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Abstract  

There is growing evidence that age-related decreases in episodic memory arise at midlife, a time 

when females menopause. For some, menopause is associated with memory changes, raising the 

question of how reproductive aging interacts with chronological age effects on memory and brain 

function. In the current study we explored how age and menopause status related to whole-brain 

patterns of resting-state functional connectivity in a sample of 134 females, 20 to 60 years of age 

(N=64 pre-menopausal, N=33 peri-menopausal, N=37 post-menopausal) using multivariate 

behavioral partial least squares (PLS) connectivity analysis. We examined if the relationship 

between chronological age and whole-brain functional connectivity differed between pre-, peri- 

and post-menopausal participants, and if these connectivity patterns related to performance on a 

face-location source memory paradigm. When only menopausal status was considered, PLS 

connectivity results indicated meaningful differences in functional connectivity between peri- and 

post-menopausal women, with post-menopausal women having greater functional connectivity 

within and among the dorsal attention network, salience/ventral attention network, somato-motor 

network and visual network. They also displayed greater functional connectivity between the 

hippocampus and frontoparietal control, default, dorsal attention, and visual networks. However, 

linear regressions failed to predict source accuracy performance from this pattern of functional 

connectivity. This PLS also identified meaningful differences in pre-menopausal women 

compared to peri- and and post-menopausal women, with peri- and post-menopausal women 

displaying diminished functional connectivity within the frontoparietal control, default, dorsal 

attention, and salience networks as well as the hippocampus. Compared to pre-menopausal 

women, peri- and post-menopausal women also showed increased functional connectivity 

between the dorsal attention and defualt networks, between the hippocampus and dorsal attention 
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and salience/ventral attention networks, and greater functional connectivity within the visual 

network. Linear regressions were able to predict source accuracy performance from this pattern 

of functional connectivity. These functional connectivity differences between pre-menopausal 

women versus peri- and post-menopausal women were also captured in a PLS which only 

considered covarience in chronological age with functional connectivity among the entire sample 

(i.e. disregarding menopausal status). Again, linear regressions were able to predict source 

accuracy performance from this similar age-related pattern of functional connectivity identified in 

this second PLS. Therefore, menopause is associated with different patterns of resting state 

connectivity amongst visual, hippocampal and higher order attentional control networks. Only 

when comparing pre-menopausal women to peri- and post-menopausal women, differences in 

functional connectivity seem to relate to source accuracy performance. 

Il est évident que le décline de mémoire épisodique lie au vieillissement commence à la 

quarantaine, un temps quand les femelles éprouvent la ménopause. Quelques femmes expérience 

les perturbations de mémoire pendent la ménopause, ceci soulève la question de comment le 

vieillissement reproductif interagit avec le vieillissement chronologique et cet effet sur le 

mémoire et la fonction du cerveau. Dans cette étude, nous avons examiné comment l’âge et l’état 

ménopause ont interagi aux motifs de connectivité fonctionnelle du cerveau entier pendent l’état 

de repos dans une échantillon de 134 femelles qui avaient entre 20 et 60 ans (N=64 pré-

ménopauses, N=33 peri-ménopauses, et N=37 post-ménopauses) par utilisant l’analyse 

multivariée partiels moindres carres (PMC). Nous avons exploré si la relation entre l’age 

chronologique et la connectivité fonctionnelle du cerveau entier se différait entre les participants 

pré-ménopauses, peri-ménopauses, et post-ménopauses et si ces différences se rapportaient à leur 

performance sur un paradigme de visage-endroit mémoire. Quand seulement l’état ménopause 
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s’était considérée, les résultats de l’analyse PMC connectivité a indiqué qu’il y avait différences 

fiables de connectivité fonctionnelle entre les participants post-ménopauses et peri-ménopauses. 

Spécifiquement, les femmes post-ménopauses avaient connectivité augmentée entre et dedans les 

réseaux attentions dorsales, attentions saillences/ventrales, somato-motor and visuelles, comparé 

aux participants peri-ménopauses. Les participants post- ménopauses avaient aussi de la 

connectivité fonctionnelle augmentee entre l’hippocampes et les réseaux fronto-parietal 

contrôles, défauts, attentions dorsales, et visuelles. Néanmoins, les régressions linéaires ont 

échoué a prédire les performances des participants en utilisant ces motifs de connectivité 

fonctionnelle identifiée. Cet analyse PMC connectivité a aussi identifié un autre motif de 

connectivité fonctionnelle qui différait entre les participants pre-ménopauses et les participants 

peri- et post-ménopauses. Les participants peri- and post- ménopauses avaient de la connectivité 

fonctionnelle diminué dedans les réseaux fronto-parietal contrôles, défauts, attentions dorsales, et 

saillences/attentions ventrales, et aussi dedans l’hippocampe. Comparé aux participants pre-

ménopauses, les participants peri- et post-ménopauses avaient aussi de la connectivité 

fonctionnelle augmentée entre les réseaux attentions dorsales et défauts, entre l’hippocampe et les 

reseaux attentions dorsales et saillences/attentions ventrales, et connectivité augmentée dedans le 

réseau visuel. Les régressions linéaires ont prédit les précisions sources des participants par ce 

motif de connectivité fonctionnelle. Ces différences en connectivité fonctionnel entre les 

participants pre-ménopauses et les participants peri- et post-ménopauses étaient restitué par un 

analyse PMC qui a considéré seulement la covariance entre l’âge chronologique et connectivité 

fonctionnelle pour l’échantillon entier (ignorant l’état ménopause). Les régressions linéaires ont 

prédit les précisions sources des participants par ce motif de connectivité fonctionnelle aussi. 

Donc, le ménopause se rapport aux motifs connectivités différents parmi le réseau visuel, les 
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réseaux d’ordre supérieur attentionnels et l’hippocampe. Seulement des que les femmes pre-

menopauses étaient comparé aux femmes peri- et post-menopauses, les différences en 

connectivité fonctionnelle peux prédire leurs précisions sources.  
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Introduction 

Necessity for Considering Menopause and Midlife in Neurocognitive Aging   

Episodic memory refers to memory for personally-experienced events, which has been 

conceptualized according to two dissociable cognitive process: item memory (recognition of 

familiar content, e.g. a previously seen face) and source memory (recollection of the context 

associated with the content that was remembered, e.g. which side of a screen a face was seen on) 

(Schacter et al., 1991). Studies have consistently demonstrated that both item and source memory 

generally decline in older adulthood (Cansino, 2009; Spaniol & Grady, 2012; Spencer & Raz, 

1995). Previous studies using a face-location association paradigm in our lab have demonstrated 

that measurable declines in source memory, but not item memory, can be seen as early as midlife 

(Kwon et al., 2016). Additionally, our lab has also observed sex/gender-differences in the effect 

of age on neural activity supporting spatial context memory retrieval (Subramaniapillai et al., 

2019). Together these findings underscore the importance of midlife as a time at which aging-

related episodic memory changes emerge, and that there may be biological sex differences in the 

neural correlates of age-related memory decline.  

Interestingly, midlife is a time when assigned female at birth (AFAB) individuals 

experience natural menopause, which on average occurs around 51 years of age (Soules et al., 

2001). The stages of menopause include 1) pre-menopause: characterized by regular menstrual 

cyclicity, 2) perimenopause: characterized by irregular menstrual cyclicity (e.g., greater than 2 

months without menstruation), and 3) post-menopause: characterized by a full 12 months without 

menstruation (i.e., amenorrhea) (Soules et al., 2001). There is recent work arguing that the 

neuroendocrine changes which occur during menopause may impact the neural underpinnings of 

some forms of episodic memory ( Jacobs et al., 2016; Rentz et al., 2017; Taylor et al., 2019). 
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Behavioral and neuroimaging studies that have compared the performance of pre-, peri- and post-

menopausal females have reported that on average post-menopausal females perform worse on 

associative memory tasks, i.e., remembering face-name associations, but not item recognition 

tasks. (Jacobs et al., 2016, 2017; Mosconi et al., 2018). It has been hypothesized that the 

associative memory decline observed in some menopausal females may be attributable to the 

menopause-related  reductions in centrally circulating 17-estradiol (Jacobs et al., 2016; Mosconi 

et al., 2018; Rettberg et al., 2014; Soules et al., 2001). This seems reasonable given that these 

cognitive processes are strongly supported by activity in the prefrontal cortex and hippocampus, 

which are two areas that have been shown to express estrogen receptors in humans, non-human 

primates, and rodents (Galea et al., 2017; Montague et al., 2008; Wang et al., 2010; Waters et al., 

2011).  

The neurocognitive aging literature on episodic memory decline in older adulthood, 

usually defined by the chronological age of individuals 65 years and older, typically has over-

looked the sex-specific factor of reproductive aging and menopause at midlife in females 

(Chalfonte & Johnson, 1996; Craik, 1994; Schacter et al., 1991, 1994; Tulving, 1972,1984; 

Wegesin et al., 2002). The opposite can also be said for the literature on menopause, in that these 

studies typically ignore chronological aging effects by recruiting participants within a narrow age 

range (e.g., between 45-55 years of age). This begs the question of how the interaction between 

chronological and reproductive aging processes’  might impact brain and cognitive health at 

midlife, especially given the observation that some females are more affected by menopause than 

others (Jacobs et al., 2016, 2017; Mosconi et al., 2018).  The resulting knowledge would thus be 

very useful for discerning which individuals’ cognition are more at risk of disruption at midlife 

and beyond. 
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Whole-Brain Resting-State Functional Connectivity Analysis 

Episodic memory processes rely on the coordination of a distributed network of regions 

across the entire brain (Dickerson & Eichenbaum, 2010; Rugg & Vilberg, 2013). Capturing 

neural correlates of this higher-level cognitive process thus requires analysis of the whole brain 

rather than focusing on a single region or subset of regions. While a fuller picture of brain 

function allows for a more thorough investigation of wide-spread neurocognitive changes 

associated with chronological and reproductive aging, the high dimensionality of whole-brain 

imaging, specifically functional magnetic resonance imaging (fMRI), presents its own challenges 

for researchers wishing to interpret meaningful patterns of variance from such a large amount of 

data. Whole-brain resting-state functional connectivity analysis is a promising approach that has 

been developed as one solution to the high-dimensionality challenge, and it may offer critical 

insight into how chronological and reproductive aging reorganize individuals’ intrinsic brain 

function. This method has become popular among researchers due to the fact that it can capture 

stable patterns of brain function among individuals which 1) are predictive of specific task-

relevant activity (Cole et al., 2014; C. L. Grady et al., 2010; Hughes et al., 2020; Mennes et al., 

2010; Shine et al., 2019), 2) distinguish between younger and older adults (Ferreira & Busatto, 

2013; C. Grady et al., 2016; Spreng et al., 2016), and 3) can generate predictive models of disease 

spread along with the functional consequences of brain disease (Fornito et al., 2015; Mišić et al., 

2015).  Drawing from the well-established whole-brain functional connectivity methodology 

employed by the aging literature, we intend to apply this framework to not only investigate 

chronological aging, but also incorporate reproductive aging as a relevant, sex-specific factor for 

brain function at midlife. As such, the present study aims to characterize the independent and 

interactive impact of menopause and chronological age on resting-state functional connectivity 
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networks and its association to episodic memory performance in a large sample of healthy young 

and middle-aged females.  

The resting-state functional connectivity (RSFC) fMRI literature examines the statistical 

dependency of spontaneous blood-oxygen level dependent (BOLD) signal oscillations between 

discrete regions of the brain in the absence of experimental stimuli (Sporns et al., 2004). 

Complementary to the task-based fMRI literature, this method has been argued to capture 

intrinsic patterns of neural activity which may underly the evoked activity observed in the context 

of experimental task stimuli (Cabral et al., 2011). The justification for this argument is that the 

external task stimuli evoke neural communication and information flow across the brain to give 

rise to complex cognitive processes and this depends largely on the state of co-oscillatory neural 

activity dynamics intrinsic to the brain (Breakspear, 2017; Cole et al., 2014; Deco et al., 2011; 

Shine et al., 2019).  Thus, task-related brain states seem to emerge from individuals’ baseline 

resting-state network organization as defined by neural activity during their ‘resting-state’. 

Collections of brain regions which show a high degree of co-oscillatory BOLD activity have been 

referred to as resting-state networks by this field (Deco et al., 2011; Power et al., 2011; Yeo et al., 

2011). Network science terms have been employed to describe brain region members of these 

resting-state networks as nodes and their functional connectivity with other nodes as edges. The 

topology of network models can be conceptualized as how nodes are collectively organized by 

their edges with each other (Fornito et al., 2013). The neuroscientific meaning of topology in the 

context of RSFC would thus be the patterns of high/low co-oscillatory BOLD activity among 

regions of the brain. A study conducted by Cole and colleagues (Cole et al., 2014) demonstrated 

the functional relevance of resting-state networks by deriving functional connectivity matrices 

using the Power Atlas (Power et al., 2011) in two independent datasets containing resting-state 
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fMRI images and task-based fMRI images from 64 tasks in 15 participants (Cole et al., 2010) and 

7 tasks in 118 participants from the Human Connectome Project (Barch et al., 2013). They 

showed a very high degree of correspondence (r=.90) between RSFC matrices and a combined 

multitask-based FC matrix for each dataset. These results suggest the relevance of the resting-

state for functional brain states observed in the context of cognitive tasks. RSFC has been widely 

used to characterize age-related changes in brain function over the past two decades (for reviews 

see: Ferreira & Busatto, 2013; Jockwitz & Caspers, 2021), and emerging patterns of age-

associated topological changes in resting-state networks will be discussed below.  

 

Resting-State Functional Connectivity and Aging 

 One of the most robustly studied resting-state networks by aging researchers is the default 

mode network (Ferreira & Busatto, 2013). The default mode network (DMN) comprises the 

medial prefrontal cortex, the inferior parietal lobule, the hippocampus and the posterior cingulate 

cortex/retrosplenialcortex/precuneus (Buckner et al., 2008; Raichle et al., 2001). This network of 

regions gets its name due to observations that it is primarily activated at rest (in a task-free 

setting) and deactivated during task performance (Greicius et al., 2003), though this functional 

attribution of the DMN is still contentious as parts of it have been argued to play a role in tasks 

that tap into autobiographical memory processes or self-referential thinking (Spreng et al., 2010; 

Spreng & Grady, 2010; Vatansever et al., 2015). Nonetheless, reduced connectivity among 

regions of the DMN has repeatedly been observed in older adulthood (Esposito et al., 2008; C. L. 

Grady et al., 2010; Spreng et al., 2016; Tomasi & Volkow, 2012).  

While the DMN seems to be the most robustly affected by age among the canonical 

resting-state networks (Ferreira & Busatto, 2013), reduced connectivity within its comprised 
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regions seems to be only part of the larger pattern of topological changes that occur in late life. 

Dedifferentiation is a term used to describe loss of neural functional specificity often seen in 

fMRI studies on aging (Cabeza et al., 2018). Work looking at functional dedifferentiation in the 

context of resting-state networks has begun to establish consistent evidence that resting-state 

networks display an age-related reduction of functional connectivity among regions within their 

respective networks as well as increased connectivity between regions typically ascribed to other 

networks (Chan et al., 2014; Geerligs et al., 2015; Goh, 2011; Koen et al., 2020; Ng et al., 2016; 

Setton et al., 2021; Spreng et al., 2016; Zonneveld et al., 2019). For example, Spreng and 

colleagues (2016) looked at differences between young and older adults’ intrinsic connectivity of 

the DMN as well as the dorsal attention network (DAN) and saw that within-network 

connectivity was reduced for each of these networks but connectivity between these two 

networks was increased in older compared to younger adults at rest (Spreng et al., 2016).  

Chan and colleagues in their 2014 publication took a graph theoretic approach to 

capturing dedifferentiated topological changes associated with aging. In a sample of adults 

ranging in age from 20 to 89 years of age they used a RSFC boundary mapping technique (Wig et 

al., 2014) to define ROIs which were then labelled as belonging to specific resting-state networks 

according to the canonical atlas developed by Power and colleagues (Power et al., 2011). With 

these network-defined nodes, they calculated a node-wise measure they referred as system 

segregation which broadly is a standardized difference of a node’s functional connectivity to 

members within its own network minus its functional connectivity to members of other networks. 

Thus, the greater a node’s system segregation the more functional connectivity it has within its 

own network compared to other networks. Overall, they reported mean node-wise system 

segregation was negatively correlated with greater age. This trend was linear among only 
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sensorimotor networks (e.g., visual, somatosensory/motor, and auditory networks), but quadratic 

among hetero-modal “association” networks, such as the DMN, ventral attention network, 

salience network, and fronto-parietal control network. Interestingly, the point of inflection for this 

quadratic relationship between mean system segregation of association networks and age was at 

midlife (roughly at 50 years of age). While the authors did not disaggregate this effect by sex, it 

prompts further inquiry when considering that the average age of menopause is 51 and 72% of 

their cohort between the age of 50-64 was female. The authors also showed that this system 

segregation measure was sensitive to individual differences in cognitive performance. 

Specifically, they residualized participants’ composite performance on number of episodic 

memory tasks by age to show that independent of age, system segregation among associative 

networks was positively correlated to performance. This result was replicated in a longitudinal 

study shortly after by Ng and colleagues (Ng et al., 2016) who showed that system segregation 

between the fronto-parietal control network and DMN declined in a sample of 78 healthy older 

adults over the course of four years.  

Zonneveld and colleagues (Zonneveld et al., 2019) investigated this effect for the anterior 

and posterior portions of the DMN independently in a large sample of middle- to older- aged 

adults consisting of 2878 participants total from the population-based Rotterdam Study. They 

found interesting dissociable patterns of age-related changes in RSFC topology among either 

portion of the DMN, such that the anterior portion displayed increased connectivity with the 

fronto-parietal control network while the posterior portion displayed increased connectivity with 

the dorsal attention network. Such findings have prompted further consideration for the 

heterogenous age-related topological variance of canonical resting-state subnetworks. Setton and 

colleagues (Setton et al., 2021) also investigated dedifferentiated resting-state network 
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architecture in older adulthood using resting-state data from 181 younger adults (age 20-34) and 

120 older adults (age 60-89). When looking at sub-networks of the DMN, fronto-parietal control, 

and dorsal attention networks as defined by the 17-network Yeo atlas (Yeo et al., 2011), the 

authors used partial least squares (PLS) to identify latent variables of reduced functional 

connectivity within each subnetwork and greater functional connectivity among all subnetworks 

and this was particularly pronounced for dorsal attention A subnetwork (comprising superior 

parietal lobule), fronto-parietal control C subnetwork (comprising the precuneus and posterior 

cingulate), and DMN A subnetwork (comprising the inferior parietal lobule, dorsal prefrontal 

cortex, precuneus, posterior cingulate, and medial prefrontal cortex). This shifted pattern of 

higher-level subnetwork architecture observed in older adults negatively correlated with 

executive function test scores, but, interestingly, did not significantly correspond to episodic 

memory performance. The discrepancy of behavioral associations with dedifferentiated 

connectivity patterns between Setton and colleagues and Chan and colleagues could be due to the 

different implications of respective age-related network topological differences for specific 

cognitive processes. However, this discrepancy could just as likely be due to the different 

analytical choices in network definition and atlases used by the different groups.  

To summarize, the literature on rsFC and aging has established consistent findings of 

dedifferentiated network topology in older adulthood, which seems relevant to episodic memory 

and other cognitive functions. The work described above provides a useful framework which the 

present study employs to address unanswered questions regarding the neural changes thought to 

occur at midlife.  
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Menopause and Neurocognition 

Evidence from epidemiological surveys has indicated that many females experience disturbances 

in their cognition (i.e., “brain fog”) in peri- as well as early post-menopause, and this is further 

corroborated by neuropsychological studies showing a significant effect of menopausal status on 

associative memory performance (Epperson et al., 2013; Rentz et al., 2017; Taylor et al., 2019). 

The menopausal transition occurs over several years with the average age of menopause being 

around 51 years of age and it is characterized by significant declines in ovarian hormones such as 

17-estradiol and progesterone as well as increases in follicular stimulating hormone (FSH)  

(Soules et al., 2001). Perimenopause is roughly a two-year portion of the menopausal transition 

which is characterized by irregular fluctuations in 17-estradiol and two or more skipped cycles 

(Soules et al., 2001). Post-menopause is defined once an extended interval of amenorrhea (lack of 

menstruation) persists for at least 12 months. 17-estradiol ceases to fluctuate at post-menopause 

and rather steadily declines. This depletion of 17-estradiol is argued to be the primary mediator 

of menopausal impact on neurocognitive health at midlife and beyond, given its role in 

bioenergetic and neuromodulatory processes in the brain (Adams et al., 2001, 2002; Arevalo et 

al., 2015; Epperson et al., 2012; Girard et al., 2017; E. Jacobs & D’Esposito, 2011; E. G. Jacobs 

et al., 2017; Nejat & Chervenak, 2010; Östlund et al., 2003; Pritschet et al., 2020; Rettberg et al., 

2014; Sheppard et al., 2018; Waters et al., 2011; Wu et al., 2011). The scientific literature on 

menopause-associated functional brain changes at midlife is extremely sparse (de Lange et al., 

2021; Taylor et al., 2019, 2021). While no study to our knowledge has directly investigated 

whole-brain resting-state functional connectivity differences in females across the pre-, peri-, and 

postmenopausal stages of reproductive aging, there are studies conducted by our collaborators 

that have investigated differences in task-based fMRI neural activity based on reproductive stage 
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at midlife (E. G. Jacobs et al., 2016, 2017).  In their 2016 study, Jacobs and colleagues 

investigated episodic memory in a sample of 32 pre-, 29 peri-, and 31 postmenopausal females 

(age range 46-55). The authors demonstrated that reproductive stage over chronological age 

predicted activity in the left hippocampus during verbal memory encoding, where pre- and peri-

menopausal females had greater BOLD activity compared to postmenopausal females. 

Additionally, the authors investigated functional connectivity during encoding using a seed-based 

approach and found that postmenopausal females had greater bilateral hippocampal functional 

connectivity which was negatively correlated with performance and endogenous 17-estradiol 

levels in all females. Lastly this study showed that when postmenopausal females’s performance 

on an out-of-scanner face-name associative memory task was tertile split, higher performers 

compared to middle/low performers’ neural activity was more closely resemblant of pre-/peri-

menopausal females’s, specifically they had lower bilateral hippocampal functional connectivity. 

Estrogenic depletion over the menopausal transition has been argued as a major factor in these 

observed neural and behavioral changes. There are likely many relevant sociocultural and 

environmental factors which also contribute to these findings, as womanhood is a social construct 

which encompasses many environmental factors in addition to reproductive hormones. There is a 

sizeable literature on estrogen’s role in the brain and its cognitive relevance. The knowledge 

gained from this literature and how it contributes to our understanding of menopausal relevance 

for brain function will be discussed below.  

Rationale for Current Study, Objectives, and Hypotheses 

Rationale 

Given the sparsity of literature on menopausal relevance in brain health at midlife and into older 

adulthood, the current study will contribute new knowledge regarding the impact of menopause 
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on intrinsic functional brain network organization in females at midlife. Importantly, this 

knowledge will delineate the effects of reproductive and chronological aging on resting-state 

functional connectivity networks while also testing the cognitive relevance of identified patterns 

through the inclusion of behavioral data in multivariate analyses. These results will provide 

predictions for future work investigating relevant cognitive domains susceptible to impairment at 

midlife, as well as underscore the importance of considering sex/gender relevant factors in 

studies of neurocognitive aging.  

Objectives 

The current study aims to use resting-state functional connectivity analysis in tandem with 

multivariate partial least squares (PLS) analysis in a sample of healthy young and middle-aged 

adult females to identify 1) differences in resting-state functional connectivity among cohorts 

separated by menopausal status. 2) the correlation between chronological age and resting-state 

functional connectivity when menopausal status is disregarded. 3) the effect of menopausal status 

on correlations between participants’ chronological age and whole-brain, resting-state functional 

connectivity. Post-hoc linear regressions will then predict participants’ subsequent episodic 

memory performance from their ‘brain-scores’, representing the degree to which they display the 

patterns of resting-state functional connectivity identified in the above PLS analyses. Episodic 

memory will be assessed using a spatial context memory task which was selected based on 

previous findings in our laboratory showing that impaired performance occurs at midlife (Kwon 

et al., 2016).  

Hypotheses  

We expect to see reproductive and chronological age-related patterns of dedifferentiated 

connectivity among 7 a priori  defined resting-state networks from the Schaefer 2018 centroid 
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atlas (Schaefer et al., 2018). Additionally, we will include hippocampal ROIs as established by 

Damoiseaux and colleagues (Damoiseaux et al., 2016) due to its well documented role in 

episodic memory processes and rich density of estrogen receptors. We expect to see a 

reorganization of hippocampal regions functional connectivity among attentional and default 

mode networks corresponding to menopausal status as well as chronological age at midlife. 

Specific hypotheses will thus be outlined below.  

Hypothesis 1: The first hypothesis will be addressed in a mean-centered PLS which will identify 

reliable differences in functional connectivity between groups of participants separated into 

cohorts by reproductive status using the STRAW criteria (Soules et al., 2001). These groups will 

consist of 3 cohorts: young and middle-aged pre-menopausal adults, middle-aged peri-

menopausal adults, and middle-aged post-menopausal adults. Across the default mode network 

(DMN), dorsal attention network (DAN), and fronto-parietal control network (FPN), we expect 

to see a pattern of dedifferentiation (reduction of within-network functional connectivity and 

increase of between-network functional connectivity) in the post-menopausal cohort relative to 

pre- and peri menopausal cohorts (Chan et al., 2014; Cole et al., 2014; Setton et al., 2021). We 

also expect to see increased functional connectivity among ROIs of the hippocampus for post- 

compared to pre- and peri-menopausal participants (E. G. Jacobs et al., 2016).  

Hypothesis 2: In a second PLS, all participants will be considered in a single group (i.e., 

menopausal status will be disregarded). Participants’ chronological age will instead be considered 

as a continuous variable of interest here. This type of PLS, often referred to as a behavioral-PLS 

(BPLS), will identify maximal patterns of covariance between participants’ chronological age 

and their functional connectivity data. Patterns of functional connectivity identified to correlate 
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with age here should again resemble dedifferentiation findings from the aging literature, 

especially for the DMN, DAN, and FPN.  

Hypothesis 3: For the final PLS, participants will again be grouped by reproductive status using 

the STRAW criteria (Soules et al., 2001) to distinguish pre-, peri-, and postmenopausal 

participants from each other. In this PLS, participants’ chronological age will be included as a 

variable of interest to be correlated with functional connectivity data within each group. This 

BPLS will identify maximal patters of covariance between age and connectivity that differ among 

groups. We predict that postmenopausal participants in contrast to pre-/peri-menopausal 

participants will display age-related dedifferentiated patterns of functional connectivity specific 

to the DMN and attention networks (dorsal and fronto-parietal control). This dedifferentiated 

pattern of functional connectivity will positively correlate with age in the postmenopausal group 

only (Chan et al., 2014; Zonneveld et al., 2019).  
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Methods 

Participants 

Participants in this experiment come from a sample of adult females (20-60 years of age). Each 

participants’ reproductive status was assessed using the Stages of Reproductive Aging Workshop 

(STRAW) criteria which include self-report questionnaires and serum measures of estradiol, 

follicular stimulating hormone (FSH), and luteinizing hormone (Soules et al., 2001). Recruitment 

was conducted using web-based advertisements and posters in the Montreal metropolitan area. To 

be eligible for participation participants had to be in good health by not indicating any of the 

following in their medical history: total hysterectomy, bilateral oophorectomy, cataract, 

glaucoma, untreated age- related maculopathy, risk factors for cardiovascular disease such as 

uncontrolled hypertension or untreated high cholesterol, diabetes, history of estrogen-related 

cancers, neurological diseases or insult, any psychiatric disorder, claustrophobia, prior serious 

head injury, history of alcoholism, currently drinking >14 units of alcohol/week, or currently 

smoking >40 cigarettes per day. Participants also had to have received a high school diploma, 

adhere to the magnetic resonance imaging (MRI) safety requirements, and consent to giving 

blood samples. All participants provided informed consent before participating in the study and 

they received $40 immediately after their first session and $60 immediately after their second 

session as compensation. This study was approved by the Douglas Mental Health University 

Institute Research Ethics Board. Participants completed two sessions on separate visits: an initial 

behavioral session (Session 1) and a second MRI session (Session 2). After exclusions specified 

at each step outlined below, the current sample of participants with usable data for analyses 

stands at 134. Sixty-four of these are young and middle-aged pre-menopausal, 33 are middle-

aged peri-menopausal and 37 are middle-aged postmenopausal.  
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Procedure 

Online Screening Questionnaire: An initial 20-minute online screening questionnaire was 

administered to individuals interested in participating in the study. This screening questionnaire 

included questions regarding basic demographic information such as age, gender, medical 

history, reproductive history, and education. Participants who seemed cognitively, physically, 

and psychologically healthy were contacted for participation in the study.  

 

Session 1: When participants arrived at the Brain Imaging Center of the Douglas Mental Health 

University Institute, they agreed to two consent forms regarding participation in the study and 

providing blood samples. After which, participants completed a neuropsychological battery of 

assessments and a mock-scanner procedure for exposure to the MRI scanner environment and 

familiarization with the in-scanner spatial context memory task. This session lasted 

approximately two and a half hours. Only participants who met eligibility on relevant 

neuropsychological assessments were invited to participate in session two. Eligibility relevant to 

this study is as follows:  

The Mini-International Neuropsychiatric Interview (M.I.N.I; Sheehan et al., 1998) is used to 

identify psychiatric disorders. One point is obtained when all diagnostic criteria are met for a 

single disorder. Participants were excluded from the study dependent on positive modules. 

The Edinburgh Inventory (Oldfield, 1971) is a measure of handedness. Participants indicate 

whether they use their left, right, or both hands to perform tasks. Participants who exclusively use 

their right hand for all tasks receive a score of 100%. While participants will not be excluded if 

they are left-handed, scores were noted for each individual and reported within groups. 
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The Beck Depression Inventory II (BDI-II; Beck, Steer, & Brown; 1996) is a 21-item self- report 

questionnaire for depressive symptoms from the previous two weeks. Out of a total score of 63, a 

score above 13 suggests mild depression, a score above 20 suggests moderate depression, and a 

score above 29 suggests severe depression. Participants with a score above 12 were excluded 

from this study. 

The Beck Anxiety Inventory (BAI; Beck, Epstein, Brown, & Steer, 1988) is a 21-item self-report 

questionnaire for anxiety symptoms during the last month. Out of a total score of 63, a score 

above 21 suggests moderate anxiety and a score above 36 suggests potential cause for concern. 

Participants with a score above 21 were excluded from this study. 

The Mini-Mental State Exam (MMSE; Cockrell & Folstein, 1988) is a measure of general 

cognitive functioning. This tool is used to evaluate mental status and cognitive impairment in the 

elderly population. The assessment consists of 11 sections assessing diverse cognitive abilities. 

Out of a total score of 30, participants with a score below 27 were excluded from the study. 

The California Verbal Learning Test II (CVLT-II; Delis et al., 2000) is a measure of verbal 

episodic memory. This test includes measures for short-term and long-term recall for both cued 

and free recall. The CVLT is used as a measure for exclusion. The cut-off scores for the CVLT 

are varied dependent on age and education level (Norman, Evans, Miller, & Heaton, 2000). 

The National Adult Reading Test (NART; (Strauss et al., 2006)/French NART (fNART; 

(Mackinnon & Mulligan, 2005) is used as an estimate of premorbid intelligence. Predicted full- 

scale IQ is derived from equations and calibrated against the Wechsler Adult Intelligence Scale 

full-scale IQ (WAIS-IV FSIQ; English version) or WAIS-R verbal (French version; Nelson, 

1982; Mackinnon and Mulligan, 2005; Wechsler, 2008). Participants with scores exceeding 2.5 

standard deviations from the mean after adjusting for age and education were excluded. 
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Menopausal Status Categorization: Participants’ menopausal statuses were categorized 

according to the STRAW-10 criteria (Soules et al., 2001). Specifically, participants self-reported 

details of their reproductive cycles. Those who reported consistently regular menstrual cyclicity 

were categorized as pre-menopausal. Those who reported variable menstrual cyclicity, +/- 7 days 

variation in menstruation or greater than 60 days without menstruation (i.e. amenorrhea) were 

categorized as perimenopausal. Participants who reported a full year or more of amenorrhea were 

categorized as post-menopausal.   

 

Session 2: Those who met our inclusion criteria and agreed to continue participation returned for 

their second session on a later date. The second session consisted of a pregnancy test, a sequence 

of MRI scans and a blood draw taken within an hour of scanning by a certified nurse to assess 

hormonal levels for STRAW categorization. Participants underwent a T1-weighted structural 

MRI scan, and 10 minutes of resting-state functional MRI (rsfMRI) scans, which were conducted 

with eyes open, while participants looked at a central white fixation cross on a black background.  

 

MRI Acquisition  

Whole-brain imaging was conducted on a Siemens 3T Prisma-fit scanner. Participants lay supine 

in the scanner with a 32-channel head coil. Pads were used to stabilize participants heads and 

earplugs were given to participants to reduce the noise generated by the scanner. Resting-state 

stimuli (fixation cross) were back projected onto a screen in the scanner and participants looked 

at a mirror mounted to the head coil to view. For participants requiring corrected visual acuity, 

plastic optical corrective glasses were provided. All participants were first scanned with a T1-

weighted structural MRI (TR=2300ms, TE=2.36ms, voxel-size=1×1×1mm, FOV = 256 mm2, 
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time of acquisition = 5 min 3 s). Next, resting-state blood-oxygen-level-dependent (BOLD) 

functional MRI scans were obtained with T2*-weighted gradient-echo echo-planar image (EPI) 

pulse sequence over one run consisting of 296 timepoints (37 slices, 4mm slice thickness, 

TR=2000ms, TE=30ms, voxel-size=4×4×4mm, FOV = 256 mm2, flip angle=90 degrees, phase-

encoding direction= A/P, time of acquisition = 10 min).  

 

Preprocessing 

Preprocessing is performed using fMRIPrep 20.2.0 (Esteban, Markiewicz, et al. (2018); Esteban, 

Blair, et al. (2018); RRID:SCR_016216), which is based on Nipype 1.5.1 (Gorgolewski et al. 

(2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing: A total of 1 T1-weighted (T1w) images for each participant was 

corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), 

distributed with ANTs 2.3.3 (Avants et al. 2008, RRID:SCR_004757), and used as T1w-

reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as 

target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and 

gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, 

RRID:SCR_002823, Zhang, Brady, and Smith 2001). Brain surfaces were reconstructed using 

recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain 

mask estimated previously was refined with a custom variation of the method to reconcile ANTs-

derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 

(RRID:SCR_002438, Klein et al. 2017). Volume-based spatial normalization to two standard 

spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear 
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registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w 

reference and the T1w template. The following templates were selected for spatial normalization: 

ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), 

RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-

linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. 

(2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym].  

 

Functional data preprocessing 

For each of the rsfMRI scans the following preprocessing was performed. First, a reference 

volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. 

A B0-nonuniformity map (or fieldmap) was estimated based on a phase-difference map 

calculated with a dual-echo GRE (gradient-recall echo) sequence, processed with a custom 

workflow of SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP 

Pipelines (Glasser et al. 2013). The fieldmap was then co-registered to the target EPI (echo-

planar imaging) reference run and converted to a displacements field map (amenable to 

registration tools such as ANTs) with FSL’s fugue and other SDCflows tools. Based on the 

estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was 

calculated for a more accurate co-registration with the anatomical reference. The BOLD 

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 

implements boundary-based registration (Greve and Fischl 2009). Co-registration was configured 

with six degrees of freedom. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters) are 

estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). 
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The BOLD time-series (including slice-timing correction when applied) were resampled onto 

their original, native space by applying a single, composite transform to correct for head-motion 

and susceptibility distortions. These resampled BOLD time-series will be referred to as 

preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were 

resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym 

space. First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. Automatic removal of motion artifacts using independent component 

analysis (ICA-AROMA, Pruim et al. 2015) was performed on the preprocessed BOLD on MNI 

space time-series after removal of non-steady state volumes and spatial smoothing with an 

isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding “non-

aggressively” denoised runs were produced after such smoothing. Additionally, the “aggressive” 

noise-regressors were collected and placed in the corresponding confounds file. Several 

confounding time-series were calculated based on the preprocessed BOLD: framewise 

displacement (FD), DVARS and three region-wise global signals. FD was computed using two 

formulations following Power (absolute sum of relative motions, Power et al. (2014)) and 

Jenkinson (relative root mean square displacement between affines, Jenkinson et al. (2002)). FD 

and DVARS are calculated for each functional run, both using their implementations in Nipype 

(following the definitions by Power et al. 2014). The three global signals are extracted within the 

CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors were 

extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). 

Principal components are estimated after high-pass filtering the preprocessed BOLD time-series 

(using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the 
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top 2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, 

WM and combined CSF+WM) are generated in anatomical space. The implementation differs 

from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, the 

aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. 

This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, 

and it ensures components are not extracted from voxels containing a minimal fraction of GM. 

Finally, these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in 

the original implementation). Components are also calculated separately within the WM and CSF 

masks. For each CompCor decomposition, the k components with the largest singular values are 

retained, such that the retained components’ time series are sufficient to explain 50 percent of 

variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining 

components are dropped from consideration. The head-motion estimates calculated in the 

correction step were also placed within the corresponding confounds file. The confound time 

series derived from head motion estimates and global signals were expanded with the inclusion of 

temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames that 

exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion 

outliers. All resamplings can be performed with a single interpolation step by composing all the 

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion 

correction when available, and co-registrations to anatomical and output spaces). Gridded 

(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 

Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 1964). Non-

gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer).  
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Functional Data Post-processing 

After initial preprocessing by fMRIPrep, two independent raters in our laboratory visually 

examined the anatomical and functional raw and preprocessed images to determine if any 

structural or motion related abnormalities were present and unaccounted for by fMRIPrep’s 

standard preprocessing procedures. Only one participant was removed at this step due to gross 

anatomical abnormality that was not fully accounted for by fMRIPrep’s normalization procedure. 

After this visual quality control step, participants’ images normalized to ICBM 152 Nonlinear 

Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow 

ID: MNI152NLin2009cAsym] were selected to go through a final custom denoising pipeline 

programmed using python’s Nilearn package (http://nilearn.github.io) which consists of brain 

extraction via each individual’s fMRIPrep generated brain mask, removal of the first five 

volumes, spatial smoothing using a 6 mm FWHM isotropic Gaussian kernel, confound time-

series regression, and 0.003-0.08 Hz bandpass filter in that order. Specific confound time-series 

selected from the fMRIPrep generated outputs were the time-series of independent components 

identified by ICA-AROMA as likely related to motion. These components were identified for 

each participant independently (Pruim et al. 2015). This procedure was selected based off of the 

recommendations from a recent evaluation conducted by Parkes and colleagues (Parkes et al., 

2018). 

 

Functional Connectivity Analysis 

The mean BOLD signal time-series are extracted from 200 spherical ROIs defined in the 

Schaefer 2018 atlas (Schaefer et al., 2018) from each participants rsfMRI scan. Additionally, 4 

hippocampal ROIs were include from coordinates provided by Damoiseaux and colleagues 

http://nilearn.github.io/
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(Damoiseaux et al., 2016). Each ROI had a radius of 3mm. After each participant’s time-series 

was created, high-motion volumes were then removed (i.e., scrubbed) before correlation matrix 

creation. This scrubbing procedure removed data-points from time-series which corresponded to 

a high degree of motion during scanning. This was defined as time-points during which motion 

exceeded our a priori defined thresholds of either .5 mm framewise displacement or 2 standard 

deviations from the mean global BOLD signal for the run. Additionally, one volume preceding 

and one volume following motion outlier time-points were removed from time-series. At this 

step, three participants were excluded for having less than 180 volumes (6 minutes) of resting-

state data remaining. After this scrubbing procedure, whole-brain functional connectivity 

estimates were calculated as the Pearson’s correlation between each of the 204 ROI’s time-series 

using python’s Nilearn package (http://nilearn.github.io). This yielded functional connectivity 

matrices for each individual in our sample which could then be used in partial least squares 

connectivity analysis.  

 

PLS Analyses 

To address our hypotheses, partial least squares (PLS) analysis was conducted using the open 

source PLSGUI software (https://www.rotman-baycrest.on.ca/index.php?section=345) in 

MATLAB version 8.3.0 (R2014a; Mathworks, Inc., Natick, MA). PLS analysis is a multivariate 

statistical analysis technique frequently used to test correlations between high-dimensional 

neuroimaging datasets and behavioral or experimental measures which are deemed reliable 

through a bootstrapping method (McIntosh et al., 1996). Scripts created in our laboratory 

(https://github.com/Charana22/pls_connectivity) were used to apply PLS to connectivity data. 

Three PLS analyses were conducted to address our hypotheses. The first PLS was a mean-

http://nilearn.github.io/
http://www.rotman-baycrest.on.ca/index.php?section=345
https://github.com/Charana22/pls_connectivity
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centered PLS which identified functional connectivity values which reliably differed between our 

pre-specified groups of interest based on menopausal status. The second two PLS analyses 

related patterns of reliable edgewise covariation with our variables of interest (i.e., age) in a 

manner similar to the behavioral PLS method (B-PLS) used for task-based fMRI data. The first 

B-PLS addressed functional connectivity which covaried with participants’ normalized, 

chronological age amongst the entire sample as a single group. The second B-PLS also addressed 

functional connectivity which covaried with participants’ normalized, chronological age. 

However, in this second B-PLS, participants were grouped by menopausal status as in the mean-

centered PLS stated above so that differences in age-related functional connectivity covariance 

could be assessed between groups. 

  Participants’ connectivity matrices were stacked in a single matrix where each column 

corresponded to a single edge between two ROIs (i.e., edge), each row corresponded to a single 

participant in our sample, and the values corresponded to Pearson’s r value for each participant’s 

edge. A separate matrix included variables of interest where each row corresponded to a 

participant in the same order as the first matrix, and each column corresponded to a variable of 

interest (e.g., age). The participants’ data were stacked according to group (young and middle-

aged pre-menopausal, middle-aged peri-menopausal, and middle-aged postmenopausal) for both 

the connectivity data matrix and behavioral variables of interest matrix. The behavioral matrix 

was transposed and cross correlated with the connectivity data matrix to produce a combined 

correlation matrix which was then decomposed via singular value decomposition. Orthogonal 

latent variables (LVs) were created by projecting the original matrices onto their saliences so that 

each LV comprised of a singular value representing the amount of covariance accounted for by 

that LV, a single matrix with values corresponding to all edges’ weighted contribution, and a 
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correlation profile for each behavioral variable of interest’s association to the matrix of edgewise 

contribution. Bootstrapping was performed to establish the stability of each edge’s weighted 

contribution. Standard error for each edge was calculated from 500 bootstrap tests and a bootstrap 

ratio (BSR) was estimated by dividing the edge’s weighted contribution by its standard error. The 

top 5% of edges’ BSRs were retained as the most reliable and included for visualization of 

results.   
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Results 

Participants 

A total of 279 female participants between the ages of 20 and 60 were initially enrolled in the 

study. Of these, 129 either withdrew or were excluded based off the testing criteria listed above. 

Of the remaining 150 females, 16 participants were excluded due to either technical issues with 

the MRI scanner, issues with the testing protocol due to tardiness, poor quality resting-state scan 

images (either due to excessive motion or abnormalities in image acquisition for example loss of 

considerable BOLD signal in areas of interest), or indeterminate menopausal status.  After these 

exclusions, 134 participants with sufficient quality resting-state fMRI scans were included for 

PLS connectivity analyses used to address hypotheses regarding age and menopausal effects on 

functional connectivity. These participants were divided into three groups based on menopausal 

status using STRAW-10 for PLS analyses addressing hypotheses 1 and 3 (pre-, peri-, and post-

menopausal). From the 134 participants, 76.1% were Caucasian, 3.0% Latin American, 2.2% 

Black, 1.5% South Asian, 2.9% Chinese, 2.2% aboriginal, .7% Caucasian- Southeast Asian, 1.5% 

Caucasian-Latin American, and 0.7% Arab. Ethnic data was missing for the remaining 9% of 

females.  Details on the demographics for these groups of participants can be found in Table 1. T-

tests for significant differences in demographics among cohorts were conducted in R version 

4.1.0.  
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Table 1: Participant Demographics by Menopausal Status 

 

 

 PRE-

MENOPAUSAL 

PERI-

MENOPAUSAL 

POST-

MENOPAUSAL 

TOTAL    

N 64 33 37 134    

AGE 35.45(9.67)* 50.40(4.03)* 55.77(3.02)* 44.74(11.57)    

EDUCATION 16.18(2.12)  15.97(1.91)  15.8(2.41)  16.02(2.15)    

SOURCE 

ACCURACY 

EASY 

0.63(0.21) † ‡ 0.50(0.21) † 0.45(0.21) ‡ 0.55(0.22)    

SOURCE 

ACCURACY 

HARD 

0.44(0.20) †‡ 0.32(0.17) † 0.31(0.15) ‡ 0.37(0.19)    

MOCA 27.89(1.78) ‡ 27.55(1.56) † 26.46(2.43) †‡ 27.4(2.02)    

BDI-II 4.22(4.02) 5.00(4.66) 5.16(5.31) 4.67(4.55)    

BAI 5.25(5.06) 4.64(4.46) 3.59(3.95) 4.64(4.65)    

HANDEDNESS 

(%RIGHT) 

78(44)  75(39)  85(32) 79(40)    

ENGLISH 33 48 27 35    

FRENCH 52 30 51 46    

OTHER 

 

16 21 22 18    
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Note: Mean(standard deviation). MoCA= Montreal Cognitive Assessment; BDI-II= Beck 

Depression Inventory II; BAI= Beck Anxiety Inventory; Handedness= Edinburgh Handedness 

Inventory; English=% English Speakers; French=% French Speakers; Other=% Other Language. 

*, † ,‡ are used to denote significant differences (p<0.05) among different groups.  

 

RS-fMRI Results 

The first PLS connectivity analysis was a mean-centered PLS conducted to address hypothesis 1, 

which predicted dedifferentiated patterns of whole-brain resting-state functional connectivity by 

menopausal status. This PLS identified two significant latent variables (LV1, p=0.002, LV2, 

p=0.04) of which LV1 explained 62.1% of the covariance between menopausal groups and 

functional connectivity and LV2 explained 37.9% of the covariance between menopausal groups 

and functional connectivity (see Figure 1). LV1 characterized functional connectivity that was 

reliably diminished amongst peri-menopausal participants and reliably greater amongst post-

menopausal participants (Fig. 1A). In contrast, LV2 characterized functional connectivity that 

was reliably greater amongst pre-menopausal participants and reliably diminished amongst peri- 

and post-menopausal participants. Peri- and post-menopausal functional connectivity was not 

significantly different between the two groups for LV2.  

Density plots were constructed by thresholding edges with the top 5% BSR for positive 

negative edges separately. These edges were then grouped by networks and a density score was 

calculated to represent the number of edges remaining after thresholding as a function of total 

possible edges between two networks (see Fig. 1B and 1C for positive and negative density plots 

respectively). These plots help visualize major patterns of reliable functional connectivity 

between networks or within a network (along the diagonal of the matrix) and mitigates the 
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advantage that larger networks with a greater number of ROIs have for potentially contributing to 

significant edges. The creation of these plots was done in python version 3.9 using functions 

from the networkx version 2.2 module library (for documentation, see 

https://networkx.org/documentation/stable/) as well as matplotlib version 3.5.1 module library 

(for documentation, see https://matplotlib.org/3.5.1/index.html).  

Figure 1B shows identified patterns of functional connectivity among networks which 

was diminished in peri- compared to post-menopausal participants. This connectivity was 

surprisingly wide-spread and included a large portion of edges within the dorsal attention, limbic, 

salience/ventral attention, somato-motor, and visual networks as well as between each of these 

networks, however less so between the salience/ventral attention and dorsal attention networks. 

Connectivity between regions of the hippocampus and visual, somato-motor, salience/ventral 

attention, dorsal attention, default and fronto-parietal control networks was also identified to be 

considerably greater in post- compared to peri-menopausal participants. This was also true for 

connectivity between the fronto-parietal control network and all other networks except for the 

default mode network. Lastly, connectivity between the default mode network and dorsal 

attention network was greater for post- compared to peri-menopausal participants. In contrast, 

connectivity identified to be greater in peri- compared to post-menopausal participants (Fig. 1C) 

was extremely sparse. Thus, post-menopausal functional connectivity is distinguished from peri-

menopausal functional connectivity, and this seems to be marked by wide-spread increases in 

functional connectivity both within and between resting-state networks rather than a 

dedifferentiated pattern as hypothesized.  

The second latent variable of this mean-centered PLS identified connectivity patterns 

which distinguished pre-menopausal participants from both peri- and post-menopausal 

https://networkx.org/documentation/stable/
https://matplotlib.org/3.5.1/index.html
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participants (Fig. 2A). The positive density plot depicted in figure 2B is comprised of edges 

which had reliably greater functional connectivity in pre- compared to peri- and post-menopausal 

groups.  Specifically, functional connectivity within the fronto-parietal control, default, dorsal 

attention, and salience/ventral attention networks as well as the hippocampus was most notably 

diminished in peri- and post-menopausal groups compared to the pre-menopausal group. 

 

Fig 1: Mean-Centered PLS Results – LV1   

 

This was also true for functional connectivity between the limbic and dorsal attention networks, 

the fronto-parietal control and dorsal attention networks, as well as between the hippocampus and 

fronto-parietal control, default, limbic, somato-motor, and visual networks. In contrast, 
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connectivity which was greater for peri- and post- compared to pre-menopausal participants is 

shown in the negative density plot of Figure 2C and includes reliable density of edges within the 

visual network as well as between the default and dorsal attention networks, and lastly, between 

the hippocampus and dorsal attention and salience/ventral attention networks. Overall the pattern 

identified in LV2 seems to align with hypothesis 1 in that the fronto-parietal control, default, and 

dorsal attention networks display diminished within-network functional connectivity while at the 

same time greater between network connectivity was identified amongst the dorsal attention 

network and default network as well as the hippocampus.  

 

Fig 2: Mean-Centered PLS Results – LV2  
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The second PLS connectivity analysis conducted was a behavioral PLS (B-PLS) which included 

participants’ normalized age as a continuous variable of interest to be correlated with functional 

connectivity for the entire sample (Fig. 3). This was conducted to address hypothesis 2, which 

predicted age-related patterns of dedifferentiation to be identified for higher-level networks 

(fronto-parietal control, default, and dorsal attention) when menopausal status was ignored. One 

significant latent variable was identified for this B-PLS (LV1, p=0.037) and accounted for 100% 

of covariance between age and functional connectivity due to it being the only latent variable 

identified by B-PLS.  

 Patterns of functional connectivity from LV1 which positively correlated with age are 

encompassed in the positive density matrix below (Fig. 3B). This included a reliable density of 

edges whose functional connectivity displayed age-related increases within the visual network as 

well as between default network and fronto-parietal control network, dorsal attention network, 

and hippocampus. The hippocampus also displayed increased functional connectivity between the 

fronto-parietal control and dorsal attention networks. Lastly, a considerable amount of age-related 

increases in functional connectivity was identified between the visual network and fronto-parietal 

control, dorsal attention, and somato-motor networks.  
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Fig3: B-PLS Single Group – LV1  

 

This latent variable also captured patterns of functional connectivity which had age-related 

decreases amongst our entire sample (Fig. 3C). A considerable density of edges with age-related 

decreases in their functional connectivity was observed within the default and salience/ventral 

attention networks as well as the hippocampus. Age-related decreases in functional connectivity 

was also identified between the hippocampus and limbic network as well as the fronto-parietal 

control, default, somato-motor and visual networks, but to a lesser extent. Overall, the results of 

this B-PLS somewhat align with hypothesis 2, in that the default mode network seems to most 

notably show a dedifferentiated pattern of functional connectivity associated with age. 

Specifically, functional connectivity within the default mode network displayed age-related 
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decreases while functional connectivity between nodes of the default mode network and fronto-

parietal control and dorsal attention networks displayed age-related increases.  

 The third and final PLS conducted was also a B-PLS similar to the B-PLS discussed 

previously. This B-PLS also included participants’ normalized age as a variable of interest to be 

correlated with functional connectivity, however, unlike the previous B-PLS, this analysis 

considered participants’ menopausal status (Fig. 4). As such, this B-PLS addressed hypothesis 3 

which predicted age-related patterns of dedifferentiated functional connectivity for the default 

mode and higher attentional networks (fronto-parietal, dorsal) that are specific to the post-

menopausal group only. This analysis identified one latent variable that was only on the cusp of 

significance (LV1, p=0.062) and accounted for 42.9% of covariance between group differences 

in age-related functional connectivity.  

Figure 4: B-PLS For Age Among the Three Groups – LV1 
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Post-hoc Behavioral Results 

After their resting-state scan, participants completed a face-location memory task in the scanner. 

During this task, participants were shown a series of faces which appeared in one of four 

quadrants of the screen and were instructed to remember which quadrant they saw the face. After 

a delay, participants were then presented these same faces along with new faces in the center of 

the screen. They were instructed to respond in one of six ways: if the face was an old face and 

they remembered the quadrant in which they had previously seen it, they were instructed to 

indicate the quadrant (i.e., bottom left, bottom right, top left, or top right); if they recognized the 

face, but could not remember the quadrant, they were instructed to indicate the face was familiar; 

if the face was unfamiliar they were to indicate the face was new. This task consisted of an easy 

as well as a hard condition. For the easy condition, participants were shown six initial faces 

during the encoding phase, while for the hard condition they were shown twelve faces. Source 

retrieval accuracy was calculated for their performance by taking the ratio of all responses in 

which they correctly indicated the quadrant of an old face over the sum of responses in which 

they either indicated old faces as just familiar (i.e., recognition), misattributed the quadrant of an 

old face (i.e., source misattribution), or indicated an old face was new. Performance on the 

subsequent face-location source memory task was assessed for group differences in source 

retrieval accuracy among pre-, peri-, and post-menopausal groups in two ANOVA analyses for 

the easy as well as the hard conditions of the task separately. The first ANOVA identified a 

significant effect of menopausal status on source accuracy for the easy condition (F(2,131) = 8.86, 

p=0.0002), see Figure 5A. Tukey post-hoc tests for this ANOVA revealed that pre-menopausal 

group had significantly greater source accuracy (mean=0.63, SE=0.03) compared to the 

perimenopausal group (mean=0.50, SE=0.03, p=0.02) as well as the post-menopausal group 
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(mean=0.45 , SE= 0.03, p=0.002) for the easy condition. Peri- and post-menopausal groups did 

not significantly differ from each other (p=0.58). The ANOVA conducted for the hard condition 

of the task (Figure 5B) also identified a significant effect of menopausal status (F(2,131) = 7.96, 

p=0.0005). Tukey post-hoc tests for this ANOVA revealed that the pre-menopausal group had 

significantly greater source accuracy (mean=0.47, SE=0.02) compared to the perimenopausal 

group (mean=0.32, SE=0.03, p=0.007) as well as the post-menopausal group (mean=0.31, 

SE=0.03, p=0.002). Peri- and post-menopausal groups did not significantly differ from each other 

(p=0.97).  

 

Figure 5: Bar Graphs Showing Menopausal Group Differences in Spatial Source Accuracy 

A)                                                                    B) 

 

Note: Error Bars represent Standard Error of the Mean.  
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Post-hoc Brain-Behavior Associations 

Linear regressions were run to predict participants’ spatial source memory retrieval accuracy on 

the subsequent face-location memory paradigm from the degree to which their functional 

connectivity data weighed into or aligned with the age/menopause related patterns of connectivity 

identified by significant latent variables of the PLS analyses described above. Because each 

individual participant receives a weight, otherwise known as a ‘brain score’,  

these weights can be used to predict individual measures from how strongly their functional 

connectivity data resembles the identified pattern for a given latent variable. Before these 

regressions were conducted, three participants who did not have any correct source retrieval 

events were removed from analyses. In total, six regressions were conducted: three regressions 

with normalized source retrieval accuracy on the easy version of the task as the dependent 

variable and three regressions with normalized source retrieval accuracy on the hard version of 

the task as the dependent variable. Brain scores for the three significant latent variables were the 

only predictors included in the models. We hypothesized that participants’ weighted contribution 

to age/menopausal related functional connectivity patterns would predict poorer episodic memory 

performance. Finally, a Bonferroni correction was applied for all six of these regressions such 

that p<0.008.  

The first two regressions, models 1 and 2, corresponded to LV1 from the mean-centered 

PLS which distinguished peri- from post-menopausal functional connectivity (Fig.1). In these 

regressions, brain scores were not a significant predictor of performance for either the easy (=-

0.02, SE=0.02, t=-1.0, p=0.32) or the hard versions of the task (=0.01, SE=0.02, t=0.05, 

p=0.61).  
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The second two regressions, models 3 and 4, corresponded to LV2 from the mean-

centered PLS which distinguished pre- from peri- and post-menopausal functional connectivity. 

In these regressions, brain scores significantly predicted performance for both the easy (=0.11, 

SE=0.03, t=3.31, p=0.001) and the hard versions of the task (=0.10, SE=0.03, t=3.12, p=0.002). 

Note that because brain scores were positive for pre-menopausal participants and negative for 

peri- and post-menopausal participants the positive beta values indicate a pre-menopausal brain 

scores were predictive of better normalized spatial source retrieval accuracy and conversely peri- 

and post-menopausal brain scores were predictive of poorer normalized spatial source retrieval 

accuracy.  

The third and final two regressions, models 5 and 6, corresponded to LV1 from the B-

PLS which identified patterns of functional connectivity associated with greater age across the 

entire sample as a single group (irrespective to menopausal status). In these models, brain scores 

significantly predicted performance for both the easy (=-0.09, SE=0.03, t=-2.87, p=0.005) and 

the hard versions of the task (=-0.10, SE=0.03, t=-3.03, p=0.003).  
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Discussion 

The central aim of this study was to assess how chronological and reproductive aging affect 

intrinsic functional organization of the brain at rest and the extent to which this is relevant to 

performance on a subsequent face-location source memory task. By employing whole-brain 

resting-state functional connectivity we were able to assess the differences in large-scale brain 

networks according to menopausal status and chronological age in a sample of 134 adult females 

between the ages of 20 and 60 years old. Our hypotheses were motivated by the aging literature 

on resting-state networks. Specifically, we hypothesized that patterns of dedifferentiated 

functional connectivity among higher-level attention networks and the default mode network 

would emerge at midlife, and this would in part be explained by menopausal status rather than 

just chronological age. We also hypothesized that this pattern of dedifferentiation would predict 

spatial source retrieval accuracy on a subsequent face-location task. The results partially support 

our hypotheses, however the patterns of connectivity among resting-state networks related to 

chronological and reproductive aging seem to indicate a more complex pattern of functional 

connectivity which is not completely explained by dedifferentiation. Furthermore, while some of 

the identified patterns were able to predict source accuracy performance in our sample, not all the 

identified patterns were related to behavior. Nonetheless these findings do indicate menopausal as 

well as chronological aging relevance for resting-state functional connectivity networks and 

episodic memory at midlife.  

 The first PLS analysis conducted was a mean-centered PLS which was intended to 

capture between-group differences in functional connectivity according to pre-, peri-, and post-

menopausal status. This PLS resulted in two significant latent variables (LV1, LV2, see Figures 1 

& 2). LV1 explained a larger percentage of the covariance in functional connectivity among 
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groups and specifically identified patterns of functional connectivity which differed between peri- 

and post-menopausal participants. In contrast, LV2 captured functional connectivity differences 

between pre-menopausal participants and both peri- and post-menopausal participants who did 

not display significant differences between each other for this pattern. The functional 

connectivity patterns captured by LV1 and LV2 were starkly different from each other.  

LV1 showed wide-spread, heightened functional connectivity in the post-menopausal 

group among the fronto-parietal control network, dorsal attention, limbic, salience/ventral 

attention, somato-motor, and visual networks but to a minimal extent between the dorsal and 

salience/ventral attention networks. All of these networks, except for the fronto-parietal control 

network, also showed greater functional connectivity within themselves post-menopause. The 

default mode network only showed heightened functional connectivity between the dorsal 

attention network and hippocampus. Lastly, the hippocampus also displayed increased functional 

connectivity between the fronto-parietal control, dorsal attention, visual, somato-motor, and to a 

minimal extent the salience/ventral attention networks in post-menopausal participants compared 

to peri-menopausal participants. There was almost no functional connectivity for LV1 that was 

diminished in post- versus peri-menopausal participants. This result was somewhat surprising in 

that it does not seem to indicate dedifferentiation per se due to the fact that functional 

connectivity within networks was also increased. As this is the first study to our knowledge 

which has examined large-scale resting-state functional connectivity networks across the whole 

brain according to menopausal status, it is somewhat difficult to contextualize this result.  

However, this latent variable offers insight into differences in large-scale functional networks at 

midlife associated with reproductive aging, which have been largely overlooked by aging 

research (Taylor et al., 2019). Post-hoc linear regressions could not predict spatial source 
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accuracy performance from participants’ brain scores for this latent variable, which suggests that 

the differences may not be relevant to that episodic process. This lack of association between 

functional connectivity and spatial source memory performance may also be indicative of 

heterogeneity within the post-menopausal group. This would be in-line with observations from 

studies which show that not all early post-menopausal participants exhibit differences in brain 

function during tasks associated with verbal episodic memory decline (Jacobs et al., 2016; Rentz 

et al., 2017).  

LV2 from this mean-centered PLS captured differences in functional connectivity 

between pre-menopausal group and the peri- and post-menopausal groups who did not 

significantly differ from each other (see Figure 2). More specifically, functional connectivity was 

diminished within the fronto-parietal control, default, dorsal attention, salience/ventral attention 

networks and the hippocampus for the peri- and post-menopausal groups compared to the pre-

menopausal group. There were notable functional connectivity increases between the default 

mode network and dorsal attention network, between the hippocampus and dorsal and 

salience/ventral attention networks, and finally within the visual network. This pattern mirrors 

findings in the aging literature by Spreng and colleagues (2016) study showing dedifferentiation 

of the default mode and dorsal attention networks in older compared to younger adults (Spreng et 

al., 2016). This suggests that the dedifferentiation of the default mode and dorsal attention 

networks seen in older adulthood may emerge at midlife, potentially during perimenopause and 

persist through post-menopause into older adulthood. We found hippocampal regions had greater 

functional connectivity with the dorsal attention network in peri- and post-menopausal groups. 

This result is seemingly counterintuitive given that Spreng and colleagues (2016) observed 

diminished medial temporal lobe (MTL) connectivity with the default mode as well as the dorsal 
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attention network. This could be an effect specific to menopausal status and midlife which is not 

sustained through older adulthood, however it just may as well be due to different methods of 

defining hippocampal regions of interest. Contrary to LV1, this pattern of functional connectivity 

identified by LV2 was predictive of poorer performance in peri- and post-menopausal 

participants as evident by our linear regression analysis. As such, it is more likely that these 

functional connectivity patterns are indicative of dedifferentiation rather than compensation 

(Cabeza et al., 2018; Koen et al., 2020). A notable caveat of this finding is the age differences 

between pre- peri- and post-menopausal groups in our sample. The pre-menopausal group 

included young adults and had a mean age of 35 years old while the peri- and post-menopausal 

groups had mean ages of 50 and 55 respectively. As such, LV2 which distinguished functional 

connectivity of pre- from peri- and post-menopausal groups likely encompasses chronological 

age differences between young and middle-aged participants as well as menopausal status 

differences.  

The results from our B-PLS (see Figure 3), which investigated how chronological age as a 

continuous variable correlates with functional connectivity among the entire sample as one group 

(i.e. disregarding menopausal status), help to contextualize the mean-centered PLS results and 

especially LV2 discussed above. This PLS identified a single significant latent variable (LV1) 

that incorporated functional connectivity associated with chronological age in our sample. The 

most prominent age-related increases were found for connectivity within the visual network as 

well as connectivity between the default mode network and fronto-parietal control and dorsal 

attention networks. Notable age-related decreases in functional connectivity included 

connectivity within the default mode network, salience/ventral attention network, as well as 

within nodes of the hippocampus. This dedifferentiated pattern of functional connectivity for the 
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default mode network with the fronto-parietal control and dorsal attention networks is consistent 

with the literature on aging (C. Grady et al., 2016; Setton et al., 2021; Spreng et al., 2016) and 

demonstrates that this pattern can be seen as early as midlife. Interestingly, greater functional 

connectivity between the default mode network and fronto-parietal network was not captured by 

either LV1 or LV2 of the mean-centered PLS described above. This may suggest that the 

between network increases in connectivity typically seen for the DMN and FPCN are 

predominantly impacted by chronological age processes rather than menopausal status. 

Additionally, this age-related LV1 did not capture substantial connectivity decreases with the 

fronto-parietal control and dorsal attention networks which was seen for LV2 of the mean-

centered PLS distinguishing peri- and post-menopausal groups from the pre-menopausal group. 

This could indicate that decreases within these two networks may emerge at peri-menopause and 

thus be primarily a menopausal effect. Participants brain scores from this latent variable were 

predictive of spatial source accuracy in post-hoc linear regressions which suggests that this age-

related pattern of functional connectivity is relevant to this specific domain of episodic memory.  

The final B-PLS compared the relationship between chronological age and functional 

connectivity as a function of menopausal status. This B-PLS identified a single latent variable 

(LV1) that was trending towards significance (p=0.06) (see Figure 4). This LV1 captured 

connectivity which showed an inverse relationship with age for the peri- and post-menopausal 

groups only. The most prominent connectivity which decreases with age in the peri-menopausal 

group and also increases with age in the post-menopausal group was connectivity within the 

hippocampus. This is complementary to Jacobs and colleagues’ task-based finding that post-

menopausal connectivity was greater within the hippocampus (E. G. Jacobs et al., 2016). It also 

contextualizes the findings from LV2 of the mean-centered PLS as well as LV1 of the single-
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group B-PLS which together showed age and menopausal decreases for functional connectivity 

within the hippocampus. Connectivity between the hippocampus and both the fronto-parietal 

control network and the default mode network showed age-related decreases in the peri-

menopausal group and age-related increases in the post-menopausal group. This was somewhat 

surprising for the default mode network as Spreng and colleagues had shown MTL decreases in 

functional connectivity with the default mode network when comparing older and younger adults 

(Spreng et al., 2016). However, dorsal attention network functional connectivity between the 

hippocampus showed the opposite age-related effect among these two groups. That is, functional 

connectivity between the dorsal attention network and the hippocampus increased with age for 

the peri-menopausal group and decreased with age for the post-menopausal group. This helps 

contextual discrepancies in our findings from the mean-centered LV2 which showed increased 

dorsal attention network functional connectivity for the peri- and post-menopausal groups 

compared to the pre-menopausal group. It could be the case that dorsal attention network 

connectivity with the hippocampus displays increases from young adulthood to midlife and 

decreases from midlife into older adulthood. This possibility highlights the valuable insight 

gained from LV1 of the final between-group B-PLS described here: that age-associated changes 

in large scale functional connectivity networks shifts across the peri- to post-menopausal stages 

of reproductive aging. Thus, reproductive and chronological aging seem to interact at midlife and 

their influence on brain function is not fully understood by analyses which disregard one or the 

other.  

Limitations 

As with all studies, this study has some limitations. The most prominent limitation is the sample 

size, especially for PLS analyses which compared between menopausal groups. While our group 
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sizes were sufficient for attaining reliable results, greater sample sizes will allow for cross-

validation of these results to verify their generalizability. Additionally, greater recruitment of 

middle-aged pre-menopausal participants would allow for analyses which separated young from 

middle-aged pre-menopausal participants. This would result in four groups (young adult pre-, 

middle-aged pre-, peri-, and post-menopausal) which might be better suited in distinguishing 

chronological aging from menopausal effects.  

 Recruitment itself was limited by the COVID-19 pandemic which required intermittent 

halting of experimental testing involving human participants. Not only did COVID-19 influence 

the amount of testing that could occur from March of 2020 onward, it also likely had a profound 

impact on mental well-being and neurological health of participants. 

Future Directions  

This study was one of the first to look at large-scale resting-state network reorganization across 

the entire brain associated with reproductive and chronological aging. While it has captured a big 

picture of how intrinsic functional brain networks change according to these two factors at 

midlife, we did not include regions of the sub-cortex (e.g., the thalamus and basal ganglia) or the 

cerebellum which are thought to also play a major role in the canonical networks of the cortex. 

Inclusion of these regions could offer more insight to patterns of reorganized connectivity seen in 

the current study. Additionally, we only focused on prominent network-level interactions in these 

analyses. Further research could explore key effects at the edge-level or at the level of nodes, 

especially nodes derived to be hubs among large-scale networks. Lastly, behavioral analyses 

were somewhat minimal in this study, and further work could better understand the behavioral 

relevance of resting-state networks impacted by aging and menopause by comparing it to 

functional connectivity derived from task-based fMRI images.  



 

  

  

54 

 

Conclusions 

In conclusion, the present study identified interactive and independent contributions of 

reproductive and chronological aging on functional connectivity and its relevance for episodic 

memory. These patterns were partially explained by our hypotheses predicting dedifferentiation 

of higher-level attentional networks and the default mode network. However, the functional 

reorganization of brain networks at midlife has shown to be more complex. Nonetheless, 

inclusion of both menopausal status and chronological age provided critical insights in that both 

these factors are relevant to brain health and function as well as cognition at midlife.  
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