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Montréal, Québec H3A 2T8

Canada

July 2009

A Thesis submitted to the

Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

c© Marius Constantin Cautun, 2009



Contents

Abstract vii
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Abstract

In this thesis, the classical field model developed by Krasnitz et al. is used to compute

quark and photon production in heavy ion collisions. The first part of the thesis serves

as an independent verification of previous results for quark production. To do so, an

iterative method is developed to solve the non-linear system of equations that gives

the initial condition for the gluonic field. In the second part, the expression giving

the photon production rate is simplified using the symmetries and properties of the

Color Glass Condensate and McLerran-Venugopalan models. From the two Feynman

diagrams that give the leading order contribution, one is much larger than the other.

The dominant diagram is given by a continuum spectrum with a very prominent peak

superimposed on it.

vii



Résumé

Dans cette thèse, le modèle développé par Krasnitz et al. basé sur les champs clas-

siques est utilisé pour calculer la production de quarks et de photons dans les collisions

d’ions lourds. La première partie de la thèse consiste en une vérification indépendante

de certains résultats sur la production de quarks. Pour se faire, une méthode itérative

est développée afin de solutionner le système d’équations non-linéaires qui donnent les

conditions initiales du champ de gluon. Dans la seconde partie, l’expression donnant

le taux de production de photons est simplifié en utilisant les symétries et les pro-

priétés du Color Glass Condensate et du modèle de McLerran-Venugopalan. Deux

diagrammes de Feynman donnent la contribution à l’ordre dominant mais l’un d’eux

est plus important que l’autre. Le diagramme dominant donne un spectre continu

superposé d’un pic proéminant.
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1

Introduction

1.1 Heavy ion collisions

The goal of high energetic collisions is to produce and study new particles and states

of matter that are not accessible in everyday physics on Earth. One can differentiate

high energetic collisions in two important groups. The first involves collisions between

elementary particles (like electrons, positrons) and/or single hadrons (like protons).

This field is known as particle physics and the main goal of it is to discover the

particles and interactions that govern the quantum world. Such collisions give rise to

relatively few1 particles that propagate in vacuum until hitting the detectors. Because

of the small number of reaction products, the detected particles and interactions can

be reconstructed individually. This is helpful in studying free particles as well as the

interaction between particles in the absence of a medium. A famous example of such

an experiment is the Large Electron-Positron Collider (LEP) which has run at beam

energies of
√

s = 90− 200 GeV23. It made very precise measurement for the mass of

the W and Z bosons as well as constrained the number of light neutrino flavors to

3. Another important example is the Large Hadron Collider (LHC) which will run

at a peak energy of
√

s = 14 TeV and is expected to find the Higgs boson (the only

missing particle from the Standard Model (SM)) and look into new physics beyond

1Very high energy collisions can produce many particles, but this number is still small compared to

the number of particles resulted from nucleus-nucleus collisions.
2The center of mass energy

√
s is defined as s = (k1+k2)2 where k1 and k2 are the 4-momenta of the

two colliding particles.
√

s gives the maximum energy available to produce particles in a collision.
3The beam energy at LEP was increased over the lifetime of the collider.

1



1.1 Heavy ion collisions 2

SM, like supersymmetry and string theory.

The second category of high energy collisions are the ones between heavy ions which

is the field of nuclear physics. These collisions involve large nuclei (like Au or Pb)

and thus will result in a large number of reaction products. The only way to analyze

such collisions is to use statistical observables averaged over many particles. This

makes the task of studying the physical phenomena during the collision even more

challenging, but it has the advantage of studying the properties of the elementary

particles and interactions in the presence of a medium1. Moreover, these collisions

are used to study the medium itself. This is especially important since in the very

early universe the particles were in a medium similar to the one produced nowadays in

heavy ion collisions (HIC). Typical examples here include the Relativistic Heavy-Ion

Collider (RHIC) which collides protons and heavy ions at center of mass energies per

nucleon pair2
√

s = 200 GeV and LHC which will also have heavy ion collisions at

center of mass energies in the TeV range.

One of the most important goals of current high energy HIC experiments is the

search for a new state of matter, the Quark Gluon Plasma (QGP). QGP has been

inferred theoretically for over 25 years, but only recently, with the start of the RHIC

experiment, did the collision energies become large enough such that it was expected

to see the QGP. The QGP is defined as “a (locally) thermally equilibrated state of

matter in which quarks and gluons are deconfined from hadrons, so that color degrees

of freedom become manifest over nuclear, rather than merely nucleonic, volumes” [1].

This state of matter is believed to be present only in very extreme and energetic

conditions, such as the early universe, neutron stars or high energy HIC.

Before going into more details about QGP, let us look in more detail at the current

1The medium is created by the very large number of particles produced during the collision.
2For HIC the center of mass energy

√
s is defined per nucleon pair and not for the two nuclei. This

is because only individual partons† from the two different nucleons collide to form new particles.

Since each colliding parton can have at most the total energy of the nucleon which it is part of,

the maximum energy available for new particle creation is given by the center of mass energies per

nucleon pair. †Partons is a general term to denote the constituents of a nucleon, i.e. quarks and

gluons.
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understanding of HIC. The two colliding nuclei are moving towards each other at

speeds close to the speed of light (0.99995c at RHIC). In the center of mass frame,

due to the high Lorentz γ factor1, the two nuclei will look like two “pancakes” moving

towards each other. During the collision, partons from the first nucleus will interact

with partons from the second nucleus to form new particles. The newly created

particles will form a “fireball” that will expand until reaching the detector. More

precisely, one can differentiate the following stages in a HIC:

1. Initial hard collisions

2. Pre-equilibrium

3. Thermalization

4. QGP

5. Hadronic phase

6. Free streaming

The first stage, that of hard collisions, takes place during the first instances of the

collision between the two nuclei. It is characterized by a large momentum trans-

fer between the interaction partons, so this stage is well described by perturbative

Quantum Chromodynamics (QCD). The following two stages are the next steps in

the evolution of the fireball towards a system in (at least local) thermal equilibrium.

They involve additional particle production due to the hard partons inside the fireball.

Moreover, due to collisions between different partons, the outcome of these two stages

is a local thermal equilibrium. These stages are more difficult to model analytically

due to the out of equilibrium processes taking place. There are several formulations

that seem to give reasonable results, one of them being the Color Glass Condensate

1At the RHIC energies of
√

s = 200 GeV per nucleon pair, the Lorentz contraction factor is γ ≈ 100

for each nucleus. Each nucleus has a longitudinal size given by 2R
γ

with R the radius of the nucleus.

Hence for γ ≈ 100, the longitudinal size of the nucleus will be much smaller than the transverse one.
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(CGC) formalism that is described in Sec. 2.2. An important part in describing the

thermalization stage is played by the Boltzmann equation and transport theory.

At the end of the thermalization stage, the fireball is expected to be a system

of hot and dense partons with a high energy density. At RHIC the energy density

is estimated to be larger than 5 GeV/fm3 [1, 2]. This is well above the estimated

threshold of around 1 GeV/fm3 necessary to obtain the QGP stage [3] (result calcu-

lated in lattice QCD simulations). Hence at RHIC there should already be a QGP

stage. As the fireball expands further, the energy density decreases until it reaches

the critical value when the QGP transforms into a gas of hadrons, called the hadronic

phase. Both the QGP and hadronic state are well described by relativistic hydrody-

namics. As the fireball expands even further, the mean free path between hadrons

increases past the size of the system, then the hadrons become free streaming until

they eventually end up in the detector.

The search and study of QGP proves to be experimentally challenging due to

several reasons. The first is due to difficulties in describing analytically the 2nd and

3rd stages of the collision, since QCD is both non-linear and asymptotically free. The

other main challenge comes from the experimental side, since the detectors measure

only the final state of the collision and not the time evolution of the fireball. So to

detect the QGP one must try and look for signatures which are particular to QGP

only. A few such signatures are [4]:

• Suppression of high-pT hadrons due to energy loss of a parton in QGP.

• Changes in the properties of heavy mesons (J/Ψ, Ψ′) due to the color Debye

screening in QGP.

• Enhancement of thermal photon and dileptons due to emission from deconfined

QCD plasma.

RHIC data shows evidence for the existence of a thermalized medium that can be

explained only by the presence of a QGP state [1, 2]. Due to the high background of

a HIC, the experimental data includes signals from all the stages of the HIC collision.



1.2 Objectives and statement of originality 5

This is why is very important to have theoretical models that give good predictions

for all the stages of the collision. Only then the contribution of the QGP stage can

be singled out and matched with the experimental data.

The photon spectrum can be a good probe for QGP. It has the main advantage

that photons, due to the smallness of the fine structure constant, once produced,

propagate trough the medium with only very little interaction. Hence photons are

very good probes of all the stages of HIC collision. The downside of the method

is that the detector cannot distinguish between photons created at different stages

during the collision, since it measures only the total flux of photons. Since photons

are produced in all the stages, with the exception of the last one, there is a need for

theoretical models to compute photon production in all HIC stages.

1.2 Objectives and statement of originality

In the previous section we tried to argue that HIC are very complex phenomena

that require a good understanding of every stage of the fireball in order to obtain

theoretical predictions which can be compared with experimental data. The main

goal of this thesis is to develop and asses the feasibility of computing the photon

spectrum within the CGC formalism, which is believed to give a good description of

the first instant in HIC. Such a result, together with photon production calculations

for the other stages of the collision, when compared to experimental data, can be

used to give a better understanding of HIC. The main advantage of using photons as

a probe is that they have a very small interaction probability with the medium, and

hence they travel unimpeded, giving information from all the stages of HIC.

This thesis is organized as follows. In Sec. 2 we shortly revise the basic proper-

ties of QCD and give an introduction to the CGC and McLerran-Venugopalan (MV)

models. We also present the Schwinger-Keldysh formalism which is primarily used

in finite temperature quantum field theory as well as in condensed matter physics.

These give the background material necessary for understanding this thesis. In Sec.

3 we present the classical field model developed by Krasnitz et. al. to describe the
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gluon time evolution and study quark production within this model. We discuss at

length the discretization of the Dirac equation since it presents several challenges.

We end the section with an independent check of previous numerical results for quark

pair production within the CGC formalism. Sec. 4 is dedicated to photon production

in the CGC and MV models. We start by presenting the computations for the photon

production rate, expression which we then particularize for the CGC and MV mod-

els. We end the section with numerical tests and results for the photon production

spectrum.

The work in this thesis presents several original contributions by the author:

• The development of an iterative method for solving the non-linear set of equa-

tions that give the initial condition for the gluon time evolution algorithm.

• A simplification of the expression that gives the photon production rate using

the symmetries and properties of the CGC and MV models.

• Numerical results for the photon production rate.



2

Background material

We start this section with a very short overview of classical Quantum Chromody-

namics (QCD), which is the theory of strong interaction. Classical QCD represents

the framework in which we obtain all the results presented in the thesis. We then

continue with the Color Glass Condensate formalism (CGC). We argue why the CGC

represents a good description for the early stages of the fireball, after which we present

some of the main features of the theory. We end this section with a short introduction

in the Schwinger-Keldysh formalism for fermions, which is used in Secs. 3.3 and 4.2

to compute quark pair production and photon production rates respectively.

In this thesis we use natural units where c = h̄ = 1. We mostly work in the light

cone coordinates which are defined as:

x± =
1√
2
(t± z) (2.1)

and which have associated the light cone momenta:

p± =
1√
2
(E ± pz). (2.2)

In this coordinate system, the scalar product is given by x·y = x+y−+x−y+−xT · yT

where xT denote the transverse components of the 4-vector. The energy momentum

relation reads 2p+p− − m2
T = 0 where mT is the transverse mass given by m2

T =

p2
T + m2. Another useful variable is the momentum rapidity which is given by:

y =
1

2
ln

(

E + pz

E − pz

)

=
1

2
ln

(

p+

p−

)

= ln

(√
2p+

mT

)

(2.3)

where the last expression can be easily shown using the dispersion relation. Addi-

tional information about the relations between different coordinate systems and the

7
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transformation rules between them can be found in Appendix A.1.

The Einstein summation convention is implied each time there are two repeating

indices. Greek letters will be used when summing over the spatial directions while

Latin letters will be used when summing over group elements in the adjoint repre-

sentation. Moreover, the letter i will be used when summing over the transverse

directions. We also make use of the notations 6∂ = ∂µγ
µ and ū = u†γ0.

2.1 The Classical QCD theory

Quantum Chromodynamics (QCD) is the theory of strong interaction which describes

the interactions of quarks and gluons. QCD together with Quantum Electrodynamics

(QED), weak interaction and the much anticipated Higgs boson form the Standard

Model (SM), which is the accepted current theory that describes particle physics.

The QCD (in the larger picture of the SM) was shown to give predictions in good

agreement with the experimental data in both e+e− and proton-antiproton collisions

[5, 6]. The QCD is a SU(3) Yang-Mills theory whose degrees of freedom are quarks

and gluons. The theory is invariant under local gauge transformation of the SU(3)

group. The Lagrangian of the theory is given by:

L(x) = −1

4
Gµν,a(x)Gµν

a (x) +

nf
∑

f=1

Ψ̄α
f (x)[i6Dαβ −mf ]Ψ

β
f (x) (2.4)

with the non-abelian field tensor and covariant derivative given by:

Gµν
a (x) = ∂µAν(x)− ∂νAµ(x)− gfabcA

µ
b (x)Aν

c (x) (2.5)

Dµ
αβ = ∂µδαβ + igAµ

a(x)taαβ (2.6)

where α and β run from 1 to 3 and represent indices for the fundamental representa-

tion of SU(3). Aµ
a(x) represents the gluonic fields in the adjoint representation and

ta are the SU(3) group generators. fabc is the structure constant and g is the strong

coupling constant. Ψf
α is the wavefunction of the quark species f with corresponding

mass mf . To keep notation simple, in the following we will refer to only one quark

species, so we will drop the index f . Moreover we will also drop the index α from Ψ
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such that from now on Ψ will represent a vector in the fundamental representation of

SU(3).

The Lagrangian given in Eq. (2.4) is not enough to describe QCD completely; one

must also provide values for the strong coupling constant g, the number of flavors nf

and for the quark masses mf . Under the current development of the SM, there is no

analytical way to predict the values of the above set of parameters, so they must be

measured experimentally. Experimental results show that there are 6 quark flavors

with masses which run widely from mup = 3 MeV to mtop = 171 GeV [7]. The value

of the coupling constant runs with the energy scale, which will be discussed later on.

Starting from the Lagrangian in Eq. (2.4), the classical equations of motion are

given by:

(i6D −m)Ψ(x) = 0 (2.7)

[Dν , G
νµ] = Jµ (2.8)

where Jµ = gΨ̄(x)γµΨ(x) is the source term. The above two equations are known as

the Dirac equation and the Yang-Mills equation respectively.

Since QCD is a local gauge invariant theory under the SU(3) group, it is interesting

to see how the gauge and fermion fields charge under a gauge transformation. A gauge

transformation is given by an element V (x) of the group SU(3) and is generally

represented as:

V (x) = exp(iθa(x)ta) (2.9)

with arbitrary real numbers θa(x). The fermion field transforms via:

Ψ′(x) = V (x)Ψ(x). (2.10)

The gauge invariance requirement for the Lagrangian density in Eq. (2.4) requires

that the term Ψ̄(x)DµΨ(x) remains invariant, so we must have:

D′
µ(x) = V (x)DµV

−1(x). (2.11)
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Using Eq. (2.6) it is obvious that the gauge field Aµ(x) = Aµ
a(x)ta must gauge trans-

form via:

A′
µ(x) = V (x)Aµ(x)V −1(x)− i

g
V (x)

(

∂µV −1(x)
)

(2.12)

G′
µν(x) = V (x)Gµν(x)V −1(x) (2.13)

where the gauge transformation for the field tensor was found using the gauge trans-

formation for the gauge field Aµ(x) and Eq. (2.5). Now it is obvious that indeed the

QCD Lagrangian is gauge invariant since both terms of Eq. (2.4) are gauge invariant

separately. The terms given in Eq. (2.4) are not the only possible combinations of

terms that are gauge invariant. In fact the term ǫµνδρG
µν(x)Gδρ is also gauge invari-

ant and has dimension 4. So theoretically there is no reason why this term should

be absent from the QCD Lagrangian, but experimentally (by measuring CP conser-

vation) this term was found to be absent. Additional gauge invariant terms must be

of dimension higher than 4, but such terms are problematic due to renormalizability

of the quantum QCD theory.

In this thesis we will work only within the confines of the classical QCD theory,

so we only shortly discuss the features of the quantized QCD theory. The classical

theory given in Eq. (2.4) can be quantized using path integral techniques with the

help of the Fadeev-Popov method which is discussed at length in [8]. In the quantized

theory, the Lagrangian density will have new terms in addition of those from Eq. (2.4).

These terms are due to the gauge fixing procedure and also due to the addition of

unphysical fields called “ghosts”.

An important feature of the quantized QCD theory is the asymptotic freedom

which means that the strong coupling constant g decreases with increasing energy

scale. So short range interactions between strong interacting fields (high momentum

transfer) are weak, whereas long range interactions are strong. This behavior leads to

the phenomenon of confinement. A qualitative interpretation is that by increasing the

distance between quarks, at some point it becomes energetically favorable to create

a quark-antiquark pair rather than to further increase the distance.

The strong-interaction analogue of the fine structure constant αs = g2/(4π) varies
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depending on the energy scale according to the following equation1 [8]:

αs(Q
2) =

4π
(

11− 2
3
nf

)

ln
(

Q2

Λ2

) (2.14)

where Q is the energy scale we consider and Λ is another energy scale that can be

found using experimental data. nf is the number of quark flavors with a mass smaller

than Q. Experimental results yield a value of Λ ≈ 200 MeV ([8]). This energy scale

is important since for Q ≈ Λ, αs is of order 1 or higher, so we are in the strong

coupling regime of QCD. On the other hand, for Q ≫ Λ, αs will be small, so one

can use perturbation theory techniques to analytically make QCD predictions. In the

following, we will denote this important energy scale by ΛQCD.

In the classical QCD theory, the coupling constant, the quark masses and wave-

function renormalization constants are scale independent. This is the case since in

the classical theory there are no loops, as is the case for the quantum theory. So to

be able to have a good treatment of the physical phenomena at a given scale using

the classical theory, one must use the corresponding values of the above constants at

that given energy scale, values which have to be taken from the quantum theory.

2.2 The Color Glass Condensate formalism

The Color Glass Condensate (CGC) is a formalism meant to describe the initial stages

of heavy ion collisions. The name of the theory comes from the following concepts

[9, 10]:

1. Color: CGC describes strong interactions of color charged particles.

2. Glass: There are two characteristics time scales. The soft particles evolve much

faster in time than the hard ones. This is similar to the behavior of glass, which

is solid on short time scales but is disordered and liquid on long time scales.

3. Condensate: At high energies, due to saturation effects, there is a wide momen-

tum range with a high density of gluons. The gluon density saturates at a small

1Eq. (2.14) is valid only to leading order in perturbation theory.



2.2 The Color Glass Condensate formalism 12

coupling constant, which is similar to a Bose-Einstein condensate.

At high energies, QCD cannot be described perturbatively, even though the strong

coupling constant is small, due to large densities of partons. In this case, one uses

CGC as an effective theory to describe high energy scattering in QCD. One of the

main features of CGC is that it incorporates the saturation effects due to a large

density of gluons. The goal of CGC is to provide insight into outstanding concepts

of QCD in the asymptotically large energies. More precisely, it can be used to com-

pute observables as particle multiplicity or cross-section dependence on rapidity and

transverse momentum.

2.2.1 Experimental observations leading to CGC

To be able to understand the underlying concepts of CGC, we must start with some

experimental observation in high energy heavy ion collisions. The collisions consist

of two nuclei moving towards each other at a speed that is very close to the speed

of light ( 0.9995 c at RHIC). Due to such high speeds, the Lorentz γ factor will be

around 100 or higher, so the nuclei will be highly Lorentz contracted along the direc-

tion of motion. Moreover, for high center of mass energies, most of the interactions

during the collision should involve a large momentum transfer (Q ≫ ΛQCD). So the

collision can be treated in the approximation of a small strong coupling constant,

according to Eq. (2.14). In such a setting, the following were observed in nuclear

physics experiments:

1. The high energy partons lose only a small fraction of the available energy.

2. The density of gluons increases with the decreasing x (fraction of longitudinal

momentum) as well as with the increasing momentum transfer Q.

The first observation can be inferred from Fig. 2.1. This shows the rapidity dis-

tribution of net-protons for different beam energies. For small energies most of the

resulting particles are clustered around mid-rapidity which suggests that the valence

partons inside the nuclei can lose a considerable fraction of their energy. But as the
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collision energy increases, an important shift takes place. Most of the resulting par-

ticles will be at rapidities close to the beam rapidity, suggesting that they lose only

a small fraction of their energy.
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Figure 2.1: Net-proton rapidity distribution in central collisions for AGS (Au+Au at
√

s = 5 GeV),
SPS (Pb+Pb at

√
s = 17 GeV) and RHIC (Au+Au at

√
s = 200 GeV) [11]. Even though the beam

rapidity at RHIC is y = 5.4, the experimental setup allows for measurements only up to y ≤ 3.

To get a more quantitative understanding, let us follow the reasoning in [9, 10].

Let us consider the beam moving in the positive z direction and with momentum

(P+, P−, 0). The rapidity of the beam is ybeam = ln
(√

2P+

M

)

. A particle moving in

the same direction but with a smaller longitudinal momentum given by p+ = xP +1

has a rapidity given by:

y = ln

(√
2p+

mT

)

= ybeam − ln

(

1

x

)

+ ln

(

M

mT

)

. (2.15)

with mT the transverse mass of the particle. So for rapidities close to the beam

rapidity, we have x ≈ mT

M
. One can differentiate two extreme cases, when the particle

1x is called the longitudinal momentum fraction and is defined as:

x =
p+

P+

with p+ the particle momentum and with P+ the beam momentum. This definition is valid only

for a direction of motion in the positive z direction. For an opposite direction of motion, one must

use p− and P−.
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mass m ≈M and the second when m≪M . When the particle mass m is similar to

M , since x ≤ 1, we must have x ≈ 1 and pT ≈ 0. When m≪M we still have x ≈ 1,

but in this case p2
T ≈ M2 suggesting a very large transfer of transverse momentum.

So the valence partons during the collision will lose only a very small fraction of the

longitudinal momentum and are characterized by large values of x.

On the other hand, particles moving at mid-rapidity (y ≈ 0) have typical longitu-

dinal momentum fractions given by x ≈ mT√
s
. This means that the more energetic the

collisions are, the smaller the values of x probed in the collision are.
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Figure 2.2: Left: The ZEUS results for gluon and quarks PDFs at transverse momentum Q = 2
GeV [12]. Right: The ZEUS results for gluon PDF for different transverse momenta Q [13]. The
shaded regions represent the error range of the result.

The second important experimental observation is the behavior of the parton dis-

tribution functions (PDF)1 with x and Q (the transverse momentum). At small x,

the gluons are the dominant constituents of the hadrons, as can be seen from Fig.

2.2 left graph. As the collision energy increases, the average transferred momentum

increases as well. So for higher energies, the number of gluons for a given x becomes

even larger, as can be seen from the right panel in Fig. 2.2. This is why it is believed

1PDF are defined as the probability for finding a parton inside a hadron with a given momentum

fraction x for a given transverse momentum Q2. Due to the non-perturbative nature of low energy

QCD, the only known values for PDFs are the ones inferred from experimental data.
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that at high energies one can deal only with the gluons and neglect the rest of the

partons.

The high gluon density at small x yields a very important approximation in the

CGC model. The gluonic field can be treated classically since the quantum coher-

ent states will have a large occupancy number ∝ 1/αs ≫ 1 [9, 10]. In this limit,

commutations between the creation and annihilation operators can be neglected1.
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p
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1

+

+p

+k

+k

.. . +

+

2

+
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<<

Figure 2.3: Feynman diagrams for small x gluon emission from a fast parton. a) The lowest order
(LO) emission. b) LO emission plus LO radiative correction. c) Gluon cascade.

Now let us analyze in more detail the reason behind the enhancement of gluon

distribution functions at small x. This leads to an important distinction between the

hard degrees of freedom (large x) and the soft ones (small x). To get the qualitative

behavior it is enough to look only at the tree diagrams, but to get the full result

one also has to include self-energy insertions and vertex corrections. Typical tree

level diagrams included in this analysis are shown in Fig. 2.3. Fig. 2.3 a) shows the

emission of a gluon with momentum k+ = xP + (P+ is the beam momentum) by a

parton with momentum p+ = x0P
+. Since we want to analyze the small x behavior,

we must have 1 > x0 ≫ x. Fig. 2.3 b) shows the next radiative correction to the

process from Fig. 2.3 a). This correction will have a contribution proportional to

[9, 10]:

αs ln
(x0

x

)

(2.16)

1The commutator between the creation and annihilation operators is of order 1 and hence much

smaller than the typical products of operators which are of order N , the number of particles.
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which is higher order in the coupling constant αs. But, due to the large value of

ln
(

x0

x

)

, even for small αs (weak coupling limit), the diagram from Fig. 2.3 b) brings

a leading order contribution to the gluon emission process. In general, any tree level

diagram as the one shown in Fig. 2.3 c) with the additional requirement:

p+ ≫ p+
1 ≫ . . .≫ p+

n ≫ k+ (2.17)

will bring a contribution proportional to:

(

αs ln
(x0

x

))n

. (2.18)

Similarly to Eq. (2.16), the above contribution is to leading order even in the small

coupling limit. So a process that produces n gluons is as important as a process that

produces one gluon. To be able to get a consistent result to LO, one must sum the

contributions from all the tree diagrams shown in Fig. 2.31.

The strong ordering in the momenta from Eq. (2.17) also implies a strong ordering

in the lifetimes of the emitted gluons. To see this, let us start from the Heisenberg

uncertainty principle that ∆x+∆k− ∼ 12, which when applied to our problem leads

to:

∆x+ ∼ 1

k− =
2k+

m2
T

=
2xP +

m2
T

(2.19)

where we used 2k+k− −m2
T = 0 and that k+ = xP +. This shows that the lifetime

of soft gluons is much smaller than that of hard gluons. For the general case of the

gluon cascade shown in Fig. 2.3 c), the above result is generalized to:

∆x+
1 ≫ ∆x+

2 ≫ . . .≫ ∆x+
n−1 ≫ ∆x+

n . (2.20)

Since the average interaction time of the gluons is proportional to their lifetime, the

small x gluons will see the hard gluons as frozen in time. This separation of scales

1A complete calculation for the gluon distribution function yields [9, 10]:

xg(x, Q2) ∝ x−4 ln 2 αs
Nc

π .

This implies that the gluon number increases continuously as x becomes smaller and smaller.
2One can refer to x+ as the light cone “time” [9, 10]. Since on the light cone p · x = p−x+ + p+x− −
pT · xT it is natural to interpret p− as the light cone “energy”.
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between soft and hard gluons is very important in the CGC formalism. It allows

treating the hard gluons as static sources of color charge.

2.2.2 Saturation momentum

Up to now we saw that the gluonic density increases very fast with small x values.

Then the logical question to ask is: does the gluon density increase indefinitely or is

there a process which regulates the increase and can even cause gluon saturation? In-

deed, gluon recombination can lead to gluon saturation. A typical Feynman diagram

of such a process can be seen in Fig. 2.4. The main absorption of gluons does not

come from interactions with quarks (since the quark density is much smaller than the

gluon one) but from interactions with other gluons. This process is not enhanced by

large logarithms (as is the case for the processes in Fig. 2.3), but if the gluon density

is large enough, it can have an important effect. This is because gluon absorption

probability is directly proportional to the gluon density.

+k

Figure 2.4: A typical Feynman diagram that is implicitly resumed in the CGC formalism. This is
an example of gluon recombination. The horizontal lines represent hard partons.

More quantitatively, the interaction probability for gluons from different parton

cascades can be estimated as [14]:

σ(Q2)× n(x, Q2) ∼ αsNc

Q2
× 1

N2
c − 1

xG(x, Q2)

πR2
(2.21)

where σ(Q2) is the cross-section for gluons with transverse momentum Q2 and n(x, Q2)

is the density of gluons of a given color at transverse momentum Q2 and longitudinal



2.2 The Color Glass Condensate formalism 18

momentum fraction x. πR2 is the transverse size of the nucleus while G(x, Q2) is the

gluonic PDF of the nucleus. This probability becomes large when:

Q2
s ≃

αsNc

N2
c − 1

xG(x, Q2
s)

πR2
(2.22)

where Qs is the saturation momentum, i.e. the scale for which the saturation effects

become important. For Q2 ≫ Q2
s the saturation effects (that give rise to non-linear

effects) can be neglected and one can use linear evolution equations. But for Q2 <∼ Q2
s

the saturation effects are essential and are expected to tame the growth of the gluon

distribution functions which we found in the previous section.

A parametric estimation for Qs yields [14]:

Q2
s(x, A) ∼ Aδx−λ (2.23)

with the exponents δ ≈ 0.3 and λ ≈ 0.3 [15]. Using the above parametrization it

is straightforward to see that we can obtain Q2
S ≫ ΛQCD as long as the nucleus is

large and x small enough. In this case we are in a regime with ΛQCD ≪ Q2 < Q2
s

where even though the coupling is small, non-linear effects play a very important role.

Experimental data estimate that the saturation scale is about 1-2 GeV at RHIC and

2-3 GeV at LHC [15].

2.2.3 Classical CGC

CGC is the effective theory designed to cope with the separation of the soft and hard

degrees of freedom and with the saturation effects in the weak coupling limit. The

main features of the CGC formalism (summarized in the introduction of [14]) are:

1. Classical Yang-Mills theory for the soft degrees of freedom, so the time evolution

is given by Eq. (2.8). The classical fields represent the small x gluons.

2. The gauge field sources propagate nearly at the speed of light and their internal

dynamics is “frozen”. They represent the hard degrees of freedom, like valence

quarks. These sources do not participate directly in the scattering (as we saw

in the previous sections), but act as color sources for the small x gluons.
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3. The color charges are given by a random distribution. We will argue this state-

ment later on.

At saturation, the color fields are strong and thus one must solve the full non-linear

Yang-Mills equation. By doing so, one also takes into account the saturation effects.

Let us start by analyzing the properties of the source term in the Yang-Mills

equation. We have a nucleus that is moving very close to the speed of light in the x+

direction (in 4-dimensional space-time). The current is proportional to the velocity so

the current will be given by Jµ
a = δµ+ρV

a with ρV
a the volume density of color charge.

The hard degrees of freedom are frozen in time compared to the soft ones, thus the

charge density is independent on x+, yielding:

Jµ
a = δµ+ρV

a (x−,xT). (2.24)

To simplify calculations even more, one can take the limit when the nucleus moves

with the speed of light. Then, due to the Lorentz contraction, the color charge

density can be taken only as a function of the transverse coordinate, such that we

finally obtain:

Jµ
a = δµ+δ(x−)ρa(xT) (2.25)

where ρa(xT) denotes the transverse surface color charge density. The justification

for such a form is based on the Heisenberg principle. The color charge sources, the

hard partons, have a high p+ and hence due to the uncertainty principle, they are

well localized on the x− direction. On the other hand, the soft partons have small x

and hence much smaller k+. So they are much more spread along the x− direction,

effectively seeing the color sources as delta functions on the x− direction.

Let us denote with W [ρ] the weight function which characterizes the random dis-

tribution of color charges. The weight function must have the property:
∫

Dρ W [ρ] = 1 (2.26)

where Dρ means a sum over all possible charge configurations. The weight function

W [ρ] depends on the dynamics of the large x partons and hence is an external input
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to the CGC model. Physical observables are obtained by averaging the solution of the

Yang-Mills equation over different charge configurations. Quantitatively, the physical

observable O is given by:

〈O〉 =

∫

Dρ W [ρ]O[ρ] (2.27)

where O[ρ] denotes the value of O computed using a given distribution of charge

density ρ.

The only piece still missing is the weight function W [ρ]. A complete treatment

for computing W [ρ] must also include the dependence of the weight function on the

scale x of the soft partons. To see why this is the case, just imagine that as we probe

smaller x values, there will be more and more high x values that become “frozen”

because of reducing the x of soft gluons. Such effects can be included and will give

rise to a renormalization group equation for W [ρ]. This is known as Jalilian-Iancu-

McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution equation. Such a complex

treatment is beyond the scope of this thesis, so we restrict to a simpler model for

obtaining the weight function.

The weight function W [ρ] can be obtained using the McLerran-Venugopalan (MV)

model in the limit of very large nuclei (A ≫ 1) [16, 17, 18]. Let us start by looking

at a soft parton with transverse momentum kT . If kT ≤ ΛQCD than the parton is

confined within a hadron inside the nucleus. If kT > ΛQCD than the parton has a

transverse size δxT ∼ 1
kT

(simply due to the uncertainty principle). At the same time,

its size along the longitudinal direction is given by ∆x− ∼ 1
k− = 1

xP+ ∼ ∆X−

x
with

∆X− the longitudinal size of a nucleus. Hence this small x parton has a much larger

longitudinal size than a nucleus. This means that along the longitudinal direction,

the parton will feel the average charge from many nuclei which are in the tube of

transverse area (δxT )2. So the parton interacts simultaneously, on average, with

Nvalence valence partons. The number of valence partons can simply be computed as:

Nvalence = n(δxT )2 =
NcA

πR2
A

(δxT )2 (2.28)
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where n is the density of valence partons in the transverse plane. If we take the

nucleus uniform in the transverse plane, than n is just the total number of valence

partons in the nucleus divided by the transverse area. Since RA ∝ A
1
3 , Eq. (2.28)

reduces to Nvalence ∝ A
1
3 . This means that as the nucleus size increases, the soft

partons will feel the interaction with more and more hard partons. Since the partons

belong to different hadrons, they are uncorrelated due to confinement. Moreover,

due to the large number of valence partons, one can treat them as classical sources.

Adding up all this, we obtain that the weight function can be approximated with

a Gaussian probability distribution. This can be argued by using the central limit

theorem in the limit of a very large nucleus. So, within the MV model, one obtains

a Gaussian weight:

W [ρ] = N exp

(

− 1

2g2µ2
A

∫

d2xTρ2(xT)

)

(2.29)

where µ2
A is the density of charge squared fluctuations per unit area divided by g2 and

N is a normalization constant. The parameter µ2
A can be determined from elementary

calculations. The averaged color charge square of a quark is 〈Q2〉 = 4
3
g2, combining

with the transverse density of valence quarks gives [16]:

µ2
A =

4

3

3A

πR2
A

= 1.1 A
1
3 fm−2 (2.30)

where the last equation was computed using that RA ≈ 1.1 A
1
3 fm. Now, starting

with Eq. (2.29), we can evaluate the color charge correlation function to be:

〈ρa(xT)ρb(yT)〉 = g2µ2δ2(xT − yT). (2.31)

The MV model is based on heuristic arguments and is not derived from first prin-

ciples of QCD. It is however a solution of the JIMWLK equation in the mean field

approximation, so it can be used to get the hard parton color charge density for the

CGC model.

2.3 The Schwinger-Keldysh formalism

The Schwinger-Keldysh formalism was developed in the 1960’s in the context of many-

body quantum field theory in/out-of equilibrium [19, 20]. It is used primarily in finite
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temperature quantum field theory as well as in condensed matter physics.

The standard formalism for zero-temperature (in equilibrium) quantum theories

involves the adiabatic switch “on” and “off” of the interactions in the distant past

and future respectively. The system starts at t → −∞ in the state |0in〉 of the non-

interacting system, then the interactions are turned on and off, such that at t→ +∞
the system is in the state |0out〉. The crucial assumption is that |0out〉 is unique and

independent on the details of the interactions that are switched on and off. So the

final state at t→ +∞ is |0in〉 up to a phase factor.

This is not the case for out-of equilibrium processes. Starting from some arbitrary

non-equilibrium state, and then switching the interactions on and off leads to a new

state which clearly depends on the details of the interaction. Thus the entire reasoning

sketched in the previous paragraph fails for out-of equilibrium theories. Schwinger’s

suggestion is to take the final state the same as the initial one, but to let the quantum

system evolve first in the forward time direction and then again to evolve the system

back in time [21]. This time evolution is sketched in Fig. 2.5 by the contour C.
Following the time path C, it does not matter what the final state of the system is,

since the system returns back to the initial state.

Figure 2.5: The closed time path used in the SK formalism.

But the SK approach has a price, a doubling of the degrees of freedom. At every

moment in time one needs to specify a field residing on the upper branch (denoted

by +) as well as on the lower branch (denoted by −) of path C. The main difference

between a zero field theory and the SK formalism is that in the latter each time we
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compute field correlations we need to order the fields in time according to path C.
We will do so by inserting the path-order operator PC which forces the fields to be

ordered with decreasing time, from left to right.

Due to the doubling of the degrees of freedom, there are two types of fields, the

+ and the − ones. These give rise to two types of vertices, denoted by + and −,

who have a − sign difference between the contributions they bring. When considering

internal vertices, one must sum over both the + and − vertices.

2.3.1 SK formalism for fermions

In the following we follow the approach in [22], which even though is presented for a

scalar field, can be easily generalized for fermion fields. We will need this formalism

when computing the photon production rate in Sec. 4.

According to Wick’s theorem, any n point correlation function can be expressed

only in terms of 2 point functions. In the SK formalism there are 4 such 2 point

functions which for fermions are given by:

De1e2(x, y) = 〈0in|PCΨ̄
e1(x)Ψe2(y)|0in〉 (2.32)

where with e1,2 we denote the two types of fields, the + and − ones. These are known

as the full propagators. The free quark propagators are defined as in Eq. (2.32) but

using the “in” fields. We get:

D0
++(x, y) ≡ 〈0in|PCΨ̄

+
in(y)Ψ+

in(x)|0in〉 = 〈0in|T Ψ̄in(y)Ψin(x)|0in〉 (2.33)

D0
−−(x, y) ≡ 〈0in|PCΨ̄

−
in(y)Ψ−

in(x)|0in〉 = 〈0in|T̄ Ψ̄in(y)Ψin(x)|0in〉 (2.34)

D0
+−(x, y) ≡ 〈0in|PCΨ̄

−
in(y)Ψ+

in(x)|0in〉 = −〈0in|Ψ̄in(y)Ψin(x)|0in〉 (2.35)

D0
−+(x, y) ≡ 〈0in|PCΨ̄

+
in(y)Ψ−

in(x)|0in〉 = 〈0in|Ψ̄in(y)Ψin(x)|0in〉 (2.36)

where T and T̄ denote the time and anti-time ordering. In momentum space the
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above propagators are given by:

D0
++(p) = i

6p + m

p2 −m2 + iǫ
(2.37)

D0
−−(p) = −i

6p + m

p2 −m2 − iǫ
(2.38)

D0
+−(p) = θ(−p0)( 6p + m) 2πδ(p2 −m2) (2.39)

D0
−+(p) = θ(p0)( 6p + m) 2πδ(p2 −m2) (2.40)

Using the above definition it is easy to see that not all the 4 propagators are inde-

pendent, but in fact they are related via:

D0
++ + D0

−− = D0
+− + D0

−+. (2.41)

In the following it is useful to write the above propagators in matrix form via:

D0 =





D0
++ D0

+−

D0
−+ D0

−−



 and Σ =





Σ++ Σ+−

Σ−+ Σ−−



 (2.42)

where Σ is the self-energy matrix (each element of it denotes the self-energy between

those two type of vertices). Now we are ready to write the full propagator as:

D(x, y) = D0(x, y)− i

∫

d4zd4z′D0(x, z)Σ(z, z′)D(z′, y) (2.43)

which is known as the Lippmann-Schwinger integral equation. This equation can be

solved to find the full propagators. The easiest way to solve the Lippmann-Schwinger

equation is to do a change of basis for the propagators. A clever change of basis, which

uses Eq. (2.41) to get rid of one of the propagators, is called the Advanced-Retarded

(RA) basis. The change of basis is given by the matrix:

U =
1√
2





1 −1

1 1



 (2.44)

such that the new propagator matrix becomes:

D0
RA =





0 D0
A

D0
R D0

S



 (2.45)
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where D0
A, D0

R and D0
S are the free advanced, retarded and symmetric propagators.

They are given by [23]:

D0
A(x, y) ≡ θ(x0 − y0)〈0in|{Ψin(x), Ψ̄in(y)}|0in〉 (2.46)

D0
R(x, y) ≡ −θ(y0 − x0)〈0in|{Ψin(x), Ψ̄in(y)}|0in〉 (2.47)

D0
S(x, y) ≡ 〈0in|[Ψin(x), Ψ̄in(y)]|0in〉. (2.48)

And in momentum space their expressions are given by:

D0
A(p) = i

6p + m

p2 −m2 − ip0ǫ
(2.49)

D0
R(p) = i

6p + m

p2 −m2 + ip0ǫ
(2.50)

D0
S(p) = (6p + m) 2πδ(p2 −m2) (2.51)

Now, in the RA basis, Eq. (2.43) is particularly simple to solve due to the simplified

expression for the D0
RA matrix. Using iterative insertion of the Lippmann-Schwinger

equation within itself, we obtain [22]:

D−+(x, y) =

∫

d4zd4z′[DR(D0
R)−1](x, z) D0

−+(z, z′) [(D0
A)−1DA](z′, y) (2.52)

D+−(x, y) =

∫

d4zd4z′[DR(D0
R)−1](x, z) D0

+−(z, z′) [(D0
A)−1DA](z′, y) (2.53)

where:

[DR(D0
R)−1](x, z) = DR(x, z)(−i

←−6∂ z −m) (2.54)

[(D0
A)−1DA](z′, y) = (i

−→6∂ z′ −m)DA(z′, y) (2.55)

with DA and DR the full advanced and retarded propagators. The free propagators

D0
−+(z, z′) and D0

+−(z, z′) can be simply obtained from Eq. (2.39) and Eq. (2.40) by

taking the inverse Fourier transform. We will use these expressions when computing

the photon production rate in Sec. 4.
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Gluon and quark production

In this section we will shortly revise the theoretical framework as well as the numerical

details for the gauge field evolution and solutions of the Dirac equation within the

CGC and MV models [24, 25, 26]. This is necessary since photon production is a

complex process that involves many steps. In the initial stages of heavy ion collision

photons are emitted only by quarks. So to compute photon production one needs to

know the quarks wavefunction inside the fireball resulted from the collision. On the

other hand, to compute the Dirac field associated to soft quarks one needs to know

the gauge field associated with small x gluons. Hence the first step is to start from

a calculation of the gluonic field within the CGC formalism. The theoretical and

numerical background of such a calculation were developed in [24, 25]. The next step

is the computation of the quarks wavefunction, based on the model and algorithm

described in [26]. And finally, the quark wavefunction can be used to compute the

quark propagators and hence photon production.

We start in Sec. 3.1 with a short revision of the formalism developed in [24, 25]

to compute the gauge field. This computation is done within the framework of the

classical field theory due to the high number of gluons present at small x. We present

the most important details from [24, 25] for both the continuum and the lattice

theories. The gluon field calculation is simplified by the boost invariance of the gauge

fields. The initial condition for the gauge fields on the lattice involves the solution of

a non-linear set of equations. We developed an iterative method for solving the set

of non-linear equations, method that we present in Sec. 3.2.

In Sec. 3.3 we describe the necessary steps to compute the quark wavefunction in

26



3.1 Gluon production in CGC 27

the gluonic background field described in the previous paragraph. We closely follow

the derivation from [26]. This task is computationally intensive both because the

Dirac field has to be considered for the full 3 dimensional lattice and since the Dirac

equation has to be discretized implicitly due to explicit dependence of the equation

on time and spatial coordinates. We deal with these problems in Sec. 3.4.

We end with Sec. 3.5 that presents the numerical results for both gluon and

quark pair production within the CGC and MV formalisms. We use the results for

both testing the numerical code and to give an independent verification of the results

already published in [26, 27, 28, 29, 30, 31].

3.1 Gluon production in CGC

3.1.1 Continuum Model

The theoretical formalism for describing the gauge field created in the collision of two

high energy nuclei within the CGC theory was developed in [24, 25]. Ref. [32] and

[27, 28, 33] computed gluon production and other gauge observable for SU(2) and

SU(3) respectively.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

x+x−

eiq·xv(q)

U(1) U(2)

U(1)U(2)

Figure 3.1: The light cone coordinate representation of two colliding nuclei in the limit of moving
at the speed of light. Left: The background gauge fields in the CGC formalism. Right: The two
possible way for a Dirac field to propagate from t→ −∞ to τ = 0.

The current produced by the two colliding nuclei is given by:

Jµ = δµ+δ(x−)ρ(1)(xT) + δµ−δ(x+)ρ(2)(xT) (3.1)
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where we denoted with ρ(1),(2) the static charge densities for the two nuclei; with

nucleus 1 moving along the x+ direction and with nucleus 2 moving in opposite

direction (see Fig. 3.1). The above current is just the sum of the two individual

currents of each nuclei that are given within the CGC and MV models (see Sec. 2.2

for additional details). The charge current from Eq. (3.1) gives rise to pure gauge

fields in the regions denoted with (1) and (2) in the left panel of Fig. 3.1. The

transverse fields are given by [34, 35]:

Ai
(m)(xT) =

i

g
eiΛ(m)(xT)∂ie

−iΛ(m)(xT), with (3.2)

∇TΛ(m)(xT) = −gρ(m)(xT) (3.3)

where m = 1, 2 denotes the two nuclei (and also regions (1) and (2) in Fig. 3.1) and

i = 1, 2 denotes the two transverse directions. The rest of the field components, i.e.

A±, are 0.

Eqs. (3.1) - (3.3) are valid only in the light cone (LC) gauge of each nucleus1

[34, 35]. For τ = 0, the LC gauges for the two nuclei are the same and also coincide

with the temporal gauge Aτ = (A+x−+A−x+)/τ = 0. In the following we work within

the temporal gauge which has the advantage of allowing the use of a Hamiltonian

formalism.

To find the initial conditions for the field inside region (3) of the left panel in Fig.

3.1 one must require that the fields of different regions match smoothly on the light

cone. By doing so, one obtains [34, 35]:

Ai
(3)(xT)|τ=0 = Ai

(1)(xT) + Ai
(2)(xT) (3.4)

Aη
(3)(xT)|τ=0 =

ig

2
[Ai

(1)(xT), Ai
(2)(xT)]. (3.5)

The above initial conditions are boost invariant, therefore it is natural to assume

that the field inside region (3) of the left panel in Fig. 3.1 is also boost invariant2.

1LC gauge is given by A+ = 0 (respectively A− = 0) for the nucleus moving in the x+ direction

(respectively x− direction).
2Ref. [34] has shown that the boost invariance of the pure gauge fields Ai

(1),(2) makes the equations

of motion boost invariant.
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This means that one must not perform rapidity dependent gauge transformation.

This requirement reduces the Aη field component to a adjoint scalar field that we will

denote with φ.

In the Aτ = 0 gauge the Hamiltonian density is given by [25]:

H = Tr

{

1

τ
EiEi +

τ

2
FijFij + τπ2 +

1

τ
[Di, φ][Di, φ]

}

(3.6)

with i = 1, 2 denoting the transverse direction and with the momenta given by:

Ei = −τ∂τA
i (3.7)

π =
1

τ
∂τφ. (3.8)

Starting from Eq. (3.6), the equations of motion can be found by taking the Poisson

brackets between the fields and the Hamiltonian such that for any quantity x we have

ẋ = {H, x}.

3.1.2 Lattice description

Using the Kogut-Susskind procedure described in [36], and following the steps detailed

in [25], the continuum Hamiltonian density reduces to the following version for the

lattice case:

HL =
g2

τ
TrEiEi +

2Ncτ

g2

(

1− 1

Nc
Re TrU1,2

)

+ τ Trπ2 +
1

τ

∑

i

Tr(φ− φ̃i)
2

where Ei and π are the canonical momenta defined via:

Ei
a =

2iτ

g2
Tr(taUiU̇

†
i ) (3.9)

π =
1

τ
φ̇ (3.10)

and represent the transverse and respectively the longitudinal electric fields. The

notation U̇i denotes a derivative with respect to proper time τ . Ui are the link

matrices on the lattice which are defined as:

Uµ(x) = eigaAµ(x) (3.11)
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where a is the lattice constant1. With Ui,j we denoted the plaquette in the transverse

plane which is given by:

Ui,j(xT) = Ui(xT)Uj(x + ei)U
†
i (x + ej)U

†
i (xT) (3.12)

where eµ is the unit vector along the µ direction times the lattice spacing in that

direction (xT + eµ gives the coordinates of the next neighbor in the µ direction for

the lattice point xT). We also defined the parallel transport field φ̃ as:

φ̃i = Ui(xT)φ(xT + ei)U
†
i (xT) (3.13)

with no implicit sum over the index i.

The link matrix gauge transforms like:

Ui(xT)→ V (xT)Ui(xT)V †(xT + ei) (3.14)

while the longitudinal gauge field transforms via:

φ(xT)→ V (xT)φ(xT)V †(xT) (3.15)

with the gauge transformation V (x) an SU(Nc) group element. Using the above

equations it is easily seen that the lattice Hamiltonian density is gauge invariant.

Using the Poisson brackets relations, it can be easily shown that the equations of

motion are given by [25]:

U̇i =
ig2

τ
EiUi (no sum over i) (3.16)

φ̇ = τπ (3.17)

Ė1 =
iτ

2g2
(U1,2 + U1,−2 − h.c.)− trace +

i

τ
[φ̃1, φ] (3.18)

Ė2 =
iτ

2g2
(U2,1 + U2,−1 − h.c.)− trace +

i

τ
[φ̃2, φ] (3.19)

π̇ =
1

τ

∑

i

(

φ̃i + φ̃−i − 2φ
)

(3.20)

1Even though Uµ(x) is defined at x, it is an object which “lives” at x + 1
2eµ. The link matrices are

used to transport fields from one lattice point to another, such that quantities at different lattice

points can be evaluated independent of gauge. A few examples are the φ̃ field defined in Eq. (3.13)

or the covariant derivative given in Eq. (3.60).
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where with “h.c.” we denoted the Hermitian conjugate of the expression within the

brackets. The “-trace” term means subtracting the part proportional to the unit

matrix since Ei =
∑

a Ei
ata.

The last step for the lattice theory is to find the initial conditions at τ = 0 for the

fields in region (3) of the left panel in Fig. 3.1. These initial conditions are given by

[25]:

Tr
[

ta

(

U
(1)
i + U

(2)
i

)(

1 + U
†(3)
i

)

− h.c.
]

= 0 (3.21)

which gives the link matrices U
(3)
i in region (3) at τ = 0 and:

π(xT) =
∑

i

−i

4g

[(

U
(3)
i (xT)− 1

)(

U
†(2)
i (xT)− U

†(1)
i (xT)

)

− h.c.

+
(

U
†(3)
i (xT − ei)− 1

)(

U
(2)
i (xT − ei)− U

(1)
i (xT − ei)

)

− h.c.
]

(3.22)

which gives the initial condition for the longitudinal electric field. The subscript

i denotes the two transverse directions while the superscript (j) (with j = 1, 2, 3)

denotes the link matrices corresponding to region (j) in the left panel of Fig. 3.1.

The gauge fields of the two nuclei are given by:

U
(m)
i (xT) = eiΛ(m)(xT)e−iΛ(m)(xT+ei) (3.23)

with ∇2
TΛ(m) = −gρ(m) for m = 1, 2 and ρ(m) the color charge density of the two

nuclei.

The initial conditions on the lattice pose a problem due to the non-linear set of

equations given in Eq. (3.21). The non-linear requirement arises since U
(3)
i must be

an element of the SU(3) group. We propose an iterative method for solving such a

system of equations, method which is presented in details in Sec. 3.2. Our method is

much faster than typical simulated annealing methods that were used until now.

Now it is straightforward to discretize Eqs. (3.16)-(3.20) for example using the

leapfrog algorithm1. This algorithm is especially useful in Hamiltonian time evolution

since it makes the algorithm time reversal invariant and also second order accurate

in time.
1In the leapfrog algorithm the momenta and coordinates are known at different time steps. So if the

coordinates are know at τ and τ + aτ , than the momenta are known at τ − aτ/2 and τ + aτ/2.
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3.2 Solving the initial condition for the gluonic field

The initial condition for the numerical simulation of the SU(N) gluonic field involves

solving Eq. (3.21). For the SU(2) case, this equation can be solved analytically [25].

But for a larger number of colors (N ≥ 3), solving the non-linear1 system of equations

can be a challenging and time intensive task. In this section we present an iterative

method developed by us to solve Eq. (3.21). We restrict our analysis to the particular

case of SU(3), but the algorithm for solving Eq. (3.21) can be applied to any SU(N)

group.

Solving Eq. (3.21) for the SU(3) case cannot be done analytically since it involves

a set of nonlinear equations, so an iterative method must be used. In the following,

for simplicity of notation, we drop from Eq. (3.21) the subscript i which denotes the

transverse direction. The first step of the algorithm it involves to take a good initial

guess for the link matrix U (3). We take as initial guess:

U (3) = U (1)U (2), (3.24)

which is the solution of Eq. (3.21) for the abelian case. Inserting the guess in Eq. (3.21)

results in:

Re Tr
[

ta(U
(1) + U (2))(1 + U †(3))

]

= fa (3.25)

where fa is a set of real numbers. Since U (3) is an element of SU(3), the solution of

Eq. (3.21) is given by:

U (3)
new = eixataU

(3)
old (3.26)

where U
(3)
old is the guess which satisfies Eq. (3.25). Using only the first two terms in

the Taylor expansion of the exponential in Eq. (3.26) and imposing the condition that

U
(3)
new satisfies Eq. (3.21), we obtain:

xb Im Tr
[

tbta(U
(1) + U (2))U

†(3)
old

]

= −fa. (3.27)

1The non-linearity of Eq. (3.21) arises from the requirement that the link matrix U (3) are elements

of the SU(N) group.
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This linear system of equations can be easily solved for xb, which means that we can

find U
(3)
new. Since U

(3)
new is an element of SU(3), to compute it from U

(3)
old we must use

Eq. (3.26) without any approximations for the exponential. Hence now we have:

Re Tr
[

ta(U (1) + U (2))(1 + U †(3)
new)

]

= f ′
a. (3.28)

A simpler expression for f ′
a can be found using the Taylor expansion for the exponen-

tial in Eq. (3.26). The first non-zero term reads:

f ′
a = −1

2
xbxc Re Tr

[

tbtcta(U
(1) + U (2))U

†(3)
old

]

. (3.29)

Close to the continuum limit, the Wilson lines can be approximated to unit matri-

ces. So in the continuum limit Eq. (3.27) reduces to xa = −fa and hence Eq. (3.29)

can be simplified to read:

f ′
a = −1

4
fbfcdabc. (3.30)

If the initial guess was a good one, than fa should be small, in which case |f ′
a| < |fa|.

So by iterating the above process, one can get a converging algorithm for finding

the solution of Eq. (3.21). Even though Eq. (3.30) was obtained in the continuum

limit, it can be used to draw more general conclusions. We expect f ′
a to be roughly

proportional to fbfc also in the general case, even though the exact dependence will

be more complicated. This means that for good initial guesses (small fa) we expect

that |f ′
a| < |fa| and hence the algorithm described above will converge.

We tested the above algorithm as well as an improved version of it for different

lattice sizes as well as for different values of the color charge density µ1. The improved

version of the algorithm is especially efficient away from the continuum limit when

the initial guess given by Eq. (3.24) is not a very good one. The improved method

supposes that by solving Eq. (3.27) we get the right direction in which to move in

1Both the transverse lattice size N2 and the parameter µ characterize how close the lattice fields

are to the continuum limit. For the same value of µ, a larger transverse lattice means closer to the

continuum limit. On the other hand, for the same lattice size, bigger µ means further away from

the continuum limit.
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order to get fa closer to zero, but that the size of the move is not the correct one.

Hence we take the solutions of Eq. (3.27) and before inserting them into Eq. (3.26),

we multiply them by a constant factor α such that the new value for the Wilson line

is given by:

U (3)
new = eiαxataU

(3)
old . (3.31)

When the new value of the Wilson line is close to the desired solution (i.e. small fa)

than we take α = 1, which results in the initial algorithm.

Since we cannot be certain that our algorithm will always converge, we supple-

mented the above method with a simulated annealing method (SAM) for finding a

better initial guess for U (3). We call the SAM when we do not get convergence after

a certain number of steps using the above algorithm (this number of steps is small,

of the order 10-501).

µ = 0.5 GeV µ = 2 GeV

N2 SAM⋆ (%) calls† time‡ (µs) SAM⋆ (%) calls† time‡ (µs)

322 7± 1 7.3± 0.3 5.9 19± 1 10.7± 0.2 13.2

642 0.04± 0.02 4.26± 0.04 1.3 15.7± 0.6 10.0± 0.1 10.7

1282 0 3.43± 0.02 0.73 8.4± 0.4 7.83± 0.09 6.7

2562 0 3.00± 0.01 0.64 0.20± 0.03 4.32± 0.02 1.5

Table 3.1: The results of using the basic method (not the improved one) in iteratively solving
Eq. (3.21) for different values of µ (g = 2). ⋆ The average number of times the simulated annealing
method (SAM) was called for each lattice point. † The average number of iterations of the basic
method for each lattice point. ‡ The average computational time for each lattice point. (All the
errors are systematic errors from simulations over 20 different random configurations of initial charge
density.)

Table 3.1 shows that the basic method described above (the one with the α = 1)

gives a convergent algorithm for most of the lattice points. In the continuum limit

(small µ and large N2) the algorithm is converging very fast, on average needing only

1We use several criteria for deciding if convergence will be reached depending how big
∑

a |fa| is

during a given iteration. These criteria have no impact on the convergence speed but only on the

computational time.
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3 iterations to get to
∑

a |fa| < 10−13 (which is the numerical test when we consider

that Eq. (3.21) is satisfied). But the further away the Wilson lines are from the

continuum expressions, the higher is the number of cases in which the method does

not converge. This was expected since there is no reason why the analysis presented

in this section will hold for any distribution of the gluonic field.

µ = 2 GeV µ = 5 GeV µ = 20 GeV

N2 SAM⋆ (%) time† (µs) SAM⋆ (%) time† (µs) SAM⋆ (%) time† (µs)

322 1.6± 0.4 2.8 2.5± 0.4 3.4 2.4± 0.4 3.4

642 1.3± 0.1 2.5 2.2± 0.3 3.2 2.1± 0.2 3.2

1282 0.84± 0.05 2.0 2.07± 0.08 3.2 2.0± 0.1 3.2

Table 3.2: The results of using the improved method in iteratively solving Eq. (3.21) for different
values of µ (g = 2). The results presented here are obtained for α = 0.5. On average, there are 10
calls of the iterative method for each lattice point. ⋆ The average number of times the simulated
annealing method (SAM) was called for each lattice point. † The average computational time for
each lattice point. (All the errors are systematic errors from simulations over 20 different random
configurations of initial charge density.)

We also studied the convergence speed of the improved algorithm for different

values of the α parameter. We found that as α decreases the number of times the

SAM is called also decreases, which decreases very much the computational time. But

the downside of a small α is an increase in the number of iterations of the method,

which can also have the effect of an increased computational time. The smallest

computational time is obtained for α in the range 0.4 to 0.61.

As can be seen from Table 3.2, the improved method does not totally cancel the

need to use the SAM, but it does reduce significantly the number of times the SAM

is called. This decreases the computational time by almost an order of magnitude,

depending on the lattice size and the value of µ. Moreover, as the Wilson lines are

even further apart from their continuum limit, the improved method behaves as well,

1The difference in computational time between two values of α in the interval 0.4 to 0.6 are at most

5%. As the Wilson lines go further away from their continuum limit, the value of α corresponding

to the fastest convergence slightly decreases (but still remains in the interval 0.4 to 0.6 and any

differences in computational time still remain small).
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as it can be seen for µ = 5 GeV and µ = 20 GeV. The computational times given in

Tables 3.1 and 3.2 can be decreased even further by at least a factor of 21.

The iterative method described in this section can be summarize in the following

steps:

1. Start with the initial guess U (3) = U (1)U (2).

2. Solve the linear system from Eq. (3.27).

3. Use Eq. (3.31) to update the new value of U (3) with α = 0.5 if
∑

a |fa| > 0.5 2

or with α = 1 otherwise.

4. Check to see if Eq. (3.21) is satisfied, if not continue from step 2. If steps 2 to

3 were already executed several times (around 20 to 40) and Eq. (3.21) is not

satisfied, switch to the SAM.

5. In SAM take the temperature proportional to
∑

a |fa| and lower it until
∑

a |fa| <
0.5 3, such that for each temperature there are enough steps to achieve a good

1After these tests were performed, the computational time of the iterative method was decreased by

a factor of 2. This results in a halving of the times in Table 3.1 for µ = 0.5 GeV and around a 1.5

times decrease for the times in Table 3.2. Even smaller computational times can be achieved by

loose of flexibility in the code (like hard coding for a specific form of the ta matrices), but this was

not implemented since this part of the numerical simulation takes much less than 1% of the typical

running time for the gauge field evolution code.
2We choose

∑

a |fa| = 0.5 as the boundary when changing between α = 0.5 and α = 1 since it

optimizes the computational time. Smaller values for
∑

a |fa| will decrease the number of calls to

SAM, but will also increase the overall number of iterative steps for each lattice point. Since there

are only a small percentage of calls to SAM, the overall computational time will increase for a smaller

value of
∑

a |fa|.
3Here again we choose the stop condition as

∑

a |fa| = 0.5 since tests showed that for most of the

lattice points this is enough to assure convergence of the iterative method. For most of the lattice

points where the code calls the SAM method, it calls it just once; only very rarely it is called more

than once for a lattice point. In our numerical implementation, this section of the code was written

and tested before implementing the improved method (with α < 1), so probably there is even more

room for improvement by increasing the value of
∑

a |fa|.
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sweep (around 200-300 points are more than enough, but also depends on how

fast the temperature is lowered). When
∑

a |fa| < 0.5 switch to step 2.

3.3 Quark pair production

In this section we describe the formalism presented in [26]. The numerical formalism

was tested in [26] for the case of only one spatial dimension and then the results

were extended to the full three dimensional space in [29, 30, 31]. Compared to gluon

calculations, the time evolution of the Dirac wavefunction is more complicated because

the quark wavefunction depends on three spatial dimensions and also because the

Dirac equation has to be discretized using an implicitly scheme.

3.3.1 General formulation

The average number of quark pairs produced in the collision of two nuclei can be

expressed as [23]:

〈nqq̄〉 =

∫

d3p

(2π)32Ep
〈0in

∣

∣

∣
b†out(p)bout(p)

∣

∣

∣
0in〉 (3.32)

=

∫

d3p

(2π)32Ep

d3q

(2π)32Eq
|ū(p)TR(p,−q)v(q)|2 (3.33)

where TR(p,−q) is the amputated retarded propagator of a quark in an external field

with incoming momentum −q and outgoing momentum p. Ep,q represents the energy

associated to an on shell particle with 3-momentum p and q respectively. u(p) and

v(q) are Dirac spinors for the plane wave solution of the free Dirac equation. In [26]

was shown that one can use the following identity:

ū(p)TR(p,−q)v(q) = lim
t→+∞

∫

d3xei(Ept−p·xū(p)γ0Ψq(t,x) (3.34)

where Ψq(t,x) represents the solution of the Dirac equation with initial condition

given by:

lim
t→−∞

Ψq(t,x) = eiqxv(q) (3.35)

which is just the plane wave solution for a free antiquark. Eq. (3.34) can be trivially

modified to describe the multiplicity for a given time t by removing the limit t→ +∞
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and evaluating Eq. (3.34) at a fixed time t. This would give a time dependent number

of pairs1. Since in heavy ion collision the important time parameter is the proper time,

one can write Eq. (3.34) using space-time rapidity and proper time coordinates as:

ū(p)TR(p,−q)v(q)|τ = τ

∫

d2xTdη e−ipT·xTeimT τ cosh(y−η)ū(p)γτΨq(τ, η,xT) (3.36)

where y is the rapidity of the final state quark and η = 1
2
ln
(

t+z
t−z

)

is the space-time

rapidity. Eq. (3.36) holds since the limit t → ∞ is the same as the limit τ → ∞,

since t = τ cosh(η). This is true for all values of η with the exception of η → ±∞.

But the contribution to the integral in Eq. (3.36) from large η is 0 due to the very

fast oscillation of the exponential which depends on cosh(y − η).

Eq. (3.36) tells us that to find the number of produced quarks at proper time τ

one must start with the free antiquark at infinite past. After evolving the antiquark

wavefunction to τ , one must take the superposition of the antiquark wavefunction

with that of a free quark. This gives the number of produced quarks at a given

momentum, but since quarks are produced only in quark-antiquark pairs, it also

gives the number of produced pairs. Eq. (3.33) tells us that to get the total number

of quark pairs produced in the collision, one must sum over all the possible momenta

of the final quark and that of the incoming antiquark.

Now the next logical step is to compute Ψq(τ, η,xT). This can be done analytically

up to τ = 0 since the gluonic fields within the CGC approach are known analytically

up to τ = 0 [26, 37]. For τ > 0, the Dirac field must be computed numerically since the

gauge fields are also evolved in time using a numerical algorithm. The computation

of the initial condition for the Dirac field (i.e. Ψq(τ = 0, η,xT)) was done in [26, 37].

In [37] Ψq(τ, η,xT) given by Eq. (3.35) was computed for the Abelian case in both

the covariant gauge and in the light-cone gauge. In the Abelian case, the gauge and

Dirac fields can be computed analytically for all times. In [26] Ψq(τ = 0, η,xT) is

again computed analytically within the light-cone gauge (and Coulomb gauge2 for

1It merits further study if one can simply remove the t → +∞ limit from Eq. (3.34) and still keep

the form of the equation intact [31].
2The Coulomb gauge for the transverse direction is given by ∂iAi(xT) = 0 with i = 1, 2.
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the transverse direction) for the Abelian case and than generalized for the SU(N)

case. The main difference between Abelian and the non-Abelian theories is that in

the former the gauge fields and Wilson lines commute, so multiplication order is not

important. But for the non-Abelian theories the ordering of the fields is important,

since matrix multiplication is noncomutative. The Abelian result was generalized to

the non-Abelian theory by writing it in a compact form that contains only products

of identical Wilson lines which automatically commute.

The computation of the initial condition for the quark wavefunction can be done us-

ing the retarded quark propagator in the field of the two nuclei (propagator which can

be found in [23]) or using some clever guesses for the general form of the quark wave-

function (as was done in [37]). The calculation consists of propagating the fermion

on each of the two paths shown in the right panel of Fig. 3.1, after which both con-

tributions must be summed. The only nontrivial calculations are at crossing the light

cone axes. One must pay attention to the discontinuities in the Dirac wavefunction

that arise due to discontinuities in the gauge fields when crossing the light cone. For

example, on the x− axis the gauge field A− = 0 but A+ will have a θ(x−) disconti-

nuity. Since the Dirac equation in LC coordinates will have terms of the form ∂−γ+

and ∂+γ− 1, at x− = 0, γ+Ψ is continuous while γ−Ψ is not2. Using that γ±P∓ = 0,

the continuity requirement for γ+Ψ reduces to a continuity requirement for P+Ψ.

Similarly, for the x+ = 0 axis we must have that P−Ψ is continuous.

Another challenge with finding the Ψq(τ = 0, η,xT) is that for τ = 0 there is no

dimensionful longitudinal variable. Normally, for τ 6= 0 one uses τe±η, but for τ = 0

this does not work. To overcome this problem, and to have a symmetric treatment in

x±, one takes the longitudinal variable as z. By performing the calculations described

above, after rather a few mathematically involved steps, we find that the wavefunction

1The LC coordinate Dirac matrices are defined as γ± = 1√
2
(γ0 ± γ3). With P± = 1

2 (1 ± γ0γ3) we

denote two projection operators. See Appendix A.2 for properties of the projection operators as well

as for additional details about the LC coordinates.
2If γ+Ψ would be discontinuous, than the term ∂−γ+Ψ gives a delta function. Since there is no

discontinuity in A− to compensate for the delta function, such a discontinuity in γ+Ψ is forbidden.
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at τ = 0 is [26]:

Ψ(τ = 0, z,xT) =

∫

d2kT

(2π)2

×
{

P+eyq

ωq
U(1)(xT)U †

(1)(kT) exp

(

i
ω2

k+qe
yq(|z| − z)

2ωq

)

+P−γ0[iγT ·DT −m]U(1)(xT)U †
(1)(kT)

1

ω2
k+q

[

exp

(

i
ω2

k+qe
yq(|z| − z)

2ωq

)

− 1

]

+P− e−yq

ωq
U(2)(xT)U †

(2)(kT) exp

(

i
ω2

k+qe
−yq(|z|+ z)

2ωq

)

+P+γ0[iγT ·DT −m]U(2)(xT)U †
(2)(kT)

1

ω2
k+q

[

exp

(

i
ω2

k+qe
−yq(|z| + z)

2ωq

)

− 1

]

}

× e−i(kT+qT)·xT γ0 [γT · (kT + qT)−m] v(q) (3.37)

where U(1),(2)(xT) and U †
(1),(2)(kT) are the Wilson lines of the two nuclei and respec-

tively their Fourier transforms defined as:

U †
(j)(kT) =

∫

d2xT eikT·xTU †
(j)(xT) (3.38)

with j = 1, 2. DT are the transverse covariant derivatives while ω2
k+q = (kT + qT)2 +

m2, with m the mass of the initial antiquark. The above result was obtained for

QED, but because it contains only products of the same kind of Wilson lines, it also

holds for QCD [26].

Using that for τ = 0 x± = 1√
2
(|z| ± z), we can immediately see that lines 2 and 3

of Eq. (3.37) depend only on x− while lines 4 and 5 depend only on x+. This suggests

that lines 2 and 3 resulted from the propagation of the antiquark trough the field of

the colliding nuclei on the left path shown in the right panel in Fig. 3.1, while lines 4

and 5 resulted due to the antiquark propagation on the right path shown in the right

panel in Fig. 3.1. The resulting wavefunction is the sum of the two contributions.

If the initial wavefunction would be that of a free quark:

lim
t→−∞

Ψq(t,x) = e−iqxu(q) (3.39)

and not antiquark (see Eq. (3.35)), than the corresponding initial condition for τ = 0

is very similar to the one given in Eq. (3.37). The only difference comes from replacing
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q with −q and v(q) with u(q). In fact, when deriving Eq. (3.37), the only time where

the fact that the spinor was corresponding to a antiquark and not a quark was used

explicitly was in the relation (6q+m)v(q) = 0. But by taking q → −q and v(q)→ u(q),

the above relation would read (−6q + m)u(q) = 0, which holds true for any q. Hence

Eq. (3.37) holds also for quarks in the initial state with the appropriate substitutions.

3.3.2 Dirac equation in curvilinear coordinates

Starting from the initial condition in Eq. (3.37), one must solve the Dirac equation

in the coordinate (τ =
√

t2 − z2, z,xT). The easiest way to do so is to transform

the coordinates while keeping the fields unchanged [26]. A coordinate transformation

from (t, z,xT) to (τ, z,xT) (for details about coordinate transformations see Appendix

A.1) acts on the derivatives according to:

∂t →
√

τ 2 + z2

τ
∂τ (3.40)

∂z →
z

τ
∂τ + ∂z (3.41)

with the rest of the derivatives remaining unchanged. Exactly the same transforma-

tion rules apply to the gauge fields Aµ. Inserting the above into the Dirac equation

given in Eq. (2.8) yields:

iγτDτΨ =
[

−iγ3Dz + (−iγT ·DT + m)
]

Ψ (3.42)

where we used the notation:

γτ =

√
τ 2 + z2

τ
γ0 − z

τ
γ3. (3.43)

By multiplying Eq. (3.42) with −iP±γ0 we get1:
(√

τ 2 + z2

τ
− z

τ
γ0γ3

)

DτΨ
± = −γ0γ3DzΨ

± + iγ0(iγT ·DT −m)Ψ∓ (3.44)

where for simplicity we used the notation Ψ± = P±Ψ. Now using that γ0γ3P± =

±P±, we finally obtain:

DτΨ
± =

√
τ 2 + z2 ± z

τ
[∓DzΨ

± + iγ0(iγT ·DT −m)Ψ∓] (3.45)

1After using that P±γ0γ3 = γ0γ3P±, P±γ0 = γ0P∓ and P±γ0γi = γ0γiP∓ (with i = 1, 2)
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Now we still have to specialize Eq. (3.45) to the temporal gauge used in the gluon

evolution part (i.e. Aτ=0 ). Since the gluonic fields are computed in the (τ, η =

1
2
ln
(√

τ2+z2+z√
τ2+z2−z

)

,xT) coordinate, we still have to transform the gluonic fields to the

(τ, z,xT) coordinate. Using the rules from Appendix A.1 we obtain:

A′
τ = Aτ −

z

τ
√

τ 2 + z2
Aη

A′
z =

1√
τ 2 + z2

Aη (3.46)

with A′ and A the vector fields in (τ, z,xT) and (τ, η,xT) coordinates respectively.

The transverse fields are the same in both coordinates. Putting everything together,

we get:

∂τΨ
± =

√
τ 2 + z2 ± z

τ

[

∓∂zΨ
± + iγ0(iγT ·DT −m)Ψ∓]∓ i

Φ

τ
Ψ± (3.47)

where we used the notation Φ = gAη
1 and also set Aτ = 0 (the temporal gauge

condition).

Now we have all the ingredients necessary to be able to compute the quark pro-

duction within the CGC and MV models. But before doing so, we have to carefully

analyze several problems that may arise due to explicit coordinate dependence of the

terms in Eq. (3.47). The first is the 1/τ term which can create problems in the limit

τ → 0, especially in a numerical simulation. Let us start by checking that the initial

condition from Eq. (3.37) is indeed a solution of the Dirac equation at τ = 0. For

z < 0 and τ → 0, Eq. (3.47) reduces to:

∂τΨ
− =

−2z

τ

[

∂zΨ
− + iγ0(iγT ·DT −m)Ψ+

]

(3.48)

since we also have the initial condition Φ|τ=0 = 0. For z < 0, Ψ− will be given by

rows 3 and 4 of Eq. (3.37) (but only row 3 has a z dependence) while Ψ+ will be

given only by row 2. It is straightforward to check that the terms inside the square

brackets of Eq. (3.48) do cancel. Hence for z < 0 and τ → 0, Eq. (3.47) does not have

any singularities as might have naively been suggested by the 1/τ term. Similarly it

can be shown that also for z > 0 the 1/τ term does not create problems.

1The Φ field from Eq. (3.47) is related to the scalar longitudinal field φ defined in Sec. 3.1 via the

equation Φ = gφ.
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3.3.3 Quark production in 1+1 dimensions

It is also instructive to look at the case of one spatial dimension since it provides

an easy and fast way to check the numerical behavior of the Dirac equation. Before

doing so, let us see how some of the expressions for the full 3+1 case presented above

simplify for just one spatial dimension. In this case, the number of produced pairs

reduces to:

〈nqq̄〉
dy

=

∫

d(y − y′)|Mτ (y − y′)|2 (3.49)

Mτ (y − y′) = τ

∫

dη ū(y′)eimτ cosh(η−y′)γτΨ(τ, z) (3.50)

where Mτ represents the amplitude to produce quark pairs at a given time τ . With

y and y′ we denote the rapidity of the initial antiquark and final quark respectively.

Eqs. (3.49)-(3.50) exploit that the background gauge field is boost invariant. Thus

the amplitude for quark production depends only on the rapidity difference between

the initial state antiquark and final state quark, and not on the individual rapidities

of the initial and final state particles.

The initial conditions for the 1+1 dimensional case are found using Eq. (3.37)

specified for just one spatial dimension. To do so, one must first remove the depen-

dence on the transverse coordinates by specializing to a 0 transverse gauge field (i.e.

U(i)(xT) = 1 and U(i)(kT) = (2π)2δ2(kT) ). This gives:

Ψ(τ = 0, z,xT) = e−iqT·xT

(

eiq+x−

+ eiq−x+ − 1
)

v(q) (3.51)

where q± = ωqe±y

√
2

are the LC momenta and x± are the LC coordinates at τ = 0. The

next step is to drop the transverse coordinate. It is convenient to split the initial

condition in two branches, which we will call left and right. Each branch corresponds

to the solution one obtains by propagating the initial free wave from t → −∞ to

τ = 0 by the two possible ways illustrated in the right panel of Fig. 3.1. The initial

condition for the left branch is:

Ψ+(τ = 0, z) = −ey/2
√

m exp

(

i
mey

2
(|z| − z)

)

Ψ−(τ = 0, z) = e−y/2
√

m

[

exp

(

i
mey

2
(|z| − z)

)

− 1

]

(3.52)
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whereas for the right branch the initial condition reads:

Ψ+(τ = 0, z) = ey/2
√

m

[

1− exp

(

i
me−y

2
(|z|+ z)

)]

Ψ−(τ = 0, z) = e−y/2
√

m exp

(

i
me−y

2
(|z|+ z)

)

. (3.53)

In the above equations we already used the fact that for 1+1 dimensions the Dirac

spinor v is given by:

v(y) =
√

m





ey/2

−e−y/2



 (3.54)

Ref. [26] shows that in the absence of an external field, the two paths shown in

the right panel in Fig. 3.1, individually give rise to the following amplitude for quark

production:

|M | = 1

cosh
(

y−y′

2

) (3.55)

while when considered together, the amplitude is 0 as expected in the absence of an

external field. A similar relation holds also for the 3 dimensional free Dirac equation,

with the difference that we also have to integrate over the transverse momenta of the

final state quark.

3.4 The discretized Dirac equation

3.4.1 Discretizing the Dirac equation

In the (τ, x, y, z) coordinate system the Dirac equation can be discretized using a

second order method for both the τ and z directions. For the z direction, due to

the explicit dependence of the analytical equations on the z position, an explicit

discretization scheme is unstable, this is why the z derivative has to be discretized

implicitly. The τ derivative of the Dirac field is discretized according to:

∂τΨ(τ, z)→ 1

2aτ
[Ψ(τ + aτ , z)−Ψ(τ − aτ , z)] (3.56)

while for the z derivative we start by writing the derivative at τ as the average of the

z derivative at τ − aτ and τ + aτ

∂zΨ(τ, z) ≈ 1

2
[∂zΨ(τ − aτ , z) + ∂zΨ(τ + aτ , z)] , (3.57)
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after which each of the two right hand side terms is discretized to:

∂zΨ(τ, z)→ 1

2az

[Ψ(τ, z + az)−Ψ(τ, z − az)] . (3.58)

In the above equations, all the Ψ variables are to be evaluated on the transverse plane

at the xT coordinate (this notation was dropped for more readability). The constants

aτ and az denote the lattice spacing in the τ and z direction respectively. Moreover,

it also makes sense to use the following relation (the advantages of using it will be

clearer later):

Φ(τ)

τ
Ψ(τ, z) ≈ Φ(τ)

2τ
[Ψ(τ − aτ , z) + Ψ(τ + aτ , z)] . (3.59)

The transverse covariant derivative along the i-th transverse direction is discretized

as:

DiΨ(xT)→ Ui(xT)Ψ(xT + ei)− U †
i (xT − ei)Ψ(xT − ei)

2ai
(3.60)

where Ui(xT) (with i = 1, 2) denotes the link matrices along the i-th direction in the

transverse plane. The constant ai denotes the lattice spacing along the i-th transverse

direction. The coordinate xT + ei denotes the next neighbor in the i-th transverse

direction for lattice point xT. The τ and z dependence of Ψ in the upper expression

was dropped for readability, but all the Ψ fields have to be evaluated at the same τ, z

point. In the following we use DTΨ to denote the transverse gradient of the Dirac

field (DTΨ is the sum of Eq. (3.60) for i = 1 and i = 2 which correspond to the x

and y directions).

Now all the previous expressions can be inserted into Eq. (3.47) to give:

1

2aτ

(Ψ±;j
n+1 −Ψ±;j

n−1) = ∓
√

τ 2 + z2 ± z

4τaz

(

Ψ±;j+1
n+1 −Ψ±;j−1

n+1 + Ψ±;j+1
n−1 −Ψ±;j−1

n−1

)

+

√
τ 2 + z2 ± z

τ
aτ iγ0(iγT ·DT −m)Ψ∓;j

n ∓ i
Φn

2τ

(

Ψ±;j
n+1 + Ψ±;j

n−1

)

(3.61)

where n denotes the τ step and j the lattice point in the z direction. All the Ψ fields

in the above equation are to be evaluated at the same transverse lattice point xT.
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Eq. (3.61) gives rise to the following system of linear equations:

(1± i
Φnaτ

τ
)Ψ±;j

n+1 ±
√

τ 2 + z2 ± z

2azτ
aτ (Ψ

±;j+1
n+1 −Ψ±;j−1

n+1 ) =

(1∓ i
Φnaτ

τ
)Ψ±;j

n−1 ∓
√

τ 2 + z2 ± z

2azτ
aτ (Ψ

±;j+1
n−1 −Ψ±;j−1

n−1 )

+

√
τ 2 + z2 ± z

τ
2aτ iγ0(iγT ·DT −m)Ψ∓;j

n (3.62)

where the unknowns are the Ψn+1 fields isolated on the left hand side. In Eq. (3.62)

the Ψ+ and Ψ− fields need to be known only at different time steps, hence to minimize

memory one can store one field component (lets say Ψ+) at even τ steps and the other

one (Ψ−) at odd τ steps. And then, after solving the linear system in Eq. (3.62),

it can store the values of the Dirac field at the new n + 1 time step in the same

memory location where it stored the values at the n − 1 time step. So by using the

approximation from Eq. (3.59) one needs to store only one copy of the field Ψ and not

two copies as one would have expected by using a second order accurate discretization

scheme.

Periodic boundary conditions can be used for the transverse directions, but not for

the longitudinal one since the Dirac equation is not translation invariant. This is why

free boundary conditions must be used for the z directions. It is also very important

to replace the z derivative with a second order accurate discretized version for the

lattice points at the end of the z direction. Otherwise one will have instabilities which

start at these lattice points and propagate into all the lattice points. Even a second

order accurate method does not fully solve this problem, but it takes much longer

for theses instabilities to rise. The τ value after which these instabilities become

important is much larger than the τ to which the code has to be evolved to study

HIC. So for the end points of the z lattice one has:

∂zΨ
−J → 1

2az

[

−3Ψ−J + 4Ψ−J+1 −Ψ−J+2
]

(3.63)

∂zΨ
J → 1

2az

[

3ΨJ − 4ΨJ−1 + ΨJ−2
]

(3.64)

where ±J are the endpoints of the z direction such that 2J + 1 = Nz (Nz is the total

number of lattice points along the z direction).
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Eq. (3.62) will also take a special form for the first τ step, when one evolves the

Dirac wavefunction starting with the initial condition which is know at τ = 0. For

the first step the τ derivative can be discretized only to first order accuracy. To

obtain a similar equation as Eq. (3.62) for the first step is just enough to replace 2aτ

in Eq. (3.62) with aτ . The resulting equation will be used when evolving the Dirac

wavefunction from the initial condition to the first step as well as when bringing both

components of Ψ (Ψ+ and Ψ−) to the same τ value.

3.4.2 Solving the linear system

The numerical evolution of the Dirac equation from one τ step to the next reduces

to solving the following linear system of equations:

M Ψ±
n+1 = ξn (3.65)

with Ψ±
n+1 the column matrix which stores the values of the Dirac field for all points

on the z-direction at the n + 1 time step for a given xT transverse lattice point. The

Ψ±
n+1 vector can be chosen such that the first entry corresponds to j = −J (the left

most point of the z-direction) and the last one corresponds to j = J (the right most

point of the z-direction). ξn is a column matrix which has as entries the right hand

side of equation Eq. (3.62). M is a square matrix whose entries can be read from the

left hand side of Eq. (3.62).

A first step in solving this system would be to explicitly take into account the

Dirac spinor structure of the Dirac field, which would give:

M Ψ±
n+1(i) = ξn(i) (3.66)

where i runs from 1 to 4 and denotes the spinor entry of the Ψ± field given as:

Ψ±
n+1 =

















Ψ±
n+1(1)

Ψ±
n+1(2)

Ψ±
n+1(3)

Ψ±
n+1(4)

















ξn =

















ξn(1)

ξn(2)

ξn(3)

ξn(4)

















. (3.67)
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The M matrix in this case is simpler than the one in Eq. (3.65) since it does not have

a spinor structure and also since it does not depend on the Dirac spinor entry i - it is

obvious from Eq. (3.62) that M is Dirac spinor independent. To simplify notations,

until the end of this section, Eq. (3.66) will be written just as MΨ = ξ.

M is a N ×N matrix1,2 which is almost trigonal (has entries only on the diagonal,

above and below the diagonal plus two more entries - m13 and mNN−2). Schematically

the M matrix is given by:

M =



































m11 m12 m13 0 . . .

m21 m22 m23 0

0 m32 m33 m34

...
. . .

...

mN−2N−3 mN−2N−2 mN−2N−1 0

0 mN−1N−2 mN−1N−1 mN−1N

. . . 0 mNN−2 mNN−1 mNN



































(3.68)

where the entries of the M matrix can be easily read from Eq. (3.62). If the gluonic

field is generated by a SU(Nc) local gauge symmetry (with Nc the number of colors)

than each element of the M matrix is in fact a Nc ×Nc matrix.

The simplest way to solve the system given in Eq. (3.66) with the matrix M given

by Eq. (3.68) is to use the LU decomposition method. The matrix M is written as:

M = LU (3.69)

where L is a lower diagonal matrix and U is an upper diagonal matrix with entries

1M is a N × N matrix only when looking at the mij elements, since each mij term is a Nc × Nc

matrix (Nc=number of colors), M is even a larger matrix.
2In this section we will denote for simplicity N ≡ Nz = 2J + 1.
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given by:

L U =



































1 0 0 . . .

l1 1 0

0 l2 1
...

. . .
...

lN−3 1 0 0

0 lN−2 1 0

. . . 0 lN lN−1 1





































































d1 u2 u1 0 . . .

0 d2 u3 0

0 0 d3 u4

...
. . .

...

dN−2 uN−1 0

0 dN−1 uN

. . . 0 0 dN



































Comparing the above equation with Eq. (3.68), one obtains the following algorithm:

1. Set d1 = m11, u1 = m13 and u2 = m12.

2. Set l1 = m21d
−1
1 and u3 = m23 − l1u1.

3. Set uj = mj−1j for all j ≥ 4.

4. Set dj = mjj−lj−1uj (for 2 ≤ j ≤ N−1) and lj = mj+1jd
−1
j (for 2 ≤ j ≤ N−2).

5. Set lN = mNN−2d
−1
N−2, lN−1 = (mNN−1−lNuN−1)d

−1
N−1 and dN = mNN−lN−1uN .

After finding the elements of both the LU matrices as well as for the ξ column

vector, the equation LUΨ = ξ can be solved as follows. Start by denoting χ = UΨ,

then the linear system becomes Lχ = ξ, which can simply be solved by:

1. Set χ1 = ξ1.

2. Set χj = ξj − lj−1χj−1 for 2 ≤ j ≤ N − 1.

3. Set χN = ξN − lNχN−2 − lN−1χN−1.

In a numerical code the values of χ can be stored in the same memory partition that

stores the values of the ξ array. Now the remaining linear system of equations reads

UΨ = χ, which can be solved as:

1. Set ΨN = d−1
N χN .
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2. Set Ψj = d−1
j (χj − uj+1Ψj+1) for N − 1 ≥ j ≥ 2.

3. Set Ψ1 = d−1
1 (χ1 − u2Ψ2 − u1Ψ3).

The final set of instructions give the components of the Dirac field at the n + 1 time

step for a given Dirac spinor i. Now this algorithm must be iterated for the remaining

3 Dirac spinors. This part of the numerical code can be sped up by choosing a smart

basis for the Dirac γ matrices. In the Weyl or chiral basis the fields Ψ± have only 2

nonzero entries each, such that the above algorithm has to be used only twice at each

transverse point for each τ step (instead of 4 times).

For the full 3+1 dimensions case, for each τ step the system will have to solve

this algorithm 2NxNy times (with Nx and Ny the size of the lattice in the x and

y direction respectively). For the case of 1+1 dimensions, this algorithm must be

solved only once for each τ step. For more details about the implementation of this

algorithm see the Appendix B.

3.4.3 The quark initial condition on the lattice

To obtain the lattice version for the initial condition of the antiquark wavefunction

we can start from Eq. (3.37). This can be easily taken from the continuum and onto

the lattice since it does not explicitly contain gauge fields, but only covariant deriva-

tives and Wilson lines. The covariant derivatives on the lattice are given in a gauge

invariant way by Eq. (3.60). The same equation also determines the dispersion rela-

tion, since the lattice quark momentum depends on the expression of the discretized

derivative.

On a N point linear lattice the allowed values of the momentum are kx = 2π
N

nx

with nx = −N
2

+ 1, . . . , N
2
, with similar expression for the other directions. The

discretization choices made in Sec. 3.4.1 mean that the lattice dispersion relation for

a quark is given by:

E2 = m2 +
sin2(kxax)

a2
x

+
sin2(kyay)

a2
y

+ m2
T sinh2(yk)

= m2
T cosh2(yk) (3.70)



3.4 The discretized Dirac equation 51

where yk is the quark rapidity and mT is the transverse mass given by:

m2
T = m2 + k2

T (3.71)

k2
T =

sin2(kxax)

a2
x

+
sin2(kyay)

a2
y

(3.72)

which is the lattice transverse momentum for fermions.

As can be seen from Eq. (3.72), there are several values of (kx, ky) which give the

same fermion momentum kT . This effect is know as fermion doubling. One way to

deal with it is to restrict to only a quarter of the Brillouin zone, effectively considering

only momenta which do not create a degeneracy in the fermion momentum. In our

case, we will restrict to fermion momenta kx,y = 2π
N

nx,y with nx,y = −N
4
, . . . , N

4
for

both the momentum of the initial antiquark as well as for that of the final quark.
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3.5 Numerical Results

3.5.1 Gluon production

In this section we compute a few observables of the gluonic field and compare them

with the numerical results from [27]. This section will be short since the gluonic field

evolution is not the main part or the most complex one of our study.
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Figure 3.2: Left: The total energy in the gluonic field per unit rapidity for µ = 0.5 GeV. The dotted
curves give a statistical error estimate for 5 different configurations of the initial charge distribution.
Right: The energy per unit rapidity in each field component for the same simulation as in the right
graph.

The gluon evolution is characterized by three free parameters: the strong coupling

constant g, the color charge density parameter µ and the transverse area of the nucleus

πR2
A. For each numerical simulation we have that πR2

A = N2a2 with N2 the number

of lattice points for the transverse lattice and a the lattice spacing in the transverse

direction. For the numerical results presented here we take πR2
A = 150 fm2 and

g = 2. Even though the model has 3 physical parameters, the qualitative behavior of

it depends only on one parameter, g2µRA. Small values of the g2µRA give the weak

field limit while large values of g2µRA give rise to a strong field. The latter is the

regime where we expect that the model described in Sec. 3.1 to be valid.

The left panel in Fig. 3.2 shows that the energy per unit rapidity in the field

increases very fast at small τ values after which it remains at almost a constant

value. As expected from the equipartition theorem, the energy in the fields and in

the momenta should be the same. This is the case (up to numerical errors), as can

be seen from the right panel in Fig. 3.2 which shows the energy in each component
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of the field. Using this fact, the multiplicity can be defined as [27]:

n(kT) =
1

N2

2

|kT|

[

g2

2τ
Ea

i (kT)Ea
i (−kT) +

τ

2
πa(kT)πa(−kT)

]

. (3.73)
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g6µ4πR2
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as a function of the transverse momentum for µ = 0.5
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Using Eq. (3.73) one can compute the gluon spectrum; the numerical results are

shown in the left panel in Fig. 3.3. In the weak field limit, one expects that dN
d2kT
∝

1
|kT|4 [27]. Hence we would expect that |kT|4 dN

d2kT
tends to a constant in the weak field

limit. The right panel of Fig. 3.3 shows that for high |kT| there is indeed a crossover

to something similar to a 1
|kT|4 behavior, but that the exact behavior is not reached.

This may be due to lattice size effects, as can be seen by comparing the two lattice

sizes. Another reason for the mismatch is that the CGC formalism works best in the

classical strong field regime while the above predictions holds only in the weak field

limit. All the numerical result obtain in this section are in very good agreement with

the ones given in [27].

3.5.2 Quark production in 1+1 dimensions

In this section we analyze the behavior of the numerical solution for the Dirac equation

for one spatial dimension. This is especially useful since it allows to analyze the

numerical solution on a much larger range of parameters than it would be possible

in three spatial dimensions (due to memory and computational time limitations).
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Moreover, many of the parameter dependencies of the equation for 1+1 dimensions

(one spatial and one time) also hold for the full 3+1 dimensions.

a) Time evolution of the numerical Dirac solution

The Dirac equation in (τ, z) coordinates can pose a problem due to the 1/τ term

from Eq. (3.47). In the analytical case, when τ → 0, we have that τ∂τΨ
± = 0, hence

analytically the 1/τ factor does not pose a problem. Moreover, the 1/τ factor arises

due to the new coordinates used, not due to a physical singularity. For the numerical

implementation of the equation, we have to be careful that the right hand side term

of the Dirac equation does not pose a problem due to discretization errors. In general,

the larger the lattice spacing is, the larger are the discretization errors which arise from

replacing derivatives with finite differences. To minimize these errors, one can choose

a smaller lattice spacing or can replace the derivative with higher order discretization

schemes.

This is why it is important to study the behavior of our code for different parameter

settings around τ = 0+. For the first few time steps, the numerical Dirac wavefunction

will be independent of the aτ (lattice spacing along the τ direction) value. This is

true since everywhere in the Dirac equation we only find the ratio aτ/τ and not aτ

or τ alone (in fact we have a few
√

τ 2 + z2 terms but for small τ these terms are just

|z| plus small errors).

Fig. 3.4 shows the time behavior of the Dirac field at a given lattice point for

different values of the maz parameter. As expected, the bigger the maz parameter,

the greater is the difference from the “expected” result. Another important feature

of the results in Fig. 3.4 is the “jiggling” of the numerical solution at the start of the

simulation for high values of the maz parameter, as shown in the inlet in Fig. 3.4. This

is due to discretization errors and to the 1/τ term in the Dirac equation. For large

maz parameters the error in the discrete z-derivative are large and hence the right

hand term from Eq. (3.47) is large (analytically it should be 0). The consequences are

that the τ derivative is large, this is why initially the change in the Dirac wavefunction

between two consecutive time steps can be large. The size of this “jiggling” can be
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Figure 3.4: The dependence of the wavefunction on proper time for different values of the longitudinal
lattice spacing for the free Dirac equation (φ = 0).

decreased only by choosing a smaller maz value and not by choosing a smaller aτ . To

minimize the “jiggling” one should restrict to maz ≤ 0.05, even though this will not

always be possible. Fig. 3.4 also shows that even for a strong “jiggling” at early times,

the numerical solution does not diverge from the expected result for later times.

The results shown in Fig. 3.4 are only for y = 0. If y 6= 0 than the size of the error

is controlled by the values of the maze
|y| parameter. This is because the error in the

discretization of the z-derivative depends on the value of the parameters maze
y and

maze
−y (these are the parameters that give the z behavior of the initial condition for

the Dirac field in 1+1 dimensions).

b) Free Dirac Equation

For the free case, we expect the amplitude for quark pair production to be 0. But

if we compute the amplitude M for each of the two branches in which we split the

initial condition for the 1+1 dimensions Dirac field (see Eqs. (3.52)-(3.53)) we expect

to get a non-zero amplitude given by Eq. (3.55) in Sec. 3.3.3.
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The amplitude for quark production is given by Eq. (3.50) which for the τ, z

coordinate system reduces to:

M(y, y′) =

∫

τdz√
τ 2 + z2

ū(y′)eim[
√

τ2+z2 cosh(y′)−z sinh(y′)]γ0γτΨ(τ, z) (3.74)

where Ψ(τ, z) is the numerically evolved Dirac field with initial condition given by

Eqs. (3.52)-(3.53). Eq. (3.50) suggest that M(y, y′) will be mainly given by the region

η ≈ y′ (due to the eimτ cosh(η−y′) factor which oscillates very fast for large exponents).

When η is very different from y′, the argument of the hyperbolic cosine will be large,

and hence the exponential function will vary very fast with η. This would mean that

we can get an accurate value for M(y, y′) just by considering only a relatively small

interval in η around η = y′.

An important inconvenience of Eqs. (3.50) and (3.74) for finite integration limits is

that the integrand is nonzero at the integration boundaries (this is because the Dirac

field does not die out at large η). In fact this integrand will vary greatly for even a

slightly change in the integration limits, due to the fast variation of the exponential

function. So the quark amplitude defined previously is a highly oscillatory function of

the integration limits. In the analytical case when the integration limits are infinite,

this oscillations will average out and will give rise to a well defined result, but this is

not the case for the numerical simulation with a finite lattice. To solve this problem

we compute M(y, y′) from Eqs. (3.50) and (3.74) for different integration limits and

than we will take an average of the values thus obtained. To obtain accurate results,

the range in η (or z) over which we vary the integration limits has to contain several

oscillation periods of the M(y, y′) function. In the following, each time we compute

M , we average over the z integration limits such that the integration limits vary from

zmax/2 to zmax (with 2zmax the length of the lattice in the z direction).

First we test if indeed we can reproduce the analytical results from Eq. (3.50) by

just taking a small interval in η around η = y′. Since we only know the numerical

Dirac field at given z points, we will use Eq. (3.74) for computing the quark production

amplitude. The integration limits zmin to zmax will be given by the corresponding

value of ηmin to ηmax for which we want to compute M(y, y′). Since we consider only
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Figure 3.5: The amplitude M of one branch for the free Dirac equation when considering a fixed
space-time rapidity interval. The integration interval over η varied for each value of y′ such that
the boundaries are given by the solution of the equation mτ cosh(η − y′) = const, with the value of
const given in the legend of the graph.

a certain interval around η = y′, the integration limits ηmin to ηmax will depend on y′.

We choose the η integration limits such that at the integration boundaries the term

mτ cosh(η−y′) has a given value. We obtain the same shape for M(y, y′) indifferently

of the value of mτ cosh(η − y′) at the boundaries as long as mτ cosh(η − y′) > 25,

see Fig. 3.5. By taking a bigger lattice we get a smaller error when evaluating the

oscillating integral M(y, y′) (since we average over a larger number of periods), but

aside from this, larger values of mτ cosh(η − y′) at the boundaries do not change the

overall amplitude M . So the results from Fig. 3.5 support the conclusion that the

amplitude M is given by a small interval in η around η = y′.

Let us analyze in more detail the asymmetry of the graph in Fig. 3.5. The

numerical result is very close to the analytical one for y−y′ < −1, but for y−y′ > −1

it has a much larger amplitude of oscillation around the analytical result. Around

y− y′ = 0 a given interval in η corresponds to less lattice points (for a fixed az) than

for larger values of |y−y′|. So around y−y′ = 0 there are not enough lattice points to
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get a good estimate on the oscillating function, even though the interval over which

we average contains several periods of oscillation. For y − y′ > 1 (i.e. y′ < −1) the

problem arises since we use the right branch (Eq. (3.53)) as the initial condition for

the Dirac field. For the right branch the Ψ field is constant for z < 0 and varies for

z > 0 (at τ = 0), so at some time τ the Ψ field will mainly vary for z > 0 and also for

some values of z < 0 (but only for those with z not too far from 0). Since for y′ < −1

the main integration interval when computing M will be for negative z values, there

are not enough z lattice points in the region where Ψ varies. Choosing the left branch

(Eq. (3.52)) as the initial condition gives an asymmetry which is mirrored around

y − y′ = 0 to the one in Fig. 3.5.
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Figure 3.6: Left: The amplitude M of one branch for different lattice sizes in the z-direction (for
a constant zmax). Right: The amplitude M of one branch for different physical sizes of the lattice
in the z-direction (for a constant az). For zmax = 500 there is no visible difference between the
analytical and the numerical result.

Since the main contribution to the amplitude M is given by the interval around

η = y′ and taking into consideration that z = τ sinh η, one can conclude that for a

given proper time τ we can compute M only for sinh y′ ≤ zmax/τ . After also taking

into account the averaging procedure to deal with the oscillating result, the above

relation should read sinh y′ ≤ zmax/(2τ). The range in rapidity is also limited by the

finite lattice spacing along the z direction which gives a ultraviolet cutoff for the z

momentum sinh y ≤ 2π/(maz).

In the following the amplitude for quark production is computed using an integra-

tion over the z parameter (Eq. (3.74)) taking as integration limits −zmax to zmax. The
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left panel in Fig. 3.6 shows the dependence of the numerically computed amplitude

on the lattice size. The numerical results agree well with the analytical ones. For

Nz ≥ 500 there is no dependence of the amplitude on the number of lattice points.

The difference between the result for Nz = 200 and the rest may be due to the small

number of lattice points or due to bigger discretization errors. In the left panel of

Fig. 3.6 the Nz = 200 curve corresponds to maz = 0.25, which suggests that a small

difference is to be expected due to discretization errors (see Fig. 3.4). The difference

between the numerical and analytical result in Fig. 3.6 is due to a relatively small

zmax value. Using a larger zmax results in a more accurate value for M - see the right

panel in Fig. 3.6, where for zmax = 500 there is no visible difference between the

analytical and the numerical result.
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Figure 3.7: The amplitude of one branch for the free Dirac equation for different rapidities. The
rest of the parameters are: aτ = 0.01, mass = 0.5, Nτ = 100, Nz = 5 · 103 and az = 0.2.

Due to boost invariance, the amplitude M should be independent of y (it should

only depend on y − y′). Since the calculations are done using z as the longitudinal

variable and not the rapidity, it is nontrivial to check that M is boost invariant.

Fig. 3.7 shows that indeed the amplitude for pair production is independent (within

some numerical errors) on the rapidity y. What is interesting to observe is that the

numerical calculation breaks down for y − y′ > 2 when y = −2. The UV momentum
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cutoff is y < 5 while the additional condition sinh y′ ≤ zmax/(2τ) yields y′ < 6. So

the breakdown for y − y′ > 2 when y = −2 is possibly due to the UV cutoff, but

this does not explain why there is no breakdown for y − y′ < −2 when y = 2. The

results in Fig. 3.7 are for the right branch, while for the left branch the picture is

very similar but with the graph mirrored around y − y′ = 0.

c) Dirac Equation in an External Field

The next step is to study the behavior of the discretized Dirac equation solutions in

the presence of an external field. In one spatial dimension, the solution of the gauge

time evolution equations is given by a constant electric field off the light cone [26].

So to study the behavior of the discretized Dirac equation in 1+1 dimensions in the

presence of external fields one has to introduce it by hand. This external field should

have two parameters, a mass parameter which tells how fast the field vary with τ and

also a constant which controls the strength of the field. We take the external field as

[26]:

Φ(τ) = cQsτJ1(Qsτ) (3.75)

where Qs is our mass parameter and c controls the field strength (with c ≪ 1

representing the weak field limit). Such a choice is motivated in two ways, similar

results were computed in [26], so it provides a good opportunity to compare our

results with other numerical results. Also, the choice in Eq. (3.75) admits analytical

solutions for the amplitude of quark-antiquark pair production in the weak field limit

[26]. For weak fields, using first order perturbative results, one expects the amplitude

|M | to have a peak at:

cosh

(

∆y

2

)

=
Qs

2m
. (3.76)

This means that for Qs < 2m we expect to have only small values for |M |, which

should abruptly increase for Qs = 2m (with a prominent peak at ∆y = y − y′ = 0).

For Qs > 2m the quark production amplitude should have two peaks given by the

solutions of Eq. (3.76).
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peaks predicted by Eq. (3.76) corresponding to the Qs values plotted above.

The numerical results for a weak field (cQs = 0.05m) are shown in Fig. 3.8. As

expected, for Qs < 2m we observe that the amplitude for pair production |M | is small.

For Qs ≥ 2m we obtain the expected peak behavior predicted by Eq. (3.76). It is

also interesting to observe that the peaks of the numerical result coincide relatively

well with the predictions resulted from first order perturbation theory.
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|M |2d(y − y′) as a function of proper time τ for Qs = 2.05m and cQs = 0.05m.

Fig. 3.9 shows the dependence of |M | for different τ values. It can be seen
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that the height of the peaks increases linearly with time while their width shrinks

with time. But the area under the peaks (
∫

|M |d(y − y′)) remains approximately

constant pointing to delta function dependencies for τ →∞. In Fig. 3.9 we also see

that the number of quark-antiquark pair produced (
∫

|M |2d(y− y′)) increases almost

linearly with τ , especially at large mτ values. These results are in agreement with

the numerical results obtain in [26].

3.5.3 Quark production in 3+1 dimensions

In this section we compute the quark production amplitude for the full three dimen-

sional case. First we analyze the solutions of the Dirac equation in the absence of

the gauge field; solutions which can be compared to analytical predictions. Then we

study the quark production amplitude in the presence of the gluonic field given in

Sec. 3.1, results that we compare to those in [29, 30, 31].

For the 3+1 dimensional case it is useful to split Eq. (3.33) into two parts:

|M(qT, ∆y)|2 =

∫

d2pT

(2π)2

∣

∣

∣

∣

∫

τd2xTdη e−ipT·xTeim
T

τ cosh(y−η)ū(p)γτΨq(τ, η,xT)

∣

∣

∣

∣

2

(3.77)

dN

dy
=

∫

d2qT

(2π)2

d(∆y)

16π2
|M(qT, ∆y)|2 (3.78)

where |M(qT, ∆y)|2 denotes the amplitude squared for quark production integrated

over all the transverse phase space available to the final state quark (for simplicity,

in the following we will refer to |M | as the amplitude). The quantity dN
dy

denotes

the number of quarks produced (which is also the number of quark pairs) per unit

rapidity. With ∆y we denote the rapidity difference between the initial state antiquark

(at t→ −∞) and the final state quark. Since the gauge field is boost invariant, the

quark production amplitude depends only on the rapidity difference ∆y and not on the

individual rapidities of the quark or antiquark (as illustrated in Eqs. (3.77)-(3.78)).

The parameters of the numerical model are the strong coupling constant g (we

take g = 21), the nucleus transverse area πR2
A, the source density parameter µ and

the quark mass m. As in the case of the gluonic field only, the typical momentum

1In the classical field theory approach there is no reason for g to vary with energy.
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scale is given by g2µ while the parameter g2µRA characterizes the strength of the

gauge field (a small value of the parameter gives the weak field limit).

The Dirac wavefunction is stored on a N2Nz lattice with N = 180 and Nz = 400.

The numerical transverse area N2a2 corresponds to the physical area via N2a2 =

πR2
A = 141 fm2 which for a fixed N gives the size of the transverse lattice spacing

a. The following numerical results are obtained for az = 0.2a, aτ = 0.02a and for

τ = 0.25 fm which corresponds to about 200 time steps (unless stated otherwise).

Due to the large lattice size, the Dirac wavefunction for N = 180 and Nz = 400

needs 1.2 GB of RAM in single precision (there are 4 Dirac spinors and 3 colors).

Moreover, the time evolution for each time step takes 60 - 80 s/(1802·400)=4.5 to

6.0 µs for each lattice point depending on the processor. So it takes 3 to 4 hours to

evolve the Dirac equation to the proper time τ = 0.25 fm for a given configuration of

initial charge.

a) The free Dirac equation

In the case of the free Dirac equation one can make analytical predictions for the quark

pair production amplitude. Similarly as for the case of one spatial dimensions, |M |2

defined in Eq. (3.77) is given by Eq. (3.55) when the initial antiquark wavefunction

is given by only one of the two branches from Fig. 3.1. When using both branches,

the number of quark pairs is zero as expected in the absence of an external field.

Fig. 3.10 shows that indeed the numerical results for a wide range of quark masses

agree with the theoretical predictions. The agreement is not as good as for the

1+1 dimensional case, since for 3+1 dimensions the finite memory available imposes

a strict limit on the lattice size, and hence on the maximum value of the mzmax

parameter1. Thus the discrepancies between the numerical and the analytical result

from Fig. 3.10 are mainly due to the limitation of the averaging procedure (see Sec.

3.5.2). We also tried several other procedures to deal with the oscillating values of

|M |2 at the ends of the lattice in the z-direction. Some of them indeed give a numerical

1The mzmax parameter is the one that controls how accurate is the averaging procedure described in

Sec. 3.5.2. For more details see the right panel in Fig. 3.6.
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Figure 3.10: The dependence of the amplitude |M | on the rapidity difference between quark and
antiquark for different quark masses. † Numerical results obtained using only one of the two branches
from Fig. 3.1. ‡ Numerical results obtained using both branches from Fig. 3.1.

result much closer to the analytical one, but they also have a major drawback. The

form of |M |2 depends very strongly on the parameters of those procedures and the

analytical result is obtain only for a small range in those parameters. This is why

we decided to use only the method of averaging |M |2 over different integration limits

(method described in Sec. 3.5.2).

The range of quark masses available in the numerical study is limited from two

directions. We cannot simulate very small quark masses (m <∼ 0.1 GeV) since the z

lattice size in not large enough. For small quark masses the main contribution to the

quark production amplitude comes from a wide interval of z values, interval which

is not fully accessible for small Nz values. On the other hand, large quark masses

(m >∼ 3 GeV) are not accessible due to the small transverse lattice.

b) Quark production in an external gauge field

The numerical result is expected to depend on the lattice size and spacing along the

longitudinal direction, especially for small quark masses. So we studied the depen-
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dence of the quark production amplitude |M |2 on the lattice size and lattice spacing

(see Fig. 3.11). We see that az = 0.2a and Nz = 400 is more or less the limit which

distinguishes between a strong dependence and a weak dependence of the result on the

longitudinal lattice size and spacing. Moreover, the two graphs in Fig. 3.11 suggest

that we obtained different numerical results mainly due to computing the result for
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Figure 3.11: Left: Quark amplitude |M | (in lattice units) as a function of ∆y for different lattice
size. Right: Quark amplitude |M | as a function of ∆y for different values of the lattice spacing along
the z direction. a denotes the transverse lattice spacing. Both graph are at τ = 0.25 fm, m = 0.3
GeV and transverse momentum qT = (4, 4).

different values of zmax. As expected, the extension of the longitudinal lattice is not

large enough to allow for an accurate averaging procedure of the oscillating integral.

By varying the limits of the averaging procedure, we found that the numerical result

can vary up to 10% (for m = 0.3 GeV). This variation becomes smaller for larger

masses, such that for m >∼ 1 GeV, there is little change in the numerical results when

varying the averaging boundaries. To cope with theses problems, one must take the

continuum limit of the numerical results (especially for the low quark mass simula-

tions). The vertical curves in the right panel of Fig. 3.11 as well as in Fig. 3.12 are

due to the momentum cutoff because of the finite size of the lattice spacing along the

z direction.

We found the quark production amplitude to be independent of the time step size

in a wide range of values starting with aτ = 0.04a and lower. Another nontrivial

test is to study the dependence of |M | on the initial antiquark rapidity. As explained

earlier, due to boost invariance of the gauge field, we expect that the quark production
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Figure 3.12: Dependence of amplitude |M | (in lattice units) on rapidity difference ∆y for different
rapidities of the initial antiquark. The results are obtained at τ = 0.25 fm, m = 0.3 GeV and
transverse momentum qT = (4, 4).

amplitude to be independent on the antiquark rapidity. This is not automatically

satisfied since we use z as the longitudinal variable in the numerical calculations, and

not the space-time rapidity η. As can be seen in Fig. 3.12, |M |2 is independent on

antiquark rapidity up to some numerical errors.
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Figure 3.13: Left: Quark amplitude |M | (in lattice units) as a function of ∆y for different transverse
momenta. Right: Quark amplitude |M | as a function of ∆y for different (qx, qy) but for the same
|qT |. Both results are obtained at τ = 0.25 fm and m = 0.3 GeV.

As it can be seen from the left panel in Fig. 3.13, the quark production amplitude

varies strongly with the values of the initial quark transverse momentum |qT|. But

the right panel in Fig. 3.13 shows that |M |2 is independent on the actual values

of the momentum along the x and y directions and only depends on |qT|. This was

expected, since the results presented in this section are averaged over different random

distributions of color charge in the transverse plane. Thus there is no preferred
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direction in the transverse plane, and any results can vary at most with |qT|, but not

with the direction of qT.

The above result is especially useful since to compute the total number of quark

pairs, one needs to sum over all the possible transverse momenta of the initial anti-

quark (see Eq. (3.78)). Disregarding the doubler modes, on a N2 = 1802 lattice there

are 90 different quark momenta for each direction. Computing |M |2 for all possible

values of the transverse momentum would result in more than 902 ·3 hours=3 years of

computational time on a single CPU for just one initial configuration of color charge.

This is an unfeasible task even when using a computer cluster with more than 100

CPU units.

To overcome the problem, one takes advantage of the independence on the direction

of qT. Thus Eq. (3.78) reduces to:

dN

dy
=

∫ |qT| d|qT|
2π

d(∆y)

16π2
|M(|qT|, ∆y)|2. (3.79)

If we know the values of the function only for a discrete set of |qT| values, than

Eq. (3.79) becomes:

dN

dy
=
∑

i

|qT|i+1 − |qT|i−1

2

|qT|i
2π

∫

d(∆y)

16π2
|M(|qT|i, ∆y)|2 (3.80)

where |qT|i denotes the i-th element of the transverse momentum set of values. The

above equation is valid for the continuum case, but for the discrete case the density

of states is not the same as in the continuum since the dispersion relation is given by

Eq. (3.72). So the discrete form of Eq. (3.80) is given by:

dN

dy
=

1

N2

∑

i

Σ(|qT|i)
∫

d(∆y)

16π2
|M(|qT|i, ∆y)|2 (3.81)

where Σ(|qT|i) denotes the numbers of transverse momentum states that correspond

to the transverse momentum |qT|i (i.e. the number of transverse momentum states

with momentum between |qT|i − |qT|i−|qT|i−1

2
and |qT|i + |qT|i+1−|qT|i

2
).

The transverse momentum spectrum for the quarks can be computed using Eq. (3.78)

where we integrate |M |2 over the rapidity difference. These spectra are shown in Fig.
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Figure 3.14: Left: The transverse momentum spectrum of quarks at g2µ = 2 GeV for different quark
masses. Right: The transverse momentum spectrum of quarks at m = 0.3 GeV for different g2µ
values. Both results are obtained at τ = 0.25 fm.

3.14. One expects the quark spectra to be flatter and smaller with increasing quark

mass and larger with increasing values of the g2µ parameter. This is exactly the

behavior observed in Fig. 3.14, even though especially for small quark masses the

change in spectrum is rather weak. Moreover, the spectra decrease only slowly at

large transverse momentum suggesting a dependence on the transverse lattice cutoff

a. This dependence should be studied by changing the size of the transverse lattice.

The quark spectrum at small transverse momenta is highly sensitive to the inte-

gration boundaries for the rapidity difference ∆y. This is because, as it can be seen

from Fig. 3.13, at small transverse momenta |M |2 does not go to 0 as |∆y| increases

as is the case for larger transverse momenta. This is a problem mainly for the first 2

data points of each spectrum from Fig. 3.14. But this does not pose a big problem

when computing the total number of quark pairs since the number of states for small

transverse momenta is much smaller than the one for higher momenta, and thus the

main contribution to dN
dy

comes from |qT| >∼ 1 GeV.

For computing the total number of pairs per unit rapidity we use Eq. (3.81) ap-

plied to the set of transverse momentum values given in Fig. 3.14. The results are

shown in Fig. 3.15. These results are on average around 5-10% larger than similar

results obtained in [29, 30, 31]. The discrepancy can be caused by multiple reasons,

including the coarse range in |qT| used to compute dN
dy

, different boundaries for the

∆y integration as well as a different averaging procedure to cope with the oscillating
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Figure 3.15: Total number of produced quark pairs per unit rapidity as a function of quark mass
for τ = 0.25 fm and different values of g2µ. The error bars are only statistical errors over different
configurations of initial color charge.

quark production amplitude. The discrepancy is not a real problem, especially since

the results computed in this model cannot be taken at face value. The results are

meant to be a qualitative way to understand the initial stages of HIC.

3.6 Discussion and conclusion

Starting from the formalism described in [24, 25] for gluon field evolution and in

[26] for solving the Dirac equation in the classical gluonic field, we implemented

both algorithms numerically. We developed a new method for solving the nonlinear

equation which gives the initial condition for the SU(3) gluonic field (see Sec. 3.2).

We independently verified some of the numerical results for gluon production from

[27] and most of the numerical results for quark production in [29, 30, 31]. We

obtained the same number of quark pairs per unit of rapidity, even though the result

is with 5−10% larger than in [29, 30, 31]. This discrepancy is not worrisome because

of two reasons. First, there are a lot of steps where small differences exist between

us and Gelis et al. that could have a relatively large effect. Some of these reasons

include the coarse range in |qT| used to compute dN
dy

and different boundaries for the

∆y integration in Eq. (3.78). Secondly, these results are meant to give a qualitative,
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and not quantitative way to understand the initial stages of HIC.

The qualitative phenomenological implications of the results are as follows. Ex-

periments at RHIC measured about 1000 particles per unit rapidity in the final state

of the collision. Assuming entropy conservation, which is supported by the success of

hydrodynamical calculations, leads to the existence of a similar number of particles

also in the initial state [30]. The value of the µ parameter can be estimated using

Eq. (2.30), which suggests that µ ≈ 0.5 GeV. Taking our results corresponding to

g2µ = 2 GeV, for 3 quark flavors, we expect that the collision produces around 1000

quark pairs, result which is in contradiction with the RHIC observations. Moreover,

this also raises questions about the assumption of gluon dominance in the initial

stages of the collision.

Experimental results at RHIC suggest that the thermalization time is smaller than

1 fm [38]. If we suppose early chemical thermal equilibrium, than the quark pairs to

gluons ratio is ≈ 1 [30]. For 1000 partons, this corresponds to about 400 gluons and

300 quark pairs. In our model, this is consistent with a reduced value of the saturation

scale, corresponding to g2µ ≈ 1 GeV. This is not unexpected, since Eq. (2.30) gives

only a very crude estimate for the µ parameter.

The results show that within the classical model there are indeed a high number of

produced quark-antiquark pairs, number which is close to the total number of gluons.

These results suggest an early thermalization of the fireball. This is important since

in the hydrodynamic models used to describe the evolution of the fireball one always

assumes a medium in local kinetic thermal equilibrium. But this crucial assumption

could not be proved because the processes involved in the early stages of the collision

are clearly nonperturbative.



4

Photon production

In this section we present photon spectrum calculations within the CGC formalism,

which is believed to describe the early stages of HIC. We start in Sec. 4.2 with a con-

cise presentation of the theoretical framework and calculations of photon production

[39, 40]. The photon rate is computed only to the leading order, since already such a

calculation presents several challenges due to the strong gluonic background field.

The resulting expression is very complex and it cannot be computed numerically

in the general form derived in [39, 40]. In Sec. 4.2.2, using symmetry arguments

and properties of the CGC model, we argue for simplifications that make feasible the

computation of the photon spectrum.

We conclude this chapter by looking at the numerical results for photon production.

We do extensive tests to analyze the behavior of the numerical results on lattice size

and other parameters of the numerical simulation. We end with the photon spectrum

for one quark flavor with the mass m = 0.3 GeV in a background field characterized by

g2µ = 2 GeV. We see that there are two terms that give non negligible contributions

to the spectrum.

4.1 Introduction

As we discussed in the introductory part of this thesis, photon spectrum can be

an important probe of nuclear collision. Photons, compared to quarks and gluons,

interact with the fireball resulted in the collision only trough the electromagnetic

interaction. Even at RHIC or LHC energies, the electromagnetic coupling constant is

much smaller than the strong one (at RHIC energies αEM ≈ 1
137

while αs ≈ 0.12). So,

71
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compared to partons, photons, once produced, travel through the medium without

additional rescattering until detection. But since the detector measures only the

total flux of photon, it cannot distinguish between photons resulted from the different

stages in HIC collision. So, to be able to use photons as a probe, one needs a good

understanding of the photon production in all the HIC stages.

There are several papers that have analyzed photon production in HIC. For ex-

ample, QGP photon rates were computed by treating the QGP as an expanding

thermalized medium made from quarks and gluons [41, 42, 43, 44]. Other important

photon production papers are [45, 46, 47] which develop the Arnold, Moore and Yaffe

(AMY) formalism. The AMY formalism together with hydrodynamic evolution for

the QGP are found in [48, 49] to give predictions in accordance with the experimental

data.

In this section we will discuss photon production within the CGC formalism, which

is believed to describe the classical gauge fields resulted in the earliest stages of the

collision. The work presented here follows the guidelines from [39, 40]. Photon

production in the CGC model was investigated for pA collisions in [50]. There the

calculation is done perturbatively in one of the fields, which can be used to lineralize

the Yang-Mills equations of motion. This is not the case for AA collisions, the ones we

want to study, since both sources are strong. To overcome this problem, we sum over

all the tree diagrams using the formalism developed in [22], which we than evaluate

using numerical simulations.

4.2 General formulation

We want to compute photon production from a strong SU(Nc) gauge theory. Since

photons do not couple directly to gluons, we have to first consider the quarks produced

by the gauge field, which then become sources for the photon field. This can be done

by taking a combination of the QCD Lagrangian (given in Eq. (2.4)) and the QED

Lagrangian. On top of this, we also have to add an additional term which is the source

of the soft gluons within the CGC model. Hence our interactions are described by
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the Lagrangian density:

L(x) = −1

4
Gµν,a(x)Gµν

a (x) + Ψ̄(x)[i6D −m]Ψ(x)− 1

4
Fµν(x)F µν(x) + Jµ(x)Aµ(x)

where Gµν(x) and Aµ(x) are the non-abelian field tensor and the gluonic gauge field

(see Eq. (2.5)), while Fµν is the electromagnetic field tensor given by:

Fµν(x) = ∂µBν(x)− ∂νBµ(x) (4.1)

with Bµ(x) the gauge field of the photon. Jµ(x) represents a current which is treated

as a stochastic variable with Gaussian correlation in the MV model (see Sec. 2.2.3).

The covariant derivative in the Lagrangian density is given by:

Dµ = ∂µ − igAµ − ieBµ, (4.2)

where we can neglect the last term both due to the smallness of the electromagnetic

constant and due to a much higher number of gluons compared to photons charac-

teristic to the early stages of HIC. Moreover, we specialize our computation for only

one quark species, but it can be generalized to more than one.

The average number of produced photon is given by:

(2π)32Ek
dn

d3k
=
∑

λ

〈0in|bλ,†
out(k)bλ

out(k)|0in〉 (4.3)

where λ denotes the 2 photon polarizations and bλ
out(k), bλ,†

out(k) are the creation and an-

nihilation operators for the photon field. Using the LSZ reduction technique, Eq. (4.3)

can be written as [39, 40]:

(2π)32Ek
dn

d3k
= Pµν(k)

1

Z

∫

d4xd4ye−ik·(y−x)〈0in|Jν
el(y)Jµ

el(x)|0in〉 (4.4)

where Z is the photon wavefunction renormalization constant and:

Pµν =
∑

λ

ǫλ
µ(k)ǫλ∗

ν (k) (4.5)

with ǫλ(k) the two polarizations vectors of the photon. With Jµ
el(x) we denoted the

electromagnetic current given by:

Jµ
el(x) = eΨ̄(x)γµΨ(x) (4.6)
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where e denotes the electromagnetic coupling constant. So we see that the photon

production rate reduces to computing a correlator of electromagnetic sources, and

than taking its Fourier transform.

4.2.1 Leading order expression

Let us start by computing the electromagnetic source correlator using the lowest order

approximation. Naively, the leading order approximation is given by:

〈0in|Jν
el(y)Jµ

el(x)|0in〉 = e2〈0in|Ψ̄in(y)γνΨin(y)Ψ̄in(x)γµΨin(x)|0in〉 (4.7)

where Ψin(x) denotes the free fields at t → −∞. Using Wicks theorem and the

definitions for the SK free propagators from Sec. 2.3, the above expression is reduced

to [39, 40]:

〈0in|Jν
el(y)Jµ

el(x)|0in〉 =−e2 Tr[γµD0
+−(x, y)γνD0

−+(y, x)]

+e2 Tr[γµD0
++(x, x)γνD0

−−(y, y)] (4.8)

where D0 denotes the free fermion propagators defined in Eqs. (2.33)-(2.36). The

above equation corresponds to the first two Feynman diagrams from Fig. 4.1. The

two diagrams represent quark and antiquark pairs produced in a background field that

radiate photons. There is another Feynman diagram that contributes to leading order

(the right most diagram in Fig. 4.1). This corresponds to an initial quark/antiquark

that propagates in the background field and emits photons. We drop the contribution

of this diagram arguing that in a HIC the first two diagrams in Fig. 4.1 have the

dominant contribution. The main difference between the two types of diagrams is

that the first two have only gluons in the initial state, while the third also has a

fermion. As we argued in Sec. 2.2, for small x the gluons are the dominant partons,

hence we expect the first two diagrams to be present in much higher numbers than

the third one. So, due to the sheer number of gluons compared to quarks, we can

neglect the third diagram in Fig. 4.1.

So why did we call Eq. (4.8) the “naive” leading order approximation? In a strong

gluonic background field, the non-abelian gauge field Aµ(x) is proportional to 1
g
, with
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Figure 4.1: The Feynman diagrams which contribute to leading order for photon production [40].
The × symbol represents an insertion of the electromagnetic current while the + and − indices
denote the two types of SK formalism vertices.

g the strong coupling constant. So an insertion of a gluonic line will contribute to

leading order even though the coupling constant is small. Hence, to obtain the leading

order approximation, we need to resum all the field insertions which contribute to

O(1). There are two such types of contributions. The first is given by all gluon-

gluon tree diagrams and gives rise to a resummed gauge field Aµ(x). The second

are resummed gauge field insertions to the fermion propagator. This means that

Eq. (4.8), which gives the first order contribution, should instead read:

〈0in|Jν
el(y)Jµ

el(x)|0in〉 =−e2 Tr[γµD+−(x, y)γνD−+(y, x)]

+e2 Tr[γµD++(x, x)γνD−−(y, y)] (4.9)

with D the full quark propagator in the presence of the background gauge field.

The full propagators are computed by solving the Lippmann-Schwinger equation (see

Eq. (2.43)). As we saw in Sec. 2.3, the Lippmann-Schwinger equation is solved most

easily in the RA basis. The solutions for the D+−(x, y) and D−+(x, y) propagators

are given by Eqs. (2.52)-(2.53). To find the D++(x, x) and D−−(x, x) propagators

one uses that D++(x, x) = D−−(x, x) which applied to Eq. (2.41) gives:

D++(x, x) = D−−(x, x) =
1

2
[D+−(x, x) + D−+(x, x)]. (4.10)

Hence to compute Eq. (4.9) is enough to compute D+−(x, y) and D−+(x, y).

To do so we have to rewrite Eqs. (2.52)-(2.53) using that:

D0
+−(z, z′) = −

∫

d4q

(2π)2
eiq·(z−z′) θ(q0)2πδ(q2 −m2)( 6q −m) (4.11)

D0
−+(z, z′) =

∫

d4q

(2π)2
e−iq·(z−z′) θ(q0)2πδ(q2 −m2)( 6q + m) (4.12)
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and also that 6q + m =
∑

s us(q)ūs(q) and 6q −m =
∑

s vs(q)v̄s(q) to obtain [39, 40]:

D+−(x, y) =−
∑

s

∫

d4q

(2π)2

∫

d4zd4z′ θ(q0)2πδ(q2 −m2)

×[DR(D0
R)−1](x, z) eiq·zvs(q)v̄s(q)e

−iq·z′ [(D0
A)−1DA](z′, y) (4.13)

D−+(x, y) =
∑

s

∫

d4q

(2π)2

∫

d4zd4z′ θ(q0)2πδ(q2 −m2)

×[DR(D0
R)−1](x, z) e−iq·zus(q)ūs(q)e

iq·z′ [(D0
A)−1DA](z′, y) (4.14)

which can be simplified by using the notation [39, 40]:

Ψ(1)
q,s(x) =

∫

d4z [DR(D0
R)−1](x, z) e−iq·zus(q) (4.15)

Ψ(2)
q,s(x) =

∫

d4z [DR(D0
R)−1](x, z) eiq·zvs(q) (4.16)

and that:

[DR(x, z)(−i
←−6∂ z −m)us(q)]

†γ0 = u†
s(q)(i∂

µ
z γ†

µ −m)[DR(x, z)]†γ0

= u†
s(q)(i∂

µ
z γ†

µ −m)[−γ0DA(z, x)γ0]γ0

= −ūs(q)(i6∂z −m)DA(z, x) (4.17)

(with a similar expression for vs(q)) to finally obtain that:

D−+(x, y) =
∑

s

∫

d4q

(2π)2
θ(q0)2πδ(q2 −m2) Ψ(1)

q,s(x)Ψ̄(1)
q,s(y) (4.18)

D+−(x, y) =−
∑

s

∫

d4q

(2π)2
θ(q0)2πδ(q2 −m2) Ψ(2)

q,s(x)Ψ̄(2)
q,s(y). (4.19)

So computing the D±∓(x, y) propagators reduces to computing the Ψ
(1),(2)
q,s (x) ex-

pressions. To do so, we use the fact that the free Dirac plane waves are solutions of

the Dirac equation, so:

[i6∂z −m] us(q)e
−iq·z = 0 (4.20)

which when inserted into Eq. (4.15) gives:

Ψ(1)
q,s(x) =

∫

d4z DR(x, z)[−i
←−6∂ z − i

−→6∂ z] e−iq·zus(q)

= −i

∫

d4z ∂µ
z [DR(x, z)γµe−iq·zus(q)] (4.21)
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and similarly with:

Ψ(2)
q,s(x) = −i

∫

d4z ∂µ
z [DR(x, z)γµeiq·zvs(q)]. (4.22)

This can be simplified further by using the identity [51]:

lim
t1→−∞, t2→+∞

∫ t2

t1

dt ∂t

∫

d3xF (x, t) =

(

lim
t→+∞

− lim
t→−∞

)
∫

d3xF (x, t) (4.23)

which holds for any well behaved function F (x, t). Assuming that the integrand

in Eqs. (4.21)-(4.22) vanishes fast enough in space and also knowing the boundary

condition limy0→∞ DR(x, y) = 0, we obtain:

Ψ(1)
q,s(x) = i lim

z0→−∞

∫

d3z DR(x, z)γ0e−iq·zus(q) (4.24)

Ψ(2)
q,s(x) = i lim

z0→−∞

∫

d3z DR(x, z)γ0eiq·zvs(q). (4.25)

In the following we argue that the expressions given in Eqs. (4.24)-(4.25) are in

fact solutions of the Dirac equation (this is why they are denoted with Ψ). Let us

start from the Dirac equation in a background gluonic field and the corresponding

equation for the retarded fermion propagator:

[i6∂y − g 6A−m]Ψ(y) = 0 (4.26)

DR(x, y)[−i
←−6∂ y − g 6A−m] = δ4(x− y). (4.27)

By multiplying Eq. (4.26) with DR(x, y) on the left and Eq. (4.27) with Ψ(y) on the

right, we obtain [39, 40]:

Ψ(x) = −i

∫

d4y∂µ
y [DR(x, y)γµΨ(y)]. (4.28)

Now using Eq. (4.23), we finally obtain:

Ψ(x) = i lim
y0→−∞

∫

d3y DR(x, y)γ0Ψ(y). (4.29)

This means that Ψ(x) is the solution of the Dirac equation with the initial condition

given by Ψ(y) at y0 → −∞.

When applying Eq. (4.29) to Eqs. (4.24)-(4.25) it is straightforward to see that

Ψ
(1)
q,s and Ψ

(2)
q,s are Dirac wavefunctions corresponding to initial conditions at t→ −∞
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given by a free quark wavefunction (e−iq·yus(q)) and by a free antiquark wavefunction

(eiq·yvs(q)) respectively.

Finally, summing everything together, we obtain that the photon production rate

given by Eq. (4.4) can be written using Eqs. (4.18)-(4.19) as [39, 40]:

(2π)32Ek
dn

d3k
=Pµν(k)

e2

Z

∫

d4xd4ye−ik·(y−x)
∑

s1,s2

∫

d3q1

(2π)32Eq1

d3q2

(2π)32Eq2

×
{

Tr[γµΨ(1)
q1,s1

(x)Ψ̄(1)
q1,s1

(y)γνΨ(2)
q2,s2

(y)Ψ̄(2)
q2,s2

(x)]

+
1

4
Tr[γµΨ(1)

q1,s1
(x)Ψ̄(1)

q1,s1
(x)− γµΨ(2)

q1,s1
(x)Ψ̄(2)

q1,s1
(x)]

× Tr[γνΨ(1)
q2,s2

(y)Ψ̄(1)
q2,s2

(y)− γνΨ(2)
q2,s2

(y)Ψ̄(2)
q2,s2

(y)]
}

(4.30)

4.2.2 Photon rate within CGC formalism

The photon production rate given in Eq. (4.30) poses a few challenges in a numerical

computation. The main one is given by the large number of integrals, 8 spatial ones

and 6 in momentum space. This makes any numerical method for computing the

photon production rate very computationally time intensive. So the first step is to

find a simpler form for Eq. (4.30), a form that is much easier to implement numerically.

The first observation is that the photon production rate is independent on the

spin of the quarks. This means that the sum over spins for the third and fourth lines

of Eq. (4.30) can be easily done to obtain a factor of 2 from each line, such that in

total the sum over spins cancels the 1
4

factor. For the second line of Eq. (4.30) we

can sum over only one of the spins (lets say s1) to get a factor of 2. We still have to

keep
∑

s2
since one computes the superposition between a quark and an antiquark

wavefunction. This depends on the spin difference between the two particles, but not

on the sum of those two spins.

The next simplification results from using the notations:

1λ
µ
q1, q2s2

(k) =

∫

d4x eik·x Ψ̄(2)
q2,s2

(x)γµΨ(1)
q1

(x) (4.31)

2λ
µ
q1

(k) =

∫

d4x eik·x [Ψ̄(1)
q1

(x)γµΨ(1)
q1

(x)− Ψ̄(2)
q1

(x)γµΨ(2)
q1

(x)
]

(4.32)

where 1λ
µ
q1, q2s2

(k) and 2λ
µ
q1

(k) are just numbers since one sums over the Dirac and
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color indices. Using these notations, Eq. (4.30) simplifies to:

(2π)32Ek
dn

d3k
=Pµν(k)

e2

Z

∫

d3q1

(2π)32Eq1

d3q2

(2π)32Eq2

×
{

2
∑

s2

1λ
µ
q1, q2s2

(k)
[

1λ
ν
q1, q2s2

(k)
]∗

+ 2λ
µ
q1

[

2λ
ν
q2

]∗
}

. (4.33)

The polarization term P µν can also be used to simplify the calculation. Photons

have only transverse polarization, which means that kµP
µν = 0. This requirement

can be fulfilled if the photon polarizations are chosen such that ǫλ = (0,~ǫλ) with

~ǫλ · ~k = 0 [8]. Hence we have to compute only the spatial components of 1λ and

2λ. Moreover, since we compute the photon rate only to leading order, the photon

wavefunction normalization constant is Z = 1.

Another important simplification results because the background gluonic field is

boost invariant (see Sec. 3.1). This makes the photon spectrum in this model also

boost invariant. Moreover, because of the boost invariance of the background gluonic

field, one of the two rapidity integrals in Eq. (4.33) can be computed analytically.

This is the case since the result should depend only on the rapidity sum for the first

term in Eq. (4.33) and on the rapidity difference for the second term in Eq. (4.33)1.

Before summing all up, it is convenient to use the notations:

1ΛqT1, qT2y2(k) = Pij

∑

s2

1λ
i
qT1y1, qT2y2s2

(k)
[

1λ
j
qT1y1, qT2y2s2

(k)
]∗
∣

∣

∣

∣

∣

y1=0

(4.34)

2ΛqT1, qT2y2(k) = Pij 2λ
i
qT1y1

(k)
[

2λ
j
qT2y2

(k)
]∗∣
∣

y1=0
(4.35)

with i, j running from 1 to 3 and with y1,2 denoting the rapidity corresponding to

the 4-momentum q1,2 in Eq. (4.33). With qT we denote the transverse momentum

vector. Now Eq. (4.33) simplifies even further to:

(2π)32Ek
dn

d3k
=

e2

16π2

∫

d2qT1

(2π)2

d2qT2

(2π)2

∫ 2ymax

−2ymax

dy2 (2ymax − |y2|)

× [2 1ΛqT1, qT2y2(k) + 2ΛqT1, qT2y2(k)] (4.36)

1The difference between the two cases arises since for the first term in Eq. (4.30) we project a fermion

wavefunction onto the wavefunction of its antiparticle while for the first term in Eq. (4.30) we project

a fermion wavefunction onto itself.
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where ymax denotes the integration limits over the fermion’s rapidity interval, i.e.
∫ ymax

−ymax
dy. To obtain Eq. (4.36) we computed analytically the y1− y2 integral for the

1Λ(k) term. As we argued above, due to boost invariance of the background field,

the 1Λ(k) term should depend only on y1 + y2 but not on y1 − y2. The next step to

obtain Eq. (4.36) is to replace the remaining y1 + y2 integral1 with a y2 only integral

computed for y1 = 0. For the 2Λ(k) term we did a similar computation. In this case

we analytically computed the y1 + y2 integral and than we replaced the remaining

y1 − y2 integral with a y2 only integral at y1 = 0.

Even though Eq. (4.36) looks much simpler, there are still 4 integrals over the trans-

verse momenta of the initial quark and antiquark. For the second term in Eq. (4.36)

this is not such a great problem, since one needs to compute only a two dimensional

transverse momentum integral of the 1λq1
term (see Eq. (4.33)). This then can be

squared to obtain the total contribution of the second term to the photon production

rate. The problem is different for the first term from Eq. (4.36), since no similar solu-

tion can be applied. But the 4 dimensional transverse momentum integrals can still

be simplified by using that the initial color charge configuration is given by a random

distribution in the transverse plane. Thus, as long as we average over a large enough

number of configurations of initial charge, there is no preferred transverse direction.

So the 4 transverse momentum integrals reduce to 3 integrals2. When taking this into

consideration, the transverse spectrum of photons becomes:

dn

dy d2kT

=
α

EM

4(2π)4

∫

qT1 dqT1

2π

d2qT2

(2π)2

∫ 2ymax

−2ymax

dy2 (2ymax − |y2|)

× [2 1ΛqT1, qT2y2(k) + 2ΛqT1, qT2y2(k)] (4.37)

where α
EM

= e2

4π
is the electromagnetic constant and qT1 represents the magnitude of

the transverse momentum qT1.

1Since both the quark and antiquark rapidity vary between −ymax to ymax, the rapidity

sum/difference varies between −2ymax to 2ymax (hence the integration limits over rapidity in

Eq. (4.36)).
2The same reasoning also holds for the second term in Eq. (4.36), but as we argued above, this

simplification is not needed since there is an easier way to compute the contribution of this term.
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4.3 Numerical results

The parameters of the numerical model are, as in the case of quark production,

the quark mass m, the strong coupling constant g, the physical area of the system

πR2
A and the average density of charge fluctuations squared µ. On top of these, an

additional parameter is the electromagnetic constant α
EM

, whose only influence is

to rescale the photon spectrum. For the numerical simulations presented here we

take g = 2, α
EM

= 1
137

, πR2
A = 141 fm2, m = 0.3 GeV and µ = 0.5 GeV. Also, all

the results presented are computed for mid-rapidity photons (yγ = 0), unless stated

otherwise.

As for the quark pair production calculations, we consider a N2Nz = 1802 × 400

lattice with transverse lattice spacing a =

√

πR2
A

N2 , longitudinal lattice spacing az =

0.2 a and time step aτ = 0.02 a.

4.3.1 Numerical tests

In this section we analyze the dependence of the numerical results on different pa-

rameter values. In this case we plot all our results in lattice units since the important

part is to compare between different numerical results and not to compare with ex-

perimental data.

The first important test is the dependence of the numerical results on the transverse

lattice size. In Sec. 3.5.1, we observed that gluon multiplicity at high transverse

momentum is strongly dependent on the transverse lattice size (see Fig. 3.3). The

left panel in Fig. 4.2 shows a typical contribution to the photon spectrum for a given

pair of (qT1,qT2) initial fermionic transverse momenta. As expected, the spectrum at

high kT (photon transverse momentum) does depend on the transverse lattice size.

For a N2 = 180 transverse lattice, we expect to have lattice size distortions of the

spectrum only for momenta larger than 4 GeV (see left panel in Fig. 4.2). Thus we

limit our photon spectrum calculations to kT ≤ 4 GeV . We will discuss at length the

large single point peak later on.

Due to computational time limitations, we averaged the numerical results only
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Figure 4.2: Left: The 1Λ(k) term for different sizes of the transverse lattice. Right: The 1Λ(k)
term for different configurations of initial color charge. All results are averaged over 5 different
configurations of color charge. Two of the numerical results plotted in the right panel show only the
difference from the “standard” result (see text for additional details).

over 5 different configurations of initial color charge. To get an estimation of the

statistical error, we compared results for the same values of the parameters, but

averaged over different initial charge configurations (see the right panel in Fig. 4.2).

The numerical simulations show that by averaging only over 5 charge configurations

we have a statistical error around 10-15%. This can be seen from the right panel in

Fig. 4.2, where the relative differences between values of 1Λ(k) obtained for different

charge configurations are under 15%.

Comparing results for different parameter values can be tricky since the difference

is difficult to estimate from logarithmic scale plots with a wide vertical range. To

overcome this problem, we plot one of the results (which we call “standard”) while

for the rest we plot only the difference from the “standard” one. This type of plots

are denoted with a † symbol in the legend (see Figs. 4.3 and 4.4).

The numerical algorithm for the time evolution of the Dirac wavefunction (see Sec.

3.4.1) needs to store the two components Ψ± of the Dirac field at different time steps.

But Eqs. (4.31)-(4.32), which give the values of 1λ and 2λ and implicitly the photon

rate, are defined for Ψ± at the same time step. To overcome this problem we can

bring both Ψ± components to the same time step or we can take the time step aτ

small enough such that even though Ψ± are known at different steps, this does not

affect significantly the photon production rate. We choose the second option since it
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Figure 4.3: The 1Λ(k) term for different values of the time step size. † We plotted only the difference
from the “standard” result (see text for additional details).

minimizes both the memory requirements and the computational time. In Fig. 4.3 we

compare a typical 1Λ(k) contribution to the photon spectrum computed for different

time step sizes. We observe that even for aτ = 0.03a, the numerical error due to the

finite time step size is much smaller than other statistical and systematic errors (see

Figs. 4.2 and 4.4).

In Sec. 3.5.3, we obtained that the quark pair production amplitude does vary

quite strongly with the longitudinal lattice size and lattice spacing (especially for

small quark masses and small longitudinal lattice Nz
<∼ 400). We attributed this

problem to the oscillation of the longitudinal z integral on the integration boundaries

which are the two lattice endpoints. When computing the photon spectrum we have a

similar problem, since for example Eq. (4.31), when written in (τ, z,xT) coordinates,

it reads:

1λ
µ
q1, q2s2

(yγ,kT) =

∫

dτ

∫ z
M

−z
M

τdz√
τ 2 + z2

eikT (
√

τ2+z2 cosh yγ−z sinh yγ)

×
∫

d2xTe−ikT·xT Ψ̄(2)
q2,s2

(τ, z,xT)γµΨ(1)
q1

(τ, z,xT) (4.38)

where with yγ and kT we denoted the photon rapidity and transverse momentum

respectively. We expect the above expression to be a highly oscillatory function of

the longitudinal integration boundary zM . To overcome this problem, we compute

Eq. (4.38) for different limits of the z integration, after which we take an average of all
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these results1. The results presented here are an average over zM values from 3
4
zmax to

zmax (with 2zmax the longitudinal lattice extension). To be able to get a precise result

for Eq. (4.38) the averaging interval over zM has to have several periods of oscillation.

The variation of 1Λ(k) with the size2 of the longitudinal averaging interval is given in

the left panel in Fig. 4.4. From there we can see that different sizes for the averaging
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Figure 4.4: Left: The 1Λ(k) term for different limits of the averaging procedure for the longitudinal
spatial integral. Right: The 1Λ(k) term for different longitudinal lattice spacings. † We plotted only
the difference from the “standard” result (see text for additional details). ‡ Result obtained for a
longitudinal lattice size Nz = 600.

interval give results up to 10% different. This is expected since our longitudinal lattice

is not large enough for the averaging interval to contain several oscillation periods of

the function given in Eq. (4.38). This problem becomes less important as we study

larger quark masses, such that for m ≥ 1 GeV this difference becomes negligible.

This dependence of the result on lattice size can be removed by taking the continuum

limit of the numerical results.

We also studied the behavior of our numerical results on the longitudinal lattice

spacing az. From the right panel in Fig. 4.4 we observe that changing az results

in about 10% relative difference, but this is due to changing the maximum lattice

1This is the same method that was used for quark pair production computation. For more details

about the method see Sec. 3.5.2.
2We define the size of the longitudinal averaging interval as zmaximum

M − zminimum
M , where we always

take zmaximum
M = zmax. A larger value for “size” means we averaged over more longitudinal lattice

points.
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extension1. The discretization errors due to az are minimal as can be observed by

comparing the two lowest most curves in the right panel of Fig. 4.4. Both curves are

obtained for the same lattice extension zmax = 60a, but in one we have az = 0.3a and

Nz = 400 while in the other we have az = 0.2a and Nz = 600.
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Figure 4.5: Left: The dependence of the 1Λ(k) term on the quark rapidity y1 and antiquark rapidity
y2 when y1 + y2 = 0 . Right: The dependence of the 1Λ(k) term on the quark rapidity y1 and
antiquark rapidity y2 when y1 − y2 = 0

In Fig. 4.5 we have 1Λ(k) for different quark and antiquark rapidities. We see that,

up to numerical errors (compare to Fig. 4.8), 1Λ(k) is independent on the rapidity

difference between the quark and antiquark. But 1Λ(k) does depend on rapidity sum

of the quark rapidity y1 and antiquark rapidity y2, as can be seen in the right panel

in Fig. 4.5. A larger y1 + y2 value makes the spectrum smaller and flatter.

We observed that the second term in Eq. (4.36) gives a negligible contribution

to our numerical results. The 2Λ(k) term, for a given pair of transverse momenta

(qT1,qT2), has a similar contribution (in absolute value) to 1Λ(k) for the same trans-

verse momenta. But since the 2Λ(k) term can have both positive and negative values,

the sum 2ΛqT1, qT2
+ 2ΛqT1, −qT2

is more than 2 orders of magnitude smaller than just

2ΛqT1, qT2
(see the left panel in Fig. 4.6). Because of this reason, the contribution of

the second term in Eq. (4.36) can be neglected when compared to the contribution of

the first term (see the right panel in Fig. 4.6).

It may be that the second term in Eq. (4.36) brings no contribution at all to the

1Since in our implementation az is given as a function of the transverse lattice spacing, when changing

az we also change the longitudinal extension 2zmax of the lattice.
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Figure 4.6: Left: The upper curve gives 2Λ(k) for a given pair of transverse momenta (qT1,qT2). The
lower curves give the sum of two 2Λ(k) terms corresponding to the pairs (qT1,qT2) and (qT1,−qT2)
for different qT2. The sum of the two contributions is 2 orders of magnitude smaller than one of
the contributions. Right: Comparing the contributions to the photon rate given by the 1Λ(k) and

2Λ(k) terms for the same pairs of transverse momenta (qT1,qT2). The upper curve is 2(1ΛqT1, qT2
+

1ΛqT1, −qT2
) while the lower curves is 2ΛqT1, qT2

+ 2ΛqT1, −qT2
. The factor of 2 arises since 1Λ has

a twice as large contribution to the photon rate than 2Λ (see Eq. (4.36)).

photon production rate. This is the case if the vacuum of the theory is invariant

under charge conjugation1. The difficulty arises since the vacuum is not that of a

free theory due to the background gluonic field. Some of the Feynman diagrams

which give the resummed second diagram from Fig. 4.1 can be easily shown to be

identically 0. For example the second diagram from Fig. 4.1 with no gluon insertion

is 0 due to Furry’s theorem, the same diagram with one gluon insertion is 0 since its

contribution is proportional to Tr[ta] = 0 while the diagram with two gluon insertions

is again 0 since is proportional to 2 Tr[tatb] = δab times the QED tadpole diagram

(which is 0 due to Furry’s theorem). For some other diagrams, if it is indeed the case,

the calculations to show that they are 0 are more involved. And the rest of these

diagrams cannot be neglected since they also contribute to leading order. Numerically

we cannot show that the contribution of the second diagram in Fig. 4.1 is 0 since we

do not expect to have a precision higher than 2 decimal digits.

Fig. 4.7 shows the typical contributions to the photon spectrum given by different

fermion transverse momenta. The contributions vary on a wide range, with the

small transverse momenta having an individual contribution more than two orders of

1If the vacuum is invariant under charge conjugation, than according to Furry’s theorem, the second

diagram in Fig. 4.1 is 0.
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Figure 4.7: The 1Λ(k) contribution to the photon spectrum for different quark and antiquark initial
momenta. The curve are ordered in increasing fermion transverse momenta, such that the curve
labeled with 1 gives 1Λ(k) for small fermion transverse momenta while the curve labeled with 4 gives

1Λ(k) for large fermion transverse momenta.

magnitude larger than the one rising from large fermion transverse momenta.
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Figure 4.8: The 1Λ(k) contribution to the photon spectrum for different photon rapidities yγ .

Due to gluonic field boost invariance, we expect that the photon spectrum is

rapidity invariant. This is not automatically satisfied by our numerical code since we

use z as the longitudinal variable. Fig. 4.8 shows that indeed, up to numerical errors,

the photon spectrum does not depend on photon rapidity.

We still have to discuss about the peak structure in the function 1Λ(k) (see for

example Fig. 4.7). For a pair of fermion transverse momenta (qT1,qT2), the peak

is located at photon momentum kT = (qx1 + qx2, qy1 + qy2) and has a height 103 to
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105 times larger that the rest of the 1Λ(k) values. The peak is not a product of

the numerical calculations, but is given by the form of the initial condition for the

quark/antiquark wavefunction at τ = 0 (see Eq. (3.37)). Let us analyze this in more

details, to better understand what gives rise to the peak. Eq. (3.37) for a quark can

be schematically represented as:

Ψ(1)
q1

(τ = 0, z,xT) = [. . . ] eiqT·xT u(q) (4.39)

with a very similar expression for an antiquark. With [. . . ] we denoted a complicated

matrix structure whose exact expression is not important for a qualitative discussion.

At a later time τ , Ψ
(1)
q1 (τ, z,xT) will have a similar form as in Eq. (4.39), just that

the matrix denoted by [. . . ] will have another form due to time evolution. Now, when

computing 1λ defined in Eq. (4.31), we obtain:

1λ
µ
q1, q2s2

=

∫

d4x eik·x Ψ̄(2)
q2,s2

(x)γµΨ(1)
q1

(x)

∝
∫

d4x e−i(kT−qT1−qT2)·xT [. . . ](τ, z,xT) (4.40)

where in [. . . ](τ, z,xT) we incorporated all the terms that do not play an important

role in our qualitative analysis. We do not expect [. . . ](τ, z,xT) to have a strong

behavior on the transverse coordinate, so the above expression should have a large

peak at kT = qT1 + qT2. This peak is a smeared down delta function. Similarly,

when computing 2λ defined in Eq. (4.32), we obtain:

2λ
µ
q1

=

∫

d4x eik·x [Ψ̄(1)
q1

(x)γµΨ(1)
q1

(x)− Ψ̄(2)
q1

(x)γµΨ(2)
q1

(x)
]

∝
∫

d4x e−ikT·xT [. . . ](τ, z,xT) (4.41)

thus 2λ (and implicitly 2Λ) has a large peak only at kT = 0.

The kT = 0 peak in 2Λ can be dealt with easily, by not computing the spectrum at

kT = 0 . For 1Λ, since the peak shifts positions with qT1 + qT2, we have to develop

a procedure to compute the contribution of the peaks to the final photon rate. The

first step consists of reading the value of the peak, which is just the value of 1Λ(k) at

kT = qT1 + qT2 since the peak is several orders of magnitude higher than the rest of

the 1Λ(k) values.
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Figure 4.9: The dependence of the 1Λ(k) peaks on photon transverse momentum for a set of 140
different (qT1,qT2) pairs. The 1Λ(k) peaks plotted here are multiplied by Eq. (4.42) (see text for
details).

The next step is to identify what is the overall contribution of such a peak to the

final photon spectrum. For a given kT = 2π
Na

(nx, ny) with nx,y = −N
2

+1, . . . , N
2

there

are 4(N
2
− nx)(

N
2
− ny)

1 different (qT1,qT2) pairs that satisfy kT = qT1 + qT2. So

the total fraction of fermion transverse states that give a peak at kT = 2π
Na

(nx, ny) is

given by:
(

1

N

)4

4(
N

2
− nx)(

N

2
− ny). (4.42)

The contribution of the peaks to the photon spectrum is given by Eq. (4.42) multiplied

with the average value of the 1Λ peak height at kT. This contribution for a large

set of fermion transverse momenta is shown in Fig. 4.9. We see that for a given kT

value, the peaks heights vary by up to 2 orders of magnitude. Moreover we also see

a dependence of the peak heights on the photon transverse momentum, dependence

that will be analyzed in more detail in the next section.

4.3.2 Numerical results for photon spectrum

To compute the photon spectrum we have to sum 1Λ(k) over all the initial transverse

momenta of the quark and antiquark and integrate over the rapidity of one of the

1The equation n = n1 + n2 with n = −N
2 + 1, . . . , N

2 and n1,2 = −N
4 , . . . , N

4 has 2(N
2 − n) solutions

for n odd and 2(N
2 −n)+ 1 solutions for n even. To keep the notation simple we take that there are

only 2(N
2 − n) solutions.
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fermions. Hence we need to calculate a five dimensional integral (which reduces to

only a four dimensional integral if we take into consideration that the transverse

plane has no preferred direction - see Sec. 4.2.2). We choose to compute the five

dimensional integral using a Monte Carlo algorithm. We randomly generate a set of

transverse momenta and quark rapidity, and for each element in that set we compute

the contribution it brings to the photon spectrum. The final photon spectrum is given

by the average of the contributions given by each element in the set.
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-2
)
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Figure 4.10: The upper curve gives the 1Λ contribution to the photon spectrum of the first term
after removing the peaks. The lower curve gives a statistical error estimate for the Monte Carlo
method use to compute the multidimensional integral.

The result of the Monte Carlo method is independent on whether we compute the

photon spectrum using a five dimensional integral (see Eq. (4.36)) or using a four di-

mensional integral (see Eq. (4.37)). The only difference between the two cases consists

in the probability distribution that we use to generate the set of transverse momenta

and quark rapidity values. The probability distribution has to be proportional to the

density of states in the phase space (qT1,qT2, y2). This is straightforward to imple-

ment for the five dimensional integral, but more complicated for the four dimensional

integral case, thus we choose the first case. Due to an oversight, the results obtained

in this section are computed only for the fermion rapidity y2 = 0.
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Fig. 4.10 shows the photon spectrum obtained using a randomly generated set

of 140 (qT1,qT2) values. The statistical error due to the integration method was

estimated using a jackknife method. For a set of 140 values, the standard deviation

for the photon spectrum due only to the Monte Carlo integration method is around

15%, with slightly higher values for kT < 1 GeV. This error is similar to the one

obtained by averaging only over 5 different configurations of initial color charge.

10-3

10-2

10-1

100

101

 1  2  3  4  5  6

dN
 / 

dy
 d

2 k T
  (

G
eV

-2
)

kT (GeV)

1Λ peaks

exp( 1.5 - 1.1⋅kT )

Figure 4.11: The data points represent the contribution of the 1Λ peaks to the photon spectrum. The
curve represents an exponential fit of the data with the parameters given in the legend. Each data
point represents an average over 5 or more peak contributions at that given transverse momentum.
The error bars represent statistical errors computed using the jackknife method.

The results from Fig. 4.10 are not the only contribution to the photon spectrum.

The second contribution is given by the peaks in the first term of the photon rate

(see Eq. (4.37)). Since the peaks heights vary by more than 2 orders of magnitude

for a given kT photon momentum, we took an average of those values for each kT .

The results are shown in Fig. 4.11 where we see that the results are consistent with

an exponential decaying function on kT .

Fig. 4.12 shows the two contributions (the 1Λ term with the peaks removed and

the peaks) as well as their sum which gives the total photon spectrum. We see that

the two contributions are similar, with the peaks being the dominant contribution for

kT ≤ 1 GeV while the 1Λ term becomes dominant for kT ≥ 1.5 GeV. The numerical
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Figure 4.12: The total photon spectrum for quark mass m = 0.3 GeV and µ = 0.5 GeV at τ = 0.25
fm.

results from Fig. 4.12 correspond to 60 produced photons for kT ≤ 4 GeV, 40 of them

are given by the continuum spectrum of 1Λ and 20 by the peaks contribution.

The results presented in Fig. 4.12 are computed for quark rapidity y1 = 0 and

antiquark rapidity y2 = 0. From Fig. 4.5 we see that the 1Λ term is independent on

the y1−y2 value but does depend on the y1 +y2 value. When also taking into account

this dependence on y1 + y2, we expect that the total photon spectrum to be around

15% lower1.

4.4 Discussion and conclusion

In this section we showed that photon production for HIC in the CGC formalism is a

feasible task. Starting from a complicated general expression for the photon produc-

tion rate [39, 40], we simplified the equations using symmetries and properties of the

CGC and MV models. This is an important step since it reduces considerably the

1In the right panel in Fig. 4.5 we see that by going from y1 + y2 = 0 to y1 + y2 = 1 the amplitude of

the spectrum decreases by a factor of two. For a rough estimation we can take this decrease to be

linear with y1 + y2. When inserting this ansatz in Eq. (4.36), we obtain that the total spectrum is

17% lower than the one computed for y1 = y2 = 0 - spectrum shown in Fig. 4.12.
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computational time and resources. We continued by testing the numerical algorithm

for different parameters and lattice sizes. We observed that the main contribution

to the photon spectrum is given by the first Feynman diagram in Fig. 4.1, with the

second diagram suppressed by at least an order of magnitude, if not more. The con-

tribution of the first Feynman diagram can be split into a continuous spectrum plus

a prominent peak at kT = qT1 + qT2. Both give similar contributions to the final

photon spectrum, so we must compute both of them. We ended with the computation

of the total photon spectrum. Even though we have to compute a five dimensional in-

tegral using the Monte Carlo method, we obtain a relatively small standard deviation

(under 20%) for just 140 steps in the Monte Carlo integration method.

We do not expect our results to give a good description of experimental data due to

the very simple model that we used to describe the HIC. One of the major drawbacks

is given by the modeling of the transverse plane where we took the same charge

density squared everywhere. But in a real nucleus we expect the charge density

square to be the largest in the center and then to decrease as we go towards the

nucleus boundaries. In Sec. 2.2.3 we argued that the static color charge is given

by independent fluctuating charges. This means that the correlation 〈ρa(xT)ρb(yT)〉
(given in our simple model by Eq. (2.31)) needs to be proportional with the nucleus

thickness. Such a requirement raises another problem, since the fields in such a model

have long Coulomb tails outside the nuclei [27]. Physically this is not the case, since

due to confinement effects not included in our classical model, the gluonic fields should

decay at distances ∼ 1
Λ

QCD

. To solve this problem, Refs. [52, 53] propose to impose

color neutrality of the sources at a length scale of the order of a nucleon radius.

The small kT region (kT
<∼ 2 GeV) of the photon spectrum is dominated by thermal

photons [48]. Thus, to be able to compare our numerical results with experimental

data, we have to use larger transverse lattices, such that we compute the photon

spectrum up to higher kT momenta. Further improvements may also require the

expansion of the model for the color gauge field from 2+1 dimensions to the full 3+1

dimensions by dropping the boost invariance requirement.



5

Conclusion

In this thesis, we studied what are the predictions of the classical field model de-

veloped in [24, 25, 26] for quark and photon production in HIC. More specifically,

we modeled the first instants of AA collisions using a boost invariant classical field

theory in the framework of the CGC and MV formalisms. Both quark and photon

production are important observables in HIC, observables that allows us to discover

and understand new states of matter, like QGP. Photon production is especially an

useful observational tool, since compared to partons, photons, once created, have a

very small probability of interacting again. Thus photons are very good probes for

all the stages in HIC.

In Sec. 3 we independently verified the numerical results from [29, 30, 31] for

quark production in the CGC formalism. In doing so, we developed an iterative

method for solving the non-linear system of equations that gives the initial condition

for the gluonic field. We found this method to be much faster than typical simulated

annealing methods that were used before.

In Sec. 4 we started from the photon production rate in the CGC formalism

[39, 40]. The first step was a simplification of the expression using symmetries and

properties of the CGC and MV models. We found that from the two Feynman

diagrams included in our study, one has a much larger contribution than the other

one. The dominant diagram is given by a continuum spectrum with a large peak

superimposed on top. The continuum spectrum and the peak contributions have

similar values, hence both of them have to be included in the final photon spectrum

calculation. To the able to compare with experimental results, further improvements

94
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are needed like taking into consideration the dependence of the charge density squared

on position in the transverse plane.



A

Coordinates transformations and Dirac equation

This section serves as a short reminder of coordinate transformations and basic facts

about Dirac matrices and spinors. We start with a short overview of the most im-

portant coordinate systems in HIC physics, with emphasis on the coordinate trans-

formation rules for tensors. In the second part we present our convention for the

Dirac matrices, define some useful projection operators and analyze their action on

the Dirac field. We end this section with a short overview of Dirac spinors, where we

give explicit expressions for the quark and antiquark spinors for a general momentum

direction.

A.1 Coordinate transformations

Starting with the Cartesian coordinates (t, z,xT), described by the metric gµν =

diag(1,−1,−1,−1), we define light cone (LC) coordinates (x+, x−,xT), proper time

τ and space rapidity η (quantities which are very often used in HIC physics) via:

x± = 1√
2
(t± x) = 1√

2
τe±η

τ =
√

t2 − z2 =
√

x+x−

η = 1
2
ln
(

t+z
t−z

)

= 1
2
ln
(

x+

x−

)

(A.1)

relations which can be inverted to obtain:

t = 1√
2
(x+ + x−) = τ cosh η

z = 1√
2
(x+ − x−) = τ sinh η

(A.2)

During a coordinate transformation, the first rank tensors transform via:

Aµ′

=
∂xµ′

∂xµ
Aµ Aµ′ =

∂xµ

∂xµ′
Aµ (A.3)

96
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where µ denotes the tensor in the old coordinates and µ′ denotes the tensor in the

new coordinates. The above expressions give the transformation rules for a rank 1

tensor, but they can be very easily generalized to multiple rank tensors. For example

the metric, which is a rank 2 tensor, transforms as:

gµ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′
gµν . (A.4)

The above equation can be applied to find the metric in the other 3 coordinate systems

widely use in this thesis: (x+, x−,xT), (τ, η,xT) and (τ, z,xT). The easiest way to

do so is to start from Cartesian coordinates and use the relations defined in Eqs.

(A.1)-(A.2), to obtain:

gµν(x
+, x−,xT) =

















0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

















gµν(τ, η,xT) =

















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −τ 2

















gµν(τ, z,xT) =

















1 0 0 z
τ

0 −1 0 0

0 0 −1 0

z
τ

0 0 −1

















.

Another useful example is to see how the gauge field Aµ transforms from the

(τ, η,xT) coordinates to the (τ, z,xT) ones. Using Eqs. (A.1)-(A.3) we obtain:

Aτ = Aτ −
z

τ
√

τ 2 + z2
Aη (A.5)

Az =
1√

τ 2 + z2
Aη (A.6)

and with the Ax and Ay components remaining the same. In the above equations, on

the left hand side are the fields in the (τ, z,xT) coordinates and on the right hand

side the fields in the (τ, η,xT) coordinates.
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A.2 Dirac matrices

In this thesis we choose the γ matrices in the Weyl or chiral basis (the same as in [8])

which for the case of 3 spatial dimensions are given by:

γ0 =

















0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

















γ1 =

















0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

















γ2 =

















0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0

















γ3 =

















0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

















(A.7)

and which satisfy the relation:

{γµ, γν} = 2gµν . (A.8)

The above equation is the definition of the Dirac matrices. The matrix g is the metric

in Cartesian coordinates.

In HIC physics, the dynamics of the theory can be simplified using the projection

operators

P± =
1

2
(1± γ0γ3), (A.9)

whose explicit expressions in the chiral basis are given by:

P+ =

















0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

















P− =

















1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

















.

Using the definition in Eq. (A.9), it is easy to check that indeed the two matrices
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satisfy the properties of projection operators:

P±P± = P±

P∓P± = 0

P+ + P− = 1.

Moreover, using Eqs. (A.8)-(A.9), it can be shown that:

P± =
1

2
(1± γ0γ3) =

1√
2
γ0γ± =

1√
2
γ∓γ0 =

1

2
γ∓γ± (A.10)

where the LC Dirac matrices γ± are defined as:

γ± =
1√
2
(γ0 ± γ3). (A.11)

Another important aspect is the action of the projection operators on the Dirac

field. In the following we use the notation P±Ψ = Ψ±. In the chiral basis, the Ψ±

components of the Dirac field have each only two nonzero Dirac components. So the

Dirac field, in terms of Dirac components, is given by:

Ψ =

















Ψ1

Ψ2

Ψ3

Ψ4

















, with Ψ+ =

















0

Ψ2

Ψ3

0

















Ψ− =

















Ψ1

0

0

Ψ4

















. (A.12)

Another important property for the Ψ± components is given by:

γ0γ3Ψ± = ±Ψ± (A.13)

which can be shown to hold using Eq. (A.10) for any representation of the Dirac ma-

trices. This relation is necessary to obtain the Dirac equation for each Ψ± component

in the (τ, z,xT) coordinate system.

For the 1+1 dimensional case we chose the following basis for the Dirac matrices:

γ0 =





0 1

1 0



 γ3 =





0 −1

1 0



 . (A.14)



A.3 Dirac spinors 100

Now the projection matrices take the form:

P+ =





1 0

0 0



 P− =





0 0

0 1



 . (A.15)

Eq. (A.10) holds also for the 1+1 dimensional case.

The Dirac field in 1+1 dimensions has only two Dirac components. In the chiral

basis the two components are given by Ψ± such that:

Ψ =





Ψ+

Ψ−



 (A.16)

where in this case Ψ± are just color vectors.

A.3 Dirac spinors

In this section we follow the approach given in [8] and [51]. The plane wave solutions

of the Dirac equation are given by:

Ψ1(x) = e−ip·xu(p) (A.17)

Ψ2(x) = eip·xv(p) (A.18)

where Ψ1(x) is the positive energy solution and Ψ2(x) is the negative energy solution,

such that p0 > 0 for both equations. The above two wavefunction must be solutions

of the Dirac equation, hence they must satisfy:

(i6D −m)Ψ1,2(x) = 0. (A.19)

Taking the solution given in Eq. (A.17) and inserting it into Eq. (A.19) leads to:

(pµγ
µ −m)u(p) = 0 (A.20)

which can be evaluated most easily in the rest frame of the particle, i.e. when p = 0.

Now, the above equation reduces to:

(γ0 − 1)u(p0) = 0 (A.21)
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which has two solutions given by:

uα(p0) =
√

m





ξα

ξα



 ξ1 =





1

0



 ξ2 =





0

1



 (A.22)

where α=1,2 denotes the two possible solutions of Eq. (A.21). The two values of α

denote the two different spin orientations of fermions in 3 spatial dimensions. In the

expression for u(p) we choose a
√

m factor such that we satisfy the normalization

condition ūαuβ = 2mδαβ. The quantity uα(p0) denotes the Dirac spinor solution only

in the rest frame, i.e. p0 = (m, 0).

Similar calculations using Eq. (A.18) give:

(pµγµ + m)v(p) = 0 (A.23)

which in the rest frame of the particle give:

vα(p0) =
√

m





ηα

−ηα



 η1 =





1

0



 η2 =





0

1



 (A.24)

where again α= 1,2 and vα(p0) denotes the Dirac spinor solution in the rest frame

when p0 = (m, 0).

Once we have the Dirac spinor in the rest frame, by boosting we can obtain the

general solution in any frame. Using the approach given in [51], the general solutions

are given by:

uα(p) =
pµγ

µ + m
√

2m(m + E)
uα(p0) (A.25)

vα(p) =
−pµγ

µ + m
√

2m(m + E)
vα(p0). (A.26)

It is straightforward to check that the above satisfy Eq. (A.20) and Eq. (A.23) re-

spectively. This is obvious since (pµγ
µ + m)(pµγµ −m) = p2 −m2 = 0. Component
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wise, the above equations read:

u↑(p) =
1

√

2(m + E)

















m + E − pz

−(px + i py)

m + E + pz

px + i py

















u↓(q) =
1

√

2(m + E)

















−(px − i py)

m + E + pz

px − i py

m + E − pz

















v↓(q) =
1

√

2(m + E)

















m + E − pz

−(px + i py)

−(m + E + pz)

−(px + i py)

















v↑(q) =
1

√

2(m + E)

















−(px − i py)

m + E + pz

−(px − i py)

−(m + E − pz)

















where ↑ and ↓ denote the two spin orientations. Eqs. (A.25) and (A.26) are chosen

such that the following normalization conditions are satisfied:

ūαuβ = −v̄αvβ = 2mδαβ (A.27)

ūαvβ = −v̄αuβ = 0. (A.28)

In the case of only 1 spatial dimension, very similar calculations give:

u(p) =
1

2(m + E)





m + E + pz

m + E − pz



 =
√

m





e
1
2
y

e−
1
2
y



 (A.29)

v(p) =
1

2(m + E)





m + E + pz

−(m + E − pz)



 =
√

m





e
1
2
y

−e−
1
2
y



 . (A.30)

As can be seen from above, in 1 spatial dimensions the Dirac particles do not have

spins. As previously, the Dirac spinor are normalized such that:

ūu = −v̄v = 2m (A.31)

ūv = v̄u = 0. (A.32)



B

Additional numerical details

In the previous chapters about numerical simulations we included mostly details on

how to go from the analytical Dirac equation to a stable Dirac equation on the

lattice. In this chapter we focus mostly on the programming and algorithm details

necessary for writing a memory and time efficient code. We start by discussing the

initial condition which is complicated due to a transverse momentum integral for each

point of the three dimensional spatial lattice and also due to operations with 12× 12

matrices (for the special case of SU(3)). We continue in the next section with a more

in depth look at the linear system of equation that we have to solve to evolve the

Dirac field at each time step. We end by presenting the algorithm diagram for the

time evolution of the gauge and Dirac fields.

B.1 Implementation of the initial condition in 3+1 dimen-

sions

The initial condition for the 3+1 dimensions calculation given by Eq. (3.37) presents

several challenges. First, for each spatial lattice point there is a transverse momentum

integral. Computing these momentum integrals in the form given in Eq. (3.37) can be

very time consuming. Just by splitting the initial condition in the sum of a few term

which depend only on a Fourier transform in the transverse plane the code become

much faster, especially if one makes use of the FFTW libraries. Depending on the

size of the lattice, such a trick can decrease the computation time by over 100 times.

Moreover, when working within the SU(3) gauge theory, the Dirac field has 12 entries

103
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(4 from Dirac components times 3 from the color structure). So if one does not pay

attention to write Eq. (3.37) for each Dirac component, than one ends with operations

involving 12×12 matrices, which is very time and memory inefficient, especially since

most of the entries are 0.

In this section, for readability and simplicity in notation, we work with the contin-

uous form of the initial condition for the Dirac wavefunction. But when implementing

these details numerically, one has to pay attention to take into account the changes

that arise when going from the continuum to a discrete lattice. These changes are

presented in Sec. 3.4.3.

We start by splitting Eq. (3.37) in a sum of transverse Fourier transforms. First,

let us define the following quantities1:

1These functions do not have any physical meaning, they are just useful in computing efficiently the

initial values of the Dirac field.
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A1 =

∫

d2kT

(2π)2
e−ikT·xT (kx + qx)

eyq

ωq
U †

(1)(kT) exp

(

i
ω2

k+qe
yq(|z| − z)

2ωq

)

A2 =

∫

d2kT

(2π)2
e−ikT·xT (ky + qy)

eyq

ωq
U †

(1)(kT) exp

(

i
ω2

k+qe
yq(|z| − z)

2ωq

)

A3 =

∫

d2kT

(2π)2
e−ikT·xT (−m)

eyq

ωq
U †

(1)(kT) exp

(

i
ω2

k+qe
yq(|z| − z)

2ωq

)

C1 =

∫

d2kT

(2π)2
e−ikT·xT (kx + qx)U

†
(1)(kT)

1

ω2
k+q

[

exp

(

i
ω2

k+qe
yq(|z| − z)

2ωq

)

− 1

]

C2 =

∫

d2kT

(2π)2
e−ikT·xT (ky + qy)U

†
(1)(kT)

1

ω2
k+q

[

exp

(

i
ω2

k+qe
yq(|z| − z)

2ωq

)

− 1

]

C3 =

∫

d2kT

(2π)2
e−ikT·xT (−m)U †

(1)(kT)
1

ω2
k+q

[

exp

(

i
ω2

k+qe
yq(|z| − z)

2ωq

)

− 1

]

B1 =

∫

d2kT

(2π)2
e−ikT·xT (kx + qx)

e−yq

ωq

U †
(2)(kT) exp

(

i
ω2

k+qe
−yq(|z|+ z)

2ωq

)

B2 =

∫

d2kT

(2π)2
e−ikT·xT (ky + qy)

e−yq

ωq
U †

(2)(kT) exp

(

i
ω2

k+qe
−yq(|z|+ z)

2ωq

)

B3 =

∫

d2kT

(2π)2
e−ikT·xT (−m)

e−yq

ωq
U †

(2)(kT) exp

(

i
ω2

k+qe
−yq(|z|+ z)

2ωq

)

D1 =

∫

d2kT

(2π)2
e−ikT·xT (kx + qx)U

†
(2)(kT)

1

ω2
k+q

[

exp

(

i
ω2

k+qe
−yq(|z| + z)

2ωq

)

− 1

]

D2 =

∫

d2kT

(2π)2
e−ikT·xT (ky + qy)U

†
(2)(kT)

1

ω2
k+q

[

exp

(

i
ω2

k+qe
−yq(|z| + z)

2ωq

)

− 1

]

D3 =

∫

d2kT

(2π)2
e−ikT·xT (−m)U †

(2)(kT)
1

ω2
k+q

[

exp

(

i
ω2

k+qe
−yq(|z|+ z)

2ωq

)

− 1

]

where Ai, Bi, Ci and Di (with i = 1, 2, 3) represent functions that depend on the

position in coordinate space (i.e. (xT, z)). One must be careful since this functions are

3×3 matrices for the SU(3) case. These discrete functions can be computed relatively

fast using a Discrete Fourier Transform (DFT) library like FFTW. Moreover, at some

lattice points some of these functions are identically 0, so the computations can be

simplified even further. We have the following:

• For z < 0 we have |z|+ z = 0, hence Di = 0 and Bi takes a much simpler form.

• For z > 0 we have |z| − z = 0, hence Ci = 0 and Ai takes a much simpler form.
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with i=1,2,3. So for each lattice point on the z direction one has to compute only 9

two-dimensional Fourier transforms.

Using the notations given above, Eq. (3.37) reads:

Ψ(0,xT, z) =
{

P+U(1)(xT) (γ0γ1A1 + γ0γ2A2 + γ0A3)

+P−γ0[iγT · D̃T −m]U(1)(xT) (γ0γ1C1 + γ0γ2C2 + γ0C3)

+P−U(2)(xT) (γ0γ1B1 + γ0γ2B2 + γ0B3)

+ P+γ0[iγT · D̃T −m]U(2)(xT) (γ0γ1D1 + γ0γ2D2 + γ0D3)
}

× e−iqT·xT v(q) (B.1)

where D̃T denotes the transverse covariant derivative, such that it can be distin-

guished from the Di matrices. Eq. (B.1) suggests that we can define the following

quantities:

A1j = U(1)(xT) e−iqT·xT Aj

C1j = iD̃1

[

U(1)(xT) e−iqT·xT Cj

]

C2j = iD̃2

[

U(1)(xT) e−iqT·xT Cj

]

C3j = −mU(1)(xT) e−iqT·xT Cj

B1j = U(2)(xT) e−iqT·xT Bj

D1j = iD̃1

[

U(2)(xT) e−iqT·xT Dj

]

D2j = iD̃2

[

U(2)(xT) e−iqT·xT Dj

]

D3j = −mU(2)(xT) e−iqT·xT Dj

with j = 1, 2, 3. The above notations reduce Eq. (B.1) to:

Ψ(0, z,xT) =
{

P+(γ0γ1A11 + γ0γ2A12 + γ0A13)

+ P−(C11 − γ1γ2C12 − γ1C13 − γ2γ1C21 + C22 − γ2C23

+γ1C31 + γ2C32 + C33)

+ P−(γ0γ1B11 + γ0γ2B12 + γ0B13)

+ P+(D11 − γ1γ2D12 − γ1D13 − γ2γ1D21 + D22 − γ2D23

+ γ1D31 + γ2D32 + D33)
}

v(q) (B.2)



B.1 Implementation of the initial condition in 3+1 dimensions 107

where we used that γ0γ0 = 1, γ1γ1 = γ2γ2 = −1 and γ0γ1,2 = −γ1,2γ0. Now, using

the explicit expressions of the Dirac matrices given in Eq. (A.7), we can write the

Eq. (B.2) explicitly for all Dirac components of Ψ (components that we denoted with

0 to 3):

Ψ[0] = (C11 + C22 + C33 + i C12 − i C21) v[0]

+ (−B11 + i B12) v[1]

+ B13 v[2]

+ (−C13 + C31 + i C23 − i C32) v[3] (B.3)

Ψ[1] = (−A11 − i A12) v[0]

+ (D11 + D22 + D33 − i D12 + i D21) v[1]

+ (−D13 + D31 − i D23 + i D32) v[2]

+ A13 v[3] (B.4)

Ψ[2] = A13 v[0]

+ (D13 −D31 − i D23 + i D32) v[1]

+ (D11 + D22 + D33 + i D12 − i D21) v[2]

+ (A11 − i A12) v[3] (B.5)

Ψ[3] = (C13 − C31 + i C23 − i C32) v[0]

+ B13 v[1]

+ (B11 + i B12) v[2]

+ (C11 + C22 + C33 − i C12 + i C21) v[3] (B.6)

Now, in the last set of equations, we took explicitly into account the Dirac compo-

nent structure of the Dirac field. Actually doing the γ-matrices multiplications from

Eq. (B.2) inside the numerical code would be much more time consuming because

most of the entries in the γ-matrices are 0. When implementing numerically Eqs.

(B.3)-(B.6) is more efficient to remember that:

• For z < 0, Dij=0 (with i, j=1,2,3)
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• For z > 0, Cij=0 (with i, j=1,2,3)

In the following we present an algorithm diagram on how to implement the nu-

merical code which computes the initial values of the Dirac field.

• Compute U †
(1)(kT) and U †

(2)(kT) from U(1)(xT) and U(2)(xT).

• Compute U †
3,x(xT) and U †

3,y(xT) - these link matrices are need for the transverse

covariant derivative.

• For z = −zmax to 0 do:

{
⋆ Compute Ai(kT, z), Bi(kT, z) and Ci(kT, z).

⋆ Using a DFT library compute Ai(xT, z), Bi(xT, z) and Ci(xT, z).

⋆ Within a loop over the transverse spatial coordinates compute A1j, B1j and Cij

and than using Eqs. (B.3)-(B.6) compute Ψ.

}
• For z = 0 to zmax do:

{
⋆ Compute Ai(kT, z), Bi(kT, z) and Di(kT, z).

⋆ Using a DFT library compute Ai(xT, z), Bi(xT, z) and Di(xT, z).

⋆ Within a loop over the transverse spatial coordinates compute A1j, B1j and Dij

and than using Eqs. (B.3)-(B.6) compute Ψ.

}

B.2 Solving the LU system

In this section we present in more detail the entries of M and ξ matrices from

Eq. (3.66), whose solution gives the Dirac field at the new time step. The elements of

the M matrix given in Eq. (3.68) are the same for both the 1+1 and 3+1 dimensional
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cases. Using the left hand side of Eq. (3.62) to read the mij entries, we obtain:

m11 = 1± i
Φnaτ

τ
∓ 3

√
τ 2 + z2 ± z

2azτ
aτ

m12 = ±4

√
τ 2 + z2 ± z

2azτ
aτ (B.7)

m13 = ∓
√

τ 2 + z2 ± z

2azτ
aτ

...

mjj−1 = ∓
√

τ 2 + z2 ± z

2azτ
aτ

mjj = 1± i
Φnaτ

τ
(B.8)

mjj+1 = ±
√

τ 2 + z2 ± z

2azτ
aτ

...

mNN−2 = ±
√

τ 2 + z2 ± z

2azτ
aτ

mNN−1 = ∓4

√
τ 2 + z2 ± z

2azτ
aτ (B.9)

mNN = 1± i
Φnaτ

τ
± 3

√
τ 2 + z2 ± z

2azτ
aτ

with the convention that wherever there is a ± or ∓ sign, the upper one is for the Ψ+

component and the lower one is for the Ψ− component. Moreover, for each element

mij one has to take the value of z corresponding to the i-th lattice point in the z

direction (if one labels the z lattice points starting with 1 from the left most z lattice

point and increases the label to the right). The structure of the m1j and mNj entries

is different from the rest due to a different equation used to discretize the z-derivative

at the endpoints of the z lattice (see Eqs. (3.63)-(3.64)).

The M entries for the evolution of the Dirac field from τ = 0 to the first time step

are the same as those in Eqs. (B.7)-(B.9) if one replaces 2aτ with aτ .

For an efficient numerical implementation of the LU decomposition algorithm de-

scribed in Sec. 3.4.2 one should not define an M matrix with the above entries. One

should insert Eqs. (B.7)-(B.9) directly in the expressions of the L and U matrix

elements defined in Sec. 3.4.2.
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The elements of the ξ ≡ ξn matrix defined in Eq. (3.65) can also be read from

Eq. (3.62). In this case, the ξ matrix will have a different structure for the 3+1

dimensions than for 1+1 dimensions. In the following we give the ξ matrix for the

3+1 dimensional case; the one for 1+1 dimensions is obtained by dropping the term

with the transverse covariant derivative. Using Eq. (3.62) we obtain:

ξ1 = (1∓ i
Φnaτ

τ
)Ψ±;1

n−1 ∓
√

τ 2 + z2 ± z

2azτ
aτ (−3Ψ±;1

n−1 + 4Ψ±;2
n−1 −Ψ±;3

n−1)

−
√

τ 2 + z2 ± z

τ
2aτ γ0(γT ·DT + im)Ψ∓;1

n (B.10)

...

ξj = (1∓ i
Φnaτ

τ
)Ψ±;j

n−1 ∓
√

τ 2 + z2 ± z

2azτ
aτ (Ψ

±;j+1
n−1 −Ψ±;j−1

n−1 )

−
√

τ 2 + z2 ± z

τ
2aτ γ0(γT ·DT + im)Ψ∓;j

n (B.11)

...

ξN = (1∓ i
Φnaτ

τ
)Ψ±;N

n−1 ∓
√

τ 2 + z2 ± z

2azτ
aτ (3Ψ±;N

n−1 − 4Ψ±;N−1
n−1 + Ψ±;N−2

n−1 )

−
√

τ 2 + z2 ± z

τ
2aτ γ0(γT ·DT + im)Ψ∓;N

n (B.12)

where we used the same notations as for the entries of the M matrix given in Eqs.

(B.7)-(B.9). All the Dirac fields are defined at the same transverse lattice point which

was excluded to simplify notations. The upper and lower indices from Ψ± gives the

z and τ lattice points where to evaluate the Dirac field. To obtain the ξ entries for

the evolution from the initial condition to the first τ step one must replace in Eqs.

(B.10)-(B.12) 2aτ with aτ .

When implementing Eqs. (B.10)-(B.12) numerically it is important to observe

that only two of the Dirac components of the ξ matrix are nonzero for Ψ±. When

computing Ψ+ only the Dirac entries 2 and 3 are nonzero, while when computing Ψ−

only the Dirac entries 1 and 4 are nonzero.

Solving the linear system of equations which gives the new values of the Dirac

field at time step n + 1 is the bottleneck of our numerical code. This is because at

every time step we have to solve an implicit system of equations for all the points of
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the transverse lattice. Hence it is important to have a optimal implementation of the

algorithm, to minimize the running time. The algorithm diagram for one time step

resumes to the following:

• Decide which of the two components of the wavefunction to compute, Ψ− or Ψ+,

depending if the time step n is odd or even.

• The elements denoted with u of the upper diagonal matrix U (from M = LU) are

independent of the transverse lattice coordinate (with the exception of u3) - see Sec.

3.4.2. Thus compute ui with i = 1, .., N but i 6= 3.

• For all transverse lattice points do:

{
⋆ Compute the matrix entries u3, d−1

i and li with i = 1, .., N (see Sec. 3.4.2 for

the meaning of l and d).

⋆ Compute the entries of ξ for the Dirac component 1 (if solving for Ψ−) or 2 (if

solving for Ψ+).

⋆ Find the new entries of the Ψ field with Dirac component 1 (if solving for Ψ−)

or 2 (if solving for Ψ+).

⋆ Compute the entries of ξ for the Dirac component 4 (if solving for Ψ−) or 3 (if

solving for Ψ+).

⋆ Find the new entries of the Ψ field with Dirac component 4 (if solving for Ψ−)

or 3 (if solving for Ψ+).

}

B.3 Algorithm diagram for gauge and quark fields evolu-

tion

In this section we present the algorithm diagram for gauge and quark fields time

evolution as well as the necessary steps for quark and photon production. The time

evolution algorithm for the gauge and quark fields can be summarized as:

• Compute the initial conditions for the gluon field. This involves fixing the transverse

Coulomb gauge. We will present more details about this stage later on.
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• Compute the initial conditions for the Dirac wavefunction Ψ. See the end of Sec.

B.1 for a detailed description of this stage.

• Compute the gauge fields at the first time step using Eqs. (3.16)-(3.20). We first

evolve the Ei (with i = 1, 2) and π fields from τ = 0 to τ = aτ

2
using the Ui and φ

fields at τ = 0. Then using the Ei and π fields at τ = aτ

2
, we evolve the Ui and φ

fields from τ = 0 to τ = aτ
1.

• Evolve one of the Dirac field components, lets say Ψ− from τ = 0 to τ = aτ . The

other component of the wavefunction, Ψ+, is not evolved in time at this stage2. The

algorithm for finding the new values of Ψ− is presented at the end of Sec. B.2.

• For time step n=1 to N 3-1 do:

{
⋆ If n is odd than evolve the Ψ+ component of the Dirac field from time step n− 1

to n + 1. If n is even than evolve the Ψ− component of the Dirac field from time step

n− 1 to n + 1. Keep the other component of the Dirac field unchanged. See the end

of Sec. B.2 for the details of finding the new Ψ+ or Ψ− component.

⋆ Evolve the gauge field one more time step4. Take the Ei and π fields from time

step n− 1
2

to n + 1
2

using the Ui and φ fields at time step n. Take the Ui and φ fields

from time step n to n + 1 using the Ei and π fields at time step n + 1
2
.

}
• Bring both components Ψ± of the Dirac field to the same time step. Depending if

the total number of time steps N is odd or even, we must find Ψ+ or Ψ− at time step

N . We must use the same algorithm for finding the new value of Ψ+ or Ψ− as we

1Using the leapfrog algorithm one needs to know the fields at time step n and n+1 while the momenta

are computed at time steps n− 1
2 and n + 1

2 .
2In the algorithm for solving the Dirac equation described in Sec. 3.4.1 the two components of the

quark wavefunction Ψ± need to be known at different time steps. For example Ψ− is known at odd

time steps while Ψ+ is known at even time steps.
3With N we denote the total number of time steps.
4We evolve the gauge fields to the next step only after first evolving the Dirac field. This is because

at time step n we take one of the components Ψ± of the Dirac wavefunction from time step n − 1

to n + 1, for which we need the φ field at time n.
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used for the time evolution at the first step of the Dirac field.

The algorithm presented above is for only one given configuration of initial charge.

In the CGC and MV formalisms, one needs to average over many different configura-

tions of initial color charge, hence the above algorithm needs to be repeated for many

different configurations of initial color charge.

The algorithm for computing the initial condition for the gauge fields can be sum-

marized as:

• Generate the random distribution of color charges given by the MV model (see

Eq. (2.29) and Sec. 2.2.3).

• From the charge distribution generated above compute the link matrices U
(1)
i and

U
(2)
i for the two nuclei (with i = 1, 2 denoting the transverse directions). The link

matrices are given by Eq. (3.23)1.

• Find the link matrices in region (3) of the left panel in Fig. 3.1 at τ = 0. This

involves solving Eq. (3.21), which is done using the iterative method described in Sec.

3.2.

• Find the longitudinal field π at τ = 0 using Eq. (3.22).

• Fix the Coulomb gauge in the transverse direction. This is done using the Fourier

Acceleration (FA) method [54]2. Transform the gauge fields to the new gauge using

the gauge transformation rules given in Sec. 3.1.2.

For quark production, the gauge and quark field algorithm described above has

to be supplemented with a function that computes the quark production amplitude

using Eq. (3.77). This function has to be called after the evolution of the quark

wavefunction.

1Finding the link matrices involves solving the Poisson equation for 2 dimensions. It can be solved

numerically by first taking a Fourier transform to momentum space. This reduces the Poisson

equation to an algebraic equation which can easily be solved. Then we take the inverse Fourier

transform of the solution in momentum space, to obtain the solution of the Poisson equation in

coordinate space.
2For large transverse lattices (N2 >∼ 1002) FA is expected to be the fastest method for fixing the

transverse Coulomb gauge [55].
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For photon production, the algorithm is more complex than for quark production.

Since storing the quark wavefunction at all times is problematic1, the other option is to

evolve two quark/antiquark wavefunctions at the same time. Thus we need to modify

the quark wavefunction time evolution algorithm described in this section to evolve

in parallel two Dirac fields (Ψq1
and Ψq2

), task which is straightforward. Than, after

every two time steps2, one needs to compute the contribution to the photon spectrum

using Eqs. (4.31)-(4.32). This gives the photon spectrum contribution for a given

pair of initial fermions with momenta q1 and q2. The total spectrum is obtained by

summing over all such pairs of momenta3.

1The Dirac field for a 1802 × 400 lattice in single precision needs 1.2 GB of memory. To store the

quark wavefunction for 100 or more time steps requires more than 120 GB of storage space, which

slows the numerical code due to reading and writing operations on the hard drive.
2The contribution to the photon spectrum needs to be computed only every two time steps since

we modify only one of the Dirac field components at each time step, thus the Dirac field changes

completely only after two time steps.
3Since the process of summing over all the momenta pairs (q1, q2) needs a large computational time,

in practice we use a Monte Carlo method for approximating the momentum integral.
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