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Abstract

Three full-state optimal controllers are proposed to fulfill the requirements of flying an indoor

holonomic airship in real-time, namely, hovering control, set-point control and continuous

reference tracking. In the hovering control design, the airship is assumed to be a quasi-

stationary plant, and an infinite horizon linear quadratic regulator (LQR) operating in a

gain scheduling manner is employed. Meanwhile, a controller based on the state-dependent

Riccati equation (SDRE) and ad hoc feedforward compensation is synthesized to tackle

the set-point control problem. Lastly, a continuous tracker is dedicated to rejecting all

disturbances along any given reference trajectory. With reasonable computation cost, the

proposed controllers show significant advantages over the PD controller in both simulation

and real flights.

A state estimator designed with the unscented Kalman filter is also implemented in this

work. The purpose is to track the airship state for the feedback loop and other navigation

tasks by fusing information from the on-board (an inertia measurement unit and a laser

range finder) and/or off-board (an infra-red based motion capture system) sensors. A loosely

coupled sensor fusion scheme is employed and validated in experiments.
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Abrégé

Trois méthodes optimales de commande à retour d’état complet sont proposées ici afin

d’accomplir les exigences du vol intérieur d’un ballon dirigeable holonomique, et ceci, en

temps réel. Les manoeuvres exigées incluent le maintien d’une position stationnaire, le

mouvement vers un point et suivant une trajectoire continue. Pour la régularisation, un

modèle quasi-stationnaire du ballon est assumé et un régulateur quadratique-linéaire (LQR)

à horizon infini est utilisé dans un mode d’échelonnage des gains. De plus, les mouvements

vers un point sont accomplis en se basant sur le retour d’état pour résoudre l’équation

de Riccati qui en dépend et pour compenser la dynamique non-linéaire. Finalement, les

perturbations autour d’une trajectoire continue sont rejetées par une méthode dédiée afin

de suivre cette trajectoire. Preuves expérimentales et simulées à l’appui, ces méthodes de

commande démontrent des avantages significatifs par rapport aux méthodes classiques de

commande porportionelle-dèrivée (PD), et ceci, avec des exigences modérées sur le système

informatique.

Ce travail de thése démontre aussi l’utilisation d’un filtre de Kalman non-parfumé (UKF)

pour estimer l’état du système. Cette estimation produit le retour d’état complet nécessaire

aux méthodes de commande et à d’autres tâches de navigation en combinant les mesures de

différents systèmes enbarqués (système inertiel et télédétecteur par laser) et non-embarqués

(système de capture du mouvement à l’infra-rouge). Une méthode de fusion sensorielle à

séparation partielle est utilisée et validée expérimentalement.
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Chapter 1

Introduction

1.1 Background on Indoor Airship

The indoor airship discussed in this thesis was fully developed at the Aerospace Mechatronics

Laboratory (AML) at McGill University. The purpose of having this airship was to emulate

a free-floating satellite for research in space robotics. The novel design of the airship not

only gave an opportunity to experimentally study gravity-free systems on Earth, but also

ignited our interests in the airship as a stand-alone platform. The airship, as a stand-alone

unmanned aerial vehicle (UAV), mainly benefits from its lighter-than-air characteristic.

Theoretically, it needs no energy to maintain neutral buoyancy when there is no air flow,

making it an interesting platform for long term indoor surveillance. In addition, the airship

has the capability for holonomic motion in six degrees-of-freedom without any one direction

being the main motion axis. In contrast, the main motion axes of a quad-rotor vehicle are

the three translational axes and the yaw axis. Pitch and roll motion can only be achieved to

small angles. This gives the airship more motion flexibility than is the case for most UAVs

at present.

Initially our focus was on improving the functionality of the airship by adding a rigid

frame and developing a stable Proportional-Derivative (PD) controller for it [56]. A commer-
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2 Chapter 1. Introduction

cial motion-tracking system was installed in the AML to track the position and orientation

of the airship. (Details about the airship design and the sensing techniques will be provided

in the following sections.) To follow the idea of developing the airship as an autonomous

UAV with potential applications such as indoor surveillance, some of the previous work

focused on localizing and navigating the airship [63] based on on-board sensors, including

a low cost camera, an inertial measurement unit(IMU), and a laser range finder (LIDAR).

Our ultimate goal is to be able to fly the airship autonomously through any space, ideally,

without any preparation or previous knowledge of the environment. To demonstrate the

full capability of the airship while still tackling a realistic scenario, we define the following

goal: to fly the airship up a stairway without colliding with any obstacles. This may not

be a real challenge for some micro-UAVs, but for an airship of 6 ft in diameter, limited

thrusts and 3.6 kg distributed mass, this brings the problem of pose and velocity control to a

new level of difficulty. Meanwhile, a good feedback system needs accurate state estimation.

Generally, robots are unable to navigate in space accurately without querying their current

state. Therefore, as a prerequisite to achieving our goal, we need to solve the control and

estimation problems.

1.2 Problem Specification

With the ultimate goal and the status quo of the airship laid out, the primary challenge is clear:

for the maneuvers needed in the indoor navigation, design controllers which outperform the

existing PD controller, but also maintain robustness in terms of handling disturbances and

unmodeled error. Since the airship can be viewed as a rigid-body with 6 DOF (degrees of

freedom), the designed controllers should also resolve a general set of problems related to

pose and velocity regulation of a rigid body. Moreover, the proposed controllers have to be

practical under a hard real-time constraint, since in a real flight, delay of a fraction of a second

in command signal can result in poor response of the airship. For the controller to achieve
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its performance objectives, a state estimator is needed for the full-state feedback system.

It will not only provide reliable estimation of the state, but also combine the information

coming from various sensors, either on-board or off-board, with different measurement

models and update rates. With the successful implementation of the controllers and the

estimator, we hope to eventually not have to use the off-board sensors, and to achieve a

stand-alone autonomous aerial platform.

1.3 Review of Related Work

According to the problem specification, a survey of system design and control/estimation

strategies of the existing UAVs has been performed. This section is going to present the

literature review in three subsections: the first focuses on indoor airship design and its

applications; the second part gives successful examples of UAV control following the

order of different control algorithms; the last part summarizes some research in UAV state

estimation field.

1.3.1 Indoor Airship

Over the last few decades, indoor airships (blimps) have attracted interest in various contexts.

Most of the existing airships are simply miniature versions of the traditional airships:

ellipsoidal in shape with thrusters at the rear and fins for stabilization. 2q In [70], an

indoor airship named Blimp2b is introduced to the visual servoing community. The airship

consists of three 8 mm (in diameter) DC thrusters, a forward-looking camera, a rotation

anemometer and a MEMS based gyroscope measuring yaw rotation. The authors of [70]

developed a comprehensive dynamics model of their airship, and it is presented together with

a pragmatic methodology for parameter identication. A classical vision-based navigation

scenario (2D course stabilization and obstacle avoidance in randomly textured environment)

is used to demonstrate the effectiveness of their approach. Recently, the same authors
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consider evolutionary control of the airship [69], using a so-called spiking neural circuit to

connect the vision system and the motors. Genetic algorithms are employed to evolve the

architecture of the circuit, by learning the interaction dynamics between the airship and the

test environment.

As a novel flying display system, a small autonomous blimp along with a visual tracking

system and an image projection system is presented in [48]. The visual tracking system

tracks the blimp while it flies along a given spatial path to follow a wall. The projection

system projects images which have been corrected to look natural on the ellipsoidal surface

of the blimp, and the blimp is designed with holonomic dynamics. It can maintain a stable

pose in the presence of bounded air flow disturbances during the wall following motion. In

that research, a simple dynamics model is decoupled and utilized to design a PD controller.

Stepping away from the traditional airship shape, Kang et al. [36] design an indoor

airship as a robotic agent for tele-presence. Their innovation is the hybrid structure which

combines a blimp and a wheeled vehicle. The airship is able to move over ground obstacles

conveniently, and to maintain the standing phase on the floor during communication as a

ground station. The main difficulty is to keep a stationary position in standing phase because

of the air flow disturbance acting on the blimp. With the 3-DOF dynamics model, PD-based

computed torque method is proven to be feasible in both simulation and experiments.

Since indoor airships are usually very limited in their payload capacity, the on-board

sensing and power can not be as good as those used on the ground robots or even on other

UAVs. Sometimes, design of a flight system for indoor airships can also be difficult due to

the uncertainty in the flight (e.g. occasional air flow disturbance) and poor measurement

precision. For these reasons, traditional control and estimation techniques are avoided by

some researchers. The authors of [13] study the airship maneuvering and control from a

biological perspective. The control signal is generated by an intrinsic hierarchical insect

based neural model. The visual information captured by two colour CCD cameras on-board

is processed independently to extract stabilization or collision cues. The outputs from both
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visual streams are projected onto an optomotor group that decides which action to send to

the UAV. Their bio-inspired airship is able to complete the basic navigation tasks including

course stabilization, drift compensation and collision avoidance.

In [40], Ko et al. study the indoor airship motion by using reinforcement learning. As a

non-parametric tool for regression in high dimensional spaces, Gaussian processes (GP) are

combined with the dynamics model of the airship to learn the modelling uncertainty during

the flight. This combination is proven to be more efficient than just propagating the dynamics

equations, and once the parameters of a GP are gained from training, an optimization process

is used to find a locally stationary parameter set for the feedback loop.

Another interesting work is found in [68], in which the visual servoing technique is

applied to an indoor blimp. With a micro CCD camera on-board, the authors successfully

transfer the dynamics parameters of the system, including masses and inertias, into the image

plane. By following this track, the explicit computation of pose is avoided. The airship

is able to track a slowly moving ball by using PID control first on the image plane, then

transferring the control signals to the real thrusters.

1.3.2 Model-based Nonlinear Control and Its Application to UAVs

The approaches for controlling a nonlinear system can basically be classified into two

categories: model-based control and model-free control. For model-free control, such as

reinforcement learning control and artificial neural network control, we have already seen

some successful applications in [40] and [70]. However, the focus of this thesis is on

model-based control, since the prior knowledge of the system can directly aid in designing

the controller. The airship’s performance can be easily adjusted upon the change of any

dynamics parameter, whereas the model-free methods may require a complete learning

process again. A selection of nonlinear control schemes and their applications to different

UAVs, not just the indoor airships, will be reviewed in this section, due to the similarity of

the contexts.
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Probably the most widely used control theory in the field of UAVs is still PID control,

because it is straightforward and easy to implement, even in the absence of knowledge of the

plant. A typical application of PID control is found in [37], where the airship maneuver is

decomposed into basic motions, such as rotation and straight-line motion. Each motion has

an associated PID controller and different motions required for specific tasks are achieved by

continuously combining basic motions. The PID control has been proven to work with many

nonlinear processes in practice; however, its performance may deteriorate when it comes to

UAVs with high nonlinearities. To that end, a number of modified PID controllers have been

proposed. For example, Takamasa Sato et al. use Memory-based PID controller for the flight

control of an indoor airship [60]. Somewhat like the gain scheduling approach, in this new

scheme, PID parameters are automatically generated and tuned based on input/output data

pairs of the controlled object stored in the database. Their experiments show that without

the proposed modification, the PID controller alone tends to perform poorly if a complex

trajectory is prescribed for the airship.

A common approach to alleviate the system nonlinearity is called feedback linearization

(FBL), which is to exactly transform a nonlinear dynamic system into a (fully or partly)

linear one so that linear control techniques can be applied [28]. There are two techniques in

the scope of FBL: one is called input-state linearization where the full state equations are

linearized, and the other is input-output linearization where the input-output map from the

control u to the system output y is linearized. The main limitation of the FBL is that it cannot

be used for all nonlinear systems, and both techniques have somewhat stringent conditions

to satisfy. In addition, no robustness is guaranteed in the presence of modelling uncertainties.

As a successful example of feedback linearization control in the UAV area, in [15], the

authors try to use FBL and linear controller to steer a nonlinear helicopter system. Since

the model used in the controller design is simplified, not all nonlinearities are cancelled as

expected. A neural network (NN) is employed to learn and compensate for the residuals.

Another promising tool for controlling nonlinear systems is adaptive control which
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involves a mechanism for adjusting the controller parameters. Usually, an adaptive control

system contains two loops: one loop is a normal feedback with the process and the controller,

while the other loop is the parameter adjustment loop, executing slower that the feedback

loop. Three classical adaptive schemes are gain scheduling, self-tuning regulator (STR)

and Model-reference adaptive control (MRAC) [9]. Although there exists relatively little

theory for the adaptive control of nonlinear systems, compared with linear systems, some

attempts at application to UAVs have been found. For example, in [6], the authors construct

an adaptive control law augmented with the variable structure controller, parameter identifi-

cation algorithm and a tunable pre-filter, for a hypothetical UAV. Their adaptation algorithm

is aimed to aid the closed-loop system dynamics in case the parameters of the UAV linear

model change in attitude control.

Sliding mode control (SMC) has attracted a lot of interest in the recent years. This control

scheme can be divided into two steps: First, a lower dimensional (lower than dimension

of the system) manifold is found which can be stabilized and made positively invariant

by an appropriate control input. Then, a second control is chosen to force the trajectories,

which are not initialized on the manifold, to converge to the manifold within finite time.

SMC has been shown to achieve robust performance by effectively accounting for parameter

uncertainties and unmodeled dynamics. The drawback is that it results in discontinuous high

gain controllers with ensuing chattering of control. In [58], SMC is used in the scenario of

multiple UVAs separation trajectory control. The design in [58] turns out to be effective in

simulation when the wing aircraft is affected by the unmodeled vortex of the adjacent lead

aircraft.

Finally, we move on to the optimal control, which is well established for linear systems

and has many extensions [17]. Typically, optimal control requires defining a cost function

or performance index, and the system dynamics becomes part of the constraints. Thus,

determining the best control strategy is equivalent to minimizing the performance index, for

example, the tracking error or control efforts, while following the constraints and boundary
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conditions. Finding the optimal control input for a nonlinear system is not easy, but if the

system can be linearized and operated around some specific points, the design tools for linear

systems can be conveniently applied. Kim et al. compare the linearized optimal controller

with feedback linearization and sliding mode control for a 3 DOF quadrotor in [39]. It

is concluded that the optimal controller with gain scheduling tolerates even more model

uncertainty than SMC. SMC produces best response but with the highest control effort, while

the control effort of FBL lies in the middle of the controllers tested in simulation.

Based on our review of the control schemes, optimal control is chosen in this thesis. The

reasons and some additional benefits of optimal control are summarized as follows. First of

all, it offers standard and easy to implement algorithms for selecting the inner loop feedback

gains automatically. Hence, the closed-loop stability and performance are guaranteed in

theory. In contrast to the classical controller (like PID) design, in optimal control, all the

feedback loops are closed simultaneously by solving standard matrix design equations. This

is extremely useful for controlling a system with relatively large dimensions and coupled

states like our airship. Secondly, as indicated in [39], extended optimal controller has

advantages in terms of handling the system uncertainty. Since the airship itself is a time-

variant system due to the helium leakage and battery drain, a model-sensitive strategy is

not robust enough for our application. Thirdly, optimal control is energy-efficient: control

efforts can be easily incorporated in the performance index and the thruster saturation can

be alleviated by adjusting the parameters of the controller. This is in accord with the main

advantage of using a lighter-than-air vehicle. At last, the desired strategy needs to be suitable

for implementation in real time. Approaches that require large computational resources such

as the nonlinear model predictive control [3], have therefore not been considered in this

work.
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1.3.3 State Estimation and Multi-Sensor Fusion

As a second goal to be accomplished in this thesis, the state estimation problem concerns

with how to combine information from different sources (Vicon, IMU, LIDAR) with different

sensor models and update rates. This overlaps with the topic of sensor fusion. Both topics

have been studied for years in mobile robotics, and without exception in the context of

UAVs. Since all systems and measurements have uncertainties, probabilistic methods such

as Kalman filtering, are currently the mainstream choices [62].

A lot of state tracking and state estimation work on UAVs is done by combining GPS

and IMU data because GPS is highly accurate compared with most on-board sensors, but

not always reliable due to signal jamming or blocking by surrounding objects. On the other

hand, an inertial measurement unit has a high bandwidth and reliable data updating but it is

vulnerable to bias and drift over long term observation. In literature, the two measurements

are used to complement each other in two ways: as loosely coupled or tightly coupled [44].

In tightly coupled systems, the raw data from GPS (namely pseudoranges) are directly used

to correct IMU error growth, commonly by using some geometry model. On the other hand,

in a loosely coupled integration, since the raw data is preprocessed by an internal Kalman

filter first, the combination is more straightforward. In [14], to combine the data from a

low-cost inertial navigation system (INS) and the GPS for a small-tethered blimp, Bijker et

al. study a different architecture of Kalman filter. They find the trade-off between accuracy

and processing requirements is achieved by having two small scaled extended Kalman filters

(EKF) running in sequence. The first EKF estimates the airship attitude and passes the

value to the second EKF, which estimates the velocity and position. It is worth noticing

that their inertial measurement unit is somewhat similar to the one we have on-board our

airship, containing a three-axes gyroscope, a three-axes accelerometer and a magnetometer.

Their airship’s attitude is determined by integrating the angular velocity with the correction

from the magnetometer. In addition, the authors claim that the accelerometer measurements

can also be fused in the attitude estimator since the airship’s acceleration is trivial and the
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acceleration vector is coincident with the gravity.

Another investigation of GPS/IMU fusion on a helicopter is found in [64]. First, the

authors start with an EKF combining the gyroscope and accelerometer data with a kinematic

model of the helicopter. GPS position and velocity measurements are then used to correct

INS errors using the same EKF. Information such as helicopter’s position, attitude, velocity

as well as INS sensor biases are generated. Then, a sigma-point Kalman filter (SPKF)

replaces the EKF and gains approximately 30% error reduction in both attitude and position

estimation over the EKF results. A sensor latency compensation technique is also proposed

to accurately fuse the lagged GPS data in [64].

Moving away from GPS/IMU integration, Kendoul et al. put forth a scheme called 3NKF

(3 nested Kalman filters) to combine a low resolution wireless analog camera and a low cost

IMU on a quadrotor [38]. Navigation and control algorithms are all deployed on-board in

real-time except for the vision computation. The quadrotor motion is computed first with

a Kalman filter using an optical flow algorithm and angular rate data; the output is then

considered as measurements for the second Kalman filter in order to cancel the rotational

component of optical flow; the translational component, nevertheless, is left to an EKF-based

SFM (structure from motion) algorithm to recover.

Aa even more sophisticated system is found in [2] and [12], where a quadrotor equipped

with a laser range finder, an IMU and a stereo-camera is built aiming at a completely

autonomous air vehicle system that can take off, fly through a window, explore and map

an unknown indoor environment, search for an object of interest, and transmit the video

footage of the object location back to the ground station. To tackle complex tasks like this,

a sensing and control hierarchy is essential. At the lowest level, a tight feedback loop is

created based on the IMU to stabilize the quadrotor’s pitch and roll. At the next level, state

estimation of the position and velocity are obtained with an EKF combining the laser/visual

odometry and the IMU outputs. The position control is thereby performed by a linear

quadratic regulator (LQR) loop outside of the attitude feedback loop. In large environments,
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small errors made by the odometry algorithms will be propagated and result in inaccurate

estimation. Therefore, at the third sensing level, a Simultaneous Localization and Mapping

(SLAM) algorithm ensures globally consistent estimates of the vehicle pose while generating

the map of environment. Moving higher in the control hierarchy, a planner makes waypoint

trajectories through the known grid map maintained by the SLAM to reach the desired goal

locations. Meanwhile, a mission planner coordinates the execution of a series of tasks, for

example, autonomous takeoff, window entrance, target search, etc. To demonstrate fully

autonomous operation of the vehicle in experiments, the quadrotor is tasked to explore and

fly through office building hallways, with no human intervention.

There are many other state estimation methods not mentioned in this review, for example,

particle filters which are more appropriate for global localization [63] and reinforcement-

learning based state observation methods [40]. Since the work in this thesis focuses on well-

established approaches that can be easily integrated with the proposed nonlinear controllers,

we limit our investigation of state estimation solutions to Kalman filter based approaches.

1.4 Experimental Equipment

1.4.1 Holonomic Airship

Fig. 1.1a presents the indoor airship discussed in this thesis. Nominally, it is a sphere full of

helium with a 1.85 m (6 ft) diameter. It consists of a 0.05 mm (2 mil) thick plastic bladder

and three carbon-fiber hoops with light-weight honey comb cores arranged orthogonal to

each other to provide a rigid frame. At each of the six hoop intersection points is a thruster,

a ducted fan, named from A to F. As will be shown in the next section, the fans generate

different amounts of thrust depending on the direction of blade rotation. The direction of

thruster is thereby defined as the direction of the air flow that generates the smaller force, as

drawn in the airship frame X′Y ′Z′ (Fig. 1.1b). In the meantime, the coordinate associated

with the room in which the indoor flight is carried out is denoted as XYZ.
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(a) Airship hovering in AML
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(b) Airship frame and propeller arrangement, with
thruster direction denoted by arrows

Figure 1.1 Indoor airship developed in AML

The key practice to fly the indoor airship is balancing, i.e., its center of gravity (CG)

and center of buoyancy (CB) must be coincident. Since approximately 3.6 kg weight of

components including the hull, are distributed on the surface of the airship, a slight imbalance

will require considerable amount of power to compensate, not to mention the unknown

impact the imbalance has on the dynamics model. Small aluminium weights are attached in

the vicinity of the six thrusters to make fine adjustment of the balance, once all the other

components are fixed. Finally, the neutral buoyancy of the airship is achieved by slightly

inflating or deflating the helium inside. Even if perfectly balanced, it should be noted that,

the airship is not an ideal system. The helium escapes through the bladder and eventually the

airship starts to sink and lose its balance as the hull changes its size and shape, because the

thickness of the bladder is not uniform and some surfaces areas are more elastic than others.

1.4.2 On-board Sensing, Power and Actuation

Two on-board sensors will be discussed in this thesis. The first one is a MicroStrain 3DM-

GX1 inertia measurement unit (IMU), shown in Fig. 1.2a. This 75 g unit consists of three
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angular rate gyros, three orthogonal accelerometers and three orthogonal magnetometers.

It operates over the full 360 degrees of angular motion on all axes, providing orientation,

angular velocities and translational accelerations with 16 bit A/D precision and 100 Hz

sampling rate. Unfortunately, previous research [63] reveals that the acceleration information

from the IMU is not usable because the airship accelerations are very low compared to

the IMU’s measurement range (±5g) and also because of the vibration noise caused by

the thrusters. On the other hand, the orientation measurement can achieve a mean error

under 7◦ compared to the ground-truth values from the off-board sensor. The orientation

error is mainly attributed to the alignment error caused when the IMU is attached to the

hoop, random walk of the gyroscope and the hard/soft magnetic interference resident in the

environment. The first error can be compensated for by adding a bias to the measurements.

The other sensor on-board is a Hokuyo URG-04LX laser range scanner (LIDAR) shown

in Fig. 1.2b. Being one of the tiniest commercial laser scanners available, it provides

reliable distance information by emitting a laser beam and measuring the phase difference

of the returned light. A single scan can span up to 240◦ with 0.36◦ angular resolution. The

measurement accuracy is ±10 mm within 1 m and ±1% of the reading in the range of 1 m

to 4 m, although the scanning rate is limited by the wireless communication between the

sensor and the host computer (< 5 Hz for full scans [63]). A traditional LIDAR can only

detect distance to objects, but after obtaining the protocol from Hokuyo, we are able to read

the intensity of the returned light as well, which makes it possible to use retro-reflective

material1 as landmarks in navigation.

The power supply on-board the airship is comprised of two 2S2PL (two cells in series

and two such series in parallel) lithium-polymer battery packs. One has a capacity of 4000

mAh and is used to power the thrusters and the motor driving circuit, while the other (480

mAh) is for the on-board sensors and communication. This is necessary because PWM

control inevitably produces considerable ripples on the source, which can jeopardize the

1Retro-reflective material reflects light back to its source with a minimum scattering of light. In a LIDAR
scan, a retro-reflective surface should have much higher intensity reading than a normal surface.
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(a) 3DM-GX1 IMU (b) URG-04LX LIDAR (c) EDF-40 Ducted fan

Figure 1.2 On-board sensors and propellers

functionality and precision of the measurement components. The batteries are 8.4 VDC

when fully charged, and are able to supply continuous current up to 16 C.2

There are six ducted fans (shown in Fig. 1.2c) mounted at the intersection of the hoops to

provide two-way thrusts. Six H-bridge circuits drive these propellers as per the pulse-width

modulation (PWM) signal (command ranging from 119 to 759 in our protocol) transmitted

from the control station. The nominal maximum thrust of each fan is 73 g, but given the

history of the system, all the thrusters have been calibrated in stationary tests with 8.4 VDC

power supply, as shown in Fig. 1.3. Nonlinearities, like saturation and dead-zone, can be

clearly observed in the diagram. According to these results, the maximum forward thrust is

about 0.48 N while the maximum backward thrust is 0.28 N. A lookup table is programmed

according to this diagram to map thrust and command signals to each other.

1.4.3 Off-board Sensing and Computing

The main off-board sensor installed in AML and used for airship control is the motion

capture system from Vicon Motion System Inc. It consists of six M2 infra-red cameras

2For a lithium-polymer battery, C is the time it takes to discharge the battery in fractions of an hour. For
instance 2 C discharges the battery in half an hour.
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Figure 1.3 Thrust generated by propellers with respect to command received

and a V6 data station. The cameras are positioned in an arc on the ceiling so that infra-red

light coming from the ring-shape emitters around the cameras fills the operating space of

the airship. In order to capture the pose of the airship, a total of 24 retro-reflective markers

are placed on its hoops, and the filter in front of the cameras ensures that only the light

reflected by the markers is picked up. Every four-marker set surrounding each propeller has

a unique pattern (different distances to each other) to form a rigid body used by the cameras.

Each body carries the information on the airship’s attitude and the position of the airship

center. To obtain reliable and precise measurement, only the body observed by at least three

cameras at the same time will be recognized and the body pose will be calculated based on

epipolar geometry in stereo vision. In case multiple bodies are available, a special algorithm

is prepared in the interpreting layer (see Section 1.4.4) to merge information for all.

As indicated earlier, a dedicated V6 station is used for 3D visual processing and body

matching. Then, the data is transferred via a TCP connection to a control station3 for

post-processing. Since there is no computation unit on-board at present, the control station

is also fully responsible for executing the control and estimation algorithms, as well as for

3Basic Configuration of the control station when this thesis is written is: CPU Intel Core2 6600; RAM 2
GB; Operating System Microsoft Windows XP



16 Chapter 1. Introduction

interfacing with sensors and thrusters. Also, as part of a user friendly robot system, the

control station manages a graphic user interface (GUI).

1.4.4 Real-time Control Platform and System Interface

Quarc is Quanser’s rapid prototyping and hardware-in-the-loop (HIL) platform for real time

control. It works seamlessly with Matlab/Simulink to compile the Simulink model into

real-time programs which can support various targets, such as the Quarc windows target, or

QNX x86. The windows target allows all the code to be deployed on a personal computer

under the Windows operating system (OS) rather than a real-time OS. This is realized by

having a Quarc kernel running as a background service which gains the highest system

priority. This kernel executes the compiled code from Simulink and manages all the I/O

and communication. A subset of the Matlab library can be directly invoked in the user

model. Meanwhile, Quarc also offers some flexibility to customize algorithm via the Matlab

S function.

Since the control algorithm developed in the simulation program can be conveniently

converted to executable code under Quarc, the key to successfully implementing the airship

controller and estimator is the hardware interface. User models interact with hardware, for

example, the data acquisition card or the serial port by using the blocks provided by the

Quarc library. In the airship system, as shown in Fig. 1.4, the control station governs the

data flow: a TCP connection with the Vicon V6 station, a serial connection with a Futaba

six-channel RC control system to stream the PWM signal and two serial connections with

bluetooth transceivers that communicate with the IMU and LIDAR respectively. Since Quarc

only provides I/O level communication protocol, interpreting layers are programmed and

compiled in C in order to translate sensor and control command values.

Based on Quarc and the interfaces connecting the user model and hardware, a PD

controller has been developed as a starting point for controlling the indoor airship. The

controller takes pose measurements from the Vicon system and angular velocity from the
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Figure 1.4 Quarc as core of airship control system and system interface

IMU. Without a dedicated sensor, the translational velocity is derived by finite differencing

the position data and smoothing it with a finite impulse response (FIR) low-pass filter. No

system dynamics have been accounted for in the PD controller design, and the PD parameters

are selected and fine tuned in real flight.
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Chapter 2

Airship Model and Its Linearization

2.1 State Definition

In order to attain full pose controllability, the state definition should at least contain airship

orientation, position of the geometric center, angular velocity and translational velocity. The

state definition has been changed from the one employed previously for design of the PD

controller, specifically with regard to the orientation representation. There are four most

commonly used options: an orientation matrix may be the most straightforward way, but

it augments the state by 9 elements which will increase the computational requirement;

the Euler angle representation is widely accepted in aerial vehicle and underwater vehicle

control, but it suffers from a singularity problem known as Gimbal lock which should be

avoided in our six-degree-of-freedom airship [33]; Euler angle/axis is our previous paradigm

in developing the PD controller (defined by vector [Rx Ry Rz]T ), since it is the only

raw orientation representation available from the Vicon system. However, a cumbersome

nonlinear projection involving square root and trigonometry is needed in order to construct

the orientation matrix R, as stated in Eqs. (2.1–2.3). This can result in difficulty in the

linearization process.

19
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θ =

√
R2

x + R2
y + R2

z (2.1)

e =
1√

R2
x + R2

y + R2
z

[
Rx Ry Rz

]T

(2.2)

R = I3 cos θ + I3(1 − cos θ)eeT + e× × sin θ (2.3)

where I3 is a 3-by-3 identity matrix and

e× =


0 −e3 e2

e3 0 −e1

−e2 e1 0

 (2.4)

In the end, the quaternion defined as q = [q0 q1 q2 q3]T becomes our final solution.

By adding one dimension to the Euler axis and performing the trigonometry transformation

as in Eqs. (2.5–2.6), one can readily obtain the orientation matrix R which takes a vector in

the rotating frame to the base frame and is given in Eq. (2.7) [7].

q0 = cos (θ/2) (2.5)[
q1 q2 q3

]T

= e sin (θ/2) (2.6)

R =


1 − 2q2

2 − 2q2
3 2q1q2 − 2q0q3 2q1q3 + 2q2q0

2q1q2 + 2q0q3 1 − 2q2
1 − 2q2

3 2q2q3 − 2q1q0

2q1q3 − 2q2q0 2q2q3 + 2q1q0 1 − 2q2
1 − 2q2

2

 (2.7)

Meanwhile, for constructing the transformation matrix which connects the velocities

and the derivative of pose, one needs to associate the derivative of orientation representation

and the angular velocity. In that respect, the relationship between quaternion derivative and

angular velocity is available and it is bilinear [27][18], as given by:

q̇ =
1
2

Qωω (2.8)
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Qω =



−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0


(2.9)

Another decision to be made with respect to the state definition is in which frame the

position and velocity vectors should be written. First, the sensors for pose observation, either

Vicon system or the on-board laser range finder, are generating data in the global frame

either directly or after frame transformation. Also one of the main goals for the design of the

airship control system is to attain global pose controllability. Thus, only the absolute position

and attitude are provided as reference signals. Of course, the intuitive way is to make every

element in the state definition consistent, meaning that all vectors are written in the global

frame as was previously implemented for the PD controller. However, the thruster and IMU

inputs are inherently attached to the airship frame. Therefore, a computationally demanding

inertia matrix inverse problem is inevitable down the road. The Jacobian linearization is

impractical based on this state definition.

In view of the above considerations, the best alternative is to express the orientation

and translation vectors in the global frame, while leaving all the velocity quantities in the

airship or body fixed frame. By doing so, we will shift the frame transformation to the

orientation and translation parts of the state matrix which results in lighter computational

load (as detailed in the next section.) The state definition to be used to formulate the state

space model is thus given as follows:

x =

[
q0 q1 q2 q3 pX pY pZ ωx ωy ωz vx vy vz

]T

=

[
qT pT ωT vT

]T (2.10)

where p = [pX pY pZ]T contains the coordinates of the airship center in the global frame;

ω = [ωx ωy ωz]T is the angular velocity in the airship frame; v = [vx vy vz]T is the

translational velocity in the airship frame. It is worth mentioning here, as a prerequisite
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for the controller and estimator design discussed in the following chapters, that there is a

constraint on the norm of the quaternion:

q2
0 + q2

1 + q2
2 + q2

3 = 1 (2.11)

Differentiating the above with time and solving for q̇0 by substituting the derivatives q̇1, q̇2

and q̇3 obtained from Eqs. (2.8–2.9) gives:

q̇0 = −
1
q0

(q1q̇1 + q2q̇2 + q3q̇3)

= −
1
q0

[
q1(

1
2

q0ωx +
1
2

q3ωy −
1
2

q2ωz) + q2(−
1
2

q3ωx +
1
2

q0ωy +
1
2

q1ωz)

+q3(
1
2

q2ωx −
1
2

q1ωy +
1
2

q0ωz)
]

= −
1
2

(q1ωx + q2ωy + q3ωz)

(2.12)

which gives the first row of Qω. Therefore, the state matrix formulated with Qω is not

full rank, which means that the system is overdetermined. Therefore, it easily becomes

uncontrollable in a few simulation steps if solution of an algebraic Riccati equation (ARE)

is required by the controller (the ARE will be introduced in §3.1). To remedy this problem

while keeping the quaternion representation, we redefine the state by dropping the redundant

q0 so that the state definition becomes:

x =

[
q1 q2 q3 pT ωT vT

]T

(2.13)

This reduces the dimension of the state matrix to 12× 12 and makes it full rank. However, q0

is still required and it can be recovered either directly from the state estimation, or by using

q0 = ±

√
1 − q2

1 − q2
2 − q2

3. For the latter case, however, determining the sign of q0 requires a

cumbersome case analysis of the angular velocity and the quaternion at the previous time

step. If not dealt with carefully, the dynamics model and the state estimator may suffer from

a singular attitude, for example, when q = [cos(π/2) 0 sin(π/2) 0]T , and the simulation

will diverge. In the end, the 12 dimensional state definition will only apply to the ARE

related design (§3.3 and §3.4). In the rest of this thesis, we will use the 13 dimensional state
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definition as given in Eq. (2.10).

2.2 Airship Model

The airship dynamics equations can be found in previous reports and publications [51][32][43].

The airship’s motion can be effectively regarded as a free body movement subject to the

aerodynamic effects, and the thruster forces.

The model presented here is based on the following assumptions:

1. The airship has been perfectly balanced, i.e., the center of mass and the center of

buoyancy are coincident at the geometric center of the sphere. As well, the airship is

neutrally buoyant so that the buoyancy force cancels the gravity force.

2. Any unpredictable disturbance, for example the indoor airflow, has been ignored.

3. The system is time-invariant over the flight period, i.e., all events that may change the

parameters of the system, for example, helium leakage, battery drain, are ignored.

The system dynamics can be formulated in the airship frame as:

(ma + madd)(v̇ + ω × v) =

6∑
i=1

fTi + fD + fL (2.14)

Iaω̇ + ω × (Iaω) =

6∑
i=1

ri × fTi + MD (2.15)

where v and ω are as defined in §2.1; Ia is the inertia matrix of the airship; ri denotes the

location of the thrusters relative to the airship center; fTi is the thruster inputs; fD is the

translational drag on an ideal sphere computed as [20]:

fD = −
π

2
ρairCDr2

a‖ṗ‖ṗ (2.16)

The force fL is the aerodynamic lift (Magus force) defined as [26]:

fL =
π

2
ρairCLr2

a‖ṗ‖
2 ω × ṗ
‖ω × ṗ‖

(2.17)
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and MD is the rotational drag [55]:

MD = −
π

2
ρairCRr5

a ‖ω‖ω (2.18)

As the airship changes its velocity, extra effort is required to accelerate some volume of the

surrounding air, so that the airship inertia needs to be corrected. This effect is called added

mass or virtual mass. For a spherical particle submerged in an inviscid, incompressible fluid,

it can be shown that [25]

mp
dvp

dt
=

∑
F +

ρcVp

2

(
duc

dt
−

dvp

dt

)
(2.19)

where vp is the velocity of the particle, mp is its mass while Vp is its volume. ρc is the

density of the fluid, uc is the fluid flow velocity and F represents the net external force.

Since the airship moves slowly, the surrounding air can be assumed to be incompressible

and non-viscous. In the indoor test environment, the air velocity can be assumed negligible.

Therefore, Eq. (2.19) can be rearranged as(
mp +

ρcVp

2

)
dvp

dt
=

∑
F (2.20)

which clearly shows the additional virtual mass to the particle mass. In our scenario, the

fluid is air with density ρa and Va and ma are the volume and mass of the airship respectively

and:

madd =
1
2
ρaVa =

1
2

ma (2.21)

The system presented in Eqs.(2.14–2.15) is highly nonlinear, mainly due to the aero-

dynamics forces. It is natural to first examine the impact of aerodynamics on the airship

before proceeding with linearisation, since the aerodynamic coefficients CD, CR, CL are all

associated with the Reynolds number, which depends on the velocities of the airship. The

empirical formulas to compute the aerodynamic coefficients have been studied extensively

[52][47][26][20][55]. Generally, these are highly nonlinear and sometimes discontinuous

functions, which means it is difficult to establish closed-form bounds on these terms. Thereby

the velocity space of the airship (relatively a low Reynolds number space) is meshed, and
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scanned to examine the magnitudes of the aerodynamic terms. The velocity boundary is

defined by ωmax = 1 rad/s for rotational velocity vmax = 0.5 m/s and for translational velocity.

They are the peak values observed in the flight records to date. To obtain a conservative

boundary, we assume the translational and angular velocities to be orthogonal.
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Figure 2.1 Translational drag with respect to the velocities

The magnitudes of the three aerodynamic terms, fD, MD and fL are shown in Fig. 2.1-2.3,

respectively. These should be compared to the thruster’s maximum force of 0.48 N and the

thruster’s maximum moment of 0.45 Nm. Compared with the thrust exerted on the airship,

among the aforementioned aerodynamic effects, the rotational drag is negligible in the full

range of velocities(Fig. 2.2). The translational drag (Fig. 2.1) and the Magnus lift (Fig.

2.3) may need to be taken into account when both ω and v are high, which rarely happens.

Therefore, the aerodynamic terms can be safely dropped from the system equations without

significantly compromising on their accuracy. The airship dynamics can thus be written in
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Figure 2.2 Rotational drag with respect to the velocities

the general form:

ẋ(t) = f (x(t),u(t)) (2.22)

where u = [u1 u2 u3 u4 u5 u6]T is the system input, specifically, the thrusts of the

six propellers fT ∈ R
3×6 can be combined as:

fT =


0 0 u3 0 u5 0

0 u2 0 u4 0 0

u1 0 0 0 0 u6

 (2.23)

Hence, the system dynamics are:

q̇

ṗ

ω̇

v̇


=



1
2QωRω

Rv

I−1
a (

∑
ri × fTi − ω × (Iaω))

2
3ma

∑
fTi − ω × v


(2.24)
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Figure 2.3 Aerodynamic lift with respect to the velocities

where fTi is the ith column of fT . The above equations form the basis of the linearized model

and controller design presented in Chapter 3 of this thesis.

In order to examine the argument that the aerodynamics can be ignored for our indoor

application, the aforementioned nonlinear model with and without the aerodynamic terms

has been used in simulation. Starting from initial attitude q = [1 0 0 0]T , a constant

thrust (0.2 N) is applied on propeller A (see Fig. 1.1b) for 10 s, such that the airship will

spin along axis Y and translate in the XZ plane. Thus the three aerodynamic effects will all

have an impact on this maneuver. We compare the results obtained without aerodynamic

terms to those obtained with aerodynamic terms. The corresponding results are plotted

in Fig. 2.4. With regard to translational motion, the major difference is in the translation

along the Z axis, which achieves a higher velocity earlier than the X axis, thus affected more

by the translational drag. On the other hand, no significant difference is observed in the

rotational motion. It needs to be pointed out that, in real flights, the control input is rarely
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left open-loop and lasts sufficiently long to generate substantial translation of the airship like

the simulation. The aerodynamic differences, along with other unmodeled effects such as

imbalance and battery drain, will play the role of disturbances after closing the control loop.
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Figure 2.4 Position and attitude difference of the airship model with and without aerodynamics. The axes
without significant change are ignored.

2.3 Jacobian Linearisation

First we examine the equilibrium family1 of Eq. (2.22). defined by:

f(x0,u0) = 0 (2.25)

Since the airship is self-balanced in any configuration in the absence of control, one set of

equilibrium solutions can be readily proven to be

ω0 = 0, v0 = 0, u0 = 0 ∀q0,p0 (2.26)

i.e., x0 can represent any arbitrary pose as long as the velocities and thrusts are null. For

cases other than those obtained by Eq. (2.26), if we expand f (x(t),u(t)) at state x0 given at

1By equilibrium family, we mean the set of all equilibirum states and inputs derived from a set of
linearizations (rather than just a single linearization) [41].
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time t using Taylor series and retain linear terms only to obtain

f(x(t),u(t)) = f(x0(t),u0(t)) +
∂f
∂x

∣∣∣∣∣
0
δx(t)+

∂f
∂u

∣∣∣∣∣
0
δu(t) (2.27)

Defining the state perturbation vector and the control correction vector as:

δx(t) , x(t) − x0(t) (2.28)

δu(t) , u(t) − u0(t) (2.29)

and recalling that

f(x0(t),u0(t)) = 0 (2.30)

we can readily derive the linearized system

δẋ(t) = A0(t)δx(t) + B0(t)δu(t) (2.31)

In the preceding, A0 and B0 are the Jacobian matrices computed at x0(t)

A0(t) ,
∂ f
∂x

∣∣∣∣∣
0

=
∂ f
∂x

∣∣∣∣∣x0(t)
u0(t)

(2.32)

B0(t) ,
∂ f
∂u

∣∣∣∣∣
0

=
∂ f
∂u

∣∣∣∣∣x0(t)
u0(t)

(2.33)

where A0 is a 13×13 matrix for our system. For convenience of presentation, it is partitioned

into four sub-matrices.

A0 =



Aq

Ap

Aω

Av


(2.34)
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where Aq is a 4 × 13 matrix, Ap, Aω and Av are 3 × 13 matrices with the corresponding

explicit forms given in Appendix A. Similarly, B0 can be written as

B0 =



07×6

bt1

bt2

bt3

B f


(2.35)

where bt1, bt2 and bt3 are 1 × 6 matrix and B f is a 3 × 6 matrix given in Appendix A. All the

linearization work is done by using the Symbolic Math Toolbox in Matlab.

The linearized model is validated in simulation by comparing its results to those

of the nonlinear model. Since the system nonlinearity mainly arises from the orienta-

tion transformation, the simulated maneuver is defined by producing a small amount of

rotation near the equilibrium point. The initial attitude of the airship is chosen to be

q = [0.616 0.455 0.455 0.455]T , and a sinusoidal couple (0.2 N in each propeller, 5 s

in period) is applied at propellers A and F. As shown in Fig. 2.5, the differences between the

linear and nonlinear model results are insignificant along the three axes. Therefore, we can

use the linearized model to design the controller at a specific pose.

Having derived and validated the linearized model, the airship control problem can be

stated as follows: given a set point or desired trajectory to be followed by the airship, design

a controller to achieve the desired motion while rejecting perturbations.
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Chapter 3

Optimal Control of Airship: Theory and

Simulation

3.1 Systematic View of Deterministic Optimal Control

In the classical controller design (such as the PD controller), the control loop is closed one

variable at a time by directly selecting the feedback gains, mostly relying on experience of

the designer and careful tuning on-site. Unfortunately, for a system containing 13 states

like our airship, neither stability nor robustness of the overall system can be guaranteed

in this way. For example, improper feedback loop design of the angular velocity control

can compromise the attitude stability of the airship. On the other hand, modern optimal

control offers standard algorithms for selecting the inner loop feedback gains automatically.

Hence the closed-loop stability and performance are guaranteed in theory. In contrast to

the classical controller, in optimal control, all the feedback loops are closed simultaneously

by solving standard matrix design equations. A general formulation of the optimal control

33
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problem is given by equations as follows:

min J(t0) =φ (x (T ) ,T ) +

∫ T

t0
l(x,u, t)dt (3.1)

s.t.

Dynamics constraints: ẋ = f(x,u, t) (3.2)

Final state constraints: Ψ(x(T ),T ) = 0 (3.3)

where t0 and T are the initial and final times for the task, φ is the isolated point of the

performance index J evaluated at T while l is accumulated during t ∈ [t0,T ]. The ultimate

goal of optimal control is to minimize the performance index J under the two constraints

stated in Eqs. (3.2-3.3). There is no design algorithm available to solve this general nonlinear

optimal control problem at the present. However, for systems which can be described by

linear dynamics constraints, as for example, with the linearized model of the airship, the

system constraint Eq. (3.2) can be rewritten as

ẋ = A0(t)x + B0(t)u t ∈ [t0,T ] (3.4)

Choosing the control weighting matrix RL, the state weighting matrix QL, the final state

weighting matrix FL, and zeroing the initial state, the goal of the linear optimal control then

becomes minimizing the quadratic performance index J(x(t0),u(·), t0) which depends on the

state x, the initial time t0 and the unknown control u over [t0,T ]:

J(x(t0),u(·), t0) = xT (T )FLx(T ) +

∫ T

t0

[
xT (t)QLx(t) + uT (t)RLu(t)

]
dt (3.5)

Comparing with the nonlinear problem formulation in Eqs. (3.1-3.3), we have

φ (x (T ) ,T ) = xT (T )FLx(T )

l(x,u, t) = xT (t)QLx(t) + uT (t)RLu(t)

The additional condition on the weighting matrices is the positive definitive constraint, which

is

FL = FT
L ≥ 0, QL = QT

L ≥ 0, RL = RT
L > 0
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Let J∗ represent the optimal (minimal) value of the performance index:

J∗(x(t), t) = min
u[t,T ]

J(x(t),u(·), t0) (3.6)

By the Principle of Optimality [5], the last part of an optimal trajectory is also optimal, so

that,

∀t1 ∈ [t,T ] J∗(x(t), t) = min
u[t,T ]

[∫ t1

t
l(x(τ),u(τ), τ)dτ + J∗(x(t1), t1)

]
(3.7)

Expanding the above equation by applying Taylors theorem and then taking the time deriva-

tive, we obtain:

∂J∗

∂t
(x(t), t) = −min

u[t,T ]

l (x(t),u(t), t) +

[
∂J∗

∂x
(x(t), t)

]T

f (x(t),u(t), t)

 (3.8)

For a linearized system like the airship presented here,

f (x(t),u(t), t) = A0(t)x(t) + B0(t)u(t)

Equation (3.8) represents one statement of the Hamilton-Jacobi-Bellman (HJB) equation. It

can be proven [4] that J∗(x(t), t) can be rewritten in the following form where K is symmetric:

J∗(x(t), t) = xT (t)K(t)x(t) (3.9)

With the above, Eq. (3.8) in this quadratic case becomes the statement of the regulator

problem:

∂J∗

∂t
= xT K̇xT = −min

u

[
uT RLu + xT QLx + 2xT KA0x + 2xT KB0u

]
(3.10)

To find the minimum on the right hand side of Eq. (3.10), we need to isolate a quadratic

expression in u and this can be done by completing the square as follows:

uT RLu + xT QLx + 2xT KA0x + 2xT KB0u

=
(
u + R−1

L BT
0 Kx

)T
RL

(
u + R−1

L BT
0 Kx

)
+ xT (QL −KB0R−1

L BT
0 K + KA0 + AT

0 K)x

(3.11)
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Since the matrix RL is positive definite, it follows that Eq. (3.8) is minimized by setting

u + R−1
L BT

0 Kx = 0 (3.12)

Noting that Eq. (3.10) holds for all x and both sides of it are symmetric, we obtain a

differential equation for K(t):

− K̇(t) = QL(t) −K(t)B0(t)R−1
L BT

0 (t)K(t) + K(t)A0(t) + AT
0 (t)K(t) (3.13)

Recalling the boundary condition of the Hamilton-Jacobi equation,

J∗(x(T ),T ) = xT (T )FLx(T ) (3.14)

combined with Eq. (3.9), we have the boundary condition for K(t):

K(T ) = FL (3.15)

As a closure for the above derivation, in the linear optimal control, the feedback gain G(t) is

determined by:

u(t) = −G(t)x(t) = −R−1
L BT

0 (t)K(t)x(t) (3.16)

where K is obtained from the differential Riccati equation (3.13) and the boundary condition

(3.15).

Therefore, we discussed the continuous form of the linear quadratic regulator. A special

case of the continuous quadratic method is the infinite horizon regulator. For a time-invariant

system, A0 and B0 in Eq. (3.4) are constant matrices, and if T approaches infinity in the

performance index defined in Eq. (3.5), the Riccati equation will have a steady-state solution

where K̇ = 0. In this case, the design problem reduces to solving an algebraic Riccati

equation (ARE) given by:

KA0 + AT
0 K + QL −KB0R−1

L BT
0 K = 0 (3.17)

In the optimal controller synthesis, the weighting matrices QL, RL and FL are the primary

design parameters. Usually they are selected by the designer on the basis of engineering
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experience, physical characteristics of the system and simulation studies. There is no

universal agreement on how they are to be selected for any given application [11]. However,

there are some general principles that can be followed, as stated below:

1. In order to alleviate the dependency among components of the state vector and those

of the control input, QL and RL are selected to be diagonal. In this manner, one can

penalize the components in x and u individually.

2. The larger ‖FL‖, the larger is the gain matrix G(t) for values of time near the terminal

time. In our application, in the absence of other specifications, FL is typically assigned

to be 01 of airship control because the control should be shut down as the airship

approaches the end of the task.

3. The larger ‖QL‖, the larger is the gain matrix G(t) and hence the shorter is the time for

the state perturbations to be reduced. The ultimate performance can be adjusted by the

diagonal elements in QL according to the flight results. For evaluating the controller

in simulation, QL is typically chosen as the identity matrix.

4. The larger ‖RL‖, the smaller is the gain matrix G(t) and the slower is the response of

the system. Matrix RL is especially useful for accounting for the propeller saturation

in our design, and it can be tuned accordingly. RL is typically chosen as the identity

matrix in simulation.

5. Since the airship is inherently a low damped system, choosing effective penalties for

the velocity states ω and v in QL is essential for controlling possible oscillations in the

time responses. The reasoning here is analogous to choosing a high derivative gain in

the PD controller.

1The parameters used in the real flight can be finely tuned depending on the performance. But all the
simulation and experimental results presented in this thesis are based on FL = 0
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3.2 Control Problems for Indoor Airship Applications

Having reviewed the basic optimal control theory, we can subdivide the airship control

problem into three controller design tasks. The simplest one is the hovering control, i.e.,

keeping the airship stationary at a given pose in the work space of the airship while rejecting

perturbations including air flow disturbances, control errors caused by modelling uncertain-

ties and linearization, as well as the airship’s imbalance, which is practically unavoidable on

the real system. It is pointed out that the hovering pose is not unique, and the airship must

be capable of shifting from one pose to another as long as this process is quasi-stationary or

quasi-time-invariant, so that the state changes between the two poses are sufficiently slow.

Therefore, in designing the hovering controller, the airship can be treated as a time-invariant

plant, operating at or near the equilibrium family derived in §2.3. Therefore, the infinite

horizon formulation of the optimal controller design can be employed.

The second common control objective for an airship is the set-point control: with the

knowledge of the current state x, it is desired to find the optimal control input to bring the

airship to the desired state xd. This type of maneuver is especially useful in navigation. Since

there is no requirement for quasi-stationary operation, the airship can move as fast as possible

and the controller must cope with the resulting nonlinearities. Fast and precise point-to-point

control is the fundamental goal of the set-point controller. Meanwhile, this controller should

be designed with a nonlinear methodology that can deal with the complexities omitted with

the Jacobian linearization: translation control and attitude control need to be addressed

together, without discarding high order dynamics in linearization. Alternatively, from the

linear-system point of view, the system can be treated as a linear parameter-varying (LPV)

plant as indicated in Eq. (3.4). Specifically, this plant has no exogenous signals, and hence a

state-dependent state matrix can best describe the system behaviour.

Trajectory control is the last yet very important problem to tackle. This brings us to the

general optimal control formulation in Eqs. (3.1–3.3). A reference trajectory r is prescribed

along with a time constraint t ∈ [t0,T ]. The goal is to follow the reference input with
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minimal tracking error and control effort. Fortunately, by using the Jacobian linearization

along the reference trajectory, we are able to apply the quadratic performance index as the

objective function for the tracking problem. Much of the optimal control theory discussed

in §3.1 can be directly applied after solving an inverse dynamics problem and the Riccati

differential equation, which will be discussed in §3.5.

In summary, the final solution to be implemented on the airship is the hybrid controller

which switches among the three sub-controllers discussed earlier depending on the higher-

level user specification. In the following three sections, we provide the design details and

simulation results of the three controllers respectively.

3.3 Hovering Control: Gain Scheduling Approach

3.3.1 Infinite Horizon Linear Quadratic Regulator

As indicated before, the basic idea for the hovering control is to achieve perturbation rejection

around the equilibrium point in a time-invariant system. Recalling the perturbation quantities

defined previously in §2.3 as Eqs. (2.28–2.29), also considering the equilibrium family with

u0 = 0, ω = 0 and v = 0, we have:

δx(t) , x(t) − x0(t) (3.18)

δu(t) , u(t) − u0(t) = u (3.19)

where x is the current state, u is the current control, x0 is the equilibrium state at the hovering

point. From the Jacobian linearization, we already know that:

δẋ(t) = A0(x0)δx(t) + B0(x0)δu(t) (3.20)

and the performance index can be rewritten in terms of the perturbation vectors as:

J =

∫ ∞

t0

[
δxT (t)QLδx(t) + δuT (t)RLδu(t)

]
dt (3.21)
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Using the results from §3.1, it is easy to find the optimal control law:

u(t) = −R−1
L BT

0 Kδx(t) (3.22)

where K is a 12 × 12 matrix obtained by solving the ARE (Eq. (3.17)). Accordingly, the

closed-loop system becomes

δẋ(t) = (A0 − B0R−1
L BT

0 K)δx(t) (3.23)

The numerical algorithm to solve the ARE can be found for example, in [8].

The controller design presented is based on the linearized model for a specific (prede-

fined) hovering pose so that the controller gains are computed off-line before execution on

the airship. Given the computational capabilities of the modern computers, combined with

the tools available in Simulink/Quarc, it is feasible to solve ARE fast enough for on-line

implementation. Thus, a natural extension of the infinite horizon regulator based on the

Jacobian linearization is to dynamically “schedule” the feedback gains instead of using the

precomputed values. As noted earlier, since the system nonlinearity mainly arises from the

orientation transformation, the scheduling variable is chosen to be the quaternion of the

airship. Whether to use the current quaternion q, or the equilibrium quaternion q0, however,

is not an obvious choice. Using q0 implies the expectation that the airship does not largely

deviate from the desired hovering point. Without such a constraint, using the current value

of q may be more robust, as the controller literally works for all airship configurations. But

this option requires more on-line computations since the scheduling variable needs to be

updated as the attitude changes. Naturally, when the airship operates close to the equilibrium

point, the two methods should produce very similar results. The last decision to make with

regards to gain scheduling is how to schedule the gains. The most straightforward option is

to wait until the update of the current state and then switch to the new gain value. With this

method, the controller may chatter if the scheduling frequency is not sufficiently high. A

common “smoothing”practice in the gain scheduling is to interpolate between the feedback

gains of the two equilibrium points [54]. In our design, this would require predicting the
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Figure 3.1 Hovering controller with gain scheduling on q

airship motion and then interpolating between the previous attitude and the expected attitude.

Since this second option also tends to increase the amount of computation, we choose the

switching approach (the scheduler is able to run stably at 10 Hz in the real-time simulation).

The final design of the hovering controller is illustrated in Fig. 3.1: a finite horizon linear

quadratic regulator operating with the gain scheduling technique (referred to as LQR or

hovering controller in the following text). Note, the scheduling variable q is produced from

the current state x.

3.3.2 Simulation Results for Hovering Controller

Methods such as the multivariable poles-zeros analysis and the extended frequency response

analysis for classical multiple-input and multiple-output (MIMO) systems can hardly be

applied to our LQR controller with gain scheduling, due to the system nonlinearity and

sometimes its time-variant nature. Therefore, a sequence of simulations in the time domain

have been performed to discover the advantages and disadvantages of the designed LQR

controller, compared with the PD controller. The controller parameters employed in the



42 Chapter 3. Optimal Control of Airship: Theory and Simulation

Table 3.1 Parameters used in simulation of LQR and PD controllers

State weighting matrix QL I12×12

Input weighting matrix RL I12×12

Gain scheduling rate 10 Hz
Controller loop frequency 100 Hz
Translational gain kT P in PD control 0.8
Translational velocity gain kT D in PD control 2
Rotational gain kRP in PD control 0.5
Angular velocity gain kRD in PD control 2
Actuator saturation boundary

[
−0.28 0.48

]
N

Initial state
[
1 0 . . . 0

]T
∈ R13×1

simulations are listed in Table 3.1. The PD gains were carefully tuned and tested in the flight

tests with the airship.

Our first focus is on the ability of the controllers to reject perturbations around a specific

hovering point. To this end, white noise is added to the output of the 6 propellers with

the Gaussian distribution N (0, 0.01). In order to clearly observe the performance of the

controller with respect to the state error and the control effort, we separate the performance

index in Eq. (3.21) into the integrated state index Js and the integrated control index Ju:

Js =

∫ ∞

t0

[
δxT (t)QLδx(t)

]
dt (3.24)

Ju =

∫ ∞

t0

[
δuT (t)RLδu(t)

]
dt (3.25)

As shown in Fig. 3.2, Js obtained with the PD controller is twice as high as that for the

LQR result, while the control efforts are very similar, meaning that for the same input, the

designed optimal controller performs with much higher precision and robustness than the

PD controller.

The step input translational test, the results for which are shown in Fig. 3.3 tells the

same story. In this simulation, we command a step input for the center of the airship, from

the origin to [1 0 0]T at t = 0. The response also demonstrates how differently the LQR

and PD controllers handle large reference inputs. Since this test-case involves no change of
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Figure 3.2 Controller state error and control effort in the presence of white noise perturbations

the scheduling variable q, the LQR controller guarantees global optimality. In time domain,

this implies optimal settling time, small overshoot, along with minimal control effort, all

of which are clearly observed relative to the response of the PD controller. Comprehensive

simulations show that the attitude control by the LQR controller gives similar superior results,

even when the quick change of the quaternion violates the quasi-stationary assumption.

Among all the maneuvers evaluated, the performance of the LQR controller suffers only

for cases with multi-axes motion that combines translation and orientation control. Results

for multi-axes test involving translational step change by 1 m in the X direction of the room

frame XYZ and orientation step command rotating the airship by π/2 about axis Y ′ of the

airship frame X′Y ′Z′ are illustrated in Fig. 3.4. This test-case generates a fast variation of

the scheduling variable. Since the gain scheduling approach does not predict the future state

of the airship, the computed gain can not ensure globally optimal response of the airship.

Moreover, as the LQR controller is based on the Jacobian linearization, when the airship

operates away from the equilibrium points, Eq. (3.20) can not accurately describe the system

dynamics. As a result, there will usually be a deviation on one of the axes that do not have a
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Figure 3.3 Translational control using the hovering controller. Initial position: [0 0 0]T , final position:
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Figure 3.4 Multi-axes control using the hovering controller. Initial hovering pose: q = [1 0 0 0]T ,
p = [0 0 0]T , final hovering pose: q = [cos(π/4) 0 sin(π/4) 0]T , p = [1 0 0]T
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step input, for example, axis Z in Fig. 3.4a. Of course, this is not an issue if the airship moves

slowly enough (meets the quasi-stationary assumption), but this proves that the hovering

controller can not provide effective performance for set-point control tasks involving large

multi-axes changes.

3.4 Set-point Control: Solving State-Dependent Riccati Equa-

tion

3.4.1 State-dependent Riccati Equation (SDRE): Overview

The State-dependent Riccati Equation (SDRE) strategy has drawn a lot of interest over

the last decade, as it is an effective tool for synthesizing nonlinear feedback controllers.

The SDRE strategy allows nonlinearities in the system states while also offering great

design flexibility through state-dependent weighting matrices. First proposed in [50], with

the theoretical foundation contributed in [21][46], this method benefited from the state-

dependent coefficient (SDC) matrices, which fully capture the nonlinearities of the system.

Similarly to what was done in the gain scheduling in §3.3, an ARE using the SDC matrices

is solved on-line to give the suboptimal control. Since the coefficients of the ARE vary

for different points in state space, the problem essentially becomes that of solving a state-

dependent Riccati equation. It is shown in [21][46] that the SDRE feedback control for the

infinite-horizon optimal control problem in the multivariable case is locally asymptotically

stable and locally asymptotically optimal. Although relatively new to the control applications

community, the SDRE strategy already has a few successful applications in the areas relevant

to the application considered in this thesis, including autopilot design [45], satellite and

spacecraft control [49][59], robotics [29], helicopter control and ducted fan control [61][66].

Following [22], the capabilities of the SDRE method can be summarized as below:
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1. The method allows to directly specify and affect control performance through the

selection of the state-dependent state and control weighting matrices QL(x) and RL(x).

This is inherited from its linear counterpart, the LQR control, since SDRE control can

be viewed as the nonlinear extension of the infinite-horizon linear quadratic regulator.

2. The method allows to impose hard bounds on the control. This can be very helpful if

one needs to consider propeller saturation in the controller design.

3. The method can satisfy state constraints, and combined state and control constraints.

This is also useful, if we need to introduce state constraints to account for obstacles in

the airship workspace, for example, the ceiling and the walls in a well-known indoor

environment.

4. The method is able to directly handle unstable and non-minimum phase systems.

5. The method preserves the beneficial nonlinearities and utilizes the extra design degree

of freedoms, available through the non-uniqueness of the SDC matrices, to enhance

the performance of the system.

The drawbacks of the SDRE controller have also been considered. The major issue is that

the control obtained does not guarantee global optimality with respect to the performance

index, but instead is suboptimal. The choice of the SDC matrices determines whether the

final control signal computed is optimal or not. However, this requires solving a partial

differential equation which is as difficult as solving the HJB equation (§3.1) itself [22][19].

So far, only systems up to third order (x ∈ R3) have a closed-form optimal solution [30].

Another possible concern is the computation burden of solving the ARE on-line. Fortunately,

with the modern computers, this is no longer an issue for our 12-dimensional system. In case

higher control rate is required, the switching technique we adopted earlier for the hovering

control (§3.3) can be employed.
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3.4.2 Extended Linearization

Extended linearization is also known as apparent linearization, or SDC parameterization. It

is a technique for factorizing the nonlinear system into a linear structure as the controller is

executed. Extended linearization produces the SDC matrices mentioned earlier, and it is the

prerequisite for implementing the SDRE strategy.

Consider the deterministic, infinite-horizon nonlinear optimal regulation problem for the

system below:

ẋ(t) = f(x) + Bu(t) (3.26)

The system is assumed to be full-state observable, nonlinear in the state, and affine in the

input. Also f(x) ∈ C1(Rn) and f(0) = 0 and the control goal is to regulate the system to the

origin such that

lim
t→∞

x(t) = 0 (3.27)

Assuming a continuous nonlinear matrix-valued function A(x) exists such that

f(x) = A(x)x (3.28)

where A : Rn×n is found by mathematical factorization, the system can be linearized (in

extended sense) as

ẋ(t) = A(x)x + Bu(t) (3.29)

Here A(x) and B are the so-called SDC matrices, formulated for an arbitrary x. Obviously,

if x is a scalar, A(x) is unique, as A(x) = f (x)/x. For the multivariable case, for example,

f(x) = [x1 x1x2]T , one straightforward factorization is:

A1(x) =

1 0

0 x1

 (3.30)

and another one:

A2(x) =

 1 0

x2 0

 (3.31)
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A not so obvious factorization could be:

A3(x) =

1 + x2 −x1

1
2 x2

1
2 x1

 (3.32)

and we notice that for ∀α, β ∈ [0, 1],

f(x) =
[
(1 − α) A1(x) + α (1 − β) A2(x) + αβA3(x)

]
x (3.33)

Let A4(x) be the coefficient matrix in Eq. (3.33). Clearly, A4(x) is also a valid factorization.

Therefore, there exists infinite number of SDC matrices obtained by simply combining the

already known SDC matrices. This, as stated before, gives great flexibility in the SDRE

control design process.

In extended linearization of the airship model, we have x ∈ R12, u ∈ R6 in Eq. (3.26),2

and the dynamics of the form (3.26) can be obtained from Eq. (2.24) (in §2.2) by isolating

the affine input terms, to give B which is the same as we obtained in Eq. 2.35. The selection

of A(x) needs more consideration as far as closed-loop stability3, and we leave it to the

controller synthesis section.

3.4.3 Controller Synthesis

Given A(x) and B(x) from the extended linearization, taking x = 0 as the equilibrium point,

and continuing to use the infinite-horizon performance index defined in Eq. (3.5), we obtain

the performance index:

J =

∫ ∞

0

[
xT (t)QL(x)x(t) + uT (t)RL(x)u(t)

]
dt (3.34)

Noting that QL(x) and RL(x) can vary with respect to the state x. It is ideal to set the

weighting matrices such that the feedback gain is automatically tuned down when the state

deviation becomes small, and vice versa. For the simulation and for experiments, we simply

choose constant QL and RL. Similar to the gain scheduling case, the control law is now

2We keep the 12 dimensional state definition in the SDRE controller design for the reason stated in §2.1.
3Some SDC parametrization can result in unstable A(x).
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given via

u(x) = −G(x)x (3.35)

The gain matrix G(x) can be obtained by mimicking the LQR formulation:

G(x) = R−1
L (x)BT (x)K(x) (3.36)

where K(x) is now obtained by solving the SDRE:

K(x)A(x) + AT (x)K(x) + QL(x) −K(x)B(x)R−1
L (x)BT (x)K(x) = 0 (3.37)

The closed-loop dynamics thereby becomes

ẋ(t) =
[
A(x) − B(x)R−1

L (x)BT (x)K(x)
]

x(t) (3.38)

Aside from selecting the state weighting matrix QL(x) and the control weighting matrix

RL(x), another major decision to make in the SDRE controller design process is to choose the

SDC factorization. Although the optimal choice is still an open question being studied [19],

it is prudent to choose the factorization that is most appropriate for the system and control

objectives. One important consideration is the so-called state-dependent controllability

matrix, given by:

C(x) =

[
B(x) A(x)B(x) . . . A11(x)B(x)

]
(3.39)

According to the SDRE theory, the closed-loop system Eq. (3.38) has local asymptotic

stability if C(x) is full rank (12 for the airship). The straightforward factorization based

on the idea used in Eq. (3.30), Eq. (3.31) and Eq. (3.33)4 is performed by employing the

additional degrees of freedom factors α, β and γ, as they function in Eq. (3.33). The SDC

matrices used in the simulation are detailed in the Appendix B as Eqs. (B.1–B.11). The

pointwise stability can be tested in Matlab with the controllability matrix Eq. (3.39).

Although SDRE control promises better results in handling the system non-linearity and

off-equilibrium scenarios, it is still a local approach. At each time step, the SDRE gain is

4Since the nonlinearities in the dynamics equations are of second-order, the same idea can be used.
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determined by the current state alone. Once the SDC matrices are computed, there is no

ability to account for the future variations of the system. As already indicated in §3.3.2,

a major drawback of the local method is that the fast regulation on the quaternion part of

the state causes a large unpredicted deviation in the translational control. Fortunately, the

prediction can be taken out of the optimal control loop by using a feedforward compensation,

motivated to suppress the deviation as discussed next.

3.4.4 Feedforward Compensation

As shown in Fig. 3.5, for a task combining the rotational and translational movement, the

vector from the initial center of the airship pint to the desired center position pd represents

the ideal path for the airship. Normalizing and writing this vector in the airship frame, we

have:

e = RT (q)
pd − pint

‖pd − pint‖
(3.40)

Decomposing the translational velocity v into the normal plane N to e, we obtain:

vn = v − (vT e)e (3.41)

As indicated in Fig. 3.5, the basic idea for the feedforward compensation is to penalize any

translational velocity component in the plane N. Ideally, the larger the deviation velocity,

the larger the compensating thrust should be to neutralize the deviation. Defining the control

transformation matrix that connects the thrusts vector u with the resultant force and torque

vector ([fT tT ]T ) in the airship frame,

 f

t

 =



0 0 1 0 1 0

0 1 0 1 0 0

1 0 0 0 0 1

0 −L 0 L 0 0

−L 0 0 0 0 L

0 0 −L 0 L 0





u1

u2

u3

u4

u5

u6



= Tu (3.42)
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Figure 3.5 Translational velocity decomposition for the feedforward loop

where letting L = ‖r‖, i.e., the distance from the airship center to the thrust axis, and letting

c denote the feedforward gain, The control law in Eq. (3.35) can be augmented with the

feedforward term as

u(x̃) = −G(x̃)x̃ − T−1

 cvn

0

 (3.43)

In view of the above discussion, the SDRE controller with feedforward compensation

has the structure shown in Fig. 3.6. First, the original formulation has to be converted to

the set point frame (discussed in §3.4.5); then, the SDRE controller and the feedforward

compensation act on the airship to regulate its pose. The SDRE and feedforward loops can

be tuned independently.

3.4.5 Set-point transformation

One substantial difference between the SDRE design and the linear regulator used before is

that in the performance index Eq. (3.34), where the state x is used in the SDRE instead of the
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Figure 3.6 Set-point controller with forward compensation

state perturbation vector utilized in Eq. (3.21) for the LQR design. By these means, we can

avoid the limitation of the Jacobian linearization, i.e., that the regulator has to operate close

to an equilibrium point. However, the price paid with the SDRE method is the requirement

lim
t→∞

x(t) = 0, whereas for an arbitrary set point xd, we must have:

lim
t→∞

x(t) = xd (3.44)

Hence, the SDRE theory needs to be modified to suit our application.

First of all, we establish a new coordinate at xd =
[
qT

d pT
d ωT

d vT
d

]T
. Calculating the

new state x̃ with respect to the set point origin, we obtain:

x̃ =

[
q̃T p̃T ωT vT

]
(3.45)

where

q̃ = q′d ∗ q (3.46)

p̃ = p − pd (3.47)

ω̃ = ω − ωd (3.48)

ṽ = v − vd (3.49)

where q′d is the conjugate of qd. “∗” denotes the quaternion product. (See Appendix C.)

After the conversion, we are able to use x̃ in the SDRE controller to generate control
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inputs of the system.

3.4.6 Simulation Results for Set-point Controller

In this section, we present the results obtained with the designed set-point controller. First,

the SDRE controller is compared with the LQR controller both without feedforward compen-

sation in a multi-axes control task. Then results of both controllers with the compensation

are presented. In our implementation, determining the SDRE gain G(x) involves the same

procedure as solving the ARE on-line as in Fig. 3.1. The only difference is the way to

evaluate the state matrix A, since matrices B obtained by the Jacobian linearization and

extended linearization are the same.

Similar to §3.3.2, extensive simulations have been carried out to test the effectiveness

of our design of the set-point controller. The weighting matrices are all set to identity in

simulation, while the other parameters are defined as per Table 3.1 (p.42). Additional DOF

factors are chosen as α = 0.5, β = 0.5, γ = 0.5. The manuevuer is the same as we used in

3.3.2. First, we focus on the comparison between SDRE approach alone and the hovering

controller presented earlier. Fig. 3.7a shows clearly that the extended linearization and the

SDRE formulation of the control problem tend to alleviate, albeit not eliminate the deviation

along the z axis. Meanwhile, since the SDRE approach captures the nonlinearity of the

system rather than taking the first order approximation, it generates better step response. As

demonstrated by the step response, the SDRE has a slightly faster settling speed. Moving

onto Fig. 3.7b, the only deficiency of SDRE control, the deviation in multi-axes control is

overcome by adding the feedforward compensation. By choosing a proper feedforward gain

(c = 50 in the simulation), the controller is able to achieve even smaller deviation along the

z axis than that obtained with the PD control, while maintaining all the regulation benefits of

the SDRE method. As a comparison, the LQR controller with the feedforward compensation

also shows nearly identical results. Therefore, it shows that the feedforward compensation

is the key to solving the deviation problem for our plant. However, we still favour the
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theoretical advantages of the SDRE method that the nonlinearity is handled without Jacobian

linearization and equilibrium points. The simulation also proves the argument we made

earlier that the optimal regulator loop and the feedforward loop can be tuned independently.

Figure 3.8 shows the difference in control inputs between the SDRE alone and SDRE-

feedforward schemes. The feedforward loop clearly has an impact on u1 and u6. It also

produces a spike at t = 10.6s when the translational velocity vx crosses zero and then changes

direction. However, no impact has been observed on the pose response.
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Figure 3.7 Effectiveness of SDRE control with and without feedforward loop upon multi-axes step inputs.
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Figure 3.8 Thrust generated by the SDRE controller without and with the feedforward compensation

3.5 Reference Tracking: Continuous Linear Quadratic Prob-

lem

3.5.1 Perturbation Rejection of Continuous Reference

When it comes to the reference tracking task described in §3.1, the continuous linear

quadratic (CLQR) method tends to be the best option, not only because of its capability to

handle nonlinear and time-varying system, but also because of its deterministic characteris-

tics, which allow the most demanding computation to be finished off-line before executing

the feedback loop. Compared with the infinite-horizon LQR approach, CLQR also focuses

on the perturbations, but in a time-varying fashion. The linearized airship model can be

represented as

δẋ(t) = A0(t)δx(t) + B0(t)δu(t) (3.50)

Letting x0(t) and u0(t) represent the reference state and the nominal input, the perturbations

in this section are as in Eqs. (3.18–3.19) except that u0 , 0. Substituting perturbations on

both sides of Eq. (3.5), we obtain the perturbation index:

J(δx(t0), δu(·), t0) = δxT (T )FLδx(T ) +

∫ T

t0

[
δxT (t)QLδx(t) + δuT (t)RLδu(t)

]
dt (3.51)



56 Chapter 3. Optimal Control of Airship: Theory and Simulation

The equations developed in particular Eqs. (3.13) (3.15) (3.16) in §3.1 are still valid for

this perturbation index. It should be noted that the Riccati equation now becomes a matrix

differential equation Eq. (3.13), which can be solved by using the Runge-Kutta integration

backwards. As well, because the integration process does not require any special provisions

for and overdetermined system, the 13-dimensional state definition for the airship can be

retained (x ∈ R13). The only issue left is how to determine the nominal input u0 based on the

reference trajectory. Obviously, this is an inverse dynamics problem which can be solved by

using the airship dynamics Eq. (2.24). The workflow of reference tracking can thereby be

outlined as in Table 3.2.

Table 3.2 Workflow of the reference tracking of the airshp

1. Design the continuous airship trajectory x0(t) within the boundary ‖ω‖ ∈
[−ωmin, ωmax], ‖v‖ ∈ [−vmin, vmax]. The maximum and minimum values are
defined based on flight records.

2. Establish the nonlinear system dynamic equation. Obtain the Jacobian matri-
ces A0(t) and B0(t)

3. Solve the inverse dynamics problem as per Eq. (2.14), Eq. (2.15) and Eq.
(2.23) to obtain u0(t). If

{
sup u0(t) > umax ∨ inf u0(t) < umin

}
go back to step

1, and choose a smaller acceleration value.

4. Solve the differential Riccati equation backwards as per Eq. (3.13), starting
from Eq. (3.15).

5. Determine the feedback gain G(t) as G(t) = R−1
L BT

0 (t)K(t)

6. Initialize the real time controller with K(t), x0(t), u0(t). Start flight: controller
input is x(t); controller output is computed by u(t) = u0(t) −G(t)δx(t)
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3.5.2 Extended Performance Index

Before presenting simulation results, in order to quantify the performance of the designed

controller, we define the following performance indices (PIs) as an extension to the definition

fo the objective function of the optimal control problem Eq. (3.1):

Definition 1 (Worst-case orientation error). Let

Re = RT
a Rr (3.52)

represent the “error” rotation matrix where Ra is the orientation matrix of the actual attitude,

and Rr represents the reference attitude. At every instant of time (or sampling time) t, we

calculate the multi-axes orientation error as the angle of Re:

φ(t) = cos−1
[
1
2

(trace (Re(t)) − 1)
]

φ ∈ [0, π] (3.53)

The worst-case orientation error is defined by

wφ , sup
t∈[0,T ]

φ(t) (3.54)

Definition 2 (Average orientation error).

w̄φ ,
1
T

∫ T

0
φ(t) (3.55)

Definition 3 (Worst-case translation error). The three-axes translational error is:

p(t) = ‖pa(t) − pr(t)‖ (3.56)

where pa is the actual position vector, and pr is the reference vector. The L2 norm is used to

compute the distance between two poses. The worst-case translational error is obtained by:

wp , sup
t∈[0,T ]

p(t) (3.57)

Definition 4 (Average translation error).

w̄p ,
1
T

∫ T

0
p(t) (3.58)
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Definition 5 (Power consumption index). It can be proven that the power cost of the

propelling system is proportional to the square of the control inputs u(t) generated by the

controller. This is not obvious if one wants to account for the energy consumption of the

armature of the DC motors and the cables between the driver circuit and the thrusters,

on-board the airship. The proof is given in Appendix D. Therefore, the average energy

consumption index W is defined as:

W ,
1
T

∫ T

0

6∑
i=1

u2
i (t) (3.59)

With the PIs defined, we can now quantify the performance of the controllers over the

whole trajectory tracking task.

3.5.3 Test Trajectory Design and Simulation

To demonstrate the six-axes manoeuvrability of the airship, a test trajectory is synthesised

such that the airship’s center follows a spiral trajectory while the airship itself rotates about

the axis of the spiral line and the X′ axis of the body fixed frame X′Y ′Z′, as shown in Fig.

3.9. As a result, in the global frame, the airship motion resembles that of rolling up a spiral

staircase. The trajectory parameters vx, vy, vz, ωx, ωy, ωz in the room frame are calculated as

described below:

Letting r0 denote the radius of the spiral and ωz = ω0 rad/s the angular rate about the

spiral axis, the translational velocity of the airship center is then obtained as:

vx = −ω0r0 sin θ (3.60)

vy = ω0r0 cos θ (3.61)

vz =
ω0

2π
(3.62)

where θ =
∫
ω0dt is the radial angle to the airship.

The translational speed up the spiral can be synthesised from the translational speed in

the XY plane, vxy, and the translational velocity along the Z axis vz. If we choose there is no
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Figure 3.9 Spiral trajectory synthesis

slip on the rolling motion, the angular velocity ξ about X′ axis can be derived as

ξ =

√
(ω0r0)2 +

(
ω0
2π

)2

ra
= ω0

√(
r0

ra

)2

+

(
1

2πra

)2

(3.63)

where recall ra is the radius of the airship. Decomposing ξ as angular velocity components

in the global frame, we have:

ωx = −ξ cos θ (3.64)

ωy = −ξ sin θ (3.65)

For the simulation results presented here, we choose ω0 = 0.2 rad/s. A 10 s constant

acceleration interval is designed to make sure the airship reaches the desired speed. All the

trajectory parameters vx, vy, vz, ωx, ωy, ωz are validated following steps 1–3 in Table 3.2 and

the corresponding displacement coordinates are displayed in Fig. 3.10.

Simulations have been carried out by choosing the state weighting matrix QL as diag

(5, 5, 5, 5, 30, 30, 30, 1, 1, 1, 1, 1, 1) ∈ R13×13, and the control weighting matrix RL as

identity as before. Other simulation parameters are as per Table 3.1. The PD controller

response/error is displayed in Fig. 3.11. Although it remains stable, the PD control shows
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Figure 3.10 Reference trajectory in CLQR control. The quaternion, position of the airship center, angular
velocity (in the body fixed frame) and translational velocity (in the body fixed frame) respectively.

very poor results, especially in the orientation control. The trajectories of angular velocities

are significantly distorted, resulting in some erratic behavior and a considerable delay in the

quaternion. About a five second delay also occurs in the translational response. The Z axis

response is not uniform as the reference.

Focusing on the CLQR results in Fig. 3.12, it is clear that all the perturbations are

under control and tend to converge to zero at the end of the maneuver. Another advantage

of the CLQR control is revealed by comparing the thrust generated with both controllers.

Shown in Fig. 3.13, the PD thrusts are continuous yet inefficient with respect to the changes

of the desired trajectory, whereas the CLQR thrusts fully take into account those changes.

For example, the discontinuities at t = 10s and t = 62.84s in Fig. 3.13b are caused by

the acceleration changes in the reference. Since the CLQR controller is given this prior

knowledge of the system, it is not hard to interpret why the delay is literally eliminated and

the tracking error is minimized. The PD controller, on the other hand, suffering from the

thruster saturation and large control effort (implying higher energy consumption), eventually

fails to fulfill the tracking task.
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Figure 3.11 Tracking results using the PD controller

The quantitative analysis is completed by using the PIs defined in §3.5.2. The corre-

sponding results, shown in Table 3.3 reveal the differences in the performance of the two

controllers even more clearly. A parallel test is also performed after adding white noise

disturbance (N (0, 0.1)) to each thruster to emulate the uncertainty of the thrust produced

in a real flight. Approximately, CLQR controller achieves an average orientation tracking

error 50 times smaller and an average translational tracking error 20 times smaller than

those obtained with the PD controller. On the other hand, the actuator effort of the PD con-

troller is doubled compared to that of CLQR. Table 3.3 also indicates that in the simulation

with white noise disturbances, CLQR shows robustness to the outside disturbance without

compromising too much on performance.

Table 3.3 Quantitative performance comparison between CLQR and PD control

Method w̄p (m) w̄φ (rad) wp (m) wφ (rad) W (N2 · s )

PD 0.9004 1.3299 1.2777 3.1416 0.0594
CLQR 0.0430 0.0245 0.0628 0.0472 0.0313

CLQR with white noise 0.0406 0.0359 0.0657 0.0777 0.0383
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Figure 3.12 Tracking results using the CLQR controller

3.6 Conclusion on Optimal Control of Holonomic Airship

Three optimal controllers have been described in this chapter to accomplish different tasks

of flying the holonomic airship, namely hovering control, set-point control and continuous

reference tracking. All the controllers are designed so that real time implementation is

feasible. The final solution on the airship would be a hybrid scheme which switches

among the three controllers depending on the pilot command or the desired high-level task

specification.

In the hovering control design, the airship is assumed to be a quasi-stationary plant,

and we claim that a finite horizon linear quadratic regulator is the most effective design

option. A gain scheduling scheme is employed to adapt to the slow change of the pose of the

airship. The hovering controller exhibits great advantages over the PD controller in terms

of the perturbation suppression and pure translation/orientation control, but suffers when

multi-axes set-point changes in the pose are desired. Therefore, a recent approach in the

nonlinear optimal control area has been employed, which is the state-dependent Riccati

equation control. It is proven that the SDRE approach captures the system’s nonlinearity, but
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Figure 3.13 Comparison of thrust generated by the PD controller and the CLQR controller

it does not remedy the local optimality problem which is inherited from the optimal regulator

theory. Thereby, an ad hoc feedforward loop is added to the SDRE controller in order to

compensate the deviation produced on the translational axes when a rapid change of the

attitude happens. It turns out that the combination of SDRE and feedforward inputs offers

all the benefits of the regulator method, while bringing deviation-free results. In the end, a

deterministic continuous tracker is designed for the reference tracking task. It has relatively

small computation requirements, but promises superior and easily adjustable performance.

On the other hand, the PD controller hardly meets the requirements of our task.

In the following chapter, we present the experimental results from the implementation of

the controllers on the airship.
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Chapter 4

Experiments on Airship Control

The performance of the controllers are evaluated by using extended performance indices

(§3.5.2), which are defined to represent the translation and orientation errors and to quantify

the energy consumption by the on-board components. Experiments have been successfully

carried out based on all the controllers designed in this thesis. The purpose of the experiments

is to demonstrate the improvements of the designed controllers over the PD controller. The

controller parameters are set to be the same as in simulations, except for the feedforward

gain c for the SDRE controller, which is tuned to 200 and the 4th to 6th diagonal terms in

QL, which are set to 2 due to larger deviations in real flights.

4.1 Hovering Control

Experiments have been carried out for various hovering tasks. The results of the designed

LQR controller are compared with those of the PD controller in time-domain. The main

criteria for a hovering task are control accuracy and the ability to reject disturbances. In a

hovering task, the performance indices p, φ and ‖u‖2 are recorded as shown in Fig. 4.1. The

steady-state error of the LQR controller is smaller due to higher translational and orientation

gains employed while the PD controller uses more energy but ends up with lower hovering

accuracy.
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Figure 4.1 PI comparison between LQR and PD control for hovering pose: q = [1 0 0 0]T , p =

[2 0 1.5]T

To emulate the worst case in a hovering task, a disturbance test is also performed, in

which an industrial fan is placed 3 m away from the airship center, generating air flow over

the surface of the ground, and the airship is tasked to hover 1.5 m above the ground. The

translational error p and orientation error φ are shown in Fig. 4.2. The disturbance is enabled

after t = 20s. It can be clearly observed that with the LQR controller, the airship is stabilized

in the presence of disturbances, albeit with a larger steady-state error, while with the PD

controller, the airship’s attitude shows large variation and a considerable drift on translational

axes occurs.

4.2 Set-point Control

Moving on to the experiments of the set-point controller, Fig. 4.4 shows results from a

typical maneuver in translational control for a set-point change of 1 m in −Y direction. Since

this maneuver does not involve significant nonlinearity, the LQR controller has been proven

to be effective in simulation as described in §3.3.2. The slight misalignment in the initial

pose of the two controllers (LQR and PD) is caused by the imbalance. The results clearly

demonstrate that the LQR control results in a much smaller overshoot and shorter settling
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(a) Translational error (b) Orientation error

Figure 4.2 Perturbation rejection test with hovering pose: q = [1 0 0 0]T , p = [2 0 1.5]T

time in p while maintaining a lower rotational error. LQR also shows advantages over PD in

terms of smaller energy consumption.

An interesting response was observed in §3.3.2 with the LQR controller for a combined

maneuver with translation and rotation in the XY plane. Recall that a significant deviation

in the Z-direction was observed with the LQR controller. A similar maneuver is tested

experimentally, where the airship is commanded to translate 1 m in the Y direction and

rotate through 90 degrees about the -X axis1. The results obtained with the LQR controller

are shown in Fig. 4.3 for the experimental response and the simulated response. The

experimental response in the Y direction is not as good as predicted in simulation with

a significant overshoot observed. However, both the simulated and experiments response

clearly show the significant deviation in the Z-direction for this maneuver.

General set-point control results using SDRE with the feedforward compensator are

shown in Fig. 4.5. In the test, the airship is commanded to move from the initial pose defined

with q = [1 0 0 0]T , p = [2 0 1.5]T to q = [0.616 0.455 0.455 0.455]T ,

1The set-point is different from the simulation because there is less ventilation disturbance along the Y axis
in the lab set-up and the airship is balanced better in the final pose q = [1 0 0 0]T . Thus both translational
and rotational responses are closer to the ideal case.
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Figure 4.3 Deviation problem in multi-axes control. The axes without significant change are ignored.

p = [2 − 1 1.5]T , which represents translation of 1 m in −Y direction and rotation of

104◦ around [1 1 1]T axis. Unlike what we have observed in simulation, significant errors

in position tracking are present with both PD and SDRE controllers which we attribute

to imbalance since the translation and orientation dynamics are coupled by the imbalance.

Also since the airship’s imbalance produces steady-state attitude error, as the thrusters try

to counteract the impact of imbalance, they introduce additional disturbances. However,

with the feedforward compensation, the translational error in SDRE can be remedied easily

by tuning up the compensation factor c and the corresponding terms in QL that govern the

translational motion. On the other hand, this results in a slower response in the attitude

because of the emphasis on the translational tracking, and also amplification of the velocity

noise in the control inputs which is reflected in ‖u‖2 (See Fig. 4.5). That said, the winner of

the set-point experiment is still the SDRE controller if considering overshoot, the settling

time of the overall system and the steady-state error, not to mention the flexibility it offers to

adjust the set-point performance by varying QL and c.
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Figure 4.4 Performance comparison between LQR and PD control: translational maneuver

4.3 Trajectory Tracking

The trajectory tracking task described in §3.5.3 is also attempted. However, no satisfactory

experimental result has been obtained to date due to the imbalance of the airship and slow

and inaccurate response of the thrusters. Therefore, a simplified trajectory is used in the

experiment: a rectangular trajectory of the airship’s center is commanded in the XY plane,

with no rotation. A constant acceleration process is designed to smoothly drive the airship

from stationary to the maximum speed vm = 0.2 m/s and then to slow it down along each

edge of the rectangle. The results of continuous tracking this rectangular trajectory three

times with the PD and CLQR controllers are shown in Fig. 4.6a. The CLQR result is very

close to the reference except for somewhat larger errors along the right vertical edge of the

rectangle where the ventilation system of the lab causes disturbances. On the other hand,

the result of PD controller shows a much higher overshoot and deviation from the reference.

Meanwhile, the attitude error of the PD control fluctuates during the flight as shown in Fig.

4.6b. The average error of attitude tracking is 2-3 times higher than the result of the CLQR

control.

In light of the controller design goal outlined in the beginning, the optimal control

problem of the holonomic airship has been solved. The next exploration, as required for all
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full-state-feedback controllers, is the estimation of the state vector x(t) based on all sensors

available on-board or off-board.
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Figure 4.6 Comparison of the trajectory tracking results of the CLQR controller and the PD controller
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Chapter 5

Optimal State Estimation of Airship

A good state estimator is the key to provide reliable feedback for the control system we

designed, and it also serves as the foundation for fusing all the sensors on-board and/or

off-board the airship. In this chapter, a nonlinear state estimator is selected and modified for

our application, and a loosely-coupled sensor fusion scheme is proposed.

5.1 Kalman Filter

Invented by Swerling and Kalman [35], the Kalman filter is probably the most well-

established tool for state estimation. The Kalman filter produces estimates of the true

values of state by first predicting a state with the system model. A weighted average between

the predicted value and the measured value is computed by evaluating the uncertainties

of both values. The most weight is given to the value with the least uncertainty. The

estimates produced by the the Kalman filter are proven to be closer to the true values than

any of the original measurements. Meanwhile, it shows tremendous advantages in terms of

computational efficiency and the ability to combine multiple inputs with different update

rates.

Kalman Filter is chosen to be the solution for the airship estimation problem for the

specific reasons as follows:
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1. The existing airship model is full of uncertainties. The airship imbalance, motor and

sensor noise, flight disturbances and unmodelled aerodynamics all contribute to the

uncertainties. A probabilistic approach in state estimation is highly needed to provide

reliable feedback signal.

2. The initial state of the airship is assumed to be known in all the tasks. Although it

may not be precise, it provides the initialization of the Kalman filter. Therefore, the

estimation problem addressed in this work, to be more specific, is a state tracking

problem rather than localization (or state “discovery” problem), which may require a

global localization approach, such as Monte-Carlo algorithm [63].

3. As we have seen in §1.4.2, the low-cost IMU has a high measurement rate (100 Hz),

but produces noisy measurements, while the LIDAR rate is very slow (< 5 Hz), but

it contains highly reliable information. In practice, it is also quite frequent that the

bluetooth communication loses data at some time steps. The Kalman filter by its

nature, can combine multi-rate sensor readings and tolerate the situation of missing

measurements.

4. The covariance matrix in the Kalman filter provides a tool to analyse the performance

of the state estimator. The larger the covariance is, the larger the uncertainties one

should expect in the filtered data. Similar to the LQR approach, the Kalman filter is

easy to tune according to the actual performance.

5. The latest localization methods, such as SLAM (simultaneous localization and map-

ping) may have advantages in an unknown environment. However, it is still a challenge

to implement those algorithms in real time, as part of the controller loop. Kalman

filter is well-known for its recursive nature and low computation cost.

This chapter will be expanded in the following order: in §5.1.1, we briefly review the

basics of Kalman filter along with the stochastic characteristics of linear systems; then we

move to the nonlinear extension of the Kalman filter followed by a comprehensive filter

design section §5.2 for our airship. The scheme of the modified Kalman filter will be
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presented in §5.3 for the scenario of Vicon-IMU integration. Experimental results will be

presented in the last section §5.4.

5.1.1 Stochastic Model and Kalman Filtering

There are two versions of Kalman filter: continuous version, also known as Kalman-Bucy

filter and the discrete Kalman filter based on Markov chain – the recursive version. Although

the Kalman-Bucy filter is recommended in [10] to work seamlessly with the controller, it

requires the airship motion planned before executing the controller, and thus any deviation

from the original trajectory may result in the divergence of the filter. As well, it requires

solving a differential Riccati equation. From a practical point of view for our airship, the

recursive version is considered a better choice.

We begin by assuming we already have a discrete and linear system of the following

form1(this is also known as the motion or process model):

xk = Ak−1xk−1 + Bk−1uk−1 + wk (5.1)

and a measurement model:

zk = Hkxk + vk (5.2)

where z is the measurement vector; w and v are random signals that represent the process

and measurement noise, respectively. They are assumed to be independent of each other,

white and with normal probability distributions [16]:

p(w) ∼ N(0,Q) (5.3)

p(v) ∼ N(0,R) (5.4)

1By convention, uk is used to denote the inputs of the Kalman filter, and Ak and Bk are used in the motion
model. However, this notation consistency is difficult to maintain when we discretize the dynamics model
in §5.2.1. Also from the system perspective, the state estimation is executed prior to the control law, and
therefore, the control inputs used in the estimation always come from the previous time step. Similarly, A is
state-dependent, thus only the matrix A evaluated at the previous time step is available as input to the Kalman
filter algorithm. Therefore, we use k − 1 as subscripts on the right-hand side of the model.
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where Q is the process noise covariance and R is the measurement noise covariance. Both

matrices describe the characteristics of the system noise and are assumed to be constant for

our application. We define x̂−k to be the a priori state estimation at step k and x̂k to be the a

posteriori state estimate, given measurement zk at step k. The estimate error covariance (a

posteriori) is then defined by:

Pk , cov(xk − x̂k) = E
{
[xk − x̂k] [xk − x̂k]

T
}

(5.5)

The algorithm for the basic Kalman filter is then given in Table 5.1. Apart from the

initialization, the whole algorithm is a recursive loop which can be divided into two phases:

prediction phase and update phase. In the prediction phase, the system equation (model) (5.1)

is used to propagate the state estimation and error covariance obtained from the last time

step. In the update phase, the measurements are incorporated into the state estimation after

being weighted by the Kalman gain Kk, and the error covariance is renewed correspondingly.

After each prediction/update pair, the process is repeated with the previous a posteriori

estimates used to predict the new a priori estimates.

Table 5.1 Kalman filter algorithm

Initialize:
x̂0 = E(x0) P0 = cov(x0 − x̂0) (5.6)

Predict:
x̂−k = Ak−1x̂k−1 + Bk−1uk−1 (5.7)

P−k = Ak−1Pk−1AT
k−1 + Q (5.8)

Update:
Kk = P−k HT

k (HkP−k HT
k + R)−1 (5.9)

x̂k = x̂−k + Kk(zk −Hkx̂−k ) (5.10)

Pk = (I −KkHk)P−k (5.11)

From the perspective of control system design, the Kalman filter and the optimal con-

trollers designed with the linear quadratic method (§3.2) make a natural combination called
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LQG (Linear Quadratic Gaussian) control [10]. As shown in Fig. 5.1, running in parallel

to the real physical system, the estimated state x̂ is updated by the Kalman filter presented

in Table 5.1. The measurement process h(t) is assumed to be linearized with a similar

procedure as used to linearize the system dynamics (§2.3). Matrix G(t) is the feedback

gain derived in accordance with the control algorithm. The controller and the basic Kalman

filter algorithm are tightly coupled in the feedback loop, making it a complete solution for

optimal control and estimation problems. This also represents the overall picture of the

airship control system we envision in this work.
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Figure 5.1 Schematic of Kalman filter combined with LQR as the Linear Quadratic Gaussian controller

5.1.2 Nonlinear Extension of Kalman Filter

In order to solve the state estimation problem for our airship, a nonlinear version of the

Kalman filter is required due to the high nonlinearity in process and measurement mod-

els. Our first attempt is the so-called extended Kalman filter (EKF) [62] which utilizes

the Jacobian linearization of the system model, and approximates the state distribution by

transformation of Gaussian random variables. The error covariance is propagated analyti-

cally through the first-order equations. However, we encounter more and more difficulties
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in implementing the Jacobian linearization when the measurement model increases com-

plexity, specifically, for the LIDAR model. In addition, it is reported that the first-order

approximation employed by the EKF may introduce large errors in the posterior mean and

covariance of the transformed random variables, which may lead to sub-optimal performance

and sometimes divergence of the filter [65]. Therefore, a more sophisticated approach called

the unscented Kalman filter (UKF) is employed in our work [34]. The UKF addresses

the aforementioned problems of the EKF by generating a minimal set of sample points

(sigma points), and then propagating them through the original nonlinear system instead of a

linearized one. The posterior mean and covariance are computed in the end of the algorithm

based on the Gaussian assumption and are captured to the precision of the third order. Let us

consider the general nonlinear system with the process and measurement models as follows:

xk = f(xk−1,uk−1, k) + wk (5.12)

zk = h(xk−1, k) + vk (5.13)

We first review the so-called unscented transformation which is the foundation of the UKF.

For example, if we propagate the state x with dimension L through the nonlinear function

h, we first form a matrix X of 2L + 1 columns of sigma vectors with Xi denoting the ith

column.
X0 = x̄

Xi = x̄ +
( √

(L + λ)Px

)
i

i = 1, 2..., L

Xi = x̄ −
( √

(L + λ)Px

)
i−L

i = L + 1, L + 2..., 2L

(5.14)

where x̄ is the mean of random variable x and Px is the covariance of x. Symbol (√ )i

denotes the ith column of the matrix square root computed, for example, using Cholesky

decomposition [31]. As well, λ = α2(L + κ) − L is a scaling parameter; α determines the

spread of the sigma points around x̄ and is usually set to a small positive value; κ is a

secondary scaling parameter which is usually set to 3 − L. Each sigma point is propagated

through the state and measurement function independently, for example, the measurement
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function h:

Zi = h(Xi) i = 0, 1..., 2L (5.15)

and the mean and covariance for z are approximated using a weighted sample mean and

covariance of the posterior sigma points:

z̄ ≈
2L∑
i=0

W (m)
i Zi (5.16)

Pz ≈

2L∑
i=0

W (c)
i [Zi − z̄] [Zi − z̄]T (5.17)

The weights W (m)
i and W (c)

i are calculated as per the following equations:

W (m)
0 = λ/(L + λ)

W (c)
0 = λ/(L + λ) + (1 − α2 + β)

W (m)
i = W (c)

i = 1/ [2(L + λ)] i = 1, 2..., 2L

(5.18)

where β is used to incorporate prior knowledge of the distribution of x. For Gaussian

distributions, β = 2 is optimal [65]. The complete UKF algorithm used in this thesis is given

in Table 5.2. Note, the vector used to generate the sigma points is the state augmented by the

process noise and the measurement noise:

xa =


x

w

v

 (5.19)

and the compound sigma points are then defined as:

Xa =


(Xx)

(Xw)

(Xv)

 (5.20)

Once the algorithm is initialized, similar to the classical Kalman filter, it will maintain

a recursive loop from Eq. (5.25) to Eq. (5.35), for k ∈ {1, 2...,∞}. The basic flow of the
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algorithm can still be expressed in the classical form [42]:

x̂ = (prediction of xk) + K
[
zk − (prediction of zk)

]
(5.21)

The major difference between the EKF and the UKF is the technique to make the prediction

and to determine the Kalman gain K. In the UKF, these are accomplished through the

unscented transformation shown earlier. In addition, the algorithm we adopt in Table 5.2 has

another advantage, i.e., unlike some versions of UKF [62], it does not require measurement

noise to be additive (zero-mean). Therefore, the sensor bias obtained in calibration can be

easily incorporated into the filter (by Eq. (5.23)) without introducing any extra dimensions

in the states and modifying the motion/measurement model to incorporate the bias.

5.2 Filter Design

Following the UKF algorithm in Table 5.2, this section will focus on implementation details

for our airship. First, the airship dynamics is discretized to fit the recursive form of the

Kalman filter. Next, the attitude estimation problem is specified for our airship and resolved.

5.2.1 Model Discretization

Due to the recursive feature of the Kalman filter, our airship model (Eq. (2.24)) can

not be directly employed in the prediction phase Eq. (5.26). A conversion is inevitable

to incorporate the dynamics into the discrete Markov chain. The system requiring this

conversion is sometimes referred to as a sampled-data system [57], since the dynamics are

described by a continuous-time differential equation, but the input, generated by a digital

computer, only changes at discrete time instants. Recalling the nonlinear process we assumed

earlier in Eq. (5.12) and the system formulation established in the SDRE design in Eq. (3.29),

we have:

ẋ(t) = A(t)x(t) + B(t)u(t) + wc(t) (5.36)
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Table 5.2 Unscented Kalman filter algorithm

Initialize:
x̂0 = E(x0) P0 = cov(x0 − x̂0) (5.22)

x̂a
0 = E(x0) = [x̂T

0 E(wT ) E(vT )]T (5.23)

Pa
0 = cov(xa

0 − x̂a
0) =

P0 0 0
0 Q 0
0 0 R

 (5.24)

Generate sigma points:

Xa
k−1 =

[
x̂a

k−1 x̂a
k−1 ±

√
(L + λ)Pa

k−1

]
(5.25)

Predict:
Xx−

k = f
(
Xx

k−1,X
w
k−1

)
(5.26)

x̂−k =

2L∑
i=0

Wm
i X

x−
i,k (5.27)

P−k =

2L∑
i=0

Wc
i

[
Xx−

i,k − x̂−k
] [
Xx−

i,k − x̂−k
]T

(5.28)

Measure:
Z−k = h

(
Xx−

k ,X
v
k−1

)
(5.29)

ẑ−k =

2L∑
i=0

W (m)
i Z

−
i,k (5.30)

Update:

Pzkzk =

2L∑
i=0

Wc
i

[
Z−i,k − ẑ−k

] [
Z−i,k − ẑ−k

]T
(5.31)

Pxkzk =

2L∑
i=0

Wc
i

[
Xx−

i,k − x̂−k
] [
Z−i,k − ẑ−k

]T
(5.32)

K = PxkzkP−1
zkzk (5.33)

x̂k = x̂−k + K(zk − ẑ−k ) (5.34)

Pk = P−k −KPzkzkKT (5.35)



82 Chapter 5. Optimal State Estimation of Airship

where wc is the noise of the sampled-data system with a covariance of Qc(t). The solution

for x(t) at some arbitrary time tk is given by [57]:

x(tk) = eA(tk−tk−1)x(tk−1) +

∫ tk

tk−1

eA(tk−τ) [B(τ)u(τ) + wc(τ)] dτ (5.37)

Assuming a zero-order hold (such as the one used in an A/D converter) is applied to the

system, we have u(t) = uk−1 for t ∈ [tk−1, tk]; in other words, the control signal is piecewise

constant. Equation (5.37) is discretized as:

xk = Φk−1xk−1 + Γk−1uk−1 +

∫ tk

tk−1

eA(tk−τ)wc(τ)dτ (5.38)

where
Φk−1 = eA∆t

Γk−1 =

∫ tk

tk−1

eA(tk−τ)B(τ)dτ

∆t = tk − tk−1

(5.39)

Assuming wc(t) to be additive, the state propagation can be readily obtained as:

x−k = Φk−1xk−1 + Γk−1uk−1 (5.40)

The error covariance is predicted with:

P−k = E
[
(xk − x̂k)(xk − x̂k)T

]
= E

(Φk−1xk−1 + Γk−1uk−1 +

∫ tk

tk−1

eA(tk−τ)wc(τ)dτ − x̂k

) (
· · ·

)T 
= Φk−1Pk−1Φ

T
k−1 + Qk−1

(5.41)

where x̂ is the expectation of the state and Qk−1 is defined by

Qk−1 =

∫ tk

tk−1

eA(tk−τ)Qc(τ)eAT (tk−τ)dτ (5.42)

Determining Φ, Γ and Q can be tedious and difficult for our 13 dimensional time-variant

system. A series expansion approach based on Eq. (5.39) and Eq. (5.42) is proven to be

efficient and accurate [23]:

Φ = I + A∆t +
1
2!

A2∆t2 +
1
3!

A3∆t3 + · · · (5.43)
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Γ =

[
I∆t +

1
2!

A∆t2 +
1
3!

A2∆t3 + · · ·

]
B (5.44)

Note that in the SDRE formulation of the system B is constant. Also, in our real-time

implementation, ∆t is set to 0.01 s so that the estimation is computed at the rate of the

controller. The sensors’ update rates are usually 1–10 times larger than ∆t. Simulations of

the estimation have shown that a first-order approximation of Φ and Γ is sufficient for our

desired precision, since ∆t is very small. Therefore, we obtain the discrete prediction model

for the UKF in the simple form:

x−k = (I + Ak−1∆t)xk−1 + Bk−1uk−1∆t (5.45)

= xk−1 + f(xk−1,uk−1)∆t (5.46)

eA(tk−τ) ≈ I for τ ∈ [tk−1, tk] (5.47)

Qk−1 ≈ Qc(tk−1)∆t (5.48)

5.2.2 Attitude Estimation

Another problem that needs to be resolved for our airship arises in the context of attitude

estimation. It is well known that the traditional Kalman filter can only provide the uncon-

strained optimal solution of the linear stochastic estimation problem [35]. However, the

quaternion representation of the attitude, as stated in Eq. (2.11), has a norm constraint. This

constraint is violated when we take the weighted mean of the sigma points in Eq. (5.27) or

absorb the innovation terms from the measurement in Eq. (5.34), since no mechanism has

been established to enforce the constraint. This attitude estimation problem has been posed

and discussed for years. For example, Psiaki [53] formulate this problem as a nonlinear

programming problem and solve it using the Newton’s method. Crassidis and Markley

[24] convert the difference of quaternions into a constraint-free attitude parameterization,

such as Rodrigues parameters or modified Rodrigues parameters (MRPs), and propagate

the difference of attitude instead of the attitude itself, thus avoiding the constraint issue.

Recently, Zanetti et al. prove that the optimal constraint estimate is equivalent to the result
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from “brutal-force” normalization of the unconstrained estimate [67]. Formulated for the

linear system but easily extended to the nonlinear case, their results greatly simplify the

solution of our attitude estimation problem. Following Eq. (5.34) in the UKF, we introduce

the correction via normalization:

x̂q∗
k =

1
‖x̂q

k‖
x̂q

k (5.49)

where xq denotes the quaternion part of the state definition (See 2.10). As well, the quaternion

part of the error covariance needs to be corrected after Eq. (5.35):

Pq∗
k = Pq

k +
1
ε̃k

(
1 −

1
‖x̂q

k‖

)2

x̂q
k(x̂q

k)T (5.50)

where

ε̃k = εT
k P−1

zkzkεk (5.51)

εk = zk − ẑ−k (5.52)

5.3 Vicon-IMU Sensor Fusion with UKF

In this section, the process noise of the estimation model is analysed to propagate the error

covariance in the predicting phase. Next, a loosely-coupled sensor fusion scheme is proposed

based on Vicon-IMU integration. Characteristics of these sensors are identified in order to

determine R to be used in the UKF. It is worth mentioning that the LIDAR-IMU integration

has already been implemented and validated in simulation, but will not be presented in this

thesis.

Since the Vicon system only provides the pose information of the airship, velocities were

initially obtained [56] by differencing the adjacent observations and filtering the result with

a low pass filter, although this still produces a noisy velocity reading with inevitable delay.

Therefore, fusing the Vicon data with the IMU measurements and smoothing the inputs

to the control system becomes the first task for the UKF. The designed scheme and signal

routing are shown in Fig. 5.2. First of all, all parts of the state are available directly from the
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Vicon system (xp, xq and xv from differencing) and IMU measurement (xω), implying the

measurement matrix H is an identity matrix in Eq. (5.2). The position (xp) and orientation

(xq) measurements are directly taken from the Vicon station at 100 Hz. As mentioned

before, the acceleration data from the IMU is too noisy to be integrated, and therefore the

translational velocity (xv) is obtained by differencing the position data from Vicon, as was

done previously in [56]. On the other hand, the gyroscope data is processed by a build-in

filter on the IMU and then converted to the airship frame to represent the angular velocity

(xω) of the airship. The update interval of the IMU is usually larger than the value of ∆t at

which the UKF is running due to the transmission limit of reliable bluetooth communication.

In case a faulty reading is detected, for example the Vicon measurement zV
k in Fig. 5.2, the

predicted state x− and covariance P− are passed on to the next time step without the update

step of the filter.
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Figure 5.2 Multi-rate Vicon-IMU integration with the UKF

The next parameters to determine are the process noise covariance Qc and the measure-

ment noise covariance R for the Vicon-IMU integration. First focusing on the process noise
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wc(t) in Eq. (5.36), it can be modelled as:

wc(t) = B(t)β(t) + η(t) (5.53)

where β ∼ N(0,Σβ(t)) is the thruster noise, and η ∼ N(0,Ση(t)) is the modelling uncertainty

which can be identified by comparing the model-predicted value of the airship state and the

actual state in test flights. Using the property of linear transformation of Gaussian random

vectors [17], the covariance of thruster noise is combined with the covariance of modelling

uncertainty as:

Qc(tk) = B(tk)Σβ(t)BT (tk) + Ση(t) (5.54)

We have already shown that B is independent of the state vector and time in the SDRE

design (See §3.4). Therefore, Qc is time-invariant if we assume that the thruster noise and

modelling uncertainty are intrinsic characteristics that do not change with time. Lacking the

accurate understanding of the motor and modelling errors from experiments, we take Σβ and

Ση as diagonal matrices scaled by variances σ2
β and σ2

η such that:

Σβ = σ2
βI

6×6 Ση = σ2
ηI

13×13 (5.55)

On the other hand, the measurement noise is relatively easy to obtain from the experimental

tests with the airship. Figure 5.3 demonstrates the multi-axes measurement noise recorded

in a typical flight. During the flight, the airship is commanded to do various hovering and

set-point maneuvers, and the zero-mean noise is extracted from the ground truth trajectory

which is obtained by smoothing the Vicon data. It can be clearly observed that the Vicon

system provides pose measurements with a standard deviation on the order of 10−3 (m for

the position), while the angular velocity measurements from the IMU suffer from the noise

generated by the PWM control and can only achieve a standard deviation of approximately

0.03 rad/s. Averaging data from several experiments like this, the measurement covariances

can be obtained as detailed in Appendix E.
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Figure 5.3 Measurement noise of Vicon-IMU integration

5.4 Results of State Estimation and LQG control

In this section, experimental results will be first presented for the Vicon-IMU integration,

and then, the designed CLQR controller will be integrated with the UKF to form the

aforementioned LQG controller (§5.1.1). In the experiments, the parameters in the process

model are selected by estimating the errors from the recorded flight data as σβ = 0.1 N and

ση = 0.1 (m for position, m/s for translational velocity and rad/s for angular velocity). In

real flights, we are able to update the Vicon system and the IMU at the highest sampling

rate (100 Hz). The other parameters are kept as default in the UKF design (§5.2): α = 1e−3,

β = 2.

In the Vicon-IMU integration, the UKF essentially functions as a low-pass filter that

incorporates the IMU measurements based on the dynamics model we developed in §2.2.

Focusing on the angular velocity results, a sample flight cropped from a hovering task

is shown in Fig. 5.4, where we compare the raw angular velocities with UKF processed

velocities. Clearly, the velocity observation results are much smoother and a quantitative

analysis indicates the covariance to be approximately 100 times smaller than that of the
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raw measurements. On the other hand, since the Vicon system already has a very small
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Figure 5.4 Comparison of angular velocities, filtered and raw data from the IMU

measurement uncertainty, the pose does not show substantial differences compared with the

input (Vicon) data.

With the successful implementation of the state estimator, the linear quadratic Gaussian

control is the natural combination of the estimator and the controllers designed in §3.2. For

a preliminary test, the parameters and trajectory employed in §4.3 are used to control the

airship to follow a rectangle using CLQR control. The position error, attitude error and the

control inputs (§3.5.2) from the second cycle along the rectangular path are recorded as

shown in Fig. 5.5. No substantial improvements on the tracking precision are observed after

adding the UKF to the feedback loop. However, the energy consumption is dramatically

reduced since the velocity feedback signals are much smoother than those without the

Kalman filtering. Therefore, the combination of the designed controller and estimator is

recommended in the future flight.
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Chapter 6

Conclusion

6.1 Conclusion on Airship Control

Three full-state feedback controllers have been proposed to fulfill the requirements for flying

an indoor holonomic airship in real-time, namely, hovering control, set-point control and

continuous reference tracking. In the hovering control design, the airship is assumed to be

a quasi-stationary plant. An infinite horizon linear quadratic regulator (LQR) operating in

a gain scheduling manner is employed. The proposed controller doubles the pose control

accuracy of the PD controller in the presence of white noise disturbances, while exhibiting

faster step response. Also the airship exhibits more robust behavior than with the PD

controller in the experiments. However, the LQR controller is limited by the Jacobian

linearization which ignores the nonlinear dynamics and requires the plant to operate closely to

the equilibrium points. As well, only local optimality can be guaranteed with LQR for multi-

axes set-point control. A controller based on the state-dependent Riccati equation (SDRE)

and ad hoc feedforward compensation is synthesized to tackle this issue. Both simulation

and experimental results show that this method fully captures the system nonlinearity and

combines the advantages of the quadratic regulator and the PD controller in terms of deviation

suppression. Given the airship motion is slow, we found that the LQR controller with the

91
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feedforward compensation can produce a good performance for our indoor application.

Lastly, a continuous tracker (CLQR) is dedicated to rejecting all disturbances along an

arbitrary reference trajectory. With little computation cost, the proposed controller achieves

an average orientation tracking error 50 times smaller and an average translational tracking

error 20 times smaller than those obtained with the PD controller with the designed trajectory

in simulation. In experiment, although the same maneuver could not be reproduced due to

the limitation of the thrusters, a simplified trajectory test clearly demonstrates the advantages

of the CLQR controller.

6.2 Conclusion on State Estimation

An optimal state estimator designed with the unscented Kalman filter is implemented in this

work. The purpose is to track the airship state for the feedback loop and other navigation

tasks by fusing information from the on-board (an inertia measurement unit and a laser range

finder) and/or off-board (an infra-red based motion capture system) sensors with different

update rates. Therefore, a multi-rate sensor fusion scheme has been employed. The UKF

algorithm is also modified to work with the dynamic model of the system and to support

attitude estimation using quaternion. Experiments validate the algorithm proposed for airship

state estimation and show great improvement (covariance 100 times smaller after filtering)

of the angular velocity reading. Experiments of combing the optimal controller and the state

estimator also show considerable improvements on energy efficiency.

6.3 Suggestions for Future Work

6.3.1 Improvements to Hardware

In regards to the status quo of our airship, as addressed before, perfect balancing and

neutrally buoyancy are not achievable in practice. In the controller validation experiments,



6.3. Suggestions for Future Work 93

the airship’s balance has to be adjusted every 5–10 minutes due to the helium leakage, as

otherwise the controller has to expand most of the actuator authority to fight the steady-state

errors and it is difficult to make a consistent comparison between the different controllers.

On the other hand, the dynamic response of our current propellers is not sufficiently fast.

The motor calibration shown in Fig. 1.3 is based on steady state outputs of the propellers and

the thrust readings in the calibration are very noisy even in a steady state. In fact, the true

thrusts generated by the propellers in a real flight remains unknown. To sum up, stronger

and faster propellers are highly recommended for the next upgrade of the airship. Ideally,

they should come with build-in velocity feedback so that the calibration could be done at the

rotor speed-thrust level and the actuating loop is closed by the speed controller. Thus, we

could measure the thrusts applied to the airship from the rotor speed instead of predicting

them from the control command.

To that end, the RC transmitter and the on-board controller also need an upgrade to

support the new thrusters. Besides, we have encountered many difficulties during the

experiments: the driving circuit tends to malfunction when large thrusts are commanded

on multiple propellers. This may be due to the voltage fluctuation generated by the PWM

control. Thus, a stand-alone power supply may be necessary for the on-board processor as

well.

Meanwhile, the bluetooth and RS-232 communications have become another bottleneck

in the system. Even at the maximum transmission rate, the current communication interface

is still unable to carry the IMU and LIDAR signals at full speed, and package losses occur at

times. In addition, there is no RS-232 port left on the control station for future expansion of

the system, not to mention the delay caused in the two-way communication and its impact on

the controller. A desirable upgrade would be, moving the controller and estimator on-board,

considering their reasonable computation requirements. As another fundamental step toward

our ultimate goal – the airship as an autonomous indoor UAV, this change may not be

feasible in the near future due to the payload limitations of our current system. However, it
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is advisable that at minimum all communications are implemented under 802.11 standard,

and hence all sensors including the Vicon system are unified under one protocol (such as

TCP/IP) with a much wider bandwidth.

6.3.2 Improvements to Software

In terms of airship control, there is still room for further improvement. First of all, an integral

term can be added to the optimal controller by using the augmented state proposed in [4], so

that the steady-state error caused by imbalance can be effectively eliminated. However, a

better long-term solution of the imbalance issue is to use the adaptive control to estimate

the varying gravity center and the inertia tensor, and hence the imbalance can be accounted

for by the controller. However, this can not be considered seriously until the upgrade of the

actuating system and a successful acquisition of the actual thrust applied to the airship are

implemented.

A promising improvement on the state estimation is to integrate a light-weight camera.

Our preliminary attempt with optical flow algorithms with a wireless camera did not yield

good results [63]. However, with the successful combination of the IMU and LIDAR, it

is worth investigating the benefits of combining the LIDAR and a camera. Our current

LIDAR-IMU integration is limited because the LIDAR has to work with landmarks and the

operating range of the airship is confined. As our goal is to achieve a fully autonomous UAV

capable of operating in an unknown environment, the visual information is especially useful.
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In Eq. (A.4), we assume the inertia matrix of the airship to be:

I =
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2Iyz − 2ωxIxyIxz
2 + ωzIxyIxzIyy − IzzωzIxyIxz − ωyIxz

2Iyy)

/(IzzIxy
2 − 2IxyIxzIyz + IyyIxz

2 + IxxIyz
2 − IxxIyyIzz)
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aω91 = (−2ωyIxy
2Iyz − ωzIxy

2Izz + 2ωyIxyIxzIyy + ωxIxyIyyIyz + ωxIxyIyzIzz

−IxxωxIxyIyz + ωzIxz
2Iyy − ωxIxzIyy

2 + ωxIxzIyyIzz + IxxωxIxzIyy − 2ωxIxzIyz
2

−ωzIyy
2Izz + ωzIyyIyz

2 + 2ωyIyyIyzIzz + ωzIyyIzz
2 − 2ωyIyz

3 − ωzIyz
2Izz)

/(IzzIxy
2 − 2IxyIxzIyz + IyyIxz

2 + IxxIyz
2 − IxxIyyIzz)

aω92 = (ωxIxx
2Iyz − ωxIxxIxyIxz + 2ωyIxxIxyIyz + ωzIxxIxyIzz +

ωzIxxIxzIyz − ωxIxxIyzIzz − IyyωxIxxIyz − 2ωyIxy
2Ixz − 2ωzIxyIxz

2 − ωxIxyIxzIzz

+IyyωxIxyIxz − 2ωyIxyIyzIzz − ωzIxyIzz
2 + IyyωzIxyIzz + 2ωxIxz

2Iyz + 2ωyIxzIyz
2

+ωzIxzIyzIzz − IyyωzIxzIyz)/(IzzIxy
2 − 2IxyIxzIyz + IyyIxz

2 + IxxIyz
2 − IxxIyyIzz)

aω93 = (ωxIxx
2Iyy − ωxIxxIxy

2 + 2ωyIxxIxyIyy + ωzIxxIxyIyz + ωzIxxIxzIyy

−ωxIxxIyy
2 − ωxIxxIyz

2 − 2ωyIxy
3 − 2ωzIxy

2Ixz + ωxIxy
2Iyy + ωzIxyIyyIyz

−2ωyIxyIyz
2 − IzzωzIxyIyz + ωxIxz

2Iyy − ωzIxzIyy
2 + 2ωyIxzIyyIyz + IzzωzIxzIyy)

/(IzzIxy
2 − 2IxyIxzIyz + IyyIxz

2 + IxxIyz
2 − IxxIyyIzz)

aω101 = −(ωyIxy
2Izz + 2ωzIxyIxzIzz + ωxIxyIyyIzz − 2ωxIxyIyz

2 − ωxIxyIzz
2

+IxxωxIxyIzz − ωyIxz
2Iyy − 2ωzIxz

2Iyz + ωxIxzIyyIyz + ωxIxzIyzIzz − IxxωxIxzIyz

+ωyIyy
2Izz − ωyIyyIyz

2 + 2ωzIyyIyzIzz − ωyIyyIzz
2 − 2ωzIyz

3 + ωyIyz
2Izz)

/(IzzIxy
2 − 2IxyIxzIyz + IyyIxz

2 + IxxIyz
2 − IxxIyyIzz)
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aω102 = (ωxIxx
2Izz + ωyIxxIxyIzz − ωxIxxIxz

2 + ωyIxxIxzIyz + 2ωzIxxIxzIzz

−ωxIxxIyz
2 − ωxIxxIzz

2 + ωxIxy
2Izz − 2ωyIxyIxz

2 + 2ωzIxyIyzIzz − ωyIxyIzz
2

+IyyωyIxyIzz − 2ωzIxz
3 + ωxIxz

2Izz − 2ωzIxzIyz
2 + ωyIxzIyzIzz − IyyωyIxzIyz)

/(IzzIxy
2 − 2IxyIxzIyz + IyyIxz

2 + IxxIyz
2 − IxxIyyIzz)

aω103 = −(ωxIxx
2Iyz − ωxIxxIxyIxz + ωyIxxIxyIyz + ωyIxxIxzIyy + 2ωzIxxIxzIyz

−ωxIxxIyyIyz − IzzωxIxxIyz − 2ωyIxy
2Ixz + 2ωxIxy

2Iyz − 2ωzIxyIxz
2 − ωxIxyIxzIyy

+IzzωxIxyIxz + ωyIxyIyyIyz + 2ωzIxyIyz
2 − IzzωyIxyIyz − ωyIxzIyy

2 − 2ωzIxzIyyIyz

+IzzωyIxzIyy)/(IzzIxy
2 − 2IxyIxzIyz + IyyIxz

2 + IxxIyz
2 − IxxIyyIzz)

AT
ω = 013×3 (A.6)

B0 =



07×6

bt1

bt2

bt3

B f


(A.7)

where,

bT
t1 =



L(IxzIyz−IxyIzz)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

−
L(Iyz

2−IyyIzz)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

L(IxyIyz−IxzIyy)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

L(Iyz
2−IyyIzz)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz

−
L(IxyIyz−IxzIyy)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz

−
L(IxzIyz−IxyIzz)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz



(A.8)
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bT
t2 =



−
L(Ixz

2−IxxIzz)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

L(IxzIyz−IxyIzz)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

L(IxyIxz−IxxIyz)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

−
L(IxzIyz−IxyIzz)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz

−
L(IxyIxz−IxxIyz)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz

L(Ixz
2−IxxIzz)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz



(A.9)

bT
t3 =



L(IxyIxz−IxxIyz)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

L(IxyIyz−IxzIyy)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

−
L(Ixy

2−IxxIyy)
IzzIxy

2−2IxyIxzIyz+IyyIxz
2+IxxIyz

2−IxxIyyIzz

−
L(IxyIyz−IxzIyy)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz

L(Ixy
2−IxxIyy)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz

−
L(IxyIxz−IxxIyz)

IzzIxy
2−2IxyIxzIyz+IyyIxz

2+IxxIyz
2−IxxIyyIzz



(A.10)

B f =


0 0 1

ma+madd
0 1

ma+madd
0

0 1
ma+madd

0 1
ma+madd

0 0

1
ma+madd

0 0 0 0 1
ma+madd

 (A.11)
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Appendix B

Extended Linearization of Airship

Model

A(x) =

0 · · · 0 −
q1
2 −

q2
2 −

q3
2 0 0 0

0 · · · 0 q0
2 −

q3
2

q2
2 0 0 0

0 · · · 0 q3
2

q0
2 −

q1
2 0 0 0

0 · · · 0 −
q2
2

q1
2

q0
2 0 0 0

0 · · · 0 0 0 0 −2q2
2 − 2q2

3 + 1 2q1q2 − 2q0q3 2q0q2 + 2q1q3

0 · · · 0 0 0 0 2q0q3 + 2q1q2 −2q2
1 − 2q2

3 + 1 2q2q3 − 2q0q1

0 · · · 0 0 0 0 2q1q3 − 2q0q2 2q0q1 + 2q2q3 −2q2
1 − 2q2

2 + 1

0 · · · 0 ωxx
I0

ωxy

I0

ωxz
I0

0 0 0

0 · · · 0 ωyx

I0

ωyy

I0

ωyz

I0
0 0 0

0 · · · 0 ωzx
I0

ωzy

I0

ωzz
I0

0 0 0

0 · · · 0 0 0 0 0 0 0

0 · · · 0 0 0 0 0 0 0

0 · · · 0 0 0 0 0 0 0



(B.1)
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I0 = IzzI2
xy − 2IxyIxzIyz + IyyI2

xz + IxxI2
yz − IxxIyyIzz (B.2)

ωxx = (I2
xyIyz − I2

xzIyz − IxyIxzIyy + IxyIxzIzz)ωx + α(−IxzI2
yy − 2IxzI2

yz

− IxxIxyIyz + IxxIxzIyy + IxyIyyIyz + IxyIyzIzz + IxzIyyIzz)ωy + β(2IxyI2
yz

+ IxyI2
zz + IxxIxzIyz − IxxIxyIzz − IxzIyyIyz − IxyIyyIzz − IxzIyzIzz)ωz (B.3)

ωxy = (1 − α)(−IxzI2
yy − 2IxzI2

yz − IxxIxyIyz + IxxIxzIyy + IxyIyyIyz + IxyIyzIzz

+ IxzIyyIzz)ωx + (IyyIyzIzz + IxyIxzIyy − I3
yz − I2

xyIyz)ωy + γ(I2
xzIyy + IyyI2

yz

− I2
xyIzz + IyyI2

zz − I2
yyIzz − I2

yzIzz)ωz (B.4)

ωxz = (1 − β)(2IxyI2
yz + IxyI2

zz + IxxIxzIyz − IxxIxyIzz − IxzIyyIyz − IxyIyyIzz

− IxzIyzIzz)ωx + (1 − γ)(I2
xzIyy + IyyI2

yz − I2
xyIzz + IyyI2

zz − I2
yyIzz

− I2
yzIzz)ωy + (I3

yz + I2
xzIyz − IxyIxzIzz − IyyIyzIzz)ωz (B.5)

ωyx = ωx(Ixy
2Ixz − IxxIyzIxy + Ixz

3 − IxxIzzIxz) − αωy(IxxIxyIxz − 2Ixz
2Iyz

− Ixx
2Iyz − IxyIxzIyy + IxxIyyIyz + IxyIxzIzz + IxxIyzIzz) − βωz(−Ixx

2Izz

+ IxxIxz
2 + IxxIyz

2 + IxxIzz
2 − Ixy

2Izz − Ixz
2Izz) (B.6)

ωyy = γωz(IxxIxzIyz − IxyIzz
2 − 2IxyIxz

2 + IxxIxyIzz − IxzIyyIyz + IxyIyyIzz

+ IxzIyzIzz) − ωy(Ixy
2Ixz − IxzIyz

2 − IxxIxyIyz + IxyIyzIzz) + ωx(α − 1)(IxxIxyIxz

− 2Ixz
2Iyz − Ixx

2Iyz − IxyIxzIyy + IxxIyyIyz + IxyIxzIzz + IxxIyzIzz) (B.7)
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ωyz = ωx(β − 1)(−Ixx
2Izz + IxxIxz

2 + IxxIyz
2 + IxxIzz

2 − Ixy
2Izz − Ixz

2Izz)

− ωy(γ − 1)(IxxIxzIyz − IxyIzz
2 − 2IxyIxz

2 + IxxIxyIzz − IxzIyyIyz + IxyIyyIzz

+ IxzIyzIzz) − ωz(Ixz
3 + IxzIyz

2 − IxxIzzIxz − IxyIzzIyz) (B.8)

ωzx = βωz(IxxIxyIxz − 2Ixy
2Iyz − Ixx

2Iyz + IxyIxzIyy + IxxIyyIyz − IxyIxzIzz

+ IxxIyzIzz) − ωx(Ixy
3 + IxyIxz

2 − IxxIyyIxy − IxxIyzIxz) + αωy(−Ixx
2Iyy

+ IxxIxy
2 + IxxIyy

2 + IxxIyz
2 − Ixy

2Iyy − Ixz
2Iyy) (B.9)

ωzy = ωy(Ixy
3 + IxyIyz

2 − IxxIyyIxy − IxzIyyIyz) − γωz(IxxIxyIyz − IxzIyy
2

− 2Ixy
2Ixz + IxxIxzIyy + IxyIyyIyz − IxyIyzIzz + IxzIyyIzz) − ωx(α − 1)(−Ixx

2Iyy

+ IxxIxy
2 + IxxIyy

2 + IxxIyz
2 − Ixy

2Iyy − Ixz
2Iyy) (B.10)

ωzz = ωz(IxyIxz
2 − IxyIyz

2 − IxxIxzIyz + IxzIyyIyz) − ωx(β − 1)(IxxIxyIxz

− 2Ixy
2Iyz − Ixx

2Iyz + IxyIxzIyy + IxxIyyIyz − IxyIxzIzz + IxxIyzIzz) + ωy(γ − 1)

(IxxIxyIyz − IxzIyy
2 − 2Ixy

2Ixz + IxxIxzIyy + IxyIyyIyz − IxyIyzIzz + IxzIyyIzz) (B.11)
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Conjugate and product of quaternions

Assume two quaternions as

q1 =

 q1

qv,1

 q2 =

 q2

qv,2


The conjugate of a quaternion is computed by

q′1 =

 q1

−qv,1

 (C.1)

The quaternion product is then presented by

q̃ = q′1 ∗ q2 =

 q1q2 + qv,1 · qv,2

q1qv,2 − q2qv,1 − qv,1 × qv,2

 (C.2)
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Appendix D

Model of Airship’s Power Consumption

For the sake of controller evaluation, the relationship between the power consumed by the

airship and the control inputs sent by the control station needs to be studied. The thrusters

on-board are brushed DC motors driven by the PWM signal, as shown in Fig. D.1. In

the diagram, Vs is the power source; RC is the resistance of the motor driving cable (the

cable resistance is not trivial considering the average length of 1.5 m); RM is the armature

resistance and LM is the armature inductance. As the DC motor rotates, it produces CEMF

(counter/back electromotive force) as indicated in the circuit diagram.

VS

RM LM

PWM signal

CEMF

RC

Figure D.1 Brushed DC motor on-board with PWM control

According to the principle of PWM control, the average voltage supplied by the DC
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source VS is given by:

V =
1
T

(∫ D

0
VONdt +

∫ T

D
VOFFdt

)
=

D
T

VS (D.1)

where T is the modulating period; VON and VOFF are the voltage outputs when the MOSFET

is on and off; D is the command sent by the control station. Ideally, the driving voltage is

proportional to the controller command. Ignoring the energy losses of the MOSFET, the

power consumed by each propeller is:

P = VI (D.2)

where I is the armature current. For a DC motor,

V − VE = LM
dI
dt

+ (RM + RC)I (D.3)

where VE is the CEMF voltage. In steady state, we have:

I =
V − VE

RM + RC
=

T
KT

(D.4)

where KT is the torque constant of the motor and T is the torque applied to the motor shaft.

The value of T depends on many factors such as the rotor speed, the blade design, speed

of the incoming air flow, etc. We assume that all thrusters on the airship are identical in

construction and the incoming air flow is negligible compared with the accelerated air flow,

since the airship’s motion is very slow. The relationship between rotor speed Ω and motor

torque T can be linearized in a wide operating range by using a constant Kω as [1].

T = KωΩ (D.5)



Model of Airship’s Power Consumption 117

Therefore,

KωΩ = KT I = KT

(
V − VE

RM + RC

)
(D.6)

Recalling the principle of DC actuator, we obtain:

VE = KEΩ (D.7)

where KE is the speed constant of the DC motor. Combining Eq. (D.6) and Eq. (D.7), we

have:

Ω =
KT

Kω(RM + RC) + KT KE
V (D.8)

Recalling Eq. (D.2), for each actuator, we have:

P = V
V − VE

RM + RC

= V
V − KEΩ

RM + RC

=
Kω

Kω(RM + RC) + KT KE
V2

(D.9)

Therefore, the total power consumed by the actuating system is proportional to the square

of the average voltage supplied, and hence, according to Eq. (D.1), it is proportional to the

square of control inputs.
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Appendix E

Measurement Noise Covariance Matrix

for Vicon/IMU Integration

The following measurement noise covariance R is used for Vicon/IMU integration:
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Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
2.17E-06 -3.14E-07 -1.33E-07 -3.82E-09 -5.86E-07 1.44E-07 -1.81E-06
-3.14E-07 1.64E-06 -1.96E-07 2.18E-07 -1.93E-07 8.96E-08 7.36E-07
-1.33E-07 -1.96E-07 2.28E-06 -4.20E-07 1.22E-06 -8.89E-08 -2.87E-07
-3.82E-09 2.18E-07 -4.20E-07 1.87E-06 -5.18E-07 -4.10E-07 5.49E-07
-5.86E-07 -1.93E-07 1.22E-06 -5.18E-07 4.12E-06 5.64E-07 -5.82E-08
1.44E-07 8.96E-08 -8.89E-08 -4.10E-07 5.64E-07 4.24E-06 -5.08E-07
-1.81E-06 7.36E-07 -2.87E-07 5.49E-07 -5.82E-08 -5.08E-07 4.62E-06
4.29E-07 6.00E-07 -3.17E-07 -1.00E-07 -7.23E-07 3.78E-07 -1.15E-06
8.92E-07 -6.27E-08 -1.21E-06 3.51E-07 -2.24E-07 2.21E-07 -1.09E-07
8.97E-07 -2.48E-07 -1.03E-06 2.12E-07 -8.79E-07 9.90E-07 -3.94E-07
-2.71E-06 -1.17E-06 5.82E-06 -3.26E-06 1.65E-05 1.07E-06 -1.12E-06
4.96E-07 -4.89E-07 -7.79E-07 -1.69E-06 1.28E-06 1.22E-05 -2.41E-06
-7.18E-06 4.91E-06 -1.54E-06 2.69E-06 1.85E-06 -9.32E-07 1.86E-05

Column 8 Column 9 Column 10 Column 11 Column 12 Column 13
4.29E-07 8.92E-07 8.97E-07 -2.71E-06 4.96E-07 -7.18E-06
6.00E-07 -6.27E-08 -2.48E-07 -1.17E-06 -4.89E-07 4.91E-06
-3.17E-07 -1.21E-06 -1.03E-06 5.82E-06 -7.79E-07 -1.54E-06
-1.00E-07 3.51E-07 2.12E-07 -3.26E-06 -1.69E-06 2.69E-06
-7.23E-07 -2.24E-07 -8.79E-07 1.65E-05 1.28E-06 1.85E-06
3.78E-07 2.21E-07 9.90E-07 1.07E-06 1.22E-05 -9.32E-07
-1.15E-06 -1.09E-07 -3.94E-07 -1.12E-06 -2.41E-06 1.86E-05
1.25E-03 5.80E-04 7.89E-04 3.69E-06 -6.84E-07 2.63E-06
5.80E-04 2.04E-03 1.00E-03 -7.12E-06 -1.75E-06 8.16E-06
7.89E-04 1.00E-03 2.03E-03 -1.44E-05 -1.53E-05 4.63E-06
3.69E-06 -7.12E-06 -1.44E-05 8.47E-04 8.52E-05 4.59E-05
-6.84E-07 -1.75E-06 -1.53E-05 8.52E-05 5.91E-04 -1.25E-04
2.63E-06 8.16E-06 4.63E-06 4.59E-05 -1.25E-04 9.94E-04
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