
Linear Programming:
Pivoting on Polyhedra and Arrangements

Bohdan Lubomyr Kaluzny

Doctor of Philosophy

School of Computer Science

McGill University

Montreal, Quebec

2005-12-31

A thesis submitted to McGill University in partial fulfilment of the requirements of
the degree of Doctor of Philosophy

Copyright @2005 Bohdan Kaluzny

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-25180-5
Our file Notre référence
ISBN: 978-0-494-25180-5

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

DEDICATION

This thesis is dedicated to my family - a tough-loving bunch that have pushed

me to great heights.

ii

ACKNOWLEDGEMENTS

Use what talent you possess: the woods would be very silent if no birds

sang except those that sang best - Henry Van Dyke

Nine years have passed since 1 first entered the halls, classrooms, and labs of

McGill University. 1 am indebted to many people for giving me assistance these last

few years during my doctoral studies.

First and foremost, 1 thank my supervisor David Avis for his teaching, guid­

ance, professionalism, patience, helpful discussions and motivational kicks to get me

going. It is an honour to be his student and inconceivable that this thesis would

come to fruition without his direction. 1 am also grateful that David provided

financial assistance for the last year of my studies after my scholarships (for which 1

praise NSERC and FQRNT) came to term. Thanks boatman!

1 thank members of my PhD advisory committee; David Avis, David Bryant,

Xiao-Wen Chang, Komei Fukuda, and Adrian Vetta, for their time and useful

suggestions. My coauthors during my stay, namely David Avis, Komei Fukuda, and

David Titley-Péloquin, have benefitted me greatly with their ideas, recommenda­

tions, and expert editing. It has been a great learning experience to be a member of

the computational geometry group and discrete mathematics group. In particular

Luc Devroye, Godfried Toussaint, Adrian Vetta, and Sue Whitesides have provided

exemplary teaching and an ideal research environment. Of course (uncle) Bruce

Reed deserves special mention due to his encouragement, humorous discussions, and

his famous "wagga waggas" which will be missed.

ln my opinion McGill University has lived up to its name. The institution

provided me with aIl the necessary tools and services to succeed in my research.

It has been inspiring to work with so many brilliant minds accessible. The School

iii

of Computer Science has collected outstanding individu aIs to run the department

smoothly. Andrew Bochego, Ron Simpson, and the rest of the SOCS system staff

have been exceptional in helping me with basic problems. Lucy St. James, Vicki

Keirl, and the remainder of the administrative staff, have been of great assistance in

aIl general matters - including unlocking my office door when 1 forgot my keys! My

office mates of McConnell 232 have provided me with an optimal work environment,

helping make every day productive and fun. In particular, 1 wish Conor and Perouz

aIl the best in their studies and future endeavors. If 1 can do it, you can do it too!

External to McGill there have been many people infiuential in my life which

have aided me while 1 prepared this thesis. From my brothers of the DBHL to my

dearest friends, 1 thank you for giving me recluse, keeping me grounded and focused

while providing great friendship that 1 truly cherish. Finally, 1 thank aIl my family,

especially my parents, for the moral support, love, and endless encouragement they

give me. They believe in me wh en 1 falter; they give me the courage and inspiration

to sing. 1 share this exciting accomplishment with you!

IV

STATEMENT OF ORIGINALITY

1 certify that this thesis, and the research to which it refers, are original

contributions to knowledge, and the product of my own work. The ideas and

quotations from the work of other researchers are fully acknowledged, cited,

and referenced. Some of the work presented has been previously published (or

submitted for publication) as listed below.

• Chapter 1, section 1.2.1: (with David Avis) "Solving Inequalities and

Proving Farkas' Lemma Made Easy," in American Mathematics Monthly [7J.

• Chapter 2, sections 1-3: (with David Avis and David Titley-Péloquin)

"Visualizing and Constructing Cycles in the Simplex Method," submitted to

Journal of Operations Research [9J.

• Chapter 4: (with Komei Fukuda) "The Criss-Cross Method Can Take D(nd
)

Pivots," in Proceedings of the 20th Annual Symposium on Computational

Geometry [33J.

• Chapter 7: (with David Avis) "Computing Disjoint Paths on Polytopes,"

submitted to Journal of Combinatorial Optimization special issue of the

Franco-Canadian Workshop on Combinatorial Algorithms, McMaster, August

18-20, 2005 [8J.

v

ABSTRACT

Linear programming is perhaps the most useful tool in optimization, much of

it's suc cess owed to the efficiency of the simplex method in practice - its ability

to solve problems with millions of variables with relative ease. However, whether

there exists a strongly polynomial algorithm to solve linear programming remains

an open question. Pivot methods, including the simplex method, remain the best

hope for finding such an algorithm, despite the fact that almost an variants have

been shown to require exponential time on special instances. Fundamental questions

about the path length (number of iterations) of pivot methods remain unanswered.

Some, such as the related Hirsch Conjecture, are famous long-standing problems in

polyhedral theory. How long can a pivot path be? How many distinct degenerate

solutions (bases) can appear during a simplex method cycle? How long can a finite

pivot rule stall without improving the solution? Can we enumerate an possible

pivot paths to optimality? Can we compute monotone disjoint pivot paths? These

are some of the questions we tackle in this thesis in a quest to better understand

pivot methods.

VI

ABRÉGÉ

Les méthodes de pivot, y compris la méthode simplexe, offrent le meilleur

espoir pour trouver un algorithme fortement polynôme pour résoudre la program­

mation linéaire, malgré le fait que presque toutes les variantes ont été montrées

pour avoir besoin du temps exponentiel pour des exemples spéciaux. Des ques­

tions fondamentales au sujet de la longueur de chemin (nombre d'itérations) des

méthodes de pivot demeurent sans réponse. Certains, tels que la conjecture de

Hirsch, sont des problèmes de longue date célèbres dans la théorie polyèdral. Quel

est la longueur maximale d'un chemin de pivot? Combien de solutions dégénérées

distinctes (bases) peuvent apparaître dans un cycle pendant la méthode simplexe?

Combien de temps une règle de pivot finie peut-elle caler sans améliorer la solution?

Pouvons-nous énumérer tous les chemins possibles de pivot à l'optimalité? Pouvons­

nous calculer un ensemble de cardinalité maximal de chemins de pivot monotone

et distincts? Voilà les questions que nous abordons dans cette thèse: une recherche

pour mieux comprendre les méthodes de pivot.

VIl

MAIN CONTRIBUTIONS

Theoretical results:

---+ We construct linear programs with m + n inequalities in n dimensions on which

the simplex method can cycle and visit 8(nm) different bases.

---+ We study the behaviour of the simplex method under degeneracy. We show

that DBl(d, n), the maximal number of sequential degenerate bases that the

simplex method with Bland's rule can visit on a linear program of dimension

d with n inequalities, is D(nL~J) for n 2 2d, and D(nn-d) for d:::; n :::; ~d.

;----7 We prove that Bland's rule is not equivalent to a perturbation scheme when

d 2 3 leaving open the possibility that DBl(d, n) = 8(nd). However using

a novel geometric interpretation of dictionary coefficients we prove that

DBl(2, n) = n and DBl(3, n) = O(n2
).

---+ We construct the longe st admissible pivot path possible: defining deformed

products of arrangements, we construct a family of linear programs with n

inequalities in ~d on which the least-index criss-cross method requires 8(nd)

iterations to reach optimality.

Software Implementations:

---+ We develop an algorithm and implementation to enumerate finite pivot paths

over polyhedra, enabling us to compute the objective function and starting

basis that yields longest pivot path taken by the simplex method for user

input.

---+ We present an algorithm and implementation based on the simplex method

to compute the maximum cardinality set of vertex-disjoint strictly monotone

paths from the source to the sink of a polytopal digraph of ad-polytope P

directed by a linear objective function.

viii

TABLE OF CONTENTS

DEDICATION

ACKNOWLEDGEMENTS

STATEMENT OF ORIGINALITY

ABSTRACT

ABRÉGÉ ..

MAIN CONTRIBUTIONS.

LIST OF TABLES.

LIST OF FIGURES

1

2

3

Introduction & Preliminaries .

1.1
1.2

Introduction
Preliminaries
1.2.1 Solving Linear Inequalities
1.2.2 Linear Programming and the Simplex Method
1.2.3 Polyhedra
1.2.4 Hyperplane Arrangements
1.2.5 Geometrie Interpretation of Dictionary Coefficients.

Cycling the Simplex Method .

2.1 Introduction
2.2 Visualizing Cycles ..
2.3 Constructing Cycles.
2.4 New Bounds on Cycle Lengths .

2.4.1 Products of Arrangements
2.4.2 The Construction ...

Stalling the Simplex Method - Part 1

3.1
3.2

Introduction
Upper Bounds on DBl(d, n)
3.2.1 Bland's Rule is not a Perturbation Scheme
3.2.2 D(2, n) = n and DBl(3, n) = O(n2

)

ix

Il

iii

v

VI

VIl

Vlll

Xl

XlI

1

1
7
8

15
18
23
24

26

26
28
35
39
42
44

49

49
54
54
58

4

5

6

7

8

The Longest Criss-Cross Method Pivot Path

4.1
4.2
4.3
4.4

Introduction
The Geometric Interpretation of the Criss-Cross Method
Deformed Product of Arrangements
The Construction

Stalling the Simplex Method - Part II .

5.1 Lower Bounds on DBl(d, n) ...
5.1.1 DBl(d, n) = n(nL~J) for n 2 2d
5.1.2 DBl(d, n) = 8(nn-d) for d :::; n :::; ~d

Enumerating Pivot Paths

6.1
6.2
6.3
6.4
6.5
6.6

Introduction
Enumerating Pivot Paths in a Linear Program
Enumerating Objective Functions for an Optimal Basis
Enumerating Pivot Paths to an Optimal Basis
Implementation Details .
Computational Results

Computing Disjoint Paths on Polytopes

7.1
7.2
7.3
7.4
7.5

Introduction
Disjoint Paths in a Digraph ...
Finding Edges: Simplex Method and Reverse Search .
Algorithm and Implementation
Computational Results & Complexity
7.5.1 Computational Results
7.5.2 Complexity.

Conclusion.

Appendix .

References .

x

66

66
68
71
74

84

84
85
92

100

100
102
103
108
109
113

116

116
118
121
127
132
133
134

139

141

148

LIST OF TABLES
Table page

2-1 PrimaI and dual dictionaries 31

2-2 Sorne examples of cycling found in literature 34

2-3 Left and right turns 36

2-4 Constructing cycles from scratch 36

2-5 Crossing loop. 38

6-1 Longest paths on Klee-Minty cube in ~3 . 113

6-2 Longest paths on collapsed Klee-Minty cube in ~3 114

6-3 Longest paths on selected polytopes and their collapsed versions. 114

7-1 Nondegenerate examples 134

7-2 Degenerate ex amples 135

7-3 Random examples .. 135

7-4 Growth in number of pivots. 136

7-5 Computing just a few paths . 138

xi

LIST OF FIGURES
Figure page

1-1 Product of polytopes 22

1-2 Deformed product of polytopes 22

2-1 A picture of Hoffman's cycle 28

2-2 Chvatal's example [18] 32

2-3 Lee's cycle with k = 6 . 40

2-4 S(n,2) is O(n2
) • . . . 42

2-5 Product of arrangements 43

2-6 (Imaginary) product of cycles 46

3-1 Completely degenerate polyhedron in ~2 58

3-2 Vector sweeping in ~2 60

3-3 DBl(2, n) = n: example with n = 6 62

3-4 Example perturbation 63

4-1 The least-index criss-cross method . 70

4-2 Deformed product of arrangements 72

4-3 Worst-case ex ample of the criss-cross method in one-dimension 75

4-4 Path taken by the criss-cross method on a deformed product pro gram 76

4-5 Worst-case example of the criss-cross method in two-dimensions 78

4-6 Normally equivalent worst-case arrangements. 78

4-7 Case 1 and 2 . 79

4-8 Case 3 and 4 . 80

5-1 Amenta & Ziegler construction . 90

5-2 DBl(k, k + 1) = 8(k) 93

5-3 DBl(d, n = d + 2) = 8(n2
) (Inequalities) 94

xii

5-4 DBl(d, n = d + 2) = 8(n2
) (Path) 95

5-5 DBl(d, n = d + 3) = 8(n3
) 97

6-1 Cut section of an arrangement and associated œn sign vectors 106

6-2 (a) Interior points and ray shooting local search, and (b) reverse search
tree for œn enumeration using ray shooting 109

7-1 Computing disjoint paths: an example 119

7-2 Polytopal digraph example 123

7-3 (a) Basis graph B(P), and (b) lex-positive subgraph . 125

7-4 Reverse search tree of lex-positive bases rooted at (6, 7, 8) . 127

Xlll

CHAPTER 1
Introduction & Preliminaries

1.1 Introduction

"Citius, Altius, Fortius" is the motto of the most popular sporting event

in the world followed closely by billions of people, demonstrating man's almost

unsatiable desire to improve, push limits, set new records - to optimize. This desire

has sparked advances in science that have an enormous impact on all aspects

of our daily lives. In particular, mathematics and computational sciences have

provided us with solutions, if not best solutions, to many of our logistical problems:

from scheduling to resource allocation to communications to transportation, etc.

However, despite thousands of years of history, mathematics and hum an decision-

making did not formally couple until the first half of the 20th century.

Operational research is the use of mathematical models, statistics, and

algorithms to aid in decision-making with the goal of improving or

optimizing performance. 1

Not surprisingly, operations research has its origins in the study of military op-

erations. Its successful application during war-time eventually lead to its routine

use today in industry, health care, banking, shipping ... the li st goes on. Without a

1 Wikipedia Online Encyclopedia 2005.

1

doubt, the most use fui and celebrated O.R. model is a Linear Program, the problem

of maximizing a linear objective function subject to a system of linear inequalities,

mathematically denoted as

d

maximize z = L Cj x j
j=l

d

subJ'ect to ~ a··x· < b· ~ tJ J - t

j=l

for i = 1, ... , n, (1.1)

where the ai/s, bi's, and c/s are given real numbers, and Xl, ... , Xd are variables to

be solved for.

The history of linear programming dates back to Fourier [26], who presented

an algorithm to solve linear inequalities; Gauss [40], Jordan [52], and de la Vallée

Poussin [80], who provided methods to solve systems of linear equations. However

it reached its pinacle in the 1930's and 40's with the work of Kantorovich [57] and

Dantzig [19]. In 1947, Dantzig - the "father" of linear programming - introduced

the Simplex M ethod for solving linear programs. After nearly sixt Y years of research

and use, the simplex method remains the standard solution technique. It is highly

efficient in practice; problems with thousands or even millions of variables are

routinely solved on computers. Highly sophisticated implementations are available

(eg. [12]), often calling the simplex method as a subroutine to help solve much

harder integer linear programs where the variables are additionally constrained to

be integers. Typically, the simplex method solves a linear program in a number of

steps that is just a small multiple of the number of variables and inequalities. While

its average running-time is theoretically justified ([1], [15], [48], [94], and more

recently [88]), there remains no guarantee that the simplex method will compute

a solution in reasonable time. In fact, Klee and Minty [61] constructed ex amples

on which Dantzig's simplex method takes a number of iterations exponential in the

number of inequalities and variables, prompting new refinements of the method

2

([14], [15], [19], [29], [45], [51], [54], [70], [74], [92], [99], [101], ...), and almost an

equal amount of worst-case constructions to accompany them ([2], [5], [45], [61],

[74], [78], ...). None have been proven to run in time bounded by a polynomial

function of n and d.

Whether or not there exists a strongly-polynomial time algorithm for linear

programming - a method where the maximum number of iterations is a polynomial

function of n and d - remains one of the most important unsolved question in

operations research theory. Khachian's ellipsoid method [59] and Karmakar's

interior point method [58] prove that a linear program can be solved in weakly­

polynomial time (in the total amount of data defining the linear program). But as

computational scientists we are not satisfied with this result.

Simplex methods offer the possibility of finding a strongly polynomial-time

algorithm for linear programming. As an initialization, the (primaI) simplex method

adds nonnegative slack variables to convert the inequalities to equations, then

fixes enough of the variables at their bounds to reduce to a square system of linear

equations which can be solved for unique values of the remaining variables to

obtain a basic solution. The variables set to their bounds are called co basic and the

remaining are called basic, the index set of which is called a basis. Phase 1 of the

simplex method either computes a basic feasible solution, a basic solution which

satisfies the inequalities of (1.1), or proves that the inequalities are unsatisfiable.

If the inequality system is feasible then the simplex method proceeds to phase

II: computing the optimal basic feasible solution that maximizes the objective

function. This is accompli shed by local improvement: given a basic feasible solution

the simplex method purposely selects and exchanges a cobasic variable with a basic

variable, re-solves the system of equations for the new basis to obtain a new basic

feasible solution whose objective value is greater than or equal to the previous

solution. This operation is called a (primal admissible) pivot, and pivot mles

3

(refinements) determine which variables to exchange. Simplex methods may staIl,

pivot from basis to basis without improving the objective value. This phenomenon

is known as degeneracy, a common occurence in practice, and pivot rules require

an anti-cycling scheme to guarantee finiteness. The length of a pivot path is the

number of distinct bases visited, starting at the basis representing the initial basic

feasible solution.

Pivot paths have close ties to polyhedral theory as the inequalities of a linear

program (1.1) represent a d-polyhedron P with up to n facets, and each basic

feasible solution corresponds to a vertex of P. A polytope is a bounded polyhedron.

The vertices and edges of ad-polytope P form an undirected graph G(P). The

linear objective function ex, when in general position with respect to P, gives an

orientation on the edges of G(P) allowing us to define an acyclic digraph Dc(P).

This digraph has a unique source, or vertex minimizing ex, and sink, or vertex

maximizing ex. Linear programming is the problem of finding a vertex of P who se

location in space maximizes the objective function, and the simplex method follows

a path (monotone with respect to the objective function) in Dc(P).

The diameter of G(P) is the smallest number t5 such that every two vertices

in G(P) are connected by a path with at most t5 edges. The earliest, and most

outstanding conjecture on the diameter of G(P) is the following.

Conjecture 1 (Hirsch Conjecture, [102] p. 84). Let P be ad-polytope with n

facets, then the maximal diameter ~(d, n) of G(P) is at most n - d.

The best known upperbound on the maximal diameter is subexponential,

~(d, n) :=; n1ogd+ 1 , proved independently by Kalai [54] and Matousek et al. [70]. For

further discussion and results see [62] and [75]. Even if true, the Hirsch Conjecture

would not imply a bound on the length of such a monotone path in Dc(P). In fact,

Todd [92] gave an ex ample of 4-polytope with 8 facets for which every monotone

4

path from a given vertex to the sink had at least 5 edges. A conjecture more

directly related to paths taken by the simplex method is the following.

Conjecture 2 (Ziegler's Strict Monotone Hirsch Conjecture, [102] p.86).

Let P be a d- polytope with n facets and ex a linear funetion in general position,

then there exists a path in Dc(P) from source to sink of length at most n - d.

The Hirsch-type conjectures and the closely related polynomial-time simplex

algorithm mystery have motivated, but also baffied, researchers for the last half a

cent ury. We have and will continue to choose the simplex method to solve linear

programs, despite the fact that many fundamental questions about the path

length taken by pivot methods remain unanswered. This thesis tackles sorne of

these questions: we study pivot paths in linear programs, particularly focusing

on the worst-case performance of the simplex method under degeneracy, cycling;

and the criss-cross method. We provide new algorithms and implementations for

pivot path enumeration, and for computing disjoint paths on polytopes. The new

functionalities of these packages add to a growing amount of software that exists

(such as polymake [53]) to assist researchers in polyhedral theory.

Our main contributions, and their significance, are the following:

• In Chapter 2 we study cycling in the simplex method. We define products

of arrangements, an extension of products of polytopes, and use them to

construct linear programs with m inequalities and n nonnegative variables on

which the simplex method cycles, achieving new bounds on cycle lengths. We

show that the maximal number of distinct bases in a simplex cycle is 8(nm)

for n ;::: 3m with m ;::: 2 fixed and even; we can force the simplex method

to cycle and visit nearly all (n~m) bases of a linear program. The previous

best known bound on the maximallength of a simplex cycle was O(n) for

m ;::: 2, n ;::: 6 [67J.

5

• In Chapter 3 we study finite pivot rules for the simplex method and degen­

erate stalling. Degeneracy is a common occurrence in practice, but little was

known about how much time the simplex method can spend stalling. We show

that Bland's anti-cycling pivot rule is not a perturbation scheme leading to

the possibility that the number of degenerate bases visited by the simplex

method with Bland's rule, DBl(d, n), can exceed the maximal number of

vertices that ad-polytope with n facets can have. However we prove that

D B1 (2, n) = n and DBl(3, n) = O(n2
). Our proofs employa new geometric in­

terpretation of (simplex method) dictionary coefficients (presented in Section

1.2.5).

• In Chapter 4 we construct the longest linear programming (admissible) pivot

path possible. The lack of success with simplex methods, with respect to

finding a strongly polynomial algorithm that solves linear programming,

lead researchers to study criss-cross methods [103], [90], [95] which leave the

boundary of the d-polytope and traverse the edges of the underlying oriented

hyperplane arrangement (n inequalities) using admissible pivots. We prove

that the least-index criss-cross method can visit nearly every vertex of a

hyperplane arrangement and take 8(nd) pivots for n 2': 2d. In doing so, we

extend the notion of deformed products of polytopes to oriented hyperplane

arrangements by defining deformed products of arrangements. The result

affirms observations made in practice, proving that the criss-cross method is

worse than most refinements of the simplex method.

• In Chapter 5 we construct families of examples proving that DBl(d, n)

n(nL~J) for n 2': 2d (matching Amenta and Ziegler's [2] bound on nondegener­

ate input), and DBl(d, n) = 8(nn-d) for d ::::; n ::::; ~d. Most implementations

of the simplex method suggest that when n 2': 2d the dual simplex method

should be used, thus the latter construction is of particular significance as it is

6

the first general worst-case construction for the primaI simplex method when

n < 2d.

• In Chapter 6 we present pivot path enumeration software: listing aIl possible

pivot paths that the simplex method may follow to a given optimal basis.

We compute the finite number of objective functions needed to enumerate aIl

possible pivot paths taken by the simplex method following a combinatorial

pivot rule. We present a pivot path enumeration algorithm and nontrivial

implementation that allows us, for instance, to compute the objective function

and starting basis yielding the longest pivot path on user inputed polyhedra.

• In Chapter 7 we present a new algorithm and implementation for computing

vertex-disjoint strict monotone paths in polytopes. HoIt and Klee [50] proved

that there exist d vertex-disjoint strict monotone paths from source to sink

of Dc(P) for ad-polytope with nfacets (with a linear function in general

position with respect to P). Studying these paths has the potential to provide

new insight into designing a polynomial-time simplex method, or proving none

exists. We provide the tool to compute them. Experimental results show that

our algorithm is particularly advantageous wh en only a few disjoint paths are

required, but also excels wh en the input has little or no degeneracy, and is

especially memory-efficient when the polytope has many vertices.

Our research has lead to new open problems, which we list at the end of each

chapter.

We begin with a gentle introduction to solving inequalities, linear programming

via the simplex method, and sorne basic polyhedral theory.

1.2 Preliminaries

Our only assurnption is that the reader has learned how to solve a system

of linear equations and is farniliar with basic geornetric concepts. We follow the

7

notation of Chvatal [18] and Ziegler [102], but also refer the reader to Grünbaum

[47] and Matousek [71] for background material.

1.2.1 Solving Linear Inequalities

Consider the following problem: given a matrix A = [aij] in Rmxn and a

column vector b in Rm, find x = (Xl, X2, ... , xnf that satisfies the following linear

system, or prove that no such vector X exists:

Ax ::; b,
(1.2)

X 2: o.
We illustrate a simple method for doing this with an example:

(1.3)

x· > 0 t _ (i = 1,2,3).

We first convert this system of inequalities into a system of equations by intro-

ducing a new nonnegative slack variable for each inequality. This slack variable

represents the difference between the right- and left-hand sides of the inequality. In

our example, we need three new variables, which we label X4, X5, and X6. Putting

these variables on the left-hand side, and the others on the right-hand side we have

the following system:

(1.4)

It is easy to see that any nonnegative solution of (1.3) then extends to a nonneg-

ative solution of (1.4) by assigning the slack variables values via their respective

8

equations. Conversely, a nonnegative solution of (l.4) when restricted to Xl, X2, and

X3 gives a solution to (1.3). We call a system of equations such as (1.4) a dictio­

nary. The variables on the left-hand side are called basic, and the variables on the

right-hand side are called co basic. We get a basic solution to the equations in (1.4)

by setting aIl the cobasic variables to zero, which gives X4 = -1, X5 = 2, X6 = -2.

Unfortunately this is not a nonnegative solution. The algorithm proceeds as follows:

it finds the smallest-indexed basic variable that is set to a negative value. In this

case it is X4. In the equation for X4 it identifies the cobasic variable with the sm aIl­

est index that has a positive coefficient (in this case it is xd, solves this equation

for Xl, and substitutes the result for Xl in the other equations. This yields a new

dictionary:

Xl = 1 - 2X2 + X3 + X4

X5 = 1 + 5X2 - X4

x6=-1- x3+ x4·

(1.5)

The step we just performed is called a pivot operation, and it is the basic step

of the algorithm. In fact it is the only step: we sim ply repeat this operation. In

(1.5), we first set the cobasic (i.e., right-hand) variables to zero and get the basic

solution Xl = 1, X5 = 1, X6 = -1. Again, we find the basic variable with the

smallest index and negative value, namely, X6. In the equation for X6 we find the

smallest-indexed cobasic variable with a positive coefficient, here X4. We pivot by

solving this equation for X4 and substituting for X4 in the other equations, obtaining

the new dictionary:

Xl = 2 - 2X2 + 2X3 + X6

X4 = 1 + X3 + X6

X5 = 0 + 5X2 - X3 - X6·

9

(1.6)

We are now in luck. The basic solution is nonnegative, aptly named a basic

feasible solution as its restriction to our original three variables gives a feasible

solution to (1.3): Xl = 2, X2 = 0, X3 = o. 80 far so good. An immediate question

raises itself: What happens if there is no solution to the original problem? Consider

the following problem:

-Xl + 2X2 + X3 ::; 3

3XI - 2X2 + X3 ::; -17

-Xl - 6X2 - 23x3 ::; 19.

(1. 7)

We get an initial dictionary by introducing three slack variables and letting them be

the basic variables:

X4 = 3 + Xl - 2X2 - X3

X5 = -17 - 3XI + 2X2 - X3

X6 = 19 + Xl + 6X2 + 23x3.

(1.8)

The algorithm proceeds as before by choosing the equation for X5 and solving for

X2 = 17/2 + (3/2)XI + (1/2)x3 + (1/2)x5

X4 = -14 - 2XI - 2X3 - X5

X6 = 70 + 10xI + 26x3 + 3X5·

(1.9)

Here we encounter something new. We select the equation for X4, as we should,

but find that there is no cobasic variable with a positive coefficient. We rewrite

this equation with aIl variables on the left-hand side, including those with zero

coefficients, getting

10

(1.10)

This is an ex ample of an in consistent equation. Note that the coefficients of an

variables are nonnegative, but the right-hand side is negative. Therefore this

equation cannot be satisfied by choosing any combinat ion of nonnegative values

for the variables. This equation was derived from the original system by standard

operations that do not change the solution set for the equations. Therefore (1.8),

hence (1.7), has no nonnegative solution. In fact, (1.10) provides a simple pro of of

this encoded in the boldface coefficients of the slack variables. We multiply each

inequality in (1.7) by the coefficient of its corresponding slack variable

(1.11)

+0 * (-Xl - 6X2 - 23x3 ::; 19)

and add the inequalities in (1.11) to get

(1.12)

The final inequality, (1.12) is called an inconsistent inequality: aIl the variables

have nonnegative coefficients, yet the right-hand side is negative. The multipliers

given by the coefficients of the slack variables are said to furnish a certificate of

infeasibility for the original system.

We now have a complete description of the algorithm that we christen the

"b-rule"2 for solving problems of form (1.2):

2 The b-rule is a dual form of Bland's least-index rule for linear programming
[13].

11

Step 1: Introduce m slack variables Xn +l, ... , Xn +m and use these as the basis

(left-hand side) of an initial dictionary:

n

Xn+i = bi - L aijXj

j=l

(i = 1, ... ,m).

Step 2: Set the cobasic (right-hand) variables to zero. Find the smallest

(1.13)

index of a basic (left-hand side) variables with a negative value. If there is none,

terminate with a feasible solution.

Step 3: Find the cobasic variable in the equation chosen in step 2 that has the

smallest index and a positive coefficient. If there is none, terminate, for the problem

is infeasible, and the coefficients of the slack variables represent a certificate of

infeasibility. Otherwise, solve this equation for the indicated cobasic variable, and

substitute the result in aIl of the other equations. Go to step 2.

In what follows we prove:

• the algorithm that we have described halts after a finite number of steps;

• if it halts in step 2, then the basic solution is feasible for (1.2);

• if it halts in step 3, then the system (1.2) is infeasible and the slack coeffi-

cients "certify" this.

Theorem 1.1. The b-rule is finite.

Our pro of is based on ideas found in Fukuda and Terlaky [36].

Praof. Given an input system (1.2), we construct the initial dictionary (1.13) and

run the b-rule algorithm. Since there are at most (n~m) possible choices of a basis,

if the algorithm is not finite (in the sense of halting after finitely many steps),

then sorne bases must be repeated, a pro cess called cycling. Assume that this can

happen, and choose a system of equations that cycles.

Suppose first that X n +m (n + m being the largest index) enters and leaves the

basis during the cycle. When X n +m is chosen to enter the basis we must have an

12

equation of the following form, where Band N denote the set of basic and cobasic

indices, respectively:

Xk = -b~ - L a~jxj + a~,n+mXn+m (k E B). (1.14)
jEN\{n+m}

The choice of X n+m as entering variable in this equation implies that -b~ < 0,

a~,n+m > 0, and a~j 2: 0 for j in N \ {n + ml. This shows that every solution to the

full system of equations with Xl, ... , Xn+m-l 2: 0 must have X n+ m > 0, i.e. solving

(1.14) for X n+m .

Now consider the stage at which X n +m is chosen to leave the basis. The

dictionary has the form:

Xi = b~ + La~jxj
jEN

(iEB\{n+m}) (1.15)

X n+ m = -b~+m + L a~+m,jXj.
JEN

The choice of X n +m ensures that -b~+m < 0 and b~ 2: 0 for i in B \ {n + m}. By

setting the cobasic variables to zero, dictionary (1.15) shows that there exists a

solution to the system of equations with Xl, ... , Xn+m-l 2: 0 and X n+ m < O. Clearly

not both (1.14) and (1.15) can hold, so there cannot exist a cycle during which the

largest-indexed variable enters and leaves the basis.

Now suppose that there exists a cycle in which x n+m always stays in the basis.

Then we can remove X n +m and its corresponding equation without changing the

pivot decisions made during the cycle. Similarly, if there exists a cycle where X n+m

always stays in the cobasis, then we can remove X n+m from all of the equations

without influencing the cycle. Either way we can reduce the original example that

cycles to an equivalent ex ample with a cycle during which the largest-indexed vari-

able both enters and leaves the basis. This leads to the two conflicting situations

that we met earlier, so a cycle cannot exist: the algorithm is finite. D

13

Since the algorithm is finite, it must haIt in either step 2 or step 3. If it

terminates in step 2, we have a nonnegative solution to the original system. This

follows from the fact that the only operations we performed on the initial dictionary

were standard operations for manipulating a system of equations. If the algorithm

stops in step 3, we have a certificate of infeasibility that, when stated in general

terms, is a variant of the Farkas lemma [22].

Theorem 1.2 (Farkas Lemma). Either there exists x in Rn with x 2:: 0 such that

Ax :::; b or there exists y in Rm with y 2:: 0 su ch that yT A 2:: 0 and yTb < o.

Prao! We begin by showing that there cannot exist both a vector x and a vector

y satisfying the conditions of the theorem. For otherwise, 0 > yTb 2: yT Ax 2:: O.

If such a vector x does not exist, the finiteness of the b-rule implies that the

algorithm must halt in step 3. The algorithm returns an inconsistent equation:

n+m

L a~jxj + Xk = -b~, (1.16)
j=l,
j#

where b~ > 0 and all of the coefficients a~j 2:: O. Set Yi = a~,n+i 2:: 0 for i = 1, ... , m.

We observe that equation (1.16) is obtained from the initial dictionary (1.13) by

multiplying the equation for Xn+i by Yi and summing. This is because variable

Xn+i appears only once in the initial dictionary, as the left-hand side of its defining

equation. (1.16) is a nonnegative combination of the original rows. This shows that

yTb = -b~ < 0 and that

m

L Yiaij = a~j 2:: 0 (j = 1, ... , n), (1.17)
i=l

again by the finiteness of the algorithm. Henee yT A 2: o. D

For constructive proofs of other classical theorems of linear algebra using

pivoting see [60].

14

1.2.2 Linear Programming and the Simplex Method

Linear programming is the problem of maximizing a linear objective function

subject to a system of linear inequalities, written in standard form as

n

maxz = LCjXj

j=l
n

"a··x· < b· ~ tJ J - t

j=l

X· > 0 J -

i = 1, ... ,m

j = 1, ... ,n.

(1.18)

There are three possible outcomes: optimality, infeasibility, or unboundedness. The

Simplex Method [19] is a two phase method for solving linear programs. Phase l

either computes a basic feasible solution to the system of inequalities or provides

a certificate of infeasibility. We will not elaborate on phase l as for the remainder

of this thesis we will assume that the linear program is feasible and that an initial

basic feasible solution is given. Of course we can add nonnegative slack variables

X n +l, ... , X n +m to the inequalities of (1.18) to obtain a system of linear equations,

n

L aijXj + Xn+i = bi

j=l

n

i = 1, ... ,m,

Z = LCjXj,

j=l

solve these m + 1 equations for m - n variables and z to obtain a dictionary,

Xi = b~ - L a~jxj
jEN

for i E B

where B is the set of indices of the basic variables, hereforth referred to as the

(1.19)

(1.20)

"basis" (and N the index set of the remaining indices - termed "cobasis"), and then

use the b-rule presented in the previous section to compute an initial basic feasible

15

solution for the linear program (instead of phase 1), with the value of z being the

objective value. For example, the linear pro gram

(1.21)

is encoded by the dictionary

(1.22)

Phase II of the simplex method attempts to increase the objective value by

exchanging a cobasic variable Xs with positive coefficient in the z-row with a basic

variable X r while maintaining a basic feasible solution. If aU the coefficients of

the cobasic variables are nonpositive, then the solution is optimal. Otherwise an

exchange is initiated and feasibility is maintained via a ratio test:

r = ratio(s) = argmin{b~/a~s : i E B, a~s > O},

where argmin returns the index i minimizing the given ratio. (If a~s ::; 0 for aU

i E B then the linear program is unbounded.) The new basic feasible solution

has objective value c~ ~~ more than previous solution. This exchange of variables
ars

is caUed an primaI admissible pivot, also known as a simplex pivot. In fact it is

the only operation of the simplex method; we repeat it until an optimal solution

is found or until we find a system where the coefficient of Xs is nonnegative in all

equations, yielding a direction of unboundedness. The sequence of bases visited

from the first feasible basis to the terminal basis is called a pivot path. For the

16

remainder of this thesis when "simplex method" will refer to only phase II, and

when we say "simplex pivot" we talk about a "primaI admissible pivot" .

Pivot rules (or refinements) dictate which variables to select. Combinatorial

pivot rules select an entering variable based solely on the sign of the coefficient.

Coefficient-based pivot rules select a variable depending on the magnitude of its

coefficient. There are many documented pivot rules, for ex ample [13], [14], [15], [19],

[29], [45], [51], [54], [70], [74], [93], [99], and [101] (for a survey on pivot rules see

Terlaky and Zhang [91]). Most of the pivot rules proposed can be made to follow,

on carefully constructed input, pivot paths whose length is an exponential function

of n and m (see [2], [5], [45], [61], [74], and [78]), and whether there exists a pivot

rule guaranteed to follow a path whose length is polynomial in n and m remains

the most important unsolved problem in the theory of linear programming. Despite

this mystery, the simplex method almost always terminates very quickly in practice,

its average-case behaviour theoretically justified in [1], [15], [48], [94], and more

recently [88].

The first pivot rule proposed, Dantzig's pivot rule [19], is widely used. It

chooses the variable in the z-row with largest positive coefficient, and breaks ties

in the ratio test arbitrarily (usually by selecting the variable with the smallest

index). In our example we would pivot on variables Xl and X5, the former chosen

as it has the largest positive coefficient in the z-row and the latter arbitrarily

chosen from X5 and X6 due to a ratio test tie - caused by degeneracy - (we chose X5)

yielding the dictionary:

Xl = 11x2 + 5X3 - 18x4 - 2X5

X6 = -4X2 - 2X3 + 8X4 + X5

Z = 53x2 + 41x3 - 204x4 - 20X5.

17

(1.23)

Degeneracy may cause the simplex method to stail, pivot to a new dictionary

without increasing the objective value. The simplex method cycles if it stalls

indefinitely, revisiting previously computed dictionaries. We will return to this

ex ample , and cycling in general, in Chapter 2. A pivot rule is finite if it avoids

cycling, guaranteeing termination. As we will see in Chapter 3, there are several

techniques that can be employed to make a pivot ru le finite.

Every maximization linear programming problem is associated to a dual

minimization linear program. The primal LP of (1.18) gives rise to the dual LP:

i=1
m

~a··y· > c· ~ lJ l - J

i=1

j = 1, ... ,n (1.24)

i = l, ... ,m.

Theorem 1.3 (The Duality Theorem). If the primal (1.18) has an optimal

solution (x't, x;, ... , x~,) then the dual (1.24) has an optimal solution (y~, y~, ... , y:n)

such that

n m

L CjX; = L biy;.
j=1 i=1

We refer to Chvatal's linear programming book [18] for the proof of the

duality theorem, and for a further (in-depth) introduction to the theory of linear

programmmg.

1.2.3 Polyhedra

We refer to Ziegler [102] for a detailed introduction into polytope theory, but

provide the essential background for this thesis in this section.

Points, lines, planes, and hyperplanes in d-dimensions are affine subspaces of

dimension 0,1,2 and d - 1. A point set K ç lRd is convex if with any two points

k1 , k2 E Kit also contains the straight line segment [k1 , k2] = p.k1 + (1 - >")k2 :

18

o :::; À :::; 1} between them. The intersection of convex sets is convex, and for any

K E Rd, the convex hull of K, conv{K}, is defined as the "smallest" convex set

containing K; the intersection of all convex sets that contain K.

An H -polyhedron P is the intersection of n closed halfspaces in Rd: P = {x E

Rd : af x :::; ai for 1 :::; i :::; n} where ai E Rd, and ai E R. A V -polyhedron is

the Minkowski sum of the convex hull of a finite set of points in Rd with a finite

number of rays in Rd: P = conv{p1, ... ,Pm} + cone{r1' ... , rm} where each ray ri

for i = 1, ... , m is defined as ri = {Xi + l'Yi: t ~ O} for any Yi =1- 0 (Xi, Yi E Rd).

Throughout this thesis we assume full dimensionality of polyhedra. A bounded

polyhedron (that contains no rays) is called a polytope. The faces of a polyhedron

Pare all the subsets of the form F = {x E P : aT x = a} for sorne a E Rd, and

a E R, where aT x :::; a is a: valid inequality for P; meaning that aT x :::; a is satisfied

for all x E P. The faces of Pare themselves polyhedra and the faces of dimensions

0,1, ... , d - 1, and k are called vertices, edges, ... , facets, and k-faces of P.

The inequalities of a linear program define an H -polyhedron P. To relate

results from polyhedral theory more easily, we will stray from the standard form

of (1.18) and instead use the following form (with Chapter 2 being the only

exception) :

and dictionary

d

maximize z = 'P(x) = L CjXj
j=l

d

subject to L aijXj :::; bi
j=l

Xi = b~ - La~jxj
jEN

19

(1.25)

for i = 1, ... , n,

for i E B (1.26)

with {l, ... , d} E B. The cobasic variables of a basic feasible solution correspond

to inequalities of P set to equality. The intersection of a set of these inequalities

defines a face of P, in particular the d inequalities corresponding to d cobasic

variables of a basic feasible solution intersect to form a vertex of P. Ad-polytope

is simple if every vert'ex lies on exactly d facets, and degenerate otherwise. A linear

function ex in Rd is in general position with respect to P if it attains different

values at each vertex of P. Thus the geometric interpretation of the simplex

method is that it tries to solve a linear program by pivoting along the boundary

edges of P from vertex Pi E P to vertex Pj E P such that 'P(Pi) < 'P(Pj) , but

possibly stalling on degenerate vertices.

The main theorem for polyhedra states that each H -polyhedron is a

V -polyhedron and vice versa. For simplicity we give the pro of for the polytope

verSIOn:

Theorem 1.4 (Main Theorem for Polytopes). Eaeh H - polytope is a

V -polytope, and eaeh V -polytope is an H -polytope.

Prao! (Minkowski- Weyl-Parkas). Let P = {x E ?Rd : a~x :::; ai for 1 :::; i :::; n}, and

let X be the set of vertices of P. We must prove that P = conv(X):

• conv(X) C P as each element of X, a vertex of P, must satisfy the inequali-

ties of P .

• To prove P C conv(X) we proceed by contradiction. Let X = {Xl' ... , xm}

and assume that P is not entirely contained in conv(X), that there is a point

pEP that is not a convex combination of Xl, ... , Xm : no).'1, À2' ... , Àm ~ 0 exist

such that

m

i=l
m

(v) : L Ài = l.
i=l

20

Then by Farkas Lemma (variant of Theorem 1.2) there exist multipliers u and

v such that u . p + v < 0 and u . Xi + V ~ 0 for i = 1, ... , m. 80 the following

linear program has negative optimum objective value.

minz =U· X + V

a; x ::; CYi for 1 ::; i ::; n.

The simplex method therefore returns a vertex q = Xj of P with uq + v =

UXj + v < 0, a contradiction. This implies that p E conv(X). This proves that

every H -polytope is a V -polytope. The proof that every V -polytope is a

H -polytope follows by polytope polarity (see [102]).

D

Theorem 1.5 (Upper Bound Theorem, McMullen [72]). A d-dimensional. .

polytope with n facets has no more than

(n - r~l) (n -1- rd;11)
1vl(d, n) = l~J + l d;l J (1.27)

vertices, where equality is attained only by the polars of neighborly polytopes (for

example, by the polars of cyclic polytopes - see [102, p. 15)).

This upper bound is a polynomial in n of degree l~J in the case of fixed dimension:

1vl(d, n) = e(nL~J) for fixed d. (1.28)

Definition 1.1 (Product of Polytopes). The product of two polytopes P ç ~d

and Q ç ~e is given by

(1.29)

The vertices of the product are given by

vert(P x Q) = {(Pi) : Pi E vert(P) } ,
qj qj E vert (Q)

(1.30)

21

and the facet-defining inequalities for P x Q are the inequalities of P together

with the inequalities of Q. Thus taking the product of two polytopes multiplies the

number of vertices and sums the number of facets.

p=

Q=D
Figure 1-1: Product of polytopes

Definition 1.2 (Combinatorially Equivalent Polytopes). Two polytopes P

and Q are combinatorially equivalent if there is a bijection between their vertices,

vert(P) = {Pl, ···,Pm} and vert(Q) = {ql, ... , qm}, su ch that for any subset

l ç {1, ... , m}, the convex hull conv{Pi : i E I} is a face of P if and only if

conv{ qi : i E I} is a face of Q.

Definition 1.3 (Normally Equivalent Polytopes). Two polytopes P and

Q are normally equivalent if they are combinatorially equivalent and each facet

conv{Pi : i E I} of P is parallel to the corresponding facet conv{ qi : i E I} of Q.

Definition 1.4 (Deformed Products of Polytopes [2]). Let P ç Rd be a

convex polytope, and i.p : P ---+ R a linear functional with i.p(P) ç [0,1]. Let V, W ç

Re be convex polytopes. Then the deformed product of (P, i.p) and of (V, W) is

(P, cp) ~ (V, W) := { C + cp(x~(w - vJ :
xE P } C Rd+e.

VEV,wEW -

p=

° 1 (P,X»< (V,W) =

r- - - -1

V= ~ ___ '

W=

Figure 1-2: Deformed product of polytopes

22

Definition 1.5 (Deformed Product Programs). FaT a Re ~ ~, define the

deformed product program as

where â : ~d+e ~ ~ is a linear function. The resulting linear program is the

deformed product polytope Q with objective function max a(u).

1.2.4 Hyperplane Arrangements

(1.31)

A hyperplane is a set h = {u E ~d : aTu = a} for sorne nonzero a E ~d,

and a E ~. A finite set of hyperplanes H in ~d induces a decomposition of ~d into

connected cells called an arrangement AH. The 0,1,2, (d - 1), and k-dimensional

cells of AH are termed vertices, edges, faces, facets, and k-cells. Two vertices of

AH are adjacent if they share d - 1 hyperplanes, in other words they share an

edge. An arrangement is central if a = ° for each hyperplane (passes through the

origin). We will assume that the hyperplanes are labeled as H = {hl, h2 , ••• , hn },

and that hyperplanes are oriented: each has a positive side and negative side that

are given by {u E ~d : aTu > a} and {u E ~d : aTu < a}. An arrangement

of oriented hyperplanes is an example of an oriented matroid, and shares all of its

features. In particular, each cell of the arrangement is represented as a signed vector

in {+, 0, - }n indicating the position of the cell with respect to the hyperplanes of

H. For a study on the combinatorial structure of arrangements, see [100] and [81].

Proposition 1.1. A polytope P ç ~d induces an arrangement of oriented

hyperplanes A p .

23

1.2.5 Geometrie Interpretation of Dictionary Coefficients

Given a linear program,

maximize

subject to

d

""" c·x . 6 J J
j=l

d

L aijXj ::; bi for i = l, ... , n,
j=l

(l.32)

add slack variables Xd+l, ... , Xd+n and compute an (extended) dictionary with basis

Band cobasis N:

Xl = b l - L aljXj
jEN

X2 = b 2 - L a2jXj
jEN

Xd = bd - L adjXj
jEN

Xi = b~ - L a~jxj for an i E B \ {l, ... , d}
jEN

(The original variable indices l, ... , d always remain in the basis in an extended

dictionary)

(l.33)

Definition 1.6 (Cobasie Gradient Matrix). Let GN be the matrix whose rows

consist of the (ordered set of) gradient vectors of the inequalities of (1.32) whose

slack variables are co basic in dictionary (1.33),

G N = [ajl ... ajd : {j + d} EN] .

Theorem 1.6.

24

where ak = (akl, ak2, ... , akd), C = (Cl, C2, ... , Cd), r E B \ {l, ... , dl, and sEN.

Interpreting the coefficients of a dictionary as a ratio of determinants is useful

because the determinant of a matrix has a geometric meaning. The determinant

is the signed hypervolume of the hyperparallelepiped generated by the vectors of

the matrix. The sign of a determinant is the orientation of the arrangement of the

vectors. Swapping two rows changes the order of sweeping out the volume, and

will hence turn a positive volume to negative or vice-versa. For example, consider

the matrix [~] with u, v E R2 as two 2-dimensional points u and v on the plane,

and complete the parallelogram that includes those two points and the origin.

The signed area of this parallelogram is the determinant. If you sweep clockwise

from u to v, the determinant 1 ~ 1 is negative; otherwise, positive. This geometry

is especially useful for understanding the geometry of a degenerate pivot. In this

thesis we will apply this geometric interpretation of dictionary coefficients: In

Chapter 3 we use it to improve upper bounds on the maximal number of stalling

iterations of the simplex method, in Chapter 6 we use it to compute objective

functions for pivot path enumeration. The proof of Theorem 1.6 is provided in the

Appendix.

25

CHAPTER 2
Cycling the Simplex Method

"Cycling is ceriainly not completely understood. J) - Hoffman, 1951.

2.1 Introduction

What is the magic behind cycling in the simplex method? Every textbook

on linear programming dedicates a section to cycling in the simplex method;

however, no single textbook provides the reader with a geometric intuition behind

cycling. This list includes the classic textbooks of Chvatal [18] and Dantzig [19],

and recent books such as Sierksma [86]. The examples are usually presented as a

sequence of dictionaries. Such presentations are sure to convince the reader that

simplex methods can cycle, but do not provide any insight behind the construction.

Consider the first cycling example, concocted by Hoffman in 1951 [49], [19, p.229],

26

with starting dictionary

Xo = 1

- cos 2<.pX7 - 2w COS
2 <.pX8 - cos <.pXg - W cos <.pXlO

X2 = - [(tan <.p sin <.p) / W]X3 - cos <.pX4 - [(tan <.p sin 2<.p) / W]X5 - cos 2<.pX6

+ 2(sin2 <.p/W)X7 - cos 2<.pX8 + [(tan <.p sin <.p)/w]Xg - cos <.pXlO

Z = [(1- cos<.p)/ cos <.p]X3 - WX4 - 2WX6 - 4sin2 <.pX7

+ 2w cos 2<.pX8 - 4 sin2 <.pXg - w(l - 2 cos <.p)XlO.

Ifwe set <.p = 27r/5,andw > (1- cos2<.p)/(l- 2cos<.p)::::; 4.74 the simplex method

using Dantzig's rule cycles through a sequence of 10 dictionaries l
. The le ft hand

side variables cycle repeatedly through the sequence {xo, Xl, X2}, {Xo, X2, X3}, ... ,

How was this ex ample constructed? Strangely, even Hoffman forgot!

((Finally, we regret that we are unable at this date to recall any details of

the considerations that led to the construction of the example, beyond the

fact that the geometric meaning of fa pivot rule for the simplex methodj

was very much in the foreground." - Hoffman, 1951.

((Two months after 1 made up the example, 1 lost the mental picture

which produced it ... " - Hoffman, 1994.

This is a shame, as geometry can certainly help students understand the sim-

plex method through a visual interpretation. In 1997 Lee [67] successfully untangled

l Note that in [19], [39], [49], and [67] the bound on W reads W > (1 - cos <.p)/(1 -

2 cos <.p) ::::; 1.81. In fact, the tighter bound presented here is required for Hoffman's
LP to cycle using Dantzig's pivot rule. See [9] for details.

27

the algebraic derivation of Hoffman's example, and using column geometry (origi­

nally known as the simplex interpretation [19, p.160]) produced a three-dimensional

picture. In Figure 2-1 we exhibit Hoffman's ex ample in two-dimensions using

the geometry of the dual simplex method, which was first explained and used to

construct cycles by Beale [11], but not used to analyze Hoffman's example:

"Unfortunately, the geometric motivation behind Hoffman's example is

not easy to grasp" - Beale, 1955.

In the next section we see how cycling works in this setting, by giving a simplified

version of this geometrical interpretation. We show that cycling examples obtained

from various linear programming texts have a similar structure, and many are

combinatoriallyequivalent. In Section 2.3 we give a simple method of constructing

examples that contain cycles of arbitrary even length. In Section 2.4 we use the

method to generate linear programs with m + n inequalities in n dimensions on

which the simplex method can cycle and visit 8(nm
) different bases.

Figure 2-1: A picture of Hoffman's cycle

2.2 Visualizing Cycles

For the remainder of this chapter we will deal with linear programs in the

standard form (1.18) with n nonnegative variables and m addition al inequalities.

28

Let's continue with our example from Chapter 1, the linear program

max z = 10XI - 57x2 - 9X3 - 24x4

O.5XI - 5.5x2 - 2.5x3 + 9X4 :::;: 0

O.5XI - 1.5X2 - O.5X3 + X4 :::;: 0

and starting dictionary

X5 = 0 - O.5XI + 5.5x2 + 2.5x3 - 9X4

X6 = 0 - O.5XI + 1.5X2 + O.5X3 - X4

Z = 0 + 10XI - 57x2 - 9X3 - 24x4.

The simplex method with Dantzig's rule visits the dictionaries

Xl = 11x2 + 5X3 - 18x4 - 2X5

X6 = - 4X2 - 2X3 + 8X4 + X5

Z = 53x2 + 41x3 - 204x4 - 20X5,

Xl = -O.5X3 + 4X4 + O.75x5 - 2.75x6

X2 = -O.5X3 + 2X4 + O.25x5 - O.25x6

Z = 14.5x3 - 98x4 - 6.75x5 - 13.25x6,

X2 = Xl - 2X4 - O.5X5 + 2.5x6

X3 = -2XI + 8X4 + 1.5X5 - 5.5x6

Z = -29xI + 18x4 + 15x5 - 93x6,

29

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

X3 = 2XI - 4X2 - 0.5X5 + 4.5x6

X4 = 0.5XI - 0.5X2 - 0.25x5 + 1.25x6

Z = -20XI - 9X2 + 10.5x5 - 70.5x6,

X4 = -0.5XI + 1.5X2 + 0. 5X3 - X6

X5 = 4Xl - 8X2 - 2X3 + 9X6

Z = 22xI - 93x2 - 21x3 + 24x6,

(2.6)

(2.7)

and returns to dictionary (2.2), cycling through the sequence of bases {5, 6}, {l, 6},

{1,2}, {2,3}, {3,4}, {4,5}, {5,6} ... The six inequalities of the linear program (2.1)

define a four-dimensional polyhedron, and the simplex method cycles among the

bases of a single vertex. This geometry cannot help us visualize the cycle. In 1955,

Beale [11] constructed a cycle for the simplex method by considering the geometry.

of the dual problem. The dual of (2.1) is

min w = OYI + OY2

(1) : 0.5YI + 0.5Y2 :::: 10

(2) : -5.5YI - 1.5Y2 :::: -57

(3) : -2.5YI - 0.5Y2 :::: -9

(4) : 9YI + Y2 :::: - 24

(5) : YI :::: 0,

(6) : Y2 :::: 0

(2.8)

which has six inequalities in two dimensions. We can also write the dual problem

in dictionary form. In fact, the dual dictionary is simply a disguised version of the

(primaI) dictionary for the primaI: the transposed system with signs reversed.

30

Table 2-1: PrimaI and dual dictionaries

X5 = 0 - O.5XI + 5.5x2 + 2.5x3 - 9X4
X6 = 0 - O.5XI + 1.5X2 + O.5X3 - X4
Z = 0 + 10XI - 57x2 - 9X3 - 24x4

Y3 = -10 + O.5YI + O.5Y2
Y4 = 57 - 5.5YI - 1.5Y2
Y5 = 9 - 2.5YI - O.5Y2
Y6 = 24 + 9YI + Y2
W = 0 + OYI + 0Y2·

In the dual simplex method the w-row is assumed to have all coefficients

nonpositive (dual feasibility). The leaving basic variable is chosen from the basic

variables with negative constant on the right hand side of the dictionary. A ratio

test is used to choose the entering variable so that the w-row remains nonpositive.

It is easy to verify that the dual simplex method applied to the dual problem will,

with a suitably chosen pivot rule, follow the same sequence of pivots as the primaI

simplex method do es on the primaI problem. The sequence of bases for the primaI

problem becomes the sequence of cobases for the dual problem, and vice versa.

Graphing (2.8), the geometry behind a simplex method cycle begins to unveil. We

obtain an arrangement of lines, each bounding an inequality of (2.8). Figure 2-2

depicts this arrangement.

The two-dimensional geometric interpretation of the dual simplex method is

simple when the objective function is zero. For the time being, let's ignore specific

pivot rules and consider simplex pivots in general. Every line in the arrangement

corresponds to a variable in the dual dictionary. The slack variable Yi for i = 3, ... , n

corresponds to line i-2, while YI and Y2 correspond to lines n-l and n respectively.

Each intersection of lines corresponds to a basic dual solution obtained by

setting the two corresponding variables to zero. These are the two dual cobasic

variables for a corresponding dual dictionary. For example, the dual dictionary in

Table 2-1 with cobasis {1 ,2} corresponds to the intersection of lines labelled 5 and

6. (Notice that variable Xi of a primaI dictionary conveniently corresponds to line i

of the dual diagram!) The basic variable chosen in a pivot corresponds to a violated

inequality: in our case the intersection point lies on the wrong side of line 1, so

31

100

Figure 2-2: Chvatal's ex ample [18]

Y3 is the leaving basic variable. The entering variable is chosen from those with a

positive coefficient in the equation for the leaving variable, so that that the new

basic solution will satisfy the inequality corresponding to the entering variable. In

the example we could choose either YI or Y2 as the entering variable. However from

the cobasis {1,6} we could pivot to the cobasis {1,2} sinee this is on the correct

side of li ne 4. We could not pivot to cobasis {3,6} as this is on the wrong side of

line 5. A negative basic variable indicates a degree of infeasibility, for ex ample

Y3 = -10 + 0.5YI + 0.5Y2 indicates that at the intersection of line 5 and line 6, line

1 is infeasible by ~.~ units along line 5 and by ~.~ units along li ne 6 with respect

to the vector spaee basis {YI, Y2}. The dual simplex method terminates when it

reaches a point where either no inequalities are violated (optimality) or when it

cannot pivot to a violated inequality without violating one of the two intersecting

lines (dual infeasible).

32

It is now routine to check that the cycles shown in Figure 2-1 for Hoffman's

ex ample , and Figure 2-2 for our example correspond to valid dual simplex piv-

ots. It follows that the primaI problems pivot through the same cycles, with

basesjcobases interchanged. It is more convenient to remember that variable Xi of a

primaI dictionary conveniently corresponds to line i of the dual diagram.

Our example is derived from the following ex ample found in Chvatal's book.

The first dictionary of the cycle is presented as

(2.9)

and consists of seven variables and three equations. However, variable X7 never

leaves the basis as the cycle only pivots on the variables Xl through X6. The

equation X7 = 1 - Xl only serves to bound the linear program but can be removed

from dictionary (2.9) without affecting the cycle. It turns out that many other

examples found in literature, including Hoffman's, can be reduced in this way and

then graphed in two-dimensions. In fact, many are then combinatorially equivalent.

Yudin and Gol'shtein [98]

Xl = 0 - 2X3 + 3X4 + 5X5 - 6X6

X2 = 0 - 6X3 + 5X4 + 3X5 - 2X6

Z = 0 + X3 - X4 + X5 - X6

33

Yudin and Gol'shtein [98]

Xl = 0 - X3 + 2X4 + 3X5 - 4X6

X2 = 0 - 4X3 + 3X4 + 2X5 - X6

Z = 0 + X3 - X4 + X5 - X6

Table 2-2: Sorne exarnples of cycling found in literature

Beale [11]
X5 = 0 - lXI + 60X2 + 2~5X3 - 9X4

X6 = 0 - "2XI + 90X2 + 50X3 - 3X4

Z = 0 + ~XI + 150x2 + 510X3 - 6X4

Solow [87]

Xl = 0 + 7X3 + 3X4 - 7X5 - 2X6

X2 = 0 - 2X3 - X4 + 3X5 + X6

Z = 0 + 2X3 + 2X4 - 8X5 - 2X6

Chvatal [18]

X5 = 0 - O.5XI + 5.5x2 + 2.5x3 - 9X4

X6 = 0 - O.5XI + 1.5X2 + O.5X3 - X4

Z = 0 + 10XI - 57x2 - 9X3 - 24x4

34

Sierksrna [86]

X5 = 0 - Xl + 32x2 + 4X3 - 36x4

X6 = 0 - Xl + 24x2 + X3 - 6X4

Z = 0 + 3XI - 80X2 + 2X3 - 24x4

5

Kuhn [10]

Xl = 0 + 2X4 + 9X5 - X6 - 9X7

X2 = 0 - ~X4 - X5 + ~X6 + 2X7

Z = 0 + 2X4 + 3X5 - X6 - 12x7

In an eight examples in Table 2-2, the primallinear program (after reduction

to 2 equations) is unbounded. Thus, by duality theory, aIl six dual linear programs

above are infeasible. Nonetheless, the simplex method cycles without detecting this

facto (Note that the shaded region in Figure 2-1 corresponds to the feasible set of

Hoffman's duallinear program).

In no way is the geometry described in this section constrained to cycles with

m = 2, as when m = d oriented lines become d-dimensional oriented hyperplanes

and a dual simplex pivot has an analogous description to its m = 2 counterpart.

The geometry can be used to explain cycling examples with m ~ 3 such as [32], [68]

and [77]. For the time being we choose to restrict ourselves to the two-dimensional

interpretation for simplicity. In Section 2.4 we will elevate to m = d for any d.

2.3 Constructing Cycles

"Constructing an LP problem on which the simplex method may cycle is

difficult. " - Chvatal [18, p. 33], 1982.

Every two-dimensional arrangement of k inequalities can be encoded as a

primaI dictionary with k equations and k + 2 variables. For the time being let's

ignore specific pivot rules and consider simplex pivots in general. Only two basic

rules need to be followed to build a simplex method cycle:

1. Each pivot must be a simplex pivot: the pivot step from the intersection of

lines rand s to the intersection of lines rand t is a simplex pivot if and only

if the inequality bounded by t is violated at {r, s} and the inequality bounded

by s is satisfied at {r, t}.

2. The cycle must be represented by closed loop in the diagram.

The path consists of an alternating series of left and right turns in the line

arrangement, as the next point must always satisfy the two currently intersecting

lines.

35

Table 2-3: Left and right turns

We use this fact to construct a cycle from scratch and the reader can follow the

construction in Table 2-4. First, using line segments we draw a path consisting of

an alternating series of left and right turns that forms a closed loop. Note that the

number of points must be even to form a closed loop, and the loop can indeed be

self-crossing (as in Table 2-5). Next, we choose coordinate axes (YI, Y2), and lines

bounding YI ~ 0, Y2 ~ 0 so that the loop lies in the positive quadrant.

Table 2-4: Constructing cycles from scratch

}2:
, ,
,
, , , , ,

_____ ~_- __ -__ ----- __________________________ 1_
: ~ ,

minOYI + OY2
(1) : -YI ~ -10
(2) : YI ~ 15
(3) : -Y2 ~ -10

-t (4) : Y2 ~ 15
(5) : lOYI + Y2 ~ 175
(6) : -10YI - Y2 ::; -100
(7) : YI - 10Y2 ~ -70
(8) : -YI + 10Y2 ~ 150
(9), (10) : YI, Y2 ~ 0

We then fit a line through each line segment in the loop. For each line assign

a direction of feasibility which coincides with the path. Compute these inequalities

36

with respect to (YI, Y2), and add a zero objective function to obtain a dual LPo

By duality, we convert to a primaI LP, add slack variables, and compute an initial

dictionary:

(2010)

z = -5XI - 15x3 + 10x4 - 75x6 - 165x7 + 85xs - 15xg - 25xlOo

Now simplex pivots in our diagram correspond to simplex pivots in the primaI

linear program, cycling repeatedly through the sequence {X2,X5}, {X2,XS}, {X4,XS},

{X4,X6}, {XI,X6}, {XI,X7}, {X3,X7}, {X3,X5P 0

In order for the cycle to follow a specific pivot rule, an additional step is

requiredo Note that for each inequality, ailYI + ai2Y2 :S; bi for i = 1, 000,8, we

can scale both sides by a positive constant Ci at will as ailYI + ai2Y2 :S; bi {:}

Ci(ailYI + ai2Y2) :S; Cibio These constants in turn scale the primaI variables, yielding

the dictionary,

1 10 10 101 101
X2 = 0 + -Xl - -X3 + -X4 - -X7 + -Xs

C2 C2 C2 C2 C2
(2011)

1 1 1 10 10
X5 = 0 + -X3 - -X4 + -X6 + -X7 - -Xs

C5 C5 C5 C5 C5

Z = -5CIXI - 15C3x3 + 10C4x4 - 75C6X6 - 165C7x7 + 85Csxso

By pivoting along the desired cycle, the corresponding dictionaries constrain

the values of Ci we can choose so that the pivot rule is followedo For example,

2 We can ignore variables Xg and XlO as they are not involved in the cycle 0 They
correspond, respectively, to inequalities YI 2: 0 and Y2 2: 0 of the dual LP which are
only used to specify the coordinate axes

37

for the first pivot to follow Dantzig's rule we need 85G8 > 10G4 in the primal

dictionary. We accumulate all the constraints on Ci in this manner, and only if

we find satisfying values for the Ci 's then following the pivot rule yields the cycle.

(The reader can easily check that for any dictionary the coefficient for variable Xj

in the z-row is strictly a multiple of Cj .) In our example we need 85C8 > lOC4 ,

85C6 > lOCI, 80C7 > 10C3 , 135C5 > 15C2 , thus setting Ci = 1 for i = 1, ... , 8 results

in a simplex method cycle following Dantzig's pivot rule.

This pro cess has a geometric analogue that can guide us to construct a

diagram to ensure that Dantzig's rule (or any other coefficient based rule) will

follow the loop. The sufficient condition is as follows: given a diagram, for each

point along the loop we list the pivot rule requirements for the cycle to be followed.

For example, at point A in Table 2~5 we want to pivot to violated line 4 instead of

line 2 or 6 which are also violated at A. This translates into constraints C4 > C2

and C4 > C6 . Similar constraints are obtained from all points E, C, D, E and F

along the cycle. If the set of constraints are satisfiable, as is the case here, then

there exist Ci's large enough such that Dantzig's rule will cycle on the resulting LP.

Of course the challenge is to draw a diagram with this in mind!

Table 2~5: Crossing loop

38

point A : C4 bigger than C2 and C6

point E : C6 bigger than C2

point C : only line 2 violated
point D : C3 bigger than Cl and C5

point E : C5 bigger than Cl
point F : only li ne 1 violated

2.4 New Bounds on Cycle Lengths

The length of a simplex method cycle is defined as the number of different

bases involved in the cycle. Given a linear program with n nonnegative variables

and m inequalities (m + n inequalities in n dimensions), how long can a cycle be?

Theorem 2.1 (Beale [11], Yudin and Gol'shtein [98]). The minimum length

of a simplex method cycle is at least six.

Theorem 2.2 (Marshall and Suurballe [68]). A cycling example must have

m 2: 2, n 2: 6 and n 2: m + 3.

Many of the cycling examples found earlier in this chapter have length six,

and in our initial ex ample (2.1) m = 2 and n = 6. It is an interesting problem

to determine the maximum length of a simplex method cycle, both for special

refinements (such as Dantzig's rule) and in general (choose the entering variable

arbitrarily). Let S(n, m) be the maximallength of a simplex method cycle for

a linear program with n nonnegative variables and m inequalities. If we define

S,(n, m) to be the maximallength of a simplex method cycle following pivot rule Î,

then S,(n, m) :S S(n, m), and in particular SDan(n, m) :S S(n, m) for Dantzig's rule.

Theorem 2.3. SDan(n, m) is O(n) for m 2: 2, n 2: 6.

Proof. In the previous section we provided examples with n = 6,8 on which the

simplex method cycles following Dantzig's rule with cycle length n. The family of

cycles of length n 2: 10 derived by Lee [67J can be made to follow Dantzig's rule.

We show that Lee's cycles can be made to satisfy the sufficient condition presented

in Section 2.3.

Lee's ex amples consists of 2k inequalities, for k 2: 5, k of which define a regular

k-polygon. The polygon inequalities are given odd labels in an anti-clockwise

order, such that the vertices of the polygon are the intersection of lines i and

(i + 2) mod 2k for i = 1, ... , 2k - 1 and odd. We caU the intersection of lines i and

(i + 4) mod 2k, denoted {i, (i + 4) mod 2k}, for odd i = 1, ... , 2k - 1 a star point. Let

39

Cl be the circle that contains aIl k star points, and rI its radius. Let C2 be the circle

sharing center with Cl with radius r2 > rI.

Star points

Figure 2-3: Lee's cycle with k = 6

The k inequalities with even label aredefined as follows: inequality i, for

i = 2, ... , 2k and even, is bounded by the line through the two points a) star point

{(i + 3) mod 2k, (i - 1) mod 2k} and b) the intersection point of line (i + 1) mod 2k

and circle C2 on the violated side of inequality (i + 5) mod 2k. The direction of

all the inequalities are chosen so that the regular k-polygon represents the dual

feasible set. Figure 2-3 depicts the case when k = 6. The simplex method cycles:

from a point on Cl, {i, (i + 3) mod 2k}, to a point on C2, {i, (i + 1) mod 2k}, to a

point on Cl, {(i + 2) mod 2k, (i + 1) mod 2k}, and so on ... for odd i = l, ... , 2k - l.

We can translate this cycle into dictionary notation with scaling parameters

Cl, C2 , ... , C2k on the variables. Then whenever we lie on an intersection point on C2,

{ i, (i + 1) mod 2k} for odd i, we require q i+3) mod 2k to be greater than C(i+4) mod 2k

and C(i+6) mod2k in order for the cycle to follow Dantzig's rule. These are the only

constraints on the cycle and they do not confiict, satisfying the sufficient condition

presented in the previous section. (For n = 10, Hoffman's cycle, w is the scaling

parameter). 0

40

S(n, m) is O(nm) by the trivial upper bound given by the maximum number

of bases: (n~m). We will now show constructions which prove that S(n, 2) is 8(n2),

and more generally that S(n, m) is 8(nm) for n ~ 3m with m ~ 2 fixed and even.

For all our constructions we will continue to use the geometry described in Section

2.2.

Lemma 2.1 (S(n, 2) is O(n2
)). Wh en m = 2 the simplex method can cycle through

O(n2
) bases.

Proof. The idea is to use n = 3k + 3 bounding lines, 2k to form a k x k grid, k - 1

lines to act as turn lines, and then 4 loop lines to close the loop (for an example

with k = 7 see Figure 2-4):

grid lines: (i)fh : YI ~ (i - 1) ~o for i = 1, ... , k,

(k + i) th : Y2 :::; (i - 1) IkO

turn lines: (2k + i)th : 12YI - Y2 ~ 1 + 12iIkO for i = 1, ... , k - 1,

loop lines: (3k)th : 12YI - Y2 ~ -11

(3k + l)th : -YI + 12Y2 :::; -11

(3k + 2)th : 6YI - 4Y2 :::; -3

(3k + 3)th : -4YI + 6Y2 ~ -3.

Starting at the intersection of lines 1 and 3k we perform k simplex pivots down

line 1 from {1, 3k} to {1, 2k} to {1, 2k - 1} ... to {1, k + 1}, each time satisfying the

violated (k + i)th inequality for i = 1, ... , k. We then pivot to the first turn line, the

intersection point {1, 2k+ 1}, from which we turn (pivot) to {2, 2k+ 1} and perform

k simplex pivots down line 2 using grid lines. Then we turn using line 2k + 2, and

so on ... We repeat this process, turning k - 1 times and traversing the grid until we

reach the grid point {k, k + 1}. We then use the four loop lines to close the cycle

(just as in Figure 2-4 - the loop lines are invariant with respect to parameter k)

41

1- 2- 31-+ 41-+ Sr-- 6r-- k=7-
.~

1

1
i i , ,

1
1

1 1
1 1 (l,3k=21) 1

1
1

1 1 2k=14 i 1 1

i II 1 J 1 / ~I !
i 1
f ::2{

! 11 oc' ",1 grid lines
f -/ -1 -/ i "'1 f '"'f 13

!

1
/

1

1 1 1
!

f 1 1 1

1 1

/ / 1 1 1 1 1 1 12

f 1 1

1 1 / 1 !
1 f 1

i

1 1 1 1
1 1 1

1 1
1 f II

i

1
1 1

1 1 1
!

1 1
1 / t / ! 1

1 1 10

1 j 1 1 1 1 1 ! 1 ! 1 1
! fL 1 1 1 i

l- f- 1 1 l--- 1 r-- 1'---- ï 1 1 9
i 1 1 1 1 1 1 !

,j 7 i 1 1 1
1 ! 1 ! 1
1

./
1 1 1

J : 1 1
1 ,/ 1 k+.I.""8........--

looPlinesl > 1
Il r 11------- ~---- r ~ +
1 •... 11--'------- 1 1

1

iJ?F
......... ,

.'.

tumline,;

Figure 2-4: S(n,2) is D(n2
)

and return to {l, 3k}. Note that each pivot is a valid dual simplex pivot and that

there are k 2 + 2k + 3 bases along the cycle.

2.4.1 Products of Arrangements

Our goal is to construct a family of linear programs on which the simplex

method cycles and visits almost aU (n~m) bases. Our approach is to take products

of linear programs with long cycles; to use our low-dimensional constructions to

generalize to higher dimensions. We first define products of arrangements - an

extension of products of polytopes.

Proposition 2.1. Each cell of an hyperplane arrangement is a polyhedron.

42

o

Definition 2.1 (Product of Arrangements). Given two arrangements A p and

the product A p x AQ is the arrangement

(2.12)

Proposition 2.2. The face poset of a product of arrangements is independent of

the hyperplane orientations.

Note that if we set a bounded œIl P of A p and a bounded œIl Q of AQ to have

positive sigh vectors, then the product of arrangements A p x AQ is the induœd

hyperplane arrangement of the polytope product P x Q. We now extend sorne

of the facts about products of polytopes to express the properties of products of

arrangements. We facilitate understanding by providing an example (see Figure

2~5) on which the reader can verify the theorem's statements.

~ ~
1 1

1
1

t

t

ApxAQ =
~ : t ___________ _

1

t

'"-
t : ,

'"­, , ,

Figure 2~5: Product of arrangements

~ , , ,
~
1
1
i

Theorem 2.4. Let Aw be the product of arrangements A p ç ~d and AQ ç ~e 7

then:

43

• If A p has p vertices and r hyperplan es, and if AQ has q vertices and s

hyperplanes, then Aw := A p x AQ is an arrangement ç ~d+e and has p' q

vertices and r + s hyperplanes.

• Specifically, if {Pb ... , pp} are vertices of A p , {ql' ... , qq} the vertices of AQ,

then we can define the p. q the vertices of Aw, denoted w(i,j), as:

('") (Pi) W Z,) = qj : (2.13)

• Given the set of cells Cp and CQ corresponding respectively to arrangements

A p and AQ, then the cells ctv E Aw are defined as the product of cells

C~ E A p with C~ E A Q : ctv = C~ x C~ for allj,k.

The edge set of Aw consists of two types of edges:

• Ap-edges of the form [w(i',j),w(i",J)] for 1 S j S q and for any 1 S i',i" S

p such that Pi' and Pi" are adjacent vertices of Ap and

• AQ-edges of the form [w(i,j'),w(i,j")] for 1 SiS P and for any 1 S j',j" S

7j such that qj' and qj" are adjacent vertices of A Q "

2.4.2 The Construction

We are almost ready to explain how to build a long cycles in higher dimensions

using a product of two arrangements on which the dual simplex method cycles

respectively. First let's generalize the geometric description of the dual simplex

method presented in Section 2.2 to higher dimensions. Starting at a vertex defined

by a set H of d intersecting hyperplanes, a pivot is the operation of exchanging a

hyperplane hi E H for a hyperplane hj tt H that intersects the edge H\ { hi}' This

results in a second vertex defined by H' : = H\ { hà u { hj }. There exists a one-to-one

correspondence between the n hyperplanes in dimension d = m and n nonnegative

variables of a linear program with m inequalities. Each vertex of the arrangement

corresponds to a basis.

44

Definition 2.2 (Infeasible Vertex). A vertex Pi of an orienied hyperplane

arrangement is infeasible if some oriented hyperplane (inequality) h E H is violated

at Pi.

Definition 2.3 (Dual Simplex Pivot). For every infeasible vertex P defined by a

set H of d intersecting hyperplanes, there exists an oriented hyperplane hj ~ H that

is violated at p. A pivot from p to vertex p', defined by H' := H\ {hi} U {hj }, is a

simplex pivot if p' lies on the nonnegative si de of hi·

When the objective function is zero, the dual simplex method performs

dual simplex pivots and terminates when it reaches a vertex where either no

oriented hyperplanes are violated (optimality) or wh en it cannot pivot to a violated

hyperplane without violating one of the d intersecting hyperplanes defining the

current vertex (dual infeasible / primaI unbounded).

We now describe a product of cycles. Let A p be an arrangement of r oriented

hyperplanes in ~d with a cycle of length l from Pl to Pl to Pl ... Similarly let AQ be

an arrangement of s oriented hyperplanes in ~e with a cycle of length li from ql

to fJk to ql··· Compute the product Aw = A p x AQ. Starting at vertex w(1, 1) of

Aw we can take l - 1 simplex pivots along Ap-edges to w(l, 1), then pivot once

along an AQ-edge to w(l, 2), and pivot once to w(1, 2) (which would complete the

cycle if were were solely on A p). From w(1, 2) we pivot once along an AQ-edge to

w(1, 3), and then take 1- 1 simplex pivots along Ap-edges to w(l, 3), and continue

in this manner: -> w(l,4) -> w(1,4) -> w(1,5) -> ... -> w(l,5) -> w(l,6) ->

w(1,6) -> w(1, 7) -> ... -> w(l,7) -> ... We keep pivoting until we reach w(1, li)

at then we close the loop by pivoting to w(1, 1). The length of the cycle in Aw is

(l + 2) l ~ J + (li + 1) mod 2. The cycle in Aw corresponds to a cycle in a linear

program with r + s nonnegative variables and d . e inequalities.

45

w(l,k)

Il 1 I:l
Ap= 1 : :

~: •. ~.~.~:--~.~i--~.~:--~.~i--~~~ : +" ······r
ApxAQ =!

~=
:1 : ::k
.::.H:. U .. ~:. ~:~

: w(1,3)
: JO Il

w(z,3) • : :

\w€1,2) w(l,2)
.... ········f

~ '
" ."

.. Il

w(1,l) w(l,l)

Figure 2-6: (Imaginary) product of cycles

To visualize this product of cycles, let 's make believe that the dual simplex

method can cycle in one dimension. If this were to be true, then Figure 2-6 would

depict the product of two one-dimensional cycles yielding a cycle of dimension two.

Theorem 2.5. For s ~ 6, n ~ 6, n ~ m + 3, m ~ 2, and some constant C > 1,

S2

S(n + s, m + 2) ~ C . S(n, m). (2.14)

Proof. Take a linear program with n nonnegative variables and m inequalities which

has a cycle of length 1 = S(n, m). The corresponding arrangement Ap consists of

n oriented hyperplanes in dimension m. Now take the product of arrangements

A p and AQ where AQ is defined as in Lemma 2.1 with a total of s lines. Byour

product of cycles construction, the resulting product yields a simplex method cycle

of length greater than (S(n, m) + 2) l ;~ J + (~ + 1) mod 2 ~ ~ . S(n, m) for sorne

constants C, K > 1. 0

Corollary 2.1. For n ~ 3m, m ~ 2 and even, S(n, m) = D(nm). More specifically,

for some constant C > 1:

S(n,m) ~ lm
2ncJm (2.15)

46

Proof. (By induction)

8 2

S(8t,2t) 2 C S(8(t - 1), 2(t - 1))

t times

(2) t-l
2 ~ S(8,2)

by Lemma 2.1.

Substituting for m = 2t and 8 = ;;:, we get

(2.16)

o

Corollary 2.2 (Main Theorem). For fixed m, the function S(n, m) grows like a

polynomial of degree m in n:

S(n, m) is 8(nm) for n 2 3m for fixed and even m 2 2.

S(n, m) is D(nm- 1
) for n 2: 3(m - 1) for fixed and odd m 23.

(2.17)

(2.18)

In order to tighten our bound when m is odd, we require a base case cycling

example with odd m of length 8(nm). By Theorem 2.2 S(n, 1) = 0, and so our next

best hope is to find an ex ample with m = 3 of length 8(n3
).

Remark 2.1. We require n 2 3m when we take iterative products of the basic

construction presented in Lemma 2.1. Sa while we can construct cycles of length

8(nm), when n 2 3m S(n, m) is asymptotically less than the maximal number

of vertices that a n- dimensional polytope with n + m ::; l4; J faeets can have,

which is 8((n + m)l%J) by McMullen's Upper Bound Theorem (72], sinee O(nm) <

D ((n + m) l 3; J) .

Open Problem 2.1. Construct a family of cycling examples with odd m with cycle

length 8(nm).

47

Open Problem 2.2. Construct cycles whose length (asymptotically) exceeds

8((n + m)L~J).

Open Problem 2.3. Tighten the bounds on SDan(n, m), currently O(n) and

O(nm), and for other pivot rules.

48

CHAPTER 3
Stalling the Simplex Method - Part 1

3.1 Introduction

While degeneracy can cause most refinements of the simplex method to cycle,

there exist employable techniques which, when used, guarantee that the simplex

method will terminate. The most primitive device for avoiding degeneracy, let alone

cycling, is the perturbation method1 [17]. Degeneracy is avoided by perturbing the

linear program by adding a small Ei to the i th inequality with Ei < < Ei+l so that

the resulting inequalities define a simple polyhedron P, and the simplex method

then follows a strict (objective value increasing) monotone path along the edges of

P. The Ei 's must be small, usually in the order of 10-6
, and require extra special

arithmetic precaution during an iteration of the simplex method or they may wreak

numerical havoc. The lexicographie method [20], [96] is a more sophisticated scheme,

an implementation of the perturbation method where the Ei 's are treated as symbols

[18, p. 34]. It do es not modify the input, rather it defines an order on a subset of

the bases, the lex-positive bases, such that with each degenerate pivot the objective

1 We only study perturbation of the b-vector of a linear program. Perturbations
of matrix A are also possible, used in matrix analysis [63].

49

function increases lexicographically. The (lexicographie) ratio test requires extra

computation to ensure that subsequent bases remain lex-positive.

The simplest way of avoiding cycling, which wins with respect to finding

lia way of avoiding (cycling] that involved as little extra work as possible"

- G. Dantzig [19, p.231],

is Bland's least-index pivot rule [13]. For a linear program

and a dictionary,

d

maximize z = L CjXj

j=l

d

subject to L aijXj :s; bi

j=l

Xi = b~ - L a~jxj
jEN

for i = 1, ... , n,

for i E B

with feasible basis Band cobasis N, an iteration of the simplex method with

(3.1)

(3.2)

Bland's rule selects the least-indexed cobasic variable X s with a positive coefficient

in the z-row as the entering variable and chooses the leaving variable, X r , by

performing a ratio test,

r = ratio(s) = argmin{bUa~s : i E B, a~s > O},

where argmin returns the smallest index i minimizing the given ratio. Recall that

if no such X s is found, then the basis is optimal. If a~s :s; 0 for all i E B, then the

linear program is unbounded.

Theorem 3.1 (Bland [13]). The simplex method with Bland's rule is jinite.

Proof. (By contradiction.) Assume that the simplex method with Bland's rule fails

to terminate on a particular linear program LP, that it cycles on a degenerate

50

sequence of bases never increasing the objective value. The dictionaries in this cycle

will have the form

Xi = 0 - La~jxj
jEN

Xi = b~ - La~jxj
jEN

for i E B (3.3)

for i E B \ B

where the basic variables with indices in B \ B remain basic throughout the cycle.

We can omit these rows of the dictionaries without altering the cycle. Thus we can

reduce the LP into the following form:

The dual of (3.4) is:

d

maxz = LCjXj

j=l

d

'"'a--x- < 0 ~ ~J J-
j=l

X- > 0 J -

n-d

minw = Lo. Yi
i=l

n-d

'"'a--y- > c­~ ~J ~ - J

i=l

i = 1, ... , (n - d)

j = 1, ... ,d.

j = 1, ... ,d

i = 1, ... , (n - d).

If the primaI simplex method with Bland's rule cycles on (3.4), then the dual

simplex method with Bland's rule will cycle on (3.5). Note that the objective

function of (3.5) is zero, making each pivot step of Bland's rule equivalent to a

pivot step of the b-rule presented in Chapter 1. Here lies the contradiction as

51

(3.4)

(3.5)

the b-rule, and thus the simplex method with Bland's mIe, is finite by Theorem

1.1. []

(Also see Fujishige [28] for another simple proof of the anticycling nature of Bland's

mIe.)

Most linear programs arising in practice are degenerate to sorne degree

and, despite anti-cycling theory, degeneracy remains a problem in practice. For

example, linear relaxations of many combinatorial optimization problems are highly

degenerate. Aigorithms employing the lexicographie (perturbation) method or

Bland's mIe might perform an exponentially long sequence of degenerate pivots.

This phenomenon is known as stalling. In 1995 Boyd [16] noted practical examples

where "the choice of anti-cycling scheme meant the difference between solving or not

solving the linear program." In particular, Ryan and Osborne [83] discuss aircrew

scheduling problems where prolonged stalling prevented them from computing

a solution. Even state-of-the-art linear programming codes, usually employing

heuristics to combat st alling , throw caution at the prospect of degeneracy and

suggest user interruption in the case of excessive stalling:

"The majority of LP problems solve best using Cplex's state of the art

modified primai simplex algorithm... . .. [but} highly degenerate problems

with little variability in the right-hand-side coefficients but significant

variability in the cost coefficients often solve mu ch faster using dual

simplex... . .. consider trying dual simplex if numerical problems occur

while using primai simplex." - Cplex 7.5 User Notes.

A vis and Chvatal [5], and later Megiddo [73], have proved that the problem of

leaving a degenerate vertex of a linear program with n inequalities in d dimensions

is equivalent to solving a nondegenerate linear program with parameters linear in n

and d. In other words, any refinement of the simplex method that could guarantee

polynomial-Iength stalling at a degenerate vertex in the worst-case would also solve

52

a linear program in strongly polynomial time. Until such a pivot rule is discovered,

we must continue to live with degeneracy and st rive to better understand stalling.

For starters we should improve the theoretical bounds on the maximum number of

degenerate iterations at a vertex.

In the case of the lexicographie method, the maximum number of iterations

required for the simplex method (with any refinement) to terminate on a degenerate

linear program with n inequalities in d dimensions is O(nL~J) by McMullen's Upper

Bound Theorem [72] as each lex-positive basis is in a one-to-one correspondence

with a vertex of a simple d-polyhedron defined by n facets. Amenta and Ziegler

[2] have shown that there exist nondegenerate constructions for most refinements

of the simplex method where the numberof iterations is e(nL~J). It follows that

there exists constructions requiring n(nL~J) degenerate iterations: Let a completely

degenerate linear program be defined as in (3.1) with bi = 0 for i = 1, ... , n. Define

D(d, n) to be the maximum number of bases that the simplex method visits on a

completely degenerate linear program with n inequalities in dimension d. (D(d, n)

represents the maximum number of stalling iterations on a degenerate vertex that

lies at the intersection of n facets in d dimensions.)

Proposition 3.1. D(d, n) = n(nL~J)

Pro of. Take a nondegenerate worst-case ex ample LPnon of the form (3.1) attaining

e(nL~J) iterations [2]. Assign b~ = bi for i = 1, ... , n. Now alter LPnon by setting

bi = 0 for i = 1, ... , n to get a completely degenerate problem LPdeg . LPnon

represents a perturbation of LPdeg requiring e(nL~J) iterations, so let's represent

this perturbation symbolically: add symbols Ei to the right hand side of inequality

i. Let Ei have coefficient b~ and apply the simplex method. The simplex method

will follow the same sequence of pivots on LPdeg as in LPnon , however it chooses

the leaving variable due to the symbolic perturbation rather than just the ratio

test.

53

o

It is unclear whether the lexicographie simplex method can visit 8(nL~J) bases.

Similarly, if we choose to follow Bland's rule to ensure finiteness, litt le is known.

How long can the simplex method with Bland's rule stall on a degenerate vertex?

Define DBl(d, n) to be the maximum number of bases that the simplex method with

Bland's rule visits on a completely degenerate linear program with n inequalities

in dimension d. Trivially DBl(d, n) = O(nd
) as there are at most C) bases, and

Avis and Chvatal [5J proved that DBl(d, n) = D(1.618· . . d) for n 2: 2d. Tightening

the upper and lower bounds on DBl(d, n) is the focus of this chapter and Chapter

5. It is useful to note that DBl(d, n) also represents the maximum number of bases

visited by the simplex method with Dantzig's rule [2, Observation 2.6J.

3.2 Upper Bounds on DBl(d, n)

Problem 3.1. What is the upper bound on the maximum number of bases that the.

simplex method with Bland's rule visits on a a completely degenerate linear program

with n inequalities in dimension d?

In this section we present three results. First we introduce a perturbation

finding algorithm which we use to show that Bland's ruie is not equivaient to a

perturbation scheme, leaving open the possibility that DBl(d, n) = 8(nd). However

we then prove that DBl(2, n) = n and DB1 (3, n) = O(n2
). Our proofs make use of

the geometric interpretation of dictionary coefficients presented in Section 1.2.5.

3.2.1 Bland's Rule is not a Perturbation Scheme

In 1990 Yap [97J (and private communication) asked if Bland's ruie is equiv­

aient to a perturbation: can we perturb a degenerate linear program to obtain a

nondegenerate linear program on whieh Bland's rule follows the same sequence of

bases on both inputs? If this is true then DBl(d, n) = 8(nL*J). We address a more

general problem.

Problem 3.2 (Perturbation). Given a linear program and a finite pivot rule R,

let S be a degenerate sequence of bases that the simplex method encounters when

54

following pivot rule R. Gan we perturb the linear program so that simplex method

with rule R follows S nondegenerately?

The following algorithm finds a perturbation if one exists, otherwise returns a

certificate showing no such perturbation exists.
d

Algorithm 3.1 (Perturb(LP,R,S». Let LP be maximize L CjXj subject to
j=l

d

L aijXj ~ bi , for i = 1, ... , n, and S a sequence of degenerate bases following pivot
j=l
rule R on LP.

~ d d

(1) Construct LP : maximize L CjXj subject ta L aijXj ~ bi + Ei, for i = 1, ... , n
j=l j=l

where the Ei 's are variables. Let F be a set of linear inequalities initially

empty.

(2) Compute the dictionary for each basis s of S for LP. Add ta F the (linear)

constraints on El, E2, ... , En sa that the dictionary is nondegenerate.

(3) Find values for Ei, for i = 1, ... , n that satisfy the constraints of F.

F is a system of strict linear inequalities with variables Ei for i = 1, ... , n. F has

the form DE > 0 (which has a solution if and only if DE ~ 1 has a solution). If there
d d

exists a solution Ei, E;, ... , E~ then maximize L CjXj subject to L aijXj ~ bi + fi,
j=l j=l

for i = 1, ... , n is a linear program on which the simplex method with pivot rule R

follows a sequence S of nondegenerate dictionaries. Otherwise we cannot perturb

the linear program and follow sequence S.

Proposition 3.2. Bland's rule is not equivalent ta a perturbation when d ~ 3.

Pro of. Consider the following sequence of degenerate dictionaries following the

simplex method with Bland's rule.

Pivot X4 with Xl:

Xl = 0 - X4 + 9X5 + 17x6
X2 = 0 - 23x4 + 7X5 + 31x6
X3 = 0 - 30X4 + 6X5 + 6X6
Z = 0 + 62x4 - 14x5 + 2X6

55

Pivot X6 with Xl:

Pivot Xl with X5:

X2 = 0 + 23xl - 200X5 - 360X6
X3 = 0 + 30Xl - 264x5 - 504x6
X4 = 0 - Xl + 9X5 + 17x6
z = 0 - 62xI + 544x5 + 1056x6

Xl = 0 + ~7 X3 + 84x4 - 8X5
X2 = 0 + 3~X3 + 132x4 - 24x5
X6 = 0 + iX3 + 5X4 - X5
Z = 0 + kX3 + 72x4 - 16x5.

Now let's attempt to perturb the example so that the same sequence of

dictionaries is nondegenerate. We add El, E2 and E3 to the rows of the initial

dictionary. If Ei > 0 for i = 1,2, and 3, then the initial dictionary is nondegenerate.

56

Xl = El - X4 + 9xs + 17x6
X2 = E2 - 23x4 + 7X5 + 31x6
X3 = E3 - 30X4 + 6xs + 6X6
z = 62x4 - 14x5 + 2X6

Pivot X4 with Xl:

X2 = -23El +E2 + 23xl - 200X5 - 360X6
X3 = -30El +E3 + 30Xl - 264xs - 504x6
X4 = +El - Xl + 9xS + 17x6
Z = +62El - 62xl + 544x5 + 1056x6

Pivot X6 with Xl:

57

(1) : El > 0
~ (2) : E2 > 0

(3) : E3 > 0

(4) : -23EI + E2 > 0
~ (5) : -30EI + E3 > 0

(6):El>O

(10) : El - l3lE2 + 2g5E3 > 0

(11) : -112E2 + :2E3 > 0
(12) : -152E2 + ~~E3 > 0

(19) : El - lZ E3 > 0
(20) : E2 - 3i E3 > 0
(21) : -iE3 > 0

Alas we cannot find satisfying values for El, E2 and E3 as constraint (3) indicates

E3 > 0 and constraint (21) requires E3 < O. The first and last dictionary cannot both

be part of a nondegenerate sequence, so we cannot perturb this input so that the

sequence of bases following Bland's rule is nondegenerate. D

This ex ample shows that Bland's rule is not a perturbation scheme when d ~ 3,

and leaves open the possibility that a degenerate sequence might have more than

e(nl~J) bases. Aigorithm 3.1 also has other applications (see Chapter 6).

3.2.2 D(2, n) = n and DBl(3, n) = O(n2)

In this section we apply our geometric interpretation of dictionary coefficients

(recall Theorem 1.6 of Section 1.2.5) to improve upper bounds on DBl(d, n).

The feasible region for the linear program,

(3.6)

consists of a single vertex at the origin with up to (~) bases if the feasible region is

bounded and cone with vertex at the origin if the feasible region is unbounded. The

Figure 3-1: Completely degenerate polyhedron in R2

58

bounding line, ailXl + ai2X2 = 0 for aH n inequalities passes through the origin. We

add slack variables X3, ... , X n +2 and compute a dictionary with basis Band cobasis

N = {j, k}:

(3.7)

Each slack variable Xi for i = 3, ... , n + 2 corresponds to bounding line i - 2. A

dictionary with cobasic variables Xj and Xk corresponds to the intersection of line

j - 2 and line k - 2. A pivot corresponds to swapping one of the two intersecting

lines for a line corresponding to basic variable. In dictionary (3.7), if cj > 0 and

-a~j < 0 then the pivot B' = B - {i} + {j} (N' = N - {j} + {i}) is a simplex

method pivot. Let ai = (ail) be the gradient vector of inequality i, and let c = (Cl),
ai2 C2

then the dual of (3.6), the set of constraints

(3.8)

(3.9)

specifies that the objective gradient c be a nonnegative combination of the gradients

ai of the primaI inequalities. The duality theorem for linear programming states

that, given a feasible basis Band cobasis N, the linear program (3.6) is optimal if

L: Yi ai = c. In other words c is contained in the cone C(ai : i EN). By Theorem
iEN

1.6 the coefficients of a dictionary (3.7) can be expressed in terms of the gradients

of the original inequalities:

l
a

i
-

2
1 1 C 1

1 ai-2 1 ak- 2
-a··=-- c·=---

lJ lai-21' J lai-21·
ak-2 ak- 2

59

We will now show that the simplex method for a completely degenerate linear

program in lR2 reduces to a problem involving n gradient vectors and cones in lR2 .

We use this geometry to compute new bounds for DBl(2, n) and DBl(3, n).

Consider n distinct two dimensional vectors ai for i = 1, ... , n, and a vector

c, let N be a pair of indices, and let B = {l, ... , n} \ N. Let a vector pivot be the

exchange of vector aS, sEN with ar , r E B: N' = N - {s} + {r}. For vectors u and

v in the plane, let () be the angle between u and v wh en sweeping clockwise from u

to v. Define

a(u, v) =

+ if () < 7r

if () > 7r

o if () = 7r,

and calI a pivot from N = {s, j} to N' = {j, r} an admissible vector pivot if

a(aS, aj) and a(c, aj) have opposite sign,

a(aS,aj) and a(ar,aj) have opposite sign.

and (3.10)

(3.11)

CalI N = {i, j} an optimal set if c can be expressed as a nonnegative combination

of ai and aj (c is contained in the cone C(ai , aj) = p. E lR2 : À = Yla i + Y2aj, for

YI, Y2 2: O}). CalI N terminal when no further admissible vector pivots are possible.

ai· .

Figure 3-2: Vector sweeping in lR2

60

Define G(n) to be the maximal number of admissible vector pivots, over an possible

vector configurations, required to attain a terminal set N.

Lemma 3.1. G(n) = n - 1.

Proof. The n vectors ai, for i = 1, ... , n, partition ~2 into n regions, one of which

contains vector c. The cone C (ai, aj) for a set N = {i, j} spans one or more of

these regions. When we perform an admissible vector pivot from a set NI = {s, j}

to N 2 = {j, r} the corresponding cones Cl (aS, aj) and C2 (aj , aT
) are adj acent,

sharing vector aj. If the pivot from NI to N 2 (from cone Cl(as,a j) to C 2 (a j ,aT
))

is a clockwise (resp. counterclockwise) rotation in the plane, then an subsequent

pivots will also be clockwise (counterclockwise), and in the worst-case we will

have to pivot around 27f radians before we reach a cone that contains vector c (if

such a cone exists). Let R be the set of regions covered by the sequence of cones

encountered. With each pivot a new region is added to R, otherwise we have

rotated around 27f radians and missed c.

Theorem 3.2. DBl (2, n) ::; 1 + G(n) = n.

o

Proof. Consider the n gradient vectors and objective vector of a 2D linear program

during the execution of the simplex method. A simplex pivot corresponds exactly

to an admissible vector pivot with respect to the gradient vectors, the cobasis

I
ci 1 ai

-
2

1

b · N If d l'f 1 - a
k

-
2 0 d 1 - ai-

2 0 d't' emg . an on yI Cj - -laj-2 1 > ,an -aij - lai- 2 1 < are con 1 IOns
ak-2 a k - 2

(3.10) and (3.11) satisfied. The optimality and termination conditions for the

simplex method and the gradient vector problem also correspond. By Lemma 3.1,

DBl(2, n) ::; 1 + G(n) = n. o

Corollary 3.1. DBl (2, n) = n.

Pra of. It is easy to construct nondegenerate linear programs on which the simplex

method with Bland's rule visits n bases: Take n distinct points along a semicircular

arc such that 2 points Pl and Pn lie on the line that passes through the diameter

61

of the arc. N ow label the remaining points in a clockwise manner from Pl to Pn.

The n points define an n-gon P. Consider the inequality description of P. Let

the inequality defining edge (Pl, Pn) have index 1 and correspond to slack variable

X3. Let the inequality defining edge (Pi-l, Pi) have index i and correspond to slack

variable Xi+2. Choose the objective function direction to be the vector from Pl to

Pn. Now the simplex method with Bland's rule starting at vertex Pl, cobasis {3,4},

will leave inequality 1 (enter variable X3), perform a ratio test and pivot to {4, 5},

then leave inequality 2, perform a ratio test and pivot to {5, 6}, then to {6, 7}

etc, ending at cobasis {n + 1, n + 2} (vertex Pn). For each pivot, the ratio test

.T .3 ..• 4

•• 5

2 \.,. 6

Figure 3-3: DBl(2, n) = n: example with n = 6

happens to select the basic variable with least-index. Henee if we set the right hand

side of each inequality to zero (collapse the problem), then the linear program will

be completely degenerate and the simplex method with Bland's rule, starting at

cobasis {3, 4}, will follow the same path choosing the leaving variable with least-

index each time - but this time because it breaks ratio test ties by selecting the

variable with the lowest index.

Corollary 3.2. When d = 2 Bland's rule is equivalent to a perturbation scheme.

62

o

~

Proof. Let NI, N 2, ... , Nm be the sequence of cobases that the simplex method with

Bland's rule visits on a completely degenerate linear program

(3.12)

subject to (i) : ailXI + ai2X2 :s; 0 for i = 1, ... , n.

If {i + 2} E Uj=I, ... ,mNj, then let bi = v(ail)2 + (ai2)2, otherwise let bi

M v(ail)2 + (ai2)2 for sorne large positive constant M. Let the perturbed linear

program be

(3.13)

Each bounding line will have a distance of 1 or M from the origin. The linear

program is nondegenerate as each bounding line is tangent to either the unit

circle or circle with radius M. Consider the set of gradient vectors ai = (~:~) for

»

Figure 3~4: Example perturbation

{i + 2} E Uj=I, ... ,mNj and the sequence of cobases N{, ... , N?n that simplex method

with Bland's rule visits on (3.13), starting at cobasis N{ = NI. With every pivot

we exchange gradient vectors, rotating clockwise (or counterclockwise). Since each

pivot is nondegenerate, during the sequence of pivots every gradient vector ai for

i + 2 E Uj=I, ... ,mNj must be encountered in a clockwise (or counterclockwise)

63

order. Thus the nondegenerate sequence N~, ... , N:r, is equivalent to the degenerate

D

We will prove that DBl(3, n) = O(n2), but first we need to translate properties

of Bland's least-index rule to the gradient vectors interpretation of the simplex

method.

Definition 3.1 (Least-Index Vector Pivot). A vector pivotfrom N = {s,j}

to N' = {j, r} is a least-index vector pivot if aS has the smallest index s satisfying

condition (3.10) and if aT has the smallest index satisfying condition (3.11).

Definition 3.2 (Least-Index Cones). The cone C(aS
, aj) has the least-index

property if

(1) there does not exist an admissible vector pivot from N = {s, j} to N' = {j, r}

such that r < j, mid

(2) there do es not exist a gradient vector aT E C(aS
, aj) with r < s or r < j.

Proposition 3.3. After at most two least-index pivots a least-index cone is reached.

(The pro of follows from the first item of Definition 3.2.)

Proposition 3.4. No two least-index cones can overlap. (There are up to n

least-index cones.)

(The pro of follows from the second item of Definition 3.2.)

Corollary 3.3. DBl(3, n) = O(n2
).

Proof. Assume that DBl(3, n) = n(n3) and consider the the sequence of bases for

the worst-case example attaining the bound. A dictionary will have the form,

A variable xs can only stay in the cobasis for a sequence of O(n) bases as

DBl(2, n) = n by Theorem 3.2. The only way to attain a sequence of n(n3
)

64

(3.14)

bases is for sorne variable Xs to enter and leave the cobasis 8(n2) times and each

tirne rernain in the cobasis for 8(n) pivots. Consider the geornetry of the gradient

vectors of the linear prograrn when Xs is cobasic (project to the plane Xs = 0). By

Theorern 3.2, when Xs is cobasic then only n - 1 pivots are possible before opti­

rnality or before Xs needs to leave the cobasis. Let CBl(xs) be the set of least-index

cones when Xs is cobasic (on the plane Xs = 0). Let C111(xs) be the set of cones

visited by Bland's rule before the tth tirne Xs is cobasic (IC~I(xs)1 = 1). By Propo­

sition 3.3, when Xs becomes cobasic for the tth time at most 2 pivots are possible

before a cone of CBl(xs) is encountered. Each time that Xs becomes cobasic at most

2 new bases (cones) can be encountered before a basis corresponding to a cone of

CBl(xs) is reached. ICBl(xs)1 ::s; n by Proposition 3.4, and so the total nurnber of

bases possible when Xs is cobasic is 8(n).

A completely degenerate linear program has 8(n3) bases, but by Corollary 3.3,

DBl(3, n) = O(n2
).

o

Open Problem 3.1. Frove that DBl(3, n) = O(n), specifically DBl(3, n) ::s; 2n - 4.

In Chapter 5 we will continue our study on the stalling behaviour of Bland 's

least-index rule. We will construct families of examples on which the simplex

method with Bland's rule stalls for a really long time. But first we interrupt to

analyze the worst-case of a related pivot method, the least-index criss-cross method.

The reason being that the next chapter also provides a gentler introduction to some

key concepts that we will employ in Chapter 5.

65

CHAPTER 4
The Longest Criss-Cross Method Pivot Path

(The Criss-Cross Method can take O(nd
) Pivots)

4.1 Introduction

The lack of success with simplex methods, with respect to finding a strongly

polynomial algorithm that solves linear programming, le ad researchers to study

criss-cTOss methods which leave the boundary of the polytope and traverse the

edges of the underlying oriented hyperplane arrangement using admissible pivots.

In 1999, Fukuda and Terlaky [37] proved the existence of a short (linear in n and

d) admissible pivot path between any two vertices of a polytope, motivating the

research community with the prospect of finding a polynomial criss-cross method.

But how long can an admissible pivot path be? What is the maximal number of

vertices, C(d, n), along a path taken by the least-index criss-cross method to solve a

linear program in dimension d with n inequality constraints? Clearly

C(d, n) ::; (~) ::; n d for n 2 d (4.1)

since the maximal number of vertices of an arrangement is (~). In 1978, even before

the birth of the least-index criss-cross method, Avis and Chvatal [5] unknowingly

proved its exponential worst-case behaviour by exhibiting an ex ample where the

66

number of pivots taken by the simplex method with Bland's rule on a completely

degenerate polytope is bounded from below by the cJ!h Fibonacci number which is of

the order (1.618 ...)d.

1 ((1 +2v'5) d _ (1 -2v'5) d) C(d, n) ~ v'5 for n ~ 2d.

The result follows from the observation that the least-index criss-cross method

and the simplex method with Bland's rule follow the same pivot path on a com-

pletely degenerate polytope. In 1990, Roos [82] constructed an example where the

least-index criss-cross method follows the boundary of a nondegenerate polytope

and requires an exponential number of pivots1 . Until now, Roos' result provided

the best known lower bound,

C(d, n) ~ 2d for n ~ 2d, (4.2)

which, asymptotically, leaves a significant gap with the upper bound,

C(d, n) is O(2d
) and O(nd

) for n ~ 2d where dis fixed.

In fact, it remained unclear whether the criss-cross method could take a path

of length longer than M (d, n) which is e (n L ~ J) for fixed d by the Upper Bound

Theorem (McMullen, [72]).
?

C(d, n) ~ M(d, n) (4.3)

In the present chapter we show how to construct a family of examples which

not only answer this question affirmatively, but also show that C(d, n) is O(nd
)

for fixed d, implying that criss-cross methods can visit nearly every vertex of

1 Both the A vis-Chva,tal and Roos constructions are variants of the Klee-Minty
examples [61].

67

the arrangement, and thus can perform even worse than simplex methods on

nondegenerate input.

Theorem 4.1 (Main Theorem). For fixed d, the function C(d, n) grows like a

polynomial of degree d in n:

C(d, n) is 8(nd
) for n ~ 2d. (4.4)

Our construction uses the powerful tool of a deformed product of arrangements,

an extension of a deformed product of polytopes as defined recently by Amenta

and Ziegler [2]. We begin by giving a geometric interpretation of the least-index

criss-cross method. In Section 4.3 we define deformed products of arrangements and

examine the behaviour of the least-index criss-cross method on them. By section 4.4

we are ready to construct a family of worst-case ex amples proving Theorem 4.1.

4.2 The Geometrie Interpretation of the Criss-Cross Method

For the remainder of this chapter we consider linear programs, the problem of

maximizing a linear functional <p over a polyhedron P ç ~d:

max<p(x) : x E P, (4.5)

where Pis non-empty, Pis simple, and that <p is bounded on P. The inequalities of

P are a finite set of oriented hyperplanes H which together define an arrangement

AH ç ~d. Let Vmin and Vmax be the vertices of AH that minimize resp. maximize

<p with 0 ::; <p(Vmin) ::; <p(Vmax) ::; 1, then we write <p(vert(AH)) ç [0, 1]. We will

assume that the hyperplanes are labeled as H = {hl, h2 , ... , hn }. Starting at a

vertex defined by a set H of d intersecting hyperplanes, a pivot is the operation of

exchanging a hyperplane hi E H for a hyperplane hj tj:. H that intersects the edge

H\{hi}. This results in a second vertex defined by H' := H\{hi} U {hj} (henceforth

abbreviated by H - hi + hj).

68

Definition 4.1 (Increasing Edges). For a linear functional <p : Rd ----+ ~, an edge

[V',V"] of A(H) is <p-increasing if <p(v") > <p(v').

Definition 4.2 (Increasing Rays). Given a start point s E ~d and a vector

11 E ~d, a ray r = (8,11) is the set of aU points of the form s + À 11 for aU scalar

À ~ o. For a linear functional <p : ~d ----+ ~, a ray is <p-increasing if and only if

<p(11) > o.

Definition 4.3 (PrimaI Infeasible Vertex). A vertex Pi of the arrangement

induced by a linear program (P, <p) is primal infeasible if Pi is not a vertex of the

polytope P. In other words, Pi violates at least one inequality of P.

Definition 4.4 (Dual Infeasible Vertex). A vertex Pi, defined by a set H of

d intersecting hyperplanes of the arrangement induced by a linear program (P, <p),

is dual infeasible if there is at least one ray starting at Pi that is <p-increasing

and satisfies aU h E H (every point on the ray lies on the nonnegative side of aU

hyperplanes h E H J.

The optimal vertex which maximizes <p is a vertex that is both primaI and

dual feasible. Criss-cross methods are pivot methods for solving a linear program

(P, <p) whose pivot path can leave the boundary of P. The first criss-cross method

was baptized by Zoints [103], and the first finite criss-cross method, the least-index

criss-cross method, was discovered independently by Terlaky [90], and Wang [95].

As the name suggests, criss-cross methods have two types of pivots (with respect to

an objective function <p): admissible type 1 pivots and admissible type II pivots.

Definition 4.5 (Admissible Type 1 Pivot). For every primal infeasible vertex p

defined by a set H of d intersecting hyperplanes, there exists an oriented hyperplane

hj t/: H that is violated at p. A pivot from p to vertex p', defined by H' :=

H - hi + hj , is an admissible type 1 pivot if p' lies on the nonnegative si de of hi.

If hj is selected such that j is minimized, followed by selecting hi to minimize i,

then the pivot is a least-index admissible type 1 pivot.

69

Figure 4-1: The least-index criss-cross method

Definition 4.6 (Admissible Type II Pivot). For every dual infeasible vertex

p defined by a set H of d intersecting hyperplanes, there exists a cp-increasing ray

(p,11) that lies on an edge H\{hi} that is on the nonnegative side of hi E H. A

pivot from p to vertex p', defined by H' := H - hi + hj , is an admissible type II pivot

if there exists a point on (p,11) that lies on the nonpositive si de of hj .

If hi is selected such that i is minimized, followed by selecting hj to minimize j,

then the pivot is a least-index admissible type II pivot.

We will denote a pivot, exchanging hi for hj, by pivot(i,j). Using these

notions, we provide the geometric interpretation of the least-index criss-cross

method. The reader can follow the algorithm on the ex ample shown in Figure 4-l.

Algorithm 4.1 (The Least-Index Criss-Cross Method). Given a linear program

(P, cp) ç 1Rd , a linear ordering of the inequalities of P, and a vertex p of A p :

Criss-Cross:

If p is optimal (both primal feasible and dual feasible) then Stop;

If p is prim al feasible then let f := +00. Otherwise let f := j such that pivot(i, j)

is the least-index admissible type 1 pivot from p to p'. If no pivot exists then

the linear program is prim al inconsistent, Stop;

70

Ifp is dual feasible then let 9 := +00. Otherwise let g:= i' such that pivot(i',j') is

the least-index admissible type II pivot from p to pli. If no pivot exists then the

linear program is dual inconsistent, Stop;

If f < g, then 15 := p'. Otherwise 15 := pli.

Pivot fram p to 15, let p := 15 and go to Criss-Cross;

The least-index criss-cross method is finite and solves a linear program (see [34J

for simple proofs). From this point forward the criss-cross method will refer to the

least-index criss-cross method.

4.3 Deformed Product of Arrangements

Our goal is to construct a family of deformed product programs on which

the criss-cross method visits almost an vertices of the arrangement. We begin

by analyzing the behaviour of the criss-cross method on the arrangement of

hyperplanes of a deformed product program. (Deformed products of polytopes and

deformed product programs are defined in Section 1.2.3, but for sake of clarity we

reproduce the definitions here too.)

Definition 4.7 (Deformed Products of Polytopes [2]). For ad-polytope P,

rp : P -+ ~ a linear function with rp(P) ç [0,1], e-polytopes V and W, the deformed

product of (P, rp) and of (V, W) is

(P, cp) M (V, W) := { (v + cp(x~(w _ v)) : xE P } C Rd+e.
vEV,wEW -

Definition 4.8 (Deformed Product Programs). For 0: : ~e -+ ~,

maxâ(~) = o:(u) : (~) E Q = (P, rp) ~ (V, W), (4.6)

where â : ~d+e -+ ~.

We define the deformed product of arrangements to be the induced hyperplane

arrangement of a deformed product of polytopes. We extend some of the facts

about deformed products that are proved in [2J to express the properties of the

71

induced hyperplane arrangement of Q. We facilitate understanding by providing an

example (see Figure 4-2) on which the reader is encouraged to verify the theorem's

statements.

objective

p=

~-<E-I ~ ~
1 1 1 1

+' ,
v= 1 1

r, --r---~--'---~

• objective

'+ +' +' ,
W = r' __ ...,--__ ,--__ ---, __ -,

(V,W)--edges

P-edges

5, 4, 3, 2' ,

Figure 4-2: Defortned product of arrangements

10

Definition 4.9 (Combinatorially Equivalent Arrangements). Two arrangements

are combinatorially equivalent if the two sets of sign vectors of cells of the arrange-

ments are exactly the same (i. e. the underlying oriented matroids are exactly the

same).

Definition 4.10 (Normally Equivalent Arrangements). Two hyperplane arrange-

ments are said to be normally equivalent if they are combinatorially equivalent and

the corresponding unit hyperplane normals coincide.

Theorem 4.2. Let P ç Rd be a d-polyhedron, A p be the underlying hyperplane

arrangement of P, rp : Rd ---+ R a linear function such that rp(vert(A p)) ç [0,1],

and V, W ç Re be normally equivalent e-polyhedra inducing normally equivalent

hyperplane arrangements Av and Aw, then:

• If A p has m vertices and s hyperplanes, and if Av and Aw have n vertices

and t hyperplan es each, then Q := (P, rp) ~ (V, W) is a (d + e)-polytope

72

whose underlying arrangement A Q has at least m . n vertices and exactly s + t

hyperplanes.

• Specifically, if {Pb"" Pm} are vertices of A p, {VI, ... , vn } and {WI, ... , wn } the

vertices of Av resp. Aw, then we can define m· n of the vertices of Q, denoted

1(i,j), as:

1(i j) = (Pi)
, Vj + rp(Pi)(Wj - Vj)

• If A p , Av, and Aw are given by

1 ~ i ~ m
1 ~ j ~ n.

Av = {b1u ~ 131 for 1 ~ 1 ~ t}, and

Aw = {b1u ~ f3{ for 1 ~ l ~ t},

(4.7)

(4.8)

then the arrangement of hyperplanes of the deformed product Q is given by

A = { ak X ~ ak for 1 ~ k ~ s }
Q (131 - f3;)rp(x) + b1u ~ 131 for 1 ~ l ~ t .

(4.9)

• A cell Cb of AQ is the deformed product of some cell C~ with (ct, Cfv):

Cb = (C~, rp) ~ (ct, Cfv)· Cb is convex if 0 ~ rp(y) ~ 1 for y E Cb·

Let 's examine the edges of a hyperplane arrangement underlying a deformed

product program with the assumptions of Theorem 4.2. Specifically, we are

interested in these edges of AQ:

• A p- edges of the form b(i', j), 1(i", j)] for 1 ~ j ~ n and for any 1 ~ i', i" ~

m such that Pi' and Pi" are adjacent vertices of A p and

• A(v,w)-edges of the form b(i,j'),1(i,j")] for 1 ~ i ~ m and for any

1 ~ j', j" ~ n such that vj' and Vj" are adjacent vertices of Av (equivalently,

Wj' and Wj" are adjacent vertices of Aw).

Proposition 4.1. Given a deformed product program (4.6), an Ap-edge

b(i' ,j),1(i",j)] is â-increasing if and only if either [Pi', pd is rp-increasing

and a(Wj) > a(Vj), or [p', p"] is rp- decreasing and a(Wj) < a(Vj).

73

Proposition 4.2. A (V, W)-edge b(i, j'), ,(i, j")] is â-increasing if and only if

[Vj" vj"] is a-increasing.

The proofs of the preceeding statements follow naturally from the proofs given

in [2] for deformed products of polytopes (sorne aspects are also proved in Section

5.1.1). We are now ready to analyze the behaviour of the criss-cross method on

deformed product programs:

Corollary 4.1. Let Pl and Pl be the vertices of P that minimize respectively

maximize <P with 0 ~ <P(PI) ~ <P(PI) ~ 1. Construct the deformed product program

Q as defined in (4.6). lfwe number the inequalities ofQ such that the inequalities

of P get smaller indices than the inequalities corresponding to (V, W), then the

criss-cross method prefers to pivot along Ap-edges rather than A(V,w)-edges.

The result is that if the criss-cross method on (P, <p) for the objective function

<P takes a path of length l from the Pl to Pl, and for -<P takes a path of length l'

from Pl to Pl, then for (Q, â) the criss-cross method will follow a path of length l

from ,(I,j) to ,(l,j) if a(vj) < a(wj), and a path of length l' from ,(l,j) to ,(I,j)

if a(Vj) > a(Wj).

4.4 The Construction

We construct the worst-case example by first building low dimensional ex­

amples where the criss-cross method takes many pivots. We then show how to

take deformed products of these base cases to construct linear programs in any

dimension for which the criss-cross method behaves badly.

Definition 4.11. Let C(d, n) be the maximal number of (arrangement) vertices

along a path taken by the least-index criss-cross method for some linear objective

function <P on a d- dimensional polyhedron with at most n facets.

Definition 4.12. Starting at the vertex of P that minimizes <p, let H(d, n) be

the maximal number of (arrangement) vertices visited along a pa th taken by the

least-index criss-cross method for some linear objective function max rp on the

74

arrangement of hyperplan es induced by a d- dimensional polyhedron with at most n

facets.

Clearly C(d, n) ;::: H(d, n).

Lemma 4.1. For n ;::: 2, H(l, n) = n

Proof. Consider the following linear program defined by max c.p = x and the

polytope given by the inequalities (indexed in order of appearance): x ;::: 0 and

x :::; (n - i + l)À for 2 :::; i :::; n and for sorne constant À > o. For example, for n = 6:

objective

f. ï i

1·· 6 5 4 3 . 2

....

Figure 4-3: Worst-case example of the criss-cross method in one-dimension

Let Vi be the vertex defined by hyperplane hi for 1 :::; i :::; n. The criss-cross

method takes a path of length n from vertex VI to vertex Vn when c.p = x. The

criss-cross method takes a path of length one from vertex V n to vertex VI wh en

c.p = -x.

Lemma 4.2. There exists a pair of normally equivalent I-polytopes, (V, W),

defined by k inequalities each (hence k vertices), and a linear functional a, such

that a(Vi) > a(Wi) if i is even and a(Vi) < a(Wi) if i is odd.

Proof. Construct V as in Lemma 4.1. To build W, for each hyperplane hi of V,

D

construct h~ of W by translating hi in the positive x-direction by (sorne suitably

small) E > 0 if i is odd and by -E if i is even. The case wh en k = 5 in is illustrated

in Figure 4-2. D

Note that a(Vk) < a(Wk) when k is odd and a(Vk) > a(Wk) if k is even. The

following example illustrates the construction of a deformed product and the path

that the criss-cross method takes on the underlying arrangement.

75

Example 4.1. (See Figure 4-4) Construct P (6 inequalities, variable Xl,). = 0.1)

and V (5 inequalities, variable X2) as in Lemma 4.1, and W (5 inequalities, variable

X2) as in Lemma 4.2. Let Q = (P, x) ~ (V, W) and arder the inequalities of

Q so that the inequalities coming from Pare indexed sm aller than those from

(V, W). Consider the path that the criss-cross method takes on the deformed product

program (Q, a = X2).

10

Il

7

Figure 4-4: Path taken by the criss-cross method on a deformed product program

Theorem 4.3. For k ;::: 2 and n > d;::: 0,

H(d+1,n+k);::: r~l·H(d,n) (4.10)

Proof. Take a polytope P ç Rd with n inequalities for which the least-index criss-

cross method for a linear functional <p(x) (rescaled such that <p(vert(Ap)) ç [0,1])

follows a criss-cross method path of length 1 = H(d, n) starting at vertex Pl and

ending at vertex Pl. Now construct the deformed product program, as in (4.6),

where V, W and a are defined according to Lemma 4.2. By Corollary 4.1 we get

that the criss-cross method applied to (Q, a) first follows a P-path with 1 vertices

from ,(1,1) to ,(l, 1), then after one (V, W)-pivot it follows a P-path of length

one from ,(1,2) to ,(1,2), then after one (V, W)-pivot it follows a P-path with

i vertices from ,(1,3) to ,(i, 3), then after one (V, W)-pivot it follows a P-path

76

of length one from 1(Z, 4) ta 1(1, 4), etc ... The complete path will visit r ~ lZ + l ~ J
vertices arriving at 1(1, k) or 1(/, k), depending on whether k is even or odd. D

Remark 4.1. We could use this result to construct examples, by induction, where

C(d, n) is O(nd) asymptotically for fixed d. However we choose to postpone this

analysis since iterative deformed products with the 1-dimensional construction

would contain a large number of redundant constraints, in fact n - 2d of them.

Lemma 4.3. For n 2:: 3, H(2, n) is O(n2
).

Proo/. Consider the following construction: let the ith inequality of P be defined as

-(i - I)XI - (n - i)X2 ::; -2(i - 1)(n - i). (4.11)

This construction ensures that the Xl intercept of the ith inequality is greater than

the Xl intercept of the (i - l)th while the X2 intercept of the i th inequality is less

than that of the (i - l)th (see Figure 4-5 for an example with n = 7). The least­

index criss-cross method on the linear program min 0: = X2, subject ta (~~) E P,

starting at the vertex defined by the intersection of hyperplanes 1 and n (which we

denote (1, n)), will take n - 1 type 1 pivots (1, n) --+ (2, n) --+ ... --+ (n - 1, n), and

then from (n - 1, n) take one type II pivot to (1, n - 1), and then take n - 2 type

1 pivots to (n - 2, n - 1), and then one type II pivot to (1, n - 2), and then take

n - 3 type 1 pivots to (1, n - 3), etc ... and ending with one type II pivot from (2,3)

to (1,2), visiting a total of n(n
2
-1) = (~) vertices. D

Remark 4.2. There are n - 2 type II pivots, and (n-l)i
n

-
2

) type 1 pivots. For every

type 1 pivot from intersection (i, j) to (g, j), if i is odd then 9 is even, and if i is

even then 9 is odd. Every type II pivot has the form (i, j) to (1, i) where j = i + 1.

Lemma 4.4. There exist normally equivalent 2- dimensional polyhedra V and W

with k facets (k 2:: 4), and objective function min 0: for which the criss-cross method

takes 8(k2
) pivots su ch that corresponding vertices v of V and w of W, defined by

77

6

7

Figure 4-5: Worst-case ex ample of the criss-cross method in two-dimensions

the intersection of hyperplanes hi and hj for i < j, have the following property:

a(v) > a(w) when i is odd, and a(v) < a(w) when i is even.

6,. ,
8 - - _\1 -

W is - - --

~--::----

7

Figure 4-6: N ormally equivalent worst-case arrangements

Proof. Let V be a 2-polyhedron with k - 1 inequalities as defined in Lemma 4.3

and define the kth inequality as

Set a = X2. The k th inequality ensures that V bounds both a and -a, and that

the X2 intercept of the kth inequality is greater than that of the (k - 2)th. Build W

78

as follows: for 1 :s; i :s; k - 1 take the ith inequality of V, bix :s; {3, and define the

i th inequality of W to be bix :s; {3' where {3' = {3 - E if i is odd and {3' = {3 + E if i

is even (see Figure 4-6). E is chosen to be positive and suitably small. Let the k th

inequality of W be bkx :s; {3' where {3' = {3 + E. Now let's examine corresponding

vertices v of V and w of W defined by the intersection of hyperplanes hi and hj for

i < j. Using basic trigonometry we can prove that if i is odd then a(v) > a(w), and

otherwise if i is even then a(v) < a(w).

Case 1: i is odd and j odd. This case is illustrated in Figure 4-7. ni and nj

represent the normals of hi and hj respectively, or if you wish the direction

of translation by E: Inil = Injl = E. Let <5 = Idl, ()l = angle(A), and

()2 = angle(B). By construction, 0° ::; ()l < ()2 ::; 90°, and <5 = E sin ()l where

sin()l ~ 0°. Now a(w) < a(v - <5) ::; a(v) which implies a(v) > a(w).

, ,

, ,
\\ hj "''''

Figure 4-7: Case 1 and 2

Case 2: i is even and j even. This case is symmetric to case 1, hence a(v) < a(w).

Case 3: i is odd and j even. This case is illustrated in Figure 4-8. ni and nj

represent the normals of hi and hj respectively, the direction of translation

by E: Inil = Injl = E. Let <5 = Idl, ()l = angle(A), and ()2 = angle(B).

By construction, 0° :s; ()l < ()2 :s; 90°, and <5 = E sin(90° - ()2) where

sin(90° - ()2) > O. Now a(w) ::; a(v - <5) < a(v) which implies a(v) > a(w).

Case 4: i is even and j odd. This case is symmetric to case 3, hence a(v) < a(w).

o

79

----\~.

Figure 4-8: Case 3 and 4

Remark 4.3. Starting at (n - 2, n) the criss-cross method on V (or W) will take

one type II pivot to (1, n) and then follow the path described in Lemma 4.3. There

are k-2 type II pivots, and (k-2)i
k

-
3

) type 1 pivots (see Remark 4.2 setting n = k-l

and adding one additional type II pivot from (k - 2, k) to (1, k)).

Definition 4.13 (Switch Pivot). Given two normally equivalent polyhedra V and

W, and a linear objective function Œ we define a switch pivot to be a pivot from

Vi tOVj (Wi towj)suchthatifŒ(vi) > Œ(Wi) thenŒ(Vj) < Œ(Wj), otherwiseif

Œ(Vi) < Œ(Wi) then Œ(Vj) > Œ(Wj).

Lemma 4.5. Let (V, W) be as defined in Lemma 4.4. Starting at the intersection

of hk - l and hk on V (TV) the least-index criss cross method takes a path to the

intersection of hl and h 2 performing 8(k2
) switch pivots.

Proof. Every type 1 pivot is a switch pivot, and every second type II pivot is a

switch pivot,

k2

of switch pivots ;::: K = 8(e) (4.12)

for sorne constant K > 1 and all k ;::: 3. D

Theorem 4.4. For k ;::: 3, n> d;::: 0, and some constant K > 1,

k 2

H(d + 2, n + k) ;::: 2K . H(d, n). (4.13)

80

Proo! Take a polytope P ç ~d with n inequalities for which the least-index criss-

cross method for a linear functional cp(x) (rescaled such that cp(vert(Ap)) ç [0,1])

follows a criss-cross method path of length l = H(d, n) starting at vertex Pl and

ending at vertex Pl. Let l' be the length of the criss-cross method path from Pl to Pl

for -cp. Now construct the deformed product pro gram , as in (4.6), where V, W and

0: are defined according to Lemma 4.4. Let Vopt be the optimal vertex of (V, W). By

Corollary 4.1, we get that the criss-cross method applied to (Q, 0:) first follows a

P-path with l vertices from ,(1,1) to ,(l, 1), and then after a (V, W)-switch pivot

it follows a P-path of length l', and then after a (V, W)-switch pivot it follows a

P-path of length l, and then after a (V, W)-switch pivot it follows a P-path of

length l', etc ... The complete path will visit at least ~ i l + ~ il' vertices ending at

(l,opt).

Corollary 4.2. For n 2: 2d 2: 2, C(d, n) = n((~)d). More specifically, for some

constant K > 1:

o

if d is even, (4.14)

and

C(d, Tt) 2l(d + ~~v'2K r if d is odd. (4.15)

Prao! (By induction) Let's begin with the even case, when d = 2m for all m 2: 0,

let n = km:

k 2

H(2m, km) 2: 2KH(2(m - 1), k(m - 1))

m times

(
k2)m-l

2: 2K H(2,k)

by Lemma 4.3.

81

Substituting for m = % and k = l2:; J, we get

II(d,n) 2: ld~r (4.16)

For the odd case, when d = 2m + 1 for aIl m ~ 0, let n = k(m + 1):

k2

H(2m + l, k(m + 1)) ~ 2KH(2(m - 1) + l, km)

m times

(
k2)m

> 2K H(l,k)

by Lemma 4.1.

Substituting for m = d;l and k = ld~;\J ' we get

(4.17)

The condition n ~ 2d guarantees k ~ 4.

Remark 4.4. The construction has no redundant constraints when d is even, and

ld~\J - 2 redundant constraints when d is odd.

Corollary 4.3 (Main Theorem). For fixed dimension d, the function C(d, n)

grows like a polynomial of degree d in n:

D

C(d, n) is 8(nd
) for n ~ 2d where d is fixed. (4.18)

The least-index criss-cross method can take D(nd) pivots to solve a d-dimensional

linear program defined by n inequalities (when d is fixed). This result provides a

tighter lower bound that asymptotically achieves the upperbound, and also shows

that the least-index criss-cross method is worse than simplex methods employing

lexicographie perturbation in the worst case. Despite this negative result, criss-cross

methods remain perhaps the best hope of finding a strongly polynomial algorithm

for linear programming (see [37]).

82

Open Problem 4.1. Construct linear programs on which criss-cross variants [76]

follow long paths.

83

CHAPTER 5
Stalling the Simplex Method - Part II

Problem 5.1. What is the lower bound on the maximal number of bases that the

simplex method with Bland's rule visits on a completely degenerate linear program

with n inequalities in dimension d?

(Can we reproduce the bound achieved for the least-index criss-cross method in

the previous chapter?)

In this chapter we continue our study on the worst-case behaviour of the simplex

method with Bland's rule on degenerate input. We present new constructions that

extend previous known bounds.

5.1 Lower Bounds on DBl(d, n)

Avis and Chvatal [5] constructed completely degenerate linear programs where

the simplex method with Bland's rule follows a path whose length is bounded by

the dth Fibonacci number which is of the order (1.618 ...)d.

We provide two main results in this chapter. First we improve the lower bound by

showing that DBl(d, n) = D(nL~J) for n 2: 2d. Second we study linear programs with

few inequalities (with respect to the dimension) and show that DBl(d, n) = D(nn-d)

for d ::; n ::; ~d. Most textbooks and implementations suggest that when n 2: 2d the

84

dual simplex method should be used, thus the latter construction is of particular

significance as it is the first general worst-case construction for the primaI simplex

method when n < 2d.

5.1.1 DBl(d, n) = n(nL~J) for n 2: 2d

Amenta and Ziegler [2] have shown that the maximal length of a Bland rule

path on a nondegenerate linear program with n inequalities in d dimensions is

e(nL~J) for n 2: 2d. If we alter their construction, by defining a collapsed deformed

product construction, we can build completely degenerate linear programs on which

the simplex method with Bland's rule takes long degenerate paths, and tighten the

lower bound for DBl(d, n).

Definition 5.1. Let cp : Rd ---+ R, Cl: : Re ---+ R be linear functions, P ç Rd

be a completely degenerate d- polytope, and V, W ç Re be normally equivalent

e-polytopes given by

for 1 :::; k :::; s},

for 1 :::; l :::; t}, and

for 1 :::; l :::; t},

then let the inequalities of the collapsed deformed product Q of Q = (P, cp) ~

(V, W) ç Rd+e be given by

~ { R d+e akx :::; 0 for 1 :::; k :::; s }
Q = (x, u) E : (f3z _ f3{)cp(x) + bzu :::; 0 for 1 :::; 1 :::; t .

Proposition 5.1. If P has m feasible bases and is defined by s inequalities,

and if V and W have n vertices and are defined by t inequalities each, then Q
is a (d + e) - polyhedron which has at least n . m feasible bases. In particular if

{Br, ... , B:;:} are feasible bases of P, {Bi, ... , B~} and {Br, ... , B;;} the feasi­

ble bases (vertices) of V resp. W, then we can define m . n feasible bases of Q

85

(5.1)

(5.2)

(5.3)

(5.4)

(appropriaiely disiinguishing variable indices), denoied B~,j)' as:

B~,j) = Br U BJ = Br U Bf for 1 ::; i ::; m and 1 ::; j ::; n. (5.5)

Definition 5.2 (Basis graph B(P) of a polyhedron P). The vertices of B(P)

are bases of P. Two vertices of B(P) share an edge if a single (allowable) exchange

of variables separates the corresponding bases of P (adjacent bases).

We will avoid using the term "vertex of B(P)" to avoid confusion with the the term

"vertex of P". Instead we will refer to the "bases" of B(P). An objective function

cp directs the edges of the graph to obtain the digraph B<.p(P). The simplex method

follows paths in B<.p(P). (The study of degeneracy graphs is relatively limited [42],

[43], [44], [64], [104], [105], for a survey see Gal [41J.)

Let's examine the directed basis graph Bâ(Q) of a collapsed deformed product

program maximize ô = (~) : Rd+e ---+ R subject to Q ç Rd+e . Specifically, we are

interested in these edges of Bâ(Q):

• P - edges of the form [B~, ,j)' B~I/ ,j)J for 1 ::; j ::; n and for any 1 ::; if, i" ::; m

such that B:: and B[:, are adjacent feasible bases of P and

• (V, W)-edges of the form [B~,j')' B~,jl/)J for 1 ::; i ::; m and for any 1 <

j', j" ::; n such that Bj, and Bj" are adjacent feasible bases of V (equivalently,

Br and Bjf, are adjacent vertices of W).

Definition 5.3. An edge [Br, BJJ of a basis graph B<.p(P) is cp-admissible if we

can perform a simplex method pivot from Br to Br.

Proposition 5.2. A (V, W)-edge [Bg j,) , B~,jl/)J is ô-admissible if and only if

[Bj" BrJ is a-admissible.

Proposition 5.3. A P-edge [B~/,j)' B~I/,j)J is ô-admissible if and only if either

[B::, B[:,J is cp-admissible and a(wj) > a(vj), or [B[:" B::J is cp-admissible and

86

Proof of Propositions 5.1, 5.2, and 5.3. These propositions are verifiable when we

express the linear programs in dictionary form in matrix notation. After adding

slack variables, linear functions over the inequality systems (5.1), (5.2), and (5.3)

can be represented as

(P, rp) : maximize Z P = rpx (5.6)

Ax = 0, with Xd+l, ... , Xd+s 2 0,

(V, a) : maximize Zv = au (5.7)

Du = {3, with Ue+l, ... , UeH 2 0,

(W,a) : maxlmlze Zw = au (5.8)

Du = {3', with Ue+l, ... , Ue+t 2 0,

where A E Rs+d , B E Rt+e are coefficient matrices, rp E RS, a E Rt are row vectors,

and {3, {3' E Rt are column vectors. Compute the dictionaries

for basis B P and cobasis NP (5.9)

for basis B V and cobasis N V (5.10)

for basis B W and cobasis N W (5.11)

87

Adding nonnegative slack variables Xd+l, ... , Xd+s, Ue+l, ... , Ue+t to the system

(5.4) we get

(Q,à) : Ax= 0 (5.12)

((3 - (3')<px + Du = 0

--zéj = au,

where A, D, <p, (3, (3' are as defined in (5.6),(5.7), and (5.8) with à = (~) E ~s+t. Now

let's compute a dictionary of (Q, à) with basis BQ = B P u B V = B P U B W and

cobasis NQ = NPUNv = NPuNw :

(5.13)

and after substitutions:

(5.14)

UBV = (DiJ~(3' - DiJ~(3)(<PNP - <PBPAiJ1ANP)XNP - DiJ~DNVUNV

Zéj = aBv(DiJ~(3' - DiJ~(3)(<PNP - <PBPAiJ1ANP)XNP + (aNv - aBV DiJ~DNV) UNV

(proving Proposition 5.1). Examining the dictionaries we see that when

• (<PNP - <PBPAiJ1ANP)j > 0 and (-A~1ANP)ij < 0 then the pivot B P =

B P
- {i} + {j} is <p-admissible for (5.9),

• (aNv - aBV D~~DNV)j > 0 and (-D~~DNV)ij < 0 then the pivot B V =

B V - {i} + {j} is a-admissible for (5.10), similarly for (5.11).

Now we can say the following about the edges of B(;.(Q):

• if and only if (aNv - aBvD~~DNV)j > 0 and (-DiJ~DNV)ij < 0 then the

((V, W)-edge) pivot BQ = BQ - {i} + {j} is à-admissible for (5.14),

88

• if and only if (aBv(D~~[3' - D~~(3)(<PNP - <PBPA~1ANP))j > 0 and

(-A~1ANP)ij < 0 then the (P-edge) pivot BQ = BQ - {il + {j} is

â-admissible for (5.14). Analyzing further, when aBv(DiJ~[3' - DiJ~(3)(<PNP­

<pBpA~1ANP)j > 0 either

(<PNP - <pBpA~1ANP)j > 0 and aBV D~~f3' > aBV D~~f3

or (<PNP - <pBpA~1ANP)j < 0 and aBV D~~f3' < aBV D~~[3.

This proves Propositions 5.2 and 5.3, as aBy DiJy[3' = a(wj) and aBy DiJy[3 =

a(vj). 0

We are now ready to analyze the behaviour of the simplex method with

Bland's rule on collapsed deformed product programs. Let Bi and Bi be source

and sink bases of the directed feasible basis graph of (P, <p). Construct the collapsed

deformed product program (Q, â) - a linear objective function over a collapsed
~

deformed product. If we number the inequalities of Q such that the inequalities

of P get smaller indices than the inequalities corresponding to (V, W), then the

simplex method with Bland's rule prefers to pivot along P-edges rather than

(V, W)-edges. If the simplex method with Bland's rule on (P, <p) for the objective

function <P takes a path of length 1 from the Bi to Bi, and for -<P takes a path of

length l' from Bi to Bi, then for (Q, â) the simplex method with Bland's rule will

follow a path of length 1 from Bâ,j) to B~,j) if a(Wj) > a(Vj) and a path of length

l' from B~,j) to Bâ,j) if a(wj) < a(vj). When we collapse the deformed product

construction of Amenta and Ziegler [2], we can show that the maximal length,

DBl(d, n), of a Bland rule pivot path on a completely degenerate linear pro gram

with n inequalities in d-dimensions is n(nL~J) for n ~ 2d.

Lemma 5.1 (Amenta and Ziegler [2] Lemma 4.6). Let a(x) = OXl + 1x2

denote a linear function on the plane (using the cartesian coordinate axes with

89

x = (Xl, X2) E !R2). Far each k ~ 4 there exist narmally equivalent k-gans

and

(bath labeled in clockwise arder)) su ch that

(The sequence ends with ... < a(vk) < a(wk) = 1 if k is add) and with ... < a(wk) <

a(Vk) = 1 if k is even.) Furthermore) there exists a labeling of the inequalities of V

(and W) so that the simplex methad with Bland)s rule on the linear program defined

bya(x) over V (or W) follows a pa th of length k starting at VI (or WI) and ending

at Vk (or Wk).

Proof. Take 2k - 4 ~ 4 points equally spaced on a semicircular arc and label them

W2, V2, V3, W3, W4, ... ending with ... , Vk-l, Wk-l if k is odd and with ... , Wk-l, Vk-l if k

is even. The additional points VI, WI, Vk, and Wk are then chosen appropriately on a

line that is parallel to the diameter on which the semicircular arc was based. Figure

5-1 depicts the case when k = 5.

Figure 5-1: Amenta & Ziegler construction

Now consider the inequality description of V (and W), namely let the in­

equality defining edge (VI, Vk) have index 1, and let the inequality defining edge

90

(Vi-l, vJ for i = 2, ... , k have index i. Starting at Vl (the intersection of lines 1 and

2) the simplex method following Bland's rule willleave inequality 1 and follow the

o:-increasing edge along line 2 to V2. In general Bland's rule at Vi willleave line i

and pivot to Vi+l for i = 1, ... , k - 1, ending at Vk.

Note that if we collapse V (or W) then the simplex method with Bland's rule will

follow the same path as in the nondegenerate case from the intersection of lines 1

D

and 2 to the intersection of lines 1 and k. If we reverse the objective function, then

Bland's rule on V (W) collapsed pivots twice: from the source basis (intersection

of 1 and k) to the sink basis (intersection of 1 and 2) via the intersection of lines 2

and k.

Theorem 5.1. For k ~ 4 and n > d ~ 0,

DBl(d + 2, n + k) ~ kDBl(d, n).

Proof. Take a completely degenerate linear program (P, <p) ç iRd on which the

simplex method with Bland's rule follows a path of length l := DBl(d, n) from

source basis Bi to sink basis Br, and path of length l' from Br to Bi on (P, -<p).

Now construct the collapsing deformed product program Q of Q = (P, <p) ~ (V, W)

where V, W ç iRe are convex k-gons built according to Lemma 5.1. Now Bland's

rule applied to (Q, Ci = 0:) first follows a P-path of length l from Bâ,l) to B~,l)'

then after one (V, W)-pivot to B~,2) it follows a P-path of length l' to Bâ,2)' then

after one (V, W)-pivot to Bâ,3) it follows a P-path of length l to B~,3)' etc ... The

complete path will visit at least ~l bases, arriving at Bâ,k) if k is even or B~,k) if k

is odd. D

Corollary 5.1. For n ~ 2d, DBl(d, n) = n(nl~J). More specifically,

d

DBl(d, n) ~ l~J:I if d is even, (5.15)

91

and

l n J l~J
DBl(d, n) ~ (d + 1) if d is odd. (5.16)

Proof. (By induction) Let's begin with the even case, when d = 2m for aIl m ~ 0,

let n = km:

k
DBl(2m, km) ~ 2DBl(2(m - 1), k(m - 1))

m times

(k)m-l (k)m
~ 2 DBl(2, k) = 2 by Lemma 5.1.

Substituting for m = ~ and k = l2:; J, we get

d

H(d, n) ~ l~J 2 . (5.17)

For the odd case, when d = 2m + 1 for aIl m ~ 0, let n = k(m + 1):

k
DBl (2m + 1, k(m + 1)) ~ 2DBl(2(m - 1) + 1, km)

m times

Substituting for m = d;l and k = ld~~\J ' we get

l n J l~J
DBl(d, n) ~ (d + 1) (5.18)

(The condition n ~ 2d guarantees k ~ 4).

5.1.2 DBl(d, n) = 8(nn-d) for d:::; n :::; ~d

We now consider linear programs with few inequalities. Recall the geometry

of the dual simplex method used in Chapter 2 to build completely degenerate

linear programs on which the simplex method cycles with length 8(nn-d) for

d :::; n :::; l ~d J. In particular, we note that we can relabel variables of the primaI

dictionary so that Xi corresponds to inequality i of the dual linear program for

92

o

i = 1, ... , n. A basis B of a primaI dictionary corresponds to the cobasis of the

dual dictionary - the intersection of bounding lines i for i E B, and selecting a

least-indexed li ne in the dual corresponds to selecting the least-indexed variable

in the primaI. Using the dual geometry we present a new construction where the

(primaI) simplex method with Bland's rule visits 8(nn-d) bases for d ::; n ::; l ~d J

with d 2: 1.

Lemma 5.2. DBl(d, n = d + 1) = 8(n) faT d 2: 2.

Proof. Consider the dual linear program

maximize Dy (5.19)

subject to : (i) : y 2: i for i = 1, ... , k

with k 2: 2. The simplex method with Bland's rule will follow a path from {1} to

'-+ '-+ '-+
1 1 1

.: .:.
2 3 k-l k

Figure 5-2: DBl(k, k + 1) = 8(k)

{2} to {3} ... to ... {k} of length k. The primallinear program (dual of (5.19)) has

dimension k with k + 1 inequalities. D

In 2001 Gartner et al. [38] constructed ex amples where the simplex method

(with no particular refinement) visits 8(n2
) vertices (bases) for a linear program in

dimension d with n = d + 2 inequalities. Our following construction duplicates their

bound on completely degenerate linear programs, and in addition follows Bland's

rule.

Lemma 5.3. DBl(d, n = d + 2) = 8(n2) faT d 2: 5.

93

Pro of. Consider the duallinear program for sorne integers k ~ 2, 1 ~ 3 with 1 odd,

maximize OYI + OY2 (5.20)

subject to: (i): YI ~ i for i = 1, ... , k

(k + 1) : Y2 ~ 1

(i - k)
(i):Yl+(k+l)Y2~ 2 +1 fori=k+2,k+4, ... ,k+l-l

(i - k - 1)
(i) : Y2 ~ 2 + 1 for i = k + 3, k + 5, ... , k + 1.

We illustrate the case when k = 6,1 = 9 in Figure 5-3. The simplex method

13 t

Il t

9

7

2
;-...

............... \ t 12

15
! :--

Figure 5-3: DBl(d, n = d + 2) = 8(n2
) (Inequalities)

with Bland's rule will follow a path (see Figure 5-4) of length k from {1, k + 1}

to {k, k + 1} (by Lemma 5.2), then pivot to {k + 2, k + 1}, then 1 (turn) pivot to

{k + 2, k + 3}, then 1 pivot to {1, k + 3} and follow a path of length k to {k, k + 3}

(by Lemma 5.2), then pivot to {k + 3, k + 4}, then 1 (turn) pivot to {k + 5, k + 4}

then pivot to {1, k + 5} and follow a path of length k to {k + 5, k + 6}, and so on ... ,

following a path of totallength k C-;I) +1-3 and ending at the basis {k, k+/}. The

primaI of (5.20) has dimension (k + 1) with (k + 1 + 2) inequalities. The construction

requires that k ~ 2 and 1 ~ 3 requiring at least 5 dual inequalities in total. The

lemma follows when we set k = l~J and 1 = r~l (subtracting 1 if r~l is even). D

94

Il 1 2 13 14 15 16
~ ~ f----. ~ h,.. f----.

Figure 5-4: DBl(d, n = d + 2) = 8(n2
) (Path)

Let's generalize these constructions to arbitrary dimensions.

Theorem 5.2. DBl(d, n) = D(nn-d) for n ~ l ~d J for fixed d ~ 1.

Proof. Let Q(e, km) be the dual linear program with km inequalities in Re on which

the dual simplex method with Bland's rule follows a path of length D((km)e), where

Q(l, k1) is constructed as in Lemma 5.2. Iteratively construct Q(e + 1, km+1 =

km + lm) by taking the km inequalities of Q(e, km) and concatenating the lm

inequalities for sorne arbitrary lm ~ 3 and odd:

(km + 1) : Ye+l ~ 1 (5.21)

i - k
(i) : Ye + (t + l)Ye+1 ~ 2 m + 1 for i = km + 2, km + 4, ... , km + (lm - 1)

i - k -1
(i) : Ye+1 ~ ; + 1 for i = km + 3, km + 5, ... , km + lm

where t is the number of inequalities of Q(e, km) of the form Ye ~ b.

The iterative construction reads like Q(l, k1) --+ Q(2, k2 = k1 + h) --+ ... --+

Q(e - 1, km- 1 = km- 2 + lm-2) --t Q(e, km = km- 1 + lm-d --t Q(e + 1, km+l = km + lm)

where k> 2 and h, ... , lm ~ 3 with li odd for i = 1, ... , m.

Now if the simplex method with Bland's rule follow a path of length D((km)e)

on Q(e, km) starting at basis B U {km-l} U {km-l + 1} and ending at B U

{ km - 1 } U {km} (where B is the set of indices shared by the starting and ending

95

bases of Q(e - 1, km - 1)), then the simplex method with Bland's rule can be

made to follow a path of length n((km+l)e+1) on Q(e + 1, km+I): starting at basis

BU {km-d U {km-I + 1} U {km + 1} we follow a path from

BU {km-I} U {km-I + 1} U {km + 1}

l (to) (of length) 8((km)e)

BU {km-d U {km} U {km + 1}

l 1

B U {km-I} U {km + 2} U {km + 1}

l 1

B U {km-I} U {km + 2} U {km + 3}

l 1

BU {km-I} U {km-I + 1} U {km + 3}

l 8((km)e)

BU {km-I} U {km} U {km + 3}

l 1

B U {km-I} U {km + 4} U {km + 3}

l 1

B U {km-I} U {km + 4} U {km + 5}

l 1

BU {km-I} U {km-I + 1} U {km + 5}

l 8((km)e),

etc ... , following a path of totallength n(lm . (km)e) ending at Bu {km-I} U {km} U

{km + l}. Now choose km = rkrn
2+

1 1 and lm = l k,,~t J (subtracting 1 if l krn2+1 J is even)

so that n(lm· (km)e) = n((km+de+I). The theorem follows wh en we let the primaI

linear program of a specimen Q(e, km)) have n = km + e inequalities in dimension

96

d = km. The construction of Q(e, km) requires that km ~ 3e ~ n ~ l ~d J ' for fixed

o

When n ~ l ~d J there are O(nn-d) bases, thus Theorem 5.2 shows there can be

a maximum of 8(nn-d) iterations.

~---

'1;7 ~ -~ -~ - - ~"~'~'~"~"~": .. ~ ... ~,-.... -.... - _': -..". , ,
~ --~

Figure 5-5: DBl(d, n = d + 3) = 8(n3
)

The construction of Lemma 5.3 follows the construction paradigm of Theorem 5.2.

Figure 5-5 shows an instance of the construction when DBl(d, n = d+3) = 8(n3
). It

can be followed when reading the following corollary (Theorem 5.2 when n = d + 3):

Corollary 5.2. DBl(d, n = d + 3) = 8(n3
) for d ~ 8.

97

Prao!. Consider the duallinear program

maximize OY1 + OY2 + OY3 (5.22)

subject to: (i): YI ~ i for i = 1, ... , k

(k + 1) : Y2 ~ 1

(i - k)
(i) : YI + (k + 1)Y2 ~ 2 + 1 for i = k+2,k+4, ... ,k+ft-1

. (i - k - 1)
('1) : Y2 ~ 2 + 1 for i = k + 3, k + 5, ... , k + h

(k + 11 + 1) : Y3 ~ 1

(.). +h-1 >(i-(k+h))+1
'1 . Y2 2 Y3 - 2

for i = k + 11 + 2, k + 11 + 4, ... , k + h + 12 - 1

(i) : Y3 ~ (i - (k ~ h) - 1) + 1

for i = k + ft + 3, k + h + 3, ... , k + h + 12

with k ~ 2, ft ~ 3, 12 ~ 3. We illustrate the case when k = 6,11 = 9,12 = 5

in Figure 5-5. The simplex method with Bland's rule will follow a path of length

k (II ~ 1) + h - 3 from {1, k + 1, k + h + 1} to {k, k + h, k + h + 1} (by Lemma 5.3)

then pivot to {k, k + 11 + 2, k + h + 1} then (turn) pivot to {k, k + h + 2, k + h + 3}

then pivot to {k, k + 1, k + 11 + 3} and follow a path of length k C-;l) + 11 - 3

to {k, k + ft, k + ft + 3} (by Lemma 5.3) then pivot to {k, k + h + 4, k + 11 + 3}

then (turn) pivot to {k, k + h + 4, k + ft + 5} then pivot to {k, k + 1, k + h + 5},

etc ... ending at the basis {k, k + h + 1, k + h + Id having followed a path of

totallength 8(k . h . 12). The primaI of (5.22) has dimension (k + h + 12) with

(k + 11 + 12 + 3) inequalities. The construction requires that k ~ 2, h ~ 3, 12 ~ 3

requiring at least 8 dual inequalities in total. The corollary follows when we set

k = l~J, h = l d-;k J, 12 = rd-;kl (subtracting 1 if necessary to ensure that h and 12

are odd).

98

o

Open Problem 5.1. Gan the simplex method visit more bases than the maximal

number of vertices given by the Upper Bound Theorem?

Open Problem 5.2. Is DBl(d, n) = 8(nd
) for n ~ 2d, d> 3?

Open Problem 5.3. Gonstruct a family of linear programs with ~d < n < 2d on

which the simplex method takes many pivots.

99

6.1 Introduction

CHAPTER 6
Enumerating Pivot Paths

We have seen worst-case constructions where the simplex method visits

8(nl~J) bases ([2] and in Section 5.1), asymptotically mat ching the maximum

number of vertices, }\!f(d, n), that ad-polytope with n facets can have. However,

Pfeifie and Ziegler [79] have proved that for nondegenerate linear programs the

maximum number of bases along a simplex method pivot path does not achieve

}\!f (d, n) in general. In the presence of degeneracy, less is known about the worst­

case length of simplex method paths (see Chapter 3 and 5). These results, or

lack of, le ad to the following questions: Given a system of inequalities defining a

polyhedron, what objective function and starting basis would return the longest

simplex method pivot path following sorne finite pivot rule? Can we even compute

this? The answer is yes: an algorithm and an implementation for combinatorial

pivot rules1 are the subject of the present chapter.

1 We recall that combinatorial pivot rules select a cobasic variable with a positive
coefficient in the z-row based on its index, and coefficient-based pivot rules select a
variable based on the value of the its positive coefficient.

100

Given an H -representation of a polyhedron P and a feasible basis E, we show

that there is a finite set of objective functions optimal at B which is sufficient for

the enumeration of aIl possible simplex pivot paths, for sorne finite combinatorial

pivot rule, from aIl other feasible bases to B. Such an algorithm is a useful tool

to have for the analysis of pivot paths, both degenerate and nondegenerate. We

provide an implementation and use it to present a complete path length analysis

for the simplex method with Bland's rule on selected instances of low-dimensional

polytopes.

Throughout this chapter, we consider a polyhedron P defined by n inequalities

in d dimensions, and linear objective functions z = max cx for x E P which together

define a linear program,

and a dictionary,

d

maximize z = L CjXj

j=l

d

subject to L aijXj ::; bi

j=l

Xi = b~ - L a~jxj
jEN

for i = 1, ... , n,

for i E B

for basis Band cobasis N. We will only consider linear programs where the

(6.1)

(6.2)

objective function is in general position and bounded with respect to P, ensuring

that no two vertices of P share the same objective value and that there is a unique

optimal vertex.

In the foIlowing sections we show that only a finite number of objective

functions need to be considered to enumerate aIl possible pivot paths, and we

detail reverse search for basis enumeration and ray-shooting reverse search for

ceIl enumeration - the primary ingredients used for our pivot path enumeration

101

algorithrn. We then present our algorithrn and an irnplernentation in Section 6.4

and 6.5 respectively, displaying sorne computational results in Section 6.6.

6.2 Enumerating Pivot Paths in a Linear Program

Problem 6.1. Given a linear program and a finite pivot T'Ule R and optimal basis

B*, enumerate aU possible pivot paths, when the simplex method follows R, that

terminate at B*.

The reverse se arch algorithm of A vis and Fukuda [6] solves this problem

efficiently. By the finiteness of pivot rule R, there exists a simplex method pivot

path following R from every basis to an optimal basis. The set of paths terminating

at B* forrn a tree with root B*. Reverse search traverses this tree in a depth­

first-search manner by simply reversing the pivot rule R to go down the tree, and

following R to go up the tree. The algorithm was originally designed to enumerate

the vertices of a polytope, but the reverse search tree also represents the collection

of aIl possible pivot paths to the optimal basis B* taken by the simplex method

following rule R for a given objective function. The height of the tree is the length

of the longest pivot path to B*. It is proved in [6] that O(nd2) time per basis and

total space O(nd) is required to enurnerate the entire reverse search tree.

Aigorithm 6.1 (Reverse Search for Pivot Path Enumeration).

Input: n inequalities in d variables, a linear function ex.

B = B*;j = 1; height = 0;

print(B, height)

Repeat

while j ~ d {

v = N j ; // Njis the lhcobasic variable//

if reverse(B, u, v)

then { pivot(B, u, v), j = 1 //reverse traverse//

height++;

102

print(B, height) }

else j = j + 1; }

selectpivot(B, r, j)

pivot(B, r, N j)

j = j + 1;

height--;

Until j > d and B = B*.

Output: AU pivot paths to the optimal basis B*.

/ /forward traverse/ /

• pivot(B, r, s): pivot from basis B on basic variable rand cobasic variable s.

• selectpivot(B, r, j): return basic variable r and index j with s = Nj where r

and s are as selected by pivot rule R given basis B.

• reverse(B, u, v): given basis Band cobasic index v E N, return TRUE and u

if there exists basic index u E B such that pivot rule R applied to dictionary

with basis B = B - u + v generates a pivot back to B. Return FALSE

otherwise.

6.3 Enumerating Objective Functions for an Optimal Basis

Problem 6.2. Given a polyhedron P, basis B, and a finite combinatorial pivot

mle R, consider aU distinct pivot paths that can be taken by the simplex method

foUowing R to optimal basis B* = B. List one objective function for each su ch path.

We are interested in listing aIl distinct pivot paths that can be taken by the

simplex method following R to optimal basis B* over aIl objective functions yielding

B* = B. The set of paths on a given polytope is finite, and for each such path there

may or may not be an objective function that follows it. How to fit an objective

function to a path (or prove no such fit exists) is not so trivial: for coefficient-based

pivot rules we can enumerate the set of paths on the polytope and then for each

path employa dual version of the Perturbation Aigorithm 3.1 of Chapter 3 to test

whether we can sc ale the input inequalities so that the path ab ides by the specific

103

rule. (A similar approach was taken to compute scaling factors in simplex method

cycles in Section 2.3 of Chapter 2.) For combinatorial pivot rules we present a more

intelligent approach, which we will now outline.

Every pivot rule for the simplex method depends on the sign of the dictionary

coefficients. Namely, in a dictionary (6.2) the simplex method requires c~ > 0 before

any pivot rule can consider a pivot on cobasic variable s. We have seen that the

dictionary coefficients can be interpreted as a ratio of determinants, recall Theorem

1.6 of Section 1.2.5 which states that

where GN = [aj1 ... ajd

(CI, C2, ... , Cd) and sEN.

c' = s

{j + d} EN] , as

The sign of the determinant is the orientation of the arrangement of the

vectors. In particular, the position of vector c with respect to the vectors of G N\s

determines the sign of c~. The sign of c~ is fixed for N and s. c is a d-dimensional

vector, and the vectors of GN\s lie in ad - 1 dimensional fiat: the hyperplane hN\s

in dimension d through the origin. If we assign an orientation to this hyperplane

then the sign of c~ will be positive when c lies on one side of hN\s and negative if c

lies on the opposite side.

Consider the sign of CNi (the yth cobasic variable for cobasis Ni) for j = 1, ... , d
J

and for aIl possible feasible bases Bi (cobasis Ni). For each c~ = C'rvi there is a
J

hyperplane hNi\S containing the vectors of GNi\S. There are up to (d~J of these

hyperplanes, and together they form a central arrangement A(H) decomposing

~d into e (C~ 1) d) cells (for properties of an arrangement see [21]). Each cell

represents a unique sign association of the cobasic variables (over aIl feasible bases)

and one point from each cell adds to a sufficient list of objective vectors that yield

104

aIl possible cobasic variable sign structures over aIl feasible bases along simplex

pivot paths to the optimal basis. So we just need to enumerate the cells of A(H),

and compute an interior point for each one to get the desired objective functions.

Of course we are only interested in the collection of vectors c which make B

the optimal basis. Let ai be the gradient of inequality i, then the dual of (6.1), the

set of constraints

(6.3)

specifies that the objective vector c be a nonnegative combinat ion of the gradients

ai of the primaI inequalities. The duality theorem for linear programming states

that the feasible basis B (cobasis N) for the linear program (6.1) is optimal if

and only if I: Yiai = c. In other words c is contained in the d-dimensional cone
iEN

C = C(ai) for i E N. Hence we only need to consider the ce Ils of A(H) that

intersect cone C as only then do aIl cobasic variables of the dictionary with basis

B have nonpositive sign (optimality). Note that the bounding hyperplanes of the

inequalities that define C are also hyperplanes in A(H). An interior point of each

cell of A(H) that intersects C corresponds to a vector c which is optimal at basis B.

We now describe an algorithm for computing this set of objective functions.

First we list the hyperplanes of A(H) by considering each set of d - 1 gradient

vectors of the n inequalities. If the set of vectors is affinely independent then we

add the hyperplane containing these vectors to A(H). We then use a modified

version of the cell enumeration algorithm of Ferrez et al. [23], described below, to

compute an interior point for each cell of A(H) that intersects with co ne C.

Let m = IHI and let S = S(H) be the set of sign vectors of the cells of

the arrangement A(H) E ~d. Since A(H) is central, only half of the cells need

to be considered. In fact we can just look at a cut section of A(H) with a fixed

105

hyperplane h not containing the origin. If we choose h to be the hyperplane

containing a cross section of C, then we obtain a cut section of A(H) which is an

arrangement of m hyperplanes in Rd- 1. We assign orientations to the hyperplanes

so that a cell within the cross section of Chas the sign vector of all positives.

Figure 6-1 shows a cut section of an arrangement of 6 hyperplanes in R3 and the

sign vectors of the cells of length 6. The shaded region represents cross section of

the optimal cone.

Figure 6-1: eut section of an arrangement and associated cell sign vectors

We employ the reverse se arch algorithm of Ferrez et al [23] for enumerating

the cells of A(H) with modification to enumerate only those cells that intersect the

optimal cone. The algorithm computes an interior point for each cell of A(H) in

C which we output as they are the desired objective vectors. The adjacency oracle

and local search function using ray shooting of the reverse se arch are defined as

follows:

• Adjacency Oracle: let s be any cell in S. An index j E {l, ... , m} is fiippable

in s if Sj =1= 0 and the vector obtained from S by reversing the jth sign is again

a cell. The adjacency oracle Adj(s, j) returns this new cell if j is fiippable and

NULL otherwise, for j = 1, ... , m.

106

• Ray Shooting Local Search Function: let s* be any cell in S that is

known to be in C (we can find this cell using linear programming). Without

loss of generality we can assume that s* is the vector of all +'s. For any ceIl

SES \ s* the local se arch function f must return a ceIl s' which is adjacent

to sand is closer to s* : f (s) = s'. Any ceIl s diffferent from s* has flippable

index j such that Sj = -. Flipping this index leads us doser to s*. We define

f as foIlows: let p* be an interior point of goal ceIl s* and p the interior point

of ceIl s. Shoot a ray from p to p*. The ray will hit aIl hyperplanes separating

sand s*. Select the first hyperplane hit by the ray (breaking ties by symbolic

perturbation) and cross it to obtain the new ceIl s'. Ferrez et al. show that an

interior point for a ceIl, defined by Ay ~ b for (m - 1) x (d - 1) matrix A, can

be computed by solving the linear pro gram

max Yo (6.4)

Ay + e· Yo ~ b

Yo ~ K,

where e is the vector of aIl l's and K is a large number that bounds the LP.

Algorithm 6.2 (Objective Vector Enumeration).

Input: m hyperplanes in d - 1 dimensions and cone C.

s = s*;j = 1

print(interior point of s)

Repeat

while j ~ m {

j:= j + 1;

next = Adj(s,j)

if next =1- NULL and next E C then

if f(next) = s then { //reverse traverse//

107

s : = next; j : = 1

print(interior point of s) } }

if s #- s* then { / /forward traverse/ /

s' := s; s := f(s);j := 0

repeat j := j + 1;

until Adj(s, j) = s' }

Until j = m and s = s*.

Output: Set of sufficient objective vectors inside cone C (optimal at B*).

Figures 6-2a and 6-2b depict the reverse se arch for ceIl enumeration using

ray shooting. The solid lines represent the reverse search tree generated by the

Objective Vector Enumeration Algorithm. The entire tree, including the dotted

lines, represents the reverse search tree which would be generated by the original

algorithm of Ferrez et al. [23].

6.4 Enumerating Pivot Paths to an Optimal Basis

Problem 6.3. Given a polyhedron P, a feasible basis B*, and a finite combinatorial

pivot mIe R, enumerate all possible simplex method pivot paths following R in linear

programs defined over P with objective functions yielding optimal basis B*.

Aigorithm 6.3 (Pivot Path Enumeration).

Input: n inequalities in d dimensions, pivot mIe R, and basis B* .

(0) Let H be set of hyperplanes initially empty.

(1) Consider each set of d - 1 gradient vectors of the n inequalities. If the set of

vectors is affinely independent and lie in a hyperplane h, then add h to H.

(2) Run the Objective Vector Enumeration Aigorithm on A(H) with cone C of

basis B*. Let 0 be the set of sufficient objective vectors.

(3) For each objective vector of 0, run the Reverse Search for Pivot Pa th Enu­

meration Aigorithm.

Output: All possible simplex pivot paths following rule R to basis B* .

108

(a)

2

4

(b)

2

3

4

Figure 6-2: (a) Interior points and ray shooting local search, and (b) reverse search
tree for cell enumeration using ray shooting

The complexity of the algorithm depends on the number 101 of objective

functions generated of which there can be 0 (C:l)d) . The modified reverse

search aigorithm of Ferrez et al. has time complexity O(m LP(m, d)IOI) and space

complexity O(md) where m is 0C:l) and LP(m, d) is the time to solve an LP with

m inequalities in d variables.

6.5 Implementation Details

We have implemented a version of this algorithm in C for three finite simplex

pivot mIes: Bland's least-index mIe [13], and both Dantzig's largest coefficient

pivot mIe [19] and the Ieast-index positive coefficient mIe (as used in [3]) with

lexicographie pivoting. (Dantzig's mIe is not combinatorial, but implemented

109

nonetheless for comparison sake.) A single executable program and a user guide are

available [107]. The package comprises of

• modified versions of A vis' lrs and qrs [106] reverse se arch implementations:

functionality is added to start reverse search from a specific root basis and

objective function, reverse search with Dantzig's rule implemented and set as

an option in lrs,

• the rs_tope program of Ferrez and Fukuda [31] for enumeration cells of an

arrangement using ray shooting (which relies on Fukuda's cddlib[30] to solve

lp's and Marzetta's zram package [69] for reverse search).

AlI computations are done exactly using extended precision arithmetic. The input

files are in standard polyhedra format [3] listing the n inequalities in the form (i :) bi

-ail -ai2 ... -aid for i = l, .'., n. Execution proceeds as follows:

• Data structures initialized and input is read

• AlI C~l) combinations of d - 1 gradient vectors are computed. For each

combinat ion , if the lowest-dimensional fiat f containing the vectors has

dimension d - 1 then we store hyperplane h containing f.

• The set of hyperplanes stored are sent as input to rs_tope which returns a set

of points.

• For each point the program sends the original inequalities, optimal basis, and

objective function (point) to qrs and lrs:

(1) qrs returns the reverse search tree of Bland's rule.

(2) lrs (default) returns the reverse se arch tree of the least-index lexico­

graphic rule.

(3) lrs (Dantzig rule option) returns the reverse search tree of Dantzig's

lexicographic rule.

The pro gram outputs the set of sufficient objective vectors and their associated

reverse search trees, and the longest path from leaf to root (number of nodes). For

110

example, the simplex method following Bland's rule on the Klee-Minty cube in 3D

(Bland rule variant) with optimal basis {l, 3, 6} has the following input and output:

Input:
... ···········r········

(1:) 0 1 0 0
(2:) 1 -1 0 0
(3:) 0 -1 3 0
(4:) 3 -1 -3 0
(5:) 0 0 -1 3
(6:) 3 0 -1 -3

(1,3,6). .
(2,3,6)

~ __ ---nl(2,4,6)

(1,4,6)

(1,4,5) .

(2,4~5)

basis: 1 3 6

(1,3,5)

Output:
Objective vectors optimal at {1,3,6}:

(1) -14617 2886 12777
(2) -2 -13/3 3
(3) -2 -19/3 3
(4) -2 -23/3 3
(5) 2 -23/3 3
(6) -2 2/3 18
(7) -2 0 20
(8) 2 0 20
(9) 2 -2/3 18
(10) 2 -19/3 3
(11) -2 -2/3 18

AlI Bland's rule pivot paths to optimal basis {1,3,6}:

(1): {1,3,6 } (4), (5): {1,3,6 }

/1 /~
{2,3,6} {1,4,6}

I~
{2,3,6} {1,3,5}

1 1
{2,4,6} { 1,4,5}

/1
{2,4,5} {1,3,5}

1

{2,4,6} {2,3,5}

1 1
{1,4,6} {2,4,5}

1
{ 1,4,5}

{2,3,5}

111

(2):

(7), (8):

{ 1,3,6} (3): {1,3,6 }

/î~
{2,3,6} {l ,4,6} {l ,3,5}

/ /î
{2,4,6 } 12,3,5) Ill')

{2,4,5 }

{2,4,6 }

{l,4.l

12,3,5) Ill5)

{2,4,5 }

(6):
{1,3,6}

(9):
{1,3,6}

/~ /
12,3,6) /\ 12l6)

{2,4,6} { 1, ,5}
12,t~

{2, ,5}

12l5)

{1,3,5 }

Il,4,6/4'l

IIA,5} 12f5)

(10): {1,3,6}

î
{2,3,6}

/~
12T /T
{l,4,6) {l,3,5) 12l5)

{ 1,4,5}

(11):

{1,3,5}

{l'rI

12,3t

1
2'r)

{l'rI

{ 1,4,5}

~
12,4,5) Il,3(

{2,3,5 }

Statistics:

112

Longest *Longest* path length = 8
Shortest *Longest* length = 4
Median *Longest* path length = 5

The sign structure of the bases along the paths generated is different for each

objective function, however the difference may not affect the decision taken by the

pivot rule. This explains why sorne objective functions may return the same pivot

path trees, as is the case with the above example.

6.6 Computational Results

If we consider every feasible basis B of P and run the Pivot Path Enumeration

Algorithm for each basis, then we can compute the longest possible path that

the simplex method can take following a finite combinatorial pivot rule for a

linear program defined over P. This approach allows us to analyze pivot paths for

completely degenerate polyhedra, compare path lengths for polytopes and their

collapsed (completely degenerate) versions. Computing these paths is impractical

wh en n and d get too large as the algorithm executes a reverse se arch up to

o (C:l)d) times for each basis of P. The enumeration is an employable tool when

the parameters are srnall; we ran experirnents on instances of sorne low dirnensional

polytopes.

Table 6-1: Longest paths on Klee-Minty cube in ~3

Optimal Basis # Obj. Bland Dantzig Least-Index
{4,5,6} 11 4 6 4
{1,5,6} 3 5 7 4
{1,3,6} 2 4 6 4
{2,4,6} 4 5 5 4
{2,3,4} 4 5 5 4
{1,2,3} 2 6 6 4
{1,3,5} 3 7 7 4
{3,4,5} 11 6 8 4

In Table 6-1 we present the longest path lengths found by the Pivot Path

Enumeration Algorithm for every feasible basis of the Klee-Minty cube [61]. The

number of objective functions optimal at each basis, and the longest path length

113

for Bland's rule, Dantzig's rule, and the least-index positive coefficient rule are

shown. As expected, there is an LP with a simplex pivot path going through aIl

8 vertices. When we collapse the Klee-Minty cube to a completely degenerate

polyhedron more feasible bases are created. In Table 6-2 we present path length

results returned by our algorithm for each basis of this degenerate polyhedron.

Preliminary observations show that the longest path lengths become shorter, none

achieve the maximallength of 8 of the nondegenerate counterpart. Similar results

(see Table 6-3) were observed for other low-dimensional examples.

Table 6-2: Longest paths on collapsed Klee-Minty cube in R3

Optimal Basis # Obj. Bland Dantzig Least-Index
{4,5,6} 11 4 3 2
{1,5,6} 3 5 3 3
{1,3,6} 2 4 6 4
{2,4,6} 4 4 3 3
{2,3,4} 4 4 3 3
{1,2,3} 2 5 4 4
{1,3,5} 3 6 3 3
{3,4,5} 11 7 3 2
{2,3,6} 2 5 2 3
{1,3,6} 6 2 3 3
{2,5,6} 5 2 4 3
{2,3,5} 3 2 4 3
{3,5,6} 1 1 1 1
{3,4,6} 6 6 3 2

Table 6-3: Longest paths on selected polytopes and their collapsed versions.

Polyhedron n d # Obj. # Bases Bland Dantzig Least-Index
Klee-Minty 8 4 696 16 11 16 5

(collapsed) 8 4 696 41 11 7 5
Polar Cyclic 7 3 37 10 7 7 5

(collapsed) 7 3 37 26 6 7 5
Polar Cyclic 6 4 444 9 8 6 3

(collapsed) 6 4 444 15 6 5 3
Polar Cyclic 7 4 2908 14 9 8 5

(collapsed) 7 4 2908 31 8 8 5

114

A true exhaustive analysis of the possible pivot paths over a polyhedron for a

combinatorial pivot rule would require executing a reverse search 0 (C~l) d) times

for each basis of P and for every permutation of the inequality indices (dictionary

variable indices). Even in low dimensions the number of iterations explodes,

demonstrating the vast number of possibilities that contributes to the difficulty of

analyzing pivot paths.

Open Problem 6.1. Find a general nondegenerate (linear program) construction

on which the longest pivot path taken by the simplex method with Eland 's mle is

shorter than the longest pivot pa th taken on the collapsed version.

115

CHAPTER 7
Computing Disjoint Paths on Polytopes

7.1 Introduction

The vertices and edges of a polytope P form an undirected graph G(P). A

linear function ex in Rd in general position gives an orientation on the edges of

G(P) allowing us to define an acyclic digraph Dc(P). This digraph has a unique

source, or vertex minimizing ex, and sink, or vertex maximizing ex. The primaI

simplex method follows a path in Dc(P) from any given starting vertex to the sink.

Conjecture 3 (Ziegler's Strict Monotone Hirsch Conjecture, [102] p.86).

Let P be ad-polytope with n facets and ex a linear funetion in general position,

then there exists a path in Dc(P) from source to sink of length at most n - d.

HoIt and Klee proved that the Strict Monotone Hirsch Conjecture is true when

d ::; 4. In doing so they unearthed the following interesting facto

Theorem 7.1 (Holt-Klee Condition [50]). Let P be ad-polytope with n facets

and ex a linear funetion in general position with respect to P, then there exist d

vertex-disjoint strict monotone paths from source to sink.

Studying these disjoint paths has the potential to provide new insight into

designing a polynomial-time simplex method, or proving none exists. To study

these paths it would be useful to have a tool to compute them. In this chapter

we give an algorithm for computing disjoint paths on a polytope P given by a

116

system of n linear inequalities in d variables. Given a directed graph, a maximum

cardinality set of disjoint paths from source to sink can be found efficiently using

network flow techniques, see Section 7.2 for details. However, in our case we are

not given explicitly the digraph Dc(P). Computing Dc(P) would require the

enumeration of all vertices of P, a computationally difficult task, see Avis, Bremner

and Seidel [4]. Worse, the st orage requirement for Dc(P) can be exponential in the

input size. For example, the polar of a cyclic d-polytope with n facets has e(nL~J)

vertices. Complete vertex enumeration and storage would be required even if just a

few disjoint paths are required. Our algorithm avoids computing Dc(P) explicitly,

using an oracle based on the simplex method to provide edges.

A further complication is caused by degeneracy. The set of all bases of P

defines an undirected graph, called the basis graph B(P) (defined in Chapter 5):

the vertices of B(P) are bases of P, and the edges of B(P) are defined by the

pivot operation, see Section 7.3 for details. We will avoid using the term "vertex

of B(P)" to avoid confusion with the the term "vertex of P". Instead we will refer

to the "bases" of B(P). For a simple polytope P, the graphs B(P) and G(P) are

identical. However, the graph B(P) can be much larger than the graph G(P), since

a highly degenerate vertex may be representable by an exponential number of bases.

The simplex method follows paths in B(P).

Let ex be in general position with respect to P. A path in B(P) is said to be

monotone with respect to e, if ex is nondecreasing wh en applied to the vertices of

P corresponding to consecutive bases in the path. In the case of nondegeneracy, ex

increases strictly along the path. In the presence of degeneracy, a degenerate vertex

appears as one or more consecutive bases on the path. The vertices of P as visited

by a monotone path in B(P) induce a strictly increasing path in Dc(P). Note

however, that to find vertex-disjoint monotone paths in Dc(P) it is not sufficient

117

to find basis disjoint monotone paths in B(P): in the presence of degeneracy basis

disjoint paths are not neccessarily vertex-disjoint.

In this chapter we present an algorithm and an implementation for finding d

vertex independent monotone paths in Dc(P) from a basis of the source to a basis

of the sink of P. The ingredients of the algorithm are:

- the simplex method to determine edges of the graph B(P);

- a network flow algorithm to determine disjoint paths in B(P);

- reverse search to handle degenerate vertices in a space efficient manner.

In Section 7.2 and 7.3 we give the details of these ingredients. Combining

these we then present our algorithm in Section 7.4. In Section 7.5 we discuss

complexity, implementation, and sorne experimental results. In the implementation,

we will not in fact require that ex is in general position with respect to P, although

for simplicity this will be assumed in describing the algorithm in Section 7.4.

Experimental results show that the algorithm is particularly advantageous when

only a few disjoint paths are required, but also excels when the input has little

or no degeneracy, and is especially memory-efficient wh en the polytope has many

vertices. For example, we computed 10 disjoint paths on the polar of the cyclic

polytope of dimension la with 50 facets storing only 199, 000 vertices while the

polytope has 1,357,510 vertices. The median path length was 32 vertices. Further

preliminary results show that the lengths of the disjoint paths are typically short.

7.2 Disjoint Paths in a Digraph

Let D be a directed graph with two specified vertices sand t. An algorithm

for finding the maximum number of edge-disjoint s - t paths in D is quite simple

and can be found in most graph theory textbooks such as [85]. It is a specialization

of the maximum flow algorithm of Ford and Fulkerson [25]: find a directed path

from s to t in D, reverse the direction of the edges along this path, and repeat this

process until no further path is found.

118

-----+ -----+
For a directed path P in a digraph D, let D f- P be the digraph arising from

-----+
D by reversing the orientation of each arc in P.

Algorithm 7.1 (Edge-Disjoint Paths). Determine Do, Dl, ... as follows:

Set Do := D.

-----+
If P is found

-----+ -----+
then Reverse_Path(Di, P): set Di+! := Di f- P.

Otherwise stop.

Proposition 7.1. The set R of arcs of D that are reversed in Di form i edge-

disjoint s - t paths.

Proposition 7.2. The edge-disjoint paths algorithm finds a maximum collection of

edge-disjoint s - t paths.

(a) (b)

-----~

(c)

...... \

· · , · , · , .. '

Figure 7-1: Computing disjoint paths: an example

See [85, p.135] for proofs. Figure 7-1 shows the algorithm at work. The dashed

lines in Figures 7-1 (a)- (c) show the new path found at each iteration. The solid

edges in Figure 7-1 (d) indicate three edge-disjoint paths from source to sink, with

edges reversed.

A simple modification of the algorithm allows us to find vertex-disjoint paths.

Given a digraph D, create D' by replacing every vertex v in D by two vertices

v', v" and an arc v'v". Replace each arc uv E D by uv', and vw E D by v"w. Now

119

edge-disjoint paths in D' are easily mapped to vertex-disjoint paths in D. Instead

of creating new vertices and edges, we can modify the algorithm to simply mark a

vertex v in D if it is used in a path. In Find_Path(Di) we check whether a vertex

v is marked, signifying that the artificial edge v'v" E D' is reversed. At a vertex v,

let u be the predecessor of v, then only in the following cases is vw an admissible

edge in Di' (In the corresponding figures, reversed edges are dotted, a black-filled

vertex is marked, white-filled vertex unmarked, and grey-filled vertex could be

either marked or unmarked.)

Case 1: v is not marked,

uv and vw are not reversed

Case 2: v is marked,

vu and wv are reversed

Case 3: v is marked,

uv is not reversed,

and wv is reversed

Case 4: v is marked,

vu is reversed

and vw is not reversed

~v)"• •....... ~ .. u
w/,,~

~v)" ···
w.·······~····

/"~ u.

~v)" ·•
~ ' u
/" ~w

D~
l

~ v' V"/'. ~
u~

" 1 ")" 0
o····~O:·······b···········u
w/" ~

~V' V")" ... ······
wo·······o········o···· uif ~

~V' v")" ·····O
~ o o·.. u
/' ~w

Theorem 7.2. A collection of k internally vertex-disjoint s - t paths can be found

in O(kIEI) time.

Proof. A path in a graph can be found in O(IEI) time with a graph se arch algo­

rithm like depth-first-search (dfs J.

Of course Theorem 7.2 assumes that we have easy access to the vertices and

edges of the graph. Unfortunately the polytopal digraph Dc(P) is not readily

available from our input. Instead we define the function Find_Path(Di) of

120

o

Aigorithm 7.1 by using an adjacency oracle based on the memory-Iess local se arch

operation of the simplex method, as described in the next section. Then the ide a
--->

is simple. We use the simplex method to compute the first path Pl. We store

--->
each vertex of Dc(P) that we encounter on the path Pl in a data structure named

R. Thus we have found our first path and reversed its edges, abstractly setting
--->

Dl := Dc(P) and D 2 := Dl +- Pl. For successive iterations we initialize a data

structure S to be used for marking nodes in a dfs of the vertices. We order the

edges incident to each vertex so that given a vertex v and the last edge followed

from v, we can define an adjacency oracle to return the next vertex adjacent to v.

To find the next path, starting from the source vertex, we repeat the following dfs

pro cess until the sink is found: if v ri:. Sadd the current vertex v to S, query the

adjacency oracle and either find a vertex w ri:. S where vw is the next admissible

edge from v in Di, or backtrack to the dfs predecessor of v. The next section

describes the adjacency oracle.

7.3 Finding Edges: Simplex Method and Reverse Search

Let v be any vertex of ad-polytope P, let ..6. be an upper bound on the

maximum degree of any vertex in G(P), and let cx be in general position with

respect to P. In this section we describe an oracle Adj(v,j),j = 1, ... ,..6., with the

following properties:

- Adj(v,j) is either empty or a vertex w of P such that vw is an edge in G(P).

- as j ranges over aH possible values, each vertex w adjacent to v appears

exactly once.

The polytope P is given as a system of inequalities:

d

L aijXj ::; bi

j=l

for i = 1, ... , n.

121

(7.1)

A linear program is formed by maximizing the linear objective function

d

Z = cx = LCjXj
j=l

(7.2)

over P. By ad ding slack variables Xd+1, ... , Xn+d, we can write this linear program in

dictionary form:

Xi = b~ - L a~jxj
jEN

for i E B (7.3)

where initially N = {1, 2, ... , dl, B = {d + 1, d + 2, ... , n + dl, z' = 0, a~j = aij, b~ =

bi, cj = Cj for an i, j.

The simplex method performs pivots that preserve basic feasibility, and this

is achieved by a ratio test to choose the variable to leave the basis. We will only

consider feasible pivots, and they are used to define the oracle Adj(v,j). We first

discuss the case where P is simple.

If P is simple then each basic feasible solution corresponds to a vertex v of P

with a unique basis B. The ratio test is defined as follows:

ratio(j) = argmin{bUa~j : i E B, a~j > O}, (7.4)

where argmin returns the index i minimizing the given ratio. The corresponding

pivot replaces the cobasic variable Xj by the basic variable Xratio(j), and vice

versa. Since P is simple, we must have b~ > 0 and the pivot yields a dictionary

representing a neighbour w of v. If cj > 0 then vw is an arc in Dc(P), otherwise if

cj < 0 then wv is an arc in Dc(P). We may set ~ = n and define the oracle by:

Adj(v,j) = w if jE N (7.5)

= 0 otherwise.

122

a --....... _
d

Figure 7-2: Polytopal digraph example

The degenerate case is more challenging. We begin with an example to illustrate

the difficulties encountered. Consider the 3-polytope P defined by

2XI + X2 + 3X3 ~ 9

3
Xl - 2X2 + 2"X3 ~ 2

(7.6)

P is a pyramid over a 5-gon with six vertices: a : (0,1,0), b : (2,3,0), e : (3,3,0), d :

(4, 1,0),e : (2,0,0),1 : (1,1,2). Vertex 1 is degenerate, since it is contained in

five facets: the first five inequalities in (7.6) are satisfied as equations. If we choose

e = (-1,0,0) the linear function z = ex = -Xl defines the polytopal digraph Dc(G)

shown in Figure 7-2.

123

Vertex f can be represented by the dictionary with cobasis {6, 7, 8}:

1 13 3
Xl = 1 + -X6 - -X7 + -Xs

5 20 8
1 2

X2 = 1 - -X6 + -X7
5 5
231

X3 = 2 - -X6 + -X7 - -Xs
5104

6 12
X4 = 0 + -X6 - -X7 + Xs

5 5
371

X5 = 0 + -X6 - -X7 + -Xs
5 10 4
231

Xg = 2 - -X6 + -X7 - -Xs
5104

1 13 3
z = -1 - -X6 + -X7 - -Xs·

5 20 8

Consider for example a pivot on the cobasic variable X7. The minimum

ratio computed by (7.4) is zero and achieved by the basic variables X4 and X5'

The corresponding pivots are degenerate pivots since they lead to other bases

(7.7)

representing f. Observe that no pivot from (7.7) yields the edge af to vertex a

whose cobasis is {4, 8, 9}. The basis graph B(P) is shown in Figure 7-3(a). (In an

figures we label vertices by the corresponding cobasic indices, since there are fewer

of these than there are basic indices.) Note that vertex f, which is contained on 5

facets, is represented by G) = 10 bases.

The adjacency oracle must return an the edges of G(P) for each vertex v. This

is known as the neighbourhood problem. When v is degenerate, we could achieve

this by enumerating an the bases of v. The edges of v could then be extracted by

considering nondegenerate pivots from each basis of v. Enumerating the bases of

a degenerate vertex v can be a daunting task: if v is contained in k ~ d facets,

then v can be represented by up to (~) bases. Fortunately a subset of these bases,

known as lex-positive bases, are sufficient. The lex-positive bases are in one to one

correspondence with the vertices of a simple polytope obtained by a perturbation of

124

(5,6,9) c

e

(7,8,9)

(a) (b)

Figure 7-3: (a) Basis graph B(P), and (b) lex-positive subgraph

the inequalities defining P. By McMuIlen's Upper Bound Theorem [72] this limits

the number of lex-positive bases to at most e(kl~J). Whilst a big improvement, this

bound is still exponential. The subgraph of B(P) containing just the lex-positive

bases is given in Figure 7-3(b). Fortunately, determining aIl the lex-positive bases

can be achieved in a space efficient manner by making use of the reverse search

method developed by Avis and Fukuda [6]. Its application to finding aIl the lex­

positive bases of a polyhedron is described in [3], and is the basis of the lr s code

[106] for generating aIl vertices of a polyhedron. We give just a brief summary here,

and then explain how to specialize it for our purposes.

Every vertex of ad-polytope Pean be represented by a lex-positive basis.

In fact the lex-min basis of a vertex, defined as the lexicographically smallest

subset of indices that represent that vertex, is lex-positive ([3], Proposition 5.2.).

A lexicographie simplex pivot preserves the lex-positive property of the bases by

employing a lexicographie ratio test which replaces the test described in (7.4).

Note that in case of degeneracy, the test (7.4) may not give a unique index i E B,

but this is always guaranteed by the lexicographie ratio test. The lexicographie

pivot rule applied to a feasible dictionary selects the smallest index j such that

cj > 0 to determine the entering index j, and uses the lexicographie ratio test to

125

find the leaving index i. If there is no such index j, the dictionary is optimum.

There is unique optimum dictionary with lex-positive basis, and this is the lex-min

basis for the optimum basis ([3], Proposition 4.3). The lexicographic pivot rule

therefore defines a spanning tree on the set of lex-positive bases of P, rooted at

the lex-min basis of the optimal vertex. This tree, which contains at least one

basis for each vertex of P, can be traversed without additional storage using the

reverse search method. We adapt this method to determine alllex-positive bases

of any degenerate vertex v. (Filippi [24] details this solution to the neighbourhood

problem.)

Algorithm 7.2 (Lexicographie Reverse Search on a Degenerate Vertex).

Designate the lex-min basis of v as the root of a spanning tree T on the lex-positive

bases for v, by creating an objective function that is optimal at this basis. There

exists a lexicographie simplex pivot path from every lex-positive basis of v to the

(optimal) lex-min basis. The collection of these paths define the enumeration tree T

of v. Reverse search traces out T in a depth first manner without using additional

storage:

• To find children of anode t E T reverse the lexicographie pivot rule: t is a

parent of r if the degenerate pivot from r to t satisfies the lexicographie pivot

rule.

• The parent of anode t in T is found by a single pivot following the lexico­

graphie pivot rule.

For our example, we show in Figure 7-4 a reverse search tree for f, as a

subtree of the full reverse se arch tree for P, rooted at f. The dotted edges show

the degenerate pivots performed by Algorithm 7.2. Note the tree is rooted at the

lex-max cobasis for f, {6, 7, 8}, for which the corresponding basis is lex-min.

We can now fully define the adjacency oracle Adj(v,j). We are given a

dictionary with basis B representing a vertex v, and index i of the last cobasic

126

(6,7,l:!)

-------\~
(5,6,8) (6,7,9) (7,8,9)

,,/ / /
(4,5,8) (5,6,9) (4,8,9)

/
(4,5,9)

Figure 7-4: Reverse search tree of lex-positive bases rooted at (6,7,8)

variable pivoted on in B. The adjacency oracle attempts to find the next admissible

edge from B by incrementing i until either i > d, or the pivot on this column of the

dictionary is nondegenerate. In the latter case, this nondegenerate pivot defines a

vertex w such that vw is an edge of G (P). The oracle returns Adj (v, j) = w and

j is incremented. If i > d, then the oracle pivots to the next no de in the reverse

search tree of v, resets i = 0, and repeats this process until the next edge is found

or aIl lex-positive bases for v have been considered.

7.4 Algorithm and Implementation

In this section we give a more complete description of the algorithm and its

implementation. To store and identify a vertex we use the cobasis of its unique

lex-min basis as its representative. The top level of the algorithm uses depth first

se arch , dfs, to find paths in Dc(P) from source to sink, as described in Section 7.2.

We require two basic data structures .

• S: An AVL tree storing the vertices of Dc(P) that have been visited by dfs. A

no de of the dfs tree, representing a vertex v of P, will consist of the cobasis

of the lex-min basis of the vertex as the search key. Additionally we store

information for backtracking, namely a pointer to the to its dfs predecessor,

and in the case of a degenerate vertex, an encoding of the cobasis, pivot

indices, artificial objective function, and depth of the last no de considered in

the reverse se arch tree for v. We also store pointers to the left son, right son,

and balance factor of the AVL tree.

127

• R: An AVL tree storing the vertices and edges of Dc(P) that have been

reversed. A node of the tree, representing a vertex of P, will consist of the

cobasis of the lex-min basis of the vertex as the se arch key. Additionally we

will have two pointers to the two adjacent vertices stored in R (reversed edges

associated with this vertex), as weIl as to the left son, right son, and balance

factor of the AVL tree.

By Proposition 7.1, the k disjoint paths found at the k th iteration are represented

by vertices stored in R.

Algorithm 7.3 (k Vertex-Disjoint Monotone Paths).

Input: n inequalities in d variables representing a full dimension al d-polytope P, a

linear function ex in general position with respect to P, and an integer k.

Output: k vertex-disjoint monotone paths in Dc(P) from the source to sink.
---7

(1) Initialize data structure R. Find an initial pa th P using the lexicographie
---7 ---7

simplex method and store the vertices of P in R (Dl := Do f----- P). Iteration

:= 1.

(2) Initialize 5 := 0.
---7

(3) Find a new path P:

(3a) Set w := lex-min basis of source, b := w and i := 0, pred := null.

mark_vertex(w, b, i,pred).

(3b) Set v := w. Ifv is the sink then go to (4), otherwise set b := v and

i:= o.

(3e) w := nexLedge_oracle(v,b,i). Ifw == 0, set w := baektraek(v)

and goto (3b). Else if w ~ 5, and vw is admissible then update(v, b, i), set

b:= w, i:= 0, mark_vertex(w,b,i,v), and goto (3b).
---7 ---7

(4) Reverse each vertex p of P: I*Reverse_Path(Di , P)*1
---7 ---7

(4a) If p ~ R, add p and the edges adjacent to p in P to P incident to p to

R, otherwise remove p from R.

128

(4b) Iteration++. If Iteration == k, then go to (5), otherwise go to (2).

(5) Output the vertices and edges in R (up to k paths).

nexLedge_oracle(v, b, i): I*The Adjacency Oracle*1

(a) Increment i. Ifi > d goto (c).

(b) Perform a lexicographic pivot on the ith co basic variable. If the pivot is

nondegenerate, return the lex-min basis w of the new vertex. Otherwise goto

(a).

(c) If v is degenerate, pivot to the next basis b' in reverse search tree (Algo­

rithm 7. 2). If the reverse search tree is exhausted, or v is nondegenerate then

return w := 0. Otherwise set b := b' , i := 0 and goto (a).

mark_vertex(v,b,i,w): Ifv t/:. S then add nbde s:= {v,b,i,w} to S.

update(v, b, i): Update band i and of node storing v in S.

backtrack (v): If v == source the goto (5). Otherwise backtrack to predecessor w

in dfs search, load the basis b of w and index i last used.

The output of the algorithm gives a set of strict monotone vertex-disjoint paths

from source to sink in the polytopal digraph Dc(P). If P is simple, this is also a set

of disjoint strict monotone paths in the basis graph B(P), each edge of which is a

pivot. If P is degenerate, we can also efficiently pro duce a set of disjoint monotone

paths in B(P). For each degenerate vertex v contained in a path, we may have two

bases: B in representing the dictionary for v when it is entered, and Bout when it

is left. These two bases can be easily joined by a path in B(P). We make pivots

interchanging Xi and Xj, where i E Bout - B in and j E B in - Bout. Since these pivots

are degenerate, the set of disjoint paths formed in B(P) are monotone.

We illustrate the algorithm on our previous example (7.6). Let the letters

associated with each vertex represent the lex-min basis at that vertex. Assume that

we have already found two source to sink paths, and that the data structures are

set as R = {e : (a,d),b: (c,f),c: (b,d),f : (a,b)) and S = 0. Starting from the

129

source vertex d represented by cobasis {6, 7, 9} we mark vertex d, S = {d : (pred =

0, leave = 0, depth = 0, obj = 0)}.

e

, , , , , , ,
d

4 2 l 3
Xl = - ~X6 - ~X7 - "2Xg

X2 = 1 - SX6 + SX7

X3 = Xg

The adjacency oracle considers the first nondegenerate pivot from d, pivoting

on X6 and X8, to vertex e : {7, 8, 9}. (d, e) is an arc in Dc(P), as c~ = ~ is positive

in the z-row, but (d, e) E Rand hence not admissible. The oracle examines

the next edge, the pivot on X7 and X5, to vertex c which is also inadmissible as

(d, c) is reversed. The orac1e's last option, pivot on Xg and X8, is a nondegenerate

pivot to vertex j. j is a degenerate vertex and cobasis {6, 7, 8} represents the

lex-min basis for f. (d,1) is an arc in Dc(P) that is not reversed. We mark j,

S = {d, j : (pred = d, leave = {6, 7, 8}, depth = 0, obj = 0)}.

130

O 6 12
X4 = + -X6 - -X7 + Xs

X5 = 0 + ~X6 - 1~OX7 + ixs
2 23 1

Xg = - "5 X6 + lO X 7 - 4XS

1 1 13 3
Z = - - -X6 + -X7 - -XS 5 20 S

Zr.s. = 0 - X6 - X7 - XS,

X6 = 0 - ~X4 + 4X5 + ixs
X7 = 0 - X4 + 2X5 + txs

2 11
Xg = + 6X4 - X5 - 6XS

1 51 1
Z = - - -X4 + -X5 - -XS 12 2 12

13 6 5 Z = - X4 - X5 - - Xs r.s. 6 3

We now query the oracle for an outgoing edge from f. The first nondegenerate

pivot from {6, 7, 8} is X6 for Xg to vertex e. Since c~ = -t is negative and arc (e, f)

is not reversed, this pivot is inadmissible. The nondegenerate pivot X6 for Xg, to

vertex d is inadmissible as dES. As no more nondegenerate pivots are possible

from {6, 7, 8} the oracle initiates a reverse se arch on the lex-positive bases of J,

setting the lex-max cobasis {6, 7, 8} as the root of a reverse search tree (refer to

Figure 5). We construct an artificial objective function Zr.s., and also carry along

the original objective function, although this is not used in pivot selection during

this phase. Following Algorithm 7.2, the next cobasis attained is {5, 6, 8}. We

re-instate the LP's objective function.

From this cobasis, the only nondegenerate pivot finds vertex c which is

inadmissible since arc (c, f) of Dc(P) is not reversed. The oracle restarts the reverse

se arch from {5, 6, 8} and finds the next cobasis {4, 5, 8} of degenerate vertex f. The

first nondegenerate pivot from {4, 5, 8} finds sink vertex a, however we check Rand

131

find that the arc (1, a) in Dc(P) is reversed. The other nondegenerate pivot from

{4, 5, 8} yields an admissible edge to vertex b. We update S = {d, f : (pred =

d, leave = {4, 5, 8}, depth = 2,obj = zr.s.)}, The algorithm continues and finds an

edge to vertex a. S = {d, f : (pred = d), b : (pred = J), a : (pred = b)}. Following the

predecessor links in S we reverse the edges along the path taken, storing only the

arcs not in Dc(P). R = {e : (a, d), b : (a, c), c : (b, d), f : (a, d)}.

7.5 Computational Results & Complexity

We have implemented the k vertex-disjoint monotone paths algorithm as the

program disjointlp, using library functions of lrs [106] for lexicographie pivoting and

rational arithmetie. All computations are done exactly using extended precision

arithmetie. The program and a user guide are available [108]. The input files are

in standard polyhedra format ([106]), and the program outputs k vertex-disjoint

monotone paths, eaeh as a sequence of vertices (represented by the cobasis of the

lex-min basis) from source to sink. For example, the Klee-Minty eube LP in 3D has

the following input and output:

Input:

H-representation
begin
6 4 rational
o 100
1 -1 0 0
o -1 3 0
3 -1 -3 0
o 0 -1 3
3 0 -1 -3
end
disjoint 3
maximize 0 0 0 1

Output:

(1,3,5)

132

.. , (2,3,6)

'--_-----rll (2,4,6)

Paths Computed: Disjoint
Path 1:
Path 2:
Path 3:

[1 3 5]-->[2 3 5]-->[2 3 6]-->[1 36]
[1 3 5] --> [1 4 5] --> [1 4 6] --> [1 3 6]
[1 3 5] --> [1 3 6]

Disjoint path statistics:

Longest path length = 4
Shortest path length = 2
of path vertices 6
Median path length = 4

Max # reversed nodes: 6
Avg # reversed nodes: 4.67
Max # marked nodes: 7
Avg # marked nodes: 2.67
Total # of pivots: 39

The only assumption is that input inequalities define a full dimension al poly-

tope P. The objective function do es not need to be in general position with respect

to P, as dual degeneracy is broken by lexicographie ordering of the cobasie indices.

For a dual degenerate edge, vw is an arc if lex-min basis of v is lexieographically

.smaller than the lex-min basis of w.

7.5.1 Computational Results

The implementation was used to compute a set of disjoint paths of maximum

cardinality for various LP's both nondegenerate and degenerate. For each problem

we list the number of vertices and lex-positive bases that the polytope has, the

amount of additional memory used on top of storing the vertices of the disjoint

paths, the path lengths (# vertices), the total number of pivots operations from

the time the input is loaded, and the number k of disjoint paths computed.

Apart from the Klee-Minty LP's, we generated random objective functions by

picking coefficients from the set {-1000, ... , 1000}. Table 7-1 presents results from

nondegenerate inputs.

The worst case for our algorithm is illustrated by the extremely degenerate

examples in Table 7-2. The polytopal graphs for all are highly connected (e.g. the

eut polytope's graph is a complete graph), so the problem of finding vertex-disjoint

paths is in fact trivial. There are relatively few vertices, but these are extremely

degenerate, making basis enumeration impractical.

133

Table 7-1: Nondegenerate examples

name n d k IVI memory path lengths # pivots
max, avg max, min, med

Hypercube 10 5 5 32 16,8.2 6,6,6 182
Hypercube 16 8 8 256 36,20.0 9,9,9 899

Klee-Minty LP 16 8 8 256 254,161.1 72,2,23 6078
Klee-Minty LP 18 9 9 512 510,352.7 114,2,48 16225
Klee-Minty LP 20 10 10 1024 1022,730.4 282,2,67 37736
Klee-Minty LP 30 15 15 32768 32766, 23953.5 4310,2, 1284 1988459

Polar Cyclic 20 5 5 272 121,67.7 17,10,12 1691
Polar Cyclic 50 10 10 1357510 199000,21479.9 70,28,32 1962605
Polar Cyclic 60 10 10 3795012 709380,123209.0 171,29,150.5 10949702
Polar Cyclic 65 10 10 5916638 1775373,283883.9 330,35,125 26767383

Three random LP models were used (Table 7-3). The Kuhn €3 Quandt

polytopes [65J were constructed by generating inequalities of the form :L aijXj::;
j=l, ... ,d

10,000 with aij chosen randomly from the set {O, ... , 1000}, and then adding

nonnegativity constraints Xj 2: 0, j = 1, ... , d. Examples named Random were

constructed by generating inequalities of the form :L aijXj::; 1 with aij chosen
j=l, ... ,d

randomly from the set {-1000, ... , 1000}.

The observed time taken by disjointlp to compute k disjoint paths does not

increase linearly with every iteration k = 1, ... , d, as illustrated in Table 7-4.

Computing the first few paths is comparable to the time taken to solve the LP with

the simplex method, while computing the last few paths is more comparable to the

time taken to enumerate an the vertices via known pivot techniques, for example

using lrs [3J. Con si der the Kuhn-Quandt, d = 10, n = 60, IVI = 21044, ex ample on

which lrs takes 21427 pivots to enumerate an the vertices (Table 7-4).

7.5.2 Complexity

Let k be the number of disjoint paths, IVI the number of vertices in G(P), IBI

the number of lex-positive bases of the LP, d the dimension, and n the number of

134

Table 7-2: Degenerate examples

name n d k IVI IBI memory path lengths # pivots
max, avg max, min, med

Cut4 16 6 7 8 80 4,2.4 3,2,3 1874
Cut5 56 10 15 16 57498 7,3.8 3,2,3 5102007

Me tri c4 16 6 7 8 80 5,2.5 3,2,3 1374
Metric5 40 10 21 32 9184 15,6.8 3,2,3 3599164
Cross5 32 5 8 10 240 2,1.8 3,3,3 948
Cross 6 64 6 10 12 1440 2,1.8 3,3,3 7255
Cross 7 128 7 12 14 10080 2,1.8 3,3,3 77678
Cyclic 20 3 11 12 36 3,2.4 3,2,3 343
Cyclic 40 7 9 10 1206 2,1.6 3,2,3 8566
Cyclic 240 7 13 14 95686 2,1.7 3,2,3 962780
Cyclic 378 10 14 15 2795469 2,1.9 3,2,3 287897132

Table 7-3: Random ex amples

name n d k IVI
memory path lengths # pivots
max, avg max, min, med

K uhn- Quandt 87 7 7 2326 72,24.9 19,8,14 628
K uhn- Quandt 60 10 10 21044 2237,618.8 42,16,23.5 48141
Kuhn-Quandt 100 15 15 5029250 90071,7563.87 66,9,15 1306273
Kuhn-Quandt 115 15 15 14699038 35138,3316.8 82,25,47 531817

Random 50 5 5 538 204,82.6 27,12,19 1776
Random 60 7 7 7530 323,108.9 52,31,35 3362
Random 70 10 10 291566 527,200.7 65,51,54.5 12032
Random 80 15 15 96936060 890,320.3 114,75,90 36904

inequalities in the input. We assume the bit-vector computational model allows

single-operation arithmetic. When the LP is nondegenerate, IBI = IVI.

Lemma 7.1. The k vertex-disjoint monotone paths algorithm takes O(kd2 IBI)

pivots, and only O(kIVI) pivots when the LP is nondegenemte

Proof. Pivots are performed during dfs of Dc(P), to extend the search path and

also to backtrack. For every iteration, the dfs may build a spanning tree across

aIl V vertices which has IVI - 1 edges. Each edge along this tree is traversed at

most once in each direction. Similarly for every degenerate vertex, we may have to

135

Table 7-4: Growth in number of pivots

of paths
memory path lengths # pivots
max, avg max, min, med

k=l 0,0.0 13,13,13 26
k=2 22,11.0 18,13,15.5 164
k=3 53,25.0 19,12,15 367
k=4 66,35.3 26,8,21 697
k=5 147,57.6 34,7,14 1730
k=6 391,113.2 36,8,21 4333
k=7 537,173.7 29,10,22 8023
k=8 637,231.62 27,14,21.5 12608
k=9 2098,439.9 45,7,22 29784
k = 10 2237,618.8 42,16,23.5 48141

enumerate all the lex-positive bases via reverse search. If a vertex v has IBvl bases,

then the reverse se arch tree at v has 1 BV 1 - 1 edges and each edge is traversed a

maximum of two times. The number of pivots required to find the lex-min basis of

a degenerate vertex is O(d) and we may have to do this O(dIBI) times.

The number of operations required for a single pivot is ()(nd), and so

O(knd3 IBI) time is spent pivoting, O(kndlVI) wh en IVI = IBI. Carefully con-

structed worst-case examples for simplex methods, such as [2] and [61], illustrate

that D(IVI) pivots may have to be taken to find a single path from source to sink.

However [79] proves that the number of vertices along a strict monotone path is

strictly less than IVI.

Lemma 7.2. The time spent on AVL tree search is O(kd2 lVllog IVI).

Proof. For each iteration, the algorithm may need to perform an AVL se arch

for every edge of Dc(P) of which there can be ~IVld. The maximum number of

nodes in each AVL tree is O(IVI) and so the se arch time is O(log IVI). The time

taken for comparison of keys in the AVL tree is O(d) as we compare the indices of

cobases.

136

D

D

Lemma 7.3. The k vertex-disjoint monotone paths algorithm requires O(dIVI)

space.

Proof. In the worst-case all the vertices in Dc(P) will be either marked during

dfs, or elements of the disjoint paths computed. The storage cost of a vertex is

O(d). D

Theorem 7.3. A collection of k internally vertex-disjoint monotone s - t paths in

a Dc(P) can be found in O(knd3 IBI) time (O(kndIVI) when the P is simple) and

O(dIVi-ll + diViI) space per iteration i where Va is the empty set, Vi-l is the set

of vertices along the i - 1 disjoint paths found so far, and Vi is the current set of

vertices marked by the search path in iteration i.

When the polytope is simple, or near simple, the theoretical time for searching

the AVL trees slightly dominates the time spent pivoting in the theoretical analysis.

However experimental observations show that the k vertex-disjoint monotone

paths algorithm is memory efficient and little time is spent searching AVL trees.

Time is spent pivoting and so the this approach to computing disjoint paths

works favourably when the LP is nondegenerate or contains little degeneracy.

Pivoting to compute all disjoint paths is much less effective wh en the input is

highly degenerate, as expected, since pivot methods for vertex enumeration perform

similarly in the presence of degeneracy [4]. The complexities of our algorithm are

slightly worse than that of enumerating all the vertices and edges, explicitly storing

Dc(P) as a edge adjacency list, and employing a network fiow algorithm on the

stored digraph. However in practice disjointlp frequently computes disjoint paths

faster than state-of-the-art vertex enumeration codes can enumerate all the vertices,

especially if just a few disjoint paths are required (see Table 7-5).

Open Problem 7.1. Do there exist d vertex-disjoint simplex method pivot paths

from source to sink of Dc(P)?

137

Table 7-5: Computing just a few paths

name n d k IVI pivots max. mem.
Cyclic 1782 10 7 18 2829 6
Cyclic 4004 10 7 20 6227 8

Polar Cyclic 65 10 7 5,916,638 30121 3276
Kuhn-Quandt 115 15 8 14,699,038 1439 129

(By the Holt-Klee Condition, the answer is yes wh en the linear program is nonde­

generate.)

Open Problem 7.2. Given a vertex v, basis Bu of a vertex u, and Bw of a vertex

w such that (u, v) and (v, w) are directed edges of Dc(P), is there a simplex method

pivot path from Bu through the basis graph of vertex v ta basis Bw?

(This would help answer the previous question.)

Open Problem 7.3. Does there exist a polytope and objective function such that d

vertex-disjoint paths from source ta sink of Dc(P) each have length exponential in n

and d?

138

CHAPTER 8
Conclusion

The main contributions of this thesis are the following:

• In Chapter 2 we define products of arrangements and construct linear

programs on which the simplex method cycles, achieving new bounds on cycle

lengths. We show that S(n, 2) is 8(n2
) and more generally that S(n, m) is

8(nm
) for n ~ 3m with m ~ 2 fixed and even. (S(n, m) is the maximallength

of a simplex method cycle for a linear program with n nonnegative variables

and m inequalities.)

• In Chapter 3 we show that Bland's rule is not a perturbation scheme leading

to the possibility that the number of degenerate bases visited by the simplex

method with Bland's rule, DBl(d, n), can exceed the maximal number of

vertices that ad-polytope with n facets can have. However we prove that

DBl(2, n) = n and DBl(3, n) = O(n2
). Our proofs are based on a new

geometric interpretation of (simplex method) dictionary coefficients using

determinants (Section 1.2.5).

• In Chapter 4 we construct the longest admissible pivot path possible: we

prove that the least-index criss-cross method can take 8(nd) pivots for

n ~ 2d. We extend the notion of deformed products of polytopes to oriented

hyperplane arrangements by defining deformed products of arrangements.

139

• In Chapter 5 we construct a family of examples proving that DBl(d, n) =

n(nL~J) for n ::::: 2d, and DBl(d,n) = 8(nn-d) for d :::; n :::; ~d. We define

collapsing deformed product programs.

• In Chapter 6 we present software for pivot path enumeration. We compute

the finite number of objective functions needed to enumerate all possible

pivot paths taken by the simplex method following a combinatorial pivot

rule to an optimal basis. We present a pivot path enumeration algorithm and

implementation that allows us to compute the objective function and starting

basis yielding the longest pivot path on user inputed polyhedra.

• In Chapter 7 we present a new algorithm and useful implementation for

computing disjoint paths in polytopes. We present empirical results displaying

its behaviour on nondegenerate and degenerate input.

Our research has le ad to new open problems, which have been listed at the end of

each chapter.

140

Appendix

To prove Theorem 1.6 we venture into the matrix representation of a linear

program,

maximize ex (8.1)

subject to Ax = b, with Xd+1, ... , Xd+n :::: 0

for matrix A E ~nx(d+n), column vector b E ~n, and row vector e E ~d, and a

dictionary,

(8.2)

for basis Band cobasis N. If A = [AI] with A E ~nxd, e = [e 0] with e E

~d, and x = [x xs] with x = [x x x] X
S

- [x x x] 1 2 ... d , - d+l d+2 ... d+n

then (8.1) is equivalent to

maximize ex (8.3)

subject to Ax ~ b,

which is the matrix form of (1.32). We need some elementary definitions and

observations:

• The cobasic gradient matrix G N is the d x d matrix where row i' = i - d for

i E N corresponds to row i' of matrix A.

• Let D S be the submatrix of matrix D consisting of the rows sES of D.

• Let D be a m x m matrix. Define Di,j to be the m - 1 x m - 1 matrix obtained

by deleting the ith row and jth column of D.

141

Remark 8.1. Let D be a nonsingular matrix, then D-1 = a~jtf) where adj(D) =

[(-l)i+j(Xij{ and (Xij = IDi,jl (see (89J).

• If we restrict indices 1, ... , d to the basis B then AN will consists of d linearly

independent columns ef-d for j E N, and the product A~l . AN = aÎjl~Î) AN

appearing in dictionary (8.2) will consist of d columns of aTl~Î)' namely the

columns with indices j' = j - d for j E N.

• Let B' = B \ {l, ... , d}.

• Let E be the n x (n - d) matrix whose n - d columns are ef-d for j E B', then

AB = [A: El.

• Order the sets B' and N, and let p(k) be the position of k in B' if k E B,

otherwise the position of k in N if kEN.

By definition -a~s = - [A~l . AN] and c~ = (CN - CB . A~l . AN)s-d. The
p(r)+d,s-d

following three lemmas dissect -ars and c~.

[]
(-1)~1 ar_d 1

Lemma 8.1. A~l. AN = IA:t s for some r E B', sEN and some
p(r)+d,s-d

positive constant ç.

(N ote that the row with basic variable X r , r E B', corresponds to row p(r) + d of

(1.33), and that the column with variable xs, sEN, corresponds to column s - d of

(1.33)).

Proof. IABI· [A~l . AN] = [adj(AB)· AN] ()+d -d (by Remark 8.1). The p(r)+d,s-d p r ,s

latter is equal to row p(r) + d of adj(AB) multiplied by column s - d of AN which is

equal to adj(AB)p(r)+d,s-d.

ad'i(A) - (_l)p(r)+d+s-d 1 [A ls-d,p(r)+dl
:J B p(r)+d,s-d - B (8.4)

= (_l)p(r)+s UA : Els-d,p(r)+dl.

[A : Els-d,p(r)+d is matrix [A : El but with cobasic row s removed (it had index

s - d), and column with index p(r) + d removed (column e;_d). Now rearrange the

142

rows of [A : E]s-d,p(r)+d :

to [AN\S 0],
AB' l

reqmrmg L (k - d - p(k)) shifts,
kEN,
kfs

then to ar-d 0 ,requiring p(r) + 1 shifts,

AB' l

then to AN\s 0 ,requiring d - 1 shifts.

AB' l

Renee IAB 1· [A~1 . AN] = (-l)Ç 1 ~T-d 1 with
p(r)+d,s-d N\s

(8.5)

(8.6)

(8.7)

ç = p(r) + s + L (k'- d - p(k)) + (p(r) + 1) + (d -1) (8.8)
kEN,
kfs

= L(k-d-p(k))+s+d+2p(r).
kEN,
kfs

[]
(-1)(1 c 1

Lemma 8.2. CN - CB . A~1 . AN s-d = IA:î\S for some sEN and some

positive constant (.

Proo! First note that [CN - CB . A~1 . AN] = - [CB . A~1 . AN] sinee CN
s-d s-d

is a n-dimensional row vector of zero's as {l, ... , d} c B. Furthermore CB =

[col so the last n - d elements of CB . A~1 . AN are zero. By Remark 8.1,

D

IABI· [A~I. ANL_d = [adj(AB)· ANL_d and we are specifically interested in the

element j = s - d of CB' adj (AB)· AN which is row vector c multiplied by the column

143

j of adj(AB). The column j = s - d of adj(AB) has form

(-1)s-d+l j [AB] S-d,lj

(_1)S-d+2j [AB]S-d,2j

[CB' adj(AB)' ANL_d = C1(_1)S-d+1j [ABr-d,lj

+ C2(_1)S-d+2j [ABr-
d,2j

+ ...

+ cd(-l)S-d+d j [ABr-d,dj

c 0

= (_l)s-d+l(_1)<> AN\s 0 , with 6 = L (k - d - p(k)) (see (8.5)),

AB' l

showing that

kEN,
k=jos

IABI· [CN - CB . A~l . AN] = -IABI· [CB . A~l . AN]
s-d s-d

(8.9)

(8.10)

=(-l)(l c C 1 for(=s-d+ L(k-d-p(k)).
N\s kEN,

k=jos

o

144

Lemma 8.3. IABI = (-1)1' I~S-d 1 for sEN and some positive constant 'Y.
N\s

Proof. AB = [A : El consists of n rows: basic rows with index i' = i - d for i E B',

and cobasic rows with index j' = j - d for j E N. If we rearrange these rows,

AN 0
shifting the cobasic rows to the top we get I[A : Eli = (-1)0: , where ct

AB' l

represents the number of row exchanges required:

ct= L(k-d-p(k)). (8.11)
kEN

We can then isolate cobasic row s at the top by shifting it p(s) + 1 times to get

A{s-d} 0

I[A: Eli = (_l)o:+p(s)+1 AN\s 0 = (-1)1' 1 ~;\: 1 where 'Y = ct + p(s) + 1. D

AB' l

Proof of Theorem 1.6.
[adj(AB)·ANl

• By definition -a~s = - IABtT)+d,s-d, and by Lemma 8.1 and Lemma 8.3

where

'Y = L (k - d - p(k)) + p(s) + 1
kEN

= L (k - d - p(k)) + (s - d - p(s)) + p(s) + 1,
kEN,
k#s

ç= L(k-d-p(k))+s+d+2p(r).
kEN,
k#s

Adding (8.13) and (8.14) we get that h + ç) mod 2 1, proving that

l

aT d 1

-a' = GN\s

TS las-di'
GN\s

145

(8.12)

(8.13)

(8.14)

• Similarly c~ = (CN - CB . A;l . AN)s-d, and by Lemma 8.2 and Lemma 8.3

where

c' = s

[CB . adj (AB) . AN L-d (-1)<: 1 G~\S 1

1 AB 1 - (-1) 'Y 1 ~:;\~ 1

'Y = L)k - d - p(k)) + p(s) + 1
kEN

= L (k - d - p(k)) + (s - d - p(s)) + p(s) + 1,
kEN,
k-j-s

(" = s - d + L (k - d - p(k)).
kEN,
k=f-s

Adding (8.16) and (8.17) we get that h + (") mod 2 1, proving that

1 _ 1 G~\s 1

Cs--~' as-d

GN\s

Example 8.l.

an al2 1 0 0 0 0 bl

a21 a22 0 1 0 0 0 b2

IfA= a31 a32 0 0 1 0 0 , b= b3

a41 a42 0 0 0 1 0 b4

a51 a52 0 0 0 0 1 b5

C = [Cl C2 0 0 0 0 o 1

146

(8.15)

(8.16)

(8.17)

D

with B = {l, 2, 4, 5, 7}, and N = {3, 6}, then

a51 a52 a51 a52

a41 a42 an al2

and, for example,

a31 a32 Cl C2

a41 a42 [[Cl C2 0 0 o] adj(AB)AN L a41 a42
1 1 -a53 = 'C3 =-

an al2 an al2 an al2

a41 a42 a41 a42 a41 a42

147

References

[1] 1. Adler and N. Megiddo, A simplex algorithm whose average number of steps
is bounded between two quadratic functions of the smaller dimension, Journal
of the Association of Computing Machinery 32 (1985) 891-895.

[2] N. Amenta and G. Ziegler, Deformed products and maximal shadows of
polytopes, Contemporary Mathematics 223 (1999) 57-90.

[3] D. A vis, lrs: a revised implementation of the reverse se arch vertex enumeration
problem, In: G. Kalai & G. Ziegler eds., Polytopes - Combinatorics and
Computation, Birkhauser-Verlag, DMV Seminar Band 29, (2000) 177-198.

[4] D. Avis, D. Bremner, and R. Seidel, How good are convex hull algorithms,
ACM Symposium on Computational Geometry (1995) 20-28.

[5] D. Avis and V. Chvatal, Notes on Bland's rule, Mathematical Programming
Study 8 (1978) 24-34.

[6] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Applied Math
6, (1996) 21-46.

[7] D. A vis, B. Kaluzny, Solving inequalities and proving Farkas' lemma made
easy, Amer. Math. Monthly 111 (2004), no. 2, 152-157.

[8] D. Avis, B. Kaluzny, Computing disjoint paths on polytopes, GERAD Techni­
cal Report G-2005-26. Submitted to Journal of Combinatorial Optimization
(special issue on Franco-Canadian Workshop on Combinatorial Aigorithms,
McMaster, August 18-20, 2005).

[9] D. Avis, B. Kaluzny, and D. Titley-Péloquin, Visualizing and constructing cy­
cles in the simplex method, GERAD Technical Report G-2005-33. Submitted
to Journal of Operations Research.

[10] M. Balinski, A. Thcker, Duality theory of linear programs - a constructive
approach with applications. SIAM Review Il (3) (1969) 347-77.

[11] E. Beale, Cycling in the dual simplex method, Naval Research Logistics
Quarterly 2 (4) (1955) 269-75.

[12] R. Bixby, Solving real-world linear programs: a decade and more of progress,
Operations Research 50th Anniversary Issue 50 (1) (2002) 3-15.

148

[13] R. Eland, New finite pivot rules for the simplex method, Mathematics of
Operations Research 2 (1977) 103-107.

[14] R. Eland, A combinatorial abstraction of linear programming, Journal of
Combinatorial Theory Ser. B 23 (1977) 33-57.

149

[15] H. Borgwardt, The Simplex Method: A Probabilistic Analysis. Algorithms and
Combinatorics, Vol. 1 Springer-Verlag 1987.

[16] E. Boyd, Resolving degeneracy on combinatoriallinear programs, Mathematical
Programming 68 (1995) 155-168.

[17] A. Charnes, Optimality and degeneracy in linear programming, Econometrica
20 (2) (1952) 160-170.

[18] V. Chvatal, Linear Programming, Freeman, 1980.

[19] G. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton 1963.

[20] G. Dantzig, A. Orden, and P. Wolfe, Notes on linear programming: part l
- the generalized simplex method for minimizing a linear form under linear
inequality restrains, Pacifie Journal Mathematics 5 (2) (1955) 183-195.

[21] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag,
Berlin Heidelberg 1987.

[22] J. Farkas, Theorie der einfachen Ungleichungen, Journal für die reine and
angewandte Mathematik 124 (1902) 1-27.

[23] J. Ferrez, K. Fukuda, T. Liebling, Solving the fixed rank convex quadratic
maximization in binary variables by a parallel zonotope construction algorithm,
European Journal of Operations Research, 166 (1) (2005),35-50.

[24] C. Filippi, A reverse se arch algorithm for the neighbourhood problem, Oper.
Res. Letters 25 (1999) 33-37.

[25] L. Ford and D. Fulkerson, Maximal flow through a network, Canad. J. Math. 8
(1956) 1142-1146.

[26] J. Fourier, Solution d'une question particulière du calcul des inégalités, 1826,
and extracts from "Histoire de l'Académie," 1823, 1824, Oeuvres II, pp 317-
328. G. Darboux, ed. Paris: Gauthiers-Villars.

[27] J. Fourier, Second extrait, in Oeuvres, G. Darboux, edited by Gautheirs­
Villars, Paris (1890) 317-328.

[28] S. Fujishige, A simple pro of of the validity of Eland's anticycling rule for the
simplex method, Discussion Paper Series No. 268 (1985), Institute of Policy
and Planning Sciences, University of Tsukuba, Japan.

[29] K. Fukuda, Oriented Matriod Programming, Ph.D Thesis (1982), Waterloo
University, Waterloo, Canada.

[30] K. Fukuda, cddlib reference manual, cddlib Version 092b, Swiss Federal
Institute of Technology, Lausanne and Zurich, Switzerland, 2002.

[31] K. Fukuda, J. Ferrez, Implementations of LP-based reverse
se arch algorithms for the zonotope construction and the fixed­
rank convex quadratic maximization in binary variables us­
ing the ZRAM and cddlib libraries (2002). Available from
http:j jwww.cs.mcgill.caj-fukudajdownloadjminkjRS_TOPE020713.tar.gz.

[32] K. Fukuda, H-J Lüthi, Optimization Techniques (course notes), 1999.

[33] K. Fukuda and B. Kaluzny, The criss~cross method can take D(nd
) pivots,

Proc. of the 20th Annual Symposium on Computational Geometry (2004),
Brooklyn, NY, 401~408.

[34] K. Fukuda and T. Matsui, On the finiteness of the criss~cross method,
European Journal of Operations Research 52 (1991) 119~124.

150

[35] K. Fukuda and M. Namiki, Two extremal behaviour of the criss-cross method
for linear complimentary problems, Research Report B-241 (1991), Department
of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan.

[36] K. Fukuda and T.Terlaky, Criss-cross methods: A fresh view on pivot algo­
rithms, Math. Program. 79 (1997) 369-395.

[37] K. Fukuda and T. Terlaky, On the existence of a short admissible pivot
sequence for feasibility and linear optimization problems, Pure Mathematics
and Applications, Mathematics of Optimization, 10 (4) (2000) 431~447.

[38] B. Gartner, J. Solymosi, F. Tschirschnitz, P. Valtr, and E. Welzl, One line
and n points, in: Proc. 33rd A CM Symposium on the Theory of Computing
(STOC), ACM Press (2001) 306~315.

[39] S. Gass, Linear Programming: Methods and Applications, 5th edition, McGraw­
Hill Book Company, New York, 1985.

[40] K. Gauss, Theoria combinationis observationum erroribus minimis obnoxiae,
Werke Vol. 4 Supplementum, Gottingen (1826) 55~93.

[41] T. Gal, Degeneracy graphs - theory and applications: a state-of-the-art survey,
Report No. 142 (1989), Fern Universitat Hagen, Germany.

[42] T. Gal, On the structure of the set bases of a degenerate point, Journal of
Optimization Theory and Application 45 (1985) 577~589.

[43] T. Gal and F. Geue, A new pivoting rule for solving various degeneracy
problems, Operations Research Letters Il (1992) 23-32.

[44] T. Gal, H.-F. Kruse, P. Zornig, Survey of solved and open problems in the
degeneracy phenomenon, Mathematical Programming B 42 (1988) 125.

151

[45] D. Goldfarb, Worst case complexity of the shadow vertex simplex algorithm,
Report (1983) Columbia University, Department of Industrial Engineering and
Operations Research.

[46] D. Goldfarb, On the complexity of the simplex algorithm, in: Advances in
Optimization and Numerical Analysis, Proc. 6th Workshop on Optimization
and Numerical Analysis, Oaxaca, Mexico, January 1992; Kluwer, Dordrecht
1994, 25-38.

[47] B. Grünbaum, Convex Polytopes, 2nd edit ion prepared by V. Kaibel, V. Klee,
G. Ziegler, Springer-Verlag, New York, 2003.

[48] M. Haimovitz, The simplex method is very good! - on the expected number of
pivot steps and related properties Of random linear programs, Report (1983)
Columbia University, New York.

149] A. Hoffman, Cycling in the simplex algbrithm, National Bureau of Standards,
Washington 1953.

[50] F. Holt and V. Klee, A proof of the strict monotone 4-step conjecture,
Contemporary Mathematics 223 (1999) 201-216.

[51] D. Jensen, Colouring and Duality: Combinatorial Augmentation Methods, Ph.D
Thesis (1985), School of OR and lE, Cornell University, Ithaca, NY.

[52] W. Jordan, Handbuch der Vermessungskunde, Vol. 1, J. Metclersche Buch­
handlung, Stuttgard, 5th ed. (1904) 81-83, 100-105.

[53] M. Joswig and E. Gawrilow, an approach to modular software design incompu­
tational geometry, In Proceedings of the 17th Annual Symposium on Computa­
tional Geometry, (2001) 222-33, Medford, MA. (http:j /www.math.tu­
berlin.de/polymake)

[54] G. Kalai, A subexponential randomized simplex algorithm, in: Proc. 24th ACM
Symposium on the Theory of Computing (STOC), ACM Press 1992, 475-482.

[55] G. Kalai, Linear programming, the simplex algorithm and simple polytopes,
Mathematical Programming 79 (1997) 217-233.

[56] G. Kalai, Polytope skeletons and paths, in: Handbook of Discrete and Compu­
tational Geometry, CRC Press, 1997.

152

[57] L. Kantorovich and M Gavurin, The application of mathematical methods to
problems of freight fiow analysis (translation), Akademii Nauk SSSR (1949).

[58] N. Karmarkar, A new polynomial-time algorithm for linear programming,
Combinatorica 4 (1984) 373-395.

[59] L. Khachian, Polynomial algorithms in linear programming, USSR Compu­
tational Mathematics and Mathematical Physics 20 (1980) 53-72 (English
translation) .

[60] E. Klafszky and T. Terlaky, The role of pivoting in proving some fundamental
theorems of linear algebra, Linear Algebra Applications 151 (1991) 97-118.

[61] V. Klee and G. J. Minty, How good is the simplex algorithm? In O. Shisha,
editor, Inequalities-III, 159-175. Academie Press, New York, 1972.

[62] V. Klee and P. Kleinschmidt, The d-step conjecture and its relatives, Mathe­
matics of Operations Research 12 (4) (1987) 718-755.

[63] M. Konstantinov, D. Wei Gu, V. Mehrmann, and P. Petkov, Perturbation
Theory For Matrix Equations, Studies in Computational Mathematics 9,
Elsevier 2003.

[64] H.-J. Kruse, Degeneracy Graphs and the Neighbourhood Problem, Lecture Notes
in Economics and Mathematical Systems No. 260, Springer-Verlag, Berlin,
1986.

[65] H. Kuhn and R. Quandt, An expiremental study of the simplex method, Proc.
of Symposium in Applied Mathematics 15 (1963) 107-124.

[66] D. Larman, Paths on polytopes, Proc. Lon. Math. Soc. 20 (1970) 161-178.

[67] J. Lee, Hoffman's circle untangled, SIAM Review 39 (1997) 98-105.

[68] K. Marshall and J. Suurballe, A note on cycling in the simplex method, Naval
Research Logistics Quarterly 16 (1) (1969) 121-37.

[69] A. Marzetta, ZRAM homepage, Available from
http://www.cs.unb.ca/profs/bremner/zram/.

[70] J. Matousek, M. Sharir and E. Welzl, A subexponential bound for linear
programming, in: Proc. 8th Annual ACM Symposium Computational Geometry
(Berlin 1992), ACM Press, 1-8.

[71] J. Matousek, Lectures on Discrete Geometry, Springer-Verlag New York, 2002.

[72] P. McMullen, The maximum number of faces of a convex polytope, Mathe­
matika 17 (1970) 179-184.

[73] N. Megiddo, A note on degeneracy in linear programming, Mathematical
Programming 35 (1986) 365-367.

[74] K. Murty, Computational complexity of parametric linear programming,
Mathematical Programming 19 (1980) 213-219.

153

[75] D. Naddef, The Hirsch conjecture is true for {O, 1}-polytopes, Math. Prog.45
(1989) 109-111.

[76] M. Namiki and T. Matsui, Sorne modifications of the criss-cross method,
Research Report (1990), Department of Information Sciences, Tokyo Institute
of Technology, Tokyo, Japan.

[77] E. Nering, A. Tucker, Linear Programs and Related Problems, Academic Press,
Boston, 1993.

[78] K. Paparrizos, Pivoting rules directing the simplex method through all feasible
vertices of Klee-Minty examples, Opsearch 26 2 (1989) 77-95.

[79] J. Pfeifie and G. Ziegler, On the monotone upper bound problem, Experimental
Mathematics 13 1 (2004) 1-12.

[80] M. de la Vallée Poussin, Sur la méthode d'approximation minimum, Ann. Soc.
Sci. de Bruxelles 35 (1911) 1-16.

[81] J. Richter-Gebert and G. Ziegler. Oriented matroids. In J. E. Goodman and
J. o 'Rourke, editors, Handbook of Discrete and Computational Geometry,
pages 111-132. CRC Press, New York, 1997.

[82] C. Roos. An exponential example for Terlaky's pivoting rule for the criss-cross
simplex method, Mathematical Programming 46 (1990) 78-94.

[83] D. Ryan and M. Osborne, On the solution of highly degenerate linear pro­
grams, Mathematical Programming 41 1 (1988) 385-392.

[84] A. Schrijver, Theory of Linear and Integer Programming, Wiley & Sons,
Amsterdam, 1987.

[85] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Springer
Verlag, Berlin, 2003.

[86] G. Sierksma, Linear and Integer Programming, 2nd ed. Marcel Dekker Inc.,
New York, 1996.

[87] D. Solow, Linear Programming: An Introduction to Finite Improvement
Algorithms. North-Holland Press, Amsterdam, 1984.

[88] D. Speilman and S.-H. Teng, Smoothed analysis of algorithms: why the
simplex algorithm usually takes polynomial time, Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing (2001) 296-305.

[89] G. Strang, Linear Algebra and its Applications, 3rd ed. Philadelphia USA,
Saunders, 1988.

[90] T. Terlaky, A convergent criss-cross method, Math. Oper. und Stat. ser.
Optimization 16(5) (1985) 683-690.

[91] T. Terlaky and S. Zhang, A survey on pivot rules for linear programming,
Report 91-99, Faculty of Technical Mathematics and Informatics, Delft
University of Technology, The Netherlands, 1991.

[92] M. Todd, The monotone bounded Hirsch conjecture is false for dimension at
least four, Math. Operations Research 5 (1980) 599-601.

154

[93] M. Todd, Linear and quadratic programming in oriented matroids, Journal of
Combinatorial Theory Series B 39 (1985) 105-133.

[94] M. Todd, Polynomial expected behaviour of a pivoting algorithm for linear
complimentarity and linear programming problems, Mathematical Programming
35 (1986) 173-192.

[95] Z. "Vang, A conformaI elimination free algorithm for oriented matroid
programming, Chinese Annals of Mathematics, (1987) 8(Bl).

[96] P. "Volfe, A technique for resolving degeneracy in linear programming, Journal
of SIAM Il (1963) 205-211.

[97] C. Yap, Symbolic treatment of geometric degeneracies, Journal of Symbolic
Computation 10 (1990) 349-370.

[98] D. Yudin, E. Gol'shtein, Linear Programming, Israel Program of Scientific
Translations, Jerusalem, 1965.

[99] N. Zadeh, What is the worst-case behaviour of the simplex algorithm? Tech­
nical Report No. 27, Department of Operations Research, Stanford University,
Stanford, California, 1979.

[100] T. Zaslavsky. Facing up to arrangements: face-count formulas for partitions of
space by hyperplanes. Mem. Amer. Math. Soc., 1(No 154 MR 50), 1975.

[101] S. Zhang, On anti-cycling pivoting rules for the simplex method, Operations
Research Letters, 10 (1991), 189-192.

[102] G. Ziegler, Lectures on Polytopes. Springer-Verlag, New York, 1995.

[103] S. Zionts, The criss-cross method for solving linear programming problems,
Management Science 15(7) (1969) 426-445.

[104] P. Zornig, Degeneracy Graphs and Simplex Cycling, Lecture Notes in Eco­
nomies and Mathematical Systems No. 357, Springer-Verlag, Berlin, 1991.

155

[105] P. Zornig, A theory of degeneracy graphs, Annals of Operations Research 47
(1993) 541-556.

[106] http:j jcgm.cs.mcgill.ca;-avisjCjlrs.html

[107] http:j jcgm.cs.mcgill.ca;-beezerjDisjointLP j

[108] http:j j cgm.cs.mcgill.ca;-beezer jPivotPathEnumerationj

