
Uploaded to eScholarship@McGill.ca on 13 April 2016. All items in eScholarship@McGill.ca are 

protected by copyright with all rights reserved unless otherwise indicated. 

 

 
Contributors:  

Rashid Hussain Khokhara, Benjamin C. M. Fungb, Farkhund Iqbalc, 
Dima Alhadidic, Jamal Bentahara 

 
aCIISE, Concordia University, Montreal, QC, Canada 
bSchool of Information Studies, McGill University, Montreal, QC, 

Canada 
cCollege of Technological Innovation, Zayed University, Abu Dhabi, 

United Arab Emirates 

 

Title:  Privacy-Preserving Data Mashup Model for Trading 

Person-Specific Information  

 

Published in: Electronic Commerce Research and Applications 

 

Citation:  Privacy-preserving data mashup model for trading person-

specific information, Electronic Commerce Research and 

Applications, Volume 17, May–June 2016, Pages 19–37, 

Doi:10.1016/j.elerap.2016.02.004 

 

Rights: Author's post-print must be released with a Creative 

Commons Attribution Non-Commercial No Derivatives License. 

 

Doi: 10.1016/j.elerap.2016.02.004 

http://www.sciencedirect.com/science/article/pii/S1567422316300060  



Privacy-Preserving Data Mashup Model for Trading

Person-Specific Information

Rashid Hussain Khokhara, Benjamin C. M. Fungb, Farkhund Iqbalc, Dima
Alhadidic, Jamal Bentahara

aCIISE, Concordia University, Montreal, QC, Canada
bSchool of Information Studies, McGill University, Montreal, QC, Canada

cCollege of Technological Innovation, Zayed University, Abu Dhabi, United Arab
Emirates

Abstract

Business enterprises adopt cloud integration services to improve collaboration
with their trading partners and to deliver quality data mining services. Data-
as-a-Service (DaaS ) mashup allows multiple enterprises to integrate their
data upon the demand of consumers. Business enterprises face challenges
not only to protect private data over the cloud but also to legally adhere
to privacy compliance rules when trading person-specific data. They need
an effective privacy-preserving business model to deal with the challenges in
emerging markets. We propose a model that allows the collaboration of mul-
tiple enterprises for integrating their data and derives the contribution of each
data provider by valuating the incorporated cost factors. This model serves
as a guide for business decision-making, such as estimating the potential risk
and finding the optimal value for publishing mashup data. Experiments on
real-life data demonstrate that our approach can identify the optimal value
in data mashup for different privacy models, including K-anonymity, LKC-
privacy, and ε-differential privacy, with various anonymization algorithms
and privacy parameters.
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1. Introduction

Business enterprises have widely adopted web-based mashup technologies
for collaboration with their trading partners. A web-based mashup involves
the integration of information and services from multiple sources into a single
web application. For example, real estate companies mashup their data and
other third-party data with Google Maps for comprehensive market analysis.
Enterprise Mashup Markup Language (EMML) is a standard proposed by the
Open Mashup Alliance to improve collaboration among business enterprises
and to reduce the risk and cost of mashup implementation [1]. Several com-
panies including IBM, StrikeIron, Kapow Technologies, and others have been
actively involved in leveraging various web-based mashup technologies such
as Quick and Easily Done Wiki (QEDWiki), IBM Mashup Center, and Data-
as-a-Service (DaaS ). Business enterprises need to focus on a data-oriented
perspective along with the initiatives of Service-Oriented Architecture (SOA).

DaaS is a cloud computing paradigm that provides data on demand to
consumers over the Internet [2]. It is becoming popular in commercial se-
tups because it provides flexible and cost-effective collaboration among busi-
ness enterprises. In the e-market industry, enterprises conduct online market
research to collect feedback about their products and services and to iden-
tify the demographic characteristics of customers by various means such as
surveys, social networks, online purchases, posts, blogs, Internet browsing
preferences, phone calls, or apps. The primary purpose in collecting per-
sonal information is to provide better services, which in turn generate higher
revenue.

Figure 1 presents an overview of a privacy-preserving data mashup e-
market for trading person-specific information. The process consists of five
steps. First, data providers register their available data on the registry hosted
by the mashup coordinator, who can be a cloud service provider or one of
the data providers. Second, data consumers (or data recipients) submit their
data requests to the mashup coordinator. A “data request” can be a simple
count query or a complicated data mining request. To provide a concrete
scenario in the rest of the paper, we assume the data request is a data mining
request for classification analysis. Third, a mashup coordinator dynamically
determines the group of data providers, since a single data provider may
not be able to fulfill the data requests from a data consumer, whose data
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Figure 1: Privacy-preserving data mashup architecture for trading person-
specific information

can collectively fulfill the demand of a data consumer by connecting with
them. Fourth, the data providers quantify their costs and benefits using
joint privacy requirements and integrate their data over the cloud. Finally,
the anonymous mashup data is released to the data consumers. The data
consumers have the option to perform the data mining operations on the
cloud or take the data and perform the data mining operations locally on
their own machines.

In the proposed architecture, business enterprises face four major chal-
lenges for trading person-specific information: First, extensive research has
shown that simply removing explicit identifying information such as name,
social security number, birth date, telephone number, and account number
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is insufficient for privacy protection. Many organizations believe that enforc-
ing regulatory compliance, such as the Gramm-Leach-Bliley Act (GLBA),
which protects the privacy and security of individually identifiable financial
information, or simply employing common de-identification methods, such as
Health Insurance Portability and Accountability Act (HIPAA) Safe Harbor
method, which involves removing 18 types of identifiers from health data, is
sufficient for privacy protection. Indeed, an individual can be re-identified
by matching the quasi-identifiers QID with an external data source [3]. Sec-
ond, the data providers collaborate in order to fulfil the demands of a data
consumer and to generate more profit by offering better classification utility.
In addition, they would avoid sharing information other than the final inte-
grated data because the collaborating data providers could be competitors.
Third, a cloud service provider may not be a trusted party. The cloud ser-
vice provider can be a third-party who offers data integration services over
the cloud or one of the data providers. Fourth, the data providers want to
ensure that the mashup data can facilitate the queries of data consumers.
So, there is a trade-off between data utility and privacy protection in terms
of monetary reward. In this paper we propose a model that examines the
intangible benefits and potential risks of sharing person-specific data for clas-
sification analysis. Our model allows the data providers to quantify the costs
and benefits and to generate the monetary value from trading person-specific
information.

Our contributions are summarized as follows: The first three challenges,
discussed in the previous paragraph, have already been widely studied in the
current literature [2, 3, 4, 5, 6, 7]. Here we focus on the fourth challenge
that addresses both scientific and business needs for trading person-specific
information in the e-market. We develop a business model that identifies the
consumers’ (e.g., data recipients) requirements and performs the valuation
on important parameters associated with revenue and costs for a business.
Our business model is suitable for multiple data providers in making deci-
sions where they have the following goals: (a) to find the optimal value on
the trade-off between data privacy and data utility and (b) to derive the
contribution of each data provider in terms of monetary value. Finally, we
show that our proposed approach can effectively achieve both goals by per-
forming extensive experimental evaluations on real-life, person-specific data.
The proposed model captures only the relevant factors that are crucial for
cost-benefit analysis in our research problem. However, the model provides
flexibility for users to include additional factors based on the specific require-
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ments of other scenarios.
The rest of the paper is organized as follows: In Section 2, we review

the related work. In Section 3, we explain the challenges faced by business
enterprises, followed by the problem definition. In Section 4, we present pre-
liminaries to quantify the data privacy and information utility. In Section 5,
we present our model as a privacy-preserving data mashup solution for e-
markets. In Section 6, we discuss the limitations of our proposed model. In
Section 7, we evaluate our proposed model based on the incorporated factors
for multiple data providers by conducting extensive experiments on real-life
data. Finally, we provide the conclusion in Section 8.

2. Related work

We summarize the literature of the following related areas: monetizing
data privacy for business value generation, trade-off between privacy and
utility in data integration, statistical disclosure control methods, and policies
and regulations with the perspective of data protection.

2.1. Monetizing data privacy for business value generation

Many organizations are embracing innovations in digital economy to max-
imize their business value through data. Barbara et al. [8] conducted seven
case studies on companies that monetize data by selling information-based
products and/or services. They hypothesize that a company whose business
model draws upon six sources, such as data, data architecture, data science,
domain leadership, commitment to client action, and process mastery, can
bring a competitive advantage for information business value. Barbara et
al. [9] further identified an approach that they termed “Data Value Assess-
ment” to analyze the costs, benefits, and risks of selling information-based
products and services by business enterprises. Li et al. [10] propose a the-
oretical framework for private data pricing in an interactive setting. There
are three main actors in their proposed architecture: Data owners contribute
their personal data; a buyer submits an aggregate query and pays its price
to a market maker ; and a market maker, a trusted party to both, answers
buyer queries on behalf of data owners by adding an appropriate noise [11]
in response to the query. The market maker compensates the data own-
ers whenever they suffer from a privacy loss in response to a buyer’s query.
Riederer et al. [12] propose a mechanism called “transactional privacy” to
control the disclosure of personal information in a privacy-preserving system.
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This mechanism allows end users to release personally identifiable informa-
tion (PII) by giving them the choice to valuate their personal information.
Their system leverages prior work on auctions and particularly the expo-
nential mechanism [13] to guarantee truthfulness in the bidding process. In
this paper, we follow a distributed approach in a non-interactive setting for
data mashup of multiple data providers, which is different from our previous
work [14] in which the challenges were to quantify the costs and benefits
between privacy and utility from the perspective of a single data custodian.
In addition, the business model presented in this paper can derive the con-
tribution of each data provider in terms of monetary value by computing the
information gain on the data mashup.

2.2. Trade-off between privacy and utility in data integration

Arafati et al. [2] propose a cloud-based framework for a privacy-preserving
Data-as-a-Service (DaaS) mashup that enables data providers to integrate
their person-specific data on demand depending on a consumer’s request for
data analysis. In their framework, a data consumer can submit a request
with a set of attributes, bid price, and classification accuracy. They intro-
duce a greedy algorithm that can dynamically determine the group of DaaS
providers offering the lowest price per attribute. They employ a Privacy-
Preserving High-Dimensional Data Mashup algorithm [5] for secure data in-
tegration and to preserve the privacy of mashup data using the LKC-privacy
model [15]. Mohammed et al. [7] propose a differentially private data release
algorithm to securely integrate person-specific data from two parties so that
integrated data maintains the necessary information to support data utility.
They present a scenario for a distributed setup to integrate the vertically
partitioned data, where different attributes for the same set of individuals
are held by two parties. No additional information is leaked to any party as
a result of integrating data. In this paper, the data mashup model employs
the approach that was presented in [5] and [7] for vertically partitioned data
to satisfy LKC-privacy and ε-differential privacy requirements, respectively.
There are some other papers [16, 17] that address the problem of integrating
horizontally partitioning data in a distributed manner. This would yield dif-
ferent costs and benefits when quantifying the privacy and utility from the
integrated data using horizontal partitioning.
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2.3. Statistical disclosure control methods

Many non-perturbative and perturbative anonymization methods, such as
global and local recoding [18, 19], suppression and local suppression [18, 20],
sampling [21], micro-aggregation [22], noise addition [23], data swapping [24],
and post randomization [25] have been adopted in the past with the goal
of providing confidentiality and privacy in publishing person-specific data.
According to Gehrke [26], the statistical methods that are being used for
limiting information disclosure do not formally address how much sensitive
information an adversary would glean from the published data. Waal and
Willenborg [18] discuss global recoding and local suppression methods to pro-
tect person-specific data. In the case of a global recoding method, specific
attribute values are mapped to the same generalized value in all records; in
the case of local suppression, the specific value of an attribute in a record
changes to a ‘missing’ value, but the attribute values in other records re-
main unchanged [27]. Global recoding is the preferable method when there
are many unsafe combinations to eliminate in the person-specific data and
when one wants to obtain a uniform categorization of attributes [18]. Truta
et al. [28] use a microaggregation statistical disclosure control technique to
measure the trade-off in disclosure risk and information loss on synthetic
data based on the criteria specified by the data owner.

2.4. Policies and regulations for data protection

Currie and Seddon [29] discuss the cross-country approaches to data pri-
vacy, regulation, and rules. They did a survey in six countries to collect
the views of people on the benefits and risks for adopting cloud computing
in a healthcare setup. Generally, healthcare professionals are in favour of
adopting cloud computing, but stakeholders involved in the setup have to
provide a guarantee for the protection of personal data subject to the reg-
ulations enforced in their jurisdictions. They address an important issue of
how international governments harmonize an effective legal and regulatory
framework for trans-border data flows over the cloud environment. Recent
studies [29, 30] show that more than sixty countries in the world have adopted
privacy and data protection laws that regulate trans-border data flows. Hu
et al. [31] provide Law-as-a-Service (LaaS) as an emergent technology for
cloud service providers to ensure that legal policies are compliant with the
laws for users. They provide a conceptual layout of the law-aware semantic
policy infrastructure in which a semantic cloud of Trusted Legal Domains
(TLDs) are established over the Trusted Virtual Domains (TVDs). Each
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TLD has a super-peer that provides data integration services for its peers.
The super-peer specifies how compliant legal policies are unified and enforced
in a domain. Legal policies are composed of OWL-DL ontologies and strat-
ified Datalog rules with negation for a policy’s exceptions handling through
defeasible reasoning. Description Logic (DL)-based ontologies provide data
integration, while Logic Program (LP)-based rules provide data query and
protection services.

3. Challenges and problem definition

In this section, we explain the privacy challenges that are realized when
integrating data from heterogeneous sources, followed by the problem defini-
tion.

3.1. The challenges

The research problem is identified in [32], where the challenges are to
integrate marketing data from heterogeneous sources and to ensure the pri-
vacy of the customers. We generalize the problem as follows: Suppose two
data providers, DP1 and DP2, own raw data tables D1 and D2, respec-
tively. Each data provider owns a different set of attributes about the same
set of records identified by the common Record IDs, such that DP1 owns
D1(Rec.ID,Age, Job) andDP2 ownsD2(Rec.ID, Sex,Education). The data
providers want to integrate their data to improve the data utility for clas-
sification analysis in order to maximize their profit. The attributes in data
tables D1 and D2 are classified into four categories for classification analysis:
explicit identifier, quasi-identifier (QID), sensitive attribute, and class at-
tribute. An explicit identifier attribute explicitly identifies a person, such as
name, social security number (SSN), and account number. A quasi-identifier
attribute, such as date of birth, sex, and education, is a set of predictor
attributes whose values are used to predict class attribute. A sensitive at-
tribute, such as disease, salary, and marital status, contains an individual’s
sensitive information. A class attribute contains the class values for classifi-
cation analysis. In the following example we discuss the privacy threats that
can arise as a result of simply joining the raw data tables of data providers
DP1 and DP2.

Example 1. Consider the raw data tables of two data providers in Table 1.
Rec.ID, Sensitive, and Class are shared between data providers DP1 and
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Table 1: Raw data table of data providers

Data Provider DP1 Data Provider DP2 Sensitive Class
Rec.ID Age Job Sex Education Marital-status Loan approval

1 39 Painter F 12th Divorced N
2 43 Doctor M Doctorate Never-married Y
3 37 Cleaner F 12th Divorced Y
4 56 Cleaner M 10th Never-married N
5 64 Welder M 8th Married-civ-spouse Y
6 49 Doctor F Doctorate Married-civ-spouse Y
7 33 Lawyer F Masters Never-married Y
8 41 Lawyer F Doctorate Married-civ-spouse N
9 32 Painter F 12th Divorced N
10 52 Cleaner M Bachelors Divorced Y
11 39 Cleaner F 11th Divorced Y
12 61 Lawyer M Doctorate Married-civ-spouse Y
13 24 Technician M 11th Married-civ-spouse N
14 44 Technician F Bachelors Divorced N
15 34 Lawyer M Masters Never-married Y
16 27 Painter M 11th Divorced N
17 35 Cleaner F 10th Divorced Y
18 41 Cleaner M 11th Divorced Y
19 63 Welder M 8th Married-civ-spouse N

DP2. DP1 and DP2 own data tables D1(Age, Job) and D2(Sex,Education),
respectively. Each record corresponds to the personal information for an
individual person. The two data providers want to develop a data mashup
service to integrate their data in order to perform classification analysis on
the shared Class attribute Loan approval, which has two values, Y and N ,
indicating whether or not the loan is approved.

In a record linkage attack [4], an adversary attempts to identify the record
of a target victim in the released data table. Assume an adversary knows
that the target victim is a female cleaner, denoted by qid = 〈F,Cleaner〉.
The group of records matching qid is denoted by D[qid]. If the group size
|D[qid]| is small, the adversary may identify the victim’s record and his/her
sensitive value. The probability of a successful record linkage is 1/|D[qid]|.
In this example, D[qid] = {Rec#3, 11, 17}.

In an attribute linkage attack [4], an adversary may not be able to accu-
rately identify the record of a target victim but can infer a sensitive value
with high confidence if it occurs frequently in the released table. With
the prior knowledge qid about a target victim, an adversary can identify
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a group of records D[qid] and can infer that the victim has sensitive value

s with confidence P (s|qid) = |D[qid∧s]|
|D[qid]| , where D[qid ∧ s] denotes the set of

records matching both qid and s. P (s|qid) is the percentage of the records
in D[qid] containing s. For example, given qid = 〈M,Cleaner〉, in Ta-
ble 1, D[qid ∧ Divorced] = {Rec#10, 18}, D[qid] = {Rec#4, 10, 18}, and
P (Divorced|qid) = 2/3 = 66.67%.

K-anonymity [3] and `-diversity [33] have been proposed to protect against
the aforementioned record and attribute linkage attacks in the relational raw
data tables. K-anonymity prevents record linkage attacks by generalizing
the records into equivalence groups of K size with respect to some QID
attributes; however, it could suffer from an attribute linkage attack if the
sensitive values are not diversified in an equivalence group. The principle
of `-diversity overcomes this problem by requiring every QID group to con-
tain at least ` well-diversified values for the sensitive attribute. This model
presents a stronger notion of privacy to protect from homogeneity attacks and
background knowledge attacks. Mohammed et al. [15] propose a LKC-privacy
model in which they assume that the adversary’s background knowledge is
bounded by at most ‘L’ QID attributes. This model provides better data
utility in comparison to K-anonymity on high-dimensional data. Dwork et
al. [11] propose a differential privacy model that ensures the addition or re-
moval of a single database record does not significantly affect the outcome
of any computation over a database. It provides strong privacy guarantees
to an individual independent of an adversary’s background knowledge and
computational power.

The aforementioned privacy models are discussed from the perspective of
a single data custodian. Another challenge is related to the data mashup of
multiple data custodians when consumer data requests cannot be fulfilled by
a single data provider. The data mashup is a process over the cloud infras-
tructure that enables multiple data providers to integrate their data in order
to fulfil the demands of data consumers. The cloud service provider may be
one of the data providers or a third party, but the mashup scenario for the
integration of data from multiple data custodians should not reveal person-
specific information of the customers to unauthorized parties. The trust of
a customer in an exchange of services with one data provider by sharing
person-specific information does not necessarily extend trust to the other
data providers. So, there is a need to avoid disclosure of sensitive informa-
tion during the data mashup process and in the final release of mashup data.
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There are some known approaches that do not ensure privacy of an individual,
such as (1)mashup-then-generalize and (2)generalize-then-mashup. The first
approach integrates the raw data tables from two data providers and then
generalizes using single table anonymization methods [34, 35]. This approach
fails to preserve privacy because once the mashup coordinator or any other
third party holds the integrated raw data it will instantly discover all the pri-
vate information of both data providers. The second approach generalizes the
data providers’ tables individually using single-table anonymization methods,
then integrates the generalized tables. This approach seems to preserve pri-
vacy locally at an individual data provider’s end, but it does not guarantee
the privacy for a quasi-identifier that spans multiple data providers’ tables.

To address the above-mentioned privacy issues that arise in the data
mashup when data is owned by multiple providers, Fung et al. [5] pro-
pose an extended version of the LKC-privacy model to apply to a multi-
ple data providers scenario. The LKC-privacy model is suitable to apply
on high-dimensional data, as would normally be the case when integrating
data from multiple data providers. This overcomes the problem of high-
dimensionality when using K-anonymity. K-anonymity [3] is known to be a
special case of LKC-privacy with adversary knowledge L = |QID| and confi-
dence C = 100%, where |QID| is the number of quasi-identifying attributes
in the data table [15]. Mohammed et al. [7] have propose a differentially
private data release algorithm for multiple data providers in a distributed
setup. Our model employs the approaches presented in [5] and [7] for data
mashup of multiple data providers and sets the joint privacy requirements of
contributing data providers in order to ensure that no extra information is
leaked to any provider as a result of data integration.

3.2. Problem definition

Suppose data providers DP1, . . . , DPn own data tables D1, . . . , Dn, re-
spectively. They want to generate an integrated anonymous dataset D′ that
fulfils the demands of data consumers and generates more profit in terms
of monetary value for the data providers. Our proposed model enables the
collaboration between data providers to set their joint privacy requirement
for data mashup. It can also benefit data providers to quantify their costs
and benefits in trading person-specific information and in determining the
contribution of each data provider. Formally, the research problem is defined
as follows.
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Definition 3.1 (Problem Definition). Given multiple person-specific raw
data tables D1, . . . , Dn from data providers DP1, . . . , DPn and a set of re-
quested attributes Attrreq for classification analysis from a data consumer,
the research problem is to develop a business model that performs the valua-
tion on cost factors to find the optimal value from the anonymized integrated
data table D′ under the joint privacy requirements of the data providers and
to derive the contribution of each data provider DP1, . . . , DPn in terms of
monetary value.

4. Preliminaries

In this section, we first present some measures to quantify the data privacy
and information utility, followed by an overview of our employed privacy-
preserving data mashup algorithms.

4.1. Quantifying privacy

Consider a raw data table D(Rec.ID,A1, . . . , Am, Sens, Class) of two
data providers DP1 and DP2 as shown in Table 1. Both data providers want
to release an integrated anonymized dataset D′ to the data consumer for joint
classification analysis. Rec.ID is shared between the data providers’ tables
and is used to uniquely identify a record; it is used to join the data tables.
Each Ai is either a categorical or a numerical attribute. Sens, Class are
also shared between data providers DP1 and DP2 representing a sensitive
attribute and a class attribute, respectively. Each data provider owns a
different set of attributes on the same set of Record IDs, such that DP1 owns
D1 and DP2 owns D2. A record in D has the form 〈v1, v2, . . . , vm, s, cls〉,
where vi is a value in Ai, s is a sensitive value in Sens, and cls is a class
value in Class. In Section 3.1 we discussed privacy threats that arise by
simply joining the raw data tables of DP1 and DP2.
Privacy models: In this subsection, we present the formal definitions of
four widely adopted models from the perspective of a single data custodian,
namely K-anonymity, `-diversity, LKC-privacy, and ε-differential privacy.

Definition 4.1. (K-anonymity) [3]. Let D(A1, . . . , Am) be a data table
and QID be its quasi-identifier. D satisfies K-anonymity if, and only if,
each group of QID appears in at least K records in D .

Definition 4.2. ( Entropy `-diversity) [33]. A table is entropy `-diverse if
every QID group satisfies −

∑
s∈Sens P (qid, s)log(P (qid, s)) ≥ log(`), where
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Sens is a sensitive attribute and P (QID, s) is the percentage of records in a
QID group containing the sensitive value s.

Definition 4.3. (LKC-privacy) [15]. Let L be the maximum number of
QID attributes acquired by an adversary as prior knowledge about a target
victim and S ⊆ Sens be a set of sensitive values. A data table D satisfies
LKC-privacy if, and only if, for any qid with 0 < |qid| ≤ L,

1. |D[qid]| ≥ K, where K > 0 is an integer representing the anonymity
threshold, and

2. for any s ∈ S, P (s|qid) ≤ C, where 0 < C ≤ 1 is a real number
representing the confidence threshold.

Definition 4.4. ( ε-differential privacy) [11]. A sanitization mechanism Mrnd

provides ε-differential privacy, if for any two datasets D1 and D2 that differ
on at most one record (i.e., symmetric difference |D14D2| ≤ 1), and for any
possible sanitized datasets D̂,

Pr[Mrnd(D1) = D̂] ≤ eε × Pr[Mrnd(D2) = D̂],

where the probabilities are taken over the randomness of Mrnd.

4.2. Quantifying utility

The information utility is measured depending on the requirements for
data analysis. In this paper we present classification analysis as a utility
measure on the consumer’s specified service request and analysis task.
Score for classification analysis: We use information gain, denoted by
InfoGain(v), to measure the goodness of a specialization. Our selection
criterion, Score(v), is to keep the specialization v → child(v) that has the
maximum InfoGain(v):

Score(v) = InfoGain(v) (1)

Let Dx denote the set of records in the data table D generalized to the
value x. Let freq(Dx, cls) denote the number of records in Dx having the
class cls. Note that |Dv| =

∑
c |Dc|, where c ∈ child(v). The information

gain InfoGain(v) and entropy H(Dx) are defined as follows:

InfoGain(v) = H(Dv)−
∑
c

|Dc|
|Dv|

H(Dc) (2)
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H(Dx) = −
∑
cls

freq(Dx, cls)

|Dx|
× log2

freq(Dx, cls)

|Dx|
(3)

where H(Dx) measures the entropy of classes for the records in Dx [36],
and InfoGain(v) measures the reduction of the entropy by specializing v
into c ∈ child(v). A smaller entropy H(Dx) implies a higher purity of the
partition with respect to the class values.

We build a classifier on 2/3 of the records of the anonymized dataset as
the training set and measure the Classification Error (CE) on 1/3 of the
records of the anonymized records as the testing set to determine the impact
of anonymization on data utility for classification analysis. Classification
Accuracy (CA) is calculated by 1 − (CE). In this paper, we use the well-
known C4.5 classifier [36] for classification analysis.

4.3. Data mashup algorithms

In this section, we discuss state-of-the-art anonymization algorithms for
data mashup in a multiple data-providers scenario: Top-Down Specializa-
tion(TDS ) [5] and Diff erentially private anonymization based on Generalization
(DiffGen) [7].

4.3.1. Top-down specialization algorithm for multiple data providers

Algorithm 1 presents an overview of the Top-Down Specialization (TDS )
algorithm to integrate data in a scenario of multiple data providers [5].

Consider multiple data providers DP1,. . . ,DPn, who own private data ta-
bles D1,. . . ,Dn having a common record identifier Rec.ID. Initially, every
data provider generalizes all of its own attribute values to the topmost value
according to the taxonomy trees, as illustrated in Figure 2, and maintains a
mark Marki that contains the topmost value for each attribute Ai in QID. A
taxonomy tree is specified for each categorical attribute in QID. A leaf node
represents a precise value and a parent node represents a more general value.
For continuous attributes in QID, taxonomy trees can be grown at runtime,
where each node represents an interval, and each non-leaf node has two child
nodes representing some optimal binary split of the parent interval [36]. The
∪Marki on all attributes represents a generalized table D, denoted by Dg.
∪Marki also contains the set of candidates for specialization. A specializa-
tion v → child(v) is valid, written as IsV alid(v), if the generalized table Dg

still satisfies the privacy requirements stated in Definitions 4.1 and 4.3 after
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Algorithm 1 TDS multiple providers data mashup [5]

1: Initialize every record values in D to the topmost generalized values Dg.
2: Initialize ∪Marki to include only topmost values and update IsV alid(v)

for every v ∈ ∪Marki;
3: while ∃v ∈ ∪Marki s.t. IsV alid(v) do
4: Find the local winner candidate x ofDPi that has the highest Score(x);
5: Communicate Score(x) with all the other participating data providers

to determine the global winner w;
6: if the winner w is local then
7: Specialize w on Dg;
8: Instruct all the other data providers to specialize w;
9: else

10: Wait for the instruction from the winner data provider;
11: Specialize w on Dg using the instruction;
12: end if
13: Replace w with child(w) in the local copy of ∪Marki;
14: Update Score(x) and IsV alid(x) for every candidate x ∈ ∪Marki;
15: end while
16: return Dg and ∪Marki;

the specialization on v. At each iteration, the TDS multiple data providers
mashup (TDSmdpm) algorithm identifies the winner candidate by commu-
nicating the Score with all the participating data providers (Lines 4-5). The
valid candidate that has the highest Score, among all the candidates, per-
forms the winner specialization (Lines 7-11) and updates the Score and the
IsV alid status of the new and existing candidates in the mark (Line 14).
TDSmdpm terminates when there are no valid candidates in the mark.

Suppose that winner candidate w is local to data provider DP1 that
performs w → child(w) on its copy of ∪Marki and Dg. This means spe-
cializing each record r ∈ Dg containing w into r′1, . . . , r

′
z; the child values

are in child(w). Similarly, all the other data providers DP2, . . . , DPn update
their ∪Marki and Dg and partition D2[r] into D2[r′1], . . . , D2[r′z] . . .Dn[r]
into Dn[r′1], . . . , Dn[r′z]. Since all the other participating data providers do
not have w, DP1 needs to instruct DP2, . . . , DPn on how to partition their
records in terms of Rec.IDs.
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Figure 2: Taxonomy trees

4.3.2. DiffGen anonymization algorithm for multiple data providers

Algorithm 2 provides an extension of the two-party Diff erentially private
anonymization based on Generalization [7] to differentially integrate multiple
private data tables D1,. . . ,Dn sharing a common identifier Rec.ID, which is
owned by data providers DP1,. . . ,DPn for classification analysis. However,
the distributed exponential mechanism is limited to two parties. DiffGen [37]
is an extension of the TDS algorithm to achieve ε-differential privacy. The
two major extensions over the TDS algorithm include: (1) DiffGen selects
the Best specialization based on the exponential mechanism, and (2) DiffGen
perturbs the generalized contingency table by adding the Laplacian noise to
the qid counts. The Laplacian noise is calibrated based on the sensitivity of a
utility function, which quantifies the maximal impact of adding or deleting a
single record on a function. This algorithm provides secure data integration
of two parties under the definition of the semi-honest adversary model.

Initially, all values in the predictor attributes Apr (i.e., attributes used
to predict the class attribute) of each data provider are generalized to the
topmost value in their taxonomy trees (Line 1), as illustrated in Figure 2,
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Table 2: Anonymous integrated data (L = 2, K = 2, C = 0.5)

Data Provider DP1 Data Provider DP2 Sensitive Class
Rec.ID Age Job Sex Education Marital-status Loan approval

1 [39− 99] Blue-collar Any Secondary Divorced N
2 [39− 99] White-collar Any Post-secondary Never-married Y
3 [33− 39] Blue-collar Any Secondary Divorced Y
4 [39− 99] Blue-collar Any Secondary Never-married N
5 [39− 99] Blue-collar Any Elementary Married-civ-spouse Y
6 [39− 99] White-collar Any Post-secondary Married-civ-spouse Y
7 [33− 39] White-collar Any Post-secondary Never-married Y
8 [39− 99] White-collar Any Post-secondary Married-civ-spouse N
9 [1− 33] Blue-collar Any Secondary Divorced N
10 [39− 99] Blue-collar Any Post-secondary Divorced Y
11 [39− 99] Blue-collar Any Secondary Divorced Y
12 [39− 99] White-collar Any Post-secondary Married-civ-spouse Y
13 [1− 33] Blue-collar Any Secondary Married-civ-spouse N
14 [39− 99] Blue-collar Any Post-secondary Divorced N
15 [33− 39] White-collar Any Post-secondary Never-married Y
16 [1− 33] Blue-collar Any Secondary Divorced N
17 [33− 39] Blue-collar Any Secondary Divorced Y
18 [39− 99] Blue-collar Any Secondary Divorced Y
19 [39− 99] Blue-collar Any Elementary Married-civ-spouse N

and Marki contains the topmost value for each attribute Apri (Line 2). The
predictor attribute Apr can be either categorical or numerical, but the class
attribute is required to be categorical. The value of a categorical attribute
is denoted by vc, whereas the value of a numerical attribute is denoted by
vd. Each data provider keeps a copy of the ∪Marki and a generalized data
table Dg. The algorithm first determines the split points for all numerical
candidates vd ∈ ∪Marki by using the exponential mechanism (Line 4), then
computes the scores for all candidates v ∈ ∪Marki (Line 5). At each iteration
the algorithm uses the secure distributed exponential mechanism (DistExp)
as presented in [7] (readers may refer to the details of DistExp algorithm) to
select a winner candidate w ∈ ∪Marki for specialization (Line 7). Different
utility functions (e.g., information gain) can be used to calculate the score.
If the winner candidate w is local to DP1, DP1 specializes w on Dg by
splitting its records into child partitions, updates its local copy of ∪Marki,
and instructs all the other participating data providers to specialize and
update their local copy of ∪Marki (Line 8-11). DP1 further calculates the
scores of the new candidates as a result of the specialization (Line 13). If
the winner w is not one of DP1’s candidates, DP1 waits for instructions from
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Algorithm 2 DiffGen for multiple data providers [7]

1: Initialize Dg with one record containing topmost generalized values;
2: Initialize Marki to include the topmost value;
3: ε′ ← ε

2(|Apr
n |+2h)

;

4: Determine the split value for each vd ∈ ∪Marki with probability ∝
exp( ε′

2∆u
u(D, vd));

5: Compute the Score for ∀v ∈ ∪Marki;
6: for iter = 1 to h do
7: Determine the winner candidate w by using the DistExp Algorithm [7];
8: if w is local then
9: Specialize w on Dg;

10: Replace w with child(w) in the local copy of ∪Marki;
11: Instruct all the other participating data providers to specialize and

update ∪Marki;
12: Determine the split value for each new vd ∈ ∪Marki with probability

∝ exp( ε′

2∆u
u(D, vd));

13: Compute the Score for each new v ∈ ∪Marki;
14: else
15: Wait for the instruction from the winner data provider;
16: Specialize w and update ∪Marki using the instruction;
17: end if
18: end for
19: return each leaf node with count (C + Lap(2/ε))

the other winner data provider to specialize w and to update its local copy
of ∪Marki (Lines 15 and 16). This process is iterated until the specified
number of the specializations h is reached. Finally, the algorithm perturbs
the output by adding the noisy count at each leaf node (Line 19) using the
Laplace mechanism.

5. Proposed solution

In this section, we present a privacy-preserving solution for the business
enterprises that seek to adopt an appropriate approach to manage the chal-
lenges of the e-market for trading person-specific information. Section 3.1
discusses the challenges of integrating data from multiple data providers,
where each data provider owns a different set of attributes. We assume
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that every data provider intends to maximize the data utility, which in turn
maximizes their profits, without violating the mutually agreed-upon privacy
requirement. In this paper, we focus on analyzing the problem of prevent-
ing the disclosure of sensitive information during data mashup and on the
final release of mashup data. We employ anonymization algorithms, namely
Top-Down Specialization(TDS ) [5] and Diff erentially private anonymization
based on Generalization (DiffGen) [7], for relational data mashup from mul-
tiple data providers. Our model quantifies the costs and benefits of privacy-
preserving data publishing for the contributing data providers in terms of
monetary value.

In our model, customers, data providers, and data consumers are the
main stakeholders. For these stakeholders we identify the most relevant fac-
tors, as illustrated in Figure 3, to reflect the customers’ requirements on
data privacy, the data consumers’ requirements on data utility, and the data
providers’ requirements on properly balancing privacy and utility with the
goal of releasing the integrated data for profit. One of the limitations of
our model is the lack of a standard method to monetize the value of personal
data, especially when several parties are involved in collecting person-specific
information from the same population. Currently, many companies actively
collect personal information by providing monetary rewards to their cus-
tomers or respondents. There is no standard price for a specific piece of
personal information, but some market estimates are available in [38, 39]. It
is also pointed out in [38] that there is no commonly accepted methodology
for estimating the monetary value of personal data. Person-specific data con-
tains sensitive and non-sensitive information. It is the utmost responsibility
of data providers to take preventive measures when dealing with the sensitive
information of individuals. Indeed, sensitive data is qualitative by nature.
We set the sensitivity level of a dataset on the scale of 1 to 5 to indicate
its significance for privacy protection. Another limitation of our model is
the inconsistency of the expected cost of a lawsuit. The expected cost of
a lawsuit depends on the sensitivity of data and can be estimated from the
historical trends of privacy breach incidents. An individual may file a lawsuit
against a data provider when his or her sensitive information is disclosed to
a third party or made public without his or her consent. Although there is
no fixed cost related to privacy breach cases, regulatory agencies such as the
Federal Trade Commission (FTC ) and the Securities and Exchange Com-
mission (SEC ) have imposed monetary fines and penalties subject to the
nature of privacy breaches [40]. According to the revised HITECH penalty
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scheme [41], the penalty for a violation due to reasonable cause and not to
willful neglect is between $1,000 and $50,000 for each violation.

Section 5.1 presents the business model for privacy-preserving data mashup.
Section 5.2 discusses the key business factors for determining the value of in-
tegrated data and the factors that contribute to the potential damage cost.
Section 5.3 discusses the implicit and explicit risk measures for privacy at-
tacks.

5.1. Business model for privacy-preserving data mashup

Our proposed privacy-preserving data mashup business model allows the
collaboration of multiple data providers to mashup their data over the cloud
and to quantify the costs and benefits of releasing anonymized person-specific
information in terms of monetary value. Figure 3 provides an overview of
the proposed model; key factors are organized into three phases: before data
mashup, during data mashup, and after data mashup. The left pane of the
model depicts the decision factors held by each data provider, who registers
its available data before the data mashup. For example, Price per attribute,
Number of attributes, and Size of dataset are the decision factors that depend
on the market value and consumer demand. Data providers can set their own
decision factors. These decision factors contribute to finding the Price of a
raw dataset for every data provider. In the presented model, nodes represent
different types of factors, and arrows indicate the influences or dependencies
between different factors. For example, an arrow pointing from the Baseline
accuracy on raw dataset to the Total value of raw dataset in the model
indicates the influence of the Baseline accuracy on raw dataset on the Total
value of raw dataset.

The objective of maximizing the profit can be achieved by balancing the
two important factors: maximizing the Value of integrated data, and min-
imizing the Potential damage cost. The Value of integrated data depends
upon the Total value of raw dataset and Cost of anonymization in integrated
data. The Cost of anonymization in integrated data is computed on the data
integration of contributing data providers with respect to the classification
analysis (data mining) task. Each data provider can compare his or her ben-
efits and costs before and after participation in the mashup process. For
classification analysis, a data provider can estimate the classification analy-
sis on the anonymized data of his or her own data, and then estimate the
classification analysis on the integrated data. On one side, trading person-
specific information has a high value in the e-market, but on the other side

20



Figure 3: Business model for privacy-preserving data mashup

data providers who collaborate in sharing person-specific information need
to be cautious of the risk of privacy breaches and cost of potential damages
when integrating data. Our business model allows the participating data
providers to: (1) set up their joint privacy requirements during data mashup
by choosing the privacy model along with the anonymization algorithm and
privacy parameters, and (2) analyze the impact of anonymization on in-
formation utility for classification requirement in terms of monetary value
after data mashup. The aforementioned business factors can help the data
providers in defining the overall objective of maximizing Net value. Further,
in the data mashup process the contribution of each data provider is derived
from the achieved Net value by fairly computing the information gain on
the anonymized data. Accordingly, the data provider whose data provides
a larger information gain for classification can get the larger share of the
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monetary net value.
The companies that face similar challenges, and whose business models

are primarily based on sharing person-specific information, can be our po-
tential audiences. There are quite a few companies for which our research
problem can be generalized. Some of them are Acxiom, AdAdvisor, Analyt-
icsIQ, BlueKai, comScore, Datacratic, Dataline, eXelate, Lotame, etc. that
aggregate information from various sources for a variety of purposes [42].

5.2. Key factors for business model

The selection of key factors and their valuations is crucial in develop-
ing the cost-benefit business model. We learn and identify key factors from
different sources [38, 43]. These factors are broadly classified into two cate-
gories: factors that contribute to estimate the Value of integrated data and
other factors associated with the Potential damage cost. We further divide
the factors by organizing a set of factors that are involved before the start
of the data mashup process, during the data mashup process, and after the
data mashup process.

5.2.1. Before data mashup

In this subsection we discuss the factors that are considered as essential
prior to performing the cost-benefit analysis. The data providers can set
up the market prices on their available data [39] (e.g., set of attributes)
before the data mashup process. Let us assume there are n data providers
DP1, . . . , DPn, and DPi denotes the identity of the data provider.

5.2.1.1 Price per attribute

The price per attribute Priceattri of a data provider DPi represents the
cost of collecting one successful questionnaire for an attribute. Each DPi
can set a price on their data attributes based upon prior knowledge about
market pricing offered by other competing data providers [38]. There is no
definite price for the personal identifying attributes, such as name, address,
email, birthdate, phone number, etc. But the values can be inferred from
cases where personal identity is being sold at a low pricing, as highlighted in
the current literature [39]. In our empirical study, we assume the monetary
value for Priceattri .
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5.2.1.2 Number of attributes

The attribute count Countattri of a data provider DPi represents the
number of attributes in a single record. Each DPi owns a different set of
attributes.

5.2.1.3 Price per record

The price per record Pricereci of a data provider DPi represents the unit
price of a record. Naturally, it is the product of the price per attribute
Priceattri and the attribute count Countattri in a single record. That is,

Pricereci = Priceattri × Countattri (4)

The price of a raw dataset of the data provider DPi increases as the unit
price per record increases.

5.2.1.4 Size of dataset

The size of a dataset Sizedsi represents the total number of records in
the DPi dataset. Sizedsi increases as the number of records in the dataset
increases. Each record has an associated price. As the number of records
increases, the overall pricing of a raw dataset also increases.

5.2.1.5 Sensitivity of dataset

The sensitivity of a dataset Sendsi indicates that a dataset contains sensi-
tive or personally significant information. It is a given qualitative factor and
every data provider should consider this factor for privacy risk assessment.
The sensitivity level signifies the importance of data privacy for each data
provider DPi. Intuitively, a higher sensitivity level implies a higher price of
a raw dataset and a higher impact on the lawsuit and compensation cost.

5.2.1.6 Price of a raw dataset

The price of a raw dataset Pricerdi represents the data provider DPi’s
selling price of a raw dataset in the e-market. It is the product of the sensi-
tivity of the dataset Sendsi , the size of the dataset Sizedsi , and the price per
record Pricereci , which is formulated as follows.

Pricerdi = Sendsi × Sizedsi × Pricereci (5)
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5.2.1.7 Total price of raw dataset

The total price of the raw dataset TPricerd is the sum of the prices of all
contributing data providers’ raw datasets, which is formulated as follows.

TPricerd =
n∑
i=1

Pricerdi (6)

5.2.1.8 Baseline accuracy on raw dataset

Baseline accuracy on raw dataset BA is determined by considering the
classification task as the utility function to evaluate the information utility on
the raw datasets of contributing data providers. Data providers can compute
the baseline accuracy (BA) using the secure multiple party classifier [44]
without sharing their raw data.

5.2.1.9 Total value of raw dataset

The total value of the raw dataset TV aluerd represents the monetary
value of a raw dataset that the data providers derive from the information
utility. It is the product of the total price of the raw dataset TPricerd and
the baseline accuracy of the raw dataset BA, which is formulated as follows.

TV aluerd = TPricerd ×BA (7)

5.2.2. During data mashup

In this subsection, we discuss the factors that are involved during the
data mashup process.

5.2.2.1 Privacy models

The participating data providers DPn can mutually choose the privacy model
(refer to Section 4.1 for details), such as K-anonymity, LKC-privacy, and
ε-differential privacy, prior to integrating their data.

5.2.2.2 Anonymity measures in data integration

The participating data providers DPn can jointly set up the data mashup
anonymization algorithm (refer to Section 4.3 for details), such as multi-party
TDS (Algorithm 1) and DiffGen (Algorithm 2), along with the anonymity
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thresholds, such as K, L, C, for K-anonymity and LKC-privacy models and
ε, and h for a ε-differential privacy model.

5.2.2.3 Information gain

The information gain is employed to determine the usefulness of classifi-
cation. It computes the reduction of entropy by specializing node v into
c ∈ child(v) as discussed in Section 4.2. Each data provider owns a different
set of attributes, but for the same set of records. Each data provider DPi
computes the information gain or Score(x) locally for each candidate and
picks the candidate x with the highest value of Score(x). Then each data
provider DPi communicates Score(x) with the n collaborating data providers
for determining the global winner w. The winner w data provider performs
specialization w ∈ child(w) on its own copy locally. The winner w data
provider then instructs other n collaborating data providers how to perform
specialization (further explanation of this process can be seen in Section 4.3).
This process is iterative and it runs until no candidate is left in the mark. The
information gain Score(x) of winner candidate w data provider accumulates
under the relevant winner w data provider.

5.2.3. After data mashup

In this subsection we discuss the factors that are applied after the data
mashup process. These factors help in determining the optimal value and
the contribution of each data provider.

5.2.3.1 Cost of anonymization in integrated data

To determine the cost of anonymization in integrated data Costintgdata, we
make use of the difference between baseline accuracy (BA) and classifica-
tion accuracy (CA). BA measures the accuracy of classification analysis on
raw data while CA measures the accuracy on anonymized integrated data.
Therefore, Costintgdata becomes:

Costintgdata = TPricerd × (BA− CA) (8)

5.2.3.2 Value of integrated data

The value of integrated data V alintgdata is the difference between the total
value of raw dataset TV aluerd and the cost of anonymization in integrated
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data Costintgdata. It is the benefit that the data providers can earn from the
information utility of classification analysis by trading their integrated data.
Formally, V alintgdata is defined as:

V alintgdata = TV aluerd − Costintgdata (9)

5.2.3.3 Probability of attack

The probability of attack Probatk is employed to determine the implicit weak-
nesses in privacy protection methods. The data providers can carefully con-
sider and plan concerning an adversary’s attempt to assess the probability of
occurrence of a sensitive attribute value in the anonymized integrated dataset
using precision and recall measures (refer to Section 5.3 for details). The
probability of occurrence changes with respect to the chosen privacy model
and its level of privacy protection. Probatk is calculated using F-measure on
the sensitive attribute value Senval. F-measure is a weighted harmonic mean
of precision and recall. Formally, Probatk is defined as:

Probatk =
2× (Precision on Senval × Recall on Senval)

Precision on Senval + Recall on Senval
(10)

5.2.3.4 Expected cost of lawsuit

The expected cost of lawsuit Ecostlwst is enforced subject to the nature of
a privacy breach and the sensitivity of data. It increases as the level of
data sensitivity increases. Ecostlwst enables business enterprises in predict-
ing the potential cost of privacy breach incidents. The monetary costs can
be estimated based on the historical trends of privacy breach incidents. The
Federal Trade Commission Act (FTCA), Gramm-Leach-Bliley Act (GLBA),
Fair Credit Reporting Act (FCRA), and Personal Data Privacy and Secu-
rity Act regulate the collection, use, and protection of personal information
and impose monetary fines and penalties subject to the nature of the data
breach [45, 46].

The lawsuit cost is not fixed and it varies with the applied anonymity
measures on data mashup. For instance, an adversary may exploit the inher-
ent weakness of the privacy protection method to infer sensitive information
about a victim by using the precision and recall measures in the equation of
the probability of attack.
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5.2.3.5 Likelihood of privacy breach

The likelihood of a privacy breach Lpb measures an adversary’s prowess in
inferring the victim’s sensitive value. This inference is measured using an
attack model (refer to the Section 5.3 for details) by exploiting the back-
ground knowledge about a victim. We assume that the victim’s record is in
the integrated published dataset and the adversary knows the victim’s QID.
Formally, Lpb is defined as:

Lpb =
Total records count on Senval

Total records count on class label Senattr
(11)

where Senval denotes the value of the sensitive attribute and Senattr denotes
the sensitive attribute in the integrated dataset.

5.2.3.6 Potential compensation cost

The potential compensation cost PCC is a factor that can help data providers
to determine the approximate cost of compensation prior to sharing the
anonymized integrated dataset. It is impacted by the enforcement of pri-
vacy policies and privacy protection methods. The potential compensation
cost would vary in the presence of a privacy attack and the associated risk of
sensitive information disclosure. In general, more stringent privacy parame-
ters impede the probability of a privacy attack. It is our rational hypothesis
that privacy attacks would have an exponential impact on the compensation
cost due to the substantial increase in the cost of litigation processes [47].
There is no fixed monetary value for compensation cost in [47], but in the
e-market a customer who suffers monetary loss due to the disclosure of his
or her sensitive information may claim against data providers (e.g., business
enterprises) for compensation. Formally, PCC is defined as:

PCC = exp(Probatk)× Ecostlwst (12)

5.2.3.7 Fixed operating cost

The fixed operating cost FOpCost indicates the fixed monthly cost that busi-
ness enterprises would have to pay when adopting cloud-services for data
integration. Business enterprises would gain more benefits with the adoption
of cloud-services comparative to expenditures incurred on hardware and soft-
ware purchase, setup and installation, licensing and upgrades, maintenance
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and support, power and utility, and allocation of physical space. FOpCost is a
quantitative factor, and its value is independent of the employed anonymity
measures in the process of data mashup. It remains the same regardless of
the changes in value of integrated data V alintgdata.

5.2.3.8 Potential damage cost

The potential damage cost PDC indicates the cost that the data providers
would suffer from data privacy breaches. An adversary may attempt to infer
sensitive information about a victim from the anonymized integrated dataset
by using an explicit form of a privacy attack as discussed in Section 5.2.3.5. In
case of a privacy breach, business enterprises (e.g., data providers) would face
substantial costs because of the mandatory notification of data breach, han-
dling of regulatory investigations, hiring of external auditors, facing class ac-
tion litigation, and loss of business goodwill and customer relationships [48].
As suggested by existing studies [49, 50, 51], data breaches negatively impact
business profitability. We postulate that the likelihood of a privacy breach
would have an exponential impact on the potential damage cost because
a plaintiff (e.g., customer) seeks redress for alleged harms such as actual
monetary loss from the identity theft, emotional distress, sexual harassment,
discrimination, or possible future losses [52]. PDC is determined by the like-
lihood of a privacy breach Lpb, the potential compensation cost PCC, and
the fixed operating cost FOpCost. Formally, PDC is defined as:

PDC = exp(Lpb)× PCC + FOpCost (13)

5.2.3.9 Net value

The net value NV demonstrates due diligence in evaluating the key business
factors on the trade-off between privacy and information utility. It is em-
ployed to quantify the difference between the value of integrated data and
the potential damage cost on the applied anonymity measures in the mashup
process. The net value changes with respect to the chosen privacy model
along with the anonymization algorithm and privacy parameters. Formally,
NV is calculated as follows.

NV = V alintgdata − PDC (14)
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5.2.3.10 Optimal value

The optimal value Optval is achieved at the maximum of the net value NV . It
changes with the variations of price settings and joint privacy requirements
of data providers. NV is realized by the difference between the value of
integrated data and the potential damage cost. Formally, Optval is defined
as:

Optval = max(NV ) (15)

5.2.3.11 Contributions of data providers

The contribution of each data provider DPi is derived from the net value
NV by fairly computing first the accumulative information gain Score(x) of
each data provider DPi on the anonymized integrated dataset. Generally,
the data provider whose data attributes result in greater information gain
can get a significantly higher share of the monetary net value. Formally,
ContDP i

is defined as:

ContDP i
=

InfogainDP i∑n
i=1 InfogainDP i

×NV (16)

5.3. Risk measurement

In this section, we present an attack model to measure the risk associated
with implicit weaknesses of privacy protection methods and the risk caused
by explicit knowledge attack.

5.3.1. Attack model

Data providers participating in data integration express concern on two
types of privacy threats: identity linkage and attribute linkage. Based on
background knowledge, adversaries in identity linkage attacks can uniquely
identify an individual, whereas adversaries in attribute linkage attacks can
infer an individual’s sensitive information with relatively high confidence. In
this paper we employ classification analysis to quantify the potential privacy
risks. Specifically, we build a C4.5 classifier by using the sensitive attribute
as the class attribute, and we quantify the privacy risks by measuring the
accuracy of predicting the sensitive values. There are many types of clas-
sification models, such as naive Bayesian, support vector machines, and so
forth, that an adversary can employ to make predictions. Our proposed
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framework is flexible to adopt other classification methods to quantify the
potential privacy risks.

Let D be the raw data, as shown in Table 1, and D′ be the anony-
mous integrated data from the mashup process of two data providers, as
shown in Table 2. Recall that Marital-status is the sensitive attribute and
Loan approval is the class attribute. Let us assume that the data providers
release their anonymized integrated data table D′ to the data consumer (i.e.,
data recipient) with the classifier. A data recipient (or an adversary) can em-
ploy the C4.5 classification algorithm to infer sensitive records of individuals
by setting the sensitive attribute Divorced as the class label. This approach
is similar to [53] in a way that a data recipient (or an adversary), instead
of inferring new records on a class label, can predict the sensitive attribute
value of a target victim who is a participant in the anonymized integrated
training data.

5.3.1.1 Implicit risk measure

Implicit risk is due to attribute linkage attack [4]: an adversary attempts
to infer the sensitive attribute value in the released dataset using a C4.5
classifier. In this type of attack, an adversary can negatively use the preci-
sion and recall performance measures to identify a victim’s sensitive value.
Precision indicates the measure of exactness or quality, meaning the num-
ber of correctly classified positive elements divided by the total number of
elements classified as positive. Recall indicates the measure of completeness
or quantity, which means the number of correctly classified positive elements
divided by the total number of actual positive elements. We measure the
adversary’s power of inferring sensitive values by calculating the F-measure
according to Eq. (10), which is a weighted harmonic mean of precision and
recall measures. F-measure represents the probability of attack Probatk. An
adversary may use these performance measures to determine the success rate
of a privacy attack. We elaborate this by the following example.

Example 2. Consider the anonymous integrated data D′ in Table 2. Sup-
pose an adversary sets the sensitive attribute Marital-status as a class on
D′. This results in a new integrated data table T ∗. The adversary performs
the attack by using the classification model C4.5 on T ∗ to infer the sensi-
tive attribute value of the victim. Table 3 shows the confusion matrix for
the classification of three classes. Each instance (e.g., an individual) has an
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Table 3: Confusion matrix

Predicted class
A B C

Actual class
Divorced (A) 4 0 0

Married-civ-spouse (B) 1 0 0
Never-married (C) 0 1 0

actual class and a predicted class. The rows represent actual classes of the
raw records, and the columns represent predictions made by the model. The
entries on the diagonal indicate the correct predictions; other entries show
the errors. For the sensitive value Divorced, true positive TP = 4, false
negative FN = 0, and false positive FP = 1. So, the values of performance
measures are Precision = 80%, Recall = 100%, and F -measure = 88.8%.

5.3.1.2 Explicit risk measure

Explicit risk is due to record linkage attack [4]: an adversary applies his
or her background knowledge on the integrated data table T ∗ to predict
the sensitive value of a victim who is part of the anonymized integrated
training data. In addition, we assume that an adversary knows that a victim
has a record on the table and also has some knowledge about the victim.
For example, an adversary knows that the victim is female, age is greater
than 35, education level is secondary, and job is cleaning. By applying this
external knowledge to the anonymized integrated training data, the adversary
finds a total of 3 records on the sensitive value Divorced under the class
attribute Marital-status. The likelihood of the privacy breach Lpb for this
case becomes 3/4, which is calculated according to Eq. (11). This implies
that the adversary has a 75% confidence of inferring the sensitive value of
the victim. The likelihood of a privacy breach would increase if the data
providers are semihonest [54, 55].

6. Limitations

In this section, we discuss some of the limitations of our proposed busi-
ness model that are inherent problems related to the cost-benefit analysis.
Our model provides the basic framework for analyzing the cost-benefit of
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data mashup. The data providers can add, remove, or adjust the cost factors
according to their specific applications and scenarios. The common sources
of errors are omission errors and valuation errors. Omission error refers to
excluding relevant factors in the process of factor analysis. Valuation error
refers to making an incorrect estimation of the value of the cost factors, espe-
cially in the presence of intangible assets such as person-specific information.
These errors do not undermine the value of cost-benefit analysis, and they
are expected to decline with the passage of time by the increase in domain
knowledge and follow-up of ex-post analysis [56].

The privacy protection, database, and data mining communities have
identified many types of potential privacy attacks, such as record linkage
attack, attribute linkage attack, table linkage attack, and probabilistic attack.
Consequently, many privacy models and anonymization methods [4], such as
MinGen, K-Optimize, Bottom-Up Generalization, Top-Down Specialization,
Anatomy, and ε-Differential Additive Noise, have been proposed to thwart
these attacks. The objective of this paper is not to address all these privacy
attacks. Instead, we are presenting a framework with a flexible cost-benefit
business model for multiple data providers to achieve optimal mutual benefits
given an agreed privacy requirement. Any partition-based anonymization
methods that result in equivalent classes with counts are applicable to our
framework. To illustrate the effectiveness of our proposed framework and
model, in our discussion we adopt two anonymization algorithms, namely
TDSmdpm and DiffGen, that can anonymize vertically-partitioned relational
data. TDSmdpm and DiffGen were chosen because they can achieve two
commonly employed privacy models, LKC-privacy and differential privacy,
respectively. We would like to emphasize that our model is not limited to
these privacy models and anonymization algorithms. They can be replaced,
depending on the consent of privacy protection among the data providers.
The negotiation process for reaching the consent is beyond the scope of this
article.

7. Empirical study

In this section, we analyze and compare the costs and benefits for each
data provider before participation in the data mashup process on their own
data and after participation in the data mashup process on the integrated
data. We evaluate our business model with the assumption of having 3 data
providers who mashup their data using a secure Privacy-Preserving High-
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Table 4: Attributes hosted by each data provider

Attribute Type
Age numerical

Hours-per-week numerical
Workclass categorical

Capital-gain numerical
Income categorical

Marital-status categorical

DP1

Attribute Type
Education categorical

Education-num numerical
Occupation categorical
Capital-loss numerical

Income categorical
Marital-status categorical

DP2

Attribute Type
Sex categorical

Race categorical
Relationship categorical
Final-weight numerical

Native-country categorical
Income categorical

Marital-status categorical

DP3

Dimensional Data Mashup (PHDMashup) algorithm [5] in a cloud environ-
ment. This model is independent of the cloud platform.

We employ a real-life dataset Adult1 in our experiments, which has been
widely used for many empirical studies. It is also known as the de facto
benchmark for comparing the performance of anonymization algorithms [34,
37, 57]. After removal of records with missing values, the Adult dataset
contains 45, 222 records with 8 categorical attributes, 6 numerical attributes,
and a binary class attribute Income with two levels, ≤ 50K or > 50K. For
a classification analysis task this dataset is split into 30, 162, and 15, 060
records for the training and testing set, respectively. We vertically partition
the Adult dataset into three partitions P1, P2, and P3 for data providers
DP1, DP2, andDP3, respectively. Table 4 represents the attributes with their
types of each data provider. Each data provider computes Baseline Accuracy
(BA) and Classification Accuracy (CA) on its raw dataset and anonymized
dataset, respectively, by using a C4.5 classifier. The BA is 81.8%, 82.5%, and
75.6% on DP1, DP2, and DP3 datasets, respectively. Whereas, the baseline
accuracy (BA) on the integrated data is 85.3% using the secure multiple
party classifier [44] without sharing their raw data. We consider Income as
the class attribute and Marital-status as the sensitive attribute in each data
provider’s table. The remaining attributes in each data provider’s table are
the QID attributes. We consider Married-civ-spouse and Divorced in the
attribute Marital-status as sensitive. In addition, a common unique ID is
included in each table for joining the data provider’s tables. All experiments
were performed on an Intel Core i3-2350M 2.3GHz PC with 4GB memory.

1Available at: http://archive.ics.uci.edu/ml/datasets/Adult.
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7.1. Cost of anonymization without data mashup

In this section, we analyze the cost of anonymization Costad to individ-
ual data providers without their participation in the data mashup process.
Suppose the sensitivity of the dataset Sendsi = 2 on the scale of 1 to 5, the
price per attribute Priceattri = $0.1, the size of dataset Sizedsi = 45, 222 for
the data providers DP1, DP2, and DP3 to fairly quantify and compare the
cost of anonymization under different privacy models includingK-anonymity,
LKC-privacy, and ε-differential privacy.

Figure 4 depicts the cost of anonymization to each data provider with-
out participating in the data mashup process. Figure 4.a depicts the cost
of anonymization when privacy models K-anonymity and LKC-privacy are
enforced with the anonymity threshold L, K, and C. Costad generally in-
creases as K or L increases, but this monotonicity does not maintain for DP1

and DP2 with the increase of K. For example, Costad decreases by $72.35
for DP1, when K increases from 40 to 50 when L = 2. This is because
of the better classification accuracy CA, which is increased from 80.3% to
80.5%. This anti-monotonic property of the algorithm helps in finding the
sub-optimal anonymization cost. We observe that the DP1 anonymization
cost is higher than DP2 and DP3 because DP1 holds 3 continuous numeric
attributes (refer to Table 4) that require discretizing into intervals (categori-
cal values) for anonymization. The classification analysis on new data would
be less accurate than categorical attributes due to the chance of information
loss. The Costad of LKC-privacy equals the Costad of the traditional K-
anonymity when L = 4 for each data provider. Costad is also insensitive to
the change of confidence threshold 10% ≤ C ≤ 50%.

Figure 4.b depicts the cost of anonymization when ε-differential privacy is
enforced with privacy parameters ε = 0.5 and 1.0 and specialization levels 3 ≤
h ≤ 19. We observe that Costad generally decreases when the specialization
level h increases for DP1 and DP2 with the setting of a privacy budget to
either ε = 0.5 or 1.0. But this trend is quite different in relation to DP3

where Costad increases monotonically with the increase in h; the random
noise results in lower classification accuracy.

7.2. Cost of anonymization in integrated data

In this section, we analyze the cost of anonymization in integrated data
Costintgdata under the joint privacy settings of the three contributing data
providers in the data mashup process. Suppose the sensitivity of the dataset
Sendsi = 2 on the scale of 1 to 5, the price per attribute Priceattri = $0.1,
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(a) K-anonymity and LKC-privacy (b) ε-differential privacy

Figure 4: Cost of anonymization to individual data provider without data
mashup

the number of attributes Countattr = 13 (sum of attributes of DP1, DP2,
and DP3) and the size of dataset Sizedsi = 45, 222 to quantify and compare
the cost of anonymization in integrated data under different privacy models,
including K-anonymity, LKC-privacy, and ε-differential privacy.

Figure 5.a depicts the cost of anonymization in integrated data when pri-
vacy modelsK-anonymity and LKC-privacy are enforced with the anonymity
threshold 10 ≤ K ≤ 50, background knowledge L = 〈2, 4, 6〉, and confi-
dence threshold C = 50%. Costintgdata generally increases as L increases,
but does not exhibit obvious monotonicity with the increase of K. For ex-
ample, Costintgdata decreases by $3, 644.89 when K increases from 10 to 20
when L = 4 and L = 6. This is because of improvement in classification ac-
curacy CA, which increases by 3.1%. This helps in finding the sub-optimal
anonymization cost. The Costintgdata of LKC-privacy equals the Costintgdata
of traditional K-anonymity when L = 4 and L = 6. Costintgdata is also
insensitive to the change of confidence threshold 10% ≤ C ≤ 50%.

Figure 5.b depicts the cost of anonymization in integrated data when ε-
differential privacy is enforced with privacy parameters ε = 0.5 and 1.0 and
specialization levels 3 ≤ h ≤ 19. We calculate the average accuracy on 10
runs. We observe that Costintgdata generally decreases as the specialization
level h increases, except an increase by $693.71 when privacy budget ε = 0.5
and the specialization level h increases from 15 to 19. When ε is small, having
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(a) K-anonymity and LKC-privacy (b) ε-differential privacy

Figure 5: Cost of anonymization in integrated data

too many levels makes each specialization less accurate.

7.3. Implicit risk measure

In this section, we analyze the implicit risk for each data provider before
participation in the data mashup process on their own data and after partici-
pation in the data mashup process on the integrated data of the contributing
data providers.

Figure 6.a depicts the probability of attack Probatk on the sensitive value
Married-civ-spouse to the data providers DP1, DP2, and DP3 with privacy
threshold 10 ≤ K ≤ 50, background knowledge L = 〈2, 4〉, and confidence
threshold C = 50%. We observe that the chance of inferring the sensitive
attribute value is approximately 71%, 67%, and 99% on the anonymized
dataset of DP1, DP2, and DP3, respectively. DP2 is comparatively better
than DP1 and DP3 because it has less risk of inferring the sensitive attribute
value.

Figure 6.b depicts the probability of attack Probatk on the sensitive value
Married-civ-spouse in the anonymized integrated dataset of contributing data
providers DP1, DP2, and DP3 under the joint privacy settings with the
anonymity threshold 10 ≤ K ≤ 50, background knowledge L = 〈2, 4, 6〉,
and confidence threshold C = 50%. We can observe the trend that Probatk
generally decreases asK or L increases, which also conforms to the theoretical
analysis.
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(a) without data mashup (b) with data mashup

Figure 6: Implicit risk measure

7.4. Explicit risk measure

In this section, we analyze the explicit risk for each data provider before
participation in the data mashup process on their own data and after par-
ticipation in the data mashup process on the integrated data of contributing
data providers.

Suppose an adversary has prior knowledge about a male victim, that his
age is between 40 to 50, his education is masters, his hours-per-week is
>40., and his income is ≥ 50, 000.

Figure 7.a depicts the likelihood of a privacy breach Lpb on the sensitive
value Married-civ-spouse when the aforementioned external knowledge about
the victim is linked to the data providers DP1, DP2, and DP3 attributes,
where privacy threshold 10 ≤ K ≤ 50, background knowledge L = 〈2, 4〉, and
confidence threshold C = 50%. We observe that the Lpb is approximately
86%, 82%, and 85% on the anonymized dataset of DP1, DP2, and DP3,
respectively. DP2 is comparatively better than DP1 and DP3 because it has
less risk of a privacy breach.

Figure 7.b depicts the likelihood of a privacy breach Lpb on the sensitive
value Married-civ-spouse when the aforementioned external knowledge about
a victim is linked to the anonymized integrated dataset of contributing data
providers DP1, DP2, and DP3 under the joint privacy settings with the
anonymity threshold 10 ≤ K ≤ 50, background knowledge L = 〈2, 4, 6〉, and
confidence threshold C = 50%. Generally, Lpb decreases with the increase
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(a) without data mashup (b) with data mashup

Figure 7: Explicit risk measure

of L but this trend is not obvious with the increase of K. For example, Lpb
is 86.44% when K = 40 and L = 〈4, 6〉, which is higher by 3.4% when L =
2. This anti-monotonic property of the TDS algorithm helps in identifying
the sub-optimal solution. The Lpb of LKC-privacy equals the Lpb of K-
anonymity when L = 4 and L = 6 because the classification accuracy on the
sensitive attribute Marital-status remains unchanged with the increase of
L. Though not shown in the figure, Lpb is insensitive to the change of the
confidence threshold 10% ≤ C ≤ 50%.

7.5. Impact of privacy requirements on net value

In this section, we analyze the impact ofK-anonymity, LKC-privacy, and
ε-differential privacy requirements on monetary value for each data provider
before participation in the data mashup process and after participation on
the integrated data of contributing data providers. Suppose the sensitivity
of the dataset Sendsi = 2 on the scale of 1 to 5, the price per attribute
Priceattri = $0.1 , the expected cost of lawsuit Ecostlwst = $1000, the size of
dataset Sizedsi = 45, 222, and the fixed operating cost FOpCost = $300.

Figure 8 depicts the impact of K-anonymity and LKC-privacy require-
ments on DP1’s net value, where privacy threshold 10 ≤ K ≤ 50, and con-
fidence threshold C = 50%. Figure 8.a depicts the impact on DP1’s net
value when the threshold L = 2. We observe that DP1’s net value with-
out data mashup (refer to the DP1’s attributes in the Table 4) decreases
slightly with the increase of K, but it does not maintain monotonicity when
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(a) L=2 (b) L=4 (c) L=QID

Figure 8: Impact of K-anonymity and LKC-privacy requirements on DP1’s
net value

K = 50. On the other side, DP1’s net value with data mashup drops with
the increase of K from 10 to 30, but the net value rises when K>30. This
change in trend depends on the information gain for classification analysis
of the DP1’s attributes. Figure 8.b depicts the impact on DP1’s net value
when the threshold L = 4. We observe that DP1’s net value without data
mashup decreases slightly with the increase of K from 10 to 30, but it is
insensitive to change when K>30. On the other side, DP1’s net value with
data mashup does not exhibit monotonicity with the increase of K because
DP1’s attributes for classification analysis contribute different information
gains at different privacy thresholds K on integrated data with collaborating
data providers DP2 and DP3. Figure 8.c depicts the impact on DP1’s net
value when the threshold L = QID. There are a total of 4 QID attributes
in DP1’s dataset. DP1’s net value of traditional K-anonymity is equal to
LKC-privacy when L = 4. Though not shown in Figure 8, net value is in-
sensitive to the change of the confidence threshold 10% ≤ C ≤ 50%. The
maximum net value achieved by the DP1 is $27, 190.94 when K = 20 and
L = 4.

Figure 9 depicts the impact of K-anonymity and LKC-privacy require-
ments on DP2’s net value, where privacy threshold 10 ≤ K ≤ 50, and confi-
dence threshold C = 50%. Figure 9.a depicts the impact on DP2’s net value
when the threshold L = 2. We observe that DP2’s net value without data
mashup (refer to the DP2’s attributes in the Table 4) decreases slightly with
the increase of K except when K = 30. On the other side, DP2’s net value
with data mashup increases with the increase of K from 10 to 30, but the
net value drops when K>30. This change in trend depends on the informa-
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(a) L=2 (b) L=4 (c) L=QID

Figure 9: Impact of K-anonymity and LKC-privacy requirements on DP2’s
net value

tion gain for classification analysis of DP2’s attributes. Figure 9.b depicts
the impact on DP2’s net value when the threshold L = 4. We observe that
DP2’s net value without data mashup decreases slightly with the increase of
K from 10 to 20, but it is insensitive to change when K>20. On the other
side, DP2’s net value with data mashup increases with the increase of K
from 10 to 40, but it drops when K = 50. This drop in net value is due
to the loss of information gain in classification analysis. Figure 9.c depicts
the impact on DP2’s net value when the threshold L = QID. There are a
total of 4 QID attributes in DP2’s dataset. DP2’s net value of traditional
K-anonymity is equal to LKC-privacy when L = 4. Though not shown in
Figure 9, net value is insensitive to the change in the confidence threshold
10% ≤ C ≤ 50%. The maximum net value achieved by DP2 is $68, 060.37
when K = 30 and K = 40, and L = 4.

Figure 10 depicts the impact of K-anonymity and LKC-privacy require-
ments on DP3’s net value, where privacy threshold 10 ≤ K ≤ 50, and con-
fidence threshold C = 50%. Figure 10.a depicts the impact on DP3’s net
value when the threshold L = 2. We observe that DP3’s net value with-
out data mashup (refer to the DP3’s attributes in Table 4) is insensitive to
change with the increase of K. On the other side, DP3’s net value with data
mashup drops with the increase of K from 10 to 20, but the net value grad-
ually rises when K>20. This change in trend depends on the information
gain for classification analysis of DP3’s attributes. Figure 10.b depicts the
impact on DP3’s net value when the threshold L = 4. We observe that DP3’s
net value without data mashup is insensitive with the increase of K. On the
other side, DP3’s net value with data mashup drops with the increase of K
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(a) L=2 (b) L=4 (c) L=QID

Figure 10: Impact of K-anonymity and LKC-privacy requirements on DP3’s
net value

except when K = 50. This fall in net value is due to the loss of information
gain in classification analysis. Figure 10.c depicts the impact on DP3’s net
value when the threshold L = QID. There are a total of 5 QID attributes
in DP3’s dataset. DP3’s net value of traditional K-anonymity is equal to
LKC-privacy when L = 4. Though not shown in Figure 10, net value is
insensitive to the change of the confidence threshold 10% ≤ C ≤ 50%. The
maximum net value achieved by DP3 is $34, 522.01 when K = 10 and L = 4.

Figure 11 depicts the impact on DP1’s monetary value when ε-differential
privacy is enforced with privacy parameters ε = 0.5 and 1.0 and specializa-
tion levels 3 ≤ h ≤ 19. Figure 11.a depicts the impact on DP1’s monetary
value when the threshold ε = 0.5. We observe that DP1’s monetary value
without data mashup (refer to the DP1’s attributes in Table 4) increases
monotonically as the increase in specialization level h. On the other side,
DP1’s monetary value with data mashup increases when specialization level
h increases from 3 to 7 and 11 to 15, but the value drops due to the loss of
data utility when h = 11 and h = 19. Figure 11.b depicts the impact on
DP1’s monetary value when the threshold ε = 1.0. We observe that DP1’s
monetary value without data mashup increases slightly with the increase in
the specialization level h except when h = 11. DP1’s net value with data
mashup generally increases with the increase in h, but it does not maintain
monotonicity when h = 11 due to the provision of less data utility in classifi-
cation analysis with collaborating data providers DP2 and DP3. The benefits
to DP1 of doing data mashup is higher than going without data mashup by
gaining the maximum net value $30, 0187.37 when ε = 1.0 and h = 19.

Figure 12 depicts the impact on DP2’s monetary value when ε-differential
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(a) ε = 0.5 (b) ε = 1.0

Figure 11: Impact of ε-differential privacy requirements on DP1’s monetary
value

privacy is enforced with privacy parameters ε = 0.5 and 1.0 and specializa-
tion levels 3 ≤ h ≤ 19. Figure 12.a depicts the impact on DP2’s monetary
value when the threshold ε = 0.5. We observe that DP2’s monetary value
without data mashup (refer to the DP2’s attributes in Table 4) generally
increases as the increase in specialization level h except when h = 15. DP2’s
monetary value with data mashup does not exhibit monotonicity with the
increase in the specialization level h due to the loss of data utility in clas-
sification analysis when h = 11 and the provision of less data utility in
comparison to the other collaborating data providers DP1 and DP3 when
h = 15. Figure 12.b depicts the impact on DP2’s monetary value when the
threshold ε = 1.0. We observe that DP2’s monetary value without data
mashup increases monotonically with the increase in the specialization level
h. On the other side, DP2’s monetary value with data mashup does not ex-
hibit monotonicity with the increase in the specialization level h due to the
loss of data utility in classification analysis when h = 7 and the provision of
less data utility in comparison to other collaborating data providers DP1 and
DP3 when h = 19. The benefits of doing data mashup are higher than doing
without data mashup to DP2 by gaining the maximum net value $29, 971.26
when ε = 0.5 and h = 7.

Figure 13 depicts the impact on DP3’s monetary value when ε-differential
privacy is enforced with privacy parameters ε = 0.5 and 1.0 and specializa-
tion levels 3 ≤ h ≤ 19. Figure 13.a depicts the impact on DP3’s monetary
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(a) ε = 0.5 (b) ε = 1.0

Figure 12: Impact of ε-differential privacy requirements on DP2’s monetary
value

value when the threshold ε = 0.5. We observe that DP3’s monetary value
without data mashup (refer to the DP3’s attributes in the Table 4) decreases
slightly as the specialization level h increases. DP3’s monetary value with
data mashup does not exhibit monotonicity with the increase in the special-
ization level h, but DP3’s monetary value is greater than DP1 and DP2 at
specialization levels 3 to 19. Figure 13.b depicts the impact on DP3’s mone-
tary value when the threshold ε = 1.0. We observe thatDP3’s monetary value
without data mashup decreases slightly as the specialization level h increases.
On the other side, DP3’s monetary value with data mashup decreases with
the increase in the specialization level h except when h = 19. The benefits
of doing data mashup is higher than going without data mashup to DP3 by
gaining the maximum net value $78, 993.45 when ε = 1.0 and h = 3.

8. Conclusion

We have proposed a business model to quantify and compare the costs
and benefits for releasing integrated anonymized data of multiple providers
over an individual data provider when trading person-specific information in
the e-market. Our model enables data providers to set up their joint privacy
requirements for classification analysis on mashup data. The data mashup
process is implemented fairly that allows data providers to integrate their
data subject to the given privacy requirements. During the data mashup pro-
cess every data provider competes with the other participating data providers
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(a) ε = 0.5 (b) ε = 1.0

Figure 13: Impact of ε-differential privacy requirements on DP3’s monetary
value

to generate more profit from their own data. The data provider whose data
provides more information gain will get a significantly higher share in terms
of monetary value from the distribution of the achieved net value. We have
incorporated relevant factors that are associated with the revenue and costs
to determine the net value. Our model helps data providers in finding the
optimal value by evaluating the benefits of data mashup and impacts of data
anonymization based on the choices of privacy models and data mashup
anonymization algorithms.
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