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INTRODUCTION

This thesis surveys the elementary theory of continued
fractions and discusses in detail some important applications of
continued fractions to the theory of rational approximations to
real numbers and elementary number theory. Chapters 1 to 5
introduce continued fractions and their basic properties, and provide
the results on which the following chapters are based. Chapters 6
and 7 develop the elementary theory of rational approximations,
culminating with Hurwitz's Theorem, and using continued fractions as
the fundamental tool. The approach is essentially that of Khintchine
[4], Sections I and II, but the theorems are stated and proved in
greater detail, an attempt is made to clearly motivate the definitions,
and some closely related results from [6], Chapter 7, are included.
Chapters 8 to 12 investigate closely the applications of continued
fractions to the Euclidean Algorithm and to the Pell Equation x2-Dy2= N.
This involves a thorough examination of periodic continued fractions,
in particular the simple-continued-fraction expansion of Jb (D being
a positive nonsquare integer). The material is drawn primarily from
Perron [8], Olds [7], and Niven and Zuckerman [6]. As far as I have
been able to discover, the bound on the period given in Theorems 9.4
and 10.1 is an original result, although admittedly a minor one.
Theorems 12.2 to 12.4 (from Perron [8]) are significant and fairly deep

results, rarely found in discussions of continued fractions or the Pell

Equation.



ii

Most recent texts on number theory treat the theory of continued
fractions fleetingly, or with a single application in mind ; in contrast,
an attempt has been made in this survey to demonstrate the richness and

wide applicability of the theory.



PART 1

SOME BASIC RESULTS
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Chapter 1. DEFINITIONS, NOTATIONS, AND THE BASIC FORMULAS.

let F be a field. A continued fraction in F is a sequence

(al, b2’ 2, b3, a3,...) of an odd or infinite number of elements of
F such that, for each n>2 , each denominator in the following composite

fraction is not zero :

(1)

The fraction (1) is called the nth convergent of the continued fraction,

and denoted by c, - It is usually written in the more convenient form

bn . (2)
a

1f the sequence is finite, say (al, b2, az,...,b , am) where

m > 1 , then the continued fraction is called a finite continued fractionm,

and its value is defined to be the last convergent, ch If the sequence
is infinite, then we have an infinite sequence of convergents cl,cz,c3...,
and (assuming a metric on F ) the continued fraction is said to be

convergent or divergent in F according as %iFth exists or not in F.

In the former case, the limit is taken as the value of the continued



fraction. Normally F is the real field.

When b,, b,,... are all 1 , the continued fraction is said

2’ 3
to have unit numerators, and we use the notation

(al, 1, a,, 1, IRy ) = [al, a,, a3,...] . (3)

For a finite or convergent continued fraction, we often use the same
notation for the continued fraction and its value. Thus we write
c. = [al, az,...,an] for the convergents of a continued fraction with
unit numerators.

A continued fraction [al, 32,...] , with unit numerators and
infinitely many terms, is said to be periodic with period t if there

exist m>0 and t>1 such that for all om , a e =2 - We write

[al, a2,...] = [al,...,am , am+1,...,am+t] . (4)

The least period to is called the fundamental period. to divides
any period t , for if not, let t =k to+r, where 0 < r < to ; then

for an n>m , we have a = a = a = a .
r any ’ €3 n+t n+k to+r ntr , therefore r is

a period, contradicting that t, is the least period. The continued

fraction is said to be purely periodic if it is possible to take m = 0, i.e.

( a, az,...] = [ a1, 8y,000,8, . (5)

Given a continued fraction, it is desirable to have a systematic

method for expressing each convergent c, asa simple fraction pn/qn
14

as in ¢, = a1/1 , c2 = (a1 a2 + b2) / a, , etc. The key to finding
such a method is to consider cn as a function of an . Now if we

simplify (1) starting at the lower right and working upwards, we find



That C is a quotient of linear functions of a - In fact, suppose
n

¢, = pn/qn, where P, = knan + ln and q, =r 3 +s8, and kn, ln,rn

and s~ are independent of a (i.e. kn’ ﬁn, T, 8 depend only on

as b2, 32,...an_1,bn).
Then C 4= (al, b2’ az,...,bn,an + bn+1/an+1)
= kn (an + bn+1/an+1 + zn

rn (an + bn+1/an+1) + sn

(knan t Zn) an+1 + knbn+1

(rnan + sn) an+1 + rnbn+1

pnan+1 + knbn+1

qnan+1 + rnbn+1

kb

Thus we can take Prtl = Pnfnnl + nnt+l and 9n+1 ~© qnan+1+rnbn+1 ’

and C bl is also a quotient of linear functions of an+1. Applying

the same argument to Cot1’ Ve therefore have CH2 = Pn+2/qn+2'

where Pot2 = Pnt1%n+2 + pnbn+

2 and 9,

+2 = 9412042 ¥ nPrsn-

Noting that c¢, = (lL.a, + 0) / (O.a1 + 1) and using induction, we

1 1

clearly have the following theorem :

Theorem 1.1 The convergents Cys Cpseen of the continued fraction
(al, bZ’ a,, b3, 33,...) are c = pn/qn, where Py and q, are
defined as follows :

Pp=28 -9 =1

P, = 8,8, +by, , q, =3,

Py = anpn--l + bnpn-Z (n > 3) (6)

qn = anqn-l + bnqn—z (n 2 3) (7



Theorem 1.2. Following the notation of the previous theorem,

n
- ¢(_.1yn w b,
Prdge1 ~ Ppo19p = D gy f (n > 2) (8)
a0
(-1)" = by
‘2 %n-1 T i=2 (n > 2) (9)
99n-1 1
n-1""
a (-1) n by
“a"®n-2 ° i=2 (n > 3) (10)
9n-2

Proof: Pyd; - P9, = 2,8, + b2 - aa, = b2, therefore (8) is

true for n = 2. Assume (8) for n-1l. Multiplying (6) by 9.1

and (7) by p__, and subtracting, P91~ Ppo19n = “Pp
n
x b, , and (8) is proved.
i=2

n
(pn-l -2 ~ pn-2qn-1) = D

(9) follows from (8) by dividing by 9.4, 1° Using (9), € =Chg =

n-1 n-1
- _ (-1) n b,
(cn cn-l) + (cn-l - C:n-2) - i=2 ! ( bn + 1 )=

q qn qn—Z

n-1

n-1 n-1
an(-l) x b
i= , since by (7), -bnqn+2 + q =2agq

nn-1°
qnqn-2

//
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Chapter 2. CONVERGENCE OF CONTINUED FRACTIONS WITH UNIT NUMERATORS.

From now on, all continued fractions will be assumed to have
unit numerators. For the present chapter at least, this restriction
is not serious, because it is clear that any continued fraction with
nonzero numerators can be converted to an equivalent (i.e. same
convergents) continued fraction with unit numerators. Also, for

definiteness, we shall work in the real field.

Introducing q, =° =P_; and 9, = 1= P, » it may be checked

that formulas (6) and (7) of Chapter 1 are also valid for n=1 and 2,
and that (8) is valid for n =0 and 1 , assuming bi =1 for all i.

For the continued fraction

[a

128928320 ] (1)

(where a . are any real numbers) , the formulas of Chapter 1

12852835+

therefore become :

P, =8P FP o (n>1) (2)
q, =84, _,+9,, (n >1) (3)
c = [al,az,...,an] =p,/q, (@>1) (4)
Pd,_1P,_1q, = D" >0 (5
. ¢D»?
€ Ch-1 = (n > 2) (6)
9%%n-1
n-1
c-c _, = 3,1 (n > 3) )
9%90-2

Remark: If a 3»--- are positive, then (1) is a valid continued

2’ 8

fraction (since all denominators are positive), although not necessarily
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convergent, and induction on (3) shows that ql’ q9y5-.. are positive.

Theorem 2.1 lLet a,, a .. be positive real numbers. Then the odd-

3°°
numbered convergents of (1) form a strictly increasing sequence, the
even-numbered convergents form a strictly decreasing sequence, and

every odd-numbered convergent is less than every even-numbered one ;

(1) is convergent if and only if

lim G 91 = © (2)

n- ®
Proof: The first three assertions follow immediately from formula (6)
and (7). 1It is then clear that (1) is convergent if and only if

c — 0 (equivalently, - 0 ), which, by (6), is

2n - S2n-1 €2n+1"%2n

equivalent to (8). //
Corollary: If x = [al,az,...], where a,, a,,... > 0, then x lies
strictly between any two consecutive convergents (except the last two if

the continued fraction is finite).

The following important theorem provides a convenient necessary

and sufficient condition for convergence.

Theorem 2.2 Let a,, a be positive real numbers. Then (1) converges

gseee

if and only if the series

z a 9)
n=1

is divergent.

Proof: The proof uses the well known result that if 0 < tn <1 , then the

o™

P14 (1-tn) is convergent (i.e. has a positive limit) if and only if
n=1
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8

tn is convergent. Suppose (9) converges. By (3), qn>qn_2,

n ™

n=1
hence (a) 9.1 < q, or (b) 9.1 > 9,9 ahrao, therefore there exists

N such that a <1if n>N. For n>N, (3) gives q, <84 +q ,

i.e. q, < qn_2/(1-an) , in case (a), and q, < aq + 9,1 < qn_ll(l-an)

in case (b). The;efore

q < 9 (r =n-1or n-2) .
n
1-an

Repeated application of this result gives r,...,s,t such that n>r>...>AN ,

t = N-1 or N-2, and

qt
q, < (10)
(l-an)(l-ar)...(l-as)
o
Now x (l-ai) =L >0 ; the denominator of (10) exceeds L , therefore
i=N

letting M be the larger of 91 and Ay ps we have q, < M/L (n>N) ,
hence 9419, < M2/L2 , 80 that (1) diverges, by Theorem 2.1.
Conversely, suppose (9) diverges. Now (3) gives q, > qn_2>...>q2

(n even) and qn>qn_2 >, 9, (n odd). Let ¢ = max (ql,qz). Then (3)

gives 9, > 9. + ca_ (n>2). Therefore :

- qn + anl 2 qn-2 + qn-3 e an + an—l)

> qn-4 + qn_5 +c ( an + an + a 4+ a

S ee-
- n
{9, + 1, +c¢ Z a; (n even)
- i=3
n
ql + qO +c .Z ai (n odd)
i=2
n
> ¢S , where S = I a
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Therefore at least one of q_, q exceeds 1 ¢ S . The other is at
n’ ‘n-1 2 n
c2 S . By assumption, Sn —So

least ¢ , hence 9.9, 1 > £ 5

therefore (1) converges, by Theorem 2.1. //

Theorem 2.3. Let a,> a,,... be positive real numbers and let n>l1 . The

3’

continued fraction

. (11)

[an, 8 Lq0e

is convergent if and only if (1) is convergent. If (1) and (11) converge
to values x and m respectively, then

X = [al,az,...,an_l, mh] . (12)
Proof: (By theorem 2.1, Mn > a >0 for n >2, hence (12) is a

continued fraction.) Let c_ = [al, az,...,ar].

The result is trivial for n=1. For n = 2,

c =a +__ 1 (13)
laz,...,ar]
or lay,.o0a) = _° (14)
c -a
r 1

Now if (l1) converges to M2 , then Mz # 0 as noted, and taking limits
in (13) shows that (1) converges to a1+1/m2 = [al,mzl 3 if (1) converges
to x , then (x-a1 # 0 by Theorem 2.1) taking limits fn (14) shows that
(11) converges, and again (12) holds. For n>3, (1) converges if and only
if [az, a3,...] does, and, assuming the theorem for n-1, the latter

converges if and only if (11) converges; also, using the theorem for

2 and n-1, x = [al, [a2,83,...] ] = [81, [az,...,a _l,mn] ] = [al,...,a

n

n-l,mn]. //
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Chapter 3. SIMPLE CONTINUED FRACTIONS.

A simple continued fraction is one of the form [al,az,a3,...],

where a_, 1is any integer and a ,-.. are positive integers. 1In the

1 2°%3
following chapters we shall be concerned primarily with this special
type of continued fractionm.

For a simple continued fraction, the numbers P> 9,6 are

integers, and furthermore it is clear from (3) of Chapter 2 that

1=q1 < 9, < a3 <... . 1In particular, 1lim 99,1 = © o therefore
n -

by Theorem 2.1 any simple continued fraction is convergent ; this also
[«

follows from Theorem 2.2, since 2 a =%.
n=1

Theorem 3.1 The integers P,» 4, are relatively prime for any n .
Proof: By (5) of Chapter 2, any common divisor of P, and q, divides

(-1)n , therefore (pn, qn) =1. //

Theorem 3.2 let x be any real number. Then x is the value of the
(finite or infinite) simple continued fraction [al, az,...], where a,
are defined inductively as follows ( [x] denotes the integral part of x)
mo=x , a = [x]

1. (1)

The induction terminates with an if mn is found to be an integer;
then x = [al,az,...,an] and , if nfl, we have a >1 . If no m, is an

integer, the continued fraction is infinite.

Proof: It is clear that the process can be continued as long as m,

remains nonintegral, and yields integers al, az,... with 82,33,...positive.



-11-

Furthermore, if u%(ifl) is an integer then a, =m > 1, since

M, ;-8 ; <1l. It remains to show that x = [al,az,...] . Now m,
=a +1l/m

(i >0) . If the process (1) terminates with mo=a , this proves

therefore it is clear by induction that x = [al,az,...,ai,mi+1]

X = [al,az,...,an]. If it does not terminate, formula (6) of Chapter 2
1

g 1= =

349 i1

applied to [al,...,ai,m ] gives | x-c , where the

i+l

prime refers to [al,...,ai, mi+1] . Hence | x-c | < 1/qi-0(),

therefore x = [al, az,...]. //

Theorem 3.3 The value of any finite simple continued fraction is
rational. Conversely, if x =r/s (r,s integers, s > 0) , then the
n

procedure in Theorem 3.2 gives x = [al, az,...,an] , where PEXERRL

are the quotients in the Euclidean algorithm for r and s :

r = a1 s + T, (0 < r, < 8)
s =a,r, +r (0<r, <r,)
2°1 2 2 1
. (2)
Tn-3 = 31Tne2 FTper (0 <t <Tpp)
Ta-2 = %0 Tp-1
Proof: The first assertion is obvious. For the second, divide the

equations of (2) by s, Tiseees r .o T respectively, and denote the

n-1
resulting left hand side, by My, Myyeee, Mo Clearly m, and a, are

thle same as in Theorem 3.2. !/

Theorem 3.4 The representation of any irrational number as a simple
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continued fraction is unique. Any rational number is the value of
exactly two simple continued fractions, and these are of the form

[a,, a

1 2,...,an] (an>1 if n # 1) and [al,..., a-1, 1].

Proof: 1ILet x be irrational and suppose x = [al, a .]. This

2,-0

continued fraction must be infinite, for otherwise x would be rational.

‘To prove uniqueness, it is sufficient to prive that a; are the same

integers as given by the procedure of Theorem 3.2. But this is clear,

because letting m, = [ai, a ] we have m, =x , m, = a1+1/m

i i+1’" " 1 i

and m . >1. Nowlet x be rational and suppose x = [bl’ b2,...]

(finite or infinite). Let x = [al, ay5--n) anl (an >1if n#1),

i+l °

e.g. the expansion given by Theorems 3.2 and 3.3. We shall prove by

induction on n that [bl’bZ”"] is [al,az,...,an] or [al,az,...,an_l,ll.

Let m (possibly infinite) be the number of terms in [bl’b .]

220"

For n = 1, x = a, is an integer, and we consider 3 cases :

1
(i) m=1 b1 =x=a, as required.
(ii) m = 2 X = b1 + 1/b2 , therefore b2 =1, and
[bl’ b2 ] = [81 -1,1] as required .
(iii) m > 2 : b1 <x< b1 + l/b2 , contradicting that x 1is an integer.

Therefore this case does not occur. For n>l, x is not an integer

and we have m >2 , b, <x<b +1/b, <b + 1, therefore b1=[x] = a

1 1 1 1’
and 1/(x-b1) = [b2, b3,...] = [az,...,an] ; now the required result

follows by applying the result for n-1 . !/

Corollary: The value of any infinite simple continued fraction is irrational.

Proof: The value cannot be rational, since the only expansions of a
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rational number are the two finite ones mentioned in the theorem.

//
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Chapter 4. THE FIBONACCI NUMBERS.

In this chapter we consider some elementary properties of the
Fibonacci numbers and the closely related simple continued fraction
[1,1,1,...]. This continued fraction plays a special role in later

chapters.
Let t denote the value of [1,1,1,...] . Clearly t=1+1/[1,1,...]

= 1+1/t , i.e.

t2-.t-1 =0. (1)

Solving (1) for the positive root, we find

t = L;—‘fé = 1.618... (2)
the other root is
_ l=k_~@_
s = - T=S32-= -0.618... 3)

Formulas (2) and (3) of Chapter 2, applied to [1, 1, 1,...] , give

n pn-1

q; =4, = 1 . Now the Fibonacci numbers Fl, FZ’ F3,... are defined by :

P + q,_,- Furthermore P, =P = 1 and

+ Ph-2 qn 9.1

F, =F, =1
1 2
(4)
Fn = Fn-l + Fn_2 .
Therefore we have
pn = Fn+1
(5
q, = Fn ’

and the convergents of [1, 1, 1,...] are ratios of consecutive Fibonacci
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numbers, namely cn = Fn+1/Fn .

It is important to know how quickly the Fibonacci numbers

grow with increasing n . From (1) we note that " = t:n-1 + t:n"2 ,

n n
at <+ bs

and the same for s. Therefore for any a and b, Hn
satisfies H =H +H 3 solving for a and b which result in
n n-1 n-2

H =0,H =1 (i.e. H =F_,H =F) ,ve get a=-b=1/N5.

1
Therefore Hn = Fn and we have proved the very interesting formula

(called Binet's Formula) :

1 1++5 .n 1 -5.n
F = — (( Y - (—)") . (6)
LN 2 2

It follows that
F

1
lim — = = (7)
Do t S5
so that Fl’ FZ"" approximates a geometric progression. 1In fact, it

is clear from (6) that Fn is the nearest integer to tn/J3 .

The following theorem shows that the denominators of the

convergents of any simple continued fraction increase at least as fast

as the Fibonacci numbers.
Theorem 4.1. For any simple continued fraction, 9, > Fn .

Proof: q, = 1 = Fl and q, = a, >1= F2 . Assuming 9, 9 > Fn_2 and

q > Fn-l , we have qn =a qn_1 + qn—2 > qn-l + qn-2 > Fn_1 + Fn_2 =F .

n-1 - n
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Chapter 5. MISCELLANEOUS RESULTS.

Here we mention some miscellaneous theorems which will be
used in later chapters, but which either are not of general interest

or are well known elementary results.

Theorem 5.1. et x > 1 and consider the simple continued fraction
expansions of x and 1/x . For n >@2 , the nth convergent of 1/x

is the reciprocal of the (n-1) st convergent of x .

Proof: If x = [al, a ], then 1/x=1[ o0, a .]. Letting

2".. 1’ 82’00
primed quantities refer to 1/x , and using (2) and (3) of Chapter 2,

1) |}
one can verify by induction that Php =951’ 9, = P71 from which

the result follows. Details may be found in [6],

Theorem 7.15. //

Theorem 5.2. Let a,, a be positive real numbers and assume that

3o

x = [al, az,...] # 0 . Denote [an, a ] by m . Then for n > 1,

n+l’ e

.,al,--l-]. (1)

= [a , a <

n n-1’°"

Proof: (Note : in the course of the proof, it must be shown that (1)
igs indeed a valid continued fraction, i.e. has no zero denominators.)

For n=1, [a_, - %] is a valid continued fraction (since x # 0) and

1

its value is a -x, which, by Theorem 2.3, is -1/M2 . For n>2,

assume that the result for n-1 , i.e.

-1

m =
n [in_l,...,al,-llx )] (2)
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Now [an,... s8,, -1/x] is a valid continued fraction since by

1’
assumption [an-l"" LI -1/x] is. By Theorem 2.3, m = [an,mn+1] R
therefore -1/M , =a -m =a + 1/[an_1,... ,al,-l/x] =

[an,...,al, -/xl . //

We shall have occasion to use some results from elementary
number theory. If p is an odd prime and a¢ 0 (mod p) , then a is
called a quadratic residue of p 1if there exists x such that

x2 = a (mod p).

1. -1 is a quadratic residue of p if and only if p = 1 (mod 4).
2 is a quadratic residue of p if and only if p g 1 or 7 (mod 8).

-2 1is a quadratic residue of p if and only if p= 1 or 3 (mod 8).

2. If N is a sum of two relatively prime squares, then N 1is a

product of primes of the form 4k +1 or twice such a product.

A proof of 1. may be found in [9], Chapter 5, Section 2.

Result 2. is proved in [2], Chapter 20. (The converse of 2. is also true).
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PART II

APPLICATIONS TO RATIONAL APPROXIMATIONS
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Chapter 6. BEST APPROXIMATIONS TO REAL NUMBERS.

1. Introduction and Motivation.

This first section is meant to motivate and clarify the

definitions of best approximation of the first and second kind.

Given a real number x , it is natural to look for a rational
number which is a good approximation to x and yet whose denominator
is "not too large'. More precisely, (Problem A) given a real number
x and a positive integer N, to find all pairs of integers a, b
satisfying : (1) 1 <b<N, and (2) for any integers r, s with
1<s <N, we have lx-a/bl < lx-r/sl . Clearly at least one such pair
exists, and if one pair a, b is known, the others ¢, d (if any) can

easily be found, since c¢/d must equal a/b or 2x - a/b.

Definition. Rational number a/b (b > 0) 1is said to be a best

approximation of the first kind to x if 1<d<b, c/d # a/b imply

] x - c/d l > I x - a/b [ .

The relation of this definition to Problem A is indicated by
the following elementary propositions.
Proposition. Any best approximation c/d of the first kind is a
solution of Problem A for some N , namely N = d.
Proof: Suppose 1 < s <d. We must show that ]x-c/dl < [x-r/s[.
For r/s = ¢/d this is immediate, while for r/s # ¢/d it follows

from the definition of best approximation of the first kind. !/

Proposition: Except for the case N =1 and x =n +-% (n an integer),
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any solution a, b of Problem A with minimum b is a best approximation

of the first kind to x.

Proof: Suppose 1<d<b, c/d¢#a/b, but |x-c/d| < [x-a/b].

Then |x-c/d| = |x-a/b] (since a, b satisfies Problem A) , d = b

(by minimality of b) , and x is the average of a/b and c¢/b = c/d.
Hence a and c¢ differ by 1 , for if t 1is strictly between a and C,
t/b would be a better approximation to x .

Without loss of generality, assume c¢ =a + 1. Write a = gb+r, O<r<b

(r # 0, for otherwise a/b = q/l, hence b =1 by minimality of b,

and then x = a + 1/2, contrary to assumption.) It is easily checked

that
q (b-1) +r
b-1

exceeds a/b but not (a+l)/b , therefore is at least as good an

approximation as a/b , contradicting the minimality of b, !/

It may be noted that the situation is simplified if x 1is
irrational : then clearly any solution of Problem A is a best

approximation of the first kind.

Proposition: Exclude the case N =1, x=n +-%. Then any best

approximation a/b of the first kind with 1 <b < N and such that b

is maximum, is a solution of Problem A .

Proof: If a, b is not a solution of Problem A, let c, d be a
solution with minimum d. We have lx - c/d[ < lx - a/bl. Now by the

preceding proposition, c/d is a best approximation of the first kind,
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therefore by maximality of b , we have d <b. But then by definition
of a/b being a best approximation, |x-c/d|>| X - a/bl , contradicting
the first inequality. ]/

Thus (disregarding the trivial case N =1, x=n +-% ), solution
of Problem A for general N is equivalent to knowing all the best

approximations of the first kind to x .

For some purposes it is desirable to consider the difference
lbx-al rather than ]x - a/bl. This leads to a second king of best

approximation, as follows :

Definition. Rational number a/b (b>0) is said to be a best

approximation of the second kind to x if 1 <d < b, ¢/d # a/b

imply ldx-cl > be—a].

Theorem 6.1. Any best approximation of the second kind is also one of

the first kind.

Proof: Multiplying |dx-c| > ]bx—a] by 1/d > 1/b gives Ix—c/d|>|x-a/b|,

as required. !/

Examples are readily found to show that the converse of Theorem
6.1 is false. e.g. let x =5/12 - e , where 0 < e < 1/60 ; then 1/3
is a best approximation of the first kind but not of the second, since

it may be verified that [2x - 1] < [3x - 1] .

2. The Main Theorems.

We shall see that the convergents of the simple continued fraction
expansion of x provide a very convenient means of finding all the best

approximations of the first and second kind to x. We continue to use
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the notation of Chapter 2 (formulas (1) to (7)): x = [al,a ..l

2’
is a finite or infinite simple continued fraction, with convergents

c = [81,82,...,8n] = Pn/qn' We begin by examining the difference

between the continued fraction and its convergents.

Theorem 6.2. If x has at least n + 2 terms, then

| X -c | < . . (D

n
qnqn+1

Proof: By the corollary to Theorem 2.1, x 1lies strictly between

c. and c therefore Ix-cnl < |cn-cn+1| = llqnqn+1 (formula (6)

n+l’

of Chapter 2). //

It should be noted that (1) is replaced by an inequality if

there are only n + 1 terms, for then x =¢ Thus, if x has at

n+l’
least n + 1 terms, then Ix - cnl < 1/qnqn+1 .
Theorem 6.3. Let mo= [an, 8n+1""] . Thep :
(_1)n+1
x-¢c = (2)
2 9p-1
1, (nn+1 + )
9n

Proof: x [al, . ,an, mn+1]

pnmh+1 + pn-1 .

qnmh+1 + qn-l
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Using this expression for x , we find that

Py Pp-19n 7 Ppip-1
xX-__ = ,

q 2

n 9 "h+1 + 99,-1

and (2) follows by use of formula (5) of Chapter 2. //

Theorem 6.4. If x has at least n + 1 terms and its last term

(if there is one) is not 1 , then :

| x-¢ | > 1 : (3)

" 9 (qn+an)

Proof: Comparing (2) and (3), it is sufficient to prove that
ER T ] < UGy T 9, - Replacing I+l by 8+1% + 9n-1

this becomes m o1 < a1 + 1 , which is clearly true. //

Theorem 6.5. Let x have at least n + 2 terms, with the last term

(if any) not 1. Then :

lax - p | >l x-p 4l - (4)

Proof: Since a > 1, we have 9,41 +q < & 2941 + q =9 ., -

+2

Therefore by Theorem 6.4, ]x-cnl > 1/qnq

n+2 , 1i.e.
la x - p > _1 . (5)
Int2
But, as noted after Theorem 6.2, |x-cn+1| < 1/qn+1qn+2 , 1l.e.
1
Y2

(4) follows from (5) and (6). //
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c, of [a,, 1,117,

Corollary: Except for the convergents c 2

1’ 1’

any convergent c¢ is closer to x than the preceding convergent

n+l

c i.e.
n 9’

| x-c | > l x-c | . (7

Proof : (1) I1f there are only n + 1 terms then

l *Cnt1 I =0< 1/qnqn-H = I “a+1 ~ “n ' = ] T % ]
(ii) If there are only n + 2 terms, then x = C 420 and using
formula (7) of Chapter 2,
I n+2
x-c¢c | =
n
9 942
1
also, | x - c 41 | =
Y+1 nt2
therefore (7) 1is equivalent to a 2 941 > q, - Now 941 > q,

(equality only if n =1 and a,6 = 1), hence (7) 1is false only for

2
n=1, a, = 1, a; = 1 ; since the present case is assuming only n+2
terms, this means that x = [ a s 1, 1], i.e. the exception noted.

(iii) If there are n + 3 terms or more, we can absorb any
final unit into the second to last term, therefore we always have (4),

by Theorem 6.5. Multiplying by 1/qn > 1/qn+1 gives (7). !/

Assuming b and d positive, the mediant (also called the
median value) of a/b and c¢/d is defined to be (a+c) / (b4+d) , and

is, as one can trivially verify, strictly between a/b and c¢/d if
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the latter are distinct. Consider the fractions

pn + ipn+1

(0<ig a ). (8)

9% + iqn+1
We observe that the first of these is o the last is C 42 * and
each after the first is the mediant of the preceding one and
pn+1/qn+1. The fractions (8), other than the first and last, are
called intermediate fractions (or secondary convergents) of the
continued fraction. The reason for introducing intermedi#te fractions
is the following result : every best approximation of the first kind
to x 1is either a convergent or an intermediate fraction of the simple
continued fraction expansion of x . Since the proof is somewhat long,
but not difficult, and the result will not be needed in what follows,
we shall omit the proof ; it may be found in [4], 8§ 6, Theorem 15.
As will be shown, every convergent is a best approximation of the first
kind ; however, this is not true of every intermediate fraction. For
best approximations of the second kind, a much sharper result (presented
in the next two theorems) is true, and this constitutes the main reason

for congsidering best approximations of the second kind.

Theorem 6.6. If a/b is a best approximation of the second kind, then

there exists n > 1 such that a/b = c.-

Proof: Let L <« be the number of terms in the given continued fraction.
For the purposes of this proof, " c, d gives a coniradiction " will mean
that 1 <d <b, c/d # a/b, and | dx-c ] < | bx-a | , thus contradicting

that a/b is a best approximation of the second kind. We shall have
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occasion to use the fact that for any integers e, f, g, h (f,h positive),
e/f # g/h implies |e/f - g/h| > 1/fh ; this follows since |eh-fg|

is not zero, hence at least 1.

If L=1, then x =a, =c, , and a/b =¢ for otherwise

1 1 1’

a5, 1 gives a contradiction. Therefore assume L > 2. If a/b < C1s

we have lx-all < lx-a/bl <b Ix-a/bl = lbx—al , 80 that a_, 1 gives

1’

a contradiction.

If a/b > c, » then
a a 1
lx-gl?lcz-_b-l?
b q,

. 1
i.e. l bx - a l > H

)

but ] x - a [ < lcz - a i = 1/q2 » therefore a5 1 again gives a

contradiction. Thus, assuming a/b is not equal to any convergent,

we have <5 < a/b < c2 ; also, a/b # x , for otherwise x 1is rational

and a/b = cp - Therefore we are clearly in one of two cases :

(i) For some n >1, a/b is strictly between <, and Che2’
(ii) L 1is finite, and a/b is strictly between €11 and ¢ =X .
We note that if a/b is strictly between cr and cr+1 , then

P
s A R R KRR I S
T r 'r+l

therefore 941 <b.

In case (ii), therefore, q; <b ; also, ]qu-pL] = 0 , hence
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PL, 9 gives a contradiction.

In case (i), we show that p 1 gives a contradiction.

n+l’ In+

Now a/b 1is also strictly between < and c hence 941 < b.

n+l °’

Furthermore, a/b is clearly at least as close to ¢ as it is to x ,

n+2

so that

P

| x - a [ > | nt2 a | > 1
b= In+2 b' = b
In+2

i.e. | bx - a | > 1 .

Int2
But an+1 X-P oy l = 9.4 l x-c¢ 4 l < 1/qn+2 (from Theorem 6.2).

Therefore lqn+1 x - pn+1| < lbx-al . 1

Theorem 6.7 Assume that the continued fraction used for x does not
have 1 as a last term. Let n > 1, and exclude the following cases :

1. n

1, there are at least 2 terms, and a, = 1.

2. n =1, and the fraction is [a,, 2].

1’

Then the convergent pn/qn is a best approximation of the second kind

(and hence also of the first kind).

Remarks: (i) Suppose n > 2 , and the last term is a- 1

then pn/qn is not a best approximation of the second kind ;

€a-1 * €a ? 1< U%-1 < U and  (since x = cn+1) ’ 'qn-l x-pn-ll =

lqn§ - P, | , each being 1/qn+1.

(ii) In case 1, or 2, above, we have a, +-% <x< a, +1,

therefore c¢, = a1/1 is not a best approximation of the first or second

1
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kind (by comparison with (a1 +1 /1).

Proof of Theorem 6.7: Let m < ® be the number of terms in the
continued fraction. First of all, we can assume n<m, for if n=m ,

then pn/qn = x and the result is immediate.

Let X be the set of all pairs (u, v) where u may be any
integer and v =1, 2,...,qn . Define a function F with domain X
by F(u,v) = l VK - u l. Letting t be any value of F , F(u,v) <t
is equivalent to vx-t <u<wvx +t ; v is bounded, therefore only a
finite (and nonzero) number of elements (u, v) satisfy F(u, v) <t ;
hence F attain a minimum at one of these elements. Let M be the set
of all elements of X at which this minimum is attained, and let

(uo, vo) be an element of M with least v,

Then we have :
I. For all (u, v) in X, F(u,v) > F(uo, vo)
II. If F(u,v) < F(uo,vo), then (u, v) is in M , and v > A
We also claim the following :
I1I. If (u, vo) is in M , then u = u, -
Once III is proved, it will follow that u /v, is a best approximation

of the second kind to x, for if 1<d < v, and F(c,d) < F(uo,vo) ,

then II gives 4 = v, and 111 gives c =u

o0 °
To prove III1, suppose (u, vo) is in M, but u # u - Then
l VX-u l = | VX -u | and
o o (o]

u+u
o)

xX= 29
o

N 4=

also, lvox-uol # 0 , hence | vx- uol =| (u+ u) /2-u/l [ >
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Now u + uo and

2vo are relatively prime, for suppose u+uo =kp , 2vo = kq ,

k > 2 ; then ¢ < vV, » 80 that (p, q) is in X , and

lgx - p| =0 < Ivox-uol contradicts I.. Therefore, u + u - P s
2vo = qm 5 qm > 1 shows that m > 2. Now Iqm_1 X - pnrll = qm—l

= 1/qm = 1/2vo <1/2 < l VX - ou | , therefore II gives a contradiction

if we can show that 9,1 < v, Now 2vo =a q _,+49 , and we

assumed a_ > 2, therefore v_ > 9, unless a =2 and m = 2
m - o 1 m

(hence also n = 1, since we dismissed n

therefore III is proved.

Theorem 6.6 now shows that there exists

u /v =2¢C
0/0 8

and II gives q > Vs 80 that

=p , V We

8 o 9 -

Thus, u
o 8

Since we excluded the case n

k=1 and u , v
o’ o

m) ;

8 > 1 such that

. If u = kp and v, = kq , then qu-pl < ]vox - uol ,

complete the proof by showing that s

1 and a

which is false by definition of X.

hence qs + qs+1 S qn_1 + qn

recalling n<m :

using I,

2

1
qn+1
>_ 1
qs+qs+1

9 = 1, n <8 leads to 9,

Suppose s < n ; then s + 1 <

Theorems 6.2 and 6.4, and

> qxp | > qx-p, ]

1

qn-l + qn

|

this case was excluded,

are relatively prime.

= n.

Therefore 9. < q, + 9.1 ° which is false since 941" an+1qn+qn_1 .

m-cm-l

//
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3. A Restatement.

The results proved in this section are closely related
to Theorems 6.6 and 6.7, but are in a form which is sometimes more
convenient to use. As demonstrated by Niven and Zuckerman [6] in
their Theorem 7.13, they may also be proved directly without using

our Theorems 6.6 and 6.7.

Theorem 6.8. Let n > 1 and assume that the fraction used for x has

at least n+ 1 terms. Then b >0, be-al < anx-pnl imply b?qn+1.

Proof: We can assume a and b relatively prime, for if a = kc’

b = kd’ (c, d) =1 , we could apply the theorem to ¢, d to get d?qn+1,

therefore b > 941"

If n=1 and a, = 1, the result is trivial, since then q 1.

2 n+l”

If n =1 and the fraction is [al, 2] , we have b >3 = for

qn+1

otherwise b = 1 and lbx-al ?'% = lqlx - p , contradicting the

A

assumption. Also, we can assume that the continued fraction does not

have 1 as a last term, for suppose the number of terms is m and a

If m>n + 3 we can absorb a into a_ and the theorem still gives

1

b > 941 ° If m=n+ 2 , absorbing a into a 1> ve get (where

n+2

primes refer to the mew fraction) b>q .. = (a ,+1) q +q , _

941 + qn > qn+1. Finally, if m =n + 1, we can assume n > 1 (since

the case n =1, a, = 1 has been treated) ; as indicated in Remark (i)

2
following the statement of Theorem 6.7, an_lx-pn-ll = lqnx - pnl ]

therefore absorbing aa into a , we have b > gq 0’ but

1, (an+1) 9h-1 + 9%-2 = 9, + %-1 = 41 -
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Thus, Theorem 6.7 gives that pn/qn is a best approximation of

the second kind. Also, a/b # pn/qn (otherwise ]bx-al = anx-pnl s

since (a, b) = 1) , therefore b < q, implies be-al > anx-pnl ,
which is false. This shows b > q,- Suppose b < 941 Then a/b
is not a convergent, hence by Theorem 6.6 it is not a best approximation

of the second kind. Thus there exist ¢, d such that 1<d<b , a/b #c/d ,

(cy, d) =1, and ]dx—cl < lbx—a] . We claim that d # b, for d = b gives
atc and 1< ]a-cI < Idx—cl + be-a] < 2]bx~a] , hence be-al _>-% H

but except in the case n =1, a, = 1, which has been treated) |qnx - pnl

2
< 1/qn+1 f-% , and be-al < |qnx-pn[ is contradicted. Therefore d <b .
Now if d > q.> then c¢/d is not a best approximation of the second kind
and |dx-c| < |qnx-pn| , 80 that by the same argument, we get e/f ,
1<f<d, (e,f) =1, Ifx-el S[dx—cl . This process may be continued
until we eventually obtain r/s, 1 <s8 < q, » (r,8) =1, and l 8X-T l <

lqnx-pn] (hence r/s # pn/qn) , contradicting that pn/qn is a best

approximation of the second kind. Therefore b > 9.4 - !/

Corollary: ILet n ? 1 and assume that the fraction used for x has at

least n terms. Exclude the case n =1, a, = 1. Then b > o,
|x-a/b] < |x—pn/qn] imply b > q, -

Proof: Assume at least n + 1 terms, since the result is empty for n

terms. If b < q, > multiplying the given inequality by this gives

lbx—al < anx-pnl » therefore b > 90 by the theorem. This is a

contradiction, since 941 > qn . !/
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Chapter 7. HURWITZ'S THEOREM AND RELATED RESULTS.

~

n+1'§ q, > Theorem 6.2 shows that |x - cnl < 1/qn ,

Since q

and therefore for any irrational number x there exist infinitely

many rationals a/b such that |x-a/b] < 1/b2. Let us now consider

the possibility of replacing b2 by some other function of b.

More specifically, for how large a value of k can b2 be replaced by kb
Investigation of this problem leads to the striking result, first proved
by Hurwitz in 1891 ( [3] , using Farey sequences rather than continued
fractions), that k can be as large as Jg, but no larger. First,

however, we shall examine the easier case k = 2,

Theorem 7.1. Exclude the case where n =1 and the fraction is [a1,1,1]

Given any two consecutive convergents c and C 41’ at least one of

the following two inequalities is true :

| x-c | <} (1)
n
2q 2
n
I - el « 2 (2)
2
2q n+l
Proof: X lies between <, and cn+1, therefore lx-cn+1| = lcn+1-cn]

- Jx - cn] = 1/qnqn+1 - lx - cnl . Assuming (1) false, we obtain

1 1
| x - cn+1[ < - . (3)

909n+1 2q 2
n

Now 1/ab - 1/2a2 < 1/2b2 is equivalent to Zab-b2 < a2, i.e. (a-b)2 >0,

i.e. a #b. But 9,41 # q, » proving (2), unless n =1 and a, = 1.

?
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If n=1 and a2 = 1, then cn = al ’ cn+1 = a1 +1, qn =1 = qn+1 ,
and clearly one of (1), (2) is true unless x = a1 +-% , in which
case the fraction must be [al, 1, 1] . Since this case was

excluded, the theorem is proved. !/

Corollary: Given any irrational number x , there are infinitely many

rational numbers a/b such that

| x-am|< b (4)
22
Theorem 7.2. if (4) holds, then a/b 1is a convergent.
Proof: We can assume b >o0 . Given (4), we prove that a/b 1is a

best approximation of the second kind to x ; the desired result then

follows by Theorem 6.6.
Suppose 1 <d<b and c/d # a/b ; we must prove
|dx-c| > |bx-a| . (5)

By (4), it is enough to show ] dx-c ] > 1/2b .

1 c a c
ESIE--ﬁlSlx-3]+lx--|

1
< | x-= I + 5
d 2b2

c 1

<l x-G 1 4

c 1 1 _ 1.
Therefore | x - 3 ] >'as - 336 " 7db ’

ie. Jdx-¢ | >1/26 . //

Theorem 7.3. 1f k >'J3 , then there is an irrational number x
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(for example x = (1 + JB)/Z) such that

lx-2] <L (6)
b kb2

is true for only a finite number of rational numbers a/b.

Proof: Let x = (1 + JB) / 2 and let Fl’FZ’F be the Fibonacci

3"..
numbers 1,1,2,... As was shown in Chapter 4, x = [1, 1, 1,... ] and

P, = Fn+1’ q, = Fn . By Theorem 6.3,

| x-c, | = : : &
2 Fn-1
q, (x+ F )

/Fn -x +1/x = J5 . Therefore k >45 implies that

But x + F

n-1
for all n sufficiently large, |x - cnl > l/kqi . But k > 2, hence
by Theorem 7.2, if [x - a/b[ < 1/kb2 then a/b is a convergent.

Therefore the theorem is proved. !/

In preparation for proving the next theorem, we introduce

some notation :

m = [an, an+1,...] (n>1) (8)
q,.
u = B2 (n>92) (9)
n -1 -
LA + m (n > 2) (10)
We observe that m = an + 1/mn+1, and
9
" L = q = an qn-l + qn-Z = an + un
n+l n-1 DY
Therefore 1 + 1 = W (n >z ) (11)
Yntl  Tntl
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and a = -u (n>2) . (12)

The formula proved in Theorem 6.3 becomes

| x-¢c | = ! . (13)
n 2
qn wn+1
Lemma: Let n > 2. From wn 5 Jg and wn+1 S'Jg it follows that

un+1>(J3-l)/2.

Proof: Using (l1) , we have

- 1 + ml < JB . + m o1 < JB .
n+l n+l
Therefore (\/—S-un_*_l) (\/—5~-}—)?m+1 ;—L =1 .
Yn+l n n+l
Multiplying by U and completing the square,
n+l 2 - 4
| u _§| 1
n+l 2" - 2
N R B[ 5F |
n+l = 2 2 2 ’
But U is rational, therefore the lemma is proved. //

Theorem 7.4. lLet n > 1 and assume that x = [ al, az,...l has at least

n + 2 terms. Then the inequality
1
2
5 &

is true for at least one of the three values i =n , i=n+1, i =n+2.

I x - c, I < (14)

Proof: We can assume at least n + 3 terms, for otherwise (14) is true
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for i =n+ 2. Assume (1l4) false for all three values of 1i .
Then by (13), w, < JB (1 = ntl, n+2, nt+3) , therefore by the

lemma, u, > ( N5 - 1)/2 (i = n+2, n+3) . But then (12) gives

2 J5-1
a . < —— o M2
n+2 43_1 2

which is false. //

Corollary: Given any irrational number x, there are infinitely

many rational numbers a/b such that

1
J5b2

| X - % | <
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PART TII

APPLICATIONS TO NUMBER THEORY
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Chapter 8. THE NUMBER OF STEPS IN THE EUCLIDEAN ALGORITHM

In this chapter we prove an elementary yet significant result
concerning the Euclidean algorithm. The ease of the proof is a good

illustration of the power of the theory of continued fractions.

let r, s be any integers, with s > 0. Consider the Euclidean

algorithm for r and s :

1. r=a, s + r, (0< r, <s8)
2. 8 = 8,r) . T, (0<r, <r1,)
2 1
3. r, = a3r2 + r, (0< ry < r, )
n-1. 'y = a T +r
n-3 n-1 "n-2 n-1 (0 < ro1 < rn_z)
n . T =8 1 ;-

Here, n > 1 is called the number of steps, and we shall use the

notation E (r,s) =n .

As shown in Theorem 3.3, [al, a2,...,an] is the simple

continued fraction expansion of r/s, and (if n > 1) an > 2 .

Therefore we can write :

r
s = [al, 8)seces 8 5 8 © 1, 1] (1)

Using Fi for the Fibonacci numbers and letting P; and q; refer

to (1), we have (Theorem 4.1) 9.1 > Fn+1 - But r/s = pn+1/qn+1 .

therefore s > Fn+1 . Now suppose 8 < Fm . Then Fn+1 <8< Fm ’

therefore n+1<m, i.e. E (rys) <m - 2. This proves the following
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theorem :

Theorem 8.1. let F, =1, F, = 1,... be the Fibonacci numbers. If

1 2
r is any integer and 0 < 8 < Fm , then the number of steps in the

Euclidean algorithm for r and s 1is at most m-2.

Example 1. Taking a = Fo1 and r = F, » we have Fm/Fm-1= f1,1,...,1]

(m-1 1's) , hence E(Fm’ Fm-l) =m-2.

Example 2. Let r =18, s = 11. 11 is between the Fibonacci numbers

F6 =8 and F7 = 13, hence the theorem predicts E( 18,11 ) < 7-2 = 5,

In fact, E (18,11) =5 :

18 = 1.11 +7
11 = 1.7 + 4
7=1.4+3
4=13+1



Chapter 9. PERIODIC SIMPLE CONTINUED FRACTIONS

Periodic simple continued fractions have many interesting
and useful properties, due primarily to the fact that a continued
fraction is periodic if and only if it represents a quadratic irrational.
This striking result was first proved by Lagrange in 1770. 1In particular,
the simple-continued-fraction expansion of JD where D 1is a positive
nonsquare integer) provides the key to the solution of Pell's equation

x2 - Dy2 = + 1, to be discussed in later chapters.

By a quadratic irrational we mean a number of the form A+BJB s
where A and B are rational numbers (B # 0) and D 1is a positive
nonsquare integer, We note that if A + B JD=E+F Jb, then A =E
and B =F (for if B # F, we would have Jb = (E-A) / (B-F) ,
contradicting that JD is irrational ; hence B = F and consequently

A = E). The conjugate of x = A +-BJ5 is defined to be x = A - BJb.

One easily verifies that, if y =E + PJb, then x + y = x +y and

_; = ;'; hence also x.1 = x-l) 3 in other words, the operation of
taking the conjugate is an automorphism of the field Q(Jb) (i.e. the

field of elements A + BJB, where A and B are rational).

Clearly a root of a quadratic equation with integer coefficients

and positive nonsquare discriminant is a quadratic irrational.

Furthermore, it is not difficult to see that any given quadratic
irrational is a root of precisely one quadratic equation ax2+bx+c =0
where a,b,c are integers, a > 0, and (a,b,c) = 1. To prove the last

statement , x = A + B JB is a root of xz-ZAx + (AZ—BZD) = 0, which
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can clearly be put into the required form ; to show uniqueness,
suppose ax2 +bx+c=0-= dx2 +ex + f (a, d >0, (a,b,e) =1=
(d,e,f) ) ; eliminating x2 , we get (bd-ae) x = - (cd-af), hence

(since x 1is irrational) bd = ae and cd = af ; assuming first

olo

that e # 0 and £ # 0 , we have

a.lm
mio

3 denoting each fraction
by k and letting rd+se+tf = 1, we get k = ratsb+tc , showing

that k is an integer ; but (a,b,c) = 1, therefore in fact k =1,

hence a =d, b =e, ¢ f; the case e =0 or f =0 1is treated

similarly.

One half of Lagrange's result is relatively easy, and we
state it in the following theorem :
Theorem 9.1 The value of any periodic simple continued fraction is

a quadratic irrational.

Proof: Let x = [al’ az,...] , where, for all n > m, L

(here, m >0 and r > 1). Let y = [am+1, am+2,...]. Then x =

[al,...,am, y] = [al"”’am+r’ y] , therefore

= pmy +'pmr1 = pm+ry + Pm+r-1 .

G Y1 Yo Y Yo

X

Hence y satisfies a quadratic equation with integer coefficients

3 - 2 t
(the leading coefficient P qmpm+r is not zero, since pm/qm 4

Pm+r/qm+r if m >0 , while pmgm+r = l'qm+r #0 = UPrir if m = 0).

Therefore y, and consequently x, is a quadratic irrational. //
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As a first step towards proving the converse, we shall
determine which real numbers have purely periodic expansions. These

turn out to be the reduced quadratic irrational, defined as follows :

Definition: A reduced quadratic irrational is a quadratic irrational

x such that x>1 and -1<x<0.

Theorem 9.2 Any purely periodic simple continued fraction

x= [ 815 8y5-00) 8 ] (1)
is a reduced quadratic irrational, and ;y = -1, where

y=1 8,8 15005 8 1. 2
Proof: x > a, >1, and by Theorem 9.1 x is a quadratic irrational.

Applying Theorem 5.2, we have

1
"% ] . (3)

1
¥ |-

= [ 8, 8 _ 5005805

(2) and (3) show that when the proof of Theorem 9.1 is applied to y
and - i (using m = 0) , these numbers satisfy the same quadratic
equation. But y and - 1/x are distinct (they are of opposite sign),
therefore each is the conjugate of the other, proving that ;y = -1.

Finally, x = -1/y and y > 1, therefore -1 <x<0. //

Lemma 1. Any quadratic irrational x may be expressed in the form

x=P;Jb : (%)

where P, Q, D are integers, D >0 , and D 1is not a square.

For any such representation, x is reduced if and only if
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P <D (5)
Q-P <D (6)
P+Q > D (7

Given positive nonsquare D, there are precisely h(h+l) reduced
quadratic irrational of the form (4), where h = [ <D ](integral
part of JB).

C

Proof: % +-3 Jk can be written as (ad + 4b czk) / (bd).

Assume (4). (i) let x be reduced, i.e.

P+Jp >1 (8)
Q
p-JD< O 9)
Q
Pp-JD >-1. (10)
Q

Suppose Q < 0 ; then (8) shows P < 0 ; but then P - Jb <0,
contradicting (9). Therefore Q > 0, and (5)-(7) follow easily from
(8)-(10). (ii) ©Let (5)-(7) be satisfied.

Subtracting (5) and (7) gives Q > 0, so that (8) - (10) follow.

Geometrically, (5) - (7) mean that (P,Q) is a lattice point
strictly inside the triangle whose vertices are (JB, 0), (O,Jb),
(D, 2D). Clearly the number of such lattice points is 2(1+2+...+h) =

h(h + 1). ]/
Lemma 2. If x is a reduced quadratic irrational, then so is -1/; .

Proof: -1 < x < 0, therefore -1/x > 1 ; x > 1, hence -1/x, which is

the conjugate of -1/;, lies between -1 and O. !/



/-

Lemma 3. Let x be a quadratic irrational satisfying

ax2 +bx+c=0 ' (11)
where a (#0) , b, ¢ are integers , and let k and D be any
integers such that b2-4ac = kzD and k divides 2a, b, and 2c.

Then given any sequence of integers 8198950 the numbers X =x and

% L SER> (12)
i1
are of the form
x, = fit Vo (1>1) (13)
Qi

where Pi and Qi are integers.

Proof: Given (11) and the assumption about a,b,c, it is clear that
x = (-b j-JkZD) / 2a is of the form (13). Thus, it is sufficient to
2
i i *5 + bi x, + ci =0
2 _ 2
(ai # 0) where bi - aaici =k™D and k divides' Zai, bi’ c

prove that each x, satisfies an equation a

i
For this, it is enough to prove that y = 1/(x-8) (8 any integér) does.
Now x = 8 + 1/y , and substituting this into (11) and simplifying,

we find dy2 +ey+ £ =0, where d = as2 +bs +c, e = 2as + b, and

f = a, also, one can check that ez- 4df = b2 - 4ac = k2D 3 clearly

k divides 2d, e, 2f ; finally, d # O, for otherwise e2 = kzD ’

contradicting that x is irrational. //

Theorem 9.3. The simple-continued-fraction expansion of any reduced
quadratic irrational is purely periodic. Furthermore, if the quadratic
irrational is x = [al, az,...] and satisfies ax2 +bx +¢c =0 where

a(#0) , b, ¢ are integers with b2 - Gac = kzD and k dividing
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2a, b, and 2c, then each m = [an, a ..1 (n > 1) is a reduced quadratic

nt+l’’
irrational of the form (Pn +-Jb) / Q. (Pn’ Qn integers), and the

fundamental period does not exceed h(h+l) , where h = [Jb] .

Proof: In lemma 3, take s, = a,. Then X =my and therefore each
m is of the form (P +J5) [/ Q. Assume m_ is reduced. Now m >
n n n n n+l

a1 > 1 ; also
- _ 1 .
Tatl _— (14)
m - a
n n

but 0<-m <1, i.e.a <a-m <a+1 , hence by (14) 1/(a +1) <
n n n n n n

- m <1/a 3 now a >1 (for n =1 this follows from the fact
n+l n n -
that x > 1, since x is reduced), therefore m is reduced. But

n+l
x =m is reduced, therefore every m is reduced. By lemma 1,
there are only h(h +1) reduced quadratic irrational of the form (4),
. hence there exist r > 1 and t > 1 such that Mo =T and
t <h (h+l). Choose the smallest possible r. Then r =1, for

suppose r > 1. mo_,Ta + llmr , 8o that, denoting -1/mn by
b, wehave b =a , +1/b_ ,. Similerly b =a  _,+ /b .. 1
By lemma 2, b~ is reduced, hence b > 1, therefore [br] =a__.,

b . 1=

4t ar+t—1' , this shows that a =

r-1 - %r4e-1°

D oe-1’ contradicting the minimality of r.

Since br = br+t

and consequently m_,=

Thus moEm e proving that x 1is purely periodic with period t <

h(h+l). //

The following result completes the proof of Lagrange's theorem.
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Theorem 9.4. The simple-continued-fraction expansion of any

quadratic irrational is periodic. 1In fact, if the quadratic

2,...] and satisfies ax2+bx+ ¢ = 0 where
2

a, b, ¢ are integers with b2-4ac = k™D and k dividing 2a, b,

irrational is x = [al, a

and 2c, then each m = [an, an+1,...] is of the form [Pn + \/i))/Qn
(Pn’ Qn integers), and all m from some point onward are reduced.

The fundamental period does not exceed h(h+l) , where h = [ Jp ]
Proof: As in the proof of Theorem 9.3, the fact that m = (Pn+ Ji))/Qn

follows from lemma 3. 1In view of Theorems 9.3 and 9.2, it remains
only to find an n for which m is reduced. (The fact that the period

]

does not exceed h(h +1) is clear from lemma 1.). Since x = [al,...,an,mn+1 .
we have

m P, tP__
x = n+l *n n-1 (n > 0) (15)

B+l In ¥ 9n-a

Taking conjugates and solving for ‘Eh+1 ,

ntl - - * 91 " Pp1 T 7 951 n-1 . (16)
q

X9, " Py n " “n

®|

- C

i

Now as n increases, each convergent is altemnately smaller and larger
than the previous one, therefore ( x - cnrl) / (x - c. ) is alternately
smaller and larger than 1 ; since this fraction converges to (;-x)/(;-x) =1,

there existg n such that

Ml
'

0< -1 <1 . %))

qn_1 < qn , hence (16) and (17) give -1< m o <0.



-47-

Also m o > a1 > 1, therefore LY is reduced. !/

Theorem 9.5. let x = [al, az,...] be a quadratic irrational, and

let the integers a, b, ¢, k, D, Pn, Qn be as in Theorem 9.4.

Then :
P ol = anQn - Pn (n > 1) (18)
2
DR (a> (19)
Qptl= = °°
S e
Patl YYD (n > 0) (20)
fp = [—q 1 7°°
n+l
n
CD7 QP =D 90 7 (@ Py - Py ay) (QPh g = Pidnyy o0y (21)
-1"q, Q = (Q,p_, - P q)m-D2 (n >0) (22)
1 “n+l 1¥n 1 ™'n 95 =
QP P9 * (91 v %%y >y @23
P1 (qn-l Pn + -2 Qn) +D 9h-1 = Ql (pn-lpn + pn-ZQn) (a>1. (24)
Proof: (20) follows from the fact that 8 41 = [mn+1].
To prove (18) and (19) we note that
P+ b 1
————Q n+l —a
n+l n n
- - [t
R _ Q(a,Q,-P, + \D)

(PnWD)-anQn (a Q-P )2 -D
nn n

(21) and (22) are easily obtained by solving (15) for LI replacing
x by (P1 +\ﬁ)) / Q, simplifying, and using Pp9p-1 = Pp-19n = (_l)n.

(23) and (24) may be found from (15) by replacing n by n-1 , x by



(P1 + JB) / Q1 and Mn by (Pn +-JB) / Qn’ and crossmultiplying. //

With regard to the value of D, it should be noted that if
x = (A +-Jﬁ) / B (A, B integers) , it is not always possible to
take D = N. For example let x = (1 + Jé) / 2 (which, incidentally,

is reduced) ; then a, = 1, and m, = 1/(x-a1) =2 4+ 2 Ji which is

1
not of the form (P + Ji)/Q - As indicated in the statement of the
theorems, D should be chosen by examining the quadratic equation

satisfied by x. It is always possible to take k = 1, but sometimes

k = 2 is useful, notably for x =N .

Formulas (18) to (20) above provide a very convenient algorithm
for expanding a quadratic irrational into a simple continued fraction :
- Iy

find D, get P, and Q1 from x = (P1 +-Jb) / Q1 , obtain a

1 1
and then use (18) - (20) to compute P2, Q2’ a,, P3, Q3, 835.0- until
some pair Pn’ Qn repeats a previous pair. Formula (22) is the basis

for the solution of the Pell equation, as will be seen in later chapters.



-49-

Chapter 10.  THE EXPANSION OF /D.

In the case where x 1is the square root of an integer, the
simple-continued-fraction expansion has a particularly interesting

form, which we now examine.

Theorem 10.1 Let D be a positive nonsquare integer, and let x = Jp =

[al, az,...] , m = [an, a ], h=[/D]. The expansion is of

n+l’""°

the form

Jp = [n, b, byy---s b, 21, (1)

B

2
where 0 <r<h(h+l) -1, 1<b;<h, and (bl’ b2""’br) is

symmetric, i.e. bi = br+1-i . Each m is of the form
P
L. —n+db (@ >1) (2)
n Qn -

where Pn’ Qn are integers satisfying, for n>2 , 1< Pn <h,

1< Qn < 2h . After Ql =1, Q is the first Qi to equal 1.

r+2

We have the following formulas :

Far 17 % q - B (n > 1) (3)
Q D - P2
n+l = n+l (n>1) (4)
Qn
Aae1 =[Pn+1 * h] (n>1) (5)
U1
V%P, =D q_;-P P, (@20 (6
-Dq,, =p2-Dd: (@30 Q)
Pa-1 = 91 Fn T 902 Qn (@21 (8
DQ. 1 = Pu1 Fn ¥ Puo Q (n>1) (9
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Proof: x satisfies x2 - D=0, therefore taking k = 2 in Theorem 9.4,
we have (2). P1 =0 and Q1 =1, so that (3) - (9) follow from
(18) - (24) of Theorem 9.5 (with regard to (5), it is easily seen
that if v is any real number and m, n are integers with m >0 ,
then

[n+v]= n+[vl] ;

m m

hence the Jb of formula (20), Chapter 9, can be replaced by h ) .

By lemma 1 (Chaper 9), h + JD is reduced ; also [h + Jpl = 2n ,

therefore by Theorem 9.3, h ++p = [2h, b br] (r >0).

177>

1""’br’ Zh] , hence b = [h,bl,...,

proving (1). Taking r + 1 to be the fundamental period, Theorem 9.4

This can be rewritten as {[2h, b br’zh] ,

states that r < h(h +1) -1. To prove symmetry, we have -h + Jb =

[O’bl”"’br’ Zh] , or , taking reciprocals, -1 / (h- oy = [ +b_,2 |

17
but by Theorem 9.2, -1/(h-JB) = [br""’bl’Zh] ; since expansions are

h

unique, we conclude that (bl"°"br) = (br""’bl) , 1.e. (bl""’br)
is symmetric. Since (by Theorem 9.2) m,), My,... are reduced, lemma 1

of Chapter 9 gives (for n > 2)

P < Jp (10)
Q - P < Jb (11)
P +Q > Jb (12)

Therefore Pn < h ; also Qn - Pn < h, hence adding gives Qn < 2h ;
subtracting (10) and (12) gives Qn > 0 ; subtracting (11) and (12)
gives Pn >0 ; thus 1< Pn <h and 1< Qn < 2h. Suppose n > 2

and Qu = 1 ; then (10) and (12) give Jb - 1< Pn < Jb, therefore
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Pn = h ; thus m.n =h +D ; but r + 1 is the fundamental period,

hence, considering the expansion h +-JB = [2h, bl""’br 1,
] | ]

for which m.r_i_'2 = tn.l__*__2 = m1

n is at least r + 2. Finally, this shows that Qj > 2 (2§j§r+l),

=h +D (primes refer to h +'JB) ’

therefore by (5) , aj < (P.+h) / Qj < (h+h) / 2 = h, i.e. b: <h

] 1-

(1isr).  //

[}
—
N
S|
[ )

Examples : 1. JB

2. J8=102,1, 4]

3. D= 13, h=3

n 1 2 3 4 5 6
P 0 3 1 2 1 3
n

Qn 1 4 3 3 4 1
a 3 1 1 1 1 6
n

J13=13,1, 1,1, 1, 6] , r==¢4

4. D=31, h=35

n 1 2 3 &4 5 6 71 8 9
P o 5 1 &4 5 5 &4 1 5
Q 1 6 5 3 2 3 5 6 1
a_ 5 1 1 3 5 3 1 1 10

J3s1=1(5,1,1,3,s5,3,1,1,1 , r=7

Theorem 10.2 Using the same notation as in Theorem 10.1, we have the

following :

(i) (P2, P3,..., ) and (Ql’ Q2"°"Qr+2) are each symmetric.

P2
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(ii1) 1If Qn = Qn—l and n<r+2, then r=2n- 4.
(iii) If P =P and n<r+2, then r=2n- 5.
n n-1 -
(iv) 1If Qn =2 and n<r + 2, then Pn+1 = Pn , hence r =2n - 3.
(v) 1If bi=h’ then i = (r+l) / 2. (i.e. only a central term of the

symmetric part can equal h.)

Proof: Let v, m!yz mean Y1 ?’2 = «1 ; one can check that

2

P+D R+¥D<=>P=R,QS =D - P (13)
Q S

In particular, using (4) , we have that (for i, j > 2)

m, ~m, <=> P, = Pj » Qg = Qj . (14)
Now let 2<i<r + 2 ; using Theorem 9.2 and the symmetry of
(bl,...,br), m, = [ by pseeeabs 24, brseeiby oy o
by _5s-+e5bys 2R, b ,.uuby j1 = [b 0 oyeuib, 2h,b,,.00 L]
=W i therefore (14) clearly shows that (P2""’Pr+2) and

(Ql’ Q2"" ’Qr+2) are symmetric. Suppose 3 < n<r + 2, and

Qn = Qn—l 3 shows that mn—'mn ; but, as just shown MM n ?

therefore m =m 3 8ince r + 1 is the fundamental period, this
n r+4-n
shows that n=r +4 - n , i.e. r = 2n-4. Similarly, if g2<n<r+2 and

P =P then n_!ndm now n =2 is

n n-1" n-1 "’
impossible (it would make m

hence m =m 5
n-1 r+4-n °’

1 equal to a later mi) , therefore we

conclude n-1 =r+4-n, i.e. r = 2n-5 .
Assume Qu =2 and n<r + 2. Formula (3) gives

Pn + Pn+1 = Zan. (15)
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The symmetry of (P2""’Pr+2) , (Ql""’Qr+2) , and (a2,...,ar+1)

gives Pn+1 =P , and a =a . Therefore :

r+3-n’ Qn = Qr+3-n r+3-n

(mr+3-n - ar+3-n) - ( mn - an)

mr+3-n - mh

= Pn+1+~/i) - Pn+~/i)
Q, Q
= Pn+1 - Pn .
Q%
But 0 <m - a <1, hence an+1 - Pnl <q =2.

(15) shows that Pn+ - Pn is even, therefore Pn = Pn+1’ and r = 2n-3

1
follows by (iii). Finally, Theorem 10.1 shows that Qn #1 (z§n§r+1) s
while Qn > 2 implies (by (5) ) a < zh/Qn < h ; therefore if bi = h,

we must have Qi+1 =2 , hence r = 2(i+1l) - 3 , i.e. i = (x+l) / 2 . //

Formulas (3) - (5) provide a practinl method for expanding Jp
as a simple continued fraction. Because Pn’ Qn’ and an are bounded,
and no irrational numbers appear in the formulas, this method is
especially convenient for rapid automatic calculation. Furthermore,
(i) - (iii) of Theorem 10.2 show that only about half of the period

needs to be calculated.

When r 1is odd, (1) is said to have a central term (namely bi’
where i = (r+l) /2) . When r is even, (1) is said to have no central

term.
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Chapter 11. THE PELL EQUATION.

The Diophantine equation x2 - Dy2 = N, where D and N are
given integers and x and y are unknowns, is known as Pell's
equation (John Pell, 1611-1685), although Pell was not the first
to consider it. It appears in the famous cattle problem of Archimedes
(see [1] p.249land the Hindus, as long ago as 800 A.D., apparently
could solve various cases of the equation, but it remained for Lagrange
(1736-1813) to give a complete and elegant analysis of it, about one
hundred years after Fermat (1601-1665) proposed the problem to the

English mathematicians of his day.

The Pell equation is important for several reasons. By means of
various substitutions, the solution of the general quadratic Diophantine
equation ax2 + bxy + cy2 + dx + ey + f =0 can be made to depend upon
the solution of Pell's equation. Knowledge of the structure of the set
of units in the field extension of the rationals by J (D being a

positive nonsquare integer ; x = a + b Jb is said to be a unit if x

and 1/x satisfy’ a monic quadratic equation with integer coefficients)
depends upon a thorough knowledge of Pell's equation for N =+ 1 and
+ 4. Other applications include the minimization of indefinite

quadratic forms (see LeVeque [5] , Chapter 8).

We shall take D to be a positive nonsquare integer, and concentrate
primarily on the case N =+ 1. It will be seen that the simple-continued-
fraction expansion of Jb conveniently furnishes all solutions, if any
exist. (When D 1is negative or a square the solutions are finite in

number and usually not difficult to find directly, especially when N
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is small.) Tt should be noted that if D = k2E , the solutions of

x2 - Dy2 = N follow immediately from the solutions of x2 -Ey2 =N ;
thus it is sufficient to consider only square-free D ; however,

it will be just as easy to treat the general case.

Theorem 11.1. Let D be a positive nonsquare integer, and let N

satisfy I N |< JD. Then any positive (i.e. x >0, y > 0) solution

x, vy of x2 - Dy2 =N with (x, y) =1, satisfies x = Pp» ¥ =4,

for some n>1 , where P, 9, refer to the simple-continued-fraction

expansion of Jb.

Proof: First assume N > 0. Dividing by y2 and factoring ,

x - JB x + Jb = N
(‘; ) (; ) -
y
Therefore x/y > Jb , and we have
15"6l= N < & < 1
y (<§ + Jb) y2 ZJB y2 2y2

Therefore by Theorem 7.2, there exists n > 1 such that x/y = pn/qn,
hence x = Py» Y =9, For the case N < 0 , we use the following
clever argument. y2 - Ex2 =M, where E =1/D and M = -N/D ; now

M >0, and -N = INI < Ji) gives M < 'Ji‘. , therefore the same argument
as avove gives that y/x is a convergent of lﬁJb (and not the first,
which is 0) ; since Jb > 1, Theorem 5.1 gives that x/y 1is a
convergent of Jb . //

Theorem 11.2. Let D be a positive nonsquare integer, assume the

notation of Theorem 10.1 and consider the Pell equations:



X -Dy =1 (1)
x - Dy =-1 (2)
(1) has infinitely many solutions; if r is odd (i.e. the expansion

of JB has a central term), all positive solutions of (1) are :

(pn’ qn) s, n=k (r+1 ) , k = 1,2,3,... 3

if r 1is even (i.e. no central term), all positive solutioms of (1) are:
(pn, qn) ,a=k (r+l) , k =2, 4, 6,...

(2) is solvable if and only if r is even ; if r is even, all
positive solutions of (2) are :

(P> a) » m=k(rtl) , k=1,3,5,...

Proof: 1< JB, and any solution of (1) or (2) is relatively prime,
hence by Theorem 11.1, any positive solution of (1) or (2) is

(pn, qn) for some n > 1. Formula (7) of Theorem 10.1 gives

-1Q,, =po-Ddq (a3 D) (3)

Therefore (pn’ qn) is a solution of (1) if and only if n 1is even

and Qn+1 = 1. But by Theorem 10.1, P = 1 (where n > 1) is

n+l
equivalent to n = k (r+l), where k > 1. The assertions about (1)
clearly follow. For (2), we first note that no solution can have
x=0o0or y=0. Now (3) shows that (pn, qn) is a solution of (2)
if and only if n 1is odd and Qn+1 =1, i.e. n odd and n = k(r+l)
(k > 1). Therefore there are no solutions if r is odd, while for «r

even, the positive solutions are as stated in the theorem. !/

The remainder of this -hapter shows how all positive solutions of
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(1) and (2) may be found once the least positive solution is known.

First, let us clarify the notion of '"least" positive solution by

observing that if (x ) and (x

1’ N 2° Y2
2

solutions of x" - Dy2 = N (where D > 0), then either x; < %, and

) are different positive

Y, < Y, » OF x, <x1 and Y, < Yy ¢ if x X, then also Yy = Yoo

1

then Dyg_ - Dyi = xg - xi > 0, and

and y, an equation
?

therefore assume xl < x2 H

hence Y1 < Yy Secondly, given x

x +y D= +y, D" (4)

uniquely determines the integers x and Yy since D is
irrational and we can equate terms after expanding the power; in fact,

denoting x +y1\ﬁ) by u and its conjugate x. - ylei) by v,

1 1
we have X - Y b= u=u" = vn, therefore x = (un + vn)/Z and

2
=X

2
1 + Dy1 and y, = 2x1y1.

Y, = (un - vn) / (2~/i)). For example, x,

Lemma : let D be a positive nonsquare integer, and for convenience

2 2 2 2

denote Ji) by &« . Let Ielv = |f| =1, xl-Dy1=e, s - Dt =f

(xl, Y10 8 t positive), m > 1, and suppose
m+1
(x1+y1¢)m<s+t~<(x1+y1¢r) . (5)

Then there exists a positive solution (a,b) of xz—Dy2 =e'f , such

that a + b&X < xl-l-yla' .

Proof: We have ll(xl + yla ) =e (xl -y, « ) , so that dividing (5)

m .
by (xl + yla ) gives

m m
1<e (s+t¢)(x1-y1¢)<x1+y1,(. (6)
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Let the middle member of (6) be a + bor. Then a +be < xl + qu ,

and a2 - Db2 = (a+ba) (a - bx) = e2m (s2 - th) (xi - Dyi)

= emf.
Now 1/(a + bet) = |a-b«| , therefore (6) gives |a - b¢r|<|< atber .

But 2a = (a +b«) + (a - bx) and 2bx= (a + be) - (a - be),

hence 2a >0, 2ber >0, from which a >0 and b >0 . !/

Theorem 11.3. Let D be a positive nonsquare integer, &« = Ji), and

consider the Pell equations (1) and (2). If (xl,yl) is the least
positive solution of (1), then all positive solutions are (xn, yn)
determined by (4), where n =1, 2, 3,... If (xl, yl) is a least
positive solution of (2), then all positive solutions are (xn, yn)

determined by (4), where n =1,3,5,..., and furthermore (xz,yz) is

the least positive solution of (1).

Proof: I1f x_,
—_— n

2 2
(x, - Ynd) = (x, +y, « » (%, - v« = (x] - Dyl)n . Therefore

y, are defined by (4), then xrzl - Dy2

n = (xn+yn.)

if (xl, yl) is a positive solution of (1), so are (xn, yn) for
n=1,2,3,... Also, if (xl, yl) is a positive solution of (2),
then so are (xn, yn) forn =1, 3, 5,..., and furthermore (xn,yn)

for n = 2,4,6,... are positive solutions of (1).

(i) Suppose (xl, yl) is the least positive solution of (1), and

let (s, t) be any positive solution. Now x + ylx > 1 and

1
s +toX > x, + yla( , therefore there exists n > 1 such that (s,t) =
(xn, yn) , for otherwise (5) holds for some m >1, and the lemma

provides a positive solution {(a, b) of (1) less than (xl, yl)
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(ii) Suppose (xl, yl) is the least ﬁosit:ive solution of
(2), and that (81’ tl) is a positive solution of (1) less than

(xz, y2). If 8, + tec >x1 + yla( . define (s,t) = (sl,tl) 5

81 + t1R< % + yla( , and there is an r such that
r-1

o) < X, + ylo( < (s1 + tlct )r , in which case define

« )r . In either case, (s, t) is a positive

if not, we have
(sl + t:1
8 +t& = (81 + t:1
solution of (1) satisfying (5) for m = 1, therefore the lemma gives
a positive solution (a,b) of (2) less than (xl, yl). This
contradiction proves that (xz, y2) is the least positive solution

of (1).

(iii) Suppose (xl, yl) is the least positive solution of (2) ,
and (s, t) is a positive solution of (2) not among (xl, yl) ,

(X, ¥,)s--- Then 8 + te exceeds x, + y. & and is not a power of
3’3 1 1

x, + ylor » therefore (5) holds for some m>l. The lemma gives a

1
positive solution (a, b) of (2) less than (xl, y1) , or else of (1)
less than (xz, y2) (since x, + qu' < x, + Yy e ), according as M is

even or odd. The former is impossible by assumption, the latter by (ii).

It may be noted that is (a, b) is a solution of x2 - Dy2 =1
and (xl, yl) is a solution of x2 - Dy2 =N , then (xn, yn) given by
+y b = +y «p b Jp)?
x ty D .(xl Yy ) (a + b D)
is also a solution of x2 - Dy2 = N. However, there is no assurance that

all solutions can be obtained in this way from one known solution.
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Chapter 12. THE SOLVABILITY OF x2 - Dy2 = -1.

Since the Pell equation x2 - Dy2 = -1 is solvable if and only
if the simple-continued-fraction expansion of VD has no central term
(Theorem 11.2), there naturally arises the problem of characterizing
those D for which D has no central term. As yet, there is no
complete solution of this problem, but some important partial results
are known, and this chapter is devoted to presenting these results.
The proofs given here are based on the material in Perron [8] ,

Chapter 3, Theorems 20-22.

Theorem 12.1. Let the expansion of JD have no central term, and

assume the notatim of Theorem 10.1. Then
2 2
+ P ’ (D

where n = (r + 2)/2, and (P Therefore (see Chapter 5)

n+l’ Pn+1) =L
D 1is a product (possibly zero factors, i.e. the product is 1) of

primes of the form 4k+1l or twice such a product.

Proof: Since r is even, symmetry of (Ql’ QZ""’Qr+2) (Theorem 10.2)

gives Qn = Qh+1 , from which (1) follows by formula (4) of Chapter 10.

To show that Pn+ and Qn+1 are relatively prime, we note from (7)

1
of Chapter 10 that

2
-D%Q, =p.-Dq @
2
D™ lq =92 ,-Da_, (3

Therefore if a prime p divides Qn = Qn+1 and Pn+1’ then p divides

D by (1) , and p divides P, and by (2) and (3) ; but

pn-l



-61-

n
(pn, pn-l) = 1, since Pd 1~ Prq 9, = (-1) formula (5) of
Chapter 2). !/
The converse of the above theorem is false. For example
205 = 5.41 and 34 = 2,17 are sums of two relatively prime squares,

but

J205

[ 14,3, 6,1, 4, 1, 6, 3, 28 ]

and 34 = [5,T, 4, 1, 10 ]

have central terms. However, we have the following results, leading

up to the main theorem, Theorem 12.4.

Theorem 12.2. 1et D >3 be nonsquare. Of the three equations

2 2

X - Dy =-1 (4)
x2 - Dy2 = 2 (5)
x2 - Dy2 = =2 (6)

at most one has a solution.

Proof: Any square is convergent to O or 1 (mod 4) and to O or 1
(mod 3) ; hence for D =3, (4) and (5) are not solvable (consider
the terms module 4 and 3 respectively), while (6) is solvable :

12 - 3.12 = -2. Therefore assume D >5 , hence 2 < Jb . Clearly

no solution has x =0 or y = 0, and also any solution has (x,y) = 1.
Therefore, using the notation of Theorems 10.1 and 10.2, Theorem 1l1l.1
gives that any solution x,y 1is of the form ]xl =P Iyl =q,

for some n > 1. Hence, if (5) or (6) is solvable, then formula (7)

of Theorem 10.1 shows that Qn+1 = 2, and Theorem 10.2 (iv) shows that
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r+ 3

n+1l-= 3

+ k (r+l) n

where k > 0. Therefore r is odd, and (4) is not solvable. Also,
n n

since (-1) Qn+1 =2 for (5) and (-1) Qn+1 = -2 for (6), (7) shows

that (5) is not solvable if (r +3) /2 1is even, while (6) is not

solvable if (r +3) / 2 is odd. Therefore at most one of (4) - (6)

is solvable. !/

Theorem 12.3. Let nonsquare D be a power (first or higher) of an

odd prime, or twice such a power. Then one and only one of (4) - (6)

is solvable.

Proof: Let D=p or 21;‘,where p is an odd prime and e > 1 .
Since the case D =3 was treated in the proof of Theorem 12.2, it
is sufficient to assume D >5 (so that 2 < Jb) and show at least
one of (4) - (6) 1is solvable. Suppose (4) is not solvable. Then r
is odd, and by Theorem 10.2 and (3) of Theorem 10.1, Pn = Pn+1 and
ZPn = anQn , where n = (r+3)/2. Thus (8) and (9) of Theorem 10.1

give :

2Pn_1 =(q _, a + an-z ) Q (8)

2an-l = Pa-1 2n + 2pn—2) Qn 9

Therefore Qn |2pn_1, 2an_1 . Suppose k ] Qn’ 9.1 3 then

k | 2p_, » 9, 5 (1) if k>lis odd, then k | Pp.q» 9p.p° Which
is false since (pn-l’ qn-l) =13 (ii) 1if k > 1 is even, then
2 | Qn’ 9.1 ° hence by (8) 4 lan_l , therefore 2lpn_1, 9.1’ which

is false. Therefore (Qn’ qn-l) =1 , hence Qn lan_l, 2D. Now

2 2
(formula (7) of Theorem 10.1) (-1) n-1 Qn =Py1" D q_q

therefore
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2
2p
-n™1t s - Qn( “'1) - (_2_" ) 28, - (10)
Qn Qn

It follows that (Qn , ZD/Qn) =1, 2, or &4 ; also Qn#I

o «
(since 2 <n <r + 1), and 2D = 2p or 4p , therefore one finds

that Qn = 2D, D, D/2, &4, or 2.
(A) Qn cannot be 2D or D : if Qn = 2D or D, then 2Pn = anQn >
Q, >D, hence P >D/2 . But (Theorem 10.1) P_ < h< Jp < p/2.

(B) Qn cannot be D/2 : if Qn = D/2, then Qn is odd, hence a
even, and Pn = (an/2) Qn > Qn = D/2, leading to a contradiction
as in (A).

) Q, cannot be 4 : if Q = 4, then 2D/Qn is odd, 4 = Q, divides
2pn_1 ,» hence len—l’ so that 9.1 is odd, and each term of
(10) except the last is divisible by 4, which is impossible.

2 -

The only remaining possibility is Qn = 2. Then (-l)n-1 2 = Poo1

2
an-l (formula (7) of Theorem 10.1), so that (5) or (6) is solvable.

/1

Theorem 12.4. Let nonsquare D be a power (first or higher) of a prime

of the form 4n+l , or twice a power (first or higher) of a prime of

the form 8n+5. Then x2 - Dy2 = -1 1is solvable.

Proof: In view of Theorem 12.3, it is sufficient to prove that (5) and

(6) are not solvable.

ot
(i) let D=p (e¢>1l, p=24n+tl) . Then D =1 (mod 4).
Therefore xz - Dy2 = 0-0, 0-1, 1-0, or 1-1 (mod 4),

i.e. 0,1, or 3 (mod 4). But +2 =2 (mod 4), therefore (5) and

(6) are not solvable.



-64-

(ii) let D= 2p‘ (x>1, p=28n+5). Then x2 - Dy2 = +2 implies
x2 s+ 2 (mod p) , therefore (;2;) =1 or (.—g-) = 1. But,recalling the
values of (%) and (-—lz’)given in Chapter 5, this is impossibe for

p=8n+5. //

Corollary: If p is a prime of the form 4n+l, then x2 - py2 = -1 is
solvable, therefore by Theorem 12.1 the representation of p as the
sum of two squares can be found by expanding 'fp as a simple continued
fraction.

For example, let p = 13. From Example 3 after Theorem 10.1, we

have r = 4, (r + 2)/2 = 3, therefore p = QZ + PZ = 32 + 22.

This construction for expressing a prime p = 4n + 1 as the sum of
two squares is attributed to Legendre (1808) (see [7], Appendix I ).

The converse of Theorem 12.4 is false. For example, x2--5.17y2 = -1

and x2-2.41 y2 = -1 are solvable, since

Jes =19,%, 1, 1, &, 18 ]

and 82 = [9,18]

]

have no central terms.
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CONCLUSION

It is hoped that the preceding chapters have demonstrated the
utility and elegance of the theory of continued fractions as a tool
in approximation theory and the theory of numbers. For although new
methods have recently been developed in the field of Diophantine
approximations, continued fractions remain the basic stepping stone,
while in elementary number theory they provide one of the very few

direct methods.

There are, of course, many topics in this area which the
present survey has not discussed. For example, continued fractions
can be used to assist in factoring numbers (see [1] p.266), and no
mention has been made of the beautiful subject of the geometry of
numbers, which is closely related to continued fractions. There
are many directions for further study. Hurwitz's Theorem (Chapter 7)
is the first of a whole series of related theorems and problems.

One could explore continued fractions themselves in greater detail by
referring to such books as Perron [8]. Alternatively, there is the

extension to analytic continued fractionms.

Finally, there are two challenging problems introduced by the
material presented in this survey, problems which may provide subjects
for further research. We have shown that the length of period of the
simple-continued-fraction expansion of a quadratic irrational does not
exceed h (h+l) (see Theorem 9.4). However, this bound appears to be

quite crude. For example, it means that the period of JB is less



thas abowt D , while for D < 1000 the largest period is 60

(foxr D =919 aad D = 991), and most periods are much less than 60.
Very little seems to be known about this topic. Secondly, as
discessed in Chapter 12, characterization of those D for which
xz - Dyz = -1 is solvable (i.e. those D for which the period
of D is odd) is far from complete. Theorem 12.4 is a fairly

deep result, but more inclesive results may be found.
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