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Classical two derivative gravity of type IIB String theory is insufficient to satisfy the
no-go theorems in order to have a four dimensional spacetime with positive cosmo-
logical constant such as De Sitter. But on the other hand, quantum corrections could
allow for de Sitter solutions provided certain constraints are satisfied. But in the
time independent background it is found that in order to maintain such constrain
an infinite numbers of time-independent corrections are needed. As they have no
relative suppression it causes a breakdown in the effective field theory description.
Therefore in this study we look for more general time dependent solutions, where
both the internal space as well as the background fluxes are all time-dependent
with full De Sitter isometry in four dimensional spacetime. We analyse the both the
perturbative and non perturbative quantum corrections in such background and
determined their corresponding type IIA string coupling g, scaling. Surprisingly
we find out that time dependency allow a finite number of quantum terms at any
given order in g, thus allowing an EFT description. We also show how the no-go
theorems and the swampland criteria are avoided in time dependent background.
Newton’s constant can be kept both time dependent or independent depending
upon the ansatz. But the former has a late time singularity which is not present in
the later case. We try to present convincing arguments to justify the presence of a
late time de Sitter vacuum with time independent Newton’s constant to be present
in the IIB string landscape and not in the swampland.
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(French Translation) La gravité classique a deux dérivées de type IIB de la théorie
des cordes est insuffisante pour satisfaire les théoremes non-passables, afin de dis-
poser d'un espace-temps a quatre dimensions avec une constante cosmologique
positive telle que De Sitter. Par contre, les corrections quantiques pourraient per-
mettre des solutions de Sitter a condition de respecter certaines contraintes. Dans le
contexte indépendant du temps, il est évident que pour maintenir une telle con-
trainte, un nombre infini de corrections indépendantes du temps est nécessaire.
Comme ils n'ont pas de suppression relative, cela entraine une rupture de la de-
scription de la théorie du champ effectif. Par conséquent, dans cette étude, nous
cherchons des solutions plus générales dépendantes du temps, ou1 I’espace interne,
ainsi que les flux de fond, dépendent du temps avec une isométrie De Sitter dans
un espace-temps a quatre dimensions. Nous analysons les corrections quantiques
perturbative et non-perturbative dans un tel arriére-plan et déterminons la mise
a I'échelle de leur couplage de chaines de type IIA correspondant. De maniere
surprenante, nous découvrons que la dépendance temporelle permet un nombre
fini de termes quantiques pour tout ordre donné, permettant ainsi une description
de I'EFT. Nous montrons également comment les théoremes d’interdiction et les
criteres de swampland sont évités dans un contexte dépendant du temps. La con-
stante de Newton peut étre dépendante du temps ou indépendante en fonction de
I’Ansatz. Mais le premier a une singularité tardive qui n’est pas présente dans le
dernier cas. Nous essayons de présenter des arguments convaincants pour justi-
fier la présence d'un vide de Sitter a temps tardif avec une constante de Newton
indépendante du temps, présent dans le paysage des cordes IIB et non dans les
swampland.
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Chapter 1

Introduction

The concept of the cosmological constant was proposed by Einstein in 1917 to coun-
terbalance the effects of gravity to achieve a static universe - an idea which was
the most popular and accepted view at that time. But he eventually dismissed the
idea of cosmological constant after Hubble’s discovery of the expanding universe in
1931. Quite curiously, from the 1930s until the late 1990s, the cosmological constant
was assumed to be zero by most physicists. This viewpoint changed surprisingly
in 1998 after people found out that the expansion of the universe is accelerating;
implying the possibility of a positive nonzero constant value for the cosmological
constant. In the 1990s, after almost sixty years, studies and experiments have con-
firmed that around 68 percent of the mass—energy density of the universe can be
attributed to dark energy. The cosmological constant is the simplest possible ex-
planation for dark energy, and is used in the current standard model of cosmology
- referred as the ACDM model. The zero point energy due to fluctuations of field,
arising from the zero-point energy in their ground state, acts as a contributing factor
to the cosmological constant A; but calculations considering these fluctuations give
rise to an unusually gigantic value of vacuum energy- exceeding the observed value
from cosmology by some 120 orders of magnitude. This discrepancy of the calcu-
lated value from the observed one is often considered to be one of the worst theo-
retical prediction in the history of physics (referred to as the cosmological constant
problem) and poses one of the greatest theoretical challenges of our time. Possibly
we need to have a fully developed theory of quantum gravity, (perhaps superstring
theory) before we can predict the smallness of value of the cosmological constant.

It is now well accepted that the late-time behavior of our universe is one of accel-
erated expansion. De Sitter space is the maximally symmetric vacuum solution of
Einstein’s field equations with a positive cosmological constant which mimics accel-
erated expansion. On the other hand, String theory is often described as the leading
candidate for the theory of quantum gravity which can give us a nice platform to
solve the above mentioned problem. As the late-time behavior of our universe is
one of accelerated expansion, we are motivated to look for solutions that exhibit
accelerated expansion within string theory. Among the existing proposed construc-
tions, the most prominent one is the KKLT scenario [1], which involves a subtle
patchwork of ten-dimensional and four-dimensional phenomena coming from an
interplay of supergravity degrees of freedom with stringy effects such as higher
derivative corrections, brane instantons or other brane world-volume phenomena.
How and whether all the ingredients of any particular construction come together
to produce the desired solution is still a matter of some dispute [2, 3, 4, 5].
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The lack of full top-down constructions, along with the various objections to exist-
ing proposals, has led to recent swampland conjectures[6, 7, 8, 9, 10, 11] regarding
the effective potentials that arise in string compactifications; ruling out de Sitter
vacua. These conjectures are themselves largely based on the known behavior of
effective potentials in regimes of string theory where top-down calculations can
be performed. Swampland conjectures favor quintessence models over de Sitter
solutions but it comes with the additional problem of time-varying Newton’s con-
stant. The problem of finding de Sitter starts with famous Maldacena Nunez No
go theorems[12, 13] which basically relates the positivity of four dimensional cur-
vature with energy momentum tensor of the matter fields. Let us consider the an
action where gravity is coupled to matter:

1
Stotal = % /le’\/ —GpRp + /dDCCEinm (1.1)

Here, «/—Gp is the determinant of the D-dimensional metric gy;y. Gp and Rp are
the D-dimensional Newton constant and the Ricci scalar in D dimensions respec-
tively. The metric for D dimensional spacetime is gy;n, where, M, N etc indices take
value from 0, .., D — 1, and L;y is the interaction lagrangian. The equation of motion
for this action is
Gp

where Gy is the Einstein tensor and 7),n the energy momentum tensor. By defi-
nition energy momentum tensor is-

2 5£int
Tyun = —\/__GD(SQMN. (1.3)
Also Einstein tensor is,
1
Gun = Run — §gMNR (1.4)
Re-writing eq. (1.2)
g 1
Run = 7[) (TMN - mgMNT) , (1.5)

where T is the trace of energy momentum tensor which is defined in the usual way,
Le.

The D dimensional metric is,

dsfj = ds?l + ds%_4 = g drtdx” + gppdx™dx". (1.7)
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which could be generalized to include a warp factor which shall be ignored in this
section. We have divided the D dimensional spacetime into two parts. The space-
time part M, is spanned by coordinates (2°, z!, 2% %) = (¢, z,y, ), where t is time-
like and the rest are spacelike. The rest is internal space MP”~*, spanned by space-
like coordinates ™, m = 4, .., D—1. Now as we have considered our D-dimensional

spacetime as eq (1.7) we can write the Ricci scalar for M, as:
Ry = g"R,,. (1.8)

If R4 > 0 we obtain a four dimensional spacetime with positive curvature. De Sitter
and FRW metric are prime example. On the other hand if R, < 0 we will have
negative curvature solutions such as anti-de Sitter type geometry, but this is not the
state with the current universe. Minkowski space for example has zero curvature,
R, = 0. Taking the trace of (1.5) in the x, v directions, we get

Kp

RERECE)

[T4(6 — D) +4T,"] . (1.9)

Thus to have R4 > 0, we must satisfy the condition:
(D —6) Ty > 4T3 (1.10)

Whatever the content of the Lagrangian, we must satisfy (1.10) if we are to obtain a
positively curved four-dimensional universe. But the problem is just using the clas-
sical lagrangian of lets say type IIB string theory it is not possible to maintain the
above inequality[14, 15]. We definitely need to add quantum corrections[16] but in
this setup of time independent compactifications quantum corrections come with
their own sets of problems[14, 15]. Please note we are referring ansatz like eq (5)
time independent compactification as the internal manifold M”~* is independent
of time. An important upshot of the analysis in ref. [14, 15] is that for a time in-
dependent compactification ansatz to de Sitter space, the quantum corrections that
needs to be switched on to have a positive cosmological constant in four dimen-
sions, result in the appearance of an infinite tower of additional time-independent
corrections. All the quantum corrections come without any clear relative suppres-
sion. This was interpreted to indicate a breakdown of an effective field theory de-
scription. Therefore, even if a de Sitter compactification ansatz could be realized,
the physics in the four dimensional space could not be described by an effective
tield theory with finite number of fields.

In the previous series of studies by Dasgupta et. al. [14, 15] the construction of
de Sitter vacua in type IIB theory were analysed from the M-theory uplift point of
view. In M-theory, all the type IIB fluxes can be written into one four-form flux
components which makes the equation of motion much simpler to analyse. Addi-
tionally, the orientifolds of type IIB become smooth spaces in M-theory. There, all
the corrections are built out of various higher order combinations of the curvatures,
fluxes and their derivatives can be considered, yielding constraints that the series
of quantum corrections have to agree with result in positive 4-dimensional scalar
curvature. This proliferation of the number of time-dependent fields does have a
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slightly simpler representation from the M-theory perspective. However it should
be noted that the de Sitter space that we wish to inspect carefully is in the type IIB
side. In this study M-theory is used as tracking device to solve the equation of mo-
tion in the type IIB setup. It does not imply that we are looking for a de Sitter space
in M-theory. So what has been found in previous study is while on one hand all
classical sources that could allow for solutions with de Sitter isometries are ruled
out by no-go conditions, the quantum corrections, on the other hand, could allow
us to have de Sitter solutions in four dimensions provided certain constraints are
satisfied. A careful study however reveals that such a constrained system does not
allow for an effective field theory description in four-dimensions[14, 15]. In such
time-independent compactification there are unfortunately quantum pieces which
have no M, hierarchy and appear in the EOMs without type IIA string coupling
any g, factors.

In this thesis we consider a new ansatz for the internal space geometry as well as
the background fluxes where both are time-dependent. We study in detail such a
background by including perturbative, nonperturbative as well as local and non-
local quantum corrections. Our analysis reveals a possibility of well defined four-
dimensional positive constant with de Sitter isometries and time-independent New-
ton’s constant in four dimensions. In our study the quantum contributions obtain a
time-dependence and become vanishing at late times, precisely when the type IIB
description is expected to be well founded. Also fortunately these hierarchies that
we were missing for the time independent cases studied before[14, 15], which in
turn lead to the non-existences of four-dimensional EFTs in the type IIB side are
present in the time dependent compacification. We find that time dependences of
the G-fluxes guarantee a certain level of g, hierarchies. In time dependent compact-
ification quantum contributions appear as a finite number of quantum terms at any
given order in g,. This consequently allows an EFT description as evident from the
gs scalings for time dependent compactification.

In the next section we first introduce the metric for the time dependent internal
manifold. Afterwards, we present an improved classification scheme[17] for the
quantum corrections and identify the most general local as well as non-local correc-
tions to M-theory that can be built out of derivatives or integrals of various contrac-
tions of the fluxes and curvatures. We evaluate the relative scaling of the quantum
corrections with the type IIA string coupling which basically track time dependency
of each piece. Here we present two main choices of time dependence for the fluxes
and internal geometry, one of which yields time independent Newtons’s constant
and the other produces time dependent Newton’s constant. The former is of course
more appealing to us as this is what we observe in nature.

With the classification of the different quantum corrections along with the g, de-
pendency of each term, we further derive the quantum-corrected equations of mo-
tion at every order of g, in chapter 3. We find out that a solution with positive 4-
dimensional curvature can be obtained, i.e. the inequality (1.10) can be maintained
provided the leading quantum corrections satisfy constrains similar to those found
in reference[18, 19, 20]. For further consistency checking we also investigate the flux
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quantization as well as anomaly cancellation conditions[21, 22, 23], for our metric
ansatz. We further discuss how the no-go condition and the swampland criteria
are avoided in generating such a background with the help of quantum corrections.
Some recent work on generating de Sitter using different techniques than what we
used here are in [24, 25, 26].






Chapter 2

Time dependent compactification

2.1 Time-dependent backgrounds, fluxes and quantum
effects

It is difficult to get a four-dimensional effective field theory description with the
full set of de Sitter isometries and time-independent internal space ([14] and [15]).
The Kasner type solution and dipole type deformation are also seen to be unhelpful

([171).

These observations may be summarized as follows. Firstly, breaking the de Sit-
ter isometries in four dimensional space for type IIB theory by introducing four-
dimensional isometry breaking factors is not useful. It is also unhelpful to keep the
metric components of the internal space in type IIB theory time independent by in-
troducing time-independent warp factors. Keeping most of the background G-flux
components time-independent, in the M-theory uplift of the type IIB background,
also does not help.

We are thus motivated to make the following ansatz for the type IIB metric:

1
A(t)

ds* = (—dt? + daf + da} + dxd) + Vh (Fl(t)gag(y)dy“dyﬁ + F>(t)gun (y)dymdy”>, 2.1)

S

with o, 8 = 4,5 and m,n = 6,7,8,9; h being a function of internal cordinates.
Although not natural, this division of the metric components is nevertheless useful.
For instance, a time-independent internal space volume can be made by taking the
functions F;(t) as:

F(t) = wi(t), Fyt) = ﬁ 22)
where w(t) is another arbitrary function of time. Note that with this choice of the
metric the internal space is a strict product of a four-dimensional manifold M, and
a two-dimensional manifold My, implying that metric components like g,,, will be
taken to zero. Generalization of this is easy to achieve simply by switching on gu,
so we will not discuss it much here. The division is also reflected in the M-theory
uplift of (2.1), which takes the form:

ds? = €2A(y~,t)(fdt2 + da? + dz?) + eQBl(y’t)gagdyadyB T 2Bt g gumdyn 4 20w g datdad,
(2.3)
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where (a, b) are the coordinates of a square two-torus parametrized by coordinates
xg and x1;. The internal eight-manifold in M-theory therefore takes the following
form:

2
Mg = My x My X %, (2.4)
where locally G = 1 as clear from the metric (2.3). Globally however, as before,
we don’t want the manifold My to have a vanishing Euler characteristics, so G will
have to be some symmetry group of the internal toroidal space. In terms of the
metric (2.3) this is invisible, so we can continue using the local metric. The various
warp-factors appearing in (2.3) may now be expressed as:

ol

@O = A h(y)]?
BT, P = BODBOTREE, @)

where all the parameters appearing above have been defined earlier. The way we
have expressed the warp-factors, they appear to be functions of (y*,y™) and ¢, but
not functions of the space-time coordinates or of the fibre torus. If we relax the
T-duality rules, we could even allow the warp-factors to be functions of the fibre
torus, but then the analysis will get more involved. We want to avoid this, and also
avoid complicating the space-time geometry by introducing isometry breaking fac-
tors.

et = [A@)] " [h(y)
et = R (1) [A(1)]

wim
wlm

Again, it may be a concerning the specific procedure of the duality, as the M-theory
uplifting requires us to first put the x; direction on a circle and then dualize this
to M-theory to be eventually combined with the zy; circle to form a torus T?. In
this process the special role played by x5 (or any other chosen space direction) then
breaks the De Sitter isometry in the type IIB side converting to a geometry that isn’t
quite a de Sitter space that we want to study. But we can actually go to the zero vol-
ume limit of the M-theory torus T? and then slowly increase the type IIA coupling.
The latter process is however subtle as the type IIA coupling is proportional to:

gs oc AV (M), (2.6)

therefore it is only the early time physics that is strongly coupled®. Thus the very
early times, keeping one of the cycle of T? to be of vanishing size, would effectively
capture the type IIB background that we want. At late time, since g, — 0, this can
easily be done. The warped eleven-dimensional radius vanishes, and so does the
radius of the z3 circle. Combining them they take us to type IIB.

'Recall —oco < t < 0 because of the flat slicing of the de Sitter space, so t — —oo will be early time.
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2.1.1 Structure of the warp-factors and the background G-fluxes

F; and F, for example can maintain this simple relation:

6193

i
with specific choices for (e, e1). For example, the choice (1, 0) i.e (2.2) corresponds to
the standard de Sitter metric, whereas the choice (0, 1) corresponds to fluctuations
over the de Sitter metric. Here we have absorbed the constant type IIB coupling in

the definition of & to avoid introducing extra factors and used the IIA coupling g
to express the RHS. Note that the choice:

Fi(t)F(t) = eo + (2.7)

2 9s

is not the volume-preserving choice (2.2). The volume-preserving choice would
give us a time-independent overall volume of the internal space. On the other hand
(2.8) would give a time-dependent Newton’s constant if applied to the standard
de Sitter metric. One may then view the two cases from (2.7) as representative of
time-independent (i.e (eo, e1) = (1,0)) and time-dependent (i.e (ey, e1) = (0, 1)) cases
for the standard de Sitter metric. Interestingly the choice (2.2) resonates well with
the condition prescribed for the Newton’s constant in [30] (see eq. (2.3) in [30]), so it
will be interesting to compare the result of our investigations with the ones in [30].
We will discuss this later.

The functional form for F(¢) and F»(t) are still undetermined and the two cases,
namely (2.2) and (2.8), differ by having either a constant or g2 on the RHS. For either
of these two cases, we can start by defining F;(¢) in the following way:

= () ()

k,n>0 S

92 Ak nhA/4
coo + Z Cko (\/—%) + Z Con €XP (— s ) + cross terms, (2.9)

k>0 n>0

where if ¢y vanishes then there is no time-independent piece: and ¢y, are integers
with (k, n) € (£,7Z). We have also inserted a constant parameter A whose value will
be determined later. The above expansion is defined for small g, in type IIA, and we
have assimilated the negative powers of g, as a non-perturbative sum. The latter
is motivated from a resurgent sum of powers of inverse g, at weak IIA coupling
so that all (k, n)-dependent terms in (2.9) are small. However since the type IIA
coupling depends on both time and the coordinates of the internal space in the type
IIB side, care is needed to interpret what is weak and what is strong coupling here.
At a given point y, in the internal space, the time interval:

t]* < (2.10)

1
Avhwd’

should be related to weakly coupled interactions in the type IIA side. For small
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cosmological constant A and small internal warp-factor at any point in the inter-
nal space, (2.10) scans a reasonably wide range of time interval provided we can
argue for the smallness of both A and h(y). The smallness of A, in appropriate
units, should be viewed as an experimental fact, whereas the smallness of h(y) at
all points y™ in the internal space is more non-trivial to establish. We can take this
as a requirement and arrange the fluxes etc to suit the equations of motion, but
whether this can indeed hold needs to be seen. In any case as long as h(y) < 1
and A << 1, (2.10) will assert a wide range of time interval for weakly coupled
interactions. With this in mind, we can express F}(t) as

2 Ak+1 AJ4
Fi(t) = (%) - Z bin (—) exp (— n;LA ) , (2.11)
k,n>0 s

where by, are constant coefficients that may be related to the cy,, coefficients (for £ >
0,n > 0) in (2.9) at weak coupling. The way we have expressed (2.11), comparing to
(2.9) implies by, = b1/2,, = 0 for k = 0 and k = 1/2 respectively. Similarly the single
and double time derivatives of F,(t) may be expressed as:

. r A 1

F2 92 Ak—1/2 gQ Ak—5—§ nhA/4
— = Crn | 2EA < 2 > +nA [ = exp | —
VA k%(] I Vh Vh 95

F gg Ak—-1 gg Ak—-A-1 nhA/4
KQ = chn 2EA(2EA — 1) (\/ﬁ) + n2A? i exp | — s

k,n>0
i 2 \ Ak—A/2-1 AJ4
g nh
+ Z Chn |PA(AKA — A —1) < 2 ) ] exp (— N ) , (2.12)
k,n>0 L \/E Js

which shows that the time derivatives of F,(¢) may also be expressed in terms of
integer powers of g,. Needless to say, a similar conclusion also extends to the single
and double time derivatives of F}(t) with the replacement of ¢, by by, in (2.12).

The above discussion pretty much sums up the requirements that we want to
impose on the warp-factors so that they solve the equations of motion. Let us take
the following configuration:

(b.m) 2\ Ak nhA/4
GMNPQ y,1 Z gMNPQ (\/ﬁ) eXp (_Q—A> ) (2.13)

k,n>0 $

with the tensorial coefficient Qz(ﬁﬁ)PQ for various choices of k € Z and n € Z being
functions of the internal coordinates y™. Such an expansion guarantees that the flux
components are expressed in terms of all positive and negative integer powers of
g2. There could also be a similar expansion for the potential Cjyp, but we only
use the field strength here as these are the relevant variables for our case. Note also
the similarity of the expansion with (2.9) and (2.12). This is intentional as such time
dependences should borne out of the time-dependent warp-factors for the internal
space, and they in turn will be related to each other via the equations of motion to
be satisfied by the corresponding coherent states. All these will be illustrated below,
but before we proceed it may be worthwhile to isolate the time dependences of the
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G-flux components with all upper indices from the time dependent warp-factors.

The necessity — or more appropriately the usefulness — of such an approach is
two-fold. One: isolating the time dependences this way will emphasize the con-
tributions of the warp-factors towards the temporal behavior of the fluxes more
succinctly; and two: the time-independent cases would follow simply from the
aforementioned expansion by switching off the un-related terms thus forming a
single setup to study both time-dependent and time-independent cases. With these
in mind, we can isolate the time dependences in the following way:

G012 — 0120 (4)]13/3],5/3 o
Qo12m _ GOlQm[A(t)]B/BhWSF{l
QB _ Gaﬁ’yﬁ[A(t)]4/3h—4/3Fl—4
Gebra — abya [A(t)]1/3h’4/3Ff3
Qmnpa _ mnpa [A(t)]l/Sh_4/3F2_3
Gmnpe — Gmnpq[A(t)]4/3h—4/3F2—4
GoBab _ Gaﬂab[A<t)]72/3hf4/3Ff2
Gmnab _ Gmnab[A(t)]—2/3h—4/3F2—2
G = G A (1)) PRy R
Gmnaa _ Gmnaa[A(t)}1/3h74/3F272F171
GmaBa _ mafa [A(t)]l/gh_4/3Ff2F2_1
G™ P = GNP PR
gmaby — maby [A<t)}4/3h74/3F2—1F173
Gmeab — Gmnab[A($)]"2/3p 4B ST (2.14)

where the division of the coordinates follow the prescription (2.4) namely, (m,n, p)
denote coordinates of My; (o, ) denote coordinates of Mo; (a, b) denote coordinates
of T?/G; and (u, v) denote coordinates of the 2+ 1 dimensional space-time. It should
be clear from (2.14) that the flux components with all upper indices, i.e GMNP@(y, t)
are functions of (y™,t) and may be got from (2.13) by raising the indices using the
un-warped metric components ¢,5(v), gmn(y) and gu(y) from (2.3). Additionally
we can also switch on flux components with at most two legs along the space-time
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directions. These may be tabulated as:

G;uxab Guz/ab[ (t)]4/3h2/3

GHrea — (auvaa [A(t)]7/3h2/3F1_1

G;Laab Guaab[A(t)]l/iihfl/iiFfl

GHvma _ yuvmn [A(t)]7/3h2/3F2_1

G/waﬂ /waﬂ [A(t)}10/3h2/3F1_2

GHaBy — G”Q'BW[A(t)]W?’h*l/gFf?’

Gua,@a Gua,ﬁa [A(t)]4/3h_1/3F1_2

Gmnab umab[A(t)]l/Sh—1/3F2—1

GHvmn _ cypvmn [A(t)]10/3h2/3F272

Gumna _ Gumna[A(t)]4/3h—1/3F2—2

GH™P = GHTPIA ()] BT BEy

GHrma _ ypvma [A(t)]w/ghng;lFfl

QHmaa _ cmaa [A(t)]4/3h_1/3F1—1F2_1

GHmne = Ggrmne [A(t)]7/3h_1/3F2_2Ff1

GHmel = GEmeS ()P B R R, (2.15)
Fortunately we will not be required to keep all the flux components in our compu-
tations. Some of the G-flux components, such as Gryap, Gmape and Ginpa, have to

be put to zero to keep the type IIB solution (2.1) as it is (otherwise cross-terms may
develop). The flux components relevant for us are in this study:

G012m; G012a7 Gmnpaa Gmnam Gmnab
Gmaﬁay Gmnpq, Gmnpay Gmnaﬁ; Gaﬂabu GmaalM (216)

whose upper indices may be extracted from (2.14).

2.1.2 Perturbative and non-perturbative quantum corrections

For time-independent Newton’s constant, there are two cases to consider for warp-
factors Fi(t) and FQ( ) in (2.11) and (2.9). For the first case, we consider vanishing
coo for Fy(t) in (2.9). Fi(t) then becomes:

1 92 >Ak+Ak’1 [ (n + n/)hA/4:|
— = CinChiny | —= exp | ————|, 2.17
Ty~ 2O (JE o — 217

where (k, k') = (2 , 2) and (n,n') = (Z,Z), and we see that we can equate the inverse
of the RHS to the perturbative series (2.11) because of the following limit:

1 1
glslgo anAeXp (_g_A) =0, (2.18)

S

for any finite value of n, implying that for small g,, both Fi(¢) and F5(¢) may be
expressed as perturbative series. The difference however is that F5(¢) does not have
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a time-independent piece whereas Fj(t) does have a time-independent piece for
k=Fk =1
2
The second case is when we consider non-zero cyy, and we take ¢y = 1 without
loss of generalities. Clearly F5(t) now has a time-independent piece, but now F(¢)
takes the following form:

2

g g2\ A nh®/4 INTYPN
Fi(t) = \/‘% -2 Z Ckn (\/—‘%) exp (— = ) +0 <g§‘M+4e_2"h /95 ) ,

k,n>0 $

(2.19)

where the higher order terms appearing from going beyond quadratic orders for
the series sum. We see that (2.19) do not have a time-independent piece, and in
fact this could be equated to the perturbative b, coefficients in (2.9) as alluded to
earlier.

Thus it appears that, demanding the fluctuation condition (2.8), allows both
Fi(t) and F,(t) to have a perturbative series but selectively precludes a time-neutral
piece in one over the other. This case may be rectified if the demand like (2.8) on
Newton’s constant is eliminated, wherein the perturbative series for both F}(¢) and
F5(t) may now be unconstrained. For the time being we will take ¢y = 1 in the def-
inition of F5(t), implying the following relations for the time derivatives of Fi(t):

: 29, 1/2 gs O A
Fy = Dy, (A/ - h1/4.§10gF2 x g5<1+(’)(gS )>

F’ — % _ 4gsA1/2 . 4gsA1/2F2 B 293}%2 6g§F22 x 1+ O( A)
TR T WAR T RVARD WZER  h2E) 95 )

(2.20)

showing that both F; as well as F} have perturbative expansions in powers of g,
because 1/F}" has perturbative expansion in terms of g for all values of n. How-
ever 1/F* does not have any perturbative expansion in terms of g, for g, — 0, but
could have once accompanied by other factors that go as positive powers of g,. For
example the power of g, that appears from a generic combination of F;(t) and their
time derivatives may be written as:

gy Fy P Y FLEY
Ff

g (14 0(g2). @21)

where we only isolate the g, factor but do not show the perturbative series in the
bracket. The latter could be easily ascertained from (2.12) and (2.20). The above
analysis shows that as long as

m-+n
k<
—_— 2 bl

(2.22)

any series containing terms like (2.20) will have a perturbative g, expansion in the
type IIA side. Our analysis also shows the irrelevancy of the other powers con-
trolled by r,p, [ and ¢ as they are always proportional to 1 + O(¢g) and therefore
already perturbative.
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Product of G-fluxes and g, expansions

Let us study the following quantum correction, Consider the following series:

GQGmnpg abGa k
Q=D a ( e *’pq) : (2.23)
L P

where ¢, are numerical constants, Gy/npg are the warped G-fluxes and M, is the
Planck scale in M-theory. This is an infinite series and clearly every term is time-
neutral if we consider time independent compactfication, or its M-theory uplift, as
shown in [15]. Plugging the flux and the metric ansatze (2.13) and (2.3) respectively
in (2.23), we get:

Vh

g5

JUS k
G(u1,uz) mnpq G (usua) ab G (us,ue) 2\ ¢Auzs_1 r A/4
@oye [ 3 OO G (Y ]
k

31412
{ui}>0 Mp F2 h

where the indices are raised and lowered by the un-warped metric with (m,n)
being the coordinates of M, and (a, b) being the coordinates of T?/G. We have also
used (*® to denote the sum with both u,,_; as well as uy, with:

d=¢=¢=1, "==0Vk>4, (2.25)

such that depending on the value of u; the series (2.24) may or may not have a
time-neutral piece. (The repeated indices are summed over.) From the way we
constructed the series, it should be clear that uy,_; € % and uy, € Z, implying that if
these parameters start from zero as denoted in (2.24), Q; will take the form:

k

GO.0) P (G(00)) P (5(0,0)
Q=) ) (hQM);”” ( )“bpq+0(g?,e‘”99) , (226)
k p

with the g, independent term will be the time-neutral piece exactly as we had in
[15]. Presence of such a term will create the same hierarchy problem that we en-
countered in [14, 15], so our attempt here would be to somehow eliminate such a
term. This is easily achieved by imposing;:

Girnpe(y) =0, (2.27)

which in turn will eliminate all time-neutral pieces that have G,y p¢ in them. The
puzzle however is that the condition (2.27) does not preclude terms that were not
originally time neutral with the IIB metric, but could now become time-neutral if
one chooses the IIB metric (2.1) or it’'s M-theory uplift (2.3). To see whether this
could happen then calls for a more careful analysis.

To begin, let us first concentrate on quantum series constructed exclusively from
product of G-fluxes with no extra derivatives. The G-flux may be represented from
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(2.13), by including the condition (2.27), in the following way:

Guveg = G [G1(Y) + Gy 9] yywpo + ¢ [%(y) + Gal(y, e‘l/g?)]

+ gPBkelod [Qs + G (y,gf,e’”g? )]

MNPQ

2.28
vrQ’ (2.28)

where & € Z; and Gi(y, g2, e"/%") and Gi(y) for i = 1,...,3 may be read up from
G(@™ appearing in (2.13) with or without including the g, pieces respectively. Note
that, compared to (2.13), the smallest power of g, for the G-flux is 2Ak whose range
of values will be ascertained below?. Clearly, once we pull out g?~*, the series still
has a perturbative expansion thanks to the weak coupling limit (2.18).

With this we are now ready to write terms made exclusively with product of
G-fluxes. We require two kinds of terms: one, with no free Lorentz indices, and
two, with two free Lorentz indices. The one with no free Lorentz indices may be

expressed as’:
g]\/[M/gNN/ ...... gDDIGMQpRGNUHG ..... GABCD = [g_l} am [G]m 5 (229)

where m is the number of G-flux components and g,y is the warped M-theory met-
ric components. The indices M, NV, .. cover the coordinates of the eight dimensional
internal space (2.4), and the RHS of (2.29) is the shortened way of expressing the
product of the G-fluxes contracted by the metric indices. The power of the inverse
metric is ascertained from the fact that the 4m components of the G-flux may be
completely contracted by 2m inverse metric components. These 2m inverse metric
components may be divided into /; inverse metric components from T?/G; I, metric
components from M, and I3 metric components from M, of the internal space (2.4).
Using this, the leading order g, dependence of (2.29) may be written as:

[gfl} 2m [G]m ~ ggAkm72(2ll+212*l3)/3 (1 + O (gS’ eil/gs)) , (230)

where we have used the perturbative series for Fi(t) and F»(t) given in (2.19) and
(2.9) respectively to express their g, dependences. At this stage it is useful to note
that the sum of the (I, l3, [3) factors should be equal to 2m, i.e l; + I + I3 = 2m so
that (2.29) remains Lorentz invariant. This reproduces our first condition:

(6Ak—8

; ) m + 203 > 0, (2.31)

with the equality leading to the time-neutral case. Clearly for Ak > 2 there is no
constraint as [3; > 0. In fact if m > 1, I3 must satisfy I3 > 1, otherwise it will
be difficult to have Lorentz invariant terms. For Ak > %, we will at least require
I3 > 5?’”, which means for m = 3 we require /3 = 4. This is of course consistent with

2Ak
s

2 An erroneous way to proceed would be to expand exp (— g%) as powers of 1/g2 to extract g

from the series with k € Z, Such an expansion is not valid at any stage of the expansion in the

gs << 1limit that we are working on.
30One subtlety that we should keep track of is the fact that the G-fluxes are anti-symmetric
whereas the metric components are symmetric in their respective indices.
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the simplest case (2.23). Thus for ; < Ak < 3 we can avoid the time-neutral series
by constraining ;. However if Ak > 2, there would be no time-neutral series that
can appear from any combinations of pure G-fluxes.

Similarly for the case with two free Lorentz indices with m G-flux components
we now require 2m — 1 number of inverse metric components. The reasoning for
this is simple to state. The generic energy-momentum tensor, for either G-fluxes G
or quantum terms (), may be written as:

(G.Q) — 2 65@3 2.32

where S.q is the effective action at any given scale. Such a procedure either removes
an inverse metric component or adds an inverse-of-an-inverse metric component.
In either case, the number of inverse metric components reduces by one. The g,
expansion then remains similar to the RHS of (2.30) but /; satisfy [ + 13 +135 = 2m —1.
This gives rise to the following constraint:

— 4
(_GM 8) mt o >0, (2.33)
3 3
which may be compared to (2.31). For Ak = £, I3 should at least satisfy I3 > =2,

implying that for m = 3, [3 > 2. In general /3 > 1 even for m = 1, although with
m = 1 there doesn’t appear any simple time-neutral term possible. Again we see
that if Ak > 3, there is no constraint on /3, and it appears impossible to construct
time-neutral series with two free Lorentz indices.

We can also discuss the case when Fi(t) and F;(t) have inverses that are per-
turbatively expandable as powers of g;. Clearly for such a case, (2.8) cannot be
satisfied and therefore the Newton’s constant has to be defined using (2.2). Never-
theless, one may see that the quantum terms with zero and two free Lorentz indices
with only G-fluxes go as g*' and g* respectively, where k; and k, are bounded by
the following inequalities:

Ak +4
by = (%)m—lezO
Ak + 4 2
ky = (%)m—g—% >0, (2.34)

where we see that the constraints on /; are stronger than what we had for /5 in (2.31)
and (2.33) above. However since /; captures the metric for the toroidal fibre T?/G,
we expect [; to be small and satisfy the inequalities (2.34). In fact since [; < 2m, so if
Ak > 2 both the inequalities in (2.34) are easily satisfied. Interestingly when k = 0,
if we take m = 3p for the scenario with zero Lorentz indices and m = 3¢ + 2 with
two free Lorentz indices, we have:

lh=2p, la+Il3=4p, m=3p
Lh=2q+1, lb+l3=4¢+2, m=3q+2. (2.35)

where the combination [, + I3 appears because M is not sub-divided into M, and



2.1. Time-dependent backgrounds, fluxes and quantum effects 17

M. Thus we see that for (p, q) € (Z, Z) there are infinite possible solutions all giving
rise to time-neutral series of the form (2.23)*. This justifies the claims made in [15]
regarding a class of time-neutral quantum series.

G-fluxes with multiple derivatives

We now consider the case where there are derivatives along with G-fluxes, all con-
tracted in two possible ways: one with zero Lorentz indices and two, with two free
Lorentz indices. To illustrate this case, let us start with a simple example from [15]
that has no free Lorentz indices:

DQGmna Gmnab k
Q=) by ( i ) , (2.36)
L P

where [J is the covariant derivative defined on the six-dimensional base My x M,
with the warped metric. With time-independent G-flux, and without any F;(t) fac-
tors in the metric, (2.36) is clearly time-neutral because every term in (2.36) is time-
neutral. But now, taking the G-flux as in (2.28), with (m, n) being the coordinates of
My, Q, yields:

mnab

k
2 (g(UI7UQ))m71ab (g(ug,U4)) gf A(uitus) (u2 + u4)hA/4
0-Yn| Y o (%) ()| e
k S

{ui}>0

where the ¢, independent piece will lead to the same issue that we faced in [15],
which in turn may be alleviated by imposing (2.27) as before. However the issue
plaguing earlier, namely the possibility of generating new time-neutral series, now
requires a careful assessment of terms of the form (2.36) taking the g, dependent
G-flux (2.28) into account. The kind of term that we want to consider will then be
of the form:

gMM MMy oDD' gy O, ...Oar, (GrigrrGNuHG-Gapep) = [g_1]2m+§ 01" [G]™,
(2.38)

where the RHS is a shortened symbolic expression for the derivative expressions.

Clearly with only four derivative, contracted appropriately, will reproduce the terms
in the series (2.36). Interestingly the form of the g, expansion is exactly similar to
the expression on the RHS of (2.30) i.e g*3, except now [; satisfy I, + lo + I3 = 2m + 5
This implies:

Ak — 2
Iks| = ‘ (u) m— 42| >0 (2.39)

3 3

where the equality would lead to the time-neutral series. On the other hand, since
n appears with a relative minus sign, sufficiently large n will reverse the power of
ks in g*s and make it negative. Such a scenario should make sense if all the inverse

“The example in (2.23) is made of m = 3 so p = 1. Therefore I; = 2,15 + I3 = 4 with zero free
Lorentz indices.
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powers of g, can be rearranged as:

hAk/4 hA/4
Z O%W = Zﬁl exp (—nl N > , (2.40)
k Ys l Ys

with the integer «;, being related to the integers (5;.n;). The equality (2.40) is the
consequence of summing the series in appropriate way, and should in principle be
possible if non-perturbatively the series has to make sense’. Assuming this to be the
case, the puzzle however is more acute. We show what happens if we take a partic-
ular value of n for a given m, i.e n number of derivatives, such that k3 vanishes. In
fact all we require is for n to take the following value:

n = 3ls + (3Ak —4)m, (2.41)

to create a new class of time-neutral series with m G-fluxes and n derivatives. One
might rewrite (2.40) in a slightly different way that puts the relative minus sign
elsewhere as:

Ak +4

which simply transfers the puzzle now on the values of /; and [, instead of on the
number of derivatives. This doesn’t appear to alleviate the issue because increas-
ing n also increases the metric components. However since /; and [, denote the
metric components along T?/G and M, respectively, and if we assume that the G-
flux components are functions of the base M, only, then increasing the number of
derivatives will simply increase /3 without changing /; and l,! This way the con-
straint (2.42) may be easily satisfied without invoking any extra constraint on k. In
fact even if we allow for two free Lorentz indices, the change from (2.42) is minimal:

(6Ak+4

n 2
3 )m+§—§—2(l1+12)20, (2.43)

since n > 2 in most cases. Thus again with more derivatives, there would be no
constraint on k. For small number of derivatives, we expect [; + l < 2m. There-
fore for Ak > 2, (%8544 m > 4m implying that this would dominate over the term
—2(l; + l3) making the LHS of both (2.42) as well as (2.43) always positive definite.
This brings us to similar conclusion that we had earlier, namely with Ak > 2, arbi-
trary flux products with arbitrary number of derivatives do not lead to time-neutral
series provided the G-fluxes are functions of the coordinates of the M, base only.
For F; and Fj, satisfying (2.2) instead of (2.8), the constraint equations for zero and

°In other words at every order in k, terms on the LHS of (2.40) blow-up, yet the sum on the RHS
remains perfectly finite. Thus the representation on the LHS is never the right way to study inverse
gs expansion near gs; — 0. The correct expression will always be the RHS of (2.40).
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two free Lorentz indices become respectively:

3
6ALk +4 n 2
_— — — = =21 > 2.44
( . )m+3 > a0 (2.44)

which are readily satisfied by imposing similar conditions on the G-fluxes and on
k, because increasing n does not affect /; and so Ak > 2 still controls the positivity
of the LHS of both the inequalities in (2.44). We will however soon see that the
condition can be relaxed. Again for £ = 0, we expect the following two cases:

m =3p1 +p2, n=2p2, 1 =2p+p2, la+Il3=4p +2p,
m:3q1+q2+2, TLZQQQ, 11:2q1+qz+1, 12+13:4q1+2q2+2(245)

with zero and two free Lorentz indices respectively. Clearly since we expect (p;, ¢;) €
(Z,Z), there are infinitely many possible solutions each of which leading to a series
like (2.37), and therefore justifying another class of time-neutral quantum series
advertised in [15]°.

Curvature algebra and product of curvatures

In general relativity, curvatures may be represented by Riemann tensor, Ricci tensor
and Ricci scalar. To simplify the ensuing analysis we develop a curvature algebra.

Curvature tensors are mainly governed by the metric of the internal space. We
need to see how everything scales with respect to g,. For example, in writing the
metric components as:

. Y 1A
gl =gun = (9229w, 97 Gup, 952 Gn) ® (1 + O(g2, e 1o ))

— _ A
= (93/3793/3795 2/3> ® <1 + O<gsA7€ 185 )) 4/37

= (0.7.9.77)

g
MN s

(2.46)

the RHS of the second line of (2.46) tells us that the terms in the metric scale as
powers of g, as O(g2>, e~V 95 ) corrections are irrelevant to the analysis that we want
to perform here. In the same vein, we can express the Christoffel symbol in the
following way:

M
INp =g "0lg] = [(9:%%,927) x (¢¥%,9,%%)] ® (1 +0(0, g?,e‘l/g?)>NP

M
= (1793_2792) ® <1 + 0(67 gsAa 6_1/g£>>NP - (1798_2793) ’
(2.47)

®In fact the term in (2.37) is for m = 2, n = 4, therefore p; = 0,ps = 2,1; = 2,15 + I3 = 4 with zero
free Lorentz indices.
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where again the extreme RHS of the second line denotes the overall scaling of
the terms of the Christoffel symbol. Note that the derivative action in the defini-
tion of the Christoffel symbol does not act on g,/v/h and therefore directly goes in
(0, g», e /9)) implying that it would act on ™ dependent pieces where 3 are
in general the coordinates of eight-dimensional internal space in M-theory’.

The identity element in (2.47) is related to those terms in the Christoffel sym-
bol where the g, scaling of [g™!] cancels with the g, scaling of d[g]. This happens
when we deal with the metric components of the individual sub-spaces of the eight
manifold, namely M, M, or T?/G. Similarly the other powers of g, may also be
explained by looking at various contributions to the Christoffel symbol. For us of
course only the g, scaling matters for the time being.

Christoffel symbols now combine together to create the curvature tensors, namely
the Riemann tensor, Ricci tensor and the Ricci scalar. Our symbolic manipulation
should again work for these cases. For example the Riemann tensor with one upper
index may be expressed in this language, in the following way:

M M M S
R¥%po = Oz + s P

A M
= (L,0.%902)® (1 +O(9?, g2 e/ ))NPQ

where in the first line |S| implies that the index S do not participate in the anti-
symmetric operation of its neighboring indices (here it is between indices N and
P). The above form of the Riemann tensor implies that, in terms of g, scalings we
can simply express this as:

RYypo = (1,902,998, 9.) (2.49)

which is got by combining the exponents of g, from the two terms without worry-
ing about the O(¢g2, e /%) contributions. This shortened form captures the main
message and is clearly much more economical to use, but does miss out in distin-
guishing various components that scale in the same way with g,. This is not an
immediate concern, so we will continue with this formalism unless a more sophis-
ticated analysis is called for. Similarly the Riemann tensor with all lower indices
may be expressed as:

Ryunvpg = gMLRLNPQ = (95_2/3793/3795_8/379510/3793_14/379;6/3) (2.50)
= (¢2%,6,7") @ (1,g2.9,%) + (92,92 @ (1,92, 9., 92, 9, %)

where the second line shows how the scaling exponents came about by taking prod-
ucts of various terms. It is interesting to note that although the Riemann tensor with
one upper index has a g; independent piece, the Riemann tensor with all lower in-
dices do not seem to have any such piece. Additionally a specific component of

"More precisely, defining h(y) = H*(y), it is easy to infer that 9y (%) = VA and 0, (%) = 0. To
avoid clutter, we will ignore the H(y) and simply denote the terms with g, scalings.

2
+ (1,052 05,07 g8) @ (14 00,92, e7/97)) |

(2.48)
M

NPQ’
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Riemann tensor, since it is constructed out of derivatives and products of Christof-
fel symbols, has at least four terms with leading g, exponents® and therefore may
be expressed as:

4
w /00
Runrg = ngl [Ri(y) + Ry, g5 e 19)

i=1

= g% |Ry, + O(y, g5, e’”“’?)] :
MNPQ

(2.51)

MNPQ

where a;, = min(ay, as, as, as) will govern the g, expansion for the particular Rie-
mann tensor. Of course many of the above g, powers cannot be realized because of
the absence of certain cross-terms in the metric. If we ignore these subtleties for the
time being, the curvature tensors take the following form:

Runpg = (95_14/37 95_8 37 95_2/3, 93/3a 9510/3, 9;6/3)

RMP = gNQRMNPQ = (1795679;4a9;279579379§)
R = g" Ryp = (95—22/3’95—16/3’98—10/3’954/3795/3793/3’g;4/3’930/3) .

/

(2.52)

All the above g, scalings got using the curvature algebra assume the generic sce-
nario where the metric components are functions of all the coordinates of the four
manifold and, as mentioned earlier, cross-terms exist. However the former cannot
be imposed in the flux sector if we want to avoid time-neutral series with deriva-
tives on fluxes. Extending this to the metric components, we can assume that the
un-warped metric components and the warp-factors are all functions of the coordi-
nates y” of M, implying that the curvature polynomials will also be functions of
y™.

The latter condition, i.e the presumption that all metric cross-terms exist, again
cannot be realized in our case because of the way we expressed the metric (2.3) and
the four-manifold (2.4). Thus a more careful considerations of the scalings of the
various tensor components are called for. Imposing the two constraints: (a) metric
components and the curvature tensors are functions of M, only; and (b) only cross-
terms satisfying the division (2.4) are allowed, the various curvature tensors scale
in the following way:

Rmnpq = 95_2/37 Rabab = 9;0/37 Rabmn = Rambn = g§/37 Raabﬂ = 9;0/3
Rmnaﬁ = 93/3’ Raﬁaﬁ = 9;0/37 Ramnp = Raanp = Rapea = Ramnp = Raaﬁn = 07

(2.53)

where we do not show the O(g2, e'/9") corrections that accompany all the curva-
ture tensors. Although the above set of tensors and their scalings are considerably
simpler than what one would have expected from a generic set-up of (2.52), the
generic scalings are nevertheless useful because they do not rely on the way we ex-
press the four-manifold. We are searching for a specific cosmological solution with
a specific internal space geometry; so we will stick with (2.53) for now and look for

8This implies that each of these four terms have a leading g5 exponent followed by higher powers
of g2 and e~1/9%
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quantum series with zero and two free Lorentz indices. A zero free Lorentz index
quantum term now takes the following form:

{li}
Q3 = gmimi--"gﬂqﬁq H Rmimpiqz'RajbjajbjRpk%akbkRazazbzﬂzRapﬁpmp”pRaqﬂqaqﬁq
{i1=1
Li+Lao+L i
= g7 ] Ry, (2.54)
{i)=1

where the set {i} denotes the set of i, j, k...p integers that determines the product of
all the available Riemann tensors with each set of Riemann tensors (and its various
permutations for a given set of indices) occur [;,1;, 1, ...[, times. The second line is
a symbolic way to represent this using inverse metric components. It is clear that:

Ly =2+ 1y 41y, Ly=2lg+1l+1ls, Ly=2l +1s+1s, (2.55)

with the assumption that [y, ..., ls occur in the same order in which the curvature
tensors appear in the quantum piece Q3. In other words R.,,,,,,,; occurs [, times, R4
occurs I, times, and so on’. Similarly, L, L, and L3 denote the number of inverse
metric components along T?/G, M, and M, respectively!’. Using this formalism,
and plugging in the appropriate g, scalings, it is easy to infer that:

{l:}

Qs = [ —1 Li+Lo+Ls H 11+12+z3+z4+z5+z6)/3 (1 +C’)(gs P 1/g£)> 7
}:
(2.56)

implying that the quantum piece Q3 can never be time-neutral. Such a conclusion is
interesting in the light of our earlier discussions with G-fluxes. Therein we had to
impose some minimal g, scalings for the G-flux components to avoid time-neutral
series. Here we see that the curvature terms avoid the time-neutrality without any
imposition of extra constraints. One would also like to infer what happens when
F;(t) are not constrained by (2.8) but follow (2.2). For such a case the scaling turns

An underlying assumption is that the Riemann tensors are contracted in appropriate ways so
that there is no need to explicitly insert the curvature scalar R or the Ricci tensor R in the expres-
sion (2.54) for Q3. This way we can also avoid differentiating between symmetric or anti-symmetric
Ricci tensors, namely R/ or Ry ) respectively.

9The inverse metric components that we are using here have components g, g% and g™, and

in later sections we will use other space-time components like g/ and g?. In this language the

symbolic representation of the inverse metric components in (2.54), i.e the symbol [g™*] fatlatls

may be expressed in the following way:

Li23s

_11L14+La+L a1 r ag\L2 . s Ls ab B mam
[gl]l 2 BE(gb)l(gﬁ)2(g )L3:Hg1blg]ﬁjgkk’
ik
in other words, (g*) % is defined as the following product (g ) = [T, g™ where (M.N)
=(a,b), (o, B) or (m, n). More generic representations, that include space-time metncs in addition to
the internal space metrics, appear in (2.66) and in (2.79).
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out to be:

Q) = gA(hitiatlstatistle)/3 <1 + O(g2, 671/9?)) , (2.57)

which is exactly the same scaling as in (2.56) despite that fact that now the met-
ric components have different g, scalings. The conclusion then remains the same
as above: there can be no time-neutral series with zero Lorentz index with only
curvature tensors.

What happens when we have two free Lorentz indices? The only changes that
can occur are in the values of L, L, and L;. This is again easy to quantify: if we
want free (a, b) Lorentz indices, all we need is to take (L}, L2, L3) metric components
where L) = L; — 1, with L; being the value quoted in (2.55). Thus generically
we need L) = L; — 1 with j defining the three possible class of metric choices.
Putting everything together, the g, scaling may be expressed as g7 where « takes
the following two values:

6 6
2 4 2 2

where the first one corresponds to indices along T?/G and M, and the second one
corresponds to indices along M,. Note that since at least one of the [; > 1, k >
0 where the strict inequality is for the first case. For the second case there is a
possibility for k = 0 when [; = 1, implying that the Ricci tensor R,,, is actually
time-neutral with or without Fj(¢) being constrained by (2.8) as was also evident
from our curvature algebra (2.52). This will not be an issue as we will discuss later.

We now elaborate the quantum series with product of curvature tensors and
derivatives. As with the G-fluxes we will consider the case where the derivatives
are only along the M, direction i.e all components of the metric are functions of the
internal M, coordinates. The quantum terms now take the form:

{l:}
@4 = gmimi""gﬁqﬂqamr""ams ( H RminiPiQiRa]‘b]‘ajbjRPkaakbA:RalazbzﬁzRapﬂpmpnpRaqﬂqaqﬁq)
{it=1

. {l:}
= [g " e I R (2.59)

where L, and L, are as given in (2.55) and ﬁ3 = L3+ 5 where n is the number of
derivatives. It is now easy to derive the following g, scalings with zero free Lorentz
index:

Q, = gg(ll+l2+l3+l4+l5+l6+n/2)/3 <1 i 0<gSA7 e—1/g§)> ’ (2.60)

showing that there are no time-neutral series possible with curvature tensors and
derivatives without imposing any additional constraints. The above scaling re-
mains unchanged even if F;(t) satisfy volume preserving condition (2.2). On the
other hand, if we demand two free Lorentz indices, the change is again minimal in
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the sense that the two « values quoted in (2.58) unequivocally change by:

H%R+% (2.61)
which is always positive because we expect at least one of the [; > 1 and n > 1.
Thus with derivatives there appears no possibilities of having time-neutral series
whether or not F;(t) are constrained by (2.8).

Adding space-time curvatures with derivatives

The inclusion of space-time curvature contributions is another aspect of the curva-
tures that is going to change our results. So far we have steered clear of space-time
effects, namely fluxes and metric components along the space-time directions, but
now it is time to include them in our quantum series. The space-time metric in M-

theory scales as g, ~ g¢s 8/3 which is different from all the metric scalings in the
internal space. The g, scalings of the curvature tensors with legs along the spatial
directions are easy to illustrate:

Rijij = 0, ", Rijmn = 9", Rigjp = 9.°%, Riajs = 9,°/%,

S S

(2.62)

with other spatial components vanishing. Compared to (2.53), the spatial curvature
tensors have predominantly negative powers of g, scalings.

The curvature tensors with at least one temporal direction is bit more involved
because of the time dependences of the various warp-factors creating numerous
cross-terms. Nevertheless the g scalings can be determined uniquely for each of the
curvature tensors. For the present case we have the following tensor components:

Romnp = 9;5/37 Romon = 958/37 Roioj = 9;14/37 Roaor = 9;2/3
ROaOB - 95_2/3’ RDO‘BW = g;/37 ROabm - g;/S’ ROijm = 95_11/37

(2.63)

including various possible permutations of each components. The g, powers are
again predominantly negative, and the scalings are computed taken all the earlier
considerations of the dependence of the metric components only on the coordinates
of M. Of course, as before, we have not specified the O(g2, ¢~1/9") corrections that
accompany each of the curvature tensors listed in (2.62) and (2.63).

With the curvature scalings at our disposal, let us work out the quantum terms
with product of the curvature tensors. Comparing with (2.53), (2.62) and (2.63) we
see that there are 18 distinct curvature tensors excluding the allowed permutations
of the indices of the individual tensors. Therefore to write the full quantum terms,
we resort to some short-hand techniques. We define:

l;
(Rarnvrg)" = [ [ Rarnvpan (2.64)

k=1
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where the subscript denote the various possible permutations and products of the
curvature tensor for a give set of indices. Using this notation we can express the
quantum piece, appearing from the curvature tensors only, in the following way:

mam! o ! I ! l ! !
Qs = g""™.g™ (Rinnpg)" (Ravan) ™ (Rpgan)” (Raabs) ™ (Ragmn)” (Ragas)”
! ! I
X (Rijij)"™ Rijmn)™ (Riajn)” (Riajs)"™ Romnp)™* (Romon)™ (Rojo;)™
5 l
X (ROaOb)l14 (ROQOB)ll <R0a5m>l16 (ROabm>l17 (R(]ijm) e (2.65)
where the components of the warped inverse metric are used to contract the indices
of the curvature tensors in a suitable way (extra care needs to be implemented to
contract the indices because of the anti-symmetry of the first two and the last two
indices of a given curvature tensor). In a compact notation, (2.65) may be written
as:

18
QE) = [g—l} Ey+FEo+FE3+FEy+FE5 H (RMNPQ)li 7 (266)

=1

where the term in the bracket is defined in terms of individual components in (2.64)
and thus should be expanded accordingly. The powers of the inverse metric com-
ponents E; are linear functions of /; and may be expressed as:

Ey =20+ 1lg+ lg+ lio + l13 + lis (2.67)
lll l16 l17 l18
Eo=—+1 l { { — 4+ — 4+ =
2 5 + l12 + 13 + l1g + b15 + 5 + 5 + 5
3[11 l16 l17 l18
FEy=2 - 220y e
3 W+ 13+ 15+ 1s+ 5 +l12+2+2+2

Ey =2l +l3+ 1+ 1lg+la+ L7, Es=1+15+ 2+ Lo+ li5 + by,

where Ey, F, ...., E5 count the metric components along (¢, 7), (0,0), (m,n), (a,b),
and («, B) respectively. Since we are only after the g, scalings, such a counting of
the metric components would make sense. Therefore using the g, scalings of the
metric components as well as the curvature tensors from (2.53), (2.62) and (2.63), it
is easy to see that the g, scaling of Q5 becomes:

Qs = gg(ll+l2+l3+l4+ ....... +li7+118)/3 (1 + (Q(QSA7 6—1/9$)> 7 (2.68)

which is a generalization of similar scaling for the part of the product of the cur-
vature tensors in (2.56). The conclusion then is also the same, namely, there is no
time-neutral series possible with product of curvature tensors only.

With multiple derivatives we can also work out the quantum terms. The deriva-
tives are going to act only on the internal M, coordinates, so the correction to the
gs scaling is easy to ascertain. The derivative action will only change Ej5 in (2.67) to
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E3 — E3 + 5 where n is the number of derivatives. This implies:

18
Qs = [g_l]El+E2+E3+E4+E5+n/2 [0]" (H (RMNPQ)ZZ)

=1

s

— 92(l1+l2+l3+l4+ ....... +li7+lis+n/2)/3 (1 + 0(9?7 6—1/9.?)) 7 (2.69)

with no possibility of any time-neutral series. This is expectedly similar to what we
had in (2.60), and thus justifying the genericity of the arguments presented earlier.

With two free Lorentz indices the story should again be similar to what we had
earlier. However, because of the possibility of multiple indices, things would be
slightly involved. For example if we want free (7, j) Lorentz indices we convert E;
to £y — 1 and keep other E; unchanged. We can quantify such changes by using
a simple formalism. Let £ = (k;, k2) such that £ identifies the subscript in £ and
(k1, k) identify the Lorentz indices. For example if k£ = 1 then k; = z; and k; = ;.
Using this let us define Ej(w, z) as:

Ek(wa Z) = Ek - 5wk1 6zk27 (270)

with Ej; as in (2.67). The above form easily gives us the required exponent. For
example Ej(m,n) = Ej, for k # 3 and E3(m,n) = E5 — 1. With this, the quantum
terms with two free Lorentz indices will simply be:

18
Q7(w, Z) = [gfl} >k Br(w,z)+n/2 [a]n (H (RMNPQ)li) ’ 2.71)

=1

where the choice of (w, z) specify which two Lorentz indices we want to keep free.
Some care needs to be imposed in interpreting the results as the derivation of the
curvature tensors did not have cross-terms. So indices like w = a,z = m has no
meaning here. After the dust settles, the g, scaling for (2.71) may be expressed as g
where x takes the following three values:

18 18
2 n 8 2 n 2 2 n 4
=SS 422 =234 =Nt
X 3; t3op x=zxbtgog X 3; HERE

=1

(2.72)

where the first one corresponds to two free Lorentz indices (z, j) and (0, 0); the sec-
ond one corresponds to two free Lorentz indices along My, i.e (m, ,n); and the third
one corresponds to two free Lorentz indices along M, and T?/G i.e («, 8) and (a, b)
respectively. Note that the relative minus signs for the first two values of y shows
the possibility of time-neutral terms. For the first case, looking at E, in (2.67), and
imposing:

lio=ls=lu=0ls=1 n=0, (2.73)

with all other /; vanishing gives us x = 0. This exactly leads to a quantum term
that appears from the contraction g®Ry 405 with (A, B) spanning the four allowed
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choices, namely, (7, j), (m, n), (a,b) and (o, B), as:

3 _aB_ab_ij mn 4
(") g*g"g" """ RomonRoiojRoarRoaos € (8" Roo)” 8oo, (2.74)

where the LHS is the time-neutral piece in the expansion of the complete term given
in the RHS, which for brevity be called the time-neutral R, term. In a similar vein,
one can argue for time-neutral R;; for the first case and time-neutral R,,, for the
second case. In fact the space-time terms appear from expanding (g"*R,,)" gy
with (M, N) spanning (0,0), and (z, j) indices; whereas the (m,n) term simply ap-
pears for R,,,. Finally, the third case tells us that there are no time-neutral terms
possible with either (a, b) or («, 5) indices.

The case with F;(t) satisfying (2.2) with the inverses having perturbative ex-
pansions should in principle be redone in the light of the new g, scalings to the
curvature tensors. At this stage, one might even generalize the story from (2.7) to:

~

2\ 2
Fy () F2(t) = 98), 2.75
o - (L 2.75)
with |y| € Z such that v = 0, 2 correspond to (2.2) and (2.8) respectively. Although
most others values of v are not useful for us, it is nevertheless interesting to specu-
late the fate of our background for generic choice of . Incidentally, the only scalings
that are affected are:

Raﬁaﬁ = 937_2/3 = 95_2/37 Rmnaﬁ = 93_2/3 = 95_2/37 Raabﬁ = gz+4/3 = 93/3
Rijos = g7 = 9783 Roapm = 9777 = 9.3, Roags = g7 = ¢;*/*,
(2.76)

where on the extreme RHS of every equation we have put v = 0 to relate the result
for (2.2). All these affected components have legs along M, but are functions of M,
only. Once the derivative constraints are removed for the case (2.2), the scalings
(2.76) also work perfectly as shown in Table 2.1. Putting these curvatures together
and introducing n derivatives, lead to exactly the same g, scalings for the quantum
terms that we had in above for both zero and two free Lorentz indices for any choice
of v. No extra conditions are needed and thus we share the same conclusion of the
non-existence of time-neutral series with curvatures and multiple derivatives as
before.

Product of curvatures, G-fluxes and derivatives

We have previously demonstrated how, by choosing G-fluxes and curvature tensors
and combining them independently with multiple derivatives, they do not lead to
time-neutral quantum terms. Various cases were elaborated exhaustively by allow-
ing Fi(t) and F»(t) to satisfy either (2.8) or a variant of (2.2) where each of their
inverses have perturbative expansions in terms of g,. It is now time to combine all
of these together to write quantum terms as a combinations of G-fluxes, curvature
tensors and their covariant derivatives.

Our starting point is of course the G-flux ansatze (2.13) where we will assume
that Ak > %, so as to comply with earlier constraints (although for certain cases
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Riemann tensors for (2.8) || g, scalings Riemann tensors for (2.2)
2
Rmnpq 3 Rmnpq; Rmnpa; Rmnaﬁa Rmaa,ﬁ7 Ra,@aﬁ
4
Rmnaln Rmnaﬁ 3 Rmnab7 Rmaaba Ra,@ab
10
Rabaln Raboz,b’a Ra,@a[o’ 3 Rabab
5
RmnpO -3 Rmnp(b RmnaOa Rma,@Oa ROaa,B
3
8
Rmnija ROmOn Y Rmnij7 Rmoaija Raﬂija ROmOna R0a0ﬂ7 ROmOa
3
11
RmOij 3 RmOija Ra()ij
14
Rijij, Roio; -3 Rijij, Roio;
1
R(]mab7 ROmaﬂ 3 R()maba ROaab
2
Rabij7 R0a0b7 Raﬁij7 ROOcOB -3 Rabijy ROaOb

TABLE 2.1: The g, scalings of the various curvature tensors associated

with the two cases (2.2) and (2.8). These curvature tensors form the es-

sential ingredients of the quantum terms (2.94) and (2.78) respectively.

The numbers in the middle column, say for example — %, should be un-

derstood as (%) ~*/% where H(y) = h(y) is the warp-factor appearing
in (2.1) and (2.3).

we will see that Ak > % suffice). However compared to what we analyzed before,
we will now have to take individual components of G-fluxes carefully. The compo-
nents that we want to consider are listed in (2.16). This way, when we consider the
individual components of the curvature tensors in (2.53), (2.62) and (2.63) we will
be able to quantify the behave of the quantum terms more accurately.

To start, it is instructive then to specify the product of individual components of
G-flux using a notation similar to (2.64) for the product of curvature tensors. This
means, we define:

l;
<GMNPQ)li = H GMkaPkav (2.77)

k=1

the difference now being the complete anti-symmetry of the indices as compared to
pair-wise anti-symmetry of the indices for the curvature tensors. Other than this,
the two definitions, (2.77) and (2.64), are similar in spirit.

Therefore combining the pieces of the curvature tensors and derivatives as in
(2.69) and using the definition (2.77) to insert in the G-fluxes listed from (2.16), we



2.1. Time-dependent backgrounds, fluxes and quantum effects 29

get the following representation of the quantum terms:

Qr = g™™ gmlm; ---gjkj'/“ Oy Oms O, (Rmnpq)ll (Rabab)l2 (quab)l3 (Raabﬁ)l4
(Ragmn)” (Ragas)® Rigig)” (Rijmn)" (Riagn)"” (Riajs)™ (Romnp)"!
(Romon)" (Roiog)™ (Roaon)™* (Roa0s)™ (Roagm)™® (Roapm)"” (Rosjm) ™
(Gmnpq)llg (Gmnpa>lgo (Gmnpa)l21 (Gmnaﬁ)lm (Gmnaa)lzg (Gmaﬂa>lg4
(GOZJm)l25 (GOZja)l% (Gmnab)l27 (Gabaﬁ)l% (G'mcmb)l29 (2'78)

X X X X

where we have inserted in all the available pieces of G-flux and the curvature ten-
sors. Each of the pieces, either from the G-fluxes or curvatures, will have additional
components. For example R,,,,,, will have 36 components (excluding the permu-
tations), and so on. Additionally each of the components are raised to [, powers
giving rise to an elaborate set of terms. Note that we can now take advantage of
the underlying anti-symmetries of the curvatures to contract some of the Riemann
tensors to create anti-symmetric Ricci tensors of the form R;;n). Of course the Ricci
scalar R would also participate in the game as before. We can also express (2.78) in
a condensed form as:

18 29
QT = [g—l] Hi+Ho+Hs+Hy+Hs+n/2 [a]n (H (RMNPQ)li H (GRSTU)lk> :

=1 k=19

(2.79)

which for a given choice of {/;} determines a specific quantum term with the func-
tional form for Hy(l;) to be determined soon. Since any such term has zero free
Lorentz index, one may take arbitrary linear combinations of powers of this term.
Such combinations lead to a complicated structure of the quantum series. Note that
a term like (2.79) is suppressed by M7 where:

18 29
=o({li}n) =n+2> L+ > I (2.80)
=1 k=19

The above quantum terms (2.78) are generic enough but they could also have pow-
ers of metric components along-with the G-fluxes and curvature tensors''. How-
ever since these metric components will not change the values of H), functions, we
don’t specify them here. Additionally all the derivatives should be replaced by co-
variant derivatives, but since we are taking the fluxes and curvatures, these extra
pieces will appear from suitable combinations of these components. One may then

Taking advantage of the underlying pair-wise anti-symmetry of the curvature tensors and full
anti-symmetry of the G-fluxes, two other possibilities exist for (2.78) once we remove the derivatives.
One: we can suitably contract the indices using eleven-dimensional epsilon tensor (i.e the eleven-
dimensional Levi-Civita tensor and not tensor density); and two: we can suitable contract the indices
using eleven-dimensional Gamma matrices. Since they don’t change the g, scalings (2.84) and (2.86),
we will discuss them in the next section.
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express the quantum potential as:

({1}
Vo= / dgy\/_< T ) (2.81)

{li},n

where the superscript on Q7 denotes the specific choice of /; and n in (2.78) with
o as in (2.80) to make it dimensionless. The factor of determinant of the eight-
dimensional warped metric is same for all terms in the potential (2.81), so we will
not count it’s g, contribution in the following, unless mentioned otherwise'?. How-
ever once we go to the non-local contributions to the potential, this determinant will
occur multiple times, and then they will contribute to the g, scaling of the potential.

How about other extra components of G-fluxes and curvature tensors that do
not appear in the data specifying the background informations? For example vari-
ous cross-terms in the metric would give rise to extra curvature tensors. Similarly
cross-terms in the G-fluxes would contribute extra flux components in (2.78). This
is where the Wilsonian viewpoint becomes immensely useful. The quantum terms
are indeed specified by all components of fluxes, derivatives and curvature tensors
appearing from fluctuations over a given background, but we can integrate out the
components that are not necessary to specify the background data. Such integrating
out modes will result in an infinite series of quantum terms of the form (2.78), thus
justifying our approach of expressing the quantum series with arbitrary values for
l;. With this in mind, the H}, functions may be expressed in terms of the following
linear combinations of /;:

los |

2 + 2
[ [ [
H4 = E4+2+§+2+l27+l28+l29

Hy = FEy+lys+1lys, Hy= Fy+

2 2 2
Hy = By +2 p 8 g 0,
5 — 5 9 22 9 24 9 28 9
3l 3l log  los [ n
Hy = E3+2hy+ %—F% 1224‘123—1-74-74—[27—0—?—0—5,

(2.82)

where Fj, ..., E5 functions, which are themselves expressed as linear combinations
of [;, are defined in (2.67); and (Hy, ..., H;) denote inverse metric components along
(4,7), (0,0), (m,n), (a,b) and (o, B) respectively. The story now proceeds in exactly
the same way as outlined in the previous section. The g, scaling of the quantum

12In any case the determinant will only contribute 95 ¥ to the overall scaling with v defined
in (2.75). Since this does not effect any of the conclusions, we will avoid inserting it in our analysis,
unless mentioned otherwise.
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piece with zero free Lorentz index may be expressed as:
G = g (14068, )

18 29
= [g—l] Hi+Hy+Hs+Hy+Hs+n/2 [a]n (H (R]\/INPQ)li H (GRSTU)ZR> :

=1 k=19

(2.83)

where 0, is the scaling parameter that may now be computed by combining all the
information that we have assimilated together, namely from the G-flux scaling in
(2.13) to the curvature scalings in (2.63). The result is:

2=, oy 2 4 1
25 26
O = 3 ;1 li+§+§_T+ (QAk—i—g) lg + (QAk:—i—g) (l20 + l21)

2 8 )
+ (QA/{Z — 3) (lgg + lgg + l27) + (QA/'{? — g) lgg + (QA]{ — g) (l24 + 129) s
(2.84)

where k specifies the minimum g, scaling of the G-flux components in (2.13). We
expect this to be positive definite if we want the quantum terms in (2.78) to have no
time-neutral pieces. Unfortunately the relative minus signs in (2.84) are worrisome,
so there should be a way to demonstrate the positivity of (2.84). First, it is easy
to see that if Ak > % most of the terms, except the one with l55, become positive
definite'®. This is where our earlier analysis comes in handy, as we have already
argued that Ak > % therein! Secondly; if I35 vanishes then we are out of water. Can
we make Il = 0 here? Looking at (2.78), we see that lys appears with G;jq. It is
clear from [14, 15] that:

€0ij
( L= _8 _— = 2.
Oijo o (h(y) szt‘zl) 07 ( 85)

because we have assumed in the earlier sections that all quantities are functions of
the M, coordinates, and are thus independent of y*. With these, we now see that
6 > 0 and therefore F;(t) satisfying (2.8), there are no time-neutral series altogether.

What happens when Fj(t) satisfy the volume-preserving condition (2.2)? The
analysis becomes a bit more tricky because the metric components along (o, 3) di-
rections scale differently and so do the curvature tensors. The new scalings of the
curvature tensors are now (2.76). After the dust settles, the scaling of the quan-

tum terms (2.78) can be expressed as gf;“, with additional O(g2, e~ "/ 95 ) corrections,

BIf Ak = 4 then the coefficient of lss vanishes, implying that we can insert an arbitrary number
of Gapap components without changing the scaling. This will create a hierarchy issue similar to what
we encountered in [15].
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where 0, now takes the following value:

4
0, = Zl + -I— (las + log) + (QAk+ g) (ho + la0 + I22)

1 2
+ <2Ak + 5) (lo1 + log + log) + (zAk — 5) (lo7 4 log + 1) -
(2.86)

Here we now notice a few important differences from (2.84); one, the coefficient of
ls6 is positive, so the constraint (2.85) is not necessary; and two, we only require
Ak > 3 for 6}, to be a positive definite quantity'*. In addition to that we can relax
the derivative constraint, which was originally along M, to the full six dimensional
internal manifold M, x M because now both the metric components along (m, n)

and («, ) scale as gs 2/3, (This will lead to some subtleties that we will deal a bit
later.) In other words, if there are n; derivatives along M, and n, derivatives along
My, then n in (2.86) can be replaced for the two cases, (2.2) and (2.8), respectively

by:
n — ny+ns, n — ng— 2N, (2.87)

where the relative minus sign for the second case, i.e for background satisfying (2.8),
requires ny = 0 to preserve the positivity of § in (2.84). Interestingly for k = 0, the
condition becomes:

2 n 1 4 2
96:*Zli+*+§(121+123+124+125+126)+§(119+120+122)*g(lz7+l28+129),

which by construction cannot always be positive definite. In fact the above scaling
corresponds precisely to the scalings that we advocated in [15] with time-independent
internal space and time-independent G-flux. Of course there were no derivative
constraints therein so we could even retain o which, in turn, also allows us to re-
tain ly7, los and lyg, i.e G-fluxes with two indices along (a, b) directions. Since this is
important, let us clarify it in some details. To start, we define a scalar function along

a compact direction z as

Z o(k)e*?, (2.88)
with k = £ where | € Z and R is the radius of the z-circle. Additionally, we impose
¢*(k) = ¢(—k) so that ®(z) remains real. Using this, we can define a three-form:

Cuns (™, y*, x11) = Cyns(y™, y*) @ ®(z11), (2.89)
1

14As will be clearer later, this condition is exactly equivalent to the condition Ak > . Again im-
posing Ak = £ would make the coefficients of (lo7, l2s, l29) vanish, implying the possibility of intro-
ducing an infinite possible combinations of G,nab, Gabas and Gy components without changing
¢, in (2.86). As mentioned above, this will create similar problem as in [15].
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where (M, N) span coordinates of M, x M, and (x3,x1;) are the periodic coordi-
nates of T?/G such that ®(zy;) is the zero-form on the torus that is not projected out
by the G action. This also implies that the G-flux components are taken to be func-
tions of all the coordinates’™ of the eight manifold except z3, so components like
GunNa = 3,8[11 Cirns would lead to, in addition to other possible fields, a RR field

(Cgé)N(y ,y%) in the type IIB side. For [ > 1, we get KK modes [/R;;, with Ry; being
the warped radius of the eleventh direction (which in turn will be related to g, as
shown in (??)). As Ry; increases, the modes (2.89) become lighter and we can no
longer integrate them out! These light degrees of freedom now contribute to la7, los
and lyy in (2.78) and therefore, from [15], time-neutrality for ¢{, now happens when:

3l n 18 22 1 26

21

== § : 2§ : —§ 2.
lo7 + log + log + 5 2+i:1 l; + j:1gl]+2k:2glk, (2.90)

with n being the number of derivatives that satisfy the first relation in (2.87). Since
the [;’s have no additional constraints, (2.90) constitutes one relation between thirty
variables, and as such will have infinite number of solutions, leading to the break-
down of an EFT description'®. A particular set of choice for the /; numbers, lets
call them {/;, 7} such that for integer choice of » we can allow different choices for
{l;} = (L, 1a, ..., l29), satisfying (2.90) would constitute a time-neutral quantum term
of the form (2.78). Each of these quantum terms may in turn be arranged together
as:

k-
Q41
T{ } - Z Oklk? koo H < o({l;,r}) ) (291)

klak27

where the superscript denote time-neutrality and the subscript {i} = (1,2, ...,29).
The power of M, can be read off from (2.80) for a given choice of {/;,r} and fur-
nish the inverse powers of M, in the quantum series to keep them dimensionless.
The series (2.91) thus constitute the infinite class of time-neutral quantum pieces
elaborated in [15].

The above construction gives a satisfying answer to the question of the non-
existence of an EFT description in the set-up with time-independent fluxes in [15],
although one question could be raised at this point. Since R;; — 0 decouples all the
degrees of freedom coming from the KK states of G/na, and clearly the vanish-
ing of the warped eleven-dimensional radius is also a necessary condition to go to
type IIB, couldn’t we just decouple all the dangerous states and study the resulting
EFT? The answer to this question lies in the three scaling behaviors that we derived
earlier, namely (2.84), (2.86) and (2.88). For (2.84) and (2.86), whether or not we

15As we saw before, they are also functions of (g2, e~1/9d ) which we suppress to avoid clutter.

16Such a train of thought is particularly consistent with the swampland conjecture as presented in
[6]. In particular the swampland distance conjecture should be associated to the distance in the field
space where the KK modes in (2.88) and (2.89) start becoming light. Note that one can potentially
develop a similar story with three-form field components along z3 direction as in (2.89). In such a
picture, as the z3 circle increases, the KK modes become lighter and start creating the same issues
as above. However the x5 dependences ruin the Busher’s duality employed to convert the type IIB
background to type IIA in the first place.
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switch on (lo7, l2s, lag), they are always positive definite and therefore cannot create
time-neutral series anywhere in the moduli space of M-theory. This is clearly not
the case for (2.88), which does create an infinite class of time-neutral series as in
(2.90). Thus although g, — 0 provides a false aura of a healthy EFT with 6, scaling
in (2.88), it quickly disappears as we go away from this limit: a property not shared
by (2.84) and (2.86) for (2.8) and (2.2) respectively.

All the three scalings discussed above, namely (2.84), (2.86) and (2.88) are related
to special choices of v in (2.75). If we make an arbitrary choice of -y then the g, scaling

of the quantum term (2.78) becomes gf 7 \where O(k,~) is:

18
2 n l25 4 1 2
H(kv’)/) 5 E l; + g + ? + (2Ak + 3) lig + (2Ak + 3) lo1 + (2Ak — 3) lo7
=1

4 4 1 1
+ <2Ak+3—z) lao + (2Ak+3—7) los + <2Akz+3—;) los + (2Ak+3—7) o
1 2 2
+ (3 - ;) lag + (2Ak -2- 7) los + <2Ak -5 ;) lso, 2.92)

where the first line is generic to all choices of v, but the second and the third lines
specifically depend on what value 7 takes. Plugging in v = 0,2 one may easily
derive (2.2) and (2.8) respectively. It should also be clear that 2.2 is the largest
attainable value with a relative minus sign, implying that it is only the coefficient
of [5s that can determine the lower bound on k to avoid time-neutral series. For the
present case, this happens when:

1.7

Ak > 5ty (2.93)
from where one may easily derive the two earlier bounds we had. As 7 increases the
lower bound on £ increases. Since Ak determines the lowest power of g, for G-flux in
(2.13) or (2.28), it implies that the lowest power is bigger for bigger 7. On the other
hand v from (2.75) also tells us the deviation of the four-dimensional Newton’s
constant from its standard constant value. Consequently, a more un-natural choice
for Newton’s constant is directly proportional to a more un-natural choice of the
gs dependence (or temporal dependence) of the G-flux components. Additionally,
for v > 1, the coefficient of /55 starts becoming negative thus making (2.93) prone
to creating time-neutral series. The only way out appears from imposing (2.85).
Thus for v > 1 the fields can only be functions of the M, coordinates to avoid the
breakdown of a EFT description of the system. This second level of un-naturalness
prompts us to ask whether this is the reason why nature chooses the simplest value
of vy = 0in (2.75) and (2.92). We will speculate on this interesting possibility in
section 3.1.

Let us pause for a moment to absorb the consequence of the two lessons that
we learnt from generic choice of v in (2.92). One, larger v makes k larger from
(2.93), and two, larger ~ also makes the coefficient of l5; negative. Thus v = 0 and
v > 0 share different physics: v = 0 no longer requires any derivative constraints
so we can assume that all fields are functions of M, x Msy; whereas v > 0 has
derivative constraint because of (2.85). For both cases however we will keep the
fields independent of T?/G. Relaxing the derivative constraints for v = 0 will create
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new components of curvature tensors that should modify (2.78) to the following:

Qr = gmlmlgmlm2 ‘--gjkj£8m1-‘amm&al'-aa@ (Rmnpq)ll (Rabab>l2 (quab)l3 (Raabﬁ)l4
(Rapmn)” (Ragap)® Rijig)™ (Rijmn)® Ria)” (Riajs)™ (Romnp)™
(Romon)" (Roiog)"™* (Roaos)™ (Roaos)™® (Roagm)™® (Roasm)"” (Roim)"™
(Rmnpa)llg (Rmaab)l2o (Rmfmﬁ)lzl (Rmaij)l22 (ROmna)l23 (ROmOa)l ! (R0a5a>l25
(ROabOc)l26 (ROU@)Z27 (Gmnpq)l28 (Gmnm)l29 (Gmnpa)lso (Gmnaﬁ)lgl (Gmnaa)l32
(Gumaga) ™ (Goigm)™ (Goija)™ (Gnan) ™ (Gasas)™ (Gmaan)™ (2.94)

X X X X X

where (n,,n9) are the number of derivatives along M, and M, directions respec-
tively. Compared to (2.78), there are now nine extra pieces of curvature tensors,
totalling to 38 total pieces of fluxes and curvature tensors. Each of these will have
the required copies because of the /; factors, in addition to the internal permutations
as mentioned earlier. Such a quantum term has a M, suppression of the form /7,
where:

27 38
o({li},n1,n2) =m +n2+2211+ lem (2.95)
=1 k=28

which may be compared to (2.114): the changes coming from new derivatives and
new curvature tensors. We also expect both H; in (2.82) and E; in (2.67) to change
to H; and E; respectively. The change in the latter may be quantified as:

- l20 3l21 l22 l23 l24 3l25 l27
Bs=Fs+ 24220 2 2 2 7% 2
=Bttt St b S

= ~ l l l l
Ey=FE1+lpn+ly, Ex= Byt 2 plp+ 24 2420

2 2 "2 72
3o  lo Ly loa
By=Ba+ 22+ 24 2 2 gyt 2

Ey=Ey+1ly+1
9 9 9 9 5 4 4 + log + Lo,

with E), as defined in (2.67). The change in (2.82) is now easy to determine: all the

subscript would shift by +9 in addition to an extra contribution to H; coming from
the derivatives. The overall change is:

_ . oy
Hy = Ey+ls+ls, Hy= E2+%4+§

~ ~ l l3s

H, = E4+§+%+7+l36+137+138

-~ l2g l32 I35 I35

Hy = Fs+ -2 == 20 B8, 2

5 s+l 2t Sl

~ 3l 3l l [ [

Hy = E5+2128+%+%+l31+l23+§+%4+136+?+2

(2.96)

which expectedly takes the form similar to (2.82), with minor differences. One may
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also see that the quantum term in (2.94) scale with respect to g, as gfk , with addi-
tional O(g2, e~1/95) corrections,

+ 1 4
g - _Zz s §<zg4+zg5>+<2m+§) (Iys + oo + 1)

1 2
+ (QA/{ + g) (lg(] + 39 + l33) + (QAk - g) (l36 + 37 + l38) )
(2.97)

where the only change from (2.86) is from 2/3 curvature contributions from the
additional Riemann tensors and 1/3 derivative contributions from the derivatives
along M, directions. Note that these additional contributions do not change the
sign and therefore the story remains unaltered from what we had earlier. When
k = 0, we can further relax the derivative contributions to involve derivatives along
T?/G directions. This will involve more curvature tensors and additional n3 deriva-
tives with (a, b) indices. The extra curvature components will again add +2/3 to

(2.97) whereas the derivatives will add —4n3/3. If lfp ) denote the proliferation of
each [; components due to the relaxation of the derivative constraints in (2.94), then
(2.88) changes to:

3
n +n 2ns:
Z Zg(p LT —‘3 + = <130 + Z l31+p> 5 (lag + 129 +131) — Z I35+

p i=1

(2.98)

which as noted above differs from (2.88) by the appearance of another set of relative
minus signs from the derivatives along the toroidal direction. This makes it prone
to creating additional time neutral series from 6 = 0. The condition for this to
happen now becomes:

l36+l37+l38+n3+3l230:n1+n2 ZZl(p+QZl+ Zlq?

7=28 q32

which can be compared to (2.90) and again has more issues as expected leading to
the problems with an effective field theory description pointed out in [15]. Inter-
estingly, although the proliferation of curvature tensors do not change much of the
story, the proliferation of derivatives along T?/G tends to worsen the problem.
With two free Lorentz indices we need to again discuss the two cases pertaining
for (2.8) and (2.2). The second case can be further fine-tuned to discuss the scenario
advocated in [15], as we have done so far. The story for either of these cases remain
simple as before. For (2.8), it is easy to see that the g, scaling changes from (2.84) to
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the following three values':

8 2 4
Hk — (Qk — g,ek — g,ek -+ g) , (299)

where the first one corresponds to free Lorentz indices along (7, j) and (0, 0) direc-
tions; the second one corresponds to free Lorentz indices along M, i.e along (m, n)
directions and the third one corresponds to free Lorentz indices along T?/G and M,
i.e along (a, b) and («, ) directions respectively. On the other hand, 6; also changes
from (2.97) in the aforementioned way:

g o (e; _ g,e,; - %,9; + %) | (2.100)
for both Ak > % and k = 0, with the difference being the second one now cor-
responds to both (m,n) as well as («a, 5) directions as a consequence of identical
scalings for the metric components along these directions for the case (2.2) and [15].

Let us now elaborate the scaling behavior in bit more details. For the case (2.97)
with Ak > § we first note that switching on any components of G-fluxes or cur-
vature tensors, #;, > 1/3 and therefore makes every term in (2.97) positive definite,
thus ruling out all time-neutral series with zero Lorentz indices along directions
(4,7),(0,0), (m,n),(a,b) and (a, 3). With two Lorentz indices, there are no time-
neutral series at least along the (a, b) directions as is evident from both (2.99) and
(2.100). Along (m,n) and («, ) directions, for (2.97), there are a few cases. Since
every Riemann tensor contribute an overall factor of 2/3 to 6, it is easy to see that
we need at most one of:

(51,15,187111,l12), and (l4715>l67l107l157l16)7 (2-101)

for (m,n) and («, 8) indices respectively, to cancel the factor of 2/3 in (2.100). In fact
it is easy to see that we can only get two time-neutral pieces of the form R,,,, and
R, 3, using combinations of curvature tensors. Using G-fluxes, naively either of the
three choices l34 = 2, I35 = 2 and I34 = I35 = 1 can cancel the 2/3 factor in (2.100).
These are all easily eliminated as they imply either Hy, Hy or Hs in (2.96) to be half-
integers'®. If we take k£ = 1 in (2.97), then the only other choices are associated with
integer values for (s, 37, l35). Taking I3 = 2, l37 = 2 or I3g = 2 always make Hy=2
and depending on the choices (Hs, Hs) = (0,1) or (1,0) from (2.96) respectively give

17Although l; > 0 always, H; from (2.82) or E; from (2.67), when two free Lorentz indices are
allowed, can take integer values starting from —1, i.e H; > —1 and E; > —1. Similar criteria emerge
from (2.96) and (2.96). The negative value implies inserting a metric component, i.e the inverse of an
inverse metric component, in either cases.

8Subtleties with half-integers will be discussed later.
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rise to the following two set of tensors!?:

A = 8"'8"8"" GraatGrped A2 = g"'8"8" G ias Gnged
A@D — 888" G aab Gnped A2 8887 G ayab G gocd
[e]) - Mg Y aﬁ — Mg ;

(2.102)

as the sole examples of time-neutral rank two tensors along (m,n) and (o, 8) di-
rections. The other choice with I3 = l3; = 1 is eliminated by the anti-symmetry
of the G-fluxes. Similarly for n > 1, there are no additional time-neutral quantum
terms with the required indices. Clearly if we demand Ak > 3, both the exam-
ples in (2.102) are no longer allowed. In fact with Ak > 3, we also eliminate any
time-neutral rank two tensors from G-fluxes using (2.84).

Along space-time directions the scenario is more delicate. With Ak > 2 the
only contributions from G-fluxes may appear from (l34, l35) taking integer values in
(2.97). Taking l34 = 8 requires us to pick H, = 7, H, = 4,?[;; = 3 from (2.96). The
other choice of I35 = 8 is similar to the first one because of the identical scalings of
the metric components along (m,n) and («, ) directions. After the dust settles, the
generic quantum term along the space-time directions appears to be:

8 4
(3) — -8 M2n—1M2n lh2n—1MH2n GV2n—1V2n P2n—102n
Nicnan =M, G o8 g g g Bhatiatns
k=1n=1

(2.103)

where assuming 1 < a < 8 and p, € (0,4,7) is any one of the three space-time
directions in M-theory, (2.103) creates two kind of terms: Aé?(’)) and Ag’). Exactly
similar set of terms appear from (2.84) (although l5; = 0 there). It turns out, since
G,.,m takes the value similar to (2.85), (but now the derivative is with respect to
y™ and consequently non-zero), (2.103) is just a function that may be expressed in
terms of the warp-factor /(y). Even more generically if we take I3, = 2p and n = 2¢
such that p + ¢ = 4 in (2.97), then (2.96) implies H, = 2p — 1 JHy = p and H; = 4,
with (2.103) becoming:

h2p+2
k=q+1

2p+2q a h
ALD = 0, Oy .. O, < ) iy 1o (2.104)

prs

where we have expressed everything in terms of regular derivatives and inverse
unwarped metric ¢™" so that (2.104) doesn’t have to involve covariant derivatives.
In fact the way we have written the quantum terms in (2.94), all informations of
the internal metrics etc are contained in the definitions of the curvature tensors and

YOther possibilities include g, g’”A( ) and L gas gP"A( 7 that appear from expressing Hs = 1

alternatively as Hs =2+ (—1) and Hs =1las H; = 2 + (—1) respectively where the minus signs

denote inverse of the inverse metric components. Additionally, choices like g;,,,g“" Afﬁz )

also allowed. All these manipulation don’t change 6, or ..

etc. are
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the inverse metric components, and not in the derivatives. In this sense (2.104)
has all the information in the warp-factor h(y), and since p + ¢ = 4, the allowed
terns are (p,q) = (4,0),(3,1),(2,2),(1,3), all being time-neutral by construction;
and all suppressed by M. This M, suppression remains unchanged even if we add
curvature tensors contributions to (2.104). The curvature tensors, at least those that
could contribute to the space-time directions, are limited to only four tensors at a
time because time-neutrality implies:

27

2> Lt ny g+l =8, (2.105)

=1

thus /; < 4, and where many of the 27 [;’s appearing in (2.94) are irrelevant to (2.105).
An example of such a term with only curvature tensors can be taken for Iy = ly =
lio = l13 = 1 in (2.94) which allows us to choose £} = 3, E; = F3 = F;, = E5 =1
from (2.82) or (2.67). This gives:

A(4) = SRzl ajlmea]gBRngzORum]ng bgaﬂgmngzlzz g2314 gjle g
(2.106)

which is interestingly not just expressed in terms of the warp-factor h(y) but also
in terms of the temporal and spatial derivatives of the internal metric components.
One can also mix three curvature tensors and two derivatives or two curvature ten-
sors and four derivatives etc satisfying (2.105) appropriately to generate additional
terms. All these quantum terms are finite in number and they are all suppressed
by M (with Ak > 3, the finiteness of quantum terms still remain and can be eas-
ily constructed). As we saw earlier, there are no time-neutral contributions that can
come from (2.97), so the M} suppression cannot change. In fact exactly similar story
could be constructed with (2.84), so we will not discuss this case separately here.

Non-local counter-terms in M-theory and in type IIB

The next set of quantum corrections are a bit unusual from standard quantum field
theory, or even supergravity, point of view and are typically christened as non-local
counter-terms. Such an umbrella term encompass a broad category of quantum
terms in M-theory, for which a detailed analysis is clearly beyond the scope of our
work here. As such we will suffice ourselves here with some rudimentary explo-
ration of the subject in the context of M-theory.

Our starting point would be to take the generic quantum terms in (2.78) and
(2.94) and construct non-local interactions from them, as we believe that the non-
local interactions should still contain powers of curvature tensors, G-fluxes and
their covariant-derivatives. To proceed, let us denote the specific quantum term
of (2.78) or (2.94) alternatively using the symbol Q} ({132) 56 that specific choice of
the (/;, n) integers, the former representing the powers of curvature tensors and G-
fluxes and the latter representing the number of derivatives, allow us to specify one
quantum term. It is clear that:

(@) & (@) = Q= 107)
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which may be easily derived using the explicit expression from either (2.78) or
(2.94). The equality (2.107) tells us that an arbitrary product of any two elements

in the set of all the quantum pieces labelled by { ¥Zk+lm}’”)} is also an element of

the set. This is almost like giving a group structure to the set, except that the set
doesn’t have an inverse. The elements of the set may even be further generalized
by introducing the following notation:

= Eilig ...... g +e [(giliggi2i4 _ gi1i4gi2i3) (gi2q737;2qflgi2q72i2q _ gi2q—3i2qgi2q—2i2q—3) + ]
+ permutations, (2.108)

where ¢, is a constant and the permutations are between other products of met-
rics to generate full anti-symmetry, and €122 is the Levi-Civita tensor and not a
tensor density. As such, with all it’s indices lowered, it may be defined with the
square root of determinant of metrics and therefore scales in exactly the same way
as the product of inverse metrics. However because of the total anti-symmetry of
the Levi-Civita tensor (or of the anti-symmetric products of metrics), we cannot
have too many of these terms at a given order. This implies that, if we remove all
the derivatives in say (2.78), and taking ¢ = 4 in (2.108), it is easy to get terms like:

— —244112...... %
Ql = Mp A G Gi5i6i7i8

= M 8pii2eis g2 ISR . R - - R
QZ = Mp t t Rnlz]l]zR13l4JBJ4R1516J5J6R

11121374
17187781 (2109)
with i denoting coordinates of the internal eight-manifold, and Q, can be identi-
fied with the famous t¢stsR* coupling in string theory [16]. It should be clear that

the g, scalings of Q; and Q, are identical to the g, scalings of @$ mol19=200) apq
¥1:4’0""0;0) respectively in (2.78). Other combinations with curvature tensors and

G-fluxes are clearly possible, and their g, scalings would be identical to the g, scal-
. . . (L;,n=0) .

ings of corresponding terms in Qr, at the same order in curvature tensors and
G-fluxes. This story could be elaborated to the same extent as earlier sections?,
but since we are only concerned with the g, scalings, we will not indulge in further
discussions of the topic here.

Thus combining (2.109), with their possible generalizations, and with the set of
terms of the form (2.78) or (2.94), we have pretty much all the local (perturbative and
non-perturbative) quantum terms at hand. The non-local quantum terms, which
we label as non-local counter-terms, are a different class of objects which could
nevertheless be related to the local terms (2.109), (2.78) and (2.94). For example we
could easily construct the following non-local counter-terms*!:

<. C, M .
pylihn) — (Z %> Qg{lz}m, (2.110)

g=1

where [ is defined over the eight-manifold My x M, x T?/G and C;, could in general

2Beyond the possible generalization to }_, d;Q% and 3", £,Q) with integer (di, f)).
ZSee also [31] for operators of the form (2.110) and their possible connection to Witten’s open
string field theory.
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be function of the y = (y™,y*, y*) but not functions of (g2, e~/ 95 ). Thus the g; scal-
ings exclusively appear from the quantum pieces Q(T{li}’"). The inverse [ operators

may be combined together to create operators of the form exp (%) , sin (%) etc
generating different levels of non-locality. All these operator actions may in turn
be re-expressed as integrals which are much easier to handle. To elaborate this,
let us first define the non-locality function F"(y — /) = F{lihnir)(y — o) that is a
function of two points (y,7') on the eight-manifold, with r denoting the level of
non-locality. By construction the non-locality function should be sharply peaked at
low energies so that the low energy physics of M-theory could still be governed by
local counter-terms, and hence by eleven-dimensional supergravity. On the other
hand, the short distance behavior of this function could be complicated, revealing
the full non-local structure of the system. Using this function, let us define our first
level of non-locality with zero free Lorentz indices using (2.78) for example as:

F(l)(y — ) {li}m) (v/)
1) = ({l:}m1) — 3,/ T
W (y) =W /d Y88 ( M;({lz‘},n)—fi , (2.111)

where the power of M, appearing above, i.e o({l;},n) is defined in (2.80), and the
integral captures the first level of non-locality as advertised before. By construction
WO is dimensionless, and the non-locality appears from knowing the precise func-
tional form for F)(y — 3/), which fortunately we won’t need to specify. Suffice is to
say that the g, dependence only appears from the quantum terms Q({!i+") defined
in (2.78) and (2.109). We can also sum over all allowed choices of ({/;},n) and, using
the semi-group structure (2.107), the linear representation of the sum pretty much
captures the generic picture. It should be clear that the r-th level of non-locality
may be iteratively constructed from:

W) = M) / d*y'\/gs(y) F(y — y YW (y/) (2.112)
= M,° / d%y'\/gs(y) FO(y — o) / d%y"/gs(y") FU 0 (y =y YW (y"),

thus forming a series of nested integrals that capture the full non-locality of the
system, for a given choice of ({l;},n). Clearly as r increases the non-locality be-
comes more prominent and starts coinciding with the non-locality generated from
the operator action (2.110). One expects:

DD bW (y) = Y fuyWEEI(y), 2.113)

{li}vn r=1 {li}vn

with constants b, and fy;,;,,, as we can absorb all y-dependent factors in F() (v)
of (2.112) and C,(y) of (2.110) respectively. Such a relation would not only jus-
tify the two forms of non-localities (2.110) and (2.112) as one and the same thing,
but would also help us relate C,(y) functions with the F")(y) functions. A formal
proof of (2.113) is still lacking, despite evidences pointing towards the veracity of
the conjecture. However since we will mostly concentrate on the non-localities of
the form (2.112), the exact equivalence depicted in (2.113) will not be used here,
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and therefore the proof of (2.113) will be relegated to future work. We do note
that, W()(y) should be related to the ¢ — oo value of (2.110) when appropriately
summed over ({/;},n) factors therein as, at a given level of non-locality, the M, sup-
pression changes from (2.80) or (2.95) to:

o{l;},n;r) =0, =c({l;},n) — 8r, (2.114)

and therefore has both positive and negative values. These additional positive and
negative suppressions of the quantum terms were responsible for the loss of M,
hierarchy as discussed in [15]. Here our aim would be to see how the conclusions
of [15] may be avoided.

To inquire how the g, scaling appears now, we will have to work out the non-
localities order by order in . We first work out the lowest level of non-locality from
(2.111). Using the metric ansatze (2.3) with the warp-factor as defined in (2.5), the
non-local quantum piece (2.111) yields:

FO (1 — O ()
wh(y) = / d*y' Fy(t)F3 (t)gs 2/3h3/2\/(detga,8) (det gmn) (detgab)< (ny{J%)_g )
p
~{li}n 1A
/ds ,< /3 elgﬁ/g)v W) IF“)(y—y’)g?k( Wdm () L Oy, gB, e 19 ))

= Yy 6095 + —— sy preTm— ’
Vh Mg @Fm=s

(2.115)

where in the second line we have used the relation (2.7) to express the g, scalings of

both the volume-preserving (i.e (2.2) with (eg,e1) = (1,0)), and the fluctuating (i.e
(2.8) with (eg, e1) = (0, 1)) cases (special care needs to be used to define the quantum
pieces for the two cases (2.8) and (2.2) as the former uses (2.78) and the latter uses
(2.94). Apart from this subtlety, everything else remains identical.). The g, scalings
of all the quantum terms in (2.78) and (2.94) are expressed using O, = O.({/;},n)
which would cover for the two cases, (2.97) related to (2.2) and (2.84) related to
(2.8). The @(T{li}’") (y') represent the spatial parts of the quantum terms (2.78) and
(2.94) that do not depend on e~/ 95 Finally Vs(y') is defined as:

Va(y') = B2(y)y/ (det gas) (det ginn) (det gup), (2.116)

which would contribute to the warped volume of the internal space when inte-
grated over the eight-manifold. All the metric components depend on coordinates
of the eight-manifold generically, but there are certain constraints that restricted the
dependences to certain sub-space of the internal manifold. Such constraints will
help us evaluate the quantum terms in (2.115) for the two cases, (2.2) and (2.8), and
also compare our results with the generic case discussed in [15].

Let us start by considering the simplified case where h(y) = h(yo) = ho where
Yo is a chosen special point inside the eight-manifold. Such a choice allows us to
choose the same string coupling g, at every order of the non-locality. All other
variables, for example the metric components, remain functions of y coordinates.
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Under such a simplification the g, scaling of the r-th level of non-locality becomes:

. 1 _ e gﬁ/g '
Wi )(?Jr+1) = o (6095 23 4 ﬁ g?'“Gs(yrH), (2.117)
P

which is defined for a given choice of ({/;},n), and we have made a judicious coor-
dinate choice of y,; to label the non-local quantum term with zero Lorentz index?.
The power of M, suppression may be read out from (2.114) for the given choice
of ({l;},n), and the functional form for Gs(y,+1) may be expressed in terms of the
nested integrals in the following way:

r—1
Gl =11 / -V F T Wy = veg) (U (01) + O, 92,67 )
q=0
(2.118)

with Vg(y,_,) being taken from (2.116) with the constant choice of the warp-factor
ho. The nested integrals are expressed in terms of the Vg(y') and F")(y — y'), and
this may help us to distinguish between the two choices, (2.2) and (2.8); and also
between the generic case discussed in [15]. By construction (2.118) will always be
finite because the integrals are over finite domains, and the non-locality functions
F()(y — y') are chosen to be normalizable functions.

Case 1: Fy(t) and F,(t) satisfying the fluctuation condition (2.8)

We start by considering the choice (2.8) where the inverse of F»(t) has a perturbative
expansion but the inverse of F}(t) does not. This means ey = 0 and e; = 1 in (2.117).
Additionally because of the derivative constraint there, all variables were taken to
be functions of the coordinates of M,, and were thus independent of both M, and
T?/G coordinates. We will however take the warp-factor h(y™) = h, as before to
avoid changing the string coupling gs to any order in non-locality. Similarly, the
non-locality functions will be taken to be functions of M, only. Putting everything
together, (2.117) changes to:

4r /3460
G4(yr+1)gs /30

Mgrv/ho

where the volume elements are defined as: V2 = f d*y®/det g, for the volume
of the subspace T?/G and V,, = [ d*y*\/det gop for the volume of the subspace
M. The metric components g,, and g, are the un-warped metric coefficients that
appear in (2.3). Note that the 7-th level of non-locality requires these volume ele-
ments to be raised to the r-th powers, as evident from (2.118) above. The g, scaling
for a choice of ({/;},n) has the expected 6, dependence from (2.84), but the non-
locality adds another +4r/3 piece to it. This means that, there are no additional
time-neutral pieces generated by non-locality here as 0, from (2.84) doesn’t have

W (yr41) = ( ) Vi Vi, (2.119)

22We take yo = 0 to comply with our choice of coordinates.
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any time-neutral solutions with Ak > 2. Finally, the G4(y",,) factor has the follow-
ing nested integral representation as (2.118):

r—1
6utvrn) =TT [ a3 B0y =) (@70 + O ™)),
q=0
(2.120)

where g, = det g,,, with the integral defined over the subspace M,; and we have
absorbed the factor of hg/ ? in the definition of g;. The function G,(y) captures the
additional O(g2,e~1/98") corrections and thus responsible for the perturbative and
non-perturbative series in g,. This is as what one would have expected, although a
question might be raised on the dependence of the non-locality function F")(y — y/)
only on M, coordinates. This may be justified, beyond declaring it as an imposed
condition, by looking at (2.110) in the limit ¢ = 0. In this limit W{&hm), e for
q = 0, becomes a local function and therefore the derivative constraints will imply
that the coefficients Cy(y) will have to be a function of M, coordinates. Similarly
taking ¢ = 1, OW{4}n) becomes a local function and therefore Cy (y) will have to be
function of M, coordinates. Following this chain of logic, C, for any ¢ becomes a
function of M, coordinates. Therefore at this stage, using the identification (2.113),
the functions F")(y — ¢/) should only depend on the coordinates of My, justifying
the integral representation (2.120).

Once we allow quantum terms with two free Lorentz indices, the story evolves
in the same way as above, so we will suffice ourselves in elaborating the g, scalings
of the various terms. Looking at (2.99), and comparing it with (2.119), the g, scaling
become g%, where:

. 4 2 4
(9k = <9k + 5(7’ - 2);9k + 5(27‘ - 1),9k + 5(’/’ + 1)> 5 (2121)

with the first one corresponding to free Lorentz indices along (z, j) and (0, 0) direc-
tions; the second one corresponds to free Lorentz indices along My, i.e along (m,n)
directions and the third one corresponds to free Lorentz indices along T?/G and M,
i.e along (a, b) and («, ) directions respectively. From (2.121) we see that even with
the lowest level of non-locality i.e with r = 1, there are no additional time-neutral
series along (m, n), (a,b) and («, 3) directions. Even more interestingly, since at the
end we have to go to type IIB from M-theory, we can take the limit:

Vpz — 0, (2.122)

any additional time-neutral series along the (i, j) and (0, 0) directions are heavily
suppressed by powers of V12, which in turn should also be the case with zero free
Lorentz index in (2.119).

Case 2: Fy(t) and F5(t) satisfying the volume-preserving condition (2.2)

The story that we elaborated for case 1 pretty much sums up all the procedure that
we need for the present case where both Fi(t) and F;(t) have perturbative expan-
sions, including their inverses. However there are now a few crucial differences
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that will alter our story in an interesting way. First, the derivative constraints are
weakened from case 1 in a way that we no longer restrict the derivatives to be along
M only. We do however want the functions to be independent of the (z3, z1;) direc-
tions so that components like G /nq, do not complicate our analysis by switching
on (Isg, l37,138) in (2.94). Therefore now we can allow all curvature tensors and G-
fluxes to be functions of M, x M, implying that, in the type IIB side, all curvature
tensors and fluxes would be functions of the six-dimensional internal space. This
is good because the derivative constraint for case 1 was a tad bit un-natural in the
light of the genericity that we want to impose on the quantum corrections. The r-th
level of non-locality may now be read from (2.117) by using e; = 1 and e; = 0 and
using the quantum terms from (2.94). We will use the same approximation for the
warp-factor, namely h(y) = hy to avoid changing g, to any order in the non-locality.
Putting everything together, (2.117) for the present case becomes:

—2r o'
Go(yria)g: ™ r (2.123)
Mgr\/hg = '

Compared to (2.119) there are a few key differences. First, there is no volume ele-
ment V , appearing anymore because this goes inside G,(y), as defined in (2.120)
to construct G¢(y). In other words, G¢(y) takes the following form:

Wg) (yr+1> = (

r—1
GG(yT+1) = H / der—q\/g_ﬁ F(T_Q)<yr—q - yr—q—l) ( E[{li}vn) (yl) + O(yh gsAv 6_1/g£)> )

q=0

(2.124)

where again we have absorbed a factor of hg/ ? in the definition of g5 and @gli}’”) (y1)
being extracted from (2.94). The second key difference, which is important, is the g
scaling. Using the original g, scaling (2.97) with zero Lorentz index for the quantum
terms associated with the case (2.2), we now see that the r-th order of non-locality
now adds a factor of —2r/3 to the original scaling in the local case. Recall that ¢}, as
defined in (2.97) for Ak > 1 did not have any time-neutral series, but now it appears
that the non-locality would in fact help to create more time-neutral series. With two

free Lorentz indices, the g, scaling now appears to ggg“, where:

_ 2 2 2
9,@—(9;_§(r+4),9;—§(r+1),9;—§(r—2)). (2.125)

In addition to the difference with the scaling behavior in (2.121), there are a few
other differences. The first one is in the ordering of the scaling behavior as it appears
in (2.125). The first term in (2.125) corresponds to free Lorentz indices along (i, j)
and (0, 0) directions; but the second term corresponds to free Lorentz indices along
My as well as My, i.e along (m, n) and («, §) directions respectively. The third term
now corresponds to free Lorentz indices along T?/G i.e along (a, b) direction.

The second difference between (2.121) and (2.125) appears from the value of r,
i.e from the level of non-locality. While in (2.121) increasing r makes all the three
terms there positive definite thus adding no extra time-neutral series, in (2.125) the
effect is opposite. Increasing r in (2.125) actually creates more relative minus signs
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thus making every terms prone to generating new time-neutral series. Fortunately,
the degree of non-locality is also suppressed by powers of V12, as may be inferred
from (2.123), and in the limit when the volume V2 vanishes, all the additional time-
neutral series also decouple completely. The vanishing of V2 is an essential require-
ment for our M-theory construction to connect it to type IIB theory.

Case 3: Time-independent internal space with Fy(t) = Fy(t) =1

The volume condition (2.122) pretty much saves the day for the two case discussed
above despite the fact that, for case 2, new time-neutral series seem to appear from
the higher levels of non-localities. The question is what happens when the inter-
nal space is time independent i.e when Fi(t) = Fy(t) = 1? We expect the story
to progress more or less in the same vein as above, and in fact most of the details
remain somewhat similar to case 2 above, but with one crucial difference. Since
G vy features prominently in the discussion concerning this case, as evidenced
from (2.88) and (2.89), which in turn are responsible for the time-neutrality condi-
tion (2.99) with zero free Lorentz indices, all curvature tensors and G-fluxes in the
theory need to be functions of M, x M, x T?/G coordinates except the z3 direction.
In addition, there is as such no derivative condition imposed from the dynamics,
the non-locality function F")(y — ¢/) could in principle be function of z3 also. The
r-th level of non-locality then becomes:

2r 3+9’
Gs(yr1)gs

Mgrv/ho

where 6 is as given in (2.98), which already allows time-neutral series because there
are relative minus signs due to the presence of (I3, l37, l35) as well as n3. We now see
that the r-th level of non-locality creates additional relative minus signs that help
in generating more time-neutral series here. Similar picture emerges with two free
Lorentz indices, as one may easily derive. Note also the absence of volume com-
ponents like V2 or V,,, as these factors appear in the nested integral (2.118) that
defines Gg(y). It should be clear that in the limit of vanishing volume (2.122), the
quantum term (2.126) doesn’t have to decouple, thus paving way to the non-local
counter-terms as advertised in [15] (see footnote 25 and the example cited in there).

W (yy41) = (2.126)

Case 4: Non-locality in time for the various choices of F;(t)

The final case that we want to elaborate is a rather curious one, because it involves
non-locality in both (internal) space and time. The temporal non-locality would
only make sense as an integral condition. In other words we can take the non-
locality function F")(y — ¢/,¢ — t') to be functions of both (y,t) as well as (y',t).
However since we have identified any temporal dependence with ‘= (see (2.6)),
the non-locality function should now have both y, 3’ and g; dependence Therefore,
much in the same vein as before, we can assign the following generic form for the
non-locality function:

o =310 g2\ lyh A/
F"(y — ', g) fon =) ( ) exp (— < ) (2.127)
o vh 95
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where (l,,1,) € (Z/2,Z), the warp-factor h = h(y — ') and fl(a?b(y —4y') to be a
highly peaked function at low energies. We can also resort to the simplification
h(y —y') = ho to keep the g, itself unaltered to all order in the non-locality, as
we have done before. Plugging this in (2.117) and (2.118) results in a complicated
nested integral form, which would then have to be integrated over time to make
sense of the result. In other words, we want:

t dtl g B e ;1/3 t/ "
U (g, 41, g5(1)) = / e VUOO (eogs 2Bt + lg?h() 2% ()G (Yrs1, g5 (1)),
—00 p 0

(2.128)

where the three cases discussed above are described by assigning different values to
the triplet (e, e1, ©) i.e (0,1,6),(1,0,6;) and (1,0, 6)) with 6;, 8, and 6] as defined
in (2.84), (2.97) and (2.98) respectively. The g,(t') dependence of Gg(y,+1, g5(t')) may
be determined by plugging in (2.127) in (2.118).

The concern however is the integral (2.128) itself. Since g;, as defined in (2.6)
depends on time itself, so when ¢ - —oo, g5 — +o00. The representation (2.127)
is not a suitable description at strong coupling. because (2.127) is only defined
perturbatively when g, — 0. We can do a change of variable t — 1/¢, or g, — 1/g
to study the strong coupling regime. In either formalism, it then appears that the
relevant integral will be:

gs
q +% 1 ¢
/0 1 o esp (_g/QA ) _ oy <_q1 RES g_i) (2.129)
1 1 1
= = (931““ + (9(951”“)) exp (—q—i - O(QEA)) :
q2 gs
(2.130)

with g, < 1 so that the expansion on the second line could be justified. The pertur-
bative expansion then tells us that for any choice ¢; in the g; expansion, non-locality
to any order only adds a 1 + < factor, and therefore doesn’t alter any of our earlier
conclusions regarding g, scalings. Additionally, the decoupling effect for vanishing
volume as in (2.122) still persists, so no new subtleties appear at this stage.

Topological quantum terms, curvature forms and fluxes

So far we have dealt with the non-topological quantum terms in terms of curva-
tures and G-flux components that would contribute to the energy-momentum ten-
sor. However there are also EOMs associated with the G-fluxes that would demand
contributions from the quantum terms (2.94), and (2.78) for the cases (2.2) and (2.8)
respectively. Once we look at the fluxes, we will have to study both the standard
four-form G-fluxes and their dual, the seven-form, flux components. Thus we need
to see how the g, scalings (2.97) and (2.86), respectively for the two cases, would
change. Additionally, there would also be topological terms that we have to deter-
mine. We first analyze the topological terms.
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The topological contributions, as the name suggest, would appear from topo-
logical forms that are constructed using the Riemann tensors and the G-flux com-
ponents by taking advantages of their anti-symmetries. They may be expressed
as:

R = R‘}\;I]’\‘}M%bo dyM™ NdyY, G= G‘}\;’[?{’,Maobo dy™ A dy™

R3% = Runpq €Ve"?, G = Gnpg e"e™, (2.131)
where M, ;, are the holonomy matrices on the compact manifold over which we
will be taking traces. These are just like the generator matrices, for example as
the ones appearing like Af'T?, in the definition of a gauge field one-form. Using
(2.131), we can construct various higher order forms, one example being the fol-
lowing eight-form:

Zs = citr R + ¢ (tr R2)2 + c3 (tr RQ) (tr Gz) + cutr G4, (2.132)

where we have assumed that the holonomy matrices are traceless. For various
choices of the ¢; coefficients, we can generate certain sub eight-forms. For exam-
ple with:

1 1

3 o0 2T g @=a=0 (2.133)

C1 =
we have our Xy polynomial which is important to cancel anomalies as we shall
see later. However now with non-zero (cs, c4) more non-trivial polynomials may
be constructed which, in a packaged form, is given as (2.132). In fact polynomials
like (2.132) open up the possibility of constructing topological and non-topological
interactions in M-theory of the following form:

CsNZs, Gy *11Zy, (2.134)

where C; is the M-theory three-form and the Hodge star is with respect to the full
eleven-dimensional warped metric (as such it will be a function of g;). The way we
have expressed the non-topological piece, should allow us to extract this from the
generalized quantum terms (2.94) and (2.78) for (2.2) and (2.8) respectively. For
example the non-topological piece in (2.134) may be expressed as:

/G4 N *1124 = /dlly\/ —811 Z QT ({lz}, ny, ng) (2135)

{l;i},n1,n2

_ /dlly /—_gll (G4)]V[1M2M3M4 (Z4)N1N2N3N4 gM1N1g]Vthg]\/[:>,N;>,gM4N47

where we have used the warped metric both as inverses as well as in the definition
of the determinant, and the quantum terms Qr ({/;}, 71, ny) are defined as in (2.94)
for the case (2.2) (changing the quantum terms to (2.78) will provide information
for the case (2.8)). The above relation could be used for identifying the Z, tensor
from the quantum series (2.94) or (2.78) for the two cases (2.2) and (2.8) respectively.
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We can then ask the g, scalings of the following two kinds of quantum terms:
(G4)o1ans (Z4>012M ) (G4)MNPQ (Z4)MNPQ ; (2.136)

where (M, N, P) are the coordinates of the eight-manifold. The g, scalings of these
two interactions may be easily worked out by extracting a (C3);, and a (Cs),,yp

out of either (2.94) or (2.78). Since (Gu4)yy,, and (Gu),,ype Scale as (%)_4 and

(g—lj)zAk respectively, it is easy to infer the g, scalings of (Z4)""*" and (Z,)"""? re-
spectively as:

0, — 0. +4, 60, — 0, —2AF, (2.137)

with 6 as given in (2.97). A similar scaling would work if we replace ¢; with 6,
from (2.86), as one would expect. On the other hand, Zg should be topological.
To see this let us first fix the time to t = t; in the M-theory metric (2.3) and, for
simplicity, switch off the G-fluxes. Plugging in the metric ansatze (2.3) at the fixed
time, with the choice (2.133), in (2.132) then shows that at any ¢ = ¢, + d¢, (2.132)
may in general have J¢ dependence in addition to a piece that depends on ¢,. Since
the temporal behavior is traded with g, (2.132) will develop gs dependence. Addi-
tionally, because of the underlying non-Ké&hlerity of the internal eight-manifold (at
least for the case (2.2)), the integral of Xy is not exactly the Euler characteristics of
the eight-manifold®. Switching on the G-fluxes, the integral of Zs should also have
a g; dependent pieces. Together all of these would complicate the anomaly can-
cellation procedure that we have known for the time-independent case, implying a
careful study is required in the time-dependent case. More details on this appears
in section 3.1.2.

There are other topological contributions possible once we go to the dual formal-
ism. Here duality implies a generalized form of electric-magnetic duality, much like
the Montonen-Olive one [32]. To implement it here, at least at the level of perturba-
tive and non-perturbative expansions that we have entertained so far, all we need
is to express the flux contributions by their dual variables. The dual of a four-form
flux is a seven-form flux, and therefore if we can express (2.94) and (2.78) using the
dual variables, we should be able to determine their g, scalings as well. This rather
convoluted re-telling of the same story has a deeper purpose: the dual description
will not only help us to determine the Bianchi identities later but also help us to
ascertain the flux quantization conditions. The dual seven-form G; = #*;;G4, may
be expressed in terms of components in the following standard way:

1

Gr =7

GP’Q’R’S’ Y —g11gP,PngQgR/RgS/SEPQRSMl Ms..... M7dyMl A dyM2 ....... A dyM7, (2.138)
where the metric components as well as the determinant are all defined in terms of
the warped metric and epg... s, is the eleven-dimensional Levi-Civita symbol. The
above formula is an useful way to determine the g, scalings of every components
of the dual form once the original g, scalings are known. This will also help us to
determine the g, scalings of the quantum terms, relevant for the case (2.2), that may

ZWe thank Savdeep Sethi for discussions on this point.
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now be expressed in the following way:

QY gmmig™ ™ gk Dy, - Oy, OOy, Roimipg)” (Raad) (Ripgan)”® (Raans)™
(Ragmn)” (Ragas)'® (Rijig)" (Rijmn)™ (Rian)"” (Riajs)"® (Romnp)™! (2.139)
(Romon)"* (Roinj)"™ (Roao)™ (Roaos)"* (Roapm)"™® (Roabm)"” (Rogjm)"™

(Rmnpa)llg (Rmaab>l20 (R7nozotﬁ>l21 (Rmaij)lm (ROmna)ZQS (ROmOa)l24 (ROab’a)l%
(Roasa)™ (Roija)"™" (Goijagar) ™ (Goijgaad)™ (Goijgaps)™ (Goijmnab) ™ (Goijmnab) ™
(Gownqu> (Gmnpaﬂab)l34 (G’mnpqmb)l35 (GOijmnozﬁ)l% (GOijmnpq)137 (GOijmnpa)l?)g )

X X X X X

which should now be compared to (2.94) written in terms of the original variables.
We could also re-express (2.78), relevant for the case (2.8), in terms of the dual vari-
ables, but since the story would be similar to what we have in (2.139) we will avoid
this exercise. In fact making the following two-step processes to (2.139), we can con-
vert this to the case corresponding to (2.8): one, make ny = ljg = lyg = ... = lo7 = 0,
and two, relabel lsg, ..., I35 tO l19, ..., l2g. The g5 scalings are easy to determine using
the method employed in the earlier sections (see Table 2.2 for details). Following
these footsteps, one may easily verify that the g, scalings of the quantum terms in
(2.139) are exactly the same as in (2.97). Needless to say, the g, scalings of the quan-
tum terms corresponding to the case (2.8), are also exactly the same as in (2.86).
This shows that resorting to the dual variables do not change the g, scalings of the
quantum terms, and is therefore reassuring to see that the expected equivalences
between dual theories are respected at every order in the g, expansions.

Resorting to the dual fluxes G~ allow us to define six-form potentials Cg such
that G; = dCg + ..., where the dotted terms depend on how the Bianchi identities
appear in our set-up. This will be elaborated later when we discuss the EOMs for
fluxes. What we want to study here are the various forms of interactions, both topo-
logical and non-topological, that may appear when we consider quantum terms like
(2.139). Motivated by (2.134), we expect interactions like:

CG A Z5, G7 N *1127, (2140)

where Z5 and Z; are five and seven-forms constructed out of the curvature and the
flux forms like (2.131). However an odd form like Z; cannot be constructed out of
the two-forms from (2.131), so can only be expressed as:

Zs = As + dZ, (2.141)

where Aj; is a highly localized form which would represent a M5-brane once wedged
with Cg. The other four-form Z, can be constructed? out of the curvature two-form
and gauge form coming from localized G-fluxes. Finally, the second term in (2.140)

%The two four-forms Z, and Z, are definitely related to each other because they describe similar
interactions in M-theory, albeit in the relative dual pictures. We will however not elaborate on their
precise equivalence here.
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contributes the following non-topological interaction:

/G7/\*1127 = /dlly\/_gll Z @(TQ) ({li}anan)

{l;},n1,n2

(2.142)

which is similar to what we had in (2.135) earlier. Again, the metric components
are all taken as the warped ones and therefore involve g, factors in them, and

@) ({I;}, n1, ny) are the quantum terms as given in (2.139). The conjectured equal-
ity (2.142) is to be used to define the functional form for Z; tensor, much like what
we had in (2.135) earlier, and basically tells us that that Z; is constructed out of
products of tensors in such a way that it is an anti-symmetric tensor of rank 7.

Another important thing to notice about (2.78), (2.94) and (2.139) is that , al-
though they contain globally defined tensors like four-form fluxes and the curva-
ture tensors they are not globally defined functions. The fact that inverse metric
components show up in the definition of the quantum terms, and that metric com-
ponents are defined only on patches over the compact eight-manifold, render these
quantum terms mostly local. Now because the Hodge dual of the forms Z, and Z-
are related to the quantum terms (2.94) and (2.139) via (2.135) and (2.142) respec-
tively, they cannot be globally defined forms. This is much like the form X5 = dX5,
where X is not globally defined, and therefore the integral of X3 over a compact
eight-manifold is non-zero.

In the following we will elaborate on all the background EOMs, both for the
metric and the G-flux components, that would appear for our case once the effects
of the quantum terms are included. The analysis that we presented above will be
used once we study the G-flux EOMs and their constraints.
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Tensors | Dual Forms | % scaling for (2.2) | % scaling for (2.8)
Z?pqa/a’ab Goijm A 0 — 2
Z?mpqﬁab Goija o, 0.
Z.39ePab Grnpg 0, — 20k + 2 O — 20k
7y9Pab G rinpa 0, — 20k + 2 O — 20k + 2
zZy91eP G npa 0, — 20k + 4 O, — 20k + 2
Z3pact G nnas 0, — 2Ak + 2 O — 20k + 4
AL G naa 0, — 2k + 4 O — 20k + 4
yARIEY G naga 0, — 2k + 4 O — 20k + 6
Z.3paed G nab 0, — 20k +6 0, — 20k + 4
AU G opab 0, — 20k +6 O — 20k + 8
ARl G naab 0, — 2k +6 0, — 20k +6

TABLE 2.2: The % scalings of the various components of the seven-

form Zr represented for the two cases (2.2) and (2.8). We have taken

A= % and k > % The other two parameters, 92 and 0;, are defined in
(2.97) and (2.86) respectively.
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Chapter 3

Equation of motion, Flux quantization
and constraints

3.1 Analysis of the quantum equations of motion and
constraints

We now have all the ingredients to consider the equations of motion and extract
any constraints that may effect the dynamics of the system. The M-theory metric
that is relevant for us is (2.3) with the warp-factors appearing there are defined as in
(2.5). The F;(t) factors appearing in the metric are defined either using the volume
preserving condition (2.2) or the fluctuating condition (2.8). Although both these
forms allow perturbative expansions for F;(t), the former even allows the inverses
to have perturbative expansions. The G-flux components are expressed as in (2.13)
except the space-time components G, with y* being the internal coordinates
of the eight-manifold. Of course not all y* are allowed, and we will deal with
individual cases as we go along.

3.1.1 Einstein’s equations and effective field theories

An important aspect of our discussion is the quantum terms as they will be solely
responsible to change or alter the course of our analysis. These quantum terms
that we will be concerned about right now are the ones that will contribute to the
energy-momentum tensors. The other quantum terms that will effect the EOMs
for the G-fluxes will be dealt a little later. The former category of quantum terms
appear with two free Lorentz indices and whether or not they could create time-
neutral series will form the basis of our discussion here. Thus keeping everything
in perspective, we can represent the quantum terms in the following way that is a
slight variant from what we had in [15]:

TQ B Z C(kh]@)( u gg Ak thA/4 31
MN = MmN (Ys Mp) ﬁ exXp |\ — ga 5 (3.1)

k1,k2 s

where (k1,ks) = (Z/2,Z) with (M, N) being either of (m,n), (a, 8), (a,b), (i, j) or
(0,0). The pattern of representation of the quantum terms follow the same pattern
of perturbative series expansions employed for the G-fluxes, and the F; parameters.
This is of course intentional and in some sense necessary if we want to balance all

the EOMs.
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The way we have expressed (3.1), the g, scalings have been explicitly extracted
out. Without pulling out the g, scalings, (3.1) should be identified with either (2.78)
or (2.94) depending on the choice (2.8) or (2.2) respectively for the case when we
allow two free Lorentz indices. The g, scalings should then coincide with either
(2.99) or (2.100) respectively. These scalings immediately imply:

A= %7 (klakZ) € (%7Z> ) (32)

for (3.1) and also for scalings of F,(t), Fi(t) and Guwnpg in (2.9), (2.11) and (2.13)

respectively. Eventually however it all boils down to the question whether C ]\32,)

exists or not, and if it exists, whether there is a M, hierarchy or not'. For the case
(2.8), our study of the scaling behavior (2.99) with 0, defined as in (2.84), tells us
that:

cOV =cl% =0, CO =Ry gn A7, (3.3)
but no ALY or A%2 terms from (2.102). This is because (2.84) requires lyg = 2, im-
plying H; = 2, Hy = 2 and Hs = —1 from (2.82). This actually vanishes, in the light
of both the derivative constraint and the preservation of the type IIB metric form
(2.1) as long as we ignore localized fluxes. The latter will be useful soon. The other
non-zero tensor is the Ricci tensor R,,, that is time-neutral but is not a quantum

piece. Therefore putting these together, all terms except C%” vanish for the case
(2.8). The non-local counter-terms do not add any extra time-neutral series for this
case.

For the case (2.2) the scenario turns out to be a bit different from (3.3) because
now the non-localities do contribute towards creating new time-neutral series as
may be inferred from (2.123) with zero Lorentz indices and (2 125) for two free

Lorentz indices. This means we should again be looking for cl M N, which now takes

1 As cautioned in footnote 2, it will be erroneous to expand (3.1) in inverse powers of g, to extract
gs independent pieces. For example if one does it, then (3.1) becomes:

T%N _ Z (—1)mA”;r1:'£"C§\I}11{rk2) gACR=m) [ A(m—2k1)/4
k1,k2,m

implying that there are time-neutral pieces whenever m = 2k;. Such an analysis suffers from the

problem that for any values of m > 2k; in the above expansion, the terms are not well defined in

the limit g, — 0. Since all our expansions solely rely on the g, << 1 limit, or more appropriately the

gs — 0 limit, the inverse g; expansions are not advisable as they will lead to erroneous conclusions.



3.1. Analysis of the quantum equations of motion and constraints 55

the following form:

n ;2
00) — 0+ Z ZM—O’r T G({l} )(yr+1)5 (ek _ g(r_z))

(Li},n r=1
—0, T n 2
ARSI F Y S MG CSHET)
{l}n’r‘ 1

1j = or\yT 2
e = {Ram A} + 3 3 0o VG s (6~ 50+ D)
{li}vn r=1
(3.4)

where (A;, By) and (As, By) correspond to (m,n) and («, /) respectively with the
superscript notation as in (2.102), ¢, is defined in (2.97), and the G,; {l S may be
extracted from the functional form (2 124) by taking care of the Lorentz indices.
The M, power at any degree of non-locality is given in (2.114) by using (2.95). One
may easily see that all the three quantum series C,;, C,,,, and C,3 are suppressed
by powers of V2 and in the limit of vanishing volume, i.e (2.122), they decouple.
However what survive in this limit are the time-neutral series given by sum over all

Jjin CW because A B = 0 and R 4, s, are classical. Again, the vanishings of AW oy B ,in
the light of both the derivative constraint and the preservation of the type IIB metric
form (2.1), are allowed as long as the localized fluxes are ignored. Interestingly, the
sum over the time-neutral quantum terms C,(flf are now finite in number and have
well defined hierarchy as evident from (2.103), (2.104), (2.105) and (2.106). This
amazing turn of events will help us to find solutions where originally there were
none [15].

Einstein equation along (m,n) directions

We can now compute the equations of motion for all the fields and parameters in
the theory. We consider first the Einstein’s equations. Since there are multiple com-
ponents in the theory, we consider Einstein’s equation along (m,n) directions. The
Einstein tensor is given by:

OmhOnh Fy 0,h0*h  0xhd*h
= G — WAF, — 6hAF.
Gun mn o3 + Gmn [3 5 — 06 9+ — F A + 12
B 3,00 B ht?AF212F2 N Bht*AFy [y 2hiAFVFy N ht*AE) F,
2 4F; 21 Fy F
OmhOnh Fy 0,h0*h _ 0xhd*h
= Gun— 2 4 gon |3R3AAY2 g, Fy — 6hAF, +
onz Y {3 gukz = ORAEy e+ e
3 . g IRy, 3¢, FWF 2WVAARF, g R By
_ Nh | ZgFy — — , (3.5
9sGm \/_ 29 2 4F12 + 2F1 Fl + Fl ( )

where ¢,,, is the un-warped metric from (2.3), which is also the ingredient used
in the un-warped Einstein tensor G,,,,. In the third and the fourth lines, we have
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replaced the time parameter by g,. Such a g, expansion should also be reflected in
the definitions of F;(t) and whose behaviors are governed by either (2.2) or (2.8).
Both these cases will be discussed separately as we go along.

The energy-momentum tensor from the G-flux is now given by:

1 1 OmhOnh Fy 0,hd%h 8,y hO™ h
TG — Gm (JG lka _ — mnG akala _ Ymitn o 2 Ya m
mn AhF? ( tha™in g mn pkla onz O\ E Tae T e
+ 1 GiiaaG laa Eg G, G_plaa G afa lg G Gpaﬂa
2hF1F2 mlaa Ty 4 mn Fplaa 4hF2 maﬁa 9 mn\“Tpafa
A(t) r L ki 1k kil
Gm 1’G f—= nLnG ,er " m aG e mnG aGp @
+ 20D < ke Gy 89 pkl 4hF2F 1k g pkl
A(t) . 1 1
Gm o G af = mnG o Gplo/ﬂ Gm " G lab _ = mnG " ka,a,b
LTy N ( lafm T gmnSplaf + 4hA() y \ el g Imn pkab
b (GG — LG Gpaa G ) — 2 (g Gp GOT) (3.6)
4hA(t)F1 maa n 9 mn “Xpaa 16hA(t)F12 mn\“Fafa ’ .

where one may notice that we have retained components like G/nq. This is just

for completeness and, for the cases pertaining to our earlier constraints, we will be
dealing with them on an individual basis as we go along. The other ingredients ap-
pearing in (3.6) are the F;(¢) functions and the warp-factor h(y). The F;(t) functions
satisfy (2.2) or (2.8) depending on what conditions we want to impose on the New-
ton’s constant for the vanilla de Sitter case; and h(y) is the warp-factor that is not
required to be kept as a constant. Our aim in the following would be to study the
two cases, (2.2) and (2.8), and ask if solutions exist corresponding to the background
(2.3) or (2.1).

Case 1: Fy(t) and F5(t) satisfying the volume-preserving condition (2.2)

The functional form for F;(t) has always been fixed to (2.9) for either (2.2) or (2.8).
For our purpose however the full form of (2.9) is not useful since we will only be
concerned with g, — 0 limit which incidentally is also the late time limit. For this
case, since ¢~/9° dies off faster than any powers of g,, we can simplify (2.9) and
write it as:

=Y a (%)m, Fi(t) = Fy(t) =Y _C; (%)m, (3.7)

z z

where H(y) = h'/4(y) is used to avoid fractional powers of warp-factors and C}, =
cro in (2.9). Note that we have expressed Fi(t) in the same format as F5(t), but with

coefficients given by Cj. These coefficients? may be easily found from (2.2), and
here we quote a few of them:

Co=Co=1, Ci= —2C1, C, =3C% =20, (3.8)
Cy = —2C3 +6C,Cy —4CY, Cy = =205 +5C1 +3C7 + 60105 — 12C1Cy.

N[

2A(k1+k¢2+k3)

2The Cy and Cy coefficients are related by 3 k) Cr, Oy Cry (%) = 1 from where

(3.8) may be determined.
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These constant coefficients will have to be determined by plugging the ansatze in
the supergravity equations of motion in the presence of the quantum terms. Hence,
we will need time derivatives of F;(t) and Fi(t). For F;(t), they are some variants
of (2.12):

By(t) = 2AVA S kG, (%)m_l Byt =280 Y KAk - 1)C (g—g)m_Q (3.9)

z z

arising due to the simplification adopted in (3.7), and A is the cosmological constant
that appears in (2.3). If we want to work with (2.12) we will have to retain e~/ 95
pieces, but cannot expand it in inverse powers of g+ as cautioned in footnotes 2 and
1. The time derivatives of Fi(¢) has exactly the same form as (3.9) except the C}’s
are replaced by Ch. Plugging these in (3.5) we can express G,,, in powers of g, in
the following way:

B A Conzi2 gs\28%
G = G+ 3AH gmn;(?)Ak 20%2 = 2) O ()

[ 2A(k1+otkr) 89, HO, H
+ AQAH4gngkleCk10kz HCkz (%> - - -
3

| H H?

{ki} i=

4

~ Js 2A(k1+ko+ks+ka)
2009, Y k(82K + 28k — 3, T] G (E)
{kl} 1=2
4Gmn N s\ 28 (k1 +ka-+s)
o | QHOH + 0, HOH Y Cy Cr,Ciy (ﬁ) . (3.10)

{ki}

where the braces {k;} denote sum over all the k; € % values. It is interesting that
only (k1, k2) explicitly show up as coefficients which implies summing over all other
permutations of &, for p # 1,2. This will be important when we want to extract
various powers of g, to balance the equations.

Let us now consider the energy-momentum tensor for the G-fluxes. The full
expression has been given in (3.6). One may note that the last three terms therein
are exactly the ones we have in (2.102) (see also footnote 19). In the g, — 0 limit, we
can represent the G-flux from (2.13) as:

Gunpg = Z gj(\I;)NpQ(y) (%)Mk, (3.11)

Z
ke

where H = h'/* is as defined earlier, and we have used the fact that in the limit
of g, — 0, e"1/95 dies-off faster than any powers of g,. Plugging (3.11) and (3.7) in
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(3.6), we get:
T = % % (gr(:lgk)aggksﬂka - égmngplkag k3)plka> <%>2A(’“1+’f2+k’3)
+ % % (gf:fczagr(bkg)laa g }Ef;ag(kg)plaa) <%)2A(k1+k2+k3)
n {Xk:} CleZ}i@CM (gr(:z)ﬁagr(sz)aﬁa B %g paﬁag(]%)paﬁ(l) <%>2A(m+....+k6)
b 3 Gl (g g Ly, giigguomn ) ()0
{ki}
+ {%; ﬁ (gr(:llk)agflkz)lka G Z()Z;ag (k2) plka) <%)2A(k1+k2+1/A)
+ Y —Cklf :[24@3 (foﬁggé’%)laﬁ 9mnGpianG " pzaﬁ> (% )2A(’“1+"'+k5“/ )
{ki}
+ {Xk:} % (gmlabg(k4)lab i gmngﬁﬁg(k@pkab) (gﬁ >2A<’ﬂ+~-+k41/ﬂ>
D> G (Glm0itom = Sl omer) (5)= T
- I Z Chy oo Cr Gl G (§>2A(kl+m+k7_l/A) - —88""528 -
+ 42";" QHIH + 0, HIH'Y " Cy, i, Chy (%) I (3.12)

{ki}

where note that we have retained components like Qj(\j)]\,ab(y), which immediately
implies that these components cannot be expressed as (2.89) because for the limit
gs — 0 only the constant zero form survives. We also want to avoid switching on
components like Cjq, to avoid developing cross-terms in the type IIB background
(2.6). Thus the only option is to view them as localized fluxes which, in fact, will also
be very useful to resolve other subtle issues surrounding flux quantization etc in
the full M-theory framework. By construction, we have:

With these at hand, we are now ready to discuss all the equations of motion for the
system. Our first step would be to study the EOMs at zeroth order in g,. Looking
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at (3.10), (3.11) and (3.1), it is easy to infer the following;:

Cp.C 1
G,.. — 6AH 4gmn = Z ﬁ (gmlabg ka)lab 19 Gram pkabg (k4) pkab)

{ki}

+Ck1 Ckz ( (k3)

(8702 1 aa
Lt | Goan G = S g G eGP b) 8kt + ky + ks + kg — 3)

1671 2 O CraCi iy Cua Gl G5k by -+ b = 3) 4 CUB.14)
{k

where the delta function is simply used to fix the condition on k;. Note that all
k; € Z/2, and both set of (k3, k) as well as (kg, k7) cannot vanish, and take the
minimum values of 1/2, because of (3.13). On the other hand, (2.97) tells us that
Ak > 1/2 which, with the delta function constraint above, immediately implies
ks = ky = 3/2 in the first two lines and kg = k7 = 3/2 in the last line of (3.14) and
the rest zero. Thus:

mlab

G,n — 6AH49 o, = @ngr?) + (9(3/2 (3/2)lab _ Gom ﬁ{fb G (3/2) pkab)

1 1 n apa
A CEs T ;zz?g@/”m“) P ——

(3.16)

which is actually a set of 10 equations with 31 unknowns. The RHS is completely

fixed once we know the functional form for G\, (8/2 PQ (y) components. All these fluxes
appearing above are localized fluxes and according to (3.4), at the zeroth order in g;,

there are no local quantum terms, except classical ones, and contributions to CcoY
come mostly from the non-local counter-terms. These are suppressed by powers
of the torus volume and therefore their contributions are negligible. This is one
of the key difference between a similar equation appearing in [15] (see eq (5.25) in

[15]). The number of terms appearing in Cly in eq (5.25) of [15] are the number of
solutions of 6y = % in (2.98). There are then an infinite number of solutions for (2.98)
with no hierarchy, the latter because of the inclusion of the non-local counter-terms.
This ruined an EFT description in [15].

Before moving ahead let us clarify few questions that may be asked at this
point regarding the two scaling behavior (2.97) for (2.2), and (2.98) for the time-

independent case. First, in determining the g, scaling gg;“ or gg‘l), what values of the
metric and G-flux components should we insert in (2.94)? Recall from (2.3) and (2.5)
the metric components are expressed in terms of their g, scalings as:

Suv _93—8/ Uma gabzgé/g’&ab
2 1 1
N A NS SN TAY s
gaﬁ—gaﬁ[<H> +C%<H> +01+Cg(H) I ]H

o= [(5) 4y (%) ey (8) 4], e
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where the C;, and C}, are related by (3.8). Coming back, taking a trace on both sides
of (3.15) immediately tells us that the internal manifold M, cannot be a Calabi-
Yau manifold. It cannot generically also be a conformally Calabi-Yau, as the non-
Kéhlerity will be controlled by the localized fluxes as well as the cosmological con-
stant A. At this stage one can also count the number of variables we have in the
problem. They can be tabulated as:

HW); gun®)i G\inro®), Giinpo®), Giinpoy), - (3.18)

with 10 components for g,,,, 1 from H(y) and 70 components from any choice of

k in Q](\?N po totalling to at least 81 independent functions for a given k. The g,
EOM connects the metric components with the warp-factor and G-fluxes, which
we elucidated to zeroth order in g, in (3.15). In fact a more precise connection of
gmn to the fluxes and the quantum terms appears from the next order in g, i.e gi’?.
The relation becomes:

3 3 Cy,, C 1
_ (1/2,0) k1~ ko (ka)lab (k3) ~(ka)pkab
G 58A(y) ™ 58A(y) % AHA (gml“”g 19 Gpand’ )
Ck) Ck ]C aa 1 aa 7
+ ﬁ ( T(n;ZLb ’r(Lk4) b 59 paabg (ka)paab 5 kl + k? + kd + k4 - 5 )

(3.19)

which is another set of 10 equations with at least 44 unknowns. These would imply
the precise connection between the M, metric, localized fluxes and the quantum
terms. The function® A(y) is again a function of the localized fluxes, and the warp-
factor H(y), as

7
A(y) 928H4 Z CleszkSCk4Ck5g kG) Q(k”“ﬁ””é (k‘l 4+ ko + ..+ kr— 2) — C%AH4, (3.20)

where for both (3.19) as well as (3.20) we have to make sure that (ks, k4) > (3/2,3/2)
as well as (kg, k7) > (3/2,3/2) so as to comply with (3.13) as well as the p051t1V1ty

of (2.97). More crucially, note the dependence of g, on the quantum terms C;7, (1/2,0)
from (3.1). Since we are looking at gS , this means the local quantum terms of
C*? should be extracted from (2.94) and (2.100) with 8, = 1in (2.97), i.e:

27
QZli+nl +ng 4 lsg +lss +2(k+2) (log + log + I31) + (26 + 1) (I30 + 32 + I33)
i—1

+2 (]i] - 1) (l36 + l37 + lgg) - 3, (321)

with (I;,n;) € (Z,Z) as it appears in (2.94). Again since k& > 3/2, we see that there
are only a few quantum terms that can appear from (3.21). These quantum terms

3The function (3.20) can never be zero globally because the G-flux components appearing in (3.20)
cannot globally cancel the contributions from the warp-factor, as they are by definition localized
fluxes.
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may be extracted from a sub-class of (3.21) that satisfy:

2 Z li +m1 +mng + Z l344: = 3, (3.22)

with other /; not contributing. These clearly select a finite number of local quantum

1/2,0
n

terms from (2.94). The remaining contribution to i in (3.19) come from the

non-local counter-terms, implying that to order ¢ and g+%, contributions to the
metric can only come from the fluxes and curvature tensors satisfying (3.21) and a
set of non-local counter-terms (that in turn are heavily suppressed prohibiting us to
go beyond a certain level of non-locality). For example, the non-local contributions
to r-th order come from:

2r

2

for the two cases C'o) and Cl>" respectively with 6; as in (2.97). Additionally

(3.15) is expressed in terms of Q}éﬁ},(g(y) whereas (3.19) is expressed in terms of

QJ(V?}@DQ(y) and Q](\?N po(y) allowing us to express gﬁN pq(y) in terms of gﬁ%ﬁ};Q(y)

and other variables in the problem, where y = (y™,y“) form the coordinates of
M4 X Mg.

To elucidate the story further, let us go to the next order in g,, namely 92", We
want to see if there are additional constraints on the metric itself, or whether new
degrees of freedom appear. Combining (3.10), (3.11) and (3.1), we get:

9 9 C..C f 1 ,
_ (1,0) Z k1 Uk (k3) 2 (ky)lab (k3) (kq)pkab
9mn = Cmn + (g __gmng ag ) (324)
B(y) B(y) phab

4H4 mlab“n 4
{ki}
Cy, C . 1 .
+ (Qﬁ;ﬁb%’“)‘“b ~ 3 0mn ;’;";L)bg(’“‘*)”a“”) ] 5 (kv + ko + kg + ky — 4)

which is somewhat similar to (3.19) but differs in three respects: one, the quantum
terms are different; two, the k; sum over to 4 instead of 7/2 leading to a set of 10
equations with at least 58 unknowns; and three, the denominator is given by B(y)
instead of A(y). This is defined as:

B(y)

9 .
Tt 2 OriCraCiy O, O Guiin, G008 (hy by 4+ kr = 4) — g AHY,
{ki}
(3.25)

which should again be compared to (3.20) (the non-vanishing of this is guaranteed
from a similar argument presented in footnote 3). These similarities however do

not survive beyond ¢2"* and we will comment on it below. The constant a is given
by the following expression:

a, =43C% — 61C, — 13C1, (3.26)
2
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with C} being the constant appearing in the functional form for F;(¢) in (3.7) and
(3.8) an should in principle be determined along-with the metric, warp-factor and
the G-flux components.

Looking at (3.24) and (3.19) we see that a pattern is emerging: (3.24) is expressed

in terms of G-fluxes of the form G 1\3/13 ro¥), G ]é ~vpo(y) and G 1\%3 po(y). Thus know-

ing the metric information g,,,(y) will enable us to express G ]\%\%Q(y) in terms of

Qj(fj)N ro¥), G ]\%3}@( ) and the warp-factors, as the quantum term in (3.24) is given
by [; in (2.94) satisfying;:

27

2 Z ll + s + T + l34 + 135 + 2<k — 1)(136 + lg7 + 138) =4 + 27’, (327)
i=1

with 7 = 0 producing the local terms. Note that k& < 2 otherwise the terms would
be classical, implying that the quantum terms to this order cannot be constructed

out of G ]\%%Q justifying the above pattern.

The form of the Einstein’s equations would remain similar till gf:)/ ®. For g% on-
wards, other components in the energy-momentum tensor (3.11) would start par-
ticipating because the k; > 3/2 bound for the G-flux components would no longer

be prohibitive. Thus for any given component of the G-flux, say for example Qmmb,
there are infinite number of sub-components classified by k£ for £ > 3/2. So far
we have only dealt with a few G-flux components and their corresponding sub-
components (classified above by £;), but more would appear as we go to order g2
and beyond. In fact 70 new components of G-flux would appear for every choice of
k;, implying that at least 70 new degrees of freedom are added at every order in g,

as we go.

Case 2: F\(t) and Fy(t) satisfying the fluctuation condition (2.8)

In the above section we discussed in details how the EOMs for the internal space
M, may be determined from fluxes and the quantum terms. In this section we
would like to see how this changes once we impose (2.75) or (2.8) on the metric
coefficients F(t) and F5(t). One of the first important distinction is the derivative
constraint that appears from looking at the generalized scaling (2.92). This could
even prompt us to analyze the whole section using (2.75) instead of the special
case (2.8). The generic picture is more technically involved, and since we will not
be gaining new physics by looking at (2.75), we will suffice ourselves here with a
detailed consequence of imposing the special case (2.8) on the background EOMs.
We will however revert to the generic picture whenever possible.

As a start, let us work out the behavior of the metric coefficients F(t) and Fy(t).
We will keep F(t) as in (3.7), but change F (t) accordingly. For example, the generic
form for F;(t) may be expressed as:

2Ak

“Ya () mn=Ya (@) =26 (%) 62

this is almost similar to (3.7), if we define C}, = Ch (gs) . Note that, in this form the

20k~
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(Ch, 5k) coefficients satisfy the same relation as (3.8). However the metric along the
(c, B) direction becomes:

3~ -5t~ . Iy
8ap = Jap [(%) ’ +C% <%> ’ + C <&> —i—C% <&>3 + } H4/3,

with the other coefficients remaining the same as in (3.17). Choosing v = 2 would
explain the metric choice that we took earlier in analyzing the g, scaling (2.86).

Again, we could resort to the dominant scalings of the metric coefficient i.e g5 23+,

but compared to footnote ?? the inverse will become g 2377 with the v exponent
picking up a negative sign. This is because F; ' does not have a perturbative ex-
pansion compared to the case explored in footnote ??. The resulting physics will
change as evident from the scaling behavior (2.92) and (2.86).

The time derivatives of F(t) will expectedly remain the same as in (3.8), but the

time derivatives of F;(t) will change. The change is easy to quantify:

. ~ gs 2Ak+7*1
Fi(t) = VA Cr(2Ak +7) (ﬁ)
kel
. ~ gs 2Ak+’7—2
Fi(t) = A Cr(2Ak +7)(2Ak +7 — 1) (ﬁ) , (3.30)
kel

where the inverse powers of g, will be dealt carefully once we go to the relevant
EOMs. These functional form can now be used to determine the Einstein tensor
along the (m, n) directions. The result is:

4gmn81H81H

H2 (3.31)

_ 4 B 9 2— & 2Ak
G = Gmn+3AHgmnzk:(3Ak 2022 =2) G (%) +

7
1 4 =~ N gs
+ A g, {Ek }:(Qmﬁ +7)(28k +7)C, i, | 3| O, (E)
1 =

2A(k1+...4+k7) SamHanH
- H>

Y

) 2A (k1 +ko+k3+ka)

4
— Mg Y (201 +7)(30ks + 28k + 7 — 3)Cy, [ Ch, (%
{ki} i=2

which in the limit v = 0 does not reproduce all the terms of (3.10). In particular
terms with derivatives with respect to o are missing. This is of course expected
because v = 0 and v > 0 share different physics. Note also that none of the g;
scaling gets effected by the v factor, although the ~ factor does change the some
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of the coefficients of the terms in a standard way. In a similar vein, the energy-
momentum tensor from the G-fluxes may be represented as,

C 1 N\ 20(k1thaths)  4g O HO'H
TTG”” - Z 4]—1;14 <g7(7];l2kag a)ika _ gmng(fliag(kg)plka> <g_> + : ;

2
o} 0 H H
Chi (o) aks)ion L (k) (k) G\ 2D (k1 ha+ks —y/20)
+ Z—1<g 2 g(3 . 2g( 3)plaa <_>
2H4 mlaa 4 plaa H
{ki}
C’leRQCkSC’M (k5) A (ke)afa 1 (ks) (ko )paBa Js 2A(k1+....+ke—7/A)
+ Z A4 gmzﬁag ¢ - §gmn pa?@ag 6P <ﬁ)
{ki}
5’6161620163 (ka) o~ (ks)lkr (ks)pkir g\ 2Ak1+.+ks+1/A)
+ %W gmlkrgn - gmngpklrg P (E)
1 k1) (ko )plk Js 2A(k1+k2+1/A)
L (e gt (2)
4 HA mlka 6 plka H
{k:}
Cy, Cr,C 1 2A (k1 +...+ks+1/A—vy/A)
+ Z k14[§24 k3 (gmlaﬂg (ks)lap Zlg plaﬁg(kg, plaﬁ) (%)
{ki}
ék Ck (k3) ka)lab (ka)pkab Js 2A(k1+...+ksa—1/A)
o 2 (et = ganig ) ()
4H4 mlabon mn pk(zb H
{ki}
ClekQ (k3) - (ka)aab 1 (ka)paab Js 2A(k1+...+ka—1/A—~/2A)
Gmn (hryagab (Js \ 22U tthr=1/A=/A) 80, HO, H
- 16H* %Ckl"'ckf) aﬂabg V) (H) T g (3.32)

where we have used the G-flux ansatze (3.11) to express it in powers of g,. The
above expression is similar to what we had in (3.12) and putting v = 0 we get back
most of the terms therein. The difference remains the same: terms with derivative
with respect to o are missing.

Let us now analyze the EOMs. We equate the Einstein tensor (3.31) with the
energy-momentum tensors (3.32), for the G-fluxes and (3.1), for the quantum terms.
However, we will have to specify some values for v to equate (3.31) with the sum
of (3.32) and (3.1). Let us take v = 2. Such a choice immediately implies, from
(2.92) and (2.93), that the lowest mode of G-flux that we can take to avoid generating

time-neutral series is 9/2,1.e G 1\%3 po- In other words:

Gunro = gﬂﬁ/]@PQ(ij) +6%r0 (?;)10/3+...., (3.33)

where we put A = 1/3 to illustrate the g, dependence more precisely. The expansion
(3.33) is a bit unnatural in the light of the G-flux behavior for v = 0, and in fact
increasing v increases the lower bound from (2.93), but let us carry on to see how
this effects the EOMs.
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We will analyze the EOMs to order by order in powers of g+, The lowest or-
der is the zeroth power in g,. Interestingly, because we took v = 2, the only flux

component that can contribute at this order is ga 5ab In other words:

gmn 9/2 aba
Gmn - 3AH4gmn = ng;?) - Wgég/ab)g(g/Q) p b’ (334)

where C%Y) collects all the quantum terms classified by 6, = 2/3 in (2.84), where
the choice of 6, is governed by the scaling argument in (2.99). The equation (3.34)
should be compared to (3.15). The latter has more G-flux components with much
lower modes, but the overall story remains somewhat similar, albeit a bit more
natural. A degree of freedom counting tells us that we have 10 equations with at
least 17 unknowns, thus considerably more constrained than (3.15). Note that the
coefficient of A, lets call it o,A, is smaller that what we had in (3.15). This is because
~ contributes to the coefficient as:

Oy = Z (47 — = 8) , (3.35)

showing that no real choice of v can make the cosmological constant term in (3.34)
to vanish.

To the next order in g, the story evolves in a similar way to what we had in (3.19).

The metric can be directly related to the G-flux component Qa%/ab) and the quantum

(1/2,0)

terms C;n,. The precise expression is:

N G Cl1/20) -
mn A 16H8](y) + 45C%gi%/a22g(9/2)a5ab ’ .

where the quantum terms are classified, as before, by 0, = 1, with 6, defined as in
(2.84). The equation (3.36), as also in (3 19) mixes all the un—warped metric com-

ponents with the G-flux component g b as well as the C} and the Ck coefficients,

so one would need other equations to dlsantangle everything. The C}, and the Cr
coefficients also appear in the definition of J(y) which takes the following form:

7
~ 1
Jy) = —42C1 + § (k1 + 3) (k2 + 3) Cy, Ck, | | Cr,0 (kl + ..+ kr— 5) (3.37)
{k:} 1=3

~ 1
-2 E (kl + 3) (3]€2 + le — 3) Ck10k20k30k45 (k‘l + kz + k’g + k’4 — 5) .
{k:}

2/3

One could now go to the next order, i.e g5’”, and analyze the background in a sim-

ilar way to (3.24), using the same component of G-flux and quantum terms Ch
classified by 6, = 4/3 in (2.84). Compared to our analysis for case 1, only a few
new degrees of freedom are added at this stage: the coefficients of the individual
quantum terms and the C' coefficient. Thus (3.37) is again a set of 10 equations
with at least 18 unknowns. Compared to case 1 above, it appears that we have
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more equations than the number of unknowns, so existence of solution is a ques-
tion here. Assuming solution exists, we see from (3.34) and (3.36) that the metric
on M, has to be a non-Kahler metric. The story can then be developed further in a
somewhat similar way, but we will not do so here, and instead go with the analysis
of the two cases along («, /) directions.

Einstein equation along («, /) directions

The Einstein’s equations along (m, n) directions have been discussed. We now ana-
lyze along the («, 3) directions, namely the directions along M,. The analysis will
proceed more or less in the same way as before, although specific details would
differ. In fact these are the differences that we want to illustrate in this section. We
will proceed by first studying the volume preserving case (2.2) and then go for the
fluctuation case (2.8). However before moving to the specific cases in question, we
want to elucidate the general picture starting with the Einstein tensor. This takes
the form:

80a HOs H 1 .3 O, HO*H F, [8,,HO™H
Ga,@ = Gaﬁ —_ T + 49&5 ng\/KHSF]_ — §AH4F1 + T + E <_H2 }38)
1 . 222 2H2F2F 2H2F, F NANH3EF 2H2 [, F
4904[1’ *93H2F1 _ 9s 1 9s 22 1 9s 2471 + g: \/7 2471 + s 2471 ’
8 16F, 8F3 4F, F 2F,

where h(y) = H*(y) and G,z is defined with the un-warped metric g,s5. The g;
dependence appearing in (3.38) is clearly not the full story as other g, dependences
hide in the definitions of F;(t). This will be illustrated for the two case (2.2) and (2.8)
soon. The Einstein tensor (3.38) will have to be equated to the sum of the energy-
momentum tensors for the G-flux as well as for the quantum terms. The latter is
given in (3.1) whereas the former takes the form:

F 1 A(t) 1
G _ 1 mnpa lkr kir
Taﬁ - H4F23 <_MgaﬁGmnpaG P ) + m <Galk7‘G5 — 5gaﬁG’yle(;'Y )
+ # G lea 1 G G'ykla + # G Gl’}’a 1 G G&l'ya
4H4F22 alkarg 29&5 vkla 2HE, Fy alyabig  — 4ga5 slva
A() b, 1 FA) (1 80, HO H
— = | G, TGn T_ w5G TGf-ﬁ]lr _ = G08Gnn Gmnpg | _ 2Pt OB
* 4H4F2F12 ( s 4g Al 12H4F24 89 B pq 2
1 lab 1 Bkab 1 ~yab 1 nrab
+ A <GalabG5 QQaﬂGakabG + AT, GarabGh 49a5GnmbG
F 1 - O.HO'H F (0, HO"H
HAER <169a6Gm””’bG ) + 4ges {H 5 T )] (3:39)

which captures the contributions to the energy-momentum tensor from the G-
fluxes. Interestingly, as in (3.12) all components of G-flux contribute, in addition
to the space-time components. With these at hand, let us discuss the individual
cases.

Case 1: Fy(t) and F,(t) satisfying the volume-preserving condition (2.2)
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Our starting point would be express both (3.38) and (3.39) using the g5 expansions
of F;(t) as in (3.7) and G-flux as in (3.11). Using these the Einstein tensor becomes:

80, HOgH ~ ~ - 2\ 20k
Guosg = Gag— Tf +AH gy [2Akck —6C, — Ak(2Ak — 1)04 (%)
{ki}
O HO*H OmHO™H ~ s\ 28 (k1 +Hhatks)
+ 4ga,8 12 + ( 2 ) ZCk1Ck20k3 (ﬁ)
{k:}

— AAH'g Y [QAkleCthQ Croa s — AkiyEsCl, Oy Oy Chey + A0 key G, Oy iy i,

{ki}

- ~ - ~ o\ 28 (k1+ka+ks+ka)
+  8k1C%, Cy, Cry C, + 4Ky (24K, — 1)Ck1ck20k30k4} <gﬁ> B (3.40)
which in turn should be compared to (3.10). As expected, their precise structures
are a bit different, but the generic form remains somewhat equivalent. This is also
reflected in the form of the energy-momentum tensor, which may be expressed as:
(k2) G (ks)lka (k2) o\ [ g5\ 2Ak1tkatks)
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which should again be compared to (3.12) and we see that the relevant G-flux com-
ponents and the warp-factors fall in their rightful places. As expected, the last three
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terms of (3.41) matches with the three equivalent terms in (3.40). To the zeroth order
in g,, the equation of motion becomes:

1 w1 )
Gaﬁ B 6AH4ga5 _ CLO/J,}O) + m (g(jy/;bg 3/2)vyab Zga,@ siéi)g(?:/Q)’Y?? b> (342)
1 3/2) ~(3/2)lab 1 3/2 a Ja 3/2 mna
L <g£¢léb)g( /2) o @/ s/t 16549%13)9(3/2) 3

showing us that the internal space M, again cannot be a Calabi-Yau manifold. The
non-Kéhlerity of M, is generated by both G-fluxes and the cosmological constant.
The G-fluxes entering in (3.42) are the special ones that have legs along the (a, b)
directions much like the ones entering in (3.15). As mentioned earlier, these fluxes
cannot be of the form (2.89) and therefore will be treated as localized fluxes. The
other ingredient is the quantum term Cg(};”. More details on this will be discussed
below.

In the next order, i.e. gi/ ® we need to be careful because some of the k; that
determine the G-flux components are bounded below as k; > 3/2. The others can
take any, i.e zero and positive, values lying in Z/2. Keeping this in mind, expanding

to g2’ gives us:

9 ~(1/20) 9 ~ (oiab P
op = Cot "+ e D |OnC o e
Jab 2C(y) P * 8HAC(y) Z ke ko (galabg Bgfylabg

{ki}
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9as G G, Gk glhymnab 5 (g T 3.43
- 32H4—C(y)z k1 Cea mmb 1+ R2+ k3 + 475 ) (3.43)

{k:}

where we note that (ks, ky) > (3/2,3/2) as alluded to above. This means we are
looking at G-flux components with (ks3, k4) = (3/2,3/2),(3/2,2) and (2,3/2). This,
in turn, should be compared to the (3/2, 3/2) distribution that we got in (3.42). The
coefficient C(y) is defined as:

C(y) = 50AH?(y)C,

1
2

(3.44)

which is always a non-zero function because H(y) is a non-vanishing real function
globally. The other ingredient of (3.43) are the quantum terms. These are classified
by C%Q’O) and should be compared to the quantum terms classified by (CEXOB’O) in
(3.42). Following (2.100), the latter would be classified by 6, = 2 whereas the former
would be classified by 8, = 1 in (2.97).
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The next order is g2/°, and follows in exactly the same footsteps of the previous

case, although details differ. The equation now becomes:

1,0
o = S b3 (G (G - Latigho)
E(y) — 4H'E(y) o= [ 7\ g

a 1
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_ ggaﬁ (k3) A (ks)mnab _
16 H*E(y) % (O Ckzgmnabg O (ky 4 kg + ks + Ky —4), (3.45)

in exactly the same format as in (3.24). Again k3 and k4 are bounded as (k3, ky) >
(3/2,3/2) so we have G-flux contributions from g%}DQ, G\ Mypg and G ]\%3 pg- In the
same vein, the quantum terms are classified by an equation of the form (3.27) for
local and non-local contributions. Finally the function E(y) appearing above is de-

tined in the following way:

E(y) = —AHY(y) [47(71+3D(y) (3.46)
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where we expect both these functions to be non-vanishing globally. All the three
EOM:s that we listed above, namely (3.42), (3.43) and (3.45), are each a set of three
equations with at least 31, 40 and 49 unknowns respectively.

Case 2: Fy(t) and F,(t) satisfying the fluctuation condition (2.8)

The analysis of (o, §) directions will be a bit more subtle from what we encountered
for case 1, partly due to being different modings of the G-flux components and
partly due the different scaling behavior of the quantum terms as evident from
(2.99). Before we go into these discussions, let us present the Einstein tensor for this
case:

Gop = Gap+AH'gas (QA/H’Y)@*GCNV’C*E(QAk+7)(2Ak+pyfl)ék (&)QMer
o [e3 (&2 {k} 2 H
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- 1 ~
< 3 [2Ak1k20k10k20k3 Chry = 75 (28k1 +7)(28k; +7)Cr, Cr, O, O,
{ki}

+ 2(2Ak‘2 + 7)k45k15k20k30;94 + 8k10k16k26k30k4 + 4k1(2Ak‘1 — 1)Ck15k26k30k4:|7 (3.47)
which may be compared to (3.40). As before, the difference lies in the absence of

a dependent terms and the appearance of the « factor at various places, including
the g, scalings of most of the terms. We will eventually make v = 2, but for the time
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being we shall carry on with the generic picture as far as possible.

The energy-momentum tensor for the G-flux is much easier to compute. All we
need is to ask how the g, scalings of each terms in (3.41) could change. Taking this
into account, the expression for the energy-momentum tensor becomes:
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where expectedly the last term matches with an equivalent term in (3.47). Other

terms could be compared to (3.41), and here we notice something interesting: to al-
low for a zeroth power of g, the sum of the two modings of the G-flux components,
i.e the sum of the two k; values of the Q](\fnz, pg @ppearing in any term above, should
at most be:

m+@:%Q+%y (3.49)
where (k;, k;) are the modings appearing in the product of two G-flux components
in (3.48) that contribute to the energy-momentum tensor. With v = 2 and A = 1/3,
this means the sum in (3.49) should at most be 6. This is unfortunately not possible
in the light of (3.33) and (3.13), where k; > 9/2 for the G-flux components from
(2.93), implying that to zeroth order in g, there are no G-flux contributions to the
(a, B) EOMs.

What about the quantum terms (3.1)? Here we face another conundrum: ac-
cording to the scalings of the quantum terms in (2.99), with two free Lorentz indices
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along (o, B) directions, the g, expansion should go as:

9k+4/3

gl = g2 gTs L (3.50)

with ), defined in (2.84), implying that there are no quantum terms to zeroth order
in g,. The minimum allowed power of g, is g because terms with 6;, = 1/3 vanishes
due to the anti-symmetry of the G-fluxes. The non-local terms cannot contribute
anything because it adds a factor of +4r/3 at r-th level of non-locality to (2.84) as
evident from (2.119) and (2.121). This means that at zeroth order in g,, even the
quantum terms cannot contribute. Putting everything together, (3.47), (3.48) and
(3.1) with (2.99), gives us:

Guas = 0, (3.51)

implying that the internal space M, can be a conformally Calabi-Yau space?. This
doesn’t imply the metric to be that of a flat torus, because of the warp-factors. On
the other hand since M, can now have toroidal topology, it’s Euler characteristics
would vanish, implying the vanishing of the Euler characteristics of the full eight
manifold. One might now worry whether non-zero fluxes could be allowed on a
manifold with vanishing Euler number [21, 22]. This is a pertinent question and we
will analyze this in more details soon, but the short answer is the following. Since
the fluxes involved are time-dependent the constraints discussed in [21, 22] will have
to be modified allowing fluxes to exist on the eight manifold with vanishing Euler
number. These fluxes will have to be supported by quantum effects, so there is no
contradiction yet’.

To the next order in g, i.e g;/ ® there are no contributions from (3.47), (3.48)

and (2.99). In fact the next contributions only come from order ¢?, and leads to the
following EOM:

3,0 1 (9/2) »(9/2) ab (9/2) a
C‘(Xﬁ)—i_ﬁ(ga'y/abg /2) o gn/abg9/2 nb)+4AH4gag:0, (3.52)

which is a set of 3 equations with at least 7 unknowns. Note that this is also the
tirst time the quantum terms contribute to the EOM; and here they are classified by
6, = 2/3 with 6, given as in (2.84). The above equation however is a bit puzzling in
the light of (3.51). In terms of the un-warped metric g,s we expect from (3.51) that
the internal space be Ricci flat. Putting g.s = d.5 then puts a constraint on the form

of the quantum terms CS[;O) from (3.52). In particular (3.52) tells us that the trace of

*A more precise statement is that (3.51) directly implies R(¥) = 0, i.e the Ricci scalar of M,
vanishes and we can take the metric g,,, to be that of a K3 space. Imposing this on (3.51) provides a
source-free equation for the metric g.g whose solution is a torus. This way the metric for My x My
can be conformal to K3 x TZ.

> Another possibility is to take the metric of Ms to be flat everywhere except at one point. Ge-
ometrically this is T?/Z, and therefore doesn’t have a vanishing Euler characteristics. However
quantum corrections would eventually make this into a smooth space with non-vanishing curva-
ture, so will not be a solution to (3.51). Thus we will continue with K3 x T? as our un-warped
background. This will eventually lead to some subtleties that we shall clarify in section 3.1.2.
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the quantum terms has to be a negative definite function, i.e:

(3, 1 2)\?
€50 = —— (62) —sam’, (3.53)
Whether such a constraint could be satisfied will be discussed later when we ana-
lyze all the EOMs together. From here the story progresses in the usual way with

the Einstein tensor (3.47) being balanced by the energy-momentum tensors (3.48)
and (3.1).

Einstein equation along (a, b) directions

Along the (a, b) directions, i.e directions along T? /G the situation is somewhat moree
subtle. Part of the reason is that the variables we took so far are independent of the
toroidal direction. This was not the case in [15], which is of course reflected in
the scaling expression (2.99). The other main reason is the quantum terms that we
will discuss when we study the individual cases, (2.2) and (2.8). For the immediate
discussion, we present the expression for the Einstein tensor:

R 4g°POHOsH — 4g™ 0 HOZH\ [gs\2
Gay = Oap | —7 — 9RA <_)
b b < 5 + 2F, HE, -
F2oo3R B E2 6B, 2B, 2B ) rgo0\
+ 5abH4 —12+—1__1_ 22_|_ 2_ 2_ 142 (g_) ’
4F1 tFl Fl 2F2 tFQ F2 F1F2 H

(3.54)

where R is the curvature scalar of the six-dimensional base M, x M5 and not the full
eight-manifold. The reason is of course because we have assigned non-trivial metric
to the six-dimensional base, whereas the metric of the toroidal space is governed by
the warp-factors only. This is also the reason why é,, appears in (3.54) above instead
of a non-trivial metric g,;. Inclusion of the latter would complicate the dynamics of
the system, for example, by changing the coupling constant etc., so we will avoid it
here. Note also the absence of ¢, independent terms in (3.54). This differs from (3.5)
and (3.38), both of which allow g, neutral terms in the definitions of the Einstein
tensors. Similarly the energy-momentum tensor is given by:

T = 1211\;?}723 (GmwGi’”’” - é%meme"’“) + Mﬁ(;zlﬂ (GWWG?W = ;(sabamacamnac)
b g (Comad G = 3GonasG™ ) 4 i (Guumy 5™ = LbuaGinpeaG™)
b g (GG~ L) + 2 (GG~ L)
_ 5ab&Gmanm"m - 5ab24§4(13§}71(;mnm(;m"m b 162‘512;}712 Goneas G1
+ ?{Azg 559”0 HOS H + EAQ(IQ 5 g™ O HO H, (3.55)

where one may note the specific placement of A(t) = (%) ? which will determine the
subsequent dynamics of the system once quantum terms are added to the system.
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In the following, we proceed with the various cases in consideration.
Case 1: F\(t) and Fy(t) satisfying the volume-preserving condition (2.2)

Our starting point then is to study the volume preserving case, where now, as men-
tioned above, some subtleties will arise due to the specific forms of the Einstein and
the energy-momentum tensors. The latter for both G-fluxes as well as the quantum
terms. The former, i.e the Einstein tensor (3.54), takes the following form:

4641

of ~ Js 2A(k1+ke+1/4)
Gw = -3 > (CriChag™ u HOH + Co, i g™ O HOH ) ( H) (3.56)
S o\ 2 U o\ 2A(k1+.+he+1/A)
_ 717 (R+ 18H4A) (gﬁ) + A2AH*6,, Z k1k2Cly CryChy ....Chyg (gﬁ)
{ki}
~ 2A (k1 +ka+ks+1/A)
+ 28AH'S, Y CrCiCi, (k1 (8 — Aky — AAKy) + 2k (2 — Ak — 2Ak2)> (%) T

{k:}

where expectedly there are no terms to zeroth order in g,. There is also no curvature
term for the toroidal manifold, evident from the ¢, factor appearing from (3.56),
presence of which would have altered the coupling constant itself. Similarly, one
may represent the energy momentum tensor in the following way:

TS, = 12;[4 Z Ch, Cy Chis (gamnpgbks mnp 5 ,Glk) GO mnpc) <%>2A(k1+...+k5+1/A)
T H4 {Zk; (gémag“” - abgn’féacg%mnac) < % >2A(’fl+k2+1/ﬁ)
* 4H4 %Cklc@cks (Qamaﬁg(’“’ maf _ 5 gﬁfﬁiﬁgwwcmaﬁ) (93 >2A<k1+---+ks+1/ﬁ>
i ﬁ % G, (gg’zfzngb’“”“”" - 1560 k3>dcmn> ()
- 4H4 %Cklckzckgcm (Gaﬁi)ﬁgb’“’ ool _ 5 gcdaﬁg(’%)Cda5> (%)MwHMMG)
i ﬁ {zk:} Cn (gé’ifﬁpg(’”)m - }laabgi'jiipgwwcdmp) (& >2A<k1+’f2+k3>
4. 41 H4 Z Cy,, Cr, G mnpq G (ka)mnpg ( % >2A(k1+k2+’“3+k4+2/ A)
T H4 {Xk:}cklokz Glks) Glhamnpe (?{ >2A<k1+k2+k3+k4+2m>
~ oo > OG0 O
+ Aﬁ;b S (Cu CraduHOH + G Oy, HO™ H) (i;)m(mb“/ = (3.57)

{ki}
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where as one would expect, the last line of this matches with the first line of the
Einstein tensor (3.56). Note also the absence of terms to zeroth order in g, because
of the condition (3.13). This is consistent with what we expect from (3.56), but one
may now question whether this also appears from the energy-momentum tensor
for the quantum terms in (3.1). From the look of (3.1) it appears that k; = 0 should
be an allowed choice. However, as discussed earlier in (3.50), looking at (2.100) we
see that tensors with two free Lorentz indices along (a, b) direction scale as:

7/3

, 92, g3, g8®

0! +4/3
got = ol , g

= ¢ N (3.58)

as 0), defined in (2.97) is bounded below by ¢, > 1/3. Now since the lowest value of
¢, = 1/3 corresponds to switching on either (I3, l37,l35) = (1,0,0),(0,1,0) or (0,0,1)
in (2.97) — and they vanish due to the antisymmetry of the G-flux components —
it then appears that the lowest allowed scaling of g, can only be g2. This seems
perfectly consistent with the scalings expected from (3.56) and (3.57), resolving a
possible conundrum in our construction®.

Now that the quantum issues are clarified, we should look at the equations
of motion to order g2 by balancing the Einstein tensor in (3.56) with the energy-
momentum tensors in (3.57) and (3.1). This produces:

R K 1 cmn >
(2 + 9H4A) Sap = _(Cfli,o) _ m [ (gé?éﬁ%g(d/ﬂ _ 5 gé‘i{jﬂg@/@dcmn) (359)

+ <gt(l3;é:)5)g£3/2)caﬁ 6 g(B/z)g(f,/z)tdaﬁ)+2<gt(l?é7/3/)3gb3/2)cmp =y g63£pg(3/2)cdm/)>]

where the quantum terms manifest themselves as Cg‘z’o) instead of C((Z%O), the former
being defined for 6, = 2/3 in (2.97) exactly as before. It is also interesting to note
that so far all the G-flux energy-momentum tensors appear from g» quf C)mb and

mnab’

Y sap fOT Various ch01ces of k satisfying k > 3/2.

The next order is g./*. °. Interestingly, the Einstein tensor (3.56) cancels out to this
order, leaving only the energy-momentum tensor of the G-flux to balance with the
energy-momentum tensor of the quantum terms. This gives us:

®One may alternatively view the quantum energy-momentum tensor to be represented not as
(3.1) but as the following shifted one near g, — 0:

TaQb_ Z C(k+5/20 (H
kcz/2

)2A(k+5/2)

which would reproduce the correct g, scalings from (2.94). Such redefinition is possible because (3.1)
is conjectured to be equivalent to (2.94), the latter being the main focal point of our analysis.
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7/2,0
HTY Y
{ki}

% cnm 1 cnm
Ch, (Qé’if,ingéks’ — 20u G, G ) (3.60)

3)cm 1 7 cdm 7
- 20 (gé‘zf,ngg’w # = 10arGe, G p>]5(k1+k2+k3—2>

5 co 1 5 c 7
~ > Cu.Ch, (gg’;;ggg’w 7 (PGt W) 5 (/ﬁ ot g — 2) :
{ki}

where the quantum terms on the LHS of the above equation is determined for

. = 11in (2.97). This is similar to the choice of the quantum terms in (3.19) and
(3.43). In fact now the story follows the pattern laid out for higher order in g, as seen
previously. For example, the next order in g;, which is gf/ 3, gives us the following
equation:

_ 9 ~@o 9
dab = Ty Car +4AH4]F(y)%

~ cmn 1 . mn

C, (%’Z?ﬁngék"’) —~ zéabgf(l’i;ing(’“d)dc ) (3.61)
cm 1 cdm,

ok (gyﬁ%gékg) * — JOarGeai, G p) 15 (ks + bz + ks — 4)

4 4

1 CcCxx 1 5 )cace
+ 2 ChCr, (gg’;i;gg;’%) ¥ 6l Gl 5) 5k + o+ kg —4),
{ki}

with the quantum terms being classified by ¢, = 4/3 as in (3.24) and (3.45). This

pattern of fluxes would change eventually as we go higher in g, and in fact for
g* we will see new components entering for both G-flux and the quantum energy-
momentum tensors. Finally, the function F(y) appearing in (3.61) is defined as:

F(y) = HAW)C3 +4H'(5) Y Cr, Cr,Ci,y [kl (24 — ko — 4k1) + 2ks3 (6 — ks — 2ks) } S(ky + ko + ks — 1),

{ki}

which should be compared to (3.20), (3.25), (3.44) and (3.46). The structural simi-
larities of all these functions are of course not a coincidence: they rely on the forms
of the EOMs for the various directions analyzed above.

Case 2: Fy(t) and F,(t) satisfying the fluctuation condition (2.8)

The volume preserving case seems to work rather well, so now we want to see
how the story changes once the ~y factor is introduced in. We expect changes at all
fronts now: the Einstein tensor, the energy-momentum tensors for the G-flux and
the quantum terms should all reflect the changes. The subtleties that we encoun-
tered with the quantum terms had a nicer resolution here so we will also have to
see what happens now. As before we start with the Einstein tensor, that takes the

(3.62)
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following form:

Gab

J

= % (R+18H'A) (%)2 u

Js 2A (k1+ka+1/A)
2N Cr Croag™" O HOL H ( H)

>2A(k1+...+k6+1/A)

1

Z 4 Js
+ AH 5ab{§k; (2Ak1 +7)(2Aks + 7)C, C, Cry - Chie ( -

+ AH4(5ab Z <2Ak‘1 (8 — Akz — 4Al€1) + (2Al€3 + ’7) (4 — 2Al€3 i 4Ak‘2)>
{ki}

x Cp,CiyCh (

2A (k1 +ha+ks+1/A)
9s ) e (3.63)

H

where interestingly none of the g, scalings get effected by the v term, but most of the
individual terms do have v dependent coefficients. Similar, the energy-momentum
tensor for the G-fluxes changes in an expected way:

G
T(JLb

>2A(k1+...+k5+1/A)

_ S 6.d., (gg%npgbkﬁ mp _ 5abg7s’:;t;cg<’“5>m"“) (%

12H4 s
{ki}
_ (k1) (k2)mna . 5 (k1) (kp)mnac (%>
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{k:}
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1 C 2A (k1 +ko+ks3)
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where taking v = 2 we see that there are no zeroth order in g, possible because
the lower bound on the moding k; of any G-flux component has to be k; > 9/2.

The largest allowed suppression factor is —y/A = —6 for the component of G-flux
g ((ja/fg in (3.64), implying that the lowest power of g, contribution to the EOM will

, (3.64)



3.1. Analysis of the quantum equations of motion and constraints 77

be ¢2. This fits rather well with the g, scaling of the quantum terms in (2.99), which
now has a similar form as (3.50) and (3.58) with 6, defined as in (2.84). Therefore
combining (3.63) with (3.64), (3.1) and (3.50) we get, to order g2, the following EOM:

R 1 s 1
(E + 9H4A) Oap + 17 <g§iﬁ§gég/” 8 Zéabgégé‘zﬁ)g(g/mcdaﬁ) i CS;,O) —0,

(3.65)

which may now be compared to (3.59). The quantum terms appearing here is sim-
ilar to what we had in (3.59), and is classified by 6, = 2/3 in (2.84). However the
number of G-flux components contributing to (3.65) is much smaller; and (3.65) is a
set of two equations with at least 7 unknowns.

To the next order in g, i.e gz/ ? the Einstein tensor (3.63) does contribute com-
pared to the scenario with (3.56). In fact both the energy-momentum tensors also
contribute to this order. The resulting EOM becomes:

S — 1 C C (ks) H(ke)caB ]‘5 (k5) A (ke)cdafB 5k k 19 (Ct(z’z/z’O)
ab = 1ghHT® {,CZ} kv -+-Cha | YacapYs 1 abYcanpY 1+ ..+ Re — 5 + GAH

(3.66)

where ¢ = 4 —10C;, and one may use this equation to fix the form of the quantum

terms classified by 6, = 1 in (2.84) with the G-flux component appearing above’.
Once we go to higher orders in g, new components of G-flux start contributing to
the EOM as evident from the form of (3.64). We will not discuss this further here,
and instead go to the study of space-time components.

Einstein equation along (1, v) directions

The structural similarities of the equations for all the previous cases have some
bearings on the choices of G-flux components (at least to some low orders in g;)
enter in the EOMs. The quantum terms are also similar, modulo the subtlety for T%
requiring some redefinition (see footnote 6).

The story for the space-time components will require additional subtleties that
we will illustrate as we go along. First, let us express the Einstein tensor along the
two spatial directions in the following way:

i R | 4g*P0,HOsH  4g™0,,HO,H OunyH*
Gij = - 3A - 3.67
’ A(t) ( T T T mSE T HR 2H3F, (3.67)
A(t) \ 2HBF, Y\4F2 R, B 2F} Ry, F  RE )’

where, since we identified A(t) = (%)2, the appearance of A (¢) is a bit disconcert-
ing for the late time physics where t — 0 or g; — 0. We will not worry about this

’Compared to the (o, 3) case the traces of (3.66) and (3.60) do not fix the signs of [C] (7/2:9) in both
cases.
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right now and carry on with the Einstein tensor along the temporal direction which,
in turn, takes the following form:

O, H* F2  3F, 3F2 6F, 2FF
Goo = 7700<() >—7700<1— L2 2y 12)

A(t)\ 2HBF, 4F? LR, 2F} tF, EF\F
R 4¢*P0,HO3H  4¢™0,,HO,H [OH*
_ o fap 4 R — W) (3.68)
A(t) 2 H4 HSF, HSF, 2HSF,

(3.69)

where the key difference from (3.67), other than the appearance of 7, is in the terms
with derivatives on Fj(t). Other than these, both the Einstein tensors are similar in
terms of the appearance of the warp-factor H(y) and the six-dimensional curvature
scalar R. In the similar vein, we can express the energy-momentum tensor for the
G-flux in the following way:

T = “me ( 3;23 GG + ﬁGmameam PR GaﬂpaGaﬁm>
W (211722 R v 2LFEG5 ““”Gﬁaab)
(T ), o

where again expectedly the last two terms cancel with equivalent terms in both G;
and G in (3.67) and (3.68) respectively. With these at our disposal, let us go to the
individual cases now.

Case 1: Fy(t) and F,(t) satisfying the volume-preserving condition (2.2)

The inverse A(t) factors appearing in the expressions of the Einstein tensors as well
as the energy-momentum tensors for the G-fluxes are a case of worry in the late
time limit that we want to analyze the background. Of course the existence of these
factors are expected from the inverse A(t) factor appearing in the type IIB metric
(2.3), but since our construction involve finite values in the g, — 0 limit, we will
need to tread carefully to interpret our answers. To analyze the story further, let us
write the Einstein tensor along spatial direction first in the following way:

An;; o s\ 2A k1t Ahs—1/A)
39" kikaCly Coy Oy (—)

_ R gs\ 2

dn; Oy H O o H _
- _13'6] Z <(8O’H)2 - (8,[’,)[2 > Ck‘q Ok‘z + ((amH)2 - ( ) ) Ckl Ck‘e
{ki}

Js 2A(k}1+k}271/A)
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2A (k1 +ka+ks—1/A)
) . 671

2A71" C 2
+ =4 {kz} [2k3(3 — ks — 2h2) + k1 (12 = 4k — k)| Cr, CrsCo, (5
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where we have defined (9,H)? = g9, H0dsH and the same for (9,,H)* = ¢""0,, H0, H
with un-warped metrics. It is also easy to read out the form of the G tensor:

R\ /g\-2  Ango o o\ 28 (k1 + .. ko —1/A)
Goo = —7oo (3A+2H4) (ﬁ) -= %klknglezCkS...Cks (ﬁ)
400 Oy H* Oy H* _ s\ 28 (k1+k2—1/2)
- e ((C%H)Q— (8[}2 Ci, Cry + ( (OmH)? — (81;2 Chy Ch, (E)
{ki}
2A ~ s 2A(k)1+k2+k371/ﬁ)
+ %Z [k3(9—4k2)+3k1(6—k2)}0k10k20k3 (gﬁ) , (3.72)
{ki}

which differs from (3.71) in three respects: presence of 7, sign of the second term,
and a different coefficient of the last term. On the other hand, from the various
terms of (3.71) and (3.72), it is easy to infer that the lowest power of g5, which is g; 2,
appears when k; = 0. In the limit g; — 0, this blows up, so to extract finite terms we
have to carefully analyze the other contributions to the EOMs.

The other contributions to the EOM for the spatial components appear from
the energy-momentum tensors of the G-flux and the quantum terms. The energy-
momentum tensor for the G-fluxes for both spatial and temporal components may
be expressed in the following way:

M (1~ ~ o1 . wiva) (s ) 2Bty —1/A)
T, = 15 (6cklck20k3g£,’f:>apg<k5> 7 — S Ch O, G, G4 > (%)
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T Ck,lOk20k30k4g(koibg(k6)a6ab (&)

TG N I , (3.73)

where since some of the k;, accompanying the G-flux components are bounded

below as k; > 3/2, we would get the g, powers from the gﬁj’@, gﬁfﬁ; and gg’gjg
components. However this is puzzling in light of the quantum terms (3.1). Our
expression from (3.1) allows only ¢° as the lowest power of g, because the negative
powers are assimilated to a series in e~'/%. In the limit g, — 0 this dies off faster
than any powers of g,. Additionally as cautioned in footnote 1 it is not advisable
to expand e~/ to any finite orders in inverse g,. One way out of this would be to

multiply the Einstein tensor (3.71), the G-flux energy-momentum tensor (3.73) and
the quantum energy-momentum tensor (3.1) by (%)2. This unfortunately will not
solve the problem, because now the lowest power of (3.1) will be g2 so cannot be
used to balance the ¢° terms of (3.71) and (3.73). The quantum terms are essential,
to avoid over-constraining the system. Additionally, the g, scaling along the space-
time direction is in fact:

0, —8/3 /3 2/3

gS = 927 gs ) gs ) gs; g;l/B’ """ ) (374)
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as evident from (2.100), implying that the minimum value of 6} in (2.97) is ¢, = 8/3
to account for g, independent terms. All of these then imply the following way out:
redefine the energy-momentum tensor for the quantum pieces along the space-time
directions in the g, — 0 limit as:

79, =Y Clo ( )M(H/A) , (3.75)
{k}

instead of (3.1) for (u,v) indices. Such a re-definition is similar to the re-definition
we did for the (a,b) case (see footnote 6) and is consistent with the scalings em-
ployed in [14] and [15] (see eq (5.29) in [14]).

There is yet another contribution that we have ignored so far and has to do
with the energy-momentum tensor of an almost static set of membranes. These are
related to static D3-branes (integer and fractional) in the type IIB side, and we can
consider both branes and anti-branes in our picture. For simplicity, let us assume
that we have n, number of coincident membranes at a point on the internal eight-
dimensional manifold. These membranes are therefore stretched along the 2 + 1
dimensional space-time®. The analysis of the energy-momentum tensor proceeds
in exactly the same way as given in [14], so we will suffice ourselves by simply
quoting the answer:

(B K Tznb Js
Tuu) ~ <_

CHS g \H

where T}, is the tension of the individual membranes, « is a constant related to M,
ge is the determinant of the unwarped metric of the six-dimensional base M, x M,
and ny is the number of membranes located at Y in the internal eight-manifold.
With these definitions of the quantum energy-momentum tensor in (3.75) and
the membrane energy-momentum tensor in (3.76), we can move ahead with the

) V) (3.76)

EOM:s. First we multiply all the tensors with (£) ? to get rid of any infinities arising
in the g, — 0 limit. Secondly, we compare the zeroth order in g, for (3.71), (3.73)
and (3.75), to get the following EOM:

Rk 0OH 00 2:*Tony g
6A + HY  HS [C] Hg\/%5(y—Y)
1
= @ <g,,§7/lzbg 3/2)mnab + zgrjéi g (3/2)maab + g((x?)ﬁ/;[))g({i/Q)aﬁab)’

(3.77)

showing how the same set of G-flux components appear again to balance the spatial
equation of motion. We have also defined OJ = [,,,) + U,) to avoid clutter. The
equation (3.77) is somewhat similar to what we had in eq (5.32) of [14] with two

crucial differences. One, the G-flux components are the set G 5/2) Qn%ib and ga;;/ azb

mnab’

of localized fluxes and not the globally-defined time-independent flux component

8We will consider both integer and fractional M2-branes. The latter being M5-branes wrapped
on 3-cycles.



3.1. Analysis of the quantum equations of motion and constraints 81

appearing in [14]. Two, the quantum terms C%? are classified by:

27 4
2 Z li +nq +ng + Z l344i = 8, (3.78)

i.e with 6, = 8/3in (2.97) (I;, n; are defined in (2.94)), compared to ¢, = 8/3 in (2.98).
The former, i.e (3.78), has a large but finite number of solutions, whereas the latter
has an infinite number of solutions with no g, or M, hierarchies. In a similar vein
one may work out the Goo EOM, but to this order the result (3.77) will not change.

The next order in g, i.e for gi/ ® one may easily find the EOMs by comparing
terms of this order from (3.71), (3.72), (3.73) and (3.75) with no contributions from

the membranes The G-flux components contributing now are of the form G ]jﬁab

and G\7 1va With (M, N) spanning the coordinates of M4 x Ms. The quantum terms
(ngl./ 9 are classified by 6, = 3 in (2.97). Combining the two set of equations, one
from the (¢, j) components, and one from the (0, 0) components, we get:

2 [cg)* = [ (3.79)
where the quantum terms CH/*? are the specific linear combinations of all terms
classified by ¢, = 3 for individual components in (2.97). According to the discus-
sions around (3.17) these quantum terms are computed using the dominant scalings
of the metric components g,,,, and g.s. Thus the LHS of (3.79) is fixed in terms of
the known components of the metric and the G-fluxes in a way that their sum van-
ishes. Such an equation can be used to predict the relative coefficient of the various
terms to the same order in curvatures and G-fluxes.

One can even go higher orders in g, say for example gz /3 as we have done before,
and compare the (¢, j) and the (0, 0) EOMs. The quantum terms would be of the form
(C,(}V’O) and are classified by 6, = 10/3 in (2.97). These could be used to fix the higher
order coefficients of F;(t) in terms of the quantum terms. For example taking the
traces of (3.71) and (3.72) appropriately, we get:

3 =3(2[cg)"” - [c]™”), (3.80)

which tells us that it is only the constant pieces of the quantum terms (2.94) that
are responsible in generating the F;(¢) functions. Note that, to this order C; and 51
coefficients cancel out. To determine these, we have to go to the next order in g
where, in turn the C’s and C’s pieces cancel out, leaving us with C; and C’1 We will

leave the evaluation of these coefficients for interested readers, and instead go to
the discussion of the case with v switched on.

Case 2: Fy(t) and F,(t) satisfying the fluctuation condition (2.8)

The analysis along the space-time directions has a few subtleties that we clarified
above. Additional subtleties arise when we switch on non-zero v from the fact that
the internal eight-manifold has zero Euler characteristics. This implies that one can-
not switch on either non-zero components of G-fluxes that are time-independent, or
dynamical M2-branes at least in the supersymmetric limit [21, 22]. Our study is for
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non-supersymmetric states, plus we take vanishing time-independent component
of G-flux (3.13), so the situation is a bit more subtle. Nevertheless the bound con-
sidered in [21, 22] does not allow us to take static M2-branes’. What happens for
dynamical branes will be discussed later.

We will start by elaborating the Einstein tensor for both spatial and temporal
directions. The Einstein tensor for the two spatial directions may be expressed in
the following way:

R gs\ 72 | Anij ~ & gs\ 2A kit
Gy = —my (3A+2H4> (%) += {;}(mm+7)(2Ak2+7)0k,10k20k3...0k6 (%)
4n;i; Oy H [gs\280tka—1/A=v/28) o (gs\2A(k1tka—1/4)
AT ;}C’“ C’”( 8H? (H) = Ok (O H) (H)

Anis
+ T]'l_]

Z |:(2k’3 + 3’}/)(6 — 2ks — 3y — 4k‘2) + 2]{}1(12 — 4k — k'2)] Ckl Ok2ék3 (%
{ki}

where we see that only one g, scaling is effected by the v factor, although quite
a few coefficients do pick up v dependent factors. In addition to that, derivatives
with respect to o are missing compared to (3.71). Similar story also shows up for
the Einstein tensor along the temporal directions in the following way:

)2A(k1+.

2H4 H 4 H
{ki}

Oy HA o\ 2A(ki+ke—1/A—v/28) L o\ 28(k1+ka—1/A)
 (Si) () -t (5) |

R s\~2 A ~ ~ s
Goo = —7oo (3A+ ) (g*) — =0 Z(QA]ﬁ +7)(2Ak2 4+ 7)Ch, Cry Chy ... Chy (g*

4100
+ e 2O
{ki}

A -~ S
- -tk 0 00 (4

SH?2 H H

)

>2A(k1+7€2+k3*1/A)

where again, as compared to (3.72), other than the last term and one relative sign
difference, the two Einstein tensors are identical. Similarly, the energy-momentum

9See however footnote 5.

)QA(k1+k2+k3*1/A)

+hke—1/A)

(3.81)

?

tkg—1/A)

(3.82)
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tensor for the G-flux is given by:

Tﬁy - %<CklOkngggmnapg(k5)mnpa) <%)2A(k1+'"+k5—1/ﬁ)
N gﬁ;;(CﬁuC%QCkggaamﬁﬂkwamm> <9s>2ﬁ“1+w+kv4/A—v/A>
(6, GGl gt ) ()
- 2228(6%1}ngzmgw@mmm)(};)ﬂ>h+@+M+m 1/28)
" 92;;8(Chanzgﬁﬁaggk””"mﬁ> <§§>2Ak”+@+kﬁ*4'wA>
N % <5klgmnabg (ks) mnab) (9_}; >2A('f1+kz+k3—2m)
2A (k1 +ka+ks—2/A—v/2A
N %(C’ﬂgﬁﬁibg(’%)maab) (%) (krthahy =2/ A=y /28)
i o\ 28 (k1+ka—1/A—v/2A)
(g gty (%)
+ ﬁ%%7ma}ﬁaﬂﬂ%¢%<ﬂ>m@wblm> .
- IZZBCMCEC%JEA? bgw“mhb(ﬁ)th+b+“+“+“+%—WA—wA%

where the various shifts of the g, scalings due to the v are shown above. Taking
7 = 2, we se that the issue regarding the lowest order g, scaling appear here too,
albeit in a more severe way. When v = 0, the lowest order scaling of the Einstein
tensor from (3.71) is g;2. For v > 0, the lowest order scaling from (3.81) becomes

95241, On the other hand the lowest order g, scaling that can emerge from the
energy-momentum tensor (3.83) is g; 22«2, where:
v+2 7+2

=—— =— 9, 3.84

which for v = 2and A = 3 is g;* and g, ? respectively'’, implying that there cannot
be any contributions from the energy-momentum tensor (3.83) to this order. In fact
increasing v only worsens the problem.

Looking at the modified form of the energy-momentum tensor from the quan-
tum terms in (3.75), shows that it also does not contribute terms to order ¢, *. There-
fore one of the simplest way out of this could be to demand:

Oy H' (y) = Ogmyh(y) = 0, (3.85)

on M where the Laplacian is computed using the un-warped metric g,,,,(y). As we
saw before, the manifold M, is a compact four-dimensional manifold that supports
a non-Kahler metric. Thus H*(y) = h(y) is a harmonic function on the compact
non-Kéhler manifold M,. The manifold M, is conformally a torus, and the full

19The factor of 9 in (3.84) appears from the minimum moding of the G-flux components gfgf,} that
contributes to (3.83).
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Ricci scalar of the six-dimensional space M, x M, is then given by:

1
R=—

(9/2) ~(9/2)aBab 4 [:1(0,0) 4
- SHA gaﬁabg( /2)ofbab _ H |:(Cz:| —4NH ’ (386)

which vanishes when we take the un-warped metric of the six-dimensional space to
be that of K3 x T%. Additionally, the quantum terms are again classified by ;, = 8/3
from (2.99), with 6), defined as in (2.84). Comparing this to (3.77), we notice a few
key differences: the brane term is absent and so are some of the G-flux components.
The warp-factor is harmonic so naturally decouples out of (3.77). The contribution
from the cosmological constant term is smaller because the coefficient of the A term,
i.e o,A, changes to:

(87 — 37 —12). (3.87)

o

09 =

To the next order in g,, i.e g/, surprisingly we get exactly the same relation (3.79)
that we encountered earlier despite the presence of the v factor (which we take as
v = 2). We expect the other coefficient to appear in a way reminiscent of (3.80) and
the story follows the path laid out for case 1.

Before moving to the next sub-section, let us ask if there is an alternative to the
choice (3.85). The choice (3.85) tells us that the warp-factor h(y) is simply a har-
monic function on the non-Kihler manifold M,, and all information of the fluxes
and the quantum corrections enter indirectly. An alternative to this choice would
be to modify further the definition of the quantum energy-momentum tensor (3.75)
by changing the g, exponent from:

1 v+ 2

which would equate the Laplacian of the warp-factor directly to the quantum cor-
rections at zeroth order in g,. The Einstein’s equation can then be realized at second
order in g, equating (3.81) with (3.83) and the quantum terms. To see how this works
out, let us rewrite the quantum corrections, using the input (3.88), in the following
way:

2A(k—2/A)
) , (3.89)

Q _ k,0) ( Is
T = Z C/(W ) (E
{k}
instead of (3.75), where we took v = 2. This extra (%)_4 suppression tells us that
the warp-factor H* is no longer needed to be a harmonic function as in (3.85), rather
it can now satisfy the following equation:

Oy H* = H [C1], (3.90)

with the quantum terms being classified by 6, = $ in (2.86), and therefore involve
a mixture of terms in fourth powers of curvature, eighth powers of G-fluxes or a
combination of both to the relevant powers. Note that there are no G-flux contribu-
tions to this order, as we noted earlier. However once we go to the next order, i.e to
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order (%) ~?, flux contributions get poured in and the equation becomes:

O H* 1 R 1 0/2) q0/2)apab | [l BO)
s 7, (4A T 8H8ga6abg( f2asad + [C]] ) (3.91)

which has some surprising similarities with (3.77). The similarities being the ap-
pearances of equivalent forms of curvature, fluxes and quantum terms on the RHS.
However there are also few crucial differences. One, the G-flux components are not
as many as in (3.77). Two, the coefficient of the cosmological constant term is now 4
instead of 6 before. Three, the warp-factor H* satisfy a much simpler relation (3.90)
in addition to (3.91). And four, the quantum terms are classified by 6, = %' with

[C1]*? instead by 6, = S with [C1“? in (2.86). Finally, v, is given by:

Yo = Z Ckl Ck25 (kl + kQ - 3) . (392)
{ki}

The question now is which of the two descriptions is the correct one. Clearly we
will need more constraints to distinguish one from the other, and in section 3.1.2 we
will see that the flux EOMs provide the required constraints to justify (3.91), instead
of (3.86), to be the correct EOM for this case.

Metric cross-terms and the F;(t) factors

So far we have studied the equations of motion without considering the cross-
terms. However, cross-terms do arise in the Einstein tensor because, for one, the
internal metric has time-dependent factors (i.e the functions F;(t¢)), and for another,
the warp-factor H(y) is in general a function of all the coordinates of M, x M.
Thus at least we expect the following three cross-terms:

F, F)\ 0,H )\ 0.H 80,HO,, H
—_= —2 _— e E— = —4 o — - .
Gon ( 2 + FQ) T Goo ( FQ) T Gom TP (3.93)

with other cross-components vanishing. For the Einstein tensors Gy,, and Gy,, it is
easy to argue that there are no corresponding energy-momentum tensors from the
G-fluxes because we do not allow G,,,,,,, and G4, components. Allowing them
would not only add new complications to the existing EOMs studied earlier, but
also break the de-Sitter isometries in the type IIB side. We want to avoid the latter,
so it appears that the Einstein tensors with the cross-terms along temporal direction
will have to be balanced solely by the quantum terms. If y* denote the coordinates
of My x My, the energy-momentum tensor associated with the quantum cross-
terms may be expressed in the g, — 0 limit as:

0) s\ 2A0=1/28)
6 =Y. Ci? (£) , (3.94
{k}

where the specific choice of the g, scaling is to take care of g; ' pieces that may arise
from F;(t) in (3.93). Taking for example the volume preserving case (2.2), it is easy
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to see where the g, factor appear from. The Einstein tensors become:

ki+ko+ks—1/2A)

Goa = —SAVA <8O‘HH ) S ki Ci, Gy Ci, (%)m(

Ty
o,H 2A (k14ko+ks—1/2A)
Gon = —4AVA ( - ) %(kl + k2)Cy Ci s (52 (3.95)

with the g, scaling showing the inverse factor, alluded to above, which we can easily
get rid of by multiplying all the tensors in (3.95) and (3.94) by g,. To zeroth order in
gs there are no contributions from either (3.95) or (3.94). To next order in g, i.e gs/ 5,

we get:

Ci = COL/N (0 H) =C°11/20 (a H) (3.96)
12v/A 6V A ’

which should be compared to (3.80). The above set of Einstein tensors provide a
much easier way to get the Cj and 6’k coefficients of the Fj;(t) functions. Expect-
edly, they are related to the quantum terms, so classically we can only see time-
independent internal space. The latter has problems with EFT as we saw before
and also in [14, 15].

Switching on the v factor to study the case (2.8) or (2.75) eliminates Gy, and G,
because of the derivative constraint. This only leaves G,, which takes the following
form:

Gon = —4AVA (&;IH) % (kil + ko + ﬂ) Chy Oy Oy (?__,

[

2A(k’1 +ko+ks— 1/2A
) (3.97)

which now does allow a term to the zeroth order in g,. By ignoring the g, ' piece
for the time being — to be reconciled later using the same line of thought as before
— the zeroth order in g, yields the following relation for the quantum term:

0 — _4V/A (&}{H ) , (3.98)

which, once combined with (3.85), should determine the functional form of the
quantum term when we take v = 2. Going to the next order in g, i.e g;/ 3, we

get exactly the same relation that we have in (3.96), i.e:

(1/2,0)
C :(CGO"\/_ (a H) . (3.99)

All these appear to lead to some consistent formulation of the background data,
although there is one puzzle that we have kept under the rug so far. This has to do
with the computation of the quantum energy-momentum tensor (3.94). How do we
interpret this term? If we follow the definition of the energy-momentum tensor in
(2.32), then the absence of g, should tell us that one cannot construct the cross-term
energy-momentum tensor at all. In fact even the formulation of the Einstein tensor

[N
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comes under scrutiny now.

The key point that we are missing here is the Wilsonian viewpoint that we al-
ready emphasized earlier (see the discussions between (2.81) and (2.82)). The back-
ground that we consider should contain all the components of metric and fluxes and
we integrate out all the ones that would potentially ruin the four-dimensional de
Sitter isometries in the type IIB side. This amounts to integrating out specific com-
ponents of metric and G-fluxes in the M-theory side, leading to an effective action.
In the following, let us see how this works when we integrate out one component
of the metric, say go,. We define:

9

exp (—iSer) /DgOn exp [ —i [ d"'zv/g11(gon) < R — O"’JI‘G — gO”’]I‘OQn + >

(3.100)

where the dots denote terms that are independent of gy,,, and the bold-faced com-
ponents are defined with respect to the warped metric. Since gy, is a dummy vari-
able, we can re-define this to gg,, without changing the effective action S.¢. Taking
g0, = 8on +ho,, where hy, is a small shift of the metric component, does not change
the measure. This leads us to:

exp (—iSer) = / Dep, exp[—i / d"ay/g(gh,) (R (gh,) — 8" TG, — 8" TE, - 128" gl + -
+)

1
= /DgOn exp [ - Z/d T/ gll gOn < gOn + h <R0n - igOnR - PlT(C);'n - TOQH)

where in the second line we have expanded to first order in hy, to express the factor
involving Ricci tensor. We have also inserted a small mass to the graviton so as to
integrate this out. Note that gy, does show up with a coefficient h% and we have
defined:

IROn = ROn(gOn) + R0n7 (3102)

where only Ry, is a function of gon. Therefore, neither Ry, nor the energy-momentum
tensors are functions of gy,. For the latter we could have divided into a piece that
depends on lsqm, i.e indirectly on g,, and a piece independent of gy,,; but since we
are eventually going to integrate out g, their presence or absence will not change
much the generic quantum term (2.78) or (2.94). Finally, the Lagrangian £Ly(go,) is
defined as:

Lo(gon) = R (gon) — g™ TG, — g™ TS, — 128" gon. (3.103)

The above equation, (3.101), combined with (3.103), is a form of the Schwinger-
Dyson equation for our case, but is presented in a slightly different way because we
want to integrate out gy,,. Doing this leads us to the following two conclusions. One,

2
we recover the terms with polynomial powers of (T,) ?and <']I‘82n> (along-with the

)

)

(3.101)
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mixed terms). These are of course contained in (2.78) and (2.94) according to (2.107):
a consequence of the semi-group structure of the system. Two, gy, appears inside
the bracket multiplying h°". This means, once we integrate out g, there would be
terms with powers of h”* accompanied with the combination of the Ricci curvature
Ry, and the energy-momentum tensors TS, and TS, without the gy, R piece. We
also expect the effective action S.z to be independent of any arbitrary parameter
like h””. Combining everything together it appears that if we demand at “on-shell"
the following two conditions: g, = 0 and

Ro, — T, — TS, =0, (3.104)

then there is a well defined effective action S.s, with the latter reproducing the ex-
pected EOM for the cross-term. Notice that none of the terms in (3.104) can depend
on g, because of the procedure that we have adopted to derive the equations and
the effective action. In retrospect this is of course consistent with what we have
been considering so far.

The short analysis presented above reveals one crucial fact: we can allow energy-
momentum tensors of the form TS, and TS, even if cross-components of the metric,
like go,,, do not appear in the background. The point is that it is not necessary for
certain components of the metric (or G-flux) to physically appear as long as they
appear inside quantum loops. The Wilsonian way of course guarantees this by al-
lowing a small mass to these components that would facilitate their off-shell appear-
ances. Such a line of thought does lead to consistent picture as we saw from all our
earlier analysis, however one question still lingers: how do we actually determine
the g, scalings for these cross-component energy-momentum tensors?

This can be answered using a simple trick. For concreteness let us consider
the quantum series (2.94) meant for the volume preserving case (2.2). Before we
contract this completely with inverse metric components, let us insert a function ¢,
with the property t"ty, = 0™ as (to,)" in (2.94), where l39 can take values (0,1)
only. We can now put back all the inverse metric components to make it Lorentz
invariant. We can also assume that ,, has no g, scaling, i.e it scales as ¢°. The g,

scaling of the modified (2.94) now becomes 6}, where:

N’ ’ 5 Y
0, =0 + (g - 5) l39, (3.105)

with 0}, as defined in (2.97) and we have inserted + just for the completeness sake
(as v should have been inserted with 6, in (2.86)). To extract an expression with one
free 0 index and one free n index, to account for the energy-momentum tensor TS,
all we need is to remove one g and one g"" metric components to create two free
indices anywhere inside the modified quantum terms (2.94). This will change the

gs scaling from (3.105) to 0., where:

~ 5 10
, prm— / —_—— — —_——

with 6; as in (2.97). If we replace 6}, in (3.106) by 6, of (2.86), we get the result for
(2.8). Finally, contracting the resulting expression with " will give us the required
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expression for TS with g, scaling as in (3.106) and /39 = 1. Clearly for vanishing v,
the g, scaling is 6, — 5/3, whereas for v = 2 we get 0, — 8/3 representing the two
cases (2.2) and (2.8) respectively. Our g, scaling for the quantum terms in (3.94) for
(2.2) should be interpreted in the following way:

09" —5/3
gk = g0 U3 28 (3.107)

so that the zeroth order terms are classified by 6, = 5/3 in (2.97). Similarly for (2.8),
the zeroth order terms are classified by ¢, = 8/3 in (2.86). As we saw above, the

latter do contribute so that C((]?L’O) are classified as above for the case (2.8). However
for the volume preserving case, i.e (2.2), the first non-trivial contributions come
from C&/ 9 and C&/ 20, They are classified by 0, = 2in (2.97). In a similar vein one
could analyze the G, equations for the volume preserving case (2.2).

de Sitter vacua from the quantum constraints

In the above sections we managed to assimilate all the possible quantum corrected
EOM:s that can occur in the system. Many subtleties regarding the distribution of
the quantum terms were noticed, but in the end the arrangement of the these terms
reflected a certain level of consistencies that were expected in set-up like ours and
also of our earlier works [14, 15] with one noticeable difference: the quantum terms
could now be precisely classified using the scaling (2.97) for (2.2) and (2.84) for (2.8).
Thus the issue of the existence of effective field theories could now be answered in
the affirmative provided the EOMs themselves have solutions. In the following
therefore we would like to analyze this for the two cases in question.

Case 1: Fy(t) and F,(t) satisfying the volume-preserving condition (2.2)

We start by analyzing the volume-preserving case (2.2), by first taking the traces of
all the EOMs to lowest order in g, and try to find if certain consistency condition(s)
could be generated. Our first equation is for the (m,n) directions. In the zeroth
order in g;, the equation is given in (3.15), which is constructed using un-warped
metric and G-flux components. Taking a trace of this equation yields:

R( ) 2R — 24H - [Cm]( ) 4 f{4 ( 7(71(/1(1)17 (3/2) ’ (()43/(111) (3/2) ’ b)?

where R™ is the Ricci scalar for the four-dimensional manifold M, and R remains
the Ricci scalar of the full six-dimensional base M, x M,. As mentioned above,
both are computed using un-warped metric components, including the traces un-
less mentioned otherwise.

The quantum terms [C™]*") are classified by ¢, = 2/3 in (2.97) and one may
easily see that with such a small value for ¢, there are only a few classical terms
mostly made of G-fluxes. The classical terms can only renormalize the existing
terms that we have from the energy-momentum tensor for the G-fluxes. In fact an
exactly similar story unfolds for the EOM along the (o, 3) directions. Taking the
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trace of (3.42), written for the zeroth order in g¢,, we get:

1 . ‘
R(Q) —R— 12AH4 [Ca] (0,0) 8H4 <gé3ﬁ/jgg(3/2)a,8ab . gsr/jig(d/mmnab)’

(3.109)

where R®? is the un-warped curvature of M,, and since M, is a non-Kéhler two-
dimensional space, this does not vanish. The quantum terms (€29 are again
classified by 6, = 2/3 in (2.97), and therefore can at best renormalize the existing
classical terms. Compared to (3.108), the relative factors, signs and G-flux compo-
nents differ but the main message of (3.109) remains similar to (3.108).

The next set of equations are a bit different from what we had so far and the
differences appear mostly from the scalings of the quantum terms. For example
looking at the EOM for the (a, b) direction, i.e. (3.59) appearing to order g2 instead
of the expected zeroth order in g, and taking the trace, we get:

1
R+ 18A 4 [(Cg](&o) 2 — ( G 3éibg 3/2)maab g 37/libg 3/2)mnab g(j/;bg 3/2)01,85&))7
(3.110)

where now we see that the quantum terms have different modings than what we
had in (3.108) and (3.109). However they are still classified by ¢, = 2/3 in (2.97), and
therefore can only renormalize the existing classical terms. This shared similarities
between the three traces, (3.108), (3.109) and (3.110), do not imply that the quantum
effects are relatively unimportant because we haven’t yet analyzed the space-time
EOMs. All the EOMs are inter-related so conclusions based on analyzing only parts
of the story typically fail to reveal the true picture.

This becomes clear once we look at the space-time EOMs. Looking at the zeroth
order in g, in (3.77) we notice that the quantum effects now play an important role.
To facilitate discussion, let us quote (3.77) again:

R _OH 100 26%Tony
6A+ﬁ_ R +[C] —Hg\/_(S(y—Y)
1
= s (g e/t 4 9gE garmant 1 G Gl )

(3.111)

where [ is now over the full six-dimensional space M, x M, and the quantum
terms are classified by ¢, = 8/3 in (2.97), compared to ¢; = 2/3 for the three traces
above. Such a choice of §; will now allow a large number of terms by choosing
various combinations of /; in (2.94), thus mixing curvature terms with the G-flux
components.

All the four equations above shows how the Ricci scalar R may be related to
the G-fluxes and the quantum terms. The quantum terms are shown to be clas-
sified by choosing appropriate values for ¢, in (2.97), but there are also non-local
contributions to them. Fortunately, in the limit of vanishing (a, b) torus these con-
tributions are negligible so may be avoided in the g, — 0 limit, i.e in the late time
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limit. Adding (3.108) and (3.109) we get:

1 1
R+18H'A = —[Cp) Y — 2 [cg] (3.112)

+ @ (ga%/ai)g 3/2)afab + 2g7§>éibg 3/2)maab + gniézbg 3/2)mnab>
which, in the absence of the G-flux pieces, would be equivalent to a similar equation
in [14] for the time-independent internal space (see eq. (6.4) in [14]). It is reassuring
to see the emergence of familiar equations once we resort to the time-independent
scenario. The time-dependences therefore not only add new fluxes to the time-
independent equations, but also allows us to consider a controlled set of quantum
corrections. Interestingly, now looking at (3.110), we notice that the LHS is identical
to the LHS of (3.112). In the absence of the G-flux pieces, we could have concluded
that the quantum corrections in these two set of equations are related to each other;
much like eq. (6.6) of [14]. This is not the case now. The quantum corrections
along (a,b) directions are not related in a simple way to the sum of the quantum
corrections along (m, n) and («, ) directions. The G-fluxes interfere to make this a
bit more involved. We could however add (3.112) and (3.110) to get the following
equation:

RAISHIA = =5 [C“J(?”O) - e - 2 (e ®? (3.113)
_ 32H4 (gggjbg 3/2)aBab + 2g£éi§)g(3/2 Ymaab + gniéi g(3/2 mnab)

combining all the quantum terms and the G-fluxes together. Note the difference in
the moding of the (a, ) quantum terms, but as mentioned earlier, they are all clas-
sified by 6, = 2/3 in (2.97). Since 6}, = 2/3 is almost classical (one may easily see by
choosing the appropriate /; in (2.94)), all they do here is to renormalize the existing
classical pieces without introducing any higher order corrections. This was clearly
not the case in [14, 15], where 6, = 2/3 in (2.98) would have led to an infinite number
of quantum terms without any visible hierarchies. Switching on time-dependences
have completely changed the scenario. On the other hand, subtracting (3.112) from
(3.110), we get:

[C’an](ovo) + [(Cg](oxo) [(Ca] (3,0) (g(3/2)g(3/2)aﬁab + 2g 3/2 g(3/2)m(xab + ggéiég(i&/ﬂ'rnnab)’

T RHA
(3.114)

which instead would directly connect the quantum terms to the fluxes. Such an
equation immediately confirms the fact that the three quantum terms in (3.113) or
(3.114) only renormalize the existing classical data, without introducing any higher
order terms. As mentioned above, this is consistent with the fact that they are clas-
sified by 6, = 2/3 in (2.97).
We can now use the curvature scalar, defined in terms of the quantum terms for
the eight-dimensional manifold and the G-fluxes in (3.113), and plug this (3.111).
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Doing this yields:

5 q -
COH' - 19AH® + > <g(3/2) (3/2mnab | 9 (3/2) o3/2maab gégjgg(3/2)aﬁab> (3.115)

mnab maab
2K Tgnb

V96

where we have made one change: the M2-branes are now restricted to move on the
six-dimensional base M, x M, only as this will facilitate as easier interpretation
in the type IIB side. Note also that the only minus sign appears from the quantum
terms in the space-time directions. This equation is somewhat similar to eq. (6.8)
n [14]. The differences being in (a) the relative factors, (b) the choice of the G-
flux components and (c) the dependence on the full eight-dimensional coordinates
instead of only on the six-dimensional base here; but both equations share one sim-
ilarity regarding the appearance of the relative minus sign. This is crucial because
integrating (3.115) over the six-dimensional base gives us:

1 1 1
2Tty — v+ (0000 + Fien 0 + i - i [e] )

5
12A/d6y\/976H8+@/d6y\/976( Séibg(S/Z)mnab_i_2g 3/2) g(3/2)rnaab+g 3/2 g(3/2)rnnab)
+262Tymy + / d y\ﬁ< ey 4 1 [Cm(o 0,1 [C“](O 0) H4[(C§f](°’°)) H*=0, (3.116)

which should be compared to eq. (6.10) of [14]. The zero on the RHS appears
from integrating CJH* over the compact base M, x M, and since H*(y) = h(y) is
a smooth function, the integral vanishes. The smoothness of H*(y) is guaranteed
from the series of quantum corrections appearing in (3.115). Clearly, in the absence
of the quantum pieces, the system has no solution because the integral involves
only positive definite functions and therefore the consistency will demand vanish-
ing fluxes and vanishing A. Interestingly negative A is allowed even if the quantum
terms are absent, implying both Minkowski and AdS spaces may be realized in a
set-up like ours. The recent swampland conjectures concerning AdS spaces may
be overcome by introducing back the quantum corrections, but we don’t want to
discuss this here. In the presence of the quantum pieces, the consistency condition
here differs in a crucial way with the one presented in [14]. The quantum terms
in [14] are classified by 6, = 2/3 and ¢ = 8/3 for the internal and the space-time
respectively with ¢, defined in (2.98). These have infinite number of solutions for
both cases, implying that an expression like eq. (6.10) in [14] does not have any
solution at all and is in the swampland. However now the scenario has changed.
The internal and the space-time quantum terms are now classified by ¢, = 2/3 and
8, = 8/3 respectively with ;. defined as in (2.97). These have finite number of solu-
tions in both cases, and in fact the internal space quantum terms, as we saw earlier,
do not contribute much. This means the actual higher order quantum terms appear
only from the space-time part, i.e from the [Cﬁ](o’o) piece in (3.116). These quantum
terms appear with an overall minus sign in (3.116), and therefore if we can use only
the dominant positive contributions from [C}] ©9 then surprisingly solutions would
exist where there were none before!
We use the details gathered so far to determine the metric of the internal space
in terms of the fluxes and the quantum corrections. Let us start by expressing the



3.1. Analysis of the quantum equations of motion and constraints 93

un-warped metric g,,,, using (3.19) in the following way:

CHP + e 21y o (GGG 0, G850
58 | AW) + s Deny Os (Cr Gpghomhet + 20y, Gz} Gkamaat

. (3117)

Imn =

where A(y) is defined in (3.20) and k; satisfy ) . k; = 7/2, with the constraint that
(ks, ki) > (3/2,3/2). The Cy and the Cj, coefficients can be determined using the
cross-term EOMs as we saw in section 3.1.1. Finally, the quantum terms appearing
above are governed by 0, = 1 in (2.97), i.e by (3.21). For such small values of ¢,
the quantum terms are mostly expressed as powers of G-flux components instead
of curvature tensors as may be easily seen from (3.21). The curvature tensors ap-
pearing here only renormalizes the classical terms. This means the RHS of (3.117) is
expressed mostly by powers of G-fluxes and the (Cy, Cy) coefficients (the latter are
also determined by fluxes for small values of k). In fact a somewhat similar story
repeats for the metric component g,3 also, which now takes the following form:

CU/Z Vs 4H4 Z{k t Cks (Cklgff?iig o Ch ga?a)bgﬁmwb)

CO) + 33 Lpay Cra (200, Ghp G100 4 Oy Gl glharmmat 4 Gy, G0 Glkmnat

Gap =

N ©

(3.118)

as gathered from (3.43); where C(y) defined as in (3.44) and C}, L= Co,Ch, /Cie, With
k; satisfying as before ) . k; = 7/2 with the standard constraint (ks, k4) > (3/2,3/2).

The quantum terms are again classified by ¢;, = 1 in (2.97), and therefore are most
populated by powers of G-flux components. Both the metric components, (3.117)
and (3.118) are non-K&hler, but the un-warped metric along the (a, b) directions is
flat as expected''. Thus solving for h(y) from (3.115), and (Cy, ék) from the cross-
term EOMs in section 3.1.1 (see for example (3.96) and (3.80)), we can pretty much

'We can also make some general observations regarding the sign of the internal curvature term
R from (3.110) and (3.112). Let us first assume that the quantum terms in (3.110) and (3.112) are

zero. Then the only solution is with vanishing flux components g}jﬁ}lb and R = —18AH*. Itis also
clear from (3.116), for vanishing quantum terms and vanishing fluxes, A = 0 and therefore R = 0.
When the fluxes vanish, but all the quantum terms are non-zero, then the internal quantum terms
must satisfy the relation (3.114) with zero on the RHS. The consistency condition (3.116) allows
positive A if the space-time quantum terms [C!](*>:?) dominates over all others terms. In this case
A > 0is allowed. However if the internal space quantum terms vanish (which still allows positive
A in (3.116)), then from (3.110) and (3.112) the internal curvature scalar has to be negative i.e R =
—18|A|H* with the warp-factor H (y) satisfying:

. 2k2Ton
DH4—<C§(O’0)12A - 2058 Y>H4
[CF] A /5 (y-Y)

where ny, is the number of M2-branes, T5 is the tension of a M2-brane and gg is the determinant of
the six-dimensional internal metric. The six-dimensional base of the eight-manifold now becomes a
non-Kahler space with a negative Ricci scalar. Clearly for vanishing [C}](>-?), and vanishing fluxes,
A can only be negative from (3.116) if the internal quantum terms are all positive definite. In this
case either R < 0 or R < 18 H*|A|. If the internal quantum terms are all negative definite, then there
can be A > 0 for vanishing fluxes and vanishing space-time quantum terms. In this case R > 0
or R > —18H*|A|. In the same vein, other possible choices can be entertained. It would also be
interesting to compare our results with [35].



94 Chapter 3. Equation of motion, Flux quantization and constraints

determine the full background data provided information about the G-flux compo-
nents are provided. The latter will require us to solve the flux EOMs, that we shall
discuss soon.

The miracle that has happened here has its root in the time-dependence of the
G-flux components and the internal space. The time dependences of the G-fluxes
are responsible for changing the relative signs of the (36, l37, [3s) terms in (2.98) to
the k-dependent scaling (2.97). On the other hand, the time-dependences of the in-
ternal space i.e the existence of the F;(t) factors are related to the quantum terms.
The quantum terms are classified by ¢, in (2.97), thus bringing us back full-circle.
This interdependency of the temporal behavior of fluxes and the metric compo-
nents is solely responsible for the generation of a four-dimensional positive curva-
ture space-time in the type IIB side with de Sitter isometries. Switching off time-
dependences (or the quantum terms) will immediately ruin the picture and drag us
back to the swampland.

Case 2: Fy(t) and F,(t) satisfying the fluctuation condition (2.8)

Our procedure to study the scenario corresponding to v > 0 will essentially be the
same: we will take the traces of the various EOMs and from there inquire whether
solutions could be constructed. We first take the trace of the EOM along the (m, n)
directions. The EOM is given in (3.34) and is defined at the zeroth order in g,. The
trace yields:

= ot LGl gle/masm _ [@z]mvo) — GAH*, (3.119)
where we have used the fact that the un-warped Ricci scalar of M, vanishes, which
in turn appears from looking at (3.51). In fact this led us to choose the un-warped
geometry of the six-dimensional base to be that of K3 x T?, implying that the cos-
mological constant A in this set-up may be expressed as:

9/2) 4(9/2)aBab L m1(0,0) 1

48H8 gaﬁab g 12 H4 [Cm] ) (3 O)
which at the face value doesn’t contradict anything because the quantum terms are
classified by 6, = 2/3 in (2.86) for v = 2, and this allows us to choose l,3 = 2
renormalizing the classical flux piece such that the RHS of (3.120) becomes a posi-
tive constant. However this puts a tighter constraint on the behavior of the G-flux

component g&g/ab An alternative to this would be to take R®® # 0 in (3.51). This
however would be a bit difficult to argue because (3.51) is a source-free equation
(see also footnote 5). It is also interesting to note that (3.53) provides a relation

similar to (3.120), namely:

1 (oY _ L ceeo
A= (G30) — o e, (3.121)
which again shows that there has to be a delicate cancellation to allow for the cos-
mological constant term to appear from the RHS. Of course again the quantum
terms are classified by 6, = 2/3 in (2.86) so we haven’t faced a contradiction yet.
However the fact that first term in (3.121) is negative definite shows that the quan-
tum terms have to be negative definite also to reproduce the positive A from RHS.
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We will not worry about whether (3.121) and (3.120) could be mutually consistent,
and instead proceed with analyzing the other equations of the system.

Our next equation is the equation along the (a, b) directions. There are some
subtleties in the construction of the EOMs, that we explained earlier, and after the
dust settles, the EOM to order g2 (which is the lowest order now) is given by (3.65).
Taking the trace leads to:

1 2 1
A= 1o <gc%>)> ~ e 77 (3.122)
which is an equation similar to (3.121) above. The concern associated with this
equation remains the same as before as the quantum terms are classified by 6, = 2/3
in (2.86). We should then go to the space-time EOM to see if any of our concerns
could be lifted. As we saw before, there are two space-time EOMs given by (3.86)
and (3.91), out of which (3.91) will be the correct EOM once we gather all the con-
straints from flux EOM in section 3.1.2. For the time being there is no way to choose
(3.86) over (3.91), so we shall put both to test now and see what comes out from our
exercise.
We consider starting with the wrong EOM, i.e (3.86). In this case the story, like
(3.122), also repeats for the EOM along the space-time direction as may be seen from
(3.86), and we reproduce it here again for completeness:

1 1. .
A= oG GO0 — 2 ] (3.123)
We now face a possible conundrum. The quantum terms are classified by 6, = 8/3
in (2.86) and therefore has many more terms compared to the earlier cases where
the quantum terms are classified by 6, = 2/3. None of these terms are as simple as
the classical flux term appearing in (3.123), and therefore to reproduce the constant
A factor, there needs to be strong constraints on all the quantum terms classified by
0, = 8/31in (2.86).

There is also no integral constraint like the one in (3.116) for the volume pre-
serving case (2.2) because the warp-factor A (y) is harmonic from (3.85). Combining
(3.121) and (3.123) yields:

_ 1 01(3.0) | pr4 [(i] (0:0)
A= 12H4<[C"‘] + H'[C]] ) (3.124)

which relates A directly to the quantum terms. Since A > 0, the quantum terms
or their sum have to be a negative definite integer. Additionally, they have to be
proportional to H* (at least from the first term in (3.124)) if (3.123) has to make
sense. Also since the square of the flux piece appearing in the above equations is a
positive quantity, we expect:

, 1 2 1
7] > Z[en® > Siene? > e, (3.125)
as a possible hierarchy between all the quantum terms classified by appropriate

values of 0, in (2.86). All these lead to some strong constraints that are unclear
if they could be consistently satisfied. Let us then ask whether the correct EOM,
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namely (3.91), could ease some of the tension here. Combining (3.90) with (3.91),
we get:

L 202 o020 _ L (10130 _ (i1 (00)
A = 2GR geeom — - (([c] ™0 - [c] ). (3.126)
which is similar to (3.123), so unfortunately this is not going to alleviate any of the
issues that we faced above. The only difference between (3.123) and (3.126) is the
quantum terms, so (3.125) would remain as before with the sole replacement:

€] — [e]*" - (€], (8.127)

leading to same sort of strong constraints as before. Furthermore switching on ~
leads to an unnatural derivative constraint that is harder to justify. The absence of
M2-branes, due to the vanishing Euler characteristics, is also an issue because M2-
branes dualize to D3-branes in the type IIB side and account for the color degrees
of freedom. Additionally, the late-time behavior, as may be inferred from (3.28),
shows that:

Fi(t) =0, F(t)—1, (3.128)

thus the subspace M, shrinks to zero size leading to singularities at late time. How-
ever since we are never at g, = 0 point, the quantum EOMs do not show any signs
of complications at this stage. Thus although none of the arguments presented here
is damning enough to discard the model with non-zero v, the issues presented here
nonetheless show that the late time physics with a four-dimensional de Sitter space-
time, i.e with (2.2), is a preferable scenario over the ones with time-varying Newton
constants. In Table 3.1 we summarize the differences between the two choices (2.2)
and (2.8).

3.1.2 Analysis of the G-flux quantizations and anomaly cancella-
tions

The study of all the Einstein’s equation performed above revealed a delicate in-
terconnection between the metric components, the quantum terms and the G-flux
components at every order in the g, expansions. Flux EOMs would introduce yet
another layer of interconnections and constraints. We would like to specifically con-
centrate on two aspects of this: flux quantization and anomaly cancellation. In the
process we shall also be able to tie up few of the loose ends from the earlier sections.

Bianchi identities and flux quantizations

Flux quantization is intimately connected to the Bianchi identity. In the time-independent
case this was analyzed in details by [33]. Let us first elaborate this using the dual
forms G discussed in section 2.1.2. In the absence of the quantum terms, i.e in
the absence of Z7 from (2.140), the M-theory action using the dual variables may be



3.1. Analysis of the quantum equations of motion and constraints 97

Time-independent Newton’s constant || Time-dependent Newton’s constant

No derivative constraint on M, x M, Derivative constraint on M,
M. non-Kéahler My conformally K3
M. non-Kéahler Ma: conformally T?
xs 7 0 xs =0

Allows static and dynamical M2-branes || Only dynamical M2-branes allowed

No late time singularities Late time singularities

G-flux components with k& > 2 G-flux components with k& > 2

TABLE 3.1: The key differences between backgrounds with time-
independent Newton’s constant coming from (2.2) and time-
dependent Newton’s constant coming from (2.8). The Euler charac-
teristics of the eight-manifold (2.4) is denoted by xs. The case with
dynamical membranes will be discussed in subsection 3.1.2.

written as:
Sy = cl/G7/\*11G7+N/CG/\A5+02/C6/\dZ4, (3.129)

where N represents the number of M5-branes, ¢; are constants that are defined in
terms of certain powers of M, that may be easily specified'?, A5 is a localized five-
form that captures the singularities of the M5-branes, the Hodge star is with respect
to the warped eleven-dimensional metric and C¢ appears from defining G; = dCg+
... where the dotted terms appears from M2 and M5-branes in appropriate ways.
The EOM for Cg turns out to be:

1 A

dsyy Gy = — <NA5 n cgdz4) = dG,, (3.130)
C1

where on the RHS we expressed the equation in terms of the four-form G4. The

above equation represents the Bianchi identity in the absence of any extra contribu-

tions from the quantum terms. Integrating the above equation over a five-manifold

35 with boundary ¥, = 035, we get:

o | Gi=N+c / Za, (3.131)

24 2:4

where the RHS is expressed in terms of N, the number of static M5-branes, and an
integral of a four-form over the four-manifold ¥,. In deriving the above equation
we have assumed that the integral of A5 over the five-manifold X5 is identity. Now

12For example ¢; = M) and ¢, = M}, but the term with ¢, will involve other powers of M,,.
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defining:

1 1
= —_—— :—1 = -_— _— .
¢ . » = <tr]F/\F Ztr]R/\R), (3.132)

2T T

where the curvature form R is as defined in (2.131) and the gauge two-form F
will appear from the flux-form G, also defined in (2.131), once we view the G-flux
components as localized fluxes (this will be elaborated soon). Therefore combining
(3.132) with (3.131), we reproduce the G-flux quantization as expressed in [33].

The question now is what happens when the G-flux components become time-
dependent? One easy way out would be to introduce moving M5-branes, as the
other pieces appearing in (3.131) are topological. These topological pieces could
also have time dependences, but as we saw earlier, the time dependences of the
G-flux and metric components are correlated to the quantum corrections which in
turn are classified by 6 in (2.97) or 6, in (2.86) for (2.2) and (2.8) respectively. This
therefore calls for the quantum corrections to the Bianchi identities themselves.

Introducing the quantum corrections here would imply switching on the Hodge
dual of Z7, which in turn implies switching on the second interaction in (2.140).
Implementing this, changes the Bianchi identity from (3.130) to the following:

1 ~
dsn Gr = — (NA5 + eodZy — cad %1, Z7> = dG,, (3.133)
1

where c; is yet another constant defined in terms of powers of M,. As discussed
in (2.142), the Z; interaction should be understood as coming from (2.139) and is
therefore non-topological. It is also not globally defined because it involves metric
components on the compact space My x My X %2, that can only be defined on
patches and we will have to specify a function that can take us from one patch to
another. Integrating (3.133) in the same way as above, leaves us with the following
flux quantization condition:

C1 G4 =N+ C2/ 24 — Cg/ *1127, (3134)
24 24 24

where N, the number of M5-branes, would be affected if A5 itself becomes g, (i.e
time) dependent. Recall that A5 in (3.133) is like a delta function and therefore if
there are moving M5-branes, it would pick up g, dependence. Similarly Z; would
also pick up some g, dependence. However these are all classical, and what we
are looking for is more on the quantum side that could account for all higher order
gs dependence of the G, flux-components gﬁjﬂv po for all k > 3/2. To see how this
would come about, let us express (3.134) in terms of components in the following
way:

2Ak ~
C1 Z/ gN8N9N10N11 _8> dyNS AN dlel = N + CQ/ Z4 (3135)

kel 24

/ / s él
_032/ VvV —g11 Z7 gN1N1 """ gN7N7 ('g_> €N1....N7Ng....N11dyN8 A /\dlel,

NI...N} H
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where the metric components are all the un-warped metric components (including
the determinant), and the epsilon is the Levi-Civita symbol (i.e not a tensor). Note
also that although the LHS has been expanded in the standard way as in (3.11), the
RHS needs some explanation. According to (2.142), the quantum terms (2.139) are
expanded by first choosing a particular component from the set of allowed dual
forms and then labelling the remaining pieces as the associated seven-form Z; ac-
companying the dual component. This way Z7 is uniquely identified once the dual
G-flux component is chosen. However we expect the dual G-flux component to
have a similar expansion as (3.11), albeit with different g, scalings. The correspond-
ing Z7 form will then have the g, scalings as given in Table 2.2. The RHS of the
(3.135) therefore represents precisely these scalings that we will simply label as ;.
For every choice of Q](\];)N po on the LHS, the g, scalings of the corresponding seven-

form ZY should match-up®. In the following we will do a detailed check of this.

Before delving into this note that if the M5-branes are static, then N will appear
with no g, factor accompanying it in (3.135). Thus if there are no time-neutral G-
flux components we cannot allow static M5-branes, although M2-branes can still
be allowed'. There is however some subtlety that we are hiding under the rug
here. Since the Z; piece in the Bianchi identity (3.133) should always have g, depen-
dence, the static quantities that can actually appear from the Bianchi identity may
be combined as S5 where:

C2

= NA: —
S 5 39n2

d<tr R A R) , (3.136)

where the second term comes from the definition of Z4 in (3.132), and Aj; is the
localized five-form. The gauge field F will in general have g, dependence, but here
we will simply put it to zero. Now, clearly if the trace or R in (3.136) has only g,
dependent terms, then N = 0 as G4 has no g, independent piece. However if the
trace or the curvature form allows a g, independent piece then we can cancel S;
locally by identifying A5 with the trace part. The global condition:

Co
- trRAR 3.137
o /. wRAR, (3.137)

over a specific four-cycle ¥4 = 0%; is then automatic. However compared to [33],
we now require the integral of the first Pontryagin class to be an integer!® as we can-
not switch on time-independent G-flux components here. Thus time-dependences
put some extra constraints that did not exist for the time-independent case. In gen-
eral, since we will only be concerned about comparing the g, scalings, N can be
effectively taken to zero without altering the flux quantization condition (3.135).

13We have been a bit sloppy in defining 6;. The actual g, scalings of every components of Z; may
be read from Table 2.2. However 6, will have an additional contribution from v/—8g11, where the
determinant is now expressed in terms of the warped metric components. To avoid all these un-
necessary complications we just define ; once and for all in (3.135) without worrying too much of
its source.

4This is a bit more subtle than one would think. Dynamical M2-branes would back-react on the
background stirring up corrections to fluxes and the metric. This is however surprisingly tractable,
and we will elaborate the story in subsection 3.1.2.

5The sign will be determined from the sign of c;.
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There is however no reason to make ¢, = 0 because Z, can have gs dependences.
We will not worry too much about this as we want to match the g, scalings of the
LHS to the g, scaling of the quantum terms on the RHS of (3.135).

Case 1: Gppqp cOomponent

We will start by taking c; = 0 in (3.135) just for simplicity. This will be restored back
at the end with appropriate g, scalings. Such a procedure will help us to compare
the LHS and the RHS succinctly. Therefore for a given order in k the matching
becomes:

c1 /(1) Qﬁ?mbdym A Ndy = —cs / oV —9g11 (ng)
2:4 24

0ijpgaB . ,
> GOiquaﬂmnabdy A A dy )

(3.138)

where BV — Cy X T—Q, and C; is a two-cycle in My. The LHS of (3.138) scales as
4 G y

(%)Mk with k& > 3/2 for the case (2.2) and k > 9/2 for the case (2.8). The g, scaling

on the RHS is (gﬁs)ek where 6, for (2.2) becomes:

R 14 4
O = 0 — 20k +6 — — = 0 — 20k + ¢,

(3.139)

where the first three terms in the first equality appears from Table 2.2 and —!

comes from /—gq; (note that the determinants in (3.138) and (3.135) have un-bolded

metric components). For £ = 3/2 the g, scaling of the LHS becomes 2Ak = 1

whereas the g, scaling of the RHS becomes 0, = 0}, + : with 6} as in (2.97). This
2

means when 0;, = 3 the g, scalings on both sides of (3.138) matches exactly.

For the case (2.8) there are two changes: the determinant changes to \/—gi1

gs " and k > 2. Putting the information from Table 2.2, we get:

. 4

szek—2Ak+4—§:0k—2Ak+§, (3.140)
where 0, is as in (2.86). The g, scaling of the LHS for k = 9/2 is 2Ak = 3 whereas
the g, scaling of the RHS becomes 0, = 6, — 2, implying that when 6, = %! the g,
scaling on both sides of (3.138) match exactly. Comparing the two cases, we see that
the quantization scheme for (2.2) is a bit more natural.

Case 2: Gpqp component

Following the same procedure as before we can define the quantization scheme

for the G-flux component G, defined over a four-cycle Ef) = My x %2 in the
following way:

0ijmnpq N X
) EOijmnpqa/Babdy VANRUVAN dy R

k o k
1 géﬁ)abdy ATA dyb = —C3 /2(2) vV —g1 (Zg )
4

=@

(3.141)

where now the seven-form has different set of indices. Looking at Table 2.2 it is
easy to see that the g, scaling of this seven-form component remains the same as
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earlier and therefore then matching of the g, scalings on both LHS and RHS of
(3.141) happens exactly when 0}, = 2 with 6} defined as in (2.97). The matching of
the higher order terms then follows automatically.

On the other hand, for the case (2.8), the analysis is not similar to what we had
before because the g, scaling of the seven-form changes as should be evident from
Table 2.2. In fact the scaling becomes:

) 8 16
O = O — 28k +8 — 2 = 6, — 20k + =, (3.142)

implying that for k = §, we will require §;, = Z in (2.86) to match the lowest powers
of g, on both sides of (3.141). Once matched at the lowest powers, all higher order
gs scalings get matched automatically.

Case 3: Gaar cOmponent

This is an interesting case where the four-cycle on which we define our flux com-
ponent is chosen from a combination of two one-cycles, one each from M, and M,
respectively, and combined with the existing two-cycle %2. The one-cycles are pos-
sible because neither M, nor M, are Calabi-Yau manifolds as we saw earlier. We
will call this four-cycle as »(¥ and the quantization condition becomes:

0ijnpqB . ,
) Eo’ijnpqﬁmaabdy AL A dy .

c1 / Q,Sf;abdym Ao Ndy = —03/ V=011 (ng)
2513) 2513)
(3.143)

The g, scaling of the RHS remains similar to what we had for the two cases above
for (2.2). This means that choosing ¢}, = 2 we can match the lowest order g, scalings
on both sides of (3.143). The higher order terms, as expected, match automatically
after that.

The story for the case (2.8) is however a bit different because the g, scaling of
the dual form appearing in (3.143) is different as can be seen from Table 2.2. In
addition to that, since M, and M, are conformally CY, global one-cycles are non-
existent here. Nevertheless local one-cycles are possible and thus ¥ could only
be viewed as a local four-cycle, implying that a relation like (3.143) cannot quite
capture the flux quantization scheme for this case. Locally however we can still
give some meaning to an equation like (3.143), and if we carry on with such a lo-
cal quantization condition, it will tell us that the g, scaling of the RHS of (3.143)
becomes:

- 1

O, = 0, — 2Ak + gO, (3.144)
where k > g This means that the bound on 6, from (2.86) is now 6, > %, implying
that the flux quantization scheme here pits the time variation of the integrated G-
flux component with the integrated quantum terms classified by 6, = 3 for the case

(2.8) and 6, = 2 for the case (2.2).
Case 4: G, component

We now start with components of G-fluxes that do not contribute at lower order
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in g, scalings to the EOMs. This means the quantization scheme will involve even
higher order quantum corrections that are captured by the dual seven-form. This
may be seen from the following quantization condition:

0ijafBab -
> €0ija5abmnpqdy Ao AN dyf.

(3.145)

01/ gr(;fo)zpqdym Ao Ndy? = —63/ V=911 (ng)
My My

where the four-cycle is clearly the manifold M,. Looking at Table 2.2 one can easily
work out the g, scaling of the RHS of (3.145). Putting everything together, this gives
us:

O, = 0, — 20k — g (3.146)
with 6, asin (2.97) and k > % The g, scaling of the LHS of (3.145) remains the same,
i.e 2Ak, and therefore to match both sides of (3.145), we need 6§, > 134 in (2.97).

Clearly for this value of ), there are multiple terms which we can easily work out
from (2.139).

The case with (2.8) is also different. The g, scaling of the seven-form may be
read from Table 2.2, Putting things together, the g, scaling of the RHS of (3.145)
now becomes:

8
3 ?
with 6 as in (2.86), and therefore the only way to match both sides of (3.145) is to
impose 6, > 2 in (2.86). This is a large number and therefore will involve many

quantum terms, making the quantization scheme a bit more complicated. Never-
theless, matching of both sides could be made succinctly.

0, = 0), — 20k — (3.147)

Case 5: Gppo cOomponent

Quantization of flux in this case requires us to find a three-cycle in M, and a one-
cycle in Ms. This is possible thanks to the non-Kéhler nature of M, and M, for the
case (2.2). The quantization scheme now becomes:

0ijqBab - N
) EOijqﬁabmnpady VANRUAN dy ,

C1 / ggf%padym VANPTRAN dya = —C3/ vV —9g11 (Z(?k)

=@ =@

(3.148)

where 2514) is the corresponding four-cycle. Now according to Table 2.2, the g
scaling of the dual seven-form remains exactly the same as what we had for the
G npg component and therefore the analysis will proceed in the same way as before.
The net result is that the g, of the RHS remains (3.146), and therefore the g, scalings
of both sides of (3.148) match when 6, > 1 in (2.97).

For the case (2.8), finding a globally defined four-cycle is not possible as both
M and M, are conformally CY manifolds. Local construction is possible, but that
weakens the flux quantization scheme here. Nevertheless if we proceed with a

relation like (3.148), but now defined over a local four-cycle 224), we could still
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make some sense of (3.148), at least in identifying the g, scalings on both sides of
the relation. This gives us:

A 2
0, = 0, — 2Ak — 3 (3.149)
with 6, as defined in (2.86) and £ > %. Thus if 6, > 2—?? we can in principle match
both sides of (3.148) for the case (2.8). These bigger numbers, for both 6; and 6y,
are somewhat consistent with the fact that the corresponding G-flux components

do not contrinute at lower values of the g, to the EOMs.
Case 6: G,p0p component

This case is in many sense similar to the one studied for the G,,,,, component,
because the g, scalings of the metric components, for the case (2.2), are similar. Both
the metric components, g,,,, and g,3, scale as gs 23 and therefore it is no surprise
that the g, scaling of the dual seven-form is again similar to what we had for the
other component. However the flux quantization scheme involve the following
components:

0ijpqab . 5
) 6Oiquabmnozﬁdy FANA dy )

¢ / G gdy™ A oo Ny = —cs / V=gm (ng)
(5 »(5)
4 4
(3.150)

where Ef) = Cy x My, with C, is the same two-cycle in M, that we had chosen
for the case with G, component. The g, scaling of the RHS of (3.150) remains
identical to (3.146) and therefore if 6] > % in (2.97), we can easily match both sides
of (3.150). As mentioned earlier, the higher order terms then match automatically.

For the case (2.8), we are in a better shape now because it is easy to find a two-
cycle in M, when it is a conformally CY manifold. The four-cycle then becomes
a product of the two-cycle in M, and the conformally CY manifold M, (which is
topologically a torus). The g, scaling of the RHS of (3.150) becomes:

A 4
b= 0 — 20k + 5, (3.151)

for ) as in (2.86). This implies that if 6, > 1—; we should be able to match the g,
scalings of both sides of (3.150) for any order of k > 2.

Case 7: Gunpa, Gmnaa a1d Gy, cOmponents

The final three cases are to be defined on four-cycles that are to be constructed with
one-cycles from %2 manifold. By definition such a one-cycle do not exist in %2 for
both cases (2.2) and (2.8). Previously the case with (2.2) did not suffer from any
non-existence of global cycles, although the case with (2.8) did have issues with the
existence of global cycles. Now we see that for either case, global four-cycles are
not possible, and we have to make sense of flux quantization with only local four-
cycles. Although the non-existence of global cycles make the quantization scheme
questionable, we can nevertheless compare the g, scalings of flux integrals and the
quantum terms using local four-cycles. Allowing this, we now have three set of
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equations:

) 0ijqaBb

m a k m a
1 : Qf,’f,)lpady AN dy = —cC3 / © vV =011 <Z(7 ) GOijqagbmnpady VANRTAN dy ,
> =

0ijpgBb
m a k m a
c1 /(7) gr(r]f’r)wcady A....Ndy* = —c3 . V=011 (Z(7 )) €oijpapommaady™ A . Ay,
3 ={

0ijnpgb

m a k m a
Cq Q,(:C)Yﬁady VANPIVAN dy = —C3 / - vV —g11 <Z(7 )> GOijnqumnaady AN dy s
> b))

(3.152)

where the four-cycles > fori = 6,7,8 respectively are Cz x S(y), Co X Sy, X S(y) and
Sy X Mz x S5, with the subscript denoting which one-cycle is meant. Clearly S,
and S, are global one-cycles, but S, is not, as explained earlier. Therefore the set
of equations (3.152) can at most help us identify the g, scalings on both sides of the
equalities, but would not serve as flux quantization conditions (as the four-cycles
could shrink to zero sizes). From Table 2.2 we can easily see that, for the case (2.2),
the RHS of all the three equations scale in exactly the same way as:

2

0, = 0, — 2Ak — 3 (3.153)

with 6}, as in (2.97) and k£ > 2. This means that if we take 6, > 3 we can match
the g, scalings of both sides of each individual equalities for all £ > 2, and to any
subsequent orders.

The case for (2.8) is however not as uniform as above. The g, scalings of the
dual seven-forms themselves are different as may be inferred from Table 2.2. This
directly translates to the g5 scalings of the RHS of the three equations in (3.152) in

the following way:

. 2 R 4 A 10

with 6y as in (2.86) and k& > 2. Of course now none of the one-cycles are globally
defined, and neither is the three-cycle C3, so the four-cycles in each of the three
cases in (3.152) are local in much weaker sense than what we had earlier. This
means the flux-quantization conditions are even more weakly defined than before.
Nevertheless we see that the above three scalings in (3.154) puts the following lower
bounds on 6,,:

20 14 8
> = > > = .
9k—3> 6k_3, 916—37 (3.155)

respectively for the three cases in (3.152) for the g, scalings to match on both sides
of the equalities. Once they match at the lowest orders, matchings at higher orders
are almost automatic.

Our detailed analysis above should justify how flux quantizations should be
understood in the case when the fluxes themselves are varying with respect to time,
or alternatively, have g, dependences (as we packaged all temporal dependences as
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gs scalings). The original time-independent quantization scheme of [33] where:

Gy Pl(y) 4
[g} -2 ¢ w7, (3.156)

doesn’t quite work in the time-dependent case as G, is always time-dependent (i.e
gs dependent) in our set-up whereas p;(y), the first Pontryagin class, may not al-
ways be (i.e for some sub-manifold in the internal eight-manifold, p;(y) may be
time, or g,, independent). Therefore the combination on the LHS of (3.156) being
in the fourth cohomology class H*(y,Z) doesn’t make much sense here, and the
quantization scheme now becomes much more involved as we showed above. In
principle one would expect both the G-flux components as well as the four-cycles
to vary with respect to time. However we have managed to rewrite the flux quan-
tization condition in such a way that all g, dependences go in the definition of the
fluxes, and the cycles themselves are defined using un-warped metric components.
Such a procedure then helped us to balance the g, dependences of the integrated
flux components on given four-cycles with the g, dependences of the correspond-
ing quantum corrections. We have tabulated the results in Table 3.2.

There are two other potential contributions to the flux quantization conditions
that we only gave cursory attentions. These are the number of dynamical M5-
branes, denoted by N, and the integrated four-form, denoted by the integral of
Z4, in (3.135). Both these could have potential g, dependences and would therefore
contribute to the flux quantization conditions.

Anomaly cancellations and localized fluxes

In the above section we studied how the flux quantization conditions as well as
the Bianchi identities go hand in hand, and how the g, scalings could be matched
for every allowed G-flux components. The results are shown in Table 3.2. It is
time now to go to the next level of subtleties, namely the interpretation of the flux
components that thread the internal manifold, and the cancellations of anomalies
that arise from fluxes and branes on compact spaces.

We will start by defining the eleven-dimensional action much like how we de-
scribed it in (3.129), but now using the fundamental variables and not the dual
ones. This means four-form G-flux components will appear instead of the seven-
form dual flux components. In this language the action becomes:

SuEbl/G4/\*11G4—|—b2/Cg/\G4/\G4+b3/Cg/\Zg+b4/G4/\*1124+1’Lb/C3/\A8,
(3.157)

where b; are all proportional to certain powers of M, (that may be easily fixed
by derivative counting), Zs is as defined in (2.132) which contains the Xg polyno-
mial, and n; is the number of static M2-branes. The other important ingredient of
(3.157) is the *;,Z, piece that captures the quantum corrections from either (2.78)
or (2.94) as elucidated in (2.135). Such a term appearing in (3.157) leads to the non-
topological interactions, and by construction *;;Z, is not a globally defined function
on a compact space. The EOM that arises from varying C; now takes the following
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Forms | Dual Forms | 0 for (2.2) 0y, for (2.8) 101) i | 10k] i
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TABLE 3.2: Flux quantization associated with (3.135) keeping N =

cg = 0. All the integrated flux components scale as ¢g22*, and the g

scalings of the dual forms, that incorporate the quantum corrections,

go as g%*. These are tabulated above for the two cases (2.2) and (2.8).

The other two parameters, ¢, and 0, are defined in (2.97) and (2.86)

respectively. The symbol * denotes the non-existence of global four-
cycles.

form:

1

d *11 G4 = b_ (bg G4 A G4 + bg Zg — b4 d *11 Z4 -+ nbA8> . (3158)
1

Since both G4 and G; = %11 G4 are globally defined forms on the compact eight-

manifold Mg, as given in (2.4), integrating the LHS of (3.158) over Mg would au-

tomatically vanish. Doing this on the RHS then reproduces the following anomaly

cancellation condition:

b G4/\G4+bg/

Zg — b4/ d *11 Z4 + np = O, (3159)
Mg Mg Mg

where we have assumed that the integral of the localized form Ag over the eight-
manifold is identity. This is true of course when the M2-branes are completely static.
We will discuss more on this later.

On the outset (3.159) looks like the standard anomaly cancellation condition one
would get from [21, 22], however a closer inspection reveals a few subtleties. One,
the flux integral is now time-dependent because the G, fluxes do not have any
time-independent parts. Two, we have an integral over the topological 8-form Zs,
whose polynomial form appears in (2.132), instead of just X5 as in [21, 22]. Three,
there appears a new contribution coming from the integral of a locally exact form
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d *11 Z4 over Mg from the quantum corrections. And four, we have n;, the number
of static M2-branes, that is a time-independent factor. Thus (3.159) is not just a
single relation as in [22], rather it is now a mixture of time-dependent and time-
independent pieces juxtaposed together. How do we disentangle the various parts
of (3.159) to form consistent anomaly cancellation conditions for our case?

The X polynomial and Euler characteristics of the eight-manifold

First let us look at the Xy part of Zg. As should be clear from (2.132), the choice
(2.133) allows us to construct the X polynomial from Zg. In the time-independent
case, we expect (see the first reference in [21]):

1
//Vls Xg = —WX& (3.160)

where x5 is the Euler-characteristics of the eight-manifold Mg when it has a Calabi-
Yau metric on it. In fact, in the time-independent case (3.160) makes sense, but if
we now take the metric ansatze (2.3) with the warp-factors as defined in (2.5), how
does (3.160) translates to the present case?

To answer this question let us look for the regime of validity of our g, expansions
for all the parameters involved in our analysis. It is easy to see that as long as

0 < (%)2 < 1 we have pretty much controlled quantum series expansions for all
the parameters here. Clearly we cannot analyze the cases when (%)2 > 1 because
of the way we expressed the G-flux components in (2.13), quantum terms in (3.1)
etc. Thus (%)2 = 1 forms a kind of boundary, below which all the analysis that we

performed remains valid. Interestingly when (%)” = 1, the M-theory metric (2.3)
takes the following form:

ds? = H—8/3( — A+ da? + dxg) + HY? (gagdyadyﬂ + gondy™dy™ + gabdyadyb), (3.161)

where the metric components appearing above are all the un-warped ones and we

have absorbed the F; <—ﬁ> in the definition of the internal coordinates (A being

the cosmological constant). We will not worry about the fluxes and the quantum
corrections in this limit as they are any way not well defined according to our g
expansion scheme. Our present scenario is somewhat similar to the one we en-
countered earlier, although we do not want to give a coherent state interpretation
when comparing (2.3) and (3.161) just yet. What we can say is that as:

1
<t <0, 3.162
VA N 162
the metric (3.161) slowly transforms into (2.3), implying that all temporal evolution
should be defined for ¢t = _\/LK + dt. Such a point of view does not rule out a

coherent state formalism for our present background because we can still view the
time-dependent evolution for —oo < ¢ < 0 to be over a solitonic configuration of
the form (3.161). Unfortunately the inaccessibility of the regimes ¢ < —ﬁ prohibits
us to provide a quantitative analysis of such a scenario.
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What it does provide is a way to interpret the integral of Xs over the eight-
manifold. Let us first consider the eight-manifold as given in (3.161). This is not a
Calabi-Yau four-fold so the Xz integral will not necessarily capture the Euler char-
acteristics of the internal eight-manifold My defined as in (2.4). Once we switch on
a time interval ¢, the warp-factors (2.5) changes to the following:

2
4 = (1 + ix/Két) H=8/3 ¢2C = (1 - gx/Két) HY3 A% = (97;) —1-2VAst (3.163)

1 2 f 1 2 ,
2B1 _ . 4 4/3 2By _ L 4 4/3
e Fl( \FA+5t) <1+3\/K5t)H e F2< \/KJrét) (1+3\/X6t>H ,

where we see that the temporal evolution of the metric (3.161) appears as additive

pieces, each proportional to ¢, to every metric components (including the space-
time ones) up-to the F; factors. The F; factors do not change this observation be-
cause:

£ (—% + 575) — 14 Ek:ck@ — 2A\/K6t>

A (- t) -

where v = 0, 2 are related to the two cases (2.2) and (2.8) respectively. The other two

1+ (1(1 - 2A\/K5t>

(1 . 7\/K5t>, (3.164)

set of parameters C}, and 5k have been determined earlier in terms of the quantum
corrections in section 3.1.1.

Therefore combining (3.163) and (3.164), the metric ansatze (2.3) can actually be
viewed as a perturbation over the initial metric configuration (3.161). In fact in this
language, the late time cosmological evolution may be viewed as evolving from the
metric configuration (3.161) via the warp-factors (3.163) and (3.164). It is also easy
to replace 4t to a finite temporal value by iterating (3.163) and (3.164) or by directly
summing over binomial coefficients. All in all, our little exercise above tells us that:

1 1 2 w
Xg=—n— tr R* — = (tr R? =——"2__ o(0t 16
Ms 8 3.929. 74 /./\/lg (I‘ 4(1' ) ) 4'(271')4X8+g ( )7 (3 5)

where R is the curvature two-form as it appears in (2.131), and w, measures the
deviation from the Euler characteristics xs. This could be integer or fraction de-
pending on our choice of the eight-manifold. Note that the integral (3.165) splits
into two pieces: w,Ys, which is the piece independent of ¢¢, is now only propor-
tional to the Euler characteristics of the eight-manifold appearing in (3.161); and
9o(6t) is a factor that depends on our temporal evolution parameter §¢. The latter
doesn’t automatically vanish, at least not for the kind of background that we an-
alyze here, and therefore should contribute to the anomaly cancellation condition
(3.159). Exactly how this happens will be illustrated soon.

The Euler characteristics x5 can take either values, positive or negative, and both
will be useful in analyzing the anomaly cancellation'®. The case with vanishing Eu-
ler is interesting in its own way, but it appears not to be realized at least for the

1®Thus without loss of generalities we will take w, > 0 in (3.165).
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case (2.2). One can, however, question the robustness of the interpretation. (3.165).
How is the split (3.165) understood in the full cosmological setting? This is where
the coherent state interpretation becomes immensely useful. If we assume that the
cosmological evolution for —oo < ¢ < 0 is via coherent states that evolve over a
solitonic background like (3.161) then x5 will always be related to the Euler charac-
teristics of the vacuum eight-manifold.

Anomaly cancellation conditions and time-dependent G-fluxes

Let us now come to the anomaly cancellation conditions from (3.159). This equation
should now naturally split into at least two parts: one, that is time-independent (i.e
independent of g;), and two, that depends on time, and hence on g,. It is easy
to see that, out of the four set of pieces in (3.159), only two set of pieces are time
independent. These are the number n;, of M2-branes and the time independent part
of Zs that is related to the Euler characteristics of the eight-manifold (3.165). If we
take xs > 0, (3.159) immediately gives us the first anomaly cancellation condition:

bs

ny = m Xs, (3.166)
where b3 is the factor that depends on w, and M,,. Thus we see that, even for a non-
Kéhler eight-manifold, the Euler characteristics of the internal manifold (3.161) gov-
erns the number of static M2-branes in our model in some sense. Since the number
of M2-branes have to be an integer, the equation (3.166) puts an extra constraint on
bs and the Euler characteristics of the eight-manifold itself, namely the combination
on the RHS of (3.166) should be an integer. Such a condition should be reminiscent
of a similar condition in the second reference of [21], and here we see that in a time-
dependent background, (3.166) is realized instead of the full anomaly cancellation
condition with G-fluxes of [22] (see also the last reference of [21]).

On the other hand, a negative Euler characteristics would be related to anti M2-
branes, or to a set-up with dominant number of anti M2-branes. Again the story
parallels that of the second reference of [21], albeit now for the time-dependent
background. Vanishing Euler characteristics would then mean no M2 or anti M2-
branes or equal number of M2 and anti M2-branes (such that global charges cancel).

For the time-dependent parts of (3.159) there are a couple of subtleties. One, we
need to tread carefully as various parts of the G-flux components have different g,
scalings; and two, time-dependent contributions now come from both topological
and non-topological parts of (3.159). In fact the non-topological piece, given in
terms of x;,Z,, is solely time dependent as it is constructed out of the quantum
terms (2.78) or (2.94) as shown in (2.135). On the other hand, the topological part
does have a time independent piece as seen from (3.165). Combining everything
together, our second anomaly cancellation condition may be expressed as:

by G4/\G4—|—bg/

b
(2a-X) b [ dsuZim e (G167
Ms Ms M

. 41(27)

which is in fact not a single condition, rather it is an infinite number of conditions
on various components of the G-fluxes and the quantum terms. To see this, and
as we have done before, we will first decouple the b3 dependent parts of (3.167) to
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simplify the ensuing analysis. This will be inserted in at the end. Plugging in the
G-flux components and the quantum series in (3.167) with b3 = 0, we get:

k k gs\ 2A(k1+k2)
bl Z g‘gvll[)\/v?N3N4g](V52])\fGN7N8 (E) dle A e, AN dyN8 (3168)
(ki) 7 Ms
, , O
=b 0 = (Z(k)) MsM{ My M, (%) G A g,
4;//\/18 s (m : JLIé...Ml’lg 9 H €Ny ... N7 Mg...M1: @Y Y

where we see that the RHS is expressed in terms of a total derivative and un-
warped metric components. Since My is a compact eight-manifold without a bound-
ary, one might worry that the RHS would vanish. However it doesn’t precisely be-
cause d x11 Z4 is only a locally-exact form. In other words, *1Z, is not a globally de-
tined form as it is extracted from the quantum terms in (2.135) and involves metric
components that are not globally defined variables on the compact eight-manifold.
This is like the Xz form that is expressed as a locally-exact form dX; where X is
not a globally defined form on a compact eight-manifold. This renders the RHS
non-zero even in the absence of any boundary. Finally, the g, scaling 6§, appearing
in (3.168) may be defined as:
ékze;;—g ékzeﬁf, (3.169)
3 3
for the two cases, (2.2) and (2.8) respectively where ¢, and 6, are defined as in
(2.97) and (2.86) respectively. The anomaly cancellation condition then requires us
to match the g, scalings on both sides of the equation (3.168). This gives us:

2 3 3
92:§(k1+/€2+1)a (k1, ko) > (57 5)

2 9 9
O = 3 (k1 +ko—2), (ki k) > (57 5) ; (3.170)

as the set of anomaly cancellation conditions for the two cases (2.2) and (2.8) respec-
tively. As a check one may see that, for k; = k; = 3, 6, = § and therefore involves
the same set of quantum terms that we had for example in (3.77), wherein the quan-
tum terms were classified by (3.78). This makes sense because the equation govern-
ing the G-flux components is as in (3.158), and therefore if we restrict the LHS of
(3.158) to the G-flux components G;j, 0r Goija, then the LHS may be expressed in
terms of (JH* exactly as in (3.77). In fact the similarity goes even deeper: (3.77) has
the same number of ingredients as (3.158), for example there are M2-branes, fluxes
and quantum corrections almost in one-to-one correspondence to (3.158).

There is however at least one crucial difference between (3.77) and (3.158) apart
from the appearance of the b3 factor in the latter. The difference lies in the choice of
the G-flux components themselves: (3.77) is defined in terms of Q](V’f,)Nab components
whereas (3.158) involves *Sg]%ab components, with xg being the Hodge dual over
the internal eight-manifold. For the time-independent case this observation has
already been registered in [14] (see eq. (7.11) therein), and now we see that such
a case happens here too. It is easy to show that in general the G-flux components



3.1. Analysis of the quantum equations of motion and constraints 111

are no longer self-dual, where the self-duality is defined with respect to the internal
eight-dimensional space. In fact presence of self-duality would have been a sign of
supersymmetry, but since supersymmetry is broken, it is no surprise that we see
non self-dual G-flux components.

For the case (2.8) governed by 6, in (2.86), there appears to be some mis-match if
we compare to (3.86). On one hand, taking k; = k, = § we get 6, = £ from (3.170).
On the other hand, (3.86) tells us that the quantum terms are classified by 6, = %
in (3.86). This difference may be attributed to the multiple constraints appearing
from (3.85), vanishing Ricci scalar for the six-dimensional base, and vanishing Euler
characteristics for the eight-manifold; and therefore a simple comparison between
the set of equations cannot be performed.

However a more likely scenario is that (3.86) is not the correct EOM, and the
correct EOM for this case is actually (3.91). In fact the similarity of (3.91) with (3.77),
and the fact that the quantum terms are classified by 6, = %' puts extra confidence
in the (3.91) to be the correct EOM. Taking this to be the case, and comparing (3.91)
and (3.168), we again observe the non-existence of self-dual fluxes. The number
of flux components in (3.168) do not match with the ones in (3.91), but if we only
allow components QS?@/ fb) in (3.168) then the story would be exactly similar to what
we had for the case (2.2), reassuring, in turn, the correctness of our procedure so far.
Thus we see that the flux EOMs provide powerful consistency checks on our earlier

EOMs derived using Einstein’s equations'” .

Dynamical branes, fluxes and additional constraints

The interconnections between the G-flux EOMs and the Einstein’s EOMs, in partic-
ular the ones that match the quantum terms, do have an additional layer of sub-
tleties. These subtleties arise once we look at the M2 and M5-branes, especially the
ones endowed with dynamical motions. To illustrate this, let us first discuss the
static M2-branes ignoring, for the time being, the M5-branes'®.

Dynamical membranes and G-fluxes

The subtleties alluded to above arise when the dynamical motions of the mem-
branes tend to stir up additional corrections to the G-flux components, in particular
the ones with components along the 2 + 1 space-time direction, for example G /0;;.
Question then is: how robust is our earlier analysis that we did using the space-
time flux components borrowed from [14]? To see this, we will have to re-visit the
dynamics of membranes more carefully now. For simplicity however we will only
consider single membrane, and ignore M5-branes (as mentioned above). The action

In retrospect this also justifies the locally exact nature of d 11 Z4, because if it were globally
exact, it would not have contributed to the RHS of (3.168) resulting in some contradictions with the
EOMs from the Einstein’s equations.

18The M5-branes wrapped on three-cycles of the internal eight-manifold could be viewed as frac-
tional M2-branes. If we ignore the subtleties associated with the KK modes from the wrapped di-
rections, then the dynamics of these will be no different from the M2-branes. In this thesis we will
avoid distinguishing between the integer and the fractional M2-branes.
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for a single membrane can be written as:

15

Sp = 5

) 1
d’c {\/ Y2 (Véy)auXMauXNgMN - 1) + §€WpauXMauXNapXPCMNP} )
(3.171)

where v(2),,, is the world-volume metric, €,,, is the Levi-Civita symbol, gy;y is the
warped metric in M-theory, X* are the coordinates of eleven-dimensional space-
time and Cj;np is the three-form potential. The EOM for the world-volume metric
easily relates it to the M-theory metric g,y as the following pull-back:

Y = a,uX]V[aVXNgMNy (3172)

which means in the static-gauge, we will simply have 7)., = gu, i.e the world-
volume metric is the 2 + 1 dimensional space-time metric. On the other hand, the
EOM for the membrane motion takes the following condensed form:

ehwp

——0,X90,XN0,X Gsonrg’” =0,

o) X7 + 550X M0, X Dy — 5
3! —’)/(2)

(3.173)

with O, forming the Laplacian' in 2 + 1 dimension described using the world-
volume metric (2),, I}y is the Christoffel symbol described using the warped
metric gy n, and Ggsgnr is the G-flux components that we have been using so far.
in the static-gauge we expect O, X" = 0, and then the remaining two terms of
(3.173), simply gives us:

3
Goijm = —5V e "' g, (3.174)

where we identify the world-volume metric to the 2 + 1 dimensional space-time
warped metric g,,,. Therefore plugging in the metric components from (2.3) and
(2.5) we can reproduce the familiar results for G, and Gy;j, in [14, 15].

All we did above is very standard, but the keen reader must have already no-
ticed the subtlety. The form (3.174) is only possible if there are static M2-branes.
If the system doesn’t have any static M2-branes, or the M2-branes are somehow
absent, the result (3.174) doesn’t follow naturally. For the case (2.8) all the param-
eters are independent of y so, at least at the face-value, (2.85) makes sense once
we compare it with (3.174). However since the Euler characteristics of the internal
eight-manifold also vanishes, all static M2-branes are eliminated. How can we then
justify the non-zero value of Gy;;,, for the case (2.8)?

This is where the difference between time-independent (and also supersymmet-
ric) and time-dependent cases becomes more prominent. In the time-independent

19 P __ 1 — nv P
Doy X *maﬂ(\/ V(@) 7(2) X )
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supersymmetric case”, vanishing Euler characteristics for a four-fold implies van-

ishing fluxes and branes [21, 22]. This is clearly not the case for the time-dependent
case where, as we saw above, G-flux components that are time-dependent (i.e g,
dependent) are allowed. This means for vanishing Euler characteristics, dynamical
M2-branes can be allowed too.

Introducing dynamics open up a new class of subtleties that we have hitherto
left unexplored. One of the first subtlety is that the world-volume metric is no
longer the 2 4 1 dimensional space-time metric. In fact (2)00 becomes:

Y0 = oo+ Y Gmn + U9 8as + 9 Bar (3.175)
= ()7 (v () 00 () +iiton ()
- <H g00+y Y Gmn o +yygozﬁ H _'_yygab H )

where the components are defined, for the case (2.2), using warped M-theory metric
and therefore involve g, dependent terms. The other components of the metric may
be taken to be the corresponding space-time metric if y = y™(¢). We can now
quantify what is meant by slowly moving membrane by specifying the behavior of
yM as:

M(x, g =3yl (%) ()m, (3.176)

kE*

near g, — 0 and yé‘,f) (x) could in principle depend on the world-volume spatial coor-
dinates, but here we will take it to be a constant as in (3.175). In this representation
of yM, slowly moving membrane means small £ at late times, i.e for g, << 1. In
the limit £ — 0, the membrane is truly static and when g, — 0, ¥ (x,0) — 0. This
is almost like the end point of an D3-D7 inflationary model [34] where, in IIB, a
D3-brane (T-dual of our M2-brane) dissolves in the D7-brane (T-dual of an orbifold
point in our eight-manifold). Additionally, the y* represent the eight scalar fields
on the world-volume of the M2-brane, and once we dualize them to type IIB, only
six scalar fields would remain. The Laplacian action on y* then yields:

Oy

QAQA Z k?g 2]{73 - (%)QAU‘?B‘H) M
| 900l 1+f, \H Yiks)

SAZA* Z kikoks (k1 + k2)go <&)2A(k1+k2+k3+1)
|Goo] (14 fo)?

7 Yy (3.177)
{ki}
where note that both the terms are suppressed by positive powers of %, gy is the
un-warped metric component, A = £ as chosen before and A is the cosmological
constant. We have also assumed no motion along the (a, b) directions and therefore
y™ above can either be y™ or y®. The remaining two factors, (f,, g,) are defined in

DFor the time-independent non-supersymmetric case, as we saw earlier, it is hard to establish an
EFT description in lower dimensions with de Sitter isometries. Thus it doesn’t make sense to talk
about it here and we shall ignore this case altogether.
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the following way:

_ B 9 ' & 2A(l€1+k2)
fo= fo(?/) = 4AA %go(/ﬁ, k27y>klk2 (H)

o = ok, ko) = g% (y?;l)y&z)gmn(y) + y?kl)y(ﬁb)gaﬁ(y)) ,  (3.178)

where the metric involved are all the un-warped ones. Note that, since f, is a series
in positive powers in g,, any series of the form (1 + f,)1% for arbitrary ¢ will only
contribute positive powers of % to the series (3.177). Thus the generic conclusion of
() being defined in terms of positive powers of %, remains unchanged. In fact
this also persists for the second term in the EOM (3.173). To see this, let us take
M = «ain (3.176) for the case (2.2). We get:

|g()()|

)QA(lcl-ch)
1+ fo

(&)2/3 o +4A°A Y kikoh§ (k1 ka; y) (g*

00 P Qra
Y(2)90 0 PQ i o i

, (3.179)

where [, is defined in (3.178); and I'¢, and I'f, are the Christoffel symbols defined

with respect to the warped and the un-warped metrics respectively. The other fac-
tors, namely A and A, appearing above have already been defined with (3.177).
Finally the factor h,(k1, k2; y) takes the following form:

g (K1, k23 Y) = Yy Yl o + y?kl)yz;w)rgy + Y0\ Yko) Lo (3.180)

where the Christoffel symbols are again defined with respect to the un-warped met-
rics. In this form (3.180) should be compared to g, in (3.178) which was defined
using un-warped metric components also. We can also replace a by m in (3.179),
but the form would remain unchanged. Therefore putting everything together, the
functional form for G ;; becomes:

3INMA/=Y@) | N gs\28(k1+k) 27 s\ 20K
Guroij = — Y DN L AAZA kkth<—s AN L 2k — TN (g
Mo lgool(L+ fo) | {kz} 12l H) 9 kZ3 3(2hs = DY) H)
it 8A2 kikoks (k1 + k2)go s\ 28 (k1 +katk3)
+|900|(1 + fo)g J Fiyj/ - 8T Z 1n2 51(—|—1f 2) yg\];) (E) s (3181)
{ki} °

where everything is defined with respect to the un-warped metric except /=72,

which in turn is defined using the warped 2 + 1 dimensional space-time metric,
implying that the overall g, scaling of (3.181) is (%5)_4. This negative g, scaling is
important because other than that every term in (3.181) scales as positive powers of
gs- Therefore with dynamical M2-branes, in the limit g, — 0, we can express Gy,

alternatively as the following series:
= (9 g, (o (k) gs\2Ah-2/8)
Goijar = (H) O (H4) + ;GOUM(@/, k) <H> : (3.182)
€3

which is somewhat similar to the expression for the other G-flux components in
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(3.11). Similarities aside, however, the differences between (3.182) and (3.11) are
important now. One of the main difference between these two expressions is that
in (3.11), k > 2 for (2.2) and k > § for (2.8). However for (3.182), k can be large
or small: smaller k& implies, according to (3.176), slowly moving M2-brane and for
k = 0 it is completely static. Another difference is that even if we impose a lower
bound on k, the k independent piece should always be there as one may infer from
the exact expression in (3.181). It should also be clear from (3.181), when k = 0,
(]é?; v (y,0) = 0. This is important, because it implies that no mater whether we
allow dynamical M2-branes or not, the domination of the k independent term in
(3.182) over all other terms for g, < 1 puts a strong confidence on our choice of the
G-flux components Gy;;,, and Gy, for both cases (2.2) and (2.8).

Fluxes, seven-branes and additional dynamics

The exact form of the G-flux components Gy, for M = (m, o) appearing in (3.181)
and (3.182); as well as our ansatze for the other G-flux components in (3.11) pretty
much summarize all the background fluxes that could be allowed in the set-up like
ours. However, as the patient reader might have noticed, we did not express the G-
flux components in terms of their three-form potentials except for the case studied
in (3.181). In particular the three crucial G-flux components, namely Gnab, Graab
and G4, NOW require some explanations. It is of course clear that we do not want
to express these three G-flux components in terms of the three-form potentials as
Crap would create metric cross-terms g3 in the type IIB side. This is not what we
need so G /nq can only appear as localized fluxes in M-theory. In other words:

Guna(Y1,y2) = Fun(y1) @ Qan(y2), (3.183)

where we have divided the internal eight-dimensional coordinates y as y = (y1,¥2),
with y; parametrizing the coordinates of the four-dimensional base and y, parametriz-
ing the coordinates of the remaining four-dimensional space. Such localized fluxes
lead to gauge fields — here we express them as F;y — on D7-branes. In other
words, the orbifold points in M-theory lead to seven-branes in the type IIB side
wrapping appropriate four-manifolds that we shall specify below. As alluded to
earlier, this set-up is then ripe for embedding the D3-D7 inflationary model [34].
The other factor in (3.183), namely 2,,(y2), is the localized normalizable two-form
near any of the orbifold singularities.

In the time-independent case, (3.183) is all that we need, but once time-dependences
are switched on new subtleties arise. For example, the G-flux components G y;nqp
have g, expansions as in (3.11). Question then is how are the g, expansions for
Fyn and Q,, defined here. To analyze this, let us first consider the G-flux compo-
nents G,,,q. The flux quantization condition is described in (3.138) on a four-cycle
Ef) =(Cy X %2, where C, is a two-cycle in M,. The gauge field F,,,, will then have to
be defined over this two-cycle, and we expect the corresponding D7-brane to wrap
the four-cycle M,.

Since all cycles in the internal eight-manifold is varying with respect to time, it
would make sense to endow time-dependences on both the gauge flux components
F,.. as well as the normalizable two-form €2,,. The LHS of (3.138) is where we



116 Chapter 3. Equation of motion, Flux quantization and constraints

introduce the split (3.183), and the RHS governs the quantization rule with seven-
forms, which in turn may be divided into two sub-forms. Such a split doesn’t have
any new physics other than what we discussed in (3.138), but a new subtlety arises
once we express the gauge field F,,, in terms of its potential A,, because of it’s
dependence on g, as well as on (y™,y“). Similar subtlety will arise for the gauge
potential A,. Both these potentials will switch on:

O0A,,
09

0A,
09

DA (Y™, Yy, gs) = H\/K< ) o O0AL(Y™ Y, gs) = Hx/K( ) , (3.184)

in addition to the existing field strengths. Clearly such components do not arise in
the time-independent case and the split (3.183) is all there is to it. The flux quantiza-
tion conditions (3.141) and (3.143) tell us that the gauge field strengths F 3 = 0;, A g
and F,,, = 0;,A, will have proper quantization schemes when defined over the
two-cycles M, and S{, x S, respectively where S/,) € M, and S,) € M,. Both
these one-cycles are allowed because neither M,, nor M, are Calabi-Yau mani-
folds for the case (2.2). For the case (2.8), Table 3.2 will tell us that the latter is not
well-defined. However now we need to deal with new components arising from
temporal derivatives, that translate into g derivatives, here. A way out this is to
switch on electric potential Ay(y™, y%, gs) satisfying:

oAy = HVA (852’”) . 0.Ay = HVA (%‘2“) , (3.185)

which in turn will make Fy,, = Fy, = 0 and would not contribute to the energy-
momentum tensors or the quantum terms (2.78) and (2.94). This could be gen-
eralized to the non-abelian case also but since we are only dealing with a single
D7-brane, (3.185) suffices. However the dependence of A, on g, also switches on
%;‘;‘f, but this again does not contribute to the energy-momentum tensors or to the
quantum terms (2.78) and (2.94).

Interestingly, if we view all the G-flux components as localized fluxes of the form
(3.183), then we are in principle dealing with only three gauge field components
F,.n, Fno and F,g on D7-branes that are oriented along various directions in the
internal space (they all do share the same 3+ 1 dimensional space-time directions in
the type IIB side). This is an interesting scenario with only seven-brane gauge fluxes
and no H; and F; three-form fluxes as these would require global Gnpa, Grnaa
and G,,05, G-flux components. Such global G-flux components would in turn give
rise to components Gonp, Gomna and Gomas, Which are not what we want here.
Question then is whether it is possible to retain global and local G-flux components
without encountering the issues mentioned above.

It appears that there indeed exists a possible way out of this conundrum if we
consider the modified Bianchi identity (3.133), i.e the Bianchi identity with the full
quantum corrections, carefully. In the absence of M5-branes, i.e when N = 0 in
(3.133), we can rewrite (3.133) as:

d (G4 — %24 + 34y 27) =0, (3.186)
1 C

1
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where ¢; are constants, and Z and Z, are defined in (2.140) and (2.141) respectively.
Both of these have g, dependences and in fact Z; features prominently in the flux
quantization process as discussed earlier. The above equation allows us to intro-
duce an exact form dCj3, and so we can re-write (3.186) as:

Gy =dCs + 27, — & %, Zs, (3.187)
1 €1

where all quantities are functions of g, as well as of (y™, y*). The C3 could be un-
derstood as the potential, but G, is not just dC3 because of the conpiracies of the
quantum terms. Note that nothing actually depends explicitly on C; (all quantum
terms and the energy-momentum tensors, as well as the flux quantization rules
and anomaly cancellation conditions, are expressed using G,), so we have some
freedom in the choice of C3;. We can use this freedom to set:

Gomne = 9pCunp) + 0_2(24)0MNP - (*11Z7) gpinp = 0, (3.188)
1

C C3
1

which amounts to putting F,; = 0 for the case G/ya, S0 they are still localized
fluxes as (3.183), but the difference is now that we won’t need to switch on an elec-
tric flux Ay on the world-volume of the D7-branes?!. For the other G-flux com-
ponents, we can now allow global fluxes so type IIB theory can have H; and F3
three-form fluxes. However as discussed in (3.152) the corresponding G-flux com-
ponents G sy p, do not have proper quantization schemes because of the absence of
global four-cycles in the M-theory side. However in IIB global three-cycles do exist
so these fluxes could be properly quantized in the IIB side. The quantization rule
will however follow similar trend as in (3.152).

3.1.3 Stability, swampland criteria and the energy conditions

In the following we will provide possible answers to these questions. Firstly, how
stable is our background? How do we overcome the swampland criteria? How can
we satisfy the null-energy condition, the strong-energy condition and possibly the
dominant-energy condition?

Stability of our background and quantum corrections

One of the important question now is the question of stability of our solution. Be-
fore going into this, let us answer a related question on what it means to introduce
the series of quantum corrections to solve the EOMs. In other words, how do we
interpret the quantum corrections here?

To answer this, let us look at the metric components in the (m,n) i.e M, direc-
tion. The EOM for g,,, is given by (3.15). The LHS of this equation has the Einstein
tensor parts and the RHS is the sources, including the quantum terms. The quantum

Zn other words we can keep Coyny = 0 without loss of generalities. Switching on Coyn will
be equivalent to switching on electric flux Ay on the D7-branes. Here the quantum terms help us
cancel the 0yCrn p piece without invoking, for example, pieces like OpCoarn in (3.188). This is the
leverage we get using the quantum terms in (3.188).
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terms, i.e C,@L;? ), are classified by 6, = 2/3 in (2.97), and they can at best renormal-
ize the existing classical pieces as ¢, = 2/3 does not allow higher powers of G-flux
or curvature components. Thus the RHS of (3.15) is almost classical, and therefore
knowing the G-flux components gﬁjﬁ%, gﬁj’@
(3.15) in terms of the known quantities.
Going to the next order should switch on the quantum terms. How are they
interpreted here? The G-flux components that we gather at the zeroth order in g,

and the metric g,,, that comes out of our zeroth order computation®, now serve

and QSB/;)) we can express the RHS of

as the input for the next order, i.e ga’® , equations. What they do here is rather in-
structive. The next order equation is (3.19). The LHS of the equation is the g,,, that
we computed using all the zeroth order equations. The RHS is however made of
CO as well as new G-flux components like gfj;ab, g (ﬂab and Qfﬁ)ab

quantum terms m
generated at this level, including the higher order C} and 5’k factors from the F;(t)
functions. The quantum terms are now classified by ¢, = 1 and appear as (3.21),
thus clearly allowing at least to third order G-flux terms. All these new components
and the quantum terms, with the background data at the zeroth order, balance each
other in a precise way so as to preserve the zeroth order metric component g,,y,.
This is the meaning of (3.19).

The quantum terms are therefore computed on the zeroth order background,
with additional new data from fluxes and the (CY, (7;9 coefficients, to balance each

other without changing the zeroth order metric and fluxes. Going to next order, i.e
g2"* the equation is given by (3.24). We see that the story is repeated in exactly the
same fashion: the g2/* order switches on new quantum terms, i.e CA classified by

(3.27); new G-flux components and higher order (Cy, 5’k) coefficients; but they do
not de stabilize the existing zeroth order metric g,,, and the G-fluxes. The RHS of

(3.24) is precisely the statement of balance: at the gg /* order the quantum terms use
the data at the zeroth and next (i.e g» / %) order including new G-flux components like
G2 GB/2) and Qa‘r’ﬁ/jb to balance each other in such a way that LHS of (3.24) still

mnab’ Ymaab &
remains g,,,.-
The story repeats in the same fashion as we go to higher powers of gi’®. The

quantum terms are computed using the data generated at all lowers orders, in-
cluding new G-flux components at this order along with the higher order (Cy, Cy)
coefficients. All these balance each other so as to keep the zeroth order data, that
include metric g,,,, and G-flux components, unchanged. This delicate balancing act
is responsible for keeping our background safe and stable.

Going to the («, 8) directions, the zeroth order in g, reproduces the un-warped
metric information g,3, once we have the full data on the G-flux components like

g;’g/ azb) N 3/2) and G'*2) which are of course the same as before (see (3.42)). On this

amab mnab’
background we now compute the quantum terms C(l/ 29 (lassified by g, = 1lin
(2)

maab

(2 97) The balancing act starts again: new G-flux components like Qmmb, g and

Qa sap that are required to this order in g, are added, to be pitted against the quantum

2The zeroth order actually mixes g,n, gas as well as g, together, so untangling them would
require us to use all the zeroth order equations. We will avoid this subtlety for the sake of the
present argument, but will become clearer as we go along.
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terms and the F;(t) coefficients, such that the metric g,3 doesn’t change in (3.43).

Going to order gg /3 similar argument holds as seen from (3.45).
For the (a, b) directions, there are no zeroth order contributions. The first non-
trivial order is g2, and to this order the metric is flat i.e d,, from (3.59). This flat

metric persists to all higher orders in g, as may be seen in (3.60) for gz/ ®and (3.61)

for g¥'* where for both cases the quantum terms computed from the lower order
data plus new G-flux components to that order, balance against the fluxes and the
(Ck, ék) coefficients.

The story takes an interesting turn once we look at the space-time directions.
The zeroth order in g, produces the space-time metric with full de Sitter isometries.
The EOM is given by (3.77), and one may note that although the flux components
appear as before, the quantum terms are now classified by ¢, = 8/3 in (2.97) as
shown in (3.78). Such an equation has the following important implications. For
n; = l34; = 01in (3.78), the [; can at best be bounded as I; < 4. Since [; fori =1, .., 27
capture the curvature polynomials in (2.94), this implies that at the classical level,
the space-time EOM should have the fourth-order curvature terms! Not only that,
(3.78) predicts that at the classical level all possible eighth-order?® polynomials with
curvature, G-flux components (classified by l34;;) and derivatives (classified by n;)
are necessary. It was known for sometime in the literature that classically the fourth-
order curvature polynomials (or eighth-order in derivatives) like:

JO = t8t8R4, Eg = 611611R4, (3189)

should play a part, and now we not only can confirm this statement but also show
that all eighth-order polynomials classified by (3.78) should play a part at the classi-
cal level. Of course the exact coefficients of these polynomials cannot be predicted
from (2.94) or (3.78), but the fact that this comes out naturally from our analysis
should suggest that we are on the right track.

A similar pattern follows for the quantum terms as before. To order g+ the
quantum terms, classified by 6, = 3 in (2.97), balance each other as (3.79) in such a
way that the four-dimensional de Sitter metric do not change. To next order in g;,
ie gg / ® the quantum terms, now classified by 6. = 10/3, balance against the (C, ék)
coefficients as in (3.80) in a way as to again keep the zeroth order de Sitter metric
invariant. The story progresses in the same way as we go to higher orders in g;.

From the above discussions we can now summarize our view of stability here.
The classical EOMs, or the EOMs to the lowest order in g, (which for most cases
are to zeroth order in g, with the exception of one where the lowest order is ¢?), for
all the components are (3.15), (3.42), (3.59) and (3.77). They involve the so-called
quantum terms that, for all cases except the space-time ones, renormalize only the
existing classical data. The space-time part contributes eight-order (in derivatives)
polynomials. Together with the G-flux components they determine the type 1IB
metric with four-dimensional de Sitter space-time and the un-warped internal six-
dimensional non-K&hler metric. The quantum effects on this background, to order-

by-order in powers of g+’ are balanced against the G-flux components and the
coefficients (Cy, Cy) coefficients, again to order by order in powers of g: % ina way

2Tn derivatives.
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so as to preserve the form of the dual type IIB metric to the lowest order in g,. This
is one important criteria of stability here.

Finally we turn our attention to the possible presence of tachyonic modes around
our de Sitter background. This is an important question to determine the relation-
ship between our background and the swampland criteria. The presence of tachy-
onic modes of sufficiently negative mass would be in agreement with the Hessian
de Sitter criterion, while the absence of such would call for a re-examination of the
criterion in the context of time-dependent backgrounds.

To determine the presence of tachyons we need to perturb our metric ansatze
(2.3) (and also the fluxes) and expand the quantum effective action to second order
in the perturbations. Of course, the deciding factor is the sign of the various terms.
Since we do not know the coefficients of all the quantum corrections, we can not
hope to be completely sure of the absence of tachyonic modes using our approach.
We do however have some information about the relative signs of some terms, from
the requirement of positive four-dimensional curvature, so there may still be a con-
sistency check available. The constraints on the curvature only manifest themselves
in the metric equation of motion so we choose the following perturbations:

Sgun(a,y) = oM () g (), (3.190)

where z is the coordinate along the 2 + 1 dimensional space-time directions and y is
the internal space coordinates. For the internal components of the metric, ¢ ()
are simply the scalars one obtains from dimensional reduction. For the space-time
components these amount to the scalar modes of metric perturbations. The upside
to using perturbations proportional to the “background” values of the fields is that
the expansion of the quantum potential to second order in the perturbation is the
same as calculating the second order variation of the quantum terms with respect
to the original fields. The extra  dependence can generate new contributions to the
action, if derivatives along the space-time directions act on it. However this will
not result in potential terms, but rather will contribute to the kinetic and higher-
derivative terms for the scalar, which will have no bearing on the tachyon question.
The downside of this choice of fluctuation is that it ignores the fields which are set to
zero**. Since terms involving these fields don’t appear in our background quantum
potential, their sign will not be constrained by the curvature conditions anyway.
Other subtleties aside, the first variation of the action with respect to the metric is
simply given by the equations of motion:

OS11
SgMN

1
- / Ao/ =g (R%)V — 5RMgay — Ty — T§1N> ., (3.191)

where the metric components are all taken as the warped ones and the energy-
momentum tensors, especially the quantum energy momentum tensor, take the

2‘We have assumed earlier that we have integrated such components out and that the effects of
their fluctuations have thus already been incorporated into the quantum potential. This is strictly
speaking only possible if their masses are above the scale at which we are studying the theory.
Otherwise there are IR modes left over. Note that in either case, these modes are certainly not
tachyonic in the ground state of our EFT, so the implicit hope here is simply that they also do not
become tachyonic as we move to the coherent de Sitter state.
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form that we have used so far. For example the latter would appear from (2.94),
say if we consider only the case (2.2). In other words, we can use (2.94) to express
the quantum energy-momentum tensor in the following way:

1 SL@)
T?JN _ —gMNE(Q) _ 5_gMN, (3.192)

2
where £(@ is the the sum of quantum terms in the action (i.e. without Lorenz in-
dices). This is pretty much equivalent to (2.81), with the quantum pieces expressed
together as (2.91). Alternatively, we could also express it more directly as (3.1). With
these at hand, the second variation takes the form:

0811 11 5R§\21]\)/' 1 (11) 11 5']I‘J\G4N
W = '/d IC\/% (5gPQ -3 (RPQ gMN — R! )gM(PgQ)N) - (Sgin (3.193)
1 1 s£(Q) §52,@)
Q 11
+ 5'/”‘( ‘gurgaN - 2 BMN5oPQ * 5gPQsgMN +/d 2v/~g11 8ro(EOM)nx.

Stable solutions to the equations of motion are local maxima of the action, so com-
plete stability would require that the above expression is negative.

Note that the first variation of £(@) is still present in the expression, and can be
re-expressed in terms of the quantum stress tensor T, , as in (3.1), which contains
the quantum corrections (CE\I?N’O) that appear in the lowest order equations of mo-
tion. From here, one approach could be to make a connection with the positivity
of the cosmological constant by, for example, taking the same linear combination of
diagonal components as was used to obtain (3.116). However, there are still terms
involving £ and more importantly its second variation, which does not appear in
the equations of motion. These terms have signs that are not fixed by the trace of
the metric equations of motion alone as they depend on all the components and
fluxes. This means they would need to be determined by solving for all the metric
and flux components.

At this stage we could make some general observations. If we restrict the metric
variations to be along the six-dimensional base M, x My, and only consider the
case (2.2), the second variation of £(?) contains quantum terms classified by 6, — 3.
This implies that to zeroth order in g,, which we used to determine the EOMs, the
contributions from the second variation of £(%) come from the quantum terms?®
classified by 6;, = % in (2.97). In a similar vein, if one of the metric variation is
along T?/G and the other along the six-dimensional base, or if both the variations
are along T?/G, then the second variations of £(?) come from the quantum terms
classified by ), + 2 or 6, + 3 respectively. Clearly, none of them can contribute to
the zeroth order in g,. On the other hand, if both the metric variations are along
the 2 4+ 1 dimensional space-time directions, the quantum terms contributing to the
second variation of £(?) are classified by 0} = % in (2.97). In this way, one could

go about finding other combinations, but the message should be clear. If all these

BIn other words, the first variations of the action i.e the EOMs, provide the background values
of metric and G-flux components. These values enter inside the quantum terms classified by ¢, in
(2.97) appearing from the second variations of the action.
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contributions are such that they make the RHS of (3.193) negative definite, then
there would be no tachyonic instability in our background.

Let us compare this to the first variation of £(@ contributing to the cosmological
constant A in (3.116). The internal space quantum terms are classified by ¢}, = 2

in (2.97) whereas the 2 + 1 dimensional space-time quantum terms are classified by
0, = 5. Since the internal space quantum terms simply renormalize the existing
classical terms, the burden of getting positive cosmological constant rests solely on
the space-time quantum terms classified by 6, = 5. We want them to give positive
contributions, so that the relative minus sign in (3.116) can make A > 0. Here,
in (3.193), we want the opposite (assuming the contributions from the other terms
are negligible). It is easy to see that, compared to the case (3.116), there are now
quantum terms classified by 3 < 0} < ¥ in (2.97), so we are no longer restricted
only with the quantum terms classified by 6, = £. We now require these terms to
make the RHS of (3.193) negative definite to avoid the tachyonic instability.

There are also second variations of the action with respect to the C;np fields, i.e
JCM‘;%, that also need to be considered. Most of the three-form potentials scale
in an identical way, so we expect the quantum terms contributing at the zeroth or-
der being classified by 6, = 4Ak in (2.97) with k > 2 for the case (2.2). We have put
to zero components like Cy,,y using (3.188), and in fact the quantum term Z- has
enough degrees of freedom to keep these modes from contributing to the tachyonic
instability. The space-time potentials Cy;; would contribute quantum terms clas-
sified by 6;, + 8, so they don’t change the zeroth order equations. However now
there also be mixed variations like wﬂfv%, and depending on the choice of £ and
the orientations of the metric components, some of them would contribute to the
zeroth order EOMs. Fortunately the quantum terms contributing to this order, or
in general any orders, are finite in number so it is not a very difficult exercise to
list all these terms appearing from the second variations of (2.94), and see how the
tachyonic instability, if any, could be removed. Similar arguments can be given for

the case (2.8) but we will not pursue this here.

Stability, landscape and the swampland criteria

So far we have summarized how the quantum corrections do not destabilize the

background, and instead tend to stabilize it at every order in gs’®. Next we see
how the stability extends to keeping the background in the landscape and out of the
swampland. That is, we want to see how the swampland criteria are averted by the
the time-dependences of the fluxes and the metric components and by our choice
of the quantum potential.

The quantum potential, given in (2.81), basically incorporates the information
of either (2.78) and (2.94) for the two cases (2.8) and (2.2) respectively. However
it is important to note that the cosmological constant A appears almost exclusively
from the g, independent, or time independent, parts of the potential (i.e most of the
contribution to A appears from the g, independent parts of V, in (2.81)), and it goes
without saying that it is truly a constant®®. The exact form may be expressed as:

26In other words, and taking into account the time-independent Newton’s constant from (2.2), the
late-time cosmology will always be de Sitter in our set-up and never quintessence.
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A = 121‘/6 <[(C§](0,0)> _ 24V16H4 <[(CZ](3,O)> _ 481/%;H4 <[Cm(0,0)> . 48‘/17 <[<cg]<"*°>>
B gzﬁ - 38456 J7E [<gw§’,ﬁlg<3/ z)m”ab> + <Qf§£?bg(3/ 2)m““b> + <g§’ﬁ/jgg(3/2)a5ab§>3}194)

which may be easily inferred from (3.116), and we have taken, just for simplicity,
a very slowly varying function for H. Thus H is essentially a constant and can
come out of the integrals in (3.116). Vs is the volume of the six-dimensional base
M,y x My, ie the volume measured using un-warped metric components. The
other expectation values are defined in the standard way — we take the functions
and integrate over the volume element — namely:

([ehne”) = / dy/GsICHI Y, (R g@/PMNer) = / dOyy/Gs G2, GIB/MNaL | (3.195)

where g; is the determinant of the un-warped metric of the six-dimensional base,
(M, N) denote the coordinates of the base and the superscript a = 0, 3 depending
on which quantum corrections we choose. In fact as discussed earlier, the most
dominant quantum terms are the ones classified by ¢, = £ or 6, = £ in (2.97) and

(2.86) respectively. These are the quantum terms [Cﬁ](o’o), and all other quantum
terms simply renormalize the existing classical data. Since the fluxes are taken to
be small everywhere and n; is small”, the cosmological constant A can be made
positive here, i.e A > 0. The overall volume suppression in (3.194) tells us that
for large enough V4, A could indeed be a tiny but a non-zero positive number. The
crucial observation however is that the other parts of V, in (2.81) are used to stabilize
the classical background in a way discussed earlier, but they do not contribute to
the cosmological constant here!

One may also ask how the swampland criteria are taken care of here. The fact
that new degrees of freedom do not appear when we switch on time-dependences
is easy to infer by looking at the g, scalings 6, and 6;, in (2.86) and (2.97) respectively.
Putting £ = 0 is equivalent to switching-off the time-dependences, and we get 0,
as in (2.98) which in-turn is defined with relative minus signs. Existence of such
relative minus signs lead to an infinite number of states satisfying (2.99) for any
given value of ), in (2.99). This proliferation of states is one sign of the breakdown of
an EFT description, and therefore the theory is indeed in the swampland. Switching
on time-dependences miraculously cure this problem as both ¢, > 0 and ¢;, > 0 for
the cases (2.8) and (2.2) respectively.

The above reasonings do provide a way to overcome the swampland distance
criterion, namely, switching on time-dependences allows us to avoid inserting ar-
bitrary number of degrees of freedom at any given point in the moduli space of
the theory. The question now is how the original swampland criterion [6], namely,
0sV > ¢V is taken care of with ¢ = O(1) number. To see this, let us consider the
quantum terms (2.94) for the case (2.2) (similar argument may be given for (2.78) for
the case (2.8)). The potential associated to this is (2.81), and we can get scalars from

ZNote that it doesn’t matter whether we take M2 or anti-M2 branes in (3.194). The sign of the
cosmological constant A cannot be changed from either of them — a fact reminiscent of the no-go
condition of [12, 13].
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the G-flux components as well as from the internal metric components. First let us
take a simple example where the scalar fields appear from the G-flux components
in the following way:

Cs(z,y) = +Z¢ +ZA(J ) A Q) (y +ZB” (y)
Gu(z,y) = (Gi(v)) +Z¢(l)x +Zd¢ ) A QG (y +ZF (y)

- Z AP (z) A dQ )+ Z B{ (z) A dQ ) + Z H) Qg?), (3.196)

where QEQ) are the k-forms defined over the internal manifold (we can restrict them
to the six-dimensional base M4 x M, with (7, j) representing the number of inde-
pendent forms), and are not necessarily harmonic functions as the underlying back-
ground is non-supersymmetric and the six-dimensional base is non-Kéhler. This

also explains why we can allow one-forms like QE?). The two-forms Qg; should not
be confused with the localized two-form Q,, in (3.183). Additionally, (3.183) is the
decomposition of the background data itself, whereas (3.196) is the decomposition
of the fluctuations over our background (2.3)*®. We are also suppressing the g, de-
pendences, and therefore both the k-forms and the 2 + 1 dimensional space-time
fields have g, dependences. In general, for a manifold whose geometry is varying
with time, we expect:

2A(l1+12)
/dQ ) Axe d0) Z/dQ A g AL (H> (3.197)
)

over the six-dimensional base M, x M5 with the Hodge star defined over this base.
Here [; denotes the mode expansion that we have used so far. In the standard time-
independent supersymmetric case this would have vanished, but now we see ex-
plicit g, dependences complicating our analysis. Finally, the expectation values in
(3.196) refer to the background values of the three- and the four-forms that we took
earlier to solve the background EOMs (and thus they are functions of y*'). We have
also given a small = dependences to the fluctuations of the three- and the four-forms,
and for computational efficiency, let us assume that we take the G-flux component
G npg- For simplicity then, i = 1 in (3.196) with Agj ) () = Bg) (z) = 0. Plugging
(3.196) into (2.94), we get the following form of the potential:

Vo(a) =) ¢ (2)V (2(2)), (3.198)

log

where ®(x) are the set of all other scalars in the system, and l»g is a positive integer
that appears in (2.94). For our discussions we will take log > 1, and from the form of
the G-flux components (3.11) it is clear that both ¢(z) as well as §3)(y) should have

28We expect H{) = 0 because it has no dynamics in 2 + 1 dimensions.
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gs dependences, confirming the g, dependence in (3.197). We can then assume:
o) = ¢ =) ¢M(x) (%w (3.199)
- l H Y .

where [ has to be bounded below because the k in G-flux components (3.11) are
bounded below as k& > % or k > % for (2.2) and (2.8) respectively. The swampland
criterion then gives us:

2A (k1 +..k
05V Dy las Doggy $gltie) (£) S = (i) >> 1, (3.200)
VQ z{r,qi} ¢(1vr)¢(17ql) ''''' ¢(1,q128) (gﬁS)QA(T“HZl-i‘...QZQS) gr , (0.
where n = O(2Ar) € Z and g, < 1. The above computation could be easily general-
ized to all scalar fields coming from the G-flux components in say (2.94), provided
of course the decomposition (3.196) is respected. For example taking all the compo-
nents of ¢(¥) in (3.196), we get:

606D Y VoV dim (M)
VVq \/9 ¢ Y QUM Y Q 1

= =0 > —=|>>1 (3.201)
Va Va k=1 s

where g% is the metric on the moduli space M, of all the scalars represented by
#® which, in turn, could be decomposed as (3.199). The subscript k in n;, is summed
from 1 to dim (M), i.e dimension of the moduli space of the scalars. None of the
scalars appearing from the G-fluxes are related to the inflaton, so the RHS being
much bigger than identity is not unreasonable. Under these circumstances, clearly
the swampland bound of [6] is easily satisfied.

On the other hand, the scalars coming from the metric components could in
principle also be analyzed in a similar vein as (3.201), but the analysis is complicated
by the fact that the potentials for these scalars are not as simple as for the scalars
from the G-flux components. In any case, the obvious redundancy in indulging in
such exercise should already be apparent from our earlier demonstration of the ex-
istence of four-dimensional EFT descriptions with de Sitter isometries. Since these
conclusions are derived from meticulously studying the g, scalings of the quantum
terms, the swampland criteria are taken care of here, and these theories belong to
the landscape of IIB vacua.

It is more relevant to consider how the energy conditions can be taken care of
here, because it brings us to the very foundation on which the no-go criteria of
[12,13] are based. To proceed then we will make the assumption of a slowly varying
warp-factor H(y) so that the derivatives of the warp-factor do not un-necessarily
complicate the ensuing analysis®. To zeroth order in g, the trace of the energy-
momentum tensor is defined as:

]G

T = [T¥]® + [T3]°, (3.202)

PIn other words, the derivatives of the warp-factor H(y) will add irrelevant functions to the traces
that we perform below. We can absorb these functions in the quantum terms.
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where the superscript G and () correspond to the G-flux and the quantum energy-
momentum tensors respectively. The traces of the individual pieces are taken with
respect to the un-warped internal metric components. Restricting (3.202) to the
(m,n), (o, B) and (a, b) directions, yield the following traces:

Ta — [(Ca] (0,0) + T (g(()%/j})g(ﬁiﬂ)aﬁab . grsr/jg)g 3/2) mnab) (3203)
1
T% = [Cz](O,O) . i (grjéi)bg(d/2 )ymaab gg;/;bg(d/Q a,Bab)
1
[Ca] (3,0) 8H4 ( gﬂi/yibg(3/2)mocab + gni)T/Li)bg(?)/Q)mnab + g{j/jbg 3/2)()¢Bab>7

where the individual energy-momentum tensors are defined in subsections 3.1.1,
3.1.1 and 3.1.1 respectively for the case (2.2). A similar construction could be done
for the case (2.8) too but we will not pursue this here. Note that, as an interesting
fact, if we sum up all the three traces in (3.203), we will get:

T + Ta + Ta = [CR] Y + (€3]0 + €57, (3.204)

with no contributions from the G-flux components. Thus the total trace of the
energy-momentum tensor in the internal space is only given by the quantum terms.
These quantum terms are classified by 0}, = %, so they are in turn related to the G-
flux components as in (3.114), and therefore only renormalizes the existing classical
data. On the other hand, the trace along the 2 + 1 dimensional space-time direction
yields:

Ti = [C]©9 — A, T9 = [c9]” — A (3.205)
262 Tomy

H® /g6

where by construction A! > 0 and AJ > 0; and both the quantum terms are classi-
fied by 6, = £ in (2.97). They therefore involve eight-derivative terms as we saw in
subsection 3. 1 1 for the case (2.2). What we now need is:

Al = AJ = By—-Y)+

gy(jy/é)bg(i%/?)mnab + 2g(3/2) g(3/2)maab + g((fﬂ/jb)g(?)/Q)aBab>,

maab

8H8<

T, + Ty > T2+ TS +T¢
€00 + [C§] Y — Al - A > [Cp 0 + (€] + [Ca)®” . (3206)

which would be the null energy condition. Consistent with the no-go conditions of
[12, 13] and [14] when the quantum terms vanish, the inequality (3.206) cannot be
satisfied, . However once we allow the quantum terms, and the very fact that the
[CK]©0) terms are classified by higher order polynomials of curvatures and fluxes,
the inequality (3.206) can in principle be satisfied. To see this, let us recall that the
), = % in (2.97) for the internal quantum terms allow us to choose (Is, l37, l35) as
(2,0,0), (0, 2,0)or (0, 0, 2) in (2.94), implying at most quadratic in these G-flux
components. Additionally, the internal quantum terms, to zeroth order in g, are
constrained as (3.114). Combining these two, one possible solution could be that
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the internal quantum terms cancel the A/ terms in (3.206). This could happen for:

1
[CZ](&O) N (gr(jéig) (3/2)mnab QQSé(QlZ) (3/2)maab gé?)ﬁ/;b)g(ii/Q)aﬁab) (3207)
1
[(C%](0,0) [Cg](0,0) SViE (gﬁéiég@/mmnab zggéi)bg(B/Q)maab gé%/fb)g(?)/Q)aﬁab)’

which still leaves enough freedom to determine (€79 and [C2) ) individually.
The viability of the choice (3.207) is guaranteed from the analysis of the EOMs in
subsections 3.1.1, 3.1.1 and 3.1.1, where the input (3.207) could determine what kind
of internal non-Kdhler manifold we get. Note however that, in determining (3.207),
we have ignored the M2-brane contribution. Since n;, # 0 from (3.166), this can be
justified from the fact that for y* # Y™ the M2-brane contributions vanish in Ar
from (3.205). Therefore combining (3.207) with (3.206), we see that as long as:

(€09 + [ > o. 3209

the null energy condition may be easily satisfied. Since, and as mentioned repeat-
edly earlier, the [C%](®) are classified by eight derivative polynomials in G-flux and
curvature tensors, (3.208) can be satisfied for our background, giving us a precise
procedure to satisfy the null energy condition. Under special choices of the higher
order polynomials, we can even ask for stronger conditions like (see also [30]):

T:+ Ty > 0 and/or T§ > 0, (3.209)

leading to the strong and the dominant energy conditions respectively. Of course
all our discussions have been on the M-theory side, but we could also construct
similar criteria in the dual IIB side also as all M-theory ingredients have the corre-
sponding IIB dual in our framework. Note that going beyond zeroth order in g, is
not very meaningful here, at least in demonstrating the null, strong or dominant en-
ergy conditions, because the Ricci curvature terms in the Einstein tensors (3.71) and
(3.72) only appear to the lowest order in g;. Once we go to higher orders in g;, the
quantum terms, including higher order G-flux and metric terms, simply stabilize
the zeroth order classical background in the way discussed in subsection 3.1.3.

The consistent picture evolving from our analysis points to the fact that four-
dimensional de Sitter vacua should be in the IIB string landscape and not in the
swampland. The swampland criteria were developed, using the data of time-independent
backgrounds, to tackle backgrounds that only made sense with inherent time de-
pendences. As we have showed this cannot work. The unsuitability of such an
approach is probably one of the main reasons of its failure to predict backgrounds
with positive cosmological constants.
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Chapter 4

Discussion and conclusions

The time independent ansatz discussed in [14] was the following.

1
§* = A(t)\/ﬁ(_dt2 + dx? + das + dx3) + VhGmndy™dy" 4.1)

In previous studies with time-independent warped product compactification of
type IIB strings, it was found that in the presence of fluxes, D (anti) branes and/or
Op (anti) planes, classical two derivative gravity is not adequate to give four di-
mensional de Sitter; i.e. Maldacena-Nunez condition is not satisfied . We must look
for quantum corrections via higher-derivative gravity terms arising in string theory
in order to get De-Sitter solution in four dimensions. But in this setup quantum cor-
rection actually do not help us to get a De-Sitter. Because as discussed in [15] a IIB
background with de Sitter isometries in four dimensions and time-independent in-
ternal space of the form above together with time-independent background fluxes
cannot be a solution to the string equation of motion irrespective of how much quan-
tum corrections are added. In fact the g, scalings of the quantum terms, i.e. equation
(2.98), show that when we are taking time independent compactification we need
to take into account an infinite number of quantum terms for any given order in
gs. This results in the breakdown of effective field theory description and thus they
truly belong to the swampland [6] as discussed in [14, 15, 17].

Once time-dependences are allowed in flux components and internal space, our
results change significantly. Depending on the choice of ansatz we can make the
four-dimensional Newton’s constant time independent, or otherwise. Sections 2.1
and 3.1 contain the main results of the thesis where we present our approach to a
time-dependent compactification (2.1), i.e a background where there are de Sitter
isometries in four dimensions and the compact internal six-dimensional space has
time dependent warp-factors (in the flat slicing of De Sitter we choose —oco < t < 0).
The simplest example can be the choice of our ansatz (2.8). In this case a IIB back-
ground of the form (2.1) when uplifted as (2.3) to M-theory in presence of time
dependent G-flux components allows to have an EFT description. But the resulting
theory has time dependent Newton’s constant in four dimensions. This model has
a valid EFT description which is evident from the g, scalings (2.86) of the quantum
contributions (2.78). The time dependence only allows a finite number of quantum
terms at any given order in g;. Beside the G-fluxes we can use metric and curvature
components (properly contracted) to make quantum terms. We first analysed the
curvature terms by themselves and tried to figure out whether polynomial powers
of the curvature terms can induce hierarchies to the two cases (2.2) and (2.8). The
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gs scaling of the various curvature tensors associated with time dependent internal
manifold are shown in Table 2.1. Although time dependent Newton’s constant is
something not desirable to us for the present purpose, there also appears to be a late
time singularity, that prohibits such a configuration to be a viable model of late-time
cosmology.

It is to be noted that the quantum corrections are computed near weak flux back-
grounds, so any generic quantum term could be expressed simply as a polynomial
functions of our four index flux components. Also the background fluxes are also
taken time-dependent in such a way so that type IIB coupling constant remain time-
independent. This is very significant step in order to make sense of any computa-
tions that we performed in our study. The quantum terms must be contracted ap-
propriately with warped inverse metric components in M-theory. We have studied
such generic polynomial functions made out of the G-flux components subsection
2.1.2. But there is now a significant change which is the type IIA coupling g, now
becomes a function of time. So we can identify the temporal dependences with
gs dependences. Therefore way we can simply evaluate for g, dependences of the
quantum terms to find out the time dependency of each quantum term.

We have also discussed regarding the quantum terms which are topological in na-
ture in subsection 2.1.2. Just like before these quantum terms are constructed out of
curvature forms and different G-flux components. But we can also build up some
of the non-topological interactions out of them just using Hodge star operations on
them. Similarly we can also construct dual forms and therefore also the correspond-
ing quantum terms from them. The quantum terms associated with these dual
forms, namely (2.140), and their g, scalings, appear in Table 2.2. We have also calcu-
lated the g, scalings of the quantum terms with dual variables. To our surprise we
have found that they are exactly the same as that of before (2.94). After classifying g,
dependency of all sort of quantum terms we further go to the detailed study of the
equations of motions (EOMs) in section 3.1. We calculate equation of motion in sub-
section 3.1.1 by incorporating the energy-momentum tensors. The energy momen-
tum tensors take contributions from the G-fluxes and the quantum terms whose g;
dependencies are already known. The internal eight-dimensional manifold is of the
form (2.4) with M, parametrized by coordinates (m, n); M, parametrized by (a, )
and %2 parametrized by (a,b). We can easily go from M theory to type IIB just by
shrinking the (a, b) torus to zero size. A point to note is that this can also be achieved
by taking late time limit (¢ — 0) to our M-theory background.

In the next case, we take an ansatz eq. (2.2) which results in a time independent
Newton’s constant in four dimensions despite the internal manifold as well as the
fluxes being time dependent. When this ansatz is uplifted to M-theory, we find
that it admits an EFT description. This can be easily evident from the g, scalings
(2.97) of the relevant quantum contributions (2.94). And the disappearance of late
time singularity in this background makes it preferable. Also as this background
successfully overcomes both the no-go and the swampland criteria, this ansatz is
the desired late-time cosmological model in the landscape of string vacua. There-
fore we can see how time-dependences of internal manifold and flux components
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are essential to generate a four-dimensional space-time with de Sitter isometries
in the IIB landscape which also has an EFT description. As we recall from the
previous studies[14] Minkowski or AdS space can be constructed classically, but
de Sitter space requires quantum contributions. So both the quantum terms and
time-dependences in flux and metric are equally significant to solve the equation
of motion and have an EFT at the every order of g;. Time dependent compactfi-
cation guarantees existence of g, and M, hierarchies which evidently allows us to
have four-dimensional EFT descriptions as tabulated above. Furthermore we also
discuss the quantizations of the G-flux components and anomaly cancellations in
a time-dependent background in a time dependent background which further con-
tirms the validity of our work.

In our current study we have not put any detail about the fermions. But we could
introduce components of gravitino and their interactions with the bosonic degrees
of freedom in M-theory. We can give a small mass to the gravitino components
and integrate out all the fermionic degrees of freedom in our setup. This will gen-
erate the quantum contributions in the polynomial forms. Therefore, the two sets
of quantum corrections (2.78) and (2.94) can be viewed as new degrees of freedom
when we integrate out both the fermionic as well other bosonic degrees of freedom.
It has also been suggested in many previous studies that the cosmological constant
can be derived as expectation value of scalar field or fluxes or quantum corrections.
We have derived an exact relation for the cosmological constant A, completely in
terms of the background fluxes and quantum corrections. Our analysis provides
a strong indication that a solution with positive cosmological constants with time-
independent Newton’s constants can exist in the landscape of string theory.

Beside this we have also derived an exact expression for the cosmological constant
A, completely in terms of the background fluxes and quantum corrections, which
can be expressed as (3.194). We have also determined how the G-flux components,
appearing from the back-reaction of a dynamical M2-brane, can be expressed as
(3.181). We have also demonstrated quantizations of the G-flux components and
anomaly cancellations can be achieved even when time-dependences are switched
on. And at last we make further comments about energy condition. For example,
the null-energy condition can be shown to be satisfied with the choice of fluxes and
quantum corrections. In fact it appears that the 2 + 1 dimensional quantum cor-
rections play a significant role in satistying the null-energy condition as shown in
(3.208). But for certain special choice of these quantum corrections, one can find out
that satisfying the strong and the dominant energy conditions (3.209) is also possi-

ble.

In this thesis we have mostly focused on late time physics but we are also inter-
ested in early time physics in this framework. One of the most popular theory of
early time early time physics is inflation. We should note that dynamical mem-
branes, which become dynamical D3-branes in the IIB side, lead to the possibility
of realizing inflation in our set-up. In fact, in the presence of seven-branes our setup
could be mapped to the D3-D7 inflationary model. We should be able to access cer-
tain levels of e-folds from our set-up. And this is one of the challenges in research
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we would like to take in near future. But this is not the only difficulty. The other
difficulty is at early time physics is strongly coupled. In our language A|t|*> — 0 or
gs — 0 1is late time in the sense that A|{|*> — oo is the big-bang time and A[¢[* — 1
is the inflationary time. So we need to find a appropriate duality transformations
which maps the late time physics to early times. Hopefully we have provided con-
vincing arguments to justify the presence of a late time de Sitter solution in the
IIB string landscape and in near future we can predict more about the early time
physics from our setup.
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