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Abstract

In the modeling of piezoelectric vibrators, one of the universally used
assumptions is that the exterior electroquasistatic field due to the electric flux
leakage through the piezoelectric-air interface can be neglected. This
approximation, valid for materials with large dielectric constants, can introduce a
significant error in the simulation of piezoelectric crystals whose permittivity is
comparable with that of free space. Because models that take into account the
electric flux leakage are virtually non-existent, the objective of this thesis is to
develop a solution of the three-dimensional piezoelectric problem which is referred
to, by analogy with electromagnetics, as electrically unbounded.

To begin with, the general piezoelectric boundary-value problem with open
electric boundaries is stated in the form of differential, variational, and projective
equations. The latter formulation serves to construct the finite element solution of
the system of piezoelectric equations. Tetrahedral elements of high order,
assembled by means of universal matrices, are used to approximate the coupled
mechanical and electric fields in the interior region. The exterior infinitely
extending electric field is modeled by a single ‘superelement’, obtained by the
ballooning method, and automatically compatible with the interior finite element
discretization. After imposing electrical, static or homogeneous, boundary
conditions on the matrix equations, the associated deterministic problem is solved
for the full piezoelectric static capacitance using the preconditioned conjugate
gradient method, while the eigenvalue problems are solved for the two resonant
frequencies by a variant of the Lanczos method. Convergence and computer
implementation of both methods, as well as of the associated data structures are
described in detail.

The effect of the external electric field on static and motional parameters is
studied for various types of rectangular piezoelectric vibrators. Ilustrative
examples involving different geometries, materials, electrode shapes and modes
show that the leakage field increases the static capacitance, reduces the effective
piezoelectric coupling and the spacing between the two resonant frequencies, and
activates many spurious modes.



Résumé

Dans la modelisation des vibrateurs piézoélectriques l'une des suppositions
universellement utilisée consiste a négliger le champ électroquasistatic exterieur di
a la fuite du déplacement électrique a travers l'interface piézoélectrique-air. Cette
approximation, valide pour les matériaux avec des constantes diélectriques élevées,
peut introduire une erreur importante dans la simulation des cristaux
piézoélectriques dont les modules diélectriques sont comparables a celui du vide.
Vu que les modéles qui tiennent compte de la fuite du déplacement électrique sont
pratiquement non-existant, l'objectif de cette thése consiste 4 développer une
solution du probléme piézoélectrique tridimensionnel qui est appelée ici, par
analogie avec I'électromagnétique, électriquement illimité.

Pour commencer, le probléme piézoélectrique général aux frontiéres
électriques ouvertes est exposé en forme d'équations différentielles, variationnelles,
est projectives. Cette derniére formulation sert a construire la solution du systéme
des équations piézoélectriques en terme d'éléments finis. Les tétraédres d'ordres
élevés, assemblés par le moyen des matrices universelles, sont utilisés pour
approximer les champs mécaniques et électriques couplés dans le domaine
intérieur. Le champ électrique extérieur étendu a l'infini est modelé par un seul
‘super-élément’, obtenu par la méthode de ballonnement et automatiquement
compatible avec la discrétisation en éléments finis du domain intérieur. Apreés
l'imposition des conditions aux limites électriques — statiques ou homogénes —
sur les équations matricielles, le probléme associé du type défini est résolu pour la
capacitance piézoélectrique statique compléte en utilisant la méthode des gradients
conjugués, tandis que les problémes aux valeurs propres sont résolus pour les deux
fréquences résonnantes par une variante de la méthode de Lanczos.

L'effect du champ électrique extérieur sur les paramétres statiques et
dynamiques est étudié pour de divers types de vibrateurs piézoélectrique
rectangulaires. Les examples explicatifs, impliquant de différents géométries,
matériaux, formes d'électrodes et modes, démontrent que le champ de fuite
électrique augmente la capacitance statique, réduit le coefficient du couplage
piézoélectrique effectif et l'espacement entre les deux fréquences résonnantes, et
active plusieurs modes parasits.



Original contributions to knowledge

(1) The three-dimensional piezoelectric problem is posed for the first time as a
problem with open electric boundaries and stated in the form of differential,
projective, and variational equations.

(2) A finite element method for solving the unbounded problem has been
developed. The infinite exterior electroquasistatic field is modeled by a single
‘superelement,” obtained from the three-dimensional ballooning method, and
automatically compatible with the discretization of the interior piezoelectric region
in tetrahedra of high order. Only a minor part of the superelement matrix is added
to the global element assembly, since most of its entries are very small.

(3) It has been established numerically that the effect of the leakage field on
piezoelectric vibrations consists in the reduction of the effective coupling
coefficient and of the separation between the two resonant frequencies. This is
attributed to the considerable increase in the resonator static capacitance and the
respective decrease in the antiresonance frequency. The exterior electric field is
also responsible for the appearance of many, normally inactive, spurious responses.

Although the above essential contributions constitute the solution of the
piezoelectric problem with open electric boundaries, the following by-products of
the research significantly improve its quality and are also claimed to be original
work:

(a) The popular one-dimensional model of thickness vibrations is extended to
include the electric flux leakage across the major surfaces of the piezoelectric plate
so that the existing resonance and antiresonance equations can be obtained as
special cases of a unique frequency equation.

(b) To avoid numerical integration, universal, or pre-computed, matrices used to
assemble the piezoelectric stiffness matrices for high-order tetrahedral elements
have been derived for the piezoelectric continuum.



vi Original contributions to knowledge

(c) For three-dimensional rectangular piezoelectric vibrators, the superelement
matrices are generated more economically by the developed block ballooning
algorithm that exploits the symmetry of the region.

(d) The three-dimensional capacitance of a piezoelectric plate is determined from
the solution of the full piezoelectric static problem by the preconditioned conjugate
gradient method with a special stopping criterion.

(e) The Lanczos algorithm for the generalized eigenvalue problem was modified to
avoid the factorization of the semi-definite mass matrix.
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Introduction

In piezoelectric materials, the application of mechanical stress produces an
electric polarization proportional to the stress and changing direction with it (direct
piezoelectric effect); similarly, an applied electric field deforms the piezoelectric
body, i.e. produces strain (converse piezoelectric effect). This phenomenon,
experimentally discovered by the brothers Curie in 1880, is observed in some
noncentrosymmetric ionic crystals, whose lattices of positive and negative ions are
deformed differently under the action of external forces, thus leading to a
separation of negative and positive charges. A straightforward application of
piezoelectricity consisted in estimating pressure by measuring electric charges
accumulated on the surfaces of the crystal. The piezoelectric effect was utilized in
this minor way until Langevin proposed to use the mechanical resonance in quartz
plates excited by an alternating electric field to generate uitrasound. Although as
ultrasound transducers quartz crystals were subsequently abandoned in favor of
stronger piezoelectrics, they still remain, due to their unique mechanical and
electrical properties, irreplaceable for controlling stable frequency oscillators and in
selective frequency filters. Besides being universally used in telecommunication,
piezoelectric resonators serve as timing elements in most clocks, watches,
microprocessors, and computers. Their characteristics such as a high quality
factor, broad range of operating frequencies, time and temperature stability of
parameters, small size, and low fabrication cost far exceed that of other types of
electromechanical resonators or LC circuits. Piezoelectric materials have also been



2 Introduction

widely used in sensors and actuators, in transducers for medical imaging and
nondestructive evaluation, in acousto-optic delay lines, and in various surface
acoustic wave devices. Most of the experimental and theoretical papers reporting
progress in these fields are published in the /EEE Tramsactions on Ultrasonics,
Ferroelectrics, and Frequency Control (formerly IEEE Transactions on Sonics
and Ultrasonics), the Proceedings of the Ultrasonics Symposium and the Annual
Symposium on Frequency Control.

The wide frequency range — from a few kilohertz to a gigahertz — is achieved
by a great variety of piezoelectric device designs. In modern engineering, their
development is often aided by computer simulation, typically used to predict the
mechanical and electrical behavior of the piezoelectric device, to optimize its
design, to evaluate new crystalline materials and to study new types of devices.
The simulation of a piezoelectric device implies finding an approximate distribution
of mechanical and electrical fields in the domain of interest, and recasting it in
terms of practically important parameters. The mechanical and electrical fields are
governed by the system of piezoelectrically coupled elastic equations of motion
and Maxwell's equations of electromagnetism, and satisfy the imposed mechanical
and electrical conditions. As any model of a real system, the piezoelectric
boundary-value problem is typically based on some simplifying assumptions, made
about the piezoelectric continuum (linearity, perfect insulation, absence of
acoustical and electrical losses) or boundary conditions (perfectly conductive and
infinitesimally thin electrodes, stress-free boundaries). One of the commonest
assumptions consists in neglecting the electroquasistatic field distribution outside
the piezoelectric crystal. Surely, ignoring the electric flux propagation through the
uncovered surfaces of the piezoelectric is justified when the dielectric permittivity
of the material ¢ is much greater than that of free space as in the case of
piezoelectric ceramics; however, this condition does not hold for many crystals,
particularly those used in high precision frequency control. Therefore, the
approximation of a zero normal electric flux at the piezoelectric-air (vacuum)
interface can introduce a significant error in the models of piezoelectric devices.
The aim of this thesis is to develop a solution of the piezoelectric boundary-value
problem that takes into account the nonzero electric flux leakage.

The problem of modeling finite regions surrounded by infinitely extending free
space are frequently encountered in computational electromagnetics, and are
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referred to as open-boundary or unbounded problems. In fact, the idea to
formulate and solve the piezoelectric problem with open electric boundaries arose
from a random visual association between the cross-section of a microstrip
transmission line on a dielectric substrate and the cross-section of a strip-shaped
piezoelectric resonator. A review of the literature (Chapter 2) showed that
previous attempts to extend the problem domain beyond the boundary of the
piezoelectric body were limited to the simplest one-dimensional models of
extensional vibrations of piezoelectric rods; the extension of existing one-
dimensional models of thickness vibrations to include the exterior field was
developed as a by-product of this review. Although many conventional devices are
well approximated by one- or two-dimensional models, with the modern tendency
towards miniaturization, the use of composite materials and higher frequencies,
most practical configurations require a full three-dimensional treatment. A
numerical solution based on the three-dimensional finite element approximation of
the coupled elastic and electric fields is developed in Chapter 1 and 3. Finite
elements are well suited for piezoelectric problems because of their capability to
handle anisotropic domains of complex shapes and complicated boundary
conditions; moreover, special elements and techniques exist that model infinitely
extending exterior regions. Since the algebraic equations resulting from the three-
dimensional finite element discretization of the interior and exterior regions are
very large, their solution required implementation of special data structures and
modifications in existing numerical algorithms (Chapter 4). The effect of the
electric field leakage on the static and modal solutions is illustrated on a variety of
example problems (Chapter 5), involving different piezoelectric materials, crystal
shapes, and electrode configurations.
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The piezoelectric boundary-value problem

1. Introduction

This chapter was designed to provide the necessary theoretical background
for the finite element analysis of the piezoelectric problem with open electric
boundaries. Because no particular application has been aimed, the problem is
formulated in the most general form of three-dimensional differential and
projective piezoelectric equations. The latter is subsequently used to obtain the
system of finite element equations, while the variational formulation is presented
here as an alternative, and physically more meaningful, way of deriving them. The
equivalent impedance and admittance representations, discussed at the end of this
chapter for a general piezoelectric vibrator, allow the finite element approximate
solutions to be recast in terms of lumped electrical parameters, thus providing a
bridge to electric circuit analysis techniques.

A few points should be observed about the notation. In this chapter, all
physical quantities are represented by bold face letter symbols, rather that indexed
components. Dots and colons denote ordinary and double scalar products (i.e.
summation over one and two subscripts respectively); the Hamilton (V) notation is
used to symbolically represent differential operations. Customary in modern
electromagnetics, the described formalism is rarely employed in elasticity, where
the trend is towards tensor subscript notation. One of the reasons for this is that
symbolic notation fails to discriminate between vectors and tensors of higher rank,
i.e. the rank of a variable can be established from its physical identity only.
Nevertheless, this inconvenience was found to be outweighed by the compactness
and clarity resulting from the reduced amount of detail in symbolic notation. This
is particularly important given the concurrent system of variable subscripts arising
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from the finite element discretization. Additionally, this formalism makes the
analogy between electromagnetic and elastic quantities more explicit. Therefore,
following Auld (1990a) who promoted its use in piezoelectric theory, all quantities
and equations are written out and manipulated in symbolic notation. The subscript
notation — full and abbreviated — appears in later chapters as more detailed
calculations become necessary.
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2. Governing equations of piezoelectromagnetism

The state of a piezoelectric body is characterized by the interaction of
acoustical and electromagnetic fields governed by the elastic equation of motion
(or equilibrium) and Maxwell's equations respectively. Mechanical and
electromagnetic variables are coupled through the piezoelectric constitutive
equations. Together with the field equations they form the governing equations of
piezoelectromagnetism. This system is accompanied by the interface rules, used
subsequently to derive boundary conditions required for the solution of the
piezoelectric boundary-value problem.

2.1 Field equations
Acoustic and electromagnetic fields in an insulator can be described by the
following basic state parameters:

mechanical displacement wu  meter,
mechanical stress T  newton/meter,
mechanical strain S unity,

electric field intensity E  volt/meter,
electric flux density D  coulomb/meter,
magnetic field intensity H  ampere/meter,
magnetic flux density B  weber/meter.

All parameters are functions of time ¢ and Cartesian position vector r. As is well
known from the mathematical theory of elasticity (Love, 1926), the mechanical
variables are related by the stress equation of smail motion!

V-T+F=p%2—;, (2.1)

where p is the mass density, and F is the body force per unit volume; and the
compatibility equation for strain
Vx8xV=0. 2.2)

1 For a general displacement u, the total time derivative d’u/d#*should be used in the
inertia force term in (2.1). However, for infinitesimal deformations, a particle remains
close to the mean position and one can approximate the total time derivative by 3°u/3¢2,
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Note that in Eq. (2.2), symbol S x V denotes the conjugate curl of the diadic S,
i.e. €ixjOSu/0x;, where €;u; is the alternating tensor (Chou and Pagano, 1967).
Electric and magnetic quantities adhere to the system of Maxwell's equations,
written here for nonconducting media (i.e. J — the electric current density — is
set to zero),

oB

VXE= e 2.3)

V.:-B=0, 24)
d

VxH= Et_’ (2.5)

V-D=p, (2.6)

where p, is the electric charge density.

Equation (2.1) is the differential form of the balance of linear momentum
equation. The stress tensor T should also obey the conservation law of the angular
momentum (Tiersten, 1969); in its differential form this requirement results in the
symmetry condition for the stress tensor T:

(T) =0, @.7

where (T) denotes the rotation vector of T (Nadeau, 1964). The symmetry of the
strain tensor S follows from its definition as the symmetric part of the dyadic Vu:

S = %(Vu +uv) 2.8)

with uV (8u;/3z;) denoting the transpose of Vu (9u;/dz;), i.e. the conjugate
gradient of u. The strain S in (2.8) satisfies identically the compatibility equation
(2.2), and can be seen as its general solution; in turn, Eq. (2.2) can be interpreted
as the integrability condition for (2.8). Similarly, the electric field can be derived
from the magnetic vector potential A and the electric scalar potential :

OA
_ 9
E = Vo, 2.9)
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so that (2.9) identically satisfies the first pair of Maxwell's equations?. It should be
noted that neither the mechanical displacement u nor potentials A and ¢ are
unique, i.e. any constant can be added to them without effect on S and E.

22 Constitutive relations

The constitutive relations describe the macroscopic properties of the
piezoelectric medium, and represent an additional set of relationships between
acoustic and electromagnetic field variables. These relations follow from the first
law of thermodynamics

dU = 6Q + 6W, (2.10)

that postulates the existence of the internal energy density function U (6, S, D, B),
with @ denoting the absolute temperature. The variation dU is given by the sum of
the heat 6Q transmitted to unit volume and the elementary work §W done by
applied mechanical, electrical, and magnetic forces:

W =T:dS+E-dD+H-dB. (2.11)
For an adiabatic system (6Q = 0)
oUu oUu U
dU—'-ag.dS+a—D'dD+ﬁ-dB (2.12)

can be equated with W, thus producing the first group of constitutive relations:

oUu U ouUu
T—(Es'),,,,; E= 55)“’ H= Bi)s.,- (2.13)

To use other sets of variables (different from S, D, B) as the independent ones,
new thermodynamic functions have to be defined3:

G=U-S:T-E-D, (2.14)

2 Traditionally, the system of mechanical equations is made up from Egs. (2.1), (2.7) and
(2.8). Here, the compatibility condition for S (2.2), not its definition (2.8), was used as a
basic equation. This has been done for the sake of analogy with electromagnetic theory,
where it is more customary to consider E in (2.9) as a general solution of Maxwell's
equations rather than viewing (2.9) as the definition of E, and deducing (2.3) and (2.4)
from it (e.g. Landau and Lifshitz, 1968).

3 Because only nonmagnetic materials (i.e. B = u,H) will be considered further, the
product H - B is not included in the thermodynamic functions.
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G, =U-S8:T, (2.15)
G,=U-E-D, (2.16)

that under isothermal conditions (d@ = 0) have the meaning of the Gibbs free,
elastic and electric energy functions respectively. These functions give rise to
three other sets of constitutive equations:

oG oG
--(%), (&) @1
aGl aGl
S—‘(E > E=\%p ) 2.18)
_ 0G, _ 0G,
T=\%s )E’ D= ( 3K )s’ 2.19)

that use (T, E), (T, D), and (8, E) as independent variables.

Which system is preferable depends on the particular boundary-value problem
to be solved. Because the piezoelectric boundary conditions are more often given
in terms of displacement u and potential ¢, relations (2.8) and (2.9) privilege the
set of variables (S, E). Assuming that one deal with a /inear piezoelectric medium,
the appropriate thermodynamic function — the Gibbs electric energy — is
constructed as a homogeneous quadratic form

Gz=%S:cE:S—E-e:S—%E-cS-E, (2.20)

transforming the constitutive relations (2.19) into
T=cf:S—E.¢ (2.21)

D=e:S+E. €. (2.22)

For nonmagnetic materials Eqs. (2.21) and (2.22) should be supplemented by
B = poH, (2.23)

where 4, is the permeability of free space. The introduced coefficients are the
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elastic stiffness tensor at constant electric field ¢f = (c;1) newton/meter,
piezoelectric stress tensor e = (e;x) coulomb/meter,
permittivity tensor at constant strain €5 = (¢;;) farad/meter,

where subscripts i, j, k, I in the index notation of material tensors run from 1 to 3.
Their symmetry properties
Cijkl = Cijik = Cjikl = Ckliij,
eijk = €k, (2.29)
€;j = €
follow from the symmetry of tensors T and S, as well as from the independence of
G,'s second derivatives with respect to S or E of the order of differentiation.

2.3  Interface conditions

The interface conditions for field variables are derived by integrating
differential equations (2.1)(2.6) over the surface (divergence equations) or loop
(curl equations), enclosing an area or a boundary belonging to the discontinuity
surface. Consequently, there are two mechanical and four electromagnetic
conditions that must hold at the interface between two distinct materials. If by n
one denotes the unit normal vector directed from medium 2 into medium 1, the
boundary rules can be written as follows:

normal stress T (the traction force) is continuous,
n- (T, —T;)=0; (2.25)

tangential strain S is continuous,

nx (S —S)xn=0 (2.26)
normal electric flux D is discontinuous by the surface charge density o,

n- (D —D;) =o; (2.27)
tangential electric field E is continuous,

nx(E —E)=0; (2.28)

normal magnetic flux B is continuous,
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n-(B; - B,) =0; (2:29)

tangential magnetic field H is continuous at the interface between two
nonconducting media,

n x (H[ - Hz) = 0. (2.30)

Taking into account expressions (2.8), (2.9) and the relation
B=VxA, (2.31)

a similar integration of Eqs. (2.2) and (2.3) leads to the condition of continuity
across the material interface of the displacement u, scalar potential ¢ and

tangential vector potential A:
u; = uy, (2.32)
¢ = @3, (2.33)
n X (A[ - Az) =0. (2.34)

These interface conditions for field variables and potentials will be used to derive
conditions at the extremities of the piezoelectric boundary-value problem after
choosing the boundary shape.
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3. Wave equations

As shown in the previous section, the interaction between acoustic and
electromagnetic fields in a piezoelectric body can be described by a system of six
equations, i.e. Egs. (2.1)«(2.6), in two mechanical variables S and T, and four
electric variables E, D, H, B, all coupled by linear constitutive relations (2.21)-
(2.23). For practical reasons it is desirable to reduce the number of equations and
variables involved in the solution. One way of simplifying the boundary-value
problem is to eliminate unnecessary variables by substituting constitutive relations
in the system of field equations, and, therefore, to formulate the problem in terms
of wave equations.

3.1  Coupled field waves equations

The Maxwell curl equations (2.3) and (2.5) can be combined into a single
differential equation of second order in E and D by eliminating magnetic vector
variables B and H:

’D
737.
The substitution of linear constitutive relations (2.21)+2.23) into the stress
equation of motion (2.1) with no body forces (F = 0) and into Eq. (3.1) yields the
system of nonhomogeneous piezoelectric wave equations (Auld, 1990a) involving
only two vector fields u and E:

VxVXE=—y G.1)

V-(cE:Vu)—p%=V-(E-e)4, (G.2)
Figg &
VxVxE+uoes-a—t2=—uoe:Va—;. (3.3)

For nonpiezoelectric materials (e = 0) the system falls into two independent wave
equations for u and E alone, governing the propagation of purely elastic and
purely electromagnetic waves in an anisotropic crystal; otherwise, the two wave
equations are coupled by the piezoelectric ‘source’ terms V- (E-e) and

4  The symmetry of the stiffness tensor ¢ permits the double scalar dyadic product
c£:8 = cf : (Vu+uV)/2 to be simply recast as ¢& : Vu.
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—pge : V(3%u/0#2), and their solutions can be regarded as hybrid acousto-
electromagnetic waves, having both the acoustic and electromagnetic field
components. More specifically, the solutions of (3.2) and (3.3) are the acoustic
waves propagating at speed V and accompanied by electromagnetic field — the
‘slow’ acousto-electromagnetic waves, as well as an electromagnetic wave
propagating at speed v ~ 10°V and accompanied by mechanical deformation —
the ‘fast’ acousto-electromagnetic wave (Baranskii, 1991; Dieulesaint and Royer,
1974). Because piezoelectric devices are conceived on the basis of either elastic
wave propagation or resonance, attention will be subsequently focused only upon
acoustic solutions of the piezoelectric wave equations which are considered in
more detail in Section 3.3 of this chapter.

3.2  Potential wave equations
An alternative approach to simplifying the obtained wave equations is to
formulate the problem in terms of potentials rather than fields themselves.
Substituting (2.23) and (2.31) into the Maxwell's curl equation (2.5) for H gives a
wave equation in A
8D

VXVXA:[AO-a—?, (34)

similar to (3.1). The piezoelectric term in the constitutive relation for D (2.22)
couples (3.4), which can be rewritten in this case as

VXVXA=u0e:V§2+ﬂOGS-—a—E-

3.4
N 5" (3.4a)

to the acoustic wave equation (3.2). The electric field E may be eliminated from
both the acoustic (3.2) and electromagnetic (3.4a) wave equations, by substituting
its value as derived from the potentials (2.9). The resulting system of
nonhomogeneous potential wave equations in u, ¢, and A

V-(cE:Vu)—p-Zz—t:=—V-(ch-e)—V-(%—?--e) 3.5)
VxVxA+ es-ﬂ=—yoes-v-a—‘p+poe'vﬂ (3.6)
e 5 ot Vot '
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can be used as an alternative to (3.2) and (3.3), especially when the boundary
conditions are given in potentials rather than fields.

To fully define the vector potential A in a finite region of space, both its curl
and divergence need to be specified. Equation (2.31) fixes only the curl of A, while
the divergence of A is typically given by some gauge condition (Silvester and
Ferrari, 1996). It is appropriate in the present case to use the gauge (Auld, 1990a)

v.- (es . %%) =0; G.7)

substituted into (2.6) with no body charge (p, = 0), it produces an equation in u
and ¢ :

V-(e: Vu—e®-Vyp) =0, (3.8)

thus decoupling potentials A and . Variables u, A, and ¢ are now uniquely
determined from the system formed by the pair of coupled wave equations
(3.5)~(3.6), and the supplementary equation (3.8). The latter can be used to
eliminate the potential o from the system by expressing it in terms of mechanical
displacement u. Substituted into Eqgs. (3.5) and (3.6), it produces an acoustic wave
equation for u with a source term in A alone and an electromagnetic wave
equation for A with a source term in u alone. Borrowing the terminology from
electromagnetics, the vector potential A produced by the gauge (3.7) may be
referred to as the modified vector potential (Webb, 1995).

With this choice of gauge (3.7), the interface conditions (2.34) applicable to A
must be supplemented by the requirement of the continuity of the normal
components of (€ - A) across the boundary:

n-(ef -A— & -A;) =0. (3.9)

This implies that at the interface between two regions with different permittivities
(ef # €5) the normal component of A is discontinuous. The tangential
components of A, as well as the scalar potential ¢, remain continuous under any
choice of gauge.
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3.3  Coupled-wave behavior

The representation of electric field E in terms of vector A and scalar ¢
potentials has yet another advantage: it allows separating E into rotational
V x E( #£ 0 and irrotational V x E() = 0 parts

E=E" +EO. (3.10)

Now, the contribution of these two different types of electric fields that accompany
the propagation of an acoustic wave in a piezoelectric medium — the rotational
field E() = —9A /3t, which is the characteristic of electromagnetic waves, and the
irrotational, or potential, field E®¥) = —V¢, which is associated with the static
bound electric charge distribution — can be considered individually.

According to the constitutive relation (2.22), the mechanical strain S (2.8)
associated with a u-polarized acoustic wave (Fig. 1.1) contributes through the
piezoelectric part D¥ = e : Vu of the total electric flux density

D = D” + DE” + DE®, G.11)

where the last two terms constitute the electric contribution E - €5 to D from

rotational and irrotational electric fields respectively. From the system of wave

equations (3.6), (3.8) one can see that vector D is responsible for generating an

electromagnetic wave, characterized by the vector potential A, through the source
term p, (8DF /8t) = pge : V(u/8t) in (3.6):

#A  8DEY )1

A S. === ——

VxVxA+pse 32 Mg +“°at’

as well as a scalar potential wave, characterized by ¢, through the ‘charge’

V-DP =V.(e: Vu)in(3.8):

V- (e’ -Vyp)=-V-D" (3.13)

(.12)

The latter, piezoelectrically induced scalar field, can also contribute to the
generation of an electromagnetic wave through the source term
uo(anE‘" /3t) = —poe® - V(3p/B8t) in (3.6). In turn, the rotational and
irrotational electric fields may alter the mechanical displacement u by means of
‘body forces’ V-T() = —V-(Vp-e) and V- T = -V . ((8A/8t) - e) in
3.5):
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V- (cf : Vu) —p% =V-TO +v.T", (3.19)

thus coupling the acoustic wave with the static electric and electromagnetic fields.

Fig 1.1 Electromagnetic wave and bound electric charge distribution associated with a
u-polarized acoustic wave propagating in the direction given by the unit vector m.

Finally, when D reduces to zero, the displacement field u is not coupled to
any type of electric field, and the piezoelectric hybrid wave degenerates into a
purely acoustic one.

3.4  Quasi-static approximation

A very important case of the solution of coupled wave equations in the
form of uniform plane waves has been considered in Appendix 1. These results are
used here to introduce the quasi-static approximation in the piezoelectric
boundary-value problem formulation. The analysis of mechanical characteristics of
uniform plane waves demonstrated that the piezoelectric coupling between
acoustic and electromagnetic waves is negligible in comparison with the effect of
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piezoelectric stiffening, i.e. the coupling between the acoustic wave and the
irrotational electric field. Equations (1.10) and (1.12) of Appendix 1 can be used to
show a similar result for electric characteristics of coupled waves:

=0 _ vy
o) ~\v) 1

which proves that the rotational electric field in the quasi-acoustic wave is much
weaker than the potential field in the stiffened wave:

OA
“5;” <Vl (3.16)

Consequently, the varying magnetic flux B, created by the rotational electric field
(2.3) propagating with acoustic velocity V, is negligible, and can be dropped,
along with the magnetic field H, from the system of Maxwell's equations.
Therefore, under assumption (3.16), the electric field is considered as being
entirely irrotational E = E®), in the sense that it can be derived from the scalar
potential ¢ alone, as in electrostatics, and treated as satisfying the static field
equations exactly. This field is not purely static but electroquasistatic because of
the coupling with the time-varying acoustic wave. Thus, under the quasi-static
approximation, the quasi-acoustic wave is regarded as nonpiezoelectric, or purely
acoustic, while the stiffened acoustic wave (1.13) of Appendix 1 satisfies the
quasi-static approximation exactly.

Although derived for uniform plane waves, assumption (3.16) can clearly be
applied to most piezoelectric boundary-value problems. In problems dealing with
wave propagation, the quasi-static approximation is justified by invoking the fact
that acoustic and electromagnetic velocities differ by approximately five orders of
magnitude. When piezoelectric resonance is considered, the same argument is
typically given in terms of wavelength: the quasi-static approximation is valid
because the elastic wavelength A, defined by the characteristic dimension of the
bounded region, is much smaller than the electromagnetic wavelength A ~ 10°A of
the same frequency (Tiersten, 1969). In either case, the quasi-static approximation
simplifies the formulation of the problem by allowing the magnetic vector potential
A to be dropped from the system of wave equations.
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4. Differential formulation

In the previous two sections, the basic equations of piezoelectromagnetism
were introduced both in the form of field equations coupled by piezoelectric
constitutive relations, and piezoelectric wave equations. It was also demonstrated
that the quasi-static approximation, which considerably simplifies the problem by
eliminating magnetic variables, is valid for the acousto-electromagnetic interaction
in piezoelectric media. To complete the formulation of the piezoelectric boundary-
values problem, it remains now to define the boundary shape and boundary
conditions for field variables. The static and time-harmonic problems will be
developed as specializations of the general problem given below.

4.1 Finite piezoelectric body with open electric boundaries

Consider a piezoelectric body of volume V', bounded by surface S, and
surrounded by vacuum (or air) occupying the space V', as shown in Fig. 1.2. Let n
be the unit normal vector pointing outward. In the absence of volume forces
(F=0) and volume charges (p, =0), Eqs. (2.1) and (2.6) governing field
variables T and D inside the volume V' can be written as follows:

&u
V-T=p¥ inV, (4.1)
V-D=0inV. 4.2)

The mechanical strain S, as given by (2.8), and the quasi-static electric field E are
directly expressed as spatial variations of the mechanical displacement u and scalar
electric potential ¢ r&spectively:

S = %(Vu +uV) nV, @.8)

=-—Vp inV+V. 4.3)

Constitutive equations (2.19) relates all four field variables by means of the Gibbs
electric energy potential G:

S(%) we (%)
T‘(as)g’ D= (aE sV
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Fig 1.2 Piezoelectric body in unbounded free space.

Outside V — in ¥ — it is assumed that all mechanical variables vanish identically.
The electric vectors D and E are governed by Eqs. (4.2) and (4.3) which are
coupled through the constitutive equation

D=gE inV, 4.9
where ¢ is the permittivity of the free space. Combining Eqgs. (4.2) and (4.3), one
obtains Laplace's equation for the electric potential in the outer space V:

Vip=0inV. (4.5)

To construct the boundary-value problem, mechanical and electric boundary
conditions must be specified at every point of surface S. However, for electrical
variables, the boundary S is, rather, an interface between the piezoelectric medium
and the vacuum; an artificial boundary S, (Fig. 1.2), that models the electrical
extremities of the problem domain, must also be considered. Both the mechanical
and electrical boundary conditions are derived from the interface conditions
(2.25)2.28). They can be stated either in terms of prescribed surface tractions ¢t
and charges @ — the Neumann boundary conditions:

n-T=¢ onS; (4.6)
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n-[D]=¢7 onSz, 4.7
where [D] stands for the jump in the electric flux density vector (D‘7 —DV)
across S, or in terms of prescribed surface displacements u or electric potentials ¢

— the Dirichlet boundary conditions:
u=17u onSg (4.8)

@ =9 onSg, 4.9

where parts S; and S5, S; and Sp constitute the surface S: S{USg =S and
Sz U Sz = S, but do not overlap: SN Sg =0 and Sz NSz = 0.

For linear piezoelectric materials equations (4.1) and (4.2) can be written more
economically in the form of wave equations:

V. (cE:Vu)-{»V-(ch-e):p% inV, (4.10)
L V-(e:Vu)—V-(Vp-)=0inV. (4.11)

Similarly, the Neumann boundary conditions (4.6)—(4.7) may be expressed directly
in mechanical displacement u and electric potential ¢:

n-(cE:Vu-i-ch-e)::i on S;, “4.12)
n-[e: Vu—Vy- (e’ —el)] = —7 on Ss. (4.13)

The set of boundary conditions will be complete if one assumes that E and ¢
vanish at large distances from S, i.e. on S,:

lim E =0, “4.19)
r—oo
lim ¢ = 0. 4.15)
r—oo

The solution of the stated piezoelectric problem with open electric boundaries®
consists in finding the distribution of the mechanical displacement u(r,t) in the

5 When the piezoelectric boundary-value problem is regarded as a closed boundary
problem, D and E are set to zero in V, and the boundary condition (4.7) transforms into
n-DY=5 onS,.
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region V bounded by the surface S and of the electric potential ¢ (r,t) in the
infinitely extending region V' U V, satisfying the governing equations in V and V,
and boundary conditions imposed on S and S,.. In general, the initial conditions
for u, du/dt, p, 3/t need also to be specified at all points of the body; in
practice, for the two common problems considered below, their explicit imposition
can be avoided.

42  Static problem

The static problem can be derived from the general formulation by
assuming that the mechanical and electric field variables, as well as boundary
conditions, are time-independent. The equilibrium equation is obtained from the
equation of motion (4.1) by setting the inertia force to zero:

V-T=0inV. 4.16)

The remaining equations given in the previous section still hold as do boundary
conditions (4.6)—(4.15), where the driving terms ¢, 7, 1, and i are now constant in
time.

The boundary conditions can be further simplified to fit practical boundary
configurations. Typically, the piezoelectric body is supported in such a way that its
surface is traction-free, i.e. the mechanical boundary conditions are given as

n-T=0onsS, “4.17)

or, in terms of mechanical displacement and electric potential,

n-(c€:Vu+Vyp-e) =0 onS. (4.17a)

The piezoelectric body is assumed to be partially covered by one or several
electrodes, occupying a portion of the surface S., as shown in Fig. 1.3.
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Fig 1.3 Partially plated piezoelectric body in unbounded free space.

This partition is relevant for the electrical boundary conditions only since the
electrodes are considered to be infinitesimally thin and their mechanical properties
nonexistent. Assuming that these electrodes behave as perfect conductors, it
becomes possible to rewrite conditions (4.7) and (4.9) in terms of the total electric
charge Q:

/n-[D]dS=Q, 4.18)

and of the electrode potential ¢, :
p=¢, onS, “4.19)

respectively. Which of these boundary conditions should be used depends on the
way the electrical energy is supplied to the driving electrode: the former is
employed for a current source, while the latter for a voltage source. For linear
materials, [D] in (4.18) can be expanded to yield

./s n- [e :Vu—Vgp. (es - eol)] ds =-Q. (4.20)

On the remaining, free of plating, part of the surface S,, the continuity
conditions for the normal electric flux density and the electric potential apply
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n-DVY=n-D"Y onS,, 4.21)

¢’ =¢" onS,. (4.22)

As before, for linear materials condition (4.21) may be expressed in terms of
mechanical displacement u and electric potential ¢:

n-(e:Vu—ch-es)z-n.cheo on S,. (4.23)

Boundary conditions (4.14) and (4.15), that force the potential and its normal
derivative to vanish on S,,, must also be added to complete the formulation of the
static boundary-value problem. The latter consists in finding the distributions u (r)
and ¢ (r) in the piezoelectric body in the state of equilibrium under the action of
static voltages or static electric charges applied to the electroded parts of the
traction-free surface S.

43  Time-harmonic problem

Another practically important type of boundary-value problem arises from
the assumption that the displacement vector u and the scalar potential ¢ can be
represented as products of two factors, one depending only upon the position
vector r and the other - only upon time ¢:

(r,t) = X(r)f(2), (4.24)

where the generic symbol r replaces either u or . Such a partition is possible for
piezoelectric material with linear and time-invariant properties, so that the
remaining field variables (T,S,E,D), derived from u and ¢, can also be
represented as (4.24). Indeed, substituting u in the form of (4.24) into the acoustic
wave equation (4.10), and separating space- and time-dependent members, yields a
time-harmonic solution for f(t): f(t) = e***, where w is the angular frequency.
Therefore, u(r,t) and (r,t) can be sought as real parts of U(r)e*“* and
d(r)et*™* respectively, with spatial parts U(r) and ®&(r) obeying the following
differential equations:

V-(cf:VU)+V- (V2 -¢)+pU=0 inV, (4.25)
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V-(e:VU)—V.(VE-€’)=0inV, (4.26)

V23 =0inV. 4.27)

According to the type of boundary condition, time-harmonic problems can be
subdivided into eigenvalue and deterministic. The former corresponds to free
vibrations of the piezoelectric body depicted in Fig. 1.3, the latter to forced
vibrations. The solution of an eigenvalue problem, also referred to as a resonance
problem, consists in finding the proper frequencies w, (eigenfrequencies) as well as
the associated proper functions (U,,, ®,) (eigenfunctions) that satisfy Eqs. (4.25)—
(4.27) and homogeneous boundary conditions. As in the static case, the present
formulation will be restricted to piezoelectric bodies with traction-free surfaces.
This implies that the mechanical Neumann boundary conditions are always
homogeneous on the entire surface S and given by Eqgs. (4.17) or (4.17a). Keeping
in mind that zero boundary conditions have been imposed on the outer surface S,
one can conclude that it is the zero electrical boundary conditions on S, that set up
conditions for free piezoelectric vibrations. Depending on which variable is zero on
S., one can distinguish at least two types of resonance: the first occurs when the
electrode potential is set to zero:

¢, =0 onS,, (4.28)

while the second takes place for the zero total charge Q:
Q=0 onS,. (4.29)

Finally, the continuity of the normal electric flux (4.21) and electric potential
(4.22) must be preserved across S,, the unelectroded part of S.

Other eigenvalue problems can arise if the surface of the piezoelectric
resonator (Fig. 1.3) is covered by more than one electrode, namely, those where
zero potential is specified on some electrodes and zero total charge on the
remainder. Note that for a piezoelectric problem with closed electric boundaries
the reference potential can be associated with any of the electrodes. In this case, an
eigenvalue problem is defined if a certain number of electrodes are short-circuited
(zero potential), while the remainder are open-circuited (zero total charge) (Lloyd,
1967).
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Deterministic, or driven, problems require non-homogeneous electric boundary
conditions that must allow the separation of time and space variables, i.e. Q = Q
et™ or p, = ®.et™* must be applied to S.. However, there is no need to
explicitly solve a deterministic problem for every w. Because the eigenfunctions
(Un, ®,,) form an orthogonal set (Lewis, 1961; Lloyd, 1967), forced vibrations of
a piezoelectric body can be expressed in terms of the eigensolutions w, and
(U,, ®,), associated with any of the eigenvalue problems mentioned above. Such
a representation is discussed in Section 7 of this thesis.
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5 Projective formulation

The stated piezoelectric boundary-value problem can alternatively be
represented in the form of projective equations. Projective formulations have the
advantage of leading to approximate solutions that possess weaker continuity
properties and fewer boundary constraints than those associated with differential
formulations. Projective approximation techniques, and particularly Galerkin's
approach, form the mathematical basis for the finite element method, adopted in
this thesis to derive a numerical solution for the piezoelectric problem. Although in
piezoelectricity the traditional approach to finite element analysis is variational, in
this chapter, priority is given to the projective formulation since it allows the
solution to be constructed without recourse to any variational principle.

51 Weak approximation to the solution of the general piezoelectric boundary-
value problem
For equations (4.1) and (4.2) to hold in a weak sense, their left and right
sides must have equal inner product projections onto any vector w € W° and
scalar 8 € W functions respectively:

— &*u 3
./V(V'T)’de—/;t)g -wdV, YWGW G.1)
/ _(V-D)ddv =0, Vo €W (5.2)
V+V

where W is a Hilbert space formed by square-integrable functions. This
formulation allows the differentiation operator V to be transferred from the
unknown fields variables T and D to the chosen functions w and 6, thus relaxing
the differentiability requirements for functions used to approximate the u- and -
field distributions. This operation is accomplished by applying the divergence
theorem to volumes V and V + V'

_/VV-(T-w)dV=/Sn-T-wdS, (5.3)

[V (no)dV=-/;n-[n]ods-/;wn-nods. (5.4)
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Since the electric field vanishes at infinity, the integral over S, can be dropped
from (5.4), simplifying it to:

V. (D8)dV = — /S n- DA dS. (5.5)

V+V

Expressions (5.3) and (5.5) can be transformed by means of the following product
differential rules

V- (T-w)=(V-T)-w+T: Vw5, (5.6)

V-(D8) = (V-D)0+D-V6 5.7
into

/(V-T)-de+/T:deV=/n-T-wdS, (5.8)

|4 |4 S

/ (V-D)gdv + _n-vadV=-/n-[n]ads, 5.9

V4V V4V 5

allowing equations (5.1) and (5.2) to be rewritten as

/T:deV—i—/p?-;-t; -de=/n-TowdS, (5.10)
v v s

_ D-VBdV=—/n- [D]6dS. (5.11)
V4V s

A similar system of projective equations has been obtained for the piezoelectric
problem with closed electric boundaries by Naillon ez a/ (1983). The present
formulation is extended to include the external electric field by taking the volume
integral in (5.11) over the entire space V + V and replacing the electric flux D in
the surface integral by its jump [D] across S. For linear piezoelectric materials, the
substitution of constitutive Egs. (2.21)—(2.22) makes Eqs. (5.10) and (5.11) into a
projective version of the piezoelectric wave (4.10)«(4.11) and Laplace's (4.5)
equations:

6  The symmetry of tensor T is implicitly assumed.
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f(cE:Vu+ch-e):deV+/‘;p% -wdV
v

- / a-T-wdS, (5.12)
S

/ (e:Vu—ch-es)-VBdV—eo/_Vga Vo4V
|4 14

=_/..-[n]ads. (5.13)
S

To develop a numerical solution of (5.12)—(5.13), the unknown mechanical
displacement u(r) and electric potential o(r) are approximated by the basis, or
trial, functions {a;(r)[i = 1,...,N} and {a/(r)|i = 1,...,N'} respectively. These
functions form the spanning sets of N- and N'-dimensional linear subspaces of W:

N

u(r) ~ Zu; a;(r), reV, (.19
=1
N' 3

or) = gai(r), reV+V, (5.15)
=1

with vectors w; and scalars ; in the role of the numerical coefficients to be
determined from the solution. Similarly, functions w(r) and 6(r) may be expressed
as linear combinations of weighting’, or testing, functions {3;(r){j = 1,..,M} and
{B;(r)|j=1,..,M'}, spanning M- and M’-dimensional linear subspaces of W

respectively:

M

wr) =) w;B(r), reV, (5.16)
i=1
M _

()= 0;8;(x) reV+V. (5.17)
=1

7 The present formulation can be seen as a special case of the projective weighted residual
method.
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For approximations (5.14) and (5.15) to be the weak solutions of the governing

equations with respect to subspaces Wys and Wy, Egs. (5.12) and (5.13) must be
satisfied for each function 8; and 3; respectively. On substitution of (5.14)—(5.15),

they turn into a system of M linear equations in 2N + N’ coefficients u;,
8% u; /812, and ;:

N N’
Z:(/ Va,--cE-V,doV)-u,-+z‘;(/VVa§-e-VﬂjdV)cp‘
2
(/a‘ﬂJdV)%;' —fsn-Tﬂde,

j=1,.M (5.18)

and M’ linear equations in N + N’ coefficients u; and ¢,

(/ VB;-e- Va.dV) cu — ( _Va:--c-Vﬂ;-dV)<p,
.—1 :—1 V+v

~-[n-mIg0s.
j=1,..M (5.19)

where

e inV
_ V 5.20
€ { &l inV (5.20)

A few points should be observed about the properties of the basis and
weighting functions. First, since Eqs. (5.18) and (5.19) involve only gradients of «;
(ai) and B; (ﬂ;-), both the basis and weighting functions need be only once
differentiable. Second, the basis functions a;(a!) are chosen such that
approximations u(r) and ¢(r) do not a priori satisfy the governing equations but
do satisfy the Dirichlet boundary conditions (4.8)—(4.9)8; otherwise, the zero

8 In the alternative approach, kmown as boundary solution, or Trefftz, procedure
(Zienkiewicz et al., 1977), the basis functions a;(a;) are chosen in such a manner that
u(r) and o(r) a priori satisfy the governing equations. This method is typically used to
model simple homogeneous structures for which Green's functions are derivable in
closed form.
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projections of the latter [o (w—@)-wdS =0 and f; (¢ —P)0dS = 0 would
have to be added to the system (5.12)(5.13). To examine how the

nonhomogeneous Neumann boundary conditions (4.6)—(4.7) are treated under the
projective formulation, consider their weighted residuals

/s‘(n‘r —Qﬁde=Ln-Tﬁjw—[S_iiﬂde, (5.21)

[ @ wi-oges——[ a-wigus+ [ ages. 2

Theoretically, to satisfy the Neumann boundary conditions in a projective sense,
equations (5.18) and (5.19) must be supplemented by residuals (5.21) and (5.22),
set to zero. However, in this formulation, this is not necessary. By choosing 3; and
B; appropriately, integrals Js,m-TB;dS in (5.21) and [ m- [D] B;dS in (5.22)
annihilate the boundary integrals over S; and S7 in the right-hand sides of Egs.
(5.18) and (5.19), rewritten here as

/Sn.rﬁde=/sn-'rﬂ,-ds+/;.n-w,ds, (5.23)

—/n.[n]ﬂ;-d3=—/n.[D]ﬁ;dS—/n-[D]ﬂ;.dS. (5.29)
s Sy Sg

The remaining integrals over Sz and S5 in (5.23) and (5.24), on which u and ¢ are‘
fixed while n- T and n-[D] are arbitrary, can be eliminated by forcing the
weighting functions 8; and 8; to vanish on the Dirichlet boundaries Sz and S;
respectively. By assigning zero ‘weights’ to these parts of S, the spatial derivatives
Vu and Vo, that enter the expressions for n- T and n - [D], are also eliminated
from (5.23) and (5.24). As a consequence, the approximate solutions (5.14)—(5.15)
are not required to satisfy the Neumann boundary conditions, which considerably
simplifies the choice of the basis functions a;(a!). This distinguishes the weak
solution from the strong one that requires functions u(r) and ¢(r) to satisfy all the
boundary conditions besides of being twice differentiable.

As a result, the nonhomogeneous Neumann boundary conditions are solely
represented by the integrals [ €3;dS and [ 7 5;dS. The surface traction € and
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charge & in the latter are commonly approximated by the surface basis functions o@;
and @, that form the subsets of {ai(r)|i=1,...N} and {ai(r)[i=1,..,N'}
mentioned earlier:

t~ Z tia;, (5.25)
=1
N
7~ od, (5.26)
=1

where ¢; and o; are known since t and 7 are prescribed. This permits projective
equations (5.18) and (5.19) to be rewritten in the following form

N N ,

;(/"/Va;-cE-VﬂjdV)-u.‘-i-g(/‘,Va,--e-VﬂjdV)cp‘-
N 82 : Ng _

+;(P/‘;a;ﬂjdV) atl; =;(/Sia.-ﬂ,-d5)tj,

j=1,... M, (5.27)

i(/"/Vﬂ}-e-Va;dV) -ll.-—ﬁ':(/‘;“_/Va:-e-Vﬁ;dV)(p‘-

=1 =1

([ )

i=1,.. M (5.28)

5.2  Galerkin's approach
In most cases, it is convenient to select the weighting functions 3; from the

set of basis functions «; (Galerkin's method). With this choice, the system of
projective equations (5.27)—(5.28) becomes a symmetric matrix equation of order
N+N'

[112: K [g]*"[? 3][%1]4_3] (5:29)
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with vectors of wunknowns U= (w)._, »» ®= (9, > and
8°U/8t = (8%u;/t*),_, __ - The matrices K™, K*, K** and M in (5.29) are

respectively
- the elastic stiffness matrix made up of 3 x 3 matrix blocks
K = (/ Va;-cf - Va; dV) (5.30)
v i=1,...,N, 7=1,...,N,

- the piezoelectric stiffness matrix made up of 3 x 1 vector blocks

Ky = ( / Va;-e-Va,-dV) (531)
v i=1,...,N, j=1,...,N',
- the dielectric stiffness matrix extended to the outer region V' with scalar
elements
KfY = ( f _Va;- e-Va;.dV) (5.32)
V+Vv é=1,...,N', j=1,...,N’,
- the mass matrix with 3 x 3 block elements
N[,‘j = I(p/ a; & dV) (533)
1’4 i=1,...,N, j=1,...,N,

where I is a 3 x 3 identity matrix. The right-hand side vectors F = (f;),_, __y and
Q = (qi);;,.. v contain respectively the components of the mechanical force
acting upon S;

Ng
f; = E (L a; o dS)tj, (5.39)
=1 t

and of the electric charges distributed over Sz

Ng
=) ( / a.a) ds)a,-. (5.35)
=1 WS

Consider a piezoelectric body with traction-free, partially plated surface as
shown in Fig. 1.3. This configuration, that had been used to formulate the static
and time-harmonic piezoelectric problems, leads to a further simplifications of the
projective matrix equation (5.29). First, the mechanical force term F disappears
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from its right-hand side since homogeneous Neumann boundary condition (4.17)
holds on the whole surface S. Second, only one variable — p, — is needed to
characterize the N, potential degrees of freedom on the electroded part of the
surface S.. The corresponding part ®. of the vector of potential coefficient vector
& = (¥, @e)T can be written as ¥, = p.i, where i =(1,..., l)T is an N,-
dimensional vector with unit coordinates. Therefore, the N, rows and columns of
(5.29) associated with ¥, can be summed up to form a new matrix equation with a
condensed electric part:

K™ K™’ K%« U]
K" —KYY  _KY%j [Q’
iTK?"  —iTK?¥ —iTK%¥i | L¥..

2
M o 0](2Y 0
+0003(t)=0,(5.36)
0o o of Q

where Q is the total charge on S,. It should be noted that there is no charge vector
Q' in the right-hand side of (5.36) associated with ®' as a result of the
homogeneous Neumann boundary condition (4.21) imposed on the unelectroded
part of the surface S,.

As mentioned in Section 4, on the electroded part of the surface S, either the
total electric charge Q or the potential o, can be specified. In the first case, the
electrode S, can be seen as a Neumann electric boundary S, = S5. The matrix
equation (5.36) applies to this situation with Q = @, and its solution provides the
unknown U, &', and ¢,. In the second case, the Dirichlet boundary condition fixes
the electric potential ¢, =, on S, = 55, thus excluding the last equation
containing the variable ¢, from the system (5.36), which has now the vector
P. (—K%:i, K¥*i)" as driving term:

[E:.. _,I::: [;]* 1(v)1 g][%]=¢,[_ﬁzz] (5.37)

After solving (5.37) for U and &', the total electric charge on S, can be
determined as
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U
Q= [iTK** —iTK?¥ —iTK%¥#i] [«D’] (5.38)
[
from the last equation of (5.36).

The systems (5.36) and (5.37) are the two basic matrix equations that can be
used to determine the approximations to the weak solution of the piezoelectric
problem when either the total electric charge Q or the potential o, are specified on
the plated part of the surface S.. To adapt these equations to the static problem,
the dynamic term M (3*U/3t?) must be dropped from the system; in the case of
time-harmonic field distributions u(r) and o(r), M(8°U/3#?) is replaced by
—w?MU and combined with the stiffness matrix. Thus, the time-harmonic
counterparts of (5.36) and (5.37) are the equations:

K™—u/M K% K%i|[U 0
K%Y K% [&’] = [9_}, (5.39)
TP —TK?¥Y —iTK%*i | L e Q
and
KM KY |[[U] _ [-K%i
[ Kv/u —K'p(djl [Q’] = ch: K‘d‘p’i]’ (5.40)

solved for the spatial parts of functions u(r) and ¢(r) with time-harmonic driving
charge Q = Qe** or potential P, = P.e™“*. If the boundary conditions are
homogeneous, i.e. Q = 0 or &, = 0 in (5.39) and (5.40) respectively, these matrix
equations describe the two eigenvalue problems associated with the partially plated
piezoelectric body from Section 4.3.
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6. Variational formulation

An alternative way of obtaining the matrix equation (5.29) is to formulate
the piezoelectric boundary-value problem in the form of variational equations,
derived from a variational principle. The variational approach can be applied since
the differential system (5.1)+(5.2) is self-adjoint. Governing equations and
boundary conditions stem from the variational principle as stationary conditions of
an energy related functional. Although Eq. (5.29), that furnishes the basis for the
finite element analysis, has been already obtained by the Galerkin's method, the
variational approach is also considered. It has the advantage of relying on the
energy functions, thereby providing the mathematical procedure that led to (5.29)
with a definite physical meaning.

6.1 Variational principles

In elasticity, the basis of variational formulation is the principle of virtual
work (Washizu, 1968). According to this principle, the sum of all the virtual work
done by external and internal forces applied to a mechanical system in equilibrium
during an imaginary infinitesimal (virtual) displacement éu satisfying the prescribed
constraint is zero:

Wt + 6Wine = 0. 6.1)

For dynamic problems, one must integrate (6.1) over the time interval [¢o, t] and
take into account the virtual work done by the inertia forces (d'Alembert's
principle):

32
Winere = —/‘;pgtz— éudV. (6.2)

Since du is required to vanish at ¢, and ¢, this work is equal, upon integration with
respect to ¢, to the variation of the kinetic energy:

5T = 5/1 u 9 —dV 63)

If it is further assumed that the internal forces are derived from a potential
function 1 = ${(r, t) such that

§Wine = 541, (6.4)
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the dynamic principle of virtual work tumns into the Hamilton's principle

t t
6/ Ldt=6/ (T — §8 + W) dt = 0, ©65)
t t

where the function L =T — il + W,,; is the Lagrangian of the system. The
principle states that the true motion makes the integral of the Lagrangian over the
time interval [to, t] stationary, provided the virtual displacement du is consistent
with the constraints, i.e. vanishes at ¢, and ¢, and at those parts of the piezoelectric
on which u is prescribed.

The piezoelectric effect can be incorporated into the above principles by
including the virtual work done by external and internal electrical charges.
Consider, for example, the general problem defined in the differential form in
Section 4.1. In the absence of volume forces (F) and charges (p,), the virtual work
of external forces 6W,.,, reduces to the work done by the prescribed surface
traction t during a virtual displacement éu and by the surface charge @ during a
variation of electrical potential 6¢:

Were = / t-udS — / 76pdS,? 6.6)
S; Sy

where éu and 6p are chosen such that they satisfy the Dirichlet boundary
conditions (4.8) and (4.9), i.e. 5u = 0 on S5 and ¢ = 0 on Sz. The virtual work
done by the constant internal volume V - T and surface stress n - T forces, as well
as volume V - D and surface n - [D] charges during the same variations fu and 6¢
is

6W;,,,=—/ (—V-T)-JudV—fn-T-&udS
v S

+ [ (V-D)bpdV + f n - [D]5pdS, 6.7
V4V Sa

9 The electrical part of the virtual work enters the expression with a negative sign
because, as it will be shown subsequently, for a given pair of independent variables
S = S(u) and E = E(yp) this is the the electric enthalpy G,, not the internal energy U,
that takes the place of the potential function i (Tiersten, 1969).
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where the work of internal forces is taken with the opposite sign compared to the
virtual work of external forces. The volume integrals in (6.7) can be transformed
by means of the integration by parts formulae for dyadics and vectors respectively

/(V-T)-6udV=—/T:V&udV+/n-T-6udS, (6.8)
v v s

/ ] (V-D)&pdV=—/ ) D—(Vqu)dV—/n-[D]&pdS, (6.9)
V+V V+V S

which indicate that the differential operators are formally self-adjoint (Gould,
1955). Taking into account that u and é vanish at those parts of the boundary S
where u and ¢ are prescribed, the principle of virtual work for the given problem is
written as

t 1 Ou Ou
6/— ‘—-—dV—./TZGSdV— D-6EdV
/to[ VZP& at v V4V

+/;.5..ds—/ E&pdS]dt:O, (6.10)
S Sy

where §S = 1/2(Véu + 6uV) and §E = —Vp. Since the present formulation
uses the mechanical strain S = S(u) and electric field E = E(p) as independent
variables, the corresponding potential function is the Gibbs electric energy (electric
enthalpy) G,, whose density was defined by (2.16). Using constitutive relations
(2.19), variational equation (6.10) leads to the Hamilton's principle for the dynamic
piezoelectric problem

t
/[6(T—G2+Um)+/i-6ud5—/ E&pdS]dt:O, 6.11)
to S Sz

which differs from the principle of virtual work by Tiersten (1969) by the
additional exterior electric energy term

Ut = %eo / Vo - VodV. (6.12)
\ 4

An earlier version of the Lagrangian for piezoelectric vibrations is due to Eer Nisse
(1967), Holland and Eer Nisse (1969), who claimed having derived it by ‘trial and
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error’. Lee (1990) extended (6.11) to include magnetic variables, thus obtaining a
variational equation equivalent to the equations of piezoelectromagnetism given in
Section 2.

The choice of independent variables determines which equations are derived
from the variational principle, and which are considered as additional constraints.
In the present example, the governing Egs. (4.1), (4.2) and Neumann's boundary
conditions (4.6), (4.7) follows from Hamilton's principle (6.11) as a condition of
stationarity of the time integral (6.5) of the Lagrangian

L(u, qp,t)=T—Gg+Um+/ E-udS—f gpdS, (6.13)
Sk Sy

provided the arbitrary variations éu and & satisfy relations (2.8) and (4.3), and
the Dirichlet boundary conditions (4.8) and (4.9). Therefore, the Neumann
boundary conditions (4.6), (4.7) are implicit to the functional (6.13) and can be
seen as natural boundary conditions (Hilderbrand, 1965), while the Dirichiet
boundary conditions (4.8), (4.9) must be preassigned and, therefore, are essential
to (6.13). Another feature of (6.13) is that its extremum, as pointed out by Eer
Nisse (1967), is of a saddle point nature. This occurs because the electric enthalpy
G- is not a positive definite function in contrast to the internal energy U which is
part of the functional §,; (Table 1.1), stationary under the variations of S and D. As
shown in Table 1.2, in this latter case, 6S and éD satisfy Eqs. (2.8), (4.2), and
boundary conditions (4.8), (4.7) respectively, while Egs. (4.1), (4.3) and boundary
conditions (4.6) and (4.9) result from the extremization of §;. The two other
stationary functionals, ¥, and §3;, based on the Gibbs free (G) and elastic (G,)
energy functions respectively, are drawn to demonstrate alternative combinations
of governing equations and boundary conditions.
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Variational principles

Table 1.1 Stationary functionals

39

Constitutive relations Piezoelectric Lagrangian function

=% E=%% 31=T—U—U“‘+/Sii-uds+js¢a¢ds
s——% =—‘;—i 32=T—G+Um—Lt-ﬁﬁ—LE¢w
S=—%% E=a-a—i-l- 33=T—G1—U“‘—/S't-iid3+[%ag_ads
'l‘=-'?(,3—c"s—2 D=—% 34=T—G2+U“‘+/%E-ud5—fsaapds

Table 1.2 Variational principles and equivalent equations and boundary conditions

Variational Equations Boundary conditions
principle imposed derived essential natural
6§, =0 =%(Vu+uV) V-T=p% u=1u n-T=t
V-D=0 E=-vp |0DI=7| ¢=7
63, =0 V-T:pﬁ S=1(Vu+uV) n-T=t u=1u
at? 2 = -
653 =0 V-T=p% S=%(Vu+uV) n-T=t u=1u
V-D=0 E=-Vy n-D=5 | =9
6F4=0 =1(Vu+uV) V-T=pzll u=1u n-T=t
2 ot? = D=7
E=-Vyp V-D=0 ¢=% |n- D=7

Note: For the sake of brevity, the time integral has been omitted in the first column, i.c. the
variation of a functional 6§ should be read as § f; 3.

A more complete list of variational principles, derived especially for static
piezoelectric problems, may be found in the review by Vekovischeva (1971).
Among them, the most important are the generalized variational principle that
considers all variables as being independent, and the piezoelectric Hellinger-
Reissner principle, used in the theory of plates and shells (Shulga and Bolkisev,
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1990). The former puts all the assumptions (governing equations, constitutive
relations and boundary conditions) into the framework of the variational
expression by means of Lagrange undetermined multipliers; any other principle can
be derived from it by adding constraints to the field variables. In particular, in the
Hellinger-Reissner principle, variables S and E are no longer considered
independent, and are eliminated from the generalized principle by means of
constitutive relations (1.18).

6.2  Stationary functionals for static and time-harmonic problems
Among the mentioned variational principles the one expressed by Eq.

(6.11) has the most important practical application as a basis for the approximate
solution techniques. Indeed, because this principle relies on the set of variables
S = S(u) and E = E(p) used in the differential formulation, it is convenient to use
(6.11) to obtain the variational equation for the static and time-harmonic
specializations of the general piezoelectric problem.

The static variational principle, derived by omitting the time integral and the
kinetic energy term from (6.11), states that the Lagrangian

L(“,‘P)=G2-Ua—¢—/

i-uds+/ dpdS, (6.14)
St S

is stationary for a piezoelectric body in equilibrium under the action of the constant
surface traction t and surface charge @. For the specific boundary conditions
(4.17)—(4.19) considered in Section 4.2, this Lagrangian reduces to

L(u, ) =Gy — Uext + Q.. (6.15)
As in the differential and projective formulation, one will be interested in linear

piezoelectric materials only; therefore, the electrical enthalpy G, in (6.15) is a
quadratic function (2.20) of Vu and V:

Gy = %/ (Vu :ef:Vu+2Vp-e: Vu—-Vp- € -ch)dV, (6.16)
| 4

while the energy density U, of the exterior electric field is given by (6.12).
For the time-harmonic fields, the spatial part of the Lagrangian, is written as

L(U,3) =G, — T — U + Q&., 6.17)
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where Gz, Uey,, and T =1/2pw? U- U are the time-averaged electric enthalpy
G,, exterior electric energy Ueze, and kinetic energy
T =1/2p(5u’/8t) - (Bu/3t) densities. Functional (6.17) is stationary for the
true solution of the system (4.25)-(4.27) with time-harmonic driving charge
Q =Qe*“* or potential ¢, = P.e“* applied to S.. In particular, when the
boundary conditions imposed on S, are homogeneous (Q =0 or ®. = 0), the
solution of (4.25)(4.27) makes the Rayleigh quotient for free piezoelectric
vibrations

Gy — Uert

A(U, ®) = 1 ,
f -pU-UdV
v 2

(6.18)

X\ = «?, stationary at the resonant frequencies w, of the piezoelectric vibrator.
After establishing the equivalence between the differential and variational
formulations, the approximate solution of the piezoelectric problem can be
obtained by performing a numerical extremization of stationary functionals. The
usual procedure consists, first, in substituting the trial solutions (5.14) and (5.15)
into the Lagrangian (6.14), which, due to (6.16) and (6.12), becomes a quadratic
function of N + N’ unknown coefficients u; and ¥, and, second, in determining

the stationary point of L from the system of linear equations

oL (6.19)
— =0, j=1,2,..,N".

It can be verified that system (6.19) leads to exactly the same matrix equations
(5.29), obtained by means of the Galerkin method in Section 5.2.

6.3  Energy relations for stationary solutions
To conclude this section, several integral relations that characterize the
balance of energy in the piezoelectric vibrator are derived for the stationary
solutions.
Replacing éu with U and é¢ with ® in (6.8) and (6.9) respectively, and taking
into account that the exact solution (U, ) satisfies the governing equations of
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piezoelectric vibrations, V - T + puw?U = 0 and V - D = 0, the integration by part
identities are recast as

—/pw"’U-UdV=—/T:SdV+‘/n-T-UdS, (6.20)
|74 v S

0=/V+‘_/D-EdV-—/Sn-[D]tI>dS. ©6.21)

As before, for the traction-free boundary surface and equipotential electrode, this
system simplifies to

/przU-UdV=/VT:SdV, (6.22)

Qb.= | D-EdV. (6.23)
V+V

Denoting the spatial parts of mechanical, dielectric, and mutual energies as

1
Unech = 3 / VU: cf : vUdv, (6.24)
v
1 s
Udiel = 5 Vd-€’-VP dV, (6.25)
v
1
Unut = 5/ Vd.e: VUV, (6.26)
v
respectively, relations (6.22) and (6.23) can be rewritten in the form
Q®. = Unut + Udiet + Uezt. (6.28)

Addition of (6.27) and (6.28) yields the equation of the conservation of energy
QP =U+ U — T, (6.29)

which states that the sum of potential energy, made up of interior
U = Upeen + Udier and exterior part U, and the kinetic energy T is equal to the

energy supplied by the applied voltage ®. or current I = jwQ
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For free vibrations (Q =0 or ®. = 0) there is no energy supply to the
piezoelectric vibrator, and, consequently, the total stored energy is constant. From
(6.29) it follows that the instantaneous potential energy is 180° out of phase with
the instantaneous kinetic energy

U+ U =T, (6.30)

and, therefore, the total energy stored in the vibrator can be calculated solely from
its kinetic or potential form. Substituting (6.24) and (6.25) into (6.0), and
rearranging terms, one obtain the stationary value of the Rayleigh quotient (6.18)

/VU,,:cE:VU,,dV+ V&, - V&, dV
W2 =2V ViV ’ 631)
Un'UndV
fe

for free vibrations characterized by the set of eigenfrequencies w, and

“eigenfunctions (U,, $,). With e defined by (5.20) over the entire space, equation
(6.31) represents an open electric boundary analogue of the stationary Rayleigh
quotient derived earlier by Lewis (1961) and Eer Nisse (1968) for piezoelectric
vibrations.

6.4  Electromechanical coupling coefficient
The electromechanical coupling coefficients k, or simply coupling factors,
are introduced to characterize the strength of the piezoelectric interaction between
mechanical and electrical fields. Being dimensionless, they are particularly useful
for the comparison of the piezoelectric efficiency of different materials. A critical
review of various definitions of k can be found in Ikeda (1996).
The squared coupling coefficient k? is often defined as

Ut

k2= ——mut
Umech Udiel

(6.32)
Formally, it follows from (6.32), (6.27), and (6.28) that the static coupling
coefficient (T = 0) is given by

Unmech
k= —0 6.33
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while the dynamic coefficient at resonance (Q®,. = 0) is derived from

Ud,d + Um

k2
d Umech

yn = (6.34)

In this thesis, however, the static and modal coupling coefficients are calculated
using expressions

-2 Umech

k., = , 6.35
* 7 Usota (6.35)
and
-2 Udt'el + Uezt
Fan = —5— (6.36)

respectively, where Uy, denotes the total (interior and exterior) energy U + U,y,.
Equations (6.35) and (6.36) are more consistent with the latest (IEEE, 1987)
definition of k£ as a measure of the capability of a piezoelectric crystal to convert
energy from an electrical source to mechanical work (electrically-driven static
piezoelectric problem), and from a mechanical source to electrical work
(piezoelectric vibrations). Clearly, the coupling coefficients depends on the
mechanical and electrical fields configurations, determined by the crystal geometry
and boundary conditions. The dynamic coupling coefficient is typically smaller than
the static one because the latter is associated with more uniform field distributions.
Very often the dynamic coupling coefficient is calculated as

K2 fA fR

6.37
eff = T2 (6.37)

where fr and f, are the linear frequencies at resonance and antiresonance — the
two characteristic electrical situations discussed in the following section.
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7 Equivalent electrical parameters

Because the piezoelectric vibrators are typically used as two- or multi-
terminal passive components, it is highly desirable to represent and analyze them in
the form of an equivalent electrical circuit, i.e. a circuit consisting of frequency-
independent inductors, capacitors and resistors, and possessing an identical
impedance (admittance) function. The approximate solutions of the static and free-
vibration problems discussed earlier can be utilized to determine the equivalent
impedance (admittance) of forced piezoelectric vibrations. Their expansion in
terms of static and proper solutions is based on integral relations derived from the
piezoelectric reciprocity theorem considered in the next section.

7.1  Reciprocity relation and mode orthogonality
One of the most practically important integral relations between two

possible solutions of the governing equations is the piezoelectric reciprocity
theorem (Auld, 1990b). The reciprocity relation for the forced piezoelectric
vibrations was first introduced by Lewis (1961), who used it as a principal tool for
deriving the passive electrical circuit equivalent in its electrical behavior to the
piezoelectric vibrator (Fig. 1.3).

For the body with a traction-free surface, in the absence of volume forces and
charges, the reciprocity relation can be written as

2 —u?) /V pUy - UpdV = $,Q; — B.2Q1, .1

where the indices 1 and 2 refer to two pairs of solution of forced piezoelectric
vibrations; the static reciprocity relation may be seen as a special case of (7.1) with
w; =uws =0. In the case of free vibrations, (7.1) yields the orthogonality
condition

‘/‘; pU1 -Uy dVv =0 : (7.2)

for two different solutions (w; # we) of the same eigenset. Expression (7.2)
constitutes the basis for the modal analysis of piezoelectric vibrators by allowing
the expansion of an arbitrary forced vibration (U, ®) in terms of static (U,, ®,) and
proper (U,, ®,) solutions:
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(2)=(2)+2=(a) a3

The decomposition coefficient ay, is determined to satisfy the equation of motion
V - T + pu”U = 0 alone, and is found to be

wz/ pUs - U, dV
v

(u? —wz)/ pU, - UndV,
v

Gn (7.4)

the remaining governing equation and boundary conditions are identically satisfied
by (7.3). Applying (7.1) to the sets of solution (U,, ®,) and (U,, P,, wn), the
numerator in (7.4) can be expressed in terms of static and proper electrode
potential and charge: (®.,, Q.n) and (P, Q.;). For the two types of eigenvalue
problem — when &, = 0 and Q., = 0 — one obtain

WP PQen _
G = (‘l-’,z. ~ "wg“')'Tn (Qen = O): (7-5)
and
| PPaQ.s _
—_ _——————( T AT, (Qen =0), (7.6)

where T, = wﬁ / pU, - U, dV denotes the double of the kinetic, i.e. total — see
v

(6.0), energy of n-th mode of vibration.

7.2  Electrical admittance and impedance matrices

Before deriving an equivalent electrical admittance or impedance function
for the forced piezoelectric vibrations, it would be convenient to view the
piezoelectric vibrator as a multi-electrode structure. Configurations with one
electrode, considered so far for the sake of simplicity, two electrodes (e.g.
resonators) or several pairs of electrodes (e.g. monolithic crystal filters) represent
special cases of the generalized resonator shown in Fig. 1.4.



$7. Equivalent electrical parameters 47

e

--
-, -~

Fig 1.4 Piezoelectric vibrator with an arbitrary number of electrodes.

An L-terminal vibrator is driven now by the vectors of electrode potentials
® = (Pep)p—,.. and charges Q = (Qp),, ; its electrical behavior can be

characterized by the admittance and impedance matrices Y and Z, defined
respectively as

I=Y®, 7.7
and

=21 (7.8)

where I = Q. These matrices can be constructed by expressing the driving
vectors Q and ¥ in terms of static and eigensolutions:

(8)-(2)+5(2)
S n=1 n
The decomposition coefficient a,, is the same as in (7.3), i.e.

_ WZ(QIQI; - QIQJ)
I L

(7.10)
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because of the linearity of the piezoelectric material. In the form (7.10), a, is

applicable to any combination of homogeneous boundary conditions (i.e. when
zero potential is specified on some electrodes ®., =0|,_; ., and zero total

charge Q, =0|,_,,, , on the remainder), and represents a generalization of
Egs. (7.5)«(7.6). On the substitution of (7.10) into expansions (7.9), the latter
become

00 U2 n T 00 wz nQT
Q= Qs+Z 9 Q Z( ? 7y, O (7.11)
0o 2@ QT ) WZQ"QT
L oA T L AT 7.12)
Defining the symmetric matrix of static capacitance coefficients C; as
Q= C,‘P,, (7 13)

and using (7.7) and (7.8), one obtain the equivalent admittance Y and impedance Z
matrices in the form

. 2, WP
Y= Jw{C, + n§—1:¢. —(Ca—E c,)} (7.14)
Z= —l—{c“ f:"’—z(l-‘ - ETC—I)} (7.15)
Jw A S A ‘

In Egs. (7.14)(7.15), symbols C,, F,, E, denote respectively the symmetric
matrices

T
C, = Q_’;Q", (7.16)
and
T
F, — ‘I';‘l'n, (7.17)

and the dimensionless matrix E,;,
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®.Q;

E, = T,

(7.18)
Clearly, the matrix E, vanishes identically for the two extreme cases of the
eigenvalue problem associated with Fig. 1.4, i.e. when all electrodes are set to zero
potential or when all are open circuited. For the former configuration
(®, =0Vn), the electrical behavior is represented solely by the symmetric
admittance matrix

. 2 WPCy
Y= ]w{C, + Z w%h——_'?}, (7.19)

where the corresponding eigenfrequencies wg, are referred to as the resonance
frequencies; the eigensolutions associated with the latter eigenproblem
(Q, = 0Vn) are used to expand the equivalent impedance matrix Z in a series
about the antiresonance frequencies w4,

z- o{e-3 u&“ﬁ%} (720

Therefore, a lossless piezoelectric vibrator is characterized by two sets of critical
frequencies: the resonance wgy, at which the admittance tends to infinity and the
impedance vanishes, and the antiresonance wj,, at which the impedance is infinite
while the admittance vanishes. In the form of (7.19) and (7.20), the equivalent Y-
and Z-matrices have been obtained and analyzed by Lloyd (1967) as an extension
of the work of Lewis (1961), who derived the admittance and impedance functions
for a vibrator with one pair of electrodes. For this latter configuration, matrices C,
and C,, reduce to the ordinary static C; and motional C,, capacitances between the
driving electrodes.
By introducing a new matrix of shunt capacitances

Co=C, — icn (721)

n=l1

the admittance matrix (7.19) can be recast as
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Y= jw{Co + —’i"——} (7.22)
; “gin - w2
This allows its elements y,, to be represented as an electrical network (second
Foster form) as shown in Fig 1.5.

I .

Yo —¥

\
|
0

Fig 1.S Network realization of the equivalent admittance function Y = (yp.)p,¢=1,...L I
the form of the second Foster scheme. Here Co = (Co)pg» Cm = (Ch)pgs
Ly = 1/(w%,,Cn)-

Similarly, an element of the impedance matrix Z (7.20) — z,, — can be realized
through the first Foster form, with parameters defined in Fig. 1.6.

cli c.2 clm
Ay} hY| M
c, Al 7 7t
poe—h——  —  peemmee- -
e o & AN Ve & & ot V"0 20 2.
2 > L, L, L'm

Fig 1.6 Network realization of the equivalent impedance function Z = (2pg)p,¢=1,... i
the form of the first Foster scheme. Here Cg=1/(C,),, Cn =1/(Fu)p,
L,= 1/(“’24mc:n)-
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Waves and vibrations with open electric
boundaries

L. Introduction

This chapter presents a short survey of past methods, or rather attempts, to
model finite piezoelectric regions embedded in an infinitely extending free space. It
shows how the external electric field has been taken into account for both wave
propagation and resonance — the two basic phenomena that underlie the operation
of all piezoelectric devices. The review is drawn to demonstrate that there is a
demand for the solution of the piezoelectric problem referred to, by analogy with
electromagnetics, as electrically unbounded.

Wave propagation is typically associated with relatively simple geometrical
configurations such as a piezoelectric half-space or an infinite plate. Solution can
often be sought as a superposition of uniform plane waves with amplitudes
determined to satisfy mechanical and electrical boundary conditions. However, this
approach is rarely suitable for the analysis of piezoelectric resonators. The
modeling of external electric fields also becomes increasingly more complicated as
the number of finite lateral dimensions grows. Except for a few special classes of
problems that permit one-dimensional approximations of isolated modes (thickness
and longitudinal), no serious attempt to take into consideration the leakage of the
electric flux into the outer space has been reported in the literature. The most
effective two-dimensional approximation technique — the Mindlin's power series
expansion in the plate thickness — is not, by its very nature, compatible with the
large sizes required by the ‘openness’ of the electric boundaries.

Because practical vibrator geometries are irreducibly three-dimensional, they
can only be attacked by various numerical techniques, among which the finite
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element method is by far the most popular. It has been widely used in piezoelectric
analysis for its capacity to model anisotropic materials and arbitrary shapes.
Although ‘mechanically’ open piezoelectric problems, such as the radiation from
sonar transducers into an acoustic medium of infinite extent, have been a common
application of the finite elements (Smith, Hunt, and Barach, 1973), there is no
indication in the literature that this approach has been used in combination with
any model of the exterior electric field. Special numerical techniques required to
model the infinite exterior electric field distribution can be imported from
engineering electromagnetics. A critical review of available methods is given in this
chapter to provide ground for the choice of the method of ballooning, which has
been retained for the use with the finite element model of the piezoelectric region.
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2. Wave propagation

Plane waves propagating in an unbounded medium (Appendix 1) are of
great importance because they are used as building blocks to construct solutions in
bounded regions (Auld, 1981). In the method referred to as superposition of
partial waves, all possible plane wave solutions having a common wave vector
component along a given propagation direction — partial waves — are
superimposed with amplitudes chosen to satisfy mechanical and electrical boundary
conditions. Such a superposition of plane waves simultaneously satisfies the wave
equations and the boundary conditions, i.e. is a correct solution of the boundary-
value problem. The partial wave method, is suitable for analyzing planar structures
such as a piezoelectric substrate, an infinite plate, or a layer over a substrate (Auld,
1990b). Because the problem of wave propagation is beyond the scope of this
thesis, no attempts are made to survey in detail the influence of electrical boundary
conditions encountered in practical configurations.

2.1 Surface acoustic waves

The surface acoustic wave (SAW) is defined as a wave propagating parallel
to the surface of a solid (Fig. 2.1) with the amplitude of all the associated
displacements and potential rapidly decreasing into the depth of the substrate
(z; — ).

Fig 2.1 Coordinate system for the surface acoustic wave propagating in the direction m.

Because three mechanical and one electrical boundary conditions must be specified
on the boundary of a piezoelectric substrate, the fields in the surface wave are
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sought as a linear combination of four straight-crested (i.e. no dependence on the
z3 coordinate) waves propagating in the direction m = (1, mg'), O)T:

4 ouM) . .
14 r=1 Po

where 8, = (w/V )mg') is the component of the wave vector in the depth direction.
The electric potential above the substrate is taken as

@ = p,e¥e =) 2, <0 (2.2)

so that it satisfies Laplace's equation, vanishes as z; — —o0, and is equal to
@, = p(x1,0, z3) on the boundary x> = 0. The weighting coefficients A, in (2.1),
or amplitudes of the partial waves, are determined from the stress-free boundary
condition and the condition of continuity of either electric potential or normal
component of the electric flux density on the boundary. Substituting solution (2.1)
into the boundary conditions gives a system of four homogeneous equations,
whose determinant AS4%" must be zero in order for nontrivial solutions to exist.
For instance, if the continuity of D is imposed, the elements of this bowndary-
condition matrix will be

A = {n-cf: (m°u®) + m™ -e-npP},, i=1,23

Af,AW =n-e: (m(")°u(’)) -n- (es — ieol) - mMp™

0o

2.3)

where n = (0, —1,0)" is a unit vector normal to the surface. The component my)

of the propagation vector m™ is determined from the full piezoelectric Christoffel

equation! that can be regarded as an eighth-order algebraic equation with real
coefficients in m$’; the phase velocity V enters this equation as a parameter. To
insure that the displacement vanishes as z; — —oo, only four roots mg') with
negative imaginary parts and the associated eigenvectors (°u(®, gaf,'))T are

retained.

1 The secular equation associated with the system in the form of Eq. (1.14) from
Appendix 1 is not suitable for this purpose because the elimination of electric potential
as an explicit variable gives rise to the stiffened constants defined by Eq. (1.16) of the
same appendix. As demonstrated by Farnell (1970), stiffened constants are not valid for
the analysis of SAW since the complex component m, of m is initially undefined and
takes four different values.
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Because it is rarely possible to analytically solve the Christoffel equation and
express m\’, °u®, and ¢{") as functions of V, the phase velocity is typically found
from an automatic procedure that changes its value until the corresponding mg),
u®, and ¢’ make AS4W equal zero. In general, the resulting phase velocity
corresponds to a complex piezoelectric Rayleigh wave. However, when the sagittal
plane (plane z,—z. in Fig. 2.1) is perpendicular to a six-fold crystallographic axis,
two velocities are acceptable. The first one is associated with a non-piezoelectric
Rayleigh wave, while the second corresponds to a piezoelectric Bleustein-Gulyaev
wave, created by two partial waves and polarized perpendicular to the sagittal
plane. For the latter case both the Christoffel equation and Eq. (2.3) simplify
considerably, so that analytical solution can be obtained (Dieulesaint and Royer,
1974). For example, the velocity of the z3-polarized Blustein-Gulyaev wave
propagating on an unplated surface is given by

4
VvEE = ci (1 — _"___2) (2.9)

with k* = ef5/ (5 c41) and cf) = cfj + els/€f)-

As it follows from the solution scheme outlined above, the propagation of
SAW can always be viewed as a problem with open electric boundaries. The
influence of the electrical boundary conditions is typically characterized by the
coupling coefficient K, for SAW

2 2(Vs - Va)
K? = —Vs , 2.9)

where V, and V, are the velocities of the waves on the free and fully metallized
surfaces respectively; and the surface impedance Z, defined by

Y —i—2,. (2.6)

For some simple electrical boundary configurations analytical expressions for Z;
can be easily derived from (2.6). For example, if the space above the substrate is
free or if an infinitesimally thin perfect conductor is placed at the distance h from
the substrate, the impedance simplifies to Z, = i/(Ve,), and Z, = (i/e,tanh(%h)
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respectively. An alternative definition of the coupling coefficient is due to
Ingebrigtsen (1969):

Kz — 2(Vao — o)

oo Vo 2.7

where the wave velocity V., corresponds to the infinite surface impedance
Zs = 0. According to (2.6), the condition of an infinite Z, is met when the
electric flux above the piezoelectric substrate is zero, i.e. when the fringing field is
neglected. This means that K, is associated with an electrically ‘closed’ model of
SAW propagation, and, therefore, the ratio
K,-K: 1
K2  l+e/e

(2.8)

can be regarded as a measure of the influence of the external portion of the electric
field on SAW propagation, where €, = \/€;1€22 — e§12 is the effective permittivity
of the anisotropic substrate in the given coordinate system (Morgan, 1985).

2.2  Guided waves

The partial wave approach can be extended directly, i.e. without increasing
algebraic complexity, to the analysis of isotropic infinite plates. For the
piezoelectric plates, however, this is possible only for cuts with special symmetries
that allows the displacement to be separated into a shear horizontal (SH) wave and
Lamb waves (the combination of shear vertical (SV) and longitudinal (P) waves),
supported by isotropic plates (Auld, 1990b). These two families of modes are
reflected at the two stress-free boundaries z, = =+ h (Fig. 2.2) into waves of the
same type, thus allowing the solution to be expressed in terms of a finite number of
such waves.

x;
=h o —
x' g '~ P \\ 4 “\
d AN o ., d .
S ~ id ., o x1
e P . ':' x'
i

x.=h A

Fig 2.2 Partial wave reflection pattern in an infinite plate of thickness 2hA.
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In this case, solution is constructed from partial waves (2.1) propagating within the
plate with vectors k = (o, £4,, O)T, symmetric with respect to the medium plane.
To satisfy the electrically open boundary conditions at z, = + A, the electric
potential is taken outside the plate as

o = el MeTen | 5| > b, (2.9)

thus obeying Laplace's equation and evanescent in the direction z,.

The guided wave solution can be obtained from the procedure similar to that
employed for SAW. However, the imposition of boundary conditions at the two
boundaries of the plate fixes the dispersion relation between a and the frequency
w, which is determined by solving the Christoffel equation for wave numbers 3,
simultaneously with the boundary-condition equation (A® = 0). Examples of such
solutions in the plane with a 6mm symmetry can be found in Auld (1990b) and
Ikeda (1996). Dispersion relations in the form of transcendental equations are
given for the electrical boundary conditions commonly encountered in planar
problems (e.g. unplated and plated plate). In the high-frequency limit the guided
wave velocity tends to that of the surface wave propagating in the same direction.
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3 Piezoelectric vibrations

In general, the problem of piezoelectric vibrations of a three-dimensional
body cannot be solved in terms of a finite number of partial waves: an arbitrary
incident plane wave, when reflected back at the stress-free piezoelectric boundary,
generates waves of other types that must be included into the analysis. Therefore,
for a truly three-dimensional configuration it is always more practical to apply
numerical methods, reviewed in a separate section below, rather than attempting to
approximate the solution by an infinite series of partial waves. Nevertheless, the
partial wave approach, or a mode-matching method, as it is often termed in
resonator problems, can still be applied to the analysis of some simple geometries
such as an infinite plate or a long narrow strip. The solution can then be
represented as a superposition of standing waves which are formed from positive-
and negative-traveling acoustic waves propagating in the thickness and length
directions respectively. Explicit frequency equations are available for the resulting
one-dimensional models of thickness and longitudinal vibrations, thus facilitating
the estimation of the leakage field effect on the characteristic frequencies. As for
the finite piezoelectric plates, Mindlin's two-dimensional approximation of
combined modes remained the most powerful tool for modeling piezoelectric
vibrations prior to using numerical methods. Although no applications of this
theory to electrically open problems are known, this technique, being very
important, is briefly outlined at the end of this section.

3.1  Simple modes

Piezoelectric resonators are typically fabricated in the form of rectangular
or circular plates, strips and bars. As mentioned above, even resonators of such
elementary shapes possess an infinite number of vibrations, many of which belong
to the families of modes characterized by simple displacements shown in Table 2.1.
Simple modes can often be realized if one of the dimension of the resonator differs
significantly from the others, thus defining an isolated vibration which can be
described by one-dimensional models. The piezoelectric boundary-value problem is
then reduced to a system of ordinary differential equations with sets of mechanical
and electrical boundary conditions at the two extremities of the characteristic size.
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Because most of the resonators are designed to operate on one particular mode?
and suppress all the other, unwanted, vibrations, such models have proved very
useful in predicting the resonance frequency (Meeker, 1985). They considerably
simplify the anisotropy analysis of the coupling and temperature coefficients of
frequency for new piezoelectric materials (Détaint and Langon, 1976; Fujiwara et
al., 1985), and are invaluable when material coefficients are determined from the

resonance frequency measurements (IEEE, 1987).

Table 2.1 Principal types of vibrational modes

Mode Shape Frequency range
Flexure *\ 10-100 kHz
Torsional 50-500kHz

. P ————— .A‘ -
. . . \Y
Longitudinal N 0.7-600 kHz
e ;
Contour 150-600 kHz
(face-extensional
+ face-shear)
] — ]
Thickness-shear / /7 0.5-1600 MHz
¥ 3 Vo
Thickness-extentional | | ! 1 MHz - 6 GHz
e n =

2 In some case the resonance is realized by ‘coupling’ two simple modes as it was done
for the GT-cut quartz resonator to achieve a very high frequency stability over a wide

temperature range.




60 2 Waves and vibrations with open electric boundaries

The problem of electrical flux leakage is of different significance for the basic
classes of resonance modes. As illustrated in Fig. 2.3 (a), in the case of contour
vibrations, the two major surfaces are typically fully covered by electrodes, which
minimize the fringing field. For other types of vibration, the size of the driving
electrode is an important factor in the optimization of resonator parameters. For
instance, for the thickness-shear vibrations of the strip-type resonator, shown in
Fig. 2.3 (b), the electrode length is chosen to suppress the anharmonic overtones
(Milsom et al., 1983), and is often less than the half of the plate length. Moreover,
the tendency is that the stronger the piezoelectric coupling, the shorter the
electrode, thus leaving a considerable part of resonator major faces unplated.
Partial electrodes are also typical for longitudinal and flexural vibrations. Hermann
(1975) attributed the discrepancy of approximately 7% between the experimental
and theoretical values of static capacitance to, in part, the neglect of the external
electrostatic field in his model of flexural and length-extensional vibrations. The
flux leakage through the plate surfaces is particularly serious when longitudinal or
thickness modes are excited by a lateral electric field, as indicated in Fig. 2.3 (¢).

i

(©

Fig 2.3 Typical electrode patterns: (a) contour vibrations; thickness-shear vibrations
with perpendicular (b) and lateral (c) field excitations.

In principle, one-dimensional models of piezoelectric vibrations cannot take
into account the influence of the electrode size, except maybe for a few
configurations when, as for the longitudinal mode, the electrode is extended in the
direction of the plate characteristic size (Zelenka, 1986). However, the two
extreme cases of fully metallized and totally free plates, encountered in the models
of surface and guided waves propagation, can still be treated within the scope of
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one-dimensional approximations. To give an idea of how the electric field leakage
may affect the frequency and the electromechanical parameters of the resonator,
two types of vibrations — the longitudinal and the thickness — are considered in
more detail.

A. Thickness vibration

The simple thickness-mode vibrations of a plate are characterized by the
displacements that are functions of the plate thickness coordinate z, alone (Fig.
2.2); the governing wave equations3 of the plate are therefore one-dimensional:

d*u d?
ijkg :{z—zﬁ +822jd—s: —pwzu,- =0,
2 T2
d*ur g d%p @-1)

€0k — 5= — € T—p = 0.
dz2  **dx?

The general solution can be written as a linear combination of three positive- and
negative traveling waves k = (0, + 3,, O)T propagating in the thickness direction
of the plate with phase velocities V, and amplitudes °u(™, or, as is more customary
in resonator theory, in the form of a superposition of antisymmetric and symmetric
solutions:

3
u= z : (A’_ou(f)efﬂrze +Br°u(')e_"8'z“),
r=1
;. | (G.2)
= (A,°u")sin 8.z, + B,°u®cos 8,z2)
=1

with coefficients A_, B, determined from the six stress-free boundary conditions
T5; =0, j=1,2,3 at o = * h. The substitution of (3.2) into (3.1) yields the
dispersion curves, which, in this case, are represented simply by three straight lines
(nondispersive waves). To satisfy the two continuity conditions for D> and ¢ at
z2 = + h within the scope of the one-dimensional model, it is not sufficient to
take ¢ as a superposition of partial waves (Eq. (1.12), Appendix 1): a static

3 In the following, the harmonic term e** is omitted from all variables and summation is
assumed for repeated indices.
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solution is also required. The electric potential is therefore obtained by integrating
the second equation in (3.1):
= e2T2kuk + Aiz2 +B;, (3.3)
€22
with coefficient A;, B; determined from the electrical boundary conditions.

The frequency equations for the piezoelectric thickness vibrations of an infinite
plate with electrodes coated on both surfaces was derived by Tiersten (1969). In
his formulation, the resonance frequencies (p|y,—+s = 0) of the three coupled
thickness modes are determined from the transcendental equation

=0, (G4

- €22;€22k . )
(ngkg ﬂ,.22 cos ,B,h - —es—- sin ﬂ,h °uk
22

while their antiresonance frequencies (D;|;,—+» = 0) are obtained from
cos B,k =0, 3.5)

where 8, = wy/p/e,, and ¢, and °u’” are respectively the rth eigenvalue and
eigenvector of the Christoffel system with ‘stiffened’ elastic constants
Cajkz = Chyg + €nnj€2ak/€3;. An alternative formulation reported by Yamada and
Niizeki (1971), who derived the frequency equations in a slightly simpler form,
compared to (3.4), from the electric admittance of the plate. Additionally, an
admittance expression for the configuration with an air gap between the electrodes
and the plate surface was also given. In the same paper, Yamada and Niizeki
considered the case of a lateral field excitation, and obtained the corresponding
frequency equations that were found to be reciprocal to the perpendicular field
case. The résumé of characteristic equations for the two field orientations is given
in Table 2.2.

The theory of thickness vibrations, even in its simplest one-dimensional version
is very important for practical applications since most of the mass-produced crystal
resonators operate on a thickness-shear mode. Although well documented, and
being, along with the longitudinal vibrations, part of the IEEE Standard on
Piezoelectricity (1987), the present models of thickness vibrations do not take into
account the electric flux leakage. However, the imposition of open electric
boundaries causes no difficulty in the one-dimensional case. Tiersten's approach
outlined above was extended in this thesis to an uncoated piezoelectric plate by
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setting D24 equal to €, E, at z» = =+ h, where E, is the constant electrostatic field
generated in the outer space |{z2| > h by the thickness vibrations of the free
piezoelectric plate. The constant A; in (3.3) is determined from the continuity
condition of electric potential o( = k) = ¢, ( * k), where ¢, (z2) = A,z; + B, is
a solution of the one-dimensional Laplace's equation outside the plate. Because
there is no way to make this potential distribution evanescent, it is important to
stress that the whole approximation is valid only when the thickness of the plate is
small compared with other dimensions, i.e. when the plate is assumed infinite.

Table 2.2 Frequency equations for thickness vibrations

Perpendicular (E || k) Lateral (E 1 k)
Electrode
configuration
Dispersion
relation
Resonance
tanG_ h
Antiresonance cosB.h =0 1+ Kk Ak _
r=1 ,B,.h
3 ™) 3 )
Eear) | El
Coupling K2 =1 5 P=—
coefficient Cr €22 Cr €33
- €224 €
with 3321 = €32; EJS s '
222
(€33)
and €3; = €55 — ~—=
e

The derivation of the frequency equation for an uncoated piezoelectric plate
follows closely that of Tiersten for a totally metallized plate. Omitting details, the

4 In order to satisfy the Gauss equation V - D = 0, the electric flux component D, in one-
dimensional piezoelectric problems can only be constant and uniform.
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resulting equation that gives the three characteristic frequencies / of the one-
dimensional thickness vibrations with open electric boundaries can be written as

€224€ R
(ez,-kz B.hcos b — 758 smﬂ,h) ouy?
22

=0, (3.6)

with
o
1 +e3/e,

G.7

Note that both the resonance and antiresonance frequency equations for a coated
plate can be obtained as special cases of Eq. (3.6) by setting €, — oo (electrodes
short-circuited, FE; =0) and ¢, =0 (electrodes open-circuited, D, = 0)
respectively. Since 0 < 7 < 1, the resonant frequency of a bare plate is
wo < ws < Woo, Where w, and w, denote, by analogy with SAW notation, the
solutions of Eqgs. (3.4) and (3.5) respectively, i.e. the resonance and antiresonance
frequencies of a completely plated crystal.
For the purpose of analysis, it is more convenient to recast Eq. (3.6) into

3
otan . h _
1_21-‘:'.7,.’&_*0’ (3.8)

r=1

which makes it consistent with those of Table 2.2. For many practical crystal
orientations, shown in Table 2.3, only one of the three thickness modes is
piezoelectrically active (k, # 0) or predominant. In this case, Eq. (3.8) simplifies
to

tan Bh = % (3.9

For a small piezoelectric coupling coefficient, the fundamental solution of Eq. (3.9)
is well approximated by

Bh = g(l - %‘rkz), (3.10)

(Kantor, 1977) or, using the solution of Eq. (3.5) we = ®/(2h)V,
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(1 - —Tkz)wm (3.11)

Because the resonance frequency of a wholly coated plate w, is given by a similar
expression w, = (1 — (4/7%)k*)wx but without T, the relative frequency shift
due to the open electric boundaries can be approximated for materials with small
piezoelectric coupling k2 by
Woo —Ws T (3.12)
Wm - ‘Uo
Under the same assumptions, the relative decrease of the effective coupling
coefficient is given by the expression

k2 — k2
—=_ s o, (3.13)
kOO

identical to Eq. (2.8) for SAW. As seen from Table 2.3, the shift for some typical
crystal orientations ranges from 2 to 18 percent, and might be higher for materials
with lower permittivity.

Table 2.3 Values of 7 for common crystal cuts.
Material Cut T

Quartz AT (35.25°rotated Y) | 0.18
GaPO, | AT (33.02°-rotated Y) | 0.14

Li,B,O, | 51°-rotated Y 0.10
LiTaO; | 8.5%rotated X 0.023
LiNbO 163°-rotated Y 0.023

3

Having a good estimate of w, is important for the design of resonator
operating on trapped-energy modes (Onoe et al., 1965; Shockley et al., 1967). In
such resonators the electrode size is chosen so that the energy distribution
associated with the thickness vibration is concentrated almost entirely in the
electroded region and rapidly decays in the uncoated portion of the plate, thus
giving improved resonance characteristics. This phenomenon can be explained in
terms of a guided propagation of thickness vibrations along the z,- or z3-axis of
the plate (Fig. 2.2), characterized by a cut-off frequency below which their



66 2 Waves and vibrations with open electric boundaries

amplitudes decrease exponentially with distance. Due to the mass-loading and
different electrical boundary conditions, the coated and uncoated portions of the
plate have different cut-off frequencies, equal respectively to w, and w; defined
above. When the resonance frequency of a partially plated crystal w is below w, or
above w;, the thickness mode cannot propagate in either region; however, if w falls
in the range between w, and w;, the thickness mode propagates and forms standing
waves in the electroded portion of the plate, but rapidly decays in the unelectroded
part.

The resonance of the ‘trapped’ wave is determined not only by the relative
decrease in frequency, or the plate back, defined by

Ws — Wo

A, = (3.14)

W

but also by the lateral dimension of the electroded region 2l.. Therefore, a whole
series of resonances can occur between w, and w,. The optimization of a trapped-
energy resonator consists in eliminating all the anharmonic resonances, except for
the lowest, or fundamental, thickness mode. This condition is met when the
electrode length satisfies the following condition

L 2
(). == ¢

where A is a theoretical constant related to the wave number in the lateral
direction. The calculation of the plate back A in (3.15) is typically based on
frequency wo, thus leading to a slightly lower estimate of (I./h)_, = 2/ (/\\/Z;),
where Ay = (Weo — W )/weo is greater than w,. Ideally, this is w, that must be
used as a cut-off frequency for the unplated region since it gives a more realistic
upper bound for w. If w, is not available, (I./k)_, can be corrected using (3.12) to
obtain (l./k), as follows
(%’)8 =+1- 1'(2—‘)00. (3.16)
Finally, the most important electric flux leakage is expected in the case of
thickness vibrations excited by a lateral electric field. Mindlin (1973) and later Lee
(1988) studied the electromagnetic radiation from the face of an AT-cut quartz
plate excited by face-shear traction and lateral electric field respectively. Because
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only the wave solution was of interest, the authors did not consider the quasi-static
electric field in the surrounding vacuum. By solving the one-dimensional equations
of piezoelectromagnetism, they obtained an anticipated correction of the order of
105 to the wave numbers, thus measuring the effect of the quasi-static
approximation on the thickness-shear mode. Yamada and Niizeki (1971) also
neglected the electrostatic field outside the plate, when considering the lateral
excitation. They assumed the applied electric field to be strictly parallel to the
major faces of the plate, which represents a rough approximation for such an
electrode configuration unless high permittivity crystals are used.

As earlier for the Tiersten's solution, the formulation by Yamada and Niizeki
was modified here to include the external electrostatic field. In this case, the
frequency equation for the piezoelectric resonance of the structure shown in Table
2.2 (column E L k), was found to be identical with Eq. (3.6). This result is
consistent with the one-dimensional model of thickness vibrations since the lateral
component E; of the electric field is considered constant across the plate (i.e.
independent of z3). Particularly, if E5 is set to zero (resonance), the difference
between the thickness vibrations excited by a lateral field and those of a free
piezoelectric plate disappears. Because, under the assumption of a zero leakage
field, the resonance frequency corresponding to the lateral electrode configuration
is obtained from the same Eq. (3.5) as the antiresonance frequency of the totally
coated plate, the resonance frequency shift due to the open electric boundaries is
equal t0 (we — ws). To obtain the corresponding shift in the antiresonance
frequency, the latter can be determined from the derived equation

€326 €22;€ .
(kaz Brhoos i+ (22 7 ”’s”") smﬂ,h) “u’
33

— 0,
(3.17)

€22

where the corrected piezoelectric and dielectric constants are
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B. Longitudinal vibration

Simple longitudinal vibrations are realized when one of the plate
dimensions is much larger that the others. In this case, the equation of motion
becomes one-dimensional (z,), and free-edge conditions for the only component
of stress Ty1|,, =0 can be satisfied by two partial waves k = (% a,0,0)",
traveling in the direction of the plate length (2!):

u; = Asinazr) +Bcosax,. (3.19)

The frequency equations (Mason, 1964) derived for two basic electrode
configurations are summarized in Table 2.4.

Table 2.4 Frequency equations for longitudinal vibrations

E Lk E| k
X, Tx,
Electrode ; | ‘
configuration p X, > X,
v v
N a9
Dispersion oo
relation @ =wy P a=wv/pshh
~2 tanal
Resonance cosal =0 1- kfl R 0
a
. -2 tanal
Antiresonance 1+ k:l P 0 cosal =
2 2
. 2 1 ~2 k
Coupling k3 = lTk—g_’ ki = 1 +l;cz )
coefficient ' n,
. g
with k2, = > with k¥ = —=
€3351) Biish
Note: Material coefficients involved in the above equations are defined by the
following systems of constitutive relations
{ Su = sfiTu +dnkEs Su=s\Tu+9ub
D3 =d3 Ty + ‘g'aEs ’ E=—-g/Tu+ ﬁlel )
They replace Eqs. (2.21)—(2.22) of Chapter 1 because for the given boundary conditions it
is more convenient to use (T, E) and (T,D) instead of (S,E) as sets of independent variables.

It is more complicated to impose open electric boundary conditions in this
. model since the electric flux associated with longitudinal vibrations varies in the
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direction of the length. Its exterior part is not uniform, as it was in the case of
thickness vibrations; rather, it is described by Eq. (2.9), thus adding another
dimension to the problem. Ogawa (1969) and, later, Ikeda (1996) treated the effect
of flux leakage in terms of a depolarization factor N, defined as

E = —N—Ii, (3.20)
€0

where E and P are respectively the scalar components of electric field and
polarization in the piezoelectric plate. It takes into account the correction to the
depolarization field —P/ey (Ikeda, 1996) due to the nonuniformity of P in the
plate cross-section. An estimate of the two-dimensional factor N can be obtained
if this cross-section is approximated by an ellipse, for which the polarization is
uniform and assumed to be equal to P in the thickness-direction of the plate. For
instance, if the thickness of the plate is not small, the electric flux will expand in
the transverse direction z> (see Table 2.4, column E L k). In this situation, €33 is
replaced by e33/T", where the introduced factor I is given by

r=1/(1+1;1ie—°). (.21)

The admittance of the plate, from which the frequency equations analogous to
those of column E 1 k in Table 2.4 are derived, is transformed by means of the
depolarizing factor into

22 tanal)’ (.22)

Y = jC; (1 + k3, ol
where C.=C,/T and ko = k>,T are the modified static capacitance and
coupling coeflicient respectively. It is seen from Eq. (3.22) that the resonance
frequency is not affected by this modification, while the antiresonance frequency is
decreased. The second field orientation (E || k), for which both characteristic
frequencies diminish in the presence of leakage field, can be treated in terms of a
dynamic depolarization factor N’. Factor N’, in contrast to the previous static
depolarizing factor N, takes into account the sinusoidal field variation along the
length direction, and is, therefore, function of the wavelength. Obviously, for
w— 0, N — N.
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3.2  Mindlin's theory

Mindlin's approximation technique is best suited to predict resonances in
thin piezoelectric plates. It consists in reducing the three-dimensional governing
equations of piezoelectricity into two dimensions by, firstly, expanding the
mechanical and electrical displacements in Cauchy's power series of the thickness
coordinate of the plate z,

(D) (;((:)) ) (3.23)

with coefficients u® and D™ are independent of z,. The series (3.23) are
truncated after a small number of terms, typically n = 0, 1, 2, and then substituted
into the three-dimensional equations in differential or variational forms. These
equations are integrated with respect to the expansion variable z; to produce a
series of two-dimensional (z;, z3) equations in stress- and electric-potential
resultants

n)
(T:u)) / 2.'2( )d:l:g, (3.24)

with surface driving terms

F®) n-T
(q,(n)) = [%( o )]_h (3.25)

respectively (Tiersten, 1969). This operation increases the number of parameters
to be determined, but the resulting equations are simpler to solve, and closed form
solutions are often available. Finally, to compensate, in part, for the truncation in
(3.23), the material constants are premultiplied by some correction factors. The
values of the latter are chosen from a comparison of a selected approximate
solution, such as a thickness-shear mode, with a reference exact solution of three-
dimensional equations (e.g. infinite plate).

5 In contrast, a revised version of the same theory (Mindlin, 1972) starts with the
expansion of the mechanical displacements u and electric potential ¢ in power series,

which yields the two-dimensional equations in resultants T and D™ = f 23D dz,,
h
and surface charges o) = [zg"’n . D] A
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The modes that Mindlin's approximation is able to encompass are determined
by the displacement terms u(™ retained in the expansion (3.23). The theory was
initially developed to study the coupled flexure (ug])) and thickness-shear u{”)

modes in a rotated Y-cut quartz plate (Mindlin, 1952), as functions of one
coordinate x, (the width of the plate was neglected) in the direction of the digonal
axis of quartz. This approach has been subsequently extended to include
resonances of the extension (ugm)’ face-shear (12;’"3, and thickness-twist (ugl))
modes propagating in both the directions z; and z; in a rectangular quartz plate
(Mindlin and Spencer, 1967), as shown in Fig. 2.4, and, finally complemented by a

7

thickness-stretch (ug)) mode (Mindlin, 1984).
7 :
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Fig 2.4 Displacements and dispersion curves for the five modes propagating along the
z, and z; directions in an infinite AT-cut quartz plate (Mindlin and Spencer, 1967).
Here, 2 is the normalized frequency, and k,, and k; are respectively the real and
imaginary parts of the wave number.

Although resonance frequencies are well approximated by Mindlin's theory, the
actual mode shapes cannot be determined because of the pre-assigned
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displacement dependence (3.23) on z,. Similarly, since the stress T and potential
are not defined at a point but appear in the plate equations only as resultants
(3.24), it becomes rather difficult to impose boundary conditions. The latter are
now partitioned into the edge and interior boundary conditions, and involve the
displacement coefficients, resultants and surface driving terms (3.23)—(3.25)
(Tiersten and Mindlin, 1962). The mechanical effects of the electrodes (mass,
stiffness, size), can be incorporated in the Mindlin's model by means of the surface
loadings ¢™ (Mindlin, 1963; Mindlin and Lee, 1966; Tiersten, 1969). It is,
meanwhile, more complicated to accommodate electrical boundary conditions for
both the electric potentials and charges may be specified on the plate surfaces.
Indeed, since the two-dimensional equations contain only the surface potential
&™), a relation between &™) and the surface charges o|,, is required; by the
same token, if the surface charge densities (™) enter the equations (as in the
revised version of the theory), it needs to be related to the surface potentials ¢, .
Except for the simplest cases of a fully coated or totally free plate, such
relationships are not easy to derive for the general electrical boundary conditions,
no mention open electric boundaries.
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4 Numerical solutions

The main advantage of the approximation techniques described in the
previous section consists in their relative simplicity: frequency equations can often
be obtained in a closed form, and solutions can be analyzed and interpreted as
functions of frequency determining parameters. Although many resonator modes
are well approximated by these methods, their applications are limited to simple
geometries (e.g. thin plates or narrow thin bars) with trivial boundary conditions.
Attempts to analyze a number of selected modes in three-dimensional resonators
by partial waves methods lead to cumbersome expressions (Milsom ez al., 1983).
In Mindlin's approach, it is difficult to impose complicated boundary conditions,
whether mechanical or electrical.

Three-dimensional resonators or resonators with unconventional shapes and
boundary conditions can only be tackled by some numerical method (e.g. finite
differences, finite elements, and boundary elements) whose development was
greatly stimulated by the growth of computer facilities. The first part of this
section describes the evolution of the finite element method, which has been the
principal numerical tool for modeling piezoelectric resonators since the early
seventies. Because none of the described finite element applications is adapted to
include the electric field induced in the outer space by the piezoelectric vibrations,
the second part of this section reviews the corresponding methods that have been
designed to cope with unbounded regions in electromagnetics.

4.1 Piezoelectric problems

The application of finite elements to piezoelectric problems is often said to
date from the paper by Allik and Huges (1970), who reported a general
formulation of piezoelectric vibrations in terms of tetrahedral finite elements.
However, the underlying piezoelectric variational principle had been given earlier
in the work by Eer Nisse (1967), and Holland and Eer Nisse (1968), who
developed the variational technique to calculate the normal modes in ferroelectric
ceramic parallelepipeds and in thick piezoelectric disks by approximating the
mechanical displacement and electric potential with the products of sinusoidal and
Bessel functions. The finite element formulation generalized this approach by
replacing these globally defined, and therefore inconvenient for complex
geometries, trial functions, by the interpolation functions defined on the finite
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subregions, or elements. The choice of the latter, dictated by the geometry of the
structure and the accuracy required, is very wide and has been constantly
broadened with new applications.

Although the finite element method quickly gained popularity, it could not be
immediately applied to model three-dimensional motion in piezoelectric resonators
because of the large computational resources required, and has been preceded by
various one- and two-dimensional approximations. An important contribution was
made by Kagawa and his co-authors, who applied the finite element method to a
large variety of piezoelectric structures. Starting from the one-dimensional analysis
of flexural vibrations in composite electromechanical vibrators (Kagawa and
Gladwell, 1970) and filters (Kagawa, 1971), he subsequently extended the finite
element approach to approximate the lowest modes in partially plated rectangular
ferroelectric ceramic plates (Kagawa and Yamabuchi, 1974) and the thickness
vibrations in circular and plano-bevel quartz plates (Kagawa ef al., 1975). In the
latter thin plate applications, the problem was reduced to two-dimensions by
assuming the displacement is independent of the thickness coordinate or changes
sinusoidally along the thickness direction respectively; the mechanical
displacements in lateral directions were approximated on triangles of second order.
The same type of elements was used more recently to predict the frequency-
temperature characteristics of rectangular and plano-convex quartz plates and to
model piezoelectric ceramic gyroscopes (Kagawa et al., 1996). Kagawa was also
the first to employ triangular ring elements for the axisymmetric vibrations of
piezoelectric circular rods (Kagawa and Yamabuchi, 1976).

A significant number of publications arose from the combination of the finite
element method and the Mindlin's approximation technique. In this approach,
Mindlin's two-dimensional plate equations are not solved explicitly for a limited
number of modes but, rather, written in a variational form, are discretized into
finite elements. This facilitates the imposition of boundary conditions and broadens
the range of geometries Mindlin's approximation can be applied to. Cowley and
Willis (1974) used triangular elements to discretize a circular AT-cut quartz plate
with partial electrodes and calculated resonance frequencies around the
fundamental thickness-shear mode. Mochizuki (1978) employed triangular prism
elements to obtain the frequency spectrum for a variety of circular and rectangular
quartz plates. More recently, the finite element method based on Mindlin's plate
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equations was used to study the frequency shift in quartz plates due to the
electrode mass-loading and shape (Lee ef al., 1982), temperature (Yong, 1987a),
acceleration (Lee and Tang, 1987; Lee and Guo, 1991), or the piezoelectric effect
itself (Yong and Zhang, 1993) if the basic model was purely mechanical. An
interesting approach that combines the finite element, Mindlin's and the partial
wave methods was described by Sekimoto and his associates. They proposed to
satisfy the two-dimensional Mindlin's equations by a linear combination of
eigenmodes (partial waves) guided in the width direction of the plate, while their
amplitudes being approximated by one-dimensional finite elements in the length
direction. This technique, that appears to be both computationally efficient and
accurate, was employed to study spurious resonances and their equivalent
electrical parameters in the miniature rectangular quartz resonators (Sekimoto et
al., 1990, 1992).

As mentioned earlier, the full three-dimensional simulation of piezoelectric
resonators represents a challenging task. Since most resonators operate with high
frequency thickness modes, a large number of finite elements is required to capture
the mechanical and electrical field distributions along the lateral dimensions of the
plate. Problems with 10*—10° degrees of freedom (Lobitz et al., 1990; Trimpy and
Zingg, 1993) are routinely encountered. For this reason, three-dimensional finite
elements have been principally used to model low-frequency piezoelectric devices
such as tuning forks for wrist-watch resonators (Tomikawa er al., 1978; Yong,
1987b) and other flexure-type quartz vibrators (Soderkvist, 1990), ultrasonic
transducers for sonar applications (Allik ez al., 1974; Decarpigny et al., 1985) and
medical imaging (Boucher et al., 1981; Naillon et al., 1983, Lerch, 1990), as well
as composite transducers with periodic structure (Hossack and Hayward, 1991;
Huang and Boucher, 1994). In many cases, the authors carried out the entire
piezoelectric analysis using existing commercial finite element packages with added
piezoelectric capabilities such as ANSYS (Ostergaard and Pawlak, 1986),
NASTRAN (McDearmon, 1984), or ATILA (Decarpigny ef al., 1985); or adapted
their code to the solver, pre- and post-processing parts of PATRAN, ABAQUS,
MODULEF (Chalande, 1990), and FINEL (Guo et al, 1992) finite element
software. In other cases, self-developed piezoelectric programs based on either
standard tetrahedron and hexahedron elements with polynomial interpolation or
custom designed elements (Raoelijaona and Dulmet, 1994) have been developed.
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In any case, because most transducers are typically made of materials with very
high permittivity constants, the problem of modeling the fringing electric field has
never been raised in the context of three-dimensional finite element analysis.

To conclude this section, some alternative numerical methods should also be
mentioned. The method of finite differences was used in the late sixties to study
low frequency contour modes in quartz plates (Lloyd and Redwood, 1966), but
has subsequently given way to a more versatile finite element method. It has the
advantage of yielding linear systems that are much more sparse, and is still applied
from time to time to two-dimensional structures with regular boundaries
(Campbell and Weber, 1992) or to the time-domain models of acoustic wave
propagation (Kostek and Randall, 1994) or vibrations (Yamada and Sato, 1998).
The boundary element method represents a potential interest for the piezoelectric
problem with open electric boundaries since it is ideally suited to modeling infinite
regions. However, its application implies the knowledge of the Green's function
and its first spatial derivatives which are difficult to obtain in a closed form for
piezoelectric solids, and were evaluated so far only numerically (Chen and Lin,
1995). More appropriate for complex piezoelectric structures is the hybrid finite
element-boundary integral method, applied in the early seventies to study the
vibrations of sonar transducers immersed in an infinite acoustic medium (Smith et
al., 1973); unfortunately, such methods often lead to unsymmetric global matrices
in contrast to the pure finite element analysis (Lerch, 1992).

42  Open-boundary electromagnetic problems
Many efficient numerical methods have been developed in electromagnetics
to model open-boundary problems. 1t is, therefore, natural to choose among them
an appropriate one that could be used in conjunction with the finite element
representation of the piezoelectric part of the problem. Several good surveys of
these methods (Emson, 1988; Silvester and Pelosi, 1995; Webb, 1995) facilitate
the selection. Although all methods are very different both from the point of view
of the underlying mathematical principles and computing requirements, one can
typically distinguish
- the methods suited for quasi-static and wave problems. The range of
techniques that can model the smoothly decaying quasi-static field is, clearly, much
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wider than that of methods designed to approximate the wave behavior at infinity.
Only the former will be considered here;

- the global and local, or elemental, methods. The authors of the surveys
attribute different meaning to these terms which leads not only to a confusion but
to, sometimes mutually exclusive, grouping of methods. Webb (1995) related this
classification with the sparsity of the system coefficient matrix K* arising from
the modeling of the exterior region. With this approach, global methods are those
that couple the surface unknowns thus yielding a dense matrix K, while the local
methods keep it sparse.

Various, more detailed, schemes of classification exist. Loosely, the numerical
techniques suitable for modeling the unbounded exterior quasi-static fields can be
grouped into the following families:

a) In the simple truncation or simple constraint methods the hypothetical
boundary I, that separates the interior and exterior parts of the problem (Fig 2.5),
is placed far enough from the sources to allow setting all fields to zero or assuming
a decay outside of I according to a predetermined (e.g. exponential) law. The
extended interior region is modeled by a finite element mesh.

r

Fig 2.5 Partitioning of the problem domain into interior and exterior parts.

b) Hybrid methods represent the field outside of I in terms of an integral
expression, while the interior region £, is modeled by finite elements. Silvester
and Pelosi (1995) classified various hybrid methods according to the type of basis
functions (polynomials or eigenfunctions) employed to approximate the exact
boundary conditions on I" expressed in terms of the free-space Green function and
its derivatives. For this reason, this family of methods includes not only the
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‘classical’ hybrid finite element-boundary integral method reported in the papers
by Silvester and Hsieh (1971) for the two-dimensional Laplace equation and by
McDonald and Wexler (1972) for the Helmholtz equation, but also the semi-
analytical fransfinite element method (Lee and Cendes, 1987) that employs the
expansion in Fourier series for approximating the continuity condition for the
electric potential and its normal derivative on a circular (spherical) boundary I

c) The recursive condensation methods treat the exterior region as a single
‘superelement’, obtained from the successive enlargement of the boundary T to
infinite size ', by attaching geometrically similar layers of elements until zero-
potential boundary conditions can be applied to I',. This boundary increase is
accompanied by an elimination of all nodes between adjacent layers leaving only
those on T, so that the total number of the variables remains unchanged. The first
method of this group appeared under the name of ‘ballooning’ (Silvester ez al.,
1977), in which a very remote boundary I',, was reached after a few iterations.
This method was refined to its limiting cases by the ‘infinite substructuring’
(Dasgupta, 1984) and the ‘infinite scaling’ (Hurwitz, 1984) techniques that
improved its numerical accuracy by using an infinite number of recursive steps and
an infinite sequence of infinitesimal steps respectively.

d) The transformation methods use special coordinate transformations to map
the exterior unbounded region onto the region of finite volume that can be
subdivided into regular finite elements in the same way as the interior problem. The
shape of the inner boundary I, transformed into itself in this operation, determines,
in part, the transformation rule. The simplest circular or spherical boundary I is
associated with the well known Kelvin transformation, used by Freeman and
Lowther (1989) to solve axisymmetric and three-dimensional problems; a general
mapping that corresponds to an arbitrary star-shaped I" was described by Stochniol
(1992).

All these techniques are sufficiently documented in the mentioned references,
and no attempts are made here to discuss them in more detail; instead, their
principal features are summarized in Table 2.5 to explain the choice of method
suitable for the use with the finite element model of piezoelectric structures.
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Table 2.5 The features of numerical techniques of modeling the exterior
unbounded quasi-static fields

Methods Advantages Disadvantages
—sparse coefficient matrix —introduce additional
~Simple —simple to implement degrees of freedom
constraint —compatible with existing FE codes | 50" % A8
—Transformation | —potential values calculated cy dep
X the choice of "
or recovered at all points
(shape and closeness to S) . .
All —additional variables may be —full coefficient matrix
avoided
—Hvbrid —evaluation of Green's
Y . —no iterative calculation involved integrals with strong
(polynomial) . ...
singularities
—exterior potentials
_Ballooni —algorithm is simple not calculated
nng to implement —matrix inversion at
each step of recursion
—Infinite —exterior potentials can —solution of a quadratic
substructuring be recovered from the solution eigenvalue problem
_Infinitesimal | ~high accuracy in the modeling | _>°iution of a nonlinear
. . - ordinary differential
scaling of exterior region . .
matrix equation

Initially, the method of ballooning was selected as one of the easiest to
program. Its implementation allowed performing rapid tests to demonstrate the
substantial influence of the exterior quasi-static field on piezoelectric vibrations.
Subsequently, the choice a global method was confirmed when some of the free
space was includes into the interior domain Q;,, to visualize the fringe field.
Numerical tests showed that even an element-thick layer between I' and the
surface of the piezoelectric region considerably increases the size of the finite
element equations, which limits the spectrum of problems that can be modeled at
the present level of computer facilities. Therefore, for reasons of storage economy,
the numerical techniques belonging to the category of local methods were



80 2 Waves and vibrations with open electric boundaries

temporarily put aside since they inevitably introduce additional degrees of freedom.
The hybrid methods, in which the placement of boundary I' is also arbitrary,
represent an alternative to the recursive condensation techniques. However, the
calculation of the exterior element implies a numerical or symbolic evaluation of
integrals with Green's functions kernel, which cannot be done accurately unless
special measures that alleviate the associated singularities are taken. It was judged
that obtaining the exterior element by the method of ballooning was
computationally more straightforward than adapting these special schemes to
various functions that might be used to approximate the boundary potential. As for
other recursive condensation methods, only the infinite restructuring offers a real
improvement compared to ballooning: it allows the exterior electric potential
distribution to be recovered from the solution but, unfortunately, at the price of an
increased computational complexity. Taking all these considerations into account,
it was decided to keep the ballooning technique as a principal tool for solving
Laplace's equation in the unbounded space surrounding the piezoelectric solid.
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s Statement of problem

The above review shows that for problems with simple planar boundaries
the exterior potential distribution constitutes an integral part of the analytical
solution for either surface or guided waves. For practical vibrator configurations,
the piezoelectric problem with open electric boundaries must be tackled as a three-
dimensional one, whose solution can only be accomplished by applying some
numerical technique. No such method had been developed yet. The reported three-
dimensional finite element models do not take into account the quasi-static electric
field that surrounds the deformed piezoelectric solid. This can be explained, in
part, by the fact that most of these models deal with materials possessing high
relative permittivity coefficients, such as piezoelectric ceramics for transducer
applications. In this case, the neglect of the fringing field can be justified; however,
it can introduce a significant error in the analysis of crystals with low €° /¢y. Such
materials are predominant in devices for frequency control, where high precision is
required not only at the design stage but also while modeling parameters of these
devices.

As was demonstrated, previous attempts to include the exterior electric field
were limited to one-dimensional models of piezoelectric vibrations. Even these
simples models suggest that the equivalent electrical parameters (C;, C,), coupling
coefficient k%, and antiresonance frequency f,, i.e. those characteristics that
depend on electrical boundary conditions, can be especially inaccurate if
approximate solutions neglect the external electric field. Moreover, some modes,
piezoelectrically inactive for a given electrode configuration, can be excited
electrically by this fringing field. It is, therefore, felt that if the latter were included
into the problem domain, a more realistic model of piezoelectric vibrations would
result. The objective of this thesis is to develop a finite-element based numerical
solution of the three-dimensional piezoelectric problem with open electric
boundaries.
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Finite element formulation

1. Introduction
This chapter develops an approximate solution based on the finite element
representation of projective equations derived in Chapter 1. In this approach, the
unknown quantities are, first, approximated on geometrical subregions, or
elements, of the problem domain. Second, an approximate solution for the entire
region is built up by enforcing some or full continuity requirements between the
elements. One of the main advantages of this approach is that the resulting stiffness
and mass matrices, formed on the element-by-element basis, are sparse, which is
crucial for a fast computer solution of the associated system of equations.
However, the numerical properties of assembled, large scale finite element
models will be addressed in the next chapter; the present one deals with Jocal, or
element, matrices, i.e. with the matrix representations of individual elements. Such
matrices are constructed for the tetrahedral elements in the piezoelectric part of the
problem domain, and for the bordering ‘toblerone’ elements, used to discretize
some of the surrounding free space prior to starting the process of recursive
condensation. Because the piezoelectric problem always allows a formulation in
terms of ‘potential’ functions u and ¢, both continuous across material interfaces,
the scalar, or nodal, finite elements seems to be the most appropriate. The method
of universal matrices, extended here for piezoelectric media, is used to derive local
matrices for high-order tetrahedra; the bordering elements are formed by ordinary
numerical integration.
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2. Finite element modeling of the unbounded problem

In this section, the symmetric matrices (5.30)(5.33) of Chapter 1 arising
from the Galerkin approach are recast to integrate the finite element method of
approximating the mechanical and electrical field distributions. Different types of
finite elements are employed for the inner and outer parts of the problem domain,
i.e. for the piezoelectric body and the infinitely extending free space around it. The
interior region is modeled by conventional tetrahedral elements with interpolative
approximation. The exterior quasi-static electric field is represented by a single
infinite element, or superelement, resulting from a recursive condensation process
described in this section.

2.1 The finite element approximation

In the expansions (5.14) and (5.15) of Chapter 1 it was tacitly assumed that
functions o;(r) and o}(r) had been defined on the entire problem space — V' and
V + V respectively. In contrast to this global approach, the finite element method

uses piecewise basis functions, defined on a union of non-overlapping subregions,

or elements, V, that fill the problem domain: V +V = }_ V.. The unknown
(e)

quantities u and ¢ are uniquely represented within each element as:

M

ul®(r) = Z ul®al(r), 2.1
m=1
M

P =Y pald(®), 22)
m=1

where M is the number of basis functions a()(r), r € V.. Equations (2.1)+2.2)
ensure that as soon as parameters u{?) and (%) are determined from the solution,
the approximated quantities u and ¢ can be calculated everywhere in V' and
V + V respectively.

Because the present finite element modeling is based on nodal simplex
elements (Appendix 3), the numerical coefficients u{s) and {9 in (2.1) and (2.2)
have the physical meaning of field values at node r,,, provided the interpolative
polynomial a!{®) has unity value at r,, and vanishes at the rest of the element nodes:
als)(ry) = 8pmn. If the same order of polynomial interpolation is used in all
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elements, the interelement continuity of the approximated quantities u and ¢ is,
therefore, enforced by setting equal values to the unknown u{?) and () associated
with nodes shared by several elements. This is accomplished by assigning the same
global index ig to the common node m. The integer function ig = ig(e, m) maps
the local, i.e. proper to the element e, index m = 1,..., M onto a unique global
node number ig = 1, ..., n! so that approximations (2.1) and (2.2) can be rewritten
as

M
u®(r) = Z Uig(e,m)a) (), (2.3)
m=1
M
‘p(e) (l') = Z ‘pig(e,m)asz) (I' ), (2’4)
m=1

where u;, and @, are the globally numbered quantities from the projective
equation (5.29) in Chapter 1.

The global stiffness K and mass M matrices in (5.29) can now be assembled
from E local, or element, matrices K{¢) and M(® as follows

E M M (
Kig@ist) = 9 2 DK, 2.5)

=1 =1 j=I

E M M
Mo = 3. 2 MY (2.6)
e=1 i=1 j=1
The local matrices K® and M are defined as their global counterparts
(5.30)«(5.33) of Chapter 1, except that the integrals are now taken over the
element volume V,:

K = ( /V Va; -t Va; dV) 2.7

i=1,...,.M, j=1,...M,

1 Because Eqs. (2.1) and (2.2) imply that the sets of basis functions o/ and o; used to
approximate the mechanical displacement and electric potential in Eqgs. (5.14)—(5.15) of
Chapter 1 are identical, it follows that N = N’ = n, and the array of global indexes ig
is the same for both field variables.
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Mf;) = I(p / a; a; dV) (2.8)
Ve =1,...,.M, j=1,...M,

where a generic tensor ¢ stands for tensors cZ, e, and €° in the elastic,
piezoelectric, and dielectric stiffness matrices respectively, and I is a 3 x 3 identity
matrix. Because the nodal variables u,, and ¢, are directly linked only to the
nodal variables of the same element (through the local matrix) or neighboring
elements (through global indexing), the element-by-element assembly in (2.5) and
(2.6) yields sparse and, provided an efficient global numbering is used, banded
stiffness and mass matrices.

The dielectric stiffness matrix K¥¥ is formed in two steps. First, its interior
part, i.e. the part associated with the piezoelectric material, is made up of element
matrices of type (2.7) with t = €°:

M M
Kot = 2 0 2 (K5)®. 2.9)

(e) =1 j=1

Second, the symmetric superelement matrix S, xn 2 is added to the part of K¥¥
that corresponds to the surface nodes:

ns ©Ns
Kqxiriast) = Kigatariastn + 2; Zl S (2.10)
1= =

where array igs(Z) maps the surface node index ¢ = 1, ..., ns onto the global index
igs. The recursive condensation process, that produces the superelement matrix S,
is described below.

2.2  The superelement for the exterior region

The three-dimensional version of the recursive condensation is a
straightforward extension of its two-dimensional ballooning method described in
Silvester et al (1977). The strengths and weaknesses of this technique have been
discussed in Section 4.2, Chapter 2 in connection with other methods of modeling
large empty spaces. In particular, the recursive condensation process, although

2 Starting from this chapter the symbol S, used earlier to denote the mechanical strain
tensor, will be reserved for the superelement matrix.
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reducing the sparsity of the global dielectric stiffness matrix (2.10), has the
advantage of not adding new degrees of freedom to the problem.

The most significant difference between the two- and three-dimensional
implementations of the balloon algorithm is the size of matrices to be recursively
inverted during the process of condensation. Since no interface separates the
interior region from the superelement, the dimension of such matrices is exactly
equal to the number of surface nodes ng, which tends to be large for many
geometries. It is, therefore, not very practical to attempt to generate the
superelement matrix without seeking simplifying assumptions. The latter will be
discussed in Chapter 4 along with the convergence properties of the three-
dimensional balloon recursion. The algorithm itself is described in great details in
Silvester and Ferrari (1996) so that only the main stages that lead to the matrix S
are outlined below.

1. The construction of the superelement starts with an enlargement of the
interior part of the problem domain 2 by a bordering region €2(,), whose outer
surface 9€(;) is obtained by scaling the boundary 952 by a factor > 1 about the
point O € 2, as shown in Fig. 3.1.

Fig 3.1 Cross-section of the interior region 2 of volume V enlarged by two successive
concentric shells ) and Q).

To ensure the continuity of electric potential ¢ across the boundary 952, the region
Q) must be made up of elements compatible with those in 2, ie. the
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approximating functions over 32 must be the same for adjoin elements from
regions 2 and €(;). An example of such elements is considered in Section 4 of this
chapter. If elements of high order are used to build (), all interior nodes between
o and 9Q(;) are to be eliminated by the process of static condensation. If no
condensation of unwanted potentials associated with interior nodes is to be
performed, S(!} can be viewed as a global matrix (2.9) for the space bounded by 3
Q and 3Q(1). In either case, the assembly of elements in £(;) produces the first
superelement matrix S().

2. The bordering region ;) is augmented by a layer ;) — an enlarged
copy of (1) obtained by scaling the boundary 3€2(;, by 7. Because the new region
Q1) is geometrically similar to (), the corresponding matrix S(!?), as an
inspection of (2.7) shows, can be obtained from S{!) as follows:

ste) — s, 2.11)
3. Regions Q) and ;) are combined into a larger one Q; = Q) U Qqe),

and unwanted potentials $¥5q, associated with nodes on 912, are eliminated (static
condensation) from the system

si? s o 0o o 9 Pan 0
0 0 0 o siY si|/ L®am, 0

to produce the element matrix S(?) that approximates Laplace's equation in region

Qg:
(2) (2)
EREIEH] @)
S2l s22 n,
The new dense matrix S@ inherits the size ns X ns and the symmetry of the
original matrix S, so that §& = S&7.
4. Steps 2 and 3 are repeated iteratively until the outer boundary Q1) is

moved far enough from 9. At the kth iteration, the distance from the origin O to
a point on 9 Qi) increases in the power series

o=n, (2.14)
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so that, even for a scaling factors 7 close to unity, typically six or seven iterations
suffice to impose the infinity boundary condition (Eq. (4.15), Chapter 1) on
O(k41). At every successive condensation, the superelement matrix S*) is
replaced by S(**!) which models a larger portion of the exterior empty space. Its
submatrices can be are expressed in terms of submatrices of S(*) and the distance
(2.14) as follows:

T
s+l _ g®) _ [D-lsggr] [D"Sﬁ”], (2.15)
T
Sgl;-i-l) - 0 [D-IS{’;)T] [D—-lsg)]’ (2.16)
T
s = o8l - o2[p71sf)] [p7'sE], 2.17)

where D is the Choleski factor of the matrix
s + a8 = ppT. (2.18)

5. At the last iteration, only submatrix S;; needs to be calculated and stored.
Submatrices S;2 and S;; are of no practical interest unless other than zero
potential boundary conditions are imposed at infinity. Therefore, S;, represents the
final superelement matrix S that models the exterior quasi-static field:

S®sn = 0. (2.19)

Because the recursive node condensation leads to a dense matrix S, all surface
electric potentials ®n are coupled to each other. It will be shown in Chapter 4
that no significant error is introduced in the solution by neglecting the coupling
between distant nodes. Therefore, many entries of S can be discarded, and only a
small part of S is added to the interior dielectric global matrix K¥¥ in (2.10).
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3. Tetrahedral elements for the interior region

Scalar tetrahedral elements have been chosen to discretize the interior
piezoelectric region. Tetrahedra inherit all the geometrical and algebraic virtues of
simplex elements among which the most important are the following:

— any polyhedral shape can be represented as a union of tetrahedra;

— interpolation polynomials of any degree N are easily constructed on
simplex elements (Appendix 3). These polynomials form a complete set, so that
any polynomial of degree N and lower can be expressed as a linear combination of
its elements. This results in the ‘geometric isotropy’ of simplex elements — a
property of being independent (e.g. from the point of view of the accuracy of
approximation) of the orientation within the global coordinate system (Silvester
and Ferrari, 1996);

— the continuity of approximating functions is automatically satisfied between
elements of the same order for sets of regularly spaced interpolation nodes
coincide for adjacent faces or edges;

— because differential and integration operations involved in the construction
of simplex elements are carried out in homogeneous coordinates, a considerable
part of algebraic calculations (Appendix 3) can be done only once — for a generic
tetrahedron — and applied afterwards to any element. This property is best
illustrated on the example of universal matrices considered below.

3.1  Stiffness and mass matrices

The traditional way of evaluating matrices (2.7) and (2.8), inherited from
structural mechanics, is by numerical integration, using quadrature formulae for
tetrahedra (e.g. Hammer, Marlowe, and Stroud, 1956). Since products
Va;-t-Va; and a; a; have to be recomputed at many integration points, this
approach is computationally costly and potentially inaccurate, particularly for
elements of high-order. With advances in symbolic algebra packages, it became
possible to derive closed-form expressions for (2.7) and (2.8) (Moetakef,
Lawrence, Joshi et al, 1995). In this approach, the calculation of the mass matrix
causes no problem since the result is purely numerical. Moreover, for the first two
orders of tetrahedra, having explicit expressions for the stiffness matrix elements
reduces the computation time and round-off error as against the numerical
integration. However, for tetrahedra of order higher that two, the symbolic
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generation of the stiffness matrix takes a lot of time and produces very lengthy
expressions that are handled with difficulty by the symbolic computation programs
themselves, and, later, by some compilers, when integrated with the finite element
code. This suggests that both the numerical and the analytic integrations of the
entire stiffness matrix are not very practical for high-order tetrahedra.

An alternative approach to setting up tetrahedral elements, is to use the
pre-computed, or universal, matrices. Very popular in electromagnetic finite
element applications, the pre-computed matrices had proved helpful in acoustic
problems as well, soon after their introduction by Silvester (1969). Stone (1973)
used five different types of matrices to assemble high-order triangular elements for
modeling the surface acoustic wave propagation in isotropic guiding structures.
Although Stone's work clearly demonstrated the elegance and efficiency of this
approach, to the best of the author's knowledge, no further applications of
universal matrices in acoustic problems, and all the more in the piezoelectric finite
element analyses, have been reported since. The object of this section is to derive
such matrices for piezoelectric tetrahedra of high order.

The idea behind this method is to separate material properties, as well as
geometric coefficients and volume of the tetrahedron, from terms containing
interpolation polynomials and their derivatives. The former are problem specific
and can be combined into the weighting coefficients; the latter are independent of
the tetrahedron shape and size, and, when integrated in local coordinates, form
purely numerical (universal) matrices that can be pre-computed and tabulated. The
element matrices are then generated as weighted row and column permutations of
universal matrices with exactly the same computational efforts for elements of any
order.

Consider first the element stiffness matrix (2.7). The gradient operator in local
coordinates has been derived in Eq. (3.2), Appendix 3 and is given by

= m) 2 3.
Vai= g7 2 "5 (RY)
where V is the tetrahedron volume, and g™ denotes the array of geometric
coefficients [bn cCm dm]T, defined by Eq. (1.4) of the same appendix. The
block-element of the stiffness matrix is now represented in the discrete form
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1 Kd da; Oa;
(tet) __ (mn) / #]
i = T W ——dV, 3.2

o (6V)2,§1 ; v 3 8¢, G2
where the weighting coefficient W(™") is defined by the double scalar product of
geometric and material parameters

Wimn) _ glm) ¢ g(m), - (33)

Factor W(™™) is respectively a 3 x 3 matrix, a 3-dimensional vector, and a scalar
when ¢ stands for tensors cZ, e, and €°; expanded expressions (3.3) are tabulated
in Appendix 4 for all these tensors. The weighting factors W(™®) are linearly
dependent:
4

Y wmr =0, m=1,..,4, (3.4)

=1
just as the geometric coefficients b,,, ¢, dn are (Eq. (1.6) of Appendix 3).
Another property of W(™") follows immediately from its definition (3.3):

w(nm) — w(mn)'l' ) (3 .5)

On combining equations (3.4) and (3.5), it becomes clear that only six out of
sixteen factors W(™) are ‘independent’, and need to be calculated for every
tetrahedron; the remaining coefficients can be found from the system

Wb L w2 L wi3) L wid) o
wAT w4 w2 L w@) =g,
wWIT |y (@)T + W3 4w - 0,
WOAOT | w(OT | gwGOT | pyid4) _ 0,

G-6)

and Eq. (3.5).

The integral in (3.2) can be made independent of the tetrahedron shape and
volume by performing the integration with respect to the local coordinates. For
tetrahedra this transformation requires premultiplying (3.2) by 6V (Eq. (4.2),
Appendix 3). The block-elements of the stiffness matrix K can therefore be
calculated as a weighted combination
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(tet) __ mn)gy(mn)
K" = GVZZW( 2w, 3.7

m=1 n=1

of purely numerical matrices ™™ whose elements are evaluated by integrating
polynomials (8a; /3¢,,,) (Oaj/ 3¢, ) over a tetrahedron Q of unit volume

gqimn) _ [ Oai Oay
Q aCm aCn

Equation (3.7) can be written in matrix notation by invoking the tensor product® of
two matrices:

d¢;d¢adg;. (3.3)

(tet) __ (mn) (mn)
K V; g wm) g o (3.9)
This implies that if the weighting factor W(™®) is a p x ¢ matrix and A™™) is a
M x M one, the resulting pM x qM stiffness matrix K™ will be partitioned into
M? blocks K" of size p x g each, defined by Eq. (3.7).
The number of terms in (3.9) can be reduced by eliminating one of the four
local coordinates (e.g. ;) using Eq. (1.3) of Appendix 3. The discrete form of the

gradient operator (3.1) can now be replaced by
da; Oa;
. z : m)f “+

m—l

according to Eq. (3.4) of Appendix 3. This change tumns (3.9) into a nine-term
summation

K — Vz ZW(""" ® W™, G.11)

m=1 n=1

and gives rise to a new set of numerical matrices B(™™ defined by

(mn) _ da; da; Oa )
B /(ac,,. ag) (ac,. ac, ) ¥19adls. 3.12)

3 This kind of matrix operation is also referred to as Kronecker or direct product
(M.Marcus and H. Minc, 1964).
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An alternative way of condensing the discrete representation of the stiffness
matrix is to eliminate diagonal members m = n from (3.9) by expressing them in
terms of off-diagonal ones using system (3.6). After some rearrangement, this
yields a twelve-term expansion

1 3 4
K — _G__V_Z Z (W(mn} ® €M) L wimn)T o t("m)) (3.13)

m=1 a=m+l1l

with numerical matrices €™™ whose elements are determined as follows

Q-(?m) . 301 (3(!,‘ _ 8a,-
Hm  Fa

o = [ 58 ) dcudcades. (3.14)
A similar approach led Silvester (1972) to define a symmetric numerical matrix
Q™™ (Eq. (2.3), Appendix 4) that was employed in the solution of the three-
dimensional scalar Helmholtz equation for isotropic media; the weighting
coefficient matrix reduces then to a scalar symmetric array
W™ = bbp + CnCn + dmdn = W™ Because for the piezoelectric
tetrahedral elements the weighting factors W(™") are, in general, neither scalar nor
symmetric, nonsymmetric matrices €™ and €™ in (3.13) cannot be combined
to form one symmetric matrix Q™). The relationship between matrices Q and €
is given by Eq. (2.4) of Appendix 4.
Finally, the mass matrix (2.8) is easily obtainable from the numerical matrix ¥,

%=Lm%%%%, (.15)

also called a metric of the interpolation polynomial basis {a;}, as
M™ = 6VpE QL (3.16)

As it follows from the above discussion, to generate the tetrahedral elements,
only two types matrices are needed — the metric matrix ¥ and one of the matrices
A B, and €, in principle, either of the three equations (3.9), (3.11), and (3.13)
can be employed to assemble the stiffness matrix K. However, the symmetry
properties of 2, 28, and &, that are discussed in the following section, may be
decisive in the choice of the numerical matrix to be retained for the computer
implementation of the finite element analysis.
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3.2  Symmetry and permutation properties of universal matrices

The numerical matrices A, B, €, and ¥, defined in the previous section,
are all universal in the sense that their elements are exactly the same for any real
tetrahedral element. They can be computed up to any reasonable order of
interpolation polynomials and stored in the form of integer numbers with a
common integer denominator. By explicitly writing {a;} in terms of auxiliary
polynomials (Eq.(2.1), Appendix 3), the integrals (3.8), (3.12), (3.14), and (3.15)
are best evaluated analytically using a symbolic algebra program. Alternatively, the
matrices A, B, and € can be derived from a basic set of universal matrices
(Silvester, 1982a; Silvester, Minhas, and Csendes, 1981), which counts among its
members the already known metric matrix ¥ and the finite differential operator D,
formed by the derivatives of polynomials a; with respect to the local coordinates
O0a;/3¢,, evaluated at the interpolation nodes P; (a;(P;) =1 for i =j, and
a;(P;) = 0 for ¢ # j):

da;
DM = | . 3.17
el 3.17)
Equations (3.8), (3.12), (3.14) may now be rewritten in matrix form
q(mn) — pimIgpnT (3.18)
B — (D™ — D) (D™ — DW)T, (3.19)
et — _pmg (D™ _ pm)T (3.20)

Therefore, as soon as the fundamental matrices ®™) and ¥ are calculated and
tabulated, any of the matrices A, 28, and € can be generated from them at will. It
is also evident from the above equations that the matrices B and € are related to
A:

B(mn) _ guimn) __ ge(4n) _ gu(md) | o(44) (3.21)

@(mn) _ gy(mn) _ g(mm) (3.22)
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It follows from (3.18) and (3.19) that the property (3.5) of weighting
coefficients applies to the universal matrices 2 and 28 as well

m(nm) — a(mn)’l”

m(um) — m(mu)T (3 '23)

Taking into account that (A ® B)T = AT ® BY, this observation leads to the
following relation

w(nm) ®ﬁ(nm) — (w(mn) ®a(nm))'l"

3.24
wrm) o sglnm) (W(ﬂm) ® m(mn))T’ ( )

which reduces the number of numerical matrices A™™ or 8(™" that enter into
expansions (3.9) and (3.11) to ten and six respectively.

Because summations (3.9) and (3.11) involve fewer terms than (3.13) it might
seem that it is more economical to use the matrices 2 or B to construct the
stiffness matrix K™ _ At this stage, storage requirement should be considered
more closely. Indeed, not all the universal matrices need to be calculated and
tabulated: most of them are obtainable from one another by applying various
permutation operators associated with a regular tetrahedron (Silvester, 1982b)
such as

— rotation about the tetrahedron centroid (cyclic permutation of all four
vertices);

— rotation about one of the tetrahedron three-fold axes (cyclic permutation of
three vertices lying in the plane perpendicular to this axis);

— mirroring or ‘flip’ permutation (exchange of two vertices).

One way of deriving permutation rules for universal matrices is to identify them
with tetrahedron vertices and edges (Silvester and Ferrari, 1990). Using this
geometric analogy, it becomes evident that the symmetric matrices 2A(™™) can be
generated from one matrix A" by applying any permutation operation that maps
vertex 1 onto vertex m; the nonsymmetric matrices €A™, m # n, associated with
the edge mn can be obtained from one matrix, e.g. A'?, by employing
tetrahedron permutations that transform the edge _ﬁ) into edge mn’. The same
geometric argument applies to matrices 88(™)_ This means that in both cases at
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least two starting matrices need to be tabulated in order to generate complete sets
of universal matrices X and 28 from expansion (3.9) and (3.11).

In contrast, Eq. (3.13) does not contain any diagonal term (m = n); in other
words, the universal matrices involved in this expansion are associated with
tetrahedron edges only. This suggest that all the required matrices €™™ can be
generated from the basic matrix €!? alone by successively applying the same
permutations that relate edges mn to the edge _“i? An example of such

permutations is shown in Fig. 3.2.

4

1
. R, 2
—_—
.@4 3 4
2 3
R

2 3
—_—

Fig 3.2 Right-handed rotations R, and R; of the tetrahedron about ¢;- and {;-axes
respectively.

Rotations R; and R, that map the edge 12 onto edges 13 and 42
respectively, relabel the tetrahedron vertices according to the following matrices
1 0 O 1 0

R, = R; = (3.25)

-0 O O
©C O =0

00
01
00

OO ~=0

0 0 O
010
0 0 1

Matrices (3.25) can be used directly for tetrahedra of first order to obtain the
matrices €' and €“? as row and column permutations of €{!2:

€ — R,M2R], € — R,eI7R]. (3.26)

The diagram in Fig. 3.3 shows that these two rotations are sufficient to obtain the
remaining universal matrices.
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e X
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4 h'S
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Fig 3.3 Derivation of numerical matrices €™, m # n, from matrix €.

For elements of order higher than the first, rotation matrices must take into
account the relabeling of all the tetrahedron nodes. Such matrices have been
generated up to the forth order and compactly stored in the form of one-
dimensional arrays R, and R, whose entries indicate the column numbers of the
nonzero element in each row of R, and R; respectively. Examples of such arrays
for a tetrahedron of second order are given in Section 3, Appendix 4.

Following the described scheme, the stiffness matrix K? can be derived from
the row and column permutations of only one numerical matrix €!'?, and six
weighting coefficients W12, w3 w4 W) w9 w64 while €12 s
constant for a given order of interpolation, the weighting factors are recalculated
for every real tetrahedral element. Using the permutation arrays R) and R, the
element of the stiffness matrix is calculated as shown in Eq. (3.27). The number of
operations involved in (3.27) is fixed, and does not depend on the element order.
This sets practically no limit on the order of tetrahedra used in the analysis, which
distinguishes the method of universal matrices from other methods of computing
element matrices.

Equations (3.16) and (3.27) were implemented in the actual finite element
code. The required universal matrices €' and ¥ were calculated and tabulated
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up to the fourth order. Example of these matrices for tetrahedral elements of
second order are given by Equations (2.1) and (2.2) of Appendix 4.

(ter) _ 12) +(12)
K§ = {w‘ Lot
(2T ¢(12)
+ WO € R R R RAD))
(13)(12)
+ WL O R

+ WOITER & RO R BRI

+ WYL R R
+ WO R Rt

+ W Q:Rl(Rz(i)).Rl(Rz(j))

+ WL Ry

+ WOIELD R R R R RGN
+ WL o

COE R R RN R R R

+ WGHT tR,(R,(R,m».R.(Rz(xzm» (.27)
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4. Bordering elements

The basic requirement for elements in the bordering region €2(;) is that they
be compatible with tetrahedral elements used to subdivide the interior piezoelectric
region. The skew triangular prism, or skew ‘toblerone’ element, shown in Fig. 3.4,
arises naturally from the enlargement of border 2. The element shape is defined
by two similar triangles ABC and A'B'C’ connected by straight edges A-A’,
B-B’, C-C'. Because vertices A(z1,¥;,21), B(z2,¥s,22), and C(z3,¥;, z3) of
the surface triangle are also common to an interior tetrahedron ABCD (Fig. 3.4),
the continuity of approximating functions across the surface is automatically
guaranteed, provided the same order of interpolation over ABC is employed.

Fig 3.4 Skew ‘toblerone’ element — the building block for the bordering region Q.

Nodes A'(z4,¥4,214), B'(zs,¥s5,25), and C'(z6,¥s,26) are generated by the
mapping
oA OB ocC _
oA _o0oB oc "

@.1)

with respect to the point O(z,,¥,, z,) so that their coordinates are derived from
their surface counterparts as
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Yirz =N (yi - yo) + Yo, (42)

Ziyz =1 (:c; — :B,,) + z,,
i=123.
Zivs =0 (2 — 20) + 2o,

To construct the bordering element, it is possible to further subdivide the
described triangular prism into four tetrahedra, and to employ approximating
functions already derived for the interior region. However, this would imply using
the same order of interpolation on the surface, which is determined by the interior
tetrahedra, and in the radial direction. This could be particularly inconvenient if
high-order interpolation is needed to model the field variations inside the
piezoelectric domain, while lower degree polynomials might be sufficient to
approximate the electric field decay near the surface; moreover, high-order
interpolation generates nodes inside the bordering region (;) which must be
removed by the computationally costly procedure of static condensation. Instead,
it was decided to define the basis function over the whole prism. This allow
combining different interpolation orders over triangles ABC and A’B’C’, and
along the radial edges A-A’, B-B’, and C-C’, thus providing for more flexibility
in modeling the interior and exterior field distributions.

4.1  Approximation on the ‘toblerone’ element

Let the Lagrangian polynomials a‘(¢,, ¢, {3;) of degree N, and oa®(&;,£,)
of degree N, be associated with the line segment and base triangle respectively.
Because both shapes are special cases of simplexes, the interpolation polynomials
o' and a° can be expressed in terms of auxiliary polynomials R, using the multi-
index numbering:

o (C11C21€3) = Ren(Ne, $1) R (N2, $2) Ro (N2, Gs), (a.3)
m+n+o=N,, '

a:un(gl’ 62) = Rﬂl(Nn 51 )«Rﬂ(Ns’ §2)a m+n= N,. (44)

As is evident from the definition of R,, (Eq. (2.2), Appendix 3), functions o* and
o’ have zeros at M, = (N +1)(N: +2)/2 and M, = (N, +1) equispaced
points (Fig. 3.4) respectively. In a single-index notation, the Lagrangian
interpolation on the ‘toblerone’ element can be defined as a product of polynomials
o' and o*:
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@;(¢1, 62,6361, 62) = a:'@qu ) ek (61, 62)s 4.5)

where the correspondence between the index ¢ = 1, ..., M; M, and indices j and k
may be established in the following manner

i=(k—1)M +j, j=1,.. M, k=1,..,M,. (4.6)

The unknown potential can thus be approximated in terms of independent
interpolation functions a* and o® by
MM,

o(z,4,2) = Y 8:a}(¢y, Gas Gs) @i 61, &2) @7
=1
The same type of functions (4.5) is used to approximate the element shape
transformation, required subsequently to express the Jacobian J associated with
the element. Because all the prism edges are straight, it is sufficient to employ
linear (with respect to each local variable) interpolating polynomials

2,3,

_ Cielv i = ls
i=4,5,6.

> = Gi—3€as (4.8)

The element geometric shape is, therefore, approximated similarly to Eq. (4.7),
where the potential nodal values ®; are replaced by the prism's vertex coordinates
(i ¥ir )

z = (2161 + 2203 + 23(3)€; + (T4l + T5¢o + T6(3)E2, }

¥ = 16 +¥28e +¥183)6 + W4y + wsCe + ¥6S3)Ea, 4.9)

z = (216, + 22C + 23G3)&; + (24€; + 25¢; + 263 )2,
If orders N; or N, in (4.7) are greater then one, which is typically the case, the

constructed ‘toblerone’ can be seen as a subparametric element.

42  Stiffness matrix
On setting € = €I in Eq. (5.32) of Chapter 1, the elements of the stiffness
matrix becomes

K =« / Va; - Va;dV, (4.10)
v
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where the gradients of interpolating functions Va; are expressed with respect to
the Cartesian or global coordinates z, y, z. Because functions «; are given in terms
of local, or simplex, coordinates ¢;,{,, {,, §),&,;, among which only the three ¢,
¢,, €, will be considered as independent, it is easier to perform the differentiation
with respect to ¢, (3, by invoking the Jacobian J of the coordinate
transformation:

da; Ba; 8a; 1T
3¢, G asl] = Vaanen @1h

Taking into account that ¢, + ¢, + {3 =1 and & + &, = 1, the stiffness matrix
can be evaluated in local coordinates as

(tob) _ ! ld =G v AT J-Ty-1g A
K" =¢€o A d§, A G A d(; (Vagaa) I3 Ve ai|d|.
(4.12)

Va,-=J‘1[

The gradient V¢ a; can be expressed in terms of partial derivatives of the basis
functions a}(¢;, ¢2,¢3) and ai(£;,£;) by applying the chain rule of differentiation

to (4.5), and, subsequently, to Egs. (4.3)—(4.4):

- T
Tusse= | Gt Gt o5 |
[ ‘Z:"Rnﬁo RmRna—?l'#)a-
- (Rma—ngo Rmm%)a , @.13)
(G Enge)

where indices m, n, o refer to the multi-index notation, while the single indices
t,7, k are related by Eq. (4.6). Derivatives of the auxiliary polynomials R were
obtained in Appendix 3, Eq. (3.5).

43  Calculation of the Jacobian
The substitution of Egs. (4.2) and (4.9) into the Jacobian matrix
J = 9(z,y, z)/8(¢;, $2, &1 ) and some rearrangement yields
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(1 —z3 )§ (h—vs )g (21 — Zs)§
I=|(z2—z3)§ (v2—¥3)§ (22—2z:)|> (4.19)
-1 —-(n-1)F —-(n-1)z

where the introduced variables are

E = El + 1’521
Z = Q%1 + 6% +(32s, 4.15
7= Gy + Gy +Cays, (4.15)
Z = G z1 +(20+(323.
Note that the last three equations of (4.15) represent the approximation of the
shape of the surface triangle ABC (Fig. 3.4). The determinant of the Jacobian, i.e.
its magnitude, is readily expressed as

3] = —©&)*(m - 1)(jA| — [B]), (4.16)

with |A| and |B| denoting the determinants

I Y 2 Ty —%3 Y~ Y3 24— 2
Al =|z2 ¥ 22/, Bl =|z2—23 y,—ys 22— 23| .17
I3 Y3 =23 Zo Yo Zo

It is evident from (4.15)(4.17) that, since |[A| and |B| are constant, the
determinant |J| is a function of the local coordinate £, alone.

The Jacobian of the inverse transformation 3(¢,,¢,,£;)/3(z,y, z), equal to
the inverse of the Jacobian of the forward transformation J~!, can be evaluated
analytically which is due to the relatively simple form of |J|:

o -

a cz G
1 cg c§ cg
| 2 -2 2
= A| — |B| 3 (3 '3 ! (4.18)
C31 C32 C33
| —(n—-1) -(-1) -(m-1)

where elements of the auxiliary matrix C are given by
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cn = (2 — %)z — (22 — 23)%;

= — (z2 — 23)Z + (22 — 23)7,
= (22 — 23)¥ — (¥2 — ¥)T,
& =W —23)z— (21 — 23)%,
5 = (71— 20)7 — (21 — 2)5, { @19)
0;31 = —(Zl - 33)g+ (yl - y3)-5’

i = (1 — v3)(22 — 23) — (21 — 23) (W2 — %)
e = (21 — z3)(x2 — z3) — (21 — Z3)(y2 — ¥3),
03-31 = (21 — z3)(y2 — ¥3) — (4, — ¥3) (2 — Z3).

0O O
-y -
wWon
(.

44  Numerical integration over the ‘toblerone’

Although closed-form expressions have been derived for Jacobian matrices
(4.14) and (4.18), associated with the forward and inverse coordinates
transformations respectively, they are not constant as their simplex counterparts
(Eqgs. (1.7) and (1.8) of Appendix 3). Attempts to evaluate the stiffness matrix
(4.12) symbolically or establish some kind of universal matrices proved to be not
very practical; it is more efficient to perform the integration numerically, using
Gaussian integration formulae.

The examination of Eq. (4.12) reveals that the integrand represents a
polynomial in coordinates ¢;,¢,;, and &, for which the Gaussian scheme with an
appropriate number of points yields exact integration. Indeed, it can be seen from
Eqgs. (4.15), (4.18) and (4.19) that the matrix J~! can be partitioned as follows

1
L1 £
= . , (4.20)
AT | L,
n—1

where the matrix C, is function of local coordinates ¢, , ,, while entries of C; are
constant for a given element. Collecting all the Jacobian related terms, the
following matrix is obtained:

_ 2
T = _Ie(\':_zlll)fl [CTC. + (—if) C§Cz] (4.21)
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whose elements are the linear combinations of polynomial terms ({i¢3 )2,
i+j=1and &
The minimum number of integration points I; and I, required for an exact

numerical integration over the line segment and triangle is also determined from

the order of interpolation functions o} and aj. According to (4.13), the
components of Vi .ca:; are formed by the polynomials ("],
m+n+o0< N, + N, —1, with max(m +n) = N, and max(o) = N,. Taking

into account (4.21), the degree of the polynomial function
Py = (Veeea) T3 Vegea;0], (4.22)

is at most 2N; + 2 in both variables ¢, and {,, and at most 2N; + 2 in &;. The
number of integration point along with their weights w and coordinates z, a, 3, v
are supplied in Section 4, Appendix 4 for the first few N; and N,. Elements of the
stiffness matrix K¥¥ are then evaluated by successively applying Gaussian
integration formulae for the line segment and triangle:

L L

K =€) Y wiWoPij(Tm, an, Bar Va) (4.23)

m=1 n=1
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Computer implementation

1. Introduction

Numerical solution of the three-dimensional piezoelectric problem with
open electric boundaries is accomplished in two stages: the generation of a suitable
superelement matrix S and subsequent solution of the piezoelectric — static or
vibrational — problem itself. Once matrix S is generated by a separate program, it
can be applied to a great variety of interior problems provided that the continuity
of electric potential across the boundary is preserved. The overall solution is
computationally very demanding because of large matrices arising from the three-
dimensional finite element discretization of both the interior and exterior domains.
It is typically very difficult to isolate the numerical methods from the rest of the
application. Therefore, most of the research efforts were devoted to finding
appropriate data structures and selecting methods of implementation that suit best
the computing algorithms used. It was also found important to exploit the
symmetry properties of the region and the special structure of matrices whenever
possible.

This chapter describes practical computational aspects of the numerical
solution, which comprises the following stages:

— generation of the finite element mesh;

— assembly of the global finite element matrices from their local
representations — expressed by Eqgs. (3.16), (3.27) of Chapter 3 and the
superelement matrix S — accompanied by a simultaneous imposition of boundary
conditions;

— solution of the finite element equations associated with the deterministic
(static) and eigenvalue (vibration) problems.
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2. Mesh generation
An automatic mesh generation program was designed to discretize a three-

dimensional rectangular region into high order tetrahedral elements. Rectangular
shapes are typical for piezoelectric vibrators and also most convenient from the
point of view of programming simplicity. The number of elements E,, E,, E,
along the edges and the order of interpolation N are the only input parameters
required. The very same procedure is used by the program that implements the
ballooning algorithm to create the inner boundary of the superelement. Indeed, a
set of surface triangles arises naturally from the discretization of the interior region
into tetrahedra. Provided the input parameters are the same for both programs, the
identical element topologies on the surface of the rectangular region automatically
guarantee the continuity of approximating functions across the surface when the
superelement is combined with the interior model.

The program starts by generating a set of uniformly distributed nodes that
partition the interior region into Eyx X Ey x E; rectangular prisms, or ‘brick’
elements, as shown in Fig. 4.1.

Fig 4.1 Rectangular region subdivided into E, x E, x E; (here Ex = 12, E, =8,
E, = 4) ‘brick’ elements.

Each ‘brick’ is then dissected into five tetrahedra according to one of the two basic
schemes (Fig. 4.2), which must be properly alternated in the mesh in order to
preserve the continuity of approximating functions across the element faces.
Therefore, the division of the whole region involves Ey = 5EyEyE, tetrahedral
elements for the solution of the interior problem and
Es = 4(ExEy + ExE, + EyE;) triangular elements on the surface to build the
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superelement. For a given order of interpolation N, each tetrahedron is
represented by M = (N + 1)(N + 2)(N + 3)/6 nodes, thus producing the total
of MEy nodes over the entire set of elements. Their Cartesian (global)
coordinates (z;,¥;,2), ¢=1,..,M are easily determined from the local
coordinates ¢}, (5, ¢5, ¢} and the tetrahedron vertex coordinates by using Eq. (1.5),
Appendix 3. Because the nodes homogeneous coordinates C,‘,,, m=1,...,4 are
independent of the tetrahedron shape and size, they can be calculated once (Eq.
(2.3), Appendix 3) and stored as arrays of integer quotients of the type j/N,
where j =0,...,N.

Fig 4.2 Brick partition into two types (A and B) of tetrahedra arrangements and their
respective position in the mesh.

The obtained elements are disjoint in the sense that a shared node has as many
different indexes as the number of tetrahedra it belongs to. This means that several
sets of variables (u, ) may be associated with the same node. To create the finite
element mesh (i.e. an assembled set of elements and nodes), and to enforce the
continuity of approximated physical values across the element boundaries, a
conjoint, or global, node numbering must be employed. This can be accomplished
by hashing the list of ‘disjoint’ nodes idis =1,..., MEy by their Cartesian
POSItion r = (Tigis, Yigss» Zidis)' in order to eliminate those with identical r. A
possible hashing function is
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3
h(idis) = Z Px Tie(k)» 2.1)
=1

where p,, p,, p; are the weighting coefficients, and ie is the index table of the array
(Ex, Ey, E;), rearranged into ascending order. For example, if Ex = 6, E, =4,
E,=8, then ie(1)=2, ie(2)=1, i(3)=3, and (2.1) becomes
h(idis) = pyYgis + PoZTidis + P32Zidis- On sorting the array h, those nodes idis
that have the same value of h, i.e. the same location r, are assigned a common
global index ig(idis). The global node numbering ig =1,...,n is then used to
update the lists of Ey tetrahedra and Egs surface triangles so that they be defined
by uniquely numbered nodes.

However, the role of function & is not limited to interconnecting elements. Its
second objective is to order nodes, and therefore variables, in a way to reduce the
bandwidth of the finite element matrices for the interior problem. By making a
special choice of weighting coefficients p;, so that they satisfy, in particular,
condition p;, < p, < p3, the rearrangement of array k in ascending order gives
priority to nodes located in the direction characterized by the minimum number of
elements E,(;) along the edge, while those in the direction of the maximum
number of elements E(3) are numbered last, i.e. with the highest indices. This
guarantees that nodes are indexed in a consistent, though not necessarily optimal,
manner and the maximum node number difference does not exceed
N2(Eiq) + 1)(Eiz) + 1). Obviously, such an approach favors meshes elongated
in one particular direction (strip geometry) for which Ey(3) > Ei(2) = Ei)-
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3 Block ballooning method for rectangular regions

The general three-dimensional ballooning algorithm for modeling Laplace's
equation was described in Chapter 3. As soon as the global finite element matrix
for the bordering region ;) is assembled from the ‘toblerone’ matrices and all the
interior nodes are eliminated by the process of static condensation, the method
amounts to implementing Eqs. (2.14)—(2.18) of the same chapter. For the mesh
size ng (i.e. the number of surface nodes), the overall storage requirement
includes:

— two symmetric matrices Sy;, Sz : 2xns(ns +1)/2,
— one unsymmetric matrix S : nZ,
— one triangular matrix D : ng(ns +1)/2,
—  two unsymmetric matrices D~1S;;, D1S], : 2 x n,

i.e. 9n%/2 locations in total. In practice, there is no need to keep all these matrices
in the fast-access memory. Indeed, inspection of Eqs. (2.14)—(2.17) of Chapter 3
shows that, without impairing computational efficiency, it suffices to allocate only
5n%/2 memory to store two unsymmetric matrices and one linear array to house a
symmetric matrix. The greatest storage requirement (2n%) is due to matrices
D~'S,, and D!S], that are accessed simultaneously at each step of the ballooning
recursion. The lower triangles of symmetric matrices S;; and Sy, are alternately
generated in the one-dimensional array (n%/2), and subsequently copied to a
secondary storage device (disk) to be retrieved during the next iteration. The same
array is used to house the triangular factor D. On calculation, the matrix S,,
overwrites one of the unsymmetric matrices, and can immediately be used to form
the new matrices D~'S,, and D~!S],.

The computing time for each iteration is proportional to the total number of
floating-point operations, or flops!, required for

1 In this chapter a ‘traditional’ definition of a flop, as one floating-point multiplication
and one addition or substraction (Watkins, 1991), is used. If the new definition of flop
was used (Golub and Van Loan, 1989), the number of arithmetic operations would
double.
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— one Choleski factorization of 0S| + S22 : n% /6,
— two forward substitutions D™'ST,, D7'S,;,  : 2 x (n%/2 x ns),

—  two symmetric [D“l s{';’T]T [l)"1 s{’;"'] and
[D‘IS{';)] ’ [D"S{'{,)] , and one unsymmetric

T
[D‘IS{?T] [D“SY;)] matrix multiplications : 2 x (n}/2) +n}.

Therefore, if applied directly, the algorithm would require 5n% /2 memory and
1903 /6 x iter = 3n} x iter computing time, where iter is the number of
iterations, typically six or seven. These core memory requirements and computing
time estimates increase rapidly with ng but can be minimized significantly for
rectangular regions. In this case, superelement matrices possess certain
symmetries, so that only a part of the matrix needs to be calculated and stored.

3.1  Handling of symmetry

A rectangular parallelepiped has at least three symmetry planes that
subdivide it into eight equivalent parts, or octants, numbered as shown in Fig. 4.3.
If the origin point r, = r,(Z,,¥,, 2,) (i.e. the point with respect to which the
successively ballooned boundaries are concentric) is placed at the geometric center
of the region of interest and the numbers of elements along edges Ey, E,, E;, are
even, the mesh of nodes inherits the same symmetry. Nevertheless, it is not
sufficient to consider only one octant of the problem domain as can be done for
isotropic problems. Because the interior piezoelectric region is always anisotropic,
symmetry must be imposed explicitly on the whole superelement matrix. This leads
to a block balloon recursion procedure described below.

S
Fig 4.3 Basic one-eighth part of a rectangular region.
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Based on their Cartesian position r, all nodes can be partitioned into eight
equivalent sets, corresponding to the eight symmetrical parts of the surface (Fig.
4.3). With this node ordering, a generic submatrix S (e.g. S;;, S;2, or Sx)
involved in the ballooning recursion is composed of eight independent blocks &V,
&), ..., &® distributed inside S according to the permutation table shown in Fig.
4.4. Because an element S;; of matrix S can be interpreted as the potential at node
i due to the source located at node j, these submatrices have the following
meanings: &) incorporates electrostatic interactions between nodes within the
same symmetrical parts 1-1,..., 8-8; the block &®) — between octants 1-2, 34,
5-6, 7-8, and so on; finally, &® reflects the interaction between parts 1-8, 2-7,
3-6, 4-5, symmetric about the origin point. Moreover, the blocks &t
ioct = 1, ..., 8 of symmetric matrices S;; and Sz are also symmetric, while for the
unsymmetric matrix S, they are respectively unsymmetric.

2|1(4(3i6|5[8}7
3{4(1(277]8;5]|6
413(2({1]|8|7}16]|5
5|6(7(8|1}2(3|4
6|5(8(7|2]1]4(3
7(8|5[(6|3(4]1]2
8/7|16|5|4(312]1

Fig 4.4 The structural symmetry of matrices S;,, S;2, and S,, arising from a special
node numbering. Only the shadowed part needs to be calculated and stored.

The equivalence between nodes belonging to different octants is established by
means of a |r — r,|-based hashing function. Because symmetrical nodes are
located at equal distances from the origin, they are easily identified on sorting the
associated hashing array as those having identical value of this function. A surface
node igs and its seven symmetrical counterparts are assigned the same index ¢loc,
referred to as ‘local’ by analogy with the assembly of the global matrix S from the
element matrices, which, in this case, are represented by the blocks &%} A
special two-dimensional array ¢8(1 .. ng, 1..2) maps the global surface node index
igs onto the
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— octant number ioct = 1,...,8:
i8(igs, 1) = toct; (3.1)

— local node index tloc = 1,...,Roct:
18(tgs, 2) = tloc, (G2

where 7, is the number of ‘independent’ nodes that belongs to the first, for
instance, octant shown in Fig. 4.3. The index array ¢8 and the permutation matrix
P, which is an exact replica of the table shown in Fig. 4.4, allow reconstituting the
entire matrix S from its eight independent blocks &) a5 follows:
for igs=1,...,ng
for jgs=1,...,ns

toct = 18(igs, 1), joct = i8(jgs, 1) (.3)

tloc = i8(igs, 2), jloc = i8(jgs,2)

Sing iag = GLUOCHIC)

igs.jgs idloc,jloc -

Since the number of nodes in one octant n,.; is roughly equal to ng/8, matrices
S11, Si2, and Sy; occupy approximately one eighth of the storage required had
their symmetry not been exploited.

3.2  Block recursive process

The structural symmetry of ballooning matrices allows also minimizing the
computing time, evaluated at 3n3. per iteration for the general algorithm. First, this
reduction is related to the very same fact that only one eighth of matrices S;;, S;2,
and Sy, entries needs to be calculated thus diminishing the amount of operations
associated with matrix multiplications by 1/8. Another, less obvious, simplification
arises from the observation that the inverse symmetric matrix (Sy; + o S;;) ",
represented by its Choleski factorization D~TD~!, possesses the symmetry of
matrices S;; and S;;.2 However, no attempt to invert So2 + o S;; blockwise will
be made here; rather, this fact is used to conclude that the matrices (D~"D~!)S],
and (D‘TD"l)Sm also inherit the symmetry pattern shown in Fig. 4.4, both being
products of matrices with identical block structures. They are thereby

2 This can easily be verified by generalizing the Frobenious formula for the 2 x 2 block
inverse (Gantmacher, 1988) to an 8 x 8 block matrix.
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characterized by the same permutation matrix P and index array 8, that are used
to describe the distribution of elements in S;;, S,2, and S22 (Eq. (3.3)).
It becomes more convenient to recast Eqs. (2.14)—(2.16) from Chapter 3 as

sik+n) — gk _ g(&) [D-Tn“ Sg;)T], G4
s = —os%) [D-"D'sY], G-9)
st = o8B — s [DD Y], (3.6)

since matrices DS and D-1S{%) are never formed explicitly, which would
inevitably destroy the block structure of Eqs. (3.4)—(3.6). Therefore, all the matrix
multiplications in (3.4)«(3.6), as well as the forward elimination and back
substitution D‘TD‘IS(“T and D‘TD“S(") can be performed only on a one-eighth
of matrix Slz , .. on its eight independent blocks 6(“’“) as shown in Fig. 4.5.

| J

Fig 4.5 Accessed parts of matrices used to form the products S{5™ [D‘TD“S(' T)]

In this new recursion scheme, the core memory is redistributed among the

— eight symmetric blocks(nZ/16) to store alternately 6("’"‘) and ng"“),
toct =1,...,8;

—~ two sets of eight unsymmetric blocks (2 x nZ /8) to simultaneously access
the “old’ (k) and store ‘new’ (k + 1) submatrices G('“'),

— triangular factor D (n2/2),

which gives the total of 13nZ/16 = 3nZ /4 data elements — approximately one
third of the initial 5n2/2. Note that one auxiliary ns—vector is now sufficient to
house the result of the forward elimination and back substitution D“TD‘IS%’T)
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since it is used only once during an iteration and needs not be generated in a
matrix.

Except for the Choleski factorization of o8, + S5, for which the arithmetic
(n /6) remains unaltered, the amount of work required to execute one loop of the
ballooning recursion (3.4)(3.6) is composed now of the cost of two partial, i.e.
involving ns/8 columns, forward eliminations and back substitutions
(2 x n%/2 x ns/8), and of two (also partial) symmetric (2 x n%/16) and one
unsymmetric (n2 /8) matrix multiplications. As a result, the overall computing time
for the block balloon recursion reduces to 2n3/3 per iteration, which is
approximately five times less than that required if the full matrices S,;;, S,2, and
S,; were handled. For instance, on a Pentium II 400 MHz computer, the time
required to generate a final S;; matrix after seven iterations ranges from 12
minutes for the mesh size ng = 866 to 12 hours for ng = 3458 respectively.

It is also important to note that in the developed computer programs single
precision (32-bit) arithmetic was employed to store arrays of data, while all the dot
product operations were performed in double precision (64-bit) to diminish the
roundoff error.
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4 Assembly of global matrices

Each node ig of the finite element mesh of n nodes is associated with four
variables: the three components of mechanical displacement ul, uZ, u} and one
electric potential ;. If all the mechanical variables U are numbered first, and all

the electrical potentials & — last, i.e. when the mapping between the nodal set of
variables (u, ¢),, and the vector x = (U, &)" of all the unknowns is

g Tig

2
u; Z;

=1 “.1)
(piy Tig+3n

the 4n x 4n global stiffness K and mass M matrices’ can be partitioned
respectively as

K Ko

K= [K.L ‘Kw]’ “2
w2

In (4.3) the size of the nonsingular submatrix M, of the mass matrix is 3n x 3n,
and, in fact, the term ‘mass matrix’ will be employed in the present section to
denote precisely M,,. For n typically ranging in a three-dimensional mesh from
10° to 10*, the dimensions of the unconstrained stiffness nx = 4n and mass
ny = 3n matrices are quite large. Moreover, because (4.2) and (4.3) are
assembled from the element matrices, they are very sparse, so that it is impractical,
and often impossible, to store them fully.

The choice of data structures for large sparse symmetric matrices is intimately
related to the numerical techniques employed for solving the finite element
equations. Both the storage mode and numerical methods must exploit the special
structure of the global matrices to minimize the computing time and storage
requirements. That is why the two conventional storage schemes — sparse and

3 Note that indices u and ¢ have been shified to the lower position since in the present
chapter the elastic, piezoelectric, and dielectric submatrices will not be addressed
elementwise.
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profile — considered in the present section are best regarded integrally with the
conjugate gradient and Lanczos methods described in Section 5.

A point to note is that, among other factors discussed below, the number of
elements in the global stiffness matrix K depends on the material properties of the
piezoelectric crystal. Although it varies only slightly with materials and crystal
orientations, it should still be mentioned that, for the sake of consistency, all the
illustrative examples given throughout this and the following sections were
generated for the AT-cut of quartz.

4.1  Sparse storage

The sparse scheme stores only nonzero elements of matrix A of sizen X n
in a one-dimensional array sa, and some additional, or overhead, information
about the location of these elements. Typically the sparse storage is used in
conjunction with iterative algorithms that regard A as an operator: A is frequently
referenced through the matrix-vector product Ax but never modified in the course
of iterations. A speedy retrieval of A's elements from its compact storage is best
accomplished by storing indices of the nonzero elements in an integer one-
dimensional array ¢ja, thus avoiding an expensive searching through sa by means
of some indexing function (Silvester, 1993). In this respect, the row-indexed
sparse storage mode (Press et al., 1992) is one of the most economical and also
most commonly used.

In the sparse storage mode,

— the first n locations of sa store A's diagonal entries; location n + 1 is not
used. Starting from position n +2, the array houses A's nonzero off-
diagonal elements, ordered by rows, and, within each row, ordered by
columns. For A symmetric, only the nonzero entries from its lower
triangular part need to be stored;

— the first n locations of ija store pointers to array sa, i.e. indices of se
where the new row begins; as follows from the description of sa,
ija(1) =n+2, and ija(n+1) equals the total number of nonzero
elements in A. Starting from position n + 2, the array ija stores the
column number of the corresponding element in sa.
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If the nonzero elements of A are stored in sa as 4-byte real numbers, and the
corresponding column indices — as 2-byte integers, the overhead storage for the
above scheme (array ija) is half the storage required for sa. The described data
structure is best illustrated on the example of a symmetric matrix-vector
multiplication y = Ax:
fori=1,...,n
[ y(i) = sa(i)z(3)
for k = ija(i),...,ija(i +1)—1
J = ija(k)
y(@) = y(i) + sa(k)z(4)
v(3) = y(j) + sa(k)z(3).

(4.4)

Typically, the global matrices are so large that not only do they need to be
manipulated in sparse format, but have to be generated directly in this format, thus
bypassing the full storage mode. As will be clear from the next section that deals
with the superelement, the sparsity patterns of K is not known in advance, and,
therefore, the element matrices cannot be simply embedded in the connected
(global) assembly of elements as shown in Eq. (2.5) of Chapter 3. Thus, a generic
global matrix A must be assembled one row at a time, or variable-by-variable, so
that for each row ¢ all the corresponding nonzero positions
tja(2), ...,ija(t + 1) — 1 are filled prior to starting row ¢ + 1. Because the number
of nonzero locations in A does not depend on the variable numbering, i.e. the
mapping between the variable (u},, uZ, u, or ) at node ig and the unknown
z(z) is irrelevant for the sparse format, this is equivalent to performing matrix
assembly in a node-by-node fashion.

To assemble the row corresponding to a given node, the contribution from all
the elements that contain this node must be taken into account. This implies that
for each node ¢g, one must determine the set of elements e;,e3, ..., ex the node
belongs to. This task is, in a sense, inverse to that of interconnecting elements by
assigning a global node index ig to the node shared by k elements. It is, therefore,
natural to invoke the ‘disconnected’ node indices idis because of the unique
correspondence between them and the elements. In particular, in the regular mesh
described in Section 2, index idis is assigned in a consistent manner
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idis = eM — 1 +m to a node occupying position m among the M nodes of the
element e. This indicates that values m and e can easily be recovered from #dis as

m = idis mod M }

idis — m (4.5)

e= ———M—— +1
The sparse assembly of row ig of the global matrix A amounts to looping over the
list of disconnected nodes idis = 1, ..., M Ey, and, for all idis that share the same
global index ig, collecting nonzero elements from the row m of e's local matrix,
where m and e are determined as in (4.5). As they arrive, the nonzero elements are
first accumulated in a separate array srow along with the corresponding column
numbers jg, stored in a parallel integer array icol. After scanning all the elements
that meet at node ig, i.e. elements which contribute to the row g of the global
matrix, icol is sorted in ascending order and attached to the indexing array ija.
Then, elements srow(icol(i)), i =1,...,s;, where s;; is the total number of
nonzeros in row ig, are added to the array sa, and ija(ig +1) is set to
ija(ig) + si;. If the fastest sorting technique quicksort is used, the process of
sorting the array icol requires O(sglog(s;;)) work; therefore, the assembly of the
entire matrix is least a O(nslog(s)) process, where s denotes the average number
of nonzero elements per row.

The value of s is an important characteristic of the sparse storage mode. As
follows from the description of the indexing array ¢ja, it can be calculated for a
given matrix as

s ija(n + 1)

n

(4.6)

Through the sparsity structure of the element matrices, s depends on the
tetrahedron order N (Table 4.1) and, in the case of the stiffness matrix, on material
properties. For meshes which are large enough to have the number of interior
(fully connected) nodes clearly superior to that of surface nodes (partially
connected), s is practically independent of the variable numbering. It is interesting
to note, that there is almost no increase in s for the mass matrix as the element
order changes from 2 to 3. This is explained by the fact that the tetrahedral mass
matrix for N =3 has a certain amount of zero entries, in contrast to other
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practical element orders (at least the first five), for which the local mass matrices
are full This suggests that if higher accuracy needs to be achieved without
increasing the sparse storage of the mass matrix, this peculiarity of tetrahedra of
third order can prove useful!

Table 4.1 Average number of nonzeros s per row.

Order of s
tetrahedron NV | Stiffness matrix K | Mass matrix M
1 27 6
2 48 12
3 80 13
4 121 32

Table 4.1 also demonstrates that since the nodal variables u!, u2?, u3 are related in
the local stiffness matrix by the elastic tensor ¢ and coupled to ¢ by piezoelectric
coefficients e, the average number of nonzero entries per row sx and sy for
matrices K and M, respectively, are approximately in the ratio 4:1 (except for
elements of order N = 3). Because s is independent of the mesh configuration, for
a given element order N the number of elements in the sparse storage of global
matrices Ky, x4n and Mgz, .3, are functions of the number of nodes n alone (Fig.

4.6).
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Fig 4.6 The number of nonzero elements in giobal matrices for the element order
N =2.
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It should be noted that despite the elastic and piezoelectric coupling of variables in
the stiffness matrix, its sparse storage is so economical that for a wide range of n it
occupies less than 1% of the full matrix storage.

42  Inclusion of the superelement matrix

The superelement, represented by the final matrix S;; of the ballooning
recursion, is added to the global stiffness matrix K as a regular element defined by
the set of the surface nodes ns. For each node ig belonging to the surface, the
corresponding row is of matrix S;; is appended to K along with the contribution
from tetrahedral elements that also share the node ig. Because the surface node
number is = 1, ...,ns is found by searching (quicksort) the array igs (Chapter 3,
Section 2.1) for index ig, the addition of the whole superelement is a
O(n%log(ns)) process.

The eight independent blocks of matrix §); are retrieved to an auxiliary array
from the disk, where they have been previously stored by the program that
performs the recursive condensation. Any element of the whole matrix S;; can be
restored from its independent blocks according to Eq. (3.3). However, it soon
becomes clear that a considerable part of S;;'s elements can be discarded on the
basis of their magnitude without any significant impact on the solution of the open-
boundary problem. Therefore, it is impractical to add the full matrix S, to the
element assembly since, for typical ng, its storage requirements outweighs that for
K for the interior problem. To discard or retain S;,'s elements in a systematic way,
a threshold value thres is introduced for their normalized, with respect to the

—_ A,
average S = ZSS,»‘,.‘ /ns of diagonal entries, magnitudes. In other words, only
=1

those entries of matrix S,; are allowed into K whose relative magnitude exceeds
thres, i.e.

| gil
]
5 > thres. 4.7

The influence of thres on the numerical solution is demonstrated on the
example of the static capacitance of a quartz cube with top and bottom surfaces
are half-covered by electrodes, as shown in Fig. 4.7(a).
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Fig 4.7 Parameters of the piezostatic problem as functions of the threshold value thres
for the clements of the ballooning matrix S,,. (@) Problem description. () Static
capacitance of the open-boundary problem. (¢) Sparse storage requirements for the
global stiffness matrix.

The problem was initially solved with open and closed electric boundaries, i.e. with
. and with no matrix S;, added, and, subsequently, for several intermediate fill levels
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of S); prescribed by thres. Figure 4.7 shows how the static capacitance C, (3)
and the number of nonzero locations in K (¢) change as the threshold value
increases and more elements of S;; are discarded. The capacitance curve begins
with CJP", and maintains this level until thres reaches the value of approximately
10, For the same thres interval, the storage requirements for the stiffness matrix
K drop from 1.64-10° to 0.86 - 10° words, thus diminishing by almost 50%.
Between thres = 10~* and thres = 1 the solution has no physical meaning: the
curve behavior simply reflects how the numerical value of static capacitance
deteriorates as larger elements disappear from S,,. Starting from thres = 1, the
capacitance becomes that of a closed-boundary problem Cj"‘"“
that no elements from S, are left in K. The storage requirements for K stabilize at
the level of a closed-boundary problem, i.e. 0.7 - 10° locations, even earlier — at
thres = 102 . This means that the entries of matrix S,; whose magnitude lies
within 1072 < |S}!|/S < 1 are either diagonal, or fit into the sparsity pattern of
the “‘closed’ global matrix.

The above example demonstrates that only 0.16-10° out of 1.18-10°
locations, i.e. 14% of matrix S;;, need to be added to the global matrix to achieve

the full accuracy in calculating the capacitance of the open-boundary problem. All
the elements S;}, |S}'|/S < 107%, associated with electrostatic interaction
between relatively distant nodes, can be discarded without altering C2P". For the
element order N = 2, the remaining entries of S)) increase the average number on

nonzeros in the stiffness matrix K from scio5ea = 48 t0 Sopen = 59, thus leaving K

, which indicates

largely sparse. Experiments with other ballooning matrices suggest that
thres = 10~ seems to be a reasonable compromise between accuracy and storage
requirements, and is adopted further as a default value for numerical tests and
illustrative problems.

4.3  Profile storage

In the profile, also termed envelope or skyline, storage mode the symmetric
matrix A is written into an one-dimensional array env so that for each row ¢ of its
lower triangle, only entries located between the leftmost nonzero element #l(z) and
the diagonal ¢ are stored. Therefore, the method allocates storage for all the
members of the envelope {(%, j)| ¢ = 1,...,n; j = il(3), ..., i}, even though some
of them are zero. This approach implies solving the systems of linear equations by
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some sort of elimination (direct method) which involves a complete factorization
of matrix A. Indeed, although the A's triangular factor L will have a different
sparsity pattern because of the fill-in during the factorization, it will have the same
profile so that it can overwrite A. Moreover, for A stored in env by rows, the
bordered form of the factorization (Watkins, 1991) is the most appropriate.

The data structure associated with the profile storage scheme is much simpler
than its sparse counterpart. It requires

— an array env whose first n positions store the diagonal entries of A, and —
starting from position n + 1 — A's envelope, one row after the other;

— an integer array il of length n to house the column number :l(Z) of the first
nonzero element in the row z;

— an integer array ienv of length n + 1 to store pointers to enw: its element
ienv(t) indicates the position in env where the first nonzero entry of row i
is stored. If the row is represented only by its diagonal element, then
tenv(i) =tenv(t+1). It also follows from the above that
ienv(l) = n+ 1 and ienv(n + 1) equals the total number of locations in
env.

Again, a pseudocode for the symmetric matrix-vector product y = Ax is drawn to
illustrate the described storage:

for :=1,...,n

[ y(2) = env(i)z(2)

k = ienv(s)

for ] = il(i), cany 1—1 (48)
¥(3) = y(3) + env(k)z(j)
¥(4) = y(J) + env(k)z(i)
k=k+1

Because the last stored element of row ? is always diagonal, the components of
array tenv can be derived from il as follows

tenv(i + 1) = ienv(i) + ¢ — d(3), 4.9)

so that, in principle, it suffices to have the array il alone. However, it is convenient
to record ienv to avoid recalculating (4.9) any time matrix A is accessed.
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Therefore, the profile scheme can be implemented with a fixed overhead storage
of 2n + 1 integer locations, which is negligible compared to the primary storage
for the array env. The assembly of global matrices is also considerably simplified.
Indeed, array il, and consequently ienv, can be determined in advance (e.g. by
running a dummy loop over all elements), so that the global matrices are formed in
a usual, element-by-element, manner.

The envelope of a symmetric matrix A is characterized by the average
semiband width p, calculated as

tenv(n+ 1)
-—

(4.10)

With this definition of p, the envelope size becomes a linear function np of the
problem dimension n, and can be compared to the sparse storage (ns). In contrast
to the average number of nonzero elements per row (s), p depends on the order in
which unknowns are numbered. In Section 2, a special hashing function was
designed to help ordering nodes in a way to minimize the maximal node number
difference over all elements. These efforts would be fruitless if the variables were
numbered as shown in (4.1). Fortunately, this was required only for the purpose of
partitioning matrices K and M into physically meaningful blocks (Egs. (4.2)-
(4.3)); in practice, mechanical and electrical variables are intermixed within the
global matrices according to the following scheme

u,

. L4ig—3
u; Teig—2
3| = po 4.11)
x -
Saig 4ig

In this way, the variable number difference taken over all elements and,
respectively, A's envelope are minimized simultaneously with the node number
difference.

Table 4.2 illustrates some typical values of p obtained with the variable
numbering (4.11) for square plate and strip geometries. The two problems were
discretized with tetrahedra (N = 2) in a way to make the number of nodes n in
the meshes alike. Because the adopted node numbering favors the strip
configuration, the corresponding storage requirements is almost less by half than
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that of the square plate. Bearing in mind that for the same element order the sparse
storage mode — for which the variable numbering is immaterial — produces an
average of 48 elements per row, one can see that even for the ‘optimal’ strip
geometry only one-eighth of the envelope is filled; clearly, K's envelope becomes
sparser as elements of the ballooning matrix are added.

Table 4.2 The average semiband width p of global matrices.

Mesh Nodes K M
electric
n RK P |boundary | ™™ | P
2837 | 11348 | 890 | closed | esi1 | 517
12x12%x 2 1105 | open
By | 2897 | 11588 | 374 | closed | geo) | 281
24 x6x2 633 open

The proportion of ‘wasted’ space is even greater for the profile of the mass
matrix M, for which the average number of nonzeros per row is only 12. To
reduce the memory requirements, Yong and Zhang (1994) proposed a storage
scheme that exploits the special structure of M. They observed that the associated
fill-in happens along the same discrete subdiagonals where the few M's nonzero
elements are initially located. In three-dimensional finite element models (Yong
and Cho, 1994), this a priori knowledge of the fill-in pattern allows allocating
storage only for the one third of the mass matrix envelope. However, as it will be
demonstrated later in this chapter, by modifying the Lanczos algorithm the
factorization of the mass matrix, and therefore its profile storage and handling, can
be avoided, thus giving way to a more efficient sparse scheme.

4.4  Imposition of boundary conditions

The finite element matrix equations were derived from the projective and
variational formulations under which all the boundary conditions fell into essential
and natural. This constitutes one of the principal advantages of the finite element
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method since only essential boundary conditions need to be explicitly imposed on
the nodal variables. The homogeneous natural conditions are satisfied
approximately, in a weighted sense, while the nonhomogeneous natural conditions
make up the driving terms, i.e. the right-hand side of the finite element equations.

The choice of functional §; in the variational formulation (Section 6.1, Chapter
1) makes the Dirichlet boundary conditions to act as essential, and the Neumann
conditions — as natural. The former are enforced by constraining the mechanical
displacements and electric potentials on some parts of the surface. Because it was
agreed to consider only problems with traction-free boundaries, and also because
at any point of the surface the Dirichlet and Neumann conditions are mutually
exclusive, the mechanical conditions are purely homogeneous Neumann, and no
driving term is associated with them. Therefore, only the electric Dirichlet and
nonhomogeneous Neumann boundary conditions need to be taken into account. In
the framework of the present finite element model, this amounts to prescribing
either electric potentials or electric charge densities at some of the boundary
nodes.

To introduce boundary conditions into the finite element equations, the
problem variables x and, correspondingly, the source terms q must be numbered in
a way to distinguish prescribed nodal potentials or charge densities, from their free
counterparts. Clearly, numbering (4.11) is suitable only if all the nodal values are
unconstrained; otherwise, it needs to be modulated in order to fit specific types of
boundary constraints. For instance, all the electric boundary conditions, discussed
in Section 5.2 Chapter 1, involve electrodes. Due to the conducting nature of the
latter, only one electric variable should be associated with each electrode. In this
way, the boundary conditions are imposed on all the electrode nodes collectively,
either in terms of the total electrode charge Q = Q (Neumann) or electrode
potential &, = &, (Dirichlet), thus giving rise to matrix equations (5.39) or (5.40)
of Chapter 1. Therefore, the first step in the variable numbering would consist in
identifying nodes that belongs to the same electrode, and assigning a unique index
to the corresponding nodal potentials (or charges).
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The way in which these electrode's variables are handled is problem specific. If
solution is sought in the form of proper vibrations4, either &, or Q is zero. In
particular, when the problem is solved for resonance (P, = 0), the electrode
potentials are simply eliminated from, or rather not included in, x, so that no rows
of the stiffness matrix are associated with them. To obtain the antiresonance
solution (Q = 0), the electrode potentials are treated as one unknown, and the
corresponding rows of K's lower triangle of the stiffness matrix are summed up to
form a unique row. In either case, the right-hand side vector q is zero, and the
numerical solution is determined from an eigenvalue problem. In contrast, the
static problem requires a driving vector which is formed by assigning a constant
nonzero values to either ®. or Q. Because the static solution is typically recast in
the form of capacitance Cs (or, in the case of multiple electrodes, in the matrix of
capacitance coefficients Cg), it is convenient, following the definition of Cg, to
specify opposite charges of equal amounts on the electrodes Q@ = (+ Q, —Q)",
and determine their potentials by solving the corresponding system of linear
equations. Therefore, among the four possible combinations of electrical boundary
conditions summarized in Table 4.3, only three (nonshaded) are implemented in the
present analysis.

Table 4.3 Vectors of unknowns x and sources q for different types of boundary
conditions

Vector of | Boundary homogeneous | nonhom
unknowns | conditions | TCmogeneou ogeneous
U Dirichlet resonance
X = @, q = 0
(U] N antiresonance
X = Q’ q = 0
L. |

4 Asin Chapter 1, for the sake of simplicity the imposition of boundary conditions is
discussed for a system with one electrode.
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5 Numerical solution of finite element equations

After assembling the global matrices K and M and imposing boundary
conditions, the finite element procedure amounts to solving either the generalized
eigenvalue problem

Kx = A\Mx, (5.1)

or the system of linear equations
Kx=q (5.2)

for the vibration and static problems respectively. The global matrices K and M of
size n, partitioned as shown in Eqgs. (4.2) and (4.3), are both real and symmetric
since they were assembled from symmetric element matrices with real entries. As
mentioned in the previous chapter, the interface conditions for variables x are
enforced by the continuity of approximating functions across element interfaces,
including the superelement, so that no additional, possibly unsymmetric, coupling
terms are introduced during the matrix assembly.

Among other characteristics that determine numerical properties of systems
(5.1) and (5.2), it is important to mention that the stiffness matrix K is indefinite
as the underlying energy function — the electric enthalpy G> — is. Its submatrices
K and K, are both positive definite which is directly related to the positiveness
of the strain %UTK....U and dielectric %QTKWQ energies for any nontrivial
displacement U and potential ®. The matrix K is singular unless electrical
boundary conditions, in one of the forms shown in Table 4.3, are introduced into
it. In contrast, the mass matrix M is always singular since no time-derivative is
associated with the scalar electric potential. The kinetic energy ;U MU being
positive, the M's nonsingular submatrix M,, is positive definite, and the whole
matrix M is said to be positive semi-definite.

For the computer implementation, it is especially relevant that the global
matrices K and M are typically large and very sparse. In other words, it is
important to use algorithms that take advantage of K and M's sparsity because the
latter are large. To date, the most efficient algorithms for solving (5.2) and (5.1)
are the preconditioned conjugate gradient and the Lanczos methods respectively.
After a brief review of alternative approaches, the application of both techniques to
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the piezoelectric static and vibration problems are considered at greater length in
this section.

5.1  Review of past methods

The earliest solution to the piezoelectric problem was that of Allik and
Hughes (1970), and consisted in reducing the latter to the ordinary structural
dynamics equations by a static condensation of electrical degrees of freedom.
Removing the unspecified electric potentials &' from Eq. (5.39), Chapter 1

P =Ky (Kol — Ky, i 20), (5:3)
recasts the vibration problem into
Hpy —\M,, H,, i
e i) (] [8] &9
where
Hu = Kuu + Koy Ky Ky G-5)
Ha,, = Kup, — Kuy Ky Ky, (5.6)
Hy o, = Koo, — K&p, K;'lsc’ Koo, (5.7)

are the condensed stiffness, piezoelectric and dielectric matrices respectively.

The resonant frequencies w, A = w?, and mode shapes U has always been of
prime interest to piezoelectric device designers. For free vibrations, system (5.4)
transforms into the generalized eigenvalue problem

H, U = *M,,U, (58

where Hl, =Hy, for ®.=0 and H}, = He, +H, ii’H]  /(i"H, i) for
Q = 0. Because M, is positive-definite, it admits the Choleski decomposition
Mg, = LLT, and (5.8) can be recast into an equivalent standard symmetric
eigenvalue problem

L'H, LY =Y (5.9)
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with same eigenvalues and the transformed eigenvectors Y = LTU. If required, the
condensed potentials &' can be recovered from (5.3) after obtaining U (and &., if
solved for the antiresonance) from the numerical solution of (5.9).

An obvious drawback of this approach is that sparsity is destroyed in the
process of static condensation. The Householder reduction to tridiagonal form
followed by the bisection method applied to the Sturm sequence (Watkins, 1991)
is typically the best way to determine a few specified eigenvalues of a dense
matrix. The static condensation is, therefore, useful for three-dimensional problems
of modest size, as those associated with low frequency transducer modeling. In an
attempt to alleviate the solution, Boucher ef a/. (1981), and more recently Yong
and Zhang (1993), proposed to solve (5.9) for purely mechanical modes
(H, = Kw) and treat piezoelectricity as a perturbation — a method barely
suitable for materials with strong piezoelectric coupling. In general, large systems
of piezoelectric equations are better solved directly by numerical methods that
preserve the sparsity or profile of their matrices. At this point it is important to
note that because M is singular, problem (5.1) has only nys eigenvalues, where nys
is the size of M,; the remaining nx — nps eigenvalues associated with electrical
degrees of freedom are regarded as infinite. For the same reason, the generalized
eigenvalue problem (5.1) cannot be reduced to the form (5.9). This difficulty is
typically overcome by applying the standard reduction to the reciprocal problem

Mx = %Kx (5.10)
With this substitution, the infinite eigenvalues are mapped onto zeros, and the
problem (5.10) has the full set of nx eigenvalues.

Among the numerous techniques (Parlett, 1980; Pissanetsky, 1984) suitable for
finding a few lowest eigenvalues and eigenvectors of large sparse symmetric
generalized eigenvalue problems in the form (5.10), the inverse iteration, subspace
iteration, and Lanczos method are most widely used in the finite element
applications; all these methods can be combined with shifting () to determine the
eigenpairs in any specified region of the spectrum.

Starting from a given vector Xy, the inverse iteration finds and scales (to avoid
overflow or underflow) the new approximation to the eigenvector xi,;:
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[(K — G'M)xk-{-l = Mxy, k= 0,1,2... (5.11)

Xkl = xl:+1/"xlc+l||2-

The procedure is repeated until the corresponding approximation to the eigenvalue
A satisfies some convergence criterion. The ith eigenpair converges linearly with
the rate |[(A; —0)/(Aiy1 — o) (Watkins, 1991), which is rapid only if
[A¢é — o] < |A\iy1 — o], i.e. when shift o is a good approximation to A;. To
accelerate the process (5.11), the shift can be refined and set equal to the Rayleigh
quotient 0y, = x; Kx, /(x{Mx, ) at each step, thus giving rise to the Rayleigh-
Ritz iteration characterized by cubic convergence. The subspace iteration method
(Bathe and Wilson, 1973) can be viewed as a generalization of the Rayleigh-Ritz
procedure to the subspace of M-orthogonal vectors X,. In this case, the
convergence rate of the first g eigenpairs |Ay/As+1| is determined by the subspace
dimension b, and can be hastened by choosing a larger block of X;. However, the
increase of b also increases both the number of matrix-vector operations and
storage requirements, which may render the method inefficient if b is not properly
selected. A careful choice of the starting block X, is also very important since
convergence can be very fast if X is close to the least dominant subspace. The
subspace iteration method has been very popular among engineers, including the
piezoelectric community (Yong, 1987b; Lerch, 1990; Trimpy and Zingg, 1993),
since its introduction in the early seventies, and has been a standard eigenvalue
solver for many finite element programs. Nowadays, however, it is progressively
replaced by the rival Lanczos method, which is superior to simultaneous iteration
in both speed and storage (Nour-Omid ef a/., 1983). Although the algorithm is still
often associated with instability and ghost eigenvalues, many piezoelectric
engineers adopted it, largely through the finite element packages available to them,
as a tool for solving the eigenvalue problems arising in their applications
(Decarpigny et al., 1991; Yong and Stewart, 1991; Guo et al., 1992).

In contrast to the frequently encountered modal analyses of piezoelectric
structures, the literature is mute on the numerical solution of the full piezostatic
problem under electric load. It is very likely that what is buried under the name of
‘static analysis’ in the finite element packages, supplemented with piezoelectricity,
performs this task (Soderkvist, 1998). However, the review of technical papers
(Boucher ef al., 1981; Naillon et al., 1983; Johnson, 1990) indicates that, at best,
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the static solution (w = 0) in the form of static capacitance C; is obtained as a by-
product of the vibration problem as

C.,=H,,. (5.12)

In the modern piezoelectric finite element analysis such an approach to calculating
C; is untenable for several reasons. First, on using sparse eigensolvers, the dense
matrix K., in (5.7), and therefore H, ., , are never formed explicitly. Second, the

inspection of the electrical equation in (5.4)
(i'™|;, )U— (i"H, i) 2. =Q (5.13)

reveals that (5.12) takes into account only the dielectric contribution to the static
capacitance. The neglect of the static displacement U in (5.13) can introduce a
large error in C; for materials with strong piezoelectric coupling. Finally, the
external electric field has never been taken into account by any existing
approximation to the static capacitance, although among other electrical
parameters it is precisely C, that is most affected by it.

Clearly, from computational and physical considerations, Eq. (5.12) is not an
adequate way of calculating the static capacitance of a piezoelectric structure; the
‘true’ Cy; = Q/®,. can be obtained only from the solution of (5.2) for ®. given Q.
When solving linear systems, one can choose between direct (elimination) and
iterative methods. Typically, iterative techniques, such as the preconditioned
conjugate gradient method, work very well for static problems, so that no
recourse to the costly factorization of the coefficient matrix is needed. As will be
shown below, the electrically driven piezoelectric static problem is no exception to
this rule. Because the computational experience related to the numerical solution
of the piezostatic problem (with closed or open electric boundaries) has never been
reported in the literature, the following section is drawn to fill this lacuna.

52 The preconditioned conjugate gradient method for the static problem

The standard conjugate gradient method (Golub and Van Loan, 1989)
iteratively solves the symmetric and positive-definite n X n system of linear
equations

Ax=Db (5.14)
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by finding the minimum (if A is positive-definite) or the stationary point (if A is
indefinite) of the corresponding quadratic form

F(x) = % TAx — x'b. (5.15)

The gradient of the function F can be expressed in terms of the residual vector
r=b— Ax, (5.16)

namely VF = —r. Because r = () for x satisfying (5.14), finding the zero of VF is
equivalent to solving Eq. (5.14). At each k-th iteration of the method, the search
direction vectors p; along gradient lines are chosen

— to be conjugate to each other with respect to the matrix A

P AP =0, (.17
— to make the residual orthogonal to the preceding search direction

Piriy =0, (5.18)

— to make successive residuals orthogonal to each other

rrar =0 (5.19)
In exact arithmetic, the conjugate gradient method is guaranteed to converge to
the solution in at most n iteration, provided A is positive-definite. However, for
indefinite matrices, as in the piezoelectric case, the algorithm can break-down.
Indeed, if the search direction happens to be self-conjugate

PiAp: =0, (5.20)

it will be trapped along the asymptote of the saddle-shaped n-dimensional energy
functional. Hopefully, the roundoff error in finite precision arithmetic prevents the
search vector p, from satisfying condition (5.20) exactly, and can delay
convergence rather than break the algorithm. In the author's experience of applying
the conjugate gradient method to a wide range of piezostatic problems (5.2), it
never failed, so that no recourse to either its robust bi-conjugate variant (Press et
al,1992) or symmetric squaring AAT (Saad, 1988) was ever required.
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The convergence rate of the conjugate method is known to depend on the
entire spectrum of A. The closer A is to identity matrix I — either in the sense of
having few distinct or many clustered eigenvalues — the fewer iterations are
required for the method to converge. This observation is behind the idea of
premultiplying, or preconditioning, the system (5.14) by a matrix P in order to
‘improve’ the spectrum of its operator, and thereby hasten convergence. The
resulting preconditioned conjugate gradient method (PCG) solves the system

PAx = Pb (5.21)

instead of (5.14). For positive-definite matrices the boundaries of A's spectrum can
be combined to form the spectral condition number k2(A) = Mgz (A)/Amin(A),
where A0z and A, are the largest and smallest eigenvalues of A. This makes it
possible to estimate the convergence rate of the conjugate gradient method in
terms of k2(A). Because the upper bound for the solution error is a function of
v'k2(A) (Golub and Van Loan, 1989), ky(A) = 1, i.e. a well-conditioned matrix,
is a sufficient condition for a fast convergence of the conjugate gradient method.
Therefore, in order to perform better than the standard algorithm (P = I), the PCG
method should use such a preconditioner P that PA ‘approximates’ the identity
matrix I, and k2 (PA) be close to unity.

Among a great variety of preconditioners between I and the full inverse A~!,
finding the one that suits best a specific problem is not a trivial task. It was not
meant in the present thesis to find an optimal preconditioner for the piezoelectric
stiffness matrices. Instead, attention was turned to the most widely used type of
preconditioning, i.e. by incomplete factorization A of matrix A:

A~A=LDL, (5.22)

where L is constructed by ignoring some of the fill-in elements that would be
nonzero in an exact factorization. The specific criteria used to suppress that fill can
be based on either a preassigned set of matrix positions, e.g. sparsity pattern of A
(Greenbaum and Rodrigue, 1989), or on the magnitude of nonzero elements (Ajiz
and Jennings, 1984). Since most often the PCG method is used in conjunction with
the sparse storage of matrices A and A, the majority of preconditioners fall into the
first category. A very economical storage scheme is obtained when all fill is
discarded, or rather not calculated at all. In this case, the approximate factor L has
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the same sparsity pattern as A and only one indexing array ija is needed to
describe both I and A. This type of incomplete factorization is also very
inexpensive, and requires only ns?/2 work, where s is the average number of

nonzeros in the row of L and A.

In this approach, the preconditioner is set to A, P = A", and the conjugate
gradient algorithm is applied to matrix A A (Fig. 4.8). The latter has a smaller
condition number than A alone (Manteuffel, 1980), and produces f\_l-orthogonal

. -—]
residual vectors r: r} ;A" r, =0.

Initialization:
Guess X0
Set r=b—Ax
d=A"'r, (Solve Ado = ro for do)
po = rydg
Po=do
CG Step:
Fork=0,1,2,...
L @ = Ap:
2. ax = p/Pr
3. X1 = Xk + oxPi
4. Fi+1 = Fx — axQx
s. If (|lre+1ll, < tolf|b||; or iter > itery,,.) Stop
6. dert = A 'riy1 (Solve Aduyy = riyy for desy)
7. Pt = Fipdeyy
8. Brs+1 = Pr+1/ P
9. Pi+1 = dii1 + Brs1Pr
End loop

Fig 4.8 The preconditioned conjugate gradient algorithm.
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Since the matrix A A is never formed explicitly, applying it as an operator implies
solving the auxiliary system

Ad=r (5.23)

at each iteration (step 6, Fig. 4.8), where A is given by (5.22), besides calculating
the matrix-vector product q = Ap (step 1, Fig. 4.8). Each of these operations
costs 2ns flops, so that the bulk of arithmetic involved in the solution is estimated
at 4ns X iter, where iter is the number of PCG iterations required to reach the
preassigned tolerance tol (step 5, Fig. 4.8). Typically, for piezoelectric problems
the number of iterations iter is such that the amount of work associated with the
PCG iterations outweighs that of the incomplete factorization:
ns?/2 < 4ns x iter. In contrast, for the direct solution with exact factor L stored
in the profile of matrix A, the cost of the solution itself by forward elimination and
back substitution (2np) is negligible compared to the complete factorization of A
(np?/2). This was taken into account when summarizing the operation count,
along with the storage requirements, for the PCG and direct methods (Table 4.4).

Table 4.4 Operation count and storage requirement for the direct and iterative
solutions of the system of linear equations.

Method Arithmetic, flops Storage, bytes

PCG ns?/2 + 4ns x iter 10ns

Direct np®/2 4np
floating-point format | double (8 bytes) single (4 bytes)

For the PCG algorithm the storage is made up of 8ns bytes to house the 2ns
locations of matrix A and the preconditioner A in single precision (4-bytes), and of
additional 2ns bytes to store their common indexing array ija in the form of 2-byte
integers, thus giving the total of 10ns bytes.” However, it is not unusual in three-
dimensional finite element analysis that the number of problem variables n exceeds
the upper numeric limit of the 2-byte integer. The latter depends on the
programming language used. For instance, it equals 32767 for the INTEGER*2
data type in FORTRAN, while in a more flexible C, the unsigned int allows

5 Note that this estimate does not include the six n-vectors ry, rx,;, 9k, dis1, Pi, Qi used
by the algorithm (Fig. 5.1).
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reaching 65535. To go beyond these numbers, one has no choice but to store the
column indices as 4-byte integers, so that array i¢ja will occupy as much space as
arrays sa and sp for the principal matrices A and A respectively, raising the overall
storage to 12ns bytes. At the same time, Gaussian elimination requires np
locations to store the profile of the symmetric matrix, which, in single precision,
amounts to 4np bytes of memory. Since for most practical meshes (Table 4.5), p is
such that 4p > 10s, one can conclude that the PCG method handles data in a more
efficient manner than Gaussian elimination.

Table 4.5 Ratios of storage requirements for the PCG and direct solutions of large

scale piezostatic problems.
Sh Mesh Storage ratio
W\ ExE,xE| ™ |®| P | Direct/PCG
cube 8x8x8 17444 | 48 | 1560 38
plate 16 x 16 x 2 19156 | 44 | 887 24
strip 30x8x2 18264 | 43 | 474 1.3

Note: All the considered regions were discretized in elements of second order (N = 2), had their
electric boundaries closed, and the top and bottom surfaces half-covered by electrodes.

The convergence behavior of the PCG method applied to piezostatic problems
was studied on some of the geometries used to illustrate the sparse storage
scheme. To reduce the roundoff error, all tests were performed using double
precision arithmetic, with matrices A and A stored in single precision format
(Table 4.4). Theoretically, the algorithm should be considered converged when the
static capacitance C, stops changing. In practice, however, C, is evaluated only
after the PCG iteration has been terminated by some numerical, and often
application independent, norm-based condition. In the piezoelectric case, the latter
must be chosen with care, particularly when the PCG solver is used as a ‘black
box.’ Indeed, the piezoelectric stiffness matrix represents a typical example of the
so-called ‘artificial ill-conditioning’ — the term attributed to Lanczos, but
borrowed here from Fried (1970) — resulting from the difference in the order of
magnitude between elastic and dielectric moduli:
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[K... Ku, ]~ [10lo 1 ] (5.24)

Ky, K 1 —1071°
This type of ill-conditioning is not pathological, and can easily be removed by, e.g.
diagonal, scaling. Unless used alone as a simplest form of preconditioning, the
latter is not required since the incomplete factorization—conjugate gradient
procedure is invariant to diagonal scaling (Manteuffel, 1980). However, as
demonstrated on the numerical examples below, it is important to scale or
‘precondition’ the stopping criteria; otherwise, the difference in the orders of
magnitude among the components of the residual vector r inherited from (5.24)
will make its norm [|r||, converge very slowly. The convergence rate of the PCG
method under two different stopping criteria is illustrated on the example of the
problem described in Fig. 4.7(a). In both cases, the iteration started from a zero
vector xg = 0, i.e. rg = b. In the first experiment, the termination criterion (step 5,
Fig. 5.1) required relative residual norm err; be less than the input tolerance tol:

lIrl,
222 ol (5.25)
libll,
in the second experiment, the iteration was stopped when the preconditioned
relative residual err; was less than the tolerance tol:

-—1
r

2 < tol. (5.26)

2

A

As can be seen in Fig. 4.9 (@) and (3), the number of iterations stops augmenting
only after the value of tol has been tightened to 10~® and 1070 respectively.
Nevertheless, the method can be considered converged for a relatively loose
tolerance on the error tol = 103, when the values of C%***! =27.7 pF and
C?P" = 359 pF are reached. In either case, no change in the sixth significant digit
of C9***? and C?7™ is observed after some 10-15 iterations, which is quite
remarkable considering the problem size n = 17444. However, if the quantity
lirll2/l|bll, is monitored (Fig. 4.9¢a)), 300—320 iterations are required to achieve
err; < 1073, thus giving a false impression that the solution keeps improving.
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Fig 4.9 lh_:llative roisic{ual err as function of PCG iterations. (@) err = ||r||,/||b]l,. ®)
err = [|A7¢[ /A",

This slow convergence rate is typical for a purely mechanical problem K = K,
which is known to be worse conditioned than its dielectric counterpart K.
Moreover, because the condition number k;(Ks) depends on the fundamental
frequency of the shape® (Fried, 1972), i.e. of a fictitious structure having
resonator's geometry but unit density, the err,—convergence deteriorates as linear
dimensions diverge (Table 4.6). For strip geometries, it can be so poor that it

6 This statement is better assimilated by evoking Egs. (3.18)—(3.20) of Chapter 3 which
‘ demonstrate that the element stiffness matrices embed the metric matrix T— the mass
matrix for unit density.
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renders the PCG method almost useless, unless low memory requirements are
imperative.

Table 4.6 Performance ratios for the direct and PCG iterative solutions of the
iezostatic problems from Table 5.2.

PCG Arithmetic ratio
iterations | Direct /PCG
err, err; | erm erra

320 | 14| 200 317
plate | 8 x8 x 1 1031 | 24 2 70
strip | 1Sx4x1 1212 (22| 0.5 24
Note: In the PCG solution, the tolerance on both the err;, and err, was fol = 1073,

Region
Shape b x by x

cube 1x1x1

In contrast, the PCG method demonstrates a spectacular convergence (Fig.
4.9(3)) for the electrically-driven piezostatic problems, provided the error is
measured in the A -norm (Golub and Van Loan, 1989). Indeed, quantity
erry = ”;\_11'"2 / IIA—II)"2 converges simultaneously with the capacitance C,,

and no drastic increase in the number of iterations is observed as the ratio of linear
dimensions grows. As the last column of Table 4.6 demonstrates, the PCG method
remains superior to the Gaussian elimination for a wide range of crystal
geometries. Its convergence rate corresponds to that of an electrostatic problem of
the same size, and can be related to the condition number k;(K,,). The closeness
of the two curves in Fig. 4.9(3) indirectly indicates that the latter is little affected
by the addition of the superelement. It inevitably deteriorates with an increased
number of variables (Fig. 4.10), i.e. when the discrete model approaches the
continuum, for which k2 — oo.
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Fig 4.10 Number of PCG iterations for various matrix sizes. Here, tol = 103,

The number of iterations also increases slightly as the difference between dielectric
moduli €5 becomes greater. For instance, for lithium niobate, the same problem
configuration is resolved in 20 iterations compared to the already mentioned 10-15
iterations for quartz.

53 The Lanczos algorithm for the vibration problem
The Lanczos method finds a few extremal (largest and smallest)
eigenvalues A of a real symmetric n X n matrix A

Ax = Ax, (5.27)

by generating a sequence of symmetric tridiagonal & x k matrices T

-al B
B, oz P
Ty = Bs - , (5.28)
B
N ﬂk g |

whose extremal eigenvalues provide good approximations to the extremal
eigenvalues of A (Parlett, 1980; Golub and Van Loan, 1989). For k£ = n such a
matrix T, could have been obtained from a similarity transformation (e.g.
Householder reduction)
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T‘n = QIAQn: (5 .29)
where Q,, is an orthogonal matrix:
Q. Q, =1L. (5.30)

The eigenvalues of the similar matrix T, are those of A, but can be recovered
more easily (e.g. QR algorithm or bisection method) since T, is tridiagonal.
However, the goal is to avoid such explicit transformations because they inevitably
destroy the sparsity of A. Instead, the Lanczos algorithm, starting from a given
vector q;, calculates the elements of T, directly, i.e. from Eq. (5.29) rewritten in
the form

AQ, =Q,T,, 531

and Eq. (5.30). The generated orthonormal columns of matrix Q, = (qi, .., qn)
are the Lanczos vectors.

Reducing the whole matrix (k = n) to tridiagonal form was the original use of
the Lanczos algorithm. However, for practical applications, these are the
eigenvalues and eigenvectors of matrix T, at step k < n, i.e. long before the
tridiagonalization process is completed, that are of interest. For k < n, Eq. (5.31)
is not exact any longer and should be rewritten as

AQ, = Q. T: + Ry, (5.32)
where Q;. is an n X k submatrix of Q,,,
QiQ: = I, (5.33)

and R = (0,0,...,0, ry) is ann X k matrix with the residual vector
e = ¢Ik+lﬂk (5.39)

in the last column. Equations (5.33)—(5.34) suggest that, provided r; is available
from the previous Lanczos iteration, 8, and qx41 can be obtained by normalizing
ri. This corresponds to steps 1 and 6, respectively, of the simple Lanczos
algorithm, shown in Fig. 4.11. The residual vector itself

e = AQr — Qr-185-) — Qrai (5.35)
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is calculated in two steps. First, a partial residual is found (steps 2 and 3, Fig. 4.11)
and used to compute the diagonal entries of matrix Tx

o = Qi Aq,; (5.36)

then, vector ry is updated (step 5) to produce a complete residual. As follows from
Egs. (5.34)(5.36), qi, ax, 3; are computed in such a way that in exact arithmetic
the Lanczos vectors satisfy explicitly the following orthogonality conditions:

91 =0, qiqe_; =0, |qill,=1 (537
as well as
qir, =0 (5.38)

at each step of the algorithm. Consequently, the current Lanczos vector q; and the
residual vector r; are orthogonal to all previous Lanczos vectors Q,_, .

Initialization:
Guess rg#0
Set Bo = liroll2
Q=0
Lanczos Step:
Fork=1,2,...
L. @ = i1/ Br
2. = AqQ:
3. Fx = O — Br—1Qk—1
4. o = riq,
5. P = O — OxQk
6. B = llrell2
7. Compute 6,, 8, yi, i = 1, ..., k, if needed.
8. If (V Ritz pairs ( 8;,y;), i = 1, ..., m are satisfactory) Stop
End loop

Fig 4.11 The basic Lanczos algorithm.
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At each step of the Lanczos iteration, the extremal eigenvalues of matrix T
turn out to be increasingly good approximations to A's extremal eigenvalues.
These approximations to A's eigenpairs, i.e. the Ritz pairs (0;,y;), can be obtained
by solving a small (k < n) tridiagonal eigenproblem

T}:Si = 0.-3.-, t= 1, cony k, (5.39)

with normalized eigenvectors s;, ||s;||, = 1, and then computing the Ritz vector as
.= kat': t= ls seey k. (540)

However, the accuracy of the Ritz pair can be established without forming y;
explicitly until 8; becomes an accepted eigenvalue of A. As shown in Parlett
(1980), an error bound on the residual can be computed as

lAy: — yibill, = Brlsixl, t=1,..,k (5.41)

where s; ;. denotes the bottom (kth) component of vector s;, thus making quantity
Bri = By|six| essential in assessing the accuracy of A's eigenpair. The Cauchy's
interlace theorem states that for any real number 6 and any vector x, such that
Ix[l, = 1, there is an eigenvalue ) of A satisfying

A 6] < [|Ax — x8)],. (5.42)

Setting 0 = 0,("), one can conclude that each Ritz interval [0,(") — Bi» ng) + ﬂk‘-]

contains the Ritz value 0§k+1) atthe next step k + 1

g+ _ ogk’| < B, i=1,..k, (5.43)

and that the same error bound applies to an eigenvalue A of matrix A:

A-6®| < B, i=1,..k (5.44)

since [lyll, = \/ﬁ(_)m= isll; =1 in exact arithmetic. For well separated
eigenvalues this error bound can be refined (Parlett, 1980; Parlett and Nour-Omid,
1985), so that the Ritz intervals are less likely to overlap; the eigenvector error
bound is also available from the above references. Finally, the Ritz value 8{*) is
considered converged to an eigenvalue \ of matrix A if its error bound 3, is less
than the tolerance tol:
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B < tal 6. (5.45)

As the conjugate gradient method, the Lanczos algorithm access matrix A only
through a function that computes Ax for a given vector x, which makes it well
suited for large and sparse matrices. In exact arithmetic, the simple Lanczos
method (Fig. 4.11) requires only three vectors ri, qi, qi—; of length n; an
implementation of the algorithm with just two n-vectors can be found in Golub
and Van Loan (1989). However, in finite precision, additional storage is needed to
hold some old Lanczos vectors used to enforce orthogonality against the newly
computed vectors. Indeed, it is well known that a global loss of orthogonality
among the Lanczos vectors occurs as a result of roundoff error. What is more, in
floating-point arithmetic this constitutes a necessary and sufficient condition for
convergence of T.'s eigenvalues to that of A. Therefore, if the ‘practical’
conjugate gradient algorithm is almost identical to its exact arithmetic version (Fig.
4.8), the Lanczos process, if implemented as shown in Fig. 4.11, will never
converge, computing more and more redundant copies of the extremal
eigenvalues. This earned it the reputation of ‘unstable’ and delayed its acceptance
as a very effective method of finding some of the extremal eigenpairs. The
following modifications are required to turn the simple recurrence of Fig. 4.11 into
a practical Lanczos algorithm:

— limited reorthogonalization of Lanczos vectors, e.g. selective (Parlett and
Scott, 1979), partial (Simon, 1984) or external selective (Grimes et al.,
1994), to prevent the appearance of spurious eigenpairs;

—  block form of Lanczos method to find multiple or clustered eigenvalues;

— using the Lanczos method iteratively, i.e. restarting it after a good
approximation to an eigenvector was found;

— efficient stopping criteria for identifying converged Ritz pairs.

Creating a program that would efficiently combine some of or all the above
modifications is not straightforward. In resent years, a lot of research has been
devoted to the development of a reliable Lanczos eigensolver (Parlett and Nour-
Omid, 1989; Grimes et al., 1994) that could be used as a ‘black box’ inside an
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application code. Nevertheless, no standard Lanczos-based software, such as
EISPACK for dense matrices, exists yet. A few stand alone FORTRAN programs
developed by matrix experts are outlined in Parlett (1984). The programs typically
count several thousand lines of code, and differ, in particular, by the level of
orthogonalization (if any) maintained among the Lanczos vectors. Only Scott's
program LASO2, which implements the block version of selective
reorthogonalization, is distributed independently of its author. The double
precision version of LASO2 comes in two flavors — DNLASO and DILASO: the
former computes a specified number of eigenpairs m at one end of the spectrum of
the symmetric matrix A, while the latter finds all the eigenpairs outside a user
defined interval. With some modifications described later in this section, the
DNLASO program was adopted as an eigensolver and integrated with the
piezoelectric modal analysis code. Although this version uses only half the power
of the Lanczos algorithm, which determines eigenvalue at both ends of A's
spectrum, it was found more practical to have control over the number of wanted
eigenpairs rather than adjusting the excluded interval for every specific case.

The selective reorthogonalization scheme (Parlett and Scott, 1979) exploits the
fact that orthogonality is lost in the direction of converged Ritz vectors, so that
any newly computed Lanczos vector is orthogonalized only against this selected
set, not against all the previous Lanczos vectors. The block version of the
algorithm replaces the single Lanczos vector q; by an orthonormal block of b
vectors and matrix T, is block tridiagonal. To calculate this block at each step of
the recurrence, the simple orthonormalization of the residual vector (steps 6 and 1,
Fig. 4.11) is replaced by the modified Gram-Schmidt process (Watkins, 1991)
which produces a QR decomposition of the n x b block of residual vectors r. In
a sense, the block variant of the Lanczos algorithm is to the simple Lanczos
recursion what the subspace iteration is to the inverse iteration. A large block size
improves convergence, but because the amount of work is proportional to b?
(Golub and Van Loan, 1989), it is not very practical to have it larger than the
maximal multiplicity of any eigenvalue sought. One should note, in passing, that
the capability to adjust the block size was very appreciated when calculating the
spectrum of strip piezoelectric vibrators which often required b > 2. To run
LASO?2, the user must supply two subroutines OP and IOVECT. The first returns
the block product AX for an n x b input array X, while the second stores the
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selected Lanczos vectors on a secondary storage device and periodically recalls
them when needed. Overall, the program requires approximately 3n x b storage in
addition to n x m locations reserved for the computed eigenvectors. If some good
guesses at A's wanted eigenvectors are available, it is possible to supply them as a
starting block; otherwise, the algorithm starts with b randomly generated vectors.

The convergence rate (or, as it is often called, the emergence rate) of the
eigenvalue ); is determined by the gap ratio |Aiy1 — Ail/|An — A1 | (Grimes et al.,
1994), where the eigenvalues are indexed in ascending order || < ... < |Aq]-
Because for the vibration problem they have the physical meaning of squared
natural frequencies, the largest eigenvalues A, are typically very large compared to
A1, An > A;. Therefore, in the sense of relative separation, the largest eigenvalues
are said to be better separated than the smallest, even though |\;;; — A} could be
of the same order of magnitude in either case. This means that convergence to
small eigenvalues \; =~ \,, which are usually of interest in modal analysis, will be
very slow. Although the Lanczos method produces eigenvalues at both ends of A's
spectrum, the larger eigenpairs will emerge sooner than the small ones: according
to Parlett (1984), the algorithm will find some 5O eigenvalues near A\, for every
eigenvalue near )\;. Unfortunately, preconditioning cannot be directly applied to
the eigenvalue problem since it changes the eigenpairs sought. The cure of the
convergence problem is the same as for the power method — to give the algorithm
the inverse operator A~! (Scott, 1982). As in the case of inverse iteration (inverse
power method), the smallest eigenvalues of A are mapped onto the largest
eigenvalues of A~!, and the convergence ratio is correspondingly inverted. This
approach can turn out to be expensive since, to deliver A~!, a factorization of A is
typically required; however, experience shows that this strategy pays by a very
rapid convergence.

In general, to improve convergence of eigenvalues in any part of the spectrum,
e.g. in the neighborhood of a specified number o, the method is applied to the
shifted and inverted operator (A — oI)™', whose eigenvalues x are related to the
original eigenvalues \ of A by the spectral transformation relation

(5.46)
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The latter maps the eigenvalues A close to the shift o onto large eigenvalues p,
which are delivered first by the Lanczos algorithm. In the context of a generalized
eigenvalues problem (5.1), the spectral transformation amounts to applying the
Lanczos algorithm to the inverted and shifted problem

WK~ oM) ' We = 1z, (5.47)

where it was assumed that M could be factored as
M=WW', (5.48)

and z is the transformed eigenvector
z=WTx (5.49)

It can be rewritten in the form of a standard eigenvalue problem
Az = uz, (5.50)

with symmetric operator
A=WI(K-oM)'Ww, (5.51)

whose eigenvalues and eigenvectors are related to those of (5.1) by (5.46) and
(5.49) respectively. Because A in (5.51) is never formed explicitly, calculating the
matrix-vector product Aq implies solving the linear system

(K—oM)r=Wq. (5.52)

Although the spectral transformation is naturally used by the subspace iteration
technique, it took Ericsson and Ruhe (1980) to emphasize its much more effective
combination with the powerful Lanczos method. Ericsson and Ruhe applied the
Lanczos algorithm to the symmetric operator (5.51) and employed the LDLT
factorization of K — oM to solve (5.52). They also proposed a sophisticated
shifting strategy (i.e. using many shifts, and, consequently, many factorizations of
matrix K — oM, to obtain the solution in few Lanczos steps, or using few shifts
but accepting longer Lanczos runs), and derived the error bound for the original
eigenvalue A:

A= (o +1/60)| < Bt (o,("’)z, i=1,..,k (5.53)
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Inequality (5.53) shows how the spectral transformation loosens the error bound
(5.44): when A is close to the shift o, only a ‘moderately’ small 8;; is sufficient to
guarantee a good approximation of A by o + 1 /9,(") since 0?‘) in the denominator
is large.

In the form (5.46)-(5.52), the spectral transformation Lanczos method was
applied to large two- and three-dimensional piezoelectric vibration problems,
where the system (5.52) has been solved by some variants of Gaussian elimination
such as substructuring technique (Yong and Zhang, 1994), modified Crout's
factorization (Yong and Cho, 1994), or LDLT factorization (Yong, 1995). In all
these cases the solution implied another factorization — that of matrix M — as
part of the transformation (5.47). With M semi-definite, the factor W in (5.48) is
rectangular with linearly independent column:

L
W= [0], (5.54)

where L is the Choleski factor of matrix My, = LLT. In principle, (5.52) could be
solved by an iterative (e.g. PCG) method, but, as will be shown below, the
conditioning of matrix K — oM deteriorates rapidly as o grows, leading to long
iterations. Given the fact that (5.52) is to be solved as many times as the product
Ax is calculated, a direct solution is clearly preferred. Therefore, in the framework
of Ericsson and Ruhe's spectral transformation, two costly factorizations are
typically required.

However, it is a misconception that matrix M should always be factcred in
order to maintain the symmetry of the operator A given to the Lanczos program.
A small but practically very important variant of spectral transformation described
in Nour-Omid er al. (1987) suggests applying Lanczos algorithm to the
generalized eigenvalue problem rewritten in the form

(K — oM) ™ 'Mx = px, (5.55)
where g is the shifted and inverted eigenvalue (5.46), and x is the original
eigenvector of system (5.1). Working with the nonsymmetric operator

A=(K-oM)™'M (5.56)
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may seem extravagant, but after observing that it is self-adjoint in the M semi-inner
product:

(Ax’ Y)M = (x! AY)M = yTMAx’ (G.57

it becomes clear that the standard Lanczos algorithm can be applied directly to
(5.56) provided all the inner products are replaced by the M semi-inner products

(Fig. 4.12).

Initialization:
Guess Q#O0
Set Po = Mgqo
Solve (K — oM)r, = po for ry
Po = Mro
Bo=/vapo
Q=0
Lanczos Step:
Fork=1,2,...
QG = rx_1/B1
P: = Mq,
Solve (K — oM)r; = pi forr,
T = — Br_1Qk—1
= rip;
T = Py — Qi
Px = Mr,
B = /Tip:

Compm 0!'1 8 Y, i= 19 eoey k

¥ ® N0V e W N -

s
e

If (V Ritz pairs ( 6;,y;), t = 1, ..., m are satisfactory) Stop
End loop

Fig 4.12 The modified Lanczos algorithm for vibration problems.
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In exact arithmetic, the modified Lanczos recurrence generates M-orthogonal
Lanczos vectors Q,:

QiMq,,; =0, qiMq,_, =0, [lqill; =1 (5.58)
by calculating a;. as
ar = q{MAq, = q;M(K — M) "'Mq,. (5.59)

It also follows from the above that the residual vector is M-orthogonal to the
current Lanczos vector

qiMr, =0, (5.60)

as well as to the previous ones. Expression (5.59) reveals that the modified
Lanczos algorithm can be viewed as the standard one with respect to the
generalized eigenvalue problem

M(K — oM) 'Mx = uMx, (5.61)

which has the same eigenpairs as (5.55) but is symmetric. Therefore, their is no
drawback associated with the application of the Lanczos recurrence to the
nonsymmetric operator (5.56), while the advantages are substantial.

First, no factorization of matrix M is needed, thus saving n, p3,/2 work,
where n,, and p,, are the size and semiband width of M respectively;
consequently, the storage requirements can be reduced by nas(pys — sar), where
sy is the average number of nonzeros per row, by switching to a more efficient
sparse storage of M. Furthermore, the M-factorization is not required even when
evaluating the residual norm

IM(K ~ oM)™'My; — 0My;|| o =Biis i=1,....k, (5.62)

since M™! cancels in (5.62). The generalized Cauchy’s interlace theorem states that
for any real scalar # and any vector x, such that ||Mx||y-1 =1, there is an
eigenvalue A of A satisfying

A — 6| < ||Ax — OMx|| g1 (5.63)
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Using the above and the fact that Lanczos vectors are M-orthogonal in exact
arithmetic, so that the Ritz vector y in (5.62) satisfies ||My]|[\— = 1, the error
bound for the transformed eigenvalue y is given by (5.44), i.e.

|u —6| < B i=1,uk, (5.64)

and for the original \ by (5.53); as in the case of the standard Lanczos procedure,
these bounds can be improved. Although at each step of the modified Lanczos
algorithm an auxiliary vector p = Mx (steps 2 and 7, Fig. 4.12) is to be computed
twice, requiring 2nassys flops, this is still cheaper than performing the forward
elimination and back substitution (2np,,) involved in the computation of Ax,
with A from Eq. (5.51) since sps < p,,; for the total number of Lanczos iterations
iter, the amount of work diminishes therefore by 2nas(pyr — sar) X iter. Finally,
there is no need to back transform the computed eigenvectors as in (5.49) since
they are the original eigenvectors of (5.1).
At each iteration, the modified Lanczos algorithm requires solving system

(K — oM)r = Mq (5.65)

for r given q. As already mentioned in connection with the similar system (5.52),
the PCG method is not very useful to this end. Because the price to pay for this is
high (i.e. the cost of complete factorization of K — ocM), the performance, or
rather ‘misperformance’, of the PCG algorithm applied to (5.65) merits some
comment. Figure 4.13 shows how the number of PCG iterations changes as the
shit o grows. The curve was obtained for a cubic shape discretized as in
Fig.4.7(a), but the behavior is characteristic for other geometries and meshes as
well. First, even for o = 0 the convergence is not that of an electrically-driven
piezostatic problem (Table 4.6): some 270-300 PCG steps are required to achieve
the tolerance tol = 10™3, no matter which error estimate, (5.25) or (5.26), is used.
Indeed, the multiplication by the mass matrix M purges all electrical coordinates
from the right-hand side of (5.65), which results in purely ‘mechanical’
convergence. The latter is governed by the conditioning of the shifted matrix
k2 (Kw — cMy, ), which degrades rapidly as o increases — a behavior well known
to many finite element specialists.



154 4 Computer implementation

1400
1200
1000

800

PCG iterations

P

1e+00 1e+02 1e+04 1e+06 1e+08 1e+10
shift

Fig 4.13 Number of PCG iterations for the operator K — oM as function of shift o.

The minimum in the number of PCG iterations in the neighborhood of the lowest
eigenvalue A; = 10® (fundamental frequency w; squared) of (5.1) does not come
out of the blue. It is tempting to explain its location by means of the computable
bounds on the spectral condition numbers of the global stiffness and mass
matrices’ derived by Fried (1972, 1973). They are useful in many respects (e.g. to
study the influence of the discretization parameters on the PCG convergence), but
what is relevant at this point is that the bounds on k2(K,,) are related to A\,
whereas the bounds on k,(My,) do not involve A; at all. The former fact — used
earlier to substantiate the ill-conditioning of matrix K, as the vibrator shape
elongates — distinguishes the shift o =~ A\, among other values. It is therefore
natural to assume that the ‘balance’ between matrices Ky, and cMy,, i.e. the
lowest condition number k; (K — 0Myy,), is achieved for o close to A\; = u?.

As follows from the above, the complete LDLT factorization of matrix
K — oM in (5.65) is inevitable. Its cost (nyp%/2) has been included in the
arithmetic estimates for the two schemes of spectral transformation Lanczos
algorithm (Table 4.7).

7 Fried's bounds are expressed in terms of the extremal eigenvalues of the element
stiffness and mass matrices, the maximal number of elements sharing a nodal point and
the fundamental frequency of the structure. It is felt, however, that they can be further
refined for tetrahedral elements to include weighting coefficients and extremal
eigenvalues of the universal matrices.
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Table 4.7 Operation count and storage requirements for the spectral
transformation Lanczos method.

Operator A Arithmetic, flops Storage, words
T _ -1 (ngPk +nypir)/2
WK — oM)W +2(ngpx + nMPy) X iter MKPK + RMPM
_ -1 '"'KP%( /2
(K —oM) M + 2(nkpr +nusy) % (iter + 1) MKPK T MM
Sloating-point format double (8-byte) single (4-byte)

Aarithm = P /2 — 2(nx Py + narsy) + 2np(Pag — sur) X iter (flops)
Astorage = nr(Pyr — sur) (words)

The operation count corresponds to the simplified exact arithmetic versions of the
algorithms presented in Fig. 4.11 (with symmetric operator (5.51)) and Fig. 4.12
respectively, for which the block size is b = 1. Nevertheless, because the additional
storage and work associated with practical implementations of both schemes (e.g.
selective reorthogonalization) is almost the same, it is sufficient to conclude that
the second scheme is unconditionally better in terms of both storage and
computing time. The latter is actually proportional to the calculated arithmetic cost
since both global matrices are stored in core memory, and no additional work is
associated with accessing secondary storage (except for some negligible traffic of
Lanczos vectors carried out by the subroutine IOVECT).

The M-orthogonal Lanczos algorithm — although well known to matrix
experts (Parlett, 1980; Scott, 1982), integrated with some professional Lanczos
eigensolvers (Jones and Patrick, 1993; Grimes et al., 1994), and certainly
embedded in many finite element packages — seems to be sometimes overlooked
by engineers, as attempts to optimize the factorization of the mass matrix suggest.
Meanwhile, its deliberate use is particularly important in conjunction with large
scale finite element models of novel problems, not solved by commercial packages,
or of problems whose demand of core storage is so high that one cannot afford any
inefficiency in the handling of data. The problem of piezoelectric vibrations with
open electric boundaries is a perfect example of both these specifics. The fact that
in this case the mass matrix M is singular does not invalidate the M-orthogonal
Lanczos recurrence. Yes, computing the semi-norm ||r||py = +/TLMr, (steps 7
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and 8, Fig. 4.12) with M semi-definite can lead to a zero §;, for a nontrivial
residual vector ri. This only indicates — through Eqs. (5.32) and (5.34) — that all
the finite (mechanical) eigenvalues of (5.1) computed at the kth step are exact. As
pointed out by Scott (1982) and explained in greater detail in Nour-Omid et al.
(1987), the eigenvector associated with these finite eigenvalues, i.e. the desired
eigenvectors, lie in the range of operator (K — aM)'lM. The Lanczos vectors
must also be confined to this subspace, otherwise the computed Ritz vectors will
contain unwanted components in the null space of (K — M)~ M. When working
with operator (5.51) this condition was satisfied automatically since the
multiplication by WT (K — ch)'IW purges any vector from components in the
direction of infinite (electrical) eigenvalues; however, in the M-orthogonal spectral
transformation Lanczos algorithm the finite subspace must be enforced explicitly.
This is accomplished by choosing the starting vector qo from the range of
(K- oM)™'M, e.g. by applying the latter to a random n-vector (Initialization
step, Fig. 4.12), so that in exact arithmetic all the generated Lanczos vectors will
belong to the range of (K — oM)™'M.

This and the previously described modifications associated with the M-
orthogonal Lanczos algorithm have been incorporated into the DNLASO code.
Namely, the Euclidean dot products (norms) of vectors have been replaced, where
required, by their M-products (norms); the modified Gram-Schmidt
orthogonalization has been made M-orthogonal (Nour-Omid and Clough, 1985).
Therefore, the resulting Lanczos solver, let call it DNLASO_M, can be seen as a
variant of Scott's program DNLASO, fine tuned to find extreme eigenvalues of the
vibration problem in the form (5.55) with M semi-definite. Before being
definitively integrated with the piezoelectric application, DNLASO_M was applied
concurrently with the original DNLASO to solve several test problems. The
numerical behavior of DNLASO_M with nonsymmetric operator (5.56) was
practically indistinguishable from the performance of DNLASO with symmetric
operator (5.51). In all tests, the programs were identical in both accuracy of the
eigenpairs and the number of Lanczos iterations required, apart from the obvious
difference that DNLASO_M consumed less storage and computing time (Table
4.7) to detiver the same information.
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The convergence behavior of the spectral transformation Lanczos method is
illustrated in Fig. 4.14 for two types of eigenvalue distribution associated with a
square plate and a strip respectively.
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Fig 4.14 Distribution of the first ten eigenfrequencies w: (@) square plate 6 : 6 : 1; (B)
strip 12 : 3 : 1. (¢) The number of matrix-vector operations Ax required by the spectral
transformation block Lanczos algorithm as function of the number of wanted eigenpairs.

The two geometries were modeled by meshes of elements of second order shown
in Table 4.2. In this example, the shift was taken slightly lower than the first
eigenvalue o ~ w?; the block size was b = 2, so that the actual number of matrix-
vector operations Ax (or the ‘effective’ number of Lanczos iterations iter) was
‘ calculated as being twice the number of calls to the subroutine OP that delivers the
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block AX. The curves in Fig. 4.14(c) correspond to problems with closed electric
boundaries, but experiments with open boundaries demonstrate that convergence is
practically the same. The vibrator geometry has also little influence on the number
of Lanczos steps which does not exceed iter = 40-50 for ten eigenvalues. In fact,
the latter could have been obtained in fewer steps should the DILASO version of
the Scott's program be used: with DNLASO-based Lanczos solver, one finds the
specified number of eigenvalues that lie only to the right side of the shift o, thus
wasting half the power of the algorithm. In either case, for practical numbers of
wanted eigenvalues (typically 5 to 10 per shift), the convergence of the spectrally
transformed eigenpairs is so fast that the initial cost of factorizing K — oM always
eclipses the total cost of Lanczos iterations.
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1. Introduction

In this chapter, several examples are presented to illustrate the application
of the ballooning method to various practical problems, and to study the influence
of the exterior electric field on piezoelectric vibrations. The large systems of
equations associated with the three-dimensional modeling of piezoelectric
structures impose severe limitations on geometries and modes that can be tackled
at the present level of computer facilities. Therefore, the considered examples do
not aim at any specific application and by no means intend to be used for the
optimization of vibrator design. Nevertheless, the illustrative problems were
chosen to be as close as possible to the practical piezoelectric configurations in
terms of geometry, crystal cut, electrode shape or operating mode.

Piezoelectric vibrators, as precision devices, are very sensitive to various
perturbations such as acceleration, temperature gradients, mechanical stresses
caused by crystal defects, electrodes or mounting. All of them can produce
changes in resonant frequencies or equivalent electrical parameters. It was judged
that the best way to evaluate the influence of the exterior field on a vibrator's
parameters was to compare it to changes resulting from the variations in electrical
boundary conditions only, thus excluding other factors from the analysis. In the
framework of the present finite element model, it was the electrode configuration
(size, shape, orientation) that was modified most frequently to provide the solution
shift associated with the exterior electric field with a point of reference.
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2. Numerical tests for ballooning matrices

Before being applied to the interior piezoelectric problems, the
superelement matrices obtained from the block balloon recursion were rigorously
tested on several three-dimensional electrostatic examples with open-electric
boundaries for which solutions by means of alternative numerical methods were
available.

Convergence behavior of the solution as a function of the surface mesh size ng
was first studied on the example of a unit (1 m) metallic cube. Because there is no
electric field inside the cube, the problem is treated as a purely exterior one. It is
represented solely by the equation S;; ¥ = 0, where 8, is the superelement matrix
that models the infinite region, and ® = (y;), ¢ = 1, ..., ng is the vector of surface
potentials. The capacitance is calculated as twice the energy of a cube charged to
1V:

C=3's,P, 2.1)

i.e. ¢; = 1 for all i. For a mapping ratio 7 = 1.2, some seven iterations are quite
sufficient for the energy to converge, as demonstrated in Fig. 5.1.

cube -o—

sphere —+— 1
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Q
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Fig 5.1 Convergence of capacitance of a unit cube problem solved with the scaling ratio
n= 1.2; exact capacitance C = 4rey/(R;' — R;') of a unit spherical capacitor
(2R, = 1m) with R, = 7" R;, where i is the iteration number.
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The capacitance of a unit cube has previously been reported by several authors.
Lean, Friedman and Wexler (1980) obtained a value of 73.03 pF or 0.6573 e.s.u.
(in CGS units) with 31 variables by applying the boundary element method based
on elements of second order to the one-eighth of the cube. Jawson and Symm
(1977) reported that Laskar (1974) obtained values of capacitance ranging from
0.6538 to 0.6603 e.s.u. for 6 to 66 variables respectively with the same method.
Earlier Reitan and Higgins (1951) determined the lower and upper bounds for the
capacitance of a unit cube, which are 0.62211 and 0.71055 e.s.u. respectively, and
also calculated the value of 0.6555 e.s.u. by the ‘method of subareas’ (Silvester,
1968). Results obtained in the present work using the ballooning method are
summarized in Table 5.1 for different mesh sizes. All ballooning matrices were
obtained using elements of second order (N = 2) to discretize the bordering
region. The most accurate value of capacitance — 73.61 pF or 0.6616 e.s.u. —
was obtained with the division into 12 x 12 x 12 bricks or into 8640 tetrahedra.

Table 5.1 Convergence data for the unit cube problem.

FE mesh No. of surface No. of surface nodes Capacitance
Exx Eyx E, triangles total ng | independent n,; | pF e.s.u.
2x2x2 48 98 19 74.70 | 0.6714
4x4x%x4 192 386 61 74.77 | 0.6640
6X6%X6 432 866 127 73.73 | 0.6626
8x8x8 768 1538 217 73.67 | 0.6621
10 x 10 x 10 1200 2402 331 73.64 | 0.6619
12x 12 x 12 1728 3458 469 73.61 | 0.6616

Because the solution in this problem is affected by physical discontinuities at
the edges and corners, it is important to represent the field distribution at the
vicinity of the cube surface as precisely as possible. The accuracy of the model,
apart from the mesh size ng, is determined by the mapping ratio 7, the order of
surface triangle elements N; and the order of line segments in the radial direction
(‘toblerone’ edges) N; in the bordering region. By varying these parameters, it
was found that the order of interpolation on the surface N, at least for the present
electrostatic problems, was not overly critical: as demonstrated in Fig. 5.2 (a), the
precision is almost identical for any order starting from N; = 2. It is, however,
desirable to use a line segment of high order if large values of scaling ratio n are
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employed (Fig. 5.2 (4)). Such values allow enlarging the region in fewer iterations;
practically, this reduction in the number of iterations is compensated by the amount
of additional operations involved in static condensation of interior nodes in Q;, if
N, > 1. It was found that for n < 1.2 no significant improvement is reached by
setting N, higher than 2 (Fig. 5.2 (c)). Most superelement matrices used in this
analysis were obtained with orders of interpolation N; = N, = 2 and scaling ratio
n=12
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Fig 5.2 Convergence behavior of capacitance of a unit cube for various orders of
interpolation on surface triangles N, and on ‘toblerone’ edges N,. (a) Here the scaling
ration=15and N,=2; ®)N;=2,7=15,) N, =2,7=1.2.

Matrices S;) were also used to solve two open boundary problems that involve
modeling some of the interior space. The first is the electrostatic field due to a thin
square plate of unit area, as shown in Fig. 5.3. Because the problem is purely
electrostatic, the interface I' may be placed arbitrary. In this example, the interior
region is subdivided into 12 x 12 x 4 ‘bricks’ (2880 tetrahedra) where the plate
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itself is in contact with 10 x 10 x 2 of them. With elements of second order, this
yields 5049 variables for the interior problem. The surface mesh consists of 1922
nodes, of which only 269 (N,.) are independent. The calculated capacitance of the
square plate is 41.5pF or 0.373 e.s.u. In their book, Jawson and Symm (1977)
reported the values 0.367 and 0.362 e.s.u. for the same configuration: the former
was obtained by Noble (1971), and the latter — by Laskar (1974) using the
integral equation method with 289 elements and 45 variables. Konrad and
Tsukerman (1995) used Harrington's method to obtain 41 pF. Also, to compare,
the exact capacitance C = 2a /7 (Landau and Lifshitz, 1992) of a thin disk of unit
diameter (2a = 1 m) equals 0.3183 e.s.u.

v N

7 \ Fig 8.3 Cross-section of electric potential distribution
N 2 around a square plate.

N b

Closely related to this problem is that of determining the capacitance of a
parallel square plate capacitor of unit (1 m) area. The problem was solved with a
cubic 12 x 12 x 12 mesh for various plate separations d (Fig. 5.4). At least one
layer of elements separated the interface from conductors. The calculated values of

capacitance are shown in Fig. 5.4 (b).
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Fig 5.4 Square (1m x 1m) parallel-plate capacitor. (@) Cross-section of electric potential
distribution; (b) capacitance as function of plate separation d.

. A similar dependence was obtained by Konrad and Tsukerman (1995) using the
method of average potentials. By extrapolating the graphic (Fig. 5.4) to the origin
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(1/d ~— 0), the capacitance of the parallel-plate capacitor with infinite separation,
can be estimated approximately at 20 pF. This is consistent with the previously
obtained value for a single square plate, whose capacitance is two times greater
than the capacitance of the system of two infinitely separated plates.
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3. Static and modal analyses of piezoelectric structures

To study the effect of the exterior electric field on the characteristics of
piezoelectric vibrators in a more or less systematic way, the static and modal
analyses should involve various piezoelectric materials, crystal shapes, electrode
configurations, and vibrational modes. Because it is difficult to assess the role of
these factors using one particular application, the piezoelectric structures in the
examples below were subdivided, based on their shape, into four categories within
which only a limited number of electrical situations was simulated. Since no
‘textbook’ problems are available in the case of three-dimensional piezoelectric
vibrations, the obtained results were typically checked, when possible, against the
one-dimensional estimates or compared to experimental data.

3.1 Li,B,O, unit cube

The problem of a lithium tetraborate unit (1 m) cube (Antonova and
Silvester, 1997), though artificial, is presented here for its illustrative qualities
since both the material and the vibrator shape are favorable to electric flux leakage.
This example serves also to introduce the few postprocessing operations involved
in the present finite element analysis, to study the convergence behavior of static
and motional parameters and to interpret the influence of the exterior electric field
on them.

The solution of the static piezoelectric problem is examined in terms of static
capacitance C;, which can be determined in two ways, i.e. either as the ratio of the
electrode charge Q and the potential difference Ay = [p; — 5| between the
electrodes

Q

C, = E, 3.1
or from the total stored energy Usota
2Uta
CS = _’ (3 .2)
(Ap)’

1
where Ut = ExTKx is typically calculated as the sum of mechanical and

electrical energies over all the elements E, including the superelement S;; when
the problem is solved with open electric boundaries:
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1E 1
Utotal = _Z xOTK g 4 EQISHQ" (3.3)
2 e=1

where x(?) is the vector of nodal displacements u(® and potentials () for the
element e, and ®, is the vector of surface potentials. To calculate the purely
electric part of the capacitance C;, i.e. the value that can be recovered from the
vibration analysis if the static condensation of potential degrees of freedom is used
(Eq. (5.12), Chapter 4),

Crect _ Peteet. (.4)
(Ap)
only the electrical part Ugect Of Urota is taken into account, i.e.
19~ (TRl @ 4 LT
Uetect = Ugiet + Uent = 529’ Ko 9™ + E‘I’,Su‘l’s- 3.5
e=1

The capacitance obtained from the model with open electric boundaries CP*",
being a more realistic approximation, is considered as a reference value when the
relative increase in C, due to the exterior electric field

P _ Cclosed
cr

s

AC, = (3.6)
is calculated.

In the example problem shown in Fig. 5.5, the values of C;7" were found to
be 20.1 and 12.2 % higher than their closed-boundary counterparts C<°*** for the
full (4 x 4) and partial (2 x 2) electrode plating of the top and bottom surfaces of
the cube respectively. The contribution of the exterior field to the total stored
energy is clearly of the order of AC;, and constitutes 24 and 13 % for the
corresponding electrode configurations. Numerous calculations of C<***? and
C™" in the framework of convergence study demonstrated that the accuracy of
the static capacitance was practically the same, no matter whether derived from
(3.1) or (3.2). This is consistent with the static boundary conditions imposed on
the electrodes (Table 4.3, Chapter 4), under which C, is not a stationary quantity.



$§3.  Static and modal analyses of piezoelectric structures 167
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Fig 8.§ Static solution. (@) Transducer configuration. (b) Cross-section of electric
potential distribution. (¢) Convergence of the static capacitance C,/¢,.

The values of capacitance obtained with the finest mesh used (8 x 8 x 8) are
summarized in Table 5.2.

Table 5.2 Static capacitance of a unit lithium tetraborate cube.

[Electrode Electric boundary
plating closed open
C*%**/eg,m C,/eo,m | Co*/eg, m C,/ep, m
full 8.15 10.03 10.76 12.64
partial 5.58 6.61 6.54 7.53
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The convergence of C, is very rapid for the fully covered piezoelectric capacitor
(Fig. 5.5(c), left), while the capacitance of the structure with partial electrode
stabilizes if the top and bottom surfaces are subdivided in at least 8 x 8 rectangles
(Fig. 5.5(c), right). The latter configuration makes it evident that the cubic shape,
with its closely located dielectric corners and electrode edges, constitutes a serious
test for the finite element model. Nevertheless, the separation between C°**? and
C?™" was almost independent of the mesh for either electrode shape. This
suggests that the shift in the capacitance due to the leakage field is calculated more
accurately that the solution (C,) itself, and can be estimated even by using a coarse
mesh of elements.

An important step in the result post-processing is visualizing the fringe electric
field around the piezoelectric body. A smooth and physically valid potential
distribution not only illustrates the obtained results, but also attests their
correctness and accuracy. As mentioned in Chapter 2, the most serious drawback
associated with the method of ballooning consisted in its inability to recover
potentials in the outer region modeled by the superelement matrix. Attempts to
compute the exterior potential distribution by means of the Poisson integral

1 o(Q)

o(P)= 47reo/s lrp — ro| ds @7
failed since the surface charge density o(Q) = —n - D(Q), calculated over the
surface of piezoelectric crystal by the direct differentiation of the piecewise
continuous approximate solution (u, ), was too inaccurate to be used with (3.7).
To visualize the fringe field, a more direct method was adopted in the present
work: the mesh of tetrahedral elements was simply extended one layer beyond the
surface of the piezoelectric body to include some of the free space. For example, in
the problem shown in Fig. 5.5, the corresponding superelement matrix was added
to the 6 x 6 x 8 mesh, made up of the 4 < 4 x 6 discretization of the piezoelectric
cube (Fig. 5.5 (@)) and of the element-wide free space interface. After solving this
larger inhomogeneous problem, the potential distribution shown in Fig. 5.5 (b) was
obtained by plotting the contour lines of the finite element solution

w(z,y =05, 2).
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It is usefiil to start the modal analysis with a free unit piezoelectric cube (Table
5.3), thus eliminating for the time being the boundary conditions associated with
the electrodes.

Table 5.3 Lowest modes of a free lithium tetraborate cube.
Mesh 4x4x6
No. of tetrahedra Ey = 480

:
i

[{
|

— No. of nodes n = 957
1 No. of surface nodes ng = 514
= Dimensions of stiffness nx = 3828 and

mass nys = 2871 matrices.

IMode | Mechanical problem Piezoelectric problem with electric boundaries
closed open
fm> kHZ f;, kHz Uget/Usotar, %o f;, kHz U..t/Usotar, %o
1 1.7488 1.8162 6.93 1.8020 1.16
2 1.7488 1.8162 6.93 1.8020 1.16
3 1.8918 2.0090 0.90 2.0066 0.17
4 1.9992 2.0561 144 2.0240 243
5 2.1565 2.1566 0.01 2.1566 0.00
6 2.2794 2.3298 4.09 2.3182 0.72
7 2.6094 2.6604 3.07 2.6533 0.53
8 2.6097 2.6621 1.83 2.6570 0.22

The numerical results for the few lowest modes demonstrate a continuous change
in the linear resonant frequencies f = w/(2x) due to, first, the addition of the
piezoelectricity to the model, and, second, to the ‘opening’ of its electric
boundaries. The mechanical resonance was obtained by setting the piezoelectric
coefficients in the model to zero, and calculating the natural frequencies f,, of the
purely elastic structure; the addition of piezoelectric terms increases these resonant
frequencies. Table 5.3 demonstrates that the effect of exterior electric field on the
piezoelectric vibrations can be viewed as a reduction of the ‘effective’ piezoelectric
coupling for a given material. Although this frequency decrease f; — f, is smaller
than the shift due to the piezoelectric effect itself f; — f,,, they are nevertheless of
the same order of magnitude, and can be approximately correlated to the portion
of interior Uyzer/Usoiar and exterior U, /U €lectric energies in the total energy
of the system U, respectively. Therefore, for materials that have a moderate or
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strong piezoelectric coupling combined with a relatively low dielectric permittivity
(e ~ 10¢p), including the exterior electrostatic field into the finite element model is
almost as important as taking into account the piezoelectric effect itself.

In the next example (Table 5.4), the piezoelectric cube is characterized by two
frequencies — resonance f, and the antiresonance f, — resulting from the two
homogeneous boundary conditions imposed on the pair of electrodes (Table 4.3,
Chapter 4).

Table 5.4 Lowest vibrational modes of a unit cube (full electrode plating).

Mesh 4 X 4 x 6 (details in Table 5.3)
Electrodes 4 x 4 (two sides)
nx = 3668, np = 2871

Electric boundaries

closed open

f.kHz f,kHz C, pF k,% | f,.kHz f, kHz C,, pF k, %
1.7663 1.7663 00 00 | 1.7650 17650 00 00
17663 17663 00 00 | 1.7650 17650 00 0.0
1.9201 20552 116 382 | 19189 20208 112 330
20009 20009 00 00 | 20008 20008 00 00
2.1566 21566 00 00 | 2.1566 21566 00 0.0
22942 22942 00 00 [22929 22929 00 00
26311 26547 117 13426307 26476 114 114
26490 26490 00 00 | 26484 26484 00 0.0
26597 26597 00 0.0 | 26560 26566 0.0086 2.1

O 00N WNHE WN -

For the given electrode configuration, only few of the natural frequencies from
Table 5.3 become piezoelectrically active, which is indicated by the separation of
the resonant frequencies f, and f,. Indeed, the matrix of piezoelectric coefficients
for lithium tetraborate in the crystallographic, i.e. nonrotated, axes

0 0 0 0 ¢s O

=10 0 0 es 0 O (3.8)
es1 €3 e O 0 0
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reveals that the applied electric field E = (0, 0, E_;)T is piezoelectrically coupled,
through constants e3;, e3> = e3;, and e33, to the strain components S);, S22, and
Ss3. Therefore, only extensional vibrations in the direction of three coordinate axes
and their overtones may take place under the above electrical conditions.

Mode 3

Mode 7

Mode 9

(@) (®)

Fig S. 6 (a) Vibrational shapes of the piezoelectric cube with full electrodes. (b) Cross-
section of electric potential distribution at the resonance frequency f..

Two of them (3 and 7) are shown in Fig. 5.6! along with the corresponding
electric potential distributions. It is interesting to note that some other modes,
inactive (f, = f,) in the closed-boundary model, are excited by the fringe field.

1 The vibrational shapes were visualized by adding the scaled displacements Us, obtained
from the finite element model, to the Cartesian coordinates rs of the surface,
rs = rg + Us, and by plotting the deformed surface r; in parametric mode.
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For example, mode 9, also shown in Fig. 5.6, appears on the admittance curve
corresponding to the problem with open electric boundaries near mode 7 (Fig.
5.7) in the form of a small but clearly visible resonance. Under specific
circumstances this unwanted resonance may be amplified and can deteriorate the
performance of the resonator. Clearly, such modes ‘activated’ by the exterior
electric field contribute to the family of spurious responses, and should be studied
as part of the vibrator model.

7e+06

Admittance Y|, S
o

~4e+06
1500 maode 3 mode 7
frequency f, Hz

Fig S. 7 Electrical admittance of the piezoelectric cube in the low frequency range.

As seen from the values of resonant frequencies (Table 5.4) and the admittance
curve (Fig. 5.7), the most noticeable influence of the exterior leakage field on the
piezoelectric vibrations consists in reducing the effective separation of resonant
frequencies Af = f, — f.. The latter is closely related to two other parameters
appearing in Table 5.4 — the motional capacitance

Q2

Cr = Zutmu,’

(3.9
where U, is the vector of mechanical displacements, and the effective coupling
coefficient defined in Eq. (6.37), Chapter 1. The calculation of C, can be
simplified if one recall that in the adopted variant of the Lanczos algorithm the
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resulting eigenvectors are M-orthogonal, i.e. U,‘;MU,‘ = 1, so that Eq. (3.9) turns
into

C, = (3.10)

518

It is important to note that the separation Af reduces mainly through the
antiresonance frequency f,, which diminishes for the electrically unbounded
problem. A simplified electrical model of the piezoelectric vibrator can help to
interpret this observation. In the neighborhood of the well separated nth
resonance, the equivalent circuit (Fig. 1.5, Chapter 1) can be approximated by a
simple circuit consisting of the shunt capacitor Cy in parallel with the series circuit
L, and C,. In this case, the resonant frequencies f, and f, are given by
expressions

1 1

3.11

and

1 1 Cn
fa= -2;\/[1"0" (HZ‘E)' (G.12)

The shunt capacitance Cqo (Eq. (7.21), Chapter 1) can generally be derived from
the static C, and motional C,, capacitances as

Co=Cs—) Chn, (3.13)

n=1

or approximated by C,
Co ~ C, (3.14)

for materials with small piezoelectric coupling like quartz. In either case, Egs.
(3.11) and (3.12) demonstrate that among the two resonant frequencies, only the
antiresonance f, depends on the static capacitance C,. As shown earlier in this
section, the latter increases considerably in the presence of exterior field, thus
diminishing the antiresonance frequency in (3.12). The motional capacitance C,,
and therefore the resonance frequency f,, is also affected by the leakage field but
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at much lesser degree. This is illustrated by the test problem where the frame S,
on which the potential was set to zero, is moved away from the surface of the unit
cube (Fig. 5.8).

202
2 -

¥
x 1.98¢ resonance *— -
§? antiresonance -+—
S 196
-4
* q90a} ;

1.92 Feo—e- - - *

1 10 100 1000

distance, m

Fig S. 8 Dependence of the resonant frequencies on the distance between the surface of
the piezoelectric cube and the outer boundary S,.

Numerically, the curve is similar to the one shown in Fig. 5.1 for the purely static
case, and models the convergence of the resonant frequencies (mode 3) to their
open-boundary values f77" and f;7" as the number of recursive condensation
steps grows; physically, it corresponds to the increase in resonant frequencies of
the piezoelectric cube as a grounded metallic frame is moved away from its surface
towards infinity. Its shows clearly that as more free space is added to the system,
the antiresonance frequency increases by 40 Hz, while the resonance frequency
remains practically unchanged. Note also that the main shift in the antiresonance
frequency occurs in the vicinity of the surface, i.e. at the distance of several
vibrator sizes from it. This can be used to explains why, in practice, no change in
the resonant frequencies is observed when the mounted crystal is sealed in a
metallic enclosure. Indeed, since the latter is typically separated from the vibrator
major surfaces by no less that a few plate thicknesses, the electrical situation in the
finished resonator is well described by the model with open electric boundaries.
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The antiresonance frequency, being a global quantity, converges rapidly as the
finite element model is refined (Fig. 5.9). Meanwhile, the shift fclese? — foren
produced by the leakage electric field converges even faster, so that it is well
approximated long before the antiresonance frequency stops changing.

2.1 v v _—
closed boundary -o—

g 208} open boundary —+— |
S 206 \ R 4
k- B
g 204
]
s 0\
E 202 F v \ - |

2 a 2 2 ™

0 2500 5000 7500 10000

matrix K size

Fig 5. 9 Convergence of the antiresonance frequencies £5**? and 7" with mesh
refinement.

It follows from Eqs. (3.11) and (3.12) that for small piezoelectric coupling
(Cn/Co < 1) the relative separation between the resonant frequencies can be
approximated by

Af 1
£

(3.15)

where r = Cy/C,, is the capacitance ratio. In practice, it is desirable to make the
value of r as small as possible, thus increasing the separation (3.15). Having a
large Af is important for many application: it determines the bandwidth of a
piezoelectric filter, and allows a transducer or a voltage controlled oscillator
(VCO) to be operated over a wide range of frequencies between f, and f,. The
definition of the capacitance ratio suggests that to make r small, the motional
capacitance C, should be large (which is accomplished by choosing the crystal,
cut, and mode of vibration with large piezoelectric coupling), while the shunt
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capacitance Cy should be as small as possible. In this sense, the effect of the
exterior electric field is deleterious for the vibrator performance: while preserving
the values of C,, (except for modes activated by the fringe field), it considerably
increases the values of C, (and consequently Cy) thus raising r, and diminishing
the spacing Af and the effective piezoelectric coupling factor k of active modes
(Table 5.4).

Table 5.5 Motional parameters of the lowest vibrational modes for a unit cube
(partial electrode plating).

Mesh 4 x 4 x 6 (details in Table 5.2)
Electrodes 2 x 2 (two sides)
ng = 3780, npy = 2871

ode Electric boundaries
closed open

f.kHz f,,kHz C, pF k,% | f,.kHz f, ,kHz C,,pF k, %
1.7964 1.7964 0.0 0.0 1.7876 1.7876 0.0 0.0
1.7964 1.7964 0.0 0.0 1.7876 1.7876 0.0 0.0
1.9540 2.0560 6.01 327 | 19453 2.0237 5.36 28.7
2.0074 2.0074 00 0.0 2.0055 2.0055 00 0.0
2.1566 2.1566 0.0 0.0 | 2.1566 2.1566 0.0 0.0
2.3227 23227 0.0 0.0 | 23132 23132 0.0 0.0
26528 26619 033 83 2.6469 2.6520 0.226 6.2
2.6600 2.6600 0.0 0.0 | 26565 26569 0.0042 16

0N NE WN -

Besides depending on the crystal cut and mode of vibration, the resonance
separation A f is affected, through C, and C,, by the electrode size and shape. It
is therefore natural to compare the reduction in A f due to electric field leakage to
the frequency shift resulting from a change in electrode shape. To this end, the
similar analysis of the vibrator with partial electrodes on the top and bottom
surfaces (Table 5.5) was carried out for the few lowest modes. All modes obtained
with the previous electrode configuration are present here, including the one
excited by the exterior electric field (Fig. 5.10). However, their electrical activity,
measured by the motional capacitance C,, is clearly less intense because of smaller
electrode area.
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f /:-;_\VVC,A\\‘WV{‘:\:> N

&
Mode 3
Mode 7
Mode 8

Fig S. 10 (a) Vibrational shapes of the piezoelectric cube with partial electrodes. ()
Cross-section of electric potential distribution at the resonance frequency f,.

The spacing Af between the resonances of mode 3 are given in Table 5.6 for
various electrical boundary conditions. It shows that for both electrode
configurations, the ‘effective’ separation constitutes only about 75 % of the Af
obtained with a model with closed electric boundaries. It is interesting to note that
in the example with full electrodes, adding the exterior electric field diminishes A f
from 135 kHz to 102 kHz, while exactly the same reduction, but this time through
the resonance frequency f,, is achieved within the model with closed electric
boundaries as the electrode size is reduced by the factor of two.
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Table 5.6 Resonance separation A f in the piezoelectric cube.

Electric boundary
closed open
[Electrode | f,,kHz f,,kHz Af,Hz | f,kHz f, ,kHz Af Hz
4x4 1.9201 2.0552 135 1.9189 2.0208 102
2x2 1.9540 2.0560 102 1.9450 2.0240 79

3.2  Square piezoelectric plates

The square plate geometry (Fig. 5.11) was chosen for the comparative
study of static capacitance C for different piezoelectric materials. As mentioned in
Chapter 4, it is only the interior and electrostatic part C='** of the capacitance that
is typically calculated by the existing finite element analyses of piezoelectric
vibrators. The latter does not take into account either the static mechanical
displacement due to the piezoelectric coupling with applied electric field or the
exterior leakage field. It is demonstrated below that for many materials C*t may
be a rough approximation to the piezoelectric static capacitance C,, particularly
the one obtained from the model with open electric boundaries.

Region 6 X 6 X 1 mm®
Mesh 12 x 12 x 2
Electrodes 6 x 6

n = 2837, ns = 1538
ng = 11012, nyy = 8511

Fig 5.11 Square plate resonator configuration and its finite element model.

The materials for capacitance tests (Table 5.7) were selected to have different
combinations of dielectric permittivity ¢ and piezoelectric coupling k. Namely,
quartz has both low ¢ and small coupling coefficient, lithium tetraborate is a
moderate piezoelectric and its permittivity is relatively low, lithium niobate is a
very strong piezoelectric and possesses large permittivity. The crystal cuts are the
ones used for thickness-shear mode resonators (considered later in this section),
though for the present static tests these orientations do not carry any physical
meaning. They are described by the rotated coefficient matrices (3.9)(3.17) of
Appendix 2, and the Cartesian axes z is perpendicular to the major surfaces of the
plates.
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Table 5.7 Electric permittivities and piezoelectric coupling.

Lithium Lithium
Parameter Quartz tetraborate niobate
€5, (€) 4.62 8.5 440
€2, (€) 4.67 9.6 76.0
ks, % 10.5 34.0 64.0
—, % 17.6 9.4 13
(Z7) + €
€5 — €5,
Z 29, 0.9 10.4 41.6
622 + €0

The low permittivity is responsible for the electric field leakage into the outer
space, while a high coupling factor efficiently transforms the supplied electric
energy into mechanical strain. In either case, the effective static capacitance C; is
larger than its purely electrostatic and closed boundary counterparts because of the
additional energy associated with strain and exterior electric field. The anticipated
contribution to the capacitance from the exterior electric field and piezoelectrically
induced mechanical deformation should be proportional to the ratios €o/ (€2, + €o)
and (e, - €5,)/ (€}, + €0) respectively (Table 5.7), where €, is the ‘free’
dielectric permittivity in the direction of the plate thickness (x,); the difference
between €2, and €3, is function of the piezoelectric coefficients, and is given by Eq.
(4.4), Appendix 2.

The capacitances, as functions of the electrode size, are presented in Fig. 5.12.
For quartz, with its weak piezocoupling, the change in the static capacitance is
almost entirely attributed to the exterior electrostatic field. For the electrode
configuration shown in Fig 5.11, C, increases by 8.9 % (Table 5.8) when the latter
is taken into account. For lithium tetraborate plate of the same geometry, the
contribution from the mechanical and exterior electrical fields to C, constitutes 11
and 4.7 % respectively. For lithium niobate crystal cut, the high permittivity €5,
makes the leakage field negligible, however, because of strong piezoelectric
coupling with mechanical fields, the full static capacitance of the lithium niobate
plate surpasses the electrostatic one by 41 %.



180

Table 5.8 Static capacitances (pF) of piezoelectric square plates.

5 Illustrative problems

SN\E————=7 7
PN e/
78

7 BN |
S ————

R
NN

LA

Parallel-plate
capacitor

Finite element model with electric boundary

model closed open
Crystal C.,pF__ | C* pF | C.,pF | C**, pF | C., pF
Quartz 0.373 0.512 0.518 0.563 0.569
Lithium tetraborate 0.77 0.945 1.068 0.997 1.121
Lithium niobate 6.39 4.784 8.143 4. 840 8.208

The changes in C, resulting from the inclusion of the exterior electric field in
the finite element model is reflected in the equivalent electrical admittance of
piezoelectric plates in the low frequency range (Fig. 5.13). For quartz and lithium
tetraborate plates the curve obtained from the model with open electric boundaries
is slightly higher than the closed-boundary one. Although for lithium niobate this
difference is not visible, its spectrum is ‘enriched’ by small spurious resonances
excited by the fringing field to a much higher degree that in other materials.
Indeed, the piezoelectric coupling of lithium niobate is so strong that even a small
portion of electric field leaking into the outer space is sufficient to excite many,

normally inactive, modes.




$§3. Static and modal analyses of piezoelectric structures

14

diel o—
piezo (closed) +—
piezo (open) «—

-t
N
Y

Capacitance, pF
o
[}

22 4x4 6x6 8x8 10x10
Electrode

25 diel o—
piezo (closed) -+—
piezo (open) e—

Capacitance, pF
&

22 4x4 6x6 8X8 10x10
Electrode

diel *—
piezo (closed) —+—
piezo (open) e—

Capacitance, pF

22 4x4 66 8Xx8 10x10
Electrode

Fig S.12 Electric and piezoelectric (with closed and open boundaries) static
capacitances of square plates with different electrode sizes.
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Fig 5.13 Electrical admittance of square piezoelectric plates in the low
. frequency range.
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3.3  Longitudinal vibrations in CdS rods

In this section, the electric flux leakage associated with extensional
vibrations of CdS rectangular rods is determined. Although this problem may seem
obsolete (cadmium sulfide is barely used now as a transducer material), it is still
considered here since the issue of electric flux leakage from piezoelectric crystals
was first raised in connection with these geometrical shapes and material. Ogawa
(1969) observed that for some specimens of CdS, the experimental mechanical
losses and the dispersion of sound velocity — both proportional to the
piezoelectric coupling coefficient k> — were smaller than their respective
theoretical values. He related the weakening of the effective piezoelectric coupling
with the electric flux leakage and the semi-conductive properties of CdS. Because
the former had never been taken into account, this led Ogawa to define a
generalized depolarization factor which included a correction to the piezoelectric
polarization field P for geometries favorable to the expansion of electric lines
beyond the crystal boundaries. This approach, subsequently adopted by Ikeda
(1978, 1996), was briefly discussed in Section 3.1B of Chapter 2 as the only
systematic attempt to introduce the exterior electric field into the model of
extensional vibrations.

The two CdS transducer configurations modeled by finite elements are shown
in Fig. 5.14. In both cases, the z-axis is chosen parallel to the hexagonal axis of the
CdS (nonrotated) crystal and perpendicular to its top and bottom surfaces covered
by electrodes. However, the two geometries correspond to different electrical
situations with respect to lengthwise extensional vibrations, characterized by the
stress components T7,, in the case of a thick bar elongated in the z-direction (Fig.
5.14a), and by T33 — for the pillar-type transducer (Fig. 5.145). The direction of
the former vibration (wave vector k) is perpendicular to the applied electric field
E= (0,0, E3)T and excited through the piezoelectric module ds; (Eq. (4.6),
Appendix 2), while the latter, das-driven mode is parallel to E. Following Ikeda's
terminology, these piezoelectric interactions are referred to as transversal (T)- and
longitudinal (L)-effects respectively. Because in either case the major surfaces are
not shielded, the electric flux leakage has to be considered.
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T-effect

Region 7 x 1 x 3 mm®

Mesh 28 x2x 8 @
n = 4397, ns = 2370

ng = 17020, np = 13191

ARl Y

Liiil

Region 1 x 1 x 7 mm®
Mesh 4 x4 x 28
L-effect n=4169, ng = 1922 ®)

ni = 16516, np = 12507

Fig S.14 CdS transducers and their finite clement models. Configurations with
transversal (a) and longitudinal () electric field orientations.

The calculated static and motional parameters are presented in Table 5.9. Since
the rod length ! is considerably greater than its width and thickness, the finite
element model with closed electric boundaries is well supported by the one-
dimensional simulation of longitudinal modes (Table 5.10), which provides the
former with an implicit numerical test. In the latter case, the resonant frequencies
and coupling coefficient were computed by substituting the transducers'
geometrical dimensions (Fig. 5.14 a,b) and the material constants of CdS (Egs.
(4.5)(4.7), Appendix 2) into the solutions, or first order approximations (Ogawa,
1969) to the solutions, of transcendental equations governing extensional
vibrations of piezoelectric bars, briefly outlined in Chapter 2 (Table 2.4). The static
capacitances, obtained from the parallel-plate capacitor model, are almost identical
to their finite element approximations since, in the case of electrodes completely
covering the top and bottom surfaces, no fringe field exists either inside or outside
of the piezoelectric.
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Table 5.9 Parameters of extensional vibrations in CdS transducers obtained from

the finite element model.

Piezoelectric coupling

T-effect

L-effect

Electric
boundary

C, j .. G
(®F) (kHz) (kHz) (fF)

k

(%)

Cs f r fa Cl k
(PF) (kHz) (kHz) (fF) (%)

closed

open

0.213 2242 2257 276 114
0.295 2242 2252 274 95

0.013 250.7 258.1 0.73 244
0.043 2500 2512 044 97

Table 5.10 Parameters of CdS transducers obtained from the one-dimensional

model of extensional vibrations.

T-effect L-effect
c. — eheolt C. = €33€0wt
w l
= 0.211 pF = 0.013 pF
1 1 4 1
— b G2l
21/ psty 2 =2/ Ps33
= 226.2 kHz = 251.1 kHz
4 , ) 1 ( 1., ) 1
a = 1 Y ~ /7 I a = 1 + - Y
=(1+58)5 — i 34 s
= 2275 kHz = 258.1 kHz
ka1 = da1/ /€35, kss = d33/ /€355
=11.8% =262%

As can be seen from the above tables, the electrical conditions created by the
T- and L-effect couplings are very different. Because in CdS the piezoelectric
constant ds; that governs the L-effect is almost two times greater than d3;, the
resonant frequency separation Af and the corresponding electromechanical
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coeflicient ka3, are superior to that of the T-effect. At the same time, the motional
and static capacitances (Table 5.10) are smaller for the L-effect transducer since in
this case the electrodes occupy the minor surfaces separated by the length. This
special cenfiguration is at the origin of a severe electric flux leakage predicted by
Ikeda (1996). Indeed, the finite element model shows that 67 % of the electric
energy is stored outside of the crystal in the case of the static field distribution thus
increasing the static capacitance C, from 0.013 pF to 0.043 pF, i.e. by almost 70
% (Table 5.9). The antiresonance frequency f, shifts so close to f, that their
effective separation constitutes only 16 % of the value predicted by the finite
element analysis with closed electric boundaries or by the one-dimensional model
of longitudinal vibrations. In terms of the piezoelectric strength, the electric flux
leakage diminishes the L-effect piezoelectric coupling from 24.4 % to 9.7 % thus
reducing it to that of the T-effect.

3.4  Strip resonators

Piezoelectric resonators operating in thickness-shear modes are by far the
most popular and mass-produced since their frequency range suits best the modern
consumer market of electronic equipment controlled by microcomputers to which
they serve as a time base (i.e. generate a reference clock signal). The
miniaturization and the cost reduction of these devices are largely determined by
the miniaturization of the resonators. Using materials with high piezoelectric
coupling is one way of reducing the resonator size; another avenue in the process
of miniaturization is the design of strip-fype resonators. Compared to the large
conventional quartz resonators made from rectangular or circular plates and
requiring a sophisticated individual convex contouring, the strip resonators have
small size and simple rectangular shape, and, therefore, lend themselves to the
large-scale production as chip components for integrated circuits.

Although some specifications are relaxed for strip resonators, their
performance must still be comparable to that of large resonators. If the parameters
of the latter are well predicted by one- or two-dimensional models (Section 3,
Chapter 2), the optimal design of the miniature strip resonators requires a full
three-dimensional analysis. The finite element models are best suited to study the
influence of the crystal dimensions and electrode shape (and the associated electric
flux leakage) on the resonator spectrum and electrical parameters. The X- and Z-
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oriented strips (Fig. 5.15) of Y-rotated cuts of quartz and lithium tetraborate (Egs.
(3.9)(3.14), Appendix 2) known for their temperature stability are considered in
this section.

X-strip

(@

)

Fig 5.15 Piezoelectric strip oriemtation in Cartesian coordinate axes. Structures
elongated in the direction z; (@) and z; (b).

The specific geometry depends on the design requirements; however, most often
the strip length is chosen to be parallel to the displacement in the thickness-shear
mode in order to avoid spurious thickness-twist overtones. The displacement u can
be determined from the one-dimensional model of thickness vibrations (Eq. (3.4),
Chapter 2). In the case of a rotated (8 = 35°15’) Y-plate of quartz (AT-cut), the
polarization of the shear wave is strictly parallel to the digonal z,-axis, i.e.
u = (u1,0,0)7, which corresponds to the X-strip configuration. For the rotated
(@ = 51°) Y-cut of Li,B,O,, the displacement in the slow shear mode (the mode
of interest) is predominantly zz-oriented, which suggests using a Z-strip.
Therefore, in the standard notation (Appendix 2), the modeled quartz and lithium
tetraborate plates can be designated as (Y X1)35°15’ and (Y Z1) 51° respectively?.
Since the thickness-shear mode is the resonance of a transversal wave traveling
in the thickness direction of the plate, the strip thickness ¢ determines the operating

2 According to the convention on the positive sense of crystallographic axes for quartz
(IEEE Standard on Piezoelectricity, 1987), the rotational symbol for the AT-cut should
read as (Y X1) —35°15'.
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frequency of the resonator. The length of the strip plate [ is designed to be as small
as possible but large enough to keep the resonator series resistance at minimum by
not damping the vibration at mounting points. The width w is chosen to separate
the main thickness-shear mode from numerous spurious resonances of waves
propagating in the width direction (Fujiwara et al, 1985). The optimum dimension
ratios I/t and w/t are determined by the design and depend, in great part, on the
crystal piezoelectric coupling. The electrode shape and size are chosen to make the
capacitance ratio r at the main resonance as large as possible, and also to suppress
unwanted responses. Since no optimization was aimed in the present analysis, the
following dimensions / = 18 mm, w = 3 mm, and ¢ = 1 mm were chosen for both
the quartz and lithium tetraborate strips shown in Fig. 5.15. The choice of I, w, and
t was based on computational considerations, such as the size of the matrices
arising from the finite element discretization, rather than practical strip
configurations for which the length to thickness ratio I/t is typically greater.
Nevertheless, this geometry allows a pronounced thickness-shear mode, and is,
therefore, suitable for studying the influence of the exterior electric field.

To accurately model the mechanical and electrical field variations associated
with the high-frequency thickness-shear mode, the strips were subdivided into
elements of second order proportionally with I, w, and ¢, i.e. 36, 6 and 2 elements
were distributed along the length, width, and thickness respectively. This
discretization produces a large model with a total of n = 4313 nodes, of which
ns = 2402 lie on the surface (superelement size). The dimension of the stiffhess
matrix depends on the area occupied by the electrode but does not exceed
ng = 4n = 17252 (bare strip); the size of the mass matrix is fixed for all electrode
configurations and equals ny = 3n = 12939.

In the first test, the rectangular electrodes (18 x 4 in terms of elements) cover
two thirds of the length and two thirds of the width in the center of the top and
bottom surfaces, i.e. one third of the major faces3. The analysis of the first 150
vibrational modes in the quartz X-strip (Table 5.11), demonstrates that except for
several weak spurious responses, only two strong modes are excited by the applied
electric field E = (0, E,, 0)'. These modes, identified as face-shear (FS) and

3 The electrode pattern would normally include some additional metallization to
electrically connect the central area with pins. It is neglected by the present model.
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thickness-shear (TS), are characterized by the strain components Ss = S)3 and
S¢ = S)2 induced through the piezoelectric coefficients e;s and ez respectively.
The electric response, in terms of motional capacitance C, and the coupling
coefficient k, is almost of the same intensity for both modes since e2s and exs have
close values (Eq. (3.10), Appendix 2).

Table 5.11 Modes in quartz strip excited by the thickness electric field.

Mode Shape Parameters | Electric boundary
(number) closed | open
f. (kHz) 870.7 | 870.5
FS; f. (kHz) 8722 | 872.0
(55) Cn, (fF) 3.43 351
k (%) 59 5.7
f. (kHz) | 16689 | 1668.2
TS, f. kHz) | 1671.7 | 1670.7
(136) Ca (fF) 3.36 3.40
k (%) 5.8 55

The resonance frequency predicted by the one-dimensional model of an infinite
bare plate

FS; _ .i_ Css _

o= 2 p = 850 kHz, (3.16)
TS, _ l. _:5Ds —

o= 2 p = 1661 kHz, 3.17)

where cg is the ‘piezoelectrically stiffened’ elastic constant ¢ = c& + e3¢/€5,,
are lower than the ones obtained from the finite element model (Table 5.11) since
both the face-shear and thickness-shear modes are shaped by the finite lateral
dimensions.

The calculated static capacitances for the above electrode configuration are
cclosed — 0.99 pF and C°"™ = 1.074 pF for the closed- and open-boundary
models respectively. This 8 % change in the static capacitance increases the
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effective capacitance ratio = of the thickness-shear mode from r<°**¢ — 295 and
r°P" = 316. To compare, the experimental value for the AT-cut quartz strip
resonator (of different configuration) reported by Fujiwara and Wakatsuki (1987)
was T = 333, which is fairly close to the value obtained with the finite element
model with open electric boundaries. Because the presence of the exterior electric
field shifts, in this case, both the resonance (Af, = 0.7 kHz) and antiresonance
(Af, = 1 kHz) frequencies, their separation A f diminishes only slightly, i.e. from
28to2.5kHz

The same thickness-shear mode with displacement u; can be activated by the
lateral (with respect to the thickness direction z,) electric field E; configuration
through the piezoelectric coefficient e;g (Eq. (3.10), Appendix 2). However, its
electric activity is less strong, which is reflected in the resonance separation Af,
motional capacitance C,, or coupling coefficient £ (Table 5.12), which is partly
attributed to the fact that constant e3¢ has a smaller absolute value compared to its
E,-field counterpart ex.

Table 5.12 Characteristics of the thickness-shear mode in quartz strip resonator
excited by lateral electric field.

Parameters
Static Dynamic
Electrical boundary Cs,pF| f,,kHz f,,kHz C,,fF k,%
closed 0.101 | 16696 1671.5 0429 48
open 0.212 | 1669.1 1670.3 0429 3.7

As expected, the relative frequency shifts due to open electric boundaries are
greater in the case of lateral excitation of the thickness-shear mode since the
uncovered major surfaces favor the propagation of electric field into the outer
space (Fig. 5.165). The static capacitance C, doubles in the presence of the
exterior electric field (Table 5.12). The resulting shift in the antiresonance
frequency Af, = 1.2 kHz is as large as the effective frequency separation
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Af°F" = 1.2 kHz which constitutes only 63 % of that predicted by the closed-
boundary model A f°*? — 1.9 kHz.

Resonance Antiresonance

7 (P " ) @
@ /M((@»).\\ @
= \

V=~
®)

\
A\\\\'\\\é//n\

Fig 5.16 Cross section z,-z; of electric potential distribution in the thickness-shear
mode of X -strip quartz resonator for (g) thickness and (5) lateral electric field

orientation.

Because of the different structure of the piezoelectric matrix (Eq. (3.13),
Appendix 2), four types of vibration can be piezoelectrically excited in the lithium
tetraborate Z-strip by the perpendicular electric field E = (0, E;, O)T. These
modes are activated through the nonzero piezoelectric coefficients ej;, €2z, e3,
e24 and are characterized by mechanical strain components Sy, S22, S33, and S»;
respectively. The first three correspond to extensional motions along the
coordinate axes z;, ¢ = 1, 2, 3, with displacement components u;, while the last is
the thickness-shear mode. To help identify modes calculated by the finite element
model, their approximate resonance frequencies can be obtained from the one-
dimensional extensional and thickness vibrations of the Z-strip:

E, 1 1

o= E:ummz, (3.18)

e = 5—\/ & _ 3206 kHz, (3.19)
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E;.__l_ L_
r —2”’,’3?% = 188 kHz, (3.20)

(B +eh/ef) —oV?  chitemen/ehs |_,

f‘QE“ + 822324/5'1?2 (CE + '3%4/5'32) - PV2 (3.21)
£ = % = 1654 kHz,

The frequency of the extensional vibration in the thickness direction (3.19),
denoted here, following Mindlin's nomenclature of modes (Mindlin, 1982), as
thickness-stretch (TSt), is too high and is beyond the scope of the present modal
analysis. The remaining three piezoelectric modes are among the 150 lowest
modes of the lithium tetraborate Z-strip, and are shown in Table 5.13. Moreover,
two resonances of the width extensional motion with a different number of
wavelengths along the strip length — E, and E; — are present in the spectrum of
Z-strip. As in the case of quartz X-strip, the resonant frequencies calculated by
the finite element model which takes into account the lateral dimensions of the
plate are higher than their one-dimensional approximations.

The shifts in the resonant frequencies of the thickness-shear mode due to the
exterior electric field are Af, = 5.4 and Af, = 8.5 kHz for the resonance and
antiresonance respectively. Their cumulative change reduces the resonance spacing
Af by 12.5 %. To calculate the capacitance ratio of the thickness-shear mode, the
shunt capacitance C, was approximated by the static capacitance C;
(Co*=* = 2.043 and C°P™ = 2.148 pF) less the motional capacitances C, of the
first four active modes (Table 5.13):

Co =~ C, —Cy9 — Cs1 — Cgs — C131, (3.22)

since lithium tetraborate is a relatively strong piezoelectric. This yields the
capacitance ratios r°°*? = 29.0 and r°"" = 31.6 for the closed and open electric
boundaries respectively. The experimental value r = 20.9 was reported by
Fujiwara ef al. (1985).

The similar parameters for the thickness-shear mode excited by the lateral
electric field are shown in Table 5.14.
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Table 5.13 Modes in Li,B,O, strip resonators excited by the thickness electric field.

Mode Shape Parameters Electric boundary
(number) closed open
f, (kHz) | 1899 189.1
E; f.(kHz) | 190.5 189.7
) C. (fF) 13.1 13.4
k (%) 8.0 7.9
f. (kHz) | 1073.0 1072.7
E, f. kHz) | 1076.3 1075.7
(61) C, (fF) 16.0 15.3
k (%) 78 7.4
f, (kHz) | 1086.2 1084.7
E, f. (kHz) | 1089.6 1088.2
(64) C, (fF) 9.72 109
k (%) 7.9 8.1
frkHz) | 16774 1672.0
TS; f.(kHz) | 1705.3 1696.8
(131) C, (fF) 66.7 64.7
k (%) 18.0 17.0

Table 5.14 Characteristics of the thickness-shear mode in lithium tetraborate strip
resonator excited by lateral electric field.

TS;
(#138) Parameters
Static Dynamic
Electrical boundary C,,pF| f,.kHz f, kHz C, {F k,%
closed 0.205 | 1760.7 17780 623 139
open 0318 | 17586 17715 6.46 12.0

Tables 5.11 and 5.13 demonstrated how the resonance frequencies of strip
resonators change when the exterior electric field is added to the model. However,
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it is not clear, at first sight, whether the change produced by the external field is
substantial. As in the example of unit cube, this change is compared to the
frequency shift due to the variation of the electrode size. Table 5.15 shows that the
frequency shifts due to the leakage of the electrostatic field A f°P™ are comparable
to those resulting from the electrode shortening A f/*.

Table 5.15 Shifts in resonance and antiresonance of the thickness-shear mode due
to the leakage field for various electrode sizes.

(a) Quartz
Electrode Electrical boundary Shift
length closed open resonance | antiresonance
I/t f.kHz f, kHz| f ,kHz f, kHz| Aff" kHz | Af;"", kHz
0.67 1668.3 1671.4 | 1667.7 1670.5 0.6 0.9
0.33 1669.8 16720 | 16689 16709 0.9 1.1
Af*" kHz| 15 0.6 1.2 0.4 o
() Lithium tetraborate
Electrode Electrical boundary Shift
length closed open resonance | antiresonance

./l fr.kHz f, kHz | f . kHz f, kHz| Aff"" kHz | Af;”", kHz

0.67 16709 1700.5 | 1667.7 1695.1 32 54

Af' kHz | 16.4 10.8 10.7 28 N

For example, as the electrode length is halved, i.e. changes from 0.67! to 0.33]
(line 1 and 3), the resonance and antiresonance frequencies of the open-boundary
quartz strip drop by 1.2 and 0.4 kHz respectively. The corresponding frequency
shifts produced by the ‘opening’ of electric boundaries in the strip with the median
electrode (line 2) equal 0.7 and 1.0 kHz. In is interesting to note that in the model
with open electric boundaries, the antiresonance frequency f, is almost constant
for various electrode sizes. This is particularly visible for the lithium tetraborate
strip (Table 5.15 (3)) for which f, increases only by 2.8 kHz compared to 10.8
kHz for the model with closed boundaries as the electrode length decreases.



Conclusions and further work

As it has been demonstrated in the previous chapter, the exterior
electroquasistatic field affects the solution of the static and vibrational piezoelectric
problems in several ways. First, it increases the static capacitance C;, typically by
10-20 %. Second, due to this increase, the effective separation between the
resonant frequencies diminishes, mostly through the shift in the antiresonance
frequency; in terms of coupling coefficient, this is equivalent to the decrease of the
effective piezoelectric coupling. For some special configurations (e.g. L-effect in
CdS rods), the leakage from the crystal can be so severe that it almost annihilate
the piezoelectric effect. Compared to the influence of other electrical boundary
conditions, this shift in the antiresonance frequency is not a negligible quantity. It
was shown for both the lower (extensional vibrations of cube) and higher
(thickness-shear vibrations in strip-type resonators) modes, that the change in f,
was of the same order of magnitude as the piezoelectric effect itself, which, in the
case of a piezoelectric crystal with two electrodes, is measured by the spacing
between the two characteristic frequencies (resonance and antiresonance).
Moreover, in one of the examples, the shift in the antiresonance frequency due to
the electric flux leakage was almost equal to the shift in the resonance frequency
due to the halving of the electrode size, so that the same effective resonance
separation was observed in both cases. Finally, the exterior electric field excites
some of the mechanical modes that were piezoelectrically inactive under the
closed-boundary model.
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The above suggests that for crystals with a relatively low permittivity
(e < 10¢p), including the exterior electric field in the simulation of piezoelectric
vibrations is as important as modeling the electrode plating. Although in the
present finite element analysis only electrical boundary conditions were considered
in order to isolate the effect of the leakage field, it is felt that the described
electrical behavior would be reproduced if other perturbations (e.g. electrode
mass-loading, acoustic damping, temperature changes, or mounting strains) were
included in the simulation. Also, although the limitation on the problem size set by
the core memory prevented the modeling of large and complex structures, one can
expect that the piezoelectric vibrations in more realistic configurations would react
to the exterior electric field in the same manner. Therefore, as the next step of
research, it would be tempting to try to verify these assumptions by performing
numerical experiments with a superposition of two or more perturbing factors or
on resonators with larger dimension ratios. In particular, structures with multiple
electrodes (e.g. the model of a monolithic filter) represent a natural continuation of
the present series of illustrative example.

Since the electrically unbounded piezoelectric problem has never been
considered or solved previously, most of the attention was given to the problem
formulation, numerical solution of the finite element equations, and result
interpretation, maybe at the expense of efficiency in modeling the infinite exterior
region. Initially, the method of ballooning was chosen primarily for the simplicity
of implementation and accuracy. In addition, since the superelement matrix can be
attached directly to the surface of the piezoelectric, no extra variables are added to
the interior model, which is very convenient considering the limited core memory.
Although the ballooning algorithm lends itself to considerable memory savings
(block recursion for rectangular interfaces, neglect of small entries in the
superelement matrix), the generation of the final matrix is still an expensive process
from the point of view of computing time and memory. Therefore, trying an
alternative method of approximating the exterior electric field, or even carrying out
a comparative study of several techniques is essential for the future development of
the piezoelectric problem with open electric boundaries. The method of exterior
mapping (Stochniol, 1992) seems the most promising, provided a more
sophisticated meshing program is used.
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In contrast to the traditional approach of obtaining the dielectric part of C,
from the modal analysis, the full static capacitance is determined from the solution
of a separate piezoelectric static problem. Since both the static and vibrational
solutions of the piezoelectric boundary-value problem are required for a complete
representation of forced vibrations, both the deterministic and eigenvalue problem
are to be solved in the finite element analysis of piezoelectric structures. However,
it seems possible to combine these solutions by adopting the approach proposed by
Nour-Omid and Clough (1984), who used the M-orthogonal Lanczos vectors as
an alternative to the mode superposition method for describing the dynamic
response. Indeed, the Lanczos vectors are much less expensive to generate that the
eigenvectors, and include the static displacement as the first vector.

Finally, some innovations can be introduced in the finite element formulation of
the piezoelectric problem. In Chapter 1 Section 2, for the sake of consistency
between electromagnetic and elastic equations and boundary conditions, the
continuity of the tangential strain across the interface was expressed in symbolic
form (Eq. (2.26)), analogous to the continuity condition for the tangential electric
field. Taken alone, the former condition is not used explicitly in the present
formulation since nodal finite elements preserve the continuity of displacement, not
strain. However, it indicates that, by analogy with the edge elements used in
computational electromagnetics, a new type of tetrahedra-based elements that
preserve the continuity of the tangential components of a dyadic (S) across the
element faces can be derived. Such elements might be useful if the piezoelectric
problem is formulated directly in terms of strain S and electric field E, i.e. when
accurate calculation of the stress and strain is required, for example in composite
materials, in smart structure applications, or simply for post-processing purposes.
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Uniform plane waves

In general, both the rotational and irrotational electric fields may
accompany the propagation of an acoustic wave in the piezoelectric medium.
Among these hybrid acousto-electromagnetic solutions two special cases — when
an acoustic wave interacts only with electric field of a particular type (either
rotational or irrotational) — are essential for the analysis of coupled wave
propagation. The physical difference between these two types of coupled solutions
is best illustrated on the example of umiform plane waves propagating in an
unbounded space.

For linear materials, any mechanical or electromagnetic tensor variable X(r,t)
in a wave propagating at speed V along the direction given by a unit vector m
depends on time ¢ and position r as

x(rt) = °£F(t - m\}r). (1.1)
The curl, divergence, and gradient operators acting upon X(r,t) may be replaced,
respectively, by vector, scalar, and dyadic products of m and X(r.t), times
(—1/V); the action of the partial differential operator /3t reduces simply to the
arithmetic multiplication by unity. Since the solution is sought in the form of (1.1),
the acoustic wave equation (3.5) of Chapter 1 simplifies to

(m-cf-m—pVI)-u=—¢pm-e-m +Vm-e-A, 1.2)

where it has been taken into account that m- ¢ : mu = (m - c£ - m) - u due to
the symmetry of the stiffness tensor cZ.
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Before inquiring under what circumstances the propagation of a piezoelectric
wave is accompanied by only one type of electric field, it is of interest to determine
how vectors D and E, as well as their rotational and irrotational components, are
oriented in this wave. Applying the differential rules mentioned above, Eq. (3.4) of
Chapter 1 becomes

mxmx A = VD, (1.3)

where the total electric flux density vector D is given by (3.11) of the same
chapter. Because Eq. (1.3) requires the plane acousto-electromagnetic wave to
have D in the transverse plane, its DY, DZ” and DZ* components must have such
directions and magnitudes that their sum is orthogonal to the direction of
propagation m. The Gauss law (3.13) of Chapter 1, reduced for a uniform plane
wave to

m-DE’ = —m-DP, (1.4)
adds no additional constraint on D but implies the solenoidality of D
m-DE” =0 1.5)

already prescribed by the gauge condition (3.7) of Chapter 1. The latter implies
that the DE” component is also perpendicular to the direction of propagation m,;
at the same time, the corresponding rotational electric field E(”, or A, determined
from the solution of (1.3), is not restricted to lie in the transverse plane. In
contrast, for the irrotational field this is the orientation of E(® that is
predetermined by the direction of propagation m so that E® is always
longitudinal:
i P .

E® = v (1.6)
the orientation of DF"is related to the symmetry of tensor €5, and, in general, is
not parallel to m.

Expanding D according to (3.11) of Chapter 1, and using the vector identity

A=mm-A+mxAxm (1.7)
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that expresses A as the sum of its component along m and its component
orthogonal to m, the plane wave counterpart of Eq. (3.12) of Chapter 1 may be
written as

(I— mm — Vipes) - A = —V3pDF — V2, DE°. (1.8)

It is easily seen from Eq. (1.4) that the right-hand side source vector in (1.8) is
orthogonal to m; as a consequence, it always generates a rotational field provided
DP + DF“ does not vanish. The same relation (1.4) suggests that the longitudinal
electric field E® is induced only if vector D has a nonzero component along m.
In contrast, when D is perpendicular to m (Fig. Al.la), the irrotational field is
not piezoelectrically excited by the propagating acoustic wave, and the DZ° term
vanishes in (1.8). For this orientation of DY, the vector potential A can be
symbolically expressed as

A=Vy,o(l—mm—V2uoes)-l -(e-m)-u, (1.9)
where the symmetry of piezoelectric tensor e about its two last indices allowed
e : mu to be replaced by ( e-m) - u. This expression can be simplified further if

one recall that the ratio between acoustic and electromagnetic velocities V /v is of
order of 10~%. Consequently, || V2yuye®|| ~ "(V/'v)zl” < 1in (1.9), and potential

A can be approximated by

A= Vi, (I— mm+ ViyeS) - (e-m) - u =~ Vyg(e-m)-u (1.10)
Substituting this expression into (1.2) with ¢ = 0 and rearranging terms, one
obtain the equation for the mechanical displacement u:

{m- (cf - V2puse-€) - m—pVI}-u=0 1.11)

in an acoustic wave accompanied solely by the rotational field E(™.
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@) ®)

Fig Al.1 Electric flux density orientation in a quasi-acoustic (a) and stiffened acoustic
(b) waves.

Now consider the situation when the ;;ropagating acoustic wave is coupled to
the irrotational electric field E®*) but not to the rotational one E(). From Eq. (1.3),
one can notice that if D = 0 in a plane piezoelectric wave, the electromagnetic
wave is not excited. In other words, if the sum of D”, DE(", and DE“ is a null
vector, the piezoelectric wave propagation is not accompanied by the displacement
current and the magnetic field; therefore, the associated electric field can only be
potential. This situation can occur, for instance, when D¥ and DE® are directed
along m (Fig. Al.1(3)): neither Dnor DE has a component in the transverse
plane, i.e. plays no part in the propagation of an electromagnetic wave. Recalling
(1.4), one obtain that D¥ = —D& "), thus reducing to zero the source term in (1.8).
The latter becomes a homogeneous equation in A — Fresnel equation (Landau,
Lifshitz, 1992) — whose solution consists of two purely electromagnetic waves
@®, A®)), k = 1,2 propagating along m. Thus the piezoelectric component of D
— DP — does not have the right orientation to excite an electromagnetic field but
does induce bound charges along m characterized by the longitudinal electric field
E®) or, alternatively, by the scalar potential . The bound charge potential
distribution can always be expressed in terms of displacement u by using the plane
wave version of (3.8) of Chapter 1:

m-e-m

= =2 . 1.12
= m (1.12)
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where the symmetry of tensor e was exploited once again to rearrange terms. To
obtain an equation analogous to (1.11) for the mechanical displacement u coupled
to E® alone, ¢ is substituted into Eq. (1.2) with A = 0 in the right side:

{- (cE+5'—'1'5‘—'5) -m—szl} ‘u=0. (1.13)

m-¢5-m

It is readily seen that the homogeneous Eqs. (1.11) and (1.13) obtained from
the above analysis are amenable to the form of Christoffel equations (Sirotin,
1979):

(m-c-m—pV3I)-u=0, (1.14)

if the stiffness tensor c is replaced by

¢ =cf —Ve-e (1.15)
and
-mm-e
e =cF4 S (1.16)

respectively. For a given direction m the solution of Egs. (1.14) yields three phase
velocities V(*) and, accordingly, three polarization vectors “u®) (k =1,2,3) of
uniform plane acoustic waves propagating in a nonpiezoelectric infinite medium
(Fig. A1.2); V) and °ul®) are respectively real eigenvalues and orthogonal
eigenvectors of the positive-definite Christoffel tensor I' = m - ¢ - m. Additionally,
it follows from (1.14) that the acoustic wave velocity V is derived from stiffness ¢

as
V= /M_ (1.17)
pu-u

Thus the influence of the piezoelectric effect on V can be attributed to the
modification of the stiffness tensor ¢. In other words, the coupling of an acoustic
wave with rotational (1.15) and irrotational (1.16) electric fields can be taken into
account by substituting effective stiffnesses ¢(”) and ¢ into (1.14) instead of c.
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Fig Al.2 A set of orthogonal displacement vectors associated with one quasi-
longitudinal (°u®") and two quasi-shear (°u®, °u®) plane acoustic waves propagating
along the direction m in an infinite piezoelectric medium.

It is seen from (1.16) that in the case of piezoelectric coupling with potential
electric field the stiffness is increased by the quantity (¢ - mm -e)/(m- € -m)
that varies for different materials and directions of propagation from zero to tens
of percent compared to cZ. This effect is called piezoelectric stiffening, and the
plane acoustic wave coupled solely with irrotational electric field is referred to as
stiffened acoustic wave (Auld, 1990a). Accordingly, the phase velocity of the
stiffened acoustic wave is higher than that of the purely acoustic wave. For the
sake of comparison with (1.16), (1.15) is better rewritten in the form

- V)? e-e
c()=cE—(;) £ (1.18)

where the electromagnetic wave velocity v has been approximated by
1//om-€5-m. Because quantities (¢-mm-e)/(m-€5-m) and
(e-¢)/(m- €5 -m) are clearly of the same order of magnitude, it follows from
(1.16) and (1.18) that the contribution of the rotational electric field to the
effective stiffness c(") is 10% times smaller than that of the irrotational field. Thus,
the piezoelectric coupling with electromagnetic field shifts the stiffness, and,
respectively, the phase velocity to a slightly lower value. The corresponding
hybrid wave is called quasi-acoustic (Auld, 1990a), and represents a slightly
perturbed version of a purely acoustic wave.
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Matrices of material coefficients

1. Calculations in compressed notation

The symmetry properties of material tensors, expressed by Eqgs. (2.4) of
Chapter 1, allow the multi-index tensor components to be arranged in matrices by
using special index abbreviations (IEEE Standard on Piezoelectricity, 1987). In the
case of elastic and piezoelectric tensors, they simply consist in replacing pairs of
interchangeable indices ¢j and kl (i,j,k,l =1,2,3) in the extended tensor
notation by single indices p and q (p,q = 1,...,6) in the compressed matrix (i.e.
engineering) notation

Cgkl = ch, (1.1)
€ikl = Cip (1.2)

according to the following rule

11 -1, 22 —2, 33 — 3,
(23 0r32) —+ 4,(130r31) — 5, (120r21) — 6, (1.3)

without recourse to a multiplying factor. Thus, the 3* = 81 components of the
elastic stiffness tensor can be compactly stored in the form of a 6 x 6 symmetric
matrix

Ci1 €2 C3 C4 Ci15 Ci6
Ci2 C22 (€23 C24 C25 C26
Ci3 C23 €33 C34 C35 C36 (1.4)
Ci4 C24 C34 C44 C45 C46
C15 C25 €35 C45 Cs55 Cs56
€16 C26 C36 C46 C56 Ce6
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and the 3° = 27 components of the piezoelectric tensor — as a 3 x 6 matrix

€11 €12 €13 €y €15 €16
@=]|€exn e ey €24 €zs €z|. (1.5)
€31 €32 €33 €34 €35 €36

These matrices will be further symbolically denoted by boldface courier lower-case
characters ¢ and e respectively to distinguish them from the corresponding
tensors. For the second rank tensor €° the compressed and expanded notations are
equivalent, and lead to the symmetric matrix

€11 €12 €3
€= | €2 €2 €3]|. (1.6)

€13 €23 €33

2. Measured properties of piezoelectric materials

The main advantage of the above notation lye in the possibility to
manipulate material coefficients as ordinary two-dimensional matrices. Because the
abbreviated indices can also be applied to variables, almost all physical equations,
including constitutive relations, can be recast in the matrix form. Therefore, when
the fundamental set of elastic, piezoelectric, and dielectric constants is recovered
from measurements on a series samples for which the relationship between the
variables is as simple as possible (e.g. described by some one-dimensional model),
the material coefficients are determined and tabulated directly as components of
matrices ¢, e, and €. Their symmetry properties are derived from the point group
of the crystal assuming that the coefficient matrix is invariant under the application
of each symmetry element, such as an n-fold axis of rotation or a mirror plane (m),
of the group. In the form (1.4)—(1.6), the material matrices corresponds to the
least symmetrical class 1 of triclinic system (IEEE, 1987). Since most practical
piezoelectric materials belong to the trigonal, tetragonal or hexagonal systems,
they are characterized by a higher degree of symmetry, and only few of the 21, 18,
and 6 entries of (1.4){(1.6) respectively are independent. In these categories of
symmetry, the z-axis of the Cartesian coordinate system, in which the material
tensor is defined, is chosen parallel to the three-, four-, and, respectively, sixfold
crystallographic axes. For example, the elastic, piezoelectric and dielectric matrices
of quartz (trigonal system, class 32) are given by
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cu ¢z &3 cu 0 O
ci2 C2 C3 —c4 0 O
_|cas ¢z cas 0 0 0
€C=lcy —cia 0 cu o 0 @D
0 0 0 0 C4a Cia
i 0 0 0 0 Cl4a  Ce6 |
fenn —en 0 e 0 0 7
e=]|0 0 0 0 —ey —eg 2.2)
o0 0o 00 o0 o0 |
€11 0 0
e=|0 ¢€¢; O 2.3)
0 0 €33

respectively. The experimentally determined (Bechmann ez al., 1962) independent
material coefficients of quartz are summarized in Table A2.1, along with similar
sets constants for LizB40., (Shorrocks et al., 1981), LiNbO, (Kovacs et al.,
1990), and CdS (Gualtieri ef al., 1994), for which the patterns of matrices ¢, e,
and e can be found in the IEEE Standard on Piezoelectricity, 1987 or practically in
any textbook on piezoelectricity.

3. Matrices for rotated crystal cuts

The above sets of independent constants are used to derive material
matrices for an arbitrary oriented crystal cut. According to the IEEE Standard, the
most general orientation of a rectangular plate is designated as (Y Xluwt) $/6/¥,
by indicating the initial orientation of plate's thickness (along Y) and length (along
X), and the axes (length I, width w, or thickness ¢) and the corresponding angles
(®, ©, P) of the three successive rotations. In this convention, an angle is
considered positive if the rotation is clockwise looking from the origine toward the
positive end of the axis (Fig. A2.1).
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Formula

Symmetry 32 4mm 3m 6mm

Density (10° kg/m3) | p | 2649 2451 | 4628 4.82
cn | 86.74 126.7 | 198.39 90.7
c12 6.99 0.5| 54.72 58.1

Elastic constants as | 1191 300 | 65.13 51.0

ck (10° N/m?) cie | —17.91 — 7.88 —
cas | 1072 53.9 | 22790 93.8
cu | 5794 550| 59.65 15.04
ces | 39.88 46.0 — 16.3
€11 0.171 — b —_—
e1s | —0.041 — — —_

Piezoelectric constants | e;s — 0.36 3.69 —0.21

€pq (C/ mz) €22 — — 242 —
ear| — 0.19 0.30 -0.24
exs| — 0.89 1.77 0.44

Dielectric constants en 4.58 8.97 456 9.02

&, (€0) €33 4.70 8.15 26.3 9.53

42z
X,
9 X
o >
y
X.x,

Fig A2.1 Clockwise rotation (Y X1) @ of a rectangular plate Y X about the z axis.

Most practical crystal cuts are obtained by a single rotation, or more rarely
double rotation, of X- and Y-plates, i.e. plates with initial thicknesses along X- or
Y-axis respectively. The coordinate transformation corresponding to the single
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clockwise rotation through an angle @ about the z axis, as shown in Fig. A2.1, is
described by the matrix

1 0 0
a=|0 cos® sind|. 3.1

0 —sinf@ cosf

In the rotated coordinate system z,-z;—z3;, the components of the elastic,
piezoelectric, and dielectric tensors are transformed according to the definition of
tensor quantities

Cijkt = BimBinGkolipCmnop, 3.2)
€ijk = BimAjnGkoCmno, (3.3)
5:‘]’ = @imAmEmn- G4)

However, if the elastic and piezoelectric coefficients are stored in compressed
matrix notation, applying coordinate transformations (3.2)~(3.3) would require
converting matrices ¢ and e to full tensor subscripts, and reconverting the
transformed tensors back to the abbreviated notation. The Bond method (Auld,
1990a) overcomes this inconvenience by performing the transformation in the
abbreviated notation. It consists in constructing (from components of the
transformation matrix a) a 6 X 6 matrix M which can be directly applied to a
physical variable or a coefficient matrix compressed by means of the rule (1.3). For
example, the Bond matrix corresponding to the transformation (3.1) is:

[ 1 0 0 0 0 0
0 cos’f sin?@ smz28 0 0
in2
M= |0 sin?0 cos20 -s“‘z A o |. (3.5)
0 —sin20 sin20 cos26 0 0
0 0 0 0 cosf —siné
0 0 0 0 sin@ cosé ]

Using matrices a and M, the arrays of material coefficients in the rotated
coordinate system are derived from the basic set of matrices ¢, e, and € as
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d =M'eM, (3.6)
e =M'ea, G.7
€ =alea. (3.8)

The latter equations, with matrices a and M defined in Eqs. (3.1) and (3.5),
were employed to calculate the elastic stiffness, piezoelectric, and dielectric
coefficients of the rotated Y-cuts for several piezoelectric material used in
numerical examples:

Si0, (8 = +35°15')

" 8674 —825 2715 —366 O 0
—825 12977 -742 570 0 0
;| 2715 —742 10283 992 o0 0 o 2
©=|_366 570 992 3861 0 o |10 Nm" (.9)
0 0 0 0 6380 253
| o 0 0 0 253 2901
0.171 —0.153 —0018 0067 0 0
e=1 o0 0 0 0 0108 —0.095|C/m?> (3.10)
0 0 0 0 0076 0067
458 0 0
€=|0 462 0057 |e 3.11)
0 0057 466
Li,B,O, (8 = + 51°)
"126.7 1832 1218 1443 0 0 7
1832 1065 622 —2286 0 0
;1218 622 1217 -1275 o 0 o 2
©=1!1443 —2286 —1275 3123 0 o |10 Nm® (3.12)
0 0 0 0 4957 440
0 0 0 0 440 51.44




210

4.

Appendix 2

0 0 0 0 0227 0280
e = [0.143 0698 0.142 0219 O 0 ]C/m2 (3.13)
0.120 0.112 0568 0274 O 0

897 0 0

¢’=[ 0 847 —0.4]60 (3.19)
0 —04 8645

LiNbO, (6 = + 163°)

19839 5120 6865 362 O 0
5120 20448 6597 -221 O 0
, | 6865 6597 22013 —1257 0O 0 9 wrr 2
© =1 36 —221 —1257 6049 0 o [107Nm® (3.15)
0 0 0 0 6518 1021
|0 0 0 0 1021 6727
0 0 0 0 —282 3397
e = [240 —0019 —-169 -369 0 0 |C/m? (3.16)
042 —045 -224 —-070 0 0 _
456 0 0
€=| 0 440 5.4] € G.17)
0 54 280

Alternate set of material constants
For the finite element formulation adopted in this thesis, the set of matrices

c, e, and €, associated with the mechanical strain S and electric field E, is
sufficient to describe the material properties of a piezoelectric. However, in some
cases (e.g. one-dimensional models of longitudinal vibrations), it is more
convenient to impose the mechanical boundary conditions in terms of stress T, and
to use (T,E) as a pair of independent variables. For linear materials, the
corresponding constitutive relations derived from the Gibbs free energy (Eq.
(2.17), Chapter 1) are written as follows

— oF . .
{S—s ‘T+E-d, @n

D=d:T+E-¢T,
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where sf is the tensor of elastic compliances measured under constant electric
field, d — tensor of piezoelectric coefficients; € is the tensor of dielectric
permittivities measured for constant stress T, or ‘free’ permittivities as compared
to the ‘clamped’ ones €°. As other material coefficients, tensors s and d can be
recast in compressed notation (1.3) — an operation that would involve, in this
case, pre-multiplying the tensor components s.,; and di by some numerical
factors (IEEE, 1987). However, by exploiting the relations between different sets
of constitutive equations, the elastic compliances, piezoelectric moduli, and free
dielectric permittivities can be obtained from cZ, e, and €° directly in matrix form:

sZ = (cF) 7, 4.2)
d = es?, (4.3)
e’ =€ +de. (4.4)

An example of these matrices is given for the (nonrotated) crystal of CdS (6mm):

2069 —998 —582 0 0 0
—998 2069 -582 O 0 0
-582 —582 1700 0 0 0
E _ -13 _2
sf=17 o 6649 O o |[107°m*N (45)
0 0 0 0 6649 O
.o 0 0 0 0 6135
0 0 0 0 -140 0
d:[ 0 0 0 -140 o0 of|10cN (4.6)
—0.51 —051 103 0 0 o

eT=[ 0 931 0 ]eo 4.7
0 o0 102
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Calculations on tetrahedral elements

The calculation of element matrices, both in the case of the interior tetrahedron
and the exterior bordering element, relies on the properties of simplex elements.
Because the latter are well documented (e.g. Silvester and Ferrari, 1996), only the
main facts referred to from Chapter 3 are listed here. All properties are given for a
tetrahedron; the relations for simplexes of lower orders (line segment and triangle)
can be derived as special cases of them.

L. Local coordinates and their properties

A tetrahedron can be regarded as a three-dimensional simplex. A general
simplex is defined as the ‘the minimal possible nontrivial geometric figure’ in N—
dimensional space (Silvester and Ferrari, 1996). Other well known simplexes are
the line segment (/N = 1) and triangle (N = 2).

Fig A3.1 Tetrahedral clement.

Any interior point P(z,y, z) is uniquely defined in terms of homogeneous or
simplex coordinates
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|74
gm=v'“, m=1,23,4 (1.1

where V is the volume of the main tetrahedron 1-2-3-4, and V,, is the volume of
one of the four smaller tetrahedra (subsimplexes). For instance, the volume of the
tetrahedron P-2-3-4 is written as

1l z y =z
U =z oy, 2
3|1 =z oy a2

1 =4 y4 2z

Vi (1.2)

Volumes V>, V3, and V; are given by similar expressions, where the coordinates z,
y, z of point P replace those of vertex 2, 3, 4 respectively. Because point P
4

defines a unique partition of the tetrahedron, i.e. 3} V,, = 1, it follows that

m=1

Y =1 1.3)
m=1
The expansion of volume V,, in (1.1) in terms of Cartesian coordinates z, y, 2
yields an expression for ¢,

1
Cm = u—V(am +bmnZ + Cm¥y + dm2), (1.49)

where numerical coefficients @,,,bm,cm, and d,, are the minors of the row
[1 = y z]in V,. An alternative way of obtaining (1.4) is to simultaneously
solve for {,,, m = 1, ..., 4, Eq. (1.3) and the system

z = 1) + 26, + 23(3+T4Cy, }

¥y =¥1$1 + Y202 + ¥3C3+ysCas (L.5)

z = 210 + 22( + z3(3+24{4,

which describes the tetrahedron shape in terms of ¢, and vertex coordinates z,,,
Ym> Zm- It follows from (1.3) that

4 4 4 4
E @m =1, and E b.,.=§ cm=§ dm =0. (1.6)
m=1 m=1 m=1 m=1



214 Appendix 3

To set up the finite element matrices, the Jacobians 3(z, y, 2)/3({;, $2,$3)
and 9(¢;,$,,¢3)/9(z,y,2) of the coordinate transformations, which map
Cartesian coordinates z, y, z into local independent coordinates ¢,,{,,{; and vice
versa, need be known. Eliminating one of the local variables (e.g. ¢,) using (1.3),
and differentiating (1.5), one obtain for the direct transformation

[0z OQdy Oz
a¢, 98¢ 9¢
Sz ay 8z L — T4 Yy~ Yy 21— 2
J= ac, ac, ac = |T2— Ty Y2—Ys 22—24|. Q)]
8; 8; 622 IT3— Ty Y3 — Y4 23— 2
| 8¢ O¢3 IG5

For simplex elements the Jacobian of the inverse transformation is easily derived
from (1.4) so that a numerical inversion of (1.7) is not required:

(8¢, 9¢; 9¢3 ]
Oz Ox gz by by bs
1= 9 9 9| _ 1 e, o sl (1.8)
8¢ 96 9¢
L 9z Oz Oz J

2. Lagrangian interpolation functions

The scalar approximating functions associated with the tetrahedron are the
Lagrangian interpolation polynomials of order N defined on a set of
M = (N +1)(N +2)(N + 3)/3! regularly distributed nodes with coordinates
¢, =t/N, (;=3j/N, (3 =k/N, and{, =1l/N, where i,35,k,1=0,..,N and
i + j + k + 1 = N. The approximating functions are best expressed as products of
auxiliary polynomials R;(N, ¢)

aijkl (Clv C2s 431 C4) = Rt(Nt ql) RJ'(Nv 42) Rk(Ns Ca) Rl(Nv Cd): (21)
each depending on only one local coordinate ¢:
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k A
Rn(N,Q) = —F | = = | L(N¢C — k),
. <) g m_k ’"!kl;lo y (2.2)
N N
m=1,..,N

Therefore, for any order of N the approximating functions a;jx (3, €2, (3, {4) are
practically calculated as follows

for i=N,...,0

[for j =N —4,...,0

for k=N —%—3...,0
l=N-1-j-k 2.3)
c=te=do kL

1" N2 N3 NN
m=m+1

L L | O = Rt(Ns Cl) RJ(Na CZ) Rk(N’ CS) R{(N, Cd)

The algorithm (2.3) also serves to establish the correspondence between multi- and
single-index notations (¢, j, k,l) = m=1,...,.M.

3. Differentiation in local coordinates
Setting up stiffness matrices for tetrahedral elements implies the evaluation
of approximating function derivatives with respect to Cartesian coordinates:

da; Oa; Oa; ]T
dx 08y 0Oz ]

ws[ 3.1
Because polynomials «; themselves are functions of local coordinates, this is
accomplished by applying the chain rule of differentiation and taking into account
relations (1.4):
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_ 4 aa.- 6C,,,
Ve= | 25, o 3.VZ[ % ¢

One of the local variables in Eq. (3.2) can be eliminated using (1.3). Therefore,
another way to express the gradients Va; is by invoking the Jacobian of the
inverse transformation given by (1.7):

Va; =37} Vaagai G.3)

Taking into account (1.3), the transformation of Eq. (3.3) leads to

COa; B
b, by bs a ~ 9
da; O
Va.-=[c1 Ca 63] a%;—a%‘
d & bl o0 B
| 3G ~ 3¢ |
- Ly - aa,-_gﬁ) G.4)
Wi [ |\oc. ~ 8¢/ :

For practical reasons, it is convenient to express the partial derivatives da; /3¢, in
terms of auxiliary polynomials. Again, this can be done by applying the chain rule
of differentiation to the product (2.1), where the derivatives of the auxiliary

polynomials are given by

m-1 j—1
R B THave - B e -k,
’j—Ok—O k=j+1
m=1,.,N (3-5)

ORo(N,C) _
a¢ ' J
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4. Integration in local coordinates

From the definition of the scalar triple product, the absolute value of the
determinant of the Jacobian matrix (1.7) is readily recognized as being the volume
of the parallelepiped constructed on the edges 4-1, 4-2, and 4-3 (Fig. A3.1). The
parallelepiped can be broken down into six equal tetrahedra of volume V', where
V is the volume of tetrahedron 1-2-3-4. Hence, the Jacobian |J| is equal to 6V,
leading to the following transformation of the element of volume dzdydz:

dzdydz = |J|d¢, d,d¢; = 6Vd(,d(pd¢; 4.1

An arbitrary function f can be integrated in simplex coordinates by premultiplying
the integral with respect to ¢, , {,, 3 by the factor 6V :

_/;. fdzdydz = 6V [) : d¢, _/0 e dé, ‘/o' e fdés. 4.2)



Appendix 4

Tables for element matrices

L. Weighting coefficients for the stiffness matrix
The elements of the weighting coefficient matrix W(™")  defined in
Chapter 3 as

bm b'l'l
w(mn) =g(m),t,g(”)= (Cm) -£. (cn)’ (1.1)
dm dn

are given her in closed form, suitable for machine implementation. They combine
the geometric parameters b;, c;, d; of the tetrahedral element (Appendix 3), and
the components of the material tensors cZ, e, €°, denoted in (1.1) by a generic
tensor ¢. The following expressions for the elastic, piezoelectric, and dielectric
weighting coefficients W(™") have been obtained by expanding the scalar products
in (1.1) for cZ, e, € respectively:

Wi = g™eE o, 44,k 1=1,2,3, (12)
wim™ = gMe g, i,dk =123, 3
W) = g™Mel g™, 4,5=1,2,3, (149)

and exploiting the symmetry of tensors cZ, e, €, which is reflected in their
compressed matrix notation (Appendix 2).
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Elastic weighting matrix for K™
Wl(;nn) = bmc11bn + bimCisdn + bmcCi6Cn + dmcCi5bn + dimcssdn
+ dinC56Cn + CmCi6bn + CmCs6dn + CmCe6Cn

Wl(;n ™ — bmci2¢n + bmCi14dn + bmCi6bn + dmcascn + dmcasdn
+ dimCsebn + CmC26Cn + CmCa6dn + CmCo6bn

Wl(;n ™) = bmcCi3dn + bmCr4Cn + bmCi5ba + dmCasdn + dmCasn
+ dmCs5bn + cmC36dn + CmCi6Cn + CmCs6bn

Wz(;'"‘) = CmCi2bn + c‘mc25dn + CmC26Cn + dm,C]Abn + dm_C45dn
+ dmcieCn + bmCi6bn + bmcsedn + bmcescn

Wz(;m) = CmC22Cn + CmCo4dn + CmCo6bn + dmcascn + dmcaady
+ dinCiebn + bmCr6Cn + bmcasdn + dmcesdn

W™ = cmcasdn + CmC24Cn + CmCo5ba + dmCasdn + dmCascn
+ dpcasbp + bpcasdn + bmcsscn + bmcssbn

WE™ = d,ciabn + dmcCasdn + dmCasCn + CmC1abn + CmCasdn
+ mC46Cn + bmCisbn + byCssdn + bmcsscn

Ws(;m) = dmCy3Cn + dimCagdyn + dimcCasbn + cmc24Cn + CmcCaady
+ cmcaebn + bmcascn + bmcysdn + bmcsebn

W™ = dncssdn + dmcsacn + dmCasbn + cmC3adn + CmCaacn
+ CmCasbn + bmcasdn + bncascn + bmcssbn

Piezoelectric weighting vector for K*
W™ = bmeirbn + bme2icn + bmesidn + dmersbn + dmeascn
+ dmessdn + cmeiebn + cme26cn + Cmessdn

Wémn) = Cme12bn + Cme€22Cn + Cmeszdn + dme14bn + dmezqcn
+ dmessdn + bmeiebn + bmez6Cn + dmessdn

219

(1.5)
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W™ = dneisbn + dme2scn + dmessdn + Cme14bn + CmeEaacn
+ cmezqsdn + b e15bn + bpeascn + bpe3sdy (1.6)

C. Dielectric weighting constant for K¥¥

W™ = b€11bn + bmé€12¢n + bm€radn + Cmé€r2bn + Cmexcn
+ Cmé€asdn + dmé€13by + dmerzcn + dipesad, (1.7)

Note that in the present analysis the abbreviated, also referred to as
compressed or engineering, notation comes into play only through matrices of
material coefficients ¢, e and € when expanding (1.2)(1.4). If the whole finite
element formulation is carried out in this notation, as it is customary the case
(Zienkiewicz, 1989), an alternative way of arriving at (1.5)(1.7) is to symbolically
evaluate the following matrix products:

wn) — pTep™, (1.8)
wi™ = BiMTeT B, (1.9)
wi™ = B TeB{M. (1.10)
Matrices
by O O]
0 en O b
0 0 dn - m
B=|y 4 o ,B&’=[cm], (1.11)
dn O by dm
| Cm bm 0 i

arise from the finite element approximation of mechanical strain S and electric field
E, when the former is recast into a one-dimensional array of six elements by
applying the index abbreviation rules employed in applied mechanics.
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2. Universal matrices for piezoelectric tetrahedra

The integrals (3.14) and (3.15) of Chapter 3, that define the numerical
matrices € and ¥, have been evaluated by means of the symbolic algebra package
MAPLE. The calculation has been carried out for tetrahedra up to the fourth
order. The entries of universal matrices represent rational numbers, and, therefore,
can be stored in an integer format after a common denominator has been
established. This is illustrated below on the example of matrices ¥ and €!'? for
tetrahedra of second order.

6 -4 4 4 1 -6 6 1 -6 1
4 32 16 16 -4 16 16 6 8 -6
4 16 32 16 -6 16 8 -4 16 -6
4 16 16 32 6 8 16 -6 16 -4
1 |1 -4 6 6 6 -4 -4 1 -6 1
‘37:'2‘5—0 6 16 16 8 -4 32 16 -4 16 -6 @.1)
6 16 8 16 -4 16 32 -6 16 -4
1 6 -4 6 1 4 6 6 -4 1
6 8 16 16 -6 16 16 -4 32 -4
1 6 6 4 1 -6 4 1 -4 6|
3 4 -1 -1 1 1 1 0 0 0]
-1 4 4 4 3 -4 -4 0 00
-1 0 8 4 1 -8 -4 000
-1 0 4 8 1 -4 -8 0 00
12 1/]0 0 0 0 0 0 O 0 O O
e€®=-=16 0 000 0 0000 2.2)
O 0 0 0 0 0 O O 0O
0O 0 0 0 0 0 0 O OO
0O 0 0 0 0 0 0 O OO
(0 0 0 0 0 0 0 0 0 O

The metric matrix ¥ is identical to matrix T tabulated by Silvester (1972) along
with another well-known fundamental symmetric matrix Q, defined as
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(mn) 6a‘ (s ¥ aa,- _ aa,-) 1
~sf (ac:,,. ac,.) ac, ~ ac, ) drdads @3

Both ¥ and Q have been employed to discretize the scalar Helmholtz equation in
isotropic media. The relationship between the present matrix € and Q is the
following:

Q(mn) — 6(€(m") + C("m))’ m # n. (2.4)

In principle, matrices Q™™ could have been used to assemble the dielectric
element stiffness matrix K¥?, for the symmetry of the associated scalar weighting
coefficient W{™™) = W{"™) allows the pair of matrices €™") and €™ to be
combined as in (2.4). Unfortunately, the arrays of mechanical and piezoelectric
weighting factors Wia™ and Win™ do not enjoy the same property; therefore,
both €™ and €™™) are required to build K™ and K*. Although the use of
Q-matrices would have sped up the computation of K¥¥, from the memory saving
considerations and for the sake of consistency, only one type of universal matrices
— € — has been retained in the present finite element analysis.

3. Permutation arrays for rotations about tetrahedral {, - and {,-axes

The permutation matrices R, and R defined in Section 3 of Chapter 3
have been derived up to the fourth order for the specific tetrahedron node labeling
used in the present work. The permutation operations have been performed on the
multi-index numbering of interpolation nodes by exchanging the last three
subscripts (rotation). When remapped back using the single-index notation (Eq.
(2.3), Appendix 3), the relabeled node indexes are stored in the form of one-
dimensional arrays R; and R; as shown in Fig. A4.1 for the tetrahedron of second
order. Note that array R, is the subset of the array ITET2 tabulated by Silvester
(1982b).

1 In the 1972 paper by Silvester the factor 6 was missing, which was corrected
subsequently in Silvester and Ferrari (1990).
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R,=[1,4,2,3,10,7,9,5,6,8] R,=[8,6,93,5,7,2,10,4,1]

Fig Ad.1 Vertices relabeling in a second-order tetrahedron after right-handed rotations
about ¢; - and ¢,-axes.

Gaussian integration on line segment and triangle

Notation:

I, — number of integration points over a line segment;

I, — number of integration points over a triangle;

p — highest order of polynomial which is exactly integrated,;
n — multiplicity of an integration point.
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Table A4.1 Gaussian quadrature points for a line segment

I,

Weight
wi

Coordinates
+ X

3

p
5

0.888888889
0.555555556

0.000000000
0.774596669

4

3

0.652145155
0.347854845

0.339981044
0.861136312

5

9

0.568888889
0.478628670
0.236926885

0.000000000
0.906179846
0.538469310

NN =N NN -

Table A4.2 Gaussian integration points for a triangle (Dunavant, 1985)

I

Weight
wh

a;

Coordinates

B;

Vi

6

0.223381590
0.109951744

0.108103018
0.816847573

0.445948491
0.091576214

0.445948491
0.091576214

12

0.116786276
0.050844906
0.082851076

0.501426510
0.873821971
0.053145050

0.249286745
0.063089014
0.310352451

0.249286745
0.063089014
0.636502499

16

0.144315608
0.095091634
0.103217371
0.032458498
0.027230314

0.333333333
0.081414823
0.658861385
0.898905543
0.008394777

0.333333333
0.459292588
0.170569308
0.050547228
0.263112830

0.333333333
0.459292588
0.170569308
0.050547228
0.728492393

25

10

0.090817990
0.036725958
0.045321059
0.072757917
0.028327243
0.009421667

0.333333333
0.028844733
0.781036849
0.141707219
0.025003535
0.009540815

0.333333333
0.485577633
0.109481575
0.307939839
0.246672561
0.066803251

0.333333333
0.485577633
0.109481575
0.550352942
0.728323905
0.923655934

A OO W WOy WWWe=ONW wWwWwa
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