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Abstract

Outcome modeling can characterize the behavior of tissue response to a treatment based
on patient-specific multi-omics data (e.g. clinical information, demographics, dosimetric
profiles, radiomics, genomics, proteomics, and pathology) and predict probability of
outcomes of the patient under changing therapy conditions.

Ionizing radiation kills cells or inhibits the cell cycle mainly by damaging DNA in the
cell nucleus. Patient-specific radiation dose response may be influenced by inter-patient
variation in cell/nucleus size, since target size impacts microscopic descriptors of energy
deposition. The aim of this master’s thesis was to investigate the correlation between
microscopic influence of cell spacing and nuclei size, and gynecological cancer treatment
outcomes (i.e. post radiation therapy recurrence) directly.

Therefore, 1) a fully automated and generalizable method to extract patient-specific
nuclei size and cell spacing distributions from cancerous and non-tumoral regions of
diagnostic pre-treatment hematoxylin and eosin (H & E) stained digital histopathology
whole slide image for gynecological cancer patients was developed; 2) a model to predict
the binary clinical endpoint of post radiation therapy recurrence of gynecological cancer
patients using both aforementioned pre-treatment histopathology image features and
clinical variables (ex. age at diagnosis, clinical & radiological stage at the time of radiation,
p16 status, cancer type) was built upon data from 36 patients with a Tree-Based Pipeline
Optimization Tool automated machine learning approach. An Area Under the Receiver
Operating Characteristic Curve of Receiver Operating Characteristics score of 0.92 was
achieved for our model and an empirical p-value of 0.036 was obtained from the
permutation test (n = 1000). This implied first, real dependencies between our combined
imaging and clinical features and outcomes were learned by a decision-tree-based ML
classifier using an eXtreme gradient-boosting algorithm; and second, that the promising
model performance was not by chance.
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Résumé

La modélisation des résultats peut caractériser le comportement d’une réponse tissulaire à
un traitement qui est basé sur des données multi-omiques spécifiques au patient (par ex.
informations cliniques, démographie, profils dosimétriques, radiomique, génomique,
protéomique et pathologie). Elle peut aussi prédire la probabilité des résultats du patient
suite à une modification des conditions thérapeutiques.

Les rayonnements ionisants tuent les cellules ou inhibent le cycle cellulaire principalement
en endommageant l’ADN dans le noyau cellulaire. La réponse à la dose de rayonnement
spécifique au patient peut être influencée par la variabilité interpatients de la taille des cellules
ou des noyaux, puisque la taille de la cible a un impact sur les descripteurs microscopiques
du dépôt d’énergie. L’objectif de cette thèse de maîtrise est alors de directement examiner
la corrélation entre l’influence microscopique de l’espacement entre les cellules et la taille
des noyaux; et les résultats du traitement du cancer gynécologique (i.e. récurrence après la
radiothérapie).

Par conséquent, nous avons développé 1) une méthode entièrement automatisée et
généralisable pour extraire : la taille des noyaux et les distributions de l’espacement entre
les cellules, propres à chaque patiente. L’extraction des ces données est faite à partir
d’histopathologies numériques sur lames entières scannées (Whole-Slide Images - whole
slide image (WSI)), colorées à l’hématoxyline et à l’éosine (H & E), de régions cancéreuses
et non tumorales, obtenues de patientes atteintes d’un cancer gynécologique avant le début
du traitement; 2) un modèle pour prédire le critère d’évaluation clinique binaire de la
récidive après la radiothérapie (radiation therapy (RT)) des patientes atteintes d’un cancer
gynécologique, en utilisant à la fois les caractéristiques des images histopathologiques
susmentionnées et les variables cliniques (par ex. l’âge au moment du diagnostic, le stade
clinique & radiologique au moment de la radiothérapie, statut p16, type de cancer). Ce
modèle a été construit sur 36 patients suivant une approche basée sur le “Tree-Based
Pipeline Optimization Tool (TPOT)” “Automated Machine Learning (autoML)”. Un score
Area Under the Receiver Operating Characteristic Curve (AUC) de Receiver Operating
Characteristics (ROC) de 0,92 a été atteint pour notre modèle et une valeur p de 0,036 a
été obtenue à partir du test de permutation (n = 1000). Cela implique, premièrement, de
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réelles dépendances entre nos caractéristiques d’images et nos caractéristiques cliniques
combinées, et nos résultats appris par le classificateur. Et deuxièmement, que les
performances prometteuses du modèle n’étaient pas par hasard.
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1

Chapter 1

Introduction

1.1 Outcome prediction modelling: from the micro to
the macro

1.1.1 Motivation

Over 50% of all cancer patients receive radiotherapy during their cancer treatment [10].
Despite novel technology developments and improvement of treatment protocols in
radiotherapy including brachytherapy and combination of treatments with surgery or
chemotherapy, it remains clinically challenging to predict which patients will benefit from
which treatment combination. This challenge can be approached by taking advantage of
the enormous amounts of biological and digital information generated from each patient in
the modern radiotherapy healthcare system [11–25]. The fundamental attraction in
multimodal data integration for outcome prediction modelling lies in the augmentation of
information drawn from multiple image modalities compared to any individual modality
alone. This especially reveals promises when information contributed by each modality are
orthogonal (or uncorrelated) and complementary with one another at multiple scales, such
as radiological scans versus histopathology specimens to describe various tumor spatial
characteristics [26, 27]. Therefore, this motivates the overarching goal of developing a
patient-specific treatment outcome prediction model that can accurately predict optimal
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treatment combinations for gynecological (GYN) cancer patients using computed
tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) as well as cell
spacing & nuclei size distribution data obtained from digital histopathology images (Fig.
1.1).

Ionizing radiation kills cells or inhibits the cell cycle mainly by damaging DNA in the
cell nucleus. The dose received per nucleus correlates to dose response [28–30]. In
microdosimetry, the specific energy z varies with a frequency distribution determined by
the fluctuations in both the number of tracks passing the target (i.e. a cell or cell
nucleus-sized volume), and the energy deposition per track [31]. The size of cells and nuclei
depends on tissue type, cell cycle, and malignancy status, each of which differ between
patients. The variance in specific energy imparted per cell (i.e. dose per cell) to its nuclei
increases with decreasing cell size [28–30]. Thus, this varying target size distribution (i.e.
cell spacing / nuclei size distributions) may result in differing specific energy deposited
among tissues. Patient-specific radiation dose response may be influenced by inter-patient
variation in cell/nucleus size, since target size impacts microscopic descriptors of energy
deposition [32–34].

It is known that the magnitude of the microdosimetric spread may affect how the
microdosimetric properties of radiation qualities influence the outcome analysis of
biological assays, and it can be compared to uncertainties in macroscopic dose delivery in
radiotherapy [31]. However, current research lacks an understanding of the bridge between
microscopic level biological dose response to macroscopic level post radiation treatment
clinical outcome due to the variation of patient-specific cell / nuclei target size among
cancer patient population. This inspired our aim to evaluate the predictability of such
pre-treatment microscopic cell / nuclei target size data for post radiation outcomes on
retrospective data taken from patients diagnosed with gynecological cancers. Furthermore,
DeCunha et.al. [32] developed an algorithm to extract cell spacing and nuclei size
distributions from Hematoxylin and Eosin(H & E) histopathology Tissue Microarray
(TMA) images, which formed a basis of this work.

Traditional machine learning (ML) approaches are wildly sought after in predictive
modelling for clinical applications. Different machine learning algorithms can be developed
once the Machine Learning (ML) problem has been defined with a clinical outcome of
interest upon an understanding of the clinical context [35]. Once model performances on
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the medical dataset are compared using ML evaluation metrics, a best model is chosen for
a specific problem and reported [15, 36–41]. However, the process of manual data
pre-processing, feature engineering and selection, and hyperparameter fine tuning to
achieve optimal model performances are labour-extensive as many algorithmic choices are
available for each step. Furthermore, objectively selecting the best model is a delicate
process as many ML algorithms could be potentially applicable, and the well-known "no
free lunch" principle [42] suggests that there exists no "best" algorithm for all problems that
exist. In contrast, Automated Machine Learning (autoML) uses ML itself to automatically
construct candidates of data pre-processing pipelines, hyperparameter optimization, and
model building, evaluation, and selection, for a specified problem. This returns the best
pipeline, for a specified evaluation metric, considering a wide array of different
combinations of ML pipeline possibilities [43–51]. This, at the very least, can provide a
much more productive starting point for predictive modelling which can be adjusted
further with specific domain knowledge. Additionally, it leads to a data-driven model
building approach agnostic to dataset preprocessing and statistical model without making
an a priori assumption about statistical properties of the data.

Figure 1.1: Multimodal treatment outcome prediction model we aim to build in the
future. From both diagnostic images such at CT, magnetic resonance (MR), US, and
digital histopathological images, whose Region of Interest (ROI) is delineated by an
autosegmentation algorithm such as a U-Net [1, 2], extracted features can be fused and
fed into a outcome prediction model.
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1.1.2 Aim

In this work, we investigated how pre-treatment patient characteristics of various data
types (i.e. clinical data and imaging features) influence treatment efficacy as measured by
post-treatment response for gynecological patients. More specifically, with both statistical
analyses and a Tree-Based Pipeline Optimization Tool (TPOT) autoML approach, we
examined the microscopic influence of cell spacing (cs) and nuclei size (ns) data extracted
from Hematoxylin and Eosin(H & E) stained digital histopathological whole slide image
(WSI), as well as other pre-treatment clinical variables, on gynecological cancer treatment
outcomes (i.e. post radiation therapy (RT) recurrence at the time of the Follow Up (FU))
in radiotherapy (external radiotherapy and brachytherapy). This work may be used in the
future to bridge a gap between microscopic events during radiation, such as lineal energy
deposition in patient-specific cell / nuclei targets with varying size, to the macroscopic
patient clinical outcomes.

.

1.2 Preface and Contributions
The following are a list of oral / poster presentations based on the work of and within the
duration of this master’s thesis.

1. Yujing.Zou†*, M. Lecavalier-Barsoum, S.A. Enger, Treatment outcome Prediction for
gynecological cancers patients with a machine learning model using pre/post diagnostic
image modalities and digital histopathology images, CRUK RadNet Manchester AI for
Optimizing Radiotherapy Outcomes Workshop, VIRTUAL. February 10, 2021. 1 min
International Oral Presentation.

2. Yujing.Zou†*, M. Lecavalier-Barsoum, M. Pelmus, S.A. Enger, Deep Learning-Based
Patient-Specific Multimodality Treatment Outcome Prediction for Gynecological
Cancers using pre/post diagnostic image modalities and digital histopathology
images, Friday Morning Talk, McGill Medical Physics Unit, October 1, 2021, 17 min
Institutional Oral Presentation.

3. Yujing.Zou†*, Dr. Magali Lecavalier-Barsoum, Dr. Manuela Pelmus, Dr. Shirin A.
Enger, Investigation of cell spacing, and nuclei size distribution extracted from H &E
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histopathological Whole-Slide-Images for integration into a multimodality treatment
outcome prediction model for gynecological cancer patients, AQPMC Annual Scientific
Meeting, Dec 3rd, 2021, 15 min Provincial Oral Presentation.

4. Yujing.Zou†*, Magali Lecavalier-Barsoum, Manuela Pelmus, Farhad Maleki, Shirin
A. Enger, Deep Learning-based Patient-Specific Multimodality Treatment Outcome
Prediction for Gynecological Cancers, Lady Davis Institute Noon Seminar, Feb 11th,
2022, 20 min Oral Presentation.

5. Yujing.Zou†*, Luca L. Weishaupt, Shirin A. Enger, “McMedHacks: Deep learning for
medical image analysis workshops and Hackathon in radiation oncology”, proffered
paper, European Society for Radiotherapy and Oncology (ESTRO) conference, May
7th, 2022, International 10 min Oral Presentation [52].

6. Yujing.Zou†*, Magali Lecavalier-Barsoum, Manuela Pelmus, Farhad Maleki, Shirin A.
Enger, Predictive modeling of post radiation-therapy recurrence for gynecological
cancer patients using clinical and histopathology imaging features, May 21st, 2022,
Montreal, Canada, 10 min Oral Presentation, Friday Morning Talk (M.Sc. 2),
Montreal, Canada, May 20th, 2022).

7. Yujing.Zou†*, Magali Lecavalier-Barsoum, Manuela Pelmus, Farhad Maleki, Shirin A.
Enger, Predictive modeling of post radiation-therapy recurrence for gynecological
cancer patients using clinical and histopathology imaging features, Curietherapies
conference, Montreal, Canada, May 21st, 2022, 10 min Oral Presentation [53].

8. Yujing.Zou†*, Magali Lecavalier-Barsoum, Manuela Pelmus, Shirin A. Enger, Patient-
specific nuclei size and cell spacing distribution extraction from histopathology whole
slide images for treatment outcome prediction modeling, Celebration of Research and
Training in Oncology (CORTO) conference, June 21st, 2022, poster presentation.

9. Yujing.Zou†*, Magali Lecavalier-Barsoum, Manuela Pelmus, Shirin A. Enger,
Patient-specific nuclei size and cell spacing distribution extraction from
histopathology whole slide images for treatment outcome prediction modeling,
American Association of Physicists in Medicine (AAPM) conference, Washington,
DC, USA, July 10th - 14th, 2022 , poster presentation [54].

1.3 Outline

Chapter 1 is an introduction of the motivation and hypothesis of this work. Chapter 2
constitutes the background and literature reviews of the following concepts: 1) medical



1. Introduction 6

image analysis (particularly in digital histopathology), 2) gynecological cancer, 3) classical
versus automated machine learning algorithms, and 4) the applications of these approaches
in outcome prediction modelling in radiation oncology. Chapter 3 includes two
sub-sections that stem from three accepted conference abstracts that were presented at
American Association of Physicists in Medicine (AAPM) [54], Curietherapies [53], and
European Society for Radiotherapy & Oncology (ESTRO) [52] in 2022. Chapter 3.1
describes a methodology [54] to extract patient-specific nuclei size and cell spacing
distributions from pre-treatment gigapixel histopathology WSI for treatment outcome
prediction modeling, which was extended from work of DeCunha et.al. [55]. Then we report
results on outcome prediction modelling of post radiation therapy (RT) recurrence for
thirty-six gynecological cancer patients, using both pre-treatment histopathology imaging
features (i.e. patient-specific cell and nuclei size distributions) and clinical variables (ie.,
age at diagnosis, clinical & radiological stage at the time of radiation, p16 status, cancer
type) [53], with a TPOT autoML [49] approach. Chapter 4 discusses the merits and
limitations of the current work and suggests future directions for each sub-chapter of
chapter 3 such as implementation of a Deep Learning (DL)-based auto-segmentation
algorithm to delineate cancerous regions of the histopathology WSI, and curation of more
external patient data from multiple institutions. Chapter 5 concludes this master’s thesis.

1.4 Contributions of Authors

Authors: Yujing Zou1, Magali Lecavalier-Barsoum2, Manuela Pelmus3, Farhad Maleki4,
Shirin Abbasinejad Enger1,3,5,6

1 Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University,
Montreal, Quebec, Canada

2Department of Radiation Oncology, Jewish General Hospital, Montreal, QC, Canada
3 Department of Pathology, Faculty of Medicine, McGill University, Montreal, Quebec,

Canada
4Department of Radiology, The Research Institute of the McGill University Health

Centre, McGill University, Montreal, QC, Canada
5,6Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal,
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Quebec, Canada
Contributions: Dr. Shirin Abbasinejad Enger proposed, investigated, and supervised

this research. Yujing Zou investigated, introduced the methodology and analysed the
results for all chapters. Dr. Magali Lecavalier-Barsoum selected the gynecological cancer
patients included in the study, collected the clinical variables, and offered invaluable
clinical knowledge. Dr. Manuela Pelmus retrieved the histopathology whole slide images,
examined, selected the slide, and quality assured the cancerous region delineation. Dr.
Farhad Maleki provided machine learning related discussions.
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Chapter 2

Theory & Literature Review

2.1 Medical image analysis: digital histopathology

WSI

2.1.1 H & E histopathology WSI vs. TMA

Histopathology image slides, which relies on visual interpretation of cellular biology

captured in images, serves as the "gold standard" in diagnosis of cancer [4]. Routine cancer

diagnostics adopts digital pathology as a mainstream option the WSI work-up, cutting,

staining, scanning of histopathology WSI at the local pathology department. This process

also preserves the underlying tissue architecture with disease characteristics which can be

analyzed digitally at various resolutions [56]. It offers tremendous opportunities in

computational pathology (CPath) image analysis research.

During pathology tissue processing for the cancer diagnosis purposes, a fresh cancerous

tissue specimen is placed in a liquid fixing agent such as formalin hardening to preserve the

tissue. Following tissue specimen dehydration and clearing, it is infiltrated by paraffin wax

and formed into a paraffin block. A microtome is used for section cutting of the paraffin
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block onto glass slides, each with thickness around 4 microns. The slides are then stained

with Hematoxylin and Eosin (H & E) stain, the gold standard in cancer diagnosis with

histopathology, which is the combination of two histological stains: hematoxylin and eosin.

The Hematoxylin stains cell nuclei blue, and Eosin stains cytoplasm and connective tissue

pink, combinations of these colors can be taken on by different shades, hues, and

combinations of these colors. [4, 57–61].

On the other hand, Tissue Microarray TMAs are paraffin blocks produced by extracting

cylindrical tissue cores from different paraffin donor blocks and re-embedding these into a

single recipient (microarray) block at defined array coordinates. Using this technique, up

to 1000 or more tissue samples can be arrayed into a single paraffin block [62]. It is a very

effective approach for high-throughput molecular analysis of pathological tissues supporting

the identification of new potential diagnostic and prognostic markers in human cancers.

However, at the individual patient level, TMAs remain a research tool and are not used as a

diagnostic/prognostic tool. Careful evaluation of the staining characteristics of the selected

marker in whole tissue sections will be required to migrate promising predictive marker assays

from TMAs into routine clinical use with development of precise quantification or analytical

measurement approaches [63], [62]. Since a digitized TMA tissue sample is one of the 1000

tissue samples in a single paraffin block (Fig. 2.1), and a WSI is the entire tissue cut, there is a

sizeable difference between the digitized image dimensions for the two modalities as presented

in Fig. 2.2. For example, in the work of DeCunha et.al. [32] that developed an algorithm

to extract cell spacing and nuclei size distributions from H & E histopathology TMA, the

TMA image dimension was 7500 pixel by 7500 pixel. Whereas digital histopathology WSI

used in this thesis were gigapixel with a dimension of 50,000 by 70,000 pixels, which were

clinically used for diagnosis. However, this also foreshadows the computation expense digital

histopathology WSI requires. This limitation opened opportunities for novel and innovative

approaches to conquer this issue [64], as well as taking advantage of such large amount

of personalized data to build DL-based segmentation algorithms [45, 65–75] and outcome
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prediction models [76–84].

Figure 2.1: An example of tissue microarray, image extracted from [3].

Figure 2.2: Pyramidal shaped data structure of histopathology whole slide images in the
.svs file format. In this data format, there are usually four levels with various downsampling
factor of the original highest magnification (40 x) in our case. In this thesis, the baseline
(largest) resolution was used as circled in yellow. Meta files other than the digital pathology
image itself are also associated such as an image of the macro view of the pathology glass
slide, as well as the thumbnail of the slide.

https://www.origene.com/products/tissues/tma
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2.1.2 Gynecologic cancer

Among women, nine percent of all female cancers worldwide were due to gynecologic

malignancies [85]. Gynecologic malignant tumors come from reproductive organs such as

ovaries, uterus, vagina vulva, and cervix in women [86, 87]. Its incidence rate is the highest

in Asia, followed by Africa, Europe, Latin America, North America, reported by the World

Health Organization [86]. While being among the most prevalent cancer occurring to

women, they are heterogeneous diseases requiring various management paradigms [88] and

are related to primary cancers from another site such as the breast, stomach, colon, and

thyroid [89]. Cervical cancer incidence and mortality can be dramatically reduced via

cancer screening human papillomavirus (HPV) vaccination, since with early detection and

treatment, gynecologic cancers mediated by HPV are curable and preventable [88]. Very

often, RT is used together with systemic therapy and surgery to improve locoregional

control and extend overall survival for gynecologic cancer patients. However, RT itself can

be curative for some cancers [88]. Especially, brachytherapy treatment techniques and new

highly conformal External Beam Radiation Therapy (EBRT) have resulted in impressive

recurrence and patient morbidity and mortality reduction [90]. Nonetheless, pelvic

radiation delivered to gynecologic patients may lead to toxicity due to its unique

anatomical locations, in addition to concurrent chemotherapy and/or surgery, and possible

surgical interventions [90].

2.1.3 Immunohistochemistry and the p16 surrogate marker

Immunohistochemisty (IHC) links between immunology and pathology.

Immunohistochemical staining can visualize epitopes in situ in histological tissue

sections [91]. Grosset et.al. [92] recommended the combination of the the H & E-IHC

protocol for improved diagnostic precision in the clinic as they were the first to show a

potential in using hematoxylin counterstaining for immunohistochemistry interpretation.
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In gynecologic pathology, p16 is an extensively studied biomarker [93], and

immunohistochemistry (IHC) with p16 antibodies is used as a diagnostic tool [94]. In

practice, p16 positive slides are used as positive controls for IHC staining using an anti-P16

antibody [95]. Furthermore, as an adjunct to morphologic assessment of cervical biopsies,

to diagnose high-grade squamous intraepithelial lesion and its mimics, the p16 IHC has also

been increasingly used. Yang et.al. [96] demonstrated the potential of better detection and

upgrading of HSIL in patients who had a prior cytologic diagnosis with the use of p16 IHC.

These evidence lead to application to our research that the cancerous regions of a H & E

histopathology WSI is discerned with a reference of p16 positive IHC slides based on its

p16 expression stained in brown. High-risk HPV’s presence can be indicated by p16 diffuse

positivity in the cervix as a surrogate marker [93]. This is because p16, or the p16 protein,

has an important role in carcinogenesis [97]. Its loss is a critical event occurring early in

tumor progression [98]. This is suggested by its its frequent mutations and deletions in

human cancer cell lines [97] occuring early in many human cancers [98]. It is an inhibitor of

cyclin-dependent kinases CDK4 and CDK6 as a cell cycle regulator [98], which gives rise to

cell cycle arrest in epithelial cells undergoing cellular differentiation. The p16 is expressed

excessively during the transforming HPV infection as a response to a transforming

infection by high-risk HPV with oncogenic protein E7 overexpression [99]. This is why p16

diffuse positivity is a surrogate marker for high-risk HPV in gynecologic pathology [93, 99].

Therefore, in our work, p16 IHC stained slides were used as a guide to recognize

corresponding cancerous regions on the H & E histopathology slide for the same slide.

The relationship between HPV status as expressed by the p16 surrogate marker on IHC

slides with prognosis clinical outcome has been surveyed over the years. For example,

enhanced prognosis was observed in p16-positive or HPV positive vaginal cancer patients

as opposed to HPV negative or p16-negative patients [100]. Lee et.al. [101] investigated

p16 status’s prognostic impact on women with vulvar squamous cell carcinoma (SCC)

treated with RT and found that those with a p16-positive status had a lower in-field
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recurrence (IFR) and extended survival than their p16-negative counterparts. Similarly,

p16-positivity is related to fewer in-field relapses and improved progression-free survival in

patients with vulvar cancer treated with adjuvant RT as shown by [102]. In addition,

improved survival was also observed in p16-positive vaginal cancers across all tumor stages

by [103]. Allo et.al. addressed the association between significantly worse prognosis in

HPV independent vulvar squamous cell carcinoma compared to those that are HPV- or

p16-positive. Favourable prognosis in cervical cancer patients may be predicted by p16

expression demonstrated by [104].

2.1.4 Nuclei size and cell spacing quantification and effects of

radiation on cell nuclei targets

Ionizing radiation occurs when adequate kinetic energy is possessed by the radiation to

eject one or more orbital electrons from the atom or molecule, which provokes physical and

chemical processes. In directly ionizing radiation, individual particles with sufficient kinetic

energy can directly disrupt the atomic structure of the absorbing medium through which

they pass producing chemical and biological damage to molecules [105].

Radiation damages biologically important macromolecules such as the DNA. Free radicals

and consequent molecular damage can be produced through direct and indirect actions from

both electromagnetic and particulate radiations upon acting on cells [105,106]. For indirect

effects, water of an organism may absorb photons causing ionization and excitation in the

water molecules. On the other hand for direct effects, the energy of ionizing radiation can

be directly deposited in a macromolecule such as the DNA resulting in cell killing. There

must be enough energy deposited in the DNA to cause sufficient number of double-strand

breaks for a cell to be killed. It occurs by direct ionization of DNA moieties and reactions of

hydroxyl radicals formed by water radiolysis [106–108]. In radiotherapy, DNA is the principal

target for the biological effects of ionizing radiation, such as carcinogenesis, cell killing, and
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mutations. This is because DNA is present in only two copies, it therefore has very limited

turnover. It is central to all cellular functions and is the largest molecule thus providing the

biggest target. Furthermore, most DNA content is located in the cell nucleus. Since the

intent of radiotherapy is to damage the DNA, the radiation dose to cell nuclei affects dose

response [106–108].

Absorbed dose at a macroscopic level, is the average of the imparted energy per mass

of the target volume [109]. The microscopic equivalent of absorbed dose is specific energy

defined as the total energy imparted in a (small) volume of interest divided by the mass

of that volume [110, 111]. In other words, the average of the stochastic quantity energy

ε imparted per mass m at a point of interest defines the absorbed dose (D) [112]. The

specific energy (z) is the microdosimetric equivalent to D, which is the direct quotient of

ε divided by m [111]. However, molecular consequences of energy deposition of ionizing

radiation encompassing stochastic events cannot be sufficiently described by an average

effect to understand the cellular radiation dose response [113–115].

Individual cell nuclei of varying sizes do not necessarily receive a specific energy that

is equal to absorbed dose D due to the presence of the microdosimetric spread. It is the

standard deviation of dose dependent frequency distribution of specific energy for a group

of cells or cell nuclei exposed to the macroscopic absorbed dose. The stochasticity of energy

deposition leads to varying z, with a frequency distribution determined by the fluctuations

in both the number of tracks passing the target, and the energy deposition per track, for

a cell or cell nucleus-sized volume [116]. Its standard deviation (std) remarks a measure of

the microdosimetric spread over a group of cells or cell nuclei. A microdosimetric spread

in energy depositions for cell or cell nucleus-sized volumes can be induced by the stochastic

nature of ionizing radiation interactions. When the target size decreases or when the energy

of the radiation quality is reduced, the magnitude of the microdosimetric spread increases,

as shown by Villegas et.al. [31]. Inter-patient variation in cell/nuclei target size variability

leads to difference in energy deposition microscopic descriptors, which may result in patient-
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specific radiation dose response variation [28–30,113].

Investigations on the direct impact of the microscopic level nuclei or cell target sizes to

macroscopic post treatment outcomes for patients who underwent radiation therapy

treatments is rare. Except the establishment that the morphology of tumor cell nuclei

being significantly related with survival time of glioblastoma patients by Nafe et.al. [117],

which supported the outlook of histomorphometry of tumor cell nuclei being a valueable

prognostic marker for glioblastoma patients. However, sizes of tumor and outcome had

been investigated by a few. Takahashi et.al. [118] found a correlation between the size of

pancreatic cancer pathologic stage and overall survival. The continuous tumor-size–based

end points as overall survival surrogates in randomized clinical trials were evaluated in

metastatic colorectal cancer [119]. Erdogu et. al. also explored the correlation between

outcomes of T4 non-small cell lung cancer patients and tumor size greater than 7 cm [120].

2.1.5 Graph-based image analysis

Delaunay triangulation [121] is a set of triangles made from a discrete set of vertices such

that no vertex lies inside the circumcircle of any triangle in the set as shown in Fig. ??. A

Voronoi diagram partitions the 2D plane such that the boundary lines are equidistant from

neighboring points giving rise to Voronoi cells [122] as illustrated in Fig. 2.3. Several studies

have used Voronoi diagrams for their cell segmentation applications, nuclei are treated as a

vertex of a Delaunay triangulation [4,32,123,124] as shown in Fig. 2.5. For example, Sudbo

et.al. [125] extracted the Voronoi features from the H & E digital histopathology slides and

investigated the correlation between the Voronoi features in kidney cancer H & E stained

slides and tumor growth parameters. Then, the authors also explored the prognostic value

of such Voronoi features in slides obtained from prostate and cervical cancer patients and

were able to distinguish good and poor outcomes [122].

Variables were scored based on their correlation with the discrete target variable with the
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(a) Delaunay triangulation analogy in
facial recognition applications (b) Voronoi diagram analogy

Figure 2.3: Delaunay triangulation and Voronoi diagram analogy

Figure 2.4: How Voronoi diagrams are constructed from Delaunay triangulation

Figure 2.5: How Delaunay triangulations are constructed in histopathology images [4]
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metrics of information gain (i.e.the expected amount of information (reduction of entropy)),

gain ratio (i.e.,a ratio of the information gain and the attribute’s intrinsic information, which

reduces the bias towards multivalued features that occurs in information distribution gain),

Gini (i.e. the inequality among values of a frequency ), Chi-square (i.e. dependence between

the feature and the class as measured by the chi-square statistic), ReliefF (i.e. the ability of

an attribute to distinguish between classes on similar data instances), and Fast Correlation

Based Filter (FCBF) (i.e. entropy-based measure, which also identifies redundancy due to

pairwise correlations between features) [126] (Fig. 3.16).

2.2 autoML applications in outcome modelling

Automated Machine Learning (autoML) uses ML itself to automatically construct

candidates of data pre-processing pipelines, hyperparameter optimization, and model

building, evaluation, and selection, for a specified problem, which returns the best pipeline,

for a specified evaluation metric, considering a wide array of different combinations of ML

pipeline possibilities [43–51]. This, at the very least, can provide a much more productive

starting point for predictive modelling which can be adjusted further with specific domain

knowledge. Additionally, it leads to a data-driven model building approach agnostic to

dataset preprocessing and statistical model without making an a priori assumption about

statistical properties of the data. Instead of experimenting with many choices of data

pre-processing, feature engineering, and hyperparamter tuning in classical ML, the TPOT

autoML approach developed by Olson et.al. [48] does this automatically. With genetic

programming, a number of operators such as preprocessing approaches, ML models, and

their associated hyperparameters, are set to evolve iteratively untill the best pipeline with

the highest user-defined evaluation metric is found.

Mustafa et.al. reviewed various autoML librarires such as autoSklearn, TPOT (used in

this research), H2O, autoPrognosis as well as their pros and cons [127–129]. Dafflon et.
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al. [51] evaluated a TPOT autoML approach to predict brain age from cortical anatomical

measures. Meanwhile, autoML has also been used for the field of Radiomics. Su et. al. used

autoML to perform radiomics feature selection to understand the feasibility of predicting H3

K27M mutation status.
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Chapter 3

Predictive modelling of post RT

recurrence for GYN cancer patients

3.1 Methods

To build a prediction model for post RT recurrence, we focused on obtaining patient-specific
clinical variables at the time of diagnosis and RT described in section 3.1.1, and a method
to extract patient-specific ns and cs distributions from pre-treatment H & E histopathology
WSIs in section 3.1.

3.1.1 Patient cohort characteristics and data curation

Thirty-six gynecological (i.e., cervix, vaginal, and vulva) cancer patients (median age at
diagnosis = 59.5 years) with a median follow-up time of 25.7 months were included into the
current study. Nine of these patients (event rate of 25 %) experienced post RT recurrence at
the time of the FU, the clinical outcome endpoint of interest. Two types of patient-specific
data were computed and collected for each patient: H &E histopathology whole slide images
and clinical information from the Jewish General Hospital ARIA database, respectively.

Once a list of diagnosed gynecological cancer patient cases were identified to be included
in the study by our radiation oncologist, it was sent to the Pathology department for retrieval
of the pre-treatment slides from the archives. A retrieval slip was filled and recorded for each
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case taken out of their archival box. Then, the slides were put in a new box with a divider
separating each case. The pathologist analyzed the slides under a microscope and selected an
H & E (hematoxylin and eosin stain) and p16 (immunohistochemistry stain) slide from each
case for digital scanning (slice thickness around 4 microns). Since multiple sections can be
cut for a cancerous tissue specimen paraffin wax resulting in various H & E WSIs belonging
to the same patient, only the most representative (i.e., a slide with the most tissue coverage)
was used for analysis upon visual inspection by our pathologist. Only slides expressing p16
(either positive or negative) were considered. All the selected slides were arranged on a tray
and sent with a hard drive for digital scanning into .svs whole slide image files that were
later viewed in the Aperio ImageScope ( [130,131]) software.

Furthermore, clinical variables were collected by our radiation oncologist for each
patient. Clinical information retrieved from the Electronic Health Record (EHR) include
age at diagnosis, time of diagnosis, total treatment time, time to recurrence (days), time to
death (days), cancer type, follow up time length, clinical stage at time of radiation,
radiological stage at time of radiation, histology (i.e., Squamous Cell Carcinoma (SCC) or
Adenocarcinoma (Adeno)), and existence of post RT recurrence, among which whether the
recurrence is locoregional or distant was distinctively collected as well. Lastly, the
treatment modality (i.e., EBRT, brachytherapy, and concurrent chemotherapy) and the
radiation dosimetry given by EBRT, and brachytherapy were also recorded. A summary of
all clinical variables collected and their definitions can be found in Table 3.1.

3.1.1.1 Nuclei Size & Cell Spacing Distribution Extraction from pre-Treatment
Histopathology Whole Slide Images (WSI)

Patient-specific nuclei size and cell spacing distributions were extracted from each selected
digital histopathology WSI for downstream treatment outcome prediction modeling. Shown
in Fig. 3.1, we depicted an example of a gigapixel digital H & E histopathological WSI with
dimension of 50668 by 27888 pixels, retrieved in the .svs format from Aperio ImageScope [7],
anonymized by being converted to .npy arrays using the OpenSlide [5, 6] library.

Tumor locations on the H & E stained WSI was confirmed by the p16 stained WSI.
Cancer cells were identifiable from a large nucleus to cytoplasm ratio and a dark nucleus
that contain multiple nucleoli. Another indication of tumour cells is lymphocytes located on
the tumour site. They were shown under the microscope as small dark blue dots. There were
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three tumour grades: well-differentiated, moderately differentiated and poorly differentiated.
Keratin pearls (pink, concentric spots) were found in well-differentiated and moderately
differentiated tumours. H & E staining is a combination of both the hematoxylin stain
and the eosin stain. Hematoxylin stains cell nuclei blue, while eosin stains cytoplasm and
connective tissue pink. The expression of p16 in tumour cells was shown by their brown
stain, while non-tumoral tissue with pale blue. Thus, tumour regions on the H & E WSI
slide were identified using the p16 stained WSI slide, if positive, as a reference. Quality
assured by our pathologist, cancerous regions were contoured on the Hematoxylin and Eosin
(H and E) stained WSI in the Aperio ImageScope software [7]. The contours were saved as
.xml files, which were then converted into a WSI binary mask.

Each gigapixel H & E WSI digitized at 40 x magnification (0.2482 microns/pixel) was
divided into 5000 x 5000-pixel patches as shown in Fig. 3.1 b. Each 5000 by 5000 pixel
patch from the H & E stained WSI and its binary mask with the same location indices on
the WSI were then loaded into memory and processed iteratively. Within each patch, a
Gaussian denoising filter was applied to the cyan channel of the RGB H & E patch, from
which the blob detection algorithm found the nuclei center. A Delaunay triangulation from
each continuously connected masked region of the patch were constructed (Fig. 3.3), giving
rise to Voronoi diagrams (Fig. 3.4). A cell spacing radius was then approximated by the
radius of a circle whose area was equivalent to a cell from the Voronoi diagram [4,32,132–134].
Similarly, a nucleus size radius was approximated as the radius of a circle whose area was
the equivalent of a circle of combined stained area pixels dominated by hematoxylin content
with an automatic thresholding algorithm [32] (Fig. 3.1 c).

Subsequently, cell spacing and nuclei size radii computed were stored into a vector for
non-tumoral / cancerous regions for each patch as shown in Fig. 3.1 d. Then, non-tumoral
/ cancerous cell spacing and nuclei size distribution vectors at each patch level were
concatenated into a WSI level non-tumoral / cancerous cell spacing and nuclei size
distribution vector, as shown in Fig. 3.1 e.

With multiprocessing Central Processing Unit (CPU)s on a personal computer for each
WSI per-patient, eight distribution feature types were calculated: the mean and standard
deviation, of cell spacing and nuclei size distributions concatenated from all patches for
cancerous and non-tumoral regions. A summary and definitions of these eight extracted
imaging features can be found in Table 3.1.
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Figure 3.1: Methodology workflow: (a) an example of a gigapixel digital H & E
histopathological WSI with dimension 50668 by 27888 pixels, retrieved in the .svs format,
anonymized by being converted to .npy arrays using the OpenSlide [5, 6] library; contours
of tumor regions were done on WSI in the Aperio ImageScope software [7], exported into
.xml files, which is then converted into a WSI binary mask; (b) 5000 by 5000 pixel patch
from the WSI and its binary mask were loaded into memory and processed iteratively; (c) A
Gaussian denoising filter is applied to the cyan channel of the RGB H & E patch, from which
the blob detection algorithm found the nuclei center and Delaunay triangulation from each
continuously connected masked region of the patch were constructed, giving rise to Voronoi
diagrams; (d) cell spacing and nuclei size radii were computed into a vector for non-tumoral
/ cancerous regions for each patch; (e) non-tumoral / cancerous cell spacing and nuclei size
distribution patch-vectors were then concatenated into WSI non-tumoral / cancerous cell
spacing and nuclei size distributions
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Figure 3.2: Zooming in on a single 5000 pixel by 5000 pixel patch showing the image
processing details of Fig. 3.1 c. Each yellow box directs towards a zoomed-in view of the
previous image. At the corresponding patch indices, both an H & E stained histopathology
image patch, and its mask patch which was previously contoured from Aperio ImageScope [7]
from the WSI level, were extracted together. In this example patch mask, the yellow region
of the binary mask indicates a cancerous region of its H & E patch counterpart, therefore the
purple background is the non-tumoral region of this patch. Three continuously connected
regions (CCR) were identified within the masked cancerous region, and the rest of the patch
is the non-tumoral region. A list of individual Delaunay triangulations from each CCR was
constructed shown in dashed arrows colored by region name, from which its Voronoi diagram
was then formed as shown in solid arrows.
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Figure 3.3: Zooming in on a single patch: Delaunay triangulation formed from a
continuously connected region CCR as described in Fig.3.2. Here is a zoomed in display
of how the Delaunay triangulation appears on the H & E patch upon nuclei center detection
for the non-tumoral region and the three CCR. The same patch was shown in Fig. 3.2.
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Figure 3.4: Zooming in on a single patch – Voronoi Diagram. Following the same patch
shown in Fig. 3.2 and 3.4, here we show a detailed view of each Voronoi diagram constructed
from each Delaunay triangulation from each cancerous region and non-tumoral region. The
third row displays an approximate circle, with an equivalent area of that of the Voronoi cell,
laying upon each H & E stained histopathology patch. Red indicates cancerous region and
green nidicates non-tumoral region
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3.1.2 Outcome Analysis

Prior to building a predictive model for the clinical endpoint of interest, post RT recurrence,
it is crucial to understand the data itself. Therefore via visualization and statistical analyses,
both imaging and clinical features summarized in Table 3.1 were explored independently
in section 3.1.2.2 and in relation to the outcome of interest in section 3.1.2.3. Then we
investigated a TPOT autoML approach to efficiently find the best ML pipeline to predict
our outcome of interest in 3.1.2.5.

3.1.2.1 Data pre-processing

In the clinical data preprocessing process, ordinal encoding was used for categorical variables
with a meaningful order, such as radiological or clinical stage at time of radiation, were
encoded as its numerical value counterpart. However, subtypes within a specific stage were
not distinguished. For example, a clinical stage of II was encoded as 2, whereas both IVA
and IVB were encoded as 4. This is because stage subtype differentiation may result in more
clinical feature variable types than there exists number of samples that the model could learn
from. For a similar reason, the histology categorical variable was encoded as only Squamous
Cell Carcinoma and Adenocarcinoma, without information regarding poorly / moderately/
well differentiated. For later modelling process, One Hot Encoding (OHE) was used for the
categorical variables without an order whose input were simply processed as their categorical
texts, such as the cancer type and histology.

3.1.2.2 Data exploration regardless of post RT recurrence outcome

To understand inter-patient variability for each of the eight derived imaging features (Table
3.1) notched box and whiskers plots were visualized for the mean and std of patient-specific cs
and ns distributions (microns) across all thirty-six patients without making any assumptions
of the underlying statistical distribution as presented in Fig. 3.6a (mean features) and Fig.
3.6b (std features). The "notch" indicates the 95 % confidence interval (CI) of the median.
The median of each patient-population-wise distribution for each imaging feature (Table 3.1)
were then computed in Table 3.2. To navigate correlation with imaging features, Pearson
correlation coefficients between each of feature pairs (i.e. a cancerous region feature versus
a non-tumoral region feature) were computed and visualized as scatter plots in Fig. 3.7a of
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cancerous vs. non-tumoral ns distribution mean, Fig. 3.7b of cancerous vs. non-tumoral
ns distribution std, Fig. 3.8a of cancerous vs. non-tumoral cs distribution mean, Fig. 3.8b
of cancerous vs. non-tumoral cs distribution std. Furthermore, while not assuming equal
population variance, Welch’s t-tests [135] were performed on each non-tumoral and cancerous
imaging feature pairs as defined in (Table 3.1) and displayed in Table 3.3 obtaining t-statistics
and its p-value.

3.1.2.3 Data exploration in relation to post RT recurrence outcome

Using the Orange [8] Python application, both the clinical and imaging features summarized
in Table 3.1 (included features were highlighted in yellow) were investigated in relation to
the binary classification target outcome as defined as post RT recurrence at the time of FU.

The outcome class imbalance can be visualized by a histogram as shown in Fig. 3.9.
Stacked histogram were used to visually compare between categories (i.e., outcome) for each
clinical feature (refer to Table 3.1) as presented in Fig. 3.9, 3.10, and imaging feature (refer
to Table 3.1) as illustrated in Fig. 3.11 and Fig. 3.12. Values represented were proportional
to the bars and were plotted vertically. To visually appreciate the trend of probability of
post RT recurrence given a feature, the kernel density estimation (KDE) with a smoothing
bandwidth of 19 were also displayed on top of each stacked histogram.

Each numerical feature was divided into two sub-groups based on the binary outcome of
whether post RT recurrence had happened to this patient. Thus, a Student’s t-test [136]
was computed between these two subgroup values for each numerical feature returning the
t-statistics and its p-value (Fig. 3.13, 3.15). For categorical values, a chi-squared test were
performed (Fig. 3.14). Furthermore, each clinical and imaging feature was ranked in relation
to the post RT recurrence outcome classification task with the Python Orange application [8].

Variables were scored based on their correlation with the discrete target variable with the
metrics of information gain (i.e.,the expected amount of information (reduction of entropy)),
gain ratio (i.e.,a ratio of the information gain and the attribute’s intrinsic information, which
reduces the bias towards multivalued features that occurs in information distribution gain),
Gini (i.e., the inequality among values of a frequency ), Chi-square (i.e., dependence between
the feature and the class as measured by the chi-square statistic), ReliefF (i.e., the ability
of an attribute to distinguish between classes on similar data instances), and FCBF (i.e.,
entropy-based measure, which also identifies redundancy due to pairwise correlations between



3. Predictive modelling of post RT recurrence for GYN cancer patients 28

features) [126] (Fig. 3.16).

3.1.2.4 Feature dimensionality reduction and visualization

To understand how all features (i.e., imaging and clinical) interact to classify an outcome
(i.e., post RT recurrence), we explored two methods to reduce feature dimensionality and
visualize them in a 2 dimensional space: Principal Component Analysis (PCA) and optimized
multivariate linear projection using the FreeViz Orange application of Python [8, 9].

PCA is a well-known exploratory data analysis method to reduce dimensionality and
interpret datasets while preserving "variability" of information as much as possible across
disciplines. [137]. Since the number of Principal Component (PC) included in the analysis
was set upon the cumulative proportion of variance of the data by hand, this makes PCA
an adaptive data analysis technique [137]. It aims to find new uncorrelated variables, or
PC, that were linear combinations (or projections) of the original dataset which successively
maximize variance (i.e., the first PC accounts for the largest data variance, followed by
the second and so on). Depending on an explained variance percentage accounting for the
cumulative variance of the dataset, a number of PCs was then determined. Here with the
Python Orange application [8], thirteen PCs were computed representing 99.5 percent of
the original dataset cumulative variance (Fig. 3.17). The intelligent data visualization
property of scatter plots in Orange [8, 9] can find the most informative projection pairs
among the dataset’s original features and the PCs to be visualized in a two-dimensional
space. Orange [8] does so by finding 10 nearest neighbors in the projected 2D space on the
combination of attribute pairs followed by checking how many of them belong to the same
class for each data instance. The average number of same-classed neighbors determined the
total score of the projection. The top five ranked projections were therefore visualized in
Fig. 3.18.

FreeViz [9], also incorporated in the Orange Python application [8], uses optimization to
find multivariate linear projections that produce scatter plots to best separate data instances
from different class. It optimizes arbitrary linear transformations into lower dimensional
spaces. A fascinating physics metaphor was analogized with this optimization procedure,
where each data instance was imagined as a particle and those of the same class attract
each other whereas those of different classes repel one another [9]. FreeViz [9] finds good
class separation (i.e., optimization goal) by finding the projection with the minimal potential
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energy, which is minimized by gradient descent method. A global visualization (Fig. 3.19) of
the classification task of distinguishing patients, given the clinical and imaging features, were
built in a matter of a few seconds. In addition to its swift optimization, feature interactions
and importance (based on the projection length), as well as intra-class similarities can also
be easily visually interpreted.

3.1.2.5 Outcome modelling (post-RT recurrence) with imaging & clinical
features using an Automated Machine Learning (AutoML) approach

Despite the small dataset and low event rate, the question of whether these features were
"learnable" to predict an outcome (Fig. 3.5) was asked. Therefore, once the data itself was
inspected and understood, a ML model was built to classify the outcome of interest (i.e.,
post RT recurrence) using both the imaging and clinical features as summarized in Table
3.1 (features included in the model were highlighted in yellow).

Uniquely, a TPOT autoML approach [48–51, 127, 128, 138–146] was adopted.
TPOT [48] is a genetic programming-based autoML system that optimizes a number of
available feature preprocessors and ML models with the objective to maximize a
user-defined evaluation metric specific to the supervised classification problem. This was
implemented to accelerate the finding of the best performing pipeline for this
class-imbalanced and small dataset. Though a solid understanding and exploration of data
at hand was still needed, expensive traditional manual processing of tasks such as missing
value imputation, categorical values encoding, feature engineering such as normalization or
scaling, iterative hyperparameter tuning, experimenting a series of ML algorithms, were all
automatically optimized via TPOT [48] and autoML.

Here, all data from thirty six patients were fed into the TPOT algorithm as training data,
with no specified test set. This is because further decreasing the number of already small
dataset for training was not desirable and prone to overfitting. An internal cross validation
(CV) score for each generation of the model that explored a different combination of feature
preprocessors and ML models was produced. 100 generation and a population size of 50 were
specified for the TPOT algorithm. A random state of one was set, while parallel processing
of all CPU cores were utilized. A 10-fold stratified shuffle split was chosen to be the internal
CV method, while the evaluation metric for the internal CV score was chosen to be the
F1 score. Both methods were selected due to class imbalance and small size [147–149] of
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the dataset. This meant that for each TPOT model generation, an averaged interval CV
F1 score was computed across all CV folds, and the "current best internal CV score" was
reported at each generation in comparison to that of the previous generations.

Once 100 generations of TPOT algorithm were run, the model pipeline yielding the
generation that had the best internal averaged CV F1 score was created. A Python script
entailing the chosen hyperparamters, feature preprocessors, and ML algorithms giving rise to
the best pipeline used were exported. To replicate the resulting best pipeline, a ML model
was manually re-trained using exactly the optimized hyperparameters, feature processing
steps, and ML algorithms suggested by the TPOT approach on the training data with the
36 patients. This was to further describe and understand the "best-pipeline" model with
other evaluation metrics such as accuracy, balanced accuracy, precision, recall, and Receiver
Operating Characteristics (ROC) Area Under the Receiver Operating Characteristic Curve
(AUC). Finally, A permutation test (n=1000) was performed to validate the significance
of the classification scores. During this process, the "best-pipeline" model accuracy were
computed each time the features and outcome of the original dataset were permuatated for
1000 times. More specifically, randomized data of the original features and their permuted
targets were generated. The model was applied to each permutation with its accuracy score
calculated. The percentage of all 1000 scores obtained from randomized permuted data that
were higher than that of the original data was represented as an empirical p value. Such p
value less than 0.05 would indicate real dependencies between the features and the outcome
of interest.

3.2 Results

A summary of all clinical features collected, imaging features derived from H & E
histopathology WSI, their definitions were presented in Table 3.1. The results section here
is organized in the same order as the outcome analysis method section in 3.1.2.

3.2.1 Statistical analysis and visualization regardless of outcome

Inter-patient variability in each of the eight imaging features (as defined in Table 3.1)
extracted from H & E histopathology WSIs, as described in the method section 3.1.1.1, can
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Clinical Variables Variable Name Definition

age_at_diagnosis (year) biopsy date - date of birth
time_of_diagnosis biopsy date

total_treatment_time (days) RT end - RT beginning
time to recurrence (days) post-RT recurrence date - RT beginning date

time to death (days) death date - RT beginning date
cancer type class vulva, vagina, cervix
Follow_up_length last FU (Follow-up) date - date of diagnosis

Clinical stage at time of radiation class

I, IB1, IB2, II, IIA2, IIB, IIIB, IIIC, IIIC1, IIIC2, IVA, IVB
Ordinal encoding was used in analysis such that:

I, IB1, IB2 were encoded as 1
II, IIA2, IIB were encoded as 2

IIIB, IIIC, IIIC1, IIIC2, were encoded as 3
IVA, IVB were encoded as 4

Radiological stage at time of radiation class

I, IB1, IB2, II, IIA, IIB, IIIB, IIIC, IIIC1, IIIC2, IVA, IVB
Ordinal encoding was used in analysis such that:

I, IB1, IB2 were encoded as 1
II, IIA, IIB were encoded as 2

IIIB, IIIC, IIIC1, IIIC2 were encoded as 3
IVA, IVB were encoded as 4

EBRT class 1 if the patient received External Beam Radiation Therapy (EBRT), 0 if the patient did not receive EBRT.
concurrent chemo class 1 if the patient received concurrent chemotherapy,0 if the patient did not receive concurrent chemotherapy.

brachy class 1 if the patient received brachytherapy, 0 if the patient did not receive brachytherapy.
p16 class 1 if positive, 0 if negative

Imaging Features

mean_radius_corrected_ns_masked_all cancerous region nuclei size distribution mean
mean_radius_corrected_ns_background_all non-tumoral region nuclei size distribution mean

std_radius_corrected_ns_masked_all cancerous region nuclei size distribution standard deviation
std_radius_corrected_ns_background_all non-tumoral region cell spacing distribution standard deviation

mean_radius_corrected_cs_masked_all cancerous region cell spacing distribution mean
mean_radius_corrected_cs_background_all non-tumoral region cell spacing distribution mean

std_radius_corrected_cs_masked_all cancerous region cell spacing distribution standard deviation
std_radius_corrected_cs_bakground_all non-tumoral region cell spacing distribution standard deviation

Target Outcome

post radiation therapy recurrence 1 if post RT recurrence occurred
0 if post RT recurrence did not occur

locoregional recurrence For those who experienced post RT recurrence:
1 if there is local recurrence, 0 if there is no local recurrence

distant recurrence For those who experienced post RT recurrence:
1 if there is distant recurrence, 0 if there is no distant recurrence

Table 3.1: Patient-specific clinical, histopathology WSI extracted imaging features and target
clinical endpoint outcome definitions. Only features and outcome highlighted in yellow were
used in our analysis. Time-to-event variables were not included in the binary outcome
prediction classification task. Treatment modality type clinical variables were also not
included since most patients had the same treatment combination (i.e., all had EBRT, all
but two had brachytherapy and concurrent chemotherapy). Since the number of patients
and event rate is relatively low, locoregional and distance recurrence outcomes were not
investigated at current stage of the study.



3. Predictive modelling of post RT recurrence for GYN cancer patients 32

Figure 3.5: Workflow of combining nuclei size and cell spacing distributions imaging
features and individual clinical variables such as the age at diagnosis, clinical and radiological
stage at the time of radiation, p16 status, cancer type, and histology type for post radiation
therapy recurrence outcome prediction

be clearly observed in the notched whisker and box plots. In particular, for cs and ns
distribution mean (microns) of non-tumoral and cancerous regions for all thirty six WSIs
as shown in Fig. 3.6a, and for cs and ns distribution std (microns) of non-tumoral and
cancerous regions for all thirty six WSIs as depicted in Fig. 3.6b. Among the four cs and
ns distribution mean (microns) features across all patients (Fig. 3.6a), the cancerous ns
mean feature had the largest patient variability; and among the four cs and ns distribution
std (microns) feature across all patients (Fig. 3.6b), the largest patient-population-wise
variance was exhibited with the non-tumoral cs std feature.

To quantify observations from Fig. 3.6, the median of each patient-population-wise
distribution for each imaging feature can be found in Table 3.2. Furthermore, the results of
the Welch’s t-test [135], or an unequal variances t-test, performed on each cancerous and
non-tumoral feature pair was shown in Table 3.3. Note that each imaging feature was
computed at a patient-specific level from their individual histopathology WSI. The
following results, however, were described at a patient-population level in reference to Fig.
3.6. At the α = 0.05 level of significance, there was sufficient evidence to remark a feature
difference between the cancerous (median = 2.837 microns) and non-tumoral (median =
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Imaging features Median (microns) across all patients
mean_radius_corrected_ns_masked_all 2.837

mean_radius_corrected_ns_background_all 1.729
std_radius_corrected_ns_masked_all 1.282

std_radius_corrected_ns_background_all 1.301
mean_radius_corrected_cs_masked_all 6.938

mean_radius_corrected_cs_background_all 6.796
std_radius_corrected_cs_masked_all 1.788

std_radius_corrected_cs_bakground_all 1.36

Table 3.2: The median of notched boxplots of the population-wise cell spacing and nuclei
size distribution mean (microns) and standard deviation (microns) as shown in Fig. 3.6 in
a table. Definition of imaging features referred in this table can be found in Table 3.1.

1.729 microns) ns distribution mean (p = 7.136 e-08), the cancerous (median = 1.282
microns) and non-tumoral (median = 1.301 microns) ns distribution std (p = 0.027), and
the cancerous (median = 1.788 microns) and non-tumoral (median = 1.36 microns) cs
distribution std (p = 3.142 e-05). However, there was no adequate evidence to support a
significant difference between the cancerous (median = 6.938 microns) and non-tumoral
(median = 6.796 microns) cs distribution mean (p = 0.167).

(a) distribution mean radius (microns) (b) distribution std

Figure 3.6: Notched boxplots of the cell spacing and nuclei size distribution mean (microns)
in (a), and cell spacing and nuclei size distribution standard deviation (microns) in (b) for
all patients

To further understand imaging feature correlations at a patient-population level, results
of Pearson correlations and its p value (for testing non-correlation) between each cancerous
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two-sided t test performed on t-statistic p-value
mean_radius_corrected_ns_masked_all 6.049

mean_radius_corrected_ns_background_all 7.136 e-08
mean_radius_corrected_cs_masked_all 1.393 0.167

mean_radius_corrected_cs_background_all
std_radius_corrected_ns_masked_all -2.265

std_radius_corrected_ns_background_all 0.027
std_radius_corrected_cs_masked_all -4.425

std_radius_corrected_cs_bakground_all 3.142 e-05

Table 3.3: Independent Welch’s t test results (t-statistics and p-value) between each ns
and cs imaging feature "pair" (i.e., a cancerous region quantity against a non-tumoral region
quantity) across all thirty-six patients. Definition of imaging features referred in this table
can be found in Table 3.1.

and non-tumoral feature pair across patients were also computed (shown in method section
3.1.2.2) and displayed as joint (scatter) plots made by the Seaborn Python library shown in
Fig. 3.7. A strong Pearson correlation between the cancerous and non-tumoral regions of ns
distribution mean (r = 0.600, p < 0.001) shown in Fig. 3.7a and std (r = 0.700, p < 0.001)
shown in Fig. 3.7b were observed. Meanwhile, we discerned a weak Pearson correlation
between the cancerous and non-tumoral regions of cs mean (r = 0.252, p = 0.112) shown in
Fig. 3.8a and std (r = 0.116, p = 0.471) shown in Fig. 3.8b.

3.2.2 Statistical analysis and visualization in relation to outcome

Once the imaging features statistics had been analyzed independent of the outcome of interest
(i.e., post RT recurrence at the time of follow up) at a whole patient-population-level, we
scrutinized the behaviors of both imaging and clinical features between subgroups of patients
with the opposite outcome (i.e., those who experienced post RT recurrence, or a positive
class, versus those who did not, or a negative class). For all visualizations from this point on,
a red color indicates a positive class and blue means a negative class. The size of a shape,
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(a) (b)

Figure 3.7: Scatter plot of cancerous vs. non-tumoral regions nuclei size distribution
mean (micron) in (a) and standard deviation in (b) Pearson correlation and p-value for non-
correlation null hypothesis testing
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(a) (b)

Figure 3.8: Scatter plot of cancerous vs. non-tumoral regions cell spacing distribution
mean (micron) in (a) and standard deviation in (b) Pearson correlation and p-value for non-
correlation null hypothesis testing
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particularly in Figs. 3.18 and 3.19 stipulates the radiological stage at the time of radiation
(i.e., the larger the shape, the more advanced the radiological stage).

Firstly, an imbalance in the outcome class (nine out of thirty six patients experienced
post RT recurrence at the time of follow up, event rate = 25 %) can be recognized in Fig.
3.9a, and similarly in the stacked histograms of each cancer type (i.e., vulva, vaginal, and
cervix) in Fig. 3.9b and histology type (SCC, Adeno) in Fig. 3.9c. Under our retrospective
patient cohort, the probability of post RT recurrence given an age at diagnosis (Fig. 3.10a), a
clinical stage at time of radiation, and a radiological stage at time of radiation were visualized
in Fig. 3.10. Interestingly, a sharp increase in the probability of post RT recurrence was
witnessed starting at the radiological stage of III at time of radiation as illustrated in Fig.
3.10c. In contrast, a relatively more flattened probability trajectory of post RT recurrence
given a clinical stage at time of radiation was seen across all clinical stages as shown in Fig.
3.10b.

Intriguing pair-wise (i.e., a cancerous vs. non-tumoral imaging features) remarks can
be provoked from patient-specific ns distributions (Fig. 3.11) and cs distributions (Fig.
3.12). Specifically, a monotonic decrease in probability of post RT recurrence was observed
for cancerous ns distribution mean (in range 1 to 5 microns shown in Fig. 3.11a) and
non-tumoral ns distribution mean (in range 0.5 to 2.5 microns shown in Fig. 3.11b). The
same probability behavior was seen for non-tumoral cs distribution mean (in range 4 to 10
microns in Fig. 3.12b), however not in cancerous cs distribution mean (in range 5 to 8
microns shown in Fig. 3.12a). In terms of std features, opposite tendencies for probability
of post RT recurrence were displayed for both pairs of cancerous ns distribution std (Fig.
3.11c) and non-tumoral ns distribution std (Fig. 3.11d), and cancerous cs distribution std
(Fig. 3.12c) and non-tumoral cs distribution std (Fig. 3.12d). Notably, a monotonic increase
in the probability of post RT recurrence was observed in cancerous cs distribution std shown
in Fig. 3.12c.

At the α = 0.05 level of significance, the radiological stage of two subgroups of patients
who ended up experiencing post RT recurrence or not was revealed to be a statistically
significant clinical feature analyzed by a Student’s t-test in Fig. 3.13 (t-statistic = 3.794, p =
0.001). However, not enough evidence could suggest a significant difference in age at diagnosis
and clinical stage at time of radiation and p-16 status (Fig. 3.15) for patient subgroups with
opposite outcomes with the Student’s t-test. Similarly, no significant insight can be drawn
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from Chi-square tests conducted between the opposite class subgroups for the cancer type
(p = 0.801) feature as well as the histology feature (p = 0.164) (Fig. 3.14). Furthermore,
a combination of metrics (i.e., Info gain, gain ratio, Gini, Chi-square, ReliefF, and FCBF)
ranked the following features as the top five for their importance to the classification of post
RT recurrence based on their correlation with the target outcome using the Orange Python
application [8] in descending order: radiological stage at time of radiation, non-tumoral cs
distribution std, non-tumoral ns distribution mean, non-tumoral cs distribution mean, and
histology class.

(a) recurrene (b) cancer type (c) histology class

Figure 3.9: Post RT recurrence frequency. Fig. 3.9a: outcome class imbalance was shown;
Fig. 3.9b: stacked histogram of each cancer type (vulva, vaginal, cervix); Fig. 3.9c: stacked
histogram of each histogram of each histology type (SCC and Adeno). Red means a positive
class of post RT recurrence, and blue is a negative class of no post RT recurrence.

3.2.2.1 Feature dimensionality reduction and visualization

From the PCA, thirteen PCs were chosen to account for 99.5 % cumulative explained variance
of the imaging and clinical features data set. From Fig. ??, we observed that the first and
the second PC account for 22.4 % and 17.3 %, respectively, of the total data set variation.
This variance accountability (red curve) decreases for further PC included on the x-axis.
The cumulative variance increases and reaches exponential plateau (in yellow curve) to 99.5
% at the thirteenth PC, which itself only accounted for 0.8 % of the total variance. With the
Intelligent Data Visualization property of scatter plotting from the Orange [8] application,
we showed the top five most informative 2 dimensional projections representing our features
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(a) age at diagnosis (b) clinical stage at time of
radiation

(c) radiological stage at time of
radiation

Figure 3.10: Probability of post RT recurrence given 3.10a age at diagnosis, 3.10b clinical
stage at time of radiation, 3.10c radiological stage at time of radiation, plotted as stacked
histogram of the two-classed outcomes (Red means a positive class of post RT recurrence,
and blue is a negative class of no post RT recurrence). A KDE with a bandwidth of 19 were
laid on top of the stacked histogram.

(a) cancerous ns
dist. mean

(b) non-tumoral ns
dist. mean

(c) cancerous ns
dist. std

(d) non-tumoral ns
dist. std

Figure 3.11: Probability of post RT recurrence given a ns imaging feature across patients.
Each subfigure is displayed as a combination of a stacked histogram (red: post RT recurrence,
blue: no post RT recurrence) and its corresponding KDE with smoothing bandwidth of 19
for each feature.



3. Predictive modelling of post RT recurrence for GYN cancer patients 40

(a) cancerous cs
dist. mean

(b) non-tumoral cs
dist. mean

(c) cancerous cs
dist. std

(d) non-tumoral cs
dist. std

Figure 3.12: Probability of post RT recurrence given a cs feature across patients. Each
subfigure is displayed as a combination of a stacked histogram (red: post RT recurrence,
blue: no post RT recurrence) and its corresponding KDE with smoothing bandwidth of 19
for each feature.

Figure 3.13: Student’s t-test between subgroups (i.e., experienced post RT recurrence or
not) for numerical feature of radiological stage at time of radiation.

(a) cancer type class (b) histology class

Figure 3.14: Chi-square test between subgroups (i.e., experienced post RT recurrence or
not) for categorical features of cancer type (i.e., cervix, vaginal, cervix) and histology type
(i.e., SCC and Adeno).
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(a) age at diagnosis (b) clinical stage at time of
radiation

(c) p16 status

Figure 3.15: Student’s t-test between subgroups (i.e., experienced post RT recurrence or
not) for numerical features of age at diagnosis, clinical stage at time of radiation, and p16
status.

Figure 3.16: Feature Rank from the Orange Python application [8, 8] based on Info gain,
gain ratio, gini, chi-square, ReliefF, FCBF
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Figure 3.17: PCA of the imaging and clinical feature dataset. It shows the proportion
of variance as a function of PC included to represent the original data. The yellow
exponential plateau towards 1 (i.e., a full representation of the original data variance) shows
the cumulative variance the PCs represent as the number of PC increases. The decaying
red curve illustrates the variance each PC accounts for itself. For example, the first PC
accounted for 22.4 % of the original data variance, and the second PC 17.3 %. The first and
the second PC together accounts for a cumulative variance of 39.7 % of the original data. In
our analysis, 13 PCs were chosen to altogether account of 99.5 % of the total data variance.
The green curve indicates the cumulative variance, and the red curve shows the component
variance.
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where the color of each instance indicates the outcome (red: had post RT recurrence, blue:
no post RT recurrence) (Fig.3.18). Though promising neighbor instances "clustering" can be
observed (for example at the left bottom corner of Fig. 3.18a), no visually interpretable linear
separation between the two outcome classes can be easily observed from all PCA scatter plots
in Fig. 3.18. However interestingly for patient who experienced post RT recurrence (shown
as red point), Fig. 3.18a shows a Pearson correlation of 0.28 between the cancerous ns std
and PC7, and -0.4 between non-tumoral cs mean and PC 7 in Fig. 3.18b.

(a) Rank 1 (b) Rank 2 (c) Rank 3 (d) Rank 4 (e) Rank 5

Figure 3.18: The top 5 most informative 2D projections where each projection pair as
selected the original clinical and imaging features and from thirteen PCs determined from
a PCA accounting for a 99.5% explained variance with the Intelligent Data Visualization
property of scatter plots in the Orange Python application [8]. Red color indicates an
instance that experienced post RT recurrence, and blue means otherwise. The red line in
each subplot is a best fitted linear regression of the data instances with post RT recurrence
and the blue line is the same but for those without post RT recurrence with a computed
Pearson correlation coefficient. A shape of a circle is the SCC histology type, and an x is the
Adeno type. The size of each shape represents the radiological stage at time of radiation.
For example, a larger red circle means a more advanced radiological stage for a patient who
experienced post RT recurrence with SCC. Fig. 3.18a shows cancerous ns std on the y axis
and PC 7 on the x axis; Fig. 3.18b: non-tumoral cs mean (y axis) and PC 7 (x axis); Fig.
3.18c: non-tumoral ns mean (y axis) and PC 7 (x axis); Fig. 3.18d: cancerous cs std (y axis)
and PC 7 (x axis); and Fig. 3.18e: PC 7 (x axis) and PC 12 (y axis).

On the contrary, a clearly visible class separation can be observed in Fig. 3.19 from
the multivariate linear projection from the FreeViz Orange application of Python [8, 9].
Since instances on the FreeViz 2D projection figure was grouped by proximity where the
more connected the base vectors (features) were, the closer they locate on the 2D plane.
Features more important to the classification had longer projection length and pointed to
a more orthogonal direction to the line or curve separating the binary class cluster. A
feature is more prominent at making the classification decision if it sits at a region mostly
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populated by instances of a specific class. [9]. Therefore for the positive class of post RT
recurrence, radiological stage at time of radiation, histology class, patient-specific cancerous
cs distribution mean, and age at diagnosis were of the most importance, due to its base
vectors’ orthogonal direction to the curve that separates the two classes and the normalized
length of the base vector. The clinical stage at time of radiation has the least significance
out of all clinical features because of its parallel direction of its base vector to the separation
curve. For the negative class of no post RT recurrence, among all imaging features, the
patient-specific non-tumoral ns distribution std and the non-tumoral ns distribution mean
were shown to be the most promising due to its base vector length and the cluster of data
instances surrounding these two vectors.

Figure 3.19: Multivariate linear projection implemented from FreeViz of the Python
Orange package [8, 9] successfully visually separated the binary outcome classes (i.e., post
RT recurrence or not) by optimizing arbitrary linear transformations into lower dimensional
spaces.
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3.2.3 TPOT autoML approach to predict clinical endpoint: post
RT recurrence

Trained on Google Colab, on CPU in a few hours, the best pipeline yielded by TPOT autoML
achieved a best averaged internal CV F1 score of 0.83 after 100 generations.

In this best pipeline automatically optimized by TPOT, feature preprocessors were
selected, and each of the following steps included hyperparameter values that were
automatically fine tuned. A Radial Basis Function Kernel (RBF) sampler (gamma = 0.25)
was applied to combined imaging and clinical input variables for training. The resulting
features were fed into an eXtreme gradient-boosting (XGBoost) classifier (learning_rate
= 0.1, max_depth = 1, min_child_weight = 15, n_estimators = 100, n_jobs = 1,
subsample = 0.45, verbosity = 0). One hot encoding was then applied. Its outputs were
propagated as “synthetic features” followed by polynomial feature transforms. All raw and
transformed features were trained with a decision tree classification algorithm(criterion
= "entropy", max_depth = 9, min_samples_leaf = 12, min_samples_split = 7).

Now that the optimized feature preprocessing steps and fine-tuned hyperparameters
were obtained, we reproduced this result by retraining the entire dataset where a 10-fold
stratified shuffle split CV was implemented whose evaluation metrics (i.e., ROC AUC,
accuracy, balanced accuracy, precision, recall, and F1 score) were averaged from each CV
fold. Fig. 3.20) shows the ROC AUC scores at each fold of the CV. Note that the same CV
method was chosen here to recreate that used in the TPOT autoML approach.

The model achieved a 10-fold stratified shuffle split cross-validation scores of 0.875 for
mean accuracy, 0.917 for mean balanced accuracy, 0.783 for precision, 1 for recall, 0.85 for
F1 score, and 0.917 for Area Under the Curve of Receiver Operating Characteristics Curve
(Table 3.4), to predict the patient cohort’s post RT recurrence binary outcome. A p-value
of 0.036 was obtained from the permutation test (Fig. 3.21). This implies real dependencies
between the combined imaging and clinical features and outcomes which were learned by
the classifier, and the promising model performance was not by chance.
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Figure 3.20: ROC AUC of 10 stratified shuffle split CV for the best pipeline selected by
TPOT autoML
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Figure 3.21: Permutation test (n = 1000) performed the best model pipeline produced from
TPOT autoML based on accuracy, p-value = 0.036. The permutation test encompasses the
process of permuting the order of the features and their corresponding labels or target or
outcome (here, for 1000 times), and apply the same best pipeline model on the permuted
dataset. A model accuracy score was produced at each permutation contributing to the
probability density function shown. The red vertical dash line shows the accuracy score of
the model on the original dataset which is 0.88. An empirical p-value was computed to
be 0.036, meaning that only 3.6 % of the classification accuracy scores from the permuted
dataset was higher than that of the accuracy score of the model applied to the original
dataset. This indicates that the chance of an accuracy score from the permuted dataset
being higher than that of the original dataset was by chance, therefore concluding real
dependency between the features and the target outcome in the classification model.



3. Predictive modelling of post RT recurrence for GYN cancer patients 48

Model performance evaluation metrics Scores
Accuracy 0.875

Balanced accuracy 0.917
Precision 0.783

Recall 1
F1 0.85

ROC AUC 0.917
Table 3.4: Model performance evaluation metrics from TPOT autoML derived best pipeline
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Chapter 4

Discussion

4.1 Extraction of cell and nucleus size distribution

from H & E stained histopathology WSI

A method to automatically extract patient-specific cell and nuclei size distributions from a

gigapixel H & E stained histopathology WSI was developed for gynecological patients. This

approach is generalizable for histopathology WSI of any cancer type as long as it was stained

by hematoxylin and eosin. The basis of this approach was built upon work of DeCunha et.al.

[32]. However, a major difference lies in the fact that H & E histopathology TMA was used in

the previous work, which had a pixel dimension roughly one tenth for that of a gigapixel WSI

used in this study. Though a 5000 pixel by 5000 pixel patch-based method was implemented

to process our WSI iteratively to not exceed available CPU memory as described in section

3.1.1.1, the heavy computation expense cannot be understated. Another limitation of this

current method is attributed to a lack of accountability for the cell membrane extent in the

cell size approximation with cell segmentation using Voronoi tessellation diagrams [32,150],

since the cell spacing radius was essentially the distance (in microns) between two nuclei.

Moreover, a unanimous threshold parameter determining pixels dominated by hematoxylin
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over eosin content was set to compute the nucleus radii (see section 3.1.1.1). However,

a common issue in digital pathology image analysis rose from slides coming from various

scanners. This might especially affect our algorithm’s generalizability when the patient

cohort in a future study extends to external hospitals with various pathology scanners. The

fourth source of inefficiency in this approach was by virtue of manual delineation of cancerous

regions of the H & E stained histopathology WSI using the p16 positive slides as a reference,

a DL-based automatic segmentation algorithm would be much preferred due to its speed and

reproducibility of segmentation results.

Therefore, a number of improvements can be made upon this current method. First of

all, since predicting post RT recurrence outcome at the time of FU is the downstream goal

subsequent to extracting patient-specific cell and nuclei size distributions for cancerous and

non-tumoral regions, a decision for the distribution extraction algorithm to only "pay

attention" to WSI regions that are most relevant to the outcome may be computationally

economical. Major advances on Vision Transformer (ViT) has been made to the computer

vision domain [151]. The Convolutional Neural Network (CNN) is popularly considered as

a de-facto approach in the medical computer vision community from achieving

state-of-the-art results for tasks such as detection, image segmentation, synthesis,

registration, reconstruction, etc. for a wide range of image modalities such as radiography,

CT, mammography, ultrasound, MRI, positron emission tomography (PET) [152]. The

mathematical operation called convolution is how CNNs extract discriminative features in

its local receptive field [153, 154]. This locality attribute allows it to model local visual

feature of images. However, this very operator also inevitably limits CNN’s ability to learn

from long-range pixel relationships within the global context of an image [152]. Vision

transformers (ViT) [155], on the other hand, bears the capability of encoding long-range

dependencies of the input image to learn its full representation. This is achieved by

breaking down an original image into patches which are then fed into a standard

transformer encoded as used in Natural Language Processing (NLP) [152, 155, 156]. Many
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state of the art (SOTA) ViT results are indicating the potential full replacement of

convolution operators by transformer modules. Especially in medical image

segmentation, [157] showed that due to a superior ability to encode the global context of an

image, nearly all transformer-based autosegmentation models such as TransUNet [158]

performed better than CNN-based models. [159] introduced TransMIL,

transformer-multiple-instance-learning method, where the WSI histopathology classification

algorithm was not only weakly supervised, but also interpretable due to attention scores

visualization with heatmaps. Interpretability is crucial for WSI histopathology in an

outcome prediction context as well. Lu et.al. [160] developed a data efficient weakly

supervised DL method to automatically identify sub-regions of the histopathology whole

slide image with high diagnostic value. Therefore, an application of the ViT architecture

guiding its attention to pixels most relevant to the outcome of interest will not only

decrease input data size, but also shorten time spent on extracting cell and nuclei size

distributions from unimportant regions. In a sense, we would ideally want to mimic how a

pathologist diagnoses cancer in real life under the microscope, which is scrutinizing the

slide at a lower resolution on the digital pathology slide, identifying where to look further,

then magnify the pixels in just those parts. This might also offer competitive advantage for

automatically segmenting cancerous regions. Because frankly speaking, data itself is not

lacking when training a DL model for a task when it is in gigapixel digital pathology.

However, what matters more is the useful supervisory signal the data gives to the

downstream task, instead of a large amount of repetitive data inadequate of distribution

variety. Furthermore, self-supervised learning algorithms is causing a paradigm shift in

medical Artificial Intelligence (AI) [?, 22, 161–169] and is particularly suitable for histology

image pixel classification (i.e. cancerous vs. non-tumoral), which alleviates labelling

intensity and generalizability of domain specific data via contrastive learning. Other

weakly supervised learning for DL autosegmentation on histopathology WSI has also been

extensively surveyed in the recent years which can be further experimented
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on [83, 169–171]. In addition, there exists non-tumoral cells in the mixes of cancerous cells

such as: stromal, immune, and vascular cells. Non-tumoral cells are also crucial in tumor

growth and disease progression [32]. This alludes to the notion that instead of simply

classifying a cell or nuclei as cancerous or non-tumoral, it may be worthwhile to [172–174]

classify cell types within the cancerous or non-tumoral region to investigate how their

cell/nuclei size distributions differ and impact the post treatment outcome.

4.2 Image and clinical feature analyzed with

statistical tests regardless of and in relation to

the clinical outcome of interest, post RT

recurrence at the time of FU

To understand how patient-specific pre-treatment cell/nuclei size distributions might infer

post RT recurrence at the time of FU, thorough statistical analyses and visualization were

conducted with the clinical and imaging features (detailed in Table 3.1) by themselves and

in relation to the outcome of interest.

It is worthwhile to note that time-to-event variables were not included since the event

rate (25 %) was too low to conduct robust survival analysis at the current stage of the study.

Furthermore, the categorical variable of treatment modality (i.e. EBRT, brachytherapy,

and concurrent chemotherapy) combinations will be considered in the future when a larger

patient cohort is curated. It was not included at the current stage of the analysis due to

lack of variation of these variables among different patients, since all patients had EBRT,

and all but two underwent concurrent chemotherapy and brachytherapy, out of all thirty six

patients.

Similar to DeCunha et.al. [32] showed, the median of a cancerous image feature is larger
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than that of a non-tumoral image feature among the entire patient population. And at the

α = 0.05 level of significance, there was significant difference between cancerous and non-

tumoral ns distribution mean, the cancerous and non-tumoral ns distribution std, and the

cancerous and non-tumoral cs distribution std.

Imaging features of patient-specific cell/nuclei target size distributions was at the heart

of this investigations. However in reality, a post radiation treatment outcome of recurrence

cannot be ingenuously quantified in relation to these imaging features directly without the

consideration of other clinical variables that were pivotal to an outcome. The analyses of

probability of post RT recurrence at a given numerical range (or determined bin size) of a

certain feature, however, is not a violation towards ignoring confounding variables to the

outcome.

The radiological stage at time of radiation is the most prominent variable among all

clinical features, as demonstrated by a number of results. For example, Student’s t-test

between patient subgroups based on their outcome (p = 0.001) in Fig. 3.13, a sharp increment

in the probability of post RT recurrence beginning at the radiological stage of III at time

of radiation. Similarly, in the FreeViz [9] result from Fig. 3.19, we saw the base vector

indicating radiological stage at time of radiation to extend the farthest (i.e. most important

projection to the classification decision) in the red region (i.e. post RT recurrence). However,

it is equally intriguing to recognize that despite both being a measure of staging, the clinical

stage at time of radiation was not nearly shown as significant, as illustrated in the rather

uniform probability distribution of probability of recurrence given a clinical stage at time

of radiation in Fig. 3.10b, as well as the insignificant difference portrayed by a Student’s

t test in Fig. 3.15b. In turn, this probes the question of the extent of a role radiological

stage at time of radiation played in the "best pipeline" model built with the TPOT autoML

approach described in section 3.1.2.5. Such that had this feature been eliminated, would

the model still perform almost as well, as we would like to primarily understand how the

patient-specific cell/nuclei distribution may impact the post RT recurrence outcome.
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An interesting observation was that the cancerous cs mean (Fig. 3.12a) and non-tumoral

cs mean (Fig. 3.12b) exhibited opposite trend for probability of post RT recurrence in

the 5 to 7 microns range for cs distribution mean. Same for patient-specific cancerous cs

distribution std in Fig. 3.12c and non-tumoral cs distribution std in Fig. 3.12d in the 2 to

3.6 miconrs range for cs distribution std.

Instances on the FreeViz 2D projection figure was grouped by proximity where the more

connected the base vectors (features) are, the closer they locate on the 2D plane. Features

more important to the classification had longer projection length and pointed to a more

orthogonal direction to the line or curve separating the binary class cluster. A feature is

more prominent at making the classification decision if it sits at a region mostly populated by

instances of a specific class. [9]. Among imaging feature space, the patient-specific cancerous

cs distribution mean plays the largest role in post RT recurrence in the red region of Fig.

3.19. The non-tumoral ns std base vector is approximately orthogonal to the class separation

line and a cluster of SCC patients who did not experience post RT recurrence.

Moreover, target size influences the energy deposition spatial distribution. As the

radiation sensitive volume decreases for any radiation quality, the no-hit peak becomes the

dominant factor in the energy deposition spatial distribution, or microdosimetric

spread [175]. This knowledge gives a potential explanation for the increased probability of

recurrence of post RT recurrence at a smaller cancerous ns distribution mean, as shown

noticeably in Fig. 3.11a. Similarly, Fig. 3.12c shows a monotonically increasing probability

as the cancerous cs distribution std increases. A larger cancerous cs distribution std

stipulates an increasing cell size variation for the cancerous region cell population. It can

then also be theorized that the no-hit peak factor domination of the microdosimetric

spread occurring to a volume of cells with a larger dispersion of cell size.

The microdosimetric spread magnitude enlarges with decreasing the target size, thus

the variance of specific energy imparted per cell increases with decreasing cell size [31, 175].

This might offer insights to why in Fig. 3.12a between 5 to 7 microns range, a decreasing
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probability of post RT recurrence was shown as the cancerous cs distribution mean decreases.

It might be due to an increased variance of specific energy with lowered cancerous cell

size [114, 116]. In contrast, smaller non-tumoral cs distribution mean (4 - 10 microns) led

to a higher probability of post ?? recurrence. This could potentially be explained by the

same idea that the specific energy deposition increases with smaller target cell size. However,

when the target belongs to a non-tumoral region, healthy tissues were therefore injured by

the increase in microdosimetric spread whose biological response may have led to an increase

in post RT recurrence.

It is especially curious that some non-tumoral imaging features were ranked and

quantified as being more imperative to classifying the outcome of post RT recurrence.

More specifically, patient-specific non-tumoral ns distribution std and the non-tumoral ns

distribution mean were the most promising at prediction for the negative class of no post

RT recurrence shown in FreeViz Fig. 3.19. This observation invites further investigation in

cell subtype classification within the non-tumoral region as prognostic subtypes potential

has been shown with,for example, the presence of tumor-infiltrating immune cells,

cancer-associated fibroblasts, and vascular invasion, in relation to tumor

microenvironment [176]. Concepts in relation to Normal Tissue Complication Probability

(NTCP) Tissue Complication Probability (NTCP) might also be drawn depending on how

exactly these non-tumoral features behave. Furthermore, as dimensionality reduction and

visualization approaches, the FreeViz [8, 9] Orange application attested superior class

separation visualization ability than PCA.
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4.3 A TPOT autoML approach towards predictive

modelling

Automated machine learning has not yet been commonly explored in the medical physics

and radiation oncology domain. In this work, we explored a TPOT autoML approach to

predict the post RT recurrence outcome given pre-treatment clinical and imaging (i.e.

patient-specific cell / nuclei distribution data) features, and achieved reproducible results

with excellent model performance (see evaluation metrics for best pipeline produced by

TPOT autoML and replicated in Table 3.4). This validated its purpose to accelerate the

ML pipeline construction and selection process. More critically, it emphasized the

data-driven model building nature that is agnostic to any inherent bias towards the data

itself, which also struck a good balance between agnostic modelling and adding domain

expertise into the problem to optimize the model [51]. Most definitively, it provided at

least a head start to the data pre-processing, feature engineering, ML model selection, and

hyperparameter tuning process, which would be especially beneficial to researchers and

clinicians who are not necessarily experienced with ML knowledge yet.

With our experimentation, TPOT autoML worked very well and relatively fast in under

a few hours to deduce a best pipeline after 100 generations. However, based on the TPOT

creators [48], since the number of generation (i.e. 100 in this analysis) was set by hand,

a different number chosen could yield different "best pipelines" had we let it run longer.

This is because genetic programming is used to allow TPOT to search through different

operators (i.e. data preprocessors, ML algorithms, and hyperparameter choices). Therefore,

a deeper and thorough comparison of TPOT best pipeline results yielded by various number

of generations should be conducted to increase the confidence in trusting the "best pipeline"

results, as well as investigating the top ranked (which were not the best) pipelines from each

set generation number. A noticeable limitation is that the results of the model used in this
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thes were averaged internal CV scores over ten folds of stratified shuffle split cross validation

on the entire patient cohort of thirty-six patients. In other words, all available data were

used for training and there were no model performance evaluation on any test set. Though

good averaged internal CV scores were shown in our results whose permutation test 3.21

appraised real dependency between the features and the outcome, the model must be tested

in an unseen dataset in the future, preferable from an external institution, while following

the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or

Diagnosis (TRIPOD) criteria [177,178].
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Chapter 5

Conclusion

5.1 Conclusion

In this thesis a fully-automated software was developed to extract microscopic nuclei size

cell spacing distribution from clinically used histopathology whole slide images. Given the

extracted pre-treatment patient-specific cell and nuclei data as well as clinical variables,

the outcome of post radiation therapy recurrence at the time of follow up was investigated.

Radiological stage at time of radiation was shown to be the most important clinical feature

to predict the post radiation recurrence outcome. Cell and nuclei target size (image)

features from non-tumoral regions were of crucial importance to our clinical endpoint of

interest. We also showed that predictive modeling with an automated machine learning

system, Tree-Based Pipeline Optimization Tool, was able to utilize combined (cell spacing

nuclei size) imaging and clinical features to predict post-radiation therapy recurrence

outcomes for gynecological cancer patients, despite the small dataset and low event rate.
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