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Abstract

Recently, microelectronics designs have reached extremely high operating frequencies as
well as very small die and package sizes. This has made signal integrity an important
bottleneck in the design process, and resulted in the inclusion of signal integrity simulation
in the computer aided design flow. However, such simulations are often difficult because
in many cases it is impossible to derive analytical models for certain passive elements,
and the only available data are frequency-domain measurements or full-wave simulations.
Furthermore, at such high frequencies these components are distributed in nature and
require a large number of poles to be properly characterized. Simple lumped equivalent
circuits are therefore difficult to obtain, and more systematic approaches are required. In
this thesis we study the Vector Fitting techniques for obtaining such equivalent model and

propose a more streamlined approach for preserving passivity while maintaining accuracy.



Sommaire

De nos jours, les conceptions microélectroniques atteignent de trés hautes fréquences d’opération
ainsi que des tailles infimes de dés et de boitiers. Ceci a fait de l'intégrité du signal un
parametre critique dans le processus de conception, dont la simulation a du étre intégrée
a la conception assistée par ordinateur. Cependant de telles simulations sont souvent dif-
ficiles car dans beaucoup des cas il est impossible de dériver des modeles analytiques pour
certaing éléments passifs, et les seules données disponibles sont des mesures en fréquence
ou des simulations d’oscillation complete. De plus, a de telles fréquences, ces composants
sont de nature distribuée et requiérent 'usage de plusieurs pdles pour étre convenable-
ment caractérisés. Il est donc difficile d’obtenir de simple circuits groupés équivalents, il
faut recourir a des approches bien plus systématiques. Dans cette thése, nous étudions
les techniques de Vector Fitting pour obtenir de tels modeles équivalents et proposons une

approche plus rationalisée pour conserver la passivité tout en maintenant la précision.
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Chapter 1

Introduction

1.1 Background and Motivation

With the increasing complexity and operation frequency of modern very large scale inte-
grated circuits (VLSI) and application specific integrated circuits (ASIC), signal integrity
issues, which used to be negligible, have become a critical consideration in recent design
flows. Signal integrity degradation of digital signal occurs in the path from the driver to
the receiver, which includes interconnects, vias and other discontinuities. Such effects are
typically negligible at low frequencies. However, in high-speed circuitries, undesired or
incorrect signals can be generated from multiple sources like crosstalk, reflections due to
impedance mismatch, ringing, delay, and attenuation [4-24]. These effects result in signal
integrity violation and lead to faulty circuits and reduced performance. In fact, signal in-
tegrity has become a perfornmance bottleneck in modern circuit design. It must, therefore,
be taken into cousideration as early as possible in the design cycle in order to avoid costly
prototyping and unnecessary design iterations. Therefore it is important to have access to
accurate models as well as efficient simulation and optimization tools, which can take into

account interconnect effects and signal integrity degradation [21,22,25-27].

In addition to making interconnect effects and signal integrity degradation a dominant
factor in the design process, high operating frequencies lead to significant difficulties in the
simulation of such structures. This is due to the fact that at high frequencies interconnects
must be treated as distributed structures and modeled using partial differential equations

(PDE). In order to include such components in a standard time-domain circuit simulator
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such as SPICE, the PDEs must be discretized to obtain ordinary differential equations,
and this leads to a very large number of equations and a high CPU cost. In order to over-
come this simulation bottleneck, model order reduction methods (MOR) were proposed
in the literature. The general idea behind these techniques is to reduce the large linear
blocks of the system into small macromodels which contain only a few dominant poles
determining the response up to the highest frequency of interest. The main MOR methods
can be divided into two main categories. The first is direct moment matching methods
which are based on padé approximation [4,13,28-30]. These techniques include asymptotic
waveformn evaluation (AWE) and complex frequency hopping (CFH) [31,32]. The second
category is based on indirect projection. Methods based on the Arnoldi process, truncated
balanced realization (TBR) [33] and singular value decomposition (SVD) [34] are found in
this category. These methods became popular due to their ability to conserve passivity
by construction. However, although these methods significantly reduce the CPU cost of
simulation, they all operate on system of first order differential equations and therefore
assume that analytical models for the interconnects and other passive elements and dis-
continuities are available. Unfortunately, this is not always the case, and in many practical
high-frequency applications the only available model consists of frequency-domain data of
multi-port parameters obtained from measurement or from full-wave analysis. The simula-
tion difficulty in this case is not due to the presence of distributed elements, but also to the
fact that these elements are modeled using frequency-domain measured data, which cannot
be directly incorporated into time domain nonlinear SPICE-type simulation. The methods
for addressing this issue can be divided into two general approaches. The first approach
is to use numerical convolution to evaluate the time-domain stamp of the distributed el-
ements at each time point. We will refer to this class of methods as convolution-based
approaches. The main drawbacks of such techniques are the high CPU cost and memory
requirement of the numerical convolution which must be performed at each time step with
the initial condition as the starting point of the integration. This type of approaches can
also exhibit accuracy and stability problems. The second class of methods for handling
elements defined by measured parameters is to perform some preprocessing in order to
come up with a time-domain macromeodel of the system in the form of poles and zeros.
Once such a macromodel is obtained, recursive convolution [28,35] can be used instead
of regular convolution in order to improve the CPU and memory performance. However,

more commonly, the time-domain representation is either directly stamped into the modi-
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fied nodal analysis equations or used to synthesize an equivalent circuit. Such an approach
eliminates the mixed frequency time domain problem, which results from the presence of
frequency-domain measured parameters. The main challenge in this case is that of ob-
taining a suitable time-domain macromodel in the form of poles and residues. Such a
macromodel must of course match the frequency-domain parameters of the original circuit,
but it also must not only be stable but also passive. The stability of the macromodel is
easily enforced by techniques such as [32,36,37]. These techniques either simply delete the
unstable poles or shift them to the left half-plane and allow extra iterations to retrieve the
accuracy. However, a macromodel which is stable but not passive can result in unstable
simulations depending on the termination [7,22,38]. Enforcing passivity to a macromodel
is not a trivial task. In this thesis we will study the leading method for obtaining such a
macromodel and for ensuring its passivity, and we will propose improvements for the pas-
sivity enforcement algorithms. The resulting passive macromodels can be easily simulated
using standard simulators such as SPICE and are automatically generated without any

need for physical knowledge of the passive structure.

1.2 Organization of the thesis

The thesis is organized in the following order: In Chapter 2, literature review is carried out.
Conventional techniques such as convolution-based approximation and macromodel-based
approaches are discussed. In Chapter 3, an algorithm called Vector Fitting is introduced to
generate macromodels without suffering computational difficulties. Chapter 4 deals with
passivity verification. Upon passivity violations, a global passivity enforcement algorithm is
applied for compensation. Linear optimization with special constraints is used to minimize
the degradation of accuracy. Details are discussed in Chapter 5. The second half of Chap-
ter 5 presents numerical examples to illustrate the efficiency of the algorithm. Transient
simulations are also carried out for evaluating the accuracy in time domain. A poten-
tial problem associated with the algorithm is discussed in Chapter 5 and a corresponding

solution is given.



Chapter 2

Literature Review

2.1 Background Introduction

As discussed in Chapter 1, in real high-speed networks, it is not always easy to find closed
form analytical models for the interconnects. Instead, the interconnect behaviors are typi-
cally described by frequency-domain tabulated parameters obtained from measurement or
full-wave simulation. In order to include the tabulated data in time-domain simulators,
there are generally two categories of approaches one can follow. The first category contains
convolution-based approaches. In these methods, the inverse Fourier transform is applied
to the frequency-domain parameters to get their time-domain counterparts. The time-
domain results are then convolved with the arbitrary sources to evaluate the time-domain
terminal voltages or currents. Although these methods are straightforward, their computer
implementation has a major limitation. The convolution process leads to a high CPU cost,
especially when the network has a large number of ports. In addition, since accuracy is
closely related to the number of time steps, higher accuracy requires a larger number of
time steps and more iterations of convolution are therefore spent on the simulation. The
details of the convolution-based approaches will be discussed in Section 2.2. The methods
from the second category focus on constructing time-domain macromodels for the intercon-
nects. The most common way of macromodel construction is based on rational function
approximation. This field has been studied extensively in [1-3,24,39,40]. Some typical
techniques will be covered later in Section 2.3. The general idea behind these approaches
is to approximate the measured/simulated parameters by a rational function in its poly-

nomial form and calculate all the coefficients of the polynomial by solving a least-square
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problem. The resultant macromodels can be implemented in time-domain simulators either
through generating a SPICE compatible model consisting of equivalent circuit components
or through recursive convolution [28,35]. The typical difficulty associated with these meth-
ods is that the least-square problem is easily ill-conditioned. This difficulty has become a
bottleneck of its computer implementation, as the ill-conditioned matrix may go beyond
the floating-point range of the computer. Many studies have been done to fix this prob-
lem {1,3,28], but they still have problem with high-order approximations. A new technique
named Vector Fitting has been proposed to overcome this difficulty [41]. This technique
follows an iterative procedure to evaluate the poles of the network and the resulting least-
square problem is well conditioned. A thorough review of Vector Fitting will be given in
Chapter 3.

2.2 Convolution-Based Approach

2.2.1 General Concept

As mentioned in [1], the implementation of interconnects represented by the measured
data into circuit simulators is computationally intensive, since nearly all interconnects are
terminated by nonlinear components, such as diodes and transistors. The analysis of the
linear interconnects is carried out in frequency domain, whereas, the analysis of nonlinear
networks is achieved in time domain. Thus, the method must be able to combine the so-
lutions in both domains {1,40]. The most straightforward solution is to apply the inverse
fast Fourier transform (IFFT) to calculate the impulse response of the network. Then the
general solution is given by convolving the impulse response with the arbitrarily given input
voltage. This method is referred to as convolution-based method. It calculates the time-
domain responses directly from the frequency-domain measured data. The implementation

details are introduced in [40] and summarized as follows.

2.2.2 Algorithm Details

Consider a lincar M-port network (shown in Fig.2.1). Suppose an ideal voltage source is

connected to port j and all other M — 1 ports are grounded. Then the current in frequency
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Fig. 2.1 A linear M-port network
domain at each port can be expressed as (2.1).
I(w) = Yij(w)Vio(w); for k=1,....M (2.1)

where Vjo(w) is the Fourier transform of vo(¢) and Yj;(w) is the admittance Y-parameter.
A unit delta function is forced at port j such that Vjo(w) = 1. By doing this, the frequency-
domain voltage Vjo{w) is independent of frequency. Thus, it can be eliminated from (2.1)

and the time domain current can be directly computed as
iK(t) = gk (t) = F71 (Vi (W), (2.2)

where F~! denotes the inverse Fourier transform. This set of currents is referred as the net-
work Green’s function. It is to be noted that these currents are equal to the Y-parameters
in time domain regardless of input voltage, since the input voltage has been forced to be
unit. In order to calculate the response due to an arbitrary input function, one needs to
convolve the resulting transient response (Green’s function) at the port with the arbitrary

input:

ik (t) = F~ (Vi (w)Vio(w)) = gk (t) * vjo(t) = A Ggki(t — T)vjo(T)dT, (2.3)


http://ij-.it
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@k

The sign denotes convolution. According to the superposition principle, the total
current at a specific port is the sum of the currents due to the voltage source connected to

each port. Thus, we have

Z/ bgki(t — T)vjo(T)dT (2.4)

The calculation of the Y-parameters in (2.2) is done in the following steps. Firstly, an
ideal delta-function generator is connected to one port and with all other ports shorted
to ground. Secondly, find the frequency-domain current appearing at the port. Then the
Green’s function is calculated by applying inverse Fourier transform to the resulting cur-
rent. This process should be repeated for all ports. It is to be noted that the currents
should be evaluated numerically at a finite number of frequencies. The Green’s functions

should be also discretized in the time domain.

For the ease of computer implementation, the integrals in (2.3) should be replaced by

summations:

M q
Zzzjkj t "‘tP Vg, At for k= 1,...,.M (25)

F=1 p==0
where the argument ¢, refers to the instant of ¢gA¢ when the currents and voltages arc

sampled.

The voltages are evaluated from the current-voltage relation depending on the terminal

components. For example, a diode has an [ — V characteristics

i (t) o (ewp <U€/(;)> - 1) (2.6)

the resulting voltages are evaluated from the above relation.

The convolution-based method is the most straightforward method to obtain the time-
domain response from the frequency-domain data, since it provides a direct link between the

frequency-domain data and its time-domain counterpart. However, as discussed in [40,42],
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to obtain the port currents due to different port voltages, the Green’s functions have to
be convolved with the arbitrary functions. The convolutions are done numerically and
considered to be the most CPU-expensive process, as the convolution must be done at each
time step with the initial condition as the starting point of the integration. To reduce this
cost, one has to keep the number of frequency points to be sampled as low as possible.
This can cause restrictions on the speed of the circular convolutions, as the time spent on
computing the response should not exceed a few line transit times in presence of terminal

networks.

2.3 Macromodel-Based Methods

2.3.1 General Concept

Instead of convolution-based approaches, macromodel-based methods feature indirect eval-
uation of the time-domain response by constructing analytical macromodels for the inter-
connects. Polynomials are the most common way for function approximation. However,
rather than polynomials, the macromodels are typically in the form of rational function.
The reason for that is polynomials are not a suitable method to represent the response of
electrical networks, as polynomials have limitations with representing the behaviors of the
interconnects in the vicinity of poles. In contrast, rational function displays the strength
of well capturing the behavior around the poles, and its partial fraction expansion form
is among the most suitable approximation methods for distributed systems. Poles and
residues of the system can be directly found in the partial fraction format. Then the tran-
sient response can be easily obtained by performing recursive convolution or through its
equivalent time-domain macromodel. The macromodeling process may take some CPU
time, but with the closed form expression of the system time-domain responses are easily
calculated. Macromodel-based approaches are more CPU-efficient and, therefore, exhibit a
big advantage over convolution-based approaches. Some typical techniques will be discussed

later in this section.
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2.3.2 Least-Square Approaches [1-3]

A network’s function H(s) can be expressed by a rational function in rational function

form: 9
ag+ a8+ ags” + - + a,, 8"

HT 7LS = <
() 14 bys + bys? + - + bys™

where by is normalized. For a given set of sampled data at k& frequency points, the task is

(2.7)

to match (2.7) with the given data at specific frequencies:
———= =y;; for i=0,... .k -1 (2.8)

where y; denotes the frequency-domain data measured at the ith frequency point and k

denotes the number of sampling points. (2.8) can be rewritten in a linear format:
Qum(8:) — yiPu(s:) =0 (2.9)

Further expanding (2.9) at each frequency point, we end up with a set of equations in the

matrix form:

_ ;
ag
a
2 9 a2
. Jm p o 12,
1 s S5 ... 8 —SoYo —55Y0 — 500 . Yo
.2 . .2 . :
1 s 87 ... 87 —81Y1 —S1Y1 —sTy Y1
Ay =
) ) by
o i .
1 sp1 Sy -0 SELl —SE-1Uk-1 —Sho1Vk—1 .. —Sp_1Yk—1 b Yk-1
~ ~ ~ 2 S —
v . Y
[ on ]
e’
X

(2.10)
Usually the number of frequency points k is greater than the number of coefficients (number
of columns in V). Thus (2.10) is a full-rank over-determined equation. Since electrical
network functions are analytic functions of complex variables, their real and imaginary

parts satisfy Cauchy-Riemann equations. From this relation, one only needs to approximate



2 Literature Review 10

the real part of the rational function and the whole function can be found automatically.
The real part of a rational function (2.7) can be extracted by multiplying its numerator
and denominator polynomials by the complex conjugate of its denominator (i.e. Q*(s)).

respectively. The resulting real part is in the form

2 4 2m
o+ 018" + 0o + -+ s

Re(Hmn(s)) = #
( m,’n( )) 1+p182 +p254—|~"‘+pn52"'

(2.11)

The coeflicients are calculated by matching (2.11) with the real part of the tabulated data

at each measured frequency point

Co
1
2 4 2m, 2,7 4, 1 2n,,r €2 7
1wy wy .. W ~WyYo —Wy¥o —Wwi™Yo Yo
| 2 4 2m 2, r 4,.r s 2N, .7 : P
1 wi Wy e Wy —wWil —WiY —W1Y Y1
Cm -
1 2 4 2m 2 T 3 ”» o a2n .7 P T
Wy W1 oo Wely Wg_1¥Yr-—1 We1¥p—y .- Wh—1Yr—1 D Yk
N ~ -
A . b
L Pn ]
A
X
(2.12)

where the superscript “r” indicates the real part of a complex value. 2.12 is a least-
square problem. In order to solve it without direct elimination, which can cause numerical
difficulty, QR factorization is applied to matrix A on the LHS. Thus, (2.12) is reformed

into

RX = Qb (2.13)

Once the coefficients are calculated, the denominator of (2.11) needs to be factored to
obtain the poles of the network. The solution only contains stable poles since the roots are

determined in terms of squared poles. All pure imaginary poles are rejected from the pole
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set. Only stable poles are retained for constructing the partial fraction expansion of H(s):

n’ ki
H(s) = koo + (2.14)
g==1

- St

I3 f . . . .
where n < n, and n —n is the number of imaginary poles discarded from the process.

The residues (k;’s in (2.14)) are calculated by equating (2.14) to the sampled data
at each frequency point and matching the real and imaginary parts of the LHS with the
corresponding parts of the RHS respectively. According to the above discussion, a set of

linear equations can be written as

1 2—201 . 2‘-P2 T —Dn 7
w() +p1 w0+p2 w0+pn B ,{r 7
1 2‘—1)1 . 2‘1’)2 . —Pn Yo
w1 + P wi + P2 Wit Dy koo Y1
k1 :
- —PD2 —Pn
p) 3 T3 V3 Ty k r 2.15
Wg1 +P1 Wiy + D Wi + Dy, 2 yl’ﬂ'l ( )
—Wo -] o 3 Y1
Wy +pl  wp+ s Wy + 1%, "
£
;wk—-l 5 ;wk—l . — W1 L y;:c—-—l i
L Wip—1t+D] Wi +D; Wp1+ P, |

As discussed in [1,2], (2.12) is at high risk of ill-condition, as the powers of the frequencies
are doubled from those of (2.10). This leads to a huge difference between the minimum and
maximum entries in each row of A in (2.12). To overcome this difficulty, a transformation

factor is introduced to make the problem better conditioned:

W g W T Wmin) (2.16)
(wmaw - wmin)

Scaling the frequency points by using (2.16) can map them into the domain of [~1,1].
This mapping normalizes the wide frequency range to the center of the numerical range
of the computer. As a consequence, this manipulation also avoids the nth power of the
frequency from exceeding the floating-point range of the computer [2]. The total compu-

tational cost of the method is one polynomial factorization, two QR factorizations (for the
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poles and residues calculations) and two backsubstitutions.

The next step is to obtain the time-domain macromodel. As pointed out in [1, 3],
the time-domain macromodel is obtained by applying a recursive convolution to avoid the
computation-intensive explicit convolution. The direct relation between the time domain
and the frequency domain is the Laplace transformation:

k‘i d

Y(s) = . +piX(s) ader () + piy(t) = kix(t). (2.17)

The excitation z(t) is assumed to be piccewise constant: z(t) = ¢, where t,_; < t < t,.
(2.17) is solved using the value of z(t) at current time interval as boundary conditions.
The time-domain solution expressed in the recursive convolution formula for the model of
(2.14) is

q
y(tn) = koox(t'n) + Egi(tn)a (2-18)
=1
where
?L-(tn) — kl(l - e—m(tn—tn‘.-l)).,,/.(tn_l) + e*‘pwﬁ(tn'—tn-l)gi(tn_l). (2_19)

The above equation can be translated into an equivalent circuit consisting of a constant

conductance, ke, and a current source, — > o, §i(t), which is updated in each iteration.

2.3.3 Macromodeling through Nonlinear Approximation

In contrast to the method of linear approximation reviewed from last section, [43] introduces
a different algorithm based on solving for a nonlinear problem to obtain the coeflicients of
the rational functions. In this algorithm, the unknowns are included in a nonlinear equa-

tion and solved iteratively.

Assume we are given a set of tabulated data in frequency domain (H(s;);¢i=1,2,...,N)
obtained from full-wave simulations or measurements. The objective is to approximate the

existing data by a rational function and extract a macromodel for the original network

b+ bis4 o4 bys”
14 as 4+ aps™

Y(a,b,s) (2.20)
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where a is normalized to unit. The coeflicients are included in two vectors: a = [a1, ay, . . ., a,]7T,

b = [bg, b1, - ., bm]T. The error of the approximation in (2.20) is evaluated by
E(a,b,s)=Y(a,b,s) — H(s), (2.21)

at each measured frequency point. The minimization of (2.21) implies the minimization of

the norm of the total error

N
| E(a,b,5) o= 4| > | Y(a,b,s) — H(s) |5 (2.22)

i==1

Minimizing (2.22) can be further translated into minimizing

f(x) = % | E(a,b,s) ||2= %E(a, b,s)TE(a,b,s), where E = [Re(ET); Im(ET)] and xT =
[aT; bT]. By introducing E‘, all entries of the vectors a and b are real numbers so that the
system avoids having complex time-domain responses. The resulting problem in (2.22) is

solved by using a Gauss-Newton type method which uses a model M for E around x,

M(x.) = B(x.) + J(x:)(x — X,), (2.23)

where .J(x,) is the Jacobian of E at x,. The method minimizes || E(x.) 4 J(x¢)(x — X¢) ||2
in each step, subject to that the norm of the difference between the solutions from two

successive iterations does not exceed some upper limit:
| 8 o< . (2.24)

From (2.21), it is obvious that the Jacobian of E is as same as that of Y(a, b, s) separated

into real and imaginary parts. From this fact, solving (2.23) is equivalent to solving
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Pt
Re(Yk_l(sl) — I{(Sl))
Re(my—Ugm) | Re(—SE=1U,,) 4
D—k: Om . 2 ]3};:‘1‘ lin Ab _ RB(Yk_]_(SN) - ]I(SN)) (2 25)
1 : _ Xk Aa Im(Yy_1(s1) — H (s T
| Im(Dk_lU():m) : Im( Dk—lUlm) ] (Yi—1( 1) (s1))
A | :
L Im(Yk_l(.s'N) - .[I(SN)) ]
b
where Uy, is a Vandermonde matrix with m + 1 columns containing discrete frequency
points with monotonically increasing power
1 s &% s7°
1 s 2 ... s
UO:m = . .2 _Z . 2 . (226)
1 sy s% s
~ D;_1(s) is a diagonal matrix
T4+ 30 st 0 . 0
0 1+ 50 (L,;S/i - 0
Dj_1(s) = 21_1 ’ . ’ (2.27)
0 0 - 0
0 0 coo 1Y aisly

and Yj.-1(s) is also a diagonal matrix containing the approximation result from previous

iteration

Yi-1(s1) 0 .. 0
0 Yk-l(Sg) P 0
0 0 oo Y a(sn)

(2.25) is a nonlinear equation, since A and b are also expressions of the unknowns. To

solve (2.25) we start with an initial guess of x” = [aT;bT] to evalnate Dy_; and Yi_1.
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Then [Aa; Ab] is calculated from (2.25). This difference is added to x* to obtain a new
xT for the next iteration. This process is repeated until the difference [Aa; Ab] no longer

exceeds our tolerance.

Be aware of that (2.26) is ill-conditioned when frequencies are high. This difficulty is
overcome by applying a robust basis transformation to (2.26) [43]. It is evident that (2.26)

can be expressed by

Uo:m:[l S1 21 ... sm1}, (2.29)
where
S ... 0 0
0 Sy 0
S={ . . . 1 (2.30)
0 0 SN

and 1 is an N-column vector with 1 for all entries, An orthonormal basis for Uy, can be

achieved by Arnoldi process [44,45]
SV.m = VmHm + Vit hm—i-—l,m7 (231>

where V is constructed by orthonormal columns and H is an upper Hessenberg matrix.
Vom = [V, Vim+1] is the new basis spanning the same space as the columns of Ug,,,. Then

(2.25) can be rewritten by applying the orthonormal basis

Re (Yi—1(s1) — H(s1))

. A Y_ , :
Re(p Vom) @ Re(=pEVia) | [ ab] | Re(¥ia(sw) — H(sn))
Im(p—Voum) Jm,(-%fﬁvm) Aal Im (Yeo1(s1) — H(s1))

i [m(Yk__]_(sN) - II(SN)) ]
(2.32)
By applying this basis transform, the high order associated with Uy, is reduced, and the

ill-condition problem is avoided.
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2.3.4 A Brief Introduction to Vector Fitting

As discussed previously, the least-square based approach suffers ill-condition problem when
solving equations like (2.12). The matrix on the left hand-side contains entries whose
values are exponentially different from each other. This may cause a computational error
when the algorithmn is implemented in a computer program. To avoid this difficulty, an
algorithm called Vector Fitting [7,22,41] was developed to solve the poles and residues of the
system separately. The algorithm starts with an initial guess of the pole set and performs
an iterative process to approximate the location of the poles. The residues are solved
afterwards. By introducing the iterative process, the entries of the matrix corresponding
to that of (2.12) are kept in their rational function format and the terms exponential of
frequencies are effectively removed. Thus, ill-condition is effectively overcome. A deep

review of its algorithm is given in Chapter 3.

2.4 Conclusion

This chapter reviewed some of the well developed techniques used for incorporating the
frequency-domain parameters in time-domain simulators. The approaches based on con-
volution and macromodel have been discussed. The major difference between these two
kinds of methods is that the macromodel-based methods generate analytical macromodels
for the interconnects, while the convolution-based methods directly process the measured
data to get transient responses. Their drawbacks are also discussed. The convolution-based
approaches are very CPU-expensive for high accuracy simulation due to the convolution
process, while the macromodel-based approaches may suffer from ill-condition which comes
from the least-square problem. A brief introduction to Vector Fitting was also given. It is
also classified to the category of rational-function-based approaches. But it applies itera-
tive procedure to compute the poles of the network without suffering ill-condition and is

convenient for computer implementation.
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Chapter 3

Vector-Fitting-Based Rational

Function Approximation

According to the discussion in Chapter 2, the conventional rational-function-based ap-
proaches aim to approximate the frequency-domain tabulated data with a ration function,

normally in the form of

. 2 .
g+ a1s+ ags” + -+ a,,s"
by + bis + bps® + -+ + b, s™

f(s) = (3.1)
The job focuses on finding all the coeflicients [ag, a1, . . ., am] and [by, b, ..., b,) in the nu-
merator and denominator of (3.1). Multiplying the left hand-side and right hand-side by
the denominator by + b5+ bys? 4+ - -+ b, s™ and writing the equation at different frequency

points, we can obtain an equation in the least square problem form:
AX =b. (3.2)

(3.2) has limitation for high-order approximation, because the entries of A span a large
orders of frequencies. Depending on the desired order of approximation, the elements may
have very high power of s, causing big numerical differences between the maximum and
the minimum entries. Under this circumstance, the linear equations will suffer from ill-
condition problems. Thus, the traditional approaches have problem with capturing a large
number of poles. On the other hand, due to the complexity of modern interconnects the

number of poles of the network is usually big. To accurately capture the response around
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peaks, it is desired to use a high-order approximation. Conventional pole fitting methods do
not work well in this sense. [22,41] describes an accurate and robust fitting technique named
Vector Fitting, which can match complete responses without suffering ill-conditions. This
chapter conducts a review of the algorithm , which was used as part of the macromodel

technique presented in this thesis.

3.1 Pole Calculation by Vector Fitting

We start with a pole-residue approximation of the target function satisfying the measured

data [22,41]
N

f(s) = Z ki + sh + ¢, (3.3)

s = p;
i1 Di

where N is the number of poles (residues), p; and k; can be either real or in the form of
complex conjugate pairs. While h and ¢ are real numbers referring to the term proportional
to frequency and the coupling constant respectively. p;, k;, h and ¢ are the unknowns. The
task is to calculate these unknowns such that the macromodel given in (3.3) approximates

the real response of the network at all the frequency points of the tabulated data.

To achieve this, we introduce a scaling function with a set of initial poles p;

N

o(s) = Z i + 1. (3.4)

— 5 — D

=1

Multiply the pole-residue function (3.3) by the scaling equation of (3.4) to get a scaled
function o(s)f(s). Then this scaled function is approximated by another function (o f)(s),

which has the same pole set as that of (3.4):

N ~

k; s
(af)(s) = Z = + sh + ¢. (3.5)
i=1 " ¢

Considering that (o f)(s) is an approximation to f(s)o(s), we can write

a(s)f(s) = (af)(s). (3.6)
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N
* To see the number of unknowns of (3.6) the equation can be expanded as
ks Yok
2 7 A N T
— +sh+éx — + 1) f(s) (3.7
where p;,i = 1,2,..., N are the initial guesses to the poles. From (3.7) the number of
unknowns is 2N + 2: N /Acz-’s, N l:;z-’s, one h and one &, By writing (3.7) at K (normally
K > 2N + 2) frequency points at which the measured data are available and including all
unknowns in one column vector, one obtains a sct of linear equations in matrix form
AX =b. (3.8)
This is an overdetermined problem, since the rank is higher than the number of unknowns.
X is the vector of unknowns and b contains the frequency data. To decide the form of A,
it is necessary to separate the problem into two cases: complex poles and real poles.
For the real poles, (3.8) can be written as
1 L =) ~fs) 1|
S1—p1 77 S1—DN 1 51 =Py 8§ — PN R
1 B S A € —[(32) kn f(s1)
§g—p1 77 S2—DN S2—=p1 7 82 — PN 7
1 —L1__ 1 —f(s3) —J\8s h = fs2)
S83—D0 7 83— DN s —-p; 83 — DN é :
L by f(sK)
1 1, =f0xr) —f(sk) : ——
Lsk=pr " Sk—=pn = K Sg—=p " Ssg—pnd | ¢ b
A kn |
i y
(3.9)

Since real poles are always accompanied by real residues, the unknown vector X is real.
Similarly, the complex poles for each entry of the driving point admittance matrix are

always accompanied by their complex conjugates and so are the residues. Thus, (3.8) can

be expressed as

N
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Yk R Yk K
(——+ —L Y fsh+é—f(8) ) (——+—) = f(s), (3.10)
where “*” denotes the complex conjugate operator. Then the real and imaginary parts of

the residues are separated

N

~ 1 1 o j —j .

Re(k, Im(k; hoté

;( e( )(-9—ﬁ7;+s—p;f)+ m( )(S‘fii+-s—ﬁ;f))+s I é
N

— f(s e(k; ! ! m(k; J —J = f(s
£6) DBk (G + 5=57) + Imk) (G5, + =) = £o):

(3.11)

g==]

Write (3.11) at different frequencies, the linear equations in matrix form (3.8) can be
obtained. A = [A}, Ag,...,A;,...,AN,1,S], where

Gty G - =k ~feIGE i) ~feGESE - 5%
(Gt Gl 7% feGSE ) IG5 - 55

A = s2-Pi s2~P7 s2—P; sa~pf S9~Py 82 —p
1

1 1 j j . 1 1 j J
(31«: —Pi + sff*ii.f’)(sxj—ﬁi - 51{{1‘5;)—_']0('51{)(51(-% - Sx—ﬁ;?)—-f(sK)(sxj-‘ﬁi - SI(*ﬁ:)

S = [51,82,33,...,81(]71, (313)
and

. . . . . . . . T
X = [Re(k:l), Im(ky), Re(ky), Im(k1), ..., Re(kn), Im(kn), Re(kn), Im(ky), ¢, h/]

(3.14)
For both real and complex cases, the equation AX = b is separated into real and imaginary

parts

Re(A) | Re(b) .
{ Im(A) } X= { Im(b) } ' (3.15)

~ “~
"
b

A
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- c 1. . 2T
(3.15) is solved by least-square technique. Left-multiplying both side of (3.15) by A

ATAX = ATb, (3.16)
and solving for (3.16), we get
X = (ATA)"1AD. (3.17)

So far the residues, coefficient of the frequency-proportional term, the coupling constant of
the scaled function (3.5) and the residues of the scaling function (3.4) have been calculated.
Note that (3.4) and (3.5) share the same set of initial poles. From this point on, (3.4) and

(3.5) are written in the pole-zero form

N
Z(S - %)
o(s) = l? (3.18)
Z(S - Pi)
i=1
and
N+1
S
(0f)(s) = hm——, (3.19)
> (s =)
i=1
respectively. An expression for f(s) is obtained by dividing both sides of (3.6) by (3.18)
N+1
o 5
ay)s i=1
5) = =} . 3.20
oy = D ns (3.20)
Z(s - %)
i=1

From cquation (3.20), it is clear that the zeros of the scaling function o(s) are identical
to the poles of f(s). Computing the poles turns out to be computing the zeros of the

scaling function. Thus, the zeros of o(s) need to be evaluated from its residues. [22,41] tell



0

2Re(ky) 2Im(k;)

0 0

2Re(ky) 2Im(ky)
0 0

2Nx2N

3 Vector-Fitting-Based Rational Function Approximation 22
that the zeros of o(s) are the eigenvalues of the matrix
H=n-9¢, (3.21)
where ) )
p0 0
0 p 0
1) = [)‘2 , (3.22)
00 PN | yun
k1 ke ki |
¢ = : : , (3.23)
L kl kQ k:N 4 NxN
for the case of real poles. In case of complex poles
- " -
n= i ; (3.24)
//_\A‘
L W1 onan
where
p | ) Ao (5.25)
and ~ _ ~ B L
2Re(k1) 2Im(ky) 2Re(ky) 2Im(kn)
0 0 0 0 0
6= . (3.26)

By computing the eigenvalues of the matrix (3.21), the zeros of the scaling function o(s)

are found, which are also the poles of f(s). It is worth noting that unstable poles may be

obtained from this process. In this case, we simply reverse the signs of their real parts to
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shift them to the left half-plane. The resulting set of poles is a closer guess to the poles
of the network and substituted for (3.7) to start another iteration of the approximation.
The above steps are repeated until the difference between the poles obtained from two
successive iterations do not exceed the applied tolerance and the resulting pole set is an

accurate approximation for the poles of the original system.

In order to make the algorithm work efficiently, the strategy for choosing initial poles
becomes vital. A good initial guess enables the program to capture the response of the sys-
tem in only a few iterations. There will be numerical problems due to improperly choosing

of the starting poles:

a. The linear equation (3.9) will become ill-conditioned, if a set of real initial poles is

chosen to treat a function with distinct resonant peaks.

b. An arbitrary choose of starting poles may lead to a large variations in the scaling
function o(s) and o(s)f(s).

The solution to problem (a) is to choose complex poles when dealing with functions
with distinct resonant peaks. The strategy to address problem (b) is to sensibly select the
starting poles and run the iteration after that. A general rule of choosing starting poles is

suggested in [41]:

1. For the function with distinet resonant peaks, a set of complex starting poles should
be chosen to capture the change around peaks. For each complex pole, a sufficiently
small real part should be chosen. Normally, the real part is chosen to be one hundredth

of the imaginary part (i.e. for p = o+ j3, choose a = 3/100).

2. For smooth functions, it is recommended to choose real poles which are linearly spaced
as a function of frequency. In the smooth function case, starting with real poles will

not affect the accuracy of the fitting result.

3. Generally, the starting poles should be chosen to be located linearly across the fre-

quency band of intercst. The benefit from this strategy is that the frequency range of
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interest is evenly covered. As a result, the starting poles will not be shifted far from
their original locations. It is worth noting that if the initial poles are densely chosen
within a small frequency interval, there will be a large variation between the LHS
and RHS of equation (3.6) at the frequencies beyond this interval. A large CPU cost

is needed to shift these poles over a large frequency distance to reach convergence.

Notably, the process discussed so far in this section is for one-port network. However,
most networks in real world application have multiple ports. Consider an M-port network

described by Y-parameters

Yu(s) Yils) ... Yim(s)
Yoi(s) Yaols) ... Yom(s
y(= | ) TR Tl .27
Yan(s) Yaa(s) ... Yum(s)
Each entry of the above matrix is approximated by the pole-residue form:
N g o
f(s) = Z P+ sh™ 4 Yy for 4, j=0,1,... M. (3.28)
=1 %" Py

In conventional methods, the rational function approximation is applied to each entry of
the driving point admittance matrix, i.e.(3.28), to get the poles. A union of pole set is
obtained by collecting the poles for each entry together. However, this approach will lead
to a considerable redundancy of poles, which will cause inefficiencies in transient sirnula-
tions [7,22]. In order to remove the redundant poles from the pole set, we take advantage

of the following two propositions [7,46]:

1. Generally speaking, the pole set corresponding to each individual entry of the driving
point admittance matrix (3.27) is a subset of the union of poles for all driving point

admittances.

2. In asystem with a large number of dominant poles, pole sets corresponding to different
driving point admittances contain mostly identical poles and with only a very small

number of poles differing among these pole sets.
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With the above propositions, instead of fitting the individual pole set for each entry of
the admittance matrix, we only fit the poles of the diagonal entries. This is because the
poles of the diagonal elements form a subset of all poles of the subnetwork (proposition
1), and there’s very minor difference from the poles of the off-diagonal entries (proposition
2). We apply Vector Fitting algorithm to the vector of the diagonal entries of the driving

point admittance matrix

Y].I(S)
Yaiag(s) = | Yu(s) |, (3.29)
| Yarum(s) |
where
N o i . -
Yil(s) = 3 — + sh* + ¢ for i=0,1,...,M. (3.30)
n==1 § = p'ﬁj

A scaling function with a set of initial poles is introduced as

N

a(s) =Y by +1. (3.31)

sﬁpn

n=1

Similar to the case of single-port network, multiplying each entry of (3.29) by o(s) and

approximating the resulting scaled function by (0Yy44)(s), we obtain

a(s)Y1(s) (oYn1)(s)
0(8)}./22(8) - G 2_2)(5) (3.32)
o(8)Yarm(s) (cYmar)(s)
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-
Using (3.31), (3.32) can be further expanded as
[ N kY 1 T N k] Tt
(XCn=1 5257 + DYu(s) Yo 5+ shil + ¢
N kzz Ny N k2 fan g
(Z" =1 8 — Dp, =P, T ) 22( ) =~ n=1l g ’pn T te (3.33)
MM MM ,
(Zm. EE=T + 1)Yarm(s) | I Zfi—l sk—— 1 ghMM | aMM ]

Note that the poles of the scaled function o(s)Yy44(s) are same than the ones of the
approximation function (0Ygiee)(s) and there are 2M + (M + 1) N unknowns. Writing each
row of (3.33) at several frequency points we obtain an overdetermined equation

AX = b, (3.34)
where
B 1 1 1s O O 0 0 “"Yl..l(sl) -Y71 (51) N
siopr siopw T 51 e e e e e pop—y .
— : : e e e e e : :
1 1 e, Y11 (sk) Y11 (k)
s T 19K 0 o 000 s s{/<—~(ﬁ1) 35_?1\])
1 ) — Y0251 ~ Y2281
0 ... 0 00 5= s53lst o e e, o g
A : : : : e e e e e : : :
V() | Ya(x)
0 ... 0 ()OSK__m...gK_lesK... e e e e SEU L K
0 ... 000 0 ... 0 00...-2—.. L1 5 Duul)  Yuwulo)
s1—D1 S1—PN S1—P1 S1—PN
0 ... 0 00 0 0 00...-2 SRl sl
- e YU sg=p1" " sk—DN SK =P ) Sk—pN -
(3.35)
“ n “ “ R . ~ ~ T
X = [ BL R @ R RMM o RMM MM MM f v |
(3.36)
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b={ Vi) oo Yilsx) Yaalsr) oo Yaulsw) o Yaa(s) oo Yaraelsw) |

(3.37)
(3.34) is solved by least-square technique. The last N entries (121 e l:N) of the solution
vector b are the residues of the scaling function and are used to calculate the new set of
poles by following (3.21-3.26). The problem is solved self-consistently until convergence is

reached.

3.2 Residue Calculation

Once the poles of the network are identified, we proceed to calculate the residues. With

the poles, the admittance matrix of Y(s) can be written as

1,1 1,2 LM
1,1 Nk, 1.2 Nk 1M Nk,
R DN A Y onml T A Don—1 52 D
Y(s) = : : .
M1 M2 MM
CM’I + ZN . kll (,M,Z + ZN k@ CM’M + ZN kl
n=18§—Dpp 7 n=l8—py, °°° n=18 — Dn

(3.38)

The residues k% and coupling constant ¢™ for each entry of (3.38) are solved individ-
ually by writing the rational function for each entry at several frequencies, sy, s9,..., Sk.
Generally, K is larger than the number of unknowns, N + 1. Thus, it is an overdetermined

equation of the form

For the case of real poles, the matrix A, b*/ and the unknown vector X*/can be written

as
[ 1 1 1 —1 ]
S1=p1 S1=—p2 77 S1—TPN
1 1 1 i
A - S2=p1 S2—P2 T S2a=DPN | (3.40)
1 1 1 S
i Sk —P1 Sk —p2 " Sk —DN |
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Yi’j(b"l)
o Va2 ( So
b = ) ) , (3.41)
Yid (sg)
and .
X = K kK] (3.42)
For the case of complex poles, the residues are also in the form of complex conjugate
pair. Thus, (3.28) can be written as
RO S N ST SR N S
S—m S—pl 5"1’2 S—pZ (3 43)
O L/ A L
$— DN s—py
where the subscript “R” refers to the real part, and “I” refers to the imaginary part.
By separating the real and imaginary parts, the solution vector only contains real values.
Expanding the above equation at several frequercies, we obtain A, b*/ and X as follows

[y 1 1 J___J 1 1 J__
SI—P1 " s1—pf S1—P1 si—pi 17PN s1—py S1TPN s1—py
1 1 1 J____ _ 3] 1,1 j
A = S2—P1 ' So—p] S2— P11 S—p] " 52— PN ' Sy—py S2—PN Sy — Py
L SK =DP1 sk —pPYSK ~PL sg—py USK TPN Sk —PySK TPN sk — Pyl
(3.44)
}/Lj(sl)
- Yi(s
b* = ,( 2 , (3.45)
Y9 (sk)
& i g g i i i gig |°
X = [ o kyn kyp o kap k3o KN KR ] - (3.46)
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Equating the real and imaginary parts of LHS and RHS of (3.39) respectively, we have
Re(A y Re(b"
(A) | gig _ | Be®¥) | (3.47)
Im(A) Im(b™?)

(3.47) is solved by least square methods. Left-multiplying both sides of (3.47) by
[Re(A), Im(A)], we have

T T -
Re(A) Re(A) | ¢4 _ | Re(A) Re(b™)
I’ITL(A) ] " [m,(A) :l X = [ Im(A) } li I’m,(bi’j) ] . (3.48)

The solution to the above equation is

id [Re(A) ]T{Re(m} * [Re(M ﬂfﬁe(b’ﬂ’f)] (3.49)
Im(A) Im(A) Im(A) Im(b*7)

By repeating (3.39)-(3.49) for each entry of (3.27), the computation of residues is com-
pleted. All the rational functions share the same set of dominant poles but different residues.

The algorithm of Vector Fitting is summarized in Fig. 3.1 in pseudocode.

3.3 Conclusion

Vector Fitting technique displays a big advantage over the traditional approximation al-
gorithms. It efficiently overcomes the problem of ill-condition, which exists in the process
of conventional rational function approximation algorithms. Conventional approximation
methods end up with a set of linear equations AX = b, where the matrix A is normally
Vandermonde-like. In other words, the entries of A are expressed in form of power of
frequencies depending on the accuracy requirement of the approximation. This leads to
the potential of ill-condition when we write the equation at higher frequencies or when a
high-order approximation is desired. On the other hand, Vector Fitting technique is im-
mune to this problem, as the entries of the matrix A are in the form of single power of
frequencies. Due to this property, with appropriate initial poles provided, Vector Fitting
can fit the poles at high frequencies in high-order approximation without suffering compu-
tational difficulties. This advantage enables the algorithm to accurately locate the poles

throughout the bandwidth of interest.
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Step 1. Choose an appropriate set of initial poles by following the guideline in
Section 3.1.

Step 2. Construct Equation (3.34) using (3.35) and (3.37).

Step 3. Solve the resulting equation from Step 2 by least-square technique to
obtain the residues of the scaling function ().

Step 4. Follow the guideline given by Equation (3.21) - (3.26) to evaluate the
zeros of o(s)which are considered as the new poles. Inverse the sign of
the real part of any unstable pole.

Step 5. If the poles obtained from Step 4 converge, go directly to Step 6.
Otherwise repeat Step 2 to Step 5 for another iteration.

Step 6. Calculate the residues and coupling constant for each entry of (3.38) by
following Equation (3.39) — (3.49).

.

Fig. 3.1 Pseudocode of Vector Fitting
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Chapter 4

The Passivity of Macromodels

In previous chapters, we have reviewed the methods developed to extract accurate macro-
models from measured/simulated data. In this chapter we will have discussion on another
important property of electrical networks - passivity. This chapter begins with a brief
introduction to passivity. Methods used for passivity check will be reviewed later. In the
last part, an efficient method used for checking passivity and precisely locating the regions

of passivity violation will be introduced.

4.1 What Is Passivity?

The techniques reviewed in previous chapters can generate fairly accurate macromodels de-
spite the fact that they perform distinetly in numerical robustness and efficiency. However,
as pointed out in Chapter 1, passivity is another concern associated with the macromodel
besides accuracy. Passivity implies that a network can never generate more energy than
it absorbs [22,47,48]. Unfortunately, these methods cannot guarantee the passivity of the
macromodels. In other words, the passivity of the original network under measurement
may not be inherited by its macromodel. Loss of passivity is a major defect of the macro-
model, even though it can accurately represent the behavior of the original network in a
frequency band of interest. Passivity is a vital issue because when a stable but nonpassive
macromodel is terminated by some arbitrary passive macromodels, the transient stmulation
of the whole system may suffer from artificial oscillations [7]. The reason for this is that the
poles are relocated during the connection of the macromodels. When stable but nonpas-

sive macromodels are connected to even passivity-guaranteed macromodels, it is possible
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that the poles of the new system become unstable. To ilustrate this point, consider a
second-order macromodel shown in Fig. 4.1. The macromodel is stable but nonpassive.
It has a pair of stable poles. After it is connected to a passive model, unstable poles are
generated causing oscillations in the transient simulation. Thus, it is important to ensure
that each macromodel is passive before the system-level transient simulation. To reach this
goal, an efficient passivity checking algorithm is desired. Some widely used methods will

be introduced in the following sections of this chapter.

4.2 Passivity Check Techniques

In this section, we will review traditional methods developed for checking passivity. Gen-
erally, the methods can be classified into two categories: frequency-domain based method
and time-domain based method.

4.2.1 Frequency-Domain Passivity Check

A passive multi-port network, expressed in (4.1)

Yi(s) Yiols) ... Yium(s)
Y(é) _ Ygl'(s) YQQ‘(S) . YQM(b) (41)
Yan(s) Yae(s) ... Yuu(s)

must satisfy the frequency-domain passivity criteria, given by [38,47-49]

a) Y(s*) = Y"(s), where “*” denotes the complex conjugate operation.
b) Y (s) is a positive real (PR) matrix.

Condition a) can be translated into that the rational function Y(s) has only real co-
efficients in its numerator and denominator. This condition is automatically satisfied by
driving point admittance matrices, since the poles and residues of driving point admittance
matrices are either real numbers or complex conjugate pairs. For real s, Y(s) is real also.

By ensuring Condition b), the driving point function has to satisfy the following inequation
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s
passve = st +25+7
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pnewz

l:(s2+s+l)+(2+s+%)}~

S

(s +2.1325)(s —0.0662 — j1.8106)(s — 0.0662 + j1.8106)

—2.1325, 0.0662+ j1.8106 < Unstable Poles !

Fig. 4.1 Tlustration of the significance of passivity: A stable but nonpas-
sive macromodel connected to an arbitrary passive macromodel leads to an
unstable system.
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z* [Y'(s") + Y(s)] z > 0, (4.2)

for any complex frequency with Re(s) > 0 and for any arbitrary vector z. It is to be noted
that Y(s) is a complex symmetric matrix. It can be written as the sum of a Hermitian
matrix, which is the real part, and an anti-Hermitian matrix, which is the imaginary part.
With this property, [YT(S*) +Y(s)] /2 refers to the Hermitian part or the real part of
Y (s). Thus, Condition b) is satisfied by ensuring

[Y'(s") + Y(s)]
2

From [7,48], for a matrix rational function without poles on the closed right half-plane,

Re(Y(s)) = > 0; for all s with Re(s) > 0. (4.3)

Condition b) implies

(Y (ju) + Y (jw)]

Re(Y (jw)) = 5 >0; for w e RU0. (4.4)
eig(Re(Y (jw)))
A Frequency points
checked for passivity Undetected passivity violation
due to a sparse frequency
sweep
AV AV N @ e o .
75 7~ 7N < 7 7N < >
@ ®

Fig. 4.2 An insufficient frequency sweep leads to misjudgment.

(4.4) tells us the real part of Y(jw) must be positive semi-definite for all jw. By the
properties of positive semi-definite, Re(Y(jw)) should contain only semi-positive eigen-
values (A; > 0, for i = 1,2,..., M). Therefore, the most straightforward way to check
passivity is accomplished by carrying out a frequency sweep of the eigenvalues of the real

part of the admittance matrix Y (s). If its eigenvalues at all frequency points are nonneg-
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ative, the macromodel is passive. However, as pointed out in [38] this method suffers from
several drawbacks. For example, it is hard to say up to what frequency the sweep may stop
and how fine the sweep should be. Evaluation of the eigenvalues at very fine frequency
grids is extremely CPU-expensive, especially for large networks with high number of ports.
Even so, an exhaustive sweep can never be achieved, as it is impossible to evaluate every
frequency point. On the other hand, a sparse sweep is much faster, but the passivity vi-
olation taking place between two consecutive frequency points may be missed. This kind
of insufficient evaluation directly leads to a misjudgment. The mechanism of the failure is

shown in Fig. 4.2.

4.2.2 Time Domain Passivity Check

A multi-port lumped linear network can be described by a set of state-space equations
[22,50]

x(t) = Ax(t) + Bu(t) (4.5)
y(t) = Cx(t) + Du(t) (4.6)

such that
Y(s)=C(sI - A)"'B+D (4.7)

where %(t) denotes the derivative of x. For a M-input M-output network with n state
variables, x is a vector of the size *™*!, u is the input vector of the size RM*1, A is
the state matrix of the size **"*, B is a n x M matrix relating the input vector u to
the state variables x, C is a M x n matrix linking the state variables to the output, and
D is a M x M matrix directly coupling the input u to the output. Once we obtain the
macromodel of the system, i.e. the poles, residues and coupling constants of the rational

approximation are known, the state-space representations A, B, C, D can be easily derived.

Firstly, let’s consider a macromodel of a two-port network with two real poles

1,1 R i 1,2 2 k?
e+ Y sty T i e,
k;'2’1 k2,2

2,1 2 2,2 2 M
e P T D D ey
pi Di
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T

The corresponding state-space representations are

pi 0 0 0
0 0 0
A= P (4.9)
0 P2 0
0 0 0 p
1010]"
B:[oi 01} (4.10)
O @}@2} (4.11)
kf,l kf,z k;.;.,.]_ k;é,Z
CZ].,] Cl,‘z
D:{&lgz] (4.12)

Secondly, in general, macromodels contain poles in the form of complex conjugate pairs.
In this case, (4.5) and (4.6) are complex equations, which do not have physical meaning in

the time domain. They therefore need to be rewritten in Jordan-form [22]

. A 0 b,
. + - u, 4.13
Syt e

N e’ e

A B’

y=[Cchx+D (4.14)
| Y
CI

where A; contains the complex poles, and A contains their conjugates. Consider a two-
port macromodel containing both complex and real poles, which is the most common case
in real application. Without loss of generality, assume this macromodel has one pair of
complex poles and one real pole: p; o = « £ i3, p3 = v and the corresponding residues are

¢t = (r £iv)%, ¢y’ = k»I. Then the resulting state-space matrices are
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[ w+i3 0 0 0 0 0
0 o+ i 0 0 0 0
, 0 0 —1 0 00
A= o= ‘ (4.15)
0 0 0 a—14i8 0 0
0 0 0 ~v 0
i 0 0 0 0 7|
1 01 010 !
B = (4.16)
01 0101
o POy bl P2 4 jpl2 gLl Ll pl2 12 fLl gl 17
- P21 +j1}2’1 7,2,2_,_.7-1}2,2 7'2’1——jvz’1 7,2,2__7-,02,2 21 p22 ( : )
oLl L2
D= { 21 22 ] , (4.18)

In order to make A/,BI,C' real matrices, an equivalent transformation is applied to
(4.13) and (4.14)

Vi = <VAAV“ ) (Vx) + <V:> ) w (4.19)
y=(CV)(Vx)+D (4.20)
2

C

. . . . ’
where V is the transformation matrix of the same size as A . It has the form of

I I 0
V=T -L 0 (4.21)
0 0 I

where I is the identity matrix. The resulting matrices A, B, and C in (4.19) and (4.20)

are real matrices and the value of the output y is preserved.
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The time-domain state-space representation is then checked for passivity. By [22,51],
the state-space systern is passive, if there exists a matrix X that is symmetric and real

positive definite to satisfy the continuous-time algebraic Riccati equation
ATX + XA + (XB - YD + D) }{XB - ¢! =0, (4.22)

where all eigenvalues of A must have negative real parts. The (A, B) pair must be stabiliz-
able, and D+D? > 0. These properties can be automatically satisfied by the macromodel.
Eigenvalues of A has only negative real parts, as only stable poles (with negative real part)
are obtained from Vector Fitting. And D + D7 > 0 can be guaranteed by enforcing the
diagonal entries of D to be greater than zero and off-diagonal entries to be equal to zero
during the residue calculation process [7]. This time-domain passivity check algorithm is
independent of frequency and very fast, but it still fails to give any information about the
location of the passivity violation. It is simply an ideal method to check the passivity of a

macromodel.

4.3 An Efficient Method of Passivity Verification

In the previous section, we have discussed frequency-domain and time-domain methods
used to check the passivity of macromodels. Their common drawback is that they fail to
tell the location of passivity violation. However, this information ig required for the later
compensation process. In order to achieve this function, a new passivity check method was
developed in [38], which is efficient and informative. The description of the method starts

with two theorems.

Theorem 1 [51]: The state-space system described by (A,B,C,D) is passive if the

Hamiltonian matrix

| A-B(D+D"'C B(D + D")-'B”

M = | 4.23
c’(D+D")'Cc -A"+CT(D+D")'B” (+23)

has no pure imaginary eigenvalues.

This method is similar to the time-domain passivity check method, as it is also based
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on the state-space representation. The advantage of Theorem 1 becomes clear when it is

combined with Theorem 2.

Theorem 2 [52-55] The real part of the symmetric admittance matrix F(jwy) = Real(Y (jwq))

is singular if jwp is an eigenvalue of the corresponding Hamiltonian matrix M in Theorem

1, provided D + DT is a positive definite matrix.

Theorem 2 relates the imaginary eigenvalue of the Hamiltonian matrix M to the frequen-
cies where the macromodel becomes nonpassive. It implies that any imaginary eigenvalue
of the Hamiltonian corresponds to the frequencies at which the real part becomes singular.
In other words, these frequencies poiuts are exactly the zero-crossing points of the eigen-
values of the real part of Y(jw). The constraint of Theorem 2 (i.e., D + D > 0) implies
the macromodel should be asymptotically passive at w = oo. This can be easily ensured
by enforcing the coupling constants corresponding to the diagonal entries of Y(s) to be
positive and the ones corresponding to the off-diagonal entries to be zero during the Vector

Fitting process [7].

However, Theorem 2 only tells us the frequency points at which the macromodel be-
comes singular. They are not necessarily the exact locations of the passivity violation
regions. The exact locations are unknown, unless the slopes of the eigenvalues of F(jwy)
at each frequency point detected by Theorem 1 are determined. This calculation can be

done as follows.

Assuming that A is an eigenvalue of F(jwg) and u is the corresponding right eigenvector,

we have
(F(jw) — ADu = 0. (4.24)

Differentiating the above equation with respect to w, we have

d

(PG - 1)+ (FGiw) - 2D

du_

= =0. (4.25)

Then (4.25) is left-multiplied by vZ, which is the transposed left eigenvector of F(jw)
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d dA du
T & = _ L TéA T CN au
v dwF(Jw)u vio-u + v (F(jw) — AI) = 0. (4.26)
By the definition of left eigenvector, vI (F(jw) — AIL) in the last term of (4.26) is equal
to zero. Taking advantage of this property, (4.26) can be simplified as

pod dA »

vI—F(jw)u = vi-—u (4.27)
dw dw

or

o od .
dA VF“C‘[(;F(](U)U

— = 4.
dw viu (4.28)
Notice that F(jw) can be expressed using (4.7)
Real(Y(jw)) = F(jw
(Y(jw)) = F(jw) (4.29)

= -CA(W I+ A*>)'B+D,

then the derivative of F(jw) with respect to w on the right hand-side of (4.28) is easily
derived as
d

E:F( jw) = CA(W*T 4+ A?*)"22wB. (4.30)

By substituting (4.30) for (4.28), we obtain the formula for calculating the slope of the
eigenvalue of F(jw)
dx  vT (CA(WI+ A*)?2wB)u

dw viu

(4.31)

Most practical interconnect networks are multi-port networks. The corresponding ad-
mittance matrices are of the same size and have multiple eigenvalues. One should make
sure that when evaluating (4.31), the correct eigenvectors are used. For example, we evalu-
ate the slope of F(jw) at wy, for a three-port network. So F(jw) is a three-by-three matrix
and has three eigenvalues. It is not obvious that the eigenvectors (u and v) belonging to
which eigenvalue should be used in (4.31) to evaluate the slope. It is useful to note that wy
corresponds to the frequency where F(jwy) is singular. Thus, the solution is to evaluate the

three eigenvalues of F(jwy) and find the one closest to zero (It should be ideally zero, and
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numerical noise is considered here.). The eigenvectors corresponding to that eigenvalue are
applied to (4.31).

In order to determine the location of each violation region, the follows steps are used:

1. Construct the Hamiltonian matrix using Equation (4.23).

2. Calculate the eigenvalues of the resulting Hamiltonian matrix M and collect the
imaginary eigenvalues in a vector, whose entries are arranged in an ascending order

G = w1, Wy, ...,wn| such that w; <wp < -+ < wn.

3. Evaluate the eigenvalue of F(jw) at the frequency point corresponding to each entry of
G using (4.31). Since the macromodel is asymptotically passive at w = co (D+D* >

0), the slope at the highest frequency (wy) must always be positive.

4. Count the number of positive and negative slopes from the highest frequency point
(wn). When the numbers of positive slopes and negative slopes become equal stop
counting. Assuine the count stops at wy, the first passivity violation region is located

at [wk,wN].

5. Reset the counter and start counting from wy..;. Repeat Step 3 and Step 4 until all

imaginary eigenvalues are exhausted.

One should pay special attention to Step 2, because the imaginary eigenvalues of M
may not be purely imaginary due to the numerical noise generated during computation [38].
Fortunately, the eigenvalue spectrum of the Hamiltonian matrix is symmetric with reference
to both real and imaginary axes. Taking advantage of this property, the pure imaginary
eigenvalues are detected by checking their eigenvalues which are symmetric only with re-

spect to the real axis. As a result, the effect of numerical noise is removed.

It is also worth noting that it is not always true that the numbers of positive slopes
and negative slopes are equal for the last violation region, since the passivity violation may
start from origin (Fig. 4.3). In this case, the violation region is simply from origin to the

frequency point where the current-round count starts at.
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s Imaginary eigenvalue of Hamiltonian matrix

Eigenvalue of F(jo) / Positive slope of the eigenvalue of F(jo)
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Fig. 4.3 Regions of passivity violation identified. The third violation region
starts from the origin.

4.4 Conclusion

In this chapter, we discussed and compared some of the most widely used methods for pas-
sivity check. The method based on frequency-domain passivity criteria is straightforward
but suffers from high CPU cost and misjudgment. It is therefore not recommended, but
can be used as a supplementary method for result verification. The methods based on the
space-state representation are used as the major methods for passivity check in this thesis.
Most significantly, the method discussed in the previous section can also identify the exact
location of passivity violation. This merit is very useful for the compensation process that

is going to be discussed in Chapter 5.
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Chapter 5

Passivity Compensation

In this chapter we proceed to the issue of passivity compensation. In case there is passivity
violation detected by any method discussed in Chapter 4, a compensation process is nec-
essary to fix that. The algorithm used in this thesis is the one based on [28]. The major
advantage of this algorithm is that it features global passivity enforcement; no additional
passivity violation is generated during the compensation process. But for applications in
this thesis, a different method of calculating the perturbing value of the residues (i.e. AC)

is proposed. The method can guarantee the minimum change in response.

5.1 Theory

In order to demonstrate the compensation process, we start with a A/-port macromodel

generated using Vector Fitting algorithm

Yi(s) Yia(s) ... Yim(s)
Yo1(s) Yoo(s) ... You(s
Y- | T T Yl 5.1)
YMl(S) YVMQ(S) e YMM(S)
Each element of the above matrix is in the pole-residue form
N ki’j .
Yig(s) =Y e ford 0L M (5.2)

n=1
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where N is the number of poles/residucs. Then the state-space model (A, B, C, D) is
obtained by following the guideline in Chapter 4. The resulting macromodel described by
the state-space representation is checked for passivity by evaluating the eigenvalues of the

Hamiltonian matrix

M — A - B(D +D")-'C B(D +DT)'BT

5.3
CT(D L DT)——lc ___AT + CT(D + DT)_lBT ( )

In case of pure imaginary eigenvalues detected (i.e. nonpassive), the exact location of cach
passivity violation is identified using the method described in Chapter 4. The next step
is to find the location and magnitude of the maximum violation {i.c. the most negative
cigenvalue of F(jw) given by (4.29)), for cach region of violation. This can be done by

solving the following problem
min(eig(F(jw))) w € (wi,wn), (5.4)

where w; and wy, are respectively the lower and upper boundaries of the same region of
passivity violation. The most negative value is considered as the worst case of passivity
violation. In order to make the macromodel passive at the frequency at which the maximum
violation is located, we need to offset its eigenvalue at that frequency point by the absolute
value of (5.4). To achieved this goal, the real part of Y(jw) (i.e. F(jw)) need to be added
by some AF(jw), such that

F(jw) + AF(jw) > 0. (5.5)

Then recall

F(jw) = —CA(W’I+ A»)'B+D. (5.6)

From (5.6), if we keep the matrices A, B, and D unchanged and slightly perturb C, the
resulting change in C, denoted by AC, can lead to a desired AF(jw) that satisfies (5.5).
From this point on, to offset the negative eigenvalue of F(jw) (or make F(jw) positive real)

at the frequency of maximum passivity violation, we look for some AC, such that

AF(jw) = ~ACA(W’ I+ A*)"'B + D. (5.7)
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By applying the eigenvalue perturbation theory [56] to the above equation, we are able

to relate the unknown AC to the most negative eigenvalue of F(jw) given by (5.4):

TF .
AN = y___gﬁi)_’f
yx o (5.8)
_ yTACA(W’I+ A*)™'Bx
yTx ,

where y and x are respectively the left and right eigenvectors of F(jw) at the frequency of
the maximum viclation and AC contains the unknowns. Before solving the above equation,
it is necessary to simplify it first. Be aware of the fact that F(jw) is a real symmetric matrix
(real part of Y(jw)). Its left eigenvector is equal to its right eigenvector. Moreover, if the
eigenvectors are normalized, the denominator of (5.8) is equal to the scalar 1. So (5.8) is
simplified to

A= yTACA(WT + A*)"'Bx. (5.9)

Since the unknowns in (5.9) are not explicitly indicated, the above equation can be further
converted to a more convenient expression by taking advantage of the property of the

Kronecker product [57]

AN = (AWL+A%) 7 Bx)* ® (y7) vec (AC)

= xTRT <(w21' 4 A‘z) —1)7' AT ® (—-yT) vec(AC), (5.10)
N - l\--\Q/——-/
(&)

where “®” denotes the Kronecker product operator, “©" is a row vector and “Q” is the col-
umn vector containing the unknown perturbed value of AC. Notice that since the residues
obtained from Vector Fitting algorithm is already accurate, the macromodel must suffer
some accuracy degradation after the compensation operation. To minimize the changes in
responses due to the compensation, only a limited number of residues are perturbed. Actu-
ally, the perturbation should be only effective on the real parts of the residues corresponding
to the poles located in the vicinity of the passivity violation. By setting this constraint,
the accuracy degradation will be confined within the vicinity of passivity violation; it will
not be spreaded throughout the whole bandwidth of interest. The selection of the poles

is done by comparing the contribution of each pole in the vicinity of passivity violation to
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the real part of the diagonal entries of the admittance matrix. This can be achieved by
integrating the square of the real part of the frequency response, (i.e. Real(Y(jw))) over

the frequency range of passivity violation. That is

/ " Real? (Y (ju)) do, (5.11)

L
where wy, and wy are the lower and upper boundaries of the passivity violation. Only the
poles with significant contribution (i.e. with comparably large integration value in (5.11))
are sclected for future compensation. In the next step, the chosen residues need to be
mapped to the residue matrix C. This process is illustrated by the following example. For
an M-port macromodel with N pairs of complex conjugate poles and the corresponding

residucs ¢, =k £ jgk  for k=1,2,...,N and p,q=1,2,..., M, by (4.20), we have

1,1 .1 N N N 11 1 N N N
™M Tg--Mipm--- ™M1 T2 - T 911 12+ 91M -+ 911 912+ 91M

W1 1 N N N 1 1 1 N N
a1 Tog oo+ Topg oo Ty Tag - Topr--- 921 G22--- Gapr--- 921 G2« - Gapmr

C= . (5.12)

1. 1 N N N 11 1 N N N
Tama"smo TMar - Tann "2 Tyvme - Imi9mee - Gunee - - 9ann9mee - - Gmm

N If the k** complex pole pair is identified by (5.11), the resulting AC is represented as

0 ... 0 Ak, 0 ... 0 0 ... 0

0 ... 0 0 Ark .. 0 0 ... 0
AC= | . . . ] (5.13)

0 ... 0 0 .0 Ark,, 0 000
with unknowns appearing only in the corresponding positions in 5.12. The vector Q is
formulated as Q = [Arﬁ, Ark, .. Ark, M} ¥ In case more than one pair of complex poles
are selected by (5.11), AC will have block diagonal entries corresponding to the selected

poles. For example, if the k** and I** pole pairs are selected, AC will be in the form of

S
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0 ... 0 A", 0 ... 0 0..A% 0 ... o0 0

AG — 0 ... 0 0 Ark ... 0 0 ... 0 Arh ... 0 0
0 ... 0 0O o0 Ak, 0 00 0 ARy, .0

(5.14)

and consequently Q = [Ar¥, Ark, ... Ark o Arl ArL, oo AP, M]T. In general, all
the non-zero entries of AC are stacked vertically to form the column vector Q. Then,
(5.10) is solved for Q or AC. Notice that (5.10) is an under-determined problem that has
a rank less than the number of unknowns (i.e. There are infinity sets of possible solutions
satisfying this equation.). Hence, a lincar optimization is required to obtain the optimum

solution to (5.10). Based on this discussion, the problem can be formulated as
minimizing || Q ||* subject to the constraints:
a) A\ =0Q

b) All entries of Q are positive numbers

where || Q || denotes the Frobenius norm of Q squared. By minimizing the Frobenius
norm of the unknown vector we can keep the loss of accuracy in response as low as possible.
The problem (5.10) is solved by enforcing Constraint a). Constraint b) is used to guarantee
the change in the real part of the selected residues is always positive. Notice that the real
part of an arbitrary function H(jw) due to a complex pole pair, p; » = —a £ jF, and the

corresponding residues ky o = r & jg is [38,58]:

2ra(a® + F% + w?) — 298(a® + % — wz)

real(H(jw)) = (a2 e wz)z T 40202

(5.15)

It is evident the change in real(H(jw)) due to some perturbation of the real part of the

residue Ady can be expressed as

2Arafa’ + 3% + w?)
(C\{2 + B2 _w‘2)2 + 4(12&)2‘

A(real(H(jw))) = (5.16)
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(5.16) implies that A(real(H(jw))) is linearly proportional to Ar. Taking advantage of
this property, we have all the perturbations of the diagonal eutries of F(jw) positive (i.e.
AFq1(jw), AF%(jw), ..., AFyy(jw) > 0), as Constraint b) is enforced to guarantee a
positive Ar. Ouce this perturbed value is added to the original F(jw), the eigenvalues of
F(jw) are offset by the values given by

yT AF(jw)x

AN = -
y'x

(5.17)
where x and y are respectively the right and left eigenvectors of F(jw). In fact, the left
eigenvector is equal to the right eigenvector, since F(jw) is a real symmetric matrix. if
the eigenvectors are further normalized, for an M-port network the above equation can be

expanded as
AN = AF; (jw)a? + AF(jw)zs + - - - + AF pp (Jw)as, (5.18)

From (5.18) it is evident that the perturbation only adds positively to the eigenvalues
of F(jw), since AFq;(jw), AF»(jw), ..., AFyp(jw) have been proved to be positive num-
bers. Hence, it becomes a nice feature of this method since the compensation only fixes
the existing passivity violations and never introduces additional passivity violations to the

macromodel.

The method compensates the region of passivity violation iteratively. In each iteration
only the highest passivity violation (the one of the highest frequency) is compensated. After
each iteration the macromodel is again checked for passivity and the regions of passivity
violation are updated for another iteration. The general procedure of the compensation
operation is summarized in Fig. 5.1. This method features a fixed direction of passivity
compensation. Thus, it never generates additional regions of passivity violation during the

compensation process.
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4 )

Step 1. Construct the Hamiltonian matrix from the macromodel using Equation
(4.23) and evaluate its eigenvalues. If no pure imaginary eigenvalues are
detected, stop the iteration. Otherwise proceed to Step 2.

Step 2. Follow the procedure outlined in Section 4.3 to determine the location for
the region of passivity violation.

Step 3. Determine the frequency and the magnitude of the maximum (most
negative) point within the highest region of passivity violation (the one of
the highest frequency) using Equation (5.4).

Step 4. Select the significant poles for compensation by evaluating Equation
(5.11) for each pole in the vicinity of the highest passivity violation.

Step 5. Formulate Equation (5.10) and solve it with the linear optimization
(discussed in Section 5.1) to compensate the highest violation only.

Step 6. Update the residues and go back to Step 1.

N Y,

Fig. 5.1 Pseudocode of the compensation algorithm




TN

5 Passivity Compensation 50

5.2 Numerical Results

In this section, three numerical examples will be given as a better illustration of the mecha-
nism of the method. Both frequency-domain and time-domain responses will be compared
with those of the original network. A limitation of the method will also be discussed, and

a proper solution to that will be given.

5.2.1 Example 1

| 500 d=0.05m | P
}3; o AN— ————————-—|—o 2
I >509 500 1500 1500 15002 500 1502 so0 100(450Q {5002 { 500 {500 50Q{500Q L. I

Fig. 5.2 Example 1: Two-port interconnect containing coupled transmission
lines

The first example is a two-port network consisting of coupled transmission lines and
resigstors, shown in Fig. 5.2, The subnetwork is characterized by a set of Y-parameter
simulated from DC to 4 GHz. The macromodel was constructed using Vector Fitting al-
gorithm. Thirty-four complex poles and two real poles are required to obtain a reliable
accuracy. The Y-parameters calculated from the macromodel were compared with those
simulated from the original network. A very good match was achieved (Fig. 5.3). Next,
the state-space model (A, B, C,D) was constructed from the poles and residues, and the
resulting model was checked for passivity by evaluating the eigenvalues of the Hamiltonian
matrix. Since no pure imaginary eigenvalue was detected, the macromodel is passive and
there’s no need for compensation. To make sure the judgment is correct, the conventional

method of plotting the eigenvalues of the real part of Y(jw) has been carried out as well
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in Fig. 5.4. The first and second eigenvalues are plotted to 12 GHz and no negative values
were detected. Following that, the SPICE model was constructed using the method de-
scribed in Appendix A and used as the netlist file of HSPICE for the transient simulation.
The voltage at Port 2 was simulated and compared with the simulation of the original
network Fig. 5.5). A pulse of 0.4 GHz with both rise and fall times equal to 0.25 ns was
connected to Port 1 and the simulation stopped at 10 ns. The comparison shows that the

results agree with each other.
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Fig. 5.3 Admittance parameter comparison - Example 1
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Fig. 5.5 Transient response comparison: voltage at Port 2 - Example 1

5.2.2 Example 2

The second example was created based on Example 1. The difference is changes in some of
the components’ values in order to make the network more susceptive to passivity violation.
The resulting network was simulated to 3 GHz to get the Y-parameters. Vector Fitting was
applied to get the macromodel for the tabulated data. Thirty poles (twenty-eight complex
poles and two real poles) are required to achieve a good accuracy. Then, the corresponding
state-space model was checked for passivity and passivity violation was detected out of
band (Fig. 5.7). Thus, the macromodel was compensated for passivity using the method
discussed in the previous section. The eigenvalue after compensation is shown in Fig. 5.8
and no more negative value was detected. The compensated macromodel was simulated to
get the responses, which were compared with the original Y-parameters obtained from the
network (Fig. 5.9 and Fig. 5.10). A good match has been achieved showing that the com-
pensation process did not affect the accuracy. Details about this process are summarized
in Table 5.1. The transient simulation of the SPICE model was carried out by connecting
a pulse of 0.4 GHz with both rise and fall times equal to 0.25 ns to Port 1 and simulating
the voltage at Port 2. The comparison in Fig. 5.11 shows that the macromodel is accurate

in the time domain as well.
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Fig. 5.6 Example 2: Two-port interconnect susceptive to passivity violation

Table 5.1 Details of the compensation process: boundaries of passivity vi-
olation, maximum violation location and value, pole(s) selected for compen-
sation, residue(s) prior to compensation, residue(s) after compensation and
evaluation of error - Example 2

| Violation region 1 l

fL 3.57 GHz

Violation T 3.66 GHz

information Smas 3.62 GHz

min(A\) ~1.183F — 3
Pole(s) & residue(s) | pole(s) —0.9533 £ 22.4067
selected for 11 —2.4347TF — 2 F 2.6487TE — 2¢
compensation Yo —3.1483F — 2 ¥ 3.2417F — 2t
Residue(s) after Vi1 —2.3032F — 2 F 2.6487TF — 21
compensation Yoo —3.1476FE — 2 ¥ 3.2417F — 2t
[ACT o
W 4.2F -3
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Fig. 5.11 Transient response comparison: voltage at Port 2 - Example 2

5.2.3 Example 3

Example 3 is a three-port interconnect consisting of R, I, C components and transmission
lines. The network was simulated from DC to 4 GHz. The resulting Y-parameters were
fitted using Vector Fitting algorithm followed by generation of state-space model. By
checking the passivity of the macromodel, passivity violation was found right out of band
(shown in Fig. 5.14). Then the passivity violation was compensated and the resulting
macromodel was again checked for passivity. It was found the passivity violation was
fixed and no additional violation was created (Fig. 5.15). To evaluate the preservation of
accuracy after compensation, the responses of the macromodel were compared with the Y-
paramecter from measurement(Fig. 5.16 and Fig. 5.17). From the comparison, we can see
very good accuracy has been preserved except for the imaginary part of Yas. The reason and
solution for that is given in the later part of this chapter. The details of the compensation
process are summarized in Table 5.2. The transient simulation with the same source as
Example 1 and 2 was applied to Example 3 to verify its accuracy in the time domain. Good

match was achieved between the SPICE model and the original interconnect (Fig. 5.18).
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Fig. 5.12 Example 3

Table 5.2 Details of the compensation process: boundaries of passivity vi-
olation, maximum violation location and value, pole(s) selected for compen-
sation, residue(s) prior to compensation, residue(s) after compensation and
evaluation of error - Example 3

Violation region 1

7L 4,06 GHz
Violation fu 4.34 GHz
information Frnaz 4.11 GHz
min(A) -0.0166

Pole(s)& pole(s) —0.1696 =+ 25.6969¢

residue(s) Yi1 —~4,5128F — 4+ 1.7952F — 43
selected for Yso 7.7466F — 6 F 2.8332F — 31
compensation Y32 —4.4557FE — 4 77 5.6845F — 31
Residue(s) Yi1 4.3588F — 3 £ 1.7952F — 4i

after Yoo 7.3231F — 4 F 2.8332F — 31
compensation Y3 2.3318E — 4 F 5.6845E — 3i

1 AC [[4r0 _
W 1.74E — 2
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Fig. 5.18 Transient response comparison: voltage at Port 2 - Example 3

5.3 Compensation-Introduced Inaccuracy and Solution

We have seen that there is an observable difference in the imaginary part of Y33 between
the compensated macromodel and the interconnect in the region close to the passivity
violation (happening out of band). The accuracy of the macromodel decreases due to the
compensation process. This could happen especially when the passivity violation takes
place beyond and close to our highest frequency of interest. The reason lies in that Vector
Fitting only guarantees the in-band accuracy, it does not have control over the out-band
response of the macromodel. Consequently, given that suflicient in-band information is
provided and a fine Vector Fitting is applied, it is extremely occasional to detect passivity
violation in band (In case of in-band passivity violation, it should be extremely small so
that some slight compensation is sufficient, to offset it and the frequency response will not,
be affected much.). In addition, remember that we have ensured the macromodel to be
asymptotically passive at w = oo by adding constrains to the coupling constants (D), so
the most possible location of passivity violation is in the vicinity of the highest frequency
of interest right out of band, like Example 3 (Example 2 also shows an out-band violation,
but the violation is so small that it has very little affect on the accuracy). In contrast to in-
band passivity violations, out-band violations are usually large and require more efforts to

compensate. The degradation of accuracy due to the compensation process is consequently



5 Passivity Compensation 68

large. Fortunately, since only the poles in the vicinity of passivity violation are selected for
compensation, the resulting inaccuracy is efficiently confined to the vicinity of the highest
frequency of interest, like the imaginary part of Y33 in Fig. 5.17. Based on this discussion,
a straightforward solution to the problem is to give some appropriate frequency margin
to our frequency range of interest. For an illustration, we return to Example 3. Assume
one cares about the accuracy of the macromodel up to 4 GHz. Instead of sirnulating the
original network to 4 GHz (as what was done in Example 3), we simulate it to 5 GHz. The
passivity violation happens right out of band. Fig. 5.19 shows the negative eigenvalues.
After a proper compensation, the responses of the macromodel are compared with those of
the original network (Fig. 5.21 and Fig. 5.22). Good matches are obtained except for the
imaginary part of Yag, as a small mismatch is detected around 5 GHz. Since our highest
frequency of interest is 4 GHz, from Fig. 5.22 the 1 GHz margin efficiently offsets the

accuracy degradation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

This thesis reviews some typical techniques developed for incorperating the frequency-
domain measured data into time-domain simulators. Two main classes of methods have
been discussed: convolution-based methods and the ones based on macromodels. The
convolution-based methods are usually not CPU-efficient as the convolutions have to be
done numerically. The macromodel-based approaches involve rational function approxima-
tion and therefore suffer from ill-condition when a high-order approximation is required.
In contrast to these methods, Vector Fitting algorithm efficiently avoids ill-condition by
applying iterative solution. This feature allows it to fit more complicated curves in high-

order approximations.

Several methods for checking the passivity of the resulting macromodel are presented
in Chapter 4. The method used in this thesis is based on evaluating the eigenvalues of the
Hamiltonian matrix. The advantage lies in that this method provides a direct link between
purc imaginary eigenvalues of the Hamiltonian and the regions of passivity violation. This
helps us precisely locate the regions. Based on this information, the algorithm discussed in
Chapter 5 compensates the regions of passivity violation along a positive direction with-
out introducing additional passivity violations. The algorithin perturbs the real part of the
residues for the diagonal entries of Y (jw) with the poles and coupling constants unchanged.
By applying a linear optimization the perturbed values offset the maximum violation and

keep the change in response at the minimum level. A potential problem of accuracy degra-
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dation associated with the algorithm is illustrated by Example 3. It is pointed out that

adding some initial frequency margin to Vector-fitting can effectively fix the problem.

6.2

Future Work

The compensation process is based on perturbing the residues of the diagonal entries
of Y(jw), and the relative change in response is a measure to the impact of the
compensation. In case the frequency response is small (close to zero) throughout the
bandwidth, a minor compensation may cause relatively large change or even offset
the original response. Future work is required to rclate the magnitude of the change
to the magnitude of the frequency response. Thus, the degradation of accuracy can

be kept relatively small.

Efforts will be made to develop a passivity-guaranteed approximation algorithm. The
focus may be moved from post-macromodeling compensation to pre-macromodeling
manipulation, which avoids passivity check and compensation and therefore saves
CPU cost.

. Interconnects containing large delay lines usually require comparatively high-order

macromodels to represent. The resulting complexity of macromodels leads to inten-
sive CPU efforts in transient simulation. A delay extraction operation is required to

reduce the delay before the rational function approximation [59].

The approximation methods discussed in this thesis are only for linear network macro-
model construction. In contrast to linear networks, nonlinear networks are charac-
terized in the time domain, and nonlinear macromodeling techniques need to be

developed to address this problem.
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Appendix A

Conversion of Macromodels to

Equivalent Circuits

The conversion of macromodels in their state-space form to equivalent circuits can be easily
achieved. Consider (4.5) and (4.6)
x(t) = Ax(t) + Bv(t) (A1)
I(t) = Cx(t) + Dv(2). (A.2)

For a better illustration, let us assume we have a simple macromodel with two ports and

two states. Hence, the above two differential equations can be rewritten as

T1 = an®1 + a12T2 + b1v1 + bigve (A.3)
To = Ap1L1 + GooXy + ba1v1 + bagug (A4)
jl = 11Ty + C12%2 + div1 + digvs (A.5)
Iy = e + coap + doyvy + daava, (A.6)

where [;, I, and v, v denote the port currents and voltages respectively. x1,zs stand for
the state variables. (A.3-A.6) can be translated into an equivalent network shown in Fig.
A.1 [60]. The state variables can be represented by capacitor or node voltages vpn1, Uno.

In another word, each state variable is represented by one independent node like Fig.
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A.1(c)(d). Next, the equivalent circuits for the equations of the output currents are given
by Fig. A.1(a)(b). Terms such as a1, @12, a21, @22 in (A.3) and (A.4) are represented by
voltage controlled current sources controlled by the node voltages. It is always true that
the number of the subnetworks in Fig. A.1(a)(b) should be equal to the number of ports
and the number of the subnetworks in Fig. A.1{c)(d) should be equal to the number of

states. The resulting equivalent circuits are easily implemented for transient simulation.

Port 1 Port 2
i —> ! ! i~
v, Vv,
1 1 $>
r=— r=— .
du Vm C12Vna dlzvz dzz 1V Cx n2 d21v2

- ‘L 1 4]7
IFTI rnl =Zl A2V by, b12v<¢> C,= 1F Vo by by,

Fig. A.1 Equivalent circuits of the state-space model
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