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INTRODUCTION 

This thesis arose from the desire of understanding sorne aspects 

of the theory of rings. My principal object was to give a self-contained 

and connected account, without pretense to completeness, of the principal 

facts about rings which satisfy polynomial identities (in short: P. I.-rings, 

cf. Definition in p. 57 .) 

By now, most of the work presented here is classical. The theory 

goes back to 1943 when M.Hall [9, Theorem 6.2J, as the result of his 

studies on projective planes, discovered that if there is a division ring 

D, for which the identity 

2 2 
(XY-YX) Z - Z(XY-YX) = 0 

holds, then either D is a field or a generalized quaternion algebra 

over its center C. Moreover D is finite dimensional over C. This 

result was later extended by Kaplansky [12] to division rings satisfying 

any polynomial identity and more generally to primitive algebras with 

polynomial identities. Much has been done since then and the names 

of Amitsur, Herstein, Kaplansky, Levitzki ,Martindale, Posner, Procesi 

and Small are familiar in the large literature on this subject. From 

this broad amount of literature l have chosen to prove sorne of those 

results which seemed to me most important and representative of the 

subject, either for their consequences (cf. Kaplansky' s Theorem) or for 

the techniques involved in their proofs (cf. Theorem 5.2 and Theorem 7.4). 
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The the sis is organized as follows. Chapters l to IV prepare the 

tools which are needed for the following chapters, so their character 

is utilitarian. Chapters V to VII are devoted to P.L-rings, and 

particularly to prime P. 1. -rings. Most of the material included in the 

first four chapters, though familiar to the experts, was unknown to 

me when l started to work in this project. Therefore, l decided to 

include them and tried to give proofs of aH relevant results used as 

an attempt to make this work as self-contained as possible. 

Chapter l contains aH properties about primitive and prime rings 

which are needed in this thesis. 

Chapter II is a short description of the centroid of a ring and its 

main properties. 

Chapter III is devoted to the study of Goldie rings and related topics. 

l have not included there but what l needed for the development of my 

work. For this reason many important results on Goldie theory are 

missing. They can be found, for example, in Goldic:'s own paper [7 J 

or in Chapter 7 of the beautiful book by Herstein [10 J. 

Chapter IV deals with the embedding of certain non-commutative 

rings into a ring of "fractions". Essentially this is an exercise on 

patience but as a mathematics student l thought l had to do it at least 

once during my lifet1me ! 

Chapter V introduces us to the heart of the subject: prime P.L -rings. 

Most of the results in this chapter are from the papers by Amitsur [4J 
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and Posner [16] although l have adapted them slightly to my purposes 

and l have supplied a little more detail to the proofs. 

Chapter VI contains what perhaps is the most important result on 

P.L-rings: Kaplansky's Theorem. This theorem says that every 

primitive P. 1. -ring R is a finite dimensional simple algebra over its 

center C(R). The approach l follow was suggested to me by Professor 

G. Michler from Tübingen University during his visit to McGill in the 

academic year 1970-1971. The main idea is to prove Kaplansky's 

Theorem for division rings (Theorem 6.7) using sorne new techniques 

developped by Martindale [14] and then reduce to this case, the general 

one, via Lemma 6.3. l take this opportunity to thank my friend and 

fellow student Kenneth Louden for his helpful suggestions on sorne of the 

proofs in this chapter. 

Chapter VII, finally, reproduces (with more details) the proof given 

recently by Goldie [8 ] about the structure of prime P. 1. -rings. 
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CHAPTER l 

GENERAL PROPERTIES OF PRIME AND PRIMITIVE RINGS 

Unless rn.entioned otherwise R will always denote an associative 

ring not necessarily containing an identity element. By an ideal of R 

we rn.ean a two-sided ide al. A proper ideal is one which is different 

from Ro Following Lambek [13, poI2] for any two additive subgroups 

A and B of R we define the residual quotients A 0 "B (read liA over 

B") and B o.A (read liB under A ") as 

A 00 B = {x ER: xB cA } 

and 

Boo A = {x ER: Bx cA } 0 

A trivial verification shows that bath A o' Band B·.A are additive 

subgroups of R. Moreover if A and B are bath left-ideals of R 

then A.' B is an ideal of R because for aU x EA.· B and for aIl r ER 

we have 

(xr)B = x(rB) c xB c A, and 

(rx)B = r(xB) c rA cA. 

Similarly if A and B are right-ideals of R, then B ·.A is an ide al. 

DEFINITION 1.1. A proper ideal P of R is caUed (right, left) 

prime if IJ ~ P for (right,left) ideals land J of R implies that l ~ P 

or J ~P. 
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LEMMA 1.1. If P is a proper idea1 of R, then the following statements 

are equivalent. 

(1) If x, y ER and xR y ç; P, then xE P or y E P. 

(2) P is right-prime. 

(3) Pisprime. 

(4) P is 1eft-prime. 

Proof: (1) ::)(2). Assume (1) and let land J be right-ideals of R 

with IJ ç; P. If I<t P, then there exists 0 f xE 1- P. Therefore (xR)J ç;IJ ç; P, 

henee xRy ç; P for all y in J. Sinee x f P, by (1) we must have y E P 

for all y in J. Henee J ç; P. 

(2) ::) (3). Obvious beeause every idea1 is a right-ideal. 

(3) ::) (4). Let land J be 1eft-idea1s of R sueh that IJ ç; P. Then 

IR and JR are idea1s of Rand (IR)(JR) = I(RJ)R ç; (IJ)R ç; PR ç; P, 

therefore by (3) IRç;p or JRç;P. If IRÇ;P, then IÇ;[xER :xRÇ;P} 

= P.·R and sinee the Ideal P.·R satisfies (P. 'R)(P.·R)ç;(P.·R)RÇ;P, 

by (3) we must have P.·Rç;P, henee Iç;P. Similar1y, if JRç;P, then 

Jç;P. Thus (4) holds. 

(4) ::) (1). Suppose (4) holds and let xRy ç; P with x and y in R. 

Then (Rx)(Ry) ç; P, therefore Rxe P or Rye P. If Rye P, then 

yE [xER :Rxep} = R·.P. But R·.P is an Ideal of R (henee a left­

ideal) satisfying (R '. P)(R·. P) ç; P, then R·. P ç; P by (4), henee 

yEP. Similarly Rxep implies xEP, so (1) holds. 
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DEFINITION 1.2. R is a prime ring if 0 is a prime ideal. 

For example, every integral domain is a prime ring. 

DEFINITION 1.3. Let S be a non-empty subset of R. The set 

S = [x ER: Sx = O} is called the right-annihilator of S. 
r 

One easily verifies that 8 is a right ide al of R. Similarly the 
r 

left-ideal S,e = [x ER: xS = O} is called the left-annihilator of S. 

A right ideal 1 of R is called a right-annihilator ideal if there 

exists a subset S of R for which 8 = 1. 
r 

Let ~ denote the ring of integers and for n E ~ and xE R write 

nx for the sum of n terms equal ta x. Given a non-empty set ScR let 

(8) denote the subset of R consisting of aU finite sums of the type 

'Er .x. + 'En.x. where r. ER, n. E ~ and x. ES. Then (8) is the smaUest 
Il Il 1 1 1 

left-ideal of R containing 8 and we call it the left- ideal generated by S. 

Observe that (8) = S therefore if 1 is a right-annihilator ideal 
r r 

of R we may always assume that I=K for some left-ideal K of R. 
r 

Left-annihilator ideals are defined sirnilarly. 

LEMW-. 1.2. The following statements are equivalent. 

( 1) 

(2) 

(3) 

R is a prime ring 

1 = 0 for every non-zero right-ideal 1 of R. 
r 

J = 0 for every non-zero left-ideal J of R. ,e 

j 
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Proof: (l) ::) (2). For every non- zero right-idea1 l of R we have 

1· l = O. Since R is prime and If:. 0 it follows l = O. 
r r 

(2) ::) (1). Assume IJ=O where l and J are right-idea1s. Then 

either 1=0 or If:.O. If If:.O, then J~I and therefore by (2) J=O. 
r 

Thus 0 is a right-prime idea1, hence a prime ideal. 

(1) ~ (3). The proof is simi.1ar and we omit it. 

The following 1emma is sometimes useful. 

LEMMA 1.3. P is a prime ide al of R if and on1y if the factor ring, 

R/P , is prime. 

Proof: For rER, let r=r+P. Assumethat P isaprimeidea1 

and x(R/P)y=O in R/P. Then xRy~P andtherefore xEP or yEP. 

- -
Thus x=O or y=O, hence R/P isaprimering. Converse1y, ifR/P 

is prime and xRy ~ P, then x(R/P)y = 0; therefore x = 0 or y = 0 . 

Thus xE P or y EPand P is a prime ideal. 

DEFINITION 1.4. The center of a ring R, denoted by C(R), consists 

of all e1ements c ER such that cx = xc for all x in R. 

It is an easy exercise to verify that C(R) is a subring of R. 

LEMMA 1.4. The center of a prime ring is an integra1 doma in. 

Proof: If xy = 0 with x and y in C(R), then xRy = Rxy = 0 and 

therefore x = 0 or y = 0 by the primene s s of R. 
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If we consider the non-zero two-sided ideals of a prime ring R 

as rings, then the properties of R carry over to them, name1y 

LEMMA 1.5. If R is a prime ring and P is a non-zero idea1 of R, 

then P is a prime ring. 

Proof: Let xPy = 0 with x and y in P. A ssume x f: O. Then 

xP is a non- zero right-idea1 of R (otherwise x EPi, contradicting 

our assumption). Then (xP) = 0 by Lerruna 1.2, therefore y = 0 and 
r 

P is a priIne ring. 

DEFINITION 1.5. The ring R is called semiprime if for any two-

sided idea1s l and J of R, IJ= 0 implies In J = O. 

COROLLARY 1.6. A prime ring is a1so semiprime. 

Proof: If R is prime and IJ = 0 for idea1s land J of R, then 

1=0 or J=O, hence InJ=O. 

Later on we will need the following porperty of prime rings. 

LEMMA 1.7. If R is a prime ring so is R[X], the ring of p01y-

nomials in one corrunuting indeterminate X over R. 

Proof: Assume p(X)R[X]q(X)=O where p(X) and q(X) are in 

R[X]. If both p(X) and q(X) are different from 0, let a and b 

denote the 1eading coefficients of p(X) and q(X) respective1y. Since 

R Ç;R[X] we have f(X) = p(X) R q(X) = O. But the 1eading coefficient of 

'-
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the polynomials f(X) is aRb and this is different from 0 beeause 

R is prime and both a and b are different from O. Therefore we 

must have p(X) = 0 or q(X) = O. Henee R[X] is prime. 

DEFINITION 1.6. A right (left) ideal l of R is eaUed regular 

if there exists an element u in R sueh that x-ux (resp. x-xu) 

belongs to l for aU x in R. 

If R happens to have a unit element e, then x-ex = x-xe = 0 

for aU x in R, therefore every right (left) ideal is regular. 

It is clear from Defin1.tion 1.6 that every right (left) ideal J 

eontaining a regu~ar right (left) ideal l is itself regular. In parti­

eular, sinee every right (left) ideal is eontained in a maximal one 

we see that every regular right (left) ideal is eontained in a maximal 

regular right (left) ideal. 

DEFINITION 1.7. A right R-module A is eaUed irreducible if 

AR f 0 and A has no submodules other than 0 and itself. 

The following result deseribes aU the irreducible right R-modules 

of R. 

LEMMA 1.8. A is an irreducible right R-module if and only if A 

is isomorphie as R-module to R/M for sorne maximal regular right 

ideal M of R. 
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Proof: Assume A is irreducible and consider the set B = 

[a EA : aR = O}. Then B is a submodule of A and since A is irre-

ducible either B = 0 or B = A. But AR /; 0 by Definition 1. 7, so 

B = O. Therefore for aIl a EA, a/;O we have aR /; 0, hence aR = A 

because aR is a submodule of A. Fix a non-zero element a EA 

and define the map f: R~A by the rule f(x) = ax for aIl x in R. 

Then f is an homomorphism of right-R-modules,moreover f is 

surjective because aR=A. Let M=Kerf = [xER:ax=O}. lt is 

weIl known that M is a right ideal and that A = lm f ~ R /M. Let l 

be a right-ideal of R such that Mel and M /; l. Then f(l) is a 

non-zero submodule of A, therefore must equal A Since f is sur-

-1 -1 
jective we have l = f f(l) = f (A) = R . Rence M is a maximal right-

ideal. FinaIly because aR =A there is an element u in R with 

au = a. Then for every x in R, aux = ax which implie s a(x-ux) = o. 

Thus x-ux E M for aIl x in R, i. e. M is regular. 

Conversely, assume M is a maximal regular right-ideal of R. 

We want to show that R/M is an irreducible right-R-module. By 

hypothe sis, there exists uER such that x-ux E M for aIl x in R. 

If (R/M)x=O with x in R, then RxeM. In particular uxEM, there-

fore x = (x-ux)+ux belongs to M. Thus (R/M) x = 0 if and only if 

xE M. Since M /; R this implies (R/M)R /; O. If A is a submodule 

of R/M then, one easily verifies that A is of the form l/M for sorne 
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right ideal l with MeIeR. Since M is maximal we ~ust haV'l~ 

1= M or l = R, therefore A = 0 or A = R/M, hence R/M is irre­

du cible . 

There are many ways of introducing the concept of primitive 

ideals; we follow Lambek's approach [13, p. 52J although it should be 

noticed that our rings do not necessarily contain a unit element. 

DEFINITION l. fi. An ideal P in R is called right (left) primitive 

if there is a maximal regular right (left) ideal M such that P is the 

largest ideal contained in M. 

Observe that if P is the largest ideal contained in a maximal 

regular right-ideal M, then P = R .. M = (x ER: Rx e M}. Indeed R·. M 

is an ideal of R contained in M and containing P, hence equal to P. 

Thus P is right-primitive if and only if P = R .. M for sorne maximal 

regular right ide al M of R. Similarly P is left-primitive if and only 

if P = N .' R for s orne maximal r e gular left ideal N of R. 

It follows immediately fr om Definition l. 8 that every maximal 

ideal is a right and left primitive ideal. 

DEFINITION l. 9. R is said to be a right (left) primitive ring if 0 

is a right (left) primitive ideal. 

REMARK. It has been shown by Bergman [6] by constructing a counter-

example that right-pi"Ï.mitive does not imply left-primitive. 

,-
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LEMMA 1.9. P is a right (left) primitive ideal of R if and only if 

RI P is a right (left) primitive ring. 

Proof. Assume P is right-primitive. Then P=R·.M for sorne 

maximal regular right ideal M of R. Since M is regular, there 

exists uER such that x-ux E M for aU x in R. Then x-üx E MI P 

for aU x =x+P in R/P, so M/P is a right-regular-ideal in R/p. 

Moreover M/P is a maximal right ide al because so is M. We 

claim. that (R/P)·. (M/p) = 0 and·therefore R/P is right-primitive. 

Let x be in (R/P)·. (M/P). Then for aU r in R, rx = rx+ P E M/P 

and consequently rxEM. Therefore xER·.M=P, hence x=O. Thus 

our claim is proved. 

Conversely, if R/p is a right-primitive ring, then (R/P)·. (M/P) = 0 

for sorne maximal regular right ideal M/P of R/P and it foUows that 

M is a maximal regular right ideal of R containing P. Then for aU 

x in P, Rx e PeM therefore PeR 0. M. To prove the opposite inclusion 

let xERo.M thenfor aU r in R, rx=rx+PEM/P so (R/P)xeM/Po 

Therefore x = 0, hence xE P. The proof of Lemma 1.9 is now com­

plete for the case of right-primitive ide aIs . For left-primitive ideals 

the argument is similar and we omit it. 

A characterization of primitive ideals is given by the foUowing 

resu1t due to Jacobson. We first recaU that if A i5 a right-R-module , 

then A nn
R 

(A) = (x ER: Ax = o) i s an ideal of R caUed the annihilator 

of A in R. The right-R-module A is faithful if Ann
R 

(A) = O. 

'-
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LEMMA 1.10. Pis a right-primitive ideal of R if and only if there 

exists an irreducible right R-module A such that Ann
R 

(A) = P. 

Proof. If P is right-primitive, then P = R·.M for some maximal 

regular right ideal M of R. Then A = R/M is an irreducible right 

R-module by Lemma 1.8. Since peM we have AP = 0, sa peAn% (A) 

and if xEAn%(A) then RxeM, hence xER·.M=P. Thus AnnR(A)=P. 

Conversely, assume that P =Ann
R 

(A) for some irreducible right­

R-module A. By Lernma 1.8 we may assume A = R/M where M is a 

maximal regular right ideal. Since A P = 0 we have peM therefore 

PeR·.M. Furtbermore if xER·.M, then RxeM, sa Ax=O and 

xEAn%(A)=P. Hence P=R·.M and sa is right-primitive. 

COROLLARY 1. Il. R is a right-primitive ring if and only if there 

exists a faithful irreducible right R-module . 

Proof. Ois a right-primitive ideal of R is and only if 0 = Ann
R 

(A) 

for some irreducible right R-moduleA,i.e. if and only if A is faithful 

and irreducible. 

The next re suIt shows that in a ring R the clas s of right primitive 

ideals is smaller than the class of prime ideals. 

LEMMA 1.12. If P is a right primitive ideal of R then P is prime. 

Proof. By hypothe sis and Lemma 1. 10 we have P = A nn
R 

(A) for 

some irreducible right-R-rnodule A. Assume xRye P for x and y 
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in R. If x ê P, then Ax f:. 0 and therefore ax f:. 0 for some non-zero 

element a in A. Since A is irreducible we have (ax)R = A there­

fore 
Ay = (ax)Ry = a(xRy) = O. 

Then y E P, hence P is prime. 

DEFINITION 1.10. The Jacobson radical of a ring R, denoted by 

Rad(R), is the intersection of aU its right-primitive ideals. R is 

caUed semi-primitive if Rad(R) = O. If R has no right-primitive 

ideals, we write Rad(R) = R and caU R a radical ring. 

REMARK. Being the intersection of ideals Rad(R) is itself an ideal 

of R. Strictly speaking, we should caU Rad(R) the right-Jacobson 

radical but we should see later that the intersection of aU left-prinlitive 

ideals of R coincides with Rad(R). 

DEFINITION 1. Il. An element xE R is caUed right-quasi-regular 

if there exists x' ER such that x+x'+xx' = O. If this is the case x' 

is called a right-guasi-inverse of x. 

A right ide al l of R is said to be right-quasi-regular if aU its 

elements have a right-quasi-inverse. 

The definition of Rad(R) does not tell us much about the nature 

of its elements. This is essentiaUy the content of the foUowing 
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THEOREM 1. 13. 

(i) Rad(R) is the intersection of aU the maximal regular right ideals 

of R. 

(ii) Rad(R) contains aU the right-quasi-regular right-ideals of R 

(i. e. Rad(R) is the largest right-quasi-regular right-ideal of R). 

Proof. (i) By definition Rad(R) = np where Pruns over aU the 

right-primitive ideals of R. Then by the observation made after 

Definition 1.8, Rad(R) = n(R·. M) as M runs over aU the n d.ximal 

regular-right-ideals of R, therefore since R·. McM we get Rad(R) 

* c nM. To prove the reverse inclusion let M = nM and for each 

:!::: 
x E M define l = (xy+y : y ER}. Then lis a right-ideal of R, 

x x 

furthermore taking u = -x in Definition 1.6 we see that l is regular. 
x 

If l f.R, then l is contained in a maximal regular-right-ideal M 
x x x 

of R. Since xE M':< cM for aU y in R we have xy E M, therefore 
x x 

y = (xy+y)-xy belongs to M . Thus M =R which is a contradiction. 
x x 

Therefore we must have l =R which in particular implies the existence 
x 

of an element x' in R with xx' +x' = -x. Then x+x' +xx' = O. Hence 

* every element in M·· is right-quasi-regular. 

Next, if M':< f. Rad(R), then since Rad(R) CM':' there must exist a 

non-zero element Xo E M':' and a maximal regular-right-ideal M of R 

such that xo does not belong to the right-primitive ide al R·.M. Then 

(R/M)x
O 

f. 0, Sù (R/M)M':' f. 0 hence rM':' f. 0 for some r = r+M with 

- * rER-M. Since rM is a non-zero submodule of R/M and R/M is 
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-'-
irreducible (Lemma 1.8) we deduce rM-'- = R/M. This implies the 

existence of xl in M':' satisfying rX
l 

= -r. But since xl E Mi.' it 

has a right-quasi-inver se xl' therefore 

* Thus -r E M which is a contradiction. Hence we must have M = Rad(R). 

This shows that Rad(R) is right-quasi-regular and also proves (i); it 

remains to show that Rad(R) contains aU right-quasi-regular right-ideals 

of R. The proof is exactly the same as the one given above to show that 

,'-
M'- c Rad(R) so we omit it. 

As it was pointed out after Definition 1.10 one can introduce the 

concept of left- radical of R as the inter section of aU its left-primitive 

ideals but fortunately this inter section coincides with Rad(R). lndeed 

we have the foUowing 

THEOREM 1.14. 

(1) Rad(R) = np' as p' runs over aU the left-primitive ideals of R. 

(2) Rad(R) = nM' as M' runs over aU the maximal regular left ideals 

of R. 

(3) Rad(R) contains aU the left-quasi-regular left-ideals of R. 
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Proof. Let J = np' as p' runs over an the left-primitive-ideals 

of R. Using the left analogue of Definition 1.11 and Theorem 1.13 

one shows that (2) and (3) hold with J instead of Rad(R). To prove 

that J = Rad(R) we show that Rad(R) is a left-quasi-regular ideal 

of R, hence Rad(R)cJ, and similarly that J is a right-quasi-regular 

idealof R therefore JcRad(R). 

Let xE Rad(R) and let x' be its right-quasi-inver se. Then 

x' = x-xx' and since xE Rad(R) so does x'. Therefore there exists 

x" E R satisfying x' + x" + XiX" = O. Then 

(x' + X+XX' )x" = 0 = x(x' + x"+ x' x") 

this implies that XiX" = xx'. From 

X/+X+XX' = 0 =X/+X"+X/X" 

we deduce then that x = x". Thus x+ x' + XiX = 0 which says that x is 

left-quasi-regular. Hence Rad(R) c J. The other inclusion is proved 

in the same way. 

The Jacobson radical has another important property, namely 

LEMMA 1.15. The factor ring R/Rad(R) is semiprimitive. 

Proof. Let J = Rad(R). We must prove that Rad(RI J) = O. The 

right-primitive-ideals of RI J are of the form pl J where P is a 

right-primitive-idealof R. lndeed any ideal of RI J is of the type 

Il J where l is an ideal of R containing J. If pl J is right-primitive, 

then PI J is the largest ide al contained in sorne maximal regular -right 

'-



15 

ideal MI J of RI J. By the standard argument already used in the 

proof of Lemma 1.9, we conclude that M is a maximal regular-right­

ide al containing P. Mor eover P is the lar ge st ide al contained in 

M because otherwise we could put an ideal between PI J and MI J 

which is impossible. Thus P is right-primitive. Therefore 

Rad(RI J) = n(PI J) 

as Pruns over aH right-primitive ideals of R. Then x = x+ J E Rad(RI J) 

if and only if xE P for aH P, 1.. e. if and only if x EJ. Hence 

Rad(RI J) = O. 

,-
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CHAPTER II 

THE CENTROID OF R 

FoIlowing Herstein [lO,p.46] and for the purposes of this chapter, 

it is convenient to write hom.om.orphism.s on the right side of their ar-

gl.unents and we do so. 

+ + + Given a ring R, let R be its additive group and E(R) = Hom.(R ,R ) 

the ring of endom.orphism.s of R +. For rand s in R define the m.aps 

À 'R+~R+ and 
r' 

by the rules (x)À = rx and (x)p =xs respectively for aIl x in R. The 
r s 

m.aps À and pare caUed respectively left-m.ultiplication by rand 
r s 

right-m.ultiplication by s. 

It foIlows from. the distributive la'.v in R that Àr and ps belong to 

E(R) for aIl rand s in R. Denote by B(R) the subring of E(R) 

generated by aU the À and p for rand s in R. The ring B(R) is 
r s 

caIled the m.ultiplication ring of R. Under the m.apping RxB(R) ~ R 

defined by sending (x, (3) ERxB(R) into the im.age (x){3 of x under {3, 

it is easy to verHy that R becom.es a B(R)-m.odule. 

If M is a B(P.)-subm.odule ofR, then x{3EM for an (3EB(R) and 

for an xE M. In particular XÀ. = rx and xp = xr are in M for aIl 
r r 

xE M and for aU r ER. Thus M is a two- sided ideal of R. Conver sely 
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if M is a two-sided idea1 of R, then Mis a B(R)-submodu1e of R. 

Recalling that a ring R having no proper idea1s other than a is said 

to be simple the above observation establishes the following 

LEMMA 2.1. R is an irreducib1e B(R)-modu1e if and on1y if R is 

a simple ring. 

DEFINITION 2.1. The centroid of R (denoted by O(R)) is the ring 

of endomorphisms of R considered as a B{R)-modu1e, i. e. O(R) = 

HomB(R) (R, R). 

The following result characterizes O(R) 

LEMMA 2.2. O(R) is the set of all e1ements in E(R) which commute 

e1ementwise with B(R). 

Proof. Let W EO(R). Since B = B(R) is generated by all the À and 
r 

p for rand s in R, it suffices to show that WÀ =Àr W and wp = 
s r s 

p w. Let xER, then 
s 

x(WÀ ) = (XW)À = (xÀ )w 
r r r 

because W E HomB(R, R), therefore x(wÀ ) = x(À w) and since this holds 
r r 

for aU x in R we get WÀ =À W. Similar1y Wp = P W for aH s in R. 
r r s s 

Conver se1y, assume that W E E(R) commutes with every e1ement 

{3 E B. Then for all x in R 

(XW) (3 = x(w{3) = x({3W) = (x{3)W 

therefore wis a B(R)-endomorphism of R, hence W E O(R). 
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COROLLAR y 2.3. w E O(R) if and only if 

(xy)w = (xw)y = x(yw) 

for aU x, y in R. 

Proof. If w EO(R) and x, y are in R, then 

(xy)w=(YÀ )W=y(À w)=y(WÀ ) = (YW)À =x(y'.c.l) 
x x x x 

and 

(xY)W=(xp )W=x(p W)=x(wp ) = (XW)p = (XW)y. 
y y y y 

Conversely, if the condition holds,then WÀ =À W and wp =p W 
r r s s 

for aU rand s in R, hence W E O(R) by Lerruna 2.2. 

LEMMA 2.4. If R 
2 = R, then O(R) is commutative. 

Proof. 

R we have 

Assume that W and a are in O(R). For any x and y in 

(xy) (wa) = «xy)w)a = «xw)y)a = (YÀ )a 
xw 

= (ya)À = (ya)(xw). 
xw 

By CoroUary 2.3 we have 

(xw)(ya) = (x(ya))w = «(xy)a)w = (xy)(aw) 

therefore (xy)(wa) = (xy)(crw) for aU x, y ER and for aU w, a E Q(R). 

Since by hypothesis, every r ER can be expressec'l. as a finite sum 

~x.y. with x. and y. in R we have 
. 1 1 1 1 
1 

'-



(r)(wCT) = (~ X.y.)(WCT) 
. l 1 
1 

= ~ (X. Y. }(CTW) 
. 1 1 
1 
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= ~ (X.Y.)(WCT) 
. 1 1 
l 

= (~ x. y .)CTW = (r )(CTW) • 
l l 

i 

This holding for aU r in R, we conclude WCT = CTW hence O(R) is 

conunutative. 

Before proving our next resu1t about O(R), for the case in which 

R is a simple ring, we need the following well known 1emma due to 

Sclmr and the definition of an a1gebra. 

LEMMA 2.5. If A is an irreducib1e R-modu1e, then HomR(A,A), 

the ring of R-endomorphisms of A, is a division ring. 

Proof. Let f E Hom
R 

(A, A) and assume f -F O. Since A is irreducib1e, 

f(A)=A and Kerf=(aEA:(a)f=O}=O. Thus f isanautomorphism 

-1 
of A, therefore f , the inverse automorphisrn. of f, exists and be10ngs 

to Hom
R 

(A, A). Since f f-1 = e where e is the identity autorn.orphisrn. 

of A the proof of Schur 1 s LeInma is cOInp1ete. 

DEFINITION 2.2. Let R be a cOInmutative ring. An a1gebra over R 

(or R-algebra) is a pair (A, a) where A is an R-module and a:AxA...:;A 

is a bilinear mapping; i. e. a mapping satisfying 

a(xa+yb, c) = xa(a, c) +ya(b, c) 

and 

a(a, xb+ yc) = x a(a, b) + Y a(a, c) 

,-
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for aU x, y in R and for aU a, b, c in R. 

A homeomorphism of R-algebras (A, a)~(B, (3) is a homeomorphism 

f:A ~ B of R-modules with the additional property: 

f(a(a, a')) = (3(f(a), f(a / )) 

for aU a, a' in A. 

(A, a) is caUed an associative R-algebra if 

for aU al' a 2 , a
3 

in A. 

By abuse of language, one often speaks of the "R-algebra A" 

instead of the "R-algebra (A, a)". Furthermore, in order to simplify 

the notation, it is customary to write the law of composition a as 

mulitplication, i. e. a(a, b) = ab, for aU a, b in A. 

It is easy to verify that relative to this multiplication A is a ring 

and from the bilinearity of the map ait follows that the ring structure 

and the R-module structure of A are linked by the rule 

x(ab) = (xa)b = a(xb) 

for aU x in R and for aU a and b in A. 

If the multiplication in A has a unit element e then Re is contained 

in the center of A, because for aU x in R and for aU a in A we have 

(xe)a = x(ea) = x(ae) = a(xe). 

,-
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A subset S of A is called a sub-a1gebra of A if S is a submodu1e 

of A and S is a subring of A. Similar1y l is an idea1 of A if l is 

an idea1 of the ring structure of .A and l is a submodu1e of .A. With 

these definitions in mind, it is then c1ear what do we mean when we 

ta1k about a1gebra idea1s, a1gebra homomorphisms, simple a1gebras, 

etc. One can define, for examp1e, the radical of A as an algebra in 

a similar way as we did for rings in Chapter 1. Fortunate1y the 

radical of A as an a1gebra coincides with the radical of A as a ring. 

We do not need this resu1t in what follows so we mention it on1y, and 

refer to Herstein 1 s book [10, p. 15] for a proof of it. 

THEOREM 2.6. If R is a simple ring, then 

(i) O(R) is a field, 

(ii) R is an a1gebra over O(R), 

(iii) if C(R) f 0, then C(R) = O(R). 

Proof. By Lemma 2.1 to say that R is simple is equiva1ent to 

saying that R is an irreducib1e B(R)-modu1e, therefore O(R) is a 

division ring by Schur 1 s Lemma. Since R simple, R
2 

=R, hence O(R) 

is cormnutative by Lermna 2.4. Thus O(R) is a field. 

By mapping (x, w) into xw for aU x in Rand w in O(R), it is 

obvious that R becomes an O(R) -module. Moreover, by Corollary 2.3 

. (xy)w = (xw)y =x(yw) so R is an a1gebra over O(R). Thus a simple ring 

is a simple a1gebra over its <::entroid. 

'-
i 
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Next assume that C(R) 1= 0 and 01= cE C(R). Then cR = Re is a 

non-zero ideal of R therefore coincides with R. Then for aIl x in R 

there is an element x' in R such that ex' = x' c = x. In particular there 

is a c' E R with cc' = c' c = c. Then for aIl x in R 

c' x = c' ( ex') = (c' c )x' = ex' = x 

and 

xc' = (x' c)c' = x' (cc') = x' c = x 

thus c'x=xc'=x. If e is any other elementwiththis property, then 

e = ec' = c' e = c', hence R has a unique unit element e. 

From the definition of C(R) it foIlows that 

(xy)c = x(yc) = x(cy) = (xc)y 

for aIl x, y E R and for aU cE C(R), therefare C(R) ç; O(R). 

Conversely, let w E O(R), then since R has a unit element e we 

have for aU x in R 

xw = (xe)w = (eX )W = (ew)À = x(ew) 
x x 

and similarly 

xw = (ex)w = (ep )w = (ew)p = (ew)x. x x 

Thus xw = x(ew) = (ew)x for aU x ER, hence ew E C(R). Moreover 

since 

o = xw-x(ew) = x(w-ew) 

for aIl x in R, we get R(w-ew) = O. 

Being a field, O(R) is simple and since R is an algebra over O(R) 
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we get w-ew E AnnO(R)(R) = O. Therefore w=ew E C(R), thus O(R) ~C(R). 

This com.pletes the proof of Theorem. 2.6. 

'-
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CHAPTERIII 

GOLDIE RINGS 

In this chapter we prove a classical result by Utumi (Theorem. 3.6) 

and introduce the conCf~pt of Goldie ring which is fundam.ental for the 

developm.ent of later chapters. We begin with a 

DEFINITION 3.1. A right ideal l of R is called essential (or large) 

if InJ#=O for every non-zero right ideal J of R. 

LEMMA 3. l. Let R be an arbitrary ring. 

(a) If land J are es sential right ideals of R sa is In J. 

(b) If l is an essential right ideal of R sa is every right ideal of R 

containing l . 

(c) If l is an essential right ide al of R, then for aU x in R 

-1 
x l = [y ER: xy E Il 

is an essential right ideal of R. 

Proof. (a) Let K be a non- zero right ideal of R. If (1 n J)nK = 0, 

then In(JnK) =0, therefore JnK=O because l is essential and hence 

K = 0 because J is also essential. This contradicts the assum.ption 

K #= O. Thus (1 n J) n K #= 0 for every non- zero right ideal K. 

(b) Trivial. 

(c) Let J be a non-zero right ideal of R and x any elem.ent in R. 

Then we consider two cases. 

j 
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(i) 
-1 -1 

xJ == 0 El; i. e. J ex l, therefore x In J = J f. O. 

(ii) xJ f. O. Since xJ is a right ideal and l is essential, we have 

l nxJ f. 0, 1. e. there exists a non- zero y in J such that xy Er. Hence 

-1 
Of.yEx InJ. 

-1 
(i) and (ii) irnply x l is essential. 

The concept of essential right ideal as well as the following definition 

and lernrna are due to R.E.Johnson. We remark that for the set (x} 

consisting of a single elernent xE R we write (x) for the right-annihilator 
r 

of (x}. 

LEMMA 3.2. For a ring R the set 

Z (R) = (xER: (x) is essential} 
r r 

is a two- sided ideal of Rand 'lS called the right- singular ideal of R. 

Proof. For all x and y in Z (R) we have (x) n (y) ç;; (x±y) therefore 
r r r r 

(x±y) is essential and hence x±y EZ (R). 
r r 

(i) 

For aU a in R and x in Z (R) we have 
r 

(x) ç;; (ax) because (ax)(x) =a[x(x) ] =a·O=O therefore (ax) 
r r 1" r r 

is essential, hence ax E Z (R). 
r 

(ii) a -l(x) ç;; (xa) , because 
r r 

-1 -1 
(xa). a (x) = x[a· a (x) ] ç;;x(x) = 0 

r r r 

then (xa) is essential (by Lemrna 3.1 (b) and (c)), hence xa E Z (R). 
r r 

Thus Z (R) is an ideal of R. 
r 

,-
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Let g be a set of right ideals of R. We say that R satisfies the 

ascending chain condition on g if for each ascending sequence 

there exists k such that Ij = Ik for aU. j ;;:: k. 

For the special case in which g consists of aU right ideals of R 

we say that R is right Noetherian if it satisfies the ascending chain 

condition on g. 

LEMMA 3.3. R satisfies the ascending chain condition on a set g 

of right ideals if and only if every non-empty subset of g has a 

maximal element. 

Proof. Assume R satisfies the ascending chain condition on the 

set g of right ide aIs . Let a be any non- empty subset of g and 

suppose a has no maximal element. Take any IlE a; since Il is not 

a maximal element of a, there exists an ideal 1
2 

E a such that Il 1 1
2 

. 

By repeating this argument we construct an infinite ascending sequence 

Il 11
2 

1= 13 # . .. of ideals in g contrary to our assumption. Hence 

a must have a maximal element. 

Conversely, if every non-empty subset of g has a maximal element 

and if Il CI
2 

c ... is any ascending sequence w{th Ij Eg (j=l, 2, ... ), 

then the set a = [1 1,12 , ... } has a maximal element Ik' From 

'-
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Ik Cl
k
+l C. .• and the maxima lit y of Ik we deduce Ij = Ik for aIl j ~k. 

Thus R satisfies the ascending chain condition on g. 

REMARK. In view of the previous lemma, the ascending chain con­

dition on g is also referred to as the maximum condition on g. 

By considering sequences of the type 

one defines in a similar fashion as above the concept of: descending 

chain condition on a set g of right ideals of R. We state without 

proof the analogue of Lemma 3.3 for future reference. 

LEMMA 3.4. R satisfies the descending chain condition on a set g 

of right ide aIs if and only if every non-empty subset of g has a minimal 

element, (i. e. if and only if R satisfies the minimum condition on g). 

R is said to be right-Artinian if it satisfie s the minimum condition 

on the set of aIl right ideals. 

DEFINITION 3.2. An element x in R is said to be nilpotent if there 

exists a positive integer n such that xn = o. 

A (right, left) ideal l is said to be nilpotent if there exists a positive 

integer n such that In = 0 and l is called a nil (right, left) ideal if every 

element in l is nilpotent. 

,-



,-
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In 1.5 we introduced the concept of semi-prime rings. It turns 

out that such rings have no nilpotent ideals different from 0 and that 

the intersection of aIl their prime ideals is zero. In order to prove 

this we would have to introduce the concepts of prime radical and 

strongly nilpotent elements. Since we will not be using these ideas 

in what follows we prefer to prove only part of these results and refer 

to Lambek's book [13, Proposition 2,p.56] for the complete proof of 

them. 

LEMMA 3.5. If R is a semiprime ring, then 0 is the only nilpotent 

(right, left) ideal. 

Proof. Let l be a nilpotent right idea1 of R. 
n 

Then 1 = 0 for sorne 

positive integer n, therefore the ideal RI is nilpotent because 

n n k 
(RI) !;;RI = O. Let k be the least positive integer for which (RI) = O. 

Since R is semiprime and 0 = (RI)k = (RI)(RI)k-1 we have 0 = (RI)n(RI)k-1 = 

(RI)k-l and this is impossible unless RI =0. If this is the case, then 

I!;;R . But R . R = 0 so R = 0 because R is semiprime. Hence l =0. 
r r r r 

Eàr nilpotent (left) ideals, the proof is similar. 

The following theorem due to Utumi will be of use 1ater. 

THEOREM 3.6. If R is a semiprime ring which satisfies the maximum 

condition on right-annihilators, then R has no non-zero nil (right, left) 

ideals. 
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Proof. Let l be a non- zero nil right-ideal of R and let g = [(x) : 0 # x E I} . 
r 

Since l is nil for every non-zero element x in l, there exists a positive 

integer k(x) such that xk(x) = 0 and xk(x) -1 # O. This simple remark 

implies that every (x) E g is different from zero. Since 1#0, the set g 
r 

is non-empty therefore by hypothesis ~ has a maximal element (xO)r. 

m-l 
We observe that k(x

O
) =2. lndeed if k(x

O
) =m>2, then since (xO)r Ç;(x

O 
)r 

andsince o#xom-lEI, the maxima lit y of (xO)r forces (xO)r=(xOm-1)r. 

m-l m m-l 
Then from (xO )xO = Xo = 0 it follows Xo E (x

O 
)r =(xO) r hence 

2 
Xo . Xo = Xo = 0 . 

We claim that xOyxO = 0 for all y in R. We may assume that y ft. (xO)r 

otherwise the result is trivial. Since the non-zero element xoy is in l 

n n-l n-l 
we have (xoy) =0 and (xoy) #0 where n=k(xoY)· Now (xoy) xO=O 

n n-l n-l . 
because otherwise from 0 = (xoy) = ((xoY) xO)y we deduce y E ((xoy) xO)r 

;;2 (xO)r ,hence bythe maximality of (xO)r in g, this last inclusion is an 

n-l 
equality, then y E (xO)r contradicting our assumption. Then (xoyJ Xo = 0, 

therefore xOyxO = 0 if n=2. If n >2, then from 

and the fact that 

Again using the maximality of (xO)r we conclude that yx
o 

E (xO)r hence 

xyxO = O. The proof of our claim is now complete, and since it holds 

for aU y in R we obtain in particular that xOR 
2 

Xo = 0 and hence 

(RxOR)(RxOR) = O. Thus RXOR is a nilpotent ideal of the semiprime ring R, 

,-
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therefore RXOR = 0, henee Rx
O 

S;R,.e' Sinee R,.e ·R,.e = 0 using LemIna 3.5 

againwe eonc1ude that R,.e=O. Therefore RxO=O so xOERr and sinee 

R is semiprime Rr = 0 forcing Xo = O. This eontradiets the definition of 

g and therefore eontradiets the hypothesis that l was a non-zero ni! 

right-ideal. Henee 0 is the only nil right-ideal of R. 

Next let J be a ni! left-ideal. Then for all y in J the left-ideal 

Ry is ni! and therefore for aU x in R there is a positive integer t = t(x) 

satisfyiug (xy)t=O. This implies (yx)t+l =y(xy)tx=O. Thus yR is a 

ni! right-ideal of R so by the first part of the proof yR = O. Then 

y E R,.e = 0, therefor e y = O. Sinee y was any element in J we eonc1ude 

J = 0 whieh completes the proof of Utumils Theorem. 

Rings without non-zero ni! ideals have the property that their ring 

of polynomials in one eommuting indeterminate are s.emiprimitive. This 

result is due to Amitsur and we follow below his original proof, given 

in [2J. One other type of proof ean be found in Hersteinls book [10, 

pp. 150-152 J. As usual R [XJ stands for the ring of polynomials over 

R in one eOmInuting indeterminate X. 

LEMMA 3.7. Let l be a non-zero ideal of R[XJ and let 

(a.ER, a #0) 
J n 

be a non- zero polynomial in l having minimal degree. If there exists 

Il 11-1 
bER satisfying ar-b = 0 for sorne positive integer IL, then a r- p(X)b = O. 

n n 
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Proof. Since l is an ideal of R [X] and p(X) El so does q(X) = 

f.L-1 a p(X)b. 
n 

But the coefficient of X
n 

in q(X) is a f.Lb = 0 therefore 
n 

the minima lit y of the degree of p{X) implies q(X) = O. 

COROLLAR y 3.8. Let l be a non-zero ideal in R[X] and p(X) = 

n 
aO+alX+ ... +anX , (an#O) a polynomial of minimal degree contained 

in 1. If there exists r(X) in R[X] such that a f.Lr(X) = 0 for sorne 
n 

positive integer f.L, then a À p(X)r(X) = 0 for every integer À ~ f.L-1 • 
n 

m . 
Let r(X)= Eb.XJ, b.ER. Since a f.Lr(X) =0 for sorne 

j=O J J n 
Proof. 

positive integer f.L, we have a f.Lb =0 for j=O, l, ... ,m. Then Lemma 
n j 

11-1 À 
3.7 implies a'" p(X)b. = 0 and hence a p(X)r(X) = 0 for every integer 

n J n 

NOTATION. As pointed out in Chapter l our rings do not necessarily 

have a unit element therefore in general X does not belong to R [X]. If 

n 
t(X) =bO+blX+ ... +bnX we will use the notation t(X)X for the poly-

2 n+l 2 n+l 
nomial bOX+blX + ... +bnX . Similarly Xt(X) = XbO+X b

l 
+ ... +X b

n 

We can now prove Amitsurls 

THEOREM 3.9. If R is a ring having no non-zero nil ideals, then 

R [X] is semiprimitive. 

Proof. Assume that J = Rad(R [X]) is not zer 0 and let n be the 

minimal degree of the non-zero polynomials in J. Let L be the set 

consisting of 0 and the leading coefficients of aIl the polynomials in J 
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having degree n. Then Lis a non-zero ide al of R. If we can show that 

L is nil, then by hypothesis L = 0 which is a contradiction. With this 

in tnind, let 0 # a E L. By definition of L there exists a polynomial 

p(X) =aO+alX+ ... +anX
n 

in J with an =a. In-R[X] we have anX =Xa
n 

therefore since J is an ideal p(X) E J implies p(X)Xa E J. By 
n 

Propositions 1.13 and 1.14 there exists q(X) E R[X] satisfying 

p(X)Xa +q(X)+p(X)Xa q(X) = 0 (1) 
n n 

and 

p(X)Xa +q(X)+q(X)p(X)Xa = O. 
n n 

(2) 

From (1) we get q(X) =Xt(X) where t(X) = -p(X)Xa q(X)-p(X)Xa 
n n 

belongs to R[X]. 

2 
Let s(X) = p(X)a . If s(X)=O, then a = 0, hence a = a is nilpotent 

n n n 

as required to prove. If s(X) # 0, then since s(X) belongs to J and 

has degree at most nits degree must be equal to n beeause of the 

minimality of n. Therefore a 2 #0. From (1) we deduce 
n 

therefore 

2 
Xs(X)+Xt(X)+X s(X)t(X) = 0 

s(X)+t(X)+Xs(X)t(X) = 0 (3) 

sinee in R[X] we have Xr(X) =0 if and only if r(X) =0. Bya similar 

reasoning (2) implies 

s(X)+t(X)+Xt(X)s(X) = 0 ( 4) 

'-

j 
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Suppose now that for every positive integer #J. is a #J.t(X) -F O. 
n 

We will derive a contradiction. Let V be the minimal d~gree of 

the polynomials a #J.t(X) where #J. ranges over the positive integers. 
n 

Express t(X) as 

(5) 

From the definition of V we deduce that a #J.b -F 0 for every #J. 
n V 

and a
n

77't
2

(X) = 0 for sorne fixed positive integer 77'. Since s(X) is 

a polynomial of minimal degree in J by Corollary 3.8 we have 

a:s(X)t
2

(X) = 0 for aH #J. ~ 77'-1. Substitution of (5) into (3) and left­

multiplication by a 277' yields 
n 

277' 277' 277' = a s(X)+a tl(X)+a Xs(X)t1(X) 
n n n 

(6) 

Since the polynomial (6) is zero aU its coefficients m.ust vanish. In 

. l h ff" f Xn +v+ l h' h' 27T+2b b 0 parhcu ar t e coe 1C1ent 0 w 1C lS a must e , 
n V 

contradicting our previous remark that a #J.b -F 0 for aH #J.. There­
n V 

fore the as s um.pti on that a J.Lt(X) -F 0 for aU #J. is false. Thus 
n 

a Àt(X) = 0 for som.e integer À >0. Multiplying (4) on the left by a À 
n n 

we ob tain 

o = a Às(X)+a \(X)+Xa Àt(X)s(X) = a Às(X) 
n n n n 
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therefore a À +2 = 0 and therefore a = a is nilpotent as required to 
n n 

prove. 

REMARK. The argument in the proof of Amitsur's Theorem shows 

that if 0 ~ a ER nRad(R[X]), then a is nilpotent because in this case 

the minimal degree of the non-zero elements in Rad(R[X]) is n= O. 

DEFINITION 3.3. The ring R is right-finite dimensional if R has 

no infinite direct sum of non-zero right-ideals. 

It can be shown that if R is right-finite dimensional, then there 

exists a posi tive integer n such that R contains a direct SUIn. of n 

summands and the number of summands of every direct sum of R is 

at most n. This unique number n is called the right Goldie dimension 

of Rand is denoted by dim R . 

DEFINITION 3.4. R is said to be a right-Goldie ring if 

(1) R is right-finite dimensional, and 

(2) R satisfies the maximum condition on right-annihilators. 

Left Goldie rings are defined similarly. 

For example, eve"iy right Noetherian ring R is a right Goldie ring, 

because R certainly satisfies the maximum condition on right-annihilators 

and it has no infinite direct sum since for any ideals 1. the ascending 
J 

chain must stop. 
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A generalization of Fitting's Lemma (cf. Lambek [13,p.23J) is 

given by the following result due to Lesieur-Croisot. 

LEMMA 3.10. If R is a right Goldie ring, then for every xE R there 

exists a positive integer n = n(x) such that 

(i) 
n n 

1= x R+(x) is a direct sum, and 
r 

(H) l is an essential right ideal. 

Proof. Forx=O theassertionisclearbecause 0 =R. If XFO, 
r 

then by the maximum condition for right-annihilator ide aIs there exists 

a positive integer n = n(x) such that (x
n

) = (x
2n

) . If Y E 
r r 

n n 
x Rn(x ) , 

r 

then y = xnt for some tER and since y E (x
n

) we have 
r 

n n n 
0= x y = x (x t) = 

2n 2n n n 
x t. Thus tE (x ) = (x ) hence y = x t = O. Therefore (i) holds and 

r r 

we write I=xnR EEi (x
n

) to indicate that the sum is direct. Next let J be 
r 

a right-ideal of R. We prove that l is essentia1 by showing that Jnr=o 

implies J = O. 

If J n l = 0 and J {; 0, then 

n 2n 
JEEix JEEix JEEi... (1) 

kn 
is a direct sum of right-ideals of R and x F 0 for all positIve integers k. 

. kn kn kn n 
Indeed, lf x = 0 for some k, then x J =0 so J ç; (x ) = (x ) . There-

r r 

fore J = J n (x
n

) ç; J n 1= 0, so J= 0 contradicting our assumption. Hence 
r 

xkn F 0 for aH k. Now if (1) is not a direct sum, then there exists a non-

trivial representation 

k 1n k 2n kt n 

o = x YI +x y 2 + ... +x y t with y. in J, 
1 

'-
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k.n 
l 

X y. f:.O. 
l 

k 1n n 
0= x (YI +x z) with z in R. 

k n 
YI +x n z E (x 1 )r = (x) , 

r 

hence 
n n 

YI = -x z+(Yl+x z) belongs to 1. But In J = 0, therefore YI = 0, 

k 1n . 
hence x YI = 0 which contradicts our hypothesis. 

Then (1) is a direct SUIn contradicting the finite diITIensionality of R. 

Therefore we Inust have J = 0 and the proof of Lesieur-Croisotls LemIna 

is then cOInplete. 

COROLL.AR y 3. Il. If R is a right-Goldie ring, then Z (R) is a ni! ideal. 
r 

Proof. FroIn Lesieur-Croisotls LeInIna, for each z E Z (R) there exists 
r 

n n 
a positive integer n = n(z) such that the SUIn Z R+(z) is direct. Since 

r 

zn E Z (R) according to Definition 3.2, (zn) is essential. 
r r 

n n 
But z Rn(z ) = 0 

r 
n . n+l 

therefore z R = O. ln partlcular z = O. 

is nilpotent. 

Hence every eleInent in Z (R) 
r 

COROLL.AR y 3.12. If R is a seInLpriIne right Goldie ring then Z (R) = O. 
r 

Proof. 

equal to O. 

By Corollary 3.11 Z (R) is ni! and by TheoreIn 3.6 it Inust be 
r 

DEFINITION 3.4. .An eleInent xE R is said to be right-regular if (x) = 0 
r 

and left-regular if (x)i, = o. 
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If x is bath right and left regular we say that x is regular. 

LEMMA 3.13. If R is a right Goldie ring and if c ER is right-regular, 

then 

(i) cR is an essential right-ideal of R 

(H) if R is also semiprim.e, then c is regular. 

Proof. (i) By Lemma 3.10 there is a positive integer n = n(c) such that 

1= cnR$(c
n

) is essential. Since c is right-regular (c
n

) = (c) = 0 
r r r 

n. n... 
therefore I=cR hence cR lsessentialbecause cKçcR. 

(H) If xc = 0 then cR ç (x) , therefore (x) is essential by part (i) 
r r 

and Lemma 3. l(b). Thus xE Z (R). Since R is semiprime Z (R) = 0 
r r 

by Corollary 3.12. Then c is also left-regular and hence regular. 

The above lemma and the next are crucial in the theory of semiprime 

Goldie rings (cf. [7, Theorem 3.9 J). They give a relaticn between regular 

elements and essential right-ideals and guarantee . that if R is a semiprime 

Goldie ring, then the set of regular elements of R is non-empty. 

LEMMA 3.14. If R is a semiprime right-Goldie ring, then every es sential 

right ideal l of R contains a regular element. 

Proof. Suppose l has no regular elements. We will derive a contradiction. 

By Lemma 3.13 l does not contain any right-regular element and by Theo-

rem 3.6 l is not nil. The set g= ((x) : 0 ;lxEI} has a maximal element 
r 
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because 1 is essential. Mareover 

by the maximality of (al)r in g. 

(A) 

Suppose now that there exist k-l elements a. E 1 such that 
1 

2 
(a,) =(a.) for j=1,2, ... ,k-l 

J r J r 

(B) a.El. 1=1 n(a
l

) n ... n.(a. 1) for j=1,2, ... ,k-l 
J J" r J - r 

(C) 

(D) 

1k_l f: 0 

k-l 
Sk_l = :E a.R is a direct sumo 

i=l 1 

Then by (C) and the maximum condition on right annihilators, there exists 

a non-zero element a
k 

E1
k

_ l such that (ak)r =(a
k

2
)r' We claim that the 

Let x. ER, i=l, 2, ... , k be such that 
1 

( 1) 

Left multiplication by al and the fact that a
j 

E (al)r for j =2, ... , k 

yields a
1

2
x

l
=0. Thus x

I E (a
1

2
)r hence alxl=O by (A). Therefore (1) 

becomes 

(2) 

Repeating the above argument left-multiplication of (2) by a
2 

yields 

a
2

x
2 

= O. After k-l steps of this type we see that aU terms in (1) are 

equal to 0, hence Sk is a direct sumo 
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Nextwe showthat Ik=Ik_1n(ak)r/O. If O=Ik=In[(a1)rn ... n(ak)rJ, 

then 

(3 ) 

Then a
1

+a
Z

+" .+ak=c is a right-regu1ar element in l because if cx=O 

then 0 = a
1
x+a

Z
x+ ... +akx ES

k 
and since Sk is a direct sum we have 

aix=O for i=l,Z, ... ,k. Thus xE(ai)k for i=l,Z, ... ,k, hence x=O 

by (3). This is a contradiction because l was proved to have no right-

r egular elements. Then starting with k-1 elements a l' .' .. , a
k

_ 1 

satisfying conditions (AL (BL (C) and (D} we can find another element 

a
k 

1 a j for j = l, Z, ... ,k-1 such that the elements a l' a
Z

' ... ,a
k 

still 

satisfy (A), (B), (C) and (D). Then by induction on k from (D) we deduce 

that R contains an infinite direct sum of right-ideals which contradicts 

the finite dimensionality of R. The proof of Lemma 3.14 is then completed. 

If R is a prime ring and if l is any non-zero two-sided ideal of R, 

then JI 1 0 for every non- zero right-ideal J. Since JIc J nI the above 

remark shows that in a prime ring every ideal is essential. Since every 

prime ring is semiprime we get the following corollary to Lemma 3.14. 

COROLLARY 3.15. If Ris a prime right-Goldie ring then every non-zero 

ideal of R contains a regular element. 

,-
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CHAPTER IV 

ORE IS THEOREM 

The construction of the field of rationals from the ring of integers, 

as is well-known, can be generalized to any commutative integral domain. 

Under certain hypotheses it is also possible to imbed a non-commutative 

ring R in a ring. of "fractions" as it was shown first by Ore in a now 

c1assical paper [15J. We discuss Orels construction below. As usual 

R denotes a non-commutative ring which does not necessarily contain a 

unit element. 

A subset S of R is said to be multiplicatively closed if for all sand t 

in S their product st is in S. One example of such a set is given by the 

set of all regular elements of R. 

DEFINITION 4.1. Let S be a multiplicatively c10sed subset of R. We 

say that R satisfies the left-Ore condition with respect to S if for all 

(a, s) in RxS the set Sa nRs is non-empty. 

NOTE: For the remainder of this chapter and unless mentioned otherwise 

S will stand for the set of aU regular elements in Rand we will always 

assume that S f. (jJ. This is certainly the case if R is a semiprime right­

Goldie ring (Lemma 3.15). 

,-
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DEFINITION 4.2. A ring Q..e,(R) is said to be a 1eH-quotient ring for R if 

(1) Q..e,(R) has a unit e1ement e 

(2) Q..e,(R) contains R (or an isomorphic image of R) 

(3) s is invertible in Q..e,(R) for aU s in 8 (i. e. there exists s - \ Q..e,(R) 

satisfying 
-1 -1 

s s=ss =e) 

(4) every x in Q..e,(R) can be written as 
-1 

x=s a where (a,s)ERx8. 

If Q..e,(R) is a Ieft-quotient ring for R we also say that R is a 1eft­

order in Q..e,(R). 

Next we investigate under which conditions a ring R has a 1eft quo-

tient ring. Extending work of Ore, A sana has proved in [5] that if R 

satisfies the Ieft-Ore condition with respect to a multiplicatively closed 

subset T of 8 then R has a Ieft quotient ring. We will pr ove this below 

(Theorem 4.3) for the case T =8. If T f:.8 the proof is essentially the 

same with some extra technicalities. Before, we need the following 

LEMMA 4.1. If R satisfies the left-Ore condition with respect to 8 

and if s 1 and s2 belong to 8, then there exist u
l 

and u
2 

in 8 such that 

u l s 1 = u 2 s 2 · 

Proof. By Ore 1 s condition 8s2 nRs 1 f:. (jJ therefore there exist u
2 

E 8 

and u
1 

ER such that u
2 

s2 = u
l 

s l' 8ince 8 lS muItiplicativeIy closed 

u
2

s
2 

belongs to 8. It remains to show that u
1 

is regular. 

(i) If for xER is xU
1 

=0, then x(u
1

s
1

):.:0 therefore x=O since 

'-
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(ii) By Ore 1 s condition applied to (s l' u
1 
sI) E RXS ther e exists 

(a,s)ERxS suchthat sSl=a(u
1

s
1

). Then (s-au
1
)sl=O therefore 

s = au 1 because sI is regular. But then u 1 y = 0 with y in R irnplies 

sy=au
1
y=O therefore y=O since sES. Thus u

1 
is right-regular . 

. (i) and (ii) irnply that u
1 

ES. 

REMARK. From the above proof we extract the following result which 

for future reference will be recorded as 

LEMMA 4.2. If R satisfies the left-Ore condition with respect to S 

and if (u, s) E RXS is such that us ES, then u ES. 

We are ready to prove the main result of this section, namely Orels 

THEOREM 4.3. R has a left-quotient ring if and only if R satisfies the 

left-Ore condition with respect to S. 

Proof. If R has a left quotient ring Qg,(R) , then for all a in R and for 

all s in S the element as -1 is in Q,e(R) therefore by (4), Definition 4.2, 

. -1 -1 
16 as = sIal' Multiplying on the left by sI 

and on the right by s we obtain sI ae = ea
1 

s, where e is the unit eleinent 

in Q,e(R). Then sI a = aIs. Thus Sa n Rs .p q;. Hence R satisfies the Ieft-

Ore condition with respect to S .. 

Conversely assume that R satisfies Definition 4.1. We prove the 

existence of a left-quotient ring for R by establishing a series of lemmas. 

Fir st define a relation", in RxS by saying that (a, s) '" (a', Si) if ther e 
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exist u, u' ER such that us = u' s' ES and 
, , 

ua =u a . It is clear from 

Lemma 4.2 that u and u' must then be regular elements. 

LEMMA 4.4. is an equivalence relation on RXS. 

Proof. Symmetry and reflexivity are obvious. Let (a, s),..,,(a', s') 

and (a', s') ,..,,(a", s"). Then there exist u, u', v and v' in S such that 

us =u's' =O'ES, vs' = v' s" = 0" ES 

, , 
ua =u a and va' = v' ail. 

By Lemma 4.1 applied to 0' and 0" there exist t and t'in S such that 

tO'=t'O". Then tus =tu's' =t'vs' =t'v's". 

Now tu's' =t'vs' implies tu' =t'v because s' is regular, therefore 

tua=tu'a' =t'va' =t'v'a". 

Thus there exist tu and t'v' such that (tu)s = (t'v')s" and (tu)a = (t'v')a". 

Bence (a, s),..,,(a", s"). Therefore ,.." is transitive. 

We denote by SR the set of equivalence classes of RxS with respect 

to andwrite s-la for the equivalence class of (a,s)ERxS. lnorder 

to define an addition and multiplication in SR making it into an associative 

ring we require the following 

LEMMA 4.5. 

(A) 
-1 -1 -1 

s a=(us) ua for aIl s aESR and uES. 

(B) Let a,a
l
,u,u

1
,tandt

1 
beinRand sand SI beinS. If 

'-



(1) ua = u l al 

(2) us =uls
l 

=O'ES 

(3) ts = t 1 sI = 0' 1 E S 
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(Condition (B) is known in the literature as Malcev' s property.) 

Proof. (A) Since s and us are in S by Lem.m.a 4. l, there exist v and 

v' inS with vs=v/us, therefore v=v/u because sis regular andthen 

1 va =v ua. 
-1 -1 

Thus (a, s) ""'(ua, us), hence s a = (us) ua. 

(B) Conditions (1) and (2) irnply 
-1 -1 

(a,s)"",(al,sl) therefore s a=sl al' 

Condition (3) and Lernm.a 4.2 im.ply 
-1 -1 

tES, therefore by (A) s a = (ts) ta. 

-1 -1 -1 
Asirnilarargum.entshowsthat sI al=(tls

l
) t

l
a

l
. Then,(ts) ta= 

(tlS1)-ltlal' i.e. O'l-lta=O'l-ltlal' Therefore by definition of "",there 

exist u, v ES such that 

Since 0'1 is regular (i) irnplies u=v hence (H) entails ta=tlal proving 

Malcev' s property. 

REMARK. 
-1 -1 

If s a and sI al are in SR then by Lem.rna 4.2 there 

exist u and u
l 

in S such that us = u
l 

s 1 = 0' ES. Therefor e by Lernrna 4.5 

-1 
If we think of s a as a "fraction" having s as denominator and a as 

nurnerator, (':') tells us that for any two fractions we can find a "cornrnon 

denorninator" . 

'­ , 
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DEFINITION 4.3. If 
-1 

s a 
-1 -1 -1 

and SIal are in SR we define s a+s 1 al = 

-1 
(J (ua+u

l
a

l
) where u and u

l 
are elements in S satisfying us =u

l 
SI = (J. 

Notice that u and u' exist because of Lemma 4.1. 

LEMMA 4.6. Addition in SR is well defined. 

Proof. (i) Addition is independent of the representatives of the equivalence 

classes. 

Then 

By Lemma 4. 1 there exist t and t 1 in S su ch that t(J = t 10'1' i. e. 

-1 -1 
Since s a = s2 a

2 
and tus = t

l 
v 2s2 it follows from Malcev' s property 

that 

(1) 

(2) 

Adding (1) and (2) we get 

and since also t(J=t
l
(Jl we obtain 

-1 -1 
0' (ua+u

l
a

l
) = (ta) t(ua+u

l
a

l
) 

-1 
= (t l (Jl) tl(v2a2+vlal) 

-1 = 0'1 (v2 a 2+v l a
l

) 

'-
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thus 

The independence of addition with respect to the representative of the 

second summand SI-laI is proved similarly since additim in R is 

commutative. 

(H) Addition is independent of the pair u, u
1

. In other words if 

l ' , h a so u s=u1 SI =.,., t en 

lndeed by Lemma 4.1 there exist t and t'in S with ta=t'r, therefore 

tus =tu s =t'u's =t'u 's 
1 1 1 1 

mce ...,th s and SI are regular (3) implies 

tu = t' u' and tu 1 = t'u l' . 

Therefore 

Adding these two equalities we get 

therefore since ta = t' r we deduce 

-1 -1 
0' (ua+u!.a!)=(ta) t(ua+u

1
a l ) 

as required to prove. 

- l , , 
=(t'r) t' (u a+u 1 al) 

- l, , 
=r (u a+u

l 
al) 

(3) 

'-
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DEFINITION 4.4. If s -la and sI -1 al are in SR and if (b, t) E RxS 

-1 -1 
satisfies ta = bs l' then we define the product s a':<s 1 al by the rule 

-1 -1 -1 
s a':<s a = (ts) bal. 

l 1 

The existence of the pair (b, t) is guaranteed by the left-Ore conditicn 

applied to (a, sI) E RxS. 

LEM MA 4.7. Multiplication in SR is well-defined. 

Pro.of. (i) Multiplication is independent of the pair (b, t) and of the class 

representative of the first factor. 
-1 -1 

To prove this let s2 a
2 

= s a and 

(b', t') E RxS su ch that t'a
2 

= b' sI. We must show that 

-1 -1 
s a*s a = s 

-1 -1 
a >:<s a i. e. 

1 1 2 2 1 l' 

By Lemma 4. 1 there exist u, u' ES such that u(ts) = u' (t' s2). This and 

-1 -1 " s a = s2 a
2 

imply (by Malcev' s property) that uta = u t a
2

. From this 

d h d "'b' h an t e relations uta = ubs 1 an u t a
2 

= u sI it follows t at ubs 1 = 

u'b' sI' therefore ub = u'b' since sIE S. Then 

-1 -1 
(ts) bal = (uts) uba

l 
, -l, , = (u t' s2) u bal 

, -l, 
=(ts

2
) bal 

as required to prove. 

(ii) Multiplication is independent of the class representative of the 

second factor. 
-1 -1 

Let s2 a 2 = sI al' then there exist u l , u 2 ES such that 

'-

j 
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Therefore 

and 

hence 
-1 -1 -1 -1 

s a':Cs a = s a>:<s a 
1 1 2 2 

LEMMA 4.8. SR with addition and multiplication defined as above is 

an associative ring with identity. 

Proo!. 
-1 

(A) (SR, +) is an abelian group where 0 = s 0 for every sES 

-1 -1 
and -s a=s (-a). Indeedif u,u

l 
ES with us=uls

l 
= cr, then 

-1 -1 -1 -1-1 
s a+s

l 
O=cr (ua+ulO)=(us) ua=s a 

and similarly 
-1 -1 -1 

s 1 O+s a = sa. 

Aiso for every u ES 

-1 -1 -1 -1 -1 -1 
s a+s (-a)=(us) (ua+u(-a))=(us) O=(us) uO=s O. 

To prove the associative law, given s. -la. in SR for i=l, 2, 3 we find a 
l 1 

"common denominator ll cr, i. e. we can write s. -1 a. = cr -1 a.' (i= 1,2,3) 
1 1 1 

with cr E S, then since addition is independent of the class representatives, 

the associativity in SR follows from the associativity in R. 

(B) Multiplication is associative. Let s. -1 a. be in SR for i=l, 2, 3. 
1 1 

By Orels condition applied to (a
2

, s3) ERxS there exists (a, s) ERxS such 

,-
1 
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that sa
2 

= as
3

. This implies that 

-1 -1 -1 
s2 a 2 *s3 a 3 = (ss2) aa3 · 

Sirnilarly for (al' ss2) ERXS there exists (b, t) ERXS such that ta
l 

= bss
2 

which then gives 

. -1 -1 -1 
Slnce ta

l 
= bss

2 
we have sI a

l
*s2 a

2 
= (ts

l
) bsa

2 
and since 

-1 -1 -1 
sa2 =as

3 
wehave sI a l *s2 a 2 =(ts

l
) bas3 · 

Now apply Ore's condition to (bas
3

, s3) ERxS ta find (b
l
,t

l
) ERxS 

satisfying t
l 
bas

3 
= b

l 
s3' But since s3 is regular this implies t

l 
ba = b

l 
. 

Thus 

hence 

(C) Distributive law. Since for every pair of elements in SR there 

exists a "common denominatar" it suffices to prove 

(i) 
-1 -1 -1 

s a>'~(s 1 b+s 1 c) 
-1 -1 -1 -1 

= s a'~s b+s a>:'s c 
1 1 

(ii) 
-1 -1 -1 -1 -1 -1 -1 

(s b+s c)':'s a = s b':'s a +s c"'s a 
1 1 1 1 

To prove (i) we apply Ore's condition to (a, sI) ERxS and obtain (p,t) ERxS 

such that ta = ps l' Thus 
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-1 -1 -1 -1 -1 -1 -1 
s a>:<sl b+s a':'sl c = (ts) pb+(ts) pc = (ts) (pb+pc) 

-1 -1-1 
= (ts) p(b+c) = s a*sl (b+c) 

-1 -1 -1 
= s a*(sl b+s

1 
c) 

proving (i). 

App1ying Orels condition to (b, s) and (c, s) in RXS we get (P1,t
1

) 

By Lernrna 4.1 there exist u
1

, u
2 

ES such that u
1 
t

1 
= u

2 
t
2 

= a therefore 

u 1 t 1 s 1 = u 2 t 2 s 1 = as l' Then 

( 1) 

a(b+c} = (u 1 Pl +U
2P 2)S, thus 

-1 -1 -1 
sI (b+c)':<s a = (a s

1) (u1P1+u2P2)a (2) 

(1) and (2) irnp1y (ii). 

-1 
(D) In SR, s s is the identity for every u ES. By Lernrna 4. 1 

if s,sI ES thenthere exist u,u
1 

ES suchthat us=u
1

s
1

' therefore 

-1 -1 -1 
(s, s) ",(sI' sI) for aH s, sI ES. Thus s s = sI sI and we write e = s s. 

-1 
If s aESR, thenbyOrels conditionappliedto (s,s)ERXS there exists 

(b, t) E RXS such that ts = bs, therefore b = tES because s is regu1ar. 

'-
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Thus 

-1 -1 -1 -1 -1 
e>:<s a = s s>:~s a = (ts) ta = s a (3) 

Similarly by Orels condition applied to (a, s)ERxS we get (bl,tl)ERXS 

with t
l 

a = b
l 

s therefore 

-1 -1 -1 -1 -1-1 
s a~'(e=s a':<s s=(tls) bIs = (tls) tla=s a 

This and (3) imply that e is the identity element in SR. 

To complete the proof of Theorem 4.3 we show next that R can be 

imbedded into SR and that SR satisfies all the conditions in Definition 4.2. 

LEMMA 4.9. SR with addition and multiplication defined as above is a 

left- quotient ring for R. 

Proof. 

identity. 

We have already seen that SR is an associative ring with 

-1 
Next define a map f: R ~ SR by f(a) = s sa, for every a in R 

and some s in S. The map is well defined because if sIE Sand f(a) = 

-1 
sIs 1 a then by Lerruna 4.1 there exist u, u

1 
ES with us = u

l 
sI' therefore 

-1 -1 
usa=ulsla and hence s sa=sl sla. 

The map f is an homomorphism of rings. lndeed 

for all a and al in R. For the product we have 

where (b, t) E RxS and tsa = bs . 

'-
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On the other hand 

-1 -1 -1 
= s saa

l 
= (ts) tsaa

l 
= (ts) bsa

l 

therefore 

f(aa
l

) = f(a)*f(a
l
)· 

-1 -1 
If f(a) = f(a

l
) then s sa = s saI therefore there exist u, u

l 
ES such 

that us = u
l 

s and usa = u
l 
saI. These imply u = u

l 
and therefore a = al . 

Since f is an embedding we can assume without 10ss of generality that 

R ç;; SR, thus we identity f(a) = s -lsa with a for aU a ER. 

To conclude we verify condition (3) and (4) in Definition 4.2. Let 

-1 -1 
slES then sI =f(sl)=s sSl· Therefore (ssl) s is an inverse of sI 

in SR because there exists (b,t)ERxS with tss
l 

=bss
l

, therefore t=b 

and hence 

-1 -1 -1 -1 -1 
s sSl>:'(ssl) s=(ts) bs=(ts) ts=s s=e. 

-1 -1 
Similarly (ss 1) s*s ss 1 = e. Hence every regular element of R is 

invertible in SR. FinaUy if sES and a ER then in SR we have 

-1 -1 -1 -1 
s >:'a=(s s) s *s s a=(ts s) bs a 

1 1 1 1 1 1 

-1 -1 
where (b,t)ERxS with tS

l 
=bs

l
. Then (ts

l
s) bs

1
a=s a. Hence 

-1 -1 -1 
s ':'a = sa. Thus every e1ement s a in SR can be written as the 

product of the inverse of a regular element s in R and an e1ement a 

also in R. This justifie s the notation s - 1 a for the equivalence clas s 

of (a, s). The proof of Theorem 4.3 is now complete. 
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REMARK. The ring SR that we have constructed above is sometimes 

called in the literature the full 1eft ring of quotients of R or the classica1 

1eft ring of quotients of R. If R satisfies the right-Ore condition with 

respect to S (i. e. aS n sR f. (/J for an (a, s) E RXS) then one defines RS' 

the right analogue of SR, and all the statements proved so far in this 

chapter remain va1id with obvious modüications for RS' We must stress 

-1 -1 -1 
a s >:<as = a b(st) 
111 

though that in RS the multiplication * is defined by 

where (b,t)ERXS satisfies at=slb. Withthis inmindwe cannowprove 

the following 

LEMMA 4.10. If R satisfies the 1eft Ore condition as well as the right 

Ore condition then SR is isomorphic to RS' 

-1 -1 
Proof. Define cp: RS ~ SR by cp(as )= 0' a where (a, O')E RxS and 

O'a = as. The existence of the pair (a,O') is guaranteed by the left Ore 

condition .. If also (al' 0' 1) E RxS and satisfies 0'1 a = al s then by Lernrna 4.1 

applied to a, al we have ua = u
l 

0' 1 with u, u
l 

ES. Therefore uas = uaa= 

-1 -1 
Hence a a = 0' 1 al 

and cp is well defined. Next we prove 

(A) 
-1 -1 -1 -1 

cp(a
l

s
l 

+a
2

s
2 

)=cp(a
l

s
l 

)+cp(a
2

s
2 

). 

-1 -1 -1 
In RS we have al s 1 +aZ s2 = (al u l +a2 uZ)s where u l ' u 2 ES and 

Therefore 

,-
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where (a, cr) E RXS and 

Also 
-1 -1 

cp(a.s. ) = cr. a. with O'.a. =a.S. for i=l, 2 
11 1 1 11 Il 

(1) 

Now in SR we have 

We must show that in SR is 

(2 ) 

By Lemma 4. l there exist w, W ' ES such that 

wO' = W'1' • (3) 

Then 

(by (3)) 

= was. 

Since s is regular the above ;.mplies that w' (1' 1 al +1' 2~) = wa which 

together with (3) entails (2) and hence (A). 

Next we show that 
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(B) 
-1 -1 -1 -1 

cp(a l s l *aZs
Z 

) = cp(a
l

s
l 

)':<cp(aZs
Z 

) 

In RS we have 
-1 -1 -1 

a
l

s
l 

;'<aZs
Z 

=a
l
b(szt) where 

(b, t) ERxS and azt = sI b. 

-1 -1 -1-1 
Then cp(a

l
s

l 
>:<aZs

Z 
) = cp(a

l 
b(szt) ) = P {3 where 

On the ather hand in SR we have 

with (y, )d ER xS and À,a
l 

= Ï'tT
Z 

. 

Lemma 4.1 applied ta p and À, 0' 1 gives us v, Vi ES such that 

- 'À, vp - v (JI. 

Therefore 

by (1) 

by (4) and (6) 

by (1) 

by (7) 

by (5). 

(4) 

(5) 

( 6) 

(7) 

Since szt is regular this equality i:mplies v{3=v/yCYz which together 

-1 -1 
with (7) yields p (3=(À,(Jl) yCYz. Hence(B)holds. 

Given cr -1 a E SR by the right- Ore condition applied ta (a, (J) E RxS, 

-1 -1 
wecanfind (a,s)ERxS with aS=(Ja. Therefore cp(as )=a a, hence 

'-
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-1 -1-1 
cp is surjective. Finally, if cp(a

1
s

1 
)=cp(aZs

Z 
)=0' O! then 

O'a. =œs. for i=I,Z. 
1 1 

(8) 

By the right analogue of Lemma 4.1 there exist u
1

' Uz ES such that 

su =su =t. 
1 1 Z Z 

Multiplication of (8) on the right by u. yields 
l 

O'a.u. =œs.U. =œt for i=l, Z 
1 1 1 1 

(9 ) 

and substracting these two equalities we deduce 0'(a
1 
u

l
-a

Z
u

Z
) = 0 which 

-1 -1 
implies alu

l 
=aZu

Z 
because O'ES. Thus a

1
s

1 
=aZs Z inRS and 

hence cp is injective, completing the proof of Lemma 4.10. 
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CHAPTER V 

PRIME P. 1. -RINGS HAVE A CLASSICA L RING OF QUOTIENTS 

Let R be a ring with a ring of oper ator sn. By this we mean that 

R is a n-module and for any x, y ER and any w E n we have 

w(xy) = (wx)y = x(wy). 

Let Xl' X
2

, ... , X
n 

be a set of non-commuting indeterminates and 

consider a polynomial f(X) = f(X l' ... ,X
n

) with coefficients in O. 

We say that f(X) is a non-trivial identity of R provided 

(l) f(r l' r 2' ... , r n) = 0 for aU 

(2) f(X) is not identically zero. 

r. ER, and 
1 

If R satisfies a non-trivial polynomial identity we say that R is a P.I. -ring. 

We introduce sorne terminology and notation. 

If f(X) is a polynomial over n, then O(f) will denote the set of 

coefficients of f(X). Observe that if f(X) is a non-trivial identity of R, 

then n (f) f (O) . 

If R is a P. 1. -ring, an identity of minimal degree will be called a 

minimal identity, and the corresponding polynomial a minimal polynomial. 

Finally we say that f(X) is multilinear of degree n if and only if f(X) 

is of the form 

f(X) = ~ w X (l) ... X ( ) 
O'ES 0' 0' an 

n 

'-
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where w En and S denotes the group of aU permutations of the 
(J n 

symbols [1,2, ... , n}. 

EXAMPLES OF P.I. -RINGS. 

1. Any commutative ring satisfies 

2. Let n be the field of reals and R the ring of quaternions over n. 

Then R is an a1ge bra over n with basis [l, i, j, k} such that i
2 = l = 

2 
k = 1 and ij = -ji = k. Every quaternion x has a unique expres sion 

x. En. 
1 

(1) 

2 
An easy verification shows that if in (1) is X o = 0, then x is rea1, 

that is, x
2 

En. One also checks that for any two quaternions x and 

y the difference xy-yx is of the form 

a. En 
1 

2 
therefore (xy-yx) En. Moreover since for every quaternion z and 

every W En is wz = zw, the above remarks show that the ring of 

quaternions satisfy 

3. Let n=z the ri ng of integer s and let 

[M=[: ° :J R = a a, b,c,dEZ}. 

d 

,-
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A simple but tedious verification shows that R is a ring, a ~-module 

and that 

!-or every Ml' M 2 ER and n E ~. 

For i=l, 2,3 let 

a. 0 0 
1. 

M. = b. a. 0 
1. 1. 1. 

C. d. a. 
1. 1. 1. 

where the a., b., c., d. are arbitrary elements in ~. Then one verifies 
1. 1. 1. 1. 

that 

o 0 0 

o o 0 ( 1 ) 

0 0 0 

(Ml M
2 

-M
2

M
l 

)M
3 

= 0 0 0 (2) 

(dlb2-bld2)a3 0 0 

and 

0 0 0 

M3(MIM2-M2MI) = 0 0 0 (3) 

a
3 

(dl b
2 

- b l d2 ) 0 0 

(2) and (3) imply that R satisfies the identity 

f(X) = (XIX2-X2Xl)X3-X3(XlX2-X2XI) = o. 
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4. Let R be an a1gebra over a field F and consider F[X] =F[X
1
,X

2
, ... ,X

n
], 

the free a1gebra generated by the non-cornrnuting indeterminates Xl' X
2

, ... , X
n 

over F. In other words the e1ements of F[X] are po1ynomia1s in the 

variables X. with coefficients in F. Using Kap1ansky ls te'rmino1ogy, the 
1 

standard identity of degree n in F [X] is the polynomial 

where a ranges over 8 , the set of aH permutations of the symbo1s (1,2, ... , n} 
n 

and (_l)a is 1 for even permutations and -1 for odd permutations. 8ome-

times we shaH use the notation 8 (X) for the standard identity of degree n. 
n 

Assume nowthat R has dimensionn over F, and let (v
1
,v

2
, ... ,v

n
} 

be a basis for R over F. Let r l' ... , r n+ 1 be n+ 1 e1ements of R. Then 

each r. can be expressed as a linear combination of the v.ls over F. 
1 1 

8ince 8
n

+
1

(X) is multilinear itfoHows that 8(r
1
,r

2
, ... ,r~+1) is a linear 

combination of terms of the form 8(v
a
(1)'·· .,v

a
(n+1)) where aE8n + 1, 

the symmetric gr oup of degree n+ l, and the va(i) E (v l' v 2' ... , v n). But 

in 8(v
a

(1)' ... ,v
a

(n+1)) two arguments are equa1, therefore 8(v
a

(1), ... ,v
a

(n+1)) 

= 0 because 8
n

+
1 

(X) is multilinear. Then 8(r l' r 2' ... , r n+1) = o. Thus 

we have shown that every n-dimensiona1 a1gebra over F satisfies the standard 

identity of degree n+1. 

5. Let F be a field and F the ring of aU nxn matrices with entries in F. 
n 

8ince [F :F] = n 2 
by Examp1e 4 we know that F satisfies 8 2 l(X). 

n n n + 

'- 1 
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However more is true 0 In a rather involved paper Amitsur and Levitzki [1 J 

have shown that F actuaUy satisfies 8
2 

and that this i:s in fact a minimal 
n n 

identity for F 0 Swan has given in [17J a quite elementary proOf of this 
n 

result as an application of graph theory 0 

It is not difficult to verify that 

n 
00.+(-1) X 18(X

l
,o.o,X)o 

n+ n 

Therefore if R satisfies the standard identity of degree n, then it satisfies 

aU the standard identities of higher degree. Observe that if the standard 

identity of degree 2 is satisfied by R, then R is commutative 0 With this 

in mind, we may regard a standard identity for R as a generalization of the 

commutative law 0 

When working with Pol. -rings it is convenient to be able to find sorne 

"nice" polynomial identities satisfied by R 0 The foUowing provide us with 

such polynomials 0 

LEMMA 5010 If R satisfies a non trivial polynomial identity of degree d, 

then it satisfies a multilinear identity of degree ~ do 

Proof 0 A SSUIne R satisfies a non-trivial polynomial identity f(X) = 

f(X l' 0 0 ., X n ) of degree do If f(X) is not linear in the variable Xl' then 

f(X) consideredasapolynomialinX l hasdegree dl>!. Let X n+l be 

,-
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an indeterminate different from the X., j=l, 2, ... , n. Consider the 
J 

polynomial 

g(X
l
X

2
, ... ,X,X 1) = f(Xl+X l'X2 ,···,X )-f(Xl,···,X ) n n+ n+ n . n 

- f(X l' X 2 , ... , X ). 
n+ n 

By elementary linear algebra considerations one easily checks that 

1. 0 t= g(X) is a polynomial identity of R 

2. degree of g(X) ~ degree of f(X} 

3. for jFl, n+l the degree of g as polynomial in X. is less than or equal 
J 

to the degree of f as polynomial in X .. 
J 

4. for j=l, n+ l, the degree of g as polynomial in X. is less than or 
J 

equal to dl -1. 

If g(X} has degree greater than 1 in one of the n+l indeterminates 

X. we repeat the argument for that variable. After a finite number of 
J 

steps of this kind we obtain a polynomial p(X} = p(X
l

, ... , X
t
) of degree 

~ d which is of degree ~ 1 in aU its variables. Moreover we may assume 

that every monomial of p(X} is linear in every variable because if there 

were terms in p(X} not involving X. say, we may write 
J 

p(X} = ql (X}+q2 (X) 

where the monomials of ql contain X
j 

and those of qZ(X) don't. Substituting 

'-
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inthis X. by 0 andX. by rlER for if.j we get qZ(rl,···,r. l,r. l, .•. ,r) 
J 1 J- J+ t 

= o. Therefore qZ(X) = qz (Xl' ..• , X j-l' X
j
+l ' ... ,Xt ) is also a polynomial 

identity of R of. degree ~ d. Repeating this argument if necessary, we 

reach a multilinear identity q(X) of degree ~ d involving m ~ d variables. 

Finally we may assume that 

q(X) = ~ W X ( ) ... X ( )' 
ES a a 1 a ~ 

a m 

(w E 0) 
a 

because if the monomial X a( 1)· .. X a(m) corresponding to the permutation 

a ES does not appear in q(X) we can always introduce it with coefficient 
m 

w = O. This completes the proof of 5.1. 
a 

Unless mentioned otherwise, by a prime P.I. -ring we mean a prime 

ring R which satisfies polynomial identities over its centroid O(R). For 

this particular c1ass of rings we, have the following result due to Posner [16J. 

THEOREM 5. Z. If R is a prime P. 1. -ring, then R is a left and right 

Goldie ring. 

Proof. By Lernrna 5. 1 we ma y as sume that R satisfi es 

f(X)= ~ W X (l)'''X ( )' 
aES

n 
a cr cr 11 

(w E O(R)) 
a 

( 1) 

where w f.0 for sorne (J'ES. Furthermorewemayassumethat a n 

W = w, F 0 where e is the identity in S (otherwise relabel the inde-
e n 

terminates X. so that this is the case). 
1 

,-

1 
-..--' 
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Clairn. 1. The Iength of a direct sum of non-zero Ieft-ideais of R 

is at most n-I . 

Assume that 

(2 ) 

is a direct SUffi of non-zero Ieft ide aIs of Rand pick y. Er. for j=l, 2, ... ,n. 
J J 

Since 

Then 

we have 

0= f(yI, .. ·,y ) = :E w y (I)'''Y ( ) 
n O'ES 0'0' O'n 

n 

n 

= :E ( :E w y (1)'" y ( _ I))Y k 
k=lO'ES 0' 0' O'n 

n 

(3) 

O'(n)=k 

u k =( E:E
S 

wO'YO'(1)'''YO'(n-I))Yk 
0' n 

belongs to Ik for k=l, 2, ... ,n. 

O'(n)=k 

Since the sum (2) is direct, aU terms u
k 

in the sum (3) must be equai 

ta O. In particular 

u = ( :E w y (1)'" y ( 1))Y = 0 n E S 0' 0' 0' n- n 
0' n 

O'(n)=n 

and since this holds for arbitrary y in l we deduce 
n n 

:E w y (1)"'Y ( 1))1 = 0 (4) S 0' 0' 0' n- n 
0' E n 

O'(n)=n 

'-
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for arbitrary y. El., l:s: j :s: n- l. 
J J 

Since R is prime the left annihilator of the non- zero left-ideal 1 
n 

must be zero. Therefore (4) implies 

~ w y (l)···y ( 1) = 0 
(] E S cr cr cr n-

n 
cr(n)=n 

for aU y. in 1., l:s: j :s: n- l. 
J J 

Using (5) we can write 

o = 
n-l 
~ ( 

k=l 
~ 

crES 
n 

cr(n)=n 
cr(n-l)=k 

W cr y cr(l) ... y cr(n-2))Yk 

(5) 

and repeat the above argument. Eventually we get wll = o. Then 

By hypothesis W f. 0 therefore the ideal wR is not zero, thus (6) implies 

Il = 0 since R is prime. But thi.s contradicts our hypothesi.s about the 

1.1 s. Hence our claim is proved. 
J 

Claim II. Every properly ascending chain of left-annihilators has at 

most length n. Suppose 
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where the Ij's are left annihilators. By the remarks made following 

Definition 1.3 we.may assume that 1. is the left annihilator of a right­
J 

ideal H. of 
J 

R. By hypothesis 1. l ç 1. for j=2, ... , n therefore 
J - "F J 

1.H. l -F O. 
J J-

Let k be the smallest positive integer sueh that there exists 

(f3
a 

E O(R): (J E Sk} satisfying 

(i) f3
e 

-F 0 where e denotes the identity in Sk 

(ii) ~ f3 y (l)···y (k)=O whenever y.EL, ls:js:k. 
(JES (J (J (J J J 

k 

Clearly sueh k exists and k s: n sinee R satisfies the multilinear identity 

(1) for whieh (i) and (ii) hold. Multiplying (ii) by H
k

_
1 

on the right we 

obtain 

o = ( ~ f3 y (1)··· y (k)) H k _ l 
(JES (J (J, (J 

k 

= ~ f3 y (l)···y (k)Hk - 1 (JES (J (J (J 

k 

k 

= ~ ( ~ f3 y (l)···y (k-l))Y. Hk _ 1 j=l (JES (J (J (J J 
k 

(J(k)= j 

= ( ~ f3(JY(J(l)···Y(J(k-l))Yk H k _ 1 
(J ES

k 
(J(k) = k 

sinee for j s: k-l we have 

(7) 

,-
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( ~ f3 y (l)"'y (k-l))Y' El. ç; lk_l = (Hk_l)h . 
O'(k)=k (1 0' 0' J J XI 

Since Yk was arbitrary in lk' from (7) we get 

0=( ~ f3O'YO'(l)'''YO'(k-l))~Hk-l 
0' ESk 
O'(k)=k 

for aU y. Er., 1 s j s k-l . 
J J 

Therefore 

;S f3 0' Ya(l) ... Ya(k- 1) = 0 
0' k 

O'(k)=k 

(8) 

(9) 

for aU y. Er., 1 s j s k-l, because R is prime and IkH is a non- zero 
J J k-l 

left-ideal. But (9) contradicts the minimality of k and since the contra-

diction comes from the hypothesis IkHk_l {: 0 we must have IkHk..,l =0, 

hence lk = lk_l which proves Clairn II. 

l and II imply that R is a left Goldie ring. In a similar way we 

prove that R is a right Goldie ring completing thus the proof of 5.2. 

The following theorem due to Amitsur [4, Theorem 9J plays a 

fundamental part in most of the theorems about prime rings satisfying 

polynomial identi tie s over their centroid. 

THEOREM 5.3. Let R be a prime P. l. - ring. Then for every a ER 

there exist positive integer s k = k(a) and m = m(a) sucil that 

,-
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(i) the left ideal Ra k +(a k).e contains a non-zero two sided ideal 

(H) the right ideal amR+(am ) contains a non-zero two sided ideal. 
r 

Proof. If a = O. then the statement is trivial because in this case 

for every positive integer i we have 

i i i i 
Ra +(a )1, = a R+(a )r = R. 

If a"l O. then by Lemma 5. l we may assume that R and in particular 

an its left-ideals of the form Rai satisfy a non-trivial multilinear 

identity. Arrxmg an the non-trivial multilinear identities satisfied hy 

left-ideals of the form Rai pick one of minimal degree. We may assume 

that this identity has form 

where 

(A) 

(B) 

(C) 

w E O(R) and W "10 where e is the identity in S 
cr e n 

ql(X l , ...• X n _ l ) = E~S wcrXcr(l)···Xcr(n_l) 
cr n 

cr(n)=n 

qz(Xl·····Xn ) = O';S wO'XO'(l) ... XO'(n)" 

n 
O'(n)"ln 

Let Ra
k 

satisfy q(X)=O. This means thatfor all i, Rai does not 

( l ) 

satisfy a non-trivial multilinear identity of degree les s than n. Therefore 

'- 1 
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ql(X1"",X
n

_
1

), whichis not identically zero becau8e of (A), being of 

degree n-l i8 not an identity for Ra 2k. Then there exist elem.ents 

2k 2k 
rI' r 2' ... , r n-l in R such that ql (r la, ... , rn_la ) = b f:. O. 

Moreover since Ra
2k

cRa
k 

and Ra
k 

satisfies q(X)=O from. (1) 

we deduce that for arbitrary r in R is 
n 

k 2k 2k k 
= br na +q2 (r la , ... , rn_la , r na) 

From. the form. of q2 (see (C)) we have 

(2) 

k k k k 
therefore from. (2) it follows that (br n +ta )a = O. Thus br n +ta E (a )1,' 

hence 
k k k k 

-ta +(br +ta ) = br E Ra +(a )n • 
n n ;c, 

Since this i8 true for arbitrary r ~ in Rand fixed b, we get bR ç; Ra k +(a k).e' 

Furtherm.ore since R is prirn.e and b f:. 0 is also bR f:. 0, hence the non­

zero two- sided ideal RbR is contained in the left-ideal Ra k +(ak).e' 

proving 5.3 (i). 

The proof of part (li) is si.rn.ilar and we om.it it. 

Am.itsur 's Theorem. has an i.rn.portant consequence, nam.ely 

COROLLAR YS. 4. If R is a prirre P. 1. -ring, then for every regular 

elem.ent c of R 
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(i) Rc conrl:ains a non-zero two-sided ideal of R 

(ii) cR contains a non- ze.ro two- sided ideal of R. 

The proof is immediate from Theorem 5.3 by observing that the 

k m k k k 
regularityof c implies (c ) = 0 = (c ) , hence Rc +(c )~ =Rc ç;;;Rc 

t r JCJ 

m In m 
and c R + (c ) = c R ç;;; cR. 

r 

We come now to the main theorem in this chapter 

THEOREM 5.5. If R is a prime P.I. -ring, then R has a simple 

right and left quotient ring Q(R). 

Proof. Because of Theorem 4.3 and Lemma 4.10 it suffices to show 

that R satisfies both the left and right Ore conditions with respect to 

its subset S consisting of aU regular elements. We remark that S is 

non-empty by 3.15 and 5.2. 

Let (a, s) ERXS. By CoroUary 5.4 there is a non-zero ideal Pç;;;Rs. 

Therefore RP ç;;; Rs. Since RP is a non- zero two- sided ideal in a 

prime Goldie ring, it contains a regular element sI. Then sIR ç;;;RP ç;;;Rs, 

therefore there exists al ER satisfying s la = al s. Thus R satisfies 

the left- Ore condition w~th respect to S. One similarly shows that R 

satisfies the right Ore condition. Then R has a left and right quotient 

ring Q(R). We proye next that Q = Q(R) is simple by showing that every 

non-zero two-sided iideal of Q coincides with Q. 

-1 
If V is a non-zero two-sided ideal of Q then Qbt Q is also a 

non- zero two- sided ideal for sorne 0 ~ bt -1 EV where (b, t) E RxS. 

'-
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-1 -1 
Since Q has a unit element e and R ç;Q we have ebt t = b E (Qbt Q)nR 

therefore (Qbt -lQ)nR is a non-zero two- sided ideal of R, hence it 

contains a regular element u. Thus 

-1 -1 -1 
V :l Qbt Q:l Q[(Qbt Q) nRJ :l Qu :2 (Qu )u = Q. 

Hence V = Q as required to prove '. 

REMARK. Theorem 5.5 is a special case of a more general theorem 

due to Goldie, namely, the ring R has a simple Artinian right quotient 

ring if and only if R is a prime Goldie ring. A neat account of Goldie 1 s 

Theorem can be found in Hersteinls book [10, Chapter 7J. 
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CHAPTER VI 

KA PLA NSKY'S THEOREM 

This chapter is devoted to the proof of a beautiful result of Kaplansky 

[12, Theorem 1 J about primitive P.!. -rings. Our approach follows es-

sentially Martindale's [14J. We start by recalling some basic definitions 

and well known .facts from the theory of rings which will be stated without 

proofs; these can be found, for example, in Lambek' s book [13, § 3.3 and 

§3.4J. 

A right ide al l of a ring R is called minimal if l is an irreducible 

right R-module (cf. Definition 1.7). A theorem due to Brauer asserts 

2 
that if l is a minimal right ide al of R, then either l = 0 or 1= eR where 

2 
e = e El. Hence every minimal right ideal of a semiprime ring is of'the 

2 
form eR where e = e ER (i. e. e is idempotent). 

The (right) - socle of R, denoted by SocR, is the sum of aU the 

minimal right-ideals of R. If R has no minimal right ideals, then 

SocR = O. The socle of R is a two- sided ideal. If R = SocR, then R is 

called completely reducible. 

The left socle of R is defined similarly. For semiprime rings the 

left and right soc le coincide. 

LEMMA 6. 1. If R is a prime right-A rtinian ring, then R is simple. 

j 
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Proof. Assume l is a non-zero ideal of R. Since l is right-Artinian, 

there is a minimal non-zero right ideal K contained in l and since R is 

prime K is generated by a non-zero idempotent. Thus l contains a non-

zero idempotent. 
2 

Therefore the set ({e) nI: 0 f= e = e E I} is non-empty, 
r 

hence it has a minimal element E = (e) nI. 
r 

If E f= 0, then the set of non-zero right ideals of R contained in E 

is non-empty, so it contains a minimal element M because R is right-

A rtinian. Clearly M is a minimal right ideal of R, therefore M = fR 

2 
where f = f f. O. Since f (' :.1cE we have ef=O. Let (= e+f-fe. Then 

2 
( E l and a short corn.putation shows that ( = (. A Iso 

therefore (f= O. 

2 d = (e+f-fe)f = f =f f= 0, 

Moreover (f) c(e) because if (X = 0, then 
r r 

2 
O=e((x) = e(e+f-fe)x = e X = ex. 

Therefore (() nI c (e) nI = E and the inclusion is strict since f E E 
r r 

but fé(() nI. This contradicts the minimality of E. Then we cannot 
r 

have E f= O. But then 8<ince l is a non- zero two- sided ideal in a prime 

ring, l is essential 90 (e) nI = E = 0 forces (e) = O. Thus l contains 
r r 

a right regular idern.potent e. Since for aU x in R is e(x-ex) = 0 we 

conclude R = eR CI, thus R = 1. Hence R contains no proper ideals 

different from O. 

The same argurn.ent given above proves the following 
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LEMMA 6.2. If R is a prime right Goldie ring with a non- zero minimal 

ideal, then R is simple Artinian. 

Proof. By hypothesis R has a non- zero minimal right ideal P so 

2 
P = el R wher e 0 f:. el = el. Then SocR = S f:. 0 and S contains idempotents. 

Since R is right finite dimensional and S is the direct sum of aU minimal 

right ideals of R we must have S = P lEB P 2EB ... EB P n for sorne integer n 

and where the P. 1 S are minimal right ideals. Since the p. are minimal 
1. l. 

they are Artinian as right R-modules, hence S is an Artinian right R-

module (cf. Lambek [13, page 22 J) . 

If we can prove that R= S, we wiU have shown that R is right Artinian, 

hence simple by Lemma 6.1. To show that R = S it suffices to prove that 

S contains a right regular idempotent e. A ctually , the same proof given 

in Lernrna 6.1 holds for Lemma 6.2 with l replaced by S because if we 

analyse the argument in 6. l we see that aU we needed was the minimum 

condition on right ideals contained in a two- sided ideal l which contains 

a non- zero idempotent. S was proved to satisfy aU these conditions, so 

the proof of Lernrna 6.2. is completed. 

A classical result by Artin and Wedderburn states that if R is simple 

Artinian, then there exists a unique integer n and a division ring D, unique 

up to isomorphism, such that R is isomorphic to D , the ring of aU nxn 
n 

matrices over D. Conversely for every integer n and every division ring 

D, the ring Dn is simple Artinian, (cf.Herstein [lO,page 48J). In view 

'-
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of the Artin-Wedderburn Theorem, Lemma 6.2 asserts that every 

prime right-Go1diering with a non-zero minimal idea1 is isomorphic 

to D for some integer n and some division ring D. This observa­
n 

tion permits us to prove the following Lemma which is crucial in our 

approach to Kap1ansky's Theorem. In what follows , by a primitive 

P.1. - ring we mean a primitive ring satisfying polynomial identitie s 

over its centroid O(R). 

LEMMA 6.3. If R is a right-primitive P.1. -ring then there exists a 

unique integer n and a unique division ring D such that R is isomorphic 

toD. Moreover Disa1soaP.I.-ring. 
n 

PDoof. Since R is right-primitive there exists a faithfu1 irreducib1e 

right-R-modu1e A and we rnay assume that A =R/M where M is a 

maximal right-idea1 of R (cf. Lemma 1.10). We c1aim that M is not 

essential. Since R is primitive is semiprime, therefore if Mis essential, 

by Lemma 3.14 M must contain a regu1ar element c. But then by 

Corollary 5.4 there is a non-zero idea1 ICcRcM. Since S is faithfu1 

and AI = 0, we get a contradiction. Then M is not essentia1 therefore 

there exists a non- zero right idea1 P such that Mn P = o. Since M is 

maximal, we get R = M@P, hence P is a non-zero minimal right ideal. 

By Lemma 6.2 and the Artin-Wedderburn 'Iheorem, we conc1ude that 

R ~ D for some integer n and division ring D. Moreover since D is 
n n 

simple, by 2.6 we have O(D ) = C(D ), so D satisfies polynomial 
n n n 

identities over its center C(D ). Now observe that C(D ) consists of n n 

'-. 
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aU nxn matrices having aU entries in the main diagonal equal to cE C(D) 

and the remaining entries equal to O. So C(D ) ~ C(D). Since D is 
n 

imbedded in D and D is a P.1. -ring, we conclude that D satisfies 
n n 

polynomial identities over its center C(D). 

LEMMA 6.4. Let D be a division ring with center C and a, b E D, b {; O. 

-1 
Then ab E C if and only ifaxb = bxa for aUx in D. 

Proof. 
-1 -1 -1 

ab E C ::) ab (bxb) = (bxb)ab 

::) axb = (bx) [b(ab) -1] = bx[ (ab-lb] = bxa 

for aU x ED. 

Conversely ifaxb = bxa for aU x in D, th en 

-1 -1 
b ax = xab for aU xED. ( 1) 

But 
-1 -1 

ab = b a, hence (1) 

. l' b- l C 1mp 1es a E. 

COROLLARY 6.5. Let D be a division ring with center C. Let a, b E D. 

Ifaxb = bxa for aU x E D, then a and b are linearly dependent over C. 

Proof. If a = 0 or b = 0 the result is trivial. If a and b are different 

-1 -1 
from 0, then ab E C, hence a = (ab )b. 

We now adapt Martindale's ideas to our particular case (cf.Herstein 

[ 11 ,Theorem 1.2, page 2]). 

THEOREM 6.6. (MARTINDALE). Let D be a division ring with center 

C. Let al'" .,anED be linearly independent over C and let b l , .. ·, bnED, 

'-
1 
1 
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n 

b
l 

-F O. Then. if B = [I; a.xb.: x E D) is a finite dimensional vector 
1 1 

i=l 

space over C. then D is a finite dimensional algebra over C. 

Proof. The proof is by induction on n. If n = 1. the hypothesis says 

that B = al Db
l 

is a finite dimensional vector space over C. But since 

D is a division ring and al -F O. b
l 

-F O. we have alDb
l 

= D. This proves 

the result for n = l. 

Assume now that Theorem 6.6 holds for aU m<n. and suppose 

n 
B = ( I; a.xb.: x E D} is a finite dimensionai vector space over C. where 

. III 
1= 

the ai are Iinearly independent over C and b I f. O. Let tE D. Then 

n 

B' = (I; a.xb. tb
l

: x E D) c Btb
l 

50 B' is finite dimensional over C . 
. III 
1= 

n 

We aiso have [I; a.(xbIt)b.:xED) C B thèrefore 
. l 1 1 

~< 

1= 

n 

= ( I; aix(bitbl-bltbi):XED) C B+Btb l 
i=1 

50 B isfinitedimensionaiover C. For i=l. wehave bltbl-bltbl=O; 

thus at most n-l of the elements bitbl-b
l 
tb

i 
are not O. If for i=l. 2 •...• n 

and for aU tE D is bitb
l 

= bltb
i

; then by CoroUary 6.5 we can write 

b.=q.b
l 

with q.EC. i=1.2 •...• n. whichgives 
1 1 1 

n 
I; a.xb. 

i=l 1 1 

n 

= I; a.xq. b
l 1 1 

i= l 

n 

= ~ (a.q.}xb
l 

= 
1 1 

i=l 

n 

(I; a.q.)xb
l i=l 1 1 

'-
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and since 

n n 

>:< 
(because the ai are linearly independent over C) we obtain B = al'Db

l
, 

i. e. we are back in the case n=1. Now if for sorne i -11 and Borne 

the hypothesis of our theorem 

applied to a situation of m ~ n-l elements, which by induction conc1udes 

the proof. 

Amitsur in [3] studied rings which satisfy a more general type of 

polynomial relat.; ':ln. One considers a ring R which is an algebra over 

a field F and forms the free product R(X) of the ring R and the free 

associative ring F [Xl' X
2

, ... ] in the non-cornrnuting indeterminates 

Xl' XZ' . ..• The elements of R(X) are of the form 

where {3kEF, the 'TT. are monomials in the indeterminates X. and the 
J J 

elements a. ER appear both as coefficients and between the monomials 'TT •• 
1 J 

DEFINITION 6.1. We say that R satisfies a non-trivial generalized 

polynomial identity (in short R is a G. P. 1. -ring) if there exists a non-

zero element f(X
l

, ... , X
n

) in R (X) which vanishes identically on R. 

We remarkthat, as itwas done for P.I.-rings (cf. Lemma 5.1), 

if R is a G. P. 1. -ring, then one can easily show that R satisfies a 
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generalized polynomial identity which is both homogeneous and multilinear. 

A complete account of the more important properties of R (X) can be found 

in section 4 of the above mentioned paper by Amitsur. 

The following result is also due to Martindale [14, Theorem 3]. 

THEOREM 6.7. Let D be a division ring satisfying a non-trivial poly-

nomial identity over its center C. Then D is a finite dimensional vector 

space over C. 

Proof. Since D isaP.I.-ring, itisalsoaG.P.I.-ring. Considera 

generalized polynomial identity of minimal degree n. We may assume 

this identity is homogeneous and multilinear of degree n so that it has 

the form 
m k 

f(X) = ~ a.Xlf. + ~ g.Xlb. + ~ P.X1q· 
i=l 1 1 i=l 1 1 1 1 

(1) 

where 

1. al' ... ' am E D are linearly independent over C 

2 • b l' ... , bk E D 

3. the f. and g. are generalized multilinear polynomials of degree n-l 
1 1 

4. the p. and q. are generalized polynomials of positive degree. 
1 1 

In other words we have broken f up into those monomials where Xl 

is the first variable on the left in each monomial, where Xl is the last 

variable on the right in each monomial, and finally, where Xl appears 

in the middle of each monomial. 
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For u(X
1
,···,X

n
)ED(X) and sl, .. ,snED, let udenotethe 

elernent u(sl' ... , sn) in D. Since (1) vanishes identicaUy in D we 

have for arbitrary sI'·.·' snE D: 

rn k 
:E a.s 1l. + :E g. sl b. +:EP.sIQ. = 0 

. 1 1 1 . 1 °1 1 1 1 
1= 1= 

For tE D rnultiplying (2) on the right by tb
l 

we obtain 

rn k 

:E ais/itb1+1.~_1 gis l bi tb 1 + :E Pis1ëiitb1 = 0 
i=l 

(2) 

(3 ) 

Recalling that the generalized polynornials f., g., p. and q. do not involve 
1 1 1 1 

the variable Xl' if we replace in (1) Xl by sI bIt and X
j 

by Sj for 

j=2,3, ... ,n we get 

(4) 

Subtracting (4) from (3) we obtain 

m k 
:E a.s

l
(f.tb

l
-b

l
tl.)+:E g.SI(b.tb

l
-b

l
tb.)+ 

1 1 1 1. =2 1 1 1 i= 1 

(5) 

and this holds for aU sI' .. ·' sn' tE D. 

We remarkthat in passing from (1) to (5) we have shortened in length 

byone the middle sum in (5). 
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We claim that if 

(6 ) 

then the theorem is proved. Indeed, since fI is of degree n-l, we 

maychoose r
2
,r

3
, ... ,r

n
ED suchthat fl(r2, ... ,rn)f.O sothe 

generalized polynomial of degree l defined by h(X
2

) = fI (X
2

, r 3' ... , r n) 

is non-trivial. Then h(X
2

) can be expressed as 

j 
h(X

2
) = :E c.X

2
d. 

. l 1 1 
1= 

where the c. are linearly independent over C and the d. are non- zero 
1 1 

elements of D. Moreover (6) and Corollary 6.5 imply that fI =f
l
(s2"'" sn) 

In particular this implies that 

j 
B = (h(x) = :E c.xd.:xED} C Cbl' 

. l 1 1 
1= 

Therefore E is a finite dimensional vector space over C, hence Theorem 

6.7 follows from 6.6. 

If (6) does not hold, we may choose s2', ... , sn', to E D such that 

fltobl-blt/l f. O. Now set 

Then because of (5) we have shawn that D satisfies the new generalized 

polynomial identity 
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:E 
i=l 
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k 

aiXlfi ' + i~2 qiXlbi' + :EPiXlqi' = 0 (7) 

where c
l

=f
l
'(s2', ... ,sn')1:0. (7)isnotatrivialidentity, sincethis 

would imply that 
m 
:E a.X If.' were trivial. 

1 1 
i=l 

Setting c. =f.'(s2', ... , s ') 
1 1 n 

m 
we would then have that :E a.xc .. = 0 for aU xE D. Since D is a division 

i= l 1 1 

ring and cIl: 0 we therefore know that al = 0, therefore al'"'' am are 

not linearly independent over C contradicting our assumption. The 

most important fact about the identity (7) is that the variable Xl now 

occurs at least one fewer time as a last variable than in (1). Moreover 

the a. 's have remained unchanged, and the order in which the variables 
1 

appear in (7) is the same as in (1). Repeating this argument at most 

k time s, we th en transform our original identity (1) into a new one of 

the form 

m 
:E a.X

l
f.(X

2
, ... ,X ) +g(X

l
, ... ,X) = 0 

i= l 1 1 n n 
(8) 

in which Xl never appears as the last variable in any monomial of g(X). 

Assume without loss of generality that X
l
,X

2
, ... ,X

r
, r~n, are those 

variables which occured first in sorne monomial of the original identity 

(1). Applying the above process to each of these X. we obtain a new 
1 

identity satisfied by D of the form 
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where 

(i) 

(ii) 

the set [a. (j)} is linearly independent over C for each 
1 

jE[1,2, ... ,r}. 

the f. (j) are non-zero generalized polynomials of degree n-1, 
1 

in which none of the Xl' ... , X
r 

ever appear as the last 

variable in any monomial. 

But sorne variable has to occur last in each monomial, therefore 

we must have r < n. My the minimality of n we must then have 

( 1) 
fI (r

2
, ... ,r

n
) f:. 0 for sorne r

2
, ... ,rnE D. Let 

(r) (r) 
<p. (X 1 , .. ·,X l'X l'''''X l)=f. (X 1, .. ·,X l'X l'''''X 1,r) 

1 r- r+ n- 1 r- r+ n- n 

Then from (9) we get that 

(1) (1) (r) (r) 
~a. X1<P. + ... +~a. X <p. = 0 

1 1 1 r 1 
(10) 

is a generalized polynomial identity for D of degree n-1. If (10) is 

trivial then, it would follow that ~ a. (l)X 1<P. (1) ·is trivial. Letting 
1 1 

(1) (1) 
c. =<p. (r

2
, ... , r ), we would then have that ~ a. xc. = 0 for aU 

1 1 n 1 1 

xE D . Since D is a division ring and cl f:. 0 this would imply that al ( 1) = 0, 

which contradicts the linear indepedence of the set (a.(1)}. Then (10) is a 
1 

,-
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non-trivial generalized polynomial identity and this contradicts the mini-

malityof n. Martindale's Theorem has thus been proved. 

A s a consequence of Martindale' s Theorem we obtain-a classical 

result due'to Kaplansky [12, Theorem lJ. 

THEOREM 6.8. Let R be a primitive ring satisfying a non-trivial 

polynomial identity over its centroid. Then R is a finite dimensional 

central simple algebra. 

Proof. The theorem follows from Lemma 6.3, Theorem 6. 7 and the 

fact that D is finite dimensional over D. Therefore 
n 

[R:C(R) J = [D : C(D ) J = [D :DJ [D:C(D ) J 
n n n n 

is finite. 

Before concluding this chapter, we must remark that Amitsur [4, 

Theorem 1 J has shown that if d is the minimal degree of the identities 

satisfied by the right-primitive ring R, then [R:C(R) J = m 2 and d = 2m. 
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CHAPTER VII 

STRUCTURE THEOREM OF PRIME P.I. -RINGS 

Using the method of ultra products Amitsur [4J has generalized an 

earlier theorem due to Posner [16J. The theorem under consideration 

says that every prime ring with polynomial identities over its centroid 

has a left and right quotient ring which is a finite dimensional simple 

algebra over its center. Goldie in [8J has simplified Amitsur 's proof 

by avoiding the method of ultra products. We follow here Goldie' s ap-

proach. Before proving the main theorem we need sorne preliminary 

results. 

LEMMA 7.1. If a ring R (not necessarily prime) is a P.!. -ring, then 

the polynomial ring R[YJ in a commutative indeterminate Y is also a 

P. 1. -ring. Moreover, Rand R[YJ have the same multilinear identities. 

Proof. By Lemma 5. l, if R is a P. I. -ring, then R satisfies multilinear 

identities. We assume that the ring of operators 0 of R, which contains 

the coefficients of the identities of R, is extended to operate on R[YJ 

by defining 

i 
w(~ a.Y) 

i 1 

i = ~ (wa.)Y 
i 1 

i 
for every win n and ~a.Y in R[YJ. Now let 

• 1 

i 
f.(Y)=~a .. Y, (j=1,2, ... ,n) 
J i J1 1 

be arbitrary polynomials in R[YJ and 

f(X l ,·· .,Xn ) = ~ W X (l)"'X ( ) 
crES cr cr an 

n 
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a multilinear identity of R. Since for every permutation cr of (1,2, ... , n) 

we have 

where 

we get 

( 1 ) 

But 

I;Wb =I;w I; a(l).· .. a(). cr cr, k cr. + +. -k cr , 11 cr n , 1 cr cr 11 ... ln - n 

= :E I; w a (1) .... a ( )' = 0 
. . k rr cr , 11 cr n ,ln 
1. 1+···+1n = cr 

because the a .. E Rand R satisfies f(X) = O. Therefore from (1) we 
J,1. 

get that R [Y] also satisfies f(X) = O. 

The converse result is trivial because if R[Y] satisfies a mu1tilinear 

identity so does R since it is contained in R[Y]. 

The next resu1t a1so ho1ds for arbitrary P.L-rings and is due to 

Amitsur [4, Lemma 5]. 
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LEMMA 7.2. If a ring R (not necessarily prime) satisfies a non-trivial 

identity f(X
l

, ... , X
n

) with set of coefficients O(f) ~O(R) and if P is a 

proper prime ideal of R, then 

(1) wpç;;p forall wEO(f), andeither 

(2) O(f)R ~ P or 

(2') fis aIs 0 a non-trivial identity of RI P and if wR rt P and wr E P, 

then rEP. 

Proof. (1) For all wEO(f) we have 

R(WP) ~(wR)P~RPç;;P. 

Since Pis prime and Rf: P it follows that wP ~ P. 

(2) If wEO(R), then W induces an element W in O(R/P), namely 

w is defined by w(r+P) = wr+P for aU r ER. 

Let f(X l' ... ,X
n

) be a polynomial identity of R. As we know we 

may assume that 

Then by the above remark one easily verifies that 

~ W X (l)'.·X ( ) 
rI E Sn rI rI rI n 

is an identity of RI P. It is clear that this identity is non-trivial if and 

only if O(f)R rJ;. P. 

Finally, if O(f)R rJ;. P, then there exists W EO(f) with wR t. P. Let 
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T = (r ER: wr E P}. Then T is a two- sided ideal of Rand sinee WR ct P 

we have T f:R, Then (wR)T =R(wT) ç;RPç;P. Sinee Pis prime and 

wR ct T we eonc1ude that T ç; P. But also P ç; T by (l) and the definition 

of T. Henee P=T, whieh proves (2'). 

REMARK. In what follows we assume that R is a semiprimitive prime 

ring satisfying a non-trivial multilinear identity 

f(X) = E w X (l)'" X ( ) 
ES a a an 

a n 

where w E O(R). 
a 

Let (p : a E A} be the set of all right-primitive ideals of R. Write 
ex 

A=AUN where 

A= (a EA: O(f)R t P } and A' = (a EA :O(f)R ç; P }. 
a ex 

Following Goldie [8J we say that the right-primitive ideal P 18 trivial 
a 

(with respect to f(X)) if aE/{ and non-trivial if Cl.EA. Sinee f(X) is a 

non-trivial identity there exists W E O(f) sueh that WR f: 0, therefore 

o (f)R f: 0 . Then 

o 1= 0 (f)R ç; n p 
ex EN ex 

Sinee R is semiprimitive we have n P = 0 ap.d sinee 
Cl.EA a 

(np)(np)ç; n P =0 
aEA (J aEA' CI. exEA CI. 

( l) 

we deduee n p = 0 beeause of (l) and the primenes s of R. We know 
CI. E A CI. 

,-
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(Theorem 5.2) that R is a Goldie ring, therefore it eontains regular 

elements (cf.CoroUary 3.15). Let e be a regular element of R. Then 

there exists a non-zero two- sided ideal T GeR (CoroUary 5.4). Define 

A(T) = {aEA: Tq:.P }. 
a 

Observe that A(T) is non-empty sinee n p = O. 
aEA a 

Also if a E A(T), then e é P beeause otherwise TG cR ç;; P eontradieting 
a a 

the definition of A(T). Therefore e+P = ë -; 0 in RI P for aU a E A(T). 
a a 

Moreover sinee A(T)eA is O(f)R 1;, P and sinee P is prime (beeause 
a a 

is primitive) by Lemma 7.2 we eonclude that f(X) is also a non-trivial 

identityof R/P for aU aE A(T). But then R/P is simple by Kaplansky's 
a a 

Theorem, therefore sinee T/P is a non-zero ideal of R/p we deduee 
a a 

T/p =R/p so that Of;ë is a unit dthe ring R/P , for aU exEA(T). 
0'. 0'. ex 

Nextweobservethatsinee Tf=O then I=n{p :exEA, TeP }f;0. 
(Y ex 

Therefore J=n[p :exEA(T)) =0 because R is prime and IJG n P =0. 
ex exEA ex 

We summarize these faets in the foUowing 

LEM MA 7.3. Let R be a prime and semiprimitive ring satisfying a non-

trivial multilinear identity.over O(R). Let e be a regular element in R 

and T a non-zero ideal eontained in cR. Then for aU ex in A(T) = 

{exEA:Tq:.P} 
ex 

(i) e+P O! = c is a unit in the ring RI P ex 

(ii) n P =0. 
exEA(T~ 

We ean prove 

'-
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THEOREM 7.4. Let R be a prime ring satisfying a non-trivial identity 

of minimal degree d with coefficients in the centroid of R. Then R has 

a left and right quotient ring Q, which is a simple algebra over its center 

C=C(Q). Moreover Q=RC. 

Proof. Case 1. R is prime and semiprimitive with a non-trivial multi-

linear identity f(X) = r; w X (1) ••• X (d) of minimal degree d. 
Es 0' 0' 0' 

0' d 

Let (P : a. E A) be the clas s of aU non-trivial pri.mitive ideals of R 
a. 

as defined in the proof of 7.3. Set S = n(R/P : a.E A). Then the elements 
a. 

of Sare oftheform x=(x) A where x =x '+p and x 'ER. Far 
Ct! a. E a. a. a. Ct! 

each xE S let A(x) = (a. E A: x f. a) and consider the subset V of S con­
Ct! 

sisting of aU those xE S su ch that n (P : a. E A(x)) f. a. If x, y EV, then 
a. 

A(x+y) = (Ct! E A: x +y f. a} !;; A(x) U A(y) therefore 
Ct! a. 

n(p :a.EA(x+y»:1n(p :Ct!EA(x)UA(y»:1[n(p :a.EA(x»][n(p :a.EA.(y»] 
a. a. a. a. 

(1) 

But R is prime and each of the factor s in the right hand side of (1) is a 

right-ideal different from zero, ther efore their product is different from 

zero, hence 

If xEV 

n(p : Ct! E A(x+y» f. a. This means that x+y EV. 
a. 

and sES, then A(xs) = (a. E A: x s fa} ç; A.(x) and also 
a. a. 

A(sx) !;;A(x) therefore by a similar argument as for the sum, we conclude 

that xs and sx belong to V. Since clearly XEV implies -xEV we have 

shown that V is a two- sided ideal of S. Define a map cp:R ~S by the rule 

cpr = (r+P) A. It is easy to see that cp is a homomorphism of rings 1 

Ct! Ct! E 
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moreover C{) is injective because n(p :CiEA) =0, therefore we have cpr=O 
Ci 

if and only if r E P for aU Ci E A, i. e. if and only if r =0. Hence cpR is 
Ci 

a subring of S isomorphic to R. Observe that cpR n V = 0 because 

if cpr {:: 0, then A(cpr) = A therefore n(p :CiE A(cpr)) = 0 hence cpr é v. 
Ci 

Then by the well known isomorphism theorem we obtain 

(V +cpR) /V ~ cpR/ (V ncpR) ~ cpR ~ R (2 ) 

so we may consider R to be embedded in the ring S/V. Next pick a 

regular elementc ER and a non-zero two sided ideal T contained in 

cR. We know this is possible by previous results. By Lemma 7.3 

c+P is a unit in R/P for aU Ci in A(T). Let s= (s) A and 
Ci Ci Ci CiE 

where 

{ 

-1 
s = (c+P Ci) 

Ci O+P =0 
Ci Ci 

if Ci E A(T) 

if CiEA-A(T) 

and 

{

o 
v - Ci 

Ci l+P = 1 
Ci Ci 

if CiEA(T) 

if CiEA-/\(T) 

Then vEY because A(v)=A-A(T) and O{::TÇ; n(p :CiEA-A(T)). More­
Ci 

over by (2) identifying r ER with (r) A where r = r+P 
Ci CiE Ci Ci-

for an 

Ci E A, we see that for the regular elernent cE R 

t 
-1 

(c+P )(c+P) = 1 
Ci Ci Ci 

c s = 
Ci Ci (c+P)' 0 = 0 

Ci Ci Ci 

if CiEA(T) 

ifCiEA-A(T). 



92 

Thus cs=(c s) EA=(1 -v) EA=I-v, 
0/ 0/ 0/ 0/ 0/ 0/ 

in other words, cs == 1 (m.od V). 

Hence every regular elem.ent cE R is invertible in S/V. By 

Theorem. 5.5 R has a sim.ple right and left quotient ring Q(R) whose 

. - 1 
elem.ents are products of the form. ac with a, c ER and c regular. 

Since R is em.bedded in S/V and every regular eIem.ent of R is in.,. 

vertible in S/V, we conclude that Q(R) is isom.orphic te a subring of 

S/V. It is net difficult to see that if w E O(R) then in a naturai way 

it induces an eIem.ent in O(S), hence an element in O(S/V). We denote 

this element aiso by w . 

Letting y. = (y. +P) E A +V where y. ER for i=l, 2, ... , d 
1 1,0/ 0/0/ 1,0/ 

we get 

I; w Y (1)"'y (d) = I; w [(y (1) ... y (d) +P) EA+ V ] 
O'ES

d 
0' a 0' O'ES

d 
0' 0' ,0/ 0' ,0/ 0/ Ci. 

= I; [(w Y (1) ... y (d) +P) EA+V ] 
E

s (Ja ,0/ (J ,0/ 0/0/ 
0' d 

= I; (w Y (1) ... y (d) +P) EA+ V 
E

s 0' (J ,0/ 0' ,0/ 0/0/ 
0' d 

= ( I; w y (1) ... Y (d) + P) A + V 
E
s 0' (J ,0/ 0' ,0/ O/O/E 

0' d 

= (O+P ) A+V 
0/ 0/ E 

= 0 (mod V). 
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Then S/v and therefore Q(R) satisfy f(X) = 0, moreover Q(R) Ïs 

primitive (because is simple) so we conclude from Kaplansky' s Theorem 

that Q = Q(R) is a silnple finite dimensional algebra over its center 

C(Q). This proves the theorem for the case in which R is prime and 

seniiprimitive. 

Case 2. R is prime but not semiprimitive. 

Then we know R is a Goldie ring (Theorem 5.2), therefore it contains 

no non-zero ni! ideals (Theorem 3.6) and this implies that R[Y] is semi-

primitive (Theorem 3.9). Thus the ring of polynomials R[Y] is prime 

(Lemma 1. 7),semiprimitive and with the same multilinear identities as R 

(Lemma 7.1). We then apply the argument of Case 1 to the ring R[Y]. 

Therefore Q(R[Y]) satisHes f(X) = 0 hence so does Q(R)~ Q(R[Y]). 

But then again Kaplansky' s Theorem tells us that Q = Q(R) is a Hnite 

dimensional simple algebra over its center C(Q). Finally let m = [Q: C] 

and let (ql'" ·,qm) be a basis of Q over C. 
-1 

Then q. = a. s. with 
1 1 1 

a., s. ER and 's. regular. As it was seen in Chapter IV we can always 
111 

- 1 
find a "common denominator" s, therefore we may write q. =b.s for 

1 1 

i=l, 2, .. " m where b., s ER and s is regular. Since Q is simple 
1 

we have 

= Cb
1 

+ ... +Cb
m 

= b
1 

C+ ... +b
m 

C ç;; RC. 

But also RCç;;QCç;Q, hence Q=RC and Theorem 7.4 is proved. 
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