq. (5.12) is not an

adequate way of calculating the statie capacitance of a piezoeleetric structure; the

'true' Cs = Q/fJe cao be obtained ooly from the solution of (5.2) for ~e given Q.
When salving linear systems, one cao choose between direct (elimination) and

iterative methods. Typically, iterative techniques, such as the preconditioned

conjugale gradient method, work very weU for static problems, sa that no

recourse to the costly faetorization of the coefficient matrix is needed. As will be

shown below, the eleetrically driven piezoelectric static problem is no exception to

tms mie. Because the computational experience related to the numerical solution

ofthe piezostatic problem (with closed or open eleetric boundaries) has never been

reported in the literature, the foUowing section is drawn to fill this lacuna.

5.2 The preconditionedconjugale gradient methodfor the static problem

The standard conjugate gradient method (Golub and Van Loan, 1989)

iteratively solves the syrnmetric and positive-definite n x n system of linear

equations

• Ax=b (5.14)
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by finding the minimum (if A is positive-definite) or the stationary point (if A is

indefinite) ofthe corresponding quadratic fonn

1 T TF(x) = 2"I As - l b. (5.15)

The gradient ofthe function F cao be expressed in terms ofthe residual vector

r=b-Ax, (5.16)

oamely VF = -r. Because r = 0 for x satisfying (5.14)~ finding the zero of VF is

equivalent to solving Eq. (5.14). At each k-th iteration of the method, the search

direction vectors Pk a10ng gradient lines are chosen

- to be conjugale to each other with respect to the matrix A

pI+IAPk = 0,

- to make the residual orthogonal to the preceding search direction

plrk+l = o~

- to make successive residuals orthogonal to each other

rI+lrk = O.

(5.17)

(5.18)

(5.19)

•

In exact arithmetic, the conjugate gradient method is guaranteed to converge to

the solution in at MOst n iteratio~ provided A is positive-definite. However, for

indefinite matrices, as in the piezoelectric case~ the algorithrn cao break-doWD.

Indeed, ifthe search direction happens to be self-conjugate

pIAPk = 0, (5.20)

it will be trapped along the asymptote of the saddle-shaped n-dimensional energy

functiooal. Hopefully~ the roundoff error in finite precision arithmetic prevents the

search vector Pk trom satisfYing condition (5.20) exactly, and cao delay

convergence rather than break the a1gorithm. In the author's experience ofapplying

the conjugate gradient method to a wide range of piezostatic problems (5.2), it

oever failed, 50 that no recourse to either its robust bi-conjugate variant (press et

a/~1992) or symmetric squaring AAT (Saad, 1988) was ever required.
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The convergence rate of the conjugate method is known to depend on the

entire spectrum ofA. The c10ser A is to identity matrix 1 - either in the sense of

having few distinct or many elustered eigenvalues - the fewer iterations are

required for the method to converge. This observation is behind the idea of

premultiplying, or preconditioning, the system (S.14) by a matrix P in order to

'improve' the spectrum of its operator, and thereby hasten convergence. The

resulting preconditioned conjugate gradient method (pCG) solves the system

PAx = Pb (5.21)

instead of (S. 14). For positive-definite matrices the boundaries ofAis spectrum cao

be combined to form the spectral condition number ~(A) = ~(A)/Àmin(A),

where ÀmtIX and Àmin are the largest and smallest eigenvalues of A. This makes it

possible to estimate the convergence rate of the conjugate gradient method in

terms of ~(A). Because the upper bound for the solution error is a funetion of

J~(A) (6olub and Van Loan, 1989), k2(A) ~ 1, i.e. a weU-conditioned matrix,

is a sufficient condition for a fast convergence of the conjugate gradient method.

Therefore, in order to perform better than the standard algorithm (P = 1), the PCG

method should use such a preconditioner P that PA 'approximates' the identity

matrix ~ and ~ (PA) be close to unity.

Among a great variety of preconditioners between 1 and the full inverse A -1 ,

finding the one that suits best a specifie problem is not a trivial task. It was not

meant in the present thesis to find an optimal preconditioner for the piezoelectric

stifthess matrices. Instead, attention was turned to the MOst widely used type of

preconditioning, i.e. by incomplete factorization Aofmatrix A:

- ,. - ..T
A ~ A = LDL , (5.22)

where L is constructed by ignoring some of the fiIl-in elements that would be

nonzero in an exact factorization. The specifie criteria used to suppress that fiIl cao

be based on either a preassigned set of matrix positions, e.g. sparsity pattern ofA

(Greenbaum and Rodrigue, 1989), or on the magnitude ofnonzero elements (Ajiz

and lennings, 1984). Since MOst often the PCG method is used in conjunction with

the sparse storage ofmatrices A and A, the majority ofpreconditioners faU into the

first category. A very economical storage scheme is obtained when aU fill is

discarded, or rather not caleulated at ail. In this case, the approximate factor L has



• 136 4 Computer implementation

the same sparsity pattern as A and ooly one indexing anay ija is needed to

descn"e both ï. and A. This type of incomplete factorization is also very
inexpensive, and requires ooly ns2 /2 wode, where s is the average number of

nonzeros in the row off.. and A.
In this approach, the preconditioner is set to A-l, P = A-l, and the conjugate

gradient a1gorithm is applied to matrix A-l
A (Fig. 4.8). The latter bas a smaUer

condition number than A alone (Manteufrel, 1980), and produces A-1-orthogonal
. :r --1

resldual vectors r: r k +1A rk = O.

Initialization:

Guess Sa

Set ra = b-Asa

do = Â-1 ra (Solve Ado = ra for do)

Po = r6do

Po=do

CGSteR:

For k = 0, 1, 2, ...

1.

2.

3.

4.

s.
6.

7.

8.

9.

tIk = APt

at = pt/pIIb:

If (IIrt+llb ~ tolllbib oriter > iteTm4%) Stop
--1 -

dt+l = A rt+l (Solve Adt+1 = ri+l for dl:+1)

PI:+l = rI+ldt +1

{:ll:+1 = Pt+tIPt

'1:+1 = dl:+1 + flt+lPI:

Enclloop

•
1114.8 The preconditionecl conjugale gradient algorithm.
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Since the matrix A-1A is never formed expücitly, applying it as an operator impües

solving the auxiliary system

Ad=r (5.23)

•

at each iteration (step 6, Fig. 4.8), where Ais given by (5.22), besides calculating

the matrix-vector product q = Ap ($lep 1, Fig. 4.8). Each of these operations

oosts 2ns flops, so that the bulle ofarithmetic involved in the solution is estimated

at 4ns x iter, where iter is the number of PCG iterations required to reach the

preassigned tolerance toi ($lep 5, Fig. 4.8). Typically, for piezoelectric problems

the number of iterations iter is such that the amount ofwork associated with the

PCG iterations outweighs that of the incomplete factorization:

ns2 /2 < 4ns x iter. In contrast, for the direct solution with exact factor L stored

in the profile ofmatrix A, the oost of the solution itself by forward elimination and

back substitution (2np) is negligible compared to the complete factorization of A

(np2/2). This was taken into account when summarizing the operation count,

a10ng with the storage requirements, for the PCG and direct methods (Table 4.4).

Table 4.4 Operation count and storage requirement for the direct and iterative

solutions ofthe system ofüoear equations.
Method Arithmetie, flops Storage, bytes

PCG ns2 /2 + 4ns x iter IOns

Direct np2/2 4np
floating-point format double (8 bytes) single (4 bytes)

For the PCG a1gorithm the storage is made up of 8ns bytes to house the 2ns

locations of matrix A and the preconditioner À in single precision (4-bytes), and of

additional 2ns bytes to store their common indexing array ija in the form of2-byte

integers, thus giving the total of IOns bytes.s However, it is not unusual in three­

dimensional finite element analysis that the number of problem variables n exceeds

the upper numerie limit of the 2-byte integer. The latter depends on the

programming language used. For instance, it equals 32767 for the INTEGER*2

data type in FORTRAN, while in a more flexible C, the unsigned int aIlows

Note that this estimate does Dot inclucle the six n-vec:tors rA:, rk+l, dt, dt +1, Pk, CIk used
by the a1goritbm (Fig. S.l).
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reaching 65535. Ta go beyond these numbers, one bas no choice but to store the

column indices as 4-byte integers, 50 that array ija will occupy as much space as

arrays sa and sp for the principal matrices A and Arespectively, raising the overall

storage to 12ns bytes. At the same lime, Gaussian elimination requires np

locations to store the profile of the symmetric matrix, which, in single precision,

amounts to 4np bytes ofmemory. Sinœ formost praetical meshes (Table 4.5), pis

such that 4p > lOs, one can conclude that the PCG method handles data in a more

efficient manner than Gaussian elimination.

Table 4.5 Ratios ofstorage requirements for the PCG and direct solutions oflarge

~ ble plezostabc pro ems.

Shape
Mesh Storage ratio

ExxEyxEz n s p Direct/PCG

cube 8x8x8 17444 48 1560 3.8

plate 16 x 16 x 2 19156 44 887 2.4

strip 30 x 8 x 2 18264 43 474 1.3

Note: AlI the considered regioDS were discretized in elements of second order (N = 2)7 bad their

electric boundariescl~ and the top and bottom surfaces baIf-coven:d by electrodes.

•

The convergence behavior of the PCG method applied to piezostatic problems

was studied on some of the geometries used to ilIustrate the sparse storage

scheme. Ta reduce the roundotr error, ail tests were performed using double

precision arithmetic, with matrices A and A stored in single precision format
(Table 4.4). Theoretically, the a1gorithm should be considered converged when the

static capacitanœ Cs stops changing. In practice, however, Cs is evaluated only

after the PCG iteration has been terminated by some numerical, and often

application independent, nonn-based condition. In the piezoelectric case, the latter
must be chosen with care, particularly when the peG solver is used as a 'black

box.' Indeed, the piezoelectric stiffitess matrix represents a typical example of the

so-called 'artificial iIl-conditioning' - the term attributed to Lanczos, but

borrowed here trom Fried (1970) - resulting nom the ditrerenœ in the arder of

magnitude between elastic and dielectric moduli:
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(5.24)

This type of iIl-conditioning is not pathological, and cao easüy be removed by, e.g.

diagonal, scaling. Unless used a10ne as a simplest fonn of preconditioning, the
latter is not required since the incomplete factorization-conjugate gradient
procedure is invariant to diagonal scaling (Manteuffel, 1980). However, as
demonstrated on the numerical examples below, it is important to scale or

'precondition' the stopping criteria; otherwise, the difference in the orders of
magnitude among the components of the residual vector r inherited trom (5.24)
will make its nonn IIrllz converge very slowly. The convergence rate of the peG

method under two different stopping criteria is illustrated on the example of the
problem descnbed in Fig. 4.7(a). In both cases, the iteration started trom a zero

veetor So = 0, Le. ro = b. In the first experiment, the tennination criterion (step S,

Fig. S.l) required relative residual norro e7Tl be less than the input tolerance toi:

(S.2S)

in the second experiment, the iteration was stopped when the preconditioned

relative residual errz was less than the tolerance toi:

(S.26)

•

As cao be seen in Fig. 4.9 (a) and (b), the number of iterations stops augmenting

only after the value of toi bas been tightened to 10-8 and 10-10 respectively.

Nevertheless, the method can be considered converged for a relatively (oose
tolerance on the error toi = 10-3 , when the values of ~osetl. = 27.7 pF and

c~ = 3S.9 pF are reached. In either case, no change in the sixth significant digit
of CC;Osed. and c:r is observed after some 1~15 iterations, which is quite

remarkable considering the problem size n = 17444. However, if the quantity

IIrlb/llbllz is monitored (Fig. 4.9(0), 300-320 iterations are required ta achieve

errl < 10-3, thus giving a false impression that the solution keeps improving.
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This slow convergence rate is typical for a purely mechanical problem K = Kuu,
which is known to be worse conditioned than its dielectric counterpart ~.

Moreover, because the condition number Jc.zeKau) depends on the fundamental

ftequency of the shape6 (Fried7 1972), i.e. of a tietitious structure having

resonator's geometry but unit density, the errl-eonvergence deteriorates as linear

dimensions diverge (Table 4.6). For strip geometries, it cao he 50 poor that it

• 6 This statement is better asdmilated by evoking Eqs. (3.18}-(3.20) ofCbapter 3 which
demonstrate that the clement stiffiless matrices embed the metric matrix$- the mass
matrix for unit density.
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•

renders the PCG method almost useless, unless low memory requirements are

imperative.

Table 4.6 Performance ratios for the direct and PCG iterative solutions of the

iezostatic roblems ftom Table 5.2.

Region
PCG Arithmetic ratio

Shape iterations Direct/PCG
'xxlyxlz e7Tl e1T2 errl e7T2

cube lxlxl 320 14 200 317

plate 8x8xl 1031 24 2 70

strip 15 x 4 x 1 1212 22 0.5 24

Note: In the PCG solution, the toleranœ on both the erTI and err2 was toi = 10-3 .

In contrast, the PCG method demonstrates a spectacular convergence (Fig.

4.9(b) for the electrically-driven piezostatic problems, provided the error is
--1

measured in the A -nonn (6olub and Van Laan, 1989). Indeed, quantity

err2 = IIA-1rI12/IIA-1bI12 converges simultaneously with the capacitance Cs,

and no drastic increase in the number ofiterations is observed as the ratio of Iinear

dimensions grows. As the last column ofTable 4.6 demonstrates, the PCG method

remains superior to the Gaussian elimination for a wide range of crystal

geometries. Its convergence rate corresponds to that ofan electrostatic problem of
the same size, and cao be related to the condition number ~(~). The closeness

of the two curves in Fig. 4.9(b) indirectly indicates that the latter is Iittle affected

by the addition of the superelement. It inevitably deteriorates with an increased

number of variables (Fig. 4.10), Le. when the discrete model approaches the

continuum, for which ~ ~ 00.
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Fig 4.10 Number ofPCG iteratiODS for various matrix SÎZeS. Here, toi = 10-3
•

The number of iterations also increases slighdy as the difference between dielectric

moduli ES becomes greater. For instance, for lithium niobate, the same problem

configuration is resolved in 20 iterations compared to the already mentioned 10-15

iterations for quartz.

5.3 The Lanczos a/garithm for the vibration prob/em

The Lanczos method finds a few extremal (largest and smaUest)

eigenvalues À ofa real symmetric n x n matrix A

Ax = ÀI,

by generating a sequence ofsymmetric tridiagonal k x k matrices T k

(5.27)

(5.28)

•
whose extremal eigenvalues provide good approximations to the extremal

eigenvalues of A (parlett, 1980; Golub and Van Loan, 1989). For k = n such a

matrix TB could have been obtained ftom a similarity transformation (e.g.

Householder reduction)
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where Qn. is an orthogonal matrix:

Q~Qn = In.
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(5.29)

(5.30)

The eigenvalues of the similar matrix Tn. are those of A, but cao be recovered
more easüy (e.g. QR a1gorithm or bisection method) since Tn. is tridiagonale
However, the goal is to avoid such explicit transformations because they inevitably

destroy the sparsity of A. Instead, the Lanczos a1gorithm, starting ftom a given
vector ql, calculates the elements of Tn. directly, i.e. iTom Eq. (5.29) rewritten in

theform

(5.31)

and Eq. (5.30). The generated orthonormal colurons of matrix Qn. = (ql, ... , qn.)

are the Lanczos vectors.

Reducing the whole matrix (k = n) to tridiagonal fonn was the original use of

the Lanczos a1gorithm. However, for practical applications, these are the

eigenvalues and eigenvectors of matrix Tk at step k« n, i.e. long before the
tridiagonalization process is completed, that are of ÏRterest. For k < n, Eq. (5.31)

is not exact any longer and should be rewritten as

AQk = QkTk + Bk, (5.32)

where Qk is an n x k submatrix ofQn.,

QZQk = Ik,

and Rk = (0,0, ... ,0, rk) is an n x k matrix with the residual vector

rk = qk+l,Bk

(5.33)

(5.34)

•

in the last coluDlD. Equations (5.33}-(S.34) suggest that, provided rk is available

iTom the previous Lanczos iteration, ,Bk and qk+l cao be obtained by nonnalizing
rk. This corresponds to steps 1 and 6, respectively, of the simple Lanczos

a1gorithm, shown in Fig. 4.11. The residual vector itsetr

rk = Aqk - qk-l,Bk-l - qkQk (5.35)
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is calculated in two steps. First, a partial residual is found (steps 2 and 3, Fig. 4.11)

and used to compute the diagonal entries ofmatrix Tk

Ok = qkAqk; (5.36)

then, vector rk is updated (step 5) to produce a complete residual. As foUows ftom

Eqs. (5.34}-(5.36), qk, Ok, Pk are computed in such a way that in exact arithmetic

the Lanczos vectors satisfy explicitly the foUowing orthogonality conditions:

T - 0 T - 0 Il Il 1qkqk+l -, qkqk-l -, qk 2 =

(5.38)

at each step ofthe algorithm. Consequendy, the curreot Lanczos vector qk and the

residual vector rk are orthogonal to aU previous Lanczos vectors Qk-l'

Initialization:

Guess ro :f= 0

Set {Jo = II roll2

qo =0

LanC20S Step:

Fi.4.11 The basic Lanczos a1gorithm.•

1.

2.

3.

4.

S.

6.

7.

8.

For k = 1,2, ...

tIk = r"-l / {J"-l

r" = Atik

r" = r" - {J"-l~-1

0" = riCb

Compute Bi, li, Yi, i = 1, ..., k, if needed

IfCV Ritz pairs ( Bi, Yi). i = 1, ..., mare satisfactory) Stop

Endloop
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At eacb step of the Lanczos iteration, the extremal eigenvalues of matrix T k

turn out to be increasingly good approximations to A's extremal eigenvalues.

These approximations to A's eigenpairs, i.e. the Ritzpairs (8i , Yi), cao be obtained

by salviog a small (k « n) tridiagonal eigenproblem

(5.39)

with normalized eigenvectors li, Illi lb = 1, and then computing the Ritz vector as

Yi = Qkli, i = 1, ••. , k. (5.40)

However, the accuracy of the Ritz pair can be established without forming Yi

explicidy until 8i becomes an accepted eigenvalue of A. As shown in Parlett

(1980), an error bound on the residual cao be computed as

(5.41)

where Si,k denotes the bottom (kth) component ofvector li, thus making quantity

f3a = f3kl si,kl essential in assessing the accuracy of A's eigenpair. The Cauchy's

interlace theorem states that for any real number 8 and any vector S, such that

IIxlb = 1, there is an eigenvalue ~ ofA satisfying

I~ - 81 < liAI - x8lb· (5.42)

Setting 8 = 8~k), one cao conclude that each Ritz interval [8~k) - f3ki, 8~k) + I3ki]

contains the Ritz value 8~k+l) at the next step k + 1

18~k+l) - 8~k) 1 < I3ki, i = 1, ..., k, (5.43)

and that the same error bound applies to an eigenvalue ~ ofmatrix A:

i = 1, ... , k (5.44)

•

since lIyll2 = v'sTQEQkS = II-lb = 1 in exact arithmetic. For weil separated

eigenvalues this error bound cao be refined (parlett, 1980; Parlett and Nour-Omid,

1985), 50 that the Ritz intervals are less likely to overlap; the eigenvector error

bound is also available from the above references. FinaIly, the Ritz value 8~k) is

considered converged to an eigenvalue ~ of matrix A if its error bound l3ki is less

than the tolerance toi:



• 146 4 Computer implementation

- 1 (1:) 1f3ki < toi 8i . (5.45)

•

As the conjugate gradient method, the Lanczos algorithm access matrix A ooly

through a function that computes AI for a given vector S, which makes it well

suited for large and sparse matrices. In exact arithmetic, the simple Lanczos
method (Fig. 4.11) requires ooly three vectors rk, ql:, qk-l of length n; an
implementation of the algorithm with just two n-vectors can be found in Golub
and Van Loan (1989). However, in finite precision, additional storage is needed to

hold some old Lanczos vectors used to enforce orthogonality against the newly

computed vectors. Indeed, it is well known that a global loss of orthogonality
among the Lanczos vectors occurs as a result of roundoff error. What is more, in

tloating-point arithmetic this constitutes a necessary and sufticient condition for

convergence of TI:'s eigenvalues to that of A. Therefore, if the 'practical'
conjugate gradient algorithm is almost identical to its exact arithmetic version (Fig.
4.8), the Lanczos process, if implemented as shown in Fig. 4.11, will never

converge, computing more and more redundant copies of the extremal
eigenvalues. This earned it the reputation of 'unstable' and delayed its acceptance

as a very effective method of finding some of the extremal eigenpairs. The
fonowing modifications are required to tum the simple recurrence ofFig. 4.11 ioto

a practical Lanczos a1gorithm:

limited reorthogonalization of Lanczos vectors, e.g. selective (parlett and
Scott, 1979), partial (Simon, 1984) or ertemal selective (Grimes et al.,

1994), to prevent the appearance of spurious eigenpairs;

block form ofLanczos method to find multiple or clustered eigenvalues;

usiog the Lanczos method iteratively, i.e. restarting it after a good

approximation to an eigenvector was found;
efficient stopping criteria for identifying converged Ritz pairs.

Creating a program that would efticiently combine some of or ail the above

modifications is not straightforward. In resent years, a lot of research has been

devoted to the development of a reliable Lanczos eigensolver (parlett and Nour­
Omid, 1989; Grimes et al., 1994) that could be used as a 'black box' inside an
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•

application code. Nevertheless, no standard Lanczos-based software, such as

EISPACK for dense matrices, exists yet. A few stand a10ne FORTRAN programs

developed by matrix experts are outlined in Parlett (1984). The programs typically

count several thousand lines of code, and differ, in particular, by the level of

orthogonalization (if any) maintained among the Lanczos vectors. Only Scott's

program LAS02, which implements the block version of selective

reorthogona/izalion, is distributed independently of its author. The double

precision version ofLAS02 comes in two flavors - DNLASO and DILASO: the

fonner computes a specified number of eigenpairs m at one end ofthe spectrum of

the symmetric matrix A, while the latter finds ail the eigenpairs outside a user

defined interval. With some modifications described later in this section, the

DNLASO program was adopted as an eigensolver and integrated with the

piezoelectric modal anaIysis code. Although this version uses only half the power

of the Lanczos a1gorithm, which determines eigenvalue at both ends of A's

spectrum, it was found more practical to have control over the number ofwanted

eigenpairs rather than adjusting the excluded interval for every specific case.

The selective reorthogonalization scheme (parlett and Scott, 1979) exploits the

faet that orthogonality is lost in the direction of converged Ritz vectors, sa that

any newly computed Lanczos vector is orthogonalized only against this seleeted

set, not against ail the previous Lanczos vectors. The block version of the

a1gorithm replaces the single Lanczos vector qk by an orthononnal block of b

veetors and matrix Tk is block tridiagonal. To calculate this block at each step of

the recurrence, the simple orthonormalization of the residual vector (steps 6 and 1,

Fig. 4.11) is replaced by the moditied Gram-Schmidt process (Watkins, 1991)

which produces a QR decomposition of the n x b block of residual vectors rk. In

a sense, the block variant of the Lanczos a1gorithm is to the simple Lanczos

recursion what the subspace iteration is to the inverse iteration. A large block size

improves convergence, but because the amount of work is proportional to b2

(Golub and Van Loan, 1989), it is not very practical to have it larger than the

maximal multiplicity of any eigenvalue sougbt. One should note, in passing, that

the capability to adjust the block size was very appreciated when calculating the

spectrum of strip piezoelectric vibrators which often required b > 2. To run

LAS02, the user must supply two subroutines OP and IOVECT. The first retums

the block product AX for an n x b input array X, while the second stores the
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selected Lanczos vectors on a secondary storage device and periodically recalls

them when needed. OveraU, the program requires approximately 3n x b storage in

addition to n x m locations reserved for the computed eigenvectors. Ifsome good

guesses at AiS wanted eigenvectors are available, it is possible ta supply them as a

starting black; otherwise, the a1gorithm starts with b randomly generated vectors.

The convergence rate (or, as it is often caIled, the emergence rate) of the

eigenvalue '\i is detennined by the gap ratio l'\i+l - Àïl/I'\n - '\11 (Grimes et al.,

1994), where the eigenvalues are indexed in ascending order 1'\11 < ... < l'\ft,1.
Because for the vibration problem they have the physical meaning of squared

natural frequencies, the largest eigenvalues ,\ft, are typically very large compared to

À1, Àn. » '\1. Therefore, in the sense of relative separation, the largest eigenvalues

are said to he better separated than the smaUest, even thougb IÀï+l - Àïl could he

of the same order of magnitude in either case. This means that convergence to

small eigenvalues '\i ~ À(, which are usuaUy of interest in modal anaIysis, will he

very slow. A1though the Lanczos method produces eigenvalues at both ends ofAiS

spectrum, the larger eigenpairs will emerge saoner than the small ones: according

to Parlett (1984), the a1gorithm will find some 50 eigenvalues near ,\ft, for every

eigenvalue near '\(. Unfortunately, preconditioning cannot he directly applied to

the eigenvalue problem since it changes the eigenpairs 5OUgbt. The cure of the

convergence problem is the sarne as for the power method - to give the a1gorithm

the inverse operator A-1 (Scott, 1982). As in the case ofinverse iteration (inverse

power method), the smallest eigenvalues of A are mapped onto the largest

eigenvalues of A-1, and the convergence ratio is corresPOodingly inverted. This

approach cao tum out to be expensive since, to deliver A-1, a factorization ofA is

typicaUy required; however, experience shows that this strategy pays by a very

rapid convergence.

In general, to improve convergence ofeigenvalues in any part of the spectrum,

e.g. in the neighborhood of a specified number CT, the method is applied to the

shifted and inverted operator (A - 0"1)-1, whose eigenvalues p, are related to the

original eigenvalues ,\ ofA by the spectral transformation relation

1
p, = ,\ . (5.46)

-0"
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The latter maps the eigenvalues À close to the shift u onto large eigenvalues IJ,

which are delivered first by the Lanczos algorithm. In the context ofa generalized
eigenvalues problem (5.1), the spectral transformation amounts to applying the

Lanczos algorithm to the inverted and shifted problem

WT(K- UM)-IWZ = 1 Z, (5.47)
À-u

where it was assumed that M could be faetored as

M=WWT,

and z is the transformed eigenvector

z = WTs.

It cao be rewritten in the fonn ofa standard eigenvalue problem

Az=pz.,

with symmetric operator

A = WT(K- UM)-IW,

(5.48)

(5.49)

(5.50)

(5.51)

whose eigenvalues and eigenvectors are related to those of (5.1) by (5.46) and

(5.49) respectively. Because A in (5.51) is never formed explicitly, calculating the

matrix-vector produet Aq implies solviog the linear system

(K - uM)r = Wq. (5.52)

•

Although the spectral transformation is naturally used by the subspace iteration

technique, it took Ericsson and Ruhe (1980) to emphasize its much more effective

combination with the powerful Lanczos method. Ericsson and Ruhe applied the

Lanczos a1gorithm to the symmetric operator (5.51) and employed the LDLT

factorization of K - uM to solve (5.52). They also proposed a sophisticated

shifting strategy (i.e. using many shifts, and, consequendy, many faetorizations of

matrix K - uM, to obtain the solution in few Lanczos steps, or using few shifts

but accepting longer Lanczos naos), and derived the error bound for the original
eigenvalue À:

(5.53)
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Inequality (5.53) shows how the spectral transformation 100sens the error bound

(5.44): when À is close to the shift (T, oolya 'moderately' small Pki is sufficient to
guarantee a good approximation of À by (T + 1/8~k) since 8~k) in the denominator

is large.

In the form (S.46}-(S.52), the spectral transformation Lanczos method was

applied to large two- and three-dimensional piezoelectric VIbration problems,

where the system (S.S2) bas been solved by some variants ofGaussian elimination

such as substrueturing technique (Yong and Zhang, 1994), modified Crout's

factorization (Yong and Cho, 1994), or LDLT factorization (Yong, 1995). In ail

these cases the solution implied another factorization - that of matrix M - as

part of the transformation (5.47). With M semi-definite, the factor W in (5.48) is

rectangular with linearly independent column:

w= [~]. (5.S4)

where L is the Choleski factor ofmatrix M.. = LLT • In principle, (S.S2) could be

solved by an iterative (e.g. PCG) method, but, as will be shown below, the

conditioning of matrix K - (TM deteriorates rapidly as (T grows, leading to long

iterations. Given the fact that (S.S2) is to be solved as many times as the product

AI is calculated, a direct solution is clearly preferred. Therefore, in the framework

of Ericsson and Ruhe's spectral transformation, two costly factorizations are

typically required.

However, it is a misconception that matrix M should always be factored in

order to maintain the symmetry of the operator A given to the Lanczos program.

A small but praetically very important variant of spectral transformation described

in Nour-Omid et al. (1987) suggests applYing Lanczos algorithm to the

generalized eigenvalue problem rewritten in the form

(S.S5)

•
where p. is the shifted and inverted eigenvalue (S.46), and K is the oriBinal

eigenvector ofsystem (5.1). Working with the nonsymmetric operator

A = (K - uM)-lM (5.S6)
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may seem extravagant, but after observing that it is self-adjoint in the M semi-inner

produet:

(5.57)

it becomes clear that the standard Lanczos a1gorithm cm be applied directly to

(5.56) provided ail the inner produets are replaced by the M semi-inner produets

(Fig. 4.12).

Initia1jzation:

Guess qo :f= 0

Set Po = Mqo

Solve (K - aM)ro = Po for ro

Po = Mro

/Jo = y'rEpo

qo =0

1 __ncms StqP:

Fork = 1,2, ...

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

tIk = rle-IlfJle-l

Pic =M~
Solve (K - aM)rle = Pie for rie

rie = rie - fJlc-lCli-l

QIc = r~PIe

Pic = Mrlc

/J1c = y'rlplc

Compute Bi, li, Yi" i = 1, ..., le

If ry Ritt pairs ( Bit Yi), i = 1, ..., m are satisfac:tory) Stop

•
Endloop

Fig4.12 The modified Lanczos algoritbm for Vibration problems.
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In exact arithmetic, the modified Lanczos recurrence generates M-orthogonal

Lanczos vectors Qk:

qIMqk+l = 0, qIMqk-l = 0, IIqkllM = 1 (5.58)

by calculating Ok as

Ok = qIMAqk = qrM(K - UM)-lMqk· (5.59)

It also follows from the above that the residual vector is M-orthogonal to the
current Lanczos vector

(5.60)

as weil as to the previous ones. Expression (5.59) reveals that the modified

Lanczos algorithm cao be viewed as the standard one with respect to the
genera1ized eigenvalue problem

(5.61)

which bas the same eigenpairs as (5.55) but is symmetric. Therefore, their is no

drawback associated with the application of the Lanczos recurrence to the
nonsymmetric operator (5.56), while the advantages are substantial.

First, no factorization of matrix M is need~ thus saving nMPL/2 wor1e,
where nM and PM are the size and semiband width of M respectively;

consequently, the storage requirements can be reduced by nM(PM - 8 M), where
SM is the average number of nonzeros per row, by switching to a more efficient
sparse storage of M. Furthermore, the M-factorization is not required even when

evaluating the residual norm

(5.62)

•

since M-1 cancels in (5.62). The generalized Cauchys interlace theorem states that
for any real scalar 8 and any vector S, such that IIMxIlM -l = 1, there is an

eigenvalue ~ ofA satisfying

lÀ - 81 < liAs - 8MIIIM-l. (5.63)
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Using the above and the fact that Lanczos vectors are M-orthogonal in exact

arithmetic, so that the Ritz vector y in (5.62) satisfies IIMYI!M-l = 1, the error

bound for the transfonned eigenvalue p. is given by (5.44), i.e.

i = 1, ..., le, (5.64)

•

and for the original À by (5.53); as in the case of the standard Lanczos procedure,

these bounds can be improved. A1though at each step of the modified Lanczos

a1gorithm an auxiliary vector p = MI (steps 2 and 7, Fig. 4.12) is to be computed

twice, requiring 2nMsM flops, this is still cheaper than performing the forward

elimination and back substitution (2nMPM) involved in the computation of AI,

with A from Eq. (5.51) since SM < PM; for the total number ofLanczos iterations

iteT, the amount of work diminishes therefore by 2nM(PM - SM) x iteT. Finally,

there is no need to back transfonn the computed eigenvectors as in (5.49) since

they are the original eigenvectors of(5.1).

At each iteration, the modified Lanczos a1gorithm requires salviog system

(K - O'M)r = Mq (5.65)

for r given q. As already mentioned in connection with the similar system (5.52),

the PCG method is not very useful to this end. Because the price to pay for this is

high (i.e. the cost of complete factorization of K - O'M), the performance, or

rather 'misperformance', of the PCG a1gorithm applied to (5.65) merlts some

comment. Figure 4.13 shows how the number of PCG iterations changes as the

shift 0' grows. The curve was obtained for a cubic shape discretized as in

Fig.4.7(a), but the behavior is charaeteristic for other geometries and meshes as

welle First, even for u = 0 the convergence is not that of an electrically-driven

piezostatic problem (Table 4.6): some 27~300 PCG steps are required to achieve

the tolerance tol = 10-3 , no matter which error estimate, (5.25) or (5.26), is used.

Iodeed, the multiplication by the mass matrix M purges aU electrical coordinates

trom the right-band side of (5.65), which results in purely 'mechanical'

convergence. The latter is governed by the conditioning of the shifted matrix

~ (K.. - D'Mau), which degrades rapidly as (T increases - a behavior weU known

to ManY finite element specialists.
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Fig 4.13 Number ofPCG iteraûons for the operator K - D'M as funcûon ofshift D'.

The minimum in the number of PCG iterations in the neighborhood of the lowest

eigenvalue Àl = 108 (fundamental ftequency Wl squared) of (5.1) does not come

out of the blue. ft is tempting to explain its location by means of the computable

bounds on the spectral condition numbers of the global stifthess and mass

matrices' derived by Fried (1972, 1973). They are useful in many respects (e.g. to

study the influence of the discretization parameters on the PCG convergence), but

what is relevant at this point is that the bounds on ~ (Kau) are related to À 1,

whereas the bounds on ~ (M...) do not involve À 1 at ail. The former fact - used

earlier to substantiate the iIl-conditioning of matrix K... as the vibrator shape

elongates - distinguishes the shift u ~ À1 among other values. It is therefore

natural to assume that the 'balance' between matrices Kuu and uMuu, i.e. the

lowest condition number ~(K. - uMuu), is achieved for (T close to À 1 = wT.
As foUows ftom the above, the complete LDLT factorization of matrix

K - uM in (5.65) is inevitable. Its cost (nKPk /2) has been included in the

arithmetic estimates for the two schemes of sPeCtral transformation Lanczos

a1gorithm (Table 4.7).

•
7 Fried's bounds are expressed in tenus ofthe extremal eigenvalues of the element

stiffness and mass matrices, the maximal number ofelements sbaring a nodal point and
the fundamental frequency ofthe stnIeture. It is fell, however, tbat they can be further
refined for tetrahedra1 elements ta include weighting coefticients and extremal
eigenvalues of the universal matrices.
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Table 4.7 Operation count and storage requirements for the spectral
transformation Lanczos method.

Operator A Arithmetic, flops Storage, words

WT(K - UM)-lW (nKPk +nMYM)/2
nKPK+nMPM

+2(nKPK+nMPM) x iter

(K-uM)-lM nKPk/2
nKPK+nMsM

+ 2(nKPK +nMsM) x (iter + 1)
floating-point format double (8-byte) single (4-byte)

f:1aTithm = nMPic/2 - 2(nKPK + nMsM) + 2nM(PM - SM) x iter (flops)
â storoge = nM(PM - SM) (words)

The operation count corresponds to the simplified exact arithmetic versions of the
a1gorithms presented in Fig. 4.11 (with symmetric operator (5.51» and Fig. 4.12

respectively, for which the block size is b = 1. Nevertheless, because the additional
storage and work associated with practical implementations of both schemes (e.g.
selective reorthogonalization) is almost the same, it is sufficient to conclude that
the second scheme is unconditionally better in terms of both storage and

computing rime. The latter is aetually proportional to the calculated arithmetic cost

since both global matrices are stored in core memory, and no additional work is

associated with accessing secondary storage (except for some negligible traffic of
Lanczos vectors carried out by the subroutine IOVECT).

The M-orthogonal Lanczos a1gorithm - a1though well known to matrix
experts (parlett, 1980; Scott, 1982), integrated with some professional Lanczos
eigensolvers (Jones and Patrick, 1993; Grimes et al., 1994), and certainly

embedded in many tinite element packages - seems to be sometimes overlooked
by engineers, as attempts to optimize the faetorization of the mass matrix suggest.

Meanwhile, its deliberate use is particularly important in conjunction with large
scale finite element models ofnovel problems, not solved by commercial packages,

or ofproblems whose demand ofcore storage is 50 high that one cannot afford any
inefficiency in the handling of data. The problem of piezoelectric vibrations with

open electric boundaries is a perfect example ofboth these specifics. The faet that

in this case the mass matrix M is singular does not invalidate the M-orthogonal

Lanczos recurrence. Yes, computing the semi-norm IIrkllM = y/rIMrk (steps 7
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and 8, Fig. 4.12) with M semi-definite cao lead to a zero f3" for a nontrivial

residual vector rit:. This ooly indieates - through Eqs. (5.32) and (5.34) - that ail

thefinite (mechanical) eigenvalues of(5. 1) computed at the kth step are exact. As

pointed out by Scott (1982) and explained in greater detail in Nour-Omid et al.

(1987), the eigenvector associated with these finite eigenvalues, Le. the desired

eigenvectors, lie in the range of operator (K - crM)-lM. The Lanczos vectors

must aise be confined to this subspace, otherwise the computed Ritz vectors will
CORtain unwanted components in the null space of(K - UM)-IM. When working

with operator (5.51) this condition was satisfied automatically since the

multiplication by W T (K - UM)-IW purges any vector ftom components in the

direction ofinfinite (electrical) eigenvalues; however, in the M-orthogonal spectral

transformation Lanczos algorithm the finite subspace must be enforced explicidy.

This is accomplished by choosing the starting vector qo from the range of

(K - UM)-IM, e.g. by applYing the latter to a random n-vector (Initialization

step, Fig. 4.12), 50 that in exact arithmetic all the generated Lanczos vectors will
belong ta the range of (K - uM)-lM.

This and the previously described modifications associated with the M­

orthogonal Lanczos algorithm have been incorporated into the DNLASO code.

Namely, the Euclidean dot products (nonns) ofvectors have been replaced, where

required, by their M-products (nonns); the modified Gram-Schmidt

orthogonalization has been made M-orthogonal (Nour-Omid and Clough, 1985).

Therefore, the resulting Lanczos solver, let caIl it DNLASO_M, cao be seen as a

variant of Scott's program DNLASO, fine tuned to find extreme eigenvalues ofthe

vibration problem in the fonn (5.55) with M semi-definite. Before being

detinitively integrated with the piezoelectric application, DNLASO_M was applied

concurrendy with the original DNLASO to solve several test problems. The

numerical behavior of DNLASO_M with nonsymmetric 0Perator (5.56) was

practically indistinguishable from the perfonnance of DNLASO with symmetric

operator (5.51). In all tests, the programs were identical in both accuracy of the

eigenpairs and the number of Lanczos iterations required, apart from the obvious

difference that DNLASO_M consumed less storage and computing tinte (Table

4.7) to dc:liver the same information.
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The convergence behavior of the spectral transformation Lanczos method is
illustrated in Fig. 4.14 for two types of eigenvalue distnoution associated with a

square plate and a strip respectively.
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Fig 4.14 DistnDution of the first ten eigenfrequencies w: (a) square plate 6 : 6 : 1; (b)

strip 12 : 3 : 1. (c) The number of matrix-vector operations As requiJed by the spectral

transformation block Lanczos a1gorithm as fimdion of the nomber ofwanted eigenpairs.

•
The two geometries were modeled by meshes of elements of second order shown

in Table 4.2. In this example, the shift was taken slightly lower than the first

eigenvalue (T ~ wi; the block size was b = 2, 50 that the aetual number of matrix..

vector operations As (or the 'effective' number of Lanczos iterations iter) was

calculated as being twice the number ofcaIIs to the subroutine OP that delivers the
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black AX. The curves in Fig. 4.14(c) correspond to problems with closed electric

boundaries, but experiments with open boundaries demonstrate that convergence is

practically the same. The vibrator geometry bas a1so Iittle influence on the number

ofLanczos steps wbich does not exceed iter = 40-50 for ten eigenvalues. In faet,

the latter could have been obtained in fewer steps should the DILASO version of

the Scott's program be used: with DNLASO-based Lanczos 5Olver, one finds the

specified number of eigenvalues that lie only to the right side of the shift fT, thus

wasting haIf the power of the a1gorithm. In either case, for praetical numbers of

wanted eigenvalues (typically S to 10 per shift), the convergence of the spectrally

transformed eigenpairs is 50 fast that the initial cost offactorizing K - (TM always

eclipses the total oost ofLanczos iterations.
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Illustrative problems

1. Introduction
In this chapter, several examples are presented to illustrate the application

of the ballooning method to various practical problems, and to study the influence

of the exterior electric field on piezoelectric vibrations. The large systems of

equations associated with the three-dimensional modeling of piezoelectric

structures impose severe limitations on geometries and modes that cao be tackled

at the present level of computer facilities. Therefore, the considered examples do

not aim at any specific application and by no means intend to be used for the

optimization of vibrator design. Nevertheless, the illustrative problems were

chosen to be as c.lose as possible to the practical piezoelectric configurations in

terms ofgeometry, crystal eut, electrode shape or operating mode.

Piezoelectric vibrators, as precision deviœs, are very sensitive to various

perturbations such as acceleration, temperature gradients, mechanical stresses

caused by crystal defects, electrodes or mounting. AU of them can produce

changes in resonant frequencies or equivalent electrical parameters. It was judged

that the best way to evaluate the influence of the exterior field on a vibrator's

parameters was to compare it to changes resulting from the variations in electrical

boundary conditions ooly, thus excluding other factors from the analysis. In the

ftamework of the present finite element model, it was the electrode configuration

(size, shape, orientation) that was modified MOst frequently to provide the solution

shift associated with the exterior electric field with a point ofreference.
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%. Numerical tests for balOODing matrices

Before being applied to the interior piezoelectric problems, the

superelement matrices obtained from the block balloon recursion were rigorously

tested on several three-dimensional electrostatic examples with open-electric

boundaries for which solutions by means of alternative numerical methods were

available.

Convergence behavior ofthe solution as a function ofthe surface mesh size ns
was tirst studied on the example of a unit (1 m) metallic cube. Because there is no

electric field inside the cube, the problem is treated as a purely exterior one. It is

represented solely by the equation Sil. = 0, where Sil is the superelement matrix

that models the infinite region, and. = ('Pi)' i = 1, ... , ns is the vector ofsurface

potentials. The capacitance is calculated as twice the energy of a cube charged to

IV:

(2.1)

i.e. <Pi = 1 for ail i. For a mapping ratio" = 1.2, some seven iterations are quite

sufficient for the energy to converge, as demonstrated in Fig. 5.1.
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•
Fig 5.1 Convergence of capacitanœ of a unit cube problem solved with the scaling ratio

'1 = 1.2; exact capacitanœ C = 47rEo/(Rï1 - .R;l) of a unit spberical capacitor

(2R1 = lm) witb R2 = if"Rh wbere i is the iteratiOD nomber.
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The capacitance ofa unit cube bas previously been reported by several authors.

Lean, Friedman and Wexler (1980) obtained a value of 73.03 pF or 0.6573 e.s.u.

(in CGS units) with 31 variables by applying the boundary element method based

on elements of second order to the one-eighth of the cube. Jawson and Symm

(1977) reported that Laskar (1974) obtained values of capacitance ranging trom

0.6538 to 0.6603 e.s.u. for 6 to 66 variables respectively with the same Methode

Earlier Reitan and Higgins (1951) determined the lower and upper bounds for the

capacitance ofa unit cube, which are 0.62211 and 0.71055 e.s.u. respectively, and

a1so calcu1ated the value of 0.6555 e.s.u. by the 'method of subareas' (Silvester,

1968). Results obtained in the present work using the ballooning method are

summarized in Table 5.1 for different mesh sizes. AIl ballooning matrices were

obtained using elements of second order (N = 2) to discretize the bordering

region. The MOst accurate value of capacltance - 73.61 pF or 0.6616 e.s.u. ­

was obtained with the division into 12 x 12 x 12 bricks or into 8640 tetrahedra.

Table 5.1 Convergence data for the unit cube problem.
FEmesh No. ofsurface No. ofsurface nodes Capacitance

ExxEyxEz triangles total As independent Aoct pF e.s.u.
2x2x2 48 98 19 74.70 0.6714
4x4x4 192 386 61 74.77 0.6640
6x6x6 432 866 127 73.73 0.6626
8x8x8 768 1538 217 73.67 0.6621

10 x 10 x 10 1200 2402 331 73.64 0.6619
12 x 12 x 12 1728 3458 469 73.61 0.6616

Because the solution in this problem is affected by physical discontinuities at

the edges and corners, it is important to represent the field distribution at the

vicinity of the cube surface as precisely as possible. The accuracy of the Madel,

apart trom the mesh size AS t is determined by the mapping ratio TJ, the order of

surface triangle elements Nt and the order of line segments in the radial direction

('toblerone' edges) N. in the bordering region. By varying these parameters, it

was found that the order of interpolation on the surface Nt, at least for the present

electrostatic problems, was not overly critical: as demonstrated in Fig. 5.2 (a), the

precision is aImost identical for any order starting trom Nt = 2. It is, however,

desirable to use a line segment of high order if large values of scaling ratio TI are
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employed (Fig. 5.2 (b». Such values allow enlarging the region in fewer iterations;

practically~ this reduetion in the number ofiterations is compensated by the amount

of additional operations involved in statie condensation of interior Dodes in n(l> if

N s > 1. It was found that for f1 < 1.2 no significant improvement is reached by

setting N s higher than 2 (Fig. 5.2 (c». Most superelement matrices used in this

analysis were obtained with orders of interpolation Nt = Ns = 2 and scaling ratio

'II = 1.2.
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Fig S.l Convergence behavior of capacitanœ of a unit cube for various orders of

interpolation on surface triangles Nt and on 'toblerone" edges N•. (a) Here the scaling

ratio TI = I.S and N. = 2; (b) Nt = 2,. '1 = 1.5,. (c) Nt = 2,. '1 = 1.2.

•
Matrices SIl were also used to solve two open boundary problems that involve

modeling some ofthe interior space. The first is the electrostatic field due to a thin

square plate of unit ar~ as shown in Fig. S.3. Because the problem is purely

electrostatic~ the interface r may be placed arbitrary. In this exarnple, the interior

regioD is subdivided iota 12 x 12 x 4 'bricks' (2880 tetrahedra) where the plate
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itself is in contact with 10 x 10 x 2 of them. With elements of second order, this

yields 5049 variables for the interior problem. The surface mesh consists of 1922

nodes, ofwhich only 269 (Nod) are independent. The calculated capacitance ofthe

square plate is 41.5pF or 0.373 e.s.u. In their book, Jawson and Symm (1977)

reported the values 0.367 and 0.362 e.s.u. for the same configuration: the former

was obtained by Noble (1971), and the latter - by Laskar (1974) using the

integral equation method with 289 elements and 45 variables. Konrad and

Tsukerman (1995) used Harrington's method to obtain 41 pF. A1so, to compare,

the exact capacltance C = 2aJ'Ir (Landau and Lifshitz, 1992) of a thin disk ofunit

diameter (2a = 1 m) equals 0.3183 e.s.u.

Fil 5.3 Cross-sectïon ofeledric potential distnbution
around a square plate.

•

Closely related to this problem is that of determining the capacitance of a

parallel square plate capacitor of unit (1 m) area. The problem was solved with a

cubic 12 x 12 x 12 mesh for various plate separations d (Fig. 5.4). At least one

layer ofelements separated the interface trom conductors. The calculated values of

capacitance are shown in Fig. 5.4 (h).
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Fig 5.4 Square (lm x lm) paralIel-plate capacitor. (a) Cross-section ofelectric potential

distnbution; (b) capacitance as fimction ofplate separation d.

A similar dependence was obtained by Konrad and Tsukerman (1995) using the

method of average potentials. By extrapolating the graphie (Fig. 5.4) to the origin
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(l/d -+ 0), the capacitance orthe parallel-plate capacitor with infinite separation,

can be estimated approximately at 20 pF. This is consistent with the previously

obtained value for a single square plate, whose capacitance is two times greater

than the capacitance ofthe system oftwo infinitely separated plates.
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3. Stade aad modal aDalyses of piezoelectrie structures

Ta study the effect of the exterior electric field on the eharacteristies of

piezoelectric vibrators in a more or less systematic way, the statie and modal

analyses sbould involve various piezoelectrie materials, crystal shapes, electrode

configurations, and Vlbrational modes. Because it is difficult to assess the role of

these factors using one particular application, the piezoelectric structures in the

examples below were subdivided, based on their shape, into four categories within

whieh only a limited number of electrical situations was simulated. Since no

'textbook' problems are available in the case of three-dimensional piezoeleetrie

vibrations, the obtained results were typically checked, when possible, against the

one-dimensional estimates or compared to experimental data.

3.1 L~B407 unitcuhe

The problem of a lithium tetraborate unit (1 m) cube (Antonava and

Silvester, 1997), though artificial, is presented here for its ilIustrative qualities

since both the material and the vibrator shape are favorable ta electrie flux leakage.

This example serves aIso to introduce the few postprocessing operations involved

in the present finite element analysis, to study the convergence behavior of static

and motional parameters and to interpret the influence of the exterior eleetrie field

on them.

The solution of the statie piezoelectric problem is examined in terms of statie

capacitance Cs, whieh can be determined in two ways, Le. either as the ratio ofthe

eleetrode charge Q and the potential diff'erence l::!.rp = 1CPl - ep21 between the

electrodes

Q
Cs = Arp' (3.1)

(3.2)

•

or from the total stored energy Utotal

2Utotal
Cs = (Aep)2'

1 T
where Utotal = 2'x lU is typically caleulated as the sum of mechanical and

eleetrical energies over ail the elements E, including the superelement SIl when

the problem is solved with open electrie boundaries:
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Ulotal = itlt(.)T~.)It(.) + i.~Sll."
e=l

(3.3)

where x(e) is the vector of nodal displacements u(e) and potentials rp(e) for the

element e, and .s is the vector of surface potentials. To calculate the purely

electric part of the capacitance Cs, i.e. the value that can be recovered trom the
vibration anaIysis if the statie condensation ofpotential degrees offreedom is used

(Eq. (5.12), Chapter 4),

Celt!Ct _ 2Uelect (3.4)
li - (dcp)2'

ooly the electrical part Uelect ofUtotal is taken into account, Le.

E

U_ = U"ià + U..., = !.E rp(.)T~rp(.) + i.~Sll•..
2 e=l

(3.5)

(3.6)

•

The capacitance obtained ftom the model with open electric boundaries C~,
being a more realistic approximation, is considered as a reference value when the

relative increase in Cli due to the exterior electric field

Cope:n - Cclosed
de = li S

Il coptm
Il

is calculated.
In the example problem shown in Fig. 5.5, the values ofe~ were found to

be 20.1 and 12.2 % higher than their closed-boundary counterparts C~'olled for the

full (4 x 4) and partial (2 x 2) electrode plating of the top and bottom surfaces of

the cube respectively. The contribution of the exterior field to the total stored

energy is clearly of the order of 6.C/I, and constitutes 24 and 13 % for the
corresponding electrode configurations. Numerous calculations of e:os

ed and

C~ in the ftamework of convergence study demonstrated that the accuracy of

the static capacitance was practically the same, no matter whether derived from
(3.1) or (3.2). This is consistent with the static boundary conditions imposed on

the electrodes (Table 4.3, Cbapter 4), under which Cil is not a stationary quantity.
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Fig S.S Slatie solution. (a) Transducer configuration. (b) Cross-seœon ofelectric

potential distribution. (c) Convergence orthe statie capacitance Cs/Eo.

The values of capacitance obtained with the finest mesh used (8 x 8 x 8) are

summarized in Table 5.2.

Table 5.2 Statie capacltance ofa unit lithium tetraborate cube.
tElectrode Electric boundary

plating elosed open

C~/Eo,m C./Eo, m c:t!d /EO, m C./EO, m
full 8.15 10.03 10.76 12.64

partial 5.58 6.61 6.54 7.53
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The convergence of C!I is very rapid for the fully covered piezoelectric capacitor

(Fig. 5.5(c), left), while the capacltanœ of the structure with partial electrode

stabilizes if the top and bottom surfàces are subdivided in at least 8 x 8 rectangles

(Fig. S.5(c), right). The latter configuration makes it evident that the cubic shape,

with its closely located dielectric corners and electrode edges, constitutes a serious
test for the finite element Modele Nevertheless, the separation between Cr;°!led and

C~ was almost independent of the mesh for either electrode shape. This

suggests that the shift in the capacitance due to the leakage field is calcu1ated more

accurately that the solution (C!I) itselt: and can he estimated even by using a coarse

mesh ofelements.

An important step in the result post-processing is visualizing the ftinge electric

field around the piezoelectric body. A smooth and physicaUy valid potential

distribution not only illustrates the obtained results, but also attests their

correctness and aœuracy. As mentioned in Chapter 2, the most serious drawback

associated with the method of ballooning consisted in its inability to recover

potentials in the outer region modeled by the superelement matrix. Attempts to

compute the exterior potential distribution by means ofthe Poisson integral

cp(P) = -1-1 u(Q) dB
41rEo s Irp - TQ 1

failed since the surface charge density O"(Q) = -o· D(Q), calculated over the

surface of piezoelectric crystal by the direct differentiation of the piecewise

continuous approximate solution (u, cp), was too inaccurate to be used with (3.7).

Ta visualize the fiinge field, a more direct method was adopted in the present

work: the mesh of tetrahedral elements was simply extended one layer beyond the

surface of the piezoelectric body to include some ofthe free space. For example, in

the problem shown in Fig. 5.5, the corresponding superelement matrix was added

to the 6 x 6 x 8 mesh, made up ofthe 4 x 4 x 6 discretization ofthe piezoelectric

cube (Fig. 5.5 (a) and of the element-wide free space interface. After solving this

larger inhomogeneous problem, the potential distribution shown in Fig. 5.5 (b) was

obtained by plotting the contour lines of the finite element solution

cp(x, y = O.S, z) .
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Il is usetùl to start the modal analysis with a ftee unit piezoelectric cube (Table

5.3), thus eliminating for the time being the boundary conditions associated with

the electrodes.

Table 5.3 Lowest modes ofa free lithium tetraborate cube.
Mesh 4x4x6
No. oftetrahedra Ev = 480
No. ofnodes n = 957
No. ofsurface nodes ns = 514
Dimensions ofstiffitess nK = 3828 and
mass nM = 2871 matrices.

ode Mechanical problem Piezoelectric problem with electric boundaries
closed open

1
2
3
4
5
6
7
8

1.7488
1.7488
1.8918
1.9992
2.1565
2.2794
2.6094
2.6097

1;, kHz
1.8162
1.8162
2.0090
2.0561
2.1566
2.3298
2.6604
2.6621

6.93 1.8020 1.16
6.93 1.8020 1.16
0.90 2.0066 0.17
14.4 2.0240 2.43
0.01 2.1566 0.00
4.09 2.3182 0.72
3.07 2.6533 0.53
1.83 2.6570 0.22

•

The numerical results for the few lowest modes demonstrate a continuous change

in the linear resonant frequencies 1 = w/(21r) due to, first, the addition of the

piezoelectricity to the model, and, second, to the 'opening' of its electric

boundaries. The mechanical resonanœ was obtained by setting the piezoelectric

coefficients in the model to zero, and calculating the natural frequencies lm of the

purely elastic structure; the addition ofpiezoelectric tenns increases these resonant

frequencies. Table 5.3 demoostrates that the etfect of exterior electric field 00 the

piezoelectric vibrations can be viewed as a reduction ofthe 'effective' piezoelectric
coupling for a given material. A1though this frequency decrease J; - f; is smaller

than the shift due to the piezoelectric etfect itselfJ; - lm, they are nevertheless of

the same order of magnitude, and cao be approximately correlated to the portion

ofinterior Ud.a/Utotal and exterior Ue:n/Utotal electric energies in the total energy

of the system U, respectively. Therefore, for materials that have a moderate or
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strong piezoelectric coupling combined with a relatively low dielectric permittivity

(e r.J 1Oeo), including the exterior electrostatic field ioto the tinite element model is

almost as important as taking into account the piezoelectric eff'ect itself

In the next example (Table 5.4), the piezoelectric cube is characterized by two

frequencies - resonance Ir and the antiresonance 14 - resulting ftom the two

homogeneous boundary conditions imposed on the pair of electrodes (Table 4.3,

Chapter4).

Table 5.4 Lowest vibrational modes ofa unit cube (full electrode plating).

Mesh 4 x 4 x 6 (details in Table 5.3)
Electrodes 4 x 4 (two sides)
nK = 3668, nM = 2871

ode Electric boundaries
closed open

Ir' kHz 14' kHz C n , pF k,% Ir, kHz 14, kHz Cn,pF k,%
1 1.7663 1.7663 0.0 0.0 1.7650 1.7650 0.0 0.0
2 1.7663 1.7663 0.0 0.0 1.7650 1.7650 0.0 0.0
3 1.9201 2.0552 11.6 38.2 1.9189 2.0208 11.2 33.0
4 2.0009 2.0009 0.0 0.0 2.0008 2.0008 0.0 0.0
5 2.1566 2.1566 0.0 0.0 2.1566 2.1566 0.0 0.0
6 2.2942 2.2942 0.0 0.0 2.2929 2.2929 0.0 0.0
7 2.6311 2.6547 1.17 13.4 2.6307 2.6476 1.14 11.4
8 2.6490 2.6490 0.0 0.0 2.6484 2.6484 0.0 0.0
9 2.6597 2.6597 0.0 0.0 2.6560 2.6566 0.0086 2.1

For the given electrode configuration, ooly few of the natural frequencies ftom

Table 5.3 become piezoelectrically active, which is indicated by the separation of

the resonant ftequencies Ir and 14' Indeed, the matrix of piezoelectric coefficients

for lithium tetraborate in the crystallographic, i.e. nonrotated, axes

e = [ ~ ~ ~ e~s e~s ~o] (3.8)
e31 e31 e33 0 0
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revea1s that the applied electric field E = (O~ O~ EJ)T is piezoelectrical1y coupled,

through constants e3!' e32 = e31, and e33~ to the strain components S11, 822, and

833. Therefore, only extensional vibrations in the direction ofthree coordinate axes

and their overtones may take place under the above electrical conditions.

Mode 3

Mode 7

Mode 9

(a) (b)

•

Fig 5. , (a) Vibrational sbapes of the piezoelectric cube witb full electrodes. (b) Cross­

sedion ofelectric potential distnbution al the resonance frequency Ir.

Two of them (3 and 7) are shown in Fig. 5.61 a10ng with the corresponding

electric potential distributions. It is interesting to note that some other modes,

inactive <Ir = la) in the closed..boundary model, are excited by the fiinge field.

1 The vibrational shapes were vmwlized by adding the scaled displaœments Us, obtained
from the finite element mode!, to the Cartesian coordinates rs of the surfaœ,
r's = rs + Us, and by plotting the defonned surface r's in parametric mode.
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For example, mode 9, also shown in Fig. 5.6, appears on the admittance curve

corresponding to the problem with open electric boundaries near mode 7 (Fig.

5.7) in the form of a small but elearly visible resonance. Under specifie

circumstances this unwanted resonance May be amplified and can deteriorate the

performance of the resonator. Clearly, sueh modes 'aetivated' by the exterior

electric field contribute to the family of spurious responses, and should be studied

as part ofthe vibrator model.

closed - -.
open -

1
1
1
1
1
1

o --- --I-
I
1
1

7e+06 r---_----__-----_--.,

4000mode 7
frequencyf,Hz

-4e+06 L.-_ __lA ....... ---&_--'

1500 mode 3

Fig 5. 7 Electrica1 admittance of the piezoelectric cube in the low ûequency range.

As seen from the values of resonant ftequencies (Table 5.4) and the admittance

eurve (Fig. 5.7), the MOst noticeable influence of the exterior leakage field on the

piezoelectric vibrations consists in reducing the effective separation of resonant

ftequencies Â! = la. -Ir. The latter is elosely related to two other parameters

appearing in Table 5.4 -the motional capacitance

Q;
Cft = ~U!MU ' (3.9)

ft ft ft

•
where Uft is the vector of ·mechanical displacements, and the effective coupling

coefficient defined in Eq. (6.37), Chapter 1. The calculation of Cft cao be

simplified if one recall that in the adopted variant of the Lanezos a1gorithm the
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resulting eigenvectors are M-orthogo~ i.e. U~MUft = l, 50 that Eq. (3.9) toms

into

(3.10)

It is important to note that the separation t11 reduces mainly through the

antiresonance frequency la., which diminishes for the electrically unbounded

problem. A simplified electrical model of the piezoelectric vibrator can help to

interpret this observation. In the neighborbood of the weil separated nth

resonance, the equivalent circuit (Fig. 1.5, Chapter 1) cao be approximated by a

simple circuit consisting of the shunt capacitor Co in parallel with the series circuit

Ln and Cn. In this case, the resonant frequencies Ir and la. are given by

expressions

and

(3.11)

1
1.=-

a. 21r
(3.12)

The shunt capacitance Co (Eq. (7.21), Chapter 1) cao generally be derived from

the static Cs and motional Cft capacitances as
(X)

Co =Cs - ECn ,

ft=l

or approximated by Cs

Co~Cs

(3.13)

(3.14)

•

for materials with small piezoelectric coupling like quartz. In either case, Eqs.

(3.11) and (3.12) demonstrate that among the two resonant frequencies, ooly the

antiresonance la. depends on the static capacitance Cs. As shown earlier in this

section, the latter increases considerably in the presence of exterior field, thus

diminishing the antiresonance ftequency in (3.12). The motional capacitance Cft,

and therefore the re50nance frequency Ir' is a150 afTected by the leakage field but
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at much lesser degree. This is illustrated by the test problem where the frame Soo,

00 which the poteotial was set to zero, is moved away ftom the surface ofthe unit

cube (Fig. 5.8).

2.02:r' ·
2 ·

~ 1.98 resonance ~.-:

~
antiresonance -.-

m 1.96
~
CT.: 1.94 ~ ·

1.92 •• • • • •
1 10 100 1000

dïstance,m

FilS. 8 Dependence of the resonant frequencies on the distance between the surface of

the piezoelectric cube and the outer boundaly 500 •

Numerically, the curve is similar to the one shawn in Fig. 5.1 for the purely static

case, and models the convergence of the resonant ftequencies (mode 3) to their
open-boundary values~ and~ as the number of recursive condensation

steps grows; physically, it corresponds to the increase in resonant frequencies of
the piezoelectric cube as a grounded meta1lic frame is moved away from its surface

towards infinity. Its shows clearly that as more free space is added ta the syste~

the antiresonance frequency increases by 40 Hz, while the resonance ftequency

remains practically unchanged. Note also that the main shift in the antiresonance

ftequency occurs in the vicinity of the surface, i.e. at the distance of several

vibrator sizes from it. This cao be used to explains why, in practice, no change in

the resonant ftequencies is observed when the mouoted crystal is sealed in a

metallic enclosure. Indeed, since the latter is typically separated trom the vibrator

major surfaces by no less that a few plate thicknesses, the electrical situation in the
finished resonator is weB described by the model with open electric boundaries.
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The antiresonance ftequency, being a global quantity, converges rapidly as the
finite element model is refined (Fig. 5.9). Meanwhile, the shift t:'oseJ. - r:;-m
produced by the leakage electric field converges even faster, sa that it is weU

approximated loog before the antiresonance ftequency stops changing.

2.1

! 2.08.:1'

~• 2.06~
CT.:
• 2.04~
CIl
le
0

'"• 2.02~

~
2

0

dosed boundary~
open baundary~

2500 5000 7500 10000
matrix K size

Fig S. 9 Convergence orthe antiresonance frequencies~ and r:en with mesh

refinemenL

It foUows from Eqs. (3.11) and (3.12) that for small piezoelectric coupling

(Cn/Co «1) the relative separation between the resonant ftequencies cao be

approximated by

~I 1
-~-,

fr 2r
(3.15)

•

where r = CO/Cn is the capacitance ratio. In practice, it is desirable to make the

value of r as small as possible, thus increasing the separation (3.15). Raving a

large t!:.1 is important for many application: it determines the bandwidth of a

piezoelectric filter, and allows a transducer or a voltage controUed oscillator

(VCO) to be operated over a wide range of frequeocies between Ir and fa.' The
definition of the capacitance ratio suggests that to make r srnall, the motional

capacitance Cn should be large (which is accomplished by choosing the crystal,

eut, and mode of vibration with large piezoelectric coupting), while the shunt
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capacitance Co should be as smaU as possible. In this sense, the eff'ect of the

exterior electric field is deleterious for the vibrator performance: while preserving

the values of Cn (except for modes activated by the tiinge field), it considerably

increases the values of Cil (and consequendy Co) thus raising T, and diminishing

the spacing dl and the effective piezoelectric coupling factor le of active modes

(Table 5.4).

Table 5.5 Motional parameters ofthe lowest vibrational modes for a unit cube
(partial electrode plating).

Mesh 4 x 4 x 6 (details in Table 5.2)
Electrodes 2 x 2 (two sides)
nK = 3780, nM = 2871

ode Electric boundaries
closed open

Ir, kHz 14' kHz Cr" pF k, % 'r' kHz 14' kHz Cn , pF k, %
1 1.7964 1.7964 0.0 0.0 1.7876 1.7876 0.0 0.0
2 1.7964 1.7964 0.0 0.0 1.7876 1.7876 0.0 0.0
3 1.9540 2.0560 6.01 32.7 1.9453 2.0237 5.36 28.7
4 2.0074 2.0074 0.0 0.0 2.0055 2.0055 0.0 0.0
5 2.1566 2.1566 0.0 0.0 2.1566 2.1566 0.0 0.0
6 2.3227 2.3227 0.0 0.0 2.3132 2.3132 0.0 0.0
7 2.6528 2.6619 0.33 8.3 2.6469 2.6520 0.226 6.2
8 2.6600 2.6600 0.0 0.0 2.6565 2.6569 0.0042 1.6

Besides depending on the crystal cut and mode of vibration, the resonance

separation dl is atrected, through Cn and Cil' by the electrode size and shape. It

is therefore natural ta compare the reduction in ~f due ta electric field leakage to

the ftequency shift resulting trom a change in electrode shape. To tbis end, the

similar analysis of the vibrator with partial electrodes on the top and bottom

surfaces (Table 5.5) was carried out for the few lowest modes. AlI modes obtained

with the previous electrode configuration are present here, including the one

excited by the exterior electric field (Fig. 5.10). However, their electrical activity,

measured by the motional capacitance Cn, is clearly less intense because ofsmaller

electrode area.
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Mode 3

Mode 7

Mode 8

(a). (b)

•

Fig 5. 10 (a) Vibraûonal sbapes of the piezoelec::tric cube with partial elec:trodes. (h)

Cross-section ofelectric potential distribution al the resonance frequency Ir.

The spacing l}.f between the resonances of mode 3 are given in Table 5.6 for

various electrical boundary conditions. It shows that for both electrode

configurations, the 'effective' separation constitutes ooly about 75 % of the l}.1

obtained with a model with closed electric boundaries. It is interesting to note that

in the example with full electrodes, adding the exterior electric field diminishes l}.1

from 135kHz to 102 kHz, while exactly the same reduction, but this time through

the resonance frequency Ir' is achieved within the model with closed electric
boundaries as the electrode size is reduced by the factor oftwo.
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Table 5.6 Resonance separation /11 in the piezoelectric cube.
Electric boundary

closed open
IElectrode fr, kHz fa.' kHz /1f, Hz fr,kHz fa., kHz Àf,Hz

4x4 1.9201 2.0552 135 1.9189 2.0208 102
2x2 1.9540 2.0560 102 1.9450 2.0240 79

3.2 Square piezoelectric plates

The square plate geometry (Fig. 5.11) was chosen for the comparative

study of static capacitance Cs for different piezoelectric rnaterials. As mentioned in
Chapter 4, it is ooly the interior and electrostatic part c::a ofthe capacitance that

is typically calculated by the existing finite element analyses of piezoeleetric

vibrators. The latter does not take iota account either the static mechanical

displacement due to the piezoelectric coupling with applied electric field or the

exterior leakage field. It is demonstrated below that for many materials c:ect May

be a rough approximation to the piezoelectric static capacitance Cs, particularly

the one obtained from the model with open electric boundaries.

Region 6 x 6 x 1 mm3

Mesh 12 x 12 x 2
Electrodes 6 x 6
n = 2837, ns = 1538
nK = 11012, nM = 8511

•

Fig 5.11 Square plate resonator configuration and ilS finite element model.

The materials for capacitance tests (Table 5.7) were selected ta have different

combioations of dielectric pennittivity E and piezoelectric coupling k. Namely,

quartz bas bath low E and small coupling coefficient, lithium tetraborate is a

moderate piezoelectric and its permittivity is relatively low, lithium niobate is a

very mong piezoelectric an~ possesses large permittivity. The crystal cuts are the

ones used for thickness-shear mode resonators (considered later in this section),

though for the present static tests these orientations do not carry any physical

meaning. They are described by the rotated coefficient matrices (3.9}-(3 .17) of

Appendix 2, and the Cartesian axes Z2 is perpendicular to the major surfaces ofthe

plates.
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Table 5.7 Electric permittivities and piezoelectric coupling.

Parameter Quartz
Lithium Lithium

tetraborate niobate

~ (fO) 4.62 8.5 44.0

~ (fO) 4.67 9.6 76.0
kst, % 10.5 34.0 64.0
EO

,% 17.6 9.4 1.3
Eh +EO

~-4 ~ 0.9 10.4 41.6T ' 0En + fO

179

•

The low pennittivity is responsible for the electric field leakage ioto the outer

space, while a high coupling factor efficiendy transforms the supplied electric

energy ioto mechanical straÎn. In either case, the effective static capacitance Cs is

larger than its purely electrostatic and closed boundary counterparts because ofthe

additional energy associated with strain and exterior electric field. The anticipated

contribution to the capacitance ftom the exterior electric field and piezoelectrically
induced mechanical defonnation should be proportional to the ratios fO / (Eh + fO)
and (~- 4)/(E~ + EO) respectively (Table 5.7), where Eh is the ~free'

dielectric pennittivity in the direction of the plate thickness (X2); the difference

between fh and E~ is function ofthe piezoelectric coefficients, and is given by Eq.

(4.4), Appendix 2.

The capacitances, as funetions of the electrode size, are presented in Fig. 5.12.

For quartz, with its weak piezocoupling, the change in the statie capacitanee is

almost entirely attributed to the exterior electrostatic field. For the electrode

configuration shown in Fig 5.11, Cs increases by 8.9 % (Table 5.8) when the latter

is taken ioto account. For lithium tetraborate plate of the same geometry, the

contribution ftom the mechanical and exterior electrical fields to Cs constitutes Il

and 4.7 % respectively. For lithium mobate crystal cut, the high permittivity ~

makes the leakage field negligible; however, because of strong piezoelectric

coupling with mechanical fields, the full static capacitance of the lithium niobate

plate surpasses the electrostatic one by 41 %.
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Table S.8 Statie C8pacitances (pP) ofpiezoelectrie square plates.

~
Parallel-plate

Finite element model with electrie boundarycapacitor

model elosed open
Crystal C&, pF c:ed

, pF C., pF ~,pF C., pF
Quartz 0.373 0.512 0.518 0.563 0.569

Lithium tetraborate 0.77 0.945 1.068 0.997 1.121
Lithium niobate 6.39 4.784 8.143 4.840 8.208

The changes in C. resulting from the inclusion of the exterior electrie field in

the finite element model is ref1ected in the equivalent electrica1 admittance of

piezoelectric plates in the low frequency range (Fig. 5.13). For quartz and lithium

tetraborate plates the curve obtained from the model with open electrie boundaries
is slightly higher than the closed-boundary one. Although for lithium niobate this
difference is not visible, its spectrum is 'enriched' by small spurious resonances
excited by the fiinging field to a much higher degree that in other materials.
Indeed, the piezoelectrie coupling of lithium niobate is 50 strong that even a small
portion of electrie field leaking into the outer space is sufficient to excite many,
nonnally inactive, modes.
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Fig 5.12 Electrie and piezoelectrie (with elosed and open boundaries) stade

capacitances ofsquare plates with ditferent electrode sïzes.•
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Fig 5.13 Electrical admittance of square piezoelectric plates in the low

frequeocy range.
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3.3 Longitudinal vibrations in CdS rotls

In this section, the electric flux leakage associated with extensional

vibrations ofCdS rectangular rods is determined. Although this problem May seem

obsolete (cadmium sulfide is barely used now as a transducer material), it is still

considered here since the issue of electric flux leakage from piezoelectric crystals

was first raised in connection with these geometrica1 shapes and material. Ogawa

(1969) observed that for sorne specimens of CdS, the experimental mechanical

losses and the dispersion of sound velocity - both proportional to the

piezoelectrlc coupling coefficient k;2 - were smaIIer than their respective

theoretica1 values. He related the weakening of the effective piezoelectric coupling

with the electric flux leakage and the semi-conduetive properties of CdS. Because

the former had never been taken ioto account, this led Ogawa to define a

generalized depolarization factor which included a correction to the piezoelectric

polarization field P for geometries favorable to the expansion of electric lines

beyond the crystal boundaries. This approach, subsequendy adopted by Ikeda

(1978, 1996), was briefly discussed in Section 3.1B of Chapter 2 as the ooly

systematic attempt to introduce the exterior electric field into the model of

extensional Vibrations.

The two CdS transducer configurations modeled by finite elements are shown

in Fig. 5.14. In both cases, the z-axis is chosen paraUel to the hexagonal axis ofthe

CdS (nonrotated) crystal and perpendicular to its top and bottom surfaces covered

by electrodes. However, the two geometries correspond to different electrical

situations with respect to len8thwise extensional vibrations, characterized by the

stress components Til, in the case of a thick bar elongated in the x-direction (Fig.

5.140), and by T33 - for the pillar-type transducer (Fig. 5.14b). The direction of

the former vibration (wave vector k) is perpendicular to the appüed electric field

E = (0, 0, ~)T and excited through the piezoelectric module d31 (Eq. (4.6),

Appendix 2), while the latter, d33-driven mode is parallel to E. FoUowing Ikeda's

tenninology, these piezoelectric interactions are referred to as transversal (T)- and

longitudinal (L)-etrects respectively. Because in either case the major surfaces are

not shielded, the electric flux leakage bas to he considered.
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T-etrect

:::;;::;;............... .':::••••••:::::::••••••••;::=.~
::::::::::::::::::::::::::::~~.....•.....:::•.............••..•...........::............••

.......•.•..~

Region 7 x 1 x 3 mm3

Mesh 28x2x8
n = 4397, ns = 2370
nK = 17020, nM = 13191

(a)

L-effect

Region 1 x 1 x 7 mm3

Mesh 4x4x28
n = 4169, ns = 1922
nK = 16516, nM = 12507

(b)

•

FiC 5.14 CdS transducers and their finite clement models. Configurations with

transversal (a) and longibldioal (b) electtic field orientations.

The caleulated statie and motional parameters are presented in Table 5.9. Sïnce

the rod length 1 is considerably greater than its width and thiekness, the finite

element model with closed electrie boundaries is weB supported by the one­

dimensional simulation of longitudinal modes (Table 5. 10), whieh provides the

former with an implicit numerical test. In the latter case, the resonant frequencies

and coupling coefficient were computed by substituting the transdueers'

geometrical dimensions (Fig. 5.14 a,h) and the material constants of CdS (Eqs.

(4.5)-{4.7), Appendix 2) Înto the solutions, or fust order approximations (Ogawa,

1969) to the solutions, of transcendental equations goveming extensional

vibrations ofpiezoelectric bars, briefly outlined in Chapter 2 (Table 2.4). The statie

capacitances, obtained from the parallel-plate capacitor model, are almost identical

to their finite element approximations since, in the case of electrodes completely

covering the top and bottom surfaces, no fiinge field exists either inside or outside

ofthe piezoelectric.
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Table 5.9 Parameters of extensional vibrations in CdS transducers obtained ftom

the finite element model.
Piezoelectric coupling

T..etrect L-etrect

Electric Cil Ir /4 Cl le Cil Ir /4 Cl k
boundary (PF) (kHz) (kHz) (fF) (%) (pF) (kHz) (kHz) (iF) (%)

closed 0.213 224.2 225.7 2.76 11.4 0.013 250.7 258.1 0.73 24.4

open 0.295 224.2 225.2 2.74 9.5 0.043 250.0 251.2 0.44 9.7

Table 5.10 Parameters of CdS transducers obtained trom the one-dimensional
model ofextensional vibrations.

T--effect L-effect

Cil = ELEolt C.= Ef3EOwt
W 1

= 0.211 pF = 0.013 pF

l - 1 Ir = [1 + G-; )ki3L,)pSfJr - 21v'PS[

=226.2 kHz = 251.1 kHz

( 4 2) 1 ( 1 2) 114 = 1 + 1r2 "31 21v'PS[ /4 = 1 + 2"33 21v'PSf;

= 227.5 kHz = 258.1 kHz

k31 = d31 /JEl;Sfi /c33 = dl31J el;sr;
= 11.8 % = 26.2 %

As can be seen from the above tables, the electrical conditions created by the

T.. and L-effect couplings are very different. Because in CdS the piezoelectric

constant d33 that governs the L-effect is almost two tintes greater than d31, the

resonant frequency separation AI and the corresponding electromechanical
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coefficient k33" are superior to that ofthe T-etfect. At the same time" the motional

and static capacitances (Table 5.10) are smaller for the L-effect transducer since in

this case the electrodes occupY the minor surfaces separated by the length. This

special configuration is at the origin of a severe electric flux leakage predieted by

Ikeda (1996). Iodee<!, the finite element model shows tbat 67 % of the eleetric

energy is stored outside of the crystal in the case ofthe static field distribution thus

increasing the static capacitance Cs ftom 0.013 pF to 0.043 pF, i.e. by almost 70

% (Table 5.9). The antiresonance ftequency fa. shifts sa close to fr that their

effective separation constitutes ooly 16 % of the value predieted by the finite

element analysis with closed electric boundaries or by the one-dimensional model

of longitudinal vibrations. In terms of the piezoelectric strength, the electric flux

leakage diminishes the L-effect piezoelectric coupling from 24.4 % to 9.7 % thus

reducing it to that ofthe T-effect.

3.4 Strip resonators

Piezoelectric resonators operating in thickness-shear modes are by far the

most popular and mass-produced since their frequency range suits best the modem

consumer market of electronic equipment controUed by microcomputers to which

they serve as a time base (i.e. generate a reference c10ck signal). The

miniaturization and the cost reduction of these devices are largely determined by

the miniaturization of the resanators. Using materials with high piezoelectric

coupling is one way of reducin8 the resonator size; another avenue in the process

of miniaturization is the design of strip-type resenators. Compared to the large

conventional quartz resonators made from rectangular or circular plates and

requiring a sophisticated individual convex contouring., the strip resonators have

sma11 size and simple rectangular shape, and., therefore, lend themselves to the

large-scale production as chip components for integrated circuits.

Although sorne specifications are relaxed for strip resonators" their

performance must still be comparable ta that of large resonators. Ifthe parameters

of the latter are weB predieted by one- or two-dimensional models (Section 3,

Chapter 2), the optimal design of the miniature strip resonators requires a full

three-dimensional analysis. The finite element models are best suited to study the

influence ofthe crystal dimensions and electrode shape (and the associated electric

flux leakage) on the resonator spectrum and electrical parameters. The X-and Z-
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oriented strips (Fig. 5.15) ofY -rotated cuts of quartz and lithium tetraborate (Eqs.

(3.9)-{3.14), Appendix 2) known for their temperature stability are considered in

this section.

X-strip

Z-strip

(a)

(h)

•

Fil 5.15 Piezoelectric strip orientation in Cartesian coordinate axes. Structures

elongated in the clin:dion %1 (a) and %3 (b).

The specifie geometry depends on the design requirements; however, MOst often

the strip length is ehosen to be parallel to the displacement in the thickness-shear

mode in order to avoid spurious thickness-twist overtones. The displacement u cao

be detennined ftom the one-dimensional model ofthickness vibrations (Eq. (3.4),

Chapter 2). In the case of a rotated (8 = 35°15') Y-plate of quartz (AT-cut), the

polarization of the shear wave is strietly paraDel to the digonal Xl -axis, Le.

u = (Ult 0, OlT, which corresponds to the X-strip configuration. For the rotated
(8 = 51°) Y-cut ofL~B407' the displacement in the slow shear mode (the mode

of interest) is predominandy X3-oriented, which suggests using a Z-strip.

Therefore, in the standard notation (Appendix 2), the modeled quartz and lithium

tetraborate plates cao be designated as (YXl) 35°15' and (YZl) 51° respectively2.

Since the thickness-shear mode is the resonance ofa transversal wave traveling

in the thickness direction ofthe plate, the strip thickness t determines the operating

Aa:ording ta the convention on the positive sense ofcrystaI10graphic axes for quartz
(IEEE Standard on Piezoelectricity, 1987), the rotational symbol for the AT-cut sbould
read as (YXl) -35°15'.
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frequency ofthe resonator. The length ofthe strip plate 1is designed to be as small

as possible but large enough to keep the resonator series resistance at minimum by

not damping the vibration at mounting points. The width w is chosen ta separate

the main thickness-shear mode trom numerous spurious resonances of waves

propagating in the width direction (Fujiwara et al, 1985). The optimum dimension

ratios lIt and w/t are determined by the design and depend, in great part, on the

crystal piezoelectric coupling. The electrode shape and size are chosen to make the

capacitance ratio r at the main resonance as large as possible, and also to suppress

unwanted responses. Since no optimization was aimed in the present analysis, the

foUowing dimensions 1= 18 mm, w = 3 mm, and t = 1 mm were chosen for both

the quartz and lithium tetraborate strips shown in Fig. 5.15. The choice of1, w, and

t was based on computational considerations, such as the size of the matrices

arising trom the finite element discretization, rather than practical strip

configurations for which the length to thickness ratio lIt is typically greater.

Nevertheless, this geometry aIIows a pronounced thickness-shear mode, and is,

therefore, suitable for studying the influence of the exterior electric field.

To accurately model the mechanical and electrical field variations associated

with the high-trequency thickness-shear mode, the strips were subdivided ioto

elements of second order proportional1y with 1, w, and t, Le. 36, 6 and 2 elements

were distributed a10ng the len8th, width, and thickness respectively. This

discretization produces a large model with a total of n = 4313 nodes, of which

ns = 2402 lie on the surface (superelement size). The dimension of the stiffitess

matrix depends on the area occupied by the electrode but does not exceed

nK = 4n = 17252 (bare strip); the size of the mass matrix is fixed for ail electrode

configurations and equals nM = 3n = 12939.

In the first test, the rectangular electrodes (18 x 4 in terms of elements) caver

two thirds of the length and two thirds of the width in the center of the top and

bottom surfaces, i.e. one third of the major faces3. The anaIysis of the first 150

vibrational modes in the quartz X -strip (Table 5.11), demonstrates that except for

several weak spurious responses, ooly two strong modes are excited by the applied

electric field E = (0, E,., 0)T. These modes, identified as face-shear (FS) and

• :3 The electtode pattern would normally inc:lude sorne additional metalli7Jlltion ta
elec:tricaUy connect the central ana with pins. It is neglec:ted by the present model.
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thickness-shear (TS), are cbaracterized by the strain components S5 = S13 and

86 = S 12 induced through the piezoelectric coefficients e2S and e26 respectively.
The electric response, in tenns of motional capacitance Cn and the coupling

coefficient k, is almost ofthe same intensity for both modes since e25 and e26 have
close values (Eq. (3.10), Appendix 2).

Table 5.11
Mode

(number)

Modes in quartz strip excited by the thickness electric field.
Shape Parameters Electric boundary

closed open

FSI
(55)

TSI
(136)

Ir (kHz)
la (kHz)
Cn (tF)
k(%)

Ir (kHz)
la (kHz)
Cn (fF)
k(%)

870.7 870.5
872.2 872.0
3.43 3.51
5.9 5.7

1668.9 1668.2
1671.7 1670.7
3.36 3.40
5.8 5.5

(3.16)

The resonance frequency predieted by the one-dimensional model of an infinite

bare plate

FS 1 Jcfs1 1 = - - = 850 kHz,
2w p

TS 1~f 1 = - - = 1661 kHz,
2t P

(3.17)

•

where ~ is the 'piezoelectricaUy stiffened' elastic constant ~ = ~ + ~6/E~,

are lower than the ones obtained from the finite element model (Table 5.11) since
both the face-shear and thickness-shear modes are shaped by the finite lateral

dimensions.

The calculated static capacitances for the above electrode configuration are
c:'osed = 0.99 pF and~ = 1.074 pF for the closed- and open-boundary

models respeetively. This 8 % change in the static capacitance increases the
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etrective capacitance ratio r of the thickness-shear mode trom .,.eJo&ed = 295 and

.,.",-m = 316. To compare, the experïmental value for the AT-cut quartz strip
resonator (of different configuration) reported by Fujiwara and Wakatsuki (1987)

was r = 333, which is fairly close to the value obtained with the finite element

model with open electric boundaries. Because the presence of the exterior electrie

field shifts, in this case, both the resonance (afr = 0.7 kHz) and antiresonance
(afa = 1 kHz) ftequencies, their separation af diminishes only slightly, Le. trom
2.8 to 2.5 kHz

The same thickness-shear mode with displacement Ut can be activated by the

lateral.(with respect to the thickness direction X2) electrie field E:3 configuration
through the piezoelectric coefficient e36 (Eq. (3.10), Appendix 2). However, its

electrie activity is less strong, which is retlected in the resonance separation âf,
motional capacitance Cn , or coupling coefficient k (Table 5.12), which is partly

attributed to the fact that constant e36 bas a smaller absolute value compared to its

Eh,-field eounterpart e26.

Table 5.11 Characteristics ofthe thickness-shear mode in quartz strip resonator

excited b lateral electric field.

Parameters

Electrical boundary
closed.
open

Statie

0.101
0.212

Dynamic

1669.6 1671.5 0.429
1669.1 1670.3 0.429

k,%
4.8
3.7

•

As expected, the relative ftequency shifts due to open electrie boundaries are

greater in the case of tateral excitation of the thickness-shear mode since the

uncovered major surfaces favor the propagation of electric field ioto the outer

space (Fig. 5.16b). The static capacitance C. doubles in the presence of the

exterior electric field (Table 5.12). The resulting shift in the antiresonance

trequency afa = 1.2 kHz is as large as the effective trequency separation
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tJ.jOfJeft = 1.2 kHz which constitutes only 63 % of that predieted by the closed­

boundary model âr"ed = 1.9 kHz.

Resonance Antiresonance

(3.18)

.... (a)

- -~)
Fi1S.16 Cross section %2-2:3 ofelectric potential distribution in the thickness-shear

mode ofX -strip quartz n:sonator for (a) tbickness and (b) laierai electric field

orientation.

Because of the different structure of the piezoelectric matrix (Eq. (3.13),

Appendix 2), four types ofvibration cao be piezoelectrically excited in the lithium

tetraborate Z-strip by the perpendicular electric field E = (0, ~,O)T. These

modes are activated through the nonzero piezoelectric coefficients e21, e22, e23,

e24 and are characterized by mechanical strain components 8 11 , 8 22, 8 33 , and S23
respeetively. The first three correspond to extensional motions along the

coordinate axes Xi, i = 1,2,3, with displacement components Ui, while the last is

the thickness-shear mode. To help identify modes calculated by the finite element

model, their approximate resonance ftequencies cao be obtained ftom the one­

dimensional extensional and thickness vibrations ofthe Z -strip:

1~I~I = - - = 1104kHz,
2w Psfl

•
/,TStz = !-V4 = 3296 kHz,

r 2t P
(3.19)
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E 1~/, 3 = - - = 188 kHz,
r 21 p~

(3.20)

~ + e22e']A1E~2
(cf. +eLl4"2) - pV2 =0,

(3.21)

•

The ftequency of the extensional vibration in the thickness direction (3.19),

denoted here, foUowing Mindlin's nomenclature of modes (Mindlin, 1982), as

thickness-stretch (TSt), is too high and is beyond the scope of the present modal

analysis. The remaining three piezoelectric modes are among the 150 lowest

modes of the lithium tetraborate Z-strip, and are shown in Table 5.13. Moreover,

two resonances of the width extensional motion with a different number of

wavelengths along the strip length - El and El - are present in the spectrum of

Z -strip. As in the case of quartz X -strip, the resonant ftequencies calculated by

the finite element model which takes into account the lateral dimensions of the

plate are higher than their one-dimensional approximations.

The shifts in the resonant ftequencies of the thickness-shear mode due to the

exterior electric field are air = 5.4 and âla. = 8.5 kHz for the resonance and

antiresonance respectively. Their cumulative change reduces the resonance spacing

al by 12.5 %. To calculate the capacitance ratio of the thickness-shear mode, the

shunt capacitance Co was approximated by the statie capaeitance Cs
(C:osed = 2.043 and C:pen = 2.148 pF) less the motional capacitances Cn of the

first four active modes (Table 5.13):

Co ~ C. - C9 - C61 - C64 - C131 , (3.22)

since lithium tetraborate is a relatively strong piezoelectric. This yields the

capacitance ratios .,.elosed = 29.0 and ,.open = 31.6 for the closed and open electric

boundaries respectively. The experimental value r = 20.9 was reported by

Fujiwara et al. (1985).

The similar parameters for the thickness-shear mode excited by the tateral

electric field are shown in Table 5.14.
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Table 5.13 Modes ~ L~B4°7 strip resonators excited by the thickness electric field.
Mode ShaPe Parameters Electric boundary

(number) closed open

Ir (kHz) 189.9 189.1
E3 14 (kHz) 190.5 189.7
(9) Cn (iF) 13.1 13.4

k(%) 8.0 7.9

Ir (kHz) 1073.0 1072.7
El 14 (kHz) 1076.3 1075.7

(61) Cn (iF) 16.0 15.3
k(%) 7.8 7.4

Ir (kHz) 1086.2 1084.7

El 14 (kHz) 1089.6 1088.2
(64) Cn (iF) 9.72 10.9

k(%) 7.9 8.1

Ir (kHz) 1677.4 1672.0
TS3 14 (kHz) 1705.3 1696.8

(131) Cn(fF) 66.7 64.7
k(%) 18.0 17.0

Table 5.14 Characteristics ofthe thickness-shear mode in lithium tetraborate strip

resonator excited b lateral electric field.
TS3

(#138)
Parameters

Tables 5.11 and 5.13 demonstrated how the resonance frequencies of strip

resonators change when the exterior electric field is added to the model. However,

0.205 1760.7 1778.0 6.23
0.318 1758.6 1771.5 6.46

13.9
12.0

k,%

DynamicStatic

closed
open

Electrical boundary

•
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it is not clear~ at first sigh~ whether the change produced by the extemal field is

substantial. As in the example of unit cube, this change is compared to the

ftequency shift due to the variation ofthe electrode size. Table 5.15 shows that the

ftequency shifts due to the leakage ofthe electrostatic fieldâ~ are comparable

to those resulting trom the electrode shortening ~/'·/'.

Table 5.15 Shifts in resonance and antiresonance of the thickness-shear mode due

to the leakage field for various electrode sizes.

(a) Quartz
Electrode

length
Electrical boundary

closed open resonance
Shift

antiresonance

0.67 1668.3 1671.4 1667.7 1670.5 0.6 0.9

(6) Lithium tetraborate
Electrode

length

0.67

Electrical boundary
closed open

1670.9 1700.5 1667.7 1695.1

resonance

3.2

Shift
antiresonance
~/~,kHz

5.4

•

For example, as the electrode length is halv~ i.e. changes from 0.671 to 0.331

(line 1 and 3), the resonance and antiresonance ftequencies of the open-boundary

quartz strip drop by 1.2 and 0.4 kHz respectively. The corresponding ftequency

shifts produced by the 'opening~ ofelectric boundaries in the strip with the Median

electrode (line 2) equal 0.7 and 1.0 kHz. In is interesting ta note that in the model

with open electric boundaries~ the antiresonance ftequency la. is almost constant

for various electrode sizes. This is particularly visible for the lithium tetraborate

strip (Table 5.15 (6) for which fa. increases ooly by 2.8 kHz compared to 10.8

kHz for the model with closed boundaries as the electrode length decreases.
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Conclusions and further work

As it bas been demonstrated in the previous chapter, the exterior

electroquasistatic field affects the solution ofthe static and vibrational piezoelectric

problems in several ways. First, it increases the statie capacitance C., typically by

10-20 %. Second, due to this increase, the effective separation between the

resonant frequencies diminishes, mostly through the shift in the antiresonance

frequency; in tenns ofcoupling coefficient, this is equivalent to the decrease of the

effective piezoelectric coupling. For some special configurations (e.g. L-etfect in

CdS rods), the leakage from the crystal cao be 50 severe that it almost annihilate

the piezoelectric effect. Compared to the influence of other electrical boundary

conditions, this shift in the antiresonance frequency is not a negligible quantity. It

was shown for both the lower (extensional vibrations of cube) and higher

(thickness-shear vibrations in strip-type resonators) modes, that the change in fa

was of the same order of magnitude as the piezoelectric efFect itselt: which, in the

case of a piezoelectric crystal with two electrodes, is measured by the spacing

between the two characteristic frequencies (resonance and antiresonance).

Moreover, in one of the examples, the shift in the antire50nance frequency due to

the electrie flux leakage was aImost equal to the shift in the resonance frequency

due to the halving of the electrode size, 50 that the same effective resonance

separation was observed in both cases. Finally, the exterior electric field excites

some of the mechanical modes that were piezoelectricaUy inactive under the

closed-boundary model.
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The above suggests that for crystals with a relatively low permittivity

(E < 1OEO), including the exterior electric field in the simulation of piezoelectric

Vibrations is as important as modeling the electrode plating. Although in the

present finite element analysis ooly electrical boundary conditions were considered

in arder to isolate the etrect of the leakage field, it is felt that the descnbed

electrical bebavior would be reproduced if other perturbations (e.g. electrode

mass-Ioading, acoustic damping, temperature changes, or mounting strains) were

included in the simulation. Also, although the limitation on the problem size set by

the core memory prevented the modeling oflarge and complex structures, one cao

expect that the piezoelectric Vibrations in more realistic configurations would react

to the exterior electric field in the same manner. Tberefore, as the next step of

research, it would he tempting to try to verify these assumptions by perfonning

numerical experiments with a superposition of two or more perturbing factors or

on resonators with larger dimension ratios. In particular, structures with multiple

electrodes (e.g. the model ofa monolithic tilter) represent a natural continuation of

the present series ofillustrative example.

Sînce the electrically unbounded piezoelectric problem has never been

considered or solved previously, most of the attention was given to the problem

formulation, numerical solution of the finite element equations, and result

interpretation, maybe at the expense of efficiency in modeling the infinite exterior

region. Initially, the method of baUooning was chosen primarily for the simplicity

of implementation and accuracy. In addition, sinee the superelement matrix cao be

attached directly to the surface ofthe piezoelectric, no extra variables are added to

the interior model, which is very convenient considering the limited core memory.

Although the ballooning algorithm lends itself to considerable memory savings

(block recursion for rectangular interfaces, neglect of small entries in the

superelement matrix), the generation ofthe final matrix is still an expensive process

from the point of view of computing lime and memory. Therefore, trying an

alternative method ofapproximating the exterior electric field, or even carrying out

a comparative study ofseveral techniques is essential for the future development of

the piezoelectric problem with open electric boundaries. The method of exterior

mapping (Stochniol, 1992) seems the most promising, provided a more

sophisticated meshing program is used.
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•

In contrast to the traditional approach of obtaining the dielectric part of C&

from the modal anaIysis, the fuD static capacitance is determined from the solution

of a separate piezoelectric static problem. Since bath the static and vibrational

solutions of the piezoelectric boundary-value problem are required for a complete

representation of forced Vibrations, both the detenninistic and eigenvalue problem

are to be solved in the finite element anaIysis ofpiezoelectric structures. However,

it seems possible ta combine these solutions by adopting the approach proposed by

Nour-Omid and Clough (1984), who used the M-orthogonal Lanczos vectors as

an alternative to the mode superposition method for descoDing the dynamic

response. Indeed, the Lanczos vectors are much less expensive to generate that the

eigenvectors, and include the static displacement as the first vector.

Finally, some innovations can be introduced in the finite element formulation of

the piezoelectric problem. In Chapter 1 Section 2, for the sake of consistency

between electromagnetic and elastic equations and boundary conditions, the

continuity of the tangential strain across the interface was expressed in symbolic

fonn (Eq. (2.26», anaIogous to the continuity condition for the tangential electric

field. Taken alone, the former condition is not used explicitly in the present

fonnulation since nodal finite elements preserve the continuity ofdisplacement, not

strain. However, it indicates that, by anaIogy with the edge elements used in

computational electrornagnetics, a new type of tetrahedra-based elements that

preserve the continuity of the tangential components of a dyadic (S) across the

element faces cao be derived. Such elements might be useful if the piezoelectric

problem is formulated directly in tenns of strain S and electric field E, i.e. when

accurate calculation of the stress and strain is required, for example in composite

materials, in smart structure applications, or simply for post-processing purposes.
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Unifonn plane waves

In general, both the rotational and irrotational electric fields may

accompany the propagation of an acoustie wave in the piezoelectric medium.
Amang these hybrid acousto-electramagnetie solutions two special cases - when

an acoustic wave interacts only with electric field of a particular type (either

rotational or irrotational) - are essential for the anaIysis of coupled wave

propagation. The physical difference between these two types ofcoupled solutions

is best iIIustrated on the example of unifoTm plane waves propagating in an

unbounded space.

For linear materials, any mechanical or electromagnetic tensor variable X(r,t)
in a wave propagating at speed V a10ng the direction given by a unit vector m

depends on time t and position r as

( mor)X(r,t) =oXF t- V . (1.1)

•

The curt, divergence, and gradient operators acting upon X(r,t) may be replace<L

respectively, by vector, scalar, and dyadie products of ID and X(r,t), times
(-1IV); the action of the partial ditferential operator ô1ôt reduees simply to the

arithmetic multiplication by unïty. Sïnce the solution is sought in the fonn of(I.I),

the acoustie wave equation (3.5) ofChapter 1 simplifies to

( ID • CE 0 ID - py21) . U = -cp ID • e . ID + y ID 0 e· A, (1.2)

where it bas been taken ioto account that ID . cE : IDU = (ID 0 cE . ID) . Udue to

the symmetry ofthe stiffitess teosor cE.
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•

Before inquiring under what circumstances the propagation of a piezoelectric

wave is accompanied by only one type ofelectric field, it is ofinterest to determine

how vectors 0 and E, as weB as their rotational and irrotational components, are

oriented in this wave. Applying the differential rules mentioned above, Eq. (3.4) of

Chapter 1 becomes

DI x DI X A = V2PoO, (1.3)

where the total electric flux density vector 0 is given by (3.11) of the same

chapter. Because Eq. (1.3) requires the plane acousto-electromagnetic wave to

have 0 in the transverse plane, its »P, oE'r) and oE<')components must have such

directions and magnitudes that their sum is orthogonal to the direction of

propagation DI. The Gauss law (3.13) of Chapter 1, reduced for a uniform plane

waveto

DI·OE<') = -DI· OP, (1.4)

adds no additional constraint on 0 but implies the solenoidality ofoE<r)

DI. OE'r) = 0 (1.5)

already prescribed by the gauge condition (3.7) of Chapter 1. The latter implies

that the oE<r) component is a1so perpendicular to the direction of propagation m;

at the same tinte, the corresponding rotational electric field E{r), or A, determined

ftom the solution of (1.3), is not restrieted to lie in the transverse plane. In

contrast, for the irrotational field this is the orientation of E{i) that is

predetermined by the direction of propagation m so that E{i) is always

longitudinal:

E(i) = ~DI; (1.6)

the orientation of OE") is related to the symmetry of tensor ES, and, in general, is

not parallel to m.

Expanding D according to (3.11) ofChapter l, and using the veetor identity

A=Dlm·A+mxAx. (1.7)
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tbat expresses A as the SUIn of its companent along DI and its component

orthogonal to Ill, the plane wave counterpart of Eq. (3.12) of Chapter 1 MaY be

written as

(1.8)

(1.9)

•

It is easüy seen trom Eq. (1.4) that the right-band side source vector in (1.8) is

orthogonal to m; as a consequence, it always generates a rotational field provided
oP + nE-'i) does not vanish. The same relation (1.4) suggests that the longitudinal

electrie field E(i) is induced ooly ifvector DP bas a nonzero component "a1ong ID.

In contrast, when oP is perpendicular to DI (Fig. Al.1a), the irrotational field is

not piezoelectrically excited by the propagating acoustic wave, and the oE'i) term

vanishes in (1.8). For this orientation of nP, the vector potential A cao be

symbolically expressed as

(
2 5)4A = YPo 1 - mDl - V J.&oe . (e· DI) •~

where the symmetry of piezoelectric tensor e about its two last indices alIowed

e : mu to be replaced by ( e . m) . u. This expression cao be simplified further if

one recall tbat the ratio between acoustie and electromagnetic velocities V1v is of
order of10-5

. Consequendy, Il V2PoeS Il '"V Il (VIv)2111 «: 1 in (1.9), and potential

A can be approximated by

A ~ Vp,o(I - mm + V2Poe5) . Ce· m)· u ~ VPo Ce· m)· u. (l.10)

Substituting this expression ioto (1.2) with cp = 0 and rearranging terms, one

obtain the equation for the mechanical displacement u:

{DI. (eE- V21Joe. e) . m - py21} . u = 0 (1.11)

in an acoustie wave accompanied solely by the rotational field E(r) .
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(a) (b)

•

Fig Al.1 Electric flux density orientation in a quasi-acoustic (a) and stiffened acoustic

(b) waves.

-
Now eonsider the situation when the propagating &coustie wave is coupled to

the irrotational electric field E(i) but not to the rotational one E(r). From Eq. (1.3),

one can notice that if D = 0 in a plane piezoelectric wave, the electromagnetic

wave is not excited. In other words, if the sum of IY', nE<r), and nE'i) is a nun

vector, the piezoelectric wave propagation is not accompanied by the displacement

current and the magnetie field; therefore, the associated electrie field cao only be

potential. This situation cao occur, for instance, when DP and oE'i) are directed

along m (Fig. Al.l(b): neither oPnor ~i) bas a component in the transverse

plane, i.e. plays no part in the propagation of an electromagnetic wave. Recalling

(1.4), one obtain that oP = _DE<i), thus reducing to zero the source term in (1.8).

The latter becomes a homogeneous equation in A - Fresnel equation (Landau,

Lifshitz, 1992) - whose solution consists of two purely electromagnetie waves

(v(k), A(k», k = 1,2 propagating a10ng ID. Thus the piezoelectric component ofD

- DP - does not have the right orientation ta excite an electromagnetie field but

does induce bound charges along ID characterized by the longitudinal electrie field

E(i) or, a1tematively, by the scalar potential cp. The hound charge potential

distribution cao always be expressed in terms ofdisplacement u by using the plane

wave version of(3.8) ofChapter 1:

(1.12)
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where the symmetry of tensor e was exploited once again to rearrange tenns. To

obtain an equation analogous to (1.11) for the mechanical displacement u coupled

to E(i) alone, VJ is substituted into Eq. (1.2) with A = 0 in the right side:

{ (
E e . mm . e ) 2 }m· C + . ID - pV 1 . u = O.

m·es·m
(1.13)

It is readily seen that the homogeneous Eqs. (1.11) and (1.13) obtained from

the above analysis are amenable to the form of Christoffel equations (Sirotin,

1979):

(01 • C· ID - pV2I) . U = 0, (1.14)

ifthe stiffitess tensor c is replaced by

C(T) = CE - y2Poe • e

and

( 0) E e· mm· e
Cl =c +---­

m· eS. ID

(1.15)

(1.16)

respectively. For a given direction ID the solution ofEqs. (1.14) yields three phase
velocities V(k) and, accordingly, three polarization vectors °U(k) (le = 1,2,3) of

unifonn plane acoustic waves propagating in a nonpiezoelectric infinite medium
(Fig. Al.2); V(k) and °u(k) are respectively real eigenvalues and orthogonal

eigenvectors of the positive-detinite Christoffel tensor r = Dl • C • ID. Additionally,

it foUows trom (1.14) that the acoustic wave velocity Y is derived trom stifthess C

as

v = JUDI :C:mu.
pu·u

(1.17)

•

Thus the influence of the piezoelectric effect on V cao be attributed to the

modification of the stifthess tensor c. In other words, the coupling of an acoustic

wave with rotational (1.1S) and irrotational (1.16) electric fields cao be taken into
account by substituting effective stiflitesses c(r) and CCi) into (1.14) instead ofc.
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m

•

Fig Al.2 A set of orthogonal displacement vectors associated with one quasi­

longitudinal cag(l» and two quasi-shear eu(2). °u(3» plane acousûc waves propagating

along the direction ID in an infinite piezoelectric medium.

It is seen from (1.16) that in the case of piezoelectric coupling with potential
electric field the stiffitess is increased by the quantity (e· mm . e)/ (•. ES • m )

that varies for different materials and directions of propagation from zero ta tens
of percent compared ta cE. This effect is caIIed piezoelectric sti.ffening, and the

plane acoustic wave coupled solely with irrotational electric field is referred to as

stiffened acoustic wave (Auld, 1990a). Accordingly, the phase velocity of the

stiffened acoustic wave is higher than that of the purely acoustic wave. For the
sake ofcomparison with (1.16), (1.15) is better rewritten in the fonn

C(T) = cE _ (V)2 e· e , (1.18)
v m· ES ••

where the electromagnetic wave velocity v bas been approximated by
1/..jPom . ES • m. Because quantities (e· mm . e)/ (m . ES • m) and

(e . e)/ (m . ES • m) are clearly of the same arder of magnitude, it foUows ftom

(1.16) and (1.18) that the contribution of the rotational electric field to the
effective stifthess c(T) is 105 limes smaUer than that of the irrotational field. Thus,

the piezoelectric coupling with electrornagnetic field shifts the stiflhess, and,
respectively, the phase velocity to a slightly lower value. The corresponding

hybrid wave is called quasi-acoustic (Auld, 199Oa), and represents a slightly
perturbed version ofa purely acoustic wave.
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Matrices of material coefficients

1. Calculations in compressed Dotation
The symmetry properties of material tensors, expressed by Eqs. (2.4) of

Chapter 1, aIlow the multi-index tensor components to be arranged in matrices by

using special index abbreviations (IEEE Standard on Piezoelectricity, 1987). In the

case of elastic and piezoelectric tensors, they simply consist in replacing pairs of

interchangeable indices ij and kl (i, j, k, 1 = 1,2,3) in the extended tensor

notation by single indices p and q (p, q = 1, ... , 6) in the compressed matrix (i.e.

engineering) notation

E E
ci;kl = C"", (1.1)

(1.2)

according to the following rule

11 ~ 1, 22 ~ 2, 33 ~ 3,
(23 or 32) ~ 4, (13 or 31) ~ 5, (12 or 21) ~ 6, (1.3)

without recourse to a multiplying factor. Thus, the 34 = 81 components of the

elastic stifthess tensor cao be compactly stored in the fonn of a 6 x 6 symmetric

matrix

Cn C12 C13 Cl4 ClS C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 CM C35 C36
(1.4)c=

C14 Cu CM C44 C45 C46

C15 C25 C35 C45 CS5 C56• C16 C26 C36 C46 C56 C66
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and the 33 = 27 components ofthe piezoelectric tensor - as a 3 x 6 matrix

205

el2 el3 el4 el5 el6 ]

e22 e23 e24 e25 e26 .

e32 e33 e34 e35 e36

(1.5)

These matrices will be further symbolical1y denoted by boldface courier lower-case

charaeters c and e respectîvely to distinguish them ftom the corresponding

tensors. For the second rank tensor ES the compressed and expanded notations are

equivalen~ and lead to the symmetric matrix

[

EII El2 E13]
E = El2 E22 E23 .

El3 E23 E33

(1.6)

•

2. Measured properties oC piaoelectric materials

The main advantage of the above notation Iye in the possibility to

manipulate material coefficients as ordinary two-dimensional matrices. Because the

abbreviated indices can also be applied to variables, aImost ail physical equations,

including constitutive relations, cm be recast in the matrix form. Therefore, when

the fundamental set of elastic, piezoeleetric, and dielectric constants is recovered

ftom measurements on a series sarnples for which the relationship between the

variables is as simple as possible (e.g. described by some one-dimensional model),

the material coefficients are determined and tabulated directly as components of

matrices c, e, and E. Their symmetry properties are derived ftom the point group

ofthe crystal assuming that the coefficient matrix is invariant under the application

ofeach symmetry elemen~ such as an n-fold axis of rotation or a mirror plane (m),

of the group. In the form (1.4)-(1.6), the material matrices corresponds to the

least symmetrical class 1 of triclinic system (IEEE, 1987). SÎnce MOst practical

piezoelectric materials belong to the trigonal, tetragonal or hexagonal systems,

they are charaeterized by a higher degree ofsymmetry, and ooly few ofthe 21, 18,

and 6 entries of (1.4)-{1.6) respectivelyare independent. In these categories of

symmetry, the z-axis of the Cartesian coordinate system, in which the material

ten..qor is defined, is chosen paraDel to the three-, four-, and, respectively, sixfold

crystaUographic axes. For example, the elastic, piezoelectric and dielectric matrices

ofquartz (trigonal system, class 32) are given by
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Cn C12 C13 C14 0 0

C12 C22 C23 -C14 0 0

C13 C23 C33 0 0 0
c= 0 0 0C14 -C14 C44

0 0 0 0 C44 C14

0 0 0 0 C14 C66

[ef -eu 0 e14 0 -in]e= 0 0 0 -e14

0 0 0 0

[Eu 0

E:]E= 0 En
0 0

(2.1)

(2.2)

(2.3)

•

respectively. The experimentally detennined (Bechrnann et al., 1962) independent

material coefficients of quartz are summarized in Table A2.1, a10ng with similar
sets constants for L~B4°7 (Shorrocks et al., 1981), LiNb03 (Kovacs et al.,

1990), and CdS (Gualtieri et al., 1994), for which the patterns of matrices c, e,

and E cao be found in the IEEE Standard on Piezoelectricity, 1987 or practically in

any textbook on piezoelectricity.

3. Matrices for rotated crystal cuts
The above sets of independent constants are used to derive material

matrices for an arbitrary oriented crystal cut. According to the IEEE Standard, the

most general orientation of a rectangular plate is designated as (YXlwt) ~/8 j\J!,
by indicating the initial orientation of plate's thickness (a1ong Y) and length (along

X), and the axes (Iength " width w, or thickness t) and the corresponding angles

(~, e, 'li) of the three successive rotations. In this convention, an angle is

considered positive ifthe rotation is clockwise looking from the origine toward the

positive end of the axis (Fig. A2.1).
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Table A2.1 Measured constants of iezoelectric crystals

Formula Si02 L~B407 LiNb03 CdS
Symmetry 32 4mm 3m 6mm

Density (103 kg/m3 ) p 2.649 2.451 4.628 4.82

Cu 86.74 126.7 198.39 90.7
Cl2 6.99 0.5 54.72 58.1

Elastic constants Cl3 11.91 30.0 65.13 51.0

~ (109 N/m2
) Cl4 -17.91 7.88

C33 107.2 53.9 227.90 93.8
C44 57.94 55.0 59.65 15.04

C66 39.88 46.0 16.3
eu 0.171
el4 -0.041

Piezoelectric constants el5 0.36 3.69 -0.21

epq (C/m2
) e22 2.42

e31 0.19 0.30 -0.24
e33 0.89 1.77 0.44

Dielectric constants Eu 4.58 8.97 45.6 9.02

E~ (~o) E33 4.70 8.15 26.3 9.53
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XIX.

Fig A2.1 Clockwise rotation (YXl) 8 ofa rectangular plate YX about the % axis.

Most practical crystal cuts are obtained by a single rotation, or more rarely

double rotation, ofX-and Y -platest i.e. plates with initial thicknesses along X-or

Y-axis respectively. The coordinate transformation corresponding to the single
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clockwise rotation through an angle B about the :& axis, as shown in Fig. A2.1, is

descnoed by the matrix

[
1 0 0]

a = 0 cos B sin B .
o -sinB cosS

In the rotated coordinate system %1-:&2-:&3, the components of the elastic,

piezoelectric, and dielectric tensors are transformed according to the definition of

tensor quantities

(3.2)

(3.3)

(3.4)

However, if the elastic and piezoelectric coefficients are stored in compressed

matrix notation, applying coordinate transformations (3.2)-{3.3) would require

converting matrices c and e to full tensor subscripts, and reconverting the

transformed tensors back to the abbreviated notation. The Bond method (Auld,

1990a) overcomes tbis inconvenience by perfonning the transformation in the

abbreviated notation. It consists in construeting (from components of the

transformation matrix a) a 6 x 6 matrix M wbich cao be directly applied to a

physical variable or a coefficient matrix compressed by means ofthe mie (1.3). For

example, the Bond matrix corresponding to the transformation (3.1) is:

1 0 0 0 0 0

0 corB sin2 8
sin28

0 0--
2

M= 0 sin2 B cos28
sin 28

0 0 (3.5)---
2

0 -sin2B sin 28 cos 28 0 0
0 0 0 0 cose -sinB
0 0 0 0 sinB cosB

Using matrices a and M, the arrays of material coefficients in the rotated

• coordinate system are derived from the basic set ofmatrices c, e, and e as
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e' =MTea,
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(3.6)

(3.7)

(3.8)

The latter equations, with matrices a and M defined in Eqs. (3.1) and (3.5),

were employed to calcu1ate the elastic stiflhess, piezoelectric, and dielectric

coefficients of the rotated Y-cuts for several piezoelectric material used in

numerical examples:

c/ =

86.74
-8.25
27.15
-3.66

o
o

Si02 (8 = + 35°15')

-8.25 27.15 -3.66 0
129.77 -7.42 5.70 0
-7.42 102.83 9.92 0

5.70 9.92 38.61 0
o 0 0 68.80
o 0 0 253

o
o
o
o

2.53
29.01

(3.9)

[O.~71
-0.153 -0.018 0.067 0

-O~09S ] Clrrle' = 0 0 0 0.108 (3.10)
0 0 0 0.076 0.067

[ 458 0
O.~S7 ]EOE' = 0 4.62 (3.11)

0 0.057 4.66

•

C' =

126.7
18.32
12.18
14.43

o
o

L~B407 (8 = + 51°)

18.32 12.18 14.43 0
106.5 6.22 -22.86 0
6.22 121.7 -12.75 0

-22.86 -12.75 31.23 0
o 0 0 49.57
o 0 0 4AO

o
o
o
o

4.40
51.44

109 N/m2 (3.12)
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[

0 0 0 0 0.227 0.280]
e' = 0.148 0.698 0.142 0.219 0 0 C/m2

0.120 0.112 0.568 0.274 0 0
(3.13)

(3.14)

•

LiNb03 (8 = + 163°)

198.39 51.20 68.65 3.62 0 0
51.20 204.48 65.97 -2.21 0 0

1 68.65 65.97 220.13 -12.57 0 0
109 N/m2 (3.15)c= 3.62 -2.21 -12.57 60.49 0 0

0 0 0 0 65.18 10.21
0 0 0 0 10.21 67.27

e'=[2~
0 0 0 -2.82 3.39]

-0.019 -1.69 -3.69 0 ~ C/m
2 (3.16)

0.42 -0.45 -2.24 -0.70 0

[45.6 0
~.4]eo~' = 0 44.0 (3.17)

0 5.4 28.0

4. A1temate set of lDaterïal constants
For the finite element formulation adopted in this thesis, the set of matrices

c, e, and E, associated with the mechanical strain S and electric field E, is

sufficient to describe the material properties of a piezoelectric. However, in some

cases (e.g. one-dimensional models of longitudinal vibrations), it is more

convenient to impose the mechanical boundary conditions in terms ofstress T, and

to use (T, E) as a pair of independent variables. For Iinear materials, the

corresponding constitutive relations derived ftom the Gibbs ftee energy (Eq.

(2.17), Chapter 1) are written as foUows

{
S = sE : T + E . d,
D = d : T + E . ~T, (4.1)
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where sE is the tensor of elastic compliances measured under constant electric

field, d - tensor of piezoelectric coefficients; iI' is the tensor of dielectric

permittivities measured for constant stress T, or 'free' permittivities as compared

to the 'clamped' ones ES. As other material coefficients, tensors SE and d can be

recast in compressed notation (1.3) - an operation that would involve, in tbis
case, pre-multiplying the tensor components sZkl and dt;k by some numerical

factors (IEEE, 1987). However, by exploiting the relations between different sets

of constitutive equations, the elastic compliances, piezoelectric moduli, and free

dielectric permittivities can be obtained from cE, e, and ES directly in matrix fonn:

(4.2)

(4.3)

(4.4)

An example ofthese matrices is given for the (nonrotated) crystal ofCdS (6mm):

206.9 -99.8 -58.2 0 0 0
-99.8 206.9 -58.2 0 0 0

sE= -58.2 -58.2 170.0 0 0 0 10-13 m2/N (4.5)
0 0 664.9 0 0
0 0 0 0 664.9 0
0 0 0 0 0 613.5

•

[ 0
0 0 0 -1.40

~] 10-
11

CfNd= 0 0 0 -1.40 0
-0.51 -0.51 1.03 0 0

[9.31 0
o ]ET = 0 9.31 o Eo

0 0 10.2

(4.6)

(4.7)
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Calculations on tetrahedral elements

The calculation of element matrices, both in the case of the interior tetrahedron

and the exterior bordering element, relies on the properties of simplex elements.
Because the latter are weU documented (e.g. Silvester and Ferrari, 1996), oRly the
main facts referred to trom Chapter 3 are listed here. AlI properties are given for a

tetrahedron; the relations for simplexes of lower orders (line segment and triangle)

cao be derived as special cases ofthem.

1. Local coordin.tes and tbeir properties
A tetrahedron cao be regarded as a three-dimensional simplex. A general

simplex is defined as the 'the minimal possible nontrivial geometric figure' in N­
dimensional space (Silvester and Fe~ 1996). Other weU known simplexes are
the line segment (N = 1) and triangle (N = 2).

1

2 '-::::;;~ -.;JI

4

•
Fig A3.1 TetJabedral elemenL

Any interior point P(x, 1/, z) is uniquely defined in tenns of homogeneous or

simplex coordinates
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Vm
(m = V' m = 1,2, 3,4

213

(1.1)

(1.2)

where V is the volume of the main tetrahedron 1-2-3-4, and Vm is the volume of

one of the four smaller tetrahedra (subsimplexes). For instance, the volume of the

tetrahedron P-2-3-4 is written as

1 x 11 Z

1 1 %2 112 Z2

Vi = 31 1 %3 113 Z3

1 %4 Y4 Z4

Volumes V2, \'3, and V4 are given by similar expressions, where the coordinates x,

11, Z of point P replace those of vertex 2, 3, 4 respectively. Because point P
4

defines a unique partition ofthe tetrahedron, i.e. E Vm = 1, it foUows that
m=1

(1.3)

The expansion of volume Vm in (1.1) in terms of Cartesian coordinates x, 11, Z

yields an expression for (m

(1.4)

(1.5)

where numerical coefficients am, b"h Cm, and dm are the minors of the row
[1 x 11 z] in Vm • An alternative way of obtaining (1.4) is to simultaneously

solve for (m, m = 1, ... ,4, Eq. (1.3) and the system

x = Xl(l + %2(2 + %3(3+%4(4, }

11 = 111(1 + 112(2 + 113(3+114(4,

Z = Zl(1 + Z2(2 + Z3(3 +Z4(.. ,

which describes the tetrahedron shape in tenns of (m and vertex coordinates X m ,

1Im , Zrn. It fonows ftom (1.3) that

•
4

Eam = 1,
m=1

4 4 ..

and Ebm = Eem = Edm =0.
m=l m=l m=l

(1.6)
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(1.7)
[

Zl - Z4

Z2- Z 4

Z3- Z 4

To set up the tinite element matrices, the Jacobians 8(x,1/, Z)/8«1' (2' (g)

and 8«11 (2' (3)/8(x, 1/, z) of the coorclinate transformations, which map

Cartesian coorclinates x, 1/, z into local independent coordinates (1' (2' (3 and vice

versa, need be known. Eliminating one of the local variables (e.g. (4) using (1.3),

and differentiating (1.5), one obtain for the direct transformation

8z 811 8z- --
Ô(1 8(1 8(1

J= 8z 811 8z _
8(2 8(2 8(2
8z ôy 8z
- --
â(3 8(g 8(g

(1.8)

For simplex elements the Jacobian of the inverse transformation is easily derived

trom (1.4) 50 that a numerical inversion of(1.7) is not required:

Ô(1 8(2 Ô(g

âx 8z ôz
.rl = Ô(1 Ô(2 ô(g

811 811 81/
8(1 8(2 8(g

8z ÔZ ôz

2. Lagrangian interpolation functions
The scalar approximating functions as50ciated with the tetrahedron are the

Lagrangian interpolation polynomials of order N defined on a set of

M = (N + l)(N + 2)(N + 3)/3! regularly distributed nodes with coordinates

(l=i/N, (2=j/N, (3=1c/N,and(4=I/N, where i,j,1c,I=O, ...,N and

i + j + le + 1= N. The approximating funetions are best expressed as products of

auxiliary polynomials llï(N, Ç)

Qijkl«(I, (2' (3' (4) = llï(N, (1) Rj(N, (2) R..(N, (3) R,(N, (4), (2.1)

each depending on only one local coordinate (:

•
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( k)m (-li 1 ni

R".(N,() =!! :; _ ~ = ml!!(N(-k),

m = 1, ...,N
Ro{N,() = 1

(2.2)

(2.3)

Therefore, for any order of N the approximating funetions €rijkl «1' (2' (3' (4) are

praeticaUy calculated as foUows

for i = N, ...,0
for j = N - i, ... , 0

for k = N - i - j, ...,0
I=N-i-j-k

i j k 1
(1 = N' (2 = N' (3 = N' (4 = N
m=m+l
am = Rï(N, (1) Ri(N, (2) Rk(N, (3) R,(N, (4)

The a1gorithm (2.3) a1so serves to establish the correspondence between multi- and

single-index notations (i, j, kt 1) -+ m = 1, ..., M.

(3.1)

Differend.tion in local coordin.tes
Settïng up stifthess matrices for tetrahedral elements implies the evaluation

ofapproximating function derivatives with respect ta Cartesian coordinates:

[
Ba. Ba. Bai] T

Vai = Bx 8y Bz .

3.

Because polynomials ai themselves are functions of local coordinates, this is

accomplished by applYing the chain role of differentiation and taking into account

relations (1.4):

•
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Va. = 1 • [bm] aa.=-L Cm -
3!Vm=l dm ae;m·

(3.2)

One of the local variables in Eq. (3.2) cm be eliminated using (1.3). Therefore,

another way to express the gradients Va. is by invoking the Jacobian of the

inverse transformation given by (1.7):

Taking into account (1.3), the transformation ofEq. (3.3) leads to

ôa- ~
~-oç.

~-~
ôa· ôo:·
~-~

= _1t [::] (ÔQi _aai)
3!Vm=l dm ae;m ae;.·

(3.3)

(3.4)

For practical reasons, it is convenient to express the partial derivatives ôo:./a(m in

terms of auxiliary polYnomials. Again, this can be done by applying the chain rule

of differentiation to the produet (2.1), where the derivatives of the auxiliary

polynomials are given by

•

ôRm(N, () = H,Ë fi(N( - k)fi (N( - k),
ae; m. j=O k=O k=j+l

m = 1, ..., N
ô&J(N,() = 0

ae; .

(3.5)
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(4.2)

•

4. Integration in local coordinates
From the definition of the scalar triple product, the absolute value of the

determinant of the Jacobian matrix (1.7) is readily recognized as being the volume

of the parallelepiped construeted on the edges 4-1, 4-2, and 4-3 (Fig. AJ.l). The

parallelepiped can be broken down ioto six equal tetrahedra of volume V, where

V is the volume of tetrahedron 1-2-3-4. Henee, the Jacobian IJI is equal to 6V,

leading to the foUowing transformation ofthe element ofvolume dzd1ldz:

dzdydz = IJld(ld(2d(3 = 6Vd(ld(2dÇ3 (4.1)

An arbitrary function / can be integrated in simplex coordinates by premultiplying

the integral with respect to (1' (2' (3 by the factor 6V :

i 11 11-(1 11-(1-(2
/ dzdydz = 6V d(l d(2 / d(3'

~ 0 0 0
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Tables for element matrices

1. Weighting coefficients for the StiffDesS matrix

The elements of the weighting coefficient matrix

Chapter 3 as

W(mn) = t m
) • t. t n

) = (;:) + (~).

w(mn) defined in,

(l.1)

(1.2)

are given her in closed fonn, suitable for machine implementation. They combine

the geometric parameters bi , Ci, dt of the tetrahedral element (Appendix 3), and

the components of the material tensors cE, e, ES, denoted in (1.1) by a generic

tensor t. The following expressions for the elastic, piezoelectric, and dielectric

weighting coefficients w(mn) have been obtained by expanding the scalar products

in (1.1) for cE, e, eS respectively:

W (mn) (m) E (n) k 1
ij = gi Cikj' g" i, j, , = 1,2,3,

W (mn) (m) (n)
j = gi ~jkgk'

w(mn) = gÇm)E~.g(n). ']]'

i, j, k = 1,2,3,

i,j = 1,2,3,

(1.3)

(1.4)

•
and exploiting the symmetry of tensors cE, e, ES, which is retlected in their

compressed matrix notation (Appendix 2).
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A. Elastic weighting matrixfor ({'-

wf~n) = bmCllbn + bmClSdn + bmC16Cn + dmclsbn + dmcssdn

+ dmC56Cn + CmC16bn + CmC56dn + CmC66Cn

wf;,n) = bmC12Cn + bmC14dn + bmC16bn + dmC2SCn + clmC4Sdn

+ dmc56bn + CmC26Cn + CmC46dn + CmC66bn

wf;n) = bmC13dn. + bmC14Cn + bmClSbn + dmC3Sdn + dmC4SCn

+ dmcssbn + CmC36dn + CmC46Cn + CmC56bn

wJ~n) = CmC12bn + CmC2sdn + CmC26Cn + dmC14bn + clmC4Sdn

+ dmC46Cn + bm C16bn + bm c56cln + bm C66Cn

wJ;m) = CmC22Cn + CmC24dn + Cmc26bn + dmC24Cn + dmC44dn

+ dmC46bn + bm C26Cn + bm C46dn + clmC66dn

W:hmn
) = CmC23dn. + CmC24Cn + Cmc2Sbn + dmC34dn + clmC44Cn

+ dm c4Sbn + bm C36dn + bmC46Cn + bm C56bn

wJ~n) = dmC13bn + dmc3scln + clmC36Cn + CmC14bn + CmC4sdn

+ CmC46Cn + bmClSbn + bmcssdn + bm C56Cn

wJ;,n) = dmC23Cn + dmC34dn + clmC36bn + CmC24Cn + CmC44dn.

+ CmC46bn + bm C2SCn + bmC4sdn + bm C56 bn

219

•

B.

w~mn) = clmC33dn. + dmC34Cn + clmC3Sbn + CmC34dn + CmC44Cn

+ Cmc4Sbn + bm C3Sdn + bmC4SCn + bmcssbn (1.5)

Piezoelectrie weighting lIeetorfor KUV'

wfmn) = bmellbn + bm e 21Cn + bm e31dn + dmelsbn + dme 25Cn

+ dme35cln + eme16bn + eme 26Cn + Cme36dn

wJmn) = Cme12bn + Cme22Cn + Cme32dn + dme14bn + dme 24Cn

+ dm e34cln + bm e16bn + bm e 26Cn + bm e36dn.
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wJmn) = dme13bn + dme23Cn + clme33dn. + Cme14bn + Cme24Cn

+ Cme34dn + bmelSbn + bme25Cn + bme35dn (1.6)

c. Dielectric weighting constantfor KCW

w(mn) = bmEllbn + bm E12Cn + bmE13cln + CmE12bn + CmE22Cn

+ CmE23d.a + dmE13bn + dm€23Cn + dmE33d.a (1.7)

Note that in the present analysis the abbreviated, also referred to as

compressed or engineering, notation comes into play only through matrices of
material coefficients c, e and ~ when expanding (1.2)-{1.4). If the whole finite

element formulation is carried out in this notation, as it is customary the case

(Zienkiewicz, 1989), an alternative way ofarriving at (1.S)-{1.7) is to symbolically

evaluate the following matrix produets:

w(mn) = B(m)Tc B(n)
.... u u ,

w(mn) = B(m)TeT B(n)
arp rp u'

Matrices

(1.8)

(1.9)

(1.10)

sem) =
u

o
Cm
o

dm
o

bm

(1.11)

•

arise ftom the tinite element approximation ofmechanical strain S and electric field

E, when the former is recast into a one-dimensional array of six elements by

applying the index abbreviation rules employed in applied mechanics.
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1. UDivenal matrices for piezoelectric tetrahedra

The integrals (3.14) and (3.15) of Chapter 3, that define the numerical

matrices 4t and cr, have been evaluated by means of the symbolic algebra package

M APLE. The calculation bas been carried out for tetrahedra up to the fourth

order. The entries ofuniversal matrices represent rational nombers, and, therefore,

cao be stored in an integer format after a common denominator bas been

established. This is illustrated below on the example of matrices cr and ~12) for

tetrahedra ofsecond order.

6 4 4 -4 1 ...6 ~ 1 -6 1
...4 32 16 16 -4 16 16 ...6 8 ...6
4 16 32 16 ...6 16 8 4 16 ...6
...4 16 16 32 -6 8 16 ...6 16 -4

1 1 4 ...6 -6 6 -4 4 1 ...6 1
(2.1)~=- ...6 16 16 8 -4 32 16 4 16 ...62520

...6 16 8 16 -4 16 32 ...6 16 4
1 ~ --4 -6 1 -4 ~ 6 -4 1
~ 8 16 16 -6 16 16 -4 32 -4
1 ~ ..6 -4 1 ..6 -4 1 -4 6

3 ...4 -1 ...1 1 1 1 0 0 0
-1 4 4 4 ...3 ...4 -4 0 0 0
-1 0 8 4 1 ...8 -4 0 0 0
-1 0 4 8 1 -4 -8 0 0 0

~12) =_.!- 0 0 0 0 0 0 0 0 0 0
(2.2)

30 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

The metric matrix cr is identical to matrix T tabulated by Silvester (1972) along

with another weU-known tùndamental symmetric matrix Q, defined as
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Q~,!,n) = -6J (ôai _ ôai ) (ôai _ ôai ) d~ d.... d.... 1 (2.3)
I.J ôCn ôen ô"",, ô(n ~1 ~2 ~3·

Both ~ and Q have been employed to discretize the scalar Helmholtz equation in

isotropie media. The relationship between the present matrix ~ and Q is the
following:

Q(mn) = 6(~(mn) + ~(nm», m 1= n. (2.4)

In principle, matrices Q(mn) could have been used to assemble the dielectrie

element stiffitess matrix 1{tW, for the symmetry of the associated sca1ar weighting
coefficient w(mn} = w(nm) aIIows the pair of matrices «t(mn) and «t(nm) to be

rptp rprp

combined as in (2.4). Unfortunately, the arrays of mechanical and piezoelectrie
weighting factors W~n) and W~n) do not enjoy the same property; therefore,

both «t(mn) and ~(nm) are required to build 1{'- and I{'I!P. Although the use of

Q-matrices would have sped up the computation of Krptp, ftom the memory saving

considerations and for the sake ofconsistency, ooly one type ofuniversal matrices

- ~ - bas been retained in the present finite element analysis.

3. Permutation array. for rotations about tetrabedral (.- and (2-ues

The permutation matrices RI and R2 defined in Section 3 of Chapter 3
have been derived up ta the fourth order for the specifie tetrahedron node labeling
used in the present work. The permutation operations have been perfonned on the

multi-index numbering of interpolation nodes by exchanging the last three

subscripts (rotation). When remapped back using the single-index notation (Eq.

(2.3), Appendix 3), the relabeled node indexes are stored in the fonn of one­

dimensional arrays Ri and R2 as shown in Fig. A4.1 for the tetrahedron of second

order. Note that anay RI is the subset of the anay ITET2 tabulated by Silvester
(1982b).

In the 1972 paper by Silvester the factor 6 was missing, wbich was correc:ted
subsequently in Silvester and Ferrari (1990).
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R1 = [1,4,2,3,10,7.9.5.6.8]

•

Fig A4.1 Vertices re1abeling in a seœnd-order tetrahedron after right-handed rotations

about (,- and (rues.

4. Gaussian integration on liDe SegDIeDt and triangle

Notation:

la - number ofintegration points over a line segment;

lt - number ofintegration points over a triangle;

p - highest order ofpolynomial which is exaetly integrated;

n - multiplicity ofan integration point.
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fi a line segment• e . SSI8Il q ture pomts or
Weight Coordinates

1. p wJ ±x, n
&

3 5 0.888888889 0.OOOOOOOO0 1
0.555555556 0.774596669 2

4 7 0.652145155 0.339981044 2
0.347854845 0.861136312 2

5 9 0.568888889 0.OOOOOOOOO 1
0.478628670 0.906179846 2
0.236926885 0.538469310 2

T bl A4 1 Gau· uadra

Table A4.2 Gaussian integration points for a triangle (Dunavant, 1985)
Weight Coordinates

lt p ~ Qi {3i 'Yi n•
6 4 0.223381590 0.108103018 0.445948491 0.445948491 3

0.109951744 0.816847573 0.091576214 0.091576214 3
12 6 0.116786276 0.501426510 0.249286745 0.249286745 3

0.050844906 0.873821971 0.063089014 0.063089014 3
0.082851076 0.053145050 0.310352451 0.636502499 6

16 8 0.144315608 0.333333333 0.333333333 0.333333333 1
0.095091634 0.081414823 0.459292588 0.459292588 3
0.103217371 0.658861385 0.170569308 0.170569308 3
0.032458498 0.898905543 0.050547228 0.050547228 3
0.027230314 0.008394777 0.263112830 0.728492393 6

25 10 0.090817990 0.333333333 0.333333333 0.333333333 1
0.036725958 0.028844733 0.485577633 0.485577633 3
0.045321059 0.781036849 0.109481575 0.109481575 3
0.072757917 0.141707219 0.307939839 0.550352942 6
0.028327243 0.025003535 0.246672561 0.728323905 6
0.009421667 0.009540815 0.066803251 0.923655934 6

•
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