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INTRODUCTION 

This thesis surveys the elementary theory of continued 

fractions and discusses in detail some important applications of 

continued fractions to the theory of rational approximations to 

real numbers and elementary number theory. Chapters 1 to 5 

introduce continued fractions and their basic properties, and provide 

the results on which the following chapters are based. Chapters 6 

and 7 develop the elementary theory of rational approximations, 

culminating with Hurwitz's Theorem, and using continued fractions as 

the fundamental tool. The approach is essentially that of Khintchine 

[4], Sections l and II, but the theorems are stated and proved in 

greater detail, an attempt is made to clearly motivate the definitions, 

and some closely related results from [6], Chapter 7, are included. 

Chapters 8 to 12 investigate closely the applications of continued 

fractions to the Euclidean Algorithm and to the Pell Equation 2 2 
x -Dy = N. 

This involves a thorough examination of periodic continued fractions, 

in particular the simple-continued-fraction expansion of .rD (D being 

a positive nonsquare integer). The material is drawn primarily from 

Perron [8], Ol~s [7], and Niven and Zuckerman [6]. As far as l have 

been able to discover, the bound on the period given in Theorems 9.4 

and 10.1 is an original result, although admittedly a minor one. 

Theorems 12.2 to 12.4 (from Perron [8]) are significant and fairly deep 

results, rarely found in discussions of continued fractions or the Pell 

Equation. 

i 



ii 

Most recent texts on number theory treat the theory of continued 

fractions fleetingly, or with a single application in mind ; in contrast, 

an attempt has been made in this survey to demonstrate the richness and 

wide applicability of the theory. 
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PART l 

SOME BASIC RESULTS 
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Chapter 1. DEFINITIONS, NOTATIONS, AND THE BASIC FORMULAS. 

Let F be a field. A continued fraction in F is a sequence 

(al' b2 , a2 , b3 , a3 ,···) of an odd or infinite number of elements of 

F such that, for each n?2, each denominator in the following composite 

fraction is not zero : 

b
n

_
1 

+---~-
a + bn n-l a n 

(1) 

The fraction (1) is called the nth convergent of the continued fraction, 

and denoted by c It is usually written in the more convenient form 
n 

b b3 
b (2) c = a + 2 n 

n 1 - + + +a a2 
a3 n 

Additionally, the first convergent is cl = al . 

If the sequence is finite, say (al' b2 , a2 ,··· ,bm' am) where 

m > 1 , then the continued fraction is called a finite continued fraction, 

and its value is defined to be the 1ast convergent, c . If the sequence 
m 

is infinite, then we have an infinite sequence of convergents c1 ,c2 ,c3 .•. , 

and (assuming a metric on F) the continued fraction is said to be 

convergent or divergent in F according as ~cn exists or not in F. 

In the former case, the limit is taken as the value of the continued 
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fraction. Normally F is the real field. 

When b2 , b3 ,··· are all 1 , the continued fraction is said 

to have unit numerators, and we use the notation 

(al' l, a
2

, l, a
3

, ••• ) = [al' a2 , a3 ,···] (3) 

For a finite or convergent continued fraction, we often use the same 

notation for the continued fraction and its value. Thus we write 

cn = [al' a2 ,···,an] for the convergents of a continued fraction with 

unit numerators. 

A continued fraction [al' a
2

, ••• ] , with unit numerators and 

infinitely many terms, is said to be periodic with period t if there 

exist m>O and t>l such that for al1 n>m, an+t = an We write 

(4) 

The least period t is called the fundamental period. t divides 
0 0 

any period t , for if not, let t = k t +r, where 0 < r< t ; then 
0 0 

for any n>m , we have a = an+t = a = a n n+k t +r n+r therefore r is 
0 

a period, contradicting that t is the 1east period. The continued 
0 

fraction is said to be purely periodic if it is possible to take m = 0, i.e. 

= (5) 

Given a continued fraction, it is desirab1e to have a systematic 

method for expressing each convergent c as a simple fraction p Iq 
n n n 

such a method is to consider c as a function of a Now if we n n 

simplify (1) starting at the lower right and working upwards, we find 
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C is a quotient of 1inear functions of a • 
n 

ln fact, suppose 
n 

where p = k a + land q = r a + s , and k , l ,r 
n nn n n nn n n n n 

and sare independent of a (i.e. k, l , r ,s depend on1y on 
n n n n n n 

= k (an + bn+1/an+1 + ln n 

r (an + bn+1/an+ 1) + sn n 

= (k a + l ) an+1 + knbn+1 n n n 

(r a + s ) 
n n n a n+1 + r nbn+1 

= p a + k b 
n n+1 n n+1 

q a + r b 
n n+1 n n+1 

Thus we can take P - P a + k b and q = q a +r b n+1 - n n+1 n n+ 1 n+1 n n+1 n n+1 ' 

and cn+1 
is a1so a quotient of 1inear functions of a

n
+

1
. App1ying 

the same argument to cn+1 ' we therefore have cn+2 = Pn+2/Qn+2' 

where p - p a 
n+2 - n+1 n+2 + Pnbn+2 and 

Noting that cl = (1.a
1 

+ 0) / (0.a
1 

+ 1) and using induction, we 

c1early have the fo11owing theorem : 

Theorem 1.1 The convergents cl' c
2

' .•. of the continued fraction 

(al' b 2 , a 2 , b3 , a 3 ,···) 

defined as fo11ows : 

are c = p /q , where p and q are 
n n n n n 

Pl = al ' q1 = 1 

P2 = a l a 2 + b 2 , q2 = a 2 

p -ap +bp n - n n-l n n-2 

Q =aq +bq 
n n n-1 n n-2 

(n ? 3) 

(n ? 3) 

(6) 

(7) 



-5-

Theorem 1. 2. Fo11owing the notation of the previous theorem, 

n 

Pnqn-1 - pn- 1qn = (-1) n 1i 
i=2 

n 
(_l)n 1i bi e -e = i=2 n n-1 

qnqn-1 
n-1 n-1 a (-1) 1i bi e -e n-2 = n i=2 

n 
qnqn-2 

Proof: 

true for n = 2. Assume (8) for n-1. 

b. 
1 (n ? 2) (8) 

(n ? 2) (9) 

(n ? 3) (10) 

Mu1tip1ying (6) by q n-1 

and (8) is proved. 

(9) fo11ows fram (8) by dividing by q q 1. Using (9), e -e 2 = n n- n n-

(e -e 1) + (e 1 - e 2) = n n- n- n-

n-1 
(-1) n-1 1i b. ( b ) 

i=2 1 - n + 1 = -------
qn-1 qn qn-2 

n-1 n-1 
a (-1) TC b

i n . 2 1= sinee by (7), -b q + q = a q . n n+2 n n n-1 1/ ~ 
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Chapter 2. CONVERGENCE OF CONTINUED FRACTIONS WITH UNIT NUMERATORS. 

From now on, a11 continued fractions will be assumed to have 

unit numerators. For the present chapter at 1east, this restriction 

is not serious, because it is c1ear that any continued fraction with 

nonzero numerators can he converted to an equiva1ent (i.e. same 

convergents) continued fraction with unit numerators. A1so, for 

definiteness, we sha11 work in the rea1 field. 

Introducing q = 0 = p o -1 and q-1 = 1 = Po ' it may he checked 

that formulas (6) and (7) of Chapter 1 are a1so va1id for n=l and 2, 

and that (8) is va1id for n = 0 and 1 , assuming hi = 1 for a11 i. 

For the continued fraction 

(1) 

(where a
1

,a
2

,a3 , ... are any real numbers) , the formulas of Chapter 1 

therefore become : 

cn = [a1 ,a2 ,··· ,an] = 
n 

Pnqn-1- Pn-1qn = (-1) 

(_l)n 
c -c 

n n-l = 

c -c 
n n-2 = 

(n ? 1) (2) 

(n ? 1) (3) 

Pn/qn (n ? 1) (4) 

(n ? 0) (5) 

(n ? 2) (6) 

(n ? 3) (7) 

Remark: If a2 , a3 , ••• are positive, then (1) is a valid continued 

fraction (since all denominators are positive), although not necessarily 
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convergent, and induction on (3) shows that ql' q2' .•• are positive. 

Theorem 2.1 Let a2 , a
3

, •.• be positive real numbers. Then the odd­

numbered convergents of (1) form a strictly increasing sequence, the 

even-numbered convergents form a strictly decreasing sequence, and 

every odd-numbered convergent is less than every even-numbered one ; 

(1) is convergent if and only if 

limqq 1=00 n n-n -+ 00 
(r) 

Proof: The first three assertions follow immediately from formula (6) 

and (7). It is then clear that (1) is convergent if and only if 

c2n - c2n- l -+ 0 (equivalently, c2n+l-c2n -+ 0 ), which, by (6), is 

equivalent to (8). Il 

Corollary: If x = [al ,a2 , •.. 1, where a
2

, a
3

, ... > 0, then x lies 

strictly between any two consecutive convergents (except the last two if 

the continued fraction is finite). 

The following important theorem provides a convenient necessary 

and sufficient condition for convergence. 

Theorem 2.2 Let a
2

, a
3

, ••• be positive real numbers. Then (1) converges 

if and only if the series 

is divergent. 

00 
~ 

n=l 
a 

n 
(9) 

Proof: The proof uses the well known result that if 0 < t < 1 , then the 
n 

00 
~ (l-t) is convergent (i.e. has a positive limit) if and only if 

n=l n 
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co 

L t is convergent. 
n=l n 

Suppose (9) converges. By (3), 

hence (a) q 1 < q n- n 
a ~O, therefore there exists 

n 

N such that a < 1 if n > N. For n?N, (3) gives q < a q + q 2 n n n n n-, 

i.e. q < q 2/(1-a) , in case (a), and q < a q 1 + q 1 < q l/(l-a) n n- n n n n- n- n- n 

in case (b). Therefore 

q < n 
( r = n-1 or n-2) • 

Repeated application of this resu1t gives r, ••• ,s,t such that n>r> ... >A?R ' 

t = N-1 or N-2, and 

co 

qt 
q < 

n (l-a )(l-a ) .•. (l-a ) n r s 

(10) 

Now ~ (l-a
i
) = L > 0 ; the denominator of (10) exceeds L , therefore 

i=N 
1etting M be the larger of qN-l and qN-2' we have qn < M/L (n?N) , 

hence qn+lqn < ~/L2 , so that (1) diverges, by Theorem 2.1. 

Conversely, suppose (9) diverges. Now (3) gives q > q 2> •.. >q2 
n n-

(n even) and qn>qn-2 > •.• > ql (n odd). Let c = max (ql,q2). Then (3) 

gives q > q 2 + ca (0)2). Therefore 
n - n- n-

qn + qn-l ? qn-2 + qn-3 +c ( a + a 1) n n-

? qn-4 + qn-S + c ( a +a +a +a n-3 ) n n-l n-2 

> ---- n 

?t + q1 + c L a. (n even) 
i=3 1 

n 
q1 +q +c L ai (n odd) 

0 i=2 
n 

> c S , where S = L a. n n 2=3 1 
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Therefore at 1east one of qu' qn-1 exceeds 1 
'2 c Sn' The other is at 

1east c hence qnqn-1 > 
2 S By assumption, S -+ co , C , 

2 n n 

therefore (1) converges, by Theorem 2.1. Il 

Theorem 2.3. Let a
2

, a
3

, •.• be positive rea1 numbers and let n>1 . The 

continued fraction 

is convergent if and on1y if (1) is convergent. If (1) and (11) converge 

to values x and m respective1y, then 
n 

Proof: (By theorem 2.1, H > a > 0 for n > 2, hence (12) is a 
n n 

The resu1t is trivial for n = 1. For n = 2, 

or = 1 

c -a 
r 1 

(12) 

(13) 

(14) 

Now if (11) converges to ~ , then ~ + 0 as noted, and taking 1imits 

in (13) shows that (1) converges to a
1
+1/m2 = [a1 ,m2] ; if (1) converges 

to x , then (x-al + 0 by Theorem 2.1) taking 1imits in (14) shows that 

(11) converges, and again (12) ho1ds. For n?3, (1) converges if and on1y 

if [a2 , a
3

, ••• ] does, and, assuming the theorem for n-1, the latter 

converges if and on1y if (11) converges; a1so, using the theorem for 

2 and n-1, 
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Chapter 3. SIMPLE CONTlNUED FRACTIONS. 

A simple continued fraction is one of the form [a
l

,a2 ,a3 , ... ], 

where is any integer and a
2

,a
3

, ..• are positive integers. In the 

following chapters we shall be concerned primarily with this special 

type of continued fraction. 

For a stmple continued fraction, the numbers p ,q are 
n n 

integers, and furthermore it is clear fram (3) of Chapter 2 that 

In particular, lim q q 1 = 00 , 

n- 00 n n-
therefore 

by Theorem 2.1 any simple continued fraction is convergent; this also 
00 

follows fram Theorem 2.2, since Z 
n=l 

a 
n 

=00. 

Theorem 3.1 

Proof: By 

The integers Pn' qn are relatively prime for any n. 

(5) of Chapter 2, any common divisor of and q divides 
n 

(_l)n , therefore (p , q ) = 1 . n n Il 

Theorem 3.2 Let x be any real number. Then x is the value of the 

(finite or infinite) simple continued fraction [al' a2 ,···], where ai 

are defined inductively as follows ( [x] denotes the integral part of x) 

al = [x] 

1 a i +l = [mi +l ] . (1) 

The induction terminates with a if m is found to be an integer; 
n n 

if n+l, we have a >1 
n 

integer, the continued fraction is infinite. 

If no m. i8 an 
1 

Proof: It is clear that the process can be continued as long as m. 
1 

remaina nonintegral, and yields integers al' a2 , .•• with a2 ,a3 , ..• positive. 
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Furthermore, if m.(iFl) is an integer then ai = mi > 1, since 

Mi_l-ai _l < 1. It remains to show that x = [a1 ,a2 , ••. ] • Now mi 

= ai + 1/mi +l , therefore it is c1ear by induction that x = [a1,a2, .•. ,ai,mi+l] 

(i ? 0) • If the process (1) terminates with m = a , this proves n n 

If it does not terminate, formula (6) of Chapter 2 
1 

gives 1 x-c 1 = 
i 1 

where the 

prime refers to [al,···,ai , mi +1] • 

therefore x = [al' a2 ,·.·]· Il 

qiq i+l 

Hence 1 x-co 1 
1. 

< l/qi'" 0 , 

Theorem 3.3 The value of any finite simple continued fraction is 

rational. Converse1y, if x ="rls (r,s integers, s > 0) , then the 

procedure in Theorem 3.2 gives x = [al' a 2 ,··· ,an] , where al'··· ,an 

are the quotients in the Euclidean algorithm for rand s 

r = al s + rI 

s = a 2r
l 

+ r
2 

r n-3 

(0 < rI < s) 

(0 < r 2 < rI) 
(2) 

Proof: The first assertion is obvious. For the second, divide the 

equations of (2) by s, r 1 ,···, r 2' r 1 respectively, and denote the 
L n- n-

resu1ting 1eft hand side, by ml' ~, •.. , mn 

tœ same as in Theorem 3.2. Il 

Clear1y mi and a. are 
1. 

Theorem 3.4 The representation of any irrational number as a simple 
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continued fraction is unique. Any rational number is the value of 

exactly two simple continued fractions, and these are of the form 

Proof: Let x be irrational and suppose x = [al' a2 , .•. ]. This 

continued fraction must be infinite, for otherwise x would be rational. 

·To prove uniqueness, it is sufficient to prive that are the same 

integers as given by the procedure of Theorem 3.2. But this is clear, 

because 1etting mi = [ai' a i +1,···] we have ml = x , mi = a i +1/mi +1 ' 

and mi+1 > 1. Now let x be rational and suppose x = [b1 , b2 , ... ] 

(finite or infinite). Let x = [al' a2 , ••• , anI (an> 1 if n FI), 

e.g. the expansion given by Theorems 3.2 and 3.3. We sha1l prove by 

induction on n that [b l ,b2 , ••• ] is [al ,a2 ,.··,an] or [a1 ,a2 ,··· ,an_1 ,l]. 

Let m (possib1y infinite) be the number of terms in [b1 ,b2 , •.. ] 

For n = 1, x = al is an integer, and we consider 3 cases : 

( i) m= 1 bl = x = al as required. 

(ii) m = 2 x = b 1 + 1/b2 , therefore b = 1 2 
, and 

[b
1

, b
2 

] = [a - 1 , 1 ] as required 1 

(iii) m > 2 : b
1 

< x < b1 + 1/b
2 

' contradicting that x is an integer. 

Therefore this case does not occur. For n>1, x is not an integer 

and we have m? s , b1 < x ~ bl + 1/b
2 ~ b1 + 1 , therefore b1=[x] = al' 

and 1/(x-b
l
) = [b

2
, b3 , .•• ] = [a2 , ••• ,an] ; now the required resu1t 

fo110ws by app1ying the resu1t for n-l. Il 

Corol1ary: The value of any infinite simple continued fraction is irrationa1. 

Proof: The value cannot be rational, since the on1y expansions of a 
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rational number are the two finite ones mentioned in the theorem. Il 
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Chapter 4. THE FIBONACCI NUMBERS. 

In this chapter we consider some elementary properties of the 

Fibonacci numbers and the closely related s~le continued fraction 

[1,1,1, ••• ]. This continued fraction plays a special role in later 

chapters. 

Let t denote the value of [1,1,1, ••• ] • Clearly t=l+l/[l,l, ..• ] 

= l+l/t , Le. 

t
2 _ t - 1 = 0 • 

Solving (1) for the positive root, we find 

the other root is 

t = 1 + J"s 
2 

= 1.618 ... 

1 l-J"s 
s = - - = - = -o. 618 ••. t2 -.-

(1) 

(2) 

(3) 

Formulas (2) and (3) of Chapter 2, applied to [1, 1, l, ... ] , give 

p - p + p 2 ' q = q 1 + q 2· n- ~1 ~ n ~ ~ Furthermore P = P = 1 and o 1 

ql = q2 = 1. Now the Fibonacci numbers FI' F2 , F3' .. · are defined by 

Therefore we have 

F = F = 1 1 2 

F = F + F n n-l n-2 

(4) 

(5) 

and the convergents of [1, 1, l, •.. ] are ratios of consecutive Fibonacci 
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It is important to know how quick1y the Fibonacci numbers 

grow with increasing From (1) we note that t n n-1 n-2 n • = t + t 

and the same for Therefore for any a and b, 
n n s. H = at + bs n 

satisfies H =H +H 
n-2 

; solving for a and b which resu1t n n-1 

Ho = 0, Hl = 1 (Le. H = F , H = F ) 001 1 , we get a = -b = l/.fs . 
Therefore H = F and we have proved the very interesting formula n n 

(ca11ed Binet's Formula) 

1 
F 

n = -
.fs 

It follows that 

( ( 

Hm 
n ~oo 

( 1 - J"s)n ) 

2 

1 = -
.fs 

in 

(6) 

(7) 

so that F
l

, F
2

, ••• approxtmates a geometric progression. In fact, it 

is clear from (6) that F n 
is the nearest integer to tn,.fs. 

The fo11owing theorem shows that the denominators of the 

convergents of any simple continued fraction increase at 1east as fast 

as the Fibonacci numbers. 

Theorem 4.1. For any simple continued fraction, 

Proof: q = 1 = F 1 1 

q > F • 
n - n 

q 1 > FI' we have q = a q 1 + q 2 > q 1 + q 2 > F 1 + F 2 = F. Il n- - n- n n n- n- - n- n- - n- n- n 
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Chapter 5. MISCELlANEOUS RESULTS. 

Here we mention some miscellaneous theorems which will be 

used in later chapters, but which either are not of general interest 

or are weIl known elementary results. 

Theorem 5.1. Let x > 1 and consider the stmple continued fraction 

expansions of x and l/x. For n?, the nth convergent of l/x 

is the reciprocal of the (n-l) st convergent of x. 

Proof: If x = [al' a2 ,···] , then l/x = [ 0, al' a2 ,···]· Letting 

primed quantities refer to l/x , and using (2) and (3) of Chapter 2, 
, 

one can verify by induction that Pn = qn-l' q = Pl' from which n n-

the result follows. Details may be found in [6], 

Theorem 7.15. Il 

Theorem 5.2. Let a2 , a
3

, .•. be positive real numbers and assume that 

x = [al' a2 ,···] F O. Denote [an' an+l""] by mn • Then for n? 1, 

= [ 1: ] a , al"'" al' -n n- x 
(1) 

1 

Proof: (Note: in the course of the proof, it must be shown that (1) 

is indeed a valid continued fraction, i.e. has no zero denominators.) 

For 1 
n = 1 , [al' - i] is a valid continued fraction (since x ; 0) and 

its value is al - x , which, by Theorem 2.3, is -11M
2

, For n? 2 , 

assume that the result for n-l , i.e. 

m = 
n 

-1 

(an_l,···,al,-l/x ] 
(2) 



-17-

Now [an' .•• ,al' -l/x] is a valid continued fraction since by 

assomption [a
n

_
1

, ••• ,a
l

, -l/x] is. By Theorem 2.3, m = [a ,m +1]' n n n 

therefore -l/Mn+l = an - mn = an + l/[an_l ,··· ,al,-l/x] = 

[an' ••• ,al' -l/x]. / / 

We sha1l have occasion to use some results from elementary 

number theory. If p is an odd prime and a ~ 0 (mod p) , then a is 

cal1ed a quadratic residue of p if there exists x such that 

2 
x s: a (mod p). 

1. -1 is a quadrat ic res idue of p if and only if p lE 1 (mod 4). 

2 is a quadratic residue of p if and only if p le 1 or 7 (mod 8). 

-2 is a quadratic residue of p if and only if p == 1 or 3 (mod 8). 

2. If N is a sum of two relatively prime squares, then N is a 

product of primes of the form 4k +1 or twice such a product. 

A proof of 1. may be found in [9], Chapter 5, Section 2. 

Result 2. is proved in [2], Chapter 20. (The converse of 2. is also true). 
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PART II 

APPLICATIONS TO RATIONAL APPROXIMATIONS 
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Chapter 6. BEST APPROXIMATIONS TO REAL NUMBERS. 

1. Introduction and Motivation. 

This first section is meant to motivate and c1arify the 

definitions of best approximation of the first and second kind. 

Given a rea1 number x , it is natural to look for a rational 

number which is a good approximation to x and yet whose denominator 

is "not too large". More precisely, (Problem A) given a real number 

x and a positive integer N, to find a11 pairs of integers a, b 

satisfying : (1) 1 ~ b ~ N , and (2) for any integers r, s with 

1 ~ 8 ~ N , we have 'x-a/bl < Ix-rlsl . Clear1y at least one such pair 

exists, and if one pair a, b is known, the others c, d (if any) can 

easily be found, since cId must equa1 a/b or 2x - a/b. 

Definition. Rational number a/b (b > 0) is 8aid to be a best 

approximation of the first kind to x if 1 ~ d ~ b, cId + a/b imply 

1 x - cId 1 > J x - a/b 1 • 

The relation of this definition to Problem A is indicated by 

the fo1lowing e1ementary propositions. 

Proposition. Any best approximation cId of the first kind i8 a 

solution of Problem A for some N ,namely N = d. 

Proof: Suppose 1 < s < d. We must show that - - Ix-c/dl < Ix-rlsl . 

For rIs = cId this is tmmediate, while for rIs + cId it follows 

from the definition of best approximation of the first kind. Il 

Proposition: Except for the case N = 1 and 1 x = n +2 (n an integer), 
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any solution a, b of Problem A with minimum b is a best approximation 

of the first kind to x. 

Proof: Suppose 1 < d < b cid + a/b ,but Ix-c/dl 5 Ix-a/bl. 

Then Ix-c/dl = Ix-a/bl (since a, b satisfies Problem A) , d = b 

(by min~lity of b) ,and x is the average of a/b and c/b = cid. 

Rence a and c differ by l , for if t is strictly between a and C, 

t/b wou1d be a better approximation to x • 

Without loss of generality, assume c = a + 1. Write a = qb+r, O<r<b 

(r + 0, for otherwise a/b = S/l, hence b = 1 by minima lit y of b, 

and then x = a + 1/2, contrary to assumption.) lt is easily checked 

that 

q (b-l) + r 
b-1 

exceeds a/b but not (a+l)/b, therefore is at least as good an 

approximation as a/b, contradicting the minima lit y of b. Il 

lt may be noted that the situation is simplified if x is 

irrational : then clear1y any solution of Prob1em A is a best 

approx~tion of the first kind. 

Proposition: Exclude the case N = 1 , 1 
x = n + 2. Then any best 

approx~tion a/b of the first kind with 1 < b < N and such that b 

is maxÛDWD, is a solution of Problem A • 

Proof: If a, b is not a solution of Problem A, let c, d be a 

solution with minimum d. We have lx - c/df < lx - a/bl. Now by the 

preceding proposition, cId is a best approximation of the first kind, 
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therefore by maxima1ity of b , we have d < b. But then by definition 

of a/b being a best approximation, Ix-c/dl>1 x - a/bl ,contradicting 

the first inequa1ity. Il 

Thus (disregar.ding the trivial case 1 
N = 1, x = n +2 ), solution 

of Prob1em A for genera1 N is equiva1ent to knowing a11 the best 

approximations of the first kind to x. 

For some purposes it is desirab1e to consider the difference 

Ibx-al rather than lx - a/bl. This 1eads to a second king of best 

approximation, as fo11ows : 

Definition. Rational number a/b (b>O) is said to be a best 

approximation of the second kind to x if 1 < d < b, cId F a/b 

imp1y Idx-cl > Ibx-al. 

Theorem 6.1. Any best approximation of the second kind is a1so one of 

the first kind. 

Proof: Mu1tip1ying Idx-cl > Ibx-al by 1/d > lIb gives Ix-c/dl>lx-a/bl, 

as required. Il 

Examp1es are readi1y found to show that the converse of Theorem 

6.1 is fa1se. e.g. let x = 5/12 - e , where 0 < e < 1/60 ; then 1/3 

is a best approximation of the first kind but not of the second, since 

it may be verified that 12x - 11 < 13x - 11 • 

2. The Main Theorems. 

We shal1 see that the convergents of the simple continued fraction 

expansion of x provide a very convenient means of finding al1 the best 

approximations of the first and second kind to x. We continue to use 
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the notation of Chapter 2 (formulas (1) to (7»: x = [a1 ,a2 , ..• ] 

is a finite or infinite simple continued fraction, with convergents 

c = [a
1

,a
2

, .•• ,a ] = p Iq. We begin by examining the difference 
n n n n 

between the continued fraction and its convergents. 

Theorem 6.2. If x has at 1east n + 2 terms, then 

1 x - c 1 < n 
1 

(1) 

Proof: By the coro11ary to Theorem 2.1, x lies strict1y between 

c and 
n 

therefore 

of Chapter 2). Il 

Ix-c 1 < Ic -c 1 = n n n+1 (formula (6) 

It shou1d be noted that (1) is rep1aced by an inequa1ity if 

there are on1y n + 1 terms, for then x = cn+1• Thus, if x has at 

1east n + 1 terms, then lx - c 1 < 1/q q +1 • 
n - n n 

Let m = [a , an+1 ,· •. ] Then 
n n Theorem 6.3. 

(_1)n+1 

x - c = 
n 

(2) 

2f + 
qn-1 ) qn mn+1 
qn 

Proof: x = (al'· .. ,a ,m Il n n+ 

= Pnmn+1 + Pn-1 

qnmn+1 + q 1 n-
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Using this expression for x , we find that 

Pn-1qn - PnQn-1 
x - = 

2 + 
Qn mn+1 QnQn-1 

and (2) fo11ows by use of formula (5) of Chapter 2. Il 

Theorem 6.4. If x has at 1east n + 1 terms and its 1ast term 

(if there is one) is not l , then 

1 x - cl> 
1 

(3) 
n 

Proof: Comparing (2). and (3), it is sufficient to prove that 

this becomes mn+1 < an+1 + l , which is c1ear1y true. Il 

Theorem 6.5. Let x have at 1east n + 2 terms, with the 1ast term 

(if any) not 1. ~hen: 

Therefore by Theorem 6.4, Ix-cnl > 1/qnqn+2 Le. 

Iq x - pl> 1 n n 

But, as noted after Theorem 6.2, Ix-cn+11 < 1/qn+1qn+2' i.e. 

1 

qn+2 

(4) fo11ows fram (5) and (6). Il 

(4) 

(5) 

(6) 
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Corollary: Except for the convergents of [ al' 1, 1 ] , 

any convergent cn+l is closer to x than the preceding convergent 

c ,Le. 
n 

Proof: (i) 

1 x - c ni> 1 x - c n+ 1 1 • (7) 

If there are only n + 1 terms then 

(ii) If there are only n + 2 terms, then x = cn+2 ' and using 

formula (7) of Chapter 2, 

1 x - c = n 

also, 1 x - cn+l 1 = 
1 

therefore (7) is equivalent to an+2 qn+l > qn • 

(equality only if n = 1 and a
2 

= 1), hence (7) i8 false only for 

n = 1, a2 = 1, a3 = 1; sinee the present case is assuming only n+2 

terms, this means that x = [al' 1, 1 ] , i.e. the exception noted. 

(iii) If there are n + 3 terms or more, we can absorb any 

final unit into the second to last term, therefore we always have (4), 

by Theorem 6.5. Multiplying by l/~? l/qn+l gives (7). Il 

Assuming b and d positive, the mediant (also called the 

median value) of a/b and cId is defined to be (a+c) 1 (b+d) , and 

is, as one can trivially ver if y, strictly between a/b and cId if 
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the latter are distinct. Consider the fractions 

Pn + ip~+l 

qn + iqn+l 
( 0 < i < an+2 ) • (8) 

We observe that the first of these is cn' the last is cn+2 ' and 

each after the first is the mediant of the preceding one and 

Pn+l/qn+l' The fractions (8), other than the first and last, are 

called intermediate fractions (or secondary convergents) of the 

continued fraction. The reason for introducing intermediate fractions 

is the following result : every best approximation of the first kind 

to x is either a convergent or an intermediate fraction of the simple 

continued fraction expansion of x. Since the proof is somewhat long, 

but not difficult, and the result will not be needed in what follows, 

we shall omit the proof ; it may be found in [4], § 6, Theorem 15. 

As will be shawn, every convergent is a best approximation of the first 

kind ; however, this is not true of every intermediate fraction. For 

best approximationrof the second kind, a much sharper result (presented 

in the next two theorems) is true, and this constitutes the main reason 

for considering best approximations of the second kind. 

Theorem 6.6. 

there exists 

If a/b is a best approximation of the second kind, then 

n > 1 such that a/b = c • 
n 

Proof: Let L < ~ be the number of terms in the given continued fraction. 

For the purposes of this proof, " c, d gives a coni.radiction " will mean 

that 1 ~ d ~ b, cId + a/b ,and 1 dx-c 1 ~ 1 bx-a l , thus contradicting 

that a/b is a best approximation of the second kind. We shall have 
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occasion to use the fact that for any integers e, f, g, h (f,h positive), 

e/f F g/h implies le/f - g/hl ? l/fh; this follows since leh-fgl 

is not zero, hence at least 1. 

If L = 1, then x = al = cl ,and a/b = cl' for otherwise 

al' 1 gives a contradiction. Therefore assume L > 2. If a/b < cl' 

we have Ix-aIl < Ix-a/bl < b Ix-a/bl = Ibx-al " so tbat al' 1 gives 

a contradiction. 

If a/b > c2 ' then 

Le. 

Ix-.! 
b 

b 
x 

> > 1 

al> ; 

therefore al' 1 aga in gives a 

contradiction. Thus, assuming a/b is not equal to any convergent, 

we have cl < a/b < c2 ; also, a/b F x , for otherwise x is rational 

and a/b = cL. Therefore we are clearly in one of two cases 

(i) For some n? l ,a/b is strictly between c n and cn+2. 

(ii) L is finite, and ajb is strictly between cL_1 and cL=x . 

We note that if ajb is strictly between 

_1_< 
bq 

r 

therefore qr+l < b • 

c 
r 

and cr +1 ' then 

In case (ii), therefore, qL < b; also, !qLx-PLf = 0 , hence 
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PL' qL gives a contradiction. 

In case (i), we show that P q gives a contradiction. n+1' n+1 

Now a/b is a1so strict1y between c 
n 

and c n+1 ' hence qn+1 < b. 

Furthermore, a/b is c1ear1y at 1east as close to cn+2 as it is to x , 

so that 

1 x - ~ > 

i.e. 1 bx - al> 
1 

a 
b 

> 1 

b qn+2 

But Iqn+1 x - Pn+1 1 = qn+1 J x - cn+1 1 < 1/qn+2 (from Theorem 6.2). 

Therefore Iqn+1 x - Pn+11 ~ Ibx_al. Il 

Theorem 6.7 Assume that the continued fraction used for x does not 

have 1 as a 1ast terme Let n? l, and exc1ude the fo110wing cases : 

1. n = l, there are at 1east 2 terms, and a2 = 1 • 

2. n = l, and the fraction is [al' 2]. 

Then the convergent Pn/qn is a best approxLmation of the second kind 

(and hence a1so of the first kind). 

Remarks: (i) Suppose n>2 , and - the 1ast term is an+1 = 1 ; 

then Pn/qn is not a best approx Lmat ion of the second kind ; 

c 1: c 1 ~ qn-1 ~ qn' and (since x = cn+1) , 1 qn- l x- p n- 11 = n-1 n 

Iq x -n Pn ' each being 1/qn+1· 

(H) In case l, or 2, above, we have 

therefore Cl = a1/1 is not a best approxLmation of the first or second 
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kind (by comparison with (al + 1) /.1 ) • 

Proof of Theorem 6.7: Let m < ~ be the number of terms in the 

continued fraction. First of aIl, we can assume n < m, for if n = m , 

then p /q - x and the resu1t is immediate. n n-

Let X be the set of aIl pairs (u, v) where u may be any 

integer and v = 1, 2, .• . ,q . 
n 

Define a function F with domain X 

by F(u,v) = 1 vx - u 1. Letting t be any value of F , F(u,v) < t 

is equiva1ent to vx-t ~ u ~ vx + t ; v is bounded, therefore on1y a 

finite (and nonzero) number of e1ements (u, v) satisfy F(u, v) < t 

hence F attain a min~ at one of these e1ements. Let M be the set 

of aIl e1ements of X at which this minUmwo is attained, and let 

"Cu , v) be an e1ement of M with 1east v 
o 0 0 

Then we have 

1. For aIl (u, v) in X, F(u,v) > F(u , v ) . 
- 0 0 

II. If F(u,v) < F(u ,v), then (u, v) 
- 0 0 

We a1so c1aim the fo11owing 

III. If (u, v ) 
o 

is in M , then u = u o 

is in M , and v>v 
- 0 

Once III is proved, it will fol1ow that u IV 
o 0 

is a best approxLmation 

of the second kind to x, for if 1 < d < v and F(c,d) < F(u ,v ) , 
- 0 - 0 0 

then II gives d = v and III gives 
o c = u o 

To prove III, suppose (u, v ) 
o 

i8 in M, but u ~ u . o 
Then 

vx-ul=lvx-u land o 0 0 

x = 
u+u 

o 
2 v 

o 

a180, Iv x-u 1 ~ 0 , hence 1 v x - u 1 = o 0 0 0 (u + u ) 1 2 - u /1 1 > l ; 
o 0 - 2 
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x is rational, so m is finite and x = c m 
Now u + u and 

o 

2v are relatively prime, for suppose u+u = kp ,2v = kq , 
000 

k>2 ; then q < v so that (p, q) is in X and 
- 0 

Iqx - pl = o < Iv x-u 1 contradicts I. Therefore, u+u - Pm ' o 0 0 

2v = q ; qm > 1 shows that m > 2. Now I~l x - Pm-ll = qm-l l cm-cm_ll 0 m 

= l/~ = 1/2v < 1/2 < 1 
o - -

v x - u o 0 
l , therefore II gives a contradiction 

if we can show that ~l < vo • Now 2vo = am ~l + qm-2 and we 

assumed a > 2, 
m - therefore vo > ~l unless a = 2 and m = 2 

m 

(hence also n = l, since we dismissed n = m) ; this case was excluded, 

therefore III is proved. 

Theorem 6.6 now shows that there exists s > 1 such that 

u /v = c. If u = kp and v = kq ,then 1 qx-pl < 1 v x - u 1 
00 s 0 0 - 0 0 

and II gives q > v , so that 
- 0 

k = 1 and u ,v are relatively prime. 
o 0 

Thus, u = p ,v = qs • We complete the proof by showing that s = n. o s 0 

Since we excluded the case n = 1 and a2 = l, n < s leads to q < q 
n s 

which is false by definition of X. Suppose s < n ; then s + 1 < n , 

hence q + q < q + q ; using 1, Theorems 6.2 and 6.4, and 
s s+l - n-l n 

recalling n < m 

1 
> 1 q x-p 1 > 1 q x-p 1 n n s s 

1 
>---- > 1 

qs~s+l 

Therefore q < q + q l' which is false since n+l n n- Il 
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3. A Restatement. 

The results proved in this section are closely re1ated 

to Theorems 6.6 and 6.7, but are in a form which is sometimes more 

convenient to use. As demonstrated by Niven and Zuckerman [6] in 

their Theorem 7.13, tbey may a1so be proved direct1y without using 

our Theorems 6.6 and 6.7. 

Theorem 6.8. Let n > 1 and assume that the fraction used for x has 

at 1east n + 1 terms. Then b > 0, Ib~-al < Iqnx-Pnl imp1y b~n+1. 

Proof: We can assume a and b re1ative1y prime, for if a = k , 
c 

b = kd , (c, d) = 1 , we could app1y the theorem to c, d to get d~n+1' 

therefore b? qn+l. 

If n = 1 and a2 = l, the resu1t is trivial, since then qn+1=1. 

If n = 1 and the fraction is [al' S] , we have b? 2 = qn+1 for 

otherwise b = 1 and lb -al >1 = Iq x - Pli , cont.radicting the x - 2 1 

assumption. A1so, we can assume that the continued fraction does not 

have 1 as a 1ast term, for suppose the number of terms is m and a 
m = 

If m>n + 3 we can absorb a into a m-1 and the theorem still gives - m 

b ? qn+1 • If m=n+2 , absorbing an+2 into an+1 ' 
we get (where 

, 
primes refer to the nev fraction) b ? q n+1 = (an+1+1) qn + qn-l = 

qn+1 + qn > qn+l· Fina11y, if m = n + 1, we can assume n > 1 (since 

the case n = l, a2 = 1 bas been treated) ; as indicated in Remark (i) 

fo11owing the statement of Theorem 6.7, Iqn_Ix-Pn_l' = 'qnx - Pn' ; 
, 

therefore absorbing an+l ioto an' we have b? q n' but 
, 

q n = (an+1) qn-l + q~2 = qn + qn-l = qn+l • 

1. 
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Thus, Theorem 6.7 gives that Pn/qn is a best approximation of 

the second kind. A1so, a/b F p Iq (otherwise lb -al = Iq x-p 1 n n x n n 

since (a, b) = 1) , therefore b < q implies lb -al > Iq x-p 1 , 
- n x n n 

which is fa1se. This shows b > qn' Suppose b < qn+1' Then a/b 

is not a convergent, hence by Theorem 6.6 it is not a best approximation 

of the second kind. Thus there exist c, d such that l<d<b, a/b F cId, 

(c, d) = 1, and 1 dx-c 1 ~ 1 bx-al . We c1aim that d F b, for d = b gives 

a F c and 1< 1 a-c 1 ~ 1 dx- cl + 1 bx-al ~ 21 bx-al , hence 1 bx-al >.! - 2 ; 

but except in the case n = 1, a2 = 1, which has been treated) Iq x - pnl n 
1 

~ ~/qn+1 ~ '2 ' and Ibx-al < Iq x-p 1 is contradicted. Therefore d < b . n n-

Now if d > q ,then cId is not a best approximation of the second kind 
n 

and Idx-cl < Iq x-p l , so that by the same argument, we get e/f , 
n n 

1 ~ f < d, (e,f) = 1, Ifx-el ~Idx-cl . This process may be continued 

unti1 we eventua11y obtain rIs, 1 < s < q ,(r,s) = 1, and 1 sx-r < 
- - n 

Iqnx-Pnl (hence rIs F Pn/qn) , contradicting that Pn/qn is a best 

approximation of the second kind. Therefore b? qn+1' Il 

Coro11ary: Let n > 1 and assume that the fraction used for x has at 

1east n terms. Exclude the case n = 1, a2 = 1. Then b > 0, 

Ix-a/bl < Ix-p Iq 1 tmp1y b > q . n n n 

Proof: Assume at 1east n + 1 terms, since the resu1t is empty for n 

terms. If b < q ,mu1tip1ying the given inequality by this gives 
- n 

fbx-af < Iqnx-Pn' ,therefore b? qn+1 ' by the theorem. This 1s a 

contradiction, since ~+1 > qn' Il 
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Chapter 7. HURWITZ' S THEOREM AND REIATED RESULTS. 

2 
Since q +1 :< q ,Theorem 6.2 shows that 1 x - c 1 < l/q , n - n n n 

and therefore for any irrationa1 number x there exist infinite1y 

many rationa1s a/b such that Ix-a/bl < 1/b2. Let us now consider 

the possibi1ity of rep1acing b2 by some other function of b. 

More specifica11y, for how large a value of k can b2 be rep1aced by kb2 
? 

Investigation of this prob1em 1eads to the striking resu1t, first proved 

by Hurwitz in 1891 ( [3] , using Farey sequences rather than continued 

fractions), that k can be as large as J5, but no 1arger. First, 

however, we sha11 examine the easier case k = 2. 

Theorem 7.1. Exc1ude the case where n = 1 and the fraction is [a ,1,1] . 
1 

Given any two consecutive convergents 

the fo110wing two inequa1ities i8 true 

1 x - c 1 < n 

c and 
n 

1 

2 
2q n+1 

at 1east one of 

(1) 

(2) 

Proof: x lies between c and c therefore Ix-c 1 = Ic -c 1 n n+1' n+1 n+1 n 

- lx - c 1 = l/q q - lx - cl. Assuming (1) false, we obtain n n n+l n 

1 x - cn+l ' < 
1 

(3) 

2 2 2 2 2 Now l/ab - 1/2a < 1/2b is equivalent to 2ab-b < a , i.e. (a-b) > 0, 

Le. a j: b. But q ~ q proving (2), un1ess n+l r n ' n = land 
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and clearly one of (1), (2) 1s true unless 1 
x = al +"2 ' 1n wh1ch 

case the fraction must be [al' l, 1] 

excluded, the theorem is proved. Il 

Since this case was 

Corollary: Given any irrational number x, there are inf1nitely many 

rational numbers a/b such that 

Theorem 7.2. 

1 x - a/b 1 < 1 

2b2 

If (4) holds, then a/b 1s a convergent. 

(4) 

Proof: We can assume b > o. Given (4), we prove that a/b 1s a 

best approximation of the second k1nd to x; the des1red result then 

follows by Theorem 6.6. 

Suppose 1 < d < b and cId f a/b; we must prove 

1 dx-cl> 1 bx-al· (5) 

By (4), it 1s enough to show dx-c > l/2b . 

....! < I~ - .! 1 < c + 1 
a 

x - - x--
db - d b - d b 

< c +....!.... x--d 2b2 

c 1 
< x-- +ibd - d 

Therefore 1 x-~I 1 1 1 .. 
> db - 2db =-

d 2db 

Le. 1 dx - cl> l/2b. Il 

Theorem 7.3. If k > ,,; , then there 1s an irrat10nal number x 
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(for example x = (1 + ../5) /2) such that 

1 x -
a <_l_ 
b kb2 (6) 

is true for only a finite number of rational numbers a/b. 

Proof: Let x = (1 +../5) / 2 and let Fl,F2,F3' .•• be the Fibonacci 

numbers 1,1,2, ••• As was shawn in Chapter 4, x = [l, l, l, ••• ] and 

By Theorem 6.3, 

1 x - c 1 = n 
1 

• (7) 

But x + F l/F ~ x + 11x = ../5 n- n 
Therefore k >J5 implies that 

for all n sufficiently large, lx - cl> l/kq2. But k > &, hence n n 

by Theorem 7.2, if lx - albl < l/kb2 then alb is a convergent. 

Therefore the theorem is proved. /1 

In preparation for proving the next theorem, we introduce 

some notation 

m = [an' an+l'···] (n ? 1) (8) 
n 

qn-2 
(n ? a) (9) u = n qn-l 

w = u +m (n > a) (10) n n n 

We observe that m = a + l/mn+l' and n n 

1 
qn 

an qn-l + qn-2 = = = a +u 
un+l qn-l n n 

qn-l 

Therefore 1 + 1 = w ( n>_ ) (11) 
n 

un+l mn+l 
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- u n 

The formula proved in Theorem 6.3 becomes 

1 x - c 1 = n 
1 

(n ?' 2) (12) 

(13) 

Lemma: Let n > S. From wn ~.rs and wn+1 ~.rs it follows that 

un+1 > ( J5 - 1 ) 1 2 . 

Proof: Using (11) , we have 

Therefore = 1 

Mu1tip1ying by un+1 and comp1eting the square, 

J5 2 1 
( un+1 -Z ) < 4 

1 ~J51 < 1 
un+1 - "2 2 

J5 1 .fs-1 
un+1 ?'"2 - = 2 2 

But un+1 is rational, therefore the 1emma is proved. Il 

Theorem 7.4. Let n > 1 and assume that x = { al' a 2 , .•• 1 has at 1east 

n + 2 terms. Then the inequa1ity 

1 x - c. 1 < 
1 

1 
(14) 

is true for at 1east one of the three values i = n , i = n + l, i = n + 2 

Proof: We can assume at 1east n + 3 terms, for otherwise (14) is true 
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for i = n + 2. Assume (14) false for aIl three values of i. 

Then by (13), wi ~ J5 (i = n+l, n+2, n+3) , therefore by the 

lemma, ui > ( J5 - 1)/2 (i = n+2, n+3). But then (12) gives 

2 J"s-l 
- -2- = 1 , 

J"s-l 

which is false. Il 

Corollary: Given any irrational number x, there are infinitely 

many'rational numbers a/b such that 
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PART III 

APPLICATIONS TO NUMBER THEORY 
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Chapter 8. THE NUMBER OF STEPS IN THE EUCLIDEAN ALGORITHM 

In this chapter we prove an elementary yet significant result 

concerning the Euclidean algorithme The ease of the proof is a good 

illustration of the power of the theory of continued fractions. 

Let r, s be any integers, with s > O. Consider the Euclidean 

algorithm for rand s 

l. r = a s 
1 + rI 

2. s = a2r l + r 2 

3. rI = a3r 2 + r 3 

n-l. 

n 

( 0 < rI < s ) 

( 0 < r 2 < rI ) 

( 0 < r 3 < r 2 ) 

Here, n > 1 is called the number of steps, and we shaii use the 

notation E (r,s) = n • 

As shawn in Theorem 3.3, [al' a2 , ••• ,an] is the simple 

continued fraction expansion of rIs, and (if n > 1) 

Therefore we can write 

r 
s = a - 1 n ' 

l ] 

Using Fi for the Fibonacci numbers and letting Pi 

to (1), we have (Theorem 4.1) qn+l? Fn+1 - But 

therefore s ? Fn+l . Now suppose s < F 
m 

Then 

and 

rIs 

Fn+1 

a > 2 • 
n -

(1) 

qi refer 

= Pn+l/qn+l 

< s < F , - m 

therefore n + 1 < m, i.e. E (r,s) < m - 2. This proves the foilowing 
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theorem : 

Theorem 8.1. Let FI = 1, F2 = l, ••• be the Fibonacci numbers. If 

r is any integer and 0 < s < F , then the number of steps in the 
m 

Euclidean algorithm for rand s is at most m--2. 

Example 1. Taking a = F m--l and r = F , we have 
m 

(m--ll's) , hence E(Fm, Fm--1) = m-2. 

Example 2. Let r = 18, s = Il. Il is between the Fibonacci numbers 

F = 8 and F7 = 13, hence the theorem predicts E( 18,11 ) < 7-2 = 5. 
6 -

In fact, E (18,11) = 5 : 

18 = 1.11 +7 

11 = 1.7+4 

7 = 1.4 + 3 

4 = 1.3 + 1 

3 = 3.1 



-40-

Chapter 9. PERIODIC SIMPLE CONTINUED FRACTIONS 

Periodic simple continued fractions have many interesting 

and useful properties, due primarily to the fact that a continued 

fraction is periodic if and only if it represents a quadratic irrational. 

This striking result was first proved by Lagrange in 1770. In particular, 

the simple-continued-fraction expansion of .JD where D is a positive 

nonsquare integer) provides the key to the solution of Pellls equation 

2 2 x - Dy = ~ l, to be discussed in later chapters. 

By a quadratic irrational we mean a number of the form A+Ptfn , 

where A and B are rational numbers (B ~ 0) and D is a positive 

nonsquare integer. We note that if A + B JO = E + F JO, then A = E 

and B = F (for if B ~ F, we would have JO = (E-A) / (B-F) , 

contradicting that JO is irrational hence B = F and consequently 

A = E). The conjugate of x = A + IWD ls def ined to be x = A - IWD. 
One easily verifies that, if y = E + FJO, then x + y = x + y and 

xy = x y hence also -1 -1 x = x ) ; in other words, the operation of 

taking the conjugate is an automorphism of the field Q(,fn) (i.e. the 

field of elements A + BJD, where A and B are rational). 

Clearly a root of a quadratic equation with integer coefficients 

and positive nonsquare discrÜDinant is a quadratic irrational. 

Furthermore, it is not difficult to see that any given quadratic 

2 irrational is a root of precisely one quadratic equation ex +bx+c = 0 

where a,b,c are integers, a > 0, and (a,b,c) = 1. To prove the last 

statement , x = A + B ·JD is a root of 
2 2 2 x -2Ax + (A -B D) = 0, which 
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can clearly be put into the required form ; to show uniqueness, 

suppose ax
2 

+ bx + c = 0 = dx
2 

+ ex + f (a, d > 0, (a,b,c) = 1 = 

2 (d,e,f) ) ; eltminating x ,we get (bd-ae) x = - (cd-af), hence 

(since x is irrationa1) bd = ae and cd = af ; assuming first 

that e F 0 and f F 0 , we have .! - È - ~ ; d - e - f denoting each fraction 

by k and letting rd+se+tf = 1, we get k = ra+sb+tc, showing 

that k is an integer; but (a,b,c) = 1, therefore in fact k = 1, 

hence a = d, b = e, c = f; the case e = 0 or f = 0 is treated 

stmilarly. 

One half of Lagrange's result is relatively easy, and we 

state it in the following theorem : 

Theorem 9.1 The value of any periodic simple continued fraction is 

a quadratic irrational. 

Proof: Let x = [al' a2 , ..• ] ,where, for aIl n > m, an+r= an 

(here, m > 0 and r? 1). Let Y = [am+l' am+2, .•. I. Then x = 

[al'··· ,am' yI = [al' ••• ,am+r' y1 , therefore 

x = PmY + Pm-l = 

~y+~l 

Pm+rY + Pm+r-l 

qm+rY + ~-l 

Renee y satisfies a quadratic equation with integer coefficients 

Therefore y, and consequently x, is a quadratic irrational. Il 
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As a first step towards proving the converse, we sha11 

determine which rea1 numbers have pure1y periodic expansions. These 

turn out to be the reduced quadratic irrationa1, defined as fo11ows 

Definition: A reduced guadratic irrationa1 is a quadratic irrationa1 

x such that x > 1 and -1 < x < o. 

Theorem 9.2 Any pure1y periodic simple continued fraction 

is a reduced quadratic irrationa1, and xy = -l, where 

y = [ a ,a l' ••. , al ] . r r-

(1) 

(2) 

Proof: x> al? l, and by Theorem 9.1 x is a quadratic irrational. 

App1ying Theorem 5.2, we have 

1 
x 

1 = [ a ,a 1'· •. ,al' - - ] . r r- x 

(2) and (3) show that when the proof of Theorem 9.1 is app1ied to 

and 1 (using = 0) these numbers satisfy the same quadratic m x 

equation. But y and - 1/x are distinct (they are of opposite 

therefore each is the conjugate of the other, proving that xy = 

Fina11y, x = -l/Y and y > l, therefore -1 < x < o. Il 

(3) 

y 

sign) , 

-1. 

LeIllD8 1. Any quadratic irrationa1 x may be expressed in the form 

x = 
(4) 

where P, Q, D are integers, D > 0 ,and D is not a square. 

For any such representation, x is reduced if and on1y if 
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P <.JD 

Q-P <.JD 

P-fQ > .JD 

Given positive nonsquare D, there are precisely h(h+l) reduced 

quadratic irrational of the form (4), where h = [ .JD J(integral 

part of .JD) • 

Proof: .! + ~ Jk cao he written as (ad + /b2c2
k) 1 (bd). 

b d 

Assume (4). (i) let x be reduced, i.e. 

p+.JD >1 
Q 

P-.JD< 0 
Q 

(5) 

(6) 

(7) 

(8) 

(9) 

P -.JD > -1 • 
Q 

(10) 

Suppose Q < 0 ; then (8) shows P < 0; but then P - ~D < 0 , 

contradicting (9). Therefore Q > 0, and (5)-(7) follow easily from 

(8)-(10). (ii) Let (5)-(7) be satisfied. 

Subtracting (5) and (7) gives Q > 0, so that (8) - (10) follow. 

Geometrically, (5) - (7) mean that (P,Q) is a lattice point 

strictly inside the triangle who se vertices are (.JD, 0), (0 "rn), 

(../D, 2.JD). Clearly tbe number of such lattice points is 2(1+2+ ... +h) = 

h(h + 1). Il 

Lemma 2. If x is a reduced quadratic irrational, then so is -l/x 

Proof: -1 <x < 0, tberefore -l/x > 1 ; x > l, hence -l/x, which i8 

the conjugate of -l/x, lies between -1 and O. 1/ 
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Lemma 3. Let x be a quadratic irrationa1 satisfying 

ax
2 + bx + c = 0 

where a (Fa) , b, c are integers , and let k and D be any 

integers such that b2-4ac = k2D and k divides 2a, b, and 2c. 

Then given any sequence of integers 

(i ? 1) 

are of the form 

(i ? 1) 

where Pi and Qi are integers. 

(11) 

(12) 

(13) 

Proof: Given (11) and the assumption about a,b,c, it is c1ear that 

x = (-b ~~2~) 1 2a 1s of the form (13). Thus, it is sufficient to 

prove that each 2 
Xi satisfies an equation ai Xi + bi Xi + Ci = 0 

(ai '1= 0) where b~ - 4a i c i = k
2
D and k divides 2a i , bi' Ci . 

and 

For this, it is enough to prove that y = 1/(x-s) (s any integer) does. 

Now x = s + 1/y , an~ substituting this into (11) and simplifying, 

fi d dy2 f 0 wh d 2 b 2 b d we n + ey + =, ere = as + s + c, e = as + ,an 

f = a, a1so, one can check that e2_ 4df = b2 - 4ac = 

k divides 2d, e, 2f fina11y, d ; 0, for otherwise 

contradicting that x is irrational. Il 

k2D ; clear1y 

2 2 
e = k D , 

Theorem 9.3. The simple-continued-fraction expansion of any reduced 

quadratic irrat10nal is purely periodic. Furthermore, if the quadratic 

2 irrationa1 i9 x = [al' a2 , ••• ] and satisfies ax + bx + c = 0 where 

a(Fa) , b, c are integers vith b2 - 4ac = k2D and k dividing 
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2a, b, and 2e, then eaeh m = [a , a +l, •.• J n n n (n ? l) is a redueed quadratie 

irrational of the form (P +JO) / Q. 
n 

(P ,Q integers), and the 
n n 

fundamental period does not exeeed h(h+l) , where h= [JOJ • 

Then Xi = mi and therefore eaeh Proof: In lemma 3, take si = ai' 

m is of the form (P +JO) / Q . 
n n n 

Assume mn is redueed. Now mn+l > 

an+l ? 1 ; also 

1 . , (14) 

m - a n n 

but 0 < - m < l, Le. a < a -m < a +1 , henee by (14) l/(a +1) < 
n n n n n n 

now a > 1 (for n = 1 this follows fram the faet 
n -

that x> l, sinee x is redueed), therefore mn+l 
is redueed. But 

x = ml is redueed, therefore every m i8 redueed. By lemma l, 
n 

there are only h(h +l} redueed quadratie irrational of the form (4) , 

henee there exist r > 1 

t < h (h+l) • Choose the -
suppose r > 1. 

and t > 1 sueh that m =m and - r+t r 

smallest possible r. Then r = 1, for 

so that, denoting -l/m by 
n 

b, we have b = a 1 + lIb l' n r r- r-
Similarly br +t = a r +t - l + l/br +t _1, 

By leuma 2, b is redueed, henee b > l , therefore [b ] = a l' 
n n r r-

Sinee b - b ,this shows that a 1 = a l' r r+t r- r+t-

and eonsequently mr _l = mr +t - 1, eontradicting the minimality of r. 

Thus ml = ml~' proving that x is purely periodic with period t < 

h(h+l). 1/ 

The following result completes the proof of Lagrange's theorem, 
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Theorem 9.4. The stmp1e-continued-fraction expansion of any 

quadratic irrationa1 is periodic. In fact, if the quadratic 

irrationa1 is x = [al' a2 ,··.] 

2 

and satisfies ax2+bx+ c = 0 where 

a, b, c are integers with b -4ac = 2 k D and k dividing 2a, b, 

and 2c, then each mn = [an' an+1'···] is of the form [p + J'ô)/Q 
n n 

(Pn' Qn integers), and a11 m 
n 

from some point onward are reduced. 

The fundamenta1 period does not exceed h(h+1) , where h = [ J'ô] . 

Proof: As in the proof of Theorem 9.3, the fact that m = (P + J'ô)/Q n n n 

fo11ows from 1emma 3. In view of Theorems 9.3 and 9.2, it remains 

on1y to find an n for which m 
n is reduced. (The fact that the period 

does not exceed h(h +1) is c1ear from 1emma 1.). Since x = [a1 , .•. ,an ,mn+1], 

we have 

x = 
mn+1 Pn + Pn-1 

mn+1 qn + qn-1 

Taking conjugates and s01ving for mn+1 ' 

= - = -

(n ? 0) 

x - c 
n 

(15) 

(16) 

Now as n increases, each convergent is a1tanate1y sma11er and 1arger 

than the previous one, therefore ( x - c 1) / ( x - c ) is a1ternate1y n- n 

sma11er and 1arger than 1 ; since this fraction converges to (x-x)/(x-x) = 1, 

there exists n such that 

o < x - c n-1 < 1 • 

x - c n 

qn-1 ~ qn ' hence (16) and (17) give -1 < mn+l < 0 . 

(17) 
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A1so mn+1 > an+1 ? 1, therefore mn+1 is reduced. Il 

Theorem 9.5. Let x = [8
1

, 8 2 , .•• ] be a quadratic irrationa1, and 

let the integers a, b, c, k, D, Pn' Qn be as in Theorem 9.4. 

Then : 

P = a Q - P n+1 n n n 

Q + 1 = 
n 

2 
D - Pn+1 

Qn 

= [Pn+1 + .rD] 
an+1 Q 

n+1 

(n ? 1) (18) 

(n ? 1) (19) 

(n ? 0) (20) 

(n ? 1) (23) 

Proof: (20) fo11ows from the fact that an+1 = [mn+1]. 

To prove (18) and (19) we note that 

= = 
(P +!D)-a Q n n n 

-Q (a t) -P + ~.1D) 
n n'tl n 

(a Q -P ) 
2 

- D 
n n n 

(21) and (22) are easi1y obtained by solving (15) for mn+1' rep1acing 

x by (Pl + .rD) 1 Q, stmp1ifying, and using PnQn-1 - Pn-1Qn = (_l)n. 

(23) and (24) may be found from (15) by rep1acing n by n-1 ,x by 
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(P + JD) 1 Q , and crossmultiplying. n n Il 

With regard to the value of D, it should be noted that if 

x = (A + JiN) 1 B (A, B integers) , it is not alwaya possible to 

take D = N. For example let x = (1 + Ji) 1 2 (which, incidentally, 

is reduced) ; then al = l, and m2 = l/(x-a l ) = 2 + 2 Ji which is 

not of the form (P + Ji)/Q _ As indicated in the statement of the 

theorems, D should be chosen by examining the quadratic equation 

satisfied by x. lt is always possible to t ake k = l, but sometimes 

k = 2 is useful, notably for x = JN . 

Formulas (18) to (20) above provide a very convenient algorithm 

for expanding a quadratic irrational into a simple continued fraction 

find D, get Pl and QI from x = (Pl + ~D) 1 QI ' obtain al = lx] , 

and then use (18) - (20) to compute P2 ' Q2' a2 , P3 ' Q3' a3 , .•. until 

some pair P ,Q repeats a previous pair. n n Formula (22) is the basis 

for the solution of the pell equation, as will be seen in later chapters. 
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Chapter 10. THE EXPANSION OF JO. 

In the case where x is the square root of an integer, the 

simple-continued-fraction expansion has a particularly interesting 

form, which we now examine. 

Theorem 10.1 Let D be a positive nonsquare integer, and let x = JO = 

[al' a2 ,···] , mn = [an' an+l ,.·.] , h = [JO] . The expansion is of 

the form 

(1) 

where 0 5 r ~ h(h +1) - l, 1 5 b i 5 h , and (b l , b2 ,.·· ,br) is 

symmetric, i.e. b i = br +l - i • Each m is of the form 
n 

(n ? 1) (2) 

where Pn' Qn are integers satisfying, for n > 2 , 1 5 Pn ~ h , 

1 5 Qn ~ 2h. After QI = l, Qr+2 is the first Qi to equal 1. 

We have the following formulas 

Pn+ 1 = a nQ - P (n ? 1) (3) 
n n 

Qn+l 
2 

= D - Pn+l (n ? 1) (4) 

Qn 

An+l = [Pn+l + hJ (n ? 1) (5) 

Qn+l 

n (n ? 0) (6) (-1) P = Dq q - Pn Pn-l n+l n n-l 

n 2 D 2 (n ? 0) (7) (-1) Q = P -n+l n qn 

Pn-l = qn-l Pn + qn-2 Qn (n ? 1) (8) 

Dqn-l = Pn-l Pn + Pn-2 Qn (n ? 1) (9) 
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Proof: x satisfies x2 - D = 0 , therefore taking k = 2 in Theorem 9.4, 

we have (2). Pl = 0 and QI = 1, so that (3) - (9) fo11ow from 

(18) - (24) of Theorem 9.5 (with regard to (5), it is easi1y seen 

that if v is any rea1 number and m, n are integers with m > 0 , 

then 

(n : v] = (n: [v]] ; 
hence the JO of formula (20), Chapter 9, can be rep1aced by h ) . 

By 1emma 1 (Chaper 9), h + JD is reduced ; a1so [h + JO] = 2h , 

therefore by Theorem 9.3, h + JD = [2h, b1 , .•• ,b
r

] (r ~ 0). 

This can be rewritten as [2h, b1 , ••. ,br , 2h] , hence JO = [h,b1 , .•• ,br ,2hl , 

proving (1). Taking r + 1 to be the fundamenta1 period, Theorem 9.4 

states that r ~ h(h +1) -1. To prove symmetry, we have -h + ~D = 

[O,b1 ,··· ,br' 2h] , or , taking reciproca1s, -1 / (h- .Ji» = [b1,··· ,br ,2hl 

but by Theorem 9.2, -l/(h-JD) = [br' •.. ,b1 ,2hl ; since expansions are 

unique, we conc1ude that (b
1

, ••• ,br ) = (br , •.• ,b1) , Le. (b1 , ... ,br ) 

is symmetric. Since (by Theorem 9.2) ~, m
3

, ... are reduced, 1emma 1 

of Chapter 9 gives (for n ~ 2) 

P < JO 
n 

(10) 

(11) 

(12) 

Therefore P < h ; a1so 0 - P < h, hence adding gives Q < 2h ; 
n- 'n n- n-

subtracting (10) and (12) gives Q > 0 ; subtracting (11) and (12) 
n 

gives P > 0 ; 
n 

thus 1 < P < h and 
n -

1 < Q < 2h. 
- n-

Suppose n > 2 

and Q = 1 ; then (10) and (12) give JO - 1 < P < JO, therefore 
n n 
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P = h ; thus m = h + JO ; but r + 1 is the fundamenta1 period, 
n n 

hence, considering the expansion h + JO = [2h, b
1

, ••• ,b
r 

] 

for which mr+2 = m;+2 = m~ = h + JO (primes refer to h + JD) , 
n is at 1east r + 2. Fina11y, this shows that Qj? 2 (2~j~+1), 

therefore by (5) , a j ~ (Pj+h) 1 Qj ~ (h+h) 1 2 = h, i.e. bi ~ h 

(l~i~). Il 

Examp1es 1. J5 = [ 2,4 ] 

2. J8 = [ 2, l, 4 ] 

3. D = 13, h = 3 

n 

P 
n 

a 
n 

1 2 

o 3 

1 4 

3 1 

3 

1 

3 

1 

Ji13 = [3, l, l, l, l, 6] 

4. D = 31, h = 5 

n 

P n 

a n 

1 

o 

1 

5 

2 

5 

6 

1 

3 

1 

5 

1 

4 5 

2 1 

3 4 

1 1 

r = 4 

4 5 

4 5 

3 2 

3 5 

Ji31 = [5, l, l, 3, 5, 3, l, 1, 10] 

6 

3 

1 

6 

6 7 8 9 

5 4 1 5 

3 5 6 1 

3 1 1 10 

r = 7 

Theorem 10.2 Using the same notation as in Theorem 10.1, we have the 

fo11owing : 
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(ii) If Qn = Qn-l and n<r + 2, then r = 2n - 4 

(Ui) If P = P and n<r + 2, then r = 2n - 5 n n-l 

(iv) If Qn = 2 and n < r + 2, then Pn+l = P ,hence r = 2n -n 

(v) If bi=h' then i = (r+l) 1 2. (Le. only a central term of the 

symmetric part can equal h.) 

Proof: Let YI ~ Y2 mean YI y; = -1 one can check that 

P + JD _ R + JD <=> P = R, QS = D _ p2 . (13) 
Q S 

In particular, using (4) , we have that (for i, j ? 2) 

<=> (14) 

Now let 2 < i < r + 2; using Theorem 9.2 and the symmetry of 

(b l ,··· ,br>' mi = [ bi_l'··· ,br' 2h , b l ,···,b i _2] ~ 

= 

= mr +4-i' therefore (14) clearly shows that (P2 , ••. ,Pr +2) and 

(QI' Q2,···,Qr+2) are symmetric. Suppose ~ ~ n ~ r + 2, and 

shows that m -m ; but, as just shawn m-m +4 n n n r -n 

therefore m = m . since r + 1 is the fundamental period, this n r+4-n' 

shows that n = r + 4 - n , i.e. r = 2n-4. Stmilarly, if ~+2 and 

P = Pl' then m ~m 1 ' hence n n- -n n- m = m ; n-l r+4-n now n = 2 is 

impossible (it would make ml equal to a la ter mi) , therefore we 

conclude n-l = r+4-n, i.e. r = 2n-5 . 

Assume Q = 2 and n < r + 2. Formula (3) gives 
n 

(15) 

3. 
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The symmetry of (P2 ,··· ,Pr +2) , (Ql"" ,Qr+2) , and (a2, ••• ,ar +l ) 

gives Pn+l = Pr +3- n , Qn = Qr+3-n ' and an = ar +3- n · Therefore: 

= Pn+l +.ID 

Qn 

= P P n+l - n 
Q _n 

But 0 < mi - ai < l, hence 

- P +.ID n 
Qn 

< Q = 2 • 
n 

(15) shows that Pn+l - Pn is even, therefore Pn = Pn+l , and r = 2n-3 

follows by (iii). Finally, Theorem 10.1 shows that Q + 1 (z<n<r+l) , 
n - -

while Q > 2 implies (by (5) ) a < Ih/Q < h ; therefore if bi = h, n n- n 

we must have Qi+l =2 , hence r = 2(i+l) - 3 , i.e. i = (r+l) / 2. Il 

Formulas (3) - (5) provide a practial method for expanding JO 
as a simple continued fraction. Because P Q and 

n' n' 
a are bounded, 

n 

and no irrational numbers appear in the formulas, this method 1s 

especially convenient for rapid automat1c calculation. Furthermore, 

(1) - (1ii) of Theorem 10.2 show that only about half of the period 

needlto be calculated. 

When r is odd, (1) is said to have a central term (namely b., 
1 

where i = (r+l) /2) • When r 1s even, (1) 1s said to have no central 

terme 
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Chapter 11. THE PELL EQUATION. 

2 The Diophantine equation x Dy2 = N, where D and N are 

given integers and x and y are unknowns, is known as Pe11 1 s 

equation (John Pe11, 1611-1685), although Pell was not the first 

to consider it. It appears in the famous cattle problem of Archimedes 

(see [1] p.249),and the Hindus, as long ago as 800 A.D., apparently 

cou1d solve various cases of the equation, but it remained for Lagrange 

(1736-1813) to give a complete and elegant analysis of it, about one 

hundred years after Fermat (1601-1665) proposed the problem to the 

English mathematicians of his day. 

The pell equation is important for several reasons. By means of 

various substitutions, the solution of the general quadratic Diophantine 

equation 2 2 ax + bxy + cy + dx + ey + f = 0 can be made to depend upon 

the solution of Peilis equation. Knowledge of the structure of the set 

of units in the field extension of the rationalS by...ID (D being a 

positive nonsquare integer ; x = a + b ~D is said to be a unit if x 

and l/x satisfy.:a monic quadratic equation with integer coefficients) 

depends upon a thorough knowledge of Peilis equation for N = + 1 and 

+ 4. Other applications include the minÜDization of indefinite 

quadratic forms (see LeVeque [51 , Chapter 8). 

We sball take D to be a positive nonaquare integer, and concentrate 

primarily on the case N = + 1. It will be seen tbat the stmple-continued­

fraction expansion of ~D conveniently furnishes aIl solutions, if any 

exist. (When D is negative or a square the solutions are finite in 

number and usually not difficult to find directly, especially when N 
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2 is sma11.) It shou1d be noted that if D = k E , the solutions of 

2 2 2 2 x - Dy = N fo11ow immediate1y fram the solutions of x -Ey = N ; 

thus it is sufficient to consider on1y square-free D; however, 

it will be just as easy to treat the genera1 case. 

Theorem 11.1. Let D be a positive nonsquare integer, and let N 

satisfy 1 N 1< JO. Then any positive (i.e. x > 0, y > 0) solution 

x, y of x
2 

- Dy2 = N with (x, y) = 1 , satisfies x = Pn' y = qn 

for some n?1 , where 

expansion of JD. 
P ,q refer to the simp1e-continued-fraction 

n n 

Proof: First assume N > O. 2 Dividing by y and factoring , 

Therefore x/y? JD , and we have 

N 
x - = 
y 

< 

= N 
"2 
y 

N 

Therefore by Theorem 7.2, there exists n > 1 

< 1 

2y2 

such that x/y = p /q , n n 

hence x = p , y = q. For the case N < 0 , we use the fo11owing 
n n 

c1ever argument. y2 - Ex2 = M, where E = l/D and M = -N/D ; now 

M > 0, and -N = 1 NI < JD gives M < Ji: therefore the same argument 

as auove gives that y/x is a convergent of l/Jn (and not the first, 

which is 0) ; since JD > l, Theorem 5.1 gives that x/y 1s a 

convergent of ~D. /1 

Theorem 11.2. Let D be a positive nonsquare integer, assume the 

notation of Theorem 10.1 and consider the Pe11 equations: 
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2 
x -

2 2 
x .- Dy =-1 

(1) 

(2) 

(1) has infinitely many solutions; if r is odd (i.e. the expansion 

of JD has a central term), aIl positive solutions of (1) are 

(Pn' qn) , n = k (r+l ) , k = 1,2,3,... ; 

if r is even (i.e. no central term), aIl positive solutioœof (1) are: 

(Pn' qn) , n = k (r+l) , k = 2, 4, 6, •.. 

(2) is solvable if and only if r is even ; if r is even, aIl 

positive solutions of (2) are 

(Pn' qn) , n = k (r+l) , k = 1,3,5, •.• 

Proof: 1 < JO, and any solution of (1) or (2) is relatively prime, 

hence by Theorem Il.1, any positive solution of (1) or (2) is 

(Pn' qn) for some n > 1. Formula (7) of Theorem 10.1 gives 

(n ~ 1) (3) 

Therefore (Pn ' qn) is a solution of (1) if and only if n is even 

and Qn+l = 1. But by Theorem 10.1, Pn+l = 1 (where n ? 1) is 

equivalent to n = k (r+l), where k? 1. The assertions about (1) 

clearly fo1low. For (2), we first note that no solution can have 

x = 0 or y = O. Now (3) shows that (p , q ) n n is a solution of (2) 

if and on1y if n is odd and Qn+1 = l, i.e. n odd and n = k(r+1) 

(k ? 1). Therefore there are no solutions if r is odd, while for r 

even, the positive solutions are as stated in the theorem. Il 

The remainder of this =hapter shows how aIl positive solutions of 
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(l)and (2) may be found once the least positive solution is known. 

First, let us clarify the notion of "least" positive solution by 

observing that if (xl' YI) and (x2 , Y2) are different positive 

solutions of x2 - Dy2 = N (where D > 0), then either xl < x2 and 

YI < Y2 , or x2 < xl and Y2 < YI : if xl = x2 ' then also 

then 2 2 2 2 therefore assume xl < x2 ; DY2 - Dy = x2 - xl > 0, l 

hence YI < Y2· Secondly, given xl and YI, an equation 

x + Y JD= (xl + YI JD)n n n 

uniquely determines the integers X and 
n 

Y ,since JD is 
n 

YI = 

and 

(4) 

Y2 ' 

irrational and we can equate terms after expanding the power; in fact, 

denoting Xl + YI JD by u and its conjugate Xl - YI JD by v, 

we have X - Y JD = un = un = vn , therefore 
n n 

Yn = (un - v
n

) / (2JD). For example, x2 = x~ 

Le1ŒD&: Let D be a positive nonsquare integer, and for convenience 

denote JD by". Let lei = 1 fi = 1 , 

(Xl' YI' s, t positive), m? 1, and suppose 

2 
x -1 

2 
DYI = e, 

m ~l 
(xl + YI • ) < s + t et < (Xl + YI ., ) . (5) 

Then there exists a positive solution 

that a + b IK < x + Y III • 
1 l 

2 2 m (a,b) of x -Dy = e f , such 

Proof: We have 1/ (Xl + YI G( ) = e (Xl - YI 1( ) , so that dividing (5) 

by (Xl + YI,,)m gives 

m m 
l < e (s + tGl) (Xl - YI" ) < Xl + YI oC· (6) 
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Let the middle member of (6) be a + b CI(. Then a + b 0( < Xl + Y l4iW' , 

and 2 2 a - Db = (a + b«) 2m 2 2 2 2 m 
(a - b-c) = e (s - Dt ) (Xl - Dyl ) = e f. 

Now 1/ (a + beC) = 1 a-b4Ifl , therefore (6) gives 1 a - ~I <1 < a+b« • 

But 2a = (a + bit) + (a - b-C) and 2b-c= (a + bec') - (a - b __ ), 

hence 2a > 0, 2bot >0, fram which a > 0 and b > O. / / 

Theorem Il.3. Let D be a positive nonsquare integer, ~ = JO, and 

consider the Pell equations (1) and (2). If (xl,yl ) is the least 

positive solution of (1), then aIl positive solutions are (xn ' Yn) 

determined by (4), where n = 1, 2, 3, ••• 

positive solution of (2), then aIl positive solutions are (x , y ) 
n n 

determined by (4), where n = 1,3,5, •.• , and furthermore (x2 ,y2) is 

the least positive solution of (1). 

If xn ' Yn are defined by (4), then x2 - Di = (x + Y ,,) 
n n n n 

Proof: 

(X - y IJ() n n 

if (xl' YI) 

n n 2 2 n = (Xl + YI lit) (Xl - Yl«) = (Xl - Dyl ) . Therefore 

i8 a positive solution of (1), so are (x , Y ) for 
n n 

n = 1,2,3, .•. Also, if (Xl' YI) is a positive solution of (2), 

then so are (xn ' Yn) for n = 1,3,5, ••• , and furthermore (xn'Yn) 

for n = 2,4,6, •.• are positive solutions of (1). 

(i) Suppose (Xl' YI) is the least positive solution of (1), and 

let (s, t) be any positive solution. Now Xl + YI " > 1 and 

s + t De ? Xl + YI II( , therefore there exists n > 1 such that (s ,t) = 

(xn ' Yn) , for otherwise (5) holds for some m > l, and the lemma 

provides a positive solution (a, b) of (1) less than (Xl' YI) . 
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. 
(ii) Suppose (xl' Yl ) is the least positive solution of 

(l) , and that (sl' t
l
) is a positive solution of (1) less than 

(x2 ' Y2)· If sl + tIC > xl + Yl « • define (s,t) = (sl,tl ) ; 

if not, we have sl + t l « < xl + Yl -< , and there is an r such that 

r-l r 
(sl + tlOC) < xl + Yl -< < (sl + tlOC) ,in which case define 

r s + t « = (sl + t l -<) • In either case, (s, t) is a positive 

solution of (1) satisfying (5) for m = l, therefore the lemma gives 

a positive solution (a,b) of (2) less than (xl' Yl ). This 

contradiction proves that (x2 ' Y2) is the least positive solution 

of (1). 

(iii) Suppose (xl' Yl ) is the least positive solution of (2) , 

and (s, t) is a positive solution of (2) not among (xl' Yl ) , 

(x3 ' y3),... Then s + t" exceeds xl + Yl ~ and is not a power of 

xl + Y10( , therefore (5) holds for SOUle m>l. The lelllDa gives a 

positive solution (a, b) of (2) less than (xl' Yl ) , or else of (1) 

less than (x2 ' Y2) (since xl + Yl e( < x2 + Y2 0( ), according as M is 

even or odd. The former is tmpossible by assumption, the latter by (ii). /1 

It may be noted that is (a, b) is a solution of x2 - Dy2 = 1 

and (xl' Yl ) is a solution of x2 - Dy2 
= N then (xn ' Yn) given by 

x + y JD = (x + y JD) (a + b JO) n 
n n . 1 i 

is also a solution 2 2 of x - Dy = N. However, there is no assurance that 

all solutions can be obtained in this way from one known solution. 
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Cbapter 12. 2 2 THE SOLVABILITY OF x - Dy = -1. 

Since the Pell equation x2 - Dy2 = -1 is solvable if and only 

if the sfmple-continued-fraction expansion of JD bas no central term 

(Theorem Il.2), there naturally arises the problem of characterizing 

those D for which JD bas no central term. As yet, there is no 

complete solution of this problem, but some important partial results 

are known, and this chapter is devoted to presenting these results. 

The proofs given here are based on the material in Perron [a] , 

Cbapter 3, Theorems 20-22. 

Theorem 12.1. Let the expansion of JiD have no central term, and 

assume the notat im of Theorem 10. 1. Then 

2 2 
D = Qn+l + Pn+l (1) 

where n = (r + 2)/2, and (Pn+l , Pn+l ) = 1. Therefore (see Chapter 5) 

D is a product (possibly zero factors, i.e. the product is 1) of 

primes of the form 4k+l or twice such a product. 

Proof: Since r is even, symmetryof (QI' Q2"" ,Qr+2) (Theorem 10.2) 

gives Q = Q. ,fram which (1) follows by formula (4) of Chapter 10. n n+l 

To show that Pn+l and Qn+l are relatively prime, we note fram (7) 

of Cbapter 10 that 

n 2 D 2 (2) (-1) Q = p -n+l n qn 

(_l)n-l Q 2 
2 

= Pn-l - D qn-l (3) n 

Therefore if a prime p divides Qn = Qn+l and Pn+l' then p divides 

D by (1) , and p divides Pn and Pn-l by (2) and (3) ; but 
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(Pn ' Pn- l ) = l, sinee Pnqn-l - Pn- l qn = (_l)n formula (5) of 

Chapter 2). Il 

The converse of the above theorem is false. For example 

205 = 5.41 and 34 = 2.17 are sums of two relatively prime squares, 

but 

Ji05 = [l~, 3, 6, l, 4, l, 6, 3, 28 ] 

and ~34 = [5, l, 4, l, 10 ] 

have central terms. Rowever, we have the following results, leading 

up to the main theorem, Theorem 12.4. 

Theorem 12.2. Let D > 3 be nonsquare. Of the three equations 

2 2 (4) x - Dy =-1 

2 Dy2 2 (5) x - = 

2 2 
-2 (6) x - Dy = 

at most one has a solution. 

Proof: Any square is convergent to 0 or 1 (mod 4) and to 0 or 1 

(mod 3) ; henee for D = 3, (4) and (5) are not solvable (eonsider 

the terms module 4 and 3 respect ive ly), while (6) is solvable: 

12 - 3.12 = -2. Therefore assume D? 5 ,henee 2 < .JD • Clearly 

no solution has x = 0 or y = 0, and also any solution has (x,y) = 1. 

Therefore, using the notation of Theorems 10.1 and 10.2, Theorem 11.1 

gives that any solution x,y is of the form Ixl = p , n 1 yi = q n 

for seme n > 1. Renee, if (5) or (6) is solvable, then formula (7) 

of Theorem 10.1 shows that ~+l = 2, and Theorem 10.2 (iv) shows that 
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n + 1 = r + 3 + k (r+ 1) 
2 

(7) 

where k > O. Therefore r is odd, and (4) is not solvable. A1so, 

n n 
sinee (-1) Qn+1 = 2 for (5) and (-1) Qn+1 = -2 for (6), (7) shows 

that (5) is not solvable if (r +3) /2 is even, whi1e (6) is not 

solvable if (r +3) / 2 is odd. Therefore at most one of (4) - (6) 

is solvable. Il 

Theorem 12.3. Let nonsquare D be a power (first or higher) of an 

odd prime, or twiee sueh a power. Then one and on1y one of (4) - (6) 

is solvable. 

Proof: • • Let D = P or 2p, where p is an odd prime and ~ ? 1 . 

Sinee the ease D = 3 wa8 treated in the proof of Theorem 12.2, it 

is suffieient to assume D > 5 (so that 2 < JO) and show at 1east 

one of (4) - (6) ia solvable. Suppose (4) i8 not solvable. Then r 

is odd, and by Theorem 10.2 and (3) of Theorem 10.1, Pn = Pn+1 and 

2P = a Q ,where n = (r+3)/2. Thus (8) and (9) of Theorem 10.1 
n n n 

give : 

2p 1 = (q 1 a + 2q 2) Qn n- n- n n-
(8) 

(9) 

then Therefore Qn /2Pn_l' 2Dqn_1' Suppose k / Qn' qn-l ; 

k / 2Pn_1 ' qn-1; (i) if k >1i8 odd, then k 1 Pn-l' q l' whieh n-

ia fa1se sinee (Pn-1' qn-1) = 1; (11) 1f k > 1 is even, then 

2 1 Qn' ~-1 ' henee by (8) 4 12Pn_1 ' therefore 21p l' q l' wh1eh n- n-

1s fa1se. Therefore (0, q 1) = 1 ,henee Q 12p l' 2D. Now 
'Il n- n n-

2 2 
(formula (7) of Theorem 10.1) (-1) n-1 ~ = Pn-1 - D qn-1 ' 

therefore 
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2 2 
(_l)n-l 4 = Q" ( :n-l) 

n 

(10) 

It follows that (Q ,2D/Q) = 1, 2, or 4; also Q +1 n n n ., ., 
(since 2 <p < r + 1), and 2D = 2p or 4p - - therefore one finds 

that Q = 2D, D, D/2, 4, or 2. 
n 

(A) 

(B) 

(C) 

Qn cannot be 2D or D if Q = 2D or D, then 2P = a Qn > n n n -

Q > D, hence P > D/2 . But (Theorem 10.1) P < h < JO < D/2. 
n - n - n -

Qn cannot be D/2 : if Q = D/2, then Qn is odd, hence a 
n n 

even, and P = (a 12) Q > Q = D/2, leading to a contradiction n n n - n 

as in (A). 

Q cannot be 4 : 
n 

if Q = 4, then 2D/Q is odd, 4 = Q divides n n n 

2Pn_l ' hence 2/Pn_l' so that qn-l is odd, and each term of 

(10) except the last is divisible by 4, which is impossible. 

Th 1 i i ib il i i Q 2 Then (-1) n-l 2 2-e on y rema n ng poss ty s =. = P 
2 n n-l 

Dqn-l (formula (7) of Theorem 10.1), so that (5) or (6) is solvable. Il 

Theorem 12.4. Let nonsquare D he a power (first or higher) of a prime 

of the form 4n+l , or twice a power (first or higher) of a prime of 

the form 8n+s. Then 2 
x - Dl =-1 is solvable. 

Proof: In view of Theorem 12.3, it is sufficient to prove that (5) and 

(6) are not solvable • 

(i) 
., 

Let D = P 

Therefore 

(et:? l, p = 4n+l) . Then D = 1 (mod 4). 
2 2' 

x - Dy = 0-0,0-1, 1-0, or 1-1 (mod 4), 

i.e. 0,1, or 3 (mod 4). But + 2 = 2 (mod 4), therefore (5) and 

(6) are not solvable. 
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(G(? l , p = 8n+5). 2 2 
Then x - Dy = ~2 tmplies 

x
2 ii:!" 2 (mod p) ,therefore (~)= 1 or (-~) = 1. But,recalling the 

values of (~) and (-!) given in Chapter 5, this is impossibe for 

p = 8n + 5. Il 

Corollary: If P 
2 2 

is a prime of the form 4n+l, then x - py = -1 is 

solvable, therefore by Theorem 12.1 the representation of p as the 

sum of two squares can be found by expanding ~p as a simple continued 

fraction. 

have 

For example, let p = 13. From Example 3 after Theorem 10.1, we 

r = 4, (r + 2)/2 = 3, therefore P _ Q2 + p2 
- 4 4 = 

This construction for expressing a prime p = 4n + 1 as the sum of 

two squares is attributed to Legendre (1808) (see [7], Appendix l ). 

The converse of Theorem 12.4 is false. 2 2 For example, x -5.l7y =-1 

and 2 2 x -2.41 y = -1 are solvable, since 

Jas = [ 9, 4, l, l, 4, 18 ] 

and J82 = [9, 18 ] 

have no central terms. 
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CONCLUSION 

It is hoped that the preceding chapters have demonstrated the 

utility and elegance of the theory of continued fractions as a tool 

in approximation theory and the theory of numbers. For although new 

methods have recently been developed in the field of Diophantine 

approximations, continued fractions remain the basic stepping stone, 

while in elementary number the ory they provide one of the very few 

direct methods. 

There are, of course, many topics in this area which the 

present survey has not discussed. For example, continued fractions 

can be used to assist in factoring numbers (see [1] p.266), and no 

mention has been made of the beautiful subject of the geometry of 

numbers, which is closely related to continued fractions. There 

are many directions for further study. Hurwitz's Theorem (Chapter 7) 

is the first of a whole series of related theorems and problems. 

One could explore continued fractions themselves in greater detail by 

referring to such books as Perron [8]. Alternatively, there is the 

extension to analytic continued fractions. 

Finally, there are two challenging problems introduced by the 

material presented in this survey, problems which may provide subjects 

for further research. We have shawn that the length of period of the 

sfmple-continued-fraction expansion of a quadratic irrational does not 

exceed h (h+l) (see Theorem 9.4). However, this bound appears to be 

quite crude. For example, it means that the period of JD is less 
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daa ..... D, wbi.le for D ~ 1000 the 1argest period is 60 

(fiK' D = 91.9 -t D = 991), and .ost periods are much less than 60. 

Yery Uttle see.a bI he ....... about this topie. Seeondly, as 

~ï.. • ia Clapter 12, characterization of those D for whieh 

zZ _ ~Z = -1 is solvable (i.e. those D for wbieh the period 

-
of ....:. is 0IId) is far fraa cOliplete. Tbeorem 12.4 is a fairly 

deep ~, bal: .-e iDl:lusboe resu1ts may be found. 
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