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Abstract

We establish a criterion on potential energy functions which, when satisfied, as-

serts the existence of an infinite number of periodic orbits in a dynamical system

defined by two particles moving on the two-dimensional (or “flat”) torus. The

original system is reduced to that of a single point-mass moving about the torus,

for which we find a continuum of trajectories satisfying a particular symmetry

relation. Using a system of Poincaré maps, we obtain addition information about

a particular subset of these trajectories in order to describe their behaviour in a

linear portion of the space. Finally, we show under certain additional assumptions

that, for any sufficiently large two-dimensional torus, a countably infinite subset

of these trajectories are periodic.

Resumé

On établisse un critère sur les fonctions d’énergie potentielle qui, quand satis-

fait, affirme l’existence d’un nombre infini d’orbites d’un système dynamique de

deux particules en se déplaçant autour du tore de deux dimensions. On réduit

le système d’origine au système d’un point de masse qui se déplace autour du

tore, duquel on trouve un continuum de trajectoires qui satisfait à un rapport

particulier de symétrie. En utilisant un système de cartes de Poincaré, on ap-

prend davantage d’un sous-ensemble particulier de ses trajectoires pour décrire

leur comportement dans une partie linéaire de l’espace. Enfin, on démontre, selon

certaines hypothèses, que pour n’importe quel tore assez grand de deux dimen-

sions, un sous-ensemble infini dénombrable est périodique.
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Chapter 1

Introduction

The subject of this thesis arose from certain studies pertaining to the ergodicity of

so-called billiard systems. A billiard is a dynamical system that consists of one or

several circular masses moving in a given region of the plane. These masses behave

in the manner of billiard balls: they undergo an instantaneous deflection when

they encounter one another, or when they reach the boundary of the region, and

otherwise move linearly according to their present velocity. In our case, this region

is the two-dimensional torus and does not have a boundary as such; moreover,

our masses are reduced to single points, and these point-masses instead exert a

repulsive force on one another when sufficiently close, such that their behaviour

is non-linear and non-trivial.

Such systems have long been important in terms of statistical mechanics. Con-

sider, for example, the following quotation from Boltzmann:

. . . the molecules of gases are so far apart they no longer exert signif-

icant forces on one another; since the external forces acting on gases

can usually be neglected, their molecules are indeed precisely in the

state of the black and white balls mentioned earlier. [Bol, p. 24]

The molecules of a gas behave like billiard balls; however, to simulate these parti-

cles directly with an appropriately large number of point-masses would be impos-

sible. Instead, we look to simpler systems, and try to ascertain what qualitative

features they possess that might be shared with their higher-dimensional counter-

parts. Strictly speaking, the system we will study is not a traditional billiard: the

torus has no boundary, nor is it a region of the plane. Moreover, the deflections

of a traditional billiard are assumed to be instantaneous, while ours will have

obvious duration. Yet our system aims to address the same physical phenomenon

9



10 CHAPTER 1. INTRODUCTION

as a traditional billiard: while a traditional billiard models one or more molecules

confined in a particular container, two point-masses in motion on the torus may be

seen as approximating an unbounded system of particles using a periodic domain,

where each molecule is representative of an infinite lattice.

This model has been proven to admit non-ergodic flows given special choices

of the geometry [Don2]. This work follows two other papers [Don1,DL] which deal

with a single particle moving through a potential on the torus, the problem to

which the corresponding mathematical system reduces. These papers, combined,

gave sufficient and necessary conditions for the system to be ergodic independent

of the geometry. Here, “geometry” refers to the dimensions of a rectangle in

Euclidean space which, when appropriate edges are identified, gives rise to the

torus in question. The results of [DL] showed certain systems to be ergodic for

any geometry; the results of [Don1] showed that all other systems will not be

ergodic for certain choices of the geometry. There are two obvious questions

that remain open in the light of these results: (i) For non-ergodic systems, what

proportion of the geometries result in non-ergodic flows? (ii) Can the results be

generalized to deal with systems of three or more particles?

This project began in an attempt to answer the latter question but comes

closer to addressing the former. Using a series of Poincaré maps, we address a

particular family of symmetric trajectories, each of which may become periodic for

certain choices of the geometry. Indeed, we show that, under certain conditions,

there will be infinitely many periodic orbits for any geometry. While we will not

address the stability of these orbits below, the maps were constructed in the hope

that they would reveal a kind of stable behaviour for collisions between particles

within the two-particle model, which could then be brought to bear on larger

billiard systems. At any rate, I believe the Poincaré maps presented here are a

valuable means to understanding the system, even if their merits are not entirely

exploited.

1.1 Overview

Chapters 2 and 3 present the material necessary to understand and approach

the problem broadly painted in this introduction. The former deals entirely with

mathematical preliminaries; the latter formulates the physical problem in more

precise mathematical terms, then manipulates that formulation to arrive at a

more tractable mathematical problem. In particular, §3.2 shows how the origi-
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nal system of differential equations may be reduced in dimensionality and then

“uncoupled,” leaving to two simpler systems—one linear, the other non-linear.

The first describes linear motion on a torus and is trivially solvable; it is also

ergodic for almost all initial conditions, although this is not sufficient to deter-

mine the ergodicity of the original system. The crux of the problem thus lies with

the non-linear system, which is insolvable by current methods. Its properties are

investigated in the remainder of Chapter 3.

The remainder of the thesis is devoted to finding symmetric trajectories for the

non-linear system, since these may be periodic for certain choices of the geometry.

While such trajectories are found initially in §3.4.1, they are there described by

the point invariant under the symmetry in question; moreover, this point is in the

non-linear region for all interesting trajectories. In Chapter 4, we use a series of

Poincaré maps to find such trajectories, so that they are now given by a point in

the linear region. This allows us to extend the trajectory in phase space—starting

with either the point in question, or the point to which it is symmetric—so that,

in Chapter 5, we can speculate as to the existence of periodic orbits in a more or

less arbitrary geometry.
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Chapter 2

Preliminaries

2.1 Hamiltonian Mechanics

We begin by describing (in brief) the theory of Hamiltonian systems as they

arise on smooth, connected manifolds. Once we have properly formulated the

Hamiltonian system, we then review certain key results that are pertinent to

the following chapters. However, before we can touch upon that material, we

must recall the notion of a manifold itself—and define certain structures upon it,

sufficient for the formulation of an ordinary differential equation.

Definition 1 A n-dimensional manifold M is a paracompact Hausdorff space

equipped with a family of charts {(Ui, χi)}i∈I such that: (i)
⋃

i∈I Ui is an open

cover of M ; and (ii) each χi : Ui → Vi is a homeomorphism between Ui and some

open Vi ⊂ Rn. The manifold is called smooth if, for all i, j ∈ I with Ui ∩ Uj 6= ∅,
the change of co-ordinates χj ◦ χ−1

i : Vi → Vj is a smooth function.

Every manifold M is “locally Euclidean” in the sense that, for each x ∈ M ,

there exists an open set Ui containing x that is homeomorphic to an open set

in Euclidean space. These open sets Ui, when endowed with so-called “local co-

ordinates” Vi = χi(Ui) ⊂ Rn, also allow us to perform certain basic computations

that are more obviously defined in a metric space.

For instance, fix an x ∈ M , and choose i ∈ I such that x ∈ Ui. Let c(t)

denote a curve in the local co-ordinate system χi(Ui) such that c(t0) = x for some

t0 ∈ J ⊂ R. Suppose further that each component ci of c is given by a smooth

function ci : J → R. To every such curve we can associate a tangent vector v at

x, given by v = d
dt
c(t)
∣

∣

t=t0
, and the totality of such vectors is called the tangent

space at x and denoted TMx. It is elementary to show that, for each x ∈M , TMx

13
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is a linear space isomorphic to R
n. Next, we define the union of all such spaces

TM = {(x, v) | x ∈M, v ∈ TMx}.

This is called the tangent bundle of M , which we endow with a system of charts

defined as follows: for every chart (Ui, χi) on M , we define an open set

U ′
i = {(x, v) | x ∈ Ui, v ∈ TMx}

and associate with it a homeomorphism χ′
i : (x, v) 7→ (χi(x), v), for all (x, v) ∈ Ui,

where we identify v with its representation in R
n. It follows that TM is a manifold

of dimension 2n. Moreover, since each χ′
i is as differentiable as the corresponding

χi, TM will be smooth whenever M is itself smooth. Finally, insofar as TM is a

smooth manifold, it too has a tangent space, which we will denote by T (TM).

This provides us with enough structure to define the notion of a vector field in

a non-Euclidean setting. An autonomous vector field v on a smooth manifold M

is a smooth mapping v : M → TM such that, for each x ∈ M , v(x) ∈ TMx. Here,

smooth means that, for each x and v(x), v is a smooth mapping between the local

co-ordinate systems of M and TM . It so happens that, for all such vector fields

v and for every point x ∈M , there is a curve c : R
+
0 →M such that (i) c(0) = x,

and (ii) in local coordinates we have, for all t0 > 0,

d

dt
c(t)

∣

∣

∣

∣

t=t0

= v(x) where x = c(t0).

We will refer to c(t) so constructed as an “integral curve” of the vector field v,

starting at the point x, which makes c(t0) the value of the integral curve at time

t0. Now, for each t ∈ R
+
0 , we can define a mapping Φt

v : M → M which sends

each x ∈ M to the integral curve of v starting at x, evaluated at time t. Thus,

for instance, the integral curve c(t) above satisfies c(t) = Φt
vx for all t ∈ R

+
0 . This

family of maps is called the flow generated by v, and it satisfied the following

semigroup properties:

(An Identity) Φ0
v : x 7→ x;

(Closure) Φt
v ◦ Φs

v = Φt+s
v , ∀t, s ∈ R

+.

Note that the identity used to show closure also implies that the mappings which

comprise a flow commute. If every integral curve can be extended backward in
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time, as is the case whenever M is compact [Arn1, §35], then Φt
v is defined for

all t ∈ R. In that case, the second identity (with s = −t) gives the existence

of inverses and the flow thus comprises a group. Finally, the expression Φt
vx can

be shown to be continuous in its dependence on x, and is (by definition) once

differentiable in t, with d
dt

Φt
vx = v(x).

These ideas provide the framework for a generalization of Newtonian mechan-

ics acting within alternative geometric structures. Consider a point-mass moving

in an n-dimensional manifold M . At each time t, its position is given by some

q ∈ M , and its velocity is given by a vector q̇ ∈ TMq. Concatenating these gives

a point in TM ; moreover, if the momentum is so much as continuous in time, the

curve it traces on M is the projection of another curve in TM . Now, it is clear

that there are some smooth motions which cannot be given by an autonomous

vector field on M—those which are self-intersecting, or where a trajectory doubles

back on itself, for example—but there are certain of those motions that are still

given by a projection of the corresponding motion in TM , where the latter is

indeed given by a vector field v : TM → T (TM).

Example. Think, for instance, of the oscillation q(t) = sin t which defines a

motion in M = [0, 1]. All but two points in that space are traversed repeatedly,

with the same speed but different velocities, and so we cannot associate a unique

tangent vector with each point. But q̇(t) = cos t, and the associated curve in TM

is not self-intersecting; moreover, the curve {(sin t, cos t)}t∈R is an integral curve

of the vector field v : (q, q̇) 7→ (q̇, q), where v : TM → T (TM). ⋄

Physically, such systems occur whenever the force acting on the point-mass de-

pends only on its current position and momentum. In particular, this means that

the law governing its acceleration does not change with time.

The natural state-space for any mechanical system is, thus, not the manifold

M of possible positions but its tangent bundle TM . The underlying manifold

M is here termed the configuration space, while TM is referred to as the phase

space. If the force acting on such a system is independent of time, the motion of

the system is given by the flow Φt
v : TM → TM of an (autonomous) vector field

v : TM → T (TM).

Definition 2 A Hamiltonian system is a system of ordinary differential equations

which, for some smooth H : TM → R, has the following form:

q̇ = ∇pH, ṗ = −∇qH, (2.1)
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where ∇xH represents the vector of partial derivatives of H, taken with respect to

the elements of x. H is called the Hamiltonian function, or simply Hamiltonian,

and the equations (2.1) are called Hamilton’s equations.

In homage to the physical problems in which Hamiltonian systems most often

appear, including the example above, the vector q is referred to as the “position”

vector, while p is referred to as the “momentum” vector, and its components

“[generalized] momenta.” These metaphors are borne out by Hamiltonians of the

form

H =
1

2
‖p‖2 + F (U),

where ‖ · ‖ denotes the Euclidean norm in Rn. In that case, we clearly have

q̇i = pi for each i = 1 . . . n. If (q(t), p(t)) is a solution of the Hamiltonian system,

then p(t) gives the tangent vector to the (parameterized) curve defined by q(t) at

each point; in particular, it would be enough to solve for q(t), and then find p(t)

by differentiation.

If (q(t), p(t)) is a solution of system (2.1), then we clearly have

d

dt
H(q(t), p(t)) =

∑

i

(q̇iHqi
+ ṗiHpi

) = 0.

Thus the Hamiltonian is preserved under the action of the flow. Such a function

is known as an invariant or first integral of the system, and many Hamiltonian

systems (including the one studied here) possess additional functions with this

property. Note that every value of the first integral defines a surface in phase-

space, and each trajectory must be contained in the surface whose value is given

by the trajectory’s initial condition. In particular, if a system admits multiple

first integrals, then each of its trajectories must be contained in an intersection of

the corresponding level surfaces.

Definition 3 A system of n first-order ordinary differential equations is said to

be integrable by quadratures, or simply integrable, if it has n−1 independent first

integrals.

The integrals Ii : TM → R are independent if their differentials are linearly

independent on each set

TMz := {x ∈ TM | Ii(x) = zi, i = 1, . . . , n}
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—that is, on the intersection of their level surfaces. For such a system, the inter-

section of all known level surfaces define a space of degree one—that is, a curve—in

phase space. Thus, we can find the points comprising each of its trajectories. In

the case of Hamiltonian systems, a stronger result holds:

Theorem 1 Let H : R
2n → R be the Hamiltonian corresponding to a given system

of ordinary differential equations. If H has n independent first integrals, then it

is integrable by quadratures. [Arn2, §49]

The integrals of a Hamiltonian system can be linked with the broader notion

of “symmetries”:

Definition 4 A group of transformations {gi}i∈I is called a symmetry of a system

of ordinary differential equation if, for every solution f(t), the function gi · f(t) is

also a solution.

The group action gi · f may be any transformation on the points (f(t), t) that

comprise the solution. The most obvious use of a symmetry is to generate new

solutions from an existing one: once we solve a system for the initial condition

f(0), we will have also solved the system for each gi · f(0). For instance, if

gi : TM → TM acts only on the phase space, then we have the relation

g · Φt(x0) = Φt(g · x0). (2.2)

But symmetries may be revealing in other ways. Hamiltonian systems have both

continuous and discrete symmetries, and these differ in their derivation and ap-

plications. Continuous symmetries may be shown to arise from first integrals of

a Hamiltonian system. Each integral Ii can itself be considered as a Hamiltonian

on the same phase space. It thus gives rise to a (generally distinct) system of

differential equations, whose solutions are obviously a group of transformations

on the space, and their group action is defined by composition with the original

flow—i.e., gi · f := gi ◦ f .

Theorem 2 Let H : M → R and I : M → R denote Hamiltonian functions. If I

is a first integral of H, then the flow generated by I corresponds to a continuous

symmetry of H. [Olv, §6.3]

Thus, every first integral of the system gives rise to a symmetry. In the case of

autonomous equations, the converse is also true:
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Theorem 3 Let H : M → R and I : M → R denote Hamiltonian functions. If

the flow generated by I corresponds to a continuous symmetry of H, then I is a

first integral of H.

This is a variant of Noether’s Theorem, adapted for autonomous Hamiltonian

systems;1 together with the previous theorem, it asserts a correspondence between

invariant functions and symmetries, which is useful because certain symmetries are

more obvious than their integral counterparts (for an example, see §3.4.3 below).

Finally, by Theorem 1, knowing n continuous symmetries of a Hamiltonian system

with dimension 2n would allow us to solve the system.

Discrete symmetries do not allow us to construct such solutions, but they can

give us important insights into a system’s behaviour. Also, unlike the continuous

symmetries considered above, their group actions generally affect the temporal

variable. One important example, which applies to all Hamiltonian systems, is

reversability:

Definition 5 Let ρ : M →M be an invertible linear transformation. The flow Φ

is called ρ-reversible if, for each Φt : M →M ,

ρ ◦ Φt = Φ−1 ◦ ρ.

While the symmetry group is not explicitly stated in the definition, it is of the same

form as equation (2.2), excepting the reflection of the temporal variable. Since

we will make extensive use of such symmetries later (see §3.4.1), the following

material deserves mention:

Definition 6 Let ρ : M → M be an invertible linear transformation. A vector

field v : M → TM is called ρ-reversible if

ρ ◦ v(x) = −v ◦ ρ(x), ∀x ∈ M.

Proposition 1 The flow Φ arising from a ρ-reversible vector field is ρ-reversible

in the sense of Definition 5. [HLW, §V.1]

1This is a reworded version of the theorem as it appears in [KH, §5.5]; a non-autonomous
version is given in [Olv, §6.3]. Although these are both stated for Hamiltonian systems, Noether’s
theorem is more often formulated within the framework of Lagrangian mechanics.
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2.2 Dynamical Systems and Ergodic Theory

Definition 7 A dynamical system is a pair (Φt;X) consisting of a topological

space X, whose points are known as “states”; and a semi-group of transformations

Φt : X → X.

In general, we are concerned with investigating the ergodicity of certain smooth,

continuous-time dynamical systems described by ordinary differential equations.

In this case, the semi-group in question has the index set t ∈ R, and each element

Φt is a mapping between the set of initial conditions x ∈ X and their corresponding

solutions at a fixed time t, known as a flow. Later, we will also need to consider

certain discrete-time dynamical systems, whose groups of transformations will be

indexed by n ∈ Z; however, we are not directly interested in the ergodicity of such

systems, and the definitions that follow address only the continuous-time case.

For what follows, we will fix X and Φt such that: (1) X is compact and

Hausdorff; (2) each Φt : X → X is continuous, and Φt(x) varies continuously with

t for fixed x. Now, suppose we have a function f : X → R, which assigns a real

number to each state in X. For each solution curve {Φt(x)}t∈R+ , we can then

attempt to average the value of f along the length of the curve as t→ ∞:

Definition 8 Let Φt : X → X be a group of transformations, and f : X → R.

We define the time average of f as

Ix(f) := lim
T→∞

1

T

∫ T

0

f(Φtx) dt,

wherever it exists.

For fixed x, each function f gives rise to a time average giving asymptotic infor-

mation about the behaviour of Φtx. In particular, for each set U ⊂ X, we can

compute the time average of the characteristic function χU , which gives the so-

called “asymptotic density” of Φt(x) in U ; that is, the fraction of time for which

we have Φt(x) ∈ U as t → ∞. Given a trajectory {Φtx}t∈R+ , we could thus

consider the time average of each χU , and in doing so describe the trajectory’s

asymptotic distribution. It is, however, unclear from the above definition that

any non-trivial time averages exist.

We begin by considering a restriction. Let C(X) be the set of all continuous

functions mapping X to R, and consider for the moment Ix acting on only those

f ∈ C(X). The time average then, for each x, defines a real-valued functional
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Ix : C(X) → R, which has the following properties:2

(Linearity) Ix(αf + βg) = αIx(f) + βIx(g), ∀α, β ∈ R;

(Boundedness) |Ix(f)| ≤ sup
y∈X

|f(y)|;

(Positivity) Ix(f) ≥ 0 whenever f ≥ 0, and Ix1 = 1;

(Invariance under Φ) Ix(f ◦ Φs) = Ix(f), ∀s ∈ R.

Here, boundedness depends on the topological properties of X, and invariance

follows because truncating the curve does not alter the limit. Since Ix is a pos-

itive, bounded linear functional, we can apply a particular variant of the Riesz

Representation Theorem:

Theorem 4 Let X be a compact Hausdorff space. Then for each positive bounded

linear functional J on C0(X) there exists a unique finite Borel measure µ such

that J(f) =
∫

X
f dµ for all f ∈ C(X).3

Thus, for each x there exists a µx such that

Ix(f) =

∫

X

f dµx, ∀f ∈ C(X). (2.3)

It can be shown [KH, §4.1.a] that the Φ-invariance of Ix implies that µx is also Φ-

invariant; that is, µ(ΦtA) = µ(A) for all t ∈ R. Moreover, noting that Ix(f ◦Φs) =

IΦsx(f), we have IΦsx(f) = Ix(f) for all s ∈ R, and thus any two points from the

same solution curve give rise to the same Φ-invariant measure. Equation (2.3)

therefore tells us that, for each trajectory, there exists a unique Φ-invariant Borel

probability measure for which all time averages can be replaced with integrals

over the total phase space, taken with respect to said measure.

What is most interesting about this representation is that it assigns a measure

on the entire space based on the behaviour of a single trajectory. This “extension”

may often be trivial:

Example. If Φtx is a periodic trajectory with period T , then, supposing our σ-

algebra is sufficiently refined,4 we can define a measure µx such that the following

2This treatment of the time-average (as a linear functional) is presented in [KH, §4.1.a] for
the case of discrete maps.

3This is a slight modification of Theorem A.2.7 in [KH], which they state for a general
f ∈ C(X); immediately after stating the general result, they note that the result above applies
in the case of positive functionals.

4For example, if we choose the Borel σ-algebra, generated by the class of all closed sets in
the topology of X .
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hold:

1. µx(X \ {Φtx}t∈R) = 0;

2. µx({Φtx | t ∈ [t1, t2]}) =
t2 − t1
T

, whenever 0 ≤ t1 ≤ t2 ≤ T.

Clearly, equation (2.3) holds for this measure—since it assigns spatial weights

based on the frequency with which each section of the trajectory is traversed in

time—and by Theorem 4 it must by the only measure for which equation (2.3)

holds. Unfortunately, it tells us nothing about the behaviour of the system outside

this trajectory, and nothing about the trajectory which could not be deduced from

periodicity alone. ⋄

Perhaps unsurprisingly, more is needed to assert the relevance of such a measure

to the entire space.

One obvious criterion, to that end, would be if µx was identical for all x ∈ X.

Then, all time averages would be independent of the trajectory in question—in

particular, all trajectories would have the same asymptotic distributions. This

idea forms a basis for ergodic theory, which is typically formulated rather differ-

ently, in terms of invariant sets and functions.

Definition 9 A function f is said to be Φ-invariant if f(Φtx) = f(x) for all

t ∈ R, for each x ∈ X. A set U ⊂ X is said to be Φ-invariant if its indicator

function χU is invariant; or, equivalently, if ΦtU = U for all t ∈ R.

A Φ-invariant function is thus constant on the entirety of each trajectory {Φt
x}t∈R;

each such trajectory is a Φ-invariant set; and each Φ-invariant set is necessarily a

union of these trajectories, since for Φ-invariant U ⊂ X:

U =
⋃

t∈R

ΦtU =
⋃

t∈R

{

Φt
⋃

x∈U

{x}
}

=
⋃

t∈R

⋃

x∈U

Φt{x} =
⋃

x∈U

{Φtx}t∈R.

The notion of ergodicity restricts the nature of such sets as they occur in a given

measure space (X,µ), where µ is some Φ-invariant measure.

Definition 10 Let µ : σ(X) → R+ be a Φ-invariant Borel probability measure.

A dynamical system (Φt;X,µ) is said to be ergodic if every Φ-invariant set U has

measure µ(U) = 0 or µ(U) = 1.

Thus, for an ergodic system, any trajectory or union of trajectories has full or no

measure. Note that, here, we have the measure in hand, and we apply it to the
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totality of the system: While the earlier measures µx are obvious candidates for

ergodicity, there is no guarantee that (i) they will be Φ-invariant over the entire

space, or (ii) that the measure of every Φ-invariant set will be either zero or one.

Now, ergodicity can be brought to bear on the calculation and validity of time

averages. To see this, we begin by considering the set of Φ-invariant functions on

an ergodic system (Φt;X,µ):

Lemma 1 A dynamical system (Φt;X,µ) is ergodic if and only if any Φ-invariant

function is constant almost everywhere.

Proof. We present a slightly modified version of the proof in [CFS]. For any

Φ-invariant function f , the set Ua := {x ∈ X | f(x) < a} is also invariant for any

a ∈ R. Thus µ(Ua) is zero or one for each a, while µ(Ua) ≤ µ(Ub) whenever a < b.

By defining ã := inf{a ∈ R | µ(Ua) = 1}, we immediately see f(x) = ã almost

everywhere, and the first direction is proven.

For the other direction, let A be some Φ-invariant set. By definition, its in-

dicator function χA is also Φ-invariant, and by hypothesis this function must be

constant almost everywhere; yet this function only takes on the values {0, 1}.
Thus, either χA = 1 almost everywhere, and µ(A) = 1, or χA = 0 almost every-

where, and µ(A) = 0. This completes the proof. �

If the time average Ix(f) is well-defined for all (or almost all) x ∈ X, it can

be considered for fixed f as a function over the phase space, and we thus write

fΦ(x) := Ix(f). Since each time average is Φ-invariant, it then follows that the

time average must be constant over the entire space, except possibly a set of mea-

sure zero. Thus, ergodicity ensures that time averages are the same for trajectories

beginning at almost any x ∈ X.

In fact, more is true. While to this point we have guaranteed existence for only

those time averages arising from continuous functions, the result may be stated

for all µ-measurable functions on X. This result was first proven by Birkhoff, and

is thus referred to as the Birkhoff Ergodic Theorem:

Theorem 5 Let Φt : (X,µ) → (X,µ) be a measure-preserving transformation of

(X,µ), and suppose f : (X,µ) → R is µ-measurable. Then for µ-almost every

x ∈ X the following time average exists:

fΦ(x) = Ix(f) = lim
T→∞

1

T

∫ T

0

f(Φtx) dt.
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Thus the time average is well-defined almost everywhere, and constant almost ev-

erywhere when the system is ergodic. The proof of Birkhoff’s theorem is technical,

and while alternate proofs have arisen, they are all too lengthy for inclusion here.

(See [CFS] and [KH] for two such proofs.) However, three important properties of

fΦ(x) arise within these proofs: the time average is µ-measurable; it is invariant

under Φ, as we showed earlier for continuos f ; and the following identity holds—

∫

X

fΦ dµ =

∫

X

f dµ.

This last point brings us to the most salient feature of ergodicity: Since fΦ is Φ-

invariant, it must be constant on any set of full measure, thus fΦ(x) =
∫

X
fΦ dµ

almost everywhere, and

lim
T→∞

1

T

∫ T

0

f(Φtx) dt =

∫

X

f dµ (2.4)

almost everywhere. The expression on the left is generally known as the space

average of f ; thus, for an ergodic system, time and space averages are said to

agree at almost every point of (X,µ).

This property, as presented in equation (2.4), is useful for studying the long-

term dynamics of a system; but, to use it, one must first know a Φ-invariant

measure for which the system is ergodic. And yet, knowing just any ergodic mea-

sure is not enough. In fact, a system may be ergodic for more than one measure

without any of these producing meaningful space averages.

Example. Consider, for instance, a system that contains two periodic trajec-

tories, denoted Φtx1 and Φtx2. For the i-th periodic trajectory, we can define a

measure µxi
according to (1.) and (2.) from the previous example, and the system

will, in each case, be ergodic with respect to that measure: Every invariant set

either contains Φtxi, and hence has full measure, or does not, and hence has no

measure. Note that time and space averages will also hold “almost everywhere”

with respect to each µi—but this tells us nothing about X \ Φtxi, which may be

almost all of the space in the sense familiar from Lebesgue measure. ⋄

This behaviour is exemplary of a more general result, which qualifies the set of

measures for which a given system may be ergodic. Let µ1 and µ2 define measures

on the same state-space X, and recall that µ1 is said to be absolutely continuous
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with respect to µ2 if, for every measurable A ⊂ X,

µ2(A) = 0 ⇒ µ1(A) = 0;

recall also that µ1 and µ2 are said to be mutually singular if there are disjoint

measurable sets U and V such that µ1(U) = µ2(V ) = 1.

Theorem 6 Let (Φt;X) be a dynamical system, and let µ1 and µ2 be Φ-invariant

Borel probability measures. If (Φt;X,µ1) is ergodic and µ2 is absolutely continuous

with respect to µ1, then µ1 = µ2. Otherwise, if both (Φt;X,µ1) and (Φt;X,µ2) are

ergodic, then either µ1 = µ2, or µ1 and µ2 are mutually singular.

A proof of this result is provided in [CFS] for the discrete case, but can be easily

modified. Note that, if we considered only those ergodic measures with respect to

which Lebesgue measure is absolutely continuous, then the second property gives

µ1 = µ2 except on sets with Lebesgue measure zero. Additionally, all sets with

positive Lebesgue measure would contribute in the calculation of space averages.

2.2.1 Ergodicity for Hamiltonian Systems

Recall that the flow of a Hamiltonian system preserves the corresponding function

H : TM → R. If the system were ergodic, then by Lemma 1 it would be constant

everywhere. But this is only the case for the null flow, and there are obviously

many other choices of the Hamiltonian. Thus we have outright that no Hamil-

tonian system can be ergodic when considered on the entirety of its phase-space;

it could however, be ergodic when the system is restricted to a particular energy

surface H = E for some fixed E ∈ R. Of course, the same argument could be

applied to any other first integrals of the system, if such functions exist. Thus,

when investigating the ergodicity of a Hamiltonian system, it is necessary to fix

all such functions and consider the flow on the intersection of their respective

surfaces.

It should be noted that every Hamiltonian system has a natural invariant

measure: by the result of Liouville, every Hamiltonian system preserves volume

in phase space [Arn2]. The corresponding measure then induces a natural mea-

sure on the aforementioned surface, which is known as the conditional Liouville

measure. Since this paper deals only with the construction of orbits, and not the

ergodicity of the system, we note only that this measure is absolutely continuous
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with Lesbegue measure. The interested reader is directed to [DLT] for details of

the measure’s construction.
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Chapter 3

Our Model and Its Reduction

3.1 Two Point-Masses on the Torus

Our model begins with a rectangular domain Ω = [−α, α] × [−β, β] ⊂ R2, for

some α and β ∈ R+. We then identify opposite edges of Ω such that, topologically

speaking, Ω is equivalent to the 2-torus T2 = S1 × S1. Moreover, just as S1 may

be identified with R/Z in the usual way, our Ω = T2 is equivalent to R2/Z2, and

so it can be endowed with a quasi-intuitive algebraic structure:

(s1, t2) mod 1 + (s2, t2) mod 1 = (s1 + s2, t1 + t2) mod 1.

Formally, the interior of Ω =: Ω̃ may be used to define a chart or local co-ordinate

system on the torus with homeomorphism χI : U → Ω̃ ⊂ R2 such that

χ0 : (s, t) mod 1 7→ ((2s− 1)α, (2t− 1)β) , for s, t ∈ [0, 1).

However, such a map cannot be constructed for Ω itself, since the points belonging

to its boundary ∂Ω do not correspond to unique points of T2. Other charts are

therefore necessary to endow the torus with the structure of a manifold.

These may be chosen in various ways. In particular, using the algebraic struc-

ture of T2, we can rotate U via addition of some (r1, r2) ∈ T2, and consider the

resulting set

Ur1,r2
:= {(s, t) + (r1, r2) | (s, t) ∈ U}

together with a homeomorphism χr1,r2
: Ur1,r2

→ Ω̃ such that

χr1,r2
(s, t) := χ0(s− r1, t− r2).

27
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Ω

x = −α x = α

y = β

y = −β

Figure 3.1: The domain Ω ⊂ R2, which forms the basis for our charts. We can
also use Ω to construct the torus by identifying the edges marked with arrows.

Now, let q = (r1, r2) denote a point in T2. For each such q we in particular

have q ∈ Ur1,r2
=: Uq, with the corresponding homeomorphism χq := χr1,r2

.

Next consider the overlap Ur1,r2
∩ Ur3,r4

. If (r1, r2) 6= (r3, r4), this set will be

disconnected, although it can be written as a union of between two and four

connected components; moreover, it is easy to see that each connected component

undergoes a linear transformation between co-ordinate systems. (See figure 3.2.)

In particular, for each component we can choose ri ∈ R such that (i) ri mod 1 =

ri ∈ S1 and (ii) on the overlap we have

χr3,r4
◦ χ−1

r1,r2
: (x, y) 7→ (x+ 2α(r1 − r3), y + 2β(r2 − r4))

for all (x, y) in the chosen set. Equivalently, we may write this

χr3,r4
◦ χ−1

r1,r2
: (x, y) 7→ (x, y) − χr1,r2

(r3, r4) + 2(αN, βM) (3.1)

forN,M ∈ {0,±1}, where N andM may vary between the connected components

of χr1,r2
(Ur1,r2

). The torus T
2 is thus a smooth manifold when endowed with

the family of charts {(Uq, χq)}q∈T2 . Additionally, note that each of these charts

contains all of T2 except a trivial set.

We will use these charts to define a metric on T2. If q1 and q2 are two points

on the torus, we define

d(q1, q2) = inf
q∈T2

{‖χq(q1) − χq(q2)‖ | q1, q2 ∈ Uq} . (3.2)

To show that this is indeed a metric, we will use the following lemma:
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χ0(Uq ∩ U)

χ0(Uq ∩ U)

χq(Uq ∩ U)
χq ◦ χ−1

0

Figure 3.2: Top: The set Uq ∩ U , for q ≈ (2
3
, 2

3
) ∈ R2/Z2, as it appears in the

co-ordinates of the original Ω̃ = χ0(U). Note that although their intersection is
disconnected, it can be written as the union of four connected sets. Bottom: The
change of co-ordinates maps moves the top-right corner of Uq to the top-right
corner of Ω. Within each connected component, the map is linear.
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Lemma 2 The infimum in equation (3.2) is achieved for q = q1 whenever q2 ∈
Uq1

.

Proof. Let q ∈ T2 be such that q1, q2 ∈ Uq. In local co-ordinates χq(Uq), we have

the distance ‖χq(q2)−χq(q1)‖. Whereas in the local co-ordinates χq1
(Uq1

) we have

‖χq1
(q2) − χq1

(q1)‖ = ‖χq1
(q2)‖ = ‖χq(q2) − χq(q1) + 2(αN, βM)‖

using the transformation (3.1). Define

D(N,M) := ‖χq(q2) − χq(q1) + 2(αN, βM), ‖

and note that the distance in χq(Uq) is achieved for N = M = 0. It is now

sufficient to show that the values of N and M which minimize D are indeed those

of transformation (3.1), for which

χq(q2) − χq(q1) + 2(αN, βM) = χq1
(q2) ∈ χq1

(Uq1
).

Define ∆ := χq(q2) − χq(q1) and let πi denote the projection onto the i-th

component. It is clear that |π1(∆)| < 2α and |π2(∆)| < 2β, and that

D(N,M) =
(

|π1(∆) − 2αN |2 + |π2(∆) − 2βM |2
)

1

2 .

Now, for every fixed M ∈ Z, D is minimized by

N =











−1 if π1(∆) > α

0 if − α < π1(∆) < α

1 if π1(∆) < −α

And for every fixed N ∈ Z, D is minimized by

M =











−1 if π2(∆) > β

0 if − β < π2(∆) < β

1 if π2(∆) < −β

It is now easy to verify that

∆ + 2(αN, βM) ∈ χq1
(Uq1

) = (−α, α) × (−β, β),

and, given the size of (2α, 0) and (0, 2β), that there is only one such point χq1
(q2).
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This completes the proof. �

The lemma applies only for q2 ∈ Uq1
; the remaining points present a formal

problem. To resolve this, we extend the local co-ordinates χq1
(Uq1

) = Ω̃ to the

whole of Ω = Ω̃∪∂Ω, and extend the map χ−1
q1

: Ω → T2 such that it is continuous.

Recall from our original construction of T2 that the points T2 \ U corresponded

to the boundary ∂Ω. Since Uq1
is simply a rotation of U , the same holds here, and

we see that χ−1
q1

is onto T2. Finally, while points q2 /∈ Uq1
do not have a unique

pre-image in Ω, it is enough to note that, because of the way boundary points

have been identified, they have the same norm in χq1
(T2).

It is thus possible to identify any d(q1, q2) with its norm in the closure of

χq2
(Uq2

). We will use this fact to prove the following:

Proposition 2 Equation (3.2) defines a metric on T2.

Proof. The property d(q1, q2) ≥ 0 follows readily from the definition; that

d(q1, q2) = 0 if and only if q1 = q2 is clear from Lemma 2. Now consider the

sum d(q1, q2) + d(q2, q3). In extended local co-ordinates χq2
(Uq2

) we have

d(q1, q2) + d(q2, q3) = ‖χq2
(q1)‖ + ‖χq2

(q3)‖
≥ ‖χq2

(q1) − χq2
(q3)‖.

But by the definition of d( · , · ), we have ‖χq2
(q1)−χq2

(q3)‖ ≥ d(q1, q3). It follows

that d(q1, q2) + d(q2, q3) > d(q1, q3) and equation (3.2) defines a metric on T2. �

Thus, our torus is now both a smooth manifold and a metric space.

Having properly constructed the torus, we may now define our dynamical

system upon it. Consider two identical point-masses moving in T2 with position

co-ordinates q1(t), q2(t). Their motion is governed by a potential energy U : T2 ×
T2 → R which depends only on the distance between these points; we thus write

U(q1, q2) = U(d(q1, q2)) for some U : R+ → R. Using this notation, we will now

make additional assumptions regarding our potential:

U is at least once differentiable; (3.3)

∃R ∈ R
+ such that R < min{α, β} and U(r) = 0, ∀r > R. (3.4)

We further assume that there exists an ξ ∈ R+ and a subinterval I ⊂ [0, ξ) ⊂ R
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of positive measure, such that the following properties hold:

U ′(r) ≤ 0, ∀r ∈ [0, ξ), (3.5)

U ′(r) < 0, ∀r ∈ I ⊂ [0, ξ), (3.6)

and inf
r∈[0,ξ)

U(r) ≥ sup
r∈[ξ,∞)

U(r), (3.7)

One the one hand, these assumptions are mathematical conveniences, but they are

also made in accordance with the physical model. Equation (3.4), for instance, for-

malizes the idea that the molecules of gases, when sufficiently far apart, no longer

exert significant forces on one another—to paraphrase Boltzmann’s discussion of

gases quoted earlier. Similarly, as we will see in §3.4.2, the final criteria (3.5–3.7)

ensure that all high-energy collisions result in deflections. (For low energies, it is

possible for the particles to “orbit” one another.) In mathematical terms, these

criteria ensure that U is strictly decreasing on some non-trivial interval I ⊂ R+,

and that each U(r) has a unique pre-image whenever r ∈ I. While there are

continuous differentiable functions that satisfy this criterion but do not satisfy

equations (3.5–3.7), the latter is enough to ensure the former.

Example. A simple potential function satisfying (3.3–3.7) is of the form

U(d(q1, q2)) =
1

2
k2(2R− d(q1, q2))

2
+, (3.8)

for some R, k ∈ R, where ( · )+ := max{ · , 0}. ⋄

Now, the momentum of each point-mass is given by p = mq̇, where m ∈ R is

the “mass” associated with each point. The kinetic energy for the system is then

given by T = 1
2m1

p2
1 + 1

2m2
p2

2. Since we are interested in identical particles, we

will assume without loss of generality that m1 = m2 = 1. The total mechanical

energy H = T +U will now be our Hamiltonian function. However, in formulating

this problem as a Hamiltonian system, we will concatenate each pair of position

and momentum vectors to form q ∈ T4 and p ∈ R4. The above description thus

corresponds to a Hamiltonian of the form

H(q, p) =
1

2
‖p‖2 + U(d(q1, q2)). (3.9)

As in a classical mechanical system, the total “mechanical energy” is clearly pre-

served, such that the kinetic energy decreases as U increases. More precisely, we
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expect the point-masses to move with constant momentum when d(q1, q2) > R,

since this gives U = 0; and we expect the point-masses, when they subsequently

encounter each other, will undergo a change in kinetic energy analogous to an

elastic collision. This motion, of course, is formally described using Hamilton’s

equations—
dq

dt
=
∂H

∂p
= p,

dp

dt
= −∂H

∂q
= −∇qU(d(q1, q2)) (3.10)

—which define a vector field on the whole of TT2.

As we mentioned earlier, the closure of Ω̃ can be mapped onto the torus. For

this reason, we can work almost entirely within any system of local co-ordinates

χq(Uq): solutions may be solved within the local co-ordinate system, then extended

continuously beyond their boundary ∂Ω, whereupon the solution can again be

identified with a point in Ω̃. Using these local co-ordinates, we may speak of a

point q = (x, y) ∈ Ω as having “x” and “y” co-ordinates; similarly, the momentum

of a particle moving in Ω may be said to have “x” and “y” components. In order

to highlight the geometry of the problem, we will speak of the position of our

particles as points on the torus; but the distinction between x and y co-ordinates

that is natural in Ω will prove beneficial in describing certain classes of trajectories

in the systems under consideration.

3.1.1 Initial Invariants

In addition to the total energy H , the system has two further invariants that arise

from the total momentum of the system. To see this, note

dp1

dt
= −∇q1

U(d(q1, q2))

= −U ′(s)|s=d(q1,q2)
· ∇q1

d(q1, q2)

= −U ′(s)|s=d(q1,q2)
· −∇q2

d(q1, q2)

= ∇q2
U(d(q1, q2)) = −dp2

dt

by the chain rule, and hence

d

dt
(p1 + p2) = 0. (3.11)

Projecting this into the x and y components of phase space then yields two first

integrals of (3.10)—in addition to the Hamiltonian itself—but no additional first
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integrals are known to exist; hence, the system will be presumed un-integrable.

That said, in §3.2 we will reduce the dimension of the phase-space under consid-

eration via a change of co-ordinates, which uses the energies implicit in (3.11) to

eliminate two components of the momenta.

3.1.2 An Equivalence among Potential Functions

In equation (3.8), we introduced a sample potential which dependent on a multi-

plicative constant k2. Consider now an arbitrary potential U : R+ → R satisfying

at least (3.3) and (3.4), and define the related potential Ũ = k2U for an arbitrary

k ∈ R. Now suppose we are given a set of initial conditions (q(0), p(0)) for which

d(q1, q2) ≥ R. Given the energy Ũ , each trajectory in phase space is of course

determined by the equations

q̇ = p, (3.12)

ṗ = −∇qŨ(d(q1, q2)). (3.13)

Now, we can employ the following scalar transformation of coordinates in t and

p, while leaving q unchanged—

t 7→ t/k

p 7→ kp

—which leaves q̇ = p, and on the other hand gives

ṗ = −∇q

(

1

k2
Ũ(d(q1, q2))

)

= −∇q (U(d(q1, q2))) .

But these equations are Hamilton’s equations for a system with potential energy

U ; indeed, every trajectory (q(t), p(t)) described by equations (3.12–3.13) may be

mapped to the trajectory (q(kt), 1
k
p(kt)) of the original system, which is identical

in configuration space and isometric otherwise. The potential energy U can there-

fore be altered by a scalar factor without affecting the behaviour of the system

as a whole; however, as we will see, the dynamics of the system are otherwise

dependent on the graph of U in R+ × R.
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3.2 Dimension-Reducing Transformations

A dimension-reducing transformation for the two-particle problem occurs in the

work of Sinai [Sin]. In terms of the spatial co-ordinates, his transformation takes

the following form:

Q1 = q1 + q2, (3.14)

Q2 = q1 − q2; (3.15)

—or, written using a matrix over the field of 2-vectors,

[

Q1

Q2

]

=

[

1 1

1 −1

][

q1

q2

]

. (3.16)

Sinai’s transformation is a four-to-one cover of the original configuration space. To

see this, begin by considering the system (3.14–3.15) for points q1, q2, Q1, Q2 ∈ S1.

Now suppose we are given Q1 and Q2, while q1 and q2 remain unknown, and then

replace the known quantities with arbitrary lifts into R; we will denote these lifts

by Q1 +N and Q2 +M respectively, such that Q1, Q2 ∈ [0, 1) and N,M ∈ Z. The

resulting algebraic system in R has solutions

q1 =
1

2
(Q1 +Q2) +

1

2
(N +M)

q2 =
1

2
(Q1 −Q2) +

1

2
(N −M)

For each choice of N and M , these solutions can be projected back into S1, which

gives two distinct solutions depending on whether N ± M is even. Since our

system is in fact over T
2 = S

1 × S
1, this ambiguity exists in determining each

co-ordinate, and hence each transformed point is the image of four points on the

original torus.

More recently, Donnay [Don2] has presented three different dimension-reducing

transformations for the above system, two of which are also suitable for particles

of unequal mass. The first of these is applicable only when the ratio of these

masses is rational; in the case of equal masses, this particular transformation

reduces to that of Sinai. More interesting is the third transformation, which he

derives for particles of equal mass and zero total momentum—and which follows

from simple, geometric considerations. Again, we are concerned with particles

of equal, unitary mass; for such a system, this transformation would amount to
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considering the position of the midpoint between the two particles, together with

the displacement of the first particle from that midpoint:

[

Q1

Q2

]

=

[

1
2

1
2

1
2

−1
2

][

q1

q2

]

. (3.17)

This is only a scalar multiple of the transformation employed by Sinai, but it has

the benefit of an obvious geometric interpretation, and (incidentally) the present

matrix is the inverse of the former.

Of course, either of these transformations are incomplete without a corre-

sponding transformation of the momentum variables. The overarching goal is

to find a transformation L : (q1, q2, p1, p2) 7→ (Q1, Q2, P1, P2) which is symplec-

tic, or “canonical,” and so would be measure preserving. To simplify matters,

we will assume L is linear, and that it treats position and momentum variables

independently; that is,

L =

[

LQ 0

0 LP

]

,

for suitable 4 × 4 matrices LQ : (q1, q2) 7→ (Q1, Q2) and LP : (p1, p2) 7→ (P1, P2).

Now, for a linear transformation, symplecticity requires LTJL = J , where

J =

[

0 I

−I 0

]

.

A quick calculation reveals that, for L as described, this holds if and only if

LQLP = I, and so LP = L−1
Q . If LQ is chosen as in (3.17), then this gives LP such

that
[

P1

P2

]

=

[

1 1

1 −1

][

p1

p2

]

(3.18)

—again, written over the space of 2-vectors. We note that our choice of position

co-ordinates gives Ṗ1 = 0 by equation (3.11). As shown in [HLW, §VI.2], the

symplectic transformation of a Hamiltonian system is again a Hamiltonian, defined

via the function H̃(Q,P ) = H(L−1(Q,P )); explicitly, this gives

H̃ =
1

4
‖P1‖2 +

1

4
‖P2‖2 + U(2d(0, Q2)). (3.19)
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Note that this transformed system is separable: letting

H1(Q1, P1) =
1

4
‖P1‖2 (3.20)

and H2(Q2, P2) =
1

4
‖P2‖2 + U(2d(0, Q2)), (3.21)

we can write H̃ = H1 + H2; each co-ordinate pair (Q1, P1) and (Q2, P2) evolves

independently of the other, and thus the resulting system is, in fact, the product

of two lower-dimensional systems. The system defined by H1, which describes the

movement of the midpoint, may be integrated trivially; however, the system that

arises from H2, describing the displacement vector, exhibits more complicated

behaviour.

3.3 The Linear Component

Let (q1, q2) and (p1, p2) denote the components of Q1 and P1 respectively. For the

system defined by H1(Q1, P1) = 1
4
‖P1‖2, Hamilton’s equations give

q̇i =
1

2
pi, ṗi = 0; (3.22)

for i = 1, 2. Each pi is thus an invariant of the system, while

qi(t) = qi(0) +
1

2
pi(0) t, i = 1, 2 (3.23)

for all t ∈ R+. Because each momentum is an invariant, the flow cannot be

ergodic on the total phase space; however, it may still be ergodic when restricted

to configuration space.

We begin by considering the ergodicity of an arbitrary discrete translation,

Tγ : T2 → T2, defined by

Tγ : (q1, q2) 7→ (q1 + γ1, q2 + γ2),

for some γ1, γ2 ∈ R. Recall that the numbers γ1, γ2, . . . , γn are called “rationally

independent” if
n
∑

i=1

kiγi = 0 ⇒ ki = 0, i = 1, . . . , n

for all n-tuples (k1, . . . , kn) ∈ Zn+1.
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Proposition 3 If γ1, γ2, 1 are rationally independent, then the translation Tγ is

ergodic with respect to Lebesgue measure. [KH, §4.2]

Proof. Let f : T
2 → R be a bounded, measurable function that is Tγ-invariant.

By the periodicity of our domain, we can write f as a Fourier expansion

f(q1, q2) =
∑

(k1,k2)∈Z2

fk1,k2
exp

(

2πi

2
∑

j=1

kjqj

)

(3.24)

for suitable fk1,k2
∈ R. Now consider

f(T (q1, q2)) =
∑

(k1,k2)∈Z2

fk1,k2
exp

(

2πi

2
∑

j=1

kj(qj + γj)

)

=
∑

(k1,k2)∈Z2

fk1,k2
exp

(

2πi
2
∑

j=1

kjqj

)

exp

(

2πi
2
∑

j=1

kjγj

)

But f(T (q1, q2)) = f(q1, q2). By uniqueness of the Fourier expansion, we thus

have

fk1,k2
·
(

1 − exp 2πi

2
∑

j=1

kjγj

)

= 0, ∀k1, k2 ∈ Z
2.

Unless k1 = k2 = 0, rational independence implies k1γ1 + k2γ2 /∈ Z, and hence

fk1,k2
= 0. The f is therefore constant almost everywhere, and Tγ is ergodic. �

Will will now adapt this discrete result for a continuous map, using an approach

given in [KH, §1.5] for their Proposition 1.5.1. The results are related as follows:

for a given flow Φ on a manifold M , every Φ-invariant function will by definition

be invariant under the discrete transformations Φt : M → M , although each

of these discrete transformations may admit other invariant functions, which are

potentially non-constant. On the other hand, if any discrete transformation Φt :

M → M is ergodic, the flow Φ must also be ergodic, since its invariant functions

are a subset of the former.

For simplicity, we will again use co-ordinates T2 = R2/Z2; there are then γ1, γ2

such that

T t
γ : (q1, q2) 7→ (q1 + tγ1, q2 + tγ2)

corresponds to the solution (3.23) in local co-ordinates.

Proposition 4 If γ1, γ2 are rationally independent, then the translation T t
γ is
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ergodic with respect to Lebesgue measure.

Proof. Let f : T2 → R be a bounded, measurable function that is T t
γ-invariant.

Suppose t ∈ R is fixed. Again, we consider the Fourier expansion of f , given by

(3.24), and use invariance to show

fk1,k2
·
(

1 − exp 2πi
2
∑

j=1

kjtγj

)

= 0, ∀k1, k2 ∈ Z
2.

We wish to find a value of t for which

t · (k1γ1 + k2γ2) + k3 = 0 ⇒ ki = 0, i = 1, . . . , 3; (3.25)

then, we will have f constant almost everywhere, and T t
γ ergodic as before. Since

γ1, γ2 are rationally independent, for every triple (k1, k2, k3) ∈ Z3, there exists

precise one value of t for which t (k1γ1 + k2γ2) + k3 = 0:

t̃ =
k3

k1γ1 + k2γ2
.

Finally, since there are only countably many such values, but uncountably many

choices of t, we can choose a t such that (3.25) holds. �

For each γ1 there are only countable many γ2 for which k1γ1 + k2γ2 = 0; indeed,

there is just one for each pair k1, k2. The set of all such γ2 thus has Lebesgue

measure zero over the line. Integrating over all choices of γ1, we thus find that

the set of all pairs of rationally dependent real numbers—i.e., those for which

k1γ1 + k2γ2 = 0 for some k1, k2 ∈ Z—has Lebesgue measure zero in the plane.

Finally, since the correspondence between (γ1, γ2) and (p1(0), p2(0)) is linear and

therefore measure preserving, we can say that flow arising from (3.20) is ergodic

for almost all initial conditions.

This, however, does not solve the problem of ergodicity for the system (3.10).

Suppose, for instance, that the initial conditions giving rise to ergodic behaviour

in (3.23) also give rise to a flow Φ in the non-linear component which preserves

some set A of partial measure (i.e., 0 < µ(A) < 1). Then the set B := T2 × A

would have measure µ(B) = µ(A) in the product space. Since B is an invariant

set of the total flow, and 0 < µ(B) < 1, the product of these systems would not

be ergodic. It follows that, to determine the ergodicity of (3.10), we will also need

to determine the ergodicity of the non-linear component.
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3.4 The Non-linear Component

As mentioned in the previous section, the ergodicity of the original Hamiltonian

system (3.10) now depends largely on the non-linear system with Hamiltonian

(3.21). Moreover, since we have dispensed with its linear counterpart (3.20), and

the remainder of this paper deals with the latter system, the subscripts on P ,Q

andH will be dropped. Finally, by a linear rescaling of both TT
2 and U : R

+ → R,

we can rewrite (3.21) as follows

H =
1

2
‖P‖2 + U(d(0, Q)). (3.26)

Now, suppose the torus has be endowed with its Cartesian representation as the

periodic domain Ω = [−α, α] × [−β, β], and let Q = (x, y) and P = (px, py). The

Hamiltonian then gives rise to the differential equations

dQ

dt
=
∂H

∂P
= P,

dP

dt
= −∂H

∂Q
= −∇QU(d(0, Q)) (3.27)

which in turn correspond to the vector field vH : T2 ×R2 → R4 defined as follows:

vH :













x

y

px

py













7→













px

py

− ∂
∂x
U(d(0, Q))

− ∂
∂y
U(d(0, Q))













, (3.28)

where the partial derivatives are taken with respect to x and y as variables, and

then evaluated at the point in question. Simply knowing the vector field of the

reduced system, one can make concrete assertions about the existence of symmet-

ric trajectories. In particular, we can now show the existence of a continuum of

trajectories that are each symmetric about a co-ordinate axis—each of which, if

satisfying certain elementary conditions, will be periodic for a special choice of

the geometry.

3.4.1 Existence of Periodic Orbits

The results in this section follow from certain discrete symmetries of the vector

field (3.28). Let ρy : (x, y, px, py) 7→ (x,−y,−px, py) denote the component-wise

reflection of the system in y and px, and note that the function ∂
∂y
U(d(0, Q)) is
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odd in its dependence on y:

∂

∂y
U(d(0, Q))

∣

∣

∣

∣

−y

= − ∂

∂y
U(d(0, Q))

∣

∣

∣

∣

y

.

Then we clearly have the reversibility relation

vH ◦ ρy = −ρy ◦ vH

everywhere, and the flow Φt
H arising from vH satisfies

ρy ◦ Φt
H = Φ−t

H ◦ ρy, ∀t ∈ R.

This reversibility immediately gives rise to a set of trajectories that are symmetric

about y = 0 in configuration space:

Proposition 5 If a trajectory of the system passes through1 either the point

(x̃, 0, 0, p̃y) or the point (x̃,±β, 0, p̃y), for any pair x̃ ∈ S
1 and p̃y ∈ R, then that

trajectory, projected into the configuration space, will be symmetric about y = 0.

Proof. Both sets of points are invariant under ρy. Consider any trajectory

passing through one such point, and assume without loss of generality that this

point corresponds to the initial condition (Q0, P0). For any such point,

Φ−t
H (Q0, P0) = ρy ◦ Φt

H(Q0, P0)

—i.e., reversibility of the flow amounts to symmetry of the orbit about t =

0. Thus, if (x, y, px, py) = Φt
H(Q0, P0) for some t ∈ R, then Φ−t

H (Q0, P0) =

(x,−y,−px, py); in particular, the trajectory, extended in both temporal direc-

tions, is symmetric about y = 0 when projected onto the configuration space. �

Note that the quotient structure of the torus ensures that any curve symmetric

about y = 0 is also symmetric about y = ±β and vice versa. Moreover, the

vector field is symmetric with respect to the interchanging of (x, px) with (y, py);

in particular, we have the reflection ρx : (x, y, px, py) 7→ (−x, y, px,−py), which

1In using the phrase “passes through,” we rule out those trajectories for which px = py = 0
for all t ∈ R.
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means that the flow is also reversible under ρx with

ρx ◦ Φt
H = Φ−t

H ◦ ρx, ∀t ∈ R.

Now, we could thus repeat the above proposition (as well as those derived below)

using reversibility in x and the corresponding invariant points and axes—although

such amendments would be merely notational. Of greater interest are the asser-

tions this additional reversibility allows us to make concerning the existence of

periodic orbits. Before stating this result, we note that the point (±α,±β) in

configuration space—which corresponds to any of the corners of Ω, all of which

have been identified in the construction of the torus—is invariant under both

reflections.

Proposition 6 Let x ∈ Ω and py ∈ R. If a trajectory passing through either

(x, 0, 0, py) or (x,±β, 0, py) in phase space also passes through any point corre-

sponding to (±α,±β) in configuration space, then the trajectory will be periodic.

Proof. Again, we assume without loss of generality that (Q0, P0) is one of the

invariant points specified. Suppose further that this trajectory eventually passes

through (±α,±β), taking on those values for some t0 ∈ R; i.e., Φt0
H(Q0, P0) =

(±α,±β, p̃x, p̃y), for some p̃x, p̃y ∈ R. Then, by the symmetry in y, we also have

Φ−t0
H (P0, Q0) = (±α,±β,−p̃x, p̃y). Together, these imply

Φ2t0
H (±α,±β,−p̃x, p̃y) = (±α,±β, p̃x, p̃y), (3.29)

and applying reversibility in ρx to this equation gives

Φ−2t0
H (±α,±β,−p̃x,−p̃y) = (±α,±β, p̃x,−p̃y).

But ΦH is a Hamiltonian flow, and is therefore reversibile under the mapping

ρ : (x, y, px, py) 7→ (x, y,−px,−py) [HLW, §V1], which gives ρ ◦ Φt
H = Φ−t

H ◦ ρ
everywhere. In particular, when applied to the previous equation, this implies

Φ2t0
H (±α,±β, p̃x, p̃y) = (±α,±β,−p̃x, p̃y). Taken in tandem with equation (3.29),

we thus obtain

Φ4t0
H (±α,±β, p̃x, p̃y) = Φ2t0

H (±α,±β,−p̃x, p̃y) = (±α,±β, p̃x, p̃y),

and the trajectory is therefore periodic. �
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This may not seem like a particularly useful result in itself; however, by fixing

an initial condition (x̃, 0, 0, p̃y), and then altering the geometry accordingly, it is

possible to adjust the “corners” of Ω so that a given trajectory will pass through

them. In particular, we fix β ∈ R and consider the differential equation acting on

the domain Ω := R × [−β, β]. Until the trajectory reaches x = ±α, its behaviour

on Ω is indistinguishable from its behaviour on Ω; thus, we could determine when

a trajectory intersects y = ±β in Ω and choose an α as follows whenever it exists:

α = inf

{

|x(t)|
∣

∣

∣

∣

∣

y(t) = ±β and |x(t)| = sup
|s|<t

|x(s)|
}

,

where x(t) and y(t) are solutions in Ω corresponding to the given initial condition.

Note that the condition |x(t)| = sup|s|<t |x(s)| is necessary to ensure that the

trajectory on Ω will indeed be identical with that on Ω until time t, at which point

it will reach the prospective corner of some Ω. Note also that the infimum merely

serves to make α unique; any element of the set on which it acts will produce a

suitable geometry. Unfortunately, we cannot properly treat these matters without

first computing solutions of the system. We give a more complete account of the

existence and cardinality of such geometries in §5.3, by which point we will have

presented the necessary machinery.

3.4.2 Local Quadratures

We will now attempt a local description of the trajectories arising from system

(3.27). To do so, we will restrict ourselves to a set of local co-ordinates, where the

global structure of the torus is lost. In particular, our co-ordinate system will be

precisely that of Ω—although restricted to its interior, Ω̃, to avoid any confusion

between the previously identified edges. The system will, of course, leave this

region in finite time; however, since the system is linear near the boundary of Ω,

we can readily extend these trajectories some small distance on the torus, and

then return to the local co-ordinate system.

Recall that, within these local co-ordinates, d(0, Q) = ‖Q‖, the usual Eu-

clidean 2-norm, and so U depends only on the distance between (x, y) =: Q and

(0, 0). In this context, the system defined by H describes a point-mass with unit

mass moving in a central potential field—that is, a field whose vectors are invari-

ant to the group of motions on the plane that fix the origin [Arn2, §2.6 ff]. For
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any such system, the angular momentum is a first integral. This can be made

readily apparent in our particular case (and all others) by rewriting the planar

system as a new Hamiltonian in polar co-ordinates. For position co-ordinates, we

choose q = (r, θ) such that

x = r cos θ

y = r sin θ

}

⇒
{

px = ẋ = ṙ cos θ − rθ̇ sin θ

py = ẏ = ṙ sin θ + rθ̇ cos θ
. (3.30)

Now, the potential and kinetic energies of the system are independent of the

co-ordinates chosen for the configuration space; thus, we have

T =
1

2
‖P‖2 =

1

2

[

(ẋ)2 + (ẏ)2
]

=
1

2

[

(ṙ)2 + (rθ̇)2
]

in terms of q and q̇. This allows us to define the Lagrangian L = L(q, q̇) of the

system, given by L = T − U ; the generalized momenta can then be recovered by

the usual relation—

p =
∂L

∂q̇

—which gives p = (ṙ, r2θ̇) for q = (r, θ). The Hamiltonian may now be written in

terms of the components of p and q:

H = T + U =
1

2

[

p2
1 +

p2
2

r2

]

+ U(r). (3.31)

Note that the total energy is independent of q2. Finally, the dynamics of the

system are given by Hamilton’s equations as follows:

ṙ = p1, ṗ1 =
p2
2

r3 − U ′(r);

θ̇ = p2

r2 , ṗ2 = 0.
(3.32)

The momentum p2—which is traditionally denoted M , and known as the angular

momentum—is clearly an invariant of the system. Moreover, r1 depends only on

p1, and vice versa, since p2 =: M is constant. Thus, q1 = r is defined entirely by

the equation

r̈ =
M2

r3
− U ′(r) =: f(r) (3.33)

and appropriate initial conditions. In general, this differential equation cannot be

solved explicitly for r as a function of t, but we can construct an implicit solution

via quadratures. To see this, return to the Hamiltonian (3.31), keeping in mind
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that p2 =: M is constant. Now, H is also constant along any trajectory; let us

denote this value by H =: E ∈ R. Independently, the equation H = E determines

a curve in (r, ṙ)-space; since the Hamiltonian is quadratic in p1 = ṙ, this curve is

also symmetric about ṙ = 0. Provided these curves contain no stationary points,

each will correspond to a trajectory of (3.32): for fixed r ∈ Ω, equation (3.31) can

then be solved for ṙ as follows

⇒ ṙ = ±
√

2 (E − V (r)). (3.34)

where V (r) = M2

2r2 + U(r) can be seen as a potential energy, now that M is fixed.

The shape of each level-curve, and the nature of the corresponding trajectory, will

be determined (in part) by the set of r values for which V (r) = E.

If U is a potential with repelling core—that is, it satisfies equations (3.5–

3.7)—then V will also have a repelling core, since r 7→ M2

2r2 is (strictly) decreasing.

In particular, V is also strictly decreasing on I, and one-to-one between I and

V (I) =: J ⊂ R. We now restrict ourselves to values of E ∈ J , noting that J is in

fact an interval of positive measure. For any such E, there exists a unique r̃ ∈ R

such that V (r̃) = E, and this r̃ must be an element of I. We then have V (r) > E

for all r ∈ [0, r̃), since V is decreasing on some [0, ξ) containing r̃; we also have

V (r) < E for all r ∈ (r̃,∞), since V is decreasing on [0, ξ) and

inf
r∈[0,ξ)

V (r) ≥ sup
r∈[ξ,∞)

V (r).

Finally, we can guarantee that, for such H , the trajectory along the level-curve

does not contain an equalibrium point, since

ṙ = 0 ⇒ V (r) = E ⇒ r = r̃ ⇒ f(r) = V ′(r̃) < 0,

since V is strictly decreasing on I. The trajectory can then be extended indefi-

nitely in time [Arn1, §12.5], during which it will traverse the entire level-curve,

with the half for which ṙ < 0 being traversed first with respect to time.

Equation (3.34) is, of course, separable, and can be integrated to yield another

quadrature:

t =

∫ t

0

dζ = ±
∫ r

r0

dξ
√

2 (E − V (ξ))
.

Assuming t ∈ R
+, only one of these solutions is admissible; if r is initially

decreasing—which will (or, rather, can) be the case whenever we have an ini-
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tial condition within U ’s compact support—then we take the negative root. This

quadrature then only makes sense only until r takes on the critical value r = r̃,

after which the integrand is undefined, and this will happen at some finite time

t = t̃, since the trajectory does not contain an equilibrium; until that point, it

defines t explicitly in terms of r. Moreover, since the integrand is always positive,

the relation between t and r is one-to-one, and so r is also implicitly defined on

(−∞, t̃) as a function of t. Finally, we can extend our solution beyond this point

using the symmetry relation

r(t̃+ τ) = r(t̃− τ), ∀τ > 0,

which arises from the reversibility of the system (3.32) under ρ : (r, ṙ) 7→ (r,−ṙ),
and the ρ-invariance of (r, ṙ) at t = t̃.

Having determined r implicitly for all t, we can now solve for the other spatial

co-ordinate in our polar equations, q2 = θ. Noting that θ̇ = M/r2, and by the

chain rule
dθ

dt
=
dθ

dr
· dr
dt
,

we have for t < t̃

θ − θ0 = −
∫ r

r0

M

ξ2
√

2(E − V (ξ))
dξ, (3.35)

which defined θ explicitly as a function of r (and thus t) that is again one-to-one.

If we define θ̃ = θ(r̃) = θ(r(t̃)), then we can also, much as before, extend this

result via a symmetry relation:

r(θ̃ + φ) = r(θ̃ − φ), ∀φ > 0.

Thus we have solved the Hamiltonian system arising from H in the local co-

ordinates.

3.4.3 Integrability and the Global Geometry

Unfortunately, the local solutions from the previous section tell us little about the

global dynamics of the system. As mentioned earlier, the original system is not

integrable: when a trajectory moves between two charts, it generally experiences

a discrete jump between distinct angular momenta, and as such the various in-

variants utilized in the previous section do not exist for a system properly defined

on the torus.
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To see this, take M = r2θ̇ as determined in the previous section, and rewrite

that expression in Cartesian co-ordinates via (3.30), yielding

M = xpy − ypx. (3.36)

Now, consider a trajectory that exits the local co-ordinate system Ω through the

line y = β, and “reappears” on the line y = −β in an identical co-ordinate

system. All other Cartesian co-ordinates remain unchanged in this scenario; thus,

if M is the angular momentum before the change of co-ordinates and M ′ is the

momentum after, we simultaneously have

{

M = xpy − βpx

M ′ = xpy + βpx

Subtracting the former from the latter then gives the following relation:

M ′ = M + 2βpx. (3.37)

Thus, the two momenta are equal if and only if px = 0, and there are certainly

many trajectories for which the latter does not hold at the boundary. In a more

general system, this would only show that our representation of the angular mo-

mentum is dependent on the choice of local co-ordinates—and that is hardly a

surprising result. But our representation of M is valid almost everywhere on T
2.

If M is to be a global integral on the 2-torus, there must be a way of identifying

the different local values of M that correspond to the same global trajectory. And

yet this correspondence is given by equation (3.37), and there is no obvious change

of co-ordinates in which this relation is made obsolete.

Example. For the sake of comparison, let us briefly describe a manifold for which

the angular momentum of this system is globally preserved. Consider the 2-sphere

embedded in Euclidean space as S2 = {(x, y, z) | x2+y2+z2 = 1}, and suppose the

scatterer comprises S2 ∩ {(x, y, z) | z < R} for some R ∈ [−1, 0]. Suppose further

that the potential energy U depends only on ‖(x, y, z)‖, and define H = T +U as

before; the resulting vector field vH : TS2 → T (TS2) is invariant under rotations

about the z-axis. By Noether’s Theorem, these rotations correspond to an invari-

ant whose Hamiltonian vector field generates them. But, defined as a function on
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TS
2 so embedded, M = xpy − ypx gives rise to the vector field

q̇ =







−y
x

0






, ṗ =







−py

px

0







which generates precisely these rotations. It follows that M is an integral of the

system; moreover, since the system has only four dimensions, the first integral

M and the Hamiltonian function (which is itself a first integral) are sufficient to

solve the system by quadratures. The Hamiltonian thus gives rise to an integrable

system on the sphere, and such a system is trivially non-ergodic. ⋄

Returning to T2, one may intuit that the geometry of the torus is incompatible

with the symmetry about the scatterer. However, without choosing a particular

embedding of the torus, and then a particular representation ofM , this is not quite

obvious. For our Cartesian representation, it suffices to consider a trajectory tan-

gent to the scatterer with px = 0, passing through the point (R, 0) in configuration

space. Such a trajectory is contained entirely in a set {x}×S1 ⊂ T2, where x = R

in local co-ordinates, and never enters the non-linear region. But rotating that

point about the scatter, within a given chart, produces a trajectory which will

eventually enter the non-linear region, either in the next set of local co-ordinates

or, when extended backwards in time, the previous. Moreover, in order to pre-

vent such an occurrence, one would need to introduce a non-linearity outside the

scatterer. Thus, the underlying vector field can have no such symmetries, and the

angular momentum is not a global invariant of the system. Finally, in relation

to equation (3.37), we note that under those rotations valid in a neighbourhood

of the scatter, the value of M corresponding to the “vertical” trajectory above

would remain constant within the chart, but give rise to a continuum of M ′ values.

Hence, we could also dispense with the idea that M might be preserved under a

different representation.



Chapter 4

The Collision Map

In order to ascertain the global behaviour of system (3.27), it is necessary to

examine the way the local solutions from §3.4.2 link-together. This task, at its

most general, might be accomplished via a Poincaré map. If we identify the torus

with the rectangular domain Ω that gave rise to it, and let S denote the set of

initial conditions with q ∈ ∂Ω and p inward-pointing, then it would be enough

to consider a mapping between the points of S and the exit coordinates of their

corresponding trajectories. Then, by identifying opposing edges as before, we

obtain a self-map φ : S → S, whose iterates {φnx}n∈Z define an orbit for each

x ∈ S. This map is a particular case of the more general construction known as a

Poincaré map, which allows the dynamics of a continuous system to be modelled

using a lower-dimensional discrete one.

Definition 11 Let Φt be a flow acting on a phase space X ⊂ Rn, and let Σ ⊂ X

be a submanifold of co-dimension one such that each trajectory of Φt intersects Σ

laterally.1 Then the map φ : Σ → Σ determined by

φ(x) = min
t>0

{t | Φtx ∈ Σ}, ∀x ∈ Σ

is know as the Poincaré map or first-return map defined by Σ, arising from the

flow Φt.

In our example, the surface in question was Σ = S. Note that each trajectory

{Φtx0}t∈R of the original flow Φt gives rise to an orbit of φ; moreover, since the

equation is autonomous and reversible, each orbit of φ corresponds to a specific

1That is, for all x0 ∈ X , {Φtx0}t∈R is never tangent to Σ. Since our flow is at least once
differentiable, this ensures that {Φtx0}t∈R ∩ Σ is countable for each x0.

49
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S

Σ3 Σ1

Σ2

Σ2x = −α x = α

y = β

y = −β

Figure 4.1: The Poincaré sections and a trajectory, as they appear in local coor-
dinates.

trajectory of Φ2—obtained by integrating, in both temporal directions, any one

of its elements. It is easy to see that every periodic trajectory of Φ thus gives rise

to a periodic orbit of φ and vice versa. It can also be shown that, for a smooth

dynamical system, stability in the discrete map implies stability in the original

flow; and thus if we are able to find stable periodic orbits of φ, we will have also

found stable periodic trajectories of system (3.27).

If the analysis of the above Poincaré map could be carried to fulfillment, it

would allow for a complete classification of the system’s dynamics; however, by

necessity, complicated behaviour in our flow gives rise to complicated behaviour in

the Poincaré map. Instead, it is necessary to restrict our attention to a particular

class of trajectories as they interface with a subsection of the original Poincaré

surface. For instance, one set of interest comprises those trajectories for which

py < 0, and for which the ratio |px

py
| is sufficiently small. For such trajectories, a ini-

tial series of collisions with the scatterer will result in a kind of “deflection”—after

which px has changed sign; py remains negative; and |px

py
| is still small, although

potentially larger than before. Ignoring the mechanics of the collisions themselves,

such trajectories could be approached as a sequence of distinct momentum-states,

so long as the ratio |px

py
| remains small enough to ensure further deflections (see

figure 4.2).

To a similar end, we introduce three “partial” Poincaré sections, and define

maps between them which, when properly composed, will produce a map corre-

2That is, specific up to translations in time.
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sponding to an actual first-return map of the flow for certain trajectories.3 The

sections, as they occur in position-space, are defined as follows (see figure 4.1):

Σ1 := {(p, q) | qx = r};
Σ2 := {(p, q) | qy = ±β,−r < qx < r};
Σ3 := {(p, q) | qx = −r}.

The first such surface, Σ1, is tangent to the scatterer, and intersects trajectories

that approach the scatterer from the right or are repelled to the right. The second,

Σ2, creates a boundary between successive collisions with the scatterer, and also

operates as a boundary between successive solutions in local co-ordinates. The

third surface operates to the same end as Σ1, but intersects those trajectories

which approach from the left or are repelled to the left. The region between Σ1

and Σ3, including the scatterer but excluding Σ2, will be referred to as the collision

region—

Rc := {(p, q) | |qx| < r, qy 6= ±β} .

The remainder of the position space, excluding the surfaces themselves, will be

referred to as the linear region—

Rl := {(p, q) | |qx| > r}

—because here the point’s motion is always linear in the local co-ordinates.

In this context, a collision is said to occur when a trajectory enters the collision

region through any surface and subsequently exits through any other; the term

deflection is reserved for trajectories which exit the linear region through Σ1 or Σ3

and re-enter the linear region through the same surface. (Note that the trajectory

may intersect with Σ2 multiple times in the interim.) Deflections to the right

are thus described by a mapping φr : Σ1 → Σ1, while deflections to the left are

described by some φl : Σ3 → Σ3. Collisions, on the other hand, may begin and end

on any of the three surfaces. In this way, deflections comprise a simpler case than

collisions—although each deflection comprises a certain combinations of collisions,

and thus it is necessary to study at least a restriction of the possible collision maps

before discussing possible deflections. The remainder of this chapter enacts such

a study. We return to the “actual” first-return map in Chapter 5.

3In particular, the map corresponding to the surface {(p, q) | px > 0, qx = r}
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Σ2

Σ1

Figure 4.2: A trajectory leading to a “deflection”—as it appears in local coordi-
nates.

4.1 Constructing the Map

Each of the Poincaré sections introduced in the previous section is a one dimen-

sional subset of the configuration space, taken such that one spatial co-ordinate is

fixed while the other varies along its length. The domain and range of the collision

map, which always correspond to one of these surfaces, are thus of one dimension

less than the total phase space. This, however, leaves three degrees of freedom

in both sets, which makes the analysis rather unwieldy. To proceed, we limit the

flow to a particular energy surface, which (as we have seen) reduces by one spatial

dimension the set of states which the system may attain.

With that in mind, consider the quadrature from the previous section, given

by equation (3.35)—

θ − θ0 = −
∫ r

r0

M

ξ2
√

2(E − V (ξ))
dξ

—which gives the trajectory locally in position space as a curve in r and θ, for

fixed values of E and M . Since the trajectory is linear outside the scatter itself,

the curve will intersect the boundary ∂Rc at two points; moreover, the direction

of the flow along the curve is obvious from the initial conditions. We thus have

“in hand” the Poincaré-like map associating an initial position q = (r, θ) ∈ ∂Rc

and inward-pointing momentum p = (ṙ,M) with the corresponding trajectory’s

exit co-ordinate q′ ∈ ∂Rc and the momentum on exit p′. But we have only one

degree of freedom in q, and ṙ is determined by q, E and M ; thus, for fixed E,

every trajectory passing through a given section can be identified entirely by M

and one co-ordinate of q.

The quadrature thus allows us to find exit values corresponding to each initial
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condition, but within the transformed state space from the previous section: both

the Poincaré sections and Ω itself are more naturally formulated in Cartesian co-

ordinates; moreover, when a trajectory passes through ∂Ω—and into a new local-

coordinate system—both momenta and one q co-ordinate are unchanged when

written in Cartesian form, while the remaining q co-ordinate merely changes sign;

in polar form, the angular momentum undergoes the change described by equation

(3.37), which itself requires an expression for px. In short, it is convenient to switch

between co-ordinate systems near ∂Ω. Here, in addition to the usual formulae,

we have U(q) = 0, and thus E = 1
2

(

p2
x + p2

y

)

. We also have M = xpy − ypx in

Cartesian co-ordinates. This gives us, in total, the following transformations at

the boundary—

r2 = x2 + y2

θ = arctan
(

y

x

)

}

⇔
{

x = r cos θ

y = r sin θ
;

E =
1

2

(

p2
x + p2

y

)

⇔ p2
y = 2E − p2

x,

M = xpy − ypx.

The leftmost set of equations is a well-defined transformation from (x, y, px, py)

to (r, θ,M,E), which is one-to-one when restricted to the configuration space.

Is is not, however, one-to-one in the momenta: each pair (M,E) corresponds

to two, potentially different values of (px, py).
4 However, for our particular sys-

tem, (px, py) = (ẋ, ẏ), and so the following procedure will suffice: whenever we

have a solution curve in (r, θ), we can first transform the curve into (x, y)-space;

then, knowing the total kinetic energy, and the direction of the tangent vector

to the curve in configuration space, we can determine the unique, corresponding

momentum vector.

Armed with these transformations, we can return to the problem in Cartesian

co-ordinates: Suppose we are given an initial condition (p, q) on the boundary of

the collision region, ∂Rc = Σ1∪Σ2∪Σ3. Suppose further that p is inward-pointing,

and py 6= 0. Now, as in §3.4.1, we fix β and employ the extension Ω = R× [−β, β].

If q is contained in Σ2, then q is contained in its extension, Σ2 := {q | qy = ±β};
if q ∈ Σ1 ∪ Σ3, then the trajectory may be extended backward in time—into the

linear region—until it intersects Σ2. Hence, by assuming py 6= 0, we have without

4Noting that x and y can be determined independent of M , equation (3.36) defines a line
in the space of points (px, py), while 2E = 1

2

(

p2
x + p2

y

)

defines a circle. They are guaranteed to
have at least one intersection, but almost all pairs (M, E) correspond to two distinct points in
the space of Cartesian momenta. In §A.1, we derive these points explicitly.
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further loss of generality q ∈ Σ2, at least initially. Moreover, since the problem

is symmetric about both local co-ordinate axes, it is enough to consider the case

where qx ≥ 0 and px, py ≤ 0; i.e., when the trajectory begin in the first quadrant.

The domain of our map, in Cartesian co-ordinates, is thus the following—

Σ
′
2 := {(p, q) | qy = β, qx > 0; px, py ≤ 0} (4.1)

—and the range comprises, for the moment, all (p, q) for which q ∈ ∂Ω and p

is outward pointing. Beyond these simplifications, the set of trajectories we will

consider is governed by one further assumption:

Assumption. Every trajectory satisfies py < 0 on both its entry into the local

chart structure and its exit therefrom; that is, the trajectories begin on Σ
′
2 with

py < 0, and subsequently cross Σ
′
2 in the same direction.

This assumption holds for the “deflecting” trajectories mentioned earlier, but al-

lows for non-negative py values within the non-linear region. Unfortunately, we

cannot say a priori which points in our domain satisfy this condition; in addi-

tion, a trajectory which satisfies the assumption within a given chart—and is thus

aptly described by our map—will not necessarily satisfy the assumption in a sub-

sequent chart. Fortunately, we will readily ascertain when the map is valid once

its construction is completed.

In constructing the map, it is convenient to replace the Cartesian momenta

(px, py) with the invariants (M,E) from the polar representation, while continuing

to use position co-ordinates (x, y). Since E is fixed in advance, and y is fixed by

the surface Σ2, this gives us (effectively) a map ϕ : (x,M) 7→ (x′,M ′). Each pair

(x,M) uniquely specifies a trajectory in phase space, which can be followed until

it leaves the current chart; we use M (as opposed to px) because it is constant

within a given chart, and because it specifies certain geometric properties of the

system, as will be examined below. In these terms the domain of ϕ, as given by

(4.1), is as follows:

Σ
′
2 := {(x,M) | x > 0,M ≤ 0}. (4.2)

Finally, we are ready to derive the components of this map. This proceeds in

two stages: first, since M is constant within a given chart, we determine the

component ϕ1 : (x,M) 7→ x′; then, since the change in M depends on px—which

in turn depends the solution curve in some neighbourhood of x′—we determine

ϕ2 : (x,M) 7→ M ′.
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4.1.1 The x-Component

To construct the first component, we begin by treating the case U ≡ 0, for which

the system is linear. Assume further that we are solving the system within a given

chart, and so M is considered constant. Here, V (r) = M2

2r2 , and the quadrature

(3.35) has the form

θ − θ0 = −
∫ r

r0

M

ξ2
√

2E − M2

ξ2

dξ.

This can be readily solved by assuming each ξ = M√
2E

sec ϑ, for some ϑ ∈ R, which

is true provided

r ≥ V −1(E) =
|M |√
2E

=: r̂.

But, as we saw in the previous chapter, E−V (r) ≥ 0.5 The solution then has the

form

θ − θ0 = arcsec

(

ξ

r̂

)
∣

∣

∣

∣

r

r0

,

which is valid whenever r > r̂. Now, if we choose r0 = r̂, we find

r = r̂ sec(θ − θ0), (4.3)

where θ0 is achieved when r = r̂. Of course this is merely a line, but each such

line is of distance r̂ from the origin, and thus solutions comprise the family of lines

tangent to the circle {(r, θ) | r = r̂}. What explicitly differentiates solutions is

θ0; that is, how far each line is rotated from the vertical line given by (4.3) when

θ0 = 0.

Each value of θ0 corresponds to a particular trajectory, and each such tra-

jectory is determined by x. Assuming a trajectory passes through the Cartesian

point (x, y), we have through obvious trigonometric manipulations

r̂ = x cos θ0 + y sin θ0. (4.4)

Substituting y = β and solving for θ0 (as detailed in §A.2) gives the following

θ0 = arccos

[

xr̂ + β
√

x2 + β2 − r̂2

x2 + β2

]

. (4.5)

5One can also show (algebraically) that M2 ≤ 2Er2 for any trajectory outside the scatterer.
[See §A.1.]
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Then, using equation (4.4) with x = x′ and y = −β, we can easily find an

expression for x′ in terms of θ0:

x′ =
r̂ + β sin θ0

cos θ0
. (4.6)

Finally, substituting equation (4.5) into the latter yields, after manipulations pre-

sented in §A.2,

x′ = x+
2β(r̂2 − x2)

βx+ r̂
√

x2 + β2 − r̂2

—which, as we would expect, has a fixed point if and only if x = r̂ (which also

gives θ0 = 0).

Now consider the non-linear case. Here we do not assume that U is everywhere

zero, but we still have U ≡ 0 outside the scatter—that is, on {(r, θ) | r ≥ R}.
Since the non-linear region has compact support and is also convex, and since the

linear-region comprises the remainder of each chart, any trajectory that leaves the

scatterer must exit the current chart before entering the scatterer again. This,

taken together with the reversibility of the Hamiltonian, ensures that each tra-

jectory corresponding to some x ∈ Σ2, when restricted to a given chart, is such

that: (i) it is both initially and finally linear; (ii) it is non-linear only within

{(r, θ) | r < R}; and (iii) those non-linearities occur within a single continu-

ous interval in time. We thus divide the local trajectory Φtx into three parts

ℓ1 ∪ cs ∪ ℓ2 = Φtx where: ℓ1 comprises the initial linear region; ℓ2 comprises the

final linear region; and cs = Φtx∩{(r, θ) | r ≥ R} covers the trajectory within the

scatter. In all cases, we are principally concerned with these objects as subsets of

the configuration space, and bracket their dependence on t, short of the ordering

it entails.

Since M is constant within each chart, both ℓ1 and ℓ2 are described by equation

(4.3), where r̂ = M√
2E

as before, but with potentially different values of θ0; for

further reference, these values will be denotes θ1 and θ2 respectively. The former

can be found just as in the linear case:

θ1 = arccos

[

xr̂ + β
√

x2 + β2 − r̂2

x2 + β2

]

. (4.7)

The latter, of course, requires some additional work. Let ℓ1 and ℓ2 denote the lines

obtained by extending the segments ℓ1 and ℓ2; let CL denote a circle centred at the

origin with radius L ∈ R; and let D denote the origin. Note that each extension is
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Cr̂

CR

ℓ1

x

ℓ2

D

A1

B1A2

B2

Figure 4.3: The geometry of Φtx; its components, ℓ1, ℓ2 and cs; and the extensions
ℓ1 and ℓ2—both within a given chart (left), and inside the scatterer (right).

secant to the circle CR, and tangent to the circle Cr̂. We now consider the points

of intersection denoted as follows:

A1 := ℓ1 ∩ Cr̂ B1 := ℓ1 ∩ CR

A2 := ℓ2 ∩ Cr̂ B2 := ℓ2 ∩ CR

—noting that, to define each Bi, we use ℓi and not ℓi to prevent ambiguity. (See

figure 4.3.) Letting θ(·) denotes the projection (r, θ) 7→ θ, we see that θ1 = θ(A1)

and θ2 = θ(A2). Noting that △DA1B1 and △DA2B2 are congruent right triangles,

we have

∠A1DB1 = ∠A2DB2 = arccos

(

r̂

R

)

,

The same geometric construction relates each θ(Ai) to the corresponding θ(Bi), as

depicted in figure 4.3, although both the construction and the resulting relations

depend on the sign of M :

θ(A1) = θ(B1) + sgn(M) · arccos

(

r̂

R

)

;

θ(A2) = θ(B2) − sgn(M) · arccos

(

r̂

R

)

We note in passing that these equations could also be obtained using the solution

(4.5) with appropriate initial conditions. Now, θ(B1) and θ(B2) are related by the
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results from §3.4.2: their difference is simply the net change in the trajectory’s θ

co-ordinate during the period of non-linearity, which can be calculated using the

quadrature (3.35) and the symmetry about θ = θ̃. We thus have

θ(B1) − θ(B2) = 2[θ(B1) − θ̃] = 2

∫ R

r̃

M

ξ2
√

2(E − V (ξ))
dξ,

When all these relations are combined, we are left with the following expression

for θ2, in terms of θ1 and M

θ2 = θ1 − 2 sgn(M) arccos

(

r̂

R

)

− 2

∫ R

r̃

M

ξ2
√

2(E − V (ξ))
dξ, (4.8)

where everything on the right-hand side is known. Finally, to make this expression

consistent when the point-mass doesn’t interact with the scatterer, we adopt the

following conventions: arccos(z) = 0 when z > 1, and the above integral is zero

whenever r̂ > R.

To determine x′, all that remains is to find the intersection of ℓ2 with the line

y = −β. Again, this follows as in the linear case, with

x′ =
r̂ + β sin θ2

cos θ2
. (4.9)

Since we cannot simplify the integral in equation (4.8), there is little point in

expressing x′ explicitly in terms of x and M—although equations (4.7), (4.8) and

(4.9) in tandem would allow us to do so.

4.1.2 The M-Component

Most of the work required for the calculation of M ′ has been carried out in pre-

ceeding sections. As given by equation (3.37),

M ′ = M + 2βpx.

Moreover, as noted earlier, px can be found for fixed E using the solution curve

in configuration space that contains x′; in particular, this information is given by

ℓ2. Since the curve satisfies

r̂ = x cos θ2 + y sin θ2



4.2. FIXED POINTS OF THE COMPONENTS 59

as it approaches the boundary, we must also have

px cos θ2 + py sin θ2 = 0, (4.10)

since px = ẋ and py = ẏ. In addition, by considering equation (3.36) and taking

the limit as the trajectory approaches the boundary, we find

x′py + βpx = M.

Solving for px then gives

px =
M sin θ2

β sin θ2 − x′ cos θ2
= −sgn(M) ·

√
2E sin θ2, (4.11)

where the last expression follows from equation (4.9) and the definition of r̂. This

leaves us with

M ′ = M − sgn(M) ·
√

2E sin θ2, . (4.12)

Insofar as this expression depends on θ2, it is only marginally more endearing than

the series of expressions that generate x′. Fortunately, as its form would indicate,

the expression for M ′ readily lends itself to a fixed point analysis.

4.2 Fixed Points of the Components

Rather than analyse the collision map ϕ : R2 → R2 in its entirety, it is helpful

to treat each component individually with one of its variables fixed. Thus, we

instead consider the one-dimensional maps ϕ1( · ,M) : x 7→ x′ and ϕ2(x, · ) : M 7→
M ′, which better facilitate analysis. In particular, we consider the fixed points

of both maps, which are directly linked to the existence of symmetric orbits as

hypothesized in §3.4.1. However, before we can bring the components of the map

to bear on the underlying system, we must determine when the assumption made

in the previous section is valid.

We had already assumed, without loss of generality, that py > 0 in the initial

condition. To determine when py > 0 on exit, we again rely on the information

implicit in ℓ2; namely, equation (4.10). Using the solution for px given in equation

(4.11), we have

py = sgn(M) ·
√

2E cos θ2, (4.13)

although this expression is not valid when M = r̂ = 0. We thus have py < 0
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whenever one of the following conditions holds:

θ2 mod 2π ∈ (−π
2
,
π

2
) and M < 0; (4.14)

or θ2 mod 2π ∈ (
π

2
,
3π

2
) and M > 0. (4.15)

For trajectories beginning in the first quadrant of a given chart, the first of these

is of principle interest when the potential is essentially repelling. Thus, while

either condition is sufficient for validity of the map, the former will be used more

frequently in the subsequent analysis.

We can now return to the question of symmetric orbits:

Proposition 7 Both the fixed points of ϕ1( · ,M), and those of ϕ2(x, · ), give rise

to trajectories symmetric about y = 0 in the configuration space of system (3.27),

provided the corresponding pair (x,M) satisfies one of the conditions (4.14) and

(4.15).

Proof. Both conditions, in addition to validating the maps, imply the corre-

sponding trajectory passes through (x,−β) in the local co-ordinate system. In

the first case, fix M and suppose ϕ1(x,M) = x. Consider the linear components

of the trajectory ℓ1 and ℓ2 as defined above: by virtue of the fixed point, these

contain the points (x, β) =: P1 and (x,−β) := P2 respectively. Assume that the

trajectory enters the non-linear region; otherwise, the trajectory is simply P1P2

and we are done. Recall from §3.4.2 that the trajectory is symmetric about some

time t = t̃, and thus each region of linearity is a reflection of the other (when

properly extended). Moreover, the map t 7→ r is strictly monotone—and thus

injective—in those regions. Noting that ‖P1‖ = ‖P2‖, it immediately follows that

these points are reflections of one another about the critical point in time. Now,

by the corresponding symmetry in θ, we have θ(P1) = −θ(P2); in particular,

integrating away from the critical time in both directions gives

θ̃ =
1

2
(θ(P1) + θ(P2)) = 0.

Recalling that θ = θ̃ is the line of symmetry in configuration space, we have proven

the trajectory is symmetric about y = 0.

For the second case, ϕ2(x,M) = M immediately implies px = 0, as evinced

in equation (3.37). If we let x′ = ϕ1(x,M) as above, then the trajectory in ques-

tion clearly passes through the point (x′,±β, 0, py), and symmetry follows from
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Proposition 5. �

Thus, to find symmetric trajectories of the system, it is enough to find the fixed

points of either component and verify that one of the conditions (4.14–4.15) hold.

We begin with ϕ1( · ,M): If x′ = x, then we immediately have θ2 = −θ1, since

both linear portions of the trajectories are tangent to the same circle, beginning at

the same x co-ordinate, and with the same orientation, although reflected across

the x-axis. Substituting equation (4.8) into this condition then gives

θ1 =

∫ R

r̃

M

ξ2
√

2(E − V (ξ))
dξ + sgn(M) · arccos

(

r̂

R

)

. (4.16)

Note that the quantity on the right-hand side depends only on M , and let the

function g(M) denote this expression. To find a pair (x,M) for which the condition

holds, we thus fix an M value and find an x such that

θ1(x,M) = g(M) mod 2π. (4.17)

Now, g(M) depends on various parameters of the underlying system: the energy

surface E; the radius R of the potential field U : R+ → R; and the potential field

itself. However, it is clear based on our conventions that: g(M) = 0 whenever

|M | ≥ R
√

2E; g is only discontinuous atM = 0; and g is odd. Deferring additional

assumptions, to be made in the following chapter, we instead ask which values in

R/2πZ can be obtained by θ1( · ,M)?

This can be ascertained readily from the map’s construction. If we let x range

over all of R and assume M < 0, then each θ1 is determined by the line through x

that is clock-wise tangent to the circle with radius r̂ = |M |√
2E

. Note that for x = r̂

we have θ1 = 0. Then as x is moved continuously toward negative infinity, and

then toward positive infinity, θ1 achieves every value in (−π
2
, π

2
) and only these;

hence,

θ1(R,M) = (−π
2
,
π

2
) for M < 0.

Now, note that g is continuous at M = −R
√

2E and that g(−R
√

2E) = 0. We

can guarantee the following:

Lemma 3 There exists a δ > 0 ∈ R such that, for all M ∈ [−R
√

2E,−R
√

2E +

δ) =: K, there exists a unique x ∈ R such that equation (4.17) holds.

Proof. Since g is continuous at M = −R
√

2E, there exists a δ > 0 such that
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g(K) ⊂ (−π
2
, π

2
). The result follows since θ1( · ,M), considered as a map into the

latter interval, is a bijection for any M < 0. �

Proposition 8 For every energy level E, there is a (generally finite) curve in

(x,M)-space which generates symmetric trajectories.

The proof follows directly from the Lemma and Proposition 7. It differs from our

earlier result in that these points are located on the line y = ±β in physical space,

and their x-momenta are not necessarily zero; the importance of this feature

will be highlighted in the following sections. Note that while, in the name of

completeness, we could also assume M > 0 and examine the clockwise tangents

to obtain

θ1(R,M) = [−π,−π
2
) ∪ (

π

2
, π) for M > 0,

it is possible that g−1
(

[−π,−π
2
) ∪ (π

2
, π)
)

= ∅. Thus, we cannot guarantee peri-

odic trajectories for M > 0 while assuming py < 0. In particular, one could show

that there are no such trajectories if U : R+ → R is non-negative. However, we

can always reflect the trajectories from Proposition 8 to find trajectories for which

(at least locally) we would have M, py > 0.

As for the fixed points of ϕ2(x, · ), it is clear from equation (4.12) that these

occur only when sin θ2 = 0. Moreover, assuming py > 0 on exit rules out the roots

θ2 = π mod 2π, and so we are left with θ2 = 0 mod 2π. Substituting equation

(4.8) as before, and using g(M) as defined above, gives

θ1(x,M) =
1

2
g(M) mod 2π, (4.18)

which is essentially a re-scaling of the earlier condition. Just as before, we can

use the continuity of g at M = −R
√

2E to obtain the following result:

Lemma 4 There exists a δ > 0 ∈ R such that, for all M ∈ [−R
√

2E,−R
√

2E +

δ) =: K, there exists a unique x ∈ R such that equation (4.18) holds.

In fact, we could have used this lemma to prove Proposition 8, since it too guaran-

tees a (generally finite) curve in x and M that generates symmetric orbits. Note

that these curves coincide if and only if M = 0, and that the points of their

correspondence generate vertical, periodic trajectories in the configuration space.

Finally, we would expect more such trajectories, in the sense that

(
1

2
g)−1

(

(−π
2
,
π

2
)
)

= g−1 ((−π, π)) ⊃ g−1
(

(−π
2
,
π

2
)
)

.



Chapter 5

Geometry and Periodic Orbits

5.1 Deflections

In the previous section, we showed that, by studying the collision map, we could

ascertain the existence of a continuum of trajectories, each symmetric about the x-

axis. While we had a similar result in §3.4.1, the trajectories were there described

either by the curve

S1 := {(x, 0, 0, py) | x ∈ S
1, py ∈ R},

or by the curve

S2 := {(x,±β, 0, py) | x ∈ S
1, py ∈ R}.

However, we in general know very little about the trajectories arising from these

points. On the other hand, Lemmas 3 and 4 give the curves

C1 := {(x,M) | M ∈ K1 and x = θ−1
M (g(M))} (5.1)

and C2 := {(x,M) | M ∈ K2 and x = θ−1
M (

1

2
g(M))} (5.2)

respectively, where K1 and K2 are both intervals of the form [−R
√

2E,−R
√

2E+

δ), for some δ > 0, and θ−1
M (y) is defined such that θ1(θ

−1
M ,M) = y. Each of their

trajectories is contained in either S1 or S2, but we now know their momenta at

the boundary of the local co-ordinate system. We will now use this information

to examine the possibility of deflections—in particular, deflections to the right,

in the sense of the previous chapter. (That is, those that enter the collision

region through Σ1 and (eventually) re-enter the linear region through Σ1 without
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crossing Σ3.) Note that, since the trajectories are symmetric, we need verify only

that they encounter Σ1, and subsequently reach the point where they begin to

trace a symmetric pattern in space, to prove they are deflected—provided, of

course, they do not reach Σ3 in the interim.

Throughout this section, in the interest of brevity, we treat only those trajec-

tories that arise from the points of C1. Similar results exist for C2 in each case,

and the arguments require only minor (in effect, notational) modifications. In the

first case, we make repeated use of two facts that

1. If (x,M) ∈ C1 corresponds to an initial condition (x,±β, px, py), then the

corresponding trajectory exits the local chart at (x,±β,−px, py).

2. Additionally, these points are symmetric when considered in time—that is,

there is point t = t̂ ∈ R depending on the initial condition (p0, q0) such that

Φt̂+δ(p0, q0) = ρx ◦ Φt̂−δ(p0, q0).

While the first cannot be said of (x,M) ∈ C2, there is an analogous result: the

trajectory arising from (x,M) = (x,±β, px, py) is symmetric in time about the

point (x′,±β, 0, py), where it exits the initial chart. Thus, if we were to integrate

to the boundary of the following chart, we would find ourselves at (x,±β,−px, py).

In both cases, the pair of points is symmetric in time and distinct only insofar

as their x momenta have opposite signs. These facts forms the basis for many

of our arguments; they are also the starting point for showing that certain such

trajectories deflect.

Any trajectory that begins outside the scatter will eventually leave the scatter:

this follows from certain arguments in §3.4.2. It is unclear, however, if our sym-

metric trajectories will enter the linear region.1 In fact, if the potential function U

is non-positive in a neighbourhood of R, then we would expect that no trajectories

arising from C1 would enter the linear region without additional collisions with the

scatterer. Thus, in order to ensure simple deflections for the trajectories in ques-

tion, we will need to make additional assumptions about the potential function.

Bracketing this for the moment, we note that for an arbitrary potential there may

be pairs (x,M) ∈ C1 such that (x,±β) is already in the linear region, and thus

the trajectory is guaranteed to re-enter after local integration. Unfortunately, we

have only indirect information concerning x: the values of M are given explicitly

1Although it is obvious that such trajectories exist in the space of all initial conditions. In
general, if given a trajectory that moves from Σ2 to Σ2 within a collision, one can simply rotate
the trajectory 90◦ about the origin for a trajectory that is deflected.
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in the definition, while those for x depend on the functions θ−1
M and g, neither of

which has been explicitly defined.

Focusing on what we have, note then that the local trajectory is guaranteed

to be linear whenever |M | > R
√

2E. While this result does not hold for any

M ∈ K1, it may hold for the corresponding trajectory on a subsequent chart,

whereupon the value of M will have changed. If M ′ = ϕ2(x,M) < −R
√

2E, then

the trajectory will avoid the scatterer and enter the linear region. Now M ′ is given

by the now-familiar relation

M ′ = M − sgn(M)
√

2E sin θ2.

But θ2 = −θ1 and θ1 = g(M). Thus M ′ < −R
√

2E if and only if

sin g(M) >
M +R

√
2E√

2E

for a given M ∈ K1. Writing M = −R
√

2E + ǫ for some ǫ ∈ [0, δ) gives the

condition

sin g(−R
√

2E + ǫ) >
ǫ√
2E

⇐⇒ g(−R
√

2E + ǫ) > arcsin
ǫ√
2E

. (5.3)

If this holds for all ǫ ∈ [0, δ′), for some δ′ ≤ δ, then each of the trajectories,

given by a corresponding (x,M) pair, will deflect regardless of the associated x

co-ordinate.

Under what assumptions will this condition hold? In §4.1.1, we noted in

passing that arccos
(

r̂
R

)

could be found using the linear solution—more explicitly,

sgn(M) arccos

(

r̂

R

)

= θ(B1) − θ1 = −
∫ R

r̃

M

ξ2
√

2(E − V (ξ))
dξ,

when U ≡ 0. Thus we can write g as follows

g(M) =

∫ R

r̃

M

ξ2
√

2E − M2

ξ2 − 2U(ξ)
dξ −

∫ R

r̂

M

ξ2
√

2E − M2

ξ2

dξ, (5.4)

and hence g can be seen as the difference (in the θ co-ordinate) between the

non-linear trajectory and its linear counterpart. Unfortunately, it is unclear from

this expression whether the condition (5.3) holds. Instead we assume that U
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can be chosen such that g is negative on the some subinterval of K1 containing

M0 = −R
√

2E for which the remaining points are deflected. Henceforth, we let

K ′
1 ⊂ K1 denote the largest such subinterval. We then define

C ′
1 := {(x,M) | M ∈ K ′

1 and x = θ−1
M (g(M))},

which gives the set of pairs (x,M) corresponding to those trajectories. We note

in passing that there should be a geometric argument to this end when U > 0,

although we are not able to present such a result at this time.

5.2 Periodicity for a Special Case

In this section, we consider the case in which x is constant for all (x,M) ∈ C ′
1,

which implies x = R. While this is obviously a very particular case, it provides

an avenue to explore the effects of the geometry on these trajectories, and to de-

velop the machinery for our final result. Moreover, it is obvious in this case that

deflections do indeed occur, since such trajectories always pass through the point

(R, β) in configuration space.

Example. Suppose that x was constant along the curve (x,M) ∈ C ′
1. Then we

would have a set of symmetric trajectories passing through the point (R,±β) in

phase space that achieved a subinterval of the possible momentum-states, includ-

ing the state px = 0. Moreover, if we then truncated the geometry so that we were

left with the torus Ω = [−R,R] × [−β, β], then all of these trajectories would be

periodic by Proposition 6. ⋄

Now we consider the effect of a more general geometry on the same system.

Proposition 9 Suppose x is constant in C ′
1 (and therefore x = R for all M). For

any choice of α > R, the system arising from the geometry Ω = [−α, α]× [−β, β]

will have infinitely many periodic trajectories.

Before beginning, we define a = 2(α − R), and note that the linear region cor-

responding to the given geometry has horizontal length a. For convenience, we

will use co-ordinates Rl := [0, a] × [−β, β] within the linear region, noting that

the lines x = 0 and x = a in these co-ordinates correspond to the lines x = R

and x = −R in Ω. Thus, we begin with trajectories that enter the linear region

through (0, 0) with varying momenta. Note also that, because of various discrete
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symmetries,2 and the fact that the Carestian momenta are constant in the linear

region, it will be enough to show that an infinite subset of those trajectories pass

through the point (a,±β).

Proof. Consider the ratio px

py
for each pair (x,M) ∈ C ′

1. In fact, this quantity

is independent of x for the trajectories in question: using equations (4.11) and

(4.13) we clearly have

px

py

= − tan θ2 = tan θ1 = tan g(M) =: ρ(M).

Now, g(M) is assumed non-positive on K ′
1 and g(−R

√
2E) = 0. By continuity

of g at M0 := −R
√

2E, it follows that there must be some subinterval of K ′
1

containing M0 for which g is decreasing. Let Ĩ denote this interval, and define

I = ρ(Ĩ), noting that I = (−δ, 0] for some δ. Now suppose we are working in

the extension of Rl defined as Rl = [0,∞) × [−β, β]. Each trajectory begins at

the point (0, β) ∈ Rl and moves along the line with slope ρ until it intersects

with the line y = −β at some point (x′,−β); as the flow continues, it traces

another line with slope ρ from (x,′ β) to another intersection, and so on. Let

ψ( · , ρ) : [0,∞) → [0,∞) denote this map, for which we have the relation

ψ(x, ρ) = (x− 2βρ, ρ).

Since ρ depends only on the Cartesian momentum vector, which is constant in

Rl, ρ too must be constant in Rl; hence ρ is preserved in the map, which is

thus another Poincaré section whose orbits describe the paths of our symmetric

trajectories within the linear region.

We can now apply the iterates of this map to the interval Iρ which describes

the location and momentum of each trajectory upon entry to the region. Note

first that ψn(x, ρ) = (x− 2nβρ, ρ). Now,

I = {(0, ρ) | ρ ∈ (−δ, 0]}.

and hence

ψn(I) = {(−2nβρ, ρ) | ρ ∈ (−δ, 0]}, ∀n ∈ N.

Projecting this into configuration space gives intervals of the form In = [0, 2n−βρ)
for all n ∈ N, which satisfy In ⊂ Im for all n < m. Note that for each choice

2In particular, the symmetry relating ϕl and ϕr, the left and right collision maps respectively.
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of a ∈ R
+ there is an N ∈ N such that a ∈ IN–that is, a = −2nβρ for some

ρ ∈ (−δ, 0]—and thus a is contained in all In for n > N . Moreover, for each such

interval, the ρ that generates a clearly satisfies ρ = − a
2nβ

for each n > N , and

arises from the point (0,− a
2nβ

) ∈ I. Thus, there are a countably infinite number

of points in I that pass through (a,±β). �

Note that, while the premise of this result is singularly restrictive, one could poten-

tially obtain such a curve of initial conditions by simultaneously varying the energy

level E in an otherwise rather general system. The result would then give count-

ably many energies for which a periodic solution exists (given the geometry)—

although such a result may require further assumptions on the potential energy

function U : R+ → R.

5.3 A Criterion for Periodic Orbits

This brings us to our final result:

Proposition 10 Suppose we have a curve of initial conditions C := {(xǫ, ρǫ)}ǫ∈[0,δ)

corresponding to symmetric trajectories where, for some δ > 0, we have the fol-

lowing: (i) x0 = R and ρ0 = 0; (ii) the maps ǫ 7→ xǫ and xǫ 7→ −ρǫ are increasing,

continuous functions. Then, for any choice of geometry with a ≥ 0, the system

will have a countably infinite number of periodic orbits.

Proof. The result follows essentially as above, except we now have

ψn(I) = {(xǫ− 2nβρǫ, ρǫ) | ǫ ∈ [0, δ)}, ∀n ∈ N.

but since ǫ 7→ xǫ and xǫ 7→ −ρǫ are increasing, continuous functions, they still

give rise to a series of nested intervals In in the configuration space, the span of

which increases by supǫ ρǫ with each iteration. The monotonicities also ensure the

points in C that give rise to a in subsequent intervals are in fact distinct. �

As in the previous section, we note that each of these trajectories (xǫ, ρǫ) will be

initially deflected, since xǫ > x0 = R.

5.4 Endnote: Periodic Solutions and Ergodicity

Ergodicity tells us a great deal about the behaviour of a flow. For example, let U

be any set with µ(U) > 0. Then ΦtU is an invariant set with µ(ΦtU) ≥ µ(U) > 0,



5.4. ENDNOTE: PERIODIC SOLUTIONS AND ERGODICITY 69

and thus µ(ΦtU) = 1. Thus, any set of positive measure will fill up the phase

space under the action of the flow.

Now suppose that one of the trajectories described in the previous section is

stable in the following sense: within every neighbourhood of the trajectories there

are a set of trajectories of positive measure which stay sufficiently near it for all

time. Such a set could be chosen such that it never enters a particular region

of positive measure, and thus we would have shown that the system cannot be

ergodic. Donnay presents such a result in [Don2], which follows straightforwardly

from a more difficult result in [Don1]. Essentially, Donnay fixes the triple (U,R,E)

and then constructs a particular geometry which admits a periodic trajectory.

He then introduces a Poincaré map of the system and proves the corresponding

orbit is stable. Interestingly, Donnay’s trajectories seem to be a subset of those

presented here; moreover, while he hypothesizes that such trajectories are stable,

he is unable to show stability for strictly positive U . It is possible that further

study of the Poincaré maps presented here, as well as the continuum of symmetric

orbits they describe, would facilitate such a result.
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Appendix A

Derivations

A.1 The Transformation (M,E; r, θ) 7→ (px, py)

Recall the formula for M in Cartesian co-ordinates, given by equation (3.36):

M = xpy − ypx.

By isolating xpy and squaring, we have

M2 + 2Mypx + y2p2
x = x2p2

y = x2(2E − p2
x).

Collecting terms in px and writing x2 + y2 = r2 gives

r2p2
x + 2Mypx + (M2 − 2x2E) = 0,

which has discriminant

4x2
(

2Er2 −M2
)

.

Note that this expression is never negative:

M2 = x2p2
y − 2xypxpy + y2p2

x

≤ x2p2
y + x2p2

x + y2p2
y + y2p2

x = 2Er2,

since 0 ≤ (xpx + ypy)
2. The solution is thus defined everywhere, with

px =
−My ± x

√
2Er2 −M2

r2
.

As mentioned earlier, neither solution can be excluded. To each solution, we
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can associate a (respective) value of py by substitution into equation (3.36):

py =
Mx± y

√
2Er2 −M2

r2
.

A.2 Equation (4.5): (x,M) 7→ θ0

Recall equation (4.4), which gives

r̂ = x cos θ0 + y sin θ0.

for all Cartesian co-ordinates (x, y) on the line whose polar form is r = r̂ sec(θ−θ0).
Now let y = β and assume x is given. We then have

r̂ − x cos θ0 = β sin θ0 (A.1)

⇒ (r̂ − x cos θ0)
2 = β2 sin2 θ0

⇒ (x2 + β2) cos2 θ0 − 2xr̂ cos θ0 + (r̂2 − β2) = 0.

Thus, cos θ0 arises as the root of a quadratic polynomial with discriminant

4β2
(

x2 + β2 − r̂2
)

—which is positive since β ≥ R ≥ r̂. Solving the quadratic for cos θ0 then gives

cos θ0 =
xr̂ ± β

√

x2 + β2 − r̂2

x2 + β2
.

By considering the case θ0 = 0, which corresponds to x = r̂, we can exclude the

negative root.

Note that, having found cos θ0, we can also determine sin θ0 from equation

(A.1):

sin θ0 =
βr̂ − x

√

x2 + β2 − r̂2

x2 + β2
.

Substituting both these values into equation (4.6) produces

x′ =
r̂x2 + 2β2r̂ − βx

√

x2 + β2 − r̂2

r̂x+ β
√

x2 + β2 − r̂2

= x+ 2β
βr̂ − x

√

x2 + β2 − r̂2

r̂x+ β
√

x2 + β2 − r̂2
.
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Rationalizing the numerator in the latter term, and then cancelling a factor of

x2 + β2, gives the more useful form found in §4.1.1.
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