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Abstract 

Recently, microelectronics designs have reached extremely high operating frequencies as 

well as very srnall die and package sizes. This has made signal intcgrity an important 

bottlencck in the design process, and resulted in the inelusion of signal integrity simulation 

in the computer aided design flow. However, such simulations are often difficult because 

in many cases it is impossible to derive analytical models for certain passive elements, 

and the only availablc data are frequeney-domain rneasurements or full-wave simulations. 

Furthermorc, at sueh high frcqueneics thesc eomponents are distributcd in nature and 

requirc a large numbcr of polos to be properly charactcrized. Simple lumped equivalent 

circuits are therefore clifficult to obtain, and more systcmatic approaches are required. In 

this thesis wc study the Vector Fitting techniques for obtaining such equivalent madel and 

propose a more strearnlined approach for preserving passivity while rnaintaining accuracy. 
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Sommaire 

De nos jours, les conceptions microélcctroniques atteignent de très hautes fréquences d'opération 

ainsi que des tailles infimes de dés et de boîtiers. Ceci a fait de l'intégrité du signal un 

paramètre critique dans le processus de conception, dont la simulation a du être intégrée 

à la conception assistée par ordinateur. Cependant de telles simulations sont souvent dif

ficiles car dans beaucoup des cas il est impossible de dériver des modèles analytiques pour 

certains éléments passifs, et les seules données disponibles sont des mesures en fréquence 

ou des simulations d'oscillation complète. De plus, à de telles fréquences, ces composants 

sont de nature distribuée et requièrent l'usage de plusieurs pôles pour être convenable

ment caractérisés. Il est donc difficile d'obtenir de simple circuits groupés équivalents, il 

faut recourir a des approches bien plus systématiques. Dans cette thèse, nous étudions 

les techniques de Vector Fitting pour obtenir de tels modèles équivalents ct proposons une 

approche plus rationalisée pour conserver la passivité tout en maintenant la précision. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

With the increasing complexity and operation frequency of modern very large scale inte

grated circuits (VLSI) and application specifie integrated circuits (ASIC), signal integrity 

issues, which used to be negligible, have bccomc a critieal consideration in recent design 

fiows. Signal intcgrity degradation of digital signal occurs in the path from the driver to 

the receiver, which includes interconnects, vias and other discontinuitics. Such effects are 

typieally negligible at low frequencies. However, in high-speed circuitries, undesired or 

incorrect signais can be generated from multiple sources like crosstalk, refiections duc to 

impedance mismatch, ringing, delay, and attenuation [4-24]. These effects result in signal 

integrity violation and lead to faulty circuits and reduced performance. In fact, signal in

tegrity has bccome a performance bottleneck in modern circuit design. It must, therefore, 

be taken into consideration as carly as possible in the design cycle in order to avoid costly 

prototyping and unneccssary design iterations. Thcrcfore it is important to have access to 

accurate models as well as efficient simulation and optimization tools, whieh can take into 

account interconnect effects and signal integrity degradation [21, 22, 25-27]. 

In addition to making interconncct effects and signal integrity degradation a dominant 

factor in the design process, high operating frequencies lead to significant difficulties in the 

simulation of such structures. This is due to the fact that at high frcquencies interconnccts 

must be treatcd as clistributed structures and modcled using partial differentiai equations 

(PDE). In ordcr to include such components in a standard time-domain circuit simulator 
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such as SPICE, the PDEs must be discretized to obtain ordinary differential equations, 

and this leads to a very large number of equations and a high CPU cost. In order to over

come this simulation bottleneck, model orcier reduction methods (MOR) were proposed 

in the literaturc. The general idea behind these techniques is to reduce the large linear 

blocks of the system into small mac:romodds which contain only a few dominant poles 

determining the response up to the highest frequency of interest. The main MOR methods 

can be divided into two main categories. The first is direct moment matching methods 

which are based on padé approximation [4, 13, 28-:30]. These techniques indude asymptotic 

waveform evaluation (AWE) and complex frequency hopping (CFH) [31, 32]. The second 

category is based on indirect projeetion. Methods based on the Arnoldi proeess, truncated 

balanced realization (TBR) [33] and singular value decomposition (SVD) [34] are found in 

this category. Thesc methods beeame popular due to thcir ability to conserve passivity 

by construction. Howevcr, although these methods significantly reduœ the CPU cost of 

simulation, they all operate on system of first order differential equations and therefore 

assume that analytical models for the interconnects and other passive elements and dis

continuities are available. Unfortunately, this is not always the ease, and in many practieal 

hlgh-frequeney applieations the only available model eonsists of frequency-domain data of 

multi-port parameters obtained from measuremcnt or from full-wave analysis. The simula

tion diffieulty in this ease is not due to the presenee of distributed clements, but also to the 

faet that these elements are modeled using frcquency-domain measured data, which cannot 

be directly incorporatcd into timo domain nonlinear SPICE-typc simulation. The methods 

for addressing this issue can be dividcd into two general approaches. The first approach 

is to use numerieal convolution to evaluate the timo-domain stamp of the distributcd cl

ements at each timo point. Wc will refer to this dass of methods as convolution-based 

approaches. The main drawbacks of such techniques are the high CPU cost and mernory 

requirernent of the numerical convolution which must be pcrformcd at cach timo step with 

the initial condition as the starting point of the integration. This type of approaches can 

also cxhibit aceuraey and stability problems. The second dass of mcthods for handling 

clements defined by mcasured parametcrs is to perforrn sorne preprocessing ln ordcr to 

corne up with a timo-domain macromodcl of the system in the form of polos and zeros. 

Once such a macromodcl is obtained, recursive convolution [28, 35] can be used instead 

of rogular convolution in ordcr to improvc the CPU and momory performance. Howevcr, 

more commonly, the timo-domain representation is cithcr directly stamped into the modi-
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fied nodal analysis equations or used to synthesize an equivalent circuit. Such an approach 

eliminates the mixed frequency time domain problem, which results from the presence of 

frequency-domain measured parameters. The main challenge in this case is that of ob

taining a suitable time-domain macromodel in the form of poles and residues. Such a 

macromodel must of course match the frcquency-domain parameters of the original circuit, 

but it also must not only be stable but also passive. The stability of the macromodel is 

easily enforced by techniques such as [32, 36, 37]. These techniques either sim ply delete the 

unstablc polcs or shift them to the left half-plane and allow extra iterations to retrieve the 

aecuracy. However, a macromodel which is stable but not passive can result in unstable 

simulations depending on the termination [7, 22, 38]. Enforcing passivity to a macromodel 

is not a trivial task. In this thesis wc will study the leading method for obtaining such a 

macromodcl and for ensuring its passivity, and wc will propose improvcments for the pas

sivity enforcemcnt algorithms. The resulting passive macromodels c:an be easily simulatcd 

using standard simulators such as SPICE and are automatically generated without any 

need for physical knowledge of the passive structure. 

1.2 Organization of the thesis 

The thesis is organized in the following order: In Chapter 2, literature review is car·ried out. 

Conventional techniques such as convolution-based approximation and macromodel-bascd 

approaches are discussed. ln Chapter 3, an algorithm ealled Vector Fitting is introduccd to 

generate macrornodels without sufrering computational difficulties. Chapter 4 deals with 

passivity verification. Upon passivity violations, a global passivity enforcement algorithm is 

applied for compensation. Linear optimization with special eonstraints is used to minimize 

the degradation of accuracy. Details are discussed in Chapter 5. The second half of Chap

ter 5 presents numerical examples to illustrate the effieieney of the algorithm. Transient 

simulations are also carried out for evaluating the accuracy in time domain. A poten

tial problem associa.ted with the algorithm is discussed in Chapter 5 and a corresponding 

solution is given. 
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Chapter 2 

Literature Review 

2.1 Background Introduction 

As discussed in Chapter 1, in real high-speed networks, it is not always easy to find closed 

form analytical models for the interconnects. Instead, the intereonnect behaviors are typi

cally deseribed by frequency-domain tabulated parameters obtained from measurement or 

full-wave simulation. In order to include the tabulated data in time-domain simulators, 

there are generally two categories of approaches one can follow. The first category contains 

convolution-based approaches. In these methods, the inverse Fourier transform is applied 

to the frequency-domain parameters to get their time-domain counterparts. The time

domain resulLs are then convolved with the arbitrary sources to evaluate the time-domain 

terminal voltages or currents. Although these methods are straightforward, their computer 

implementation has a major limitation. The convolution process leads to a high CPU cost, 

espeeially when the network has a large number of ports. In addition, since aceuracy is 

closely related to the numbcr of timc stcps, highcr aecuracy rcquires a largcr numbcr of 

time stcps and more iterations of convolution arc thcreforc spcnt on the simulation. The 

details of the convolution-bascd approachcs will be discussed in Section 2.2. The mcthods 

from the second category focus on constructing timc-domain macromodels for the intcrcon

nects. The most common way of macromodel construction is bascd on rational function 

approximation. This field has bccn stuclied extensively in [1-3, 24, 39, 40]. Some typical 

techniques will be covcred later in Section 2.:3. The general idea behind these approaches 

is to approximate the measured/simulated parameters by a rational function in its poly

nomial forrn and calculate all the coefficients of the polynomial by solving a least-square 
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problem. The resultant maeromodels ean be implemented in time-domain simulators either 

through generating a SPICE compatible model eonsisting of equivalent circuit components 

or through recursive convolution [28, 35]. The typical difficulty associated with these meth

ods is that tho least-square problern is casily ill-conditioned. This difficulty has become a 

bottlencck of its computer implementation, as the ill-conditioncd matrix may go bcyond 

the floating-point range of the computer. Many studios have boen donc to fix this prob

lem [1, 3, 28], but they still have problcm with high-ordcr approximations. A new technique 

namcd VcctorFitting has been proposed to overcome this difficulty [41]. This technique 

follows an iterative procedure to evaluate the polos of the nctwork and the resulting !east

square problem is weil conditioncd. A thorough rcvicw of Vcctor Fitting will be given in 

Chapter 3. 

2.2 Convolution-Based Approach 

2.2.1 General Concept 

As mentioncd in [1], the implementation of înterconnccts reprcsented by the mcasured 

data into circuit simulators is computationally intensive, since m~arly all interconnccts arc 

terminatcd by nonlinear components, such as diodes and transistors. The analysis of the 

linear interconnccts is carried out in frcqucncy domain, whcreas, the analysis of nonlinear 

notworks is achicved in timo domain. Thus, the method must be able to combine the so

lutions in both domains [1, 40]. The most stra.ightforward solution is to apply the inverse 

fast Fourier transform (IFFT) to calculate the impulse responsc of the network. Thcn the 

general solution is given by convolving the impulse response with the arbitrarily given input 

voltage. This method is refcrrcd to as convolution-based method. It calculates the time

domain responses directly from the frequency-domain measured data. The implementation 

details arc introduced in [40] and summarized as follows. 

2.2.2 Algorithm Details 

Consider a linear M-port nctwork (shown in Fig.2.1). Suppose an ideal voltage source is 

conncctcd to port j and all other M - 1 ports arc grounded. Then the currcnt in frequcncy 
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i,(t) 
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~ 
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= 

l 
1 

- 1-

Fig. 2.1 A linear M-port network 

domain at cach port can be cxpressed as (2.1). 

Ik(w) = Ykj(w)Vj0 (w); for k=1, ... ,M (2.1) 

wherc Vj0 (w) is the Fourier transform of Vjo(t) and Ykj(w) is the admittance Y-paramcter. 

A unit delta function is forced at port j su ch that Vj0 ( w) = 1. By doing this, the frequency

domain voltage Vj0 (w) is indepcndcnt of frequency. Thus, it can be climinated from (2.1) 

and the time domain current can be dircctly computcd as 

(2.2) 

where p-l denotes the inverse Fourier transform. This set of currents is rderred as the net

work Grcen's function. It is to be notcd that thcsc currcnts arc equal to the Y-paramctcrs 

in timo domain rcgardless of input voltage, sincc the input voltage has bccn forccd to be 

unit. ln arder to calculatc the response due to an arbitrary input function, one needs to 

convolve the resulting transient response (Grcen's function) at the port with the arbitrary 

input: 

http://ij-.it
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The sign "*" denotes convolution. According to the superposition principle, the total 

current at a specifie port is the sum of the eurrents due to the voltage source conneeted to 

each port. Thus, wc have 

(2.4) 

The calculation of the Y -parameters in (2.2) is donc in the following steps. Firstly, an 

ideal delta-function generator is connected to one port and with all other ports shorted 

to ground. Secondly, find the frequcncy-domain current appearing at the port. Then the 

Green's function is calculated by applying inverse Fourier transform to the resulting cur

rent. This proccss should be repeated for all ports. It is to be notcd that the currents 

should be evaluated numerically at a finite number of frequencies. The Grcen's functions 

should be also discretized in the time domain. 

For the case of computer implementation, the integrais in (2.3) should be replaced by 

summations: 

M q 

ik(tq) = L L igkj(tq- tp )vtpb.t; for k=l, ... ,M (2.5) 
j=l p=O 

where the argument tq refers to the instant of qb.t when the currents and voltages are 

sampled. 

The voltages are evaJuated from the current-voltage relation depcnding on the terminal 

components. For exarnple, a diode has an I - V charactcristics 

(2.6) 

the resulting voltages are evaluated from the abovc relation. 

The convolution-based method is the most straightforward method to obtain the time

domain response from the frequency-domain data, sincc it provides a direct link between the 

frequency-domain data and its timc-domain counterpart. Howevcr, as discusscd in [40,42], 
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to obtain the port currents due to different port voltages, the Green's functions have to 

be convolved with the arbitrary functions. The convolutions are clone numerically and 

considered to be the most CPU-expensive process, as the convolution must be donc at each 

time stop with the initial condition as the starting point of the integration. To reduce this 

cost, one bas to kecp the number of frequency points to be sampled as low as possible. 

This can cause restrictions on the speed of the eireula,r convolutions, as the timo spent on 

cornputing the response should not exceed a few lino transit times in presence of terminal 

networks. 

2.3 Macromodel-Based Methods 

2.3.1 General Concept 

Instead of convolution-based approaches, macromodel-based methods feature indirect eval

uation of the time-domain response by constructing analytical macromodels for the inter

connects. Polynomials are the most common way for function approximation. However, 

rather than polynomials, the macromodels arc typically in the form of rational function. 

Tho rcason for that is polynomials are not a suitable mcthod to rcprcscnt the rcsponse of 

electrical networks, as polynomials have limitations with representing the behaviors of the 

interconnects in the vicinity of polos. ln contrast, rational function displays the strength 

of well capturing the behavior aronnd the poles, and its partial fraction expansion forrn 

is among the most suitablc approximation methods for distributed systems. Polos and 

residues of the system can be direetly found in the partial fraetion format. Thcn the tran

sient rcsponsc can be easily obtained by performing recursive convolution or through its 

equivalent time-domain macromodel. The macrornodcling process may take some CPU 

time, but with the closed form expression of the system timo-domain responses are easily 

calculated. Macromodel-based approaches are more CPU-efficient and, thcrefore, exhibit a 

big advantage over convolution-based approaches. Some typical techniques will be discussed 

later in this section. 
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2.3.2 Least-Square Approaches [1-3] 

A network's function II(8) ean be expressed by a rational function in rational function 

form: 
H (

8
) ___ ao + a1s + a28

2 + · · · + amsm 
rn,n - b b 2 b n 1 + 18 + 28 + · · · + nB 

(2.7) 

where b0 is norma.lized. For a given set of sampled data at k frequcncy points, the task is 

to match (2. 7) with the given data at specifie frequeneies: 

(2.8) 

where Yi denotes the frequency-domain data measured at the ith frequency point and k 

denotes the number of sampling points. (2.8) cau be rewritten in a linear format: 

(2.9) 

Further cxpanding (2.9) at each frcqncncy point, wc end np with a set of equations in the 

matrix form: 

ao 

a1 

1 so s2 ·o srn -so;t;o -s6Yo -8()Yo () 

a2 

Yo 

1 sl 
2 sl 9m -s1Y1 -sîyl -s~yl • 1 Y1 

am 

1 Sk-1 
2 

8 k-l 
sm -Sk-l;t}k-1 

2 
-sk--IYk-1 k-1 -sk--lYk-l ... bt 

b2 
Yk-1 ...__._..... 

v y 

bn 

'--v--' 
x 

(2.10) 

Usually the numbcr of frequcncy points k is greater than the number of coefficients (nurnber 

of columns in V). Thus (2.10) is a full-rank over-dctermined equation. Since clectrical 

network functions are analytic functions of complex variables, their real and imaginary 

parts satisfy Cauchy-Hiemann equations. From this relation, one only nceds to approxima te 
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the real part of the rational function and the whole function can be found automatieally. 

The real part of a rational function (2. 7) can be extraeted by multiplying its numerator 

and denominator polynomials by the eomplex eonjugate of its denominator (i.e. Q* (s)). 

respeetively. The resulting real part is in the fonn 

C + ,_., <•2 + (' ,4 + + C c,2m. ·: '(H ( )) - ./Q <./jo ··2<' • • • rn<> 
Re rn,n S - 2 4 2n 

1 + PlS + P2S + · · · + PnS · 
(2.11) 

The coefficients are cakulated by matching (2.11) with the real part of the tabulated data 

at eac:h rneasured frequency point 

1 2 w4 w2m wa 0 0 

1 w2 
1 wf w2m 

1 

1 w2 4 2m 
k-·1 wk-1 wk--1 

-w2y·r 
0 0 -W41/ Q, 0 
2 1' -w4yr -WIYl j, 1 

-w2 '1/ 4 r 
k-1, k-1 -wk-tYk-1 

A 

-w5
11Yo 

-WÎ71 Y'J' 

2n 1' 
-wk-lYk-l 

co 

Pt 

P2 

Pn 
~ 

x 

vü 
y 'j' 

(2.12) 

where the superscript "T" indicatcs the real part of a complcx value. 2.12 is a !cast

square problcm. In ordcr to solve it without direct elimination, which can cause numerical 

difficulty, QR factorization is applied to matrix A on the LHS. Thus, (2.12) is reformed 

into 

(2.13) 

Once the coefficients are calculated, the denominator of (2.11) needs to be factorcd to 

obtain the poles of the network. The solution only contains stable poles sinœ the roots are 

determined in tmms of squared poles. All pure imaginary poles are rejected from the pole 
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set. Only stable poles are retained for constructing the partial fraction expansion of JI(.s): 

1 

n k· 
H(.s) = k00 + L -·-• 

i=t s +Pi 
(2.14) 

where n' < n, and n - n' is the number of imaginary polos discarded from the process. 

The residucs (k/s in (2.14)) arc calculated by equating (2.14) to the sampled data 

at each frequency point and matching the real and imaginary parts of the LHS with the 

corresponding parts of the RHS respectively. According to the above dü,;cussion, a set of 

linear equations can be written as 

1 -P.l -p2 -pn 
2 2 2 2 w2 + p2 wo + P1 Wo + P2 0 n 

Y a 1 -zzl -zz2 -pn 
wÎ + PÎ wi + p~ 2 2 

Wl + Pn koo YI 

kl 

1 -pl -p2 -Pn 
k2 Yk-l (2.15) w2 + P2 2 2 2 2 

k-l 1 wk-l + P2 wk-l + Pn 
0 -WQ -WQ -WQ '1/ 

wâ + PÎ w5 + p~ 2 2 ' 1 
Wo +Pn 

kn 

yi 
0 -wk-l -Wk-1 -Wk-1 k-1 

2 2 2 2 2 2 
wk-1 + P1 wk-1 + P2 Wk-1 + Pn 

As discussed in [1, 2], (2.12) is at. high risk of ill-condition, as the powers of the frequencies 

are doubled from those of (2.10). T'his leads to a huge difference bctween the minimum and 

maximum entries in each row of A in (2.12). To overc:ome this difficulty, a transformation 

factor is introduced to make the problem better conditioned: 

, (w- Wrnin) 
w=2 -1. 

(wm.a.x - Wmin) 
(2.16) 

Scaling the frequcncy points by using (2.16) can map them into the domain of [-1, 1]. 

This mapping normalizes the wide frequency range to the center of the numerieal range 

of the computer. As a consequence, this manipulation also avoids the nth power of the 

frcquency from exceeding the fioating-point range of the computer [2]. The total compu

tational cost of the method is one polynomial factorization, two QR factorizations (for the 
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poles and residues calculations) and two backsubstitutions. 

The next step is to obtain the time-domain macromodel. As pointed out in [1, 3], 

the tirne-domain macromodel is obtaincd by applying a recursive convolution to avoid the 

computation-intensive explicit convolution. The direct relation between the time domain 

and the frequency domain is the Laplace transformation: 

ki d 
Y(s) = --. X(s) <-> -d y(t) + PiY(t) = kix(t). 

s +Pi t 
(2.17) 

The excitation .r(t) is assumed to be pieecwise constant: a;(t) = c, where tn-l :::; t :::; tn. 

(2.17) is solved using the value of x(t) at current time interval as boundary conditions. 

The time-domain solution expressed in the recursive convolution formula for the model of 

(2.14) is 

q 

y(tn) = k=x(tn) + L Yi(tn), (2.18) 
·i=l 

wh cre 

(2.19) 

The abovc equation can be translated into an equivalent circuit consisting of a constant 

conductance, kocn and a current source, - L:i=l Yi(tn), whieh is updated in each iteration. 

2.3.3 Macromodeling through Nonlinear Approximation 

In contrast to the mcthod of lincar approximation reviewed from last section, [43] introduces 

a different algorithm based on solving for a nonlinear problern to obtain the coefficients of 

the rational functions. In this a1gorithm, the unknowns are includcd in a nonlinear equa

tion and solved iteratively. 

Assume wc are given a set of tabulated data in frequency domain (11 (si); i = 1, 2, ... , N) 

obtained from full-wave simulations or mcasurements. The objective is to approximate the 

existing data by a rational function and extract a macromodel for the original network 

(2.20) 
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whcrc a0 is normalized to unit. The coefficients are included in two vectors: a= [a1 , a2 , ... , (L,]T, 
b = [b0 , b1 , ... , bm]T. The error of the approximation in (2.20) is evaluated by 

E(a, b, s) =Y( a, b, s)- H(s), (2.21) 

at cach measured frequency point. The minimization of (2.21) implies the minimization of 

the nonn of the total error 

N 

Il E(a, b, s) lb= LIlY( a, b, s)- H(s) 11;. (2.22) 
i=l 

Minimizing (2.22) can be furthcr translatcd into rninirnizing 

f(x) = i Il E(a, b, s) Il~= iÊ(a, b, sfÊ(a, b, s), where Ê = [Re(ET); Jm(E1')] and xT = 
[aT; bT]. By introducing E, all entrics of the vectors a and barc real numbcrs so that the 

system avoids having complcx time-domain responses. The resulting problem in (2.22) is 

solved by using a Gauss-Newton type method which uses a rnodel M for E around Xc 

(2.23) 

where J(xc) is the Jaeobian of E at Xc. The rncthod minirnizcs Il Ë(xc) + J(xc)(x- Xc) \!2 
in each step, subject to that the norm of the difference between the solutions from two 

successive iterations does not exceed sorne upper limit: 

(2.24) 

From (2.21), it is obvions that the .Jacobian of Ë is as smne as that of Y( a, b, s) separated 

into real and imaginary parts. From this fact, solving (2.23) is equivalent to solving 
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[ 

Re(~Uo:m) 
Llk-1 

Jm(-D1 Uo:m) 
k-1 

: Re(-~:=~ Ul:n) l [ ~ba l 
: ( yk-1 ) L.l. . lm --D U1:n 

k-1 

A 

Re(Yk-I(sN)- JJ(sN)) 

Im(Yk-l(sl)- JJ(si)) 

b 

14 

' (2.25) 

where Uo:m is a Vandermonde matrix with rn+ 1 columns eontaining diserete frequeney 

points with monotonically increasing power 

Uo:m = 

Dk_1(s) is a diagonal matrix 

0 

0 

0 

1 

1 

1 

8] 

82 

8N 

0 

0 

82 
1 
2 

82 

2 
SN 

<;rn 
'·N 

0 

0 

0 

1 + EZ=1 a-i<'"}v 

(2.26) 

(2.27) 

and Y k- 1 ( s) is also a diagonal rnatrix containing the approximation rosult from previous 

iteration 

Yk-1 (si) 0 0 

0 Yk-1(s2) 0 
Yk-I(s) = (2.28) 

0 0 0 

0 0 Yk_,(sN) 

(2.25) is a nonlinear equation, sinee A and b are also expressions of the unknowns. To 

solve (2.25) we start with an initial guess of xT = [aT; br] to evaluate Dk __ 1 and Y k-I· 
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Then [6a; 6b] is ealculated from (2.25). This diŒerence is added to xT to obtain a new 

xT for the next iteration. This process is repeated until the difference [6a; 6b] no longer 

exceeds our tolerance. 

Be aware of that (2.26) is ill-conditioned when frequencies are high. This difficulty is 

overcome by applying a robust basis transformation to (2.26) [43]. It is evident that (2.26) 

can be expressed by 

where 

Uo:m = [ 1 81 8 21 . . . sm1 ] , 

0 

S= 

0 

0 

(2.29) 

(2.30) 

and 1 is an N-column vcctor with 1 for all entrics. An orthonormal basis for Uo:m can be 

achicved by Arnoldi pro cess [44, 45] 

(2.31) 

wherc V is constructed by orthonormal columns and H is an upper Hessenberg matrix. 

Vo:m =[V rn, Vm+1] is the new basis spanning the same spacc as the columns of Uo:m· Then 

(2.25) can be rewrittcn by applying the orthonormal ba.sis 

[ 

1 Re(~Vo:m) l..Jk-1 
1 lm( n;::-;-Vo:m) 

Re(-:6:=~. Vl:n)] [ 6b: l 
I ( Yk-Iy ) 6a m. -Uk=r 1:n 

Re (Yk-1 ( 8 N) - H ( 8 N)) 

Irn(Yk-1(81)- H(s1)) 

(2.32) 

By applying this basis transform, the high arder associated with Uo:rn is reduced, and the 

ill-condition problem is avoided. 
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2.3.4 A Brief Introduction to Vector Fitting 

As discussed previously, the least-square based approach suffers ill-condition problem when 

solving equations like (2.12). The matrix on the left hand-side contains cntries whose 

values are exponentially different from each other. This may cause a computational error 

when the algorithrn is implemented in a computer program. To avoid this difficulty, an 

algorithm called Vector Fitting [7,22,41] was developed to solve the poles and residues of the 

system separately. The algorithm starts with an initial guess of the pole set and performs 

an iterative process to approximate the location of the poles. The residues are solved 

afterwards. By introducing the iterative process, the entries of the matrix corresponding 

to that of (2.12) are kept in thcir rational function format and the terrns exponential of 

frequencies are effectively removed. Thus, ill-condition is effectively overcome. A deep 

review of its algorithm is given in Chapter 3. 

2.4 Conclusion 

This chapter reviewed sorne of the well devcloped techniques used for incorporating the 

frequency-domain pararneters in time-dornain simulators. The approachcs based on con

volution and macromodel have been discussed. The major difference between these two 

kinds of methods is that the macromodel-bascd methods gcneratc analytica.l rnacromodcls 

for the interconnects, while the convolution-based methods dircctly process the measurcd 

data to get transient responses. Thcir drawbacks arc also discusscd. The convolution-based 

approachcs arc very CPU-expensive for high accuracy simulation duc to the convolution 

proccss, whilc the macrornodcl-based approachcs may suffcr from ill-condition which cornes 

from the least-square problcm. A bricf introduction to Vcctor Fitting was also given. It is 

also dassified to the category of rational-function-based approaches. But it applies itera

tive procedure to compute the poles of the network without suffering ill-condition and is 

convenicnt for computer implementation. 



Chapter 3 

Vector-Fitting-Based Rational 

Function Approximation 

17 

According to the discussion in Chapter 2, the conventional rational-function-based ap

proachcs aim to approximate the frequency-domain tabulated data with a ration function, 

normally in the form of 

(3.1) 

The job focuses on finding all the coefficients [a0 , a1 , ••• , arn] and [b0 , b1 , ... , bn] in the nu

merator and denominator of (3.1). Multiplying the left hand-side and right hand-side by 

the denominator b0 + b1s + b2 s2 + · · · + brt'sn and writing the equation at different frequency 

points, we can obtain an equation in the least square problcm form: 

AX=b. (3.2) 

(3.2) has limitation for high-ordcr approximation, becausc the cntries of A span a large 

orders of frequencies. Depending on the desired order of approximation, the elements may 

have very high power of s, causing big numerical differences between the maximum and 

the minimum cntrics. Undcr this circumstance, the linear equations will suffer from ill

condition problcms. Thus, the traditional approaches have problem with capturing a large 

numbcr of pales. On the othcr hand, duc to the complexity of modern intcrconnccts the 

number of poles of the network is usually big. To accurately capture the response aronnd 
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pcaks, it is dcsired to use a high-order approximation. Conventional pole fitting methods do 

not work wellin this sense. [22,41] describes an accurate and robust fitting technique named 

VectoTFiti'ing, which can match complote responses without suffering ill-conditions. This 

chapter conducts a review of the algorithm , which was used as part of the rnacrornodel 

technique presented in this thesis. 

3.1 Pole Calculation by Vector Fitting 

Wc start with a pole-residue approximation of the target function satisfying the rncasured 

data [22, 41] 
N 

"" ki f(s) = ~ -.. -·- + sh + c, 
. s- Fi 
2=1 

(3.3) 

where N is the number of pol cs ( residues), P·i and ki can be either real or in the forrn of 

complex conjugate pairs. While h and c are real numbers referring to the term proportional 

to frequency and the coupling constant respectively. Pi, ki, h and c are the unknowns. The 

task is to caleulate these unknowns such that the macromodel given in (3.3) approximates 

the real response of the network at all the frequency points of the tabulated data. 

To achieve this, wc introduce a scaling function with a set of initial polos Pi 

N -

() ""k-; . 
CT .'3 = ~~+1. 

i=l s p./, 
(3.4) 

Multiply the pole-residuc function (3.3) by the sealing equation of (3.4) to got a sealcd 

function CT( s )f(8 ). Thcn this sealed function is approximated by anothcr function (CT f)(8 ), 

whieh has the samc pole set as that of (3.4): 

N ~ 

"" k· ~ (CTJ)(s) = ~ -·1
-_ + sh + ê. 

i=l s- P·i 
(3.5) 

Considering that (CT f) (s) is an approximation to f( s )CT( s), wc eau write 

(~~.6) 
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To sce the number of unknowns of (3.6) the equation can be expanded as 

N ~ N -
~ ki ~ ~ ("........_ ki D --_ + Bh + c ~ D --_ + 1 )j(8 ), 
i=t s - Pi i=l s -Pi 

(3.7) 

where Pi, i = 1, 2, ... , N arc the initial guesses to the poles. From (3.7) the number of 

unknowns is 2N + 2: N k/s, N ki's, one Î~ and one ê. By writing (3. 7) at J( (normally 

J( > 2N + 2) frequeney points at whieh the measured data are availablc and including all 

unknowns in one eolumn vector, one obtains a set of lincar equations in matrix forrn 

AX=b. (3.8) 

This is an overdetermined problem, since the rank is higher than the number of unknowns. 

X is the vector of unknowns and b contains the frcqucncy data. To dccicle the forrn of A, 

it is necessary to scparatc the problcrn into two cases: complcx poles and real poles. 

For the real poles, (3.8) can be written as 

kl 

1 1 1 81 
- f(8I) -/(BI) 

8] -Pl 8]- PN 81- Pt SJ- PN 
1 1 1 82 

- j'(s2} - /(82) kN /(81) 
82 ih 82- PN 82- Pl 82- PN 

h /(82) 
1 1 - !{83} - f{s3} 

83- ih 83- PN 
1 83 s3- P1 sa- PN ê 

kl f(sK) 
1 1 1 8[{ 

- f(sg) - f(sK) '-v-" 
SK- Pl SK -pN sK- P1 8K -PN b 

A kN 
'-v-' 

x 
(3.9) 

Since real polcs arc always accornpanicd by real rcsiducs, the unknown vcctor X is real. 

Sirnilarly, the complcx poles for cach cutry of the driving point adrnittanee rnatrix arc 

always accompanicd by thcir complcx conjugates and so arc the residucs. Thus, (3.8) can 

be expresscd as 



3 Vector-Fitting-Based Rational Function Approximation 20 

N ~ ~ N - -

""' ( ki k7 ) h A f ( ) ""' ( ki k7 ) j' ( ) ~ --..... +--_-* +s +c- s ~ --_-+--.-.. 4 = s, 
i=l s - Pi s - Pi i=l s - Pi s - Pi 

(3.10) 

whero "*" denotes tho complox conjugato oporator. Thon tho real and imaginary parts of 

tho residues are soparated 

(3.11) 

Writc (3.11) at different frequencies, the linear equations in matrix forrn (3.8) can be 

obtained. A= [A1, A 2 , ..• , Ai, ... , AN, 1, S], where 

cl~ih + .Sj~fii) cl~Pi- SJ~fii) -f(sl)Cl~Pi + 8l~Pi) -f(sl)Cl~Pi- SJ~iii) 
c2~Pi + sz~PT) c2~Pi- S2~1)i) -.f(s2 )(s2~Pi + S2~Pi) -.f(.s2)(sz~Pi- o92~Pi) 

CK~fii + si<~V)(.si<~fi;- sK~iï~)-f(.5K)CK~ii; + sK~iï~)-f(sK)C/-p;- si<~P~) 
' ' 

1 

(3.12) 

(3.13) 

and 

X= [Re( ki), Im(k1), Re(k1), Irn(k:1), ... , Re(kN ), Irn(kN ), Re(kN ), Im(kN ), c, h] T. 

(3.14) 

For both real and complex cases, the equation AX = b is separated into real and imaginary 

parts 

[ 
Re(A) l X= [ Re(b) l· 
Im(A) Jm(b) 

'-.,...-' "-v---" 

(3.15) 

Â 
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AT 
(3.15) is solvccl by lcast-squarc technique. Lcft-rnultiplying both sidc of (3.15) by A 

(3.16) 

and solving for (3.16), we get 

(3.17) 

So far the residues, coefficient of the frequency-proportional terrn, the coupling constant of 

the scalcd function (3.5) and the residues of the scaling function (3.4) have been calculated. 

Note that (3.4) and (3.5) share the sarne set of initial poles. From this point on, (3.4) and 

(3.5) arc written in the pole-zero forrn 

and 

N 

l:)s- zi) 
a( s) = _·i~_1_. ---

l:)s -J)i) 
i=l 

N+l 

l:)s- zi) 
(a J)(s) = h-i~---'····1---

l:)s- Pi) 
·i=l 

(3.18) 

(3.19) 

respectively. An expression for j(s) is obtaincd by dividing both sidcs of (3.6) by (3.18) 

N+l 

. l.:)s-zi) 
j(s) = (aj)(s) = h-i=_1 __ 

a(s) N 

L(s- zi) 

(3.20) 

i=l 

From equation (3.20), it is clcar that the zeros of the scaling function a(s) arc idcntical 

to the pol cs of f ( s). Computing the pol es turns out to be computing the zeros of the 

scaling function. Thus, the zeros of a( s) nced to be evaluated from its rcsiduct:l. [22, 41] tell 
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that the zeros of O"(s) are the eigenvalues of the matrix 

II= 1J- cp, (3.21) 

where 
ih 0 0 

0 ih 0 
Tl= (3.22) 

0 0 PN NxN 

[ ~1 k2 n c/J= 
kl k2 N NxN 

(3.23) 

for the case of real polos. In case of complex poles 

1]= (3.24) 

1]N 2Nx2N 

where 

[ Re(P;) Im(P;) l T/i = 
Re(pi) ' -Irn(Pi) 

2x2 

(3.25) 

and 
2Re(ki) 2Jm(kt) 2Re(kN) 2hn(kN) 

0 0 0 0 0 

rp = (3.26) 

2Re(k1) 2Irn(k1) 2Re(kN) 2Im(kN) 

0 0 0 0 0 2Nx2N 

By cornputing the eigenvalues of the matrix (3.21), the zeros of the scaling function O"(s) 

are fotmd, w hich are also the po les of f ( s). It is worth no ting that unstable pol es may be 

obtained from this proecss. In this case, we simply reverse the signs of their real parts to 
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shift them to the loft half-plane. The resulting set of polos is a doser guess to the poles 

of the network and substituted for (3. 7) to start another iteration of the approximation. 

The above steps are repeated until the difference between the poles obtained from two 

suceessive iterations do not exceed the applied tolerance and the resulting pole set is an 

accurate approximation for the pales of the original system. 

In ordcr to make the algorithm work cfficiently, the strategy for choosing initial polos 

becomcs vital. A good initial guess enables the program to capture the rcsponse of the sys

tem in only a few iterations. Thore will be numerical problems due to improperly choosing 

of the starting pales: 

a. The linear equation (3.9) will become ill-conditioned, if a set of real initial polos is 

choscn to treat a function with distinct resonant peaks. 

b. An arbitrary choose of starting polos may lead to a large variations in the scaling 

function a(s) and a(s)f(s). 

The solution to problcm (a) is to choose complex polos when dcaling with functions 

with distinct resonant peaks. The strategy to addrcss problem (b) is to sensibly select the 

starting polos and run the iteration after that. A general rule of choosing starting poles is 

s uggested in [ 41] : 

1. For the function with distinct resonant pcaks, a set of complex starting pales should 

be chosen to capture the change around peaks. For each complex pole, a sufficiently 

small real part should be chosen. Norrnally, the real partis chosen to be one hundredth 

of the irnaginary part (i.e. for p =a+ j{J, choosc a= (3/100). 

2. For smooth functions, it is recomrnended to choose real polos which are lincarly spaced 

as a function of frcquency. In the smooth function case, starting with real polos will 

not affect the accuracy of the fitting rosult. 

3. Gencrally, the starting polos should be choscn to be located linearly across the fre

quency band of intercst. The bcnefit from this strategy is that the frequcncy range of 
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intcrcst is evenly covered. As a result, the starting poles will not be shifted far from 

their original locations. It is worth noting that if the initial poles are densely chosen 

within a small frequency interval, there will be a large variation between the LHS 

and RHS of equation (3.6) at the frequeneies beyond this interval. A large CPU cost 

is needed to shift thesc polos ovcr a large frequency distance to reach convergence. 

Notably, the process discussed so far in this section is for one-port network. However, 

most networks in real worlcl application have multiple ports. Consicler an M-port network 

clescribecl by Y-paramcters 

Yll(s) Y12(s) Y1M(s) 

Y(s) = 
Y21 (s) Y22(s) Y2M(s) 

(3.27) 

YM1(s) YAn(s) YMM(s) 

Each cutry of the abovc matrix is approximatcd by the polc-rcsiduc form: 

N k''J 
f(s) = ""' n .. + sh'',J + c'•J; for i, j=O,I, ... ,M. 

L..,; s- p''J 
n=l' n 

(3.28) 

In convcntional mcthods, the rational function approximation is applicd to cach cutry of 

the driving point admittance rnatrix, i.e.(3.28), to gct the poles. A union of pole set is 

obtaincd by colleeting the polcs for each cntry togcthcr. Howcvcr, this approach willlead 

to a considerable redundancy of polos, which will cause inefficiencies in transient simula

tions [7, 22]. In ordcr to rcmove the rcdundant polos from the pole set, wc takc advantagc 

of the following two propositions [7, 46]: 

1. Generally speaking, the pole set corrcsponding to each individual entry of the driving 

point admittance matrix (3.27) is a subset of the union of poles for all driving point 

admittances. 

2. In a system with a large number of dominant polos, pole sets corresponding to different 

driving point admittances contain mostly identical polos and with only a very small 

nurnber of poles diffcring among thcse pole sets. 
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With the above propositions, instead of fitting the individual pole set for eaeh entry of 

the admittanee matrix, we only fit the poles of the diagonal entries. This is because the 

polcs of the diagonal elements form a subset of all poles of the subnctwork (proposition 

1), and there's very minor difference from the poles of the off-diagonal entries (proposition 

2). We apply Vector Fitting algorithm to the vector of the diagonal entries of the driving 

point admittance matrix 

Yn(s) 

Y diag(s) = 

where 
N .. 

,.~,~ 

} r ( ) L 'n hi i d c · () 1 ]If ii s = . . + s , ' + c ' ; 10r z= . , , ... , '1 • 
'i- p''' n=l L n 

A scaling function with a set of initial poles is introduced as 

N -
~ kn Œ(s) = L -·-_ + 1. 
n=l 8- Pn 

(3.29) 

(3.30) 

(3.31) 

Sirnilar to the case of single-port network, multiplying each cntry of (3.29) by Œ(s) and 

approxima ting the rcsnlting sca.led function by ( 0' Ydiag) ( s), we ob tain 

Œ(s)Yu(s) 

Œ(s)Y22(s) 

(ŒY11 )(s) 

(ŒY22)(s) 
(3.32) 
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Using (3031), (3032) can be further expanded as 

kll "'N_ --.:.:::.r.!... + so h~ 11 + c':ll 
Lom=1 S - Pn < ' " 

~ 22 
~N ~ h~22 ~22 
Lm= 1 8 - f5n + S ' + C (303:3) 

Note that the pol cs of the scaled function O"( s) Ydiag ( s) arc same than the on es of the 

approximation function ( O" Ydiag) (s) and th cre arc 2M + ( M + 1) N unknownso Writing each 

row of (3033) at several frequency points we obtain an overdetcrmined equation 

AX=b, 

where 

-
1

-.. 0 0 0 - 1-_-1s1 0 
S!-Pl Sj-··IJN 

0 0 0 0 0 0 

-
1
-_ 000-1 _-lsK 0 0 0 0 000 

8K -]Jl SK-PN . 

0 0 0 0 - 1
-- 000-1 -.. ls 1 ooo 

81-]Jl 81-PN 

A= 
0 

0 0 0 0 0 

0 0 0 0 0 0 

k~MM '1 0 0 0 

-··Yu (si) 
S! -fil 

-Yu(sK) 
BK-fh 

-Y22(s!) 
SI-ill 

-Y22(sK) 
o9K-iÏ! 

(3034) 

-Yu (s1) 
81-fiN 

-Yu(sK) 
SK-PN 
-Y22(s1) 
81-fiN 

-Y22(sK) 
SK-PN 

kN r 
(3036) 
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b = [ Yn(si) . . . Ytt(sK) Y22(s1) ... Y2z(sK) . . . YMM(si) . . . YMM(sK) ]T. 

(3.37) 

(3.34) is solved by !east-square technique. The last N entries (k1 ... kN) of the solution 

vector b are the rcsidues of the scaling function and arc used to calculate the new set of 

pales by following (3.21-:3.26). The problem is solved self-consistently until convergence is 

reached. 

3.2 Residue Calculation 

Once the polos of the network are identified, we proceed to calculate the residues. With 

the pales, the admittance matrix of Y(s) can be writtcn as 

Y(s) = 

1 

1,1 + "\'N _!S{_ 
C Lm=l s- Pn 

kM,l 
CM,l + "\'N . _:_;:n_ 

L..m=l S- Pn 

M2 
.M,2 + "\'N ~ 

C L..m=l S- Pn 

1.l,M 1 Cl,M + "\'N_ ~ 
Lm-1 s- Pn 

k M,M 
.M,M + "\'N ..:..::J:L_ 

C L..m=l S- Pn 
(3.38) 

The residues k:;j and coupling constant ci,j for each entry of (3.38) arc solved individ

ually by writing the rational function for each cntry at severa! frcquencies, s1 , s2 , .•. , sg. 

Generally, ]{ is larger thau the number of unknowns, N + 1. Thus, it is an overdetermined 

equation of the form 

(3.39) 

For the case of real pales, the matrix A, bi,j and the unknown vector Xi,jcan be written 

as 

1 1 1 1 
S}- Pl S[- P2 s1- PN 

1 1 1 1 

A= Sz- P1 Sz- Pz Sz- PN (3.40) 

1 1 1 1 
SJ(- Pl 8K- P2 Sg -pN 
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and 

yi,j (si) 

yi,j(sz) 

yi,J(sK) 

k7j ]

T 

28 

(3.41) 

(3.42) 

For the case of complex poles, the residues are also in the forrn of complex conjugate 

pair. Thus, (3.28) ean be written as 

ki,j + i ki,j ki,j - J. ki,j ki,j + i k'i,j ki,j - i ki,j 
Yi,j(s) = Ci,.i + 'lR · li + 'l.R *li + ZR . Zl + ZR . * Zl + 

s - PI s - Pl s - Pz s - Pz 

ki,j + j ki,j e·J - j e·J ... + NR NI + NR Nf' 
S- PN 8- p*jy 

(3.43) 

where the subscript "R" refers to the real part, and "!" rcfers to the imaginary part. 

By separating the real and imaginary parts, the solution vcctor only contains real values. 

Expanding the above equation at several frequencies, we obtain A, bi,J and Xi,J as follows 

1 1 + 1 
s1 - P1 * 81 -PI 81- P1 

1 1 + 1 .i 
A= Sz- P1 Sz- p; Sz - Pl 

x ,J = d'·] ·i . [ .. 

j ' 1 + 1 i 
* 81- PN S] -:- PJ sl-PN 81-PN 

1 + 1 i 
8z- p~ Sz- PN Sz- PN Sz- PN 

j 1 1 ' 
BK- Pi ... SK- PN + SK- PN SK- PN 

yi,J(sl) 

yi,J(8z) 

k
i,j l • .i,:i 
ZR 1\'21 k

i,j ki,j ] T 
NR Ni 

* 
SJ ---: PN 

Sz- P'N 

.i 
* SK -pN 

(3.44) 

(3.45) 

(3.46) 
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Equating the real and imaginar-y parts of LHS and RHS of (3.39) respectively, we have 

(3.4 7) is sol veel by least square methods. Left-multiplying both sides of (3.4 7) by 

[Re(A), Jm(A)], wc have 

[ 
Re( A) l T [ Rc(A) l Xi,.i = [ Re( A) l T [ Re(bid) l· 
Irn(A) Irn(A) Irn(A) Irn(b't,J) 

The solution to the above equation is 

Xi,.i = Re(A) Re(A) Re(A) Re(b7
"'
1

) 

( 

T' ) -1 7' .. 

[ Im(A) l [ Im(A) l [ Im(A) l [ Im(b',;) l· 

(3.47) 

(3.48) 

(3.49) 

By repcating (3.39)-(3.49) for cach cntry of (3.27), the computation of rcsidues is eom

plctcd. All the rational functions share the same set of dominant poles but different residues. 

The algorithm of Vcctor Fitting is summarized in Fig. 3.1 in pseudocodc. 

3.3 Conclusion 

Vector Fitting technique displays a big advantagc over the traditional approximation al

gorithms. It efficiently overcomes the problem of ill-condition, which exists in the process 

of conventional rational function approximation algorithms. Conventional approximation 

methods end up with a set of linear equations AX = b, wherc the matrix A is normally 

Vandermonde-iike. In other words, the entries of A are expressed in form of power of 

frequencies depending on the accuracy requirement of the approximation. This leads to 

the potential of ill-condition when wc write the equation at higher frcquencies or when a 

high-order approximation is desired. On the other hand, Vector Fitting technique is im

mune to this problem, as the entries of the matrix A are in the form of single power of 

frequencies. Due to this propcrty, with appropriate initial poles providcd, Vector Fitting 

can fit the poles at high frequencies in high-order approximation without suffering compu

tational difficulties. This advantage cnables the algorithm to accuratcly locatc the poles 

throughout the bandwidth of interest. 
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Step 1. Choose an appropriate set of initial pales by following the guideline in 
Section 3.1. 

Step 2. Construct Equation (3.34) using (3.35) and (3.37). 

Step 3. Solve the resulting equation from Step 2 by !east-square technique to 
obtain the residues of the scaling function o-(s). 

Step 4. Follow the guideline given by Equation (3.21) - (3.26) to evaluate the 
zeros ofo-(s)which are considered as the new pales. Inverse the sign of 
the real part of any unstable pole. 

Step 5. If the pales obtained from Step 4 converge, go directly to Step 6. 
Otherwise repeat Step 2 to Step 5 for another iteration. 

Step 6. Calculate the residues and coupling constant for each entry of (3.38) by 
following Equation (3.39) - (3.49). 

Fig. 3.1 Pseudocode of Veetor Fitting 
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Chapter 4 

The Passivity of Macromodels 

ln previous chapters, wc have reviewed the methods developed to cxtract accurate macro

models from measured/simulated data. In this chapter we will have discussion on another 

important property of clectrical nctworks - passiv'ity. This chaptcr begins with a brief 

introduction to passivity. Methods used for passivity check will be reviewed later. In the 

last part, an efficient method uscd for checking passivity and preciscly locating the regions 

of passivity violation will be introduced. 

4.1 What Is Passivity? 

The techniques reviewed in previous chapters can generate fa.irly accurate maerornodols dc

spite the fact that they perform distinctly in numerical robustness and efliciency. Howevcr, 

as pointed out in Chapter 1, passivity is another concern associated with the macromodel 

besicles accuracy. Passivity implies that a network can nover generate more energy than 

it absorbs [22, 47, 48]. Unfortunately, these methods cannot guarantee the passivity of the 

macrornodels. In other words, the passivity of the original network under measurement 

may not be inherited by its rnacromodel. Loss of passivity is a major defect of the macro

madel, even though it ca.n accurately represent the behavior of the original network in a 

frequency band of interest. Passivity is a vital issue because when a stable but nonpassive 

macromodel is terminated by sorne arbitrary passive macromodels, the transient simulation 

of the whole systern may suffer from artificial or:;cillations [7]. The rear:;on for this is that the 

poles are relocated during the connection of the macromodels. When stable but nonpas

sive rnaerornodels are connected to even passivity-guaranteed macromodels, it is possible 
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that the poles of the new system become unstable. To illustrate this point, considcr a 

second-order macromodel shown in Fig. 4.1. The macromodel is stable but nonpassive. 

It has a pair of stable poles. After it is connected to a passive rnodel, unstable poles are 

generated eausing oscillations in the transient simulation. Thus, it is important to ensure 

that each macromodel is passive bcfore the system-level transient simulation. To reaeh this 

goal, an efficient passivity checking algorithm is desired. Some widely used methods will 

be introduccd in the following sections of this chapter. 

4.2 Passivity Check Techniques 

In this section, wc will revicw traditional methods devclopcd for chccking passivity. Gen

erally, the methods can be classificd into two categories: frequency-domain bascd method 

and time-domain based method. 

4.2.1 Frequency-Domain Passivity Check 

A passive multi-port nctwork, cxpresscd in (4.1) 

Yn (s) Y12(s) 

Y(s) = 
Y21 (s) Y22(s) 

YMl(s) YM2(s) 

Y1M(s) 

Y2M(s) 

must satisfy the frequency-domain passivity criteria, given by [38, 4 7---49] 

a) Y(s*) = Y*(s), wherc "*" denotes the complex conjugatc operation. 

b) Y(s) is a positive real (PR) matrix. 

( 4.1) 

Condition a) can be translated into that the rational function Y ( s) has only real co

efficients in its numerator and denominator. This condition is automatically satisfiecl by 

driving point admittance matrices, since the poles and residues of driving point admittance 

matrices are cithcr real numbers or complex conjugate pairs. For real s, Y(s) is real also. 

By cnsuring Condition b), the driving point function has to satisfy the following inequation 



4 The of Macromodels 

Non passive 
Macromodel ...... .._.Y(s) 

1 1 

i+s+1 (s+0.5+ j0.866)(s+0.5-j0.866) 

p = -0.5 ± }0.866 ._.__ Stable Pales 

Non passive 
Macromodel 

t 
Y_(s) =[(s

2 
+s +1)+(2+s+ ~) r 

Arbitrary 
Passive Network 

s 
Ypassive = 2 2 ? 

s + s+ 

s 
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(s + 2.1325)(s -0.0662- jl.8106)(s- 0.0662 + }1.8106) 

Pnew = -2.1325, 0.0662±}1.8106 +--- Unstable Pales! 

Fig. 4.1 Illustration of the significance of passivity: A stable but nonpas
sive rnacrornodel connected to an arbitrary passive macrornodel leads to an 
unstable system. 
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z* [YI'(s*) + Y(s)] z 2: 0, (4.2) 

for any complex frequency with Re(B) > 0 and for any arbitrary vector z. It is to be noted 

that Y(s) is a eornplex syrnmetric matrix. It can be writtcn as the sum of a Hermitian 

rnatrix, which is the real part, and an anti-Hermitian matrix, which is the imaginary part. 

With this property, [YT(s*) + Y(s)] /2 refers to the Hermitian part or the real part of 

Y(s). Thus, Condition b) is satisfied by cnsuring 

( ( )) 
[YT(s*) + Y(B)] 

Re Y s = > O· for all s with Re(s) > O. 2 - ' (4.3) 

From [7,48], for a rnatrix rational function without poles on the dosed right half-plane, 

Condition b) implies 

Re(Y(jw)) = [YT(jw*)
2
+ Y(jw)] 2: 0; for w E ~ U oo. 

eig(Re(Y(jw))) 

Frequency points 
checked for passivity Undetected passivity violation 

due to a sparse frequency 
sweep 

Fig. 4.2 An insufficient frequeney sweep leads to misjudgrnent. 

(4.4) 

OJ 

( 4.4) tells us the real part of Y (jw) must be positive semi-definite for ali jw. By the 

properties of positive semi-definite, Re(Y(jw)) should co nt ain only semi-positive eigen

values (Ài 2: 0, for i = 1, 2, ... , M). Thercfore, the most straightforward way to check 

passivity is aeeomplishcd by carrying out a frcquency swcep of the eigcnvalucs of the real 

part of the admittance rnatrix Y( s). If its eigcnvalucs at all frcqucncy points arc nonneg-
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ative, the macromodel is passive. However, as pointed out in [38] this method suffers from 

several drawbacks. For example, it is hard to say up to what frequency the sweep may stop 

and how fine the sweep should be. Evaluation of the eigenvalues at very fine frequeney 

grids is extremely CPU-expensive, especially for large networks with high number of ports. 

Even so, an exhaustive sweep can never be achicved, as it îs impossible to evaluate every 

frequency point. On the other hand, a sparse sweep is much faster, but the passivity vi

olation taking place between two consecutive frequency points may be missed. This kind 

of insufficient evaluation directly leads to a rnisjudgment. The mechanism of the failure is 

shown in Fig. 4.2. 

4.2.2 Time Domain Passivity Check 

A multi-port lumped linear network can be described by a set of state-space equations 

[22,50] 

such that 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

Y(s) = C(sl- A)-1B + D 

(4.5) 

(4.6) 

(4.7) 

where x(t) denotes the derivative of x. For a M-input M-output network with n state 

variables, x is a vector of the size lRnxl, u is the input vector of the size ~Mx 1 , A is 

the state matrix of the size ~nxn, B is a n x A1 matrix relating the input vcctor u to 

the state variables x, C is a M x n matrix linking the state variables to the output, and 

D is a M x M matrix directly coupling the input u to the output. Once we obtain the 

macromodel of the system, i.e. the poles, residues and coupling constants of the rational 

approximation are known, the state-spacc representations A, B, C, D can be easily derived. 

Firstly, let's consider a macromodel of a two-port network with two real polcs 

Y(s) = 
[ 

k1,1 
1' 1 "'2 _:_::i_ 

C + L..ri=1 S - Pi 

2 e·1 c2,1 + . _i_ 
Lt=l s-Pi 

k1,2] 1,2 2 _:_::i_ 
c + L-i=l s - Pi . 

k
2,2 

2 2 2:2 . c·+. ~ 
t=l s- p· j, 

(4.8) 
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The eorresponding state-spaee representations are 

A= 

Pl 0 0 0 

0 Pl 0 0 

0 0 P2 0 

0 0 0 P2 

o 1 o]r 
1 0 1 

D = [ ~:: :::: l 
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(4.9) 

(4.10) 

(4.11) 

(4.12) 

Seeondly, in general, maeromodcls eontain poles in the fonn of eomplcx conjugate pairs. 

In this case, (4.5) and (4.6) arc complcx equations, which do not have physical mcaning in 

the timc domain. They thcreforc necd to be rewrittcn in Jordan-form [22] 

. [ A1 0 l [ b1 l x= x+ u 
0 A7 b~ ' 

"'-.,-' ...._,__... 

y = [ c1 c~ ] x + n 
~ 

c' 

(4.13) 

(4.14) 

whcre A 1 contains the complcx poles, and A7 contains their conjugatcs. Consider a two

port macromodel containing both complex and real poles, whic:h is the most common case 

in real application. Without loss of generality, assume this macromodcl has one pair of 

complex polcs and one real pole: p1,2 = ü ± i(J, P3 = 1 and the corrcsponding residues are 

ct{ = (r ±iv )i,j, c1'j = ki,j. Then the resulting state-space matrices are 
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a+ i(3 () 0 () () 0 

() 0! + i(3 () () () 0 

A'= 0 0 a- i{3 0 0 0 

0 0 0 0:- if3 0 0 
(4.15) 

() () () () "/ () 

() () 0 () 0 "/ 

B'= [ ~ () 1 0 1 ~r 1 () 1 () 
(4.16) 

c' ~ [ r
1

'
1 + jv1

'
1 r1,2 + jv1,2 r1,1 _ jv1,1 r1,2 _ jv1,2 k1,1 k"] 

k2:2 r2,1 + .iv2,1 r2,2 + .iv2,2 r2,1 _ jv2,1 r2,2 _ jv2,2 k2,1 
(4.17) 

D= [ c''' 
c2,1 

c''' ] 
c2,2 

(4.18) 

In arder to make A', B', c' real matrices, an equivalent transformation is applied to 

(t!.13) and (4.14) 

Vx = (vA'v- 1
) (Vx) + (vB') u. 

'--v--' -.....,_.' 
A B 

y ( c'v-1
) (V x)+ D ....____...., 

c 

where V is the transformation rnatrix of the sarne size as A'. It has the forrn of 

(4.19) 

(4.20) 

(4.21) 

where I is the identity matrix. The resulting rnatriecs A, B, and C in (4.19) and (4.20) 

are real matrices and the value of the output y is preservcd. 
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The time-domain state-space representation is then eheckcd for passivity. By [22, 51], 

the state-space system is passive, if there exists a matrix X that is symmetrie and real 

positive dcfinite to satisfy the continuous-time algebraic Riccati equation 

( 4.22) 

where all cigenvalues of A must have negative real parts. The (A, B) pair must be stabiliz

able, and D +DT > O. Thesc properties can be automatically satisfied by the macromodcl. 

Eigenvalues of A has only negative real parts, as only stable polcs (with negative real part) 

arc obtained from Vector Fitting. And D +DT > 0 can be guaranteed by cnforcing the 

diagonal entrics of D to be greater than zero and off-diagonal entrics to be equal to zero 

during the rcsiduc calculation proccss [7]. This timc-domain passivity check algorithrn is 

independent of frequcncy and very fast, but it still fails to give any information about the 

location of the passivity violation. It is simply an ideal rnethod to check the passivity of a 

macro mo del. 

4.3 An Efficient Method of Passivity Verification 

In the previous section, wc have discussed frequency-clomain and time-domain methods 

used to cheek the passivity of macromodels. Their common drawback is that they fail to 

tell the location of passivity violation. However, this information is required for the later 

compensation proccss. In order to achicvc this function, a new passivity check method was 

developecl in [38], which is efficient and informative. The description of the method starts 

with two theorems. 

Theor-ern 1 [51]: The statc-space system describcd by (A, B, C, D) is passive if the 

Hamiltonian matrix 

(4.23) 

has no pure imaginary eigcnvalues. 

This method is similar to the time-domain passivity check method, as it is also based 
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on the state-space representation. The a.dvantage of Theorern 1 bccornes clear when it is 

combined with Theorern 2. 

Theo·rern 2 [52---55] The real part of the syrnrnetric admittance rnatrix F(jw0) = Real(Y(.jw0 )) 

is singular if jw0 is an eigenvalue of the corresponding Hamiltonian rnatrix M in Theorern 

1, provided D +DT is a positive definite matrix. 

Theorern 2 relates the imaginary eigenvalue of the Harniltonian matrix M to the frequen

cies where the maeromodel becomes nonpassive. It implies tha.t any imaginary eigenva.lue 

of the Hamiltonian corresponds to the frequencies at which the real part becornes singular. 

In other words, these frequencies points are exactly the zero-crossing points of the eigen

values of the real part of Y(jw). The constraint of Theorern 2 (i.e., D + D 1
' > 0) implies 

the macromodel should be asymptotically passive at w = oo. This can be easily ensured 

by cnforcing the coupling constants corresponding to the diagonal entries of Y(s) to be 

positive and the ones corresponcling to the off-diagonal entries to be zero cluring the Vector 

Fitting process [7]. 

However, Theor·em 2 only tells us the frequency points at which the macromoclel be

cornes singular. They are not neccssarily the exact locations of the passivity violation 

regions. The exact locations are unknown, unless the slopes of the eigenvalues of F(jw0 ) 

at each frequency point cletectecl by Theorem 1 are determinee!. This calculation can be 

clone as follows. 

Assuming that À is an eigenvalue of F(jw0 ) and u is the corresponding right eigenvector, 

we have 

(F(jw) - .\I)u = O. ( 4.24) 

Differentia ting the ab ove equation with respect to w, wc have 

( 
d . d.\ ) . du 

dwF(.Jw)- dwl u+ (F(.Jw)- .\I) dw =O. (4.25) 

Thcn (4.25) is left-multiplied by vr, which is the transposcd left eigenvector of F(jw) 
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d dÀ du 
VT -d F(jw)u- VT :fwu + VT (F(jw)- Àl) -d = Ü. 

,w ( w 
( 4.26) 

By the definition of left eigenvector, vT (F(jw)- Àl) in the last term of (4.26) is equal 

to zero. Taking advantagc of this property, ( 4.26) ean be simplified as 

rd rdÀ 
v -F(jw)u =v -u 

dw dw 
( 4.27) 

or 

T d 
dÀ v ~F(jw)u 

dw VTU 
( 4.28) 

Notice that F(jw) can be expressed using (4.7) 

Real(Y(jw)) = F(jw) 

= -CA(w2I + A 2t 1B + D, 
( 4.29) 

then the derivative of F(jw) with respect to w on the right hand-side of (4.28) is easily 

derived as 

( 4.30) 

By substituting ( 4.30) for ( 4.28), we obtain the formula for calcula ting the slope of the 

eigenvalue of F(jw) 
dÀ vr (CA(w2I + A 2

)-
22wB) u 

dw v1'u 
(4.31) 

Most practical interconnect networks are multi-port networks. The corresponding ad

mittance matrices are of the same size and have multiple cigenvalues. One should make 

sure that when evaluating (4.31), the correct eigenvectors are used. For exa.mple, we evalu

ate the slope of F(.jw) at wk for a three-port network. So F(jw) is a three-by-three matrix 

and has tlnee eigenvalues. It is not obvions that the eigenvectors (u and v) belonging to 

which eigenvalue should be used in (4.31) to evaluate the slope. It is useful to note that wk 

corresponds to the frequeney where F(jwk) is singular. Thus, the solution is to evaluate the 

three eigenvalues of F(jwk) and find the one elosest to zero ( It should be ideally zero, and 
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numerical noise is eonsidered here.). The eigenvectors corresponding to th at eigen value are 

applied to (4.31). 

In order to determine the location of each violation region, the follows steps are used: 

1. Construct the Hamiltonian matrix using Equation ( 4.23). 

2. Calculate the cigenvalues of the resulting Hamiltonian matrix M and colleet the 

imaginary eigcnvalues in a veetor, whose entrics are arranged in an ascending order 

G = [w1,w2, ... ,wN] such that w1 < w2 < · · · < WN. 

3. Evaluate the cigcnvalue of F(jw) at the frcquency point corresponding to cach cntry of 

G using (4.31). Since the macromodel is asymptotically passive at w = oo (D+DT > 
0), the slope at the highest frcquency (wN) must always be positive. 

4. Count the nurnber of positive and negative slopes from the highest frequency point 

(wN ). When the nnmbers of positive slopes and negative slopes become equal stop 

counting. Assuine the count stops at wk, the first passivity violation region is located 

at [wk,wN]· 

5. Roset the countcr and start counting from wk--l· Rcpcat Stop 3 and Stop 4 until all 

imaginary eigenvalucs are exhausted. 

One should pay special attention to Step 2, beeause the imaginary eigenva.lues of M 

may not be pur·ely imaginary due to the numerieal noise generated during computation [38]. 

Fortunately, the eigenvalue speetrum of the Hamiltonian matrix is syrnmetrie with reference 

to both real and imaginary axes. Taking advantage of this property, the pure imaginary 

eigenvalues are deteeted by ehecking their eigenvalues which are symmetric only with re

spect to the real axis. As a result, the effcct of numerical noise is rcmoved. 

It is also worth noting that it is not always true that the numbers of positive slopes 

and negative slopes are equal for the last violation region, since the passivity violation may 

start from origin (Fig. 4.3). In this case, the violation region is simply from origin to the 

frequency point where the cnrrent-round count starts at. 
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Eigenvalue of F(Jm) 

Origin 

Third region of 
passivity violation 

• lmaginary eigenvalue of Hamiltonian matrix 

/ Positive slope of the eigenvalue of F(.iw) 

"'- Negative slope of the eigenvalue of F(JCù) 

Second region of 
passivity violation 

First region of 
passivity violation 

Fig. 4.3 Regions of passivity violation identified. The third violation region 
starts from the origin. 

4.4 Conclusion 
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In this chaptcr, we discussed and compared somc of the most widcly used methods for pas

sivity check. The mcthod bascd on frequcncy-domain passivity criteria is straightforward 

but suffers from high CPU cost and misjudgment. It is thercfore not recommended, but 

can be used as a supplcmentary mcthod for rcsult verification. The methods based on the 

space-state representation arc used as the major methods for passivity check in this thesis. 

Most significantly, the mcthod discusscd in the prcvious section can also identify the exact 

location of passivity violation. This mcrit is very useful for the compensation proccss that 

is going to be discussed in Chapter 5. 
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Chapter 5 

Passivity Compensation 

In this chaptcr wc procccd to the issue of passivity compensation. In case thore is passivity 

violation detected by any method discussed in Chaptcr 4, a compensation proccss is nec

essary to fix that. The algorithm used in this thesis is the one based on [28]. Tho major 

advantago of this algorithm is that it foaturos global passivity enforc:emont; no additional 

passivity violation is gencra.ted during tho compensation proccss. But for applications in 

this thesis, a different method of c:alculating the perturbing value of the residues (i.e . .6.C) 

is proposed. The method can guarantee the minimum change in response. 

5.1 Theory 

In arder to demonstrate the compensation proccss, wc start with a M-port macromodcl 

generated using Vector Fitting algorithm 

Yu (s) Y12(s) Y1M(s) 

Y(s) = 
Y21 (s) Y22(s) Y2M(s) 

(5.1) 

YNn(s) YA,12 (s) YMM(s) 

Each element of the abovc matrix is in the pole-rcsiduc form 

N .. kt,J 
v· ( ) - I: n i,j. r .. ·-o 1 ~1~ 
L i,j 8 - · · + C l 01 Z, )- l l' , • ,1VJ 

s p'•J 
n=l n 

(5.2) 
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where N is the nurnber of poles/residucs. Then the stak'-space rnodel (A, B, C, D) is 

obtained by following the guideline in Chapter 4. The resulting rnacrornodel described by 

the state-space representation is checked for passivity by evaluating the eigenvalues of the 

Harniltonian rnatrix 

M = [ A- B(D + DT)-1C B(D + DT)-1BT l 
CT(D+DT)- 1C -AT+CT(D+DT)-1BT . 

(5.3) 

ln case of pure irnaginary eigenvalues detectcd (i.e. nonpassivc), the exact location of cach 

passivity violation is idcntified using the rncthod described in Chaptcr 4. The next stcp 

is to find the location and magnitude of the maximum violation (i.e. the most negative 

eigenvalue of F(jw) given by (4.29)), for cach region of violation. This cau be donc by 

solving the following problcm 

min(eig(F(jw))) w E (wz,wh), (5.4) 

whcre w 1 and wh are rcspectively the lowcr and upper boundaries of the same region of 

passivity violation. The most negative value is considered as the worst case of passivity 

violation. ln orcier to make the rnacrornodel passive at the frequency at which the maximum 

violation is located, wc need to offset its eigenvalue at that frequency point by the absolute 

value of (5.4). To achieved this goal, the real part of Y(jw) (i.e. F(jw)) need to be added 

by sorne 6-F(jw), sueh that 

F(jw) + 6-F(jw) ?: O. (5.5) 

Then recall 

(5.6) 

From (5.6), if we keep the matrices A, B, and D unchanged and slightly perturb C, the 

resulting change in C, denoted by 6-C, can lead to a desired 6-F(jw) that satisfies (5.5). 

From this point on, to offset the negative eigen value of F(.jw) (or make F(jw) positive real) 

a.t the frequency of maximum passivity violation, wc look for sorne 6-C, such that 

(5.7) 
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By applying the eigenvalue perturbation theory [56] to the above equation, wc are able 

to relate the unknown ~C to the most negative eigenvalue of F(jw) given by (5.4): 

1' 
~À= y F~!w)x 

y x 

yT 6.CA(w2I + A 2
)- 1Bx 

T y x 

(5.8) 

wherc y and x arc rcspcctivcly the !cft and right cigcnvectors of F(jw) at the frcqucncy of 

the maximum violation and ~C contains the unknowns. Bcforc solving the abovc equation, 

it is neccssary to simplify it first. Be awarc of the fact that F(jw) is a real syrnmetric mat rix 

(real part of Y (jw)). Its lcft cigenvcctor is equal to its right eigenvcctor. Morcover, if the 

eigcnvcctors arc norrnalizcd, the dcnominator of (5.8) is cqual to the scalar l. So (5.8) is 

simplificd to 

(5.9) 

Sincc the unknowns in (5.9) arc not cxplicitly indicatcd, the abovc equation can be further 

convcrted to a more convcnicnt expression by taking advantagc of the propcrty of the 

Kronecker product [57] 

~À= (A(w21 + A2) -l Bxf ® (y1
') vcc (~C) 

T 
= xTBT ((w21+ A2)-l) AT® (-yT) ~' (5.10) 

e Q 

whcre "®" denotes the Kronecker product operator, "8" is a row vector and "Q" is the col

urnn vector containing the unknown pcrturbed value of ~C. Notice that sinee the residues 

obtained from Vector Fitting algorithm is already accurate, the macromodel must suffer 

sorne aceuraey degradation aftcr the eompensation operation. To minimizc the ehanges in 

rcsponscs duc to the compensation, only a limited number of residues are perturbed. Aetu

ally, the perturbation should be only effeetive on the real parts of the residues corresponding 

to the poles loeated in the vicinity of the passivity violation. By setting this constraint, 

the accuracy degradation will be confined within the vicinity of passivity violation; it will 

not be spreaded throughout the whole bandwidth of interest. The selection of the poles 

is donc by comparing the contribution of each pole in the vicinity of passivity violation to 
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the real part of the diagonal entries of the admittance matrix. This ean be aehieved by 

integra ting the square of the real part of the frequeney response, (i.e. Real (Y (jw))) over 

the frequency range of passivity violation. That is 

1
Wfl 

Reaz2 (Y (.jw)) rllil, 
WL 

(5.11) 

wherc WL and wu arc the lower and upper boundarics of the pa.ssivity violation. Only the 

pol es with significant contribution (i.e. with comparably large integration value in ( 5.11)) 

are sclcctcd for future compensation. In the ncxt stcp, the choscn rcsiducs necd to be 

mappcd to the residue matrix C. This process is illustrated by the following example. For 

an .l\1-port macromodel with N pairs of complex eonjugate poles and the corresponding 

rcsiducs c;,q = r;,q ± J9;,q, for k = 1, 2, ... , N and p, q = 1, 2, ... , M, by (4.20), we have 

l 1 1'1 rN N TN l 1 l N N N 
rn T12 · · · lM··· Il r12 · · · lM··· 9n 912 ... 91!vl · · · 911 912 ... 91M 

rl Tl Tl N 'f'N rN 1 l 1 N N N 

C= 
21 22 ... 2M · · · r21 22 ... 2M · ·· 921 922 ... 92M · · · 921 922 ... fhM 

(5.12) 
... 

r.l ri ri rN 7.N rN 
9

1 
9

1 91 gN 
9

N 
9

N 
Ml M2· · · MM··· Ml M2· · · MM··· Ml M2· · · MM···. M1LM2" · · MM 

If the kth complex pole pair is identified by (5.11), the resulting ,0.C is reprcsentcd as 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(5.13) 

with unknowns appcaring only in the corresponding positions in 5.12. The vector Q is 

formulatcd as Q = [,0.rf1 , ,0.r~2 , ... , ,0.r~Mr. In case more than one pair of complcx poles 

are selected by (5.11), ,0.C will have block diagonal entries eorresponding to the seleeted 

poles. For cxample, if the kth and zth pole pairs are selected, ,0.C will be in the form of 
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0 0 ~rT-1 0 0 0 ~ril 0 () 0 
() 0 () ~r~2 0 () 0 ~r~2 0 () 

~C= 

0 0 0 0 ~T11M 0 0 0 ~Tl MM 0 
(5.14) 

and consequently Q = [~r~1 , ~r~2 , ... , ~r'MM, ~ri1 , ~r~2 , ... , ~,.~fM]T. In genera.!, all 

the non-zero entries of ~C are stacked vertically to form the column vector Q. Then, 

(5.10) is solved for Q or ~C. Notice that (5.10) is an undcr-dctcrmincd problem that has 

a rank less than the nurnber of unknowns (i.e. There are infinity sets of possible solutions 

satisfying this equation.). Renee, a linear optimization is required to obtain the optimum 

solution to (5.10). Based on this discussion, the problern can be forrnulated as 

rninirnizing Il Q 11
2 subject to the constmints: 

a) ~À= 8Q 

b) All entTieB of Q are poBitive rwrnber-s 

where Il Q 11 2 denotes the Frobenius norm of Q squared. By minimizing the Frobenius 

norm of the unknown vector we can keep the loss of accuracy in response as low as possible. 

The problern (5.10) is solved by enforcing Constraint a). Constraint b) is used to guarantee 

the change in the real part of the selected residues is always positive. Notice that the real 

part of an arbitrary function H(jw) due to a complex pole pair, p1,2 = -o: ± j{J, and the 

corresponding residues k1,2 = r ± jg is [38, 58]: 

(5.15) 

It is evident the change in real (H(jw)) due to sorne perturbation of the real part of the 

residue ~d1 can be expressed as 

(5.16) 
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(5.16) implies that ~(real(H(.jw))) is linearly proportional to ~r. Taking advantage of 

this property, we have all the perturbations of the diagonal entries of F(jw) positive (i.e. 

~Fn(.jw), ~F22(jw), ... , ~FMM(jw) > 0), as Constraint b) is enforced to guarantee a 

positive ~'f". Once this perturbed value is added to the original F(jw), the eigenvaJues of 

F(jw) are offset by the val nes given by 

A , = YT~F(jw )x 
L.l.A T ' y x 

(5.17) 

where x and y are respectively the right and lcft eigenvectors of F(jw). In fact, the left 

eigcnvcctor is eqnal to the right eigenvector, sin ce F (.iw) is a real symmctric mat rix. if 

the cigenvcctors arc further norma1ized, for an M-port nctwork the abovc equation can be 

expanded as 

(5.18) 

From (5.18) it is evident that the perturbation only adds positivcly to the eigcnvalues 

of F(jw), since ~F11 (.jw), ~F22 (jw), ... , ~FMM(.jw) have beon proved to be positive mun

bers. Hcnc~e, it bccomcs a nice fcature of this method since the compensation only fixes 

the cxisting passivity violations and ncver introduees additional passivity violations to the 

macromodel. 

The method compensates the region of passivity violation iteratively. In each iteration 

only the highest passivity violation (the one of the highest frequency) is compensated. After 

each iteration the macrornodel is again checked for passivity and the regions of pa.ssivity 

violation are updated for another iteration. The general procedure of the compensation 

operation is summarized in Fig. 5.1. This method featurcs a fixcd direction of passivity 

compensation. Thns, it nover generates additional regions of passivity violation during the 

compensation process. 
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Step 1. Construct the Hamiltonian matrix from the macromodel using Equation 
(4.23) and evaluate its eigenvalues. If no pure imaginary eigenvalues are 
detected, stop the iteration. Otherwise proceed to Step 2. 

Step 2. Follow the procedure outlined in Section 4.3 to determine the location for 
the region of passivity violation. 

Step 3. Determine the frequency and the magnitude of the maximum (most 
negative) point within the highest region of passivity violation (the one of 
the highest frequency) using Equation (5.4). 

Step 4. Select the significant poles for compensation by evaluating Equation 
(5.11) for each pole in the vicinity of the highest passivity violation. 

Step 5. Formulate Equation (5.1 0) and solve it with the linear optimization 
(discussed in Section 5.1) to compensate the highest violation on/y. 

Step 6. Update the residues and go back to ~· 

Fig. 5.1 Pseudocode of the compensation algorithm 

49 
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5.2 Numerical Results 

In this section, three numerieal examples will be given as a botter illustration of the mecha

nism of the method. Both frequency-domain and timo-domain responses will be compared 

with those of the original network. A limitation of the method will also be discussed, and 

a proper solution to that will be given. 

5.2.1 Example 1 

,-- ----, 
d=O.lm d=0.05m 

1 Ason ,... - - - - - - - - - , 
~ 1 v 1 1 

1 : : : 
1 1 

1 
1 1 1 
1 1 

1 
son son son son son son sonl!oa - - - - - - - -lson oo~ son son son son son son son ~)n 
~ -> -> ~ -> ~ ~ ~ ~ ~ { ~· ~ ~ ~· -":> 1 
1>~~~~~~ ~~>~~~~>~ 
+++++++ .,...++++++++1 

L-----------------j 
Fig. 5.2 Example 1: Two-port interconnect containing coupled transmission 
lin es 

Tho first example is a two-port nctwork consisting of coupled transmission linos and 

resistors, shown in Fig. 5.2. Tho subnctwork is characterized by a set of Y-paramcter 

simulated from DC to 4 GHz. The macrornodel was constructed using Vcctor Fitting al

gorithm. Thirty-four complex poles and two real polos are required to obtain a reliable 

accuracy. The Y-parameters calculatcd from the macromodel were cornpared with those 

simulatcd from the original network. A very good match was achievcd (Fig. 5.3). Ncxt, 

the state-space model (A, B, C, D) was construeted from the polos and residues, and the 

resulting model was checkcd for passivity by evaluating the eigenvalues of the Hamiltonian 

matrix. Since no pure imaginary eigenvaJue was detccted, the macromodel is passive and 

thcre's no need for compensation. To make sure the judgmcnt is correct, the conventional 

method of plotting the eigenvalues of the real part of Y(jw) has boen carried out as well 
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in Fig. 5.4. The first and second eigenvalucs are plotted to 12 GHz and no negative values 

were detcctod. Following that, the SPICE model was eonstructed using the method de

seribed in Appendix A and used as the netlist file of HSPICE for the transient simulation. 

The voltage at Port 2 was simulated and compared with the simulation of the original 

network Fig. 5.5). A pulse of 0.4 GHz with both rise and faU times cqual to 0.25 ns was 

connected to Port 1 and the simulation stopped at 10 ns. The comparison shows that the 

rcsults agree with each other. 
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Fig. 5.3 Admittance pa.rameter cornparison - Exarnple 1 
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Fig. 5.4 Eigenvalues of the real part of Y(jw) - Example 1 
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Fig. 5.5 Transient response cornparison: voltage at Port 2 - Example 1 

5.2.2 Example 2 

The second example was crcatcd based on Example 1. The difference is changes in sorne of 

the components' values in orcier to make the network more susceptive to passivity violation. 

The resulting network was simulated to 3 GHz to get the Y-parameters. Vector Fitting was 

applied to get the macro mo del for the ta.bulated data. Thirty poles ( twenty-eight complex 

pol es and two real pol es) are required to achieve a good accuracy. Th en, the corrcsponding 

state-spa.ce modcl was checked for passivity and passivity violation was detected out of 

band (Fig. 5.7). Thus, the macromodel was compensated for passivity using the method 

discussed in the previous section. The eigenvalue after compensation is shown in Fig. 5.8 

and no more negative value was dctected. The compensated macromodel was simulated to 

get the responses, which were compared with the original Y-parameters obtained from the 

network (Fig. 5.9 and Fig. 5.10). A good match has been achieved showing that the com

pensation proeess did not affect the accuracy. Ddails about this process are summarized 

in Table 5.1. The transient simulation of the SPICE model was earried out by eonnecting 

a pulse of 0.4 GHz with both rise and fall times equal to 0.25 ns to Port 1 and sirnulating 

the voltage at Port 2. The comparison in Fig. 5.11 shows that the macrornodel is accurate 

in the timc domain as wcll. 
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Fig. 5.6 Example 2: Two-port interconnect suseeptive to passivity violation 

Table 5.1 Details of the compensation process: boundaries of passivity vi
olation, maximum violation location and value, pole(s) seleeted for compen
sation, residue(s) prior to compensation, residue(s) after compensation and 
evaluation of error - Example 2 

Violation 
information 

Pole(s) & residue(s) 
selected for 

compensation 

Residue( s) after 
compensation 

Il f:.C ~~fro 
Il C l[ro 

h 
fH 

frnax 
min(..\) 
pole(s) 

Yù 
Y2,2 

lî,l 
Y2,2 

Violation region 1 

3.57 GHz 
3.66 GHz 
:3.62 GHz 

-1.183E- 3 

-0.9533 ± 22.4067 
-2.4347 E- 2 =f 2.6487 E- 2i 
-3.1483E- 2 =f 3.2417 E- 2i 

-2.3032E- 2 =f 2.6487 E- 2i 
-3.1476E- 2 =f 3.2417E- 2i 

4.2E- 3 
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Fig. 5.11 Transient response comparison: voltage at Port 2- Example 2 

5.2.3 Example 3 

Example 3 is a three-port interconneet eonsisting of R, L, C components and transmission 

lines. The network was simulated from DC to 4 GHz. The resulting Y-parameters were 

fitted using Vector Fitting algorithm followed by generation of state-space madel. By 

checking the passivity of the macromodel, passivity violation was found right out of band 

(shawn in Fig. 5.14). Then the passivity violation was cornpensated and the resulting 

macromodel was again checked for passivity. It was fmmd the passivity violation wa.s 

fixed and no additional violation was creatcd (Fig. 5.15). To evaluatc the preservation of 

accuracy af"ter compensation, the responses of the macromodel were compared with the Y

paramctcr from rncasuremcnt(Fig. 5.16 and Fig. 5.17). From the compa.rison, wc can sec 

very good accuracy has been preservee! except for the imaginary part of Y:1a. The reason and 

solution for that is given in the latcr part of this chapter. The details of the compensation 

process are summarizcd in Table 5.2. The transient simulation with the sa.me source as 

Examplc 1 and 2 was applied to Examplc 3 to verify its accuracy in the time domain. Good 

match was achieved bctwccn the SPICE madel and the original intcrconncct (Fig. 5.18). 
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Fig. 5.12 Example 3 

Table 5.2 Details of the compensation process: boundaries of passivity vi
olation, maximum violation location and value, pole(s) seleeted for compen
sation, residue(s) prior to compensation, residue(s) after compensation and 
evaluation of error - Example 3 

Violation 
information 

Pole(s)& 
residue(s) 

selected for 
compensation 

Residue(s) 
after 

compensation 

lll\C ~~fra 
Il C l[ro 

Violation region 1 

h 4.06 GHz 
fH 4.34 GHz 

fn~..a:t 4.11 GHz 
min( À) -0.0166 

pole(s) -0.1696 ± 25.6969i 
Y1,1 -4.5128E- 4 ± 1.7952E- 4i 
Y2,2 7.7466E- 6 =t= 2.8332E- 3i 

1-":1,3 -4.4557 E - 4 =t= 5.6845E - 3i 

Y1,1 4.3588E - 3 ± l. 7952E - 4i 
Y2,2 7.3231E - 4 =t= 2.8332E - 3i 
Y:i,3 2.3318E- 4 =t= 5.6845E- 3i 

1.74E- 2 
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Fig. 5.18 Transient responsc eornparison: voltage at Port 2- Example :3 

5.3 Compensation-Introduced Inaccuracy and Solution 

We have seen that there is an observable difference in the imaginary part of Y3:~ between 

the compensated macromodel and the interconnect in the region close to the passivity 

violation (happening out of band). The accuracy of the rnacromodel decreases due to the 

compensation process. This could happen cspecially when the passivity violation takes 

place beyond and dose to our highest frequency of intcrest. The reason lies in that Vector 

Fitting only guarantees the in-band accuracy, it does not have control ovcr the out-band 

response of the macromodel. Consequently, given that sufficient in-band information is 

provided and a fine Vector Fitting is applied, it is extremcly occasional to detect passivity 

violation in band (In case of in-band passivity violation, it should be extremely small so 

that sorne slight compensation is sufficient to offset it and the frequency response will not 

be affeeted mu ch.). In addition, remember that we have ensured the maeromodel to be 

asymptotically passive at w = oo by adding constrains to the coupling constants (D), so 

the most possible location of passivity violation is in the vicinity of the highest frequency 

of interest right out of band, like Example 3 (Exarnple 2 a.lso shows an out-band violation, 

but the violation is so small that it has very little affect on the accuracy). In contrast to in

band passivity violations, out-band violations are usually large and require more efforts to 

compensate. The degradation of accuracy due to the compensation process is conscqucntly 
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large. Fortunately, sinee only the poles in the vieinity of passivity violation are sclceted for 

compensation, the resulting inaccuracy is efficiently confined to the vieinity of the highest 

frequency of interest, like the ima.ginary part of Y3a in Fig. 5.17. Based on this discussion, 

a straightforward solution to the problem is to give sorne appropriate frequeney rnargin 

to our frequency range of intercst. For an illustration, wc return to Example 3. Assume 

one cares about the accuracy of the rnacrornodcl up to 4 GHz. Instead of simulating the 

original network to 4 GHz (as what was donc in Example 3), we simulate it to 5 GHz. The 

passivity violation happens right out of band. Fig. 5.19 shows the negative cigcnvalues. 

After a proper compensation, the responses of the rnacromodel are compared with those of 

the original network (Fig. 5.21 and Fig. 5.22). Good matches are obtained except for the 

imaginary part of Y22 , as a sma1l mismatch is detected around 5 GHz. Since our highest 

frequency of interest is 4 GHz, from Fig. 5.22 the 1 GHz margin efficiently offsets the 

accuracy degradation. 
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Fig. 5.19 The second and third eigenvalues of the real part of Y(jw) -
Exarnple 3 with frequeney rnargin 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusion 

This thesis reviews sorne typical techniques developed for incorperating the frequcncy

domain mcasurcd data into time-dornain simulators. Two main dasses of methods have 

been discussed: convolution-bascd mcthods and the oncs based on macromodcls. The 

convolution-based methods are usually not CPU-efficient as the convolutions have to be 

donc numerically. The macromodcl-based approachcs involve rational function approxima

tion and therefore suffer from ill-condition when a high-order approximation is required. 

In contrast to these methods, Vector Fitting algorithrn cfficiently avoids ill-condition by 

applying iterative solution. This feature allows it to fit more complicated curves in high

order approximations. 

Several methods for checking the passivity of the resulting macromodel are presented 

in Chapter 4. The method used in this thesis is based on evaluating the eigenva.lues of the 

Hamiltonian matrix. The advantage lies in that this method provides a direct link between 

pure imaginary eigcnvalues of the Hamiltonian and the regions of passivity violation. This 

helps us precisely locate the regions. Bascd on this information, the algorithrn discussed in 

Chapter 5 compensates the regions of passivity violation along a positive direction with

out introducing additional passivity violations. The algorithm perturbs the real part of the 

residues for the diagonal entries ofY(jw) with the poles and coupling constants unchanged. 

By applying a linear optimization the perturbed values offset the maximum violation and 

keep the change in response at the minimum level. A potential problem of accuracy degra-
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dation associated with the algorithm is illustratcd by Example 3. It is pointed out that 

adding sorne initial frequency margin to Vector-Iitting can effectively fix the problem. 

6.2 Future Work 

1. The compensation process is based on perturbing the residues of the diagonal entries 

of Y (jw), and the relative change in response is a measure to the impact of the 

compensation. In case the frequency response is small (close to zero) throughout the 

bandwidth, a minor compensation may cause relatively large change or even offset 

the original response. Future work is required to relate the magnitude of the change 

to the magnitude of the frequency response. Thus, the degradation of accuracy can 

be kept r-elatively small. 

2. Efforts will be made to develop a passivity-guaranteed approximation algorithm. The 

focus may be moved from post-macromodeling compensation to pre-macromodeling 

manipulation, which avoids passivity check and compensation and thercfore saves 

CPU cost. 

3. Interconnects containing large delay lines usually require comparatively high-order 

macromodels to rcpresent. The resulting complexity of macromodels leads to inten

sive CPU efforts in transient simulation. A delay extraction operation is required to 

reduce the delay beforc the rational function approximation [59]. 

4. The approximation methods discusscd in this thcsis arc only for linear network macro

modol construction. In contrast to linear networks, nonlinear networks are charac

tcrized in the time domain, and nonlinear macromodeling techniques need to be 

dcvcloped to address this problem. 
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Appendix A 

Conversion of Macromodels to 

Equivalent Circuits 

The conversion of macromodels in thcir state-space form to equivalent eircuits can be easily 

achieved. Consider (4.5) and (4.6) 

x(t) = Ax(t) + Bv(t) 

I(t) = Cx(t) + Dv(t). 

(A.l) 

(A.2) 

For a better illustration, let us assume we have a simple macromodel with two ports and 

two states. Hence, the above two diffcrential equations can be rewritten as 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

where JI, 12 and VI, v2 denote the port currcnts and voltages respectively. Xt, .T2 stand for 

the state variables. (A.3-A.6) cau be translated into an equivalent nctwork shown in Fig. 

A.l [60]. The state variables can be rcprescntcd by capacitor or node voltages vn1 , vn2 . 

In another word, cach state variable Îs rcprescntcd by one indcpondcnt node like Fig. 
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A.l(c)(d). Next, the equivalent circuits for the equations of the output currents are given 

by Fig. A.l(a)(b). Terms such as an, a12 , a21, a22 in (A.3) and (A.4) are represented by 

voltage controlled current sources controlled by the node voltages. It is always true that 

the number of the su bnetworks in Fig. A.l (a) (b) should be equal to the number of ports 

and the number of the subnetworks in Fig. A.l(c)(d) should be equal to the number of 

states. The resulting equivalent circuits are easily implcrnented for transieut simulation. 

Port 1 Port 2 
iz ~ ----..-------1>-------..------, 

v2 
l 

r.=-
2 dzz 

Fig. A.l Equivalent circuits of the state-space mode! 



,r----. 

77 

References 

[1] W. T. Beyene and J. E. Schutt-Aine, "Efficient transient simulation of high-speed 
interconnects characterized by samplcd data," IEEE Trans. Comp.,Packag. Manufact. 
Technol. A, vol. 21, pp. 105-114, Fcb. 1998. 

[2] M. Elzinga, K. L. Virga, L. Zhao, a.nd J. L. Prinee, "Pole-residue formulation for 
transient simulation of high-frequncy interconnects using householder ls curve-fitting 
techniques," IEEE Trans. Adv. Packag., vol. 23, pp. 142-147, May 2000. 

[3] W. T. Beycne and .J. E. Schutt-Aine, "lnterconnect simulation using order reduction 
and scattering parameters," IEEE Electronic Components and Technology Conference, 
pp. 627-631, May 1998. 

[4] R Achar and M. S. Nakhla, "Simulation of high-speecl interconnects," Proceedings 
IEEE, vol. 89, pp. 693-728, May 2001. 

[5] H. B. Bakoglu, Circu'it, Interconnections and Packaging for VLSL Reading, MA: 
Addison-Wesley, 1990. 

[6] M. S. Nakhla and R. Achar, lligh-Speed Circuit and hûerconnect Analysis. multimedia 
Learning course, OT: Omniz Global Knowledge Corporation (www.omniz.com), 2001. 

[7] D. Saraswat, R Achar, and M. S. Nakhla, "A fast algorithm and practical consid
erations for passive macromodcling of measured/simulatcd data," IEEE Trans. Adv. 
Packag., vol. 27, Feb. 2004. 

[8] W. W. M. Dai, "Special issue on modeling and simulation of high-speed and high
dcnsity interconncets," IEEE Trans. Circuits Syst., vol. 39, pp. 857--982, Nov. 1992. 

[9] M. S. Nakhla and A. Ushida, "Special issue on modeling and simulation of high-speed 
interconnects," IEEE Tmns. Circuits Syst., vol. 47, pp. 239-305, Apr. 2000. 

[lü] A. Deutsch, "Electrical charactersitics of interconnections for high performance sys
tems," Proceedings IEEE, vol. 86, pp. 315- 355, Fe b. 1998. 

[11] R.Goyal, "Mana.ging signal intcgrity," IEEE SpectT., pp. 54--62, Mar. 1994. 

http://www.omniz.com


,---. 
' 

References 78 

[12] J. B. Faria, MvJt'iconductor Transmission Line StnJ,ctures. New York: Wiley, 1993. 

[13] C. Paul, Analysis of MtûticonductoT Transmission Lines. New York: Wiley, 1994. 

[14] K. C. Gupta and R. Grag, Micr'Ostrip Lines and Slotlines. Boston MA: Artech House, 
1996. 

[15] A. E. Ruehli, "Equivalent circuit models for three dimentional multiconductor sys
tems," IEEE Trans. Microwave Theory Tech., vol. 22, pp. 216-224, Mar. 1974. 

[16] P. K \Volff and A. E. lluehli, "Inductance computations for complex thrce dimensional 
geometries," IEEE 'J'rans. Circ'uits Syst., pp. 16--19, 1981. 

[17] J. Cullurn, A. E. Huchli, and T. Zhang, "A mcthod of rcduced-order modcling and 
simulation of large interconnect circuits and its application to peec models with retar
dation," IEEE Trans. Oircuits Syst., pp. 261-273, Apr. 2000. 

[18] A. E. Ruehli and II. Heeb, "Circuit models for three dimentional geometries including 
dielectrics," IEEE 'J'rans. Microwave Theory Tech., pp. 1507-1516, Mar. 1992. 

[19] A. E. Ruehli and P. A. Brennan, "Equivalent capacitance calculations for three dirnen
sional rnulticonductor systems," IEEE Trans. Microwave Theory Tech., pp. 76-82, Feb. 
1973. 

[20] B. Young, Digital Signal IntegTity: Modeling and Simulation with Interconnects and 
Packages. Upper Saddlc River, NJ, USA: Prcntice Hall PTR, 2000. 

[21] M. N akhla and R. Achar, lnter'COnnect modeling and simulation, in The VLSI Ha nd
book, ch. XVII. Boca Raton, FL: CRC Press, 2000. 

[22] D. Saraswat, "Passive macromodcling of linear subnetworks characterized by rnca
sured/simulated data," masters thesis, Carleton University, Ottawa ON, Canada, April 
2003. 

[23] N. Nakhla, A. Dounavis, R. Achar, and M. Nakhla, "Passive rnacromodeling and 
sensitivity analysis of multiconductor transmission !ines," IEEE International Nor-th 
Eastern Symposium on Circuits and Systems, pp. 33-36, .June 2004. 

[24] C. P. Coelho, J. Phillips, and L. M. Silveira, "A convex programming approach for 
gcnerating guaranteed passive approximations to tabulated frcqucncy-data," IEEE 
'J'rans. ComputeT-Aided Design of Integmted Circuits and Systems, vol. 23, Feb. 2004. 

[25] J. Kim and M. Swarninathan, "Modcling of rnultilayercd power distribution planes 
using transmission matrix method," IEEE Trans. Adv. Packag., vol. 25, May 2002. 



References 79 

[26] N. Orhanovic, P. Wang, aml V. K Tripathi, "Gencralized rnethod of charactoristics 
for timc domain simulation of multiconductor lassy transmission lines analysis of lassy 
couplcd transmission lincs," Proc. IEEE Symp. on Circuits Syst., May 1990. 

[27] F. Y. Chang, "The generalizcd method of characteristics for waveform relaxation anal
ysis of lassy coupled transmission lincs," IEEE 11rans. Micmwave Theory Tech., vol. 37, 
pp. 2028-2038, Dcc. 1989. 

[28] O. Saraswat, Global Compact Passive Macromodeling Algo'f'ithms fm· High-Speed Cir
cuits. Pll.Cl. thesis, Carleton University, Ottawa ON, Canada, 2006. 

[29] M. S. Nakhla and R. Achar, Multimedia Book Series on Signallntegrity. ON: Omniz 
Global Knowledge Corporation (www.omniz.com), 2002. 

[30] L. T. Pillage and R. A. Rohrer, "Asyrnptotic wavcform evaluation for timing analysis," 
IEEE Trans. Cornputer-A-ided Des1:gn, vol. 9, pp. 352 366, Apr. 1990. 

[31] E. Chiprout and M. Nakhla, Asyrnptotic Waveforrn Evaluation and Marnent Matching 
for Inter-connect Analysis. Boston, MA: Kluwcr Academie Publishers, 1993. 

[32] E. Chiprout and M. S. Nakhla, "Analysis of interconnect networks using complex 
frequency hopping(CFH)," IEEE Trans. Cornpntcr-Aided Design, vol. 14, pp. 186-
200, Feb. 1995. 

[33] B. Moore, "Principal cornponcnt analysis in linear systems: Controllability, observ
ability and modcl reduction," IEEE Trans. A utomatic Control, pp. 17--32, Fcb. 1981. 

[34] .YI. Ma and R. Khazaka, "Efficient projection based macromodel for interconnect net
works," Proc. 9th IEEE W m·kshop on Signal P'ropagation on Interconnects, Ger·many, 
pp. 181--184, May 2005. 

[35] S. Lin and E. S. Kuh, "Transient simulation of lassy interconnects based on the recur
sive convolution formulation," IEEE Trans. Circuits Syst., vol. 39, pp. 879-892, Nov. 
1992. 

[36] L. M. Silveira, I. M. Elfadel, J. K. White, M. Chilukura, and K. S. Kundert, "Efficient 
frequency-domain modeling and circuit simulation of transmission lines," IEEE Trans. 
Comp.,Packag. Manufact. Technol. A, vol. 17, pp. 505-513, Nov. 1994. 

[37] T. McKelvey, H. Akçay, and L. Ljung, "Subspacc-based multivariable system identifi
cation from frequcncy response data," IEEE Trans. Automat. Contr·., vol. 41, pp. 960--
979, .July 1996. 

http://www.omniz.com


References 80 

[38] D. Saraswat, R. Achar, and M. S. Nakhla, "Global passivity enforeement algorithm 
for macromodcls of interconnect subnetworks characterized by tabulated data," IEEE 
Trans. Very Large Scale Integration Systems, vol. 13, no. 7, pp. 819-832. 

[39] .J. E. Schutt-Aine and R. Mittra, "Scattering parameter transient analysis of transmis
sion lincs loaded with nonlincar tcnninations," IEEE T'rans. Microwave Theory Tech., 
vol. 36, pp. 529-536, Mar. 1998. 

[40] A. R Djordjevic, T. K. Sa.rkar, and IL F. Harrington, "Analysis of lassy transmission 
lines with arbitrary nonlinear terminal networks," IEEE Trans. Microwave Them·y 
Tech., vol. 34, pp. 660-666, June 1986. 

[41] B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses 
by vcctor fitting," IEEE T'rans. power delivery, vol. 14, pp. 1052-1061, July 1999. 

[42] D. Winklestein, M. B. Stccr, and R. Pomerleau, "Simulation of arbitrary transmis
sion line networks with nonlincar terminations," IEEE Trans. Circuits Syst., vol. 38, 
pp. 418--422, Apr. 1991. 

[43] C. P. Coclho, J. ll. Phillips, and L. M. Silvcira, "Robust rational function approxi
mation algorithm for madel generation," Froc. 86th Design A-utomation Conference, 
New Or·leans, vol. 23, no. 2, pp. 207--212, 1999. 

[44] Y. Saad, Itemt'ive Mcthods for Sparse Linear Systems. Pws Publishing Co., 1996. 

[45] L. N. Trefethen and D. Bau, NumeT'icoJ Dinear Algebm. Philadelphia PA: SIAM, 1999. 

[46] R. Archar, P. Gunnpudi, M. Nakhla, andE. Chiprout, "Passive interconnect reduction 
algorithm for distributed/measurcd networks," TCAS-II, vol. 47, pp. 287-301, Apr. 
2000. 

[47] L. Weinberg, Network Analysis and Synthesis. New York: M.cGraw-Hill Book Com
pany lnc., 1962. 

[48] E. S. Kuh and R. llohrer, Theory of Active Lineœr Networks. San Fransisco: Holden
day luc., 1967. 

[49] M. E. V. Valkenberg, Introduction to Modern Network Synthesis. New York: John 
Wilcy and Sons Ine., 1960. 

[50] C. T. Chen, Linear System Theory and Design. New York: Oxford University Press, 
1999. 

[51] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear matri:r inequalitics in 
system and contr·ol them·y. Philadelphia PA: SIAM, 1994. 



References 81 

[52] D. Saraswat, R. Archar, and M. Nakhla, "Passive macromodels of microwave subnet
works characterized by measured/simulated data," Proc. 7th IEEE Workshop Signal 
Propagation Interconnects, Siena, Italy, pp. 999-1002, .June 2003. 

[53] D. Saraswat, R. Archar, and M. Nakhla, "On passivity check and compensation of 
macro-modcls from tabulated data," Pme. Int. Microwave Symp. 2003 Dig., Philadel
phia, PA, pp. 25---28, May 2003. 

[54] S. Grivet-Talocia, "Passivity enforccment via perturbation of hamiltonian matrices," 
IEEE Trnns. CiTc1tits Syst., vol. 51, pp. 1755-1769, Sept. 2004. 

[55] P. A. Parrilo, Structur·ed sernidefin'ite pmgmrns and sernialgebraic geornetry rnethods 
in mbnstness and opt-irnization. Ph.d. dissertation, Dept. of Control and Dynamical 
Systems, California Institudte of Technology, Pasadena, 2000. 

[56] G. W. Stewart and .J. Sun, Matrix Pe·rtuTbation TheoTy. Boston, MA: Academie Press, 
1990. 

[57] R.. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University 
Press, 1991. 

[58] E. A. Guillemin, Synthesis of pass·ive networks. New York: .John Wiley & Sons, 1957. 

[59] A. Dounavis, N. Nakhla, R. Achar, and M. Nakhla, "Delay extraction and passive 
macromodcling of lossy coupled transmission lines," Prvc. IEEE conf on Electr'ical 
Performance of Electronic Packaging, pp. 251-254, Oct. 2003. 

[60] R.. Archar, Model-Red·ucf'ion Techniques for- High-Speed inter-connect Analysis. Ph.d. 
thesis, Carleton University, Ottawa ON, Canada, Septernber 1998. 


