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Abstract

Multiuser database systems require concurrency control in order to perfonn correctly. B-trees have

become the standard data structure for storing indices that aid in data retrieval and there have been

many algorithms published to enable concurrent operations for B-trees. Tries are another data struc­

ture useful for storing index data. panicularly for text and spatial databases. Significant data com­

pression can be achieved by using a trie to store index values. However. there have been no algo­

rithms published to support concurrent trie operations.

We present algorithms that enable concurrent searches and inserts for tries with pointerless rep­

resentation. We also measure the performance of our algorithms and compare with mat of the best

B-tree algorithms. In arder to measure trie concurrency. we survey a number of studies that have

been made for B-tree concurrency. Using these published studies. we build a simulation model to

measure the concurrency of our a1gorithms.
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Résumé

Pour fonctionner correctement, la concurrence doit être contrôlée dans les systèmes de gestion de

base de données multi-utilisateur. Les B-arbres som devenus la structure de données standard pour

sauvegarder les indexes qui assistent dans la récupération des données. Par conséquent. beaucoup

d'algorithmes publiés traitent des opérations concurrentes sur des B-arbres. Dans le même temps.

les tries sont une autre structure de données particulièrement utiles pour la sauvegarde d'indexes. et

cela dans le contexte des base de données textuelles et spatiaJes. Un taux de compression significatif

peut être obtenu en utilisant un trie pour stocker des indexes. Cependant, aucun algorithme traitant

des opérations concurrentes sur des tries n'a été publié jusqu'à présent.

Nous présentons un algorithme qui pennet les insertions et les recherches concurrentes sur des

tries dont la rep..sentation n'utilise pas de pointeurs. De plus. nous mesurons les perfonnances

de notre algorithme et les comparons avec les meilleurs algorithmes traitant des B-arbres. Pour

mesurer la concurrence sur les tries, on a examiné un certain nombre d'études qui portent sur la

concurrence des B-arbres. En se basant sur ces publications, on a construit un modèle de simulation

pour mesurer la concurrence de nos algorithmes.
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Chapter 1

Introduction

Concurrency control is the act of ensuring that concurrent operations do not interfere with one

another and cause incorrect results. Concurrent data structures are used most often in database sys­

tems. Such data structures are usefui in multiuser applications; such as. banking. ticket reservation.

point of sale. inventory management. billing. and communications. This thesis studies concurrency

control techniques for two popular data structures: B-trees and tries.

1.1 8-Tree Preliminaries

The B-tree was introduced in 1972 by Bayer and McCreight [BM72] and has since become the stan­

dard data structure for implementing indices in a database management system. Comer [Com79]

has wrillen a survey about B-trees and their variations. The variation known as the B+-tree by

Wedekind [Wed74) is popular because it is easier to implement and Iikely to be smaller than the

B-tree. The main difference between the B+·tree and the B-tree is that ail records in the B+-tree

are stored at the leaf level. Another popular variation is the B*-tree by Knuth [Kou73] in which ail

nodes are al leasl 2/3 full and ail records are stored al the leaf level. When using the term ··B-tree"

in this chapter and Chapter 2. we are referring to the B+-tree.
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1.1.1 B·TJee Description

2

•

A B-tree is a balanced search tree in which each path from root ta leaf has the same height h. where

height is measured in terms of node levels. A B-tree consists of nodes and links (or pointers) from

one node to another. A parent node n located on node level en contains pointers ta children that are

on node level en + 1. The root of the tree is the Dode that has no parents and is located on level 1.

The leaves are the nodes that have no children and are located on level h.

In addition ta pointers. each node contains either keys or separators. Separators are stored in

non-Ieaf nodes and define a search path from root to leaf for a given key value. Keys are stored in

the leaf nodes and imply that the associated information for the key value exists in the index. For

simplicity. we will refer to separators as keys. The keys and pointers within a node are arranged in

the following sequence: (Po, K l . Pl, K2 , ... , K x, Px) where Pi is a pointer and KI is a key.

Within each node, keys are stored in ascending arder. Keys create a search path from root ta leaf

by indicating the correct pointer and child ta select in order ta reach the correct information associ­

ated with the key value. For any non-Ieaf node n containing the sequence (.... KI' Pt. K t- l • ... ).

the child n' pointed la by Pt contains only key values v such that KI < v $ K l + l. Thus, the subtree

rooted at n' contains only key values 'U such that Ki < v $ Ki+ L.

Each (key, pointer) pair in anode is called an entry. A tree parameter k contrais the size of the

tree nodes. Each Dode in the B-tree has has at mosl 2k entries. Every node, except the rOOl, has at

leasl k entries. The root has alleast 1 entry (Le. 2 children). Such a B-tree is said la he of arder

k. B-tree node size is also specified by fanollt, which is the maximum number of entries each node

may contain. A marker "M" may be stored in a oode in place of Po ta indicate that il is a leaf. In

such a case, the information for key value Ki is located by following pointer Pi instead of Pl - l ­

Figure 1.1 shows a portion of a B-tree.

The B-tree index is stored on disks which are partitioned into pages of fixed size. Each node is

stored on its own page on disk and pages are the smallest unit in which processes read and write

information. Hence. later in the thesis, we will refer to pages instead of the logical nodes of the tree.
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Non-leaf
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Leafnode
levcl

Data records

3

1.1.2 B·Tree Operations

Figure 1.1: B·tree nodes

•

Ali basic B-tree operations (search. insert or append. and delete) start at the root and traverse the

tree down to the leaves. At each node. operations search for the minimal key that is greater than

or equal to the operation key. They then follow the appropriate pointer and fetch the child node.

Operations repeat trus process until they reach the leaves. at which point. they search the keys and

perform whatever action is appropriate. For search operations. if the operation key is in the leaf.

the search is successful and the process retrieves the information related to the key. For update

operations. the leaf will be modified by inserting or deleting a key value. If the operation is an insert

and the key value is already in the leaf. the insert fails. If the operation is a delete and the key value

is not in the leaf. the delete fails.

Figure 1.2 shows the nodes lhat are encountered in the traversai from root to leaf for. in this case.

a search for key 45. In this case. the search is successful.

Performing an update may, however. result in a restructuring of the tree. If an insert operation

attempts to insert an entry into anode with 2k entries (i.e. a full node), it will have to split the node.

And, if a delete operation attempts to delete an entry from anode with only k entries. it will have

to merge or redistribute ilS entries with anather node such that ail remaining nodes have at Jeast

k entries in them. It has been shawn mat. far trees mat change quite frequently due ta numerous

insertions, it is better to allaw nodes 10 contain less man k entries [1589, 1593a]. In such a scheme,

restructuring occurs less frequently. In facto real database systems often perfarm merges only when

nodes become empty.

A Dode is defined as being sale for an insert if it is not full and safe for a delete if an entry cao
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Search for record
for key value 45

Figure 1.2: B-tree traversai

he deleted from the node without requiring a merge or rotation. A rotation occurs when entries

are moved from anode to its sibling and the parent's key that separates the pointers to the pair of

children is updated. Figure 1.3 shows a node split for a B-tree with k = 2 that occurs when key

value 9 is inserted. Note that a new key must then be insened into the parent for the new pointer.

Also, if the split node had been a leaf node. the key value of 13 would still have been placed into

the parent, but not removed from the node.

,~8 ... 1 ..
[nsert 9

•

Figure 1.3: B-tree node split

It is important to note that the reslrUcturing of the B-tree may propagate upward towards the

root. If an unsafe child is split and the parent is not safe for an insert. the parent will need to he split

and the grandparent modified. When the root splits. a new root is created and the B-tree increases

in height by 1 level. Conversely, a merge May propogate towards the root too and possibly cause a
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reduction in ttee height by 1 level. The scope of an update is the set of nodes that are modified by

the update operation.

1.2 B·Tree Concurrency Control Aigorithms

Restructuring of the B-tree may cause problems when operations operate concurrently. The follow­

ing example iIIusttates how concurrency of operations may lead to incorrect results.

Example Consider the B-tree split in Figure 1.4. There are two transactions that operate concur­

rently on the B-tree:

• Transaction 1: read 46

• Transaction 2: write 9

Node A

48 •••

Insert 9

Figure 1.4: B-tree for concurrency example

mi Z5 .. ~,1
1 1 1

1

~P

•

These transactions are executed such that the sequence of events given by Figure 1.5 takes place.

Transaction 1 fails to traverse the B-tree in a correct manner because Node B changes after

Transaction 1 determines that Node B is the next node that must be read. When Transaction 1

finally reads Node B. the correct pointer P is no longer located in Node B, so Transaction 1 fol­

lows the incorrect pointer Q. Concurrency control a1gorithms are required 50 thal concurrent B-tree

operations can operate correctly.

1.2.1 Early Aigorithms

ln this thesis. we use the following Jacks. S-Iocks are '·shared" lacks, meaning thal multiple tenni­

nais can hold an S-lock on the same item simultaneousJy. IX-Iocles are "intention exclusive" locles
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Tl: read 46

read Node A
get pointer to Node B

read Node 8
get pointer Q instead

of pointer P!,
Time

TI: write 9

read Node A
get pointer to Node B
Node B full -- splits

into Nades B and C

6

•

Figure 1.5: Sequence of events for 8-tree concurrency example

and SIX-Iocks are ··shared intention exclusive" locles. IX-Iocks and SIX-Iodes are typically used to

indicate a lock that May be upgraded to an X-Iock. X-Iocks are "exclusive" locks. When a terminal

holds an X-Iock on an item. no other terminal May hold a lock on the locked item. We assume the

lock mode compatibilities that are given in Table 1.1. where a check indicates that the requested

lock mode is granted.

Requested Current Lock Mode
Mode Free S IX SIX X

S ..; ..; ..; ..;
IX ..; ..; ..;

SIX ..; ..;
X ..;

Table 1.1: Lock compatibility table

The simplest concurrency control algorithm would be to treat the entire B-lree as a single data

record. In such a case. there would he only 1 lock. Search operations would hoId an S-Iock on the

tree during their entire search of the B-tree and update operations would hold an X-Iock on the tree

during their cntire update. Thus. searches would he a1lowed to perform concurrently. but not up­

dates. Such an algorithm is naive and provides very littJe concurrency of operations. Improvement

is made by treating each node in the B-tree as an individual data record that can be locked.

Typical concurrency control techniques for data records. such as two-phase locking [Gra78]
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where operations perfonn no funher locking once they perfonn an unlock. reduce concurrency be­

cause operations are needlessly blocked out of cenain areas of the data structure. Severai algorithms

specifically for B-tree concurrency control have been proposed over the years. We now briefty de­

scribe various algorithms for B-tree concurrency control.

Metzger, Samadi, and Parr

Metzger [Met75], Samadi [Sam76], and Parr [par77] proposed the first solution for the B-tree con­

currency control problem. With only X-Iodes, this simple algorithm uses the lock-collpling tech­

nique; that is, operations unlock anode only after locking its appropriate child. Update operations

unlock anode only if the child is round ta be sare and release aU its ancestor locles after locking

a safe node. Thus. if a leaf is unsafe. ail ancestors that will be modified rernain locked. [n other

words. the scope of the update is locked. Due ta the exclusive use of X-Iocks, lock confticts occur

high in the tree. often at the root.

Bayer and Sc:bkolnick

Bayer and Schkolnick [8S771 proposed a c1ass of four algorithms ta improve on Samadi's approach.

[n aIl four algorühms. search operations lock-couple from root to leaf with S-Iocks. The update

operations for each algorithm differ. Bayer and Schkolnick's algorithms are as follows:

Aigorithm 1: Updates lock-couple from root to leaf with X-Iocks. releasing ail their locks on a

child's ancestors if the child is found to be safe. As with Samadrs algorithm. updates X-Jock

the root. even if it is not in their scope. Hence. the tenn ··naive lock-eoupling" is often used

to describe these algorithms.

Aigorithm 2: This algorithm perfonns what is known as ··optimistic descent:· Updates lock-couple

from TOOt to leaf, placing S-Iocks on all non-Ieaf nodes and an X-Jock on the leaf. The parent

of the locked child is always unlocked, even if the chiId is an unsafe node. If the leaf is unsafe.

the leaf and ils parent are unlocked and Algorithm 1 is perfonned. [f very few updates are

retried. this aIgorithm is expected to perfonn weil; otherwise. Aigorithrn 3 perfonns beuer.

Aigorithm 3: Updates lock-couple from root to leaf with SIX-Iocks (which are compatible with



• CHAPTER 1. INTRODUCTION 8

•

S-Iocks), releasing alllocks on ancestors if a child is found to he safe. After locking the leaf,

ail currently held locks are converted, top-down, into X-Iocles. The top-down lock conversion

drives search operations out of the scope before modification occurs. This algorithm's advan­

tage is that searches and updates can concurrently access the same nodes. The disadvamage

is mat updates cannot concurrently access the same nodes.

Algorithm 4: This is a generalized a1gorithm that combines lite other three algorithms. Two param­

eters determine which a1gorithms to use for which parts of the B-tree. These parameters are

P and =, which specifiy the maximum number of levels on which updates can place S-locks

and X-Iocks respectively.

Updates in the Bayer-Schkolnick algorithms hold numerous X-Iocks at the same lime because they

update the entire scope at one lime.

Miller and Snyder

Miller and Snyder [MS78] proposed an algorithrn that differs from Bayer and Schkolnick's in that

updates X-Iock only the nodes that are going to he modified. Ail operations lock from root to leaf

with S-Iocks. There is no lock-coupling since nodes are unlocked prior to locking the child. X-Iocks

are made only when updates reach the leaf. For an unsafe oode, inserts X-lock up to three ancestor

nodes, as weI) as its parent's adjacem siblings. Deletes X-Iock in the same manner, except mat they

also X-Iock the children of the parent's siblings. As needed. the black of locked nodes ascends up

the tree.

Kwong and Wood

Kwong and Wood [KW80b, KW80a, KW821 proposed a solution designed to improve on the Bayer­

Schkolnick algorithms and ElIis's solution for 2-3 trees [E1I80) by minimizing the time that X-Iocks

are held. On the descent down the tree. operations perform as in Bayer and Schkolnick's Algorithm

3. If the leaf is unsafe. ··side-branching" occurs; that is. for inserts. half of the entries from the

unsafe node (as weI) as the new entry) are copied into a new node. For deletes. if the leaf is unsafe.

rotation with a safe sibling and parent occurs and results in both siblings being safe. Side-branching
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for deletes occurs ooly if both siblings are unsafe. in which case. entries from the node containing

the entry to be deleted are copied (minus the deleted entry) into the adjacent sibling. Modification

occurs up the tree until a safe ancestor is modified. Then. the update resumes i15 descent down the

tree to remove the copied entries from the unsafe nodes (in the case of an insert) or remove the

redundant nodes (in the case of a delete). On this second descent, X-Iocks are used and the parent

is unlocked prior to X-Iocking the child.

1.2.2 Top-down Aigorithms

Aigorithms are considered to be top-down if they perform preparatory node spli15 or merges. B-tree

restructuring by an operation occurs only from root to leaf and in sub-operations that involve only

two node levels at a time.

Mondand Raz

Mond and Raz [MR85] proposed a top-down algorithm based on an algorithm by Guibas and

Sedgewick [GS78] that introduced preparatory node splits for 2-3 and 2-3-4 trees and the idea

by Keshet [Kes81] of immediately splitting or merging unsafe nodes to avoid long chains of loeles.

During the descent from root to leaf. inserts perform a node split on any unsafe node they encounter

and deletes perfonn anode merge or entry redistribution if they encoumer anode unsafe for dele­

tion. Hence. whenever anode is restruclured. the parent is safe. Searches use S-Iocks and updates

use X-Iocks. Each operation holds only a pair of locles al any one time - the current node and i15

parenl. The locking technique is slightly differenl than lock-coupling in that. before locking any

node, ils grandparent is unlocked.

Lanin and Shasha [LS86] note that Mond-Raz algorithm can be improved by using optimistic

descen15 as in Bayer and Schkolnick's Aigorithm 2. [n such a scheme, updates would use S-Iocks

on their descent and X-Iock the leaf. If the leaf is unsafe. the update releases ail i15 Jocks and

restarts. using ail X-Ioeles. Srinivasan and Carey (SC91a, SC91 b] note that the algorithm can also

be improved if updates use SIX-Iocks on descent and convert them to X-Iocles only if a split or

merge is necessary.
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Keller and Wiederhold [KW88] detennined that Mond and Raz's use of preparalory spliuing cannot

he used for trees with variable-Iength key values because of ils inability to determine with absolute

cenainty that a new entry will fit into the newly split node. They introduced the sibling promotion

technique for the case when there is insufficient room to add the entry in the parent of a new node.

[n this case, at least half the entries in the node to he split n are put in a new sibling node n'. A

pointer from n to n' is created and the parent Pn is marked to indicate that it must be split. The next

update operation to reach Pn splits Pn (which creales p~) and moves the pointer that leads to n' out

of n and into p~. If the parent of Pn needs to he split~ il is marked and the process repeats for the

nexl update operation.

Setzer and Zisman

Setzer and Zisman [SZ94] propose a technique based on [MR85] and [GS78] in wttich tree nodes

are mainlained such thal they are safe for insens and deletes. Searches. insens. and deletes use only

X-Jocks. A tree compression process operates concurrently and uses a new lock type. which they

cali a c-Iock. Search~ insen. and delete operations lock pairwise. as in Mond and Raz's algorithm.

As in Keller and Wiederhold's algorithm. there may he variable-Iength keys. Also, leaves contain a

pointer to their righl neighbour.

The algorithm uses load faclors to determine which method of tree restructuring is best. A load

factor of anode Fn = In/2k, where ln is the number of entries in node n, determines whal action

to lake if anode is unsafe for insertion. A preditermined split factor Iimit fs determines when it

is beuer to redistribute entries among 2 nodes and change the separator into the parent instead of

splitting a node and inserting a new separalor into the parent. Ali operations restructure the tree

when they encounter an unsafe node. Nodes are considered unsafe for deletes if they contain k

entries. A cycle (which may also occur in Mond and Raz's aJgorithm) may be caused by merging

2 nodes to fonn anode unsafe for insertion. Ta prevent such a cycle~ merging or redistribution of

entries occurs only if 2 adjacent nodes contain fewer than k entries or if 2 nodes with fewer than k

entries are separated by anode with k or more entries. Thus~ il is possible for nodes to remain with

less than k entries. If the total load factor of the tree becomes too small. the compression process
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will be triggered.

The compression process stans by c-Iockïng the leftrnost leaf node. The other operations may

read nodes that are c-Iocked and read and update nodes to the right of the c-Iocked node. If an update

process reaches a c-locked leaf node. it is interrupted and restarted at the new B-tree root once the

compression process finishes. The compression process builds a new. compressed B-tree in another

area of the disk and then copies the new tree over the old tree once compression is complete. The

process copies the entries of the c-Iocked leaf into a new node nt. Then. the process follows the

pointer to the right neighbour and c-locks the right neighbour. The entries of the right neighbour

are copied into nt if there is enough room in nt; otherwise. the entries are copied into a new node

n2. This process continues until the rightmost leaf is copied into new node n m . Nodes nt ... ·. n m

are the leaves of the new tree. The process then creates new parents for the new leaves and works

its way up the new tree until it creates a new root. White the compression process is taking place.

no other restructurings of the tree. except for node splits. occur.

1.2.3 Blink·Tree Aigoritbms

The Blink_tree (pronounced "B-Iink-tree") was proposed by Lehman and Yao in 1981 [LYS1]. [t is

based on the idea of using link pointers in concurrent data structures by Kung and Lehman [KL8D].

who used Iink pointers in a concurrent binary tree. Blink_tree algorithms differ from top-down algo­

rithms because restructuring occurs in sub-operations that involve only one node level and ascend

the tree in a bottom-up manner.

The B1ink_tree is a B-tree with the addition of a high key and link poinler in each node. The high

key in a oode n specifies the highest key value for the subtree that is rooted at node n. The link

pointer goes from a node ta the node immediately to the right on the same node level. Figure 1.6

shows a fragment of a Blink_tree.

The Blink_tree provides the ability to recover when operations read an incorrect node. Node

splits occur in two stages: the half-split, then the add-Iink l . In the half-split, the node n is split into

nodes n and n'and the Iink from n to n' is added. The link in n' points to the node that the link in

n pointed to prior to the split. In the add-link stage. the pointer from the parent to the new node n'

IThese tenns were introduced by lanin and Shasha [LS86]. Their B1ink_tree aJgorithms will be discussed shortly.
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Data records

Figure 1.6: Blink·tree nodes

is created. Consider the example al the beginning of this section on page 5. The same example is

presented for the Blink-tree below.

Example Consider the Blink-tree split in Figure 1.7. The [WO transactions that operate concurrently

on the B1ink_tree are:

• Transaction 1: read 46

• Transaction 2: write 9

:-.lodeA

[nsen 9

Node A

•

Figure 1.7: B1ink_tree for concurrency example

These transactions are executed such thal the sequence of events in Figure 1.8 takes place.
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Tl: read 46

read Node A
get pointer to Node B

read Node 8
get pointer L to Node C
read Node C
get pointer P,

Time

n: write 9

read Node A
get pointer to Node B
Node B full - splits

into Nodes Band C

13

•

Figure 1.8: Sequence of events for Blink_tree concurrency example

Transaction 1 succeeds in traversing the tree because the link pointer L allows the operation to

advance to the right when it is found that the operation key is bigger than any of the keys in the

current node. Following a fink pointer to a neighbour node is called a link chase. Transaction 1 thus

advances to the correct node and is able to locate the correct pointer P.

Lehman and Vao

ln the Lehman-Yao algorithm, searches do not do any locking. Updates do not lock on their initial

descent from root to leaf and use X-Iocks once mey reach the leaf level. Once the update X-Iocks

the leaf. any required link chases are perforrned by lock-coupling with X-Iocks. If a leaf needs to he

split. lock-coupling up the tree occurs until no more ancestors need ta be split. In such a scheme. at

most 3 nodes are locked by any operation. If a finie chase needs to occur white selecting the correct

parent. lock-coupling will occur and 3 nodes will he locked. There is no algorithm for perfonning

any concurrent restructurlng due to deletion. Instead, Lehman and Yao suggest that if nodes become

excessively underutilized, a batch restructuring cao lock the entire tree and take place while ail other

operations wail.

Lehman and Yao do not use any S-Iocking because they assume atomic disk 1/0 of nodes for

each operation. A modification of their aJgorithm is to have operations S-Iock from root to leaf
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and have updates release their S-lock on the leaf before X-locking the leaf and perfonning any link

chases.

Sagiv

Sagiv [Sag85, Sag86] improves on Lehman and Yao's algorithm by creating a Blink-tree compres­

sion procedure that can run concurrently with olher operalions and by reducing the number of locks

an insen operalion holds al any given lime. There can be either 1 compression process that peri­

odically restructures the entire tree or multiple processes thal modify only 2 adjacent nodes each.

Restructuring consists of merging adjacenl nodes if they contain 2k or fewer entries in total, or re­

distributing entries among adjacent nodes ifthey contain more than 2k entries in total. Compression

processes hold Iodes on 3 nodes at a time: a parent and 2 children. If there is 1compression process,

the process traverses each tree level and examines pairs of adjacent nodes. This process is similar to

the idea lhal was proposed by Salzberg (SaI85]. If there are multiple compression processes, each

process examines only 1 pair of nodes.

Sagiv also modifies the insen algorithm so that it has at mosl J node locked al any one time.

There is no reason why update operations should not he allowed to ovenake one another on the as­

cent up the Blink_tree. Plus, holding only 1 Jock prevents the possibility of deadlock with concurrent

compression processes.

Because compression of the B1ink-tree occurs concurrently with other operations, il is possible

that an operation may find that the node it is to operate on is no longer the correct node or no longer

exists. Sagiv's solution is to simply restart the operation that fails 10 traverse the tree correctly.

Lanin and Shasha

Lanin and Shasha (LS86] perfonn Blink_tree compression by using deleles maloccur, similarly to

insenions, in two stages: the half-merge stage and the delele-link stage. In the half-merge stage,

the node to he deleted ni gets ail its entries moved to its lefl neighbour n and its link pointer set to

point to n. Thus, any operation mal encounters ni (since the pointer to it is still in its parent) will be

able to get to n and traverse the tree correctly. The delete-link stage is the removal of the entry that

points to ni from the parent.
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In the Lanin-Shasha algorithm, S-Iocks are always used without lock-coupling in the initial de­

scent down the Blink_tree. Once an update reaches the leaf, it releases its S-Iock and X-Iocks the

leaf. Operations perfonn any required link chases without lock-coupling. On the ascent up the tree,

inserts hold no more than 1 lock at any time and deletes hold no more than 2 locks at any time.

There are possible inconsistent situations that arise due to early unlocking. It is possible thal an

insert operation may find that the key to add to the parent of a split node already exists in the parenl.

Figure 1.9 shows such a case. In a similar manner, a delete operation may find that the key to delete

in the parent thal separales newly merged nodes does not yet exist in the parent. A simple solution

to this problem. noted by Srinivasan and Carey (SC9Ia, SC91bl. is to lock-couple on the ascent up

the Blink-tree. Operations hold an S-Iock on their split or merged node untii after they've acquired

an X-Iock on the parent. By doing this, an update will oot eocounter a parent thal has yet to be

modified by another update.

1.2.4 Other Aigorithms

Biliris

The aigorithm by Biliris [Bil87] is called the mU protocol. Two different types of SIX-Iocks, which

are incompatible with each other, exist for inserts and deletes. In addition lO the high keys and right

links for each oode as in the Blink_tree, each node contains a low key and left Iink. The maximum

number of insert SIX-Iocks on anode at any given time is equal to the oumber of insertions thal

can be performed on the oode without causing a split. Conversely. the maximum number of delete

SIX-Jocks on a node al any given time is equalto the number of deletions that cao be perfonned on

the oode without requiring a merge.

Mohan and Levine

The ARIES/IM algorithm by Mohan and Levine [ML89. ML92] considers transactions thal may

contain multiple operations on B-trees. The nodes of the tree are such that leaves contain left

and right links and non-leaves do not contain any links. Update operations lock-couple from root

to leaf, placing S-Iocks on all non-Ieaf nodes and an X-Iock on the leaf. Searches use only S­

locks. Link chases may he performed at the Ieaf level. For the non-Ieaf levels, instead of Iink
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Node A

r- --
1

(a) Delete operation deletes entry for key value 13 (b) Delete has performed half-merge
and unlocked Nodes B and C

•

(C' [nsert operation has inserted key value 13 back into tree, performed half-split of Node B
into Nodes Band B'. and unlocked Node B. When the insert operation goes to insert key
value 13 into Node A due to the node split, il will find that key value 13 is alrcady there!

Figure 1.9: Blink_tree inconsistency encountered by insert operation

chases. operations use a complex method based on recursive retries. An important property of the

ARIESIIM algorithm that distinguishes it from the other algorithms is mat only 1 restructuring

operation (either a node split or merge) is allowed 10 occur at a time. Mohan and Levine do suggest.

however. [hat multiple restructuring al the leaf level cao occur by locking a tree lock for restructuring

operations in IX-mode for leaf level splits or merges. locking the tree lock in X-mode for non-Ieaf

level splits or merges. and performing deadlock detection to avoid deadlock caused by multiple

operations attempting to upgrade their IX-lock to an X-Iock.
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The trie was developed by de la Briandais in 1959 [dIB59] and Fredkin in 1960 [Fre60]. The trie

(pronounced utry" even though il is derived from "infonnation retrievaJ" [Fre60» is also known as

a digital tree [Knu?3]. A trie stores data a10ng the paths from root to leaf. unlike a B-tree which

stores data al the nodes. Multiple key values share paths near the root; thus, tries achieve signiticant

data compression rates of 90% or higher for large ti les [Mer98]. As weil as ilS use for large amounlS

of general and spatial data, tries have other applications. Tries were used in the tirst sublinear-time

algorithm for retrieval of substrings from large texlS [Mor68]. In addition, tries are particularly

useful for variable-resolution queries since they store the most signiticant digilS or characters near

the root [MS94, Sha95].

1.3.1 Trie Description

We will consider only binary tries for fixed-Iength keys. In a binary trie. the maximum fanout is 2.

Each edge between a parent and a child represents a data bit. A left edge represents a "0" bit and

a right edge represenlS a "1" bit. The tirst bit of any key is stored al an edge From the root to ilS

child. Since the key values are of a fixed length, ail paths From root to leaf are of the same length.

Figure 1.10 shows a trie for 9 key values: a a a a a a Il, a a la Il 0 0, a a 10 1111, la 0 000 00,

10000101,10001000,10100000.10101100, and 11010000. In the trie, the key value of

o0 0 0aa11 is represented by the leftmost path and the key value 110 1 0a00 is represented by the

rightmost path. The leaves of the trie are empty and not shown.

Orenstein developed a method of storing tries such that pointers are not used [OreS2, OreS3).

Instead of pointers, a pair of bilS is used to represent the edges From anode to ilS children. Each

node is represented by a bit pair that consislS of 2 bits such that the left bit indicates the existence

of a left edge or "0" bit and the right bit indicates the existence of a right edge or "1" bit. A "l"

in the bil pair indicates that the corresponding edge exislS and a "'0" in the bit pair indicates that

the edge does not eXÏst. For example, the root node of the trie in Figure 1.10 is represented by the

bit pair "11" because it has 2 children and the roofs left child is represented by the bil pair "10"

because it has only a left child. Figure 1.11 shows the pointerless representation of the enlire trie in

Figure 1.10.



• CHAPTER 1. INTRODUCTION

Figure 1.10: Trie

Root --l> 11
10 11
11 11 10

10 la 10 10 01
10 01 11 11 :0
10 01 11 10 10 0: le
al 11 la 10 10 lO 10 :0
01 10 01 • 1'\ 1'\" 10 10 :0 :'0_..J >J~

Figure 1.1 1: Pointerless representation of trie
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Without pointers. operations need to traverse the trie by counting the "1" bits in the bit pairs. The

operation compares the CUITent input bit of the operation key with the node. If there is a "1" in the

bit pair that corresponds to the input bit. the operation advances to the next node level: otherwise.

the operation key is not in the trie. To determine which bit pair to ex.amine in the next node level.

the operation counts the number of "1" bits it encounters in the bit pairs of its CUITent level as it

advances from left to right.

For ex.ample, say that an operation is searching for key value 110 1000 a in the trie in Fig­

ures l.10 and l.11. The input bit is "1" (the first bit of the operation key) and the bit pair for the

root node is "11". The right (second) bit of the bit pair indicates that an edge corresponding to "1"
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exists. The operation has encountered 2 "1" bits: the left (first) '·1" bit and the right (second) "1"

bit. Since the second bit matches the current input bi~ the operation detennines that it must next

examine the second node of the next node level.2

At the next node level. the operation checks if the second bit of the operation key. which is "1".

exists in the trie. The operation advances from left to right. taking note of the '·1" bit in the leftmost

node and then examining the second node. The second node is "Il" and the second bit of the

node matches the current input bit. Byencountering this second bit of the node. the operation has

encountered 3 '·l n bits in the level: 1 "1" bit in the leftmost node and bath '·1" bits in the second

node. Thus. the operation will examine the third node of the next node level. Traversai of the trie

continues in this manner until the operation is finished.

Since each "1" bit indicates a child in the next node level. an operation can detennine how many

nodes are in the next level by simply counting aIl the "1" bits in its current level. Thus. the bit pairs

can be stored simply as a sequence of bit pairs. For the trie in Figure 1.10. this sequence is:

(1110 Il Il Il 10 10 10 10 10 01 10 01 Il Il 10 10 ... )

Rather than traverse the entire trie sequenlially. we divide the trie into levels of pages that can be

traversed [Ore831. By using page counts. an operation cao detennine which page contains the next

node to examine without traversing the entire node level of the trie from left to right. With these

page counts. operations need only traverse the node levels within specifie pages. Each page has two

counts: a T-counr and a B-count. The T-count for a page n specifies the number of edges that enter

the top of aU pages to the left of n on page levelln • The B-count for a page n specifies the number

of edges that exil the bottom of aIl pages to the left of n on page levelln • [n addition. each page

level has a T-count and B-count that specifies. respectively. the total number of edges entering the

tops and exiting the bottoms of aIl pages in the level. Ta ensure lhat these counts are effective. edges

are allowed to enter and exil pages only at the tops and bottoms, not the sides. Figure 1.12 shows a

paged trie for the trie in Figure 1.10.

Ta detennine which page to traverse next. operations first add the value of the B-count for their

current page to the value they have calculated as the next node they must examine. Consider our

eartier example of a search for key value 110 1000 O. Once the last node level of the root page is

~[f the CUITent input bit had instead becn a "0", only the first "1" bit of the root would have been encountered and the
operation would he examining the first node of [he next level.
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Figure 1.12: Paged trie
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examined, the operation has counted the '·1" bits and concluded that it must next examine the fifth

node on the next node level. However, since there may be pages to the left of its current page, the

operation must add aIl the edges descending from the pages to the left in order to truly determine

which node on the next node level to examine. In this case. the current page is the root page. so

there is no page to the left and the B·count is O. Thus, the operation determines that it must examine

the fi fth node on the next node level since 5 + 0 = 5.

To determine which page the next node to examine is in. the operation uses the T-counts for the

next page level. The operation selects the page to the left of the page with the minimum T-count that

is greater than or equal to its calculation of 5 + 0 = 5. The T-counts for the pages are 0, 2. 4, and

5. For this search, the page level count 5 is the minimum T-count that is greater than or equal to 5.

Hence, the operation chooses the page to the left; that is, the page with T = 4. [nstead of traversing

the entire node level of the trie, only the page with T = 4 will be traversed.

1.3.2 Trie Operations

We now discuss in detail how operations search and insert key values in a paged trie with pointerless

representation. Since the focus of this thesis is trie concurrency for search and insert operations. we

do not discuss deletions in the paged trie.
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This section on searching a trie page is from [Mer98] except the discussion on finding the next page

to search and the page search algorithm presented in Figure 1.15. The algorithm used for searching

a trie page that is represented as a sequence of bit pairs is from [Ore83]. Consider the paged trie in

Figure 1.12 on page 20 .

The sequence of bit pairs for the root page is:

(11 10 11111110 10 10 10 10 01)

Ta navigate the bit pair sequence. a counter and a cursor are used. The counter. s1ze. stores the

number of bit pairs on each node level. Using size. the cursor, last. stores the location of the last

bit pair on the current node level. Initially for the root page: size = land last = O. As we traverse

the bit pair sequence. size and last are modified as follows:

• size is incremented by 1 each lime the bit pair '·11" is encountered

• last is incremented by size each lime the last bit pair of the current node level is encountered

For the trie in Figure 1.12. size and last are modified for the root page as shawn in Figure 1.13.

position bit pair size last comments
1 a initial values for root page

a 11 2 2 "11" read, last = last + size
l 10
2 11 3 5 "11" read, last = last + size
3 11 4 "11" read
4 11 5 "11" read
5 10 10 last = last + size
6 10
7 la
8 10
9 10

:'0 Cl 15 last = last + size

Figure 1.13: Modification of size and last during page traversai

Ta actually search the page. a bit pair in the page must be compared with a current input bit. As

soon as the current input bit is not found in the bit pair being compared. the search tenninates. The
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bit pair used for comparison is in the position identified by next. Ta find the value of next for the

next node level. a counter. srch is used. Initially for the root page: next = 0 and srch = O. As we

traverse the bit pair sequence, next and srch are modified as follows:

• Before the bit pair at next is reached, srch is incremented by 1 for each "1" bit in the bit

pair.

• At the bit pair at next, increment srch for each "1" bit in the bit pair. including the bit that

matches the current input bit. but not past it.

• At the bit pair at last, next = last + srch and then srch = O.

For the trie in Figure 1.12, the search for the search key 1 0 10 Il 0 0 proceeds for the root page as

shown in Figure 1.14.

position bit pair input bit srch next si:e last
l a a l a

a 11 0 2, then a 2 2 2
l 10 l
2 11 1 2, then a 4 3 5
3 11 2 4

4 11 a 4 5
5 10 A then 0 9 10"t,

6 la 1
7 la 2
8 la 3
9 10 l 4

10 al 4, chen 0 14 15

Figure 1.14: Modification of counters during page search

After searching the root page. the search may need to continue and search other pages of the trie.

Rather than traverse ail the bit pairs of the trie, we use T and B ta determine which trie page to

search next.

The srch counter, by counting the "1,. bits in the current node level, counts the descendent nodes

or subtries from the current node level. Before being reset ta 0 in our example. srch = -l after the
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last node level of the root page is searched. This means that we must go to the fourth subtrie from

the beginning of the next page level. Using the T-counts for the pages on the next page level. the

correct page to use for continuing the search is determined. With the cunent page having a B-count

of B f
• we scan the next page level for T ~ B' + srch and choose the page immediately to the left.

We must also reset next.last. size. and srch in order to correctly traverse the next page. They

are modified. in order, as follows:

• next = B' + srch - T - 1. where T is the T-count for the new page to be searched and B'

is the B-count for the page that was just searched

• srch = 0

• size = T" - T. where T" is the T-count for the page immediately to the right of the new

page to he searched

• last = size - 1

To summarize. the algorithm for searching a trie page is a loop over aIl node levels within the

page. The loop contains a loop until next. code for next. a loop untillast, and code for last. This

algorithm is presented in Figure 1.15. 00 page 24.

Inserting Data into a Trie Page

When inserting data ioto a trie page. the page is traversed in the same manner as a page search.

The values of size, last, srch. and next are used and modified in the same fashion. There are two

phases for inserting data into a trie page:

• Phase 1: Search page and change bit pair that does not match cunent input bit

• Phase 2: Search page and insen bit pairs that represent subsequent cunent input bits

When the current input bit is not found in the bit pair at next, the current input bit is ioserted

and the bit pair al next is changed. For example, if the current input bit is ""1". the bit pair at next
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SEARCH-TRIE-PAGE(key. page)

1* counters size. srch. next, and last have been initialized */
1 lor node-Ievel +- 1 to t 1* t is the number ofnode levels in a page */
2 while bit-pair is before next do
3 il bit-pair = "11" then
4 size +- size + 1
5 srch +- srch + 2
6 else il bit-pair ="10" or bit-pair ="0 1" then
7 srch +- srch + 1
8 il bit-pair does nOl match input bit then
9 retorn "search failed"

10 il bit-pair ="11" and input bit ="0" then
II size +- size + 1
12 srch +- srch + 1
13 else if bit-pair ="11" and input bit ="1" then
14 size +- size + 1
15 srch +- srch + 2
16 else
17 srch +- srch + 1
18 if input bit was last input bit then
19 retom "search succeeded"
20 input bit +- next input bit
21 while bit-pair is before last do
22 if bit-pair ="lI" then
23 size +- s-ize + 1
24 if node_lel'el < t then
25 next +- last + srch
26 srch +- 0
27 last +- last + size

Figure 1.15: Trie Page Search Aigorithm
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will change from either "00" to"O 1" or from "10" to "11:' After the bit pair is changed, size and

8rch may need to he incremented by 1 to reftect the modified bit pair.

After the bit pair is changed and last is reached, the insert procedure then proceeds ta insert bit

pairs into the page at the location specified by next. Each time a bit pair is inserted. the position

of ail subsequent bit pairs is incremented by 1. AIso, srch is incremented by 1 since the inserted

bit pair is either "10" or"O 1", The B-counts of ail pages ta the right on the page level will also be
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incremented by 1.

After reaching the last node level of a page, the insertion may need to continue and insert the

remaining portion of the key value into other pages. The method of determining which page to

insen the remaining portion of the value into is the same as that used to determine which page to

search next.

Once a bit pair has been changed in a page, other pages selected by the insert operation have

bit pairs inserted, but no bit pairs changed. In other words. they have subtries insened into them.

The page traversai is the same, except thal now, before starting the insertion, size and Last must be

incremented by 1 due to the addition of the new subtrie. Also. due to the addition of the subtrie. ail

pages to the right on the page level will have their T·counts and B·counts incremented by 1.

Consider again the trie from Figure 1.12 on page 20. Insening key value 0 100 10 10 ioto the trie

will yield the trie in Figure 1.16. The new key value is indicated by the bold path and the modified

T-counts and B-counts are indicated by the bold italics.

f-------------·--~+----------------~~-----------------1

: 1,

6

:10

Figure 1.16: Paged trie after insertion

The insertion of key value 0 1 0 0 10 10 proceeds as shown in Figure 1.17 for the root page and

in Figure 1.18 for the descendent page.
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position bit pair input bit arch next aize last comments
a a a 1 a

a Il 1 l, then a 1 2 2 a in bit pair
1 la 1 no match
l Il 0 2 3 bit pair changed
2 Il 2, chen a 4 4 6

3 Il 2 5
4 al 0 3 a inserted
5 Il 6
6 la 3, chen a 9 12
7 la l
8 la 2
9 la 1 3 0 inserted

la la
Il la
12 al end of page

Figure 1.17: Modification of counters during page insen for root page

position bit pair input bit arch next aize last comments
1 0 ... 3 2 si~e + l, last + 1,(.

a la .;.

l- OI 2
2 al a 3, t.hen a 5 5 1 inserted
3 la 1
A al ..,
"t "
5 la l 3, chen a 8 8 a inserted
6 al l
7 Il 3 4
8 al 0 4, t.hen 0 12 12 l inserted
9 al l

la la 2
Il al 3
12 la 4 a inserted, end

Figure 1.18: Modification of counters during page insen for descendent page

•
The algorithms for bath phases of insenion are in Figures 1.19 and 1.20 on pages 27 and 28

respectively.
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MAKE-INITIAl-TRIE-INSERT(key, page)

/* counters size. srch. next. and last have been inilialized */
bit-pair-changed f- FALSE

2 for node-level f- 1 to t /* t is the number ofnode levels in a page */
3 while bit-pair is before next do
4 if bit-pair = "11" then
5 size f- size + 1
6 srch +- srch + 2
7 else if bit-pair ="10" or bit-pair = "01" then
8 srch +- srch + 1
9 if bit-pair does not match input bit then

10 Change bit-pair to "11" so mat it does match input bit
Il bit-pair-changed f- TRUE

12 if bit-pair ='·11" and input bit ="0" then
13 size f- size + 1
14 srch f- srch + 1
15 else if bit-pair = "11" and input bit ="1" then
16 size f- size + 1
17 srch f- srch + 2
18 else
19 srch f- srch + 1
20 if input bit was last input bit tben
21 retum ··done"
22 input bit f- next input bit
23 white bit-pair is before last do
24 if bit-pair = '·11" then
25 size f- size + 1
26 if nodeJevel < t then
27 next f- last + srch
28 srch +- 0
29 last f- last + size
30 if bit-pair-changed =TRUE then
31 old-node-level f- node-Ievel
32 node-Ievel f- t /* to break out ofthis for-loop */

33 for node-level f- old-node-level +1 to t
/* see for-loop in IlVSERT-SUBTRlE algorithm in Figure /.20 */

~--------------)
Figure 1.19: Trie Page Insen Algorithm (Initial Insenion)
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INSERT-SUBTRIE(key, page)

/* counters size. srch. next. and last have been initialized */
1 for node-Ievel f- 1 to t 1* t is the number ofnode levels in a page */
2 whUe bit-pair is before next do
3 if bit-pair ="Il" tben
4 size f- size + 1
5 srch f- srch + 2
6 else if bit-pair = "10,. or bit-pair = "0 l'· then
7 srch f- srch + 1
8 Insen bit pair that corresponds to input bit
9 if node-Ievel = 1 then

10 size f- size + 1
II last f- last + 1
12 srch f- srch + 1
13 if input bit was last input bit then
14 retum "done"
15 input bit f- next input bit
16 whUe bit-pair is before last do
17 if bit-pair ="11" tben
18 size +- size + 1
19 if nodeJevel < t then
20 next +- last + srch
21 srch f- 0
22 last +- last + size

Figure 1.20: Trie Page (nsert Algorithm (Subtrie Insertion)
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When the node capacity of a page is exceeded. the page must be split into IWO pages. Since no

trie edges can cross the side boundaries of a page. a page must have a capacity large enough 10 store

a full subtrie. Sa, for t. where t is the number of node levels per page. the minimum node capacity

must be 2t - 1. For example. the insertion of value 10 0 0 1 0 lOin the trie of Figure 1.16 results in a

page split if the node capacity per page is 16 nodes. In this trie. t = 4. so 16 ~ 2t
- 1. Figure 1.21

on page 29 shows the page split that results.

Before a page split occurs. there are al least two subtries in the page. When there are more than

two subtries. a split can be made such thal the most even distribution of nodes possible between

the two pages is achieved. The worst node distribution that cao be made is one where a new page



• CHAPTER ,. INTRODUCTION

,-----------------------.-----------------------------1

Figure 1.21: Paged trie after split
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contains only t nodes; yet. this choice may very weil he necessary.

To detennine an optimal node distribution between the two pages. the number of nodes in each

subtrie of the split page must he known. We will caU caunt t the number of nodes for subtrie i.

where the n subtries in the page are numbered left to right from 0 to n - 1. To calculate countt • the

location of the last node for subtrie 'i on the current node level must be slored in lastt • We know

we are in subtrie i if the current node position is > lasti-l and ~ lasti. For the next node level.

the new value for lasti is calculated by using sizei and last. Initially, counti = O. lasti = i. and

S'izei = 1. As the page is traversed, these cursors are modified as follows:

• counti is incremented by 1 each lime a bit pair in subtrie i is encountered.

• sizel is incremented by 1 each lime the bit pair "11" is encountered in subtrie i

When the bit pair al last is reached.lasti is modified for each subtrie ·i as fol1ows before incre­

menting last by size:

• last· = last + ~l size·l ~l=O J

To reduce the number of page traversais that are required. the calculation of countù sizeù and lasti

can he done while the insertion procedure is traversing the page.
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Once the node counls for the subtries are known. we take the absolute value of ail n - 1 differ­

ences (counto + ... + countr ) - (countr+l + ... + countn-d and select x from the miminum

difference. The page is then ttaversed again. keeping all nodes at positions ~ last I in the page that

is being split. and placing all nodes at positions> lastr inlo the new page that is created.

Consider again the trie from Figure 1.16 on page 25. If the value 1 00 10 0 0 0 is inserted instead

of 1000 1 0 10. the page that will he split contains three subtries and we must decide where to split

the page. The trie in Figure 1.22 shows the trie aCter the insertion. but before the page is split.

,- ..._._---------------------_ .._---------------------:
:T=O : l

:8 =0 : 7

7

: Il

Figure 1.22: Paged trie before optimal split

From the calculation of counti. sizei. and last l in Figure 1.23. we see that for the three subtries

caunto = 9. cauntL = 4. and count2 = 7. The two differences that must be calculated are

19 - (4 + 7) 1 = 2 and 1(9 + 4) - 71 = 6. The minimum difference is 2 and the value for .I is O.

so for each node level. ail nodes at positions ~ lasto remain in the page and ail nodes at positions

> lasto get placed in the new page. The resulting trie is in Figure 1.24.
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position bit pair counto countl count:;! sizeo sizel si::e2 Casto CastI Cast:;!
a a a l 1 l a l 2

a 11 l 2
1 la l
2 11 l 2 4 5 7

3 11 2 3
4 10 3
5 10 2
6 10 2
7 al 3 10 11 13
8 la 4
9 10 5

la la 6
11 10 3
12 la 4
13 10 5 16 17 19
14 10 7

15 al 8
16 10 9
17 10 4

18 10 6
19 la ï

Figure 1.23: Modification of counters prior to optimal page split

,-----------------._----------------_.----------------,
: l

:7

7

: Il

Figure 1.24: Paged trie after determining optimal split

31
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We have introduced B-lrees and tries, as weil as various algorithms for concurrent B-tree opera­

tions. [n Chapter 2, we summarize various performance studies that have been published for B-tree

concunency algorithms and describe our model for simulating B-lree and trie concurrency. Chap­

ter 3 describes the simulation experiments that we perfonned to measure B-tree concurrency. We

present our perfonnance results for 8-tree concurrency and compare and contrast them with pub­

Iished results. Our goal is to be able to scale our results for trie concunency onto the published

graphs for B-tree concurrency. In Chapter 4, we present our algorithms for concurrent search and

insert operations in a paged trie with pointerless representation. We then present our performance

results for these algorithms and compare them with the B-tree results. We conclude in Chapter 5 by

summarizing the thesis and proposing future work related to trie concurrency.
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Chapter 2

Concurrency Simulation

ln this chapter. we first describe various concurrency studies that have been published for B-trees.

We selected Srinivasan and Carey's work [SC9Ib] as a basis for and evaluating our own B-tree

results because they perfonn a detailed simulation study by using a large varielY of experiments

for B-tree concurrency in a centralized DBMS. Thus. we describe the simulation model we used to

simulate B-tree and trie concurrency involving the various system resources specified by Srinivasan

and Carey.

2.1 Related Work

When proposing a new concurrency control a1gorithm. authors usually attempl lO estimale ilS per­

fonnance by analytical or simulation methods. We now briefty discuss work that has been done to

measure the perfonnance of various B-tree concurrency control algorithms.

Samadi

Samadi [Sam76] presents simulation results for his a1gorithm. He measures perfonnance by mea­

suring access and waiting limes for each terminal. The interarrival lime between requests decreases

until requeslS arrive fast enough thal the system cao no longer haodle them.

33
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Bayer and Schkolnick
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Bayer and Schkolnick [BS77] use fonnulas to approximate various performance measurements.

They approximate the number of waiting operations. the number of nodes encountered during re­

tries. and the number of lock conversions. Using these approximations. they determine what values

to use for the paramelers in their Aigorithm 4. Their model is static and they assume that ail opera­

tions descend the tree simulaneously.

BWris

Biliris [Bil85] uses simulation to compare four algorithms: naive lock-coupling, optimistic descenl

with retries using SIX-Iocks instead of X-locks, side-branching, and his mU prolocol. He finds that

naive lock-coupling produces the worst perfonnance and thal the mU protocol produces the best

performance. Unfonunately Biliris does not study the Blink_tree algorithms nor provide response

times for individual operations or a detailed analysis of the results.

Lanin and Shasha

Lanin and Shasha [LS86] use simulation to compare five algorithms: their modification of Lehman

and Yao's B1ink algorithm. Bayer and Schkolnick's Alglrithms 1and 2. the Mond-Raz algorithm. and

the Mond-Raz algorithm modified so that optimistic descents are made as in Bayer and Schkolnick's

Aigorithm 2 and retries are made with the Mond-Raz algorithm. They compare speedup. which is

the ratio of time it takes 1 tenninal to do a unit of work to the time it takes n tenninals to do the

same unit of work. They do not simulate very Many concurrently operating terminais.

Their results show that with low fanoul. their modified B1ink algorithm perfonns much better than

the other algorithms. They found that the Blink algorithm runs 26.5 times faster with 40 terminais

than with 1 terminal and that the next best algorithm. the Mond-Raz algorithm with optimistic

descent. runs only about 10 limes faster. With higher fanoul, the Blink algorithm and the Mond-Raz

algorithm with optimistic descent perfoon almost equally weil.
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Johnson and Sbasha
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Johnson and Shasha [JS9O] use an analytic model with an open queue to analyze three algorithms:

Bayer and Schlcolnick's Aigorithms 1 and 2. and Lehman and Yao's Blink algorithm. The version

of the Lehman-Yao algorithm they use has no lock-coupling on ascent and no node merging since

merges are rare if inserts outnumber deletes [JS89]. In their experiments. there are few link chases

in the Blink algorithms. as weil as no buffers or resource conlention.

They find that the lock-coupling algorithms create a bottleneck al the root and that the BHnk

algorithm provides much better performance. Maximum throughpul for Aigorithm 1 occurs for

an arrivai rate of about 0.6 operations al the foot per unil of time. Algorithm 2 is better since its

maximum throughput occurs at an arrivai raie of about 2.7. The Blink algorithm. however, reaches

no maximum throughput. Even at an arrivai rate of 14. response times for Blink operations remain

almost constant.

Srinivasan and Carey

Srinivasan and Carey (SC91 a. SC91 b] use simulation with a c10sed queue to test various algorithms

in a system with buffers and contention for disks and CPUs. They study numerous algorithms for

four classes of algorithms: Blink algorithms. optimistic descent. lock-coupling with SIX-Iocks. and

lock-coupling with X-Iocks. They also use their results to predict the performance of the side­

branching technique, the mU protocol. and the ARIES/IM algorithm. They simulate a large variety

of situations with varying workloads and resource contention. They also study situations where the

number of concurrent operations is high enough to cause many link chases.

Their results are similar with those of Johnson and Shasha. They find that the Olink algorithms

perform the best and allow the most concurrency. In facto they find that the olink algorithm with

lock-coupling on ascent~ which is more practical. is generally as good as the Lanin-Shasha version.

Unlike Johnson and Shasha, they find that Bayer and Schlcolnick's Aigorithm 1 perfonns similarly

to Aigorithm 2 when there are many concurrent operations. They predict that the side-branching

algorithm will not perform as weil as the Blink algorithms and that the mU protocol may perform

as weil as the olink algorithms only in cenain situations. With the modification that allows the

ARIESIIM algorithm to perfonn multiple tree restructuring simultaneously, they suggest that the
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ARIESIIM algorithm may perfonn similarly to the Blink algorithms.

Johnson and Shasba
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Johnson and Shasha [JS93b] publish an elaboration of [JS9O]. They analyze seven algorithms:

Bayer and Schkolnick's Aigorithms 1 and 2, the Mond-Raz algorithm, optimistic descent using

Aigorithm 3 and SIX-Iocles instead of X-Iocles for retries, optimistic descent where retries occur

when ail of a certain number of bollom tree levels need to be restrllctured, the Lehman-Yao Blink

algorithm. and two-phase locking. In addition. they include contention for disks and buffers. Using

simulation. they confinn their analysis.

They again find that the Lehman-Yao algorithm provides the most concurrency. At an arrivaI

rate of 160 with no resource contention, the Blink algorithm still does not reach any maximum

throughput. The next oost algorithm. which is the optimistic descent with SIX-Iocks. reaches a

maximum throughput at an arrivai rate of about 10. With resource contention. the still find that the

Blink algorithm perfonns best even though it approaches the same performance as the optimistic

descent algorithm when resource contention is high. They recommend using either the ARIES/IM

or optimistic descent algorithms when the B-tree is shrinking because the Lehman-Yao algorithm

provides no node merging. Since their model is analytic. it may 00 applied to future concurrency

control algorithms and even future data structures.

2.2 Simulation Overview

Discrete-event simulation, which emerged as an established discipline with the publication of

[Toc63], was originally designed to solve complex queueing theory problems. In a discrete-event

simulation. the system state changes at distinct points in time, in contrast to a conùnuous simulation

where the system state changes continuously as a function of time. We have implemented an asyn­

chronous discrete-event simulation where events (which change the system state) may occur at any

time. instead of a synchronous discrele-event simulation where events occur al fixed time intervals.

There is an event for each terminal in the system. Each event contains the next action to 00

perfonned by the terminal, the time when the event will occur. and other variables needed to store
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the present state of the tenninal (such as operation type. key. operation stan time. current page. etc.).

The simulation program is a loop that fetches the next event. caUs a subroutine which performs the

state change specified by the event. and creates a new event which will occur at a future lime until

the simulation is finished.

Future events with known activation time are in a (binary) heap [Wil64] and future events with

unknown activation time are on a wait queue. We use a heap to store future events whose future

activation time is known because insertion and extraction of events in a heap require only 0 (log2 n)

time. where n is the number of events in the heap. Events are soned on the heap such that events

are extracted in increasing order of activation time.

We store future events whose future activation time is unknown on the wait queue of the lock or

other system resource for which they are waiting. Once the grant lime for these events is known,

the event's activation lime is set and the event is placed in the heap. We discuss these wait queues

in more detail in the next section.

We use CPU instructions as the unit of lime for scheduling events. Each action that an event

specifies requires a number of CPU instructions to perform. After the action is performed for the

terminal and the system state changed. the next event for that tenninal will occur at a time equal to

the current time plus the time required to perform the action. We conven the lime required for disk

usage. traditionally measured in milliseconds (ms). ioto CPU instructions by using the CPU speed.

which is measured in millions of instructions per second (MIPS).

Furthennore. our simulation model is a c10sed queueing model. Rather than set an arrivai rate

for transactions into the system as in an open queueing model. each terminal submits a transaction

and. upen completion of the transaction. immediately submits another transaction. There is zero

think time between completion of one transaction and submission of the next one. By varying the

number of terminais in the system (the multiprogramming level or MPL), we vary the number of

concurrent transactions in the system.

We implement our simulation using the Java programming language [AG96, GJS96) because

Java is a simple general-purpose object-oriented platform-independent programming language. Srini­

vasan and Carey, however. implement their simulations using the DeNet simulation language [Liv90).
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Srinivasan and Carey simulate B-tree concurrency in a system containing various types of available

resources. We now expIain how we simulate these resources.

2.3.1 Locks

There is a lock for each page in the B-tree and trie. Each lock consists of a current lock mode. a

grant count. and a wait queue. The current lock mode indicates whether the lock is free. S-Iocked.

X-Iocked, or in wait mode. The grant count contains the number of tenninals currently granted the

lock. The grant count is 0 when the lock is free. 1 when the lock is X-Iocked, and 1or more when the

lock is S-Iocked or in wait mode. If a terminal attempts to lock a page in a mode incompatible with

the current lock mode, the lock mode is set to indicate a wait and the future event for the terminal

is placed on the wait queue. Locks are granted fCfS (first-come, tirst served), so any subsequent

requests for a lock in wait mode are placed on the wait queue. When a terminal waiting on the queue

is granted the lock, the activation time for that terminal's event is set to the current time and the event

is moved from the wait queue to the heap. Since the activation time for the granted tenninal's future

event is set to the current time, the next event to occur will he the granted terminal's future event­

acquiring the lock.

2.3.2 HulYers

The buffer pool exists to store currently and recently used pages in main memory and reduce disk

usage. The buffer manager consists of the pages that are presently in the buffer. a fix count for each

page, and an ""LRU (Ieast recently used) stack:' The LRU stack orders pages mat are in the buffer

and not currently in use such that the page at the top of the stack, which is least recently used, is the

page to be replaced when another page needs to he insened into the buffer.

Before starting a simulation, we initialize the buffer from root ta leaf and from left to right so

that the most frequently used pages (those c10sest to the root page) are in the buffer. Initially, ail

pages in the buffer are unfixed (wim fix count of 0) and are therefore in the LRU stack.

When a terminal requests a page for processing, it fixes the page in the buffer. When a page is
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fixed, the fix count for the page is incremented by 1. If the requested page is in the LRU staek at

the time of fixing, the page is removed from the LRU stack so that it is not written out of the buffer

while in use by the terminal. If the requested page is not in the buffer at the time of fixing, a buffer

miss occurs. When a buffer miss occurs, the terminal must perfonn disk 1/0 twice: once to write

out the LRU page from the buffer and once to read the requested page into the buffer. The LRU

page written out of the buffer is also removed from the LRU stack. Once the terminal is finished

processing the page, the fix count for the page is decremented by 1. If the fix count becomes 0, the

page is then added to the LRU stack.

We simulate an infinite buffer pool by simply assuming that ail pages (except newly created

pages which result from a page split) are always in the buffer. Newly created pages are immediately

placed in the buffer after their creation. Therefore, wilh an infinite buffer pool. there is no disk 1/0.

2.3.3 Disks

Each disk has a flag indicating whether it is in use or not. as weil as its own wail queue for pending

1/0 requests. Requests for a disk are serviced in a FCFS manner. A disk is used to write out a page

from the buffer or to read a page into the buffer. Disk 1/0 occurs when a buffer miss oceurs or when

a page must he written out of the buffer to make space for a newly ereated page.

When disk 1/0 is required, the disk chosen to perfonn the 1/0 is selected at random from ail the

existing disks. If the requested disk is free, the disk is assigned to the tenninal and the flag is set

to indicate the disk is in use. If the requested disk is already in use, the terminal must wait for the

disk to become free. When the terminal must wait for a disk, its future event is placed on the disk's

wait queue. Once the grant time for the disk is known. the waiting tenninaJ's future event activation

lime is set and the future event is moved from the wait queue to the heap. The time required for a

disk 1/0 is calculated at random between 0 and 27 ms. This 1/0 time includes seek lime, rotational

latency. and transfer lime.

The idea of selecting a disk at random for reading a page into the buffer is rather unrealistic since

the required page May he stored on a specific disk. However, since pages are unifonnly distributed

among ail the disks, selecling a disk at random for input produces the same result as using the

requested page to determine which disk to use. Therefore, for simplicity, we select a disk at random
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for page input.

We simulate infinite disks by creating only one disk and ignoring its status ftag. Thus, with

infinite disks, tenninals never wait to use a disk.

2.3.4 CPUs

Terminais use a CPU to perform various tasks. These tasks and their cost in terms of CPU instruc~

tions are given in Table 2.1. These costs, except for the T-count access cost for tries, are the same

as those used by Srinivasan and Carey.

Cost (inCPU
Parameter Description instruclions)

CC_CPU CPU cost for il lock or unlock request 100
BUF_CPU CPU cost for il buffer caU 1000
PAGE..5EARCH_CPU CPU cost for il page search 50
PAGE..MODIFY_CPU CPU cost for il page modification 500
PAGE_COPY_CPU CPU cost 10 copy a page between butTer and disk 1000
PAGE_COUNT_CPU CPU cost 10 access T-count from memory (for trie only) 50

Table 2.1: CPU costs

To simulate a number of CPUs, we use a counter to indicate the number ofCPUs currently in use

and a wail queue. CPUs are granted 10 lenninals on a fCfS basis. If the number of CPUs currently

in use is less than the number ofexisting CPUs, the terminal is granted use of a CPU. If ail the CPUs

are in use al the lime a terminal requests a CPU, the terminal's future event goes on the wail queue.

As saon as a CPU becomes available, the waiting termina)'s future event activation lime is set and

the future event is moved from the queue to the heap.

Ta simulate infinite CPUs, we simply allow an arbitrary number of CPUs to be in use at any

given moment. Thus, with infinite CPUs, terminais never wait to use a CPU.

To summarize, the future event for a terminal indicates that tenninal's current state and specifies

what action will be taken next by the tenninal. Future events for a tenninal are either in the heap with

a known activation lime or on a wail queue with an unknown activation lime. Once the grant time

for the resource is known, the grant time is assigned to the future event and the event is moved from
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the wail queue to the heap. Figure 2.1 indicates the location of future events during the concurrency

simulation.

neXl evenl lo occur
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and an unknown lime
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Figure 2.1: Location of future events during simulation
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Chapter3

B-Tree Concurrency Implementation

ln this chapter. we describe the experiments used to evaIuate the accuracy of our concurrency simu­

lation. We then present and discuss the experimentaI results we obtained and compare and contrast

them with published results.

3.1 Experimental Procedure

The Blink algorithms usually provide the best B-tree concurrency. Therefore. we use the throughput

results obtained by Srinivasan and Carey [SC9Ib] for the B1ink aIgorithm with lock-coupHng on

ascent as a basis for evaluating our own B-tree experiments. Unless otherwise noted. our method is

the same as that perfonned by Srinivasan and Carey. In this chapter and Chapter 4. we use the tenn

··B-tree" to refer to the Blink_tree. We aIso now refer to nodes as pages to simplify comparison with

tries.

3.1.1 B-Tree Properties

\Ve build a B-tree with a random pennutation of ail 40.000 odd integers vaIued between 0 and

80 000. A B-tree can have either a high fanout of 200 entries per page or a low fanout of 8 entries

per page. The high-fanout 8-ttee has 3 levels and contains initiaIly 3 non-Ieaf pages and 264 leaf

pages. The low-fanoul B-tree has 6 levels and contains initiaIly 1464 non-leaf pages and 6999 leaf

pages. Srinivasan and Carey's initiaI high-fanout B-tree contains 3 non-Ieaf pages and 260 leaf

42
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pages, and their initiallow-fanout B-tree contains around 1500 non-Ieaf pages and 7000 leaf pages.

3.1.2 B-Tree Operations

Searches use any key value between 0 and 80000. inserts use ooly even key values between 0 and

80 000 (so that they are always successful), and appends use keys sequentially from 80 00 1 onwards.

Unlike Srinivasao and Carey. we do not implement concurrent deletioos for B-trees because our

research focuses on concurrent trie search and insert operations.

Our experimeots simulate either high data contention with 100% inserts or extremely high data

contention with roughly 50% searches and 50% appends. We do not simulate any low data con­

tention because Srinivasan and Carey use deletes along with inserts and searches in their low data

contention simulations ta achieve a steady state B-tree.

3.1.3 System Properties

We vary the system properties ta simulate various situations. The buffer for the high-fanout B-tree

cao be either 200 pages, which puts 75% of the initial B-tree in memory, or an infioite number

of pages, which creates an in-memory B-tree. We simulate an infinitely large buffer by simply

assuming every page is in the buffer (except for new pages which must be placed in the buffer).

Srinivasan and Carey instead simuJate an in-memory B-tree by using a 600-page buffer. For the

low-fanout B-tree, the buffer is 600 pages. which puts only 7% of the B-tree in memory. Srinivasan

and Carey also implement an in-memory low-fanout B-tree, but we do not since Srinivasan and

Carey do not present graphical resuJts for this case.

To simulate various environments, we also vary the level of avaiJable resourccs. For B-trees that

are not memory-resident, the use of disk ua is necessary. In such a case, there are either 8 disks or

an infinite number of disks. With infinitely many disks. no tenninal ever waits for an available disk.

The other resource that we vary in number is the CPU. There cao either be only 1 CPU or an

infinite nurober of CPUs. As with the disk resource, with infinitely many CPUs. no tenninal ever

waits to use a CPU.

To sumarize, Table 3.1 cantains the values we may use for the various parameters. Disk lime is

measured in tenns of the number of CPU instructions that can be perfonned while the disk is in use.
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The maximum disk time is 27 ms, which is the equivalenl la perfonning 540,000 CPU instructions

with a 20 MIPS CPU.

Values (in CPU
instructions unless

Parameter Dacription otherwise noted)
NUM_CPUS Number of CPUs 1.00
NUM..DISKS Number of disks 8. oc

CPU..5PEED in MIPS (millions of instructions per second) 20
DISK_TlME Includes seeko latency. and transfer time (max 27 ms) 0..540000

CC_CPU CPU cost for a Jock or unJock request 100
BUF.CPU CPU cast for a buffer cali 1000
PAGE..5EARCH_CPU CPU cost for a page search 50
PAGE..MODIFY_CPU CPU cast for a page modification 500
PAGE_COPY_CPU CPU COSt to copy a page between buffer and disk 1000
FANOUT Number of entries per B-Lree page 8.200
NUM-PAGE..LEVELS Number of page levels 6.3
INITIAL...NUM-KEYS Number of keys in initial B-tree 40000

NU~LBUFFERS Number of butTers 200.600. x

MPL Multiprogramming level (number of terminais) 1..300
NUM_OPERATIONS Number of operations perforrncd in each simulation 10000
SEARCH.PROB Probability of search operation 0.0.0.5
INSERT.PROB Probability of insert operation 0.0. 1.0
APPEND.PROB Probability of append operation 0.0.0.5

Table 3.1: Parameters far B-tree simulations

3.1.4 Experiments

Srinivasan and Carey provide thraughput curves for 7 of their experiments invalving high and ex­

tremely high data contention. These 7 experiments are:

1. High-fanout, 100% inserts, infinite resources. in-memory

2. High-fanout. 100% inserts. infinite resaurces. 200 buffer pages

3. High-fanaul. 100% inserts, 1CPU. 8 disks. 200 buffer pages

4. Law-fanoul. 100% insens. infinite resaurces. 600 buffer pages
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5. Low-fanout, 100% insens, 1 CPU. 8 disks, 600 buffer pages

6. High-fanout, 50% appends. 50% searches. infinite resources. 200 buffer pages

7. High-fanout. 50% appends. 50% searches. 1 CPU. infinite disks. in-memory
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Using the parameters in Table 3.1. we perfonn these 7 experiments as a measure of the correctness

of our simulation.

3.2 Experimental Results

We now present and discuss our results for the B-tree concurrency experiments. We also compare

and contrast our results with those obtained by Srinivasan and Carey. Each B-tree throughput curve

we generate shows the mean throughput for 100 simulations. The error bars show standard devia­

tion. To better understand our results, we break down the average number of CPU instructions for

each operation during only 1simulation into its various components.

3.2.1 D·Tree Experiment 1: High Fanout, 100% Inserts, Infinite Resources, and ln

Memory

The throughput curves we and Srinivasan and Carey obtained are in Figure 3.1. The breakdown of

the average number of CPU instructions required by each operation is in Table 3.2.

Performing 10.000 insenions causes about 102 page splits. However. only about 40% to 45% of

the page splits occur in the first 5,000 operations. So, since the B-uee initially has 267 pages, we

will assume an average B-tree size of (0.425 x 102) + 267 ~ 310 pages. There are nOl very many

Iink chases. There is a maximum of only aboul 54 Iink chases per 10.000 operations. Therefore. for

brevity. we omit them from our calculations below and only briefely note when they have a slight

effect.

CC Requests

In the 3-level B-tree. insen operations usually S-Iock and unlock 3 pages. After releasing its S-Iock

on a leaf page. the insen operation X-Iocks and unlocks the leaf. With the cost per concurrency
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Figure 3.1: B-Tree Experiment 1 throughput
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Time (CPU
MPL Request Type Instructions)

1 CC 803
BUF 4020
PAGESEARCH 151
PAGE MOOIFY 510
Lock Wail 0
TOlai 5484

5 CC 803
BUF 4021
PAGESEARCH 151
PAGE MOOIFY 511
Lock Wail 18
Total 5503

30 CC 803
BUF 4021
PAGESEARCH 151
PAGE MOOIFY 510
lock Wait 154
Toul 5639

TimelCPU
l\IPL Request Type Instruclions)
100 CC 804

BUF 4023
PAGESEARCH t5t
PAGE MOOIFY 510
lock Wait 624
Tolal 6tll

200 CC 804
BUF 4026
PAGESEARCH 151
PAGE MOOfFY 510
lock Wait 1280
Total 6770

•
Table 3.2: B-tree Experimem 1 CPU usage per operation
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control request being 100 instructions. we expect 800 instructions for these CC requests. The ad­

ditionaJ 3 instructions per operation arise from page splitting. Each page split yields 3 more CC

requests: converting the X·lock on the leaf to an S-lock~ and X.locking and unlocking the parent

page. Averaged over 10~OOO operations~ 102 page splits yields about 102/10000 x 3 x 100 ::= 3

more instructions per operation. Any Additional CC requests arise from link chases. SOt as shown

for CC requests in Table 3.2~ there are about 803 instructions per operation used for concurrency

control.

BUF Requests

With the B-tree having 3 page levels. operations usuaJly access 3 pages from the buffer. An extra

buffer access occurs aCter X-Iocking a leaf to ensure that the leaf is still the correct page to modify.

Each page split yields 2 extra buffer accesses because the terminal places the new page in the buffer

and accesses the parent page again from the buffer. Sa, for a cost of 1000 instructions per buffer

request and about 102 page splits over 10,000 operations, we expect about (2 x 102/10000 +

4) x 1000 :::::: 4020 instructions devoted to buffer requests. [n Table 3.2. the instructions for buffer

requests are as we expect~ and increase slightly at higher MPL due to link chases.

PAGE..8EARCH Requesl5

Each insert operation searches 3 pages in the B·tree. After a page split. the operation must search

the parent page. SOt at a cost of 50 instructions per search and 102 page splits for 10.000 insertions.

we expect the (3 + 102/10000) x 50 ::::: 151 instructions per operation for searching that Table 3.2

indicates. Each link chase causes an additionaJ page to be searched but, with the very smaJl number

of Iink chases. the effects are minute.

PAGE..MODIFY Requesl5

UsuaJly. operations modify ooly the leaf page. For each page split. 2 additional pages (the new page

and the parent) are modified. Each modification costs 500 instructions. so for 102 page splits and

10.000 insertions. we expect (2 x 102/10000 + 1) x 500 ::= 510 instructions per operation for page
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modification as shown in Table 3.2.
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Terminais do not experience Many confticting lock modes in the B-tree. According to Table 3.2.

the instructions each operation requires increases by a significantly lower factor than MPL. As

a result. throughput increases greatly as MPL increases. For example. operations at an MPL of

200 require about 6770 instructions each. which is a factor of only about 1.1 more than the 611 1

instructions required per operation at an MPL of 100. Comparing throughput curves in Figure 3.1.

we are satisfied with our results for this experiment.

3.2.2 B-Tree Experiment 2: High Fanout, 100% Inserts, Infinite Resources, and 200

ButTers

The throughput curves we and Srinivasan and Carey obtained are in Figure 3.2. The breakdown of

CPU instructions required for each operation is in Table 3.3. We do not discuss the results that are

unaffected by the limitation of buffer sile since they are explained in Section 3.2.1.

BUF Requests

The limitation of buffer size affects the number of buffer requests because the LRU page May need

to he removed 50 that the requested page can be placed in the buffer. To determine how much of an

effect occurs. we calculate the probability that a buffer miss OCCUTS. The top 2 page levels have only

3 pages. 50 we assume that those 3 pages are aJways in the buffer. Therefore. for the average B-tree

sile of 310 pages and a buffer sile of 200 pages. we estimate that the probability that a specifie leaf

page is in the buffer is (200 - 3)/(310 - 3) ::::: 0.64 and that the probability of a buffer miss is about

1-0.64 ::::: 0.36. Each buffer miss yields 2 buffer calls due to writing-out and reading-in. 50 for each

insert operation. we expect 0.36 x 2 ::::: 0.72 buffer requests (requiring about 720 instructions) due

to buffer misses. Adding that to the 4020 instructions each operation needs for page navigation and

splitting (which we calculated in Section 3.2.1). we expect about 4740 instructions per operation for

buffer requests. which is close to the buffer request measurement in Table 3.3.
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Figure 3.2: B-tree Experiment 2 throughput

PAGE.COPY Requests
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Each time the terminal encounters a buffer miss, it accesses a disk twice: once to write-out the LRU

page and once to read-in the requested page. Each disk access generates a PAGE_COPY request.

so we expect 0.72 PAGE.COPY requests based on our calculation for buffer requests. In addition.

each page split yields a PAGE_COPY request because the LRU page must be copied ta disk ta make

room for the new page. At about 102 splits over 10.000 operations. that amounts to an additionaJ

0.01 PAGE_COPY requests per operation. Each PAGE_COPY request costs 1()()() instructions, so

we expect an average of (0.72 + 0.01) x 100 :::: 730 instructions per operation, which is close to the

PAGE_COPY request measurements in Table 3.3.

Disk Time

The disk lime varies from 0 ta 27 ms. which is the equivaJent to perfonning 0 ta 540000 CPU

instructions with a CPU rated at 20 MIPS. As explained above. there are 2 disk accesses for each
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Tlme(CPU
l\IPL Request Type Insuuctions)

1 CC 803
BUF 4747
PAGESEARCH 151
PAGE MODIFY 511
PAGECOPY 726
Disk ume 196894
Lock Wail 0
Total 203831

5 CC 803
BUF 4705
PAGESEARCH 151
PAGE MODIFY 510
PAGECOPY 685
Disk ume 184865
Leck Wail 3893
Tolal 195610

30 CC S03
BUF 4722
PAGESEARCH 151
PAGE MODIFY 510
PAGECOPY 701
Disk ume 188689
Leck Wait 25829
TOlal 221404

Time(CPU
MPL RequatType Instructions)
100 CC 804

BUF 4715
PAGESEARCH 151
PAGE MODIFY 510
PAGECOPY 691
Disk Time 187969
Lock Wait 72970
Total 267809

200 CC S04
BUF 4709
PAGESEARCH 151
PAGE MODIFY 510
PAGECOPY 682
Disk Time 187366
Lock Wail 123151
Total 317372

•

Table 3.3: B-tree Experiment 2 CPU usage per operation

buffer miss and 1disk access for each page split; hence. we expect 0.73 disk accesses per operation.

At an average disk time equivalent to perfonning 540000/2 ::::: 270000 instructions. each operation

devotes a time equaI to perfonning about 0.73 x 270000 ~ 197100 instructions for disk 1/0 as

shown in Table 3.3.

Even with the addition ofdisk ua, tenninals still do not experience many conflicting lock modes.

Therefore, throughput continues to rise as MPL increases. At ils lowest rate of throughput increase.

which occurs when MPL increases from 100 to 200. the number of instructions required by each

operation increases by a factor of ooly about 1.2 from 267809 to 317372. Comparing the throughput

curves in Figure 3.2, we are satisfied that our simulation perfonns correctly for this experiment.
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3.2.3 B-Tree Experiment 3: High Fanout, 100% Inserts, 1 CPU,8 Disks, and 200

Buffers

Our throughput curves and those of Srinivasan and Carey are in Figure 3.3. We break down the

number ofCPU instructions required for each operaration into the various components in Table 3.4.

We do Dot discuss the results that are unaffected by the limitation on the number of CPUsand disks.

The CC, PAGE..5EARCH, and PAGE-MODIFY results the same as those in Section 3.2.1 and the

BUF results are the same as those in Section 3.2.2.

high tanout: 100% insens: 1 CPU: 8 Disks: 200 buts
2500

CYr Results
-&- Snrnvasan & carey

2000

500

o~--~--.....----.----......
o ~ fOO f~ ~

Multiprogramming Level (MPL)

Figure 3.3: B-tree Experiment 3 throughput

PAGE_COPY Requests

InitiaIly, the disk accesses and PAGE_COPY requests are as calculated in Section 3.2.2. However,

as MPL increases, the number of disk accesses and PAGE_COPY requests decreases. Pending 1/0

for any given page may be for a longer period of time DOW because terminaIs may need to wait to

use a disk. As MPL increases, the probability that there is aIready pending 1/0 for the page not
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TimeCCPU
MPL Request Type Instructions)

1 CC 803
OUF 4712
PAGESEARCH 151
PAGE MODIFY 510
PAGECOPY 692
DiskTime 184436
Disk Wail a
CPU Wait 0
Lock Wail a
Total 191304

5 CC 803
OUF 4704
PAGESEARCH 151
PAGE MODIFY 510
PAGECOPY 684
Disk Time 185261
Disk Wait 63005
CPU Wail 899
Lock Wail 3216
Total 259232

30 CC 803
OUF 4623
PAGESEARCH 151
PAGE MODIFY 510
PAGECOPY 602
Disk Time 272098
Disk Wail 434024
CPUWail 5315
Lock Wail 14395
TalaI 732521

TimeCCPU
MPL Request Type InslrUctions)
100 CC 804

BUF 4419
PAGESEARCH 151
PAGE MODIFY 510
PAGECOPY 393
Disk Time 600467
Disk Wait 711876
CPU Wail 30664
Lock Wait 50890
Total 1400173

200 CC 806
BUF 4306
PAGESEARCH 151
PAGE MODIFY 511
PAGECOPY 269
Disk Time 813785
Disk Wail 653324
CPU Wail 145219
Lock Wail 147281
Tmal 1765653

•

Table 3.4: B-tree Experiment 3 CPU usage per operation

found in the buffer by a terminal increases. [n such a case, disk ua for the page occurs only once,

even though multiple tenninals encountered a buffer miss for the page.

Disk Time and Disk Wait

With the limitation on the number of disks. the wait Ume for a disk increases as MPL increases. The

time spent waiting for pending ua is added to disk time because, for infinite disks, a tenninal may

be waiting for pending lia, but not for a disk. Since pending lia tirnes increase as mentioned above

for PAGE_COPY requests, disk Ume increases.
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CPU Wail and Lock Wait
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From Table 3.4, we see that the CPU and lack wait times increase expontiaJly due to the limitation

on CPU resources and the fact that lacks are held longer since they're held while waiting for disk

resources.

Throughput for our simulation continues to rise as MPL increases because the number of in­

structions required for each operation does not increase by a very large factor. For example. even

though MPL increases by a factor of 2 between 100 and 200 terminais. the number of instructions

peroperation increases from 1400173 ta 1765653, which is a factorofonly about 1.3.

Our results in Figure 3.3 differ from those of Srinivasan and Carey. Srinivasan and Carey state

in [SC91 b] that B-Iink algorithms saturate the disks at high MPL. Since the disk limes and disk wait

times for our results in Table 3.4 increase only logarithmically as MPL increases, our disk usage is

likely somehow differenl from that which they simulated.

3.2.4 B·Tree Experiment 4: Low Fanout, 100% Inserts, Infinite Resources, and 600

ButTers

Our throughput curves and those of Srinivasan and Carey are in Figure 3.4. The CPU usage for each

operation is in Table 3.5.

Performing 10.000 insertions in the low-fanout B-tree causes about 2100 page splits. Half of the

page splits accur in the first 5,000 insertions. SOt since the initial B-tree has 8463 pages. we assume

an average B-tree size of 2100/2 + 8563 ::::= 9513 pages. As with the high-fanout B-tree simulations,

there are not very many Iink chases. There is only a maximum of about 65 link chases per 10,000

operations. For brevity. we omit them from our calculations and only briefty note when they have a

slight effect.

CC Requests

The B-tree has 6 page levels, 50 insen operations S-Iock and unlock 6 pages on their way from

root to leaf. After releasing the S-Iock on the leaf. the terminal will X-Iock and unlock the leaf.



• CHAPTER 3. B-TREE CONCURRENCY IMPLEMENTATION

low fanout: 100% inserts: INF res: 600 buts
~

54

4000

3500

1000

500

~ Our Results
-Et- Srinivasan & Carey

•

o.---.-----.--~--,....--.........--.-
o 50 100 150 200 250 3QO

Multiprogramming Level (MPL)

Figure 3.4: B-tree Experimenl 4 throughpUl

Also, we expecl 2100/10000 ::::: 0.21 page SplilS on average per operation and, since each page splil

yields 3 more CC requests, a total of 0.63 CC requests per operation due to page splitting. Al 100

instructions per CC requesl. we then expect (14 + 0.63) x 100 ::::: 1463 instructions per operation

for CC requests. as indicated in Table 3.5.

BUF Requests

Operations access 6 pages from the buffer since the B-tree has 6 page levels. Each page split

generates 2 buffer caUs, so for 0.21 page splits on average per operation, we expect an additional

0.42 buffer caUs due to page splitting. We estimate that, due to the buffer size of 600 pages and

average B-tree size of9513 pages, 600/9513 ::::: 0.063 is the probability that a specifie page is in the

buffer. We will use this probability even when assuming upper pages of the B-tree are always in the

buffer since this assumption makes very littie difference in the probability.

With the 6-level B-tree, it is more difficult to be certain which pages are aiways in the buffer. We
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Time(CPU
MPL Request Type InsU'Uctions)

1 CC 1462
BUF 12124
PAGESEARCH 310
PAGE MODIFY 707
PAGECOPY 4711
Disk lime 1274000
Lock Wait 0
Total 1293314

5 CC 1463
BUF 12118
PAGESEARCH 310
PAGE MODIFY 709
PAGECOPY 4700
Disk1ime 1267638
Lock Wail 51
Total 1286989

30 CC 1463
BUF 12153
PAGESEARCH 311
PAGE MODIFY 710
PAGECOPY ~732

Disk Time 1277944
Lock Wait 1260
Tota! 1298572

Time(CPU
l\IPL RequatType Instructions)
100 CC 1462

BUF 12157
PAGESEARCH 310
PAGE MODIFY 705
PAGECOPY 4743
Disk Time 1286619
Lock Wail 5455
Total 1311452

200 CC 1464
BUF 12419
PAGESEARCH 311
PAGE MODIFY 708
PAGECOPY 4997
DiskTime 1354797
Lock Wail 13731
TOla! 1388426

300 CC 1466
BUF 12664
PAGESEARCH 311
PAGE MODIFY 712
PAGECOPY 5229
Disk Time 1~16964

Lock Wait 28025
Total 1465372

•

Table 3.5: B-tree Experiment 4 CPU usage per operation

estimate that between 3 and 4 of the upper B-tree page levels are always in the buffer. If 3 of the

upper levels are always in the buffer, we expect the number of buffer misses per operation to be about

(0.0632 xO.937x3x 1) +(0.063 x 0.9372 x3x2)+(0.9373 xl x3) :::::: 2.81. If40fthe upperlevels

are always in the buffer, we expect there to be about (0.063 x 0.937 x 2 xl) +(0.9372 x 1 x 2) == 1.87

buffer misses per operation. Averaging the 2 probabilities, we then expect about 2.34 buffer misses

per operation. Each buffer miss generates 2 buffer caUs, so we expect about 2.34 x 2 == 4.68

additional buffer caUs per operation. So, in total, we expect about 6 + 1+ 0.42 + 4.68 :::::: 12.1 buffer

caUs per operation. At 1000 instructions per cali, we arrive at about 12100 instructions required for

buffer requests, which is very close (0 the BUF request costs in Table 3.5.
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Each operation searches 6 pages plus, with an expected 0.21 page splits per operation, an additional

0.21 pages. At 500 instructions per search, we expect 6.21 x 500 ~ 310.5 instructions devoted to

page searching as indicated in Table 3.5.

PAGE..MODIFY Requests

Each operation modifies 2 pages every time a page split occurs in addition to modifying the leaf

page. Hence, for an expected 0.21 page splits per operation, we expect (2 x 0.21) + 1 ~ 1.42

modifications per operation. At 500 instructions per modification, we expect 710 instructios to be

devoted to page modification as indicated in Table 3.5.

PAGE_COPY Requests

We estimated about 2.34 buffer misses per operation above when caJculating buffer usage. Each

buffer miss generates 2 disk accesses, so we expect about 4.68 disk accesses per operation. Adding

0.21 page splits per operation yields 4.68 + 0.21 ~ 4.89 disk accesses per operation. Each disk

access requires a PAGE_COPY request 50, at 1000 instructions per PAGE_COPY request, we expect

about 4890 instructions total per operation due to PAGE_COPY requests.

Disk Time

At about 4.89 disk access per operation and an average disk access time equivalent to perfonning

ooסס27 instructions, we expect a time equivalent to perfonning about 1320300 instructions to be

used for disk UO.

As with the 3-level B-tree, tenninals do not experience many confticting lock modes. As a

result, throughput continues to increase greatly as MPL increases. At the lowest rate of throughput

increase, which occurs when MPL increases from 100 to 200, the number of instructions each

operation requires increases by only a factor of about 1.1 from 1388426 to 1465372. Based on the

throughput curves in Figure 3.4, we are satisfied with our results for this experiment.
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3.2.5 B·Tree Experiment 5: Low Fanout, 100% Inserts, 1 CPU, 8 Disks, and 600

BulTen

Our throughput curves and thase of Srinivasan and Carey are in Figure 3.5. We also present the link

chase data for this and the equivalent high-fanout B-tree simulation of Section 3.2.3 in Figure 3.6.

We break down the CPU usage for an operation inta its various components in Table 3.6. We do not

discuss the results mat are unaffected by the limits imposed on the number of CPUsand disks since

they are explained in Section 3.2.4.

100% inserts: 1 CPU: 8 disks
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Figure 3.5: B-Tree Experiment 5lhroughput Figure 3.6: B-tree Link Chases

PAGE_COPY Requests

•
The disk accesses and PAGE_COPY requests are as calculated in Section 3.2.4 but. as with the 3­

level B-tree. disk accesses and PAGE_COPY requests decrease in number as MPL increases. As

explained in Section 3.2.3. this decrease is as a result of more tenninals that encounter a buffer miss

waiting for pending disk 1/0 and not performing any disk 1/0 themselves. The decrease in disk 1/0
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TIme(CPU
MPL Requcst Type Instructions)

1 CC 1463
BUF 12147
PAGESEARCH 310
PAGE MODIFY 710
PAGECOPY 4728
Disk Time 1277722
Disk Wail 0
CPU Wail 0
Lock Wail 0
Tolal 1297081

5 CC 1461
BUF 12106
PAGESEARCH 310
PAGE MODIFY 707
PAGECOPY 4692
Disk Time 1265706
Disk Wail 434376
CPU Wail 590
Leck Wail ...00
TOlal 1720350

30 CC 1463
BUF 12068
PAGESEARCH 310
PAGE MODIFY 708
PAGECOPY ...650
Disk Time 1325745
Disk Wail ...085154
CPU Wail 2186
Lock Wail "'274
TOla! 5436559

nme(CPU
MPL RequatType Instructions)
100 CC 1464

BUF 11986
PAGESEARCH 311
PAGE MODIFY 711
PAGECOPY 4561
Disk Tirne 1953133
Disk Wail 14107909
CPU Wail 10085
Lock Wail 57221
TOlal 16147379

200 CC 1463
BUF 11916
PAGESEARCH 311
PAGE MODIFY 704
PAGECOPY 4500
Disk Tirne 3471840
Disk Wail 27328633
CPU Wail 35547
Leck Wail 263450
Total 31118362

300 CC 1465
BUF 11954
PAGESEARCH 311
PAGE MODIFY 708
PAGECOPY 4522
Disk Tirne 5231190
Disk Wail 39346353
CPU Wail 75443
Lock Wail 731293
Talal 45403241

•

Table 3.6: B-tree Experiment 5 CPU usage per operalion

is srnaller than that for the 3-level B-tree though because there are many more pages in the 6-level

B-tree and the probability of 2 terminais encountering the same page is lower.

Disk Time and Disk Wail

Table 3.6 indicates that disk limes and waits increase dramatically as MPL increases. There are

many more buffer misses than with the equivalent high-fanout B-tree simulation in Section 3.2.3.

so the terminais cornpete much more for disk resources.
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CPU Wait and Lock Wail
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As with the high-fanout B-tree in Section 3.2.3, Table 3.6 shows that CPU and lock waiting times

increase expontially as MPL increases.

Throughput begins to maximize at an MPL of about 30, unlike our similar experiment with the

high-fanout B-tree in Section 3.2.3. The low-fanout B-tree requires much more disk usage than

the high-fanout B-tree because many more pages are not in the buffer. For the low-fanout B-tree.

primarily the disk usage causes operation times to increase greatly as MPL increases. SOt as with

Srinivasan and Carey, we are able to saturate the disks at high MPL with the low-fanout B-tree.

ln addition to the throughput curves, we also presented link chase data in Figure 3.6 for both the

high and low-fanoul B-trees. Our simulations perform more link chases per 10.000 operations. but.

as with Srinivasan and Carey's simulations. the high-fanoul B-tree perfonns more Iink chases than

the low-fanout B-tree. So. even though our high-fanout B-tree simulation with limited resources in

Section 3.2.3 did not produce the same throughput curve as Srinivasan and Carey's simulation, we

are satisfied that our B-tree operations perfonn correctly and that it is the system that is modeled

slightly differently.

3.2.6 B-Tree Experiment 6: High Fanout, 50% Appends, SO% Searches, Infinite

Resources, and 200 ButTers

Our throughput curves and those of Srinivasan and Carey are in Figure 3.7. Table 3.7 contains the

components of the CPU usage for each operation.

Performing roughly 5,000 appends and 5,000 searches yields about 49 page splits. Half of the

page splits occur in the first 5,000 operations. so, since the initial B-tree has 267 pages, we assume

an average B-tree size of 49/2 + 267 ~ 292 pages.

CC Requests

Searches always S-Iock and unlock 3 pages in the 3-level B·tree for a total of 6 CC requests. Ap­

pends S-Iock and unlock 3 pages, as weil as X-lock and unlock the leaf for a total of 8 CC requests.
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Figure 3.7: B-tree Experiment 6 throughput

Each page split yields J CC requests, so for 49 page splits over 10,000 operations, we expect a

total of about 49/10000 x 3 ~ 0.015 CC requests per operation due to page splits. Since there are

about SO% of each operation, we expect (6 + 8)/2 + 0.015 ~ 7.015 CC requests on average per

operation. At 100 instructions per CC request, we expect about 70 I.S instructions per operation for

CC requests.

Link chases cause more CC requests to OCCUf. As MPL increases, so do Iink chases. At an

MPL of 200 for example, there are about 8370 link chases. Each link chase causes 2 additional CC

requests 50, over the 10,000 operations, we expect (8370 x 2}/100oo + 7.015 ~ 8.689 CC requests

on average per operation. At 100 instructions per CC request, this equals about 869 instructions

required for CC requests as shown in Table 3.7 for the MPL of 200.

BUF Requests

Since appends create heavy traffic on the rightmost pages of the B-tree, we will assume that those

pages are always in the buffer. Hence. appends use the disk only when a page splits. Since appends
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Time(CPU
MPL Rcquest Type Instructions)

1 CC 703
BUF 3770
PAGESEARCH 150
PAGE MODIFY 258
PAGECOPY 255
Disk Time 67561
Lock Wait 0
Talai 72696

5 CC 703
BUF 3776
PAGESEARCH 151
PAGE MODIFY 256
PAGECOPY 257
Disk Time 68461
Lock Wail 1368
Talai 74972

30 CC 714
BUF 3846
PAGESEARCH 153
PAGE MODIFY 255
PAGECOPY 275
Disk Time 77135
Lock Wail 19901
TOlal 102279

TIme(CPU
MPL Request Type Instrucùans)
100 CC 772

BUF 4130
PAGESEARCH 168
PAGE MODIFY 251
PAGECOPY 269
Disk Time 74124
Loclc. Wait 166581
Talai 246294

200 CC 869
BUF 4613
PAGESEARCH 192
PAGE MODIFY 256
PAGECOPY 264
Dislc. Time 72153
Loclc. Wail 393795
TalaI 472142

•

Table 3.7: B-tree Experirnent 6 CPU usage per operation

are working with values outside the range of searches and operate on sequentially higher key values.

we will also assume thal once traffic on a page modified by appends ceases. it quickly becornes LRU

and written out of the buffer. Therefore. we will assume thal only the original 267 pages plus the 1

page currently being modified by the appends have a chance of being in the buffer. As a result. the

probability that a search operation encounters a buffer miss is about 1 - 200/268 ~ 0.254. Each

buffer miss yields 2 additional buffer caUs. so we expect searches 10 make (0.254 x 2) + 3 ~ 3.508

buffer caUs per search. Appends perform 4 buffer caUs when there are no page splits. Each page

split causes 2 buffer calls SOt for the 49 splits over 10.000 operations. we add 49/10000 x 2 ~ 0.01

buffer caUs per operation. So in total. we expect (4 + 3.508)/2 + 0.01 ~ 3.76 buffer caUs per

operation.

However. each link chase causes 1 more buffer request. For example. al an MPL of 200 with

8370 link chases. we expecl an additional 8370/10000 ~ 0.837 buffer caUs due 10 link chases. At

1000 instructions per cali, each operation al an MPL of 200 requires (3.76+0.837) x 1000 ::=:: 4597,
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which is a close estimate of the lime needed for buffer requests in Table 3.7 for 200 MPL.

PAGE..sEARCH Requests

62

•

Aside from Iink chases. both searches and appends search 3 pages which. at 50 instructions per page

search. amounts to 150 instructions per operation for page searching. Each Iink chase generates

another page search. SOt at an MPL of 200 for example. with about 8370 Iink chases over the

10.000 operations. we expect another 8370/10000 x 50 ~ 42 additional instructions per operation

for searches resulling from Iink chases. Adding 42 to 150 yields the 192 instructions for searching

for an MPL of 200 in Table 3.7.

PAGEMODIFY Requests

The appends modify only 1 page unless there is a page split. Page splits generate 2 more page

modifications. Since ooly about half of the operations result in a page modification and there are

about 49 page splits. we expect 0.5 + (2 x 49/10000) ~ 0.51 page modifications per operation.

At 500 instructions per page modification. we expect about 255 instructions per operation for page

modification. which is very close to the page modification measurements in Table 3.7.

PAGE_COPY Requests

We estimated in the calculation of buffer requests that the probability of a search operation en­

countering a buffer miss is 0.254. Since ooly 50% of the operations are searches, we expect only

0.5 x 0.254 ~ 0.127 buffer misses per operation. Each buffer miss yields 2 PAGE_COPY requests

and each page split yields 1 PAGE_COPY request. Therefore. we expect (0.127 x 2) + -t9/IOOOO ~

0.259 PAGE_COPY requests per operation. At 1()()() instructions per request. this amounts to 259

instructions per operation for PAGE_COPY requests as in Table 3.7.

Disk Time

Each time tenninal makes a PAGE_COPY request, it perfonns disk 1/0. Since we expect about 0.259

PAGE_COPY requests and average disk time is equivalent to perfonning 270000 instructions. we
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expect disk time to be equivaJent to perfonning about 0.259 x 270000 ~ 69930 instructions.
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Our throughput curve is somewhal different than thal of Srinivasan and Carey. Our simulation

perfonns very many Iink chases - about 8370 at a 200 MPL. Srinivasan and Carey do not publish

Iink chase data for their experiment. so it is difficult to compare in this regard. Since our link chases

are more nurnerous for 100% insen simulations. as shown in Figure 3.6 on page 57. perhaps our

simulation perfonns many more link chases than theirs. With the extremely high data contention.

an increase in Iink chases May cause the significant reduction in throughput.

3.2.7 B·Tree Experiment 7: High Fanoat,50% Appends, 50% Searches, t CPU, and

in memory

Our throughput curves and those of Srinivasan and Carey are in Figure 3.8. We also present the link

chase data in Figure 3.9. The breakdown of CPU usage for each operation is in Table 3.8. We do

not discuss results that are unchanged from those explained in Section 3.2.6. as a result of using 1

CPU and infinite buffer space.

CC Requests

Concurrency control requests are calcuJated as in Section 3.2.6. except tbat link chases are fewer.

Forexample, with about 5500 link chases atan MPL of 200, we expect (5500 x 2)/10000+ 7.015 ~

8.115 CC requests on average per operation. At 100 instructions per request. this equaJs about 81 1

instructions per operation for CC requests as indicated in Table 3.8.

BUF Requests

The B-tree is in memory. so terminais perform no disk 1/0. Therefore searches always make 3 buffer

calls. Appends make at least 4 buffer caUs. If a page splits. the terminal will make an additional

buffer cali to write-oul the LRU page from the buffer. Also. each lime an operation performs a link

chase, il makes an addilionaJ buffer calI. So with about 49 page splits, we expect an average of

(3 + 4)/2 + 49/10000 ~ 3.5 buffer caUs or. at a cost of 1000 instructions per buffer calI, 3500
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Figure 3.8: B·tree Experiment 7 throughput Figure 3.9: B-tree Experiment 7 Iink chases

instructions needed for buffer caUs if there are no Iink chases. At an MPL of 200. there are about

5500 Iink chases. [n this case. we expect 3.5 + 5500/10000 ~ 4.05 buffer caUs. which requires

about 4050 instructions as shown in Table 3.8.

PAGE-SEARCH Requests

The number of pages searches is caJculated as in Section 3.2.6. except that Iink chases are fewer.

For example. with about 5500 Iink chases at an MPL of 200. we expect 5500/10000 x 50 =::: 27.5

instructions for page searches due to Iink chases. Adding this to the 150 instructions for regular

page searches yields about 177.5 instructions required for page searching at a 200 MPL as indicated

in Table 3.8.

•
As MPL increases, the number of instructions required by each operation increases by a greater

factor than MPL. For example. when MPL increases from 100 to 200. the number of instructions

each operation requires increases from 518576 to 1054889, which is a factor of about 2.03. Thus.
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nmc(CPU
MPL Request Type Instructions)

1 CC 700
BUF 3504
PAGESEARCH ISO
PAGE MODIFY 252
CPU Wail 0
Lock Wail 0
Total 4607

5 CC 703
BUF 3519
PAGESEARCH 151
PAGE MODIFY 255
CPUWait 16103
Lock Wait 2456
Total 23186

30 CC 726
BUF 3631
PAGESEARCH 157
PAGE MODIFY 252
CPU Wait 29138
Lock Wail 109223
Total 143127

Time(CPU
l\IPL Request Type Instructions)
100 CC 793

BUF 3970
PAGESEARCH 173
PAGE MODIFY 253
CPU Wait 38285
Lock Wait 475101
Total 518576

200 CC 811
BUF 4058
PAGESEARCH 178
PAGE MODIFY 254
CPU Wail 65266
lock Wait 984323
Total 1054889

•

Table 3.8: B-tree Experiment 7 CPU usage per operation

throughpul decreases as MPL increases.

According to Figures 3.8 and 3.9, our simulation results resemble those of Srinivasan and Carey

very closely, so we are satisfied that our simulation operates correctly for this experiment.

3.3 Summary of Results

Our goal was to achieve a single constant ratio between our results and those of Srinivasan and

Carey. Dy doing 50, we could scale our trie concurrency results to fit onto the graphs published by

Srinivasan and Carey. Our results show that:

1. There are 2 experiments where the ratio is not constant and varies as MPL increases.

2. There are different constant ratios.

For Experiments 3 and 6, our throughput behaviour differs significantly from Srinivasan and

Carey's. The ratio ofour throughput to theirs for these 2 experiments varies as shown in Figures 3.10

and 3.11.
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•

Foreach of the other experiments, the ratio between our throughput and Srinivasan and Carey's is

fairly constant. However. these constant ratios vary from one experiment to another. The minimum

constant ratio we generate is about 1.4, which is for Experiment 1; whereas. the maximum constant

ratio we generate is about 1.9, which is for Experiment 2.

Nevenheless, most of our throughput curves behave similarly to those that Srinivasan and Carey

have published. We are satisfied that slight differences in the our implementation of system re­

sources from the implementation of Srinivasan and Carey account for the differences in throughput.

We therefore use our simulation [0 study the behaviour of trie concurrency.
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Chapter4

Trie Concurrency Implementation

In this chapter. we present algorithms for concurrent trie searches and insertions. We describe the

tries and parameters used for concurrency experimentation. We also present and discuss experimen­

tal results that we obtained and compare them to the B-tree results presented in Chapter 3.

4.1 Trie Concurrency Control Aigorithms

Unlike B-trees. where recovery during concurrent operations merely requires advancing to the right

to reach the correct page, tries seemingly require multiple recovery methods. Concurrent trie op­

erations May need to recover by advancing to pages either to the left or to the right. In addition.

situations mayarise when, even if an operation reaches a correct page. the page will not he nav­

igated correctly. Three examples follow to ilIustrate the various recoveries that may he necessary

when using tries.

Example 1

There are two transactions:

• Transaction 1: read 10 1 aIl 0 0

• Transaction 2: write a100 10 1 0

These transactions are executed in the schedule given by Figure 4.1 .

67
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•Time

TI: read 10101100

read 1010

read 1100

TI: write 01001010

write 0100
write 1010

•

Figure 4.1: Transaction schedule for Example 1

Figures 4.2 to 4.4 show the execution of the transaction schedule.

.---- .. ----------- ... _--------------------------------.

Figure 4.2: Initial trie for Examples 1 and 2

ln Figure 4.2, Transaction 1 reads 1010 in the root page. To find the remainder of ils key, it needs

to read the page to the left of the page with minimum T such that T ~ Braol + srch or T ~ 0 + 4

on page level 2, as explained earlier in Section 1.3.2.
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.---------.-------------------------------------------.

Figure 4.3: Partially modified trie for Example 1
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ln Figure 4.3, Transaction 2 has insened 0100 into the root page and modified the B-count for the

root page level.

.- -_ _ - _ ---_ _ .

: 1

6

:10

Figure 4.4: Fully modified trie for Example 1

In Figure 4.4, Transaction 2 has insened the remainder of its key, 1010, and modified the counts

for the second page level. Transaction 1 finds the page with minimum T ~ 4 and searches the

page immediately to the left with T =3. This is the incorrect page and Transaction 1 must recover
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by rnoving to the right. The failure occurs because Transaction 1 uses T-counls that result from

Transaction 2's execution. but not a srch count that results from Transaction 2'5 execution.

Example %

Consider again the trie in Figure 4.2. The same two transactions are executed, but in the schedule

given by Figure 4.5:

Time

TI: read 10101100

read 1010
read 1100

T2: write 01001010

write 0100

write 1010

•

Figure 4.5: Transaction schedule for Example 2

.------------ ..._-------------------------------------.
: l
1

:5

:9

Figure 4.6: Panially rnodified trie for Example 2

[n Figure 4.6. Transaction 2 has insened 0 100 into the root page and modified the B-count for the

root page level. Transaction 1 then successfully reads 1010 and caJculates srch = 5. To find the

remainder of ils key. it needs to read the page to the left of the page with minimum T such that

T ~ 5 on page level 2.
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Transaction 1searches the page with T = 4. which is incorrect. To recover. transaction 1must move

to the left. This failure occurs because Transaction 1 uses a srch count that results from Transaction

2's execution. but not T·counts that result from Transaction 2's execution.

Example 3

Even if a transaction successfully chooses the next page. it may nol he able lo navigale the page

correctJy. Consider a new trie. shown in Figure 4.7 and the transaction schedule for Example 2 in

Figure 4.5.

.---- ... -------------------------_._------------------:
:T=O : [
:8=0 :5

:5
:9

Figure 4.7: Initial trie for Example 3
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,---.-------------- .. ----------------------.----------1

Figure 4.8: Partially modified trie for Example 3
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ln Figure 4.8, Transaction 2, just as in Example 2, has inserted 0 100 into the root page and modified

the B-count for the root page level. Again, Transaction 1 reads 1010 in the root page and determines

that it will next read the page to the left of the page with mimimum T such that T ~ 5 on page level

2. Transaction 1 correctly chooses the page on page level 2 with T = 3. However, to navigate the

page, it calculates the value for next = B root + srch - T - 1 = 1. which is incorrect. To search

the correct subtrie in the page. next must equal O.

One proposed solution for these problems is the addition of redundancy 50 that an operation is

able to deterrnine whether it is operating on the correct page and the correct subtrie. Just as for

B-trees, the operation would be able to correct an error caused by a concurrent modification on the

trie.

This redundancy could be in the form of a prefix range created for each trie page as in Figure 4.9.

With this scheme, we record the minimum and maximum prefix leading into each page. If the

operation's key is not in the prefix range for the selected page. the operation can recover to the left

or right until the correct page is selected. Note that the entire prefixes must be stored. not just the

prefix leading into the page from the previous page level.
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:10
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~ Prerax Ranges

Figure 4.9: Trie with prefix ranges
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However. an operation may still navigate a trie page incorrectly even though il has selected the

correct page to navigate. as in Example 3. Plus. splitting a full trie page becomes much more

difficult because new prefix ranges for the old and new pages need to be determined. To solve these

problems. we could store a prefix for each subtrie in a page. This would ensure that the correct trie

page can be navigated correctly and that page splits remain easy and efficient to perfonn. However.

this adds an unacceptable amount of redundancy to the trie because the amount of storage required

to simply record ail the prefixes will easily surpass the amount of storage required to store ail the

trie pages.

SOt to prevent these problems from occurring. we first decide that concurrent trie operations

must use consistent pages and counts when progressing from one page level to the next. More

specifically. we note that:

1. If an operation does not encounter any modification made by an insertion 1 on page lever P.. it

will operate correctly on page level P. + 1 if il does not encounter any modifications made by
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Ion page level f + 1.
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2. If an operation encounters any modifications made by an insertion 1 on page lever f., it will

operate correctly on page level f + 1 if it encounters a point in the trie already encountered

by 1 on page level f. + 1.

So, we creale a mechanism mat controls the progression of operations from one page level to the

next relative to a modifying operation. If an operation is encountering pages (or counts) before a

modification to them occurs on one page level~ then we ensure that it encounters pages (or counts)

before they are modified on the next page level. Also, if an operation encounters any changes on

one page level, we ensure that it does not encounter any pages (or counts) on the nexl page level

lhat are nol yet modified.

They key components of this mechanism are the use of a sequence in which pages (and counts)

are encountered and the use of lock-coupling. Basically, operations first lock the leftrnost page on a

page level and lock4 couple lO the right as they examine the T-counts and find their correct page. We

now describe how concurrent trie search and insertion operations provide this mechanism.

4.1.1 The Trie Search Aigorithm

To simplify our description of the locking performed by this and the concurrent trie insertion a1go­

rithm, we will assume that the counts for the trie page are locked when the trie page is locked, even

though the counts are stored separately from the pages. The only exceptions to this are the counts to

the right of ail pages on each page level. Hence, the concurrent trie operations Jock only trie pages

and the page leveJ counts.

Prior to reading any page or count, searches S-lock the page (or page level count). Figures 4.10

and 4.11 on pages 76 and 77 show the step4 by-step progression of a typical search operation.

Initially, the search operation S-Iocks and searches the root page (Figure 4.10a). If the search

fails, the root page is unlocked and the operation tenninates. If the search is successfuI, the search

operation S-locks the leftmost page on the next page leveI before unIocking the searched page

(Figures 4.10b and 4.1Oc). This lock-coupling is essential because it prevents an insertion operation

from modifying a page on a previous level~ advancing ahead of the search operation~ and modifying

a page or count mat the search operation does not expect to be changed.
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Once the searched page is unJocked. the lock.coupling continues from left to right until a

T.count ~ B' + srch. where B' is the B-count for the page navigated on lhe previous page level. is

reached (Figures 4.1ad- 4.100. At this point. both the next page to search and page (or level counts)

to the right are S-Iocked. The search operation unlocks the page (or level counts) to the right and

searches the page that is still S-locked (Figure 4.11 g). If lhe search fails or the searched page is

a leaf page. the searched page is unlocked and the operation tenninates. Otherwise. the operation

S-Iocks the leftmost page on the next page level and repeats until the search is unsuccessful or the

searched page is a leaf page (Figures 4.11 h- 4.111).
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•
Figure 4.10: Concurrent Search Operation
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Figure 4.11: Concurrent Search Operation (continued)
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The algorithm for concurrent trie searching is presented in Figure 4.12. Note thal if right-page­

-id = NIL; that is, current-page-id is the rightmost page, the counts for the current page level are

locked.

TRIE-SEARCH{key)

1 current-page-id +- root-id
2 S-LOCK(current-page-id)
3 current-page +- READ-PAGE(current-page-id)
4 SEARCH-TRIE-PAGE(key. current-page)
5 white search successful and current-page is not a leaf page do

6 B'ast-page-searched +- Bcurrent-page-id

7 leftmost-page-id +- leftmost page on next page lever
8 S-LOCK(/eftmost-page-id)
9 UNLOCK(current-page-id)

10 current-page-id +- /eftmost-page-id
Il right-page-id +- page 10 right of current-page-id
12 S-LOCK(right-page-id)

13 white Trighl-page-id < B'ast-page-searched + srch do
14 UNLOCK(current-page-id)
15 currenr-page-id +- right-page-id
16 right-page-id +- page to right of current-page-id
17 S-LOCK(right-page-id)
18 UNLOCK(right-page-id)
19 current-page +- READ-PAGE(current-page-id)
20 SEARCH-TRIE-PAGE(key. currenr-page)
21 UNLOCK(currenr-page-id)

Figure 4.12: Concurrent Trie Search Algorithm

4.1.2 The Trie Insertion Aigorithm

There are three phases of a trie insertion:

• Phase 1: Search for first page to modify

• Phase 2: Modify first page and B-counts to the right

• Phase J: Modify remaining pages and T-counts and B-counts to the right
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Phase 1: Search for fint page to modify
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Insens behave exactly Iike searches until they reach a page where their search fails. This is the page

that will have a bit pair changed and. probably. bit pairs inserted.

Phase 2: Modify fint page and B-eounts to the right

Figure 4.13 on page 80 shows the step.by-step actions of Phase 2. Assume that Phase 1 progressed

as for the search example in Figures 4.10a--4.1Of on page 76.

Before inserting. the operation upgrades the S-Iock on the page to an X-Iock (Figure 4.13b).

If other operations currently hold an S-Iock on the page. the operation releases ilS S-lock. puts ilS

X-lock request on the head of the wait queue. and sets the lock mode of the page to "wail" so

that subsequent requeslS for locks on the page go on the tail of the wait queue. Upgrading the

S-Iock to an X-lock in this manner avoids the possibility of deadlock due to multiple operations

simultaneously attempting to upgrade their S-Iock. No operations will starve since the number of

operations holding an S-Iock on the page is finite and any lock request by an operation not already

holding a lock on the page goes on the tail of the wait queue. The X-Iock request goes on the head

of the wait queue so that any operations in Phase 3 do not modify the T-count for the page. Any

change in T would disrupt navigation of the page since next = B' + srch - T - 1.

However. while waiting for the X-Iock, it is possible that another insert operation has inserted the

same bit sequence as the waiting operation intended to or has split the page. This may occur if one

of the other insert operations holding an S-lock on the page moved ioto Phase 2 and upgraded ilS S­

lock to an X-Iock. This other insert operation would either go on the head of the wail queue, ahead

of the operation already waiting. or acquire an X-lock on the page since it was the last operation

holding an S-Iock.

Therefore. the page (or lever counlS) to the righl must he checked 10 ensure that the insertion will

be in the X-Iocked page; that is, the page did not split (Figure 4.13c). IfTright < B' +srch. then the

operation must X-Iock the page to the right and unlock the CUITent X-Iocked page. Lock-coupling to

the right continues until the operation reaches the page with Tright ~ B' + srch. We cali this action

a link chase since il is similar to the recovery perfonned by the Blink a1gorithms. If the correct page

does not need to be modified anymore due to the other operation, the operation S-locks the leftmosl
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Continued from Phase 1 in Figure 4.10
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Continued in Phase 3 in Figure 4.14

•
Figure 4.13: Concurrent Insen Operation (Phase 2: Modify First Page and B·counts to the Right)
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page on the next page level, unlocks the current page, and proceeds as in Phase 1.

After the operation modifies the page, all the B-counts to the right need to he incremented by 1.

The operation X-Iocks aIl pages to the right of the modified page, as weil as the counts for the page

level from left to right (Figures 4.13e and 4.130 and increments the B-counts by 1 (Figure 4.130.

Remember, even though the counts are not actually on the pages, they are locked when the pages to

which they belong are locked. The operation then proceeds to Phase 3 of the insenion.

Phase 3: Modify remaJning pales and T-eounts and B-eounts to the rigbt

Figures 4.14-- 4.16 on pages 82- 84 shows the step-by-step actions of Phase 3. These figures are a

continuation of Figure 4.13 on page 80.

At the start of Phase 3, the insen operation has the modified page, ail pages to the right of the

modified page, and the counts for the page level X-Iocked. The insen operation now uses only

X-Iocks until it finishes its insertion.

First, the operation X-Iocles the leftmost page on the page level immediately below the page

level where the modification in Phase 2 took place (Figure 4.14a). The operation then unlocks

the X-Iocks remaining from Phase 2 on the previous page level from left to right (Figures 4.14b-­

4.14<1). The insen operation then lock-couples from left to right with X-Iocks until it reaches a

T-count 2:: B' + srch (Figures 4.14e- 4.15g). The operation unlocks the page (or level count) with

T 2:: B' + srch and modifies the page that is still X-locked (Figure 4.15h). Then, as in Phase 2. the

operation X-Iocks all the pages and the level counts to the right (Figures 4.15i and 4.15j). Both the T

and B-counts must he incremented by 1 since the operation added an incoming trie edge to the page

level. Phase 3 then repeal~ until the modified page is a leaf page, al which point it unlocks the leaf

page level from left to right after incrementing the counts (Figures 4.15k- 4.16m) and terminates.
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Continued in Figure 4.15

•
Figure 4.14: Concurrent Insert Operation (Phase 3: Modify Remaining Pages and Ali Counts to the

Right)
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Continued in Figure 4.16

•
Figure 4.15: Concurrent Insen Operation (Phase 3: Modify Remaining Pages and Ali Counts to the

Right) (continued)



• CHAPTER 4. TRIE CONCURRENCY IMPLEMENTATION

1 0
O"""----:-level Count

unlocked--ID
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Figure 4.16: Concurrent (nsert Operation (Phase 3: Modify Remaining Pages and Ali Counts to the

Right) (continued)
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The algorithm for concurrent trie insertions is presenled in Figures 4.17- 4.19. The algorithm

has been divided into the lhree insert phases. Nole mat if right-page-id = NIL; mat is. current­

page-id is the rightrnost page. the counts for the current page level are locked.

TRIE-INSERT(key)

1 cllrrent-page-id ~ root-id
2 S-LOCK(current-page-id)
3 current-page ~ READ-PAGE(current-page-id)
4 SEARCH-TRIE-PAGE(key. current-page)
5 while search successful and current-page is not a leaf page do

6 B'ast-page-searched ~ Beurrent-page-id

7 leftmost-page-id ~ leftmost page on next page level
8 S-LocK(leftmost-page-id)
9 UNLOCK(clirrent-page-id)

10 cllrrent-page-id ~ leftmost-page-id
11 right-page-id ~ page to right of current-page-id
12 S-LOCK(righl-page-id)

13 while T right-page-id < B'ast-page-searched + srch do
14 UNLOCK(current-page-id)
15 current-page-id ~ right-page-id
16 right-page-id ~ page ta right of current-page-id
17 S-LOCK(right-page-ici)
18 UNLOCK(right-page-id)
19 cllrrent-page ~ READ-PAGE(current-page-id)
20 SEARCH-TRlE-PAGE(key. current-page)
21 il search successful then
22 UNLOCK(current-page-id)
23 retum ··key already in trien

24 else
25 continue on 10 Phase 2 in Figure 4.18

Figure 4.17: Concurrent Trie Insertion Algorithm (Phase 1: Search for First Page to Modify)
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/* continued from Phase / in Figure 4./7 /*

26 UPGRADE-LoCK(current-page-id)
27 S-LOCK(right-page-id)

28 while Tright-page-id < B'ast-page-searched + srch do
29 UPGRADE-LoCK(right-page-idj
30 UNLOCK(current-page-id)
31 current-page-id ~ right-page-id
32 right-page-id ~ page 10 righl of current-page-id
33 S-LOCK(right-page-id)

34 size ~ T right-page-td - Beurrent-page-td

35 next ~ B'ast-page-searched + srch - Tright-page-td - l
36 UNLOCK(right-page-id)
37 current-page ~ READ-PAGE(current-page-id)
38 MAKE-INITIAL-TRlE-iNSERT(key. current-page)
39 if current-page was not changed by MAKE-INITIAl-TRIE-[NSERT then
40 search is successful /* for while-loop at 5tep 5 ofPhase 1 */
41 goto Step 5 of Phase 1
4"_ B L....- Bla:Jt-page-modified"'- current-page-td

43 temp-page-id ~ current-page-id
44 cllrrent-page-id ~ right-page-id
45 while current-page-id '# NIL do
46 X-LOCK(current-page-id)
47 increment B-count for current-page-id by 1
48 current-page-id ~ page ta right of current-page-id
49 X-LocK(level counts)
50 increment B-count for current page level by 1
51 continue on ta Phase 3 in Figure 4. 19

86
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Figure 4.18: Concurrent Trie Insertion Algorithm (Phase 2: Modify First Page and B-counts to the
Right)
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/* continuedtram Phase 2 in Figure 4. J8 */

52 whUe current-page-id is nol a leaf page do
53 leftmost-page-id +- leftlnost page on next page level
54 X-LOCK(leftmost-page-id)
55 while currenl-page-id i= NIL do
56 UNLOCK(current-page-id)
57 current-page-id +- page to righl of current-page-id
58 UNLOCK(/evel counts)
59 currenl-page-id +- leftmost-page-id
60 right-page-id +-- page to righl of current-page-id
61 X-LOCK(right-page-id)

62 while Tr1.ght-page-id < Bla3t-page-modi/ied + srch do
63 UN LOC K(current-page-id)
64 current-page-id +-- right-page-id
65 righl-page-id +-- page to right of current-page-id
66 X-LOCK(right-page-id)
67 UN LOCK(right-page-id)
68 current-page +-- READ-PAGE(current-page-id)
69 INSERT-SUBTRIE(key, current-page)

70 B'ast-page-modi/ied +-- Beurrent-paye-rd

71 temp-page-id +-- current-page-id
72 current-page-id +-- right-page-id
73 while current-page-id i= NIL do
74 X-LOCK(current-page-id)
75 incremenl T-counl and B-count for current-page-id by 1
76 current-page-id +-- page to right of current-page-id
77 X-LOCK(level counts)
78 increment T-count and B-count for current page level by 1
79 current-page-id +-- temp-page-id
80 while current-page-id i= NIL do
81 UNLOCK(current-page-id)
82 current-page-id +-- page 10 right of current-page-id
83 UNLocK(level counls)

87
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Figure 4.19: Concurrent Trie Insertion Aigorithm (Phase 3: Modify Remaining Pages and Ali
Counts to the Right)
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4.1.3 Proof of Correctness

There are two properties of these operations that need to be demonstrated;

1. They do not fonn a deadJock. (Theorem 1)

2. Their correctness is not impaired by other concurrent operations. (Theorem 2)

Freedom lrom Deadloc:k

Theorem 1 The algorithms for concurrent trie search and insertion never form a deadlock.

88
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Proof We show that any wait-for graph [Ho171, Ho172] generated for the trie where nodes in the

wait-for graph are trie pages never contains a cycle because locks are made following a well­

ordering of the pages. Since page level counts can also be locked by operations, consider them

to simply be an additional page at the end of a each page level. This ordering is as follows;

• If two pages of the trie, x and y. are not on the same page level, then x < y if x is doser to

the root page level than y.

• [f two pages of the trie, x and y. are on the same page level, then x < y if x is ta the left of y.

When pages are created, the ordering remains intact because page creation is done by splitting an

existing page. For example, three pages exist such that x < y < z. When a new page, yll is created

by splitting y into y' and y", the ordering remains intact and is x < y' < yll < z.

Locks are made From left to right and From root to leaf. After placing a Jock on a page. no page

to the left on the same page level and no page on a page level doser to the root is ever locked.

Therefore, the concurrent trie operations lock ail pages in a well-ordered manner. [n addition,

upgrading from an S-Iock to an X-Ieck is made by first releasing the S-Ieck; hence, no deadlocks

fonn due to multiple operations attempting to upgrade their S-Iock for the same page. •

Correctness of Concurrent Operations

The correctness of concurrent operations is a concem ooly when an insert operation confticts with

another operation. For this, we assume that insert operation 1 is in Phase 2 or 3 of the insert
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algorithm, since Phase 1 is merely a search. To prove mat any modification to the trie does not

impair the correctness of another concurrent trie operation, we show that our previous observations

are aJways true:

1. If an operation 0 does not encounter any modification made by an insertion 1 on page level

P., it will operate correctly on page level f. + l if il does not encounter any modifications made

by 1 on page level P. + L

2. If an operation 0 encounters any modifications made by an insenion 1 on page level f.. il will

operate correctly on page level 1. + 1 if it encounters a point in the trie already encountered

by 1 on page lever 1. + 1.

We break down mese observations into three lemmas as shown in Figure 4.20. We assume for

Lemmas 1-3 mat 1 is using only X-Iodes. The situation when 1 upgrades from an S-Iock to an

X-Iock is discussed in Lemma 4. With these lemmas, we prove Theorem 2, which states that the

correctness of trie operations is not impaired by other concurrent operations.

o oper:ues correctly

o encounters modification 0 does not encounter
made by 1 modification made by 1

/ ~___________ _ L __~ _
o encounters : 0 encoumers : 0 encounters '0 encounters 1

pagelcount x 1 pagelcount.r 1 page/count .\' page/coum x
before insertion 1 after insertion : before insertion after Insertion

[ does [ does 1 [ does 1 does

LEMMA 1

/\
LEMMA 3

/\
.r still

locked by 1:
.r already

: unlocked by 1

/\
x aJready x still

: unJockcd by 0 locked by 0 :
when 1 when / :

1
1 encounters.r encounlers .r 1

'-------------------,

.r still
locked by 1:

1 X aJready
: unlocked by 1

IMPOSSlBLE

LEMMA2

•
Figure 4.20: Breakdown of observations into lemmas

Lemma 1 Any operation 0 that navigates the correct page x on page level lx where x has been
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modified by insertion 1 will successfully locate and navigate the correct page y on page Level ly =

ex + 1.

Prool There are two cases for the scenario where 0 navigates x after 1 modified x:

Case 1: Operation 0 encounters x after x is unlocked by insertion 1

Once 0 locks x. it must also lock the page (or level counts) to the right of x to detennine size

for the purpose of navigating x. Since 1 unlocks page (or level counts) after unlocking x. the

counts to the right of x will he consistent with x and 0 will navigate x correctJy. Because 1

lock-couples with X-locks when advancing from page level ex to page level ey and advancing

along eg. any page y on page level ey that 0 encounters has already been encountered by [.

SOt any modification that 0 expects [ to have made on page level eg will exist and 0 will

operate correctly on page level 19.

Case Z: Operation 0 encounters x white x is locked by insertion [

Since x has been modified by f. [ is holding an X-Iock on x; otherwise. [ would be holding

an S-Iock and x would not yet be modified. 50. 0 must wait on the queue until 1 releases

its X-Iock. Now. when 0 navigates x. x has been modified and unlocked by f. which is

equivaJent to Case 1 above.

SOt any operation 0 that navigates the correct page x on page level ex where x has been modified

by insertion 1 will successfully operate on page level eg = lx + 1. •

Lemma Z Any operation 0 that nal'igates the correct page x on page level ex prior to insertion 1

modifying x .'/Ïll sliccessfully locate and navigate the correct page yon page tellel eg = lx + 1.

Proof There are two cases for the scenario where 0 navigates x prior to 1 modifying x.

Case 1: Insertion 1 encounters x after x is unlocked by operation 0

The counts to the right of x will not yet he modified by 1 because operations lock from left

to right. so 0 will set size correctly and navigate x correctly. In general. any page/count y

encountered by operation 0 after navigating x will be either to the right of page/count x on

page level lx. or on a page level eg > ex. Since ail concurrent trie operations lock-eouple
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from left to right and from root to leaf and insertion [ is using X-Iocl(s after modifying x. 0

locles y before 1 does. Therefore, y is unmodified by insertion 1 when 0 encounters y as 0

expects it to be.

Case 2: Insertion [ encounters x while x is locked by operation 0

Since operation 0 currently holds a Jock on page/count x and 1 is attempting to X-Iock

x, 1 must wait for 0 to unlock x before it can lock and modify x. As stated for Case 1,

lock-coupling by operation 0 ensures it never encounters a page/count already modified by

insertion [ once 0 encounters a page/count that is not yet rnodified by [.

So, any operation 0 mat navigates the correct page x on page level lx prior to insertion 1 modifying

x will successfully operate on page lever ly = lx + 1. •

Lemma 3 Any operation 0 that navigates the correct page x on page level lx I,vhere x has been

encounlered. but not modified by insertion [ will sliccessfully locate and navigale the correct page

yon page LeveL ly = lx + L

Proor There are two cases for the scenario where 0 navigates x after [ has encountered, but not

modified x:

Case 1: Operation 0 encounters x after x is unlocked by 1

Operation 0 will operate correctly on page level ly no malter if it advances to page Ievel ly

before or after 1 does; therefore, no race condition can occur.

If the page to the right of I is not locked by [and 1 has not yet locked any page on level llj' 0

may be able to search x and S-Iock the leftrnost page on level lf) before [ finishes modifying

pages/counts to the right of x on level lx (Figure 4.2Ia). In this situation. 0 will operate

correctly on page level ly because it has not been affected by [ on page level lx and won't

be on page lever ly. If 0 modifies x or 1 modifies the page to the right of x, then 0 will

not advance to page level ly before J. Also, if 1 modifies the page to the right of x, then 0

remains unaffected because the counts to the right of x will be unchanged by [.

If 1 advances to page level ly before 0 does, 0 will still operate correctly on page level 19 .

Even though 0 is unaffected by Ion page level lx, any change by Ion level 19 cao he handled
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by O. If 0 encounters no change by Ion level ly, it will succeed because it encountered no

change on level lx. If 0 encounters a change by Ion level i y, it will still succeed on level ly.

Since x was not modified by l, the srch count for 0 was not affected by 1 when navigating

x. Since trie edges do not cross, the srch count will be correct for choosing the next page

on level i y , which is the page to the left of the page with T ~ Bx + srch. The only affect a

change by 1 has as far as 0 is concemed is that the T-count to the right of y is incremented

by 1 (Figure 4.2Ib), which is fine since T is still ~ Bx + srch. Even if y is split by l. the

T-count to the right of y will stilllead 0 to the correct page (Figure 4.2Ic).
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Figure 4.21: Effect of insertion 1 on operation 0's navigation of level i.y
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Case Z: Operation 0 encounters x while x is locked by 1

The same occurs as in Case 1 above. except that 0 does not navigate x until 1 has released its

X-lock.

SOt any operation 0 that navigates the correct page x on page level lx that has been encountered.

but not modified by insenion 1 will successfully operate on page level ly = lx + l •

The above lemmas discuss the interaction between any operation 0 and an insertion 1 that is

using X-locks, meaning that both 0 and 1 cannot have any page (or level count) locked at the same

time. Now. we discuss the case when 1 is upgrading from an S-lock to an X-lock.

Lemma 4 Any inserl Ilhal upgrades ilS lock on a page x fram an S-lock 10 an X-lock l ...·Ui perform

correclly on page level lx and not impair the correctness ofany orher operation O.

Proof We only discuss the situations where 0 and [lock the same page since the situations where

they lock different pages are equivalent to those discussed in Lemmas 1-3. Upgrading from an

S-Iock to an X-Iock on a page not encountered by another operation does not create any problems.

50. when [ upgrades its lock on page x from an S-Iock to an X-Iock. we consider two scenarios that

mayexist:

Case 1: Page x is 5-locked by operation 0 and there is no wait queue

Both insertion 1 and operation 0 currently hold an S-lock on page x. When 1 detennines that

it must modify page x, it releases ils 5-lock and puts ils X-lock request on the head of the

queue. Now, 0 May either release its S-Iock and allow the 1 to acquire its X-Iock and modify

x, or deeide to upgrade its S-Iock to an X-lock. If 0 releases ils S-lock, there is no eonfliet

because neither 0 nor 1 have modified x. Both operations perform correetly. However. if

o upgrades ilS lock on x to an X-lock and modifies x and the B-counts to the right of x, 1

May encounter an inconsistent page. Operation 0 May either split x or insert the same bit

sequence that 1 intended to. Insenion 1 will detect this though since it checks the T-count to

the right after acquiring its X-lock to eosure x was not split and then lock-couples to the right

if necessary. Also. 1 will revert back to Phase 1 (searching for the first page to modify) if it

discovers that 0 inserted the bit sequence that 1 intended to. So. in this case, 0 will perform

correctly and 1 will reeover if need be and perform correctly.
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Case 2: Page x has operation 0 waiting for x in the wait queue

The insenion 1 currently holds an S-Iock on page x. Therefore. operation 0 waiting in the

queue for x must he requesting an X-Iock for x. Since 1 locked x prior la operalion 0 (which

is an insertion). 1 did not encounler any pageslcounts on page level lx - 1 that were modified

by O. sa 1 does not expecl any changes ta he made 10 x by o. Therefore. la operate correctly.

1 must operate on x hefore any modification to x by o. Since 1 goes on the head of the wail

queue. 1 does indeed operate on x prior ta any modification by o. Any modification by 1 on

;I; does not impair the correctness of 0 since 0 can only be affected by a page split of x and

o checks the T-count ta the right of x ta confirm that x is indeed the correct page prior ta

any modification. If need be. 0 willlock·couple with X-Iocles ta the right and encounter the

correct page. SOt in tbis case. insertions 1 and 0 will bath perform correctly.

We have shown that the correctness of an operation 0 is not impaired by an insertion 1 that upgrades

ilS S-Iock 10 an X-Iock and that 1 will perform correctly after acquiring its X-lock. •

Theorem 2 Correcmess of the trie operations is not impaired by the conclirrent e:ceclition ofother

trie operations.

proor [nitially. the root page is aJways navigaled. We know that any operation 0 will navigate the

root page correctly because insert operations acquire an X-Iock prior to modifying a page and release

their X-Iock only after their modification is complete; hence. the root page is always consistent.

From the abave lemmas. any operation 0 will successfully locate and navigate their next page

on the next page level whether or not an insen operation 1 modified the root page. By induction, 0

will successfully operate on each subsequent page level until it terminates. •

4.2 Experimental Procedure

Our experiments for measuring trie concurrency mirror those perfonned for B-trees. Most simu­

lation parameters used for the B-tree experiments are not modified for the trie experimenlS so that

we may compare results with those obtained for B·trees. Parameters relating to the structure of

the trie~ namely. key selection and fanout. are adjusted to create an acceptable amount of similarity
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between the trie and the B-tree. Also, parameters affected by the differences between the trie and

B-tree structures; namely, the buffer pool size. are adjusted to equalize the portion of the structures

in memory. [n addition, we add a new parameter to account for the CPU usage required to access

T-counts. We now explain the modification and addition of these parameters in detail.

4.2.1 Modification 01 B·Tree Parameters For Use in Trie Experiments

Modification or Key Selection

Because the structure of tries is based on the binary representation of the data, we use diffeerent

keys to construct them. We again use Java to perfonn our experiments. Since Java uses the first

bit in its binary representation of integers as a sign bit, we use bath positive and negative keys to

construct a trie. This way, the first bit is not always a o. Also. when constructing a trie. we use a

much larger key space than that used to construct a B-tree. [f we were to build a trie with ail the odd

keys in the key space. as we do to build a B-tree. we would create a trie that is mostly a full binary

tree except for the last node level, as shown in Figure 4.22.

last bit
always l

•

•

Figure 4.22: Trie constructed with ail the odd keys in a small key space

With a trie constructed in this manDer, any insert operation will modify only the leaf page level

of the trie. Sa. to generate a greater probability of modifying pages above the leaf page level, we

construet a sparser trie. As with B-trees, we use 40,000 32-bit keys to build a trie. However. these

initial keys are from a mueh larger range; specifically, from a random pennutation of the following
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40.000 values: -2 000 000 000. -1 999 900 000•...• 1 999 900 000.

Due to the different keys used to construct the trie. ail operations use different key ranges than

they do for the B-tree experimenlS. In the B-tree experimenlS. searches have roughly a 50% chance

of succeeding. To achieve this for the trie experimenlS, we 611 half our search key space with the

40,000 keys already in the trie and the other half with random numbers. We then create a random

permutation of the search key space. Inserts. as with the B-tree experimenlS. must always succeed.

We fill the insen key space with random numbers and ensure that every key in the insen key space is

unique and not already in the trie. Since Java uses the two's complement format to represent negative

numbers. care is taken to select proper keys for appends. Keys for appends increase sequentially

from -99 999 onwards. This way, all appends operate on the rightmost leaf pages of the trie. as they

do with a B-tree.

Modification 01 Fanout

Since multiple trie edges often enter the same page from the above page level. we choose not to use

different fanouts to vary the trie structures. Rather, we modify t, the number of node levels per page.

We select t such that the trie has the same number of page levels as a B-tree that we constructed.

A trie can have either t = Il or t = 6. A trie with t = Il has 3 page levels. just Iike a B-tree

with a fanout of 200 and a trie with t = 6 has 6 page levels. just like a B-tree with a fanoui of 8.

We will refer to tries with t = Il as having high fanout and tries with t = 6 as having low fanout.

The capacity of each trie page is 2t nodes, so the page capacities for t = Il and t = 6 are 2048

and 64 nodes respectively. There are initially 486 pages in the three-Ievel trie, compared to initially

267 pages in the three-Ievel B-tree. There are initially 16980 pages in the six-Ievel trie. compared

to initially 8463 pages in the six-Ievel B-tree.

Modification of Buffer Pool Size

The final parameter that we modify is the buffer pool size. Because the tries have more pages man

the B-trees. less of the trie is in memory if we use the same buffer pool size. If a smaller percentage

of the trie is in memory, more disk ua will need to he performed. For the B-tree experimenlS. 75%

of the initial high-fanout B-tree is in memory and 7% of the initial low-fanout B-tree is in memory.



For the trie experiments~ we increase the buffer pool size for the trie with t = Il ta 365 pages 50

that 75% of the pages are in memory and~ for the trie with t = 6. ta 1200 pages 50 that 7% of the

pages are in memory.
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4.2.2 Addition of a New Parameter For Use in Trie Experiments

For the trie~ only the nodes (which are bit pairs) are stored in each trie page. Ali other information;

such as. T·counts. B.counts. and Dode counts are stored separately from the pages. A trie there·

fore consists of lwo files: the page file and the information file. The structures of the files are in

Figures 4.23 and 4.24.

bit pair sequence bit pair sequence bit pair sequence

bytes: 0 2/14 !Jt2'/4 h!/14

\4 page 0 .1. page 1 ~ page 2 -+,,-page 3

Figure 4.23: Trie page file format

left
height neighbour

right
neighbour

: .\-+ 28

L:- page 0 ----1·~~I- page 1

B-count

page level
B-counts

page level
T-counts

number of node
levels per page

byte... :

Figure 4.24: Trie information file format

•
The page file contains the bit pair sequences for every page. The bit pair sequence for any page is

easy to locate because the bit pair sequences are sorted by page ID. The information file contains 32­

bit integer data. General infonnation about the trie is stored at the beginning of the file: the number
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of trie pages. the number of node levels per page (t). and the number of page levels. Following that

are the T-counts for each page level and the B-counts for each page level. with page level 0 being

the root level. Even though the root page level is level 0 in our simulation program, we will continue

to refer to the root page as being on level 1 and the leaf pages as being on level h. We will Finally.

the information file contains the T-count, B-count. node count, height. right neighbour page ID, and

left neighbour page ID of each page (within the page levels) soned by page ID. The left neighbour

is not necessary and is present only for debugging purposes.

Each experiment we perform is a simulation. Before starting an experiment. the trie information

file is loaded into memory. A trie operation needs to access this information. specifically the T-count

and right neighbour, in order to navigate the trie. To account for the CPU cost of accessing this

information from memory. we add a new parameter called PAGE_COUNT_CPU. It is imponant to

note that the T-count for a page is accessed from memory without accessing the actual page from the

buffer or from disk. The simulation parameters for the B-tree and trie experiments are in Table 4.1

on page 99.

Table 4.1 contains the values we May use for the various parameters. With these values. we

perfonn the 7 experiments that were performed with B-trees. As with the B-tree experiments. the

disk time is measured in terms of the number of CPU instructions that can be performed while the

disk is in use. The maximum disk lime is 27 ms. which is the equivalent to performing 540,000

CPU instructions with a 20 MIPS CPU.

4.3 Experimental Results

We perfonn experiments that correspond to the B-tree experiments described in Chapter 3. We now

present and discuss the results for the trie concurrency experiments. We also compare and contrast

the results with those obtained for the B-trees under similar conditions. Due to the great amount

of time required for each trie simulation. the trie throughput curves show the mean throughput for

only 10 simulations. The error bars show the standard deviation. As with the B-tree experiments.

we break down the average number of CPU instructions required for each operation during ooly 1

simulation to better understand our results.
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Values (in CPU instructions
unlcss otherwise noted)

Parameter Description B·1fte Trie
NUM_CPUS Number of CPUs 1.00 1.00
NUM-DISKS Number of disks 8.00 8.x

CPU-SPEED in MIPS (millions of instructions per second) 20 20
DISK_TIME Includes seek. latency. and uansfer time (max 27 ms) 0..540000 0..540000

CC_CPU CPU cast for a lock. upgrade lock. or unlock request 100 100
BUF_CPU CPU cast for a butTer cali 1000 1000
PAGE-SEARCH_CPU CPU cast for a page search 50 50
PAGE..MODIFY_CPU CPU cast for a page modification 500 500
PAGE_COPY_CPU CPU cast ta copy a page between buffer and disk 1000 1000
PAGE-COUNT_CPU CPU CaSt ta access T-counl from memory - 50

FANOUT Number of entries per B-lree page 8.200 .
t Number of node levels per trie page . 6. Il
NUM-PAGEJ.EVELS Number of page levels 6.3 6.3
INITIAL-NU~LKEYS Number of keys in initial B-tree or trie 40000 40000

NUM-BUFFERS Number of buffers 200.600.00 365. 1200. x

MPL Multiprogramming level (number of terminaIs) 1..300 1..300
NUM_OPERATIONS Number of operations performed in each simulation 10000 10000
SEARCH.PROB Probability of search operation 0.0.0.5 0.0. 0.5
INSERT.PROB Probability of insert operation 0.0.1.0 0.0.1.0
APPEND.PROB ProbabililY of append operation 0.0.0.5 0.0.0.5

Table 4.1: Parameters for B-tree and trie simulations

4.3.1 Trie Experiment 1: Higb Fanout, 100% Inserts, Infinite Resources, and In

Memory

The throughput curve for the trie with t = Il and 3 page levels is in Figure 4.25. We compare the

trie performance with that of a B-tree with 3 page levels. whose throughput curve we presented in

Chapter 3 and now present again in Figure 4.26. The breakdown of the average number of CPU

instructions for each operation is in Table 4.2.

From the two curves. we see that the throughput for the B-tree continues to increase as the MPL

increases, but the throughput for the trie reaches a maximum at an MPL of 100 tenninals. Since

there are infinite resources. the only factor that changes as the MPL increases is the time spent

waiting for lecks. The reason for this is that operations traverse the trie sequentially and the B-tree

logarithmically and that lock-coupling in the trie causes increased lock waiting times. In fac4 from
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Figure 4.25: Trie Experiment 1 throughput Figure 4.26: B-tree Experiment 1 throughput

analyzing the number of CPU instructions needed for CC and PAGE_COUNT requests during a trie

insert operation in Table 4.2. we will see that a tenninal usuaJly Iodes every single page in the trie.

In the following discussion. the costs cited are from Table 4.1 and are in units ofCPU insuuctions

for a 20 MIPS CPU. This discussion is an explanation; thus. it is an approximation.

The 10.000 insertions that we perfonn cause about 115 page splits in the trie. However. about

58% of the page splits occur in the first 5,000 operations. As stated previously, there are initially

486 pages in the trie. Therefore. we will assume an average trie size of (0.58 x 115) + -186 :::::: 553

pages. There are very few link chases. The maximum number of Iink chases over 10.000 operations

is only about Il. which occurs at an MPL of 200. Therefore, for brevity. we will ignore them in our

explanatory caIculations below.

•
CC Requests

Each concurrency control request costs 100 instructions. so, if each page is locked and unlocked.

we estimate that there should be 553 x 2 x 100 :::::: 110600 CPU instructions required for CC
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TIme (CPU Instructions)
MPL Request 1Ype B-Trec Trie

1 CC 803 111385
BUF 4020 4011
PAGECOUNT - 27821
PAGESEARCH 151 51
PAGE MODIFY 510 1001
lock Wait 0 0
Total 5484 144268

5 CC 803 111681
BUF 4021 4012
PAGECOUNT - 27895
PAGESEARCH 151 51
PAGE MODIFY 511 1000
lock Wait 18 29442
Talai 5503 174079

30 CC 803 111493
BUF 4021 4012
PAGECOUNT - 27848
PAGESEARCH 151 51
PAGE MODIFY 510 999
lock Wait 154 648606
Total 5639 793009

nme (CPU Instructions)
MPL Requat1Ype B-Tree Trie
100 CC 804 111640

BUF 4023 4012
PAGECOU~ï - 27884
PAGESEARCH 151 51
PAGE MODIFY 510 1000
lock Wail 624 2341717
Total 6111 2486304

200 CC 804 111528
BUF 4026 4012
PAGECOUNT . 27856
PAGESEARCH 151 51
PAGE MODIFY 510 1000
lock Wait 1280 4822741
Total 6770 4967188

•

Table 4.2: Trie Experiment 1CPU usage per operation

requests. Considering the page level counts for the 3 page levels and the upgrade Jock request yieJds

an expected 111300 CPU instructions required for concurrency control requeslS if every page is

locked. From Table 4.2. we see that the number of CPU instructions required for CC requests nears

what we would expect if every page in is locked and unlocked during an insertion.

DUF Requests

Since the trie is 3 levels in height, 3 pages are accessed from the buffer. The fourth buffer cali occurs

when the tenninal, after upgrading ils S-Iock to an X-Jock. checks the page again to confirm that it

will still perform its modification of the page. Sa. at a cost of 1000 instructions per buffer cali. we

sa far have 4000 instructions required for buffer requests. Additional buffer cost occurs because of

the buffer cali needed ta put a new page into the buffer each lime a page splits. Since we average

about 115 page splits over 10.000 insertions, the added buffer cast per insertion due ta page splits

is about 115/10000 x 1000 = 11.5 instructions. Hence, the average cost for buffer caUs is about

4011.5 instructions, as shawn in Table 4.2 for BUF requests.
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PAGE_COUNT Requests

102
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The number of CPU instructions required to access the T-counts from memory also indicates that

most pages are locked and unlocked since terminais always lock pages before accessing the corre­

sponding T-counts. Since each T-count access costs 50 instructions, our average trie is 553 pages,

and there are 3 page level counts, we expect (553 + 3) x 50 = 27800 instructions to be required to

access ail the T-counts as indicated for PAGE_COUNT requests in Table 4.2.

PAGE-SEARCH Requests

Since a page search costs 50 instructions, Table 4.2 indicates that a terminal usually only searches

1 page. the root page, during an insertion.

PAGEMODIFY Requests

Since the root page is usually only searched and the trie has 3 page levels. we expect the terminal

to modify 2 pages. Table 4.2 shows a cost of slightly more than 1()()() instructions used for page

modification. Since the cost of rnodifying a page is 500 instructions. indeed. usually the terminal

modifies 2 pages.

The main factor affecting the shape of the throughput curves is the time spent waiting for Iodes.

According to Table 4.2, the buffer access cost dominates the total instructions needed per B-tree

insertion. However, for an MPL of 30 or greater. the lime spent waiting for locks dominates the total

instructions needed per trie insertion. The lock-coupling perfonned in the trie is very restrictive.

Once the lock waiting lime dominates the tOlal cost of an insertion, the throughpul for the trie no

longer increases since the total cost per insenion increases by the same factor as the MPL.

The difference in aClual throughput values in the graphs between the B-tree and the trie are

direct1y related to the ratio between the cost of a B-tree insertion and a trie insertion. For example,

from Table 4.2, al an MPL of 200, the cost per B-tree insertion is 6770 instructions and the cost per

trie insertion is 4967188 instructions. Since the trie insertion takes about 734 times longer than a

B-tree insertion, the B-tree throughput is 734 tirnes greater than that of the trie. Hence. we see a
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throughput of 590800 TPS for the B·tree and a throughput of 805 TPS for the trie at an MPL of 200

in Figures 4.25 and 4.26 on page 100.

4.3.2 Trie Experiment 2: Rigil Fanout, 100% Inserts, Infinite Resources, and 365

ButTers

The throughput curve for the trie with t = Il and 3 page levels is in Figure 4.27. We compare the

trie perfonnance with that of a B·tree with 3 page levels. The B-tree throughput curve presented in

Chapter 3 is now in Figure 4.28. We break down the average CPU usage for each operation into its

various components in Table 4.3. We do not discuss results thal are unaffected by the limitation of

buffer size since [hey are explained in Section 4.3.1.
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Figure 4.27: Trie Experiment 2 throughput Figure 4.28: B·tree Experiment 2 throughput

•
From the two curves. again we see that the throughput for the B-tree continues ta increase as the

MPL increases. but the throughput for the trie reaches a maximum at an MPL of 100 terminais. In

facto throughput decreases for the trie such that there is less throughput with 200 tenninals than with
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Time (CPU Instructions)
MPL Request Type B-Trec Trie

1 CC 803 111707
BUF 4747 5273
PAGECOUNT . 27901
PAGESEARCH 151 51
PAGE MODIFY 511 1000
PAGECOPY 726 1262
DiskTime 196894 341324
Leck Wail 0 0
Total 203831 488517

5 CC 803 111432
BUF 4705 5270
PAGE COUNT - 27832
PAGESEARCH 151 51
PAGE MODIFY 510 1000
PAGECOPY 685 1258
DiskTIme 184865 339616
Lock Wail 3893 556989
TalaI 195610 1043447

30 CC 803 111611
BUF 4722 5262
PAGECOUNT - 27877
PAGESEARCH 151 SI
PAGE MODIFY 510 1000
PAGECOPY 701 1250
Disk Time 188689 341304
Lock Wail 25829 2282671
Total 221404 2771025

Time (CPU Instructions)
MPL RequatType B-Tree Trie
100 CC 804 111642

BUF 4715 5269
PAGECOUNT . 27885
PAGESEARCH 151 51
PAGE MODIFY 510 1001
PAGECOPY 691 1258
Disk Time 187969 360476
Leck Wail 72970 7697591
Total 267809 8205173

200 CC 804 111289
BUF ~709 5261
PAGECOUNT - 27797
PAGESEARCH 151 SI
PAGE MODIFY 510 1000
PAGECOPY 682 1249
Disk Time 187366 396424
Leck Wail 123151 26373921
Total 317372 26916990

•

Table 4.3: Trie Experimenl 2 CPU usage per operation

30 terminais. The additional time required 10 access a disk affects the results. Even though the num­

ber of disks is infinite. the operation holds its lock on the page (often an X-lock) for a longer tirne.

Throughput is reduced greatly since the trie is traversed sequentially instead of logarithrnically.

OUF Requests

The use of a disk affects the nurnber of buffer caBs because we must wrile out the LRU buffer page

before reading in the new page from disk. So, we now calculate the number of tirnes we expect

to use a disk. We assume that the root page is a1ways in the buffer because il is navigated most

often and that the remaining 2 page levels are distributed evenly in the buffer. Since there are 365

buffers and an average of 553 trie pages. we calculate about a 1 - (365 - 1)/{553 - 1) ~ 0.34

probability that a specifie page other than the root is not in the buffer. However, since there are 2
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page levels where the page may not be in the buffer, we expect the number of buffer misses per

operation to he (0.34 x 0.66 x 2 x 1) + (0.34 x 0.34 x 1 x 2) :::::: 0.68. Each buffer miss generates 2

additional buffer calls (write·oul and read-in), so we expect 0.68 x 2 :::::: 1.36 buffer calls per insen

operation due to disk 1/0. Also, each page split generates 2 buffer requests because the LRU buffer

page must he written to disk to allow the new page to go into the buffer. So, with about 115 page

splits over 10,000 operations, we expect 2 x 115/10000 :::::: 0.02 buffer requests due to page splits

per operation. Adding these figures to the 4 buffer calls needed ta access the trie pages. we expect

about 5.38 buffer caUs per insertion. At a cost of 1000 instructions per buffer cali. this amounts to

about 5380 instructions. Examining the instructions used for BUF requests with tries in Table 4.3.

we see that the results suppon this finding.

PAGE_COPY Requests

Each buffer miss generales 2 requests for disk 1/0 due to the write·oul fo the LRU buffer page and

read-in for the read page. Additionally, each page split generates 1 disk 1/0 request because the LRU

buffer page is written to disk 10 allow the new page ta go into the buffer. Sa. with 0.68 buffer misses

per operation and about 0.01 page splits per operation. we expect 1.36 + 0.01 :::::: 1.37 occurrences

of disk 1/0 per operation. Eaeh time a terminal perfonns disk 1/0. it makes a PAGE_COPY request.

Each PAGE_COPY request costs 1000 instructions. sa we expect about 1370 instructions on average

needed for copying pages inlo or out of the buffer as shown in Table 4.3.

Disk Time

The disk time needed per read or wrile varies from 0 to 27 ms. which is the equivalent to performing

oto 540000 CPU instructions with a CPU of speed 20 MIPS. Sinee we write oul and read in a page

whenever a buffer miss occurs. we expect that each lime a buffer miss occurs. we are delayed by

an average time equaJ ta the CPU performing 2 x 540000/2 = 540000 instructions. Since the

number of buffer misses is expecled to be about 0.68, we expect a time equivalent 10 perfonning

about 0.68 x 540000 :::::: 367200 CPU instructions to be devoted ta disk 1/0. The measurements for
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disk time in Table 4.3 for tries suppon this finding.
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The main factor affecting the shape of the throughput curves is the lime spent waiting for locles.

Ali measurements remain about the same except for the lock waiting times. which grow as MPL

increases. The rate at whieh lock wait times for the B-tree grow is relatively unehanged and less

than the rate at which the MPL increases. The disk time for the B-tree is a1ways greater man the

lock wait time. which limits the effects of increased lock waiting time. For the tries however. lock

wait times jump by over a factor of 3 when going to an MPL of 200 from an MPL of 100. Because

of this dramatic increase in lock wait times and the faet that the lock wait time aceounts for most of

the operation time. the throughput for the trie decreases when the MPL is greater than 200.

The ratio of the throughput values between the B-tree and trie is equal to the ratio of the operation

times between the B-tree and trie. For example. at an MPL of 100. which is the point of maximum

throughput for the trie. the B-tree has a throughput of 7468 TPS and the trie has a throughput of

244 TPS. The throughput of the B-tree is 30.6 times more than that of the trie because the total

of 8205173 instructions required to do a typical trie insertion is 30.6 times more than the total of

267809 instructions required to do a typical B-tree insertion.

4.3.3 Trie Experiment 3: High Fanout, 100% Inserts, 1 CPU, 8 Disks, and 365

BulTers

The throughput curve for the trie with t = Il and 3 page levels is in Figure 4.29. We compare

the trie performance with that of a 3-level B-tree. The B-tree throughput curve that was presented

in Chapter 3 is now in Figure 4.30. Table 4.4 contains the components of the average CPU usage

required by eaeh operation.

The throughput curves are similar as those we get when we have infinite resources and limited

buffer space. Again the trie throughput reaches a ma.~mum at 100 MPL and then quieldy decreases

as MPL increases. The B-tree throughput continues to increase as MPL increases. We now use the

measurements in Table 4.4 to explain the throughput results.

The trie results in Table 4.4 are the same as those obtained for the 3-level trie with infinite CPUs

and disks in Section 4.3.2. except for the wait times for a disk. CPU. and lock. With a single CPU
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and only 8 disks, operations now must now sometimes wail to use the CPU or a disk. Operations

hoId locks on pages longer because of the limited resources, causing longer wait times for locks.

The waiting lime for lecks and the CPU dominale the time required for each trie operation;

whereas. the disk lime and wail dominales the time required for each B-tree operation. Due to

the sequential locking that trie operations perfonn and the large number of T-counts accessed. trie

operations use the CPU much more than B-tree operations. Hence the CPU becornes the bottleneck

for the trie. Due to the logarithmic locking that B-ttee operations perfonn. disk times and waits are

longer for these operations.

Once the MPL reaches 100 terminaIs, the increase in trie operation time is at a higher rale than

the increase in MPL, so throughput decreases. From Table 4.4. we see lhat the total instructions

required for each operation iocreases from 17682796 to 42458293 when increasing MPL from 100

to 200. The time for each operation increases by a factor of about 2.4, but the MPL increases only

by a factor of 2; hence, throughput decreases for the trie.

The ratio of throughput values for the B-lree and trie is the same as the ratio of operation lime

for the trie and B-tree. For example, at the maximum throughpul for the trie. which occurs al an
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Tlme (CPU Insuuctions)
MPL RequatTypc B-Tree Trie

1 CC 803 1Il 503
BUF 4712 5284
PAGECOUNT - 27850
PAGESEARCH 151 51
PAGE MODIFY 510 1000
PAGECOPY 692 1272
DiskTime 184436 344062
Disk Wail 0 0
CPUWail 0 0
Leck Wail 0 0
Total 191304 491023

5 CC 803 111712
BUF 4704 5254
PAGECOUNT - 27902
PAGESEARCH 151 51
PAGE MODIFY 510 1000
PAGECOPY 684 1243
DiskTime 185261 333065
Disk Wail 63005 28344
CPU Wail 899 258495
Leck Wail 3216 633793
Tolal 259232 1400859

30 CC 803 111494
BUF 4623 5275
PAGECOUNT - 27848
PAGESEARCH 151 51
PAGE MODIFY 510 1000
PAGECOPY 602 1264
Disk lime 272098 343334
Disk Wail 434024 80814
CPU Wail 5315 785033
Lock Wail 14395 4041029
Total 732521 5397142

TI.. (CPU Instructions)
MPL RequatType B-Trec Trie
100 CC 804 111640

BUF 4419 5273
PAGECOUNT . 27885
PAGESEARCH 151 51
PAGE MODIFY 510 1001
PAGECOPY 393 1261
Disklimc 600467 356382
Disk Wail 711876 104725
CPU Wait 30664 2189629
Leck Wait 50890 14884950
Total 14()(J173 17682796

200 CC 806 111512
BUF 4306 5251
PAGECOUNT - 27852
PAGESEARCH 151 51
PAGE MODIFY 5Il 1000
PAGECOPY 269 1240
DiskTime 813785 386278
Disk Wail 653324 109336
CPU Wail 145219 4395455
Leck Wait 147281 37420318
Total 1765653 42458293

•

Table 4.4: Trie Experiment 3 CPU usage per operation

MPL of 100, the throughput of the B-tree is 1428 TPS, which is about 12.6 times greater than the

throughput of 113 TPS for the trie. This is because the average operation, according to Table 4.4,

for trie operations at this MPL requires 17682796 instructions, which is about 12.6 times greater

than the 1400173 instructions required by the average B-tree operation at this MPL.
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4.3.4 liie Experintent 4: Low Fanout, 100% Inserts, Infinite Resources, and 1200

Huffen

The throughput curve for the trie with t = 6 and 6 page levels is in Figure 4.31. We compare the

trie performance with that of a B-tree with 6 pagt: levels, whose throughput curve is in Figure 4.32.

We break down the average number of CPU instructions per operation into the various components

in Table 4.5.
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Figure 4.31: Trie Experiment 4 throughput Figure 4.32: B-tree Experiment 4 throughput
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From the two curves. we see that the throughput for bath the trie and the B-tree continue to

increase as the MPL increases, but that the throughput for the trie is nearing a maximum before the

throughput for the B-tree does.

Performing 10,000 insertions in the trie with t = 6 yields about 3040 page splits. Half the page

splits occur in the first 5,000 operations. Initially there are 16980 pages in the trie, so we will assume

an average trie size of 3040/2 + 16980 ~ 18500 pages. Link chases are extremely rare and do not

affect the results.
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TIlDe (CPU Instructions)
MPL RequestTy~ B-Tree Trie

1 CC 1462 3627825
BUF 12124 15041
PAGECOUNT . 906916
PAGESEARCH 310 109
PAGE MODIFY 707 2061
PAGECOPY 4711 7737
Disk Time 1274000 2092468
Lock Wait 0 0
Tota! 1293314 6652157

5 CC 1463 3628089
BUF 12118 15018
PAGECOUNT - 906982
PAGESEARCH 310 110
PAGE MODIFY 709 2058
PAGECOPY 4700 7711
Disk Time 1267638 2083672
Lock Wail 51 428508
Tota! 1286989 7072147

30 CC 1463 3621156
BUF 12153 15025
PAGE COUNT . 905249
PAGESEARCH 311 109
PAGE MODIFY 710 2057
PAGECOPY 4732 7722
Disk Time 1277944 2078374
Lock Wail 1260 20135100
Total 1298572 26764791

Time (CPU Instructions)
MPL Request Type B-Trce Trie
100 CC 1462 3631474

BUF 12157 15030
PAGECOUNT . 907828
PAGESEARCH 310 109
PAGE MODIFY 705 2064
PAGECOPY 4743 7718
Disk Time 1286619 2092439
Lock. Wait S455 58189056
Tata! 1311452 64845719

200 CC 1464 3622391
BUF 12419 15010
PAGECOUNT - 905558
PAGESEARCH 311 109
PAGE MODIFY 708 2059
PAGECOPY 4997 7711
Disk Time 1354797 2092743
Lock Wail 13731 99294980
Tota! 1388426 105940561

300 CC 1466 3622701
BUF 12664 15038
PAGECOUNT - 905635
PAGESEARCH 311 109
PAGE MOOIFY 712 2060
PAGECOPY 5229 7736
Disk Time 1416964 2104459
Lock Wail 28025 148984209
Total 1465372 155641946

•

Table 4.5: Trie Experiment 4 CPU usage per operation

CC Requests

If a terminallocks and unlocks every page, there should be about 18500 x 2 x 100 ::::: 3700000 CPU

instructions required CC requests. The instructions required for CC requests for the trie in Table 4.5

are slightly below our estimate, indicating that the terminais lock most, but not ail, trie pages.

BUF Requests

Since the trie has 6 page levels, the tenninal accesses a minimum of 6 pages from the buffer. After

upgrading ils lock to an X-Iock, the terminal accesses the page again to check that modification will

still occuc. The additional buffer accesses are due 10 disk 1/0 and page splitting.

The expected number of disk accesses per operation is calculated as follows. Say mal most page
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splits are on the bouom 4 page levels and that me top 2 page levels are always in the buffer. There

are 1200 buffers and 61 pages in the top 2 page levels, so for the bottom 4 page levels, there is a

1- (1200 -61)/(18500 -61) :::::: 0.938 probability mat a specifie page is not in the buffer. However,

since there are four page levels where the page may not be in the buffer, we expect the number of

buffer misses peroperation to be (0.0623 x 0.938 x 4 x 1) + (0.0622 x 0.9382 x 6 x 2) + (0.062 x

0.9383 x 4 x 3) + (0.9384 x 1 x 4) ::::: 3.75. Since there are 2 buffer caUs for each buffer miss

(due to writing out and reading in). we expect thal there will he 3.75 x 2 = 7.5 buffer accesses per

operation for disk 1/0. In addition, there are 2 buffer caUs made for each page Splil to write out the

LRU page and read in the new page. With about 3040 page splits over 10,000 operations, we expect

2 x 3040/10000 :::: 0.608 buffer caUs per operation due to page splitting. Adding the buffer calls,

we arrive al 7 + 7.5 + 0.608 :::: 15.1 buffer caUs for each operation. At 1000 instructions per cali,

we estimate about 15100 instructions needed for buffer requests, which is close to the instructions

needed for buffer requests for tries in Table 4.5.

PAGE_COUNT Requests

Since terminais lock most trie pages, they access most page counts. With an average trie size of

18500 pages plus the 6 page level counts. accessing ail counts al a cast of 50 instructions per access

yields 18506 x 50 :::: 925300 instructions total for page counl accessing. Results for trie page counl

accesses in Table 4.5 are what we expecl if most counts are accessed.

PAGE...sEARCH Requests

Looking at the number of CPU instructions required for a typical insen operation to search a page

in Table 4.5, we see that the operation usually searches 2 pages. These searched pages are the root

page and the root page's child. At a cost of 50 instructions per search, a total of 100 instructions is

used for page searching. Since the measurements for page searches in Table 4.5 are slightly higher,

the operation will search 3 or more pages more often man ooly the 1 root page.
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PAGE...MODIFY Requests
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Operations usually search 2 pages in the trie, so that leaves 4 pages to modify. [n addition. page

splils require an additional page modification. With about 0.304 page Splils per operation and a

cost of 500 instructions per modification, we expect 4.304 x 500 ::::: 2152 instructions devoted to

page modification. The measurements for page modification in Table 4.5 are slightly lower because

pages will occasionally search 3 pages and modify only 3 pages.

PAGE_COPY Requests

With an expected 3.75 buffer misses and 2 disk UO requests per miss, there are about 7.5 requests to

copy a page into or out of the buffer. Also. each page split causes a page copy request. So we expect

7.5 + 0.304 ::::: 7.8 page copy requests per operation. At 1000 instructions per request. this requires

about 7800 instructions. which is close to the PAGE_COPY measurements for tries in Table 4.5.

Disk Time

We perform disk 110 every time we perfonn a page copy. SOt for an average disk lime equivaJenl

10 ooסס27 instructions. we expect a lime equivalent to performing 7.8 x 270000 ::::: 2106000 in­

structions spent for disk I/O. The disk time measuremenls for tries in Table 4.5 are very close to our

estimate.

As with the 3-level trie with infinite CPUs and disks but Iimited buffers, the main factor affecting

the shape of the throughput curves is the lock wait lime. The lock wait time increases for the B-tree.

but its effects are not very strong because the disk lime is much greater. For the trie. however. the

lock wait time quickly dominales the cost of each operation. The increase in lock wait time is not

as rapid as il is for the 3-level trie; hence. the curve reaches a graduai maximum. When the MPL

doubles from 100 to 200, the lock wail lime increases by only a factor of 1.7. When the MPL

increases by a factor of 1.5 from 200 to 300, the lock wail lime increases by a factor of about 1.5;

therefore. reaching a plateau in tenns of throughput.

The ratio between the throughput for the B-tree and trie equals the ratio between the operation
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costs for the B-tree and trie. Al an MPL of 300. the throughpUl of the B-tree is 4095 TPS and the

lhroughpul of the trie is 39 TPS. The B-tree throughput is 105 times greater than that of the trie

because the average B-tree operation requires 105 times fewer instructions to perform than the trie.

According to Table 4.5, the average instructions required per operation is 1465372 for the B-tree

and 155641946 for the trie.

4.3.5 Trie Experiment S: Low Fanout, 100% Inserts, 1 CPU,8 Disks, and 1200

BuO'ers

The throughput corve for the trie with t = fi and 6 page levels is in Figure 4.33. We compare the trie

performance with the performance of a 6-level B-tree. The B-tree throughput curve is in Figure 4.34.

The breakdown of the average CPU usage for each operation into the various components is in

Table 4.6.
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From the two curves. we see that the throughput for the trie is very low and a1most constant. The

throughput for the B-tree under similar circumstances grows and is nearing a maximum throughput.•
Figure 4.33: Trie Experiment 5 throughput Figure 4.34: B-tree Experiment 5 throughput
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Time (CPU Instructions)
MPL Request 1)pe B-Tree Trie

1 CC 1463 3626013
BUF 12147 14998
PAGECOUNT - 906463
PAGESEARCH 310 109
PAGE MODIFY 710 2062
PAGECOPY 4728 7692
Disk Time 1277722 2073223
Disk Wail 0 0
CPUWait 0 0
Lock Wail 0 0
Total 1297081 6630559

5 CC 1461 3626459
BUF 12106 15026
PAGE COUNT - 906575
PAGESEARCH 310 109
PAGE MODIFY 707 2060
PAGECOPY 4692 7725
Oisk Time 1265706 2080955
Disk Wail 434376 72494
CPU Wail 590 15320956
Lock Wail 400 762577
Talai 1720350 22794976

30 CC 1463 3617560
BUF 12068 15021
PAGECOUNT - 904350
PAGESEARCH 310 109
PAGE MOOIFY 708 2058
PAGECOPY 4650 7719
Disk Time 1325745 2085550
Disk Wail 4085154 77724
CPU Wail 2186 28827956
Lock Wail 4274 100822592
Total 5436559 136360639

Time (CPU Instructions)
MPL Request 1)pe B-Tree Trie
100 CC 1464 3623213

BUF 11986 15030
PAGECOUNT - 905763
PAGESEARCH 311 109
PAGE MODIFY 711 2061
PAGECOPY 4561 7723
Disk Time 1953133 2088655
Disk Wail 14107909 114423
CPUWail 10085 54722414
lock Wail 57221 392266305
Tata! 16147379 453745695

200 CC 1463 3620631
BUF 11916 14989
PAGE COUNT - 905118
PAGESEARCH 3[ 1 109
PAGE MODIFY 704 2056
PAGECOPY 4500 7689
Disk Time 3471840 20804[5
Disk Wail 27328633 161503
CPU Wail 35547 10638[448
Lock Wail 263450 789210397
Talai 31118362 902384355

300 CC 1465 36[8501
BUF 11954 150[2
PAGECOUNT . 904585
PAGESEARCH 3[ 1 109
PAGE MODIFY 708 2058
PAGECOPY 4522 7710
Disk Time 5231190 2083200
Disk Wail 39346353 182522
CPU Wail 75443 140551238
lock Wail 731293 1199166425
TolaJ 45403241 1346531361

•

Table 4.6: Trie Experimem 5 CPU usage per operation

We now analyze the data in Table 4.6 ta betler underSland why the trie throughput is almosl constant.

From Table 4.6. we see thal the trie results are the same as those oblained for the 6-level trie with

infinile CPUs and disks in Section 4.3.4. excepl for the time spent waiting for a disk. waiting for a

CPU. and waiting for a lock. Because of the wail for limiled CPUs and disks. operations hold locks

on pages for a longer period of time. causing other operations ta spend more lime wailing for the

locks.

For the B-ttee. the lime spent waiting for a disk dominates the time required for each operation;

whereas. for the trie. lock and CPU waiting limes dominate the lime each operalion requires. We
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expect this because the trie operations use the CPU much more than the B-tree operations. Since

trie operations lock Many more pages and the CPU must be used to lock and unlock pages, as weIl

as to access the T-counts, the CPU becomes the bottJeneck for the trie. Since the total time for each

trie operation increases by the same factor as MPL, throughput for the trie is at a maximum. The

total time for each B-lree operation increases by a factor slightly less than the factor at which MPL

increases once the MPL reaches 100 terminaIs.

The ratio of the B-lree throughput to the trie throughput is equal to the ratio of lime required

to perform a trie operation to the time required to perform a B-tree operation. At an MPL of 300.

for example, a typical trie operation requires 1346531361 instructions compared with the total of

45403241 instructions required for a typical B-tree operation. The trie operations take about 29.7

times longer; hence, the throughput for the B-tree is about 29.7 times higher. At an MPL of 300,

the throughput of the B-tree is about 132 TPS compared to about 4.5 TPS for the trie.

4.3.6 Trie Experiment 6: High Fanout, 50% Appends, 50% Searches, Infinite Re­

sources, and 365 ButTen

The throughput curve for the trie with t = Il and 3 page levels is in Figure 4.35. We compare the

trie performance with that of a 8-tree with 3 page levels, whose throughput curve is in Figure 4.36.

We break down the average oumber of CPU instructions required per operation ioto the various

components in Table 4.7.

With a workload of 50% appends and 50% searches, there are 5 page splits in the trie. Sa. since

the initial trie has 486 pages. the average size of the trie is 486 + 5/2 ::::: 489 pages. Link chases

are still rare. with a maximum of only about 34 occurring at an MPL of 200; therefore. we will not

include them in our calculations below. We now analyze the measurements in Table 4.7 and discuss

the throughput curves that result from them.

CC Requests

Since traversai of the trie is sequential from left to right and appends modify the rightmost leaf

pages, appends lock and unlock every page in the trie. So, with a cost of 100 instructions per concur­

rency control reques4 we expect that tries will require -189 x 2 x 100 = 97800 CPU instructions for
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locking and unlocking pages, omitting the page level counts and lock upgrade. Searches will on av­

erage lock and unlock half the trie pages, for a total of489 x ~ x 2 x 100 = 48900 instructions. Since

there are 50% appends and 50% searches, we expect an average of (97800 + 48900) /2 = 73350

CPU instructions devoted ta lock and unlock requests. The CC request measurement for tries in

Table 4.7 is very close ta our estimate.

BUF Requests

Rarely do appends use a disk because they navigate the sarne pages much of the time; hence. the

pages do not become LRU and written out of the buffer. The ooly time an append uses a disk is

when writing out the LRU page after a page split to make room for the new page. Since there are

only 5 page splits, we will say that only searches use a disk. For a trie of 489 pages and a buffer

of 365 pages, the probability that a page is not in the buffer is about 1 - {365/489} ::::: 0.254.

Sioce we May eocounter a buffer miss twice per operation, the expected number of buffer misses

per search is (0.254 x 0.746 x 2 x 1) + (0.254 x 0.254 x 1 x 2) ::::: 0.508. Each time an operation
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Tillle (CPU Insuuctions)
MPL RequatType B-Trec Trie

1 CC 703 74025
BUF 3770 3976
PAGECOUNT . 18469
PAGESEARCH 150 125
PAGE MODIFY 258 252
PAGECOPY 255 474
DiskTime 67561 128314
Lock Wail 0 0
Tata! 72696 225634

5 CC 703 73183
BUF 3776 3976
PAGECOUNT - 18258
PAGESEARCH 151 125
PAGE MODIFY 256 247
PAGECOPY 257 482
DiskTIme 68461 130491
Lock Wail 1368 708
TalaI 74972 227470

30 CC 714 74193
BUF 3846 3968
PAGECOUNT - 18511
PAGESEARCH 153 125
PAGE MODIFY 255 252
PAGECOPY 275 ~64

Disk Time 77135 126202
Lock Wait 19901 8939
Total 102279 232653

Time (CPU Instructions)
MPL RequatType B-Trec Trie
100 CC 772 73755

BUF 4130 3964
PAGECOUNT - 18401
PAGESEARCH 168 125
PAGE MOOlFY 251 250
PAGECOPY 269 465
Disk Time 74124 130510
Lock Wail 166581 33865
Total 246294 261336

200 CC 869 73932
BUF 4613 3933
PAGECOUNT . 18445
PAGESEARCH 192 125
PAGE MODIFY 256 253
PAGECOPY 264 427
DiskTime 72153 120784
Lock Wait 393795 112936
Tata! 472142 330835

•

Table 4.7: Trie Experiment 6 CPU usage per operation

encounters a buffer miss. the operation makes 2 buffer requests. We expect searches to cali the

buffer (0.508 x 2) + 3 ::::: 4.02 times and appends to cali the buffer 4 times (as insert operations with

the trie in memory do). So. the expected number ofbuffer accesses is (4.02 + 4}/2 == 4.01 which.

at 1000 instructions each. accounts for a total of 40 10 CPU instructions. Results in Table 4.7 for

trie BUF requests are very close to this estimate.

PAGE_COUNT Requests

Appends access every page count. searches access half the page counts, and page count accesses

use 50 instructions each. SOt we expect 489 x 50 = 24450 instructions to be required for appends

to access the page counts and 489 x ~ x 50 = 12225 instructions 10 be required for searches to

access the page counts. With our workload. that averages to 18338 CPU instructions required per
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operation to access the page counts. The PAGE_COUNT request resullS for tries in Table 4.7 are

very similar to our expectation.

PAGE...sEARCH Requests

Appends most often modify only a leaf page in the trie; therefore. for the 3-level trie. appends

usually search 2 pages. Search operations search 3 pages. With our workJoad. we average 2.5

searches per operation and. since each search uses 50 instructions. we expect about 125 instructions

to he devoted to page search per operation as shown in Table 4.7 for trie PAGE..5EARCH requeslS.

PAGE...MODIFY Requests

Since appends Most often modify only a leaf page in the trie. a typicaJ append requires 500 CPU

instructions for page modification. Since ooly 50% of the operations are appends. we expect

about 250 instructions per operation needed for modifyiog pages as indicated by Table 4.7 for trie

PAGEMODIFY requests.

PAGE_COPY Requests

Since there are so few page splits. we say that only searches use disk accesses. Each disk access

is accompanied by a PAGE_COPY request. Since we expect 0.508 buffer misses per search and

each buffer miss requires 2 disk accesses. we estimate that there exists about 1.02 disk accesses

per search. Since searches account for 50% of the workload. we expect 0.508 disk accesses and

PAGE_COPY requests. Each PAGE_COPY request uses 1000 instructions. so we expect 5080 in­

structions to be used for copying pages ioto and out of the buffer. which is close to the results in

Table 4.7 for trie PAGE_COPY requests.

Disk Time

As stated above. we expect 0.508 disk accesses per operation. Since the average time for each disk

access is equivaJent to doing 270000 CPU instructions, we estimate a disk time equivalent to about
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137160 instructions per operation. The disk times in Table 4.7 are close to this estimate.
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The main factor affecting the shape of the throughput curves is the lock waiting time. Appends

modify the same areas of the data structures; namely, the rightrnost leaf pages. However, there are

about 10 times more page splits in the B-tree than in the trie, which causes many more link chases to

occur in the B-tree than in the the trie. Therefore, since operations must wait again after a link chase

for the correct page, lock waits are greater for the B-tree operations. As a result, the trie throughput

continues to grow at a higher rate than the B-tree throughput.

The ratio of the trie throughput to the B-tree throughput is equal to the ratio of the number of

instructions required for B-tree operations to the number of instructions required for trie operations.

At an MPL of 200 for example, the trie throughput is 12090 TPS, which is about 1.43 times greater

than the B-tree throughput of 8470 TPS. We see in Table 4.7 that the total number of instructions

required for a B-tree operation is on average 472142, which is about 1.43 times greater than the

average number of instructions required for a trie operation, which is 330835.

4.3.7 Trie Experiment 7: High Fanout, SO% Appends, SO% Searches, 1 CPU. and in

memory

The throughput curve for the trie with t = Il and 3 page levels is in Figure 4.37. We compare

the trie perfonnance to the throughput in the corresponding B-tree experiment. whose curve is in

Figure 4.38. The various components of the average CPU usage required per operation are in

Table 4.8.

Both throughput curves indicate that no increase in throughput is made by increasing the MPL.

We now analyze the measurements in Table 4.8 to determine the reasons. We do not discuss results

that are unaffected by the use of only 1CPU and an infinite buffer pool because they are explained

in Section 4.3.6.

BUF Requests

No operations access the disk. so appends usually make 4 buffer calls and searches make 3 buffer

calls. Since there are 50% of each operation type, we expect about 3.5 buffer caUs per operation or,
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Figure 4.37: Trie Experiment 7 throughput Figure 4.38: B-tree Experiment 7 throughput

at 1000 instructions per buffer cali. 3500 instructions per operation devoted to buffer caUs. The trie

results in Table 4.8 for BUF requests are very close to our estimate.

•

The major factors affecting the shape of the throughput curves are the wait tirnes for the CPU

and for locks. Since trie operations use the CPU considerably more than B-tree operations because

of ail the locking and unlocking that they do. the CPU wait times are much longer for the trie than

for the B-tree. Since B-tree operations are not idle as often, waiting for the CPU, they traverse the

B-tree quicker than trie operations traverse the trie and create more Iock confticts at the rightmost

leaf pages.

We compare the ratio of the B-tree throughput to the trie throughput with the ratio of the trie

operation time to the typical B-tree operation time. For example, at an MPL of 200, the B-tree

throughput is 3792 TPS, which is about 18.1 limes greater than the trie throughput of 210 TPS. This

is so because the typical hie operation requires 19073135 instructions, which is about 18.1 limes

greater than the nurnber of instructions required by a typical B-tree operation. which is 1054889.
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Time (CPU Instructions)
MPL Request Type B-Trec Trie

1 CC 700 73974
BUF 3504 3504
PAGECOUNT - 18456
PAGESEARCH 150 125
PAGE MODIFY 252 252
CPU Wait 0 0
lock Wait 0 0
Tolal 4607 96311

5 CC 703 74275
BUF 3519 3509
PAGE COUNT - 18531
PAGESEARCH 151 125
PAGE MODIFY 255 255
CPU Wait 16103 386655
lock Wail 2456 64
Total 23186 483413

30 CC 726 73743
BUF 3631 3498
PAGECOUNT - 18398
PAGESEARCH 157 125
PAGE MODIFY 252 249
CPU Wail 29138 2780029
lock Wail 109223 2534
Total 143127 2878576

Time (CPU Instructions)
MPL Request Type B-Trec Trie
100 CC 793 74011

BUF 3970 3502
PAGECOUNT - 18465
PAGESEARCH 173 125
PAGE MODIFY 253 !SI
CPU Wait 38285 9473135
Lock Wail 475101 45812
Total 518576 9615302

200 CC 811 73549
BUF 4058 3496
PAGECOUNT - 18349
PAGESEARCH 178 125
PAGE MODIFY 254 248
CPU Wait 65266 18507398
lock Wait 984323 469970
Total 1054889 19073135

•

Table 4.8: Trie Experiment 7 CPU usage per operation

4.4 Summary of Results

The differenees in throughput between the B-tree and trie oceur primarily due to the concurrency

control algorithm used for each data structure. For a data structure of n pages, the algorithm for

B-trees typically locks o(log n) pages; whereas, the aJgorithm we have presented for tries typically

loeles O(n) pages. Also. since trie traversallock-couples from left to right and root to leaf. X-Iocks

in the trie often prevent other operations from accessing any pages to the right or below the X-Iocked

page. We now describe this difference between the algorithms in further detaiJ, as weil as the effecls

caused by the various restrictions of system resources.

4.4.1 Experiments 1-3: High Fanout, 100% Inserts

The B-tree operations typicalJy Jock only 3 pages; however. the trie operations lock about 556

pages (including leveI counts). In addition. trie operations usually place X-Iocks on the page level
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immediately below the root; whereas, B-tree operations usually X-Iock only the leaf pages. Since

the trie operations lock Many more pages and Iock out more of the data structure than the B-tree

operations, Iock wail times for the trie are greatly larger than those for the B-tree.

With the addition of buffer constraints, disk usage occurs. There are longer wail limes for locks

because operations hoid locks white performing disk 1/0. Since trie operations usually start X­

locking before reaching the leaf leveI, they usually perform any disk 1/0 for Ieaf pages while holding

an X-Iock. In contras!, B-tree operations perfonn disk 1/0 while holding an S-Iock. Due to the

sequential traversai of the trie, operations which encounter the X-Iocked leaf page while it is being

accessed from disk are blocked from ail leaf pages to the right by a considerably grealer amounl of

time.

Limiting the number ofdisks and CPUs creates more bOltJenecks. For the B-tree. disk contention

becomes a bottleneck. For the trie, however, disk waits do not increase very much. but wait times for

the CPU do increase significantly. Trie operations use the CPU much more than B-tree operations

because there are many more lacks placed in the trie. With both algorithms, lock wailS increase due

to locks being held whi le waiting for a resource.

4.4.2 Experiments 4-5: Low Fanout, 100% Inserts

For the low-fanoul data structures, the B-tree operations usuaJly lock only 6 pages; whereas, the trie

operations usually lock most of the trie - which averages about 18500 pages. Also. for the trie,

most modifications begin on the third level of the 6-1evel trie, 50 operations typically X-Iock every

page on the battom 3 levels of the trie as weil as every page to the right of the initially X-Iocked

page. With a limited buffer pool. we estimate that there are about 3.75 buffer misses for each trie

operation. Since these buffer misses occur among the bottom 4 levels of the trie, operations perfonn

most disk 1/0 white holding X-Iocks. As a result, trie insens block off much of the trie while

performing disk 1/0 and cause lock wait times to be immensely greater than those for the B-tree.

Limiting the number of disks and CPUs creates the same bottlenecks as the high-fanout experi­

ments. Disks become the main bottJeneck for the B-tree operations and the CPU becomes a major

bottleneck for the trie operations. Again. lock waits for bath algorithms increase due to waiting for

resources while holding lacks.
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For the high-fanout data structures and a workload of 50% appends and 50% searches, trie through­

put is greater than B-tree throughpul when the buffer size is Iimited. Both algorithms are very

similar in that the X-Iodes are usuaJly placed only on the rightrnost leaf page. The trie experiences

only 5 page splits, compared to about 49 for the B-tree. Link chases for the B-tree are far more

numerous than for the trie. At an MPL of 200, there are about 8370 Iink chases in the B-tree and

only about 34 in the trie. With the added wait times for locles aCter a Iink chase. B-tree throughput

is slightly lower than trie throughput.

Limiting the system to 1 CPU greatly affects trie throughput. Due to the intense CPU usage

for trie operations, the CPU becomes the bottleneck and trie throughput remains constant. B-tree

throughput is greater than trie throughput. but decreases slightly as MPL increases due to the large

increase in link chases that accompanies the increase in MPL.
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Chapter5

Conclusion

This thesis presents algorithms for concurrent search and insert operations in a pointerless trie.

To the best of our knowledge. these are the first a1gorithms for concurrent trie operations. Using

simulation. we studied the perfonnance of our trie concurrency control algorithms for a variety

of situations wilh varying trie structure. resource contention. and workload. We also compared

our algorithms' perfonnance with mal of the Blink algorithms. We now present a more detailed

summary of our work and suggestions for future work in the study of trie concurrency.

5.1 Summary

Many database systems are used in a multiuser environment; mus. require concurrency control in

order to operate correctly. B-trees have become lhe standard data structure for storing indices in

a database system and many different algorilhms havé been designed to enable concurrent B-tree

operations. Tries. which generate significant data compression. are useful. not only for storing

indices for general databases. but also for text and spatial data. Tries have not yet. however, been

applied to databases requiring concurrent operations.

There have been several performance studies for various B-tree concurrency control aJgorithms.

We selected Srinivasan and Carey's work (SC91b] as a basis for evaJuating our simulation and

a1gorithm perfonnance. They specify many situations thal cover a variety of tree properties, resource

contention, and workJoads. Using an asynchronous discrete-event simulation with closed queueing•

124
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we perfonned Many of the experirnents for which they provide throughput results. Our simulation

involves events with activation tirnes and movement of these events between various queues. Events

that change the state of the system are stored in soned order on a heap. Events that are waiting for

a lock. disk. or CPU are stored on a wait queue. Once a terminal is granted the resource. its event is

moved from the wait queue to the heap.

Our goal was to use our simulation to produce trie concurrency results that could he scaled

onto the throughput graphs of Srinivasan and Carey. Using the results that Srinivasan and Carey

present for the Blink aJgorithm with lock-eoupling on ascent. we attempted to obtain a constant ratio

between our B-tree results and theirs. With this constant ratio. we would he able to scale the trie

throughput results obtained by our system onlo the graphs.

While Most of the experiments we performed generated B-tree results that were within a similar

factor of their results. there were differences between our results and theirs. For the 5 results that

are similar. our results are consistent with theirs by a factor of between 1.4 and 1.9. However. for 2

of the experiments. the throughput we obtained behaves differently man that obtained by Srinivasan

and Carey. Satisfied with our simulation model. we used it to measure the concurrency perfonnance

of our trie algorithms.

We presented algorithms for concurrent searches and inserts in a pointerless trie. Our algorithrns

are relatively simple and use only S-locks and X-locks. They are also deadlock free. We attempted

to use prefixes to aid in recovering from interference caused by other concurrent operations. but

were unsuccessful. As a result. our algorithms require lock-coupling sequentiaJly along each trie

pagelevel.

With tries and our trie concurrency control algorithrns. we performed the experiments thal were

previously conducted for B-trees. While the experirnents are identical in terms of workload. sorne

modification had to he made due to differences between the trie and B-tree structures. Each trie

node has at most 2 children and multiple trie edges often enter the top of a trie page from the

page level above. As a result. setting a fanout in the trie similar to the fanouts used for the B-tree

experiments produces a structure very different from the B-tree. Rather than modify fanoul. we

modified the number of node levels in each page so that each trie has the same number of page

levels as its corresponding B-tree. In addition. a trie has more pages than the corresponding B-tree•
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so we increased buffer sizes to mainrain the same percentage of data structure initially present in

the buffer.

As a result of the lock-coupling along page levels. our trie algorithms do not allow as much

throughput and concurrency as the Blink algorithms. Where n is the number of pages in the data

structure, the trie concurrency control algorithms rock O(n) pages and the B-tree algorithms lock

only O(log n) pagc:s. There is also added restriction because trie operations lock-couple and the

B-tree operations do not. In addition. il is not unusual for a trie insenion to lock every page in the

trie, possibly with X-Iocks. As a result. other concurrent operations May not be able to ovenake the

insert operation.

The presence of resource contention also affects the trie algorithms more than the B-tree algo­

rithms. Since CPU usage is required to perform any locking request and trie operations Jock Many

more pages than the B-tree operations. limiting the number of CPUs Iimits trie throughput dramati­

cally. For tries, the CPU becomes the bottleneck. but for B-trees, the disks become the bottleneck.

When the number of CPUs is infinite, the disk wait affects the trie operations greatly because oper­

ations May often be holding an X-lock on a page while waiting for a disk. Other operations cannot

overtake an operation that is waiting for the disk while holding an X-lock.

Trie performance is better than the B-tree performance for a situation with infinite CPUs and

a workload of half searches and half appends. In this situation, both algorithms are very similar

because they tend to place X-Iocks only on the leftmost leaves of the data structure. However. since

the data capacity for a trie page is greater due to data compression. fewer new pages are crealed. As

a result, far fewer link chases occur for the trie operations and throughpul is greater. However, when

we impose the limitation of using only 1 CPU, trie throughput becomes substantially less than the

B-tree throughput again due to the extensive CPU usage by trie operations.

S.2 Future Work

We identify three potential areas for future work in the study of trie concurrency: new algorithms

that improve on the concurrency provided by our a1gorithms, modification of the poinlerless trie

data structure to enable better throughput. and creation of an algorithm for concurrent deletions of

keys from a trie.
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The perfonnance of concurrent searches and insens in a pointerless trie must be improved. Our

initial algorithms are very restrictive because there are few provisions for any recovery due to inter­

ference from other concurrent operations. As a result, these algorithms use lock-coupling, which is

a very Iimiting in terms of throughput performance. There may be modifications to these algorithms

that allow for less locking.

Modification of the Pointerless Trie Representation

Modification of our algorithms may not, however. provide a great improvement in" concurrency for

trie operations. There may he sorne modification to the pointerless trie structure required before any

significant improvements in throughput can he made. Such a modification May be simply to include

a pointer from a trie page to its leftmost child page. Perhaps such a modification could prevent the

need for operations to lock-couple across the entire page level by allowing them to safely bypass

ail pages that are definitely not going to be navigated. For this modification. page splits would not

cause updates to propagate up the trie; however, splitting a parent would introduce new solutions

needed to maintain correctness of the trie.

The Iink pointer created an enonnous improvement in B-tree throughput. Perhaps a similar

modification to the trie can be made to allow for a less restrictive locking technique. We attempted

to use a prefix for each page that would allow an operation to recover from interference caused by

other operations. While we were not successful in implementing this idea, there May he a similar

approach to increasing trie concurrency.

Concurrent Detelions for Tries

We have not implemented deletions for a trie with concurrent operations. Deletions could he imple­

mented to perfonn while ail other operations wait or concurrently with searches and inserts. Care

must he taken, however, to ensure that deletion of key values does not cause concurrent operations

to perform incorrectly.
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