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Abstract

The UK Biobank, thanks to extensive clinical data and a large sample size, is an

unprecedented resource to understand pain and the development of chronic pain as well

as impacts of other conditions on its development. However, in efforts to efficiently extract

information from UK Biobank and to analyze many phenotypes simultaneously, it presented

several challenges including high sparsity and heterogeneous data types. Therefore, to

address the challenges, we develop the graph embedded topic model (GETM) as a novel

multi-modal topic model which utilizes graph data by incorporating Node2Vec for pre-

trained embedding. We successfully learned interpretable topics, which also captured

relationships between conditions and medications. We achieved superior performance in

experiments using individual-level information of past conditions predicting the status of

chronic musculoskeletal pain of baseline. The model was also able to gain promising

performance in missing record imputation as well as in medication recommendations.

Lastly, our model led to interesting insights on how specific combinations of conditions

and medications might affect musculoskeletal pain.

ii



Résumé

La UK Biobank, grâce à de nombreuses données cliniques et à une grande taille d’échantillon,

est une ressource sans précédent pour comprendre la douleur et le développement de

la douleur chronique ainsi que les impacts d’autres conditions sur son développement.

Cependant, dans les efforts visant â extraire efficacement des informations de UK Biobank

et â analyser de nombreux phénotypes simultanément, elle a présenté plusieurs défis,

notamment des types de données très clairsemés et hétérogènes. Par conséquent, pour

relever les défis, nous développons le modèle de sujet intégré au graphique (GETM) en

tant que nouveau modèle de sujet multimodal qui utilise les données du graphique en

incorporant Node2Vec pour l’intégration pré-entrâınée. Nous avons appris avec succès des

sujets interprétables, qui ont également capturé les relations entre les conditions et les

médicaments. Nous avons obtenu des performances supérieures dans des expériences utilisant

des informations au niveau individuel sur les conditions passées prédisant l’état de la douleur

musculo-squelettique chronique de référence. Le modèle a également été en mesure d’obtenir

des performances prometteuses dans l’imputation des enregistrements manquants ainsi que

dans les recommandations de médicaments. Enfin, notre modèle a conduit â des informations

intéressantes sur la façon dont des combinaisons spécifiques de conditions et de médicaments

pourraient affecter la douleur musculo-squelettique.
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Chapter 1

Background

1.1 Chronic pain

Chronic pain is the result of dysfunction of the nociceptive circuitry leading to continued

perceptions of pain, and was recently recognized by the World Health Organization (WHO)

as a disease in its own right, resulting in revisions to the latest (11th) version of the

International Classification of Diseases (ICD-11) [28]. High prevalence of chronic pain

conditions was observed especially in aging people affecting 50% of older adults (>65y)

[36]. It decreases mental and emotional health of people who are suffering chronic pain [34].

Chronic neuropathic pain may be initiated through many different pathologies. Though

pain becomes related to the nervous system by perhaps only a few mechanisms, those

mechanisms are not yet fully elucidated. It is therefore urgent to better understand chronic

pain. One important aspect of the reasons why chronic neuropathic pain is universally

recognized as one of the most difficult pain syndromes to treat is that the interrelationship

of factors impacting outcomes of chronic pain is complex. [51]. Though several studies have

identified the strong association between the presence of chronic pain and mental health

conditions, such as depression [19, 20, 62] etc., we need to understand comorbidities of

chronic pain to better categorize patients [31]. Besides, the uncertain etiology of chronic
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pain often poses a challenge to health care providers who might give escalating doses of

medications, which potentially expose patients to unnecessary treatments and associated

side effects [61]. Therefore, uncovering the causes of chronic pain is necessary for determining

better medication use.

1.2 UK Biobank

The UK Biobank [3] is a powerful data resource for understanding the determinants of

common life-threatening and disabling diseases. The UK Biobank is a cohort study of

500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment

[27]. The recruitment started in 2007 and was declared complete in 2010 [3]. Extensive

information was collected through questionnaires and physical measurements, as well as by

storing biological samples that allow many different types of assays (e.g., genetic, proteomic,

metabonomic, or biochemical) [30]. This allows investigations on combined effects of lifestyle,

environment, genes, and a wide range of exposures on health outcomes. With the aid of

effective computational methods, the UK Biobank promises to yield novel findings made up

of multi-factor interactions. Besides, a benefit of a large-scale population allows for models

the detection of finer resolution effects [63].

The establishment of the UK Biobank as a resource has led to numerous publications

based on statistical analyses of the clinical data [3]. For example, in the pain field, prevalence

and associative factors of facial pain were examined by standardized prevalence on UK

Biobank estimates and Cox regression with results expressed as relative risk [72]. However,

previous methods are still constrained by computing power, and do not take full advantage of

diverse information and distill meaningful interactions and combinations from UK Biobank.

There are several remaining challenges: the data is very sparse which makes it hard to extract

information and correlate different data types. Besides, the size of UK Biobank data makes

it difficult for simple statistical methods to incorporate multiple phenotypes simultaneously.
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Figure 1.1: Graphical model for Latent Dirichlet Allocation (LDA).

Therefore, our goal is to bring novel graph embedded topic model (GETM) to the problem of

using medical conditions and medication usage to predict the development of chronic pain.

1.3 Topic model

Topic models were originally developed to aid in understanding large collections of text

documents. The main importance of topic models is to discover patterns of word use and to

connect documents that share similar patterns. This is particularly useful to give keyword

labels to documents which enable faster search without reading through the whole corpus

[23]. Latent Dirichlet Allocation (LDA) is a classical and original topic model which relies on

the commonly used bag-of-words assumption, which ignores the ordering of the words in the

document [25]. The basic idea is that documents are represented as mixtures over topics,

where each topic is characterized by a distribution over words. It assumes the following

generative process for each document in a corpus D (Fig. 1.1):

1. Choose θ from a Dirichlet distribution parameterized by α.

2. For each word wdn of the N words:

(a) Draw a topic zdn ∼Multinomial(θd).

(b) Choose a word wdn from p(wdn|zdn,β), a multinomial probability conditioned on

the topic zdn. β is a K × V matrix and it is topics’ distribution over V words.

Joint probability distribution over the words, latent topics, topic proportions and topic

assignment defines the generative process of creating a corpus as in mathematical equation
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below [41]:

p(β,θ, z,w|α, η) = (
K∏
k=1

p(βk|η))(
D∏
d=1

p(θd|α)(
N∏
n=1

p(zdn|θd)p(wdn|zdn,β))) (1.1)

where D is the number of documents, N is the number of words, K is the number of topics,

θd is the document topic mixture, zdn is the topic assignment for the nth word in the

dth document, wdn is the nth observed word in the dth document, βk is the kth topic word

distribution, α are the Dirichlet hyper-parameters and η is the scalar topic hyper-parameter.

Integrating over θ and summing over z, we obtain the marginal distribution of a document:

p(wd|α,β) =

∫
p(θ|α)(

N∏
n=1

∑
zdn

p(zdn|θ)p(wdn|zdn,β))dθ (1.2)

Because the number of possible hidden topic structures is exponentially large, the

marginal probability in equation 1.2 is intractable to compute [23, 25]. Hence, it is

required to use approximate posterior inference algorithms such as Gibbs sampling [54],

variational Bayesian inference [37], maximum a posteriori estimation [52], etc. Among all

these approximation methods, variational Bayesian inference is suitable for large datasets

and can easily be accommodated with deep neural networks. It is a good alternative to some

classic methods such as Markov Chain Monte Carlo (MCMC), since it is scalable to large

datasets and faster in different applications. In variational inference, we specify a family

Q. Each q(z) ∈ Q is a candidate approximation to the exact conditional. Inference now

amounts to solving the following optimization problem:

q∗(z) = argminq(z)∈QDKL[(q(z)||p(z|w)] (1.3)

where DKL represents Kullback–Leibler (KL) divergence defined as DKL((z)||p(z|w)) =

E[logq(z)]−E[logp(z,w)] + logp(w). Due to its dependency on the evidence logp(w), 1.3 is

hard to compute. Thus, the idea is to determine the evidence lower bound (ELBO) of the
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log probability of the observations, which could be derived using Jensen’s inequality:

logp(w) = log

∫
p(w, z)dz

= log

∫
p(w, z)

q(z)

q(z)
dz

= logEq[
p(w, z)

q(z)
]

≥ Eq[log
p(w, z)

q(z)
]

= Eq[logp(w, z)]− Eq[logq(z)] (1.4)

Since the lower bound holds for any q, we could choose the proper q(z) based on different

assumptions to ensure that it is easily computable [64]. One popular approximation is

mean field variational inference [69]. It breaks coupling between θ and z by introducing

free variational parameters γ over θ and φ over z. As a result, the optimization problem

becomes optimizing q(θ, z|γ,φ) to best approximate p(θ, z|w,α,β). The ELBO could be

written as:

L(γ,φ|α,β) = DKL[q(θ, z|γ,φ)||p(θ, z|w,α,β)]− logp(w|α,β)) (1.5)

Though LDA has the closed form coordinate descent equations of mean field variational

inference optimization, it is impractical or even impossible for some new models to find closed

form solutions. Due to its limitation in flexibility, the autoencoding variational inference

(AEVB) method was proposed [40, 57, 69]. In AEVB, the equation 1.5 could be rewritten:

L(γ,φ|α,β) = −DKL[q(θ, z|γ,φ)||p(θ, z|,α)]− Eq(θ,z|γ,φ)logp(w|θ, z,α,β) (1.6)

The second term is the reconstruction term, which is used to ensure that the variational

posterior favors values of the latent variables that are good at explaining the data [69]. The

variational parameters are computed using a neural network that takes the observed data as
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input. For example, if we assume the model prior for θ as the logistic normal distribution,

the inference network would be defined as a feed-forward neural network (µ(w), σ(w)) =

f(w,γ) where γ is the network parameters, which gives a Gaussian variational distribution

qγ(θ)) = N (θ;µ(w), σ(w)).

Following LDA which is the foundation for numerous latent factors discovery algorithms,

there are several extensions that have been developed which are known collectively as topic

models. For example, Hierarchical Latent Dirichlet Allocation (HLDA) [17, 24] introduced

built topic hierarchies to model the tree of topics which automatically identified syntactic

and lexical patterns. Author topic model (ATM) [59, 60] proposed an expansion which used

metadata for extracting the topic distribution with respect to authors. Each author has a

distribution over topics. This type of model adding authorship could be applied to pull out

model hidden information such as similarities between authors, etc. Dynamic topic model

(DTM) [22, 53] incorporates evolution of time to LDA which is capable of tracking pattern

changes over time series. In addition, to adjust models to have better scalability and expedite

the training, neural networks were involved. For instance, embedded topic model (ETM [33])

and dynamic embedded topic model (DETM) [32] extended LDA and DTM by decomposing

topic word mixture and allowed the models to be more adaptable in deep learning systems.

As the topic models have become more sophisticated and able to solve more challenging

problems, they have been widely used in biological or health-related problems to uncover

underlying semantic associations among biomedical concepts. For instance, Arnold et al.

[18] applied LDA to identify clinically significant topics by learning patients’ case-specific

notes. Zhang et al. [77] combined LDA and networking analysis to discover latent disease

mechanisms by dissecting disease-gene associations from over 25 million PubMed indexed

articles. Wu et al. [76] proposed an LDA-based model to rank gene-drug associations in

biomedical literature for drug re-purposing. Rider et al. [58] used an ensembled topic model

to facilitate effective transfer learning between distinct healthcare data and constructing a

network for interpretations used by domain experts and the discovery of disease relationships.
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Their work improved the estimation of patient disease risk by extracting hidden shared

patterns. Elibol et al. [35] characterized trajectories of developmental disorders’ change over

time using a dynamic topic model, which is important for early treatments. The topic model

they developed gave promising results with incomplete medical records and social media

posts.

The topic models’ applications were not limited to text data. Madhaven et al. [46]

developed an LDA-based topic model to group lncRNAs from a collection of transcriptome

sequences and successfully addressed the problem that lncRNAs are less conserved at their

sequence level. Li et al. [44] treated patients as documents and developed an LDA-based

multi-modal topic model to learn interpretable patient topic mixture which was used to

classify target diseases and predict mortality of patients. Song et al. [68] developed a

specialist-specific supervised topic model to predict disease diagnoses and treatments while

accounting for multimodality among specialist-dependent topic distributions.

1.4 Node2Vec

Graph neural network (GNN) is an approach emerged to model with graph data. Graph

data is non-Euclidean and thus hard to model using other deep learning methods, since

the graph can be irregular, meaning a graph may have variable sizes of unordered nodes

and varied numbers of neighbors to a node [47]. As much biomedical data is naturally

represented as graphs, GNN has been used extensively to model health-related data and

successfully captured topological information in biomedical systems. There are mainly two

types of biomedical graphs: molecular-level graphs such as chemical molecules and network

graphs such as the drug-drug interaction graph. For instance, Choi et al. [29] proposed a

graph-based attention model to learn meaningful representations from the medical oncology

graph and achieved better performance in sequential diagnoses prediction tasks and heart

failure prediction tasks. You et al. [78] developed a multi-species graph neural network-based
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Figure 1.2: Node2Vec Overview. Node2Vec uses biased random walks to sample neighbors
from graph. The biased factor α is determined by current state and potential next state. If
the node 2 is current node and the previous node is node 1. Then the α for red line is 1/p.
The yellow lines shows the case that the walk is going outward to the nodes which are not
connected to the previous node, where the α is 1/q. For the last case, the walk goes to the
node not identical to the previous node but connected to it, where α is 1. After generating
the neighbor set for the resource nodes, the numerical embedding of the nodes is learned by
a Skip-gram model.

method which made the most of both protein sequences and the high-order protein network

information to do automated function prediction with a large-scale dataset. Nguyen et al.

[50] compared multiple graph neural network methods in prediction of drug-target bindings

and drug re-purposing on the bipartite graph. As the graph neural network approaches

develop rapidly, longitudinal healthcare data could be modeled taking the temporal order of

data into account. As an example, Lee et al. [43] has combined a unified graph representation

learning framework with a long short term memory (LSTM) network to model heterogeneous

medical entities and significantly improved the performance in subsequent code predication

tasks.

Among all different graph neural network models, we have applied Node2Vec in our

system. Node2Vec [39] is an embedding method which transforms graphs into numerical

representations. The learned representation preserves the structure of the original network.

Given a graph G = (V,E) where V represents the set of vertices (nodes) and E represents

the set of edges, Node2Vec aims to find the optimized mapping function f : V → Rd

from nodes to numerical representations. For every source node u in the graph, a set of
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neighborhoods NS(u) ⊂ V is sampled. The model extends the Skip-gram architecture in

natural language processing (NLP) systems, which uses the given target word to predict

context words [49]. It optimizes the following objective function:

maxf
∑
u∈V

logP (NS(u)|f(u)) (1.7)

There are two assumptions that make the objective tractable: conditional independence,

which assumes observing a neighborhood node is independent from any other neighborhood

node, and symmetry in feature space, which assumes a source node and a neighbor node

have symmetric effects on each other. Thus, the objective function becomes:

L = maxf
∑
u∈V

log(
∏

ni∈NS(u)

exp(f(ni), f(u))∑
v∈V exp(f(v), f(u))

)

= maxf
∑
u∈V

(−log(
∑
v∈V

exp(f(v), f(u))) +
∑

ni∈NS(u)

(f(ni), f(u))) (1.8)

For large graphs with millions of nodes, since the model has a tremendous number of

weights to optimize which would be computationally expensive and time-consuming, negative

sampling is applied in the training process. For each source node, the model samples both

positive neighbors as well as false neighbors, which are referred as negative samples. The

negative samples are generated following certain distributions depending on the settings and

datasets. The model is trained to favor the probability of true neighbors to be large. Then

the objective of the model is to minimize:

L =
∑
u∈V

∑
ni∈NS(u)

(−(f(ni), f(u))−
∑

v′∈N ′
S(u)

(f(v′), f(u))) (1.9)

where v’ is a negative sample form the negative neighborhood N ′S(u).

Node2Vec generates positive neighbors via biased random walk. The sampling strategy

includes four parameters: the number of walk, which is the number of random walks to be
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generated for each node, walk length, which is the number of nodes in each walk, p, which is

the return parameter, and q, which is the in-out parameter. p and q are used to determine

αpq(t, x) which is a bias factor to determine the unnormalized transition probability πvx = αpq

(t,x)·wvx given the current node v, the previous node t and the possible next node x. wvx

are the static edge weights for edges (v,x). Consider a random walk that just traversed edge

(1,2) and now resides at node 2 (Fig. 1.2). For the current state, if the next state is a node

of previous state (1 in our example), αpq(t, x) is 1/p. If the next state is a node which is

not connected to the previous node, αpq(t, x) is 1/q. For the rest of nodes, αpq(t, x) is set

to 1. A small q increases the probability of the walk moving outward from the localized

neighborhood. In other words, if q < 1, the random walk is more inclined to perform depth-

first search (DFS), by which the neighborhood consists of nodes sequentially sampled at

increasing distances from the source node. In contrast, if q > 1, the random walk is more

reflective to breadth-first search (BFS), by which the neighborhood is restricted to nodes

which are immediate neighbors of the source node. So the nodes ci are generated by the

following distribution:

P (ci = x|ci−1) =


πvx
Z

if (v, x) ∈ E

0 otherwise

(1.10)

where Z is a normalizing constant.

1.5 Related work

There have been attempts to apply matrix factorization methods to UK Biobank data,

in order to extract more hidden patterns or learn associations between different types

of data. Bayesian non-negative matrix factorization (bNMF) clustering has been applied

to genome-wide association study (GWAS) results for 94 independent Type 2 diabetes

(T2D) genetic variants and 47 diabetes-related traits. The study found out individuals

with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the
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predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned

to just one cluster top decile [73]. In the study using topic modeling via non-negative

matrix factorization (NMF) for identifying associations between disease phenotypes and

genetic variants, they identified a positive correlations of topics enriched for cardiovascular

diseases and hyperlipidemia with rs10455872 in Lipoprotein(a) (LPA) and a negative

correlations between LPA and a topic enriched for lung cancer [79]. Tanigawa et al. have

applied truncated singular value decomposition (DeGAs) to matrices of summary statistics

derived from genome-wide association analyses across 2,138 phenotypes measured in 337,199

White British individuals in the UK Biobank study to identify key components of genetic

associations and the contributions of variants, genes, and phenotypes to each component [71].

A variant of Principal component analysis (PCA) has been used in the UK Biobank and the

1000 Genomes project datasets, which help make recommendations for best practices and

provide efficient and user-friendly implementations of the proposed solutions in R packages

bigsnpr and bigutilsr [55]. These methods, though have demonstrated advantages of learning

associations, they ignored the phenotypic networks. We assumed those intra-relationships

can also provide useful insights. Hence, we incorporate graph modelling to learn embeddings

of phenotypes using relational graphs.

1.6 Uniform manifold approximation and projection

Uniform manifold approximation and projection (UMAP) is a novel manifold learning

technique for dimension reduction [48]. We have applied this method to trained condition

embedding ρc concatenated with trained condition-defined topic embedding αc and to trained

medication embedding ρm concatenated with trained medication-defined topic embedding

αm. Visualizing 2-dimensional embedding obtained from UMAP, we were able to observe

whether the topics enriched with certain diseases and medications are assigned to common

disease groups.
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The UMAP algorithm consists of two steps: construction of a graph in high dimensions

and an optimization step to find the most similar graph in lower dimensions. It constructs

a weighted graph from high dimensional data, and then projects this graph down to a lower

dimensionality. In the graph, the edge strength represents how “close” a given point is

to another. For each data point, UMAP extends some radius r and connects points that

overlap, so to construct sets of 1-, 2-, and higher-dimensional simplices. To solve the “curse of

dimensionality”, UMAP uses a flexible radius determined for each point based on the distance

to its kth nearest neighbor. Once this weighted graph is constructed, UMAP projects the

data into lower dimensions essentially via a force-directed graph layout algorithm [48]. The

algorithm proceeds by iteratively applying attractive and repulsive forces at each edge or

vertex. The attractive force between two vertices i and j at coordinates yi and yj is given

by:

−2ab||yi − yj||2(b−1)2

1 + ||yi − yj||22
w((xi − xj))(yi − yj) (1.11)

where xi and xj are inputs, while a and b are hyper-parameters.

Repulsive forces are computed via sampling due to computational constraints.

2b

(ε+ ||yi − yj||22)(1 + a||yi − yj||2b2 )
(1− w((xi − xj)))(yi − yj) (1.12)

where ε is a small number to avoid zero division.
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Chapter 2

Methods

2.1 Graph embedded topic model generative process

We present graph embedded topic model (GETM) and our model is inspired by ETM

[33]. We modeled the medication and condition data using a generative model (Fig.

2.1). In our framework, each individual was treated as a document and each feature (a

medication or a condition from two different vocabulary sets), was treated as a word. We

assumed each individual could be represented as a mixture of latent topics, which captured

hidden information of medications and conditions. In contrast to LDA, which defines

the topic distribution over terms by K independent Dirichlet priors βk ∼ Dirichlet(τβ),

we decomposed the topic distribution over medications βm to medication-defined topic

embedding αm ∈ RK×L1 , and medication embedding ρm ∈ RL1×M , where L1 denotes

the medication embedding dimension and M denotes the number of unique medications.

Similarly, the topic distribution over condition βc is proportional to the inner product of

condition-defined topic embedding αc ∈ RK×L2 , and condition embedding ρc ∈ RL2×C ,

where L2 denotes the condition embedding dimension and C denotes the number of unique

conditions. For an individual d, the generative process started by drawing θd from logistic
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Figure 2.1: Graph embedded topic model overview. (a) GETM training. A variational
autoencoder (VAE) takes individuals’ condition and medication information as input and
produces latent topic mixture θ, which could be used in multiple tasks such as pain prediction,
data imputation, etc. There are two linear decoders. One learns medication-defined topic
embedding αm and medication embedding ρm. The other learns condition-defined topic
embedding αc and ρc. (b-c). Graph learning. The embedded topic model could take ρm
and ρc generated from Node2Vec, which leverages structural information of medications or
conditions. Medication and condition hierarchical trees were treated as graphs and trained
separately.
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normal θd ∼ LN (0, I) as :

ηd ∼ N (0, I); θd = softmax(ηd) =
eηd,k∑K
k=1 e

ηd,k
(2.1)

For each feature n, the topic assignment from categorical distribution with the per-individual

variable θd as: zdn ∼ Cat(θd) is drawn. Next an observed medication using mdn =

Cat(softmax(ρTmαm(zdn))) or an observed condition using cdn = Cat(softmax(ρTc αc(zdn)))

is drawn. Notably, to model the sparsity of the data (an individual usually takes a very

small fraction of the medication and did not have more than five conditions simultaneously),

the softmax function was used to normalize the likelihood of each drawn feature.

2.2 Model inference and estimation

Given D individuals, M medications and C conditions, to fit GETM, we want to maximize

the marginal likelihood of the individuals with respect to αm, ρm, αc, ρc:

L(αm, ρm, αc, ρc) =
D∑
d=1

logp(xd|αm, ρm, αc, ρc) (2.2)

where xd is the bag of words of medications and conditions for individual d. The problem is

that this marginal likelihood is intractable to compute since it involves the following difficult

integral:

p(xd|αm, ρm, αc, ρc) =

∫
p(ηd)

M∏
n=1

p(mdn|ηd, αm, ρm)
M+C∏
n=M+1

p(cdn|ηd, αc, ρc)dηd

=

∫
p(ηd)

K∑
k=1

(
M∏
n=1

θdkβdmdn

M+C∏
n=M+1

θdkβdcdn)dηd (2.3)

To sidestep this intractable integral, we took a variational inference approach to optimize a

sum of of per-individual bounds on the log of the marginal likelihood of Eq. 2.3.

To begin, we proposed distribution q(ηd|xd,Wθ) to approximate true posterior p(ηd|xd).
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Specifically,q(ηd|xd) is Gaussian with mean and variance come from a neural network

parameterized by the shared variational parameter Wθ :

q(ηd|xd) = µd + diag(σd)N (0, I); [µd, logσ
2
d] = NNET (xd;Wθ) (2.4)

The evidence lower bound (ELBO) of the log-likelihood was optimized to learn the the model

parameters and variational parameters:

L(αm, ρm, αc, ρc,Wθ) =
D∑
d=1

(
M∑
n=1

Eq[logp(mdn|ηd, αm, ρm)] +
M+C∑
n=M+1

Eq[logp(cdn|ηd, αc, ρc)]

−KL(q(ηd|xd,Wθ)||p(ηd))) (2.5)

2.3 Baseline Models

We compared our method to different baselines (Table 2.1): 1). We applied ETM to only

condition data or only medication data without using Node2Vec pre-trained embedding. 2).

We applied ETM to only condition data or medication data using Node2Vec pre-trained

embedding. 3). We applied GETM without either condition embedding or medication

embedding from Node2Vec. 4). We applied GETM without one of condition embedding or

medication embedding from Node2Vec. 5). We treated conditions and medications as the

same features and modeled the resulting data using ETM. With the comparison of results

from above baseline models in different tasks, we were able to gain a better understanding of

how each component of our method contributing to the overall improvements in performance.
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ETM ETM without Node2Vec pre-trained embedding
ETM + emb. ETM with Node2Vec pre-trained embedding
GETM GETM without either Node2Vec condition embedding or Node2Vec medication embedding
GETM + emb. cond GETM with Node2Vec condition embedding but without Node2Vec medication embedding
GETM + emb. med GETM without Node2Vec condition embedding but with Node2Vec medication embedding
GETM + emb. cond+med GETM with both Node2Vec condition embedding and Node2Vec medication embedding
Flattened ETM takes both conditions and medications which were treated as same feature

Table 2.1: Description of abbreviation of algorithm names. ETM only takes one type
of feature and GETM takes both conditions and medications as different features.

2.4 UK Biobank data processing

For condition data, we have datafield 20002, which contains information on individuals’

self-reported non-cancer diseases. This was collected by questionnaire during participant

interviews. The participants were asked whether or not they have been diagnosed with

certain conditions as well as when that condition was first diagnosed by doctor [4]. For

medication usage data, we used datafield 20003 which contains treatment/medication codes

[5]. Besides, we have also referred to individuals’ demographic information such as ethnicity,

etc. and a pain-related questionnaire which confirmed whether the individual had pain on

seven body sites and how long they experienced the pain if any. Pain-related information

is included in datafield 6159 [14]: pain type(s) experienced in last month, datafield 3799

[12]: headaches for 3+ months, datafield 4067 [13]: facial pains for 3+ months, datafield

3404 [7]: neck/shoulder pain for 3+ months, datafield 3571 [9]: back pain for 3+ months,

datafield 3741 [10]: stomach/abdominal pain for 3+ months, datafield 3414 [8]: hip pains for

3+ months, datafield 3773 [11]: knee pains for 3+ months, and datafield 2956 [6]: general

pain for 3+ months. More specifically, to collect data in datafield 6159, participants were

asked “In the last month have you experienced any of the following that interfered with your

usual activities? (You can select more than one answer).” If they said ”yes” to any pain,

for example, back pain, they were further asked “Have you had back pains for more than

3 months?” in datafield 3571. We kept 457461 individuals of European descent individuals

to reduce confounding caused by different ethic groups. 802 active ingredients were kept

as medications and 443 conditions were extracted. Here we encoded the medications and
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diseases as binary variables. Without a temporal component in the model, only the data

from the first visit of individuals was included.

As mentioned before, the medication embedding ρm and condition embedding ρc could

either be randomly initialized and then learned, or we could use trained embedding from

pre-trained models. This allows us to incorporate previous knowledge of medications

and conditions which could enrich the information going through the topic model. The

additional information is helpful especially when the data is sparse. To leverage the structural

information and internal relational information among medications or conditions. We applied

Node2Vec separately on hierarchical trees of medications and conditions (Fig. 2.1). The

condition tree graph was formed using coding tree designed in datafield 20002. The tree

describes the topology of the conditions with 473 nodes and 4 levels. The medication

graph was formed based on Anatomical Therapeutic Chemical (ATC) classification system

[15]. The entire tree is composed of 5 levels. We first kept the top 4 levels of ATC of

which the first level contains main anatomical or pharmacological groups; the second level

includes pharmacological or therapeutic subgroups; and in the third and fourth levels are

chemical, pharmacological or therapeutic subgroups. Then we mapped the names of active

ingredients from UKBiobank datafield 20003 to the fifth level codes of ATC which are

chemical substances. We replaced matched substances with UKBiobank medications. In

particular, for some medications in UKBiobank, they could be mapped to multiple ATC

fifth level codes, because they could belong to different subgroups with respect to different

usages. For those medications, we replaced all mapped ATC fifth level nodes with one

UKBiobank medication active ingredients node. As a result, the final medication graph

contains 2561 nodes in total. The trees are treated as undirected graphs (Fig. 2.1).

19



2.5 Topic quality evaluation

We aimed to identify topics that may be interpreted. Besides, it is expected that different

topics could be associated with different medications or conditions. Therefore, we measured

the topic quality with two metrics: topic coherence and topic diversity. To gain better

interpretations, the top features of one topic are expected to come from the same category.

Therefore, for medication, the topic coherence was calculated as:

TCmed =
1

K

K∑
k=1

m

n
(2.6)

where n is the number of top medications and m is the maximum number of medications

that are from the same category. To avoid overestimation of the topic quality, the categories

we used to evaluate the topic coherence were not processed from the ATC graph since it was

involved in the pre-trained model. Instead, we employed 59 categories which are physician-

curated and pain-focused. However, we do not have other classification approaches for

conditions. As a result, we decided to calculate the topic coherence for conditions using

average pointwise mutual information of two conditions drawn from the same individual as

follows:

TCcond =
1

K

K∑
k=1

1

n(n− 1)

n∑
i=1

n∑
j=i+1

f(cki , c
k
j ) (2.7)

where cki is the ith top most likely condition in topic k. and f(·, ·) is normalized pointwise

mutual information:

f(ci, cj) =
log

P (ci,cj)

P (ci)P (cj)

−logP (ci, cj)
(2.8)

where P (ci, cj) is the probability of condition i and condition j co-occurring in one individual

and P (ci) is the marginal probability of condition i. The probabilities were approximated by

empirical counts. Topic diversity was defined as the percentage of unique features of certain

number of top features among different topics. We chose 50 for our evaluation. The closer

the topic diversity to 1, the more varied the topic is.
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2.6 Study of medication and condition relations

In GETM, since the encoder takes both medication and condition information as input (Fig.

2.1), the top medications and conditions from the same topic (i.e. the same index) are

related. To quantitatively measure the ability of the model to capture condition-medication

relations, we got all combinations from top 3 conditions and top 3 medications for each topic

and then counted the number of condition-medication pairs which are known to be related.

The reference of known pairs was extracted from Comparative Toxicogenomics Database

(CTD) [1] and DrugBank [2]. We eventually mapped 222 conditions and 529 medications

from UKBiobank to these two databases. Then we obtained 2444 positive pairs of which

the medication has treatment effects on the condition and 3231 negative pairs of which the

condition belongs to the adverse effects of the medication.

2.7 Data imputation

Since our method can impute data for new individuals, two useful applications are

imputing incomplete records and recommending medications. Therefore, two experiments

were performed to evaluate how well the model could complete these two tasks. To

simulate missing records, we randomly masked 50% of medications and conditions for test

individuals. Then we calculated reconstruction error, which is the negative log-likelihood of

the reconstructed matrix X̃ (Fig. 2.1):

NLL =
1

D

D∑
d=1

−log(θβ)�X (2.9)

where β = softmax(αρ).

The treatment of chronic illnesses commonly includes the long-term use of

pharmacotherapy. Poor adherence to medication leads to increased morbidity and death and

is estimated to incur costs of approximately $100 billion per year [26]. Thus, it is crucial for
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individuals to take all medications that could improve their conditions. The other experiment

was masking the entire medication data of the test individuals and then reconstructing

the medication matrix. This experiment mimics the scenario that we recommend relevant

medications based only on patients’ conditions, which namely is similar to the process

diagnosis. In addition to reconstruction error, we also calculated recall@5 and precision@5 as

evaluation metrics. We sorted the probability of medication to be recommended and chose

top five medications, of which we calculated recall and precision with respect to medications

that the individual is taking as true labels. The recall and precision are calculated as:

Recall =
True Positives

True Positives+ False Negatives
(2.10)

Precision =
True Positives

True Positives+ False Positives
(2.11)

2.8 Chronic musculoskeletal pain prediction

2.8.1 Fisher’s exact test

To assess marginal association between each condition and medication with chronic

musculoskeletal pain, we performed Fisher’s exact test. Fisher’s exact test is typically the

first step for analyzing marginal association because of its simplicity and interpretability. For

each feature (condition or medication), we formed a contingency table (Table. 2.2). Then

p-values and odds ratios were calculated as follows:

p =

(
a+ b

a

)(
c+ d

c

)
(

n

a+ c

)

=
(a+ b)!(a+ c)!(b+ d)!(c+ d)!

a!b!c!d!n!
(2.12)

22



Feature
Pain

Yes No

Yes a b
No c d

Table 2.2: Contingency table used for each feature to do Fisher’s exact test

Figure 2.2: Fisher’s exact test for chronic musculoskeletal pain. The significance of
the association of conditions or medications with chronic musculoskeletal pain was tested.
The analysis was used to determine the conditions and medications to be removed for certain
datasets in the prediction task.

where n = a+ b+ c+ d

OR =
ad

bc
(2.13)

Fisher’s exact test results (Fig. 2.2) were used for two purposes: 1). determining

the signature conditions and medications to be removed in certain datasets for chronic

musculoskeletal pain prediction. 2). a baseline when comparing with pain-related conditions

and medication lists created by a physician based on professional knowledge.
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2.8.2 Chronic musculoskeletal pain prediction

Chronic musculoskeletal pain was defined as musculoskeletal pain which has lasted more than

three months, and musculoskeletal pain was pain from any of four body sites: knee, back,

neck or shoulder and face. The label information was obtained from pain questionnaires as

described in section 2.4.

We used individual topic mixture θ to predict whether a individual has chronic

musculoskeletal pain at the time of the visit. GETM was first trained with training data

to get θtrain. Then we fit logistic regression on θtrain. To evaluate the performance, we first

obtained θtest using trained GETM and then predicted chronic musculoskeletal pain status

using the trained logistic regression model.

As mentioned in the previous section, we have done Fisher’s exact test to test

the significance of the associations that conditions and medications have with chronic

musculoskeletal pain. Based on the results, we picked 50 conditions (C1) and 150 medications

(M1) to remove (Fig. 2.2). Combining with 63 conditions (C2) and 122 medications (M2)

which a physician declared to be related to general pain, we created three new condition sets:

one removing C1, one removing C2 and one removing C1
⋃

C2, and two new medication sets:

one removing M1 and one removing M1
⋃

M2. Those new condition sets and new medication

sets form six datasets which are all combinations of created condition and medication sets.

Together with the original dataset including 802 medications and 443 conditions, we have

done analysis on seven datasets (details in section 2.4 and Fig. 3.3). In this way, we were

able to observe how the pipeline worked when removing those associated conditions and

medications. Removing those associated conditions and medications in prediction could

help those individuals with no obvious symptoms prevent chronic musculoskeletal pain in

advance.
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2.8.3 Pain-related conditions and medications

After we got trained coefficients ω from logistic regression, we investigated the relevance of

medications and conditions to chronic musculoskeletal pain by calculating relevance vectors:

V = ωTαρ (2.14)

The top N medications and conditions were then selected from Vm and Vc, after which we

calculated the proportions of these N medications or conditions overlapping with the pain-

related lists created by a physician. This analysis enables us to examine the ability of our

model to extract associative information.
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Chapter 3

Results

3.1 Topic quality evaluation

For condition-defined topics, the highest topic coherence was achieved by ETM with

Node2Vec pre-trained embedding (0.0253) and topic number 15. The GETM with only

condition embedding from Node2Vec and topic number of 50 was the second highest

(0.0196)(Table 3.1). For medication-defined topic, the highest coherence was obtained using

GETM with only medication embedding from Node2Vec (0.7860) and topic number of 100.

Therefore, applying embedding learned from Node2Vec improved topic coherence. It tells

us that pre-trained embedding captured the inner associations of medications or conditions

and thus enriched the information provided to the topic model. Another notable result is

that the values of topic coherence for conditions are generally low, though GETM with both

medication and condition embedding from Node2Vec actually learned highly interpretable

topics of which the top conditions or medications were from same category (Fig. 3.1). For

example, The top 5 conditions from topic 8 are all from musculoskeletal/trauma category

while the top 5 medications from topic 8 are all from dermatological category. This result

suggests that we have chosen an inappropriate metric, which was average pointwise mutual

information of two conditions drawn from the same patient. A patient rarely gained multiple
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Algorithm
Topic # 15 50 75 100 15 50 75 100 15 50 75 100

Topic Coherence Topic Diversity Topic Quality
ETM 0.0035 0.003 0.0019 0.0076 0.92 0.32 0.2 0.16 0.0032 0.001 0.0004 0.0012

ETM + emb. 0.0253 0.0153 0.0172 0.017 0.92 0.48 0.24 0.16 0.0233 0.0074 0.0041 0.0027
GETM 0.0125 0.0105 0.0044 0.0046 0.92 0.32 0.24 0.16 0.0115 0.0034 0.0011 0.0007

GETM + emb. cond 0.0213 0.0196 0.0193 0.0169 0.88 0.56 0.28 0.12 0.0188 0.011 0.0054 0.002
GETM + emb. med 0.0144 0.007 0.0087 0.0087 0.92 0.52 0.24 0.28 0.0132 0.0036 0.0021 0.0024

GETM + emb. cond+med 0.0206 0.0188 0.0186 0.0186 0.96 0.64 0.32 0.2 0.0198 0.0121 0.0057 0.0037

Table 3.1: Condition-defined topic quality. We have calculated topic coherence, topic
diversity and topic quality in terms of conditions for 6 algorithms using different topic
numbers. The description of algorithm name is in table 2.1. The feature ETM accepted
as input was the condition.

Algorithm
Topic # 15 50 75 100 15 50 75 100 15 50 75 100

Topic Coherence Topic Diversity Topic Quality
ETM 0.2800 0.3320 0.3173 0.3460 1.00 0.64 0.56 0.24 0.2800 0.2125 0.1777 0.0830

ETM + emb. 0.4933 0.7160 0.7040 0.7800 1.00 0.84 0.44 0.24 0.4933 0.6014 0.3098 0.1872
GETM 0.3200 0.3000 0.3494 0.3460 1.00 0.96 0.92 0.96 0.3200 0.2880 0.3214 0.3322

GETM + emb. cond 0.3733 0.4520 0.3307 0.4060 0.96 0.92 0.96 1.00 0.3584 0.4158 0.3174 0.4060
GETM + emb. med 0.4933 0.7000 0.7707 0.7860 1.00 1.00 1.00 0.96 0.4933 0.7000 0.7707 0.7546

GETM + emb. cond+med 0.5200 0.7040 0.7200 0.7220 0.96 0.92 1.00 0.96 0.4992 0.6477 0.7200 0.6931

Table 3.2: Medication-defined topic quality. We have calculated topic coherence, topic
diversity and topic quality in terms of medications for 6 algorithms using different topic
number. The description of algorithm name is in table 2.1. The feature ETM accepted
as input was medication. The results of last four columns are from correspondingly same
models in table 3.1

conditions from same category simultaneously, which led to low probability of co-occurrence

of top conditions from a specific topic.

3.2 Study of medication and condition relations

We have compared the total number of unique known pairs between medications and

conditions that could be generated by five algorithms (Table 3.3). GETM with medication

and condition embedding from Node2Vec can extract most pairs of correlated conditions and

medications through various number of topic using topic number of 50 (161 pairs), 75 (175

pairs), and 100 (203 pairs). The examples could also be visualized in panel (b) and panel (d)

in Fig. 3.1. For instance, bisoprolol in topic 32 is known to be used to treat heart failure in

topic 32. Salmeterol is prescribed to treat asthma and chronic obstructive airways (COPD)

[2]. They are both enriched in topic 60. The results indicate that GETM combined with
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Figure 3.1: Topic quality visualization. For all four panels, we visualized 5 topics out of
75 topics. (a). Top conditions selected from topics using ETM on patient data condition data
information without Node2Vec condition embedding (b). Top conditions selected from topics
using GETM on patient data with both Node2Vec conditions embedding and Node2Vec
medications embedding. (c). Top medications selected from topics using ETM on patient
medication data without Node2Vec embedding. (d). Top medications selected from topics
using same model as in panel (b). Comparing panel (a) with panel (b) and panel (c) with
panel (d), we could observe that GETM with pre-trained embedding learns much more
coherent and interpretable topics. If looking close into panel (b) and panel (d). it could be
told that the conditions and medications from same topic are correlated.
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Algorithm
Topic # 15 50 75 100

Number of matched pairs

Flattened 53 84 119 132
GETM 63 86 105 126

GETM + emb. cond 62 118 159 162
GETM + emb. med 65 135 171 178

GETM + emb. cond+med 61 161 175 203

Table 3.3: Number of known pairs between conditions and medications. We
have mapped our medications and conditions to CTD and DrugBank databases to get
reference for links between conditions and medications. Then we got all combinations from
top 3 conditions and top 3 medications for each topic and then summarized number of
condition-medication pairs that exists in those known links. We compared performance of
five algorithms with different topic number.The description of algorithm name is in table
2.1.

Node2Vec could capture correlations between different types of features within the same

topic. It is also worthwhile to explore potential relations of those pairs that are not present

in current databases. It is reasonable to assume they are related for the reason that they

are learned the same way as those known pairs. For example, though solifenacin in topic 59

are not associated with depression according to current database, there is a recent research

showing that solifenacin and mirabegron act mainly via peripheral pathways in overactive

bladder (OAB), whereas the central pathways are responsible for the effects of duloxetine,

72h after discontinuation of which, positive changes in the corticosterone-induced depression,

detrusor overactivity, and inflammation were observed [75].

3.3 Data imputation

3.3.1 Missing record imputation

For all three datasets: data with only conditions, data with only medications and data

with both conditions and medications, the minimum reconstruction errors were obtained

after applying Node2Vec embedding for all features in that dataset (6.008, 8.5732 and

25.2462 respectively). This indicates that the structural information was preserved during
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Algorithm
Topic # 15 50 75 100

Reconstruction Error

ETM(cond) 6.2267 6.2189 6.2905 6.2176
ETM(cond) + emb. 6.0008 6.2056 6.1305 6.1472

ETM(med) 8.7118 9.0881 8.9889 9.1980
ETM(med) + emb. 8.5732 8.7869 8.6748 8.8807

GETM 26.3611 27.0904 27.4865 27.3511
GETM + emb. cond 25.7661 25.9377 26.7536 26.5983
GETM + emb. med 26.1501 25.9594 26.1133 26.1765

GETM + emb. cond+med 25.2462 25.4741 25.9872 25.5122

Table 3.4: Reconstruction error of masked features. The 50% of test data was randomly
masked. Then we reconstructed the matrix with learned θ, α and ρ. The reconstruction error
(i.e. negative log-likelihood) was calculated for the held-out data. It could be observed that
applying embedding pre-trained by Node2Vec could enhance the reconstructing ability for
both ETM and GETM. Description of algorithm names are in table 2.1.

the training process of the topic model (Table 3.4).

3.3.2 Medication recommendation

For the medication recommendation task, we observed that GETM with condition and

medication embedding both from Node2Vec outperformed all other models in terms of the

reconstruction error (14.6125), the precision@5 (0.2612) and the recall@5 (0.5787). It gives

the closest performance to upper bounds which are acquired from unmasked test data (

11.4936, 0.4226 and 0.8027, respectively) (Table 3.5, 3.6). Besides, we found out interestingly

that on average around 44% of medications from the top 10 medications recommended by

our model which were however not taken by patients indeed have a treatment effect based on

condition-medication association information extracted from CTD and DrugBank (as shown

in panel (b) of Fig. 3.2). This finding implies that our model not only recommended most

specific medications, but also predicted medications that were ignored but actually help

improve the health condition of the individuals.
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Figure 3.2: Examples of patients with most and least matched recommended
medications compared to medications truly taken. Y axis is normalized probability of
medication to be recommended to the patient. (a). Three patients who got most overlapped
medications between true medications they are taking and top 10 medications recommended.
(b). Three patients who got least overlapped medications between true medications they are
taking and top 10 medications recommended. The numbers on the bar are conditions that
could be treated with the medication represented by the bar. It is noteworthy that in panel
(b), for those medications that patients do not take, most of them have treatment effects with
the patients’ current conditions. This suggests that our model have recommended relevant
medications.
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Algorithm
Topic # 15 50 75 100

Medication Recovery Error

Upper bound 12.2535 11.2364 11.4986 11.5028
Flattened 18.5142 19.8497 19.8070 20.0636
GETM 14.9877 14.8770 14.9392 15.0474

GETM + emb. cond 15.2422 14.9481 14.9500 14.9556
GETM + emb. med 15.1829 14.8816 14.9012 14.8819

GETM + emb. cond+med 14.8178 14.6533 14.6125 14.6525

Table 3.5: Reconstruction error of medication data. The medication data was masked
for test patients. Then we reconstructed the medication data with learned θ, α and ρ.
The reconstruction error (i.e. negative log-likelihood) was calculated. The upper bounds
were obtained using reconstruction errors calculated from unmasked test data using GETM
with both condition and medication embedding from Node2Vec. Flattened refers to results
obtained using ETM for which condition and medication are treated as same features.
Description of algorithm names are in table 2.1.

Algorithm
Topic # 15 50 75 100 15 50 75 100

recall@5 precision@5

Upper bound 0.6672 0.7943 0.8027 7862 0.3342 0.4084 0.4226 0.4049
Flattened 0.4397 0.4486 0.4667 0.4614 0.1901 0.2109 0.2111 0.2162
GETM 0.5543 0.5639 0.5568 0.5388 0.2479 0.2516 0.2504 0.2417

GETM + emb. cond 0.5479 0.5664 0.5670 0.5647 0.2373 0.2524 0.2493 0.2486
GETM + emb. med 0.5519 0.5722 0.5668 0.5716 0.2440 0.2533 0.2521 0.2532

GETM + emb. cond+med 0.5692 0.5787 0.5732 0.5753 0.2504 0.2612 0.2606 0.2578

Table 3.6: Performance of medication recommendation. The medication data was
masked for test patient before we reconstructed the medication data with learned θ, α and
ρ. Then we chose top 5 medications for each patient and calculated the precision and recall
to evaluate the ability of our model to recover medication information. The upper bounds
were obtained using reconstruction error calculated from unmasked test data using GETM
with both condition and medication embedding from Node2Vec. Description of algorithm
names are in table 2.1.
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Figure 3.3: Performance of logistic regression for chronic musculoskeletal pain.
Logistic regression was performed on seven datasets using patient topic mixture θ with 128
topics as input to predict musculoskeletal pain. The baseline was using raw condition and
medication data X (Fig. 1) as input. Here shows the AUROC and AUPRC of two input
and all datasets.

3.4 Chronic musculoskeletal pain prediction

3.4.1 Prediction results

We explored the ability of our model to predict chronic musculoskeletal pain using logistic

regression (Fig. 3.3). Specifically, we compared the performance of using the patient topic

mixture with the performance directly using condition and medication information on seven

datasets which have been described in the Methods section. We observed that 1). The

topic mixture achieved larger area under the receiver operating characteristic (AUROC) and

larger area under the precision-recall curve (AUPRC) for all datasets. 2). As we removed

more signature conditions and medications which are related to pain, the performance of

using raw features dropped faster than that using the patient topic mixture. The differences

between the performance of using patient topic mixture and using raw data got larger without

those indicative conditions and medications. The difference increased 0.046 for AUROC and
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0.026 for AUPRC if comparing the result using all data (m802c443) with the result using

least conditions and medications (m579c379)(Fig. 3.3). Therefore, GETM demonstrated the

advantages of using heterogeneous data and incorporating pre-trained embedding to make up

for information loss after removing informative conditions and medications to some extent.

3.4.2 Pain-related conditions and medications

We investigated the most pain-related conditions and medications based on logistic regression

coefficients and calculated overlapping proportions with lists provided by the physician

(Fig. 3.4). In comparison with the overlapping proportions from ETM and Fisher’s exact

test, GETM identified the most conditions (36.7% from top 10 conditions, 33.3% from

top 30 conditions and 30.0% from top 50 conditions) and medications (60.0% from top

10 medications, 33.3% from top 30 medications and 32.0% from top 50 medications) in the

provided lists. This suggests that GETM improves the ability to extract otherwise hidden

associations, which could identify pain-related comorbidities.

3.4.3 Topic clustering

We visualized the clustering using UMAP (Fig. 3.5). We randomly chose 5 topics each from

condition clusters and medication clusters and then confirmed the topics were assigned to

correct clusters which are consistent to the categories of their top features of the topics. Thus,

GETM allows identifying feature groups of heterogeneous data in a data-driven manner. We

also had a close look at three most positively associated topics and three most negatively

associated topics to chronic musculoskeletal pain based on learned ω. It showed that topic

56, 34, and 51 are strongly positively associated with chronic musculoskeletal pain and topic

73, 68, 89 are strongly negatively associated with chronic musculoskeletal pain, respectively.

For each topic, we reveal their meaning by top conditions and top medications.

Particularly, topic 56 and 34 contains conditions and medications from musculoskeletal

system, which makes clinical sense of that they are highly related to chronic musculoskeletal
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Figure 3.4: Analysis of chronic pain-related conditions and medications. a. Logistic
regression using patient topic mixture θ ∈ RD×K of D patients and K topics. (b). Sorting
Vm ∈ R1×M obtained from matrix factorization of coefficients ω ∈ RK×1 in panel (a) ,
αm ∈ RK×L1 and ρm ∈ RL1×M from GETM, we could get top relevant medications to
chronic musculoskeletal pain among M medications. Similarly, we could get top relevant
conditions to chronic musculoskeletal pain among C conditions by selecting top conditions
from Vc ∈ R1×C calculated by matrix factorization of coefficients ω in panel (a) , αc ∈ RK×L2

and ρc ∈ RL2×C . (c). We chose different number of top conditions, and then calculated
the percentage of those conditions that are in physician list of pain-related conditions. (d).
Similar analysis as in panel (c) for medications. We compared with two baselines: (1).
Using ETM which treated conditions and medications as same features and then selecting
top medications and conditions all from V ∈ R1×(M+C) (2). Implementing fisher’s exact test
and picking top conditions and medications as in Fig. 2.2.
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pain. Specifically, this combination in topic 34 provides a proof of concept as prolapsed

disc or slipped disc as a condition is painful and ibuprofen is an analgesic in the NSAID

(non-steroidal anti-inflammatory drug) class. Topic 51 in the cardiovascular category,

acetylsalicylic acid is used in prevention of stroke and heart attacks; it acts as a “blood

thinner”. Dipyridamole inhibits blood clot formation and therefore prevents potential

consequences of blood clotting. Atherosclerosis is a process of deposition of fatty material

in the walls of arteries, and this thickening leads to an increase in stroke and heart attack

risk. A common cause of atherosclerosis is high cholesterol levels. Thus, although the two

medications are not directly used as a cure for the condition high cholesterol, by way of

atherosclerosis, high cholesterol leads to higher risks for other cardiovascular outcomes and

the conditions prevent those outcomes [16].

Our findings also give insight to directions for further investigations. In topic 73,

Ramipril, lisinopril and enalapril are ACE inhibitors, used to treat high blood pressure

and may be used in response to heart failure and a heart attack. All of the conditions have

an allergic component. This is a particularly interesting finding, suggesting that a particular

subset of individuals suffering from allergic conditions who also are undergoing cardiovascular

treatment are at lower risk for musculoskeletal pain. One of the etiological mechanisms

that may underlie chronification of musculoskeletal pain is central sensitization [74]. Given

the implication of immune cells in pain signalling [21], it may be that pharmacological

intervention on hypertension may define a subcategory of individuals who are thereby

protected from musculoskeletal pain. For topic 89, this topic is focused on women given that

estrogen taking only applies to women. Hypertension and estrogen taking are associated with

protection from musculoskeletal pain chronification. It is possible that taking of estrogens has

as a secondary effect the prevention of pain chronification. It is known that menopause with

the associated decrease in estrogens is a risk factor for musculoskeletal pain chronification.
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Figure 3.5: Topic clusters visualization and analysis for chronic musculoskeletal
pain. The analysis was based on results from GETM model with both condition and
medication embedding from Node2Vec, which used all condition and medication data and
topic number of 128. (a). Condition and topic embedding clusters. (b). Medication and
topic embedding clusters. (c) A heatmap of 5 randomly picked topic from panel (a). It is
apparent that the category of top conditions for each topic matches its position on panel (a).
(d). A heatmap of 5 randomly picked topic from panel (b). The category of top conditions
for each topic is consistent with its position on the panel (b). (e). We chose three topics with
highest coefficients from logistic regression of musculoskeletal pain prediction and another
three with lowest coefficients. Each bar is consisted of two columns colored by condition
category on the left and medication category on the right. (f). Top condition visualization
of topics in panel (e). (g). Top medication visualization of topics in panel (e).
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Chapter 4

Discussion

While the data from the UK Biobank is an unparalleled resource to understand chronic pain,

its sparsity, heterogeneity and the large size of its data pose great challenges to classical

statistical models to get the full benefit from UK Biobank. To address those challenges,

we developed GETM and presented its promising performance on different tasks. GETM

demonstrates excellent capabilities of extracting hidden information.

4.1 Topic quality

By introducing the knowledge graph and simultaneously training the different types of

features (i.e. conditions and medications), GETM was able to infer more coherent topics

comparing to topics learned without using Node2Vec embedding or without a different type

of feature, in a sense that the top medications or conditions of a specific topic are from

the same categories. This allows us to interpret topics and any finding related to certain

topics with a clear clinical ground. This also proves that our model is a very good tool to

identify comorbidities, which is very important in clinical researches. Current researches in

comorbidities identification mainly focus on one disease or one group of diseases. [38, 67, 65],

while our model could search on many diseases and find various disease groups at the same

time. Another thing that worthy mentioning is that though there have been researches
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utilizing a multimodal topic model to find meaningful latent topics, the data they have

used was health insurance claim records with many contextual information and many more

tokens compared to our 802 medications and 443 conditions [45]. In comparison, we pulled

out meaningful topics with medication usage and condition history of individuals. This

suggests broader application of our model to datasets without text descriptions.

4.2 Study of medication and condition relations

As for link extraction between conditions and medications, many existing methods need to

feed their models the drug-disease network information to predict relationships [42, 56, 70].

In contrast, we could extract meaningful pairs without feeding the model links between

conditions and medications ahead of training. The findings also give insight on possible

associations and pathways among conditions and medications.

4.3 Data imputation

In terms of data imputation, GETM achieved lower reconstruction error on 50% held-

out data and also gave most precise medication recommendations given only condition

information. Besides, it turned out that many medications GETM recommended which

were not taken by participants actually have treatment effects on conditions they had. This

is the advantage that our model introduced that the model could learn from large population

and give better medication suggestions to certain individuals.

4.4 Chronic musculoskeletal pain prediction

We applied GETM to predict chronic musculoskeletal pain. GETM has made more accurate

prediction across datasets compared to prediction results obtained using raw data. In

addition, its predicting power is less sensitive to the removal of informative conditions and
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medications, which offered a practical use case to predict chronic musculoskeletal pain for

those individuals with no obvious pain symptoms. As we compared the top pain-related

condition and medication lists to those created by the physician based on background

knowledge, the lists created using GETM topic mixtures overlapped the most with physician

lists. This result puts forward the potential for GETM to be applied in associative analysis

to draw more hidden associations.

Finally, the clustering visualization by UMAP demonstrated that GETM could assign

topics to condition or medication clusters that are most representative of the topics.

This is beneficial to classifying conditions or medications without category information.

Additionally, the combinations of conditions and medications of topics make clinical sense of

why they are strongly associative with chronic musculoskeletal pain positively and negatively.

This result implies that there might lie clinical grounds of any undiscovered combinations in

those topics.

4.5 Future work

One limitation of our model is that it did not take the temporal information of data into

account. The development of conditions as the participants’ age increases could not be

observed using our method. However, the UK Biobank provides valuable information such

as the age of participants when conditions were first diagnosed, multi-visit records for same

participants, etc. Therefore, one future direction is to incorporate time series as part of the

model so that we will be able to gain a dynamic understanding of associations.

Besides, we will design an end-to-end training system to combine Node2Vec and GETM.

Putting two models together might take better advantage of information sharing and further

improves the topic quality and performance in downstream tasks. We will also choose a

more appropriate approach to evaluate the condition-defined topic. One proposed metric

is to calculate the co-occurence probability for conditions of the same topic in PubMed
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literature.

Though Node2Vec improves the overall performance of our model, it ignores the hierarchy

in our condition and medication trees. The representations learned by Node2Vec thus might

not be able to capture that hierarchical information. It is worth experimenting using a

hierarchical graph neural network [66] to learn both trees which might further benefits the

learning process by adding more information.

Since our method could successfully find known condition-medication links, it is then

worthwhile to examine whether there are any real relationships in those novel condition-

medication pairs. Besides, we have also proved, using all conditions and medications, that

we could find meaningful condition-medication combinations that are related to chronic

musculoskeletal pain. There are two directions to extend this analysis: 1). Removing

those signature conditions and medications to find out novel combinations that potentially

have impact on chronic musculoskeletal pain; 2) Creating lists for different pain labels and

conducting similar analysis. Investigating intersecting and non-intersecting combinations

that have impact on different pain types will enable us to have more detailed ideas on how

conditions and medications affect specific pain outcomes.

Lastly, although we used pain as a case study, our GETM can be used to characterize

other phenotypes in UK Biobank or other data. We will explore more applications of GETM

in our future work.
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