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Classical two derivative gravity of type IIB String theory is insufficient to satisfy the
no-go theorems in order to have a four dimensional spacetime with positive cosmo-
logical constant such as De Sitter. But on the other hand, quantum corrections could
allow for de Sitter solutions provided certain constraints are satisfied. But in the
time independent background it is found that in order to maintain such constrain
an infinite numbers of time-independent corrections are needed. As they have no
relative suppression it causes a breakdown in the effective field theory description.
Therefore in this study we look for more general time dependent solutions, where
both the internal space as well as the background fluxes are all time-dependent
with full De Sitter isometry in four dimensional spacetime. We analyse the both the
perturbative and non perturbative quantum corrections in such background and
determined their corresponding type IIA string coupling gs scaling. Surprisingly
we find out that time dependency allow a finite number of quantum terms at any
given order in gs thus allowing an EFT description. We also show how the no-go
theorems and the swampland criteria are avoided in time dependent background.
Newton’s constant can be kept both time dependent or independent depending
upon the ansatz. But the former has a late time singularity which is not present in
the later case. We try to present convincing arguments to justify the presence of a
late time de Sitter vacuum with time independent Newton’s constant to be present
in the IIB string landscape and not in the swampland.
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(French Translation) La gravité classique à deux dérivées de type IIB de la théorie
des cordes est insuffisante pour satisfaire les théorèmes non-passables, afin de dis-
poser d’un espace-temps à quatre dimensions avec une constante cosmologique
positive telle que De Sitter. Par contre, les corrections quantiques pourraient per-
mettre des solutions de Sitter à condition de respecter certaines contraintes. Dans le
contexte indépendant du temps, il est évident que pour maintenir une telle con-
trainte, un nombre infini de corrections indépendantes du temps est nécessaire.
Comme ils n’ont pas de suppression relative, cela entraîne une rupture de la de-
scription de la théorie du champ effectif. Par conséquent, dans cette étude, nous
cherchons des solutions plus générales dépendantes du temps, où l’espace interne,
ainsi que les flux de fond, dépendent du temps avec une isométrie De Sitter dans
un espace-temps à quatre dimensions. Nous analysons les corrections quantiques
perturbative et non-perturbative dans un tel arrière-plan et déterminons la mise
à l’échelle de leur couplage de chaînes de type IIA correspondant. De manière
surprenante, nous découvrons que la dépendance temporelle permet un nombre
fini de termes quantiques pour tout ordre donné, permettant ainsi une description
de l’EFT. Nous montrons également comment les théorèmes d’interdiction et les
critères de swampland sont évités dans un contexte dépendant du temps. La con-
stante de Newton peut être dépendante du temps ou indépendante en fonction de
l’Ansatz. Mais le premier a une singularité tardive qui n’est pas présente dans le
dernier cas. Nous essayons de présenter des arguments convaincants pour justi-
fier la présence d’un vide de Sitter à temps tardif avec une constante de Newton
indépendante du temps, présent dans le paysage des cordes IIB et non dans les
swampland.
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Chapter 1

Introduction

The concept of the cosmological constant was proposed by Einstein in 1917 to coun-
terbalance the effects of gravity to achieve a static universe - an idea which was
the most popular and accepted view at that time. But he eventually dismissed the
idea of cosmological constant after Hubble’s discovery of the expanding universe in
1931. Quite curiously, from the 1930s until the late 1990s, the cosmological constant
was assumed to be zero by most physicists. This viewpoint changed surprisingly
in 1998 after people found out that the expansion of the universe is accelerating;
implying the possibility of a positive nonzero constant value for the cosmological
constant. In the 1990s, after almost sixty years, studies and experiments have con-
firmed that around 68 percent of the mass–energy density of the universe can be
attributed to dark energy. The cosmological constant is the simplest possible ex-
planation for dark energy, and is used in the current standard model of cosmology
- referred as the ΛCDM model. The zero point energy due to fluctuations of field,
arising from the zero-point energy in their ground state, acts as a contributing factor
to the cosmological constant Λ; but calculations considering these fluctuations give
rise to an unusually gigantic value of vacuum energy- exceeding the observed value
from cosmology by some 120 orders of magnitude. This discrepancy of the calcu-
lated value from the observed one is often considered to be one of the worst theo-
retical prediction in the history of physics (referred to as the cosmological constant
problem) and poses one of the greatest theoretical challenges of our time. Possibly
we need to have a fully developed theory of quantum gravity, (perhaps superstring
theory) before we can predict the smallness of value of the cosmological constant.

It is now well accepted that the late-time behavior of our universe is one of accel-
erated expansion. De Sitter space is the maximally symmetric vacuum solution of
Einstein’s field equations with a positive cosmological constant which mimics accel-
erated expansion. On the other hand, String theory is often described as the leading
candidate for the theory of quantum gravity which can give us a nice platform to
solve the above mentioned problem. As the late-time behavior of our universe is
one of accelerated expansion, we are motivated to look for solutions that exhibit
accelerated expansion within string theory. Among the existing proposed construc-
tions, the most prominent one is the KKLT scenario [1], which involves a subtle
patchwork of ten-dimensional and four-dimensional phenomena coming from an
interplay of supergravity degrees of freedom with stringy effects such as higher
derivative corrections, brane instantons or other brane world-volume phenomena.
How and whether all the ingredients of any particular construction come together
to produce the desired solution is still a matter of some dispute [2, 3, 4, 5].
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The lack of full top-down constructions, along with the various objections to exist-
ing proposals, has led to recent swampland conjectures[6, 7, 8, 9, 10, 11] regarding
the effective potentials that arise in string compactifications; ruling out de Sitter
vacua. These conjectures are themselves largely based on the known behavior of
effective potentials in regimes of string theory where top-down calculations can
be performed. Swampland conjectures favor quintessence models over de Sitter
solutions but it comes with the additional problem of time-varying Newton’s con-
stant. The problem of finding de Sitter starts with famous Maldacena Nunez No
go theorems[12, 13] which basically relates the positivity of four dimensional cur-
vature with energy momentum tensor of the matter fields. Let us consider the an
action where gravity is coupled to matter:

Stotal =
1

GD

∫
dDx

√
−GDRD +

∫
dDxLint, (1.1)

Here,
√
−GD is the determinant of the D-dimensional metric gMN . GD and RD are

the D-dimensional Newton constant and the Ricci scalar in D dimensions respec-
tively. The metric forD dimensional spacetime is gMN , where, M,N etc indices take
value from 0, .., D−1, and Lint is the interaction lagrangian. The equation of motion
for this action is

GMN =
GD
2
TMN (1.2)

where GMN is the Einstein tensor and TMN the energy momentum tensor. By defi-
nition energy momentum tensor is-

TMN = − 2√
−GD

δLint

δgMN
. (1.3)

Also Einstein tensor is,

GMN = RMN −
1

2
gMNR (1.4)

Re-writing eq. (1.2)

RMN =
GD
2

(
TMN −

1

D − 2
gMNT

)
, (1.5)

where T is the trace of energy momentum tensor which is defined in the usual way,
i.e.

T = gMNTMN . (1.6)

The D dimensional metric is,

ds2
D = ds2

4 + ds2
D−4 ≡ gµνdx

µdxν + gmndx
mdxn. (1.7)
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which could be generalized to include a warp factor which shall be ignored in this
section. We have divided the D dimensional spacetime into two parts. The space-
time part M4 is spanned by coordinates (x0, x1, x2, x3) = (t, x, y, z), where t is time-
like and the rest are spacelike. The rest is internal spaceMD−4, spanned by space-
like coordinates xm,m = 4, .., D−1. Now as we have considered ourD-dimensional
spacetime as eq (1.7) we can write the Ricci scalar for M4 as:

R4 ≡ gµνRµν . (1.8)

If R4 > 0 we obtain a four dimensional spacetime with positive curvature. De Sitter
and FRW metric are prime example. On the other hand if R4 < 0 we will have
negative curvature solutions such as anti-de Sitter type geometry, but this is not the
state with the current universe. Minkowski space for example has zero curvature,
R4 = 0. Taking the trace of (1.5) in the µ, ν directions, we get

R4 = − KD
2(D − 2)

[
T µµ (6−D) + 4Tmm

]
. (1.9)

Thus to have R4 > 0 , we must satisfy the condition:

(D − 6)T µµ > 4Tmm . (1.10)

Whatever the content of the Lagrangian, we must satisfy (1.10) if we are to obtain a
positively curved four-dimensional universe. But the problem is just using the clas-
sical lagrangian of lets say type IIB string theory it is not possible to maintain the
above inequality[14, 15]. We definitely need to add quantum corrections[16] but in
this setup of time independent compactifications quantum corrections come with
their own sets of problems[14, 15]. Please note we are referring ansatz like eq (5)
time independent compactification as the internal manifoldMD−4 is independent
of time. An important upshot of the analysis in ref. [14, 15] is that for a time in-
dependent compactification ansatz to de Sitter space, the quantum corrections that
needs to be switched on to have a positive cosmological constant in four dimen-
sions, result in the appearance of an infinite tower of additional time-independent
corrections. All the quantum corrections come without any clear relative suppres-
sion. This was interpreted to indicate a breakdown of an effective field theory de-
scription. Therefore, even if a de Sitter compactification ansatz could be realized,
the physics in the four dimensional space could not be described by an effective
field theory with finite number of fields.

In the previous series of studies by Dasgupta et. al. [14, 15] the construction of
de Sitter vacua in type IIB theory were analysed from the M-theory uplift point of
view. In M-theory, all the type IIB fluxes can be written into one four-form flux
components which makes the equation of motion much simpler to analyse. Addi-
tionally, the orientifolds of type IIB become smooth spaces in M-theory. There, all
the corrections are built out of various higher order combinations of the curvatures,
fluxes and their derivatives can be considered, yielding constraints that the series
of quantum corrections have to agree with result in positive 4-dimensional scalar
curvature. This proliferation of the number of time-dependent fields does have a
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slightly simpler representation from the M-theory perspective. However it should
be noted that the de Sitter space that we wish to inspect carefully is in the type IIB
side. In this study M-theory is used as tracking device to solve the equation of mo-
tion in the type IIB setup. It does not imply that we are looking for a de Sitter space
in M-theory. So what has been found in previous study is while on one hand all
classical sources that could allow for solutions with de Sitter isometries are ruled
out by no-go conditions, the quantum corrections, on the other hand, could allow
us to have de Sitter solutions in four dimensions provided certain constraints are
satisfied. A careful study however reveals that such a constrained system does not
allow for an effective field theory description in four-dimensions[14, 15]. In such
time-independent compactification there are unfortunately quantum pieces which
have no Mp hierarchy and appear in the EOMs without type IIA string coupling
any gs factors.

In this thesis we consider a new ansatz for the internal space geometry as well as
the background fluxes where both are time-dependent. We study in detail such a
background by including perturbative, nonperturbative as well as local and non-
local quantum corrections. Our analysis reveals a possibility of well defined four-
dimensional positive constant with de Sitter isometries and time-independent New-
ton’s constant in four dimensions. In our study the quantum contributions obtain a
time-dependence and become vanishing at late times, precisely when the type IIB
description is expected to be well founded. Also fortunately these hierarchies that
we were missing for the time independent cases studied before[14, 15], which in
turn lead to the non-existences of four-dimensional EFTs in the type IIB side are
present in the time dependent compacification. We find that time dependences of
the G-fluxes guarantee a certain level of gs hierarchies. In time dependent compact-
ification quantum contributions appear as a finite number of quantum terms at any
given order in gs. This consequently allows an EFT description as evident from the
gs scalings for time dependent compactification.

In the next section we first introduce the metric for the time dependent internal
manifold. Afterwards, we present an improved classification scheme[17] for the
quantum corrections and identify the most general local as well as non-local correc-
tions to M-theory that can be built out of derivatives or integrals of various contrac-
tions of the fluxes and curvatures. We evaluate the relative scaling of the quantum
corrections with the type IIA string coupling which basically track time dependency
of each piece. Here we present two main choices of time dependence for the fluxes
and internal geometry, one of which yields time independent Newtons’s constant
and the other produces time dependent Newton’s constant. The former is of course
more appealing to us as this is what we observe in nature.

With the classification of the different quantum corrections along with the gs de-
pendency of each term, we further derive the quantum-corrected equations of mo-
tion at every order of gs in chapter 3. We find out that a solution with positive 4-
dimensional curvature can be obtained, i.e. the inequality (1.10) can be maintained
provided the leading quantum corrections satisfy constrains similar to those found
in reference[18, 19, 20]. For further consistency checking we also investigate the flux
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quantization as well as anomaly cancellation conditions[21, 22, 23], for our metric
ansatz. We further discuss how the no-go condition and the swampland criteria
are avoided in generating such a background with the help of quantum corrections.
Some recent work on generating de Sitter using different techniques than what we
used here are in [24, 25, 26].
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Chapter 2

Time dependent compactification

2.1 Time-dependent backgrounds, fluxes and quantum
effects

It is difficult to get a four-dimensional effective field theory description with the
full set of de Sitter isometries and time-independent internal space ([14] and [15]).
The Kasner type solution and dipole type deformation are also seen to be unhelpful
([17]).

These observations may be summarized as follows. Firstly, breaking the de Sit-
ter isometries in four dimensional space for type IIB theory by introducing four-
dimensional isometry breaking factors is not useful. It is also unhelpful to keep the
metric components of the internal space in type IIB theory time independent by in-
troducing time-independent warp factors. Keeping most of the background G-flux
components time-independent, in the M-theory uplift of the type IIB background,
also does not help.

We are thus motivated to make the following ansatz for the type IIB metric:

ds2 =
1

Λ(t)
√
h

(−dt2 + dx2
1 + dx2

2 + dx2
3) +

√
h
(
F1(t)gαβ(y)dyαdyβ + F2(t)gmn(y)dymdyn

)
, (2.1)

with α, β = 4, 5 and m,n = 6, 7, 8, 9; h being a function of internal cordinates.
Although not natural, this division of the metric components is nevertheless useful.
For instance, a time-independent internal space volume can be made by taking the
functions Fi(t) as:

F1(t) ≡ ω2(t), F2(t) ≡ 1

ω(t)
, (2.2)

where ω(t) is another arbitrary function of time. Note that with this choice of the
metric the internal space is a strict product of a four-dimensional manifoldM4 and
a two-dimensional manifoldM2, implying that metric components like gαn will be
taken to zero. Generalization of this is easy to achieve simply by switching on gαn,
so we will not discuss it much here. The division is also reflected in the M-theory
uplift of (2.1), which takes the form:

ds2 = e2A(y,t)(−dt2 + dx2
1 + dx2

2) + e2B1(y,t)gαβdy
αdyβ + e2B2(y,t)gmndy

mdyn + e2C(y,t)gabdx
adxb,

(2.3)
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where (a, b) are the coordinates of a square two-torus parametrized by coordinates
x3 and x11. The internal eight-manifold in M-theory therefore takes the following
form:

M8 ≡M4 ×M2 ×
T2

G
, (2.4)

where locally G = 1 as clear from the metric (2.3). Globally however, as before,
we don’t want the manifoldM8 to have a vanishing Euler characteristics, so G will
have to be some symmetry group of the internal toroidal space. In terms of the
metric (2.3) this is invisible, so we can continue using the local metric. The various
warp-factors appearing in (2.3) may now be expressed as:

e2A = [Λ(t)]−
4
3 [h(y)]−

2
3 , e2C = [Λ(t)]

2
3 [h(y)]

1
3

e2B1 = F1(t) [Λ(t)]−
1
3 [h(y)]

1
3 , e2B2 = F2(t) [Λ(t)]−

1
3 [h(y)]

1
3 , (2.5)

where all the parameters appearing above have been defined earlier. The way we
have expressed the warp-factors, they appear to be functions of (yα, ym) and t, but
not functions of the space-time coordinates or of the fibre torus. If we relax the
T-duality rules, we could even allow the warp-factors to be functions of the fibre
torus, but then the analysis will get more involved. We want to avoid this, and also
avoid complicating the space-time geometry by introducing isometry breaking fac-
tors.

Again, it may be a concerning the specific procedure of the duality, as the M-theory
uplifting requires us to first put the x3 direction on a circle and then dualize this
to M-theory to be eventually combined with the x11 circle to form a torus T2. In
this process the special role played by x3 (or any other chosen space direction) then
breaks the De Sitter isometry in the type IIB side converting to a geometry that isn’t
quite a de Sitter space that we want to study. But we can actually go to the zero vol-
ume limit of the M-theory torus T2 and then slowly increase the type IIA coupling.
The latter process is however subtle as the type IIA coupling is proportional to:

gs ∝ h1/4
(
Λ|t|2

)1/2
, (2.6)

therefore it is only the early time physics that is strongly coupled1. Thus the very
early times, keeping one of the cycle of T2 to be of vanishing size, would effectively
capture the type IIB background that we want. At late time, since gs → 0, this can
easily be done. The warped eleven-dimensional radius vanishes, and so does the
radius of the x3 circle. Combining them they take us to type IIB.

1Recall−∞ ≤ t ≤ 0 because of the flat slicing of the de Sitter space, so t→ −∞will be early time.
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2.1.1 Structure of the warp-factors and the background G-fluxes

F1 and F2 for example can maintain this simple relation:

F1(t)F 2
2 (t) ≡ e0 +

e1g
2
s√
h
, (2.7)

with specific choices for (e0, e1). For example, the choice (1, 0) i.e (2.2) corresponds to
the standard de Sitter metric, whereas the choice (0, 1) corresponds to fluctuations
over the de Sitter metric. Here we have absorbed the constant type IIB coupling in
the definition of h to avoid introducing extra factors and used the IIA coupling gs
to express the RHS. Note that the choice:

F1(t)F 2
2 (t) =

g2
s√
h
, (2.8)

is not the volume-preserving choice (2.2). The volume-preserving choice would
give us a time-independent overall volume of the internal space. On the other hand
(2.8) would give a time-dependent Newton’s constant if applied to the standard
de Sitter metric. One may then view the two cases from (2.7) as representative of
time-independent (i.e (e0, e1) = (1, 0)) and time-dependent (i.e (e0, e1) = (0, 1)) cases
for the standard de Sitter metric. Interestingly the choice (2.2) resonates well with
the condition prescribed for the Newton’s constant in [30] (see eq. (2.3) in [30]), so it
will be interesting to compare the result of our investigations with the ones in [30].
We will discuss this later.

The functional form for F1(t) and F2(t) are still undetermined and the two cases,
namely (2.2) and (2.8), differ by having either a constant or g2

s on the RHS. For either
of these two cases, we can start by defining F2(t) in the following way:

F2(t) =
∑
k,n≥0

ckn

(
g2
s√
h

)∆k

exp

(
− nh∆/4

g∆
s

)

= c00 +
∑
k>0

ck0

(
g2
s√
h

)∆k

+
∑
n>0

c0n exp

(
− nh∆/4

g∆
s

)
+ cross terms, (2.9)

where if c00 vanishes then there is no time-independent piece: and ckn are integers
with (k, n) ∈

(Z
2
,Z
)
. We have also inserted a constant parameter ∆ whose value will

be determined later. The above expansion is defined for small gs in type IIA, and we
have assimilated the negative powers of gs as a non-perturbative sum. The latter
is motivated from a resurgent sum of powers of inverse gs at weak IIA coupling
so that all (k, n)-dependent terms in (2.9) are small. However since the type IIA
coupling depends on both time and the coordinates of the internal space in the type
IIB side, care is needed to interpret what is weak and what is strong coupling here.
At a given point y0 in the internal space, the time interval:

|t|2 < 1

Λ
√
h(y0)

, (2.10)

should be related to weakly coupled interactions in the type IIA side. For small
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cosmological constant Λ and small internal warp-factor at any point in the inter-
nal space, (2.10) scans a reasonably wide range of time interval provided we can
argue for the smallness of both Λ and h(y). The smallness of Λ, in appropriate
units, should be viewed as an experimental fact, whereas the smallness of h(y) at
all points ym in the internal space is more non-trivial to establish. We can take this
as a requirement and arrange the fluxes etc to suit the equations of motion, but
whether this can indeed hold needs to be seen. In any case as long as h(y) < 1
and Λ << 1, (2.10) will assert a wide range of time interval for weakly coupled
interactions. With this in mind, we can express F1(t) as:

F1(t) ≡
(
g2
s√
h

)
F−2

2 (t) =
∑
k,n>0

bkn

(
g2
s√
h

)∆k+1

exp

(
− nh∆/4

g∆
s

)
, (2.11)

where bkn are constant coefficients that may be related to the ckn coefficients (for k >
0, n > 0) in (2.9) at weak coupling. The way we have expressed (2.11), comparing to
(2.9) implies b0n = b1/2,n = 0 for k = 0 and k = 1/2 respectively. Similarly the single
and double time derivatives of F2(t) may be expressed as:

Ḟ2√
Λ

=
∑
k,n≥0

ckn

[
2k∆

(
g2
s√
h

)∆k−1/2

+ n∆

(
g2
s√
h

)∆k−∆
2
− 1

2

]
exp

(
− nh∆/4

g∆
s

)
F̈2

Λ
=

∑
k,n≥0

ckn

[
2k∆(2k∆− 1)

(
g2
s√
h

)∆k−1

+ n2∆2

(
g2
s√
h

)∆k−∆−1
]

exp

(
− nh∆/4

g∆
s

)

+
∑
k,n≥0

ckn

[
n∆(4k∆−∆− 1)

(
g2
s√
h

)∆k−∆/2−1
]

exp

(
− nh∆/4

g∆
s

)
, (2.12)

which shows that the time derivatives of F2(t) may also be expressed in terms of
integer powers of gs. Needless to say, a similar conclusion also extends to the single
and double time derivatives of F1(t) with the replacement of ckn by bkn in (2.12).

The above discussion pretty much sums up the requirements that we want to
impose on the warp-factors so that they solve the equations of motion. Let us take
the following configuration:

GMNPQ(y, t) =
∑
k,n≥0

G(k,n)
MNPQ(y)

(
g2
s√
h

)∆k

exp

(
− nh∆/4

g∆
s

)
, (2.13)

with the tensorial coefficient G(k,n)
MNPQ for various choices of k ∈ Z

2
and n ∈ Z being

functions of the internal coordinates ym. Such an expansion guarantees that the flux
components are expressed in terms of all positive and negative integer powers of
g∆
s . There could also be a similar expansion for the potential CMNP , but we only

use the field strength here as these are the relevant variables for our case. Note also
the similarity of the expansion with (2.9) and (2.12). This is intentional as such time
dependences should borne out of the time-dependent warp-factors for the internal
space, and they in turn will be related to each other via the equations of motion to
be satisfied by the corresponding coherent states. All these will be illustrated below,
but before we proceed it may be worthwhile to isolate the time dependences of the
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G-flux components with all upper indices from the time dependent warp-factors.
The necessity − or more appropriately the usefulness − of such an approach is

two-fold. One: isolating the time dependences this way will emphasize the con-
tributions of the warp-factors towards the temporal behavior of the fluxes more
succinctly; and two: the time-independent cases would follow simply from the
aforementioned expansion by switching off the un-related terms thus forming a
single setup to study both time-dependent and time-independent cases. With these
in mind, we can isolate the time dependences in the following way:

G012α = G012α[Λ(t)]13/3h5/3F−1
1

G012m = G012m[Λ(t)]13/3h5/3F−1
2

Gαβγδ = Gαβγδ[Λ(t)]4/3h−4/3F−4
1

Gαβγa = Gαβγa[Λ(t)]1/3h−4/3F−3
1

Gmnpa = Gmnpa[Λ(t)]1/3h−4/3F−3
2

Gmnpq = Gmnpq[Λ(t)]4/3h−4/3F−4
2

Gαβab = Gαβab[Λ(t)]−2/3h−4/3F−2
1

Gmnab = Gmnab[Λ(t)]−2/3h−4/3F−2
2

Gmnpα = Gmnpα[Λ(t)]4/3h−4/3F−3
2 F−1

1

Gmnαa = Gmnαa[Λ(t)]1/3h−4/3F−2
2 F−1

1

Gmαβa = Gmαβa[Λ(t)]1/3h−4/3F−2
1 F−1

2

Gmnαβ = Gmnαβ[Λ(t)]4/3h−4/3F−2
2 F−2

1

Gmαβγ = Gmαβγ[Λ(t)]4/3h−4/3F−1
2 F−3

1

Gmαab = Gmnab[Λ(t)]−2/3h−4/3F−1
1 F−1

2 , (2.14)

where the division of the coordinates follow the prescription (2.4) namely, (m,n, p)
denote coordinates ofM4; (α, β) denote coordinates ofM2; (a, b) denote coordinates
of T2/G; and (µ, ν) denote coordinates of the 2+1 dimensional space-time. It should
be clear from (2.14) that the flux components with all upper indices, i.e GMNPQ(y, t)
are functions of (ym, t) and may be got from (2.13) by raising the indices using the
un-warped metric components gαβ(y), gmn(y) and gab(y) from (2.3). Additionally
we can also switch on flux components with at most two legs along the space-time
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directions. These may be tabulated as:

Gµνab = Gµνab[Λ(t)]4/3h2/3

Gµναa = Gµναa[Λ(t)]7/3h2/3F−1
1

Gµαab = Gµαab[Λ(t)]1/3h−1/3F−1
1

Gµνma = Gµνmn[Λ(t)]7/3h2/3F−1
2

Gµναβ = Gµναβ[Λ(t)]10/3h2/3F−2
1

Gµαβγ = Gµαβγ[Λ(t)]7/3h−1/3F−3
1

Gµαβa = Gµαβa[Λ(t)]4/3h−1/3F−2
1

Gµmab = Gµmab[Λ(t)]1/3h−1/3F−1
2

Gµνmn = Gµνmn[Λ(t)]10/3h2/3F−2
2

Gµmna = Gµmna[Λ(t)]4/3h−1/3F−2
2

Gµmnp = Gµmnp[Λ(t)]7/3h−1/3F−3
2

Gµνmα = Gµνmα[Λ(t)]10/3h2/3F−1
2 F−1

1

Gµmαa = Gµmαa[Λ(t)]4/3h−1/3F−1
1 F−1

2

Gµmnα = Gµmnα[Λ(t)]7/3h−1/3F−2
2 F−1

1

Gµmαβ = Gµmαβ[Λ(t)]7/3h−1/3F−1
2 F−2

1 . (2.15)

Fortunately we will not be required to keep all the flux components in our compu-
tations. Some of the G-flux components, such as GMNab, Gmaµν and Gmnµa, have to
be put to zero to keep the type IIB solution (2.1) as it is (otherwise cross-terms may
develop). The flux components relevant for us are in this study:

G012m, G012α, Gmnpa, Gmnαa, Gmnab

Gmαβa, Gmnpq, Gmnpα, Gmnαβ, Gαβab, Gmαab, (2.16)

whose upper indices may be extracted from (2.14).

2.1.2 Perturbative and non-perturbative quantum corrections

For time-independent Newton’s constant, there are two cases to consider for warp-
factors F1(t) and F2(t) in (2.11) and (2.9). For the first case, we consider vanishing
c00 for F2(t) in (2.9). F1(t) then becomes:

1

F1(t)
=
∑

cknck′n′

(
g2
s√
h

)∆k+∆k′−1

exp

[
−(n+ n′)h∆/4

g∆
s

]
, (2.17)

where (k, k′) = (Z
2
, Z

2
) and (n, n′) = (Z,Z), and we see that we can equate the inverse

of the RHS to the perturbative series (2.11) because of the following limit:

lim
gs→0

1

g2n∆
s

exp

(
− 1

g∆
s

)
= 0, (2.18)

for any finite value of n, implying that for small gs, both F1(t) and F2(t) may be
expressed as perturbative series. The difference however is that F2(t) does not have
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a time-independent piece whereas F1(t) does have a time-independent piece for
k = k′ = 1

2
.

The second case is when we consider non-zero c00, and we take c00 = 1 without
loss of generalities. Clearly F2(t) now has a time-independent piece, but now F1(t)
takes the following form:

F1(t) =
g2
s√
h
− 2

∑
k,n>0

ckn

(
g2
s√
h

)∆k+1

exp

(
− nh∆/4

g∆
s

)
+O

(
g4∆k+4
s e−2nh∆/4/g∆

s

)
,

(2.19)

where the higher order terms appearing from going beyond quadratic orders for
the series sum. We see that (2.19) do not have a time-independent piece, and in
fact this could be equated to the perturbative bnk coefficients in (2.9) as alluded to
earlier.

Thus it appears that, demanding the fluctuation condition (2.8), allows both
F1(t) and F2(t) to have a perturbative series but selectively precludes a time-neutral
piece in one over the other. This case may be rectified if the demand like (2.8) on
Newton’s constant is eliminated, wherein the perturbative series for both F1(t) and
F2(t) may now be unconstrained. For the time being we will take c00 = 1 in the def-
inition of F2(t), implying the following relations for the time derivatives of F1(t):

Ḟ1 =
2gs

h1/4F 2
2

(
Λ1/2 − gs

h1/4
.
∂

∂t
log F2

)
∝ gs

(
1 +O(g∆

s )
)

F̈1 =
2Λ

F 2
2

− 4gsΛ
1/2

h1/4F 3
2

− 4gsΛ
1/2Ḟ2

h1/4F 3
2

− 2g2
s F̈2

h1/2F 3
2

+
6g2

s Ḟ
2
2

h1/2F 4
2

∝ 1 +O(g∆
s ),

(2.20)

showing that both Ḟ1 as well as F̈1 have perturbative expansions in powers of gs
because 1/F n

2 has perturbative expansion in terms of gs for all values of n. How-
ever 1/F n

1 does not have any perturbative expansion in terms of gs for gs → 0, but
could have once accompanied by other factors that go as positive powers of gs. For
example the power of gs that appears from a generic combination of Fi(t) and their
time derivatives may be written as:

gms F
r
2 Ḟ

n
1 Ḟ

p
2 F̈

l
1F̈

q
2

F k
1

∼ gm+n−2k
s

(
1 +O(g∆

s )
)
, (2.21)

where we only isolate the gs factor but do not show the perturbative series in the
bracket. The latter could be easily ascertained from (2.12) and (2.20). The above
analysis shows that as long as

k ≤ m+ n

2
, (2.22)

any series containing terms like (2.20) will have a perturbative gs expansion in the
type IIA side. Our analysis also shows the irrelevancy of the other powers con-
trolled by r, p, l and q as they are always proportional to 1 + O(g∆

s ) and therefore
already perturbative.
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Product of G-fluxes and gs expansions

Let us study the following quantum correction, Consider the following series:

Q1 ≡
∑
k

ck

(
GmnpqG ab

mn Gabpq

M3
p

)k
, (2.23)

where ck are numerical constants, GMNPQ are the warped G-fluxes and Mp is the
Planck scale in M-theory. This is an infinite series and clearly every term is time-
neutral if we consider time independent compactfication, or its M-theory uplift, as
shown in [15]. Plugging the flux and the metric ansatze (2.13) and (2.3) respectively
in (2.23), we get:

Q1 =
∑
k

ck

 ∑
{ui}≥0

(
G(u1,u2)

)mnpq (G(u3,u4)
) ab

mn

(
G(u5,u6)

)
abpq

M3
pF

4
2 h

2

(
g2
s√
h

)ζs∆u2s−1

exp

(
−ζ

ru2rh
∆/4

g∆
s

)k ,
(2.24)

where the indices are raised and lowered by the un-warped metric with (m,n)
being the coordinates ofM4 and (a, b) being the coordinates of T2/G. We have also
used ζs to denote the sum with both u2s−1 as well as u2s with:

ζ1 = ζ2 = ζ3 = 1, ζ0 = ζk = 0 ∀ k ≥ 4, (2.25)

such that depending on the value of ui the series (2.24) may or may not have a
time-neutral piece. (The repeated indices are summed over.) From the way we
constructed the series, it should be clear that u2s−1 ∈ Z

2
and u2s ∈ Z, implying that if

these parameters start from zero as denoted in (2.24), Q1 will take the form:

Q1 =
∑
k

ck

(G(0,0)
)mnpq (G(0,0)

) ab

mn

(
G(0,0)

)
abpq

h2M3
p

+O(g∆
s , e

−1/g∆
s )

k , (2.26)

with the gs independent term will be the time-neutral piece exactly as we had in
[15]. Presence of such a term will create the same hierarchy problem that we en-
countered in [14, 15], so our attempt here would be to somehow eliminate such a
term. This is easily achieved by imposing:

G(0,0)
MNPQ(y) = 0, (2.27)

which in turn will eliminate all time-neutral pieces that have GMNPQ in them. The
puzzle however is that the condition (2.27) does not preclude terms that were not
originally time neutral with the IIB metric, but could now become time-neutral if
one chooses the IIB metric (2.1) or it’s M-theory uplift (2.3). To see whether this
could happen then calls for a more careful analysis.

To begin, let us first concentrate on quantum series constructed exclusively from
product of G-fluxes with no extra derivatives. The G-flux may be represented from
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(2.13), by including the condition (2.27), in the following way:

GMNPQ = g2∆k
s

[
G1(y) +G1(y, g∆

s )
]
MNPQ

+ e−1/g∆
s

[
G2(y) +G2(y, e−1/g∆

s )
]
MNPQ

+ g2∆k
s e−1/g∆

s

[
G3 +G3

(
y, g∆

s , e
−1/g∆

s

)]
MNPQ

, (2.28)

where k ∈ Z
2
; and Gi(y, g

∆
s , e

−1/g∆
s ) and Gi(y) for i = 1, ..., 3 may be read up from

G(q,n) appearing in (2.13) with or without including the gs pieces respectively. Note
that, compared to (2.13), the smallest power of gs for the G-flux is 2∆k whose range
of values will be ascertained below2. Clearly, once we pull out g2∆k

s , the series still
has a perturbative expansion thanks to the weak coupling limit (2.18).

With this we are now ready to write terms made exclusively with product of
G-fluxes. We require two kinds of terms: one, with no free Lorentz indices, and
two, with two free Lorentz indices. The one with no free Lorentz indices may be
expressed as3:

gMM ′gNN
′
......gDD

′
GMQPRGNUHG.....GABCD ≡

[
g−1
]2m

[G]m , (2.29)

wherem is the number of G-flux components and gMN is the warped M-theory met-
ric components. The indices M,N, .. cover the coordinates of the eight dimensional
internal space (2.4), and the RHS of (2.29) is the shortened way of expressing the
product of the G-fluxes contracted by the metric indices. The power of the inverse
metric is ascertained from the fact that the 4m components of the G-flux may be
completely contracted by 2m inverse metric components. These 2m inverse metric
components may be divided into l1 inverse metric components from T2/G; l2 metric
components fromM2 and l3 metric components fromM4 of the internal space (2.4).
Using this, the leading order gs dependence of (2.29) may be written as:[

g−1
]2m

[G]m ∼ g2∆km−2(2l1+2l2−l3)/3
s

(
1 +O

(
gs, e

−1/gs
))
, (2.30)

where we have used the perturbative series for F1(t) and F2(t) given in (2.19) and
(2.9) respectively to express their gs dependences. At this stage it is useful to note
that the sum of the (l1, l2, l3) factors should be equal to 2m, i.e l1 + l2 + l3 = 2m so
that (2.29) remains Lorentz invariant. This reproduces our first condition:(

6∆k − 8

3

)
m+ 2l3 ≥ 0, (2.31)

with the equality leading to the time-neutral case. Clearly for ∆k ≥ 3
2

there is no
constraint as l3 ≥ 0. In fact if m > 1, l3 must satisfy l3 > 1, otherwise it will
be difficult to have Lorentz invariant terms. For ∆k ≥ 1

2
, we will at least require

l3 ≥ 5m
6

, which means for m = 3 we require l3 = 4. This is of course consistent with

2An erroneous way to proceed would be to expand exp
(
− 1
g∆
s

)
as powers of 1/g∆

s to extract g2∆k
s

from the series with k ∈ Z
2 , Such an expansion is not valid at any stage of the expansion in the

gs << 1 limit that we are working on.
3One subtlety that we should keep track of is the fact that the G-fluxes are anti-symmetric

whereas the metric components are symmetric in their respective indices.
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the simplest case (2.23). Thus for 1
2
≤ ∆k < 3

2
we can avoid the time-neutral series

by constraining l3. However if ∆k ≥ 3
2
, there would be no time-neutral series that

can appear from any combinations of pure G-fluxes.
Similarly for the case with two free Lorentz indices with m G-flux components

we now require 2m − 1 number of inverse metric components. The reasoning for
this is simple to state. The generic energy-momentum tensor, for either G-fluxes G
or quantum terms Q, may be written as:

T(G,Q)
MN ≡ − 2

√
g11

δSeff

δgMN
, (2.32)

where Seff is the effective action at any given scale. Such a procedure either removes
an inverse metric component or adds an inverse-of-an-inverse metric component.
In either case, the number of inverse metric components reduces by one. The gs
expansion then remains similar to the RHS of (2.30) but li satisfy l1 + l2 + l3 = 2m−1.
This gives rise to the following constraint:(

6∆k − 8

3

)
m+

4

3
+ 2l3 ≥ 0, (2.33)

which may be compared to (2.31). For ∆k = 1
2
, l3 should at least satisfy l3 ≥ 5m−4

6
,

implying that for m = 3, l3 ≥ 2. In general l3 ≥ 1 even for m = 1, although with
m = 1 there doesn’t appear any simple time-neutral term possible. Again we see
that if ∆k ≥ 3

2
, there is no constraint on l3, and it appears impossible to construct

time-neutral series with two free Lorentz indices.
We can also discuss the case when F1(t) and F2(t) have inverses that are per-

turbatively expandable as powers of gs. Clearly for such a case, (2.8) cannot be
satisfied and therefore the Newton’s constant has to be defined using (2.2). Never-
theless, one may see that the quantum terms with zero and two free Lorentz indices
with only G-fluxes go as gk1

s and gk2
s respectively, where k1 and k2 are bounded by

the following inequalities:

k1 ≡
(

6∆k + 4

3

)
m− 2l1 ≥ 0

k2 ≡
(

6∆k + 4

3

)
m− 2

3
− 2l1 ≥ 0, (2.34)

where we see that the constraints on l1 are stronger than what we had for l3 in (2.31)
and (2.33) above. However since l1 captures the metric for the toroidal fibre T2/G,
we expect l1 to be small and satisfy the inequalities (2.34). In fact since l1 < 2m, so if
∆k ≥ 3

2
both the inequalities in (2.34) are easily satisfied. Interestingly when k = 0,

if we take m = 3p for the scenario with zero Lorentz indices and m = 3q + 2 with
two free Lorentz indices, we have:

l1 = 2p, l2 + l3 = 4p, m = 3p

l1 = 2q + 1, l2 + l3 = 4q + 2, m = 3q + 2. (2.35)

where the combination l2 + l3 appears becauseM6 is not sub-divided intoM2 and
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M4. Thus we see that for (p, q) ∈ (Z,Z) there are infinite possible solutions all giving
rise to time-neutral series of the form (2.23)4. This justifies the claims made in [15]
regarding a class of time-neutral quantum series.

G-fluxes with multiple derivatives

We now consider the case where there are derivatives along with G-fluxes, all con-
tracted in two possible ways: one with zero Lorentz indices and two, with two free
Lorentz indices. To illustrate this case, let us start with a simple example from [15]
that has no free Lorentz indices:

Q2 ≡
∑
k

bk

(
�2GmnabG

mnab

M6
p

)k
, (2.36)

where � is the covariant derivative defined on the six-dimensional baseM2 ×M4

with the warped metric. With time-independent G-flux, and without any Fi(t) fac-
tors in the metric, (2.36) is clearly time-neutral because every term in (2.36) is time-
neutral. But now, taking the G-flux as in (2.28), with (m,n) being the coordinates of
M4, Q2 yields:

Q2 =
∑
k

bk

 ∑
{ui}≥0

�2
(
G(u1,u2)

)
mnab

(
G(u3,u4)

)mnab
F 4

2 h
2M6

p

(
g2
s√
h

)∆(u1+u3)

exp

(
− (u2 + u4)h∆/4

g∆
s

)k ,(2.37)

where the gs independent piece will lead to the same issue that we faced in [15],
which in turn may be alleviated by imposing (2.27) as before. However the issue
plaguing earlier, namely the possibility of generating new time-neutral series, now
requires a careful assessment of terms of the form (2.36) taking the gs dependent
G-flux (2.28) into account. The kind of term that we want to consider will then be
of the form:

gMM ′gM1M
′
1 ...gDD

′
∂M1

∂M2
...∂Mn

(GMQPRGNUHG...GABCD) ≡
[
g−1

]2m+ n
2 [∂]

n
[G]

m
,

(2.38)

where the RHS is a shortened symbolic expression for the derivative expressions.
Clearly with only four derivative, contracted appropriately, will reproduce the terms
in the series (2.36). Interestingly the form of the gs expansion is exactly similar to
the expression on the RHS of (2.30) i.e gk3

s , except now li satisfy l1 + l2 + l3 = 2m+ n
2
.

This implies:

|k3| ≡
∣∣∣∣(6∆k − 8

3

)
m− 2n

3
+ 2l3

∣∣∣∣ ≥ 0 (2.39)

where the equality would lead to the time-neutral series. On the other hand, since
n appears with a relative minus sign, sufficiently large n will reverse the power of
k3 in gk3

s and make it negative. Such a scenario should make sense if all the inverse

4The example in (2.23) is made of m = 3 so p = 1. Therefore l1 = 2, l2 + l3 = 4 with zero free
Lorentz indices.
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powers of gs can be rearranged as:

∑
k

αkh
∆k/4

g2∆k
s

=
∑
l

βl exp

(
−nlh

∆/4

g∆
s

)
, (2.40)

with the integer αk being related to the integers (βl.nl). The equality (2.40) is the
consequence of summing the series in appropriate way, and should in principle be
possible if non-perturbatively the series has to make sense5. Assuming this to be the
case, the puzzle however is more acute. We show what happens if we take a partic-
ular value of n for a given m, i.e n number of derivatives, such that k3 vanishes. In
fact all we require is for n to take the following value:

n = 3l3 + (3∆k − 4)m, (2.41)

to create a new class of time-neutral series with m G-fluxes and n derivatives. One
might rewrite (2.40) in a slightly different way that puts the relative minus sign
elsewhere as: (

6∆k + 4

3

)
m+

n

3
− 2 (l1 + l2) ≥ 0, (2.42)

which simply transfers the puzzle now on the values of l1 and l2 instead of on the
number of derivatives. This doesn’t appear to alleviate the issue because increas-
ing n also increases the metric components. However since l1 and l2 denote the
metric components along T2/G andM2 respectively, and if we assume that the G-
flux components are functions of the baseM4 only, then increasing the number of
derivatives will simply increase l3 without changing l1 and l2! This way the con-
straint (2.42) may be easily satisfied without invoking any extra constraint on k. In
fact even if we allow for two free Lorentz indices, the change from (2.42) is minimal:(

6∆k + 4

3

)
m+

n

3
− 2

3
− 2 (l1 + l2) ≥ 0, (2.43)

since n ≥ 2 in most cases. Thus again with more derivatives, there would be no
constraint on k. For small number of derivatives, we expect l1 + l2 < 2m. There-
fore for ∆k ≥ 3

2
,
(

6∆k+4
3

)
m > 4m implying that this would dominate over the term

−2(l1 + l2) making the LHS of both (2.42) as well as (2.43) always positive definite.
This brings us to similar conclusion that we had earlier, namely with ∆k ≥ 3

2
, arbi-

trary flux products with arbitrary number of derivatives do not lead to time-neutral
series provided the G-fluxes are functions of the coordinates of theM4 base only.
For F1 and F2 satisfying (2.2) instead of (2.8), the constraint equations for zero and

5In other words at every order in k, terms on the LHS of (2.40) blow-up, yet the sum on the RHS
remains perfectly finite. Thus the representation on the LHS is never the right way to study inverse
gs expansion near gs → 0. The correct expression will always be the RHS of (2.40).
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two free Lorentz indices become respectively:(
6∆k + 4

3

)
m+

n

3
− 2l1 ≥ 0(

6∆k + 4

3

)
m+

n

3
− 2

3
− 2l1 ≥ 0, (2.44)

which are readily satisfied by imposing similar conditions on the G-fluxes and on
k, because increasing n does not affect l1 and so ∆k ≥ 3

2
still controls the positivity

of the LHS of both the inequalities in (2.44). We will however soon see that the
condition can be relaxed. Again for k = 0, we expect the following two cases:

m = 3p1 + p2, n = 2p2, l1 = 2p1 + p2, l2 + l3 = 4p1 + 2p2

m = 3q1 + q2 + 2, n = 2q2, l1 = 2q1 + q2 + 1, l2 + l3 = 4q1 + 2q2 + 2,(2.45)

with zero and two free Lorentz indices respectively. Clearly since we expect (pi, qi)∈
(Z,Z), there are infinitely many possible solutions each of which leading to a series
like (2.37), and therefore justifying another class of time-neutral quantum series
advertised in [15]6.

Curvature algebra and product of curvatures

In general relativity, curvatures may be represented by Riemann tensor, Ricci tensor
and Ricci scalar. To simplify the ensuing analysis we develop a curvature algebra.

Curvature tensors are mainly governed by the metric of the internal space. We
need to see how everything scales with respect to gs. For example, in writing the
metric components as:

[g] ≡ gMN =
(
g4/3
s gab, g

4/3
s gαβ, g

−2/3
s gmn

)
⊗
(

1 +O(g∆
s , e

−1/g∆
s )
)

≡
(
g4/3
s , g4/3

s , g−2/3
s

)
⊗
(

1 +O(g∆
s , e

−1/g∆
s )
)
MN
→
(
g4/3
s , g−2/3

s

)
,

(2.46)

the RHS of the second line of (2.46) tells us that the terms in the metric scale as
powers of gs as O(g∆

s , e
−1/g∆

s ) corrections are irrelevant to the analysis that we want
to perform here. In the same vein, we can express the Christoffel symbol in the
following way:

ΓMNP ≡ [g−1]∂[g] =
[(
g−4/3
s , g2/3

s

)
×
(
g4/3
s , g−2/3

s

)]
⊗
(

1 +O(∂, g∆
s , e

−1/g∆
s )
)M
NP

=
(
1, g−2

s , g2
s

)
⊗
(

1 +O(∂, g∆
s , e

−1/g∆
s )
)M
NP
→
(
1, g−2

s , g2
s

)
,

(2.47)
6In fact the term in (2.37) is for m = 2, n = 4, therefore p1 = 0, p2 = 2, l1 = 2, l2 + l3 = 4 with zero

free Lorentz indices.
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where again the extreme RHS of the second line denotes the overall scaling of
the terms of the Christoffel symbol. Note that the derivative action in the defini-
tion of the Christoffel symbol does not act on gs/

√
h and therefore directly goes in

O(∂, g∆
s , e

−1/g∆
s )) implying that it would act on yM dependent pieces where yM are

in general the coordinates of eight-dimensional internal space in M-theory7.
The identity element in (2.47) is related to those terms in the Christoffel sym-

bol where the gs scaling of [g−1] cancels with the gs scaling of ∂[g]. This happens
when we deal with the metric components of the individual sub-spaces of the eight
manifold, namely M2, M4 or T2/G. Similarly the other powers of gs may also be
explained by looking at various contributions to the Christoffel symbol. For us of
course only the gs scaling matters for the time being.

Christoffel symbols now combine together to create the curvature tensors, namely
the Riemann tensor, Ricci tensor and the Ricci scalar. Our symbolic manipulation
should again work for these cases. For example the Riemann tensor with one upper
index may be expressed in this language, in the following way:

RM
NPQ = ∂[NΓMP ]Q + ΓM[N |S|Γ

S
P ]Q (2.48)

≡
(
1, g−2

s , g2
s

)
⊗
(

1 +O(∂2, g∆
s , e

−1/g∆
s )
)M
NPQ

+
(
1, g−2

s , g2
s , g
−4
s , g4

s

)
⊗
(

1 +O(∂, g∆
s , e

−1/g∆
s )
)2 ∣∣∣M

NPQ
,

where in the first line |S| implies that the index S do not participate in the anti-
symmetric operation of its neighboring indices (here it is between indices N and
P ). The above form of the Riemann tensor implies that, in terms of gs scalings we
can simply express this as:

RM
NPQ ≡

(
1, g2

s , g
−2
s , g4

s , g
−4
s

)
, (2.49)

which is got by combining the exponents of gs from the two terms without worry-
ing about the O(g∆

s , e
−1/g∆

s ) contributions. This shortened form captures the main
message and is clearly much more economical to use, but does miss out in distin-
guishing various components that scale in the same way with gs. This is not an
immediate concern, so we will continue with this formalism unless a more sophis-
ticated analysis is called for. Similarly the Riemann tensor with all lower indices
may be expressed as:

RMNPQ = gMLRL
NPQ ≡

(
g−2/3
s , g4/3

s , g−8/3
s , g10/3

s , g−14/3
s , g16/3

s

)
(2.50)

=
(
g4/3
s , g−2/3

s

)
⊗
(
1, g2

s , g
−2
s

)
+
(
g4/3
s , g−2/3

s

)
⊗
(
1, g2

s , g
−2
s , g4

s , g
−4
s

)
,

where the second line shows how the scaling exponents came about by taking prod-
ucts of various terms. It is interesting to note that although the Riemann tensor with
one upper index has a gs independent piece, the Riemann tensor with all lower in-
dices do not seem to have any such piece. Additionally a specific component of

7More precisely, defining h(y) = H4(y), it is easy to infer that ∂0

(
gs
H

)
=
√

Λ and ∂n
(
gs
H

)
= 0. To

avoid clutter, we will ignore the H(y) and simply denote the terms with gs scalings.
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Riemann tensor, since it is constructed out of derivatives and products of Christof-
fel symbols, has at least four terms with leading gs exponents8 and therefore may
be expressed as:

RMNPQ =
4∑
i=1

gais

[
Ri(y) +Ri(y, g

∆
s , e

−1/g∆
s )
]
MNPQ

= gaks

[
Rk +O(y, g∆

s , e
−1/g∆

s )
]
MNPQ

,

(2.51)

where ak = min(a1, a2, a3, a4) will govern the gs expansion for the particular Rie-
mann tensor. Of course many of the above gs powers cannot be realized because of
the absence of certain cross-terms in the metric. If we ignore these subtleties for the
time being, the curvature tensors take the following form:

RMNPQ =
(
g−14/3
s , g−8/3

s , g−2/3
s , g4/3

s , g10/3
s , g16/3

s

)
RMP = gNQRMNPQ =

(
1, g−6

s , g−4
s , g−2

s , g2
s , g

4
s , g

6
s

)
R = gMPRMP =

(
g−22/3
s , g−16/3

s , g−10/3
s , g−4/3

s , g2/3
s , g8/3

s , g14/3
s , g20/3

s

)
.

(2.52)

All the above gs scalings got using the curvature algebra assume the generic sce-
nario where the metric components are functions of all the coordinates of the four
manifold and, as mentioned earlier, cross-terms exist. However the former cannot
be imposed in the flux sector if we want to avoid time-neutral series with deriva-
tives on fluxes. Extending this to the metric components, we can assume that the
un-warped metric components and the warp-factors are all functions of the coordi-
nates ym of M4 implying that the curvature polynomials will also be functions of
ym.

The latter condition, i.e the presumption that all metric cross-terms exist, again
cannot be realized in our case because of the way we expressed the metric (2.3) and
the four-manifold (2.4). Thus a more careful considerations of the scalings of the
various tensor components are called for. Imposing the two constraints: (a) metric
components and the curvature tensors are functions ofM4 only; and (b) only cross-
terms satisfying the division (2.4) are allowed, the various curvature tensors scale
in the following way:

Rmnpq = g−2/3
s , Rabab = g10/3

s , Rabmn = Rambn = g4/3
s , Rαabβ = g10/3

s

Rmnαβ = g4/3
s , Rαβαβ = g10/3

s , Rαmnp = Rαanp = Rabcα = Ramnp = Raαβn = 0,

(2.53)

where we do not show the O(g∆
s , e

−1/g∆
s ) corrections that accompany all the curva-

ture tensors. Although the above set of tensors and their scalings are considerably
simpler than what one would have expected from a generic set-up of (2.52), the
generic scalings are nevertheless useful because they do not rely on the way we ex-
press the four-manifold. We are searching for a specific cosmological solution with
a specific internal space geometry; so we will stick with (2.53) for now and look for

8This implies that each of these four terms have a leading gs exponent followed by higher powers
of g∆

s and e−1/g∆
s .
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quantum series with zero and two free Lorentz indices. A zero free Lorentz index
quantum term now takes the following form:

Q3 = gmim
′
i ....gβqβ

′
q

{li}∏
{i}=1

RminipiqiRajbjajbjRpkqkakbkRαlalblβlRαpβpmpnpRαqβqαqβq

≡
[
g−1
]L1+L2+L3

{li}∏
{i}=1

[Ri] , (2.54)

where the set {i} denotes the set of i, j, k...p integers that determines the product of
all the available Riemann tensors with each set of Riemann tensors (and its various
permutations for a given set of indices) occur li, lj, lk, ...lp times. The second line is
a symbolic way to represent this using inverse metric components. It is clear that:

L1 = 2l2 + l3 + l4, L2 = 2l6 + l4 + l5, L3 = 2l1 + l3 + l5, (2.55)

with the assumption that l1, ..., l6 occur in the same order in which the curvature
tensors appear in the quantum piece Q3. In other words Rmnpq occurs l1 times, Rabab

occurs l2 times, and so on9. Similarly, L1, L2 and L3 denote the number of inverse
metric components along T2/G,M2 andM4 respectively10. Using this formalism,
and plugging in the appropriate gs scalings, it is easy to infer that:

Q3 ≡
[
g−1
]L1+L2+L3

{li}∏
{i}=1

[Ri] = g2(l1+l2+l3+l4+l5+l6)/3
s

(
1 +O(g∆

s , e
−1/g∆

s )
)
,

(2.56)

implying that the quantum piece Q3 can never be time-neutral. Such a conclusion is
interesting in the light of our earlier discussions with G-fluxes. Therein we had to
impose some minimal gs scalings for the G-flux components to avoid time-neutral
series. Here we see that the curvature terms avoid the time-neutrality without any
imposition of extra constraints. One would also like to infer what happens when
Fi(t) are not constrained by (2.8) but follow (2.2). For such a case the scaling turns

9An underlying assumption is that the Riemann tensors are contracted in appropriate ways so
that there is no need to explicitly insert the curvature scalar R or the Ricci tensor RMN in the expres-
sion (2.54) for Q3. This way we can also avoid differentiating between symmetric or anti-symmetric
Ricci tensors, namely R(MN) or R[MN ] respectively.

10The inverse metric components that we are using here have components gab,gαβ and gmn, and
in later sections we will use other space-time components like gij and g00. In this language the
symbolic representation of the inverse metric components in (2.54), i.e the symbol

[
g−1

]L1+L2+L3

may be expressed in the following way:

[
g−1

]L1+L2+L3 ≡
(
gab
)L1

(
gαβ

)L2
(gmn)

L3 ≡
L1,2,3∏
i,j,k

gaibigαjβjgmknk

in other words,
(
gMN

)Lk is defined as the following product
(
gMN

)Lk ≡
∏Lk

i=1 gMiNi where (M.N )
= (a, b), (α, β) or (m,n). More generic representations, that include space-time metrics in addition to
the internal space metrics, appear in (2.66) and in (2.79).
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out to be:

Q′3 = g2(l1+l2+l3+l4+l5+l6)/3
s

(
1 +O(g∆

s , e
−1/g∆

s )
)
, (2.57)

which is exactly the same scaling as in (2.56) despite that fact that now the met-
ric components have different gs scalings. The conclusion then remains the same
as above: there can be no time-neutral series with zero Lorentz index with only
curvature tensors.

What happens when we have two free Lorentz indices? The only changes that
can occur are in the values of L1, L2 and L3. This is again easy to quantify: if we
want free (a, b) Lorentz indices, all we need is to take (L′1, L2, L3) metric components
where L′1 = L1 − 1, with L1 being the value quoted in (2.55). Thus generically
we need L′j = Lj − 1 with j defining the three possible class of metric choices.
Putting everything together, the gs scaling may be expressed as gκs where κ takes
the following two values:

κ ≡ 2

3

6∑
i=1

li +
4

3
, κ ≡ 2

3

6∑
i=1

li −
2

3
, (2.58)

where the first one corresponds to indices along T2/G andM2 and the second one
corresponds to indices along M4. Note that since at least one of the li ≥ 1, κ ≥
0 where the strict inequality is for the first case. For the second case there is a
possibility for κ = 0 when l1 = 1, implying that the Ricci tensor Rmn is actually
time-neutral with or without Fi(t) being constrained by (2.8) as was also evident
from our curvature algebra (2.52). This will not be an issue as we will discuss later.

We now elaborate the quantum series with product of curvature tensors and
derivatives. As with the G-fluxes we will consider the case where the derivatives
are only along theM4 direction i.e all components of the metric are functions of the
internalM4 coordinates. The quantum terms now take the form:

Q4 = gmim
′
i ....gβqβ

′
q∂mr

....∂ms

 {li}∏
{i}=1

RminipiqiRajbjajbjRpkqkakbkRαlalblβl
Rαpβpmpnp

Rαqβqαqβq


≡

[
g−1

]L1+L2+L̂3
[∂]

n
{li}∏
{i}=1

[Ri] , (2.59)

where L1 and L2 are as given in (2.55) and L̂3 = L3 + n
2

where n is the number of
derivatives. It is now easy to derive the following gs scalings with zero free Lorentz
index:

Q4 = g2(l1+l2+l3+l4+l5+l6+n/2)/3
s

(
1 +O(g∆

s , e
−1/g∆

s )
)
, (2.60)

showing that there are no time-neutral series possible with curvature tensors and
derivatives without imposing any additional constraints. The above scaling re-
mains unchanged even if Fi(t) satisfy volume preserving condition (2.2). On the
other hand, if we demand two free Lorentz indices, the change is again minimal in
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the sense that the two κ values quoted in (2.58) unequivocally change by:

κ→ κ+
n

3
, (2.61)

which is always positive because we expect at least one of the li ≥ 1 and n > 1.
Thus with derivatives there appears no possibilities of having time-neutral series
whether or not Fi(t) are constrained by (2.8).

Adding space-time curvatures with derivatives

The inclusion of space-time curvature contributions is another aspect of the curva-
tures that is going to change our results. So far we have steered clear of space-time
effects, namely fluxes and metric components along the space-time directions, but
now it is time to include them in our quantum series. The space-time metric in M-
theory scales as gµν ∼ g

−8/3
s which is different from all the metric scalings in the

internal space. The gs scalings of the curvature tensors with legs along the spatial
directions are easy to illustrate:

Rijij = g−14/3
s , Rijmn = g−8/3

s , Riajb = g−2/3
s , Riαjβ = g−2/3

s ,

(2.62)

with other spatial components vanishing. Compared to (2.53), the spatial curvature
tensors have predominantly negative powers of gs scalings.

The curvature tensors with at least one temporal direction is bit more involved
because of the time dependences of the various warp-factors creating numerous
cross-terms. Nevertheless the gs scalings can be determined uniquely for each of the
curvature tensors. For the present case we have the following tensor components:

R0mnp = g−5/3
s , R0m0n = g−8/3

s , R0i0j = g−14/3
s , R0a0b = g−2/3

s

R0α0β = g−2/3
s , R0αβm = g1/3

s , R0abm = g1/3
s , R0ijm = g−11/3

s ,

(2.63)

including various possible permutations of each components. The gs powers are
again predominantly negative, and the scalings are computed taken all the earlier
considerations of the dependence of the metric components only on the coordinates
ofM4. Of course, as before, we have not specified theO(g∆

s , e
−1/g∆

s ) corrections that
accompany each of the curvature tensors listed in (2.62) and (2.63).

With the curvature scalings at our disposal, let us work out the quantum terms
with product of the curvature tensors. Comparing with (2.53), (2.62) and (2.63) we
see that there are 18 distinct curvature tensors excluding the allowed permutations
of the indices of the individual tensors. Therefore to write the full quantum terms,
we resort to some short-hand techniques. We define:

(RMNPQ)li ≡
li∏
k=1

RMkNkPkQk , (2.64)
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where the subscript denote the various possible permutations and products of the
curvature tensor for a give set of indices. Using this notation we can express the
quantum piece, appearing from the curvature tensors only, in the following way:

Q5 = gmim
′
i ....gjkj

′
k (Rmnpq)

l1 (Rabab)
l2 (Rpqab)

l3 (Rαabβ)l4 (Rαβmn)l5 (Rαβαβ)l6

× (Rijij)
l7 (Rijmn)l8 (Riajb)

l9 (Riαjβ)l10 (R0mnp)
l11 (R0m0n)l12 (R0i0j)

l13

× (R0a0b)
l14 (R0α0β)l15 (R0αβm)l16 (R0abm)l17 (R0ijm)l18 , (2.65)

where the components of the warped inverse metric are used to contract the indices
of the curvature tensors in a suitable way (extra care needs to be implemented to
contract the indices because of the anti-symmetry of the first two and the last two
indices of a given curvature tensor). In a compact notation, (2.65) may be written
as:

Q5 ≡
[
g−1
]E1+E2+E3+E4+E5

18∏
i=1

(RMNPQ)li , (2.66)

where the term in the bracket is defined in terms of individual components in (2.64)
and thus should be expanded accordingly. The powers of the inverse metric com-
ponents Ei are linear functions of li and may be expressed as:

E1 = 2l7 + l8 + l9 + l10 + l13 + l18 (2.67)

E2 =
l11

2
+ l12 + l13 + l14 + l15 +

l16

2
+
l17

2
+
l18

2

E3 = 2l1 + l3 + l5 + l8 +
3l11

2
+ l12 +

l16

2
+
l17

2
+
l18

2
E4 = 2l2 + l3 + l4 + l9 + l14 + l17, E5 = l4 + l5 + 2l6 + l10 + l15 + l16,

where E1, E2, ...., E5 count the metric components along (i, j), (0, 0), (m,n), (a, b),
and (α, β) respectively. Since we are only after the gs scalings, such a counting of
the metric components would make sense. Therefore using the gs scalings of the
metric components as well as the curvature tensors from (2.53), (2.62) and (2.63), it
is easy to see that the gs scaling of Q5 becomes:

Q5 = g2(l1+l2+l3+l4+.......+l17+l18)/3
s

(
1 +O(g∆

s , e
−1/g∆

s )
)
, (2.68)

which is a generalization of similar scaling for the part of the product of the cur-
vature tensors in (2.56). The conclusion then is also the same, namely, there is no
time-neutral series possible with product of curvature tensors only.

With multiple derivatives we can also work out the quantum terms. The deriva-
tives are going to act only on the internalM4 coordinates, so the correction to the
gs scaling is easy to ascertain. The derivative action will only change E3 in (2.67) to
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E3 → E3 + n
2

where n is the number of derivatives. This implies:

Q6 ≡
[
g−1
]E1+E2+E3+E4+E5+n/2

[∂]n
(

18∏
i=1

(RMNPQ)li

)
= g2(l1+l2+l3+l4+.......+l17+l18+n/2)/3

s

(
1 +O(g∆

s , e
−1/g∆

s )
)
, (2.69)

with no possibility of any time-neutral series. This is expectedly similar to what we
had in (2.60), and thus justifying the genericity of the arguments presented earlier.

With two free Lorentz indices the story should again be similar to what we had
earlier. However, because of the possibility of multiple indices, things would be
slightly involved. For example if we want free (i, j) Lorentz indices we convert E1

to E1 − 1 and keep other Ei unchanged. We can quantify such changes by using
a simple formalism. Let k = (k1, k2) such that k identifies the subscript in Ek and
(k1, k2) identify the Lorentz indices. For example if k = 1 then k1 ≡ xi and k2 ≡ xj .
Using this let us define Ek(w, z) as:

Ek(w, z) ≡ Ek − δwk1δzk2 , (2.70)

with Ek as in (2.67). The above form easily gives us the required exponent. For
example Ek(m,n) = Ek for k 6= 3 and E3(m,n) = E3 − 1. With this, the quantum
terms with two free Lorentz indices will simply be:

Q7(w, z) ≡
[
g−1
]∑

k Ek(w,z)+n/2
[∂]n

(
18∏
i=1

(RMNPQ)li

)
, (2.71)

where the choice of (w, z) specify which two Lorentz indices we want to keep free.
Some care needs to be imposed in interpreting the results as the derivation of the
curvature tensors did not have cross-terms. So indices like w = a, z = m has no
meaning here. After the dust settles, the gs scaling for (2.71) may be expressed as gχs
where χ takes the following three values:

χ ≡ 2

3

18∑
i=1

li +
n

3
− 8

3
, χ ≡ 2

3

18∑
i=1

li +
n

3
− 2

3
, χ ≡ 2

3

18∑
i=1

li +
n

3
+

4

3
,

(2.72)

where the first one corresponds to two free Lorentz indices (i, j) and (0, 0); the sec-
ond one corresponds to two free Lorentz indices alongM4, i.e (m, , n); and the third
one corresponds to two free Lorentz indices alongM2 and T2/G i.e (α, β) and (a, b)
respectively. Note that the relative minus signs for the first two values of χ shows
the possibility of time-neutral terms. For the first case, looking at E2 in (2.67), and
imposing:

l12 = l13 = l14 = l15 = 1, n = 0, (2.73)

with all other li vanishing gives us χ = 0. This exactly leads to a quantum term
that appears from the contraction gABR0A0B with (A,B) spanning the four allowed
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choices, namely, (i, j), (m,n), (a, b) and (α, β), as:(
g00
)3

gαβgabgijgmnR0m0nR0i0jR0a0bR0α0β ∈
(
g00R00

)4
g00, (2.74)

where the LHS is the time-neutral piece in the expansion of the complete term given
in the RHS, which for brevity be called the time-neutral R00 term. In a similar vein,
one can argue for time-neutral Rij for the first case and time-neutral Rmn for the
second case. In fact the space-time terms appear from expanding (gµνRµν)

4 gMN

with (M,N ) spanning (0, 0), and (i, j) indices; whereas the (m,n) term simply ap-
pears for Rmn. Finally, the third case tells us that there are no time-neutral terms
possible with either (a, b) or (α, β) indices.

The case with Fi(t) satisfying (2.2) with the inverses having perturbative ex-
pansions should in principle be redone in the light of the new gs scalings to the
curvature tensors. At this stage, one might even generalize the story from (2.7) to:

F1(t)F 2
2 (t) =

(
g2
s√
h

) γ
2

, (2.75)

with |γ| ∈ Z such that γ = 0, 2 correspond to (2.2) and (2.8) respectively. Although
most others values of γ are not useful for us, it is nevertheless interesting to specu-
late the fate of our background for generic choice of γ. Incidentally, the only scalings
that are affected are:

Rαβαβ = g2γ−2/3
s = g−2/3

s , Rmnαβ = gγ−2/3
s = g−2/3

s , Rαabβ = gγ+4/3
s = g4/3

s

Rijαβ = gγ−8/3
s = g−8/3

s , R0αβm = gγ−5/3
s = g−5/3

s , R0α0β = gγ−8/3
s = g−8/3

s ,

(2.76)

where on the extreme RHS of every equation we have put γ = 0 to relate the result
for (2.2). All these affected components have legs alongM2 but are functions ofM4

only. Once the derivative constraints are removed for the case (2.2), the scalings
(2.76) also work perfectly as shown in Table 2.1. Putting these curvatures together
and introducing n derivatives, lead to exactly the same gs scalings for the quantum
terms that we had in above for both zero and two free Lorentz indices for any choice
of γ. No extra conditions are needed and thus we share the same conclusion of the
non-existence of time-neutral series with curvatures and multiple derivatives as
before.

Product of curvatures, G-fluxes and derivatives

We have previously demonstrated how, by choosing G-fluxes and curvature tensors
and combining them independently with multiple derivatives, they do not lead to
time-neutral quantum terms. Various cases were elaborated exhaustively by allow-
ing F1(t) and F2(t) to satisfy either (2.8) or a variant of (2.2) where each of their
inverses have perturbative expansions in terms of gs. It is now time to combine all
of these together to write quantum terms as a combinations of G-fluxes, curvature
tensors and their covariant derivatives.

Our starting point is of course the G-flux ansatze (2.13) where we will assume
that ∆k ≥ 3

2
, so as to comply with earlier constraints (although for certain cases
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Riemann tensors for (2.8) gs scalings Riemann tensors for (2.2)

Rmnpq −2
3

Rmnpq,Rmnpα,Rmnαβ,Rmααβ,Rαβαβ

Rmnab,Rmnαβ
4
3

Rmnab,Rmαab,Rαβab

Rabab,Rabαβ,Rαβαβ
10
3

Rabab

Rmnp0 −5
3

Rmnp0,Rmnα0,Rmαβ0,R0ααβ

Rmnij,R0m0n −8
3

Rmnij,Rmαij,Rαβij,R0m0n,R0α0β,R0m0α

Rm0ij −11
3

Rm0ij,Rα0ij

Rijij,R0i0j −14
3

Rijij,R0i0j

R0mab,R0mαβ
1
3

R0mab,R0αab

Rabij,R0a0b,Rαβij,R0α0β −2
3

Rabij,R0a0b

TABLE 2.1: The gs scalings of the various curvature tensors associated
with the two cases (2.2) and (2.8). These curvature tensors form the es-
sential ingredients of the quantum terms (2.94) and (2.78) respectively.
The numbers in the middle column, say for example−2

3 , should be un-

derstood as
(gs
H

)−2/3 where H4(y) ≡ h(y) is the warp-factor appearing
in (2.1) and (2.3).

we will see that ∆k ≥ 1
2

suffice). However compared to what we analyzed before,
we will now have to take individual components of G-fluxes carefully. The compo-
nents that we want to consider are listed in (2.16). This way, when we consider the
individual components of the curvature tensors in (2.53), (2.62) and (2.63) we will
be able to quantify the behave of the quantum terms more accurately.

To start, it is instructive then to specify the product of individual components of
G-flux using a notation similar to (2.64) for the product of curvature tensors. This
means, we define:

(GMNPQ)li ≡
li∏
k=1

GMkNkPkQk , (2.77)

the difference now being the complete anti-symmetry of the indices as compared to
pair-wise anti-symmetry of the indices for the curvature tensors. Other than this,
the two definitions, (2.77) and (2.64), are similar in spirit.

Therefore combining the pieces of the curvature tensors and derivatives as in
(2.69) and using the definition (2.77) to insert in the G-fluxes listed from (2.16), we
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get the following representation of the quantum terms:

QT = gmim
′
igmlm

′
l ....gjkj

′
k∂m1∂m2 .....∂mn (Rmnpq)

l1 (Rabab)
l2 (Rpqab)

l3 (Rαabβ)l4

× (Rαβmn)l5 (Rαβαβ)l6 (Rijij)
l7 (Rijmn)l8 (Riajb)

l9 (Riαjβ)l10 (R0mnp)
l11

× (R0m0n)l12 (R0i0j)
l13 (R0a0b)

l14 (R0α0β)l15 (R0αβm)l16 (R0abm)l17 (R0ijm)l18

× (Gmnpq)
l19 (Gmnpα)l20 (Gmnpa)

l21 (Gmnαβ)l22 (Gmnαa)
l23 (Gmαβa)

l24

× (G0ijm)l25 (G0ijα)l26 (Gmnab)
l27 (Gabαβ)l28 (Gmαab)

l29 (2.78)

where we have inserted in all the available pieces of G-flux and the curvature ten-
sors. Each of the pieces, either from the G-fluxes or curvatures, will have additional
components. For example Rmnpq will have 36 components (excluding the permu-
tations), and so on. Additionally each of the components are raised to li powers
giving rise to an elaborate set of terms. Note that we can now take advantage of
the underlying anti-symmetries of the curvatures to contract some of the Riemann
tensors to create anti-symmetric Ricci tensors of the form R[MN ]. Of course the Ricci
scalar R would also participate in the game as before. We can also express (2.78) in
a condensed form as:

QT ≡
[
g−1
]H1+H2+H3+H4+H5+n/2

[∂]n
(

18∏
i=1

(RMNPQ)li
29∏

k=19

(GRSTU)lk

)
,

(2.79)

which for a given choice of {li} determines a specific quantum term with the func-
tional form for Hk(lj) to be determined soon. Since any such term has zero free
Lorentz index, one may take arbitrary linear combinations of powers of this term.
Such combinations lead to a complicated structure of the quantum series. Note that
a term like (2.79) is suppressed by Mσ

p where:

σ ≡ σ({li}, n) = n+ 2
18∑
i=1

li +
29∑

k=19

lk. (2.80)

The above quantum terms (2.78) are generic enough but they could also have pow-
ers of metric components along-with the G-fluxes and curvature tensors11. How-
ever since these metric components will not change the values of Hk functions, we
don’t specify them here. Additionally all the derivatives should be replaced by co-
variant derivatives, but since we are taking the fluxes and curvatures, these extra
pieces will appear from suitable combinations of these components. One may then

11Taking advantage of the underlying pair-wise anti-symmetry of the curvature tensors and full
anti-symmetry of the G-fluxes, two other possibilities exist for (2.78) once we remove the derivatives.
One: we can suitably contract the indices using eleven-dimensional epsilon tensor (i.e the eleven-
dimensional Levi-Civita tensor and not tensor density); and two: we can suitable contract the indices
using eleven-dimensional Gamma matrices. Since they don’t change the gs scalings (2.84) and (2.86),
we will discuss them in the next section.
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express the quantum potential as:

VQ ≡
∑
{li},n

∫
d8y
√

g8

(
Q({li},n)
T

M
σ({li},n)−8
p

)
, (2.81)

where the superscript on QT denotes the specific choice of li and n in (2.78) with
σ as in (2.80) to make it dimensionless. The factor of determinant of the eight-
dimensional warped metric is same for all terms in the potential (2.81), so we will
not count it’s gs contribution in the following, unless mentioned otherwise12. How-
ever once we go to the non-local contributions to the potential, this determinant will
occur multiple times, and then they will contribute to the gs scaling of the potential.

How about other extra components of G-fluxes and curvature tensors that do
not appear in the data specifying the background informations? For example vari-
ous cross-terms in the metric would give rise to extra curvature tensors. Similarly
cross-terms in the G-fluxes would contribute extra flux components in (2.78). This
is where the Wilsonian viewpoint becomes immensely useful. The quantum terms
are indeed specified by all components of fluxes, derivatives and curvature tensors
appearing from fluctuations over a given background, but we can integrate out the
components that are not necessary to specify the background data. Such integrating
out modes will result in an infinite series of quantum terms of the form (2.78), thus
justifying our approach of expressing the quantum series with arbitrary values for
li. With this in mind, the Hk functions may be expressed in terms of the following
linear combinations of li:

H1 = E1 + l25 + l26, H2 = E2 +
l25

2
+
l26

2

H4 = E4 +
l21

2
+
l23

2
+
l24

2
+ l27 + l28 + l29

H5 = E5 +
l20

2
+ l22 +

l23

2
+ l24 +

l26

2
+ l28 +

l29

2

H3 = E3 + 2l19 +
3l20

2
+

3l21

2
+ l22 + l23 +

l24

2
+
l25

2
+ l27 +

l29

2
+
n

2
,

(2.82)

where E1, ..., E5 functions, which are themselves expressed as linear combinations
of li, are defined in (2.67); and (H1, ..., H5) denote inverse metric components along
(i, j), (0, 0), (m,n), (a, b) and (α, β) respectively. The story now proceeds in exactly
the same way as outlined in the previous section. The gs scaling of the quantum

12In any case the determinant will only contribute g−2/3+γ
s to the overall scaling with γ defined

in (2.75). Since this does not effect any of the conclusions, we will avoid inserting it in our analysis,
unless mentioned otherwise.
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piece with zero free Lorentz index may be expressed as:

QT ≡ gθks

(
1 +O(g∆

s , e
−1/g∆

s )
)

≡
[
g−1
]H1+H2+H3+H4+H5+n/2

[∂]n
(

18∏
i=1

(RMNPQ)li
29∏

k=19

(GRSTU)lk

)
,

(2.83)

where θk is the scaling parameter that may now be computed by combining all the
information that we have assimilated together, namely from the G-flux scaling in
(2.13) to the curvature scalings in (2.63). The result is:

θk =
2

3

18∑
i=1

li +
n

3
+
l25

3
− 2l26

3
+

(
2∆k +

4

3

)
l19 +

(
2∆k +

1

3

)
(l20 + l21)

+

(
2∆k − 2

3

)
(l22 + l23 + l27) +

(
2∆k − 8

3

)
l28 +

(
2∆k − 5

3

)
(l24 + l29) ,

(2.84)

where k specifies the minimum gs scaling of the G-flux components in (2.13). We
expect this to be positive definite if we want the quantum terms in (2.78) to have no
time-neutral pieces. Unfortunately the relative minus signs in (2.84) are worrisome,
so there should be a way to demonstrate the positivity of (2.84). First, it is easy
to see that if ∆k > 4

3
most of the terms, except the one with l26, become positive

definite13. This is where our earlier analysis comes in handy, as we have already
argued that ∆k ≥ 3

2
therein! Secondly, if l26 vanishes then we are out of water. Can

we make l26 = 0 here? Looking at (2.78), we see that l26 appears with G0ijα. It is
clear from [14, 15] that:

G0ijα = −∂α
(

ε0ij
h(y)Λ2|t|4

)
= 0, (2.85)

because we have assumed in the earlier sections that all quantities are functions of
theM4 coordinates, and are thus independent of yα. With these, we now see that
θk > 0 and therefore Fi(t) satisfying (2.8), there are no time-neutral series altogether.

What happens when Fi(t) satisfy the volume-preserving condition (2.2)? The
analysis becomes a bit more tricky because the metric components along (α, β) di-
rections scale differently and so do the curvature tensors. The new scalings of the
curvature tensors are now (2.76). After the dust settles, the scaling of the quan-
tum terms (2.78) can be expressed as gθ

′
k
s , with additional O(g∆

s , e
−1/g∆

s ) corrections,

13If ∆k = 4
3 then the coefficient of l28 vanishes, implying that we can insert an arbitrary number

of Gabαβ components without changing the scaling. This will create a hierarchy issue similar to what
we encountered in [15].
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where θ′k now takes the following value:

θ′k =
2

3

18∑
i=1

li +
n

3
+

1

3
(l25 + l26) +

(
2∆k +

4

3

)
(l19 + l20 + l22)

+

(
2∆k +

1

3

)
(l21 + l23 + l24) +

(
2∆k − 2

3

)
(l27 + l28 + l29) .

(2.86)

Here we now notice a few important differences from (2.84); one, the coefficient of
l26 is positive, so the constraint (2.85) is not necessary; and two, we only require
∆k > 1

3
for θ′k to be a positive definite quantity14. In addition to that we can relax

the derivative constraint, which was originally alongM4, to the full six dimensional
internal manifoldM4 ×M2 because now both the metric components along (m,n)
and (α, β) scale as g−2/3

s . (This will lead to some subtleties that we will deal a bit
later.) In other words, if there are n1 derivatives alongM4 and n2 derivatives along
M2, then n in (2.86) can be replaced for the two cases, (2.2) and (2.8), respectively
by:

n → n1 + n2, n → n1 − 2n2, (2.87)

where the relative minus sign for the second case, i.e for background satisfying (2.8),
requires n2 = 0 to preserve the positivity of θ in (2.84). Interestingly for k = 0, the
condition becomes:

θ′0 =
2

3

18∑
i=1

li +
n

3
+

1

3
(l21 + l23 + l24 + l25 + l26) +

4

3
(l19 + l20 + l22)− 2

3
(l27 + l28 + l29) ,

which by construction cannot always be positive definite. In fact the above scaling
corresponds precisely to the scalings that we advocated in [15] with time-independent
internal space and time-independent G-flux. Of course there were no derivative
constraints therein so we could even retain l26 which, in turn, also allows us to re-
tain l27, l28 and l29, i.e G-fluxes with two indices along (a, b) directions. Since this is
important, let us clarify it in some details. To start, we define a scalar function along
a compact direction z as

Φ(z) =
∑
k

φ(k)eikz, (2.88)

with k = l
R

where l ∈ Z and R is the radius of the z-circle. Additionally, we impose
φ∗(k) = φ(−k) so that Φ(z) remains real. Using this, we can define a three-form:

CMN3(ym, yα, x11) ≡ CMN3(ym, yα)⊗ Φ(x11), (2.89)

14As will be clearer later, this condition is exactly equivalent to the condition ∆k ≥ 1
2 . Again im-

posing ∆k = 1
3 would make the coefficients of (l27, l28, l29) vanish, implying the possibility of intro-

ducing an infinite possible combinations of Gmnab,Gabαβ and Gmαab components without changing
θ′k in (2.86). As mentioned above, this will create similar problem as in [15].
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where (M,N) span coordinates ofM4 ×M2 and (x3, x11) are the periodic coordi-
nates of T2/G such that Φ(x11) is the zero-form on the torus that is not projected out
by the G action. This also implies that the G-flux components are taken to be func-
tions of all the coordinates15 of the eight manifold except x3, so components like
GMNab ≡ 1

3!
∂[11CMN3] would lead to, in addition to other possible fields, a RR field

C(2)
MN(ym, yα) in the type IIB side. For l ≥ 1, we get KK modes l/R11, with R11 being

the warped radius of the eleventh direction (which in turn will be related to gs as
shown in (??)). As R11 increases, the modes (2.89) become lighter and we can no
longer integrate them out! These light degrees of freedom now contribute to l27, l28

and l29 in (2.78) and therefore, from [15], time-neutrality for θ′0 now happens when:

l27 + l28 + l29 +
3l21

2
=
n

2
+

18∑
i=1

li + 2
22∑
j=19

lj +
1

2

26∑
k=23

lk, (2.90)

with n being the number of derivatives that satisfy the first relation in (2.87). Since
the li’s have no additional constraints, (2.90) constitutes one relation between thirty
variables, and as such will have infinite number of solutions, leading to the break-
down of an EFT description16. A particular set of choice for the li numbers, lets
call them {li, r} such that for integer choice of r we can allow different choices for
{li} = (l1, l2, ..., l29), satisfying (2.90) would constitute a time-neutral quantum term
of the form (2.78). Each of these quantum terms may in turn be arranged together
as:

Q(0)
T{i} ≡

∑
k1,k2,..

Ck1k2...k∞

∞∏
r=1

(
QT,{li,r}

M
σ({li,r})
p

)kr

, (2.91)

where the superscript denote time-neutrality and the subscript {i} = (1, 2, ..., 29).
The power of Mp can be read off from (2.80) for a given choice of {li, r} and fur-
nish the inverse powers of Mp in the quantum series to keep them dimensionless.
The series (2.91) thus constitute the infinite class of time-neutral quantum pieces
elaborated in [15].

The above construction gives a satisfying answer to the question of the non-
existence of an EFT description in the set-up with time-independent fluxes in [15],
although one question could be raised at this point. Since R11 → 0 decouples all the
degrees of freedom coming from the KK states of GMNab, and clearly the vanish-
ing of the warped eleven-dimensional radius is also a necessary condition to go to
type IIB, couldn’t we just decouple all the dangerous states and study the resulting
EFT? The answer to this question lies in the three scaling behaviors that we derived
earlier, namely (2.84), (2.86) and (2.88). For (2.84) and (2.86), whether or not we

15As we saw before, they are also functions of (g∆
s , e

−1/g∆
s ) which we suppress to avoid clutter.

16Such a train of thought is particularly consistent with the swampland conjecture as presented in
[6]. In particular the swampland distance conjecture should be associated to the distance in the field
space where the KK modes in (2.88) and (2.89) start becoming light. Note that one can potentially
develop a similar story with three-form field components along x3 direction as in (2.89). In such a
picture, as the x3 circle increases, the KK modes become lighter and start creating the same issues
as above. However the x3 dependences ruin the Busher’s duality employed to convert the type IIB
background to type IIA in the first place.
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switch on (l27, l28, l29), they are always positive definite and therefore cannot create
time-neutral series anywhere in the moduli space of M-theory. This is clearly not
the case for (2.88), which does create an infinite class of time-neutral series as in
(2.90). Thus although gs → 0 provides a false aura of a healthy EFT with θ′0 scaling
in (2.88), it quickly disappears as we go away from this limit: a property not shared
by (2.84) and (2.86) for (2.8) and (2.2) respectively.

All the three scalings discussed above, namely (2.84), (2.86) and (2.88) are related
to special choices of γ in (2.75). If we make an arbitrary choice of γ then the gs scaling
of the quantum term (2.78) becomes gθ(k,γ)

s , where θ(k, γ) is:

θ(k, γ) =
2

3

18∑
i=1

li +
n

3
+
l25

3
+

(
2∆k +

4

3

)
l19 +

(
2∆k +

1

3

)
l21 +

(
2∆k − 2

3

)
l27

+

(
2∆k +

4

3
− γ

2

)
l20 +

(
2∆k +

4

3
− γ
)
l22 +

(
2∆k +

1

3
− γ

2

)
l23 +

(
2∆k +

1

3
− γ
)
l24

+

(
1

3
− γ

2

)
l26 +

(
2∆k − 2

3
− γ
)
l28 +

(
2∆k − 2

3
− γ

2

)
l29, (2.92)

where the first line is generic to all choices of γ, but the second and the third lines
specifically depend on what value γ takes. Plugging in γ = 0, 2 one may easily
derive (2.2) and (2.8) respectively. It should also be clear that 3γ+2

3
is the largest

attainable value with a relative minus sign, implying that it is only the coefficient
of l28 that can determine the lower bound on k to avoid time-neutral series. For the
present case, this happens when:

∆k >
1

3
+
γ

2
, (2.93)

from where one may easily derive the two earlier bounds we had. As γ increases the
lower bound on k increases. Since ∆k determines the lowest power of gs for G-flux in
(2.13) or (2.28), it implies that the lowest power is bigger for bigger γ. On the other
hand γ from (2.75) also tells us the deviation of the four-dimensional Newton’s
constant from its standard constant value. Consequently, a more un-natural choice
for Newton’s constant is directly proportional to a more un-natural choice of the
gs dependence (or temporal dependence) of the G-flux components. Additionally,
for γ ≥ 1, the coefficient of l26 starts becoming negative thus making (2.93) prone
to creating time-neutral series. The only way out appears from imposing (2.85).
Thus for γ ≥ 1 the fields can only be functions of theM4 coordinates to avoid the
breakdown of a EFT description of the system. This second level of un-naturalness
prompts us to ask whether this is the reason why nature chooses the simplest value
of γ = 0 in (2.75) and (2.92). We will speculate on this interesting possibility in
section 3.1.

Let us pause for a moment to absorb the consequence of the two lessons that
we learnt from generic choice of γ in (2.92). One, larger γ makes k larger from
(2.93), and two, larger γ also makes the coefficient of l26 negative. Thus γ = 0 and
γ > 0 share different physics: γ = 0 no longer requires any derivative constraints
so we can assume that all fields are functions of M4 × M2; whereas γ > 0 has
derivative constraint because of (2.85). For both cases however we will keep the
fields independent of T2/G. Relaxing the derivative constraints for γ = 0 will create
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new components of curvature tensors that should modify (2.78) to the following:

QT = gmim
′
igmlm

′
l ....gjkj

′
k∂m1 ..∂mn1

∂α1 ..∂αn2
(Rmnpq)

l1 (Rabab)
l2 (Rpqab)

l3 (Rαabβ)l4

× (Rαβmn)l5 (Rαβαβ)l6 (Rijij)
l7 (Rijmn)l8 (Riajb)

l9 (Riαjβ)l10 (R0mnp)
l11

× (R0m0n)l12 (R0i0j)
l13 (R0a0b)

l14 (R0α0β)l15 (R0αβm)l16 (R0abm)l17 (R0ijm)l18

× (Rmnpα)l19 (Rmαab)
l20 (Rmααβ)l21 (Rmαij)

l22 (R0mnα)l23 (R0m0α)l24 (R0αβα)l25

× (R0abα)l26 (R0ijα)l27 (Gmnpq)
l28 (Gmnpα)l29 (Gmnpa)

l30 (Gmnαβ)l31 (Gmnαa)
l32

× (Gmαβa)
l33 (G0ijm)l34 (G0ijα)l35 (Gmnab)

l36 (Gabαβ)l37 (Gmαab)
l38 , (2.94)

where (n1, n2) are the number of derivatives along M4 and M2 directions respec-
tively. Compared to (2.78), there are now nine extra pieces of curvature tensors,
totalling to 38 total pieces of fluxes and curvature tensors. Each of these will have
the required copies because of the li factors, in addition to the internal permutations
as mentioned earlier. Such a quantum term has a Mp suppression of the form Mσ

p ,
where:

σ ≡ σ({li}, n1, n2) = n1 + n2 + 2
27∑
i=1

li +
38∑

k=28

lk, (2.95)

which may be compared to (2.114): the changes coming from new derivatives and
new curvature tensors. We also expect both Hi in (2.82) and Ei in (2.67) to change
to H̃i and Ẽi respectively. The change in the latter may be quantified as:

Ẽ5 = E5 +
l20

2
+

3l21

2
+
l22

2
+
l23

2
+
l24

2
+

3l25

2
+
l27

2

Ẽ1 = E1 + l22 + l27, Ẽ2 = E2 +
l23

2
+ l24 +

l25

2
+
l26

2
+
l27

2

Ẽ3 = E3 +
3l19

2
+
l20

2
+
l21

2
+
l22

2
+ l23 +

l24

2
, Ẽ4 = E4 + l20 + l26,

with En as defined in (2.67). The change in (2.82) is now easy to determine: all the
subscript would shift by +9 in addition to an extra contribution to H̃5 coming from
the derivatives. The overall change is:

H̃1 = Ẽ1 + l34 + l35, H̃2 = Ẽ2 +
l34

2
+
l35

2

H̃4 = Ẽ4 +
l30

2
+
l32

2
+
l33

2
+ l36 + l37 + l38

H̃5 = Ẽ5 +
l29

2
+ l31 +

l32

2
+ l33 +

l35

2
+ l37 +

l38

2
+
n2

2

H̃3 = Ẽ3 + 2l28 +
3l29

2
+

3l30

2
+ l31 + l23 +

l33

2
+
l34

2
+ l36 +

l38

2
+
n1

2
,

(2.96)

which expectedly takes the form similar to (2.82), with minor differences. One may
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also see that the quantum term in (2.94) scale with respect to gs as gθ
′
k
s , with addi-

tional O(g∆
s , e

−1/g∆
s ) corrections,

θ′k =
2

3

27∑
i=1

li +
n1 + n2

3
+

1

3
(l34 + l35) +

(
2∆k +

4

3

)
(l28 + l29 + l31)

+

(
2∆k +

1

3

)
(l30 + l32 + l33) +

(
2∆k − 2

3

)
(l36 + l37 + l38) ,

(2.97)

where the only change from (2.86) is from 2/3 curvature contributions from the
additional Riemann tensors and 1/3 derivative contributions from the derivatives
along M2 directions. Note that these additional contributions do not change the
sign and therefore the story remains unaltered from what we had earlier. When
k = 0, we can further relax the derivative contributions to involve derivatives along
T2/G directions. This will involve more curvature tensors and additional n3 deriva-
tives with (a, b) indices. The extra curvature components will again add +2/3 to
(2.97) whereas the derivatives will add −4n3/3. If l(p)i denote the proliferation of
each li components due to the relaxation of the derivative constraints in (2.94), then
(2.88) changes to:

θ′0 =
2

3

∑
p

27∑
i=1

l
(p)
i +

n1 + n2

3
− 2n3

3
+

1

3

(
l30 +

4∑
p=1

l31+p

)
+

4

3
(l28 + l29 + l31)− 2

3

3∑
q=1

l35+q,

(2.98)

which as noted above differs from (2.88) by the appearance of another set of relative
minus signs from the derivatives along the toroidal direction. This makes it prone
to creating additional time neutral series from θ′0 = 0. The condition for this to
happen now becomes:

l36 + l37 + l38 + n3 +
3l30

2
=
n1 + n2

2
+
∑
p

27∑
i=1

l
(p)
i + 2

31∑
j=28

lj +
1

2

35∑
q=32

lq,

which can be compared to (2.90) and again has more issues as expected leading to
the problems with an effective field theory description pointed out in [15]. Inter-
estingly, although the proliferation of curvature tensors do not change much of the
story, the proliferation of derivatives along T2/G tends to worsen the problem.

With two free Lorentz indices we need to again discuss the two cases pertaining
for (2.8) and (2.2). The second case can be further fine-tuned to discuss the scenario
advocated in [15], as we have done so far. The story for either of these cases remain
simple as before. For (2.8), it is easy to see that the gs scaling changes from (2.84) to
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the following three values17:

θk →
(
θk −

8

3
, θk −

2

3
, θk +

4

3

)
, (2.99)

where the first one corresponds to free Lorentz indices along (i, j) and (0, 0) direc-
tions; the second one corresponds to free Lorentz indices alongM4 i.e along (m,n)
directions and the third one corresponds to free Lorentz indices along T2/G andM2

i.e along (a, b) and (α, β) directions respectively. On the other hand, θ′k also changes
from (2.97) in the aforementioned way:

θ′k →
(
θ′k −

8

3
, θ′k −

2

3
, θ′k +

4

3

)
, (2.100)

for both ∆k > 1
3

and k = 0, with the difference being the second one now cor-
responds to both (m,n) as well as (α, β) directions as a consequence of identical
scalings for the metric components along these directions for the case (2.2) and [15].

Let us now elaborate the scaling behavior in bit more details. For the case (2.97)
with ∆k > 1

3
we first note that switching on any components of G-fluxes or cur-

vature tensors, θ′k ≥ 1/3 and therefore makes every term in (2.97) positive definite,
thus ruling out all time-neutral series with zero Lorentz indices along directions
(i, j), (0, 0), (m,n), (a, b) and (α, β). With two Lorentz indices, there are no time-
neutral series at least along the (a, b) directions as is evident from both (2.99) and
(2.100). Along (m,n) and (α, β) directions, for (2.97), there are a few cases. Since
every Riemann tensor contribute an overall factor of 2/3 to θ′k, it is easy to see that
we need at most one of:

(l1, l5, l8, l11, l12) , and (l4, l5, l6, l10, l15, l16) , (2.101)

for (m,n) and (α, β) indices respectively, to cancel the factor of 2/3 in (2.100). In fact
it is easy to see that we can only get two time-neutral pieces of the form Rmn and
Rαβ , using combinations of curvature tensors. Using G-fluxes, naively either of the
three choices l34 = 2, l35 = 2 and l34 = l35 = 1 can cancel the 2/3 factor in (2.100).
These are all easily eliminated as they imply either H̃2, H̃5 or H̃3 in (2.96) to be half-
integers18. If we take k = 1 in (2.97), then the only other choices are associated with
integer values for (l36, l37, l38). Taking l36 = 2, l37 = 2 or l38 = 2 always make H̃4 = 2

and depending on the choices (H̃3, H̃5) = (0, 1) or (1, 0) from (2.96) respectively give

17Although li > 0 always, Hi from (2.82) or Ei from (2.67), when two free Lorentz indices are
allowed, can take integer values starting from −1, i.e Hi ≥ −1 and Ei ≥ −1. Similar criteria emerge
from (2.96) and (2.96). The negative value implies inserting a metric component, i.e the inverse of an
inverse metric component, in either cases.

18Subtleties with half-integers will be discussed later.
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rise to the following two set of tensors19:

Λ(11)
mn ≡

gbdgacgαβGmαabGnβcd

M2
p

, Λ(12)
mn ≡

gbdgacglqGmlabGnqcd

M2
p

Λ
(21)
αβ ≡

gbdgacgmnGmαabGnβcd

M2
p

, Λ
(22)
αβ ≡

gbdgacgγσGαγabGβσcd

M2
p

,

(2.102)

as the sole examples of time-neutral rank two tensors along (m,n) and (α, β) di-
rections. The other choice with l36 = l37 = 1 is eliminated by the anti-symmetry
of the G-fluxes. Similarly for n ≥ 1, there are no additional time-neutral quantum
terms with the required indices. Clearly if we demand ∆k ≥ 3

2
, both the exam-

ples in (2.102) are no longer allowed. In fact with ∆k ≥ 3
2
, we also eliminate any

time-neutral rank two tensors from G-fluxes using (2.84).
Along space-time directions the scenario is more delicate. With ∆k ≥ 3

2
the

only contributions from G-fluxes may appear from (l34, l35) taking integer values in
(2.97). Taking l34 = 8 requires us to pick H̃1 = 7, H̃2 = 4, H̃3 = 3 from (2.96). The
other choice of l35 = 8 is similar to the first one because of the identical scalings of
the metric components along (m,n) and (α, β) directions. After the dust settles, the
generic quantum term along the space-time directions appears to be:

Λ(3)
µaµa+1

≡M−8
p

8∏
k=1

4∏
n=1

Gµkνkρkmkg
m2n−1m2ngµ2n−1µ2ngν2n−1ν2ngρ2n−1ρ2ngµaµa+1 ,

(2.103)

where assuming 1 ≤ a ≤ 8 and µa ∈ (0, i, j) is any one of the three space-time
directions in M-theory, (2.103) creates two kind of terms: Λ

(3)
00 and Λ

(3)
ij . Exactly

similar set of terms appear from (2.84) (although l26 = 0 there). It turns out, since
Gµνρm takes the value similar to (2.85), (but now the derivative is with respect to
ym and consequently non-zero), (2.103) is just a function that may be expressed in
terms of the warp-factor h(y). Even more generically if we take l34 = 2p and n = 2q

such that p + q = 4 in (2.97), then (2.96) implies H̃1 = 2p − 1, H̃2 = p and H̃3 = 4,
with (2.103) becoming:

Λ(p,q)
µν ≡ ∂m1∂m2 ....∂m2q

(
2p+2q∏
k=q+1

∂mkh

h2p+2

)
ηµν
M8

p

∏
r,s

gmrms , (2.104)

where we have expressed everything in terms of regular derivatives and inverse
unwarped metric gmn so that (2.104) doesn’t have to involve covariant derivatives.
In fact the way we have written the quantum terms in (2.94), all informations of
the internal metrics etc are contained in the definitions of the curvature tensors and

19Other possibilities include gmn gklΛ
(1j)
kl and gαβ gρσΛ

(2j)
ρσ that appear from expressing H̃3 = 1

alternatively as H̃3 ≡ 2 + (−1) and H̃5 = 1 as H̃5 ≡ 2 + (−1) respectively where the minus signs
denote inverse of the inverse metric components. Additionally, choices like gmngαβΛ

(22)
αβ etc. are

also allowed. All these manipulation don’t change θk or θ′k.
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the inverse metric components, and not in the derivatives. In this sense (2.104)
has all the information in the warp-factor h(y), and since p + q = 4, the allowed
terns are (p, q) = (4, 0), (3, 1), (2, 2), (1, 3), all being time-neutral by construction;
and all suppressed by M8

p . This Mp suppression remains unchanged even if we add
curvature tensors contributions to (2.104). The curvature tensors, at least those that
could contribute to the space-time directions, are limited to only four tensors at a
time because time-neutrality implies:

2
27∑
i=1

li + n1 + n2 + l34 = 8, (2.105)

thus li ≤ 4, and where many of the 27 li’s appearing in (2.94) are irrelevant to (2.105).
An example of such a term with only curvature tensors can be taken for l8 = l9 =
l10 = l13 = 1 in (2.94) which allows us to choose E1 = 3, E2 = E3 = E4 = E5 = 1
from (2.82) or (2.67). This gives:

Λ
(4)
ij ≡M−8

p Ri1aj1bRi2αj2βRi30i0Ri4mjng
abgαβgmngi1i2gi3i4gj1j2g00,

(2.106)

which is interestingly not just expressed in terms of the warp-factor h(y) but also
in terms of the temporal and spatial derivatives of the internal metric components.
One can also mix three curvature tensors and two derivatives or two curvature ten-
sors and four derivatives etc satisfying (2.105) appropriately to generate additional
terms. All these quantum terms are finite in number and they are all suppressed
by M8

p (with ∆k > 1
3
, the finiteness of quantum terms still remain and can be eas-

ily constructed). As we saw earlier, there are no time-neutral contributions that can
come from (2.97), so theM8

p suppression cannot change. In fact exactly similar story
could be constructed with (2.84), so we will not discuss this case separately here.

Non-local counter-terms in M-theory and in type IIB

The next set of quantum corrections are a bit unusual from standard quantum field
theory, or even supergravity, point of view and are typically christened as non-local
counter-terms. Such an umbrella term encompass a broad category of quantum
terms in M-theory, for which a detailed analysis is clearly beyond the scope of our
work here. As such we will suffice ourselves here with some rudimentary explo-
ration of the subject in the context of M-theory.

Our starting point would be to take the generic quantum terms in (2.78) and
(2.94) and construct non-local interactions from them, as we believe that the non-
local interactions should still contain powers of curvature tensors, G-fluxes and
their covariant-derivatives. To proceed, let us denote the specific quantum term
of (2.78) or (2.94) alternatively using the symbol Q({li},n)

T so that specific choice of
the (li, n) integers, the former representing the powers of curvature tensors and G-
fluxes and the latter representing the number of derivatives, allow us to specify one
quantum term. It is clear that:(

Q({li},n)
T

)
⊗
(
Q({lj},m)

T

)
≡ Q({li+lj},n+m)

T , (2.107)
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which may be easily derived using the explicit expression from either (2.78) or
(2.94). The equality (2.107) tells us that an arbitrary product of any two elements
in the set of all the quantum pieces labelled by

{
Q({lk+lm},n)

T

}
is also an element of

the set. This is almost like giving a group structure to the set, except that the set
doesn’t have an inverse. The elements of the set may even be further generalized
by introducing the following notation:

ti1i2.....i2q ≡ εi1i2......i2q + c1
[(
gi1i3gi2i4 − gi1i4gi2i3

)
....
(
gi2q−3i2q−1gi2q−2i2q − gi2q−3i2qgi2q−2i2q−3

)
+ ...

]
+ permutations, (2.108)

where c1 is a constant and the permutations are between other products of met-
rics to generate full anti-symmetry, and εi1i2....i2q is the Levi-Civita tensor and not a
tensor density. As such, with all it’s indices lowered, it may be defined with the
square root of determinant of metrics and therefore scales in exactly the same way
as the product of inverse metrics. However because of the total anti-symmetry of
the Levi-Civita tensor (or of the anti-symmetric products of metrics), we cannot
have too many of these terms at a given order. This implies that, if we remove all
the derivatives in say (2.78), and taking q = 4 in (2.108), it is easy to get terms like:

Q1 ≡M−2
p ti1i2......i8Gi1i2i3i4Gi5i6i7i8

Q2 ≡M−8
p ti1i2......i8tj1j2.....j8Ri1i2j1j2Ri3i4j3j4Ri5i6j5j6Ri7i8j7j8 , (2.109)

with ik denoting coordinates of the internal eight-manifold, and Q2 can be identi-
fied with the famous t8t8R4 coupling in string theory [16]. It should be clear that
the gs scalings of Q1 and Q2 are identical to the gs scalings of Q(0,..,l19=2,..,0;0)

T and
Q(l1=4,0,..,0;0)

T respectively in (2.78). Other combinations with curvature tensors and
G-fluxes are clearly possible, and their gs scalings would be identical to the gs scal-
ings of corresponding terms in Q(li,n=0)

T at the same order in curvature tensors and
G-fluxes. This story could be elaborated to the same extent as earlier sections20,
but since we are only concerned with the gs scalings, we will not indulge in further
discussions of the topic here.

Thus combining (2.109), with their possible generalizations, and with the set of
terms of the form (2.78) or (2.94), we have pretty much all the local (perturbative and
non-perturbative) quantum terms at hand. The non-local quantum terms, which
we label as non-local counter-terms, are a different class of objects which could
nevertheless be related to the local terms (2.109), (2.78) and (2.94). For example we
could easily construct the following non-local counter-terms21:

W({li},n) =

(
∞∑
q=1

CqM
2q
p

�q

)
Q({li},n)

T , (2.110)

where � is defined over the eight-manifoldM2×M4×T2/G andCq could in general

20Beyond the possible generalization to
∑
k dkQk1 and

∑
l flQl2 with integer (dk, fl).

21See also [31] for operators of the form (2.110) and their possible connection to Witten’s open
string field theory.
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be function of the y ≡ (ym, yα, ya) but not functions of (g∆
s , e

−1/g∆
s ). Thus the gs scal-

ings exclusively appear from the quantum pieces Q({li},n)
T . The inverse � operators

may be combined together to create operators of the form exp
(

�
M2
p

)
, sin

(
�
M2
p

)
etc

generating different levels of non-locality. All these operator actions may in turn
be re-expressed as integrals which are much easier to handle. To elaborate this,
let us first define the non-locality function F(r)(y − y′) ≡ F({li},n;r)(y − y′) that is a
function of two points (y, y′) on the eight-manifold, with r denoting the level of
non-locality. By construction the non-locality function should be sharply peaked at
low energies so that the low energy physics of M-theory could still be governed by
local counter-terms, and hence by eleven-dimensional supergravity. On the other
hand, the short distance behavior of this function could be complicated, revealing
the full non-local structure of the system. Using this function, let us define our first
level of non-locality with zero free Lorentz indices using (2.78) for example as:

W(1)(y) ≡W({li},n;1) =

∫
d8y′
√

g8

(
F(1)(y − y′)Q({li},n)

T (y′)

M
σ({li},n)−8
p

)
, (2.111)

where the power of Mp appearing above, i.e σ({li}, n) is defined in (2.80), and the
integral captures the first level of non-locality as advertised before. By construction
W(1) is dimensionless, and the non-locality appears from knowing the precise func-
tional form for F(1)(y− y′), which fortunately we won’t need to specify. Suffice is to
say that the gs dependence only appears from the quantum terms Q({li},n) defined
in (2.78) and (2.109). We can also sum over all allowed choices of ({li}, n) and, using
the semi-group structure (2.107), the linear representation of the sum pretty much
captures the generic picture. It should be clear that the r-th level of non-locality
may be iteratively constructed from:

W(r)(y) = M8
p

∫
d8y′

√
g8(y′) F(r)(y − y′)W(r−1)(y′) (2.112)

= M16
p

∫
d8y′

√
g8(y′) F(r)(y − y′)

∫
d8y′′

√
g8(y′′) F(r−1)(y′ − y′′)W(r−2)(y′′),

thus forming a series of nested integrals that capture the full non-locality of the
system, for a given choice of ({li}, n). Clearly as r increases the non-locality be-
comes more prominent and starts coinciding with the non-locality generated from
the operator action (2.110). One expects:

∑
{li},n

∞∑
r=1

brW(r)(y) =
∑
{li},n

f{li},nW
({li},n)(y), (2.113)

with constants br and f{li},n, as we can absorb all y-dependent factors in F(r)(y)
of (2.112) and Cq(y) of (2.110) respectively. Such a relation would not only jus-
tify the two forms of non-localities (2.110) and (2.112) as one and the same thing,
but would also help us relate Cq(y) functions with the F(r)(y) functions. A formal
proof of (2.113) is still lacking, despite evidences pointing towards the veracity of
the conjecture. However since we will mostly concentrate on the non-localities of
the form (2.112), the exact equivalence depicted in (2.113) will not be used here,
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and therefore the proof of (2.113) will be relegated to future work. We do note
that, W(∞)(y) should be related to the q → ∞ value of (2.110) when appropriately
summed over ({li}, n) factors therein as, at a given level of non-locality, the Mp sup-
pression changes from (2.80) or (2.95) to:

σ({li}, n; r) ≡ σr = σ({li}, n)− 8r, (2.114)

and therefore has both positive and negative values. These additional positive and
negative suppressions of the quantum terms were responsible for the loss of Mp

hierarchy as discussed in [15]. Here our aim would be to see how the conclusions
of [15] may be avoided.

To inquire how the gs scaling appears now, we will have to work out the non-
localities order by order in r. We first work out the lowest level of non-locality from
(2.111). Using the metric ansatze (2.3) with the warp-factor as defined in (2.5), the
non-local quantum piece (2.111) yields:

W(1)(y) =

∫
d8y′F1(t)F 2

2 (t)g−2/3
s h3/2

√
(det gαβ) (det gmn) (det gab)

(
F(1)(y − y′)Q({li},n)

T (y′)

M
σ({li},n)−8
p

)

=

∫
d8y′

(
e0g
−2/3
s +

e1g
4/3
s√
h

)
V8(y′)

F(1)(y − y′)gΘk
s

(
Q̃({li},n)

T (y′) +O(y′, g∆
s , e

−1/g∆
s )
)

M
σ({li},n)−8
p

 ,
(2.115)

where in the second line we have used the relation (2.7) to express the gs scalings of
both the volume-preserving (i.e (2.2) with (e0, e1) = (1, 0)), and the fluctuating (i.e
(2.8) with (e0, e1) = (0, 1)) cases (special care needs to be used to define the quantum
pieces for the two cases (2.8) and (2.2) as the former uses (2.78) and the latter uses
(2.94). Apart from this subtlety, everything else remains identical.). The gs scalings
of all the quantum terms in (2.78) and (2.94) are expressed using Θk ≡ Θk({li}, n)
which would cover for the two cases, (2.97) related to (2.2) and (2.84) related to
(2.8). The Q̃({li},n)

T (y′) represent the spatial parts of the quantum terms (2.78) and
(2.94) that do not depend on e−1/g∆

s . Finally V8(y′) is defined as:

V8(y′) ≡ h3/2(y′)
√

(det gαβ) (det gmn) (det gab), (2.116)

which would contribute to the warped volume of the internal space when inte-
grated over the eight-manifold. All the metric components depend on coordinates
of the eight-manifold generically, but there are certain constraints that restricted the
dependences to certain sub-space of the internal manifold. Such constraints will
help us evaluate the quantum terms in (2.115) for the two cases, (2.2) and (2.8), and
also compare our results with the generic case discussed in [15].

Let us start by considering the simplified case where h(y) = h(y0) ≡ h0 where
y0 is a chosen special point inside the eight-manifold. Such a choice allows us to
choose the same string coupling gs at every order of the non-locality. All other
variables, for example the metric components, remain functions of y coordinates.
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Under such a simplification the gs scaling of the r-th level of non-locality becomes:

W(r)(yr+1) =
1

Mσr
p

(
e0g
−2/3
s +

e1g
4/3
s√
h0

)r

gΘk
s G8(yr+1), (2.117)

which is defined for a given choice of ({li}, n), and we have made a judicious coor-
dinate choice of yr+1 to label the non-local quantum term with zero Lorentz index22.
The power of Mp suppression may be read out from (2.114) for the given choice
of ({li}, n), and the functional form for G8(yr+1) may be expressed in terms of the
nested integrals in the following way:

G8(yr+1) ≡
r−1∏
q=0

∫
d8yr−qV8(yr−q)F(r−q)(yr−q − yr−q−1)

(
Q̃({li},n)

T (y1) +O(y1, g
∆
s , e

−1/g∆
s )
)
,

(2.118)

with V8(yr−q) being taken from (2.116) with the constant choice of the warp-factor
h0. The nested integrals are expressed in terms of the V8(y′) and F(r)(y − y′), and
this may help us to distinguish between the two choices, (2.2) and (2.8); and also
between the generic case discussed in [15]. By construction (2.118) will always be
finite because the integrals are over finite domains, and the non-locality functions
F(r)(y − y′) are chosen to be normalizable functions.

Case 1: F1(t) and F2(t) satisfying the fluctuation condition (2.8)

We start by considering the choice (2.8) where the inverse of F2(t) has a perturbative
expansion but the inverse of F1(t) does not. This means e0 = 0 and e1 = 1 in (2.117).
Additionally because of the derivative constraint there, all variables were taken to
be functions of the coordinates ofM4, and were thus independent of bothM2 and
T2/G coordinates. We will however take the warp-factor h(ym) = h0 as before to
avoid changing the string coupling gs to any order in non-locality. Similarly, the
non-locality functions will be taken to be functions ofM4 only. Putting everything
together, (2.117) changes to:

W(r)
1 (yr+1) =

(
G4(yr+1)g

4r/3+θk
s

Mσr
p

√
h0

)
Vr

T2Vr
M2
, (2.119)

where the volume elements are defined as: VT2 =
∫
d2ya
√

det gab for the volume
of the subspace T2/G and VM2 =

∫
d2yα

√
det gαβ for the volume of the subspace

M2. The metric components gab and gαβ are the un-warped metric coefficients that
appear in (2.3). Note that the r-th level of non-locality requires these volume ele-
ments to be raised to the r-th powers, as evident from (2.118) above. The gs scaling
for a choice of ({li}, n) has the expected θk dependence from (2.84), but the non-
locality adds another +4r/3 piece to it. This means that, there are no additional
time-neutral pieces generated by non-locality here as θk from (2.84) doesn’t have

22We take y0 = 0 to comply with our choice of coordinates.
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any time-neutral solutions with ∆k ≥ 3
2
. Finally, the G4(ymr+1) factor has the follow-

ing nested integral representation as (2.118):

G4(yr+1) ≡
r−1∏
q=0

∫
d4yr−q

√
g4 F(r−q)(yr−q − yr−q−1)

(
Q̃({li},n)

T (y1) +O(y1, g
∆
s , e

−1/g∆
s )
)
,

(2.120)

where g4 = det gmn with the integral defined over the subspaceM4; and we have
absorbed the factor of h3/2

0 in the definition of g4. The function G4(y) captures the
additional O(g∆

s , e
−1/g∆

s ) corrections and thus responsible for the perturbative and
non-perturbative series in gs. This is as what one would have expected, although a
question might be raised on the dependence of the non-locality function F(r)(y− y′)
only onM4 coordinates. This may be justified, beyond declaring it as an imposed
condition, by looking at (2.110) in the limit q = 0. In this limit W({li},n), i.e for
q = 0, becomes a local function and therefore the derivative constraints will imply
that the coefficients C0(y) will have to be a function of M4 coordinates. Similarly
taking q = 1, �W({li},n) becomes a local function and therefore C1(y) will have to be
function ofM4 coordinates. Following this chain of logic, Cq for any q becomes a
function ofM4 coordinates. Therefore at this stage, using the identification (2.113),
the functions F(r)(y − y′) should only depend on the coordinates ofM4, justifying
the integral representation (2.120).

Once we allow quantum terms with two free Lorentz indices, the story evolves
in the same way as above, so we will suffice ourselves in elaborating the gs scalings
of the various terms. Looking at (2.99), and comparing it with (2.119), the gs scaling
become gθ̃ks , where:

θ̃k =

(
θk +

4

3
(r − 2), θk +

2

3
(2r − 1), θk +

4

3
(r + 1)

)
, (2.121)

with the first one corresponding to free Lorentz indices along (i, j) and (0, 0) direc-
tions; the second one corresponds to free Lorentz indices alongM4, i.e along (m,n)
directions and the third one corresponds to free Lorentz indices along T2/G andM2

i.e along (a, b) and (α, β) directions respectively. From (2.121) we see that even with
the lowest level of non-locality i.e with r = 1, there are no additional time-neutral
series along (m,n), (a, b) and (α, β) directions. Even more interestingly, since at the
end we have to go to type IIB from M-theory, we can take the limit:

VT2 → 0, (2.122)

any additional time-neutral series along the (i, j) and (0, 0) directions are heavily
suppressed by powers of VT2 , which in turn should also be the case with zero free
Lorentz index in (2.119).

Case 2: F1(t) and F2(t) satisfying the volume-preserving condition (2.2)

The story that we elaborated for case 1 pretty much sums up all the procedure that
we need for the present case where both F1(t) and F2(t) have perturbative expan-
sions, including their inverses. However there are now a few crucial differences
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that will alter our story in an interesting way. First, the derivative constraints are
weakened from case 1 in a way that we no longer restrict the derivatives to be along
M4 only. We do however want the functions to be independent of the (x3, x11) direc-
tions so that components like GMNab do not complicate our analysis by switching
on (l36, l37, l38) in (2.94). Therefore now we can allow all curvature tensors and G-
fluxes to be functions ofM2 ×M4, implying that, in the type IIB side, all curvature
tensors and fluxes would be functions of the six-dimensional internal space. This
is good because the derivative constraint for case 1 was a tad bit un-natural in the
light of the genericity that we want to impose on the quantum corrections. The r-th
level of non-locality may now be read from (2.117) by using e0 = 1 and e1 = 0 and
using the quantum terms from (2.94). We will use the same approximation for the
warp-factor, namely h(y) = h0 to avoid changing gs to any order in the non-locality.
Putting everything together, (2.117) for the present case becomes:

W(r)
2 (yr+1) =

(
G6(yr+1)g

−2r/3+θ′k
s

Mσr
p

√
h0

)
Vr

T2 . (2.123)

Compared to (2.119) there are a few key differences. First, there is no volume ele-
ment VM2 appearing anymore because this goes inside G4(y), as defined in (2.120)
to construct G6(y). In other words, G6(y) takes the following form:

G6(yr+1) ≡
r−1∏
q=0

∫
d6yr−q

√
g6 F(r−q)(yr−q − yr−q−1)

(
Q̃({li},n)

T (y1) +O(y1, g
∆
s , e

−1/g∆
s )
)
,

(2.124)

where again we have absorbed a factor of h3/2
0 in the definition of g6 and Q̃({li},n)

T (y1)
being extracted from (2.94). The second key difference, which is important, is the gs
scaling. Using the original gs scaling (2.97) with zero Lorentz index for the quantum
terms associated with the case (2.2), we now see that the r-th order of non-locality
now adds a factor of −2r/3 to the original scaling in the local case. Recall that θ′k as
defined in (2.97) for ∆k > 1

3
did not have any time-neutral series, but now it appears

that the non-locality would in fact help to create more time-neutral series. With two

free Lorentz indices, the gs scaling now appears to gθ̃
′
k
s , where:

θ̃′k =

(
θ′k −

2

3
(r + 4) , θ′k −

2

3
(r + 1) , θ′k −

2

3
(r − 2)

)
. (2.125)

In addition to the difference with the scaling behavior in (2.121), there are a few
other differences. The first one is in the ordering of the scaling behavior as it appears
in (2.125). The first term in (2.125) corresponds to free Lorentz indices along (i, j)
and (0, 0) directions; but the second term corresponds to free Lorentz indices along
M4 as well asM2, i.e along (m,n) and (α, β) directions respectively. The third term
now corresponds to free Lorentz indices along T2/G i.e along (a, b) direction.

The second difference between (2.121) and (2.125) appears from the value of r,
i.e from the level of non-locality. While in (2.121) increasing r makes all the three
terms there positive definite thus adding no extra time-neutral series, in (2.125) the
effect is opposite. Increasing r in (2.125) actually creates more relative minus signs



46 Chapter 2. Time dependent compactification

thus making every terms prone to generating new time-neutral series. Fortunately,
the degree of non-locality is also suppressed by powers of VT2 , as may be inferred
from (2.123), and in the limit when the volume VT2 vanishes, all the additional time-
neutral series also decouple completely. The vanishing of VT2 is an essential require-
ment for our M-theory construction to connect it to type IIB theory.

Case 3: Time-independent internal space with F1(t) = F2(t) = 1

The volume condition (2.122) pretty much saves the day for the two case discussed
above despite the fact that, for case 2, new time-neutral series seem to appear from
the higher levels of non-localities. The question is what happens when the inter-
nal space is time independent i.e when F1(t) = F2(t) = 1? We expect the story
to progress more or less in the same vein as above, and in fact most of the details
remain somewhat similar to case 2 above, but with one crucial difference. Since
GMNab features prominently in the discussion concerning this case, as evidenced
from (2.88) and (2.89), which in turn are responsible for the time-neutrality condi-
tion (2.99) with zero free Lorentz indices, all curvature tensors and G-fluxes in the
theory need to be functions ofM4×M2×T2/G coordinates except the x3 direction.
In addition, there is as such no derivative condition imposed from the dynamics,
the non-locality function F(r)(y − y′) could in principle be function of x3 also. The
r-th level of non-locality then becomes:

W(r)
3 (yr+1) =

G8(yr+1)g
−2r/3+θ′0
s

Mσr
p

√
h0

. (2.126)

where θ′0 is as given in (2.98), which already allows time-neutral series because there
are relative minus signs due to the presence of (l36, l37, l38) as well as n3. We now see
that the r-th level of non-locality creates additional relative minus signs that help
in generating more time-neutral series here. Similar picture emerges with two free
Lorentz indices, as one may easily derive. Note also the absence of volume com-
ponents like VT2 or VM2 as these factors appear in the nested integral (2.118) that
defines G8(y). It should be clear that in the limit of vanishing volume (2.122), the
quantum term (2.126) doesn’t have to decouple, thus paving way to the non-local
counter-terms as advertised in [15] (see footnote 25 and the example cited in there).

Case 4: Non-locality in time for the various choices of Fi(t)

The final case that we want to elaborate is a rather curious one, because it involves
non-locality in both (internal) space and time. The temporal non-locality would
only make sense as an integral condition. In other words we can take the non-
locality function F(r)(y − y′, t − t′) to be functions of both (y, t) as well as (y′, t′).
However since we have identified any temporal dependence with g2

s√
h

(see (2.6)),
the non-locality function should now have both y, y′ and gs dependence. Therefore,
much in the same vein as before, we can assign the following generic form for the
non-locality function:

F(r)(y − y′, gs) ≡
∑
la,lb

f
(r)
lalb

(y − y′)
(
g2
s√
h

)∆la

exp

(
− lbh

∆/4

g∆
s

)
, (2.127)
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where (la, lb) ∈ (Z/2,Z), the warp-factor h = h(y − y′) and f
(r)
lalb

(y − y′) to be a
highly peaked function at low energies. We can also resort to the simplification
h(y − y′) = h0 to keep the gs itself unaltered to all order in the non-locality, as
we have done before. Plugging this in (2.117) and (2.118) results in a complicated
nested integral form, which would then have to be integrated over time to make
sense of the result. In other words, we want:

U(r)(yr+1, gs(t)) ≡
∫ t

−∞

dt′
√

g00

Mσr
p

(
e0g
−2/3
s (t′) +

e1g
4/3
s (t′)√
h0

)r

gΘk
s (t′)G8(yr+1, gs(t

′)),

(2.128)

where the three cases discussed above are described by assigning different values to
the triplet (e0, e1,Θk) i.e (0, 1, θk), (1, 0, θ

′
k) and (1, 0, θ′0) with θk, θ′k and θ′0 as defined

in (2.84), (2.97) and (2.98) respectively. The gs(t′) dependence of G8(yr+1, gs(t
′)) may

be determined by plugging in (2.127) in (2.118).
The concern however is the integral (2.128) itself. Since gs, as defined in (2.6)

depends on time itself, so when t → −∞, gs → +∞. The representation (2.127)
is not a suitable description at strong coupling. because (2.127) is only defined
perturbatively when gs → 0. We can do a change of variable t → 1/t, or gs → 1/gs
to study the strong coupling regime. In either formalism, it then appears that the
relevant integral will be:∫ gs

0

dg′s g
′∆q1
s exp

(
− q2

g′∆s

)
= q

q1+ 1
∆

2 Γ

(
−q1 −

1

∆
,
q2

g∆
s

)
(2.129)

=
1

q2

(
g
q1+1+ 1

∆
s +O(g

q1+2+ 1
∆

s )
)

exp

(
− q2

g∆
s

+O(g2∆
s )

)
,

(2.130)

with gs < 1 so that the expansion on the second line could be justified. The pertur-
bative expansion then tells us that for any choice q1 in the gs expansion, non-locality
to any order only adds a 1 + 1

∆
factor, and therefore doesn’t alter any of our earlier

conclusions regarding gs scalings. Additionally, the decoupling effect for vanishing
volume as in (2.122) still persists, so no new subtleties appear at this stage.

Topological quantum terms, curvature forms and fluxes

So far we have dealt with the non-topological quantum terms in terms of curva-
tures and G-flux components that would contribute to the energy-momentum ten-
sor. However there are also EOMs associated with the G-fluxes that would demand
contributions from the quantum terms (2.94), and (2.78) for the cases (2.2) and (2.8)
respectively. Once we look at the fluxes, we will have to study both the standard
four-form G-fluxes and their dual, the seven-form, flux components. Thus we need
to see how the gs scalings (2.97) and (2.86), respectively for the two cases, would
change. Additionally, there would also be topological terms that we have to deter-
mine. We first analyze the topological terms.
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The topological contributions, as the name suggest, would appear from topo-
logical forms that are constructed using the Riemann tensors and the G-flux com-
ponents by taking advantages of their anti-symmetries. They may be expressed
as:

R ≡ Raobo
MNMaobo dy

M ∧ dyN , G ≡ Gaobo
MNMaobo dy

M ∧ dyN

Raobo
MN ≡ RMNPQ e

aoP eboQ, Gaobo
MN ≡ GMNPQ e

aoP eboQ, (2.131)

where Maobo are the holonomy matrices on the compact manifold over which we
will be taking traces. These are just like the generator matrices, for example as
the ones appearing like Aa

µT
a, in the definition of a gauge field one-form. Using

(2.131), we can construct various higher order forms, one example being the fol-
lowing eight-form:

Z8 ≡ c1tr R4 + c2

(
tr R2

)2
+ c3

(
tr R2

) (
tr G2

)
+ c4tr G4, (2.132)

where we have assumed that the holonomy matrices are traceless. For various
choices of the ci coefficients, we can generate certain sub eight-forms. For exam-
ple with:

c1 =
1

3 · 210 · π4
, c2 = − 1

12 · 210 · π4
, c3 = c4 = 0, (2.133)

we have our X8 polynomial which is important to cancel anomalies as we shall
see later. However now with non-zero (c3, c4) more non-trivial polynomials may
be constructed which, in a packaged form, is given as (2.132). In fact polynomials
like (2.132) open up the possibility of constructing topological and non-topological
interactions in M-theory of the following form:

C3 ∧ Z8, G4 ∧ ∗11Z4, (2.134)

where C3 is the M-theory three-form and the Hodge star is with respect to the full
eleven-dimensional warped metric (as such it will be a function of gs). The way we
have expressed the non-topological piece, should allow us to extract this from the
generalized quantum terms (2.94) and (2.78) for (2.2) and (2.8) respectively. For
example the non-topological piece in (2.134) may be expressed as:∫

G4 ∧ ∗11Z4 ≡
∫
d11y
√
−g11

∑
{li},n1,n2

QT ({li}, n1, n2) (2.135)

=

∫
d11y
√
−g11 (G4)M1M2M3M4

(Z4)N1N2N3N4
gM1N1gM2N2gM3N3gM4N4 ,

where we have used the warped metric both as inverses as well as in the definition
of the determinant, and the quantum terms QT ({li}, n1, n2) are defined as in (2.94)
for the case (2.2) (changing the quantum terms to (2.78) will provide information
for the case (2.8)). The above relation could be used for identifying the Z4 tensor
from the quantum series (2.94) or (2.78) for the two cases (2.2) and (2.8) respectively.
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We can then ask the gs scalings of the following two kinds of quantum terms:

(G4)012M (Z4)012M , (G4)MNPQ (Z4)MNPQ , (2.136)

where (M,N,P ) are the coordinates of the eight-manifold. The gs scalings of these
two interactions may be easily worked out by extracting a (C3)012 and a (C3)MNP

out of either (2.94) or (2.78). Since (G4)012M and (G4)MNPQ scale as
(
gs
H

)−4 and(
gs
H

)2∆k respectively, it is easy to infer the gs scalings of (Z4)012M and (Z4)MNPQ re-
spectively as:

θ′k → θ′k + 4, θ′k → θ′k − 2∆k, (2.137)

with θ′k as given in (2.97). A similar scaling would work if we replace θ′k with θk
from (2.86), as one would expect. On the other hand, Z8 should be topological.
To see this let us first fix the time to t = t0 in the M-theory metric (2.3) and, for
simplicity, switch off the G-fluxes. Plugging in the metric ansatze (2.3) at the fixed
time, with the choice (2.133), in (2.132) then shows that at any t = t0 + δt, (2.132)
may in general have δt dependence in addition to a piece that depends on t0. Since
the temporal behavior is traded with gs, (2.132) will develop gs dependence. Addi-
tionally, because of the underlying non-Kählerity of the internal eight-manifold (at
least for the case (2.2)), the integral of X8 is not exactly the Euler characteristics of
the eight-manifold23. Switching on the G-fluxes, the integral of Z8 should also have
a gs dependent pieces. Together all of these would complicate the anomaly can-
cellation procedure that we have known for the time-independent case, implying a
careful study is required in the time-dependent case. More details on this appears
in section 3.1.2.

There are other topological contributions possible once we go to the dual formal-
ism. Here duality implies a generalized form of electric-magnetic duality, much like
the Montonen-Olive one [32]. To implement it here, at least at the level of perturba-
tive and non-perturbative expansions that we have entertained so far, all we need
is to express the flux contributions by their dual variables. The dual of a four-form
flux is a seven-form flux, and therefore if we can express (2.94) and (2.78) using the
dual variables, we should be able to determine their gs scalings as well. This rather
convoluted re-telling of the same story has a deeper purpose: the dual description
will not only help us to determine the Bianchi identities later but also help us to
ascertain the flux quantization conditions. The dual seven-form G7 = ∗11G4, may
be expressed in terms of components in the following standard way:

G7 =
1

7!
GP ′Q′R′S′

√
−g11g

P ′PgQ
′QgR

′RgS
′SεPQRSM1M2.....M7dy

M1 ∧ dyM2 ....... ∧ dyM7 , (2.138)

where the metric components as well as the determinant are all defined in terms of
the warped metric and εPQ....M7 is the eleven-dimensional Levi-Civita symbol. The
above formula is an useful way to determine the gs scalings of every components
of the dual form once the original gs scalings are known. This will also help us to
determine the gs scalings of the quantum terms, relevant for the case (2.2), that may

23We thank Savdeep Sethi for discussions on this point.
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now be expressed in the following way:

Q(2)
T = gmim

′
igmlm

′
l ....gjkj

′
k∂m1 ..∂mn1

∂α1 ..∂αn2
(Rmnpq)

l1 (Rabab)
l2 (Rpqab)

l3 (Rαabβ)l4

× (Rαβmn)l5 (Rαβαβ)l6 (Rijij)
l7 (Rijmn)l8 (Riajb)

l9 (Riαjβ)l10 (R0mnp)
l11 (2.139)

× (R0m0n)l12 (R0i0j)
l13 (R0a0b)

l14 (R0α0β)l15 (R0αβm)l16 (R0abm)l17 (R0ijm)l18

× (Rmnpα)l19 (Rmαab)
l20 (Rmααβ)l21 (Rmαij)

l22 (R0mnα)l23 (R0m0α)l24 (R0αβα)l25

× (R0abα)l26 (R0ijα)l27 (G0ijαβab)
l28 (G0ijqαab)

l29 (G0ijqαβb)
l30 (G0ijmnab)

l31 (G0ijmnαb)
l32

× (G0ijnpqb)
l33 (Gmnpαβab)

l34 (Gmnpqαab)
l35 (G0ijmnαβ)l36 (G0ijmnpq)

l37 (G0ijmnpα)l38 ,

which should now be compared to (2.94) written in terms of the original variables.
We could also re-express (2.78), relevant for the case (2.8), in terms of the dual vari-
ables, but since the story would be similar to what we have in (2.139) we will avoid
this exercise. In fact making the following two-step processes to (2.139), we can con-
vert this to the case corresponding to (2.8): one, make n2 = l19 = l20 = ... = l27 = 0,
and two, relabel l28, ..., l38 to l19, ..., l29. The gs scalings are easy to determine using
the method employed in the earlier sections (see Table 2.2 for details). Following
these footsteps, one may easily verify that the gs scalings of the quantum terms in
(2.139) are exactly the same as in (2.97). Needless to say, the gs scalings of the quan-
tum terms corresponding to the case (2.8), are also exactly the same as in (2.86).
This shows that resorting to the dual variables do not change the gs scalings of the
quantum terms, and is therefore reassuring to see that the expected equivalences
between dual theories are respected at every order in the gs expansions.

Resorting to the dual fluxes G7 allow us to define six-form potentials C6 such
that G7 = dC6 + ..., where the dotted terms depend on how the Bianchi identities
appear in our set-up. This will be elaborated later when we discuss the EOMs for
fluxes. What we want to study here are the various forms of interactions, both topo-
logical and non-topological, that may appear when we consider quantum terms like
(2.139). Motivated by (2.134), we expect interactions like:

C6 ∧ Z5, G7 ∧ ∗11Z7, (2.140)

where Z5 and Z7 are five and seven-forms constructed out of the curvature and the
flux forms like (2.131). However an odd form like Z5 cannot be constructed out of
the two-forms from (2.131), so can only be expressed as:

Z5 ≡ Λ5 + dẐ4, (2.141)

where Λ5 is a highly localized form which would represent a M5-brane once wedged
with C6. The other four-form Ẑ4 can be constructed24 out of the curvature two-form
and gauge form coming from localized G-fluxes. Finally, the second term in (2.140)

24The two four-forms Z4 and Ẑ4 are definitely related to each other because they describe similar
interactions in M-theory, albeit in the relative dual pictures. We will however not elaborate on their
precise equivalence here.
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contributes the following non-topological interaction:∫
G7 ∧ ∗11Z7 ≡

∫
d11y
√
−g11

∑
{li},n1,n2

Q(2)
T ({li}, n1, n2)

=

∫
d11y
√
−g11 (G7)M1.....M7

(Z7)N1.....N7
gM1N1 ......gM7N7 ,

(2.142)

which is similar to what we had in (2.135) earlier. Again, the metric components
are all taken as the warped ones and therefore involve gs factors in them, and
Q(2)

T ({li}, n1, n2) are the quantum terms as given in (2.139). The conjectured equal-
ity (2.142) is to be used to define the functional form for Z7 tensor, much like what
we had in (2.135) earlier, and basically tells us that that Z7 is constructed out of
products of tensors in such a way that it is an anti-symmetric tensor of rank 7.

Another important thing to notice about (2.78), (2.94) and (2.139) is that , al-
though they contain globally defined tensors like four-form fluxes and the curva-
ture tensors they are not globally defined functions. The fact that inverse metric
components show up in the definition of the quantum terms, and that metric com-
ponents are defined only on patches over the compact eight-manifold, render these
quantum terms mostly local. Now because the Hodge dual of the forms Z4 and Z7

are related to the quantum terms (2.94) and (2.139) via (2.135) and (2.142) respec-
tively, they cannot be globally defined forms. This is much like the form X8 = dX7,
where X7 is not globally defined, and therefore the integral of X8 over a compact
eight-manifold is non-zero.

In the following we will elaborate on all the background EOMs, both for the
metric and the G-flux components, that would appear for our case once the effects
of the quantum terms are included. The analysis that we presented above will be
used once we study the G-flux EOMs and their constraints.
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Tensors Dual Forms gs
H

scaling for (2.2) gs
H

scaling for (2.8)

Znpqαβab7 G0ijm θ′k θk − 2

Zmnpqβab7 G0ijα θ′k θk

Z0ijαβab
7 Gmnpq θ′k − 2∆k + 2 θk − 2∆k

Z0ijqβab
7 Gmnpα θ′k − 2∆k + 2 θk − 2∆k + 2

Z0ijqαβb
7 Gmnpa θ′k − 2∆k + 4 θk − 2∆k + 2

Z0ijpqab
7 Gmnαβ θ′k − 2∆k + 2 θk − 2∆k + 4

Z0ijpqβb
7 Gmnαa θ′k − 2∆k + 4 θk − 2∆k + 4

Z0ijnpqb
7 Gmαβa θ′k − 2∆k + 4 θk − 2∆k + 6

Z0ijpqαβ
7 Gmnab θ′k − 2∆k + 6 θk − 2∆k + 4

Z0ijmnpq
7 Gαβab θ′k − 2∆k + 6 θk − 2∆k + 8

Z0ijnpqβ
7 Gmαab θ′k − 2∆k + 6 θk − 2∆k + 6

TABLE 2.2: The gs
H scalings of the various components of the seven-

form Z7 represented for the two cases (2.2) and (2.8). We have taken
∆ = 1

3 and k ≥ 3
2 . The other two parameters, θ′k and θk, are defined in

(2.97) and (2.86) respectively.
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Chapter 3

Equation of motion, Flux quantization
and constraints

3.1 Analysis of the quantum equations of motion and
constraints

We now have all the ingredients to consider the equations of motion and extract
any constraints that may effect the dynamics of the system. The M-theory metric
that is relevant for us is (2.3) with the warp-factors appearing there are defined as in
(2.5). The Fi(t) factors appearing in the metric are defined either using the volume
preserving condition (2.2) or the fluctuating condition (2.8). Although both these
forms allow perturbative expansions for Fi(t), the former even allows the inverses
to have perturbative expansions. The G-flux components are expressed as in (2.13)
except the space-time components GµνρM with yM being the internal coordinates
of the eight-manifold. Of course not all yM are allowed, and we will deal with
individual cases as we go along.

3.1.1 Einstein’s equations and effective field theories

An important aspect of our discussion is the quantum terms as they will be solely
responsible to change or alter the course of our analysis. These quantum terms
that we will be concerned about right now are the ones that will contribute to the
energy-momentum tensors. The other quantum terms that will effect the EOMs
for the G-fluxes will be dealt a little later. The former category of quantum terms
appear with two free Lorentz indices and whether or not they could create time-
neutral series will form the basis of our discussion here. Thus keeping everything
in perspective, we can represent the quantum terms in the following way that is a
slight variant from what we had in [15]:

TQMN ≡
∑
k1,k2

C(k1,k2)
MN (y,Mp)

(
g2
s√
h

)∆k1

exp

(
−k2h

∆/4

g∆
s

)
, (3.1)

where (k1, k2) = (Z/2,Z) with (M,N) being either of (m,n), (α, β), (a, b), (i, j) or
(0, 0). The pattern of representation of the quantum terms follow the same pattern
of perturbative series expansions employed for the G-fluxes, and the Fi parameters.
This is of course intentional and in some sense necessary if we want to balance all
the EOMs.
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The way we have expressed (3.1), the gs scalings have been explicitly extracted
out. Without pulling out the gs scalings, (3.1) should be identified with either (2.78)
or (2.94) depending on the choice (2.8) or (2.2) respectively for the case when we
allow two free Lorentz indices. The gs scalings should then coincide with either
(2.99) or (2.100) respectively. These scalings immediately imply:

∆ =
1

3
, (k1, k2) ∈

(
Z
2
,Z
)
, (3.2)

for (3.1) and also for scalings of F2(t), F1(t) and GMNPQ in (2.9), (2.11) and (2.13)
respectively. Eventually however it all boils down to the question whether C(0,0)

MN

exists or not, and if it exists, whether there is a Mp hierarchy or not1. For the case
(2.8), our study of the scaling behavior (2.99) with θk defined as in (2.84), tells us
that:

C(0,0)
ab = C(0,0)

αβ = 0, C(0,0)
mn = Rmn,gmn gαβΛ

(22)
αβ , (3.3)

but no Λ
(11)
mn or Λ

(12)
mn terms from (2.102). This is because (2.84) requires l28 = 2, im-

plying H5 = 2, H4 = 2 and H3 = −1 from (2.82). This actually vanishes, in the light
of both the derivative constraint and the preservation of the type IIB metric form
(2.1) as long as we ignore localized fluxes. The latter will be useful soon. The other
non-zero tensor is the Ricci tensor Rmn that is time-neutral but is not a quantum
piece. Therefore putting these together, all terms except C(0,0)

µν vanish for the case
(2.8). The non-local counter-terms do not add any extra time-neutral series for this
case.

For the case (2.2) the scenario turns out to be a bit different from (3.3) because
now the non-localities do contribute towards creating new time-neutral series as
may be inferred from (2.123) with zero Lorentz indices and (2.125) for two free
Lorentz indices. This means we should again be looking for C(0,0)

MN , which now takes

1As cautioned in footnote 2, it will be erroneous to expand (3.1) in inverse powers of gs to extract
gs independent pieces. For example if one does it, then (3.1) becomes:

TQMN =
∑

k1,k2,m

(−1)m∆mkm2 C(k1,k2)
MN

m!
g∆(2k1−m)
s h∆(m−2k1)/4

implying that there are time-neutral pieces whenever m = 2k1. Such an analysis suffers from the
problem that for any values of m > 2k1 in the above expansion, the terms are not well defined in
the limit gs → 0. Since all our expansions solely rely on the gs << 1 limit, or more appropriately the
gs → 0 limit, the inverse gs expansions are not advisable as they will lead to erroneous conclusions.
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the following form:

C(0,0)
ab = 0 +

∑
{li},n

∞∑
r=1

M−σr
p Vr

T2G({li},n)
ab (yr+1)δ

(
θ′k −

2

3
(r − 2)

)

C(0,0)
µν =

∑
j

C(j)
µν +

∑
{li},n

∞∑
r=1

M−σr
p Vr

T2G({li},n)
µν (yr+1)δ

(
θ′k −

2

3
(r + 4)

)

C(0,0)
AiBi

=
{

RAiBi ,Λ
(ij)
AiBi

}
+
∑
{li},n

∞∑
r=1

M−σr
p Vr

T2G({li},n)
AiBi

(yr+1)δ

(
θ′k −

2

3
(r + 1)

)
,

(3.4)

where (A1, B1) and (A2, B2) correspond to (m,n) and (α, β) respectively with the
superscript notation as in (2.102), θ′k is defined in (2.97), and the G({li},n)

MN may be
extracted from the functional form (2.124) by taking care of the Lorentz indices.
The Mp power at any degree of non-locality is given in (2.114) by using (2.95). One
may easily see that all the three quantum series Cab, Cmn and Cαβ are suppressed
by powers of VT2 and in the limit of vanishing volume, i.e (2.122), they decouple.
However what survive in this limit are the time-neutral series given by sum over all
j in C

(j)
µν because Λ

(ij)
AiBi

= 0 and RAiBi are classical. Again, the vanishings of Λ
(ij)
AiBi

, in
the light of both the derivative constraint and the preservation of the type IIB metric
form (2.1), are allowed as long as the localized fluxes are ignored. Interestingly, the
sum over the time-neutral quantum terms C

(j)
µν are now finite in number and have

well defined hierarchy as evident from (2.103), (2.104), (2.105) and (2.106). This
amazing turn of events will help us to find solutions where originally there were
none [15].

Einstein equation along (m,n) directions

We can now compute the equations of motion for all the fields and parameters in
the theory. We consider first the Einstein’s equations. Since there are multiple com-
ponents in the theory, we consider Einstein’s equation along (m,n) directions. The
Einstein tensor is given by:

Gmn = Gmn −
∂mh∂nh

2h2
+ gmn

[
3htΛḞ2 − 6hΛF2 +

F2

F1

∂αh∂
αh

4h2
+
∂kh∂

kh

4h2

]
− gmn

[
3

2
ht2ΛF̈2 −

ht2ΛḞ 2
1F2

4F 2
1

+
3ht2ΛḞ2Ḟ1

2F1

− 2htΛḞ1F2

F1

+
ht2ΛF̈1F2

F1

]

= Gmn −
∂mh∂nh

2h2
+ gmn

[
3h3/4Λ1/2gsḞ2 − 6hΛF2 +

F2

F1

∂αh∂
αh

4h2
+
∂kh∂

kh

4h2

]
− gsgmn

√
h

[
3

2
gsF̈2 −

gsḞ
2
1F2

4F 2
1

+
3gsḞ2Ḟ1

2F1

− 2h1/4
√

ΛḞ1F2

F1

+
gsF̈1F2

F1

]
, (3.5)

where gmn is the un-warped metric from (2.3), which is also the ingredient used
in the un-warped Einstein tensor Gmn. In the third and the fourth lines, we have
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replaced the time parameter by gs. Such a gs expansion should also be reflected in
the definitions of Fi(t) and whose behaviors are governed by either (2.2) or (2.8).
Both these cases will be discussed separately as we go along.

The energy-momentum tensor from the G-flux is now given by:

TGmn =
1

4hF 2
2

(
GmlkaG

lka
n − 1

6
gmnGpklaG

pkla

)
− ∂mh∂nh

2h2
+ gmn

(
F2

F1

∂αh∂
αh

4h2
+
∂m′h∂

m′h

4h2

)

+
1

2hF1F2

(
GmlαaG

lαa
n − 1

4
gmnGplαaG

plαa

)
+

1

4hF 2
1

(
GmαβaG

αβa
n − 1

2
gmnGpαβaG

pαβa

)
+

Λ(t)

12hF 3
2

(
GmlkrG

lkr
n − 1

8
gmnGpklrG

pklr

)
+

Λ(t)

4hF 2
2F1

(
GmlkαG lkα

n − 1

6
gmnGpklαGpklα

)
+

Λ(t)

4hF2F 2
1

(
GmlαβG lαβ

n − 1

4
gmnGplαβGplαβ

)
+

1

4hΛ(t)F2

(
GmlabG

lab
n − 1

4
gmnGpkabG

pkab

)
+

1

4hΛ(t)F1

(
GmαabG

αab
n − 1

2
gmnGpαabG

pαab

)
− F2

16hΛ(t)F 2
1

(
gmnGαβabG

αβab
)
, (3.6)

where one may notice that we have retained components like GMNab. This is just
for completeness and, for the cases pertaining to our earlier constraints, we will be
dealing with them on an individual basis as we go along. The other ingredients ap-
pearing in (3.6) are the Fi(t) functions and the warp-factor h(y). The Fi(t) functions
satisfy (2.2) or (2.8) depending on what conditions we want to impose on the New-
ton’s constant for the vanilla de Sitter case; and h(y) is the warp-factor that is not
required to be kept as a constant. Our aim in the following would be to study the
two cases, (2.2) and (2.8), and ask if solutions exist corresponding to the background
(2.3) or (2.1).

Case 1: F1(t) and F2(t) satisfying the volume-preserving condition (2.2)

The functional form for F2(t) has always been fixed to (2.9) for either (2.2) or (2.8).
For our purpose however the full form of (2.9) is not useful since we will only be
concerned with gs → 0 limit which incidentally is also the late time limit. For this
case, since e−1/g∆

s dies off faster than any powers of gs, we can simplify (2.9) and
write it as:

F2(t) =
∑
k∈ Z

2

Ck

(gs
H

)2∆k

, F1(t) = F−2
2 (t) =

∑
k∈ Z

2

C̃k

(gs
H

)2∆k

, (3.7)

where H(y) ≡ h1/4(y) is used to avoid fractional powers of warp-factors and Ck ≡
ck0 in (2.9). Note that we have expressed F1(t) in the same format as F2(t), but with
coefficients given by C̃k. These coefficients2 may be easily found from (2.2), and
here we quote a few of them:

C̃0 = C0 ≡ 1, C̃ 1
2

= −2C 1
2
, C̃1 = 3C2

1
2
− 2C1 (3.8)

C̃ 3
2

= −2C 3
2

+ 6C 1
2
C1 − 4C3

1
2
, C̃2 = −2C2 + 5C4

1
2

+ 3C2
1 + 6C 1

2
C 3

2
− 12C2

1
2
C1.

2The Ck and C̃k coefficients are related by
∑
{ki} C̃k1

Ck2
Ck3

(
gs
H

)2∆(k1+k2+k3)
= 1 from where

(3.8) may be determined.
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These constant coefficients will have to be determined by plugging the ansatze in
the supergravity equations of motion in the presence of the quantum terms. Hence,
we will need time derivatives of F2(t) and F1(t). For F2(t), they are some variants
of (2.12):

Ḟ2(t) = 2∆
√

Λ
∑
k∈ Z

2

kCk

(gs
H

)2∆k−1

, F̈2(t) = 2∆Λ
∑
k∈ Z

2

k(2∆k − 1)Ck

(gs
H

)2∆k−2

,(3.9)

arising due to the simplification adopted in (3.7), and Λ is the cosmological constant
that appears in (2.3). If we want to work with (2.12) we will have to retain e−1/g∆

s

pieces, but cannot expand it in inverse powers of g∆
s as cautioned in footnotes 2 and

1. The time derivatives of F1(t) has exactly the same form as (3.9) except the Ck’s
are replaced by C̃k. Plugging these in (3.5) we can express Gmn in powers of gs in
the following way:

Gmn = Gmn + 3ΛH4gmn
∑
k

(
3∆k − 2∆2k2 − 2

)
Ck

(gs
H

)2∆k

+ ∆2ΛH4gmn
∑
{kl}

k1k2C̃k1C̃k2

7∏
i=3

Cki

(gs
H

)2∆(k1+...+k7)

− 8∂mH∂nH

H2

− 2∆ΛH4gmn
∑
{kl}

k1(3∆k2 + 2∆k1 − 3)C̃k1

4∏
i=2

Cki

(gs
H

)2∆(k1+k2+k3+k4)

+
4gmn
H2

∂lH∂lH + ∂αH∂
αH
∑
{kl}

Ck1Ck2Ck3

(gs
H

)2∆(k1+k2+k3)

 , (3.10)

where the braces {kl} denote sum over all the kl ∈ Z
2

values. It is interesting that
only (k1, k2) explicitly show up as coefficients which implies summing over all other
permutations of kp for p 6= 1, 2. This will be important when we want to extract
various powers of gs to balance the equations.

Let us now consider the energy-momentum tensor for the G-fluxes. The full
expression has been given in (3.6). One may note that the last three terms therein
are exactly the ones we have in (2.102) (see also footnote 19). In the gs → 0 limit, we
can represent the G-flux from (2.13) as:

GMNPQ =
∑
k∈ Z

2

G(k)
MNPQ(y)

(gs
H

)2∆k

, (3.11)

where H = h1/4 is as defined earlier, and we have used the fact that in the limit
of gs → 0, e−1/g∆

s dies-off faster than any powers of gs. Plugging (3.11) and (3.7) in
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(3.6), we get:

TGmn =
∑
{ki}

C̃k1

4H4

(
G(k2)
mlkaG

(k3)lka
n − 1

6
gmnG(k2)

plkaG
(k3)plka

)(gs
H

)2∆(k1+k2+k3)

+
∑
{ki}

Ck1

2H4

(
G(k2)
mlαaG

(k3)lαa
n − 1

4
gmnG(k2)

plαaG
(k3)plαa

)(gs
H

)2∆(k1+k2+k3)

+
∑
{ki}

Ck1Ck2Ck3Ck4

4H4

(
G(k5)
mαβaG

(k6)αβa
n − 1

2
gmnG(k5)

pαβaG
(k6)pαβa

)(gs
H

)2∆(k1+....+k6)

+
∑
{ki}

C̃k1C̃k2Ck3

12H4

(
G(k4)
mlkrG

(k5)lkr
n − 1

8
gmnG(k4)

pklrG
(k5)pklr

)(gs
H

)2∆(k1+...+k5+1/∆)

+
∑
{ki}

1

4H4

(
G(k1)
mlkαG

(k2)lkα
n − 1

6
gmnG(k1)

plkαG
(k2)plkα

)(gs
H

)2∆(k1+k2+1/∆)

+
∑
{ki}

Ck1Ck2Ck3

4H4

(
G(k4)
mlαβG

(k5)lαβ
n − 1

4
gmnG(k4)

plαβG
(k5)plαβ

)(gs
H

)2∆(k1+...+k5+1/∆)

+
∑
{ki}

C̃k1Ck2

4H4

(
G(k3)
mlabG

(k4)lab
n − 1

4
gmnG(k3)

pkabG
(k4)pkab

)(gs
H

)2∆(k1+...+k4−1/∆)

+
∑
{ki}

Ck1Ck2

4H4

(
G(k3)
mαabG

(k4)αab
n − 1

2
gmnG(k3)

pαabG
(k4)pαab

)(gs
H

)2∆(k1+...+k4−1/∆)

− gmn
16H4

∑
{ki}

Ck1 .......Ck5G
(k6)
αβabG

(k7)αβab
(gs
H

)2∆(k1+...+k7−1/∆)

− 8∂mH∂nH

H2

+
4gmn
H2

∂lH∂lH + ∂αH∂
αH
∑
{kl}

Ck1Ck2Ck3

(gs
H

)2∆(k1+k2+k3)

 , (3.12)

where note that we have retained components like G(k)
MNab(y), which immediately

implies that these components cannot be expressed as (2.89) because for the limit
gs → 0 only the constant zero form survives. We also want to avoid switching on
components like CMab to avoid developing cross-terms in the type IIB background
(2.6). Thus the only option is to view them as localized fluxes which, in fact, will also
be very useful to resolve other subtle issues surrounding flux quantization etc in
the full M-theory framework. By construction, we have:

G(0)
MNPQ = 0. (3.13)

With these at hand, we are now ready to discuss all the equations of motion for the
system. Our first step would be to study the EOMs at zeroth order in gs. Looking
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at (3.10), (3.11) and (3.1), it is easy to infer the following:

Gmn − 6ΛH4gmn =
∑
{ki}

[
C̃k1Ck2

4H4

(
G(k3)
mlabG

(k4)lab
n − 1

4
gmnG(k3)

pkabG
(k4)pkab

)

+
Ck1Ck2

4H4

(
G(k3)
mαabG

(k4)αab
n − 1

2
gmnG(k3)

pαabG
(k4)pαab

)]
δ(k1 + k2 + k3 + k4 − 3)

− gmn
16H4

∑
{ki}

Ck1Ck2Ck3Ck4Ck5G
(k6)
αβabG

(k7)αβabδ(k1 + k2 + ..+ k7 − 3) + C(0,0)
mn ,(3.14)

where the delta function is simply used to fix the condition on ki. Note that all
ki ∈ Z/2, and both set of (k3, k4) as well as (k6, k7) cannot vanish, and take the
minimum values of 1/2, because of (3.13). On the other hand, (2.97) tells us that
∆k ≥ 1/2 which, with the delta function constraint above, immediately implies
k3 = k4 = 3/2 in the first two lines and k6 = k7 = 3/2 in the last line of (3.14) and
the rest zero. Thus:

Gmn − 6ΛH4gmn = C(0,0)
mn +

1

4H4

(
G(3/2)
mlab G

(3/2)lab
n − 1

4
gmnG(3/2)

pkab G
(3/2)pkab

)
+

1

4H4

(
G(3/2)
mαabG

(3/2)αab
n − 1

2
gmnG(3/2)

pαab G
(3/2)pαab

)
− gmn

16H4
G(3/2)
αβabG

(3/2)αβab, (3.15)

(3.16)

which is actually a set of 10 equations with 31 unknowns. The RHS is completely
fixed once we know the functional form for G(3/2)

MNPQ(y) components. All these fluxes
appearing above are localized fluxes and according to (3.4), at the zeroth order in gs,
there are no local quantum terms, except classical ones, and contributions to C(0,0)

mn

come mostly from the non-local counter-terms. These are suppressed by powers
of the torus volume and therefore their contributions are negligible. This is one
of the key difference between a similar equation appearing in [15] (see eq (5.25) in
[15]). The number of terms appearing in C(i)

mn in eq (5.25) of [15] are the number of
solutions of θ′0 = 2

3
in (2.98). There are then an infinite number of solutions for (2.98)

with no hierarchy, the latter because of the inclusion of the non-local counter-terms.
This ruined an EFT description in [15].

Before moving ahead let us clarify few questions that may be asked at this
point regarding the two scaling behavior (2.97) for (2.2), and (2.98) for the time-
independent case. First, in determining the gs scaling gθ

′
k
s or gθ

′
0
s , what values of the

metric and G-flux components should we insert in (2.94)? Recall from (2.3) and (2.5)
the metric components are expressed in terms of their gs scalings as:

gµν = g−8/3
s ηµν , gab = g4/3

s δab

gαβ = gαβ

[(gs
H

)− 2
3

+ C̃ 1
2

(gs
H

)− 1
3

+ C̃1 + C̃ 3
2

(gs
H

) 1
3

+ .....

]
H4/3

gmn = gmn

[(gs
H

)− 2
3

+ C 1
2

(gs
H

)− 1
3

+ C1 + C 3
2

(gs
H

) 1
3

+ .....

]
H4/3, (3.17)
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where the Ck and C̃k are related by (3.8). Coming back, taking a trace on both sides
of (3.15) immediately tells us that the internal manifold M4 cannot be a Calabi-
Yau manifold. It cannot generically also be a conformally Calabi-Yau, as the non-
Kählerity will be controlled by the localized fluxes as well as the cosmological con-
stant Λ. At this stage one can also count the number of variables we have in the
problem. They can be tabulated as:

H(y); gmn(y); G(3/2)
MNPQ(y), G(2)

MNPQ(y), G(5/2)
MNPQ(y), .... (3.18)

with 10 components for gmn, 1 from H(y) and 70 components from any choice of
k in G(k)

MNPQ totalling to at least 81 independent functions for a given k. The gmn
EOM connects the metric components with the warp-factor and G-fluxes, which
we elucidated to zeroth order in gs in (3.15). In fact a more precise connection of
gmn to the fluxes and the quantum terms appears from the next order in gs i.e g1/3

s .
The relation becomes:

gmn =
3

58A(y)
C(1/2,0)
mn +

3

58A(y)

∑
{ki}

[
C̃k1Ck2

4H4

(
G(k3)
mlabG

(k4)lab
n − 1

4
gmnG(k3)

pkabG
(k4)pkab

)

+
Ck1Ck2

4H4

(
G(k3)
mαabG

(k4)αab
n − 1

2
gmnG(k3)

pαabG
(k4)pαab

)]
δ

(
k1 + k2 + k3 + k4 −

7

2

)
,

(3.19)

which is another set of 10 equations with at least 44 unknowns. These would imply
the precise connection between the M4 metric, localized fluxes and the quantum
terms. The function3 A(y) is again a function of the localized fluxes, and the warp-
factor H(y), as:

A(y) ≡ 3

928H4

∑
{ki}

Ck1
Ck2

Ck3
Ck4

Ck5
G(k6)
αβabG

(k7)αβabδ

(
k1 + k2 + ..+ k7 −

7

2

)
− C 1

2
ΛH4, (3.20)

where for both (3.19) as well as (3.20) we have to make sure that (k3, k4) ≥ (3/2, 3/2)
as well as (k6, k7) ≥ (3/2, 3/2) so as to comply with (3.13) as well as the positivity
of (2.97). More crucially, note the dependence of gmn on the quantum terms C(1/2,0)

mn

from (3.1). Since we are looking at g1/3
s , this means the local quantum terms of

C(1/2,0)
mn should be extracted from (2.94) and (2.100) with θ′k = 1 in (2.97), i.e:

2
27∑
i=1

li + n1 + n2 + l34 + l35 + 2 (k + 2) (l28 + l29 + l31) + (2k + 1) (l30 + l32 + l33)

+2 (k − 1) (l36 + l37 + l38) = 3, (3.21)

with (li, nj) ∈ (Z,Z) as it appears in (2.94). Again since k ≥ 3/2, we see that there
are only a few quantum terms that can appear from (3.21). These quantum terms

3The function (3.20) can never be zero globally because the G-flux components appearing in (3.20)
cannot globally cancel the contributions from the warp-factor, as they are by definition localized
fluxes.
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may be extracted from a sub-class of (3.21) that satisfy:

2
27∑
i=1

li + n1 + n2 +
4∑
i=0

l34+i = 3, (3.22)

with other li not contributing. These clearly select a finite number of local quantum
terms from (2.94). The remaining contribution to C(1/2,0)

mn in (3.19) come from the
non-local counter-terms, implying that to order g0

s and g
1/3
s , contributions to the

metric can only come from the fluxes and curvature tensors satisfying (3.21) and a
set of non-local counter-terms (that in turn are heavily suppressed prohibiting us to
go beyond a certain level of non-locality). For example, the non-local contributions
to r-th order come from:

θ′k =
2

3
(r + 1), θ′k =

2r

3
+ 1, (3.23)

for the two cases C(0,0)
mn and C(1/2,0)

mn respectively with θ′k as in (2.97). Additionally
(3.15) is expressed in terms of G(3/2)

MNPQ(y) whereas (3.19) is expressed in terms of
G(3/2)
MNPQ(y) and G(2)

MNPQ(y) allowing us to express G(2)
MNPQ(y) in terms of G(3/2)

MNPQ(y)
and other variables in the problem, where y = (ym, yα) form the coordinates of
M4 ×M2.

To elucidate the story further, let us go to the next order in gs, namely g2/3
s . We

want to see if there are additional constraints on the metric itself, or whether new
degrees of freedom appear. Combining (3.10), (3.11) and (3.1), we get:

gmn =
9

B(y)
C(1,0)
mn +

9

B(y)

∑
{ki}

[
C̃k1Ck2

4H4

(
G(k3)
mlabG

(k4)lab
n − 1

4
gmnG(k3)

pkabG
(k4)pkab

)
(3.24)

+
Ck1Ck2

4H4

(
G(k3)
mαabG

(k4)αab
n − 1

2
gmnG(k3)

pαabG
(k4)pαab

)]
δ (k1 + k2 + k3 + k4 − 4) ,

which is somewhat similar to (3.19) but differs in three respects: one, the quantum
terms are different; two, the ki sum over to 4 instead of 7/2 leading to a set of 10
equations with at least 58 unknowns; and three, the denominator is given by B(y)
instead of A(y). This is defined as:

B(y) ≡ 9

16H4

∑
{ki}

Ck1
Ck2

Ck3
Ck4

Ck5
G(k6)
αβabG

(k7)αβabδ (k1 + k2 + ..+ k7 − 4)− αaΛH4,

(3.25)

which should again be compared to (3.20) (the non-vanishing of this is guaranteed
from a similar argument presented in footnote 3). These similarities however do
not survive beyond g5/3

s and we will comment on it below. The constant αa is given
by the following expression:

αa ≡ 43C2
1
2
− 61C1 − 13C 1

2
, (3.26)
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with Ck being the constant appearing in the functional form for F2(t) in (3.7) and
(3.8) an should in principle be determined along-with the metric, warp-factor and
the G-flux components.

Looking at (3.24) and (3.19) we see that a pattern is emerging: (3.24) is expressed
in terms of G-fluxes of the form G(5/2)

MNPQ(y),G(2)
MNPQ(y) and G(3/2)

MNPQ(y). Thus know-
ing the metric information gmn(y) will enable us to express G(5/2)

MNPQ(y) in terms of
G(2)
MNPQ(y), G(3/2)

MNPQ(y) and the warp-factors, as the quantum term in (3.24) is given
by li in (2.94) satisfying:

2
27∑
i=1

li + n1 + n2 + l34 + l35 + 2(k − 1)(l36 + l37 + l38) = 4 + 2r, (3.27)

with r = 0 producing the local terms. Note that k ≤ 2 otherwise the terms would
be classical, implying that the quantum terms to this order cannot be constructed
out of G(5/2)

MNPQ justifying the above pattern.
The form of the Einstein’s equations would remain similar till g5/3

s . For g2
s on-

wards, other components in the energy-momentum tensor (3.11) would start par-
ticipating because the ki ≥ 3/2 bound for the G-flux components would no longer
be prohibitive. Thus for any given component of the G-flux, say for example G(k)

mnab,
there are infinite number of sub-components classified by k for k ≥ 3/2. So far
we have only dealt with a few G-flux components and their corresponding sub-
components (classified above by ki), but more would appear as we go to order g2

s

and beyond. In fact 70 new components of G-flux would appear for every choice of
ki, implying that at least 70 new degrees of freedom are added at every order in gs
as we go.

Case 2: F1(t) and F2(t) satisfying the fluctuation condition (2.8)

In the above section we discussed in details how the EOMs for the internal space
M4 may be determined from fluxes and the quantum terms. In this section we
would like to see how this changes once we impose (2.75) or (2.8) on the metric
coefficients F1(t) and F2(t). One of the first important distinction is the derivative
constraint that appears from looking at the generalized scaling (2.92). This could
even prompt us to analyze the whole section using (2.75) instead of the special
case (2.8). The generic picture is more technically involved, and since we will not
be gaining new physics by looking at (2.75), we will suffice ourselves here with a
detailed consequence of imposing the special case (2.8) on the background EOMs.
We will however revert to the generic picture whenever possible.

As a start, let us work out the behavior of the metric coefficients F1(t) and F2(t).
We will keep F2(t) as in (3.7), but change F1(t) accordingly. For example, the generic
form for Fi(t) may be expressed as:

F2(t) =
∑
k

Ck

(gs
H

)2∆k

, F1(t) =
∑
k

C̃k

(gs
H

)2∆k+γ

≡
∑
k

Ĉk

(gs
H

)2∆k

, (3.28)

this is almost similar to (3.7), if we define Ĉk ≡ C̃k
(
gs
H

)γ . Note that, in this form the
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(Ck, C̃k) coefficients satisfy the same relation as (3.8). However the metric along the
(α, β) direction becomes:

gαβ = gαβ

[(gs
H

)− 2
3

+γ

+ C̃ 1
2

(gs
H

)− 1
3

+γ

+ C̃1

(gs
H

)γ
+ C̃ 3

2

(gs
H

) 1
3

+γ

+ .....

]
H4/3,

(3.29)

with the other coefficients remaining the same as in (3.17). Choosing γ = 2 would
explain the metric choice that we took earlier in analyzing the gs scaling (2.86).
Again, we could resort to the dominant scalings of the metric coefficient i.e g−2/3+γ

s ,
but compared to footnote ?? the inverse will become g+2/3−γ

s with the γ exponent
picking up a negative sign. This is because F−1

1 does not have a perturbative ex-
pansion compared to the case explored in footnote ??. The resulting physics will
change as evident from the scaling behavior (2.92) and (2.86).

The time derivatives of F2(t) will expectedly remain the same as in (3.8), but the
time derivatives of F1(t) will change. The change is easy to quantify:

Ḟ1(t) =
√

Λ
∑
k∈ Z

2

C̃k(2∆k + γ)
(gs
H

)2∆k+γ−1

F̈1(t) = Λ
∑
k∈ Z

2

C̃k(2∆k + γ)(2∆k + γ − 1)
(gs
H

)2∆k+γ−2

, (3.30)

where the inverse powers of gs will be dealt carefully once we go to the relevant
EOMs. These functional form can now be used to determine the Einstein tensor
along the (m,n) directions. The result is:

Gmn = Gmn + 3ΛH4gmn
∑
k

(
3∆k − 2∆2k2 − 2

)
Ck

(gs
H

)2∆k

+
4gmn∂lH∂

lH

H2
(3.31)

+
1

4
ΛH4gmn

∑
{kl}

(2∆k1 + γ)(2∆k2 + γ)C̃k1C̃k2

7∏
i=3

Cki

(gs
H

)2∆(k1+...+k7)

− 8∂mH∂nH

H2

− ΛH4gmn
∑
{kl}

(2∆k1 + γ)(3∆k2 + 2∆k1 + γ − 3)C̃k1

4∏
i=2

Cki

(gs
H

)2∆(k1+k2+k3+k4)

,

which in the limit γ = 0 does not reproduce all the terms of (3.10). In particular
terms with derivatives with respect to α are missing. This is of course expected
because γ = 0 and γ > 0 share different physics. Note also that none of the gs
scaling gets effected by the γ factor, although the γ factor does change the some
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of the coefficients of the terms in a standard way. In a similar vein, the energy-
momentum tensor from the G-fluxes may be represented as,

TGmn =
∑
{ki}

C̃k1

4H4

(
G(k2)
mlkaG

(k3)lka
n − 1

6
gmnG(k2)

plkaG
(k3)plka

)(gs
H

)2∆(k1+k2+k3)

+
4gmn∂lH∂

lH

H2

+
∑
{ki}

Ck1

2H4

(
G(k2)
mlαaG

(k3)lαa
n − 1

4
gmnG(k2)

plαaG
(k3)plαa

)(gs
H

)2∆(k1+k2+k3−γ/2∆)

+
∑
{ki}

Ck1Ck2Ck3Ck4

4H4

(
G(k5)
mαβaG

(k6)αβa
n − 1

2
gmnG(k5)

pαβaG
(k6)pαβa

)(gs
H

)2∆(k1+....+k6−γ/∆)

+
∑
{ki}

C̃k1C̃k2Ck3

12H4

(
G(k4)
mlkrG

(k5)lkr
n − 1

8
gmnG(k4)

pklrG
(k5)pklr

)(gs
H

)2∆(k1+...+k5+1/∆)

+
∑
{ki}

1

4H4

(
G(k1)
mlkαG

(k2)lkα
n − 1

6
gmnG(k1)

plkαG
(k2)plkα

)(gs
H

)2∆(k1+k2+1/∆)

+
∑
{ki}

Ck1Ck2Ck3

4H4

(
G(k4)
mlαβG

(k5)lαβ
n − 1

4
gmnG(k4)

plαβG
(k5)plαβ

)(gs
H

)2∆(k1+...+k5+1/∆−γ/∆)

+
∑
{ki}

C̃k1Ck2

4H4

(
G(k3)
mlabG

(k4)lab
n − 1

4
gmnG(k3)

pkabG
(k4)pkab

)(gs
H

)2∆(k1+...+k4−1/∆)

+
∑
{ki}

Ck1Ck2

4H4

(
G(k3)
mαabG

(k4)αab
n − 1

2
gmnG(k3)

pαabG
(k4)pαab

)(gs
H

)2∆(k1+...+k4−1/∆−γ/2∆)

− gmn
16H4

∑
{ki}

Ck1 ...Ck5G
(k6)
αβabG

(k7)αβab
(gs
H

)2∆(k1+...+k7−1/∆−γ/∆)

− 8∂mH∂nH

H2
, (3.32)

where we have used the G-flux ansatze (3.11) to express it in powers of gs. The
above expression is similar to what we had in (3.12) and putting γ = 0 we get back
most of the terms therein. The difference remains the same: terms with derivative
with respect to α are missing.

Let us now analyze the EOMs. We equate the Einstein tensor (3.31) with the
energy-momentum tensors (3.32), for the G-fluxes and (3.1), for the quantum terms.
However, we will have to specify some values for γ to equate (3.31) with the sum
of (3.32) and (3.1). Let us take γ = 2. Such a choice immediately implies, from
(2.92) and (2.93), that the lowest mode of G-flux that we can take to avoid generating
time-neutral series is 9/2, i.e G(9/2)

MNPQ. In other words:

GMNPQ = G(9/2)
MNPQ

(gs
H

)3

+ G(5)
MNPQ

(gs
H

)10/3

+ ...., (3.33)

where we put ∆ = 1/3 to illustrate the gs dependence more precisely. The expansion
(3.33) is a bit unnatural in the light of the G-flux behavior for γ = 0, and in fact
increasing γ increases the lower bound from (2.93), but let us carry on to see how
this effects the EOMs.
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We will analyze the EOMs to order by order in powers of g1/3
s . The lowest or-

der is the zeroth power in gs. Interestingly, because we took γ = 2, the only flux
component that can contribute at this order is G(9/2)

αβab . In other words:

Gmn − 3ΛH4gmn = C(0,0)
mn −

gmn
16H4

G(9/2)
αβabG

(9/2)αβab, (3.34)

where C(0,0)
mn collects all the quantum terms classified by θk = 2/3 in (2.84), where

the choice of θk is governed by the scaling argument in (2.99). The equation (3.34)
should be compared to (3.15). The latter has more G-flux components with much
lower modes, but the overall story remains somewhat similar, albeit a bit more
natural. A degree of freedom counting tells us that we have 10 equations with at
least 17 unknowns, thus considerably more constrained than (3.15). Note that the
coefficient of Λ, lets call it σoΛ, is smaller that what we had in (3.15). This is because
γ contributes to the coefficient as:

σo ≡
3

4

(
4γ − γ2 − 8

)
, (3.35)

showing that no real choice of γ can make the cosmological constant term in (3.34)
to vanish.

To the next order in gs the story evolves in a similar way to what we had in (3.19).
The metric can be directly related to the G-flux component G(9/2)

αβab and the quantum
terms C(1/2,0)

mn . The precise expression is:

gmn =
144H8

Λ

(
C(1/2,0)
mn

16H8J(y) + 45C 1
2
G(9/2)
αβabG(9/2)αβab

)
, (3.36)

where the quantum terms are classified, as before, by θk = 1, with θk defined as in
(2.84). The equation (3.36), as also in (3.19), mixes all the un-warped metric com-
ponents with the G-flux component G(9/2)

αβab as well as the Ck and the C̃k coefficients,
so one would need other equations to disantangle everything. The Ck and the C̃k
coefficients also appear in the definition of J(y) which takes the following form:

J(y) ≡ −42C 1
2

+
∑
{ki}

(k1 + 3) (k2 + 3) C̃k1C̃k2

7∏
1=3

Ckiδ

(
k1 + ...+ k7 −

1

2

)
(3.37)

−2
∑
{ki}

(k1 + 3) (3k2 + 2k1 − 3) C̃k1Ck2Ck3Ck4δ

(
k1 + k2 + k3 + k4 −

1

2

)
.

One could now go to the next order, i.e g2/3
s , and analyze the background in a sim-

ilar way to (3.24), using the same component of G-flux and quantum terms C(1,0)
mn

classified by θk = 4/3 in (2.84). Compared to our analysis for case 1, only a few
new degrees of freedom are added at this stage: the coefficients of the individual
quantum terms and the C 1

2
coefficient. Thus (3.37) is again a set of 10 equations

with at least 18 unknowns. Compared to case 1 above, it appears that we have
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more equations than the number of unknowns, so existence of solution is a ques-
tion here. Assuming solution exists, we see from (3.34) and (3.36) that the metric
onM4 has to be a non-Kähler metric. The story can then be developed further in a
somewhat similar way, but we will not do so here, and instead go with the analysis
of the two cases along (α, β) directions.

Einstein equation along (α, β) directions

The Einstein’s equations along (m,n) directions have been discussed. We now ana-
lyze along the (α, β) directions, namely the directions alongM2. The analysis will
proceed more or less in the same way as before, although specific details would
differ. In fact these are the differences that we want to illustrate in this section. We
will proceed by first studying the volume preserving case (2.2) and then go for the
fluctuation case (2.8). However before moving to the specific cases in question, we
want to elucidate the general picture starting with the Einstein tensor. This takes
the form:

Gαβ = Gαβ −
8∂αH∂βH

H2
+ 4gαβ

[
1

4
gs
√

ΛH3Ḟ1 −
3

2
ΛH4F1 +

∂αH∂
αH

H2
+
F1

F2

(
∂mH∂

mH

H2

)]
(3.38)

− 4gαβ

[
1

8
g2
sH

2F̈1 −
g2
sH

2Ḟ 2
1

16F1
+
g2
sH

2Ḟ 2
2F1

8F 2
2

+
g2
sH

2Ḟ2Ḟ1

4F2
+
gs
√

ΛH3Ḟ2F1

F2
+
g2
sH

2F̈2F1

2F2

]
,

where h(y) ≡ H4(y) and Gαβ is defined with the un-warped metric gαβ . The gs
dependence appearing in (3.38) is clearly not the full story as other gs dependences
hide in the definitions of Fi(t). This will be illustrated for the two case (2.2) and (2.8)
soon. The Einstein tensor (3.38) will have to be equated to the sum of the energy-
momentum tensors for the G-flux as well as for the quantum terms. The latter is
given in (3.1) whereas the former takes the form:

TGαβ =
F1

H4F 3
2

(
− 1

24
gαβGmnpaG

mnpa

)
+

Λ(t)

12H4F 3
2

(
GαlkrG

lkr
β −

1

2
gαβGγklrG

γklr

)
+

1

4H4F 2
2

(
GαlkaG

lka
β − 1

2
gαβGγklaG

γkla

)
+

1

2H4F1F2

(
GαlγaG

lγa
β − 1

4
gαβGδlγaG

δlγa

)
+

Λ(t)

4H4F2F 2
1

(
GαηlrG

ηlr
β −

1

4
gαβGκηlrG

κηlr

)
− F1Λ(t)

12H4F 4
2

(
1

8
gαβGmnpqG

mnpq

)
− 8∂αH∂βH

H2

+
1

4H4Λ(t)F2

(
GαlabG

lab
β −

1

2
gαβGαkabG

βkab

)
+

1

4H4Λ(t)F1

(
GαγabG

γab
β − 1

4
gαβGηκabG

ηκab

)
− F1

H4Λ(t)F 2
2

(
1

16
gαβGmnabG

mnab

)
+ 4gαβ

[
∂γH∂

γH

H2
+
F1

F2

(
∂mH∂

mH

H2

)]
, (3.39)

which captures the contributions to the energy-momentum tensor from the G-
fluxes. Interestingly, as in (3.12) all components of G-flux contribute, in addition
to the space-time components. With these at hand, let us discuss the individual
cases.

Case 1: F1(t) and F2(t) satisfying the volume-preserving condition (2.2)
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Our starting point would be express both (3.38) and (3.39) using the gs expansions
of Fi(t) as in (3.7) and G-flux as in (3.11). Using these the Einstein tensor becomes:

Gαβ = Gαβ −
8∂αH∂βH

H2
+ ΛH4gαβ

∑
{ki}

[
2∆kC̃k − 6C̃k −∆k(2∆k − 1)C̃k

] (gs
H

)2∆k

+ 4gαβ

∂αH∂αH
H2

+

(
∂mH∂

mH

H2

)∑
{ki}

C̃k1C̃k2Ck3

(gs
H

)2∆(k1+k2+k2)


− Λ∆H4gαβ

∑
{ki}

[
2∆k1k2Ck1Ck2C̃k3C̃k4 −∆k1k2C̃k1C̃k2Ck3Ck4 + 4∆k2k4C̃k1C̃k2Ck3Ck4

+ 8k1Ck1C̃k2C̃k3Ck4 + 4k1(2∆k1 − 1)Ck1C̃k2C̃k3Ck4

] (gs
H

)2∆(k1+k2+k3+k4)

, (3.40)

which in turn should be compared to (3.10). As expected, their precise structures
are a bit different, but the generic form remains somewhat equivalent. This is also
reflected in the form of the energy-momentum tensor, which may be expressed as:

TGαβ =
1

4H4

∑
{ki}

C̃k1

(
G(k2)
αlkaG

(k3)lka
β − 1

2
gαβG(k2)

γlkaG
(k3)γlka

)(gs
H

)2∆(k1+k2+k3)

(3.41)

+
1

2H4

∑
{ki}

Ck1

(
G(k2)
αlγaG

(k3)lγa
β − 1

4
gαβG(k2)

δlγaG
(k3)δlγa

)(gs
H

)2∆(k1+k2+k3)

− gαβ
24H4

∑
{ki}

C̃k1C̃k2C̃k3Ck4G(k5)
mnpaG(k6)mnpa

(gs
H

)2∆(k1+k2+k3+k4+k5+k6)

− gαβ
96H4

∑
{ki}

C̃k1C̃k2C̃k3G(k4)
mnpqG(k5)mnpq

(gs
H

)2∆(k1+k2+k3+k4+k5+1/∆)

− gαβ
16H4

∑
{ki}

C̃k1C̃k2G
(k3)
mnabG

(k4)mnab
(gs
H

)2∆(k1+k2+k3+k4−1/∆)

+
1

4H4

∑
{ki}

C̃k1Ck2

(
G(k3)
αlabG

(k4)lab
β − 1

2
gαβG(k3)

γlabG
(k4)γlab

)(gs
H

)2∆(k1+k2+k3+k4−1/∆)

+
1

4H4

∑
{ki}

Ck1Ck2

(
G(k3)
αγabG

(k4)γab
β − 1

4
gαβG(k3)

γηabG
(k4)γηab

)(gs
H

)2∆(k1+k2+k3+k4−1/∆)

+
1

4H4

∑
{ki}

Ck1Ck2Ck3

(
G(k4)
αηlrG

(k5)ηlr
β − 1

4
gαβG(k4)

γηkrG
(k5)γηkr

)(gs
H

)2∆(k1+k2+k3+k4+k5+1/∆)

+
1

12H4

∑
{ki}

C̃k1C̃k2Ck3

(
G(k4)
αlkrG

(k5)lkr
β − 1

2
gαβG(k4)

γlkrG
(k5)γklr

)(gs
H

)2∆(k1+k2+k3+k4+k5+1/∆)

− 8∂αH∂βH

H2
+ 4gαβ

∂γH∂γH
H2

+

(
∂mH∂

mH

H2

)∑
{ki}

C̃k1C̃k2Ck3

(gs
H

)2∆(k1+k2+k2)

 ,
which should again be compared to (3.12) and we see that the relevant G-flux com-
ponents and the warp-factors fall in their rightful places. As expected, the last three
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terms of (3.41) matches with the three equivalent terms in (3.40). To the zeroth order
in gs, the equation of motion becomes:

Gαβ − 6ΛH4gαβ = C(0,0)
αβ +

1

4H4

(
G(3/2)
αγabG

(3/2)γab
β − 1

4
gαβG(3/2)

γηab G
(3/2)γηab

)
(3.42)

+
1

4H4

(
G(3/2)
αlab G

(3/2)lab
β − 1

2
gαβG(3/2)

γlab G
(3/2)γlab

)
− gαβ

16H4
G(3/2)
mnabG

(3/2)mnab,

showing us that the internal spaceM2 again cannot be a Calabi-Yau manifold. The
non-Kählerity ofM2 is generated by both G-fluxes and the cosmological constant.
The G-fluxes entering in (3.42) are the special ones that have legs along the (a, b)
directions much like the ones entering in (3.15). As mentioned earlier, these fluxes
cannot be of the form (2.89) and therefore will be treated as localized fluxes. The
other ingredient is the quantum term C(0,0)

αβ . More details on this will be discussed
below.

In the next order, i.e. g
1/3
s , we need to be careful because some of the ki that

determine the G-flux components are bounded below as ki ≥ 3/2. The others can
take any, i.e zero and positive, values lying in Z/2. Keeping this in mind, expanding
to g1/3

s gives us:

gαβ =
9

2C(y)
C(1/2,0)
αβ +

9

8H4C(y)

∑
{ki}

[
C̃k1Ck2

(
G(k3)
αlabG

(k4)lab
β − 1

2
gαβG(k3)

γlabG
(k4)γlab

)

+ Ck1Ck2

(
G(k3)
αγabG

(k4)γab
β − 1

4
gαβG(k3)

γηabG
(k4)γηab

)]
δ

(
k1 + k2 + k3 + k4 −

7

2

)
− 9gαβ

32H4C(y)

∑
{ki}

(
C̃k1C̃k2G

(k3)
mnabG

(k4)mnab

)
δ

(
k1 + k2 + k3 + k4 −

7

2

)
, (3.43)

where we note that (k3, k4) ≥ (3/2, 3/2) as alluded to above. This means we are
looking at G-flux components with (k3, k4) = (3/2, 3/2), (3/2, 2) and (2, 3/2). This,
in turn, should be compared to the (3/2, 3/2) distribution that we got in (3.42). The
coefficient C(y) is defined as:

C(y) ≡ 50ΛH2(y)C 1
2
, (3.44)

which is always a non-zero function because H(y) is a non-vanishing real function
globally. The other ingredient of (3.43) are the quantum terms. These are classified
by C(1/2,0)

αβ and should be compared to the quantum terms classified by C(0,0)
αβ in

(3.42). Following (2.100), the latter would be classified by θ′k = 2
3

whereas the former
would be classified by θ′k = 1 in (2.97).
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The next order is g2/3
s , and follows in exactly the same footsteps of the previous

case, although details differ. The equation now becomes:

gαβ =
9C(1,0)

αβ

E(y)
+

9

4H4E(y)

∑
{ki}

[
C̃k1Ck2

(
G(k3)
αlabG

(k4)lab
β − 1

2
gαβG(k3)

γlabG
(k4)γlab

)

+

(
G(k3)
αγabG

(k4)γab
β − 1

4
gαβG(k3)

γηabG
(k4)γηab

)]
δ (k1 + k2 + k3 + k4 − 4)

− 9gαβ
16H4E(y)

∑
{ki}

(
C̃k1C̃k2G

(k3)
mnabG

(k4)mnab

)
δ (k1 + k2 + k3 + k4 − 4) , (3.45)

in exactly the same format as in (3.24). Again k3 and k4 are bounded as (k3, k4) ≥
(3/2, 3/2) so we have G-flux contributions from G(3/2)

MNPQ,G
(2)
MNPQ and G(5/2)

MNPQ. In the
same vein, the quantum terms are classified by an equation of the form (3.27) for
local and non-local contributions. Finally the function E(y) appearing above is de-
fined in the following way:

E(y) ≡ −ΛH4(y)
[
47C̃1 + 3D(y)

]
(3.46)

D(y) ≡ 2

3

∑
{ki}

[
k1k2Ck1Ck2C̃k3C̃k4 −

1

2
k1k2C̃k1C̃k2Ck3Ck4 + 2k2k4C̃k1C̃k2Ck3Ck4

+ 12k1Ck1C̃k2C̃k3Ck4 + 2k1(2k1 − 3)Ck1C̃k2C̃k3Ck4

]
δ (k1 + k2 + k3 + k4 − 1) ,

where we expect both these functions to be non-vanishing globally. All the three
EOMs that we listed above, namely (3.42), (3.43) and (3.45), are each a set of three
equations with at least 31, 40 and 49 unknowns respectively.

Case 2: F1(t) and F2(t) satisfying the fluctuation condition (2.8)

The analysis of (α, β) directions will be a bit more subtle from what we encountered
for case 1, partly due to being different modings of the G-flux components and
partly due the different scaling behavior of the quantum terms as evident from
(2.99). Before we go into these discussions, let us present the Einstein tensor for this
case:

Gαβ = Gαβ + ΛH4gαβ
∑
{ki}

[
(2∆k + γ)C̃k − 6C̃k −

1

2
(2∆k + γ)(2∆k + γ − 1)C̃k

](gs
H

)2∆k+γ

+ 4gαβ

(
∂mH∂

mH

H2

)∑
{ki}

C̃k1
C̃k2

Ck3

(gs
H

)2∆(k1+k2+k2)+γ

− Λ∆H4gαβ

(gs
H

)2∆(k1+k2+k3+k4)+γ

×
∑
{ki}

[
2∆k1k2Ck1

Ck2
C̃k3

C̃k4
− 1

4∆
(2∆k1 + γ)(2∆k2 + γ)C̃k1

C̃k2
Ck3

Ck4

+ 2(2∆k2 + γ)k4C̃k1C̃k2Ck3Ck4 + 8k1Ck1C̃k2C̃k3Ck4 + 4k1(2∆k1 − 1)Ck1C̃k2C̃k3Ck4

]
, (3.47)

which may be compared to (3.40). As before, the difference lies in the absence of
α dependent terms and the appearance of the γ factor at various places, including
the gs scalings of most of the terms. We will eventually make γ = 2, but for the time
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being we shall carry on with the generic picture as far as possible.
The energy-momentum tensor for the G-flux is much easier to compute. All we

need is to ask how the gs scalings of each terms in (3.41) could change. Taking this
into account, the expression for the energy-momentum tensor becomes:

TGαβ =
1

4H4

∑
{ki}

C̃k1

(
G(k2)
αlkaG

(k3)lka
β − 1

2
gαβG(k2)

γlkaG
(k3)γlka

)(gs
H

)2∆(k1+k2+k3)

+
1

2H4

∑
{ki}

Ck1

(
G(k2)
αlγaG

(k3)lγa
β − 1

4
gαβG(k2)

δlγaG
(k3)δlγa

)(gs
H

)2∆(k1+k2+k3−γ/2∆)

− gαβ
24H4

∑
{ki}

C̃k1
C̃k2

C̃k3
Ck4
G(k5)
mnpaG(k6)mnpa

(gs
H

)2∆(k1+k2+k3+k4+k5+k6+γ/2∆)

− 1

96H4
gαβ

∑
{ki}

C̃k1
C̃k2

C̃k3
G(k4)
mnpqG(k5)mnpq

(gs
H

)2∆(k1+k2+k3+k4+k5+1/∆+γ/2∆)

− gαβ
16H4

∑
{ki}

C̃k1C̃k2G
(k3)
mnabG

(k4)mnab
(gs
H

)2∆(k1+k2+k3+k4−1/∆+γ/2∆)

+
1

4H4

∑
{ki}

C̃k1Ck2

(
G(k3)
αlabG

(k4)lab
β − 1

2
gαβG(k3)

γlabG
(k4)γlab

)(gs
H

)2∆(k1+k2+k3+k4−1/∆)

+
1

4H4

∑
{ki}

Ck1Ck2

(
G(k3)
αγabG

(k4)γab
β − 1

4
gαβG(k3)

γηabG
(k4)γηab

)(gs
H

)2∆(k1+k2+k3+k4−1/∆−γ/2∆)

+
1

4H4

∑
{ki}

Ck1Ck2Ck3

(
G(k4)
αηlrG

(k5)ηlr
β − 1

4
gαβG(k4)

γηkrG
(k5)γηkr

)(gs
H

)2∆(k1+k2+k3+k4+k5+1/∆−γ/∆)

+
1

12H4

∑
{ki}

C̃k1C̃k2Ck3

(
G(k4)
αlkrG

(k5)lkr
β − 1

2
gαβG(k4)

γlkrG
(k5)γklr

)(gs
H

)2∆(k1+k2+k3+k4+k5+1/∆)

+ 4gαβ

(
∂mH∂

mH

H2

)∑
{ki}

C̃k1C̃k2Ck3

(gs
H

)2∆(k1+k2+k2)

, (3.48)

where expectedly the last term matches with an equivalent term in (3.47). Other
terms could be compared to (3.41), and here we notice something interesting: to al-
low for a zeroth power of gs, the sum of the two modings of the G-flux components,
i.e the sum of the two ki values of the G(ki)

MNPQ appearing in any term above, should
at most be:

ki + kj =
1

∆

(
1 +

γ

2

)
, (3.49)

where (ki, kj) are the modings appearing in the product of two G-flux components
in (3.48) that contribute to the energy-momentum tensor. With γ = 2 and ∆ = 1/3,
this means the sum in (3.49) should at most be 6. This is unfortunately not possible
in the light of (3.33) and (3.13), where ki ≥ 9/2 for the G-flux components from
(2.93), implying that to zeroth order in gs, there are no G-flux contributions to the
(α, β) EOMs.

What about the quantum terms (3.1)? Here we face another conundrum: ac-
cording to the scalings of the quantum terms in (2.99), with two free Lorentz indices
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along (α, β) directions, the gs expansion should go as:

gθk+4/3
s = g2

s , g
7/3
s , ...., (3.50)

with θk defined in (2.84), implying that there are no quantum terms to zeroth order
in gs. The minimum allowed power of gs is g2

s because terms with θk = 1/3 vanishes
due to the anti-symmetry of the G-fluxes. The non-local terms cannot contribute
anything because it adds a factor of +4r/3 at r-th level of non-locality to (2.84) as
evident from (2.119) and (2.121). This means that at zeroth order in gs, even the
quantum terms cannot contribute. Putting everything together, (3.47), (3.48) and
(3.1) with (2.99), gives us:

Gαβ = 0, (3.51)

implying that the internal spaceM2 can be a conformally Calabi-Yau space4. This
doesn’t imply the metric to be that of a flat torus, because of the warp-factors. On
the other hand sinceM2 can now have toroidal topology, it’s Euler characteristics
would vanish, implying the vanishing of the Euler characteristics of the full eight
manifold. One might now worry whether non-zero fluxes could be allowed on a
manifold with vanishing Euler number [21, 22]. This is a pertinent question and we
will analyze this in more details soon, but the short answer is the following. Since
the fluxes involved are time-dependent the constraints discussed in [21, 22] will have
to be modified allowing fluxes to exist on the eight manifold with vanishing Euler
number. These fluxes will have to be supported by quantum effects, so there is no
contradiction yet5.

To the next order in gs, i.e g
1/3
s , there are no contributions from (3.47), (3.48)

and (2.99). In fact the next contributions only come from order g2
s , and leads to the

following EOM:

C(3,0)
αβ +

1

4H4

(
G(9/2)
αγabG

(9/2)γab
β − 1

4
gαβG(9/2)

γηab G
(9/2)γηab

)
+ 4ΛH4gαβ = 0, (3.52)

which is a set of 3 equations with at least 7 unknowns. Note that this is also the
first time the quantum terms contribute to the EOM; and here they are classified by
θk = 2/3 with θk given as in (2.84). The above equation however is a bit puzzling in
the light of (3.51). In terms of the un-warped metric gαβ we expect from (3.51) that
the internal space be Ricci flat. Putting gαβ = δαβ then puts a constraint on the form
of the quantum terms C(3,0)

αβ from (3.52). In particular (3.52) tells us that the trace of

4A more precise statement is that (3.51) directly implies R(4) = 0, i.e the Ricci scalar of M4

vanishes and we can take the metric gmn to be that of a K3 space. Imposing this on (3.51) provides a
source-free equation for the metric gαβ whose solution is a torus. This way the metric forM4 ×M2

can be conformal to K3×T2.
5Another possibility is to take the metric of M2 to be flat everywhere except at one point. Ge-

ometrically this is T2/Z2 and therefore doesn’t have a vanishing Euler characteristics. However
quantum corrections would eventually make this into a smooth space with non-vanishing curva-
ture, so will not be a solution to (3.51). Thus we will continue with K3 × T2 as our un-warped
background. This will eventually lead to some subtleties that we shall clarify in section 3.1.2.
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the quantum terms has to be a negative definite function, i.e:

[Cα
α](3,0) = − 1

8H4

(
G(9/2)
αβab

)2

− 8ΛH4. (3.53)

Whether such a constraint could be satisfied will be discussed later when we ana-
lyze all the EOMs together. From here the story progresses in the usual way with
the Einstein tensor (3.47) being balanced by the energy-momentum tensors (3.48)
and (3.1).

Einstein equation along (a, b) directions

Along the (a, b) directions, i.e directions along T2/G the situation is somewhat moree
subtle. Part of the reason is that the variables we took so far are independent of the
toroidal direction. This was not the case in [15], which is of course reflected in
the scaling expression (2.99). The other main reason is the quantum terms that we
will discuss when we study the individual cases, (2.2) and (2.8). For the immediate
discussion, we present the expression for the Einstein tensor:

Gab = δab

(
−R

2
− 9hΛ +

4gαβ∂αH∂βH

H2F1

+
4gmn∂mH∂nH

H2F2

)(gs
H

)2

+ δabH
4

(
Ḟ 2

1

4F 2
1

+
3Ḟ1

tF1

− F̈1

F1

− Ḟ 2
2

2F 2
2

+
6Ḟ2

tF2

− 2F̈2

F2

− 2Ḟ1Ḟ2

F1F2

)(gs
H

)4

,

(3.54)

whereR is the curvature scalar of the six-dimensional baseM4×M2 and not the full
eight-manifold. The reason is of course because we have assigned non-trivial metric
to the six-dimensional base, whereas the metric of the toroidal space is governed by
the warp-factors only. This is also the reason why δab appears in (3.54) above instead
of a non-trivial metric gab. Inclusion of the latter would complicate the dynamics of
the system, for example, by changing the coupling constant etc., so we will avoid it
here. Note also the absence of gs independent terms in (3.54). This differs from (3.5)
and (3.38), both of which allow gs neutral terms in the definitions of the Einstein
tensors. Similarly the energy-momentum tensor is given by:

TGab =
Λ(t)

12H4F 3
2

(
GamnpG

mnp
b − 1

2
δabGmnpcG

mnpc

)
+

Λ(t)

4H4F 2
2F1

(
GamnαG

mnα
b − 1

2
δabGmnαcG

mnαc

)
+

Λ(t)

4H4F 2
1F2

(
GamαβG

mαβ
b − 1

2
δabGcmαβG

cmαβ

)
+

1

2H4F1F2

(
GacmρG

cmρ
b − 1

4
δabGmρcdG

mρcd

)
+

1

4H4F 2
2

(
GacmnG

cmn
b − 1

4
δabGdcmnG

dcmn

)
+

1

4H4F 2
1

(
GacαβG

cαβ
b − 1

4
δabGcdαβG

cdαβ

)
− δab

Λ(t)2

4.4!H4F 4
2

GmnpqG
mnpq − δab

Λ(t)2

24H4F 3
2F1

GmnpαG
mnpα − δab

Λ(t)2

16H4F 2
2F

2
1

GmnαβG
mnαβ

+
4Λ(t)

H2F1
δabg

αβ∂αH∂βH +
4Λ(t)

H2F2
δabg

mn∂mH∂nH, (3.55)

where one may note the specific placement of Λ(t) ≡
(
gs
H

)2 which will determine the
subsequent dynamics of the system once quantum terms are added to the system.
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In the following, we proceed with the various cases in consideration.

Case 1: F1(t) and F2(t) satisfying the volume-preserving condition (2.2)

Our starting point then is to study the volume preserving case, where now, as men-
tioned above, some subtleties will arise due to the specific forms of the Einstein and
the energy-momentum tensors. The latter for both G-fluxes as well as the quantum
terms. The former, i.e the Einstein tensor (3.54), takes the following form:

Gab =
4δab
H2

∑
{ki}

(
Ck1Ck2g

αβ∂αH∂βH + C̃k1Ck2g
mn∂mH∂nH

)(gs
H

)2∆(k1+k2+1/∆)

(3.56)

− δab
2

(
R+ 18H4Λ

) (gs
H

)2

+ ∆2ΛH4δab
∑
{ki}

k1k2C̃k1
C̃k2

Ck3
....Ck6

(gs
H

)2∆(k1+...+k6+1/∆)

+ 2∆ΛH4δab
∑
{ki}

Ck1
Ck2

C̃k3

(
k1 (8−∆k2 − 4∆k1) + 2k3 (2−∆k3 − 2∆k2)

)(gs
H

)2∆(k1+k2+k3+1/∆)

,

where expectedly there are no terms to zeroth order in gs. There is also no curvature
term for the toroidal manifold, evident from the δab factor appearing from (3.56),
presence of which would have altered the coupling constant itself. Similarly, one
may represent the energy momentum tensor in the following way:

TGab =
1

12H4

∑
{ki}

C̃k1C̃k2Ck3

(
G(k4)
amnpG

(k5)mnp
b − 1

2
δabG(k4)

mnpcG(k5)mnpc

)(gs
H

)2∆(k1+...+k5+1/∆)

+
1

4H4

∑
{ki}

(
G(k1)
amnαG

(k2)mnα
b − 1

2
δabG(k1)

mnαcG(k2)mnαc

)(gs
H

)2∆(k1+k2+1/∆)

+
1

4H4

∑
{ki}

Ck1Ck2Ck3

(
G(k4)
amαβG

(k5)mαβ
b − 1

2
δabG(k4)

cmαβG
(k5)cmαβ

)(gs
H

)2∆(k1+...+k5+1/∆)

+
1

4H4

∑
{ki}

C̃k1

(
G(k2)
acmnG

(k3)cmn
b − 1

4
δabG(k2)

dcmnG
(k3)dcmn

)(gs
H

)2∆(k1+k2+k3)

+
1

4H4

∑
{ki}

Ck1Ck2Ck3Ck4

(
G(k5)
acαβG

(k6)cαβ
b − 1

4
δabG(k5)

cdαβG
(k6)cdαβ

)(gs
H

)2∆(k1+...+k6)

+
1

2H4

∑
{ki}

Ck1

(
G(k2)
acmρG

(k3)cmρ
b − 1

4
δabG(k2)

cdmρG
(k3)cdmρ

)(gs
H

)2∆(k1+k2+k3)

− δab
4 · 4!H4

∑
{ki}

C̃k1C̃k2G(k3)
mnpqG(k4)mnpq

(gs
H

)2∆(k1+k2+k3+k4+2/∆)

− δab
4!H4

∑
{ki}

C̃k1Ck2G(k3)
mnpαG(k4)mnpα

(gs
H

)2∆(k1+k2+k3+k4+2/∆)

− δab
16H4

∑
{ki}

Ck1Ck2G
(k3)
mnαβG

(k4)mnαβ
(gs
H

)2∆(k1+k2+k3+k4+2/∆)

+
4δab
H2

∑
{ki}

(
Ck1Ck2∂αH∂

αH + C̃k1Ck2∂mH∂
mH
)(gs

H

)2∆(k1+k2+1/∆)

, (3.57)
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where as one would expect, the last line of this matches with the first line of the
Einstein tensor (3.56). Note also the absence of terms to zeroth order in gs because
of the condition (3.13). This is consistent with what we expect from (3.56), but one
may now question whether this also appears from the energy-momentum tensor
for the quantum terms in (3.1). From the look of (3.1) it appears that k1 = 0 should
be an allowed choice. However, as discussed earlier in (3.50), looking at (2.100) we
see that tensors with two free Lorentz indices along (a, b) direction scale as:

g
θ′k+4/3
s ≡ g5/3

s , g2
s , g

7/3
s , g8/3

s , g3
s , ...., (3.58)

as θ′k defined in (2.97) is bounded below by θ′k ≥ 1/3. Now since the lowest value of
θ′k = 1/3 corresponds to switching on either (l36, l37, l38) = (1, 0, 0), (0, 1, 0) or (0, 0, 1)
in (2.97) − and they vanish due to the antisymmetry of the G-flux components −
it then appears that the lowest allowed scaling of gs can only be g2

s . This seems
perfectly consistent with the scalings expected from (3.56) and (3.57), resolving a
possible conundrum in our construction6.

Now that the quantum issues are clarified, we should look at the equations
of motion to order g2

s by balancing the Einstein tensor in (3.56) with the energy-
momentum tensors in (3.57) and (3.1). This produces:

(
R

2
+ 9H4Λ

)
δab = −C(3,0)

ab − 1

4H4

[(
G(3/2)
acmnG

(3/2)cmn
b − 1

4
δabG(3/2)

dcmnG
(3/2)dcmn

)
(3.59)

+

(
G(3/2)
acαβG

(3/2)cαβ
b − 1

4
δabG(3/2)

cdαβ G
(3/2)cdαβ

)
+ 2

(
G(3/2)
acmρG

(3/2)cmρ
b − 1

4
δabG(3/2)

cdmρG
(3/2)cdmρ

)]
,

where the quantum terms manifest themselves as C(3,0)
ab instead of C(0,0)

ab , the former
being defined for θ′k = 2/3 in (2.97) exactly as before. It is also interesting to note
that, so far all the G-flux energy-momentum tensors appear from G(k)

mnab,G
(k)
mαab and

G(k)
αβab for various choices of k satisfying k ≥ 3/2.

The next order is g7/3
s . Interestingly, the Einstein tensor (3.56) cancels out to this

order, leaving only the energy-momentum tensor of the G-flux to balance with the
energy-momentum tensor of the quantum terms. This gives us:

6One may alternatively view the quantum energy-momentum tensor to be represented not as
(3.1) but as the following shifted one near gs → 0:

TQab =
∑
k∈Z/2

C(k+5/2,0)
ab

(gs
H

)2∆(k+5/2)

which would reproduce the correct gs scalings from (2.94). Such redefinition is possible because (3.1)
is conjectured to be equivalent to (2.94), the latter being the main focal point of our analysis.
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4H4C(7/2,0)
ab =

∑
{ki}

[
C̃k1

(
G(k2)
acmnG

(k3)cnm
b − 1

4
δabG(k2)

dcmnG
(k3)dcnm

)
(3.60)

− 2Ck1

(
G(k2)
acmρG

(k3)cmρ
b − 1

4
δabG(k2)

cdmρG
(k3)cdmρ

)]
δ

(
k1 + k2 + k3 −

7

2

)
−

∑
{ki}

Ck1
...Ck4

(
G(k5)
acαβG

(k6)cαβ
b − 1

4
δabG(k5)

cdαβG
(k6)cdαβ

)
δ

(
k1 + ...+ k6 −

7

2

)
,

where the quantum terms on the LHS of the above equation is determined for
θ′k = 1 in (2.97). This is similar to the choice of the quantum terms in (3.19) and
(3.43). In fact now the story follows the pattern laid out for higher order in gs as seen
previously. For example, the next order in gs, which is g8/3

s , gives us the following
equation:

δab =
9

ΛF(y)
C(4,0)
ab +

9

4ΛH4F(y)

∑
{ki}

[
C̃k1

(
G(k2)
acmnG

(k3)cmn
b − 1

4
δabG(k2)

dcmnG
(k3)dcmn

)
(3.61)

+ 2Ck1

(
G(k2)
acmρG

(k3)cmρ
b − 1

4
δabG(k2)

cdmρG
(k3)cdmρ

)]
δ (k1 + k2 + k3 − 4)

+
1

4

∑
{ki}

Ck1 ...Ck4

(
G(k5)
acαβG

(k6)cαβ
b − 1

4
δabG(k5)

cdαβG
(k6)cdαβ

)
δ (k1 + ...+ k6 − 4) ,

with the quantum terms being classified by θ′k = 4/3 as in (3.24) and (3.45). This
pattern of fluxes would change eventually as we go higher in gs, and in fact for
g4
s we will see new components entering for both G-flux and the quantum energy-

momentum tensors. Finally, the function F(y) appearing in (3.61) is defined as:

F(y) ≡ H4(y)C2
1
2

+ 4H4(y)
∑
{ki}

Ck1
Ck2

C̃k3

[
k1 (24− k2 − 4k1) + 2k3 (6− k3 − 2k2)

]
δ(k1 + k2 + k3 − 1),

(3.62)

which should be compared to (3.20), (3.25), (3.44) and (3.46). The structural simi-
larities of all these functions are of course not a coincidence: they rely on the forms
of the EOMs for the various directions analyzed above.

Case 2: F1(t) and F2(t) satisfying the fluctuation condition (2.8)

The volume preserving case seems to work rather well, so now we want to see
how the story changes once the γ factor is introduced in. We expect changes at all
fronts now: the Einstein tensor, the energy-momentum tensors for the G-flux and
the quantum terms should all reflect the changes. The subtleties that we encoun-
tered with the quantum terms had a nicer resolution here so we will also have to
see what happens now. As before we start with the Einstein tensor, that takes the
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following form:

Gab = −δab
2

(
R + 18H4Λ

) (gs
H

)2

+
4δab
H2

∑
{ki}

C̃k1Ck2g
mn∂mH∂nH

(gs
H

)2∆(k1+k2+1/∆)

+
1

4
ΛH4δab

∑
{ki}

(2∆k1 + γ)(2∆k2 + γ)C̃k1C̃k2Ck3 ....Ck6

(gs
H

)2∆(k1+...+k6+1/∆)

+ ΛH4δab
∑
{ki}

(
2∆k1 (8−∆k2 − 4∆k1) + (2∆k3 + γ) (4− 2∆k3 − γ − 4∆k2)

)
× Ck1Ck2C̃k3

(gs
H

)2∆(k1+k2+k3+1/∆)

, (3.63)

where interestingly none of the gs scalings get effected by the γ term, but most of the
individual terms do have γ dependent coefficients. Similar, the energy-momentum
tensor for the G-fluxes changes in an expected way:

TGab =
1

12H4

∑
{ki}

C̃k1C̃k2Ck3

(
G(k4)
amnpG

(k5)mnp
b − 1

2
δabG(k4)

mnpcG(k5)mnpc

)(gs
H

)2∆(k1+...+k5+1/∆)

+
1

4H4

∑
{ki}

(
G(k1)
amnαG

(k2)mnα
b − 1

2
δabG(k1)

mnαcG(k2)mnαc

)(gs
H

)2∆(k1+k2+1/∆−γ/2∆)

+
1

4H4

∑
{ki}

Ck1Ck2Ck3

(
G(k4)
amαβG

(k5)mαβ
b − 1

2
δabG(k4)

cmαβG
(k5)cmαβ

)(gs
H

)2∆(k1+..+k5+1/∆−γ/∆)

+
1

4H4

∑
{ki}

C̃k1

(
G(k2)
acmnG

(k3)cmn
b − 1

4
δabG(k2)

dcmnG
(k3)dcmn

)(gs
H

)2∆(k1+k2+k3)

+
1

4H4

∑
{ki}

Ck1Ck2Ck3Ck4

(
G(k5)
acαβG

(k6)cαβ
b − 1

4
δabG(k5)

cdαβG
(k6)cdαβ

)(gs
H

)2∆(k1+...+k6−γ/∆)

+
1

2H4

∑
{ki}

Ck1

(
G(k2)
acmρG

(k3)cmρ
b − 1

4
δabG(k2)

cdmρG
(k3)cdmρ

)(gs
H

)2∆(k1+k2+k3−γ/2∆)

− δab
4 · 4!H4

∑
{ki}

C̃k1C̃k2G(k3)
mnpqG(k4)mnpq

(gs
H

)2∆(k1+k2+k3+k4+2/∆)

− δab
4!H4

∑
{ki}

C̃k1Ck2G(k3)
mnpαG(k4)mnpα

(gs
H

)2∆(k1+k2+k3+k4+2/∆−γ/2∆)

− δab
16H4

∑
{ki}

Ck1Ck2G
(k3)
mnαβG

(k4)mnαβ
(gs
H

)2∆(k1+k2+k3+k4+2/∆−γ/∆)

+
4δab
H2

∑
{ki}

C̃k1Ck2∂mH∂
mH

(gs
H

)2∆(k1+k2+1/∆)

, (3.64)

where taking γ = 2 we see that there are no zeroth order in gs possible because
the lower bound on the moding ki of any G-flux component has to be ki ≥ 9/2.
The largest allowed suppression factor is −γ/∆ = −6 for the component of G-flux
G(9/2)
αβab in (3.64), implying that the lowest power of gs contribution to the EOM will
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be g2
s . This fits rather well with the gs scaling of the quantum terms in (2.99), which

now has a similar form as (3.50) and (3.58) with θk defined as in (2.84). Therefore
combining (3.63) with (3.64), (3.1) and (3.50) we get, to order g2

s , the following EOM:(
R

2
+ 9H4Λ

)
δab +

1

4H4

(
G(9/2)
acαβ G

(9/2)cαβ
b − 1

4
δabG(9/2)

cdαβ G
(9/2)cdαβ

)
+ C(3,0)

ab = 0,

(3.65)

which may now be compared to (3.59). The quantum terms appearing here is sim-
ilar to what we had in (3.59), and is classified by θk = 2/3 in (2.84). However the
number of G-flux components contributing to (3.65) is much smaller; and (3.65) is a
set of two equations with at least 7 unknowns.

To the next order in gs, i.e g7/3
s , the Einstein tensor (3.63) does contribute com-

pared to the scenario with (3.56). In fact both the energy-momentum tensors also
contribute to this order. The resulting EOM becomes:

δab =
1

4qΛH8

∑
{ki}

Ck1
....Ck4

(
G(k5)
acαβG

(k6)cαβ
b − 1

4
δabG(k5)

cdαβG
(k6)cdαβ

)
δ

(
k1 + ...+ k6 −

19

2

)
+

C(7/2,0)
ab

qΛH4
,

(3.66)

where q ≡ 4− 10C 1
2
, and one may use this equation to fix the form of the quantum

terms classified by θk = 1 in (2.84) with the G-flux component appearing above7.
Once we go to higher orders in gs new components of G-flux start contributing to
the EOM as evident from the form of (3.64). We will not discuss this further here,
and instead go to the study of space-time components.

Einstein equation along (µ, ν) directions

The structural similarities of the equations for all the previous cases have some
bearings on the choices of G-flux components (at least to some low orders in gs)
enter in the EOMs. The quantum terms are also similar, modulo the subtlety for TQab
requiring some redefinition (see footnote 6).

The story for the space-time components will require additional subtleties that
we will illustrate as we go along. First, let us express the Einstein tensor along the
two spatial directions in the following way:

Gij = − ηij
Λ(t)

(
3Λ +

R

2H4
+

4gαβ∂αH∂βH

H6F1

+
4gmn∂mH∂nH

H6F2

−
�(m)H

4

2H8F1

)
(3.67)

+
ηij

Λ(t)

(
�(α)H

4

2H8F2

)
+ ηij

(
Ḟ 2

1

4F 2
1

+
Ḟ1

tF1

− F̈1

F1

− Ḟ 2
2

2F 2
2

+
2Ḟ2

tF2

− 2F̈2

F2

− 2Ḟ1Ḟ2

F1F2

)
,

where, since we identified Λ(t) =
(
gs
H

)2, the appearance of Λ−1(t) is a bit disconcert-
ing for the late time physics where t → 0 or gs → 0. We will not worry about this

7Compared to the (α, β) case the traces of (3.66) and (3.60) do not fix the signs of [C]
(7/2,0) in both

cases.
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right now and carry on with the Einstein tensor along the temporal direction which,
in turn, takes the following form:

G00 =
η00

Λ(t)

(
�(m)H

4

2H8F2

)
− η00

(
Ḟ 2

1

4F 2
1

− 3Ḟ1

tF1

+
3Ḟ 2

2

2F 2
2

− 6Ḟ2

tF2

+
2Ḟ1Ḟ2

F1F2

)

− η00

Λ(t)

(
3Λ +

R

2H4
+

4gαβ∂αH∂βH

H6F1

+
4gmn∂mH∂nH

H6F2

−
�(α)H

4

2H8F1

)
, (3.68)

(3.69)

where the key difference from (3.67), other than the appearance of η00, is in the terms
with derivatives on Fi(t). Other than these, both the Einstein tensors are similar in
terms of the appearance of the warp-factor H(y) and the six-dimensional curvature
scalar R. In the similar vein, we can express the energy-momentum tensor for the
G-flux in the following way:

TGµν = − ηµν
8Λ(t)H8

(
1

3F 3
2

GmnpaG
mnpa +

1

F 2
2F1

GmαpaG
mαpa +

1

F 2
1F2

GαβpaG
αβpa

)
− ηµν

24H8

(
1

4F 4
2

GmnpqG
mnpq +

1

F 3
2F1

GmnpαG
mnpα +

1

4F 2
2F

2
1

GmnαβG
mnαβ

)
− ηµν

8Λ2(t)H8

(
1

2F 2
2

GmnabG
mnab +

1

F2F1

GmαabG
mαab +

1

2F 2
1

GβαabG
βαab

)
− 4ηµν

Λ(t)H6

(
gmn∂mH∂nH

F2

+
gαβ∂αH∂βH

F1

)
, (3.70)

where again expectedly the last two terms cancel with equivalent terms in both Gij

and G00 in (3.67) and (3.68) respectively. With these at our disposal, let us go to the
individual cases now.
Case 1: F1(t) and F2(t) satisfying the volume-preserving condition (2.2)

The inverse Λ(t) factors appearing in the expressions of the Einstein tensors as well
as the energy-momentum tensors for the G-fluxes are a case of worry in the late
time limit that we want to analyze the background. Of course the existence of these
factors are expected from the inverse Λ(t) factor appearing in the type IIB metric
(2.3), but since our construction involve finite values in the gs → 0 limit, we will
need to tread carefully to interpret our answers. To analyze the story further, let us
write the Einstein tensor along spatial direction first in the following way:

Gij = −ηij
(

3Λ +
R

2H4

)(gs
H

)−2

+
Ληij

9

∑
{ki}

k1k2C̃k1C̃k2Ck3 ...Ck6

(gs
H

)2∆(k1+...+k6−1/∆)

− 4ηij
H6

∑
{ki}

[(
(∂αH)2 −

�(m)H
4

8H2

)
Ck1

Ck2
+

(
(∂mH)2 −

�(α)H
4

8H2

)
Ck1

C̃k2

](gs
H

)2∆(k1+k2−1/∆)

+
2Ληij

9

∑
{ki}

[
2k3(3− k3 − 2k2) + k1(12− 4k1 − k2)

]
Ck1

Ck2
C̃k3

(gs
H

)2∆(k1+k2+k3−1/∆)

, (3.71)
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where we have defined (∂αH)2 ≡ gαβ∂αH∂βH and the same for (∂mH)2 ≡ gmn∂mH∂nH
with un-warped metrics. It is also easy to read out the form of the G00 tensor:

G00 = −η00

(
3Λ +

R

2H4

)(gs
H

)−2

− Λη00

9

∑
{ki}

k1k2C̃k1
C̃k2

Ck3
...Ck6

(gs
H

)2∆(k1+...+k6−1/∆)

− 4η00

H6

∑
{ki}

[(
(∂αH)2 −

�(m)H
4

8H2

)
Ck1Ck2 +

(
(∂mH)2 −

�(α)H
4

8H2

)
Ck1C̃k2

](gs
H

)2∆(k1+k2−1/∆)

+
2Λη00

9

∑
{ki}

[
k3(9− 4k2) + 3k1(6− k2)

]
Ck1

Ck2
C̃k3

(gs
H

)2∆(k1+k2+k3−1/∆)

, (3.72)

which differs from (3.71) in three respects: presence of η00, sign of the second term,
and a different coefficient of the last term. On the other hand, from the various
terms of (3.71) and (3.72), it is easy to infer that the lowest power of gs, which is g−2

s ,
appears when ki = 0. In the limit gs → 0, this blows up, so to extract finite terms we
have to carefully analyze the other contributions to the EOMs.

The other contributions to the EOM for the spatial components appear from
the energy-momentum tensors of the G-flux and the quantum terms. The energy-
momentum tensor for the G-fluxes for both spatial and temporal components may
be expressed in the following way:

TGµν =
ηµν
4H8

(
1

6
C̃k1

C̃k2
Ck3
G(k4)
mnapG(k5)mnpa − 1

2
Ck1

Ck2
Ck3
G(k4)
αβpaG

(k5)αβpa

)(gs
H

)2∆(k1+...+k5−1/∆)

− ηµν
24H8

(
1

4
C̃k1

C̃k2
G(k3)
mnpqG(k4)mnpq + C̃k1

Ck2
G(k3)
mnpαG(k4)mnpα +

1

4
Ck1

Ck2
G(k3)
mnαβG

(k4)mnαβ

)
×

(gs
H

)2∆(k1+..+k4)

− ηµν
8H8

(
1

2
C̃k1G

(k2)
mnabG

(k3)mnab + Ck1G
(k2)
mαabG

(k3)mαab

)(gs
H

)2∆(k1+k2+k3−2/∆)

− ηµν
H6

(
1

8H2
G(k1)
mαpaG(k2)mαpa + 4(∂αH)2Ck1

Ck2
+ 4(∂mH)2Ck1

C̃k2

)(gs
H

)2∆(k1+k2−1/∆)

− ηµν
16H8

Ck1Ck2Ck3Ck4G
(k5)
αβabG

(k6)αβab
(gs
H

)2∆(k1+k2+k3+k4+k5+k6−2/∆)

, (3.73)

where since some of the ki, accompanying the G-flux components are bounded
below as ki ≥ 3/2, we would get the g−2

s powers from the G(3/2)
mnab,G

(3/2)
mαab and G(3/2)

αβab

components. However this is puzzling in light of the quantum terms (3.1). Our
expression from (3.1) allows only g0

s as the lowest power of gs because the negative
powers are assimilated to a series in e−1/gs . In the limit gs → 0 this dies off faster
than any powers of gs. Additionally as cautioned in footnote 1 it is not advisable
to expand e−1/gs to any finite orders in inverse gs. One way out of this would be to
multiply the Einstein tensor (3.71), the G-flux energy-momentum tensor (3.73) and
the quantum energy-momentum tensor (3.1) by

(
gs
H

)2. This unfortunately will not
solve the problem, because now the lowest power of (3.1) will be g2

s so cannot be
used to balance the g0

s terms of (3.71) and (3.73). The quantum terms are essential,
to avoid over-constraining the system. Additionally, the gs scaling along the space-
time direction is in fact:

g
θ′k−8/3
s ≡ g0

s , g
1/3
s , g2/3

s , gs, g
4/3
s , ......, (3.74)
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as evident from (2.100), implying that the minimum value of θ′k in (2.97) is θ′k = 8/3
to account for gs independent terms. All of these then imply the following way out:
redefine the energy-momentum tensor for the quantum pieces along the space-time
directions in the gs → 0 limit as:

TQµν ≡
∑
{k}

C(k,0)
µν

(gs
H

)2∆(k−1/∆)

, (3.75)

instead of (3.1) for (µ, ν) indices. Such a re-definition is similar to the re-definition
we did for the (a, b) case (see footnote 6) and is consistent with the scalings em-
ployed in [14] and [15] (see eq (5.29) in [14]).

There is yet another contribution that we have ignored so far and has to do
with the energy-momentum tensor of an almost static set of membranes. These are
related to static D3-branes (integer and fractional) in the type IIB side, and we can
consider both branes and anti-branes in our picture. For simplicity, let us assume
that we have nb number of coincident membranes at a point on the internal eight-
dimensional manifold. These membranes are therefore stretched along the 2 + 1
dimensional space-time8. The analysis of the energy-momentum tensor proceeds
in exactly the same way as given in [14], so we will suffice ourselves by simply
quoting the answer:

T(B)
µν ≈ −

κ2T2nb
H8
√
g6

(gs
H

)−2

δ8 (y − Y ) ηµν , (3.76)

where T2 is the tension of the individual membranes, κ is a constant related to Mp,
g6 is the determinant of the unwarped metric of the six-dimensional baseM4×M2,
and nb is the number of membranes located at Y M in the internal eight-manifold.

With these definitions of the quantum energy-momentum tensor in (3.75) and
the membrane energy-momentum tensor in (3.76), we can move ahead with the
EOMs. First we multiply all the tensors with

(
gs
H

)2 to get rid of any infinities arising
in the gs → 0 limit. Secondly, we compare the zeroth order in gs for (3.71), (3.73)
and (3.75), to get the following EOM:

6Λ +
R

H4
− �H4

H8
+
[
Ci
i

](0,0) − 2κ2T2nb
H8
√
g6

δ8(y − Y )

=
1

8H8

(
G(3/2)
mnabG

(3/2)mnab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
αβabG

(3/2)αβab
)
,

(3.77)

showing how the same set of G-flux components appear again to balance the spatial
equation of motion. We have also defined � ≡ �(m) + �(α) to avoid clutter. The
equation (3.77) is somewhat similar to what we had in eq (5.32) of [14] with two
crucial differences. One, the G-flux components are the set G(3/2)

mnab,G
(3/2)
mαab and G(3/2)

αβab

of localized fluxes and not the globally-defined time-independent flux component

8We will consider both integer and fractional M2-branes. The latter being M5-branes wrapped
on 3-cycles.
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appearing in [14]. Two, the quantum terms C(0,0)
µν are classified by:

2
27∑
i=1

li + n1 + n2 +
4∑
i=0

l34+i = 8, (3.78)

i.e with θ′k = 8/3 in (2.97) (li, ni are defined in (2.94)), compared to θ′0 = 8/3 in (2.98).
The former, i.e (3.78), has a large but finite number of solutions, whereas the latter
has an infinite number of solutions with no gs or Mp hierarchies. In a similar vein
one may work out the G00 EOM, but to this order the result (3.77) will not change.

The next order in gs, i.e for g1/3
s , one may easily find the EOMs by comparing

terms of this order from (3.71), (3.72), (3.73) and (3.75) with no contributions from
the membranes. The G-flux components contributing now are of the form G(3/2)

MNab

and G(2)
MNab with (M,N ) spanning the coordinates ofM4 ×M2. The quantum terms

C(1/2,0)
ij are classified by θ′k = 3 in (2.97). Combining the two set of equations, one

from the (i, j) components, and one from the (0, 0) components, we get:

2
[
C0

0

](1/2,0)
=
[
Ci
i

](1/2,0)
, (3.79)

where the quantum terms C(1/2,0)
µν are the specific linear combinations of all terms

classified by θ′k = 3 for individual components in (2.97). According to the discus-
sions around (3.17) these quantum terms are computed using the dominant scalings
of the metric components gmn and gαβ . Thus the LHS of (3.79) is fixed in terms of
the known components of the metric and the G-fluxes in a way that their sum van-
ishes. Such an equation can be used to predict the relative coefficient of the various
terms to the same order in curvatures and G-fluxes.

One can even go higher orders in gs, say for example g2/3
s as we have done before,

and compare the (i, j) and the (0, 0) EOMs. The quantum terms would be of the form
C(1,0)
µν and are classified by θ′k = 10/3 in (2.97). These could be used to fix the higher

order coefficients of Fi(t) in terms of the quantum terms. For example taking the
traces of (3.71) and (3.72) appropriately, we get:

C2
1
2

= 3
(

2
[
C0

0

](1,0) −
[
Ci
i

](1,0)
)
, (3.80)

which tells us that it is only the constant pieces of the quantum terms (2.94) that
are responsible in generating the Fi(t) functions. Note that, to this order C1 and C̃1

coefficients cancel out. To determine these, we have to go to the next order in gs
where, in turn the C 3

2
and C̃ 3

2
pieces cancel out, leaving us with C1 and C̃1. We will

leave the evaluation of these coefficients for interested readers, and instead go to
the discussion of the case with γ switched on.

Case 2: F1(t) and F2(t) satisfying the fluctuation condition (2.8)

The analysis along the space-time directions has a few subtleties that we clarified
above. Additional subtleties arise when we switch on non-zero γ from the fact that
the internal eight-manifold has zero Euler characteristics. This implies that one can-
not switch on either non-zero components of G-fluxes that are time-independent, or
dynamical M2-branes at least in the supersymmetric limit [21, 22]. Our study is for
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non-supersymmetric states, plus we take vanishing time-independent component
of G-flux (3.13), so the situation is a bit more subtle. Nevertheless the bound con-
sidered in [21, 22] does not allow us to take static M2-branes9. What happens for
dynamical branes will be discussed later.

We will start by elaborating the Einstein tensor for both spatial and temporal
directions. The Einstein tensor for the two spatial directions may be expressed in
the following way:

Gij = −ηij
(

3Λ +
R

2H4

)(gs
H

)−2

+
Ληij

4

∑
{ki}

(2∆k1 + γ)(2∆k2 + γ)C̃k1
C̃k2

Ck3
...Ck6

(gs
H

)2∆(k1+...+k6−1/∆)

+
4ηij
H6

∑
{ki}

Ck1

[
Ck2

(
�(m)H

4

8H2

)(gs
H

)2∆(k1+k2−1/∆−γ/2∆)

− C̃k2
(∂mH)2

(gs
H

)2∆(k1+k2−1/∆)
]

(3.81)

+
Ληij

9

∑
{ki}

[
(2k3 + 3γ)(6− 2k3 − 3γ − 4k2) + 2k1(12− 4k1 − k2)

]
Ck1Ck2C̃k3

(gs
H

)2∆(k1+k2+k3−1/∆)

,

where we see that only one gs scaling is effected by the γ factor, although quite
a few coefficients do pick up γ dependent factors. In addition to that, derivatives
with respect to α are missing compared to (3.71). Similar story also shows up for
the Einstein tensor along the temporal directions in the following way:

G00 = −η00

(
3Λ +

R

2H4

)(gs
H

)−2

− Λη00

4

∑
{ki}

(2∆k1 + γ)(2∆k2 + γ)C̃k1
C̃k2

Ck3
...Ck6

(gs
H

)2∆(k1+...+k6−1/∆)

+
4η00

H6

∑
{ki}

Ck1

[
Ck2

(
�(m)H

4

8H2

)(gs
H

)2∆(k1+k2−1/∆−γ/2∆)

− C̃k2
(∂mH)2

(gs
H

)2∆(k1+k2−1/∆)
]

+
Λη00

9

∑
{ki}

[
(2k3 + 3γ)(9− 4k2) + 6k1(6− k2)

]
Ck1

Ck2
C̃k3

(gs
H

)2∆(k1+k2+k3−1/∆)

, (3.82)

where again, as compared to (3.72), other than the last term and one relative sign
difference, the two Einstein tensors are identical. Similarly, the energy-momentum

9See however footnote 5.
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tensor for the G-flux is given by:

TGµν =
ηµν

24H8

(
C̃k1C̃k2Ck3G(k4)

mnapG(k5)mnpa
)(gs

H

)2∆(k1+...+k5−1/∆)

− ηµν
8H8

(
Ck1Ck2Ck3G

(k4)
αβpaG

(k5)αβpa
)(gs

H

)2∆(k1+...+k5−1/∆−γ/∆)

− ηµν
96H8

(
C̃k1C̃k2G(k3)

mnpqG(k4)mnpq
)(gs

H

)2∆(k1+k2+k3+k4)

+
ηµν

24H8

(
C̃k1Ck2G(k3)

mnpαG(k4)mnpα
)(gs

H

)2∆(k1+k2+k3+k4−γ/2∆)

+
ηµν

96H8

(
Ck1Ck2G

(k3)
mnαβG

(k4)mnαβ
)(gs

H

)2∆(k1+k2+k3+k4−γ/∆)

− ηµν
16H8

(
C̃k1G

(k2)
mnabG

(k3)mnab
)(gs

H

)2∆(k1+k2+k3−2/∆)

− ηµν
8H8

(
Ck1G

(k2)
mαabG

(k3)mαab
)(gs

H

)2∆(k1+k2+k3−2/∆−γ/2∆)

− ηµν
8H8

(
G(k1)
mαpaG(k2)mαpa

) (gs
H

)2∆(k1+k2−1/∆−γ/2∆)

+
4ηµν
H6

(gmn∂mH∂nH)Ck1C̃k2

(gs
H

)2∆(k1+k2−1/∆)

(3.83)

− ηµν
16H8

Ck1Ck2Ck3Ck4G
(k5)
αβabG

(k6)αβab
(gs
H

)2∆(k1+k2+k3+k4+k5+k6−2/∆−γ/∆)

,

where the various shifts of the gs scalings due to the γ are shown above. Taking
γ = 2, we se that the issue regarding the lowest order gs scaling appear here too,
albeit in a more severe way. When γ = 0, the lowest order scaling of the Einstein
tensor from (3.71) is g−2

s . For γ > 0, the lowest order scaling from (3.81) becomes
g−2∆ω1
s . On the other hand, the lowest order gs scaling that can emerge from the

energy-momentum tensor (3.83) is g−2∆ω2
s , where:

ω1 ≡
γ + 2

2∆
, ω2 ≡

γ + 2

∆
− 9, (3.84)

which for γ = 2 and ∆ = 1
3

is g−4
s and g−2

s respectively10, implying that there cannot
be any contributions from the energy-momentum tensor (3.83) to this order. In fact
increasing γ only worsens the problem.

Looking at the modified form of the energy-momentum tensor from the quan-
tum terms in (3.75), shows that it also does not contribute terms to order g−4

s . There-
fore one of the simplest way out of this could be to demand:

�(m)H
4(y) ≡ �(m)h(y) = 0, (3.85)

onM4 where the Laplacian is computed using the un-warped metric gmn(y). As we
saw before, the manifoldM4 is a compact four-dimensional manifold that supports
a non-Kähler metric. Thus H4(y) = h(y) is a harmonic function on the compact
non-Kähler manifold M4. The manifold M2 is conformally a torus, and the full

10The factor of 9 in (3.84) appears from the minimum moding of the G-flux components G(9/2)
αβab that

contributes to (3.83).
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Ricci scalar of the six-dimensional spaceM4 ×M2 is then given by:

R =
1

8H4
G(9/2)
αβabG

(9/2)αβab −H4
[
Ci
i

](0,0) − 4ΛH4, (3.86)

which vanishes when we take the un-warped metric of the six-dimensional space to
be that ofK3×T2. Additionally, the quantum terms are again classified by θk = 8/3
from (2.99), with θk defined as in (2.84). Comparing this to (3.77), we notice a few
key differences: the brane term is absent and so are some of the G-flux components.
The warp-factor is harmonic so naturally decouples out of (3.77). The contribution
from the cosmological constant term is smaller because the coefficient of the Λ term,
i.e σ2Λ, changes to:

σ2 ≡
1

4

(
8γ − 3γ2 − 12

)
. (3.87)

To the next order in gs, i.e g1/3
s , surprisingly we get exactly the same relation (3.79)

that we encountered earlier despite the presence of the γ factor (which we take as
γ = 2). We expect the other coefficient to appear in a way reminiscent of (3.80) and
the story follows the path laid out for case 1.

Before moving to the next sub-section, let us ask if there is an alternative to the
choice (3.85). The choice (3.85) tells us that the warp-factor h(y) is simply a har-
monic function on the non-Kähler manifoldM4, and all information of the fluxes
and the quantum corrections enter indirectly. An alternative to this choice would
be to modify further the definition of the quantum energy-momentum tensor (3.75)
by changing the gs exponent from:

1

∆
→ γ + 2

2∆
, (3.88)

which would equate the Laplacian of the warp-factor directly to the quantum cor-
rections at zeroth order in gs. The Einstein’s equation can then be realized at second
order in gs equating (3.81) with (3.83) and the quantum terms. To see how this works
out, let us rewrite the quantum corrections, using the input (3.88), in the following
way:

TQµν ≡
∑
{k}

C(k,0)
µν

(gs
H

)2∆(k−2/∆)

, (3.89)

instead of (3.75), where we took γ = 2. This extra
(
gs
H

)−4 suppression tells us that
the warp-factorH4 is no longer needed to be a harmonic function as in (3.85), rather
it can now satisfy the following equation:

�(m)H
4 = H8

[
Ci
i

](0,0)
, (3.90)

with the quantum terms being classified by θk = 8
3

in (2.86), and therefore involve
a mixture of terms in fourth powers of curvature, eighth powers of G-fluxes or a
combination of both to the relevant powers. Note that there are no G-flux contribu-
tions to this order, as we noted earlier. However once we go to the next order, i.e to
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order
(
gs
H

)−2, flux contributions get poured in and the equation becomes:

�(m)H
4

H8
=

1

γo

(
4Λ +

R

H4
− 1

8H8
G(9/2)
αβabG

(9/2)αβab +
[
Ci
i

](3,0)
)
, (3.91)

which has some surprising similarities with (3.77). The similarities being the ap-
pearances of equivalent forms of curvature, fluxes and quantum terms on the RHS.
However there are also few crucial differences. One, the G-flux components are not
as many as in (3.77). Two, the coefficient of the cosmological constant term is now 4
instead of 6 before. Three, the warp-factor H4 satisfy a much simpler relation (3.90)
in addition to (3.91). And four, the quantum terms are classified by θk = 14

3
with

[Ci
i]

(3,0) instead by θk = 8
3

with [Ci
i]

(0,0) in (2.86). Finally, γo is given by:

γo ≡
∑
{ki}

Ck1Ck2δ (k1 + k2 − 3) . (3.92)

The question now is which of the two descriptions is the correct one. Clearly we
will need more constraints to distinguish one from the other, and in section 3.1.2 we
will see that the flux EOMs provide the required constraints to justify (3.91), instead
of (3.86), to be the correct EOM for this case.

Metric cross-terms and the Fi(t) factors

So far we have studied the equations of motion without considering the cross-
terms. However, cross-terms do arise in the Einstein tensor because, for one, the
internal metric has time-dependent factors (i.e the functions Fi(t)), and for another,
the warp-factor H(y) is in general a function of all the coordinates of M4 ×M2.
Thus at least we expect the following three cross-terms:

G0n = −2

(
Ḟ1

F1

+
Ḟ2

F2

)
∂nH

H
, G0α = −4

(
Ḟ2

F2

)
∂αH

H
, Gαm = −8∂αH∂mH

H2
, (3.93)

with other cross-components vanishing. For the Einstein tensors G0n and G0α, it is
easy to argue that there are no corresponding energy-momentum tensors from the
G-fluxes because we do not allow Gmnµν and Gmαµν components. Allowing them
would not only add new complications to the existing EOMs studied earlier, but
also break the de-Sitter isometries in the type IIB side. We want to avoid the latter,
so it appears that the Einstein tensors with the cross-terms along temporal direction
will have to be balanced solely by the quantum terms. If yM denote the coordinates
of M4 × M2, the energy-momentum tensor associated with the quantum cross-
terms may be expressed in the gs → 0 limit as:

TQ0M ≡
∑
{k}

C(k,0)
0M

(gs
H

)2∆(k−1/2∆)

, (3.94)

where the specific choice of the gs scaling is to take care of g−1
s pieces that may arise

from Ḟi(t) in (3.93). Taking for example the volume preserving case (2.2), it is easy
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to see where the g−1
s factor appear from. The Einstein tensors become:

G0α = −8∆
√

Λ

(
∂αH

H

)∑
{ki}

k1Ck1Ck2C̃k3

(gs
H

)2∆(k1+k2+k3−1/2∆)

G0n = −4∆
√

Λ

(
∂nH

H

)∑
{ki}

(k1 + k2)C̃k1Ck2Ck3

(gs
H

)2∆(k1+k2+k3−1/2∆)

,(3.95)

with the gs scaling showing the inverse factor, alluded to above, which we can easily
get rid of by multiplying all the tensors in (3.95) and (3.94) by gs. To zeroth order in
gs there are no contributions from either (3.95) or (3.94). To next order in gs, i.e g1/3

s ,
we get:

C 1
2

= −C(1/2,0)
0α

12
√

Λ

(
∂αH

H

)−1

=
C(1/2,0)

0n

6
√

Λ

(
∂nH

H

)−1

, (3.96)

which should be compared to (3.80). The above set of Einstein tensors provide a
much easier way to get the Ck and C̃k coefficients of the Fi(t) functions. Expect-
edly, they are related to the quantum terms, so classically we can only see time-
independent internal space. The latter has problems with EFT as we saw before
and also in [14, 15].

Switching on the γ factor to study the case (2.8) or (2.75) eliminates G0α and Gαm

because of the derivative constraint. This only leaves G0n which takes the following
form:

G0n = −4∆
√

Λ

(
∂nH

H

)∑
{ki}

(
k1 + k2 +

γ

2∆

)
C̃k1Ck2Ck3

(gs
H

)2∆(k1+k2+k3−1/2∆)

,(3.97)

which now does allow a term to the zeroth order in gs. By ignoring the g−1
s piece

for the time being − to be reconciled later using the same line of thought as before
− the zeroth order in gs yields the following relation for the quantum term:

C(0,0)
0n = −4

√
Λ

(
∂nH

H

)
, (3.98)

which, once combined with (3.85), should determine the functional form of the
quantum term when we take γ = 2. Going to the next order in gs, i.e g

1/3
s , we

get exactly the same relation that we have in (3.96), i.e:

C 1
2

=
C(1/2,0)

0n

6
√

Λ

(
∂nH

H

)−1

. (3.99)

All these appear to lead to some consistent formulation of the background data,
although there is one puzzle that we have kept under the rug so far. This has to do
with the computation of the quantum energy-momentum tensor (3.94). How do we
interpret this term? If we follow the definition of the energy-momentum tensor in
(2.32), then the absence of g0n should tell us that one cannot construct the cross-term
energy-momentum tensor at all. In fact even the formulation of the Einstein tensor
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comes under scrutiny now.
The key point that we are missing here is the Wilsonian viewpoint that we al-

ready emphasized earlier (see the discussions between (2.81) and (2.82)). The back-
ground that we consider should contain all the components of metric and fluxes and
we integrate out all the ones that would potentially ruin the four-dimensional de
Sitter isometries in the type IIB side. This amounts to integrating out specific com-
ponents of metric and G-fluxes in the M-theory side, leading to an effective action.
In the following, let us see how this works when we integrate out one component
of the metric, say g0n. We define:

exp (−iSeff) ≡
∫
Dg0n exp

[
− i
∫
d11x

√
g11(g0n)

(
R(11) − g0nTG0n − g0nTQ0n + ...

)]
,

(3.100)

where the dots denote terms that are independent of g0n, and the bold-faced com-
ponents are defined with respect to the warped metric. Since g0n is a dummy vari-
able, we can re-define this to g′0n without changing the effective action Seff . Taking
g′0n = g0n+h0n, where h0n is a small shift of the metric component, does not change
the measure. This leads us to:

exp (−iSeff) ≡
∫
Dg′0n exp

[
− i
∫
d11x

√
g11(g′0n)

(
R(11)(g′0n)− g′0nTG0n − g′0nTQ0n − µ2g′0ng′0n + ...

)]

=

∫
Dg0n exp

[
− i
∫
d11x

√
g11(g0n)

(
L0(g0n) + h0n

(
R0n −

1

2
g0nR− TG0n − TQ0n

)
+ ...

)]
,

(3.101)

where in the second line we have expanded to first order in h0n to express the factor
involving Ricci tensor. We have also inserted a small mass to the graviton so as to
integrate this out. Note that g0n does show up with a coefficient h0n, and we have
defined:

R0n ≡ R̂0n(g0n) + R0n, (3.102)

where only R̂0n is a function of g0n. Therefore, neither R0n nor the energy-momentum
tensors are functions of g0n. For the latter we could have divided into a piece that
depends on R̂0n, i.e indirectly on g0n, and a piece independent of g0n; but since we
are eventually going to integrate out g0n, their presence or absence will not change
much the generic quantum term (2.78) or (2.94). Finally, the Lagrangian L0(g0n) is
defined as:

L0(g0n) = R(11)(g0n)− g0nTG0n − g0nTQ0n − µ2g0ng0n. (3.103)

The above equation, (3.101), combined with (3.103), is a form of the Schwinger-
Dyson equation for our case, but is presented in a slightly different way because we
want to integrate out g0n. Doing this leads us to the following two conclusions. One,

we recover the terms with polynomial powers of
(
TG0n
)2 and

(
TQ0n
)2

(along-with the
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mixed terms). These are of course contained in (2.78) and (2.94) according to (2.107):
a consequence of the semi-group structure of the system. Two, g0n appears inside
the bracket multiplying h0n. This means, once we integrate out g0n, there would be
terms with powers of h0n accompanied with the combination of the Ricci curvature
R0n and the energy-momentum tensors TG0n and TQ0n, without the g0nR piece. We
also expect the effective action Seff to be independent of any arbitrary parameter
like h0n. Combining everything together it appears that if we demand at “on-shell"
the following two conditions: g0n = 0 and

R0n − TG0n − TQ0n = 0, (3.104)

then there is a well defined effective action Seff , with the latter reproducing the ex-
pected EOM for the cross-term. Notice that none of the terms in (3.104) can depend
on g0n, because of the procedure that we have adopted to derive the equations and
the effective action. In retrospect this is of course consistent with what we have
been considering so far.

The short analysis presented above reveals one crucial fact: we can allow energy-
momentum tensors of the form TG0n and TQ0n even if cross-components of the metric,
like g0n, do not appear in the background. The point is that it is not necessary for
certain components of the metric (or G-flux) to physically appear as long as they
appear inside quantum loops. The Wilsonian way of course guarantees this by al-
lowing a small mass to these components that would facilitate their off-shell appear-
ances. Such a line of thought does lead to consistent picture as we saw from all our
earlier analysis, however one question still lingers: how do we actually determine
the gs scalings for these cross-component energy-momentum tensors?

This can be answered using a simple trick. For concreteness let us consider
the quantum series (2.94) meant for the volume preserving case (2.2). Before we
contract this completely with inverse metric components, let us insert a function t0n
with the property t0mt0n = δmn as (t0n)l39 in (2.94), where l39 can take values (0, 1)
only. We can now put back all the inverse metric components to make it Lorentz
invariant. We can also assume that t0n has no gs scaling, i.e it scales as g0

s . The gs
scaling of the modified (2.94) now becomes θ̂′k where:

θ̂′k ≡ θ′k +

(
5

3
− γ

2

)
l39, (3.105)

with θ′k as defined in (2.97) and we have inserted γ just for the completeness sake
(as γ should have been inserted with θk in (2.86)). To extract an expression with one
free 0 index and one free n index, to account for the energy-momentum tensor TQ0n,
all we need is to remove one g00 and one gnn metric components to create two free
indices anywhere inside the modified quantum terms (2.94). This will change the
gs scaling from (3.105) to θ̃′k, where:

θ̃′k ≡ θ′k +

(
5

3
− γ

2

)
l39 −

10

3
, (3.106)

with θ′k as in (2.97). If we replace θ′k in (3.106) by θk of (2.86), we get the result for
(2.8). Finally, contracting the resulting expression with t0m will give us the required



3.1. Analysis of the quantum equations of motion and constraints 89

expression for TQ0m with gs scaling as in (3.106) and l39 = 1. Clearly for vanishing γ,
the gs scaling is θ′k − 5/3, whereas for γ = 2 we get θk − 8/3 representing the two
cases (2.2) and (2.8) respectively. Our gs scaling for the quantum terms in (3.94) for
(2.2) should be interpreted in the following way:

g
θ′k−5/3
s ≡ g0

s , g
1/3
s , g2/3

s , gs, ....., (3.107)

so that the zeroth order terms are classified by θ′k = 5/3 in (2.97). Similarly for (2.8),
the zeroth order terms are classified by θk = 8/3 in (2.86). As we saw above, the
latter do contribute so that C(0,0)

0n are classified as above for the case (2.8). However
for the volume preserving case, i.e (2.2), the first non-trivial contributions come
from C(1/2,0)

0n and C(1/2,0)
0α . They are classified by θ′k = 2 in (2.97). In a similar vein one

could analyze the Gαm equations for the volume preserving case (2.2).

de Sitter vacua from the quantum constraints

In the above sections we managed to assimilate all the possible quantum corrected
EOMs that can occur in the system. Many subtleties regarding the distribution of
the quantum terms were noticed, but in the end the arrangement of the these terms
reflected a certain level of consistencies that were expected in set-up like ours and
also of our earlier works [14, 15] with one noticeable difference: the quantum terms
could now be precisely classified using the scaling (2.97) for (2.2) and (2.84) for (2.8).
Thus the issue of the existence of effective field theories could now be answered in
the affirmative provided the EOMs themselves have solutions. In the following
therefore we would like to analyze this for the two cases in question.

Case 1: F1(t) and F2(t) satisfying the volume-preserving condition (2.2)

We start by analyzing the volume-preserving case (2.2), by first taking the traces of
all the EOMs to lowest order in gs and try to find if certain consistency condition(s)
could be generated. Our first equation is for the (m,n) directions. In the zeroth
order in gs, the equation is given in (3.15), which is constructed using un-warped
metric and G-flux components. Taking a trace of this equation yields:

R(4) − 2R− 24H4Λ = [Cm
m](0,0) − 1

4H4

(
G(3/2)
mαabG

(3/2)mαab + G(3/2)
αβabG

(3/2)αβab
)
,

(3.108)

where R(4) is the Ricci scalar for the four-dimensional manifoldM4 and R remains
the Ricci scalar of the full six-dimensional base M4 ×M2. As mentioned above,
both are computed using un-warped metric components, including the traces un-
less mentioned otherwise.

The quantum terms [Cm
m](0,0) are classified by θ′k = 2/3 in (2.97) and one may

easily see that with such a small value for θ′k there are only a few classical terms
mostly made of G-fluxes. The classical terms can only renormalize the existing
terms that we have from the energy-momentum tensor for the G-fluxes. In fact an
exactly similar story unfolds for the EOM along the (α, β) directions. Taking the
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trace of (3.42), written for the zeroth order in gs, we get:

R(2) −R− 12ΛH4 = [Cα
α](0,0) +

1

8H4

(
G(3/2)
αβabG

(3/2)αβab − G(3/2)
mnabG

(3/2)mnab
)
,

(3.109)

where R(2) is the un-warped curvature ofM2, and sinceM2 is a non-Kähler two-
dimensional space, this does not vanish. The quantum terms [Cα

α](0,0) are again
classified by θ′k = 2/3 in (2.97), and therefore can at best renormalize the existing
classical terms. Compared to (3.108), the relative factors, signs and G-flux compo-
nents differ but the main message of (3.109) remains similar to (3.108).

The next set of equations are a bit different from what we had so far and the
differences appear mostly from the scalings of the quantum terms. For example
looking at the EOM for the (a, b) direction, i.e. (3.59) appearing to order g2

s instead
of the expected zeroth order in gs, and taking the trace, we get:

R + 18ΛH4 = − [Ca
a]

(3,0) − 1

8H4

(
2G(3/2)

mαabG
(3/2)mαab + G(3/2)

mnabG
(3/2)mnab + G(3/2)

αβabG
(3/2)αβab

)
,

(3.110)

where now we see that the quantum terms have different modings than what we
had in (3.108) and (3.109). However they are still classified by θ′k = 2/3 in (2.97), and
therefore can only renormalize the existing classical terms. This shared similarities
between the three traces, (3.108), (3.109) and (3.110), do not imply that the quantum
effects are relatively unimportant because we haven’t yet analyzed the space-time
EOMs. All the EOMs are inter-related so conclusions based on analyzing only parts
of the story typically fail to reveal the true picture.

This becomes clear once we look at the space-time EOMs. Looking at the zeroth
order in gs in (3.77) we notice that the quantum effects now play an important role.
To facilitate discussion, let us quote (3.77) again:

6Λ +
R

H4
− �H4

H8
+
[
Ci
i

](0,0) − 2κ2T2nb
H8
√
g6

δ8(y − Y )

=
1

8H8

(
G(3/2)
mnabG

(3/2)mnab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
αβabG

(3/2)αβab
)
,

(3.111)

where � is now over the full six-dimensional space M4 ×M2, and the quantum
terms are classified by θ′k = 8/3 in (2.97), compared to θ′k = 2/3 for the three traces
above. Such a choice of θ′k will now allow a large number of terms by choosing
various combinations of li in (2.94), thus mixing curvature terms with the G-flux
components.

All the four equations above shows how the Ricci scalar R may be related to
the G-fluxes and the quantum terms. The quantum terms are shown to be clas-
sified by choosing appropriate values for θ′k in (2.97), but there are also non-local
contributions to them. Fortunately, in the limit of vanishing (a, b) torus these con-
tributions are negligible so may be avoided in the gs → 0 limit, i.e in the late time
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limit. Adding (3.108) and (3.109) we get:

R + 18H4Λ = −1

2
[Cm

m](0,0) − 1

2
[Cα

α](0,0) (3.112)

+
1

16H4

(
G(3/2)
αβabG

(3/2)αβab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
mnabG

(3/2)mnab
)
,

which, in the absence of the G-flux pieces, would be equivalent to a similar equation
in [14] for the time-independent internal space (see eq. (6.4) in [14]). It is reassuring
to see the emergence of familiar equations once we resort to the time-independent
scenario. The time-dependences therefore not only add new fluxes to the time-
independent equations, but also allows us to consider a controlled set of quantum
corrections. Interestingly, now looking at (3.110), we notice that the LHS is identical
to the LHS of (3.112). In the absence of the G-flux pieces, we could have concluded
that the quantum corrections in these two set of equations are related to each other;
much like eq. (6.6) of [14]. This is not the case now. The quantum corrections
along (a, b) directions are not related in a simple way to the sum of the quantum
corrections along (m,n) and (α, β) directions. The G-fluxes interfere to make this a
bit more involved. We could however add (3.112) and (3.110) to get the following
equation:

R + 18H4Λ = −1

2
[Ca

a]
(3,0) − 1

4
[Cm

m](0,0) − 1

4
[Cα

α](0,0) (3.113)

− 1

32H4

(
G(3/2)
αβabG

(3/2)αβab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
mnabG

(3/2)mnab
)
,

combining all the quantum terms and the G-fluxes together. Note the difference in
the moding of the (a, b) quantum terms, but as mentioned earlier, they are all clas-
sified by θ′k = 2/3 in (2.97). Since θ′k = 2/3 is almost classical (one may easily see by
choosing the appropriate li in (2.94)), all they do here is to renormalize the existing
classical pieces without introducing any higher order corrections. This was clearly
not the case in [14, 15], where θ′0 = 2/3 in (2.98) would have led to an infinite number
of quantum terms without any visible hierarchies. Switching on time-dependences
have completely changed the scenario. On the other hand, subtracting (3.112) from
(3.110), we get:

[Cmm]
(0,0)

+ [Cαα]
(0,0) − 2 [Caa]

(3,0)
=

3

8H4

(
G(3/2)
αβabG

(3/2)αβab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
mnabG

(3/2)mnab
)
,

(3.114)

which instead would directly connect the quantum terms to the fluxes. Such an
equation immediately confirms the fact that the three quantum terms in (3.113) or
(3.114) only renormalize the existing classical data, without introducing any higher
order terms. As mentioned above, this is consistent with the fact that they are clas-
sified by θ′k = 2/3 in (2.97).

We can now use the curvature scalar, defined in terms of the quantum terms for
the eight-dimensional manifold and the G-fluxes in (3.113), and plug this (3.111).
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Doing this yields:

−�H4 = 12ΛH8 +
5

32

(
G(3/2)
mnabG

(3/2)mnab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
αβabG

(3/2)αβab
)

(3.115)

+
2κ2T2nb√

g6

δ6(y − Y ) +

(
1

2
[Ca

a]
(3,0) +

1

4
[Cm

m](0,0) +
1

4
[Cα

α](0,0) −H4
[
Ci
i

](0,0)
)
H4,

where we have made one change: the M2-branes are now restricted to move on the
six-dimensional base M4 ×M2 only as this will facilitate as easier interpretation
in the type IIB side. Note also that the only minus sign appears from the quantum
terms in the space-time directions. This equation is somewhat similar to eq. (6.8)
in [14]. The differences being in (a) the relative factors, (b) the choice of the G-
flux components and (c) the dependence on the full eight-dimensional coordinates
instead of only on the six-dimensional base here; but both equations share one sim-
ilarity regarding the appearance of the relative minus sign. This is crucial because
integrating (3.115) over the six-dimensional base gives us:

12Λ

∫
d6y
√
g6H

8 +
5

32

∫
d6y
√
g6

(
G(3/2)
mnabG

(3/2)mnab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
mnabG

(3/2)mnab
)

+2κ2T2nb +

∫
d6y
√
g6

(
1

2
[Caa]

(3,0)
+

1

4
[Cmm]

(0,0)
+

1

4
[Cαα]

(0,0) −H4[Cii](0,0)

)
H4 = 0, (3.116)

which should be compared to eq. (6.10) of [14]. The zero on the RHS appears
from integrating �H4 over the compact baseM4 ×M2, and since H4(y) ≡ h(y) is
a smooth function, the integral vanishes. The smoothness of H4(y) is guaranteed
from the series of quantum corrections appearing in (3.115). Clearly, in the absence
of the quantum pieces, the system has no solution because the integral involves
only positive definite functions and therefore the consistency will demand vanish-
ing fluxes and vanishing Λ. Interestingly negative Λ is allowed even if the quantum
terms are absent, implying both Minkowski and AdS spaces may be realized in a
set-up like ours. The recent swampland conjectures concerning AdS spaces may
be overcome by introducing back the quantum corrections, but we don’t want to
discuss this here. In the presence of the quantum pieces, the consistency condition
here differs in a crucial way with the one presented in [14]. The quantum terms
in [14] are classified by θ′0 = 2/3 and θ′0 = 8/3 for the internal and the space-time
respectively with θ′0 defined in (2.98). These have infinite number of solutions for
both cases, implying that an expression like eq. (6.10) in [14] does not have any
solution at all and is in the swampland. However now the scenario has changed.
The internal and the space-time quantum terms are now classified by θ′k = 2/3 and
θ′k = 8/3 respectively with θ′k defined as in (2.97). These have finite number of solu-
tions in both cases, and in fact the internal space quantum terms, as we saw earlier,
do not contribute much. This means the actual higher order quantum terms appear
only from the space-time part, i.e from the [Ci

i]
(0,0) piece in (3.116). These quantum

terms appear with an overall minus sign in (3.116), and therefore if we can use only
the dominant positive contributions from [Ci

i]
(0,0) then surprisingly solutions would

exist where there were none before!
We use the details gathered so far to determine the metric of the internal space

in terms of the fluxes and the quantum corrections. Let us start by expressing the
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un-warped metric gmn using (3.19) in the following way:

gmn =
3

58

 C(1/2,0)
mn + 1

4H4

∑
{ki} Ck2

(
C̃k1
G(k3)
mlabG

(k4)lab
n + Ck1

G(k3)
mαabG

(k4)αab
n

)
A(y) + 3

928H4

∑
{ki} Ck2

(
C̃k1G

(k3)
pkabG(k4)pkab + 2Ck1G

(k3)
pαabG(k4)pαab

)
 , (3.117)

where A(y) is defined in (3.20) and ki satisfy
∑

i ki = 7/2, with the constraint that
(k3, k4) ≥ (3/2, 3/2). The Ck and the C̃k coefficients can be determined using the
cross-term EOMs as we saw in section 3.1.1. Finally, the quantum terms appearing
above are governed by θ′k = 1 in (2.97), i.e by (3.21). For such small values of θ′k,
the quantum terms are mostly expressed as powers of G-flux components instead
of curvature tensors as may be easily seen from (3.21). The curvature tensors ap-
pearing here only renormalizes the classical terms. This means the RHS of (3.117) is
expressed mostly by powers of G-fluxes and the (Ck, C̃k) coefficients (the latter are
also determined by fluxes for small values of k). In fact a somewhat similar story
repeats for the metric component gαβ also, which now takes the following form:

gαβ =
9

2

 C(1/2,0)
αβ + 1

4H4

∑
{ki} Ck2

(
C̃k1
G(k3)
αlabG

(k4)lab
β + Ck1

G(k3)
αγabG

(k4)γab
β

)
C(y) + 9

32H4

∑
{ki} Ck2

(
2C̃k1

G(k3)
γlabG(k4)γlab + Ck1

G(k3)
γηabG(k4)γηab + Ĉk1,2

G(k3)
mnabG(k4)mnab

)
 ,
(3.118)

as gathered from (3.43); where C(y) defined as in (3.44) and Ĉk1,2 ≡ C̃k1C̃k2/Ck2 with
ki satisfying as before

∑
i ki = 7/2 with the standard constraint (k3, k4) ≥ (3/2, 3/2).

The quantum terms are again classified by θ′k = 1 in (2.97), and therefore are most
populated by powers of G-flux components. Both the metric components, (3.117)
and (3.118) are non-Kähler, but the un-warped metric along the (a, b) directions is
flat as expected11. Thus solving for h(y) from (3.115), and (Ck, C̃k) from the cross-
term EOMs in section 3.1.1 (see for example (3.96) and (3.80)), we can pretty much

11We can also make some general observations regarding the sign of the internal curvature term
R from (3.110) and (3.112). Let us first assume that the quantum terms in (3.110) and (3.112) are
zero. Then the only solution is with vanishing flux components G(3/2)

MNab and R = −18ΛH4. It is also
clear from (3.116), for vanishing quantum terms and vanishing fluxes, Λ = 0 and therefore R = 0.
When the fluxes vanish, but all the quantum terms are non-zero, then the internal quantum terms
must satisfy the relation (3.114) with zero on the RHS. The consistency condition (3.116) allows
positive Λ if the space-time quantum terms [Cii](0,0) dominates over all others terms. In this case
Λ > 0 is allowed. However if the internal space quantum terms vanish (which still allows positive
Λ in (3.116)), then from (3.110) and (3.112) the internal curvature scalar has to be negative i.e R =
−18|Λ|H4 with the warp-factor H(y) satisfying:

�H4 =

(
[Cii](0,0) − 12|Λ| − 2κ2T2nb

H8√g6
δ8(y − Y )

)
H4

where nb is the number of M2-branes, T2 is the tension of a M2-brane and g6 is the determinant of
the six-dimensional internal metric. The six-dimensional base of the eight-manifold now becomes a
non-Kähler space with a negative Ricci scalar. Clearly for vanishing [Cii](0,0), and vanishing fluxes,
Λ can only be negative from (3.116) if the internal quantum terms are all positive definite. In this
case either R < 0 or R < 18H4|Λ|. If the internal quantum terms are all negative definite, then there
can be Λ > 0 for vanishing fluxes and vanishing space-time quantum terms. In this case R > 0
or R > −18H4|Λ|. In the same vein, other possible choices can be entertained. It would also be
interesting to compare our results with [35].
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determine the full background data provided information about the G-flux compo-
nents are provided. The latter will require us to solve the flux EOMs, that we shall
discuss soon.

The miracle that has happened here has its root in the time-dependence of the
G-flux components and the internal space. The time dependences of the G-fluxes
are responsible for changing the relative signs of the (l36, l37, l38) terms in (2.98) to
the k-dependent scaling (2.97). On the other hand, the time-dependences of the in-
ternal space i.e the existence of the Fi(t) factors are related to the quantum terms.
The quantum terms are classified by θ′k in (2.97), thus bringing us back full-circle.
This interdependency of the temporal behavior of fluxes and the metric compo-
nents is solely responsible for the generation of a four-dimensional positive curva-
ture space-time in the type IIB side with de Sitter isometries. Switching off time-
dependences (or the quantum terms) will immediately ruin the picture and drag us
back to the swampland.
Case 2: F1(t) and F2(t) satisfying the fluctuation condition (2.8)

Our procedure to study the scenario corresponding to γ > 0 will essentially be the
same: we will take the traces of the various EOMs and from there inquire whether
solutions could be constructed. We first take the trace of the EOM along the (m,n)
directions. The EOM is given in (3.34) and is defined at the zeroth order in gs. The
trace yields:

R =
1

8H4
G(9/2)
αβabG

(9/2)αβab − 1

2
[Cm

m](0,0) − 6ΛH4, (3.119)

where we have used the fact that the un-warped Ricci scalar ofM4 vanishes, which
in turn appears from looking at (3.51). In fact this led us to choose the un-warped
geometry of the six-dimensional base to be that of K3 × T2, implying that the cos-
mological constant Λ in this set-up may be expressed as:

Λ =
1

48H8
G(9/2)
αβabG

(9/2)αβab − 1

12H4
[Cm

m](0,0) , (3.120)

which at the face value doesn’t contradict anything because the quantum terms are
classified by θk = 2/3 in (2.86) for γ = 2, and this allows us to choose l28 = 2
renormalizing the classical flux piece such that the RHS of (3.120) becomes a posi-
tive constant. However this puts a tighter constraint on the behavior of the G-flux
component G(9/2)

αβab . An alternative to this would be to take R(2) 6= 0 in (3.51). This
however would be a bit difficult to argue because (3.51) is a source-free equation
(see also footnote 5). It is also interesting to note that (3.53) provides a relation
similar to (3.120), namely:

Λ = − 1

64H8

(
G(9/2)
αβab

)2

− 1

8H4
[Cα

α](3,0) , (3.121)

which again shows that there has to be a delicate cancellation to allow for the cos-
mological constant term to appear from the RHS. Of course again the quantum
terms are classified by θk = 2/3 in (2.86) so we haven’t faced a contradiction yet.
However the fact that first term in (3.121) is negative definite shows that the quan-
tum terms have to be negative definite also to reproduce the positive Λ from RHS.
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We will not worry about whether (3.121) and (3.120) could be mutually consistent,
and instead proceed with analyzing the other equations of the system.

Our next equation is the equation along the (a, b) directions. There are some
subtleties in the construction of the EOMs, that we explained earlier, and after the
dust settles, the EOM to order g2

s (which is the lowest order now) is given by (3.65).
Taking the trace leads to:

Λ = − 1

144H8

(
G(9/2)
αβab

)2

− 1

18H4
[Ca

a]
(3,0) , (3.122)

which is an equation similar to (3.121) above. The concern associated with this
equation remains the same as before as the quantum terms are classified by θk = 2/3
in (2.86). We should then go to the space-time EOM to see if any of our concerns
could be lifted. As we saw before, there are two space-time EOMs given by (3.86)
and (3.91), out of which (3.91) will be the correct EOM once we gather all the con-
straints from flux EOM in section 3.1.2. For the time being there is no way to choose
(3.86) over (3.91), so we shall put both to test now and see what comes out from our
exercise.

We consider starting with the wrong EOM, i.e (3.86). In this case the story, like
(3.122), also repeats for the EOM along the space-time direction as may be seen from
(3.86), and we reproduce it here again for completeness:

Λ =
1

32H8
G(9/2)
αβabG

(9/2)αβab − 1

4

[
Ci
i

](0,0)
. (3.123)

We now face a possible conundrum. The quantum terms are classified by θk = 8/3
in (2.86) and therefore has many more terms compared to the earlier cases where
the quantum terms are classified by θk = 2/3. None of these terms are as simple as
the classical flux term appearing in (3.123), and therefore to reproduce the constant
Λ factor, there needs to be strong constraints on all the quantum terms classified by
θk = 8/3 in (2.86).

There is also no integral constraint like the one in (3.116) for the volume pre-
serving case (2.2) because the warp-factor h(y) is harmonic from (3.85). Combining
(3.121) and (3.123) yields:

Λ = − 1

12H4

(
[Cα

α](3,0) +H4
[
Ci
i

](0,0)
)
, (3.124)

which relates Λ directly to the quantum terms. Since Λ > 0, the quantum terms
or their sum have to be a negative definite integer. Additionally, they have to be
proportional to H4 (at least from the first term in (3.124)) if (3.123) has to make
sense. Also since the square of the flux piece appearing in the above equations is a
positive quantity, we expect:

H4
[
Ci
i

](0,0)
>

1

3
[Cm

m](0,0) >
2

9
[Ca

a]
(3,0) >

1

2
[Cα

α](3,0) , (3.125)

as a possible hierarchy between all the quantum terms classified by appropriate
values of θk in (2.86). All these lead to some strong constraints that are unclear
if they could be consistently satisfied. Let us then ask whether the correct EOM,
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namely (3.91), could ease some of the tension here. Combining (3.90) with (3.91),
we get:

Λ =
1

32H8
G(9/2)
αβabG

(9/2)αβab − 1

4

([
Ci
i

](3,0) −
[
Ci
i

](0,0)
)
, (3.126)

which is similar to (3.123), so unfortunately this is not going to alleviate any of the
issues that we faced above. The only difference between (3.123) and (3.126) is the
quantum terms, so (3.125) would remain as before with the sole replacement:[

Ci
i

](0,0) −→
[
Ci
i

](3,0) −
[
Ci
i

](0,0)
, (3.127)

leading to same sort of strong constraints as before. Furthermore switching on γ
leads to an unnatural derivative constraint that is harder to justify. The absence of
M2-branes, due to the vanishing Euler characteristics, is also an issue because M2-
branes dualize to D3-branes in the type IIB side and account for the color degrees
of freedom. Additionally, the late-time behavior, as may be inferred from (3.28),
shows that:

F1(t)→ 0, F2(t)→ 1, (3.128)

thus the subspaceM2 shrinks to zero size leading to singularities at late time. How-
ever since we are never at gs = 0 point, the quantum EOMs do not show any signs
of complications at this stage. Thus although none of the arguments presented here
is damning enough to discard the model with non-zero γ, the issues presented here
nonetheless show that the late time physics with a four-dimensional de Sitter space-
time, i.e with (2.2), is a preferable scenario over the ones with time-varying Newton
constants. In Table 3.1 we summarize the differences between the two choices (2.2)
and (2.8).

3.1.2 Analysis of the G-flux quantizations and anomaly cancella-
tions

The study of all the Einstein’s equation performed above revealed a delicate in-
terconnection between the metric components, the quantum terms and the G-flux
components at every order in the gs expansions. Flux EOMs would introduce yet
another layer of interconnections and constraints. We would like to specifically con-
centrate on two aspects of this: flux quantization and anomaly cancellation. In the
process we shall also be able to tie up few of the loose ends from the earlier sections.

Bianchi identities and flux quantizations

Flux quantization is intimately connected to the Bianchi identity. In the time-independent
case this was analyzed in details by [33]. Let us first elaborate this using the dual
forms G7 discussed in section 2.1.2. In the absence of the quantum terms, i.e in
the absence of Z7 from (2.140), the M-theory action using the dual variables may be
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Time-independent Newton’s constant Time-dependent Newton’s constant

No derivative constraint onM4 ×M2 Derivative constraint onM2

M4: non-Kähler M4: conformally K3

M2: non-Kähler M2: conformally T2

χ8 6= 0 χ8 = 0

Allows static and dynamical M2-branes Only dynamical M2-branes allowed

No late time singularities Late time singularities

G-flux components with k ≥ 3
2

G-flux components with k ≥ 9
2

TABLE 3.1: The key differences between backgrounds with time-
independent Newton’s constant coming from (2.2) and time-
dependent Newton’s constant coming from (2.8). The Euler charac-
teristics of the eight-manifold (2.4) is denoted by χ8. The case with

dynamical membranes will be discussed in subsection 3.1.2.

written as:

S11 ≡ c1

∫
G7 ∧ ∗11G7 +N

∫
C6 ∧ Λ5 + c2

∫
C6 ∧ dẐ4, (3.129)

where N represents the number of M5-branes, ci are constants that are defined in
terms of certain powers of Mp that may be easily specified12, Λ5 is a localized five-
form that captures the singularities of the M5-branes, the Hodge star is with respect
to the warped eleven-dimensional metric and C6 appears from defining G7 = dC6+
... where the dotted terms appears from M2 and M5-branes in appropriate ways.
The EOM for C6 turns out to be:

d ∗11 G7 =
1

c1

(
NΛ5 + c2dẐ4

)
≡ dG4, (3.130)

where on the RHS we expressed the equation in terms of the four-form G4. The
above equation represents the Bianchi identity in the absence of any extra contribu-
tions from the quantum terms. Integrating the above equation over a five-manifold
Σ5 with boundary Σ4 = ∂Σ5, we get:

c1

∫
Σ4

G4 = N + c2

∫
Σ4

Ẑ4, (3.131)

where the RHS is expressed in terms of N , the number of static M5-branes, and an
integral of a four-form over the four-manifold Σ4. In deriving the above equation
we have assumed that the integral of Λ5 over the five-manifold Σ5 is identity. Now

12For example c1 = M9
p and c2 = M6

p , but the term with c2 will involve other powers of Mp.
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defining:

c1 =
1

2π
, c2 = −1, Ẑ4 =

1

16π2

(
tr F ∧ F− 1

2
tr R ∧ R

)
, (3.132)

where the curvature form R is as defined in (2.131) and the gauge two-form F
will appear from the flux-form G, also defined in (2.131), once we view the G-flux
components as localized fluxes (this will be elaborated soon). Therefore combining
(3.132) with (3.131), we reproduce the G-flux quantization as expressed in [33].

The question now is what happens when the G-flux components become time-
dependent? One easy way out would be to introduce moving M5-branes, as the
other pieces appearing in (3.131) are topological. These topological pieces could
also have time dependences, but as we saw earlier, the time dependences of the
G-flux and metric components are correlated to the quantum corrections which in
turn are classified by θ′k in (2.97) or θk in (2.86) for (2.2) and (2.8) respectively. This
therefore calls for the quantum corrections to the Bianchi identities themselves.

Introducing the quantum corrections here would imply switching on the Hodge
dual of Z7, which in turn implies switching on the second interaction in (2.140).
Implementing this, changes the Bianchi identity from (3.130) to the following:

d ∗11 G7 =
1

c1

(
NΛ5 + c2dẐ4 − c3d ∗11 Z7

)
≡ dG4, (3.133)

where c3 is yet another constant defined in terms of powers of Mp. As discussed
in (2.142), the Z7 interaction should be understood as coming from (2.139) and is
therefore non-topological. It is also not globally defined because it involves metric
components on the compact space M4 × M2 × T2

G , that can only be defined on
patches and we will have to specify a function that can take us from one patch to
another. Integrating (3.133) in the same way as above, leaves us with the following
flux quantization condition:

c1

∫
Σ4

G4 = N + c2

∫
Σ4

Ẑ4 − c3

∫
Σ4

∗11Ẑ7, (3.134)

where N , the number of M5-branes, would be affected if Λ5 itself becomes gs (i.e
time) dependent. Recall that Λ5 in (3.133) is like a delta function and therefore if
there are moving M5-branes, it would pick up gs dependence. Similarly Ẑ4 would
also pick up some gs dependence. However these are all classical, and what we
are looking for is more on the quantum side that could account for all higher order
gs dependence of the G4 flux-components G(k)

MNPQ for all k ≥ 3/2. To see how this
would come about, let us express (3.134) in terms of components in the following
way:

c1

∑
k∈ Z

2

∫
Σ4

G(k)
N8N9N10N11

(gs
H

)2∆k

dyN8 ∧ .... ∧ dyN11 = N + c2

∫
Σ4

Ẑ4 (3.135)

−c3

∑
l

∫
Σ4

√
−g11

(
Z(l)

7

)
N ′1....N

′
7

gN
′
1N1 ......gN

′
7N7

(gs
H

)θ̂l
εN1....N7N8....N11dy

N8 ∧ .... ∧ dyN11 ,
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where the metric components are all the un-warped metric components (including
the determinant), and the epsilon is the Levi-Civita symbol (i.e not a tensor). Note
also that although the LHS has been expanded in the standard way as in (3.11), the
RHS needs some explanation. According to (2.142), the quantum terms (2.139) are
expanded by first choosing a particular component from the set of allowed dual
forms and then labelling the remaining pieces as the associated seven-form Z7 ac-
companying the dual component. This way Z7 is uniquely identified once the dual
G-flux component is chosen. However we expect the dual G-flux component to
have a similar expansion as (3.11), albeit with different gs scalings. The correspond-
ing Z7 form will then have the gs scalings as given in Table 2.2. The RHS of the
(3.135) therefore represents precisely these scalings that we will simply label as θ̂l.
For every choice of G(k)

MNPQ on the LHS, the gs scalings of the corresponding seven-
form Z(l)

7 should match-up13. In the following we will do a detailed check of this.
Before delving into this note that if the M5-branes are static, then N will appear

with no gs factor accompanying it in (3.135). Thus if there are no time-neutral G-
flux components we cannot allow static M5-branes, although M2-branes can still
be allowed14. There is however some subtlety that we are hiding under the rug
here. Since the Z7 piece in the Bianchi identity (3.133) should always have gs depen-
dence, the static quantities that can actually appear from the Bianchi identity may
be combined as S5 where:

S5 ≡ NΛ5 −
c2

32π2
d
(

tr R ∧ R
)
, (3.136)

where the second term comes from the definition of Ẑ4 in (3.132), and Λ5 is the
localized five-form. The gauge field F will in general have gs dependence, but here
we will simply put it to zero. Now, clearly if the trace or R in (3.136) has only gs
dependent terms, then N = 0 as G4 has no gs independent piece. However if the
trace or the curvature form allows a gs independent piece then we can cancel S5

locally by identifying Λ5 with the trace part. The global condition:

N =
c2

32π2

∫
Σ4

tr R ∧ R, (3.137)

over a specific four-cycle Σ4 ≡ ∂Σ5 is then automatic. However compared to [33],
we now require the integral of the first Pontryagin class to be an integer15 as we can-
not switch on time-independent G-flux components here. Thus time-dependences
put some extra constraints that did not exist for the time-independent case. In gen-
eral, since we will only be concerned about comparing the gs scalings, N can be
effectively taken to zero without altering the flux quantization condition (3.135).

13We have been a bit sloppy in defining θ̂l. The actual gs scalings of every components of Z7 may
be read from Table 2.2. However θ̂l will have an additional contribution from

√
−g11, where the

determinant is now expressed in terms of the warped metric components. To avoid all these un-
necessary complications we just define θ̂l once and for all in (3.135) without worrying too much of
its source.

14This is a bit more subtle than one would think. Dynamical M2-branes would back-react on the
background stirring up corrections to fluxes and the metric. This is however surprisingly tractable,
and we will elaborate the story in subsection 3.1.2.

15The sign will be determined from the sign of c2.
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There is however no reason to make c2 = 0 because Ẑ4 can have gs dependences.
We will not worry too much about this as we want to match the gs scalings of the
LHS to the gs scaling of the quantum terms on the RHS of (3.135).

Case 1: Gmnab component

We will start by taking c2 = 0 in (3.135) just for simplicity. This will be restored back
at the end with appropriate gs scalings. Such a procedure will help us to compare
the LHS and the RHS succinctly. Therefore for a given order in k the matching
becomes:

c1

∫
Σ

(1)
4

G(k)
mnabdy

m ∧ .... ∧ dyb = −c3

∫
Σ

(1)
4

√
−g11

(
Z(k)

7

)0ijpqαβ

ε0ijpqαβmnabdy
m ∧ ... ∧ dyb,

(3.138)

where Σ
(1)
4 = C2 × T2

G , and C2 is a two-cycle in M4. The LHS of (3.138) scales as(
gs
H

)2∆k with k ≥ 3/2 for the case (2.2) and k ≥ 9/2 for the case (2.8). The gs scaling

on the RHS is
(
gs
H

)θ̂k where θ̂k for (2.2) becomes:

θ̂k = θ′k − 2∆k + 6− 14

3
= θ′k − 2∆k +

4

3
, (3.139)

where the first three terms in the first equality appears from Table 2.2 and −14
3

comes from
√
−g11 (note that the determinants in (3.138) and (3.135) have un-bolded

metric components). For k = 3/2 the gs scaling of the LHS becomes 2∆k = 1

whereas the gs scaling of the RHS becomes θ̂k = θ′k + 1
3

with θ′k as in (2.97). This
means when θ′k = 2

3
the gs scalings on both sides of (3.138) matches exactly.

For the case (2.8) there are two changes: the determinant changes to
√
−g11 ∝

g
−8/3
s and k ≥ 9

2
. Putting the information from Table 2.2, we get:

θ̂k = θk − 2∆k + 4− 8

3
= θk − 2∆k +

4

3
, (3.140)

where θk is as in (2.86). The gs scaling of the LHS for k = 9/2 is 2∆k = 3 whereas
the gs scaling of the RHS becomes θ̂k = θk − 5

3
, implying that when θk = 14

3
the gs

scaling on both sides of (3.138) match exactly. Comparing the two cases, we see that
the quantization scheme for (2.2) is a bit more natural.

Case 2: Gαβab component

Following the same procedure as before we can define the quantization scheme
for the G-flux component Gαβab defined over a four-cycle Σ

(2)
4 ≡ M2 × T2

G in the
following way:

c1

∫
Σ

(2)
4

G(k)
αβabdy

α ∧ .... ∧ dyb = −c3

∫
Σ

(2)
4

√
−g11

(
Z(k)

7

)0ijmnpq

ε0ijmnpqαβabdy
α ∧ ... ∧ dyb,

(3.141)

where now the seven-form has different set of indices. Looking at Table 2.2 it is
easy to see that the gs scaling of this seven-form component remains the same as
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earlier and therefore then matching of the gs scalings on both LHS and RHS of
(3.141) happens exactly when θ′k = 2

3
with θ′k defined as in (2.97). The matching of

the higher order terms then follows automatically.
On the other hand, for the case (2.8), the analysis is not similar to what we had

before because the gs scaling of the seven-form changes as should be evident from
Table 2.2. In fact the scaling becomes:

θ̂k = θk − 2∆k + 8− 8

3
= θk − 2∆k +

16

3
, (3.142)

implying that for k = 9
2
, we will require θk = 2

3
in (2.86) to match the lowest powers

of gs on both sides of (3.141). Once matched at the lowest powers, all higher order
gs scalings get matched automatically.

Case 3: Gmαab component

This is an interesting case where the four-cycle on which we define our flux com-
ponent is chosen from a combination of two one-cycles, one each fromM4 andM2

respectively, and combined with the existing two-cycle T2

G . The one-cycles are pos-
sible because neitherM4 norM2 are Calabi-Yau manifolds as we saw earlier. We
will call this four-cycle as Σ

(3)
4 and the quantization condition becomes:

c1

∫
Σ

(3)
4

G(k)
mαabdy

m ∧ .... ∧ dyb = −c3

∫
Σ

(3)
4

√
−g11

(
Z(k)

7

)0ijnpqβ

ε0ijnpqβmαabdy
m ∧ ... ∧ dyb.

(3.143)

The gs scaling of the RHS remains similar to what we had for the two cases above
for (2.2). This means that choosing θ′k = 2

3
we can match the lowest order gs scalings

on both sides of (3.143). The higher order terms, as expected, match automatically
after that.

The story for the case (2.8) is however a bit different because the gs scaling of
the dual form appearing in (3.143) is different as can be seen from Table 2.2. In
addition to that, since M4 and M2 are conformally CY, global one-cycles are non-
existent here. Nevertheless local one-cycles are possible and thus Σ

(3)
4 could only

be viewed as a local four-cycle, implying that a relation like (3.143) cannot quite
capture the flux quantization scheme for this case. Locally however we can still
give some meaning to an equation like (3.143), and if we carry on with such a lo-
cal quantization condition, it will tell us that the gs scaling of the RHS of (3.143)
becomes:

θ̂k = θk − 2∆k +
10

3
, (3.144)

where k ≥ 9
2
. This means that the bound on θk from (2.86) is now θk ≥ 8

3
, implying

that the flux quantization scheme here pits the time variation of the integrated G-
flux component with the integrated quantum terms classified by θk = 8

3
for the case

(2.8) and θ′k = 2
3

for the case (2.2).

Case 4: Gmnpq component

We now start with components of G-fluxes that do not contribute at lower order
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in gs scalings to the EOMs. This means the quantization scheme will involve even
higher order quantum corrections that are captured by the dual seven-form. This
may be seen from the following quantization condition:

c1

∫
M4

G(k)
mnpqdy

m ∧ .... ∧ dyq = −c3

∫
M4

√
−g11

(
Z(k)

7

)0ijαβab

ε0ijαβabmnpqdy
m ∧ ... ∧ dyq.

(3.145)

where the four-cycle is clearly the manifoldM4. Looking at Table 2.2 one can easily
work out the gs scaling of the RHS of (3.145). Putting everything together, this gives
us:

θ̂k = θ′k − 2∆k − 8

3
, (3.146)

with θ′k as in (2.97) and k ≥ 3
2
. The gs scaling of the LHS of (3.145) remains the same,

i.e 2∆k, and therefore to match both sides of (3.145), we need θ′k ≥ 14
3

in (2.97).
Clearly for this value of θ′k there are multiple terms which we can easily work out
from (2.139).

The case with (2.8) is also different. The gs scaling of the seven-form may be
read from Table 2.2, Putting things together, the gs scaling of the RHS of (3.145)
now becomes:

θ̂k = θk − 2∆k − 8

3
, (3.147)

with θk as in (2.86), and therefore the only way to match both sides of (3.145) is to
impose θk ≥ 26

3
in (2.86). This is a large number and therefore will involve many

quantum terms, making the quantization scheme a bit more complicated. Never-
theless, matching of both sides could be made succinctly.

Case 5: Gmnpα component

Quantization of flux in this case requires us to find a three-cycle inM4 and a one-
cycle inM2. This is possible thanks to the non-Kähler nature ofM4 andM2 for the
case (2.2). The quantization scheme now becomes:

c1

∫
Σ

(4)
4

G(k)
mnpαdy

m ∧ .... ∧ dyα = −c3

∫
Σ

(4)
4

√
−g11

(
Z(k)

7

)0ijqβab

ε0ijqβabmnpαdy
m ∧ ... ∧ dyα,

(3.148)

where Σ
(4)
4 is the corresponding four-cycle. Now according to Table 2.2, the gs

scaling of the dual seven-form remains exactly the same as what we had for the
Gmnpq component and therefore the analysis will proceed in the same way as before.
The net result is that the gs of the RHS remains (3.146), and therefore the gs scalings
of both sides of (3.148) match when θ′k ≥ 14

3
in (2.97).

For the case (2.8), finding a globally defined four-cycle is not possible as both
M4 andM2 are conformally CY manifolds. Local construction is possible, but that
weakens the flux quantization scheme here. Nevertheless if we proceed with a
relation like (3.148), but now defined over a local four-cycle Σ

(4)
4 , we could still
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make some sense of (3.148), at least in identifying the gs scalings on both sides of
the relation. This gives us:

θ̂k = θk − 2∆k − 2

3
, (3.149)

with θk as defined in (2.86) and k ≥ 9
2
. Thus if θk ≥ 20

3
we can in principle match

both sides of (3.148) for the case (2.8). These bigger numbers, for both θ′k and θk,
are somewhat consistent with the fact that the corresponding G-flux components
do not contrinute at lower values of the gs to the EOMs.

Case 6: Gmnαβ component

This case is in many sense similar to the one studied for the Gmnpq component,
because the gs scalings of the metric components, for the case (2.2), are similar. Both
the metric components, gmn and gαβ , scale as g−2/3

s and therefore it is no surprise
that the gs scaling of the dual seven-form is again similar to what we had for the
other component. However the flux quantization scheme involve the following
components:

c1

∫
Σ

(5)
4

G(k)
mnαβdy

m ∧ .... ∧ dyβ = −c3

∫
Σ

(5)
4

√
−g11

(
Z(k)

7

)0ijpqab

ε0ijpqabmnαβdy
m ∧ ... ∧ dyβ,

(3.150)

where Σ
(5)
4 ≡ C2 ×M2, with C2 is the same two-cycle in M4 that we had chosen

for the case with Gmnab component. The gs scaling of the RHS of (3.150) remains
identical to (3.146) and therefore if θ′k ≥ 14

3
in (2.97), we can easily match both sides

of (3.150). As mentioned earlier, the higher order terms then match automatically.
For the case (2.8), we are in a better shape now because it is easy to find a two-

cycle in M4 when it is a conformally CY manifold. The four-cycle then becomes
a product of the two-cycle inM4 and the conformally CY manifoldM2 (which is
topologically a torus). The gs scaling of the RHS of (3.150) becomes:

θ̂k = θk − 2∆k +
4

3
, (3.151)

for θk as in (2.86). This implies that if θk ≥ 14
3

we should be able to match the gs
scalings of both sides of (3.150) for any order of k ≥ 9

2
.

Case 7: Gmnpa,Gmnαa and Gmαβa components

The final three cases are to be defined on four-cycles that are to be constructed with
one-cycles from T2

G manifold. By definition such a one-cycle do not exist in T2

G for
both cases (2.2) and (2.8). Previously the case with (2.2) did not suffer from any
non-existence of global cycles, although the case with (2.8) did have issues with the
existence of global cycles. Now we see that for either case, global four-cycles are
not possible, and we have to make sense of flux quantization with only local four-
cycles. Although the non-existence of global cycles make the quantization scheme
questionable, we can nevertheless compare the gs scalings of flux integrals and the
quantum terms using local four-cycles. Allowing this, we now have three set of
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equations:

c1

∫
Σ

(6)
4

G(k)
mnpady

m ∧ .... ∧ dya = −c3

∫
Σ

(6)
4

√
−g11

(
Z(k)

7

)0ijqαβb

ε0ijqαβbmnpady
m ∧ ... ∧ dya,

c1

∫
Σ

(7)
4

G(k)
mnαady

m ∧ .... ∧ dya = −c3

∫
Σ

(7)
4

√
−g11

(
Z(k)

7

)0ijpqβb

ε0ijpqβbmnαady
m ∧ ... ∧ dya,

c1

∫
Σ

(8)
4

G(k)
mαβady

m ∧ .... ∧ dya = −c3

∫
Σ

(8)
4

√
−g11

(
Z(k)

7

)0ijnpqb

ε0ijnpqbmnαady
m ∧ ... ∧ dya,

(3.152)

where the four-cycles Σ
(i)
4 for i = 6, 7, 8 respectively are C3×S1

(3), C2×S1
(2)×S1

(3) and
S1

(1)×M2× S1
(3), with the subscript denoting which one-cycle is meant. Clearly S1

(1)

and S1
(2) are global one-cycles, but S1

(3) is not, as explained earlier. Therefore the set
of equations (3.152) can at most help us identify the gs scalings on both sides of the
equalities, but would not serve as flux quantization conditions (as the four-cycles
could shrink to zero sizes). From Table 2.2 we can easily see that, for the case (2.2),
the RHS of all the three equations scale in exactly the same way as:

θ̂k = θ′k − 2∆k − 2

3
, (3.153)

with θ′k as in (2.97) and k ≥ 3
2
. This means that if we take θ′k ≥ 8

3
we can match

the gs scalings of both sides of each individual equalities for all k ≥ 3
2
, and to any

subsequent orders.
The case for (2.8) is however not as uniform as above. The gs scalings of the

dual seven-forms themselves are different as may be inferred from Table 2.2. This
directly translates to the gs scalings of the RHS of the three equations in (3.152) in
the following way:

θ̂k = θk − 2∆k − 2

3
, θ̂k = θk − 2∆k +

4

3
, θ̂k = θk − 2∆k +

10

3
, (3.154)

with θk as in (2.86) and k ≥ 9
2
. Of course now none of the one-cycles are globally

defined, and neither is the three-cycle C3, so the four-cycles in each of the three
cases in (3.152) are local in much weaker sense than what we had earlier. This
means the flux-quantization conditions are even more weakly defined than before.
Nevertheless we see that the above three scalings in (3.154) puts the following lower
bounds on θk:

θk ≥
20

3
, θk ≥

14

3
, θk ≥

8

3
, (3.155)

respectively for the three cases in (3.152) for the gs scalings to match on both sides
of the equalities. Once they match at the lowest orders, matchings at higher orders
are almost automatic.

Our detailed analysis above should justify how flux quantizations should be
understood in the case when the fluxes themselves are varying with respect to time,
or alternatively, have gs dependences (as we packaged all temporal dependences as
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gs scalings). The original time-independent quantization scheme of [33] where:[
G4

2π

]
− p1(y)

4
∈ H4(y,Z), (3.156)

doesn’t quite work in the time-dependent case as G4 is always time-dependent (i.e
gs dependent) in our set-up whereas p1(y), the first Pontryagin class, may not al-
ways be (i.e for some sub-manifold in the internal eight-manifold, p1(y) may be
time, or gs, independent). Therefore the combination on the LHS of (3.156) being
in the fourth cohomology class H4(y,Z) doesn’t make much sense here, and the
quantization scheme now becomes much more involved as we showed above. In
principle one would expect both the G-flux components as well as the four-cycles
to vary with respect to time. However we have managed to rewrite the flux quan-
tization condition in such a way that all gs dependences go in the definition of the
fluxes, and the cycles themselves are defined using un-warped metric components.
Such a procedure then helped us to balance the gs dependences of the integrated
flux components on given four-cycles with the gs dependences of the correspond-
ing quantum corrections. We have tabulated the results in Table 3.2.

There are two other potential contributions to the flux quantization conditions
that we only gave cursory attentions. These are the number of dynamical M5-
branes, denoted by N , and the integrated four-form, denoted by the integral of
Ẑ4, in (3.135). Both these could have potential gs dependences and would therefore
contribute to the flux quantization conditions.

Anomaly cancellations and localized fluxes

In the above section we studied how the flux quantization conditions as well as
the Bianchi identities go hand in hand, and how the gs scalings could be matched
for every allowed G-flux components. The results are shown in Table 3.2. It is
time now to go to the next level of subtleties, namely the interpretation of the flux
components that thread the internal manifold, and the cancellations of anomalies
that arise from fluxes and branes on compact spaces.

We will start by defining the eleven-dimensional action much like how we de-
scribed it in (3.129), but now using the fundamental variables and not the dual
ones. This means four-form G-flux components will appear instead of the seven-
form dual flux components. In this language the action becomes:

S11 ≡ b1
∫

G4 ∧ ∗11G4 + b2

∫
C3 ∧G4 ∧G4 + b3

∫
C3 ∧ Z8 + b4

∫
G4 ∧ ∗11Z4 + nb

∫
C3 ∧Λ8,

(3.157)

where bi are all proportional to certain powers of Mp (that may be easily fixed
by derivative counting), Z8 is as defined in (2.132) which contains the X8 polyno-
mial, and nb is the number of static M2-branes. The other important ingredient of
(3.157) is the ∗11Z4 piece that captures the quantum corrections from either (2.78)
or (2.94) as elucidated in (2.135). Such a term appearing in (3.157) leads to the non-
topological interactions, and by construction ∗11Z4 is not a globally defined function
on a compact space. The EOM that arises from varying C3 now takes the following
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Forms Dual Forms θ̂k for (2.2) θ̂k for (2.8) [θ′k]min [θk]min

G(k)
mnab

(
Z(l)

7

)0ijpqαβ

θ′k − 2∆k + 4
3

θk − 2∆k + 4
3

2
3

14
3

G(k)
αβab

(
Z(l)

7

)0ijmnpq

θ′k − 2∆k + 4
3

θk − 2∆k + 16
3

2
3

2
3

G(k)
mαab

(
Z(l)

7

)0ijnpqβ

θ′k − 2∆k + 4
3

θk − 2∆k + 10
3

2
3

8
3
∗

G(k)
mnpq

(
Z(l)

7

)0ijαβab

θ′k − 2∆k − 8
3

θk − 2∆k − 8
3

14
3

26
3

G(k)
mnpα

(
Z(l)

7

)0ijqβab

θ′k − 2∆k − 8
3

θk − 2∆k − 2
3

14
3

20
3
∗

G(k)
mnαβ

(
Z(l)

7

)0ijpqab

θ′k − 2∆k − 8
3

θk − 2∆k + 4
3

14
3

14
3

G(k)
mnpa

(
Z(l)

7

)0ijqαβb

θ′k − 2∆k − 2
3

θk − 2∆k − 2
3

8
3
∗ 20

3
∗

G(k)
mnαa

(
Z(l)

7

)0ijpqβb

θ′k − 2∆k − 2
3

θk − 2∆k + 4
3

8
3
∗ 14

3
∗

G(k)
mαβa

(
Z(l)

7

)0ijnpqβ

θ′k − 2∆k − 2
3

θk − 2∆k + 10
3

8
3
∗ 8

3
∗

TABLE 3.2: Flux quantization associated with (3.135) keeping N =
c2 = 0. All the integrated flux components scale as g2∆k

s , and the gs
scalings of the dual forms, that incorporate the quantum corrections,
go as gθ̂ks . These are tabulated above for the two cases (2.2) and (2.8).
The other two parameters, θ′k and θk, are defined in (2.97) and (2.86)
respectively. The symbol ∗ denotes the non-existence of global four-

cycles.

form:

d ∗11 G4 =
1

b1

(
b2 G4 ∧G4 + b3 Z8 − b4 d ∗11 Z4 + nbΛ8

)
. (3.158)

Since both G4 and G7 ≡ ∗11G4 are globally defined forms on the compact eight-
manifoldM8, as given in (2.4), integrating the LHS of (3.158) overM8 would au-
tomatically vanish. Doing this on the RHS then reproduces the following anomaly
cancellation condition:

b2

∫
M8

G4 ∧G4 + b3

∫
M8

Z8 − b4

∫
M8

d ∗11 Z4 + nb = 0, (3.159)

where we have assumed that the integral of the localized form Λ8 over the eight-
manifold is identity. This is true of course when the M2-branes are completely static.
We will discuss more on this later.

On the outset (3.159) looks like the standard anomaly cancellation condition one
would get from [21, 22], however a closer inspection reveals a few subtleties. One,
the flux integral is now time-dependent because the G4 fluxes do not have any
time-independent parts. Two, we have an integral over the topological 8-form Z8,
whose polynomial form appears in (2.132), instead of just X8 as in [21, 22]. Three,
there appears a new contribution coming from the integral of a locally exact form
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d ∗11 Z4 overM8 from the quantum corrections. And four, we have nb, the number
of static M2-branes, that is a time-independent factor. Thus (3.159) is not just a
single relation as in [22], rather it is now a mixture of time-dependent and time-
independent pieces juxtaposed together. How do we disentangle the various parts
of (3.159) to form consistent anomaly cancellation conditions for our case?

The X8 polynomial and Euler characteristics of the eight-manifold

First let us look at the X8 part of Z8. As should be clear from (2.132), the choice
(2.133) allows us to construct the X8 polynomial from Z8. In the time-independent
case, we expect (see the first reference in [21]):∫

M8

X8 = − 1

4!(2π)4
χ8, (3.160)

where χ8 is the Euler-characteristics of the eight-manifoldM8 when it has a Calabi-
Yau metric on it. In fact, in the time-independent case (3.160) makes sense, but if
we now take the metric ansatze (2.3) with the warp-factors as defined in (2.5), how
does (3.160) translates to the present case?

To answer this question let us look for the regime of validity of our gs expansions
for all the parameters involved in our analysis. It is easy to see that as long as
0 ≤

(
gs
H

)2
< 1 we have pretty much controlled quantum series expansions for all

the parameters here. Clearly we cannot analyze the cases when
(
gs
H

)2 ≥ 1 because
of the way we expressed the G-flux components in (2.13), quantum terms in (3.1)
etc. Thus

(
gs
H

)2
= 1 forms a kind of boundary, below which all the analysis that we

performed remains valid. Interestingly when
(
gs
H

)2
= 1, the M-theory metric (2.3)

takes the following form:

ds2 = H−8/3
(
− dt2 + dx2

1 + dx2
2

)
+H4/3

(
gαβdy

αdyβ + gmndy
mdyn + gabdy

adyb
)
, (3.161)

where the metric components appearing above are all the un-warped ones and we
have absorbed the Fi

(
− 1√

Λ

)
in the definition of the internal coordinates (Λ being

the cosmological constant). We will not worry about the fluxes and the quantum
corrections in this limit as they are any way not well defined according to our gs
expansion scheme. Our present scenario is somewhat similar to the one we en-
countered earlier, although we do not want to give a coherent state interpretation
when comparing (2.3) and (3.161) just yet. What we can say is that as:

− 1√
Λ

< t ≤ 0, (3.162)

the metric (3.161) slowly transforms into (2.3), implying that all temporal evolution
should be defined for t ≡ − 1√

Λ
+ δt. Such a point of view does not rule out a

coherent state formalism for our present background because we can still view the
time-dependent evolution for −∞ < t ≤ 0 to be over a solitonic configuration of
the form (3.161). Unfortunately the inaccessibility of the regimes t ≤ − 1√

Λ
prohibits

us to provide a quantitative analysis of such a scenario.
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What it does provide is a way to interpret the integral of X8 over the eight-
manifold. Let us first consider the eight-manifold as given in (3.161). This is not a
Calabi-Yau four-fold so the X8 integral will not necessarily capture the Euler char-
acteristics of the internal eight-manifoldM8 defined as in (2.4). Once we switch on
a time interval δt, the warp-factors (2.5) changes to the following:

e2A =

(
1 +

8

3

√
Λδt

)
H−8/3, e2C =

(
1− 4

3

√
Λδt

)
H4/3, Λt2 ≡

(gs
H

)2

= 1− 2
√

Λδt (3.163)

e2B1 = F1

(
− 1√

Λ
+ δt

)(
1 +

2

3

√
Λδt

)
H4/3, e2B2 = F2

(
− 1√

Λ
+ δt

)(
1 +

2

3

√
Λδt

)
H4/3,

where we see that the temporal evolution of the metric (3.161) appears as additive
pieces, each proportional to δt, to every metric components (including the space-
time ones) up-to the Fi factors. The Fi factors do not change this observation be-
cause:

F2

(
− 1√

Λ
+ δt

)
= 1 +

∑
k

Ck

(
1− 2∆

√
Λδt
)

F1

(
− 1√

Λ
+ δt

)
=

[
1 +

∑
k

C̃k

(
1− 2∆

√
Λδt
)](

1− γ
√

Λδt
)
, (3.164)

where γ = 0, 2 are related to the two cases (2.2) and (2.8) respectively. The other two
set of parameters Ck and C̃k have been determined earlier in terms of the quantum
corrections in section 3.1.1.

Therefore combining (3.163) and (3.164), the metric ansatze (2.3) can actually be
viewed as a perturbation over the initial metric configuration (3.161). In fact in this
language, the late time cosmological evolution may be viewed as evolving from the
metric configuration (3.161) via the warp-factors (3.163) and (3.164). It is also easy
to replace δt to a finite temporal value by iterating (3.163) and (3.164) or by directly
summing over binomial coefficients. All in all, our little exercise above tells us that:∫

M8

X8 ≡
1

3 · 29 · π4

∫
M8

(
tr R4 − 1

4

(
tr R2

)2
)

= − ωo
4!(2π)4

χ8 + go(δt), (3.165)

where R is the curvature two-form as it appears in (2.131), and ωo measures the
deviation from the Euler characteristics χ8. This could be integer or fraction de-
pending on our choice of the eight-manifold. Note that the integral (3.165) splits
into two pieces: ωoχ8, which is the piece independent of δt, is now only propor-
tional to the Euler characteristics of the eight-manifold appearing in (3.161); and
go(δt) is a factor that depends on our temporal evolution parameter δt. The latter
doesn’t automatically vanish, at least not for the kind of background that we an-
alyze here, and therefore should contribute to the anomaly cancellation condition
(3.159). Exactly how this happens will be illustrated soon.

The Euler characteristics χ8 can take either values, positive or negative, and both
will be useful in analyzing the anomaly cancellation16. The case with vanishing Eu-
ler is interesting in its own way, but it appears not to be realized at least for the

16Thus without loss of generalities we will take ωo > 0 in (3.165).
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case (2.2). One can, however, question the robustness of the interpretation. (3.165).
How is the split (3.165) understood in the full cosmological setting? This is where
the coherent state interpretation becomes immensely useful. If we assume that the
cosmological evolution for −∞ < t ≤ 0 is via coherent states that evolve over a
solitonic background like (3.161) then χ8 will always be related to the Euler charac-
teristics of the vacuum eight-manifold.

Anomaly cancellation conditions and time-dependent G-fluxes

Let us now come to the anomaly cancellation conditions from (3.159). This equation
should now naturally split into at least two parts: one, that is time-independent (i.e
independent of gs), and two, that depends on time, and hence on gs. It is easy
to see that, out of the four set of pieces in (3.159), only two set of pieces are time
independent. These are the number nb of M2-branes and the time independent part
of Z8 that is related to the Euler characteristics of the eight-manifold (3.165). If we
take χ8 > 0, (3.159) immediately gives us the first anomaly cancellation condition:

nb =
b3

4!(2π)4
χ8, (3.166)

where b3 is the factor that depends on ωo and Mp. Thus we see that, even for a non-
Kähler eight-manifold, the Euler characteristics of the internal manifold (3.161) gov-
erns the number of static M2-branes in our model in some sense. Since the number
of M2-branes have to be an integer, the equation (3.166) puts an extra constraint on
b3 and the Euler characteristics of the eight-manifold itself, namely the combination
on the RHS of (3.166) should be an integer. Such a condition should be reminiscent
of a similar condition in the second reference of [21], and here we see that in a time-
dependent background, (3.166) is realized instead of the full anomaly cancellation
condition with G-fluxes of [22] (see also the last reference of [21]).

On the other hand, a negative Euler characteristics would be related to anti M2-
branes, or to a set-up with dominant number of anti M2-branes. Again the story
parallels that of the second reference of [21], albeit now for the time-dependent
background. Vanishing Euler characteristics would then mean no M2 or anti M2-
branes or equal number of M2 and anti M2-branes (such that global charges cancel).

For the time-dependent parts of (3.159) there are a couple of subtleties. One, we
need to tread carefully as various parts of the G-flux components have different gs
scalings; and two, time-dependent contributions now come from both topological
and non-topological parts of (3.159). In fact the non-topological piece, given in
terms of ∗11Z4, is solely time dependent as it is constructed out of the quantum
terms (2.78) or (2.94) as shown in (2.135). On the other hand, the topological part
does have a time independent piece as seen from (3.165). Combining everything
together, our second anomaly cancellation condition may be expressed as:

b2

∫
M8

G4 ∧G4 + b3

∫
M8

(
Z8 −X8

)
− b4

∫
M8

d ∗11 Z4 =
b3

4!(2π)4
χ8, (3.167)

which is in fact not a single condition, rather it is an infinite number of conditions
on various components of the G-fluxes and the quantum terms. To see this, and
as we have done before, we will first decouple the b3 dependent parts of (3.167) to
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simplify the ensuing analysis. This will be inserted in at the end. Plugging in the
G-flux components and the quantum series in (3.167) with b3 = 0, we get:

b1
∑
{ki}

∫
M8

G(k1)
N1N2N3N4

G(k2)
N5N6N7N8

(gs
H

)2∆(k1+k2)

dyN1 ∧ ....... ∧ dyN8 (3.168)

= b4
∑
k

∫
M8

∂N8

(√
−g11

(
Z(k)

4

)
M ′8...M

′
11

gM8M
′
8 ...gM11M

′
11

(gs
H

)θ̃k)
εN1...N7M8...M11dy

N1 ∧ .... ∧ dyN8 ,

where we see that the RHS is expressed in terms of a total derivative and un-
warped metric components. SinceM8 is a compact eight-manifold without a bound-
ary, one might worry that the RHS would vanish. However it doesn’t precisely be-
cause d ∗11 Z4 is only a locally-exact form. In other words, ∗11Z4 is not a globally de-
fined form as it is extracted from the quantum terms in (2.135) and involves metric
components that are not globally defined variables on the compact eight-manifold.
This is like the X8 form that is expressed as a locally-exact form dX7 where X7 is
not a globally defined form on a compact eight-manifold. This renders the RHS
non-zero even in the absence of any boundary. Finally, the gs scaling θ̃k appearing
in (3.168) may be defined as:

θ̃k ≡ θ′k −
2

3
, θ̃k ≡ θk +

4

3
, (3.169)

for the two cases, (2.2) and (2.8) respectively where θ′k and θk are defined as in
(2.97) and (2.86) respectively. The anomaly cancellation condition then requires us
to match the gs scalings on both sides of the equation (3.168). This gives us:

θ′k =
2

3
(k1 + k2 + 1) , (k1, k2) ≥

(
3

2
,

3

2

)
θk =

2

3
(k1 + k2 − 2) , (k1, k2) ≥

(
9

2
,

9

2

)
, (3.170)

as the set of anomaly cancellation conditions for the two cases (2.2) and (2.8) respec-
tively. As a check one may see that, for k1 = k2 = 3

2
, θ′k = 8

3
and therefore involves

the same set of quantum terms that we had for example in (3.77), wherein the quan-
tum terms were classified by (3.78). This makes sense because the equation govern-
ing the G-flux components is as in (3.158), and therefore if we restrict the LHS of
(3.158) to the G-flux components G0ijm or G0ijα, then the LHS may be expressed in
terms of �H4 exactly as in (3.77). In fact the similarity goes even deeper: (3.77) has
the same number of ingredients as (3.158), for example there are M2-branes, fluxes
and quantum corrections almost in one-to-one correspondence to (3.158).

There is however at least one crucial difference between (3.77) and (3.158) apart
from the appearance of the b3 factor in the latter. The difference lies in the choice of
the G-flux components themselves: (3.77) is defined in terms of G(k)

MNab components
whereas (3.158) involves ∗8G(k)

MNab components, with ∗8 being the Hodge dual over
the internal eight-manifold. For the time-independent case this observation has
already been registered in [14] (see eq. (7.11) therein), and now we see that such
a case happens here too. It is easy to show that in general the G-flux components
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are no longer self-dual, where the self-duality is defined with respect to the internal
eight-dimensional space. In fact presence of self-duality would have been a sign of
supersymmetry, but since supersymmetry is broken, it is no surprise that we see
non self-dual G-flux components.

For the case (2.8) governed by θk in (2.86), there appears to be some mis-match if
we compare to (3.86). On one hand, taking k1 = k2 = 9

2
we get θk = 14

3
from (3.170).

On the other hand, (3.86) tells us that the quantum terms are classified by θk = 8
3

in (3.86). This difference may be attributed to the multiple constraints appearing
from (3.85), vanishing Ricci scalar for the six-dimensional base, and vanishing Euler
characteristics for the eight-manifold; and therefore a simple comparison between
the set of equations cannot be performed.

However a more likely scenario is that (3.86) is not the correct EOM, and the
correct EOM for this case is actually (3.91). In fact the similarity of (3.91) with (3.77),
and the fact that the quantum terms are classified by θk = 14

3
puts extra confidence

in the (3.91) to be the correct EOM. Taking this to be the case, and comparing (3.91)
and (3.168), we again observe the non-existence of self-dual fluxes. The number
of flux components in (3.168) do not match with the ones in (3.91), but if we only
allow components G(9/2)

αβab in (3.168) then the story would be exactly similar to what
we had for the case (2.2), reassuring, in turn, the correctness of our procedure so far.
Thus we see that the flux EOMs provide powerful consistency checks on our earlier
EOMs derived using Einstein’s equations17 .

Dynamical branes, fluxes and additional constraints

The interconnections between the G-flux EOMs and the Einstein’s EOMs, in partic-
ular the ones that match the quantum terms, do have an additional layer of sub-
tleties. These subtleties arise once we look at the M2 and M5-branes, especially the
ones endowed with dynamical motions. To illustrate this, let us first discuss the
static M2-branes ignoring, for the time being, the M5-branes18.

Dynamical membranes and G-fluxes

The subtleties alluded to above arise when the dynamical motions of the mem-
branes tend to stir up additional corrections to the G-flux components, in particular
the ones with components along the 2 + 1 space-time direction, for example GM0ij .
Question then is: how robust is our earlier analysis that we did using the space-
time flux components borrowed from [14]? To see this, we will have to re-visit the
dynamics of membranes more carefully now. For simplicity however we will only
consider single membrane, and ignore M5-branes (as mentioned above). The action

17In retrospect this also justifies the locally exact nature of d ∗11 Z4, because if it were globally
exact, it would not have contributed to the RHS of (3.168) resulting in some contradictions with the
EOMs from the Einstein’s equations.

18The M5-branes wrapped on three-cycles of the internal eight-manifold could be viewed as frac-
tional M2-branes. If we ignore the subtleties associated with the KK modes from the wrapped di-
rections, then the dynamics of these will be no different from the M2-branes. In this thesis we will
avoid distinguishing between the integer and the fractional M2-branes.
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for a single membrane can be written as:

SB = −T2

2

∫
d3σ

{√
−γ(2)

(
γµν(2)∂µX

M∂νX
NgMN − 1

)
+

1

3
εµνρ∂µX

M∂νX
N∂ρX

PCMNP

}
,

(3.171)

where γ(2)µν is the world-volume metric, εµνρ is the Levi-Civita symbol, gMN is the
warped metric in M-theory, XM are the coordinates of eleven-dimensional space-
time and CMNP is the three-form potential. The EOM for the world-volume metric
easily relates it to the M-theory metric gMN as the following pull-back:

γ(2)µν = ∂µX
M∂νX

NgMN , (3.172)

which means in the static-gauge, we will simply have γ(2)µν = gµν , i.e the world-
volume metric is the 2 + 1 dimensional space-time metric. On the other hand, the
EOM for the membrane motion takes the following condensed form:

�(σ)X
P + γµν(2)∂µX

M∂νX
NΓP

MN −
εµνρ

3!
√−γ(2)

∂µX
Q∂νX

N∂ρX
RGSQNRgSP = 0,

(3.173)

with �(σ) forming the Laplacian19 in 2 + 1 dimension described using the world-
volume metric γ(2)µν , ΓP

MN is the Christoffel symbol described using the warped
metric gMN , and GSQNR is the G-flux components that we have been using so far.
in the static-gauge we expect �(σ)X

P = 0, and then the remaining two terms of
(3.173), simply gives us:

G0ijM = −3

2

√
−γ(2) gµνgµν,M , (3.174)

where we identify the world-volume metric to the 2 + 1 dimensional space-time
warped metric gµν . Therefore plugging in the metric components from (2.3) and
(2.5) we can reproduce the familiar results for G0ijm and G0ijα in [14, 15].

All we did above is very standard, but the keen reader must have already no-
ticed the subtlety. The form (3.174) is only possible if there are static M2-branes.
If the system doesn’t have any static M2-branes, or the M2-branes are somehow
absent, the result (3.174) doesn’t follow naturally. For the case (2.8) all the param-
eters are independent of yα so, at least at the face-value, (2.85) makes sense once
we compare it with (3.174). However since the Euler characteristics of the internal
eight-manifold also vanishes, all static M2-branes are eliminated. How can we then
justify the non-zero value of G0ijm for the case (2.8)?

This is where the difference between time-independent (and also supersymmet-
ric) and time-dependent cases becomes more prominent. In the time-independent

19�(σ)X
P = 1√

−γ(2)
∂µ

(√
−γ(2)γ

µν
(2)∂νX

P
)

.
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supersymmetric case20, vanishing Euler characteristics for a four-fold implies van-
ishing fluxes and branes [21, 22]. This is clearly not the case for the time-dependent
case where, as we saw above, G-flux components that are time-dependent (i.e gs
dependent) are allowed. This means for vanishing Euler characteristics, dynamical
M2-branes can be allowed too.

Introducing dynamics open up a new class of subtleties that we have hitherto
left unexplored. One of the first subtlety is that the world-volume metric is no
longer the 2 + 1 dimensional space-time metric. In fact γ(2)00 becomes:

γ(2)00 = g00 + ẏmẏngmn + ẏαẏβgαβ + ẏaẏbgab (3.175)

=
(gs
H

)−8/3
(
g00 + ẏmẏngmn

(gs
H

)2

+ ẏαẏβgαβ

(gs
H

)2

+ ẏaẏbgab

(gs
H

)4
)
,

where the components are defined, for the case (2.2), using warped M-theory metric
and therefore involve gs dependent terms. The other components of the metric may
be taken to be the corresponding space-time metric if yM ≡ yM(t). We can now
quantify what is meant by slowly moving membrane by specifying the behavior of
yM as:

yM(x, gs) =
∑
k∈ Z

2

yM(k)(x)
(gs
H

)2∆k

, (3.176)

near gs → 0 and yM(k)(x) could in principle depend on the world-volume spatial coor-
dinates, but here we will take it to be a constant as in (3.175). In this representation
of yM , slowly moving membrane means small k at late times, i.e for gs << 1. In
the limit k → 0, the membrane is truly static and when gs → 0, yM(x, 0) → 0. This
is almost like the end point of an D3-D7 inflationary model [34] where, in IIB, a
D3-brane (T-dual of our M2-brane) dissolves in the D7-brane (T-dual of an orbifold
point in our eight-manifold). Additionally, the yM represent the eight scalar fields
on the world-volume of the M2-brane, and once we dualize them to type IIB, only
six scalar fields would remain. The Laplacian action on yM then yields:

�(σ)y
M =

2∆2Λ

|g00|
∑
k3

k3(2k3 − 7)

1 + fo

(gs
H

)2∆(k3+1)

yM(k3)

− 8Λ2∆4

|g00|
∑
{ki}

k1k2k3(k1 + k2)go
(1 + fo)2

(gs
H

)2∆(k1+k2+k3+1)

yM(k3), (3.177)

where note that both the terms are suppressed by positive powers of gs
H

, g00 is the
un-warped metric component, ∆ = 1

3
as chosen before and Λ is the cosmological

constant. We have also assumed no motion along the (a, b) directions and therefore
yM above can either be ym or yα. The remaining two factors, (fo, go) are defined in

20For the time-independent non-supersymmetric case, as we saw earlier, it is hard to establish an
EFT description in lower dimensions with de Sitter isometries. Thus it doesn’t make sense to talk
about it here and we shall ignore this case altogether.
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the following way:

fo ≡ fo(y) = 4Λ∆2
∑
{ki}

go(k1, k2; y)k1k2

(gs
H

)2∆(k1+k2)

go ≡ go(k1, k2; y) = g00
(
ym(k1)y

n
(k2)gmn(y) + yα(k1)y

β
(k2)gαβ(y)

)
, (3.178)

where the metric involved are all the un-warped ones. Note that, since fo is a series
in positive powers in gs, any series of the form (1 + fo)

−|q| for arbitrary q will only
contribute positive powers of gs

H
to the series (3.177). Thus the generic conclusion of

�(σ) being defined in terms of positive powers of gs
H

, remains unchanged. In fact
this also persists for the second term in the EOM (3.173). To see this, let us take
M = α in (3.176) for the case (2.2). We get:

γ00
(2)∂0X

P∂0X
QΓαPQ =

|g00|
1 + fo

(gs
H

)2/3

Γα00 + 4∆2Λ
∑
{ki}

k1k2h
α
o (k1, k2; y)

(gs
H

)2∆(k1+k2)

 , (3.179)

where fo is defined in (3.178); and Γα
PQ and Γα00 are the Christoffel symbols defined

with respect to the warped and the un-warped metrics respectively. The other fac-
tors, namely ∆ and Λ, appearing above have already been defined with (3.177).
Finally the factor ho(k1, k2; y) takes the following form:

hαo (k1, k2; y) ≡ ym(k1)y
n
(k2)Γ

α
mn + yσ(k1)y

γ
(k2)Γ

α
σγ + yσ(k1)y

m
(k2)Γ

α
σm, (3.180)

where the Christoffel symbols are again defined with respect to the un-warped met-
rics. In this form (3.180) should be compared to go in (3.178) which was defined
using un-warped metric components also. We can also replace α by m in (3.179),
but the form would remain unchanged. Therefore putting everything together, the
functional form for GM0ij becomes:

GM0ij =
3gNM

√
−γ(2)

|g00|(1 + fo)

[
ΓN00 + 4∆2Λ

∑
{ki}

k1k2h
N
o

(gs
H

)2∆(k1+k2)

+
2Λ

9

∑
k3

k3(2k3 − 7)yN(k3)

(gs
H

)2∆k3

+|g00|(1 + fo)g
i′j′ΓNi′j′ −

8Λ2

81

∑
{ki}

k1k2k3(k1 + k2)go
1 + fo

yN(k3)

(gs
H

)2∆(k1+k2+k3)
]
, (3.181)

where everything is defined with respect to the un-warped metric except
√−γ(2),

which in turn is defined using the warped 2 + 1 dimensional space-time metric,
implying that the overall gs scaling of (3.181) is

(
gs
H

)−4. This negative gs scaling is
important because other than that every term in (3.181) scales as positive powers of
gs. Therefore with dynamical M2-branes, in the limit gs → 0, we can express GM0ij

alternatively as the following series:

G0ijM = −
(gs
H

)−4

∂M

(ε0ij
H4

)
+
∑
k∈ Z

2

G(k)
0ijM(y, k)

(gs
H

)2∆(k−2/∆)

, (3.182)

which is somewhat similar to the expression for the other G-flux components in
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(3.11). Similarities aside, however, the differences between (3.182) and (3.11) are
important now. One of the main difference between these two expressions is that
in (3.11), k ≥ 3

2
for (2.2) and k ≥ 9

2
for (2.8). However for (3.182), k can be large

or small: smaller k implies, according to (3.176), slowly moving M2-brane and for
k = 0 it is completely static. Another difference is that even if we impose a lower
bound on k, the k independent piece should always be there as one may infer from
the exact expression in (3.181). It should also be clear from (3.181), when k = 0,
G(0)

0ijM(y, 0) = 0. This is important, because it implies that no mater whether we
allow dynamical M2-branes or not, the domination of the k independent term in
(3.182) over all other terms for gs < 1 puts a strong confidence on our choice of the
G-flux components G0ijm and G0ijα for both cases (2.2) and (2.8).

Fluxes, seven-branes and additional dynamics

The exact form of the G-flux components G0ijM for M = (m,α) appearing in (3.181)
and (3.182); as well as our ansatze for the other G-flux components in (3.11) pretty
much summarize all the background fluxes that could be allowed in the set-up like
ours. However, as the patient reader might have noticed, we did not express the G-
flux components in terms of their three-form potentials except for the case studied
in (3.181). In particular the three crucial G-flux components, namely Gmnab,Gmαab

and Gαβab, now require some explanations. It is of course clear that we do not want
to express these three G-flux components in terms of the three-form potentials as
CMab would create metric cross-terms gM3 in the type IIB side. This is not what we
need so GMNab can only appear as localized fluxes in M-theory. In other words:

GMNab(y1, y2) = FMN(y1)⊗ Ωab(y2), (3.183)

where we have divided the internal eight-dimensional coordinates y as y = (y1, y2),
with y1 parametrizing the coordinates of the four-dimensional base and y2 parametriz-
ing the coordinates of the remaining four-dimensional space. Such localized fluxes
lead to gauge fields − here we express them as FMN − on D7-branes. In other
words, the orbifold points in M-theory lead to seven-branes in the type IIB side
wrapping appropriate four-manifolds that we shall specify below. As alluded to
earlier, this set-up is then ripe for embedding the D3-D7 inflationary model [34].
The other factor in (3.183), namely Ωab(y2), is the localized normalizable two-form
near any of the orbifold singularities.

In the time-independent case, (3.183) is all that we need, but once time-dependences
are switched on new subtleties arise. For example, the G-flux components GMNab

have gs expansions as in (3.11). Question then is how are the gs expansions for
FMN and Ωab defined here. To analyze this, let us first consider the G-flux compo-
nents Gmnab. The flux quantization condition is described in (3.138) on a four-cycle
Σ

(1)
4 ≡ C2× T2

G , where C2 is a two-cycle inM4. The gauge field Fmn will then have to
be defined over this two-cycle, and we expect the corresponding D7-brane to wrap
the four-cycleM4.

Since all cycles in the internal eight-manifold is varying with respect to time, it
would make sense to endow time-dependences on both the gauge flux components
Fmn as well as the normalizable two-form Ωab. The LHS of (3.138) is where we
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introduce the split (3.183), and the RHS governs the quantization rule with seven-
forms, which in turn may be divided into two sub-forms. Such a split doesn’t have
any new physics other than what we discussed in (3.138), but a new subtlety arises
once we express the gauge field Fmn in terms of its potential Am because of it’s
dependence on gs as well as on (ym, yα). Similar subtlety will arise for the gauge
potential Aα. Both these potentials will switch on:

∂0Am(ym, yα, gs) ≡ H
√

Λ

(
∂Am

∂gs

)
, ∂0Aα(ym, yα, gs) ≡ H

√
Λ

(
∂Aα

∂gs

)
, (3.184)

in addition to the existing field strengths. Clearly such components do not arise in
the time-independent case and the split (3.183) is all there is to it. The flux quantiza-
tion conditions (3.141) and (3.143) tell us that the gauge field strengths Fαβ = ∂[αAβ]

and Fmα = ∂[mAα] will have proper quantization schemes when defined over the
two-cyclesM2 and S1

(1) × S1
(2) respectively where S1

(1) ∈ M4 and S1
(2) ∈ M2. Both

these one-cycles are allowed because neither M4, nor M2 are Calabi-Yau mani-
folds for the case (2.2). For the case (2.8), Table 3.2 will tell us that the latter is not
well-defined. However now we need to deal with new components arising from
temporal derivatives, that translate into gs derivatives, here. A way out this is to
switch on electric potential A0(ym, yα, gs) satisfying:

∂mA0 ≡ H
√

Λ

(
∂Am

∂gs

)
, ∂αA0 ≡ H

√
Λ

(
∂Aα

∂gs

)
, (3.185)

which in turn will make F0m = F0α = 0 and would not contribute to the energy-
momentum tensors or the quantum terms (2.78) and (2.94). This could be gen-
eralized to the non-abelian case also but since we are only dealing with a single
D7-brane, (3.185) suffices. However the dependence of A0 on gs also switches on
∂A0

∂gs
, but this again does not contribute to the energy-momentum tensors or to the

quantum terms (2.78) and (2.94).
Interestingly, if we view all the G-flux components as localized fluxes of the form

(3.183), then we are in principle dealing with only three gauge field components
Fmn,Fmα and Fαβ on D7-branes that are oriented along various directions in the
internal space (they all do share the same 3+1 dimensional space-time directions in
the type IIB side). This is an interesting scenario with only seven-brane gauge fluxes
and no H3 and F3 three-form fluxes as these would require global Gmnpa,Gmnαa

and Gmαβa G-flux components. Such global G-flux components would in turn give
rise to components G0mnp,G0mnα and G0mαβ , which are not what we want here.
Question then is whether it is possible to retain global and local G-flux components
without encountering the issues mentioned above.

It appears that there indeed exists a possible way out of this conundrum if we
consider the modified Bianchi identity (3.133), i.e the Bianchi identity with the full
quantum corrections, carefully. In the absence of M5-branes, i.e when N = 0 in
(3.133), we can rewrite (3.133) as:

d

(
G4 −

c2

c1

Ẑ4 +
c3

c1

∗11 Z7

)
= 0, (3.186)



3.1. Analysis of the quantum equations of motion and constraints 117

where ci are constants, and Z7 and Ẑ4 are defined in (2.140) and (2.141) respectively.
Both of these have gs dependences and in fact Z7 features prominently in the flux
quantization process as discussed earlier. The above equation allows us to intro-
duce an exact form dC3, and so we can re-write (3.186) as:

G4 = dC3 +
c2

c1

Ẑ4 −
c3

c1

∗11 Z7, (3.187)

where all quantities are functions of gs as well as of (ym, yα). The C3 could be un-
derstood as the potential, but G4 is not just dC3 because of the conpiracies of the
quantum terms. Note that nothing actually depends explicitly on C3 (all quantum
terms and the energy-momentum tensors, as well as the flux quantization rules
and anomaly cancellation conditions, are expressed using G4), so we have some
freedom in the choice of C3. We can use this freedom to set:

G0MNP ≡ ∂[0CMNP ] +
c2

c1

(Ẑ4)0MNP −
c3

c1

(∗11Z7)0MNP = 0, (3.188)

which amounts to putting F0M = 0 for the case GMNab, so they are still localized
fluxes as (3.183), but the difference is now that we won’t need to switch on an elec-
tric flux A0 on the world-volume of the D7-branes21. For the other G-flux com-
ponents, we can now allow global fluxes so type IIB theory can have H3 and F3

three-form fluxes. However as discussed in (3.152) the corresponding G-flux com-
ponents GMNPa do not have proper quantization schemes because of the absence of
global four-cycles in the M-theory side. However in IIB global three-cycles do exist
so these fluxes could be properly quantized in the IIB side. The quantization rule
will however follow similar trend as in (3.152).

3.1.3 Stability, swampland criteria and the energy conditions

In the following we will provide possible answers to these questions. Firstly, how
stable is our background? How do we overcome the swampland criteria? How can
we satisfy the null-energy condition, the strong-energy condition and possibly the
dominant-energy condition?

Stability of our background and quantum corrections

One of the important question now is the question of stability of our solution. Be-
fore going into this, let us answer a related question on what it means to introduce
the series of quantum corrections to solve the EOMs. In other words, how do we
interpret the quantum corrections here?

To answer this, let us look at the metric components in the (m,n) i.eM4 direc-
tion. The EOM for gmn is given by (3.15). The LHS of this equation has the Einstein
tensor parts and the RHS is the sources, including the quantum terms. The quantum

21In other words we can keep C0MN = 0 without loss of generalities. Switching on C0MN will
be equivalent to switching on electric flux A0 on the D7-branes. Here the quantum terms help us
cancel the ∂0CMNP piece without invoking, for example, pieces like ∂PC0MN in (3.188). This is the
leverage we get using the quantum terms in (3.188).
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terms, i.e C(0,0)
mn , are classified by θ′k = 2/3 in (2.97), and they can at best renormal-

ize the existing classical pieces as θ′k = 2/3 does not allow higher powers of G-flux
or curvature components. Thus the RHS of (3.15) is almost classical, and therefore
knowing the G-flux components G(3/2)

mnab,G
(3/2)
mαab and G(3/2)

αβab we can express the RHS of
(3.15) in terms of the known quantities.

Going to the next order should switch on the quantum terms. How are they
interpreted here? The G-flux components that we gather at the zeroth order in gs,
and the metric gmn that comes out of our zeroth order computation22, now serve
as the input for the next order, i.e g1/3

s , equations. What they do here is rather in-
structive. The next order equation is (3.19). The LHS of the equation is the gmn that
we computed using all the zeroth order equations. The RHS is however made of
quantum terms C(1/2,0)

mn as well as new G-flux components like G(2)
mnab,G

(2)
mαab and G(2)

αβab

generated at this level, including the higher order Ck and C̃k factors from the Fi(t)
functions. The quantum terms are now classified by θ′k = 1 and appear as (3.21),
thus clearly allowing at least to third order G-flux terms. All these new components
and the quantum terms, with the background data at the zeroth order, balance each
other in a precise way so as to preserve the zeroth order metric component gmn.
This is the meaning of (3.19).

The quantum terms are therefore computed on the zeroth order background,
with additional new data from fluxes and the (Ck, C̃k) coefficients, to balance each
other without changing the zeroth order metric and fluxes. Going to next order, i.e
g

2/3
s , the equation is given by (3.24). We see that the story is repeated in exactly the

same fashion: the g2/3
s order switches on new quantum terms, i.e C(1,0)

mn classified by
(3.27); new G-flux components and higher order (Ck, C̃k) coefficients; but they do
not de stabilize the existing zeroth order metric gmn and the G-fluxes. The RHS of
(3.24) is precisely the statement of balance: at the g2/3

s order the quantum terms use
the data at the zeroth and next (i.e g1/3

s ) order including new G-flux components like
G(5/2)
mnab,G

(5/2)
mαab and G(5/2)

αβab to balance each other in such a way that LHS of (3.24) still
remains gmn.

The story repeats in the same fashion as we go to higher powers of g1/3
s . The

quantum terms are computed using the data generated at all lowers orders, in-
cluding new G-flux components at this order along with the higher order (Ck, C̃k)
coefficients. All these balance each other so as to keep the zeroth order data, that
include metric gmn and G-flux components, unchanged. This delicate balancing act
is responsible for keeping our background safe and stable.

Going to the (α, β) directions, the zeroth order in gs reproduces the un-warped
metric information gαβ , once we have the full data on the G-flux components like
G(3/2)
αβab ,G

(3/2)
αmab and G(3/2)

mnab, which are of course the same as before (see (3.42)). On this
background we now compute the quantum terms C(1/2,0)

αβ classified by θ′k = 1 in
(2.97). The balancing act starts again: new G-flux components like G(2)

mnab,G
(2)
mαab and

G(2)
αβab that are required to this order in gs are added, to be pitted against the quantum

22The zeroth order actually mixes gmn, gαβ as well as gµν together, so untangling them would
require us to use all the zeroth order equations. We will avoid this subtlety for the sake of the
present argument, but will become clearer as we go along.
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terms and the Fi(t) coefficients, such that the metric gαβ doesn’t change in (3.43).
Going to order g2/3

s , similar argument holds as seen from (3.45).
For the (a, b) directions, there are no zeroth order contributions. The first non-

trivial order is g2
s , and to this order the metric is flat i.e δab from (3.59). This flat

metric persists to all higher orders in gs, as may be seen in (3.60) for g7/3
s and (3.61)

for g8/3
s where for both cases the quantum terms computed from the lower order

data plus new G-flux components to that order, balance against the fluxes and the
(Ck, C̃k) coefficients.

The story takes an interesting turn once we look at the space-time directions.
The zeroth order in gs produces the space-time metric with full de Sitter isometries.
The EOM is given by (3.77), and one may note that although the flux components
appear as before, the quantum terms are now classified by θ′k = 8/3 in (2.97) as
shown in (3.78). Such an equation has the following important implications. For
ni = l34+i = 0 in (3.78), the li can at best be bounded as li ≤ 4. Since li for i = 1, .., 27
capture the curvature polynomials in (2.94), this implies that at the classical level,
the space-time EOM should have the fourth-order curvature terms! Not only that,
(3.78) predicts that at the classical level all possible eighth-order23 polynomials with
curvature, G-flux components (classified by l34+i) and derivatives (classified by ni)
are necessary. It was known for sometime in the literature that classically the fourth-
order curvature polynomials (or eighth-order in derivatives) like:

J0 ≡ t8t8R
4, E8 ≡ ε11ε11R

4, (3.189)

should play a part, and now we not only can confirm this statement but also show
that all eighth-order polynomials classified by (3.78) should play a part at the classi-
cal level. Of course the exact coefficients of these polynomials cannot be predicted
from (2.94) or (3.78), but the fact that this comes out naturally from our analysis
should suggest that we are on the right track.

A similar pattern follows for the quantum terms as before. To order g1/3
s the

quantum terms, classified by θ′k = 3 in (2.97), balance each other as (3.79) in such a
way that the four-dimensional de Sitter metric do not change. To next order in gs,
i.e g2/3

s , the quantum terms, now classified by θ′k = 10/3, balance against the (Ck, C̃k)
coefficients as in (3.80) in a way as to again keep the zeroth order de Sitter metric
invariant. The story progresses in the same way as we go to higher orders in gs.

From the above discussions we can now summarize our view of stability here.
The classical EOMs, or the EOMs to the lowest order in gs (which for most cases
are to zeroth order in gs with the exception of one where the lowest order is g2

s ), for
all the components are (3.15), (3.42), (3.59) and (3.77). They involve the so-called
quantum terms that, for all cases except the space-time ones, renormalize only the
existing classical data. The space-time part contributes eight-order (in derivatives)
polynomials. Together with the G-flux components they determine the type IIB
metric with four-dimensional de Sitter space-time and the un-warped internal six-
dimensional non-Kähler metric. The quantum effects on this background, to order-
by-order in powers of g1/3

s , are balanced against the G-flux components and the
coefficients (Ck, C̃k) coefficients, again to order by order in powers of g1/3

s , in a way

23In derivatives.
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so as to preserve the form of the dual type IIB metric to the lowest order in gs. This
is one important criteria of stability here.

Finally we turn our attention to the possible presence of tachyonic modes around
our de Sitter background. This is an important question to determine the relation-
ship between our background and the swampland criteria. The presence of tachy-
onic modes of sufficiently negative mass would be in agreement with the Hessian
de Sitter criterion, while the absence of such would call for a re-examination of the
criterion in the context of time-dependent backgrounds.

To determine the presence of tachyons we need to perturb our metric ansatze
(2.3) (and also the fluxes) and expand the quantum effective action to second order
in the perturbations. Of course, the deciding factor is the sign of the various terms.
Since we do not know the coefficients of all the quantum corrections, we can not
hope to be completely sure of the absence of tachyonic modes using our approach.
We do however have some information about the relative signs of some terms, from
the requirement of positive four-dimensional curvature, so there may still be a con-
sistency check available. The constraints on the curvature only manifest themselves
in the metric equation of motion so we choose the following perturbations:

δgMN(x, y) = φ(MN)(x)gMN(y), (3.190)

where x is the coordinate along the 2 + 1 dimensional space-time directions and y is
the internal space coordinates. For the internal components of the metric, φ(mn)(x)
are simply the scalars one obtains from dimensional reduction. For the space-time
components these amount to the scalar modes of metric perturbations. The upside
to using perturbations proportional to the “background” values of the fields is that
the expansion of the quantum potential to second order in the perturbation is the
same as calculating the second order variation of the quantum terms with respect
to the original fields. The extra x dependence can generate new contributions to the
action, if derivatives along the space-time directions act on it. However this will
not result in potential terms, but rather will contribute to the kinetic and higher-
derivative terms for the scalar, which will have no bearing on the tachyon question.
The downside of this choice of fluctuation is that it ignores the fields which are set to
zero24. Since terms involving these fields don’t appear in our background quantum
potential, their sign will not be constrained by the curvature conditions anyway.
Other subtleties aside, the first variation of the action with respect to the metric is
simply given by the equations of motion:

δS11

δgMN
=

∫
d11x
√
−g11

(
R

(11)
MN −

1

2
R(11)gMN − TGMN − TQMN

)
, (3.191)

where the metric components are all taken as the warped ones and the energy-
momentum tensors, especially the quantum energy momentum tensor, take the

24We have assumed earlier that we have integrated such components out and that the effects of
their fluctuations have thus already been incorporated into the quantum potential. This is strictly
speaking only possible if their masses are above the scale at which we are studying the theory.
Otherwise there are IR modes left over. Note that in either case, these modes are certainly not
tachyonic in the ground state of our EFT, so the implicit hope here is simply that they also do not
become tachyonic as we move to the coherent de Sitter state.
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form that we have used so far. For example the latter would appear from (2.94),
say if we consider only the case (2.2). In other words, we can use (2.94) to express
the quantum energy-momentum tensor in the following way:

TQMN =
1

2
gMNL(Q) − δL(Q)

δgMN
, (3.192)

where L(Q) is the the sum of quantum terms in the action (i.e. without Lorenz in-
dices). This is pretty much equivalent to (2.81), with the quantum pieces expressed
together as (2.91). Alternatively, we could also express it more directly as (3.1). With
these at hand, the second variation takes the form:

δ2S11

δgPQδgMN
=

∫
d11x
√
−g11

[
δR

(11)
MN

δgPQ
− 1

2

(
R

(11)
PQ gMN −R(11)gM(PgQ)N

)
− δTGMN

δgPQ
(3.193)

+
1

2
L(Q)gM(PgQ)N −

1

2
gMN

δL(Q)

δgPQ
+

δ2L(Q)

δgPQδgMN

]
+

∫
d11x
√
−g11 gPQ(EOM)MN.

Stable solutions to the equations of motion are local maxima of the action, so com-
plete stability would require that the above expression is negative.

Note that the first variation of L(Q) is still present in the expression, and can be
re-expressed in terms of the quantum stress tensor TQMN , as in (3.1), which contains
the quantum corrections C(k1,0)

MN that appear in the lowest order equations of mo-
tion. From here, one approach could be to make a connection with the positivity
of the cosmological constant by, for example, taking the same linear combination of
diagonal components as was used to obtain (3.116). However, there are still terms
involving LQ and more importantly its second variation, which does not appear in
the equations of motion. These terms have signs that are not fixed by the trace of
the metric equations of motion alone as they depend on all the components and
fluxes. This means they would need to be determined by solving for all the metric
and flux components.

At this stage we could make some general observations. If we restrict the metric
variations to be along the six-dimensional base M4 ×M2, and only consider the
case (2.2), the second variation of L(Q) contains quantum terms classified by θ′k − 4

3
.

This implies that to zeroth order in gs, which we used to determine the EOMs, the
contributions from the second variation of L(Q) come from the quantum terms25

classified by θ′k = 4
3

in (2.97). In a similar vein, if one of the metric variation is
along T2/G and the other along the six-dimensional base, or if both the variations
are along T2/G, then the second variations of L(Q) come from the quantum terms
classified by θ′k + 2

3
or θ′k + 4

3
respectively. Clearly, none of them can contribute to

the zeroth order in gs. On the other hand, if both the metric variations are along
the 2 + 1 dimensional space-time directions, the quantum terms contributing to the
second variation of L(Q) are classified by θ′k = 16

3
in (2.97). In this way, one could

go about finding other combinations, but the message should be clear. If all these

25In other words, the first variations of the action i.e the EOMs, provide the background values
of metric and G-flux components. These values enter inside the quantum terms classified by θ′k in
(2.97) appearing from the second variations of the action.
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contributions are such that they make the RHS of (3.193) negative definite, then
there would be no tachyonic instability in our background.

Let us compare this to the first variation of L(Q) contributing to the cosmological
constant Λ in (3.116). The internal space quantum terms are classified by θ′k = 2

3

in (2.97) whereas the 2 + 1 dimensional space-time quantum terms are classified by
θ′k = 8

3
. Since the internal space quantum terms simply renormalize the existing

classical terms, the burden of getting positive cosmological constant rests solely on
the space-time quantum terms classified by θ′k = 8

3
. We want them to give positive

contributions, so that the relative minus sign in (3.116) can make Λ > 0. Here,
in (3.193), we want the opposite (assuming the contributions from the other terms
are negligible). It is easy to see that, compared to the case (3.116), there are now
quantum terms classified by 4

3
≤ θ′k ≤ 16

3
in (2.97), so we are no longer restricted

only with the quantum terms classified by θ′k = 8
3
. We now require these terms to

make the RHS of (3.193) negative definite to avoid the tachyonic instability.
There are also second variations of the action with respect to the CMNP fields, i.e
δ2S11

δCMNP δCRSU
, that also need to be considered. Most of the three-form potentials scale

in an identical way, so we expect the quantum terms contributing at the zeroth or-
der being classified by θ′k = 4∆k in (2.97) with k ≥ 3

2
for the case (2.2). We have put

to zero components like C0MN using (3.188), and in fact the quantum term Z7 has
enough degrees of freedom to keep these modes from contributing to the tachyonic
instability. The space-time potentials C0ij would contribute quantum terms clas-
sified by θ′k + 8, so they don’t change the zeroth order equations. However now
there also be mixed variations like δ2S11

δCMNP δgRS
, and depending on the choice of k and

the orientations of the metric components, some of them would contribute to the
zeroth order EOMs. Fortunately the quantum terms contributing to this order, or
in general any orders, are finite in number so it is not a very difficult exercise to
list all these terms appearing from the second variations of (2.94), and see how the
tachyonic instability, if any, could be removed. Similar arguments can be given for
the case (2.8) but we will not pursue this here.

Stability, landscape and the swampland criteria

So far we have summarized how the quantum corrections do not destabilize the
background, and instead tend to stabilize it at every order in g

1/3
s . Next we see

how the stability extends to keeping the background in the landscape and out of the
swampland. That is, we want to see how the swampland criteria are averted by the
the time-dependences of the fluxes and the metric components and by our choice
of the quantum potential.

The quantum potential, given in (2.81), basically incorporates the information
of either (2.78) and (2.94) for the two cases (2.8) and (2.2) respectively. However
it is important to note that the cosmological constant Λ appears almost exclusively
from the gs independent, or time independent, parts of the potential (i.e most of the
contribution to Λ appears from the gs independent parts of VQ in (2.81)), and it goes
without saying that it is truly a constant26. The exact form may be expressed as:

26In other words, and taking into account the time-independent Newton’s constant from (2.2), the
late-time cosmology will always be de Sitter in our set-up and never quintessence.
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Λ =
1

12V6

〈
[Cii](0,0)

〉
− 1

24V6H4

〈
[Caa]

(3,0)
〉
− 1

48V6H4

〈
[Cmm]

(0,0)
〉
− 1

48V6H4

〈
[Cαα]

(0,0)
〉

− κ2T2nb
6V6H8

− 5

384V6H8

[ 〈
G(3/2)
mnabG

(3/2)mnab
〉

+
〈
G(3/2)
mαabG

(3/2)mαab
〉

+
〈
G(3/2)
αβabG

(3/2)αβab
〉 ]
,(3.194)

which may be easily inferred from (3.116), and we have taken, just for simplicity,
a very slowly varying function for H . Thus H is essentially a constant and can
come out of the integrals in (3.116). V6 is the volume of the six-dimensional base
M4 × M2, i.e the volume measured using un-warped metric components. The
other expectation values are defined in the standard way − we take the functions
and integrate over the volume element − namely:

〈
[CMM ](a,0)

〉
≡
∫
d6y
√
g6[CMM ](a,0),

〈
G(3/2)
MNabG

(3/2)MNab
〉
≡
∫
d6y
√
g6 G(3/2)

MNabG
(3/2)MNab, (3.195)

where g6 is the determinant of the un-warped metric of the six-dimensional base,
(M,N ) denote the coordinates of the base and the superscript a = 0, 3 depending
on which quantum corrections we choose. In fact as discussed earlier, the most
dominant quantum terms are the ones classified by θ′k = 8

3
or θk = 8

3
in (2.97) and

(2.86) respectively. These are the quantum terms [Ci
i]

(0,0), and all other quantum
terms simply renormalize the existing classical data. Since the fluxes are taken to
be small everywhere and nb is small27, the cosmological constant Λ can be made
positive here, i.e Λ > 0. The overall volume suppression in (3.194) tells us that
for large enough V6, Λ could indeed be a tiny but a non-zero positive number. The
crucial observation however is that the other parts of VQ in (2.81) are used to stabilize
the classical background in a way discussed earlier, but they do not contribute to
the cosmological constant here!

One may also ask how the swampland criteria are taken care of here. The fact
that new degrees of freedom do not appear when we switch on time-dependences
is easy to infer by looking at the gs scalings θk and θ′k in (2.86) and (2.97) respectively.
Putting k = 0 is equivalent to switching-off the time-dependences, and we get θ′0
as in (2.98) which in-turn is defined with relative minus signs. Existence of such
relative minus signs lead to an infinite number of states satisfying (2.99) for any
given value of θ′0 in (2.99). This proliferation of states is one sign of the breakdown of
an EFT description, and therefore the theory is indeed in the swampland. Switching
on time-dependences miraculously cure this problem as both θk > 0 and θ′k > 0 for
the cases (2.8) and (2.2) respectively.

The above reasonings do provide a way to overcome the swampland distance
criterion, namely, switching on time-dependences allows us to avoid inserting ar-
bitrary number of degrees of freedom at any given point in the moduli space of
the theory. The question now is how the original swampland criterion [6], namely,
∂φV > cV is taken care of with c = O(1) number. To see this, let us consider the
quantum terms (2.94) for the case (2.2) (similar argument may be given for (2.78) for
the case (2.8)). The potential associated to this is (2.81), and we can get scalars from

27Note that it doesn’t matter whether we take M2 or anti-M2 branes in (3.194). The sign of the
cosmological constant Λ cannot be changed from either of them − a fact reminiscent of the no-go
condition of [12, 13].
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the G-flux components as well as from the internal metric components. First let us
take a simple example where the scalar fields appear from the G-flux components
in the following way:

C3(x, y) = 〈C3(y)〉+
∑
i

φ(i)(x)Ω
(i)
(3)(y) +

∑
j

A
(j)
1 (x) ∧ Ω

(j)
(2)(y) +

∑
l

B
(l)
2 (x) ∧ Ω

(l)
(1)(y)

G4(x, y) = 〈G4(y)〉+
∑
i

φ(i)(x)dΩ
(i)
(3) +

∑
i

dφ(i)(x) ∧ Ω
(i)
(3)(y) +

∑
j

F
(j)
2 (x) ∧ Ω

(j)
(2)(y)

−
∑
j

A
(j)
1 (x) ∧ dΩ

(j)
(2)(y) +

∑
l

B
(l)
2 (x) ∧ dΩ

(l)
(1)(y) +

∑
l

H
(l)
3 ∧ Ω

(l)
(1), (3.196)

where Ω
(j)
(k) are the k-forms defined over the internal manifold (we can restrict them

to the six-dimensional baseM4 ×M2 with (i, j) representing the number of inde-
pendent forms), and are not necessarily harmonic functions as the underlying back-
ground is non-supersymmetric and the six-dimensional base is non-Kähler. This
also explains why we can allow one-forms like Ω

(i)
(1). The two-forms Ω

(j)
(2) should not

be confused with the localized two-form Ωab in (3.183). Additionally, (3.183) is the
decomposition of the background data itself, whereas (3.196) is the decomposition
of the fluctuations over our background (2.3)28. We are also suppressing the gs de-
pendences, and therefore both the k-forms and the 2 + 1 dimensional space-time
fields have gs dependences. In general, for a manifold whose geometry is varying
with time, we expect:∫

dΩ
(i)
(k) ∧ ∗6 dΩ

(j)
(k) ≡

∑
{li}

∫
dΩ

(l1,i)
(k) ∧ ∗6 dΩ

(l2,j)
(k)

(gs
H

)2∆(l1+l2)

(3.197)

over the six-dimensional baseM4×M2 with the Hodge star defined over this base.
Here li denotes the mode expansion that we have used so far. In the standard time-
independent supersymmetric case this would have vanished, but now we see ex-
plicit gs dependences complicating our analysis. Finally, the expectation values in
(3.196) refer to the background values of the three- and the four-forms that we took
earlier to solve the background EOMs (and thus they are functions of yM ). We have
also given a small x dependences to the fluctuations of the three- and the four-forms,
and for computational efficiency, let us assume that we take the G-flux component
Gmnpq. For simplicity then, i = 1 in (3.196) with A

(j)
1 (x) = B

(l)
2 (x) = 0. Plugging

(3.196) into (2.94), we get the following form of the potential:

VQ(x) =
∑
l28

φl28(x)V (Φ(x)) , (3.198)

where Φ(x) are the set of all other scalars in the system, and l28 is a positive integer
that appears in (2.94). For our discussions we will take l28 ≥ 1, and from the form of
the G-flux components (3.11) it is clear that both φ(x) as well as Ω(3)(y) should have

28We expect H
(l)
3 = 0 because it has no dynamics in 2 + 1 dimensions.
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gs dependences, confirming the gs dependence in (3.197). We can then assume:

φ(x) ≡ φ(1) =
∑
l

φ(1,l)(x)
(gs
H

)2∆l

, (3.199)

where l has to be bounded below because the k in G-flux components (3.11) are
bounded below as k ≥ 3

2
or k ≥ 9

2
for (2.2) and (2.8) respectively. The swampland

criterion then gives us:

∂φVQ

VQ

=

∑
l28
l28

∑
{ki} φ

(1,k1)......φ(1,kl28
)
(
gs
H

)2∆(k1+...kl28
)∑

{r,qi} φ
(1,r)φ(1,q1)......φ(1,ql28

)
(
gs
H

)2∆(r+q1+...ql28
)

= O
(

1

gns

)
>> 1, (3.200)

where n = O(2∆r) ∈ Z and gs < 1. The above computation could be easily general-
ized to all scalar fields coming from the G-flux components in say (2.94), provided
of course the decomposition (3.196) is respected. For example taking all the compo-
nents of φ(i) in (3.196), we get:

|∇VQ|
VQ

=

√
gφ(i)φ(j)∂φ(i)VQ∂φ(i)VQ

VQ

= O

dim(Mφ)∑
k=1

1

gnks

 >> 1, (3.201)

where gφ(i)φ(j) is the metric on the moduli spaceMφ of all the scalars represented by
φ(i) which, in turn, could be decomposed as (3.199). The subscript k in nk is summed
from 1 to dim (Mφ), i.e dimension of the moduli space of the scalars. None of the
scalars appearing from the G-fluxes are related to the inflaton, so the RHS being
much bigger than identity is not unreasonable. Under these circumstances, clearly
the swampland bound of [6] is easily satisfied.

On the other hand, the scalars coming from the metric components could in
principle also be analyzed in a similar vein as (3.201), but the analysis is complicated
by the fact that the potentials for these scalars are not as simple as for the scalars
from the G-flux components. In any case, the obvious redundancy in indulging in
such exercise should already be apparent from our earlier demonstration of the ex-
istence of four-dimensional EFT descriptions with de Sitter isometries. Since these
conclusions are derived from meticulously studying the gs scalings of the quantum
terms, the swampland criteria are taken care of here, and these theories belong to
the landscape of IIB vacua.

It is more relevant to consider how the energy conditions can be taken care of
here, because it brings us to the very foundation on which the no-go criteria of
[12, 13] are based. To proceed then we will make the assumption of a slowly varying
warp-factor H(y) so that the derivatives of the warp-factor do not un-necessarily
complicate the ensuing analysis29. To zeroth order in gs the trace of the energy-
momentum tensor is defined as:

TMM ≡
[
TMM
]G

+
[
TMM
]Q
, (3.202)

29In other words, the derivatives of the warp-factorH(y) will add irrelevant functions to the traces
that we perform below. We can absorb these functions in the quantum terms.
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where the superscript G and Q correspond to the G-flux and the quantum energy-
momentum tensors respectively. The traces of the individual pieces are taken with
respect to the un-warped internal metric components. Restricting (3.202) to the
(m,n), (α, β) and (a, b) directions, yield the following traces:

Tαα ≡ [Cα
α](0,0) +

1

8H4

(
G(3/2)
αβabG

(3/2)αβab − G(3/2)
mnabG

(3/2)mnab
)

(3.203)

Tmm ≡ [Cm
m](0,0) − 1

4H4

(
G(3/2)
mαabG

(3/2)mαab + G(3/2)
αβabG

(3/2)αβab
)

Taa ≡ [Ca
a]

(3,0) +
1

8H4

(
2G(3/2)

mαabG
(3/2)mαab + G(3/2)

mnabG
(3/2)mnab + G(3/2)

αβabG
(3/2)αβab

)
,

where the individual energy-momentum tensors are defined in subsections 3.1.1,
3.1.1 and 3.1.1 respectively for the case (2.2). A similar construction could be done
for the case (2.8) too but we will not pursue this here. Note that, as an interesting
fact, if we sum up all the three traces in (3.203), we will get:

Tmm + Tαα + Taa = [Cm
m](0,0) + [Cα

α](0,0) + [Ca
a]

(3,0) , (3.204)

with no contributions from the G-flux components. Thus the total trace of the
energy-momentum tensor in the internal space is only given by the quantum terms.
These quantum terms are classified by θ′k = 2

3
, so they are in turn related to the G-

flux components as in (3.114), and therefore only renormalizes the existing classical
data. On the other hand, the trace along the 2 + 1 dimensional space-time direction
yields:

Tii = [Cii](0,0) − Aii, T0
0 =

[
C0

0

](0,0) − A0
0 (3.205)

Aii = A0
0 ≡

2κ2T2nb
H8√g6

δ8(y − Y ) +
1

8H8

(
G(3/2)
mnabG

(3/2)mnab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
αβabG

(3/2)αβab
)
,

where by construction Ai
i > 0 and A0

0 > 0; and both the quantum terms are classi-
fied by θ′k = 8

3
in (2.97). They therefore involve eight-derivative terms as we saw in

subsection 3.1.1 for the case (2.2). What we now need is:

Tii + T0
0 > Tmm + Tαα + Taa

[Ci
i]

(0,0) +
[
C0

0

](0,0) − Ai
i − A0

0 > [Cm
m](0,0) + [Cα

α](0,0) + [Ca
a]

(3,0) , (3.206)

which would be the null energy condition. Consistent with the no-go conditions of
[12, 13] and [14] when the quantum terms vanish, the inequality (3.206) cannot be
satisfied, . However once we allow the quantum terms, and the very fact that the
[Cµ

µ](0,0) terms are classified by higher order polynomials of curvatures and fluxes,
the inequality (3.206) can in principle be satisfied. To see this, let us recall that the
θ′k = 2

3
in (2.97) for the internal quantum terms allow us to choose (l36, l37, l38) as

(2, 0, 0), (0, 2, 0) or (0, 0, 2) in (2.94), implying at most quadratic in these G-flux
components. Additionally, the internal quantum terms, to zeroth order in gs are
constrained as (3.114). Combining these two, one possible solution could be that
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the internal quantum terms cancel the Aµ
µ terms in (3.206). This could happen for:

[Ca
a]

(3,0) = − 1

6H8

(
G(3/2)
mnabG

(3/2)mnab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
αβabG

(3/2)αβab
)

(3.207)

[Cm
m](0,0) + [Cα

α](0,0) =
1

24H8

(
G(3/2)
mnabG

(3/2)mnab + 2G(3/2)
mαabG

(3/2)mαab + G(3/2)
αβabG

(3/2)αβab
)
,

which still leaves enough freedom to determine [Cm
m](0,0) and [Cα

α](0,0) individually.
The viability of the choice (3.207) is guaranteed from the analysis of the EOMs in
subsections 3.1.1, 3.1.1 and 3.1.1, where the input (3.207) could determine what kind
of internal non-Kähler manifold we get. Note however that, in determining (3.207),
we have ignored the M2-brane contribution. Since nb 6= 0 from (3.166), this can be
justified from the fact that for yM 6= Y M the M2-brane contributions vanish in Aµ

µ

from (3.205). Therefore combining (3.207) with (3.206), we see that as long as:

[Ci
i]

(0,0) +
[
C0

0

](0,0)
> 0, (3.208)

the null energy condition may be easily satisfied. Since, and as mentioned repeat-
edly earlier, the [Cµ

µ](0,0) are classified by eight derivative polynomials in G-flux and
curvature tensors, (3.208) can be satisfied for our background, giving us a precise
procedure to satisfy the null energy condition. Under special choices of the higher
order polynomials, we can even ask for stronger conditions like (see also [30]):

Tii + T0
0 > 0 and/or T0

0 > 0, (3.209)

leading to the strong and the dominant energy conditions respectively. Of course
all our discussions have been on the M-theory side, but we could also construct
similar criteria in the dual IIB side also as all M-theory ingredients have the corre-
sponding IIB dual in our framework. Note that going beyond zeroth order in gs is
not very meaningful here, at least in demonstrating the null, strong or dominant en-
ergy conditions, because the Ricci curvature terms in the Einstein tensors (3.71) and
(3.72) only appear to the lowest order in gs. Once we go to higher orders in gs, the
quantum terms, including higher order G-flux and metric terms, simply stabilize
the zeroth order classical background in the way discussed in subsection 3.1.3.

The consistent picture evolving from our analysis points to the fact that four-
dimensional de Sitter vacua should be in the IIB string landscape and not in the
swampland. The swampland criteria were developed, using the data of time-independent
backgrounds, to tackle backgrounds that only made sense with inherent time de-
pendences. As we have showed this cannot work. The unsuitability of such an
approach is probably one of the main reasons of its failure to predict backgrounds
with positive cosmological constants.





129

Chapter 4

Discussion and conclusions

The time independent ansatz discussed in [14] was the following.

ds2 =
1

Λ(t)
√
h

(−dt2 + dx2
1 + dx2

2 + dx2
3) +
√
hgmndy

mdyn (4.1)

In previous studies with time-independent warped product compactification of
type IIB strings, it was found that in the presence of fluxes, D (anti) branes and/or
Op (anti) planes, classical two derivative gravity is not adequate to give four di-
mensional de Sitter; i.e. Maldacena-Nunez condition is not satisfied . We must look
for quantum corrections via higher-derivative gravity terms arising in string theory
in order to get De-Sitter solution in four dimensions. But in this setup quantum cor-
rection actually do not help us to get a De-Sitter. Because as discussed in [15] a IIB
background with de Sitter isometries in four dimensions and time-independent in-
ternal space of the form above together with time-independent background fluxes
cannot be a solution to the string equation of motion irrespective of how much quan-
tum corrections are added. In fact the gs scalings of the quantum terms, i.e. equation
(2.98), show that when we are taking time independent compactification we need
to take into account an infinite number of quantum terms for any given order in
gs. This results in the breakdown of effective field theory description and thus they
truly belong to the swampland [6] as discussed in [14, 15, 17].

Once time-dependences are allowed in flux components and internal space, our
results change significantly. Depending on the choice of ansatz we can make the
four-dimensional Newton’s constant time independent, or otherwise. Sections 2.1
and 3.1 contain the main results of the thesis where we present our approach to a
time-dependent compactification (2.1), i.e a background where there are de Sitter
isometries in four dimensions and the compact internal six-dimensional space has
time dependent warp-factors (in the flat slicing of De Sitter we choose−∞ < t ≤ 0).
The simplest example can be the choice of our ansatz (2.8). In this case a IIB back-
ground of the form (2.1) when uplifted as (2.3) to M-theory in presence of time
dependent G-flux components allows to have an EFT description. But the resulting
theory has time dependent Newton’s constant in four dimensions. This model has
a valid EFT description which is evident from the gs scalings (2.86) of the quantum
contributions (2.78). The time dependence only allows a finite number of quantum
terms at any given order in gs. Beside the G-fluxes we can use metric and curvature
components (properly contracted) to make quantum terms. We first analysed the
curvature terms by themselves and tried to figure out whether polynomial powers
of the curvature terms can induce hierarchies to the two cases (2.2) and (2.8). The
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gs scaling of the various curvature tensors associated with time dependent internal
manifold are shown in Table 2.1. Although time dependent Newton’s constant is
something not desirable to us for the present purpose, there also appears to be a late
time singularity, that prohibits such a configuration to be a viable model of late-time
cosmology.

It is to be noted that the quantum corrections are computed near weak flux back-
grounds, so any generic quantum term could be expressed simply as a polynomial
functions of our four index flux components. Also the background fluxes are also
taken time-dependent in such a way so that type IIB coupling constant remain time-
independent. This is very significant step in order to make sense of any computa-
tions that we performed in our study. The quantum terms must be contracted ap-
propriately with warped inverse metric components in M-theory. We have studied
such generic polynomial functions made out of the G-flux components subsection
2.1.2. But there is now a significant change which is the type IIA coupling gs now
becomes a function of time. So we can identify the temporal dependences with
gs dependences. Therefore way we can simply evaluate for gs dependences of the
quantum terms to find out the time dependency of each quantum term.

We have also discussed regarding the quantum terms which are topological in na-
ture in subsection 2.1.2. Just like before these quantum terms are constructed out of
curvature forms and different G-flux components. But we can also build up some
of the non-topological interactions out of them just using Hodge star operations on
them. Similarly we can also construct dual forms and therefore also the correspond-
ing quantum terms from them. The quantum terms associated with these dual
forms, namely (2.140), and their gs scalings, appear in Table 2.2. We have also calcu-
lated the gs scalings of the quantum terms with dual variables. To our surprise we
have found that they are exactly the same as that of before (2.94). After classifying gs
dependency of all sort of quantum terms we further go to the detailed study of the
equations of motions (EOMs) in section 3.1. We calculate equation of motion in sub-
section 3.1.1 by incorporating the energy-momentum tensors. The energy momen-
tum tensors take contributions from the G-fluxes and the quantum terms whose gs
dependencies are already known. The internal eight-dimensional manifold is of the
form (2.4) withM4 parametrized by coordinates (m,n);M2 parametrized by (α, β)
and T2

G parametrized by (a, b). We can easily go from M theory to type IIB just by
shrinking the (a, b) torus to zero size. A point to note is that this can also be achieved
by taking late time limit (t→ 0) to our M-theory background.

In the next case, we take an ansatz eq. (2.2) which results in a time independent
Newton’s constant in four dimensions despite the internal manifold as well as the
fluxes being time dependent. When this ansatz is uplifted to M-theory, we find
that it admits an EFT description. This can be easily evident from the gs scalings
(2.97) of the relevant quantum contributions (2.94). And the disappearance of late
time singularity in this background makes it preferable. Also as this background
successfully overcomes both the no-go and the swampland criteria, this ansatz is
the desired late-time cosmological model in the landscape of string vacua. There-
fore we can see how time-dependences of internal manifold and flux components
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are essential to generate a four-dimensional space-time with de Sitter isometries
in the IIB landscape which also has an EFT description. As we recall from the
previous studies[14] Minkowski or AdS space can be constructed classically, but
de Sitter space requires quantum contributions. So both the quantum terms and
time-dependences in flux and metric are equally significant to solve the equation
of motion and have an EFT at the every order of gs. Time dependent compactfi-
cation guarantees existence of gs and Mp hierarchies which evidently allows us to
have four-dimensional EFT descriptions as tabulated above. Furthermore we also
discuss the quantizations of the G-flux components and anomaly cancellations in
a time-dependent background in a time dependent background which further con-
firms the validity of our work.

In our current study we have not put any detail about the fermions. But we could
introduce components of gravitino and their interactions with the bosonic degrees
of freedom in M-theory. We can give a small mass to the gravitino components
and integrate out all the fermionic degrees of freedom in our setup. This will gen-
erate the quantum contributions in the polynomial forms. Therefore, the two sets
of quantum corrections (2.78) and (2.94) can be viewed as new degrees of freedom
when we integrate out both the fermionic as well other bosonic degrees of freedom.
It has also been suggested in many previous studies that the cosmological constant
can be derived as expectation value of scalar field or fluxes or quantum corrections.
We have derived an exact relation for the cosmological constant Λ, completely in
terms of the background fluxes and quantum corrections. Our analysis provides
a strong indication that a solution with positive cosmological constants with time-
independent Newton’s constants can exist in the landscape of string theory.

Beside this we have also derived an exact expression for the cosmological constant
Λ, completely in terms of the background fluxes and quantum corrections, which
can be expressed as (3.194). We have also determined how the G-flux components,
appearing from the back-reaction of a dynamical M2-brane, can be expressed as
(3.181). We have also demonstrated quantizations of the G-flux components and
anomaly cancellations can be achieved even when time-dependences are switched
on. And at last we make further comments about energy condition. For example,
the null-energy condition can be shown to be satisfied with the choice of fluxes and
quantum corrections. In fact it appears that the 2 + 1 dimensional quantum cor-
rections play a significant role in satisfying the null-energy condition as shown in
(3.208). But for certain special choice of these quantum corrections, one can find out
that satisfying the strong and the dominant energy conditions (3.209) is also possi-
ble.

In this thesis we have mostly focused on late time physics but we are also inter-
ested in early time physics in this framework. One of the most popular theory of
early time early time physics is inflation. We should note that dynamical mem-
branes, which become dynamical D3-branes in the IIB side, lead to the possibility
of realizing inflation in our set-up. In fact, in the presence of seven-branes our setup
could be mapped to the D3-D7 inflationary model. We should be able to access cer-
tain levels of e-folds from our set-up. And this is one of the challenges in research
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we would like to take in near future. But this is not the only difficulty. The other
difficulty is at early time physics is strongly coupled. In our language Λ|t|2 → 0 or
gs → 0 is late time in the sense that Λ|t|2 → ∞ is the big-bang time and Λ|t|2 → 1
is the inflationary time. So we need to find a appropriate duality transformations
which maps the late time physics to early times. Hopefully we have provided con-
vincing arguments to justify the presence of a late time de Sitter solution in the
IIB string landscape and in near future we can predict more about the early time
physics from our setup.
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