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INTRODUCTION

This thesis arose from the desire of understanding some aspects
of the theory of rings. My principal object was to give a self-contained
and connected account, without pretense to completeness, of the principal
facts about rings which satisfy polynomial identities (in short: P.I.-rings,
cf. Definitionin p.57.)

By now, most of the work presented here is classical. The theory
goes back to 1943 when M.Hall [9, Theorem 6.2], as the result of his
studies on projective planes, discovered that if there is a division ring

D, for which the identity
2 2
(XY-YX) Z - Z(XY-YX) =0

holds, then either D is a field or a generalized quaternion algebra
over its center C. Moreover D is finite dimensional over C. This
result was later extended by Kaplansky [12] to division rings satisfying
any polynomial identity and more generally to primitive algebras with
polynomial identities. Much has been done since then and the names

of Amitsur, Herstein, Kaplansky, Levitzki , Martindale, Posner, Procesi
and Small are familiar in the large literature on this subject. From
this broad amount of literature I have chosen to prove some of those
results which seemed to me most important and representative of the
subject, either for their consequences (cf.Kaplansky's Theorem) or for

the techniques involved in their proofs (cf.Theorem 5.2 and Theorem 7.4).
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The thesis is organized as follows. Chapters I to IV prepare the
tools which are needed for the following chapters, so their character
is utilitarian. Chapters V to VII are devoted to P.1.-rings, and
particularly to prime P.I.-rings. Most of the material included in the
first four chapters, though familiar to the experts, was unknown to
me when I started to work in this project. Therefore, I decided to
include them and tried to give proofs of all relevant results used as
an attempt to make this work as self-contained as possible.

Chapter I contains all properties about primitive and prime rings
which are needed in this thesis.

Chapter II is a short description of the centroid of a ring and its
main properties.

Chapter III is devoted to the study of Goldie rings and related topics.
I have not included there but what I needed for the development of my
work. For this reason many important results on Goldie theory are
missing. They can be found, for example, in Goldie's own paper [ 7 ]
or in Chapter 7 of the beautiful book by Herstein [10].

Chapter IV deals with the embedding of certain non-commutative
rings into a ring of "fractions''. Essentially this is an exercise on
patience but as a mathematics student I thought I had to do it at least
once during my lifetime!

Chapter V introduces us to the heart of the subject: prime P.I.-rings.

Most of the results in this chapter are from the papers by Amitsur [4]
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and Posner [16] although I have adapted them slightly to my purposes
and I have supplied a little more detail to the proofs.

Chapter VI contains what perhaps is the most important result on
P.I.-rings: Kaplansky's Theorem. This theorem says that every
primitive P.I.-ring R is a finite dimensional simple algebra over its
center C(R). The approach I follow was suggested to me by Professor
G.Michler from Tiibingen University during his visit to McGill in the
academic year 1970-1971. The main idea is to prove Kaplansky's
Theorem for division rings (Theorem 6.7) using some new techniques
developped by Martindale [14] and then reduce to this case, the general
one, via Lemma 6.3. I take this opportunity to thank my friend and
fellow student Kenneth Louden for his helpful suggestions on some of the
proofs in this chapter.

Chapter VII, finally, reproduces (with more details) the proof given

recently by Goldie [ 8 ] about the structure of prime P.I.-rings.



CHAPTER I

GENERAL PROPERTIES OF PRIME AND PRIMITIVE RINGS

Unless mentioned otherwise R will always denote an associative
ring not necessarily containing an identity element. By an ideal of R
we mean a two-sided ideal. A proper ideal is one which is different
from R. Following Lambek [13,p.12] for any two additive subgroups
A and B of R we define the residual quotients A."B (read"A over

B'") and B-.A (read'"B under A'") as

A.B={x€R:xBcA]}

1]

and

B-. A

{xeR:BxcA].

A trivial verification shows that both A.-B and B:.A are additive
subgroups of R. Moreover if A and B are both left-ideals of R
then A.'B is an ideal of R because for all x€A.B and for all r¢R
we have

(xr)B =x(rB) cxB cA, and

(rx)B =r(xB) CrAcA.
Similarly if A and B are right-ideals of R, then B:.A is an ideal.
DEFINITION 1.1. A proper ideal P of R 1is called (right, left)

prime if IJSP for (right, left) ideals I and J of R implies that IcP

or JcP.



LEMMA 1.1. If P is a proper ideal of R, then the following statements
are equivalent.

(1) If x,y€R and xRycP, then x€P or yeP.

(2) P 1is right-prime.

(3) P is prime.

(4) P is left-prime.

Proof: (1) 2 (2). Assume (1) and let I and J be right-ideals of R
with IJcP. If 1¢ P, then there exists 0#x€I-P. Therefore (xR)J c1J<P,
hence xRyc<cP for all y in J. Since x¢ P, by (1) we must have y€P
for all y in J. Hence JcP.

(2) = (3). Obvious because every ideal is a right-ideal.

(3) = (4). Let I and J be left-ideals of R such that IJSP. Then
IR and JR are ideals of R and (IRY(JR)=I(RJ)R € (IJ)R <« PR € P,
therefore by (3) IR<P or JRcP. If IRcP, then Ic{x€R:xR cP}
= P.'R and since the ideal P.‘R satisfies (P."R)(P.-R)c{P.-R)RcP,
by (3) we must have P.-RcP, hence 1cP. Similarly, if JRcP, then
J<P. Thus (4) holds.

(4) = (1). Suppose (4) holds and let xRycP withx andy inR.
Then (Rx){(Ry)<P, therefore RxCP or RycP. If RycP, then
yE€{x€R:RxcP} =R*.P. But R'.P is an ideal of R (hence a left-
ideal) satisfying (R*.P)(R*.P)cP, then R'.P c P by (4), hence

y€ P. Similarly RxCP implies x€ P, so (1) holds.



DEFINITION 1.2. R 1is a prime ring if 0 is a prime ideal.

For example, every integral domain is a prime ring.

DEFINITION 1.3. Let S be a non-empty subset of R. The set

.= {x€R:Sx=0} 1is called the right-annihilator of S.

One easily verifies that Sr is a right ideal of R. Similarly the
left-ideal Sﬂ, ={x€R:xS=0} is called the left-annihilator of S.

A right ideal I of R 1is called a right-annihilator ideal if there

exists a subset S of R for which Sr=I.

Let Z denote the ring of integers and for n€Z and x€R write
nx for the sum of n terms equal to x. Given a non-empty set SCR let
(S) denote the subset of R consisting of all finite sums of the type
Zrixi+ Z}nixi where riER, nieZ and xiES. Then (S) is the smallest

left-ideal of R containing S and we call it the left-ideal generated by S.

Observe that (S)r =Sr therefore if 1 is a right-annihilator ideal
of R we may always assume that I=Kr for some left-ideal K of R.

Left-annihilator ideals are defined similarly.

LEMMA 1.2. The following statements are equivalent.
(1) R 1is a prime ring
(2) Ir =0 for every non-zero right-ideal I of R.

(3) JZ:O for every non-zero left-ideal J of R.



Proof: (1) » (2). For every non-zero right-ideal I of R we have

I-Ir=0. Since R 1is prime and I#£0 it follows Ir=0.

(2) = (1). Assume 1J=0 where I and J are right-ideals. Then
either 1=0 or I1#£0. If 1#£0, then JQIr and therefore by (2) J=0.

Thus 0 1is a right-prime ideal, hence a prime ideal.

(1) ® (3). The proof is similar and we omit it.

The following lemma is sometimes useful.
LEMMA 1.3. P is a prime ideal of R if and only if the factor ring,
R/P, is prime.
Proof: For r€R, let r=r+P. Assume that P is a prime ideal
and %(R/P)y=0 in R/P. Then xRycP and therefore x€P or y€EP.
Thus x=0 or }_r=6, hence R/P is a prime ring. Conversely, if R/P
is prime and xRy <P, then x(R/P)y =6; therefore x=0 or §r=6

Thus x€P or y€P and P is a prime ideal.

DEFINITION 1.4. The center of a ring R, denoted by C(R), consists
of all elements c €R such that cx=xc for all x in R.

It is an easy exercise to verify that C(R) is a subring of R.

LEMMA 1.4. The center of a prime ring is an integral domain.
Proof: If xy=0 with x and y in C(R), then xRy=Rxy=0 and

therefore x=0 or y=0 by the primeness of R.



If we consider the non-zero two-sided ideals of a prime ring R

as rings, then the properties of R carry over to them, namely

LEMMA 1.5. If R is a prime ring and P is a non-zero ideal of R,
then P is a prime ring.

Proof: Let xPy=0 with x and y in P. Assume x#0. Then
xP is a non-zero right-ideal of R (otherwise x¢€ Pﬂ, contradicting

our assumption). Then (xP)r =0 by Lemma 1.2, therefore y=0 and

P is a prime ring.

DEFINITION 1.5. The ring R is called semiprime if for any two-

sided ideals I and J of R, 1J=0 implies INJ=0.

COROLLARY 1.6. A prime ring is also semiprime.
Proof: If R is prime and 1J=0 for ideals I and J of R, then

I=0 or J=0, hence INJ=0.

Tater on we will need the following porperty of prime rings.
LEMMA 1.7. If R is a prime ring so is R[X], the ring of poly-
nomials in one commuting indeterminate X over R.

Proof: Assume p(X)R[X]q(X)=0 where p(X) and q(X) are in
R[X]. If both p(X) and q(X) are different from 0, let a and b
denote the leading coefficients of p(X) and g(X) respectively. Since

R<cR[X] we have £(X)=p(X)Rq(X)=0. But the leading coefficient of



the polynomials f(X) is aRb and this is different from 0 because
R is prime and both a and b are different from 0. Therefore we

must have p(X)=0 or q(X)=0. Hence R[X] is prime.

DEFINITION 1.6. A right (left) ideal I of R is called regular
if there exists an element u in R such that x-ux (resp. x-xu)

belongs to I for all x in R.

If R happens to have a unit element e, then x-ex=x-xe=0
for all x in R, therefore every right (left) ideal is regular.

It is clear from Definition 1.6 that every right (left) ideal J
containing a regular right (left) ideal I is itself regular. In parti-
cular, since every right (left) ideal is contained in a maximal one
we see that every regular right (left) ideal is contained in a maximal

regular right (left) ideal.

DEFINITION 1.7. A right R-module A is called irreducible if

AR #0 and A has no submodules other than 0 and itself.

The following result describes all the irreducible right R-modules
of R.
LEMM.A 1.8. A 1is an irreducible right R-module if and only if A
is isomorphic as R-module to R/M for some maximal regular right

ideal M of R.



Proof: Assume A is irreducible and consider the set B =
{a€A:aR=0}. Then B is a submodule of A and since A is irre-
ducible either B=0 or B=A. But AR #0 byDefinition 1.7, so
B=0. Therefore for all acA, a#0 we have aR #0, hence aR=A
because aR is a submodule of A. Fix a non-zero element a€A
and define the map f:R-A by the rule f(x)=ax for all x in R.
Then f is an homomorphism of right-R-modules,moreover f is
surjective because aR=A. Let M=Kerf = {x€R:ax=0}. Itis
well known that M is a right ideal and that A=Imf=R/M. Let I
be a right-ideal of R such that McI and M#1. Then £(I) is a
non-zero submodule of A, therefore must equal A . Since f is sur-
jective we have I= f-lf(l) =f-1(A) =R. Hence M is a maximal right-
ideal. Finally because aR =A there is an element u in R with
au=a. Then for every x in R, aux=ax which implies a(x-ux)=0.
Thus x-ux €M for all xin R, i.e. M is regular,.

Conversely, assume M is a maximal regular right-ideal of R.
We want to show that R/M is an irreducible right-R-module. By
hypothesis, there exists u€R such that x-uxé€M for all x in R.
If (R/M)x=0 with x in R, then RxcM. In particular ux €M, there-
fore x=(x-ux)+ux belongs to M. Thus (R/M)x=0 if and only if
x€M. Since M#R this implies (R/M)R#0. If A is a submodule

of R/M then, one easily verifies that A is of the form I/M for some



right ideal I with McCICR. Since M is maximal we must have
I=M or I=R, therefore A=0 or A=R/M, hence R/M is irre-

ducible.

There are many ways of introducing the concept of primitive
ideals; we follow Lambek's approach [13,p.52] although it should be

noticed that our rings do not necessarily contain a unit element.

DEFINITION 1.6. An ideal P in R is called right (left) primitive
if there is a maximal regular right (left) ideal M such that P is the

largest ideal contained in M.

Observe that if P is the largest ideal contained in a maximal
regular right-ideal M, then P=R-.M={x€R:RxcM}. Indeed R'.M
is an ideal of R contained in M and containing P, hence equal to P.
Thus P is right-primitive if and only if P=R*' .M for some maximal
regular right ideal M of R. Similarly P is left-primitive if and only
if P=N.-R for some maximal regular left ideal N of R.

It follows immediately from Definition 1.8 that every maximal

ideal is a right and left primitive ideal.

DEFINITION 1.9. R is said to be a right (left) primitive ring if 0

is a right (left) primitive ideal.

REMARK. It has been shown by Bergman [6] by constructing a counter-

example that right-primitive does not imply left-primitive.



LEMMA 1.9. P is a right (left) primitive ideal of R if and only if
R/P is a right (left) primitive ring.

Proof. Assume P is right-primitive. Then P=R+* .M for some
maximal regular right ideal M of R. Since M is regular, there
exists u€R such that x-ux€M for all x in R. Then x-ux€M/P
for all x=x+P in R/P, s§ M/P is a right-regular-ideal in R/P.
Moreover M/P is a maximal right ideal because so is M. We
claim that (R/P)-.(M/P)=0 and therefore R/P is right-primitive.
Let x be in (R/P)-.(M/P). Thenfor all r in R, rx=rx+PEM/P
and consequently rx€M. Therefore x€R-.M =P, hence x=0. Thus

our claim is proved.

Conversely, if R/P is a right-primitive ring, then (R/P)‘.(M/P)= 0

for some maximal regular right ideal M/P of R/P and it follows that
M is a maximal regular right ideal of R containing P. Then for all

x in P,Rx cPcM therefore PCR-:.M. To prove the opposite inclusion
let xER*.M thenfor all r in R, rx=rx+PEM/P so (R/P)x c M/P.
Therefore >-<=6-, hence x€P. The proof of Lemma 1.9 is now com-
plete for the case of right-primitive ideals. For left-primitive ideals

the argument is similar and we omit it.

A characterigation of primitive ideals is given by the following
result due to Jacobson. We first recall that if A is a right-R-module,

then AnnR(A) ={x€R:Ax=0} is an ideal of R called the annihilator

of A in R. The right-R-module A is faithful if AnnR(A)=O.
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LEMMA 1.10. Pis a right-primitive ideal of R if and only if there
exists an irreducible right R-module A such that AnnR(A) =P.
Proof. If P is right-primitive, then P=R*.M for some maximal
regular right ideal M of R. Then A =R/M is an irreducible right
R-module by Lemma 1.8, Since PcM we have AP=0, so PCAnnR(A)
and if xeAanR(A) then RxcM, hence x€R*.M=P. Thus AnnR(A)zP.
Conversely, assume that P=AnnR(A) for some irreducible right-
R-module A. By Lemma 1.8 we may assume A=R/M where M is a
maximal regular right ideal. Since AP=0 we have PCM therefore
PcR*.M. Furthermore if x€R*.M, then RxcM, so Ax=0 and

xEAnnR(A) =P. Hence P=R*.M and so is right-primitive.

COROLLARY 1.11. R is a right-primitive ring if and only if there
exists a faithful irreducible right R-module.

Proof. Ois a right-primitive ideal of R is and only if 0 :AnnR(A)
for some irreducible right R-module Aji.e. if and only if A is faithful

and irreducible.

The next result shows that in a ring R the class of right primitive
ideals is smaller than the class of prime ideals.
LEMMA 1.12. If P is a right primitive ideal of R then P is prime.
Proof. By hypothesis and Lemma 1.10 we have P=AnnR(A) for

some irreducible right-R-module A. Assume xRycP for x and y



11

in R. If x¢P, then Ax#0 and therefore ax#0 for some non-zero
element a in A. Since A is irreducible we have (ax)R =A there-

fore
Ay = (ax)Ry = a(xRy) = 0.

Then y€P, hence P is prime.

DEFINITION 1.10. The Jacobson radical of a ring R, denoted by

Rad(R), is the intersection of all its right-primitive ideals. R is

called semi-primitive if Rad(R)=0. If R has no right-primitive

ideals, we write Rad(R)=R and call R a radical ring.

REMARK. Being the intersection of ideals Rad(R) is itself an ideal
of R. Strictly speaking, we should call Rad(R) the right-Jacobson
radical but we should see later that the intersection of all left-primitive

ideals of R coincides with Rad(R).

DEFINITION 1.11. An element x€R 1is called right-quasi-regular

if there exists x’ €R such that x+x'4+xx'=0. If this is the case x’

is called a right-quasi-inverse of x.

A right ideal I of R is said to be right-quasi-regular if all its

elements have a right-quasi-inverse.

The definition of Rad(R) does not tell us much about the nature

of its elements. This is essentially the content of the following
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THEOREM 1.13.
(i) Rad(R) is the intersection of all the maximal regular right ideals

of R.

(i1) Rad(R) contains all the right-quasi-regular right-ideals of R

(i.e. Rad(R) is the largest right-quasi-regular right-ideal of R).
Proof. (i) By definition Rad(R)=NP where P runs over all the
right-primitive ideals of R. Then by the observation made after
Definition 1.8, Rad(R)=N(R'.M) as M runs over all the n aximal
regular-right-ideals of R, therefore since R*.MCM we get Rad(R)
C M. To prove the reverse inclusion let M* =M and for each
xGM* define IX ={xy+y :y€R}. Then IX is a right-ideal of R,
furthermore taking u=-x in Definition 1.6 we see that Ix is regular.
i3 IX#R, then Ix is contained in a maximal regular-right-ideal Mx
of R. Since XEM*CMX for ally in R we have xyEMX, therefore
y =(xy+y)-xy belongs to MX. Thus MX=R which is a contradiction.
Therefore we must have IX =R which in particular implies the existence
of an element x’ in R with xx'+x’=-x. Then x+x'+xx’'=0. Hence
every element in M'*‘ is right-quasi-regular.

Next, if M* £Rad(R), then since Rad(R)CM* there must exist a
non-zero element X € M* and a maximal regular-right-ideal M of R
such that %, does not belong to the right-primitive ideal R: .M. Then
(R/M)xo £0, so (R/M)M>:< #0 hence I‘M* #0 for some r =r+M with

r €R-M. Since EM* is a non-zero submodule of R/M and R/M is
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irreducible (Lemma 1.8) we deduce M =R/M. This implies the

£ - b
existence of %y in M satisfying rX, =T, But since XIEM it

4

has a right-quasi-inverse %

therefore

= r(x, +x,'+x

n .= ce 1. ’
1 1 1xl)--rx +rx_ ‘4rx. x

1 1 11

= 3+(§+£x1)x1' =-r.

Thus -r €M which is a contradiction. Hence we must have Mﬂz =Rad(R).
This shows that Rad(R) is right-quasi-regular and also proves (i); it
remains to show that Rad(R) contains all right-quasi-regular right-ideals

of R. The proof is exactly the same as the one given above to show that

£
M c Rad(R) so we omit it.

As it was pointed out after Definition 1.10 one can introduce the
concept of left-radical of R as the intersection of all its left-primitive
ideals but fortunately this intersection coincides with Rad(R). Indeed
we have the following
THEOREM 1.14.

(1) Rad(R)=NP" as P’ runs over all the left-primitive ideals of R.
(2) Rad(R)=nNM’ as M’ runs over all the maximal regular left ideals
of R.

(3) Rad(R) contains all the left-quasi-regular left-ideals of R.



14

Proof. Let J=NP' as P’ runs over all the left-primitive-ideals
of R. Using the left analogue of Definition 1.11 and Theorem 1.13
one shows that (2) and (3) hold with J instead of Rad(R). To prove
that J=Rad(R) we show that Rad(R) is a left-quasi-regular ideal
of R, hence Rad(R)<J, and similarly that J is a right-quasi-regular
ideal of R therefore JcRad(R).

Let x€Rad(R) and let x’ be its right-quasi-inverse. Then
x'=x-xx’ and since x€Rad(R) so does x’. Therefore there exists
x"€R satisfying x’+x"+x'x”=0. Then

(%' +x+xx")x" = 0 = x(x'+x"+x'x")

this implies that x'x"=xx'. From

b xtxx! =0 =x"+x"+x'x"

we deduce then that x=x". Thus x+x’+x'x=0 which says that x is
left-quasi-regular. Hence Rad(R)cJ. The other inclusion is proved

in the same way.

The Jacobson radical has another important property, namely
LEMMA 1.15. The factor ring R/Rad(R) is semiprimitive.
Proof.  Let J=Rad(R). We must prove that Rad(R/J)=0. The
right-primitive-ideals of R/J are of the form P/J where P is a
right-primitive-ideal of R. Indeed any ideal of R/J is of the type
1/J where I is an ideal of R containing J. If P/J is right-primitive,

then P/J is the largest ideal contained in some maximal regular-right
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ideal M/J of R/J. By the standard argument already used in the
proof of Lemma 1.9, we conclude that M is a maximal regular-right-
ideal containing P. Moreover P is the largest ideal contained in
M because otherwise we could put an ideal between P/J and M/J

which is impossible. Thus P is right-primitive. Therefore
Rad(R/J) = N(P/J)

as P runs over all right-primitive ideals of R. Then ;<=x+J€Rad(R/J)

if and only if x€ P for all P, i.e. if and only if x€J. Hence

Rad(R/J) = 0.
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CHAPTER 1I

THE CENTROID OF R

Following Herstein [10,p.46] and for the purposes of this chapter,
it is convenient to write homomorphisms on the right side of their ar-
guments and we do so.

. . + . - + S+

Given a ring R, let R be its additive group and E(R)=Hom(R ,R )

the ring of endomorphisms of R+. For r and s in R define the maps
ot.ot ot +
)\r,R >R and ps.R - R

by the rules (x))\r =rx and (x)ps =xs respectively for all x in R. The

maps >‘r and p, are called respectively left-multiplication by r and

right-multiplication by s.

It follows from the distributive law in R that )\r and ps belong to
E(R) for all r and s in R. Denote by B(R) the subring of E(R)
generated by all the )\r and Py for r and s in R. The ring B(R) is

called the multiplication ring of R. Under the mapping RXB(R)->R

defined by sending (x, §) €ERxB(R) into the image (x)8 of x under B,
it is easy to verify that R becomes a B(R)-module.

If M is a B(P.)-submodule of R, then x8€M for all S€B(R) and
for all x€M. In particular x)Lr =rx and xpr =xr are in M for all

x €M andfor all ré€R. Thus M is a two-sided ideal of R. Conversely



17

if M is a two-sided ideal of R, then M is a B(R)-submodule of R.
Recalling that a ring R having no proper ideals other than 0 is said

to be simple the above observation establishes the following

LEMMA 2.1. R is an irreducible B(R)-module if and only if R is

a simple ring.

DEFINITION 2.1. The centroid of R (denoted by Q(R)) is the ring

of endomorphisms of R considered as a B(R)-module, i.e. Q(R) =

H )(R,R).

om, R

The following result characterizes (R)
LEMMA 2.2. Q(R) is the set of all elements in E(R) which commute
elementwise with B(R).
Proof. Let w€(R). Since B =B(R) is generated by all the )‘r and
Py for r and s in R, it suffices to show that w)\r =)\rw and wps =

p w- Let x€R, then
x(wh ) = (W = (A Jw

because wGHomB(R, R), therefore x(w)\r) =x()\rw) and since this holds
for all x in R we get w)\r =)grw. Similarly wps=psw for all s in R.

Conversely, assume that w € E(R) commutes with every element

BEB. Then for all x in R

(xw)B=x(wp) =x(Bw) = (xBw

therefore wis a B(R)-endomorphism of R, hence w€ Q(R).
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COROLLARY 2.3. we€f(R) if and only if

(xy)w = (xw)y = x(yw)

for 21l x,y in R.

Proof. I weQ(R) and x,y are in R, then

(xy)w = (yA Jw = y(kxw) =ylwr) = (yw)kx =x(ymw)
and

(xy)w = (Xpy)w = X(pyw) =X(wpy) = (xw)pY = (xw)y -
Conversely, if the condition holds,then w}\r =>\rw and wpg =p W

for all r and s in R, hence WEN(R) by Lemma 2.2.

LEMMA 2.4, If R2=R, then (R) is commutative.

Proof. Assume that ( and ¢ are in (R). For any x and y in

R we have
(xy)(wo) = ((xy)w)o = ((xw)y)o = (YAxw)c
= (yc)kxw = (yo)xw).

By Corollary 2.3 we have

(zw)(yo) = (x(yo))w = ((xy)o)w = (xy) (ow)

therefore (xy)(wo)=(xy)(gw) for all x,y€eR and for all w,c € Q(R).
Since by hypothesis, every r €R can be expressed as a finite sum

Exiyi with X, and A in R we have
i
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(rN{wo) = (; Xiyi)(wc) = ?(xiyi)(wo)
1 1

= Y = =
T (x,y,)ow) = (T %y,)ow= (r)ow).
i i
This holding for all r in R, we conclude wg=0w hence (R) is

commutative.

Before proving our next result about Q(R), for the case in which

R is a simple ring, we need the following well known lemma due to

Schur and the definition of an algebra.

LEMMA 2.5, If A 1is an irreducible R-module, then HomR(A,A),

the ring of R-endomorphisms of A, is a division ring.

Proof. Let fEHomR(A,A) and assume f#0. Since A is irreducible,
f(A)=A and Kerf={a€A:(a)f=0}=0. Thus f is an automorphism

of A, therefore f_l, the inverse automorphism of f, exists and belongs

to HomR(A,A). Since ff-l =e where e is the identity automorphism

of A the proof of Schur's Lemma is complete.

DEFINITION 2.2. Let R be a commutative ring. An algebra over R

(or R-algebra) is a pair (A, ) where A is an R-module and q:AxA~A
is a bilinear mapping; i.e. a mapping satisfying

a(xa+yb, c) = xafa, c) +yalb, c)

and

afa, xb+yc) = xe(a, b) +yafa, c)
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for all %,y in R and for all a,b,c in R.

A homeomorphism of R-algebras (A,a)(B, ) is 2 homeomorphism

f:A->B of R-modules with the additional property:

f(a(a,a’)) = Bli(a),f(a"))

for all a,a’ in A.

(A, ) is called an associative R-algebra if

a(al,a(az, a3)) = a(a(al,az), a3)

for all ajsay, 2, in A.

By abuse of language, one often speaks of the ""R-algebra A"
instead of the "R-algebra (A,q)'". Furthermore, in order to simplify
the notation, it is customary to write the law of composition o as
mulitplication, i.e. @(a,b)=ab, for all a,b in A.

It is easy to verify that relative to this multiplication A is a ring

and from the bilinearity of the map ¢ it follows that the ring structure

and the R-module structure of A are linked by the rule
x(ab) = (xa)b = a(xb)

for all x in R and for all a2 and b in A.
If the multiplication in A has a unit element e then Re is contained
in the center of A, because for all x in R and for all a in A we have

(xe)a = x(ea) = x(ae) = a(xe).
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A gubset S of A is called a sub-algebra of A if S is a submodule

of A and S is a subring of A. Similarly I is anideal of A if I is
an ideal of the ring structure of A and Iis a submodule of A. With
these definitions in mind, it is then clear what do we mean when we
talk about algebra ideals, algebra homomorphisms, simple algebras,
etc. One can define, for example, the radical of A as an algebra in
a similar way as we did for rings in Chapter I. Fortunately the
radical of A as an algebra coincides with the radical of A as a ring.
We do not need this result in what follows so we mention it only, and

refer to Herstein's book [10,p.15] for a proof of it.

THEOREM 2.6. If R is a simple ring, then
(1) Q(R) is a field,
(ii) R is an algebra over (R),
(ii1) if C(R)#0, then C(R)=Q(R).
Proof. By Lemma 2.1 to say that R is simple is equivalent to
saying that R is an irreducible B(R)-module, therefore {Q{R) is a
division ring by Schur's Lemma. Since R simple, R2 =R, hence (R)
is commutative by Lemma 2.4. Thus Q(R) is a field.
By mapping (x, w) into x for all x in R and  in Q(R), it is
obvious that R becomes an {(R)-module. Moreover, by Corollary 2.3
A(xy)w = (xw)y =x(yw) so R is an algebra over Q(R). Thus a simple ring

is a simple algebra over its centroid.
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Next assume that C(R)#0 and 0#c€C(R). Then cR=Rc is a
non-zero ideal of R therefore coincides with R. Then for all x in R
there is an element x’ in R such that cx’=x'c =x. In particular there

isa c’eéR with cc’=c’c=c. Then for all x in R

n
0
x\
n
w

c/(ex’) = (c'e)x’

0
ol
1

and

I
N\
0
il
n

xc! = (x'c)e’ = %/ (cc’)

thus c’x=xc’=x. If e is any other element with this property, then
y

1 4 . o
e=ec’=c’e=c’, hence R has a unique unit element e.

From the definition of C(R) it follows that
(xy)c = x(yc) = x(cy) = (xc)y

for all x,y€R and for all c€C(R), therefare C(R) € Q(R).

Conversely, let w€Q(R), then since R has a unit element e we

have for all x in R

1

XWw = (xe)w = (ekx)w = (eu.a)kX X(ew)

and similarly

xw = (ex)w = (epx)w = (e(.u)pX (ew)x.

Thus =xw = x(ew) = (ew)x for all x€R, hence ew€ C(R). Moreover

since

0 = xw-x(ew) = x(w-ew)
for all x in R, we get R(w-ew)=0.

Being a field, Q(R) is simple and since R is an algebra over Q(R)



23

we get (-ew€ Ann Therefore w=ew € C(R), thus Q(R)<=C(R).

Q(R)(R) =0.

This completes the proof of Theorem 2.6.
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CHAPTER II1

GOLDIE RINGS

In this chapter we prove a classical result by Utumi (Theorem 3.6)
and introduce the concept of Goldie ring which is fundamental for the

development of later chapters. We Begin with a

DEFINITION 3.1. A right ideal I of R is called essential (or large)

if INT#0 for every non-zero right ideal J of R.

LEMMA 3.1. Let R be an arbitrary ring.

() If I and J are essential right ideals of R so is INJ.

(b) If I is an essential right ideal of R so is every right ideal of R
containing J .

(c) If I is an essential right ideal of R, then for all xin R

x—ll = {ye€R:xy€l}

is an essential right ideal of R.
Proof. (a) Let K be a non-zero right ideal of R. If (INJ)NK =0,
then IN(JNK)=0, therefore JNK =0 because I is essential and hence
K=0 because J is also essential. This contradicts the assumption
K#0. Thus (INJ)NK#0 for every non-zero right ideal K.

(b) Trivial.

(c) Let J be a non-zero right ideal of R and x any element in R.

Then we consider two cases.
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(i) xJ=0¢€I;i.e. JCx-ll, therefore x-llﬂJ=J#O.

(i1) xJ#0. Since xJ is a right ideal and I is essential, we have
INxJ#£0, i.e. there exists a non-zero y in J such that xy€I. Hence
O#y ex"lmJ.

(i) and (ii) imply x_ll is essential.

The concept of essential right ideal as well as the following definition
and lemma are due to R.E.Johnson. We remark that for the set {x}

consisting of a single element x€R we write (x)r for the right-annihilator

of {x}.

LEMMA 3.2. For a ring R the set

Zr(R) = {x€R: (x)r is essential}

is a two-sided ideal of R and is called the right-singular ideal of R.

Proof. For all x and vy in Zr(R) we have (x)r ﬂ(y)r c (x:i:y‘)r therefore
(x:i:y)r is essential and hence x+ty EZr(R).

For alla in R and x in Zr(R) we have
(1) (x)r = (ax)r because (ax)(x)r=a.[x(x)r] =a-0=0 therefore (ax)r

is essential, hence axEZr(R).

(i1) a “(x) < (xa) , because
) = [ ) ] ) =
(xa).a (x) =x[a-a (x cx(x 0

then (xa)r is essential (by Lemma 3.1 (b) and (c)), hence xaé€ Zr(R)'

Thus Zr(R) is an ideal of R.
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Let 8 be a set of right ideals of R. We say that R satisfies the

ascending chain condition on § if for each ascending sequence

I.cl c...cl €1 c... Ijes

there exists k such that Ij =Ik for all. j=k.

For the special case in which 8 consists of all right ideals of R

we say that R is right Noetherian if it satisfies the ascending chain

condition on 8.

LEMMA 3.3. R satisfies the ascending chain condition on a set §
of right ideals if and only if every non-empty subset of § has a
maximal element.
Proof. Assume R satisfies the ascending chain condition on the
set 8§ of right ideals. Let G be any non-empty subset of § and
suppose G has no maximal element. Take any I1 €Q; since I. is not
a maximal element of G, there exists an ideal I2 €0 such that Il ‘fzf- IZ'
By repeating this argument we construct an infinite ascending sequence
L % L ;CE I, ;—6—- ... ofideals in § contrary to our assumption. Hence
G must have a maximal element.

Conversely, if every non-empty subset of § has a maximal element
and if IICI C... is any ascending sequence with IJ. €8 (j=1,2,...),

2

then the set G = {Il, IZ’ ...} has a maximal element Ik' From
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and the maximality of I, we deduce I,=I for all j=k.

IkCIk+1C.. . K 57

Thus R satisfies the ascending chain condition on §.

REMARK. In view of the previous lemma, the ascending chain con- '

dition on 8§ is also referred to as the maximum condition on §.

By considering sequences of the type

= .
I1 122132. QInQ

one defines in a similar fashion as above the concept of descending

chain condition on a set § of right ideals of R. We state without

proof the analogue of Lemma 3.3 for future reference.

LEMMA 3.4. R satisfies the descending chain condition on a set 8
of right ideals if and only if every non-empty subset of § has a minimal

element, (i.e. if and only if R satisfies the minimum condition on §).

R is saidto be right-Artinian if it satisfies the minimum condition

on the set of all right ideals.

DEFINITION 3.2. An element x in R is said to be nilpotent if there
exists a positive integer n such that x"=0.

A (right, left) ideal I is said to be nilpotent if there exists a positive
integer n such that 1"=0 and I is called a nil (right, left) ideal if every

element in I is nilpotent.
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In 1.5 we introduced the concept of semi-prime rings. It turns
out that such rings have no nilpotent ideals different from 0 and that
the intersection of all their prime ideals is zero . In order to prove
this we would have to introduce the concepts of prime radical and
strongly nilpotent elements. Since we will not be using these ideas
in what follows we prefer to prove only part of these results and refer

to Lambek's book [13, Proposition 2,p.56] for the complete proof of

them.

LEMMA 3.5, I R is a semiprime ring, then 0 is the only nilpotent
(right, left) ideal.
Proof. Let I be a nilpotent right ideal of R. Then 1"=0 for some
positive integer n, therefore the ideal RI is nilpotent because
(RI)n<;RIn =0. Let k be the least positive integer for which (RI)k =0.

. . o k k-1 k-
Since R 1is semiprime and 0=(RI) =(RI)(RI) we have 0= (RI)N(RI)

-1

(RI)k and this is impossible unless R1=0. If this is the case, then

IQRr. But Rr-Rr=0 so Rr =0 because R is semiprime. Hence 1=0.

Far nilpotent (left) ideals, the proof is similar.

The following theorem due to Utumi will be of use later.
THEOREM 3.6. If R is a semiprime ring which satisfies the maximum

condition on right-annihilators, then R has no non-zero nil (right, left)

ideals.

1
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Proof. Let I be a non-zero nil right-ideal of R and let §= {(x)r: 0#x€l}.

Since I is nil for every non-zero element x in I, there exists a positive

K(x) k(x)-

integer k(x) such that x =0 and x #0. This simple remark

implies that every (x)r €S8 is different from zero. Since I1#0, the set §

is non-empty therefore by hypothesis § has a maximal element (XO)r
-1

. _ . m
We observe that k(xo) =2. Indeed if k(xo) =m>2, then since (XO)r g(x0 )r

. m-1 . . (. m-1
and since 0 #xo €1, the maximality of (xo)r forces (xo)r = (x0 )r .
m-1 m . m-1, _
Then from (x0 )x0 =x = 0 it follows X, € (xo )r —(xo)r hence
cw &2
X, xo —xo =0.

We claim that X, V%, =0 for ally in R. We may assume that yé(xo)r

otherwise the result is trivial. Since the non-zero element %,y isin I

we have (xoy)r1 =0 and (xoy)n— ! #£0 where n= k(xoy) . Now (xoy)n— 1xo =0
. n n-1 n-1
because otherwise from 0= (xoy) = ((xoy) xo)y we deduce y € ((xoy) XO)r

2 (XO)r ,hence by the maximality of (XO)r in 8§, this last inclusion is an

1

equality, then vE€ (XO)r contradicting our assumption. Then (xoy)n— X,

=0

therefore xoyx0=0 if n=2. If n>2, then from

n-1 n-2
0= (xy)" = ()™ T2 )yx,

n-2 n-2
and the fact that 0# (xoy) X, €l we get vX, € ((xoy) XO)r 2 (xo)

.

Again using the maximality of (xo)r we conclude that VX, €(x hence

O)r

xyx, = 0. The proof of our claim is now complete, and since it holds

for all y in R we obtain in particular that XORZXO =0 and hence

(RXOR)(RXOR) =0. Thus RxOR is a nilpotent ideal of the semiprime ring R,
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therefore Rx R =0, hence Rx,c€R . Since R ‘R =0 using Lemma 3.5

0 0 2 J
again we conclude that Rz =0. Therefore Rxo =0 so xo ERr and since
R is semiprime Rr =0 forcing Xy = 0. This contradicts the definition of

8 and therefore contradicts the hypothesis that I was a non-zero nil
right-ideal. Hence 0 is the only nil right-ideal of R.
Next let J be a nil left-ideal. Then for all y in J the left-ideal
Ry is nil and therefore for all x in R there is a positive integer t=t(x)
e t . t+1 t .
satisfying (xv)=0. This implies (yx) =y(xy) x=0. Thus yR 1is a
nil right-ideal of R so by the first part of the proof yR=0. Then

YERE =0, therefore y=0. Since y was any element in J we conclude

J=0 which completes the proof of Utumi's Theorem.

Rings without non-zero nil ideals have the property that their ring
of polynomials in one commuting indeterminate are semiprimitive. This
result is due to Amitsur and we follow below his original proof, given
in [2]. One other type of proof can be found in Herstein's book [10,

pp.150-1527. As usual R[X] stands for the ring of polynomials over

R in one commuting indeterminate X.
LEMMA 3.7. Let I be a non-zero ideal of R[X] and let

n
p(X)—a.o+a1X+...+anX s (ajER, a.n#O)

be a non-zero polynomial in I having minimal degree. If there exists

b €R satisfying a':b=0 for some positive integer pu, then a:-lp(X)b=0.
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Proof. Since I is an ideal of R[X] and p(X)€I so does q(X) =
p-1 . . n . . 7
a p(X)b. But the coefficient of X~ in q(X) is a b =0 therefore

the minimality of the degree of p(X) implies ¢g(X)=0.

COROLIARY 3.8. Let I be a non-zero ideal in R[{X] and p(X) =
a0+a1X+. . .+aan, (a.n #0) a polynomial of minimal degree contained
in I. If there exists r(X) in R[X] such that anur(X) =0 for some

positive integer pu, then anxp(X)r(X) =0 for every integer A2p-1.

m .
Proof. Let »(X)= X b.XJ, b.€R. Since a ur(X)=0 for some

j=0 i
positive integer , we have an“bj =0 for j=0,1,...,m. Then Lemma

3.7 implies an“'- 1p(X)bj =0 and hence a.nkp(X)r(X) =0 for every integer

)\zy,—l.

NOTATION. As pointed out in Chapter I our rings do not necessarily

have a unit element therefore in general X does not belong to R[X]. If

£(X) =b0+b 1X+. .. +ann we will use the notation (X)X for the poly-
n+1 2 n+l

nomial b X+b X2+. ..+b X . Similarly Xt(X)=Xb, +X b +...+X b_.
0 1 n 0 1 n

We can now prove Amitsur's
THEOREM 3.9. If R is a ring having no non-zero nil ideals, then
R[X] is semiprimitive.
Proof. Assume that J=Rad(R[X]) is not zero and let n be the
minimal degree of the non-zero polynomials in J. Let L be the set

consisting of 0 and the leading coefficients of all the polynomials in J
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having degree n. Then L is a non-zero ideal of R. If we can show that
L, is nil, then by hypothesis L.=0 which is a contradiction. With this
in mind, let 0#a€L. By definition of L there exists a polynomial
p(X)=a . +a X+, . .+a X" in J with a_=a. InR[X] we have a X =Xa

0 1 n n n n
therefore since J is an ideal p(X)€ J implies p(X)XaneJ. By

Propositions 1.13 and 1.14 there exists q(X)€R[X] satisfying

1]
o

p(X)Xa_+q(X)+p(X)Xa q(X) (1)

and

1
o

p(X)Xa +q(X)+q(X)p(X)Xa (2)

From (1) we get q(X)=Xt(X) where t(X)= -p(X)Xa.nq(X)—p(X)Xan
belongs to R[X].

Let s(X) =p(X)an.If s{X)=0, then anz =0, hence a =a is nilpotent
as required to prove. If s(X)#0, then since s(X) belongs to J and
has degree at most n its degree must be equal to n because of the

2
minimality of n. Therefore a.n #0. From (1) we deduce

X8 (X)4Xt(X) X2 5 (X)t(X) = 0
therefore

s(X)H(X)+Xs(X)t(X) = 0 (3)
since in R[X] we have Xr(X)=0 if and only if r(X)=0. By a similar
reasoning (2) implies

s(X)H(X)+Xt(X)s(X) =0 . (4)
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Suppose now that for every positive integer u is an”'t(X) £0.
We will derive a contradiction. Let py be the minimal degree of
the polynomials an“t(X) where u ranges over the positive integers.
Express t(X) as

v+l

£(X) =t (X)+X tZ(X) (5)

= 4
where tl(X) —bo+b1X+. . .+va .

From the definition of vy we deduce that anp’bv#o for every pu
and anth(X) =0 for some fixed positive integer 7. Since s(X) is
a polynomial of minimal degree in J by Corollary 3.8 we have
a Hs(X)t,(X)=0 for all p=zp-1. Substitution of (5) into (3) and left-

2
multiplication by a m yields

0=a 217[s(X)+tl(X)+XV+ltZ(X)+Xs(-X)(tl(X)+XU+1t2(X))]
= 2 2Tox)+a 2T (X)+a 2Txs(X)t, (X) (6)
n n 1 n 1

Since the polynomial (6) is zero all its coefficients must vanish. In

n+p+1

2742
particular the coefficient of X which is a e b must be 0,

14

contradicting our previous remark that an“bvaéo for all u. There-
fore the assumption that anut(X) #0 for all y is false. Thus
anAt(X) =0 for some integer )\ >0. Multiplying (4) on the left by anh

we obtain

A

0= anks(XHan t(X)+Xanxt(X)s(X) = an)‘s(X)
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A2

therefore a =0 and therefore a=a is nilpotent as required to

prove.

REMARK. The argument in the proof of Amitsur's Theorem shows
that if 0#£a €R NRad(R[X]), then a is nilpotent because in this case

the minimal degree of the non-zero elements in Rad(R[X]) is n=0.

DEFINITION 3.3. The ring R is right-finite dimensional if R has

no infinite direct sum of non-zero right-ideals.

It can be shown that if R is rightfinite dimensional, then there
exists a positive integer n such that R contains a direct sum of n
summands and the number of summands of every direct sum of R is

at most n. This unique number n is called the right Goldie dimension

of R and is denoted hy dimR.

DEFINITION 3.4. R is said to be a right-Goldie ring if

(1) R is right-finite dimensional, and
(2) R satisfies the maximum condition on right-annihilators.

Left Goldie rings are defined similarly.

For example, every right Noetherian ring R is a right Goldie ring,
because R certainly satisfies the maximum condition on right—anrﬁhilators
and it has no infinite direct sum since for any ideals I, the ascending

chain L gll+12 911+12+13 S ... must stop.
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A generalization of Fitting's Lemma (cf.Lambek [13,p.23]) is

given by the following result due to Lesieur-Croisot.

LEMMA 3.10. If R is a right Goldie ring, then for every x¢R there
exists a positive integer n=n(x) such that

. n n . .

(i) I=x R+(x )r is a direct sum, and

(ii) I is an essential right ideal.
Proof. For x=0 the assertion is clear because 0r =R. If x#0,

then by the maximum condition for right-annihilator ideals there exists

a positive integer n=n(x) such that (xn)r = (xzn)r . If ye <"RN (xn)r,

then y=xnt for some t€R and since y¢& (xn)r we have 0 =xny=xn(xnt) =

2
xznt. Thus t€(x n)r =(xn)r hence y=xnt=0. Therefore (i) holds and

we write I=an®(xn)r to indicate that the sum is direct. Next let J be
a right-ideal of R. We prove that I is essential by showing that JN1=0
implies J=0.

If JNI=0 and J#0, then
n 2n
J&x Jobx Jb... (1)

k
is a direct sum of right-ideals of R and x n#O for all positive integers k.

Indeed, if xkn=0 for some k, then xknJ =0 so Jg(xkn)r=(xn)r. There-

fore J=7TN (xn)r €JNI=0, so J=0 contradicting our assumption. Hence

an# 0 for all k. Now if (l) is not a direct sum, then there exists a non-

trivial representation
k n k. n k n
1 2 t . .
0=x y1+x y2+. cotx Y, with y; in J,
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O<k1<k2<...<k,c and x yi#O.

Then K n

O0=x (y1+xnz) with =z in R.

Therefore
k.n
"2 ¢ (x " ). =(x)
Yl +x 2z r .

hence Yl = -xnz+(y1+xnz) belongs to I. But INJ =0, therefore v = 0,

k. n
hence x Yy =0 which contradicts our hypothesis.

Then (1) is a direct sum contradicting the finite dimensionality of R. |
Therefore we must have J=0 and the proof of Lesieur-Croisot's Lemma

is then complete.

COROLLARY 3.11. 1If R is a right-Goldie ring, then Zr(R) is a nil ideal.

Proof. From Lesieur-Croisot!'s Lemma, for each z € Zr(R) there exists

a positive integer n=n(z) such that the sum an+(zn)r is direct. Since

n . e s n . . n n

z EZr(R) according to Definition 3.2, (z )r is essential. But z RN(z )r=0
n+l

therefore an =0. In particular =z =0. Hence every element in Zr(R)

is nilpotent.

COROLLARY 3.12. If R is a semiprime right Goldie ring then Zr(R) =0.

Proof. By Corollary 3.11 Zr(R) is nil and by Theorem 3.6 it must be

equal to O.

DEFINITION 3.4. An element x€R is said to be right-regular if (x)r =0

and left-regular if (X)JZ, =0.
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If x is both right and left regular we say that x is regular.

LEMMA 3.13. If R is a right Goldie ring and if c€R is right-regular,
then
(i) cR is an essential right-ideal of R
(ii) if R is also semiprime, then c is regular.
Proof. (i) By Lemma 3.10 there is a positive integer n=n(c) such that
n n - . . . . n
I=c RB(c )r is essential. Since c is right-regular (c )r=(c)r=0
n . .
therefore I=c R hence cR is essential because c R ccR.
(ii) If xc =0 then cR S(x)r, therefore (x)r is essential by part (i)

and Lemma 3.1(b). Thus xEZr(R). Since R is semiprime Zr(R) =0

by Corollary 3.12. Then c is also left-regular and hence regular.

The above lemima and the next are crucial in the theory of semiprime
Goldie rings (cf.[7, Theorem 3.9]). They give a relatim between regular
elements and essential right-ideals and guarantee that if R is a semiprime

Goldie ring,then the set of regular elements of R is non-empty.

LEMMA 3.14. If R is a semiprime right-Goldie ring, then every essential
right ideal I of R contains a regular element.

Proof. Suppose I has no regular elements. We will derive a contradiction.
By Lemma 3.13 I does not contain any right-regular element and by Theo-
rem 3.6 I is not nil. The set $§= {(x)r: 0#x €1} has a maximal element

say (al)r. Since a

] is not right-regular (a;)_ #0 therefore (al)rﬁl;é 0
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2
)

because 1 is essential. Mareover (al)rC—:(a 1 e

1 )r implies (al)r =(a
by the maximality of (al)r in 8.

Suppose now that there exist k-1 elements aiEI such that

2 .
(A) (aj)r—(aj )r for j=1,2,...,k-1
(B) ajeljalzl ﬂ(a.l)rﬂ...ﬁ.(aj_l)r for j=1,2,...,k-1
(C) Ik_l#O
k-1
(D) Sk-l =i?l aiR is a direct sum.,

Then by (C) and the maximum condition on right annihilators, there exists

2

a non-zero element 2, elk-l such that (ak)r = (ak )r' We claim that the
sum S, =S +a, R is direct. Let x. €R, i=1,2,...,k be such that
k k-1 'k i

alx1+a2x2+. . .+a.kxk =0 (1)

Left multiplication by a; and the fact that aj € (a.l)r for j=2,...,k
2 2

yvields a; %, =0. Thus xle(a.1 )r hence a1x1=0 by (A). Therefore (1)
becomes

a2x2+. . .+akxk =0 (2)
Repeating the above argument left-multiplication of (2) by a, yields

a,%, =0. After k-1 steps of this type we see that all terms in (1) are

equal to 0, hence Sk is a direct sum.

N
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Next we show that Ik=Ik-l ﬂ(a.k)r £0. If O =Ik=I n [(al)rn...n (ak)r],
then

(al)rﬂ...ﬂ(ak)r=0 (3)
Then a1+a2+. . .+ak= c is a right-regular element in I because if c¢x=0

then 0=a_ x+a_x+.. .+akx ESk and since S, is a direct sum we have

1 2 k

aix=0 for i=1,2, ...,k. Thus XE(ai)k for i=1,2,...,k, hence x=0
by (3). This is a contradiction because I was proved to have no right-
regular elements. Then starting with k-1 elements al, “eo ak—l

satisfying conditions (A), (B), (C) and (D) we ca'.n find another element

ak#aj for j=1,2,...,k-1 such that the elements a,a .,a, still

2' T k
satisfy (A),(B),(C) and (D). Then by induction on k from (D) we deduce

that R contains an infinite direct sum of right-ideals which contradicts

the finite dimensionality of R. The proof of Lemma 3.14 is then completed.

If R is a prime ring and if I is any non-zero two-sided ideal of R,
then JI#0 for every non-zero right-ideal J. Since JIcJNI the above
remark shows that in a prime ring every ideal is essential. Since every

prime ringis semiprime we get the following corollary to Lemma 3. 14.

COROLLARY 3.15. If R is a prime right-Goldie ring then every non-zero

ideal of R contains a regular element.
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CHAPTER IV

ORE'S THEOREM

The construction of the field of rationals from the ring of integers,

as is well-known, can be generalized to any commutative integral domain.

Under certain hypotheses it is also possible to imbed a non-commutative
ring R in a ring.of "fractions' as it was shown first by Ore in a now
classical paper [15]. We discuss Ore's construction below. As usual
R denotes a non-commutative ring which does not necessarily contain a

unit element.

A subset S of R is said to be multiplicatively closed if for all s and t

in S their product st is in S. One example of such a set is given by the

set of all regular elements of R.

DEFINITION 4.1. Let S be a multiplicatively closed subset of R. We

say that R satisfies the left-Ore condition with respect to S if for all

(a,s) in RXS the set SaNRs is non-empty.

NOTE: For the remainder of this chapter and unless mentioned otherwise
S will stand for the set of all regular elements in R and we will always
assume that S#¢. This is certainly the case if R is a semiprime right-

Goldie ring (Lemma 3.15).
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DEFINITION 4.2. A ring QJZ,(R) is said to be a left-quotient ring for R if

(1) Q,(?,(R) has a unit element e

(2) Q,G(R) contains R (or an isomorphic image of R)

(3) s is invertible in QI,(R) for all s in S (i.e. there exists s-leQz(R)

-1 -1
satisfying s s=ss =e)

(4) everyx in Qz(R) can be written as x= s_la where (a,s)€RxS.

1f QI,(R) is a left-quotient ring for R we also say that R is a left-

order in QE(R) .

Next we investigate under which conditions a ring R has a left quo-
tient ring. Extending work of Ore, Asano has proved in [5] that if R
satisfies the left-Ore condition with respect to a multiplicatively closed
subset T of S then R has a left quotient ring. We will prove this below
(Theorem 4.3) for the case T=S. If T#S the proof is essentially the

same with some extra technicalities. Before, we need the following

LEMMA 4.1. If R satisfies the left-Ore condition with respect to S

and if 85 and s, belong to S, then there exist u, and u, in S such that

U.lSl =u252.

Proof. By Ore's condition Ss2 ﬂRs1 # ¢ therefore there exist u, €S

and u, €R such that u,8, =u;s, . Since S is multiplicatively closed

u,s, belongs to S. It remains to show that u, is regular.

(i) If for x€R is xu, =0, then x(uls )= 0 therefore x=0 since

1 1

u.s

181 54,8, is regular.

2°2
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(ii) By Ore's condition applied to (sl,ulsl) €RxS there exists

(2, s) €RxS such that ssl=a(uls ). Then (s-aul)sl=0 therefore

s =au, because s is regular. But then u1y=0 with v in R implies

sy=au1y=0 therefore y=0 since s€S. Thus u, is right-regular.

1
(i) and (ii) imply that w, €S.

" REMARK. From the above proof we extract the following result which

for future reference will be recorded as

LEMMA 4.2. If R satisfies the left-Ore condition with respect to S

and if (u,s) ERxS is such that us€S, then u€S.

We are ready to prove the main result of this section, namely Ore's
THEOREM 4.3. R has a left-quotient ring if and only if R satisfies the
left-Ore condition with respect to S.

Proof. If R has a left quotient ring QZ(R)’ then for all a in R and for

-1
all s in S the element as is in Qz(R) therefore by (4), Definition 4.2,

for some (al, sl) ERxS is as-l =s1_1a1. Multiplying on the left by 84

and on the right by s we obtain s_ae=ea_s, where e is the unit element

1 1
in Qﬁ,(R)° Then s,a=2s. Thus SanNRs#¢. Hence R satisfies the left-
Ore condition with respect to S..

Conversely assume that R satisfies Definition 4.1. We prove the

existence of a left-quetient ring for R by establishing a series of lemmas.

First define a relation ~ in RxS by saying that (a, s)~(a’, s’) if there
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exist u,u’ €R such that us=u's’ €S and ua=u’a’. It is clear from

Lemma 4.2 that u and u’ must then be regular elements.

LEMMA 4.4. ~ is an equivalence relation on RxS.
Proof. Symmetry and reflexivity are obvious. Let (a,s)~(a’,s’)

and (a’,s’)~(a” s”). Then there exist u,u’,v and v’ in S such that

us=u's’'=g€8, vs'=v's"=g'€S

7 I/

ua=u’'a’ and va’=v'a”,

By Lemma 4.1 applied to ¢ and o’ there exist t and t’ in S such that
tg=t’c’. Then tus=tu’s’ =t'vs’ =t'v's”.

! ! 4 : - 1 s
Now tu's’=t'vs’ implies tu’=t’v because s’ is regular, therefore

P n
tua =tu’a’ =t'va’ =t'v’'a’.

Thus there exist tu and t'v’ such that (tu)s=(t'v')s” and (tu)a=(t'v')a”.

" I . “g
Hence (a,s)~(a", s"). Therefore ~ is transitive.
AN

We denote by SR the set of equivalence classes of RxS with respect
-1
to ~ and write s "a for the equivalence class of (a,s)€RxS. In order

to define an addition and multiplication in _R making it into an associative

S

ring we require the following

LEMMA 4.5,

(A) s_la-—-(us)-lua for all s—laE R and ues.

S

(B) TLet a,a ,u,ul,t and tl be in R and s and s, be inS. If

1 1
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(l) va=u_a

171
(2) us =uls1 =g€S
(3) ts =1;1s1 =o'1€S

then taj=t1al .

(Condition (B) is known in the literature as Malcev's property.)
Proof. (A) Since s and us are in S by Lemma 4.1, there exist v and

. . 7 .
v/ in S with vs =v'us, therefore v=v'u because s is regular and then

-1 -
va=v'ua. Thus (a, s)~(ua,us), hence s a-=(us) lua.

-1 -1
1) therefore s a—s1 al.

-1 -
Condition (3) and Lemma 4.2 imply t€S, therefore by (A) s "a=(ts) 1ta..

(B) Conditions (1) and (2) imply (a, s)~(a1, s

- - -1
A similar argument shows that s 1a.1 =(tlsl) lt a_. . Then, (ts) ta =

1 11
- - -1
('cls1 1tla.l, i.e. crl lta=o'l : tlal . Therefore by definition of ~ there

exist u,v€S such that

(i) uo'l =vo,, (i1) uta =vt1a1.

Since ¢, is regular (i) implies u=v hence (ii) entails ta=tja

1 proving

1
Malcev's property.

REMARK. If s 'a and s. ‘a. arein _R then by Lemma 4.2 there

1 1 S
exist u and uy in S such that wus =u1s1=o'€S. Therefore by Lemma 4.5
. -1 -1 -1 -1 -1 _ -1
(%) s a=(us) uwua=¢g ua and s, al—(ulsl) ua =0 ua,.

-1
If we think of s "a as a "fraction' having s as denominator and a as
numerator, (%) tells us that for any two fractions we can find a '""common

denominator'.
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-1

DEFINITION 4.3. If s-la and s -1a are in R we define s_la+s a_ =

1 1 S 1 1

-1
g (uatu al) where u and u1 are elements in S satisfying us =uls =0.

1 1

Notice that u and u' exist because of Lemma 4.1,

LEMMA 4.6. Addition in R is well defined.

S
Proof. (i) Addition is independent of the representatives of the equivalence
-1 -1 . _ _
classes. Indeed let s2 az =s a and vl,v2 €S with vls1 —VZSZ —cl.
Then
-1 -1 -1

s a_+s a, =0 (v,a +v1a,).

1 22

By Lemma 4.1 there existt and t, in S such that t0=t10' i.e.

1 r

tus =‘culsl =tlvls1 =t1v2s2.

Since s-la =s, a, and tus =t1v252 it follows from Malcev's property

that

'cua:tlvza2 (1)

Since sl is regular, tulsl=tlvls1 entails tu.1=t1v1 therefore

tu1al='clvla.1 (2)

Adding (1) and (2) we get

t(ua+u1a1) =t1(v2a2+vla1)

and since also to=tlol we obtain

-1 -1
o (ua+u1a1) = (to) t(ua+u1a1)

-1
(tlcrl) tl(v2a2+vla1)

-1
o, (vya¥via))
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thus

The independence of addition with respect to the representative of the

second summand sl-la1 is proved similarly since addition in R is

commutative.

(ii) Addition is independent of the pair u,u In other words if

1

also u's =u1's1 =, then

-1 _ =1 ’
o (ua+u1a1) =7 (u a+ul al).
Indeed by Lemma 4.1 there exist t and t’ in S with tg=t'T, therefore

_ P Y
tus-—tulsl—tus tu1 s, (3)

‘ince | vth s and s, are regular (3) implies

tu=t'u’ and tu.1 =t’ul' .

Therefore

1__! Y
= d =
tua=t'ua an tulal t \_11a1

Adding these two equalities we get

ol ’
t(ua+u1a1) =t'(u a+u1 al)

therefore since tg=t'T we deduce

a.)

-1 -1
o (ua+u1a1)=(tc) t(ua+u11

/a)

—(+! -1,
=(t'T) "t'(u atu, 1

/a)

_—1 4
=r (u a+u1 1

as required to prove.
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DEFINITION 4.4. If s ‘a and sl'la1 are in (R and if (b, t) ERXS

satisfies ta= bsl, then we define the product s-la*sl- 1a.l by the rule

-1 ,.-1 a -1
s a.-s1 al—(ts) bal..

The existence of the pair (b, t) is guaranteed by the left-Ore conditian

applied to (a, sl) ERXS.

LEMMA 4.7. Maultiplication in SR is well-defined.

Proof. (i) Multiplication is independent of the pair (b, t) and of the class

-1 -1

representative of the first factor. To prove this let s, 'a,=s a and
(b, t') €RxS such that 1:'_an2 = b's1 . We must show that

s 1a*slula1 = sz- laz*sl_lal, i.e. (ts)~ 1ba1 = (t'sz)-lb'a1
By Lemma 4.1 there exist u,u’ €S such that u(ts) =u'(t's2). This and
s-1a= sz~la2 imply (by Malcev's property) that uta =u.'t'a2 . From this
and the relations uta=ubs,6 and u't'az =u'b'sl it follows that ubs =

u'b'sl, therefore ub=u’b’ since sles.Then

('cs)-lba.1 = (uts)-luba1

_ Wi "111
—(utsz) ubal

_ ’ -1 ’
= (t SZ) b a;
as required to prove.

(ii) Multiplication is independent of the class representative of the

1

- -1
second factor. Let 5, az = s1 al, then there exist ul,u2 €S such that

= = = 1 1 243
ulal uzaz and 11151 uZSZ 0. Applying Ore's condition to (a, o) ERxS
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we obtain (bl,tl)ERxS such that ¢t a=blo-, i.e. t a=b1u s =b.u_s

1 1 171 17272°
Therefore
-1, -1 -1 _ -1
s a.~<s1 al—(tls) blulal—(tls) bluza2
and
s a*s -1 =(t s)-lb u_a
2 %271 172%2
hence
s-1 3 -1 =s “a¥s_
a¥s; ‘a, = a a, -

LEMMA 4.8. SR with addition and multiplication defined as above is

an associative ring with identity.

Proof. (A) (SR, +) is an abelian group where 0= s_10 for every s €S
-1 -1

and -s "a=s (-a). Indeed if u,uIES with us=ulsl=o-, then
s_la+sl-10 = o'—l(ua+u10) =(us)_1ua=s_1a

and similarly
s1—10+s-1a = s-la

Also for every ues

s-la+s-l(-a) = (us)-l(ua+u(-a)) = (us)-IO = (us)—luO = s-IO.

To prove the associative law, given si ai in SR for i=1,2,3 we find a

. . . -1 -1 .
"common denominator' g, i.e. we can write s, a.=g a.’ (i=l,2,3)
i i i

with g €S, then since addition is independent of the class representatives,

the associativity in _R follows from the associativity in R.

S

(B) Multiplication is associative. Let si-lai be in R for i=1,2, 3.

S
By Ore's condition applied to (az, 53) €ERxS there exists (a,s)€RxS such

.
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that sa, =as,. This implies that

-1 -1 -1
s a

5% =
> 2 s3 a3 (SSZ) aa3.

Similarly for (a.l, SSZ) €RxS there exists (b,t) €ERxS such that 1:aL1 = bss2
which then gives

-1 -1 -1 -1 -1 -1
i 5 = *® = .
1 al>-(s2 a,%*s, a3) S1. 2y (SSZ) aa, (tsl) ba.a.3

. _ -1 -1 -1 .
Since 1:a.1—bss2 we have 5, a.1>r~s2 az—(tsl) bsa., and since

2
sa., =as,_, we have s -la *s -1 =(ts )-lbas
2~ 2%%3 1 21752 22705, 3

Now apply Ore's condition to (bas,, s3) €RxS to find (bl,tl) E€RxS

3

satisfying tlba.53 =bls3. But since s, is regular this implies tlba=b1.

Thus

-1 -1 -1 -1 -1 -1
E S = k -
(s1 a.lﬁs2 az) S, a, (tsl) bas3 ﬁs3 a3 (tltsl) b1a3

-1 -1
= (tltsl) tlbaxa3 = (tsl) ba.a3

hence

(s, "a. *s -la Vg -1 =s _la *(s -la *g -la )
1 21752 ®2)7P3 23T 5 & '

(C) Distributive law. Since for every pair of elements in SR there

exists a '""common denominator' it suffices to prove

-1 -1 -1 -1 -1 -1 -1
1 % E 3
(i) S ar‘(sl b+sl c) 1 b+s ~a¥ Sl c

I
w
o

iy
w

(ii) (sl-lb+sl-lc)*s-1a =8 _lb*s-la+sl-lc*s-1a .

To prove (i) we apply Ore's condition to (a, sl) €R xS and obtain (p,t) ERxS

such that ta=ps Thus

1
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-1 -1 - - - - -
s a.*s1 b+s 1an*s1 1c = (ts) 1pb+(1:s) 1pc = (ts) 1(pb+pc)
= (ts)-lp(b+c) = s-la*sl-l(b+c)
-1 -1 -1
= x
s a (s1 b+s1 c)

proving (i).
Applying Ore's condition to (b,s) and (c,s) in RxS we get (pl,tl)

and (pz,tz) in RxS such that t1b=pls and t2c=pzs. Thus

-1 -1 -1 -1 -1 -1
* S = .
s, b¥*s a+s1 c¥s a (tlsl) p1a+(t251) p,2
By Lemma 4.1 there exist ul,u2 €S such that ult1 =u2t2 =g therefore
uli:lsl=u,2t2 1=o-sl. Then
-1 -1 -1, -1 _ -1 ‘ -1
s1 b*s a.+s1 c¥s ‘a= (ultlsl) ulpla +(u2tzsl) uzpza
= (0s ) Hup. +u p,)a (1)
=108, 1P17 %P2
From ¢gb =u1t1b=u1pls and (Qc =u2t2c =u2pzs follows
o(b+c) = (u1p1+u2p2)s, thus
s "l(b+c)=‘<s_1 = (gs \-1( +u Ja (2)
1 & =108 WP TP,

(1) and (2) imply (ii).

(D) In SR , s—ls is the identity for every ué€S. By Lemma 4.1

s., therefore

if s,SIGS then there exist u,uIES such that us=u1 1

-1

(s, 8) ~(sl,sl) for all s,sles. Thus s—ls=s s. and we write e=s_1s.

1 1
If s_la ESR, then by Ore's condition applied to (s, s) €RxS there exists

(b,t) €RxS such that ts =bs, therefore b=t€S because s is regular.
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Thus

-1 -
e¥s "a=8 s¥*s “a = (ts) lta =s a (3)

Similarly by Ore's condition applied to (a,s)ERxS we get (bl,tl)ERxS

with tla = bls therefore

- -1 -1
e = B = = =
s a%e =g a¥s s (tls) bls (tls) tla s a

This and (3) imply that e is the identity element in SR.

To complete the proof of Theorem 4.3 we show next that R can be

imbedded into SR and that sR satisfies all the conditions in Definition 4.2.

LEMMA 4.9. SR with addition and multiplication defined as above is a
left-quotient ring for R.

Proof. We have already seen that SR is an associative ring with

identity. Next define a map £f:R - _R by £(a)= s-lsa, for every a in R

S

and some s in S. The map is well defined because if ) €S and f(a)=

-1
5, sla then by Lemma 4.1 there exist u,u1 €S with us =ulsl, therefore

-1 -
usa-ulsla and hence s sa.—sl sla.

The map f is an homomorphism of rings. Indeed

f(a+al) = s—ls(a+a.1) = s_l(sa.+sa.l)=s_lsa.+s—1sa,l =f(a)+f(a1)

for all a and 2, in R. For the product we have

f(a)*f(al) = s-lsau*s-lsa.1 = (ts)-lbsa1

where (b,t) €RxS and tsa=bs.



52

On the other hand

-1 -1 -1
f(aal)-s saal-(ts) tsaal—(ts) bsa.1

therefore

= £
f(aal) f(a) f(al).
If f(a)=£(a1) then s-lsa:s—lsa1 therefore there exist u,uIES such

that us =u,s and usa=u, sa,. These imply u=u, and therefore a=a,.

Since f is an embedding we can assume without loss of generality that
R c SR, thus we identity f£(a)= s-lsa. with a for all a€R.
To conclude we verify condition (3) and (4) in Definition 4.2. Let

-1 -
SIES then sl=f(sl)=s S8, - Therefore (ssl) 1s is an inverse of s,

in SR because there exists (b, t) €RxS with 'css1 =bss_, therefore t=b

1’

and hence
s_lssl*(ssl)-ls = (ts)_lbs = (ts)-lts =s s=e.

- -1 .
Similarly (ssl) 1s*s ss, =e. Hence every regular element of R is

invertible in sR. Finally if s€S and a€R then in SR we have

-1 - - -
s >ka,:(sls) 1sl*s ls a=(tsls) lbs a

1 1 1

where (b,t) ERxS with tsl=bsl. Then (tsls)-lbsla=s-1a. Hence
-1

s *a=s a. Thus every element s_la in SR can be written as the
product of the inverse of a regular element s in R and an element a

. : -1 :
also in R. This justifies the notation s "a for the equivalence class

of (a,s). The proof of Theorem 4.3 is now complete.
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REMARK. The ring S

R that we have constructed above is sometimes

called in the literature the full left ring of quotients of R or the classical

left ring of quotients of R. If R satisfies the right-Ore condition with

respect to S (i.e. aSNsR#¢ for all (a,s)ceRxS) then one defines R

the right analogue of S

chapter remain valid with obvious modifications for R

though that in R
where (b,t) ERXS satisfies at=s

the following

1

S,

R, and all the statements proved so far in this

g We must stress

-1 -1 -
S the multiplication * is defined by a.s *as =a1b(st) !

11

b. With this in mind we can now prove

LEMMA 4.10. If R satisfies the left Ore condition as well as the right

Ore condition then _R is isomorphic to R

S

g-

Proof. Define <p:RS->SR by (p(as_1)=c'—1a where (o, 0)€RXS and

ga=qas. The existence of the pair (@, g) is guaranteed by the left Ore

condition. If also (al,o-l) €R xS and satisfies ¢

we have ug=u.g

applied to o, o, 1

. : -1
u,0a=u 048, then ug=u,q, since s is regular. Hence ¢ «a=0

171

1

12 =S then by Lemma 4.1

with u,uIES. Therefore ugs =ugas=
-1

1 %

and ¢ is well defined. Next we prove

-1 -1
(A) <p(alsl +a.252

-1 -1
In R, we have a.s +a.zs2 —(alu

S 11

slul = s2u2 =g8. Therefore

-1

-1 -1
(p(a.ls1 ta,s, )_<p((a1u1+a2u2)s )=0 «

-1 -1
)=<p(als1 )+<p(a282 ).

-1
+a2u2)s where u uZES and

1 1’

-1
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where (o, ¢) ERxS and

ogla.u +a2u2)=as=as u, =qs,u

171 171 2°2°
-1 -1 . .
Also ola,s, )=0g. o with ¢.a,=qas. fori=1,2 (1)
i'i i i i1 Civi
Now in R we have -1 + o= -1( + ) her €S
S O 70 Q=T (T,@,7T,0,) where T,,7,
and Tlo'1=1'202=7'.
We must show that in SR is
a=rlr a o) 2)
o a=T (T,0,%T,0,) . (
By Lemma 4.1 there exist w,w’'€S such that
wo = w'r . (3)

Then

4 4
w (Tla1+rzo%)s w ('rlozls+'rzaZS)

4
w(T 0 s, +1,0,8,0,)

]
w (,T1°1a1u1+7202a2u2) (by (1))

/
w T(a1u1+a2u2)

wo(a1u1+azu2) (by (3))

was .

Since s is regular the above ‘mplies that w'('rla1+1'2a2) =wo which

together with (3) entails (2) and hence (A).

Next we show that
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-1 -1 -1 -1
& = sk
(B) <p(als1 ays, ) <p(als1 )(p(azs2 )
InR_, we have a_s -l*a s -1=a. b(s t)-1 where
S 11 22 1 2
(b,t) eRxS and a2t=slb. (4)

-1, -1 -1 -1
Then <p(als1 *a,s, ) = (p(al b(szt) ) = p B where
(B, p) €RXS and pa b=gs,t (5)

On the other hand in SR we have

-1 -1 -1 -1
(p(a.ls1 )*(p(azs2 ) = 0‘1 0(1*0'2 o, = ()xO'l) Yo,
with (y,A\)€RxS and )\al =Y, - (6)

Lemma 4.1 applied to p and \g. gives us v,v' €S such that

1

vp = VAo, (7)
Therefore
’ - / /7

v y%szt =v 'yo-za.zt by (1)
= v')\alslb by (4) and (6)
- 4
_v)\o-lalb by (1)
= vpalb by (7)
= vﬁszt by (5).

Since szt is regular this equality implies vﬁ=v"ya2 which together
with (7) yields p-lﬁ= (Aol)-l'yaz. Hence (B) holds.
-1
Given ¢ aESR by the right-Ore condition applied to (@, o) ERXS,

we can find (a,s)€RxS with gs=ga. Therefore (p(as-1)=o-—1a, hence



56

¢ is surjective. Finally, if <p(a1s1-1)=<p(a2s2-1)=o~-lo¢ then
oa,=¢qs. for i=1,2. (8)
i i

By the right analogue of Lemma 4.1 there exist u,,u, €S such that

s u =s_u_=t. (9)
Multiplication of (8) on the right by u, yields

ga.u =qgs.u,_ =gt for i=1,2
ii ii

and substracting these two equalities we deduce c(alul-azuz) =0 which

. . _ -1 -1 .
implies a u, =au, because ¢g€S. Thus a;8, =a,s, in RS and

hence ¢ is injective, completing the proof of Lemma 4.10.
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CHAPTER V

PRIME P.I.-RINGS HAVE A CLASSICAL RING OF QUOTIENTS

Let R be a ring with a ring of operators . By this we mean that

R is a }-module and for any x,y€R and any w€  we have
wixy) = (wx)y = x(wy).

Let Xl’ XZ’ e, Xn be a set of non-commuting indeterminates and

consider a polynomial {(X) =f(X1, “eos Xn) with coefficients in .

We say that f(X) is a non-trivial identity of R provided

(1) f(rl,r .,rn) =0 for all riGR, and

SRR

(2) £(X) is not identically zero.

If R satisfies a non-trivial polynomial identity we say that R is a P.I.-ring.

We introduce some terminology and notation.

If £(X) is a polynomial over §, then Q(f) will denote the set of
coefficients of £f(X). Observe that if f(X) is a non-trivial identity of R,
then Q(f)#{0].

If R is a P.I.-ring, an identity of minimal degree will be called a

minimal identity, and the corresponding polynomial a minimal polynomial.

Finally we say that f(X) is multilinear of degree n if and only if £(X)

is of the form

o o(1) " Foln)
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where chQ and Sn denotes the group of all permutations of the

symbols {1,2,...,n]}.
EXAMPLES OF P.I.-RINGS.
1. Any commutative ring satisfies

£(X) =X1X2—X2X1 =0,

2. Let £ be the field of reals and R the ring of quaternions over Q.

Then R is an algebra over § with basis {1,1,j,k} such that iz =j2

k2 =1 and ij=-ji=k. Every quaternion x has a unique expression

= i j
X =x +x1 +x23+x

0 k, xiEQ. (1)

3
An easy verification shows that if in (1) is X = 0, then x  is real,
that is, x2 €8. One also checks that for any two quaternions x and

y the difference xy-yx is of the form

Xy-yx = a,ita, jta k, aiGQ

3
2 . .
therefore (xy-yx) €£). Moreover since for every quaternion z and

every w€ is wz=zw, the above remarks show that the ring of

quaternions satisfy

2 2
f(X)'(X1X2'X2X1) X3-X3(X1X2-x2-xl) =0.

3. Let Q=Z the ring of integers and let

a 00
R= (M= b a 0 : a,b,c,d€Z}.

c d a
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A simple but tedious verification shows that R is a ring, a Z-module

and that

n(Mle) = (an)M2 = Ml(an)

for every M MZER and ne€Z.

1’
For i=1,2,3 let

where the ai, bi’ Ci’ d, are arbitrary elements in Z. Then one verifies
i

that
0 0 0
MIMZ_MZMI = 0 0 0 (1)
dlbz—bld2 0 0
— —
4] 0 0
(MlMZ-MZMl)M3 = 0 o 0 (2)
(dlbz—bldz)a3 0 0
and
0 0 0
M3(M1M2-M2M1) = 0 0 0 (3)
La.3(dlb2-b1dz) 0 0_1

(2) and (3) imply that R satisfies the identity

f(X) = (X, X

1 Z-XZXI)X3-X3(X1X -XZXI) =0.

2
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4. Let R be an algebra over a field F and consider F[X] =F[X1, X ,Xn],

PYREE
I’XZ’“"Xn

over F. In other words the elements of F[X] are polynomials in the

the free algebra generated by the non-commuting indeterminates X

variables Xi with coefficients in F. Using Kaplansky's terminology, the

standard identity of degree n in F[X] is the polynomial

o
S(X.,X,,...,X )= -1y X WX
F1 % o = 2 DXy Ko
o€S
n
where g ranges over Sn’ the set of all permutations of the symbols {1,2,...,n}

and (-1)0 is 1 for even permutations and -1 for odd permutations. Some-
times we shall use the notation Sn(X) for the standard identity of degree n.

Assume now that R has dimension n over F, and let {vl,vz,... ,vn}

be a basis for R over F. Let r be n+l elements of R. Then

17" Tagt

each r, can be expressed as a linear combination of the vi's over F,

Since Sn+1(X) is multilinear it follows that S(rl, LPYRERY rr'H_l) is a linear

combination of terms of the form S(v

a1y "vo-(n+1)) where cESn+1,
the symmetric group of degree n+l, and the VO‘(i) € {vl,vz, . .,vn}. But
in S(vo(l), . ’vo(n+l)) two arguments are equal, therefore S(vo(l)’ ’vo-(n+1))

= 0 because Sn+1(X) is multilinear. Then S(rl,r ...,rn+1)=0. Thus

2’
we have shown that every n-dimensional algebra over F satisfies the standard

identity of degree n+l.

5. Let F be a field and Fn the ring of all nxn matrices with entries in F'.

Since [Fn:F] =n2 by Example 4 we know that F_ satisfies Sn2+ 1(X) .
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However more is true. In a rather involved paper Amitsur and Levitzki [1]
have shown that Fn actually satisfies Szn and that this is in fact a minimal
identity for Fn. Swan has given in.[17] a quite elementary proaof of this
result as an application of graph theory.

It is not difficult to verify that

S(X Xy, X ) =X SKy, 0 X)X S(X KX

(DMK S(X X ).

n+1 177"

Therefore if R satisfies the standard identity of degree n, then it satisfies
all the standard identities of higher degree. Observe that if the standard
identity of degree 2 is satisfied by R, then R is commutative. With this
in mind, we may regard a standard identity for R as a generalization of the

commutative law.

When working with P.I.-rings it is convenient to be able to find some
"nice" polynomial identities satisfied by R. The following provide us with

such polynomials.

LEMMA 5.1. If R satisfies a non trivial polynomial identity of degree d,
then it satisfies a multilinear identity of degree <d.
Proof. Assume R satisfies a non-trivial polynomial identity £(X) =

f(Xl, . .,Xn) of degree d. If {(X) is not linear in the variable X., then

11
f(X) considered as a polynomial in X has degree .d1>1. Let X, .1 be
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an indeterminate different from the Xj’ j=1,2, ...,n. Consider the
polynomial
g('XIXZ, vees Xn’ Xn+1) = f(X1+Xn+1, XZ’ cee, Xn)-f(Xl, vees Xn)
- f(Xn+1,X2, ...,Xn).

By elementary linear algebra considerations one easily checks that

1. 0 #g(X) is a polynomial identity of R

2. degree of g(X)< degree of £(X)

3. for j#l,n+l the degree of g as polynomial in Xj is less than or equal
to the degree of £ as polynomial in Xj.

4. for j=1,n+1, the degree of g as polynomial in Xj is less than or

equal to dl— 1.

If g(X) has degree greater than 1 in one of the n+l indeterminates
Xj we repeat the argument for that variable. After a finite number of
steps of this kind we obtain a polynomial p(X) =p(X1, ceey Xt) of degree
<d which is of degree <1 in all its variables. Moreover we may assume
that every monomial of p(X) is linear in every variahle because if there

were terms in p(X) not involving Xj say, we may write

p(X) = ql(X)+q2(X)

where the monomials of q; contain Xj and those of qZ(X) don't. Substituting
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r,)

in this Xj by 0 and X_1 by rleR for i#j we get qz(rl,...,rj_l,rj+l,..., ¢

= 0. Therefore qz(X) =q2(X1, eees Xj-l’Xj+1’ c e, Xt) is also a polynomial
identity of R of.degree <d. Repeating this argument if necessary, we

reach a multilinear identity q(X) of degree <d involving m<d wvariables.

Finally we may assume that

X)) = T w

(wce Q)
UESm

cxo(l)' ' 'Xo(n‘,l)’

because if the monomial X . X corresponding to the permutation
a(l) o(m)
o} ESm does not appear in q(X) we can always introduce it with coefficient

w0_=0. This completes the proof of 5.1.

Unless mentioned otherwise,by a prime P.I.-ring we mean a prime

ring R which satisfies polynomial identities over its centroid Q(R). For

this particular class of rings we have the following result due to Posner [16].

THEOREM 5.2. If R is a prime P.I.-ring, then R is a left and right

Goldie ring.

Proof. By Lemma 5.1 we may assume that R satisfies
f(X) = X X , R 1
(X) erS Yo Co(1) g(n) (wGEQ( ) (1)
n

where wc;ﬁo for some deSn. Furthermore we may assume that
w=w, #0 where e is the identity in Sn (otherwise relabel the inde-

terminates Xi so that this is the case).
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Claim I. The length of a direct sum of non-zero left-ideals of R
is at most n-1.
Assume that

I= 116912® .. .@In (2)

is a direct sum of non-zero left ideals of R and pick Yj Elj for j=1,2,...

Si = h
e @O Yo1) Vo) T @V o(1)  Yon-1)Vgm)  WC PVE
0=f1 yeees =
Ty Vo) = 2 96Y0(1) " Votn)
n
n
= . 3
k?l( ezs W Y1) Yo(n_l))yk (3)
= G n
o(n)=k
Then uk=( z wcyg-(l)"'yo-(n-l))yk belongs to Ik for k=1,2,...
oeSn
o(n)=k

Since the sum (2) is direct, all terms u, in the sum (3) must be equal

k

to 0. In particular

u =( T wy

e ¥ o 1))y =0
n o€s_ o ag(l) o(n-1)"n

g(n)=n
and since this holds for arbitrary Yn in In we deduce

(c ezs wao(l)"'Yo(n-l))In =0 (4)
n

o(n)=n

,n.
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for arbitrary Yj elj, l<j<n-1.
Since R is prime the left annihilator of the non-zero left-ideal In

must be zero. Therefore (4) implies

2 w Yc(l)"'y =o (5)

for all Yj in Ij, l<j<n-1.

Using (5) we can write

n-1
0 = kfl ( OEES cho(l)...yo(n_z))yk
n
o(n)=n
o(n-1)=k

and repeat the above argument. Eventually we get wIl =0. Then
0 = (wI,)R = I (wR). (6)

By hypothesis w#0 therefore the ideal @R is not zero, thus (6) implies
I1 =0 since R is prime. But this contradicts our hypothesis about the

Ij's. Hence our claim is proved.

Claim II. Every properly ascending chain of left-annihilators has at

most length n. Suppose

0FIFLE ... EIL
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where the Ij's are left annihilators. By the remarks made following
Definition 1.3 we may assume that Ij is the left annihilator of a right-

ideal Hj of R. By hypothesis IJ._1 ? Ij for j=2,...,n therefore
ILH_ _#0.
ii-l

Let k be the smallest positive integer such that there exists

{130.6 QR):0 € Sk} satisfying

(i) ﬁe;éO where e denotes the identity in Sk

(i) T By

=0 whenev LEI, 1=sj<k.
ses, oo Va0 mever vj&ly 1=

Clearly such k exists and k<n since R satisfies the multilinear identity

(1) for which (i) and (ii) hold. Multiplying (ii) by H on the right we

k-1
obtain
0 (OEES BU o(l)” c(k)) B
- UES Ba¥ o)) Vol k-1
k
=j§1 (O‘ES B Y o(1) " Y (k- 1))Y H 1
o(k)=
= (O‘GES B Y1) (k_l))vk H (7)
o(k)=k

gince for j<k-1 we have
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( Z By )y € 1 =(H, ) .
olk)=k 0(1) (k 1) k-l k-14
Since Y, Wwas arbitrary in Ik’ from (7) we get
0= z H 8
(& FoVon) Yom-1)" Pk (8)
o€S,
o(k)=k
for all Yj € Ij, l<j<sk-1. Therefore
z By =0 (9)
ses, OO Votk-1)
0(1<)=k
for all ijIj, l<j<k-1, because R is prime and IkH is a non-zero

left-ideal. But (9) contradicts the minimality of k¥ and since the contra-
diction comes from the hypothesis Ika £ 0 we must have Ik K =0,
hence 1k=1k-l which proves Claim II.

I and II imply that R is a left Goldie ring. In a similar way we

prove that R is a right Goldie ring completing thus the proof of 5.2.

The following theorem due to Amitsur [4, Theorem 9] plays a
fundamental part in most of the theorems about prime rings satisfying

polynomaial identities over their centroid.

THEOREM 5.3. Let R be a prime P.I.-ring. Then for every a€R

there exist positive integers k=k(a) and m=m(a) such that



68

(i) the left ideal Rak+(ak)z contains a non-zero two sided ideal

(ii) the right ideal amR+(am)r contains a non-zero two sided ideal.

Proof. If a=0, then the statement is trivial because in this case
for every positive integer i we have

Rai+(ai)z = aiR+(ai)r =R.
If a#0, then by Lemma 5.1 we may assume that R and in particular
all its left-ideals of the form Rai satisfy a non-trivial multilinear
identity. Among all the non-trivial multilinear identities satisfied hy
left-ideals of the form Rai pick one of minimal degree. We may assume

that this identity has form

X ,...,X )= X . ..X
al®X, o) fs WX o(1) " *on)
o n
=q (X, XX 40, (XK, X ) (1)

where
(A) wo_ € Q(R) and w, £0 where e is the identity in Sn

)= I w

(B) ql(Xli"'ix
O'ESn

n-1 o o) T ola-1)

o(n)=n

(C) g, (X

> 1,...,Xn)= T w X

ges © c(l)"'Xo(n)'
n

o(n)#n

Let Rak satisfy q(X)=0. This means that for all i, Ra1 does not

satisfy a non-trivial multilinear identity of degree less than n. Therefore
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ql(Xl’ ’Xn-l)’ which is not identically zero because of (A), being of

2
degree n-1 is not an identity for Ra k. Then there exist elements

. 2k 2k,
n-1 in R such that ql(rla RERTE ST )=b#£0.

2
Moreover since Ra kCRa.k and Ratk satisfies q(X)=0 from (1)

we deduce that for arbitrary rn in R is

0

q(rla P 4 a ,r a)

k 2k
brna +q2(r1a R a ,ra). (2)

From the form of q2 (see (C)) we have

2k 2k .
qz(rla ,...,rn_la ,rna.)—ta with te€eR

k
therefore from (2) it follows that (brn+tak)a. =0. Thus brn+t:a.k € (ak)z,

hence

k k k k
-ta +(brn+ta )—brne Ra +(a )!, .

Since this is true for arbitrary rl.’l in R and fixed b, we get bR & Rak+(a.k)z.
Furthermore since R is prime and b#0 is also bR #0, hence the non-
zero two-sided ideal RbR is contained in the left-ideal Rak+(ak)£,

proving 5.3 (i).

The proof of part (ii) is similar and we omit it.

Amitsur's Theorem has an important consequence, namely

COROLLARY 5.4. IfR is a prime P.I.-ring, then for every regular

element ¢ of R
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(i) Rc contains a non-zero two-sided ideal of R
(ii) cR contains a non-zero two-sided ideal of R.

The proof is immediate from Theorem 5.3 by observing that the

regularity of c¢ implies (Ck)f, =0= (cm)r, hence Rck +(ck)£ =Rck cRc

and cmR + (Cm)r = cmR c cR.

We come now to the main theorem in this chapter
THEOREM 5.5. If R is a prime P.I.-ring, then R has a simple
right and left quotient ring Q(R).
Proof. Because of Theorem 4.3 and Lemma 4. 10 it suffices to show
that R satisfies both the left and right Ore conditions with respect to
its subset S consisting of all regular elements. We remark that S is
non~empty by 3.15 and 5.2.

Let (a,s)€RxS. By Corollary 5.4 there is a non-zero ideal PcRs.
Therefore RPSRs. Since RP is a non-zero two-sided ideal in a

prime Goldie ring, it contains a regular element 81 Then s RcRPcRs,

1
therefore there exists a; €R satisfying sja=a s. Thus R satisfies
the left-Ore condition with respect to S. One similarly shows that R
satisfies the right Ore condition. Then R has a left and right quotient
ring Q(R). We prove next that Q=Q(R) is simple by showing that every
non-zero two-sided ideal of Q coincides with Q.

If V is a non-zero two-sided ideal of Q then th_lQ is also a

non-zero two-sided ideal for some 0 ;Eb't:"1 €V where (b,t)eRxS.
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-1 -
Since Q has a unit element e and RcQ we have ebt t=be€(Qbt 1Q)ﬂR
therefore (th- lQ)ﬂR is a non-zero two-sided ideal of R, hence it

contains a regular element u. Thus
-1 -1 -1
Va20bt Q20Q[(Qbt Q)NR] 2Qu=2(Ru u = Q.

Hence V=Q as required to prove ..

REMARK. Theorem 5.5 is a special case of a more general theorem
due to Goldie, namely, the ring R has a simple Artinian right quotient
ring if and only if R is a prime Goldie ring. A neat account of Goldie's

Theorem can be found in Herstein's book [ 10, Chapter 7].
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CHAPTER VI

KAPLANSKY'S THEOREM

This chapter is devoted to the proof of a beautiful result of Kaplansky
[12, Theorem 1] about primitive P.I.-rings. Our approach follows es-
sentially Martindale's [14]. We start by recalling some basic definitions
and well known facts from the theory of rings which will be stated without
proofs; these can be found, for example, in Lambek's book [13, §3.3 and
§3.47.

A right ideal I of a ring R is called minimal if I is an irreducible
right R-module (cf.Definition 1.7). A theorem due to Brauer asserts
that if I is a minimal right ideal of R, then either I2 =0 or I=eR where
e =e€l, Hence every minimal right ideal of a semiprime ring is of the
form eR where e2=eER (i.e. e is idempotent).

The (right)-socle of R, denoted by SocR, is the sum of all the
minimal right-ideals of R. If R has no minimal right ideals, then
SocR =0. The socle of R is a two-sided ideal. If R =SocK, then R is

called completely reducible.

The left socle of R is defined similarly. For semiprime rings the

left and right socle coincide.

LEMMA 6.1. IfR is a prime right-Artinian ring, then R is simple.

Y
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Proof. Assume I is a non-zero ideal of R. Since I is right-Artinian,
there is 2 minimal non-zero right ideal K contained in I and since R is
prime K is generated by a non-zero idempotent. Thus I contains a non-
zero idempotent. Therefore the set {(e)rﬂI: 0 #ez =e€l} is non-empty,
hence it has a minimal element E = (e)rﬂI.

If E#£0, then the set of non-zero right ideals of R contained in E
is non-empty, so it contains a minimal element M because R is right-
Artinian. Clearly M is a minimal right ideal of R, therefore M=fR
where fz =f#0. Since f¢ McE we haveef=0. Let ¢ =e+f-fe. Then

2
€ €1 and a short computation shows that ¢ =¢. Also

ef = (etf-fe)f = fz =f#£0,

therefore ¢#0. Moreover (e)rc(e)r because if ¢x =0, then
2
O=e(ex) =e(et+f-fe)x=e x=ex.

Therefore (q)r Nlc (e)r NI = E and the inclusion is strict since f€E
but fé(g)r fiI. This contradicts the minimality of E. Then we cannot
have E #0. But then since I is a non-zero two-sided ideal in a prime
ring, I is essential so (e)r Ni=E =0 forces (e)r =0. Thus I contains
a right regular idempotent e. Since for all x in R is e(x-ex)=0 we
conclude R=eRC1I, thus R=I. Hence R contains no proper ideals
different from 0.

The same argument given above proves the following
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LEMMA 6.2. If R is a prime right Goldie ring with a non-zero minimal
ideal, then R is simple Artinian.

Proof. By hypothesis R has a non-zero minimal right ideal P so
P=e;R where O;Ee1 =e
Since R is right finite dimensional and S is the direct sum of all minimal
right ideals of R we must have S= PIGB PZGB. ..® Pn for some integer n
and where the Pi's are minimal right ideals. Since the Pi are minimal
they are Artinian as right R-modules, hence S is an Artinian right R-
module (cf.Lambek [13, page 22]).

If we can prove that R=S, we will have shown that R is right Artinian,
hence simple by Lemma 6.1. To show that R =S it suffices to prove that
S contains a right regular idempotent e. Actually, the same proof given
in Lemma 6.1 holds for Lemma 6.2 with I replaced by S because if we
analyse the argument in 6.1 we see that all we needed was the minimum
condition on right ideals contained in a two-sided ideal I which contains
a non-zero idempotent. S was proved to satisfy all these conditions, so

the proof of Lemma 6.2.is completed.

A classical result by Artin and Wedderburn states that if R is simple

Artinian, then there exists a unique integer n and a division ring D, unique
up to isomorphism, such that R is isomorphic to Dn’ the ring of all nxn
matrices over D. Conversely for every integer n and every division ring

D, the ring D is simple Artinian, (cf.Herstein [10, page 48]). In view

12 . Then SocR=S#0 and S contains idempotents.

P
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of the Artin-Wedderburn Theorem, Lemma 6.2 asserts that every
prime right-Goldie ring with a non-zero minimal ideal is isomorphic
to Dn for some integer n and some division ring D. This observa-
tion permits us to prove the following Lemma which is crucial in our
approach to Kaplansky's Theorem. In what follows , by a primitive
P.I.-ring we mean a primitive ring satisfying polynomial identities

over its centroid (R).

LEMMA 6.3. If R is a right-primitive P.I.-ring then there exists a
unique integer n anda unique division ring D such that R is isoﬁorphic
to Dn. Moreover D is also a P.I,-ring.

Proof. Since R is right-primitive there exists a faithful irreducible
right-R-module A and we miay assume that A =R/M where M is a

maximal right-ideal of R (cf.Lemma 1.10). We claim that M is not

essential. Since R is primitive is semiprime, therefore if M is essential,

by Lemma 3.14 M must contain a regular element c¢. But then by
Corollary 5.4 there is a non-zero ideal ICcRCM. Since S is faithful
and AI=0, we get a contradiction. Then M is not essential therefore
there exists a non-zero right ideal P such that MNP=0. Since M is
maximal, we get R=M®DP, hence P is a non-zero minimal right ideal.
By Lemma 6.2 and the Artin-Wedderburn Theorem, we conclude that

R = Dn for some integer n and division ring D. Moreover since Dn is
simple, by 2.6 we have Q(Dn) =C(Dn), S0 Dn satisfies polynomial

identities over its center C(Dn)' Now observe that C(Dn) consists of
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all nxn matrices having all entries in the main diagonal equal to c € C(D)
and the remaining entries equal to 0. So C(Dn) =~ C(D). Since D is
imbedded in Dn and Dn is a P.I.-ring, we conclude that D satisfies

polynomial identities over its center C(D).

LEMMA 6.4. Let D be a division ring with center C and a,b€D, b#0.
Then ab-1 € C if and only if axb =bxa for all x in D.
-1 -1 -1
Proof. ab " €C = ab (bxb) = (bxb)ab
= axb= (bx)[b(a.b)- l] =bx[(ab 1)b:l = bxa
for all x€D.
Conversely if axb=bxa for all x in D, then

- -1
b lax = xab for all x€D. (1)

-1 -1 -1 - - -
But a(b lb Yb=b(b lb 1)a by hypothesis so ab 1=b la, hence (1)

implies ab~ 1 €C.

COROLLARY 6.5. Let D be a division ring with center C. Let a,b¢D.
If axb=bxa for all x¢€D, then a and b are linearly dependent over C.

Proof. If a=0 or b=0 the result is trivial. If a and b are different

from 0, then ab-lec, hence a=(ab-1)b.

We now adapt Martindale's ideas to our particular case (cf.Herstein
(11, Theorem 1.2, page 2]).
THEOREM 6.6. (MARTINDALE) . Let D be a division ring with center

C. Let ay,..., aneD be linearly independent over C and let bl’ vees bnED,
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n
b1 #0. Then, if B={ T aixbi:xG_D} is a finite dimensional vector
i=1

space over C, then D is a finite dimensional algebra over C.
Proof. The proof is by induction onn. If n=1, the hypothesis says
that B =a1Dbl is a finite dimensional vector space over C. But since

D is a division ring and a, £0, bl #0, we have a Db1 =D. This proves

1

the result for n=1.

Assume now that Theorem 6.6 holds for all m<n, and suppose

n
B={Z aiXbi :x€D]} is a finite dimensional vector space over C, where
i=1

the ai are linearly independent over C and b1¢0. Let t€D. Then

n
B'={2Z aixbitblszD} C Btb, so B’ is finite dimensional over C.
i=1
n
We also have { T a,(xblt)bi:xeD} c B therefore
i=1
b3 n
B = {-21 ax(b,tb -b th.):x €D}  B+Btb,
1=

so B* is finite dimensional over C. For i=1, we have bltbl-bltbl=0;
thus at most n-1 of the elements bitbl-bltbi are not 0, If for i=1,2,...,n
and for all t¢D is bitb1 =b1tbi; then by Corollary 6.5 we can write
bi=qib1 with qiEC, i=1,2,...,n, which gives

n

n n
T axb = T axqb, = % (a,q)xb; =(Z agq)xb,
i=1 i=1 i=1 i=1
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and since

{(because the ai are linearly independent over C) we obtain B* =a1'Db1,
i.e. we are back in the case n=1l. Now if for some i#1 and some

t0 €D is bitobl-blt0 #0 then we have in B* the hypothesis of our theorem
applied to a situation of m<n-1 elements, which by induction concludes

the proof.

Amitsur in [3] studied rings which satisfy a more general type of
polynomial relation. One considers a ring R which is an algebra over
a field F and forms the free product R{(X) of the ring R and the free

associative ring F[Xl, X .. ] in the non-commuting indeterminates

2’
Xl’XZ’ ...« The elements of R{(X) are of the form
£(X) =‘Z3)3kai TR, WLo..ea, WA
1 1 2 92 k Tk k+l

where BkEF, the nj are monomials in the indeterminates Xj and the

elements aiER appear both as coefficients and between the monomials 'nj.

DEFINITION 6.1. We say that R satisfies a non-trivial generalized

polynomial identity (in short R is a G.P.I.-ring) if there exists a non-

zero element f(Xl, R Xn) in R(X) which vanishes identically on R.

We remark that, as it was done for P.I.-rings (cf.Lemma 5.1),

if R is a G.P.I1.-ring, then one can easily show that R satisfies a
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generalized polynomial identity which is both homogeneous and multilinear.
A complete account of the more important properties of R{(X) can be found

in section 4 of the above mentioned paper by Amitsur.

The following result is also due to Martindale [14, Theorem 3].
THEOREM 6.7. Let D be a division ring satisfying a non-trivial poly-
nomial identity over its center C. Then D is a finite dimensional vector
space over C.

Proof. Since D is a P.I.-ring, it is also a G.P.I.-ring. Consider a
generalized polynomial identity of minimal degree n. We may assume

this identity is homogeneous and multilinear of degree n so that it has

the form
m k
#X)= Z aX/f+ I gX b+TpXyq (1)
i=1 i=1
where
1 CIURRRY ameD are linearly independent over C
2 bl’ o bkED

3. the fi and g, are generalized multilinear polynomials of degree n-1
4. the P, and q, are generalized polynomials of positive degree.

In other words we have broken f up into those monomials where X1
is the first variable on the left in each monomial, where X1 is the last

variable on the right in each monomial, and finally, where X_  appears

1

in the middle of each monomial.
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For u(Xl,...,Xn)ED(X> and sl,..,sneD, let u denote the

element u(sl, cee, sn) in D. Since (1) vanishes identically in D we

have for arbitrary s

P snED:
m _ k' _
Zoas i+ Dog sb+2psq =0 (2)
i=1 i=1
For t€D multiplying (2) on the right by ’cb1 we obtain
m k
- - - - - o
i)_Dl a,s lf itbl+i§;1 gislbitbl + % pislqi‘cb1 (3)

Recalling that the generalized polynomials fi’ g P; and 9, do not involve

the variable Xl’ if we replace in (1) Xl by slblt and Xj by sj for
j=2,3, .

., n we get

Subtracting (4) from (3) we obtain

m _ k _
1?1 aisl(fitbl-bltfi)+i?2 gisl(bitbl-bltbiH

(5)
+ Zpisl(qitbl_bltqi) = 0

and this holds for all sl, c e, Sn’ teD.

We remark that in passing from (1) to (5) we have shortened in length

by one the middle sum in (5).
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We claim that if

fltbl—bltf1 =0 for all L IRRRY sn,tED (6)

then the theorem is proved. Indeed, since fl is of degree n-1, we

may choose r , rnED such that fl( Y#0 so the

rz,...,rn

2) =f1(X2, r3, Cees rn)

51 Tgsee
generalized polynomaial of degree 1 defined by h(X

is non-trivial. Then h(XZ) can be expressed as

h(X,) =

i=1

c.X.d

i 271

j
2 —

where the c, are linearly independent over C and the di are non-zero

elements of D. Moreover (6) and Corollary 6.5 imply that fl =1 (sz, vee;, S)

1 n

=)\(sz,...,sn)b where MSZ’ ...,sn)EC.

1

In particular this implies that

B = {h(x) = cixdi:xED} c Cbl.

1

]
1=

Therefore B is a finite dimensional vector space over C, hence Theorem
6.7 follows from 6.6.

If (6) does not hold, we may choose s .y sn’,to €D such that

I
R
fltobl—bltofl # 0. Now set

’_ _ ’ _ _ /- _
fi _fitOb bltOfi’ bi bitOb b.t.b., and qi qit b.-b.,t

1 17°1%"% 0°17"1%0%"

Then because of (5) we have shown that D satisfies the new generalized

polynomial identity
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m k
' / ro_
LR f s TogX b+ TpXq =0 (7)
i=1 i=2
where <y =f1'(sz', v, sn') #0. (7) is not a trivial identity, since this
m
would imply that ¥ a. X f ' were trivial. Setting c, =£f.'(s,’,...,s ’)
i=1 i 11 i 12 n
m
we would then have that I aLixc.i =0 for all x€D. Since D is a division
i=1
ring and < #0 we therefore know that a; = 0, therefore ay,ee,2  are

not linearly independent over C contradicting our assumption. The
most important fact about the identity (7) is that the variable X1 now
occurs at least one fewer time as a last variable than in (1). Moreover
the a;'s have remained unchanged, and the order in which the variables
appear in (7) is the same as in (1). Repeating this argument at most
~k times, we then transform our original identity (1) into a new one of

the form

m
‘f, a X LXK, .. X )+gX, ..., X ) =0 (8)

i=1

in which Xl never appears as the last variable in any monomial of g(X).

Assume without loss of generality that Xl’ X . Xr’ r<n, are those

21t

variables which occured first in some monomial of the original identity
(1). Applying the above process to each of these Xi we obtain a new

identity satisfied by D of the form

Zai(1) (2) (rlg ¢ (7) _ (9)

ri

X f,(1)+2a. X f,(2)+...+2a.
171 i 21 i
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where

(1) the set {ai(J)} is linearly independent over C for each

jef{1,2,...,r}.

(ii) the fi(J) are non-zero generalized polynomials of degree n-1,

in which none of the Xl’ e, Xr ever appear as the last
variable in any monomial.
But some variable has to occur last in each monomial, therefore
we must have r<n. My the minimality of n we must then have
fl(l)( -

..,r )#0 for some r ., ¥ €D. Let
n n

2 20

(1)

(pi (XZ’ '"’Xn-l) = i:'i (XZ’ ...,Xn_l,r )

2 2
(pi( )(Xl,X3, ""Xn—l) = fi( )(Xl,X3, .. ’Xn—l’rn)

(r) _¢ (1)
(pi (Xl’""Xr-l’xr+1"'°’xn-l)—£1 (Xl’ ’Xr-l’ i1’

Then from (9) we get that
(1) (1) (r) (r) _

Eai ch,o1 + +§.3a1i Xr(p1 =0 (10)

is a generalized polynomial identity for D of degree n-1. If (10) is

trivial then, it would follow that Z}ai(l)X l(pi(l) is trivial. Letting
(1) (1)

c.=¢, '(r,,...,r_ ), we would then have that T a,
i 2 n i

xc, =0 for all
i i

x€D. Since D is a division ring and c1 #0 this would imply that a

1
(.

1

which contradicts the linear indepedence of the set {ai

(1)

:0'

Then (10) is a
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non-trivial generalized polynomial identity and this contradicts the mini-

mality of n. Martindale's Theorem has thus been proved.

As a consequence of Martindale's Theorem we obtain-a classical

result due to Kaplansky [12, Theorem 1].

THEOREM 6.8. Let R be a primitive ring satisfying a non-trivial
polynomial identity over its centroid. Then R is a finite dimensional
central simple algebra.

Proof. The theorem follows from Lemma 6.3, Theorem 6.7 and the

fact that Dn is finite dimensional over D. Therefore
[R:C(R)] = [Dn:C(Dn)] = [Dn:D] [D:C(Dn)]

is finite.

Before concluding this chapter, we must remark that Amitsur [4,

Theorem 1] has shown that if d is the minimal degree of the identities

2

satisfied by the right-primitive ring R, then [R:C(R)] = m"” and d=2m.
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CHAPTER VII

STRUCTURE THEOREM OF PRIME P.I.-RINGS

Using the method of ultra products Amitsur [4] has generalized an
earlier theorem due to Posner [16]. The theorem under consideration
says that every prime ring with polynomial identities over its centroid
has a left and right quotient ring which is a finite dimensional simple
algebra over its center. Goldie in [8] has simplified Amitsur's proof
by avoiding the method of ultra products. We follow here Galdie's ap-
proach. Before proving the main theorem we need some preliminary

results.

LEMMA 7.1. If a ring R (not necessarily prime) is a P.I.—fing, then

the polynomial ring R[Y] in a commutative indeterminate Y is also a
P.I.-ring. Moreover, R and R[Y] have the same multilinear identities.
Proof. By Lemma 5.1, if R is a P.I.-ring, then R satisfies multilinear
identities. We assume that the ring of operators Q of R, which contains
the coefficients of the identities of R, is extended to operate on R[Y]

by defining

w(Z a.Yi) =% (wa.)Yi
i 1 i 1

for every  in  and Z}ain in R[Y]. Now let fj(Y) =Zati1, (j=1,2,...,n)
i i
be arbitrary polynomials in R[Y] and
£f(X wX )= L ow X

I
ces  ©
n

o(1)" "X o(n)
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a multilinear identity of R. Since for every permutation g of (1,2,...,n)
we have
k
f ...f =2 b Y
o(l) “o(n) X o,k
where
b = > . a P - | .
O',k i 4...+1 =k 0(1)911 O(H)yln
1 n
we get
f(f f) =2 (Z b Y)=Z2Z(wb )Yk
e “o ok ook
(o k k
k
=X (Zwb k)Y . (1)
k o g o
But
b = ..
Zwo o,k zwc. 2_ _ %o(1), 1 ®o(n), i
o i 4.4+l =k 1
1 n
= z 2w a . ...2 , =
i1+' kg " cr(l),l1 o(n), i

because the a, iER and R satisfies f(X)=0. Therefore from (1) we
get that R[Y] also satisfies f(X)=0.

The converse result is trivial because if R[Y] satisfies a multilinear

identity so does R since it is contained in R[Y].

The next result also holds for arbitrary P.I.-rings and is due to

Amitsur [4, Lemma 5].
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LEMMA 7.2. If a ring R (not necessarily prime) satisfies a non-trivial

identity f(Xl, .. "Xn) with set of coefficients Q(f) cQ(R) and if Pis a

proper prime ideal of R, then

(1) wPcP for all weQ(f), and either

2) QUER € P or

(2) £ is also a non-trivial identity of R/P and if wR ¢P and @réeP,
then r € P.

Proof. (1) For all weQ(f) we have

R(wP) c(wR)P=RPcP.
Since P is prime and R # P it follows that wPcP.
(2) If WeEQ(R), then  induces an element w in Q(R/P), namely
w is defined by (:;(r+P) =wr+P for all reR.
Let f(Xl, e, Xn) be a polynomial identity of R. As we know we

may assume that

f(X.,,X o X = X e o X .
( 1 n) aezS Yo o(1) o(n)

n

20

Then by the above remark one easily verifies that

w X ... X
oez;S “ey o(l) o(n)
n

is an identity of R/P. It is clear that this identity is non-trivial if and
only if Q(f)R & P.

Finally, if Q(f)R & P, then there exists @ €Q(f) with wR ¢ P. Let
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T = {reR:wr €P}. Then T is a two-sided ideal of R and since wR&P
we have T#R. Then (wR)T=R(wT)sSRPcP. Since P is prime and
wR €T we conclude that TcP. But also PST by (1) and the definition

of T. Hence P=T, which proves (2’).

REMARK. In what follows we assume that R is a semiprimitive prime

ring satisfying a non-trivial multilinear identity

i(X)= T w X
o)

X where w € Q(R).
c€S o
n

o(1)" " " o(n)
Let {Pa:aeA} be the set of all right-primitive ideals of R. Write

A =AUN where

A={a€A: Q)R ¢_Pa} and A ={a€A:Q()Rc PO’}.

Following Goldie [8] we say that the right-primitive ideal Pa is trivial
(with respect to £(X)) if o€ A and non-trivial if g€ A. Since £(X) is a
non-trivial identity there exists € Q(f) such that wR #0, therefore

Q)R #£0. Then

0£QUE)Rs N P . (1)
acN
Since R is semiprimitive we have N P =0 and since
a€EA

(N PYYNP)e N P =0
oeA ¥ aeN Y qen ©

we deduce N Pa = 0 because of (1) and the primeness of R. We know
acA
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(Theorem 5.2) that R is a Goldie ring, therefore it contains regular
elements (cf.Corollary 3.15). Let ¢ be a regular element of R. Then
there exists a non-zero two-sided ideal T ccR (Corollary 5.4). Define

AT) = {a€A: T¢Pa}. Observe that A(T) is non-empty since N Pa=0.
a€EA

Also if @€ A(T), then c¢ POL because otherwise T ccR SPa contradicting
the definition of A(T). Therefore c+Pa=c—: #£0 in R/Pafor all € A(T).
‘Moreover since A(T)CA is Q)R & Pa and since Pa is prime (because
is primitive) by Lemma 7.2 we conclude that £(X) is also a non-trivial
identity of R/Pa for all o€ A(T). But then R/Pa is simple by Kaplansky's
Theorem, therefore since T/Pa is a non-zero ideal of R/Pa we deduce
T'/Pa=R/Pa so that 0#c is a unit o the ring R/POL' for all ¢ € A(T).
Next we observe that since T #0 then 1I= ﬂ{Pa:aE A, Tc Pa} £0.

Therefore J=ﬂ{Pa:a€A(T)] =0 because R is prime and 1Jc N Pa=0.
a€A

We summarize these facts in the following

LEMMA 7.3. Let R be a prime and semiprimitive ring satisfying a non-
trivial multilinear identity.over Q(R). Let c be a regular element in R
and T a non-zero ideal contained in cR. Then for all ¢ in A(T) =

{a€EN:TEP }
o

(1) C+P0!= ¢ is a unit in the ring R/Pa

(ii) N P =0.
ae AT

We can prove
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THEOREM 7.4. Let R be a prime ring satisfying a non-trivial identity
of minimal degree d with coefficients in the centroid of R. Then R has
a left and right quotient ring Q, which is a simple algebra over its center

C=C(Q). Moreover Q=RC.

Proof. Case 1. R is prime and semiprimitive with a non-trivial multi-
linear identity £(X)= T w X WX of minimal degree d.
v HX) o o) Fo(a) g
€Sy

Let {Pa: aEA} be the class of all non-trivial primitive ideals of R

as defined in the proof of 7.3. Set S = H(R/Pa: o€ A). Then the elements

of S are of the form x=(xa)a€A

each x€S let A(x)= {aEA:xa#O] and consider the subset V of S con-

where x =x '+P and x '€R. Foar
o o o o

sisting of all those x€S such that ﬂ(Pa:aEA(X));éO. If %x,y€V, then

Ax+y) = {OtEA:Xa+Ya?'=0} c A(x)UA(y) therefore

n(Pa:aEA(xw))Qﬂ(Pa:aEA(X)UA(V))2 [ﬂ(Pa:ozEA(X))][ﬂ(Pa:aEA(Y))]

(1)

But R is prime and each of the factors in the right hand side of (l.) is a

right-ideal different from zero, therefore their product is different from

zero, hence ﬂ(Pa:aEA(X+y)) #0. This means that x+y€V.

If x€V and s€S, then A(xs)={x EA:xasa#O} < Alx) and also

AMsx) € A(x) therefore by a similar argument as for the sum, we conclude

that xs and sx belong to V. Since clearly x¢€V implies -x€V we have

shown that V is a two-sided ideal of S. Define a map ¢:R->S by the rule

Qr= (r+Poz)a€A . It is easy to see that ¢ is a homomorphism of rings,
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moreover ¢ is injective because ﬂ(Pa:aEA) =0, therefore we have ¢r=0
if and only if r GPa for all €A, i.e. if and only if r=0. Hence @R is
a subring of S isomorphic to R. Observe that RNV =0 because

if ¢r #0, then A(pr)=A therefore ﬂ(Pa:aEA((pr)) =0 hence @ré¢ V.

Then by the well known isomorphism theorem we obtain

(V4+oR)/V 2= oR/(VNR) =R =R (2)

so we may consider R to be embedded in the ring S/V. Next pick a
regular element ¢ €R and a non-zero two Sided ideal T contained in
cR. We know this is possible by previous results. By Lemma 7.3
c+P is aunitin R/P for all ¢ in A(T). Let s=(s ) and
o o o€
= h
v (Voz)ozEA where y
(C+Pa) if ¢€A(T)

0+P =0 if o€ A-A(T)
(o) o
and

0 if w€A(T)
o

1+Pa= loz if o€ A-A(T)

Then v€V because A(v)=A-A(T) and 0#£Tc ﬂ(Pa:aEA-A(T)). More-
over by (2) identifying r €R with (ra)aEA where ra=r+Pa_ for all

€A, we see that for the regular element c€R

(c+P Jc+P ) =1 if a€A(T)
[ o o

(c+P )0 =0 if @ € A-A(T).
a o o
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= =(1 - =
Thus s (Casa)aGA (oz voz)aEA

in other words, cs=1 (mod V).

Hence every regular element c€R is invertible in S/V. By
Theorem 5.5 R has a simple right and left quotient ring Q(R) whose
elements are products of the form a.c-1 with a,c€R and ¢ regular.
Since R is embedded in S/V and every regular element of R is in-_:
vertible in S/V, we conclude that Q(R) is isomorphic to a subring of
S/V. It is not difficult to see that if w € Q(R) then in a natural way
it induces an element in Q(S), hence an element in Q(S/V). We denote

this element also by .

Letting vy. —(yl o Pa)aEA+V where Yi,aeR for i=1,2,...,d
we get
... = . +P +V
z wcnﬂﬂ Yo(d) zcn[wdlha Yo(d), a aMEA ]
0ESy CES,
= Ueyony, o Ye@), ot Flaeat’)
oESd
= .. +P +V
z MJY(ILa Yo(d), aMEA
GESd
= ) +P +V
(2 w.Y51),0 Vold), o Fdaer
UES
= (0 +V
(+PJa€A

0 (mod V).
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Then S/V and therefore Q(R) satisfy £(X) =0, moreover Q(R) is
primitive (because is simple) so we conclude from Kaplansky's Theorem
that Q=Q(R) is a simple finite dimensional algebra over its center
C(Q). This proves the theorem for the case in which R is prime and
semiprimitive.

Case 2. R is prime but not semiprimitive.

Then we know R is a Goldie ring (Theorem 5.2), therefore it contains
no non-zero nil ideals (Theorem 3.6) and this implies that R{Y] is semi-
primitive (Theorem 3.9). Thus the ring of polynomials R[Y] is prime
(Lemma 1.7),semiprimitive and with the same multilinear identities as R
(Lemma 7.1). We then apply the argument of Case 1 to the ring R[Y].
Therefore Q(R[Y]) satisfies £f(X)=0 hence so does Q(R)S QR[Y]).

But then again Kaplansky's Theorem tells us that Q =Q(R) is a finite
dimensional simple algebra over its center C(Q). Finally let m=[Q: C]
and let {ql, cee, qm} be a basis of Q over C. Then q; =aisi“l with

2. sieR and s, regular. As it was seen in Chapter IV we can always
find a "common denominator' s, therefore we may write qi=bis_1 for
i=1,2,...,m where bi’ s€R and s is regular. Since Q is simple

we hgve

0 =0Qs =(Cb s-1+. ..+Cb s-l)s
1 m

=Cb.+...4Cb =Db.C+...+b C < RC.
1 m 1 m

But also RC<QC<Q, hence Q=RC and Theorem 7.4 is proved.
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