¢

. Modélling and Analysis of -

~a Computer Conferencing System

13

- B
N 4
- - &

¥

Haig Baronikian, B.A.Sc., P.Eng.

f
Department of Electrical Engineering
.] McGill University -
: Montréal, Québec '

L4

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulffllment of the requirements for the
degree of Master of Engineering

October, 1987)
(© Haig Baronikian, 1987

e [é
, -

. 'Absjsract ' L

+ E)

-

-

The main objective of this work is to develop a conceptual frame-

"7 work for the analysis and design of computer conferencing protocols,

focussing on connection management and group-formation issues. A
secondary objective is to gauge the utility of a particular model of
parameterized, disgréte communicating systems and its associated
analytical techniques. The research describes three alternative for-
mulations of increasing cemplexity. Formal descriptions are derived
for bridge and agent processes which represent the distributed, in-
teracting coniponents of a conference system. These descriptions are
analyzed\and verified with automated tools. The architectural, be-
havioural and ¢computational results for Single- and Two-Conference
Systéms are discussed. A high degree of modularit);, generalizability
and flexibility is attained in the process descriptions, allowing the
formulations to cater to any number of conference participants or
con_ferénces and, a variety of tonnection and grouping schemes. At
the same time, the mode] and techniques are found to be adapt-
able to the formulat(idn,s and able to deliver expected results in a

tractable, compact and efficient fashion.
v B

=

- ‘ . Sommairé : .

@

() L'objectif premier de ce mémoire est de deve]opper un fondement ,
conceptuel pour I'analyse et conception de. protocoles pour la té- !
léconférence mformansee. avec emphase sur 'administration des con-
nexions et la formation de groupes. (‘e Lnémoi‘re a aussi comme ,
deuxieme objectif d’évaluer I'utilité d’'un modele parametrnique de -
systeme de communications discretes avec ses techniques d’analyse.
- ’ « - La recherche décrit trois formulations alternatives de complexité
croissante. Des descriptions formelles sont derivées pour les processus
« ponﬁ) et ¢ agents), qui representent les composantes interactives .y
et réparties d’un systéme de téléconférence. Ces descriptions sont
analysées et venﬁees au moyen d’outils mécanisés. Les résultats au
niveau d’ a.rchltecture, de comportement et de calcul pour des sys-
temes de téléconférence simples et doubles sont discutés, Un haut o
degré de modularité, de généralisation et de flexibilité est réalisé
- avec les descrip‘tions de processus. Ceci permet d’étendre la formu-
. lation a un nombre arbitraire de conférences ou de participants a

’ une conférence et i une varieté de possibilités de connexions et de

L) formation de groupes. De plus, on a trouvé que le modeéle peut étre .
-
adapté & différentes formulations, et qu’avec les techniques associées €
“ il mene aux résultats attendus, d’une fagon résoluble, compacte: et)
efficace. 5
a ’ >
; ,
- ! - .
! . (-
. s
s) . - *
- - .)
3 e "

-1 - . ,

' Acknowledgements

% \ , The author hgratefully acknowledges the generous a§5i§tan.ce of Dr. "
‘ (P - R. deB. Johnston during both the research and preparation phases’)
L e of this thesis, and Messrs. G. Vonderweidt and T. Nguyen for many
. fruitful discussions. . S : o .
- \

N N
) . - -
5
‘ 2
”
. “
"l [-
Yoo
S
“ ¢
. ! M
> ’
a -
‘ N L d
-
> o -
; -
N * .
A
a T R ‘\
R ©y - .
.
»
\) i
- . ¢ . A
- ‘e
. \ R
' 1
o - *a
.
‘ '
e
' . -
o ’ . . [}
— ~.
)
>
.
”
»
.
s -
% \
>
N .
1 \ , . , .
i . - 111 -~ - -

3o

/ R 12N
Table of Con‘&ents
List of Fogures....0. ..o ool \1&]
List of Tables. PERRRS "!. T e o
Chapter 1 Introduction........... % e 1
1.1 Motivation and Goals . . . SORECRETER '.f 2
1.2 Basic Concepts.......cvviveeninn.. e e R |
1.3 Outhineoviiiiiii gk s, 7
Chapter 2 Modelling Approachc........ 8
2.1 Overview of Formal Description Techques 8
2.2 .The Discrete Commumcatmg Processes Techmque R i1
2.2.1 Mathematical Foundations i i et 18
2.2.2 Process Operators ... TR . \ 21
2.2.3 Parafmeterizationcieiiiiiitiiiiiliieaan, 26
2.3 Automated DCP-Based Tools e e, . 28
) 2.3.1 Defining-Processesccovivivininan.. et 28
0232 KeyModulesooiuiiiiii i i 30
Chapter 3 A Preliminary System. e e RTINS 32
371 Formulation of ProCeSSesv'eeulvneirn e inenanenns. .. 32
3.1.1 Construction of Messages e —33
3.1.2 Use of Parameters e 35
3.1.3 Descnptlonongent e e e 36
3.1.4 Description of Brldges e FEE R R PP PP 38
3.2 Study 1: Single-Conference System e PPN T 43
3.3 Study 2: Two-Conference System SO e .'L. .. 50
Chapter 4 The Membership-Based System 51
4.1 Forn}:ulatior.l of Processes ‘ e FEPEE 52
4.1.1 Construction of Messages B N ,o 52
4.1.2 Use of Parameters e, e 53
4.1.3 Descnptmn of Agent e 57
) . 4.1 4 Descnptlon of Brldge i T EEEr 57
\ fiiz Study 1: Smgle-Conference System s 63
4.3 Study 2: Two-Conference System ... 68

-0 -

¢

N : \ ,) | !
Chapter 5 The Conferepce-Based System. Ty 71
/ 5.1 Formulation of Processes .-..... FE R . 71
5.1.1 . Use of Parametersc.... e ‘._,. ce e 72
5.1.2 . Description of Agent™..... e s s 75
5.1.3 Description of Bridge e, e ggeraceoeen 75
5.2 Study 1: Single-Conference System P 79
5.3 Study : Two-Conference System e Yeeen... 86
. Chapter 6 Conclusions and Future Dlrectlon 87
6.1 Summary of Resultsottt inineeaaas 87
- 6.2 General Conclusion§ e e ieiiie. .. 89
- 6.3 Puture Work. ..., P 90
References e e e e e 91
Appendix A. DCP Expressions and Results for Preliminary
i System ... e e e 96
Appendix B. DCP Expressions and Results for Membership-Based
P 451 75 + o OO 106
Appendix C. DCP Expressions and Results for Conference-Based
" System™.......... R LIERRPIRERETRRRPRRRY EEREERTTRRERY 117
) - .
Tz @ -
. - -)
T

e

2 5 " State-Transition Diagram for {}- Product for Single- Qonference

List of Figures

-]

L.1 - ISO Layered Architecture for Open System Interconnection . SERRRRR 5
..2.1 Graphical Interpretati‘on of Processes PR .. M '
2.2 A Deferministic Client Process e e 15
2.3 A Non-Deterministic Client Process. e % . 15

24 [] Product of Non-Deterministic Client Process with Tlmer
Process . ..ooov oo, A e 23
9.5 Parameterized Non- Determin;stic Client Process....... N 23
3.1 Message Architecture for Prehrmnary Systemolll 34
3. 2f<\ State-Transition Diagram {gr Agentl in Preliminary System 37
. 3.3 . State-Transition Diagram for Single-Conference Bridge in _
Preliminary Systemcoviiiiiiieiiinienennirennn. S 39

3.4 State-Transition Dlagram for Extended Bridge in Preliminary
CSystem L. e et .. 40

Prehmmary Systemoiiiiiiiiiii i e e S 44

3.6 State-Transition Diagram for R for Single-Conference

Preliminary System gee.. 46
3.7 State-Transition Diagram for R-reduced for Single-Conference . \ . '
Preliminary Systemo iniiirrineernneierenennns W.. 48
3.8 State-Transition Diagram for Constrained Single-Conference .
Preliminary Systemc.cciiiiieneininn.) Y 49
4.1 Message Architecture for Me-mbership-Based System \ 54
° .
4.2 State-Transition Diagram for Agent in Membership-Based
B 717 (S cereeen \ 58
4.3 State-Transition Diagram for Bridge‘ig Membership-Based
SYStEmM ..ot ei e e e e '59
4.4 Internal Logic for MBS-Bridge - Example of Add Feature with -
» Disjoint Setso e e 62
4.5 State-Transition Diagram for [|-Product for Single-Conference \
Membership-Based Systemo it e 64
4.6 State-Transition Diagram for R for Slngle Conference .
Membership-Based System0 oL i eee e, 66
- 4.7 State-Transition Diagram for R-reduced for Single-Conference
MemBership-Based SYSLEIM .. .vvvevnneerenrieneensiresnneeennns 67
’be - - N, g
- -

-

=
N ’

5

¢'.

»

State-Transition Diagram for (‘onstrarned Single-Conference

Membership-Based System

State-Transitior Diagram for .

System

State-Transition Diagram for

e

........................

S;ys’tem e e v

State-Transition Diagram for

Clonference-Based System e

State-Transition Diagram for

Conference-Based System ...

...........

State-Transition Diagram for R-reduced for Single-Clonference

Conference-Based System et

State-Transition Diagram for C'onstra.med Single-Conference

Conference-Based System-. .

. .?....., ree e e
........... et et aeen
.
. .
.
2]
e =
.
N .
-
-]
.
N
A -
S -
- -
r
?
.
,
.
.
N

. 81

82

84

n

7

¥
. . - ~
4~
. ‘
a
\
L
.
.

6.1 Sunuuar‘y of Results”

4

+
-)
’
f
\
e !
’ I
s
it . LN
.
\ .
-
1
-
.
B s
N v
¢ ~ B
. -~
. ‘' ‘
- -
° . -
2
4 »
. N R
. . -
.
1
.
’ B .
« «
+
v or M
“
-
@
T
.
.
.
M .
. .
+
.
- o
-
.
P - “
-
- ‘ 54
\
‘
t
N L 4
° ‘-

)
, .
>
&
? -
L
-
»
..
\
1
f~
.
.
i
Al
’/
,
,

L L T R P

]

3

‘

~ Al
‘\It/,,%
NE2
P

' The need for meetings-at-a-distance, for reasons of time savings, financial econ”
omy and/or improved contact, is commonplace. Thus, there is growing practical

interest in the construction of intei‘active (real-time, computer-assisted, multi-media)
conférencing systems for business applic:étions, certain educational settings, military
b f \
uses, and in fact wherever there is a need for two or more agents (people or au-
- .
tomata) to communicate concurrently towards a common goal. Such conferencing

systems would supply the resources and operating fram?work. over either wide- or

local-area networks, for agents to form groups and exchange voice, textual and/or

"~
I
-

& a

picforial information in a (virtual) shared space, a powerful paradigm which has been

e

. ~promoted by Thompson [11.

s

A number of trial, first-generation interactive C()\Pf(-rencing systems, based on

\
combinations of various technologies, are described in the literature [2] - [10]. Among

>

the activities supported by these systems are group problem-solving and decision- 4

making, computer-aided design. teletutoring. document editing, and collaborative

e

-] - L

- (\)
program development. all of which are forms of what Meyrowitz and van Dam term

distributed -knowledge work {11].

1.1 Motivation and Goals P

o

Experience suggests that there may be hidden difficulties in the design of complex

communicating systems. In the case of interactive conference systems, such problems

as consistency and synchronization of the database, treatment of acknowledgements,

flow control, response time, and connection issues are mostly unexplored.

- .o -~
C
~!

Little of a theoretical natute is available in the literature, with the exception of the

important and extensive contribution of Sarin’s work [12]. Sarin explores many archi-

=

- tectural concerns, communication strategies, and performance issues. Two prototype

systems are implemented and a third is proposed. Although communication plays a

.

part in.these pro_totypé:, no attempt is made at formal analysis or logical verification

of the methodology used. The emphasis, rather, isvpulaced on timing and/or sequenc-

LY .

- . ing of exchanges between controller and conference participants. In another paper,

‘ . .
Rea [13] studies information transfer in a small conference system with the objective

1

of attaining mutual exclusion-in the broadcasting of an uninterrupted sqriesl of data

packets by either of two terminals. The management of both positive a}xd'negative

o - acknowledgements, including filtering routines, for multicast systems is evaluated by

» Mockapetris [14]. Pardo and Liu present designs for several multidestination com-

‘ munication ‘strateéies for use in distributed systems [15]. Lastly, Birman and Joseph

-
o

) —~

°

)

{16} deal with the problems of reliable group communication under various modes of

‘ + failure. _ o

Perhaps as a result of, perhaps 1n spite of the lack of theoretical research, standard

-

service descriptions, and designf(realizat{on) techniques for conferencing protocols,
the need for conferencing systems has produced the impiementations noted earlier,
largely comprised of available products and services glued together on a relatively
ad hoc basis. Therefore, it woul& be appropriate to formally model and analyze
conferencing systems, with the objective of gaining insight into the behaviour, and
thus, the design considerations of 51;ch systems. Recent attention by international

Standards organizations to the topic of conferencing and the underlying requirement

for multipoint/multicast services, is further indicative of the timeliness of this project.

ﬂ" y -
<>
The term multipoint refers to the combined physical interconnection of more
than two agents, while multicasting denotes the logical or functional relationship held
between agents and is based on addressing facilities. In the present work, the basic
. .
multipoint /multicast connectivity problem is undertaken with the following goals:
L e To develop a conceptual framework and a notation, in terms of distributed
- - processes, for describing the connectivity of agents in conference groups;
. To generalize the above results to handle conferencing systems of arbitrary
) size, while exploring the application of parameterization; and,
o To ascertain the effectiveness of a set of automated tools in studying and
, verifying the process descriptions generated from the above two steps.
' A
a " Certain limitations will be placed on the scopg of these goals once some prelinii-
- -3 - \\;\‘“‘\‘\
i ’ il N"‘}‘

- e - —
v

‘ nary ideas are dealt with in the following section.

' / i . 3
"’ ‘ / ' N ' ! \
| :

N . [
1.2 Basic Concepts CE L

. L4 -
DL 2N

The study of most systems. whether for analysis or synthesis, begins with the
decomposition of that system into a set of interacting subsystems or processes. Thus,
for simplicity, the conceptual conferepce model chosen consists of two processes (see

Figure 1.1): an intelligent bridge or meeting room that delivers virtual N-way con-

nections and is capable of performing predicate-based atomic tests, and, an arbitrary

number of conférence agents or participants. The agents may connect together in

star configurations to form conference groups or meetings, by means of the bridge.
Interaction or communication between the bridge process and the agent processes, as
e ’ well as between the composite system of the two and the envigonment, is achieved

- " through discrete messages or statements. The syntax, semantics and relationships

~

governing these messages define a protocol or rules of di=logue. In effect, this pro-

vides the basis >br multipoint/multicast connection services for users, and includes
. ; ‘ ,
point-to-point @onnections as a subsidiary function.
a) o

e T v . ‘ -
A . . ,
A single bridge process could handle several multipoint/multicast conferences at
a 'J’ . -
once. Within each conference, ¢channels may éxist tq cater to diffefently characterized

i -

data-streams. For example, a stream for control and voice, a second for real-time
" shared-space interactions between agents, and a third for slower bulk file transfers,
would be suitable for many applications. Such an operation conld be accommodated

t) ' on the 2B+D channelized subscriber access vehicle of the Integrated Services Digital

e ’ -4-
.

¢

-

Layers

Application
Sub-Layers

Presentation

Session

Transport

Network

D_ata-Link

-Physical

Bridge ‘ Agents

Fig. 1.1 SO L&\ered Architecture for Open System
Interconnection .

o @?: .

\
Network (ISDN) {17]. In fact, shared-space conferencing has already been suggested

@

“as an application for ISDN [18]. i

1
¢ -

A variety of connection or call establishment scenarios are possible, depending
on the initiator of the connection. Most commonly perhaps, an agent identifies itself

and initiates a conference by receiving, manipulating, and passing on an appropriate

o
6

service_request message from its environment to thé bridge. Once the request is
accepted, subsequent requests are made to the bridge for the inclusion of other target
agents in that conference. This procedure is termed DIAL-OUT. Other scenarios

are also possible including MEET-ME, where an agent seeks permission and joins an

9
existing conference. \
\ .

) As stated earlier, very little has as yet appeared in the way of international stan- -

dards for bconference' systems (interactive or not). The relationship of a protocol

. . . e s : @
which provides basic multipoint/multicast services, as well as more advanced con-

ference management features, to the Open Systems Interconnection Basic Reference

&

Model is unclear {19]. Although the layered architecture of the Reference Model,

displayed in Figure 1.1, has allowed for multipoint/multicast facilities in the form

of decentralized multi-endpoint connections, there is some confusion over details for

P
/

its use [20]. It is fmost likely that, given the Reference Model is rather well-defined
for point-to-point connections, the basic services and more advanced confe}encing

features would fit as sub-layers of Layer 7 (Application).

0

’ * -
-6; . . . : b

\

¢

For the present research, only the bridge-agent protocol, and a set of basic, pri-

mary services are investigated. leaving aside bridge-bridge communication for future

study. A number of further limitations are imposed. all of which help contain the

L}

cémplex)ity of the task at hand:

v

. no probes of or acknowledgements to target agents are implemented,;
e the initiator of'a conference, the chairman, controls that conference until
its clearing; |
o disjoint conference groups are used, with unique names for agents and. con-
ferénces; B ' -
° information transfer is not modelled; and
° only a single channel is implemented for each conference,

1.3 Outline

-y

Having briefly delved into the background for interactive conference systems and

considered the motivation for the current work, the follg)wing chapter surveys formal
description techniques and details the mathematical foundations and analytical tools

which will be utilized for the ensuing venture.

+
'

,

Chapters 3, 4, and 5, describe three successively more intricate and flexible for-
mulations for a conferencing system. All solicit some degree of parameterization. The

respective results of the application of automated tools to these formulations are also

presernted. .

B : J “ . -
Finally, Chap{et 6 summarizes the findings, states the general conclusions and
provides some remarks iegarding possible future extensions of this-work.

- 7.

}

A
IR

o

+

‘ v
Chapter 2 | \M_odelling Approach

The present chapter is mainly devoted to familiarizing the reader with the var-

ious formal description techniques (FDTs) used in the modelling and analysis of
distributed or communicating processes. Such formalisms attempt to over.come the
ambiguities and incompleteness of informal methods (e.g. natural language Si)(;éiﬁ—.»
cation) and, often lead to compact and mechanizable descriptions. Thus; it is not
surprising that many FDTs have found application in the description"‘of communica-

tion protocols, since protocols may be regarded as processes. .

{
1

Vs
/.

The chapter begins with a general discussion and categorization of FDTs. The

particular FDT used for the current task of studying conferencing systems, originat- -

-

ing from an algebraic model of Discrete Communicating Processes (DCP), is then

introduced. Lastly, a set of automated tools based on DCP are outlined.

1

&

3

2.1 Overview of Formal Description Techniques

®

"There are two major approaches to the formal description of processes, with a

. 8- \

-

%

®

E o

third being a hybrid of the first two. Sunshine |21} provides a table of the vari-

-

ous techniques and their characteristics. An alternative classification, grounded on
s state complexity (the encoding of information within a state) and language expressive

poweTr (é}encoding of requirernents on the sequence or history of states). is given by

Schwartz and Melliar-Smith {22}: i
\ ' : :

" The first approach arises from the basic paradigm of a finite-state mac}line(FSM),

?

consisting of a finite set of states and the available transitions to travel between those
states. Transitions in one process are imagined to occur instantaneously, hnd may
be linked to the ‘transitions of another process. Danthine {23] represents the FSM
as a 5-tuple, with a finite set of states, inputs and outputs, and state-transition and
output functions. Processes modelled as FSM’s have a graphical equivalence and may
be examined thtough reachability analysis, the enumeration of the reachable states

in the Cartesian product state-space of the processes.

.
FSM-based techniques appear to model well the control aspects of processes, but

are completely inadequate, by definition, for (possibly) infinite-state processes. A
"secondary ‘complaint is the phenomenon of state explosion, which js experienced for

any but the simplest situations. One method of alleviating this difficulty has been the

N

use of context variables and procedures in order to reduce the set of states, but doing

/ 8

this frequently makes the process less tractable from the designer’s'viewpoint. An _

example of an end-to-end protocol modelled as FSM’s may be found in [23]. Another

specimen of a communications protocol is available in [24].

- 9.

b v

n

A model closely related to the FSM is the Petri Net. The Petri Net is appealing
‘ A because of its facility for visual depiction of prdcesses. but also lends itself to compa\(:
matrix representation. The ordinary Petri Net is a graph with places, transitions,

directed arcs. and tokens. In Danthine’s terminology [23], this is a 4-tuple, where the

sets of places and transitions simulate conditions and events respectively, and input

~

and output functions map conditions-to events and vice versa. Beginning with an

initial marking of a graph, a transition is enabled when there is at least one token at

i -

each of the transitign’s iipit places. When a’transition fires, one token is removed
from each input place and one is added to each output place. The state of the system

'irs given by the distribution of tokens around the.graph,”
(\ Petri Nets bring control structures to the foreground, and may be made c@ﬂe of

modelling infinite-state systems by increasing the number of tokens in a net without

bound [25}]. However, they are still prone to the annoyance of state explosion. Many

©

extensions have been developed to 'the ordinary Petx;i Net, including the Coloured- .
Arc [26] and Time [23] flavours. Danthine (23] gives the same end-to-end protocol
{

mentioned earlier in terms of the Petri Net. An additional sample of a communication -

L

protocol modelled as a Petri Net is given in the work of Diaz {27].

B 4 .
The second major approach to formal description is borne of programming para-

\ digms and high-level languages. Here, 4 process is described as a set of assertions

| or an algorithm. The analysis is performed using assertion proofs. This approach

t " is usually better suited to the data transfer aspects of processes,n but application to
! . i

«

- 10 -

-

-

;)

¢

connection-oriented problems is relatively difficult [21]. Since a high-level language

may be designed to be universal ingscope. it can extend much further than either

FSM's or Petri Nets in modelling power. Nevertheless, the ability to do so is limited

- “

by the difficulty of finding and verifying assertions. Ultility is also hampered by the

£

elusiveness of automation for proof techniques, in comparison to the rather direct

) st
reachability analysis of FSM’s and Petri Nets. Tanenbaum [28] offers examples of

communication procedures for the data-link layer of OSI, including some sliding-

o

. window protocols, expressed in the PASCAL programming language.

£

As it has become obvious that each of the above approaches has its own advan-
L
tages and drawbacks, many researchers have opted for a hybrid approach, combining
the best elements of each model and accompanying analytical mechanism. A work- |

»

ing group of the International Standards Organization has been studying a hybrid

FDT called Estelie, which has strong similarities to the PASCAL language {29]. Es-

—

telle uses a FSM model augmented with context variables, one of which is the special

9

STATE variable, and predicates on those variables. The application of Estelle is illus-

trated with the Alternating-Bit Protocol. Further proposals of hybrid methodologies

are-those of [30], [31] and [32]. Some investigations of communications protocols,

4

e)(ploiting parameterized hybrid techniques, are covered in [33] and |34].

2.2 The Discrete Communicating Processes Techniqué

The modelling and analytical technique used for the ensuing research is founded

.

L

on the Discrete Comn;unicating Processes (DCP) construct of Johnston {35]. DCP

-11-

essentially models a process as a FSM which interacts with its environment via dis-
crete, instantaneous messages. Furthermore. a process is treated as a black box,

where internal details are too complex, not of interest or unavailable.

>
-

' R P

In order to study processes, includi}\g communications protocols, it is gener-

ally necessary to have a means of differentiating and comparing processes. The
. behavioural or black box approach of DCP readily lends itself to the task hy char-
. \ - ’
y .) L

acterizing processes according to their externally visible behaviour. Thus, when two

iven processes exhibit the same pattern of message interchange with their respec-
g P ! P g g _ P

tive environments, as viewed by an external observer, the processes are considered

equivalent.)

-)) a

In this context, a process evolves by offering to exchange only one of a fixed set

of messages with its environment (which may include other processés). The model

assumes that the source and the destination of the message are synchronized such
W

that both await the occurrence of the communication évent, and then progress simul-

) . . ys { !
. taneously with transitions to new states or successor processes. As each state may

' . offer a different pattern of behaviour, states may be thought of as distinct processes.

Hence, notions of process and state become intermingled.

" b
DCP shares all of the above primitive notions with its close relative, the Calculus

: ¥
3¢ of Communicating Systems of Milner [36]. DCP, CCS and Hoare’s Communicat-

‘ ing Sequential Processes [37] allow for the modelling of concurrent processes, and

8

- 12.

e,
E-

¢

F'y

with value-passing, infinite-state systems. Of the three. DCP is highly amenable to

automadtion.

In DCP, a process p is defined as a set.of ordered pairs, < communication event,

- -

successor process >, where processes are expressed in terms of other processes, as
- o 5

foll\ows : - '

p = { <7€1y, P1 50y < €ny Pr > }

_~A tree-based\ graphical interpretation is given in Figure 2.1(a), where the node
p is a process, thd directed arcs ey,..., e, are communication events, and the nodes
P1,., Pn are the respective successor processes. Alternatively, algebraic, matrix or
state-transition diagram representations may be utilized. If is noteworthy that the

graph of a finite-state process would have a finite set of nodes.

Some processes are fully known or predictable and are said to have deterministic

behaviour. Figure 2.2 gives an example of a deterministic Client process, which re-

quests a resource unit, and upon receipv"'of that ﬁnit, continues by m;-Jcmg a request
for a second, indistinguishable unit. Once it holds two units, it returns them one at a
time to reach its initial (empty) state. In contrast, many processes are either difficult
to model or are inherently unpredictable. These are said to be non-determimstic. A
case in point 1s the Client process illustrated in Figure 2.3, which has the random be-
haviour of returning the first unit, or developing as before to request the second unit.

Whereas a deterministic process has one successor process for each communication
\

- 17 -

y

.- - R L AT R EN
Sk e e e 6 Yy, ATt G TR

. . .
- i ~ : Y, -
o
I I
N Vs . v N
#
4
- . *___, ¢
) (a) A Deterministic Process
E § . _
B,) ,
\
A s

. ' (b) A Non-Deterministic Process

Fig. 2.1 Graphical Interpretation of Processes

A

T
RS

.
|
B
o,
i
2
N
—

s

1
{
,\ -
' |
2 ’
" - N
) . Fig. 2.2 A Deterministic Client Process
L B . | T
. o ,]
. + v
\ Fig. 2.3 A Non-Daterministic Client Process - ,
, . b) \
. ?
» - e .
\\
\\ v}

-

event (Figure 2.1(a)), a non-deterministic process has several successor processes for

174

a given communication event (Figure 2.1(b)). The two Client processes of Figures

-

2.2 and 2.3’are stated below, in recursive fashion, with the extra transition due to~

| . , .
the non-determinism shown in bold (following Hoare’s notation [37], ! indicates an

o

output event agnd ? indicates an input event):

2

- ’
- v

0 = {<q'', cOq>}
'c0g = { < g?'cim}, <g? cir >}
3

{ <q', ciqg>}

\

]
1
[N
3
i

cir = { < 2!, cO >}
clgq - { < g7 c2r > }

{ <!, cilr >}

o

Thus, 1n the non-deterrmmistic situation of Figure 2.37 the occurrence of the com-

(g}
[\
H
1

e

+
~ munication event g 2 allows the random selection of a successor process from the two

.« n

available.

: . , : !

o

The-consideration of the relationship between these two example systems leads to
- - - ¢ . “\I

-
o ‘ v

o o T)
the desire, cited earlier, for comparison of processes and indeed to the idea of a process
. & .

. -
v

.c . - © ! - . ‘ . ‘ . - -
ordering mechanism. For this purpose, the partial ordesing relation < is identified..
! __—

' In the two examples of the Client procésses, clearly the second is able to behave

I % :

as the first; but, the converse is not 'true. That 1s, while both processes are able to
]

request and return up to two resource units, one at a time, only the non-deterministic

¥

(lient, process can request and return a single resource unit without continuing the
. . ‘4

P S

.- 16 -

1

WL

-

-

+9

)
.
“.

'

3

conmimunication for a second resource unit. If the first process was named ¢ and the~
p)

second p, the relationship between the two could be written as: .

, 7
4
Again a graphical interpretation is possible for this relation, ¢ being a wb«trt'cf\r sub-
. . * . L
diagram of p, with correspondences extending over the communication events (process

names may be different). The relation also brings forth the 1deas of simunlation, p

5

mimics all the actions of ¢, and contammment. p contamns the sub tree or sab-diagram

of q. S

If the relation ¢ < p had also held, then, since the - relation is reflexive, transitive

:

B L]
; . . . \ . .
and antisymmetric, an equivalence would be 1mplied, as follows:

P g N q < p = p 9
The equivalence relation creates a partition of equivalence classes on processes. Two
s ' . ’ .
processes are then considered equivalent if they belong to the same equitalence class,
(Y. '\‘
and thus each offers precisely the same behavioural possibtlities. A full and excellent

0y

exposition on equivalence classes may be fmmd/in 38 - y

Finally, the extension of these concepts to interconnection would be advanta.
. 4

i 1] > - . »
geous. The goal of interconnection in systems demgn in to predict the behavionr of

a composite system formed of individual processes. éiurh a function must unfy mes

~

L

sages 1o form communication events (or link communication ports), and then hide

‘these events or ports from the rxternal observer. In DCP, as in Milner's COS, this i

S

@« ' , v
¢ .

~ »

accomplished in two steps, using two distinct operators in order to retain the property

\
of associativity. The subject is touched upon in greiter detail in Subsection 2.2.2.
\

2.2.1 Mat}lematical Foundations

‘e b
4

The first stage in establishing the mathematical foundatjons for DCP is the for-

mulation of a process space. This is accomplished with the aid of the theories of .

partial orders, lattices and fixpoint semantics. The development: is detailed in [35],

and follows the outlines of [13] and [39].

~

Kl .
Letting a set Pp denote the set of all processes that exchange messages from a

»

finite set E, and accepting that any p € Pp is a set of ordered pairs, < communication '
E
event, successor process > as before, then p must be a subset of the Cartesian product -

5
L3

E x Pg. This may be expressed as, o

P € P(E x Pgj,
where P is the power-set operator. As this applies for any p € Pg, then,

X P C P(E x Pg).

Any element of P (E x Pg), being a set of event-process pairs, could also be imagined

1o be a process, and hence:

&

leading to the assertion,

¢ - Pp C P(Ex Pg) A P(E x Pg) C Pp-= Pgp = P(E x Pp).

* “ - 18-

&,

(9%
- ‘,.f E

For reasons of cardinality, however. the claim cannot he satisfied by any Pp, accord-

o

ing to Cantor's Theorem [40]. This difficulty is abridged by redefining the power-set

operatar not to include all possible subsets. Instead, the set P (F -~ Pp)is parti
~ 4

tioned 1nto equivalence classes with the use of partial ordering. producing a gquotient

set. Now, the space Pp s obtained by progressively building, for all 1= - 0, the

o

intermediate finite process spaces P},_«). each of which is a partial order with ordering

relation <, and elements which are trees of at most length 1. These serve as a series

of approximating spaces whose limit, interpreted appropriately, 1s the desired space.

a 1)
Each space Pg” Vs defined recursively from l’;;'). beginning with the first space
- “ .

) PI(;O). P}:O) consists of a single member, a trec;of length 0, representing a completely

’

" undefined and unconstrained process. Thus, 1t is possible to state that.
141} :
A

where

B

and the elements of the power-set P, are the sets of drdered event-process pairs,

o

augmented with the bottom element ., The hmiting space Ppoan 1« oc 18 also

-

(the null process,

1

a partial order with a hottom element . and a top element !
. - S T ,
which is one that offers to exchange no messages with the chiiffrnent). I'he relation
A R Sk S
CONE AT

< between classes | P, |15 actually defined in terms of the relationship - briween

I
o

€

elements (representatives) of the classes 35 - s apre or weak otdinng_(reflexive
and transitive), which induces the quotient partial order set, * P, .. Therefore,

CPy) <Pyl Pyt Pal P said to be a complete pattial order mince any directed

. . o -

. 19.

1

3

set D of eléments in Pr has a least upper hound (lub), which is also contained in Pg.

A directed set is one where any two eléments have a lub in the same set.

=

» -

\
There are two fundamental functions defined over Pgp. The first is the pair-
) . \
formation function e; : Pp — Pg, where ¢ ¢ E, serving to prefix a process p with

!
the event e. That is:

eip={<ep>}).

The second one is the alternation function + : Ppg x Pj — Pg, which aggregates

behaviours and may be interpreted as set union. For example:

p+qg=plJa,

is a process containing the behsnwkiours of either p or q. This is the éreatest lower

bound (glb) of p and g. R ‘ ' .

Both the-pair-formation and alternation functions are monotonic and continuous,
preserving ordering and least upper bounds. A number of useful properties, due to

the partial order nature 6f Pg, may now be identified. Although proofs are omitted

for brevity, the interested reader is directed to [35] for elaboration. The properties

are:

e ‘e;q Se;iqe ((a.=ea)Ala< g
. 1 + .. tzy L e;q « z, < e; q forsome 1.

v

. The glb of any set of processes exists. For { p,q }, where p,q € Pg, it is

given by p+ gq.
. Vp € Pg,p = Y, €:q,, where the summation occurs overalle; ¢ > p.

-20-

@

¢ 3

P

_definied briefly herd as: -

A process p € Pyp is termed finitely-branching if it can be denoted as a finite sum”
[)

[y

A

of elements. €: g€ Pp,or: =

N
p - ‘_: ¢y iq, . for finite N,
1= 1

Finally, it may be shown that finite-state processes can be uniquely or canonically

specified as fixpoints of continuous, multi-dimensional functions which are directly

N :
built from the preceding functions. The rationale derives from the Fixpoint Theory of

Program Semantics for complete partial orders i41]. and the availabihty of monotonic

and continuous functions_defined upon them of the form F : (Pp)"* - (Pp)".
L) - . .

2.2.2 Process Operators

Operators or functions are required to be monotonic and continuous in order

to guarantee the existence of fixpoints. An intuitively appealing function to begin

with is process interconnection, which permits the formation of Yarger systems from
3 \ . N

component processes. The » operator’is used for this purpose, being defined for the

r

moment as: .

p*q = Ripllq)

’

It may be seen that the - operator can be indirectly obtained via the [] and R

operators. The first of these, the {}-product or asynchronous composition operator, is

plle = Yei(piieg)+ Yedpilg)r e Y ~iimlia) .
1 ,) . - eoer ki1 i '

<

.

In this recursive expression, the terms S ,¢, ; (p, |] q) represent the sum

\
- A

of possible events, e, post-fixed with ! or 7, which can be exchanged between
process p and the external environment, with the [J-product resuming as p, |} ¢.

The terms S,¢;, 5 (2} g5) indifate the analogous case for q. The latter terms

’

Scoer kg — > (pp [l @) denoteoan interna:l/exch,ange or trace event between pro-
cesses p and ¢, from which the (]—pfoduct resumes ;s Pk {1 ;- The trace events are
those events which appear in the event sets of both.processes. In :)thg:r words, these
are event pairings which are identi;:al in name (the name is retained for ease of iden-
tification) ;nd complementary, with one event having the ! post-fix and the other
the ? post-fix. All other events are present in only one event set and are presumed
to be directed to or from the environment. Graphically, s?lid lines are used to repre-

sent external events, and broken lines represenytace events. Further details of this

definition may be found in [35]; Milner’s |-op&rator is almost identical [36).

Theapractical effect of the [|-product is exemplified in Figure 2.4, which shows the
earlier non-determinist;c Client process communica.ting with a Timer process., The
Timer ma;r have the responsibility here of informing the Clier}t process, who may pre-
fer t;) obtain resource units on particular day.c;, that it is Wednesday (for instaflce). If

it is supposed that the two processes have unidentified, but complementary communi-

. cation events or traces to cater to the task, the recursive equations for Client [| Timer

may be written in the ordered-pair notation as:
- e

N

c0 (1t {<- ,.c0 (] t.:b >}
c0' [1t0={<q?, c0q[]to>, <WED!, cO’ []t0>}

R

o~
~

¢

! "

Fig. 2.4 [)-Product of Non-Deterministic Client Process with
Timer Process

I

r 1 (book.1) r | (book.2)

Legend; b,1 = book.1, b.2 « book.2

Fig. 2.5 Parameterized Non-Deterministic Client Process

-923.

c_21(d.1,6 2)

cO0glto={<g? cimf]tOo ., g2 cir []1t0 >,
' < WED !, c0q [} t0 >}
\ / .

cim [l t0= { <q!, ci1q [J t0 >, < WED !, ciim [] t 0 >}

~

cir [1t.0 ¢c0 [1t0>, <WED !, cir [1t0 >}

il
A
A
H

c1q [to c2r [] t0 >, <WED !, ciq [] t0 >}

I
—~—

A

o
~

c2r 1t0={<r!, car [1 t0 >, < WED !, c.2r [] t.0 > }

where, ¢ 0 = {< q !, ¢.0q >} of the Client process is displaced by c.0 = {<
WED !, c 0’ >}andc0’={< q !, c.0q >}, and the Timer process is defined as

t.0 = {< WED !, t0 >}.

Thus, with the []-product, it is possible to follow both the external and internal

(trace) transitions of an interconnected system. For the process interconnection func-

p
- tion, it would also be beneficial to be able to divorce the externally visible behaviour.

e

from the traces, thereby h;ding the latter. A seco;nd operator is defined to this end.

The R operator, which has some similarit}: to Milner’s Restriction operator (in
thgt internal events are suppressed), defines the potential external i)ehaviour of a
system. This concept is best explained through an example. If the system of F igur'e
2.I‘JIWere to be viewed externally, the trace-event would be h'idden, and the composite
process would be similar to the simple non-deterministic process of Figure 2.3 but for
spontaneous émissions of WED ! (which could occir if the process was to take more

than a week in real time to complete). The ordered-pair expressions now take the

d

-24-. V.

(i

following form:

R (c0 []t0) = R(c0’ [] t.0)

L]
R (c0’ [Jt0)= {< q',R(c0q[]toO) >,
: < WED !, R (cO' [] £t.0) > }

R (c0q [] FO:); = {< g2 R (cim [] t.0) >,
< g7 R(cir []t.0) >,
< WED !, R (c0q [] t0) >}

t R(ctm [J¢0) = { < q!, R (ciq i] t.0) >, -
. < WED ', R (c.im [] t.0) > }

il

R (c.1r [] t.0) {< ', R(cO []t.0) >,
: < WED !, R (cir [] t0) > }
R(c1q[l1t0) = {< g? R(c2r [JtO):, -
< WED ', R (c1q (] t.0) > }

R (c2r []t0) = {< r ', R (c.ir [] t.0) >,
< WED !, R (c.2r (] t.0) > }

Formally, the R-operator is specified as: - . 0
R(p) = 5_: 7(¢,q), where,
) <eq>€p

: Cfei Rq) e # -
rle) = { Rlq) ifc = - .

That is, when an event is externally visible, the event is kept and the R is imposed
on its successor process. When the event is a trace,’the trace is removed, leaving: the

R of the suc¢cessor process.

RS- ¥
Ty

One last matter must be addressed for the interconnection of processes-to succeed:
the question of stability. In the present model. processes are said to be stable if, for

every pair of internally-connected processes or states, p, and p,, it is true that:
Rip) = R(P}).

When this is indeed the case, the original statement, p * ¢ = R(p [] ¢), remains

correct. For a stable process, proper classification of states into equivalence classes,

hence extraction of the aptly simplified, externally-visible behaviour of that process

is guarant;eed. If a process does not meet the above stability criterion, a different

operator is required to treat unstable transitions appropriately. The V operator (see

[35]) serves that purpose, and displaces the R such that, for unstable systems:

: prqg = V(p[q)

%

As theimplementation of the V operator was not available at time of research, analysis

- 'was carried out with the R operator only. This required very careful interpretation

of the interconnection results.

o ~ . , \
Other operators include co, det, etc. These are not discussed here, but may be

-

perused in [35].

-

2.2.83 Parameterization

=
o -

As will be seen in succeeding chapters, parameterization plays an important role

-

T

in the description of processes. It serves both to maintain compaétness in descriptions,

and to facilitate information-passing. Both of these concepts are intimately related.

el T

D =
.

¢

< All of the previously described operators function analogously for a parameterized

discrete-event process as they did for the non-parameterized (instantiated) case 142).
~

For example, consider Figure 2.5 which is similar to the non-deterministic C'lient

process of Figure 2.3. Behaviourally. the process is identical. However, messages are

now defined with the pﬁrameter book.1 or book.2 ranging over the set book(s). The

unparameterized process did not account for the identities of theresource units. They

_ were, in fact, indistinguishable from each other. If the Client is now considered to be

borrowing from a library, th® library certainly cares about which lzooks are on loan,
and must distinguish them on some basis, perhaps the title. In turn, thc, Client must
also keep track of what has been borrowed so that the correct book(s) is returned.
This feat is deleéated to the parameters, whjch appear in both messages, via which

specific books are requested, granted and returned, and in states, where the titles of

PR
books aré remembered between actions and trips to the library. Algebraically, this

process is written as:

c0 = { <q! (book.1), c.0q (book.1) > } | book.1 € .book

c.0q (book.1) = { < g ? (book.1), c.im (book.1) >,
< g? (book.1), c.ir (book.1) > }

c.im (book.1) = { < q ! (book.2), c.1q (book.1,book.2) > }
‘ | book.2 € book

3

c-ir (book.1) = { < r ! (book.1), c.0 > }

c 1q (book.1,book.2) = { < g ? (book.2), c.2r (book.1,book.2) > }

c-2r (book.1,book.2) = { < r ¢ (book.2), c.ir (book.1) > }
- . / i

C 27

. - \
For the [I-product. matches between_a pair of communicating processes must now

be formed on the basis of identical parameter (set) names, parameter list ordering,
\

and parameter\list cardinality. in addition to the previous matching on the basis of

-

event names. This is a more extensive, syntactic matching procedure.

2.3 Automated DCP-Based Tools
_ ‘ ' \

DCP-based automated, symbolic computati;m tools, implemented in VAX LISP
(essentially COMMON LISP) are utilized to perform the tasks of analysis and logical ~

verification of conferencing systems. The operating environment is the VAX 8600

computer running under VMS. . 3 .

2.3.1 Defining Processes

-

The generalized format of a parameterized transition in the PCP process descrip-

‘tion is:

. statename [global bindings] =

Y + # [local bindings] . message.name ! [parameters| ;

successor_state.name [parameters] — — > (n)

kAl .

The parameters present in the messagename and successor_state.name are
bound to (i.é. parameter values are obtained from) the global_-bindings and local_bind-

ings which are themselves lists of variables or parameters. This allows for inter-

-

state as well as inter-process information-passing, simulating an ordered read/write

v

-
“‘: =
e

" is the i\ndex of the successor state in the state-transition tablc;,

A

memory for the_processes. A -+ normally precedes every transition, and ‘depicts

non-determinism when two or more successor processes are available for the same

message name, except in certain instances as will he noted. The # implies the selec-
- } .

tion of a parameter value from a set. As an example, # (z.j) expresses the assignment -

of a value from the set X to the j.th parameter, r.j, based on that set.” By'conven-

tion, ! ‘indicates an output message and ?, in the same position, indicates.an input

message; the absence of either indicates an internal event in a composite system. n
] . ’

S

*>

The means for defining a process to the automated tools is the process description

-~ -

file. The LISP setq function is applied to create an atom named after the process,

whose symbolic value is the underlying recursive series of processes, each consisting
of a set of parameterized < communication event, successor process > pairs. With
reference to the generalized transition format, the parameterized Client process of

9

Figure 2.5 may be written in equation form as:

cO = q! (book.1) ; c.0q (book.1)

¢.0q (book.1) = g ? (book.1) ; c.im (book.1)
+ g ? (book.1) ; c.ir (book.1)

¢c_-1m (book.1)

-

c.ir (book.l)

"q ! (book.2) ; c.1q (book.1, b&ook.2)’

"

r ! (book.1) ; c.0
c.1q (book.1, book.2) = g ? (book.2) ; c.2r (book.1, book.2)

¢.2r (book.1, book.2) = r ! (book.2) ; c.ir (book.1) -

- s
-

1 '

and would thus be defined by the following setq assignmentr L e

s

. 29.

2

1 2.3.2 Ke); Modules “ . <

(setq tlient °’(

((co) - /
((#book.1) (q ' #book.1)
’ (c.0q #book.1)))
" ((c_Oq #book.1)
- () (g ? #book.1)

(c_im #book.1))

() (g ? #book . 1)

. (c_ir #book&)(_)w)

%((c_im #book. 1) g
((#book.2) (q ! #book . 2)
" (c-1q #book.1 #book.2)))

((c-1r #book.1)

() (r' #book.1) *
(c0)))
({(c-1q #book.1 #book.2)
() - (g #book . 2)
! (c2r #book.1 #book.2)))
S . .
_ ((c2r #book.1 #book.2)
() (r! #book. 2)
(c1r #book.i))))

LA

’
°

4

All of the abové state_names, message_names, successor_state_names and para-
o)

meters are literals which would normally be enclosed in double quotes. For clarity,

the quotes have been omitted.

L

The automated DCP tools embody several main prograin modules, inch;ding some

¢ -

diagnostic utilities [42]. One module executes various checks on process description

L.

-30-

©

£

®

’

files and prepares the files for subsequent manipulation by establishing internal data

structures. The checks are based on syntactical verification on individual transitions
and on proper recursion of the entire process, usually-uncovering missing or misnamed

state_names. Some errors are also flagged by the LISP interpreter upon loading of a

process description file. As a last feature, the module has pretty-printing procedures

-

which translate the process descriptions from their input form into a more appealing

s

display.

- A second module contdins the basic DC'P operators mentioned previously, the {.
R, co, and det. Here, unification and ordering algorithms are the major components.

These algorithms are employed chiefly in the [|-product operator to supply syntactic

matching 1n order to seperate externally visible behaviour from trace events. Forced
matching 1s attempted when the algorithms note a close match. The two messages,

my_message-! (z.1, y.1, z.1) and my message ? (5.2, y.1, z.1) offered by two pro.

r M 4
cesses are almost complementary. The index of the first parameter of each message,

] 7 “ :
A3

however, is different, to resolve this, a match or unification would be ventured with

the assumption, z.1 = r.2.

A-third module supports the = operator {which invokes the |j, R and appropriate
simplification routines), as well as the relations < and =~ Two other modules are

under development.

.91

Chapter 3

————

A ~Preliniiriary Syﬁtem

£

The discussion of formulations and experimental results commences with the Pre-
L .

liminary System (PS) which serves as an aid to conceptualization, and a means of
verifying correct operation of the formulated processes before continui;lg on with
more complex systems. In this work, there have in fact been several preliminary
systems, beginning with a completely non-parameterized, but unwieldy, formulation.

Two studies of a semi-parameterized system are reported. The first inquires into a

single-conferencévsystem consisting of a bridge and one agent, and the second, into

’

a two-conference system embracing an extended bridge and two agents. Section 3.1

1

prefaces the s_t{dies by desciibing thd elements common to both systems and, working

”

inward from the environment, the agent and bridge processes.

i

3.1 Formulation of Processes

The basic purpose of the conference bridge in both studies is to accept requests
for service and whenever possible, to grant those requests. The purpose of an agent is

rather rudimentary: it passes along whatever réquests it receives from its environment

- 32.

¢ 9

(=)

(some client entity - not to be confused with the Client process of Chapter 2) to the

bridge. In turn, it conveys whatever responses it receives from the bridge on to

its environment. Thus. i the PS. Yhe agents are simply one-element, bi-directional

queues. Both the bridge and agerft possess memores to store parameter values. The

. / . ./
formal descriptions of these processes may jpe found in Appendix A.

[

3.1.1 Constiuction of Messages
/

Messages for both the bridge and the agents are organized around four distinct

hY
functions, illustrated in Figure 3.1: create or ¢ to create a conference; add or ato add

a target agent to a cor?ference; delete or d to delete a target agent {rom a conference;
and, clear or] to clear a conference. Each of the single letters representing functions
are then suffixed with ¢ for request, i for indication or success of request, and r\ for
rejection or failure of request, forming the set of message names used in internal
communication between bridge and agent. Those messages which are exploited for

external communication between agent and environment are denoted instead by the

&

double-letter suffixes, qq. i, rr, for request, indication and rejection, respectively.

-
/

e

Two other ingredients complete the message. First, in order to distinguish mes-
sages by their ogigin or destination, agents (agent! in Study 1: agent! and agent?2
in Study 2) are identified by appropriately installing a I or 2 at the head of the

message.names. These identifiers also appear in agent state names. In addition, it

?

is recalled that a ? signifies an input message event, and a ! points to an output
b

.

message event.

, RTINS
|

create_conferance_request
add_member_request

clear_conference_request
delete_member_request

create_conference_indication
add_member_indication

clear_conference_indication

_ delete_member_indication

create_conferance_rejection
add_member_rejection

clear_conference_rejection
delete_member_rejection

13

T e — .
a_r a_rr!

i br . I_rrl
d_r - d_rri-

>

internal events external events

cr ! c_rr!

ic_q 1c_qq?
fa_ 1a_qq?
1_q 11_qq?

-qq?

1c_i 1¢_til :
Ta_i I 1a_iil
10§ 11_jit

. L

-84 -

' Flg 3.1 Messagé Architecture for Preliminary System

e

¢

=

3.1.2 Use of Parameters

?

to join or leave a conference initiated by agentl or agent2. The identities of the target
agents reside in the untyped set X and are specified as 2.1 or r.2. In Study-2, agent1
can make agent2 a target for a conference initiated by agentl, and vice versa. ‘The

target agent parameter values are also used by the bridge, as explained later.

1

°

Parameters are used to carry the identities of target agents. those agents requested’

Reason code parameters, denoted as c.1, a.l, d.1, and [l.1, being named after the _

four functions, respectivel)}, accompany all rejection signals to explain the failure of

a request. Reason codes are chosen from the counterpart sets (', A, D, and L, and
. . . - . y

may be alpha-numeric designations or actual narrative-form reasons. Examples of

the latter, for the rejection of an add request may include:

Such reasons would often be found in a real imple
however, the reason code parameters accord a degree of completeness and flexibility

to the formulations without specification of the actual contents of the reason code

sets,

“ not added - target agent busy "

113

“

-

°

not added - target agent not responding ”

)

N

not added - target agent already in conference ”

not added - temporary bridge problem "

&

.35 -

"8
mentation. For this research,

3.1.3 Description of Agent

The state-transition ‘diagram for the agent process (agentl or agent2) has 19

states and is illustrated in Figure 3.2. The process is entirely deterministic and has

the three major states, 1a/0. 1a/1. and 1a/2, which proceed as follows. From the

empty state 1a/0, a create request is expected from the environment. Once received,

;‘/

the agent enters a queue state, expressed with the letter‘q in state 1av1q. From
1awlq, the agent can transfer the internal x//ersion of the create request to the br;dge.
When the ex’chang‘c: is made, the agent enters the iawi state, the first create/add
wait moFle. It progr;sses from the wait when it receives back from the bridge an
indjcation or rejection to the request. Upon rejection, the process goes to another
queue state; lawiq-, from which it eventuallj; delivers the rejection (with reason
code) to its environment. The indication also leads to a queue staie, la/1q, where
the indication is output to the environrpent, and the major state 1a/1 is reached: a

s

conference has been created.

Fromr the creation of a conference, it is possible to add a target agent to the
conference or to dismantle the conference; depending on the reception of an addor |

a clear request from the environment. Jf the add request is received and successfully

.

completed, the maximum capacity of two members is attained at 1a/2. To continue,

only a delete request is permissible. Note that the identity of the target agent specified

14

in add and delete requests is kept in the requesting agent’s memory, serving to verify

that the response from the bridge to the request refers to the same target agent.

/

\ - 36 -)

SN

S I TR

-

8
u w2ys4g
‘Kreunuraig ut 13us8y 10 urerdey] uonisuwery-aielg z'¢ Ay

N ’
1y

. wdiwon ® Zwede -
ousIsuce ¢ 10 Aroedes UOREDE 10 el 200 HNPOW. RWMED/DPE KA SUINO SEUR PIO] -

ch d p 04 v mpunddy see -
vornuesesd 10 sewe 108 SeUM eluseey DUR SWNY WAl Peddap LESG SARy LBWEINd - TPENN

bbom

“

-37b

¢

* The add. clear. and delete proc‘edures are completely analogous to the pattern
followed for the create request. That is: reception of a request at the agent from the

envifonment; exchange of the request between bridge and agent; bridge response of

'

indicaticn or rejection; progress to another major state on the former; and. loop to

o

same major state on the latter. The delete and add procedures, taken together, form

the module outlined in bold in Figure 3.2. Such modules can be replicated to obtain

¢ A

greater capacity for the agent process.

3.1.4 - Description of Bridges

d

Two bridges are described in this subsection. The first has ‘capacity for a single
conference of two member agents and is able to communicate with a single agent only
(agentl). The second, an extended version of the first bridge, has capacity for two

conferences of two member agents each, and can communicate with two agents (agentl

and agent2). The state-transition diagrams of the single-conference and extended

3

(two-conference) bridge processes are given in Figures 3.3 and 3.4, respectively.

i

The single-conference bridge has 11 states and reflects the behaviour of the agent,
as -w0uld be anticipated for a r'elatively simple system. Once more, three major states
are involved: ¢/0, ¢/1.1, ¢/1_2. ¢/0 is the empty state, where no conferences ‘are
invoked. Since this bridge only communicates with agent1, ¢/1.1 and c/1.2 show the
presence of a conference initiated by agentl, having one or two members, respectively.

It is evident that this bridge process is modular, as outlined in bold in Figure 3.3.

- 38 -

-68 -

——

Note™ - parameters have been dropped from state and MesSage NAITES 17 saes of preesriation
- boid lines ousiine the addidsisie maduie per agent of additionsl capecily for & conk
- arce indicase paired dsterministic selections !
- soo Appandix A for detalled process descriptions

.

«

-Fig. 8.8 State-Transition Diagram for Single-Conference Bridge ~—
in Preliminary System

. 0f -

a4 it

N

Note - parameters have boondmppod'mmnmqmmmmluomdprmmnon
- Arcs for paired deterministic sslections have been dropped
- message names for transllions 10 and from 112, @, 0, N1, 117, r18, r20, 21 are not shown

. P descriptions not given
- two identical start polnts are shown (o display symmetries in structure ’

Flg 3.4 State-Transition Diagram for Extended Bridge in
Preliminary System ° -

T

v

.

“

-

T e

s
o

“sar

k'

e

¢

et

]
Other characteristics, including paired deterministic selections. aré €xplained in the -

upcoming paragraphs.

£

"

'The structure of the extended bric}ge is more complicated and a simple modular
construction is difficult to see. However, an attractive symmetry may be obs‘érved,
as though two single-conference systems had been configured together. The majo‘r
states of the simple bridge are augmented by ¢/2.1, ¢/2.2, ¢/1.1/2.1, ¢/1.1/2.2,
c/1.2/2.1, and ¢/1.2/2_2 in the extended bridge. Thus, the extended bridge now
indicates in its major state_names the existence'of one or twq conferences, the iden-
tities of the corresponding initiators of those conferences, and the number of member
agents-in each conference. Following is state (39) of 57 states, extracted from the
extended bridge process description, to exemplify this notation and give some flavour

of the operation of the bridge:

(39) ¢/1.1/2.2(x.1) =
+ #(z.2) . 1aq?(z.2) ; i20(z.1,0.2)" --> (46)
+ #(z.2) . la_q'f(z.2) ; r20(:t.1,.r.?) -=> (47)

+

2dq?(x.1) ; i21(z.1) --> (48) .

+

2d.q7(x.1) ; r21(z.1) --> (49)

+

1147 ; i22(z.1) ~--> (50).
+ 11497 ; r22(z.1) --> (61)

\

rs

Here, the state_name c/1.1/2.2 indicates that agentl has created a conference

(labelled by the first 1) with itself as the s;ingle antified by the second
e first 2) with itself and a

1), and agent2 has created a conference {labell/d by

- 41 -

target agent as members (quantified by the second 2). The identity of the additional

member of agent2’s conference is given by the parameter z.1.

’
s

The above transition equation allows the bridge to accept one of three possible.
request messages, each of which has a pair of deterministi\cal]y selected successor

processes, modelled in a non-deterministic fashion and marked by arcs in the figures.
¢

These special pairings, which follow the absorption of a request, are due to binary,
decisions taken by the brildge on the basis of parameter values or other information.
The first pair of successors is attributable to an add request from agentl, with the
- parameter z .2 as the identity of the target agent to' be added to agentl’s existing

conference. The successor processes, 120 and r20, are branchings generated from
‘) LY . 3

o

a bridge decision to accept or reject the request. Parameter z.2, along with the

original parameter .1, must be retained in memory for further manipulation, such

r

as subsequent delete requests. The next pair of branchings arise from a delete request

from agent2. Theidentity of the (only) member to be deleted from agefit2’s conference |
3 B
is found in the message as the parameter z.1 (note that agentl and agent2 can only

~ add or delete from their own respective conferences). This value is referenced to the

o

global _binding appended to the state_name. Again, branchings occur on success or

\failure of the request, with the .1 parameter being dropped once an indication is

-

passed on to agent. Similarly, the last pair results from a clear request from agentl

-

to drop the conference it had. previously created. This request does not have any

parameters, but the successor processes must guard z.1 since z.1 is pertinent to
agent2’s conference, which is unaffected by the request.

© N;‘ .

_ T)

4

L
'.’5 ;"

The three failures loop back to state (39), while (46) eventually goes to the
major state c(1-2/2_2(.;.1,.1-.2) - or state (52)\ - where the parametérs have been-
renamed to preserve their association with the conference ordering in the state_ngme.
The bridge reaches maximum capacity at state (52). from which only deletions are
acceptable. States \(47) and (50) [éad to the majorstates ¢/1.1/2_1 and ¢/2 2(z .1),

respectively.

-

3.2 Study 1: Single-Conference System

In thi§ study, the bridge process, the agent process named agentl, and their

interactions are explored. As mentioned, this bridge has capacity for one conference

of two member agents, and agentl has capacity for one member agent in addition to

itself.

f \ .

First; the []-product, as defined in Chapter 2, is applied to the two processes. The,

e

" resultant contains 23 states and is portrayed in Figure 3.5. Alternatively, the algebraic

output is available in Appendix A. Within Nompound states, the left side of the

o,
[] gives the state of the bridge process, while the right gives the state of the ag::ntl

process. The two processes progress together, without deadlocks. That is, neither

process suffers an indefinite wait due to the absence of a desired message exchange.

Paramieters are found to be correctly carried and passed within and between processes,

* when compared to hand-worked examples. The memory available to both the bridge

and agentl allows for faithful internal exchanges, eliminating the possibility of errors

»

in the communicalion channel.

-

.
‘\. ,
K 1
- - ' .
s

4 , LS

Q

o

o
-

¢

I s D)

T . \ ‘ s . o~
1 10_i . o5, :
- S TS ORI I
. . '
LY El
Nolu' - parameters have been dropped from stase and Message names (o7 ease of prquruli;n
- arcs indicate paiwed deterministic selections .
. - solid lines and double-letter suffixes in messages indicate extemal events 4
- broken lines and single-letier suffixas In messages indicate lntemal events
- boid lines outline the zdd/delste module per agent of additional cag Hty for & cont ‘
- 888 Appendix A for detailed process descriptions
. , .
i(I3 < . -
' , Fig. 3.5 State-Transition Diagram for {]-Product for
- Single-Conference Preliminary System . -
' (% >
8 c Q ° . -

te @ 18_gg? ’ * fa_q @ ta_i -

.

AN

r A’é)
I'd
" The modular structure of the "-product is highly evident and is. of course, a

direct consequence of the modularity of the bridge and agentl processes. Therefore.

£

the capacity of fhe conference system may casily be increased by appending more

add/delete modules (outlined in bold in Figure 3.5). a very desirable feature. For a

v

. -
conference capacity of N agents, then, a total of N 1 modules would be necessary.
5 -

The paired deterministic selections of the ||-product are also inherited from the

bridge process. As with the bridge, there ‘are four pairings in all: one each for the

-

create, clear, add, and delete requests.

v

Although there 1s Treedom from deadlocks, certain looping behaviours (i.e. live-

El

locks) are imaginable. For example, repeated arrival from the environment of an’

add request with the same inadmissible target agent (1dentified in thé parameter).
X i

would result in the rejection loop: c/1.1[J1a/1 ... ¢/1.1[]J1aw2q ... r3[]1aw2 ...

c/1.1[]1a/1q- ... ¢/1.1[]1a/%t. Normally, it would be preferable to limit the num-

ber of retry-rejection cycles to some small number. say three. As such constraints are

not imposed here. it may be said that this is a patient system.

To proceed with the interconnection of the two processes, the R-operator is now

engaged to hide the internal or trace events. The eflect is'rendered in Figure 3.6 and .

is provided in algebraic form in Appendix A. Internal events have been removed and

o

state. which are externally visible have been made bold. Externally invisible states

and transitions have been left intact {or reference.

- 45 -

13

Notes® - parameters havs been dropped from stawe and Message names for sase of presentation
- arcs indicale paired deterministic selections
- solid lines and double-letter sulfixes in Messages indicate extemal svents
- bold elliipses are extorrally visble states i
~noAppondlelocdthdp¢ocmducrbllom

1

s

Fig. 3.6 State-Transition Diagram for R for Single-Conference
Preliminary System

¢ 3

At this stage, it would he advamageons to remove R-equivalent states to reduce |

the R of the conferencing system further. .\ set_of equivalence afsumptions were
}

- ®

made by the tools and inductively tested over two passes. Eerir equivalences were

1

discovered. these being:

R(c/1.1[J1a/1q) = R(a1[]1awl)

R(c/1.2(r.1)[T1a/2q(r.1)) = R(13(+.1)[11aw2(r.1))
R(c/0[11a/0qq) = R(12[]1dw0)

R(c/1.1[]1a/1qq(r.1)) .- R(i4[]1dwi(r.1))

This simplifies the original system to 19 states (see Figure 3.7). Since the remain-

ing internal events do not meet the stability criterion of Chapter 2, the systenr is said

to be unstable.

q

Finally, if the reason code parameter sets involved in rejection procedures were

vollapsed to have cardinalities of one, the R-equivalence would also hold for the four

pairs of states:

R(c/0 [11a/0q-) = R(rt[]1aw1)-)
R(c/1.1[]1a/1q-)

HY

R(r3[)1aw2)
R(c/1.1([]1a/1q9q-) = R(r2[]1dw0)
" R(c/12[]1a/2qq-) = §(rall1aw1)

H

z

he constrained

.

This would remove another source of instability Figure 3.8 gives t
/

~

externally visible behaviour of this conferencing system. It remains an unstable sys-

-47-

'87'

H_ir

en_11e/1qq-

1,997

©/0(]18/0Qq Y - moem e . @
> i_T[ia/ieq

Notes: - parameiers have been dropped from stale and message names for sase of presentation
- arcs indicate pakred deterministic selections
! . solid ines and double-letier suftixes In Messages indicate external events
- bold slipses are externally visble states
- boxed pairs of states are equivalent (the state with name in boki replaces other one)
: 900 Appendix A for detalled process descriptions

Fig. 3.7 State-Transition Diagram for R-reduced for-
Single-Conference Preliminary System

£y

it

164

’-ummmmm!mnnhwmwmmmdmm
- see Appendix A for detailed process ouenpﬂom

Fig. 3.8 State-Transition Diagram for (onsmuned
Smglc Conference Preliminary System

.49

tem due to the four deterministic pairings for indication and rejection.

The combined processing for the [}-p‘roduct, R. equivalence tests, and reductions,

4

using the automated DCP tools, took 78 seconds of C'PU time. Page faults, which

are a measure of the memory requirements for the LISP environment, amounted to

120.7k (k = 1000). y

3.3 Study 2: Two-Conference System

The two-conference PS formulation consists of a bridge extended to a capacity of
two conferences of two member agents -each, and t\\;o distinct but isomorphic agents
(agentl and agent2) each with capacity for one member agent in addition to them-
selves. This extended bridge was depicted in Figure 3.4; agentl and a‘,gentZ are as
previously given in Figure 3.2. Computer processing capability restricts this analysis

to the [|-product.

The []-product of the extended bridge communicating with agentl and agent2
yields 465 states in total, without deadlocks. Processing time was 20:39 minutes;

page faults exceeded 278.7k.

¥

The capacity of the bg'idge and agent processes can certainly be increased to attain

quite large conferencing systems. Although it is possible to do so, the formulation

}

would quickly become unwieldy. o :

7

- 50 -

e

\

Chapter 4 The Membership-Based System

v

The Membership- Based System (MBS)isintroduced to overcome various inherent
limitations of the PS formulation. Some of these limitations, such as t‘hv cumbersome
need for instantiated message .names and stafe names to distinguish agent pr;)cesm'u.
are already evident. Other drawbacks become obvious when an attempt 1s made to
widen the PS formulation to provide larger-capacity and more Aexible conference nys

»

tems. Quickly. the tracking of conferences and their membership lists, ns well as the

provision of more advanced request facilities becomes quite unposing. From these

impediments surfaces a desire for compact yet highly expressive notation, which

met chiefly through expanded use of parameterization Concurrently, several sumpli-
fications are made to the message architecture. The fruit of these efforts is a aet of

modular processes which are easily generalized to form conferencing systems of arby.

trarily large capacity. Again, two studies are recounted: a single-conference system
(=

of a bridge and one agent, and a two-conference system of the same bridge with two

agents. . C

191

LY

4.1 Formulation of Processes

)
(=4

The bridge and agent processes follow the same guiding principles as in the PS

'

formulation. The bridge has ¢apacity for up to four agents in any combination of
L i : .

conference groups. The agent supports a maximum of two agents (including itself)

in a single conference and has some new duties. All requests are designed such that

only one agent is added to or deleted from the total membership of the conference

system at any given time, hence the name Membership:Based System.

Both the bridge a.n(i agent processes are deterministic. The c;nly true non-
determynisms are in the arrival of rerquest messages from the environment, and in the
parameter values originating with those events. Occasionally, these determinisms and
non-determinisms are nested together and require careful scrutiny in the [}-product

and other results.

4.1.1 Construction of Messages

The PS forfnulation defined messages around four functions: creaie, add, delete
and clear.. A§ a simplification, the present formulation reduces this number to two.
This reduction is realizable given the greater use of parameterization. Thus, the
message_names corresponding to the create and add functions (i.e c.q, c, (;_r and
a.q, a, a.r, respectively) in both the bridge and agent process descriptions are merged
into the add messages. Similarly, the messages \for delete and clear are amalgamated

3
into the group of message_names based on the delete function. Of course, the changes

- 52.

also affect the external messages. This new message forinat is illustrated in Figure

4.1. Functional distinction is now provided through the bridge's interpretation of the

)

interrelationships of three parameter values supplied in all requests: the requestor,
the target, and the conference name. These parameters are described further in the

next subsection; their interpretatior by the bridge is left for discussjon in Section

.
-

4.1.4. .

<

The above simplification may be carried further to leave just one function or even
one message.name, embedding all information in parameters. Although compactness
is gained, there is a trade-off to be juggled, as increased parameterization makes

0 ’

3
for difficult tracking of processes. Concomitantly, the processes must bécome more

complex to decipher the information in the parameters.

M essage_names no longer bear a 1 or 2 to inform of a message’s origin or destina-
tion with respect to agent identities, this service now being provided by the requestor
parameter. The ? and ! symbols have the same significance as before. ~ _

4.1.2 Use of Parameters

The MBS formulation calls on parameters to perform several new services. Both

s
the MBS-bridge and the. MBS-agent utilize the target parameter, renamed y.1 or
y.2, discussed previously. For the bridge, the requestor or z.1, conference name or,

-

n.1, and the grouping table or gn.l parameters are introduced; the agent is given.

- corresponding requestor, conference name and membership list or mn.]l parameters.

-

. 5% .

add_conference/member_request agq
delete_conference/member_requést d_q
: =
nfer indicati i
~add_co erence/member _indication | a_i
delete_conference/member_indication
eto_ ce ber_indicatio d7_i |
add_conference/member_rejection a.r
, p— e
deleté_conference/member_rejection d_r ,

4
“linternal events

external events

a_liil

a_rrl

d rrl

!

The grouping table and membership list parameters prevent the linear growth. of the

number of member agent parameters with the increasing capacity of bridge and agent

processes, respectively. All parameters are based on untyped sets.”

i

- The requestor parameter, which contains the identity of the agent submitting a

request to the bridge, is fixed for each agent at execution time by a de-conflicting

algorithm within the automated tools. The requestor identity is written onto mes-

©

sages received from the environment, and stripped from messages delivered to the

environment by the appropriate agent. The conference name parameter is used to

‘symbolically refer to a particular conference. leading to richer request facilities for

the agent while necessitating more advanced logic within the bridge to handle such

~

requests.

- %

The grouping table parameter plays a cnitical role for the bridge, tracking con-

ferences by maintaining multiple membership lists with respective conference names

and initiator (chairman) identities. The result is a very compact and modular repre-

N

sentation of an otherwise messy affair. With this super-paramieter, it is possible to -

generalize the bridge process description to handle any number of agents in any group-

" ing patterns. For example, if the parameter stands at g2.1, it means that there are

currently two agents being tracked by the bridge, either as two initiator-dependent

situations of a single conference of two agents, or as two conferences of one agent

-

each. Externally, the distinction is not.apparent. except by observation of the states

of initiating agents. When another agent is to be added. the parameter procecds

to g3.1. Based on the request and the preceding grouping configuration, there may

now be three conferences of one agent each, two initiator-dependent situations of two

conferences with two agents in one and one in the other, or two initiator-dependent
situations of three agents in a single conference. This implies that a 1:1 mapping

exists such that gj+1.1 is created given the parameters gj.1, z.1, .1, andn.1. The

¢

inverse of this mapping must also be available for deletes. This mapping is simulated
in the procéss descriptions simply through the displacement ;)f the preceding grouping

table parameter by the current one at appropriate points.

Lastly, the membership list parameter invoked in the agent, although not abso-

7

lutely necessary to the operation of the agent, providef. for local retainment of the

identities of agents"currently engaged in the conference (if any) which that agent has

o

initiated. The list is enlarged or diminished in an orderly way, from mj.1 to mj+1.1

-2

or mj-1.1, one agent at a time, respectively. The membership list does give a mez;ns of

cross-checking the agent states with the abridge states in the []-product, and is an aid

n

in the generalization of the MBS-agent process description. It is conceivable that a

v

A3

more intelligent agent could make use of the membership list to perform preliminary

&
&

validity checks on requests before sending them on to the bridge.

7

Reason code parameters are employed as in the 'PS‘ i’ormx}lation. 'Following the
Simpliﬁcations made to the message_names, they are now based over the sets A and
D. i g) . . . &

- 56

O ’ -

4.1.3 Description of Agent

. The state-transition diagram for the agent process, with capacity for one member

L

agent in additior to itself, has 1Y states and is given in Figure 4.2. Algebraic descrip-

“tion's are provided in Appendix B. The MBS-agent mirrors the modular structure

and follows the same basic pattern of behaviour of the PS-agent, which also had 19

. J ’
states. Differences may be observed in the merger of message .names, the absence of

1 1
agent identifiers appearing in state names and message _names, and the greater use

of parameters, as discussed earlier. The identity of the target agent, as well as the
conference name, specified in add and delete requests are kept in memory, to correlate
the response from the bridge with the contents of the original request. The identity
of an agent, in the form of the requestor parameter, is passed‘from state to state such

o
!

that the agent always retains its name.

.9

o

“t -
With the above modifications, a single, generic agent is made available which

*

. e ’
’ can be replicated-as many times as desired without ambiguity. When two agent

4

processes are used in the [|-product for the Two-Conference System, the processes

are de-conflicted by the automated tools. This archetype agent process description is

. [, -
generalizable to any membership capacity, with the number of states totalling 9A+1

°

to handle A agents.-

4.1.4 Description of Bridge .

The state-transition diagram of the bridge process has 21 states and is pictured
@ ‘ in Figure 4.3, with algebraic expressions to be found in Appendix B. The MBS-bridge

- 3 o . - 57.. g

AR

- 85"-

o

N ~

. o%

Note: - parameiers have been

, boid lines outiine the add/delets module per agent of additional
- 8ee Appendix B for detalled process descriptions

dropped from state and Messige names for sase of preserntation

Y [

Fig. 4.2 State-Transition Diagrain for\Agent in
Membership-Based System

apaclty for a conference

3

v

’

- '
')._ T \
-
. . ,
3
& ’
- 2 - A
Notes:- parameters have been dropped from state, and message names for ease of presentation
B - bold lines outline add/deiete module per agent of additional capacity for a contsrence
- see Appendix B for detalied process descriptions ’
’ *
5 Q’
Fig. 4.3 State-Transition Diagram for Bridge in
. ! Membership-Based Sygtem '
< , P .
L]
@ﬁ:‘ ' \ oS

-59-

-]
o

can support any conference groupings for up to four agents. replacing the two PS-
bridges of 11 and 57 states by one process. Thus. a spectrum ef possibilities- exists
from a single conference of four agents at one end. to four conferences of one agent

. .
each at the other extreme.

The MBS-bridge has the five major states, ¢/0, c/1, ¢/2, ¢/3, ¢/4, and up to

c¢/2, has the same form as the basic PS-bridge. Once more, c/0 is the empty state,

where no conferences have as yet heen constructed.” The remaining major states

indicate the total number of a ents participating in all conferences, where the actual

configuration is furnished in the grouping table parameter, gn.1. Itis eviden that this -

—

S bridge process is again modular, as outlined in bold in Figure 4.3, and generalizable

with 5A41 states for a capacity of A agents.

As an example and-to draw comparisons with the extended PS-bridge, state (13)

of the MBS-bridge process description is selected:

(13) c/3(g371) = :
+ #(z.1,y.1,n.1) . aq?(z.1,y.1,n.1) ; c/4.ai(x.1,y.1,n.1,¢43.1) --> (14) .,

+ #(z.1,y.1,n.1) . aq?(z.1,y.1,n.1) ; c¢/4.ar(x.1,y.1,n.1,¢3.1) =-> (15)

- + #(z.1,y.1,n.1) . d.q?(m.l,y.l,nl.l) H c/2{1i(:c./},y.1,n.‘1,gs.1) ~--> (16)

+ #(x.1,y.1,n.1) . d:q?(:c.l,y.l,n.l) ; c/2.dr('1-.1,y.1,n.1,g3.1) --> (17)

“u

Here, the state.name ¢/3 indicates that some conference(s) exist(s) with a total of

three agents enrolled altogether. Instead of the six transiiiops of state (39), only four

are available. 'All four are of similar form, with the three parameters (z.1,y. 1),n .1)

- 60 -

¢4

drawn from local bindings. The above transition equation allows the bridge to accept

one of two possible request messages. each of which has a pair of deterministically

selected successor processes (as described previously in Chapter 3). The first pair of

successors 1s attributable to an add request from a requestor .1, with-the target

. ' .

agent to be added y.1 under conference name n.1. The successor processes, c/4_ai

and c/4.ar, are branchings generated from a bridge decision to accept or reject the
ct /s

request, as the suffixes suggest. All of the incoming parameter values, along with

the original parameter g3.1, must be retained for the response. Once the response is

- emitted, only the gn.1 parameter is held for subsequent actions such as delete requests.

" The second pair of branchings arise from a delete request, carrying three parameter

values as above. Again, branchings occur on success or failure of the request.
A

The two failures loop back to state (13), while (14) eventually goes to the major

/

state c/4(g4.1), or state (18). The bridge reaches maximum capacity at state (18),

from which Bnly deletions are acceptable. (16) travels to the major state ¢/2(g92.1),

) ’ “

or state (8).

As has been alluded, the bridge has a considerable decision-making task\upon.
receipt of a request. In order to formulate a response, whether an indication or a
rejection, with the appropriate reason Code'jus‘tifying and expl;xining a rejection, a
number of atomic tests must be performed. An example flowchart is provided in
Figure 4.4, whilc}} demonstrates the internal logic the bridge must carry out in order
to decide among four successful and six rejection cases for an add request. Two of the

™ /

- 61 -

a

b«’

* (agent adds self)

y1Eg21?

create new

group under n.1

{agent creates n
conference named n.1)*

Predicates:

N
add y.1 ’
under n.1

ly

E - element of...
C - chairman of...
M - member of...

addy.1
under n.1

(chaiman adds
agent)*

* these are the
only cases visible
in MBS :)

{member Minam agent)) . -

3

P l R . .
Fig. 4.4 Internal Logic for MBS-Bridge - Example of Add
Feature with Disjoint Sets

e 3

-

169 -

¢

successful add cases emerge in the current formulation: agent creates new conference

* named n.1; and, chairman adds agent (a DIAL-OUT connection scenario). The other

two cases require further facilities to implement. For the fitst of these cases, where
conference is initiall_y created, it is necessary to meet the C(;nditions: z.l= y.1 (i.e.
requestorand target are one and the same); and x.1, n.]1 not contained in the grouping
table g2.1 (i.e. the chairman-te-be, z.1, and the conference-to-be, n.1, are new and
uniquely-named). In the second case, where @ conference is to be augmented with
a new member, :c:laéy.l,’ y.1lis u.nknown to the grouping table, x.1 is known to the
grouping table, and z.1 is the chairman of conferencen.l. Many other interpretationé,

accompanied by the appropriate logical predicates, may be envisioned.

I

)

4.2 Study 1: Single-Conference Systemu

This study examines the bridge process in communication with a single agent

process. Many similarities are found between this Single-Conference System and the
g

[4

. corresponding one of Chapter 3.

The computation of the [|-product arrives at 23 states (as was the case with the

[]-product of Study 1 in Chapter 3) and is discovered o’ be free of desdlocks. The

result, in graphic form, is given in Figure 4.5, while the algebraic output is available

in Appendix B. Again, parameters are found to be correctly carried and passed within

and between processes. The temporary storage by the bridge and requesting agent

processes of all parameter values appearing.in a request assures error-free internal

-63-

/1llar1aq

No(n:-pumnlmhlv;bnnihppodtmummdmuoommlwmdpmwbn
\ - arcs indicate paked deterministic selections

- solid ines and double-letter sutfixes in messages indicate ext |

- brokan lines and single-letter suffixes in messages Indicate internal events
- boid lines outline the add/delete module per agem of addkional

- sse Appengix B for detalled process descriptions

iy for a cond

‘ l Fig. 4.5 State-Transition Diagram for [|-Product for
. Single-Conference Membership-Based System

~

e

)

o

exchanges for responses. since a match must he achieved between the two sets of

R

parameters.
p
The modular structure of the ij-product. as well as the inheritance of paired

deterministic selections and the possibility of livelocks, are as observed in the Single-

Conference System of Chapter 3.

The application of the R-operator to the []-product follows. The effect is rendered
in Figure 4.6 and is provided in algebraic form in Appendix B. It would be helpful to
remove R-equivalent states to reduce the R of the conferencing system further. A set
of equivalence assumptions were made by the tools and inductively tested over two

passes. The four equivalences detected are listed below:

R(C/ol(gl-1)[]a/1q(r.'1,y.1,n.1)) =
R(c/tai(zr.1,y.1,n.1)[Jawi(r.1,y.1,n.1))

R(c/2(g2.1)[1a/2q(x.1,y.1,n.1,m1.1)) =
. R(c/2.ai(x.1,y.1,n.1,91.1) [Jaw2(z.1,y.1,n.1,m1.1))

ﬂ—‘?(s/O[]a/qu(:;:.l,y.l,n.l)) =

R(c/0di(z.1,y.1,n.1,91.1)[1dwO(z.1,y.1,n.1,m1.1))

R(c/1(g1.1)[la/1qq(z.1,y.1,n.1,m2.1)) =
R(e/tdi(x.1,y.1,n.1,92.1)[1dwi(cr.1,y.1,n.1,m2.1))

This simplifies the original systern to 19 states (see Figure 4.7), Since the remain-

~

ing internal events do not meet the stability criterion of Chapter 2, the system is said

- 65 -

Notes: - parameters have been dropped from state and message names for ease of presentation
-~ arcs Indicate palred deterministic selections

- soiid lines and doubis-letter suftixes in m ges Indicate nal]

- boid eliipses are sxternally visble states
- 888 Appendix B for detalied process descriptions

- Fig. 4.6 State‘Transition Diagram for R for Single-Conference
Membership-Based System

R

LS AU

- -
NG
o N
. 3

N Notes: - parameiers have been dropped from state and message names for sass of pressntation
. ' - arcs indicate paisd deterministic sslections
- #olid nes and double-letter suffixes In messages indicate exiemal sverts

' - boid sifpesg are extemally visble siates
- boxed pairs of states are equivalent (the state with name In boid nplu:u other one)

\-mmsimdﬂybdpmmﬂplm

o=
>

Fig. 4.7 State-Transition Diagram for R-reduced for
Single-Conference Membership-Based System

® $)

e

T— T T
. DN i

C ey
R
R o

LY

to be unstable.

Finally, if the reason code parameter sets involved infrejectio;l procedures were
collapsed to have cardinalities of one, the R-equivalence would hold for the four pairs

of states:

o

i

R(c/Ot]a/Oq“) = R(c/t.ar[lawl)
R(c/1[la/1q-) = R(cﬁZ-ar[]aﬂ)
R{c/1[la/1qq-) = R(c/Q.-dr[ldwo)
n(c/1[];2\/2qq-) = R(c/1.dr[ldwl)

This would remove another source of instability. Figure 4.8 gives the constrained
externally visible behaviour of this conferencing system. It remains an unstable sys-

tem due to the four deterministic pairings for indication and rejection.

The combined processing for the [|-product, R, equivalence tests, and reductions;

using the automated DCP tools, took 4:38 minutes of CPU time. Page faults were

¥

71.1k.) O

‘4.3 Study 2: Two-Conference System -

The two-conference MBS formulation consists of the bridge in communication

’

~ with two agents. Each agent has capacity for one member agent in addition to itself.

Computer processing capability restricts.this analysis to the’[]-product.)

- 68 -

R

Rt
.s‘"ﬁa

g

am

Notes: - paramelers have been dropped from siate nunmloruuc!prmnbn
-, 08 Appendix B for detaNed process descriptions

am

clr2f)ar2

Fig. 4.8 State-Transition Diagram for Constrained
'~ Single-Conference Membership-Based System

; ;

.69 -

°

|/‘

As an experiment, the {J-product was first taken with the bridge kept to a maxi-

mum capacity of two agents (regardléss of grouping). This ensues in the single dead-

. lock, c(2(g2%1§[]aw2§(:c.1,1j.gl,n.;,mik.l)[]aw2q(.z-.2,y.2,72.2,ml.2), which

4

. had been Aanticibated. This deadlock is due to the situation where both agent pro-

cesses have initiated conferences, with themselves as the sole participants thus far.

Both then attempt to add a second participant to their re;pective conferences. At

this poiﬁt, however, the bridge can only accept a delete inessagq from either agent,

since it has reached its maximum capacity of two agents. If the bridge capacity was

_increased to handle four agents, it would he possible to create two conferences with

. two member agents each (which would have all three proce§§es at maximum capacity}, -

and eliminate the deadlock.

v,

The {]-product for the Two-Conference Sy'ste‘m, with the bridge returned to the

maximum gapacity of four agents, eliminates the aforemertioned deadlock and yields

S . . s
3 465 states in total. This'is the same number of states found for the Two-Conference

o

System of Chapter 3. P'rocessirig time was 58:04 minutes; page faults were in the

© vicinity of 804.7k.

The capacity of the bridge and agent 'processés can be arbitrarily extended to

produce larger conferencing systems, with no material difference in the inter-operation

of thé processes. , . ’ ¥

mif, 2

L4 ’

Chapter 5 ~ The qufegencé-Béséd System

3
T

The Conference-Based System {CBS) is almost identical in fo;mg_lation to the

MBS, being an evolutionary step. Behaviourally, however, the CBS formulation allows

14

. the bridge to operate on the basis of the number of outstanding conferences, regardless

of the number of members in each conference, whereas tﬁe,MBS-bridge operates by

countixllg the total number of member .agenté reéistéred in all conferences combined.

b
b

The CBS approach thus ushers in a more concise description of the bridge and a
9 ' o ‘

. l‘ N
new, economical conference-kill feature. With the incorporation of a new parameter,
4
!

L

the now-traditional pair of studies, the Single-Conference System of a bridge and
one agent and, thé Two-Conference System of the same bridge with two agents, are

reviewed.

a

~

5.1 .Formulation of Processes . : N

o
o

The natures of the CBS-bridge and CBS-agent are of the same spit{it as the

o

processes in the PS and MBS fofmulations. The bridge’s capacity is now expressed it

o

.
iﬁf

5

terms of number of conferences rather than ‘agents. The present bridge may handle

-

. . B
@ .) \'71' ° , 7

e .

@

2 »

"two conferences each of arbitrarily large membership. The agent still sppports' a

maximum of two agents (including itself) in a single.conference. Only one agent or

one conference is added to or deleted from the profile of the conference system with

an appropriate request message. Both the bridge and agent process are deterministic.

P

The CBS message format is as described in Chapter 4 andrillust_rant'ed in Figure

-

4.].

3.1.1 Use of Parameters ' , .

“The CBS:formulation brings forth the new test comijtjoﬁ parameter. The target,
requestor, conference name, membership list and reasén code p.ara.metqrs continue in

. their duties. The grouping table parameter is adjusted to caunt conferences tather

than agents.

The CBS-bridge must distinguish between the addition or deletion of a conference,

and the addition or deletion of a member agent from an existing conference. Of these

.

four functions; all of which are specified and interpreted via the target, requestor, and

conference name parameters, the route for the deletion of a conference is altered. The .

MBS formulation implicitly required the conference chairman to be removed last, at

which point the conference would also be-cleared. \Sl“he CBS formulation does not -

restrict the ordering for-removal of the chairman. The chairman ﬁlay withdraw at

any point from the conference, and through its withdrawal, kill the conference. This

gives the flexibility of clearing a conference in its entirety, regardless of the number

~

-72- .

!

of conferees, with a single, suitably-specified request - a very 8wkward task with the
@ MBS-bridge, necessitating N delete requests for a conference of N agents (including

L

and ending §vith the chairman).

0
The test condition or tn.]l parameter is in'troduced in ;he bridge, as a means of
correctly d“irecting ;he [}-product pfocess, by appropriate conditional branchix{g, to

" = set ‘apart conferen’ce and agent manipulation. Without such a dev{ce, the []-product
would incur deadlocks, part,icul;xrly in the Two-Confizrence System. anh. set Tn
co;ltains a single and unique test. The test itself, in the form of.a Titeral with con-

junctions, disjunctions, etc., can be used as a test condition parameter name taking

- £ '
-

the place of Tn. Due to the binding procedures involved in creating the [J-product,

the test condition parameters must also appear and be matched in the agent’s process

A

- description for the branching to operate”

L
4 . \
.
hd v

It must be noted that this methodology for conditional branching is not entirely

Ay

«

satisfac‘iory. Although given the pres;ent work a;ld theiconstra:ints of the automated
-todl-s used, it is effective and compact, the‘ necessity for symmetric appearance of
the test condition parameters ,inl both processes is an argificial construction, and for
increasinély complicated sg}sten’ls, prone to erroneous or cluttered results. Further, '

the cases underlying the branching must be-conceived and verified by the protocol

r

- designer. As a more structured alternative, a prototype tool has recently been devel-

-oped which builds sub-cases for each pair of parameters within a transition on the

t _basis of an equality operator. This approach leads to an explicitly e'qumesated set

-73-) -

of sub-cases upen which branchings may be imposed, taking away the task of case

construction from the designer. The drawback to this methodology is loss of com-

pactness. It is anticipated that some hybrid of the two branching methodologies may

'

be advantageous. :

.

The grouping table parameter is char'actetized differently from the MBS formula-
t‘ion for the CBS-bridge, but is still responsible for tracking conferences by maintaining ‘
-multiple membership lists with 'resp-ective conference names and initiator (chairman)

‘ id‘entiti;as. Recalling (but modifying) the example of Chaptgr 4, if the parameter

stands at g2.1, it now means that there are currently two conferences being tracked

by the i)ridge. Externally, the number of member agents in each conference is not

\

apparent, except by observation of the states of initiating agents. The parameter only
.) 4
proceeds to g3.1 when.a new conference is created (in the presence of condition t3),

(39

or to gl.1 (with condition 1) when the conference-kill feature is invoked (equivalent. .

J

to the removal of the chairman). Based on the request and the preceding grouping
configuration two outcomes are possible. First, for the creation of conferences, a-1:1

)

mapping exists such that gj+1.1 is creabed given the parameters gj.1, .1, y.l,’and
n.l.” The inverse‘ of this m;pping must also- be available for conference-kill. This
mapping is simulated in the ptocéss &escriptions by rewtiting the p;eceding grouping’
table parameter by the current one, as before. Second, v;hen an agent is added to or

. deleted from an ejxisting conf;-:rence', the table is updated internally, but the parameter
name is)eft unalt;sred. ‘Instead, another table is taken from the same set Gn which P
contains all n-gfgnfereni:e grouping tables to manifest the change in membership.

A
-7 -

3

o)

. sequently from every state dwn) to a/0qq, in order to collapse a conference frorm

5.1.2 . Description of Agent

2

The state-transition diagram of 1Y states for the CBS-agent is similar to the PS

and MBS agent processes, with capacity for one member agent in addition to itself.
+

The diagram 1s given in Figure 5.1 with the D('P expressions provided in Appendix

C. The usage of messages and parameters is as for the MBS-agent.

o o

The agent process, in contrast to previous formulations, now has the conference-
kill facility. To operate, an extra transition must be inserted from dwi (and sub-
the agent’s side. Concurrently, when a conference $s collapsed, the membership list

parameter in the agent falls from mn.1 to no list at all.

: » ,
The CBS-agent can be replicated to form [|-products of the bridge with N agent

e

o s ;o .
processes (N=1, 2 being the current examples), where the identities of agent processes

are diffe;rentiated through the de-conflicting procedure of the tools. The formation of

o

such a series of []-products is limited only by the conference capacify of the bridge,

since each agent process, acting as a chairman, can generate a conference. This generic’
o . - A

¢
. -

and modular agent process description is generalizable to any membership ‘capacity,

with the pumber of states equal to-9A+1 to flandle A agents.

5.{.3 Description of Bridge

-
[

The state-transition diagram of the bridge procegs has 13 states and is drawn in

Figure 5.2, with algebraic descriptions documented in Appendix C. The CBS-bridge

f :
~y / G- 75 -

»

~

~ -l
. -
! }
r *
- . e
i - \\ -
N , . ! i
- -
. ,
n‘ -
»
A\ Y
Sen [
- a
, q
F ’ 3 .
- - i ‘
~
) ~
ar?
aleg-

. ~ N - ~ . ’ -
) ‘l " - -
=2 "
o o B
f o/0qq altay s
<. :
- i t1.1 .
. ° . d ;
PN N
i ' . N ° [N
' Notes - parameters have besn dropped lrom state and 0 for ¢
- bold lines outine the add/delete module per agent of additional capacity for a f
.) - see Appandix C tor detailed process descriptions .
N a ’ . ! g
A} ’ . . -
y - ssFig. 5.1 State-Transition Diagram for Agent in . e ‘
, -
g Conference-Based System
. o %
) 4 ')3
1 ~ I3

N
\

can support two conferences each of arbitrarily large membership. (The MBS-bridge

L4

was not limited to two conferences, but in the [}-product with one or two agent

&

- processes, no more than two conferences could be created.) The bridge's decision-

making capabilities remain in {force (refer to flowchart of Figure 4.4).

L 3

. The CBS-Bridge has the major states, c/0, ¢/1, ¢/2, and has the same form as

" the single-conference PS-bridge or the MBS-bridge but for two extra states. c/0is the

~ 1
L} 0

ever-present empty state, where no conferences have as yet been constructed. The

remaining major states indicate the total number of conferences, where the actual
configuration is furnished within the grouping table parameter, gn.1. It is clear

that this bridge process is again modular, as outlined in bold in Figure 5.2, pnd

&
s : \ genera.l_izable with 5C+3 states based on a capacity of C conferences.
In order tq exemplify the operation of the CBS-bridge, state (8) of the process
description is excerpted below:
N ,) A Rin
A ©(8) c/2(g2.1) = Ll b
N + #(1?1,y.1,n.1) . aiq?(:r.l,y.l,‘ﬁ.i) ; c/3_al(.’:z.1’,y.1,n.1,g2.1) --> (9)
+ #(z.1,y.1,n.1) . aﬂ':'ﬁ(f_.i,y.?n.i) : c/3_i‘x.r(3:.1,y‘.1,n.1,g2.1) --> (10)
,) + #(z.1,y.1,n.1) . ;1.q?(a:.1,y.1,n.1) ; c/1di(z.1,y.1,n.1,¢2.1) --> (11)
: (
+ #(z.1,y.1,n.1) . dg?(z.1,y.1,n.1) ; c/1dr(z.1,y.1,n.1,92.1) =-=> (12)
. . N ¥ '//
L) . . .
Here, the statename c/2 indicates that two conferences exist with the total
number of enrolled 4gents unavailable. All four transitions are of similar form, with
%’; “the three pap%xgeters (r.1,y.1,n.1) drawn from local bindings. This transition
' 4 ' ' - (o
-77- N

TN
I i
]
-
3
3
?
/' !
4
[
~
. o
[
- ~ :
&
, . { A

(o

Notes* - parameters havs been dropped from state and meesage names of presentation
~» ~+ bold lines outline the add/delete module per conlersnce additional capacity
- 888 Appendix C for detalied process descriptions .

STy

Fig. 5.2 State-Transition Diagram for Bridge in
Conference-Based System

e
"

- request.

5.2 Study 1: Single-Conference System

(*.\@ o

equation. then. allows the bridge to accept one of two possible request messages, each
i * N B

of which has a pair of deterministically selected successor processes. The first pair of

successors originate from an add request from a requgstor .1, with the target agent to

3 w 3 4
be added y.1 under conference name n .1, all as in Chapter 4, The successor processes,

c/3_a1 and ¢/3.ar, are branchings generated from a bridge decision to accept or reject -

the request, as the suffixes suggest. Every ome of the incoming parameter values,
4 ~

along with the original parameter g2.1, must be retained for the response. Once the
response is émitted, only the gn.1 parameter is held for subsequent actions such as
idelete requests. The second pair of branchings arise from a delete request, carrying

three parameter values as above. Again, branchings occur on success or failure.of the

<&

P
. ' L. /

»

- The bridge, in state (8), 1s at the maximum capacity of two .conferences, which
precludes the addition of more conferences but not more agents. State (9) returns to
the major state ¢/2(g2.1) or state (8) since only the t4 condition (to add an agent to

an existing conference) may be satisfied. State (11) evenh;a,lly goes to either major
b 3

state c/1(g1.1) ér ¢/2(g2.1), depending on whether the t1 (delete confer&ge) or

t2 (delete agent) condition is met, r“esp‘egtively.‘ The two failures loop back to state

-

®. .

-
-

LY - [y o 1
This study examines the bridge process in communication with a single agent

+ ’ 1 -
process. Many similarities are found between this Single-Conference System and the

] »-79-
,

¢

corresponding ones of preceding chapters. —r

s/

The []-product is comprised of 23 states (the same number as the []-product of
Study 1 _in Chapters 3 and 4) and is deadlocl;-'free. The graphical interpretation is
given in F?éure 5.3, while the algebraic outpilﬁ is avajle;ble in Appendix C. Parameters
are correctly carried and passed within and between the processes.” The temporary
storage by the bfiglge and requesting agent processes of all parametervalues appearing

. . , - p

.) .- - . h;
in a request ensures error-free internal exchanges for responses, since a match must be

achieved between the two sets of parameters (including the test condition parameter

”

for branchings).

The modular structure of the [-product, as well as the inheritance of paired
) /
deterministic selections and tle .possibility of livelocks, are as observed in the PS and

°

MBS Sinéle-donference Systems. ' f

)

The application of the R-operatot to the [|-product yields a picture analogous to
: . b :
previous results, except for the behaviour at ¢/0.d1[1dw1. c/0.di [1dw1 has the two

successor states c/0[Ja/ 0qq and c/1[] a/’1ciq’ to allow for the killing of a qonference

« + o

"~ or the deletion of an agent from a conference, as appropriate. The effect is rendered

¢ . ¥

in Figure 5.4 and is provided in algebraic form in Appendix C,

&
/

_. Disposal of R-equivalent states would reduce the R of the conferencing system
, .

’

further. A set of equivalence assumptions were made by the toolf and inductively
! : ;

- 80 -

a it

.

‘

(X]
@ ar @ d_rri
€ i A4
€
@ a7 : - i’ am?
de 1 dr
XTI P — - @ . e10_orl|ow?
d_q dq
N dq,
) da il)
¢/0(}a0qq)@--o—=-—-{c/0_dijjowo c/1{ja/1qq @
. .~ t2.1
e tl.3}
ai

Notes - parameters have besn dropped from state and mouaoo namu for ease of presentation

+ arcs indicate paired deterministic selections ,
- solid lines and double-letter suftixes In messages indicate external evems

- broken fines and single-letier sulfixes In ges indicate |
- bold lines outline the add/delete module per agent of additional capacity for a it
- see Appendix C for detalled p descriptions R

- . °

Flg 5 3¢ State-Transition Diagram for {]-Product for ‘
Single-Conference (‘onference-Ba,sed System

a

Sae
,
¢

Notes: - pmm-nuhawboondmppodfmmnmomdmuupnmmbrundpnufuuon »
- arcs (ndicate palred determinisiic seisctions

- solid lines and doubie-letter suffixes In. messages indicate extemal events
- boid elipses are externally visbie siates .
- so¢ Appendix C for detalled process descriptions

'

Fig. 5.4 State-Transition Diagram for R for Smgle—Conferencc
"Conference-Bised System ' “

¢

R 48
!‘

-

tested over four passes. This time, three equivalences were u

« R(c/1(g1.1)[la/1q(z.1,y.1,n.1)) =
R(c/tai(x.1,y.1,n.1) []awi(:z::l,y.l,n,l))_

4

R(c/1(g1.1)[]a/zq(x.1,y.;,n.x,m1.;)) =

R(c/2-ai(zr.1,y.1,n.1,g1.1) [Jaw2(z.1,y.1,n.1,m1.1))

R(c/0[la/0qq(z.1,y.45n.1)) =

R(c/b_di(x.1,y.’1,n”.1,gl.1) (dwo(z.1,y.1,n.1,m1.1))

This sirﬁpliﬁes the original‘system to 20 states as shown in Figure 5.5. The extra
transition from ¢/0.di[]dw1 prevents the inclusion of the fourth equivalence of the

? - .
" previous formulations. The Conference-Based System is unstable by the definition of

Chapter 2

Finally, if the reason code parameter sets were obliged to have cardinalities of

ncovered, these being:

&

one, the R-equivalence would hold for the four pairs, of states:

R(c/0[la/0q-)
R(c/1[la/1q- /)
R(¢/1[la/1qq9-)
R(c/1[Ja/2qq-)

5

R(c/1_ar[Jawil)
R(c/2_ar[]aw2)
R(c/0.dr[]1dwo0)
"R(c/1.dr[ldwi1)

\-

-

~

This would remove another source of instability. Figure 5.6 gives the constrained

.
~

externally visible behaviour of this conferencing system. It remains an unstable sys-

. “&em due to the four deterministic pairings for indication and rejection.

ko

- 83 -

B

Led

@53 :

4

. Notes - parmmeters have been dropped from state and message names lor ease of presentation

- arcs indicate paired deterministic sslections '

- solid lines and double-lstter sutiixes in ages ndi J

- bold ellipses are externally visbis stiales

- boxed pairs of stales are equivalent (the staie with name in boid repiaces other one)
- sae Appendix C for detalied process descriptions “

e

‘r .
Fig. 5.5 State-Transition-Diagram for R-reduced for
Single-Conference Conference-Based System

D]

s

T

e o
BT N TR

5

N

b ’ ' L P foy e v ~ - \ TR el
.
2
' R ¢
s e ¢
Py
/ o .
~ . L3
. .
%
k4 - -
3 <
-) M)
i - T,
. N , _
v o
P T
‘
)
am
8
(o
v v
°
/ , L] v
. o i
. PR N v "
V
») « .
v ¢ 3
Nowes: - parameters have been dropped lrom state and muugo'mm‘m sase of presentation
_ - e Appendix G for detalied process descriptions L f
7 -
. ”
- £
K w
s - ’
- ' 2 . s

v a2

lsig. 5.8 . State-Transition Diagram for Constgajneﬁ
' Single-Conference Conference-Based System.

e v

>

“

3t

’

.9

The jomnt processimg for the producto R equivalence tests, and reductions, nsing
" :

the automated DCP tools, required 6 02 nnutes of CPU e Page taults were 90 Sk

~
5.3 Study 2: Two-Conlerence System ’

The two-conference=("BS formulation consists of the l)rl(lgc* o communication

with two agents Each agent has capaaty for one member agent 1in addition to itself

.

Computer processing capabihty restncts this analvsis to the ||-product

The [|-product for the Two-Conference System produces 105 states i total In

terestingly, this 1s the same number of states found for the Two-Conference Systems
\

of Chapters 3 and 4. Processing time amounfed to 56 HINunnutes, page faults were
approximately 774.1k Both figures are less than their counterparts i Study 2 of
Chapter 4. Although an extra parameter and some additional transitions are present
in this formulation, the computing gains are achieved due to the economcal CBS

o

bridge process. (In the Single-C'onference System. the additional elements overshadow

» - \

any prospect for gains.)

The capacity of the bridge and agent processes can be extended to produce larger

. . £
conferencing systems. The above differences in compactness and computing would, of
course, become more pronounced and increasingly in favour of the CBS formulation

for bridges and agents of greater conference- and membership-handhng capacity

- &b -

et

.

Chapter 6 Conclusions and Future Direction

N e e ' .

This final chapter recalls the results of the three previous chapters, provides a set

of general conclusions and gives some short comments on the possible future activities
o

in this field.

6.1. Summary of Results -

L2

Table 6 1 lists the formulations and findings for the Preliminary-, Membership-

o

Based-, and (‘ofference-Based-Systems, as reported in Chapters 3, 4 and 5, respec-

tively (‘ommencing at the top of the Table. several observations may be made:

. Reading from left to right, the use of parametrization increases, from two
parameters in the PS formulation to seven in the MBS. With the formu-
lations thus acquiring greater expressive power, the functions over which
messages are based are reduced from four to two and, the carriage of agent

identities in state- and message-names is eliminated. .

° The agent process deséription. in all cases, has 19 states and can support
two member agents (including itself). However, in the PS, the agent has a
two-element memory (for the target agent and reason code), while in the

MBS and CBS. it has a five-element memory (for the agent or requestor

- 87 -

¢ 3

-&}
o

“

¢

L - -
1
L
i FORMULATION®
R o MBS , CBs
—— e - . .
Single-C onf I—Twn-('onf : Single-(‘ont J Two Conf Single-Cont l I'wo-Conf

Parameters

o

target, reason code

Message

Architecture

create, add,

delete, clear

/\\‘gent ID

~

message-names

] +gr0uplng table, membership het

1
3
In state- and TI
i

‘ 1+ requestor, conference nanle,] 1 test condition

add, delete
“

parametnzed

[

Agent

{states)

Agcn'l

(general)

n/a

Bridge

(states)

11 57

Bridge

(general)

n/a

(J-Product

(states)

23 465

R

YA+

5A+1 LY G

23 465 21 465

R-reduced

(states)

19 n/a

19 n/a 20 n/a

Computation

Time (mun)

118 20 39

4 58 58 04 602 56 51

Page

Faults (k)

207 278 17

1.1 804 7 90 8 774.3

Table 6.1

Summary of Results

o

- 48 -

6.2 General Conclusions

lations of Chapters 3, 4 and 5 that:

]
identity target agent . conference name. membership hst. and reason code)

In the CBS the agent 1< able to directly collapse a conference that 1t has

mitiated Al three agent processes are generalizable with YA+ 1 states to

handle A agents _
The bridge process desciption as it 1s angimenfed with parametrization,
changes from an inflexible one with different bridges necessary for the
Single- and Two-Conference PS where each conference has capacity for two

members, to a very compact, unified process with arbitrarily large member-

“ship capacity within each conference in"the ('BS The PS bridges have one

element of memory for each target agent, the MBS and CBS bridges have
four-element memories for the requestor, target agent, conference name,
and grouping table. The MBS- and ('BS-bridges can be ge.geralized with
5A 41 states to handle A agents for the former, and 5C'+3 states for C
conferences for the latter Decison-making capabllmels for the bridges are
also modified 1 successive formulations.

The Single-(‘onference []-product exh;blts 23 states, without deadlocks, for
all formulations The form of the [|-product 1s also consistent across the
three, with the exception of the extra transition for the conference-kill
feature in the CB3 [|-product. The Two-Conference [|-product yields 465

states, without deadlocks, for all three formulations.

\

.The Single-Conference R-reduced gives 19 states for the PS and MBS with

four equivalences found, and 20 states for the CBS with three equivalences
discovere(i, the latter due to the extra transition for conference-kill. The
R-reduced is not performed for the Two-Conference systems.
Computation time and page. faults grow with increased compiexity (left to
right) for Sing]e-Co‘nference systems. For Two-Conference systems, there
is an increase from the PS to the MBS, but a dip from the MBS to the
CBS due to the very economical bridge description in the latter.

I -

/ -

It is evident from the evolution of and the resultapt computations for the formu-

N

) -89 .-

&4

)

¢

s

£%

hd 7 J

A
A foundation. mecluding ¢ conceprualitramework for the brdge and agent
siscrete processes. as well v a notation for o messape arditecture and

parameters, has heey constructed for turther exploration of conterencing,

i

The utibty and vahdity of parametrnization has been mvestigated o the
context of the current tormulatiofiss with progressively positive imdications
for (()Ill])d(“l(‘\\ process sene ralizanon, correctuess, and computational
efficiency 1n desc I‘ll)lll}., the hrl(l;.,(' cagents, and their mteractions, as high

lighted by the Conference Based System,

A branching mechanism, employing test condition parameters, has heen

used to substantial advantage. providing inaight toward the development
7

of branching and-case constructs, and,

The usefulness of antomated protocol analysis tools, particularly those

‘based on DC'P, has been demenstrated

6.3 Future Work

\
Future work in protocols for conferencing systems should proceed so as to:

-

;
Extend the present formulations to incorporate probes to and acknowledge
ments from target agents, multi-channel operation, various error-detection
and error-survival schemes 1n information transfer, enhanced features for
more advanced conference manipulation, and bridge-bridge communication
for multi-bridge scenarios;

Construct an algebra on the present untyped sets to provide for functions

of parameters and relations (beyond the - comparator) among parameters;

and,

Further develop the automated tools, specifically for branching and sub-

case analysis, as well as for inclusion of synthesis procedures,

2

-

-t

=

. References

G;.B. Thompson. *The C'hallenge of Choice™. Intermedia. Vol 12..No 4/5. pp. 60-63,

July ‘Sept . 1984 ' :

D. McConnell, “The Impact of ("'yclops Shared-Screen Teleconferencing in Distance
Education”, British Journal of Educational Technology, Vol 17, No. 1, pp. 41-74,
Jan., 1986. ’

M.D. Benjamin, R.D Johnston and B. Prasada, “A Model for Computer-Mediated
Interactive Visual Communications”, Proc dnternational Conference on Communi-
cations, Boston, MA, pp 56.2.1-56.2.6, June 10-14, 1979.

H.M. Lipinski and R.H. Miller, “FORUM: A Computer-Assisted Communications
Medium”, Proc. Second International Conference on Computer Communieations,

pp. 143-147, August, 1974.

W. Pferd, Lf% Peralta and F.X. Prendergast, “Interactive Graphics Teleconferenc-)
ing”, IEEE Computer, Vol. 12, No. 11, pp. 62-72, Nov.. 1979.

C.W. Kelly 11, “An Enhanced Presence Video Teleconferencing System”, Proc. Com-
pCon, Washington, DC, pp. 544-551, Sept. 20-23, 1982.

‘S. Randall, “The Sharéd Graphic Workspace: Interactive Data Sharing in a Telecon-

ference Environment”, Proc. CompCon, IEEE Computer Society, Los Alamitos, CA,

pp. 535-542, Fall, 1982.

~)
-
/
/

H. Lipinski and R. Adler, “Electronic Communication for Interactive Group Mod-
/
elling”, in Computer Networks and Simulation 1I, S. Schoemaker (ed.), Nor/t/h Hol-

land, New York, pp. 251-277. 1982. . /
. a . //
-91- ’

\

}

¢

9

10

11

12

13

14

15

16

17

18

) %
& Burns and M A Rathwelll *\ Cammunications Environiment {or Co operatinve

Infoénanon Svsterns Development™ Software Fnameening Journal, Vol® 2, No 1,
pp. Y-1-k Jan | 1987,
. L. Agwlar. “A Format for a Graphical Communications Protocol™ [EEF Computer
“Graphics and Applications. Vol. 0, No 20 pp 52 02,0 April, 1980

)

. N. Meyrowitz and A’ van Dam, “Interactive Editing Systems (Parts Tand 1), AC'M

Computing Surveys, Vol. }4. No 3, pp. 321-415. Sept | 1982

. K.S. Sann, “Interactive On-Line Conferences™, PhD. dissertation, MIT, Dept of

Electrical Engineering and C'omputer Science, 1984,

. K. Rea, “Automating the Analysis and Design of Discrete Communicating Pro
cesses”, M.Eng. Thesis, Dept. of Electrical Engineering, McGill University, August,
1984.

. P.V. Mockapetris, “Analysis of Reliable Multicast Algorithms for Local Networks",
Proc. Ninth Data Communications Sympostum, pp. 150-157, Oct., 1983.

. R. Pardo and M.T. Liu, “Multidestination 'Protocols for Distributed Systems”,
Proc. Computer Networking Symposium, National Bureau of Standards, (faithes- °

burg, Maryland, pp. 176-185, 1979.

. K.P. Birman and T.A. Joseph, “Reliable Communication in the Presence of Failures”,

ACM Transactions on Computer Systems, Vol. 5, No. 1, pp. 47-76, Feb., 1987.

2

. K. Fung, J. Luetchford and I. Scales, “ISDN Standards [ssues”, Telesis, Vol. 13, No.
3, pp- 25-33, 1986.

. J. Chatterley, B. Newman and R. Wellard, “A Fuzzy Concept Takes Some Shape”,
Computing Canada, pp. 11-12, August 21, 1986.

-92- \

19

21.

b
£

23.

27.

l
[nternational Orgamization for Standardization. “Inforination Processing Systems -
Open Systems Interconnection - Basic Reference Model™. Ref No 1SO 7498-1934(E).
Oet.. 19X%1, N
3
J.D Day and H Zimmermann, “The OS] Reference Model™. Proc IEEE. Vol T71.
No 12, pp 1334-1340, Dec . 19%3 :‘{‘
}

e

{)
(.A. Sunshine, “Sgrvey of Protocol Definition and Verification Techmques”, (‘om-

puter Networks;y Vol. 2, pp 346-350, Oct , 1978

1

2. R.L. Schwartz and P.M. Melliar-Smith, “From State Machines to Temporal Logic:

Specification Methods for Protocol Standards”, IEEE Transactions on Communica-
tions, Vol COM-30, No 12, pp 2486-2496, Dec., 1982.

A.A.S. Danthine, “Protocol Representation with Finite-State Models”, IEEE Trans-
actions on C'omrnunications, Vol. COM-28, No. 4, pp. 632-643, April, 1980.

P.M. Merlin, “Specafication and Valhdation of Protocols”, IEEF, Transactions on

('Qmmunirat:ons\ Vol. COM-27, No. 11, pp 1671-1680, Nov., 1979.

. J.L. Peterson, “Petri Net Theory and The Modelling of Systems”, Prentice-Hall Inc.,

Englewood Hills, NJ, 1981,

. S.W. Lai, E.D. Brown and S.E. Tavares, “Modelling Communication Protocols with

Coloured-Arc Petri Nets”, Proc. Thirteenth Biennial Symposium on Communica-

tions, Queen's University, Kingston, ONT, pp. D.3.9-D.3.12, June 2-4, 1986.

M. Diaz, “Modelling-and Analysis of Communication and Cooperation Protocols
Using Petri-Net Based Models”, Proc. Second International Workshop on Protocol
Specification, Testing and Verification, May, 1982.

—

. AS. Tanenbaum, “Computer Networks™, Prentice-Hall Inc., Englewood Hills, NJ,

- 93.

!

¢

)

29 (A Vissers. R.L Tenney and G\
Proc TEEE. Vol

1481

30 K. Kurosawa, H. hotke and S Tsupie = v New Speahcation and Vahidation Method

TIoNo 120 pp

L
for ("ommunication Protocols -

1350 1301, Dec o 1983

A Proposal of a Composite State Diagram Mixed .

»

Bochmann, “Formal Deseription Techmigues™,

4

with Logical Relations™, Proc [EEE Global Telecommumicanons ('onfermS('e, Vol. 1,

Atlanta, GA, pp 6.5.1-6 5.7, Nov

26-29, 1981

-

31. U. Pletat, “Algebraic Speafications of Abstract Data Types and ('C'S. An Oper-

ational Junction™, Proc Sixth International Workshop on Protocol Specification,

~ Testmg and Verification. Montreal, Canada. pp 10.13-10.21, June 10-13, 1986

32. G.V. Bochmann and (' A. Sunshine, “Formal Methods 1n Communication Protocol

Design”, IEEE Transactions on C'ommunications, Vo].“?'OM-Z& No 4, pp. 624-631,

April, 1980.

2

A

33. G. Berthelot and R. Terrat, “Petri Nets Theory for the C'orrectness of l’rotoc;)la”,
* IEEE Transactions on Communications, Vol. ({OM-30, No. 12, pp. 2497-2505, Dec.,

34. R.E. Mil-ler and G.M. Lundy, “An Approach to Modelling (bmmunicatié’{; Protocols

35

36

1982.

b3

\

Using Finite St(a'te Machines and Shared Vanables”, IEEE Global Telecommunica-

1
tions Conference, Houston, TX, pp. 3.8.1-3.8.5, Deq. 1-4, 1986.

. R.deB. Johnston, “A Mathematical Model of Discrete Communication Processes”,

INRS-Télécommunications Technical Report, May, 1985.

. R. Milner, “A Calculus of Communicating Systems”, Spnnger-Verlaé, Berlin,. 1980.

}

»

- 94 -

7. C.A.R. Hoare, “Communicating Sequential Processes”, Communications of the

3

ACM Vol 21, No. ¥ pp 606-677 August, 197K

«
35 M Wand. “Induction. Recurvon and Programming”. North Holland. New York,

-

19K0)
< “
. . oo T . , . . "
9. P.AL Cloutier, “Evaluation d'un Systeme Automatisé de Vénfication de Protocoles™,

M.Eng. Thesis, INRS-Télécommunications. in progress.

40. P. Halmds, “Naive Set Theory”, Van Nostrand Inc., New York, 1960, p. 93.

.
-

41. Z. Manna, “Mathematical Theory of Computation”, McGraw-Hill Co., New York,
1974. {

1

42 T A. Nguyen, “Introducing Parameterized State/Transition Descriptions into Com-
municating Processes”, M.Eng. Thesis, Dept. of Electrical Engineering, McGill Uni-

versity, in progress.

(\

*

. 14

Appendix A. DCP Expressions and Results for
..Preliminary System

#

o,

- 96 -

£

BRIDGE (Single-Conference)

NB. The followijng correspondences hold for “state names i

-~

and text of Chespter 3:

s .
i4, r4 = i2, r2 ; iB, r6 = i3, r3 ; 13, r13 = i4, r4 ; c/2_1

®)- c/® =
+ 1lc_q? ; il -=-> (1)
* e lcq? ; r1 -=> (2) _
~ R (1) i1 =
+ 1c_i' ; ¢/1_1 -=> (3)
(2) r1 = |
- 0"(:.1) . le_ri(c.1) ; c/® -=> ()
(3) c/1_1 = +
+ 1l_q% ; i4 -=> (4) .
+ 11_q? , r4. --> (8)
-
+ #(x.1) . 1s_q?(x.1) ; i6(x.1) -=> (8)
' + #(x.1) . 18q?(x.1) ; rB(x.1) -=> (D)
- (4) 4 = .
+ 110t ;. c/8 e "\
(B) ra =
+ (1.1 . ll__r!‘(l.l) ; e/1_1 -=> (3)
)
— (6) iB(x.1) = }
s lait(x.1) ; ¢/2.1(x.1) . --> (8)
T M s = -
+ #(2.1),! 18 _r'(x.1,8.1) ; c/1_1 --> (3)
(8) c/2 1(x.1) = -
+ 1d_q?(x.1) ; 113(x.1) 2 (9)

+ 1d_q?(x.1) ; r13(x.1) ~-=> (18)
{

n Appendix A

1

L AGENT1

-

9)

(18)

(®)

1)

2}

3)

@)

(5)

(®)

)

(8)

113(x.1) =

Y

S 1 (x.1) 5 /11 -=y (3) ' -
s - .l - * N

r13(x.1) = . s

. .(d.xQ < 1d_r!(x.1,d.1)™ c/2_1(x.1) -=> (8)

.
) .
‘ T o ° J '

1./. = / v d

+ 1c_qq” ; lawlg ' --> (1)

' -

lawlq = . K

+ 1c_q! ; lawl ~-=> (2)
fawl = '

+ 1c_i? ; lc/lqg‘ -=> (3)

* #(c.1) . 1c_r?(c.1) ; 1s/8q(c.1) -=> (4)*

’ ' .
la/iq = . . ~ -
« * ' | ~

* lc_iit ; 1a/1 -=» (6) ¢
la/@q{c.1) = , N ; 4 ’

+ le_rri(c.l) ; 1a/0 --)> (@) . . \

, .
l1a/1 = ' -
|

« #x 1) . 1}-_«*(:.1) ; law2q(x.1) ' --> (8) ,
/:/ll’g_q' ; ldwllq -=> (1) . * .
law2q(x.1) = ‘i '

. u_q-(l.x) i law2(x.1) --) (8) . -
1dula = . . ‘ 1 1

+ 1l_q' ; ldwd -=>» (®)
lae2(x.1) = ‘ .

~ - ’

© i]

S

&

* ls_i?(x.1) , l8/2q

(x.1) --> (18)

+ #(» 1) 1-_""(- 1,8 1) ; la/1qqq(x 1,a 1)

-=-> (11)
(9) 1dw® =
o + 11_1% | 1a/8qq --> (12) '
« 4(1.1) . 1_F?(1 1) , 1a/1qq(l 1) --> (13)
(1) 1la/2q(x.1) =
T leliitx1) ; 1e/2(x 1) --> (14)
(11) 1a/1qqq(x.1,s 1) = \\\~ i
+la_rri(x 1,8 1) , 1a/1 --> (8) v
(12) ll/Aﬂqq =
+ 11_ii's; 1a/8 --> (@) .
(13) 1s/1qq(l 1) =
+ Ul_ret (i 1) ; 1e/1 --> (6)
(14) la/2(x.1) =
B o‘ld_qq’(x.l) ; ldwlq(x.1) --> (186)
(15) 1dwiq(x.1) = ’
) + 1d q'(x.1) ; ldwl(x .1) --> (18)
(18) 1dwl(x.1) =
+ 1d_i?(x.1) ; la/iqq(x‘1) --> (17
« #(d 1) . 1d_r?(x 1,d 1) ; 1a/2qq(x 1,d 1) > (18)
b
(17) 18/1qq(x 1) =
+ 1d_il(x 1) , 1la/1 -=> (B)
(18) 1a/2qq(x.1,d.1) = T N
+ 1d re'(x 1,d 1) , 18/2(x.1) ~-> (14)

BRIDGE) AGENT = o mm oo oo oo e

‘\‘_‘/

{3

B

(8 (c/8 {] 1a/0) =

+ 1c_qa” ; (c/® [] lawlq) -=> (1)
(1) (c/8 [} 1amiq) = ‘

+ lc_q, (i1 [] lawl) -=> (2)

+ 1c_q ; (r1 [] lawl) -~ (3)

(2) (i1 [] lawl) =
* lc v, (c/1_1 [] 1a/1q) --> (4)

(3) (r1 [] 1ewl) =
'b. + §(c 1) le_r{c 1) , (c/@ []al./&;(c 1)) --> (5)

(4) (c/1_1 [] 18/1q) =
+ et ;o (e/1_1 [] 1a/)) -—> (8

A

(8) (c/® () 18/8q(c 1)) =

+ 1lc_rrt(c.1) , (c/0 []) 1a/0) --> (@)

(8) (c/1_1 () 1a/1) =
« #(x 1) . 1a_aq?(x 1) , (c/1_1 [] law2q(x 1)) - (7N

* 1i_aq” , (c/1_1 [] 1dweq) --> (8) !

(7)) (e/1_1 [} taw2q(x 1)) =
* la_q(x 1) , (16(x 1) [] 1aw2(x 1)) - (9)

T 10_«(!-15 y (r8(x 1) [} 1aw2(x 1)) -=> (10)

(8 (c/1_1 [] 1dwlq) = -
e 1l_q, (14 [} 1dwe) --> (11)
+1l_q, (ré [) 1dwe) -5 (12)

(9 (i6(x 1) {] 1ew2(x 1)) =

« la_i(x 1) , (e/2_1(x 1) [] la/2q(x 1)) --> (13)

(18) (r6(x 1) [] law2(x 1)) =

(1)

(12)

(13)

(14)

(16)

(16)

(17

(18)

(.19)

(29)

(21

+ #(a 1) a_r(x.1,8.1) , (c¢/1_1 [}

(i4 [] 1dwe)

18/1qaq(x 1,8 1))

« 11_i ; (¢/8 [} 1a/6qq) > (18)

[~

(r4 [] 1dwe) =

+ #00 1) 1i_e(1 1) , (c/1_1 [] 1a/1qq(i 1)) --> (18)

(e/2_1(x.1) [] 1a/2q(x.1)) =

e la_iit(x 1) , (e/2_1(x 1) [] 1a/2(x 1)) -=> (17)

(e/1_1 [] 1a/laqq(x 1,8 1)) =

+"la_rr'(x 1,8.1) ; (c/1_1 [] 18/1) -=> (8)
(c/® () 1s/8qq) = -
s L_i, (/0 (] 1a/9) - (&
(c/1_1 [} 18/1qq(} 1)) =
+ U_er' (1) , (c/1_1 (] 1a/1) - (8
(e/2_1(x 1) [} 1a/2(x 1}) = ‘\
+ 1d_qq?(x-1) ; (c/2_1(x.1) [} ld\vlq(a‘l.l)) --> (18)
(c/2_1(x 1) ([} 1dwlq(x 1)) =
+ 1d q(x.1) , (i13(x 1) [] 1dwi{x 1)) -=> (19)
+ 1d q(x 1) ; (r13(x.1) [] 1ldwl(x 1)) -=> (28) =
i
(i13(x 1) (] 1dwi(x.1)) =
+ 1d_i(x 1) ; (c/a_1 [] 1a/1gqq(x 1)) --> (21)

(r13(x 1) [] 1dwl(x.1)) =

+ #(d.1) . 1drr(x.1,d.1) ; (c/2_1(x.1) [] 1a/2qq(x 1,d.1))

(/11 (] 1a/1qa(x 1)) =

+1d iil(x 1) ; (c/1_1 [] 1la/1)

-=> (8

-=> (14)

--> (22)

i

eq._.rﬂ

~

~

K

22) (c/2_1(x 1) [) 1a/2qq(x 1,d 1)) =

¢ W ret(x.1,d 1) 5 (e/2_1(x 1) []) 1a/2(x 1)) -=> (17

(BRIDGE *(] AGENT1) —~ oo oo o .

8) R((c/® [] 1a/0)) =

- lc_%’ f R((C%{] lawlq)) -=> (1)
1) R((c/® [] lawlq))/= s

{
+ de_iv) , R((c/1_1 {) 1a/1)) -> (8
+ #(c.1) . dc_rri(c 1) ; R((c/8 [] 1a/9)) - (9

2) R((11 (] lawl)) =
+ le_il! ; R((c/1_1 [] 1s/1)) -=> (8)

3) R((r1 [] 1ewl)) =

e #(c 1) . lc_rri(c.1) , R((c/® [] 1a/8)) > (®)

4) R((c/1_1 [} 1a/1q)) = '

+ le_sit ; R((e/11 [] 10/1)) - (&)

6) R((c/® [] 1a/Bq(c 1))) -=
+ lc_rri(c 1) , R((c/® [] 10/8)) - (8)

8) R((e/1.1 [] 1a/1)) =

+ #(x 1) 1s_qq’¢x 1) , R{{c/1_1 [} law2q(x 1))) -3 (D

+ 1l_qq? ; R((c/1_1 [] 1dweq)) --> (B)

) R({e/1_1 [} 1aw2q(x 1))) = -
« 1a_uit(x.1) , R((e/2_1(x 1) 1) 18/2(x 1)) -=> (11

c #(s.1) . la_rrt(x 1,8 1) ; R((c/2_1) 1a/1)) -=> { &)

8) R({c/1_1 [) 1dwlq)) =
e 1_id? ; R((c/® [} 1a/8)) -~> (@)
< #01.1) li_re' (1 1), R((c/1_1 [] 1a/1)) - (8

¢

i LN

(9 R((6(x 1) (] 1aw2(x 1))) = .
v la_vif(x.1) ; R((c/2_1(x.1) [] 18/2(x 1))) , -<> (17)

(16) R((r6(x.1) (] lew2(x.1))) =

+ .(.-1‘) . la_rrt(x.1,8.1) , R((c/1_1 [] 1s/1)) - (&)

(11) R((14 [) 1dw®)) =

+ H_1if ; R((c/® (] 10/0)) -=> (®)

(12) R((r4 [] 1dwe)) =
4 + #0121 . 1_eet (0 1) ;5 R((c/1_1 {1 1a/1)) > (®

(13) R((c/2_1(x.1) (] 1a/2q(x 1))) =

+ la_iit(x.1) ; R((c/2_1(x 1) [) 18/2(x.1))) --> (17)

(14) R((e/1_1 [] 1a/1qqqa(x 1,8.1))) =

+ la_rri(x.1,8.1) ; R((c/1_1 (] 1a/1)) -~ (8)

(16) R((c/® [] 18/6qq)) =
s H_1i! ; R((c/87[] 1a/8)) -=> (8
‘ ?

(18) R((c/{_l {1 18/1qa¢1.1))) = ¢
+ li_rrli (1 1) , R((c/1_1 [] 1a/1)) <> (8)

(17) R((e/2_1(x 1) [] 18/2(x 1))) =
+ 1d_qa?(x 1) , R((e/2_1(x.1) [] ;1-1q(..1))) - (18)

(18) R((c/2_1(X 1) [] 1ldwla(x 1))) =

f~]
+ 1d_ii'(x 1) , R({(c/1_1 [] 18/1)) -> (8
+ #(d.1) . 1d_rr'(x.1,d.1) ; R((c/2_1(x.1) [} 18/2(x.1))) - (17)
(19) R((i13(x.1) [] 1dwl(x.1))) =
+ 111V (x.1) ; R((e/1_1 [] 1s/1)) > (8

(28) R((r13(x 1) [J 1dwi{x 1))) =

¢ 9

+ #(d.1) . 1d_rr'(x.1,4.1) , R((c/2_1(x 1) (] 1a/2(x 1))) - (1D

(21) R(qcll_l [} 1a/1qq(x 1))) = .
« 1d_ii'(x.1) ; R((c/1_1 [] 1a/1)) °~ -=> (8)

(22) R((c/2_1(x-1) (] 18/2qq(x.1,d.1))) =
o_‘ld__rr'(x.l,d 1) , R{{c/2_1(x.1) [] 1a/2(x 1))) -=> (17)

Stsrting pass 1
Starting pass 2 ' .

EQUIVALENCES = -~ mmmm e e o e e m ool B e ’
== (§S§C/17:)[] 1?/1Q)) s RG] 1--1))) !
=z (§S§CI2 :g; :l [])10/2q(x 1))) , R((iB(x 1) [] law2(x.1))})

('_?Sgcn {]s)lzgﬂqq)) » R(Ci4 (] 1dwe)))
= (R(¢c71_1 0 h/qu(! 1))) , R((113(x 1) [] 1dwi(x 1))))

==y q21) == (19)
R-REDUCED == e o m e e e e e e e e e e e e e e e

®) .R((C/' [) 1a/8)) =
+ lc_qq? ; R((c/®] 1awlg)) -=> (1)

(1) R((c/® [] 1awiq)) =
« le_sit' , R((c/1_1) 1a/1)) --> (&)

» #(c.1) 1c_rr'(c 1) ; R((c/8 [] 1a/8)) -=> (8) -

@) R((G1 () 1ew1)) =

e dc_nit LR(te/1_1 [) 1e/1)) -=> (5)
(3 R(2) 1ew)) = -~ —
+ #{c.¥) le_rel(c 1) ; R((c/0 [] 1a/8)) --> (8)

(4) R((c/® [} 1a/@q(c 1))) =
e lc_rr'(c.1) ; R((c/® [] 10/0)) -<> ()

- .

(6) R((c/1_1 {] 18/1)) =
t

©

@)

(8)

®

(10)

(11)

12)

13)

ae

(16)

+ #(x.1) . 1a_qq?(x.1) ; R({c/1_1 [] law2q(x.1))) --> (8)
+ 11_qq”? ; R((c/1_1 [] 1dwoq)) - (M

R((e/1_1 [} law2q(x.1))) =
+ la_iil(x.1) ; R((c/21(x.1) (] 18/2(x 1))) --> (14)
+ #(a.1) . 18 rri(x.1,8.1) ; R((c/2_1 [} 1s/1)) --> (&)

R((c/1_1 [] 1dweq)) =

< 11_iiY ; R((c/8 [] 1a/8)) -=> (®)
« #(1.1) 1i_rri(l.1) ; R((F/l_)] 1a/1)) -=> (8)

R((i6(x.1) {] law2(x.1))) =
+ la_1it(x.1) ; R((c/2_1(x.1) [] 18/2(x 1))) --> (14)

R((r6(x.1) {] 1aw2(x.1))) =

+ #(a.1) . la_rrt(x 1,a.1) ; R((c/1_1 [] 1a/1)) -=> (8B)

R((i4 [] 1dwe)) = '

* 1I_iit ; R((c/® [] 1a/0)) --> (®)
R((r4 (] 1dwe)) =
« #(1.1) L 1i_erd(1 1) 5 R((e/1_1 [} 1a/1)) -~> (6)

R((c/1_1 [] 1s/1q9q(x.1,a 1))) =
+ lo_rr'(x.1,8 1) ; R((c/1_1 [] 1a/1)) --> (5)

R((c/1_1 (] 1a/1qq(l 1))) =
/
< 1_eet(1.1) 5 R((e/11 [} 1a/1)) '

R((c/2_1(x.1) [] 1a/2(x 1)))_ =
+ 1d_qq”(x.1) ; R((c/2_1(x.1) [] 1dwiq(x.1))) -=> (18)

R((c/2_1(x.1) [] ldwlgq(x.1))) =
v 1d_iit(x.1) ; R((c/1_1 [] 1a/1)) —5T8)
+ #(d 1) id_rrt(s 1,d.1) ; R((c/2_2(x.1) [] 18/2(x.1)))

-=> (14)

i

(18)

an -

18)

ot
-
K3
R((113(x.1) [} 1dwl(x.1))) =
¢ 1d_iit(x.1) ; R((c/1_1 [} 1s/1}) - (8)
R((r13(x.1) [} 1dwi(x.1))) =
+ #(d.1) . 1d_rrt(x.1,d.1) ; R((c/2_1(x.1) {] 1a/2(x D)) --> (14) -
R((c/2_1(x.1) [} 1a/2qq(x.1,d.1))) =
+ 1d_rrt(x.1,d.1) ; R((c/2_1(x.1) [] 1a/2(x.1))) --> (14)
. ~

()

Appendix B.

DCP Expressions and Results for
Membership-Based System ’

- 106 -

.
Lat5

,

D .
BRIDGE .

(® c/0 =
+ #(x.1,y.1,n!1)

v #(x.1,y.1,n.1)

.8 g% (x 1,y.1,n 1) , c/1_si(x.1,y 1,n.1)

. 8_q%(x.1,y.1,n.1) , c/1_ar(x 1,y.1,n 1)

(1) c¢/1_si(x.1,y.1,n.1)

+ #(91.1) . 8_i'(x.1,y.1,n.1) , c/1(gl 1) -->» (3)
(2) c/1_ar(x.1,y.1,n.1) =
+ #(0.1) . »_ri(x.1,y.1,n.1,8.1) ; c/® -=> (®)

(3) c/1(e1 1) =
+ #(x.1,y.1,n.1)
* #(x.1,y.1,n.1)
« #(x.1,y 1,n.1)

8_q%(x.1,y.1,n 1) ; c/2_ai(x.1,y.1,n.1,91 1)
8 _a%(x.1,y.1,n.1) , c/2_ar(x.1,y.1,n.1,g1 1)
.dq?’(x 1,y.1,n.1) ; c/l_dc(l.l,y.l,n.l,gl 1)

« #(x 1,y.1,n.1), d q”(x.1,y 1,n 1) ; /8 dr(x 1,y.1,n.1,91 1)

(4) c/2 ai(x.1,y 1,n 1,1 1) =

« #(g2.1) . s_i'(x 1,y.1,n.1) , c/2(g2 1) -=) (®
(6) c/2_er(x 1,y.1,n 1,g1 1) = '

+ #(».1) . ari(x.1,y 1,n 1,8 1) , ¢/1(g1 1) -=> (3)
(6) c/8 di(x.1,y.1,n.1,g1.1) =

< d_i'(x 1,y 1,n.1) ' c/8 -~> (®)
(1), c/8_dr(x.1,y.1,n 1,91 1) =

+ #(d.1) d ri(x 1,y 1,n.1,d 1) ; c/1(g1.1) -=> (3)

(8) c/2(g2 1) =
< #(x.1,y.1,n 1) a_q”(x.1,y 1,n 1 c/3_ai(x.1,y.1,n.1,82.1)
«#(x 1,y.1,n.1) 8 q®(x 1,y.1,n 1) , ¢/3_sr(x.1,y.1,n.1,g2.1)
s 8(x 1,y.1,n 1) da’(x.1,y 1,n.1) , ¢/1 di(x.1,y.1,n.1,92.1)

<« #(x 1,y 1,n 1) dqQ%(x.1,y 1,n 1) , ¢/l _dr(x 1,y 1,n.1,92.1)

-=> (1)
--> (2)

-=>

-->

-->

C))
(5)
C)
@)

®)

ae)

1)

}}2) . s

o) c/3_ai(x.1,y.1,n.1,92.1) =

+ #(93.1) . »_i'(x.1,y.1,n.1)

(e)

(11)

Q2)

a3

(14)

(15)

Q(18)

an

«ae)

19)

c/3_sr(x.1,y.1,n.1,g2.1) =

+ #(s.1) . a_ri(x.1,y.1,n.1,8s

c/1_di(x.1,y.1,n.1,92.1) =

+ #(g1.1) . d_i'(x.1,y.1,n.1)

c/1_dr(x 1,y 1,n.1,92.1) =

¥
+@d.1) . drr(x.1,y.1,0.1,d.

c/3(g3.1) =

+ #(x.1,y.1,n.1) . »_q?(x.1,y

+ #(x.1,y.1,8.1) . 8_q%(x.1,y.

+ #(x.1,y.1,n.1) ,d q%(x 1,y

+ #(x.1,y.1,n.1) . d q?(x.1,y.

c/4_ai(x.1,y.1,n.1,g3.1) =

+ #(g4.1) . o_il(x.1,y.1,n.1)

c/4_ar(x.1,y 1,n 1,g3.1) =

+ #(0.1) . o_ri(x.1,y 1,n.1,a.

c/2 di(x.1,y.1,n.1,g3 1) =
+ #(92.1) . d_i'¢x.1,y 1,n.1)

¢/2 dr(x.1,y.1,n.2,93.1) =

+ #(d.1) . d_ri(x.1,y.1,n.1,d

c/4(ga.1) = -
+ f#(x.1,y.1,n.1) . d q?(x.1,y

+ #(x.1,y.1,n.1) . d q”(x.1,y

c/3_di(x.1,y.l,n.1,g: 1) =

=a

,» €/3(g3.1) --> (13)
-1) ; c/2(g2.1) --> (8) -
i €/1(gl.1) --> (3)
'

1) ; c/2(g2.1) --> (8)

.1,n.1) ; c/4_ ei(x.1,y 1,n.1,93 1) --> (14)
1,n.1) ; c/4_ar{x.1,y 1,n.1,93 1) -=> (15)
1,n.1) ; ¢/2 di(x.1,y 1,n 1,93 1) -=> (18)
1,n.1) ; c/2 dr(x.1,y.1,n 1,g3.1) -=> (17)
1
; c/4(g4e.1) -=> (18)
1) ; </3(g3.1) --» (13)
i ¢/2(gr.1) --> (8)
1) , c/3(g3.1) --> (13)
>
1,n 1) ; ¢/3_di(x.1,y.1,n.1,g4.1) --> (19)
1,n.1) ;' ¢/3_dr(x.1,y.1,n.1,g4 1) --> (20)

har

(20}

(®)

1)

@)

3)

1C)}

(6)

(e)

m

")

+ #(g3.1) . d_iV(x.1,y 1,n.1)", c/3(g3.1) -<> (13)

é/Q_dr(x.l,%.lﬂg.l,gd.l) =

+ §(d.1) . d rt(x.1,y.1,n.1,d.1) ; c/4(g4.1) --> (18)

,/O(u.l) =

+ §(y-1,n.1) : a_qq’(y.1,n.1) ; swlq(x.1,y.1,n.1) --> (1)

2
swlq(x.1,y.1,n.1) =

+ a2 q'(x.1,y 1,n.1) ; awl(x.1,y.1,n.1) -=> (2)

.vl(x.l,y.l:n.l) =

+ a_i%(x.1,y.1,n.1) ; 8/1q(x.1,y.1,n.1) -=> (3)

+ #(a.1) . 8 r?(x 1,y 1,n.1,8.1) ; 8/8q-(x.1,y.1,n.1,a 1) --> (4)
8/1q(x.1,y 1,n 1) _= '

+ #(m1.1) . a_ii1(y.1,n 1) , 8/1(x 1,m1.1) - (5)
a/8q-(x.1,y.1,n.1,8 1) = ’ , ‘ ‘

ca_rrli(y.1,n.1,2 1) ; af0(x 1) --> (®)

AN

e/1(x.1,m1 1) =

* #(ry 1,n.1) . 8 _qq’(y 1,n 1) ; aw2q(x.1,y.1,n.1,m1.1) --> (6)

*+ #r.1,n 1) . dqa’(y 1,n 1) , dwbq(x.1,y.1,n.1,mi.1) -=> (7).

sw2q(x.1,y.1,n 1,m1 1) =

+ 8 _qi(x.1,y 1,n 1) , aw2(x.1,y 1,n 1,m1.1) -=> (8)

delq(x.1,y.1,n.1,m1.1) =
+d_q'(x.1,y.1,n 1) ; dwl(x.1,y 1,n.1,m1.1) -3 (@)

aw2(x.1,y 1,n 1,ml 1) =
+ 8_1%(x.1,y.1,n.1) , a/2q(x.1,y.1,n.1,m1.1) -=> (1@)

*+#(21) . a_r?’(x 1,y 1,n 1,8 1) , 8/lq-(x 1,y.1,n.1,0.1,m1.1)
]

-->» (11)

2

4

(®) dw®(x.1,y.1,n.1,m1.1) =

+ #(d.1) . d r?(x.1,y.1,n.1,d.1) ; a/laq-(x.1,y.1,n.1,d.1,m1.1) -=> (13)
(18) »/2q(x 1,y.1,n.1,m1.1) =
+ §(m2.1) . 8_ii'(y.1,n.1) ; a/2(x.),m2.1) -~> (14)
. ®
(11) a/lq-(x.l,y.l,n.l,l.l,ul.l)w = -~
s a_rri(y.1,n.1,a.1) ; o/1(x.1,ml1.1) -=> (&)
(12) e/8qq(x.1,y.1,n.1) = -
+ d_iit(y.1,n)1) ; 8/8(x.1) --> (®)
(13) n/qu-(x.l,;.l,n.l,d.l,nl.l) =
+d rri(y.1,n.1,4.1) ; 8/1(x.1,m.1) --> (&) :
(14) a/2(x.1,m2.1) =
+ #(r.1,n.1) . d_qq’(y.1,n.1) ; dwlq(x.1,y.1,n.1,m2.1) -3 (186)
(18) dwlq(x.1,y 1,n 1,m2 1) =
+ d q!(x.1,y.1,n.1) ; dwl(x 1,y 1,n.1,m2.1) -=> (18)
(18) dwi(x.1,y.1,n.1,m2.1) =
+ d i?(x.1,y.1,n.2) ; 8/1qq(x.1,y 1,n.1,m2.1) -=> (17)
+ #(d.1) . d_r?(x.1,y 1,n.1,d.1) ; a/2qq-(x l,y.1,n.1,d.1,m2.1) -=-> (18)
(17) 8/1qq(x.1,y 1,n.1,m2.1) =
* #(m1.1) . d_iit(y 1,n 1) ; a/1(x.1,ml.1) --> (6)
(18) #/2qq-(x.1,y.1,n 1,d.1,m2 1) = =
+d_rri(y.1,n.1,d 1) ; 8/2(x.1,m2.1) -=> (14)
BRIDGE) AGENT -- - BRI .
(8 (c/8 [] a/8(x 1)) =

+d i?7(x.1,y.1,n.1) ; l/ﬁqq(x.l,y.l,n.g) --> (12)

n

2

)

(4

(6

(e)

n

(8)

&)

18

¢

+ #(y.1,n.1) . »_a9q?(y.1,n 1) , (c/® [] swlq(x.l,y.1,n.1)) -=> (1)
f
(c/0 {] awlq(x 1,y.1,n 1)) = ks
+ 8_q(x.1,y.1,n.1) , (c/1,ai{x 1,y.1,n.1) [] awl(x.1,y.1,n.1)) --> (2) o
+ 8 _q(x 1,y.1,n1) , (C/l_ll"(l 1,y.1,n.1) [] awl(x71,y.1,n.1)) -=> (3
(c/1_@i(x.1,y.1,n.1) [] swl(x 1,y 1,n.1)) =
+ #(g1 1) »_t(x.1,y.1,m1) , (e/1(g1.1) {] a/1q(x.1,y.1,n.1)) -=> (4)
(c/1_ar(x 1,y.1,n.1) [] awl(x.1,y.1,n 1)) = '
+ #(a.1) . a_r(x 1,y.1,n.1,8.1) ; (c/® [] a/Bq-(x.1,y.1,n.1,8.1)) --> (8)
(e/i(g1.1) () o/1q(x.1,y.1,n.1)) = 4
+ Bl 1) . a_iit(y.1,n.1) ; (c/1(91.1) (] a/1(x.1,ml 1)) > (&) -
(C/‘ (] ./.Q'(x-lny'lu" 1,s 1)) =
+ a_rel(y 1,n 1,8.1) ; (c/@ [} a/8(x 1)) -=> (9 -
(e/1(91.1) [] »/1(x 1,ml 1)) =)
+ #(y.1,n.1) 8 _qq’(y.1,n.1) , gl(gl 1)] aw2q(x.1,y.1,n 1,ml1.1)) -—=>(7) .
e #(y.-1,n.1) d_aq?(y 1,n.1) , (c/1(gl 1) [} dwBq(x.1,y.1,n.1,mi.1)) ~-> (8) .. . ¢
(c/1(g1 1) [) sw2q(x.1,y.1,n.1,m1.1)) = !
+ 8_q(x.1,y.1,n.1) ; (c/2_ai(x.1,y 1,n 1,91 1) [] aw2(x.1l,y.1,n.1,m1.1)) -=> (9
o-a_q(x.l,y.l,n.l) ; (¢/2_ar(x 1,y.1,n 1,g1.1) {] aw2(x 1,y 1,n 1,ml1.1)) ~-> (18)
DY
(c/1(g1.1) {] dwlq(x.1,y 1,n 1,m 1)) =
+ d_q(x.1,y 1,n.1) ; (c/8_di(x.1,y 1,n.1,91 1) [} dw8(x.1,y 1,n.1,m1.1)) - (11)
+d q(x 1,y 1,n.1) ; (c/® dr(x 1,y 1,n 1,g1 1) (] dw@(x.l,y.1,n.1,m1.1)) -=» (12)
(c/2_mi(x.1,y 1,n.1,01 Q) {} aw2(x.1l,y 1,n 1,m1 1)) = ~
+. #92.1) . a_il{x 1,y 1,n.1) ; (c/2(g2.1) [] a/2q(x l.r-l.ﬂ‘l.-l-l)) -=> (13)
(e/2_ar(x 1,y 1,n 1,91 1) [] ae2(x 1,y 1,n.1,m1.1)) =
+ #(n1) . a_r(x1,y.1,n1,81) ; (c/1(gl 1) [} »/1q-(=x.1,y l,n.l,-.l/,-l.l)) -=> (14)

- '

™

el

(11) (c/8_di(x 1,y.1,n 1,1 1) [] dwd(x 1,y 1,n 1,m1.1)) =%

+di(x.l1,y I,n.1) , (c/€ (] a/Bqq(x 1,y 1,n 1))

(12) ~ (c/® dr(x.1,y.1,n 1,91 1) [] dwB(x 1,y 1,n 1,ml 1)) =

¢« #(d.1) d_r(x 1,y 1,n.1,d 1), (c/1(g1 1) (] a/1lqq-

(13) (c/2(92.1) ([] a/2a(x 1,y 1,n 1,m1 1)) =

v #(m2.1) . oa_1it(y.1,n 1), (c/2(g2 1) [} 8/2(x 1,m2

(14) (c/1(g1.1) {] e/1g-(x 1,y 1,n.1,a 1,ml 1)) =

+ a_rri(y 1,n 1,8.1) , (c/1(g1 1) [] a/1(x 1,ml 1))

L(18) (c/® []) a/Baa(x 1,y 1,n 1)) =

+dii'(y 1,n 1) , (c/® (] s/0(x.1)) -=> (@)

X&) (c/1(p1.1) [) »/laa-(x 1,y 1,n 1,4 1,m.1)) =
s d_rr'(y 1,n.1,d 1) , (c/1(g1 1) [} 8/1(x 1,m1 1))

(17) (c/2(g2.1) {] a/2(x 1,m2.1)) =

--> (18B)

(x 1,y 1,n.1,d 1,m1 1)) o (16)

1)) -=> (17)

--> (8)

--> (8)

. '(?’.l,n.l) d qa’(y 1,n 1) , (c/2(g2 1) (] dwilq(x 1,y 1,n 1,m2 1)) -=> (18)

(18) (c/2(g2.1) (] dwlq(x 1,y t,n 1,m2 1)) =

+d q(x 1,y 1,n 1) , (c¢/1_di(x.1,y 1,n 1,82 1) [} dwi(x.1,y.1,n.1,m2 1)) -=> (19)

+d a(x 1,y 1,n 1) , (¢/1_dr(x 1,y 1,n 1,g2 1) [] dwi(x.1l,y.1,n 1,m2.1)) -=> (28)

(19) (¢/1_di(x 1,y 1,n 1,92.1) [] dwl(x 1,y 1,n 1,m2 1)) =

+ #(91 1) d_i(x 1,y 1,n 1), (c/1(g1 1) [) a/1qq(x 1,y 1,n 1,m2 1)) - (21)

o

(28) (c/1_dr(x.1,y 1,n.1,g2 1) [] dwi(x 1,y 1,n.1,m2 1)) =

+#(d 1) dr(x1,y 1,n.1,d 1), (c/2(g2 1) [) »/2qq-

(21) (e/1(gl.1) [} 8/lqa(x.1,y 1,n 1,m2 1)) =

+ #(m1.1) . d_ii'(y.1,n.1) ; (c/1(g1 1) [] a/1(x 1,ml.

(22) (e/2(92.1) (] »/2qa-(x 1,y 1,n 1,d 1,m2 1)) =

(x 1,y 1,n 1,4 1,m2 1)) --> (22)

1)) => (8)

¢ 9

o>
i . d_"/r,‘(y-l.f'-l.d 1) 5 (e/2(92 1) [] o/2(x 1,m2 1)) -=> (17
R (BRIDGE [] AGENT) ----ceoeo-l T
(8) R((c/® {] a/8(x.1))) =
+« #(y.-1,n.1) . a_aq?(y.1,n.1) , R((c/@ [] awlq(x 1,y 1,n 1))) -=> (1)
(1) R((c/e [] awlq(x 1,y 1,n.1))) =
+ #(gl.1,m1.1) a_iit(y 1,n 1) , R((c/1(g1 1) [) a/i(x 1,ml 1))) --> (8)
+ #(a.1) s rr'(y 1,n 1,8 1) , R((c/@ [] a/8(x 1))) -=> (@ '
(2) R((c/1_ai(x 1,y.%,n 1)] awl(x 1,y.1,n 1))) =
+ #e1 1Lml.1) e 1l (y.2,n 1), R((/1(g1 1)] 8/1(x.1,m1 1))) --> (8
L}
(3) R{(c/1_ar(x 1,y 1,n 1) [] swl(x 1,y 1,n 1))) =
+ #(2 1) s_rri(y 1,n k2 1) , R((c/® [] a/8(x.1))) --> ()
(4 R((c/1(g1.1) [] a/1q(x 1,y 1,n 1))) =
+ 4™ 1) L a_iit(y 1,0 1), R((e/1(g1 1) [) a/1(x.1,m1 1))) =~ -=> (&)
o
(8) R((c/® (] a/Bq-(x 1,y 1,n 1,s 1))) =
. +arei(y 1,n.1,8 1) , R((c/® [] 8/8(x 1))) - (8
e
T (8) R((c/1(g1l 1) (] 8/1(x 1,m 1))) =
+ 4y 1,n.1) 8_qa”(y 1,n 1) , R((¢/1(9) 1) [] aw2q(x 1,y 1,n 1,m1 1))) == (N
T e 80.1,n.1) d_aa’(y 1,0 1) , R((c/1(g1 1) [] dwBa(x.1,y 1,n 1,m1 1))) --> (8
(7)) R((c/1(g1 1) (] sw2q(x 1,y 1,n 1,ml 1))) =
* #(92.1,m2.1) s_ui'(y 1,0 1) , R({c/2(g2 1) [] #/2(x 1,m2 1))) ==y (17)
« #(» 1) a_rri(y 1,n 1,8 1) , R((c/1(g1 1) [] o/1(x 1,ml 1))) -->» (8)
(8) R((c/i(g1 1) [] dwlq(x 1,y 1,n 1,m1 1))) = ‘
«d it (y.1,n 1) ; R((c/® [] o/8(x 1))) -=> (9
T * #(d.1) d_rri(y 1,n.1,d 1) , R((c/1(gl 1) [] a/1(x.1,m1 1))) > (e
(®

R((e/2 a1 (x-1,y 1,0 1,91 1) [} sw2(x 1,y 1,n 1,m1.1))) =

(109)

(1)

(12)

(13)

(14)

(185)

(18)

(17

(18)

(19)

(20)

+ #(g2.1,m2.1) a_ivi(y 1,n.1) ; R((c/2(g2 1) [] w/2(x 1,m2 1))) --> (1)

R((c/2_mr(x.1,y 1,n 1,91 1) [} sw2(x 1,y 1,n 1,m1 1))) =

+ #(0.1) . arri(y 1,n 1,8 1) , R((c/1(g1 1) [] 8/1(x.1,m1 1))) --> (8

R((c/0_di(x.1,y.1,n 1,g1.1) [] dw@(x.1,y 1,n 1,m1.1))) =
«d_iit(y.1,n 1) , R((c/8 [} a/B(x.1))) > (®

R{{c/8_dr(x 1,y 1,n 1,91.1) [] dwl(x 1,y 1,n 1,ml1 1))) =
+ #(d.]) d rri(y.1,n1,d.1) , R((c/1(g1 1) (] a/1(x 1,ml 1))) -=> (&)

R((c/2(g2.1) [} a/2q(x-1,y.1,n 1,m1 1))) = »

+ $(m2.1) s _1if(y.1,n 1) ; R((c/2(g2.1) (] ®/2(x 1,m2.1))) - (17)°

R((c/1(g1.1) [] ®/1g-(x 1,y 1,n.1,a.1,ml 1))) =

+ o_rrl(y.1,n 1,8 1) , R((c/1(gl 1) [) 8/1(x 1,m1 1))) ==> (8)

R((c/8 [] a/8qq(x 1,y.1,n 1))) =
+d i1l (y.1,n.1) , R((c/@® [] a/B(x 1))) -=> (9

R{(c/1(gl 1) [) e/1qq~(x 1,y 1,n 1,d 1,m1.1))) =

+d rri(y.1,n.1,d1) , R((C/l(él 1) [a/1(x 1,m.1)})) == (8)

R((ec/2(g2 1) (] a/2(x.1,m2 1))) =

+ #(y 1,n.1) d qq’(y 1,n 1) ; R((c/2(g2 1) [] dwlq(x.1l,y.1,n.1,m2.1))) --> (18)

.
T

R((c/2(g2.1) (] dwiq(x 1,y 1,n 1,m2 1))) =
+ #(g1 1,m 1) di'(y 1,n 1), R((c/1(g1 1) [] a/1({x.1,ml 1))) --> (8y
+ #(d.1) . drri(y 1,n 1,d 1) ; R((c/2(g2.1) [] 8/2(x 1,m2 1))) -=> (17

»

R((e/1_di(x.1,y.1,n.1,92 1)] dwi(x.1,y 1,n.1,m2.1))) »
o #(g1.1,m 1) d_iit(y.1,n 1) ; R((c/1(g1.1) () o/t(x.1,m1 1})Y > (8

-

R((c/1_dr(x.1,y.1,n.1,92 1) [} dwi(x.1l,y 1,n.1,m2.1))) = -
+ #(d.1) . d_rrt(y.1,n 1,d 1) , R((e/2¢s2 1) (1 a/2(x 1,m2 1))) - |

¢

%

(21) R{(c/1(gl 1) (] »/laq(x.1,y.1,n 1,m2 1))) =

+ #(m1.1) . d_iii(y 1,n.1) , R((c/1(p1 1) [] a/1(x.1,m 1))) -~> (8

(22) R({c/2(g2.1) [] 3/2qq-(x 1,y 1,n 1,d 1,m2 1))) =
cdrri(y 1,n 1,d 1) , R((c/2(92 1) [) a/2(x 1,m2 1))) ==> (:7)

Sterting pess 1

Starting pass 2

EQUIVALENCES ==~ m oo o e e e e s e mm e e e — e
== (R((c/1(g1.1) [; a/1q(x.1,y.1,n 1))) , R((c/1_s1{x 1,y 1,n.1) {] awl(x 1,y 1,A 1)})))

--> 4) ==

=3 (R(§C/2Eg§i1) [{g;/2q(x-l.y-l.n 1,m1.1))) , R((c/2_a1(x.1,y 1,n.1,g1.1) [] sw2(x 1,y 1,n 1,m1.1))))
- ==

== (R((C/O(}%)-/'q?(xil.y-l.n-l))) y R((c/0_di(x 1,y 1,n 1,91.1) [] dwé(x 1,y 1,h.1,m1.1))))
--> == (11

== (R((c/1(gl.1) []1;{qu(--1.y-l.n.l.m2 1))) , R((c/1_di(x 1,y.1,n 1,92.1) [} dwl(x 1,y 1,n.1,m2 1))))

-—) (21) == (o
RREDUCED - === === - = m = m s m e o e oo S
(8) R((c/® [} s/@(x 1)) =)
«#(y 1,n 1) s aa’(y 1,n 1) , R((c/® [] awlq(x 1,y 1,n.1))) -=> (1)

(1) R((C/" [] awlq(x 1,y.1,n 1))) =
v #(g1 1,m1.1) * o_11'(y 1,n 1) , R((cf1(g1.1) [} a/1(x.1,m1.1))) --> (6)

+ #(e1) a_rri(y 1,n1l,01) , R((c/8 {] a/8(x 1))) --> (8)

Q

(2) R{(c/1_mi(x.1,y.2,n 1) [] ewl(x 1,y 1,n 1))) =

+ #(gl 1,m1 1) a_i'(y 1,n 1) , R((c/1(g1 1) []) o/1(x 1,m1 1))) s-=> (6)

M R(e/iar(x.l,y 1,0 1)] swl(x Ly 1,a 1)) =

: #(a.1) a_re'(y 1,0 1,8 1) , R((c/® [] 8/8(x.1))) -=> (®)

(4) R((c/® [) 8/8a-(x 1,y.1,n 1,8 1))) =
- l;rr‘éy-l.n 1,8 1) ; R((c/® [] a/8(x 1)))
=

4 |
To-e> (® .

«
v

(5) R((c/1(g1 1) [} #/1(x 1,m 1)) =)
< 801,00 1) a_aa’(y 1,n 1) , R((e/1(g1.1) [} aw2a(x.l,y 1,n 1,m1 1))) -3 (8)

+ #(y.1,0.1) . d_aa’(r 1,n 1) ; R((c/1(g1.1) {] dwlq(x.1l,y 1,n.1,m1 1))) - (M

(8) R((c/1(g1.1) () sw2q(x 1,y 1,n 1,ml 1))) =
+ #(g2.1,m2.1) ea_ri'(y 1,n 1) , R((c/2(g2.1) [] 8/2(x.1,m2.1))) --> (14)
+ #(0.1) . arri(y 1,n 1,8.1) ; R((c/1(g1.1) [] 8/1(x 1,ml 1))) --> (8)

(7) R((C/l(gl.l) [] dwBq (x 1,7.1,n.1,m1.1))) =
«d iil(y.1,n.1) ; R((c/® (] »/®(x.1))) --> (&)
sof(d.1) . d_rri(y.1,n.1,d.1) ; R((c/l(gl.l& (0 s/1(x.1,m 1))) --> (6)

(®) R((c/2_si(x.1,y.1,n 1,91.1) [] ew2(x.1l,y.1,n 1,m1 1))) =
+ §(g2.1,m2.1) a_1i'(y 1,n 1) ; R((c/2(g2.1) [] »/2(x.1,m2 1))) --> (14)

=

(® R((c/2_ar(x.1,y 1,n.1,g1.1) (] ew2(x.l,y 1,n 1,ml 1)))

. + #(a.1) . a_rri(y.1,n 1,8.1) , R((c/1(g1 1) (] a/1(x.1,m1.1))) -=> (8)

(18) R((c/®_di(x.1,y 1,n.1,91 1) [} dwB(x 1,y 1,n 1,ml 1))) =

s d_iil(y.1,n.1) , R((c/® [] 8/0(x 1))) --> (®)

(11) R((c/8 _dr(»x.1,y.1,n.1,91.1) [] dwd(x 1,y.1,n.1,m1.1))) =
+ §(d.1) d rrt(y.1,n.1,d.1) ; R((c/1(g1 1) {] »/1(x.1,m1.1))) ~=~> (B)

(12) R((c/1(g1 1) [] a/1q-(x.1,y.1,n.1,a 1,ml 1))) =

w«arrli(y.1,n 1,81) ; R((c/1(g1 1) [] u/1(x.1,ml 1))) --> (6)

(13) R((c/1(g1.1) [] a/laq-(x.1,y.1,n 1,d.1,ml 1))) =
e d_rri(y.1,n.1,d 1) ; R((c/1(g1.1) [] a/1(x 1,m1.1))) -=> (6)

(14) R((c/2(g2.1) [] »/2(x 1,m2.1))) = ;

+ #(y.1,n.1) . d qq*(y.1,n.1) ; R((c/2(g2.1) [] dwiq(x.1,y.1,n.1,m2.1))) -r) (15)|
asy R((c/2(g2.1) [] dwlq(x.1,y.1,n 1,m2.1))) =)

« #(g1.1,m1.1) d_ii'(y.1,n.1) , R({c/1(g1 1) [} a/1(x.1,m1.1))) -=> (8)

. #(d.1) d_rr'(y.1,n 1,d.1) , R((c/2(g2 1) [] a/2(x 1,m2.1))) —=> (14)

(18) R((c/1_di(x.1,y.1,n.1,92 1) (] dwi(x 1,y.1,n 1,m2.1))) =

¢)

o #{gl.1,m1.1) . d_ii'(y 1,n.1) ; R((c/1(g1 17 [] a/1(x 1,m 1)))

(17) R((c/3_dr(x.1,y.1,n.1,92.1) [] dwl(x 1,y.1,n.1,m2.1))) =

+ #(d.1) . d_t:r'(y-i.n 1,d.1) ; R((c/2(g2.1) [] @/2(x.1,m2 1))}

(18) R((c/2(g2.1) [] a/2qq-(x.1,y.1,n.1,d 1,m2.1))) =
+d rei(y.1,n.1;d21) , R((c/2(92.1) (] 8/2(x.1,m2.1))) --> (14)

a7

-=> (6)

-=> (14)

Appendix C. {(DCP Expressions ‘and Results for)
: Conference-Based System

L

¢ Y

BRIDGE
® e/8 =
+ #(x.1,y.1,n.3) . a_q’(x 1,y.1,n 1) , c/1_ai(x.1,y.1,n 1) - 1)
+ #(x.1,y.3,0 1) 8 q’x1,y.1,n 1) ; c/1_sr(x 1,y 1,n.1) --> (2)

Q) c/1_ai(x.1,y.1,n.1) =
- 4 #(g1.1,¢3.1) . o _if(x.1,y.1,n 1,83 1) , c/1(gt 1) > (3)

g

(2) <c/1 er(x.1,y.1,n.1) =
+ #(0.1) . & ri(x.1,y 1,n 1,s.1) T, --)> (®)

3 c/1(gr.1) =

* #(x.1,y.1,n.1) & a’(x 1,y 1,n 1) ; /2 ailx.1,y.1,n.1,91.1) -=> (4) -
+ 8 1,y.1,0n 1) aQ’(x.1,y 1,n.1) , c/2_ar(x.1,y.1,n 1,91 1) --> (6) '

8Ly Le) da'(x1y.1n 1) /8 di(x 1,y.1,n.1,01.1) - (@)

* #(1,y.1,0.1) d a’(x.1,y 1,001 ; c/8_dr(x.1,y.1,n.1,g1.1) - M g

(4) e/2_8i(x 1,y.2,n.1,51 1) =

* #(92.1,£3 1) . a_i1(x 1,y 1,0 1,t3 1), e/2(g2 1) --> t8)
* #(t41) s ' (x 1,y.1,0 1,84 1) c/1(gl 1) -->) .
bl -
(6) c/2 ar(x 1,y 1,n 1,91 1) = o
. lk-.l) art(x 1,y 1,n.1,0 1) ; c/1(g1 1) -=3 (3

(8) </ di(x.1,y.1,n 1,81.1) =
+ #(e1.1) . d_if(x.1,y 1,n 1,t1 1) , c/8 --> (®)

* 8(2.0) L d i 1,y 0,000,020 ;5 e/1(gr 1) -5 ()

(7) e/® _dr(x.1,y.1,n.1,91.2) =

+ #(d.1) . dr'(x 1,y.1,n 1,4 1) ; c¢/1(g1.1))

(8) c/2¢g2.1) =
8= 1,y.1,n 1) 8 qQ”(x 1,y 1,n 1) , c/3 _ ai(x-1,y.1,n 1552 1) -~ {9)
c00Gly 10 1) 8 Q’(x 1,y 1.0 1) ; e/3_sr(x.1,y.1,n.1,92.1) - am

+ #(x.1,y.1,n.1) . d q?(x.1,y.1,n 1) ; /1 _di(x.1,y 1,n 1,g2.1) --> (11)
+ #(x.1,y.1,n.1) . d q?(x.1,y 1,n.1) ; c/1_dri{x.1,y 1,n.1,g2 1) --3 (12)
(9) c/3 ei(x.1,y.1,n 1,92.1) =
+ f§(ta.1) . ._i'(x.l,y.l,n.l,tA.l) i cf2(g2 1) ~=> (8)
(18) c/3_.r(l.l,y.l,n.1,g2.l) =
+ f#(s.1) . s_ri(x.1,y.1,n.1,a 1) , c/2(g2 1) --> (8)
11) c/1_di(x.1,y 1,n.1,g2.1) =
* #(91.1,81.1) . d_i'(x 1,y.1,n.1,¢1.1) , e/1(g1 1) -=> (3)
+ f#(t2.1) d_ 1 (x.1,y 1,n.1,¢2.1) , c/2(g2.1) -=> (8)
(12) e/l _dr(x.1,y 1,n 1,g2.1) =
* #(d.1) . dri(x1,y.1,n1,d 1) , c/2(g2.1) -=> (8)
AN e e e
\(C) a/B(x 1) =
+ #(y.1,n.1) 8_qq?’(y.1,n.1} , awlg(x.1,y.1,n.1) --> (1)
(1) eawlq(x 1,y.1,n 1) =
+ 8 q'(x.1,y.1,n.1) ; swl(x 1,y 1,n.1) -=-> (2) ®
(2) awl(x.1,y.1,n.1) =
+ #(t3.1) . a_i?(x 1,y 1,n.1,t3 1) ; a/1q(x.1,y 1,n.1) ~=> (3)
+ #(».1) a_r’(u‘l,y.l,n 1,8.1) ; a/Bq-(x.1,y 1,n.1,2 1) -=) (4)

(3) »/1q(x.1,y.1,n.1) =

+ #(m1.1) . s_iil(y.1,n.1) , #/1(x.1,m1.1) -=> (6)
(4) a/Bq-(x.1,y 1,n.1,a 1) =)
+ o_rri(y.1,n.1,8.1) ; a/B(x.1) > (®)

(6) =a/1(x.1,ml.1) =

"' #0n~1,n 1) . #_qq?(y.1,n.1) ; sw2q(x.1l,y 1,n 1,ml.1) -=> (8)

®

&)

¢ 9

* #(r 1,n 1) d qa’(y.1,n 1) , dwlq(x.1,y.1,n 1,m.1) -=> (7)

aw2q(x.1,y.1,n.1,m.1) =

+ 8 _q!(x.1,y.1,n.1) ; aw2(x.1,y.1,n 1,ml 1) -=> (8)
\

dwlq(x.1,y.1,n.1,m1.1) =

+ d q'(x.1,y.1,n.1) ; dw8(x.1,y.1,n.1,m1.1) -=> (9)

(8) ®w2(x 1,y.1,n.1,m1 1) =

9)

(1e)

1)

12)

a3)

ae)

(18)

(18)

+ f(te.1) . a_i7(x.1,y.1,n.1,¢t4.1) ; 28/2q(x.1,y.1,n 1,m1 1) --> (18)
+ #(».1) . a_r?(x.1,y 1,n.1,s.1) i 8/19-(x.1,y 1,n.1,s 1,ml 1) --> (11)
-

dw@(x.1,y.1,n.1,m1.1) = \

+ #(t1.1) . d_i?(x.1,y.1,n.1,¢t1 1) ; 8/8qq(x.1,y 1,n 1) --> (12)

+ #(d.1) . d_r?(x.1,y.1,n.1,d 1) , #/1qq-(x 1,y 1,n.1,d 1,m1 1) --> (13)
0/2q(x.1,y.1,n.1,m1.1) =

+ #(=»2.1) a_ii'(y 1,n.1) ; a/2(x.1,m2.1) --> {14)

8/1q-(x 1,y.1,n 1,8.1,m1.1) =

+ 8 _ret(y.1,n.1,8 1) , a/1(x.1,m1.1) -=> (8B)

a/@qq(x 1,y 1,n 1) =

+d_iit(y 1,n 1) , a/@(x 1) - (®)
a/laq-(x 1,y 1,n 1,d.1,m1.1) =

+d rrl(y 1,0 1,4 1) ; 8/1(x 1,m1 1) -=> (85)
a/2(x.1,m2.1) =

* #(r.1,n.1) . d_qq’(y.1,n 1) ; dwiq(x.1,y.1,n 1,m2 1) --> (18)

~ (’

dwlq(x.1,y.1,n.1,m2.1) =

+d_q'(x 1,y 1,n.1) ; dwi(x.1,y 1,n 1,m2 1) --> (18)

del(x 1,y 1,0 1 ,m2 1} =

Qan

Qas)

+ #(t2.1) . d_i?7(x.1,y.1,n.1,82.1) ; s/lqa(x.l,y 1,n.1,m2 1) --> 1)
+ #§(t1.1) . d i?(x.1,y.1,n.1,¢1.1) ; a/Bqq(x l,y 1,2 1) --> (12)
+ #(d.1) . d r?(x.1,y.1,n.1,d 1) ; 8/2qa-(x.1,y.1,n.1,d.1,m2.1) ~=> (18)

8/1qa(x.1,y.1,n.1,m2.1) =
- §(m1.1) . d_iit(y.1,n.1) ; 8/1(x.1,m1.1) -=> (B)

'/2¢N-(lJ,{.l,n.l,d.l,d.l)

+drri(y.1,n.1,d 1) ; 8/2(x.1,m2.1) -=> (14)

BRIDGE [] AGENT A -

(o)

(c/8 {] a/@(x.1)) =)

* #y.1,n 1) . a_aq®(y.1,n.1) ; (c/8 [] awlq(x 1,y 1,n.1)) --> (1)

(c/® [] swiq(x.1,y.1,n.1)) =

+ 8 a(x.1,y 1,n.1) , (c/1_ai(x.1,y.1,n.1) [] awl(x.1l,y.1,n 1)) -=> (2) >
+ 8 _q(x.1,y 1,n.1) ; (c/L_lr(l.l,y.l,ﬁfi)\E] .vi(x.l,y.l,n.l)) -=> (3)

(c/1_si(x.1,y.1,n.1) [} awl(x 1,y.1,n.1))

+ #(t3.1,g1 1) . a_1(x 1,y 1,n.1,t3 1) , (¢/1(gl.1)) a/1q(x.1,y.1,n.1))

(c/i_.r(x.l,y.l,n 1) [} awl(x 1,y.1,n 1))
+ #(»1) . »a_r(x.1,y 1,n.1,3 1) ; (c/® [} a/Bq-(x.1,y.1,n.1,a 1)) -=>

(c/1(g1.1) [] a/lq(x.1,y 1,n 1)) =
o'l(nl.l) ce_iil(y 1,n.1) ; (e/1(gl.1) (] a/1(x.1,m1.1)) ==> (8)

(c/8 [) »/Ba-(x.1,y.1,n 1,a.1)) =
+ a_rri(y.1,n.1,8.1) , (c/8 [] 3/8(x.1)) -=> (9

(c/1(g1.1) (] a/1(x.1,m1.1)) =
+ #(y-1,n.1) . a_qq?(y.1,n.1) ; (c/1(g1 1) [} aw2q(x.1,y.1,n.1,m1.1))
‘ il
+ #(y.1,n.1)"". d_qq?(y-1,n.1) ; (c/1(gl.1) (] dwhq(x.1,y.1,n.1,m1.1))

(c/1(g1.1) (] aw2q(x.1,y.1,n.1,m1.1)) =

-=> (4

()

= (N
== (9

8)

®)

1)

11)

12)

13)

' (]

v o_q(x.1,y 1,n 1) ; (c/2_@i(x 1,y 1,n 1,g1.1) [] aw2(x.1,y.1,n 1,m1.1)) -=> (9

+ 8 _q(x.1,y.1,n.1) ; (/2 _ar(x.1,y 1,n.1,g1.1) [} aw2(x.1,y.1,n.1,m1.1)) --> (18)
(c/1(g91.1) [] dwiq(x.1,y.1,n.1,m1.1)) =

+ d_q(x.1,y.1,n.1) ; (c/6_d&i(x.1,y 1,n 1,91.1) [] dwb(x.1,y.1,n.1,m1.1)) - (1)

+ d q(x.1,y.1,n 1) ; (¢/® dr(x.1,y.1,n 1,91.1) {] dw8(x.1l,y.1,n.1,m1.1)) -> (Q%i
(c/2_ai(x.1,y.1,n.1,01.1) (] ew2(x 1,y 1,n 1,m1.1)) =

+ §(t4.¥) . a_i(x.1,y.1,n.1,t4.1) ; (c/1(91 1) [} ®/2q(x.1,y 1,n.1,ml1.1)) -=> (13).
(c/2_sr(x.1,y 1,n.1,g1.1)] aw2(x 1,y 1,n.1,m1 1)) =

+ #(s.1) »_r(x.1,y.1,n.1,8.1) ; (c/1(g1.1) [} a/1q-(x 1,y 1,n 1,8 1,ml 1)) -=> (14)

~
(c/8_di(xn.1,y.1,n.1,91.1) [] dwd(x 1,y 1,n 1,mi.1)) =

« §Ct1.1) . d_i(x.1,y.1,n 1,t1.1) ; (c/@ (] ®/Bqq(x.1,y.1,n.1))

(c/®_dr(x.1,y.1,n.1,91.1) [) dwo(x.1,y 1,n.1,m1.1)) =

--> (1)

+ #(d.1) . d_r(x 1,y 1,n.1,d.1) ; (c/1(gl.1) [] a/lqq-(x.1,y.1,n 1,d.1,m1.1)) & =--> (16)

a

(c/1(g1.1) {] a/2a(x 1,y 1,n.1,m1 1)) =

- v #(m2.1) . a_ti'(y.1,n71) ; (c/1(gl.1) [} a/2(x 1,m2.1))

14)

16)

18)

17)

18)

(c/1(91 1) (] o/1a-(x 1,y 1,n 1,a 1,m1 1)) =]
+ a_rr'(y.1,n 1,8 1) , (c/1(91.1) {] »/1(x.1,m1.1))

(c/® [] a/Bqa(x.1l,y 1,n 1)) =
e e d iy 1,0 1) ; (c/® [] 8/8(x.1)) -=> (@)

(c/1(g1.1) {[] a/laq-(x 1,y.1,n.1,d.1,m1.1)) =

s d_reV(y.1,n 1,4 1) ; (c/1(g1 1) [] o/1(x 1,m1 1))

(c/1(gl-1) [] #/2(x.1,m2 1)) =

+ f(y.1,n 1) . d aq’(y.1,n 1) ; (c/1(g1.1) [} dwlq(x.1l,y.1,n.1,m2.1))

(c/1(g1 1) [] dwlq(x 1,y 1,n 1,m2.1)) =

-=» {17)

--> (&)

> (&)

«d q(x 1,y 1,n 1) ; (c/8_di(x.1,y.1,n.1,91 1) [] dwi(x 13y.1,n.1,m2 1))
i

-=> (1®)

--> (19).

.

2

(19)

(20

(21)

(22) (c/1(g1.1) (] o/2aq-(x.1,y.1,n.1,d 1,m2.1)) =

R (BRIDGE () AGENT)

(®

(5

\~7

+ d q(x.1,y.1,n.1) ; (c/® _dr(x 1,y.1,n.1,g1.1) 0 dwl(x.1,y.1,n.1,m2.1))

(c/® di(x.1,y.1,n.1,01.1) [} dwi(x 1,y.1,n 1,m2 1)) =

e #(t1.1) . d i(x.1,y.1,n.1,t1.1) ; (c/@ [}

a/Baq(x.1,y.1,n 1)) -=> (18)
e #(t2 1) . d_i(x.1,y.1,n.1,82.1) ; (c/1(91.1) [} a/1lqq(x 1,y.1,n 1,m2.1))

(c/8_dr(x.1,y.1,n.1,91 1) [) dwi(x.1,y.1,n 1,m2.1)) =
+ #§(d.1) d_r(l.l,y.l,n.},d.l) i (e/1(g1.1) [a/2qq-(:.l,y.l,n.l,d.l,na.l)) .
o~
(c/1(g1.1) (] a/1qq(x.1,y.1,n 1, m2.1)) =
+ §imi.1) . d_ii'(y.1,n.1) ; (c/1(g1 1) (] o/1(x 1,ml1.1)) --x (8)

«d rrit(y.1,n.1,d.1) ; (e/1(g91.1) [} 8/2(x.1,m2.1)) -=> (17

R((c/8 [} o/8(x.1))) =

hd .(’.l,ﬂ-l) . ._QQ’(] 1;“ 1) ’ R((c/G [] .'IQ(! 1:"1'"'1))) ~ -

R((c/® [] awliq(x.1,y.1,n.1))) =
+ #(gl.1,m1 1) e_iil(y.1,n.1) ; R((c/1(g1

T e e e e e e e et ccd s e c e —mr nc————————

1) [) 8/1(x.1,m1.1)))

+ #(s.1) . a_rri(y 1,n.1,s.1) ; R((c/0 [} l/B(x.l))) -=>) (8)

R((c/1_si(x.1,y.1,n.1) [] awl(x.1,y.1,n 1))) =
+ #(91.1,m1 1) . a_1i'(y.1,n 1) , R((c/1(gl

R((c/1_ar(x.1,y.1,n 1) [] swl(x.1l,y.1,n 1)))

1) [] a/1(x.1,m1.1)))

+ f#(e.1) . a_rri(y.1,n.1,s.1) , R((c/® [1 a/8(x 1))) -=> (@)

R((c/1(g1.1) [] a/1a(x 1,y 1,n.1))) =

»

+ #(m1.1) . »_ii'(y 1,n.1) ; R((c/1(g1.1) [} a/1(x.1,m1.1))) -=> (

R((c/® [] 8/6q-(x.1,y.1,n.1,a.1))) =
+ e _rr'(y.1,n.1,8.1) ; R((c/® [] a/B(x.1)))

-=> (9)

==> (8

==> (8

8)

--> (28)

==> (21)

-=> (22)

(o)

«7n

(®)

(9

(,10)

1)

(12)

(1)

(14)

(18)

-~

18)

.3

R((c/1(g1.1) [] »/1(x.1,m1.1))) =
+ #(y.1,n.1) . a_qq?’(y.1,n.1) ; R((c/1(g1.1) [) aw2q(x.1,y.1,R.1,m1.1)))
* 80 1,n.1) . d_aa’(y.1,0.1) ; R((c/1(g1 1) [] dwlq(x.1,y.1,n.1,m.1)))

R((c/1(g1.1) (] aw2q(x.1,y.1,n 1,m1.1))) =
+ #(m2.1) . a_ii'(y 1,n.1) i R((c/1(g1.1) 3 8/2(x.1,m2.1))) -=> (17)
¢ #(a.1) . a_rrli(y.1,n.1,0 1) ; R((c/1(g1.1) [} a/1(x.1,m1.1))) --> (8)
]

R((c/1(g1.1) []\dweq(l.l,y.l;n.l,ml.l))) =

+d_ iV (y.1,n.1) ; R((c/8 [} a/B(x.1))))]

+ #(d.1) . d rri(y 1,n.1,d.1) , R((c/1(g1 1) (] a/1(x.1,m1.1))) -~> (8)
R((c/g_u'(x‘l,y.l,n.l,gl.l) [] aw2(x.1,y.1,n 1,m 1))) = R *

+ #(m2.1) . a_iit(y 1,n.2) , R((c;i(gl 1) [} a/2(x.1,m2.1))) -=> (17)
R((c/2_sr(x 1,y 1,0 1,91 1) {] ew2(x 1,y 1,n 1,m1 1))) = °

« #(2.2) a_rri(y 1,n 1,8.1) ; R((c/l(gl.q) [} a/1(x.1,m1.1))) -=> (8)

R((q/!_dn(x,l,y 1,n.1,81 1) (] dwd(x 1,; 1,n 1,m1 1))) =
[
¢+ d iil(y 1,n.1) ; R((c/® [] as0(x) --> (8) t

R((c/@_dr(x 1,y.1,n.1,91.1) (] dw8{x 1,y.1,n 1,m1 1))) =

* 8@ 1) L drrt(y 1,n.1,d 1), R((c/1(g1 1) [] a/1¢(x.1,ml 1Y) ==> (8)
|

. R((e/1(91 1) {] a/2a(x 1,y 1,n 1,m1.1))) =

e ey, R((c/1(g1 1) [) 8/2(x.1,m2.1))) --> (17)

R((c/1(91-1) {] a/1q-(x.1,y 1,n 1,s 1,ml 1))) =

se_rr'(y.1,n.1,8.1) , R((c/1(g1 1) {] a/1(x 1,m1 1))) ==> (8

R((c/® (] a/®qa(x.1,y 1,n }))) =
¢+ d_ii'(y.1,n.1) ; R((c/8 [] »/8(x.1))) - (8

R((c/1(g1.1) [) a/lqa-(x 1,y.1,n 1,d 1,m1.1))) =

+d_rrf(y.1,n.1,d 1) ; R((c/1(g1 1) [] »/1(x 1,ml 1))) -=> (8

==> (7
--> (8)

-
(17) R((e/1(91.7) [] #/2(x.1,m2 1))) = ,
+#0-1,0.1) d aa’(r-1,n 1) , R((c/1(gl 1) [] dwlq(x Ly 1,n 1,m 1))) T s> (18)

-~

(18) R((c/1(g1.1) [] dwla(x 1,y.1,n.1,m2 1))) =

+dii'(y.1,n.1) ; R((c/®) a/8(x 1))) --> (8) -
+ #(m1.1) d_iil(y.1,n.1) ; R((c/1(g1 1; (8] ‘,l:/l(l.l,ll 1)) -=> (&)
* f#(d.1) . d_(‘rl(y.‘,n.l.d.l) 3} R((e/1(g1.1) [} #/2(x 1,m2.1))) ~-=> (17)

(19) R((c/_di(x 1,y.1,n.1,91.1) [] dwi(x 1,y 1,n 1,m2 1))) =
+d it (y.1,n.1) ; R((c/® [} a/8(x 1))) -=> (e
+dm1 D . divy1,n 1) ;5 R((e/1(91.1)] 8/1(x 1,m1 1))) > (&)

(20) R((c/® dr(x.1,y.1,n.1,01.1) {] dwi(x.1,y.1,n.1,m2.1))) =

+ #(d.1) d_rr'(y 1,p 1,4 1) , R((c/1(g1.1) (] a/2(x 1,m2.1))) -=> (17

((21) R((c/1(31.1) [] o/1qq(x 1,y.1,n 1,m2 1))) =

+ fi(m1.1) . d_iil(y 1,n.1) ; R((c/1(g1 1) [} a/1(x 1,m1.1))) -=> (8) g

(22) R((c/1(g1.1) (] 8/2aq-(x.1,y.1,n.1,d 1,m2 1))) =

+d_rri(y.1,n.1,d.1) , R((c/2(g1.1) (] a/2(x 1,m2 1))) -=y (17

Starting pass 1}

Sterting pass 2

Starting pass 3 -
4

Sé.rting pass

EQUIVALENCES == oo m oo e o
== (R((¢/1(91 1) [] 8/1a(x.1,y.1,n.1))) , R((c/1_si(x 1,y 1,n 1) [] awl(x l,y 1,n.1))))
=>
== (R((c/l(gl 1) [] l/2q(x lL,y.1,n.1,m.1))) , R((c/2_ai(x.1,y. 1,n.1,01.1) [] aw2(x.1,y.1,n.1,m 1))))

=-=> 13) ==
== (R((Clﬂ([) O/N?(* Ly 1,n.1))) , R((c/@ _di(x 1,1 1,n.1,91 1) [] dwB(x.1,y 1,n.1,m.1))))
as

® R((c/® [] a/8(x.1))) =

—

(1)

@

&)}

4)

(%)

6)

(O]

(®)

(9)

(10) R((c/8. di(x 1,5 1,n 1,91 1) [] dwl(x 1.y 1.0 l.m1 1))) =

+ #(y.1,n.1) . a_qq’(y 1,n 1) , R((c/® [] awla(x 1,y 1,n 1))) -=> (1)

R((c/® []) awiq(x.1,y 1,n 1))) =

+ #(gl.1,m1.1) . & ii'(y 1,n 1) ; R((c/1{(g1 1) (] a/1(x 1,m1 1))) -=> (B)

+#(a 1) . arri(y.1,n.1,8.1) , R((c/B [] 8/6(x.1))) --> (®)
R((c/1_si(x.1,y.1,n.1) [] awl(x.1,y 1,n 1))) =

+ #(g1.1,m1.1) . a_iil(y 1,n.1) , R((c/1(g1 1) (] ./’1(1 1,m1.1))) -=> (B)
R((c/1_ar(x 1,y 1,0 1) [) swli(x.1l,y.1,n 1))) =

+ #(a.1) . a_rr'(y.1,n 1,8.1) ; R((c/®] s/8(x 1))) --> (®)
R((c/® [] o/8q-(x 1,y 1,n 1,8.1))) = . .

< o_rri(y.1,n.1,8 1) ; R((c/® [} a/8(x 1))) -=> (®)
R((c/1(g1.1) [] s/1(x.1,ml 1))) =

+ #(y.1,n.1) . a_qq?(y 1,n.1) , R((c/1(g1 1) [] aw2q(x 1,y 1,n.1,ml1 1))) --> (6)

* #(r.1,n.1) . daa?(y 1,n 1) , R((c/1(g1 1) [] dwda(x 1,y 1,n 1,ml 1))) . -=> (7

R((c/1(gl 1) (] sw2q(x 1,y.1,n 1,ml 1))) =
+ #(m2 1) s_it'(y 1,n 1) , R((c/1(g1 1) [] »/2(x 1,m2.1))) --> (14)
< #(0.1) . a_rri(y.1,n 1,8 1) , R((c/1(gl 1) {] a/1(x 1,m1.1))) --> (B)

R((c/1(g1 1) [] dweq(x 1,y 1,n 1,m 1))) =
«d_:i'(y.1,n.1) , R((c/® [] a/8(x.1))) -=> (®)

+ #(d.1) . dref(y 1,n.1,d 1) , R((c/1(91 1) [] 8/1(x 1,ml 1?)) --> (6)
1

R((c/2_2i(x 1,y.1,n 1,91 1) {1 aw2(x 1,y 1,n 1,m1 1))} =
+ #(m2 1) a_ri'(y 1,0 1) , R((c/1(g1 1) (] #/2(x 1,m2 1)})) ==> (14)

R((c/2_ar(x 1,y 3,n 1,01 1) (] aw2(x 1,y 1,n 1,m1 1))) =
c#(01) e rri(y1,n1,81), R((c/t(g1 1)] a/1(x 1,m1 1))) -=> (B) \

e d_ti'(y 1,n 1) , R((c/® [] »/8(x 1))) -=> (B

s

(11). R((c/® dr(x.1,y.1,n 1,91.1) [] dw®(x 1,y 1,n 1,m1 1))) =

+ #(d.1) . drri(y.1,n.1,d 1) R((c/1(91.1) [) o/1(x 1,m1.1))) --> (86)

(12) R((c/1(g1.1) []'e/1q-(x.1,y.1,n 1,8 1,m1.1))) =

+o_rei(y.1,n.1,8.1) ; R((e/1(gl 1) [] 8/1(x 1,m1 1))) -=> (6)

(13) R((c/1(g1.1) 9} 8/lqq-(x.1,y.1,n.1,d '1,ml 1))) =

+drri(y1,n.1,d.1) ; R((c/1(p1 1) '[] 8/1(x 1,m1 1))) --> (8) r

(14) R((c/1(91 1) [) -/2(l>}i~2 1))) =
* #(r.1,0.1) . d_aq?(y.1,n.1) ; R((c/1(g1.1) [] dwlq(x.1,y.1,n.1,m2 1))) -=> (1)

(18) R((e/1(g1.1) [] dwia(x.1,y.1,n.1,m2 1))) =

+d_ii'(y 1,n.1) , R((c/8 [] n/0(x 1))) --> (®)

+ #(m1.1) . d_iil(y 1§n.1) , R((c/1(g1 1)] n/l(x:l,nl.l))) -=> (B)

*#(d.1) . drri(y.1,n 1,d 1) ;5 R((c/1(91.1) (] 8/2(x.1,m2.1))) --> (14)
(18) R((c/0_di(x.1,y.1,n.1,91.1) [] dwi(x 1,y 1,n.1,m2.1))) =

+diit(y.1,n.1) , R((CE a/8(x 1))) --> ()

+ #(m1.1) . d_ii'(y.1,n.1) ; R((c/1(g1 1) [] a/1(x 1,ml 1))) -=> (b)

[¢%)] R((c/ﬂ_dr(x.l,y.l,n.l,gl.l) (] dwi(x.1,y 1,n 1,m2 1))) =

+ #§(d.1) . d_rri(y.1,n1,d 1) , R((c/1(g1 1) () a/2(x 1,m2.1))) --> (14)
(19) R((c/1(g1.1) [] »/1qq(x.1,y.1,n 1,m2 1)) = .
+ #(m1.1) . d_ii'(y 1,n.1) , R((c/1(91 1) [] a/1(x.1,m1.1))) --> (6)

(19) R((c/1(gl.1) 0] l/2qq—(x.l,y.l,n.l,d.l,mz.l))) =

+d rel(y.1,n.1,d 1) ; R((c/1(g1.1) [] 8/2(x.1,m2.1))) -~> (14)

