INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Concurrency in B-Trees and Tries: Search and

Insert

[an Spencer Garton
School of Computer Science
McGill University, Montreal

September 2000

A Thesis Submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements of the degree of
Master of Science in Computer Science

Copyright © 2000 Ian Spencer Garton



Your iy Vove niddrence

Our s Nowe nédérence

L’auteur a accordé une licence non
exclusive permettant a la

of Canada du
— T -
&W Kim mﬂ‘ K1A ONS
Canads Canade
The author has granted a non-
exclusive licence allowing the
National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propniété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-70709-1

Canada



Abstract

Multiuser database systems require concurrency control in order to perform correctly. B-trees have
become the standard data structure for storing indices that aid in data retrieval and there have been
many algorithms published to enable concurrent operations for B-trees. Tries are another data struc-
ture useful for storing index data, particularly for text and spatial databases. Significant data com-
pression can be achieved by using a trie to store index values. However, there have been no algo-
rithms published to support concurrent trie operations.

We present algorithms that enable concurrent searches and inserts for tries with pointerless rep-
resentation. We also measure the performance of our algorithms and compare with that of the best
B-tree algorithms. In order to measure trie concurrency, we survey a number of studies that have
been made for B-tree concurrency. Using these published studies, we build a simulation model to

measure the concurrency of our algorithms.



Résumé

Pour fonctionner correctement, la concurrence doit étre controlée dans les systéemes de gestion de
base de données multi-utilisateur. Les B-arbres sont devenus la structure de données standard pour
sauvegarder les indexes qui assistent dans la récupération des données. Par conséquent. beaucoup
d’algorithmes publiés traitent des opérations concurrentes sur des B-arbres. Dans le méme temps,
les tries sont une autre structure de données particulierement utiles pour la sauvegarde d’indexes, et
cela dans le contexte des base de données textuelles et spatiales. Un taux de compression significatif
peut étre obtenu en utilisant un trie pour stocker des indexes. Cependant, aucun algorithme traitant
des opérations concurrentes sur des tries n’a été publié jusqu’a présent.

Nous présentons un algorithme qui permet les insertions et les recherches concurrentes sur des
tries dont la reprsentation n’utilise pas de pointeurs. De plus, nous mesurons les performances
de notre algorithme et les comparons avec les meilleurs algorithmes traitant des B-arbres. Pour
mesurer la concurrence sur les tries, on a examiné un certain nombre d’études qui portent sur la
concurrence des B-arbres. En se basant sur ces publications, on a construit un modéle de simulation

pour mesurer la concurrence de nos algorithmes.
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Chapter 1

Introduction

Concurrency control is the act of ensuring that concurrent operations do not interfere with one
another and cause incorrect results. Concurrent data structures are used most often in database sys-
tems. Such data structures are useful in multiuser applications; such as, banking, ticket reservation,
point of sale, inventory management, billing, and communications. This thesis studies concurrency

control techniques for two popular data structures: B-trees and tries.

1.1 B-Tree Preliminaries

The B-tree was introduced in 1972 by Bayer and McCreight [BM72] and has since become the stan-
dard data structure for impiementing indices in a database management system. Comer [Com79]
has written a survey about B-trees and their variations. The variation known as the B™-tree by
Wedekind [Wed74] is popular because it is easier to implement and likely to be smaller than the
B-tree. The main difference between the B -tree and the B-tree is that all records in the B™-tree
are stored at the leaf level. Another popular variation is the B*-tree by Knuth [Knu73] in which all
nodes are at least 2/3 full and all records are stored at the leaf level. When using the term “B-tree”

in this chapter and Chapter 2, we are referring to the B*-tree.
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(]

1.1.1 B-Tree Description

A B-tree is a balanced search tree in which each path from root to leaf has the same height £, where
height is measured in terms of node levels. A B-tree consists of nodes and links (or pointers) from
one node to another. A parent node n located on node level ¢,, contains pointers to children that are
on node level £, + 1. The root of the tree is the node that has no parents and is located on level I.
The leaves are the nodes that have no children and are located on level h.

In addition to pointers, each node contains either keys or separators. Separators are stored in
non-leaf nodes and define a search path from root to leaf for a given key value. Keys are stored in
the leaf nodes and imply that the associated information for the key value exists in the index. For
simplicity, we will refer to separators as keys. The keys and pointers within a node are arranged in
the following sequence: (P, K. P, K>, ..., K, P.) where P, is a pointer and K is a key.

Within each node, keys are stored in ascending order. Keys create a search path from root to leaf
by indicating the correct pointer and child to select in order to reach the correct information associ-
ated with the key value. For any non-leaf node n containing the sequence (... . K,.P.. K,_;....),
the chiid n’ pointed to by P, contains only key values v such that K, < v < K. Thus, the subtree
rooted at n’ contains only key values v such that K; < v < K;4).

Each (key, pointer) pair in a node is called an entry. A tree parameter £ controls the size of the
tree nodes. Each node in the B-tree has has at most 2k entries. Every node, except the root, has at
least &£ entries. The root has at least | entry (i.e. 2 children). Such a B-tree is said to be of order
k. B-tree node size is also specified by fanour, which is the maximum number of entries each node
may contain. A marker “M” may be stored in a node in place of P to indicate that it is a leaf. In
such a case, the information for key value K is located by following pointer P; instead of P,_;.
Figure 1.1 shows a portion of a B-tree.

The B-tree index is stored on disks which are partitioned into pages of fixed size. Each node is
stored on its own page on disk and pages are the smallest unit in which processes read and write

information. Hence, later in the thesis, we will refer to pages instead of the logical nodes of the tree.
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Non-leaf
node level K % . Ky
Leaf node T
level - BT'&L K, K{
Key: K, Key: Ky
Data records tre Informanon > st Information

Figure 1.1: B-tree nodes

1.1.2 B-Tree Operations

All basic B-tree operations (search, insert or append, and delete) start at the root and traverse the
tree down to the leaves. At each node, operations search for the minimal key that is greater than
or equal to the operation key. They then follow the appropriate pointer and fetch the child node.
Operations repeat this process until they reach the leaves, at which point, they search the keys and
perform whatever action is appropriate. For search operations, if the operation key is in the leaf,
the search is successful and the process retrieves the information related to the key. For update
operations, the leaf will be modified by inserting or deleting a key value. If the operation is an insert
and the key value is already in the leaf, the insert fails. If the operation is a delete and the key value
is not in the leaf, the delete fails.

Figure 1.2 shows the nodes that are encountered in the traversal from root to leaf for, in this case,
a search for key 43. In this case, the search is successful.

Performing an update may, however, result in a restructuring of the tree. If an insert operation
atternpts to insert an entry into a node with 2k entries (i.e. a full node), it will have to split the node.
And, if a delete operation attempts to delete an entry from a node with only & entries, it will have
to merge or redistribute its entries with another node such that all remaining nodes have at least
k entries in them. It has been shown that, for trees that change quite frequently due to numerous
insertions, it is better to allow nodes to contain less than & entries [JS89, JS93a]. In such a scheme,
restructuring occurs less frequently. In fact. real database systems often perform merges only when
nodes become empty.

A node is defined as being safe for an insert if it is not full and safe for a delete if an entry can
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Root
Search for record |

for key value 45 / e s 7 /54 \\70 \;‘l\

TGN
Ve L
.

k [nformation >

Figure 1.2: B-tree traversal

be deleted from the node without requiring a merge or rotation. A rotation occurs when entries
are moved from a node to its sibling and the parent’s key that separates the pointers to the pair of
children is updated. Figure 1.3 shows a node split for a B-tree with & = 2 that occurs when key
value 9 is inserted. Note that a new key must then be inserted into the parent for the new pointer.
Also, if the split node had been a leaf node, the key value of 13 would still have been placed into

the parent, but not removed from the node.

[ ¢ & @ "8 ---J g"'/IJ\\-W .OIJ
1 — \
i/ 41[ 13 5ﬂ\| Insert 9 ' s 00 5, 36
/ 0\
) v ' \

Figure 1.3: B-tree node split

It is important to note that the restructuring of the B-tree may propagate upward towards the
root. If an unsafe child is split and the parent is not safe for an insert, the parent will need to be split
and the grandparent modified. When the root splits, a new root is created and the B-tree increases

in height by | level. Conversely, a merge may propogate towards the root too and possibly cause a
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reduction in tree height by | level. The scope of an update is the set of nodes that are modified by
the update operation.

1.2 B-Tree Concurrency Control Algorithms

Restructuring of the B-tree may cause problems when operations operate concurrently. The follow-

ing example illustrates how concurrency of operations may lead to incorrect results.

Example Consider the B-tree split in Figure 1.4. There are two transactions that operate concur-

rently on the B-tree:

e Transaction |: read 46

e Transaction 2: write 9

Node A

T w ] T
Node B Y Node C

l : i :
VRS lslzs\mk] Insert 9 5,46 |

LN

e & o » a4 » * o

Figure 1.4: B-tree for concurrency example

These transactions are executed such that the sequence of events given by Figure 1.5 takes place.
Transaction 1 fails to traverse the B-tree in a correct manner because Node B changes after
Transaction | determines that Node B is the next node that must be read. When Transaction |
finally reads Node B, the correct pointer P is no longer located in Node B, so Transaction | fol-
lows the incorrect pointer Q. Concurrency control algorithms are required so that concurrent B-tree

operations can operate correctly.

1.2.1 Early Algorithms

In this thesis, we use the following locks. S-locks are “shared” locks, meaning that multiple termi-

nals can hold an S-lock on the same item simultaneously. IX-locks are “intention exclusive” locks
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T1: read 46 T2: write 9
read Node A

get pointer to Node B
read Node A

get pointer to Node B
Node B full -- splits

into Nodes B and C
read Node B

get pointer Q instead
of pointer P!

Figure 1.5: Sequence of events for B-tree concurrency example

and SIX-locks are “shared intention exclusive” locks. IX-locks and SIX-locks are typically used to
indicate a lock that may be upgraded to an X-lock. X-locks are “exclusive” locks. When a terminal
holds an X-lock on an item, no other terminal may hold a lock on the locked item. We assume the
lock mode compatibilities that are given in Table 1.1, where a check indicates that the requested

lock mode is granted.

Requested Current Lock Mode
Mode Free § [X SIX X
S v vV vV
X v v Vv
SIX v Vv
X v

Table 1.1: Lock compatibility table

The simplest concurrency control algorithm would be to treat the entire B-tree as a single data
record. In such a case, there would be only | lock. Search operations would hold an S-lock on the
tree during their entire search of the B-tree and update operations would hold an X-lock on the tree
during their entire update. Thus, searches would be allowed to perform concurrently, but not up-
dates. Such an algorithm is naive and provides very little concurrency of operations. Improvement
is made by treating each node in the B-tree as an individual data record that can be locked.

Typical concurrency control techniques for data records, such as two-phase locking [Gra78]
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where operations perform no further locking once they perform an unlock, reduce concurrency be-
cause operations are needlessly blocked out of certain areas of the data structure. Several algorithms
specifically for B-tree concurrency control have been proposed over the years. We now briefly de-

scribe various algorithms for B-tree concurrency control.

Metzger, Samadi, and Parr

Metzger [Met75], Samadi {[Sam76}, and Parr [Par77] proposed the first solution for the B-tree con-
currency control problem. With only X-locks, this simple algorithm uses the lock-coupling tech-
nique; that is, operations unlock a node only after locking its appropriate child. Update operations
unlock a node only if the child is found to be safe and release all its ancestor locks after locking
a safe node. Thus, if a leaf is unsafe, all ancestors that will be modified remain locked. In other
words, the scope of the update is locked. Due to the exclusive use of X-locks, lock conflicts occur

high in the tree, often at the root.

Bayer and Schkolnick

Bayer and Schkolnick [BS77] proposed a class of four algorithms to improve on Samadi’s approach.
In all four algorithms, search operations lock-couple from root to leaf with S-locks. The update

operations for each algorithm differ. Bayer and Schkolnick's algorithms are as follows:

Algorithm 1: Updates lock-couple from root to leaf with X-locks, releasing all their locks on a
child’s ancestors if the child is found to be safe. As with Samadi’s algorithm, updates X-lock
the root, even if it is not in their scope. Hence, the term “naive lock-coupling” is often used

to describe these algorithms.

Algorithm 2: This algorithm performs what is known as “‘optimistic descent.” Updates lock-couple
from root to leaf, placing S-locks on all non-leaf nodes and an X-lock on the leaf. The parent
of the locked child is always unlocked, even if the child is an unsafe node. If the leaf is unsafe,
the leaf and its parent are unlocked and Algorithm 1| is performed. If very few updates are

retried, this algorithm is expected to perform well; otherwise, Algorithm 3 performs better.

Algorithm 3: Updates lock-couple from root to leaf with SIX-locks (which are compatible with
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S-locks), releasing all locks on ancestors if a child is found to be safe. After locking the leaf,
all currently held locks are converted, top-down, into X-locks. The top-down lock conversion
drives search operations out of the scope before modification occurs. This algorithm’s advan-
tage is that searches and updates can concurrently access the same nodes. The disadvantage

is that updates cannot concurrently access the same nodes.

Algorithm 4: This is a generalized algorithm that combines the other three algorithms. Two param-
eters determine which algorithms to use for which parts of the B-tree. These parameters are
P and =, which specifiy the maximum number of levels on which updates can place S-locks

and X-locks respectively.

Updates in the Bayer-Schkolnick algorithms hold numerous X-locks at the same time because they

update the entire scope at one lime.

Mailler and Snyder

Miller and Snyder [MS78] proposed an algorithm that differs from Bayer and Schkolnick’s in that
updates X-lock only the nodes that are going to be modified. All operations lock from root to leaf
with S-locks. There is no lock-coupling since nodes are unlocked prior to locking the child. X-locks
are made only when updates reach the leaf. For an unsafe node, inserts X-lock up to three ancestor
nodes, as well as its parent’s adjacent siblings. Deletes X-lock in the same manner, except that they
also X-lock the children of the parent’s siblings. As needed, the block of locked nodes ascends up
the tree.

Kwong and Wood

Kwong and Wood [KW80b, KW80a, KW82] proposed a solution designed to improve on the Bayer-
Schkolnick algorithms and Ellis’s solution for 2-3 trees [El180] by minimizing the time that X-locks
are held. On the descent down the tree, operations perform as in Bayer and Schkolnick’s Algorithm
3. If the leaf is unsafe, “side-branching™ occurs; that is, for inserts, half of the entries from the
unsafe node (as well as the new entry) are copied into a new node. For deletes, if the leaf is unsafe,

rotation with a safe sibling and parent occurs and results in both siblings being safe. Side-branching
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for deletes occurs only if both siblings are unsafe, in which case, entries from the node containing
the entry to be deleted are copied (minus the deleted entry) into the adjacent sibling. Modification
occurs up the tree until a safe ancestor is modified. Then, the update resumes its descent down the
tree to remove the copied entries from the unsafe nodes (in the case of an insert) or remove the
redundant nodes (in the case of a delete). On this second descent, X-locks are used and the parent

is unlocked prior to X-locking the child.

1.2.2 Top-down Algorithms

Algorithms are considered to be top-down if they perform preparatory node splits or merges. B-tree
restructuring by an operation occurs only from root to leaf and in sub-operations that involve only

two node levels at a time.

Mond and Raz

Mond and Raz [MR85] proposed a top-down algorithm based on an algorithm by Guibas and
Sedgewick [GS78] that introduced preparatory node splits for 2-3 and 2-3-4 trees and the idea
by Keshet [Kes81] of immediately splitting or merging unsafe nodes to avoid long chains of locks.
During the descent from root to leaf, inserts perform a node split on any unsafe node they encounter
and deletes perform a node merge or entry redistribution if they encounter a node unsafe for dele-
tion. Hence, whenever a node is restructured, the parent is safe. Searches use S-locks and updates
use X-locks. Each operation holds only a pair of locks at any one time — the current node and its
parent. The locking technique is slightly different than lock-coupling in that, before locking any
node, its grandparent is unlocked.

Lanin and Shasha [LS86] note that Mond-Raz algorithm can be improved by using optimistic
descents as in Bayer and Schkolnick’s Algorithm 2. In such a scheme, updates would use S-locks
on their descent and X-lock the leaf. If the leaf is unsafe, the update releases all its locks and
restarts, using all X-locks. Srinivasan and Carey [SC9la, SC91b] note that the algorithm can also
be improved if updates use SIX-locks on descent and convert them to X-locks only if a split or

merge is necessary.
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Keller and Wiederhold

Keller and Wiederhold [KW88] determined that Mond and Raz's use of preparatory splitting cannot
be used for trees with variable-length key values because of its inability to determine with absolute
certainty that a new entry will fit into the newly split node. They introduced the sibling promotion
technique for the case when there is insufficient room to add the entry in the parent of a new node.
In this case, at least half the entries in the node to be split n are put in a new sibling node n'. A
pointer from n to n’ is created and the parent p,, is marked to indicate that it must be split. The next
update operation to reach py, splits p, (which creates p/,) and moves the pointer that leads to n’ out
of n and into pj,. If the parent of p, needs to be split, it is marked and the process repeats for the

next update operation.

Setzer and Zisman

Setzer and Zisman [SZ94] propose a technique based on [MR85] and [GS78] in which tree nodes
are maintained such that they are safe for inserts and deletes. Searches, inserts, and deletes use only
X-locks. A tree compression process operates concurrently and uses a new lock type, which they
call a c-lock. Search, insert, and delete operations lock pairwise, as in Mond and Raz’s algorithm.
As in Keller and Wiederhold’s algorithm, there may be variable-length keys. Also, leaves contain a
pointer to their right neighbour.

The algorithm uses load factors to determine which method of tree restructuring is best. A load
factor of a node F,, = [,/2k, where I, is the number of entries in node ., determines what action
to take if a node is unsafe for insertion. A preditermined split factor limit f; determines when it
is better to redistribute entries among 2 nodes and change the separator into the parent instead of
splitting a node and inserting a new separator into the parent. All operations restructure the tree
when they encounter an unsafe node. Nodes are considered unsafe for deletes if they contain &
entries. A cycle (which may also occur in Mond and Raz’s algorithm) may be caused by merging
2 nodes to form a node unsafe for insertion. To prevent such a cycle, merging or redistribution of
entries occurs only if 2 adjacent nodes contain fewer than & entries or if 2 nodes with fewer than &
entries are separated by a node with & or more entries. Thus, it is possible for nodes to remain with

less than k& entries. If the total load factor of the tree becomes too small, the compression process
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will be triggered.

The compression process starts by c-locking the leftmost leaf node. The other operations may
read nodes that are c-locked and read and update nodes to the right of the c-locked node. If an update
process reaches a c-locked leaf node, it is interrupted and restarted at the new B-tree root once the
compression process finishes. The compression process builds a new, compressed B-tree in another
area of the disk and then copies the new tree over the old tree once compression is complete. The
process copies the entries of the c-locked leaf into a new node n;. Then, the process follows the
pointer to the right neighbour and c-locks the right neighbour. The entries of the right neighbour
are copied into n if there is enough room in n;; otherwise, the entries are copied into a new node
na. This process continues until the rightmost leaf is copied into new node n,,. Nodes n;..... Nm
are the leaves of the new tree. The process then creates new parents for the new leaves and works
its way up the new tree until it creates a new root. While the compression process is taking place,

no other restructurings of the tree, except for node splits, occur.

1.2.3 B!i"k.Tree Algorithms

The B'"*_tree (pronounced “B-link-tree”™) was proposed by Lehman and Yao in 1981 [LY81]. Itis
based on the idea of using link pointers in concurrent data structures by Kung and Lehman {KL80],
who used link pointers in a concurrent binary tree. B!i"K.-tree algorithms differ from top-down algo-
rithms because restructuring occurs in sub-operations that involve only one node level and ascend
the tree in a bottom-up manner.

The B'i"k_tree is a B-tree with the addition of a high key and link pointer in each node. The high
key in a node n specifies the highest key value for the subtree that is rooted at node n. The link
pointer goes from a node to the node immediately to the right on the same node level. Figure 1.6
shows a fragment of a B'i"k_tree.

The B'"k.tree provides the ability to recover when operations read an incorrect node. Node
splits occur in two stages: the half-split, then the add-link'. In the half-split, the node n is split into
nodes n and n’ and the link from n to n’ is added. The link in n’ points to the node that the link in

n pointed to prior to the split. In the add-link stage, the pointer from the parent to the new node n’

'These terms were introduced by Lanin and Shasha [LS86]. Their B'""-tree algorithms will be discussed shortly.
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Figure 1.6: B!i"*.tree nodes

is created. Consider the example at the beginning of this section on page 5. The same example is

presented for the B!"k-tree below.

Example Consider the B'"*.tree split in Figure 1.7. The two transactions that operate concurrently

on the B'"k_tree are:
e Transaction !: read 46

e Transaction 2: write 9

Node A Node A
' . L] L] L] L] L] * . L] . L] L] ]
l 8 1 [ /B3N8 "
Node B ——)
[/ 4 13, 25 \36 \48J Insert 9
P
’ v

Figure 1.7: B'"k_tree for concurrency example

These transactions are executed such that the sequence of events in Figure 1.8 takes place.
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T1: read 46 T2: write 9
read Node A
get pointer to Node B
read Node A
get pointer to Node B

Node B full -- splits
into Nodes B and C

read Node B
get pointer L to Node C
read Node C
get pointer P
Time

Figure 1.8: Sequence of events for B'"k.tree concurrency example

Transaction | succeeds in traversing the tree because the link pointer L allows the operation to
advance to the right when it is found that the operation key is bigger than any of the keys in the
current node. Following a link pointer to a neighbour node is called a link chase. Transaction 1 thus

advances to the correct node and is able to locate the correct pointer P.

Lehman and Yao

In the Lehman- Yao algorithm, searches do not do any locking. Updates do not lock on their initial
descent from root to leaf and use X-locks once they reach the leaf level. Once the update X-locks
the leaf, any required link chases are performed by lock-coupling with X-locks. If a leaf needs to be
split, lock-coupling up the tree occurs until no more ancestors need to be split. In such a scheme, at
most 3 nodes are locked by any operation. If a link chase needs to occur while selecting the correct
parent, lock-coupling will occur and 3 nodes will be locked. There is no algorithm for performing
any concurrent restructuring due to deletion. Instead, Lehman and Yao suggest that if nodes become
excessively underutilized, a batch restructuring can lock the entire tree and take place while all other
operations wait.

Lehman and Yao do not use any S-locking because they assume atomic disk I/O of nodes for

each operation. A modification of their algorithm is to have operations S-lock from root to leaf
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and have updates release their S-lock on the leaf before X-locking the leaf and performing any link

chases.

Sagiv

Sagiv [Sag85, Sag86] improves on Lehman and Yao's algorithm by creating a B'i"k-tree compres-
sion procedure that can run concurrently with other operations and by reducing the number of locks
an insert operation holds at any given time. There can be either | compression process that peri-
odically restructures the entire tree or multiple processes that modify only 2 adjacent nodes each.
Restructuring consists of merging adjacent nodes if they contain 2k or fewer entries in total, or re-
distributing entries among adjacent nodes if they contain more than 2k entries in total. Compression
processes hold locks on 3 nodes at a time: a parent and 2 children. If there is | compression process,
the process traverses each tree level and examines pairs of adjacent nodes. This process is similar to
the idea that was proposed by Salzberg [Sal85]. If there are multiple compression processes, each
process examines only | pair of nodes.

Sagiv also modifies the insert algorithm so that it has at most | node locked at any one time.
There is no reason why update operations should not be allowed to overtake one another on the as-
cent up the B'"*.tree. Plus, holding only 1 lock prevents the possibility of deadlock with concurrent
compression processes.

Because compression of the B'i"*_tree occurs concurrently with other operations, it is possible
that an operation may find that the node it is to operate on is no longer the correct node or no longer

exists. Sagiv’s solution is to simply restart the operation that fails to traverse the tree correctly.

Lanin and Shasha

Lanin and Shasha [LS86] perform B'i"k_tree compression by using deletes that occur, similarly to
insertions, in two stages: the half-merge stage and the delete-link stage. In the half-merge stage,
the node to be deleted n’ gets all its entries moved to its left neighbour n and its link pointer set to
point to . Thus, any operation that encounters n’ (since the pointer to it is still in its parent) will be
able to get to n and traverse the tree correctly. The delete-link stage is the removal of the entry that

points to n’ from the parent.
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In the Lanin-Shasha algorithm, S-locks are always used without lock-coupling in the initial de-
scent down the B'"*.tree. Once an update reaches the leaf, it releases its S-lock and X-locks the
leaf. Operations perform any required link chases without lock-coupling. On the ascent up the tree,
inserts hold no more than 1 lock at any time and deletes hold no more than 2 locks at any time.

There are possible inconsistent situations that arise due to early unlocking. It is possible that an
insert operation may find that the key to add to the parent of a split node already exists in the parent.
Figure 1.9 shows such a case. In a similar manner, a delete operation may find that the key to delete
in the parent that separates newly merged nodes does not yet exist in the parent. A simple solution
to this problem, noted by Srinivasan and Carey [SC91a, SC91b], is to lock-couple on the ascent up
the Bi"k_tree. Operations hold an S-lock on their split or merged node until after they’ve acquired

an X-lock on the parent. By doing this, an update will not encounter a parent that has yet to be

modified by another update.

1.2.4 Other Algorithms
Biliris

The algorithm by Biliris [Bil87] is called the mU protocol. Two different types of SIX-locks, which
are incompatible with each other, exist for inserts and deletes. In addition to the high keys and right
links for each node as in the B'"k-tree, each node contains a low key and left link. The maximum
number of insert SIX-locks on a node at any given time is equal to the number of insertions that
can be performed on the node without causing a split. Conversely, the maximum number of delete

SIX-locks on a node at any given time is equal to the number of deletions that can be performed on

the node without requiring a merge.

Mohan and Levine

The ARIES/IM algorithm by Mohan and Levine [ML89, ML92] considers transactions that may
contain multiple operations on B-trees. The nodes of the tree are such that leaves contain left
and right links and non-leaves do not contain any links. Update operations lock-couple from root
to leaf, placing S-locks on all non-leaf nodes and an X-lock on the leaf. Searches use only S-
locks. Link chases may be performed at the leaf level. For the non-leaf levels, instead of link
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Node A
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(b) Delete has performed half-merge
and uniocked Nodes B and C

(¢) Insert operation has inserted key value 13 back into tree, performed half-split of Node B
into Nodes B and B°. and unlocked Node B. When the insert operation goes to insert key
value 13 into Node A due to the node split, it will find that key value 13 is aiready there!

Figure 1.9: Bli*k.tree inconsistency encountered by insert operation

chases, operations use a complex method based on recursive retries. An important property of the

ARIES/IM algorithm that distinguishes it from the other algorithms is that only I restructuring

operation (either a node split or merge) is allowed to occur at a time. Mohan and Levine do suggest,

however, that multiple restructuring at the leaf level can occur by locking a tree lock for restructuring

operations in [X-mode for leaf level splits or merges, locking the tree lock in X-mode for non-leaf

level splits or merges, and performing deadlock detection to avoid deadlock caused by muitipie

operations attempting to upgrade their IX-lock to an X-lock.
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1.3 Trie Preliminaries

The trie was developed by de la Briandais in 1959 [dIB59] and Fredkin in 1960 [Fre60]. The trie
(pronounced “try” even though it is derived from “information retrieval” [Fre60]) is also known as
a digital tree [Knu73]. A trie stores data along the paths from root to leaf, unlike a B-tree which
stores data at the nodes. Multiple key values share paths near the root; thus, tries achieve significant
data compression rates of 90% or higher for large files [Mer98]. As well as its use for large amounts
of general and spatial data, tries have other applications. Tries were used in the first sublinear-time
algorithm for retrieval of substrings from large texts [Mor68]. In addition, tries are particularly
useful for variable-resolution queries since they store the most significant digits or characters near

the root [MS94, Sha95].

1.3.1 Trie Description

We will consider only binary tries for fixed-length keys. In a binary trie, the maximum fanout is 2.
Each edge between a parent and a child represents a data bit. A left edge represents a 0" bit and
a right edge represents a “1" bit. The first bit of any key is stored at an edge from the root to its
child. Since the key values are of a fixed length, all paths from root to leaf are of the same length.
Figure 1.10 shows a trie for 9 key values: 00000011, 00101100, 00101111, 10000000,
10000101,10001000,10100000,10101100,and 11010000. In the trie, the key value of
00000011 is represented by the leftmost path and the key value 11010000 is represented by the
rightmost path. The leaves of the trie are empty and not shown.

Orenstein developed a method of storing tries such that pointers are not used [Ore82, Ore83].
Instead of pointers, a pair of bits is used to represent the edges from a node to its children. Each
node is represented by a bit pair that consists of 2 bits such that the left bit indicates the existence
of a left edge or 0™ bit and the right bit indicates the existence of a right edge or 1" bit. A *1”
in the bit pair indicates that the corresponding edge exists and a 0" in the bit pair indicates that
the edge does not exist. For example, the root node of the trie in Figure 1.10 is represented by the
bit pair “11" because it has 2 children and the root’s left child is represented by the bit pair “10"
because it has only a left child. Figure 1.11 shows the pointerless representation of the entire trie in

Figure 1.10.
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Figure 1.10: Trie
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Figure 1.11: Pointerless representation of trie

Without pointers, operations need to traverse the trie by counting the “1 " bits in the bit pairs. The
operation compares the current input bit of the operation key with the node. If there is a 1" in the
bit pair that corresponds to the input bit, the operation advances to the next node level; otherwise,
the operation key is not in the trie. To determine which bit pair to examine in the next node level,
the operation counts the number of 1" bits it encounters in the bit pairs of its current level as it
advances from left to right.

For example, say that an operation is searching for key value 11010000 in the trie in Fig-
ures .10 and 1.11. The input bit is 1" (the first bit of the operation key) and the bit pair for the

. root node is “11". The right (second) bit of the bit pair indicates that an edge corresponding to “1"
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exists. The operation has encountered 2 “1” bits: the left (first) **1” bit and the right (second) 1"
bit. Since the second bit matches the current input bit, the operation determines that it must next
examine the second node of the next node level .

At the next node level, the operation checks if the second bit of the operation key, which is 1",
exists in the trie. The operation advances from left to right, taking note of the **1” bit in the leftmost
node and then examining the second node. The second node is 11" and the second bit of the
node matches the current input bit. By encountering this second bit of the node, the operation has
encountered 3 “1” bits in the level: 1 *1” bit in the leftmost node and both **1” bits in the second
node. Thus, the operation will examine the third node of the next node level. Traversal of the trie
continues in this manner until the operation is finished.

Since each 1" bit indicates a child in the next node level, an operation can determine how many
nodes are in the next level by simply counting all the “1" bits in its current level. Thus, the bit pairs
can be stored simply as a sequence of bit pairs. For the trie in Figure 1.10, this sequence is:

(11 10 11 11 11 10 10 10 10 10 O1 10 O1 11 11 10 10...)

Rather than traverse the entire trie sequentially, we divide the trie into levels of pages that can be
traversed [Ore83). By using page counts, an operation can determine which page contains the next
node to examine without traversing the entire node level of the trie from left to right. With these
page counts, operations need only traverse the node levels within specific pages. Each page has two
counts: a T-counr and a B-count. The T-count for a page n specifies the number of edges that enter
the top of all pages to the left of n on page level ¢,,. The B-count for a page n specifies the number
of edges that exit the bottom of all pages to the left of n on page level Z,,. In addition, each page
level has a T-count and B-count that specifies, respectively, the total number of edges entering the
tops and exiting the bottoms of all pages in the level. To ensure that these counts are effective, edges
are allowed to enter and exit pages only at the tops and bottoms, not the sides. Figure 1.12 shows a
paged trie for the trie in Figure 1.10.

To determine which page to traverse next, operations first add the value of the B-count for their
current page to the value they have calculated as the next node they must examine. Consider our

earlier example of a search for key value 11010000. Once the last node level of the root page is

*If the current input bit had instead been a “0", only the first **1™ bit of the root would have been encountered and the
operation would be examining the first node of the next level.
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Figure 1.12: Paged trie

examined, the operation has counted the 1" bits and concluded that it must next examine the fifth
node on the next node level. However, since there may be pages to the left of its current page, the
operation must add all the edges descending from the pages to the left in order to truly determine
which node on the next node level to examine. In this case, the current page is the root page, so
there is no page to the left and the B-count is 0. Thus, the operation determines that it must examine
the fifth node on the next node level since 5 + 0 = 5.

To determine which page the next node to examine is in, the operation uses the T-counts for the
next page level. The operation selects the page to the left of the page with the minimum T-count that
is greater than or equal to its calculation of 5 + 0 = 5. The T-counts for the pages are 0, 2, 4, and
5. For this search, the page level count § is the minimum T-count that is greater than or equal to 5.
Hence, the operation chooses the page to the left; that is, the page with T = 4. Instead of traversing

the entire node level of the trie, only the page with T = 4 will be traversed.

1.3.2 Trie Operations

We now discuss in detail how operations search and insert key values in a paged trie with pointerless
representation. Since the focus of this thesis is trie concurrency for search and insert operations, we

do not discuss deletions in the paged trie.
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Searching a Trie Page

This section on searching a trie page is from [Mer98] except the discussion on finding the next page
to search and the page search algorithm presented in Figure 1.15. The algorithm used for searching
a trie page that is represented as a sequence of bit pairs is from [Ore83]. Consider the paged trie in
Figure 1.12 on page 20 .

The sequence of bit pairs for the root page is:

(11 10 11 11 11 10 10 10 10 10 0O1)

To navigate the bit pair sequence, a counter and a cursor are used. The counter, size, stores the
number of bit pairs on each node level. Using size, the cursor, last, stores the location of the last
bit pair on the current node level. Initially for the root page: size = 1 and last = 0. As we traverse

the bit pair sequence, size and [ast are modified as follows:
e size is incremented by | each time the bit pair “11" is encountered
e last is incremented by size each time the last bit pair of the current node level is encountered

For the trie in Figure 1.12, size and last are modified for the root page as shown in Figure 1.13.

e N
position bit pair size [last  comments
1 0 initial values for root page
0 11 2 2 *11"read, last = last + size
1 10
2 11 3 5 “11"read, last = last + size
3 11 4 “11" read
4 11 5 *11" read
] 10 10 last = last + size
6 10
7 10
8 10
g 10
=0 1 13 last = last + size

—
.

Figure 1.13: Modification of size and last during page traversal

To actually search the page, a bit pair in the page must be compared with a current input bit. As

soon as the current input bit is not found in the bit pair being compared, the search terminates. The
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bit pair used for comparison is in the position identified by nezt. To find the value of nexzt for the
next node level, a counter, srch is used. Initially for the root page: next = 0 and srch = 0. As we

traverse the bit pair sequence, nezt and srch are modified as follows:

e Before the bit pair at nezt is reached, srch is incremented by | for each 1" bit in the bit

pair.

e At the bit pair at next, increment srch for each “1” bit in the bit pair, including the bit that

matches the current input bit, but not past it.

e At the bit pair at last, next = last + srch and then srch = 0.

For the trie in Figure 1.12, the search for the search key 10101100 proceeds for the root page as

shown in Figure 1.14.

e N
position bit pair input bit srch nert size last
1 0 0 1 d
C 11 0 2, then 0 2 2 2
1 10 1
2 11 i 2, then 0 4 3 5
3 11 2 4
4 i1 0 4 5
5 10 4, then 0 9 10
6 10 1
7 10 2
8 10 3
9 10 1 4
iQ 01 4, then 0 14 15

Figure 1.14: Modification of counters during page search

After searching the root page, the search may need to continue and search other pages of the trie.
Rather than traverse all the bit pairs of the trie, we use T and B to determine which trie page to
search next.

The srch counter, by counting the 1" bits in the current node level, counts the descendent nodes

or subtries from the current node level. Before being reset to O in our example, stch = 1 after the
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last node level of the root page is searched. This means that we must go to the fourth subtrie from
the beginning of the next page level. Using the T-counts for the pages on the next page level, the
correct page to use for continuing the search is determined. With the current page having a B-count
of B’, we scan the next page level for T > B’ + srch and choose the page immediately to the left.

We must also reset nezt, last, size, and srch in order to correctly traverse the next page. They

are modified, in order, as follows:

e nert = B' + srch — T — 1, where T is the T-count for the new page to be searched and B’

is the B-count for the page that was just searched

e srch=0

e size = T"” — T, where T" is the T-count for the page immediately to the right of the new

page to be searched

e last = size — 1

To summarize, the algorithm for searching a trie page is a loop over all node levels within the
page. The loop contains a loop until nezt, code for nezt, a loop until last, and code for last. This

algorithm is presented in Figure 1.15. on page 24.

Inserting Data into a Trie Page

When inserting data into a trie page, the page is traversed in the same manner as a page search.
The values of size, last, srch, and nezt are used and modified in the same fashion. There are two

phases for inserting data into a trie page:

e Phase 1: Search page and change bit pair that does not match current input bit

e Phase 2: Search page and insert bit pairs that represent subsequent current input bits

When the current input bit is not found in the bit pair at nezt, the current input bit is inserted

and the bit pair at nezxt is changed. For example, if the current input bit is 1", the bit pair at nezt
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SEARCH-TRIE-PAGE(key, page) )
/* counters size, srch, next, and last have been initialized */
1 for node-level — 1 tot /* t is the number of node levels in a page */
2 while bit-pair is before nezt do
3 if bit-pair ="11" then
4 size + size + 1
5 srch « srch + 2
6 else if bit-pair = 10" or bit-pair = 01" then
7 srch + srch +1
8 if bit-pair does not match input bit then
9 return “search failed”
10 if bit-pair = 11" and input bit = 0" then
1 size + size + 1
12 srch « srch + 1
13 else if bit-pair = 11" and input bit = 1" then
14 size + size + 1
15 srch « srch + 2
16 else
17 srch « srch + 1
18 if input bit was last input bit then
19 return “search succeeded”
20 input bit + next input bit
21 while bit-pair is before last do
22 if bit-pair =11" then
23 stze + size + 1
24 if node_level < t then
25 next « last + srch
26 srch « 0
27 last « last + size
N J

Figure 1.15: Trie Page Search Algorithm

will change from either “00” to 01" or from “10"” to “11.” After the bit pair is changed, stze and
srch may need to be incremented by | to reflect the modified bit pair.

After the bit pair is changed and last is reached, the insert procedure then proceeds to insert bit
pairs into the page at the location specified by next. Each time a bit pair is inserted, the position
of all subsequent bit pairs is incremented by 1. Also, srch is incremented by 1 since the inserted

. bit pair is either “10" or “01". The B-counts of all pages to the right on the page level will also be
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incremented by 1.

After reaching the last node level of a page, the insertion may need to continue and insert the
remaining portion of the key value into other pages. The method of determining which page to
insert the remaining portion of the value into is the same as that used to determine which page to
search next.

Once a bit pair has been changed in a page, other pages selected by the insert operation have
bit pairs inserted, but no bit pairs changed. In other words, they have subtries inserted into them.
The page traversal is the same, except that now, before starting the insertion, s:ze and last must be
incremented by | due to the addition of the new subtrie. Also, due to the addition of the subtrie, all
pages to the right on the page level will have their T-counts and B-counts incremented by 1.

Consider again the trie from Figure 1.12 on page 20. Inserting key value 01001010 into the trie
will yield the trie in Figure 1.16. The new key value is indicated by the bold path and the modified

T-counts and B-counts are indicated by the bold italics.

T=0 H1
B=0 6
0 113 s L6
‘04 4 \ 9 '10

............................................

Figure 1.16: Paged trie after insertion

The insertion of key value 01001010 proceeds as shown in Figure 1.17 for the root page and

in Figure 1.18 for the descendent page.
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Figure 1.17: Modification of counters during page insert for root page
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Figure 1.18: Modification of counters during page insert for descendent page

The algorithms for both phases of insertion are in Figures 1.19 and !.20 on pages 27 and 28

respectively.
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MAKE-INITIAL-TRIE-INSERT(key, page)

/* counters size, srch, next, and last have been initialized */
I bit-pair-changed + FALSE
2 for node-level «— 1 tot /* t is the number of node levels in a page */
3 while bit-pair is before nezt do
4 if bit-pair = 11" then
5 size « size + 1
6 srch « srch + 2
7 else if bit-pair = 10" or bit-pair = 01" then
8 srch « srch + 1

9 if bit-pair does not match input bit then
10 Change bit-pair 1o 11" so that it does match input bit
11 bit-pair-changed «+ TRUE
12 if bit-pair = 11" and input bit = 0" then
13 size «— size + 1
14 srch « srch + 1
15 else if bit-pair =*11" and input bit = 1" then
16 size « size + 1
17 srch - srch + 2
18 else
19 srch « srch + 1
2 if input bit was last input bit then
21 return “done”
22 input bit « next input bit
23 while bir-pair is before last do
24 if bir-pair =*11" then
25 size + size + 1
26 if node_level < t then
27 next + last + srch
28 srch « 0
29 last « last + size
30 if bit-pair-changed = TRUE then
31 old-node-level + node-level
32 node-level « t /* 10 break out of this for-loop */

33 for node-level « old-node-level +1 to t
/* see for-loop in INSERT-SUBTRIE algorithm in Figure 1.20 */

Figure 1.19: Trie Page Insert Algorithm (Initial Insertion)
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INSERT-SUBTRIE(key, page)
/* counters size, srch, next, and last have been initialized */

1 for node-level — 1 tot /* t is the number of node levels in a page */
2 while bir-pair is before next do

3 if bit-pair =*11" then

4 size « size +1

5 srch « srch + 2

6 else if bit-pair = 10" or bit-pair = 01" then

7 srch « srch + 1

8 Insert bit pair that corresponds to input bit

9 if node-level = | then

10 size « size+ 1
] last + last + 1
12 srch « srch + 1
13 if input bit was last input bit then
14 return “done”
15 input bit « next input bit
16 while bit-pair is before last do
17 if bit-pair =*11" then
18 stze + size + 1
19 if node _level < t then
20 nert «+ last + srch
21 srch « 0
22 last + last + size
. /

Figure 1.20: Trie Page Insert Algorithm (Subtrie Insertion)

When the node capacity of a page is exceeded, the page must be split into two pages. Since no
trie edges can cross the side boundaries of a page, a page must have a capacity large enough to store
a full subtrie. So, for ¢, where ¢ is the number of node levels per page, the minimum node capacity
must be 2¢ ~ 1. For example, the insertion of value 10001010 in the trie of Figure 1.16 results in a
page split if the node capacity per page is 16 nodes. In this trie, ¢t = 4, so 16 > 2 — 1. Figure 1.21
on page 29 shows the page split that results.

Before a page split occurs, there are at least two subtries in the page. When there are more than
two subtries. a split can be made such that the most even distribution of nodes possible between

the two pages is achieved. The worst node distribution that can be made is one where a new page
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Figure 1.21: Paged trie after split

contains only ¢ nodes; yet, this choice may very well be necessary.

29

To determine an optimal node distribution between the two pages, the number of nodes in each

subtrie of the split page must be known. We will call count; the number of nodes for subtrie :,

where the n subtries in the page are numbered left to right from 0 to n — 1. To calculate count;, the

location of the last node for subtrie ¢ on the current node level must be stored in last;. We know

we are in subtrie 7 if the current node position is > last;_; and < last;. For the next node level,

the new value for last; is calculated by using size; and last. Initially, count; = 0, last; = i, and

stze; = 1. As the page is traversed, these cursors are modified as follows:

e count; is incremented by | each time a bit pair in subtrie ¢ is encountered.

e size, is incremented by | each time the bit pair 11" is encountered in subtrie :

When the bit pair at last is reached, [ast; is modified for each subtrie : as follows before incre-

menting last by size:

o last, = last + 3| _, size;

To reduce the number of page traversals that are required, the calculation of count;, size;, and last;

can be done while the insertion procedure is traversing the page.
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Once the node counts for the subtries are known, we take the absolute value of all n — 1 differ-
ences (county + --- + count;) — (countr4+| + -+ + count,_;) and select £ from the miminum
difference. The page is then traversed again, keeping all nodes at positions < last; in the page that
is being split, and placing all nodes at positions > last; into the new page that is created.

Consider again the trie from Figure 1.16 on page 25. If the value 10010000 is inserted instead
of 10001010, the page that will be split contains three subtries and we must decide where to split

the page. The trie in Figure 1.22 shows the trie after the insertion, but before the page is split.

‘T=0 !

‘B=0 - - 17
of E 6] 17
0 4 ' 10/ 1

PR QR A5N) R SR B () RN A AR SR e R T Y

Figure 1.22: Paged trie before optimal split

From the calculation of count;, size;, and last; in Figure 1.23, we see that for the three subtries
county = 9, count; = 4, and counts = 7. The two differences that must be calculated are
9—(4+7) = 2and{(9+4) -~ 7| = 6. The minimum difference is 2 and the value for r is 0.
so for each node level, all nodes at positions < lastg remain in the page and all nodes at positions

> lastg get placed in the new page. The resulting trie is in Figure 1.24.



CHAPTER |. INTRODUCTION

r

31
\
position  bitpair countys count, counta sizep 3size, sizea lasto last; last:
0 0 o] 1 1 1 0 1 2
0 11 1 2
1 10 1
2 11 1 2 4 5 7
3 11 2 3
4 i0 3
5 10 2
6 10 2
7 01 3 10 11 13
8 10 4
9 10 5
10 10 6
11 10 3
12 10 4
13 10 5 16 17 19
14 10 7
15 01 8
16 10 9
17 10 4
18 10 6
19 10 7
J

Figure 1.23: Modification of counters prior to optimal page split

Figure 1.24:
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Paged trie after determining optimal split
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1.4 Thesis Overview

We have introduced B-trees and tries, as well as various algorithms for concurrent B-tree opera-
tions. In Chapter 2, we summarize various performance studies that have been published for B-tree
concurrency algorithms and describe our model for simulating B-tree and trie concurrency. Chap-
ter 3 describes the simulation experiments that we performed to measure B-tree concurrency. We
present our performance results for B-tree concurrency and compare and contrast them with pub-
lished results. Our goal is to be able to scale our results for trie concurrency onto the published
graphs for B-tree concurrency. In Chapter 4, we present our algorithms for concurrent search and
insert operations in a paged trie with pointerless representation. We then present our performance
results for these algorithms and compare them with the B-tree results. We conclude in Chapter 5 by

summarizing the thesis and proposing future work related to trie concurrency.



Chapter 2

Concurrency Simulation

In this chapter, we first describe various concurrency studies that have been published for B-trees.
We selected Srinivasan and Carey’s work [SC91b] as a basis for and evaluating our own B-tree
results because they perform a detailed simulation study by using a large variety of experiments
for B-tree concurrency in a centralized DBMS. Thus, we describe the simulation model we used to
simulate B-tree and trie concurrency involving the various system resources specified by Srinivasan

and Carey.

2.1 Related Work

When proposing a new concurrency control algorithm, authors usuaily attempt to estimate its per-
formance by analytical or simulation methods. We now briefly discuss work that has been done to

measure the performance of various B-tree concurrency control algorithms.

Samadi

Samadi [Sam76] presents simulation results for his algorithm. He measures performance by mea-
suring access and waiting times for each terminal. The interarmval time between requests decreases

until requests arrive fast enough that the system can no longer handle them.

33
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Bayer and Schkolnick

Bayer and Schkolnick [BS77] use formulas to approximate various performance measurements.
They approximate the number of waiting operations, the number of nodes encountered during re-
tries, and the number of lock conversions. Using these approximations, they determine what values

to use for the parameters in their Algorithm 4. Their model is static and they assume that all opera-

tions descend the tree simulaneously.

Biliris

Biliris [Bil85] uses simulation to compare four algorithms: naive lock-coupling, optimistic descent
with retries using SIX-locks instead of X-locks, side-branching, and his mU protocol. He finds that
naive lock-coupling produces the worst performance and that the mU protocol produces the best
performance. Unfortunately Biliris does not study the B'i™*.tree algorithms nor provide response

times for individual operations or a detailed analysis of the results.

Lanin and Shasha

Lanin and Shasha [LS86] use simulation to compare five algorithms: their modification of Lehman
and Yao’s B algorithm, Bayer and Schkolnick’s Alglrithms 1 and 2, the Mond-Raz algorithm, and
the Mond-Raz algorithm modified so that optimistic descents are made as in Bayer and Schkolnick’s
Algorithm 2 and retries are made with the Mond-Raz algorithm. They compare speedup, which is
the ratio of time it takes | terminal to do a unit of work to the time it takes n terminals to do the
same unit of work. They do not simulate very many concurrently operating terminals.

Their results show that with low fanout, their modified B'"¥ algorithm performs much better than
the other algorithms. They found that the B'"k algorithm runs 26.5 times faster with 40 terminals
than with | terminal and that the next best algorithm, the Mond-Raz algorithm with optimistic
descent, runs only about 10 times faster. With higher fanout, the B'" algorithm and the Mond-Raz
algorithm with optimistic descent perform almost equally well.
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Johnson and Shasha

Johnson and Shasha [JS90] use an analytic model with an open queue to analyze three algorithms:
Bayer and Schkolnick’s Algorithms | and 2, and Lehman and Yao’s B'®* algorithm. The version
of the Lehman-Yao algorithm they use has no lock-coupling on ascent and no node merging since
merges are rare if inserts outnumber deletes [JS89]. In their experiments, there are few link chases
in the B'i"k algorithms, as well as no buffers or resource contention.

They find that the lock-coupling algorithms create a bottleneck at the root and that the B'itk
algorithm provides much better performance. Maximum throughput for Algorithm | occurs for
an arrival rate of about 0.6 operations at the root per unit of time. Algorithm 2 is better since its
maximum throughput occurs at an arrival rate of about 2.7. The B"" algorithm, however, reaches
no maximum throughput. Even at an arrival rate of 14, response times for B'"K operations remain

almost constant.

Srinivasan and Carey

Srinivasan and Carey [SC91a, SC91b] use simulation with a closed queue to test various algorithms
in a system with buffers and contention for disks and CPUs. They study numerous algorithms for
four classes of algorithms: B'"* algorithms, optimistic descent, lock-coupling with SIX-locks, and
lock-coupling with X-locks. They also use their results to predict the performance of the side-
branching technique, the mU protocol, and the ARIES/IM algorithm. They simulate a large variety
of situations with varying workloads and resource contention. They also study situations where the
number of concurrent operations is high enough to cause many link chases.

Their results are similar with those of Johnson and Shasha. They find that the B'"k algorithms
perform the best and allow the most concurrency. In fact, they find that the B'"* ajgorithm with
lock-coupling on ascent, which is more practical, is generally as good as the Lanin-Shasha version.
Unlike Johnson and Shasha, they find that Bayer and Schkoinick’s Algorithm | performs similarly
to Algorithm 2 when there are many concurrent operations. They predict that the side-branching
algorithm will not perform as well as the B'"* algorithms and that the mU protocol may perform
as well as the B'" algorithms only in certain situations. With the modification that allows the

ARIES/IM algorithm to perform multiple tree restructuring simultaneously, they suggest that the
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ARIES/IM algorithm may perform similarly to the B*¥ algorithms.

Johnson and Shasha

Johnson and Shasha [JS93b] publish an elaboration of [JS90]. They analyze seven algorithms:
Bayer and Schkolnick’s Algorithms 1 and 2, the Mond-Raz algorithm, optimistic descent using
Algorithm 3 and SIX-locks instead of X-locks for retries, optimistic descent where retries occur
when all of a certain number of bottom tree levels need to be restructured, the Lehman-Yao Blitk
algorithm, and two-phase locking. In addition, they include contention for disks and buffers. Using
simulation, they confirm their analysis.

They again find that the Lehman-Yao algorithm provides the most concurrency. At an arrival
rate of 160 with no resource contention, the B! "k algorithm still does not reach any maximum
throughput. The next best algorithm, which is the optimistic descent with SIX-locks, reaches a
maximum throughput at an arrival rate of about 10. With resource contention, the still find that the
Blink algorithm performs best even though it approaches the same performance as the optimistic
descent algorithm when resource contention is high. They recommend using either the ARIES/IM
or optimistic descent algorithms when the B-tree is shrinking because the Lehman-Yao algorithm
provides no node merging. Since their model is analytic, it may be applied to future concurrency

control algorithms and even future data structures.

2.2 Simulation Overview

Discrete-event simulation, which emerged as an established discipline with the publication of
[Toc63], was originally designed to solve complex queueing theory problems. In a discrete-event
simulation, the system state changes at distinct points in time, in contrast to a continuous simulation
where the system state changes continuously as a function of time. We have implemented an asyn-
chronous discrete-event simulation where events (which change the system state) may occur at any
time, instead of a synchronous discrete-event simulation where events occur at fixed time intervals.

There is an event for each terminal in the system. Each event contains the next action to be

performed by the terminal, the time when the event will occur, and other variables needed to store
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the present state of the terminal (such as operation type, key, operation start time, current page, etc.).
The simulation program is a loop that fetches the next event, calls a subroutine which performs the
state change specified by the event, and creates a new event which will occur at a future time until
the simulation is finished.

Future events with known activation time are in a (binary) heap [Wil64] and future events with
unknown activation time are on a wait queue. We use a heap to store future events whose future
activation time is known because insertion and extraction of events in a heap require only O(log, n)
time, where n is the number of events in the heap. Events are sorted on the heap such that events
are extracted in increasing order of activation time.

We store future events whose future activation time is unknown on the wait queue of the lock or
other system resource for which they are waiting. Once the grant time for these events is known,
the event’s activation time is set and the event is placed in the heap. We discuss these wait queues
in more detail in the next section.

We use CPU instructions as the unit of time for scheduling events. Each action that an event
specifies requires a number of CPU instructions to perform. After the action is performed for the
terminal and the system state changed, the next event for that terminal will occur at a time equal to
the current time plus the time required to perform the action. We convert the time required for disk
usage, traditionally measured in milliseconds (ms), into CPU instructions by using the CPU speed,
which is measured in millions of instructions per second (MIPS).

Furthermore, our simulation model is a closed queueing model. Rather than set an arrival rate
for transactions into the system as in an open queueing model, each terminal submits a transaction
and, upon completion of the transaction, immediately submits another transaction. There is zero
think time between completion of one transaction and submission of the next one. By varying the
number of terminals in the system (the multiprogramming level or MPL), we vary the number of
concurrent transactions in the system.

We implement our simulation using the Java programming language [AG96, GJS96] because
Java is a simple general-purpose object-oriented platform-independent programming language. Srini-

vasan and Carey, however, implement their simulations using the DeNet simulation language [Liv90].
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2.3 System Resources

Srinivasan and Carey simulate B-tree concurrency in a system containing various types of available

resources. We now explain how we simulate these resources.

2.3.1 Locks

There is a lock for each page in the B-tree and trie. Each lock consists of a current lock mode, a
grant count, and a wait queue. The current lock mode indicates whether the lock is free, S-locked,
X-locked, or in wait mode. The grant count contains the number of terminals currently granted the
lock. The grant count is 0 when the lock is free, 1 when the lock is X-locked, and | or more when the
lock is S-locked or in wait mode. If a terminal attempts to lock a page in a mode incompatible with
the current lock mode, the lock mode is set to indicate a wait and the future event for the terminal
is placed on the wait queue. Locks are granted FCFS (first-come, first served), so any subsequent
requests for a lock in wait mode are placed on the wait queue. When a terminal waiting on the queue
is granted the lock, the activation time for that terminal’s event is set to the current time and the event
is moved from the wait queue to the heap. Since the activation time for the granted terminal’s future
event is set to the current time, the next event to occur will be the granted terminal’s future event -

acquiring the lock.

2.3.2 Buffers

The buffer pool exists to store currently and recently used pages in main memory and reduce disk
usage. The buffer manager consists of the pages that are presently in the buffer, a fix count for each
page, and an “LRU (least recently used) stack.” The LRU stack orders pages that are in the buffer
and not currently in use such that the page at the top of the stack, which is least recently used, is the
page to be replaced when another page needs to be inserted into the buffer.

Before starting a simulation, we initialize the buffer from root to leaf and from left to right so
that the most frequently used pages (those closest to the root page) are in the buffer. Iniually, all
pages in the buffer are unfixed (with fix count of 0) and are therefore in the LRU stack.

When a terminal requests a page for processing, it fixes the page in the buffer. When a page is
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fixed, the fix count for the page is incremented by 1. If the requested page is in the LRU stack at
the time of fixing, the page is removed from the LRU stack so that it is not written out of the buffer
while in use by the terminal. If the requested page is not in the buffer at the time of fixing, a buffer
miss occurs. When a buffer miss occurs, the terminal must perform disk /O twice: once to write
out the LRU page from the buffer and once to read the requested page into the buffer. The LRU
page written out of the buffer is also removed from the LRU stack. Once the terminal is finished
processing the page, the fix count for the page is decremented by 1. If the fix count becomes 0, the
page is then added to the LRU stack.

We simulate an infinite buffer pool by simply assuming that all pages (except newly created
pages which result from a page split) are always in the buffer. Newly created pages are immediately

placed in the buffer after their creation. Therefore, with an infinite buffer pool, there is no disk I/O.

2.3.3 Disks

Each disk has a flag indicating whether it is in use or not, as well as its own wait queue for pending
/O requests. Requests for a disk are serviced in a FCFS manner. A disk is used to write out a page
from the buffer or to read a page into the buffer. Disk I/O occurs when a buffer miss occurs or when
a page must be written out of the buffer to make space for a newly created page.

When disk I/O is required, the disk chosen to perform the /O is selected at random from all the
existing disks. If the requested disk is free, the disk is assigned to the terminal and the flag is set
to indicate the disk is in use. If the requested disk is already in use, the terminal must wait for the
disk to become free. When the terminal must wait for a disk, its future event is placed on the disk’s
wait queue. Once the grant time for the disk is known, the waiting terminal’s future event activation
time is set and the future event is moved from the wait queue to the heap. The time required for a
disk I/O is calculated at random between 0 and 27 ms. This /O time includes seek time, rotational
latency, and transfer time.

The idea of selecting a disk at random for reading a page into the buffer is rather unrealistic since
the required page may be stored on a specific disk. However, since pages are uniformly distributed
among all the disks, selecting a disk at random for input produces the same result as using the

requested page to determine which disk to use. Therefore, for simplicity, we select a disk at random



CHAPTER 2. CONCURRENCY SIMULATION 40

for page input.
We simulate infinite disks by creating only one disk and ignoring its status flag. Thus, with

infinite disks, terminals never wait to use a disk.

234 CPUs

Terminals use a CPU to perform various tasks. These tasks and their cost in terms of CPU instruc-
tions are given in Table 2.1. These costs, except for the T-count access cost for tries, are the same

as those used by Srinivasan and Carey.

Cost (in CPU

Parameter Description instructions)
CC.CPU CPU cost for a lock or unlock request 100
BUF_.CPU CPU cost for a buffer call 1000
PAGE_SEARCH._CPU | CPU cost for a page search 50
PAGE_MODIFY_CPU | CPU cost for a page modification 500
PAGE_COPY_CPU CPU cost to copy a page between buffer and disk 1000
PAGE_COUNT.CPU CPU cost to access T-count from memory (for trie only) 50

Table 2.1: CPU costs

To simulate a number of CPUs, we use a counter to indicate the number of CPUs currently in use
and a wait queue. CPUs are granted to terminals on a FCFS basis. If the number of CPUs currently
in use is less than the number of existing CPUs, the terminal is granted use of a CPU. If all the CPUs
are in use at the time a terminal requests a CPU, the terminal’s future event goes on the wait queue.
As soon as a CPU becomes available, the waiting terminal’s future event activation time is set and
the future event is moved from the queue to the heap.

To simulate infinite CPUs, we simply allow an arbitrary number of CPUs to be in use at any

given moment. Thus, with infinite CPUs, terminals never wait to use a CPU.

To summarize, the future event for a terminal indicates that terminal’s current state and specifies
what action will be taken next by the terminal. Future events for a terminal are either in the heap with
a known activation time or on a wait queue with an unknown activation time. Once the grant time

for the resource is known, the grant time is assigned to the future event and the event is moved from
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the wait queue to the heap. Figure 2.1 indicates the location of future events during the concurrency

simulation.
event with next action jmommmmmm .
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Figure 2.1: Location of future events during simulation
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B-Tree Concurrency Implementation

In this chapter, we describe the experiments used to evaluate the accuracy of our concurrency simu-

lation. We then present and discuss the experimental results we obtained and compare and contrast

them with published results.

3.1 Experimental Procedure

The B'i*k algorithms usually provide the best B-tree concurrency. Therefore, we use the throughput
results obtained by Srinivasan and Carey [SC91b] for the B'"* algorithm with lock-coupling on
ascent as a basis for evaluating our own B-tree experiments. Unless otherwise noted, our method is
the same as that performed by Srinivasan and Carey. In this chapter and Chapter 4, we use the term

“B-tree” to refer to the B'"*-tree. We also now refer to nodes as pages to simplify comparison with

tries.

3.1.1 B-Tree Properties

We build a B-tree with a random permutation of all 40,000 odd integers valued between 0 and
80 000. A B-tree can have either a high fanout of 200 entries per page or a low fanout of 8 entries
per page. The high-fanout B-tree has 3 levels and contains initially 3 non-leaf pages and 264 leaf
pages. The low-fanout B-tree has 6 levels and contains initially 1464 non-leaf pages and 6999 leaf

pages. Srinivasan and Carey’s initial high-fanout B-tree contains 3 non-leaf pages and 260 leaf

42
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pages, and their initial low-fanout B-tree contains around 1500 non-leaf pages and 7000 leaf pages.

3.1.2 B-Tree Operations

Searches use any key value between 0 and 80 000, inserts use only even key values between 0 and
80 000 (so that they are always successful), and appends use keys sequentially from 80 001 onwards.
Unlike Srinivasan and Carey., we do not implement concurrent deletions for B-trees because our
research focuses on concurrent trie search and insert operations.

Our experiments simulate either high data contention with 100% inserts or extremely high data
contention with roughly 50% searches and 50% appends. We do not simulate any low data con-
tention because Srinivasan and Carey use deletes along with inserts and searches in their low data

contention simulations to achieve a steady state B-tree.

3.1.3 System Properties

We vary the system properties to simulate various situations. The buffer for the high-fanout B-tree
can be either 200 pages, which puts 75% of the initial B-tree in memory, or an infinite number
of pages, which creates an in-memory B-tree. We simulate an infinitely large buffer by simply
assuming every page is in the buffer (except for new pages which must be placed in the buffer).
Srinivasan and Carey instead simulate an in-memory B-tree by using a 600-page buffer. For the
low-fanout B-tree, the buffer is 600 pages, which puts only 7% of the B-tree in memory. Srinivasan
and Carey also implement an in-memory low-fanout B-tree, but we do not since Srinivasan and
Carey do not present graphical results for this case.

To simulate various environments, we also vary the level of available resources. For B-trees that
are not memory-resident, the use of disk /O is necessary. In such a case, there are either 8 disks or
an infinite number of disks. With infinitely many disks, no terminal ever waits for an available disk.

The other resource that we vary in number is the CPU. There can either be only | CPU or an
infinite number of CPUs. As with the disk resource, with infinitely many CPUs, no terminal ever
waits to use a CPU.

To sumarize, Table 3.1 contains the values we may use for the various parameters. Disk time is

measured in terms of the number of CPU instructions that can be performed while the disk is in use.
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The maximum disk time is 27 ms, which is the equivalent to performing 540,000 CPU instructions

with a 20 MIPS CPU.
Values (in CPU
instructions unless
Parameter Description otherwise noted)

NUM_CPUS Number of CPUs 1,20
NUM.DISKS Number of disks 8, x
CPU_SPEED in MIPS (millions of instructions per second} 20
DISK_TIME Includes seck, latency, and transfer time (max 27 ms) 0..540000
CC_CPU CPU cost for a lock or unlock request 100
BUF.CPU CPU cost for a buffer call 1000
PAGE_SEARCH_CPU | CPU cost for a page search 50
PAGE_MODIFY_CPU | CPU cost for a page modification 500
PAGE_COPY CPU CPU cost to copy a page between buffer and disk 1000
FANOUT Number of entries per B-tree page 8. 200
NUM_PAGE_LEVELS | Number of page levels 6.3
INITIALNUM_KEYS | Number of keys in initial B-tree 40000
NUM_BUFFERS Number of buffers 200. 600. >
MPL Multiprogramming level (number of terminals) 1..300
NUM_OPERATIONS Number of operations performed in each simulation 10000
SEARCH_PROB Probability of search operation 0.0.0.5
INSERT_PROB Probability of insert operation 0.0. 1.0
APPEND_PROB Probability of append operation 0.0, 0.5

3.1.4 Experiments

Table 3.1: Parameters for B-tree simulations

Srinivasan and Carey provide throughput curves for 7 of their experiments involving high and ex-

tremely high data contention. These 7 experiments are:

—

~

(%]

. High-fanout, 100% inserts, infinite resources, in-memory
. High-fanout, 100% inserts, infinite resources, 200 buffer pages

. High-fanout, 100% inserts, | CPU, 8 disks, 200 buffer pages

4. Low-fanout, [00% inserts, infinite resources, 600 buffer pages
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5. Low-fanout, 100% inserts, | CPU, 8 disks, 600 buffer pages
6. High-fanout, 50% appends, 50% searches, infinite resources, 200 buffer pages
7. High-fanout, 50% appends, 50% searches, 1 CPU, infinite disks, in-memory

Using the parameters in Table 3.1, we perform these 7 experiments as a measure of the correctness

of our simulation.

3.2 Experimental Results

We now present and discuss our results for the B-tree concurrency experiments. We also compare
and contrast our results with those obtained by Srinivasan and Carey. Each B-tree throughput curve
we generate shows the mean throughput for 100 simulations. The error bars show standard devia-
tion. To better understand our results, we break down the average number of CPU instructions for

each operation during only | simulation into its various components.

3.2.1 B-Tree Experiment 1: High Fanout, 100% Inserts, Infinite Resources, and In
Memory

The throughput curves we and Srinivasan and Carey obtained are in Figure 3.1. The breakdown of
the average number of CPU instructions required by each operation is in Table 3.2.

Performing 10,000 insertions causes about 102 page splits. However, only about 40% to 45% of
the page splits occur in the first 5,000 operations. So, since the B-tree initially has 267 pages, we
will assume an average B-tree size of (0.425 x 102) + 267 &~ 310 pages. There are not very many
link chases. There is a maximum of only about 54 link chases per 10,000 operations. Therefore, for
brevity, we omit them from our calculations below and only briefely note when they have a slight

effect.

CC Requests

In the 3-level B-tree, insert operations usually S-lock and unlock 3 pages. After releasing its S-lock

on a leaf page, the insert operation X-locks and unlocks the leaf. With the cost per concurrency
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Figure 3.1: B-Tree Experiment | throughput

Time (CPU Time (CPU
MPL | Request Type | Instructions) MPL | Request Type | Instructions)
| CcC 803 100 CcC 804
BUF 4020 BUF 4023
PAGE SEARCH [S1 PAGE SEARCH 151
PAGE MODIFY 510 PAGE MODIFY 510
Lock Wait 0 Lock Wait 624
Total 5484 Total 6111
s | CC 803 200 | CC 804
BUF 4021 BUF 4026
PAGE SEARCH 151 PAGE SEARCH 151
PAGE MODIFY 511 PAGE MODIFY 510
Lock Wait 18 Lock Wait 1280
Total 5503 Total 6770
30 | CC 803
BUF 4021
PAGE SEARCH 151
PAGE MODIFY 510
Lock Wait 154
Total 5639

Table 3.2: B-tree Experiment 1| CPU usage per operation
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control request being 100 instructions, we expect 800 instructions for these CC requests. The ad-
ditional 3 instructions per operation arise from page splitting. Each page split yields 3 more CC
requests: converting the X-lock on the leaf to an S-lock, and X-locking and unlocking the parent
page. Averaged over 10,000 operations, 102 page splits yields about 102/10000 x 3 x 100 = 3
more instructions per operation. Any Additional CC requests arise from link chases. So, as shown

for CC requests in Table 3.2, there are about 803 instructions per operation used for concurrency

control.

BUF Requests

With the B-tree having 3 page levels, operations usually access 3 pages from the buffer. An extra
buffer access occurs after X-locking a leaf to ensure that the leaf is still the correct page to modify.
Each page split yields 2 extra buffer accesses because the terminal places the new page in the buffer
and accesses the parent page again from the buffer. So, for a cost of 1000 instructions per buffer
request and about 102 page splits over 10,000 operations, we expect about (2 x 102/10000 +
4) x 1000 = 4020 instructions devoted to buffer requests. In Table 3.2, the instructions for buffer

requests are as we expect, and increase slightly at higher MPL due to link chases.

PAGE_SEARCH Requests

Each insert operation searches 3 pages in the B-tree. After a page split, the operation must search
the parent page. So, at a cost of 50 instructions per search and 102 page splits for 10,000 insertions,
we expect the (3 + 102/10000) x 50 = 131 instructions per operation for searching that Table 3.2
indicates. Each link chase causes an additional page to be searched but, with the very small number

of link chases, the effects are minute.

PAGE_MODIFY Requests

Usually, operations modify only the leaf page. For each page split, 2 additional pages (the new page
and the parent) are modified. Each modification costs 500 instructions, so for 102 page splits and

10,000 insertions, we expect (2 x 102/10000 + 1) x 500 = 510 instructions per operation for page
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modification as shown in Table 3.2.

Terminals do not experience many conflicting lock modes in the B-tree. According to Table 3.2,
the instructions each operation requires increases by a significantly lower factor than MPL. As
a result, throughput increases greatly as MPL increases. For example, operations at an MPL of
200 require about 6770 instructions each, which is a factor of only about 1.1 more than the 6111
instructions required per operation at an MPL of 100. Comparing throughput curves in Figure 3.1,

we are satisfied with our results for this experiment.

3.2.2 B-Tree Experiment 2: High Fanout, 100% Inserts, Infinite Resources, and 200
Buffers

The throughput curves we and Srinivasan and Carey obtained are in Figure 3.2. The breakdown of
CPU instructions required for each operation is in Table 3.3. We do not discuss the results that are

unaffected by the limitation of buffer size since they are explained in Section 3.2.1.

BUF Requests

The limitation of buffer size affects the number of buffer requests because the LRU page may need
to be removed so that the requested page can be placed in the buffer. To determine how much of an
effect occurs, we calculate the probability that a buffer miss occurs. The top 2 page levels have only
3 pages, so we assume that those 3 pages are always in the buffer. Therefore, for the average B-tree
size of 310 pages and a buffer size of 200 pages, we estimate that the probability that a specific leaf
page is in the buffer is (200 — 3) /(310 — 3) = 0.64 and that the probability of a buffer miss is about
1 —0.64 = 0.36. Each buffer miss yields 2 buffer calls due to writing-out and reading-in, so for each
insert operation, we expect 0.36 x 2 = 0.72 buffer requests (requiring about 720 instructions) due
to buffer misses. Adding that to the 4020 instructions each operation needs for page navigation and
splitting (which we calculated in Section 3.2.1), we expect about 4740 instructions per operation for

buffer requests, which is close to the buffer request measurement in Table 3.3.
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Figure 3.2: B-tree Experiment 2 throughput

PAGE_COPY Requests

Each time the terminal encounters a buffer miss, it accesses a disk twice: once to write-out the LRU
page and once to read-in the requested page. Each disk access generates a PAGE_COPY request,
so we expect 0.72 PAGE.COPY requests based on our calculation for buffer requests. In addition,
each page split yields a PAGE_COPY request because the LRU page must be copied to disk to make
room for the new page. At about 102 splits over 10,000 operations, that amounts to an additional
0.01 PAGE_COPY requests per operation. Each PAGE_COPY request costs 1000 instructions, so

we expect an average of (0.72 +0.01) x 100 & 730 instructions per operation, which is close to the
PAGE_COPY request measurements in Table 3.3.

Disk Time

The disk time varies from 0 to 27 ms, which is the equivalent to performing 0 to 540000 CPU

instructions with a CPU rated at 20 MIPS. As explained above. there are 2 disk accesses for each
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Time (CPU Time (CPU
MPL | Request Type | instructions) MPL | Request Type | Instructions)
1 CC 303 100 CC 804
BUF 4747 BUF 4715
PAGE SEARCH 151 PAGE SEARCH 151
PAGE MODIFY Sl PAGE MODIFY 510
PAGE COPY 726 PAGE COPY 691
Disk Time 196894 Disk Time 187969
Lock Wait 0 Lock Wait 72970
Total 203831 Total 267809
5 CcC 803 200 CC 804
BUF 4705 BUF 4709
PAGE SEARCH 151 PAGE SEARCH 151
PAGE MODIFY 510 PAGE MODIFY 510
PAGE COPY 685 PAGE COPY 682
Disk Time 184865 Disk Time 187366
Lock Wait 3893 Lock Wait 123151
Total 195610 Total 317372
30 CcC 803
BUF 4722
PAGE SEARCH 151
PAGE MODIFY 510
PAGE COPY 701
Disk Time 188689
Lock Wait 25829
Total 221404

Table 3.3: B-tree Experiment 2 CPU usage per operation

buffer miss and | disk access for each page split; hence, we expect 0.73 disk accesses per operation.
At an average disk time equivalent to performing 540000/2 = 270000 instructions, each operation
devotes a time equal to performing about 0.73 x 270000 =~ 197100 instructions for disk I/O as
shown in Table 3.3.

Even with the addition of disk [/O, terminals still do not experience many conflicting lock modes.
Therefore, throughput continues to rise as MPL increases. At its lowest rate of throughput increase,
which occurs when MPL increases from 100 to 200, the number of instructions required by each
operation increases by a factor of only about 1.2 from 267809 to 317372. Comparing the throughput

curves in Figure 3.2, we are satisfied that our simulation performs correctly for this experiment.
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3.2.3 B-Tree Experiment 3: High Fanout, 100% Inserts, 1 CPU, 8 Disks, and 200
Buffers

Our throughput curves and those of Srinivasan and Carey are in Figure 3.3. We break down the
number of CPU instructions required for each operaration into the various components in Table 3.4.
We do not discuss the results that are unaffected by the limitation on the number of CPUs and disks.
The CC, PAGE_SEARCH, and PAGE_MODIFY results the same as those in Section 3.2.1 and the

BUF results are the same as those in Section 3.2.2.

high fanout: 100% inserts: 1 CPU: 8 Disks: 200 bufs
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Figure 3.3: B-tree Experiment 3 throughput

PAGE_COPY Requests

[nitially, the disk accesses and PAGE_COPY requests are as calculated in Section 3.2.2. However,
as MPL increases, the number of disk accesses and PAGE_COPY requests decreases. Pending /O
for any given page may be for a longer period of time now because terminals may need to wait to

use a disk. As MPL increases, the probability that there is already pending I/O for the page not
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Time (CPU Time (CPU |
MPL | Request Type | Instructions) MPL | Request Type | Instructions)
1 CC 803 100 CC 804
BUF 4712 BUF 4419
PAGE SEARCH 151 PAGE SEARCH 151
PAGE MODIFY 510 PAGE MODIFY 510
PAGE COPY 692 PAGE COPY 393
Disk Time 184436 Disk Time 600467
Disk Wait 0 Disk Wait 711876
CPU Wait 0 CPU Wiait 30664
Lock Wait 0 Lock Wait 50890
Total 191304 Total 1400173
5 CC 803 200 CC 806
BUF 4704 BUF 4306
PAGE SEARCH 151 PAGE SEARCH 151
PAGE MODIFY 510 PAGE MODIFY 511
PAGE COPY 684 PAGE COPY 269
Disk Time 185261 Disk Time 813785
Disk Wait 63005 Disk Wait 653324
CPU Wiait 899 CPU Wait 145219
Lock Wait 3216 Lock Wait 147281
Total 259232 Toral 1765653
30 CC 803
BUF 4623
PAGE SEARCH 151
PAGE MODIFY 510
PAGE COPY 602
Disk Time 372098
Disk Wait 434024
CPU Wiait 5315
Lock Wait 14395
Total 732521

Table 3.4: B-tree Experiment 3 CPU usage per operation

found in the buffer by a terminal increases. In such a case, disk [/O for the page occurs only once,

even though multiple terminals encountered a buffer miss for the page.

Disk Time and Disk Wait

With the limitation on the number of disks. the wait time for a disk increases as MPL increases. The
time spent waiting for pending I/O is added to disk time because, for infinite disks, a terminal may
be waiting for pending /O, but not for a disk. Since pending /O times increase as mentioned above

for PAGE_COPY requests, disk time increases.
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CPU Wait and Lock Wait

From Table 3.4, we see that the CPU and lock wait times increase expontially due to the limitation

on CPU resources and the fact that locks are held longer since they're held while waiting for disk

resources.

Throughput for our simulation continues to rise as MPL increases because the number of in-
structions required for each operation does not increase by a very large factor. For example, even
though MPL increases by a factor of 2 between 100 and 200 terminals, the number of instructions
per operation increases from 1400173 to 1765653, which is a factor of only about 1.3.

Our results in Figure 3.3 differ from those of Srinivasan and Carey. Srinivasan and Carey state
in [SC9!b] that B-link algorithms saturate the disks at high MPL. Since the disk times and disk wait
times for our resuits in Table 3.4 increase only logarithmically as MPL increases, our disk usage is

likely somehow different from that which they simulated.

3.2.4 B-Tree Experiment 4: Low Fanout, 100% Inserts, Infinite Resources, and 600
Buffers

Our throughput curves and those of Srinivasan and Carey are in Figure 3.4. The CPU usage for each
operation is in Table 3.5.

Performing 10,000 insertions in the low-fanout B-tree causes about 2100 page splits. Half of the
page splits occur in the first 5,000 insertions. so, since the initial B-tree has 8463 pages, we assume
an average B-tree size of 2100/2+ 8563 ~ 9513 pages. As with the high-fanout B-tree simulations,
there are not very many link chases. There is only a maximum of about 65 link chases per 10,000
operations. For brevity, we omit them from our calculations and only briefly note when they have a

slight effect.

CC Requests

The B-tree has 6 page levels, so insert operations S-lock and unlock 6 pages on their way from

root to leaf. After releasing the S-lock on the leaf, the terminal will X-lock and unlock the leaf.



CHAPTER 3. B-TREE CONCURRENCY IMPLEMENTATION 54

low fanout: 100% inserts: INF res: 600 bufs
4500 W

—+— Qur Resuits
—6— Srinivasan & Carey

'ionTS
2 F 8 8 ¢

Throughput

:

0 S0 10 15 200 250 300
Muitiprogramming Level (MPL)

Figure 3.4: B-tree Experiment 4 throughput

Also, we expect 2100/10000 ~ 0.21 page splits on average per operation and, since each page split
yields 3 more CC requests, a total of 0.63 CC requests per operation due to page splitting. At 100

instructions per CC request, we then expect (14 + 0.63) x 100 = 1463 instructions per operation

for CC requests, as indicated in Table 3.5.

BUF Requests

Operations access 6 pages from the buffer since the B-tree has 6 page levels. Each page split
generates 2 buffer calls, so for 0.21 page splits on average per operation, we expect an additional
0.42 buffer calls due to page splitting. We estimate that, due to the buffer size of 600 pages and
average B-tree size of 9513 pages, 600/9513 = 0.063 is the probability that a specific page is in the
buffer. We will use this probability even when assuming upper pages of the B-tree are always in the
buffer since this assumption makes very little difference in the probability.

With the 6-level B-tree, it is more difficult to be certain which pages are always in the buffer. We
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Time (CPU Time (CPU

MPL | Request Type | I[nstructions) MPL | Request Type | Instructions)
1 CC 1462 100 CC 1462
BUF 12124 BUF 12157
PAGE SEARCH 310 PAGE SEARCH 310
PAGE MODIFY 707 PAGE MODIFY 708
PAGE COPY 4711 PAGE COPY 4743

Disk Time 1274000 Disk Time 1286619

Lock Wait 0 Lock Wait 5455

Total 1293314 Total 1311452

5 CcC 1463 200 CcC 1464
BUF 12118 BUF 12419
PAGE SEARCH 310 PAGE SEARCH 3
PAGE MODIFY 709 PAGE MODIFY 708
PAGE COPY 4700 PAGE COPY 4997

Disk Time 1267638 Disk Time 1354797

Lock Wait 51 Lock Wait 13731

Total 1286989 Total 1388426

30 cC 1463 300 CC 1466
BUF 12153 BUF 12664
PAGE SEARCH 311 PAGE SEARCH 311
PAGE MODIFY 710 PAGE MODIFY 712
PAGE COPY 4732 PAGE COPY 5229

Disk Time 1277944 Disk Time [416964

Lock Wait 1260 Lock Wait 28025

Total 1398572 " Total 1465372

Table 3.5: B-tree Experiment 4 CPU usage per operation
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estimate that between 3 and 4 of the upper B-tree page levels are always in the buffer. If 3 of the

upper levels are always in the buffer, we expect the number of buffer misses per operation to be about

(0.063% x0.937 x 3 x 1) +(0.063 x 0.937% x 3 x 2) +(0.937° x 1 x 3} = 2.81. If 4 of the upper levels

are always in the buffer, we expect there to be about (0.063 x0.937 x2x 1) +(0.937> x 1 x2) = 1.87

buffer misses per operation. Averaging the 2 probabilities, we then expect about 2.34 buffer misses

per operation. Each buffer miss generates 2 buffer calls, so we expect about 2.34 x 2 =~ 4.68

additional buffer calls per operation. So, in total, we expect about 6 + 1 +0.42 +4.68 =~ 12.1 buffer

calls per operation. At 1000 instructions per call, we arrive at about 12100 instructions required for

buffer requests, which is very close to the BUF request costs in Table 3.5.
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PAGE _SEARCH Requests

Each operation searches 6 pages plus, with an expected 0.21 page splits per operation, an additional
0.21 pages. At 500 instructions per search, we expect 6.21 x 500 = 310.3 instructions devoted to
page searching as indicated in Table 3.5.

PAGE_MODIFY Requests

Each operation modifies 2 pages every time a page split occurs in addition to modifying the leaf
page. Hence, for an expected 0.21 page splits per operation, we expect (2 x 0.21) + | = 1.42
modifications per operation. At 500 instructions per modification, we expect 710 instructios to be

devoted to page modification as indicated in Table 3.5.

PAGE_COPY Requests

We estimated about 2.34 buffer misses per operation above when calculating buffer usage. Each
buffer miss generates 2 disk accesses, so we expect about 4.68 disk accesses per operation. Adding
0.21 page splits per operation yields 4.68 + 0.21 = 4.89 disk accesses per operation. Each disk
access requires a PAGE_COPY request so, at 1000 instructions per PAGE_COPY request, we expect
about 4890 instructions total per operation due to PAGE_COPY requests.

Disk Time

At about 4.89 disk access per operation and an average disk access time equivalent to performing
270000 instructions, we expect a time equivalent to performing about 1320300 instructions to be
used for disk I/O.

As with the 3-level B-tree, terminals do not experience many conflicting lock modes. As a
result, throughput continues to increase greatly as MPL increases. At the lowest rate of throughput
increase, which occurs when MPL increases from 100 to 200, the number of instructions each
operation requires increases by only a factor of about 1.1 from 1388426 to 1465372. Based on the

throughput curves in Figure 3.4, we are satisfied with our results for this experiment.



CHAPTER 3. B-TREE CONCURRENCY IMPLEMENTATION 57

3.2.5 B-Tree Experiment 5: Low Fanout, 100% Inserts, 1 CPU, 8 Disks, and 600
Buffers

Our throughput curves and those of Srinivasan and Carey are in Figure 3.5. We also present the link
chase data for this and the equivalent high-fanout B-tree simulation of Section 3.2.3 in Figure 3.6.
We break down the CPU usage for an operation into its various components in Table 3.6. We do not
discuss the results that are unaffected by the limits imposed on the number of CPUs and disks since

they are explained in Section 3.2.4.

100% inserts: 1 CPU: 8 disks
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Figure 3.5: B-Tree Experiment S throughput Figure 3.6: B-tree Link Chases

PAGE_COPY Requests

The disk accesses and PAGE_COPY requests are as calculated in Section 3.2.4 but, as with the 3-
level B-tree, disk accesses and PAGE_COPY requests decrease in number as MPL increases. As
explained in Section 3.2.3, this decrease is as a result of more terminals that encounter a buffer miss

waiting for pending disk /O and not performing any disk [/O themselves. The decrease in disk VO
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Time (CPU Time (CPU

MPL | Request Type | Instructions) MPL Request Type | Instructions)
1 CC 1463 100 | CC 1464
BUF 12147 BUF 11986
PAGE SEARCH 310 PAGE SEARCH 311
PAGE MODIFY 710 PAGE MODIFY 711
PAGE COPY 4728 PAGE COPY 4561

Disk Time 1277722 Disk Time 1953133

Disk Wait 0 Disk Wait 14107909

CPU Wait 0 CPU Wait 10085
Lock Wait 0 Lock Wait 57221
Total 1297081 Total 16147379

5 CcC 1461 200 | CC 1463
BUF 12106 BUF 11916
PAGE SEARCH 310 PAGE SEARCH 311
PAGE MODIFY 707 PAGE MODIFY 704
PAGE COPY 4692 PAGE COPY 4500

Disk Time 1265706 Disk Time 3471840

Disk Wait 434376 Disk Wait 27328633

CPU Wiait 590 CPU Wait 35547
Lock Wait 400 Lock Wait 263450
Total 1720350 Total 31118362

30 CC 1463 300 CC 1465
BUF 12068 BUF 11954
PAGE SEARCH 310 PAGE SEARCH 31l
PAGE MODIFY 708 PAGE MODIFY 708
PAGE COPY 4650 PAGE COPY 4522

Disk Time 1325745 Disk Time 5231190

Disk Wait 4085154 Disk Wait 39346353

CPU Wait 2186 CPU Wait 75443
Lock Wait 4274 Lock Wait 731293
Total 5436559 Total 45403241

Table 3.6: B-tree Experiment 5 CPU usage per operation
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is smaller than that for the 3-level B-tree though because there are many more pages in the 6-level

B-tree and the probability of 2 terminals encountering the same page is lower.

Disk Time and Disk Wait

Table 3.6 indicates that disk times and waits increase dramatically as MPL increases. There are

many more buffer misses than with the equivalent high-fanout B-tree simulation in Section 3.2.3,

so the terminals compete much more for disk resources.
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CPU Wait and Lock Wait

As with the high-fanout B-tree in Section 3.2.3, Table 3.6 shows that CPU and lock waiting times

increase expontially as MPL increases.

Throughput begins to maximize at an MPL of about 30, unlike our similar experiment with the
high-fanout B-tree in Section 3.2.3. The low-fanout B-tree requires much more disk usage than
the high-fanout B-tree because many more pages are not in the buffer. For the low-fanout B-tree,
primarily the disk usage causes operation times to increase greatly as MPL increases. So, as with
Srinivasan and Carey, we are able to saturate the disks at high MPL with the low-fanout B-tree.

In addition to the throughput curves, we also presented link chase data in Figure 3.6 for both the
high and low-fanout B-trees. Our simulations perform more link chases per 10,000 operations, but,
as with Srinivasan and Carey's simulations, the high-fanout B-tree performs more link chases than
the low-fanout B-tree. So, even though our high-fanout B-tree simulation with limited resources in
Section 3.2.3 did not produce the same throughput curve as Srinivasan and Carey’s simulation, we
are satisfied that our B-tree operations perform correctly and that it is the system that is modeled
slightly differently.

3.2.6 B-Tree Experiment 6: High Fanout, 50% Appends, 50% Searches, Infinite
Resources, and 200 Buffers

Our throughput curves and those of Srinivasan and Carey are in Figure 3.7. Table 3.7 contains the
components of the CPU usage for each operation.

Performing roughly 5,000 appends and 5,000 searches yields about 49 page splits. Half of the
page splits occur in the first 5,000 operations, so, since the initial B-tree has 267 pages, we assume

an average B-tree size of 49/2 + 267 = 292 pages.

CC Requests

Searches always S-lock and unlock 3 pages in the 3-level B-tree for a total of 6 CC requests. Ap-
pends S-lock and unlock 3 pages, as well as X-lock and unlock the leaf for a total of 8 CC requests.
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Figure 3.7: B-tree Experiment 6 throughput

Each page split yields 3 CC requests, so for 49 page splits over 10,000 operations, we expect a
total of about 49/10000 x 3 = 0.015 CC requests per operation due to page splits. Since there are
about 50% of each operation, we expect (6 + 8)/2 + 0.015 = 7.015 CC requests on average per
operation. At [00 instructions per CC request, we expect about 701.5 instructions per operation for
CC requests.

Link chases cause more CC requests to occur. As MPL increases, so do link chases. At an
MPL of 200 for example, there are about 8370 link chases. Each link chase causes 2 additional CC
requests so, over the 10,000 operations, we expect (8370 x 2) /10000 + 7.015 ~ 8.689 CC requests
on average per operation. At 100 instructions per CC request, this equals about 869 instructions

required for CC requests as shown in Table 3.7 for the MPL of 200.

BUF Requests

Since appends create heavy traffic on the rightmost pages of the B-tree, we will assume that those

pages are always in the buffer. Hence, appends use the disk only when a page splits. Since appends
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Time (CPU | ~Time (CPU
MPL Request Type | Instructions) MPL | Request Type | Instructions)
1 cC 703 100 CC 772
BUF 3770 BUF 4130
PAGE SEARCH 150 PAGE SEARCH 168
PAGE MODIFY 258 PAGE MODIFY 2s1
PAGE COPY 255 PAGE COPY 269
Disk Time 67561 Disk Time 74124
Lock Wait 0 Lock Wait 166581
Total 72696 Total 246294
5 CcC 703 200 | CC 869
BUF 3776 BUF 4613
PAGE SEARCH 151 PAGE SEARCH 192
PAGE MODIFY 256 PAGE MODIFY 156
PAGE COPY 257 PAGE COPY 264
Disk Time 68461 Disk Time 72153
Lock Wait 1368 Lock Wait 393795
Total 74972 Total 472142
30 CC 714
BUF 3846
PAGE SEARCH 153
PAGE MODIFY 255
PAGE COPY 275
Disk Time 77135
Lock Wait 19901
Toral 102279

Table 3.7: B-tree Experiment 6 CPU usage per operation

are working with values outside the range of searches and operate on sequentially higher key values,
we will also assume that once traffic on a page modified by appends ceases, it quickly becomes LRU
and written out of the buffer. Therefore, we will assume that only the original 267 pages plus the |
page currently being modified by the appends have a chance of being in the buffer. As a result, the
probability that a search operation encounters a buffer miss is about 1 — 200/268 =~ 0.254. Each
buffer miss yields 2 additional buffer calls, so we expect searches to make (0.254 x 2) + 3 =~ 3.508
buffer calls per search. Appends perform 4 buffer calls when there are no page splits. Each page
split causes 2 buffer calls so, for the 49 splits over 10,000 operations, we add 49/10000 x 2 = 0.01
buffer calls per operation. So in total, we expect (4 + 3.508)/2 + 0.01 = 3.76 buffer calls per
operation.

However, each link chase causes | more buffer request. For example, at an MPL of 200 with
8370 link chases, we expect an additional 8370/10000 = 0.837 buffer calls due to link chases. At
1000 instructions per call, each operation at an MPL of 200 requires (3.76 +0.837) x 1000 = 4597,
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which is a close estimate of the time needed for buffer requests in Table 3.7 for 200 MPL.

PAGE_SEARCH Requests

Aside from link chases, both searches and appends search 3 pages which, at 50 instructions per page
search, amounts to 150 instructions per operation for page searching. Each link chase generates
another page search. So, at an MPL of 200 for example, with about 8370 link chases over the
10,000 operations, we expect another 8370/10000 x 50 ~ 42 additional instructions per operation
for searches resulting from link chases. Adding 42 to 150 yields the 192 instructions for searching
for an MPL of 200 in Table 3.7.

PAGE_MODIFY Requests

The appends modify only 1 page unless there is a page split. Page splits generate 2 more page
modifications. Since only about half of the operations result in a page modification and there are
about 49 page splits, we expect 0.5 + (2 x 49/10000) = 0.51 page modifications per operation.
At 500 instructions per page modification, we expect about 255 instructions per operation for page

modification, which is very close to the page modification measurements in Table 3.7.

PAGE_COPY Requests

We estimated in the calculation of buffer requests that the probability of a search operation en-
countering a buffer miss is 0.254. Since only 50% of the operations are searches, we expect only
0.5 x 0.254 = 0.127 buffer misses per operation. Each buffer miss yields 2 PAGE_.COPY requests
and each page split yields | PAGE_COPY request. Therefore, we expect (0.127 x 2) +49/10000 =
0.259 PAGE_COPY requests per operation. At 1000 instructions per request, this amounts to 259
instructions per operation for PAGE_COPY requests as in Table 3.7.

Disk Time

Each time terminal makes a PAGE_COPY request, it performs disk I/O. Since we expect about 0.259

PAGE_COPY requests and average disk time is equivalent to performing 270000 instructions, we
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expect disk time to be equivalent to performing about 0.259 x 270000 ~ 69930 instructions.

Our throughput curve is somewhat different than that of Srinivasan and Carey. Our simulation
performs very many link chases — about 8370 at a 200 MPL. Srinivasan and Carey do not publish
link chase data for their experiment, so it is difficult to compare in this regard. Since our link chases
are more numerous for 100% insert simulations, as shown in Figure 3.6 on page 57, perhaps our
simulation performs many more link chases than theirs. With the extremely high data contention,

an increase in link chases may cause the significant reduction in throughput.

3.2.7 B-Tree Experiment 7: High Fanout, S0% Appends, 50% Searches, 1 CPU, and

in memory

Our throughput curves and those of Srinivasan and Carey are in Figure 3.8. We also present the link
chase data in Figure 3.9. The breakdown of CPU usage for each operation is in Table 3.8. We do
not discuss results that are unchanged from those explained in Section 3.2.6. as a resuit of using |

CPU and infinite buffer space.

CC Requests

Concurrency control requests are calculated as in Section 3.2.6, except that link chases are fewer.
For example, with about 5500 link chases at an MPL of 200, we expect (5500 x 2) /10000+7.015 =
8.115 CC requests on average per operation. At 100 instructions per request, this equals about 811

instructions per operation for CC requests as indicated in Table 3.8.

BUF Requests

The B-tree is in memory, so terminals perform no disk [/O. Therefore searches always make 3 buffer
calls. Appends make at least 4 buffer calls. If a page splits, the terminal will make an additional
buffer call to write-out the LRU page from the buffer. Also, each time an operation performs a link
chase, it makes an additional buffer call. So with about 49 page splits, we expect an average of

(3 + 4)/2 + 49/10000 = 3.5 buffer calls or, at a cost of 1000 instructions per buffer call, 3500
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Figure 3.8: B-tree Experiment 7 throughput Figure 3.9: B-tree Experiment 7 link chases

instructions needed for buffer calls if there are no link chases. At an MPL of 200, there are about

5500 link chases. In this case, we expect 3.5 + 5500/10000 = 4.05 buffer calls, which requires

about 4050 instructions as shown in Table 3.8.

PAGE_SEARCH Requests

The number of pages searches is calculated as in Section 3.2.6, except that link chases are fewer.
For example, with about 5500 link chases at an MPL of 200, we expect 5500/10000 x 30 = 27.5
instructions for page searches due to link chases. Adding this to the 150 instructions for regular

page searches yields about 177.5 instructions required for page searching at a 200 MPL as indicated
in Table 3.8.

As MPL increases, the number of instructions required by each operation increases by a greater
factor than MPL. For example, when MPL increases from 100 to 200, the number of instructions

each operation requires increases from 518576 to 1054889, which is a factor of about 2.03. Thus,
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Time (CPU Time (CPU
MPL | Request Type | Instructions) MPL | Request Type Instructions)
1 CC 700 100 CC 793
BUF 3504 BUF 3970
PAGE SEARCH 150 PAGE SEARCH 173
PAGE MODIFY 252 PAGE MODIFY 253
CPU Wait 0 CPU Wait 38285
Lock Wait 0 Lock Wait 475101
Total 4607 Total S18576
5 CC 703 200 CC 811
BUF 3519 BUF 4058
PAGE SEARCH 151 PAGE SEARCH 178
PAGE MODIFY 255 PAGE MODIFY 354
CPU Wait 16103 CPU Wait 65266
Lock Wait 2456 Lock Wait 984323
Total 23186 Total 1054889
30 CC 726
BUF 3631
PAGE SEARCH 157
PAGE MODIFY 252
CPU Wait 29138
Lock Wait 109223
Total 143127

Table 3.8: B-tree Experiment 7 CPU usage per operation

throughput decreases as MPL increases.
According to Figures 3.8 and 3.9, our simulation results resemble those of Srinivasan and Carey

very closely, so we are satisfied that our simulation operates correctly for this experiment.

3.3 Summary of Results

Our goal was to achieve a single constant ratio between our results and those of Srinivasan and
Carey. By doing so, we could scale our trie concurrency results to fit onto the graphs published by

Srinivasan and Carey. Our results show that:
I. There are 2 experiments where the ratio is not constant and varies as MPL increases.
2. There are different constant ratios.

For Experiments 3 and 6, our throughput behaviour differs significantly from Srinivasan and

Carey’s. The ratio of our throughput to theirs for these 2 experiments varies as shown in Figures 3.10
and 3.11.
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For each of the other experiments, the ratio between our throughput and Srinivasan and Carey's is
fairly constant. However, these constant ratios vary from one experiment to another. The minimum
constant ratio we generate is about 1.4, which is for Experiment [; whereas, the maximum constant
ratio we generate is about 1.9, which is for Experiment 2.

Nevertheless, most of our throughput curves behave similarly to those that Srinivasan and Carey
have published. We are satisfied that slight differences in the our implementation of system re-
sources from the impiementation of Srinivasan and Carey account for the differences in throughput.

We therefore use our simulation to study the behaviour of trie concurrency.



Chapter 4

Trie Concurrency Implementation

In this chapter, we present algorithms for concurrent trie searches and insertions. We describe the
tries and parameters used for concurrency experimentation. We also present and discuss experimen-

tal results that we obtained and compare them to the B-tree results presented in Chapter 3.

4.1 Trie Concurrency Control Algorithms

Unlike B-trees, where recovery during concurrent operations merely requires advancing to the right
to reach the correct page, tries seemingly require muitiple recovery methods. Concurrent trie op-
erations may need to recover by advancing to pages either to the left or to the right. In addition,
situations may arise when, even if an operation reaches a correct page, the page will not be nav-
igated correctly. Three examples follow to illustrate the various recoveries that may be necessary

when using tries.

Exampie 1

There are two transactions:
e Transaction 1: read 10101100
e Transaction 2: write 01001010

These transactions are executed in the schedule given by Figure 4.1.

67
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T1: read 10101100 T2: wnte 01001010

read 1010
write 0100
write 1010

read 1100

Figure 4.1: Transaction schedule for Example 1

Figures 4.2 to 4.4 show the execution of the transaction schedule.

Figure 4.2: Initial trie for Examples | and 2

In Figure 4.2, Transaction 1 reads 1010 in the root page. To find the remainder of its key, it needs
to read the page to the left of the page with minimum T such that T > Byoo + sTchor T > 0 + 4

on page level 2, as explained earlier in Section 1.3.2.
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Figure 4.3: Partially modified trie for Example 1

In Figure 4.3, Transaction 2 has inserted 0100 into the root page and modified the B-count for the

root page level.

'T=0 'l
'B=0 - 6
0 f 3 ‘e s T 6
0 \ VR 7 '9 10

Figure 4.4: Fully modified trie for Example |

In Figure 4.4, Transaction 2 has inserted the remainder of its key, 1010, and modified the counts

for the second page level. Transaction | finds the page with minimum T > 4 and searches the

page immediately to the left with T' = 3. This is the incorrect page and Transaction 1 must recover
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by moving to the right. The failure occurs because Transaction | uses T-counts that result from

Transaction 2’s execution, but not a stch count that results from Transaction 2’s execution.

Example 2

Consider again the trie in Figure 4.2. The same two transactions are executed, but in the schedule

given by Figure 4.5:

' TI1: read 10101100 T2: write 01001010
write 0100
' read 1010
; read 1100
' write 1010
v
Time

Figure 4.5: Transaction schedule for Example 2

Figure 4.6: Partially modified trie for Example 2

In Figure 4.6, Transaction 2 has inserted 0100 into the root page and modified the B-count for the
root page level. Transaction | then successfully reads 1010 and calculates stch = 5. To find the
remainder of its key, it needs to read the page to the left of the page with minimum T such that

T > 5 on page level 2.
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Transaction | searches the page with T' = 4, which is incorrect. To recover, transaction | must move
to the left. This failure occurs because Transaction | uses a srch count that results from Transaction

2's execution, but not T-counts that result from Transaction 2's execution.

Example 3
Even if a transaction successfully chooses the next page, it may not be able to navigate the page

correctly. Consider a new trie, shown in Figure 4.7 and the transaction schedule for Example 2 in

Figure 4.5.

»
.
'
'
.
’
'
.
'
.
'

.............................................

Figure 4.7: Initial trie for Example 3
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Figure 4.8: Partially modified trie for Example 3

In Figure 4.8, Transaction 2, just as in Example 2, has inserted 0100 into the root page and modified
the B-count for the root page level. Again, Transaction | reads 1010 in the root page and determines
that it will next read the page to the left of the page with mimimum T such that T > 5 on page level
2. Transaction 1 correctly chooses the page on page level 2 with T = 3. However, to navigate the
page, it calculates the value for next = By, + srch — T — 1 = 1, which is incorrect. To search

the correct subtrie in the page, next must equal 0.

One proposed solution for these problems is the addition of redundancy so that an operation is
able to determine whether it is operating on the correct page and the correct subtrie. Just as for
B-trees, the operation would be able to correct an error caused by a concurrent modification on the
trie.

This redundancy could be in the form of a prefix range created for each trie page as in Figure 4.9.
With this scheme, we record the minimum and maximum prefix leading into each page. If the
operation’s key is not in the prefix range for the selected page, the operation can recover to the left
or right until the correct page is selected. Note that the entire prefixes must be stored, not just the

prefix leading into the page from the previous page level.
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Figure 4.9: Trie with prefix ranges

However, an operation may still navigate a trie page incorrectly even though it has selected the
correct page to navigate, as in Example 3. Plus, splitting a full trie page becomes much more
difficult because new prefix ranges for the old and new pages need to be determined. To solve these
problems, we could store a prefix for each subtrie in a page. This would ensure that the correct trie
page can be navigated correctly and that page splits remain easy and efficient to perform. However,
this adds an unacceptable amount of redundancy to the trie because the amount of storage required
to simply record all the prefixes will easily surpass the amount of storage required to store all the
trie pages.

So, to prevent these problems from occurring, we first decide that concurrent trie operations
must use consistent pages and counts when progressing from one page level to the next. More

specifically, we note that:

1. If an operation does not encounter any modification made by an insertion [ on page level ¢, it

‘ will operate correctly on page level € + 1 if it does not encounter any modifications made by
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I on page level £ + 1.

2. If an operation encounters any modifications made by an insertion I on page level ¢, it will

operate correctly on page level £ + 1 if it encounters a point in the trie already encountered

by I on page level ¢ + 1.

So, we create a mechanism that controls the progression of operations from one page level to the
next relative to a modifying operation. If an operation is encountering pages (or counts) before a
modification to them occurs on one page level, then we ensure that it encounters pages (or counts)
before they are modified on the next page level. Also, if an operation encounters any changes on
one page level, we ensure that it does not encounter any pages (or counts) on the next page level
that are not yet modified.

They key components of this mechanism are the use of a sequence in which pages (and counts)
are encountered and the use of lock-coupling. Basically, operations first lock the leftmost page on a
page level and lock-couple to the right as they examine the T-counts and find their correct page. We

now describe how concurrent trie search and insertion operations provide this mechanism.

4.1.1 The Trie Search Algorithm

To simplify our description of the locking performed by this and the concurrent trie insertion algo-
rithm, we will assume that the counts for the trie page are locked when the trie page is locked, even
though the counts are stored separately from the pages. The only exceptions to this are the counts to
the right of all pages on each page level. Hence, the concurrent trie operations lock only trie pages
and the page level counts.

Prior to reading any page or count, searches S-lock the page (or page level count). Figures 4.10
and 4.11 on pages 76 and 77 show the step-by-step progression of a typical search operation.

Initially, the search operation S-locks and searches the root page (Figure 4.10a). If the search
fails, the root page is unlocked and the operation terminates. If the search is successful, the search
operation S-locks the leftmost page on the next page level before unlocking the searched page
(Figures 4.10b and 4.10c). This lock-coupling is essential because it prevents an insertion operation
from modifying a page on a previous level, advancing ahead of the search operation, and modifying

‘ a page or count that the search operation does not expect to be changed.
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Once the searched page is unlocked, the lock-coupling continues from left to right until a
T-count > B’ + srch, where B’ is the B-count for the page navigated on the previous page level, is
reached (Figures 4.10d- 4.10f). At this point, both the next page to search and page (or level counts)
to the right are S-locked. The search operation unlocks the page (or level counts) to the right and
searches the page that is still S-locked (Figure 4.11g). If the search fails or the searched page is
a leaf page, the searched page is unlocked and the operation terminates. Otherwise, the operation
S-locks the leftmost page on the next page level and repeats until the search is unsuccessful or the

searched page is a leaf page (Figures 4.11h—4.111).
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Figure 4.10: Concurrent Search Operation
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Figure 4.11: Concurrent Search Operation (continued)
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78

The algorithm for concurrent trie searching is presented in Figure 4.12. Note that if right-page-

td = NIL; that is, current-page-id is the rightmost page, the counts for the current page level are

locked.

[

o0 N W

21

TRIE-SEARCH(key)

current-page-id « root-id

S-LocK(current-page-id)

current-page +— READ-PAGE(current-page-id)
SEARCH-TRIE-PAGE(key, current-page)

while search successful and current-page is not a leaf page do

Blast—page—searched « Bcurrent—page-id
leftmost-page-id « leftmost page on next page level
S-Lock(leftmost-page-id)
UNLOCK(current-page-id)
current-page-id + leftmost-page-id
right-page-id «+ page to right of current-page-id
S-LocK(right-page-id)
while Trighl—page—id < Blast—pnge-searched + srch do
UNLOCK(current-page-id)
current-page-id + right-page-id
right-page-id + page to right of current-page-id
S-LocCK(right-page-id)
UNLOCK(right-page-id)
current-page + READ-PAGE(current-page-id)
SEARCH-TRIE-PAGE(key, current-page)

UNLOCK(current-page-id)

~

Figure 4.12: Concurrent Trie Search Algorithm

4.1.2 The Trie Insertion Algorithm

There are three phases of a tne insertion:

¢ Phase 1: Search for first page to modify

e Phase 2: Modify first page and B-counts to the right

. o Phase 3: Modify remaining pages and T-counts and B-counts to the right
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Phase 1: Search for first page to modify

Inserts behave exactly like searches until they reach a page where their search fails. This is the page

that will have a bit pair changed and, probably, bit pairs inserted.

Phase 2: Modify first page and B-counts to the right

Figure 4.13 on page 80 shows the step-by-step actions of Phase 2. Assume that Phase | progressed
as for the search example in Figures 4.10a—4.10f on page 76.

Before inserting, the operation upgrades the S-lock on the page to an X-lock (Figure 4.13b).
If other operations currently hold an S-lock on the page, the operation releases its S-lock, puts its
X-lock request on the head of the wait queue, and sets the lock mode of the page to “wait™ so
that subsequent requests for locks on the page go on the tail of the wait queue. Upgrading the
S-lock to an X-lock in this manner avoids the possibility of deadlock due to multiple operations
simuitaneously attempting to upgrade their S-lock. No operations will starve since the number of
operations holding an S-lock on the page is finite and any lock request by an operation not already
holding a lock on the page goes on the tail of the wait queue. The X-lock request goes on the head
of the wait queue so that any operations in Phase 3 do not modify the T-count for the page. Any
change in T would disrupt navigation of the page since nezt = B’ + srch — T — 1.

However, while waiting for the X-lock, it is possible that another insert operation has inserted the
same bit sequence as the waiting operation intended to or has split the page. This may occur if one
of the other insert operations holding an S-lock on the page moved into Phase 2 and upgraded its S-
lock to an X-lock. This other insert operation would either go on the head of the wait queue, ahead
of the operation already waiting, or acquire an X-lock on the page since it was the last operation
holding an S-lock.

Therefore, the page (or level counts) to the right must be checked to ensure that the insertion will
be in the X-locked page; that is, the page did not split (Figure 4.13c). If Ty;gn: < B’+srch, then the
operation must X-lock the page to the right and unlock the current X-locked page. Lock-coupling to
the right continues until the operation reaches the page with T;jg5; > B’ + srch. We call this action
a link chase since it is similar to the recovery performed by the B'i"k algorithms. If the correct page

does not need to be modified anymore due to the other operation, the operation S-locks the leftmost
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Figure 4.13: Concurrent Insert Operation (Phase 2: Modify First Page and B-counts to the Right)
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page on the next page level, unlocks the current page, and proceeds as in Phase 1.

After the operation modifies the page, all the B-counts to the right need to be incremented by 1.
The operation X-locks all pages to the right of the modified page, as well as the counts for the page
level from left to right (Figures 4.13e and 4.13f) and increments the B-counts by 1 (Figure 4.13f).
Remember, even though the counts are not actually on the pages, they are locked when the pages to

which they belong are locked. The operation then proceeds to Phase 3 of the insertion.

Phase 3: Modify remaining pages and T-counts and B-counts to the right

Figures 4.14— 4.16 on pages 82— 84 shows the step-by-step actions of Phase 3. These figures are a
continuation of Figure 4.13 on page 80.

At the start of Phase 3, the insert operation has the modified page, all pages to the right of the
modified page, and the counts for the page level X-locked. The insert operation now uses only
X-locks until it finishes its insertion.

First, the operation X-locks the leftmost page on the page level immediately below the page
level where the modification in Phase 2 took place (Figure 4.14a). The operation then unlocks
the X-locks remaining from Phase 2 on the previous page level from left to right (Figures 4.14b—
4.14d). The insert operation then lock-couples from left to right with X-locks until it reaches a
T-count > B’ + srch (Figures 4.14e— 4.15g). The operation unlocks the page (or level count) with
T > B’ + srch and modifies the page that is still X-locked (Figure 4.15h). Then, as in Phase 2, the
operation X-locks all the pages and the level counts to the right (Figures 4.15i and 4.15j). Boththe T
and B-counts must be incremented by 1 since the operation added an incoming trie edge to the page
level. Phase 3 then repeats until the modified page is a leaf page, at which point it unlocks the leaf

page level from left to right after incrementing the counts (Figures 4.15k- 4.16m) and terminates.
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Level Count Level Count
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Continued from Phase 2 in Figure 4.13 (b)
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Level Count Level Count
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d O
(©) (d)
Root page D Root page D
0 d
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0 d
e ()

Continued in Figure 4.15

Figure 4.14: Concurrent Insert Operation (Phase 3: Modify Remaining Pages and All Counts to the
Right)
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Continued from Figure 4.14 (h)
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Continued in Figure 4.16

Figure 4.15: Concurrent Insert Operation (Phase 3: Modify Remaining Pages and All Counts to the

Right) (continued)
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Continued from Figure 4.15

(m)

Insert Completed

Figure 4.16: Concurrent Insert Operation (Phase 3: Modify Remaining Pages and All Counts to the

Right) (continued)
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The algorithm for concurrent trie insertions is presented in Figures 4.17— 4.19. The algorithm

has been divided into the three insert phases. Note that if right-page-id = NIL; that is, current-

page-id is the rightmost page, the counts for the current page level are locked.

TRIE-INSERT(key)
| current-page-id < root-id
2 S-LocK(current-page-id)
3 current-page + READ-PAGE(current-page-id)
4 SEARCH-TRIE-PAGE(key, current-page)
S while search successful and current-page is not a leaf page do
6 Blast-page—uarched « Bcurrent-page—id
7 leftmost-page-id « leftmost page on next page level
8 S-Lock(leftmost-page-id)
9 UNLOCK(current-page-id)
10 current-page-id « leftmost-page-id
il right-page-id « page to right of current-page-id
12 S-LoCK(right-page-id)
13 while Tnght—page—x’d < Blust-page—searched + srch do
14 UNLOCK(current-page-id)
] current-page-id + right-page-id
16 right-page-id « page to right of current-page-id
17 S-LoCK(right-page-id)
18 UNLOCK(right-page-id)
19 current-page «— READ-PAGE(current-page-id)
20 SEARCH-TRIE-PAGE(key, current-page)
21 if search successful then
22 UNLOCK(current-page-id)
23 return “key already in trie”
24 else
25 continue on to Phase 2 in Figure 4.18
_

J

Figure 4.17: Concurrent Trie Insertion Algorithm (Phase 1: Search for First Page to Modify)
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4 . — A
/* continued from Phase | in Figure 4.17 /*

26 UPGRADE-LOCK(current-page-id)

27 S-Lock(right-page-id)

28 while Trigne—page—ia < Blast—page—searched + srch do

29 UPGRADE-LOCK(right-page-id)

30 UNLOCK(current-page-id)

31 current-page-id + right-page-id

32 right-page-id « page to right of current-page-id

33 S-Lock(right-page-id)

34 size +— Tright—pagc-zd - Bcurreﬂ.t—page—id

35 next Blasz—page—senrched + srch — Tright—page—:d -1

36 UNLOCK(right-page-id)

37 current-page +— READ-PAGE(current-page-id)

38 MAKE-INITIAL-TRIE-INSERT(key, current-page)

39 if current-page was not changed by MAKE-INITIAL-TRIE-INSERT then

40 search is successful /* for while-loop at Step 5 of Phase | */

41 goto Step 5 of Phase |

42 Blast—page-modified « Bcurrcnt—page-zd

43 temp-page-id < current-page-id

44  current-page-id < right-page-id

45 while current-page-id # NIL do

46 X-Lock(current-page-id)

47 increment B-count for current-page-id by |

48 current-page-id < page to right of current-page-id

49 X-Lock(level counts)

50 increment B-count for current page level by 1

S1 continue on to Phase 3 in Figure 4.19
- Y,

Figure 4.18: Concurrent Trie Insertion Algorithm (Phase 2: Modify First Page and B-counts to the

Right)
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/* continued from Phase 2 in Figure 4.18 */
52 while current-page-id is not a leaf page do
53 leftmost-page-id « leftmost page on next page level
54 X-Lock(leftmost-page-id)
55 while current-page-id # NIL do
56 UNLOCK(current-page-id)
57 current-page-id +— page to right of current-page-id
58 UNLOCK(level counts)
59 current-page-id < leftmost-page-id
60 right-page-id <« page to right of current-page-id
61 X-Lock(right-page-id)
62 while Tright—page—id < Blast—page—modified + srch do
63 UNLOCK(current-page-id)
64 current-page-id « right-page-id
65 right-page-id + page to right of current-page-id
66 X-LocCK(right-page-id)
67 UNLOCK(right-page-id)
68 current-page <+ READ-PAGE(current-page-id)
69 INSERT-SUBTRIE(Key, current-page)
70 Blast-page—modi/ied A Bcurrent—page—zd
71 temp-page-id < current-page-id
7 current-page-id « right-page-id
73 while current-page-id # NIL do
74 X-LOCK(current-page-id)
75 increment T-count and B-count for current-page-id by |
76 current-page-id < page to right of current-page-id
77 X-Lock(level counts)
78 increment T-count and B-count for current page level by |
79 current-page-id < temp-page-id
80 while current-page-id # NIL do
81 UNLOCK(current-page-id)
82 current-page-id + page to right of current-page-id
83 UNLOCK(level counts)
- _J/

Figure 4.19: Concurrent Trie Insertion Algorithm (Phase 3: Modify Remaining Pages and All
Counts to the Right)
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4.1.3 Proof of Correctness
There are two properties of these operations that need to be demonstrated:

1. They do not form a deadlock. (Theorem 1)

2. Their correctness is not impaired by other concurrent operations. (Theorem 2)

Freedom from Deadlock

Theorem 1 The algorithms for concurrent trie search and insertion never form a deadlock.

Proof We show that any wait-for graph [Hol71, Hol72] generated for the trie where nodes in the
wait-for graph are trie pages never contains a cycle because locks are made following a well-
ordering of the pages. Since page level counts can also be locked by operations, consider them

to simply be an additional page at the end of a each page level. This ordering is as follows:

e If two pages of the trie, z and y, are not on the same page level, then = < y if  is closer to

the root page level than y.
e [f two pages of the trie, z and y, are on the same page level, then = < y if z is to the left of y.

When pages are created, the ordering remains intact because page creation is done by splitting an
existing page. For example, three pages exist such that £ < y < z. When a new page, y” is created
by splitting y into ¥’ and y”, the ordering remains intactandis z < ¢’ < " < z.

Locks are made from left to right and from root to leaf. After placing a lock on a page, no page
to the left on the same page level and no page on a page level closer to the root is ever locked.
Therefore, the concurrent trie operations lock all pages in a well-ordered manner. In addition,
upgrading from an S-lock to an X-lock is made by first releasing the S-lock; hence, no deadlocks

form due to multiple operations attempting to upgrade their S-lock for the same page. )

Correctness of Concurrent Operations

The correctness of concurrent operations is a concern only when an insert operation conflicts with

another operation. For this, we assume that insert operation [ is in Phase 2 or 3 of the insert
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algorithm, since Phase | is merely a search. To prove that any modification to the trie does not
impair the correctness of another concurrent trie operation, we show that our previous observations

are always true:

1. If an operation O does not encounter any modification made by an insertion / on page level
¢, it will operate correctly on page level £ + 1 if it does not encounter any modifications made

by I on page level £ + 1.

2. If an operation O encounters any modifications made by an insertion / on page level ¢, it will

operate correctly on page level £ + 1 if it encounters a point in the trie already encountered

by I on page level £ + 1.

We break down these observations into three lemmas as shown in Figure 4.20. We assume for
Lemmas 1-3 that [ is using only X-locks. The situation when [ upgrades from an S-lock to an
X-lock is discussed in Lemma 4. With these lemmas, we prove Theorem 2, which states that the
correctness of trie operations is not impaired by other concurrent operations.

O operates correctly

I

O encounters modification O does not encounter
made by / modification made by /

T N N

O encounters O encounters O encounters O encounters !
page/count x page/count x page/count ¢ page/count x '

betore insertion ': after insertion ' E before insertion . E after insertion '-
! does ' I does : ' ! does Vo I does |
IMPOSSIBLE I / \ b / \ Do / \ .
' ralready cstill ' ! rxalready csull 1 xalready csill

' unlocked by /' locked by /! ' unlocked by O lockedby O +  unlockedby /  locked by /!
““““““““““ ¢ when/ when/ | “-o----ssss--------

LEMMA 1 ! encounters x  encounters ¥ \ LEMMA 3
LEMMA 2

Figure 4.20: Breakdown of observations into lemmas

' Lemma 1 Any operation O that navigates the correct page x on page level €, where T has been
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modified by insertion I will successfully locate and navigate the correct page y on page level ¢, =

£I+1'

Proof There are two cases for the scenario where O navigates z after / modified z:

Case 1: Operation O encounters z after x is unlocked by insertion
Once O locks z, it must also lock the page (or level counts) to the right of = to determine size
for the purpose of navigating z. Since I unlocks page (or level counts) after unlocking z, the
counts to the right of z will be consistent with £ and O will navigate z correctly. Because |
lock-couples with X-locks when advancing from page level £; to page level ¢, and advancing
along ¢,, any page y on page level ¢, that O encounters has already been encountered by I.
So, any modification that O expects / to have made on page level ¢, will exist and O will

operate correctly on page level ¢,,.

Case 2: Operation O encounters x while x is locked by insertion /
Since z has been modified by [, I is holding an X-lock on r: otherwise, I would be holding
an S-lock and r would not yet be modified. So, O must wait on the queue until [ releases
its X-lock. Now, when O navigates z, z has been modified and unlocked by I, which is

equivalent to Case | above.

So. any operation O that navigates the correct page r on page level £, where z has been modified

by insertion [ will successfully operate on page level ¢, = ¢, + 1. .

Lemma 2 Any operation O that navigates the correct page x on page level €, prior to insertion [

modifving © will successfully locate and navigate the correct page y on page level ¢, = €, + 1.

Proof There are two cases for the scenario where O navigates r prior to [ modifying .

Case 1: Insertion [ encounters z after r is unlocked by operation O
The counts to the right of z will not yet be modified by I because operations lock from left
to right, so O will set size correctly and navigate r correctly. In general, any page/count y
encountered by operation O after navigating z will be either to the right of page/count z on

page level £, or on a page level £, > €. Since all concurrent trie operations lock-couple
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from left to right and from root to leaf and insertion [ is using X-locks after modifying x, O

locks y before I does. Therefore, y is unmodified by insertion I when O encounters y as O

expects it to be.

Case 2: Insertion [ encounters z while z is locked by operation O
Since operation O currently holds a lock on page/count z and I is attempting to X-lock
z, I must wait for O to unlock z before it can lock and modify z. As stated for Case 1,
lock-coupling by operation O ensures it never encounters a page/count already modified by

insertion / once O encounters a page/count that is not yet modified by /.

So, any operation O that navigates the correct page £ on page level £; prior to insertion [ modifying

x will successfully operate on page level ¢, = {; + 1. )

Lemma 3 Any operation O that navigates the correct page r on page level €, where r has been

encountered, but not modified by insertion I will successfully locate and navigate the correct page

y on page level £, = €, + 1.

Proof There are two cases for the scenario where O navigates z after [ has encountered, but not
modified z:

Case 1: Operation O encounters z after < is unlocked by /

Operation O will operate correctly on page level £, no matter if it advances to page level ¢,

before or after I does; therefore, no race condition can occur.

If the page to the right of r is not locked by I and I has not yet locked any page on level ¢,, O
may be able to search r and S-lock the leftmost page on level ¢, before [ finishes modifying
pages/counts to the right of = on level ¢, (Figure 4.21a). In this situation, O will operate
correctly on page level ¢, because it has not been affected by I on page level £, and won’t
be on page level £,. If O modifies z or I modifies the page to the right of z, then O wiil
not advance to page level ¢, before I. Also, if I modifies the page to the right of r, then O

remains unaffected because the counts to the right of z will be unchanged by /.

If 1 advances to page level ¢, before O does, O will still operate correctly on page level Z,.

Even though O is unaffected by I on page level £, any change by I on level £, can be handled
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by O. If O encounters no change by I on level ¢, it will succeed because it encountered no
change on level £;. If O encounters a change by I on level £,, it will still succeed on level ¢,.
Since z was not modified by [/, the srch count for O was not affected by I when navigating
z. Since trie edges do not cross, the srch count will be correct for choosing the next page
on level ¢,, which is the page to the left of the page with T > B; + srch. The only affect a
change by [ has as far as O is concerned is that the T-count to the right of y is incremented
by | (Figure 4.21b), which is fine since T is still > B, + srch. Even if y is split by /, the

T-count to the right of y will still lead O to the correct page (Figure 4.21c¢).

Trie Path Followed by O Trie Path Followed by O

Tri\c Path {nserted by /

O advances to page level /, I advances to page level [,
before / does before Odoes
(a) (b)
Trie Path Followed by O 'l‘ri\c Path Inserted by /

1 advances to page level [,
before Odoes

(c)

Figure 4.21: Effect of insertion I on operation O’s navigation of level ¢,
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Case 2: Operation O encounters z while z is locked by I

The same occurs as in Case | above, except that O does not navigate z until [ has released its

X-lock.

So, any operation O that navigates the correct page z on page level £, that has been encountered,

but not modified by insertion I will successfully operate on page level ¢, = £, + 1 s

The above lemmas discuss the interaction between any operation O and an insertion [ that is
using X-locks, meaning that both O and I cannot have any page (or level count) locked at the same

time. Now, we discuss the case when [ is upgrading from an S-lock to an X-lock.

Lemma 4 Any insert I that upgrades its lock on a page = from an S-lock to an X-lock will perform

correctly on page level €. and not impair the correctness of any other operation O.

Proof We only discuss the situations where O and [ lock the same page since the situations where
they lock different pages are equivalent to those discussed in Lemmas 1-3. Upgrading from an
S-lock to an X-lock on a page not encountered by another operation does not create any problems.

So, when [ upgrades its lock on page z from an S-lock to an X-lock, we consider two scenarios that

may exist:

Case 1: Page z is S-locked by operation O and there is no wait queue
Both insertion I and operation O currently hold an S-lock on page . When [ determines that
it must modify page z, it releases its S-lock and puts its X-lock request on the head of the
queue. Now, O may either release its S-lock and allow the I to acquire its X-lock and modify
z, or decide to upgrade its S-lock to an X-lock. If O releases its S-lock, there is no conflict
because neither O nor I have modified . Both operations perform correctly. However, if
O upgrades its lock on z to an X-lock and modifies z and the B-counts to the right of z, [
may encounter an inconsistent page. Operation O may either split z or insert the same bit
sequence that [ intended to. Insertion I will detect this though since it checks the T-count to
the right after acquiring its X-lock to ensure z was not split and then lock-couples to the right
if necessary. Also, I will revert back to Phase 1 (searching for the first page to modify) if it
discovers that O inserted the bit sequence that [ intended to. So, in this case, O will perform

correctly and [ will recover if need be and perform correctly.
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Case 2: Page z has operation O waiting for z in the wait queue
The insertion I currently holds an S-lock on page z. Therefore, operation O waiting in the
queue for z must be requesting an X-lock for z. Since I locked z prior to operation O (which
is an insertion), / did not encounter any pages/counts on page level £, — 1 that were modified
by O, so I does not expect any changes to be made to z by O. Therefore, to operate correctly,
I must operate on z before any modification to z by O. Since [ goes on the head of the wait
queue, [ does indeed operate on z prior to any modification by O. Any modification by [ on
r does not impair the correctness of O since O can only be affected by a page split of x and
O checks the T-count to the right of z to confirm that z is indeed the correct page prior to
any modification. If need be, O will lock-couple with X-locks to the right and encounter the

correct page. So, in this case, insertions I and O will both perform correctly.

We have shown that the correctness of an operation O is not impaired by an insertion [ that upgrades

its S-lock to an X-lock and that I will perform correctly after acquiring its X-lock. )

Theorem 2 Correctmess of the trie operations is not impaired by the concurrent execution of other

trie operations.

Proof [nitially, the root page is always navigated. We know that any operation O will navigate the
root page correctly because insert operations acquire an X-lock prior to modifying a page and release
their X-lock only after their modification is complete; hence, the root page is always consistent.
From the above lemmas, any operation O will successfully locate and navigate their next page
on the next page level whether or not an insert operation I modified the root page. By induction, O

will successfully operate on each subsequent page level until it terminates. a

4.2 Experimental Procedure

Our experiments for measuring trie concurrency mirror those performed for B-trees. Most simu-
lation parameters used for the B-tree experiments are not modified for the trie experiments so that
we may compare results with those obtained for B-trees. Parameters relating to the structure of

the trie; namely, key selection and fanout, are adjusted to create an acceptable amount of similarity
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between the trie and the B-tree. Also, parameters affected by the differences between the trie and
B-tree structures; namely, the buffer pool size, are adjusted to equalize the portion of the structures
in memory. In addition, we add a new parameter to account for the CPU usage required to access

T-counts. We now explain the modification and addition of these parameters in detail.

4.2.1 Maodification of B-Tree Parameters For Use in Trie Experiments

Modification of Key Selection

Because the structure of tries is based on the binary representation of the data, we use diffeerent
keys to construct them. We again use Java to perform our experiments. Since Java uses the first
bit in its binary representation of integers as a sign bit, we use both positive and negative keys to
construct a trie. This way, the first bit is not always a 0. Also, when constructing a trie, we use a
much larger key space than that used to construct a B-tree. If we were to build a trie with all the odd
keys in the key space, as we do to build a B-tree, we would create a trie that is mostly a full binary

tree except for the last node level, as shown in Figure 4.22.

last bit \ \ &
always 1

Figure 4.22: Trie constructed with all the odd keys in a small key space

With a trie constructed in this manner, any insert operation will modify only the leaf page level
of the trie. So, to generate a greater probability of modifying pages above the leaf page level, we
construct a sparser trie. As with B-trees, we use 40,000 32-bit keys to build a trie. However, these

initial keys are from a much larger range; specifically, from a random permutation of the following
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40,000 values: -2 000 000 000, -1 999 900 000, ..., 1 999 900 000.

Due to the different keys used to construct the trie, all operations use different key ranges than
they do for the B-tree experiments. In the B-tree experiments, searches have roughly a 50% chance
of succeeding. To achieve this for the trie experiments, we fill half our search key space with the
40,000 keys already in the trie and the other half with random numbers. We then create a random
permutation of the search key space. Inserts, as with the B-tree experiments, must always succeed.
We fill the insert key space with random numbers and ensure that every key in the insert key space is
unique and not already in the trie. Since Java uses the two's complement format to represent negative
numbers, care is taken to select proper keys for appends. Keys for appends increase sequentially
from -99 999 onwards. This way, all appends operate on the rightmost leaf pages of the trie, as they
do with a B-tree.

Maodification of Fanout

Since multiple trie edges often enter the same page from the above page level, we choose not to use
different fanouts to vary the trie structures. Rather, we modify ¢, the number of node levels per page.
We select ¢ such that the trie has the same number of page levels as a B-tree that we constructed.
A trie can have either ¢t = 11 or ¢t = 6. A trie with ¢ = 11 has 3 page levels, just like a B-tree
with a fanout of 200 and a trie with ¢ = 6 has 6 page levels, just like a B-tree with a fanout of 8.
We will refer to tries with ¢ = 11 as having high fanout and tries with ¢ = 6 as having low fanout.
The capacity of each trie page is 2° nodes, so the page capacities for ¢ = 11 and t = 6 are 2048
and 64 nodes respectively. There are initially 486 pages in the three-level trie, compared to initially
267 pages in the three-level B-tree. There are initially 16980 pages in the six-level trie, compared

to tnitially 8463 pages in the six-level B-tree.

Modification of Buffer Pool Size

The final parameter that we modify is the buffer pool size. Because the tries have more pages than
the B-trees, less of the trie is in memory if we use the same buffer pool size. If a smaller percentage
of the trie is in memory, more disk I/O will need to be performed. For the B-tree experiments, 75%

of the initial high-fanout B-tree is in memory and 7% of the initial low-fanout B-tree is in memory.
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For the trie experiments, we increase the buffer pool size for the trie with ¢ = 11 to 365 pages so
that 75% of the pages are in memory and, for the trie with ¢ = 6, to 1200 pages so that 7% of the

pages are in memory.

4.2.2 Addition of a New Parameter For Use in Trie Experiments

For the trie, only the nodes (which are bit pairs) are stored in each trie page. All other information;
such as, T-counts, B-counts, and node counts are stored separately from the pages. A trie there-
fore consists of two files: the page file and the information file. The structures of the files are in

Figures 4.23 and 4.24.

bit pair sequence bit pair sequence bit pair sequence

"~

bytes: 0 14 ax2’r4 3x274

je———— page 0 ——t— page | —L page 2——Lv page 3

Figure 4.23: Trie page file format

left
B-count height neighbour

number of number of node r.ight
trie pages page levels T-count count neighbour

l

nit|h T]cvelﬂ Tlcvell BlcvclO Blcvell ~|T{B|N height right left | T

bytes: 0 448 12 16 204 « x+4 T+8AY v+d 1 y+12 v+l6 y+20 0 y+2B
v+8 v+ 24

number of node page level page level

leve[s [Jel’ pilge T'Counts B-Counls . page 0 ———e S — page 1 e,
Figure 4.24: Trie information file format

The page file contains the bit pair sequences for every page. The bit pair sequence for any page is
easy to locate because the bit pair sequences are sorted by page ID. The information file contains 32-

bit integer data. General information about the trie is stored at the beginning of the file: the number
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of trie pages, the number of node levels per page (), and the number of page levels. Following that
are the T-counts for each page level and the B-counts for each page level, with page level 0 being
the root level. Even though the root page level is level 0 in our simulation program, we will continue
to refer to the root page as being on level 1 and the leaf pages as being on level A. We will Finally,
the information file contains the T-count, B-count, node count, height, right neighbour page ID, and
left neighbour page ID of each page (within the page levels) sorted by page ID. The left neighbour
is not necessary and is present only for debugging purposes.

Each experiment we perform is a simulation. Before starting an experiment, the trie information
file is loaded into memory. A trie operation needs to access this information, specifically the T-count
and right neighbour, in order to navigate the trie. To account for the CPU cost of accessing this
information from memory, we add a new parameter called PAGE_COUNT_CPU. It is important to
note that the T-count for a page is accessed from memory without accessing the actual page from the
buffer or from disk. The simulation parameters for the B-tree and trie experiments are in Table 4.1
on page 99.

Table 4.1 contains the values we may use for the various parameters. With these values, we
perform the 7 experiments that were performed with B-trees. As with the B-tree experiments, the
disk time is measured in terms of the number of CPU instructions that can be performed while the
disk is in use. The maximum disk time is 27 ms, which is the equivalent to performing 540,000

CPU instructions with a 20 MIPS CPU.

4.3 Experimental Results

We perform experiments that correspond to the B-tree experiments described in Chapter 3. We now
present and discuss the results for the trie concurrency experiments. We also compare and contrast
the results with those obtained for the B-trees under similar conditions. Due to the great amount
of time required for each trie simulation, the trie throughput curves show the mean throughput for
only 10 simulations. The error bars show the standard deviation. As with the B-tree experiments,
we break down the average number of CPU instructions required for each operation during only 1

simulation to better understand our results.
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Values (in CPU instructions
unless otherwise noted)
Parameter Description B-Tree Trie
NUM_CPUS Number of CPUs 1,00 1,00
NUM_DISKS Number of disks 8, 00 8. oc
CPU_SPEED in MIPS (millions of instructions per second) 20 20
DISK_TIME Includes seek. latency. and transfer time (max 27 ms) 0..540000 0..540000
CCCPU CPU cost for a lock, upgrade lock. or unlock request 100 100
BUF_CPU CPU cost for a buffer call 1000 1000
PAGE_SEARCH_CPU | CPU cost for a page search 50 50
PAGE_MODIFY_CPU | CPU cost for a page modification 500 500
PAGE_COPY_CPU CPU cost to copy a page between buffer and disk 1000 1000
PAGE_COUNT_CPU CPU cost to access T-count from memory - 50
FANOUT Number of entries per B-tree page 8,200 -
¢ Number of node levels per trie page - 6.11
NUM_PAGE_LEVELS | Number of page levels 6.3 6.3
INITIAL.NUM_KEYS | Number of keys in initial B-tree or trie 40000 40000
NUM_BUFFERS Number of buffers 200, 600, >0 | 36S. 1200, oc
MPL Multiprogramming level (number of terminals) [..300 1..300
NUM_OPERATIONS | Number of operations performed in each simulation 10000 10000
SEARCH_PROB Probability of search operation 0.0.0.5 0.0.0.5
INSERT_PROB Probability of insert operation 0.0.1.0 0.0.1.0
APPEND_PROB Probability of append operation 0.0,0.5 0.0.0.5

Table 4.1: Parameters for B-tree and trie simulations

4.3.1 Trie Experiment 1: High Fanout, 100% Inserts, Infinite Resources, and In
Memory

The throughput curve for the trie with ¢ = 11 and 3 page levels is in Figure 4.25. We compare the
trie performance with that of a B-tree with 3 page levels, whose throughput curve we presented in
Chapter 3 and now present again in Figure 4.26. The breakdown of the average number of CPU
instructions for each operation is in Table 4.2.

From the two curves, we see that the throughput for the B-tree continues to increase as the MPL
increases, but the throughput for the trie reaches a maximum at an MPL of 100 terminals. Since
there are infinite resources, the only factor that changes as the MPL increases is the time spent
waiting for locks. The reason for this is that operations traverse the trie sequentially and the B-tree

logarithmically and that lock-coupling in the trie causes increased lock waiting times. In fact, from
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Figure 4.25: Trie Experiment | throughput Figure 4.26: B-tree Experiment | throughput

analyzing the number of CPU instructions needed for CC and PAGE_COUNT requests during a trie
insert operation in Table 4.2, we will see that a terminal usually locks every single page in the trie.

In the following discussion, the costs cited are from Table 4.1 and are in units of CPU instructions
for a 20 MIPS CPU. This discussion is an explanation; thus, it is an approximation.

The 10,000 insertions that we perform cause about 115 page splits in the trie. However, about
58% of the page splits occur in the first 5,000 operations. As stated previously, there are initially
486 pages in the trie. Therefore, we will assume an average trie size of (0.58 x 115) + 486 = 353
pages. There are very few link chases. The maximum number of link chases over 10,000 operations

is only about 11, which occurs at an MPL of 200. Therefore, for brevity, we will ignore them in our

explanatory calculations below.

CC Requests

Each concurrency control request costs 100 instructions, so, if each page is locked and unlocked,

we estimate that there should be 553 x 2 x 100 =~ 110600 CPU instructions required for CC
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Time (CPU Instructions) Time (CPU Instructions)
MPL | Request Type B-Tree Trie MPL | Request Type B-Tree Trie
1 CC 803 111385 100 CC 804 111640
BUF 4020 4011 BUF 4023 4012
PAGE COUNT - 27821 PAGE COUNT - 27884
PAGE SEARCH 151 51 PAGE SEARCH 151 S1
PAGE MODIFY 510 1001 PAGE MODIFY 510 1000
Lock Wait 0 0 Lock Wait 624 2341717
Total 5484 [44268 Total 6l11 2486304
5 CC 803 111681 200 CC 804 111528
BUF 4021 4012 BUF 4026 4012
PAGE COUNT - 27895 PAGE COUNT - 27856
PAGE SEARCH 151 51 PAGE SEARCH 151 51
PAGE MODIFY S11 1000 PAGE MODIFY 510 1000
Lock Wait 18 29442 Lock Wait 1280 4822741
Total 5503 174079 | Total 6770 | 4967188
30 | CC 803 111493
BUF 4021 4012
PAGE COUNT - 27848
PAGE SEARCH 151 51
PAGE MODIFY 510 999
Lock Wait 154 648606
Total 5639 793009

Table 4.2: Trie Experiment | CPU usage per operation

requests. Considering the page level counts for the 3 page levels and the upgrade lock request yields
an expected 111300 CPU instructions required for concurrency control requests if every page is
locked. From Table 4.2, we see that the number of CPU instructions required for CC requests nears

what we would expect if every page in is locked and unlocked during an insertion.

BUF Requests

Since the trie is 3 levels in height, 3 pages are accessed from the buffer. The fourth buffer call occurs
when the terminal, after upgrading its S-lock to an X-lock, checks the page again to confirm that it
will still perform its modification of the page. So, at a cost of 1000 instructions per buffer call, we
so far have 4000 instructions required for buffer requests. Additional buffer cost occurs because of
the buffer call needed to put a new page into the buffer each time a page splits. Since we average
about 115 page splits over 10,000 insertions, the added buffer cost per insertion due to page splits
is about 115/10000 x 1000 = 11.5 instructions. Hence, the average cost for buffer calls is about

401 1.5 instructions, as shown in Table 4.2 for BUF requests.
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PAGE_COUNT Requests

The number of CPU instructions required to access the T-counts from memory also indicates that
most pages are locked and unlocked since terminals always lock pages before accessing the corre-
sponding T-counts. Since each T-count access costs S0 instructions, our average trie is 553 pages,
and there are 3 page level counts, we expect (553 + 3) x 50 = 27800 instructions to be required to

access all the T-counts as indicated for PAGE_COUNT requests in Table 4.2.

PAGE_SEARCH Requests

Since a page search costs 50 instructions, Table 4.2 indicates that a terminal usually only searches

1 page, the root page, during an insertion.

PAGE_MODIFY Requests

Since the root page is usually only searched and the trie has 3 page levels, we expect the terminal
to modify 2 pages. Table 4.2 shows a cost of slightly more than 1000 instructions used for page
modification. Since the cost of modifying a page is 500 instructions, indeed, usually the terminal

modifies 2 pages.

The main factor affecting the shape of the throughput curves is the time spent waiting for locks.
According to Table 4.2, the buffer access cost dominates the total instructions needed per B-tree
insertion. However, for an MPL of 30 or greater, the time spent waiting for locks dominates the total
instructions needed per trie insertion. The lock-coupling performed in the trie is very restrictive.
Once the lock waiting time dominates the total cost of an insertion, the throughput for the trie no
longer increases since the total cost per insertion increases by the same factor as the MPL.

The difference in actual throughput values in the graphs between the B-tree and the trie are
directly related to the ratio between the cost of a B-tree insertion and a trie insertion. For example,
from Table 4.2, at an MPL of 200, the cost per B-tree insertion is 6770 instructions and the cost per
trie insertion is 4967188 instructions. Since the trie insertion takes about 734 times longer than a

B-tree insertion, the B-tree throughput is 734 times greater than that of the trie. Hence, we see a
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throughput of 590800 TPS for the B-tree and a throughput of 805 TPS for the trie at an MPL of 200
in Figures 4.25 and 4.26 on page 100.

4.3.2 Trie Experiment 2: High Fanout, 100% Inserts, Infinite Resources, and 365
Buffers

The throughput curve for the trie with ¢ = 11 and 3 page levels is in Figure 4.27. We compare the
trie performance with that of a B-tree with 3 page levels. The B-tree throughput curve presented in
Chapter 3 is now in Figure 4.28. We break down the average CPU usage for each operation into its
various components in Table 4.3. We do not discuss results that are unaffected by the limitation of

buffer size since they are explained in Section 4.3.1.
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Figure 4.27: Trie Experiment 2 throughput Figure 4.28: B-tree Experiment 2 throughput

From the two curves, again we see that the throughput for the B-tree continues to increase as the
MPL increases, but the throughput for the trie reaches a maximum at an MPL of 100 terminals. In

. fact, throughput decreases for the trie such that there is less throughput with 200 terminals than with
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Time (CPU Instructions) Time (CPU Instructions)
MPL | Request Type B-Tree Trie MPL | Request Type B-Tree Trie
! CcC 803 111707 100 CC 804 111642
BUF 4747 5273 BUF 4715 5169
PAGE COUNT - 27901 PAGE COUNT - 27885
PAGE SEARCH 151 St PAGE SEARCH 151 51
PAGE MODIFY 511 1000 PAGE MODIFY 510 1001
PAGE COPY 726 1262 PAGE COPY 691 1258
Disk Time 196894 341324 Disk Time 187969 360476
Lock Wait 0 0 Lock Wait 72970 7697591
Total 203831 488517 Toual 267809 8205173
5 CC 803 111432 200 CC 804 111289
BUF 4708 5270 BUF 4709 5261
PAGE COUNT - 27832 PAGE COUNT - 27797
PAGE SEARCH 151 51 PAGE SEARCH 151 51
PAGE MODIFY 510 1000 PAGE MODIFY 510 1000
PAGE COPY 685 1258 PAGE COPY 682 1249
Disk Time 184865 339616 Disk Time 187366 396424
Lock Wait 3893 556989 Lock Wait 123151 26373921
Total 195610 1043447 Total 317372 26916990
30 CcC 803 Lrielt
BUF 4722 5262
PAGE COUNT - 27877
PAGE SEARCH 151 51
PAGE MODIFY 510 1000
PAGE COPY 701 1250
Disk Time [88689 341304
Lock Wait 25829 2282671
B Total 331404 | 2771025

Table 4.3: Trie Experiment 2 CPU usage per operation

30 terminals. The additional time required to access a disk affects the results. Even though the num-
ber of disks is infinite, the operation holds its lock on the page (often an X-lock) for a longer time.

Throughput is reduced greatly since the trie is traversed sequentially instead of logarithmically.

BUF Requests

The use of a disk affects the number of buffer calls because we must write out the LRU buffer page
before reading in the new page from disk. So, we now calculate the number of times we expect
to use a disk. We assume that the root page is always in the buffer because it is navigated most
often and that the remaining 2 page levels are distributed evenly in the buffer. Since there are 365
buffers and an average of 553 trie pages, we calculate about a 1 — (365 — 1)/(553 — 1) =~ 0.34

probability that a specific page other than the root is not in the buffer. However, since there are 2
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page levels where the page may not be in the buffer, we expect the number of buffer misses per
operation to be (0.34 x 0.66 x 2 x 1) + (0.34 x 0.34 x 1 x 2) = 0.68. Each buffer miss generates 2
additional buffer calls (write-out and read-in), so we expect 0.68 x 2 = 1.36 buffer calls per insert
operation due to disk I/O. Also, each page split generates 2 buffer requests because the LRU buffer
page must be written to disk to allow the new page to go into the buffer. So, with about 115 page
splits over 10,000 operations, we expect 2 x 115/10000 =~ 0.02 buffer requests due to page splits
per operation. Adding these figures to the 4 buffer calls needed to access the trie pages, we expect
about 5.38 buffer calls per insertion. At a cost of 1000 instructions per buffer call, this amounts to
about 5380 instructions. Examining the instructions used for BUF requests with tries in Table 4.3,

we see that the results support this finding.

PAGE_COPY Requests

Each buffer miss generates 2 requests for disk O due to the write-out fo the LRU buffer page and
read-in for the read page. Additionally, each page split generates | disk /O request because the LRU
buffer page is written to disk to allow the new page to go into the buffer. So, with 0.68 buffer misses
per operation and about 0.01 page splits per operation, we expect 1.36 + 0.01 = 1.37 occurrences
of disk I/O per operation. Each time a terminal performs disk /O, it makes a PAGE_COPY request.
Each PAGE_COPY request costs 1000 instructions, so we expect about 1370 instructions on average

needed for copying pages into or out of the buffer as shown in Table 4.3.

Disk Time

The disk time needed per read or write varies from 0 to 27 ms, which is the equivalent to performing
0 to 540000 CPU instructions with a CPU of speed 20 MIPS. Since we write out and read in a page
whenever a buffer miss occurs, we expect that each time a buffer miss occurs, we are delayed by
an average time equal to the CPU performing 2 x 540000/2 = 540000 instructions. Since the
number of buffer misses is expected to be about 0.68, we expect a time equivalent to performing

about 0.68 x 540000 = 367200 CPU instructions to be devoted to disk I/O. The measurements for
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disk time in Table 4.3 for tries support this finding.

The main factor affecting the shape of the throughput curves is the time spent waiting for locks.
All measurements remain about the same except for the lock waiting times, which grow as MPL
increases. The rate at which lock wait times for the B-tree grow is relatively unchanged and less
than the rate at which the MPL increases. The disk time for the B-tree is always greater than the
lock wait time, which limits the effects of increased lock waiting time. For the tries however, lock
wait times jump by over a factor of 3 when going to an MPL of 200 from an MPL of 100. Because
of this dramatic increase in lock wait times and the fact that the lock wait time accounts for most of
the operation time, the throughput for the trie decreases when the MPL is greater than 200.

The ratio of the throughput values between the B-tree and trie is equal to the ratio of the operation
times between the B-tree and trie. For example, at an MPL of 100, which is the point of maximum
throughput for the trie, the B-tree has a throughput of 7468 TPS and the trie has a throughput of
244 TPS. The throughput of the B-tree is 30.6 times more than that of the trie because the total
of 8205173 instructions required to do a typical trie insertion is 30.6 times more than the total of

267809 instructions required to do a typical B-tree insertion.

4.3.3 Trie Experiment 3: High Fanout, 100% Inserts, I CPU, 8 Disks, and 365
Buffers

The throughput curve for the triec with ¢ = 11 and 3 page levels is in Figure 4.29. We compare
the trie performance with that of a 3-level B-tree. The B-tree throughput curve that was presented
in Chapter 3 is now in Figure 4.30. Table 4.4 contains the components of the average CPU usage
required by each operation.

The throughput curves are similar as those we get when we have infinite resources and limited
buffer space. Again the trie throughput reaches a maximum at 100 MPL and then quickly decreases
as MPL increases. The B-tree throughput continues to increase as MPL increases. We now use the
measurements in Table 4.4 to explain the throughput results.

The trie results in Table 4.4 are the same as those obtained for the 3-level trie with infinite CPUs

and disks in Section 4.3.2, except for the wait times for a disk, CPU, and lock. With a single CPU
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Figure 4.29: Trie Experiment 3 throughput Figure 4.30: B-tree Experiment 3 throughput

and only 8 disks, operations now must now sometimes wait to use the CPU or a disk. Operations
hold locks on pages longer because of the limited resources, causing longer wait times for locks.

The waiting time for locks and the CPU dominate the time required for each trie operation;
whereas, the disk time and wait dominates the time required for each B-tree operation. Due to
the sequential locking that trie operations perform and the large number of T-counts accessed, trie
operations use the CPU much more than B-tree operations. Hence the CPU becomes the bottleneck
for the trie. Due to the logarithmic locking that B-tree operations perform, disk times and waits are
longer for these operations.

Once the MPL reaches 100 terminals, the increase in trie operation time is at a higher rate than
the increase in MPL, so throughput decreases. From Table 4.4, we see that the total instructions
required for each operation increases from 17682796 to 42458293 when increasing MPL from 100
to 200. The time for each operation increases by a factor of about 2.4, but the MPL increases only
by a factor of 2; hence, throughput decreases for the trie.

The ratio of throughput values for the B-tree and trie is the same as the ratio of operation time

for the trie and B-tree. For example, at the maximum throughput for the trie, which occurs at an
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Time (CPU Instructions) Time (CPU Instructions)
MPL | Request Type B-Tree Trie MPL | Request Type B-Tree Trie
1 cC 803 111503 100 cC 804 111640
BUF 4712 5284 BUF 4419 5273
PAGE COUNT - 27850 PAGE COUNT - 27885
PAGE SEARCH 151 51 PAGE SEARCH 151 51
PAGE MODIFY 510 1000 PAGE MODIFY 510 1001
PAGE COPY 692 1272 PAGE COPY 393 1261
Disk Time 184436 344062 Disk Time 600467 356382
Disk Wait 0 0 Disk Wait 711876 104725
CPU Wait (0] 0 CPU Wait 30664 | 2189629
Lock Wait 0 0 Lock Wait 50890 | 14884950
Total 191304 491023 Total 1400173 | 17682796
5 CcC 803 111712 200 CcC 806 111512
BUF 4704 5254 BUF 4306 5251
PAGE COUNT - 27902 PAGE COUNT - 27852
PAGE SEARCH 151 51 PAGE SEARCH 151 L1
PAGE MODIFY s10 1000 PAGE MODIFY L181 1000
PAGE COPY 684 1243 PAGE COPY 269 1240
Disk Time 185261 333065 Disk Time 813785 386278
Disk Wait 63005 28344 Disk Wait 653324 109336
CPU Wait 899 258495 CPU Wait 145219 | 4395455
Lock Wait 3216 633793 Lock Wait 147281 | 37420318
Total 259232 1400859 [ Total 1765653 | 42458293
30 CcC 803 111494
BUF 4623 5275
PAGE COUNT - 27848
PAGE SEARCH 151 51
PAGE MODIFY 510 1000
PAGE COPY 602 1264
Disk Time 272098 343334
Disk Wait 434024 80814
CPU Wait 5315 785033
Lock Wait 14395 4041029
Total 732521 5397142

Table 4.4: Trie Experiment 3 CPU usage per operation

MPL of 100, the throughput of the B-tree is 1428 TPS, which is about 12.6 times greater than the

throughput of 113 TPS for the trie. This is because the average operation, according to Table 4.4,

for trie operations at this MPL requires 17682796 instructions, which is about 12.6 times greater

than the 1400173 instructions required by the average B-tree operation at this MPL.
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4.3.4 Trie Experiment 4: Low Fanout, 100% Inserts, Infinite Resources, and 1200
Buffers

The throughput curve for the trie with ¢ = 6 and 6 page levels is in Figure 4.31. We compare the
trie performance with that of a B-tree with 6 page levels, whose throughput curve is in Figure 4.32.

We break down the average number of CPU instructions per operation into the various components
in Table 4.5.
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Figure 4.31: Trie Experiment 4 throughput Figure 4.32: B-tree Experiment 4 throughput

From the two curves, we see that the throughput for both the trie and the B-tree continue to
increase as the MPL increases, but that the throughput for the trie is nearing a maximum before the
throughput for the B-tree does.

Performing 10,000 insertions in the trie with £ = 6 yields about 3040 page splits. Half the page
splits occur in the first 5,000 operations. Initially there are 16980 pages in the trie, so we will assume

an average trie size of 3040/2 + 16980 = 18500 pages. Link chases are extremely rare and do not
affect the results.
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Time (CPU Instructions) Time (CPU Instructions)

MPL | Request Type | B-Tree Trie MPL | Request Type B-Tree Trie
1 CC 1462 3627825 100 CC 1462 3631474
BUF 12124 15041 BUF 12157 15030
PAGE COUNT - 906916 PAGE COUNT - 907828
PAGE SEARCH 310 109 PAGE SEARCH 310 109
PAGE MODIFY 707 2061 PAGE MODIFY 705 2064
PAGE COPY 4711 7737 PAGE COPY 4743 7718
Disk Time 1274000 2092468 Disk Time 1286619 2092439
Lock Wait 0 0 Lock Wait 5455 58189056
Total 1293314 6652157 Total 1311482 64845719
5 cC 1463 3628089 200 CC 1464 3622391
BUF 12118 15018 BUF 12419 15010
PAGE COUNT - 906982 PAGE COUNT - 905558
PAGE SEARCH 310 110 PAGE SEARCH 3 109
PAGE MODIFY 709 2058 PAGE MODIFY 708 2059
PAGE COPY 4700 7711 PAGE COPY 4997 7711
Disk Time 1267638 2083672 Disk Time 1354797 2092743
Lock Wait Sl 428508 Lock Wait 13731 99294980
Total 1286989 7072147 Total 1388426 | 105940561
30 CC 1463 3621156 300 cC 1466 3622701
BUF 12153 15025 BUF 12664 15038
PAGE COUNT - 905249 PAGE COUNT - 905635
PAGE SEARCH 311 109 PAGE SEARCH 311 109
PAGE MODIFY 710 2057 PAGE MODIFY 712 2060
PAGE COPY 4732 7722 PAGE COPY 5229 7736
Disk Time 1277944 2078374 Disk Time 1416964 2104459
Lock Wait 1260 | 20135100 Lock Wait 28025 | 148984209
Total 1298572 26764791 Total 1465372 | 155641946

Table 4.5: Trie Experiment 4 CPU usage per operation

CC Requests

If a terminal locks and unlocks every page, there should be about 18500 x 2 x 100 = 3700000 CPU
instructions required CC requests. The instructions required for CC requests for the trie in Table 4.5

are slightly below our estimate, indicating that the terminals lock most, but not all, trie pages.

BUF Requests

Since the trie has 6 page levels, the terminal accesses a minimum of 6 pages from the buffer. After
upgrading its lock to an X-lock, the terminal accesses the page again to check that modification will
still occur. The additional buffer accesses are due to disk /O and page splitting.

The expected number of disk accesses per operation is calculated as follows. Say that most page
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splits are on the bottom 4 page levels and that the top 2 page levels are always in the buffer. There
are 1200 buffers and 61 pages in the top 2 page levels, so for the bottom 4 page levels, there is a
1—-(1200-61)/(18500—-61) = 0.938 probability that a specific page is not in the buffer. However,
since there are four page levels where the page may not be in the buffer, we expect the number of
buffer misses per operation to be (0.0623 x 0.938 x 4 x 1) + {0.0622 x 0.938? x 6 x 2) + (0.062 x
0.938% x 4 x 3) + (0.938* x 1 x 4) =~ 3.75. Since there are 2 buffer calls for each buffer miss
(due to writing out and reading in), we expect that there will be 3.75 x 2 = 7.5 buffer accesses per
operation for disk I/O. In addition, there are 2 buffer calls made for each page split to write out the
LRU page and read in the new page. With about 3040 page splits over 10,000 operations, we expect
2 x 3040/10000 = 0.608 buffer calls per operation due to page splitting. Adding the buffer calls,
we arrive at 7 + 7.5 + 0.608 = 15.1 buffer calls for each operation. At 1000 instructions per call,
we estimate about 15100 instructions needed for buffer requests, which is close to the instructions

needed for buffer requests for tries in Table 4.5.

PAGE_COUNT Regquests

Since terminals lock most trie pages, they access most page counts. With an average trie size of
18500 pages plus the 6 page level counts, accessing all counts at a cost of SO instructions per access
yields 18506 x 50 ~ 925300 instructions total for page count accessing. Results for trie page count

accesses in Table 4.5 are what we expect if most counts are accessed.

PAGE_SEARCH Requests

Looking at the number of CPU instructions required for a typical insert operation to search a page
in Table 4.5, we see that the operation usually searches 2 pages. These searched pages are the root
page and the root page’s child. At a cost of 50 instructions per search, a total of 100 instructions is
used for page searching. Since the measurements for page searches in Table 4.5 are slightly higher,

the operation will search 3 or more pages more often than only the | root page.
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PAGE_MODIFY Requests

Operations usually search 2 pages in the trie, so that leaves 4 pages to modify. In addition, page
splits require an additional page modification. With about 0.304 page splits per operation and a
cost of 500 instructions per modification, we expect 4.304 x 500 = 2152 instructions devoted to
page modification. The measurements for page modification in Table 4.5 are slightly lower because

pages will occasionally search 3 pages and modify only 3 pages.

PAGE_COPY Requests

With an expected 3.75 buffer misses and 2 disk /O requests per miss, there are about 7.5 requests to
copy a page into or out of the buffer. Also, each page split causes a page copy request. So we expect
7.5 + 0.304 = 7.8 page copy requests per operation. At 1000 instructions per request, this requires

about 7800 instructions, which is close to the PAGE_.COPY measurements for tries in Table 4.5.

Disk Time

We perform disk /O every time we perform a page copy, so, for an average disk time equivalent
to 270000 instructions, we expect a time equivalent to performing 7.8 x 270000 ~ 2106000 in-

structions spent for disk I/O. The disk time measurements for tries in Table 4.5 are very close to our

estimate.

As with the 3-level trie with infinite CPUs and disks but limited buffers, the main factor affecting
the shape of the throughput curves is the lock wait time. The lock wait time increases for the B-tree,
but its effects are not very strong because the disk time is much greater. For the trie, however, the
lock wait time quickly dominates the cost of each operation. The increase in lock wait time is not
as rapid as it is for the 3-level trie; hence, the curve reaches a gradual maximum. When the MPL
doubles from 100 to 200, the lock wait time increases by only a factor of 1.7. When the MPL
increases by a factor of 1.5 from 200 to 300, the lock wait time increases by a factor of about 1.5;
therefore, reaching a plateau in terms of throughput.

The ratio between the throughput for the B-tree and trie equals the ratio between the operation
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costs for the B-tree and trie. At an MPL of 300, the throughput of the B-tree is 4095 TPS and the
throughput of the trie is 39 TPS. The B-tree throughput is 105 times greater than that of the trie
because the average B-tree operation requires 105 times fewer instructions to perform than the trie.

According to Table 4.5, the average instructions required per operation is 1465372 for the B-tree
and 155641946 for the trie.

4.3.5 Trie Experiment 5: Low Fanout, 100% Inserts, 1 CPU, 8 Disks, and 1200
Buffers

The throughput curve for the trie with ¢ = 6 and 6 page levels is in Figure 4.33. We compare the trie
performance with the performance of a 6-level B-tree. The B-tree throughput curve is in Figure 4.34.

The breakdown of the average CPU usage for each operation into the various components is in
Table 4.6.
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Figure 4.33: Trie Experiment S throughput Figure 4.34: B-tree Experiment 5 throughput

From the two curves, we see that the throughput for the trie is very low and almost constant. The

throughput for the B-tree under similar circumstances grows and is nearing a maximum throughput.
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Time (CPU Instructions) Time (CPU Instructions)
MPL | Request Type B-Tree Tric MPL | Request Type | B-Tree Trie

1 cC 1463 3626013 100 | CC 1464 3623213
BUF 12147 14998 BUF 11986 15030
PAGE COUNT - 906463 PAGE COUNT - 905763
PAGE SEARCH 310 109 PAGE SEARCH 311 109
PAGE MODIFY 710 2062 PAGE MODIFY 711 2061
PAGE COPY 4728 7692 PAGE COPY 4561 7723

Disk Time 1277722 2073223 Disk Time 1953133 2088655

Disk Wait 0 0 Disk Wait 14107909 114423
CPU Wait 0 0 CPU Wait 10085 54722414
Lock Wait 0 1) Lock Wait 57221 392266305
Tortal 1297081 6630559 Total 16147379 | 453745695

5 ccC 1461 3626459 200 CC 1463 3620631
BUF 12106 15026 BUF 11916 14989
PAGE COUNT - 906575 PAGE COUNT - 905118
PAGE SEARCH 310 109 PAGE SEARCH 311 109
PAGE MODIFY 707 2060 PAGE MODIFY 704 2056
PAGE COPY 4692 7725 PAGE COPY 4500 7689
Disk Time 1265706 2080955 Disk Time 3471840 2080415
Disk Wait 434376 72494 Disk Wait 27328633 161503
CPU wait 590 15320956 CPU Wait 35547 106381448
Lock Wait 300 762577 Lock Wait 263450 789210397
Total 1720350 22794976 [ Total 31118362 902384355

30 CcC 1463 3617560 300 CC 1465 3618501
BUF 12068 15021 BUF 11954 15012
PAGE COUNT - 904350 PAGE COUNT - 904585
PAGE SEARCH 310 109 PAGE SEARCH 311 109
PAGE MODIFY 708 2058 PAGE MODIFY 708 2058
PAGE COPY 4650 7719 PAGE COPY 4522 7710
Disk Time 1325745 2085550 Disk Time 5231190 2083200
Disk Wait 4085154 77724 Disk Wait 39346353 182522
CPU Wait 2186 28827956 CPU Wait 75443 140551238
Lock Wait 4274 100822592 Lock Wait 731293 | 1199166425
Total 5436559 136360639 Total 45403241 1346531361

Table 4.6: Trie Experiment S CPU usage per operation

We now analyze the data in Table 4.6 to better understand why the trie throughput is almost constant.
From Table 4.6, we see that the trie results are the same as those obtained for the 6-level trie with
infinite CPUs and disks in Section 4.3.4, except for the time spent waiting for a disk, waiting for a
CPU, and waiting for a lock. Because of the wait for limited CPUs and disks, operations hold locks
on pages for a longer period of time, causing other operations to spend more time waiting for the
locks.
For the B-tree, the time spent waiting for a disk dominates the time required for each operation;

whereas, for the trie, lock and CPU waiting times dominate the time each operation requires. We
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expect this because the trie operations use the CPU much more than the B-tree operations. Since
trie operations lock many more pages and the CPU must be used to lock and unlock pages, as well
as to access the T-counts, the CPU becomes the bottleneck for the trie. Since the total time for each
trie operation increases by the same factor as MPL, throughput for the trie is at a maximum. The
total time for each B-tree operation increases by a factor slightly less than the factor at which MPL
increases once the MPL reaches 100 terminals.

The ratio of the B-tree throughput to the trie throughput is equal to the ratio of time required
to perform a trie operation to the time required to perfonﬁ a B-tree operation. At an MPL of 300,
for example, a typical trie operation requires 1346531361 instructions compared with the total of
45403241 instructions required for a typical B-tree operation. The trie operations take about 29.7
times longer; hence, the throughput for the B-tree is about 29.7 times higher. At an MPL of 300,
the throughput of the B-tree is about 132 TPS compared to about 4.5 TPS for the trie.

4.3.6 Trie Experiment 6: High Fanout, 50% Appends, 50% Searches, Infinite Re-

sources, and 365 Buffers

The throughput curve for the trie with £ = 11 and 3 page levels is in Figure 4.35. We compare the
trie performance with that of a B-tree with 3 page levels, whose throughput curve is in Figure 4.36.
We break down the average number of CPU instructions required per operation into the various
components in Table 4.7.

With a workload of 50% appends and 50% searches, there are 5 page splits in the trie. So, since
the initial trie has 486 pages, the average size of the trie is 486 + 5/2 ~ 489 pages. Link chases
are still rare, with a maximum of only about 34 occurring at an MPL of 200; therefore, we will not
include them in our calculations below. We now analyze the measurements in Table 4.7 and discuss

the throughput curves that result from them.

CC Requests

Since traversal of the trie is sequential from left to right and appends modify the rightmost leaf
pages, appends lock and unlock every page in the trie. So, with a cost of 100 instructions per concur-

rency control request, we expect that tries will require 489 x 2 x 100 = 97800 CPU instructions for
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Figure 4.35: Trie Experiment 6 throughput Figure 4.36: B-tree Experiment 6 throughput

locking and unlocking pages, omitting the page level counts and lock upgrade. Searches will on av-
erage lock and unlock half the trie pages, for a total of 489 x % x 2% 100 = 48900 instructions. Since
there are 50% appends and 50% searches, we expect an average of (97800 + 48900)/2 = 73350

CPU instructions devoted to lock and unlock requests. The CC request measurement for tries in

Table 4.7 is very close to our estimate.

BUF Requests

Rarely do appends use a disk because they navigate the same pages much of the time; hence, the
pages do not become LRU and written out of the buffer. The only time an append uses a disk is
when writing out the LRU page after a page split to make room for the new page. Since there are
only 5 page splits, we will say that only searches use a disk. For a trie of 489 pages and a buffer
of 365 pages, the probability that a page is not in the buffer is about 1 — (365/489) =~ 0.254.
Since we may encounter a buffer miss twice per operation, the expected number of buffer misses

per search is (0.254 x 0.746 x 2 x 1) + (0.254 x 0.254 x 1 x 2) ~ 0.508. Each time an operation
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Time (CPU Instructions) “Time (CPU Instructions)
MPL | Request Type B-Tree Trie MPL | Request Type B-Tree Trie
1T | CC 703 74025 100 | CC 772 73755
BUF 3770 3976 BUF 4130 3964
PAGE COUNT - 18469 PAGE COUNT - 18401
PAGE SEARCH 150 125 PAGE SEARCH 168 125
PAGE MODIFY 258 252 PAGE MODIFY st 250
PAGE COPY 255 474 PAGE COPY 269 465
Disk Time 67561 128314 Disk Time 74124 130510
Lock Wait 0 0 Lock Wait 166581 33865
Total 72696 335634 [ Total 346294 261336
5 | cC 703 73183 200 | CC 869 73932
BUF 3776 3976 BUF 4613 3933
PAGE COUNT - 18258 PAGE COUNT - 18445
PAGE SEARCH 15t 125 PAGE SEARCH 192 125
PAGE MODIFY 256 247 PAGE MODIFY 256 253
PAGE COPY 257 482 PAGE COPY 264 427
Disk Time 68461 130491 Disk Time 72153 120784
Lock Wait 1368 708 Lock Wait 393795 112936
Total 74972 | 227470 Total 472142 330835
30 | CC 714 74193
BUF 3846 3968
PAGE COUNT - 18511
PAGE SEARCH 153 125
PAGE MODIFY 255 252
PAGE COPY 275 164
Disk Time 77135 126202
Lock Wait 19901 8939
Total 102279 333653

Table 4.7: Trie Experiment 6 CPU usage per operation

encounters a buffer miss, the operation makes 2 buffer requests. We expect searches to call the
buffer (0.508 x 2) +3 = 4.02 times and appends to call the buffer 4 times (as insert operations with
the trie in memory do). So, the expected number of buffer accesses is (4.02 + 4)}/2 = 4.01 which,
at 1000 instructions each, accounts for a total of 4010 CPU instructions. Results in Table 4.7 for

trie BUF requests are very close to this estimate.

PAGE_COUNT Requests

Appends access every page count, searches access half the page counts, and page count accesses
use 50 instructions each. So, we expect 489 x 50 = 24450 instructions to be required for appends
to access the page counts and 489 x % x 50 = 12225 instructions to be required for searches to

access the page counts. With our workload, that averages to 18338 CPU instructions required per
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operation to access the page counts. The PAGE_COUNT request results for tries in Table 4.7 are

very similar to our expectation.

PAGE_SEARCH Requests

Appends most often modify only a leaf page in the trie; therefore, for the 3-level trie, appends
usually search 2 pages. Search operations search 3 pages. With our workload, we average 2.5
searches per operation and, since each search uses 50 instructions, we expect about 125 instructions

to be devoted to page search per operation as shown in Table 4.7 for trie PAGE_SEARCH requests.

PAGE_MODIFY Requests

Since appends most often modify only a leaf page in the trie, a typical append requires 500 CPU
instructions for page modification. Since only 50% of the operations are appends, we expect
about 250 instructions per operation needed for modifying pages as indicated by Table 4.7 for trie
PAGE_MODIFY requests.

PAGE_COPY Requests

Since there are so few page splits, we say that only searches use disk accesses. Each disk access
is accompanied bv a PAGE_COPY request. Since we expect 0.508 buffer misses per search and
each buffer miss requires 2 disk accesses, we estimate that there exists about 1.02 disk accesses
per search. Since searches account for 50% of the workload, we expect 0.508 disk accesses and
PAGE_COPY requests. Each PAGE_COPY request uses 1000 instructions, so we expect 5080 in-
structions to be used for copying pages into and out of the buffer, which is close to the resuits in

Table 4.7 for trie PAGE_COPY requests.

Disk Time

As stated above, we expect 0.508 disk accesses per operation. Since the average time for each disk

access is equivalent to doing 270000 CPU instructions, we estimate a disk time equivalent to about
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137160 instructions per operation. The disk times in Table 4.7 are close to this estimate.

The main factor affecting the shape of the throughput curves is the lock waiting time. Appends
modify the same areas of the data structures; namely, the rightmost leaf pages. However, there are
about 10 times more page splits in the B-tree than in the trie, which causes many more link chases to
occur in the B-tree than in the the trie. Therefore, since operations must wait again after a link chase
for the correct page, lock waits are greater for the B-tree operations. As a result, the trie throughput
continues to grow at a higher rate than the B-tree throughput.

The ratio of the trie throughput to the B-tree throughput is equal to the ratio of the number of
instructions required for B-tree operations to the number of instructions required for trie operations.
At an MPL of 200 for example, the trie throughput is 12090 TPS, which is about 1.43 times greater
than the B-tree throughput of 8470 TPS. We see in Table 4.7 that the total number of instructions
required for a B-tree operation is on average 472142, which is about 1.43 times greater than the

average number of instructions required for a trie operation, which is 330835.

4.3.7 Trie Experiment 7: High Fanout, S0% Appends, 50% Searches, 1 CPU, and in
memory

The throughput curve for the trie with ¢ = 11 and 3 page levels is in Figure 4.37. We compare
the trie performance to the throughput in the corresponding B-tree experiment, whose curve is in
Figure 4.38. The various components of the average CPU usage required per operation are in
Table 4.8.

Both throughput curves indicate that no increase in throughput is made by increasing the MPL.
We now analyze the measurements in Table 4.8 to determine the reasons. We do not discuss results
that are unaffected by the use of only 1 CPU and an infinite buffer pool because they are explained

in Section 4.3.6.

BUF Requests

No operations access the disk, so appends usually make 4 buffer calls and searches make 3 buffer

calls. Since there are 50% of each operation type, we expect about 3.5 buffer calls per operation or,
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Figure 4.37: Trie Experiment 7 throughput Figure 4.38: B-tree Experiment 7 throughput

at 1000 instructions per buffer call, 3500 instructions per operation devoted to buffer calls. The trie

results in Table 4.8 for BUF requests are very close to our estimate.

The major factors affecting the shape of the throughput curves are the wait times for the CPU
and for locks. Since trie operations use the CPU considerably more than B-tree operations because
of all the locking and unlocking that they do, the CPU wait times are much longer for the trie than
for the B-tree. Since B-tree operations are not idle as often, waiting for the CPU, they traverse the
B-tree quicker than trie operations traverse the trie and create more lock conflicts at the rightmost
leaf pages.

We compare the ratio of the B-tree throughput to the trie throughput with the ratio of the trie
operation time to the typical B-tree operation time. For example, at an MPL of 200, the B-tree
throughput is 3792 TPS, which is about 18.1 times greater than the trie throughput of 210 TPS. This
is so because the typical trie operation requires 19073135 instructions, which is about 18.1 times

greater than the number of instructions required by a typical B-tree operation, which is 1054889.
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“Time (CPU Instructions) Time (CPU Instructions)
MPL | Request Type B-Tree Trie MPL | Request Type B-Tree Trie
| CC 700 73974 100 CC 793 74011
BUF 3504 3504 BUF 3970 3502
PAGE COUNT - 18456 PAGE COUNT - 18465
PAGE SEARCH 150 £25 PAGE SEARCH 173 125
PAGE MODIFY 252 252 PAGE MODIFY 253 251
CPU Wait 0 0 CPU Wait 38285 9473135
Lock Wait 0 0 Lock Wait 475101 45812
Total 4607 96311 Total 518576 9615302
5 cC 703 74275 200 CcC 8t 73549
BUF 3519 3509 BUF 4058 3496
PAGE COUNT - 18531 PAGE COUNT - 18349
PAGE SEARCH 151 125 PAGE SEARCH 178 128
PAGE MODIFY 255 255 PAGE MODIFY 254 248
CPU Wait 16103 386655 CPU Wait 65266 | 18507398
Lock Wait 2456 64 Lock Wait 984323 469970
Total 23186 483413 Total 1054889 | 19073135
30 CC 726 73743
BUF 3631 3498
PAGE COUNT - 18398
PAGE SEARCH 157 125
PAGE MODIFY 252 249
CPU Wait 29138 2780029
Lock Wait 109223 2534
Total 143127 2878576

Table 4.8: Trie Experiment 7 CPU usage per operation
4.4 Summary of Results

The differences in throughput between the B-tree and trie occur primarily due to the concurrency
control algorithm used for each data structure. For a data structure of n pages, the algorithm for
B-trees typically locks O(log n) pages; whereas, the algorithm we have presented for tries typically
locks O(n) pages. Also, since trie traversal lock-couples from left to right and root to leaf, X-locks
in the trie often prevent other operations from accessing any pages to the right or below the X-locked
page. We now describe this difference between the algorithms in further detail, as well as the effects

caused by the various restrictions of system resources.

4.4.1 Experiments 1-3: High Fanout, 100% Inserts

The B-tree operations typically lock only 3 pages; however, the trie operations lock about 556

. pages (including level counts). In addition, trie operations usually place X-locks on the page level
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immediately below the root; whereas, B-tree operations usually X-lock only the leaf pages. Since
the trie operations lock many more pages and lock out more of the data structure than the B-tree
operations, lock wait times for the trie are greatly larger than those for the B-tree.

With the addition of buffer constraints, disk usage occurs. There are longer wait times for locks
because operations hold locks while performing disk I/O. Since trie operations usually start X-
locking before reaching the leaf level, they usually perform any disk /O for leaf pages while holding
an X-lock. In contrast, B-tree operations perform disk [/O while holding an S-lock. Due to the
sequential traversal of the trie, operations which encounter the X-locked leaf page while it is being
accessed from disk are blocked from all leaf pages to the right by a considerably greater amount of
time.

Limiting the number of disks and CPUs creates more bottlenecks. For the B-tree, disk contention
becomes a bottleneck. For the trie, however, disk waits do not increase very much, but wait times for
the CPU do increase significantly. Trie operations use the CPU much more than B-tree operations
because there are many more locks placed in the trie. With both algorithms, lock waits increase due

to locks being held while waiting for a resource.

4.4.2 Experiments 4-5: Low Fanout, 100% Inserts

For the low-fanout data structures, the B-tree operations usually lock only 6 pages; whereas, the trie
operations usually lock most of the trie — which averages about 18500 pages. Also, for the trie,
most modifications begin on the third level of the 6-level trie, so operations typically X-lock every
page on the bottom 3 levels of the trie as well as every page to the right of the initially X-locked
page. With a limited buffer pool, we estimate that there are about 3.75 buffer misses for each trie
operation. Since these buffer misses occur among the bottom 4 levels of the trie, operations perform
most disk I/O while holding X-locks. As a result, trie inserts block off much of the trie while
performing disk /O and cause lock wait times to be immensely greater than those for the B-tree.
Limiting the number of disks and CPUs creates the same bottlenecks as the high-fanout experi-
ments. Disks become the main bottleneck for the B-tree operations and the CPU becomes a major
bottleneck for the trie operations. Again, lock waits for both algorithms increase due to waiting for

resources while holding locks.
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4.4.3 Experiments 6-7: High Fanout, 50% Appends, 50% Searches

For the high-fanout data structures and a workload of 50% appends and 50% searches, trie through-
put is greater than B-tree throughput when the buffer size is limited. Both algorithms are very
similar in that the X-locks are usually placed only on the rightmost leaf page. The trie experiences
only 5 page splits, compared to about 49 for the B-tree. Link chases for the B-tree are far more
numerous than for the trie. At an MPL of 200, there are about 8370 link chases in the B-tree and
only about 34 in the trie. With the added wait times for locks after a link chase, B-tree throughput
is slightly lower than trie throughput.

Limiting the system to | CPU greatly affects trie throughput. Due to the intense CPU usage
for trie operations, the CPU becomes the bottleneck and trie throughput remains constant. B-tree
throughput is greater than trie throughput, but decreases slightly as MPL increases due to the large

increase in link chases that accompanies the increase in MPL.



Chapter 5

Conclusion

This thesis presents algorithms for concurrent search and insert operations in a pointerless trie.
To the best of our knowledge, these are the first algorithms for concurrent trie operations. Using
simulation, we studied the performance of our trie concurrency control algorithms for a variety
of situations with varying trie structure, resource contention, and workload. We aiso compared
our algorithms’ performance with that of the B'"k algorithms. We now present a more detailed

summary of our work and suggestions for future work in the study of trie concurrency.

S.1 Summary

Many database systems are used in a multiuser environment; thus, require concurrency control in
order to operate correctly. B-trees have become the standard data structure for storing indices in
a database system and many different algorithms have been designed to enable concurrent B-tree
operations. Tries, which generate significant data compression, are useful, not only for storing
indices for general databases, but also for text and spatial data. Tries have not yet, however, been
applied to databases requiring concurrent operations.

There have been several performance studies for various B-tree concurrency control algorithms.
We selected Srinivasan and Carey’s work [SC91b] as a basis for evaluating our simulation and
algorithm performance. They specify many situations that cover a variety of tree properties, resource

contention, and workloads. Using an asynchronous discrete-event simulation with closed queueing,

124



CHAPTER 5. CONCLUSION 125

we performed many of the experiments for which they provide throughput results. Our simulation
involves events with activation times and movement of these events between various queues. Events
that change the state of the system are stored in sorted order on a heap. Events that are waiting for
a lock, disk, or CPU are stored on a wait queue. Once a terminal is granted the resource, its event is
moved from the wait queue to the heap.

Our goal was to use our simulation to produce trie concurrency results that could be scaled
onto the throughput graphs of Srinivasan and Carey. Using the results that Srinivasan and Carey
present for the B'i"k algorithm with lock-coupling on ascent, we attempted to obtain a constant ratio
between our B-tree results and theirs. With this constant ratio, we would be able to scale the trie
throughput results obtained by our system onto the graphs.

While most of the experiments we performed generated B-tree results that were within a similar
factor of their results, there were differences between our results and theirs. For the 5 results that
are similar, our results are consistent with theirs by a factor of between 1.4 and 1.9. However, for 2
of the experiments, the throughput we obtained behaves differently than that obtained by Srinivasan
and Carey. Satisfied with our simulation model, we used it to measure the concurrency performance
of our trie algorithms.

We presented algorithms for concurrent searches and inserts in a pointerless trie. Our algorithms
are relatively simple and use only S-locks and X-locks. They are also deadlock free. We attempted
to use prefixes to aid in recovering from interference caused by other concurrent operations, but
were unsuccessful. As a result, our algorithms require lock-coupling sequentially along each trie
page level.

With tries and our trie concurrency control algorithms, we performed the experiments that were
previously conducted for B-trees. While the experiments are identical in terms of workload, some
modification had to be made due to differences between the trie and B-tree structures. Each trie
node has at most 2 children and multiple trie edges often enter the top of a trie page from the
page level above. As a result, setting a fanout in the trie similar to the fanouts used for the B-tree
experiments produces a structure very different from the B-tree. Rather than modify fanout, we
modified the number of node levels in each page so that each trie has the same number of page

levels as its corresponding B-tree. In addition, a trie has more pages than the corresponding B-tree,
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so we increased buffer sizes to maintain the same percentage of data structure initiaily present in
the buffer.

As a result of the lock-coupling along page levels, our trie algorithms do not allow as much
throughput and concurrency as the B'™* algorithms. Where n is the number of pages in the data
structure, the trie concurrency control algorithms lock O(n) pages and the B-tree algorithms lock
only O(logn) pages. There is also added restriction because trie operations lock-couple and the
B-tree operations do not. In addition, it is not unusual for a trie insertion to lock every page in the
trie, possibly with X-locks. As a result, other concurrent operations may not be able to overtake the
insert operation.

The presence of resource contention also affects the trie algorithms more than the B-tree algo-
rithms. Since CPU usage is required to perform any locking request and trie operations lock many
more pages than the B-tree operations, limiting the number of CPUs limits trie throughput dramati-
cally. For tries, the CPU becomes the bottleneck, but for B-trees, the disks become the bottieneck.
When the number of CPUs is infinite, the disk wait affects the trie operations greatly because oper-
ations may often be holding an X-lock on a page while waiting for a disk. Other operations cannot
overtake an operation that is waiting for the disk while holding an X-lock.

Trie performance is better than the B-tree performance for a situation with infinite CPUs and
a workload of half searches and half appends. In this situation, both algorithms are very similar
because they tend to place X-locks only on the leftmost leaves of the data structure. However, since
the data capacity for a trie page is greater due to data compression, fewer new pages are created. As
a result, far fewer link chases occur for the trie operations and throughput is greater. However, when
we impose the limitation of using only 1 CPU, trie throughput becomes substantially less than the

B-tree throughput again due to the extensive CPU usage by trie operations.

5.2 Future Work

We identify three potential areas for future work in the study of trie concurrency: new algorithms
that improve on the concurrency provided by our algorithms, modification of the pointerless trie
data structure to enable better throughput, and creation of an algorithm for concurrent deletions of

keys from a trie.
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New Algorithms for Concurrent Trie Searching and Inserting

The performance of concurrent searches and inserts in a pointerless trie must be improved. Our
initial algorithms are very restrictive because there are few provisions for any recovery due to inter-
ference from other concurrent operations. As a result, these algorithms use lock-coupling, which is

a very limiting in terms of throughput performance. There may be maodifications to these algorithms

that allow for less locking.

Maodification of the Pointerless Trie Representation

Madification of our algorithms may not, however, provide a great improvement in concurrency for
trie operations. There may be some modification to the pointerless trie structure required before any
significant improvements in throughput can be made. Such a modification may be simply to include
a pointer from a trie page to its leftmost child page. Perhaps such a modification could prevent the
need for operations to lock-couple across the entire page level by allowing them to safely bypass
all pages that are definitely not going to be navigated. For this modification, page splits would not
cause updates to propagate up the trie; however, splitting a parent would introduce new solutions
needed to maintain correctness of the trie.

The link pointer created an enormous improvement in B-tree throughput. Perhaps a similar
modification to the trie can be made to allow for a less restrictive locking technique. We attempted
to use a prefix for each page that would allow an operation to recover from interference caused by
other operations. While we were not successful in implementing this idea, there may be a similar

approach to increasing trie concurrency.

Concurrent Deletions for Tries

We have not implemented deletions for a trie with concurrent operations. Deletions could be imple-
mented to perform while all other operations wait or concurrently with searches and inserts. Care
must be taken, however, to ensure that deletion of key values does not cause concurrent operations

to perform incorrectly.
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