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2. Abstract 

Modern neural prostheses are promising medical devices that can be controlled 

exclusively by the user’s brain. Such devices receive input signals through brain-computer 

interfaces (BCI). The goal of this project is to enhance BCI designs by implementing separate 

target direction decoders for the reach and saccade movements based on local field potential 

(LFP) signals. The LFP are recorded in monkey’s medial intraparietal sulcus (MIP) and the 

dorsal premotor cortex (PMd), two cortices that are associated with arm and eye movement 

planning and execution. LFP is the signal of interest because it measures the neuronal 

ensemble activity with high spatial and temporal resolution while providing a long-term 

stability compared to the action potential (AP) signal. The data are recorded while monkey 

subjects performed center-out memory reach tasks coupled with saccade movements. 

Furthermore, the LFP signals are decoded using machine learning algorithms built upon the 

logistic regression (LR), artificial neural network (ANN), decision tree classifier (DTC), and 

support vector machine (SVM). While all four algorithms yielded 100% accuracy when 

performing binary classification for both movements, LR achieved 93% accuracy for 

classifying reaches to 3 directions, and 85% for 4 directions and 90% and 76% when 

classifying saccade to 3 and 4 directions. The results are comparable to the state-of-the-art 

AP based movement direction decoder while outperforming non-invasive BCIs such as EEG 

and fMRI. The high decoding accuracy is also attributable to the feature extraction technique 

that we applied, which is to use a multitaper power density estimation and to incorporate a 

large range of time and frequency information as opposed to the single frequency band based 

decoding method proposed by most researchers.  
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3. Abrégé 

Les prothèses neurales modernes sont des dispositifs médicaux qui peuvent être 

contrôlées exclusivement par le cerveau d’utilisateur à travers des interfaces neuronale-

directe (BCI). Le but de ce projet est d’améliorer le fonctionnement du BCI en construisant 

deux décodeurs de cible séparément pour la portée de la main et de la saccade oculaire à 

l’aide des signaux enregistrés du champ de potentiel local (LFP). Ces signaux sont recueillis 

dans le sillon intraparietal médial (MIP) et le cortex pré-moteur dorsal (PMd) de deux 

macaques. Les neurones de ces cortex sont souvent associés à la planification et à l’exécution 

des mouvements du bras et des yeux. En outre, LFP est le signal d’intérêt à cause qu’il mesure 

avec une haute résolution spatiale et temporelle tout en offrant une stabilité à longue terme 

contrairement aux signaux de potentiel d’action (AP). Les données sont recueillies lorsque 

les macaques performent des taches d’atteindre des cibles mémorisées de façons centrifuge 

couplée aux saccades oculaire. De plus, les signaux LFP sont décodés en utilisant des 

algorithmes d’apprentissage machine (ML) construits sur la régression logistique (LR), le 

réseau de neurones artificiels (ANN), l’arbre décisionnelle (DTC) et machine à vecteurs de 

support (SVM). Toutes quatre méthodes ont atteint une précision de 100% lorsqu’on 

distingue entre deux directions pour les deux sortes de mouvements. Dorénavant, le LR a 

atteint une précision de 93% pour classifier les portées à trois directions, et 85% pour quatre 

directions. De même, une précision 90% et 76% a été atteint pour les classifications de 

saccade à trois et à quatre directions. Ce résultat est comparable à la performance des 

décodeurs basée sur AP tout en surperforment les modalités non-invasive comme le EEG et 

le fMRI. La haute précision de décodage peut également être attribuée à notre technique 

d'extraction de caractéristique qui utilise une estimation spectrale multitaper et qui intègre 

une large gamme d’information temporelle et fréquentielle contrairement à la méthode de 

classifier les attribues de mouvement à partir d’une seule bande de fréquence.  
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6. Background 

Brain-computer interfaces (BCI) present a vast array of medical applications by 

allowing the users to interact with the environment solely with their mind. One particularly 

interesting quest at the focus of our lab is to advance the research in neural motor prostheses 

control. These BCI can greatly improve the quality of life of the patients suffering from partial 

or total motor impairment. A report by Cahill et al. [1] assesses the prevalence of paralysis 

and spinal cord injuries in the United States at 1.9% in 2009, and similarly, currently 675,000 

paralysed patients are living in Canada based on the latest national survey [2]. In addition, 

192,000 patients are living with some degree of limb amputation, calculated based on the 

0.54% prevalence of limb loss [3]. Other related research fields of neuroprosthetics are 

focusing on reinstating sensory systems, such as visual and hearing impairment, which are 

assessed to affect 3.4% and 8.2% of the population respectively [4]. The main difference 

between these two categories is that the former seeks to connect the brain to movement 

actuators, while the latter seeks to connect sensors to the brain’s nervous system. This 

project focuses on improving the former BCI.  

A typical BCI design comprises three major steps. First, the signal is acquired and 

preprocessed from the user’s central or peripheral nervous system. Many modalities have 

been studied to record different types of brain signals. Second, these recorded signals are 

channeled towards the feature extraction and classification algorithm. The former detects 

and identifies the discriminative features, and the latter analyses these features and attempts 

to correctly label the observation based on the trained database of known observations. 

Finally, the BCI sends out a specific control command to the actuator as a function of the 

classification output.  
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Each of the abovementioned steps is essential to the overall performance of the BCI; an 

improvement brought to any of these steps can potentially increase the system’s overall 

efficiency. In this project, we will make an attempt to improve the second step by 

implementing decoders built upon modern machine learning algorithms namely the logistic 

regression (LR), the artificial neural network (ANN), the decision tree classifier (DTC) and 

the support vector machine (SVM). But first, the readers will be introduced to the different 

techniques of the brain signal acquisitions and be presented the advantages and 

disadvantages of the recording modality at the focus of this project, i.e. the local field 

potential (LFP). The implementation of the control output and the actuation of the command 

is an entirely separate endeavour by itself, and will be reserved for a future project.  

6.1 BCI Background 
 
Two milestones in the development of BCI are widely recognized in the research 

community. The first is when Prof. Hans Berger, a German neurologist, recorded EEG signals 

in the first human subject in 1924 and identified the alpha wave [5]. He observed that the 

brain waves displayed dynamics that can be associated with the patient’s brain diseases. The 

second milestone is when the term BCI was coined by Prof. Jacques J. Vidal in 1973 in his 

pioneering work [6],  in which he reported the successful implementation of a cursor control 

system based on visually evoked potential. Nevertheless, the number of research groups 

interested in harvesting the power of cortical signals were scarce in the next few decades 

due to both the lack of appropriate technology and the lack of user confidence [7]. The 

situation turned at the beginning of the millennium when peer reviewed publications related 

to BCI increased exponentially. Meanwhile, the lay public gained insights to the seemingly 

limitless possibilities of BCI through media coverages such as the documentary entitled “Het 
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Gretige Brein” (The Eager Brain) produced in by VPRO, a Dutch TV company. The broadcast 

presented a quadriplegic patient moving a robotic arm to serve herself a cup of coffee [8] 

with the help of implanted sensors in the brain. Other public exposures include the most 

recent science-fiction blockbuster of the RoboCop franchise [9], where the brain of a police 

officer is salvaged in a cyborg armour. This media coverage stimulated the eagerness of the 

general public to learn more about BCI which greatly facilitated the cutting edge research 

that would be objectionable a decade ago [10]. 

6.2 Recording Modalities 
 
The direct beneficiary of this expanding research field is the improvement of the 

cortical signal recording modalities. These methods can be broadly distinguished into two 

classes, non-invasive methods such as EEG, fMRI, and fNIRS, and invasive methods such as 

SUA, ECoG, and LFP. The preliminary BCI researches were almost exclusively focused on 

non-invasive EEG methods [11]. Later studies saw a shift towards the invasive methods to 

achieve a better control speed and accuracy. In this section, we will compare the two classes 

and describe the major constituents.  

6.2.1 Non-Invasive Methods 
 
The non-invasive methods as reviewed by Millán et al. [12] are sought to be the proper 

way of recording brain signals by virtue of their non-invasiveness as the name suggests. In 

other words, they do not require any physical incision to the brain, the skull, nor the scalp. 

Because of this user friendly form factor and the lower medical risks, not only can they aid 

paralyzed patients, but they can also provide a way to augment able-bodied humans with 

everyday activities such as driving [13] and gaming [14]. 
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EEG The most promising method among this class of BCI is the electroencephalogram 

(EEG). Niedermeyer's Electroencephalography [15] offers an in-depth review. In essence, 

neurons exchange ions with the extracellular surrounding in order to maintain the cell’s 

resting potential or to propagate action potentials. This exchange of ions reflects the 

activation of a neuron, and eventually the ensemble activity of thousands or millions of 

neurons propagates altogether to the recording sites. This electrical voltage is accumulated, 

both constructively and destructively, by the propagation of the waves through the layers of 

neurons. The outcome of this propagation is a measurable voltage oscillation at the scalp 

where the electrodes are located. The oscillations encompass activities in different rhythmic 

frequency bands, each believed to be associated with specific neurophysiological behaviours. 

For example, the alpha waves (8 − 13 Hz)  in the visual cortex are associated with the 

synchronous activity of thalamic pacemaker cells which are present during wakeful 

relaxation with eyes closed [16]. In other words, one can predict whether the subject with 

closed eyes is awake by analysing the oscillation patterns of the alpha waves. Such analysis 

methods have been studied extensively in the past decades to be used in diagnosis of various 

disorders such as epilepsy and sleep disorders by discerning abnormalities in the patient’s 

EEG readings. Researchers have also discovered useful properties which allow EEG to be 

used as a basis for BCI as reviewed by Padmavathi and Ranganathan [17].  

The basic technique employed in EEG-BCI designs uses evoked potentials, a response 

recorded from the nervous system following the presentation of a stimulus. A realisation of 

this method is the Steady-State Visually Evoked Potentials (SSVEP) where the user is 

instructed to gaze at an LCD screen with areas flickering at different frequencies. By fixating 

on different targets, an increase in the EEG power of the frequency corresponding to the 
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flicker can be observed and thus the command associated with the flicker can be executed, 

e.g. an online speller [18]. The issue with these BCI is that they require the user’s attention 

to focus on the stimulus and therefore is not suitable for control tasks such as wheelchair 

maneuver. For this reason, researchers called upon the ability of the brain to perform motor 

imagery [19] or mental tasks [20] that can be decoded with the help of algorithms. The issue 

with these paradigms is that the user could be performing them inattentively, which greatly 

affect the BCI’s real world performance. Moreover, there are other significant noise sources 

that can affect EEG signals such as electrocardiogram (ECG), electrooculography (EOG), 

electromyography (EMG), just to name a few. These noise sources are caused by the 

electrical potential related to muscle activation corresponding to the heart, the eyes, and the 

limbs respectively. 

fMRI Another commonly used recording modality is the blood oxygen level dependent 

(BOLD) functional magnetic resonance imaging (fMRI) whose physical principles are 

described in Huettel’s book [21]. Simply put, the BOLD fMRI exploits the difference in 

hemoglobin’s response to the induced magnetic field depending on whether it is oxygenated 

(oxy-Hb), or is depleted of its oxygen molecule (deoxy-Hb). Detecting this difference leads to 

the measurement of cerebral blood flow (CBF) which is strongly believed to be correlated 

with the neuronal activation level. This measurement technique has been used extensively 

to map the brain’s functional areas for research purpose since the 1990s. Because the fMRI 

can realize high spatial resolution in the millimeters range and moderate temporal 

resolution in the seconds range, it is thought to be a practical BCI basis in the last decade as 

reviewed by Sitaram et al. [23]. This review has assessed that human subjects, with the help 

of real time fMRI providing visual feedback, can learn to voluntarily regulate brain activity 
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in a great number of brain regions. An interesting BCI application resulting from the 

voluntary regulation is the processing of emotions [24]. The experiment was conducted such 

that the patient is shown two curves representing the BOLD activity in the rostral-ventral 

and the dorsal part of the anterior cingulate cortex (ACC), two regions of the brain commonly 

associated with emotional valence and arousal. The possible extensions of this result are the 

study of correlation between behavioural states and cortical regions. Nevertheless, due to 

the large form factor and high usage cost of current fMRI equipment, along with the patient’s 

movement limitation during recording sessions, everyday use of fMRI-BCI is yet impractical.  

fNIRS An emerging brain activity recording modality is the functional near-infrared 

spectroscopy (fNIRS) which, similar to fMRI, measures the hemodynamic response of 

neuronal activity. Instead of measuring the magnetic response, fNIRS measures the 

difference in light (700~900 nm wavelength) absorption spectra of the oxy-Hb and deoxy-

Hb. Unlike fMRI, fNIRS can be recorded with a portable and affordable instrument [25]. 

Considering these factors, research groups have investigated the implementation of fNIRS-

BCI in several fields. An in-depth review of fNIRS-BCI has been published very recently [26]. 

The first category of application is a binary prediction schema, i.e. “yes-no” or “start-stop”. 

The classification rate was about 80% in most test cases. Interestingly, the same accuracy is 

observed in totally locked-in ALS patients, although only 40% of the tested patients reacted 

to the experiment. The group also argued that fNIRS-BCI are limited in real life settings due 

to the slow information transfer rate and high prediction error. Nevertheless, Shin and Jeong 

[27] reported that they achieved a higher classification accuracy of about 90% and a faster 

transfer rate with their custom built fNIRS recording device. A continuous improvement in 

these two factors can eventually result in more advanced application of fNIRS-BCI.  
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6.2.2 Invasive Methods 
 
SUA Despite the non-invasiveness of the BCI modalities described above, they all share 

a common drawback that is the slow control speed and relatively low spatial and temporal 

resolution. Henceforth, the class of invasive methods provides a greater signal specificity 

which translates to faster control speed and higher resolution as many researchers argued 

and summarized by Lebedev and Nicolelis [28]. The methods described below, along with 

EEG, interpret neural activity by means of electrophysiological (EP) behaviour of the 

neurons. The first experiment of neuronal activity recording was reported by Edgar Adrian 

in 1928 [29], who later won the Nobel Prize for his work in this field. The technique has since 

been evolving to develop better microelectrodes with greater precision. In 1998, Kennedy 

and Bakay successfully developed an action potential based BCI to allow an ALS patient to 

control a computer cursor [30], at which point the scientific community saw the potential in 

the invasive BCI. In single unit activity (SUA) recordings, the microelectrode measures the 

electrical potential adjacent to the target neuron. When the neuron is activated, it is said to 

“fire” an action potential down its axon to the receiving neuron. The rate at which it fires is 

called the “firing rate” (FR). Experiments have shown that the FR encodes pertinent 

information, e.g. reach movement planning from the premotor cortex neurons [31]. It is 

believed that since neuronal activity are at the basis of all brain process, decoding the FR can 

lead to the most robust BCI. However, there is an important issue that is the invasive 

procedure of electrode insertion which scars the cerebral matter at the insertion site. Also, 

in the presence of foreign objects, a sheath of glial substance develops on the electrodes as a 

self-healing mechanism of the central nervous system [32]. This gliotic sheath has high 

impedance properties that force the electrical current to flow through the surrounding 
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region which has a lower impedance. Therefore, the signal strength deteriorates over time, 

leaving the SUA-BCI not viable for long-term usage. 

ECoG In order to avoid the highly invasive nature of electrode implants while recording 

at a high resolution, researchers have introduced the electrocorticography (ECoG) which 

measures the electrical potential at the surface of the cortex, either above (epidural) or 

below (subdural) the dura mater. Its principles are similar to EEG and is hence also called 

intracranial EEG (iEEG). ECoG implants were first used clinically in 1950s by Dr. Wilder 

Penfield and Dr. Herbert Jasper in the renowned “Montreal Procedure” to localize epilepsy 

tissues [33]. Despite its current clinical use in human patients, the placement of the 

electrodes and the duration of the implantation are carefully chosen for the brain disease 

pathology and not fully versatile for research purpose [34]. Nevertheless, researchers have 

obtained visuomotor task related ECoG recordings, with the patients’ consent, and 

demonstrated the capability of this modality from offline analysis [35], [36]. In 2004, 

Leuthardt et al. realized the first online ECoG-BCI to decode the direction of hand movements 

[37]. This latter study was conducted with four participants to control a one-dimensional 

cursor and achieved a 74–100% accuracy after a short training period of 3 – 24 min. In 2008, 

another group successfully implemented an online two-dimensional cursor control system 

based on imagined or actual motor tasks [38]. Albeit these promising results, ECoG-BCI 

studies are currently limited to a restrained population of epilepsy patients for a training 

window of only a few hours per day. On a technical aspect, ECoG arrays provide too coarse 

of a spatial resolution,  around 1 𝑚𝑚 [39], to represent the activities of localized neuron 

populations. The article by Schalk and Leuthardt [40] offers an in depth review of ECoG-BCI. 
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6.2.3 Local field potential (LFP) 
 
LFP uses similar electrode design as SUA recording and it is the modality that is studied 

in this project. Unlike SUA, LFP measures the summed electrical current generated from 

surrounding neuronal activity in a radius of 50 − 350 𝜇𝑚 . By measuring the electrical 

discharge from multiple neurons, the LFP recordings mainly remediate the diminishing 

signal amplitude issue of SUA recordings [11]. The reason that LFP signal is reliable is due to 

the columnar structure of the cortex known as cortical columns [41]. In other words, neurons 

are generally physically grouped together to form columns and are activated by the same 

stimulus. Thus, the electrode that is recording from a specific column is exploiting the 

additive property of the electrical potential of the neuronal population. Nevertheless, the 

multiple sources of electrical potential make LFP more difficult to interpret than SUA signals 

and thus more advanced modelling and signal processing methods need to be developed in 

order to fully acquire the informative content. The most widely used analysis of LFP is the 

frequency analysis. This method constitutes of decomposing the continuous LFP signal into 

frequency bands with the help of mathematical tools such as the Fourier transform. It then 

studies the correlation between the amplitude in each frequency band with the stimulus 

[42]. Other studies have attempted to further improve this understanding of LFP by tackling 

specific bands, e.g. the gamma rhythms (30-80 Hz) [43], or specific brain areas, e.g. the 

premotor cortex [44]. Despite, the promising long-term usability and the high spatial 

resolution of LFP signals, studies of online LFP-BCI are still non-present due to the 

invasiveness of the electrodes and a general lack of interest among the research community.  

Further, the frequency domain decomposition of the LFP signal observes two 

challenges as described by Babadi [45]. First, an infinite length time window is required to 



 
 
 

17 
 

accurately describe the frequency content. Second, there are some degree of stochasticity 

due to both the inherent property of brain signal and the measurement noise. The latter issue 

would require an infinite number of repeated observation to properly nullify the 

stochasticity within the signal, e.g. by taking the sample average. However, the actual 

recording is limited in both a finite time window and a single realization of the output. Thus 

researchers have designed spectral estimation techniques to extract the power content using 

a Multitaper Method (MTM) [46] that remediates both the high bias and high error variance 

in finite estimates. Such method is used in this project to perform the feature extraction step 

of LFP signals. 

6.3 Brain Signal Decoding 
 
Brain signal decoding is often regarded as beyond reach by the lay public and the mere 

idea of “mind reading” incites fear of privacy infringement in some people. Nevertheless, the 

current technology provides the possibility for researchers to discriminate specific mental 

states often with high accuracy. The rationale is that if the brain activity differs, ever so 

slightly, when it is occupying distinguishable mental states, then the decoder should be able 

to detect this disparity and to discern the underlying mental state. As mentioned previously, 

a vast array of BCI are available to interact with the brain and to record different signals 

(electrical, magnetic, or optical) that reflect the brain activity. More specifically, within the 

electrical modalities, different methods are often necessary to exploit the available data in 

order to achieve the highest decoding accuracy. While early attempts to classify brain signals 

are almost exclusively rule-based, e.g. thresholding [47], the advancement in the field of 

machine learning allowed the implementation of more accurate decoders. One of the main 

reasons is that the latter has access to a larger set of decision boundaries unattainable by 
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human capability. As the number of features increases, it is more difficult, if not impossible, 

for humans to correctly assign a threshold at the boundary of two classes. Computers, on the 

other hand, are only limited by the Moore’s law and the complexity of the mathematical 

model.  

Supervised Learning The first class of machine learning algorithms is known as 

supervised learning. In this group, the training model has access to a set of labeled data that 

is derived from observed behaviour of the subject, e.g. hand or eye coordinates. The 

prediction of the decoder is then restricted to this label space, which can be discrete, e.g. 

reach direction, or continuous, e.g. movement velocity. A number of mathematical models 

are available to describe the supervised learning process. A few all-purpose algorithms that 

are widely used in the research community are presented here along with their applications 

in the brain signal decoder implementation.  

Linear regression, a product of the regression analysis, is possibly the most 

straightforward model to be employed in a continuous labeling scheme. The model fits a 

linear relationship between the input data vector, and its mapping onto higher dimensions, 

and the target data by means of error minimisation, often using a least squares approach. A 

group of researchers used this model to study the information content of brain signals by 

regressing kinematic measurements such as position and velocity on LFP power spectrum 

[48]. Another group took a step further and applied the model to predict planar and 3D limb 

kinematics from EEG signals [49]. These examples illustrate the possibility of brainwave 

analysis using the linear regression method.  

An analogous model that exploits the linear relationship is the Logistic Regression (LR) 

[50] which is used to predict discrete label sets. In simple terms, the model calculates the 
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probability that the instance is associated with a certain outcome among the available classes 

by mapping a linear function of the feature vector to the probability space using a logistic 

sigmoid function. This method has allowed researchers to use EEG signals to perform motor 

imagery classification [51] and reach target prediction [52], [53]. Another group used this 

method to classify grasping motions in monkeys [54]. 

Taking a further step from the logistic regression, scientists have built the Artificial 

Neural Network (ANN) algorithm. Mimicking the brain’s neural hierarchical architecture, 

each node, or neuron, within the network assigns numeric weights to nodes found at the 

lower layer and outputs an activation value. The weight assigned to each node are updated 

using an error backpropagation updating scheme. The potential of this method was first 

reported in the recognition of handwritten digits (0~9) [55]. A study of ANN’s capability is 

conducted to predict the onset of Parkinson’s disease tremor from recorded LFP signals [56] 

and to detect the presence of index finger movement attempts from tetraplegic patient’s EEG 

and MEG signals [57].  

To tackle the issue of large length of feature vectors, researchers have developed a set 

of ensemble techniques that only learn on subsets of the feature space. The best known 

model amongst this category is the random forests algorithm developed by Breiman [58] 

which constructs decision tree classifiers (DTC) [59] based on randomly selected subsets of 

the features. These trees are then trained with randomly selected samples. This injected 

randomness effectively remediates DTC’s tendency to overfit as argued by Breiman. The 

method has been reported successful in detecting anomalies in neonatal EEG signals [60] 

and brain region activation patterns in fMRI data [61]. Although the research on the 
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suitability of the random forest on LFP signals is yet vacant, the method is a pertinent 

candidate for this classification study. 

Built on another set of mathematical models is the (soft margin) Support Vector 

Machine (SVM). This model identifies the support vectors defining the boundary between 

two classes; new observations are labeled uniquely using this boundary. The soft margin 

variant of the model [62] allows mislabeled data points to be present on either side of 

boundary that would otherwise forbid the outlining of a clean boundary. This trait is 

essential in the application of SVM on realistic data. In addition, a practical advantage of the 

SVM is its relative robustness against the “curse of dimensionality” [63], also known as the 

Hughes phenomenon, named after G. Hughes (1968) who showed that the number of 

required training samples grow exponentially as the dimensionality increases. Further, 

groups of researchers have used this method to classify behavioural tasks from LFP signals 

of Parkinson’s disease patients [65] and reach-and-saccade targets from EEG signals [66].  

 Recent development in machine learning led to the rise of a second class of algorithms 

known as the unsupervised learning, whose goal is to classify the input signals into distinct 

classes without, or with only partial, prior knowledge of the class labels. Its employment in 

the field of neural science is still in its infancy and further research has yet to be done. 

Nevertheless, its promises are countless as mentioned in the book titled “Unsupervised 

Learning: Foundations of Neural Computation” [67]. Despite its values, the data available for 

this project is not fully adequate for applying unsupervised learning and therefore no results 

are available to be shown. 
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6.4 Brain Areas involved in Visually Guided Reach 
 
Reaching for objects is a seemingly simple task in the everyday living. However, the 

brain must incorporate a vast array of information in order to guide the arm from the current 

position to the location of the reach target. In order for the subject to successfully reach the 

target, its brain processes the information by passing signals from one area of the brain to 

the next along the so-called neural pathways. Each area along this pathway encodes the 

signal differently and thus signal transformation needs to take place, i.e. the sensorimotor 

transformation.  

 To realize the visually guided reaches paradigm that is studied in this project, the 

subject’s brain must go through the following steps. First, the visual stimulus activates the 

photoreceptors located within the retina at the rear end of the eye. Then the information is 

passed along the optic nerves, a chain of neurons, to the visual cortex (V1). Here, the 

information is encoded in a retinocentric reference frame [68] considering that the retina 

shifts with the direction of the gaze. Henceforth, a transformation from the eye centered to 

the hand centered reference frame needs to take place for the reach to occur. After analyzing 

the neuronal activity in the posterior parietal cortex (PPC) and the premotor cortex (PMC), 

researchers found that they encode coordinates in both the abovementioned reference 

frames [69] which is consistent with their role in the sensorimotor transformation process. 

Furthermore, within the PPC is located the parietal reach region (PRR) which is 

associated with the reach process [70]. PRR then sends signals directly to the dorsal 

premotor cortex (PMd) [71], which is located within the premotor cortex (PMC). Chang et al. 

suggests that PRR is involved in the preparation for the reach movement of the contralateral 

(opposite side) limb while the PMd further prepares both the contralateral and the 
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ipsilateral limbs. Finally, the reach movement information is processed in the primary motor 

cortex (M1), where the coordinates are encoded in a body centered reference frame [72] 

allowing the reach to be performed effectively. 

Two cortices were mentioned to be associated with reach preparation: PPC and PMC. 

These areas are chosen for the experiment’s data acquisition sites for the reason that both 

encodes coordinates in eye centered and hand centered reference frames. Readers are 

invited to read the following sections in order to familiarize themselves with the basic 

functions of these two regions. 

6.4.1 Posterior Parietal Cortex (PPC) 
 
The PPC is a section of the parietal lobe posterior to the primary somatosensory cortex 

consisting of Brodmann area 5 and Brodmann area 7 of the primate brain. Historically, lesion 

studies helped the discovery of the role of the PPC by assessing deficits in patients with 

lesions in this brain area. The most noteworthy deficit is the apraxia: an acquired difficulty 

in motor planning while coordination and senses are unaffected [73]. More recent studies on 

brain mapping indicate that the PPC is composed of sub-areas with more specialized roles of 

movement planning; the lateral intraparietal area (LIP) specialises in saccadic eye 

movement, the PRR, which contains the medial intraparietal area (MIP), specialises in 

reaching, and the anterior intraparietal area (AIP) specialises in grasping [74]. To dissociate 

the functions of these brain areas, Snyder et al. designed a delayed tasks experiment that 

implied a time delay in the execution of the tasks (saccade or reach). Noticing the preferential 

neuron tuning during the planning or the memory stage, that is the epoch prior to the task 

execution, the authors draw the conclusion that LIP and PRR are specialized differently with 

the abovementioned roles.  
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 Zhang and Barash [75] designed an experiment to further distinguish whether the 

neuronal response is purely visually triggered or did movement planning actually occurred. 

The subject was trained to perform a saccade either towards the cue (pro-saccade) or 

opposite to the location of the cue (anti-saccade) depending on the color of the visual cue. 

They discovered that the tuning of the neurons were first biased towards the location of the 

cue, but the tuning switched rapidly, within 50 𝑚𝑠 of the signal’s arrival in the LIP, towards 

the instructed movement direction. This result support the hypothesis that LIP encodes the 

movement plan rather than the visually stimulus. Gail and Andersen later designed a similar 

anti-reach experiment to show that PRR encodes the reach plan rather the stimulus memory 

[76]. In addition, Steenrod et al. showed that LIP encodes the target location rather than the 

movement vector towards the target [77] by dissociating the stimulus location and the 

saccade end-point. 

6.4.2 Premotor Cortex 
 
The PMC is part of the motor cortex corresponding to part of the Brodmann area 6 in 

the primate brain. Its function is not yet fully understood, but results show that it is 

responsible for movement planning using high level abstract rules [78]. The PMC is further 

divided into sub-regions, each having specific roles; the frontal eye fields (FEFs) are 

associated with saccades [79], the dorsal part (PMd) is associated with reaching [80] while 

the ventral part (PMv) is associated with grasping [81].  

 Evidence show that the PMd is responsible for the reference frame transformation in 

the reach movement planning [82]. Functional analysis of the brain places this area at the 

affluent of the PRR and at the influent of M1 and the spinal cord. Unlike the target location 

tuned neurons of the PRR, PMd neurons are tuned to the direction of the reach movement; 
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this region employs a shoulder-centered reference frame. To show this, Caminiti et al. [83] 

designed an experiment which dissociated reach direction and reach endpoint by varying 

the arm’s initial position.  

6.5 Summary 
 
The above results provide ample reasons for our experiment to record brain signals 

from the PRR and the PMd and to decode the reach movement plan from the LFP data. Also 

it is of interest to simultaneously decode saccade direction from these regions in order to 

confirm the specificity of the regions. The goal of this project is to provide an offline 

feasibility study of LFP-BCI based on various popular machine learning algorithms for the 

research community to eventually develop a reliable online BCI that can be implanted for 

long term use. 

This paper is structured as follows. In the Materials and Methods section, the 

experimental setup is explained which emphases on the description of the delayed memory 

reach task. Then the models of various machine learning algorithms studied in this project 

are exposed. In the Results section, we demonstrate the properties of the LFP signal related 

to the saccade and reach movement as well as the decoding accuracy with respect to each 

decoding algorithm as a function of the modeling parameters. Finally, we study some 

interesting downfalls of the decoders and possible adjustments in the Discussions section.  
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7. Materials and Methods  

7.1 Test Subjects 
 
The training and data collections were performed in 2010 on two awake and behaving 

male rhesus monkeys (Macaca mulatta), M and H, weighing 6.5 and 11.9 𝑘𝑔 respectively. 

Both monkeys are right-handed. The monkeys were implanted with head fixation posts (MRI 

Chair by Rogue Research). Then microelectrode arrays (MicroProbe, Gaithersburg, MD) 

were implanted in the left medial intraparietal (MIP) and left dorsal premotor cortex (PMd). 

The sites were localized using a MRI-based BrainSight (Rogue Research). 

Monkeys were given Glycopyrrolate intramuscularly at a dose of 5 𝜇𝑔/𝑘𝑔 followed by 

a dose of Ketamine at 10 𝑚𝑔/𝑘𝑔  for the induction of general anesthesia. Isoflurane gas  

(1 − 4%) was given to maintain general anesthesia. All surgical procedures were carried out 

under sterile conditions. After the surgical procedures, analgesia was administered to the 

monkeys for pain control for 10 days. The monkeys were given 14 days to recover before 

starting experiments. Daily body weight of the monkeys were measured to monitor health 

and growth. Throughout the testing period the animals were pair-housed and could exercise 

in a jungle gym. Monkeys were given fresh fruits after all completed sessions. All 

experimental procedures complied with the Canadian Council of Animal Care guidelines and 

were approved by the McGill animal care committee. 

7.2 Electrophysiological Recordings 
 
We used multielectrode array recordings to record neural activity from monkeys M 

and H. Monkey M was implanted with four 16-channel Floating Microelectrode Arrays (FMA) 

in MIP and one 32-channel FMA in PMd. Monkey H was implanted with two 16-channel FMA, 
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in both MIP and PMd. Refer to Figure 1C for array placement. Three arrays (48 channels) 

were recorded simultaneously in each session from MIP and PMd. The lengths of electrodes 

in MIP ranged from 1 − 9 𝑚𝑚  in both monkeys in order to sample the depth of the 

intraparietal sulcus. Electrodes in PMd varied between 0.5 − 1.5 𝑚𝑚. Electrode impedance 

is in the range 0.4 − 0.6 𝑀Ω. Since both animals were trained to reach with the right arm, all 

arrays were implanted in the left hemisphere. Signals were initially amplified using 20x 

headstage (Plexon, Inc) and sampled at 40 𝑘𝐻𝑧 using a Plexon acquisition system (Plexon, 

Inc) and continuously recorded to the disk for offline analysis. The local field potential (LFP) 

signals were extracted from the waveform by first lowpass filtering to 8 𝑘𝐻𝑧 using a third 

order Butterworth filter and then down-sampled to a rate of 1 𝑘𝐻𝑧. 

7.3 Behavioural Task 
 
The two monkeys were trained to perform a modified center-out memory reach task 

as shown in Figure 1A.  The monkeys were seated inside a grounded copper Faraday cage 

while their heads were held stationary by the implanted headpost. The behavioral tasks were 

run by a real-time system (LabVIEW RT, National Instruments). An infrared reflection 

camera monitored gaze direction (ISCAN, Boston). The monkeys’ two-dimensional hand 

position was monitored by an acoustic touchscreen (ELO Touch, California) coupled to an 

LCD monitor. The monkeys were only allowed to touch the monitor with their right hands 

while their left hands were constrained inside the seating apparatus. The monkeys sat 

approximately 45 𝑐𝑚 in front of the touchscreen oriented along the fronto-parallel plane. 

The monkeys were trained to follow the eye targets and to touch the reach targets as 

indicated on the monitor. The monkey were rewarded with juice for completing each 

successful trial. Once the trial was initiated, the eye and hand positions were constrained 
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within 2 𝑐𝑚 radius windows of the central target until the reward was delivered; otherwise, 

the trial was aborted and no reward was administered.  

Monkeys were trained on three tasks differed by the eye movement condition: fixation, 

saccade, and pursuit. Each trial of the three tasks contained one reach movement to four 

targets. Trials from all conditions were initiated when the animal visually fixated a red 

central eye target and touched a green central reach target for 700 𝑚𝑠 (Figure 1A, panel I). 

A peripheral reach cue was then flashed for 600 𝑚𝑠 , indicating one of four reach target 

locations (panel II). The time from the disappearance of the peripheral reach cue until the 

instruction to reach was defined as the memory period (panel III). After holding the correct 

reach target for 500 𝑚𝑠, monkeys were rewarded with juice. All cues and targets were solid 

color circles approximately 1 𝑐𝑚 in diameter. 

Fixation condition. During fixation trials, monkeys performed a memory reach task 

with their eyes fixed centrally throughout the trial (Figure 1A, panel IIIa,b). Trials were 

initiated as described above. In all fixation trials, the memory period lasted between 1.2 −

1.6 𝑠. Monkeys were instructed to reach to the remembered location of the reach cue by 

extinguishing the central reach target (Figure 1A, panel IVa).  

Saccade condition. On saccade trials, trials were initiated as described above. 600 −

800 𝑚𝑠 after the start of the memory period (Figure 1A, panel IIIc) animals were instructed 

to perform a saccade during the memory period (panel IIId). The central eye target was 

extinguished and an eye target appeared at a location in one of the four reach target 

directions: up, down, right or left (Figure 1B). The saccade targets were 10 𝑐𝑚  from the 

central eye target. The monkey had 250 𝑚𝑠 to initiate the saccade or the trial was aborted. 
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The memory period lasted the same length of time as in the fixation condition, and all other 

trial periods were identical. 

Pursuit condition. Pursuit trials were initiated as described above. In the Pursuit 

condition, the animals were instructed to perform a pursuit eye movement during the 

memory period. 700 − 900 𝑚𝑠 after the start of the memory period (Figure 1A, panel IIIe) 

the central eye target moved smoothly to an endpoint 10 𝑐𝑚 away (panel IIIf). The pursuit 

endpoints were the same as the saccade targets used in the Saccade condition. The pursuit 

eye movement lasted approximately  1250 𝑚𝑠 . The memory period ended 200 − 700 𝑚𝑠 

after the pursuit ended.  

7.3.1 Trials distribution 
 
The number of successful trials is approximately evenly distributed among conditions 

and reach directions. All reach cues were presented at a distance of 7 𝑐𝑚 from the central 

fixation (Figure 1B). All datasets consisted of at least 240 successful trials (3 trial conditions 

x 4 directions x 20 trials each). The pursuit conditions are only analysed in terms of spectral 

analysis and not decoding analysis.  

7.3.2 Event Alignment 
 
Each trial is first aligned in time to the onset of hand or eye movement accordingly. For 

hand movements, the onset is observed when the touch signal is lost as the monkeys lifted 

their hands to reach towards the target (Figure 1A, panel IV). The fixation trials are aligned 

to the middle of the memory period. The saccade alignment is achieved by locating the 

sharpest change in gaze direction after the saccade cue onset. The pursuit alignments were 

performed manually as the eye traces do not display any consistent trends. 
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7.4 Feature Extraction 
 
For the decoders to achieve optimal performance, it is important to extract relevant 

features from the data that are suited predictors of the movement directions. In this project, 

we selected the MTM as proposed by the literature for temporal-frequency decomposition. 

The method takes in the time series of the LFP signal and outputs a two-dimensional spectral 

power matrix for each trial 

  𝑀𝑇𝑀:ℝ𝑇×𝑁×𝐿 → ℝ𝑇×(𝑁∗𝐹∗𝑊) (1)  

where 𝑻 represents the number of trials and 𝑵, the number of channels. For each of channel 

and trial pair, the LFP time series of length 𝑳 is decomposed into a matrix of 𝑭 frequency bins 

by 𝑾 time bins. The four-dimensional spectral power matrix is further unrolled into a two-

dimensional matrix of size 𝑇 by 𝑁 ∗ 𝐹 ∗𝑊 such that each row represents an observation and 

each column represent an independent feature dimension. 

 Nevertheless, the dimension of such feature space grows exponentially as the number 

of channel, time bins and frequency bins increase, and not all dimensions contribute to the 

prediction with equal significance; some features are effectively noise that deteriorate the 

decoding performance as shown in the results. Therefore, it is necessary to implement a 

ranking scheme to reduce the number of features to maximize the decoding accuracy. Two 

feature reduction methods are evaluated, the principle component analysis (PCA) and a 

correlation coefficient based method.  

7.4.1 Multitaper Method (MTM) 
 

The LFP signals were transformed using the multitaper method [45].  Let the 

sampling rate be  𝐹𝑠 = 1/Δ . Thus the sample data in discrete time is  𝑥𝑘 = 𝑥(𝑘Δ), 𝑘 =

0, … , 𝑁 − 1. Its discrete time Fourier transform (DTF) is thus 
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 𝑋(𝑓) = 𝛥∑ 𝑥𝑘 𝑒𝑥𝑝(−𝑗2𝜋𝑘𝑓𝛥)

𝑁−1

𝑖=0

 (2)  

and its power in the frequency band 𝑓 ±
1

2
𝛿𝑓 is approximately 

 𝑃 =
1

𝑁𝛥
|𝑋(𝑓)|2𝛿𝑓 (3)  

Assuming an infinite sample size 𝑁 → ∞, the average of the power around 𝑓 is 

 𝑙𝑖𝑚
𝑁→∞

𝔼 {
1

𝑁𝛥
|𝑋(𝑓)|2} 𝛿𝑓 (4)  

However, due to the limited signal length, the common practice is to assume a second-order 

stationary process 

 
𝜇𝑖 = 𝔼{𝑥𝑖} = 𝜇, 𝑖 = 0, 1, … 

𝑆𝑖,𝑗 = 𝔼{(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)} = 𝑆|𝑖−𝑗|, 𝑖, 𝑗 = 0,1, … 
(5)  

Thus the power spectral density (PSD) can be approximated by virtue of the Wiener-

Khinchin theorem [84] 

  𝑙𝑖𝑚
𝑁→∞

𝔼 {
1

𝑁𝛥
|𝑋𝑝(𝑓)|

2
} = 𝑆(𝑓) = 𝛥 ∑ 𝑠𝑘 𝑒𝑥𝑝(−𝑗2𝜋𝑘𝑓𝛥)

∞

𝑘=−∞

 (6)  

The next step is to estimate the autocovariance sequence 𝑠𝑘 given a finite length signal 𝑥𝑘. 

Let 𝑆̂(𝑓)  be an estimate of 𝑆(𝑓)  that satisfies both unbiasedness and low variance. Such 

approximation is realized by averaging the periodogram calculated from multiple tapers. 

Given a random sample 𝑥𝑘 of size 𝑁 

 

𝜇̂ =
1

𝑁
∑ 𝑥𝑖

𝑁−1

𝑖=0

 

𝑠̂𝑘 =
1

𝑁
∑ (𝑥𝑖 − 𝜇̂)(𝑥𝑖+𝑘 − 𝜇̂)

𝑁−𝑘−1

𝑖=0

 

(7)  

its Fourier transform is given by the periodogram 
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 𝑆̂(𝑓) = 𝛥 ∑ 𝑠̂𝑘 𝑒𝑥𝑝(−𝑗2𝜋𝑘𝑓𝛥)

𝑁−1

𝑘=−𝑁+1

=
𝛥

𝑁
|∑ 𝑥𝑘 𝑒𝑥𝑝(−𝑗2𝜋𝑘𝑓𝛥)

𝑁−1

𝑘=0

|

2

 (8)  

The next step is to apply tapering, an effective trade-off between broadband and narrowband 

bias of spectral estimates. Consider tapers ℎ𝑘, 𝑘 = 0,1, … ,𝑁 − 1 

 𝑆̂𝑡(𝑓) = 𝛥 |∑ ℎ𝑘𝑥𝑘 𝑒𝑥𝑝(−𝑗2𝜋𝑘𝑓𝛥)

𝑁−1

𝑘=0

|

2

 (9)  

whose expectation is a smoothed version of the true probability density function of the 

recorded signal depending on the shape of the taper. One of the design by Hann is 

 ℎ𝑘 =
1

2
(1 − 𝑐𝑜𝑠 (

2𝜋𝑘

𝑁 − 1
)) , 𝑘 = 0,1, … ,𝑁 − 1 (10)  

Multiples of such taper estimates are constructed as such 

 

𝑆̂𝑚𝑡(𝑓) =
1

𝐿
∑𝑆̂(𝑖)(𝑓)

𝐿

𝑖=1

 

𝑆̂(𝑖)(𝑓) = 𝛥 |∑ ℎ𝑘
(𝑖)𝑥𝑘 𝑒𝑥𝑝(−𝑗2𝜋𝑘𝑓𝛥)

𝑁−1

𝑘=0

|

2

 

(11)  

By imposing orthonormality among the tapers the tapered estimates 𝑆̂(𝑖)(𝑓)  are 

approximately uncorrelated, and 𝔼{𝑆̂𝑚𝑡(𝑓)} ≈ 𝑆(𝑓) . The calculation of the MTM spectral 

estimator is performed by calling a function in the Chronux software package [85]. 

7.4.2 Principle Components Analysis (PCA) 
 
PCA, as described in Ian’s book [86], transforms a set of correlated data into linearly 

uncorrelated variables called principle components (PCs). In addition, the PCs are sorted such 

that the top PC covers the largest variance within the data, and each subsequent PC covers 

the largest variance that is orthogonal to the preceding PCs.  
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The method maps a zero-mean data matrix 𝑿 of 𝑇 observations by 𝑑 dimensions onto 

a matrix 𝒀  of 𝑇  observations by 𝑚  dimensions, where 𝑚 ≤ 𝑑 , by applying a linear 

transformation through matrix multiplication with the weight matrix 𝑾 

 𝒀 = 𝑾 ∙ 𝑿 (12)  

The weight matrix 𝑾 is obtained as such. 

First, obtain the 𝑑 × 𝑑 covariance of the data matrix 𝑿: 

 𝛴 =
1

𝑇 − 1
𝑋𝑇𝑋 (13)  

Next, calculate the eigenvectors of the covariance matrix which are defined as such 

 
|𝛴 − 𝜆𝐼| = 0 

𝛴𝑥 = 𝜆𝑥 
(14)  

where 𝐼  is the identity matrix with 1’s on the diagonal and 0’s elsewhere, 𝜆  denotes the 

eigenvalue of the matrix Σ and 𝑥  denotes the corresponding eigenvector. We can build a 

diagonal matrix of eigenvalues and the corresponding eigenvectors: 

 

𝛴𝛷 = 𝛬𝛷 

𝛬 = [

𝜆1 0 ⋯ 0
0 𝜆2  0
⋮  ⋱ ⋮
0 0 ⋯ 𝜆𝑑

] 

𝛷 = [

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑑
𝑥2,1 𝑥2,2  𝑥2,𝑑
⋮  ⋱ ⋮
𝑥𝑑,1 𝑥𝑑,2 ⋯ 𝑥𝑑,𝑑

] 

(15)  

where 𝜆𝑖 is the ith eigenvalue and 𝑥𝑖,𝑗  is the jth element of the ith eigenvector. 

The eigenvectors can be normalized such that 

 𝛷 ∙ 𝛷𝑇 = 𝛷𝑇 ∙ 𝛷 = 𝐼 (16)  

We can then decompose the covariance matrix 𝐶 

 
𝛷𝑇 ∙ 𝛴 ∙ 𝛷 = 𝛬 

𝛴 = 𝛷 ∙ 𝛬 ∙ 𝛷𝑇  
(17)  

The matrix Φ is also called the PCA scores matrix, and it is an orthonormal matrix where 

each vector represents the projection of the features onto a new basis.  The feature reduction 

can be realized by choosing the top 𝑚 eigenvectors. 
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7.4.3 Correlation Coefficient Squared (CC2) 
 
Contrary to the unsupervised PCA method, we proposed an alternative supervised 

feature reduction method that can not only effectively select the most discriminating 

features, but also helps to understand the inherent properties of the temporal-frequency 

structures in the LFP data. 

Given the target labels, choose any two directions to form a binary classification set: 

 
𝒀 = {(0,1)}𝑇 (18)  

where the vector 𝒀  of length  𝑇  has as entry the Boolean value of the trial’s direction 

corresponding to the reference direction. Next, calculate the correlation coefficient between 

each feature dimension 𝑋𝑑 and the vector 𝒀: 

 
𝜌𝑑(𝑋, 𝑌) =

𝑐𝑜𝑣(𝑋𝑑, 𝑌)

𝜎𝑋𝑑𝜎𝑌
 

=
𝐸[(𝑋𝑑 − 𝜇𝑋𝑑)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝑑𝜎𝑌
 

(19)  

where 𝑐𝑜𝑣(∙)  denotes the covariance function and 𝜇, 𝜎  denote the mean and standard 

deviation respectively. The expectation function 𝐸(∙)  denotes the sample average. The 

obtained vector 𝝆 of length can then be squared to obtain the CC2 score. The motivation is 

that a feature dimension that is highly correlated (𝜌 → 1) has the same discriminative 

property as a feature dimension that is highly anti-correlated (𝜌 → −1). Finally, the CC2 can 

be decreasingly sorted so that the 𝑚 most discriminative features can be selected. 
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7.5 Movement Direction Decoding 
 

7.5.1 Logistic Regression (LR) 
 

The logistic regression [50] is based on the logistic function defined as 

 𝑔(𝑧) =
1

1 + 𝑒−𝑧
 (20)  

where 𝑧 is a linear function of the input vector 𝒙 = [1, 𝑥1, 𝑥2, … , 𝑥𝑚] of 𝑚+ 1 dimensions.  

 𝑧 = 𝜃0 +∑𝜃𝑗𝑥𝑗

𝑛

𝑗=1

= 𝜽𝑇𝒙 (21)  

𝑔(𝑧) tends towards 1 as 𝑧 → +∞ and 0 as 𝑧 → −∞, and is bounded within (0,1). 

We can thus rewrite the logistic function with respect to 𝒙 as 

 ℎ𝜽(𝒙) = 𝑔(𝜽
𝑇𝒙) =

1

1 + 𝑒𝑥𝑝(−𝜽𝑇𝒙)
 (22)  

ℎ𝜽(𝒙) defined above is the hypothesis function representing the probability of “success” 

given 𝒙 and some parameters 𝜃𝑗  for 0 ≤ 𝑗 ≤ 𝑚. The values of 𝜃𝑗  can be predefined or can 

trained when the true value of the output is known. In this project, we used the optimization 

technique summarized in the following algorithm.  

Let us first define the derivative of 𝑔(𝑧) 

 

𝑔′(𝑧) =
𝑑

𝑑𝑧
(

1

1 + 𝑒−𝑧
) =

1

(1 + 𝑒−𝑧)2
𝑒−𝑧 

=
1

1 + 𝑒−𝑧
(1 −

1

1 + 𝑒−𝑧
) 

= 𝑔(𝑧)(1 − 𝑔(𝑧)) 

(23)  

as well as some notation 

 

𝑃(𝑦 = 1|𝑥; 𝜃) = ℎ𝜃(𝑥) 

𝑃(𝑦 = 0|𝑥; 𝜃) = 1 − ℎ𝜃(𝑥) 

𝑝(𝑦|𝑥; 𝜃) = (ℎ𝜃(𝑥))
𝑦
(1 − ℎ𝜃(𝑥))

1−𝑦
 

(24)  
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Assuming the instances of 𝒙 are independent, we can set the likelihood function 

 

𝐿(𝜃) = 𝑝(𝒚|𝑋; 𝜃) =∏𝑝(𝑦𝑖|𝑥𝑖; 𝜃)

𝑚

𝑖=1

 

=∏(ℎ𝜃(𝑥𝑖))
𝑦𝑖
(1 − ℎ𝜃(𝑥𝑖))

1−𝑦𝑖

𝑚

𝑖=1

 

(25)  

or in log-likelihood notation 

 

ℓ(𝜃) = 𝑙𝑜𝑔 𝐿(𝜃) 

=∑ 𝑦
𝑖
𝑙𝑜𝑔 ℎ𝜃(𝑥𝑖) + (1 − 𝑦

𝑖
) 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥𝑖))

𝑚

𝑖=1

 
(26)  

where 𝑥𝑖  and 𝑦𝑖  are the ith element of 𝑋 and 𝒚  respectively, in other words the ith 

observation. The parameter optimization can now be solved as a likelihood maximization 

problem with objective function ℓ(𝜃). The update rule for the parameters 𝜃 is defined as 

 𝜃 ≔ 𝜃 + 𝛼𝛻𝜃ℓ(𝜃) (27)  

where 𝛼 is the learning rate parameter and the gradient ∇θℓ(𝜃) is defined as 

 

𝜕

𝜕𝜃𝑗
ℓ(𝜃) = (𝑦

1

𝑔(𝜃𝑇𝑥)
− (1 − 𝑦)

1

1 − 𝑔(𝜃𝑇𝑥)
)
𝜕

𝜕𝜃𝑗
𝑔(𝜃𝑇𝑥) 

= (𝑦
1

𝑔(𝜃𝑇𝑥)
− (1 − 𝑦)

1

1 − 𝑔(𝜃𝑇𝑥)
)𝑔(𝜃𝑇𝑥)(1

− 𝑔(𝜃𝑇𝑥)) 
𝜕

𝜕𝜃𝑗
(𝜃𝑇𝑥) 

= (𝑦(1 − 𝑔(𝜃𝑇𝑥)) − (1 − 𝑦)(𝑔(𝜃𝑇𝑥))𝑥𝑗 

= (𝑦 − ℎ𝜃(𝑥))𝑥𝑗 

(28)  

where 𝜃𝑗 , 𝑥𝑗  denote jth element respectively. Hence the stochastic gradient ascent rule is 

 𝜃𝑗 ≔ 𝜃𝑗 + 𝛼(𝑦𝑖 − ℎ𝜃(𝑥𝑖))𝑥𝑖,𝑗 (29)  

Note that the update uses the error factor 𝑦𝑖 − ℎ𝜃(𝑥𝑖) which is the difference between the 

actual value of the output and the activation hypothesis function. We may also optimize the 

𝜃  parameters differently using other search methods that are available in mathematical 
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toolboxes such as fminunc (unconstrained minimization function built-into MATLAB). To do 

so, we need to provide the cost function 𝐽(𝜃) and its derivative 
𝜕

𝜕𝜃
𝐽(𝜃). 

 

𝐽(𝜃) = −
1

𝑚
ℓ(𝜃) 

=
1

𝑚
∑− 𝑦𝑖 𝑙𝑜𝑔 ℎ𝜃(𝑥𝑖) − (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥𝑖))

𝑚

𝑖=1

 

𝜕𝐽(𝜃)

𝜕𝜃𝑗
=
1

𝑚
∑(

𝑚

𝑖=1

ℎ𝜃(𝑥𝑖) − 𝑦𝑖) (𝑥𝑖) 

(30)  

It is of interest to avoid overfitting by adding a regularization term 𝜆. 

 

𝐽(𝜃) =
1

𝑚
∑− 𝑦𝑖 𝑙𝑜𝑔 ℎ𝜃(𝑥𝑖) − (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥𝑖))

𝑚

𝑖=1

+
𝜆

2𝑚
∑𝜃𝑗

2

𝑛

𝑗=1

 

𝜕𝐽(𝜃)

𝜕𝜃𝑗
=

{
  
 

  
 
(
1

𝑚
∑(

𝑚

𝑖=1

ℎ𝜃(𝑥𝑖) − 𝑦𝑖) (𝑥𝑖))                  , 𝑗 = 0

(
1

𝑚
∑(

𝑚

𝑖=1

ℎ𝜃(𝑥𝑖) − 𝑦𝑖) (𝑥𝑖)) +
𝜆

𝑚
𝜃𝑗     , 𝑗 ≥ 1

 

(31)  

 

7.5.2 Artificial Neural Network (ANN) 
 
The artificial neural network refers to a configuration of inter-related neurons where 

the value of each neuron is a function of the values of the lower layer of neurons as depicted 

in the figure on the right. Many parameters of this network can be customized to best solve 

the problem: the number of layers, the number of neurons within each layer, the function 

mapping between the layers, just to name a few. In this project, we will explore the capability 

of a specific ANN: a feedforward neural network with one hidden layer. The hypothesis 

function connecting the layers is set to the same logistic function as described in section 7.5. 

That is the 𝑗𝑡ℎ neuron in each layer will have activation value  
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𝑎0
(1) = 1 

𝑎𝑗
(1) = 𝑥𝑗  

𝑎𝑗
(2) = 𝑔(∑θ𝑖,𝑗

(1)𝑎𝑖
(1)

𝑚

𝑖=1

) 

ℎ𝜃(𝑥)𝑗 = 𝑎𝑗
(3) = 𝑔(∑θ𝑖,𝑗

(2)𝑎𝑖
(2)

𝑚

𝑖=1

) 

(32)  

where, 

- 𝑎0
(1) defines the bias term, and 𝑎𝑗

(1),  𝑎𝑗
(2),  𝑎𝑗

(3) represent the activation value of the 

𝑗𝑡ℎ neuron from the input layer, the hidden layer, and the output layer respectively. 

The input layer is set to the values of the input vector 𝒙, and the output layer defines 

the hypothesis function ℎ𝜃(𝑥)𝑗 . 

- θi,j
(1) and θi,j

(2) are the weights assigned to the 𝑖𝑡ℎ neuron from the input layer and the 

hidden layer respectively 

- 𝑔(∙) is the logistic function 

The training process of this network consists of two sets of values: θi,j
(1)  and θi,j

(2) . The 

optimization procedure is described in the following algorithm. Let us first define the cost 

function and the regularization term 

 

𝐽(𝜃) =
1

𝑚
∑∑[−𝑦𝑘

(𝑖) 𝑙𝑜𝑔 ((ℎ𝜃(𝑥
(𝑖)))

𝑘
)

𝐾

𝑘=1

𝑚

𝑖=1

− (1 − 𝑦𝑘
(𝑖)) 𝑙𝑜𝑔 (1 − (ℎ𝜃(𝑥

(𝑖)))
𝑘
)]

+
𝜆

2𝑚
[∑∑(𝛩𝑗,𝑘

(1))
2

𝐾

𝑘=1

𝑚

𝑗=1

+∑∑(𝛩𝑗,𝑘
(2))

2
𝐾

𝑘=1

𝑚

𝑗=1

] 

(33)  

where 𝑚 is the total number of instances and 𝐾 is the total number of output variables. The 

value of (ℎ𝜃(𝑥
(𝑖)))

𝑘
 is calculated as per equation (8). The parameter variables (Θ𝑗,𝑘

(1)) and 
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(Θ𝑗,𝑘
(2)) denotes the (𝑗, 𝑘)𝑡ℎ entry of the weights in the first and second layers respectively. 

Next, let’s define error functions  

 
𝛿𝑘
(3) = (𝑎𝑘

(3) − 𝑦𝑘) 

𝛿(2) = (𝛩(2))
𝑇
𝛿(3).∗ 𝑔′(𝑧(2)) 

(34)  

where 𝛿𝑘
(3) is the difference between the hypothesis function and the target value. 𝛿(2) is the 

error derived by backpropagation of 𝛿𝑘
(3) scaled by the weights Θ(2) and the derivative of the 

hidden layer activation values. Finally, we need to derive the gradient of the cost function. 

 

𝛥(𝑙) = 𝛥(𝑙) + 𝛿(𝑙+1)(𝑎(𝑙))
𝑇

 

𝜕

𝜕𝛩𝑖,𝑗
(𝑙)
𝐽(𝛩) = 𝐷𝑖𝑗

(𝑙) = {

1

𝑚
𝛥𝑖𝑗
(𝑙)                      , 𝑗 = 0

1

𝑚
𝛥𝑖𝑗
(𝑙) +

𝜆

𝑚
𝛩𝑖𝑗
(𝑙)     , 𝑗 ≥ 1

 
(35)  

 

7.5.3 Decision Tree Classifier (DTC) 
 

The motivation is to split the input space into subsets recursively that maximizes the 

prediction accuracy of the target classes, as shown in the figure on the right. Each node, 

including the root, corresponds to a specific dimension of the input vector and the leaf 

predicts the class. The most popular method to grow the tree is to choose the feature that 

minimizes the Gini index of the split 

 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡(𝑇) =
𝑁1
𝑁
𝑔𝑖𝑛𝑖(𝑇1) +

𝑁2
𝑁
𝑔𝑖𝑛𝑖(𝑇2) (36)  

where 𝑇 denotes the dataset and 𝑇1, 𝑇2 denote the subsets after the split. 𝑁1, 𝑁2 denote the 

number of instances found in each subset. The 𝐺𝑖𝑛𝑖(𝑇) is the Gini index of each subset 

 𝐺𝑖𝑛𝑖(𝑇) =∑𝑓𝑖(1 − 𝑓𝑖) =

𝑚

𝑖=1

1 −∑𝑓𝑖
2

𝑚

𝑖=1

 (37)  

where 𝑓𝑖  denotes the fraction of items labeled with the value 𝑖 , and there is a total of 𝑚 

classes. The tree that is grown as such until all features are exhausted is said to be fully grown. 
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Since the learning of such algorithm does not depend on any specified hyper-parameter, the 

method is said to be non-parameterized. The classification of a new entry is performed by 

comparing its features against the partitions to finally arrive at the corresponding leaf.   

7.5.4 Support Vector Machine (SVM) 
 

Let’s first define the linear SVM as it provides the basic formulation of the algorithm. The 

idea is to partition a 𝑝-dimensional space into two subsets using (𝑝 − 1) hyperplanes. While 

there are an infinite number of hyperplanes to choose from, the logical choice is to choose 

the one that separates the two classes of data points with a maximum margin as shown in 

Figure 5 . The classifier constructed as such is called the maximum margin classifier.  

Given some training data 𝒟, a set of 𝑛 points of the form 

 𝒟 = {(𝒙𝑖, 𝑦𝑖)|𝒙𝑖 ∈ ℝ
𝑝, 𝑦𝑖 ∈ {−1,1}}𝑖=1

𝑛
 (38)  

where 𝒙𝑖 denotes the 𝑖𝑡ℎ instance of the input vector and 𝑦𝑖 denotes the label corresponding 

to the 𝑖𝑡ℎ instance. We want to find a hyperplane that maximizes the margin separating the 

instances with 𝑦𝑖 = 1 from the instances with 𝑦𝑖 = −1. Note the different labelling scheme 

of the target variable between SVM and previous methods.  

These hyperplanes are defined by 

 𝒘 ∙ 𝒙 − 𝑏 = 0 (39)  

with the margins defined by 

 𝒘 ∙ 𝒙 − 𝑏 = ±1 (40)  

The distance between the two margin equals 2/‖𝒘‖ . To maximize the margin is to minimize 

‖𝒘‖  while making sure that no instance falls in between the margins. The optimization 

problem can thus be described 



 
 
 

40 
 

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝒘,𝑏

1

2
‖𝒘‖2 (41)  

 

Subject to  

 𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) ≥ 1, 1 ≤ 𝑖 ≤ 𝑛 
(42)  

or written with Lagrange multipliers (𝜆): 

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝒘,𝑏
𝑚𝑎𝑥
𝜆≥0

{
1

2
‖𝒘‖2 −∑𝜆𝑖[𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) − 1]

𝑛

𝑖=1

} (43)  

The Karush–Kuhn–Tucker condition [87] implies that the solution for 𝒘 can be expressed as 

a linear combination of the training vectors. 

 
𝒘 =∑𝜆𝑖𝑦𝑖𝒙𝑖

𝑛

𝑖=1

 (44)  

However as only the data points positioned on the margin vectors (𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) = 1) are 

defining the hyperplanes we can rewrite the equation 

 
𝒘 ∙ 𝒙𝑖 − 𝑏 =

1

𝑦𝑖
= 𝑦𝑖 ⇔ 𝑏 = 𝒘 ∙ 𝒙𝑖 − 𝑦𝑖 (45)  

Note that the offset 𝑏 depends on 𝒙𝑖 and 𝑦𝑖, so it varies for each instance. The practice is to 

take the sample average in order to approximate the statistical mean. 

 
𝑏 =

1

𝑁
∑(𝒘 ∙ 𝒙𝑖 − 𝑦𝑖)

𝑁

𝑖=1

 (46)  

Now we shall define the dual form of the SVM as it reveals insights into the Kernel definition 

of the method. Using the property that ‖𝒙‖2 = 𝒙𝑇 ∙ 𝒙, and 𝒘 = ∑ 𝜆𝑖𝑦𝑖𝒙𝑖𝑖 , equation (36) can 

be rewritten in terms of 𝜆𝑖 

 
𝐿̃(𝜆𝑖) =∑𝜆𝑖

𝑛

𝑖=1

−
1

2
∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗
𝑖,𝑗

 (47)  
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=∑𝜆𝑖

𝑛

𝑖=1

−
1

2
∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑘(𝒙𝑖, 𝒙𝑗)

𝑖,𝑗

, ∀𝜆𝑖 ≥ 0 

The kernel function 𝑘(𝒙𝑖, 𝒙𝑗) is defined as the inner product between 𝒙𝑖 and 𝒙𝑗 . But it can be 

defined elsewise, e.g. polynomial and RBF 

 

𝑘(𝒙𝑖, 𝒙𝑗) = {
(𝒙𝑖

𝑇 ∙ 𝒙𝑗)
𝑑
                                                        

𝑒𝑥𝑝 (−𝛾‖𝒙𝑖 − 𝒙𝑗‖
2
) , 𝛾 =

1

2𝜎2
> 0

 (48)  

where 𝑑 denotes the degree of the polynomial and 𝜎 denotes the width of the RBF kernel. 

These kernel functions allow the mapping of the input vector onto a higher dimensional 

space that may better reflect the relationship between the instances. The first definition 

above is called the polynomial kernel, and the second is called the radial basis function, a 

popular choice in kernelized learning algorithms. The last addition to the SVM method we 

employed is the introduction of the soft-margin. Due to a multitude of factors in the real 

world data, the separation of the data points is not always possible. Thus, we need to allow 

certain number of data points to be mislabeled by updating the optimization constraints 

 𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) ≥ 1 − 𝜉𝑖, 1 ≤ 𝑖 ≤ 𝑛 
(49)  

where the slack variable 𝜉𝑖  measure the degree of misclassification of the instance 𝑖 . The 

optimization problem is then modified to  

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝒘,𝜉,𝑏
{
1

2
‖𝒘‖2 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

} , 𝜉𝑖 ≥ 0 (50)  

where the penalty is controlled by 𝐶, a hyper-parameter. 

The overall equation can be rewritten with Lagrange multiplier 

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝒘,𝑏
𝑚𝑎𝑥
𝜶≥0

{
1

2
‖𝒘‖2 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

−∑𝜆𝑖[𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) − 1 + 𝜉𝑖]

𝑛

𝑖=1

−∑𝛽𝑖𝜉𝑖

𝑛

𝑖=1

} (51)  
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Interestingly, by recalling the dual form of the optimization problem, the slack variable 𝜉𝑖 

vanishes and the misclassification penalty is parametrized by the constant 𝐶. 

 
𝐿̃(𝜆𝑖) =∑𝜆𝑖

𝑛

𝑖=1

−
1

2
∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑘(𝒙𝑖, 𝒙𝑗)

𝑖,𝑗

, 0 ≤ 𝜆𝑖 ≤ 𝐶 (52)  

In the project, we have called upon the highly optimized SVM algorithm provided by 

MATLAB toolboxes.  

7.5.5 Testing and Validation 
 
Due to the small number of training instances, the prediction accuracy for each learning 

algorithm is determined using a leave-one-out cross-validation scheme. In essence, for each 

instance 𝑚𝑖 , train the algorithm with the subset 𝑀− {𝑚𝑖} and test the prediction against 

{𝑚𝑖}. If the predicted class is identical to the labeled class, then the prediction was correct.  

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑟𝑎𝑡𝑒 =

# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 % (53)  

Such measurement is the primary criterion used to compare the performance of the machine 

learning methods.  

 For each learning algorithm, the prediction chance level equals (100/#𝑐𝑙𝑎𝑠𝑠)%. For 

instance, 𝑐ℎ𝑎𝑛𝑐𝑒 = 50%  for binary classification. Such rate is enforced by selecting the 

training sets uniformly amongst the available training data. A random shuffling confirms the 

chance level and it consists of assigning a random label to each training instance and obtain 

the overall prediction accuracy.  
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8. Results 

In this section, the decoding performance for each of the previously described methods 

will be presented. First, the feature vector selection process will be shown. Then, the 

parameter training of each parametrized classifier will be explained. Finally, the overall 

decoding accuracy will be compared.   

8.1 Features Reduction 
 
The vectors in the feature space are largely uncorrelated as shown in . Such property 

make PCA inappropriate as a feature extraction method. In fact, Figure 6 shows that the 

principle components are not statistically discriminative towards the classification labels. In 

such a situation, a more appropriate feature extraction method is to analyse the individual 

features and compare them against the classification labels to rank the most discriminative 

features. The correlation coefficient between each feature vector and the classification label 

is calculated and the squared correlation coefficient (CC2) value of the entire feature space is 

ranked to extract the most discriminative indices as shown in Figure 7. The correlation 

coefficients also allow the visualization of the feature vector mapping across the time and 

frequency space as shown in Figure 8. Two characteristics can be observed from this last 

figure. First, the lower frequency bands are maximally correlated 𝟓𝟎 𝒎𝒔 after the movement 

onset in the PRR region and around 𝟎 𝒎𝒔 in the PMd region for both movements. It is also to 

be noted that reach trials demonstrate correlation around 𝟐𝟓𝟎 𝒎𝒔 prior to the movement 

onset in the (15 − 40 𝐻𝑧) frequency band, while this band is absent in saccade trials. This 

result suggests that the LFP signals within PRR and PMd regions contribute to the reach 

movement preparation and not the saccade preparations.  
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8.2 Decoding Accuracy 
 
As discussed in the methods section, the decoding accuracy of each algorithm depend 

on a number of factors. The previous subsection described the feature space dimensionality 

reduction process. The next step is to train classifiers such that the parameters are optimized 

for minimizing training error while achieving a high degree of generalization.  

8.2.1 Parameter Training 
 
Table 2 displays the effects of varying the regularization parameter 𝜆 on the cross-

validated decoding accuracy of the LR method. It shows that for 𝜆 in the range (10−2 − 102), 

the model’s performance is near uniform. The effect of varying 𝜆 can be seen in detail in 

Figure 9 – training and testing error vs. regularization parameter (𝜆) for three-directional 

saccade movement decoding over the range of (10−10 − 1010). The two curves shown in the 

figure are the training and testing error as calculated per eq. 21. The training error 

asymptotically approaches zero as the model’s complexity increases, which also increases 

the probability of overfitting the model on the training data, represented by the test error 

approaching the chance level of 33.33%. The overfitting can be regularized by optimizing the 

value of 𝜆 such that it minimizes the testing error. Such minimization occurs at 𝜆 ≅ 100. 

Similarly, both the training and testing error approaches the chance level as the value of 𝜆 →

∞, in which case the model is underfitting the data. In other words, it does not have enough 

complexity to describe data space. 

Table 3 displays the effects of varying the regularization parameter 𝜆 on the cross-

validated decoding accuracy of the ANN method. It shows that for 𝜆 ≥ 100 , the model’s 

performance sharply drops to the chance level for all three testing cases. Similar to the LR 

model, the training and testing error over a wider range is shown in Figure 9 – training and 
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testing error vs. regularization parameter (𝜆)  for three-directional saccade movement 

decoding. For 𝜆 > 10 , the model is underfitted. Unlike LR, the training error is not 

asymptotically zero. A possible reason for such observation is the hidden layer’s property of 

compressing the information content in input layer. As a result, some information are filtered 

similarly to the dimensionality reduction process. On the other hand, the testing error is 

globally lower compared to the logistic regression model, and no trend of overfitting is 

present as 𝜆 → 0, although the variance increases. Hence the value of 𝜆 ≅ 0.1 ensures a more 

stable performance of the model although producing the global minimum.  

Table 4 displays the effects of varying the width (𝜎) of the RBF kernel used in the SVM 

algorithm as described in eq. 41 on p.41. It shows that for 𝜎 < 2.15, the model’s performance 

is near chance level for all three testing cases. Also, for 𝜎 > 46.42 , the performance is 

decreasing monotonously. The reason for the difference in performance is illustrated in 

Figure 10 (RBF). When 𝜎 = 0.1, the decision boundary is overfitted for both linearly and 

non-linearly separable data whereas when 𝜎 = 10, the model is underfitted. As comparison, 

when 𝜎 = 1, the boundary seems to be well fitted. However, the figure only displays the data 

in two dimensions. The actual performance of the algorithm with respect to the value of 

width depends on all the dimensions within the training set, and hence the optimal width is 

determined based on Table 4: 𝜎 ≅ 100. 

Table 5 displays the effects of varying the degree of the polynomial kernel used in the 

SVM algorithm as described in eq. 41 on p.41. It shows that for 𝑑 ≥ 4 , the model’s 

performance is near chance level for all three testing cases. Similarly to SVM with RBF kernel, 

the decision boundary is illustrated in Figure 10 (Polynomial). Note that when 𝑑 = 1, the 

polynomial kernel is identical to a linear kernel, and thus does not fit well on non-linearly 
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separable data. On the other hand, a fifth degree polynomial kernel displays indices of data 

overfitting. Finally, the third degree polynomial approximates the linear separation while 

providing a more accurate decision boundary than linear kernel on non-linearly separable 

data. Nevertheless, the LFP data has a much higher dimensionality and the polynomial 

degree to optimize the decoding accuracy is 𝑑 ≅ 3 according to Table 5. 

8.2.2 Overall Performance 
 
Table 6 and Table 7 illustrate the effect of varying the dimensionality of the input data 

on the accuracy for saccade and reach movement direction decoding respectively. The 

results include the parameterized methods as described previously as well as a non-

parameterized method, DTC. The latter method’s performance does not depend on any 

specific hyper-parameter and thus no parameter training was required.  

The number of dimensions are exponentially added onto the feature space, according 

to the PCA values. In other words, the first feature to be used as input is the PCA score that 

explains the highest correlation from the highest ranked CC2 feature reduction method. 

 
𝐿̃(𝜆𝑖) =∑𝜆𝑖

𝑛

𝑖=1

−
1

2
∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑘(𝒙𝑖, 𝒙𝑗)

𝑖,𝑗

, 0 ≤ 𝜆𝑖 ≤ 𝐶 (54)  

 

The first interesting result is that a single dimension can produce 100% accuracy for 

binary saccade decoding algorithms as well as approximately 95% accuracy for binary reach 

decoding. Such accuracy is unsurprising based on the result shown in Figure 7, i.e. the labels 

are linearly separable with respect to certain features. 

Still referring to the binary movement decoding, the non-parametrized method, i.e. the 

DTC’s performance quickly drops to chance level of 50% as the dimensionality increases to 
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100 features. On the other hand, the rest of the decoding models’ performance are largely 

unaffected by the introduction of new dimensions. Additionally, these latter models’ 

decoding accuracy displayed higher accuracy for reach decoding with additional features. 

The ternary and quaternary decoding, where linearly separation of all labels are not 

always possible, offer a more in-depth analysis of the models’ characteristics. All the models, 

with the exception of LR, displayed a decrease in decoding accuracy as the dimensionality 

increases from 20 to 100. A possible explanation for such observation is that the added 

features are non-descriptive to the target labels. In other words, they behave as noise and 

the decoders’ performance do not scale well to the number of dimensions. In fact, even SVM, 

which is described as robust against the curse dimensionality, cannot sustain its 

performance. On the other hand, LR’s performance highly robust as compared to the other 

methods. Such result can be attributed to the regularized property of LR which can assign 

near zero weights to non-descriptive features. 

8.3 Comparative Review 
 
Disregarding the effect of dimensionality, the decoding accuracy of all evaluated 

machine learning methods will be compared. The saccade movement direction can be 

decoded with accuracy as high as 100% for binary, 90.60% for ternary (LR), and 82.14% for 

quaternary (SVM-RBF and LDA) decoding. The reach movement direction can be decoded 

with accuracy of 99.50% for binary (ANN), 93.01% for ternary (LR and SVM-RBF), and 

85.05% for quaternary (LR) decoding. These levels are well above the chance level for each 

setting. It is hence possible to conclude that the LFP signal, with power spectrum density 

extracted with the multi-taper method is an accurate predictor to the movement direction 

for reach and saccade.   
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9. Discussions 

The main objective of this research was to compare the performance of different 

machine learning algorithms for saccade and reach movement decoding based on local field 

potential signals. The results show that most algorithms are able to decode the movement 

direction with an accuracy much higher than the chance level. A particularly well performing 

algorithm is the logistic regression which displayed robustness against noisy features and a 

high decoding rate in general. 

To our knowledge, this is the first comparative study of machine learning algorithms 

performed on LFP signal decoding. Nevertheless, there were previous studies on 

informational continent encoded in various BCI modalities such as SUA and EEG. This section 

will compare the results we obtained against other groups published results. 

9.1 LFP vs. Other BCI Modalities 
 
As shown in Figure 8, the LFP signal in PRR and PMd areas encode movement direction 

information. Moreover, these regions are tuned with respect to reach movement planning 

and not to saccade movement planning. Such results were published for neuron’s action 

potential signals [74],[80]. However, the current result confirms that LFP signal also encode 

movement paradigm specialization among motor cortices. The same figure displayed a 

discrepancy in time between the PMd and PRR regions which suggest that PMd reacts before 

PRR. Such results contradicts the signal pathway which maps the output of PRR to the input 

of PMd [71]. Nevertheless, this time lag is also reported in Stetson’s paper [88]. A possible 

explanation could be that both cortices receive a motor image prior to the movement onset. 

Taking into account the directional tuning map of LFP signal, our results confirm that LFP 
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signal encode similar information as the action potentials with respect to movement 

planning in the two areas studied in this project. 

LFP vs. SUA, MUA Furthermore, the decoding accuracy of the LFP signal from this 

study achieved comparable rate as the reported results from other groups carrying out 

similar experiments on SUA and MUA signal. In 2007, Stark and Abeles [89] reported an 

overall six directional decoding accuracy of 76% for SUA and 94% for MUA. The paper also 

reported results from a LFP implementation and reported 43% accuracy rate. The details of 

the decoding algorithm were omitted, hence it is beyond our ability to assess their 

computational optimization. The comparable results between our decoding rate and the SUA 

based decoding rate are confirmed in an earlier paper by Pesaran et al. [90] where they 

reported 87% accuracy rate for both LFP and SUA based binary reach movement direction 

decoding. The similar result between these two modalities, according to the authors, is 

attributed to the coherency between the signals’ tuning with respect to the movement 

direction.  

LFP vs. EEG Other non-invasive BCI modalities were sought to solve the same purpose 

of movement direction decoding and predicting. The most promising method, namely the 

EEG, is being studied by multiple groups. A paper by Wang and Makeig published in 2009 

[66] reported a classification rate of 80.25% for binary movement direction, eye and hand 

combined, using EEG signals from the human PPC, the same recording cortex as this project. 

Although their decoding rate is lower than the LFP signal, it is possible ask the users to issue 

movement command based on multi-trials prediction, thus lowering the error probability as 

long as the single trials’ prediction are mutually independent. Additionally, the group simply 

decoded with time based EEG signals while leaving out the frequency components. It is 
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theoretically possible to apply the methods developed in this project on EEG recordings 

because the signal source of the latter is identical to the LFP signals. 

LFP vs. MEG Another group of researchers, Buch et al., took interest in the magneto-

encephalography (MEG) based BCI to facilitate stoke patients with limb control 

rehabilitation. In their paper published in 2008 [91], the group studied the binary decoding 

rate of grasp type, a similar venture as the reach direction decoding. In fact, the two motor 

control signals are analyzed together in many studies, e.g. the paper mentioned previously 

by Wang and Makeig [66]. Their method is to monitor the 𝜇-rhythm (9 − 12 𝐻𝑧) of the MEG 

signal recorded from sensorimotor cortex, and compare the time signal’s strength to a pre-

defined baseline. Most test subjects were able to achieve a 72.48% performance rate on 

average after training compared to 52.84% on first trial. Since the MEG signal is a fluctuation 

in magnetic current resulting from neuronal activity [92], as opposed to the electric current 

in EEG signal, it is reasonable to expect a similar, if not superior result, by applying the 

methods developed in this project.  

LFP vs. ECoG As introduced in the background, ECoG is a recent modality at the heart 

of interest for many neuroscientists for human studies. One group of researchers, Wang et 

al., designed an experiment to study online (real-time) prediction of movement direction 

from ECoG signals of epilepsy patients. The group reported in 2012 [93] to achieved 

directional prediction with 54.81o error rate on average for an eight targets setup, i.e. 45o 

separation between targets. Since the group’s method is a regression based model, i.e. 

continuous target space, instead of classification, i.e. discrete target space as in this present 

project, there is no result available for direct comparison of classification rate. Nevertheless, 

it is reasonable to assert that Wang et al. achieved comparable result as this experiment by 
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converting the metric to classification rate: (360 − 54.81)𝑜 360𝑜⁄ = 84.78% octonary. The 

group selected a SVM based decoding algorithm and time and frequency decomposition 

method. 

LFP vs. ALL, a trend can be observed by examination of the above state-of-the-art 

methods. As the signal’s recording radius becomes broader, more noise are introduced and 

thus the decoding rate is lowered, with the exception of MUA. The high decoding rate of MUA 

can be attributed to the digital encoding of the signal in the form of action potentials as 

oppose to the other signals which are all in analog form. Despite SUA is also decoding from 

action potentials, the source signal is generated from a single neuron, thus does not provide 

as much feature as population neurons. 

9.2 Machine Learning Methods 
 
This subsection discusses the implementation of the various machine learning 

algorithm studied in this project. It is important to note that the performance of each 

algorithm depends on various aspects such data structure, parameter selection. More 

importantly, the computational and time complexity of each algorithm depends heavily on 

the software implementation. Considering these aspects, the decoding rate reported in this 

project are subject to changes if the features were extracted differently, or if the hyper-

parameter optimization were performed alternatively. Another important characteristic to 

consider when choosing the decoding algorithm is the scalability of the method. As the 

amount of data grows exponentially, the process becomes impossible to fit on a single 

computer’s active memory. Therefore it is of interest to choose an algorithm that can be 

paralleled and take advantage of the clustered computing paradigm such as MapReduce [94]. 
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On the other hand, the computing time should be online realizable to provide the user with 

the most natural user-experience.  

LR The logistic regression algorithm displayed the highest robustness against the 

feature space dimension and the amount of noisy features. It is also the method offering the 

clearest human interpretation such as feature importance (weight parameters) and 

prediction error (probabilistic interpretation). Most importantly, the algorithm can easily 

altered to take advantage of the MapReduce architecture. Indeed, the weights of each 

instance can be learned in parallel and all the weights can be accumulated afterwards. Such 

characteristic also facilitates the weight update method if an online implementation of the 

decoder is desired. Otherwise, if training and decoding are to be performed separately, the 

weights parameter can be learned offline with extensive complexity and stored onto the 

decoder for fast online decoding. Nonetheless, the performance of the algorithm depends 

heavily on a single hyper-parameter, the regulation term, which in turn depends on the data 

structure. Thus to achieve true robustness, the algorithm must be able implemented with 

adaptive regularization term updating methods. 

ANN The artificial neural network implemented in this project is based on the 

backpropagation network with a single hidden layer as described in the methods section. 

While the results showed less than optimal performance, the network structure is believed 

to be the deciding factor. Indeed, if the network is implemented with a hidden layer of 

neurons whose activation values are in a one-to-one relationship with the output layer, then 

the ANN is functionally identical to the LR, and thus should offer identical performance. 

Following this reasoning, the decoding rate of ANN should only be greater than or equal to 

LR. A possible explanation for the inferior performance is the effect of the hidden layer size 
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and the value of the regularization term, whose value depends on the hidden layer size.  

Nevertheless, the ANN is a very adaptable structure, where each aspect of the algorithm may 

be substituted by a counterpart if doing so can improve the performance.  An example of 

such modularity is the possibility to substitute the sigmoid function linking the hidden layer 

to the output layer by a rectilinear function or a radial basis function. One important remark 

is that one should not blindly increase the number of layers or the number of neurons within 

each layer in hope of improving the performance. Doing so can easily overfit the model on 

the training data and deteriorate the generalization. 

SVM  The support vector machine algorithm implemented in this study displayed poor 

result and inconsistent robustness against feature dimensionality for all three kernels (RBF, 

linear, and polynomial).  The poor decoding rate can be attributed to the unfitness of the 

method on the data. Indeed SVM with RBF and polynomial kernels did not produce higher 

decoding rate than simple linear kernel for the given feature space. The main cause of this 

result is the way feature reduction was conducted, i.e. ranking of features as a function 

correlation coefficient between feature dimension and target label. The features selected as 

such are linearly separable and thus promote kernels to behave linearly. On the other hand, 

the poor performance against dimensionality contradicts the description of SVM in the 

literature. A possible explanation for such result is the fashion that SVM decodes the data. In 

fact, SVM fits a hyperplane through all the given feature dimensions, which are projected 

onto hyperspace through kernel functions, and is thus inevitably affected by noisy 

dimensions. Figure 12 illustrates this hypothesis with fictitious data where only one 

dimension is a valid predictor for the classification label and the additional dimensions are 

simply noise. In such situation, the performance of SVM algorithm decreases by 
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approximately 20% for every 10-fold of noisy data. The decoding rate approaches chance 

level after 1000 noisy dimensions have been added. As a comparison, decision tree classifiers 

were able to decode with perfect rate given that there is one dimension with perfect 

predictability of the target label. 

DTC The decision tree classifier is a non-parameterized method as described in the 

methods section. Such a trait allows the algorithm to perform independently of any hyper-

parameter optimization. The disadvantage is that the method is more prone to overfitting. 

The result from this study shows that DTC has the lowest performance amongst all the 

methods. Indeed, its decoding rate approaches chance level after the least number of 

dimensions, which seemingly contradicts the result shown in Figure 12. Nevertheless, it is to 

be noted that unlike the fictitious data, the features of LFP signal do not guarantee linear 

separability. Thus, the features must be examined jointly to increase the decoding rate. DTC, 

on the other hand, follows a hierarchical decision structure which limits the interaction 

among the feature space.  
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10. Conclusions and Future Research 

This thesis presented a set of machine learning algorithms that decode the reach and saccade 

movement directions based on the local field potential signals of the monkey MIP and PMd 

brain areas. This final section will review the contributions of this project and discuss the 

possible directions for future research.  

10.1 Contributions 
 

In this project, a few machine learning algorithms were studied for their decoding accuracy 

with respect to the algorithms’ setup and parameter selections. Furthermore, in order to 

achieve the best accuracy, a novel feature extraction technique using the multi-taper method 

was introduced. These results can be used by fellow researchers to better understand the 

decoding of brain signals or other rhythmic signals in general. 

MIP and PMd – As the results confirm, signals acquired from these two brain areas 

offer enough information to decode the reach and saccade movement directions as well as 

reach movement preparation. 

Decoding – The decoding accuracies presented in the results section demonstrate a 

high decoding rate from all the algorithms studied in this project. Tables 6 and 7 present the 

decoding rate with respect to the hyper-parameter selection. Fellow researchers can refer to 

such results to initialize their parameter search algorithm. 

Feature extraction – This project introduced the use of multi-taper method as a 

feature extraction method which serves to provide a spectral density estimation. This 

method proved several advantages over standard techniques. It effectively attenuate the 

noise within the signal.   
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10.2 Future Research 
 

This project only studied a selection of well known machine learning techniques. The 

promising results suggest that further research is required to design better algorithms which 

can yield higher decoding accuracy in general. Further, the methods presented in this project 

may produce interesting results when applied to other BCI modalities such as EEG or ECoG. 

Lastly, the signal analysis were performed solely in an offline setting; a practical BCI will 

require online decoding capabilities. 

 Multi-layer ANN – The artificial neural network studied in this project only includes 

a single hidden layer with varying number of neurons. The decoding rate of such method 

only yields comparable result logistic regression, which can be regarded as a neural network 

without the hidden layer. Due to the restraints of training samples and computing power, a 

more elaborate neural network was not tested in this project. It is of interest to see how 

much improvement, if any, can addition hidden layers bring to the decoder. It is also 

interesting to study how alternate neural network setup, such as recurrent neural network 

or the long short-term memory (LSTM), perform with the given neural data. 

 DTC with pruning – In this project, the decision tree classifiers were allowed to be 

grown without pruning. Such a model has the advantage of not requiring any explicit hyper-

parameter. Nevertheless, the result show that decoding accuracy drop drastically as the 

number of features increases. A standard technique to regularize the algorithm by limiting 

the number of decision nodes with a hyper-parameter. The advantage of such regularization 

is that overfitting can be restricted at the cost of the need to search for a parameter value. A 

derivative of the DTC is the Random Forest algorithm. The latter two algorithms can be the 

subject of further research.  



 
 
 

57 
 

 Other ML methods – There are countless published and proven machine learning 

algorithms available for studying the decoding analysis. The set presented in this project are 

chosen based on the available documentation.  

 Other BCI modalities – As discussed in section 6.2, LFP is a rhythmic brain signal 

who shares the common signal source with EEG and ECoG signals. The latter two are 

measured at a location closer to the scalp. Nevertheless, these two less invasive modalities 

encode signals in the frequency space just like LFP. It is therefore interesting to see if the 

same methods studied in this project are applicable to EEG and ECoG, and to what extent.  

 Online decoding – The study is conducted based on recorded brain signals which are 

analyzed in an offline environment; that is each trial is regarded as a unique entity. In order 

for the decoder to be useful as a real world BCI, it is important that the algorithm can be 

adapted to an online environment; that is predictions are generated as the signals are 

acquired. An important challenge in realizing this feature is how to label the classes. As the 

subject conduct the experiment, the brain processes myriad other motor planning and 

execution commands. It is thus uneasy to categorize the brain signals with respect to solely 

the eye or hand movement. A possible solution is implement a regression-based decoder that 

yield prediction in a continuous space, e.g. the two or three-dimensional velocity of the reach 

or saccade movement. Another proposal is to realize an unsupervised learning method 

which continuously process the brain signal and attempt to categorize the mind state. Such 

a method could yield unexpected results that can introduce new research orientations.  
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11. Figures 

 

Figure 1 - Experimental Setup. A Time laps of delayed memory reach task. (I) The initial 

position of gaze and hand cues are shown for 700 𝑚𝑠. (II) The reach cue is shown among one 

of the four targets for 600 𝑚𝑠. (IIIa,c,e) During the early memory period lasting 800 𝑚𝑠, the 

reach cue is extinguished. (IIIb) For fixation condition, no eye movement cue is shown. (IIId) 

For saccade condition, the eye cue at one of the four targets is lit promptly and the subject 

shifts its gaze in a saccadic eye movement to the target; the action takes less than 50 𝑚𝑠. 

(IIIf) For pursuit condition, the eye cue moves linearly towards the final location and the 

subject visually follows the target; the duration of the task is approximately 1000 𝑚𝑠. (IVa,b) 

The hand cue is extinguished which notifies the subject to start the reach action. (Va,b) The 

reward is administered if the hand successfully touches the memorized reach target. B The 

figure shows the relative location of the cues and the monkey. C The figures indicates the 

location of the electrode implantation, namely in the PRR and PMd areas.  
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Figure 2 – PSD of sample channel in PRR. The figure shows a reconstruction of the power 

spectral density (PSD) of LFP from a sample channel in the PRR area. Each column represents 

a specific condition from left to right: fixation, saccade, pursuit, and reach task. Each row 

corresponds to the movement target from top to bottom: right, up, left, and down. The rows 

of fixation trials are separated according to the reach direction of the trial. The last row 

displays the eye or hand position recorded with the apparatus mentioned in the Materials 

and Methods section. The onset alignment is indicated by the dotted line at 𝑇 = 0. As shown 

in the figure, there exists some dynamics in the frequency bands that are coupled with the 

eye or hand movement onset as compared to the relatively uniform PSD during the fixation 

epoch. Further, there are visible separations across the frequency distribution: (0 −

10), (10 − 40), (40 − 100) 𝐻𝑧 . Notice the change in power in saccade trials around the 

700 𝑚𝑠 and in pursuit trials around 1500 𝑚𝑠 are overlapped with reach movement onset. 
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Figure 3 – Artificial Neural Network [95]. The figure illustrates the internal structure of the 

artificial neural network. Each dimension of the feature vector corresponds to a neuron, or 

node of the input layer. These neurons propagate the values to the hidden layer, whose size 

is arbitrary and can be optimized through parameter searching. Finally, the hidden layer’s 

activation values propagate to the output layer, whose value equals to the classification label. 

The propagation algorithm is a linear combination of the weights, represented by the arrows, 

and the activation value of each node from the lower layer. The inner product is then mapped 

to the range (0,1) using the sigmoid function. Thus, the training involves optimizing the 

weight parameters, subject to regularization, that maximize the classification accuracy.  

 

 

Figure 4 – Decision Tree Classifier [96]. The figure illustrates the decision tree classifier that 

may help in predicting the survival of a passenger aboard the Titanic. To obtain a prediction, 
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one traverses the tree from top to bottom and choose subsequent node according to the 

decision criteria. In the case of direction decoding using LFP signal, each node can represent 

the spectral power of a given time and frequency. The DTC can be trained such that the top 

node divides the trials with the greatest information gain based on the Gini factor. Each 

subsequent node can be trained on the residual features recursively using the same 

algorithm until the exhaustion of the feature space. The decision is produced at the bottom 

layer, also called the leaves, which are labeled as the classification targets.  

 

 

Figure 5 – Support Vector Machine [97]. The figure illustrates the SVM method. The band 

between the lines 𝒘𝒙− 𝑏 ± 1 represents the decision boundary. The training algorithm is to 

maximize the width of such band, or hyper-plane in the case of multidimensional data. 

However, the data cannot always be separated into such clusters. Thus, the soft-margin SVM 

allow the presence of mislabeled data on each side of the decision boundary controlled by a 

regularization term. In addition to the linear kernel shown in the figure, one can in fact select 

other kernel function that map the features onto higher dimensions, where the separability 

is increased. Examples of popular kernels are the radial basis function (RBF) and 

polynomials.  
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Figure 6 – Scatter Plot and Box Plot of Top 5 Principle Components. The figure illustrate the 

relationship among the top five principle components (PC), i.e. the dimensions that capture 

the most variances among the feature space. The boxplots along the diagonal illustrate the 

mean and variance of the data points within each PC; the data is separated by the movement 

target, (L)eft and (R)ight. It can be seen that the PC shows a poor separability with the lowest 

p-value of 0.3076. The scatter plots show the two-dimensional relationship between each 

pair of PC. As shown, the two target labels are highly homogeneous. The effect of such result 

is a poor decoding performance.  
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Figure 7 – Scatter Plot and Box Plot of Top 5 Discriminative Features. The figure illustrate 

the relationship among the top five discriminative features (DF), i.e. the dimensions that are 

the most (anti-)correlated with the target label. The boxplots along the diagonal illustrate 

the mean and variance of the data points within each DF; the data is separated by the 

movement target, (L)eft and (R)ight. It can be seen that the DF shows a high separability with 

p-values less than 10−30. The scatter plots show the two-dimensional relationship between 

each pair of PC. As shown, the two target labels are highly separable. The effect of such result 

is a high decoding performance even with linear decoders. Note the correlation with the top 

DF. One may apply PCA to the top DF to further reduce the dimensionality. 
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Figure 8 – Time and frequency map of squared correlation coefficient between each feature 

and the target label by electrode array. The figure illustrate the map in time (x-axis) and 

frequency (y-axis) space. The color scale represents the squared correlation coefficient (CC-

2) divided into quintiles. First, the lower frequency bands are maximally correlated 𝟓𝟎 𝒎𝒔 

after the movement onset in the PRR region and around 𝟎 𝒎𝒔  in the PMd region. The 

discrepancy in time suggests that PMd regions react before PRR. Second, reach trials 

demonstrate correlation around 𝟐𝟓𝟎 𝒎𝒔 prior to the movement onset in the (15 − 40 𝐻𝑧) 

frequency band, while this band is absent in saccade trials. This result suggests that the LFP 

signals within PRR and PMd regions contribute to the reach movement preparation and not 

the saccade preparations.  
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Figure 9 – training and testing error vs. regularization parameter (𝜆) for three-directional 

saccade movement decoding. The figure on the left displays the error diagram of the logistic 

regression method and the figure on the right, the artificial neural network implemented 

with a hidden layer of 10 neurons.  The LR’s training error asymptotically approaches zero 

as 𝜆 decreases while the testing error increases back to chance level. Such trend suggests the 

presence of overfitting. 𝜆 ≅ 100 is hence the optimal value for the LR model. For the ANN 

model, no trend of overfitting is present however the variance increases as 𝜆  decrease 

towards zero. 𝜆 ≅ 0.1 is hence the optimal value for regularization which locally minimizes 

the testing error as well as minimizing the variance and thus improve stability.  
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Figure 10 – SVM RBF kernel illustration. The RBF kernel’s decision boundary depends on the 

width parameter 𝜎. Too small of a width forces a narrow margin around the data points and 

thus overfitting the model on the training data as illustrated by 𝜎 = 0.1, while too large of a 

width will set the margins to be unrepresentative of the data and thus underfitting the 

features as illustrated by 𝜎 = 10. Finding the optimal width depends on the value of the data 

set, and thus the process involves a heuristic parameter searching. Other than the goodness 

of fit, the dataset’s information content can be encoded in higher dimensions than linearly 

separable features, as shown in the bottom row. Similar to the top row, the model is 

overfitting when the width is narrow: the decision boundary is forming around the isolated 

datapoints. On the other hand, the model is underfitting with a large width: the model cannot 

model the labels closer to the center. An optimal width is illustrated in the middle where the 

model contains enough complexity to locate the central data points, while maintaining a 

simplicity to achieve generalization.   
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Figure 11 – SVM polynomial kernel illustration. The polynomial kernel’s decision boundary 

depends on the degree of the polynomial. The model is identical to linear kernel with degree 

equals one and the model becomes more overfitting on the training data for increasing 

degree. This figure illustrates the effect of the polynomial degree on the decision boundary. 

While the linear kernel can describe the linearly separable features with a good accuracy, it 

cannot model the more complex case of higher dimensional data as shown on the bottom 

row. On the other hand, with an increasing degree of polynomial, the decision boundary can 

overfit for both separability cases.   
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Figure 12 – (top) Fictitious data where the first dimension is a perfect linear predictor to the 

label and the rest of the dimensions are noise. (bottom) Decoding rate of SVM method with 

different kernels vs. number of dimensions of the fictitious data. The number of noisy 

features greatly affect the decoding performance of SVM. In fact, when there is only one 

dimension with discriminative data, the SVM’s performance decreases at a rate of 

approximately 20%/𝑑𝑒𝑐𝑎𝑑𝑒.   
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12. Tables 

Table 1 - Mean and Variance of Cross-Correlation from  
all Feature Vectors by Array and Number of Directions 

Number of  

Directions 

Microelectrode 

Array #1 

Microelectrode 

Micro Array #2 

Microelectrode 

Array #3 
All Electrodes 

2 0.0096 ± 0.0150 0.0049 ± 0.0147 0.0051 ± 0.0141 0.0050 ±  0.0131 

3 0.0086 ± 0.0105 0.0054 ± 0.0105 0.0048 ± 0.0097 0.0043 ± 0.0095 

4 0.0078 ± 0.0202 0.0065 ± 0.0203 0.0038 ± 0.0191 0.0027 ± 0.0183 

 

Table 2 – Effects of varying LR regularization parameter (𝝀) on decoding accuracy 

𝝀 (%) 0.01 0.03 0.08 0.22 0.60 1.67 4.64 12.92 35.94 100.00 

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 87.18 86.32 85.47 86.32 87.18 87.18 85.47 83.76 85.47 84.62 

4 71.43 69.64 71.43 71.43 71.43 71.43 78.57 76.79 76.79 73.21 

 

Table 3– Effects of varying ANN regularization parameter (𝝀) on decoding accuracy 

𝝀 (%) 0.01 0.03 0.08 0.22 0.60 1.67 4.64 12.92 35.94 100.00 

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 51.28 

3 90.60 88.89 87.18 88.89 90.60 88.03 86.32 88.03 69.23 33.33 

4 82.14 76.79 82.14 80.36 78.57 75.00 75.00 55.36 39.29 23.21 

 

Table 4 – Effects of varying SVM RBF Kernel width (𝝈) on decoding accuracy 

𝝈 (%) 0.10 0.22 0.46 1.00 2.15 4.64 10.00 21.54 46.42 100.00 

2 50.00 48.72 48.72 48.72 48.72 84.62 100.00 100.00 100.00 100.00 

3 33.33 33.33 33.33 33.33 33.33 53.85 86.32 82.05 70.09 67.52 

4 25.00 25.00 25.00 25.00 25.00 25.00 71.43 67.86 50.00 48.21 

 

Table 5 – Effects of varying SVM Polynomial degree on decoding accuracy 

degree (%) 1 2 3 4 5 

2 100.00 100.00 100.00 60.26 50.00 

3 65.81 79.49 83.76 46.15 35.90 

4 44.64 67.86 76.79 37.50 26.79 
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 Table 6 – Comprehensive Saccade Movement Direction Decoding Accuracy 

 #DIR 
CROSS-VALIDATED DECODING ACCURACY (%) 

VS. NUMBER OF FEATURE VECTORS 

  1 2 5 10 20 50 100 
         

TREE 

2 100.00 100.00 100.00 97.44 91.03 53.85 48.72 

3 76.92 80.34 82.05 82.91 70.09 36.75 33.33 

4 66.07 71.43 76.79 78.57 44.64 25.00 19.64 

         

SVM RBF 
(𝝈 = 𝟏. 𝟎) 

2 100.00 100.00 100.00 100.00 98.72 92.31 100.00 

3 76.92 83.76 88.89 88.89 87.18 76.07 41.88 

4 60.71 57.14 82.14 80.36 69.64 25.00 25.00 

         

SVM LINEAR 
KERNEL 

2 100.00 100.00 100.00 100.00 100.00 94.87 92.31 

3 74.36 84.62 86.33 88.89 86.33 82.05 40.17 

4 57.14 69.64 71.43 62.50 64.29 25.00 25.00 

         

SVM POLYNOMIAL 
(D=3) 

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 71.80 71.80 87.18 88.89 87.18 81.20 81.20 

4 55.36 62.50 62.50 66.07 67.86 69.64 67.86 

         

LOGISTIC 
REGRESSION (𝝀 =

𝟏. 𝟎) 

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 78.63 82.91 87.18 88.03 88.03 89.74 90.60 

4 60.71 60.71 73.21 73.21 73.21 75.00 76.79 

         

ARTIFICIAL 
NEURAL NETWORK  

(𝑵 = 𝟏𝟎) 

2 100 100 100 100 100 92.308 89.744 

3 73.504 84.615 88.034 84.615 86.325 84.615 58.974 

4 50 60.714 76.786 73.214 67.857 46.429 28.571 
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Table 7 – Comprehensive Reach Movement Direction Decoding Accuracy 

 

   

 #DIR 
CROSS-VALIDATED DECODING ACCURACY (%) 

VS. NUMBER OF FEATURE VECTORS 

  1 2 5 10 20 50 100 

         

TREE 

2 95.46 94.95 84.85 94.95 92.93 53.54 50.00 

3 65.05 79.03 69.36 75.81 70.43 48.39 42.47 

4 47.98 57.26 55.65 59.68 65.73 40.73 25.00 

         

SVM RBF 
(𝝈 = 𝟏. 𝟎) 

2 94.95 94.95 92.93 98.99 96.97 98.99 94.44 

3 61.29 81.72 81.72 82.26 93.01 88.71 82.26 

4 47.98 56.86 65.32 65.73 74.19 76.21 78.63 

         

SVM LINEAR 
KERNEL 

2 94.95 94.95 93.43 97.48 98.99 98.99 94.95 

3 65.59 83.33 79.03 78.50 88.71 88.17 66.13 

4 47.98 56.05 56.86 67.74 74.19 76.61 55.24 

         

SVM 
POLYNOMIAL 

(D=3) 

2 91.41 90.91 91.41 94.95 92.42 90.40 90.40 

3 61.83 81.18 82.26 82.80 83.33 82.26 77.96 

4 41.53 55.65 54.84 54.84 53.63 58.87 52.42 

         

LOGISTIC 
REGRESSION 

(𝝀 = 𝟏. 𝟎) 

2 94.95 93.43 92.93 97.48 98.49 98.99 98.49 

3 61.29 80.11 80.11 84.41 92.47 93.01 92.47 

4 45.57 59.68 62.10 68.55 79.03 83.47 85.08 

         

ARTIFICIAL 
NEURAL 

NETWORK 
(𝑵 = 𝟏𝟎) 

2 96.47 96.47 95.46 96.47 97.98 99.50 95.46 

3 63.98 80.65 80.11 86.02 89.79 88.17 67.74 

4 45.97 58.07 60.48 63.31 68.95 78.23 76.21 
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