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Abstract

The Finite Element Method (FEM) is a computationally intensive scientific and engineering analysis tool that has diverse applications ranging
from structural engineering to electromagnetic simulation. The trends in floating-point performance are moving in favor of Field-Programmable
Gate Arrays (FPGAs), hence increasing interest has grown in the scientific community to exploit this technology. We present an architecture and
implementation of an FPGA-based sparse matrix–vector multiplier (SMVM) for use in the iterative solution of large, sparse systems of equations
arising from FEM applications. FEM matrices display specific sparsity patterns that can be exploited to improve the efficiency of hardware designs.
Our architecture exploits FEM matrix sparsity structure to achieve a balance between performance and hardware resource requirements by relying
on external SDRAM for data storage while utilizing the FPGAs computational resources in a stream-through systolic approach. The architecture
is based on a pipelined linear array of processing elements (PEs) coupled with a hardware-oriented matrix striping algorithm and a partitioning
scheme which enables it to process arbitrarily big matrices without changing the number of PEs in the architecture. Therefore, this architecture is
only limited by the amount of external RAM available to the FPGA. The implemented SMVM-pipeline prototype contains 8 PEs and is clocked at
110 MHz obtaining a peak performance of 1.76 GFLOPS. For 8 GB/s of memory bandwidth typical of recent FPGA systems, this architecture can
achieve 1.5 GFLOPS sustained performance. Using multiple instances of the pipeline, linear scaling of the peak and sustained performance can
be achieved. Our stream-through architecture provides the added advantage of enabling an iterative implementation of the SMVM computation
required by iterative solution techniques such as the conjugate gradient method, avoiding initialization time due to data loading and setup inside
the FPGA internal memory.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Making good use of the reprogrammability feature of Field-
Programmable Gate Arrays (FPGAs) motivates devising spe-
cialized algorithms and hardware designs optimized for accel-
erating computations for specific application areas. Finite El-
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ement Method (FEM) is a widely used engineering analysis
tool based on obtaining a numerically approximate solution for
a given mathematical model of a structure. The application of
FEM requires the solution of a large system of linear equations
at each iteration. The system of linear equations can be repre-
sented by the following equation:

(1)A × U = B,

where A is a N × N sparse matrix, U is a vector of dependent
unknowns, and B is the residual vector. Since A can be large
and sparse, iterative solvers are typically used to solve (1) due
to their low storage requirements. N is also referred to as the
order of the matrix A. The Conjugate Gradient (CG) method is
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one of the most popular iterative methods used for solving large
and sparse systems similar to (1). The dominant operation in
each iteration of the CG algorithm is the Sparse-Matrix Vector
Multiplication (SMVM) which is computed as follows:

(2)Y (k) = A × X(k),

where (k) is the kth iteration of the CG algorithm, and X and Y

are N × 1 dense vectors.
FPGA are 2D arrays of regularly tiled reconfigurable logic

blocks interconnected by a reconfigurable interconnection fab-
ric. They also contain a variety of special purpose blocks such
as internal memory, I/O blocks, and specialized arithmetic cir-
cuits. FPGAs can be used as reconfigurable processors that can
exploit fine grained parallelism tailored to a specific applica-
tion. FPGAs have been shown to outperform general-purpose
CPUs in sustained floating-point performance [1]. Moreover,
there is a great degree of pipelineability and parallelism inher-
ent to the SMVM computation that can be exploited by FPGAs.
SMVM computation involving FEM matrices requires large
memory storage and bandwidth due to the large size of the FEM
mesh. Many FPGA computing platforms such as the TM4 [2,3]
and BEE2 [4] contain multiple external DRAM modules and
provide large memory bandwidth and capacity.

On the other hand, cache based CPU architectures are not
well-suited to large and sparse data sets. Large, sparse data sets
increase the number of cache misses. The memory bandwidth
problem limits the sustained performance of CPUs to a fraction
their peak performance (less than 33% [5]). Constant increases
in memory bandwidths have not alleviated this bottleneck, be-
cause the gap between it and microprocessor clock rates con-
tinues to grow [1]. Parallel systems divide data into smaller
sets to overcome this bottleneck; however, space requirement,
maintenance, power consumption, and complex programming
and communication models limits this approach. Therefore, the
parallel solution that FPGAs offer and their relative lower cost
makes them a very promising alternative.

We have implemented a linear array architecture to compute
SMVM for FEM applications. FEM matrices display specific
sparsity patterns that can be exploited to improve the efficiency
of hardware designs. Our design is aimed at matrices specific to
the FEM application area. Typical FEM matrices have large di-
mensions (e.g., N = 106) which makes storing the matrix along
with the X and Y vectors inside the FPGA prohibitive. Also, the
cost of internal FPGA resources is much higher than external
SDRAM which are available at commodity prices with increas-
ing capacities and bandwidth. This means that using internal
FPGA resources to store data statically instead of using them
for communication and buffering purposes is cost-inefficient.
Therefore, FEM matrix size scalability is an important concern.
Using a stream-through approach and implementing a new
striping algorithm we designed an architecture that provides
a balance between performance and available hardware re-
sources, well suited for iterative implementations of the SMVM
required by the CG method. The proposed architecture employs
external SDRAM for data storage and due to its stream-through
design it does not require initialization phases for data loading
and setup as do other implementations [6,7].

2. SMVM-pipeline

The linear processor array architecture, SMVM-pipeline [8],
possesses major properties such as, modularity, regularity, data
locality, pipelineability and parallelism, all of which could be
greatly exploited by the computation of sparse-matrix vector
multiplication given that the sparse-matrix is carefully parti-
tioned into special stripe formations. The SMVM-pipeline is
shown in Fig. 1.

The SMVM-pipeline computes the overall SMVM operation
in parallel by implementing a pipeline of Processing Elements
(PEs) each containing a cascade of floating-point arithmetic
units made of an adder and a multiplier. The matrix elements
are grouped into specially organized stripes and fed to each PE
from the top, while the X and Y vectors are fed into the pipeline
horizontally from the same side. Therefore, each PE computes
a partial summation of:

(3)Y(i) ⇐ Yprev(i) + X(j) × A(i, j),

where Yprev(i) is the partially accumulated summation from a
prior computation. The PE multiplies the stripe element A(i, j)

with X(j) coming from the right side X stream and adds the
result to Y(i) coming from the right side Y stream. The PE
then, sends off X(j) and the new value of Y(i) to the left queue
streams to be processed by the subsequent PEs, if not required
for further computations within the PE. This process is repeated
with the next stripe element. The result of the multiplication is
accumulated in the vector Y which must be initialized to zero
at the start of the operation. To facilitate the PE process, each
PE should contain counters, comparators along with a state ma-
chine in order to control the flow of data streams within each
PE.

3. Striping

FEM matrices display specific sparsity patterns that can be
exploited to improve the efficiency of hardware designs. Our
approach aims first at organizing the data of the finite element
sparse-matrix by taking advantage of its banded sparsity struc-
ture and groups it into stripes which will facilitate the use of the
Fig. 1. SMVM-pipeline.
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SMVM-pipeline efficiently. Although FEM matrices have been
used to demonstrate the effectiveness of the proposed design, it
might also provide similar benefits to other methods that gener-
ate large sparse systems such as finite differences and spectral
differences [9,10].

3.1. Previous work

Different forms of striping schemes have been developed in
previous work. These different schemes try to meet either one
of two major objectives. Firstly, producing the least number of
stripes that cover the sparse matrix. Secondly, to facilitate better
utilization of the parallelism features of the SMVM-pipeline.

One of the most basic striping formations is the non-zero di-
agonals of the sparse-matrix. Straight-diagonal stripes are most
suitable for banded sparse-matrices, and the number of stripes
formed is closely equal to the bandwidth of the sparse matrix.
This stripe formation requires the simplest hardware implemen-
tation since they are completely systolic on the PE-pipeline
[11]. However, diagonal stripes form the highest number of
stripes among the other striping algorithms. Since for most ap-
plications the matrix is usually much sparser than what is repre-
sented by its diagonals, the straight-diagonal stripes will result
in a poor hardware utilization of the SMVM-pipeline.

A scheme that produces the lowest possible number of
stripes is presented in [12]. The stripes formed in this method
take the shape of staircases. While this stripe formation can
be used with the SMVM-pipeline it has the major disadvan-
tage that it will prevent the implementation of a pipelineable
floating-point adder unit which greatly impedes the overall
clock speed and throughput of the SMVM-pipeline. This is be-
cause the staircase stripe can have multiple elements having the
same row index value which will create a feedback path around
the adder unit.

Melhem introduces a jagged-diagonal striping scheme pre-
sented in [13]. At the expense of producing more stripes than
the staircase stripe formation, it does not prevent the imple-
mentation of pipelined floating-point adders. However, we have
found that Melhem’s scheme does not produce the least num-
ber of pipelineable stripes which indicates that there is a wasted
efficiency when used with the SMVM-pipeline. Nevertheless,
Melhem’s work on adapting the jagged-diagonal stripes for ma-
trices specific to the Finite Element (FE) application area [14]
is the cornerstone of our design approach. By using specific
numbering techniques, Melhem shows that a FE matrix can be
represented with O(π) number of jagged-diagonal stripes in-
dependent of the matrix size N . This fact allows us to design
a scalable architecture that uses a fixed set of PEs to compute
on the matrix stripes as the size of the problem grows, without
demanding a corresponding increase in hardware requirements.

3.2. Pipelineable stripes

We use our own stripe formation, pipelineable stripes
[15], which produces stripes that allow the implementation of
pipelined floating-point arithmetic units. In fact, the number of
pipelineable stripes, μ, is always upper bounded by the number
Fig. 2. Stripe formation.

of jagged-diagonals the same matrix can form. That is:

(4)μ � π,

pipelineable stripes are defined by the following definition of
strict-rows increasing order stripes.

Definition 1. Stripe S = {A(i1, j1),A(i2, j2),A(i3, j3), . . . ,

A(ik, jk)} is said to be strict-rows increasing, if the rows and
columns of every two adjacent elements A(ik−1, jk−1) and
A(ik, jk) in S are related by ik−1 < ik and jk−1 � jk .

As will be shown later, efficiency of the SMVM-pipeline in-
creases by reducing the number of stripes representing the same
matrix. But, it should be noted that scaling is not actually lim-
ited by the number of stripes. Further scaling can be achieved
by creating simple matrix partitions and implementing multiple
SMVM-pipelines for each partition. In fact, using our striping
scheme along with our matrix partitioning scheme will yield
linear scaling bounded only by available memory bandwidth.
Fig. 2 presents a visual comparison of the different striping for-
mations.

Stripes may be padded by inserting zero elements in order
to make each stripe contain exactly one element from each row.
Padding greatly simplifies the PE design by streamlining the
data flow in the SMVM-pipeline. A major advantage of our
pipelineable stripes is that they can be systematically padded.
This means that it is possible to design a simple two stage
pipelined circuit that generates and inserts the pads between
the stripe elements. In other words, the pads are generated in-
side the FPGA and do not need to be stored with the stripes
in external memory, which conserves both memory storage and
bandwidth.

In order for the PEs in the SMVM-pipeline to process data
more concurrently and to minimize the required X-queue sizes,
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the PE pipeline should receive stripes ordered in a higher to
lower relationship. A stripe higher relationship (�h) is defined
by the follow property:

Definition 2. For stripe S1 = {A(ik, jk)} and stripe S2 =
{A(lp,mp)}, S2 is said to be higher than S1 (S2 �h S1) if
lp � ik ⇒ mp � jk,∀k,p.

Therefore, we can define a totally ordered property on a
group of stripes Ψ as follows:

Definition 3. A stripe formation group Ψ = {S1, S2, . . . , Sμ} is
said to be totally ordered iff each stripe Sn in Ψ is increas-
ing and every two adjacent stripes Sn−1, and Sn are related by
(Sn−1 �h Sn).

At this point, the minimum bound on the X-queue size can
be defined for totally ordered stripes. This minimum queue size
bound should prevent the SMVM-Pipeline from possibly going
into a deadlock because of X-queue overflow. To facilitate this,
we define the largest horizontal separation (LHS) value between
ordered stripes as follows:

Definition 4. For stripe S1 = {A(ik, jk)} and stripe S2 =
{A(lp,mp)}, if (S1 <h S2), then the largest horizontal sepa-
ration (LHS) is computed by:

(5)LHS = min
ik�lp

(mp − jk − 1) ∀k,p.

The X-queue depth (XQD) between any two PEs is lower
bounded by LHS as follows:

(6)XQD(S1, S2) � LHS(S1, S2) + c when S1 �h S2,

where c is a small integer constant reflecting the latency re-
sponse of the queue status signals. For example, if the queue
status response requires one clock cycle then c = 1.

The pipelineable stripe formation can easily be adapted to
generating stripes having an upper-bound on the LHS between
them. This can be done, by dissecting the matrix along cut-
lines. The cut-lines could either be along columns or along
diagonals, but since we are dealing with finite-element matrices
that have mostly diagonal sparsity structure, diagonal cut-lines
are more appropriate.

We use our striping algorithm to generate pipelineable
stripes from existing test matrices for the purpose of validat-
ing the SMVM-pipeline design. However, pipelineable stripes
should be used as a mean of storing FE matrices required to
be used by iterative solvers. In fact, the striping storage format
does not require any more memory space or bandwidth than the
existing row major, column major, or coordinate formats [13].

4. SMVM-system

A complete system has been implemented to analyze the per-
formance of the SMVM-pipeline and its operations using our
striping method. We used the TM4 FPGA development board
[2,3] to implement our design. The TM4 contains four Altera
Fig. 3. SMVM system.

Stratix EP1S80 FPGAs each connected to two SDRAM inter-
faces. The TM4 board also contains a host PC as a PCI add-on
card on the TM4 board. We used the TM4 during an early
stage of its development, and only one of the FPGA chips was
active with only one SDRAM interface, limiting both our com-
putational capacity and memory bandwidth. However, we have
implemented our design as parameterized VHDL entities allow-
ing us to easily port it to the full TM4 system or to any other
development board.

Fig. 3 shows the high-level functional building block of the
SMVM-system implemented on one of the four TM4 FPGAs.
The SMVM-system is implemented using the VHDL hardware
description language with the exception of the driver program
which is written in C and is executed on the Linux host work-
station. The VHDL code is compiled and downloaded to the
TM4 using the Altera Quartus software. In this section, we
present the underlying design principles used in implementing
the SMVM-system components.

4.1. SMVM-pipeline

The SMVM-pipeline is where the SMVM computation is
performed. It receives its input from the input queues which in
turn are fed data from SDRAM by the SMVM-controller. Fig. 4
shows the configuration of the SMVM-pipeline and its main
components which are made of FIFO queues, stripe padding
circuits, and the processing elements (PEs).

4.1.1. FIFO queues
The data flow in the SMVM-pipeline is controlled by FIFO

queues. Queue components can be implemented using inter-
nal dual-ported SRAM memory blocks which are well dis-
tributed throughout the Stratix FPGA chip. The queues in the
SMVM-system have been generated using the Altera Quartus
design software which produces fully parameterized queues
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Fig. 4. PE-pipeline.
that are specifically optimized for the Altera device architec-
ture. Queues have a convenient control interface which avoids
the complexity of dealing with explicit memory addressing, and
hence simplify the design of the PE control.

Two main queue types have been used in the SMVM-system,
dual-clock queues and common-clock queues. In dual-clock
queues, the input and the output ports can operate on unre-
lated clocks. Dual-clock queues are used for the input and
output queues connected between the SMVM-pipeline and the
SMVM-controller. This is to enable the SMVM-controller and
the SMVM-pipeline to operate in different clock domains.
Also, dual-clock queues are ideal for managing the bursty na-
ture of data flowing in the input and output channels of the
SMVM-controller from the external SDRAM modules. Since
all the SMVM-pipeline components operate in the same clock
domain, common-clock queues can be used to queue the X and
Y values in the links between PEs inside the SMVM-pipeline.

4.1.2. Padding circuit
The padding circuit generates the zero pads that may exist

between any two stripe elements as specified by the padded
pipelineable stripes specification. The padding circuit has a
two-stage register pipeline. The circuit also produces an addi-
tional signal, vertical, which indicates whether the next stripe
element index has the same value or not. This signal is used by
the PE’s control to streamline both the load data and compute
operations in order to maximize throughput.

4.1.3. Processing element (PE)
Fig. 5 shows the hardware design of the PE. The PE is de-

signed to compute the partial results of SMVM for fully padded
pipelineable stripes. The main components of the PE are a
floating-point multiply-add arithmetic unit, a 24-bit counter,
an asynchronous 24-bit comparator, and a finite-state-machine
(FSM). The multiply-add unit performs the arithmetic opera-
tion on each stripe value. The counter and the comparator are
used to control the X stream traffic. Finally, the FSM controls
the operation and the timing of the PE components.

The floating-point multiply–add unit performs the arithmetic
operation. The unit is a cascade of two individual units which
are a multiplier and an adder obtained from a library of parame-
terized floating-point cores from Northeastern University [16].
We modified these units for single precision arithmetic and in-
creased their pipeline depth by one stage in order to obtain a
slightly higher clock rate. The three inputs X, A, and Y_input
should simultaneously be available on the input of the multiply–
add unit, therefore the Y_input is initially delayed by cascaded
registers in order to match the latency of the multiply unit. The
multiply–add unit contains a synchronization signal that greatly
simplifies the control of data flow. When the correct X, Y and
A are at the input of the multiply–add unit, the FSM asserts the
ready signal, otherwise this signal should be kept de-asserted.
The ready signal propagates through a cascade of 1-bit regis-
ters which finally becomes the done signal on the output. These
cascaded registers must be equal in depths to the pipeline la-
tency of the multiply–add unit. The done signal is connected to
the write_en signal of the left Y queue which, when asserted,
captures the correct output from the multiply–add unit. In or-
der to guarantee the correctness of this configuration, the full
status of the right Y queue should not be the completely full in-
dication, rather it should be the almost full indication leaving
enough empty words equal to the number of the pipeline stages
of the floating-point unit plus one. That is, to give a chance to
the multiply–add unit to flush its internal data without losing it
due to queue overflow. The additional one comes from the fact
that the FSM will streamline the load and compute operations
to maximize throughput as will be described later. Also, this
configuration provides flexibility by allowing the floating-point
units to be easily replaced by more efficient ones that may have
a longer pipeline.

The control of the flow and the data association of the three
streams of traffic is performed by the FSM. There are no guar-
antees on the availability of regular data flow for any stream.
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Fig. 5. PE hardware design.
Therefore, we would like to obtain a flexible PE-pipeline de-
sign that can adapt to any SDRAM bandwidth available to the
SMVM-system. The three streams of traffic are assumed to
be fully irregular. The X and Y streams are considered to be
flowing only if both the left queue is not empty and the corre-
sponding right queue is not full. The stripe stream is considered
flowing if the status of its queue is not empty.

The FSM design will be critical in obtaining a maximum
data throughput, that is we need to accomplish the most pos-
sible computational throughput. The tasks for input request,
index association and computation needs to be streamlined con-
currently. Our FSM design accomplishes these objectives. This
is also made possible by the use of the vertical signal which is
produced during stripe padding by the padding circuit. Using
this signal, the FSM can make an early decision on whether to
the keep the current X value to be used for the next stripe value
or dispose of it by obtaining a new X value.

4.2. SMVM-controller

The SMVM-controller controls the SDRAM-controller
which is a core component that is provided by the TM4 sup-
port package and is designed to provide an easy interface to the
DDR SDRAM modules. The controller maximizes the access
efficiency of the DDR SDRAM bandwidth by providing block
transfers of consecutive data. This form of data transfer is ideal
for SMVM applications especially after using our striping for-
mation. Since, the individual stripes along with the X and Y

vectors are stored in the form of contiguous data in SDRAM, it
is possible to access them in the form of bursts of consecutive
blocks forming multiplexed streaming data channels.

There are two main functions of the SMVM-controller, the
first is to execute the sequence of operations required to com-
plete the SMVM computation, and the second is to effectively
demultiplex the SDRAM bandwidth into 11 channels to keep
feeding the SMVM-pipeline with the data it needs for the
SMVM computation. The 11 channels are composed of 8 chan-
nels of stripes feeding the PEs and another 3 channels which are
for the X vector, the Y input vector and lastly for the resulting
Y output vector.

At the start of the operation, the SDRAM addresses for the
eight stripes for the current phase along with the X and Y

addresses are retrieved from the SMVM-configuration block.
Next, the PE-pipeline and its internal queues are reset, there-
fore discarding any data remaining in the queues from a previ-
ous phase computation. The reset function will put the FSMs
of each PE into an initial state in order to be ready for the
new phase computation. The next sequence in the operation
cycle is to start the channel demux unit. The channel demux
unit works on supplying the different PEs in the PE-pipeline
with the required data from the SDRAM modules using the
SDRAM controller. Finally, the phase counter is incremented
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and a decision is made on whether to start a new phase or
to exit when all the phases are completed. This operation cy-
cle is repeated a number of times equal to the number of
phases entered in the SMVM-configuration block during the
SMVM setup stage. Each phase runs a computation for eight
stripes.

An effective demultiplexing of the SDRAM bandwidth into
individual channels in order to supply data to the SMVM-
pipeline is a critical function. The speed of SMVM computation
can be very dependent on the quantity of available SDRAM
bandwidth, therefore it is important to utilize the SDRAM
bandwidth efficiently in order to obtain good performance re-
sults. Another source of difficulty in acquiring an efficient band-
width utilization comes from the irregularity of data transfers
required by each channel. This stems from the sparse nature of
the matrix which makes the PEs require stripe data at differ-
ent rates. In other words, the bandwidth requirements for each
individual channel changes dynamically during SMVM compu-
tation. This means that the channel demux unit has to allocate
SDRAM bandwidth dynamically for each channel as its data
drainage rate varies.

Fig. 6 presents a functional view of the channel demux unit.
The SRAM buffers of the SDRAM controller are partitioned
into segments, where each segment is allocated for each chan-
nel. The segment size should be at least equal to the SDRAM
transfer burst size which is chosen to be equal to 8 blocks
(16 × 72 bits). Each SDRAM transaction transfers 8 blocks of
stripe data into its allotted segment in the SRAM buffer, then
once the transaction is completed this data is transferred from
the SRAM buffer to the input queue of the PE-pipeline. In order
to meet the objective of dynamic bandwidth allocation for each
channel, the data transfer function is split into two functions op-
erating in parallel, which are the SMVM-pipeline interface, and
the SDRAM transaction interface. The SMVM-pipeline inter-
face is responsible for transferring data for each channel from
its segment in the SRAM buffers to the appropriate input queue
of the SMVM-pipeline. The SDRAM transaction interface is
responsible for initiating the SDRAM transactions to update
Fig. 6. SMVM-controller channel demux.
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Table 1
SMVM-system timing zones clock rates

Clock
description

Clock rate
(MHz)

Type Based on

TM4_clk_0 66 TM4 pin –
TM4_clk_1 66 TM4 pin –
Zone 1 133 PLL_1 output TM4_clk_0
Zone 2 66 PLL_2 output TM4_clk_0
Zone 3 133 PLL_2 output TM4_clk_0
Zone 4 66–110 PLL_3 output TM4_clk_1

each segment in the SRAM buffer once its data is used by the
SMVM-pipeline interface. In order to identify whether a chan-
nel segment requires an update or not, a status bit is maintained
for each channel in a channel status register.

Initially, the SDRAM transaction interface updates a seg-
ment in the SRAM buffer it sets the flag bit in channel status
register corresponding for the updated segment’s channel. The
SMVM-pipeline interface unloads the SRAM segment into the
input queue when two conditions are asserted, the first is when
the status bit for that channel is set and the second is when
the input queue is not full. When the SMVM-pipeline inter-
face finishes unloading an SRAM segment, it resets the status
bit corresponding to the segment’s channel. The SDRAM inter-
face does not update a channel’s segment unless its status bit is
reset.

This parallel operation of loading and unloading of the dif-
ferent segments in the SRAM buffers leads to efficient use of
the SDRAM bandwidth when feeding the PE-pipeline chan-
nels processing data at varying rates. One last note to make
is with regard to the input queues’ full status signal. The full
status of the input queues is not asserted when the queue is ab-
solutely full rather it is asserted when the number of words in
the queue reaches (maximum capacity—burst size). The burst
size is 8 × 16 words for the stripe queues and 8 × 32 words for
the X and Y queues. This is in order to avoid queue overflow
and hence loss of data.

4.3. SMVM-system clock domains

The timing of the SMVM-system is divided into four iso-
lated zones. This timing configuration on one hand helps better
utilize the place-and-route resources and on another helps in
obtaining the highest possible clock rates that produces a high
memory bandwidth and a high computational throughput. For
example, it is possible to clock the master FSM and the TM4-
workstation communication circuits at lower clock rates since,
these components do not impact the speed of computation. On
the other hand, the SMVM-controller and SDRAM-controller
need to be clocked at the highest clock rates since these com-
ponents impact the memory bandwidth of the overall system.
The TM4 provides two independent user programmable clock
sources that are used to derive the different timing zones of the
SMVM-system. Table 1 shows the clocking dependencies of
the SMVM-system timing zones.

Transferring data and control signals between different clock
zones can incur metastability which significantly corrupts data
Table 2
SMVM-system resource utilization of a single Stratix EP1S80

Resource Utilized Utilization

Logic elements 23,887 of 79,040 30%
Memory bits 3,072,253 of 7,427,520 41%
DSP block 9-bit elements 64 of 176 36%
PLLs 3 of 12 25%
DLLs 1 of 2 50%

and cause malfunctions. In order to eliminate metastability ef-
fects on clock zone crossings, we adopted the Altera design
guidelines for transferring data between clock domains. This
involves the utilization of dual-clock FIFOs, handshaking cir-
cuitry, and cascaded registers.

4.4. FPGA resource utilization

Table 2 shows the post place-and-route resource utilization
of an SMVM-system implemented on a single Stratix EP1S80
FPGA on the TM4. The M4K internal SRAM block has been
utilized by the pipeline’s X and Y queues which are more suit-
able than the larger MRAM blocks due to a single clock cycle
latency as opposed to the two clock latency of the MRAM
block. Our architecture does not demand a large amount of
resources either in terms of computational logic or internal
memory blocks. As we will demonstrate later in Section 6, the
limited FPGA resource utilization of 30% logic and 40% in-
ternal memory is adequate to support a wide range of FEM
matrix sizes, including very large matrices, since the number
of stripes in the FEM matrix is independent of its dimension N

(size) [14]. In other words, the FEM matrix size is only limited
by SDRAM memory and not FPGA resources, given that it is
striped using our striping scheme.

5. Performance

Due to the regularity of data flow in the SMVM-pipeline
architecture, its performance can be easily formulated and pro-
jected for further scalability analysis. First, we start by defining
a utilization factor U ∈ [0,1] for a given matrix which indi-
cates how much of the peak SMVM-pipeline performance can
be utilized. In general U can be computed using the following
formula:

(7)U = Tcomp

Ttotal
,

where Tcomp is the number of clock cycles the SMVM-pipeline
is performing useful computation involving non-zero elements
only and Ttotal is the total number of clock cycles required
by the SMVM-pipeline to complete the computation. If the
SMVM-pipeline is performing a useful computation each clock
cycle, as in the case of complete stripes where each stripe con-
tains a non-zero element on each row, the utilization in this case
would be approximately 100%. Therefore, the utilization for the
SMVM-pipeline depends on the sparsity structure and the strip-
ing scheme used for a given matrix. If the number of PEs that
can be implemented in the SMVM-pipeline for a certain FPGA
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chip is less than the number of stripes the matrix may have, the
computation needs to be performed in multiple phases where
each phase processes as many stripes as there are available PEs.
The Y vector is initialized to zero for the first phase only. Each
phase will sequentially accumulate a partial result on the Y vec-
tor. When the last phase is done, the Y vector will have the final
SMVM result. We define a set of computational phases (P) as
follows:

P =
{

1,2, . . . ,

⌈
μ

PEn

⌉}
,

where PEn is the number of PEs in the SMVM-pipeline. We de-
fine Pmax as the total number of required phases and is equal to
�μ/PEn�. LHSP is the LHS between stripes within each com-
putational phase, and the maximum LHS for all phases is found
by:

LHSmax = max{LHSP }, ∀P .

Now, the total number of clock cycles required to finish a com-
putation is determined by:

Ttotal =
∑
P

N + LHSP

(8)�Pmax × (N + LHSmax).

The average number of computational clock cycles for each
phase is found by:

(9)Tcomp =Pmax ×D,

where D is the stripe density which is found by:

(10)D = total number of non-zeros

PEn ×Pmax
.

In other words, D describes the average number of non-zero
elements per stripe. Substituting (8) and (9) in (7) we obtain:

(11)U � D
N + LHSmax

.

Considering that LHS is limited for FEM matrices [14] and in
many cases is small compared to N , LHSmax can be ignored.
We can see from (10) and (11) that the utilization increases as
the stripe density increases which is done by reducing the num-
ber of stripes representing the same matrix. This optimization
is done by virtue of our special striping scheme which is found
to produce a very low number of pipelineable stripes for FEM
matrices.

The computational performance of the SMVM-pipeline
measured in MFLOPS for the unlimited memory bandwidth
condition can be found by:

(12)MFLOPScomp = U × MFLOPSpeak,

where MFLOPSpeak is the maximum computational rate of the
SMVM-pipeline. Since each stripe value requires 2 floating-
point operations to process, MFLOPSpeak is determined by:

MFLOPSpeak = 2 × PEn × (clock rate in MHz).

In order to find the actual MFLOPS performance of the
SMVM-pipeline we need to consider the amount of memory
bandwidth available for the SMVM-pipeline. Since our design
of the SMVM-controller effectively distributes the available
SDRAM bandwidth between all the SMVM-pipeline ports dy-
namically, we can formulate each port throughput as follows:

(13)BW = 3 × Pv + PEn × U × Ps,

where BW is the total available SDRAM bandwidth, Pv is the
port throughput for each of the X, Yinput and Youtput vectors, and
Ps is the port throughput for each stripe. Since we are using
32-bit IEEE single precision floating-point arithmetic and our
SDRAM modules have a word width of 72 bits, each SDRAM
word can store a single stripe value along with its index or two
X,Y vector values. Therefore, the relationship between Pv and
Ps can be written as:

(14)Ps = 2Pv.

If a different memory organization or double precision arith-
metic is used, relationship (14) should be modified. After sub-
stituting (14) into (13) and rearranging we obtain:

(15)Pv = BW

(3 + 2 × PEn × U)
.

When BW is measured in 32-bit words per second, Pv be-
comes the available bandwidth for the output result that can be
produced by the SMVM-pipeline when the computational ca-
pacity is unlimited. Therefore, the performance of the SMVM-
pipeline under limited memory bandwidth is found by:

(16)MFLOPSBW = 2 × PEn × Pv × U .

Therefore, the actual performance of the SMVM-pipeline
MFLOPSsmvm can be bounded by either computation or mem-
ory bandwidth as follows:

(17)MFLOPSsmvm = min(MFLOPSBW,MFLOPScomp).

It should be noted that (17) should be applied on each com-
putational phase separately in order to get an accurate per-
formance measurement. That is because the actual utilization
varies, which may drive the performance to be either compu-
tation or bandwidth bound within each phase. However, for
simplicity of calculation, an overall average utilization value
on all phases can be used (17) which will produce a close ap-
proximation of the performance.

6. Results

We have selected FE test matrices from the Matrix Mar-
ket website [17] that represent a range of utilization factors
from 20% to 80%. The matrix selection corresponds to the fact
that our architecture focuses on accelerating regularly banded
sparse matrices that arise when using FEM in electromagnetic
problems. The test matrices are listed in Table 3 and ordered ac-
cording to increasing utilization factors. We striped the matrices
using our striping algorithm which generates banded pipeline-
able stripes. The processing time for striping did not exceed
2 minutes for the largest matrix. The striping needs to be done
only once at the beginning of the CG algorithm. However,



Y. Elkurdi et al. / Computer Physics Communications 178 (2008) 558–570 567
Table 3
Matrix market FE test matrices

Matrix
number

Matrix
name

Matrix
order

Non-zeros
count

Banded
stripes

Maximum
LHS

Number of
partitions

Effective
utilization

1 dwt_1007 1007 8575 24 1972 1 17.74%
2 fidapm13 3549 70994 64 450 1 27.74%
3 fidap011 16614 1.09E+06 328 9678 12 29.06%
4 fidapm10 3046 53344 48 278 1 33.35%
5 cavity11 2597 71601 64 504 1 36.08%
6 fidap013 2568 75628 72 330 1 36.25%
7 fidap010 2410 54816 56 226 1 37.13%
8 cavity10 2597 76171 64 504 1 38.38%
9 e20r0000 4241 131412 72 462 1 38.81%

10 e20r5000 4241 131430 72 462 1 38.81%
11 cavity17 4562 131735 64 654 1 39.46%
12 fidapm09 4683 93836 48 234 1 39.71%
13 cavity16 4562 137887 64 654 1 41.31%
14 fidapm15 9287 96099 24 244 1 42.01%
15 e30r0000 9661 305794 64 682 1 46.20%
16 e30r5000 9661 306002 64 682 1 46.23%
17 fidapm29 13668 183394 32 566 4 46.51%
18 e40r0000 17281 553216 64 902 1 47.54%
19 e40r5000 17281 553562 64 902 1 47.57%
20 fidap009 3363 99397 56 170 1 50.24%
21 fidap029 2870 23754 16 84 1 50.26%
22 mhd3200a 3200 68026 40 58 1 52.20%
23 mhd4800a 4800 102355 40 58 1 52.62%
24 mhd1280a 1280 48061 64 116 1 53.62%
25 fidap015 6867 96421 24 134 1 57.39%
26 s1rmt3m1 5489 217651 48 382 1 77.23%
27 s3rmt3m1 5489 217669 48 382 1 77.24%
28 s2rmt3m1 5489 217681 48 382 1 77.24%
29 s1rmq4m1 5489 262411 56 382 1 79.81%
30 s3rmq4m1 5489 262943 56 382 1 79.98%
31 s2rmq4m1 5489 263351 56 382 1 80.10%
32 s3dkq4m2 90449 4.43E+06 56 1228 1 86.24%
stripes can also be used as a native storage format which is gen-
erated by the FE application avoiding the initial latency due
to conversion to the stripe format before SMVM computation.
The memory storage requirements for stripes do not exceed the
coordinate format used by the Matrix Market website nor the
popular CSR representation (used by other architectures such
as [6,7]).

The implemented SMVM-pipeline contains 8 PEs and is
clocked at 110 MHz obtaining a peak performance of 1.76
GFLOPS. However, the SMVM-pipeline performance was
found to be limited by SDRAM bandwidth. This is due to the
fact that we used the TM4 board at an early stage of its de-
velopment which supported only one SDRAM interface and a
single FPGA. Because of the reduced number of memory ports
available for the SMVM-pipeline, the effective memory band-
width supplied to the SMVM-pipeline became approximately
0.55 GB/s. Future upgrades will focus on resolving this issue
and allow the SMVM-pipeline to use more of the TM4 poten-
tial when completed, which is capable of supplying 16 GB/s of
SDRAM bandwidth for four FPGAs [2]. Other recent develop-
ment systems provide 8–12 GB/s [4,7].

Fig. 7 shows the MFLOPS results for the test matrices
along with expected average results modeled by (17). Matrix 1
showed higher performance compared to the expected results
Fig. 7. MFLOPS performance as the memory bandwidth varies.

due to its low utilization value relative to its size which made
it less bounded by bandwidth compared to other matrices. The
projected performance is shown in the graph as the memory
bandwidth varies from 0.55 to 8 GB/s. This figure also shows
the significant impact of the bandwidth on performance, espe-
cially for matrices with high utilization factors. One can see
that a 14.5 times gain in performance is achieved when band-
width varies from 0.55 GB/s to 8 GB/s for a utilization factor
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Table 4
SMVM performance comparison

Processor MHz Peak
MFLOPS

SMVM
MFLOPS

Utilization Ref.

Pentium 4 1500 3000 425 14.29% [7]
Power 4 1300 5200 805 16.67% [7]
Sun Ultra 3 900 1800 108 6.25% [7]
Itanium 800 3200 345 10.00% [7]
Itanium 2 900 3600 1200 33.33% [7]
V2 6000-4 140 2240 1500 66.67% [7]
V2-Pro 70 165 2880 576–2160 20–75% [6]
Stratix S80
[this work]

110 1760 312–1520 17.74–86.4% –

of 86.24%. This performance increase is in the same proportion
of the change in bandwidth. It is also possible to observe that
BW dominates the performance of our system over the matrix
utilization factor that only achieves a maximum of 4.8 times
performance enhancement when varying the utilization factor
from 17.74% to 86.24%. Note that Matrix 32 is the largest
which contains ∼=4.4 × 106 non-zeros and has efficiency on the
SMVM-pipeline of 86.4%. For large FE matrices the peak per-
formance is reached as the memory bottleneck is resolved.

Next we compare our performance results to other comput-
ing platforms in Table 4. The MFLOPS performance of our
8-PE design under the assumption of 8 GB/s memory band-
width ranges from 312 MFLOPS to 1520 MFLOPS, depending
on the utilization factor. It is key to note that the utilization
depends strongly on the choice of mesh numbering technique
[14], and that these matrices were not mesh numbered taking
the utilization on our pipeline under our striping scheme into
account (they were chosen from a readily-available open-source
matrix collection for convenience). Results in [14] indicate that
appropriate mesh numbering taking the stripe structure into ac-
count, produces a limited number of stripes for larger sparse
matrices, increasing the overall utilization as discussed in Sec-
tion 5. These performance measurements show that our de-
sign achieves 1520 MFLOPS (reaching almost its peak perfor-
mance) which offers similar computation capacity to an 8 leaf
tree of [6] and 8 PEs of [7] (the same number of multiplications
and additions for [7] while [6] does more additions). These
other FPGA implementation achieve 1500 MFLOPS (for [7])
and 2160 MFLOPS (for [6] with a bandwidth of 14.4 GB/s)
while all FPGA designs manage better sustained throughput
outperforming the best general purpose CPU implementation
as shown in Table 4.

Although our design has the second best performance its re-
source usage scales much better than [6] and [7]. This is due to
the stream-through architecture implemented which enables it
to operate on arbitrarily big matrices, being limited only by the
external SDRAM (available in big quantities when compared to
internal memory). Moreover, our design uses a fixed amount of
internal RAM per PE to store the input/output data in a cache
manner, scaling much better than the other FPGA designs. In
fact, when using 8 PEs our architecture consumes only 41%
(3,072,253 of 7,427,520) of the Block Ram and 30% (23,887
of 79,040 LUTs) of logic resources available which offers suf-
ficient space to increase the pipeline. On the other hand, [6] and
Fig. 8. Bandwidth scaling when varying the number of PE for different Utiliza-
tion Factors (U).

[7] are limited by the maximum size of the internal memory
available. This is an important issue since this internal mem-
ory is found in limited quantities on current FPGAs and it is a
highly used resource. The design in [6] uses internal memory
to store the X vector in each leaf node of its dot-product tree
architecture (which does not scale well) while the non-zero el-
ements of the A matrix are fetched from external memory. On
the other hand, [7] uses internal memory to store the A matrix
and the X vector as well as the buffers it requires for its double
ring communication scheme, which imposes even greater scal-
ability constrains in this design. This is the reason why both
designs [6,7] resort to multiple FPGA implementations when
dealing with bigger matrices.

As we will show in the next section, the peak and achiev-
able MFLOPS can be linearly scaled by partitioning the matrix
and using multiple pipelines. This is made possible by the low
hardware requirements of a single pipeline.

7. Scaling

Scaling can be performed in either two ways, one is in-
creasing the number of PEs in the pipeline until equal to the
number of stripes the matrix forms, and the other is horizon-
tally partitioning the matrix and assigning each partition to a
SMVM-pipeline. The choice of either depends on the hardware
configuration of the development board in terms of number of
FPGAs and memory bandwidth available to each FPGA. Fig. 8
shows the effect on the required bandwidth as we increase the
number of PE in the SMVM for a given Utilization Factor on
one FPGA. This is especially true when the Utilization Factor
is high, so in order to keep streaming data through the SMVM-
pipeline higher bandwidths are required. Hence, to exploit the
fine-grained parallelism it is necessary to solve the bandwidth
limitations. In general, tradeoffs must be met to use a number
of PE per FPGA so the required BW does not exceed the avail-
able BW, then the peak performance may be reached. On the
other hand, Fig. 9 shows a partitioning scheme for 3 pipelines
reducing the total time to at most a third of the initial time. In
other words, scaling provides linear speedups. This is a direct
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Fig. 9. Matrix partitioning.

Table 5
Matrix partitioning effect on utilization

Matrix
name

Matrix
order

Non-zeros
count

Single partition
utilization

Number of
partitions

Partitioned
utilization

fidap011 16614 1.09E06 12.66% 12 29.06%
fidapm29 13668 183394 40.26% 4 46.51%

result of the regularity of our architecture that uses local inter-
connect between the PEs in the pipeline which does not produce
communication overhead.

The stripe formation is not impacted by the horizontal ma-
trix partitioning. In fact, the utilization of the SMVM-pipeline
may increase due to partitioning because the number of stripes
within each partition will either be equal or less than the num-
ber of stripes for the whole matrix. Therefore utilization will
increase as long as the separation between stripes within a phase
is limited compared to the number of rows partitioned. A typ-
ical partition for FE matrices should contain at least 1000 to
2000 rows. Table 5 shows the partitioning effect on utilization
factors for two large matrices.

Finally, it is interesting to observe that the architecture in
[7] incurs limitations when resorting to scaling both in resource
utilization and in communication issues (due to its double ring
design). On the other hand, [6] uses a similar row-block parti-
tioning scheme in order to scale the design to compute on large
matrices but it does not solve its Block-Ram issue.

8. Future work

Our current SMVM-system prototype will be upgraded in
order to utilize the four FPGAs on the TM4 when they become
available. It was shown that our architecture scales efficiently
given there is available FPGA resource as well as SDRAM
bandwidth. This is made possible by virtue of the local inter-
connects between PEs inherent to the linear array processor
architecture which eliminates communication overhead typical
of multiprocessing platforms.

The clock speed of the SMVM-pipeline will also be in-
creased in future upgrades from its current value of 110 MHz.
This can be performed mainly in two ways. Firstly, we can re-
place our floating-point units with ones that are more deeply
pipelined and have higher clock speeds. Secondly, we can per-
form custom place-and-route of the SMVM-pipeline on the
FPGA in order to produce better timing results. This is in or-
der to exploit the modularity and the locality of interconnects
in the SMVM-pipeline.
9. Conclusion

In this paper we analyzed the acceleration of SMVM compu-
tation on FPGAs for regularly banded sparse matrices that arise
when using FEM in electromagnetic problems, and demon-
strated an SMVM-pipeline architecture that can obtain high
performance for very large sparse FEM matrices. Using our
striping scheme and due to the sparsity pattern of FEM matrices
we were able to compute on arbitrarily big matrices with a fixed
number of PEs, limited only by the amount of external SDRAM
memory available to the FPGA. Moreover, because of our low
resource usage we are able to increase the size of our pipelined
processing elements, hence our throughput, when we are not
I/O bound. We also show that as a result of the regularity and the
modular nature of this architecture, the SMVM-pipeline pro-
duces linear speedups when scaled by implementing multiple
SMVM-pipelines. Hence, our design achieves a balanced goal
between size scalability, regularity and performance. Finally,
our stream-through type architecture provides the added ad-
vantage of enabling an iterative implementation of the SMVM
computation for the CG method by avoiding initialization time
due to data loading and setup inside the FPGA internal memory.
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