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Abstract

The goal of this research was to explore the use of machine learning to assist in the

development of knowledge-based systems (KBS) in dairy farming. A framework was first

developed which described the various types of management and control activities in

dairy farming and the types of information flows among these activities. This framework

provided a basis for the creation of computerized information systems and helped to

identify the analysis of group-average lactation curves as a promising area of application.

A case-acquisition and decision-support system was developed to assist a domain

specialist in generating example cases for machine learning. The specialist classified data

from 33 herds enrolled with the Québec dairy herd analysis service, resulting in 1428

lactations and 7684 tests of individual cows, classified as outlier or non-outlier, and 99

interpretations of group-average lactation curves. To enable the performance analysis of

classifiers, generated with machine learning from these small data sets, a method was

established involving cross-validation runs, relative operating characteristic curves, and

analysis of variance. In experiments to filter lactations and tests, classification

performance was significantly affected by preprocessing of examples, creation of

additional attributes, choice of machine-Iearning algorithm, and algorithm configuration.

For the filtering of individual tests, naïve-Bayes classification showed significantly better

performance than decision-tree induction. However, the specialist considered the decision

trees as more transparent than the knowledge generated with naïve Bayes. The creation of

a series of three classifiers with increased sensitivity at the expense of reduced specificity

per classification task, allows users of a final KBS to choose the desired tendency of

classifying new cases as abnormal. For the main interpretation tasks, satisfactory

performance was achieved. For the filtering tasks, performance was fairly poor since a

reasonable sensitivity was associated with many false positives. The specialist evaluated

the learned knowledge and suggested small modifications to improve several c1assifiers.

Machine-Iearning assisted knowledge acquisition proved to be a feasible approach to

support the development of a KBS in dairy farming. This approach is expected to be

especially useful for areas where specialists have difficulty expressing decision rules,

such as tactical-Ievel management and analysis of graphical information.
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Résumé

L'objectif de cette recherche était d'explorer l'utilisation de l'apprentissage-machine

pour assister le développement de logiciels cognitifs en production laitière. La première

étape consistait en le développement d'un cadre conceptuel qui décrivait les diverses

activités de contrôle et de régie en production laitière, ainsi que les types d'information

qui y sont échangés. Le cadre devait servir de base pour la création subséquente de

systèmes d'information informatisés. TI a facilité l'identification de l'analyse de courbes de

lactation par groupes de vaches comme étant un domaine d'application d'intérêt. Un

système d'acquisition de cas et d'aide à la décision a été développé pour assister un

spécialiste du domaine à générer des exemples de cas pour l'apprentissage-machine. Un

spécialiste a analysé des données provenant de 33 troupeaux inscrits au contrôle laitier

québécois, résultant en 1428 lactations et 7684 données au jour du test classifiées comme

normales ou hors-limites, et 99 interprétations de courbes de lactation moyennes de

groupes de vaches. Pour faciliter l'analyse de performance de classificateurs générés par

apprentissage-machine à partir de ces groupes restreints des données, une méthode a été

établie qui impliquait la validation croisée, les courbes de caractéristiques opérationnelles

relatives, et l'analyse de variance. Lors d'expériences visant le filtrage de lactations et

d'épreuves individuelles, le prétraitement des données, la création d'attributs additionnels,

le choix d'un algorithme d'aprentissage-machine, et la configuration des algorithmes

avaient un effet significatif sur la performance de classification. Pour le filtrage de

données individuelles au jour du test, une classification Bayes naïve démontrait une

performance significativement meilleure que l'induction d'arbres de décision. Cependant,

le spécialiste du domaine considérait les arbres de décision plus transparents que les

connaissances générées par l'approche Bayes naïve. La création d'une série de trois

classificateurs avec sensibilité accrue au dépens d'une specificité réduite permettait à

l'usager d'un système cognitif final de choisir l'intensité désirée de classifier de nouveaux

cas comme étant anormaux. Pour les tâches principales d'interprétation, une bonne

performance de classification a été atteinte. Pour les tâches de filtrage, la performance

était assez pauvre puisqu'une sensibilité raisonnable était associée avec de nombreux

faux-positifs. Le spécialiste a évalué les connaissances apprises et a suggéré quelques
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modifications pour améliorer plusieurs classificateurs. L'acquisition de connaIssances

assistée par apprentissage-machine a été demontrée comme étant une approche faisable

pour soutenir le développement de systèmes cognitifs pour la production laitière. Cette

approche sera spécialement appropriée pour des domaines où les spécialistes éprouvent

de la difficulté à exprimer les règles de décision, tel que lors de gestion tactique ou lors de

l'analyse de représentations graphiques.
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Samenvatting

Het doel van deze studie was om het gebruik van maehinaal leren voor het

ontwikkelen van kennissystemen in de melkveehouderij te onderzoeken. Eerst werd een

raamwerk ontwikke1d om de versehillende management- en eontroleaetiviteiten en de

informatiestromen tussen deze aetiviteiten te besehrijven. Dit raamwerk funetioneerde als

basis voor de ontwikkeling van geautomatiseerde informatiesystemen en was behulpzaam

bij het identifieeren van de analyse van groepsgemiddelde laetatieeurven aIs een

veelbelovend toepassingsgebied. Een beslissingsondersteunend systeem werd ontwikkeld

om een me1kveehouderijspeeialist te helpen bij het analyseren en classificeren van

voorbeelden voor maehinaalleren. De specialist classificeerde gegevens van 33 bedrijven

die geregistreerd waren bij de melkeontroledienst in Quebee. Dit resulteerde in 1428

laetaties en 7684 melktesten van individuele koeien, geclassifieeerd als normaal of

uitsehieter, en 99 groepsgemiddelde laetatieeurven, waarvan een aantal aspeeten

geïnterpreteerd waren. Een methode werd ontwikkeld voor een kwantitatieve analyse van

de prestatie van classificatiesystemen die via maehinaal leren van kleine gegevens

bestanden zijn gegenereerd. Deze methode maakte gebruik van kruisvalidatie testen,

"relative operating eharaeteristie" eurven en variantie-analyse. De voorbewerking van de

gegevens, het eonstrueren van additionele attributen, de keuze van een algoritme voor

maehinaalleren en de eonfiguratie van het algoritme hadden een signifieante invloed op

het classifieatieresultaat in experimenten voor het filteren van laetaties en testgegevens.

Voor het filteren van individuele testgegevens leidde classifieatie via de naïef-Bayes

aanpak tot signifieant betere resultaten dan de induetie van beslissingsbomen. De

speeialist vond de beslissingsbomen eehter gemakkelijker te begrijpen dan de kennis

gegenereerd met n'lIef-Bayes. De ereatie van een serie van drie classifieatiesystemen met

toenemende sensitiviteit ten koste van gereduceerde specificiteit voor elke classificatie

taak, maakt het voor gebruikers van het uiteindelijke kennissysteem mogelijk de gewenste

gevoeligheid te kiezen om nieuwe gegevens aIs abnormaal te classifieeren. Voor de

belangrijkste interpretatietaken werd een goed classifieatieresultaat bereikt. Voor het

filteren van lactaties en test gegevens was het resultaat vrij sleeht omdat een redelijke

sensitiviteit was geassocieerd met een grote hoeveelheid normale gevallen geclassifieeerd
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als abnormaal. De specialist evalueerde de machinaal geleerde kennis en stelde kleine

veranderingen voor om een aantal classificatiesystemen te verbeteren. Kennisverwerving

met behulp van machinaal leren bleek goed toepasbaar voor de ontwikkeling van een

kennissysteem in de melkveehouderij. Deze aanpak is waarschijnlijk het meest geschikt

voor probleemgebieden waar het voor een specialist moeilijk is om beslissingsregels aan

te geven, zoals tactisch management en het analyseren van grafische informatie.
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Contributions to Knowledge

This research resulted in the following original contributions to knowledge:

1. A framework to support the creation of computerized information systems for use in

dairy farming, which deals with both management and process-control activities. This

framework can be used as a basis for analyzing existing information systems and to

support the development of new systems in dairy farming (Chapter 3).

2. An approach to facilitate the acquisition of example cases classified by a domain

specialist through the iterative development of a case-acquisition and decision-support

system. This approach involves the development of a series of prototypes to enable

the specialist to explore new ways of viewing and analyzing the data and to elicit the

preferred method of data analysis (Chapter 4).

3. A performance index defined as the mean true positive rate for a specified range of

false positive rate values of the relative operating characteristic curve. This index

facilitates comparison of the classification performance in machine-Ieaming

experiments that involve data with highly unbalanced class distributions. This index

makes use of domain expertise to limit the performance analysis to the range of false

positive rate values considered reasonable (Chapter 5).

4. An approach to evaluate the results of machine-Ieaming experiments using k-fold

cross-validation and analysis of variance with a repeated measures design. With this

approach, the factors of interest are analyzed using a mixed statistical model that

accounts for the correlation among the repeated measurements on the randomly

chosen folds (Chapter 5).

5. A naïve-Bayes a1gorithm employing a misclassification cost-sensitive approach to

attribute selection. This algorithm allows users to direct the attribute selection process

to achieve classifiers that focus on correctly classifying a particular class (or classes)

of outcome (Chapter 6).
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6. An approach to enable the application of two-class performance analysis techniques

to classification tasks involving three of more classes. With this approach, classes

other than "Normal" are considered as "Abnormal" during performance analysis

(Chapter 7).

7. Application of machine-Iearning assisted knowledge acquisition in the domain of

dairy farming. Classifiers generated with machine learning were implemented in the

case-acquisition and decision-support system to form a prototype knowledge-based

system for the analysis of group-average lactation curves (Chapters 5 through 8).
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1 Introduction

1.1 Research problem

Decision making on dairy farms has become increasingly complex in recent times

and, in addition, dairy producers and their advisors have to deal with an increasing

volume of data. For example, dairy herd improvement agencies provide dairy producers

with a large number of test-day values related to milk, fat, and protein yields, and

optionaIly, somatic cell count and milk urea nitrogen. These data may improve on-farm

decision making, but only if interpreted properly. Computerized information systems

have been developed to support dairy producers in dealing with the increased volume of

data and complexity of decision making, and include management-information systems

(Crosse, 1991; Spahr et al., 1993; Tomaszewski, 1993) and decision-support systems

(Allore et al., 1995; DeLorenzo et al., 1992; Grinspan et al., 1994). However, such

systems need to be fully integrated with each other and with on-farm installed sensors and

robotic units to ensure a coordinated execution of aIl dairy-farm management and control

activities. Various frameworks have been developed to support the long-term

development of computerized information systems in dairy farming (Brand et al., 1995;

De Hoop, 1988; Devir et al., 1993). However, none of these frameworks covered both

management and process control activities. Such a framework could be used to determine

potential areas for the development of new decision-support systems and may help to

ensure that such systems can function as components within an overall dairy information

system.

Decision-support systems can be enhanced with knowledge-based components to

automate parts of the decision-making activities. The resulting knowledge-based systems

(KBS) may reduce the time required for data analyses and provide dairy producers and

their advisors with expert interpretation. The analysis of group-average lactation curves,

generated from milk-recording data, is an example of a promising area for KBS

development (Whittaker et al., 1989). Group-average lactation-curve analysis involves

comparison of group-average lactation curves with standard curves and analysis of
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additional explanatory data, and may lead to the detection of potential management

deficiencies.

Traditionally, the knowledge for KBS has been acquired through interviewing

domain specialists and from other sources such as documentation (Dhar and Stein, 1997;

Durkin, 1994). However, the acquisition of knowledge through interviews has proven to

be time-consuming and difficult. Altematively, acquisition of knowledge can be partially

automated with machine leaming (Dhar and Stein, 1997; Langley and Simon, 1995).

With this approach, a domain specialist first classifies example cases of the problem at

hand. Then, a machine-Ieaming technique, such as decision-tree induction, is used to

leam how to classify new cases from these examples. Machine leaming may speed up the

knowledge-acquisition process (Dhar and Stein, 1997) and may also result in a more

accurate representation of the specialist's performance (Michalski and Chilausky, 1980;

Ben-David and Mandel, 1995). However, a review of the literature revealed only a few

examples of machine-Ieaming assisted knowledge acquisition in the agricultural domain.

These included the application of mIe induction to develop an expert system for soybean

disease diagnosis (Michalski and Chilausky, 1980) and the use of decision-tree induction

to support the creation of a KBS for tomate crop management in greenhouses (Mangina et

al., 1999). In dairy farming, machine-Ieaming techniques have been applied in the context

of modeling and prediction (Kim and Heald, 1999; Lacroix et al.,1995; Mitchell et al.,

1996; Nielen et al., 1995; Yang et al., 1999) and for knowledge discovery from large data

bases (McQueen et al., 1995; Lokhorst et al., 1999). However, no accounts were found of

the use of machine leaming to support the acquisition of knowledge from domain

specialists.

Several different approaches to machine leaming exist, including inductive

leaming, probability-based methods, genetic algorithms, artificial neural networks, and

instance-based leaming (Langley, 1996; Mitchell, 1997; Witten and Frank, 2000).

Although sorne of these approaches may lead to better classification performance than

others for a given application, the understandability of the leamed knowledge may be

even more important when these techniques are used in the context of knowledge

acquisition. A knowledge representation that is easy to understand allows a domain

specialist to evaluate the plausibility of the results of machine leaming. Decision-tree
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induction is generally considered to yield knowledge representations that are easier to

understand than many other machine-Iearning approaches (Dhar and Stein, 1997;

Kononenko et al., 1998; McQueen et al., 1995), while the naïve-Bayes classifier - a

probability-based approach - might also be a reasonable alternative (Kononenko et al.,

1998).

Although machine learning may solve sorne of the problems associated with

traditional knowledge acquisition, new challenges arise. These include decomposition of

the overall problem into classification tasks, acquisition of an adequate number of

example cases of sufficient quality, creation of potentially predictive attributes, selection

and configuration of an appropriate machine-Iearning algorithm, and interpretation of the

learned knowledge (Adriaans, 1997; Langley and Simon, 1995; Verdenius et al. 1997). In

the context of machine-Iearning assisted knowledge acquisition, the most important

difficulties might relate to the acquisition of a sufficient number of example cases that

have been classified by the domain specialist (Kubat et al., 1998) and the analysis of the

performance of classifiers generated from small data sets (Weiss and Kulikowski, 1991;

Witten and Frank, 2000).
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1.2 Goal and objectives

The main goal of this research was to explore the use of machine learning to

support the development of knowledge-based systems in dairy farrning. Specifically, the

objectives were:

1. to establish a framework for the development of computerized information systems

in dairy farrning in general, providing a basis for the creation of specifie

knowledge-based systems;

2. to identify a promising area for machine-Iearning assisted development of a

knowledge-based system;

3. to develop a procedure to support the acquisition of example cases for machine

learning from domain specialists, and apply this procedure to obtain example cases

for the chosen application area;

4. to develop a method to support the analysis of the performance of classifiers,

generated through machine learning from small data sets;

5. to explore the classification performance and understandability of classifiers

generated with the decision-tree induction and the naïve-Bayes approach to

machine learning;

6. to develop knowledge-based components through the use of machine learning for

the identified application area and evaluate their classification performance; and

7. to evaluate the usefulness and limitations of machine-Iearning assisted knowledge­

based system development for dairy farrning in general.
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2 Literature review

2.1 Decision making in dairy farming

In the past decades, dairy farming has becorne increasingly complex due to factors

such as increased size of operation, higher levels of milk production, demands for

improved quality by consumers, and more governmental regulations. Furthermore, dairy

producers and their advisors have access to an increasing volume of data collected on the

farm as weIl as from external sources. On-farm collected data may result from

observations made by the dairy producer and also from sensors that observe the status and

behavior of the cows (Frost et al., 1997; Spahr, 1993; Tomaszewski, 1993). External

sources of data include dairy herd improvement agencies, breed associations, artificial

insemination units, feed companies, and veterinarians. In addition to the use of sensors to

partially automate observation tasks in dairy farming, sorne of the physical farm

activities, such as feeding and milking, can now be partially or completely automated

(Lévesque et al., 1994; Rossing and Hogewerf, 1997; Spahr and Puckett, 1986). Although

these automated feeding and milking systems reduce the amount of required physical

labor, they require additional decision making to update their set points and monitor their

functioning.

This wealth of data may improve on-farm decision making, but only if interpreted

and utilized appropriately. To support the capturing, storage, and treatment of on-farm

collected data, so-called dairy management-information systems have been developed

(Crosse, 1991; Spahr et al., 1993; Tomaszewski, 1993). Decision-support systems have

been created to help dairy producers in dealing with the increased complexity of decision

making, covering such areas as breeding (DeLorenzo et al., 1992; Esslemont and

Williams, 1992), health (Allore et al., 1995; Enevoldsen et al., 1995), and nutrition

(Grinspan et al., 1994). Sorne ofthese systems dealt with short-term decision making, e.g.

to support the detection of estrus (Mitchell et al., 1996), while other systems were

focussed on decision making with long term effects, e.g. to support the planning of

production strategies related to feeding, quota management, and calving patterns

(Mainland, 1994).
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However, computerized information systems, including management-information

systems and decision-support systems, need to be fully integrated with each other and

also with sensors and robotic systems for feeding and milking to ensure a coordinated

execution of dairy farming activities. The long-term development of such systems should,

therefore, be guided by a framework describing the various on-farm management and

control activities and the information flows among them (De Hoop, 1988). Several

frameworks have been deve10ped to support the creation of computerized information

systems for dairy farming (Brand et al., 1995; De Hoop, 1988; Devir et al., 1993). The

framework described by De Hoop (1988) and Brand et al. (1995) focussed on dairy farm

management activities. Devir et al. (1993) adapted the management framework proposed

by De Hoop (1988) to incorporate the management and control involved with automatic

milking systems, but did not consider other short-term control activities. Thus, there is a

need for a complete framework that deals with both management and process-control

activities in dairy farming.

2.2 Analysis of milk-recording data

Dairy herd improvement agencies are an important source of information to support

decision making in dairy farming. On dairy farms that are enrolled with a dairy herd

improvement program, the milk yield of the lactating cows is measured on a test day and

milk samples are taken to determine the percentages of milk fat and milk protein and,

optionally, the somatic cell count and level of milk urea nitrogen (Skidmore et al., 1996).

Additional variables recorded with such a program may include reproduction and

replacement events and ration-related data. This milk-recording data may support on-farm

management in areas such as nutrition, health, and breeding (Bailey et al., 1998; Lefebvre

et al., 1995; Skidmore et al., 1996).

The milk yield and milk components have a large day-to-day variation within cows

(Svennersten-Sjaunja et al., 1997). This means that the performance indices used for

milk-recording data interpretation should be based on the average of a sufficiently large

number of observations to ensure that detected deviations are due to management instead

of normal variability of the data. Therefore, techniques to support the monitoring of milk­

recording data collected monthly, tend to focus on data averaged for a group of cows that
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belong to, for example, a particular parity and stage of lactation. Examples of such

techniques include the analysis of group-average lactation curves, mature equivalent milk

yields, and milk protein to fat ratios (Bailey et al., 1998; Lefebvre et al., 1995; Skidmore

et al., 1996). Due to the large variability in performance within and among cows, proper

interpretation of milk-recording data tends to be more difficult for small-sized dairy

herds, where group-averaged performance indices are based on only a few observations

(Lefebvre et al., 1995).

The proceSS of interpreting milk-recording data not only requires domain expertise

but is also repetitive and time-consuming, involving the analysis of a large amount of

data, potentially every time new test-day data become available. Several computerized

systems have been developed to support this process. The systems described by

Fourdraine et al. (1992b) and Jones (1992) provide the user with summaries of the

performance of the cows and graphs with individual cow lactation curves and group­

averaged lactation curves, respectively. Although these systems automate part of the

preprocessing of the data, they leave the task of interpretation to the dairy producers and

their advisors. Knowledge-based systems (KBS) may be developed to also automate parts

of the interpretation process. Such systems may be appropriate to support or automate

several types of activities in dairy farming, including monitoring, diagnosis, and planning

(Doluschitz, 1990; Spahr et al., 1988). Several KBS have been developed to support the

interpretation of milk-recording data. These include systems to detect potential problems

related to mastitis based on somatic cell count data (AIlore et al., 1995; Heald et al.,

1995), and a KBS to detect management problems based on milk-recording data and

additional on-farm collected data available with a dairy management-information system

(Pellerin et al., 1994).

At the Texas A&M University, a KBS was developed to support the detection of

nutritional problems through the analysis of group-average lactation curves (Fourdraine et

al., 1992a; Whittaker et al., 1989). A similar system may be useful to dairy producers in

Canada, but should be focussed on the specific Canadian dairy-farming conditions and

milk-recording system. Specifically, such a KBS should be able to make use of the data

representations of the Canadian dairy herd improvement agencies and deal with the

relatively small size of the dairy herds in many Canadian provinces.
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2.3 Knowledge-based systems and their development

A KBS can be defined as a computerized system that uses knowledge to solve

problems in a particular domain (Gonzales and Dankel, 1993; Plant and Stone, 1991).

Knowledge-based systems tend to solve problems using heuristic knowledge, the rules of

thumb that specialists use in their reasoning, instead of the algorithmic knowledge used

by conventional computing systems. Knowledge-based systems most often use

"IF...THEN" or condition-action rules to express and store their knowledge, in which

case, they are therefore also-called rule-based systems (Dhar and Stein, 1997).

Similar to conventional software, KBS can be developed in a structured way,

following a life-cycle model (Durkin, 1994; Gonzales and Dankel, 1993). For example,

the waterfall model of software development represents a stepwise approach from

conception through development to implementation. Alternatively, prototyping involves

several iterations of identification of requirements, design and development of a

prototype, implementation and use, and evaluation. Knowledge-based systems tend to be

developed for problems that are relatively complex and poorly structured. Prototypes can

be used as a communication vehicle to crystallize the user requirements and to determine

the knowledge that must be obtained from the specialist for the KBS to function

according to those requirements (Durkin, 1994; Gonzales and Dankel, 1993). Thus, for

the development of KBS, prototyping is preferred over the waterfall mode!.

Traditionally, knowledge acquisition has involved interviewing domain specialists

to elicit their knowledge followed by the organization and transfer of this knowledge into

a representation that can be used in a KBS (Durkin, 1994; Gonzales and Dankel, 1993).

However, this process has proven to be difficult, time-consuming and costly, and has

been referred to as the knowledge-acquisition bottleneck (Feigenbaum, 1979). Specialists

often have difficulty expressing how they reason and make their decisions and, in

addition, it is not easy to structure and encode the knowledge expressed through

interviews into a representation that can be used as part of a KBS. A number of

knowledge-acquisition tools have been developed to address these problems, ranging

from tools to support the interviewing process to machine-Iearning techniques (Gonzales

and Dankel, 1993; Julien et al., 1992). The first generation of knowledge acquisition tools

was designed to support the system developer to construct and maintain the KBS, and
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consisted of functions for bookkeeping and consistency checking. More recent knowledge

acquisition tools tend to focus on the specialist rather than the system developer and make

use of knowledge-elicitation techniques (Gonzales and Dankel, 1993; Julien et al., 1992).

The acquisition of know1edge from specialists can be partially automated with

machine-learning techniques (Dhar and Stein, 1997; Gonzales and Danke1, 1993; Julien et

al., 1992). This approach makes use of example cases that have been classified by the

domain specialist rather than asking the specialist to express how he or she solves a

specific problem. Machine-learning algorithms are able to automatically generate a

description of the know1edge embedded in these examp1es, and use this description to

classify new prob1ems. Using machine learning may not only speed up the know1edge

acquisition process but may a1so 1ead to a more accurate representation of the specialist' s

performance (Ben-David and Mandel, 1995; Michalski and Chilausky, 1980). Since

human specialists often have difficulty expressing how they reason, examp1es of

specialist decisions may represent more re1iable information on the specia1ist's

know1edge than his or her own descriptions (Michalski and Chilausky, 1980).

2.4 Machine Learning

Machine 1eaming is a diverse field of research, he1d together with the common goal

of deve10ping computationa1 methods to improve the performance of sorne tasks (Langley

and Simon, 1995). Definitions of machine 1earning generally focus on two issues: 1)

1earning invo1ves the generalization of new knowledge from experience, which includes

examp1es and background know1edge, and 2) this knowledge allows for the performance

of new tasks or for old tasks to be performed better (Briscoe and Caelli, 1996; Carbonell,

1989; Langley, 1996). Most machine-learning approaches make use of the princip1e of

induction and each one of them requires a description language to describe training

examples and the results of leaming. Several approaches to machine learning, or

machine-Iearning paradigms, have been deve1oped, each of which can be applied in

different contexts of leaming.

2.4.1 Induction and description language

Induction involves the generalization of new knowledge descriptions from a large

number of examples (Briscoe and Caelli, 1996; Langley, 1996). However, the
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fundamental problem of induction is the lack of guarantee that the learned knowledge will

work for aIl new cases. Thus, the induced knowledge can only be seen as promising

hypotheses that should be tested empirically or examined by human specialists (Guan and

Gertner, 1991; Langley, 1996).

Machine-Ieaming systems usually learn from a training set, which consists of

examples that are classified by an external source such as a human specialist or sorne

objective measurement. The attributes that represent the input for the classification are

called conditional attributes or simply attributes, while the output may be referred to as a

decision or classification attribute. The possible values of the classification attribute are

called classes or concepts. Most machine-Ieaming techniques expect the training data to

be presented in a simple attribute-value or flat-table format (McQueen et al., 1995).

Examples of learned knowledge representations include a list of condition-action mIes, a

decision tree, and a network of nodes and weighted connections (Langley, 1996).

2.4.2 Machine learning paradigms

Within the diverse field of machine learning, several paradigms can be recognized,

including inductive learning, probability-based methods, genetic algorithms, artificial

neural networks, and instance-based leaming (Carbonell, 1989; Langley, 1996; Mitchell,

1997; Witten and Frank, 2000).

Inductive-Iearning algorithms attempt to induce new knowledge in the form of

condition-action mIes or decision trees from a set of training examples (Carbonell, 1989;

Langley, 1996). The leaming algorithms of this paradigm usually perform a heuristic

search through the space of possible mIe sets and decision trees based on, for example,

the degree of impurity or disorder in the data (Bratko et al., 1996; Dhar and Stein, 1997;

Langley, 1996). Rule-induction algorithms try to find mIes for each class that cover aIl

positive examples, but none of the negative examples (Briscoe and Caelli, 1996; Feng and

Michie, 1994). Decision-tree algorithms leam in a top-down fashion using a so-called

"divide and conquer" approach (Briscoe and Caelli, 1996; Feng and Michie, 1994; Witten

and Frank, 2000). With this approach, attributes are recursively used to split the data into

subsets or leaves until each subset only contains examples of one class or until a stopping

criterion is reached. At each decision node, the algorithm considers each attribute and

attribute value to split the data into sub-sets, and the split that leads to the maximum
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reduction in impurity of the data is chosen. The resulting decision tree consists of a

hierarchical structure going from a root decision node via other decision nodes to the final

leaf nodes, each of which indicate the predicted class. A main advantage of inductive

learning over other approaches to machine learning is that the knowledge representation

is relatively easy to understand for human beings, allowing for evaluation of the learned

knowledge (Kononenko et al., 1998; McQueen et al., 1995).

Probability-based learning methods classify a new case using Bayes theorem to

calculate the most probable class given the attribute values of the case and knowledge

about the prior probability of each class (Mitchell, 1997). A successful approach to

probabilistic learning is the so-called naïve-Bayes algorithm, which makes the

simplifying assumption that the attribute values are conditionally independent given the

class (Mitchell, 1997; Witten and Frank, 2000). The naïve-Bayes approach results in lists

of conditional probability values for each attribute and class, which can be analyzed

regarding their plausibility (Kononenko et al., 1998).

Genetic algorithms are search procedures based on natural selection, recombination,

and mutation (Goldberg, 1994). They can be used for machine learning by considering

condition-action rules as binary strings which are manipulated to search for the best set of

rules within the entire space of possible rules (Guan and Gertner, 1991; Langley, 1996).

Artificial neural network systems have an architecture based on neuron-like

processing units with threshold values and connection weights. These basic components

are grouped in severallayers and connected to each other, allowing for complex behavior

due to their interactions. Learning typically occurs through the adjustment of the

connection weights using trial and error runs on training data (Langley, 1996; Rumelhart

et al., 1994).

Instance-based learning methods are different from the other machine-Iearning

paradigms since they delay generalization from the example cases until the class of a new

case needs to be predicted (Aha, 1992). Instance-based leaming is, therefore, also referred

to as lazy leaming (Mitchell, 1997). During classification, the most similar case or cases

are retrieved from storage and their class or classes are used to predict the class of the

new case. Case-based reasoning is an instance-based approach that tends to use complex

descriptions of cases, rely on complex case-retrieval mechanisms, and involve adjustment
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of the class or solution of the problem to account for the differences between the new and

retrieved cases (Allen, 1994; Kolodner, 1993; Dhar and Stein; 1997).

2.4.3 Context ofmachine-learning application

Machine-Iearning techniques can be used for learning in different problem

situations or contexts including: 1) modeling and prediction; 2) data mining; and 3)

acquisition of knowledge from domain specialists.

Machine learning can be used to develop models to predict or classify sorne state or

behavior (Guan and Gertner, 1991). The advantage of machine leaming over other

approaches is that it does not require complete quantitative knowledge of the underlying

processes as with simulation studies, and that it is not restricted to certain parameter

distributions and numerical data as is the case with many statistical approaches (Weiss

and Kulikowski, 1991). In the field of dairy farming, the artificial neural networks

approach was used by Lacroix et al. (1995) to predict the 305-day production of milk, fat,

and protein of dairy cows based on monthly test-day data. To predict the occurrence of

mastitis, artificial neural networks have been used (Heald et al., 2000; Nielen et al., 1995;

Yang et al., 1999) as weIl as inductive learning (Kim and Heald, 1999). Marchand (1995)

used inductive learning, instance-based learning, and artificial neural networks to predict

the future performance of young dairy bulls at the time of their acquisition by an artificial

insemination center. And finally, Mitchell et al. (1996) used decision-tree induction to

predict estrus in dairy cows based on variations in the daily milk yield and the ranking at

which cows arrive in the milking parlor.

Machine-Ieaming techniques can also be used to discover unknown relationships in

large data sets, which is often referred to as data mining or knowledge discovery in

databases (Fayyad, 1996; Witten and Frank, 2000). In this context, machine leaming is

used to develop new hypotheses from the data, which subsequently can be tested with

traditional statistical techniques (McQueen et al., 1995). In the field of dairy farming,

McQueen et al. (1995) used machine-Ieaming techniques to discover the most important

factors involved in culling decisions made by dairy producers; Lokhorst et al. (1999)

reported on data mining using management-information system data from a group of

dairy farms.
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One of the main reasons for the initial research efforts in developing machine­

learning algorithms has been the knowledge-acquisition bottleneck associated with the

creation of KBS (Gillies, 1996; Michie et al., 1994). In this context, machine-Iearning

techniques learn from exarnples supplied by domain specialists. The classic example of

this use of machine learning is the development of an expert system for soybean disease

diagnosis with mIe induction by Michalski and Chilausky (1980). More recently,

decision-tree induction was used to support the creation of a KBS for tomato crop

management in greenhouses (Mangina et al., 1999). Many non-agricultural applications

of machine learning to support the acquisition of knowledge from domain specialists were

reported by Langley and Simon (1995) and in Provost and Kohavi (1998). Although in

the field of dairy farming, several KBS have been created based on knowledge from

domain specialists, no examples were found in the literature regarding the use of machine

learning to support the development of those systems.

2.5 Applying machine learning in practice

Although the use of machine leaming to support the acquisition of knowledge for

KBS development may solve sorne of the problems associated with interview-based

knowledge acquisition, several new challenges arise. Adriaans (1997) described three

bottlenecks of the application of machine-Iearning techniques to real-world problems: 1)

acquisition of an adequate number of example cases of sufficient quality, 2) selection of

an appropriate machine-Iearning algorithm, and 3) interpretation of the learned

knowledge. Additional challenges include decomposition of the overall problem into

classification tasks (Langley and Simon, 1995; Verdenius et al. 1997), creation of

potentially predictive attributes (Langley and Simon, 1995), and configuration of the

chosen algorithm (Verdenius et al. 1997).

Several process models have been described to support the successful application of

machine leaming to real-world problems (Brodley and Smyth, 1997;Langley and Simon,

1995; Verdenius et al. 1997). Aspects of the overall process that are especially important

for machine-Iearning assisted knowledge acquisition include the acquisition of example

cases, performance analysis with small data sets, and the evaluation of the learned

knowledge.
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2.5.1 Process models

Langley and Simon (1995) divided the overall process of using machine learning to

develop real-world applications into five main stages: 1) reformulation of the problem

into simple classification tasks, 2) deriving potentially predictive attributes from the

available data, 3) collection of training data, 4) evaluation of the performance on test data

and evaluation of the leamed knowledge by specialists, and 5) implementation of the

leamed knowledge in the field. They emphasized the importance of the first two steps to

facilitate the use of relatively simple but robust induction algorithms.

Brodley and Smyth (1997) described the overall process in four main steps: 1)

problem analysis and formulation, 2) model and algorithm selection, 3) analysis and

diagnosis of test results, and 4) deployment in an operational environment. The first step

was detailed into factors related to the application being developed, factors related to the

data, and human factors. The second step involved the matching of the problem­

dependent factors with domain-independent characteristics of classification models and

algorithms to find an appropriate learning algorithm. The last two steps, testing and

deployment, were described as leading to iterations of the overall process, since it is not

possible to predict how weIl a particular algorithm will perform when applied to a

specific problem.

Verdenius et al. (1997) identified three levels of activities involved in the process of

using machine learning to developed real-world applications: 1) application-Ievel

activities to decompose the problem into tasks, 2) analysis-Ievel activities to determine

the appropriate machine-Iearning technique based on the type of data, and 3) technique­

level activities to configure the chosen algorithm. For each analysis level, a knowledge

base could be developed to provide the user with heuristic support.

2.5.2 Acquisition ofexample cases

Successful application of machine learning requires the availability of a substantial

number of labeled example cases. Historical records of example cases analyzed and

classified by a domain specialist may not be available. In such situations, the domain

specialist will need to classify cases specifically for the KBS being developed. Since the
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classification of example cases by a domain specialist is expensive, the acquired data set

of labeled example cases for machine leaming is likely to be small (Kubat et al., 1998).

2.5.3 Performance analysis

The standard procedure to evaluate the performance of knowledge generated

through machine leaming is training and testing on separate data sets (Weiss and

Kulikowski, 1991). This is necessary because machine-Ieaming algorithms tend to

overspecialize to the training data, leading to a much better apparent performance

(determined through testing of the generated classifiers on the training data) than the true

performance with new data. However, with small data sets, the amount of data often

limits the achievable classification performance (Cohen, 1995). Thus, in such situations,

one would like to use aIl the available data to generate a final classifier for

implementation in the field (Witten and Frank, 2000). For small data sets, stratified ten­

fold cross-validation has often been recommended to estimate the true performance on

new data of a final classifier induced from the entire data set (Breiman et al., 1984;

Mitchell, 1997; Weiss and Kulikowski, 1991; Witten and Frank, 2000). With ten-fold

cross-validation, the training set is divided into ten approximately equally-sized mutually

exclusive subsets or folds with approximately the same class distribution as the original

data set. Each fold is used once for testing of the classifier generated from the combined

data of the remaining nine folds. In addition to estimating the performance of a particular

classifier, it may be important to determine whether differences among classifiers

generated by different algorithms or algorithm configurations, are due to chance or likely

to hold for new data. In the machine-Ieaming literature, various statistical techniques to

determine differences among machine-Ieaming algorithms have been reported, including

paired t-tests and analysis of variance (Bradley, 1997; Dietterich, 1998; Mitchell, 1997).

However, these studies focussed on the comparison of machine-Ieaming algorithms

instead of comparing classifiers generated from a particular data set.

Analysis of the types of mistakes made by a classifier may also be an important

aspect of performance analysis. In many applications, sorne errors are more important

than others. It may, for example, be more important to correctly classify positive or

abnormal cases than to correctly classify negative or normal cases (Swets, 1988; Weiss

and Kulikowski, 1991). To analyze the types of error made by a classification system,
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performance indices such as sensitivity and specificity can be used. The sensitivity is

defined as the correctly predicted positives as a proportion of the actual positives and the

specificity is defined as the correctly predicted negatives as a proportion of the actual

negatives rweiss and Kulikowski, 1991). Machine-Iearning algorithms can often be tuned

to focus on either sensitivity or specificity, which should be taken into account during

performance analysis (Provost et al., 1998). The trade-off between sensitivity and

specificity that can be achieved with a particular machine-Iearning algorithm can be

visualized with so-called relative operating characteristic (ROC) curves (Swets, 1988).

Such curves represent the sensitivity of the classifiers of a classification scheme plotted

against one minus the specificity. To facilitate comparison among classification schemes,

the area under the ROC curve was proposed by Swets (1988) and used in several

machine-Iearning studies (see e.g., Bradley, 1997; Yang et al., 1999). However, for a

particular application, such as data filtering, the entire range of specificity values

associated with the area under the ROC curve may not be applicable. With a very low

prevalence of positive cases, a low specificity would give too many false positives for the

classifier to be of practical use.

2.5.4 Evaluation oflearned knowledge

In addition to the quantitative evaluation, it may be useful to let the domain

specialist examine the learned knowledge regarding its validity for the problem at hand

(Langley and Simon, 1995). The domain specialists may suggest revisions to the

representation of the problem or indicate areas of the domain not covered with the learned

knowledge. This evaluation requires, however, an understandable representation of

leamed knowledge.

Inductive-Iearning approaches, such as decision-tree induction, tend to lead to

knowledge representations that are easier to understand by domain specialists and end­

users of the system than other machine-Iearning paradigms (Dhar and Stein, 1997;

McQueen et al., 1995). Thus, inductive learning has often been the favored machine­

leaming approach to support knowledge acquisition. However, inductive-Iearning

techniques have difficulty handling complex problems that have many interactions

between the variables (Dhar and Stein, 1997). These situations may lead to many mIes or

complex decision trees with reduced understandability. Proper decomposition of the
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overall problem into simple classification tasks is therefore especially important with the

use of inductive learning techniques (Langley and Simon, 1995).

2.6 Conclusions

Computerized information systems may be useful to support decision-making

activities in dairy farming. However, these activities have a high degree of

interdependence and require the exchange of a large amount of information. Thus, a

framework describing the types of decision making activities and information flows in

dairy farming may be useful to facilitate the long-term development of such information

systems.

The analysis of group-average lactation curves has been identified as a useful tool

to support decision-making activities related to dairy nutrition. A KBS could support

dairy producers and their advisors with the time-consuming and complex task of

analyzing group-average lactation curves and related milk-recording data. However, no

description was found in the literature of such a KBS developed for the specifie dairy

farming conditions and milk-recording system in Québec, Canada.

The bottleneck in the development of KBS has been the acquisition of knowledge

from domain specialists. Knowledge acquisition through interviews followed by manual

transfer of the expressed knowledge into mIes has proven to be very time-consuming and

costly. Machine-learning techniques, which learn from examples, may be an attractive

alternative to the acquisition of knowledge from domain specialists.

Several different machine-learning approaches exist, and they can be used in

different contexts of learning. Machine-learning techniques such as inductive learning

and artificial neural networks have been used in the field of dairy farming for modeling

and prediction, and the discovery of new knowledge from large databases. However,

examples of machine-learning assisted knowledge acquisition for KBS development in

dairy farming were not found in the literature.

Although machine-learning assisted KBS development may solve sorne of the

problems associated with traditional knowledge acquisition, challenges associated with

this new approach need to be addressed. These include decomposition of the overall

problem into classification tasks, acquisition of a sufficient number of example cases
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classified by the domain specialist, creation of potentially predictive attributes, selection

and configuration of an appropriate machine-Iearning algorithm, analysis of the

performance of classifiers trained from small data sets, and evaluation of the machine­

leamed knowledge.
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Preface to Chapter 3

Dairy producers and their advisors are facing an increasing amount of information,

from sources on and off the farm, and an increasing complexity of decision making.

Computerized information systems, such as knowledge-based systems, may be useful

tools to help producers to deal with this situation, but should be fully integrated with each

other to ensure a coordinated execution of all dairy farm management and control

activities. A framework describing the types of decision making activities involved in

dairy farming would support the creation of computerized systems that are integrated and

support the exchange of information. In addition, such a framework may help to identify
1

and prioritize areas that are expected to benefit from computerized support, to identify the

information flows involved among new and existing systems, and to facilitate the reuse of

system components.

This chapter describes a framework for the long-term development of computer

systems in dairy farming. This framework defines the types of management and control

activities involved, how these activities can be performed, and the types of information

flows among the management and control activities. This framework forms the basis for

the development of computerized information systems in general and, specifically, for the

creation of a knowledge-based system in this study.

This chapter was published in the Journal of Dairy Science (Pietersma, D., R.

Lacroix, and K. M. Wade. 1998. A framework for the development of computerized

management and control systems for use in dairy farming. J. Dairy. Sci. 81(11):2962­

2972).
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3 A Framework for the Development of Computerized

Management and Control Systems in Dairy Farming

Abstract

Computerized information systems can potentially help the dairy producer to deal

with the increased complexity of decision making and availability of information in dairy

farming. These systems should, however, be fully integrated to ensure a coordinated

execution of dairy farming activities. A framework was, therefore, developed to support the

creation of computerized management and control systems in dairy farming. Within this

framework, a management and control system was defined as a network consisting of the

management and control activities and the flows of information that are involved in dairy

farming. The management and control activities consist of a cycle of decision making,

implementation, and assessment. These activities were classified according to level

(strategie, tactical, operational, and regulatory) and sphere (breeding, health, nutrition,

environment, milk production, fixed assets, labor, and finance). These activities can be

performed by human beings or automated systems and on or off the farm. A large amount

of information exchange exists among these management and control activities, and

between the overall management and control system, and the physical farm environment

and extemal agents. The interdependence among decisions at the various levels and spheres

necessitates computerized management and control systems that are integrated and that

allow for easy exchange of information. The developed framework should facilitate the

creation of such systems and could also act as a reference base for the analysis and

improvement of existing dairy farm information systems.

3.1 Introduction

Decision making on dairy farms has become more complex because of the

intensification of dairy farming and factors such as an increase in knowledge about

animal management, higher quality demands by consumers, and more govemmental

regulations. In addition, an increasing volume of data is becoming available from sensors

that observe the status and behavior of dairy cows (Frost et al., 1997; Spahr, 1993;
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Tomaszewski, 1993) and from extemal sources including the DHIA, breed associations, AI

units, and feed companies. These data may improve on-farm decision making, but only if

interpreted and utilized appropriately. AIso, sorne of the physical farm activities, such as

feeding and milking, can now be partially or completely automated (Lévesque et al., 1994;

Rossing and Hogewerf, 1997; Spahr and Puckett, 1986). Although these automated

systems reduce the amount of required physicallabor, they nevertheless require additional

decisions to be made to update their set points and monitor their functioning.

Computerized information systems, which comprise components such as decision­

support systems (DSS) and record-keeping systems, can partially automate the

interpretation of data and information and support the dairy producer in dealing with the

increased complexity of decision making. However, these information systems, which

can be developed for various areas in dairy farming, such as breeding, nutrition, or

finance, need to be fully integrated with each other to ensure a coordinated execution of

dairy farming activities. The long-term development of computerized dairy farm

information systems should, therefore, be guided by a framework describing the various

on-farm management and control activities (MCA) and the information flows among

them (De Hoop, 1988). Such a framework allows for the modular development of these

systems within the global information model of the dairy farm, and can also act as a

reference base to compare and analyze currently existing computerized information

systems for dairy farms.

Several frameworks have been developed to support the creation of computerized

information systems for dairy farming (Brand et al., 1995; De Hoop, 1988; Devir et al.,

1993) and for agriculture in general (Gauthier and Kok, 1989; Kok and Lacroix, 1993;

Wagner and Kuhlmann, 1991). The framework described by De Hoop (1988) and Brand et

al. (1995) focussed on dairy farm management activities. Altematively, the framework

described by Kok and Lacroix (1993) tended to be oriented more toward process control

(i.e., related to the regulation of physical processes). However, the management and

process-control types of activities on a dairy farm need to be integrated with each other to

ensure a coordinated functioning of all farm activities and to allow for optimization of the

whole farming operation. The frameworks developed by Gauthier and Kok (1989) and by

Wagner and Kuhlmann (1991) included both management and process-control activities,
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but were concerned with agricultural systems in general and did not deal with the specifie

MCA involved in dairy farming. Devir et al. (1993) adapted the management framework

proposed by De Hoop (1988) to incorporate the management and control involved with

automatic milking systems, but did not consider other short-term control activities. Thus,

there is a need for a complete framework that deals with both management and process­

control activities in dairy farming.

This paper describes a framework for the long-term development of computerized

information systems in dairy farming. It focuses on the virtual part of dairy farming (i.e.,

the information processing activities and information flows on the farm), while the physical

implementation of decisions made (e.g., how the actual feeding of the cows takes place) is

considered outside the scope of this analysis. The first three sections of the paper describe

the information processing activities and information flows that take place on dairy farms in

general. The MCA model is described in the first section followed by a classification of

dairy farming MCA in the second section. The information flows that drive these

information processing activities and that connect them with one another are described in

the third section. The fourth section focuses on how and where these MCA can be

performed in specifie farming situations. The final section deals with aspects concerning

the actual creation of computerized information systems in dairy farming, based on the

proposed framework.

3.2 Dairy Farm MCA

A framework for the development of computerized information systems in dairy

farming should provide a global description of both the information processing activities

and the information flows that are required for the proper management and control of the

farm (Brand et al., 1995). In this framework, the information processing activities are

referred to as MCA. The MCA are interconnected and, together, form the management

and control system (MCS). The MCS is thus a network of MCA within which

information is exchanged and processed by various MCA. In this framework, the term

"information" is interpreted in a broad sense, including signaIs, data, information, and

knowledge. In the real world, many of these MCA are performed by human beings (i.e.,
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dairy producer, farm employees, or external advisors), but sorne may be automated

through implementation in computing devices.

A model describing dairy farm MCA needs to accommodate both management and

process-control activities. Farm management can be described in terms of planning,

implementation, and control (Boehlje and Eidman, 1984; Kay, 1986). In such a

management model (see the frameworks described by Brand et al. (1995) and Devir et al.

(1993», planning consists of selecting a course of action from among various alternatives

to accomplish goals; implementation consists of acquiring the necessary resources and

putting the chosen plan into action; and control consists of record keeping, evaluating the

performance, and taking corrective action if necessary. These functions together form a

management cycle in which the control function is followed by improved planning, based

on new information (Kay, 1986). Alternatively, with classie process control, a decision­

making unit decides upon an action, depending on the difference between the measured

and desired state, or the behavior of the system that is being controlled. The action is then

carried out upon the system and, finally, the effects are measured for comparison with

goals or set points and fed back to the decision-making unit, resulting in a continuously

operating controlloop (Leigh, 1992). Thus, both management and process control imply

sorne kind of decision-making, implementation of a decision, and feedback of the results.

The main difference is that management activities tend to be more complex and ill­

defined than process-control activities, usually requiring human participation, while

process-control types of activities can often be formalized and fully automated.

In this framework, the management and process-control models were combined into

a universal concept of MCA consisting of three functions: decision making,

implementation, and assessment (Figure 3.1). In our model, decision making can have

varying degrees of complexity, ranging from relatively simple (e.g., temperature control)

to quite complex (e.g., whole-farm strategie planning). Decision making can be more than

just making a final choice and can involve aIl phases of the decision-making mode!

defined by Simon (1960) including the detection and diagnosis of problems or

opportunities, the development and analysis of alternatives, and the selection of a course

of action. Although the implementation of a decision can be a physical act (e.g.,

detachment of the milking cluster during milking), it can also be a virtual activity, in
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which case it leads to a new cycle of decision making, implementation, and assessment by

another MCA. Assessment involves measurement of the effects of the implemented

decision as weIl as record keeping and feedback of the measured performance. In this

definition of an MCA, decision making is restricted to one part of the MCA.

Implementation involves decision making only if it implies the activation of another

MCA. Assessment does not involve decision making. Detected deviations between goal

and measured performance need to be analyzed during a new session of decision making,

as described by Huime (1990).

goals

Figure 3.1 Management and control activity model.

3.3 Classification of MCA

The nature of MCA in dairy farming varies considerably: they can be classified

according to the level at which they are performed and the sphere of the farm of which

they are part. This classification supports the global picture of how the dairy farming

activities are related to one another, which is necessary to ensure that computerized dairy

farm information systems are developed in a coherent and integrated fashion.

3.3.1 Level ofMCA

The level at which MCA are performed reflects the horizon at which factors are

taken into account within the MCA and the hierarchy at which they operate. De Hoop

(1988) and Brand et al. (1995) considered three leve1s according to a planning horizon:

strategic, tactical, and operational. Altematively, Gauthier and Kok (1989) considered

three levels of control: strategic, tactical, and regulatory. In this framework, the previous

notions are combined to consider four levels of management and control: strategic,

tactical, operational, and regulatory. At the strategic level, MCA tend to be broad in
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nature (including the whole farrn structure) and focus on the long terrn (multiple years).

Tactical MCA are perforrned within the scope of the strategie plan to obtain optimal

results within the given farrn structure. Decisions are focused on the medium terrn (year

or season) and tend to be made more frequently than at the strategie level. Operational

MCA are influenced by the actual day-to-day situation on the farm, are related to the

implementation of the tactical plans, and focus on the short terrn (weeks, days, or hours).

The regulatory level concems MCA at a very short terrn (minutes or seconds), that tend to

be continuous, and take place in real time. Although this classification indicates four

distinct levels, in reality, MCA are perforrned within a continuous range from the

strategie to the regulatory level. It may, therefore, be better to classify many MCA

somewhere between two levels. Daily milking and feeding activities could, for example,

be classified at a level higher than regulatory but lower than operational.

The relation between the three MCA functions and the levels of activity can be

viewed as nested within each other (Figure 3.2). On the one hand, the implementation of

Figure 3.2 The hierarchy of management and control activity (MCA) functions nested within each
other.
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higher level decisions tends to involve decision making, implementation, and assessment

at lower levels. For example, strategie plans need to be implemented at the tactical,

operational, and regulatory levels, as in the case of a new breeding goal which requires

the choice of sires with traits that conform to this goal or a change in culling criteria. On

the other hand, decision making at lower levels needs to be performed within the plans

formulated at a higher level. The implementation of strategie plans, therefore, tends to be

mainly virtual, because it usually involves additional decision-making activities at the

tactical and lower levels; toward the regulatory level, implementation tends to acquire

more of a physical nature.

3.3.2 Sphere ofMCA

In addition to the level at which they are performed, MCA can also be classified

according to the sphere of farming of which they are part. This decomposition into

spheres allows one to focus on different areas of expertise within dairy farming.

Hogeveen et al. (1991) described a broad classification of dairy-management support into

three modules: health, production, and finance. In this framework, a more detailed

classification was used, comparable with the dairy farming functions described by Brand

et al. (1995). The following eight spheres of activity were recognized: breeding, health,

nutrition, environment, milk production, fixed assets, labor, and finance.

The first four spheres (breeding, health, nutrition, and environment) are directly

related to the treatment of the CUITent production units (dairy caUle) and future production

units (calves and heifers). In the sphere of breeding, decisions are made regarding

reproduction (e.g., estrus detection, artificial insemination, pregnancy checking, and

calving), replacement (e.g., rearing of replacement heifers and the purchasing and culling

of animaIs), and mating (e.g., program objectives, choice of sires, and age at breeding).

The production of embryos, calves, heifers, and cows as genetic material is also classified

as part of the breeding sphere. In the health sphere, actions need to be taken conceming

prevention, early identification, and treatment of diseases. The nutrition sphere consists of

activities such as ration formulation, feed analyses, feed storage, and feeding. The use of

fresh grass, either through grazing or summer-feeding, is considered part of this sphere,

while growing pasture or other feed crops belongs to separate spheres, outside the scope of

this framework. Decisions in the environment sphere relate to the living conditions for the
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animal, including its welfare. Topics include housing, climate, and wastewater and

manure handling. The milk production sphere includes such obvious activities as milking

the cows, milk testing, and milk storage, and also covers such areas as analyses of lactation

curves for the individual cows and at the herd level and, if necessary, quota management.

The labor sphere includes the hiring of labor and the planning and scheduling of the work.

The fixed assets sphere involves activities such as acquisition and maintenance of farm

buildings, installations, and equipment. The finance sphere involves the management of

funds, both for fixed assets and working capital, and includes cash flow decisions, book­

keeping activities for financial, farm-economic, and tax purposes, and the acquisition and

repayment of funds. Similar to the classification into levels, clear boundaries between

spheres cannot always be drawn. Sorne activities could be classified as part of multiple

spheres (e.g., body condition scoring is related to both health and nutrition).

Table 3.1 Examples of dairy farm management and control activities classified by level and
sphere.

Sphere of Level of activity
activity Strategie Tactical Operational Regulatory

Breeding Development of long Planning of calving Selection of sire per Measurement of cow
term breeding goals pattern cow activity

Selection of sires for Culling and buying of
herd animaIs

Health Development of Development of Diagnosis and Measurement of body
disease prevention treatment procedures treatment of disease temperature
strategies

Nutrition Choice of feeding Seasonal ration Ration formulation per Allocation and
system formulation based on cow transportation of

available feeds Purehase of feeds feed to cow

Environ- Choice of ventilation Choice of bedding Adjustment of climate Climate control
ment or manure system material set points

Milk Development of long Development of Identification of cows Milking cluster
produc- term milk production milking procedures with abnormal milk detachment
tion goals Milk yield

measurement

Labor Hiring of permanent Hiring of seasonal Scheduling of labor Timing of tasks
labor labor

Fixed Investment in housing Development of Maintenance of fixed Control of vacuum
assets and equipment maintenance assets level in milking

schedules system

Finance Long term financial Acquisition, Cash flow Automatic payment
planning investment, and management

repayment of funds Bookkeeping
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Table 3.1 gives examples of MCA in different spheres and 1evels. It should be noted

that strategie decision making (e.g., expansion of the herd) often involves the whole farm,

in which case it cannot be confined to one sphere of activity. Figure 3.3 gives an example

(ration calculation) of the relationships among MCA at different 1evels and spheres. In

this figure, the operationa1 1eve1 MCA for ration formulation depends on other MCA

within the nutritional sphere, both at the operationa1 and tactical level, and leads to lower

level implementation. In addition to the interaction within spheres, a substantial amount

of interaction and information exchange exists among the spheres. Decisions conceming

one sphere may have important effects on sorne aspects of others. For example, most

decisions invo1ve financial aspects, and decisions in the nutrition sphere influence and

depend on the milk production and health of the cows, as shown in Figure 3.3. This high

level of inter-relationships among spheres needs to be accounted for in the development

of computerized information systems.

Figure 3.3 An example of the interactions among the management
and control activity (MCA) for ration formulation in the nutrition sphere
and management and control activities in the same and other spheres
at the regulatory (reg.), operational (oper.), and tactical (tact.) levels.
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3.4 Flow of Information

In addition to the characteristics of the MCA, the MCS can also be analyzed in tenns

of infonnation flows. Infonnation from the physical fann environment and the external

world is the driving force for the infonnation processing activities within the MCS; the

MCA also transfer infonnation to the physical farm environment and the external world.

The description of these infonnation flows defines the required exchange of infonnation

with the external world and the physieal farm environment and helps to clarify the

interactions among the MCA within the MCS.

3.4.1 Information Exchange with Externat Agents

Dairy producers have to deal with a large amount of infonnation exchange with

various external agents. For many dairy fanns, the milk recording agency or DHIA is the

most important external agent. Based on the milk samples collected regularly on the farm,

DHIA provide the dairy producer with test day results, such as milk production, milk fat

and protein, and somatic cell count, of the herd and of the individual cows. Other

important external agents include the breed associations, AI units, veterinarians, feed

companies, and the milk processing industry. Infonnation flows not only from the

external agent to the producer but might also flow vice versa. For example, in order to

generate fann specifie recommendations, external agents need infonnation about the local

fann conditions.

The infonnation provided by external agents may be the result of macro-scale

management activities. At this macro scale, management activities involve multiple fanns

in a region or even the whole dairy sector. Examples include comparisons among herds,

national genetic evaluations, and the allocation of milk quota to regions. Although these

macro-scale activities also consist of decision making, implementation, and assessment,

they are not dealt with specifically within this framework. The infonnation from these

macro-scale management activities inc1udes reference values against whieh the farm

perfonnance can be compared and general recommendations whieh need to be fine-tuned

to the situation of the local farm. For example, infonnation from national genetic

evaluations needs to be filtered according to the personal preferences of the dairy

producer for improvement of specific traits.
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3.4.2 Information Exchange with the Physical Farm Environment

The MCS also exchanges information with the physical farm environment through

observations of the state, behavior, and performance of the cows and other physical

entities and also the physical implementation of decisions made within the MCS upon the

physical farm environment. The observations of cow variables, such as the milk

production and quality, feed intake, and the general state of health, are essential

components of many dairy farm MCA. Additionally, observations are required

conceming other physical entities on the farm, inc1uding the temperature of the milk in

the bulk tank, the quantity and quality of the available feeds, and the c1imate in the barn.

The process of making observations, whether by human beings or with sensors, can be seen

as a type of MCA at the regulatory level. Within these MCA, decision making is required to

translate signaIs from the physical farm environment to data, while implementation may be

needed to trigger other MCA.

Decisions made within the MCS need to be implemented in the physical farm

environment, either directly affecting the cows through feeding, milking, and other

treatments or indirectly by changing the c1imate surrounding them. This implementation

tends to be part of operational and regulatory level MCA, and can be performed by human

beings or automatic devices and robots. The transfer of information from the MeS to the

physical farm environment consists of signaIs that activate and control the physical

implementation of the decisions made.

3.4.3 Information Exchange Within the Mes

Within the dairy farm MCS, the MCA need to exchange information with each

other in order to manage and control the dairy farm properly. Decisions made at one level

often have to be implemented at lower levels, while they may also affect decision making

in other MCA at the same or higher levels. For example, the MCA that performs the

formulation of feed rations (operational level) needs to communicate new rations to the

MCA in charge of feeding (between the operational and regulatory level). On a large farm,

employees may use worksheets for this information; in the case of automated feeding, a

feed robot needs to be updated with those same inputs. The assessment function often

needs information from lower level MCA of the same or other spheres, to be able to
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determine the performance of the system. For example, the information required to assess

the effects of a change in ration includes the actual feed intake of the cows.

Figure 3.4 gives an example of the MCA and information flows involved in ration

formulation and feeding. The large amount of information exchanged, both on the farm

and between the farm and external agencies, is an important factor in the development of

integrated computerized dairy farm information systems. The various components of

these automated systems have to be able to communicate not only with the dairy

producer, but also with each other and with agents in the external world.

milk
production
deviations

body
condition

score

rations fed

milk
yield

Higher level
ofMCA

Lowerlevel
ofMCA

Figure 3.4 Information flows among management and control activities (MCA) involved in ration
formulation and feeding at the regulatory (reg.), operational (oper.), and tactical (tact.) levels.
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3.5 Performance of MCA

The MCS described in the previous sections constitutes a general framework of

dairy farming activities. However, how these MCA are performed and where they take

place may vary considerably on specific dairy farms.

3.5.1 Automation ofMCA

At the current level of technology, sorne of the dairy farm MCA can be automated,

leading to a MCS in which MCA can be performed either by humans or by automatic

devices, robots and computerized information systems. The possibility of automation

varies with the level of MCA. At the regulatory and operational levels, decision making

tends to be rather simple and can often be automated with a computer or regulation

device. For example, making observations and implementing decisions in the physical

farm environment can often be automated with sensor technology and process-control

systems. At higher levels, decision making tends to be more complex and ill-structured.

In these cases, DSS can be developed to help the human decision maker by automating

parts of the decision-making process.

With sensors, sorne of the observations traditionally performed by dairy producers

or their employees can now be automated, including the cow's milk production and

activity level (Frost et al., 1997; Spahr, 1993; Tomaszewski, 1993). In addition, sensors

allow for the observation of variables that could not be measured previously (e.g., milk

temperature and electrical conductivity). With the on-farm implementation of sensors

such as electronic milk meters, the frequency with which information of individual cows

is being recorded increases from once per month (standard DHIA schedule) to multiple

times per day which leads to an enormous increase in the amount of data that needs to be

stored, treated, and interpreted. It is, therefore, essential for dairy farms that make use of

this sensor technology to have computerized information systems (e.g. record-keeping

systems and DSS) in place to support the handling, interpretation, and subsequent use of

this information (Frost et al., 1997). The interpretation of data from sensors to detect

estrus, for example, can be seen as an MCA in itself. With estrus detection, decision

making is required to differentiate normal patterns in the data from those that indicate
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estrus. Implementation is then required to notify the producer, while assessment may be

used to record the detected cases of estrus.

Automatic devices and robots are now available to (partially) automate traditionally

labor intensive tasks such as feeding (Lévesque et al., 1994; Spahr and Puckett, 1986) and

milking (Devir et al., 1993; Rossing and Hogewerf, 1997). These automated process­

control units often consist of a collection of regulatory level MCA to perform sensing and

the physical implementation of decisions and higher level MCA to control the overall

process. Although these units perform their tasks autonomously, management and control

by the dairy producer are required. The functioning in time of these units has to be

analyzed to be able to optimize the entire automated process, and set points need to be

updated on a regular basis. The automated process-control units also tend to produce large

amounts of information that could be used to improve decision making in other MCA.

Human-based MCA that are too complex to be completely automated can be

supported with DSS. These are generally defined as computer-based systems that support

decision makers to deal with ill-structured decision situations by allowing the user to

interact with data, tools, and models (Davis and OIson, 1985; Klein and Methlie, 1995).

The term management-information system is often used as a synonym for DSS, although

in sorne definitions a management-information system is restricted to providing the user

access to information (Huime, 1990). At the operational or tactical level, the decision­

making process may be structured enough to allow a DSS to produce specific

recommendations autonomously. A DSS for breeding decisions, for example, may

support the dairy producer in choosing sires for a specific program of genetic

improvement or in the ranking of heifers for preferential mating. It is, however, the

human decision maker who has to make the final decision. The activities performed by a

DSS can be seen as automated MCA, that involve 1) decision making (to generate a

recommendation), 2) implementation (to show the user information), and 3) assessment

(to record the user's final decision). A DSS may also support the implementation of the

final decision made, by printing out worksheets for farm employees or by transferring

new set points directly to automated process-control units, such as feed robots or climate

computers.
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3.5.2 Distribution and Location ofMCA

The processing of farm-specific MCA can be centralized or distributed on the farm,

and, in addition, sorne MCA may be processed extemaHy. On a smaH farm without

automation, aH of the MCA may be performed in a centralized fashion by one person.

However, more often MCA are performed by multiple processors, leading to a distributed

type of processing. The decision-making activities may be shared by the dairy producer,

extemal agents, and several processors on the farm, such as the central farm computer

with record-keeping and decision-support software, a cow monitoring unit, and a feed

robot (Figure 3.5). The different processors in such a distributed system need to be

connected through an electronic network to facilitate the large amount of information

exchange that exists. An important component of this information network is the central

farm computer, which constitutes the main interface between the dairy producer and the

other processors of this network.

External
Agents

1 Human 1

1Processor 1

Cow monitoring
- Milk production
- Estrus detection

1Local Processor 1

Feeding
- Silo unloader
- Feeding robot

1Local Processor 1

Figure 3.5 Distributed processing of dairy-farm management
and control activities.

The most appropriate location to perform farm-specific MCA (on-farm versus

extemal) depends on many factors, such as the frequency at which decision making is

required, the expertise and interest of the dairy producer, and the availability of computer

capacity to process data and compute performance indices. Operational and regulatory

MCA are generally performed most efficiently on the farm due to their frequent use, as in
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the case of the detection of estrus or mastitis. The fonnulation of feed rations requires

specialized expertise and is often performed by external agents, such as the DHIA or a

feed company. The DHIA have traditionally recorded the amount of milk produced and

the milk components of individual cows. Based on this data, the DHIA often perform

farrn-specific MCA such as the computation of performance indices and breeding values.

Recent developments in sensor and communication technology may, however, change

these patterns of where MCA are performed. On the one hand, the increased use of

sensors on the farm (e.g., measurement of milk production and milk quality of each cow

at each milking) requires computerized on-farm MCA for the acquisition and

interpretation of data related to the cows' performance. On the other hand, the Internet

can facilitate the exchange of information between the farrn and external agents and may,

therefore, support the external processing of MCA.

3.6 Computerized MCS

3.6.1 System Development

The MCS framework constitutes a starting point for the development of

computerized management and control systems (CMCS). A CMCS is a subsystem of an

MCS and consists of those MCA on a particular farrn that are carried out autonomously

by automatic devices, robots and computerized information systems. The actual

development of dairy CMCS requires detailed analyses of the MCA involved and the

information exchange among them. During this development, the MCS can function as a

global model of the dairy farrn to guide the development of integrated CMCS.

A major advantage of the concept of a network of MCA is that it matches weIl with

an object-oriented approach to the development of computerized information systems

(Booch, 1994). Bach MCA could be considered as an object, containing both the

procedures and the information to perform decision making, implementation, and

assessment activities. This approach could ease the incremental development of

integrated CMCS, because the object-oriented approach may increase the reusability of

computer code after each iteration from initial prototype to final product (Power, 1996).

AIso, such an approach makes possible the development of farrn-specifie CMCS, by

allowing choice and use of objects or CMCS components that correspond to the specific
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situation of each farm. An object-oriented approach may also facilitate the large amount

of information exchange among the MCA. The objects, or MCA, would interact with

each other by sending messages containing information (or requests for information) or

by requesting the performance of specifie actions.

3.6.2 Integrated and Distributed CMCS

The large degree of interdependence among decisions made at the various levels

and spheres requires the development of integrated CMCS. Integration of decision making

can only take place through the exchange of information among the various CMCS

components, whether they reside on a central farm computer or are physically distributed.

Many dairy producers already make use of computerized record-keeping systems to keep

track of milk production, breeding, and health data. Newly developed CMCS components

should, thus, be able to exchange information with these existing record-keeping systems.

The processing of MCA within the CMCS may be physically distributed over multiple

processors on the farrn as shown in Figure 3.5. These processors, therefore, need to be

interconnected through a communication network (e.g., LAN, or Local Area Network) to

allow for the direct and efficient exchange of information (Gauthier and Kok, 1989;

Kalter et al., 1992). Wireless data transfer may be an interesting avenue for such

networks, especially for those units that are not stationary, such as a feed robot and

milking units in a tie-stall system.

External agents often perform farrn-specific MCA and, as such, are part of the

distributed processing of the MCS (Figure 3.5). The information exchange between the

farrn and external agents has traditionally occurred on paper. However, in recent years, a

number of projects have begun to transfer DHIA and other data electronically to the farm

through direct modem connections (Lacroix et al., 1997; Tomaszewski, 1993) With

electronic transfer of data, on-farm computerized information systems can make use of

data directly, without time-consuming and error-prone manual data entry. The Internet

makes the exchange of information between the farrn and external agencies even easier.

Additionally, the Internet may offer more flexibility in the location of decision making. In

the future, agencies such as DHIA may provide decision-support services over the Internet,

allowing the farrn manager to use decision-support software that is located and maintained

on a central computer at the external agency (Lacroix and Wade, 1996).
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The exchange of information among CMCS components, however, is only possible

when protocols for the representation and exchange of information and the calculation of

performance indices are available and agreed upon. The development of national and

international standards has in this respect many benefits. Such standards could allow dairy

producers to purchase the different components of their CMCS from different software and

hardware manufactures (Boulesteix et al., 1996; Tomaszewski, 1993), ease the exchange

of information with external agents (Boulesteix et al., 1996), and facilitate the comparison

of performance indices among dairy farms (Kroeze et al., 1996).

3.6.3 Knowledge-based Techniques

The various components of CMCS can be constructed with knowledge-based or

artificial intelligence techniques in addition to the more traditional computing

technologies, such as databases, mathematical models, and statistical analyses

(Doluschitz, 1990; Hogeveen et al., 1991). These knowledge-based techniques allow for

the use of the knowledge of human experts or other sources to automate or support MCA

that deal with complex and poorly understood problems. In dairy farming, knowledge­

based techniques seem to be especially appropriate for computerized information systems

related to monitoring, diagnosis, and planning (Doluschitz, 1990), and in the past decade

severa! such systems have been developed (Allore et al., 1995; Domecq et al., 1991;

Grinspan et al., 1994; Schmisseur and Gamroth, 1993; Whittaker et al., 1989).

Knowledge-based techniques may be useful at the operationallevel in domains that are

poorly understood (e.g., to interpret data from sensors based on expert knowledge). These

techniques may also be useful at the tactical and strategie levels, where the decision­

making process tends to be more complex and knowledge from several domains is often

required. Hogeveen et al. (1994) gave a comprehensive overview of various types of

knowledge representation schemes and showed that the most appropriate representation

of knowledge depends on the characteristics of the MCA for which a CMCS component

is being developed.
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3.6.4 Toward System Autonomy

Complete automation of MCA is at the present time mainly limited to the regulatory

and operationallevels. Dairy farm MCS with greater autonomy, involving automation of

MCA at higher levels, may be possible in the future. Potential areas include the automatic

adjustment of feed rations based on the measured cow performance and the automatic

adjustment of the number of milkings per day for each individual cow on dairy farms

with an automatic milking system. However, systems with greater levels of autonomy

require more sophisticated control mechanisms to ensure the survival and stability of the

automated system (Kok and Lacroix, 1993).

3.7 Conclusions

A framework has been developed to support the creation of computerized

information systems for use in dairy farming. This framework describes the virtual part of

dairy farming in terms of an MCS. This MCS consists of a network of MCA, which

perform information processing activities and exchange information. The MCA can be

oriented toward management or process control, and are classified according to the level

at which they are performed and the sphere of dairy farming of which they are part.

Information flows are treated in terms of the information exchange among MCA and the

exchange between the MCS and both the physical farm environment and the external

world. The MCA can be performed by human beings or automated systems and on the

farm and externaIly, leading to MCS that are specific to each dairy farm. The large

interdependence among MCA at the various levels and spheres, as weIl as the distributed

decision making (which cornes with the increased use of automated systems for monitoring

and process control), necessitates CMCS that are integrated and that allow for easy

exchange of information. Communication technologies such as Local Area Networks and

the Internet are expected to play a major role in CMCS by facilitating the exchange of

information on farm and between the farm and the various external agencies. This MCS

framework is envisaged to support the development of CMCS by providing a description

and categorization of the various kinds of information processing activities and information

flows involved in dairy farming. In addition, this framework can act as a reference base for

the analysis of existing dairy farm information systems.
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Preface to Chapter 4

Knowledge-based systems may help dairy producers and their advisors to deal with

the large amount of available information and complexity of decision making in dairy

farrning. The framework described in Chapter 3 was used to identify promising areas of

knowledge-based system development. For example, at the operational level, milk­

recording data could be used to find potential health problems, such as sub-clinical

mastitis, or to detect management deficiencies related to nutrition. In consultation with

dairy specialists, the analysis of group-average lactation curves was chosen as the

application area for machine-Iearning assisted knowledge-based system development. A

lactation curve is a graphical representation of the daily milk yield plotted against days

after calving. Group-average lactation curve analysis involves the interpretation of

lactation curves averaged for groups of cows with the objective to detect potential

management deficiencies. For this purpose, cows are generally grouped according to their

parity (i.e. lactation number).

In terms of the framework described in Chapter 3, the analysis of group-average

lactation curves can be seen as part of a management and control activity within the

spheres of nutrition and rnilk production, and at the tactical level. The decision-making

function of this activity makes use of information from related management and control

activities on the farm, such as ration formulation, body condition scoring, and health

monitoring. Extemal agents, such as the dairy herd improvement agency, veterinarian,

and feed companies, also contribute information. Decision making may lead to

adjustments to feeding procedures and changes to the base rations, which need to be

implemented at the operational level. A decision-support system for the analysis of

group-average lactation curves would help the decision-making and assessment functions

of the management and control activity through the preprocessing of raw data into

performance indices and by allowing the user to interact with appropriate performance

representations such as graphs. Adding knowledge-based components to such a system,

that contain the expertise of domain specialists would furthermore support decision

making via the detection of abnormalities and potential management deficiencies.
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This chapter describes a decision-support system for the analysis of group-average

lactation curves. The overall problem area involved was decomposed into sub-problems

and classification tasks to facilitate the development of knowledge-based modules

through machine learning in subsequent research. In addition, case-acquisition

functionality was added to the software to enable a domain specialist to efficiently

analyze and classify a substantial number of example cases for machine learning.

This chapter was published in the Journal of Dairy Science (Pietersma, D., R.

Lacroix, D. Lefebvre, E. Block, and K. M. Wade. 2001. A case-acquisition and decision­

support system for the analysis of group-average lactation curves. J. Dairy. Sei.

84(3):730-739).
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4 A Case-acquisition and Decision-support System for

the Analysis of Group-average Lactation Curves

Abstract

A case-acquisition and decision-support system was developed to support the

analysis of group-average lactation curves and to acquire example cases from domain

specialists. This software was developed through several iterations of a three-step

approach involving 1) problem analysis and formulation in consultation with two dairy

nutrition specialists; 2) development of a case-acquisition and decision-support prototype

by the system developer; and 3) use of the prototype by the domain specialists to analyze

and classify milk-recording data from example herds. The overall problem was

decomposed into three sub-problems: removal of outlier tests and lactation curves of

individual cows; interpretation of group-average lactation curves; and diagnosis of

detected abnormalities at the herd level through the identification of potential

management deficiencies. For each sub-problem a software module was developed

allowing the user to analyze both graphical and numerical performance representations

and classify these representations using predefined linguistic descriptors. The example­

based method for the development of the program proved to be very useful, facilitating

the communication between system developer and domain specialists, and allowing the

specialists to explore the appropriateness of the various prototypes developed. The

resulting software represents a formalization of the approach to group-average lactation­

curve analysis, elicited from the two domain specialists. In future research, the case­

acquisition and decision-support system will be complemented with knowledge to

automate identified classification tasks, which will be captured through the application of

machine-learning techniques to example cases, acquired from domain specialists using

the software.
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4.1 Introduction

Dairy producers enrolled in a DHI program recelve a large amount of milk­

recording data following each test day. These milk-recording data can be a useful source

for information to support dairy farm management and control activities, both at the

operational (short term) and tactical (medium term) levels of decision making (Pietersma

et al., 1998). At the operationallevel, results from the most recent test day can be used to

monitor current performance. At the tactical level, milk-recording data collected (e.g.,

over the past year) can be used to analyze the performance of the cows averaged for the

entire year or as a function of month of year or even stage of lactation. Several

computerized information systems have been developed to support the analysis of milk­

recording data. These include, at the operational level, a decision-support system for

evaluating mastitis information (Allore et al., 1995), fuzzy-set based tools to monitor

group-average milk yield and persistency values (Lacroix et al., 1998), and a prototype

decision-support system for dairy cattle culling deployed over the Internet (Strasser et al.,

1998). In addition, several expert systems have been developed to support tactical level

dairy management related to reproduction (Domecq et al., 1991) and covering milk

production, nutrition, reproduction, and health (Pellerin et al., 1994). One particular use

of milk-recording data to support tactical level dairy management is the analysis of

group-average lactation curves (Lefebvre et al., 1995; Skidmore et al., 1996). This type of

analysis may, for example, reveal poor peak production for the group of cows in their

first, second, or third and higher parity, which may be caused by deficiencies in areas

such as nutrition or management of the dry period. However, proper interpretation of

group-average lactation curves and additional milk-recording data tend to be time­

consuming and complex. Use of a knowledge-based system (KBS) for the partial

automation of this process would, thus, be advantageous; it would relieve dairy producers

and their advisors from the tedious task of preprocessing the large amounts of raw data,

required for such an analysis, and also provide them with expert interpretation (Whittaker

et al., 1989).

Traditionally, KBS have been developed based on interviews with domain experts,

sometimes supplemented with other sources of knowledge such as documentation (Dhar

and Stein, 1997; Durkin, 1994). However, the acquisition of knowledge through
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interviews has proven to be time-consuming and difficult, being referred to as the

knowledge-acquisition bottleneck. Altematively, the acquisition of knowledge from

experts can be partially automated with machine-Ieaming techniques (Dhar and Stein,

1997; Durkin, 1994; Langley and Simon, 1995). With this approach, a domain expert first

classifies example cases of a particular problem, followed by the application of machine­

leaming techniques, such as decision-tree induction and instance-based leaming, to

discover and make use of the knowledge implicitly embedded in these example cases.

However, new challenges arise with the application of machine-Ieaming techniques to

real-world problems, including task decomposition, acquisition of example cases of

sufficient quality, selection and configuration of an appropriate machine-Ieaming

algorithm, and interpretation of the leamed knowledge (Adriaans, 1997; Langley and

Simon, 1995; Verdenius et al., 1997).

A research project was initiated to explore the use of machine leaming for the

development of KBS in dairy farrning and focussed on the problem area of group-average

lactation-curve analysis. The research presented in this paper dealt with the first part of

this project and addressed the challenges related to task decomposition and acquisition of

example cases. It was expected that decomposition of the problem area into classification

tasks could be achieved through interviews with domain specialists, leading to a

forrnalization of the approach to group-average lactation-curve analysis used by these

specialists. In order to perforrn machine leaming of the identified classification tasks, a

substantial number of example cases would be required. The development of a software

tool to automate the acquisition of example cases from domain specialists was expected

to solve this case-acquisition bottleneck, while, as an implementation of the forrnalized

approach to group-average lactation-curve analysis, this tool could also be used as the

core software of the final KBS. The objectives of this research were 1) to forrnulate the

overall approach to group-average lactation-curve analysis into classification tasks that

allow for the application of machine-Ieaming techniques and 2) to develop a case­

acquisition tool to enable domain specialists to efficiently analyze and classify example

cases of the analysis of group-average lactation curves.
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4.2 Materials and Methods

4.2.1 Procedure

In order to support the analysis of group-average lactation curves, problem

formulation and case-acquisition tool development were both carried out in consultation

with two dairy nutrition specialists. Both specialists had practical experience with

lactation-curve analysis and one of them had direct knowledge of the type of support

currently provided by the DHIA advisors. The approach used involved three consecutive

steps as indicated by the grayed area of the process model shown in Figure 4.1: problem

analysis and formulation, case-acquisition tool development, and use of this tool by the

domain specialists. These three steps are part of an overall process model, which was

developed specifically for the context of using machine leaming to support the acquisition
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4. Machine-Iearning supported
development of knowledge­
based modules
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Use of case-acquisition tool by
domain specialist

Classification of example cases

Evaluation of analysis approach

1. Problem analysis and formulation

1.1 Problem definition
1.2 Problem decomposition
1.3 Classification task description

Figure 4.1 A process model for machine learning to support knowledge acquisition
for knowledge-based system development.
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of knowledge from domain specialists for KBS development based on three

methodologies (Brodley and Smyth, 1997; Langley and Simon, 1995; and Verdenius et

al., 1997) for the application of machine learning to real-world problems in general.

Additional steps in this process model include the development of knowledge-based

modules through machine learning from example cases acquired with the case-acquisition

tool and deployment of the KBS (Figure 4.1). This study was restricted to the first three

steps and designed as an iterative process, which is represented by the various feedback

loops in Figure 4.1.

The first step of the process model was carried out in consultation with the domain

specialists and involved 1) definition of the overall problem, 2) decomposition of the

overall problem into sub-problems (with reduced complexity to facilitate machine

learning in subsequent research), and 3) reformulation of each identified sub-problem into

one or multiple classification tasks for machine leaming, including a description of the

attributes and classes that characterize example cases for those tasks. The second step

consisted of the development of a prototype case-acquisition tool by the system

developer, based on the problem formulation resulting from the first step. In addition, the

system developer incorporated alternative views of the data into the prototype based on

data visualization techniques. In the third and final step, the two domain specialists used

the developed prototype to analyze and classify a small data set consisting of milk­

recording data from a selected number of dairy herds, and to evaluate the functioning of

the program and the appropriateness of alternative views of the data. The deficiencies of

the prototype were then discussed with the specialists, prompting a new iteration. During

these discussions a computer with the case-acquisition prototype was used to support the

analysis of the functioning of the program by stepping through specific example cases.

This consultation led to adjustments in the problem definition and decomposition, the

description of classification tasks, and the preferred views of the data representation,

followed by the development of an improved prototype. For each sub-problem, several

such iterations were required before the specialists were satisfied with the resulting

analysis approach and case-acquisition program. The feedback loop from step two to step

one represents situations in which the system developer required additional input from the

specialists before releasing the next prototype for subsequent use. The loop from step
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three to step two occurred when a software bug was detected by the specialists and

reported back to the system developer. During the project, a large amount of decision­

support functionality was added to the case-acquisition tool enabling the specialists to

analyze the milk-recording data efficiently using an approach to group-average lactation­

curve analysis that emerged from the iterative development process. The resulting

software was, therefore, referred to as a case-acquisition and decision-support system

(CADSS).

4.2.2 Data

A data set, consisting of milk-recording data from 33 Holstein herds, was used

throughout the development of the CADSS. These herds were randomly selected from

herds enrolled in the provincial DHI program, while ensuring coverage of a wide range of

rolling herd average milk production levels. For each herd the data were lirnited to one

year of historical rnilk-recording data by choosing a so-called "most recent test date" and

including only tests no more than 365 days prior to that date. In addition, only the data

from lactations starting within the defined interval were included in the analyses. This

resulted in a total of 1428 lactations, produced by 1419 different cows, and a total of 7684

tests. The data set for each cow and test day included such variables as rnilk yield (kg), fat

%, protein %, SCC, and codes reflecting conditions that may have affected the

performance of the cow on the test day. Milk urea nitrogen data were available for sorne

of the tests. Ration data included DMI, NDF, non-structural carbohydrates, NEL, fat, CP,

and undegraded intake protein. Total DMI was based on actual amounts of supplements

fed (reported by the producer) and estimates of the forage DMI (determined by the

Québec DHIA ration model and adjusted by the feed advisor). The quality of the feed

ingredients was based on laboratory analyses of feed samples or, if no specific analyses

were available, on standard values for the composition of feeds (National Research

Council, 1989). The data set also included birth, calving and dry-off dates, body weight

after calving, and the body condition score at four different stages of lactation. See Figure

4.2 for a summary of the data input variables. Standard lactation curves and standard peak

levels for seven herd-average production levels and three parity groups (one, two, or three

and higher) had previously been derived from 570,863 official Holstein test-day records

at the provincial DHIA by Lefebvre et al. (1995) and were used as performance

48



benchmarks for the group-average lactation curves. These standard curves were

associated with herd-average cumulative 30S-day milk production levels ranging from

67S0 to 97S0 kg in intervals of SOO kg. Additional standard curves and peak production

levels were estimated through linear extrapolation to 42S0 and 11,2S0-kg herd-average

cumulative 30S-day milk production to accommodate very low and very high producing

herds.
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Figure 4.2 Milk-recording data inputs, case-acquisition and
decision-support system modules, and captured classifications.

The CADSS was developed using the Visual Basic (Microsoft Corporation,

Redmond, WA) programming language. For each herd a relational database with three

database tables was used to store the milk-recording data pertaining to the level of cow

and test, cow and lactation, and herd and test. The classifications made by the user during

a consultation session with the CADSS were also stored in a relational database. The Data

Access übjects programming model (Microsoft, 1997) was used to enable the CADSS to

access and manipulate the data in the database tables.
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4.3 Results

4.3.1 Problem Definition and Decomposition

The two domain specialists described the analysis of group-average lactation curves

as a first step in a tactical level management activity focussed on monitoring and

improving the nutrition management on the farm. The specialists anticipated that this

analysis process would lead to the detection of potential management problems and

preliminary diagnoses.

The consultation sessions with the domain specialists resulted in a decomposition of

the overall problem into three sub-problems and the development of three corresponding

software modules (Figure 4.2). These sub-problems were 1) removal of outlier tests and

lactations of individual cows, 2) interpretation of group-average lactation curves, and 3)

diagnosis of abnormal group-average lactation curves. This decomposition corresponded

to the analyses of milk-recording data at the levels of individual cow, group of cows, and

the entire herd. The first sub-problem was related to the relatively small herd size of dairy

herds enrolled in the Québec DHI program, which, in 1999, averaged 45 cows per herd

(Programme d'analyse des troupeaux laitiers du Québec, 2000). With a small number of

cows in a group, the interpretation of the group-average performance may be biased

towards a single atypieal cow. The specialists, therefore, considered the removal of

outlier tests and lactations to be important, especially if these outliers were associated

with explanatory information such as a high sec, an extreme protein to fat ratio, or the

existence of codes indieating specifie events affecting the milk yield (e.g., clinieal

mastitis, displaced abomasum, or estrus). The second sub-problem involved the

interpretation of group-average lactation curves and peaks for each of the three parity

groups in order to detect abnormalities such as a poor peak production or an abnormal

shape of the curve after the peak. The group-average lactation curve and peak were

calculated from non-outlier milk yield data and could be compared with a standard

lactation curve and standard peak level. The resulting group-average lactation curve

interpretations for all three parity groups of a herd were analyzed in combination with

additional group-averaged milk-recording data in the final sub-problem to diagnose

detected abnormalities through the identification of potential management deficiencies.
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The overall CADSS prograrn and the three software modules corresponding to the

identified sub-problems are explained in detail below.

4.3.2 CADSS Program

The CADSS prograrn consists of a main module, to control the selection of herds,

parity groups, and the sequence of analyses, and three additional analysis modules

corresponding to the identified sub-problems. During a case-acquisition session, the

CADSS program controls the sequence of analysis steps. After selection of a herd, the

user is first directed to the module for removal of outlier tests and lactations for each of

the three parity groups. The user may then continue with the module for the interpretation

of group-average lactation curves. After this stage, the final module can be used to

diagnose detected abnormalities. The user can go back to herds and parity groups,

classified earlier, to review and, if necessary, change the classification decisions made.

The CADSS records the user interactions with the system and the classifications

made by the user in a single relational database containing seven database tables. Four

tables are used to record the classifications pertaining to four aggregation levels: test

within lactation, lactation, parity group, and herd. The CADSS uses three additional

tables to record the sequence of decision-making steps by the user for each of the three

analysis modules of the program. The final classification decisions made by a specialist

could be combined with potentially predictive attributes derived from the information

shown at the time of decision making to generate example cases that could, in subsequent

research, be used for machine learning. The recorded sequence of decision-making steps

allowed for a replay of how the user interacted with the system and helped to define the

gray or fuzzy zones of classification in cases where it was difficult for the specialist to

choose between two classes.

The development of each module required several iterations involving the three

consecutive steps of 1) discussion of the required functionality of the module, 2)

prototype development, and 3) use of the prototype by the domain specialists (Figure 4.1).

Shorter iteration cycles of only step one and two were used when adding alternative views

of the data representation proposed by the system developer. Such additional functionality

was first explained to the specialists during a consultation session using a computer with

the prototype to show specific example cases. Based on the feedback from the specialists,
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the prototype was then improved and subsequently re1eased for use by the specialists to

complete a three-step iteration. The development of the first, second and third module

involved, respective1y, three, five, and six iterations. The modules were developed in

paralle1 requiring a total of seven consultation meetings. The following three sections

describe, for each module, the required milk-recording data, the classification tasks

involved, the resulting functionality, and the acquisition of example cases.

4.3.3 Removal olOutlier Tests and Lactations (Module 1)

With the first module the user can analyze lactation curves of the individual cows

within a parity group and perform two classification tasks: removal of outlier tests and/or

removal of outlier lactations (Figure 4.3). The input for this module consists of eight

different variables describing the lactation and the tests within lactation for each cow, and

standard lactation curve values that can be used as a benchmark (Figure 4.2). The module

results in the classification of each test and lactation as outlier or non-outlier.

Figure 4.3 Screen capture of module 1: removal of outlier tests and lactations.

52



The user can choose to view the lactation curves of aIl cows belonging to the parity

group or step through the lactation curves one at a time or in smaller selected groups. In

addition to the individual cow curves, a group-average lactation curve is shown, averaged

for non-outlier milk yield and DIM values within each of ten stages of lactation from 5 to

305 DIM. The group-average curve includes error bars representing the mean milk yield

plus and minus the standard deviation. Labels are attached to individual milk yield tests in

the case of codes indicating an event that may have affected the test results (such as

clinical mastitis, displaced abomasum, or estrus). The user can choose to view additional

labels to draw attention to a low or a high protein to fat ratio, or a high SCC, each with

user-adjustable threshold values. A standard lactation curve can be displayed to represent

the expected performance for the parity group, given the production level of the herd.

OptionaIly, a regression line can be estimated and shown for each lactation curve using a

multiple linear regression model proposed by Wilmink (1987) describing milk yield Y on

DIM t as

Y(t) = bO + b1 t + b2 exp(-0.05 t).

Selection of a particular test within a lactation curve by mouse click prompts the

program to show additional information for that test, including persistency, fat and

protein percent, protein to fat ratio, and SCC. The user can subsequently delete the

selected test or an entire lactation by clicking on the "Delete Test" or "Delete Curve"

buttons. Removal of aIl tests in a lactation causes the program to consider that lactation as

deleted. The color of a deleted test or lactation is changed to gray to aid in the reselection

of previously deleted tests or lactations. Each "delete" or "undelete" event prompts the

program to recalculate the group-average lactation curve.
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The CADSS records a flag for each deleted test or lactation to indicate it as an

outlier. Table 4.1 shows examples of the classification of milk yield tests using the

classification attribute "Test is outlier" and classes "True" and "False". The example

cases in Table 4.1 are described with a selection of nine of the many potentially predictive

attributes that can be used for machine learning of this classification task.

Table 4.1 Example cases of milk yield tests described by a selection of potentially predictive
attributes for machine learning and classified bya domain specialist as outlier or non-outlier.

Potentially predictive attributes Test is
Persistency Persistency Milk Milk Protein sec Event Milk yield (Milk yield - outlier

selected next test fat protein to fat code -GrpMilkl GrpMilk) 1
test (%) (%) (%) (%) ratio (kg) SDGrpMilk2

44 146 6.5 4.2 0.65 5,890,000 Mastitis - 16.3 - 1.9 True

89 123 2.6 2.9 1.11 101,000 0 - 8.5 - 1.3 True

79 107 3.4 3.0 0.89 1,176,000 0 +4.7 +0.9 True

97 90 4.1 3.3 0.80 40,000 0 - 3.2 - 1.2 False

89 95 3.4 2.9 0.86 19,000 Heat +4.5 +0.9 False

79 96 5.0 4.0 0.80 1,233,000 0 - 3.7 - 1.1 False

1 GrpMilk =group-average milk yield.
2 SDGrpMilk =Standard deviation of group-average milk yield.

4.3.4 Interpretation ofGroup-Average Lactation Curves (Module 2)

With the second module the user has to characterize the group-average lactation

curve of the selected parity group by choosing an option button for each of six linguistic

descriptors or classification tasks. These tasks are listed in the right-hand section of the

module (Figure 4.4) and consist of: start-up milk, peak description, peak timing, peak

level, and slope of the curve during mid and late lactation. The input for this module

consists of: the milk yield and date of each test, the parity and calving date of each

lactation, standard lactation curves and standard peak level values to benchmark the

group-average performance, and the outlier test and lactation flags from the first module.

The interpretation of the group-average lactation curve results in a list of classes chosen

by the user for each classification task (e.g., low start-up milk, normal peak description,

normal peak timing, low peak level, high slope mid lactation, and normal slope late

lactation).
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Figure 4.4 Screen capture of module 2: interpretation of group-average lactation curves.

In this module, the group-average lactation curve is shown, averaged for non-outlier

milk yield and DIM values of individual cows within each of ten stages of lactation from

5 to 305 DIM. Error bars represent the group-average milk yield plus and minus the

standard deviation. The group-average peak level and timing are calculated based on the

maximum milk yield of individual cows in the first 120 DIM. The group-average peak

level and timing error bars represent the mean plus and minus the standard deviation. The

program calculates a standard lactation curve for the selected parity group through linear

interpolation between the two available standard curves closest to the mature equivalent

production level of the herd in question. The standard peak level is derived similarly. The

user can choose a class for each classification task by selecting an option button (for

example, peak level can be "Low", "Normal", "High", or "No Classification Possible",

while slope during mid and late lactation can be "Low", "Normal", "High", "Flat" or "No

Classification Possible"). Selection of a transition point between mid and late lactation

prompts the program to estimate and show two linear regression lines through the group-
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average curve data points from the third stage to the transition stage and from the

transition stage to the last stage. The slopes of these two regression lines (in grams per

day) are displayed in a table together with the slopes of regression Hnes through the

standard lactation curve. This functionality was added to support the user with the

classification of the slope of the group-average lactation curve during mid and late

lactation.

Table 4.2 shows example cases of the group-average peak: level, classified by a

domain specialist as "Low", "Normal", or "High". Potentially predictive attributes

describing the group-average peak: level in relation to the standard peak: level may include

the absolute and relative distance between the group-average and standard peak: level, and

the absolute distance, expressed in standard deviations. The selection of a transition point

between mid and late lactation can be seen as a seventh classification task which may be

useful to calculate predictive attributes for the classification of the slope of the lactation

curve during mid and late lactation.

Table 4.2 Example cases of group-average peak levels
described by a selection of potentially predictive attributes for
machine learning and classified bya domain specialist as low,
normal, or high.

Potentially predictive attributes
GrpPLI

- StdPe
(kg)

- 6.0

- 4.1

-1.1

+0.9
+2.9
+ 1.6

(GrpPL - StdPL)
/ StdPL (%)

- 20
-9

- 3
+2

+10

+5

(GrpPL - StdPL)
/ SDGrpPL3

- 2.2
- 0.8

-0.3
+0.2
+0.8

+0.4

Low

Low

Normal

Normal

High

High

1 GrpPL =group-average peak level.
2 StdPL =standard peak level.
3 SDGrpPL =standard deviation of group-average peak level.
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4.3.5 Diagnosis ofAbnormal Group-Average Lactation Curves (Module 3)

The third and final module allows the user to compare the group-average lactation

curve interpretations of the three parity groups with each other, and with additional

group-average performance indices, and diagnose detected abnormalities through the

identification of potential management deficiencies (Figures 4.5 and 4.6). The input for

this module consists of: thirteen variables associated with each test within a lactation,

nine variables associated with each lactation, standard lactation curves and standard peak­

level values, the outlier results of the first module, and the group-averàge lactation curve

data and interpretations from the second module. The module results in a maximum list of

40 potential management deficiencies related to 1) the general condition of the cows at

first calving, 2) the overall management of the previous dry period for parity groups two

and three, and 3) the fiber, energy, or protein aspects of the ration for early, mid, and late

lactation, and the dry period of each of the three parity groups.
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Figure 4.5 Screen capture of module 3: diagnosis of abnormal group-average lactation curves
using numerical analysis.
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The main section of this module allows for the comparison of the group-average

lactation curve interpretations with additional group-average performance indices for

each of the three parity groups and for three stages of lactation and the dry period within

each parity group. The user has two options to visualize this information: numerically as

shown in Figure 4.5 or graphically as shown in Figure 4.6. The performance indices in

this section include the proportion of cows with a low or high protein to fat ratio and

group-average values for milk urea nitrogen, body condition score, and nine different

descriptors of the ration. Also shown are the average age at first calving, body weight at

calving for each parity group, and days dry and calving interval of the previous lactation

for parity groups two and three. On the right of the main section (Figures 4.5 and 4.6),

additional tables show information pertaining to the feeding system, percentage of cows

with low or high protein to fat ratio and with specific event codes in each parity group,

and peak ratios between parity groups one and two, one and three, and two and three. A

graph shows the three group-average lactation curves and peaks simultaneously. As an

intermediate analysis step before classifying the potential management deficiencies, the

user can interpret and classify the group-average values of the numerical performance

indices as "Normal", "High", and "Low" through successive mouse clicks on the cell in

the table, showing the variable in question. These classification decisions prompt the

program to change the color of the font in the cell successively from black ("Normal") to

red ("High"), and blue ("Low"), and record the associated class using 176 fields in the

herd table of the classification database. After analyzing the information shown in this

module, the user can indicate potential management deficiencies that may explain

detected problems with the group-average lactation curves and other abnormalities, by

clicking on the check boxes in the bottom section of the module. Each one of these 40

potential management deficiency check boxes represents a classification task with the

classes "True" and "False", and each decision is recorded in the classification database.

To support the analysis of the large amount of information shown in the main

section, the numerical representation of the information was translated to a graphical

format, using the visualization technique of multiple standardized graphs as described by

Tufte (1997). With this approach each graph shows, for a particular parity group and

performance index, the group-average mean with error bars representing plus and minus
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the standard deviation, plotted against days after calving (Figure 4.6). For each graph a

normal range is indicated, aUowing the user to quickly assess deviations of the group­

average performance from normal expectations. Initial boundary settings were derived

from the literature. However, the upper and lower level of the normal range in each graph

may be fine-tuned through future machine learning of the decision boundaries between

the "Normal" and "High" and the "Normal" and "Low" classes of each numerical

performance index shown in the main section. Figure 4.6 shows a graphical

representation of the group-average lactation curve interpretations for each parity group

and a tab-sheet with graphs representing four performance indices related to rnilk and

ration protein. The user can click on five additional tab-sheets to view graphs pertaining

to the other performance indices shown in the main section.
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Figure 4.6 Screen capture of module 3: diagnosis of abnormal group-average lactation curves
using graphical analysis.

59



A very large amount of variables were available to derive predictive attributes for

each of the 40 classification tasks indicating whether or not a potential management

deficiency existed. Table 4.3 shows example cases of the classification task to determine

whether there is a potential problem with the management of the previous dry period of

the second parity group cows. This table includes a selection of potentially predictive

attributes for machine learning: startup milk, peak level, body condition score at calving

for parity group two, the difference between the body condition score at calving for parity

group two and the score at dry-off for parity group one, the percentage of cows in parity

group two and early lactation with a low milk protein to fat ratio, and the ratio between

peak levels of parity group one and two.

Table 4.3 Example cases of the classification of milk-recording data by a domain specialist to
detect a potential problem with the management of the previous dry period in a group of second
parity cows.

Potentially predictive attributes Potential
Start-up milk Peak level BCS2 BCS P2SI- Cows with low protein Relative peak level problem

P21 P2 P2S13 BCS PIS44 to fat ratio P2S 1 (%) PI5 over P2 (%)

Low Low 2.2 -0.9 16 86 True

Normal Low 4.1 +0.8 28 96 True

Low Normal 3.5 +0.5 12 80 True

Normal Normal 3.9 +0.3 0 79 False

Normal High 3.0 -0.6 12 76 False

Low Normal 3.5 -0.2 8 83 False

Ip2 = parity group two.
2BCS =body condition score.
3p2S1 =parity group two and stage one (early lactation).
4P2S4 =parity group two and stage four (dry period).
5PI =parity group one.
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4.4 Discussion

Successful application of machine-Iearning techniques to develop KBS requires

proper formulation of the overall problem into classification tasks, conducive to machine

learning (Langley and Simon, 1995, Verdenius et al., 1997) and the acquisition of an

adequate number of example cases of sufficient quality (Adriaans, 1997). In this study, an

iterative approach was developed to decompose the problem area of group-average

lactation-curve analysis into sub-problems and classification tasks, and to create a

software tool, the CADSS, to enable domain specialists to efficiently analyze and classify

milk-recording data for a substantial number of example herds.

The process of analyzing group-average lactation curves turned out to be more

complex than expected, involving multiple analysis steps, multiple views of performance

representations, and a large degree of preprocessing of raw data. The case-acquisition tool

resulting from this research can, therefore, be considered as a decision-support system,

providing dairy producers and their advisors with a framework for the analyses of group­

average lactation curves and automating the preprocessing of raw data into graphical and

numerical performance representations. Once the program has been complemented with

knowledge-based modules, generated through machine learning in a subsequent research

project, field testing will be carried out to acquire input from the end-users regarding,

e.g., the graphical user interface, the confidence they have in the knowledge-based

modules, the amount of user-interaction required with each of the modules, and the costs

and benefits of using the program to support dairy producers.

Although the development of the CADSS had been designed as an iterative process

(Figure 4.1), many more iterations were required than initially anticipated until the

specialists were satisfied with the resulting analysis approach and CADSS. After

decomposing the overall problem into three sub-problems, it was difficult for the domain

specialists to specify exactly how they wanted the large amount of raw data to be

processed and represented in performance indices. The development, in itself, of the

CADSS prototypes enabled the specialists to propose new ways of viewing and analyzing

the data, not necessarily obvious or available to them before. In addition, the specialists

were confronted with alternative views of the data proposed by the system developer,

based on data visualization techniques. Many iterations were thus necessary to explore
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these new approaches to viewing and analyzing the data and to elicit the preferred method

of group-average lactation-curve analysis, whieh was formalized in the resulting CADSS.

The focus on example cases was found to be useful throughout the development of

the CADSS. The example-based approach facilitated communication between the system

developer and the specialists during the consultation sessions in whieh the problem

formulation and the functionality of the CADSS program were discussed. Additionally,

the analysis of real-world example cases of milk-recording data with the CADSS

prototypes helped the specialists to determine whether the chosen representations of the

data were useful and if the classification tasks and classes adequately covered the sub­

problems.

The CADSS developed here is expected to continue to evolve to higher levels of

complexity in future research projects. The first step will be the acquisition from domain

specialists of example cases of the removal of outlier tests and lactations. Machine­

learning techniques will then be applied to these example cases to derive knowledge­

based components that will be incorporated into the CADSS to automate the removal of

outliers. This automation will make it easier for the domain specialists to analyze and

classify a substantial number of example cases of the interpretation and diagnosis of

group-average lactation curves using the second and third modules, while still allowing

the user to override the system. The final KBS for use by dairy advisors could keep its

case-acquisition functionality to allow for the acquisition of interesting new cases

encountered in the field, which could be used for additional machine learning. In the

long-term, machine-Iearning capabilities could be incorporated into the program, leading

to a self-Ieaming or adaptive KBS (Schmoldt, 1997).

Although the CADSS was developed to make use of the milk-recording data

available at the provincial DHIA, the overall approach is expected to be applicable to any

region and dairy support situation. The approach to group-average lactation-curve

analysis presented in this paper is already possible with a basic set of milk-recording

variables consisting of milk yield, fat, protein, and SCC. The case-acquisition

functionality of the CADSS enables dairy nutrition specialists, familiar with the specifie

dairy farming situation, to analyze and classify milk-recording data of a selected number

of dairy herds. This could be followed by the development of machine-Iearning generated
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knowledge-based components specifie to that situation, which could be added to the core

modules of the CADSS program.

The example-based approach to the development of decision-support systems,

followed by case acquisition and machine learning to enhance these systems with

knowledge-based components, may also be useful for other problem areas in dairy

farming and agriculture in general. Information technology has made it possible to

capture and store vast amounts of data from sources on the farm (e.g., sensors) as weIl as

from extemal organizations. The challenge for agricultural producers is to interpret and

utilize these data properly to improve decision-making (Doluschitz, 1990; Frost et al.,

1997; Tomaszewski, 1993). Similar to the approach pursued in the research presented

here, computerized support systems could be developed for the analysis and interpretation

of data in these problem domains by making use of the expertise of domain specialists to

explore new ways of analyzing the available data through example-based decision­

support system development. Designing these systems to include case-acquisition

functionality would allow for the acquisition of example cases, classified by domain

specialists, and the application of machine-Iearning techniques to develop knowledge­

basedcomponents which could be integrated into the developed decision-support system.

In conclusion, a CADSS was developed to support the analysis of group-average

lactation curves and to enable domain specialists to analyze and classify example cases of

this analysis process efficiently. In future research, machine-Ieaming techniques will be

used to discover and acquire the knowledge implicitly embedded in these example cases.

The resulting knowledge-based modules will subsequently be incorporated into the

CADSS and lead to a final KBS.
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Preface to Chapter 5

The decision-support system for the analysis of group-average lactation curves

described in Chapter 4 would greatly benefit from the inclusion of knowledge-based

components to partially or completely automate the various decision-making tasks

involved. Such components could, for example, automate the time-consuming removal of

outlier tests and lactations of individual cows from group-average analysis based on the

expertise of a domain specialist.

Machine leaming has been successfully applied to real-world problems in many

domains and may also be a useful approach to the development of knowledge-based

components for the analysis of group-average lactation curves. However, several

challenges remain, especially in contexts with limited availability of example cases, such

as knowledge acquisition. With small data sets for leaming, proper estimation of the

classification performance with new data and comparison of the performance of different

classifiers are difficult. Different approaches to this problem have been proposed in the

literature, but additional research into these methodological aspects remains necessary. In

addition, the classification performance achieved with machine leaming may to a large

extent be influenced by the type of prepocessing of the data and the proper tuning of the

parameters of the machine-Ieaming algorithm being used.

This chapter focuses on the use of decision-tree induction to acquire the domain

knowledge involved in the filtering of lactations of individual cows for group-average

lactation-curve analysis. This classification task is part of the "removal of outliers"

module of the decision-support system described in Chapter 4, which represented the first

step in the analysis of group-average lactation curves. In addition, this chapter describes a

methodology for the analysis of the performance of classifiers generated through machine

leaming from small data sets and an approach to support the evaluation of the plausibility

of induced decision trees. Experiments were carried out to determine the appropriate type

of preprocessing of the data and configuration of the decision-tree induction algorithm. A

series of decision trees was induced from the available data for implementation as

knowledge-based components to automatically filter lactation curves in a decision­

support system for the analysis of group-average lactation curves.
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This chapter was submitted to the journal Computers and Electronics in Agriculture

(Pietersma, D., R. Lacroix, D. Lefebvre, and K. M. Wade. Performance analysis of

machine-leaming induced decision trees for lactation-curve analysis).
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5 Performance analysis of machine-Iearning induced

decision trees for lactation-curve analysis

Abstract

Machine learning has been identified as a promising approach to knowledge-based

system development. However, challenges, such as analysis of the performance achieved

through learning from small data sets, remain. This study focussed, firstly, on the use of

decision-tree induction for knowledge acquisition to filter lactations of individual cows

for group-average lactation curve analysis, and, secondly, on the application of graphical

and statistical techniques to analyze the results of machine learning. Data consisted of

1428 cases classified by a dairy-nutrition specialist as outlier (34 cases) or non-outlier.

The performance of decision trees, induced from the entire data set, was estimated

through ten-fold cross validation. Relative operating characteristic curves were used to

visualize the achieved trade-offs between correctly classifying positive and negative

cases. A performance index, representing the mean true positive rate of these curves for a

limited range of false positive rate values, was developed to facilitate comparison among

classification schemes. Analysis of variance was used to determine whether real

differences existed for the expected performance on new data among the different

combinations of data preprocessing and algorithm configurations evaluated in this study.

In terms of data preprocessing, random assignment of herds to the folds of the cross

validation did not perform significantly different from assigning cases to folds, while use

of a special value to indicate attribute values that were irrelevant for the case in question

significantly improved the performance over treating these values as missing. Tuning of

the configuration of the decision-tree induction algorithm significantly improved the

classification performance. Three final decision trees were induced from the entire data

set. Their expected true positive rates were 52%, 68%, and 92%, at false positive rates of

1.5%, 3.5%, and 8.6%, respectively. However, due to the low prevalence of outlier

lactations (cases), this performance was associated with many false positives. The

specialist reviewed the final trees and adjusted two decision nodes. This study suggests

that decision-tree induction has a role to play in the acquisition of knowledge involved in
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the removal of outlier lactations. In addition, the application of ten-fold cross validation

in combination with relative operating characteristic curves and analysis of variance was

found to be useful in analyzing the results of machine leaming from small data sets.

5.1 Introduction

Dairy producers who are enrolled in a milk-recording program, receive a large

amount of data that can be used to improve dairy herd management. The analysis of

group-average lactation curves, generated from such data, has been identified as a useful

tool to support tactical-Ievel nutrition management in dairy farming (Whittaker et al.,

1989; Lefebvre et al., 1995; Skidmore et al., 1996). This type of analysis involves

comparison of group-average curves with standard curves, and the analysis of additional

explanatory data, that may lead to the detection of potential management deficiencies.

Group-average lactation curve analysis tends to be lengthy and complex, and the use of a

knowledge-based system (KBS) seems an obvious avenue of exploration. Such a system

would automate the preprocessing of the large amount of raw data involved and provide

dairy producers and their advisors with expert interpretation (Whittaker et al., 1989).

Traditionally, KBS have been developed based on interviews with domain experts,

sometimes supplemented by other sources of knowledge such as documentation (Durkin,

1994; Dhar and Stein, 1997). However, the acquisition of knowledge through interviews

has proven to be time-consuming and difficult. Experts often have difficulty expressing

how they reason and make their decisions and, in addition, it is not easy to structure and

encode the knowledge expressed through interviews into a representation that can be used

as part of a KBS. Altematively, acquisition of knowledge can be partially automated with

machine leaming (Langley and Simon, 1995; Dhar and Stein, 1997). With this approach,

a domain expert first classifies example cases of a particular problem. Then a machine­

leaming technique, such as decision-tree induction, is used to leam how to classify new

cases based on these examples. Machine leaming may accelerate the knowledge­

acquisition process (Dhar and Stein, 1997) and potentially lead to a more accurate

representation of the expert's actions (Michalski and Chilausky, 1980; Ben-David and

Mandel, 1995). However, only a few agricultural examples of machine-Ieaming assisted

knowledge acquisition were found in the literature. These included the application of rule

68



induction to develop an expert system for soybean disease diagnosis (Michalski and

Chilausky, 1980) and the use of decision-tree induction to support the creation of a KBS

for tomato crop management in greenhouses (Mangina et al., 1999). Since machine­

leaming assisted knowledge acquisition has shown promising results in multiple domains,

it should also be applicable to dairy farming and, specifically, to the complex area of

lactation curve analysis.

Although machine leaming may solve sorne of the difficulties associated with the

traditional interview approach to knowledge acquisition, new challenges also arise.

Firstly, machine leaming can only take place if example cases of the problem at hand are

available. In the context of knowledge acquisition the domain specialist may need to

analyze and classify an adequate number of example cases for the specific KBS being

developed (Pietersma et al., 2001a). Another difficulty is that the classification

performance achieved with leaming may be influenced by the type of preprocessing of

the data set (Kubat et al., 1998; Witten and Frank, 2000) and the proper tuning of the

algorithm parameters (Henery, 1994; Verdenius et al., 1997). This means that several

machine-Ieaming experiments may be required before achieving satisfactory results. An

additional challenge is the analysis of the performance achieved with machine leaming in

experiments with small data sets. Different approaches to performance estimation and

comparison of results have been explored (see, for example, Weiss and Kulikowski,

1991; Mitchell, 1997; Dietterich, 1998; Provost et al., 1998), but further study into the

methodological aspects of performance analysis with small data sets remains necessary

(Witten and Frank, 2000). The combination of these factors may explain the lack of

attention for machine-Ieaming assisted knowledge acquisition in dairy farming, and

agriculture in general.

Research was initiated to explore the use of machine leaming to support the

development of a KBS for the analysis of group-average lactation curves. A case­

acquisition and decision-support system (CADSS) was developed previously (Pietersma

et al., 2001a) to enable domain specialists to analyze example cases of the analysis of

group-average lactation curves and to capture their subsequent classifications. The project

described in this current paper had two main objectives: firstly to develop a knowledge­

based module to filter lactations of individual cows automatically for group-average
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lactation curve analysis through decision-tree induction, and secondly to explore the use

of graphieal and statistical techniques to analyze the results of machine-leaming

experiments with small data sets. Specifie objectives were 1) to determine the appropriate

type of preprocessing of the data set and configuration of the decision-tree induction

algorithm, 2) to assess the ability of induced decision trees to discriminate between outlier

and non-outlier lactation curves, and 3) to verify the plausibility of the induced decision

trees.

5.2 Methods

The approach used in this study involved five sequential steps, indicated by the gray

area and labeled with the numbers three through seven in Figure 5.1: classification of

example cases by a domain specialist using a case-acquisition tool; analysis and

1. Problemanalysis and formulation

2. Case-acquisition tool development

8. Deployment of the knowledge-based system 1----'

Figure 5.1 A process model for machine learning to support knowledge acquisition for knowledge­
based system development (steps 1 and 2 are described in Pietersma et al., 2001a).
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preprocessing of the acquired example cases; machine-Iearning algorithm selection and

configuration; training and testing; and, finally, analysis of the results of machine

learning. This approach to machine-Iearning assisted knowledge acquisition was adapted

from different methodologies for the application of machine learning in general (Langley

and Simon, 1995; Brodley and Smyth, 1997; Verdenius et al., 1997). In the following

sections the five steps involved in this research are described in detail.

5.2.1 Acquisition and processing ofexample cases

Example cases of the removal of outlier lactations were generated by a dairy

nutrition specialist using the CADSS for analysis of group-average lactation curves

(Pietersma et al., 2ÜÜla). The removal of outliers was identified as the first step in the

overall analysis process and considered important to avoid the interpretation of the group­

average performance being biased by a few atypical lactations or tests. With the CADSS

the specialist was able to compare the lactation curves of individual cows belonging to

one of three parity groups with group-average and standard lactation curves (Figure 5.2).

Figure 5.2 Screen capture of the case-acquisition software module used to remove outlier tests
and lactations.
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Additional attributes available with the CADSS are listed in Table 5.1 and included,

for each test of a lactation, milk protein to fat ratio, somatic cell count (SCC), codes

indicating conditions affecting records (CAR) such as clinical mastitis or estrus, and a

regression equation for the lactation curve proposed by Wilmink (1987). Details of the

functioning of this CADSS can be found in Pietersma et al. (2001a). The domain

specialist analyzed a data set consisting of the milk-recording data from 33 Holstein herds

enrolled with the provincial dairy herd analysis service and representing a wide range of

rolling herd-average milk production levels. The data set contained 1428 lactations of

which 34 (2.4%) were classified as outlier.

Creating an effective representation of the data has been identified as an important

step in the successful application of machine-Ieaming techniques to real-world problems

Table 5.1 Listing of attributes describing example cases of the removal of outlier lactations
available to the domain specialist (0) and used for machine learning (M).

Attribute description
D Days in milk (DIM), milk yield, percent fat, percent protein, somatic cell count, and conditions

affecting records (CAR) code for each test of lactation curve
D DIM, milk, standard deviation, and number of tests for each stage of group-average lactation curve
D DIM and milk for each stage of standard lactation curve
D M Regression equation for lactation curve Y(t) =a + b t + c exp(-O.OS t) with parameters a, b, and c
D M Parity and Parity group
D M Number of tests in lactation
D M Number of lactations in parity group
D M Number of tests in parity group
D M Number of lactations in herd
D M Number oftests in herd
D M Average mature equivalent 30S-day milk production of the herd

M Number and percentage of low and of high protein to fat ratio tests
M Average protein to fat ratio
M Number and percentage of high somatie cell count tests
M Average somatie cell count
M Average somatic ceIllinear score
M Number and percentage of tests with any CAR code
M Any test with CAR code abortion
M Any test with CAR code foot rot
M Any test with CAR code off feed during early lactation
M Any test with CAR code abortion, milk fever, metritis, or displaced abomasum
M Average absolute and relative deviation from group-average lactation curve
M Average number of standard deviations (SD) from group-average lactation curve
M Slope linear regression through entire curve and deviation from slope standard curve
M Slope linear regression through tests after peak and deviation from slope standard curve
M Min. slope linear regression through three consecutive tests and deviation from slope standard curve
M Max. slope linear regression through three tests after peak and deviation from slope standard curve
M Max. absolute and relative deviation of a test from Hne between a test before and a test after that test
M Avg. SD of group-average lactation curve stages covered by lactation relative to stages not covered
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(Langley and Simon, 1995). Thus, to support machine learning, additional attributes were

constructed from the basic attributes available to the domain specialist. Such derived

attributes included, for example, the mean SCC for the lactation, and the mean absolute

and relative deviation from the group average lactation curve. An initial set of potentially

predictive attributes was proposed by the system developer and additional attributes were

suggested by the domain specialist, leading to a total of 41 attributes for machine leaming

(Table 5.1).

The resulting data set contained a substantial number of records with missing

attribute values, sorne of which were missing due to errors in the data acquisition

procedure (i.e., during milk recording) and considered as unknown. These unknown

values were left blank as required by the machine-Ieaming algorithm. The remaining

missing attribute values were in fact irrelevant for the cases they described. Irrelevant

attribute values occurred, e.g., with the attribute "slope after the peak" when a lactation

did not include tests after the peak. Witten and Frank (2000) suggested that the type of

treatment of irrelevant attribute values may have an impact on the achieved classification

performance in machine leaming. Thus, an experiment was carried out to investigate the

effect of treating irrelevant attribute values as either unknown or with a special value

beyond the range of possible values for the attribute.

5.2.2 Configuration ofthe algorithm

The decision-tree induction algorithm used in this study was CART - Classification

And Regression Trees - for Windows version 3.6 developed by Salford Systems (Breiman

et al., 1984; Steinberg and Colla, 1997). The algorithm learns in a top-down fashion, by

splitting the training data recursively into two smaller subsets, choosing, at each split, the

attribute that is most successful in discriminating among the classes of the classification

problem. The CART algorithm induces a maximum tree which is pruned back to avoid

overspecialization of the training data. The resulting decision tree consists of a series of

decision nodes that, during classification, guide each new case to a leaf node indicating

the predicted class. With CART the user can control many parameters affecting the type

of decision tree induced and the classification performance achieved. More details

regarding the CART algorithm are given in Appendix A, while a thorough description can

be found in Breiman et al. (1984) and Steinberg and Colla (1997).
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In this research, several iterations of algorithm configuration, training and testing,

and analysis of the performance (steps five through seven in Figure 5.l) were used to tune

the algorithm parameters to the type of data available. Based on preliminary experiments,

three parameters were considered important for tuning: splitting and pruning criterion,

minimum size of child nodes, and prior probability of outlier lactations. The effect of

these parameter configurations on the classification performance was studied in

combination with the different methods of data preprocessing: this is explained in detail

in the experimental design section below.

5.2.3 Training and testing

To determine the appropriate type of data preprocessing and algorithm

configuration, a comparison of the performance of the resulting decision trees was

required. In addition, an estimate of the performance of the decision trees was needed to

assess the ability to discriminate between outlier and non-outlier lactation curves. The

standard approach to evaluating the performance of a classifier, derived through machine

learning, involves training and testing on separate data sets, which is necessary, since

machine-Iearning algorithms tend to overfit the training data (Weiss and Kulikowski,

1991). The apparent performance on the training data - also called resubstitution

performance (Witten and Frank, 2000) - may thus be much better than the performance

achieved when the classifier is used in the real world to classify entirely new data.

However, in this research the size of the data set was rather small considering there were

only 34 outlier lactations. In the case of small data sets the number of example cases is

likely to be a factor limiting the classification performance (Cohen, 1995; Witten and

Frank, 2000). Therefore, with limited data, aIl available labeled example cases should be

used to train a final classifier for a real-world application (Witten and Frank, 2000).

To estimate the performance of classifiers generated from the entire data set of

example cases, the stratified ten-fold cross validation approach to training and testing was

used (Breiman et al., 1984; Weiss and Kulikowski, 1991; Witten and Frank, 2000). With

this approach the entire data set is divided into ten mutually exclusive subsets or folds

with approximately the same class distribution as the original data set. Each fold is used

once to test the performance of the classifier, generated from the combined data of the

remaining nine folds, leading to ten independent performance estimates. Assuming that
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the classification performance improves as more data are used for Ieaming, the true

performance of the classifier generated from the entire Iabeled data set is expected to be

at Ieast as good as the ten-fold cross validation estimate which is based on classifiers

generated from 90% of the data.

The use of ten-fold cross validation requires the random assignment of example

cases to the ten folds. However, when the example cases are grouped in batches (i.e.,

herds in this project), random assignment of cases to folds means that cases of the same

batch will be distributed over multiple folds and end up in both the training and test sets.

This may Iead to a biased estimate of the performance since the final classifier is to be

used on example cases belonging to entirely new batches (Kubat et al., 1998). An

experiment was, therefore, performed to explore the effect of assigning example cases to

folds at either the case or the herd Ievel. Random assignment of the outlier and non­

outlier cases to folds resulted in 142 or 143 cases per fold of which 3 or 4 were outliers.

Entire herds were manually assigned to folds to achieve approximately the same class

distribution in each fold, resulting in 126 to 223 cases per fold of which 3 to 6 were

outliers (Figure 5.3). Assignment of example cases to folds at either the case or the herd

Ieve1 was considered as a type of data preprocessing and investigated together with the

treatment of irre1evant attribute values and the different algorithm configurations.

Entire data set

33 herds Creation of final decision trees

1394 negative cases (non-outlier) f--+ • Appropriate type of data preprocessing
34 positive cases (outlier) • Tuned parameter configuration

! !
Case-Ievel assignment to folds Herd-Ievel assignment to folds

1Fold 1: 139 neg. and 4 pos. 1 1Fold 1: Herds 2,10,17,25; 217 neg. and 6 pos.1

1Fold 2: 139 neg. and 4 pos. 1 1Fold 2: Herds 6,7,8,33; 160 neg. and 4 pos.
1

.
1Fold 10: 139 neg. and 3 pos.1 1Fold 10: Herds 19, 30; 130 neg. and 3 pos. 1

! !
Experiment 1 Experiment 2

• Assignment to folds: Cases or Herds • Minimum size of child nodes:
• Irrelevant attribute values: Unknown or Special 1 to 7

• Splitting and pruning criterion: Gini or SymGini • Prior probability positives (%):

• Minimum size of child nodes: 1 or 5 2.4, 1.2, 0.6, 0.3

Figure 5.3 Data treatment for experiments and final decision trees.

75



5.2.4 Performance analysis

In machine-Iearning literature, the performance of a classifier is often expressed as

the overall error rate or as the overall accuracy with the implicit assumption that all types

of misclassification are of equal cost and aIl types of correct classification are of equal

benefit. However, in many classification problems, one type of misclassification may be

considered less acceptable than another. Detailed analysis of the types of misclassifi­

cations leading to the achieved accuracy is thus often required. For example, in this study,

a classifier that indicates each lactation as non-outlier would have an expected accuracy

above 97.5%. However, this classifier would be completely useless for the classification

task at hand since it would not remove any outliers. For the application in this study, with

a very low prevalence of outliers, mistakenly classifying a non-outlier case as an outlier

may, in fact, be less costly than misclassifying an outlier case as non-outlier.

The removal of outlier lactations is an example of two-class classification: a

lactation was classified by the domain specialist as either outlier (positive) or non-outlier

(negative). To distinguish among the different outcomes for two-class classification

problems, a 2 x 2 contingency table or confusion matrix can be used (Swets, 1988; Weiss

and Kulikowski, 1991; Witten and Frank, 2000). Figure 5.4 shows such a matrix in which

the possible outcomes are denoted with A, B, C, and D. In this matrix, true positives (A)

and true negatives (D) are correct classifications, a false positive (B) is an actual negative

case incorrectly predicted as positive, and a false negative (C) is an actual positive case

predicted as negative. These false positives and false negatives are equivalent to the

concept of Type 1and Type II errors used in statistics (Steel and Torrie, 1980).

Actual class is positive

Predicted as positive A

Predicted as negative C
Total (actual) A + C

TP rate =True positive rate =A / (A + C)
FP rate = False positive rate = B / (B + D)
PVP = Predictive value positive = A / (A + B)
PPR = Positive prediction rate = (A + B) / N

Prevalence of positive cases = (A + C) / N

Actual class is negative

B
D

B+D

Total (predicted)

A+B
C+D

A+B+C+D=N

Figure 5.4 Confusion matrix, performance indices, and prevalence for two-class classification.
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From the 2 x 2 confusion matrix, several performance indices can be derived and

four of these were used in this study: 1) the true positive rate (TP rate) or sensitivity,

defined as A / (A + C) (Swets, 1988); 2) the false positive rate (FP rate) or 1 - specificity,

defined as B / (B + D) (Swets, 1988); 3) the predictive value positive (PVP), defined as A

/ (A + C) (Weiss and Kulikowski, 1991); and 4) the quantity (A + B) / (A + B + C + D)

(Swets, 1988), here referred to as the positive prediction rate (PPR). The prevalence of

positive cases or prior probability of positives can aIso be determined from the confusion

matrix as (A + C) / (A + B + C + D) (Swets, 1988). The TP rate and FP rate are both

independent of the prevaIence of positive cases and, thus, the characteristies of the

classifier (Swets, 1988). Conversely, the PPR and PVP depend on the prevalence of

positive cases and can be mathematically derived from the TP rate and FP rate for a given

prevalence level using

PPR =Prevalence ofpositives X TP rate + (1 - Prevalence ofpositives) X FP rate

and

PVP = Prevalence ofpositives X TP rate / PPR.

Machine-learning algorithms can generaIly be tuned to focus more on sensitivity

and less on specificity, or vice versa. For example, with classification schemes that

predict a continues value in the range from zero to one, such as artificial neural networks,

a classifier with a particular trade-off between sensitivity and specificity can be generated

by setting the cutoff value, or decision criterion, to a decimal number between zero and

one above which cases are predicted as positive (Yang et al., 1999). With the CART

aIgorithm, such a classifier can be generated through adjustment of the misclassifieation

costs followed by the induction of a cost-specifie decision tree (Breiman et al., 1984;

Steinberg and Colla, 1997). Performance analysis in machine leaming should thus

investigate the performance profile of sensitivity and specificity combinations, achievable

with a particular machine-learning algorithm, instead of focussing on one particular trade­

offbetween sensitivity and specificity (Provost et al., 1998).
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The entire range of achievable trade-offs between sensitivity and specificity can be

visualized with "relative operating characteristic" (ROC) curves (Swets, 1988), consisting

of the TP rate plotted against the pp rate (Figure 5.5). The lower left point (0,0)

represents a classifier that assigns each case to the negative class, while the upper right

point (100,100) represents a classifier that considers each case as positive. The upper left

point (0,100) represents perfect classification, while the line y = x represents a random

classification scheme with the probability of classifying a case as positive ranging from 0

to 1. The ROC curve of a particular classification system X is thus expected to be

positioned above the random classification line (Figure 5.5). The closer the curve

approximates the Hnes connecting (0,0) with (0,100) and (100,100), the better the

performance. Each point on the ROC curve represents a classifier with a particular trade­

off between sensitivity and specificity. For example, classifier Xl in Figure 5.5 has 80%

TP rate at 10% FP rate. Given 2.4% prior probability of positive cases, this classifier

would be expected to classify 12% of aIl cases as positive (PPR), while only 16% of those

cases predicted as positive would be true positives (PVP). Classifier X2 has a higher TP

rate (86%), but this is achieved at a much higher pp rate (20%), and would result in 22%

PPR and 10% PVP.
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False positive rate / /

~
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--- Random classification
-- Classification scheme X

0 Classifier X1
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Figure 5.5 Relative operating characteristic (ROC) curve representing random classification and
for classification scheme X, specifie classifiers X1 and X2, and mean true positive rate (TP*) for
scheme X covering the false positive rate range of interest.
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Comparison of the performance of multiple classification schemes with statistical

tools requires the information represented by the ROC curve to be collapsed into a single

response variable. To this end, the area under the entire ROC curve was proposed as a

suitable performance index by Swets (1988) and used in several machine learning studies

(Bradley, 1997; Yang et al., 1999). However, the classification task to remove outlier

lactations involved a highly unbalanced class distribution: only 2.4% of the cases had

been labeled as positive (outlier) by the specialist. The range of FP rate values of the

ROC curve was, therefore, limited to 10% at most. Classifiers with higher FP rates would

lead to unrealistically high PPRs (i.e., predict too many lactations as outlier). Thus,

instead of using the area under the entire ROC curve, a new performance index (TP*) was

developed. This TP* was defined as the mean TP rate for the range of FP rates from 0%

to 10% (Figure 5.5). Perfect classification would be represented by a TP* value of 100%,

while random classification would lead to an expected TP* of 5%.

To generate an ROC curve for a particular combination of data preprocessing and

algorithm configuration, a series of ten decision trees was generated using ten different

values for the parameter of CART specifying the cost of false positives (ranging from,

e.g., 5 to 120), while the cost of false negatives was kept at 1. The specific

misclassification cost values were chosen to achieve ten classifiers covering the entire

range of sensitivity and specificity trade-offs. For the different levels of the prior

probability of outlier lactations parameter, different ranges of misclassification cost

values were used to adjust for the effect of the prior class probability on the sensitivity

and specificity trade-off. However, for a particular combination of data preprocessing and

algorithm configuration, the same ten misclassification cost values were used for each of

the ten folds of the cross validation. The ten misclassification cost levels combined with

ten-fold cross validation resulted in 100 pairs of FP rate and TP rate values for each

combination of data preprocessing and algorithm configuration. For each fold, an ROC

curve was generated through interpolation between the FP rate and TP rate data points

associated with the increasing misclassification costs. An average ROC curve was then

calculated by taking the average of the ten interpolated TP rate values for each FP rate

from 0 to 100% at 1% intervals (Provost et al., 1998). For each of the ten ROC curves,

TP* was calculated, resulting in ten independent estimates of TP*. This allowed for the
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calculation of a standard error associated with the mean TP* estimate and the use of

statistical tests. The ROC curves shown in this paper were aIl calculated using this

averaging approach. An approximate 95% confidence interval of the TP rate of the

average ROC curves was determined as the standard error of the ten interpolated

estimates of the TP rate for a particular level of FP rate multiplied by a t-value of 2.26

(two-sided probability level of 95% and 9 degrees of freedom). A second method to

averaging the 100 data points in ROC space was used to determine the classification

performance of a final classifier generated from the entire data set and will be explained

in the section describing the analysis of the learned knowledge.

5.2.5 Experimental design and analysis ofvariance

Two experiments were carried out to determine the appropriate type of data

preprocessing and algorithm configuration (Figure 5.3). In the first experiment, two types

of assignment of example cases to folds were studied in combination with two types of

treatment of irrelevant attribute values and two types of splitting and pruning. To broaden

the validity of the results of the experiment, the eight combinations of data preprocessing

and algorithm configuration were repeated for two levels of the parameter for minimum

size of child nodes. The parameter for the prior probability of outlier lactations was set to

the observed probability in the data set (2.4%), which was considered as default. Thus,

the first experiment involved a total of 16 distinct combinations of data preprocessing and

algorithm configuration.

After deciding on the appropriate type of data preprocessing and configuration of

the splitting and pruning parameter, a second experiment was designed to study the

effects of seven configurations of the minimum child size parameter (1 - being the default

- through 7) in combination with four configurations of the prior probability of outlier

lactations parameter (2.4%, 1.2%, 0.6%, and 0.3%). Based on the results of the first

experiment, data preprocessing was fixed at assigning herds to folds and special-valued

irrelevant attribute values, and SymGini was chosen as the splitting and pruning criterion.

Thus, the second experiment involved a total of 28 distinct combinations of algorithm

configuration.

For both experiments, analysis of variance (Steel and Torrie, 1980; Cohen, 1995)

was used to assess whether observed differences of TP* among the types of data
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preprocessing and algorithm configuration were likely to hold for new data and not

achieved by chance. The analysis of variance (ANDVA) procedure allows one to analyze

multiple factors of interest simultaneously and investigate the interactions between them.

In addition, it is able to account for variability in the results due to other known factors

such as the folds in the experiments described here. An important assumption associated

with the use of ANDVA is that the observations for each combination of factors being

studied are independent of each other (Steel and Torrie, 1980; Cohen, 1995). With ten­

fold cross validation this requirement is met since the ten test sets are mutually exclusive:

each example case is used only once for testing. However, with ten-fold cross-validation,

the ten training sets are slightly different from each other since each pair of training data

differs by 1 in 9 (or Il %) of the data. The ten observed performance values on the test

sets are thus estimates of the performance of ten different classification schemes,

generated from different training sets. Each of these training sets contains 90% of the

available data, while the objective is to estimate the performance of classifiers, generated

from the entire data set. In the agricultural domain this would be analogous to using the

results of fertilizer trials on ten related varieties of corn, grown at ten randomly selected

locations in a region (representing the test sets), to determine the optimum amounts of

fertilizer to use on a new, related, variety of corn. In that situation, the assumption is

made that the optimum level of fertilizer, determined for the ten tested varieties, will also

hold for the new variety. Similarly, with ANDVA on ten-fold cross-validation data, the

assumption is made that the detected differences in classification performance,

determined with classifiers generated from the ten different training sets, will also hold

for classifiers trained on the entire data set. This assumption was considered reasonable

since each training set consists of 90% of the entire data set.

In this study, ANDVA was performed with the Mixed procedure of SAS for

Windows version 8 (SAS Institute Inc., Cary, NC). The observations for TP* in the first

experiment were described by the following mode!:

TP*ijkim = f.l + FAi + Fa/di} + IAk + SPi + MCm+ interactions among fixed effects + eijkim

where TP* =dependent variable, J.! =overall mean, FAi =fixed effect of fold assignment

(i =cases or herds), Foldij =random effect of fold within fold assignment level i (j =1 to
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10), IAk =fixed effect of treatment of irrelevant attribute values (k =unknown or special),

SPI =fixed effect of splitting and pruning criterion (1 =Gini or SymGini), MCm =fixed

effect of minimum size of child nodes (m = 1 or 5), and e =random residual term. The

model for the second experiment was as follows:

where MC j =fixed effect of minimum size of child nodes (i =1 to 7), PPj =fixed effect of

parameter for prior probability of positive cases (j = 2.4%, 1.2%, 0.6%, or 0.3%), and

Foldk =random effect of fold (k = 1 to 10). Within each level of assignment of cases to

folds, each combination of the other factors of interest was trained and tested on the same

training and testing sets. The factor treatment of irrelevant attribute values and the three

factors representing the configuration of algorithm parameters were, therefore, considered

as being repeated within the factor fold. A compound symmetry covariance structure was

used to account for the covariance among the repeated observations within each fold

(Littell et al., 1996).

5.2.6 Analysis ofthe learned knowledge

In addition to the numerical evaluation of the performance, a qualitative analysis of

the leamed knowledge was performed. A series of three final decision trees for

implementation in a KBS was induced from the entire data set using the appropriate type

of data preprocessing and algorithm configuration as determined in the two experiments

(Figure 5.3). Each decision tree was induced with a different setting for the

misclassification cost of positive cases parameter, allowing end-users of the KBS to

choose from three specifie trade-offs between sensitivity and specificity. These three

decision trees were considered as representing a low, medium, and high filtering intensity

for the removal of outlier lactations. A decision tree, induced with a relatively low setting

for the cost of misclassifying positive cases, was expected to filter out relatively few

cases (1ow PPR), while a high misclassification cost was associated with a high filtering

intensity (high PPR).

To determine the classification performance of these decision trees, induced from

the entire data set, it was necessary to get an estimate of the FP rate and TP rate,
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associated with each setting of the misclassification cost of positive cases parameter.

Thus, a second approach to averaging the classification results of ten-fold cross validation

was used for the chosen type of data preprocessing and algorithm configuration. This

involved averaging the ten FP and TP rate pairs associated with each level of

misclassification costs, resulting in ten average data points in ROC space, which were

connected to yield a so-called pooled ROC curve (Bradley, 1997).

To verify how closely the classification performance of the three final decision trees

induced from the entire data set resembled the sensitivity versus specificity trade-off

observed with the cross-validated decision trees, the resubstitution FP and TP rates,

determined through testing on the data used for training, were analyzed. In addition, The

three final decision trees were evaluated by the domain specialist to verify the plausibility

of the induced mIes and to allow for manual adjustment of the decision at each node. To

support this plausibility analysis, the single decision nodes of the final trees and, in some

cases, pairs of decision nodes, were evaluated as small pieces of knowledge and tested for

classification performance against the entire data set. Decision nodes performing poorly

in this test may be the result of peculiarities in the training data, in which case they would

not hold on new data. These decision nodes, which may be considered as counter­

intuitive and unacceptable (pazzani, 2000), were marked as suspicious and discussed in

detail with the domain specialist.
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5.3 Results

5.3.1 Experiment 1

Table 5.2 Iists the average performance index for each Ievei of the three factors of

interest in the first experiment. Assigning herds to foids showed, on average, a 1.6%

Iower estimate of TP*, the mean TP rate for the range of FP rates from 0% to 10%, than

assigning cases to foids.

Table 5.3 Mean of performance index TP* (%) for each of the two levels of the four factors studied
in experiment 1.

Factor of interest
Description Mean TP* Description Mean TP* Difference TP*

levell levell level2 level2 levell and 2
Assignment to folds Case 59.4 Herd 57.7 -1.6 ns

Irrelevant attribute values Unknown 57.0 Special 60.2 3.2 P=O.054

Splitting and pruning criterion Gini 55.1 SymGini 62.1 7.0 •••

Minimum size of child nodes 1 57.5 5 59.6 2.1 ns

Table 5.3 lists the mean and standard error of TP* for each of the 16 different

combinations of data preprocessing and aigorithm configuration invoived in the first

experiment. Of the eight comparisons between assigning herds and assigning cases to

foIds, three comparisons actually showed a higher estimate of TP* for assigning herds to

foids. Analysis of variance indicated that the observed difference of TP* between

assigning herds and cases to foids was not statistically significant (Table 5.2). Figure 5.6

shows the average ROC curves for the four combinations of data preprocessing for the

Gini splitting and pruning criterion and the minimum size of child nodes set to 1. From

0% to 4% FP rate, assigning herds and assigning cases to foids resuited in similar TP

rates. Between 5% and 10% FP rate, the difference between the two Ieveis varied from

Table 5.2 Performance index TP* for each combination of the four factors studied in experiment 1.

Minimum size of child nodes
Splitting and
pruning
criterion

Gini
Gini

SymGini
SymGini

Treatment of
irrelevant
attribute values

Unknown
Special

Unknown
Special

1
Assignment to folds

Case level Herd level
(%) (s.e.) (%) (s.e.)

55.4 (4.8) 54.6 (5.1)
57.7 (4.4) 53.8 (5.6)

56.3 (6.9) 57.9 (4.5)
65.3 (5.6) 59.0 (5.3)

5
Assignment to folds

Case level Herd level
(%) (s.e.) (%) (s.e.)

53.8 (5.3) 52.8 (5.7)
57.9 (4.0) 54.4 (5.7)

62.1 (5.2) 62.7 (5.7)
66.4 (5.4) 66.7 (5.8)
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Figure 5.6 Average relative operating characteristic (ROC) curves for two levels of assignment of
cases to folds (FA) combined with two levels of treatment of irrelevant attribute values (lA), using
the Gini splitting and pruning criterion and minimum number of child nodes equal to one.

6% TP rate in favour of assigning herds to folds to 10% TP rate in favour of assigning

cases to folds. As indicated with the error bars, representing approximate 95% confidence

intervals for the TP rate of the combination of assignment of herds to folds and special

valued irrelevant attribute values, the TP rate values showed a large variability from one

fold to another. Analysis of the ROC curves for the other 12 combinations of data

preprocessing and algorithm configuration revealed similar patterns regarding the

difference between assigning herds or cases to folds. Although assigning herds to folds

caused a much larger variability in the number of cases and class distribution among folds

than assigning cases to folds, this did not result in a large increase in the variability of

performance estimates among folds (Table 5.3). Thus, assigning herds to folds was used

in the second experiment to ensure that the calculated performance indices were truly

estimates of the expected performance on data from new dairy herds.

Use of a special value to deal with irrelevant attribute values showed, on average, a

3.2% higher estimate of TP* than considering these values as unknown (Table 5.2).

However, detailed analysis of the eight comparisons between the two levels of the

treatment of irrelevant attribute values showed that in one comparison, using a special

value for irrelevant attribute values actually resulted in a lower estimate of TP* (Table

5.3). In addition, the standard errors for the TP* estimates in Table 5.3 are large and

85



exceed the mean difference between the two levels of treating irrelevant attribute values.

Thus, one may conclude that it is not possible to indicate that one type of treating

irrelevant attribute values leads to a better performance than another. However, the

variability in the results rnay to a large extent be attributable to the effect of fold. Figure

5.7 shows how the TP* performance varies with fold for the two levels of the treatrnent of

irrelevant attribute values, cornbined with the two levels of splitting and pruning criterion

and using assignrnent of herds to folds and minimum size of child nodes equal to 1. For

sorne of the folds (e.g., 3 and 8) it was apparently more difficult to classify the test cases

with the classifier generated frorn the training set than for other folds. Analysis of

variance, taking into account the variability due to foIds, indicated a P-value equal to

0.054 for the difference between the two levels of treatment of irrelevant attribute values.

The treatment of irrelevant attribute values with special values was thus considered to

irnprove the classification performance significantly.
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Figure 5.7 Performance index TP* plotted against fold for two levels of treatment of irrelevant
attribute values (lA) combined with two levels of splitting and pruning criterion (SP), using herd
level assignment to tolds and minimum size child nodes equal to one.
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The SymGini splitting and pruning criterion showed, on average, a 7.0% higher

estimate of TP* than the Gini criterion (Table 5.2). The SymGini criterion aIso

outperformed Gini in aIl of the comparisons shown in Table 5.3. Although the ANOVA

indicated a statisticaIly significant difference between the two types of splitting and

pruning (P<O.OOl), a substantial interaction effect between the configuration of the

parameters for splitting and pruning and minimum size of child nodes was detected

(P=0.094). The results in Table 5.3 indicate that this interaction effect was due to a

different response to changing the minimum size of child nodes from 1 to 5 for each level

of the splitting and pruning criterion. SpecificaIly, changing the minimum size of child

nodes from 1 to 5 did not increase TP* in combination with the Gini criterion, but caused

a substantial improvement with SymGini. Thus, SymGini splitting and pruning criterion

was considered to substantially improve the classification performance compared to the

default Gini criterion.

5.3.2 Experiment 2

Table 5.4 lists the mean of TP* for the 28 combinations of algorithm configuration

involved in the second experiment. The mean performance for each level of the minimum

size of child nodes parameter showed an optimum at level 6, which was 6.9% higher than

the mean performance of the default level 1. Analysis of variance indicated statisticaIly

significant differences (P<O.Ol) among the levels of the minimum size of child nodes

parameter. In pair-wise comparisons, each of the minimum size of child nodes

configurations from 4 to 7 was found to be significantly different (P<O.Ol) from default

level1.

Table 5.4 Mean of performance index TP* (%) for each combination of the two factors studied in
experiment 2.

Prior Minimum size of child nodes Mean of prior
probability 1 2 3 4 5 6 7 probability

2.4 % 59.0 60.9 59.7 63.6 66.7 65.9 65.3 63.0
1.2 % 63.0 63.5 62.7 67.4 67.5 68.4 64.6 65.3
0.6 % 60.2 63.5 64.0 67.1 68.0 68.4 67.7 65.6
0.3 % 59.0 61.4 62.1 65.6 65.6 66.2 65.9 63.7

Mean MCt 60.3 62.3 ns 62.1 ns 65.9" 67.0 ••• 67.2 ••• 65.9" 64.4

t Mean MC: mean for each level of minimum size child nodes and indication of statistical significance of
deviation from mean TP* at minimum child nodes level one.
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Figure 5.8 shows the average ROC curves for four different algorithm

configurations using assignment of herds to folds and special values to treat irrelevant

attribute values. These include the default algorithm configuration (Gini splitting and

pruning criterion, minimum size of child nodes equal to 1, and 2.4% prior probability of

outlier lactations) and three subsequent levels of parameter tuning. Error bars represent an

approximate 95% confidence interval for the combination of SymGini splitting and

pruning criterion, minimum size of child nodes equal to 6, and 0.6% prior probability of

outlier lactations. Changing the minimum size of child nodes from 1 to 6 resulted, on

average, in a substantial improvement in the TP rate between 4 and 10% FP rate (Figure

5.8). Thus, this factor was considered to significantly improve the classification

performance.
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Figure 5.8 Average relative operating characteristic (ROC) curves for four algorithm configurations
involving splitting and pruning criterion (SP), minimum size of child nodes (MC), and prior
probability of outlier lactations (PP), using assignment of herds to folds and special values to treat
irrelevant attribute values.

Decreasing the prior probability of outlier lactations parameter from the default

2.4% to 0.6% improved TP*, on average, by 2.6%. (Table 5.4). However, ANOVA

indicated that the differences in performance among the four levels of the prior

probability of outlier lactations parameter were not statistically significant. Detailed

analysis of the average ROC curves revealed that decreasing the prior probability of
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outlier lactations parameter from the default 2.4 to 0.6% did not change, on average, the

performance for FP rate values below 9%, but it was associated with a large increase in

TP rate for 9 to 10% FP rate (Figure 5.8). The ANOVA was therefore rerun using an

adjusted TP*, calculated as the mean TP rate of the ROC curves from 9 to 10% FP rate,

and was limited to the levels of minimum size of child nodes that were significantly

different from the default (4 through 7). For these constrained conditions, ANOVA

indicated statistieally signifieant differences among the four levels of prior probability of

outlier lactations (P<O.Ol). In pair-wise comparisons, prior probabilities 1.2% and 0.6%

were found to be signifieantly different (P<O.Ol) from default 2.4% prior probability.

Thus, changing the prior probability of outlier lactations from 2.4% to 0.6% was also

considered as a significant improvement on classification performance.

5.3.3 Final decision trees

Based on the results of the two experiments, the final tuned algorithm configuration

consisted of the SymGini splitting and pruning criterion, a minimum size of child nodes

equal to 6, and a 0.6% prior probability of outlier lactations. With this algorithm

configuration, a series of three final decision trees was induced from the entire data set

using three different levels of the misclassification costs of positive cases (20, 40, and

680). Table 5.5 shows for these decision trees the pooled performance estimates

determined through cross validation. The specifie misclassifieation cost settings were

chosen to achieve PPR values of approximately one, two, and four times the observed

prevalence of outlier lactations for, respectively, the low, medium, and high filtering

intensity trees (Table 5.5). For the low filtering intensity, a decision tree with a PPR

below the prevalence of outlier lactations was not used since this would have resulted in

an unreasonably low TP rate. The pooled estimates of the FP rate for the low, medium,

Table 5.5 Cross-validation performance of decision trees associated with a low, medium, and high
filtering intensity.

Filtering
intensity

Low
Medium
High

Relative cost of
fa1se negatives

20
40

680

Fa1se positive
rate

(%) (s.e.)

1.5 (0.5)
3.5 (0.7)
8.6 (1.5)

True positive
rate

(%) (s.e.)

51.7 (8.8)
68.3 (8.0)
91.7 (4.5)

Positive
prediction rate

(%)
2.7
5.0

10.5

Predictive value
positive

(%)
45.1
32.5
20.9
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and high filtering intensity trees induced from the entire data set were respectively 1.5%,

3.5%, and 8.6%, while the pooled estimates of the TP rate were 51.7%, 68.3%, and 91.7%

(Table 5.5). Given a 2.4% prior probability of outlier lactations, the low filtering intensity

decision tree was expected to remove 2.7% of the lactations (PPR) with 45.1 % of the

removed lactations being true positive cases (PVP), while at the high filtering intensity

setting, 10.5% of the lactations would be removed with 20.9% of those being true

positives.

Table 5.6 shows the size and resubstitution performance for the decision trees

induced during the cross validation and for the trees generated from the entire data set.

For the low and medium filtering intensity levels, the number of leaf nodes and the

resubstitution performance of the entire data set trees closely resembled the average

performance of the cross-validation trees. However, for the high filtering intensity, the

entire data set tree, induced by the CART algorithm, showed a much lower resubstitution

pp rate and TP rate, respectively 4.8% and 94.1 %, than the average resubstitution pp rate

and TP rate of the cross-validation trees, which were 7.8% and 99.4%. This unexpected

result can be explained by the splitting and pruning approach that CART uses, involving

an internaI ten-fold cross validation to determine the optimum size of the decision tree.

For the entire data set tree this resulted in a smaller optimum tree (7 nodes) than observed

with the cross validation (8.5 nodes on average). Therefore, a slightly larger decision tree

with ten leaf nodes was chosen from the series of decision trees induced by the CART

algorithm for the misclassification cost of 680 (instead of using the optimum tree with

seven leaf nodes). The resubstitution performance of this decision tree with ten leaf nodes

showed a FP rate and TP rate of 6.4% and 100%, which was similar to the performance of

the cross-validation trees (Table 5.6).

Table 5.6 Size and resubstitution performance of decision trees generated during cross-validation
and of optimal and size-adjusted trees induced from the entire data set.

Cross-validation Entire data set

Optimum size of tree Adjusted size of tree

Leaf nodes FP rate TP rate Leaf nodes FP rate TP rate
(#) (%) (%) (#) (%) (%)

TP rate
(%) (s.e.)

FP rate
(%) (s.e.)

Leafnodes
(#) (s.e.)

Filtering
--------------~-------_----=:._------intensity

Low
Medium
High

4.2 (0.2)
6.3 (004)
8.5 (0.2)

1.5 (0.1)
3.3 (0.3)
7.8 (0.6)

68.3 (1.7)
88.5 (1.1)
9904 (004)

4 1.6 67.6
6 2.7 85.3
7 4.8 94.1 10 604 100.0
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Figure 5.9 shows the final decision tree for the medium filtering intensity. The

attribute "average SCC" was considered to be most important by the decision-tree

induction algorithm. This attribute was chosen at the root node and again at the fourth

decision node. The other attributes were "any test with CAR of code abortion", "average

relative deviation from group-average lactation curve", and "regression parameter b". The

three decision trees showed considerable overlap, with the first three nodes being exactly

the same for all trees. Additional attributes appearing in the high filtering intensity

decision tree included "regression parameter a", "percentage of tests with any CAR

code", and "number of tests in lactation with a high protein to fat ratio".

AvgRelDevGrpAvgCurve

:::; -33.5 %

= False

AvgSCC

:::; 2335 103 cells

:::; -0.058

Figure 5.9 Decision tree induced from the entire data set for a medium filtering intensity.
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The plausibility of the induced decision trees was discussed with the domain

specialist, who considered the trees as being easy to understand. Table 5.7 lists aIl the

different nodes of the three decision trees. The performance of the condition predicting

outlier lactations at each node was tested within the context of decision tree (i.e., on the

example cases of the data set that ended up at that node) and over the entire data set.

Table 5.7 Classification performance of individual decision nodes tested within the context of the
decision tree and over the entire data set.

Tested within decision tree Tested over entire
context data set

Decision Condition at decision node or nodes
Predicted PVpt Predicted PVPnode predicting outlier lactation
positives positives

(#) (%) (#) (%)

1 AvgSCC> 2335 103 cens/ml 8 87.5 8 87.5
2 CARcode_Abortion = True 7 85.7 7 85.7
3 AvgRelDevGrpAvgCurve S; -33.5 % 30 33.3 38 44.7
4 PctTestsAnyCARcode> 75.0 % 6 16.7 14 35.7
5 AvgSCC> 1119.5 103 cens/ml 39 15.4 52 30.8
6 AvgSCC > 940 103 cens/ml 18 5.6 71 23.9
7 PctTestsAnyCARcode > 31.5 % 42 2.4 68 19.1
8 NumTestsHighProteinToFatRatio > 0 6 16.7 294 2.7

7 and 8
PctTestsAnyCARcode > 31.5 % and

10 30.0NumTestsHighProteinToFatRatio > 0
9a RegrParam_b > -0.058 22 27.3 816 3.4
9b SlopeAfterPeak> -38.5 g/day 13 30.8 512 3.7

5 and 9b
AvgSCC> 1119.5 103 cens/ml and

18 33.3SlopeAfterPeak> -38.5 g/day
lOa RegrParam_a S; 18.0 9 22.2 11 27.3

lOb
RegrParam_a S; 18.0 and

9 22.2 10 30.0
RegrParam b > 0

t PVP: predictive value positive.

Decision node 8 in Table 5.7 showed a very high number of cases predicted as

positive (294) and a very low PVP (2.7%) when tested against the entire data set.

However, in the decision tree, node 8 is preceded by node 7 and the combination of the

two conditions to predict outlier lactation (nodes 7 and 8) showed reasonable performance

when tested over the entire data set. Decision node 9a, "regression parameter b", showed

a very low PVP (3.4%) when tested against the entire data set and was thought to cause

poor performance on new data. This decision node was thus replaced with a competitor

split provided by the CART algorithm. The alternative node 9b, "slope of the lactation

curve after the peak", reduced the detection of actual positive cases from 6 to 4 in the
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context of the decision tree, but improved the performance when tested over the entire

data set, especially in combination with the preceding node in the decision tree (nodes 5

and 9b). The decision node lOa "regression parameter a ~ 18" showed reasonable

performance over the entire data set. However, this attribute represented the intercept of

the regression equation used to model lactation curves and was expected to lead to too

many false positives when applied to low producing dairy herds. Thus, based on domain

knowledge regarding the shape of lactation curves, modeled with the regression equation,

a second condition, "regression parameter b > 0", was added. The resulting node lOb did

not change the classification within the decision tree and improved the PVP over the

entire data set slightly (Table 5.7). The two adjustments to the entire data set decision

trees did not change the resubstitution performance of the low and high filtering intensity

trees, but resulted in slightly lower resubstitution FP rate (from 2.7 to 2.2%) and TP rate

(from 85.3 to 79.4%) of the medium level tree. However, these adjustments were

expected to improve the classification performance on new data. The three final,

modified, decision trees were considered as plausible by the domain specialist and were

incorporated into the KBS for group-average lactation curve analysis.

5.4 Discussion

The example cases used in this study were acquired with a case-acquisition tool ­

the CADSS - created in consultation with two domain specialists specifically for the

purpose of KBS development (Pietersma et al., 2001a). The data set for machine learning

was, therefore, expected to be of high quality, with few unknown attribute values and a

low level of mislabeling. The difficult and time-consuming process of data cleansing,

generally required when machine learning is applied in the context of knowledge

discovery from large existing data bases, could therefore be omitted. However,

considerable time was spent on the creation of potentially predictive attributes, the

analysis and treatment of unknown and irrelevant attribute values, and the extraction of

separate training and testing data sets.

Relative operating characteristic curves and the performance index TP* were used

to analyze and compare the performance of various classification schemes generated

through machine learning. The ROC approach was found to be useful into visualizing the
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trade-off between sensitivity and specificity, achieved with these classification schemes.

However, two different approaches to averaging the FP rate and TP rate data from the

cross-validation experiments were required. Generating ten separate ROC curves,

followed by averaging, allowed for the use of statistical tools to analyze the results.

Averaging the FP rate and TP rate for each misclassification cost level was used to

estimate the performance of the final decision trees induced from the entire data set.

Performance index TP*, the mean TP rate of the ROC curve for a limited range of

pp rate values, was developed to enable comparison of the performance of multiple

classification schemes with statistical tools. For classification tasks involving a highly

unbalanced class distribution, this approach may be more appropriate than using the "area

under the ROC curve" performance index. However, with TP*, domain expertise is

required to target the performance analysis to the region in ROC space with FP rate

values that are considered reasonable.

Analysis of variance was found to be a useful technique to support the analysis of

the classification performance achieved with the experiments. Although this technique

has only sporadically been used with machine-Ieaming experiments (see e.g. Bradley,

1997), it offers several advantages to the common approach (see e.g. Mitchell et al., 1996;

Kubat et al., 1998; Salehi et al., 2000) of limiting the performance analysis to

comparisons of the mean results of multiple runs. Analysis of variance is able to account

for the variability in performance due to the folds in k-fold cross validation experiments.

It can also separate the main effects of the factors of interest from the interactions among

these factors and can help to discem whether differences among classification schemes

are likely to hold with new data or were just due to chance. However, ANOVA adds

complexity to the analysis process and the results need to be expressed in a single

performance index such as accuracy, area under the ROC curve, or the mean TP rate for

the pp rate of interest. It should be noted that the combination of ten-fold cross validation

and ANOVArnay not be appropriate for studies where, instead of a specifie classifier, as

in this paper, a rnachine-Ieaming system is irnplemented in the field to generate a

classifier from new example data. In experiments to estimate the performance of such

systems, both the test sets and the training sets used to generate the classifier need to be

independent of each other. This is clearly violated with ten-fold cross validation, in which
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each pair of training sets has 89% of the data in common, leading to an elevated

probability of incorrectly detecting differences among the tested machine-Ieaming

systems (Dietterich, 1998).

Contrary to the results of a study by Kubat et al. (1998), the expected positive bias

in classification performance estimates associated with randomly assigning individual

example cases instead of batches of cases to the folds in ten-fold cross validation did not

prove to be significant. Thus, the prediction of example cases of a particular herd did not

substantially improve when example cases of that herd were included in the data set used

to induce the classifier. This suggests that in this study each of the different types of

outlier and non-outlier cases appeared in multiple herds instead of being limited to a

single herd.

The treatment of irrelevant attribute values with a special value to indicate a "not

applicable" situation improved the performance over treating these values as unknown, as

suggested by Witten and Frank (2000). The decision tree induction algorithm was thus

able to make use of the additional information indicating whether a missing attribute

value was unknown or irrelevant.

Tuning of the parameter configuration of the decision-tree induction algorithm

greatly improved the classification performance compared to the default configuration. A

large performance improvement was achieved by changing the default Gini splitting and

pruning criterion to SymGini and the prior probability of positive cases to a quarter of the

frequency observed for the entire data set. The algorithm thus seemed to benefit from

focussing during tree growth on correctly classifying negative cases to reduce the pp rate

and during pruning on correctly classifying positive cases to increase the TP rate. Further

improvement was achieved by changing the minimum number of cases in a child node

from the default 1 to 6, preventing the creation of very small nodes that were unlikely to

be predictive on independent test data.

The final decision trees showed fairly good classification performance. For

example, the decision tree associated with a medium filtering intensity had an expected

sensitivity of 68% at 3.5% FP rate. Given the observed 2.4% prevalence of outliers, this

classifier was expected to remove 5.0% of the lactations in a parity group with 33% of the

removed lactations being true positive cases. However, the repeated ten-fold cross
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validation mns for parameter tuning may have led to an overspecialization of the

classifiers for the entire available data set, resulting in a positively-biased estimate of the

performance on new data (Henery, 1994; Witten and Frank, 2000). For large data sets,

this so-called over-tuning can be avoided by keeping a sub-set of the data apart for final

testing (Henery, 1994). For small data sets and applications where an unbiased

performance estimate is critical (e.g., in the medical domain), the computationally

expensive approach of ten-fold cross validation within ten-fold cross validation (Witten

and Frank, 2000) might be appropriate.

Although the classification performance achieved in this research seems quite

reasonable, further improvement may be possible. First of aIl, the quality of the existing

data set may be improved by allowing the domain specialist to reevaluate the example

cases misclassified by the decision trees. This may reduce the number of mislabeled cases

and narrow the fuzzy zone around the decision boundary between outlier and non-outlier

lactation curves. Secondly, the acquisition of additional example cases may also improve

the classification performance. To explore this potential, so-called learning curves

(Cohen, 1995) could be generated by removing a decreasing proportion of the data from

the folds available for training.

In this study, the decision-tree induction approach to machine learning resulted in

relatively small decision trees that were easy to understand by the domain specialist and

allowed for manual adjustment of the decision nodes. This high level of understandability

was considered an important advantage in the context of machine leaming for knowledge

acquisition, allowing the domain specialist involved to verify the plausibility of the

results of learning and making it possible for end-users of the system to view a

justification of the decisions made.

In a practical application of the removal of outlier lactations, the trade-off between

sensitivity and specificity may depend on factors such as number of lactations available

for the parity group being analyzed, prevalence of outliers, and end-user preference. The

machine-Iearning approach to knowledge acquisition allows for the generation of a series

of classifiers with increasing importance of correctly classifying positive cases from the

single data set classified by the domain specialist. Implementation of a series of classifiers

with increasing filtering intensity in the final KBS for group-average lactation curve
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analysis aIlows the end-users to move along the ROC curve and use the classifier with the

desired sensitivity versus specificity trade-off. In addition, the end-user still has the ability

to override the classifications made by a decision tree and exclude additionallactations or

reconsider, and even undelete, sorne of those removed automatically.

5.5 Conclusions

This research suggests that automatically induced decision trees are quite good at

mimicking the removal of outlier lactations as performed by a domain specialist.

However, factors such as data preprocessing and algorithm configuration had a significant

effect on the achieved performance. This research aIso explored the use of ten-fold cross

validation to estimate the performance of classifiers generated from the labeled data

available, visualization of the classification performance through ROC curves, assessment

of differences of the mean true positive rate using analysis of variance, and evaIuation of

the plausibility of the induced decision trees via analysis of the performance of individual

decision nodes. These methods were found to be useful for the development of a

knowledge-based module to filter milk-recording data for group-average lactation curve

analysis and may aIso be of use in research involving the application of machine leaming

in general.

5.6 Appendix A: Description of the CART algorithm

The CART (Classification And Regression Trees) aIgorithm performs binary

recursive partitioning to automatically induce a decision or a regression tree from training

data. Starting at the root of the decision tree, the algorithm considers each attribute and its

corresponding attribute values as a potential mIe for splitting the data into two subsets or

child nodes, and selects the splitting mIe leading to the largest reduction in heterogeneity

or impurity of the observed classes. This process is repeated for each subsequent node in

the decision tree. To quantify impurity, CART uses by default the Gini index i(t):

i(t) = 1-LpU 1t)2
j

where pUlt) is the probability of class j in node t. These probabilities are estimated from
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the observed relative frequencies of each class in the node, corrected for user-specified

prior class probabilities and misclassification costs. The Gini index equals zero if the

node consists of cases of only one class and has a maximum value if all classes are

equally distributed. The impurity of a candidate split is calculated as the probability­

weighted average of the impurity of the two child nodes. The algorithm chooses the

splitting rule leading to the least impurity and uses that rule to assign the training cases

associated with the parent node to the two child nodes. Training cases with missing

values for the chosen splitting attribute are assigned to the child nodes using so-called

surrogate splitting rules, which are selected to simulate the assignment to child nodes by

the main splitting rule. The algorithm continues splitting nodes until aIl cases associated

with the node have the same class or until a minimum number of cases in the parent or

child node have been reached. The resulting maximum tree is then pruned back to avoid

overspecialization to the training data and subsequent poor performance on independent

test data. The optimum tree size is determined, by default, through stratified ten-fold cross

validation. For each fold, the maximum tree is pruned back in a stepwise manner, leading

to a series of trees with an associated size and average misclassification cost on the test

set. Finally, a maximum tree is induced from the entire training data and pruned back to

the size associated with the minimum expected misclassification cost as determined with

the cross validation. With CART, classification of new cases involves dropping each case

down the tree until a leaf node is reached, at which point the class with the highest

relative frequency at that leaf node, corrected for misclassification costs and prior class

probabilities, is assigned.

The CART algorithm includes a large number of user controllable parameters to

customÎze the learning process. For example, the default Gini splitting and pruning

criterion can be replaced with the so-called "SymGini" approach, which uses, unlike Gini,

symmetric (equal) misclassification costs and user-specified priors during tree growth and

employs, like Gini, user-specified misclassification costs and user-specified priors for

pruning. The CART algorithm is described in detail by Breiman et al. (1984) and

Steinberg and Colla (1997).
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Preface to Chapter 6

The previous chapter dealt with challenges related to the appropriate preprocessing

of example cases, configuration of the machine-Ieaming algorithm, and analysis of the

results of leaming. Classifiers were generated to automatically remove outlier lactations

of individual cows. Additional difficulties with the application of machine learning

include the choice of an appropriate machine-Ieaming technique and the development of

potentially predictive attributes. Decision-tree induction has shown good classification

performance in many domains and the generated decision trees tend to be much easier to

understand than knowledge representations of other approaches to machine leaming,

which is an important advantage in the context of knowledge acquisition. However, the

naïve-Bayes classifier, a probability-based approach to machine leaming, may lead to

better classification performance. In the previous chapter, considerable effort was

required for the development of potentially predictive attributes to support the machine­

leaming process. However, the effect of availability of such attributes on the

classification performance achieved with machine leaming was not investigated.

In this chapter, machine learning is used to generate classifiers to automatically

remove outlier tests within lactations of individual cows. This is complementary to the

task of filtering entire lactations, which was dealt with in the previous chapter. Both tasks

are part of the "removal of outliers" module of the case-acquisition and decision-support

system described in Chapter 4. This chapter explores the effect of the machine-Ieaming

algorithm, decision-tree induction or naïve Bayes, combined with the effect of availability

of potentiallY predictive attributes on the achieved classification performance. In addition,

the knowledge representations of both the decision-tree induction and the naïve-Bayes

approach are evaluated.

This chapter has been prepared for submission to the journal Transactions of the

ASAE (Pietersma, D., R. Lacroix, D. Lefebvre, and K. M. Wade. Machine-Ieaming

assisted knowledge acquisition to filter lactation curve data).
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6 Machine-Iearning assisted knowledge acquisition to

filter lactation curve data

Abstract

Machine leaming was employed to develop knowledge-based modules to filter test­

day data of individual cows for group-average lactation-curve analysis. The importance of

deriving predictive attributes and choice of machine-Ieaming technique was explored.

Data consisted of 1080 milk yield tests of which 108 had been classified as outliers by a

dairy nutrition specialist and 972 cases had been classified as non-outliers. Two different

approaches to machine leaming were applied to these data: decision-tree induction and

naïve-Bayes classification. Performance of the classifiers was estimated through ten-fold

cross-validation while relative operating characteristic curves were used to visualize the

achieved trade-off between sensitivity and specificity. Use of an initial set of derived

attributes significantlY improved the performance compared to limiting attributes to those

available to the domain specialist. However, adding even more complex attributes did not

necessarily improve the classification performance. Overall, the naïve-Bayes approach

showed significantlY better performance than decision-tree induction. For each machine­

leaming approach, three final classifiers, associated with a low, medium, and high

filtering intensity, were generated from the entire data set. The expected true positive rate

varied from 41 % to 78% for false positive rates between 1.1% and 4.6%. However, due to

the low prevalence of oUtlier tests, this performance was associated with a large number

of false positives. The domain specialist considered the final classifiers of both

approaches as plausible, but found the decision trees easier to understand than the naïve­

Bayes classifiers. Machine leaming was considered to be a promising approach to assist

knowledge acquisition.
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6.1 Introduction

Agricultural producers have access to increasing amounts of data, which may

support on-farm decision making - a process that is becoming increasingly complex.

However, exposure to too much data can easily lead to information overload and, thus,

improper interpretations. Knowledge-based systems (KBS) have been identified as

potentially useful tools to support producers and their advisors to interpret the available

data properly and, possibly, provide them with expert recommendations (Doluschitz,

1990; Plant and Stone, 1991; Spahr et al., 1988). In the domain of dairy production alone,

several such systems have been created (Allore et al., 1995; Grinspan et al., 1994; Pellerin

et al., 1994). Traditionally, KBS have been developed based on interviews with domain

experts, sometimes supplemented with other sources of knowledge such as

documentation (Dhar and Stein, 1997; Durkin, 1994). However, the acquisition of

knowledge through interviews has proven to be time-consuming and difficult.

Altematively, acquisition of knowledge can be partially automated with machine leaming

(Dhar and Stein, 1997; Langley and Simon, 1995). With this approach, a domain expert

classifies example cases of the problem at hand. This is followed by the application of a

machine-Ieaming technique, such as decision-tree induction, to leam how to classify new

cases from these examples. Machine leaming may speed up the knowledge-acquisition

process (Dhar and Stein, 1997) and lead to a potentially more accurate representation of

the specialist's performance (Michalski and Chilausky, 1980; Ben-David and Mandel,

1995). However, a literature search revealed very few cases in agriculture where machine

leaming was used to assist knowledge acquisition. These included the application of mIe

induction to develop an expert system for soybean disease diagnosis (Michalski and

Chilausky, 1980) and the use of decision-tree induction to support the creation of a KBS

for tomato crop management in greenhouses (Mangina et al., 1999).

Although machine leaming seems promising for knowledge acquisition, several

challenges remain, including choice of an appropriate algorithm (Brodley and Smyth,

1997; Verdenius et al., 1997) and determining an effective representation for the data

describing each example case (Langley and Simon, 1995). In the context of using

machine leaming to support knowledge acquisition, decision-tree induction might be

considered as the default approach. Decision trees are very similar to the decision mIes

102



often used in KBS, and initial research into decision-tree induction was partly motivated

by the difficulties associated with knowledge acquisition for KBS development (Michie

et al., 1994). Decision trees tend to be easy to understand (Dhar and Stein, 1997;

McQueen et al., 1995; Kononenko et al., 1998) and the approach has been applied

successfully to many real-world problems (Langley and Simon, 1995). The so-called

naïve-Bayes classifier - a probability-based approach to machine learning - represents an

interesting alternative to decision tree induction, showing in sorne situations substantially

better classification performance (Michie et al., 1994). Although the knowledge

description generated with the naïve-Bayes approach may be more difficult to understand

than decision trees, it still tends to be more transparent than the knowledge

representations associated with other machine-Iearning approaches, such as artificial­

neural networks and instance-based leaming (Kononenko et al., 1998). Apart from the

choice of an appropriate machine-Iearning algorithm, determining an effective

representation for the data has been identified as a critical success factor in the application

of machine-Ieaming techniques to real-world problems (Langley and Simon, 1995). This

involves the construction of attributes with potentially predictive value from the available

data. Deriving predictive attributes may require considerable effort and might, therefore,

benefit from consultation with domain specialists who are often able to provide

suggestions (Langley and Simon, 1995).

A research project was initiated to explore the use of machine leaming to develop a

KBS for the analysis of group-average lactation curves. This problem area involves

comparison of group-average curves with standard curves as weIl as the analysis of

additional explanatory data, with the objective of detecting potential management

deficiencies. In a previous study (Pietersma et al., 2üüla), the overall problem domain

was decomposed into three sub-problems (removal of outlier data, interpretation of

group-average lactation curves, and diagnosis of detected abnormalities). In addition, a

case-acquisition and decision-support system (CADSS) was deve10ped to enable domain

specialists to work with example cases in the analysis of group-average lactation curves

and to capture the resulting classifications (Pietersma et al., 2üüla). The main goal of the

research described in this paper was to develop knowledge-based modules to automate

the removal of outlier tests within lactations of individual cows for group-average
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lactation-curve analysis using machine learning. Specific objectives were 1) to compare

the classification performance achieved with decision-tree induction and naïve-Bayes

classification, 2) to investigate the effect of availability of predictive attributes on the

classification performance, and 3) to evaluate the plausibility of the knowledge

represented by classifiers generated with either machine-Iearning technique.

6.2 Materials and Methods

6.2.1 Data

The removal of outliers was identified as the first step in the analysis of group­

average lactation curves and considered important to avoid biasing the interpretation of

the group-average performance by a few atypical lactations or tests (Pietersma et al.,

2üüla). With the CADSS, lactation curves (belonging to one of three parity groups) of

individual cows could be compared with group-average and standard lactation curves

(Figure 6.1). A user could select a particular test within the lactation curve of an

individual cow to view additional information for that test, including the milk protein to

fat ratio, somatic cell count, and codes indicating conditions affecting records such as

clinical mastitis or estrus. Tests within lactations of individual cows and also entire

lactations could be deleted to exclude them from group-average lactation-curve analysis

(Figure 6.1). Details of the functioning of this CADSS can be found in Pietersrna et al.

(2üüla).

A dairy-nutrition specialist used the CADSS to analyze the lactation curves of

individual cows belonging to 33 Holstein herds enrolled with the Québec dairy herd

analysis service and representing a wide range of rolling herd-average milk-production

levels. With the CADSS the classifications of the specialist were captured resulting in a

data set consisting of 7498 tests within lactations that each consisted of at least two tests.

Milk yield tests belonging to lactations that consisted of only a single test were dealt with

as entire lactations in previous research (Pietersma et al., 2üülb) and, thus, excluded from

this study.
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Figure 6.1 Screen capture of the case-acquisition software module used to remove outlier tests
and lactations.

The classification of test-day data of individual cows involved only two classes: a

test could be labeled as an outlier (positive) or as a non-outlier (negative). Of the total

number of tests, 108 (1.4%) were classified by the domain specialist as outliers. To

reduce the computation time required for machine learning, only 972 randomly selected

negative cases were used in addition to the positive cases, leading to a total of 1080 cases

for training and testing (10% positive and 90% negative cases). The final classifiers for

implementation in a KBS were also generated from these 1080 labeled cases.

6.2.2 Creation ofattributes

Using the CADSS, the domain specialist had access to both graphical and numerical

information to classify a test as either an outlier or as a non-outlier. Since a machine­

learning algorithm cannot directly make use of graphical information, specifie features or

attributes describing such information need to be provided. However, the basic set of

attributes representing the raw data used to draw lactation curves may provide only

limited discrimination ability. Thus, the use of derived attributes that are constructed from

the set of basic attributes and describe important aspects of the graphical information was
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expected to greatly help a machine-Iearning algorithm to discem between outlier and non­

outlier cases.

In order to be able to study the importance of derived attributes for machine

learning, three different levels of attribute availability were considered. The first level

consisted of the 35 basic attributes available to the domain specialist using the CADSS.

This basic set involved attributes representing the data used to create the lactation curves,

such as the milk yield and days in milk on a test day for an individual cow, and the

numeric attributes available with the CADSS, such as the somatic cell count on a test day.

Table 6.1 lists the attributes used for machine leaming, with multiple related attributes

shown per row, and indicates the level of attribute availability at which they were used.

The second level included, in addition to the level one, 16 attributes that were derived

from the basic set, such as deviation of the test-day milk yield from the group-average

lactation curve. The construction of these derived attributes focussed on fairly obvious

aspects of the graphical information, such as deviations from the expected performance,

Table 6.1 Listing of attributes used for machine learning with three levels of attribute availability.

Level Attribute description
1 2 3 Days in milk (DIM), milk, percent fat, percent protein, protein to fat ratio, somatic cell count, and

conditions affecting records (CAR) code for the selected, prev., and next test of lactation curve
1 2 3 Sequence number of selected test within lactation, number of tests, and selected test is last test
1 2 3 Parity and Parity group
1 2 3 Persistency for the selected and the next test
1 2 3 Number of tests and standard deviation of group-average lactation curve for stage selected test
1 2 3 Average mature equivalent 3üS-day milk production of the herd
1 2 3 Number of test and lactations in parity group and in herd

2 3 CAR code is unequal to zero for the selected, previous, and next test
2 3 Absolute (abs.) deviation (dev.) slope between selected and previous test from slope std. curve
2 3 Abs. dey. slope between selected and next test from slope standard curve
2 3 Abs. and relative (rel.) dey. test from line between previous and next test
2 3 Abs. and rel. dey. test from regression line through aIl tests in lactation including test
2 3 Abs. and rel. dey. test from regression line through aIl tests in lactation excluding test
2 3 Abs. and rel. dey. test from group average lactation curve
2 3 Dev. of test from group average lactation curve expressed in number of standard deviations
2 3 Abs. and rel. dey. test from standard curve

3 CAR code abortion, milk fever, metritis, or displaced abomasum for selected, prev., and next test
3 CAR code off-feed in early lactation for selected, previous, and next test
3 Abs. and rel. dey. test from prediction previous test and shape standard curve
3 Abs. and rel. dey. test from prediction previous non-outlier test and shape standard curve
3 Abs. and rel. dey. test from prediction linear regression through previous three tests after peak
3 If test is first test, abs. and rel. dey. test from prediction peak of lactation and shape std. curve
3 If test is last test, CAR code and somatic cell count
3 If test is last test, abs. and rel. dev. test prediction previous non-outlier test and shape std. curve
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and required little input from the domain specialist. This second level was, thus,

considered the default for attribute availability. Detailed analysis of the results of

preliminary machine-Iearning experiments using the level-two attributes revealed poor

classification performance for tests that were either the first or the last test of a lactation.

Thus, a third level was created, which included, in addition to the level two, 18 derived

attributes that were constructed in consultation with the domain specialist. These derived

attributes aimed, for example, at improving the classification of the first and the last tests

of a lactation and also included codes representing conditions affecting records

considered most important by the domain specialist (Table 6.1).

The resulting three data sets contained a substantial number of records with missing

attribute values. Sorne of these values were missing due to errors during milk recording

and, thus, considered as unknown. However, missing attribute values that did not belong

to this category were in fact irrelevant for the cases they described. For example,

persistency (milk yield on test day n relative to the milk yield on test day n - 1) of the

first test in a lactation cannot be determined. With the decision-tree induction approach,

special values outside the range of possible values were used to indicate such irrelevant

situations, which enabled the algorithm to consider these as a special group (Pietersma et

al., 2001b; Witten and Frank, 2000). For the naïve-Bayes approach to machine learning,

these irrelevant attribute values were, however, treated as unknown.

6.2.3 Machine-learning algorithms

In this study decision-tree induction was performed using CART for Windows

version 3.6 developed by Salford Systems (Breiman et al., 1984; Steinberg and Colla,

1997). This algorithm learns in a top-down fashion, by splitting the training data

recursively into two smaller subsets, choosing, at each split, the attribute and value that is

most successful in discriminating among the classes of the classification problem. The

CART algorithm continues splitting subsets until a maximum tree is reached. The tree is

then pruned back to avoid overfitting the training data. The resulting decision tree

consists of a series of decision nodes that, during classification, guide each new case to a

leaf node indicating the predicted class. Preliminary experiments were performed to tune

the settings of the parameters of the algorithm to the type of classification task and data

involved in this research. The same parameter configuration was used for aIl three
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attribute levels: the SymGini splitting and pruning criterion, the minimum number of

cases in child nodes set to four, and the parameters for prior probability of positive and

negative cases set to the observed frequencies in the data set. The misclassification cost

parameters were used to focus the decision-tree algorithm on correctly classifying

positive cases over negative cases. For the remaining parameters, default algorithm

settings were used. More details regarding the CART algorithm can be found in Breiman

et al. (1984) and Steinberg and Colla (1997).

The probability-based algorithm used in this research was an extension of the naïve­

Bayes classifier called "selective naïve Bayes" (Langley and Sage, 1994). Bayesian

methods have been used for many years in the field of pattern recognition (Duda and

Hart, 1973) and many applications for the classification of agricultural produce with

machine vision have been reported (Howarth et al., 1992; Steinmetz et al., 1994). These

applications tend to involve only numeric attributes, which allows for the use of a

Bayesian classifier that assumes a multivariate normal probability density function for

each class to account for the correlations among attributes (Duda and Hart, 1973). In

addition, pattern recognition tends to be focussed on achieving high classification

accuracy with little importance given to the understandability of the results of leaming. In

this study, machine leaming was used to support knowledge acquisition for decision

support, with as much emphasis on the understandability of the generated knowledge as

on the classification performance. In addition, this study involved both numeric and

categorical attributes. Thus, the naïve-Bayes classifier was chosen, which allows for

evaluation of the evidence provided by each attribute value for each class and is able to

deal with categorical attributes (Kononenko et al., 1998). In this study, numeric attributes

were categorized into ten ranges or intervals, each with a width equal to a tenth of the

difference between a preset minimum and maximum value for the attribute.

The naïve-Bayes classifier makes use of Bayes theorem and the simplifying

assumption of independence of attributes within each c1ass (Duda and Hart, 1973;

Mitchell, 1997). Given this assumption, naïve-Bayes classification of a new instance

involves the following equation:
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d

CNB = argmax P(cj)TI P(a i ICj)
CjEC i=l

with the class predicted using naïve Bayes (CNB) determined as class ci' belonging to a

finite set of classes C, that has the maximum value for the prior probability of class ci

multiplied by the product of the probabilities for the observed values (aD of the d

attributes of the new instance given class ci (Mitchell, 1997). Thus, during classification

of a new case the value of each attribute describing that case provides different amounts

of evidence for each class, which is combined with the prior probability per class. For

example, consider a classification problem with classes Cl and C2, corresponding to

"True" and "False", and a new case with the values "High" and "Late" for attributes al

and a2, respectively. Assume P(Cl) = 0.6 and P(cZ} = 0.4, P(al=High 1 Cl) = 0.1,

P(a2=Late 1 Cl) = 0.2, P(al=High 1 cz} = 0.2, and P(a2=Late 1 c2J = 0.5. With this

example, the class of the new case would be predicted as C2 or "False" since (0.4) (0.2)

(0.5) > (0.6) (0.1) (0.2). Learning with the naïve-Bayes classifier involves estimating the

prior probability of each class and the probability of each attribute value given each class

based on their frequencies in the training data (Mitchell, 1997; Witten and Frank, 2000).

During classification, the contribution of attributes with a missing value can simply be

excluded from the naïve-Bayes equation (Witten and Frank, 2000).

The naïve-Bayes classifier is robust to irrelevant attributes, since the conditional

probability of an attribute value is expected to be the same for each class with such

attributes, but sensitive to redundant or correlated attributes (Witten and Frank, 2000).

For example, the addition of an attribute a3 that is perfectly correlated with attribute a2

doubles the weight of the evidence provided by attribute a2 for each class without

providing any new information to discriminate among the classes. Thus, in this study, the

"selective naïve-Bayes classifier" (Langley and Sage, 1994) was chosen, which attempts

to exclude highly correlated attributes through the selection of attributes with a hill­

climbing search technique. The algorithm first determines the conditional probabilities

given each class for each attribute from the frequencies observed with the available data.

During attribute selection, the algorithm starts with an empty set of attributes and, at each

iteration, the attribute leading to the largest increase in accuracy is permanently added to
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the subset of selected attributes. The accuracy is determined by testing the naïve-Bayes

classifications using the selected attributes on the available data. This process continues

until the addition of any of the remaining attributes would result in reduced accuracy

(Langley and Sage, 1994). In addition to avoiding poor classification performance

through the exclusion of highly correlated attributes, the attribute selection process also

reduces the size of the knowledge representation of the naïve-Bayes classifier to those

attributes considered important. A smaIler number of attributes, each with a conditional

probability distribution per class, leads to a more transparent knowledge representation

than using aIl attributes available, which is advantageous in the context of machine­

learning assisted knowledge acquisition.

In this study, the selective naïve-Bayes algorithm (SeINB) was implemented using

Visual Basic (Microsoft Corporation, Redmond, WA). Database tables were used to store

the parameter settings of the algorithm, description of the attributes, attribute values for

the example cases, knowledge representation of the generated classifiers, and the

classification results of training and testing experiments. The algorithm was extended to

use misclassification cost as an attribute selection criterion instead of classification

accuracy, and parameters were added to represent the cost of misclassifying class i as

class j for aIl i:j:. j. This allowed for putting more or less emphasis on correctly classifying

positive cases versus correctly classifying negative cases, resulting in a cost-specifie

approach to attribute selection. To enable adjustment of the probability of classifying a

new case as positive versus negative with a selected set of attributes, the prior probability

values for each class were multiplied by a parameter to indicate the relative weight or

importance of that class. This class-weight parameter provided a convenient way to adjust

the decision threshold between positive and negative cases. To avoid conditional

probabilities equal to zero for categorical or categorized numeric attributes, the count of

cases in the training data belonging to a particular attribute value and class was initialized

with the prior probability of that attribute value, regardless of the c1ass (Witten and Frank,

2000). The total count of cases for each attribute value was initialized with one to avoid

zero prior probabilities for any attribute value. The prior probabilities were set to the

observed frequencies in the entire data set (0.014 for positive cases and 0.986 for negative

cases). Based on preliminary experiments to tune the algorithm to the classification task
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and type of data available, the parameter representing the cost of mistakenly classifying

positive cases as negative during attribute selection was set at four, while the cost of

mistakenly classifying negative cases as positive was set at one.

6.2.4 Training and testing method

In order to estimate the performance of classifiers generated from the 1080 example

cases, the stratified ten-fold cross-validation approach to training and testing was used

(Breiman et al., 1984; Weiss and Kulikowski, 1991; Witten and Frank, 2000). With this

approach the available data are divided into ten mutually exclusive subsets or folds with

approximately the same class distribution as the original data set. Each fold is used once

to test the performance of the classifier, generated from the combined data of the

remaining nine folds, leading to ten "independent" performance estimates. Assuming that

the classification performance improves as more data are used for leaming, the true

performance of the classifier generated from the entire labeled data set is expected to be

at least as good as the ten-fold cross-validation estimate which is based on classifiers

generated from 90% of the data. Entire herds, instead of individual example cases, were

assigned at random to each of the ten folds to achieve an unbiased estimate of the

performance on example cases belonging to entirely new herds (Kubat et al., 1998;

Pietersma et al., 2001b). The assignment of herds to folds was constrained to achieve

approximately the same class distribution in each fold as in the entire data set.

The same set of ten folds was used for training and testing throughout this study.

Although three different data sets for attribute availability were used, these involved the

same 1080 cases and the same assignment to folds.

6.2.5 Performance analysis

The removal of outlier tests represents a classification problem involving two

classes. With such classification tasks, there are four possible outcomes during the testing

of a classifier: an actual positive case can be predicted as positive or negative and an

actual negative case can be predicted as negative or positive. To allow for detailed

analysis of the performance of the generated classifiers, the following performance

indices were used: 1) true positive rate (TP rate), defined as correctly predicted positives

as a proportion of actual positives; 2) false positive rate (FP rate), defined as incorrectly
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predicted positives as a proportion of actual negatives; 3) predictive value positive (PVP),

defined as correctly predicted positives as a proportion of aH cases predicted as positives;

and 4) positive prediction rate (PPR), defined as aH predicted positives as a proportion of

aH cases (Swets, 1988; Weiss and Kulikowski, 1991; Witten and Frank, 2000). In sorne

domains, the TP rate is referred to as the sensitivity and the FP rate as 1 - specificity. The

prevalence of positive cases or prior probability of positives was estimated from the entire

data set of example cases classified by the domain specialist as the actual positives as a

proportion of aH cases. The TP rate and FP rate are both independent of the prevalence of

positive cases and, thus, the characteristics of the classifier (Swets, 1988). Conversely, the

PPR and PVP depend on the prevalence of positive cases and can be mathematicaHy

derived from the TP rate and FP rate for a given prevalence level as foHows:

PPR = Prevalence ofpositives x TP rate + (1 - Prevalence) x FP rate

PVP = Prevalence ofpositives x TP rate / PPR.

Relative operating characteristic (ROC) curves (Swets, 1988) were used to visualize

the trade-off between correctly classifying outlier cases and correctly classifying non­

outlier cases. An ROC curve consists of the TP rate plotted against the FP rate (Figure

6.2). In ROC space, the lower left point (0,0) represents a classifier that assigns each case

to the negative class, while the upper right point (100,100) represents a classifier that

considers each case as positive. The upper left point (0,100) represents perfect

classification, while the line y = x represents an ROC curve that can be achieved with

random classification. Thus, the closer an ROC curve approximates the lines connecting

(0,0) with (0,100) and (100,100), the better the performance. The ROC curve represents

the entire range of trade-offs between sensitivity and specificity that can be achieved with

a particular classification scheme. Each point on the ROC curve represents a specific

classifier.

Comparison of the performance of multiple classification schemes with statistical

tools requires the information represented by the ROC curve to be coHapsed into a single

performance index. To this end, the area under the entire ROC curve was proposed as a

suitable performance index by Swets (1988) and used in several machine leaming studies

(Bradley, 1997; Yang et al., 1999). However, in this research the expected prevalence of
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positive cases in new data was very low (1.4%) and a classifier with a high pp rate would

lead to too many false positives to be of practical use. Thus, instead of the area under the

entire ROC curve, a performance index TP*, defined as the mean TP rate for the range of

pp rates of interest, was used (Pietersma et al., 2001b). For this application, the FP rate of

interest was limited to ::; 5%. Figure 6.2 shows the ROC curve and associated TP* for an

example classification scheme X.
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Figure 6.2 Relative operating characteristic (ROC) eurves for random classification and an
example classification seheme (X), and the mean true positive rate (TP*) for a specifie range of
false positive rate values.

To generate an ROC curve with CART, a series often decision trees was generated

using ten different values for the parameter specifying the cost of false positives (ranging

from, e.g., 1 to 100), while the cost of false negatives was kept at 1. With SelNB, ten

different values were used for the parameter specifying the weight of the positive class,

keeping the weight of the negative class at 1, to generate ten different points in ROC

space. The same ten misclassification costs (CART) and class-weight values (SeINB)

were used for each of the ten folds of cross-validation. This resulted in 100 pairs of pp

rate and TP rate values for a particular combination of attribute availability and algorithm.

For each fold, an ROC curve was generated through interpolation between the FP rate and

TP rate data points associated with the increasing misclassification cost or class weight.

An average ROC curve was then calculated by taking the average of the ten interpolated

TP rate values for each pp rate from 0 to 100% at 1% intervals (Provost et al., 1998). For
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each of the ten ROC curves, TP* was calculated, resu1ting in ten independent estimates of

TP*. This aIlowed for the calculation of a standard error associated with the mean TP*

estimate and the use of analysis of variance. The ROC curves shown in this paper were aIl

calculated using this averaging approach. Approximate 95% confidence intervals of the

TP rate of the average ROC curves were determined as the standard error of the ten

interpolated estimates of the TP rate for a particular level of FP rate mu1tiplied by a t­

value of 2.26 (two-sided probability level of 95% and 9 degrees of freedom).

6.2.6 Experimental design and analysis ofvariance

An experiment was designed to determine the effect of attribute availability and

machine-Iearning algorithm on the classification performance achieved. The two

machine-Iearning algorithms (CART and SeINB) were applied to each of the three

attribute levels, leading to six different combinations of attribute availability and

algorithm. For each combination, ten independent observations for TP* were obtained

through the ten-fold cross-validation.

Analysis of variance was used to assess whether the observed differences of TP*

among the attribute levels and machine-Iearning algorithms were likely to hold for new

data (Pietersma, 2001b). Analysis of variance was performed with the Mixed procedure

of SAS for Windows version 8 (SAS Institute Inc., Cary, NC). Each combination of

attribute availability and algorithm was trained and tested on the same ten sets of training

and testing cases. Thus, with the analysis of variance, the factors attribute availability and

algorithm were considered as being repeated within the factor fold.

6.2.7 Evaluation offinal classifiers

To allow end-users to choose classifiers at different points along the ROC curve, a

series of three final decision trees and one final SelNB classifier with three different

settings for the class-weight parameter was generated from the 1080 example cases

described with aIl available attributes. These classifiers were considered as representing a

low, medium, and high fi1tering intensity for the removal of outlier tests. A decision tree

induced with a relatively low setting for the cost of misclassifying positive cases and a

naïve-Bayes classifier with low value for the relative weight of the positive class, were

expected to filter out relatively few cases (1ow PPR), while a high misclassification cost
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or high class-weight value was associated with a high filtering intensity (high PPR). To

determine the classification performance of these specific classifiers, generated from the

entire data set, it was necessary to obtain an estimate of the FP and TP rates, associated

with each setting of the misclassification cost of positive cases parameter or the class­

weight parameter for the positive class. This involved averaging the ten FP and TP rate

pairs associated with each level of misclassification costs or class weight from the cross­

validation, resulting in ten average data points in ROC space; these were then connected

to yield a so-called pooled ROC curve (Bradley, 1997).

To evaluate the plausibility of these final decision trees, a quantitative and a

qualitative assessment was carried out. Although for a classifier generated from the 1080

cases the true performance for new data can only be estimated, the apparent performance

- also called resubstitution performance (Witten and Frank, 2000) - can be determined

through testing of this classifier using the training data, i.e. the entire data set. Thus, the

resubstitution FP and TP rates were used to quantitatively verify how closely the

performance profile of the classifiers, induced from the entire data set, resemb1ed the

performance of the cross-validated classifiers. Manual adjustment of the level of pruning

of the maximum tree induced with CART was used to achieve three final decision trees

with the intended trade-off between sensitivity and specificity (Pietersma et al., 2001b).

After the quantitative assessment, the three final decision trees and the final listing of

conditional probabilities of attributes selected using the naïve-Bayes approach were

analyzed and discussed with the domain specialist to qualitatively verify the plausibility

of the generated knowledge representations.
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6.3 Results

6.3.1 Attribute availability and machine-learning algorithm

Table 6.2 shows the mean and standard error of TP* for each of the six

combinations of attribute availability and machine-Ieaming algorithm. The standard error

of the ten-fold cross-validation results per combination was fairly high, ranging from

3.7% to 5.6%, indicating a large variability in performance from fold to fold. For both

algorithms, attribute level two showed a much higher TP* than level one. Increasing the

number of available attributes from level two to three showed a small increase in

performance for CART and a small decrease in performance for SeINB. However,

analysis of variance indicated that this difference in response to attribute availability - the

interaction between attribute availability and algorithm - was not statistically significant.

The mean TP* values for attribute levels 1, 2, and 3 were, respectively, 43%, 60%, and

61 %. The overall effect of attribute availability was statistically significant (P<O.OI).

Pair-wise comparison between attribute level two, considered as the default level of

attribute availability, and level one showed a statistically significant difference (P<O.OI),

while attribute level three did not differ significantly from level two.

Table 6.2 Mean and standard error of performance index TP* (%) for
each combination of machine-Iearning algorithm and level of attribute
availability.

Aigorithm
Attribute availability Mean TP*

1 2 3 algorithm

CART 39.7 (5.4) 55.3 (3.8) 58.6 (5.3) 51.2
SelNB 47.0 (4.6) 64.2 (5.6) 62.9 (3.7) 58.0·

Mean TP* attribute 43.4 •• 59.7 60.8 ns 54.6

Figures 6.3a and 6.3b show the average ROC curves for each of the six

combinations of attribute availability and machine-Ieaming algorithm. The entire curves

shown in Figure 6.3a indicate that the relative performance among the six variants

depended to a large extent on the FP rate. Figure 6.3b focuses on the range of FP rate

values of interest and allows for detailed analysis of how the differences in TP rate among

the six variants vary with the FP rate. In Figure 6.3b, error bars representing 95%

confidence intervals for the TP rate are shown for the ROC curve representing the default
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algorithm (CART) and default attribute level (2). The ROC curve for CART and attribute

level 1 is situated entirely below this confidence interval, which suggests that CART and

attribute level 1 showed significantly lower TP rates than level 2 throughout the pp rate

range of interest. However, for CART and attribute level 3 the ROC curve did not extend

beyond the 95% confidence interval. For SeINB, the ROC curve of attribute level 1

showed substantially lower TP rates throughout the FP rate of interest than the ROC

curve for level2. For SelNB and between 0 and 2% pp rate, the curve for attribute level 3

showed a substantially lower TP rate than the curve for level 2, while between 2 and 5%

pp rate, attribute levels 2 and 3 showed fairly similar TP rates. Thus, throughout the pp

rate of interest, restricting the attributes for machine leaming to only those available to

the domain specialist (1evel one) resulted in a significant reduction of the TP rate, while

attribute level 3 did not significantly improve the performance over level 2.

At each attribute level, SelNB showed a higher TP* than CART, with a decreasing

difference as more attributes were available for leaming (Table 6.2). However, since the

interaction between attribute availability and algorithm did not prove to be statistically

significant, the results expressed in TP* did not provide enough evidence to declare that

CART was more sensitive to the availability of predictive attributes than SeINB. The

mean TP* values for CART and SelNB were, respectively, 51 % and 58% (Table 6.2), and
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Figure 6.3 Average relative operating characteristic (ROC) curves for two machine-Iearning
algorithms (CART and SeiNS) and three levels of attribute availabil ity (1, 2, and 3). Error bars
represent an approximate 95% confidence interval. Figure 3a shows entire ROC curves while 3b
focuses on the false positive rate interval of interest.

117



their difference was statistically significant (P<O.OS). Detailed analysis of the ROC curves

in Figure 6.3b suggest that the significant difference in TP* values between CART and

SelNB was mainly due to the differences between the two algorithms for the range of pp

rate values between 0 and l %.

6.3.2 Classifiers generated from the entire data set

Using the entire data set and the largest number of attributes available, a series of

three classifiers was generated for each algorithm. Although the classification

performance of the highest attribute level did not significantly differ from the

performance achieved with the second (default) attribute level, this third level was chosen

since it included attributes that had been suggested by the domain specialist. Classifiers

that included these attributes were expected to be considered by the specialist as more

plausible than classifiers without such attributes. The three classifiers for each algorithm

were chosen to be associated with a PPR approximately equal to one, two, and four times

the observed prior probability of outlier tests (1.4%). Given the achieved ROC

performance, a classifier with PPR below the observed prevalence of outlier tests was

expected to have a TP rate too low for practical use.

Table 6.3 shows the misclassification costs or class weight settings and associated

cross-validation performance of the three classifiers for CART and SeINB. Three

different decision trees were induced with the misclassification cost of positive cases set

at 3, S, and 40. The low filtering intensity tree was expected to remove only 41 % of the

cases indicated as outliers by the domain specialist (TP rate). Assuming a 1.4% prior

Table 6.3 Characteristics and cross-validation performance of classifiers associated with a low,
medium, and high filtering intensity.

Aigorithm
Filtering Cost or class False positive True positive Positive Predictive value
intensity weightt rate rate prediction rate positive

(%) (s.e.) (%) (s.e.) (%) (%)

CART Low 3 1.1 (0.3) 40.9 (6.8) 1.6 35.4
CART Medium 5 1.7 (0.4) 59.6 (5.8) 2.5 33.1
CART High 40 4.6 (0.8) 77.6 (4.6) 5.7 19.2

SelNB Low 0.01 0.6 (0.4) 47.4 (7.3) 1.3 51.4
SelNB Medium 0.3 2.1 (0.9) 62.3 (6.3) 2.9 29.8
SelNB High 4 4.6 (1.5) 76.4 (4.9) 5.6 19.0

t Cost or class weight: cost of faIse negatives relative to cost of faIse positives for CART, weight of the
positive class over the negative class for SeINB.
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probability of outliers, this classifier was expected to predict 1.6% of the tests as outliers

(PPR), but only 35% of these tests were expected to be truly outliers (PVP). The high

filtering intensity tree had a much higher TP rate (78%) than the low filtering intensity

tree. However, this was achieved by predicting 5.7% of aIl tests as outlier with only 19%

PVP.

The size and resubstitution performance of the trees induced from the entire data set

was compared with the average size of the classifiers generated with the cross-validation

and with the average resubstitution performance determined by testing each classifier of

the cross-validation on the training data used to generate that classifier (Table 6.4). For

each filtering intensity, the entire data set tree induced by the CART algorithm had a size

and resubstitution performance profile quite different from the cross-validation. For

example, for the low filtering intensity, the entire data set tree had only two leaf nodes,

much smaller than the average 5 nodes in the cross-validation, and the resubstitution TP

rate was 25%, much lower than the average 45% TP rate in the cross-validation. This

discrepancy can be explained by the splitting and pruning approach that CART uses

involving an internaI ten-fold cross-validation to determine the optimum size of the

decision tree. Based on the entire data set, the algorithm chose a final tree with

characteristics quite different from what was observed on average for the ten trees of the

external cross-validation, which were induced from 90% of the data. To achieve a series

of three final decision trees that more accurately reflected the intended trade-offs between

sensitivity and specificity, the level of pruning of the maximum tree, considered optimum

Table 6.4 Size and resubstitution performance of cross-validation classifiers and of optimal and
size-adjusted classifiers induced from the entire data set.

Cross-validation

(#) (s.e.)

AlI data optimum size AlI data adjusted size
AIgo- Fil- -----------------=----------=-----
rithm tert Nodes or False True Nodes or False True N d False True

'b 'b 0 esaUn utes pos. rate pos. rate aUn utes pos. rate pos. rate pos. rate pos. rate
(%) (s.e.) (%) (s.e.) (#) (%) (%) (#) (%) (%)

CART L 4.9 (1.0)
CART M 9.8 (0.8)
CART H II.9 (0.6)

SelNB L 28.1 (2.1)
SelNB M 28.1 (2.1)
SelNB H 28.1 (2.1)

0.1 (0.0) 45.4 (5.3) 2 0.0 25.0 5 0.0 45.4
0.2 (0.0) 69.7 (3.3) 14 0.4 80.6 10 0.2 67.6
3.3 (0.3) 89.8 (0.5) 28 3.2 99.1 13 3.3 89.8

0.2 (0.0) 56.6 (4.9) 30 0.3 58.3
1.0 (0.2) 73.0 (3.7) 30 1.0 75.0
2.0 (0.1) 88.8 (1.8) 30 2.3 89.8

t Filter: low (L), medium (M), and high (H) filtering intensity; False pos. rate: false positive rate; True pos.
rate: true positive rate.
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by CART, was manually adjusted. For the low filtering intensity, less pruning than

considered optimum by CART was chosen, leading to a larger tree. For the medium and

high filtering intensities, more pruning was chosen, leading to smaller trees (Table 6.4).

Figure 6.4 shows the decision tree induced from the entire data set for the medium

filtering intensity. The attribute representing the relative deviation of the milk yield of the

test from the regression line between the previous test and the next test of the lactation

was considered as most important. This attribute was chosen at the root node with

ReIDevLinePrevAndNextTest No
~,;",;",.----....,

:5-23 %

AbsDevLinePrevAndNextTest

:5 -5.5 kg

RelDevRegressionlnclTest

:5-19 %

RelDevLinePrevAndNextTest

:5-19 %

Last&AbsDevPredPrevNonOutlierTest

:5 -5.9 kg

Last&AbsDevPredPrevNonOutlierTest

:5 -9.3 kg

Yes First&AbsDevPredMaxMilk

:5 -17.0 kg

Figure 6.4 Decision tree induced fram the entire data set for a medium filtering intensity.
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threshold value -23% and again at the bottom of the decision tree with threshold value ­

19%. Of the seven distinct attributes of the medium filtering intensity tree, two belonged

to attribute level one, three were added at attribute level two, and two, related to the first

and last tests, were added at the third attribute level. The low filtering intensity tree

consisted of the first four decision nodes of the medium level tree. The first eight decision

nodes of the medium filtering intensity tree were also part of the high filtering intensity

tree. The additional four decision nodes of the high filtering intensity tree consisted of

two attributes that also appeared in the low and medium filtering intensity trees, but with

different threshold values, and two new attributes. Of the nine distinct attributes of the

high filtering intensity tree, two belonged to attribute level one, while four and three

attributes were added at attribute levels two and three, respectively.

With the SelNB algorithm, the use of three different settings for the weight of the

positive class relative to the weight of the negative class (0.01, 0.3, and 4) resulted in

three classifiers with a low, medium, and high filtering intensity (Table 6.3). At low

filtering intensity, the SelNB classifier showed a higher TP rate than the decision tree,

47% instead of 41 %. However, the standard errors of these TP rate estimates were very

high (approximately 7%). The SelNB classifier showed a lower FP rate than the decision

tree, 0.6% versus 1.1%. The lower FP rate combined with the higher TP rate resulted in a

substantially higher PVP than the equivalent decision tree, 51% versus 35%. At the

medium and high filtering intensities, the SelNB classifiers showed essentially the same

performance as the CART decision trees.

The SelNB algorithm selected a set of 30 attributes from the 69 available attributes

when applied to the entire data set (Table 6.4). The number of selected attributes and the

resubstitution pp and TP rates of the classifiers generated from the entire data set closely

resembled that of the classifiers of the cross-validation. The classifiers generated from the

entire data set with SelNB were, therefore, not adjusted in size.

Table 6.5 shows a listing of the conditional probability values for the 10 most

important attributes of the 30 attributes selected by SeINB, when applied to the entire data

set. The first selected attribute represented the relative deviation of the milk yield of a test

from the prediction based on the previous non-outlier test and the shape of the standard

lactation curve. In Table 6.5, the first row for this attribute shows the upper limits for
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each of the ten ranges that were created during categorization. Thus, an attribute value of

~ -66 belongs to range 1, an attribute value between -66 and -52 belongs to range 2, etc.

For each of the two classes, the distribution of conditional probabilities over the ten

ranges is shown. A non-outlier case is most likely to belong to range 6 and 7: 44 and 30%

of the non-outlîer example cases, respectively, appeared in those ranges. Conversely, an

outlier case is most likely to belong to range 4 or 5 with 38 and 27% of the outlier

example cases, respectively, appearing in those two ranges. During the classification of a

new example case, the value of an attribute provided a conditional probability as evidence

for each class. For example, a new case with the value -30 for the first attribute in Table

6.5 was categorized into range 4. This attribute contributed a rounded conditional

probability of 0.01 for the non-outlîer class and a conditional probability of 0.38 for the

outlier class. The evidence provided by this attribute value favored the outlier class over

the non-outlier class with a factor 30. The fourth row in Table 6.5 shows the ratio

between the largest and the smallest conditional probability for each range of the first

attribute. This ratio was given a positive sign if the outlier class had the largest

conditional probability value; a negative sign was applied if the value for the non-outlier

class was largest. These ratios were added for each selected attribute to support the

evaluation of the plausibility of the generated knowledge description.

Sorne of the attributes selected with SeINE were clearly correlated with another

selected attribute. For example, the first and eighth attribute listed in Table 6.5 are the

relative and absolute variant of the same deviation from the prediction using the previous

non-outlîer test. During the attribute selection process, with performance testing on the

training data, adding such a highly correlated attribute apparently did not reduce the

classification performance.

Although the SelNB algorithm used many more attributes in its knowledge

representation, 30 instead of the 9 distinct attributes selected by CART, sorne overlap

existed. Four of the nine different attributes that appeared in the decision trees were also

selected by SelNB and were part of the first ten attributes selected (Table 6.5).
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Table 6.5 Conditional probabilities and their ratio for the ten most important attributes selected
from the entire data set with the naïve-Bayes algorithm.

Rt Attribute Item Range for categorized numeric attributes or categorical attribute value

1 2 3 4 5 6 7 8 9 10
RelDevPred Range limit* -66 -52 -38 -24 -10 4 18 32 46 60
PrevNon Non-outlier (%) 0 0 0 1 14 44 30 7 2 1
Outlier Outlier (%) 5 3 10 38 27 6 1 5 2 2
(%) Ratio* 6510 6104 81 30 2 -7 -21 -1 -1 3

2 AnyCARcode Attribute value False True
Non-outlier (%) 98 2
Outlier (%) 58 42
Ratio -2 18

3 First&AbsDev Range limit -21 -17 -13 -9 -5 -1 3 7 11 15
PredMaxMilk Non-outlier (%) 0 0 2 6 10 26 33 15 7 2
(kg) Outlier (%) 20 15 10 15 26 6 1 6 0 0

Ratio 1370 1285 6 3 3 -4 -23 -3 -22 -18

4 First&RelDev Range limit -58 -46 -34 -22 -10 2 14 26 38 50
PredMaxMilk Non-outlier (%) 0 1 2 6 18 30 26 10 5 2
(%) Outlier (%) 15 15 30 25 6 1 6 0 0 0

Ratio 1285 25 13 4 -3 -23 -4 -22 -21 -18
5 Last&AbsDev Range limit -17 -14 -11 -8 -5 -2 1 4 7 10

PredPrevNon Non-outlier (%) 0 0 0 1 3 15 41 27 12 1
Outlier Outlier (%) 5 5 9 32 32 10 2 1 5 0
(kg) Ratio 797 797 1061 53 11 -2 -26 -25 -2 -17

6 AbsDev Range limit -9.6 -7.2 -4.8 -2.4 0 2.4 4.8 7.2 9.6 12
Regression Non-outlier (%) 0 0 2 9 40 38 10 1 0 0
InclTest Outlier (%) 8 13 14 27 22 5 4 4 2 1
(%) Ratio 6419 6724 9 3 -2 -8 -3 3 4893 3672

7 SomaticCell Range limit 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Count Non-outlier (%) 91 5 2 1 1 0 0 0 0 0
(103

) Outlier (%) 62 11 8 6 3 2 0 1 2 7
Ratio -1 2 3 5 6 9 9 4934 6575 8627

8 AbsDevPred Range limit -16.5 -13 -9.5 -6 -2.5 1 4.5 8 11.5 15
PrevNon Non-outlier (%) 0 0 1 3 16 41 29 9 2 0
Outlier Outlier (%) 1 13 19 27 24 5 0 4 5 2
(kg) Ratio 4072 7458 38 11 2 -8 -98 -3 2 6

9 Milk Range limit 7000 7500 8000 8500 9000 9500 10000 10500 11000 11500
Production Non-outlier (%) 2 12 12 8 16 19 3 8 12 9
LevelHerd Outlier (%) 3 13 7 12 16 16 1 12 16 6
(kg) Ratio 2 1 -2 2 -1 -1 -4 2 1 -2

10 PrevTestCAR Attribute value False True
{19, 23, 24, 25} Non-outlier (%) 100 0

Outlier (%) 98 2
Ratio -1 18

t R: Rank of attribute in selection process.
*Range limit: attribute value indicating the upper limit of the range for categorized numeric attributes.
* Ratio: largest conditional probability divided by lowest with positive and negative sign to indicate outlier
and non-outlier, respectively, as class with largest conditional probability.
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6.3.3 Evaluation offinal classifiers by domain specialist

The three induced decision trees were evaluated by the domain specialist and, once

a detailed explanation of the meaning of the derived attributes was provided, considered

easy to understand. AlI the decision nodes were thought to be plausible and expected to

properly classify new data.

The attributes selected by SelNB and their conditional probability values were also

evaluated by the domain specialist. For each attribute, the two conditional probability

distributions were analyzed to establish whether a general pattern existed that was

consistent with the domain expertise. For 13 of the 30 selected attributes, such a pattern

did not exist. These attributes were thought to be the result of overfitting the data and,

thus, removed from the list. For example, the pattern of conditional probabilities of

attribute nine in Table 6.5, representing the average mature equivalent milk production of

the herd, was not expected to properly classify new data. The removal of these 13

attributes reduced the resubstitution performance on the entire data set. For example, for

the high filtering intensity SelNB classifier, the resubstitution FP rate increased from 2.3

to 3.1 % and the TP rate decreased from 90 to 86%. However, relying on the expertise of

the domain specialist, these adjustments were expected to improve the performance for

new data. Of the remaining 17 attributes, 3 attributes belonged to attribute level one,

while 2 and 12 had been added at levels two and three, respectively.

OveralI, the description of learned knowledge via decision trees was considered as

more transparent than the listing of conditional probability values for each attribute

selected with naïve Bayes. The induced decision trees were relatively small with each

decision node consisting of a single attribute threshold value and a clear assignment to a

class. Conversely, SelNB resulted in a fairly long list of attributes and for each attribute

many conditional probability values were involved. AIso, for the decision trees it was

considered relatively easy to grasp how the different decision nodes interacted with each

other leading to the final classification of a new case, whereas with the naïve-Bayes

approach it was considered very difficult to obtain an overview of the combined effect of

the conditional probability values of the selected attributes on the final classification as

either outlier or non-outlier.
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6.4 Discussion

ln this study, the use of derived attributes constructed from the basic data available

to the domain specialist significantly improved the classification performance. Thus,

deriving potentially predictive attributes was a very important part of the process of

machine-Iearning assisted knowledge acquisition. However, the addition of even more

complex attributes following detailed analysis of preliminary results and consultation

with the domain specialist did not lead to further improvement of the performance. Thus,

after the addition of a first set of derived attributes to the original data, the availability of

potentially predictive attributes seemed to be no longer a limiting factor to the

improvement of the classification performance. When all attributes were made available

for machine learning, several of the attributes added at the highest attribute level, were

selected by the decision-tree induction and naïve-Bayes algorithms to be part of the final

classifiers. Inclusion of such attributes improved the understandability and acceptability

of the learned knowledge by the domain specialist.

Both machine learning approaches allowed for inspection of the plausibility of

individual pieces of learned knowledge. With the decision trees, each decision node could

be analyzed to verify the plausibility of the attribute, threshold value, and class

assignment. With the naïve-Bayes approach, the conditional probability distributions of

each selected attribute could also be inspected. With both approaches, individual decision

nodes or attributes that were not expected to properly classify new data could be removed

or manually modified. However, the interactions among these pieces of knowledge were

much easier to grasp with the decision trees than with the conditional probability lists.

The decision trees offered a crisp description of the decision boundary between outlier

and non-outlier cases, whereas the conditional probability lists, with each attribute

providing different amounts of evidence for each class, represented more of a fuzzy

approach to classification. Thus, the domain specialist considered the representation of

learned knowledge with decision trees to be more transparent than the conditional

probability lists generated with naïve Bayes.

The achieved classification performance was considered as fairly poor with 78% TP

rate achieved at a PPR equal to four times the prior probability of outlier tests observed in

the data. Thus, in a practical application of the filtering of milk recording data for group-
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average lactation-curve analysis, a reasonable level of sensitivity would require a

classifier that removed four times as many tests as the domain specialist. This may, to

sorne degree, have been caused by the existence of mislabeled example cases in the data

set. The domain specialist indicated that for sorne of the example cases the classification

was rather subjective and that inconsistencies may have occurred. Thus, the quality of the

data set may be improved by allowing the domain specialist to reevaluate misclassified

example cases. Such re-evaluation is expected to narrow the fuzzy zone around the

decision boundary between outlier and non-outlier cases and reduce the number of false

positives and false negatives in cross-validation experiments. The inspection of

potentially mislabeled cases by the domain specialist could be limited to those cases

misclassified by both machine-Iearning approaches, as suggested by Brodley and Friedl

(1996). Although a fairly large number of minority class cases was available (108), it

seems that many different reasons exist for classifying a test as outlier. Sorne of these

patterns may have a very low prevalence and additional example cases would support the

learning of those situations. Thus, in addition to the re-evaluation of misclassified cases,

the acquisition of additional example cases from additional herds may also improve the

performance.

Although the naïve-Bayes algorithm used in this research already achieved better

classification performance than CART, further improvement may be possible through the

use of an enhanced attribute selection process. In this study, the SelNB algorithm selected

approximately three times as many attributes as the number of decision nodes used by

CART during the cross-validation with the highest attribute level. Of the 30 attributes

selected by SelNB from the entire data set, more than 40% were considered by the

domain specialist as unlikely to properly classify new data. This suggests that the attribute

selection process was not optimal. Instead of using a hill-climbing search method and

relying on the resubstitution performance as a selection criterion, as shown by Langley

and Sage (1994) and implemented in this study, other approaches to attribute selection

using more complex search methods and an internaI cross-validation procedure (Kohavi

and John, 1997) may result in improved classification performance. However, those

alternatives would have increased the computation time dramatically.
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In this study, choosing one particular machine-Iearning approach over the other

would represent a trade-off between classification performance and understandability of

the learned knowledge. The naïve-Bayes approach showed significantly better

classification performance than decision-tree induction, but the domain specialist

considered the decision trees as more understandable than the conditional probability lists

generated with the naïve-Bayes classifier. Further investigation is required to determine

the preferred machine-Iearning approach to automate the removal of outlier tests within

lactations. The use of an improved data set following re-evaluation of misclassified

example cases or a larger data set is expected to improve the classification performance,

but may benefit one algorithm more than the other.

In a practical application of the filtering of milk-recording data for lactation-curve

analysis, the trade-off between sensitivity and specificity may depend on factors such as

number of tests available for the parity group being analyzed, prevalence of outliers, and

end-user preferences. Implementation of a series of classifiers with increasing filtering

intensity in the final KBS for group-average lactation-curve analysis allows the end-users

to move along the ROC curve and use the classifier with the desired trade-off in

sensitivity versus specificity. In addition, the end-user always has the ability to override

the decisions made by the classifier.

6.5 Conclusion

This research suggests that machine learning is a promising approach to develop

knowledge-based modules to mimic the filtering of lactation curve data by a domain

specialist. Use of additional attributes derived from the basic data significantly improved

the classification performance. Overall, the naïve-Bayes approach showed significantly

better performance than decision-tree induction. However, the domain specialist

considered the decision trees as more transparent than the conditional probability lists

generated with naïve Bayes. Although the final classifiers were considered as plausible,

improvement of the classification performance through, for example, re-evaluation of

misclassified cases by the domain specialist, might be required for a practical application.
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Preface to Chapter 7

A framework for the development of computerized information systems in dairy

farming was established in Chapter 3 and formed the basis for the creation of a decision­

support system for the analysis of group-average lactation curves in Chapter 4. This

decision-support system included case-acquisition functionality to enable a domain

specialist to analyze and classify a substantial amount of example cases resulting from the

analysis of group-average lactation curves for machine learning. Chapters 5 and 6 dealt

with several methodological aspects related to the use of machine leaming for knowledge

acquisition, including creation of potentially predictive attributes to support learning,

choice of a machine-Iearning technique, and performance analysis of classifiers generated

from small data sets. In addition, Chapters 5 and 6 resulted in classifiers for

implementation in the first module of the decision-support system described in Chapter 4,

to automatically exclude outlier lactations and tests within lactations of individual cows

from group-average lactation-curve analysis.

This chapter focuses on the creation of classifiers for each of the classification tasks

identified as part of the interpretation of group-average lactation curves, the second

module of the system described in Chapter 4. For these classification tasks, the

understandability of the results of leaming was considered to be very important. Thus,

based on the results obtained in Chapter 6, the decision-tree induction approach to

machine learning was used instead of the naïve-Bayes classifier. In addition, a method

was developed to enable use of the performance analysis approach established in Chapter

5 for classification tasks involving more than two classes.

This chapter has been prepared for submission to the journal Canadian Biosystems

Engineering (Pietersma, D., R. Lacroix, D. Lefebvre, and K. M. Wade. Decision-tree

induction to interpret group-average lactation curves).
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7 Decision-tree induction to interpret group-average

lactation curves

Abstract

Decision-tree induction was used to automatically learn to interpret group-average

lactation curves in dairy farming. Lactation curves are a graphical representation of the

daily milk yield after calving and can be analyzed together with additional information to

support the detection of management deficiencies. A dairy-nutrition specialist analyzed

98 group-average lactation curves, representing 33 dairy herds, and classified these

curves regarding predefined aspects of interpretation. For machine learning, seven main

classification tasks and three secondary tasks, supporting one of the main tasks, were

identified. For each task, potentially predictive attributes were created based on the

graphical and numerical information available to the specialist. Five-fold cross-validation

was used to estimate the classification performance, and relative operating characteristic

curves were used to visualize the achieved trade-off between sensitivity and specificity.

For five of the seven main classification tasks, a series of three final decision trees, with

increasing sensitivity and associated with a low, medium, and high tendency of

classifying new cases as abnormal, were induced from the entire data set. For two of the

main tasks, alternative trees showed very similar performance. The medium tendency

trees were chosen to lead to a probability of predicting new cases as abnormal similar to

the observed prevalence of abnormal cases, given a population of cases with that

prevalence. The decision trees induced for the main classification tasks showed good

performance. For the medium tendency decision trees, the sensitivity was at least 80%

and the number of truly abnormal cases as a percentage of aIl cases predicted as abnormal

was at least 75%. For the secondary tasks, the performance was poor and domain

expertise was required to select a plausible tree from alternative trees generated by the

induction algorithm. The decision trees, ranging from two to seven leaf nodes, were

evaluated by the domain specialist, and, after a few adjustments, considered as plausible.

This study suggested that automatically induced decision trees are able to closely match

the interpretation of group-average lactation curves as performed by a domain specialist.
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Machine-Iearning assisted knowledge acquisition is expected to be especially appropriate

for problem domains where specialists have difficulty expressing decision mIes, such as

the analysis of graphieal information.

7.1 Introduction

Dairy producers enrolled in a dairy-herd improvement program have access to a

large amount of data conceming the milk production of their cows. This milk-recording

data may support many management and control activities in various spheres of dairy

farming and at different leve1s of decision making (Pietersma et al., 1998). The analysis

of group-average lactation curves derived from such data has been identified as a useful

tool to support nutrition management in dairy farming (Lefebvre et al., 1995; Skidmore et

al., 1996; Whittaker et al., 1989). This type of analysis involves interpretation of the

shape of the composite lactation curve of a group of cows, comparison of these curves

with standard curves, and analysis of additional explanatory data, with the objective to

detect potential management deficiencies. Use of a knowledge-based system (KBS) to

support the analysis of group-average lactation curves might be advantageous to dairy

producers. Such a system was developed at the Texas A&M University (Fourdraine et al.,

1992a; Whittaker et al., 1989) to automate the preprocessing of the large amount of raw

data involved and provide dairy producers and their advisors with expert interpretation. A

KBS for the ana1ysis of group-average lactation curves might also be of benefit to dairy

producers in Canada, but should take into account the re1atively small size of dairy herds,

the particular types of mi1k-recording data availab1e, and standard lactation curves

associated with the specifie dairy-farming conditions.

The traditional approach to the acquisition of knowledge for KBS through

interviews with domain specialists has proven to be diffieult and time-consuming

(Durkin, 1994; Dhar and Stein, 1997). Domain specialists often have difficulty expressing

exactly how they make their decisions and it is not easy to organize and translate the

knowledge expressed by the specialists into a representation that can be used in KBS. The

elicitation of decision mIes might be especially challenging with problem areas that

involve the interpretation of graphical information, as in the case of group-average

lactation-curve analysis. For a domain specialist it may be easy to take into account the
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large amount of infonnation represented by a graph and classify the entire graph or a part

of it as either nonnal or abnonnal. However, the high infonnation density of graphs

makes it very difficult for the specialist to determine appropriate numerical features or

attributes and to fonnulate rules for use in a KBS to automatically interpret the

infonnation described by the graph. An alternative approach to knowledge acquisition,

that might be more appropriate for domains with graphical infonnation, involves the

application of machine learning to example cases classified by the domain specialist

(Langley and Simon, 1995; Dhar and Stein, 1997). Machine-Iearning techniques are able

to automatically generate a description of the knowledge embedded in the example cases

to which they are applied. Decision-tree induction is an approach to machine 1earning that

is particularly weIl suited to support knowledge acquisition. Decision trees tend to be easy

to understand (Dhar and Stein, 1997; Kononenko et al., 1998; McQueen et al., 1995),

which allows for evaluation of the learned know1edge by specialists and enab1es end­

users of the KBS to view a justification of the decisions made. However, several

challenges with the application of machine learning have been identified, including the

decomposition of a complex prob1em into sub-problems, acquisition of an adequate

number of 1abeled example cases of sufficient quality, deriving potentially predictive

attributes, and analysis of the results oflearning (Langley and Simon, 1995; Verdenius et

al., 1997).

Research was initiated to explore the usefulness of machine-Iearning assisted

knowledge acquisition for group-average lactation-curve analysis. A large amount of

consultation with two dairy-nutrition specialists was required to elicit the domain

vocabu1ary, decompose the overall problem area into three sub-problems (removal of

outlier data, interpretation of group-average lactation curves, and diagnosis of detected

abnonnalities), and to develop a case-acquisition and decision-support system (CADSS)

(Pietersma et al., 2üü1a). This CADSS included a graphical user-interface for each sub­

prob1em, allowing users to interact with the information presented. In addition, the

specialists identified several classification tasks for each sub-problem, each with a

predefined number of classes. These tasks were included in the CADSS and functionality

was added to capture the classifications made by a domain specialist. Although most of

these tasks involved two classes, such as "True" and "False", the interpretation sub-
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problem included many tasks with three or four classes. For example, the group-average

peak production could be classified as "Low", "Normal", or "High". Detailed analysis of

the results of leaming with these multi-class tasks remains a challenge since commonly

used performance indices only apply to classification tasks involving two classes.

The goal of the project presented here was to develop a knowledge-based module

for implementation in the CADSS to partially automate the interpretation of group­

average lactation curves. The objectives were: 1) to induce decision trees for each

classification task involved with the interpretation of group-average lactation curves; 2) to

develop an approach to facilitate performance analysis for classification tasks involving

more than two classes; 3) to determine the ability of the induced decision trees to mimic

the classifications performed by the domain specialist; and 4) to verify with the specialist

the plausibility of the induced decision trees.

7.2 Materials and Methods

7.2.1 Data

A dairy-nutrition specialist used the CADSS to analyze and classify the milk­

recording data of 33 Holstein herds, enrolled with the provincial dairy herd analysis

service (PATLQ). These herds represented a wide range of milk production levels. Within

each herd and for each of three parity groups (parity 1, 2, and 3+), the lactation curve data

of individual cows was first filtered by the domain specialist to remove outliers. The

removal of outliers had been identified by domain specialists as the first step in the

overall analysis process and considered important for relative1y small sized dairy herds, to

avoid the interpretation of the group-average performance being biased by a few atypical

lactations or tests (Pietersma et al., 2üü1a). The CADSS allowed the specialist to compare

the lactation curves of individual cows with group-average and standard lactation curves

and view, for each individual test, additional information including the milk protein to fat

ratio and the somatic cell count. In the second step of the overall analysis process,

addressed in this research, non-outlier milk yield data was used to create, for each parity

group, a group-average lactation curve and a group-average peak production. The

specialist analyzed the group-average lactation descriptions for the 33 herds using the

CADSS, which led to a total of 99 interpretations.
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Figure 7.1 shows a screen capture of the CADSS module for the interpretation of

group-average lactation curves. The group-average lactation curve represents the

averaged non-outlier milk yield and days in milk values of individual cows within each of

ten stages of lactation from 5 to 305 days in milk. The group-average peak level and

timing, indicated with a diamond marker and both horizontal and vertical error bars in

Figure 7.1, represent the mean of the maximum milk yield for the first 120 days in milk

of individual cows, and the mean of the associated days in milk values, respectively. The

error bars shown represent the group-average value plus and minus the standard

deviation. In addition, the standard lactation curve and peak level are shown for the parity

group in question and the milk production level of the herd.

Figure 7.1 Screen capture of the case-acquisition software module to interpret group-average
lactation curves.

With the interpretation module, six main classification tasks had been identified by

the specialists (Pietersma et al., 200la). The first task involved the interpretation of the

performance after calving using the so-called "Start-up milk" defined as the group­

average milk yield for the first stage of lactation. The shape of the peak could then be

interpreted using the classification task "Peak description". The third and fourth task
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involved the interpretation of the group-average peak timing and peak level, respectively.

Finally, the shape of the group-average lactation curve after the peak could be interpreted

as a whole or in two sections. The entire curve or the first section after the peak could be

classified with the task "Slope mid lactation" and the second section after the peak with

the task "Slope late lactation". To support the interpretation of the slope after the peak,

three additional classification tasks were created. The specialist could include or exclude

the group-average milk yield at stage 9 and at stage 10. In addition, a transition point

between mid and late lactation could be identified (Figure 7.1).

For each task, a set of classes had been identified by the specialists (Pietersma et al.,

2001a). For example, the peak level could be classified as either "High", "Normal" ("N"

in Figure 7.1), "Low", or "Not Classifiable" ("NC" in Figure 7.1). Table 7.1 shows the

distribution of cases per class for each classification task, as interpreted by the domain

specialist. For example, for the task "Start-up milk", 60 lactation curves were considered

"Normal", while 31 curves were interpreted as "Low" and 7 as "High". For each task, one

case was interpreted as "Not Classifiable" due to limited data. In addition, for the tasks

"Include stage 9" and "Include stage 10", several cases were not applicable due to the

absence of a group-average milk yield for the stage in question. For many curves, the

specialist did not specify a transition point between mid and late lactation (class "None"

in Figure 7.1). In that case, the slope of the entire lactation after the peak was classified.

As a result, the task "Slope late lactation" only consisted of the 62 cases for which the

slope after the peak had been split into two sections.

Table 7.1 Classification tasks used by the domain specialist and number of cases per class.

Classification task Class 0 Class 1 Class 2 Class 3 NCt

Label
Cases

Label
Cases

Label
Cases

Label
Cases Cases

(#) (#) (#) (#) (#)
Start-up milk Normal 60 Low 31 High 7 1
Peak description Normal 62 No Peak 16 Plateau 20 1
Peak timing Normal 59 Early 21 Late 18 1
Peak level Normal 66 Low 28 High 4 1
Include stage 9 True 85 False 8 6
Include stage 10 False 65 True 11 23
Transition point None 36 Stage 5 16 Stage 6 41 Stage 7 5 1
Slope mid lactation Normal 45 Low 23 High 24 Flat 6 1
Slope late lactation Normal 13 Low 17 High 27 Flat 5 37

t NC = Not classifiable.
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7.2.2 Classification tasks for machine learning

In this research, seven of the nine classification tasks used by the domain specialist

consisted of more than two classes (Table 7.1). However, methods for detailed analysis of

the classification performance, as explained below, tend to be restricted to classification

tasks with two classes. Thus, the following approach was developed to enable the use of

two-class performance indices for multi-class tasks. Firstly, for tasks that consisted of a

"Normal" class and two classes representing deviations from "Normal" in opposite

directions, such as "High" and "Low" or "Early" and "Late", the three distinct classes

were used for machine learning. However, for performance analysis, the two classes

unequal to "Normal" were grouped into a single class called "Abnormal". Correctly

classified "Abnormal" and "Normal" cases were considered as true positives and true

negatives, respectively. With these tasks, misclassifications of, for example, a "Low" case

as "High" or vice versa were not expected to occur, unless the data had been clearly

mislabeled. This approach was used for the tasks "Start-up milk", "Peak timing", and

"Peak level". For example, with the task "Start-up milk", the 60 "Normal" cases were

considered as such during both decision tree induction and performance analysis.

However, during tree induction, the 31 "Low" and 7 "High" cases were kept as distinct

classes, whi1e during performance analysis, these two classes were grouped together as

"Abnormal" with a total of 38 cases (Table 7.2).

Table 7.2 Classification tasks used for machine learning and number of cases per class for
machine learning and for performance analysis.

Classification task

Start-up milk
No peak
Plateau peak
Peak timing
Peak level
Exclude stage 9
Single slope
Transition stage
Lactation slope
Flat slope

Normal Abnormal Abnormal
(machine learning and (machine learning) (performance
performance analysis) Class 1 Class 2 analysis)

Label
Cases

Label
Cases

Label
Cases Cases

(#) (#) (#) (#)
Normal 60 Low 31 High 7 38
False 82 True 16 16
False 62 True 20 20

Normal 59 Early 21 Late 18 39
Normal 66 Low 28 High 4 32
False 85 True 8 8
False 62 True 36 36

Stage 6 41 Stage 5 16 Stage 7 5 21
Normal 58 Low 40 High + Flat 62 102
False 51 True 11 11
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For the four other multi-class tasks, the distinction between the classes unequal to

"Normal" was not always obvious and misclassifications among these classes were

thought to be quite possible. For these tasks, decomposition into a two-step process with

two sub-tasks was used. For example, for the task "Peak description", the first sub-task

determined whether a "No peak" description applied with classes "True" and "False". For

the cases classified as "False" in the first step, a second sub-task determined whether the

description should be "Plateau peak", again with classes "True" or "False" (Table 7.2).

Cases classified as "False" in both steps represented a classification as "Normal" for the

peak description task. The classification task "Transition point" was also decomposed

into two steps: first to determine if a single slope after the peak should be considered, and,

for the negative cases, to determine the specifie transition stage, with stage 6 regarded as

the default transition point between mid and late lactation. The two classification tasks

"Slope mid lactation" and "Slope late lactation" were merged together and an additional

attribute was used to identify whether the slope pertained to mid lactation, late lactation,

or to a single slope after the peak. This resulted in 58 "Normal", 40 "Low", 51 "High",

and Il "Flat" cases. The merged task was then decomposed into two steps: first to

determine the slope with classes "High" and "Flat" combined (Table 7.2), and, for cases

considered either "High" or "Flat", a second task to determine whether the slope should

be considered as "Flat".

For the task "Include stage 9", most cases were classified as "True" which was

considered as the default situation (Table 7.1). To make the labeling of this task

consistent with the other two-class tasks in this study, the labels "True" and "False" were

reversed and the task was renamed as "Exclude stage 9" (Table 7.2). The domain

specialist considered the classification task "Include stage 10" as having little influence

on the classification of the slope after the peak. This task was, therefore, set by default to

"False" and excluded from machine learning.

7.2.3 Creation ofattributes

The domain specialist had access to complex graphieal information to interpret the

various aspects of the group-average lactation curves. The CADSS provided numerical

data only for the slope during mid and late lactation (Figure 7.1). Thus, specifie features

or attributes had to be derived for each classification task to allow the machine-Ieaming
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algorithm to leam to classify the information represented by the graphs. However, the

attributes representing the raw data used to create the group-average and standard curves

presented in the CADSS, such as the group-average milk yield, standard deviation of the

milk yield, and days in milk for each of the ten stages of lactation, were expected to

provide only limited discrimination ability. Thus, to make machine leaming feasible with

the relatively small number of example cases available for leaming, considerable time

was spent to craft attributes that were expected to be useful to discem between the

classes.

With the CADSS, the domain specialist could compare the group-average

performance standard lactation curves and peak levels that were used as benchmarks.

Thus, to support machine leaming, attributes were derived to represent this type of

comparison. For example, for the task "Start-up milk", such attributes consisted of the

deviation of the group-average start-up milk from the standard start-up milk, expressed in

absolute terms, in relative terms, and as the number of standard deviations. Table 7.3

shows a listing of the attributes derived for machine leaming, with codes such as "SM"

for "Start-up milk", to indicate the classification task for which the attributes were used.

In addition to the attributes representing the deviation from a benchmark, several

attributes related to the shape of the group-average curve were created. For example, for

the start-up milk task, the domain specialist might take into account the group-average

start-up milk yield in relation to the maximum milk yield of the group-average curve.

Thus, a start-up milk yield expected with the observed maximum milk yield was

estimated by adjusting the maximum group-average milk yield for stages two and three

with the difference between the maximum and start-up milk yield for the standard curve.

Three additional attributes were created, representing the deviationof the observed start­

up milk yield from this expected value in absolute, relative, and number of standard

deviation terms (Table 7.3). The attributes representing the deviation from benchmark

performance were proposed by the system developer, but consultation with the domain

specialist was required to create attributes related to the shape of the group-average

lactation curve.
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Table 7.3 Listing of potentially predictive attributes for each of the classification tasks used for
machine learning.

Taskt Description of attribute or attributes

SM Absolute (abs.), relative (reL), and number of standard deviations (numSD) deviation
ofthe group-average lactation curve (GrpAvgCrv) milk at stage 1 from the
standard curve (StdCrv) milk at stage 1

SM Abs., rel., and numSD deviation of GrpAvg milk at stage 1 from prediction based on
maximum (max.) GrpAvg milk at stage 2 and 3 and the shape of StdCrv

NP, PP Stage 1 has max. GrpAvgCrv milk
NP, PP Abs., rel., and numSD deviation of GrpAvg milk at stage 1 from max. GrpAvg milk
NP, PP Slope !inear regression (LinRegr) GrpAvgCrv from stage 1 to 3, 1 to 4,2 to 3,2 to 4
NP, PP Slope LinRegr through GrpAvgCrv from stage 1 to max. milk stage or from stage 1 to 2
NP, PP Deviation slope LinRegr through GrpAvgCrv from slope StdCrve for stage 2 to 3 and 2 to 4
NP,PP,PT,PL Days in milk, SD days in milk, milk, SD milk, and number of tests of GrpAvg peak
PT Parity group
PL Abs., rel., and numSD deviation of GrpAvg peak milk from Std peak
PL Abs., rel., and numSD deviation of max. GrpAvgCrv milk from max. StdCrv milk
E9 SD and number of tests GrpAvgCrv at stage 9
E9 Abs., rel., and numSD deviation of GrpAvgCrv milk at stage 9 from prediction based on

LinRegr through previous 2 and previous 3 stages
SS Average (avg.) SD of stages of GrpAvgCrv after peak
SS Max. numSD deviation of GrpAvgCrv milk from LinRegr GrpAvgCrv after peak
SS Rel. deviation of root mean squares error (RMSE) for no transition point from minimum

RMSE for any transition point
SS Max. difference between rel. deviation of slope LinRegr GrpAvgCrv from slope of StdCrv

for mid and late lactation, for transition points at stage 5, 6, and 7
SS, TS Rank of RMSE of LinRegr GrpAvgCrv after peak or avg. RMSE for two regression !ines

for mid and late lactation for transition points at stage 5, 6, and 7
TS Rank of the avg., max., or difference for the rel. deviation of slope LinRegr GrpAvgCrv

from slope of StdCrv for mid and late lactation, for transition points at stage 5, 6, and 7
LS, FS Type of section of GrpAvgCrv after peak (mid + late lactation, mid lactation, late lactation)
LS, FS Avg. SD of GrpAvgCrv for section
LS, FS Abs., rel., and numSD deviation slope GrpAvgCrv from slope StdCrv for section
FS Slope GrpAvgCrv for section

t Task: classification task for which attributes were used: SM = start-up milk; NP = no peak; PP = plateau
peak; PT = peak timing; PL = peak level; E9 = exclude stage 9; SS = single slope after peak; TS = transition
stage between mid and late lactation; LS =normal or abnormal slope for mid + late, mid, or late lactation;
FS = fiat slope for mid + late, mid, or late lactation.

For sorne cases, certain attributes had attribute values that could not be determined.

For exarnple, the standard deviation of the group-average rnilk yield at a particular stage

in lactation for which only one test was available could not be calculated. For such

situations, a special value, such as 9999, was used to indicate the irrelevance (Pietersrna

et al., 2001b; Witten and Frank, 2000).
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7.2.4 Decision-tree induction algorithm

In this study decision trees were induced with CART for Windows version 3.6

developed by Salford Systems (Breiman et al., 1984; Steinberg and Colla, 1997). The

algorithm learns in a top-down fashion, by splitting the training data into two subsets

recursively, choosing the attribute and value that is most successful in discriminating

among the classes of the classification problem at each split. The CART algorithm

continues splitting subsets until a maximum tree is reached, which is pruned back to the

optimal size, determined through an internaI training and testing procedure, to avoid

overfitting the training data. The resulting decision tree consists of a series of decision

nodes that, during classification, guide each new case to a leaf node indicating the

predicted class.

Preliminary experiments were performed to tune the settings of the parameters of

the algorithm to the type of classification tasks involved in this research. The same

parameter configuration was used for aIl classification tasks and consisted of the so-called

"Gini" splitting and pruning criterion, the minimum number of cases at a child node set at

3, and the minimum number of cases at a parent node set at 6. In addition, the parameter

for the prior probability of the class representing a normal situation was set to the

observed frequency in the data set for that class, while equal prior probability values were

used for each of the remaining classes. The misclassification cost parameters were used to

focus the decision-tree algorithm on correctly classifying one particular class over other

classes. For the remaining parameters of the algorithm, the default settings were used. A

thorough description of the CART algorithm can be found in Breiman et al. (1984) and

Steinberg and Colla (1997).

7.2.5 Training and testing method

For relatively small data sets, the ten-fold cross-validation approach to training and

testing has often been recommended (Breiman et al., 1984; Weiss and Kulikowski, 1991).

With this approach, the entire data set is divided into ten subsets or folds, and each fold is

used once for testing the classifier trained from the combined data of the remaining folds.

The cross-validation performance can then be used as an estimate of the performance of

the final classifier that is generated from the entire data set to classify new cases in the
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real world. However, in preliminary experiments, ten-fold cross-validation, with

approximately 10 cases in each test fold, resulted in a large variability in the performance

estimates from fold to fold. Thus, five-fold cross-validation was used, with two times as

many cases per test set than were available with ten-fold cross-validation, and less

variability in the performance estimates. Although five-fold cross-validation uses 80% of

the entire data set for training (instead of 90% with ten-fold cross-validation), the

performance was considered a fairly good estimate of the performance of classifiers

generated from the entire data set. For each classification task, entire herds were

randomly assigned to folds to avoid example cases of the same herd being part of both the

training and the test sets, potentially leading to a biased estimate of the performance on

data from entirely new dairy herds (Kubat et al., 1998; Pietersma et al., 2001b). To

achieve approximately the same class distribution in each fold as in the entire data set,

herds were first ranked according to the prevalence of the classes, followed by assigning

the first five herds to folds one through five, respectively, and so on.

7.2.6 Performance analysis

With machine learning, accuracy, defined as al1 correctly classified cases as a

proportion of al1 classified cases, is often used as a criterion to assess the performance of

the generated classifiers (Weiss and Kulikowski, 1991; Witten and Frank, 2000).

However, in real world applications, sorne types of misclassification may be worse than

others. For example, it may be more costly to classify a person with a serious disease as

healthy than to classify a healthy person as having that disease. Machine-learning

algorithms can often deal with such situations by focussing more on correctly classifying

one particular class at the expense of misclassifying the other class or classes.

Performance indices have been developed to deal with this trade-off, but tend to be

limited to classification tasks for which a case is either positive or negative. In this study,

most classification tasks consisted of more than two classes, but an approach was

developed to enable the use of performance analysis tools designed for two classes with

multi-class problems, as explained above.

With classification tasks involving two classes, true positives (TP) and true

negatives (TN) are correct classifications, a false positive (FP) is an actual negative case

incorrectly predicted as positive, and a false negative (FN) is an actual positive case
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predicted as negative. To allow for detailed analysis of the performance of the generated

classifiers, the following four performance indices were used: 1) the true positive rate (TP

rate), defined as TP 1 (TP + FN); 2) the false positive rate (FP rate), defined as FP 1 (FP +

TN); 3) the predicted value positive (PVP), defined as TP 1 (TP + FP); and 4) the positive

prediction rate (PPR), defined as (TP + FP) 1 (TP + FP + FN + TN) (Pietersma et al.,

2001b; Swets, 1988; Weiss and Kulikowski, 1991). In sorne domains, the TP rate is

referred to as the sensitivity and the FP rate as 1 - specificity. The prevalence of positive

cases or prior probability of positives was estimated from the available training data as

the actual positives as a proportion of all cases. The TP rate and FP rate are both

independent of the prevalence of positive cases and are, thus, the characteristics of the

classifier (Swets, 1988). Conversely, the PPR and PVP depend on the prevalence of

positive cases and can be mathematically derived from the TP rate and FP rate for a given

prevalence level using:

PPR = Prevalence ofpositives x TP rate + (l - Prevalence) X FP rate

PVP =Prevalence ofpositives X TP rate / PPR.

Relative operating characteristic (ROC) curves (Swets, 1988) were used to visualize

the trade-off between correctly classifying normal cases and correctly classifying

abnormal cases. An ROC curve consists of the TP rate plotted against the FP rate. The

point (0,100) represents perfect classification performance. Thus, the closer a curve

approximates a line connecting (0,0), (0,100) and (100,100), the better the performance.

Each point on the ROC curve represents a classifier with a particular trade-off between

sensitivity and specificity. To generate an ROC curve, a series of ten decision trees was

generated using ten different settings for the CART parameters specifying the cost of

mistakenly classifying an abnormal case as normal. The cost of classifying a normal case

as abnormal was fixed at one.

For classification tasks consisting of three classes, the same value was used for the

two misclassification cost parameters associated with misclassifying an abnormal case as

normal. In addition, a very high value was used for the two cost parameters associated

with misclassifying one abnormal class as the other, e.g. classifying a "High" peak level

as "Low" and vice versa, to entirely avoid such misclassifications. The five-fold cross-
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validation provided five estimates of the FP rate and the TP rate, for each of the ten

misclassification cost levels. These five estimates were averaged at each cost level,

resulting in ten data points in ROC space, which were connected to get an ROC curve

(Bradley, 1997).

7.2.7 Final decision trees inducedfrom the entire data set

In a practical application, the desired trade-off between sensitivity and specificity

might depend on factors such as the prevalence of positive cases for a particular herd and

end-user preference regarding the number of false positives. To allow end-users to choose

classifiers at different points along the ROC curve, a series of three final decision trees

associated with an increasing cost of misclassifying abnormal cases was induced from the

entire data set for each classification task. These three trees represented a low, medium,

and high tendency of classifying new cases as abnormal. The medium tendency trees

were chosen to represent a trade-off between sensitivity and specificity that would result

in a PPR approximately equal to the observed prevalence of abnormal cases, given a

population with that prevalence.

To evaluate the plausibility of these final decision trees, quantitative and qualitative

assessments were carried out. Although the true performance with new data of a decision

tree induced from the entire data set can only be estimated, the so-called resubstitution

performance can be determined through testing on the training set (Witten and Frank,

2000). Resubstitution FP and TP rates were used to quantitatively verify how closely the

classification performance of the decision trees induced from the entire data set resembled

the performance of the cross-validated decision trees. This allowed for manual adjustment

of the level of pruning of these trees to achieve the intended sensitivity versus specificity

trade-off (Pietersma et al., 2001b). In addition, the final decision trees were evaluated by

the domain specialist to qualitatively verify the plausibility of the induced rules. This

allowed for the removal of counter-intuitive decision nodes or use of alternative splits

provided by the CART algorithm.
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7.3 Results

7.3.1 Classification performance

7.3.1.1 Start-up milk

Good classification performance was obtained for the task "Start-up milk", with

89% TP rate achieved at 3.6% FP rate (Figure 7.2). Three different points along the ROC

curve, each indicated with a marker in Figure 7.2 and associated with a different setting

for misclassification costs, were chosen to induce final decision trees from the entire data

set representing a low, medium, and high tendency of classifying new cases as abnormal.
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Figure 7.2 Relative operating characteristic curves for 10 classification tasks with markers
showing the cross-validation performance for each induced decision tree.

The misclassification cost settings used to induce trees with a low, medium, and

high tendency of classifying new cases as abnormal were 0.19, 0.5, and 1, respectively,

and these final trees consisted of 3, 4, and 4 leaf nodes, respectively (Table 7.4). The

cross-validation estimates of FP rate for this task ranged from 4 ta 10%, and the estimates

for the TP rate ranged from 89 to 91 %. Given the observed 39% prevalence of abnormal

classes, the three decision trees were expected to classify 37%, 41%, and 42%,

respectively, of the cases as abnormal (PPR). Of those cases predicted as abnormal, 94%,

88%, and 86%, respectively, were expected to be truly abnormal (PVP).
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Table 7.4 Cross-validation performance of decision trees induced for each classification task and
associated with a low, medium, or high tendency of classifying new cases as abnormal.

Classification Preval- Type of Cost Leaf False positive True positive PPR PVP
task encet tree FN nodes rate rate

(%) (#) (%) (s.e.) (%) (s.e.) (%) (%)
Start-up milk 39 Low 0.19 4* 3.6 (3.6) 88.9 (8.3) 36.9 94.0
Start-up milk 39 Medium 0.5 4 8.4 (3.8) 91.4 (8.6) 40.8 87.5
Start-up milk 39 High 1 4 9.9 (4.7) 91.4 (8.6) 41.7 85.5

No peak 16 Medium 1.5 3 1.1 (1.1) 80.0 (13.3) 13.7 93.2
Plateau peak 24 Medium 1 3 8.1 (4.6) 80.0 (9.5) 25.3 75.8

Peak timing 40 Low 0.13 3 1.7 (1.7) 76.6 (5.4) 31.7 96.8
Peak timing 40 Medium 2 5 8.8 (5.0) 81.6 (5.5) 37.9 86.1
Peak timing 40 High 4 7* 21.9 (8.3) 84.5 (4.8) 46.9 72.0

Peak level 33 Low 0.6 7 7.4 (2.3) 77.6 (8.7) 30.6 83.8
Peak level 33 Medium 0.8 5* 10.7 (2.0) 84.3 (5.3) 35.0 79.5
Peak level 33 High 5 4 12.1 (2.9) 90.5 (3.9) 38.0 78.6

Exclude stage 9 9 Medium 5 5 17.6 (1.7) 40.0 (18.7) 19.6 18.3
Single slope 42 Medium 1 4 35.8 (8.5) 61.9 (9.0) 46.8 55.6
Transition stage 35 Medium 1.4 5 22.5 (9.8) 55.0 (9.4) 33.9 56.8

Lactation slope 64 Low 0.1 7* 10.2 (6.1) 86.3 (4.5) 58.9 93.8
Lactation slope 64 Medium 0.5 5 15.5 (5.5) 96.0 (1.9) 67.0 91.7
Lactation slope 64 High 2 4 18.8 (4.0) 98.0 (1.2) 69.5 90.3

Flat slope 18 Low 0.3 2 4.0 (4.0) 80.0 (12.2) 17.7 81.4
Flat slope 18 Medium 1.5 4* 6.0 (4.0) 80.0 (12.2) 19.3 74.5
Flat slope 18 High 5 2 13.6 (2.0) 90.0 (10.0) 27.3 59.3
t Prevalence: preValence of abnormal class or classes; Cost FN: cost of false negatives relative to cost of
false positives; PPR: positive prediction rate; PVP: predictive value positive.
* Size of decision tree was manually adjusted.

Figure 7.3 shows the decision trees for the "Start-up milk" classification task,

induced from the entire data set and representing a low (tree A), medium (tree B), and

high (tree C) tendency of classifying new cases as abnormal. The first decision node of

each tree shows the class distribution observed in the entire data set for the classes

"High", "Normal", and "Low", and the attribute and threshold value considered by the

decision-tree induction algorithm as being most successful to discriminate between the

three classes. The two subsets resulting from the chosen split are considered as either a

final leaf node, in which case the predicted class is shown, or split again using another

attribute-value combination.
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Figure 7.3 Decision trees for the "Start-up milk" classification task with a low (A), medium (8), and
high (C) tendency of classifying new cases as abnormal.
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These three trees illustrate how the trade-off between correctly classifying normal

and abnormal cases is made by the algorithm. Decision trees A and B use the same

attribute and value at the first decision node (relative deviation of start-up milk from the

standard curve ~ -5.5%), predicting 31 cases as "Low", while decision tree C uses a

slightly more aggressive split (absolute deviation of start-up milk from standard curve ~­

1.65 kg) predicting 34 cases as "Low". The second decision node for tree A (absolute

deviation of start-up milk from standard curve ~ 2.25 kg) predicts 59 cases as "Normal",

while decision tree B uses a lower threshold value, 1.8 kg, for the same attribute, leading

to the prediction of 54 cases as "Normal". Thus, by using slightly different attributes and

threshold values, each decision tree makes a different trade-off between correctly

classifying normal and abnormal cases. For the entire data set, the decision trees with a

low, medium, and high tendency of classifying new cases as abnormal predicted 35, 39,

and 41 cases, respectively, as either "High" or "Low" (Figure 7.3).

7.3.1.2 No peak and Plateau peak

For the "No peak" classification task the ROC curve revealed that fairly good

performance was obtained (Figure 7.2), with 80% TP rate achieved at 1% FP rate (Table

7.4). Somewhat poorer classification performance was obtained for the "Plateau peak"

task, with 80% TP rate achieved at 8% FP rate. For each of these two classification tasks,

the PPR values of the trees with different misclassification cost settings were very similar.

Thus, in both instances, only a single decision tree was generated from the entire data set.

The trees for both tasks had an expected PPR fairly similar to their prevalence of positive

cases. The PVP was very good (93%) for the "No Peak" task and reasonable (76%) for

the "Plateau peak" task (Table 7.4).

7.3.1.3 Peak timing and Peak level

Fairly good performance was obtained for the "Peak timing" task. A 77% TP rate

was achieved at 2% FP rate, while 85% TP rate required a relatively high FP rate of 22%

(Table 7.4). The lowest misclassification cost level for the "Peak lever' task showed 78%

TP rate, which was similar to the one achieved for the "Peak timing" task, but at a much

higher FP rate, 7%, instead of 2%. However, the ROC curve for "Peak level" crossçd the

curve for "Peak timing" (Figure 7.2), reaching 91 % TP rate at 12% FP rate. For both
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classification tasks, three decision trees were induced from the entire data set with

reasonable values for PPR and PVP (Table 7.4).

7.3.1.4 Exclude stage 9, Single slope, and Transition stage

The cross-validation experiments for the "Exclude stage 9" task resulted in poor

classification performance (Figure 7.2) and a very high standard error for the TP rate

estimate (Table 7.4). This may have been caused by the very small number of positive

cases (8). For this classification task, several decision trees were induced from the entire

data set at different misclassification cost levels and shown to the domain specialist for

evaluation. The decision tree induced at cost level 5 with 5 leaf nodes was considered as

most plausible. A similar situation occurred for the "Single slope" and "Transition stage"

tasks. For these tasks poor classification performance was obtained (Figure 7.2), and, for

each task, a single decision tree was chosen in consultation with the domain specialist

(Table 7.4). These three classification tasks are only of indirect importance for the

interpretation of group-average lactation curves. They allow for the calculation of a slope

through linear regression for mid, late, or mid and late lactation combined, thus

supporting the classification of the slope of the lactation curve after the peak. Of these

tasks, determining whether "Single slope" is "True" or "False" seems most important,

since the prediction of a single slope precludes the classification of mid lactation as being

different from late lactation. Thus, for the task "Single slope", a plausible final tree was

chosen with a relatively low tendency to predict class "True". This tree had a

resubstitution FP rate of Il % with 61 % TP rate, incorrectly classifying only 6 cases of the

entire data set as "True".

7.3.1.5 Lactation slope and Flat slope

Good classification performance was obtained for the "Lactation sIope" and "Flat

slope" tasks, with TP rates higher than 80% at relatively low FP rates (Figure 7.2). For

each task, a series of three decision trees was induced from the entire data set with

reasonable PPR and PVP values, except for the tree for "Flat slope" with a high tendency

of classifying new cases as "True" (Table 7.4). This tree showed a relatively high FP rate

considering the low prevalence of positive cases, resulting in a poor value (59%) for the

PVP.
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7.3.2 Quantitative evaluation ofthe plausibility ofthe final decision trees

Quantitative assessment of the plausibility of the decision trees induced from the

entire data set showed that for most of these trees, the resubstitution performance was

very similar to the resubstitution pp and TP rates observed in the cross-validation. For

example, for the "Start-up milk" task, the final tree for the medium tendency of indicating

a case as abnormal had a resubstitution FP rate of 3.3% and a TP rate of 97.4%, very

similar to the average resubstitution performance observed with cross-validation, with

values of 2.6% and 98.4%, respectively (Table 7.5). However, for 5 of the 17 final trees

induced for the main classification tasks, the resubstitution performance of the final tree

was quite different from what was expected based on the cross-validation. For example,

for the "Start-up milk" task, the misclassification cost setting associated with a low

tendency of predicting cases as abnormal resulted in a final tree with a resubstitution FP

rate of 5.0%, which was much higher than the average 1.7% pp rate of the cross­

validation, and also higher than the 3.3% resubstitution pp rate of the final tree for the

medium tendency (Table 7.5). This may have been caused by the internaI lü-fold cross­

validation used by CART to determine the appropriate level of pruning of the maximum

tree, which can result in smaller or larger trees due to the differences in training data

between the entire data set and the smaller cross-validation data sets. To better reflect the

desired sensitivity versus specificity trade-off achieved in the cross-validation for the

series of three decision trees, a larger tree with 4 instead of 3 leaf nodes, with an

associated resubstitution FP rate of 1.7% was manually chosen from the decision trees

provided by CART (Table 7.5). This means that one less decision node was pruned from

the maximum tree than considered optimum by CART. For four additional final trees, the

level of pruning of the maximum tree induced by CART was manually adjusted.

Although these pruning adjustments were somewhat subjective, they were considered

important to achieve a series of three final trees for each classification task, with an

increasing tendency of indicating a new case as abnormal and the desired trade-off

between sensitivity and specificity.
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Table 7.5 Size and resubstitution performance of cross-validation decision trees and of optimal
and size-adjusted decision trees induced from the entire data set.

Cross-validation Optimum size Adjusted size
Classification Type of Leaf FPt TP Leaf FP TP Leaf FP TP
task tree nodes rate rate nodes rate rate nodes rate rate

(#) (s.e.) (%)(s.e) (%)(s.e.) (#) (%) (%) (#) (%) (%)

Start-up milk Low 3.6 (0.4) 1.7 (0.4) 96.7 (0.8) 3 5.0 94.7 4 1.7 89.5
Start-up milk Medium 3.8 (0.2) 2.6 (0.8) 98.4 (1.0) 4 3.3 97.4
Start-up milk High 3.6 (0.2) 4.3 (0.7) 100.0 (0.0) 4 6.7 100.0

No peak Medium 3.0 (0.3) 0.6 (0.4) 95.3 (1.9) 3 0.0 93.8
Plateau peak Medium 2.8 (0.2) 4.4 (1.5) 85.0 (1.5) 3 3.2 85.0

Peak timing Low 3.8 (0.2) 0.0 (0.0) 85.7 (1.4) 3 1.7 84.6
Peak timing Medium 4.8 (0.4) 2.6 (2.6) 92.8 (2.9) 5 1.7 92.3
Peak timing High 5.6 (1.0) 9.3 (2.9) 97.5 (2.5) 9 3.4 97.4 7 13.6 97.4

Peak level Low 5.4 (0.5) 1.9 (1.5) 90.2 (2.9) 7 1.5 84.3
Peak level Medium 4.0 (0.3) 5.0 (1.7) 96.4 (1.7) 7 1.5 84.3 5 6.1 96.9
Peak level High 3.6 (0.2) 7.7 (1.1) 100.0 (0.0) 4 9.1 100.0

Lactation slope Low 6.4 (0.7) 0.4 (0.4) 88.1 (4.1) 8 1.7 93.1 7 1.7 88.2
Lactation slope Medium 4.4 (0.6) 3.2 (1.2) 98.1 (0.8) 5 6.9 98.0
Lactation slope High 3.4 (0.2) 6.4 (0.9) 100.0 (0.0) 4 10.3 99.0

Flat sIope Low 2.0 (0.0) 0.0 (0.0) 83.9 (4.7) 2 0.0 81.8
Flat slope Medium 2.4 (0.4) 0.5 (0.5) 88.3 (5.3) 2 0.0 81.8 4 2.0 100.0
Flat slope High 2.0 (0.0) 8.4 (2.2) 100.0 (0.0) 2 9.8 100.0

t FP rate: false positive rate; TP rate: true positive rate.

7.3.3 Evaluation of learned knowledge by domain specialist

The final decision trees induced from the entire data were evaluated by the domain

specialist to verify their plausibility for application with new data. This resulted in the

adjustment of 6 different decision nodes in 6 of the 20 decision trees: 3 decision nodes

were removed and 3 decision nodes were replaced with an alternative attribute and

threshold value, provided by the CART algorithm. For example, for the tree with a low

tendency of classifying new cases as abnormal for the "Start-up milk" task in Figure 7.3,

the decision node A3 (relative deviation of start-up milk from standard curve:S 8.5%) was

not expected to properly classify new data. This node classifies cases with a value below

this threshold as "High" and cases above this threshold as "Normal", which was

considered as counter-intuitive. This may have been due to sorne inconsistencies in the

labeling of the data, causing the algorithm to choose this split and class assignment at this

section of the tree. This decision node was replaced with an alternative split provided by

CART (absolute deviation from the predicted group-average start-up milk :S 2.4 kg) with
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cases below and above this threshold classified as "Normal" and "High", respectively.

Although this alternative split resulted in one additional false negative case for the entire

data set, the decision node and class assignment was considered as plausible by the

domain specialist and expected to lead to improved classification performance on new,

unseen, data.

7.4 Discussion

The cross-validation experiments resulted in good classification performance for the

decision trees of the main classification tasks (start-up milk, no peak, plateau peak, peak

timing, peak level, lactation slope, and fiat slope). For these tasks, decision trees with a

PPR similar to the prevalence of positive cases observed in the entire data set had a TP

rate of at least 80% and a PVP of at least 75%, which was considered very reasonable.

For the classification tasks indirectly affecting the classification of the lactation slope

after the peak (exclude stage 9, single slope, and transition stage), the cross-validation

performance was very poor. This may have been caused by factors such as the small

number of cases in the minority class, lack of predictive attributes, and inconsistencies in

the labeling by the domain specialist. For each of these three tasks, the expertise of the

domain specialist was required to choose a decision tree that was expected to perform

reasonably well on new data, from alternative trees generated by the decision-tree

induction algorithm.

For three of the seven multi-class tasks available to the domain specialist, use of

commonly employed two-class performance indices and ROC curves was possible by

considering the classes other than "Normal", as "Abnormal" during performance analysis.

However, the remaining four multi-class tasks had to be reformulated into a series of two­

or three-class tasks. This additional task decomposition reduced the complexity for

machine learning and also facilitated the induction of decision trees with a different trade­

off between correctly classifying normal and abnormal cases. However, this came at the

expense of additional cross-validation experiments and analyses of results of leaming.

For sorne tasks and misclassification cost settings, the decision tree induced from

the entire data set had a size and resubstitution performance very different from the

average of the cross-validation trees, which was also observed in a previous study
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(Pietersma et al., 200Ib). For these situations, the pruning level of the maximum tree was

manually adjusted to better reflect the desired trade-off between correctly classifying

normal and abnormal cases for each of the three final decision trees of a classification

task. However, these adjustments required time-consuming analysis of the size and

resubstitution performance of both the cross-validation trees and the decision trees

induced from the entire data set.

In this study, relatively small-sized decision trees, two to seven leaf nodes, were

induced. This was likely due to the detailed decomposition of the problem into

classification tasks with relatively low complexity. Less decomposition might have been

possible as well, but would have involved more complex class descriptions, such as

"High peak, Low slope mid lactation, and High slope late lactation". However, due to the

increased complexity, such an approach was expected to require many more example

cases to achieve the same classification performance.

Evaluation of the final trees by the domain specialist was considered an important

step in the overall process. Several counter-intuitive decision nodes, which tended to

occur at the end of the decision trees with limited data in the parent nodes, were manually

removed or replaced with a substitute. These adjustments reduced the resubstitution

performance on the entire data set, but, relying on the expertise of the domain specialist,

were expected to lead to improved performance with new data.

For five of the seven main classification tasks, the machine-Iearning approach to

knowledge acquisition allowed for the induction of a series of classifiers with an

increasing tendency to classify a new case as abnormal. Implementation of these

alternative decision trees for each classification task in the final KBS for group-average

lactation-curve analysis allows end-users to move along the ROC curve and use the

classifiers with the desired sensitivity versus specificity trade-off. For dairy herds with

many abnormalities, the user may want to focus on the most obvious problems and use

decision trees with a low tendency of indicating abnormal situations. Converse1y, for

dairy herds with few abnormalities, use of decision trees with a high tendency of

indicating abnormal situations would support the user to find more subtle deviations,

although at the expense of an increased probability of false positives.
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In the final .KBS, the classifications of the group-average lactation curves are used

III a subsequent software module to determine potential management deficiencies

(Pietersma et al., 2001a). Given the good classification performance of the decision trees,

end-users of the final .KBS might rely on the interpretations made automatically and skip

the interpretation module to move directly to the final module for the diagnosis of

detected abnormalities. However, end-users are able to view the group-average lactation

curves and, if necessary, override the classifications made automatically and choose

classes different from those suggested.

Although machine-Iearning assisted knowledge acquisition proved to be a very

feasible approach to support the development of .KBS in this research, several limitations

were encountered. First of aIl, since previously classified example cases were not

available, case-acquisition functionality had to be added to a .KBS prototype to enable a

domain specialist to analyze and classify a substantial number of lactation curves

efficiently (Pietersma et al., 2001a). Secondly, the preprocessing of acquired example

cases, including the creation of potentially predictive attributes, the learning experiments

to tune algorithm parameters and to determine the expected performance with new data,

and the evaluation of the learned knowledge proved to be quite time-consuming. Finally,

although machine leaming automated part of the knowledge acquisition process, a large

amount of interaction between system developer and domain specialists remained

necessary. Input from the specialist was required to decompose the overall problem into

sub-problems, to identify classification tasks and their classes, to analyze and classify

example cases, to support the creation of potentially predictive attributes, and for the

qualitative evaluation of the plausibility of the results of learning. Thus, as with

traditional interview-based knowledge acquisition, the ability of the system developer to

communicate with the domain specialist was considered a critical success factor in

machine-Ieaming assisted .KBS development.

In this study, the problem domain involved analysis of graphical performance

representations, such as the slope after the peak, and the interpretation of new

performance indices, such as the description of the lactation curve around peak

production. Both aspects make it very difficult for a domain specialist to provide exact

mIes describing how to interpret the data. The interpretation of graphical performance

154



representations tends to be difficult to translate into rules using numeric performance

indices for use in a computer system. AIso, when dealing with a nove! approach to

analyzing data, the domain knowledge is poorly formalized and new knowledge must be

created to solve the problem (Weiss and Kulikowski, 1991). Thus, for problem areas

involving interpretation of graphical performance representations or novel performance

indices, machine-Ieaming assisted knowledge acquisition is expected to be more useful

than the traditional, interview-based, approach to KBS development.

7.5 Conclusions

This research suggests that automaticaIly induced decision trees are able to closely

match the interpretation of group-average lactation curves as performed by a domain

specialist. However, considerable effort can be required for data preprocessing, for

machine-Ieaming experiments to determine the expected classification performance, and

for evaluation of the leamed knowledge. In addition, the interaction between system

developer and domain specialist remains essential to achieve successful results. The

induction of a series of three decision trees for each classification task allowed end-users

of a final KBS to select classifiers with the appropriate tendency of classifying aspects of

the lactation curve as abnormal. The machine-Ieaming assisted approach to knowledge

acquisition is expected to be appropriate in other areas of agriculture as weIl, especiaIly

when the problem domain involves analysis of graphical performance representations or a

novel approach to data analysis.
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8 General Discussion

The main goal of this research was to explore the use of machine learning to

support the development of knowledge-based systems in dairy farming. The preceding

five chapters reported on the investigations carried out to achieve this goal. This chapter

addresses several main points of discussion that emerged from these investigations. These

points focus on the method to estimate classification performance, the advantages and

limitations of machine-Ieaming assisted knowledge acquisition, and suggestions for

further system development and research.

8.1 Method of performance estimation

In this research, the cross-validation approach to training and testing with five or

ten folds was used to estimate the performance of classifiers generated with machine

learning. With this approach, five or ten independent performance estimates were

obtained, which allowed for the calculation of a mean and standard error of the

performance indices used. However, in this research, a large amount of variability was

observed for the estimates of the true positive rate and, to a lesser degree, also for the

mean true positive rate covering a range of false positive rates (TP*). A high standard

error indicates that the mean performance estimate is not very precise: the true

performance on new data could be substantially higher or lower than estimated.

For the final decision trees generated in this research, the standard error of the true

positive rate estimates was on average 7.7% and ranged from 1.2 to 18.7%. Figure 8.1

illustrates how this standard error varied with the number of positive example cases

available per fold. These results suggest that the standard error is negatively correlated

with the number of positive cases per fold. The highest values for the standard error of the

true positive rate occurred for the tasks "Exclude stage 9", "No peak", and "Flat

lactation" with, on average, only 1.6, 3.2, and 2.2 positive cases available per fold. The

lowest standard errors occurred for the task "Slope lactation", with 20.4 positive cases per

fold. These results suggest that especially with less than five positive cases per fold, the

standard error is likely to be very high.
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Figure 8.1 Variation of the cross-validation estimates of the standard error of the true positive rate
with the number of positive examples available per cross-validation fold.

For the filtering of lactations of individual cows, with only 34 positive cases

available out of 1428 lactations, ten-fold cross-validation was used (on average, 3.4

positive cases per fold). For this task, five-fold cross-validation might have been a better

choice, likely reducing the fairly high standard errors of the true positive rate (8.8%,

8.0%, and 4.5% for the low, medium, and high filtering intensity levels, respectively). For

the interpretation tasks, five-fold cross-validation was used, with, for sorne tasks, only

two or three positive cases per fold. However, reducing the number of folds to less than

five was considered inappropriate. With the number of folds below five, the individual

folds have less than 80% in common with the entire data set, resulting in performance

estimates that may not be very representative of the performance of the classifier

generated from the entire data set.

This study did not include machine-Iearning experiments for the diagnosis module

of the decision-support system described in Chapter 4. Analysis and classification of the

33 herds by the domain specialist would result in 33 example cases for each of the

identified classification tasks of this module. Such a low number of cases is clearly not

enough for reliable performance estimates using k-fold cross-validation. For these tasks,

alternative approaches to training and testing could be used, such as bootstrapping and

leave-one-out (Weiss and Kulikowski, 1991). However, with these approaches, only a
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single relative operating characteristic curve can be calculated, which does not allow for a

direct estimate of the variability associated with such a curve or use of analysis of

variance with machine-Iearning experiments. A more basic problem with very small data

sets is that machine-Iearning techniques may not be able to generate a plausible

knowledge description from the few example cases available, except for very simple

classification tasks.

8.2 Achieved classification performance

For the main classification tasks of the interpretation of the group-average lactation

curves (excluding the tasks supporting the interpretation of the slope after the peak),

much better performance was achieved than for the tasks to filter lactations and tests of

individual cows, even though a much smaller number of example cases was available. For

the interpretation tasks, the size of the final decision trees (on average 4.3 leaf nodes) was

smaller than the size of trees induced for the filtering tasks (on average 8.0 leaf nodes).

These results suggest that the interpretation tasks were not as complex as the filtering

tasks. The interpretation tasks were the result of detailed decomposition, whereas with the

filtering tasks, many different patterns had to be learned from the data, l.e., many

different reasons existed for considering a lactation or test to be an outlier.

Further investigation is required to determine if the classifiers generated for the

filtering tasks have adequate classification performance with new data. Removing outliers

is only of indirect importance to the analysis of group-average lactation curves. The

correct removal of relatively minor outliers may not have a significant effect on the

interpretation of the group-average lactation curves. Thus, removal of only the most

obvious outliers through the implementation of classifiers with a low tendency of

indicating a case as outlier, may be sufficient for this application. Improving the

classification performance, if deemed necessary, may be achieved through re-evaluation

of misclassified example cases by the domain specialist or classification of additional

example cases by the specialist, followed by another iteration of machine learning and

performance analysis.
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8.3 Deployment of the knowledge-based system

This study explored the use of machine learning to assist the development of a KBS

in dairy farming. First, a prototype decision-support system for the analysis of group­

average lactation curves was developed. Knowledge-based components to remove

outliers and interpret lactation curves were then created through machine learning and

implemented in the decision-support system. Further research will be required to develop

a final KBS that can be deployed to potential end-users.

To improve the adoption of a final KBS, end-users should be involved at several

critical stages throughout the development process (Parker, 1999). Further development

of a KBS for the analysis of group-average lactation curves should thus involve input

from potential end-users of the system, such as dairy advisors employed by the Québec

dairy herd improvement agency. The prototype system could be tested by a selected

group of advisors with data from dairy herds they are familiar with. This could be

followed by a consultation session with these advisors to elicit the perceived usefulness

and limitations of the different parts of the system and to what extent they trust the

automated filtering and interpretation of the lactation curves.

In this study, a decision-support module was developed for herd-Ievel diagnosis of

detected abnormalities with the group-average lactation curves, but knowledge-based

modules for the identified classification tasks of this module were not created. However,

the CUITent prototype KBS with automated removal of outliers and interpretation of the

lactation curves is expected to be already very useful to support the analysis of group­

average lactation curves. Further investigation will be required to determine the

usefulness of software components to automatically perform the diagnosis tasks.

Once a final KBS is implemented, the next step in the life cycle of the system

involves maintenance to keep the knowledge captured in the system up-to-date. Retaining

the case-acquisition functionality in the final KBS would allow end-users to store

interesting new cases that the system mistakenly classified. These example cases could

periodically be reviewed by a domain specialist and added to the case base. The

additional example cases could then be used for the learning of new, improved, decision

trees. However, this would require adoption of the machine-Ieaming approach to KBS

development by the organization that maintains the system.
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Further development of a KBS for group-average lactation curve analysis might

focus on the incorporation of machine-Iearning capabilities into the software deployed to

end-users, leading to a self-Iearning or adaptive KBS (Schmoldt, 1997). Such a system

would need to acquire automatically classified cases that the user agrees with and cases

whose classification was manually adjusted. Automated learning from these newly

acquired cases would allow these systems to adjust their knowledge to the specific type of

data they have to deal with and to the preferences of the end-user.

8.4 Advantages and limitations of machine-Iearning assisted knowledge

acquisition

In this research, machine-Iearning proved to be a feasible approach to support the

development of a KBS in dairy farming. However, several limitations were encountered.

First of aIl, the machine-Iearning approach can only work if a substantial number of

example cases is available for learning and performance estimation. The minimum

number of examples required for learning depends to a large extent on the complexity of

classification task: many cases will be required for tasks with many different patterns for

each class in order to coyer each pattern sufficiently. The class distribution also affects

the number of required exarnples, with the number of cases available for the minority

class being most critical.

Secondly, using machine learning for knowledge acquisition was found to be time­

consuming. Since previously classified example cases were not available, case­

acquisition functionality had to be added to a decision-support system to facilitate the

analysis and classification of a substantial number of cases by a domain specialist. In

addition, considerable effort was required for 1) the preprocessing of acquired example

cases (to assign cases to training and testing sets and to treat missing attribute values); 2)

the construction of new attributes with potentially predictive value; 3) the execution of

machine-Iearning experiments (to tune algorithm parameters and to determine the

expected performance with new data); and 4) the evaluation of the learned knowledge.

However, the procedure and software that were established can be reused to learn from

data sets re-evaluated by the specialist or from larger data sets, and can be adjusted to

develop KBS for related problem areas.
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Finally, although machine learning automated part of the knowledge acquisition

process, a large amount of interaction between system developer and domain specialists

remained necessary. Input from the specialists was required for problem decomposition,

development of a case-acquisition and decision-support system, to analyze and classify

example cases, to create potentially predictive attributes, and to evaluate the plausibility

of the leamed knowledge. Thus, it was found to be of critical importance for the system

developer to have sufficient knowledge of the field of application to facilitate the required

communication with the domain specialist.

Direct comparisons between the machine-Ieaming and the interview-based

approach to KBS development have suggested that the machine-Ieaming approach

requires less effort and leads to a more accurate representation of the knowledge of the

domain specialist (Ben-David and Mandel, 1995; Michalski and Chilausky, 1980). Such a

direct comparison was not part of the scope of this project. However, this research

suggested two additional advantages of machine-Ieaming assisted over interview-based

KBS development: 1) the ability to generate a series of classifiers with increasing

probability of classifying a problem situation as abnormal from a single labeled data set;

and 2) the ability to deal with problem situations where the domain specialist is expected

to have great difficulty providing decision mIes.

With the machine-Ieaming approach to KBS development, a series of classifiers can

be generated from a single data set classified by a specialist, with increasing probability

of classifying a case as abnormal. These classifiers, each with a different trade-off

between sensitivity and specificity, can be generated through the use of different

misclassification costs during leaming, and provide a variable decision boundary between

the classes of the classification task. Implementation of such a series of classifiers

provides end-users with the ability to control the ratio between false positives and false

negatives depending of the specifie data they are dealing with and their preferences

(Kubat et al., 1998). For example, for a herd with many outliers or many abnormal

aspects of the group-average lactation curve, use of a classifier with medium tendency of

classifying new cases as abnormal may remove too many tests and lactations of

individual cows from further analysis and indicate an overwhelming amount of

abnormalities with the group-average lactation curves. In that case the user may want to
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focus on the most important deviations from normal performance and use classifiers with

a low tendency of classifying new cases as abnormal (i.e., a low sensitivity and high

specificity). Conversely, for herds with apparently few problems, the user of the KBS

may choose to use classifiers with a high tendency of predicting new cases as abnormal to

find less obvious deviations from normal performance, albeit with a high probability of

false positives.

Problem areas where the domain specialist may have great difficulty expressing

decision roles in interviews include the analysis of graphical performance representations

and the use of novel approaches to data analysis. Both aspects were involved in the

analysis of group-average lactation curves in this study. Graphical representations often

help human beings to interpret the available data, but are difficult to translate into roles

with numeric performance indices for use in a computer system. In addition, when

dealing with a novel approach to analyzing data that includes new performance indices,

the domain specialist may have the theoretical background to support proper

interpretation, but does not have the practical experience of analyzing real-world example

cases with that new approach. In such situations, the domain knowledge is poorly

formalized and new knowledge must be created to solve the problem (Weiss and

Kulikowski, 1991). For these problem areas, the development of a case-acquisition and

decision-support system followed by machine leaming of identified classification tasks is

expected to be more useful than the traditional interview-based approach to knowledge

acquisition. However, the domain specialist may have to analyze the data multiple times

to adjust classifications made earlier based on the experience gained after analyzing all

the available example data. Machine leaming can help in this process by identifying cases

that are often misclassified with different classifiers and which are, therefore, potentially

mislabeled (Brodley and Friedl, 1996). Those cases could then be submitted to the

domain specialist for re-evaluation, followed by machine leaming using the improved

data.
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8.5 Machine-Iearning assisted knowledge acquisition in dairy farming

The analysis of group-average lactation curves can be considered as part of a

tactical level decision-making activity within the spheres of dairy nutrition and milk

production. Other areas and levels of decision making in dairy farming may also be

suitable for machine-Iearning assisted KBS development. However, although KBS were

expected to have great potential to support allievels of decision making in dairy farming

(Doluschitz, 1990; Spahr et al., 1988), adoption of decision-support systems for strategie

planning purposes has been slow and the usefulness of these often complex systems has

been questioned (Kuhlmann and Brodersen, 2001). In addition, at low levels of decision

making, specifically, from the regulatory to the operationallevel, decision making tends

to be fairly simple and it may be easy for a domain specialist to provide decision mIes.

Thus, machine-Iearning assisted knowledge acquisition may be most useful for KBS that

support decision making between the operational and tacticallevels.

The analysis of milk urea nitrogen and related data to support nutrition management

at the operational and tactical levels seems an attractive domain for the application of

machine-Iearning assisted knowledge acquisition. The relationship between dairy

nutrition and milk urea nitrogen is currently an active area of research. Machine learning

may be a useful approach to formalize the existing practical knowledge in this domain,

based on example cases analyzed and classified by dairy nutrition specialists with

experience in dealing with this type of data. Another area of application may be the

analysis of daily milk production records collected with milk yield sensors to support

operational management. Example cases labeled by a domain specialist could be used to

develop a KBS to indieate potential problems in the health, nutrition, and environmental

spheres, based on the observed fluctuations in milk yield and additional data. Finally,

machine-Iearning assisted knowledge acquisition could be applied to areas for which the

traditional approach to KBS development has been used, such as the analysis of somatic

cell count data (AIlore et al., 1995), the allocation of dairy cows to feeding groups

(Grinspan et al., 1994), and the ranking of cows for culling purposes (Strasser, 1997).
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8.6 Further research in machine-Iearning assisted knowledge acquision

In this study, machine leaming proved to be a feasible approach to KBS

development in dairy farming. Interesting areas for further research related to machine­

leaming assisted knowledge acquisition include leaming with multiple specialists and

application of recently developed approaches to machine leaming.

The knowledge-based components developed in this research were based on the

expertise of a single domain specialist. However, for sorne applications it may be

important to include the expertise of multiple specialists. The machine-Ieaming assisted

approach to KBS development may offer new ways to deal with this multi-specialist

situation. One option would involve having each specialist classify the same set of

example cases, followed by re-evaluation of cases for which different classes were

assigned by the specialists, until consensus is reached. This approach would lead to high

quality data for machine leaming, but could be time consuming for the specialists. A

second approach would rely on the ability of machine-Ieaming algorithms to deal with the

inconsistencies in the data. The classified example cases from each specialist could be

merged into a large data set, with many duplicate and sorne inconsistent cases. With a

third approach, a separate classifier would be generated with machine leaming for each

specialist involved. The predictions from the classifiers could then be processed into a

single classification through, for example, a voting scheme with user-adjustable weights.

Additional research might also focus on the machine-Ieaming algorithms used for

knowledge acquisition. Further improvement of the selective naïve-Bayes algorithm

implemented for this research should focus on improving the attribute selection process

and developing techniques to help visualize the leamed knowledge. Recent developments

in machine leaming that may be useful in the context of knowledge acquisition include

the automatic leaming of the structure and parameters of Bayesian networks (Heckerman,

1996) and the induction of fuzzy decision trees (Janikow, 1998). Both approaches deal

with uncertainty in decision making and generate a graphica1 representation to express

relations among the attributes used for classification. These approaches may improve the

classification performance and also the understandability of the leamed knowledge

compared to naïve-Bayes classification and crisp decision-tree induction, but require

further investigation regarding their applicability to real-world problems.
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9 Summary and Conclusions

Knowledge-based systems (KBS) may help dairy producers and their advisors in

dealing with the increasing amounts of available data and increasing complexity of

decision making. However, the development of these systems has proven to be non­

trivial. Thus, the main goal of this research was to explore the use of machine leaming to

support the development of KBS in dairy farming.

First, a framework was developed to support the creation of computerized

information systems for use in dairy farming. This framework described the virtual part of

dairy farming in terms of a management and control system consisting of a network of

management and control activities, which process and exchange information. These

activities were classified according to the level of decision making at which they take

place, the sphere of dairy farming they belong to, and how and where they are performed.

Decision-support systems may help dairy producers and their advisors with the proper

interpretation of the large amounts of information available. Implementation of

knowledge-based components into such systems would allow for the partial or complete

automation of time-consuming and complex analysis tasks. The framework was used to

identify promising areas for the creation of KBS, and analysis of group-average lactation

curves was chosen as the application area for machine-Iearning assisted KBS

development. This type of analysis involves evaluation of both graphical and numerical

information, and can be seen as part of a management and control activity within the

sphere of nutrition and at the tacticallevel.

In order to support the overall process of machine-Iearning assisted KBS

development, a process model was developed. This model involved the following eight

steps: problem analysis and formulation, case-acquisition tool development, classification

of example cases by a domain specialist using the case-acquisition tool, analysis and

preprocessing of the acquired example cases, machine-Iearning algorithm selection and

configuration, training and testing, analysis of the results of machine leaming, and

deployment of the KBS. Several iterations of the first three steps of the process model

were required to develop a case-acquisition and decision-support system (CADSS) in

consultation with two dairy nutrition specialists. The overall problem was decomposed
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into three sub-problems: removal of outlier tests and lactation curves of individual cows,

interpretation of group-average lactation curves, and diagnosis of detected abnormalities

at the herd level through the identification of potential management deficiencies. For each

sub-problem, a software module was developed allowing the user to analyze both

graphical and numerical performance representations. In addition, classification tasks and

their classes were identified. The example-based approach to CADSS development

proved to be very useful, facilitating the communication between system developer and

domain specialists, and allowing the specialists to explore the appropriateness of the

various prototypes developed. The resulting software represented a formalization of the

approach to group-average lactation-curve analysis, elicited from the two domain

specialists. In addition, the CADSS enabled domain specialists to analyze and classify

example cases of the analysis of group-average lactation curves in an efficient manner.

A dairy nutrition specialist used the CADSS to analyze and classify the milk­

recording data from 33 Holstein dairy herds enrolled with the Québec dairy herd analysis

service. This resulted in 1428 lactations and 7684 tests of individual cows, classified by

the specialist as either outlier or non-outlier, and 99 interpretations of group-average

lactation curves. Ten-fold cross-validation was used to estimate the performance of

classifiers induced for the classification tasks to filter lactations and test-day data of

individual cows. For the interpretation tasks, the number of folds were reduced to five due

to the limited availability of data. Indices of classification performance, used in this

research, included the true positive rate, false positive rate, predictive value positive, and

positive prediction rate. Relative operating characteristic (ROC) curves were used to

visualize the trade-off between correctly classifying positive cases and correctly

classifying negative cases. Classification tasks with three or more classes were

reformulated, during performance analysis, into "Normal" versus "Abnormal"

classification or decomposed into a series of sub-tasks.

Analysis of variance was used to support the analysis of the results of machine­

learning experiments in which the effects of different approaches to data preprocessing,

attribute availability, machine-Iearning algorithm, and configuration of algorithm

parameters were investigated. To enable the use of analysis of variance based on the

information represented by ROC curves, a single performance index, called TP*, was
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developed. It was defined as the mean true positive rate of the ROC curve for the range of

false positive rate values of interest. This index makes use of domain expertise to limit the

performance analysis to false positive rate values that are considered reasonable.

Considerable effort was required to derive potentially predictive attributes for

machine leaming from the initial set of attributes available to the domain specialist.

Experiments with the filtering of tests within lactations showed that adding derived

attributes to the initial data resulted in a significant improvement of the performance.

Machine-Iearning experiments showed that tuning of the parameter configuration of

the CART decision-tree induction algorithm greatly improved the classification

performance compared to the default configuration. For the filtering of tests within

lactations, the selective naïve-Bayes classifier performed significantly better than CART.

Both machine-Iearning approaches allowed for inspection of the plausibility of individual

pieces of learned knowledge. Decision nodes and attributes that were expected not to

properly classify new data were removed or modified. However, the domain specialist

considered the decision trees as more transparent than the knowledge generated with

naïve Bayes.

For most classification tasks, it was possible to generate a series of three classifiers

from the entire data set, representing a low, medium, and high tendency of classifying

new cases as abnormal. Implementation of these alternative classifiers for each

classification task in the final KBS for group-average lactation-curve analysis allows end­

users to choose the classifier with the desired tendency of classifying new cases as

abnormal.

The decision trees for the main interpretation tasks showed good classification

performance in the cross-validation experiments. For the filtering of lactations and tests

of individual cows the performance was fairly poor: a high true positive rate could only

be achieved at the expense of many false positives. Improvement of the classification

performance may be achieved through re-evaluation of misclassified example cases by

the domain specialist, to reduce the number of mislabeled cases, followed by machine

learning with the improved data. The acquisition and use of additional example cases for

learning may also improve the performance.
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The decision-tree induction approach resulted in relatively small decision trees that

were easy to understand by the domain specialist. In several cases, counter-intuitive

decision nodes, which tended to occur at the end of the decision trees with limited data in

the parent nodes, were manually removed or replaced with a substitute suggested by the

CART algorithm. Relying on the expertise of the domain specialist, these adjustments

were expected to lead to improved performance with new data. For classification tasks

with very poor performance in cross-validation experiments, a series of potentially useful

decision trees were induced, and the most plausible one was chosen by the domain

specialist. Thus, evaluation of the classifiers by the domain specialist was considered an

important step in the overall process of machine-Iearning assisted knowledge acquisition.

The induced decision trees were implemented as knowledge-based components in

the CADSS program to perform the removal of outliers and the interpretation of group­

average lactation curves automatically. Before it can be deployed, the program needs to

be further developed and tested in the field with, for example, a small group of dairy

advisors. This end-user input should contribute significantly to its advancement.

In this research, machine-Iearning assisted knowledge acquisition proved to be a

feasible approach to support the development of a KBS in dairy farming. However,

several limitations were encountered: a substantial number of labeled example cases had

to be acquired from a domain specialist, the overall process proved to be quite time­

consuming, and a large amount of interaction between system developer and domain

specialists was necessary. In dairy farming and agriculture in general, machine-Ieaming

assisted KBS development is expected to be especially useful for problem domains in

which the specialist may have great difficulty expressing decision roles, such as tactical­

level decision making and the interpretation of graphical information.
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