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Abstract

Cellular migration is a complex phenomenon where cells displace themselves by integrating many in-
tracellular processes that autonomously respond to motility cues in their environments. As it usually
allows for the cells to carry out their biological functions in a specific location, it is considered essen-
tial to a number of physiological processes (e.g., embryonic development, wound healing, and immune
responses). Defects in cellular migration are implicated in pathological conditions (e.g., immune dis-
orders and cancer metastasis). Understanding the interdependencies of the various cellular processes
and how they integrate external cues to produce motility is a challenging task, due to both the intrinsic
complexity of the processes as well as the large variability in migration modes. Here we have focused
on mathematical modeling of processes related to integrin-based adhesions, which are macromolecular
complexes that serve as force-transmission points and signaling hubs during mesenchymal migration.
We began by reviewing the literature of mathematical models of integrin-ligand bonds, and larger-
scale models of adhesions that incorporate the molecular properties of integrins. We then developed
a novel model of nascent adhesion formation that accounted for experimentally observed variations
in integrin density, and predicted the mechanical conditions required for self-assembly of adhesions.
Subsequently, we focused on cellular-scale models of motility and studied how the spatio-temporal
dynamics of motility are influenced by two different adhesion-associated proteins, paxillin and VASP.
First we studied how GTPase signaling can be used by a cell to produce a pattern formation sys-
tem that defines its front and rear directions, and how adhesion-dependent signaling through paxillin
influences this process. Pattern formation properties were studied using theoretical analysis and spatio-
temporal simulations. The latter simulations were then coupled to a phenomenological model of cell
motility, demonstrating that paxillin phosphorylation can directly increase motility of cells. Finally, in
order to gain insight into a detailed spatio-temporal model of VASP-dependent actin-based protrusion
dynamics, we derived a simplified model and characterized its full set of dynamics. Using this charac-
terization, we then combined spatio-temporal simulations and a theoretical analysis of population-level
statistics to identify how the model can be used to explain the poorly understood rough motility phe-
notype.
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Abrégé

La migration cellulaire est un phénomène complexe par lequel les cellules se déplacent en intégrant
de nombreux processus intracellulaires autonomes qui répondent aux signaux environnementaux de
motilité. Comme elle permet généralement aux cellules de remplir une fonction biologique à un endroit
spécifique, elle est considérée essentielle à plusieurs processus physiologiques dont le développement
embryonnaire, la cicatrisation des plaies et les réponses immunitaires. Les défauts de migration cellu-
laire mènent à des états pathologiques dont les troubles immunitaires et les métastases cancéreuses. La
compréhensions des processus cellulaires interdépendants et l’intégration des signaux externes menant
à la motilité est une tâche ardue étant donné la complexité intrinsèque des processus et la grande vari-
abilité des modes de migration. Ici, nous nous sommes concentrés sur la modélisation mathématique
des processus liés aux adhérences à base d’intégrines, qui sont des complexes macromoléculaires ser-
vant de points de transmission de force et de centres de signalisation pendant la migration mésenchy-
mateuse. L’étude a commencé par une revue de la littérature des modèles mathématiques de liaisons
intégrine-ligand et les modèles d’adhérences à plus grande échelle qui intègrent les propriétés molécu-
laires des intégrines. Nous avons ensuite développé un nouveau modèle de formation d’adhérences
naissantes qui incorpore des variations de densité d’intégrines observées expérimentalement, et prédit
les conditions mécaniques requises pour l’auto-assemblage des adhérences. Nous avons ensuite etudié
des modèles de motilité à l’échelle cellulaire et avons étudié la dynamique spatio-temporelle de la
motilité et avons évalué l’influence de la paxilline et la VASP, deux protéines associées à l’adhésion.
Nous avons d’abord étudié la signalisation par des GTPases comme mécanisme cellulaire permettant
de produire un système de formation de motifs qui définit les directions avant et arrière de la cellule,
et le rôle de la signalisation dépendante à la paxilline dans ce processus. Les propriétés de formation
de motifs ont été étudiées à l’aide d’une analyse théorique et de simulations spatio-temporelles. Ces
dernières simulations ont ensuite été couplées à un modèle phénoménologique de la motilité cellulaire,
démontrant que la phosphorylation de la paxilline peut directement augmenter la motilité des cellules.
Enfin, afin de mieux comprendre un modèle détaillé de la dynamique spatio-temporel de la protrusion
cellulaire dépendante de la VASP, nous avons dérivé un modèle simplifié et caractérisé l’ensemble de
dynamiques associées. En utilisant cette caractérisation, nous avons ensuite combiné des simulations
spatio-temporelles et une analyse théorique des statistiques au niveau de la population ce qui a permis
d’identifier comment le modèle permet d’expliquer le phénotype de « rough motility » qui étais mal
compris jusqu’à présent.
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Statement of Contributions

This thesis is comprised of four main chapters, each of which is based on an article that I co-authored.
Chapters 1, 2, and 4 have been published in peer reviewed journals: [MK20], [MK19b], and [MLK20],
respectively. Chapter 3 is currently in preparation to be submitted, and will likely constitute at least
2 publications. Chapter 1 is a literature review of mathematical models of integrin-based adhesions,
and as such does not contain significant contributions to original knowledge. Below we have briefly
summarized the contributions to original knowledge by chapter.

Chapter 2

• We developed a novel data analysis methodology, termed Conditional Expectation Analysis, that
allows us to infer a constitutive relationship between two physical variables from histograms of
their measurements. Such a relationship was then used to derive a model of nascent adhesion
formation dynamics.

• This combination of modelling and data analysis contributed to the understanding of the molecu-
lar level organization of nascent adhesions, their macromolecular assembly dynamics in response
to applied force, and provides a more physiologically-relevant description of their disassembly
than previous models in the field.

Chapter 3

• We presented a deterministic macroscopic framework for understanding the spatio-temporal dy-
namics of chemical reactions, and use results from geometric singular perturbation analysis to
show how one can systematically impose the conservation of matter when employing quasi-
steady state assumptions.

– This framework should be more approachable for non-mathematicians compared to what
can be found in the literature, as it is based on the familiar concept of chemical reactions
(rather than abstract mathematical formulation, formal definitions, proofs, and lemmas), it
should be much more approachable for non-mathematicians.
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• We extended the non-linear stability analysis termed local perturbation analysis (LPA) to better
reconcile its results with observed pattern formation phenomenon.

• Using LPA, we demonstrated that a pattern-formation model published in [TBBK18] and fit to
data from Chinese Hamster Ovary (CHO-K1) cell data lies inside a Turing unstable regime.

– This allows simulated CHO-K1 cells to self-polarize (a finding that is consistent with ex-
perimental observations).

– This regime is poorly studied in the field, but our findings suggest it could be highly relevant
to the migration of some cell-types.

Chapter 4

• Using a model of cellular protrusion from [BAL`17], we were able to propose the dynamical
origins underlying a poorly understood keratocyte motility phenotype, known as rough motility.

• We also demonstrated that the previously described waving regime is produced by canard explo-
sion with orbits passing through a folded-saddle.

• We incorporated some mechanosensitive properties of nascent adhesions (discussed in Chapter
1) and identified novel parameter regimes that appear to be relevant for fibroblast-like cells.

I was responsible for writing all of the text in Chapters 1-4, and obtained significant feedback from my
supervisor, Anmar Khadra. I was solely responsible for the development of the code in Chapters 2 and
4. Furthermore, the code in Chapter 3 can be found at https://github.com/laurentmackay/
CPM_RD_matlab, and is the cumulative effort of Zhang Tan, Ashesh Momi, Ellie Zhang with myself
contributing through guidance and extensive re-writes to speed up the computations. Etienne Lehman
contributed significantly to the initial model analysis in Chapter 4.
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0.1 General Introduction

0.1 General Introduction

Cellular migration is a process involved in many physiological contexts, including wound healing
[JCX`14], embryonic development [FG09], and immune response [LAvA05]. In these scenarios, a
population of cells need to migrate individually or collectively from one location to another in order
to carry out a certain function. While nearly all cells exhibit some form of random undirected motility,
migration specifically refers to the integration of motility cues by a cell to produce controlled motion.
Defects in the regulation of migration have been implicated in neurodegenerative, (auto)immune , and
cardiac disorders [WR12, BMW14, dADS17, KMT`12]; moreover, during cancer metastasis, tumor
cells utilize their motility machinery to significantly increase the severity of the already pathologi-
cal condition. One means by which cells achieve motility is by pulling/pushing on their environment
through integrin-based adhesions [AE07]. The actin cytoskeleton, a network of filamentous structures
that give the cell its rigidity, is mechanically linked to the external environment by these macromolec-
ular complexes, allowing intracellular forces to be transmitted extracellular. In the context of integrin-
based adhesions, the physical link between inside and out is provided by the integrin receptor [AON14].
Cells also form cadherin-based adhesions that behave in many ways quite similarly to integrin-based
adhesions, but with cadherin receptors binding to proteins on the surface of other cells [PH10]. Thus
cells can adhere to each other as well as to some of the structures found in connective tissue (e.g., β1-
integrins bind to collagen) and move throughout an organism to carry out (patho)physiological func-
tions. Adhesions also serve as signaling hubs that, among other functions, promote cell survival and
can guide cell differentiation through mechanotransduction pathways [HD09, HIKS`06, WFA05]. For
these reasons, adhesion associated proteins have been considered as therapeutic targets in a wide-range
of physiological contexts [LRNSS16, CCLSD10, KVM`20, WKFGL14].

The challenges that arise in understanding the function of the myriad of proteins involved in ad-
hesion assembly and disassembly have helped to drive advances in spatio-temporal resolution of mi-
croscopy approaches [CLW`14, CCWS18, CKY`11, KSP`10, CW15], live-cell imaging conditions
[EW14, KVM`20], and reporters/manipulators of biochemical activity and force [WHW`10, RC-
GRS09, GML`12, GHB`10]. Over the past three decades or so, this has lead to a wealth of knowl-
edge on these topics, and a situation where one sometimes feels that they are “drowning in data,
but starving for insights” [FB]. There is little doubt that this is partially due to the biochemical
complexity of the system under study; there are approximately 150 proteins that make up the adhe-
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some with a complex network of interactions responsible for the assembly and disassembly of adhe-
sions [ZBIM`07]. To further complicate things, many of these proteins have overlapping functions
with nuanced differences in activity (e.g., differences in rate of function or sensitivity to some stim-
ulatory signal) [CLH`20, HBA`15]. This makes it difficult to clearly identify the role of any given
protein, as removing it completely from a cell may only have a graded effect due to compensation
by other proteins. Interestingly, different cell types exhibit strikingly different migration modes that
can be modulated by external chemical and mechanical cues. Together, these facts make understand-
ing integrin-based adhesion assembly and disassembly and associated cellular motility a significant
challenge.

Complementary to the biochemical networks that govern adhesion assembly and disassembly, the
movement of a cell also plays a critical role in determining adhesion dynamics [RSG`05, GSASW10,
MKS`12]. This movement partially results from forces that are transmitted through adhesions [AE07],
which also modulate the biochemical activities of the molecules that make up adhesions [NBS08,
LKZ16]. Moreover, as the cell moves, its adhesions remain roughly immobile relative to the external
environment, causing them to be transported from one morphological region to another [BWK08].
Accordingly, adhesions experience time-varying chemical and mechanical conditions, producing time-
and space-dependent variations in adhesion characteristics (e.g., size and shape) that mirror changes in
molecular states of their constituent proteins [BWK08, RBI`19].

Movement of the cell is driven biochemically by the members of the Rho-family of GTPases
(RhoGTPases), that form a complex biochemical signalling network to produce concerted protrusion
and contraction of the actin cytoskelton [DH15]. Here we focus on two such GTPases Rac1 (Rac)
and RhoA (Rho), that are associated with protrusion and contraction, respectively. Interestingly, many
of the signalling pathways that regulate the activity of these RhoGTPases use adhesions as dynamic
signaling hubs [HD09]. For example, a Rac-dependent pathway is modulated by the same adhesion-
associated proteins known to drive adhesion disassembly [RKS`00, TBBK18]. In other words, adhe-
sion dynamics and cellular motility are intricately linked. Therefore, it is not possible to fully under-
stand one without the other [MHB20, ORG19].

Aside from the myriad of experimental techniques that have been used to investigate adhesion
dynamics and associated cellular motility, mathematical modeling has also been fruitfully used as a
tool for gaining insights into the mechanisms that govern these phenomena [SS13, MR10]. This thesis
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has focused on modeling both adhesion dynamics as well as cellular motility. Accordingly, it is divided
into two parts. In Part I, we investigate models of mechanosensitive adhesion dynamics, i.e., how the
mechanochemical properties of integrin receptors are integrated at the adhesion level to produce the
behaviour of adhesions experiencing forces. In Part II, we turn our attention to mathematical models
of cellular motility with an emphasis on how adhesions influence the spatio-temporal dynamics of
motility to produce cell movement.

0.1.1 The Adhesion Life Cycle

Integrin-based adhesions are macromolecules that provide a mechanical link between the extracellu-
lar environment and the actin cytoskeleton. They are intrinsically dynamic structures that form as a
result of and also heavily influence cellular motility. The adhesion lifecycle typically initiates in pro-
trusive regions of the cell when small („100 nm in diameter) radially symmetric clusters of integrin,
called nascent adhesions (NAs), form, connecting the substrate-facing membrane to extracellular lig-
ands [CXM`15,CVMZ`08]. Their formation is triggered by protrusion of the lamellipodium, a heavily
branched network of actin filaments that extends 1-5 µm into the cell and terminates in a zone of actin
depolymerization [CVMZ`08, PHS10, PMG`17]. Despite NAs being only loosely associated to this
actin network [BHK`06], once protrusion causes the depolymerization zone to pass over them, the
majority quickly disassemble [CVMZ`08]. Together these effects produce NAs with a typical lifetime
of 60-120 s [CVMZ`08, TTB`13], but we note that, under certain conditions, they are stable for hun-
dreds of seconds [CXM`15]. A small fraction of NAs do not disassemble, but are instead stabilized
through increased association with actin filaments and become enlarged [TTB`13,SFW16]. These ad-
hesions are termed focal complexes (FCs) and typically have an area of <1 µm2 with a lifetime of
4-30 minutes [GYS02, SSA`15]. The transition from a NA to a FC requires both Rac-dependent in-
creases in traction force and proper organization of the actin network adjacent to the aforementioned
depolymerization zone [GYS02, CVMZ`08].

FCs, in turn, serve as precursors for focal adhesions (FAs), where the transition between the two
classes of adhesions is mediated by association with Rho-dependent contractile stress fibres [OBSG12].
FAs are characterized by an elongated elliptic shape of 1-5 µm in length, with elongation rate being
highly dependent on the rate of rearward flow exhibited by the lamellipodial actin network [TTB`13,
OBSG12, SBDG13]. As the cell-body moves forward, FAs experience a relative rearward movement
and undergo repeated gradual disassembly events [RSG`05]. In fibroblast cells, the majority of FAs
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that form at the cell-front do not reach the cell-rear but are completely degraded by this effect, pro-
ducing FAs with a typical lifetime of 20-90 minutes. Small laterally protrusive zones near the cell-rear
instead, often termed uropods in the context of leukocytes, act as sources of FA precursors, allowing
the cell-rear to have its own distinct population of FAs. These FAs allow the cell to maintain a spread
shape and resist its forward movement [RSG`05]. In order for a cell to continue moving forward, these
FAs either exhibit cycles of mechanically-driven forward treadmilling [BHIWH01, WH12, SMP`99]
or are pulled apart molecularly by a combination of protease activity and high contractile forces found
at the cell-rear [CAW`03, MOH`08, PDG99].

In this thesis, we have focused on three classes of adhesion: NAs, FCs, and FAs. We note, however,
that the boundaries between such classes are not very well defined in the literature, and studies use
them interchangeably. This may in part be due to the fact that quantitative classification of adhesions,
based on fluorescence microscopy data, shows that most quantifiable properties (e.g., size, aspect-
ratio, assembly rate, lifetime) of adhesions exist as a continuum [Lyd20]. Furthermore, as we have
outlined above, some properties, such as lifetime, are emergent and dynamic properties that depend on
the motility of the cell, which in turn depends on the properties of its adhesions. Therefore, there is
a significant inter- and intracellular heterogeneity between these properties [SSA`15]. Thus the lack
of a consensus definition of adhesion classes based on such observable properties is not surprising.
Nonetheless, based on the typical lifecycle of adhesions, it is clear that as adhesions progress from
NAs to FAs they become significantly larger and more stable structures that are increasingly associated
with the actin cytoskeleton. It is worth mentioning here that an alternative terminology has been used
by Peter Friedl [FW10, FG09, HSF18], where NAs and FAs are understood as two extreme cases of a
continually changing adhesions. Accordingly, adhesions can be viewed as being more or less focalized,
with NAs (FAs) being referred to as non-focalized (focalized) adhesions.

Part I of this thesis focuses on how the dynamics of all classes of integrin-based adhesions are
modulated by mechanical forces. In Chapter 1, we review the literature of biophysically-based mod-
els describing adhesion dynamics. In this literature review, we pay particular attention to the molec-
ular details that underlie integrin binding kinetics, and their mathematical/thermodynamic descrip-
tions [MK20]. Using a common thermodynamic framework based on chemical potentials, we explore
how mechanical unfolding of integrin receptors manifests itself at both the single-molecule and adhe-
sion level to produce complex mechanically-driven dynamics. In Chapter 2, we present our previously
developed and novel mathematical model of NA-dynamics. This model accounted for a trend that we
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inferred from previously published data using a novel data analysis technique, termed Conditional
Expectation Analysis, suggesting that the density of molecules within adhesions increases with in-
creasing NA-area. Furthermore, due to some unique features of the model, the model was used to draw
conclusions about the mechanical conditions required for NA-assembly.

0.1.2 Paxillin: A dual regulator of adhesion and motility dynamics

Paxillin is a 68-kDa adaptor protein that is found in the the adhesion plaque, a multi-molecular dy-
namic scaffold that links integrins to the actin cytoskeleton [DT08]. The paxillin C-terminal region
contains four LIM domains, characterized by double-zinc finger motifs, that are essential for its re-
cruitment to adhesions [DT08]. When it is found in adhesions, it carries out a number of functions
that include organization of the adhesion plaque [CW15], modulation of adhesion disassembly dy-
namics [ZBMKG07, NWB`06, EK09], and signaling to biochemical networks involved in cellular
protrusion/contraction [DT08]. Interestingly, all of these functions are dependent on the phosphoryla-
tion of residues in one of the five leucine- and aspartate-rich LD domains (LD1-LD5) found close to
the N-terminal region of paxillin [DT08]. Of particular interest are the tyrosine residues 31 and 118
which are phosphorylated by focal adhesion kinase (FAK) [SP95], and the serine residue 273 which is
phosphorylated by p21-activated kinase (PAK) [NWB`06]. Both tyrosine and serine phosphorylation
appear to produce very similar distributions of adhesion classes, where phosphomimetic paxillin con-
structs favour small dynamic NAs and FCs while non-phosphorylatable constructs favour elongated
and stable FAs [NWB`06,ZBMKG07]. Cells expressing these constructs exhibit enhanced and dimin-
ished motility, respectively. This suggests that while adhesion can be used by cells to produce motility,
excessive populations of FAs also tend to hinder their movement.

Due to its near omnipresence in all adhesion classes, paxillin is one of the most used fluores-
cence markers for visualizing integrin-based adhesions [GKTV18]. However, as outlined above, it is
far from a passive marker. Understanding how it exerts its control on the cell is of therapeutic interest,
as it is known to contribute to a number of pathological conditions by aberrant changes in cellular
motility [LCLRBHL17, AXT20]. Due to the multiple functions downstream of paxillin phosphoryla-
tion, dissecting how its effects on adhesion dynamics and protrusion/contraction contribute to motility
phenotypes is non-trivial. In order to begin doing so, our group has developed and experimentally val-
idated a mathematical model of paxillin-dependent feedback on Rac and Rho [TBBK18]. Subsequent
experimental motility assays showed that whole-cell inhibition of a Rho effector increased motility
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and reduced the enrichment of paxillin inside adhesion as well as the mean size of adhesions, but did
not significantly increase the directionality of cells [LTR`19]. Modeling these experimental manipu-
lations suggested that, without directional cues, the biochemical signaling network does not enhance
polarization, consistent with the experimental findings [LTR`19].

In Chapter 3, we review the mathematical model presented in [TBBK18] and [LTR`19]. In order
to aid us in doing so, we present a systematic approach to modeling the spatio-temporal dynamics of
reaction-diffusion (RD) system with quasi-steady state (QSS) assumptions, and detail how this is im-
plemented into a computational tool that allows us to produce stochastic simulations of RD systems.
This has helped to understand some of the differences in model outcomes observed in [TBBK18]
and [LTR`19]. We also explored the effects of paxillin phosphorylation on the establishment of pro-
trusive and contractile regions of the cell. Finally, we showed some preliminary results obtained by
coupling stochastic spatio-temporal simulations of the model developed in [TBBK18] to the Cellular
Potts Model (CPM), a phenomenological model of cellular motility. This has allowed us to demon-
strate that signaling from paxillin onto the Rac-Rho network, combined with a dynamic cell-shape,
can explain the experimentally observed increase in migration speed that results from increased pax-
illin phosphorylation.

0.1.3 Cell Polarization Driven By RhoGTPases

The proteins Rac and Rho drive two opposing aspects of the physical deformation of migrating cells,
and, in order to produce net migration, must do so in a way that is tightly spatio-temporally regu-
lated [Rid01]. This may be achieved, in a cell-autonomous way, through mutual inhibition between
the two proteins [JMEK07, EK16]. This mutual inhibition results in biochemical systems where a
high activity level of one protein prevents the other from having a high activity level in the same re-
gion. Interestingly, computational studies have shown that this type of system is competent in pro-
ducing patterns containing spatially segregated zones of high activity of either protein, leading to
long-lived regions that exhibit contractile and protrusive behaviour [MJD`06, JMEK07, EKHZD13].
The models used in these studies have further been analyzed mathematically to understand, with
precise detail, the ingredients that allow for pattern formation and how to trigger such a process
[MJEK08,MJEK11,HCEK12,MDEKH13]. Interestingly, these ingredients seem to be generic proper-
ties of many RhoGTPases, including Rac and Rho [MJEK08]. Thus the intrinsic properties of RhoGT-
Pases make them prime candidates for biochemically-driven front-to-rear polarization of migrating
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cells.

As mentioned above, paxillin phosphorylation is known to influence the mutual inhibition of Rac
and Rho. Therefore, it is of interest to understand how how these effects manifest themselves at the
whole-cell level. In Chapter 3, review the mathematical principles that underlie the pattern forma-
tion mechanism, known as wave-pinning, that has been hypothesized to cause both RhoGTPase-driven
front-to-rear polarization and cellular migration. Furthermore, we also use a combination of spatio-
temporal simulations and local perturbation analysis (LPA) to understand how signaling from paxillin
onto RhoGTPases affects front-to-rear polarization. In doing so, we have found a number of discrepan-
cies between the predictions of LPA and the results of spatio-temporal simulations, and hypothesized
about the cause of these discrepancies. As a partial remedy to this issue, we have proposed an exten-
sion of LPA, termed pinned wave analysis (PWA), whose results can be better reconciled with those of
our spatio-temporal simulations. Finally, by performing spatio-temporal simulations in time-varying
domains produced by the CPM, we found that, when paxillin phosphorylation is increased moderately,
cells exhibit faster motility but, at very high phosphorylation rates, multiple competing protrusive re-
gions can actually arrest cell motility.

0.1.4 Migration Modes

Based on what we have already discussed, we can see that cellular motility and migration are complex
processes that integrate multiple interrelated phenomena (e.g., adhesion dynamics, biochemical signal-
ing, and cellular deformation) across many length and timescales. In multicellular organisms, variations
in these phenomenon combined with complex interactions between a cell and its environment produce
a diverse set of migration modes. For example, one may distinguish between single-cell and collec-
tive migration. During collective cell migration, a population of cells collectively exploit single-cell
migration properties in order to enhance sensitivity to stimuli as well as produce emergent tissue- and
organism-level migratory behaviour [EMB`16, HSF18, SM19]. The physiological contexts that use
collective migration vary from wound healing and embryonic development to cancer metastasis, and
thus the strategies used to achieve it are diverse; these strategies involve using a combination of cell-cell
adhesions that provide both tensile [THA`11] and compressive [PKB`15] mechanical links between
cells, direct transfer of biomolecules between cells through gap junctions [HCW`98, DNB`08], and
multicellular leader-follower dynamics arising from intercellular signaling combined with contact in-
hibition of locomotion or cell-cell junctions [CZLR16, Rap16, YZZF19]. For the most part, collective
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migration requires that individual cells be able to undergo single-cell migration. This type of migration
also exhibits a great deal of cell-type and context-dependent diversity [HSF18]. Single-cell migration
is broadly classified into two distinct forms: amoeboid and mesenchymal.

Amoeboid motility is characteristic of cells that exert low amounts of traction force on their sur-
roundings [HSF18], and is often used to refer to cells that posses rapidly changing and irregular shapes
(e.g., leukocytes) [FLLKM18]. This type of migration can further be dissected into a number of modes
based on the relative balance between contractile, protrusive, and adhesive forces [LS09]. It has been
suggested that this type of motility is poorly defined such that the term has been abused in the liter-
ature [FLLKM18], and that its use should be restricted to cells that migrate using contraction-driven
blebs (a detachment of the plasma membrane from the actin cortex) [LS09]. On the other hand, when
traction forces are high, cells exhibit mesenchymal motility, characterized by a spindle-like cell shape
(e.g. fibroblasts). This shape results from actin stress fibres that are anchored to the substrate by FAs.
The protrusive end of the spindle shape is typically broader than the contractile end; this is due to
the presence of a lamellipodium and/or filopodia, where the latter denotes protrusive actin structures
consisting of bundled parallel actin filaments [BPEP20, FLLKM18]. The lamellipodium, or similar
protrusive structures (e.g., uropods), furthermore, act as sources of integrin-based adhesions. Thus,
such adhesions are most prominent in cells exhibiting mesenchymal motility, but can also be found in
cells that are typically associated with amoeboid motility.

This thesis has focused on single-cell mesenchymal motility, the most studied form of motility
due to its relevance to cancer metastasis, wound healing, embryonic development, and tissue fibro-
sis [CD09, Nie11, KMT`12, HD18]. We have further restricted our focus to two cell-types that, when
seeded on two-dimensional substrates, primarily use lamellipodia for protrusion: Chinese hamster
ovary (CHO-K1) cells and fish keratocytes.

Beyond the observational description of mesenchymal motility given above, a relatively complete
mechanistic picture of mesenchymal motility can be obtained from the famous Abercrombie model of
crawling cellular motility [Abe80]. While the model was not mathematical and many of the molecules
involved remained to be identified, it proposed a framework for motility that involves four major steps:
protrusion of the cell front, formation of cell-substrate adhesions at the front, detachment of cell-
substrate adhesions at the rear, and actomyosin contraction to pull the cell rear forward. The model
further postulated that a set of autonomous processes govern each of these steps, and that interactions
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between these processes lead to a cyclic repetition of the steps, resulting in persistent motility.

These four steps remain foundational to understanding nearly all mesenchymal motility, with ex-
perimental and computational studies continually giving increasingly nuanced insight into molecular
and mechanical details driving these four steps. Both environmental factors and cell-autonomous fac-
tors feed into the relative dynamics with which a cell executes the various steps, leading to qualitatively
and quantitatively distinct migration modes [FW10]. For example, fish keratocytes have been used ex-
tensively as a simple model of migrating cells due to their gliding mode of motility that does not
produce significant changes in shape [MBK20], possibly suggesting that a common mechanism un-
derlies the motility of these cells. However, upon closer inspection, this assumption turns out to an
over-simplification, as even within the gliding mode of motility, there are different mechanisms that
determine migration speed and cell shape in different environments [MBK20]. For example, when
keratocytes migrate on a substrate with a low density of extracellular ligands, they adopt a relatively
rounded shape with cell speed determined by the balance between actin polymerization and myosin-
aided rearward flow of the actin network over mechanically weak adhesions [BLK`11]. On the other
hand, when keratocytes are on a substrate with an intermediate ligand density, they spread out per-
pendicularly to the direction of motion and their elevated speed is solely determined by the polymer-
ization rate of actin, as adhesions become strong enough to withstand slippage of the actin-myosin
network [BLK`11]. Thus, due to the intrinsic connections between the four steps of Abercrombie
model, altering any one step (e.g., adhesion or detachment) can have non-trivial consequences on the
other steps (e.g., protrusion and contraction).

Interestingly, when keratocytes are plated on highly adhesive substrates, a significant sub-population
exhibits traveling waves of protrusion that initiate at one end of the cell and spread laterally until they
terminate at the other end of the cell [BAL`17]. These protrusive waves result from complex spatio-
temporal interactions between actin polymerization and maturing adhesions [BAL`17]. On both inter-
mediate and low adhesive substrates, another sub-population of cells exhibit a third mode of motility
that is distinct from both gliding and waving, namely, rough motility [BLK`11,BAL`17]. This poorly
understood mode of motility is characterized by transient protrusions that are aperiodic in nature and
travel short distances along the membrane before terminating. Because all cells used to produce these
observations were fish keratocytes, it seems likely that differences in observed migration modes are
due to intercellular heterogeneity in some rates of the molecular processes driving the steps of the
Abercrombie model. Understanding how this heterogeneity combines with variations in environment
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to produce the observed sub-populations is both mechanistically insightful and a useful strategy for
model validation.

In Chapter 4, we re-analyze a mathematical model that had successfully captured the smooth glid-
ing and waving motility of keratocytes [BAL`17]. This has been done using slow-fast analysis un-
derstand its underlying dynamics, and bifurcation analysis to understand how heterogeneity produces
sub-populations with different migration modes. Furthermore, combining both these strategies, we
have identified the parameter regime that is most-likely responsible for producing rough motility in
keratocytes. We also show how this model of protrusion can be extended by incorporating some of the
mechanosensitive properties of nascent adhesions covered in Part I to predict novel motility phenotypes
that may be relevant in other cell types.

In conclusion, due to the complexity of the processes involved in cellular motility, experimental
observations can be made significantly more impactful by being complemented with appropriate math-
ematical modeling. Mathematical modeling gives much more control over the systems being studied
and yields considerably higher spatio-temporal resolution than can be acheived experimentally. This
thesis uses experimentally-driven mathematical modeling of motility-related phenomena across many
lengthscales and timescales, providing important insights into how cellular motility arises from their
interactions.
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Abstract

The forces actively generated by motile cells must be transmitted to their environment in a spatiotem-
porally regulated manner, in order to produce directional cellular motion. This task is accomplished
through integrin-based adhesions, large macromolecular complexes that link the actin-cytoskeleton in-
side the cell to its external environment. Despite their relatively large size, adhesions exhibit rapid
dynamics, switching between assembly and disassembly in response to chemical and mechanical cues
exerted by cytoplasmic biochemical signals, and intracellular/extracellular forces, respectively. While
in material science, force typically disrupts adhesive contact, in this biological system, force has a more
nuanced effect, capable of causing assembly or disassembly. This initially puzzled experimentalists and
theorists alike, but investigation into the mechanisms regulating adhesion dynamics have progressively
elucidated the origin of these phenomena. This review provides an overview of recent studies focused
on the theoretical understanding of adhesion assembly and disassembly as well as the experimental
studies that motivated them. We first concentrate on the kinetics of integrin receptors, which exhibit a
complex response to force, and then investigate how this response manifests itself in macromolecular
adhesion complexes. We then turn our attention to studies of adhesion plaque dynamics that link inte-
grins to the actin-cytoskeleton, and explain how force can influence the assembly/disassembly of these
macromolecular structure. Subsequently, we analyze the effect of force on integrins populations across
lengthscales larger than single adhesions. Finally, we cover some theoretical studies that have consid-
ered both integrins and the adhesion plaque and discuss some potential future avenues of research.

1.1 Introduction

The joint effect of the chemical and mechanical environment a cell experiences influences it behaviour
across many timescales. For example, on short timescales (minutes to hours) a cell may exhibit motile
behaviour in response to chemical and mechanical cues [1, 2], while on longer timescales (hours to
days) these same cues affect cell survival and differentiation into distinct lineages [3–6]. Although
associated with behaviour at comparatively short timescales, cellular motility plays a central role in
a number of long-lasting physiological and pathophysiological processes [7–9]. The visualization of
its associated displacements of molecules [10–16], cellular structures [17–20], and cells [21–24] have
made it an alluring area of research across many fields. Fluorescence-based microscopy has not only
allowed for the visualization of these displacements, but also the biochemical characterization of the
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1.1 Introduction

structures involved. In conjunction with biochemical and genetic manipulations, fluorescence-based
microscopy data has resulted in an extensive literature detailing the processes involved in motility
across many lengthscales: from the single molecule scale to the tissue-level scale. A significant chal-
lenge in the field has been to take these complex, and sometimes seemingly contradictory, experimental
characterizations and arrive at a mechanistic understanding of what drives a specific cellular behaviour.
While proper experimental design is crucial in this endeavour, theoretical models, both mathematical
and computational, have proven to be useful in providing a level of control, spatiotemporal resolution,
visualization, and quantification that may go well beyond what can be achieved experimentally.

The motile behaviour of cells highlights the importance of force-generation in cells, which is
largely thought to arise from a combination of actin polymerization and myosin-driven contraction
[25]. However, in order for directed cellular motion to occur, the internal forces of the cell must
be transmitted to its environment. One means by which cells accomplish this force transmission are
integrin-based adhesions, macromolecular structures that act as a mechanical linkage between the cell’s
environment and its actin-cytoskeleton [15,25]. Interestingly, integrin-based adhesions are mechanosen-
sitive, assembling and adjusting their size and strength in response to force [17,18,26–31]. The highly
dynamic nature of these relatively large structures poses a significant modeling challenge as it involves
interactions across many length- and timescales. Indeed, adhesions are formed as the result of interac-
tions between over 100 different proteins which often exhibit some form of redundancy [32], making
it difficult to both isolate key players and determine how nuanced interactions may lead to divergent
behaviours. Nonetheless, many models of adhesions and the molecules which comprise them have
been successful in furthering our understanding of adhesion dynamics and the role that forces play in
determining these dynamics.

In this review we will cover some of these models and the experimental findings which motivated
their formulation. In particular, we will focus on the mathematical forms which give rise to specific
model behaviours, and the relation these forms have to the underlying physics and biological structure
of adhesions. The emphasis on mathematical forms is made to help clarify the critical determinants
of cellular behaviour rather than the specific results of a simulation which may depend heavily on
indeterminate parameter values. We will see how these mathematical forms are used to predict both
steady-state and transient behaviours of this system at the single-molecule, adhesion, and membrane
level.
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1.2 Biological Background

This review is organized as follows. First, we briefly discuss the architecture of adhesions and how
it relates to their function, and then highlight some aspects of the adhesion life cycle which will be
relevant to modeling. The bulk of the review will then be allocated to covering various mathematical
models which have yielded insight into the dynamics of adhesions. Broadly speaking, we will focus
on models have that either analyzed integrins receptors and their bonds to ligands or studied the con-
densed phase of adaptor proteins which form a plaque that sits atop the integrins. First, we will show
how a combination of experiments and modeling have enriched our understanding of single integrin
dynamics, and then explore how the properties of the integrin-ligand bond can be incorporated into
bond-cluster models that predict the mechanical response of a collection of integrin receptors. Sub-
sequently, we will cover some theoretical treatments of the adaptor protein plaque and its response
to anisotropic applied forces. This will be followed by briefly describing a model that helped bridge
the two classes of models of adhesions, and reconcile some of the differences between the outcomes
of the two classes of models. Finally, we will draw some conclusions and give an outlook on future
challenges in the field. An appendix detailing the common thermodynamic formulation of the models
presented here is also included at the end of the review.

1.2 Biological Background

1.2.1 Adhesion Architecture

Adhesions are comprised of a very large number of dynamically interacting proteins to produce a
bio-mechanically regulated force transmission point between a cell’s actin-cytoskeleton and its envi-
ronment [32]. Central to this force transmission is the integrin receptor, a heterodimeric transmembrane
protein which binds extracellularly to ligands typically found in connective tissue and whose cytoplas-
mic domain is linked to the actin-cytoskeleton through interactions with adaptor proteins (see Fig.
1.1, [15, 33]). Adaptor proteins are a class of cytosolic proteins which form a membrane-proximal
plaque. This plaque aides in the spatial organization of integrins, into discrete adhesions [16, 34, 35],
and serves as a mechanical linkage between integrins and the actin-cytoskeleton. The adhesion plaque
is formed as a result of adaptor proteins binding to integrins as well as one another. Aggregation of
adaptor proteins leads to the growth of the adhesion plaque through adsorption, while the reverse pro-
cess of desorption may explain shrinkage of the plaque [19, 36–39]. The term net adsorption will be
used to refer to the combined effect of both processes. Biochemical signaling events and mechanical

15



1.2 Biological Background

forces have both been implicated in modifying the propensities of these adsorption/desorption pro-
cesses, providing the cell with means to dynamically alter the size and stability of adhesions.

The adhesion plaque is divided into functionally distinct layers (see Fig. 1.1, [15, 40]). The low-
est layer is known as the integrin signaling layer (terminating cytosolically 10 ´ 20 nm away from
the membrane), where adpator proteins are closely associated with integrins, allowing paxillin- and
FAK-dependent signals to relay information about the integrin-ECM linkage to various biochemical
signaling pathways [41, 42]. Above the signaling layer lies a force transduction layer (terminating
cytosolically 50 ´ 60 nm away from the membrane) which links integrins to filamentous actin (F-
actin), and is primarily comprised of talin (which both activates integrins and binds to F-actin [43])
and vinculin (which reinforces the talin-actin bond [44, 45]); this latter layer is responsible for the
transmission of forces from the actin-cytoskeleton to integrins. One would expect the many proteins
in the force transduction layer to be associated with actin filaments, which requires actin filaments to
be brought into contact with the adhesion. Consequently, immediately above the transduction layer,
is an actin regulatory layer which contains the proteins VASP, zyxin, and α-actinin [40]. The proteins
in this uppermost regulatory layer promote filament growth and F-actin bundling into very stable and
contractile stress fibres [46, 47]. This means that these three functional layers interact to self-assemble
into the mechanical linkage between the actin-cytoskeleton and the external environment [15]. Within
this framework, the signaling layer contains the mechanical link to the external environment (i.e., in-
tegrins), the transduction layer connects these integrins to the actin-cytoskeleton, and the regulatory
layer helps to organize the actin-cytoskeleton around the adhesion into structures that produce the
force transmitted through integrins to the external environment.
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1.2 Biological Background
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Figure 1.1: Structural diagram of the nanoscale architecture of integrin-based adhesions in a protrusive
region of a motile cell. Integrin receptors span the cell membrane, binding to ligands in the extracel-
lular matrix. Their cytoplasmic tails are complexed with adaptor proteins, forming an adhesion plaque
that connects them to F-actin. The integrin signaling layer is the juxtamembrane region (10-20 nm in
thickness) where adaptor proteins involved in signaling pathways are found (e.g., paxillin). Above this
layer is the force transduction layer (terminating cytosolically 50-60 nm above the membrane) enriched
with talin and active vinculin, proteins that form a linkage between the actin-cytoskeleton and integrin.
Finally, the actin regulatory layer contains proteins that help organize actin into contractile stress fi-
bres. A stress fibre typically points from the adhesion towards the cell nucleus; this directionality is
used to define the adhesion’s frame of reference in which distal (proximal) refers to the tip furthest
away from (closest to) the nucleus. A gradient in paxillin phosphorylation leads to an asymmetry in
the distribution of active vinculin [15, 48], while the elastic response of the adhesion plaque has been
theorized to produce a gradient in the tilt of proteins in the transduction layer [39]. Figure adapted
from [15] and [39].

1.2.2 Adhesion Life Cycle in Motile Cells

Focal adhesions form through a series of biochemically- and mechanically-driven steps. They initially
start as highly dynamic nanoscale clusters of integrins, termed nascent adhesions (NAs), in the lamel-
lipodium [49], a morphological compartment with a very dense quasi-two-dimensional polymerizing
actin meshwork. This semi-rigid network of F-actin projects from the actin-cytoskeleton to form the
leading edge of a polarized cell [50], while the polymerization of the filaments drives the leading edge
forward by using NAs as anchor points [51, 52]. As the leading edge of a migrating cell moves for-
ward, so does its lamellipodium; once a NA is no longer covered by the lamellipodium it disassembles
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1.2 Biological Background

rapidly [19]. However, a small fraction of NAs stabilize and persist beyond the lamellipodium, growing
centripetally inwards into mature focal complexes (FCs) and focal adhesions (FAs) [19, 53].

The decision for a NA to disassemble or initiate its maturation is regulated biochemically by
changes in the molecular state of adaptor proteins (e.g., phosphorylation of FAK or paxillin) [48,54,55].
From a mechanical perspective, maturation is associated with an increase in traction stress [30,56,57].
Therefore, it is not surprising that the association of a FA with a contractile actin stress fibres results
in its stabilization [29]. As the whole cell moves forward, its FAs either gradually disassemble as they
steadily move towards the cell rear [58], or, in some cell types, they may become highly stable fibrillar
adhesions which form as a result of cell-dependent reorganization of the ECM [59]. In fibroblasts, the
former effect is fairly robust with only „10% of FAs at the trailing edge originating from the front of
the cell, whereas trailing FAs primarily originate in small protrusions at the rear and lateral zones of
the cell [58].

The spatiotemporal regulation of disassembly for non-fibrillar FAs remains incompletely under-
stood. Yet, it has been found that (i) FAs undergo repeated periods of disassembly which are correlated
with their proximity to the growing tips of microtubules [58], (ii) microtubule tips are targeted to
FAs in a paxillin-dependent manner [60], and (iii) abrogating microtubule growth halts the disassem-
bly of FAs [61, 62]. Interestingly, this microtubule-dependent disassembly seems to be mediated by
clathrin-dependent endocytosis of integrins [63–65], while other internalization routes (e.g., caveolin-
dependent endocytosis) may also contribute to adhesion disassembly [66]. Furthermore, in some cel-
lular contexts, internalization may be further aided by the exocytosis of matrix metalloproteases that
degrade the ECM [67,68]. For more on the interplay between microtubules and adhesions or the inter-
nalization of integrins, we refer the reader to the reviews by Seetharaman and Etienne-Manneville [69],
or De Franceschi et al. [66], respectively.

Within motile cells, FAs that form at the front of the cell are effectively immobile relative to the
ECM. When these FAs reach the rear of the cell they must disassemble in order for the cell to continue
migrating. FA-disassembly at the cell rear allows for the trailing membrane to roll forward which in
turn permits further extension of the lamellipodium. While the presence of FAs in this region of the cell
is necessary for proper cell spreading and resisting the tension generated in the lamellipodium, their
timely disassembly is necessary for efficient cell migration. This disassembly occurs primarily by two
means: integrin/adhesion release and adhesion sliding.
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1.3 Integrin Activation and Mechanosensitivity

Integrins are “released” from the trailing edge of a migrating cell [70, 71]. On a highly adhesive
ECM, this process is caused by intracellular breakage of the FA plaque-integrin linkage, leaving in-
tegrins stuck to the ECM after the trailing edge moves forward; on the other hand, on less adhesive
substrates, release of integrins from the cell is infrequent with breakage occurring extracellularly at the
integrin-ECM linkage [71], a process we term adhesion release. Regardless of the adhesiveness of the
ECM, however, strong traction forces produced by RhoA-dependent myosin-driven contraction of the
actin cytoskeleton drive the breakage of bonds that hold the FA together, leading to their disassembly.
At least two biochemical mechanisms have been identified as modulators of adhesion release. First, the
calpain family of intracellular Ca2`-dependent proteases have been shown to cleave a number of FA
proteins which can (directly or indirectly) mechanically decouple integrins from the actin cytoskele-
ton [71–74]. Second, in lymphocytes, it has been experimentally found that the protein SHARPIN
associates with the integrin (LFA-1) preferentially at the cell rear and maintains it in a low-affinity
inactive conformation that facilitates the mechanical breakage of the integrin-ligand bond [75,76]. No-
tably, this low affinity state does not exhibit the normal mechanosensitive binding properties of the
integrin bond [76, 77].

Alternatively, adhesion sliding may also occur in a subset of FAs at the cell rear [78], and unlike
integrin release, it is not migration-dependent [79], but is a tension-dependent process [80]. During FA-
maturation, the proximal tip of an elongated adhesion grows more rapidly than the distal tip shrinks,
leading to further elongation [18, 19], in contrast to adhesion sliding where the distal tip typically
shrinks more rapidly than the proximal tip grows. This striking phenomenon leads to an apparent
sliding of FAs towards the center of the cell, and a gradual decrease in their size. Although these sliding
adhesions visually appear to exhibit slippage, this phenomenon is more likely due to an asymmetry in
matter exchange rates between the two tips of adhesions [12, 80, 81]. Biochemically, a number of
proteases have been implicated in this process [81], but as we shall see in this review, a number of
mechanical effects may also be implicated in adhesion sliding.

1.3 Integrin Activation and Mechanosensitivity

Integrin receptors exist as non-covalently bonded heterodimeric pairs of α and β subunits. There are 18
α and 8 β subunits in vertebrates, which allow different cell-types to exhibit diverse responses to ex-
tracellular signals through differential ECM ligand binding, cytoskeletal association, and biochemical

19



1.3 Integrin Activation and Mechanosensitivity

signaling [82]. Initial crystal structures of integrins showed that the heads of the extracellular domains
of both α and β subunits are bent towards the membrane [83]. This conformation is now regarded as
the inactive form of the integrin receptor, capable of binding to ligands with a low affinity. In order
for the receptors to bind their ligands with high affinity, integrins must first become activated through
global conformational changes that expose the binding head of the receptors [84]. This conformational
change can be induced chemically by replacing extracellular Ca2+ with Mg2+ or Mn2+, resulting in
an equivalent change in the identity of the divalent cation contained in the metal-binding sites of the
integrin receptor [85, 86]. Alternatively, the binding of the cytoplasmic protein talin to the intracellu-
lar tail of the β subunit has also been found to activate integrins through equivalent conformational
changes [87, 88]. The latter form of activation is the more physiologically relevant pathway and is
termed inside-out activation, which is associated with numerous downstream signaling effects [89,90].

During the conformation changes associated with activation, integrins become extended in such a
way that their binding heads points towards extracellular ligands [84]. In this extended state, the bind-
ing head can be either in a closed or an open state [91]. It was previously shown that the opening of the
headpiece is the step required for high affinity binding [92]. This was in line with molecular dynamics
simulations suggesting that an intermediate affinity state could correspond to a force-stabilized inter-
mediate step in the physical extension of the α subunit that is associated with the switch from the low
affinity inactive state to the high affinity active state [93,94]. Such a view agrees with the experimental
observation that activated integrins typically exhibit less ligand binding than that of the high affinity
binding state induced by divalent cations, with the high affinity state being achieved transiently in some
activated cells [95–98]. Based on this, we can conclude that the complete integrin activation process
involves the extension of the receptor followed by the opening of the headpiece, and that the extended
state with a closed headpiece may represent a force-induced partially activated state. The three major
active and inactive conformations of integrin can thus be described as follows:

1. The inactive bent closed (BC) conformation that has its binding head bent towards the mem-
brane, away from extracellular ligands, and binds ligand with a low affinity.

2. The inactive extended closed (EC) conformation that has its legs extended, with the binding head
pointing away from the membrane (towards extracellular ligands), and exhibits a low binding
affinity due to a partially occluded binding site.

3. The active extended open (EO) conformation that has its legs not only extended but also sepa-
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1.3 Integrin Activation and Mechanosensitivity

rated, reflecting the opening of the headpiece, and as a result exhibits high binding affinity.

While the structural details of the activation process have been studied extensively, some questions still
remain. In particular, what are the relative contributions of mechanical and chemical cues in the activa-
tion process? Can either effect explain activation alone? How do these aforementioned conformational
changes manifest themselves in the ligand binding kinetics of integrin?

1.3.1 Mechanism of Activation

Differences in the structural and functional properties of the three conformations, mentioned above,
have lead to the genesis of the so-called force-activation hypothesis [82]. Within this framework, it is
assumed that naive receptors are overwhelmingly found in the BC conformation, but upon loading them
with mechanical force, the extended conformations (EC & EO) of integrin are stabilized by the work
needed to refold the protein under load [93,94,99]. This allows integrins to be primed for higher affinity
ligand binding through the application of force [100,101]. Because integrins are the primary component
of adhesions, their mechanosensitive affinity regulation has been posited as a possible mechanism for
the initiation of cellular responses to force [20].

We now ask whether or not force activation is the unique mechanism of activation. As mentioned
above, binding of talin (or kindlin, [102]) to integrins cytoplasmic tails is widely regarded as the bio-
chemical step necessary for activation. However, it is unclear if talin binding is sufficient for activation.
In other words, can a lack of mechanical activation be compensated for by a high enough talin concen-
tration? A recent theoretical study by Li and Springer has investigated this question using a thermo-
dynamic approach to model the conformational equilibria of α5β1 integrin receptors [99]. To quantify
the probability of activation as both the force and the concentration of relevant chemical species (e.g.,
talin and fibronectin) are varied, they considered the molar free energy of the bare receptors (i.e., their
reference chemical potential µ0 as determined by fluorescence polarization [99], see 1.13 for more on
µ0 ). They also included the contributions of relevant chemical reactions as well as the mechanical
work needed to revert a receptor back to its inactive BC conformation. In particular, they assumed
that integrins are only loaded with force when bound to both a cytoplasmic adaptor protein and an
extracellular ligand, In this case, an integrin receptor has a chemical potential given by

∆µi “ µ0
i ´ kBT ln

´

Cada{K
i
ada

¯

´ kBT ln
´

Clig{Ki
lig

¯

´ F∆xi, (1.1)
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where i P tBC,EC,EOu, Cada (Clig) is the concentration of adaptor proteins (extracellular ligands),
Ki

ada (Ki
lig) is the experimentally determined dissociation constant for complexes formed between an

integrin with conformation i and adaptor proteins (extracellular ligand), F magnitude of the applied
force, and ∆xi is the characteristic displacement length of conformation i relative to the BC confor-
mation (i.e., ∆xBC “ 0). We note here that the original study used the symbol ∆Gi rather than ∆µi

to denote the molar Gibbs free energy, however since the systems under consideration are individual
molecules these two quantities are equivalent (see 1.13.1). The probability of being in an active state in
the absence of applied force was then computed using the Boltzmann distribution, where in the absence
of applied force, „99.7% of α5β1 integrins were expected to be in the inactive BC conformation. In
comparison, the conformational equilibria of α4β1 integrins were found to have „98.4% of integrins
in the BC conformation (i.e., „1.0% of α4β1 are in the active EO conformation compared to „0.17%

for α5β1), suggesting that the conformational energies of α4β1 integrins may prime them for the rapid
adhesion involved in rolling leukocyte extravasation [103, 104].

While Eq. (1.1) is only part of the complete thermodynamic model, it highlights the dependence
of free energy on chemical and mechanical contributions. Changes in chemical concentration affect
free energy in a logarithmic manner, while changes in mechanical force have a linear effect on the
free energy. Thus under the physiological assumption that both ligand and adaptor proteins are present
at non-zero concentrations, variations in their concentration will have little effect on the outcome of
the activation process. On the other hand, mechanical force has a much more potent effect, with an
intrinsic free energy difference between the BC and EO conformation (µ0

EO ´ µ0
BC) equivalent to only

„ 1 pN of applied force when ∆x “ 14.5 nm [99]. This suggests that integrin activation is ultra-
sensitive to changes in applied force, with an activation probability that can jump from „0 to „1 over
a range of only „2 pN. We note here that this force range should be readily attained in networks of
polymerizing F-actin („1 pN per filament, [105,106]). Chemical effects, on the other hand, produce a
much more graded response, requiring chemical concentrations to vary over many orders of magnitude
to produce significant changes in extension/activation of integrin receptors. Due to the rapid dynamics
of integrin activation [107], the extension of integrins, and their subsequent activation, seems much
more likely to be caused by mechanical forces than by chemical effects. It is important to point out
here that, at very low adaptor protein concentrations, the second term in Eq. (1.1) will dominate over
µ0
i , indicating that almost no receptors will be bound to an adaptor protein due to the chemical potential

of adaptor-bound conformations being exceedingly high. In such a scenario, the force-dependence of
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activation will vanish, as almost no receptors will be loaded with force. This implies that, neither talin
binding nor mechanical forces are sufficient for activation, rather both are necessary. Interestingly with
a physiologically reasonable applied force of 1.5 pN [108], the energy differences intrinsic to α4β1 also
seems to give these integrins enhanced sensitivity to changes in adaptor protein concentration/affinity
relative to α5β1 [103]. Furthermore, the intrinsic conformational energies were also found to vary
across cell-types [103]. These cell-specific differences were likely due to variations in physicochemical
environments, which may be caused by differences in membrane composition and cytoplasmic proteins
that interact with integrins such as adaptor proteins or inhibitors of activation [103]. This variability
highlights that the interplay between chemical and mechanical effects is non-trivial as well as cell- and
integrin subtype-specific, but that it may be explored using the thermodynamic framework developed
by Li and Springer. For more on the mechanosensitive activation of integrins, we refer the reader to the
reviews by Sun, Costell, and Fassler [109] as well as Kechagia, Ivaska, and Roca-Cusachs [110].

1.3.2 Unbinding Kinetics of Integrin

While we have seen how structural changes in integrin receptors can lead to their activation and how
these changes are driven by a combination of mechanical and chemical effects, it remains unclear
how such processes manifest themselves in the dynamics of adhesions. To answer this question, we
will first explore how the conformational changes discussed above result in a very specific mechanical
response for integrin receptors using a combination of theoretical and experimental perspectives. In
order to appreciate the richness of the resulting behaviour, we begin by considering a generic theory
for the unbinding of molecular bonds under mechanical load. In [111], a phenomenological expression
for the rate of unbinding of a collection of molecular bonds all experiencing a mechanical load F was
originally proposed by Bell; it was given by koff9 exp

`

F {F0

˘

. Such an expression may be derived

from Eq. (1.25) by accounting for the work done by the force F⃗
´

ℓ⃗
¯

along the reaction path ℓ⃗ starting
from the bound state; that is

µ pxq “ µ0
pxq `

x0
ż

x

F⃗
´

ℓ⃗
¯

¨ dℓ⃗, (1.2)

“ µ0
pxq ` µF pxq
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where x is the position of bonded molecule, x0 is the position of the bound state, µ0 pxq is its chemical
potential in the absence of force, dℓ⃗ is the infinitesimal displacement of the molecule along the reaction
path from the bound state, and µF pxq is the chemical potential due to the applied force. Using Eq.

(1.25), we may arrive at koff9 exp
´

´∆µ;

0{kBT
¯

exp

ˆ

şx0

x; F⃗
´

ℓ⃗
¯

¨ dℓ⃗{kBT

˙

, where x; is the position

of the transition state and ∆µ0
; “ µ0

`

x;
˘

´ µ0 px0q is the intrinsic chemical potential difference of the
transition state in the absence of force. It is indeed possible to use spatial potentials to investigate
the unbinding rate in a way that actually considers the reaction path, revealing a threshold in force
ramping rate required to produce a force-dependent unbinding rate [112]. Moreover, such predictions
have lead to an experimentally validated theory of dynamic force spectroscopy for weak non-covalent
bonds [113]. However, it is more common to simply abstract the molecular movements and rewrite the
integral as ∆µ; “ ∆µ0

; ´F∆∥x
; where ∆∥x

; is the displacement from the bound state to the transition
state parallel to the direction of the force. Defining the bound state as having a chemical potential of
zero, we may use Eq. (1.25) to compute the unbinding rate as

koff pF q “ γ exp
`

´∆µ;{kBT
˘

(1.3)

“ γ exp
´

´∆µ0
;{kBT

¯

exp
´

F∆∥x
;
{kBT

¯

9 exp
`

F {F0

˘

,

where γ ą 0 is a kinetic parameter and F0 “ kBT {∆∥x
; is a force scale that characterizes the force-

dependence of the transition. Here, we have assumed that the position of the transition state is inde-
pendent of F , which may not be strictly true, but is a common assumption in the field that agrees well
with experimental measurements [112, 114–117]. Such a formalism defines the behaviour of what is
commonly referred to as a slip bond, where the unbinding rate increases monotonically with applied
force [118, 119].

Alternatively, by imposing some theoretical assumptions on the potential energy landscape of
bonds involved in peeling a membrane off a surface, Dembo et al. predicted a different type of bond, a
catch bond, whose off-rate decreases rather than increases with applied force [118]. They also hypoth-
esized that such a bond may be central to a number of biological adhesion phenomenon. Initial experi-
ments using atomic force microscopy under force-ramp conditions suggested that integrin-ligand pairs
behave as slip bonds [120–122]. However, under force-clamped conditions, Kong et al. 2009 demon-
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strated that these pairs can exhibit a catch bond behaviour, with a short-lived lifetime of „1 s in the
absence of force and a long-lived lifetime of ą 10 s for forces in the 20-30 pN range [123].

A number of physically realistic yet mathematically tractable models have been proposed to explain
the catch bond behaviour in a way that is more realistic than its original conception, which predicted
a vanishing unbinding rate for arbitrarily large forces. Firstly, Evans et al. developed a five-parameter
“state” model with two bound states (see Fig. 1.2A) [115]. The interconversion between the two states
in this model was assumed to equilibrate rapidly, i.e.,

P1 ptq

P2 ptq
« exp

`

∆µ12{kBT
˘

“ exp
`

∆µ0
12{kBT

˘

exp
`

´F {F12

˘

, (1.4)

where P1 ptq (P2 ptq) is the probability of being in the bound state 1 (2), ∆µ0
12 is the intrinsic energy

difference between the two bound states (in the absence of force), and F12 is a force-scale which
characterizes the transition between states 1 and 2. Furthermore, they assumed that only bound state
2 exhibits a force-accelerated ubinding rate (i.e., ∆∥x

;

,1 “ 0 and ∆∥x
;

,2 ą 0) [115]. With ∆µ0
12 ą 0,

unbinding from state 1, according to this model, dominates at low forces, while the interconversion
to state 2 becomes more favourable as force is increased. Therefore, if the intrinsic unbinding rate for
state 2 (k0

2) is significantly lower than that for state 1 (k0
1) the observed bond lifetime will increase

within a force range that (i) favours the interconversion to state 2 and (ii) also satisfies the inequality
k0
2 exp

`

F {F2

˘

ă k0
1 , producing the catch bond behaviour. Alternatively, in [117], Pereverzev et al.

also developed a “pathway” model with two dissociation pathways from one bound state (see Fig.
1.2B). The transition states associated with each pathway are assumed to be in opposite directions
when projected onto the force vector, i.e.,

∆∥x
;
c ă 0 ă ∆∥x

;
s

where ∆∥x
;
c (∆∥x

;
s) is the displacement parallel to the force in the catch (slip) pathway. With this

difference in sign, the force-dependent unbinding rate can be expressed as

koff “ k0
s exp

`

F {Fs

˘

` k0
c exp

`

´F {Fc

˘

(1.5)

where Fs, Fc ą 0, and an efficient catch bond can be produced when k0
c " k0

s [117]. The state model
is more consistent with the experimental evidence for multiple conformations of integrin, but it is also
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1.3 Integrin Activation and Mechanosensitivity

tempting to use the pathway model as it performs almost identically to the state model but has one
less parameter to be determined from data [117]. Interestingly, the pathway model may be derived by
applying the assumption defined by Eq. (1.4) to a more general model of unbinding in the presence of
allostery which, unlike the state model, explicitly tracks the allosteric interconversion between bound
states [124,125]. This may explain the relative popularity of the two-pathway model despite the lack of
evidence for multiple dissociation pathways from a single bound state [126–130]. For more on models
and experiments related to bond dynamics in the context of cellular adhesion, we refer the reader to a
review by Rakshit and Sivasankar [131].

Thus far we have hinted at a relation between bound states of integrins and the conformations that
are associated with its activation. Interestingly, it was found that by applying cyclic forces to integrin,
rather than using a constant force-clamp, the long lived bound state could be attained at significantly
lower force magnitudes, an effect termed cyclic mechanical reinforcement [100]. In order to capture
the history-dependence of unbinding, it was crucial to use a kinetic model with three bound states (see
Fig. 1.2C) that unbinds according to Eq. (1.3) (i.e., three slip bonds) and and assume that the intercon-
version between states is force-dependent but not instantaneous [101]. The biophysical properties of
these three bound states and the sign of the force-dependence of their interconversion unambiguously
allowed for ascribing an equivalence between the bound states and the three main integrin conforma-
tions: BC, EC, and EO. This suggests that the integrin activation process is reflected in the kinetics
of integrin unbinding, with each conformation behaving as a slip bond with different properties, while
mechanical forces govern the interconversion between the conformations (e.g., extension is favoured
in the presence of appropriately directed force) in order to produce the observed catch bond behaviour.

It is worth noting that thermodynamic model of Section 1.3.1 (see Eq. (1.1)) predicts that integrin
activation can be induced by as little as „2 pN of force, whereas experimental evidence suggests that
the catch bond behaviour of integrins is triggered at a threshold of „10 ´ 20 pN for constant forces
[92,123,132,133], and „5 pN for repetitive forces [100,101]. This discrepancy remains incompletely
understood, but may be due to assumption that Ki

lig is independent of force. As we have seen in this
section, integrin unbinding rates vary with force, and thus we may expect the binding affinity (1{Ki

lig)
to vary as well. In the following section, we will show how a combination of simulations and theoretical
work has been used to investigate the dependence of binding affinity on applied force in the context of
generic receptor-ligand binding.
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Figure 1.2: Models of integrin unbinding kinetics. (A & B) Two generic models of catch bonds: the
two bound state model [115] (A), and the two-pathway model [117] (B). (C) Kinetic model of the
mechanosensitive integrin-ligand bond that explains cyclic mechanical reinforcement [101]. Arrow
thickness reflects the transition rate between the different states in the absence of force: the thicker the
arrow, the the faster rate in the absence of force. In all three models, as force is varied, the transition
rates of the transitions depicted by red (blue) arrows increase (decrease), resulting in the observed catch
bond behaviour. The black arrow in A signifies an ideal bond whose unbinding rate does not vary with
force.

1.4 Normal Forces and the Binding Affinity of Transmembrane
Receptors

As discussed above, how applied force affects the unbinding process is now relatively well understood
from a microscopic point of view. As can be seen in Eq. (1.2), the interaction potential µ0 pxq between
the receptor and ligand pair interacts with the work done by the applied force ∆µF pxq. Of particular
interest is the work done at the transition state ∆µF

`

x;
˘

, which either aids (∆µF

`

x;
˘

ą 0) or hinders
(∆µF

`

x;
˘

ă 0) the stochastic evolution of the system from the bound state to the transition state. On
the other hand, during the binding process, the interaction potential is quite shallow, implying that the
unbound molecules will be relatively unconstrained. This makes it unclear as to how to define x0 in
Eq. (1.2) for the binding process. Furthermore, prior to binding, it is somewhat ambiguous how force
will modify the energy of the system given that the force applied to the receptor cannot be transmitted
to the ligand and vice versa. One can intuit that the molecules under force will be displaced, such that
the four factors: (i) the geometry of the molecules (i.e., not simple point particles), (ii) the location
of their binding sites (e.g., near the tip of the binding head of integrin receptors), (iii) the geometric
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1.4 Normal Forces and the Binding Affinity of Transmembrane Receptors

constraints on the molecules (e.g., a trans-membrane receptor being anchored to the membrane), and
(iv) the direction of the applied force, will all play important roles in determining the binding rates.
Due to these displacements, it seems therefore likely that a single molecule description will not be
sufficient to study the problem accurately.

To tackle this problem, recent studies [134, 135] [135] have modeled the force-dependent binding
affinity of generic receptor-ligand pairs as simple rods anchored to one of two apposing membranes,
where the rods have binding sites at their tips. Using Monte Carlo simulations, they produced molecular
dynamics (MD) data for the receptor and ligand rods diffusing along thermally fluctuating membranes
as well as rotating about their respective anchor points on the membrane. This MD data was used to
obtain estimates of binding affinity which were subsequently compared to results obtained from a sta-
tistical thermodynamics model (derived in these studies to describe the MD simulations) showing that
they were in close agreement. While the statistical thermodynamic model used a more general frame-
work than the one presented in 1.13, it nevertheless did employ very similar energetic considerations.
In order to understand this model, we begin first by considering the change in Gibbs free energy due
to the binding of receptor-ligand pairs in free solution, given by

∆G3D « U0 ´ kBT ln
`

Vb{V
˘

looooooomooooooon

∆Gtrans

´ kBT ln
`

Ωb{4π
˘

loooooooomoooooooon

∆Grot

,

where Vb and Ωb are the translational and rotational phase-space volumes of the bound receptor-ligand
pair, V is the volume of the simulations, and U0 is minimum binding energy [134, 135]. The phase
space volumes in this model were primarily determined using MD data. More specifically, it was
assumed that Vb “ p2πq3{2ξxξyξz where ξx, ξy, and ξz are the standard deviations of the distributions
for the x, y, and z coordinates of the binding vector that connects the two binding sites, respectively.
The binding affinity was then computed using K3D “ V exp

`

´∆G3D{kBT
˘

, where V is the volume
of the simulation. For membrane bound receptors, the separation between the two membranes, l, is
critical in determining the binding affinity of the receptor-ligand pairs [135]. Accordingly, Xu et al.
have derived the separation-dependent change in Gibbs free energy using the expression

∆G2D plq « U0 ´ kBT ln
`

Ab{A
˘

´ kBT ln
`

ΩbΩRL{ΩRΩL

˘

(1.6)

where Ab is the translational phase space area of the receptor-ligand complex, A is the area of the
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1.4 Normal Forces and the Binding Affinity of Transmembrane Receptors

membrane, ΩR (ΩL) is the rotational phase space volume of the unbound receptors (ligands), and ΩRL

is the rotational phase space volume of the receptor-ligand complex. This latter term ΩRL is given by

ΩRL plq ⋍ 2π

π{2
ż

0

exp
`

´HRL pθ; lq {kBT
˘

sin pθq dθ, (1.7)

where HRL pθ; lq « kaθ
2 ` kRL

`

l sec pθq ´ L0

˘2 is the contribution to the Hamiltonian due to an-
choring and binding interactions of receptor-ligand complexes, θ is the angle between the membrane
normal and the receptor (ligand) rod, ka is the anchoring strength, kRL is the spring-constant of the
receptor-ligand complex, and L0 is its preferred length (these last two parameters are determined from
a combination of theory and MD data). The rotational phase space volume of the unbound receptors
(ligands) ΩR (ΩL) is determined by an approach similar to Eq. (1.7), but is independent of the mem-
brane separation ℓ. Similarly to the free-solution case, the separation-dependent binding affinity is
given by

K2D plq “ A exp
`

´∆G2D plq {kBT
˘

,

where, for thermally fluctuating membranes, the binding affinity can be determined by integrating
against the probability distribution of membrane separations, as described by the equation

K2D “

ż

K2D plqP plq dl.

From MD data, Xu et al. found that the membrane separation is normally distributed, with P plq 9 exp
`

pl ´ l̄q2{2ϵK

˘

,
where l̄ is the mean membrane separation and ϵK is its standard deviation.

According to Eqs. (1.6) and (1.7), the binding affinity K2Dplq is maximal at some l0 ď L0, an
inequality that follows from the geometric constraint implicit in the ℓ{ cos pθq term as well as fact
that sin pθq is monotonically increasing for θ P

“

0, π{2
‰

. In order to directly investigate the effect of
force on binding affinity, Xu et al. [136] leveraged this fact and used a harmonic approximation for the
binding affinity, given by,

K2D plq “ Kmax exp

«

´
kRL pl ´ l0q

2

2kBT

ff

, (1.8)

where Kmax is the maximal binding affinity. Given that their model deals with variations in membrane
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1.4 Normal Forces and the Binding Affinity of Transmembrane Receptors

separation, it was appropriate to use it to investigate the effects of compressive and tensile forces on
binding affinity (in contrast to the Bell formalism which can be used to model the effect of force
applied in any direction). For compressive/tensile forces, the membranes will be at equilibrium when
the force applied to the membrane is equal to the force exerted by the receptor-ligand pairs. This was
be expressed as a force-balance condition, given by

σA “ NRLkRL pl ´ l0q ,

where σ is the force per unit area (stress) applied to the membrane and NRL is the number of receptor-
ligand complexes on the membrane. When combined with Eq. (1.20), it is possible to compute the
force-dependent binding affinity K2D pσq implicitly by evaluating σ “ ˘g pK2Dq, where g is a func-
tion. Numerical evaluation of this relation revealed that binding affinity is maximal for σ “ 0 and
decreases as the magnitude of σ increases. Moreover, this also revealed that there exists a critical stress
threshold σc (where Bσ{BK2D “ 0 and B2σ{B2K2D ă 0) beyond which there is no solution for bind-
ing affinity. Beyond this critical stress, we cannot expect receptor-ligand pairs to form, and thus the
membranes will either peel apart or collapse onto one another (i.e., K2D “ 0). The validity of these
predictions was further investigated using simulations, where very good agreement between theory
and simulations was confirmed for most cases. In particular, it was found that the effective critical
stress observed in simulations is well-predicted for tensile forces (i.e., σtensile

c « σc) while it is always
lower than the theoretical value for compressive force (i.e., σcompress

c ă σtensile
c ). Through careful anal-

ysis of the critical stress for compressive forces, it was found that the deviations from theory could be
well-explained by an Euler buckling instability.

Aside from pushing the boundaries of theoretical understanding of binding kinetics of transmem-
brane receptors, this theory gave some insights into the biophysical constraints that lead to adhesion
release. At the rear of the cell, RhoA-dependent contractile stresses increase during the retraction of the
trailing edge [137, 138]. According to the theory covered here, this will lead to a decrease in the bind-
ing affinity of integrins (likely leading to a decrease in the size of FAs). If stress eventually surpasses
the critical stress threshold, σc, all integrins in the FA will unbind leading to release of the adhesion.

In this section, we have seen how a force-balance condition for the membrane leads to the existence
of a critical stress value, beyond which the transmembrane receptors cannot support the applied force.
Due to the intrinsic geometric aspects of the problem, it was treated as a fundamentally macroscopic
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1.5 Mechanically-Driven Clustering of Integrins

problem with the theory developed only applicable to compressive and tensile forces. In Section 1.6,
we will use a microscopic approach based on the Bell formalism developed in Section 1.3.2 that also
predicts the existence of a critical force value and can be used to model the effects of sheer force as
well.

1.5 Mechanically-Driven Clustering of Integrins

The computational approach developed by Xu et al. (see Section 1.4, [135]) was also used to investigate
the effect of the glycocalyx on integrin binding affinity as well as the spatial clustering it induces. The
glycocalyx is a thin layer of anionic material that coats the cell and is made up of a network of glyco-
proteins and proteoglycans [139]. The glycocalyx has long been associated with the regulation of cell
adhesion [140]. Moreover, Paszek et al. [141] recently found that metastatic tumors cells express an
excess of large glycoproteins on their cell surface, and that the resulting thicker glycocalyx promotes
clustering of integrins and adhesion formation. This finding had been predicted by a computational
model previously developed by Paszek and collaborators [142]. Paszek’s computational model ex-
plored numerical simulations of stochastically binding integrins with an extensive lattice spring model
to account for membrane and ECM mechanics. They found that integrin clustering was due to an inter-
play between integrin binding affinity and glycocalyx repulsion [142]. Effectively, they proposed that
a thick glycocalyx prevents integrin binding due to a large separation between the membrane and the
ECM, while bound integrins will exclude thick glycoproteins from their vicinity, producing a kinetic
trap where more integrins are likely to bind [141].

Due to membrane separation being a key factor in producing glycocalyx-driven integrin clustering,
it seemed likely that the theory developed by Xu and collaborators (see Section 1.4) may be useful to
understand this phenomenon. Indeed, in [136] Xu et al. modeled this integrin clustering phenomenon
using their familiar system of rod-like receptors and ligands anchored to two apposing membranes,
while simultaneously incorporating the effect of the glycocalyx by modeling it as a spring with a rest
length of lg and a stiffness per unit area of kg . Using statistical mechanics methods, they then found
that the separation between the two membranes is normally distributed, with a mean separation given
by

l̄ “
kgAlg ` nkbl0 ` σA

kgA ` nkb
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1.5 Mechanically-Driven Clustering of Integrins

and a standard deviation given by

ϵK “

b

kBT {
`

kgA ` nkb
˘

.

As can be seen in Eq. (1.8), the mean binding K2D

`

l̄
˘

affinity is a monotonically decreasing function
of lg (or kg). In view of the fact that a thicker glycocalyx will inevitably have a lower binding affinity
than one for which lg « l0 (a prediction experimentally validated in [141]), it seems paradoxical that a
thicker glycocalyx can enhance clustering. However, since clustering produces a different organization
at local scales compared to global scales, the global binding affinity may not be adequate or even an
appropriate tool to study this phenomenon. As an illustrative simplification of the problem at hand, let
us consider the scenario in which the first successful bond has just been formed between a receptor-
ligand pair. Near this receptor ligand pair, the membranes will be separated by a distance l « l0 and
thus, locally, the binding affinity can be approximated as

K2D pl « l0q « Kmax,

while far-away from this receptor-ligand pair l « lg ą l0 and the relevant binding affinity is

K2D

`

l « lg
˘

! Kmax.

Therefore, we will not only see more bonds form near an already-existing bond (as there is also a
similar local enhancement of the binding rate kon [136, 143]) but also see these bonds more likely to
remain formed compared to lone ones forming far away. Statistically, this leads to integrin clustering
that is driven purely by mechanical considerations, that does not require the active generation of forces
in the actin cytoskeleton. While a qualitative mechanistic understanding of this phenomenon can be
obtained from the original computational model [142], the study by Xu et al. found excellent agreement
between their own MD data and a theoretical framework based on Eq. (1.8) [136]. This demonstrated
that their theoretical framework is generic enough to study diverse problems through analytic means
as an alternative to numerical simulations which are non-trivial to implement.
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1.6 Mechanical Response of Integrin Clusters

We have thus far elucidated how the unbinding rates of single integrins vary with the applied force
and how this relates to the conformational changes involved in activation, as well as how force affects
the binding affinity of a spatially distributed population of transmembrane receptors on a membrane.
As we explained in the previous section, the mechanical effect of the glycocalyx helps to organize
integrins into clusters by making local binding-dependent kinetic traps. Furthermore, adaptor proteins
in the adhesion plaque locally slow the diffusion of integrins [35]; this as a result enhances the kinetic
trapping of integrin underneath the plaque to produce a feed-forward system that leads to organization
of integrins (and adaptor proteins) into discrete adhesions [34, 130].

Therefore, it seems relevant to ask how these discrete adhesions, which consist of tens of integrin
molecules that stochastically bind and unbind [16, 35, 144], are affected by the active forces generated
in the actin cytoskeleton. This question was first investigated by Bell who modeled an adhesion as a
collection of bonds sharing a fixed load while dynamically unbinding and rebinding [111]. For a cluster
of slip bonds containing Nt integrins under a fixed load F , the mean number of closed bonds (xNy) to
obeys the rate equation given by

d

dt
xNy “ ´ xNy k0

off exp
´

F {
`

xNyF0

˘

¯

` kon
`

Nt ´ xNy
˘

(1.9)

where k0
off ą 0 is the unbinding rate in the absence of force, kon ą 0 is the binding rate of a single

integrin, and F0 is as defined in Eq. (1.3). To characterize the long-term behaviour of such a model,
one may seek steady states whose unbinding rate (first term in Eq. (1.9)) is equal to the binding rate
(second term). Due to the fact that these rates are exponential and linear functions of xNy, respectively,
it is possible to obtain as many as two such states for xNy ą 0 [145]. In the scenario with two steady
states, the elevated one has its load distributed over comparatively more bonds. This helps to explain
why this elevated steady state is consistently found to be stable (see solid line in Fig. 1.3A), while
the lower steady state is an unstable steady state (see black dashed line in Fig. 1.3A). When a bond is
broken in the elevated steady state, denoted Ns, the increase in the unbinding rate (due to an increase
in F { xNy) is compensated by an increase in the binding rate (due to the increase in Nt ´ xNy). When
a bond is broken at the lower steady state, denoted Nu, however, the increase in the unbinding rate is
larger than the corresponding increase in the binding rate and thus once a single bond breaks the cluster

33



1.6 Mechanical Response of Integrin Clusters

as whole catastrophically unbinds. As the force F is increased, the two steady states come closer to
one another, until they annihilate at a critical force Fc determined by a saddle-node bifurcation (see
grey dotted line in Fig. 1.3A) located at

Fc “ F0NtW

„

kon{

´

k0
offe

¯

ȷ

, (1.10)

where W is the Lambert W function (i.e., the product-log function). For F ą Fc, no steady state exists
with xNy ą 0; this means that, a cluster with a fixed number of bonds can only support up to a finite
load that can be predicted using Eq. (1.10). This also highlights the importance of rebinding for the
cluster to be able to resist applied forces, as in the absence of rebinding, we have FC9W p0q “ 0.

The deterministic treatment of the model suggests that once the system reaches a stable steady
state, it will remain there indefinitely. However, one may wonder if stochastic effects, particularly
when adhesions only have a few closed bonds, may alter this outcome. In order to answer such a
question, in [146], Erdmann and Schwarz reformulated Eq. (1.9) in a discrete setting as a one-step
master equation given by

d

dt
pi “ ri`1pi`1 ` gi´1pi´1 ´ pri ` giq pi, (1.11)

where pi is the probability of having i closed bonds, and ri and gi are bond rupture and gain rate
functions, respectively, defined by

ri “ ik0
off exp

`

F { piF0q
˘

and gi “ kon pNt ´ iq .

Within this setting, we may define the lifetime of a cluster to be the expected time it takes for a
stochastic processes described by Eq. (1.11) starting with Nt closed bonds to reach a state with zero
closed bonds. Using standard results from the theory of Markov Chains [147,148], such a quantity may
readily be computed

T “

Nt
ÿ

i“1

1

ri
`

Nt´1
ÿ

i“1

Nt
ÿ

j“i`1

śj´1
k“j´i gk

śj
k“j´i rk

. (1.12)

By evaluating this expression for Nt ě 2, one obtains an expression that increases polynomially with
respect to the binding rate, but decreases exponentially with respect to force. This is reminiscent of
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the difference we saw in the thermodynamic model of integrin activation, where the force-independent
reaction had a much more limited effect compared to the force-dependent reaction. While the deter-
ministic picture suggests that for F ă Fc the system will reach Ns provided that N pt “ 0q ą Nu

and remain there indefinitely, a stochastic treatment of the problem shows that even for N pt “ 0q “

Nt ą Ns ą Nu, the system will reach N ptq “ 0 in finite time given by Eq. (1.12). Moreover, from
the qualitative stability analysis described above, we may posit that for F ą 0, the unstable steady
state Nu acts as a threshold separating stochastic trajectories. If at any point in time an adhesion has (i)
N ptq ă Nu, it will almost surely undergo catastrophic unbinding where all bonds unbind very quickly
or (ii) N ptq ą Nu it will grow towards Ns until stochastic fluctuations cause the system to be in
scenario (i) and disassemble. This perspective has indeed been confirmed using stochastic simulations
(see Fig. 1.3C and D, and [127]).

As suggested before, integrin bonds exhibit a catch bond behaviour, but the models of bond-clusters
investigated thus far have all assumed a slip bond for the integrin-ligand pair. In order to account for
this, in [127], Novikova and Storm used Eq. (1.11) with an expression for ri derived from the two-
pathway model for catch bonds, given by Eq. (1.5) with Fs “ Fc, and kept gi “ konpNt ´ iq as before
to describe the system. Using mean field analysis, they were able to implicitly solve for the steady
states of xNy from an expression for the total force applied to the adhesion, given by

F “ Fs xNyϕmax ˘ Fs xNy cosh´1

˜

kon
k0
off

α
`

Nt ´ xNy
˘

2 xNy

¸

, (1.13)

where ϕmax ą 0 (a unitless parameter) determines the maximum bond lifetime as Fsϕmax, and α ą

0 (also a unitless parameter) specifies the relative rates of the two pathways (according to the two-
pathway interpretation of Eq. (1.5)). By plotting xNy versus F for both branches of Eq. (1.13), they
obtained an elliptic-shaped curve with two (stable and unstable) branches that meet at a saddle-node
bifurcation, leading to adhesion disassembly at large forces similar to the Bell model (see grey dotted
line in Fig. 1.3B for various values of kon). However, due to the increasing phase of the catch bond
lifetime, the stable branch Ns increases significantly with applied force until it reaches a maximum
value (highlighted by the grey solid line in Fig. 1.3B). This behaviour is strikingly different from what
was seen for slip bonds where the stable branch Ns monotonically decreased with force (compare
the solid black lines in Fig. 1.3A and B). This feature of the Novikova model thus gives a simple
theoretical explanation for adhesion reinforcement, the observation that adhesions grow in response
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to applied force [18, 30]. Interestingly, this latter model has very few closed bonds in the absence of
force, implying that stable adhesions cannot form in the absence of significant force, which is at odds
with experimental observations [149]. This discrepancy can be resolved by an appropriate change in
parameters that abrogates the adhesion reinforcement phenomenon [127]. By considering the adhesion
as a mixture of integrin heterodimers that contain either β1 or β3 subunits that behave as either catch
or slip bonds, respectively [150,151], the bond-cluster model can be made to be mechanically resilient
at low forces while maintaining its ability to reinforce at high forces [152].

1.7 Adhesion Plaque Formation

As discussed in Section 1.2.1, the adhesion plaque forms due to adsorption of adaptor proteins, re-
sulting in the net growth of the adhesion. The plaque is an intrinsically dynamic structure, which
continually exchanges matter with the cytosol [12, 13, 153, 154]. At the molecular level, the dynamics
of plaque assembly/disassembly appear to be related to the degree of aggregation of adaptor proteins,
with the binding/unbinding of paxillin monomers to/from the plaque being associated with assembly
while the unbinding of larger aggregates is associated with disassembly [12]. Interestingly, the size of
adaptor protein aggregates observed in adhesions has been shown to be a biochemically regulated prop-
erty that the cell can adjust through signaling pathways (e.g., phosphorylation events [154, 155]). This
paints a picture of a plaque made of adaptor proteins which not only bind to integrins, but also to one
another, forming pleiomorphic ensembles with dynamic composition, size, and rapid turnover [156].
Regardless of what is known about adaptor protein dynamics at the molecular level, it is typical to
characterize adhesion dynamics by a net assembly or disassembly rate, depending on which phase of
the adhesion life cycle is under consideration [19, 67, 157–159]. This provides a simplistic conceptual
model with which we may understand plaque dynamics; a model that assumes that when the on-rate
of adaptor proteins is larger than the off-rate adhesions will assemble, but when the reverse is true they
disassemble. The experimental recordings of the different phases of the adhesion life cycle suggest
that the net on- and off-rates of adaptor proteins varies in both space and time, and that adhesions do
not seem to simply switch between assembly and disassembly, but also exhibit a plateau phase where
adhesion size is roughly constant for some period of time [19, 67].

From Eq. (1.21), we can see that the net adsorption process will reach equilibrium when µagg,
the chemical potential of adaptor proteins in their aggregated state inside the adhesion, is equal to
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Figure 1.3: Bifurcation analysis of the deterministic bond-cluster models reveals saddle-node bifurca-
tions, explaining disassembly dynamics observed in stochastic realizations of these models. Bifurcation
diagrams of the mean number of closed integrin-ligand bonds xNy with respect to the mechanical load
applied to a cluster of bonds that share the load equally. Branches of stable (black solid lines labeled
Ns) and unstable (black dashed lines labeled Nu) steady states meet at saddle-node bifurcation points.
This feature is present in (A) the Bell model of adhesion using slip bonds, and (B) the Novikova model
of adhesion using catch bonds. Gray dotted lines in A and B represent the set of all saddle-node bi-
furcation points obtained as the value of kon is varied, while the grey solid line in B represents the set
of all maximum points on Ns as the value of kon is varied. In stochastic realizations of the models,
if the system crosses the threshold determined by Nu all bonds will catastrophically unbind and the
adhesion will disassemble. Parameters used to compute the black curves are Nt “ 100, k0

off “ 1 s´1,
F0 “ ϕmaxFs “ 30 pN, and kon “ 1, 2, 4 s´1 from bottom to top. Representative stochastic realiza-
tions of (C) the Bell model with Nt “ 290, kon “ k0

off “ 1 s´1, and F « 2422 pN, as well as (D)
the Novikova model with Nt “ 100, kon “ k0

off “ 1 s´1 and F « 2306 pN, depicted as gray lines
exhibiting catastrophic unbinding when N « Nu (Nt was chosen in C such that the values of Ns are
comparable in C and D). The black solid and dashed lines in C and D are the values of the Ns and Nu,
respectively, highlighted in panels A and B.
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1.7 Adhesion Plaque Formation

µbulk, their chemical potential in the cytosolic bulk. However, if one assumes that the adhesion plaque
is a condensed phase of adaptor proteins with a fixed density and that the cytosol acts as a large
bath of adaptor proteins (µbulk “ constant), it is unclear how the system may reach equilibrium. By
considering the geometric constraints of the adsorption process, Gov proposed a set of mathematical
models which can explain the existence of the plateau phase observed during adhesion assembly as the
system reaching equilibrium [160]. In contrast to the more common scenarios involving adsorption,
where the binding sites for molecules are a preexisting feature of the liquid-solid interface, the binding
sites for adaptor proteins are part of the adhesion itself. It is therefore necessary to consider the size
and shape of the adhesion when quantifying its rate of growth. In order to do so, one must specify the
region(s) where adsorption and desorption occur. Gov considered two possible regions; (i) the bulk of
the adhesion, or (ii) the periphery of the adhesion [160].

By assuming that adsorption and desoprtion may not be symmetric, Gov derived four possible
modes of growth for plaque dynamics: “Bulk-on/Bulk-off”, “Bulk-on/End-off”, “End-on/End-off”,
and “End-on/Bulk-off”. For example, with a circular adhesion geometry, the “Bulk-on/Bulk-off” and
“End-on/Bulk-off” models were given by BA

Bt
“ pkon ´ koffqA, and BA

Bt
“ kon

a

A{π ´ koffA, re-
spectively. The “Bulk-on/Bulk-off” model has no non-zero steady state, and the sign of kon ´ koff

determines whether the adhesion grows or shrinks exponentially in time. However, if a given adhe-
sion grows arbitrarily large, the assumption of fixed µbulk will no longer be valid, and a steady state
will be reached [130]. The “End-on/Bulk-off” model, on the other hand, has a steady state given by
Ā “ πpkon{koffq

2. This means that by either imposing the conservation of matter on a symmetric net
adsorption process (“Bulk-on/Bulk-off”) or by simply having an asymmetric net adsorption process
(“End-on/Bulk-off”), the plaque reaches a steady state size. Although these models were applied to
circular domains to describe adhesions, the results obtained for rectangular geometries were qualita-
tively the same [160]. Indeed, Gov showed that the rectangular geometry for FA produces the most
compatible results with FA-size data provided that the “End-on/Bulk-off” (“End-on/End-off”) model
is considered when the FAs are small (large) [160]. The size-dependent switch in dynamics was in-
terpreted as being reflective of the association of stable stress fibres to larger FAs which prevents loss
of adaptor proteins through the bulk of the adhesions (i.e., the “Bulk-off” switches to ”End-off” upon
stress fibre association) [160].

While Gov’s approach can explain the existence of the plateau phase during assembly, it does
not explain the origin of disassembly. Within Gov’s framework, the only way for disassembly to occur,
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1.8 Mechanical Response of the Adhesion Plaque

after an adhesion reaches its plateau phase, is through an imposed change in adaptor protein adsorption
kinetics (via the parameters kon and koff). Nascent adhesions disassemble quickly once they are no
longer underneath the dense actin meshwork of the lamellipodium [19, 53]. Therefore, it is possible
that their disassembly directly reflects either an increased adaptor protein off-rate due to a decreased
association with actin filaments [161], or a decrease in the availability of certain adaptor proteins that
are delivered to NAs via diffusion along actin filaments (e.g., VASP [162]). Alternatively, in fibroblasts,
an increased density of microtubule tips near the nucleus has been found to produce a gradual decrease
in the size of mature FAs as they move rearward relative to the motion of the cell. This process is likely
mediated by the endocytosis of integrins [58, 62], where it is unclear to what extent adaptor proteins
are also internalized. Interestingly, a modification of Gov’s formalism accounting for the interaction
between integrins and adaptor proteins could explain the decrease in FA-area through an integrin-
dependent increase in koff [130]. For mature FAs, however, it has also been shown that disassembly
can be initiated by a decrease in applied mechanical force [158]. In the following section, we will
explore a model that incorporates the mechanics of the adhesion plaque into kinetics of adsorption
while accounting for mechanosensitive integrin activation, and see how forces can be used to regulate
adhesion assembly and disassembly.

1.8 Mechanical Response of the Adhesion Plaque

As the mechanical linkage between integrins and the actin-cytoskeleton, the adhesion plaque is sub-
ject to a number of mechanical forces which have been hypothesized to lead to biochemically-relevant
deformation of adaptor proteins. In particular, it has been hypothesized that these deformations may
underlie the phenomenon of adhesion sliding. The mathematical theory describing the mechanosen-
sitivity of the adhesion plaque was pioneered by Nicolas, Safran, and collaborators in a number of
studies [36–39,163,164]. Fundamentally, these studies focused on the mechanical response (i.e., defor-
mation) of the adhesion plaque by treating it as an elastic thin film grafted onto the cytosol-membrane
interface and subjecting it to shear forces [163]. The grafting boundary condition results in a force-
balance equation, defined in one dimension by the following equation

k0a
2d

2u

dx2
´ kbu ` F pxq “ 0,
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1.8 Mechanical Response of the Adhesion Plaque

where u is the displacement of material due to the applied force, k0 is the stiffness of the springs as-
sumed to connect adjacent units in the plaque, a is a length-scale which characterizes the units, kbu is
a restoring force caused by the connection between the fixed substrate and the adhesion (such that kb
is proportional to the stiffness of the composite integrin-adaptor-actin linkage), and F pxq is an applied
force. By considering a gate-like force applied just inside the adhesion’s boundary, it was predicted
that adhesion plaque material is compressed at the proximal tip of the adhesion while being expanded
at its distal tip [163]. This prediction was then used to formulate a physically plausible mechanism
for the anisotropic growth of adhesions in response to unidirectional force, whereby an unspecified
“mechanosensitive unit” that constitutes the adhesion plaque responds to deformation through changes
in its adsorption/desorption kinetics [36]. These kinetic changes are primarily understood through ener-
getic considerations. For instance, in order for a mechanosensitive unit to be incorporated into a plaque
under fixed stress it must bear some non-zero force, which will result in its deformation. By using
Hooke’s law, one can estimate the energetic cost of deformation using the equation ∆µel « f 2a2{2k,
where f is the force per mechanosensitive unit, and k is a spring constant. While the cell is likely to
have enough energy to deform these mechanosensitive units, in order to do so, they must be inside the
plaque (i.e, adsorbed). The adsorption process (and subsequent deformation) will thus occur sponta-
neously only if the elastic deformation energy is offset by a larger decrease in free energy due to the
adsorption process. This means that, adsorption only occurs if

∆µagg pfq “ ∆µel ´ ∆µchem «
f 2a2

2k
´ ∆µchem pfq ă 0, (1.14)

where ∆µchem is the intrinsic free energy change due to the adsorption of a single mechanosensitive
unit. Nicolas and Safran assumed this change in free energy to be linearly proportional to the change
in plaque density [36], and based on this deduced that at the proximal (compressed) tip, it is given by

∆µchem pfq « e
f

?
kk0

,

where e is the free energy of adsorption of a single unit (e ą 0 for spontaneously forming adhesions).
Implicit in this formulation is the assumption that the adhesion in question has reached its thermody-
namic equilibrium prior to being loaded with force, since ∆µagg “ 0 in the absence of the applied
mechanical force. With these expressions, it is possible to investigate adhesion plaque dynamics once
the applied force f is turned on. Since for f « 0, we have ∆µagg ă 0 and that when f Ñ 8 we have
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1.8 Mechanical Response of the Adhesion Plaque

∆µads Ñ 8, it follows that there exists a critical f˚ satisfying

f˚
“

2e

a2
a

k0{k

where ∆µagg pf “ f˚q “ 0 beyond which growth of the proximal tip becomes an unfavourable process.
In order to refine the conditions for adhesion growth beyond the exothermic constraint defined by
Eq. (1.14) Nicolas and Safran used Eq. (1.25) to determine ν` and ν´, the rates of adsorption and
desorption at the proximal and distal tips, respectively [36]. Subsequent analysis of the net adhesion
growth rate (i.e., ν` ´ ν´) revealed that, despite growth of the distal tip being energetically favourable
for f « 0, the adhesion as a whole does not grow unless 0 ď fmin ă f ă fmax ă f˚, while desorption
at the distal tip dominates the growth process outside of this range. When, f ă fmin, an adhesion
will undergo resorption where it continually shrinks in size. For f “ fmin, fmax, the desorption rate at
the distal tip equals the adsorption rate at the proximal tip, representing a treadmilling regime for the
plaque model where the adhesion is translocated towards the cell center while maintaining a constant
size and remaining fixed to the substrate.

These results were expanded upon by Besser and Safran in a subsequent study, by considering the
more biophysically-relevant scenario in which the plaque may be divided into two functionally distinct
layers: the signaling layer and the force transduction layer [38]. The model in this study accounted
for both the force-transmission through adaptor proteins in the transduction layer, as well as the force-
induced activation of the mechanosensitive units in the signaling layer that could be due to (i) the
expansion and compression of the plaque material (as was assumed by Nicolas and Safran [36]), or (ii)
direct mechanical stretching of proteins (as had subsequently been predicted by Bruinsma [165]). In
their model, adsorption kinetics were also incorporated in a congruent manner through the use of the
equation

Bϕ{Bt9
`

µbulk ´ µagg
˘

that describes the dynamics of the fractional adaptor protein concentration 0 ă ϕpx, tq ă 1 in the con-
densed plaque phase [166]. Through the application of traveling wave solutions (ϕ px, tq “ ϕ px ´ vtq),
net adsorption rates of the distal and proximal tips of the adhesion were successfully computed and the
existence of new modes of growth not previously found in the original model were discovered. One of
these modes is the sliding resorption mode for f ă f 0

min ă fmin where adhesions shrink while being
translocated in the direction of force. This approach, however, did not account for the energetic cost
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1.8 Mechanical Response of the Adhesion Plaque

of deforming the plaque (∆µel), leading to the prediction that adhesions will always grow at arbitrarily
high forces.

This last point was resolved in a a follow up study [39] that considered not only the intrinsic energy
of plaque deformation ∆µel, but also the total energy of substrate deformation Hsubstrate

el . By using Eq.
(1.30), it was shown that this latter consideration reduces the chemical potential µagg by a term that is
proportional to the length of the adhesion and inversely proportional to the stiffness of the substrate
(i.e., it vanishes for an infinitely rigid substrate). This allowed adhesions to have an equilibrium size, a
feature that was lacking in previous iterations of the model. It also led to the very interesting prediction
that both the equilibrium size and the adhesion’s equilibration kinetics (i.e., the rate at which it reaches
equilibrium) scale linearly with elastic modulus of the substrate (i.e., its stiffness). In other words, the
model predicted that adhesion size grows linearly with the stiffness of the substrate, an outcome that
was later been validated experimentally [167]. It is important, however, to note that this can only be
true within a finite stiffness range as the finite size of the cell should prevent adhesions from growing
indefinitely [168, 169].

The modes of growth reported in the studies highlighted here (summarized in Table 1.1) were
echoed in others [170, 171], albeit with some differences in model formulation (see [147] and [171]
for an in-depth discussion). Of particular interest, are the sliding resorption and sliding growth modes.
The sliding resorption modes are likely to be relevant to the adhesion sliding phenomenon discussed
in Section 1.2.2, while the sliding growth mode is likely to be relevant to adhesion maturation. The
model presented in [39] predicted that the cell may switch between the two modes through an increase
in the traction stress applied to adhesion. Traction forces are consistently higher at the retracting rear
of migrating cells [137,138,172,173], where sliding FAs are primarily found [78,174,175], compared
to their mid-bodies, where FAs are typically stationary relative to the ECM. Moreover, this model pre-
dicted that, the sliding growth mode is likely to have a significantly smaller sliding velocity compared
to the high-force sliding resorption mode. This mode of growth may explain the slow treadmilling
behaviour that can be observed near the protrusive regions of motile cells where FAs typically ma-
ture [19, 176, 177].

Finally, while we have focused on force as the variable that can lead to adhesion sliding, it is im-
portant to note that the force thresholds that determine the growth mode of the cell and its sliding
velocity can all be modified biochemically. For instance, by increasing the free energy change of adap-
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Plaque Behaviour Distal Tip Proximal Tip Sliding Velocity Mechanical Condition
Resorption ÝÑ Ð Negligible f ă f 0

min
Sliding Resorption ÝÑ Ñ Negligible f 0

min ă f ă fmin

Treadmilling Ñ Ñ Negligible f “ fmin

Sliding Growth � Ñ Negligible-Moderate fmin ă f ă fmax

Treadmilling Ñ Ñ Near Maximal f “ fmax

Sliding Resorption 2 ÝÑ Ñ Maximal-Moderate fmax ă f ă f 0
max

Resorption ÝÑ Ð Moderate f 0
max ă f

Table 1.1: Summary of the different sliding modes predicted in Fig. 4A of [152].

tor protein adsorption, ϵB, we can expect the force threshold for the sliding resorption growth modes to
increase; similar effects can be expected when increasing λxz, the rigidity of the integrin-adaptor-actin
linkage (equivalent to k discussed previously in relation to [36]). The effect of the force-insensitive
inactivation of LFA-1 (i.e., loss of affinity regulation by force) at the rear of neutrophils as seen in [76]
may be understood as the limit when τ Ñ 0, where τ is the force-sensitivity of the integrin activa-
tion energy barrier. By decreasing τ , the sliding velocity can be made arbitrarily small, suggesting that
modulation of integrin force-sensitivity (either through biochemical modifications or through switch-
ing integrin subunits) may induce adhesion release by not only weakening the integrin-ECM bond but
also by halting the movement of sliding adhesions. Furthermore, decreasing ϵB causes a decrease in
both the sliding and growth velocities of the adhesion. Such a change in ϵB could be due to cleavage
of bonds by proteases (e.g., calpain), suggesting that protease activity may have similar effect to the
loss of affinity regulation on adhesion release. This body of work thus provided important insights into
how the relative energetic contributions of biochemical reactions and mechanical deformation mani-
fest themselves in the kinetics of adsorption/desorption and produce physiologically-relevant adhesion
dynamics.

1.9 Mechanical Response of the Membrane

Building upon the success of the adhesion plaque models developed by Nicolas and collaborators,
the long-range mechanical response of a membrane containing integrins was investigated by Xu and
collaborators [178]. Their work did not explicitly consider the presence of FAs on the membrane, but
focused on the activation, subsequent ligand-binding, and internalization of integrins on the membrane
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and how these processes are modulated by ECM stiffness. Similar to previous work [39, 99, 165], they
used a force-dependent energy difference between inactive and active conformations of integrin, given
by

∆µact “ µ0
´ F∆x,

where µ0 is the intrinsic energy difference between the active and inactive conformations in the absence
of force, F is the magnitude of the sheer force applied to the integrin, and ∆x is the length difference
that characterizes the conformational change. The force per integrin was determined by modeling the
membrane as ribbon lying on an elastic ECM; under such assumptions the force varies is space [179],
and is given by

F pxq 9ft exp
`

´x{λT

˘

,

where fT is the membrane tension at the leading edge and λT is a space-constant determined by the rel-
ative material stiffness of the ribbon (i.e., the composite system of membrane, integrins, and adaptors)
and ECM as well as their heights [178]. The probability of integrin activation was computed using a
Boltzmann factor, given by

pact “

´

1 ` exp
“

∆µact{kBT
‰

¯´1

or

pact pxq “

ˆ

1 ` exp
”

`

µ0
´ F pxq∆x

˘

{kBT
ı

˙´1

.

This effectively predicts activation probability is close to unity near the leading edge and remains
roughly constant until it drops off to zero at some finite distance inside the cell. Due to the dependence
of λT on ECM stiffness, Xu et al. found that the finite length at which activation drops off decreases
with increasing ECM stiffness, indicating that more integrins can be activated on a softer ECM. As-
suming that integrins must be activated to bind, they modeled the binding probability by considering
two opposing effects (i) the release of energy (U ă 0) due to receptor-ligand binding and (ii) the
stretching of integrins by the force fc that caveolin exerts on the membrane [180]. Accounting for both
of these effects, the probability of an integrin being bound was found to be

pbound “ pactp1 ` exp
“

pU ` f 2
c {2keffq{kBT

‰

q
´1,

where keff is the effective stiffness of the composite integrin-ECM system and is given by k´1
eff “

k´1
I `k´1

M with kI(kM ) being the stiffness of integrin receptors (ECM). The term f 2
c {2keff quantifies the
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deformation energy induced by caveolin, which becomes arbitrarily large as kM , kI Ñ 0. On ECMs of
all stiffness, pbound9pact; however, the constant of proportionality decreases on softer ECMs, suggesting
that soft ECMs counter-intuitively favor both activation and unbinding. The force of caveolin on the
membrane will only induce internalization if it is energetically favourable to do so. Xu et al. used a
theory of invagination, developed by Sens and Turner in [180], to derive an exothermic condition for
the internalization of the membrane (and any integrin present). By accounting for the energy of the
integrins on the pre-internalized membrane, they were able to express this energetic condition as a
function of pbound , subsequently concluding that internalization occurs if pbound ă pc, with pc « 0.25

in the physiological parameter regime. These and previous results thus show that pbound is consistently
lower on a softer ECM, implying that a softer ECM will always exhibit more internalization. This dual
effect of ECM stiffness on integrins may explain why bone marrow mesenchymal stem cells exhibit
both increased integrin activation and internalization on soft matrices [181].

1.10 Comparison of Model Outcomes

Thus far, we have touched on two broad classes of adhesion models, bond-cluster models (see Section
1.6 [127,145,146,152,182]) and adhesion-plaque models (see Section 1.8 [36,37,39,163]). Although
these two classes of models differ in their construction, they both predict that adhesions can grow in
size in response to force, and that beyond a critical force value, the adhesion will begin to disassemble.
They also produce predictions that are inconsistent with each other. More specifically:

1. Bond-cluster models always predict an adhesion with finite size at zero force, while the mechanosen-
sitive plaque models presented above suggest that there may exist a threshold in force required
to produce adhesions. This is a consequence of the fact that bond-cluster models do not con-
sider the dynamics of adaptor proteins, whereas the mechanosensitive plaque models suggest
that adsorption becomes kinetically favourable only once force crosses a threshold.

2. In the adhesion-plaque models, disassembly is caused by a switch in net adsorption kinetics to
favour desorption, but they consider that their adaptor protein-integrin complexes may become
arbitrarily stretched (which is unlikely to be valid for large forces). On the other hand, in the
bond-cluster models, disassembly is due to mechanical breakage of integrin bonds.

In order to remedy this, bond-cluster models should account for the kinetics of adsorption while the
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plaque models should account for the force-dependent unbinding of integrin-ligand bonds. The former
can be accomplished by explicitly tracking the growth of the plaque, and making the binding of inte-
grins somehow dependent on the plaque size, while the latter may be implemented by assuming that, as
integrin bonds become broken, the desorption of nearby adpator proteins will become overwhelmingly
favoured.

1.11 A Hybrid Model

The bond-cluster models and adhesion-plaque models assume the presence of either adaptor proteins
or integrins, respectively, and investigate the dynamics of the other class of proteins. As noted in Sec-
tion 1.2, these two classes of proteins cooperate to form the adhesion and its associated cytoskeletal
structures (F-actin and stress fibres). Based on this, in order to analyze adhesion dynamics, it seems
imperative to model the cooperation between these two major types of proteins that make up the adhe-
sion. Previous models that have taken into account both protein classes to study adhesions have either
implicitly or explicitly assumed that adpator proteins and integrins form complexes with a 1:1 ratio,
implying that the fluxes of the two proteins into or out of the adhesion are identical [171, 183]. This
assumption is difficult to reconcile with the observation that integrin density within different FAs can
vary by 3-fold in the same cell, whereas adaptor protein densities vary less and they have a character-
istic pair-wise distance that is conserved across adhesion classes [80, 184, 185]. One exception to this
modeling choice was the mechanosensitive model developed by Besser and Safran [38] (and subse-
quently augmented with energetic terms from Nicolas and Safran [39]), in which the force transmitted
to integrins was hypothesized to be proportional to the local density of adaptor proteins (see above).
In contrast to experimental observations, however, this model assumed that integrins are already or-
ganized as a template for the adhesion plaque to grow on [19, 34]. A model of nascent adhesions
developed by MacKay and Khadra [130] resolved this issue, by explicitly specifying the spatial and
binding dynamics of integrins and the adsorption kinetics of adaptor proteins, and generated a model
that allowed for a variable density of integrins inside the adhesion.

The variable integrin-density model [130] has made a number of important contributions to the
theoretical understanding of NAs. Firstly, as suggested by Fig. 1.3 A and B, there is always an unstable
steady state Nu between the elevated stable steady state Ns and the single molecule initial condition
N “ 1 (for F ą 0). This makes it unclear as to how adhesions can assemble in the presence of force
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given that their trajectory through state space to Ns will always be impeded by Nu. Novikova and Storm
took note of this issue and posited that in order to observe assembly in their model, it is necessary to
consider the time-dependent force that results from assembly/contraction of stress fibres [127]. Indeed,
the inclusion of a time-dependent forces did allow Walcott et al. to produce assembly starting from a
single molecular complex when stochastically simulating the model [183]. Markedly, this latter model
was too complex to allow for mean field analysis of the full system. To resolve this issue, Walcott et
al. performed this analysis on a one-variable reduced system and found that it possesses a configu-
ration of steady states equivalent to the bond-cluster models discussed above (i.e., 0 ă Nu ă Ns).
It remained, however, unclear how their model overcomes the aforementioned issue with the unsta-
ble steady state (or the saddle fixed point in the high dimensional state space Walcott et al. used in
producing the stochastic simulations). MacKay and Khadra [130], on the other hand, performed their
mean field analysis on their full three-variable model, ensuring that the saddle fixed point (Nu) re-
mains relevant to the dynamics of the model while allowing the system more degrees of freedom to
bypass it. Consistent with previous studies, they found that under fixed load, adhesions do not assem-
ble for F ą 0 when Nu ą 0, as they are kinetically trapped by the stable manifold of the saddle.
Unlike previous studies on bond–cluster models in which it was only possible to specify adhesion
load [127, 146, 152, 182], the explicit modeling of the adhesion plaque in MacKay and Khadra [130]
allowed them to define not only the load on the adhesion but also the stress. Indeed, with a fixed value
of stress, they demonstrated that one can obtain adhesion-assembly from an initial condition consist-
ing of a single integrin-adaptor protein complex, suggesting that stress is the permissive mechanical
parameter which allows for assembly when F,Nu ą 0. Thus, while the formation and contraction of
a stress fibre is a physiologically-relevant origin for the force exerted on adhesions [164, 183], any dy-
namic model which results in a force that grows linearly with adhesion area should be able to produce
assembly from a single molecule initial condition.

It should be mentioned here that MacKay and Khadra [130] have identified a parameter regime
(labeled region 2) in which Nu is negative, making the stable manifold of the saddle no longer an
obstacle for adhesion assembly (see Fig. 1.4). Within this region, it was possible to reach Ns ą 0

regardless of the mechanical conditions imposed on the adhesion (Fig. 1.4). There are no equivalent
parameter regimes in previously published models of bond-clusters [127,145,146,152,182] that could
produce this type of behaviour. Interestingly, within this region one may find that adhesions will not
form unless force (either load or stress) crosses a threshold (see Fig. (1.4)B). This finding reconciles the
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differences in model outcomes between the bond-cluster and mechanosensitive adhesion-plaque mod-
els. Moreover, due to the explicit modeling of the adhesion plaque by MacKay and Khadra [130], the
disassembled state (xNy “ 0) is a well-defined equilibrium in their mean field analysis (compare Figs.
3 and 4), whereas in previous models of bond-clusters, it was not and the behaviour of the system close
to or beyond the saddle-node bifurcation had to be verified through stochastic simulations. It should
be mentioned here that the model by MacKay and Khadra further assumed a relation between the net
adsorption rate of adpator proteins and the density of integrins under the plaque [130]. This means
that, upon collective integrin bond failure (at high forces), integrins will diffuse away, and the adhesion
plaque will dissolve as a consequence. This is in contrast to the mechanosensitive adhesion-plaque
models where adaptor proteins may be arbitrarily stretched at high forces. Thus, by jointly consider-
ing the dynamics of integrins and adaptor proteins, this newly developed model is a hybrid one that
shares characteristics with both classes of models: the bond-cluster model and the mechanosensitive
adhesion-plaque model.

1.12 Conclusions and Outlook

Focal adhesions are intrinsically dynamic structures which, for a long time, have fascinated biologists
and physicists alike. The explosion of data related to focal adhesions in the past two decades has
greatly assisted in delineating of the structural makeup of adhesions as well as the dynamics and
interactions governing adhesions. At the single molecule level, the biochemical and mechanical steps
involved in integrin activation are reflected in the mechanosensitive properties of the integrin-ligand
bond [101, 103]. These mechanical properties have been used to build theoretical models of adhesions
as cluster of bonds that fail beyond a critical load [111, 127, 145, 182]. Alternatively, the deformation
of the adhesion plaque in response to applied mechanical force can be used to understand the complex
sliding behaviour that adhesions exhibit [17, 18, 36, 39]. While these models have some fundamental
differences in their predictions, recent work has helped to bridge this gap and explain how adhesions
can form in the presence of mechanical forces [130].

While the combination of experimental data and theoretical modeling has been quite fruitful in
explaining the mechanisms underlying some experimental observations, a number of unexplored phe-
nomena remain. Nascent adhesions have not received as much attention as other more mature classes
of adhesions, including FAs, either from an experimental or theoretical point of view. In fact, some
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Figure 1.4: Bifurcation analysis of the deterministic hybrid model by MacKay and Khadra [130] in
"region 2" of parameter space. Bifurcation diagrams of the number of closed integrin-ligand bonds
xNy with respect to mechanical stress applied on NAs when the integrin-ligand binding rate is A)
5.9 s´1, and B) 0.18 s´1. Solid lines represent branches of stable steady states, whereas dashed lines
represent branches of saddle fixed points. The two elevated branches of stable steady states and saddle
fixed points labeled Ns and Nu, respectively, merge at saddle-node bifurcation points at a given critical
stress σc in both A and B. These two branches also intersect the lower branch of trivial steady states
pA, xNy , xMyq “ p0, 0, 0q, where A (xMy) is the area of the adhesion (the mean number of mobile
integrins inside the adhesion), at transcritical bifurcation points (open circles) only once in A at σ “ σ1

and twice in B at σ “ σ0 ą 0 and σ “ σ1 ą σ0. As a result, NAs exhibit finite adhesion size at zero
force in A while NAs do not form in the absence of force in B (i.e., no clustered solution). Notice that
for σ P r0, σ1s in A and for σ P rσ0, σ1s in B, adhesions starting at xNy « 0 can freely reach the stable
steady state Ns (compare to Fig. 1.3 where no such region exists), and that force must cross a threshold
σ0 in B in order for NAs to assemble (as in the model by Nicolas and Safran [36]).
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theorists have suggested that they exist only transiently as their formation is intrinsically thermody-
namically unfavourable [36, 169]. Recent experimental findings have cast doubt on this notion, where
NAs have been found to be stable for hundreds of seconds on supported lipid bilayers [149]. More-
over, membrane tension and buckling instabilities in the actin meshwork of the lamellipodium have
recently emerged as the driving force which triggers NA formation [186, 187]. Although a theoretical
framework to understand this has been outlined [52], it seems that it has not directly led to the formu-
lation of a mathematical framework to describe it. This represents a challenging problem to tackle in a
mathematically tractable manner as one must consider the temporal buildup of force, movement of the
leading edge relative to the adhesions, as well as the assembly of the adhesion.

Although the mechanical properties of the integrin-ligand bond has been incorporated into a num-
ber of models, it is worth noting that it is not the only mechanosensitive bond present in the adhesion.
Indeed, talin has been found to exhibit a weak slip bond while vinculin produces a stronger catch
bond when bound to actin [188, 189]. Thus far, adhesion-plaque models have treated adaptor proteins
rather generically [36, 39, 130, 160, 169, 171, 183, 190], despite extensive characterization of their bio-
chemical and biophysical properties [12, 15, 40, 48, 154, 155, 159, 191, 192]. For instance, it is known
that the binding dynamics of the adaptor protein paxillin is asymmetric along an adhesion and that
these binding dynamics are likely related to phosphorylation events that are associated with highly
dynamic adhesions (i.e., sliding adhesions) [48, 159, 191]. In addition, the bio-mechanically regulated
vertical movement of adaptor proteins within the adhesion, such as the translocation of vinculin from
the signaling layer to the transduction layer in response to changes in paxillin phosphorylation [15],
has generally been neglected. Together, these effects, combined with vinculin’s ability to reinforce the
talin-actin bond, may provide a molecularly explicit mechanism for the plaque’s mechanical response
(a feature missing in the mechanosensitive plaque models developed thus far). With the large num-
ber of possible interactions, it may be challenging to keep such a model mathematically tractable while
capturing the experimental observations. The force of the glycocalyx is likely to also induce conforma-
tional changes (e.g., activation) in integrin receptors [141]. While integrin activation and inactivation
were indeed considered in the original computational model of glycocalyx-driven clustering by Paszek
et al., these processes were modeled as being force-independent. Not surprisingly, activation was not
found to influence clustering. However, it has been shown that not only activation is force-dependent
(see Section 1.8), but also that the repulsive forces coming from the glycocalyx can indeed activate
integrins [141]. Given that integrin binding affinity strongly influences this clustering [142], the rela-
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tive contribution of the mechanosensitive integrin-ligand bond in glycocalyx-driven clustering remains
unclear.

While most integrins exhibit the catch bond behaviour when presented with an appropriate lig-
and [92, 123, 133, 193], there are some differences in the force-lifetime relationship of these bonds.
Moreover, it seems to have been previously thought that integrin heterodimers containing β1 subunits
behaved as catch bonds whereas those with β3 subunits behave as slip bonds [194]. The idea that the
mechanosensitive properties of the integrin bond are determined by the β subunit is logical, as it is
the β subunit which associates with the actin cytoskeleton [82]. However, it was recently shown that
αV β3 integrins behave as a catch bond when presented with fibronectin under the right chemical con-
ditions [132,193], and as a slip bond when presented with for its a physiologically relevant ligand Thy-
1 [195]. This highlights the complex interplay between chemical environment and ligand-specificity
that determine the mechanosensitive properties of the integrin bond. Further theoretical investigation
of the determinants of mechanosensitive properties of these bonds should be undertaken in order to
understand how the integrin-ligand bond varies its catch bond properties and may be switched from a
catch bond to a slip bond. An approach that uses thermodynamic considerations similar to [99] with a
kinetic model similar to [101] may indeed be fruitful in this endeavour. Furthermore, the consequences
of having a membrane populated by multiple integrin heterodimers remains relatively unexplored, with
the exception of [152].

Another very interesting avenue for research is the bi-directional relation between biochemical sig-
naling pathways regulating motility and adhesions. Rho GTPases such as Cdc42, Rac, and Rho are
the drivers of cell migration, and the biochemical pathways that exert their control over the cell are
subject to modulation by adhesion-dependent signaling [196–198]. Numerous models have been de-
veloped to account for the Rac-Rho signaling pathway responsible for establishing the cell polarity
necessary for directed motility [23,24,199,200]. While this polarization mechanism can be influenced
by adhesion-dependent signaling pathways [23, 164], its influence on the mechanical state of the actin
cytoskeleton [164] as well as adhesion-regulatory biochemical pathways [23] suggest that adhesion dy-
namics are also influenced by Rac-Rho signaling. Due to the bi-directional positive feedback between
the two systems, it remains unclear to what extent these effects on adhesion dynamics are mechanical
or biochemical in nature. Mathematical modeling may help to answer these questions as, in principle,
it allows one to decouple the two effects from each other.
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Cell migration is also regulated by a polarized gradient in calcium (Ca2`) concentration and/or
activity [201], exhibiting an increasing gradient from the front of a motile cell to the rear. These
spatiotemporal activities are regulated by Ca2` fluxes across the membrane, such as through stretch-
activated channels (e.g., TRPV4 and TRPM7 channels) and numerous other pumps/receptors (for more
details, see the review by Wei et al. [202]). Moreover, it has been observed that external mechanical
stimulation results in mechanosensitive channel activation primarily in the vicinity of FAs, suggesting
that these tension-sensing proteins are activated by membrane tension that builds up around FAs. Not-
ing that both membrane tension and mechanosensitive channel activity are elevated at the leading edge
of motile cells [52, 202, 203], this suggests that there is a link between adhesions and Ca2` dynamics
in the context of motility. It has been suggested that the calpain family of intracellular Ca2`-dependent
proteases plays a key role in regulating cell migration [71, 204–206], through their ability in modu-
lating adhesion dynamics [207]. A number of adaptor proteins have been identified as targets for this
protease, including talin, focal adhesion kinase (FAK) and paxillin [41]. Thus, the adhesion-dependent
influx of Ca2` through mechanosensitive channels is likely to have direct effect on adhesion dynamics.
It remains unclear, however, how various Ca2`-dependent signaling pathways interact at the cellular
level to control adhesion assembly/disassembly through adaptor protein dynamics while maintaining
the gradient in migrating cells. Although there is a wealth of studies analyzing Ca2` handling in many
cell-lines, this area continues to be largely unexplored mathematically in motile cells, which would
provide insights into the role of Ca2` in regulating cellular polarity and motility. Such studies will be
crucial in elucidating the molecular coordination and propagation of Ca2` signaling, particularly at
the leading edge of the cell, the link between Ca2` signaling, adhesions and membrane tension during
migration and the role Ca2` signaling in regulating collective migration.

1.13 Thermodynamics and Reaction Rates

The set of models of adhesion dynamics covered in this article may seem to employ quite different
mathematical approaches to study their dynamics. However, the vast majority of these models can un-
derstood through a common framework that is based on thermodynamics. This framework uses the
notion of a potential, where a system tends to evolve from a high potential state to a low potential state.
The notion of a potential has been generalized to chemical systems through the intrinsic thermody-
namic quantity: “chemical potential”. In this appendix we will derive an expression for the chemical
potential in dilute solutions, show how it relates to chemical kinetic reaction rates, and extend the
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definition beyond dilute solutions to include the effects of mechanical deformation.

1.13.1 Derivation of Chemical Potentials for Dilute Solutions

The thermodynamic quantity crucial for understanding biochemical dynamics is the free energy of a
system; it represents the work that can be extracted from a system by accounting for energy loss through
entropic heat production. In particular, biochemical systems are typically isothermal and isobaric and
thus they are well described by the Gibbs free energy G|P,T “ U ` PV ´ TS, where U is the internal
energy of the system, P is its pressure, V is its volume, T is its temperature, and S is its entropy [208].
The differential form of the Gibbs free energy is given by

dG “ dU ` d pPV q ´ d pTSq

“ V dP ´ SdT `
ÿ

i

µidNi (1.15)

where µi is the chemical potential of the ith species in the system defined as µi “ BG{BNi

ˇ

ˇ

P,T
, and Ni

is the number of particles of the ith species in the system [208].

From Eq. (1.15), we can compute the change in free energy from a reference state with pressure P0

to another state with pressure P1, keeping the number of particles and temperature remain fixed

∆G|T,N “

P1
ż

P0

V dP.

Using the ideal gas law, PV “ NRT (where N ” Ni is the number of molecules of the ith species and
P is the partial pressure of that species), we can rewrite this as

∆G|T,N “ NRT

P1
ż

P0

dP

P
“ NRT ln

`

P1{P0

˘

. (1.16)

This means that the chemical potential can be computed by taking the partial derivative of Eq. (1.16)
with respect to N while keeping the pressure (P “ P1) and temperature (T ) fixed. Together with the
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ideal gas law, these conditions imply that the concentration is a conserved quantity in the system, i.e.,

BP
BN

“ 0

BT
BN

“ 0

P1V1 “ NkBT

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

ñ
B

BN

ˆ

N

V1

˙

“ 0 ðñ
N

V1

“ C “ constant,

which is equivalent to saying that

∆G|P,T ” ∆G|C,T “ NRT ln
`

C{C0

˘

, (1.17)

where C0 is the concentration at the reference state. Using Eq. (1.17), we can then compute an expres-
sion for chemical potential from its definition, as follows

µi “
BG

BNi

ˇ

ˇ

ˇ

ˇ

P,T

“
B ∆G|C,T

BNi

“ RT ln pCq ´RT ln pC0q
loooooomoooooon

µ0

ñ µ pCq “ µ0
` RT ln pCq , (1.18)

where µ0 is referred to as the standard chemical potential. Eq. (1.18) provides a relationship between
chemical potential and concentration by approximating the a dilute solution as an ideal gas (i.e., using
the equation of state PV “ NRT ). For systems with a different equation of state one can obtain other
formulations for the chemical potential. For example, the Van der Waals equation may be used to derive
an alternative equation for µ pCq for non-ideal gases [209].

In our derivations, we have made reference to some arbitrary reference states. In the next subsec-
tion, we will show that in dilute solutions undergoing chemical reactions, these reference states are not
entirely arbitrary but reflect the intrinsic kinetics of the reactions taking place.
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1.13.2 Standard Chemical Potentials and the Law of Mass Action

Let us first consider a dilute solution undergoing a set of elementary chemical reactions (to be distin-
guished from composite reactions [210]) whose j th reaction is expressed as

ÿ

i

αi,jXi

k`
j

é

k´
j

ÿ

i

βi,jXi, (1.19)

where Xi is the ith chemical species in the system, αi,j (βi,j) is the stochiometric coefficient of Xi as
a reactant (product) in the j th reaction, and k`

j (k´
j ) is the forward (reverse) rate constant of the j th

reaction. According to the law of mass action [148, 211], at equilibrium this reaction is characterized
by a relationship, given by

ś

i C̄
αi,j

i
ś

i C̄
βi,j

i

“
k´
j

k`
j

,

or equivalently
ź

i

C̄i
νi,i

“ Kj, (1.20)

where
␣

C̄i

(

are the equilibrium concentrations, νi,j “ αi,j ´ βi,j is the net stochiometric coefficient of
the ith species in the j th reaction, and Kj “ k´

j {k`
j is the equilibrium constant for the j th reaction. By

considering a closed isothermal and isobaric system at thermodynamic equilibrium (i.e. dG “ dP “

dT “ 0), we may obtain from Eq. (1.15)

ÿ

i

µidNi “ 0.

For a closed system, fluctuations in Ni can only be due to the elementary reactions and thus

dNi “
ÿ

j

νi,jdχj

where χj is the extent of reaction for the j th reaction [210]. This implies that

ÿ

i

µi

ÿ

j

νi,jdχj “
ÿ

j

dχj

ÿ

i

µiνi,j “ 0
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which can only hold for arbitrary dχj if

ÿ

i

µiνi,j “ 0, @j. (1.21)

We note that this is the equilibrium condition relating the chemical potentials of chemical species
undergoing elementary reaction. Using Eq. (1.18), we can rewrite this last expression as

´
ÿ

i

µ0
i νi,j “

ÿ

i

RT ln
`

C̄i

˘

νi,j,

“ RT ln

˜

ź

i

C̄
νi,j
i

¸

,

where we can identify the product inside the logarithm as the left hand side of Eq. (1.20). Based on
this we may finally write the relationship between standard chemical potentials and the equilibrium
constant as

ÿ

i

µ0
i νi,j “ ´RT ln

`

Kj

˘

, @j (1.22)

which provides one constraint on the set
␣

µ0
i

(

for each reaction considered.

1.13.2.1 Application to an Isomerization Reaction

Consider the isomerization reaction

A

k`

é

k´

B,

where a molecules of A react to create one molecule of B. According to the definition of the standard
chemical potential, µ0

i “ ´kBT ln
`

C0
i

˘

where C0
i is the concentration of the ith species at an arbitrary

reference state (see Eq. (1.18)). From Eq. (1.22), we have a condition which relates this reference state
to the equilibrium constant of a reaction. In particular, for the isomerization reaction, we have

´RT ln
`

C0
A

˘

` RT ln
`

C0
B

˘

“ ´RT ln pKq ,
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where K “ k´{k`. By arbitrarily choosing C0
B “ 1, we find that C0

A “ K and that the chemical
potentials for A and B are given by

µA pCAq “ RT ln
`

CA{K
˘

, (1.23)

and
µB pCBq “ RT ln pCBq , (1.24)

respectively.

1.13.3 Kinetic Rates

The calculation of reaction rates is a fundamental problem encountered in many fields of science;
for molecular systems, these reactions are typically understood as the thermally-assisted escape from
metastable states (e.g., the molecular state A in the isomerization reaction) [212]. The basic formalism
can be derived from the empirical Van’t Hoff-Arrhenius law [213, 214], given by

r “ k exp
´

´∆E;
{RT

¯

,

where r is the rate of escape, k is a pre-exponential factor, and ∆E; “ E; ´ E1 is the activation
energy which characterizes the energy difference between the metastable state (denoted by 1) and the
transition state (denoted by ;). The computation of the pre-exponential factor k from first principles has
been the subject of much research, with different formalisms producing nuanced predictions that are
challenging to verify in biochemical reactions [212]. Nonetheless, it has been found that a consistent
thermodynamic formulation may be obtained by taking

r “ k0 exp

ˆ

´

´

µ0
; ´ µ1

¯

{RT

˙

, (1.25)

where µ0
; is the concentration-independent intrinsic molar free energy of the transition state, and k0 ą 0

is a kinetic prefactor [215, 216]. For single molecules, we simply have µ1 “ µ0
1, whereas for dilute so-

lutions undergoing reactions, the chemical potential of the reactant and product state of the j th reaction
are given by µ1,j “

ř

i αi,jµi and µ2,j “
ř

i βi,jµi, respectively, where µi is given by Eq. (1.18) with
µ0
i determined according to Eq. (1.22). According to this view of chemical kinetics, the forward and
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backward rates are given by

r`
j “ k0

j,` exp

„

´

´

µ0
;,j ´ µ1,j

¯

{RT

ȷ

,

and
r´
j “ k0

j,´ exp

„

´

´

µ0
;,j ´ µ2,j

¯

{RT

ȷ

,

respectively, where k0
j,´ and k0

j,` are positive parameters and µ0
;,j is the intrinsic free energy of the

transition state for the j th reaction. By noting that Eq. (1.21) (the condition for thermal equilibrium)
can be rewritten as

µ1,j “ µ2,j

and that, at thermodynamic equilibrium, we must have rj “ r`
j ´r´

j “ 0, we may conclude that k0
j,´ “

k0
j,`. In the case of the isomerization reaction described above, the choice k0

` “ k0
´ “ k´ exp

´

µ;

0{RT
¯

yields the net rate
r “ k`CA ´ k´CB, (1.26)

which is consistent with the law of mass action [211]. This suggests that free energy of the transi-
tion state has already been implicitly included in the chemical potential of the reactive dilute solution
through Eq. (1.22). Nonetheless, it is important to consider Eq. (1.25) for a system whose the equi-
librium constant for a given reaction (Kj) may be tuned by a free parameter θ (e.g. applied force),
as the equations µ0

1,j pθq “
ř

i αi,jµ
0
i pθq, µ0

2,j pθq “
ř

i βi,jµ
0
i pθq and µ0

;,j pθq will determine how
each reaction rate varies with θ. Thus, Eq. (1.25) provides us with a single formalism describes the
non-equilibrium rates of reaction at both micro- and macroscopic scales.

1.13.4 Applications to Mechanochemistry

Within the context of mechanochemistry, various scenarios can arise requiring the knowledge of how
µ varies with pressure (or applied force). This can be done by fixing the temperature and pressure and
computing the change in Gibbs free energy during an increase in the number of particles in the system
from N0 to N , given by

∆G|T,P “

N
ż

N0

µ
`

N 1
˘

dN 1.
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As we saw in 1.13.1, the condition of fixed pressure and temperature is equivalent to fixing the con-
centration, with µ pNq “ µ, implying that

∆G|T,P “ µ pN ´ N0q .

The latter can be used to compute the total differential of the Gibbs free energy

dG|T,P “ dµN ` µdN. (1.27)

Equating Eqs. (1.15) and (1.27), we arrive at the Gibbs-Duhem equation

Ndµ “ V dP ´ SdT. (1.28)

Systems are typically assumed to be under isothermal conditions (dT “ 0), allowing us to compute
the force-dependent chemical potential, given by

µ pP q “

ż

V pP q

N pP q
dP. (1.29)

This approach was used by Hill to derive a force-dependent chemical potential for the subunits that
make up microtubules, modeling microtubules as one dimensional elastic polymers [217]. In this one
dimensional polymer setting, we may use the negative applied force ´F (rather than P ) and the length
per monomer l (rather than V {N ) [217]. Using Hooke’s law, the force on a subunit of length l is given
by

F “ k pl ´ l0q ,

where k is a spring constant and l0 is the rest length of of the subunit. Substituting l “ l0 ` F {k into
Eq. (1.29), we obtain

µ pF q “ µ0 ´

ż

`

l0 ` F {k
˘

dF

“ µ0 ´ l0F ´ F 2
{2k.

⋍ µ0 ´ l0F
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This example not only illustrates how force affects the chemical potential (and thus influences reaction
rates), but also provides an expression that can be used to model the effect of applied force on adhesion
plaque molecules in linear focal adhesions [170, 218].

On the other hand, if mass is not homogeneous but is characterized by a particle density N pxq, the
Gibbs free energy can be written as a functional, given by

G “

ż

V

g
`

x,N pxq ,∇N pxq
˘

dV,

and the chemical potential can be computed pointwise by taking the functional derivative

µ pxq “
δG

δN
“

Bg

BN
´ ∇ ¨

Bg

B∇N
. (1.30)

This approach thus allows us to consider situations beyond those that can be dealt with using the Gibbs-
Duhem equation. Indeed, Safran and collaborators have used it to quantify the non-trivial relationship
between a material science description of plaque deformation and the kinetics of adsorption which
produce the plaque [37–39].
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Dynamics of mechanosensitive nascent adhesion formation

Abstract

Cellular migration is a tightly regulated process that involves actin cytoskeleton, adaptor proteins, and
integrin receptors. Forces are transmitted extracellularly through protein complexes of these molecules
called adhesions. Adhesions anchor the cell to its substrate, allowing it to migrate. In Chinese hamster
ovary cells, three classes of adhesion can be identified: nascent adhesions (NAs), focal complexes and
focal adhesions, ranked here ascendingly based on size and stability. To understand the dynamics and
mechanosensitive properties of NAs, a biophysical model of these NAs as co-localized clusters of inte-
grins and adaptor proteins is developed. The model is then analyzed to characterize the dependence of
NA area on biophysical parameters that regulate the number of integrins and adaptor proteins within
NAs through a mechanosensitive co-aggregation mechanism. Our results reveal that NA formation is
triggered beyond a threshold of adaptor protein, integrin, or extracellular ligand densities, where these
three factors have been listed in descending order of their relative influence on NA-area. Further anal-
ysis of the model also reveals that an increase in co-aggregation, or reductions in integrin mobility
inside the adhesion, potentiate NA formation. By extending the model to consider the mechanosensi-
tivity of the integrin bond, we identify mechanical stress, rather than mechanical load, as a permissive
mechanical parameter which allows for noise-dependent and independent NA-assembly, despite both
parameters producing a bistable-switch possessing a hysteresis. Stochastic simulations of the model
confirm these results computationally. This study thus provides insight into the mechanical conditions
defining NA dynamics.

Statement of Significance

This manuscript makes valuable contributions in deciphering the dynamics of nascent adhesions (NAs).
It presents a novel mathematical model that determines how mechanical stress applied to these ad-
hesions governs their assembly and disassembly. The model is biophysically-relevant; it provides a
framework that links NA-area to the number of mobile/immobile integrins along with adaptor pro-
teins, and considers a multitude of experimental observations defining their mechanosensitive prop-
erties. The model is then examined to uncover how four components of this systems interact: NA-
area, integrin/adaptor protein co-aggregation, number of integrins and adaptor proteins within NA, and
force/stress exerted on NA. It is the first study that uniquely identifies adhesion stress, rather than its
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2.1 Introduction

total load, as the mechanical parameter conserved during NA-formation.

2.1 Introduction

Cellular migration plays a fundamental role in many physiological and pathophysiological systems, in-
cluding embryonic morphogenesis and continual tissue regeneration [1], immune responses [2], tissue
repair [3], and the metastatic properties of cancers [4]. Typically, cellular migration occurs in response
to an extracellular signal in the form of a chemical or mechanical gradient [5, 6], leading to cellular
polarization through nonlinear processes governing biochemical pathways that internally amplify the
extracellular gradients to establish a front and rear of the cell [7, 8]. Cells attach themselves to their
external environment by forming integrin-based adhesion complexes that anchor to the substrate and
act as an extension of the cytoskeleton. This results in an active remodeling of the cytoskeleton, and
causes a net displacement of the cell along the substrate [9, 10].

Adhesions serve as a point of force transmission to the external environment for motile cells. This
force transmission is primarily mediated through integrin receptors, which span the cellular membrane
and bind to their extracellular ligands (e.g. collagen and fibronectin). They form partially immobilized
traction points that a cell can use to move itself, or deform the external environment. The cytoplasmic
domains of integrins are linked to the actin cytoskeleton through a variety of adaptor proteins that
interact through biochemical signaling pathways [11–13], creating a biologically regulated mechanical
coupling system that links the actin cytoskeleton with the extracellular matrix (ECM). The interactions
between these proteins, along with mechanical forces arising from active processes in the cytoskeleton,
establish complex spatiotemporal patterns of activity [7, 8]. These patterns regulate the dynamics of
adhesion assembly/disassembly [14, 15] and cytoskeletal organization [9, 14, 16], producing cellular
migration in response to extracellular cues [10].

Adhesions are formed in a step-wise manner, starting as nascent adhesions (NA), a class of dynamic
nanoscale clusters of integrin receptors (referred to hereafter as integrins) that contain on average 20-50
integrins [17, 18]. Many mechanisms, such as increases in the long-range lateral mobility of integrins
(e.g., reduced corralling by actin cytoskeleton), local changes in their free-diffusivity, and modulation
of their binding affinity through interactions with the adaptor protein talin, have been found to be rel-
evant in the formation/regulation of integrin clusters [19–25]. Experimentally dissecting the effect of
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each mechanism on adhesion formation has often been obscured by the fact that all these effects are
simultaneously present in physiological conditions [20,23,26]. Theoretical models of adhesions allow
for independent modulation of these mechanisms to study their effects. Existing models of adhesions
either have idealized their physical model of an adhesion [10, 27–30] or have focused on certain phe-
nomenological aspects of the system [29, 31–33] which are not applicable during the formation of
NAs. Others are more biologically realistic with many variables, making it difficult to understand the
underlying dynamics [34–40].

Integrins are intrinsically mechanosensitive, capable of exhibiting a catch-bond behaviour [41]. In
contrast to the more common slip-bonds [42], catch-bonds exhibit a non-monotonic profile in their life-
time when plotted as a function of the applied force. This profile suggests that there exists a non-zero
optimal applied force that maximizes the bond lifetime, where the increase in bond lifetime is associ-
ated with a conformational change to a long-lived bound state [43, 44]. It has been proposed that this
phenomenon may reflect the activation of integrins (i.e., the induction of a high-affinity bound state)
by mechanical forces [44, 45]. Due to their position in the mechanical linkage between the cell and
its environment, the mechanosensitivity of integrins is likely to be implicated in adhesion dynamics.
This has been investigated thoroughly from a theoretical perspective by considering a finite number
of bonds which may rupture due to force and rebinding [27, 28, 33, 46]. These studies have reported
disassembly of clusters of bonds, but have not yet examined how assembly is manifested in the pres-
ence of applied force. Thus determining the effect(s) of force on NA dynamics during assembly and
disassembly remains incomplete.

The process of adhesion assembly into a cluster containing tens of molecules starting from a single
molecular-complex initial condition (e.g., a single integrin-adaptor protein complex) was previously
demonstrated through stochastic simulations of a molecular model which considered many possible
state transitions [40]. However, mean-field analysis of this molecular model was performed using a
simplified one-variable ordinary differential equation (ODE) model, predicting an unstable steady state
that blocks the assembly of very small adhesions [40]. In theory, it should be possible to jump over this
unstable state due to stochastic effects even in one-dimension. However, the conditions necessary to
produce such a jump remain unexplored. Moreover, other studies which produce similar configurations
of steady states also predict a net loss in both the number of bound integrins and adaptor proteins
when adhesions are very small [38,39,46]. On the one hand, this is congruent with the proposition that
NAs are thermodynamically unfavourable structures, and thus are the product of stochastic fluctuations
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[29,39,47]. On the other hand, NAs have been shown to be stable for hundreds of second in appropriate
mechanical conditions, suggesting that they are in fact thermodynamically favourable structures [17,
48]. To further investigate this, we develop here a mathematical model that possesses an elevated
equilibrium representing NAs which can either (i) allow for NA-assembly independently of stochastic
effects, or (ii) be used to understand in more detail the conditions required for noise-induced NA
formation.

Due to the limited understanding of NA-assembly dynamics, we present in this study this biophysically-
based mathematical model of NA formation and stabilization that considers a multitude of experimental
observations and provides precise characterization of their underlying behaviour in various conditions.
We then use the model, which not only considers the integrin bonds, but also the adhesion plaque
formed by adaptor proteins, to demonstrate how assembly and disassembly are affected by force and
their dynamics are manifested under various physiologically-relevant contexts.

2.2 Methods

2.2.1 Mathematical model of NA formation

We propose a biophysical model of NA formation based on a mechanism we term co-aggregation,
where the interaction of integrins in the membrane with adaptor proteins in the cytoplasm leads to the
co-localized aggregation of both into discrete structures (see Supporting Material for a detailed deriva-
tion of the model). This model is constructed to incorporate a number of experimental observations:

O1 NAs have a circular geometry and they grow isotropically [49]. This is in contrast to the growth
of larger and typically elongated focal adhesions which is highly anisotropic [47, 49].

O2 Adaptor proteins exhibit a wide range of mobilities that vary in a location-dependent manner.

1. Adaptor proteins diffuse rapidly in the cytosol, while they diffuse more slowly inside ad-
hesions [50].

2. Their mobility within adhesions is highly heterogeneous, suggesting that they exist in more
than one state in the adhesion plaque [51, 52].
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3. Some adaptor proteins have a longer residency time in adhesions containing a higher den-
sity of integrins, suggesting that a reduction in adaptor mobility is due to interactions (bind-
ing/tethering) with integrin [53].

O3 Integrins diffuse laterally along the membrane. Their free-diffusion is slower within the adhesion,
and this effect is likely due to interactions with adaptor proteins on the cytoplasmic side of the
membrane [24].

O4 Integrins become immobilized for extended periods of time upon binding to ligand, and this
process is favoured inside adhesions [54].

O5 The integrin-ligand bond lifetime varies with force [41], exhibiting a biphasic profile with a
maximal value at non-zero applied force („37 pN).

Furthermore, in the derivation of model equations, we have also made a number of assumptions that
are primarily based on experimental observations:

M1 As suggested in O1, the model defines a NA as a 2-dimensional region of space on the membrane
demarcated by the boundary of a membrane-proximal circular adhesion plaque with area A (see
Fig. 2.1).

M2 The adhesion plaque is a condensed phase of interacting adaptor proteins tethered to the mem-
brane by integrins. Adaptor proteins are assumed to be incorporated with a fixed density through
adsorption. The density, ρ, is determined by the mean volume of all adaptor proteins in the
plaque, and the length of the bonds between them.

1. According to O2, we assume that the cytoplasmic pool of adaptor proteins is well-mixed
(see Eq. (S6) in Supporting Material), while adaptor proteins in the adhesion plaque exhibit
reduced mobility due to interactions with other adaptor proteins in the plaque and integrins
in the membrane.

2. The adhesion plaque dynamics are derived based on the assumption that it can grow/shrink
due to the adsorption/loss of adaptor proteins to/from any point in its interior, respec-
tively; this assumption corresponds to the “Bulk-on/Bulk-off” formalism considered pre-
viously [29]. The choice of this formalism is motivated by the notion that NAs are not
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strongly associated with the actin cytoskeleton during their assembly [55,56], allowing for
the adsorption/loss of adaptor proteins through the dorsal face of the adhesion. This as-
sumption would not be appropriate for models dealing with the maturation of NAs, as that
process seems to be intrinsically tied to an increased association with organized actin fila-
ments [49, 55, 57] that protect the adhesion from degradation by loss of matter through its
dorsal face [29].

3. From OO2 and OO2 , the multiple mobility states of adaptor proteins in the adhesion are
interpreted as being due to their tethering to the membrane by integrin receptors (i.e., in a
state with lower mobility if the adaptor protein is tethered to the membrane while in a state
with higher mobility if it is only associated with other adaptor proteins). This implies that
a nonlinear relation between the adhesion’s disassembly rate and its integrin content exists
(see Eq. (S7) in Supporting Material).

M3 Underneath the adhesion plaque, there are a total of Nin integrins. Lin of these integrins are
liganded and immobilized while Min are mobile and diffuse freely (i.e., Nin “ Lin ` Min; see
Fig. 2.1).

1. Per O3, we use a position-dependent diffusion coefficient to abruptly change the diffusivity
of integrins from Dout to Din when they pass from the outside to the inside of the adhesion
(Dout ą Din; see Eq. (S2) in Supporting Material).

2. Per O4, integrins inside the adhesion bind to their ligands with a rate kbind (kunbind). Fur-
thermore, we assume that bound integrins are completely immobile. In order to account
for the density of extracellular ligand, we take the binding rate to be proportional to ligand
density (i.e., kbind “ kbind rLigands ).

3. Per O5, bound integrins inside the adhesion unbind from their ligands with a rate kunbind pfq,
where f is the force applied to a single integrin (see Eq. (S14) in Supporting Material for
details on the form of kunbind pfq and M4 for the determination of f ). Bound integrins out-
side the adhesion unbind with a rate kunbind p0q, with this situation only occurring when the
adhesion plaque is shrinking.

M4 The total load applied to the adhesion is distributed evenly among all bound integrins. Therefore
when an integrin unbinds, the load is distributed over the (fewer) remaining bound integrins such
that each receptor feels an increase in applied force.
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1. The force, f , applied to each integrin is computed by assuming that the NA is under fixed
stress, σ “

fLin

A
, and that each bound integrin bears an equal load (see Eq. (S18) in Sup-

porting Material).

M5 For simplicity, we consider a periodic square lattice of adhesions with an inter-adhesion spacing
of h (see Fig. 2.1). The flux of matter between the square latices is at equilibrium and thus
assumed to be constant/conserved in each one of them. Model parameters are chosen in such a
way that to prevent the adhesion from extending beyond the dimension of a single lattice cell
(see Geometric Constraints in Supporting Information).

DoutDin

koff

kbind kunbind

(1-δ)koff kon

ECM 

Diffusing
Integrin

Cytoplasmic 
Adaptor Pool

Adaptor Protein

Tethered Adaptor Protein

OutsideInside

A = Adhesion Area

Nin = # Integrin Inside

h

h

B

A

Figure 2.1: Schematic of the model describing adhesion formation. (A) Integrins and adaptor proteins
co-aggregate to form a membrane-proximal adhesion plaque under which sits a cluster of integrins
that exhibit a decreased diffusion coefficient (Din ď Dout) and become immobilized upon binding to
ligand. Adaptor proteins that are in the proximity of integrins are assumed to be reversibly tethered to
the membrane. Untethered adaptor proteins (grey) leave the plaque with a rate koff while tethered ones
(yellow) leave at a rate p1 ´ δq koff . (B) Geometry of the h ˆ h-square lattice containing the adhesion
domain Ω. NAs possess a circular geometry confined to grow in this square lattice cell. The area of the
adhesion plaque (A ptq) and the number of integrins it contains (Nin ptq) are dynamic variables which
vary due to adsorption and diffusion, respectively.

Mathematically, the co-aggregation mechanism discussed above is implemented through the inter-
action of the integrin-dependent tethering mechanism (MM2) and the reduced integrin mobility inside
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the adhesions (MM3 and MM3).

The behaviour of the model is investigated through two complementary approaches: (i) by inves-
tigating its full spatiotemporal dynamics using stochastic simulations, and (ii) by characterizing the
outcomes of the stochastic simulations using a simplified differential equation model of NAs describ-
ing the dynamics near equilibrium. The simplified model is given by the following set of ODEs

9A “ A

»

—

—

—

—

—

—

—

—

—
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9Min “ 2
?
πA

˜

DoutpCIh
2 ´ Min ´ Linq

h2 ´ A
´

DinMin

A

¸

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Mobile integrin net diffusion

´
`

kbindMin ´ kunbind pfqLin

˘

loooooooooooooooomoooooooooooooooon

Integrin-ligand binding kinetics

(2.1b)

9Lin “ kbindMin ´ kunbind pfqLin, (2.1c)

where k0
on is a kinetic parameter related to the rate of adsorption of adaptor proteins into the adhesion

(see Parameter Estimation in Supporting Material for more details), koff is the off-rate of adaptor
proteins from the adhesion in the absence of integrins, δ is the fractional reduction in the off-rate of
adaptor proteins when tethered to the membrane by integrins, b is the concentration of integrin inside
the adhesion which results in the tethering of 50% of adaptor proteins in the adhesion plaque, n is
the degree of cooperativity between integrins for the tethering of adaptor proteins, and CI (CP ) is the
mean density of integrins (adaptor proteins) taken by averaging over the hˆ h lattice cell. For detailed
description and derivation of the model, see Supplementary Information.

2.2.2 Conditional Expectation Analysis

We have developed a computational method to infer the conditional mean of one physical variable
given the value of another dependent physical variable. This technique is used to assess the relation
between NA-area, A, and the number of integrins it contains, Nin, by using only the two terms PA

and PNin
representing the marginal distributions of these quantities, respectively. Briefly, we assume
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A “ f
`

N̄in

˘

“ E
`

A |Nin

˘

, where E
`

x |y
˘

denotes the conditional expectation of the variable x given
the value of another variable y, and then use Bayesian methods to quantitatively estimate f p¨q using the
change-of-variable formula given by PA “ PNin

{f 1 pNinq. See Supporting Material for further details.

2.2.3 Model parameters

We have used a complex systems approach to parameter determination, applying different estimation
techniques to guarantee that our model produces predictions which are consistent with experimental
findings while also exhibiting the emergent behaviour of the system under consideration (i.e., NAs).
This is accomplished by deriving analytical expressions (e.g., steady states of the model) that can be
equated to experimental measurements [17, 24, 41, 50], and then solving the resulting set of nonlinear
equations to quantify model parameters. This approach is used to determine the parameters b, h, CI ,
Kin “ Dout{Din, Kon “ k0

on{koff , and Kbind “ kbind{kunbind. Furthermore, the previously published
data describing the distributions of protein cluster sizes and number of integrins within these protein
clusters [17] is digitized and utilized to derive a relation between A and Nin, using Conditional Ex-
pectation Analysis (described above). The non-zero A-nullcline obtained by setting Eq. (2.1a) to zero
while assuming no cooperativity (i.e., by letting n “ 1), is then fit to this relation using a nonlinear
least squares fitting procedure that yields estimates for the two identifiable parameters

A0 “ h2

ˆ

CP

ρ
´

1

Kon

˙

and
A8

“ h2

ˆ

CP

ρ
´

1 ´ δ

Kon

˙

.

Estimating these identifiable parameters is necessary to determine the values of b and Kon (see Sup-
porting Material). The parameters δ, Dout, kunbind, and CP are estimated directly from experimental
data [24, 41, 54, 58]. Finally, the remaining two parameters koff (or k0

on) and ρ are manually tuned in
order to obtain stochastic simulations that are comparable to experimental recordings of adhesion as-
sembly/disassembly [49]. Parameter values are used to explain how the analytical results of our model
manifest themselves numerically, when constrained by experimental data. The qualitative behaviour of
the model does not depend critically on parameter choices made; this is to be expected as almost all
results presented here have been obtained analytically. For more details about parameter estimation,
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see Supplementary Information.

2.2.4 Software

Stability analysis for fixed protein density and binding affinity is performed symbolically using Math-
ematica Version 11.3 (Wolfram Research Inc., Champaign, IL). On the other hand, for fixed adhesion
stress, stability analysis is conducted numerically using the continuation software AUTO-07p to obtain
the location of bifurcation points [59], The stability of branches obtained are then cross-validated us-
ing Mathematica and MATLAB (MathWorks, Natick, MA). Stochastic simulations and nonlinear least
squares fitting are performed using MATLAB. Parameter estimation is also done using Mathematica.
The code used for ODE analysis, numerical continuation, and stochastic simulations can be obtained
online [60]

2.3 Results

2.3.1 The relation between NA area and its integrin content

In order to understand NA dynamics, we first aim to establish how their area and integrin content are
related. If this relation is linear, then the density of integrins inside the adhesion is constant and the area
of the adhesion can be explained by Nin alone. Such a relation could be used to estimate the effective
membrane area of a single integrin, and motivates the theoretical assumption of a fixed ratio of integrin
to adaptor proteins [31–33, 35]. If this relation is nonlinear, on the other hand, then the area of the
adhesion cannot be explained solely by the number of integrins and their physical dimensions. In such
a case, it would be inaccurate to use models that assume a fixed ratio of integrin to adaptor proteins.

To investigate this, we have digitized previously published distributions of NA-diameter and their
integrin content [17]. The distribution of NA-diameter is first converted to a distribution of NA-area A,
by assuming a circular geometry, followed by applying Conditional Expectation Analysis (see Meth-
ods Section) to quantify the relation between the two random variable A and Nin. This analysis is
motivated by the significant differences in skewness between the distributions, suggesting the possibil-
ity of a nonlinear relation. Indeed, our results (see Fig. 2.2A) reveal that this relation appears to have
a saturating "sigmoidal" phase for NAs containing up to „ 190 integrins, followed by a linear phase
for larger adhesions. This indicates that the integrin density inside the adhesion, Nin{A, is not fixed in
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small NAs (see dotted line in Fig. 2.2B), and therefore the size of these NAs cannot be explained by
the number of integrins it contains. This sigmoid relation thus must be taken into consideration when
formulating the model for NAs.
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Figure 2.2: (A) Inferred relation between NA-area A and its integrin content Nin as determined by
Conditional Expectation Analysis. Bayesian inference is used to determine an empirical relation be-
tween A and Nin, under the assumption that NAs are circular. After digitizing the distributions of
NA-diameters and their integrin contents published in [17], a relation between them is quantified. A
99.95% confidence interval is plotted in grey demonstrating that the data generally exhibits a nonlinear
relation between the two variables. The maximum a posteriori (MAP) estimate of this relation is also
plotted as a dotted line, suggesting that NA-area depends sigmoidally on Nin for small adhesions, while
this dependence is linear for large adhesions (compare to dashed line). The non-trivial A-nullcline of
the model, describing the relation between the two variables near equilibrium as defined by Eq. (2.2)
(solid line) is fit to the MAP estimate in the nonlinear phase, and found to be in agreement.(B) The
computed integrin density inside the adhesion, Nin{A pNinq. Estimates are computed from the data-
derived MAP estimate of A pNinq (dotted line) and from the model prediction for A pNinq given by
Eq. (2.2) (solid line). Both curves exhibit a linear increase in integrin density with respect to Nin for
Nin P r50, 190s. (C) Probability distribution of integrin densities. Black line: probability density func-
tion P

`

Nin{A
˘

“ P pNinq rdpNin{ApNinqq{dNins´1, where ApNinq is given by Eq. (2.2); grey line:
cumulative density function.
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To account for this, we have incorporated assumption MM2, into the model. By setting the left hand
side of Eq. (2.1a) to zero we solve for the non-zero A-nullcline. This is equivalent to assuming that
the observed differences in NA-area are due to local variations in integrin availability (i.e., differences
in CI). For simplicity, we consider the absence of cooperativity between integrins in the tethering of
adaptor proteins (n “ 1). The resulting expression for the A-nullcline is given by

A pNinq “

`

4A8bNin ` pNin ´ A0bq
˘1{2

´ pNin ´ A0bq

2b
, (2.2)

where A0 “ h2
“

pCP {ρq ´ p1{Konq
‰

is the (possibly negative) area of the adhesion plaque in the ab-
sence of co-aggregation (i.e., when δ Ñ 0) with Kon “ k0

on{koff , and A8 “ h2
“

pCP {ρq ´ p1 ´ δq {Kon

‰

is the maximum area of the adhesion plaque ( attained when the mean integrin density in the membrane
is arbitrarily high, see Geometric Constraints section in Supporting Material). The shape of the curve
described by Eq. (2.2) is in agreement with the profile of the relation inferred by Conditional Expec-
tation Analysis (solid line in Fig. 2.2A), supporting the hypothesis that the aforementioned variation
in integrin density (inside NAs) may be explained by the tethering mechanism used to formulate Eq.
(2.1a).

We note that the model suggests that integrin density may grow unboundedly (see solid line in Fig.
2.2B), which is due to the treatment of integrins as infinitesimally small point particles. In reality, the
physical size of the integrins will eventually have non-negligible effects on their flux as the adhesion
becomes increasingly crowded with integrins. Our data analysis demonstrates that adhesions contain-
ing integrin densities up to „ 17, 000 µm´2 are not strongly influenced by these molecular crowding
effects, as can be seen from the saturating relation between A and Nin for Nin ă 190. Conversely,
above this threshold in density, we have A9Nin, suggesting that the crowding of integrins plays a
significant role in determining the size of larger adhesions.

The maximal integrin density we have computed is significantly higher than the mean densities
of „ 1, 000 µm´2 previously reported in Wiseman et al. [61], or the „ 6, 600 µm´2 computed by
Changede et al. [17]. Firstly, we would like to note that the most likely integrin density according to
our analysis is „ 4940 µm´2 (see black line in Fig. 2.2C), which is comparable to the value reported
by Changede et al. Secondly, it has been previously suggested that Wiseman et al. [61] estimated the
mean density of integrins on the membrane, as their diffraction-limited imaging would not allow for
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proper resolution of NA boundaries [17]. As such, we note that the value we have used for the mean
density of integrins, CI “ 1844 µm´2, is comparable to what was reported by Wiseman et al. [61] (see
Parameter Estimation in Supporting Material for more details).

Furthermore, our approach quantifies the variability of integrin density inside adhesion. There-
fore, while our analysis suggests that this density may go as high as „ 17, 000 µm´2, it also predicts
that 80% of adhesions have an integrin density that is less than 12, 000 µm´2 (see grey line in Fig.
2.2C). Changede et al. [17] previously computed a maximal theoretical density of „ 25, 000 µm´2

based on an estimated integrin footprint of 40 nm2. Using a hypothetical model [62] built from multi-
ple partial crystal structures of integrin [63–66], we estimate a rectangular bounding box footprint of
7.6 nm ˆ 4.5 nm « 34 nm2 and 12 nm ˆ 5 nm « 60 nm2 for the closed and open conformations
of integrin, respectively. This provides us with corresponding bounds on the maximum possible den-
sity of integrins, given by 29, 400 µm´2 and 16,667 µm´2, respectively. Interestingly, our estimate of
17,000 only marginally surpasses the lower bound on the theoretical maximum density (i.e., when all
integrins are in the open conformation) and remains well below the upper bound. This suggests that
the majority of the integrins within these high-density NAs are in a closed conformation.

In this study, we focus our analysis on the nonlinear regime identified for Nin ă 190, as NAs typi-
cally have Nin P r20, 50s [18]. In what follows, we examine the chemical and mechanical regulation of
this sigmoidal relation between NA-areas and their integrin content through the biophysical parameters
which control both Nin and Eq. (2.2).

2.3.2 Stabilization of the adhesion plaque by integrin

One of the equilibria of Eqs. (2.1a)-(2.1c) is the unclustered steady state pA,Min, Linq “ p0, 0, 0q. The
stability of this steady state depends on the values of model parameters. In order to reduce the com-
plexity of our analysis, we will first consider the model in the absence of force (f “ 0). In subsequent
sections, we will extend our steady state analysis to include force and then investigate the time-course
of the model under applied force.

By analyzing the stability conditions of this steady state, we find that it becomes unstable once
model parameters cross a threshold (see Supporting Material); we demonstrate later that this corre-
sponds to the induction of adhesion formation. Given that the existence of the unclustered steady state
p0, 0, 0q is independent of the degree of cooperativity n, we first restrict our analysis to the case when
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n “ 1 for simplicity. This will allow us to build intuition about the behaviour of the system, and de-
termine what happens for n ą 1. Under these conditions, the unclustered steady state loses stability
through a transcritical bifurcation occurring whenever CI ą C;

I , CP ą C;

P , or rLigands ą rLigands
;

(see Eqs. (S11)-(S13) in Supporting Material). That is, once there are enough integrins, adaptor pro-
teins, or ligands at the interface between the cell and its environment, the unclustered steady state
becomes unstable and stable adhesion plaques form (see Fig. 2.3). This transition occurs when the
system undergoes a transcritical bifurcation (see Fig. 2.3A, B and C), forming a stable non-trivial
steady-state, given by

A˚
“

h2

ˆ

Γ
´

ĈI

¯

´ ĈI ` bβ pϕKon ´ δq

˙

2bβKon

, (2.3)

M˚
in “

h2

ˆ

p2βϕ ` 1qĈI ´ Γ
´

ĈI

¯

` b pω ´ βδq

˙

2β pKbind ` 1qω
, (2.4)

where ĈI “ p1 ` KbindqKinKonCI , Kbind “ kbind{kunbind, Kin “ Dout{Din ě 1,

Γ
´

ĈI

¯

“

´

b2 pω ´ βδq
2

` 2bĈI pβδ ` ωq ` Ĉ2
I

¯1{2

,

ω “ pβϕ ` 1qKon and L˚
in is defined by Eq. (S8) (see Supporting Material). These expressions thus

determine analytically how different parameters of the model affect the existence of the non-trivial
steady state and the threshold (the transcritical bifurcation).
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Figure 2.3: Effects of co-aggregation on NA-area. Bifurcation diagrams of equilibrium adhesion area
A˚ with respect to (A) CI , (B) CP , and (C) rLigands, showing branches of stable (solid lines) and unsta-
ble (dashed lines) steady states separated by thresholds defined by transcritical bifurcation points (open
circles). The bifurcation points occur when CI “ C;

I in A, CP “ C;

P in B and rLigands “ rLigands
; in

C. The stable branches represent the (un)clustered steady states (before) after the threshold. Notice that
increasing CI leads to a saturating response, eventually plateauing at A8 (dotted line in A) defined by
Eq. (S10) , whereas increasing CP leads to an unbounded growth in adhesion area (panel B). Increasing
rLigands also produces a saturating response, plateauing at Ā˚ ă A8 (panel C).
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As discussed in the previous section, increasing the number of integrins inside the NA causes
an increase in their area. According to the model, this may be accomplished directly through two
approaches: (i) increasing the total number of integrins on the membrane through the parameter CI ,
or (ii) increasing the likelihood that an integrin is inside the adhesion through the ligand concentration
rLigands (see how Kbind is defined in MM3) or the reduction in diffusivity Kin. In the limit CI Ñ 8,
the first approach yields adhesions with a finite size A8 ă h2 (see Eq. (S10) in Supporting Material,
and Fig. 2.3A). On the other hand, the limiting case for the second approach is equivalent to all integrins
being inside the adhesion, where (according to Eq. (2.2)) the area of the clustered steady state is given
by

Ā˚
“ A˚

`

CIh
2
˘

“

h2
´

Γ̄
`

C̄I

˘

´ C̄I ` b pϕKon ´ δq

¯

2bKon

, (2.5)

with C̄I “ KonCI and

Γ̄
`

C̄I

˘

“
`

b2 pδ ´ ϕKonq
2

` 2bC̄I pδ ` ϕKonq ` C̄2
I

˘1{2
.

We note that Ā˚ ď A8 (see Fig. 2.3C) and limCIÑ8 Ā˚ “ A8, which implies that ligand-dependent
regulation of adhesion area cannot overcome integrin-dependent regulation. This means that a sta-
ble adhesion plaque may also grow if more plaque material is introduced into the system. Within the
model, this is controlled by the parameter CP , which is linearly proportional to A8. Therefore, in-
creasing CP leads to unbounded growth of the adhesion area (see Fig. 2.3B). Thus the maximum area
of NAs is regulated intracellularly, through the parameters CI and CP , while the formation of adhe-
sions and modulation of their area may be regulated intracellularly through these same parameters or
extracellularly through rLigands. This, as a result, establishes a hierarchy in the determination of NA-
area by these three physiologically regulated densities, ranked according to their relative importance
as follows: CP ą CI ą rLigands.

2.3.3 Effects of the magnitude and degree of co-aggregation

To further understand the dynamics of the model, we will analyze the model under appropriate limits.
Thus, we first consider the integrin-independent adhesion plaque formation when δ Ñ 0. In this case,
the model reduces to a fully deterministic version of the “Bulk-on/Bulk-off” adsorption model [29]
with one added component for the conservation of matter. In this limit, we have A˚ Ñ A0, which im-
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plies that adhesion area should grow linearly with adaptor concentration (see Fig. 2.3B). This demon-
strates the basic chemical kinetic control system of the model. Regardless of integrin density, adhesion
plaques may form if a large enough pool of adaptor proteins is present (i.e., A0 ą 0). In the absence
of co-aggregation, the cell must control both the formation and area of adhesions through the concen-
tration of adaptor proteins. Interestingly, reductions in adaptor protein concentration have been found
to decrease adhesion size [67–71]. On the other hand, if there is co-aggregation between integrins and
adaptor proteins, the cell can set the maximum area of adhesions, A8, by varying adaptor protein con-
centration while controlling their formation with the density of integrins. This is in line with the recent
findings that NA size saturates as integrin density (or activation) is increased (see Fig. 2.2 and [17]);
suggesting that the co-aggregation of the two proteins is a critical component of the model needed to
capture experimental observations.

By tracking the location of the threshold (the transcritical bifurcation in Fig. 2.3) as the the values of
both CI and CP are varied in a two-parameter bifurcation, we obtain two regimes of behavior separated
by a monotonically decreasing boundary at a given value of δ (see Fig. 2.4A). This boundary divides
the first quadrant into the two regimes of unclustered (below) and clustered (above) steady states, with
the former expanding at the expense of the latter as the magnitude of co-aggregation δ is decreased.
These results suggest that the adaptor protein concentration needed to induce clustering is always lower
in the presence of co-aggregation (see Fig. 2.4A). The amount of reduction in adaptor protein density
generated by the inclusion of co-aggregation is given by

∆C;

P :“ C;

P

⏐⏐⏐
δ“0

´ C;

P

⏐⏐⏐
δ
,

“
δρ

Kon

p1 ` KbindqKinCI
`

b ` p1 ` KbindqKinCI

˘ ą 0.

Interestingly, in the limit of infinite integrin density, we have

lim
CIÑ8

ϕ;
“ 0.

This suggests that, even when integrin density is arbitrarily high, the cell can still turn off clustering by
reducing CP (or δ) to make ϕ negative.

To study the effects of altering the degree of cooperativity n on the steady state dynamics of adhe-
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sion area, we plot in Fig. 2.4B the stable branch of clustered steady states (i.e., the stable branch to the
right of the threshold in Fig. 2.3A) at various values of n. Our results reveal that increasing n increases
the slope of A˚ with respect to CI , and that in the limit as n Ñ 8, we obtain a step-like switching
response in which protein clusters form beyond a threshold in integrin density occurring right at the
transcritical bifurcation point (see Fig. 2.4B). The area of adhesions formed in this case remain roughly
the same regardless of integrin density. Finally, we have used the MAP estimate of A pNinq (see Fig.
2.2) as means of estimating n numerically. This is done by solving for the non-zero A-nullcline with
n “ 2, 3, 4, where visual comparison with the data for A pNinq suggests n “ 2 ´ 3 (data not shown).
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Figure 2.4: The effects of co-aggregation and cooperativity on steady state dynamics of protein cluster-
ing. (A) Two parameter bifurcation of adhesion area A with respect to CI and CP showing the boundary
between the regimes of unclustered (below) and clustered (above) steady states for various values of
co-aggregation δ. The boundary is defined by the transcritical bifurcation points in Fig. 2.3 when CI

and CP are both varied.. Increasing δ reduces the adaptor protein density needed to induce aggrega-
tion. In the limit δ Ñ 0, integrin density CI has no effect on the aggregation of adaptor proteins. (B)
Stable branches of clustered steady states shown in Fig. 2.3A for various degrees of cooperativity n.
By increasing n, the density thresholds for clustering decreases and the steepness of the stable branch
of clustered steady states increases.
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2.3.4 The effects of reduced integrin lateral mobility

The model assumes that integrin mobility is significantly reduced inside the NA (see OO3 and OO4),
and that, at equilibrium, this area is in turn dependent on the number of integrins it contains. This makes
understanding the dependence of NA dynamics on changes in integrin lateral mobility non-trivial. We
can quantitatively understand this by first noting that the area specified by Eq. 2.2 is a monotonically
increasing function of the number of integrins inside the NA, N˚

in. Therefore, we may simply study
the effects of the two parameters, which control changes in integrin lateral mobility (namely, Kin and
Kbind), on the variable N˚

in. From Eqs. (S8) and (2.4), we have

N˚
in “ p1 ` KbindqM˚

in “

h2

ˆ

p2βϕ ` 1qĈI ´ Γ
´

ĈI

¯

` b pω ´ βδq

˙

2βω
.

We can thus conclude that N˚
in depends on integrin mobility only through the term Kinp1 ` Kbindq

that appears implicitly in ĈI , ω, and β . This means that we cannot distinguish between the effects
induced by the two parameters purely based on adhesion area or integrin content. On the other hand,
the fraction of bound integrins, given by

L˚
in

L˚
in ` M˚

in

“
Kbind

1 ` Kbind

depends explicitly on the binding affinity. This means that while both reduced diffusivity (Kin) and
ligand binding (Kbind) will result in an increase in the area and integrin content of adhesions, only
ligand binding can increase the fraction of bound integrins.

Due to the similarity of the effects of ligand binding and reduced diffusivity, we focus our attention
on analyzing more closely the effects of ligand binding, noting that the same analysis can be performed
to study the effects of reduced diffusivity. In the absence of binding, we obtain the following unbound
steady state

S̃˚
“ lim

KbindÑ0
pA˚,M˚

in, L
˚
inq “

´

Ã˚, M̃˚
in, 0

¯

,

which has the associated critical protein thresholds

C̃;

I “ lim
KbindÑ0

C;

I , and C̃;

P “ lim
KbindÑ0

C;

P . (2.6)

105



2.3 Results

Based on Eq. (S11), we can conclude that C̃;

I is larger than C;

I by a factor of 1`Kbind. Similarly, from
Eq. (S12), it can be shown that C̃;

P ě C;

P . Thus another effect of binding (and reduced diffusivity) is
that it increases the potency of integrins and adaptor proteins in the formation of adhesions, by decreas-
ing the threshold for clustering (i.e., shifting the transcritical bifurcation to the left) and expanding the
range of stability of the clustered steady state (see Fig. 2.5A).
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Figure 2.5: Distinct regions in parameter space are distinguished by their dependence on ligand bind-
ing. (A) Bifurcation diagram of adhesion area A with respect to [Ligand], showing branches of stable
(solid lines) and unstable (dashed lines) steady states separated by thresholds of transcritical bifurca-
tion points (open circles). Decreasing Kon from 0.7 (black lines) to 0.3 (grey lines) shifts the trans-
critical bifurcation point to the left, allowing for the unclustered stable steady state to be attained at
rLigands “ 0. (B) Two parameter bifurcation of adhesion area A with respect to rLigands and Kon,
showing the boundary (black line) between the regions of unclustered (region 1) and clustered steady
states lying below and above the boundary, respectively. The region of clustered steady states is further
divided into three regions: region 2, defined by rLigands

;
ą 0, requiring the presence of both ligand

and integrin to induce clustering; region 3, defined by rLigands
;

ă 0 with A0 ă 0, requiring the pres-
ence of integrin, but not necessarily ligand, to form stable adhesion plaques; and the unphysiological
region 4, defined by A0 ą 0, which exhibits clustering irrespective of integrin or ligand densities.

For the more general scenario when Kbind ą 0, we note that the state S̃˚ is a biophysically relevant
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metastable steady state only if all its coordinates are non-negative. This is equivalent to the experi-
mentally verifiable criterion rLigands

;
ą 0 , which can be used to further divide parameter space into

ligand-dependent and -independent clustering regions (see Fig. 2.5). These regions are differentiated
by their behaviour in the limit as rLigands Ñ 0`, where in the former region the stable unclustered
steady state is attained (black lines in Fig. 2.5A, with Kon “ 0.7), while in the latter, the stable clustered
steady state is attained (grey lines in Fig. 2.5A, with Kon “ 0.3). This implies that if the interactions
between adaptor proteins are strong enough (e.g., if Kon is large enough; see Fig. 2.5B), then adhesion
plaques will form even in the absence of ligand binding. As discussed in the previous section, it is even
possible for these interactions to be strong enough to induce the formation of an adhesion plaque in
complete absence of integrins (as suggested by region 4 where A0 ą 0). Together, these consideration
allow us to identify 4 regions in parameter space:

1. No Clustering (region 1 in Fig. 2.5B): This occurs when rLigands ă rLigands
;, and the model

predicts there is no clustering of adaptor proteins.

2. Ligand-Dependent Clustering (region 2 in Fig. 2.5B): This region is bounded by rLigands
;

ď

rLigands with rLigands
;

ą 0. Within this region, the model predicts clustering occurs only when
rLigands is high enough.

3. Ligand-Independent Clustering (region 3 in Fig. 2.5B): This region is defined by rLigands
;

ď

rLigands with rLigands
;

ă 0 and A0 ă 0. Within this region, the model predicts clustering to
occur regardless of the value of rLigands.

4. Integrin-Independent Clustering (region 4 in Fig. 2.5B): This region is defined by A0 ą 0.
Within this region, the model predicts clustering regardless of the value of rLigands and CI . This
appears to be unphysiological.

Since clustering is absent in region 1 and unphysiological in region 4, one may conclude that cells
have likely tuned the interaction of adaptor proteins and integrins to that in regions 2 or 3, which
differ by whether or not adhesions form in the absence of ligand. Whereas some have hypothesized
that activation of integrins by adaptor proteins may be sufficient to induce clustering of integrins [72],
an observation consistent with the model in region 3, others have shown that a ligand spacing greater
than „ 60 nm drastically reduces the spreading of cells [73–75], an observation more consistent with
crossing the transcritical bifurcation point in region 2. These two mutually exclusive hypotheses are
considered in order to determine the two distinct sets of parameter values used to generate the curves
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in Figure 2.5A (see Parameter Estimation in Supporting Material). .

2.3.5 Mechanosensitive ligand binding dynamics

Thus far we have not explicitly considered the effects of force on NA formation, although it is known
that adhesions transmit force to the ECM. Mechanical forces can accelerate the dissociation of the
integrin-ligand bond (see OO5 and MM3 in Methods). Moreover, a collection of catch bonds under
fixed load will catastrophically fail once the number of bound integrins drops below a threshold [46].
Therefore, in order to effectively transmit force to its environment, a NA must contain a sufficient
number of bound integrins. This raises the question of how the dynamics of force generation in NAs
are manifested, or more specifically whether adhesion load (the total force) or stress (force per unit
area) is the fixed mechanical parameter that allows for NA-assembly from a single integrin-adaptor
protein complex [31, 35, 76].

If adhesion load is held constant, then adhesions needs to build up a sufficient integrin content
to be able to bear the load. As shown earlier, a large equilibrium integrin content at steady state can
be achieved by either increasing Kin or Kbind. However, previous work has found that clusters of
catch bonds will disassemble when there are a small number of bound integrins [46]. Therefore, it
is unclear how adhesions reach their stable equilibrium under fixed load. Alternatively, if stress is
held constant, then the fraction of bound integrins must be large enough to bear the variable load that
increases as the adhesion grows. The latter requires that Kbind be large enough (as discussed before).
The mechanosensitivity of the integrin-ligand bond and the complex spatial dynamics of integrins
make resolving this question non-trivial.

2.3.5.1 Bistable switch in regions 2 and 3 with respect to stress

To explore the effect of mechanical force on dynamics, we expand our equilibrium mean-field model
described by Eqs. (2.1a)-(2.1c) to include the mechanosensitive binding affinity of integrin, as de-
scribed by Eqs. (S17) and (S18) (for further details see Supporting Material). Our initial analysis, as
well as previous studies [27,28,46], suggest that there is a maximum stress, σc, which NAs can sustain.
To further expand on this result, we plot in Fig. 2.6 the dependence of the steady state adhesion area
A˚ (and Ã˚ in region 3) with respect to stress σ and label the different branches of the curve based
on the stability properties of the steady states belonging to each branch (using the subscripts "s" and
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"u" to label the stable and unstable ones, respectively). The resulting bifurcation diagram shows that
the dynamics are governed by a bistable-switch possessing a hysteresis, similar to those previously
observed in systems of Rho family of GTPases [8, 58]. The switch has a plateaued branch of elevated
steady states (black line), labeled A˚

s , merging with another branch of unstable saddle points beneath
it (dashed black line), labeled A˚

u, at a saddle-node bifurcation when σc « 470 kPa. In region 3, bista-
bility is produced by another lower branch of metastable states formed by Ã˚ (grey line in Fig. 2.6B),
while the branch A “ 0 is unstable. In region 2, the unstable branch A˚

u intersects A “ 0 at some value
of stress σt (0 ď σt ď σcq, leading to the formation of a transcritical bifurcation that produces a region
of monostability for σ ă σt (horizontal dashed line in Fig. 2.6A) and bistability for σ ą σt (horizontal
solid line in Fig. 2.6A).

The folded elevated stable and unstable branches seen in Fig. 2.6 have been previously reported
in studies that considered only the number of liganded bonds [27, 28, 46] or adaptor proteins in the
adhesion [40]; these studies have either reported a monotonically decreasing elevated stable branch
[27, 28], or one which increases significantly with applied force or ECM stiffness [40, 46]. In either
case, a lower stable/metastable branch (Z “ p0, 0, 0q in region 2 with σ ą σt and the previously
defined S̃˚ “ pÃ˚, M̃˚

in, 0q in region 3 with σ ă σc) has not been previously reported for a model that
considered only liganded bonds. Our results thus show that the system possesses bistability between
clustered and the unbound or unclustered steady states, indicating that this bistability arises from the
consideration of plaque dynamics. We denote the elevated stable and middle unstable branches by
S˚ “ pA˚

s ,M
˚
s , L

˚
s q and U˚ “ pA˚

u,M
˚
u , L

˚
uq, respectively. These two steady states correspond to

large clusters of integrins bearing a small load and small clusters bearing large loads, respectively.
This correspondence may also be used to intuitively understand their stability, as the small (unstable)
clusters will unbind catastrophically once a single integrin-ligand bond ruptures while the large (stable)
clusters contain enough integrins for rebinding effects to outpace unbinding.

2.3.5.2 NA dynamics as determined by the bistable switch

Near the saddle node of Fig. 2.6A and B (i.e., near σ « σc) the basin of attraction of the clustered steady
states shrinks significantly until it eventually disappears along with the steady state when σ ą σc.
This means that, the number of bound integrins at the steady state S˚ are incapable of supporting
the imposed stress, causing integrins within the NA to catastrophically unbind and the NA-area to
revert to the unbound steady state Ã˚ in region 3 (Fig. 2.6A) and to A “ 0 in region 2 (Fig. 2.6A).
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Figure 2.6: The effects of integrin mechanosensitivity on NA-area and integrin content. Bifurcation
diagram of adhesion area with respect to stress as determined by (A) region 2, and (B) region 3,
showing a bistable-switch with two semi-plateaued stable branches of steady states (solid lines), one
of which is elevated representing A˚

s (black), while the other is lower representing Ã˚ (grey), separated
by an unstable branch of saddle points A˚

u (short-dashed black line). A˚
s and A˚

u merge at a threshold
determined by a saddle-node bifurcation point at σ “ σc. Beyond this critical stress σc, all integrins
rapidly unbind and adhesions disassemble to (A) the unclustered steady state or (B) the unbound steady
state Ã˚. In region 2 (panel A), the unstable branch undergoes a transcritical bifurcation at σ “ σt

(open circles), producing a region of monostability where adhesions may directly assemble to the
stable branch. Thick lines: rLigands “ 8050µm´2; thin lines: rLigands “ 2012.5µm´2.

This type of behavior corresponds to NA-disassembly. On the other hand, in region 3 with σ ă σc,
stochastic fluctuations in the number of integrins inside the adhesion plaque can cause the system to
jump from the unbound steady states Ã˚ to the clustered steady states A˚

s . In contrast to the previous
jump, this type of behavior corresponds to NA-assembly. Alternatively, in the monostable regime of
region 2 (see dashed horizontal line in Fig. 2.6A), there is no barrier to cross for assembly and NAs
may form in a noise-independent manner. Interestingly, in both regions, the model predicts that the
stable NA-area A˚

s does not vary significantly for a whole range of stress between r0, σcs, due to the
plateau nature of the upper stable branch. This suggests that NAs may go through a cycle of adhesion
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assembly/stability/disassembly based on the magnitude of stress exerted on them as previously seen
experimentally [17, 49].

We have also investigated the effects of reduced ligand concentration on the mechanosensitivity of
adhesions, by reducing the value of rLigands 4-fold (see thin lines in Fig. 2.6). Here we observe two
notable differences in the model outcomes. Firstly, when ligand concentration is reduced the area of
NAs under zero force (e.g. σ “ 0) is reduced while the maximal value it attains remains roughly the
same. This suggests that NAs, in these conditions, can exhibit significant reinforcement due to force,
increasing in size upon application of force. This reinforcement is similar to what has been previously
observed experimentally [77] and in other theoretical models of focal adhesions [35, 47] as well as
clusters of catch bonds [46]. Secondly, we also find that the critical stress σc decreases when ligand
concentration is reduced. This implies that the primary effect of reducing ligand concentration on NAs
is to make them more susceptible to forces by (i) making their area more force-dependent and (ii)
making them more likely to catastrophically disassemble due to force.

2.3.6 Stochastic simulation of the model

It has been previously shown through stochastic simulations that the upper branches of Fig. 2.6 are
metastable equilibria for clusters of catch-bonds with a fixed load, and that upon crossing the lower
branch, the cluster undergoes disassembly where all bonds rapidly unbind [46].

By running stochastic simulations with σ « σc (see Supporting Material for more details on the
implementation), the model also produces NA-disassembly under fixed stress regardless of the region
(see Fig. 2.7A for simulations associated with region 3) and for fixed load (results not shown). The
stochastic simulation of the model also exhibits NA-assembly from a single integrin-adaptor protein
complex (see Fig. 2.7A). In region 2 with σ ă σt, NA-assembly reaches S˚ unimpeded by U˚, due to
lack of bistability for 0 ď σ ă σt, whereas in region 3 (see Figs. 2.6B and 2.7B) the system must cross
the stable manifold of U˚. This manifold forms a threshold (highlighted by the dashed line in Fig. 7)
that determines if the system jumps from (i) the single integrin-adaptor complex to the clustered steady
state S˚ (black solid line in 2.7B) during assembly, passing through the unbound metastable state S̃˚

(grey line), and from (ii) the clustered steady S˚ (black solid line in Panel B) to the unbound metastable
state S̃˚ (grey line) during disassembly. The mechanical conditions which allow for a stochastic jump to
cross the barrier created by the unstable state were not previously determined [40,46]. In this study, we
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have explored (i) under what conditions noise-driven NA-assembly occurs and (ii) what role bistability
plays in this process.
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Figure 2.7: The assembly and disassembly of NAs is a force-dependent process. (A,B) Stochastic
simulations of the number of bound integrins (thin black lines) and adaptor proteins (thin grey lines)
during assembly and disassembly. (A) Under high stress (σ “ 0.92σc) and starting from the equilibrium
S˚ (thick black horizontal line), integrins within NAs undergo catastrophic unbinding upon crossing the
stable manifold of the saddle U˚ (dotted black horizontal line), leading to disassembly as they diffuse
away from the adhesion area. (B) A long-lived NA state is formed starting from a single integrin-
adaptor protein complex when the applied stress is low ( σ “ 0.25σc). This process is driven primarily
by plaque growth towards the metastable state with A “ Ã˚ (thick grey horizontal line) which, in
conjunction with ligand binding, increases Nin, the number of integrins inside the NA until it crosses
the stable manifold of the saddle point U˚ ). Beyond the stable manifold of U˚, the trajectory flows to
the stable steady state S˚. Black horizontal lines are identical to those in A.

In order to verify if the model under fixed adhesion load produces results consistent with those pre-
viously seen [27, 28, 33, 46], we also performed stochastic simulations starting from a single integrin-
adaptor protein complex, where adhesion load is held fixed. In this scenario, assembly is only observed
for very small fixed loads (less than „1% of the critical load), as the force per integrin of small adhe-
sions with a fixed load overwhelmingly favors the unbinding of integrin (data not shown). This is in
agreement with the previous finding that fixed loads can only lead to adhesion disassembly [40, 46].
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Interestingly, with the model presented here, we do observe assembly for fixed stresses arbitrarily close
to the critical stress σc, albeit exceedingly rare. This highlights the unique nature of the model, iden-
tifying fixed stress as a mechanical condition allowing for NA-assembly, and predicting that cells can
occasionally assemble NAs even at very high stresses.

The bistability characterizing this model also plays an important role in reaching the elevated steady
state S˚. Near the initial condition of a single integrin-adaptor protein complex, diffusion stochastically
adds and removes integrins from underneath the adhesion plaque. However, as can be seen in Fig. 2.7A,
these stochastic fluctuations do not bring the system close enough to the saddle point U˚ (dotted line) to
cross its stable manifold. The metastable state S̃˚, on the other hand, acts as an attractor for the system,
initiating the first phase of a robust growth in the adhesion plaque. In conjunction with ligand binding,
this eventually pushes the system past the stable manifold of the saddle U˚, allowing it to reliably reach
the elevated stable steady state S˚. As highlighted before, because fixed stress (but not fixed load) is
permissive to ligand binding during the growth phase, we may conclude that the mechanical constraint
on the system and the bistability with the metastable attractor S̃˚ allows for the system to overcome
the kinetic barrier created by the unstable steady state U˚ such that adhesions may form from a single
integrin-adaptor protein complex.

2.4 Discussion

In this study, we presented a biophysical model of NA formation as a condensed phase of adaptor
proteins and integrins that forms along at the interface of the cytoplasm and the cell membrane due to
a mechanism we term co-aggregation. From this biophysical model, we constructed a 3-dimensional
minimal mathematical model of adhesion dynamics near-equilibrium, and a computational framework
for realizing discrete simulations of adhesion formation. The nonlinearities included in the mathemat-
ical model were adapted from the biophysical framework used to describe NAs. The near-equilibrium
dynamics used to analyze the stability of the equilibria showed that adhesions form, with an area and
integrin content specified by S˚, once either integrins, adaptor proteins, or extracellular ligands cross
a well-defined density threshold. These thresholds are defined by transcritical bifurcation points where
a stable branch of clustered steady states emerges in each case. We analytically determined the depen-
dence of these thresholds on model parameters as specified by Eqs. (S11)-(S13). Our analysis of these
results revealed that the stable branch plateaus at high integrin or ligand density, but monotonically
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increases with respect to adaptor protein density, suggesting that adaptor proteins play a key role in
regulating the size of NAs. It also showed that there is a hierarchy in the relative importance of the
three protein densities regulating NA-area, given by adaptor proteins>integrins>extracellular ligands.
The dependence of S˚ on biophysical parameters was then analyzed to demonstrate that the immobi-
lization of integrins upon binding to ligands inside the adhesion area (controlled by Kbind) lowers the
density thresholds for adhesion formation.

In contrast to previous models of adhesions [31–33,35], we did not assume that the average density
of integrins inside the adhesion plaque is a fixed quantity. This assumption is necessary for the model to
be consistent with the observation that the integrin density measured in adhesions varies significantly
within the same cell [78], and is motivated by the nonlinear relation between NA-area and its integrin
content (see Fig. 2.2). Our model accounted for the variable density of integrins, by considering their
interactions with adaptor proteins forming the adhesion plaque which spatially delimits the adhesion
area. Similar interactions have also been considered in a more biophysically detailed model of adhesion
dynamics [37], but the simplicity of the model presented here compared to this previous study allowed
for further theoretical analysis of this system. Interestingly, it was previously estimated that the upper
limit of Nin{A is „ 25, 000 µm´2 using structural considerations [17], but the results of our Condi-
tional Expectation Analysis suggests that the effective limit of integrin density in the adhesion may be
as low as „ 17, 000 µm-2. Below this threshold, NA-area may be a result of the tethering mechanism
described by Eq. (S7), whereas above this threshold, adhesion area was the result of integrin crowd-
ing, which may be indicative of NAs transitioning to more mature classes of adhesions such as focal
complexes. To the best of the authors’ knowledge, the tethering mechanism proposed here represents
a novel understanding of adhesion stabilization by integrins.

Due to the apparent isotropic growth of NAs [49], we have not considered anisotropic effects of
compression/stretching on adaptor protein adsorption as has been done in other models [31, 32]. This
can be justified by the fact that the dynamic nature of adaptor-cytoskeletal interactions leads to slippage
under force [79], producing a viscoelastic mechanical response, where the effects of elasticity is lost on
long timescales (e.g., at equilibrium). Furthermore, it was previously argued that the interactions be-
tween adaptor proteins are unlikely to be strong enough for the energy of deformation of the adhesion
plaque to have a significant effect on the outcome of the adhesion formation process [35]. This assump-
tion allowed us to use a simpler model of adaptor protein adsorption [29] and incorporate the effects
of force in a manner that can be directly linked to experimental single-molecule observations [41].
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The mechanosensitive properties of integrin unbinding were included in the model as a force-
dependent bond lifetime (see Eq. (S14)). Using this to determine integrin binding affinity, we managed
to compute the equilibrium area of the adhesion as a function of applied force, revealing a saddle-node
bifurcation at a critical value of stress (see Fig. 2.6D). Beyond this value of stress, all the integrins
in the adhesion rapidly become unbound from their ligands and tension is no longer transmitted to
the extracellular environment. Similar phenomena had been previously observed in other studies for
fixed values of adhesion load [27, 28, 46]. By considering the effects of integrin content on the area of
the adhesion plaque, we were able to use adhesion stress rather than load as a bifurcation parameter
and study how its steady state effects may give rise to a mechanically-regulated NA life-cycle. We
demonstrated that such a life-cycle is governed by a bistable switch with a saddle-node bifurcation
when NA-area is plotted against fixed stress. The saddle node acts as a threshold for adhesion disas-
sembly, the last phase of the life-cycle. Increasing the ligand concentration made the upper branch of
the bistable switch more plateaued, such that increasing/decreasing the stress within a given range has
little to no effect on NA-area.

Consistent with previous studies, stochastic realizations of our model with high values of stress (or
load; results not shown) produced NA-disassembly close to the threshold determined by the saddle-
node bifurcation, causing the trajectory to jump from the upper to the lower stable branch of the bistable
switch. The jump is either due to crossing the threshold or to stochastic effects pushing trajectories
beyond the stable manifold of the saddle points in the middle branch, leading to the rapid unbinding of
all integrins in the adhesion, followed by slow adhesion plaque disassembly.

The process of adhesion plaque assembly, initiated from a single integrin-adaptor complex, was
found to have a more diverse set of dynamics than disassembly. First, we discovered that, unlike
during disassembly, the accumulation of bound integrins inside the adhesion area and the growth of
the adhesion plaque occurs on a similar timescale during assembly. Second we identified a region in
parameter space (region 2 in Fig. 2.5B and Fig. 2.6A with σ ă σt) where assembly occurs inde-
pendently of stochastic effects. This finding is noteworthy as previous models had reported, in their
mean-field analysis, the presence of an unstable steady state which blocks the assembly of very small
adhesions [40, 46]. The mean-field analyses were performed using a one-variable setting where the
only way to reach the state corresponding to stable adhesions is through stochastic jump effects that
were not very well understood. The mean-field analysis performed here was done in a three-variable
setting where it was possible to shift the position of the unstable state to a non-physical regime, and
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thus minimizing its interference with the flow of trajectories towards the upper stable steady state.

The difference in outcomes between this study and previous ones can also be attributed to the
mechanical condition we considered in this study (fixed stress). This may be understood intuitively by
the fact that, when stress is fixed, a small adhesion will have a correspondingly small load. However,
when load is fixed [27, 28, 33, 46], the integrin bonds break too quickly for the equilibrium with area
A˚ to be readily attained. In previous models of clustered bonds, there was no explicit adhesion area,
and therefore adhesion stress could not be defined in these models [27, 28, 33, 46]. In this study, we
resolved this by considering the adsorption dynamics of the adaptor proteins which form the adhesion
plaque [29]. Experimentally, NA formation and area were found to be independent of traction force,
while they disassemble in a force-dependent manner [17]. These findings are consistent with our model
predictions under fixed stress (but not fixed load), showing that NAs assemble to a roughly constant
area for a wide range of stresses and disassemble at high stresses.

Similar to previous studies, the model also showed that there is a regime in parameter space within
which the stable manifold of the saddle points acts as a barrier that can be crossed with stochastic
effects (see region 3 in Fig. 2.5B and Fig. 2.6B). Within this regime, we demonstrated that fixing
adhesion stress (but not load) allows for the assembly of adhesions, and that bistability between the
elevated steady state S˚ and the metastable state S̃˚ plays a significant role in determining the dynamics
of assembly in this region of parameter space. When we fixed the value of load (rather than stress), we
found that assembly is exceedingly rare for non-zero values of load (> 1% the critical load; results not
shown).

As suggested above, the mechanical control of the NA life-cycle, including assembly, stability and
disassembly may be explained by a bistable-switch (possessing a hysteresis) with respect to adhesion
stress and that this stress, rather than the total adhesion load, is the mechanical parameter conserved
during noise-driven NA-assembly. As stress increases, NA-area may increase (causing adhesion rein-
forcement) when extracellular ligand density is low or remain relatively constant when it is high. Once
stress becomes large enough, NA-disassembly can be initiated either by stochastic effects driving the
system beyond a threshold corresponding to the stable manifold of saddle points in the middle branch
of the bistable switch or an excess build-up of force pushing the system beyond the saddle-node of this
switch.

Increasing the complexity of the model presented here by considering different types of adaptor
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proteins forming the adhesion plaque to examine their effects on dynamics represents an interesting di-
rection to pursue. This could be also combined with studying the effect of actin branching and bundling
on NA dynamics. The latter, although very technically challenging, can provide further insights onto
how they may exert force on the adhesion plaque.
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2.5.1 Model Framework

The primary process which results in the formation of a nascent adhesion (NA) is the clustering of in-
tegrins [72]. It has been suggested that very small non-specific clusters of integrin spontaneously form
even in the absence of ligand binding; however, their size and spatial distributions were inconsistent
with that of NAs formed in the presence of ligand binding [17]. Generally speaking, in the presence
of ligand, NAs were about twice as large (compared to those generated in the absence of ligand), ex-
hibited high variability in their integrin content, and yet had a relatively restricted distribution in their
size [17]. This suggests that (i) there is an intrinsic clustering mechanism for integrins, (ii) ligand bind-
ing enhances this clustering mechanism to form NAs, and (iii) the area of the cluster is not directly
proportional to its integrin content (i.e., there is a nonlinear relation between NA-area and the number
of integrins forming it). Interestingly, it has been observed that integrins exhibit reduced diffusivity
within adhesions (defined experimentally by the area underneath an adaptor protein plaque), by at least
a factor of three [24]. This decrease was found to be dependent on interactions with adaptor proteins
through the cytoplasmic domain of integrins, suggesting that membrane-proximal adaptor proteins
may exert a drag force on integrins [24]. Integrins also undergo extended periods of immobilization
which further decreases their lateral mobility. The frequency of long-lived immobilization is enhanced
inside adhesions and has been found to be dependent on integrin’s interaction with both extracellular
ligands and adaptor proteins [24,54]. Thus we propose that the NA-area, as defined by the adaptor pro-
tein plaque, provides an environment within which integrin lateral mobility is decreased due to both a
reduced diffusion coefficient and increased likelihood of binding to extracellular ligand.

Reduced integrin lateral mobility, due to their interactions with the adaptor protein and extracel-
lular ligands plaque, may explain aggregation of integrins into micron-scale clusters. This, however,
does not explain the presence of the adhesion plaque. Firstly, its was previously argued, from a the-
oretical perspective, that adhesion plaques must be self-assembling structures in order to explain the
stress-induced growth of adhesions [31]. Meanwhile, the adaptor protein talin and its interaction with
integrins have been repeatedly found to be required for the formation of NAs [17,80,81]. These results
suggest, that the self-assembly of adhesion plaques requires both integrin and adaptor proteins to be
capable of forming complexes with one another. Furthermore, increased extracellular ligand density
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(and thus integrin density inside the adhesion) has been shown to increase the residence time of the
adaptor protein FAK inside the adhesion plaque [53]. Additionally, the diffusivity of the adaptor pro-
tein paxillin shows significant heterogeneity in its value inside a single adhesion plaque, suggesting
that paxillin may exist in more than one association state within the adhesion [50–52]. We propose
that adaptor proteins form membrane-proximal aggregates around a seed of a small number of inte-
grins, and that subsequent retention of integrins inside the adhesion area (as discussed above) allows
for growth of the adhesion plaque due to the decreased mobility of adaptor proteins. This decreased
mobility manifests itself in the model as a decrease in the off-rate of adaptor proteins in the presence of
integrins. The precise nature of the mechanism which reduces the off-rate will depend on the specific
adaptor protein in question. In the model developed herein, we generically describe it as a reversible
tethering to the membrane by integrin.

Together, these effects constitute a mechanism for the self-aggregation of cytoplasmic adaptor
proteins and integrins, a phenomenon we refer to hereafter as co-aggregation. More specifically, we
propose that (i) integrin lateral mobility is modulated locally by the presence of membrane-proximal
adaptor proteins, and (ii) adaptor proteins are effectively tethered to the membrane by integrins. In this
manner, the presence of a protein of one type increases the probability that a protein of the other type
will be present in close proximity. This positive feedback between the two types of proteins would
allow them to serve as templates for one another in the formation of membrane-proximal aggregates of
adaptor protein (i.e., an adhesion plaque). We incorporate this mechanism into a mathematical model
that satisfies the following assumptions (see Fig. 2.1A):

1. Adaptor proteins are modeled as either being in a well-mixed cytosolic bulk phase or in a spa-
tially confined region Ω ptq P R2 which delimits the adhesion. Their density ρ inside NAs (i.e.,
the domain Ω) is assumed to be uniform. Furthermore, we impose the conservation of matter by
assuming that the adaptor protein content of a NA is drawn from a finite reservoir of NP adaptor
proteins, and therefore the number of cytosolic adaptor proteins Ncyto is given by

Ncyto “ NP ´ ρA, (S1)

where A :“ }Ω} is the surface area of the adhesion plaque. This means that, as NAs grow very
large, they will deplete the cytoplasmic pool of adaptor proteins until an equilibrium between
their growth and shrinkage rates is reached. When adaptor proteins are in the adhesion plaque,
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they can either be associated with the rest of the adaptor protein scaffold or they may be bound
to an integrin receptor where they become reversibly tethered to the membrane. We assume that
individual adaptor proteins leave the adhesion at a rate koff and p1 ´ δq koff , where δ P p0, 1q,
when they are untethered and tethered to integrin, respectively. This difference in off-rate in the
presence of integrins is what leads to the aggregation of adaptor proteins around integrins.

2. We model integrins as 2-dimensional (2D) Brownian particles that diffuse freely outside the
adhesion, and exhibit reduced mobility within the adhesion domain Ω. This reduced mobility
is implemented through two biophysical mechanisms. In the first, we assume that the diffusion
coefficient of integrins is lower when they are underneath the adhesion plaque, i.e.,

D pxq “

$

&

%

Din x P Ω

Dout otherwise
, (S2)

where Din ď Dout are the diffusion coefficients inside and outside the adhesion domain Ω,
respectively [24]. In the second, we make the simplifying assumption that only the adhesion
environment provides the necessary ingredients for the long-lived immobilization of integrin,
which we attribute to ligand binding [24]. Therefore, we assume that integrins inside Ω may
bind to an extracellular ligand and become reversibly immobilized with a binding affinity Kbind.

2.5.1.1 Spatial Assumptions

We consider a periodic array of adhesions on a square lattice with an inter-adhesion spacing h. This
simplifying assumption of periodicity allows us to study the problem on a small h ˆ h square patch
of membrane that is assumed to receive no net flux of matter from adjacent patches (see Fig. 2.1B)
because they are all in equilibrium. We further consider that the h ˆ h square patch contains NI

integrins and sits under the adhesion plaque consisting of NP adaptor proteins. Integrins are assumed
to diffuse in a 2-dimensional plane (i.e., the membrane), and a circular aggregation of adaptor proteins
centered at the origin with an area A that delimits the region defining the adhesion plaque (i.e., Ω “
!

px, yq : π
`

x2 ` y2
˘

ď A
)

).
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2.5.1.2 Integrin Reaction-Diffusion Model

In order for the force transmission through an adhesion to the ECM to be effective, its integrins must
bind to their extracellular ligands. When bound to their ligand, integrins exhibit a diverse range of
mobilities [24,82,83]. Generally, we can expect the integrins to have a reduced mobility upon binding
to ligand. We consider the extreme case of complete immobilization in order to understand what can
be expected at most from the ligand binding process. Within an adhesion, only a certain proportion of
integrins are bound to ligand [24, 54, 84]. We denote the total number of integrins inside the adhesion
area by Nin, while Lin and Min denote the number of liganded and mobile integrins, respectively (i.e.,
Nin “ Lin ` Min). If we assume that ligand-binding induced immobilization happens only within the
adhesion, then the dynamics of Min is given by

9Lin ptq “ kunbind pKbindMin ´ Linq :“ Rbind,

where kunbind is the unbinding rate of an integrin, and Kbind is its binding affinity, given by

Kbind “
kbind
kunbind

,

with kbind denoting the first order binding rate of a single integrin (assuming fixed extracellular ligand
density). In order to account for variations in the density of extracellular ligand, denoted rLigands, we
use the expression

kbind “ kbind rLigands , (S3)

where kbind is a the second order binding rate.

An unbound integrin is assumed to diffuse freely in the cellular membrane. We use the Fokker-
Planck (FP) diffusion equation to describe the spatiotemporal evolution of the unbound integrin density
I pxq. Such a model has a local flux j pxq, given by

j pxq “ ∇
`

D pxq I pxq
˘

, (S4)

where ∇ is the gradient operator and Dpxq is the diffusion coefficient. In situations with inhomoge-
neous diffusion coefficient, such as Eq. S2, this FP flux equation is more applicable than the more
widely used Fick’s law [85]. We are interested in the time-invariant (equilibrium) behaviour of the ad-
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hesion; we therefore assume zero-flux boundary conditions on the outer edge of the membrane patch.
This corresponds to finding a solution where the flux is zero everywhere. For a piecewise constant
diffusion coefficient, such a solution is expected to be piecewise constant at equilibrium, given by

I pxq “

$

&

%

Iin x P Ω

Iout otherwise,

where Iin (Iout) is the density of unbound integrins inside (outside) the adhesion [86]. However, the
discontinuity in Eq. S2 leads to to a singular flux at the interface between the adhesion plaque boundary
and the rest of the membrane, given by

j0 “ pDoutIout ´ DinIinq r̂,

where r̂ is the radial unit vector [87]. As time tends towards infinity, diffusion smooths out all concen-
tration gradients such that the non-singular portion of the flux in Eq. S4 becomes zero irrespective of
the integrin densities in and out of the adhesion. Therefore, near equilibrium, we take the total flux of
free integrins into the adhesion due to diffusion to be the integral along the interface of the singular
component of the flux

Jin “

2π
ż

0

j0 ¨ r̂rdθ “ pDoutIout ´ DinIinq 2πr,

where r is the radius of the adhesion. We note that Iin “ Min{A and thus, by imposing conservation of
matter, we eliminate the variable Iout to obtain the relation Iout “ pNI ´Ninq{ph2´Aq. Finally, the rate
of change of unbound integrins inside the adhesion is given by the difference between the integrated
diffusive flux and the binding reaction rate, i.e.,

9Min “ Jin ´ Rbind. (S5)

We have assumed in the derivation of Eq. (S5) that diffusion reaches its equilibrium within NAs.
Although it is often assumed that NAs are far from equilibrium due to their short stability period
[35,39,47,49], recent evidence suggests that conditions preventing NA-disassembly produces integrin
clusters with very similar properties (in terms of number and size) to those that do disassemble [17].
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This indicates that NAs come very close to their equilibrium before disassembling, and motivates the
treatment of integrin dynamics near the equilibrium of the diffusion process in this study.

2.5.1.3 Adhesion Plaque Adsorption Model

To capture the kinetics of adaptor protein aggregation into a membrane-proximal plaque, we adapt the
“Bulk-on/Bulk-off” model of adsorption [29], where adhesions are assumed to be able to grow (shrink)
from any point in its interior by addition (subtraction) of adaptor proteins that are incorporated into the
adhesion with a uniform density ρ. Adaptor proteins are assumed to be added to an adhesion at a rate

γ pAq “ Ak0
onPout, (S6)

where Pout “
Ncyto

h2 is the density (per unit area) of free adaptor proteins. Furthermore, we consider that
integrins inside the adhesion stabilize the adhesion plaque leading to less adaptor proteins leaving the
adhesion per unit time. In the model, this is implemented by assuming that adaptor proteins can exist in
two states within the adhesion, one which is reversibly tethered to the membrane by integrins and the
other loosely associated with adjacent adaptor proteins. Adaptor proteins can leave the adhesion plaque
with a rate koff and p1 ´ δq koff for the untethered and tethered states, respectively. Assuming that fast
kinetics govern the association of integrins and adaptor proteins within the adhesion, we prescribe a
phenomenological Hill-function expression for the off-rate of an adaptor protein, given by

κ
`

Nin{A
˘

“ koff

˜

p1 ´ δq ` δ
bn

bn `
`

Nin{A
˘n

¸

, (S7)

where Nin{A is the total integrin density in the adhesion, koff is the maximal observed degradation
rate of the adhesion, δ is the magnitude of the co-aggregation between integrins and adaptor proteins
(a value of 0 indicating no co-aggregation while a value of 1 indicating full co-aggregation), n is the
degree of cooperativity between integrins for the tethering of adaptor proteins (n “ 1 indicates no
cooperativity while n ą 1 indicates positive cooperativity), and b is the integrin density needed to
tether 50% of adaptor proteins. Based on this, we obtain the following dynamic equation for adhesion
area

dA

dt
“

1

ρ

`

γ pAq ´ Aρκ pIinq
˘

“ A

«

k0
onPout

ρ
´ κ

`

Nin{A
˘

ff

.
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2.5.1.4 Geometric Constraints

The complete set of equations governing NA dynamics are given by Eqs. 2.1a-2.1c (see main text).
The equilibria of the system lie at the intersection of its nullsurfaces. The plane A “ 0 is one of the
A-nullsurfaces, while

L˚
in “ KbindM

˚
in (S8)

is the Lin-nullsurface, and

M˚
in “

A˚CIKinh
2

A˚β ` h2
(S9)

is the Min-nullsurface, where Kin “ Dout{Din and β “
`

Kin p1 ` Kbindq ´ 1
˘

. At the intersection of
these nullsurfaces, we have the steady state Z “ pA,Min, Linq “ p0, 0, 0q, representing the unclus-
tered configuration of adhesion proteins (with both adaptor proteins and integrin receptors uniformly
distributed in space). The second A-nullsurface (see Eq. 2.2) forms with the other nullsurfaces a steady
state where adhesion proteins are co-aggregated into a dense cluster. The conditions which cause the
system to switch between the unclustered and the clustered steady states are analyzed in the main text.
Nonetheless, from Eq. S9, we can see that Nin Ñ 8 as CI Ñ 8 provided that A ‰ 0. In this limit, in-
tegrins have their maximum effect on the aggregation of adaptor proteins, and thus the clustered steady
state will reach some maximum area A8. According to the second term in Eq. 2.1a, this maximum
area is given by

A8 :“ h2

ˆ

CP

ρ
´

1 ´ δ

Kon

˙

, (S10)

where Kon “ k0
on{koff . The first term in Eq. (S10) is the maximal fractional area the adhesion plaque

can attain if all adaptor proteins become stuck to the membrane, while the second term is a correction
factor that accounts for the finite binding affinity of adaptor proteins being absorbed into the plaque.
This indicates that A8 depends linearly on the adaptor protein density, and remains finite regardless
of the integrin density. It is important to consider the geometric assumptions of our model, in order
to ensure that its predictions are physically meaningful. By letting ϕ “ rpCP {ρq ´ pp1 ´ δq{Konqs,
we obtain A8 “ h2ϕ. For a circular adhesion lying strictly within a square lattice cell, we must have
ϕ P

“

0, π{4
˘

in order for the results of our model to remain biophysically relevant.

Generally, if we were to formulate this model for some other lattice with a unit cell area Amax

(e.g., Amax “ h2 for the square lattice), we can adapt all our results by replacing h2 with the particular
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value of Amax. In such a case, the upper bound on ϕ will depend on the geometry of the lattice and the
adhesion; however, in general, we will always have ϕ ă 1 as a maximum upper bound. For ϕ ě 1, our
circular adhesions will take up more area than is available for the given lattice, and thus the membrane
will be saturated with adhesion plaque on the length scale h. Because ϕ is independent of the lattice
geometry, we interpret this upper bound as being set by the biophysical and chemical properties of the
proteins involved rather than an artifact of the periodic lattice assumption.

2.5.1.5 Transcritical Bifurcation

The switch between the unclustered Z “ p0, 0, 0q and clustered S˚ “ pA˚,M˚
in, L

˚
inq steady states

occurs at a transcritical bifurcation point. In what follows, we analyze the stability properties of this
steady state. As discussed in the main text, for simplicity we focus on the case n “ 1. Under these
conditions, the Jacobian matrix of the system evaluated at the unclustered steady state has three eigen-
values, two of which are strictly negative and one that can change its sign, given by

λ1 “ k0
on

˜

ϕ ´
bδ

bKon ` ĈI

¸

.

Hence, the unclustered steady state is unstable if λ1 ą 0. A switch in the sign of λ1 can occur when
certain parameters of the model cross a threshold. For the intracellular densities CI and CP , these
thresholds are given by

CI ą C;

I :“
b pδ ´ ϕKonq

ϕKonKin p1 ` Kbindq
(S11)

and

CP ą C;

P :“
ρ
`

b ` Kin p1 ` KbindqCI p1 ´ δq
˘

Kon

`

b ` Kin p1 ` KbindqCI

˘ ě 0, (S12)

respectively. Moreover, the threshold for the binding affinity Kbind is given by

Kbind ą K;

bind :“
bδ ´ ϕKon pb ` CIKinq

ϕCIKinKon

which, according to Eq. S3, can produce the following threshold for ligand concentration

rLigands ą rLigands
; :“

kunbind

kbind

bδ ´ ϕKon pb ` CIKinq

ϕCIKinKon

. (S13)
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Once the system passes through the transcritical bifurcation, the model gives birth to the clustered
steady state S˚ representing a stable adhesion plaque with area A˚ that contains N˚

in “ M˚
in ` L˚

in

integrins.

2.5.1.6 Integrin Mechanosensitivity

Integrin mechanosensitivity is thought to arise from mechanically-induced conformational changes. It
has been suggested that the mechanical extension and separation of the extracellular legs of integrin
receptors results in a long-lived bound state [44, 45]. We incorporate these ideas into our model as a
force-dependent ensemble average lifetime

@

τ pfq
D

, where f is the force applied on the integrin. This
is modeled using the two-pathway model of bond-dissociation [88], given by

@

τ pfq
D

“ τ0

´

def̂pc`dq
` c

¯ 1

cefd ` def̂pc`dqe´cf
, (S14)

where τ0 is the bond lifetime with zero applied force, f̂ is the force which optimizes the bond lifetime,
and c, d ą 0 are coefficients. These coefficients are determined numerically by first setting

d “
cτ̂

τ0ecf̂ ´ τ̂
`

1

f̂
ˆ W

¨

˚

˝

´
cf̂τ0e

´
cf̂ τ̂

τ0e
cf̂ ´τ̂

τ0ecf̂ ´ τ̂

˛

‹

‚

,

where τ̂ “

B

τ
´

f̂
¯

F

is the optimal bond lifetime and W p¨q is the W-Lambert function, followed by

varying c in such a way that
@

τ p60 pNq
D

« 0.1 s (see Fig. 2.8 for profile and Parameter Estimation for
numerical values). Finally, this give the numerical expression

@

τ pfq
D

“
1

0.666667expp´0.0876215F q ` 6.60165 ˆ 10´8 expp0.313789fq
(S15)

In order to incorporate the mechanosensitive properties of integrins into our binding model, we set
the integrin unbinding rate kunbind to be the reciprocal of

@

τ pfq
D

, the ensemble bond lifetime. This
means that

Kbind “ kbind
@

τ pfq
D

, (S16)
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(i.e., all bound integrins are assumed to bear an equal load). The numerical value of f is determined
by assuming that the NA experiences a fixed stress (force per unit area), given by

σ “
fLin

A
. (S17)
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Figure 2.8: Integrin-ligand bond lifetime,
@

τ pfq
D

, as a function of f , the applied force per integrin.
The biphasic profile resembles that obtained for catch bonds between integrin and fibronectin [41].

2.5.1.7 Stochastic Simulations

We note that the integrin flux described by Eq. S5 is only valid for small perturbations around the
steady state as it neglects the effects of concentration gradients. In order to more accurately capture the
full integrin dynamics specified in Eq. S4 far from equilibrium, we re-formulate our model as a discrete
system, where we use a master equation approach to describe the aggregation of adaptor proteins at
the adhesion plaque and the reversible binding of integrins within the adhesion region. Furthermore,
to account for the diffusion of integrins along the membrane, we use a Brownian dynamics approach
where each integrin is given a position x⃗ ptq that evolves in time according to a Brownian motion
with local diffusivity given by Eq. S2, and use the Euler-Maruyama update scheme to obtain the time-
dependent positions of integrins [89]. By denoting the number of adaptor proteins in the adhesion
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plaque by i, we obtain the following total number of integrins νptq inside a NA of area A “ i{ρ

ν ptq “

NI
ÿ

k“1

$

&

%

1 if πx⃗k ptq ¨ x⃗k ptq ď i{ρ

0 otherwise,

where x⃗j ptq is the position of the j th integrin at time t. Setting pi to be the probability of having a NA
with i adaptor proteins, we conclude that the aggregation of adaptor proteins at the adhesion plaque
obeys a master equation, given by

ρ 9pi ptq “
`

gi´1pi´1 ` si`1pν ptqqpi`1

˘

´
`

gi ` sipν ptqq
˘

pi, (S18)

where gi (si) is the growth (shrinkage) reaction-rate, defined by gi “ γ
`

i{ρ
˘

and si pνq “ iκ
`

ρν{i
˘

,
respectively. Letting ℓj be the probability of having j bound integrins inside the adhesion, we obtain
the following master equation for binding kinetics of integrin

9ℓj ptq “ kbind
`

ν ptq ´ pj ´ 1q
˘

ℓj´1 ` pj ` 1qkunbindℓj`1 ´

´

kbind
`

ν ptq ´ j
˘

` jkunbind

¯

ℓj. (S19)

When integrins become bound, we reversibly set their diffusion coefficient to zero, and set their un-

binding rate to kunbind “

A

τ
`

iσ{ρj
˘

E´1

. The time-course of the chemical reactions is realized through
a temporal Gillespie algorithm, that allows for efficient stochastic simulations of reactions with time-
dependent propensities [90]. This is necessary to account for the fact that both reactions have propen-
sities which depend on ν ptq, and that integrins may diffuse into or out of the adhesion independently
of the reactions governed by Eqs. S18 or S19.

2.5.1.8 Parameter Estimation

Model parameter values are inferred, when possible, using algebraic expressions from the model
equated to values obtained from experimental measurements. In the main text, we have identified two
regions of interest in parameters space, which we have denoted regions 2 & 3. The assumptions inher-
ent in each region leads to slightly different algebraic expressions for model parameters. We begin by
discussing the expressions that the two regions have in common, followed by explaining the distinct
approaches used in each region.

Firstly, we introduce the relative enrichment of integrins inside the adhesion E, which has been
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observed to be in the range of E P r2, 12s in various physiological conditions [24, 78]. Using the
conservation of matter for integrins, we obtain the following expression for their density

CI “

Iin

´

A1 `
`

h2 ´ A1

˘

{E
¯

h2
, (S20)

where Iin is the density of integrins inside the adhesion, A1 is the mean area of NA (to be estimated
from experimental measurements), and h is the mean inter-adhesion spacing. The parameter h is de-
termined using

N̄˚
in :“ lim

KbindÑ8
M˚

in ` L˚
in “ CIh

2

which can be combined with Eq. (S20) to yield

h “

ˆ

A1 p1 ´ Eq ` E
N2

Iin

˙1{2

, (S21)

where N2 is the number of integrins in a NA when integrin binding is very strong (also to be determined
from experimental measurements). Secondly, an expression for the parameter b can be obtained by
solving Iin “ N˚

in{A˚, with N˚
in “ L˚

in ` M˚
in , to obtain

b “
IinKon

`

´pβ ` 1qCI ` βϕIin ` Iin
˘

pβ ` 1qCIKon ´ Iin p´βδ ` βϕKon ` Konq
, (S22)

where the estimation of the parameters Kon and Kin (implicit in β) must be dealt with differently in
the two regions. We may also use the model steady states to derive the expression

E “
N˚

in{A˚

`

NI ´ N˚
in

˘

{ ph2 ´ A˚q
“ p1 ` KbindqKin

which may be rewritten as an expression for the binding affinity, given by

Kbind “
E

Kin

´ 1. (S23)

The parameter δ is estimated by considering the ratio of FRAP recovery times of the intermediate and
slow fractions of the adaptor protein paxillin and vinculin within focal adhesions [50]. This ratio is
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in the range of 20-80, corresponding to a value of δ P r0.95, 0.99s. We also estimate the value of the
mean density of adaptor proteins prior to adhesion formation, CP , using the literature value of paxillin
concentration rpaxillins « 2.3µM multiplied by an estimate of cell volume Vcell « 1000µm3 to get
the total number of paxillin molecules in the cell Npax « 1.38 ˆ 106 [58]. We then use the simple
approximation CP « Npax{Acell “ 8050µm´2, where Acell « 172µm2 is the estimated cell area
determined from analysis of imaging data [17], to obtain CP « 8050µm´2. Finally, the parameters
koff and ρ are chosen in such a way that stochastic simulations of adhesion disassembly/assembly
have a timescale and stochasticity comparable to that observed experimentally [49], respectively.

Table 2.1: Auxiliary parameter values used in the determination of model parameters (see Table 2.3 for model parameter
values).

Symbol Definition Estimated Value Reference(s)

E Fold-enrichment of integrins within the adhesion 12 [24, 78]

Iin Mean density of integrins within the adhesion 6600 µm2 [17]

A1 Mean NA-area 8.7 ˆ 10´3 µm2 [17]

N2 Number of integrins inside NAs when Mn2` is added to extracellular medium 75 [17]

rpaxillins Physiological paxillin concentration 2.3 µM [58]
Vcell Volume of a mouse embryonic fibroblast (MEF) cell 1000 µm3 -
Acell Area of a MEF cell 172 µm2 [17]
N3 Number of integrins inside NAs in the absence of extracellular ligands 6 [17]
A3 Mean NA-area in the absence of extracellular ligands 2.7 ˆ 10´3 µm2 [17]

xτ p0 pNqy Ensemble average of integrin-ligand bond lifetime in the absence of force 1.5 s [41]
xτpf̂qy Ensemble average of the optimal integrin-ligand bond lifetime 30 s [91]

f̂ The force that optimizes bond lifetime 37 pN [41]
xτ p60 pNqy Ensemble average of the integrin-ligand bond at very large forces 0.1 s [41]

Region 3 From a super-resolution quantification of adhesion size and integrin content [17], we can
obtain the following estimates Iin « 6600 µm-2 and A1 P r7, 9s ˆ 10´3 µm2. The integrin clusters
produced by the same study [17], upon exposing cells to Mn`2 (which switches integrins into a high-
affinity state), can be used to obtain the estimate N2 « 75. Using Eq. (S21), with E « 12 (i.e.,
by assuming that NAs are among the most enriched in integrins) and A1 « 8.7 ˆ 10´3 µm2, we
obtain h « 0.2µm. This estimate is further verified visually by analyzing the spacing between NAs in
images [17]. Furthermore, region 3 is differentiated from region 2 by the fact that it produces adhesions
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even in the absence of ligand binding. Experimentally, in the absence of ligand, it was found that small
clusters of integrin containing N3 P r4, 19s integrins form with an area A3 P r1, 4.4s ˆ 10´3µm2 [17].
We use these quantifications to aid us in our parameter estimation by setting them equal to appropriate
model steady states, i.e., by letting

N3 “ M̃˚
in ` L̃˚

in (S24)

and
A3 “ Ã˚. (S25)

These two expressions are then used in conjunction with Eqs. (S20), (S22), and (S23) to yield

Kin “

N3

´

`

A1pE ´ 1q ` A3

˘

Iin ´ EN2

¯

A3 pN3 ´ N2q Iin
« 1.2, (S26)

Kon “

δ
´

EN2

Iin
´ A1pE ´ 1q

¯

`

A3 pA1 ´ A8q Iin ` N3 pA8 ´ A3q
˘

pA8 ´ A1q pA8 ´ A3q pN3 ´ A3Iinq
« 0.70, (S27)

Kbind “
pA1 ´ A3q pE ´ 1qN3Iin ` EN2 pA3Iin ´ N3q

N3

´

EN2 ´
`

A1pE ´ 1q ` A3

˘

Iin

¯ « 8.8, (S28)

and
b “

A3Iin pA8 ´ A1q ` N3 pA3 ´ A8q

pA1 ´ A3qA3

, (S29)

where we have used δ « 0.97, A2 « 2.7 ˆ 10´3 µm2, and N3 « 6 (b remains to be determined).
The parameter A8 is determined from data. More specifically, using the maximum a posteriori (MAP)
estimate of the relation between adhesion area and its integrin content (see dotted line in Fig. 2.2). This
data is fit to the A-nullcline given by Eq. (2.2) using a nonlinear least squares approach and taking
Eq. (S29) into consideration . The values of the fit parameters and their 95% confidence bounds are
provided in Table 2.2. The confidence interval on the quantities b and A0 are relatively large, indicating
that they are not well constrained by the data at hand. Nonetheless, these confidence intervals do not
contain zero and only cover one order of magnitude, so we deem them to be acceptable. This completes
model parameter estimation in Region 3 necessary to generate quantitative understanding of the model
developed in this study.
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Table 2.2: Least-squares estimates of model parameters and
confidence intervals obtained from a nonlinear least squares
fitting of the A-nullcline to data.

Symbol Least-Squares Estimate 95% Confidence Interval

A8 0.0124µm2 r0.0118, 0.0129s µm2

b 463µm´2 r68.8, 806s µm´2

A0 ´0.038 r´.0204,´0.239s µm2

Region 2 Region 2 (rLigands
;

ą 0) can be distinguished from region 3 (rLigands
;

ă 0) by the fact
that NAs will not form in the absence of ligand. As discussed in the main text, the transition from
region 2 to region 3 may be achieved by decreasing Kon. We therefore keep the numerical values of
all other parameters determined in region 3 as is, and use a different formalism for determining Kon.
More precisely, we use Eqs. (S13), (S20), and (S21) to obtain

Kon “
bδ
`

EN2 ´ A1pE ´ 1qIin
˘

2

A8Iin

˜

N2

ˆ

bE ` IinKin

´

rLigands; kbind

kunbind
` 1

¯

˙

´ A1bpE ´ 1qIin

¸ , (S30)

where we have used previous experimental finding to estimate rLigands
;

« 200µm´2, and the ratio
kbind{kunbind “ 0.005 was chosen such that the equilibrium of NA-area A˚ « A8 for ligand densities
given by rLigands ě 10, 000µm´2 (see Fig. 2.3 in main text) as suggested by the spreading behaviour
of cells when cultured on substrates with variable ligand density [75, 92]

Mechanosensitivity of Integrin The coefficients in Eq. S14 are determined based on atomic force
microscopy data on the bond lifetime of integrins [41,91]. More specifically, we have

@

τ p0 pNq
D

“ 1.5

s, xτy has a maximum at 37 pN,
@

τ p37 pNq
D

“ 30 s, and
@

τ p60 pNq
D

“ 0.1 s. Using these values,
the coefficients d « 0.32 and c « 0.088 that appear in Eq. (S14) are determined (as discussed before)
algebraically and by numerical optimization, respectively.
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2.5.2 Conditional Expectation Analysis

2.5.2.1 Introduction

In numerous scientific applications, quantitative measurements of a system near a quasi-equilibrium
are made and then analyzed. Rather than providing a precise description of a system, we may assume
that it can be (at least partially) described by a set of measurements (e.g., a population may be described
by the body temperature of its individuals, or a macro-molecular complex may be described by its mass
and charge). Let us consider the simple experimental scenario in which measurements of two quantities
of interest X and Y are made. These may represent the same quantity in two different conditions or
two different quantities in the same condition. If there is a relation between the two measurements X
and Y due to the intrinsic interactions of the system under study, one may attempt to derive this relation
from experimental data. However, this task is complicated by the presence of stochastic fluctuations,
measurement error, heterogeneity between realizations, and large data sets. With this in mind, let us
consider a pair of correlated random variables pX, Y q measured simultaneously from a dynamical
system near a unique equilibrium

`

X̄, Ȳ
˘

using a homoscedastic model

pX, Y q “
`

X̄, Ȳ
˘

` pχ, γq ,

where χ (along with γ) is an independent identically distributed additive noise. If both quantities X

and Y have an effect on the dynamics of the physical system being observed, the equilibrium Ȳ can be
expressed as

Ȳ “ f
`

X̄
˘

. (S31)

Given samples of pX, Y q, collected under a variety of experimental conditions, it may not be straight-
forward to estimate f p¨q if the values of the corresponding

`

X̄, Ȳ
˘

cannot be readily determined. This
situation may arise when studying phenomena at the sub-cellular level, due to high levels of both
intracellular and inter-cellular heterogeneity present even when the experimental conditions are fixed.
In order to circumvent this difficulty, we employ the probability distributions of X and Y instead.
Assuming that χ (γ) is independent of X̄ (Ȳ ), we can compute the observed probability density of X
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(Y ) as

PX “ PX̄ ˚ Pχ,

PY “ PȲ ˚ Pγ,

where ˚ denotes the convolution operator. Assuming that f is a monotonic function, the the probability
distribution of Ȳ is related to that of X̄ by the change of variable equation, given by

PȲ pfq “ P
`

Ȳ “ y |f
˘

“
PX̄ pxq
ˇ

ˇf 1 pxq
ˇ

ˇ

, (S32)

where f 1 is the derivative of f and x is the pre-image of y (i.e., x “ f´1 pyq).

Experimentally, one may repeatedly measure both X and Y and approximate the marginal distri-
butions PX and PY by binning data to make the histograms PX and PY, respectively. In what follows,
we will explain a methodology for determining f from these histograms.

2.5.3 Relation to Previous Work

The task of deducing a transformation f p¨q from data is central to numerous machine learning tech-
niques. However, these techniques differ in their motivation from the data analysis task we have pre-
sented above. For example, in the unsupervised learning methods of density estimation and manifold
learning/unfolding the transformation f is used to more efficiently represent data in a so-called repre-
sentation space, which is useful when dealing with very high dimensional data [93–96]. Such methods
assume that PX is unknown and use well known parametric distributions as a prior on X in their infer-
ence of f . Such approaches are inappropriate for our needs as they ignore the data PX, and thus it is
unlikely that the inferred f would satisfy Eq. (S32). Alternatively, Gaussian Process models and Gener-
alized Additive Models have both been used in supervised learning tasks to infer relationships between
experimentally measured variables X and Y [97–99]. However, these approaches require pairing of
the data into coordinates pX, Y q, which may not always be possible. On the other hand, our approach
requires only knowing the marginal distributions PX and PY which may be readily estimated from
unpaired (or paired) samples of X and Y . Moreover, a great deal of the algorithmic complexity seen in
the literature is motivated by issues which arise in high-dimensions [100], while our data is intrinsically
one-dimensional.
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2.5.3.1 Overview of the Algorithm

Given the experimentally determined discrete estimates PX and PY, we propose decomposing the
problem of estimating f into two steps:

1. Finding a maximum a posteriori (MAP) discrete estimates of PX̄ and Pχ, which we denote P̂X̄

and P̂χ, respectively. This may can be accomplished using the blind deconvolution algorithm
[101]. We note that it is also possible to do the same for PȲ and Pγ , but without the mapping f

(or f´1) it is unclear whether these estimates satisfy Eq. (S32).

2. We estimate f and Pγ by solving the minimization problem

#

minf,Pγ KL
`

PȲ pfq ˚ Pγ |PY

˘

` λBV
`

PȲ pfq
˘

subject to f 1 ą 0, Pγ ě 0
›

›Pγ

›

› “ 1,
›

›γPγ

›

› “ 0,
(S33)

where KL
`

p |q
˘

“
ş8

´8
p pxq log

`

p pxq {q pxq
˘

dx is the Kullback-Leibler Divergence, PȲ pfq

is given by Eq. (S32), λ is a non-negative parameter, and BV puq “
›

›u1 pxq
›

›

2
is a Tikhonov

regularization term [102] which limits the irregularity of the estimate PȲ . Here we have formally
restricted our optimization to monotonically increasing functions (f 1 ą 0), but we may also
consider monotonically decreasing functions by substituting in the constraint f 1 ă 0.

Figure 2.9: Schematic overview of the computational approach used to estimate PY given PX , fpX̄q,
and Pγ . The quantities that we seek to infer (fpX̄q and Pγ) are marked with :.
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2.5.3.2 Parametrization

Generally speaking, Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC) tech-
niques, produce samples of parameters θ, some of which may be used to estimate f . In this section, we
detail our approach for reconstructing f from a given set of parameters θ. In the following section, we
detail how to compare the experimental data PY to the model prediction PY pθq “ PȲ

`

f pxq |θ
˘

˚Pγ pθq

in order to produce appropriate samples of θ.

A priori, we do not know what form the (possibly nonlinear) function f has, and thus we will
assume only that it is continuous almost everywhere. Furthermore, from the problem specification
(S33), the only constraint on the probability density Pγ is that it must have zero mean, which is too
weak of a constraint to justify using any specific parametric family of distributions. Therefore, we
reconstruct both functions in a non-parametric manner. That is, f and Pγ are treated as discrete sets of
values to be inferred using MCMC.

Let us denote the discrete ordered list of sample points for the histograms (i.e., bin centers) by

x “ rx1, x2, . . . , xM s

and
y “

“

y1, y2, . . . , yQ
‰

such that PX “P
`

X P rx,x ` dxs
˘

and PY “P
`

Y P ry,y ` dys
˘

. We aim to choose the parametriza-
tion of the function f in order to maximize the robustness of our computational approach. In order to
do this, we take into account two intrinsic properties of our optimization problem. First, equation (S32)
indicates that it is critical to know the derivative of f at the discrete values x. Therefore, we choose to
parametrize f primarily by its derivative rather than its value, which also allows for a straightforward
means of constraining f to be a monotonic function as required by (S33). With an initial value f1 for
the function f , we may reconstruct f from its derivative using the fundamental theorem of calculus:
f pxq “ f1 `

şx

x1
f 1 psq ds. Second, we aim to use the same parametrization for the entire class of

monotonic functions, including both monotonically increasing and decreasing functions, that can be
distinguished by the sign of fM ´ f1. In order to achieve both of these goals, we numerically recon-
struct the discrete values of the function f from normalized samples of its derivative f 1, defined by
ϕ :“ f 1{ pfM ´ f1q, where imposing ϕ ě 0 guarantees monotonicity. Using this parametrization, f
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can be reconstructed using the formula f pxq :“ f
`

x |f1, fM ,ϕ
˘

“ f1 ` pfM ´ f1q
“

St1,...,Mu pϕq
‰

,
where

Sj

`

f 1
˘

“

$

&

%

0 j “ 1
řj´1

i“1

f 1
i`f 1

i`1

2
pxi`1 ´ xiq otherwise

is a trapezoidal approximation to the cumulative integral of f from x1 to xj . Furthermore, we may also
compute the probability densities at Ȳ “ f pxq using

PȲ pθq :“ P
`

Ȳ “ f pxq |θ
˘

“ P̂X̄ pxq m
ˇ

ˇpfM ´ f1qϕ
ˇ

ˇ ,

where m denotes Hadamard division or the element-wise division of two vectors.

2.5.3.3 Bayesian Inference of the Transformation

In order to asses the validity of a given p2 ` M ` Qq-dimensional set of estimated parameters θ “

rf1, fM ,ϕ,Pγs, we need to compare the discrete set of experimental measurements PY pyq with the
estimated P

`

Y “ f pxq |θ
˘

:“
`

PȲ ˚ Pγ

˘

, a problem that is generally complicated by the fact that
y ‰ f pxq. To resolve this issue, we introduce an interpolant, given by

P̃Y

`

y |θ
˘

“

$

&

%

ρi `
ρi`1´ρi
fi`1´fi

py ´ fiq if D i : fi ă y ď fi`1

0 otherwise
,

where ρ “ PY

`

f pxq |θ
˘

, allowing us to create a data-fidelity function for a given θ, given by

∆P pθq “ KL
´

P̃Y

`

y |θ
˘

|PY

¯

.

Therefore, to solve problem (S33), we use the Gibbs sampler to sample θ from the posterior

π
`

θ |PY

˘

9L
`

PY|θ
˘

Pr pθq ,

where L
`

PY|θ
˘

“ exp

„

´

´

∆P pθq ` λBV
`

PȲ pθq
˘

¯

ȷ

and Pr pθq are the likelihood and prior den-

sities of θ, respectively. Given the MAP estimate θ̂ “

”

f̂1, f̂
1, P̂γ

ı

, we may readily obtain a MAP
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estimate of f , using the formula

f̂ “ f

ˆ

x
ˇ

ˇ

ˇ
f̂1, f̂

1

˙

.

138



2.5 Supporting Material

Table 2.3: Model parameter values used in the numerical simulations. Parameter values are obtained
either directly from the literature or estimated analytically using model-derived equations as indi-
cated in columns labelled source. Parameter values and sources which are different in region 3 are in
parentheses.

Symbol Definition Value
Region 2 (Region 3)

Source
Region 2 (Region 3)

δ Fractional decrease in adaptor protein
off-rate (koff ) when tethered by integrin.

0.97 Ref. [50]

b Integrin density inside adhesion which
tethers 50% of adaptor proteins

463 µm´2 Eq. (S29)

CI Mean density of integrins in the membrane 1844 µm´2 Eq. (S20) ’

h Mean distance between adhesions 0.20 µm Eq. (S21)

Kin Dout{Din 1.22 Eq. (S26)

Dout Diffusion coefficient of integrin outside the
adhesion

0.28 µm2s´1 Refs. [24, 54]

Din Diffusion coefficient of integrin inside the
adhesion

0.22 µm2s´1 Kin “ Dout

Din

Kon Affinity of adaptor protein adsorption
reaction in the absence of integrins

0.29 (0.7) Eq. (S30) (Eq.
(S27))

koff Adaptor protein off-rate in the absence of
integrins

1.0 s´1 -

k0
on Kinetic parameter governing on-rate for

adsorption of adaptor proteins into the
adhesion plaque::

0.31 s´1 (0.73 s´1) Kon “
k0on
koff

ρ Density of adaptor proteins in the adhesion
plaque

4000 µm´2 -

ϕ Maximum fractional area of a NA 0.30 Least-Squares

CP Basal density of adaptor proteins in the
cytosol

8050 µm´2 Ref. [58]

Kbind Binding affinity of single integrins 8.81 Eq. (S28)

kbind Binding rate of single integrins
(“ kbind[Ligand])

2.58 s-1 kbind “
Kbind

xτp0 pNqy

:: In order to obtain an estimate of the first order reaction rate for a bi-molecular adaptor protein
binding event, we can use Eq. (S6) with A “ ρ´1 and Pout “ CP . This yields binding rate
estimates of 0.62 s´1 and 1.5 s´1 in regions 2 and 3, respectively.
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3.1 Introduction

3.1 Introduction

Thus far, this thesis has focused primarily on the dynamics of integrin-based adhesion complexes
that serve as force-transmission points during motility. However, this function can only be carried out
if (a) cells actively produce forces and (b) those forces are directed in a manner that will lead to a
net movement of the cell. The generation of forces is primarily mediated by (i) actin polymerization
against the edge of the membrane (i.e., protrusion) and (ii) the action of molecular motors such as
myosin which causes a contraction of the actin cytoskeleton [1]. Cells coordinate these protrusive and
contractile processes by having them occur in spatially distinct regions of the cell. This results in the
establishment of a cell-front which is protrudes “forward” and a cell-rear which contracts such that it
appears to follow the cell-front. Such cells are said to be rear-to-front polarized, which is not to be
confused with the electrical polarization of cells. In this chapter we shall discuss a pattern formation
mechanism that has been the proposed for spatially segregate contractile and protrusive activity, leading
to rear-to-front polarization of the cell and its subsequent movement.

Organization of the actin cytoskeleton into structures that either allow for protrusion via actin
polymerization or myosin-driven contraction is regulated by the Rho subfamily of the ras-superfamily
of GTPases (RhoGTPases) [2–4]. Here we will focus on the two proteins Rac1 (Rac) and RhoA (Rho),
which are associated with protrusion and contraction, respectively. Rac is thought to activate the Arp2/3
complex through the protein WASP [5, 6], where Arp2/3 binds to the side of an actin filament and
nucleates a new filament at a angle of „70° with respect to the existing one, forming a branched actin
network that is characteristic of the leading edge of motile cells [7]. This forms a rigid array of filaments
which collectively polymerize and push against the membrane through a Brownian-ratchet mechanism,
leading to protrusion of the leading edge of the cell [8–12]. What is more, the polymerization of actin
filaments primes integrins receptors for high affinity binding to the extracellular matrix (ECM) [13].
This leads to the formation of molecular complexes known as nascent adhesion [14–16], which further
aid in the transmission of the polymerization force to the ECM and the forward protrusion of the cell
membrane [17]. The protein Rho, on the other hand, signals to the molecular motor myosin through
the serine/threonine kinase Rho-kinase (ROCK) which inhibits the phosphatase activity of Myosin
light chain phosphatase (MLCP). This inhibition of MLCP further releases its inhibition of myosin,
such that the motor activity of the latter protein increases, leading to the sliding of actin filaments
and an overall contraction of the actin cytoskeleton and the cell [18, 19]. Furthermore, this contraction
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leads to the reorganization of the actin cytoskeleton into contractile actomyosin stress fibres which
contract to produce the forward translocation of the cell body [20, 21], and serve as a template for
the formation/maturation of focal adhesions which are necessary for maintaining the spread shape of
a migrating cell [22, 23]. Therefore, in general, we may summarize these effects as Rac leading to
protrusion of the cell whereas Rho leads to its contraction.

An isotropically protruding and/or contracting cell will not exhibit motile behaviour. Although it
may change in shape, the resulting deformations will not lead to a net displacement of the cell. In order
for a cell to become motile, there must be directions where protrusion is favoured over contraction and
vice-versa. Therefore, motile cells must first become front-to-rear polarized in order to define these
directions. Once polarity is established, the protrusive and contractile effects that are downstream of
the RhoGTPases can produce motility.

It has long been known that Rac and Rho have a number of opposing downstream effects within the
context of motility [24], and that these effects occur in spatially segregated regions of a motile cell [25].
However, the mechanisms behind their spatio-temporal regulation has been somewhat more elusive.
Interestingly, fluourescent imaging of motile cells demonstrated that there are spatially segregated re-
gions of constituitively high Rac and Rho activity at the cell front and rear, respectively [26, 27]. It
seems likely that these spatially segregated regions may be related to interactions between the two
proteins, where many different interaction schemes have been proposed in the literature (see Fig. 3
in [28]). While there have been numerous seemingly contradictory experimental reports on the inter-
actions between Rac and Rho, over time a central theme has emerged: the idea that that Rac and Rho,
either directly or indirectly, inhibit the activity of one another [28, 29]. Conceptually, this provides a
simplistic framework for understanding the segragated regions of Rac and Rho activity. Due to their
intrinsic mutual antagonism, regions of the cell where one has a high activity will correspondingly
have a low activity for the other protein and vice-versa. However, this simple idea alone cannot explain
how the regions of high and low activity come to be in the first place (i.e., how mutual antagonism
leads to cellular polarization). In order to shed light on this phenonmenon, a series of spatio-temporal
mathematical models of the interaction between RhoGTPases were developed and their pattern fo-
mation capacity was analyzed by Edelstein-Keshet and collaborators. This body of work has lead to
detailed understanding of the requirements for cellular polarization [28, 30–32], shed light on the bio-
chemical networks that allow for a cell to maintain its shape [33–35], and has made a number of novel
contributions to the mathematical study of pattern formation [32, 35–37].
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Cellular motility is an extremely complex process, with hundreds of regulatory proteins and sig-
nalling molecules controlling various aspects of the phenomenon [1,2,38–43]. We have already alluded
to two such proteins, Rac and Rho which have many downstream effectors that collaborate across space
and time to produce motility. We have also highlighted how some of these effectors regulate adhesion
formation, with adhesions being essential for motility in a number of different contexts. Adhesion as-
sembly and disassembly are also complex processes which are regulated by „150 different proteins
as well as the chemical and mechanical environment of the cell [39]. Paxillin is one such protein, and
can be considered a “master regulator” of adhesion dynamics (i.e., the rates of assembly and disas-
sembly) [44–46]. In particular, there are specific phosphorylation sites on paxillin which, when phos-
phorylated, markedly increase the speed at which adhesions assemble and disassemble [47–49]. The
mechanisms by which these changes in rate occur are incompletely understood and likely to be com-
plex, where emerging evidence has shed some light on the mechanisms of disasssembly (see Section
section §1.2 and Conclusions in Chapter 1) but little is known about the what might regulate assembly
dyanmics. Interestingly, some signalling pathways which are downstream of paxillin phosphorylation
on its serine 273 can also lead to Rac activation [50]. This suggests that there may be an intrinsic bio-
chemical link between adhesion dyanmics and cellular polarization/motility. In this chapter, we will
explore this idea by first describing the mutual antagonism between Rac and Rho, incoporating the
influence of paxillin on Rac, and then investigating how the composite system behaves in the context
of cellular polarization.

3.2 Methods

3.2.1 Reaction-Diffusion Systems

The models presented in this chapter are mathematical descriptions of systems of molecules undergo-
ing chemical reactions. Therefore, we consider a generic system of m chemical species (i.e., types of
molecules), with the j th species denoted by Xj , undergoing M reversible chemical reactions. Using
chemical reaction notation, the ith reaction can be expressed as

m
ÿ

j“1

ri,jXj

k`
i

é

k´
i

m
ÿ

j“1

pi,jXj, (1)
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where ri,j (pi,j) is the stoichiometric coefficient of the j th species as a reactant (product) in the ith reac-
tion, and k`

i (k´
i ) is the forward (reverse) rate constant of the reaction. Ignoring any spatial variations

on concentration, the dynamics of a species Xj undergoing reactions such as presented in Eq. (1) are
described by the law of mass action, given by

d

dt

“

Xj

‰

“

M
ÿ

n“1

νi,j

¨

˝k`
i

m
ź

j“1

“

Xj

‰ri,j
´ k´

i

m
ź

j“1

“

Xj

‰pi,j

˛

‚, (2)

where rXis is the concentration of the ith species, and νi,j “ pi,j ´ ri,j is the net stoichiometric coef-
ficient of the j th species in the ith reaction [51]. The stoichiometric matrix S, which may be expressed
as

S “

«

r

p

ffT

,

is a an mˆ2M matrix that characterizes the underlying structure of biochemical reaction networks, and
T denotes the transpose of a matrix [52]. Of particular interest, is the fact that molecular populations
which are conserved may be expressed as linear combinations of basis vectors of the left null space of
S, defined by a set of linearly independent vectors ℓi with i “ 1, . . . , q ď min pm,Mq and which all
satisfy

ℓiS “““ 0,

where q is the nullity of ST [53].

Although they are referred to as rate constants, the values of k`
n and k´

n may actually be functions of
the various concentrations rXis . The procedure for determining the functional form of these reactions
rates involves deriving a full system of equations using Eq. (2), and setting a subset of the reactions
to quasi-steady state (QSS) in order to obtain expressons for the “fast” variables in terms of the other
“slow” variables (see Section 3.2.1.2 for more details and Section 3.3.2 for some examples). The jus-
tification for such QSS asumptions is the observation that some reactions are significantly faster than
the others.

Generally, there will be spatial variations in the concentrations of molecules within a cell. Thus
we consider the dynamics of a system of concentrations u px, tq of m biochemically active molecules
confined to a closed domain Ω P Rd. These system are typically described by reaction-diffusion (RD)
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equations, which for a closed system like a cell may be expressed as

B

Bt
u px, tq “ f pu, tq ` D ¨ ∇2u in Ω (3)

∇u ¨ n̂K “ 0 on BΩ, (4)

where x P Rd is the d-dimensional spatial coordinate, t P R0` is time, u : Rd ˆ R0` Ñ Rm is
an vector of m scalar fields, f : Rm Ñ Rm is a non-linear function that quantifies reaction rates
with fi given by Eq. (2), D P Rm is a vector of diffusion coefficients, and R0` are the non-negative
real numbers, ∇ is the nabla operator such that ∇u is an m ˆ d matrix with p∇uqi,j “ Bui{Bxj and
thus

`

∇2u
˘

i,j
“

ř

i B2ui{Bx2
j , and n̂K is a unit vector normal to the domain boundary BΩ. Here, we

have considered systems without sources or sinks of molecules, which implies that the total amount of
matter inside the domain Ω is conserved. The conservation of matter may be expressed mathematically
as a set of integral constraints (e.g., Eqs. (40)-(43)), given by

ż

Ω

ℓi ¨ u px, tq dΩ “ Ki, @i “ 1, . . . , q (5)

where Ki is a scalar constant determined from the initial conditions of the system and ℓi is a left
nullvector of the stoichiometric matrix. For a system with zero-flux boundary conditions given by Eq.
(4), the conservation of matter can be further reduced to a condition on the reaction dyanmics, given
by

d

dt

ż

Ω

ℓiudΩ “ 0 @i “ 1, . . . , q

ÿ

j

ż

Ω

ℓi,j
B

Bt
ujdΩ “

m
ÿ

j“1

ż

Ω

ℓi,j
`

fj puq ` Dj∇ ¨ ∇ui

˘

dΩ “ 0

“
ÿ

j

ż

Ω

ℓi,jfj puq dΩ ` ℓi,jDj

ż

S“BΩ

∇uj ¨ n̂dS

“
ÿ

j

ż

Ω

ℓi,jfj puq dΩ

ñ ℓi ¨ f
`

u px, tq
˘

“ 0, @ i, x, t. (6)
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This condition is always satisfied by a system of reversible pairs of reactions where k`
i {k´

i is non-zero,
finite, and positive for all i “ 1, . . . ,M [54].

3.2.1.1 Well-Mixed Systems

By assuming Di{ |Ω|
2

" fi puq one obtains the well-mixed (WM) approximation which reduces the
PDE system of Eq. (3) to a system of ODEs, given by

d

dt
u “ f pu, tq , (7)

which is identical to Eq. (2) but where we have now explicitly emphasized the conditions on dynamics
required for such an assumption. In the WM setting, the integral constraints for the conservation of
matter may be expressed as algebraic constraints (e.g., Eqs. (22)-(23) or Eqs. (46)-(49)), given by

Ki “ ℓi ¨ u (8)

where Ki and ℓi are as described above. These algebraic constraints may be used to eliminate certain
variables, and obtain an equivalent system of ODEs with fewer variables (e.g. compare systems (31)-
(36) and (28)-(30)). Moreover, Eq. (8) may also be differentiated with respect to time to yield

ℓi ¨ f pu, tq “ 0, @ i, t. (9)

The fixed points of the WM system (7) provide a natural ansatz for spatially homogenous steady
states (HSS) of the RD system (3) with boundary conditions given by Eq. (4). However, the stability
properties of the fixed-points of the WM system do not always carry over to the corresponding HSS of
the RD system [55]. Moreover, these HSSs are only a subset of the fixed points of the RD system (3),
where it is possible to obtain spatially-inhomogenous steady states (see Fig. 3.3).

3.2.1.2 Quasi-Steady State Dynamics

As discussed above, sometimes it is possible to “eliminate” some chemical species from a reaction
system by assuming they only participate in “fast” reactions that reach steady state much more quickly
than the other “slow” reactions under consideration. In such a scenario, it may be tempting to assume
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that the dyanmics of these fast variables is simply zero. In fact, such assumptions are widespread in
the literature [56], and inevitably lead to a break down of the laws of thermodynamics (e.g., the con-
servation of matter) [57,58]. Methods have been proposed for quantifying the error introduced by such
assumptions [59], and a large body of work on systematic approaches for obtaining reduced reaction
networks (i.e., systems of slow variables) which strike a balance between this error and computational
feasability has emerged [56]. However, we note that this assumption is fundamentally incorrect as
the fast variables change their concentrations in response to any changes in the slow variables, and
thus they cannot be constant throughout time. Therefore, in order to circumvent these issues, we use
ideas from the analysis of dynamical systems with multiple timescales, and propose a straightforward
method for computing the dynamics of the fast variables which is compatible with the conservation of
matter.

Firstly, we consider a WM reaction system, as it will simplify the requisite noatation, but similarly
to Eqs. (8) and (9), all results may easily be extended to a RD setting. to In order to explicitly express
the dynamics of the fast variables, we decompose u into fast and slow species, i.e.,

u ptq “

«

uslow ptq

ufast ptq

ff

,

where uslow is the vector of mslow slow species whose dynamics f slow are determined from Eq. (2),
and ufast is the vector of mfast “ m ´ mslow fast species. Generally speaking, the fast variables may
be expressed through a constitutive relation with the slow variables, given by

ufast
ptq “ Γϵ

´

uslow
ptq

¯

, (10)

where Γϵ is a (possibly nonlinear) vector-valued function. The determination of Γϵ has been historically
obtained by assuming the dynamics of the fast variables f fast puq “ 0 and solving algebraically for
ufast ptq in terms of uslow ptq [59]. However, a literal interpretation of the condition f fast “ 0 is at odds
with the fact that ufast also changes with time.

I believe that it is more appropriate to assume that the net rates of the fast reactions are arbitrarily
slow, i.e.,

ˇ

ˇ

ˇ
f fast
i

ˇ

ˇ

ˇ
“ ϵi ! 1 @i,

160



3.2 Methods

and consider the algebraic relation Γϵ to define a sub-manifold which restricts the dynamics of the fast
variables ufast and is obtained in the limit of ϵi Ñ 0 [60–62]. With this perspective, the time derivatives
are now well-defined quantities. Therefore, in order to obtain the dynamics of the fast variables f fast,
we may differentiate Eq. (8) with respect to time, yielding

d

dt
ufast

“ f fast “ JΓϵ

d

dt
uslow, (11)

where JΓϵ is the Jacobian matrix of Γϵ, given by pJΓϵqi,j “ BΓϵ
i{Buslow

j . This means the total dynamics
of the combined fast and slow sub-systems are given by

d

dt
u “

d

dt

«

uslow

ufast

ff

“

«

f slow

JΓϵf slow

ff

. (12)

Consequently, the conservation of matter for the full system of fast and slow species, as described Eq.
(9), can be expressed as

ℓi

«

f slow

JΓϵf slow

ff

“ 0 ô Ki “ ℓi ¨

«

uslow

ufast

ff

@ i, t, (13)

where we note that equivalent results may be obtained in a RD setting, given by

ℓi

«

f slow

JΓϵf slow

ff

“ 0 ô Ki “

ż

Ω

ℓi ¨

«

uslow

ufast

ff

dΩ @ i, x, t. (14)

Thus from Eq. (13) we can see that, in a WM setting, simple algebraic constraints suffice to enforce the
conservation of matter regardless of whether QSS assumptions were used. However, in order to acheive
the same result in a RD setting with QSS assumptions, one must use the more complex conditions on
reaction dynamics given by the first expression in Eq. (14).

3.2.2 Stochastic Reaction-Diffusion

Stochastic effects can significantly alter the outcomes of models with nonlinear terms. For example,
in Chapter 4 we will see how stochasticity can produce transient excursions away from a stable equi-
lbrium in protrusion velocity. Stochasticity is of particular interest as as experimental recordings of
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Algorithm 3.1 The SSA, also referred to as Gillespie’s direct method.
X = The initial number of molecules of each molecular species
t Ð 0
while t<tfinal do

Compute propensity vector α according to Eq. (15)
αtot Ð

ř

i αi

Sample χ „ Unif(0,1)
Sample i „ αi{αtot

X Ð X ` Si

τ Ð logp1{χq{αtot

t Ð t ` τ
end while

CHO cells (i.e., the cells our collaborators use to study the effects of paxillin on migration) exhibit
highly stochastic protrusion events and changes in direction, and thus its inclusion may be a necessary
ingredient for reconciling observed experimental behaviour with mathematical models [63]. There-
fore, we have opted to carry out stochastic realizations of the Reaction-Diffusion equation. In a WM
setting, the dynamics of these chemical reactions are described rigorously at the microscopic level by
the Chemical Master Equation (CME) [64], which can be extended to a spatial setting as the Reaction
Diffusion Master Equation (RDME) [65]. Stochastically exact realizations of the CME for a system
undergoing chemical reactions can be obtained using Gillespie’s direct method, or one of its many
variants, which is often refered to as the stochastic simulation algorithm (SSA) [66]. In particular,
for a system of paired reversible reactions described by Eq. (1), one may define a vector of reaction
propensities (probability per unit time that a given reaction will occur), given by

αi,n “ k`
i,n

śm
j“1

´

X
ri,j
j { |Ω|

¯ri,j

αi`M,n “ k´
i,n

śm
j“1

´

X
pi,j
j { |Ω|

¯ri,j

,

/

.

/

-

@i “ 1, . . . ,M, (15)

where Xj is the number of molecules of the j th molecular species. The vector of propensities is used to
determine which chemical reaction occurs next in a probabalistic manner, while the total propentsity,
αtot “

ř

i αi, is used to determine the waiting time τ „ Expp1{αtotq between subsequent reactions
where Exppxq is the exponential distribution with a mean of x (see Algorithm 3.1).
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3.2.2.1 Stochastic Quasi-Steady State Approximation

As discussed in Section 3.2.1.2, some reactions may occur on a significantly faster timescale than
others. In a determinsitic setting, the standard approach to deal with this is to set all chemical species
which only appear in fast reactions to QSS, as described by Eq. (10). Within the framework of the SSA,
most of the computational time is spent executing fast reactions and thus having very fast reactions
can lead to very computationally intensive simulations. Moreover, in order to implement reactions
in the SSA, it is necessary to specify their rates. This is generally not required for a deterministic
treatment of reactions at QSS, and thus rate constants may be unavailable for fast reactions. For these
reasons, the implementation of fast reactions within the SSA is non-tirival. Indeed, there are numerous
implementations of the quasi-steady state reaction available in the SSA literature [67,68], which range
from quite complex (e.g., [69–72]) to fairly simple (e.g., [73, 74]). The more complex approaches will
generally be more accurate, as they require specifiying the rate of the fast reactions. Ultimately, these
rates serve to produce fluctuations around some mean value that is determined by Eq. (10). If these
fluctuations are not deemed important for the overall dynamics of the system, these approaches seem
like overkill and will simply add to the computional burden of the SSA. This motivates the use of
simpler approahces (e.g. tQSSA in [74]) which are based on deterministic descriptions of the chemical
rections.

In order to overcome the need to specify the rates of fast reactions and eleviate some of the compu-
tational burden of the SSA, we have opted to ignore temporal fluctuations in fast variables and simply
use Eq. (10) to determine their values (i.e., the tQSSA approach). This is equivalent to assuming that
the fast reactions are instantaneous and fluctuations are short-lived and negligible in magnitude [74].
This implies that M in Eq. (15) (as well as Eq. (16)) is the number of slow chemical reactions in the
system, and therefore the stoichiometric matrix S “ Sslow referred to in Algorithms 3.1&3.3 corre-
sponds only to the slow reactions. The remaining fast variables undergo fast reactions that are described
solely by the equilibrium relations Γϵ (i.e., no rate or stoichiometric information is required), and they
are updated everytime a slow reaction that modifies Γ takes place. This means that when the SSA car-
ries out a slow reaction which modifies the molecular counts for some slow species i, all fast species
j “

␣

j : pJΓϵq j,i ‰ 0
(

must be also be updated according to Eq. (10).
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3.2.2.2 Spatial Stochastic Simulation Algorithm

The SSA may furthermore be adapted to simulate the RDME (i.e., reaction-diffusion), which pro-
duces an algorithm referred to as the spatial SSA (SSSA). Briefly, the SSSA discretizes space into N

finite-sized subdomains such that components of the matrix of chemical reaction propensities may be
computed as

αchem
i,n “ k`

i,n

śm
j“1

´

X
ri,j
j,n { |Ωn|

¯ri,j

αchem
i`M,n “ k´

i,n

śm
j“1

´

X
pi,j
j,n { |Ωn|

¯ri,j

,

/

.

/

-

@i “ 1, . . . ,M ; n “ 1, . . . , N, (16)

where Xj,nis the number of molecules of the j th molecular species in the nth subdomain Ωn. Further-
more, it treats diffusion as a reaction which transport individual molecules between adjacent subdo-
mains, where, for subdomains defined on a uniform grid with spcaing h, the propensity of a diffusion
reaction consisting of the ith molecule diffusing from subdomain j to a subdomain k is given by

αdiff
i,j,k “

$

&

%

Xi,jDi{h
2 k P neighbours pjq

0 otherwise
,

where neighbours pjq is the set of subdomain indices n “ tn : Ωn P Ωu which are physically adjacent
to subdomain j [65]. The procedure for choosing which “reaction” (either diffusion or chemical) is
nearly identical to the SSA (with αtot “

ř

i,j α
chem
i,j `

ř

i,j,k α
diff
i,j,k). However, there are some slight

differences in how the state vector X is updated for diffusion and chemical reactions [65].

Indeed, we have previously used the SSSA to produce stochastic realizations of the RDME [63].
However, due to the way that the diffusion reaction propensities scale with the size of subdomains,
the SSSA often becomes prohibitively slow when dealing with biologically-realisitic diffusion co-
efficients and numbers of molecules [75]. The drastic decrease in computational speed when mod-
elling diffusion with the SSSA stems from the fact that the SSSA carries out diffusion (and chem-
ical reactions) by executing a single reaction at a time. In the case of our simulations we find that
ř

i,j,k α
diff
i,j,k « 1000

ř

i α
chem
i , such that the SSSA will spend more than 99.9% of its computational time

performing diffusion reactions. Therefore, by using a different computational approach to carry out
diffusion events we can significantly alleviate the computational bottleneck of the SSSA and achieve
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much faster simulations.

3.2.2.3 Approximate Stochastic Diffusion

In order to circumvent the issues with computational speed observed in the SSSA, we have adopted
an alternative approach for modelling diffusion stochastically [75]. Rather than carrying out single-
molecule diffusion events, it simulates, simultaneously and in one diffusion event, the transfer of
groups of molecules from all N subdomains to each of their neighbours. Instead using the approach of
the SSSA and considering the joint diffusion propensity for any one of the many molecules in a given
subdomain, this approach deals with the independent diffusion propensity of the individual molecules
in a subdomain, given by

α̃diff
i,j “

ÿ

kPneighbourspjq

Di{h
2. (17)

Furthermore, rather than trying to track all of the diffusion events occuring at microscopic timescales
determined by the SSSA, this method assumes that some finite amount of time ∆t has passed and
generates a random number xi,j ď Xi,j of molecules which leave the sub-domain sampled from the
binomial distribution, given by

P
´

Xi,j, xi,j, p
acc
i,j

¯

“
Xi,j!

xi,j!
`

Xi,j ´ xi,j

˘

!

´

pacc
i,j

¯xi,j
´

1 ´ pacc
i,j

¯Xi,j´xi,j

(18)

where pacc
i,j “ ∆tα̃diff

i,j is the accumulated propensity that a single molecule of species i has left the
subdomain j after a time ∆t.

Sampling from the binomial distribution is computationally challenging, due to the presence of the
factorial terms, and therefore it is useful to use the approximation

P
´

Xi,j, xi,j, p
acc
i,j

¯

“ Iβ

´

pacc
i,j ;xi,j, Xi,j ´ xi,j ` 1

¯

where Iβ is the incomplete beta function [75]. The incomplete beta funtion is available in many pro-
gramming languages (e.g., betaincppi,j, xi,j, Xi,j ´xi,j `1q in MATLAB), and is included in Numerical
Recipes [76]. Furthermore, Carrero et. al. propose an efficient apseudobisection method for sampling
from the binomial distribution, described in Algorithm 3.2. After having sampled xi,j the total number
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Algorithm 3.2 Psuedobisection method for determining the number of molecules that leave a sud-
domain due to diffusion during a timespan of length ∆t [75]. Given Xi,j molecules of species i in
sub-domain j, choose a number xi,j from the binomial distribution in Eq. (18). The function round()
rounds to the nearest integer, and pacc

i,j “ ∆tα̃diff
i,j where α̃diff

i,j is the single-molecule diffusion propensity,
given by Eq. (17).

Define the values of Xi,j ě 1 and 0 ă pacc
i,j ă 1

l Ð 0
u Ð Xi, j
Sample ξ „ Unif(0,1)
Define f pxq “ Iβ

´

pacc
i,j , x,Xi,j ´ x ` 1

¯

´ ξ

fl Ð fplq
fu Ð fpuq

while |l ´ u| ą 1 do
r Ð roundppl ` uq{2q

fr Ð fprq

if fl and fr have the same sign then
l Ð r
fl Ð fr

else
u Ð r
fu Ð fr

end if
end while
xi,j Ð u

of molecules of species i to leave subdomain j one must sample x̃i,j,k according to the probabilties

pacc
i,j,k “

$

&

%

`

Di{h
2
˘

{α̃diff
i,j k P neighbours pjq

0 otherwise
(19)

under the constraint that xi,j “
ř

k x̃i,j,k. Subsequently, the distribution of molecular species i may be
updated using

Xi,j “ Xi,j ´ xi,j `
ÿ

k

x̃i,k,j @j “ 1, . . . , N.

This computationally efficient procedure for producing stochastic diffusion events was originally
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implemented within the context of an scalable variant of the SSSA known as the next-reaction method
(or next-subvolume method) [75, 77]. This is important to note, as in such a setting there is a natural
method for dealing with the fact that there is a fixed amount of time dt between diffusion events. How-
ever, due to technological constraints (i.e., the MATLAB language), in our implementation of stochas-
tic realizations of the RDME we have not used the next-reaction method but rather have stuck with
Gillespie’s direct method and have acheived optimizations comparable to the next-reaction method
using variations of the bookkeeping tricks described in [65]. Nonetheless, it is important to adapt the
methodology from [75], as otherwise our stochastic simulations will not be faithful to the original RD
system.

Within the framework of the next-reaction method, at some time t each reaction is given a waiting
time τi, and the next waiting time τ is chosen as τ “ mini τi where some reaction µ is chosen as the
next reaction which occurs. After reaction µ is carried out, a new value of τµ is sampled and the waiting
time of all other reactions is updated according to the rule

τi “ βi pτi ´ τq (20)

where βi “ αi ptq {αi

`

t ` τµ
˘

is the ratio of reaction propensities before and after the reaction µ hap-
pens. Therefore, as reactions take place, each τi will tend towards zero until it becomes the minimum
waiting time at which point the ith reaction is occurs and τi will be resampled. In [75], diffusion events
are modelled as a reaction that occurs with a fixed waiting time ∆t which does not get updated accord-
ing to Eq. (20). Whether such an approach is valid or not is beyond the scope of this thesis. However,
we find that it is not suitable to our computational needs as it requires that O p∆tq « 1{αchem

tot (when
∆t " 1{αchem

tot diffusion events never occur in their implementation), and such a value of ∆t does not
afford us much computational speedup due to the increased cost of the diffusion steps using Algorithm
3.2. This discrepancy in speedpdp compared to [75] is likely due to the fact that we have „ 1000-fold
more molecules in our simulations than in [75]. Furthermore, we would like to be able to choose ∆t

based on the diffusion coefficient of the molecules alone rather than their reaction dyanmics as was
done in [75].

For these reasons we define a maximum single-molecule diffusion probability, 0 ă Pmax ă 1,
and initialize the waiting time ∆ti for a diffusion event of the ithmolecular species using the following
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expression
∆ti “ Pmaxh

2
{Di. (21)

Subsequently, we carry out reactions according to the SSSA, where we assume that αtot “
ř

i,j α
chem
i,j

and sample waiting times τ „ Expp1{αtotq. Every time a reaction is carried out, we update the values
of ∆ti according to the rule

∆ti “ ∆ti ´ τ,

where we effectively assume that the diffusion propensity does not change signficantly due to chem-
ical reactions (i.e., βdiff “ 1). We then perform diffusion events, in all subdomains, for molecules of
the species idiff “ ti : ∆ti ď 0u using Algorithm 3.2. There are some conceptual problems with this
approach: (i) the assumption that diffusion propensitites do not change with chemical reactions and (ii)
the fact that diffusion waiting times ∆ti are updated by a next-reaction-like scheme yet diffusion events
are not carried out according to the next-reaction method. We will ignore these issues for now, as the
errors they introduce are minor and modifications required to fix them are not particularly challenging.
The complete algorithm for carrying out stochastic reactions using the SSA and stochastic reactions
using Algorithm 3.2 is describe in Algorithm 3.3.

3.2.3 Software

3.2.4 Deterministic Solutions

Numerical solutions of systems of ODEs were obtained using XPPAUT [78], in particular it was used
to find fixed-points of WM systems. These fixed-points were subsequently continued in AUTO to
produce bifurcation diagrams [79]. AUTO was also used to carry out local perturbation analysis (LPA)
and the related root-finding problems described in Section 3.5.3. Numerical solutions to systems of
PDEs were obtained using the pdepe function in MATLAB 2018a [80].

3.2.5 Stochastic Realizations

In order to carry out stochastic realizations of the RDME, we have implemented Algorithm (3.3) in
MATLAB 2018a [80]. Moreover, it was implemented in a modular fashion, such that we can use
the Cellular Potts Model (CPM) [81, 82], a phenomenoligcal model of cell-motility, to have a time-
dependent domain which protrudes and retracts in response to local concentrations of Rac and Rho,
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Algorithm 3.3 A computationally efficient modification of the SSSA with quasi-steady state assump-
tions, where diffusion events are carried out for all subdomains simultaneously. Here, the ˚ notation
is used to denote that an operation is to be carried out for all valid indices of the subscript where it
appears.

Xi,j = The initial molecular count for the ith molecular species in the j th subdomain
0 ă Pmax ă 1 = maximum diffusion probability allowed before triggering a diffusion event
∆t Ð Pmaxh

2{D˚

α̃diff
˚,max Ð maxj α̃

diff
˚,j

Compute p˚,˚,k according to Eq. 19
t Ð 0
while t<tfinal do

Compute chemical propensity matrix α according to Eq. (16)
αtot Ð

ř

i,j α
chem
i , j

Sample χ „ Unif(0,1)
τ Ð logp1{χq{αtot

Sample k „ αceilpk{Nq,modpk´1,Nq`1{αtot

i Ð ceilpk{Nq

j Ð modpk ´ 1, Nq ` 1
X˚,j Ð X˚,j ` ST

i

for k : Si,k ‰ 0 do
Set Xw, j “ ΓkpX˚,jq for all fast molecules w such that pJΓqw,k ‰ 0

end for
t Ð t ` τ
∆t Ð ∆t ´ τ
for 1 ď k ď m do

if ∆tk ď 0 then
Compute xk,˚ using Algorithm 3.2 with pk,˚ “ ∆tkα̃k,˚

Sample x̃k,˚,ℓ{xk,n „ pk,˚,ℓ
Xk,˚ Ð Xk,˚ ´ xk,˚ `

ř

ℓ x̃k,˚,ℓ

∆tk Ð Pmaxh
2{Dk ` ∆tk

end if
end for

end while
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respectively. Together, these modules interact to model the RD-dynamics inside the cell and the re-
sulting deformations and displacemente of the cell. The code for the both modules, and some ex-
ample scripts showing how to use them, may be found on GitHub at https://github.com/
laurentmackay/CPM_RD_matlab in the fast_diff branch. Currently, the reactions dynamics of
system (32)-(36) are hard-coded into the file update_alpha_chem0.m, but we are currently developing a
parser which can read a human-readable description of the reaction dynamics (e.g., chemical reaction
notation) and automatically generate the right reaction dynamics. This will allow our code to easily
simulate RD-dyanmics as well as cellular-motility driven by arbitrary sets of chemical reactions.

3.3 Well-Mixed Models

There are numerous mathematical models of front-to-rear polarization that consider the activity of
RhoGTPases [28,31,33–35,37,83,84]. In order to understand how these models work, we shall begin
by describing and analyzing the mutual antagonism of Rac and Rho in a spatially homogeneous WM
setting. Then we will investigate the influence of paxillin on the balance between Rac and Rho. In
Section 3.4, we will extend these models from a WM setting to a RD setting and see how such a model
can produce patterns of activity that are compatible with front-to-rear polarization.

3.3.1 Rac-Rho Sub-model

In order to build intuition for the effects of mutual inhibition between Rac and Rho, we have imple-
mented a spatially-homogeneous sub-model of the model published in [50] (see Fig. 3.1A). Namely,
in this sub-model we have omitted paxillin and its effects on Rac, as we wish to focus on the intrinsic
dynamics of the Rac-Rho system. In order for either of the RhoGTPases to exert their control on the
cytoskeleton, they must be in their active states (i.e., bound to a GTP moeity, [3]). The activation pro-
cess is carried out by gaunine exchange factors (GEFs), which substitutes the GDP moiety found in
the inactive form for a GTP molecule [85]. Conversely, the RhoGTPases are inactivated by the (seem-
ingly paradoxically named) GTPase-activating factors (GAPs) which hydrolyze the GTP on active
Rac/Rho molecules to GDP [85]. Therefore, this sub-model accounts for RhoGTP, RacGTP, RhoGDP,
and RacGDP concentrations as well as the activity of relevant GEFs and GAPs. In order to simplify
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3.3 Well-Mixed Models

this model, one may enforce the conservation of matter on Rho and Rac i.e.,

rRhostot “ rRhoGTPs ` rRhoGDPs (22)

rRacstot “ rRacGTPs ` rRacGDPs (23)

where rRhostot (rRacstot) is the total concentration of all forms of Rho (Rac). Throughout this chapter,
all concentrations with the subscript “tot” are assumed to be a fixed parameter that is set by the cell
and can be determined experimentally. Using these expressions, we may define the non-dimensional
variables

ρ “
rRhoGTPs

rRhostot
, ρi “

rRhoGDPs

rRhostot
“ 1 ´ ρ,

R “
rRacGTPs

rRacstot
, Ri “

rRacGDPs

rRacstot
“ 1 ´ R,

where ρ (R) is the active form of Rho (Rac) and ρi (Ri) is its inactive form. Using these non-dimensional
variables, we may write the model by a system of ODEs, given by

d

dt
ρ “ Iρ

Ln
R

Ln
R ` Rn

ρi ´ δρρ “ (24)

d

dt
R “ IR

Ln
ρ

Ln
ρ ` ρn

Ri ´ δRR (25)

where Iρ (IR) is the maximal activation rate of Rho (Rac) with units of s´1, LR (Lρ) is the non-
dimensional half-maximum inhibition of Rho (Rac) activation by Rac (Rho), n is the Hill coefficient
of this inhibition, and δρ (δR) is the inactivation rate of Rho (Rac) with units of s´1. In Eqs. (24)-
(25), the mutual inhibition between Rac and Rho is implemented by decreasing the activation rate of
one molecule as the active concentration of the other molecule increases. Therefore, when active Rac
is very low Rho will attain its maximal activation rate and vice-versa. This type of double-negative
feedback produces a bistable switch where either Rac or Rho is elevated, as can be see from the one-
parameter bifurcation diagram in Figure 3.1. The bistable switch is produced by the coexistence of two
branches of stable equilibria that are separated from a branch of saddle fixed points by two saddle-node
bifurcations SN1 and SN2. The branch with an elevated level of Rac (R) is termed the induced branch
as it is assumed to produce protrusion of the leading edge of motile cell and thus induce motility, while
the branch with an elevated level of Rho (ρ) is termed the uninduced branch [50].
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Figure 3.1: A bistable switch due to mutual inhibition between Rho and Rac. (A) Mutual inhibition
of Rac and Rho. Distinct GEFs (GAPs) convert Rac and Rho to their active GTP-bound (inactive
GDP-bound) forms. Both Rac and Rho inhibit the GEF activity of the other protein. This produces a
bistable switch between the activity of the two proteins. (B) Bifurcation diagram of non-dimensional
active Rac, R, in black and non-dimensional active Rho, ρ, in grey with respect to IR. Solid (dashed)
lines indicate stable (unstable/saddle) branches of equilibria. The two branches of stable equilibria are
separated from the branch of saddle equilibria by two saddle-node bifurcations SN1 and SN2. The
branch of stable equilibria with elevated (reduced) values of R (ρ) is referred to as the induced branch,
while the other branch is referred to as the uninduced branch.

Bifurcation diagrams illustrate how fixed-points of an ODE system vary with certain parameters.
In order to distinguish these fixed-points of the WM system from from those of the RD system, we will
generically denote them with a over a symbol (e.g., R̄) which alludes to the fact that they describe a
spatially homogenous (i.e., flat) concentration profile. Furthermore, we adopt a convention where the
induced (uninduced) state is denoted by a subscripted + (-) such that the value of R corresponding to
the induced state is denoted by R̄`.

3.3.2 Paxillin’s Influence on the Rac-Rho Sub-model

The protein paxillin is known to be a key regulator of adhesion and protrusion dynamics, where its
phosphorylation is associated with faster adhesion assembly and disassembly rates as well as increased
protrusive/invasive activity [47–50, 86, 87]. Due to its many interaction partners and the inherent com-
plexity of adhesion and protrusion dynamics, it is difficult to pin down the specific mechanism by
which paxillin achieves these effects. However, we have speculated on how it may influence adhesion
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3.3 Well-Mixed Models

disassembly rates in the (see Discussion in Chapter 1). Nonetheless, one mechanism which has been
proposed for paxillin-dependent control of protrusion is a positive-feedback loop that leads to the acti-
vation of Rac (and thus the inactivation of Rho). Namely, the phosphorylation of serine 273 on paxillin
allows the GIT-PIX-PAK ternary complex to bind to paxillin molecules in adhesions [48], where the
protein PIX serves as a GEF for Rac to produce protrusion near these same adhesions [88–90]. This
highlights the dual-function of adhesions, serving both as mechanical anchor points (see Chapters 1
and 2) as well as mechanosensitive signaling hubs that play an important role in driving motility.

It seems likely that paxillin phosphorylation can be used to drive the bistable switch of the Rac-Rho
sub-model. In particular, the the downstream increase of Rac GEF-activity is equivalent to increasing
IR in system (24)-(25) which is sufficient for switching from the uninduced state to the induced state
(see Fig. 3.1B). Therefore, Tang et al. extended system (24)-(25) by considering (i) the phosphorylation
of paxillin by PAK, (ii) the assembly of the ternary complex, (iii) the binding of the ternary complex
to paxillin, and (iv) the activation of PAK by RacGTP [50]. Furthermore, it assumed that the steps
involved in the ternary complex formation and PAK activation are significantly faster than paxillin
phosphorylation (see S1 Text in [50]). Thus many reactions may be set to QSS, producing constitutive
relations between the various proteins that make up the ternary complex and slower variables such as
Rac, Rho, and paxillin. In particular, based on the description of the interactions between PAK, paxillin,
and Rac it is necessary to determine the QSS levels of active PAK and PIX due to their kinase- and
GEF-activities, respectively.

Rac Activation The activation rate of Rac is modified by assuming that the maximal activation rate
is the sum of the rate of two pathways. As in system (24)-(25), one of these pathways has a maximal
rate IR and is independent of paxillin phosphorylation, but now includes the effect of monomeric PIX
and GIT-PIX complexes. The other pathway has a maximal activation rate I˚

K and accounts for the
the GEF-activity of all PIX-containing complexes that interact, directly or indirectly, with paxillin.
Accordingly, the maximal activation rate I˚

K is given by

I˚
K “ I 1

K

ˆ

rPIX-PAKs ` rGIT-PIX-PAKs `
“

Paxp-GIT-PIX-PAK
‰

` rPIX-PAK-RacGTPs `
“

Paxp-GIT-PIX-PAK-RacGTP
‰

˙

,

173



3.3 Well-Mixed Models

where I 1
K is the PIX-complex-mediated activation rate constant with units of µM´1s´1, horizontal

dashes between protein names denote a complex between these proteins, and Paxp denotes phosphory-
lated paxillin. Using QSS assumptions, the above expression may be rewritten as

I˚
K “ I 1

K rPAKstot

˜

1 ´
rPAKs

rPAKstot

`

1 ` α rRacGTPs
˘

¸

,

where α “ k`
PAK{k´

PAK is the affinity for the binding of monomeric PAK to RacGTP and rPAKstot is
the total concentration of all PAK molecules [50]. Furthermore, using the same QSS assumptions, the
fraction of total monomeric PAK can be expressed as

K˚
i “

rPAKs

rPAKstot
“

`

´

1 ` kX rPIXs ` kGkXkC rGITs rPIXs
“

Paxp
‰

¯

`

1 ` α rRacGTPs
˘

`kGkX rGITs rPIXs
˘´1

,

where kG “ k`
G{k´

G (kX “ k`
X{k´

X ) is the affinity for the binding of monomeric GIT and PIX (PIX and
PAK), kC “ k`

C{k´
C is the binding affinity of Paxp to the GIT-PIX-PAK complex, and the concentrations

rGITs and rPIXs are assumed to be fixed parameters [50]. Substituting in the non-dimensional variables
R and P “

“

Paxp
‰

{ rPaxstot, where rPaxstot is the total concentration of paxillin, into the expression
for K˚

i , we obtain

K˚
i “

´

P̃ p1 ` αRRq ` kGkX rGITs rPIXs

¯´1

where P̃ “
`

1 ` kX rPIXs ` kGkXkC rGITs rPIXs rPaxstot P
˘

and αR “ α rRacstot. Finally, the maxi-
mal activation rate of Rac, in terms of the non-dimensional variables, is given by

I˚
K “ IK

`

1 ´ K˚
i p1 ` αRRq

˘

,

where IK “ I 1
K rPAKstot.

Rac-Containing Complexes Due to the ability of active PAK to phosphorylate paxillin and the as-
sociated downstream effects on Rac activation, it is necessary to account for activation of PAK by
RacGTP. To this end, Tang et al. assumed that all PAK molecules in a complex with a RacGTP molecule
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are in an active state [50, 91]. Accordingly, one may define the active PAK concentration as

rPAK˚
s “ rPAK-RacGTPs ` rPIX-PAK-RacGTPs `

“

Paxp-GIT-PIX-PAK-RacGTP
‰

,

where it has been assumed that rGIT-PIX-PAK-RacGTPs « 0 due to the paxillin phosphorylation
being critical for PAK activation (i.e., binding to RacGTP) [91–93]. Using QSS assumptions, we may
express this active PAK concentration as

rPAK˚
s “ α rPAKs rRacGTPs

´

1 ` kX rPIXs ` kGkXkC rGITs rPIXs
“

Paxp
‰

¯

or, after non-dimensionalization,

K “
rPAK˚

s

rPAKstot
“ αRK

˚
i RP̃

“
αRR

1 ` αRR

P̃

P̃ `
kGkX rGITs rPIXs

1 ` αRR

. (26)

Paxillin Activation Since, phosphorylation of paxillin occurs due to the transient binding of inactive
paxillin to active PAK molecules, its rate was modeled as an increasing Hill function of active PAK
concentration [50,91]. Thus, after non-dimensionalization, the phosphorylation rate of paxillin is given
by

B
Kn

Ln
k ` Kn

p1 ´ P ˚
q

where B is the maximal rate of paxillin phosphorylation with units of s´1 and

P ˚
“ P ` P̂ , (27)

is the scaled concentration of all forms of active paxillin with P̂ “ PkGkXkC rGITs rPIXs rPaxstot K
˚
i p1 ` αRRq.

Rho Activation As noted earlier, Rac and Rho exert their mutual inhibition on one another by having
the active form of one protein reduce the activation rate of the other protein. The maximal activation
rate I˚

K reflects the existence of multiple pathways for Rac activation, where some of the complexes
involved in Rac activation contain (active) RacGTP. Therefore, in order to accurately describe the
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inhibition of Rho activation by active Rac, it is necessary to account for the concentration of these
complexes. Notably, these complexes happen to coincide with the set denoted by PAK˚, and thus the
total non-dimensionalized concentration of active Rac is given by

R˚
“ R ` γK,

where γ “ rPAKstot { rRacstot is the ratio of total PAK to total Rac concentration.

Finally, we may express the dynamics of all three non-dimensional variables as

d

dt
ρ “ Iρ

Ln
R

Ln
R ` pR˚q

n p1 ´ ρq ´ δρρ (28)

d

dt
R “ pIR ` I˚

Kq
Ln
ρ

Ln
ρ ` ρn

p1 ´ R˚
q ´ δRR (29)

d

dt
P “ B

Kn

Ln
k ` Kn

p1 ´ P ˚
q ´ δPP. (30)

Eqs. (28)-(30) represent the interaction of phosphorylated paxillin (i.e., active paxillin) with the pre-
viously discussed Rac-Rho sub-model. This interaction occurs through the GIT-PIX-PAK complex,
where the formation of this ternary complex has been assumed to be significantly faster than the acti-
vation of Rho, Rac, and paxillin. This difference in timescales was used to replace the large number of
variables with a simpler model that has many nonlinear terms (e.g., K and P ˚ ).

Having established that the mutual antagonism between Rac and Rho can produce bistability with
respect to IR the basal maximal activation rate of Rac (see Fig. 3.1), one may wonder if it is possible to
drive this bistable switch through the phosphorylation rate of paxillin. This outcome seems quite likely
from the form of Eq. 29 and the fact that I˚

K is a monotonically increasing function of P . Moreover,
there are some conceptual reason for why this may be the case.

Biologically, paxillin phosphorylation is known to increase both the assembly and disassembly
rate of adhesions, through mechanism which vary based on the type and location of the adhesion (see
Chapter 1). Faster adhesions dynamics may indeed allow for increased motility, but such an outcome
also requires the appropriate force-generating machinery to be active (e.g., high RacGTP at the leading
edge of the cell). Therefore, if paxillin phosphorylation can control not only adhesion dynamics but
also the activity of the RhoGTPases that drive protrusion and contraction then it represents a very
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potent regulator of cell migration.

In order to test this hypothesis, we have computed a one-parameter bifurcation diagram for system
(28)-(30) with respect to B (see Fig. 3.2). Similarly to Figure 3.1, both Rac and Rho exhibit a bistable
switch with induced and uninduced branches of stable equilibria that are separated from a branch of
saddle fixed-points by two saddle-node bifurcations. However, these branches are much more plateaued
in nature and the left saddle-node is significantly closer to B “ 0 than the right saddle-node (compare
with black line in Fig. 3.1B). Paxillin, on the other hand, has induced and uninduced branches that
increase sigmoidally with B and the distance between these two branches is not as significant as it
is for Rac or Rho. Therefore, we may conclude that small changes in paxillin phosphorylation may
lead to significant changes in Rac and Rho activity (e.g., by pushing the system past a saddle-node
bifurcation), whereas they will only produce graded changes in the activation of paxillin.

3.4 Spatio-Temporal Model

We have seen how mutual antagonism produces bistabilty in a WM setting. However, bistability on its
own cannot explain front-to-rear polarization as it only predicts the coexistence of two stable steady
states. Polarization is a fundmaentally spatial phenomenon, and thus requires the addition of a spatial
dimension into the model. Therefore, we will drop the WM approximation in favour of the RD system
described in [50], given by

B

Bt
ρ px, tq “ fρ ` Dρ∇2ρ (31)

B

Bt
ρi px, tq “ ´fρ ` Dρi∇2ρi (32)

B

Bt
R px, tq “ fR ` DR∇2R (33)

B

Bt
Ri px, tq “ ´fR ` DRi

∇2Ri (34)

B

Bt
P px, tq “ fP ` DP∇2P (35)

B

Bt
Pi px, tq “ ´fP ` DP∇2P, (36)
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Figure 3.2: The effect of paxillin phosphorylation on the mutual antagonism of Rac and Rho. (A) The
biochemical cascade of signaling events which link the Rac-Rho sub-model to paxillin. Paxillin phos-
phorylation triggers the formation of the GIT-PIX-PAK ternary complex which acts as a Rac-specific
GEF, activating Rac. Active Rac acts as an activator for PAK which in turn phosphorylates paxillin,
establishing a positive feedback loop between paxillin phosphorylation and Rac activation. This al-
lows for paxillin phosphorylation to drive the bistable switch of the Rac-Rho sub-model. (B, C, D)
Bifurcation diagram of nondimensional (B) active monmeric Rac, R, (C) active Rho, ρ, and (D) active
monomeric Paxillin, P , with respect to the maximal paxillin phosphorylation rate B. Solid (dashed)
lines indicate stable (unstable/saddle) branches of equilibria. The bifurcation structure is qualitatively
the same as in Figure 3.1.
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where the functions

fρ pρ, ρi, Rq “ Iρ
Ln
R

Ln
R ` pR ` γKq

nρi ´ δρρ (37)

fR pR,Ri, ρ, P q “ pIR ` I˚
Kq

Ln
ρ

Ln
ρ ` ρn

Ri ´ δRR (38)

fP pP, Pi, Rq “ B
Kn

Ln
k ` Kn

Pi ´ δPP, (39)

are the activation dynamics of Rho, Rac, and paxillin, respectively, all variables with a subscript i
denote the scaled inactive concentration of the protein, Dρ (Dρi) is the diffusion coefficient of active
(inactive) Rho, DR (DRi

) is the diffusion coefficient of active (inactive) Rac, DP (DPi
) is the diffusion

coefficient of active (inactive) paxillin. In this RD setting, the conservation of matter is expressed as
integral constraints given by Eq. 5,

rRhostot “
1

|Ω|

ż

Ω

rRhoGDPs ` rRhoGTPs dΩ (40)

rRacstot “
1

|Ω|

ż

Ω

rRacGDPs ` rRacGTPs `
“

PAK˚
‰

dΩ (41)

rPaxstot “
1

|Ω|

ż

Ω

rPaxs `
“

Paxp
‰

`
“

Paxp-GIT-PIX-PAK
‰

`
“

Paxp-GIT-PIX-PAK-RacGTP
‰

dΩ (42)

rPAKstot “
1

|Ω|

ż

Ω

rPAKs ` rPIX-PAKs ` rGIT-PIX-PAKs `
“

Paxp-GIT-PIX-PAK
‰

`
“

PAK˚
‰

dΩ, (43)

where Ω is the finite-sized domain of the cell. Furthermore, we assume that the cell is a closed system
and therefore use zero-flux boundary conditions, given by

∇u ¨ n̂ “ 0 on BΩ @u P tρ, ρi, R,Ri, P, Piu ,

where n̂ is the normal vector of the cell boundary BΩ.

3.4.1 Conservation of Matter in the Spatio-Temporal Model

We wish to note here that although system (31)-(36) may appear to satisfy the conservation of matter
through constraint (6), this is an incorrect conclusion as it does not account for the conservation of
species which have been elminated by QSS assumptions.
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In order to illustrate this problem, we use the integral contraints in Eq. (40)-(43) to define the basis
of the left nullvectors of the stoichiometric matix. Namely, by focusing on the molecules which contain
Rac (i.e., Eq. (41)) we identify the nullvector ℓRac , given by

ℓRac “

»
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—

—

—

—

—

—

—

—

—

—

—

—

—

—

—
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where we see that two slow species (RacGTP and RacGDP) and one fast species (PAK˚) form a
conserved quantity. When a conserved quantity depends only on slow variables, imposing Eqs. (5)
or (6) is straightforward and one may intuitively use mass action terms involving only slow variables
to determine the reaction dyanmics (i.e., the appraoch used in system (31)-(36)). However, when a
conserved quantity (defined by ℓi) is a mix of slow and fast variables, it is necessary to impose the
conservation of matter via Eq. (13) which considers the joint system of fast and slow variables rather
than only those in the slow sub-system.

Therefore, in order to correctly describe the reaction dynamics in the RD system, we begin by
rescaling Eq. (41) as

1 “
1

|Ω|

ż

Ω

Ri ` R ` γKdΩ,

which,according to Eq. 14, is equivalent to

´fR pR,Ri, ρ, P q “ fRi
pR,Riq ` γfK

where fR is the net reaction rate of scaled RacGTP that includes the dyanmics of the fast reactions
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which consume/produce RacGTP (i.e., it is not given by Eq. (38)), fRi
is given by Eq. (38) (as RhoGDP

is not consumed or produced by any fast reactions), and fK is the net reaction rate of scaled PAK˚.
Using Eq. (11), fK may be expressed as

fK pR,Ri, ρ, P, tq “
B

BR
K pR,P q fR pR,Ri, ρ, P q `

B

BP
K pR,P q fP pP, Pi, Rq ,

where fP is the net reaction rate of paxillin (not given by Eq. (39)). Therefore, the net reaction rate for
R is given by

fR pR,Ri, ρ, P q “
´fRi

pR,Riq ´ γ BK
BP

fP pP, Pi, Rq

1 ` γ BK
BR

,

Similarly, for paxillin the conservation of matter can be expressed as,

1 “
1

|Ω|

ż

Ω

Pi ` P ` P̂ dΩ

which can be rewritten as,

´fP pP, Pi, Rq “ fPi
`

BP̂

BR
fR pR,Ri, ρ, P q `

BP̂

BP
fP pP, Pi, Rq

“
fPi

` BP̂
BR

fR pR,Ri, ρ, P q

1 ` BP̂
BP

where fPi
is given by Eq. (39). Finally, we may solve for fR and fP , given by

fR pR,Ri, ρ, P q “

´fRi

´

1 ` BP̂
BP

¯

` fPi
γ BK

BP
´

BP̂
BP

` 1
¯´

γ BK
BR

` 1
¯

´ γ BK
BP

BP̂
BR

(44)

fP pP, Pi, Rq “

´fpi

´

γ BK
BR

` 1
¯

` fRi

BP̂
BR

´

BP̂
BP

` 1
¯´

γ BK
BR

` 1
¯

´ γ BK
BP

BP̂
BR

. (45)

Such considerations have previously been neglected in deterministic implementations of an RD system
describing the spatio-temporal dyanmics of WM system (28)-(30) [50], which is equivalent to assum-
ing that all the partial derivates in the above expression are negligible. For simplicity and comparisons
with the results in [50], we have done the same in our deterministic implementations. However, our
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3.4 Spatio-Temporal Model

stochastic implementations do indeed explicitly consider the fast reactions (see Section (3.2.2.1)) such
that they satisfy Eqs. (40)-(43).

3.4.2 Conservation of Matter in the Well-Mixed Model

For comparison, in a WM setting, the conservation of matter may be imposed using simple algebraic
constraints given by Eq. (8),

1 “ ρ ` ρi (46)

1 “ R ` γK ` Ri (47)

1 “ P ˚
` Pi (48)

1 “ K˚
i `

`

1 ´ K˚
i p1 ´ αRRq

˘

` K. (49)

Using these algebraic constraints, the WM description of system (32)-(36) is thus given by

d

dt
ρ “ fρ pρ, 1 ´ ρ,Rq (50)

d

dt
R “ fR pR, 1 ´ R ´ γK, ρ, P q (51)

d

dt
P “ fP pP, 1 ´ P ˚, Rq , (52)

where fR and fP are given by Eqs. (38) and (39), respecitvely, which is identical to system (28)-(30).
These algebraic constraints are considerably simpler to implement than, but equivalent to, a RD system
using Eqs. (44)&(45).

We have now seen how the conservation of matter leads to subtle difference in the formulation
of equivalent WM and RD systems. Interestingly, there are also some subtle differences between the
fixed-points of these two descriptions of chemical reactions. In particular, while all of the fixed points
of the WM system have corresponding HSSs that are fixed points for the RD system, the stability
of the of the WM fixed-points may or may not carry over to the RD system [32, 55]. Furthermore,
a RD system may also admit some spatially inhomogenuous steady states. The temporal evolution
of the RD system from a, possibly spatially homogenous, initial condition towards stable a spatially
inhomogenous solution is a phenomenon typically referred to as pattern formation. In particular, there
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3.5 Pattern-Formation through Wave-Pinning

is a specific mechanism, termed as wave-pinning, which has been proposed to produce the front-to-rear
polarization in cells from the intrinsic interactions of systems of RhoGTPases [83]. In Section 3.5, we
begin by briefly review the theory underlying the wave-pinning phenomenon. Subsequently, this will
provide us with a framework for understanding the relationship between the fixed-points of the WM
and RD descriptions, and explore how wave-pinning manifests itself in system (31)-(36).

3.5 Pattern-Formation through Wave-Pinning

As discussed previously, in a WM setting, the forms of functions fρ and fR allow for the existence of
bistability. Interestingly, it has been shown that, in a RD setting, models that (i) exhibit multiple steady
states in a WM setting, (ii) obey the conservation of matter, and (iii) exhibit a significant difference
in diffusion coefficients between two that interconvert are capable of supporting a pattern formation
phenomenon known as wave-pinning [32,83]. Therefore, we consider a 1-dimensional RD system, with
two chemical species that interconverted (e.g. RacGTP and RacGDP), whose form is given by Eq. (3)
with n “ 1 with boundary conditions given by Eq. (4). More specifically, we consider a system with
u px, tq being the concentration of the slowly-diffusing active form, and v px, tq is the rapidly-diffusing
inactive species. The net reaction dynamics of u (v) are denoted by fu (fv).

Wave-pinning is often contrasted with the classical Turing pattern formation mechanism, which
requires (i) mutual-antagonism between the chemical species under consideration and (ii) a significant
difference in diffusion coefficients between at least two species [94]. It is a phenomenon which may
occur when m ě 2 and the WM system has a stable fixed point u0 [95]. Due to the existence of this
fixed point, there exists a homogeneous steady state (HSS) solution for the RD system. The HSS may
or may not be a stable solution for Eq. (3), as the addition of diffusion may destabilize certain Fourier
modes of solution near the HSS. The methodology for assessing the stability of a HSS is called Turing
analysis, and it seeks to find the oscillatory modes which grow or shrink in amplitude over time [55].
In order for patterns to form using the Turing mechanism, the HSS predicted by the Eq. (7) must be
an unstable solution of Eq. (3), such that some spatially oscillatory modes will grow over time and
produce a spatial pattern [32, 95].

On the other hand, wave-pinning is an alternative pattern formation mechanism that applies to
reaction diffusion systems very similar to those that can produce Turing instabilities. However, in
contrast, the wave-pinning mechanism requires the WM system to posses multiple stable HSSs for
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3.5 Pattern-Formation through Wave-Pinning

a fixed value of v px, tq “ v0 “ constant [32]. Furthermore, wave-pinning requires that the system
conserves matter [32]. For the RD system discussed above with variables u and v, the unique left
null-vector of the stoichiometric matrix,

S “

«

1 ´1

´1 1

ff

,

is given by ℓ “ r 1 1 s and therefore the conservation of matter can be reduced to

f pu, vq “ fu pu, vq “ ´fv pu, vq @x, t.

Moreover, we assume that v has a rapid diffusion coefficient given by D “ O p1q whereas u has a
slow diffusion coefficient given by ϵ2 ! D. After some rescaling of variables (see [32] for details), we
arrive at a RD system defined on x P r0, 1s, given by

ϵ
Bu

Bt
“ f pu, vq ` ϵ2∇2u (53)

ϵ
Bv

Bt
“ ´f pu, vq ` D∇2v. (54)

Interestingly, travelling wave solutions are known to arise in systems with RD systems on infinite
domains with bistable reaction dynamics. However, in the case of wave-pinning, the finite size of the
cell domain along with the conservation of matter modify the behaviour of the system such that the
speed of the wave is not constant in time [32]. We will now see how bistable reactions dynamics allow
for these waves to develop, and the interaction between reactions and diffusion allow them to travel
across space and eventually come to a stop.

Behaviour at short timescales We begin by considering the dynamics of system (53)-(54) shorlty
after some arbitrary initial condition. The development of a pattern through wave-pinning requires that,
when vmin ď v ď vmax, the function f pu, vq has three roots u´ pvq ă um pvq ă u` pvq, where u˘

are stable solutions of the WM system with fixed v and um is an unstable fixed point. From Eq. (53),
we may notice that the inactive form of the protein diffuses significantly more slowly than the active
form (i.e., ϵ2 ! D). This motivates the definition of a short timescale ts “ t{ϵ, by re-scaling time and
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keeping leading order terms we obtain

Bu

Bts
“ f pu, vq (55)

Bv

Bts
“ ´f pu, vq ` D∇2v, (56)

that is, on a short timescale u is only subject to reaction dynamics whereas v exhibits both reaction and
diffusion dynamics. Suppose that vmin ď v px, tsq ď vmax is in the bistable range, then Eq. (55) states
that u will either evolve to u´ pvq or u` pvq depending on the initial condition. On the other hand, as
u evolves to u˘, the reaction rate f approaches zero, and thus from Eq. (56) we may conclude that v
eventually evolves towards a uniform spatial profile. Therefore, at the end of the short time scale, v will
have a roughly constant value through out the domain whereas u px, tsq will assume the values of either
u´ pvq or u` pvq depending on the position x (i.e., the imposed initial condition). The concentration
profiles of u and v which develop during the short timescale then serve as an initial condition for the
system at intermediate timescales.

3.5.1 Behaviour at intermediate timescales

We now consider a scenario where, after an intermediate amount of time, there exists a single transition
between u´ and u`. In the absence of such a transition, the system will simply evolve to a HSS in both
u and v, and for the scenario with multiple transitions see [32].

Suppose the single transition between u´ and u` occurs at a position ϕ. Under these assumptions,
it may be shown that the solutions for both u and v are spatially uniform everywhere except within a
small transition region of size O pϵq in the vicinity ϕ [32]. Therefore, it remains to be determined what
happens to the solution inside this region and how the position of the transition, ϕ ptq, changes over
time.

Within the transition region it is convenient to use the re-scaled spatial position ξ “
`

x ´ ϕ ptq
˘

{ϵ,
and to introduce the inner solutions

U pξ, tq “ u
´

`

x ´ ϕ ptq
˘

{ϵ, t
¯

, V pξ, tq “ u
´

`

x ´ ϕ ptq
˘

{ϵ, t
¯

which are relevant inside the transition region. We note that U and V have the appearance of travelling
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wave solutions. However they are not traveling wave solutions in the strict sense, due to their time-
dependent wave speed dϕ{dt. Re-scaling system (53)-(54) according to ξ and keeping only the terms
with leading order in ϵ, one obtains

´
dϕ

dt

BU

Bξ
“ f pU, V q `

B2U

Bξ2
(57)

0 “
B2V

Bξ2
. (58)

In order for these inner solutions to be relevant to the aforementioned solution outside of the transition
region, the inner solutions must match with the outer solutions in the limits of ξ Ñ ˘8. For these
limits to exist, it is required that V pξ, tq “ v px, tq “ v0, while for U we obtain

lim
ξÑ´8

U pξq “ u˘ pv0q , lim
ξÑ8

U pξq “ u¯ pv0q .

Therefore, the inner solution U represents a heteroclinic connection between the stable fixed points u´

and u` [55, 96]. Assuming such a connection exists, one may find an expression for the wave speed
using Eq. (57) [32], given by

dϕ

dt
pv0q “

şu¯pv0q

u˘pv0q
f pu, v0q du

ş8

´8

`

BU{Bξ
˘2

dξ
. (59)

Therefore, if there is a value v0 “ vc which can make the integral in the numerator vanish, the wave will
stall and a single transition between the two values of u will be maintained at the position x “ ϕ pv0q.
Furthermore, analysis on the relative signs of dv0{dt and dϕ{dt can be used to prove the stability of
the wave-pinning solution on the on the intermediate timescale [32]. This phenomenon is referred to
as wave-pinning.

The conservation of matter, although implicitly imposed by the structure of system (53)-(54), may
be explicitly expressed as an integral constraint given by

1
ż

0

pu ` v0q dx “ K,

186
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where K ą 0 is the total amount of the protein of interest in the cell. In order to approximate this
integral constraint , we take he limit as ϵ Ñ 0, and find that the cell consists of two spatially segregated
regions: one of size ϕ which we shall arbitrarily assign the value of u “ u` while the other is of size
1 ´ ϕ with a value u “ u´. Therefore, in this limit, we may rewrite the integral constraint as

K “ v0 ` ϕu` pv0q ` p1 ´ ϕqu´ pv0q . (60)

When the wave stalls, we have v0 “ vc and ϕ P r0, 1s. Combined with with Eq. (60), these assumptions
lead to constraints on K which a necessary for wave-pinning to occur

vc ` u´ ă K ă vc ` u`, (61)

that is K must not be too small to allow for u´ to be a homogeneous steady state with v “ vc but not
too large to allow for u` to be a homogeneous steady state with v “ vc. Furthermore, while it may
seem that this condition is independent of reaction dynamics, its dependence is implicity in the values
u˘.

We have thus now seen that wave-pinning is a pattern formation mechanism related to traveling
wave solutions, where the speed of the wave-front eventually vanishes and a stable spatial pattern is
established. The analysis above was done for a single wave-front in one spatial dimension and in the
limit as ϵ Ñ 0. Similar analysis may be performed for multiple wave-fronts and in higher dimensions.
It is found that indeed, at intermediate time scales, the system can support multiple fronts, but as t Ñ 8

the solution will approach a concentration profile with a single front albeit at a very slow pace [32].
Furthermore, the story is very similar in higher dimensions, but in those scenarios the shape of the
domain can significantly influence the propagation of wave-fronts [32].

In order for a cell to become polarized through the wave-pinning mechanism, it would initially be
assumed to be in a HSS characterized by u˘ pv0q and some local perturbation should push u, in some
region of the cell, beyond a threshold value (e.g., um pv0q ). After a perturbation of sufficient size is
applied which perturbed region will quickly converge to u¯ pv0q while the position of the transition and
the value of v0 eventually converge to some stable values on longer timescale. According to Eq. (61),
the long-term behaviour of the system requires an appropriate value of K as well as ϵ to be sufficiently
small. For most biologically-relevant systems, however, one finds that ϵ ą 0 and therefore it is of
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interest to know what occurs as ϵ grows.

In order to do, one may reformulate Eq. (57) as the boundary value problem of finding a heteroclinic
connection between u` and u´ and vary ϵ and K through numerical continuation to observe qualitative
differences in the stalled waved solution [97]. Notably, the difference between u` and u´ decreases as
ϵ increases, and the size of the transition region increases, leading to a decreasingly sharp transition
between u` and u´ as ϵ increases [32]. Moreover, there exists a critical value ϵc “ ϵc pK,Dq beyond
which wave-pinning can no longer occur [32, 97]. This is somewhat surprising given the graded effect
that ϵ has on the appearance of the wave-pinning solution. Generally speaking ϵc “ O p0.2q, and thus
we should be able to observe wave-pinning for system (31)-(36) which has ϵ “

a

DR{pδRL2q ă
a

0.02µm2s´1{p0.025s´1100µm2q “ 0.09 where L is the characteristic length of the cell.

3.5.2 Phenomenology of Cellular Polarization through Wave-Pinning

Cellular polarization may be viewed as a process by which a cell, with initially isotropic distributions
of Rac and Rho, switches to a state where there is a significant spatial-gradient in the activities of these
two proteins. We have used a toy model to illustrate the phenomenon of wave-pinning where a local
perturbation away from a homogeneous steady state leads to spatially segregated regions of high and
low activity (i.e., u` and u´, respectively) with a relatively sharp transition between these two levels
of activity.

In [32] , the necessary and sufficient conditions this toy model to produce wave-pinning were found
to be:

1. A significant difference between the diffusion coefficients of the active and inactive forms of a
protein.

2. The WM system with fixed v exhibits bistability.

3. The stability, in the RD setting, of the HSSs obtained from the WM setting with fixed v.

4. An amount of matter which allows for the wave speed given by Eq. (59) to vanish (see constraints
in Eq. (61)).

In Section (3.3.1), we have already seen how mutual antagonism between Rac and Rho produces bista-
bility in a WM setting (i.e., condition 2 met). Biochemically, the guanine nuleotide status (i.e., GTP-
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bound vs. GDP-bound) of these RhoGTPases is indeed the criterion which regulates their activity.
However, their localization within the cell, either cytosolic or membrane-bound, is also an important
factor in the activation process as well as the ability of the protein to interact with its downstream
effectors [98, 99]. Interestingly, due to the dynamics of shuttling between the membrane and the cy-
tosol [100, 101], it is possible to summarize the complex series of steps into a two-state system where
the RhoGTPase are active when bound to the membrane and inactive when cytosolic [28, 31]. This is
notable, as proteins in the cytosol and in the plasma membrane exhibit an approximatley 100-fold dif-
ference in diffusion coefficients [102], which implies that active Rac and Rho will diffuse significantly
more slowly than their inactive forms (i.e., condition 1 is met). In [32], it was demonstrated that stabil-
ity of the WM system guarantees stability of the HSS provided there is significant difference between
diffusion coefficients (i.e., condition 3 is met). Therefore, we should be able to test if condition 4 is met
by system (31)-(36) seeing if we can induce wave-pinning by choosing an appropriate initia condition.

In order to do so, we performed stochastic realizations of the RD equation in 2-Dimensions (see
Methods). As an initial condition, we set 90% of the domain to be at the uninduced steady state of the
WM system (see Fig. 3.2), while the remainer of domain was set to the induced steady state (see Fig.
3.3C). At very short timescales, the sharp transition of the initial condition is smeared by diffusion as
one would naively expect. However, at longer timescales, local reaction dynamics dominate and the
region which was started at the induced state (with R “ R̄`) tends to a state with R « R` ą R̄` while
the region which was started at the uninduced state (with R “ R̄´) tends to a state with R « R´ ă R̄´

(see Fig. (3.3)A). This PDE simulation thus highlights the distinction between the local values of the
RD system which are the stable fixed-points u˘ pv0q discussed in this Section and ū˘ the stable fixed-
points of the WM system (28)-(30) (see Section (3.5.3) for more details).

Furthermore, the motivation behind using sotchastic realizations of the RD system was to see if
stochastic effects could replace the need for asymmetric intial conditions and trigger wave pinning on
their own. In order to test this hypothesis, we use a HSS corresponding to the uninduced state as an
intitial condition (see dashed line in Fig. 3.4A). The RD system seems to stay in the vicitinity of this
intial condition for hundreds of seconds (see Fig. 3.4 B&C), until a local fluctuation which is large
enough to induce wave-pinning occurs (see Fig. 3.4 D-F). Once the system reaches a stalled wave
solution, it appears to be stable for thousands of seconds (see Fig. 3.4 B&F). This finding represents a
first step in producing stochastically polarized cells, as to the best of my knowledge, the stalled wave
solution is stable with respect to the fluctuations induced by stochasticity. This topic will be discussed
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Figure 3.3: Wave-pinning in a 2-dimensional stochastic realization of RD system (31)-(36). (A) Scaled
Rac concentration, R, averaged over the spatial coordinate X versus the spatial coordinate Y. The initial
condition (dashed black line) was chosen such that 10% of the domain is in the induced state of WM
system (28)-(30) while the remainder of the domain is in its uninduced state. Solid lines depict the
evolution of the solution towards the stalled wave-pinning solution, where the thick lines transition
from grey to black with increasing time. (B) Fractional position of the wavefront, defined as the Y-
coordinate where the averaged scaled Rac concentration (panel A) is halfway between its minimum
and maximum. (C) Initial and (D) final solutions for R.
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in further detail in Section 3.6.0.2.

3.5.3 Wave-Pinning and the Well-Mixed System

We now turn our attention to the steady state solutions of the RD system (31)-(36), and their connection
to steady state solutions of the WM system (28)-(29). In particular, in Figure (3.3), we used a spatially
imhomogenous initial condition where two parts of the domain were initially at fixed-points of the
WM system (e.g., for active Rac R̄` or R̄´) and observe the emergence of a wave-pinning pattern.
The resulting pattern has a single axis of symmetry, and along this axis we see that the solution varies
between two limiting values which differ significantly from the fixed-points of the WM system. For
the generic system considered in Section 3.5, with variables u and v, we denote these limiting values

u0 ptq “ u pθ “ 0, tq ,

and
uL ptq “ u pθ “ Lq ,

where θ is a spatial coordinate along the axis of symmetry which has a length L. Due to the form of the
RD system (3) and the use of zero-flux boundary conditions, we may conclude that these limiting are
indeed fixed point of the chemical reaction dynamics, generically denoted by f pu, vq. For example,
with intial conditions characterized by u0 p0q “ ū` and uL p0q “ ū´ the system evolves to a steady
state u0 ptq “ u` ą ū` and uL ptq “ u´ ă ū´ as t Ñ 8. In this section, we shall explore the
relationship between these various fixed points, and develop a framework for computing the fixed-
points of the spatially inhomgenous solution from the fixed-points of the WM system, and vice-versa.

3.5.3.1 Fixed-Points in the Well-Mixed System

The stable fixed points of the WM system (50)-(52) (see Fig. 3.2B-D) are given by

fρ
`

ρ̄˘, 1 ´ ρ̄˘, R̄˘

˘

“ 0 (62)

fR

´

R̄˘, 1 ´
`

R̄˘ ` γK̄˘

˘

, ρ̄˘, P̄˘

¯

“ 0 (63)

fP
`

P̄˘, 1 ´ P̄ ˚
˘, R̄˘

˘

“ 0, (64)
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Figure 3.4: Spontaneously induced wave-pinning in a 2-dimensional stochastic realization of RD sys-
tem (31)-(36). (A) Scaled Rac concentration, R, averaged over the spatial coordinate X versus the spa-
tial coordinate Y. The initial condition was taken to be a HSS corresponding to the uninduced state of
WM system (28)-(30). Solid lines depict the evolution of the solution towards the stalled wave-pinning
solution, where the thick lines transition from grey to black with increasing time. (B) The value of
R averaged over the whole domain versus time, demonstrates that the HSS is stable for hundreds of
seconds.
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where one may find a single fixed-point by time-integration (e.g.
`

ρ̄´, R̄´, P̄´

˘

) and obtain the other
(e.g.

`

ρ̄`, R̄`, P̄`

˘

) via numerical continuation.

3.5.3.2 Fixed-Points in the Reaction-Diffusion System

We now wish find the local limiting values (i.e., u0 and uL) of the steady-state solution of the RD
system (31)-(36). Recall that for chemical species with slowly diffusing active form u and a rapidly
diffusing inactive form v, provided appropriate initial conditions, we will eventually see a solution
with v px, tq “ vc, u0 ptq “ u`, and uL ptq “ u´ as t Ñ 8, where f pu˘, vcq “ 0. When considering
system (31)-(36), things are slightly different, as the vector-valued f depends on u and v the vectors
of active and inactive concentrations of Rho, Rac, and paxillin, respectively. Nonetheless, focusing on
the chemical species Rho for now, there will still be at most 2 stable fixed points of the function fρ.
Denoting the two corresponding values of active Rho, ρ˘, it is necessary that these values satisfy

fρ pρ˘, ρi, R˘q “ 0

where ρi is the global concentration of inactive Rho, and R` (R´) is the value of scaled active rac in
Ω` Ă Ω (Ω´ Ă Ω) the subdomain where ρ « ρ`( ρ « ρ´). For simplicity, we will assume that there
is a unique spatial location for the transition between the two value of ρ, R, and P , i.e.,

ρ « ρ˘ ô R « R˘ ô P « P˘.

The values of ρ˘ and ρi must jointly satisfy the conservation of matter, given by the constraint

|Ω| “

ż

Ω

pρ ` ρiq dΩ

« |Ω| ρi ` |Ω`| ρ` `
`

|Ω| ´ |Ω`|
˘

ρ´.

Therefore, ρi maybe be solved for using the expression

ρi “ 1 ´
`

ωρ` ` p1 ´ ωq ρ´

˘

, (65)

where ω “ |Ω`| { |Ω|. In order to unambiguously determine the values of ρ˘, it is also necessary to
repeat similar procedures for the local values of R and P . Therefore, given a value of ω P r0, 1] we
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3.5 Pattern-Formation through Wave-Pinning

may solve for ρ˘, R˘, and P˘ by simultaneously solving six expressions, given by .

fρ pρ˘, ρi, R˘q “ 0 (66)

fR pR˘, Ri, ρ˘, P˘q “ 0 (67)

fP
`

P˘, 1 ´ P ˚
˘, R˘

˘

“ 0, (68)

where ρi is given by Eq. 65,

Ri “ 1 ´
`

ω pR` ` γK`q ` p1 ´ ωq pR´ ` γK´q
˘

, (69)

and P ˚
˘ (K˘) is given by Eq. (27) (Eq. (26)) evaluated at x P Ω` and x P Ω´, respectively. We note

here that the approach for solving for paxillin is slightly different than for Rac and Rho, as its dyanmics
cannot be expressed in the form of system (53)-(54). Moreover, from Eqs. 65 and 69 we may conlude
that the local values pρ˘, R˘, P˘q of a stalled solution of the RD system with ω P p0, 1q is, generally,
not a HSS of the RD system, as they do not satisfy the WM matter conservation constraint given by
Eqs. 46-49.

Furthermore, we note that, with ω “ 0, solving system (66)-(68) is equivalent to finding the LPA
steady states described in [84] for RD system (31)-(36). While LPA approximates the local and global
dyanmics shortly after a perturbation, the methodology presented here approximates the local and
global dynamics as the RD system approaches steady state. Therefore, we will subsequently refer to
it as pinned-wave analysis (PWA). While LPA can sometimes be predicitive of wave-pinning, PWA is
a purely descriptive methodology which can be used once wave-pinning behaviour has already been
established. Nonetheless, in Section 3.6.0.2 we will see some cases where LPA fails to explain wave-
pinning while PWA describes the observed behaviour more faithfully.

3.5.3.3 Interpolation of Fixed-Points

We have now seen the systems of equations which must be solved in order to obtain the fixed-points
of the WM system as well as the fixed-points which determine the steady-state local values of the RD
system. Notably, solving for these fixed points can be reduced to two root finding problems which are
nearly identical. We will now present a computational approach for computing one set of fixed-points
from the other.
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3.5 Pattern-Formation through Wave-Pinning

By inspection of the systems of equations (62)-(64) and (66)-(68), we may see that they differ only
in their constraints on the inactive forms of Rac and Rho. In particular, the two stable fixed points of the
WM system have two different values of inactive Rac/Rho, while the two local values of Rac/Rho in
the RD system share a single value of inactive Rac/Rho. Therefore, we propose interpolating between
the two root-finding problems, such that we may obtain the local values of the RD system starting
from the stable fixed-points of the WM system. In order to acheive this goal, we define the interpolated
inactive Rho and Rac, given by

ρ˘
i “ β

´

1 ´
`

ωρ` ` p1 ´ ωq ρ´

˘

¯

` p1 ´ βq p1 ´ ρ˘q ,

and

R˘
i “ β

´

1 ´
`

ω pR` ` γK`q ` p1 ´ ωq pR´ ` γK´q
˘

¯

` p1 ´ βq p1 ´ R˘q ,

respectively, where β P r0, 1s. We note that

lim
βÑ0

ρ´
i ‰ lim

βÑ0
ρ`
i ,

lim
βÑ0

R´
i ‰ lim

βÑ0
R`

i ,

and

lim
βÑ1

ρ´
i “ lim

βÑ1
ρ`
i “ ρi,

lim
βÑ1

R´
i “ lim

βÑ1
R`

i “ Ri,

where ρi and Ri are given by Eqs. (65) and (69), respectively. Thus, the set of equations

fρ
`

ρ˘, ρ
˘
i , R˘

˘

“ 0 (70)

fR
`

R˘, R
˘
i , ρ˘, P˘

˘

“ 0 (71)

fP
`

P˘, 1 ´ P ˚
˘, R˘

˘

“ 0, (72)
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3.6 Local Perturbation Analysis

with β “ 0 corresponds to system (62)-(64) (i.e., the fixed-points of the WM system) and with β “ 1

the equations correspond to system (66)-(68) (i.e., the local values of the steady-state solution of the
wave-pinning system). Therefore, given

`

ρ̄˘, R̄˘, P̄˘

˘

, the fixed points of the WM system (see Fig.
3.2), we may thus find the values pρ˘, R˘, P˘q which characterize a stalled wave-pinning solution
with a fixed value of ω through numerical continuation by varying β from 0 to 1 (see Fig. 3.5). With
ω P p0, 1q and β “ 1 we can subsequently continue a second parameter p, in order to obtain a PWA
diagram which is similar to an LPA diagram, but approximates the steady state solution of the RD
system.

Alternatively, one may use system (70)-(72) to perform LPA by setting ω “ 0, varying β from
0 to 1, and then varying a second parameter p to obtain an LPA bifurcation diagram. However, our
approach of simply varying β, independent of the value of ω or p, is partiuclarly useful for systems
which exhibit bistability in the WM setting. In contrast to the LPA approach, our approach allows one
to unambiguously assign a one-to-one correspondance between the fixed points of the WM system
(e.g., ū˘) and the local values of the RD system (e.g., u˘), as we do not see bifurcations when varying
β , provided the intial guesses satisfy ū` ‰ ū´. On the other hand, using LPA varies a parameter p
and yields many branches of stable and unstable equilibria as p pushes the LPA system through various
bifurcation points. One must then interpret the resulting LPA bifurcation diagram to determine whether
a branch corresponds to a local value or a threshold. For systems with a monostable WM system, this
interpretation is straightforward. However, as we shall see in Section 3.6, for a bistable WM system,
LPA diagrams can become quite busy and may not be as easy to interpret (compare Figs. 3.5 and 3.6F).

3.6 Local Perturbation Analysis

LPA is a methodology which allows one to determining whether a local perturbation of a given size
will produce wave-pinning [36, 37]. Based on what was discussed in Sections 3.5 and 3.5.3, LPA
bifurcation diagrams represent the steady-state solution of a RD system described by Eqs. (53)-(54)
at short timescales after having been subjected to a local perturbation with an arbitrarily small spatial
extent. It is generally described as being predictive of the response of the RD system to a delta dirac-
like perturbation [83].

In order to understand the wave-pinning observed in Figures 3.3&3.4, we will first perform LPA on
the Rac-Rho sub-model. This will allow us to define some parameter regimes with distinct behaviours
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Figure 3.5: Numerical continuation of the stable fixed points of WM system (28)-(30) (β “ 0) to the
local values of wave-pinning system (31)-(36) (β “ 1) with a fixed wave-front position (ω “ 0.54).
The solution of system (70)-(72) is plotted versus β, demonstrating the continuous change in (A) scaled
active monomeric Rac, (B) scaled active Rho, and (C) scaled paxillin as the interpolation parameter β
is varied. Compare the values for R at β “ 1 with the values of R in the stalled solution in Fig. (3.3)A.
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3.6 Local Perturbation Analysis

in the RD system. Subsequently, in Section 3.6.0.2, we will carry out the same analysis with the bio-
chemical feeback from of paxillin, and see how this modifies the LPA diagrams and introduces some
uncertainties in their interpretation.

3.6.0.1 LPA of the Rac-Rho Sub-model

LPA produces bifurcation diagrams consist of so-called global branches (GB) which describe the HSSs
of the RD system as well as local branches (LB) which correspond to short timescale spatially inho-
mogenous steady states of the RD system. When there is coexistence between a stable GB and a stable
LB, wave-pinning is very likely to be possible and thus the system is said to be polarizable. Notably,
for the toy model (53)-(54), there is a typically an unstable LB which seprates the two stable branches
and acts as a perturbation threshold for triggering wave-pinning. In the absence of any LBs, the only
plausible steady state for the RD system is a HSS given by a stable GB. On the other hand, if the GB is
unstable then the HSS is assumed to be Turing unstable (LPA and Turing stability criteria are asymp-
totically equivalent, [103]), such that arbitrarily small perturbations away from the HSS can produce
polarization.

In order to gain inuition about the various wave-pinning regimes predicted by LPA, we have applied
it to the Rac-Rho subsystem with n “ 2, 3, 4 (see Fig. 3.6). This was done because most studies use
LPA on system with n “ 2 such that their WM system do not exhibit bistability, while we have used
n “ 4. This produces LPA diagrams that are much simpler than what we see with n “ 4.

For all values of n we find that there is a parameter regime where the GB is monostable and
LPA does not predict the existence of any LBs, we denote this as regime I which cannot produce
polarization. In this regime, the unique fixed-point of the WM system corresponds to the unique stable
HSS fixed-point of the RD systems. Morevoer, with n “ 2, 3 we find that the WM system is always
monostable with a unique stable fixed point (see Fig. 3.6 A&C). However, LPA shows that, for some
parameter ranges, there is a unique stable local and global branche which are separated by an unstable
local branch (see Fig. 3.6 B&D). This suggest that RD system both a HSS and a spatialy inhomgenoues
fixed-point and thus wave-pinning is possible, provided the system receives perturbation of appropriate
magnitude and direction. Such a configuration is characteristic of the parameter regime which we
denote regime II, to which we may append a super-scripted + (-) to denote that the stable LB is above
(below) the GB. Moreover, for n “ 2, 3 we find that there exists a parameter regime where the unique
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3.6 Local Perturbation Analysis

GB is unstable and there are two stable LBs on either side of the GB, which we associate with a Turing
instability and denote regime III. Regimes II and III are separated by two transcritical bifurcations,
TR1 and TR2, which mark the point where a stable GB loses its stability.

With n “ 4, things become more complex. Firstly, there is bistability in the WM system (see Fig.
3.6E), which means that there will be regimes with three GBs. Furthermore, depending on the location
of the trancritical bifurcations, these GBs may be stable or unstable. Generally, a GB loses stability
as it pases through a transcritical bifurcation. With n “ 4, the transcritical on the uninduced branch
(TR1) is to the right of saddle-node bifurcation on the induced branch (SN1), while the trancritical
on the induced branch (TR2) is to the left of the saddle-node on the induced branch (SN2). Between,
SN1 (TR1) and TR2 (SN2) there is a single stable GB produced by the uninduced (induced) branch
while the unstable saddle-fixed point of the WM system and the induced (uninduced) branch produce
unstable GBs. Intrestingly the folds in the GBs are mirrored in the LBs, producing four more saddles
nodes that we denote SN11, SN21, SN12, and SN22 (see Fig. 3.6F). Together, this generates a complex
configuration where there are three stable and three unstable LBs, in addition to the aforementioned
stable GB and two unstable GBs. Collectively, this defines regime IV, to which we may append a super-
scripted + (-) to denote that there are two stable LBs above (below) the stable GB. Unlike in regime
II˘, regime IV˘ may be polarized by perturbations in either direction. Finally, between TR2 and TR1
there is a regime where there are two stable GBs separated by an unstable GB, which is in turn seprated
from the two stable GBs by two unstable LBs. The stable GB above (below) the unstable GB is also
separated from an upper (lower) stable LB by another unstable LB. This configuration characterizes
regime V, whose most notable feature is the coexistence of two stable GBs (i.e., the RD system is truly
bistable in the sense of having two HSSs).

We have sumarized the regimes described above in Table 3.1. Regimes I, II, and III have been
widely described in studies on wave-pinning that use LPA [30, 31, 34, 37, 83, 84, 103, 104]. Regime III
is typically avoided in models of polarizable cells, as no stimulus is needed to produce polarization.
Such a configuration is odds with the experimental findings these studies sought to understand.

Regimes IV and V have been described in [105] which represents, to the best of our knowledge,
the only work where LPA was performed on a WM system that exhibits bistability for the parameter
range used to perform LPA. In [105], one more regime, a variant of regime IV, was found which is not
exactly as those described here. Interestingly, some of the earliest work on wave-pinning (prior to the
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Regime Classification Description
I Stable HSS One stable GB, no LB.
II Polarizable One stable GB, one stable LB with an unstable

LB separating the two.
III Unstable

(Self-Polarizing)
The only GB is unstable, two stable LBs

located on both sides of the GB.
III1 Tri-Unstable

(Self-Polarizing)
Three unstable GBs, four (two) stable

(unstable) LBs distributed evenly on either
sides of the three GBs.

IV Polarizable
(Bidirectional)

One stable GB and two unstable GBs, three
stable LBs with two on the same side of the
stable GB as the two unstable GBs. Three

unstable LBs, with one separating the stable
GB from the unstable GBs, one separating two
stable LBs, and one separating separating the

stable GB from a stable LB.
V Polarizable

(Bistable)
Two stable GBs, one unstable GB separating
the two. Two stable LBs, one on either side of
GBs. Four unstable Gbs, two separating the

GBs with opposite stability between, and two
separating the stable GBs from the stable LBs.

Table 3.1: Summary of wave-pinning regimes of the Rac-Rho sub-model as predicted by LPA. See
Figures 3.6 and 3.7 for graphical representations.

development of LPA) did indeed use bistable WM models [35], where they also found that polarization
could be produced using monostable WM systems. Subsequent studies seem to have mainly focused
on using LPA to study the monostable WM case [31, 32, 34, 37, 104]. While we may a posteriori

understand the polarization of monstable system from LPA diagrams, it is likely that, at the time, the
authors of wave-pinning studies preffered the monostable case due to its simplicity. However, given
that the bistable case was eventually investigated using LPA, it also possible that there is a subtle
richness in the dynamics of the bistable case which was deemed unecessary during the developmental
period of the field and was only investigated in detail more recently.

Two Parameter LPA We have now seen how the complexity of the LPA diagram increases with in-
creasing Hill-coefficient n and the regimes associated with various configurations of GBs and LBs. In
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Figure 3.6: Local perturbation analysis applied to system (31)-(36) with P and Pi removed. Numerical
continuation was used to find the fixed-points of the LPA system (Eqs. (66)-(67) with ω “ 0) as the
parameter IR is varied. The degree of the non-linearity, n, increases from top to bottom with n “ 2
(A&B), n “ 3 (C&D), n “ 4 (E&F). The left column depicts the fixed-point(s) of the WM system,
whereas the right column depicts the fixed-point(s) of the LPA system. For the LPA system, blue lines
are used to depict GBs (i.e., branches of fixed-points of the WM system) and red lines are used to
depict LBs where R` ‰ R´, (i.e., branches of fixed points of the LPA system where R` is perturbed
away from R´). For both colours, stable fixed-points are depicted as solid lines while unstable/saddle-
type fixed points are depicted as dashed lines. Grey lines are used to delineate different wave-pinning
regimes predicted by LPA, where the roman numerals correspond to the regimes described in Table
3.1.
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order to summarize these effects we have performed a two-parameter bifurcation on the LPA system
for the Rac-Rho sub-model (see Fig. 3.7). This shows how the various regimes grow, shrink, appear,
and disappear as the parameters n and IR are varied. In particular, it illustrates how the polarizability
(i.e., the existence of regime II) is produced by a cusp bifurcation, CP1, just below n “ 2 and how SN4
which emerges from this cusp bifurcation quickly tends to IR Ñ 8 as n increase beyond n “ 2. On
the other hand, the bistability of the WM system is produced by a second cusp bifurcation, CP2, near
n “ 3, from which emerge SN1/SN2 on the GB and the other associated saddle-nodes on the LBs. In
particular, it shows that SN1 (SN2) does indeed coincide with SN11 and SN12 (SN21 and SN22) for
all parameter values. Interestingly, the transcritical bifurcations cross one another near n “ 3.65, pro-
ducing the bistable GBs in regime V. However, between where the transcriticals meet and CP2, there
exists another regime which we have not yet discussed (see Fig. 3.7). Due to the positions of the tran-
scriticals realtive to SN1/SN2 in this regime, the coexisiting GBs are all unstable such that this regime
will behave very similarly to regime III and converge to a LB with arbitrarily small perturbations. Thus
we denote this regime as III1 (see Table 3.1).

3.6.0.2 LPA with the influence of Paxillin

Now that we have seen how LPA can predict the wave-pinning behaviour of a RD system which
accounts for the mutual antagonism between Rac and Rho, we wish to see how the results of LPA
change with the inclusion of the paxillin’s feedback on Rac activation. The effect of various feedbacks
onto RhoGTPases have been investigated using LPA [84, 104, 105], where it has been generally found
to perturb the LPA diagrams by changes in stability of some GBs and the creation of Hopf bifurcations.

As before, we carry out our analysis for increasing values of n. For n “ 2.6 we find an LPA con-
figuration which is reminiscent of that in Figure 3.6B, but with the stability of almost all the branches
switched (see Fig. 3.8 A&B). In fact, we are quite puzzled as to why the GBs outside of the two trans-
critical bifurcations are LPA unstable. This suggests that there are parameter values where there are no
stable attractors, which is indeed concerning and at odds with PDE simulations, although this has also
been reported in [84] and [105].

To the best of my knowledge, I have implemented the feeback of paxillin in a manner which is
equivalent to what was done in [84], [104], and [105]. That is, assuming that the molecules which
feedback onto Rac and Rho (i.e., paxillin) are slowly diffusing and thus have only local values (see
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Figure 3.7: A graphical summary of the wave-pinning regimes. (A) Two paramter LPA illustrates the
shape of regimes I-V and identifies a novel tri-unstable regime III1 which has three unstable GBs. The
solid red line depicts the pIR, nq-values of the saddle-nodes SN3 and SN4 on the LBs. The solid blue
line depicts the pIR, nq-values of SN1 and SN2 on the GBs which coincide with SN11 (SN12) and SN21

(SN22) on the LBs, respectively. The solid magenta line depicts the pIR, nq-values of the trancritical
bifurcations TR1 and TR2 which are at the intersection of the GBs and the LBs. Co-dimension 2 cusp
bifurcations are indicated by open symbols and labelled with the abbreviation CP. Coloured text is used
to indicate which bifurcations the lines correspond to, and black roman numerals are used to indicate
the regimes delineated by these bifurcations. (B) One parameter LPA for n “ 3.25 has three unstable
GBs in bistable region of the the WM system. Such a configuration is very reminiscent of regime III,
with some added LBs. Hence it is denoted regime III1. Lines are coloured according to the same scheme
as in Figure 3.6.
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Eq. 68). Despite such an approach, the stability of the branches predicted by LPA does not seem to be
correct. It is possible that this effect is due to using reaction dynamics that only conserve the “slow”
chemical species (see Section 3.4.1). However, we have not yet had the chance to perform LPA using
Eqs. 44-45.

Nonetheless, we find that as we increase n to 3 we see a configuration comparable to Figure 3.6D,
where the issues with stability seem to persist, and additionally four Hopf bifurcations appear forming
small stable branches on the otherwise unstable LBs (see Fig. 3.8 C&D). Out of these hopf bifurcation
are born some stable and unstable periodic orbits (data not shown, due to computer problems). Notably,
the right-most Hopf has a stable periodic orbit which terminates in a homoclinic as it hits the unstable
GB above it. The two left-most Hopf have stable orbits which form a periodic loop joining the two
Hopfs. Finally, the middle Hopf, which is on the GB between the two trancriticals, produces an unstable
periodic orbit which terminates in a homoclinic when it collides with the unstable LB below it. Given
that we do not trust the stability of the GB and the LBs, it is difficult to say what the periodic orbits
represent.

In [84], Hopf bifurcations and stable periodic orbits were associated with periodic spatio-temporal
patterns. Preliminary analysis of our RD system through PDE simulations does not seem to support
such a beahviour, although in [84] the location of the Hopf bifurcations were only approximately
predictive of the location of periodic patterns. In [105], the periodic orbits observed due to feedback
typically terminated in homoclinics and a canard-like expansion of the periodic orbits was observed.
This meant that orbits only existed for very small parameter regimes and thus they were deemed unim-
portant. It remains unclear what the Hopfs and periodic orbits mean for our system.

With n “ 4, we find a diagram with a very similar appearance to Figure 3.6F, with an additional
6 Hopf bifurcations (see Fig. 3.8 E&F). Given that we know wave-pinning occurs for IK “ 0.009 s´1

(see Fig. 3.3) and that there is no stable elevated LB at this parameter value, it is clear that the LPA
fails to predict the behaviour of the PDE when we incorporate the feedback of paxillin.

Two Parameter LPA It is clear that something is not quite right with LPA once we include the
effects of paxillin on Rac activation. In order to remedy this we have tried to (i) make paxillin a single
global value, (ii) fix paxillin to a constant value, and (iii) reduce the degree of non-linearity in paxillin
activation (while leaving Rac and Rho dynamics unchanged). None of these approaches have made
significant differences in the stability of the LPA diagram. However, given the very similar shapes that
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Figure 3.8: Local perturbation analysis applied to the full system (31)-(36). Numerical continuation
was used to find the fixed-points of the LPA system (Eqs. (66)-(68) with ω “ 0) as the parameter IK
is varied. The degree of the non-linearity, n, increases from top to bottom with n “ 2.6 (A&B), n “ 3
(C&D), n “ 4 (E&F). The left column depicts the fixed-point(s) of the WM system, whereas the right
column depicts the fixed-point(s) of the LPA system. Lines are coloured and patterned according to the
same scheme as in Figure 3.6. Notice that many of the GBs have switched stability compared to their
counter-parts in Figure 3.6, as well as the appearance of many Hopf bifurcations (labelled with HB).
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these LPA diagrams have to the Rac-Rho sub-model, it seems plausible that it is only their stability
properties which are incorrect. Therefore, in order to see how the various Hopf bifurcations arise, we
computed a two-parameter bifurcation diagram in the pIK , nq-plane (see Fig. 3.9). We find very similar
results to what was seen in the pIR, nq-plane for the Rac-Rho sub-model (see Fig. 3.7), but with the
addition of many Hopf bifurcations. In general, we can see that more and more Hopf bifurcations
appear with increasing n.

Firstly, it is likely that the diagram is incomplete and is missing a few Hopf bifurcations. Secondly,
based on the bifurcations we have found there are at least 28 different parameter regimes when paxillin
feedback is included, although it is likely that many of them will be equivalent. For this reason, we have
not characterized the behaviour in all the various regimes. Nonethless, given the similar appearance
between Figures 3.7 and 3.9, we propose ignoring the Hopf bifurcations in Figure 3.9 and interpreting
parameter regimes based on the positions of the transcritical and saddle-node bifurcations (i.e., using
the regimes defined in Table 3.1).

In Figure 3.4, we can see that a stalled wave solution in acheived attained without the need for
any externally imposed perturbation/asymmetry. Given that [50] used values of IK “ 0.009 s´1 and
n “ 4, it seems likely that the stochastically induced wave-pinning observed in Figure 3.4 is caused
by the model being in the Turing unstable regime III1. Turing unstable regimes have typically been
avoided in the literature as cells are assumed to need some signal to polarize [37], but they may be
quite useful for our purposes. In order to test this prediction, we increased n to 4.25, which should
be in regime V where a perturbation is required to produce wave-pinning. Interestingly, when system
(31)-(36) is simulated in this regime, we do not observe wave-pinning without an applied perturbation.
This suggests that although the one-parameter bifurcation diagrams cannot be trusted when paxillin
feedback is included, the two-parameter bifurcation diagrams are still useful in predicting behaviour
of the RD system.

Furthermore, these results suggest that a Turing instability is indeed responsible with the stochastically-
induced wave-pinning in Figure 3.4. Further work should be done to invistigate differences in dynamics
in regimes III and III1, in particular how they behave in stochastic simulations and comparisons with
deterministic simulations. A more thorough investigation may help to elucidate how to obtain systems
which transient polarization in a stochastic setting. However, for the time being, the major obstacle
for such a phenonmenon seems to be the fact that the LBs are too far away from the GBs to allow for
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Figure 3.9: Two parameter LPA with with feedback from paxillin onto the Rac-Rho sub-model. The
solid red, blue, and magenta lines depicts the same values as in Figure 3.7, but in the pIK , nq-plane.
Solid green lines depict the pIK , nq-values of various Hopf bifurcations. Co-dimension 2 Bogdanov-
Takens and cusp bifurcations are indicated by open symbols and labelled with the abbreviation BT and
CP, respectively.

stochastically-induced polarization switching (see Section 5.3 of [105] for some strategies to remedy
this).

3.7 Influence of Paxillin on Wave Pinning

The phosphorylation of paxillin has been shown experimentally to significantly influence both adhe-
sion dynamics and cellular motility. We have experimental collaborators who use various genetically
modified versions of paxillin, and there is interest in deciphering the contributions of adhesion dynam-
ics and biochemical signaling (e.g., paxillin’s effect on Rac activation) on the observed phenotype.
Our group has published two studies on the topic [50, 63], where conflicting results about paxillin’s
influence on polarization were found. In [50], it was found that, in a deterministic RD setting, wave-
pinning could be observed by choosing asymmetric initial conditions. Furthermore, it was found that
by increasing the maximal phosphorylation rate of B wave-pinning is abolished at B « 22.2 s´1. On
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the other hand, in [63] we used a stochastic approach, similar to what is presented in Section 3.2.2,
where wave-pinning was never observed in the absence of a constitutive gradient in reaction rates.
Such a discrepancy is surprising, as both studies effectively use the same model. However, during the
preparation of this chapter, I have discovered some oddities in the chemical propensity calculations
of [63], and, after fixing them, we thankfully do indeed see wave-pinning occur in the stochastic im-
plementation (e.g., see Fig. 3.3). Given these findings, we wished to investigate the phenomenon in
more depth to see if we can understand the effect of B on wave-pinning.

Due to the ambiguities which show up in LPA diagrams when paxillin feedback is incorporated, we
first investigate this question through PDE simulations. Given that B « 22.2 s´1 was previously found
to be the limit for exhibiting wave-pinning, we have chosen to perform simulations using B “ 40 s´1

which, according to the findings in [50] should be well beyond the threshold in B for producing a
polarized state (i.e., wave-pinning). To be comparable to the simulations in [50], we have chosen a
1-dimensional (2-dimensional) domains for the deterministic (stochastic) simulations with a character-
istic size of 10 µm. For initial conditions, in 90% of the domain R, ρ, and P were set to the values of
the uninduced state, and a small (10%) region was perturbed by starting it near the induced state (see
dashed line in Fig. 3.10B). Interestingly, we do indeed observe wave-pinning for both the deterministic
and stochastic realizations of the RD system (see Fig. 3.10 A&B). In order to be reconcile this obser-
vation with the findings in [50], we also performed simulations where the initial condition for R and ρ

are HSSs and only P is perturbed. Using a value of P “ 0.24 inside the perturbed region and P “ 0.22

in the rest of the domain, we can observe wave-pinning for a value of B “ 3 s´1 (see Fig. 3.10C) while
for B “ 40 s´1 the system converges to a HSS that corresponds to the induced state (see Fig. 3.10D).
In light of this result, given that a unique initial condition was used in [50] for varying values of B, it
seems most likely that the observed loss in polarization was likely due to a the initial condition being
inadequate for producing wave-pinning for B ą 22.2 s´1. This finding is not surprising given what we
have seen about LPA, where the threshold for triggering wave-pinning varies with model parameters.

In order to further understand these findings, we have performed LPA and PWA on system (31)-(36)
with B as the bifurcation parameter (see Fig. 3.10 E&F). As noted in the previous section, the stability
of LPA diagrams with paxillin feedback cannot be trusted, but the location of local branches can still be
partially informative about wave-pinning. Interestingly, LPA does not predict the existence of any LBs
above the unique GB at B “ 40 s´1, suggesting that wave-pinning should not occur in that parameter
range. Obviously, this prediction is incorrect as we have seen wave-pinning in both the deterministic
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Figure 3.10: The effect of paxillin phosphorylation rate, B, on wave-pinning. (A) Kymograph of the
scaled Rac concentration, R, in a 1-dimensional deterministic implementation of the RD system (31)-
(36) with B “ 40 s´1. An asymmetric initial condtion leads to the development of a wave-pinning
solution. (B) R averaged over the spatial coordinate Y versus the spatial coordinate X as predicted
by a 2-dimensional stochastic realization of the RD system. The initial condition (dashed black line)
evolves towards a stalled wave-pinning solution, as depicted by the thick solid lines which transition
from grey to black with increasing time. (C&D) Kymogrpahs of R with initial conditions given by
P “ 0.24 in the perurbed region (i.e., the elevated part of the dashed line in panel B) and P “ 0.22 in
the unperturbed region. This intial condition triggers wave-pinning when (C) B “ 3 but not when (D)
B “ 40 s´1, similar to the observed loss of wave-pinning at high values of B in [50]. (E) LPA and (F)
PWA applied to the RD system with the limiting values of R in panel A depicted as a two black dashed
lines, coloured lines use the same scheme as Figure 3.6. LPA fails to explain the development of wave-
pinning pattern at B “ 40 s´1, as there is no LB above the GB. On the other hand, PWA predicts a LB
above the GB at B “ 40 s´1 which allows us to understand the development of a polarized pattern in
panel A.
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and stochastic implementations of the RD system. On the other hand, PWA with a value of ω “ 0.6

(estimated from Fig. 3.10A) does indeed predict a LB above the unique GB for B “ 40 s´1. What is
more, the LBs of the PWA diagram provide reasonable approximations for the limiting values of the
deterministic implementation of the RD system. Therefore, although neither methodology perfectly
captures the wave-pinning outcome, PWA can be better reconciled with the observed behaviour of the
PDE system.

3.8 Cellular Potts Simulations

In order to determine how the results of the analysis presented in the previous sections affect cellular
migration, we have used the CPM to produce phenomenological simulations of cells that protrude
where Rac is high and contract where Rho is high. The CPM models cells as a a stochastically evolving
set of points, typically on a uniform square grid, where the set of points is evolved in discrete steps.

More specifically, the CPM assigns a value to each position in space; for example, the simplest
implementation must distinguish between the spatial positions that are ocuppied by the cell (e.g., those
positions can be given a value of 1) and those that are not (with a value of 0). The configuration of
the system is updating by choosing pairs of points and copying the value from one point to another.
This copying of values, or “spin-flip”-ing, may be done repeatedly to produce a new cellular configu-
ration, however we use a single spin-flip. Each new configuration is accepted or rejected according to
a Metropolis acceptance criterion, given by

Pacc “ min
!

1, exp
`

´∆H{T
˘

)

,

where Pacc is the probability of accepting the new configuration, ∆H is the change in the system’s
Hamiltonian between configurations, and T is a “temperature” parameter. In order to obtain sets of
points that behave as a cell, it is critical to specify an appropriate Hamoltonian for the system. A
common choice in the literature is to use the following expression for the Hamiltonian,

H0 pA,P q “ λA pA ´ aq
2

` λP pP ´ pq
2

` JP,

where A (P ) is the current area (perimeter) of the cell, a (p) is the “rest area” (“rest perimeter”) of the
cell, λA (λP ) is the energetic cost of increasing the area (perimeter) by 1, and J is the energetic cost
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per unit length of the cell-medium interface. For two configurations, denoted simply by 1 and 2, the
change in Hamiltonian going from configuration 1 to configuration 2 is given by the expression

∆H0 “ H0 pA2, P2q ´ H0 pA1, P1q ,

where A1 (P1) is the area (perimeter) of configuration 1, and A2 (P2) is the area (perimeter) of config-
uration 2. We furthermore apply a connectivity constraint on the system, where any configuration that
exhibits two distinct cells is assumed to have an infinitely large value of H0. The metropolis accep-
tance criterion will cause the system to minimize its energy over time, while allowing for fluctuations
around some optimal configuration. In order to make efficient use of computational resources, we only
consider spin flips that change the system, i.e., between a point inside the cell and another point outside
the cell or vice versa.

Simulations with this type of Hamilitonian will produce cells that exhibit random shape fluctu-
ations, but will not exhibit the type of biased displacement we would expect from the biochemical
activity of the RhoGTPases. In order to account their effects on the actin cytoskeleton, we modify the
the Hamilitonian by adding the following term

∆Hchem “

$

&

%

´βR

`

R ´ Req

˘

` βρ

`

ρ ´ ρeq
˘

if the cell protrudes

βR

`

R ´ Req

˘

´ βρ

`

ρ ´ ρeq
˘

if the cell contracts
,

where βR and βρ are positive parameters, Req (ρeq) is the mean scaled Rac (Rho) activity throughout
the cell, and R (ρ) is the local value of scaled Rac (Rho) activity estimated from the current state of
the RDME simulation at the point inside the cell that partakes in a given spin-flip. This Hamiltonian
favours protrusion where Rac is elevated and contraction where Rho is elevated, with the magintudes
of βR and βρ and the time-evolution of the RDME simulations governing the relative likelihood of
these two outcomes.

By defining the change in the Hamiltonian as

∆H “ ∆H0 ` ∆Hchem,

we couple the CPM to the RDME simulations detailed in Section 3.2.2. However, in order to properly
couple these two simulations approaches it is necessary to choose a timescale with which to update the
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cellular configuration (i.e., the time between two succesive MCSs). In order to choose this timescale
we make the following observations. CPM simulations require a large number spin-flip attempts before
the the cellular configuration changes appreciably, motiviating the definition of a “Monte Carlo Step”
(MCS) where a simulation with N grid points undergoes N spin-flips attempts. In some sense, this
defines an iteration-scale for the CPM simulations, which we would like to convert to a time-scale so
that we can run the CPM simulations in conjunction RDME simulations. In order to do so, we note that
it is very unlikely for a cell boundary to move forward by more than 2 grid points in a single MCS, thus
defining the maximum length-scale of the MCS as 2h where h is the grid spacing. Furthermore, CHO-
K1 cells also have typical maximum migration speed of vmax « 3µm/min. Therefore, we propose
performing MCS steps at time itervals of

∆t “
2h

vmax

,

where we have typically used ∆t P r20 s, 60 ss. Furthermore, in order to prevent sudden and drastic cell
shape changes from abolishing the effects of chemical reactions, the MCS is sub-divided into NMCS

sub-steps of N{NMCSspin-flips that are performed at smaller time intervals of ∆t{NMCS. We have
typically performed simulations using NMCS “ 15 and h « 1µm such that ∆t « 40 s.

3.8.1 Influence of Paxillin on Polarization

In order to determine the effects of paxillin phosphorylation on cell migration, we have carried out
CPM simulations for varying values of the paxillin phosphorylation rate B. Recall that for B “ 5 s´1

we previously demonstrated that the uninduced HSS was Turing unstable, leading to the development
of a polarized state without the need for any imposed asymmetry (see Fig. 3.4). We now repeat these
simulations, but with the RDME simulations coupled to the CPM as described above. In order to obtain
a baseline of how these simulations behave in the absence of paxillin feedback, we set B “ 0 s´1 and,
starting from an HSS corresponding to the uninduced state, ran simulations for 4 hours of simluated
time. This produced simulations where cells undergo random shape fluctuations, but do not become
polarized over the length of the simulation (see Fig. 3.11A-C). Next, we ran the same simulations with
B “ 30 s´1, where we observed cells undergoing spontaneous self-polarization on the timescale of
thousands of seconds (see Fig. 3.11F). Once polarized, the cell begins to move in a directed fashion,
with its front become well-spread compared to a narrower cell-rear (see Fig. 3.11G). However, as the
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cell-rear catches up to the front, the region of high Rho (low Rac) tends to split the protrusive front into
two protrusive region point in opposite directions (see Fig. 3.11 H & I). These two protrusive regions
can persist for many hours, arresting the cell in place.

Figure 3.11: Snapshots of RDME-CPM simulations with (A-C) B “ 0 s´1 , and (D-I) B “ 30 s´1,
where the center of mass (red line) is overlayed on top of the scaled active Rac concentrations. For
B “ 0 s´1, cells do not polarize when initialized from an uninduced HSS, exhibiting random shape
fluctuations without polarization. Alternatively, when B “ 30 s´1, cells starting from the same HSS
eventually become polarized and start to migrate in a directed manner. These self-polarizing cells
eventually develop multiple protrusive regions, typically after a large protrusive front spreads out and
the region of high Rho cathes up with it, splitting the protrusive region in two (e.g. see panel H). In
such a scenario, the cells become arrested and cease to move in a directed fashion for thousands of
seconds.

Beyond this qualitative description of simulated cellular behaviour, we have also quantified some
of the properties of the cell movement in the two conditions considered above. More specifically, we
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B (s´1) Net Speed (µm/s) Mean Inst. Speed ˘ Std. Dev (µm/s) Max Inst. Speed (µm/s)
0 3.1386e-04 0.0027 ˘ 0.0015 0.0076
5 6.6438e-04 0.0027 ˘ 0.0022 0.0141

30 5.5158e-04 0.0024 ˘ 0.0018 0.0143

Table 3.2: The effects of paxillin phosphorylation on migration speed (n=5 cells per condition). The
net speed of a cell is defined as the total distance it travelled during a simulation divided by the length
of the simulation. The instantaneous speed of cells was estimated from the distance they travelled in 5
MCSs. All simulations were run for a simulated time of 4 hours, and 5 replicates were used for each
condition.

wished to determine if the cells speed varies with B. In order to do so, we first computed the net speed
of the cell (i.e., the distance travelled throughout the whole simulation divided by the total simulated
time). This showed us that, when B “ 30 s´1, cells displace themselves almost twice as far as when
B “ 0 s´1 (see Table 3.2). However, the simulated cells appear to be undergoing random walks (see
Fig. 3.12 A & D), and since displacement in random walks is not necessarily linearly proportional to
time we felt that this metric may not be the most appropriate for comparing simulations. Therefore,
we have adapted some analysis methodologies from [106]. Firstly, we define the instantaneous cell
speed as the distance travelled by a cell in 5 MCSs divided by the elapsed time (see Fig. 3.12 B
& E). Suprisingly, the mean instantaneous speed in the two conditions does not suggest that cell with
B “ 30 s´1 move more quickly than those with B “ 0 s´1 (see Table 3.2). However, we do observe that
the max instantaneous speed is doubled in the former condition (see Table 3.2, and Fig. 3.12 B & E),
consistent with the effect we saw for the net speed. In general, the cell instantaneous speed is a highly
variable metric, that does not always elucidate polarization in a straightforward manner. However,
the cellular persistence, defined as the half-life of the cellular velocity auto-correlation function (acf),
allows us to obtain a much clearer picture of the motile behaviour in the two conditions. Namely, it
shows that, when B “ 30 s´1, cells tend to undergo repeated bouts of motility that terminate once the
cell develops multiple protrusive regions, whereas when B “ 0 s´1, they tend to undergo something
closer to a brownian random walk (see Fig. 3.12 C & F) . We note that we have non-dimensionalized
the persistence such that a value <1 corresponds to an acf that decays very quickly, suggesting that the
velocity of the cell is approximately delta correlated (i.e., it is close to a brownian random walk on the
timescale of 5 MCSs).

The trends we observe in Table 3.2 suggest that paxillin phosphorylation has two primary effects
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Figure 3.12: Summary of cell displacement properties in CPM simulations with (A-C) B “ 0 s´1 ,
and (D-F) B “ 30 s´1. (A&D) Representative cellular trajectories show that when B “ 0 s´1 cells
undergo simple brownian random walks, whereas when B “ 30 s´1 they occasionally migrate in a di-
rected fashion. (B&E) The instantaneous cell speed as a function of time exhibits similar distributions
in both conditions, but where the maximum speed is typically higher for B “ 30 s´1. (C&F) Cellu-
lar persistence as a function of time shows cells undergoing brownian random walks (persistence<1)
when B “ 0 s´1, whereas when B “ 30 s´1 they tend to exhibit repeated periods of directed motion
(persistence>1).

on RhoGTPase-dependent polarization. Firstly, it increases net migration distance by polarizing the
cell when B is sufficiently large to destabilize the uninduced HSS (e.g., B ě 5). Secondly, it decreases
net migration distance at higher values of B by making cells less capable of re-polarizing after they
develop multiple protrusive regions, which is further reflected by a decrease in mean instantaneous
speed (e.g., B “ 30). Together, these findings suggest that there may be an optimal value of B that
produces maximal cellular migration rates. Further investigation into this topic is ongoing.
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3.9 Conclusions and Outlook

In this chapter we have discussed how mutual antagonism betwewn two RhoGTPases can be used
by cells to produce polarization. The underlying driver behind such a phenomenon is understood to
stem from the bistability of chemical reaction systems, where mutual antagonism between two or
more biochemiocal species allows for the co-existence of two stable chemical equilibria which have
either high or low active concentrations for a given RhoGTPase. In particular, we have focused on Rac
and Rho, two RhoGTPases which drive cellular protrusion and contraction, respectively. The precise
details of the mutual antagonistic mechanisms between these two GTPases are not fully understood,
and there are likely multiple redundant pathways which serve to acheive this purpose. Thus we have
incorporated mutual antagonism by using generic decreasing Hill functions of one molecule to describe
the activation rate of the other. The outcome of such a modelling approach is that it predicts that when
one molecule has a high concentration of its active form it will supress the production of the other, i.e.,
mutual antagonism.

In a WM setting, chemical systems with sufficiently high Hill coefficients (i.e., a sufficient number
of steps and/or cooperativity in the mutual antagonism pathways) allow for the coexistence of two
stable equilibria (see left-column in Fig. 3.6), which can be understood as two distinct phenotypic
states that are termed induced and unininduced, where either active Rac or Rho is elevated, respectively.
Furthermore, we saw how feedback from paxillin phosphorylation onto Rac activation can be used to
drive the cell through a bistable switch, where a sufficiently high paxillin phosphorylation rate leads
to the annihiliation of the uninduced equilibrium. This suggests that a cell can signifcantly increase its
protrusiveness by increasing paxillin phosphorylation. While this is an informative preliminary means
of studying polarization, a WM model fundamentally cannot be used to describe polarization, as it
lacks the requisite spatial considerations. This shortcoming is remedied by moving to a RD setting,
where polarization can be understood as a pattern formation process driven by the phenomenon known
as wave-pinning. On the other hand, WM models can be informative in studying RD systems as the
equilibria of the former are HSSs of the latter.

Reaction-diffusion systems are a class of PDE models, which means, unlike the ODEs used to
descibe WM systems, they cannot be sytematically analyzed through any one technique. The phenon-
menology of wave-pinning can be understood through assymptotic analysis of a toy PDE model (see
Section 3.5), where the fact that active forms of Rac and Rho diffuse much more slowly than their inac-
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tive forms is a prerequisite condition for observing pattern formation. Provided that reaction dynamics
occur on a timescale comparable to the diffusion of the inactive form, a predicted outcome of the toy
model is that spatial regions can converge to the two distinct chemical equilbria which differ from the
(possibly unique) HSSs predicted by WM models. In order to predict whether a RD system is capable
of producing such a spatially inhomogenous pattern, one may use LPA. This analysis methodology
uses asymptotic approximations of the PDE to reduce it to a much simpler set of ODEs which summa-
rize both the local and global dynamics of the RD system shortly after a perturbation of infinitesimal
spatial extent is applied to the system.

While LPA describes the behaviour of the PDE on short timescales, it can also be adapted to de-
scribe the long-term behaviour of a wave-pinning system. In particular, LPA is informative about the
size of a perturbation requited to trigger pattern formation. However, after an appropriate perturbation,
a travelling wave propagates across the domain until it slows down to a halt. Given the position of
the stalled wave-front, the conservation of matter can then be used to derive a constraint on the local
active concentrations and the global inactive concentration. The approach used in LPA is to assume the
wave is negligible in size, but this assumption may be relaxed. While LPA considers the global active
concentration dyanmics to be independent of perturbed local active concentration dyanmics, our ap-
proach, termed PWA, considers two local active concentrations which interact through the conservation
of matter. In principle, one may use PWA in a manner identical to LPA, that is, using numerical con-
tinuation along the “global” branch(es) of equilibria of the WM system to detect bifurcation points and
subsequently following “local” branches to find stable equilibria. However, as demonstrated in Section
3.6, when the WM system is bistable, LPA diagrams can become quite complex and when feedback
from biochemical signalling is incorporated their predicted stability properties may not be reliable. Our
implementation of PWA provides a mean to forgo the creation of a messy LPA diagram or interpreting
its dubious stability properties, and directly computes the local concentrations of the steady state solu-
tion by interpolating between two root-finding problems rather than having to navigate the bifurcation
structure of the problem.

We have applied both LPA and PWA to a model of Rac and Rho with feedback from paxillin sig-
nalling, and have found that in both cases the stability properties of the resulting bifurcations diagrams
are rather suspect. In paticular, there are parameter regimes where there appear to be no attractors
for the system. This has been observed before when including biochemical feedback onto the wave-
pinning system [84, 105], but with our feedback system we find that this issue is more prominent than
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what has been described in the literature (see Fig. 3.8). We have outlined some discrepancies with
matter conservation which may be contriubting to this problem (see Section 3.4.1), but further investi-
agtion into the matter is needed. Furthermore, with the inclusion of feedback from paxillin we find that
LPA fails to predict the wave-pinning observed in the RD system whereas PWA can be used to provide
a post-hoc explanation of the observed pattern. Thus, PWA is a complementary tool to LPA, and both
fail to capture the stability properties of the RD system when feedback is incorporated.

Ultimately, this project was started to understand how signalling downstream of paxillin affects
cellular motility. Moreover, we wished to see if stochastic effects could induce changes in polarity that
are consistent with the random changes in direction exhbited by CHO cells, and if paxillin phosphory-
lation could be used to drive motility independently of its effects on adhesion dyanmics. Stochastically
induced wave-pinning has indeed been observed for this RD system (see Fig. 3.4). However, stochas-
tically induced changes in the polarization (e.g., directional switching) remains elusive. Nonetheless,
it is possible that the key to producing stochastically polarized cells requires some details which have
not been considered here. In particular, as a cell protrudes and contracts it will change its size and
geometry, and these factors may feedback onto the the RhoGTPases to produce stochastic changes in
direction. Furthermore, the mechanosensitive properties of adhesions or ionic influxes through stretch-
activated channels may contribute to these stochastic changes in direction. For these reasons, we have
begun to extend our simulations by incorporating a time-dependent domain through the use of the
Cellular Potts Model.

Although LPA and PWA were relatively inconclusive about the wave-pinning behaviour of the RD
system with respect to the paxillin phosphorylation rate B, we have preliminary results from simula-
tions using the CPM which suggest that B does indeed affect the speed of cellular motility (see Table
3.2 and Fig. 3.12). In particular, we have set up the CPM to be protrusive (contractile) in regions with
high Rac (Rho) according to standard methods in the field [82]. Five simulations of cells were run and
both the net and instantaneous migration speed of cells was quantified, as well as cellular persistence.
Interestingly, as B is increased from B “ 0 s´1 to B “ 30 s´1 we saw an initial rise in the net mi-
gration speed of the cells followed by a decrease at higher values of B. This suggested that increased
paxillin phosphorylation may have either a pro- or anti-migratory effect on cells, and that there is an
optimal value of paxillin phosphorylation rate that maximizes cellular migration. Along with further
refinements to the model, these CPM simulations are currently be investigated in depth.
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4.1 Introduction

As clearly demonstrated in Chapters 1 and 3, cellular motility involves a number of complex spatio-
temporal patterns of activity. For instance, in order for a cell to move in a directed manner, it must first
become rear-to-front polarized (a spatial pattern of activity). This is thought to occur as a result of mu-
tual inhibitory feedbacks between two members of the Rho subfamily of GTPases: Rac and Rho [1].
The mutual inhibitory interactions between these two proteins together with differences in diffusion
coefficients in their active and inactive forms are used by the cell to produce spatially-segregated re-
gions where the activity of one GTPase is high and the other is low, but the specific GTPases which is
high may be different in each specific region [2]. These regions may be either protrusive (where Rac
is elevated, promoting actin polymerization) or contractile (where Rho is elevated, promoting myosin-
driven contraction of the actin cytoskeleton). Due the opposing effects of these two proteins on cell
morphology, it is typical to denote the protrusive region as the front of the cell and the contractile
region as the the rear of the cell. Within the context of motility, there are numerous other examples of
coordinated patterns of activity, not only across space but also across time.

After a cell generates a rear-to-front polarization, its subsequent motility involves a number of key
steps: (i) protrusion, (ii) adhesion, (iii) cell-body translocation, and (iv) de-adhesion [3]. These steps
can happen either continuously all at once or serially in a periodic manner. Often, whether a cell moves
continuously or periodically is considered to be a phenotypic trait of a specific cell type. For example,
fish keratocytes are widely known to migrate continuously whereas CHO cells exhibit cyclic protru-
sion/retraction cycles during their movement. However, in [4], this phenomenon was investigated more
thoroughly by looking at a population of cells. It was found that, within a populations of fish kerato-
cytes, some would move continuously while others exhibit waves of protrusion that travel from one
end of the lamellipodium to another. In addition, individual cells could be switched between moving
continuously or periodically by plating them on different substrates or treating them with pharmaco-
logical agents. This suggests that the same machinery is working to produce both modes of motility,
but that the system can behave differently under varying conditions. Using mathematical modeling to
account for actin polymerization dynamics, this study ascertained that these differences in modes of
motility could be explained by intercellular heterogeneity in the rates of various biochemical processes
related to actin polymerization.

In particular, it was found in this study that the actin polymerization is inhibited by capping proteins
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4.1 Introduction

which prevent further growth of actin filaments and that the protein VASP exerts an anti-capping effect
at the leading edge of the cell. This anti-capping action allows for enough polymerization to occur in
order for the collective force of polymerization of all filaments to overcome membrane tension and
lead to protrusion in regions of high actin filament density. Protrusion of the leading edge is highly
correlated with the birth of nascent adhesions, and their subsequent growth and stabilization to form
mature adhesions. Interestingly, mature adhesions have been shown to sequester VASP at the leading
edge, antagonizing its anti-capping effect. If enough VASP is sequestered by mature adhesions, the
leading edge will stall, but if VASP is continually delivered to the leading edge (through an unspecified
mechanism), it will eventually reach high enough levels to allow for protrusion to restart. These positive
and negative feedback processes produce the sequence of events which have been hypothesized to be
the origin of the traveling waves of protrusion. Furthermore, based on results of the model and some
experimental evidence in [4], one may conclude that keratocytes which exhibit continuous motility
have a high VASP delivery, preventing its depletion at the leading edge by mature adhesions.

The mathematical model published in [4] was quite alluring, as it can explain much of the phe-
nomenology observed in motile cells. Moreover, it has only three variables with eight parameters.
However, this model remains incompletely characterized, as the study focused primarily on exper-
imental findings with the dynamic properties of the model left incompletely investigated. Here we
analyze the underlying dynamics of this model in detail and expand its formulation by combining it
with the mechanosensitive properties of the adhesion model of Chapter 2 to see how these two coupled
systems interact. We will show that coupling the two models increases the size of the oscillatory regime
in parameter space and enhances the robustness of waving.

One important feature of the model developed in [4] is that it is excitable. Excitable systems are
known for their ability to generate very pronounced responses to small suprathreshold stimuli, with
their state variables typically generating large excursions in state space [5]. The presence of time-scale
separation within models describing these systems represent an important feature of such models,
producing very interesting dynamics with significant implications on governing the behaviour of the
physiological systems they are meant to describe. Moreover, excitable systems can be driven to produce
even richer dynamics by the addition of noise [6]. In this chapter, we will use tools from non-linear
dynamics and slow-fast analysis to investigate excitability of the model in [4] and determine how it
affects dynamics of cell motility in fish keratocytes.
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4.2 The Non-Dimensionalized Model

We begin by first considering the non-dimensionalized model of adhesion-dependent wave generation
published in [4]. This model describes the movement of the leading edge of a cell driven by actin
polymerization pushing against the cell membrane and the biochemical feedback this process receives
from interactions between the protein VASP and adhesion complexes anchoring the cell to its substrate.
We present the 1-Dimensional spatio-temporal variant of the model, which simplifies a 2-Dimensional
spatio-temporal lamellipodium model of the cell into an infinitesimally thin strip just behind the lead-
ing edge. As we will demonstrate later, this 1-Dimensional formulation captures the experimentally
relevant behaviour of motile cells, while being simpler to analyze.

The spatio-temporal model presented in the supplemental material of [4] is given by

ϵ
B

BT
B pX,T q “ p1 ` ηBV q ´

B

1 ` AB{p1 ` M ` KBq
` ϵ2

B

BX

ˆ

1

Γ

BB

BX

˙

` Ξt (1)

B

BT
A pX,T q “ d ´

p1 ` ηAV ` ηMMV qA

1 ` M ` KB
, (2)

B

BT
M pX,T q “ RB ´ pθ ` ηMV qM, (3)

where B is the actin barbed end density, M is the density of mature adhesions, A is the total local
concentration of VASP, ηB is the increase in actin branching due to polymerization, R is the scaled
maturation rate of nascent adhesions, θ is the scaled disassembly rate of mature adhesions, d is the
scaled delivery rate of cytosolic VASP, ηA is the scaled VASP (rearward) advection rate, ηM is the
scaled adhesion (rearward) advection rate, K is the ratio of affinities for the binding/unbinding of
VASP-to-actin and VASP-to-adhesions, V is the local velocity of the leading edge given by

V “

$

&

%

1 ´
`

Bc

B

˘8
B ě Bc

0 otherwise,
(4)

with Bc being the critical barbed end density required to produce enough force to move the leading
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edge defined by

Bc “

$

&

%

B0
c

ş

V dx “ 0

p1 ` EqB0
c

ş

V dx ą 0,
(5)

with E “ 0.1 being the fractional increase in membrane tension when the leading edge is protruding,
0 ă ϵ ă 1 is a small parameter which quantifies how fast the dynamics of B are compared to A and M ,
Γ “ 1`AB{p1`M `KBq is a non-dimensional auxiliary parameter related to the (lateral) advective
transport of barbed ends due to actin polymerization, and Ξt is a Wiener process with auto-correlation
@

ΞpT qΞpT−T 1q
D

“ Ξ2
0δpT−T 1q. Numerical values for all parameters of the non-dimensional model are

presented in Table 4.1. Furthermore, in order for the problem to be well-posed, we need two boundary
conditions for the variable B. As in [4], we choose Neumann boundary conditions, given by

BB

BX

ˇ

ˇ

ˇ

ˇ

0

“
BB

BX

ˇ

ˇ

ˇ

ˇ

L

“ 0,

where L is the length of the domain. Consistent with the results in [4], by using Dirichlet boundary
conditions B|0 “ B|L “ B0 ă B0

c , we obtain similar model behaviour but with waves initiated closer
to the middle of the domain than with Neumann boundary conditions (results not shown).

Parameter Definition Value Range
d VASP delivery rate - s0, 1s

R Adhesion maturation rate 0.2 s0, 4s

ηB Advection rate for B 1 -
ηA Advection rate for A 1 -
ηM Advection rate for M 1 -
K VASP affinity ratio 1 s0, 2s

θ Degradation rate of mature adhesions 0.05 s0, 1s

B0
c Basal critical barbed actin density 4 -

E Fractional increase in membrane tension 0.1 s0, 1s

ϵ Timescale difference of the fast variable 0.1 s0, 1s

λ Smoothing parameter 0.0001 -

Table 4.1: Default parameter values of the model, adapted from [4]. No specific value is assigned to
d as it is used as the main bifurcation parameter, and is taken from an appropriate range. Parameter
ranges represent the physiologically expected lower and upper bounds of these parameters.
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4.3 The Simplified Model

In order to simplify our analysis of the model, we move from a PDE setting where dynamics vary
across space and time to an ODE setting where we are essentially considering the intrinsic dynamics
of one point along the leading edge. We will demonstrate later the ODE model captures the underlying
dynamics of the PDE model very accurately.

Model conversion to an ODE setting is achieved by simply removing the diffusion-like Bx
`

Γ´1BxB
˘

term in Eq. (1), which eliminates the dependence of the function B, A, and M on the spatial variable
X , as well as setting E “ 0. We will discuss these assumptions in more detail in Section 4.5. These
simplifications yield the system,

ϵ
d

dT
B pT q “ p1 ` ηBV q ´

B

1 ` AB{p1 ` M ` KBq
` Ξt (6)

d

dT
A pT q “ d ´

p1 ` ηAV ` ηMMV qA

1 ` M ` KB
(7)

d

dT
M pT q “ RB ´ pθ ` ηMV qM, (8)

where all variables and parameters are the same as before. For compatibility with the numerical con-
tinuation software AUTO-07p [7] that we have used to analyze the dynamics of the model we have
slightly modified Eq. (4) to make it a continuously differentiable function, given by

V “

$

’

&

’

%

exp
”

´λ
B´Bc

ı ´

1 ´
`

Bc

B

˘8
¯

B ě Bc

0 otherwise
, (9)

where 0 ă λ ! 1 is a small parameter . Notice that by making λ Ñ 0 , this velocity function defined by
Eq. (9) becomes an arbitrarily good approximation for the velocity function defined by Eq. (4) (see Fig.
4.1A). We have also quantified the error that this approximation introduces into the model by finding
B̄ the value of B where BV {BB reaches its maximum. The original velocity function defined by Eq.
(4), has its maximal slope at B “ Bc, whereas Eq. (9) has its maximal slope at B̄ ą Bc. Therefore, by
evaluating the difference B̄ ´Bc, we obtain simple way of quantifying the error in our approximation.
As can be seen in Fig. 4.1B, this error metric increases monotonically with λ and in the limit as λ Ñ 0,
we have B̄ Ñ Bc. Throughout this chapter we have used values of λ that are as small as possible while
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4.3 The Simplified Model

Figure 4.1: (A) Velocity function as defined by Eq. (4) (solid line) and as defined by Eq. (9) (dashed
lines) for different values of λ. (B) Convergence measure showing the difference between the maximum
slope B of the velocity function defined by Eq. (9), denoted by by B , and that defined by Eq. (4),
denoted by Bc. The smaller the λ the smaller this convergence measure.

ensuring numerical stability, choosing it to be within the range λ P
“

10´5, 10´2
‰

(see grey region in
Fig. 4.1B).

In this section, we will not consider the effects of noise on the system and thus set Ξt “ 0. Under
these assumptions, the model becomes a simple deterministic system of ODEs which we will now
analyze to understand how the intrinsic dynamics of a single point are reflected in the traveling wave
solutions in the PDE model.

4.3.1 The Stalled Equilibrium

From the form of Eq. (4), it is clear that the dynamics of the ODE system may be divided into two
regimes that are separated by the plane B “ Bc. In the regime with B ă Bc, we have V “ 0 and the
cell is stalled due to insufficient actin polymerization; this produces a simpler dynamical system for
which we may solve for its steady state, the stalled equilibrium pB0, A0,M0q, given by

B0 “
1

1 ´ d
, A0 “

dpθp´d ` K ` 1q ` Rq

θ p1 ´ dq
, M0 “

R

p1 ´ dq θ
. (10)

From these expressions, it is clear that stalled equilibrium is only biophysically-relevant for d ă 1,
as for d ą 1 the stalled equilibrium will not be in the positive octant of state space. We may further
investigate the stability of this equilibrium by evaluating the Routh-Hurwitz criterion. This criterion
requires that the coefficients of the characteristic polynomial of the system given by P psq “ s3 `
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a1s
2 ` a2s ` a3 satisfy a1, a3 ą 0 and a1a2 ą a3. The characteristic polynomial for this system,

evaluated at the stalled equilibrium, is given by

P psq “ s3

` s2
θ

ˆ

θp´d ` K ` 1q ´ pd ´ 1q

´

ϵ
`

pd ´ 1q2 ` K
˘

` 1
¯

˙

` R
`

pd ´ 1q2ϵ ` θ
˘

θp´d ` K ` 1q ` R

´ s

pd ´ 1qθ

ˆ

ϵ
´

d2 ` θ
`

pd ´ 1q2 ` K
˘

´ 2d ` R ` 1
¯

` θ

˙

θp´d ` K ` 1q ` R

´
pd ´ 1q3θ2ϵ

θp´d ` K ` 1q ` R
.

From, these criteria we may may conclude that non-negative model parameters with the sole constraint
of d ă 1 are necessary and sufficient conditions for the stability of the stalled equilibrium (see for
details).

From the force-velocity relationship (given by Eq. (4)), we can see that V “ 0 is only valid
for B ď Bc. Based on the expression for B0, we can conclude that B0 “ Bc when d “ d0 :“

pBc ´ 1q {Bc. Therefore, the stalled equilibrium is a physiologically-relevant stable steady state when-
ever d ă pBc ´ 1q {Bc. This means that, for B ą Bc, the stalled equilibrium is no longer a fixed point
of the system and only physiologically-relevant whenever d ă d0 “ pBc ´ 1q {Bc. We will demon-
strate in the next section that in the limit as λ Ñ 0, there is a Hopf bifurcation at d “ d0 and the stalled
equilibrium gets replaced completely by an unstable steady state in a continuous manner (because V

in Eq. (9) is continuous).

4.3.2 Modes of Motility

When B ą Bc (i.e., d ą d0), we have V “ 1 ´
`

Bc{B
˘8, producing various modes of motility in the

model. In this regime, the non-linearity of V makes obtaining analytical results challenging. To resolve
this issue, we use here numerical continuation methods in AUTO to produce bifurcation diagrams that
explain how the behaviour of the system changes as certain parameter values are varied.

For the parameter values listed in Table 4.1, we observe that for small enough d the eigenvalues
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of the Jacobian matrix for Eqs. (6)-(8) evaluated at the stalled equilibrium (i.e., at V “ 0) have a
complex conjugate pair with negative real part. Indeed, by plotting the bifurcation diagram of scaled
actin barbed end density B, whose dynamics is determined by the complete ODE system (6)-(8) with
velocity defined by Eq. (9), with respect to scaled VASP delivery rate d, we obtain a branch of stable
steady states (see black solid lines in Fig. 4.2) that undergoes a subcritical Hopf bifurcation HB1 at
dHB1 “ p1 ` ε pλqqd0, where 0 ă ϵ pλq ! 1 is an increasing function of λ.

In the limit as λ Ñ 0, HB1 shifts to d “ d0, a scenario that corresponds to the original definition of
V given by Eq. (4). As stated before, the remaining analysis is performed for very small λ such that Eq.
(9) is as close to Eq. (4) as possible. Based on this, two unstable branches of limit cycles (i.e., envelopes
of periodic orbits representing the maximum and minimum of these orbits) emerge from HB1 at d « d0.
These unstable branches undergo saddle-node bifurcation of periodic orbits at dSNP ă dHB1 (see inset
in Fig. 4.2A) followed by a canard explosion, forming two stable branches of limit cycles (solid blue
lines) with large-amplitude oscillatory solutions that eventually plateau at higher d values. (see Fig.
4.2A). These periodic branches eventually terminate at a homoclinic bifurcation HM1 at dHM1 (the
terminal points of these branches), a key feature of type I excitability .

Beyond d « d0, the branch of unstable steady states then forms two folds of saddle-node bi-
furcations SN1 and SN2 at d “ dSN1 ě d0 and d “ dSN2, respectively. This branch of unstable
steady states eventually becomes stable (solid black line) when crossing a Hopf bifurcation HB2 at
d “ dHB2 ě dSN2, where two small branches (or envelopes) of unstable periodic orbits (dashed blue
lines) emerge and terminate at a homoclinic bifurcation HM2 at d “ dHM2. This latter homoclinic
HM2 coincides with the previous homoclinic HM1 at dHM2 “ dHM1. The resulting new stable branch
of steady states for d ą dHB2 represents the smooth motile equilibria with a constant speed V ą 0.

Based on this bifurcation structure of Fig. 4.2A, we may conclude that system (6)-(8) exhibits one
very small regime of bistability between the stalled equilibrium and oscillatory waving solution when
dSNP ă d ă dHB1 (see inset). This regime is so small, it is very difficult to discern HB1 from SNP.
It also exhibits coexistence between the stable smooth motile equilibrium and two unstable steady
states between dHM2 ă d ă dSN1, allowing trajectories of system (6)-(8) to exhibit repetitive and large
transient excursions around the motile steady state due to noise. These transient excursions/oscillations
(to be discussed in more detail in Section 4.4.1), look similar to periodic oscillations displayed by
waving solutions, and thus referred to as stochastic waving.
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By decreasing the value of the scaled maturation rate of nascent adhesions R, one can make dSN2

smaller than d0 and cause the branches of stable periodic orbits to terminate at the homoclinic bifur-
cation HM1 located on the branch of unstable steady states connecting the two saddle-nodes SN1 and
SN2 (see Fig. 4.2B). Notice that, according to this configuration, periodic oscillations only exist for a
small parameter regime at d « dHB1, and that the system exhibits a bistability between the stalled and
motile equilibria for dHM2 ă d ă dSNP. It thus follows that, depending on how dSN2 compares to d0,
the system may either exhibit an oscillatory regime as in Fig. 4.2A or a regime of bistability as in Fig.
4.2B.

Thus, in summary, system (6)-(8) can exhibit four possible dynamic behaviours that can coexist.
This includes the stalled equilibrium for d ă d0, a smooth motile equilibrium for d ą dHB2, a waving
oscillatory solution dSNP ă d ă dHM1, or coexistence between the stalled and smooth motile equilibria
for dHM2 ă d ă dSNP, and a stochastic waving solution for dHM1 ă d ă dSN1. To further understand
how these different monostable and bistable regimes govern dynamics of the PDE model, defined by
Eqs. (1)-(3), one needs to plot the two-parameter bifurcation of the system defined by Eqs. (6)-(8) with
respect to both the scaled VASP delivery rate d and the scaled maturation rate of nascent adhesions
R. Doing so will provide insights onto how these regimes get altered when d,R-parameter space are
modified. This is done in detail in the following section.

4.3.3 Two-Parameter Bifurcations

In order to compare the various regimes of behaviour associated with the PDE model defined by Eqs.
(1)-(3) and introduced in [4], we have continued all the bifurcation points discussed in Fig. 4.2 within
the (d,R)-plane of parameter space (see Fig. 4.3). The resulting two-parameter bifurcation diagram
delineates the different monostable and bistable regimes identified in the previous section. Indeed, as
shown in Fig. 4.3, the regimes identified in the two-parameter bifurcation follow very closely the map
describing the behaviour of the PDE model. Notably, we obtain 5 distinct and discernible regimes:
(i) a monostable stalled regime possessing only the stalled equilibrium, bounded to the right by the
the saddle-node bifurcation of periodic orbits SNP (which happens to be indiscernibly close to the
Hopf bifurcation HB1) and from below by the saddle-node bifurcation SN2; (ii) a monostable waving
regime possessing stable oscillatory solutions, bounded to the left by HB1 and to the right by the
homoclinic bifurcation HM1 (in red, see inset) coinciding with the homoclinic bifurcation HM2 (in
green, see inset); (iii) a bistable regime between the stalled and smooth motile equilibria, bounded
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Figure 4.2: One-parameter bifurcation analysis of the full system defined by Eqs. (6)-(8). The bifur-
cation diagram of actin barbed end density B with respect to the scaled VASP delivery rate d at two
different values of the scaled nascent adhesion maturation: (A) R “ 0.1, and (B) R “ 0.065. Black
solid (dashed) lines indicate stable (unstable/saddle) branches of equilibria; blue solid (dashed) lines
correspond to branches or envelopes of stable (unstable) limit cycles. There are five branches of stable
and unstable/saddle equilibria in panel A; they are separated by a subcritical Hopf bifurcation HB1 (at
d « d0), two saddle-node bifurcations SN1 and SN2 and a second subcritical Hopf bifurcation HB2.
The branch of stable steady states prior to/beyond HB1/SN2 corresponds to the stalled/smooth motile
equilibria, respectively. Two branches of unstable periodic orbits emerge from HB1 but quickly turn
into stable branches at a saddle-node bifurcation of periodic orbits SNP (see inset). These stable peri-
odic branches then expand vertically, forming a canard explosion until they eventually plateau and ter-
minate at a homoclinic bifurcation HM1, defining an oscillatory “waving” regime (dSNP ď d ă dHM1).
Similarly, two branches of unstable periodic orbits emanate from HB2 and terminate at a homoclinic
bifurcation HM2.The waving regimes shrinks significantly in panel B with the canard explosion col-
liding with the saddle branch between SN1 and SN2, and bistability is formed between the stalled and
smooth motile equilibria. Insets around the Hopf bifurcations have not been included in panel B, as
they would be qualitatively identical to those in panel A.
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Figure 4.3: Two-parameter bifurcation of the bifurcations points in Fig. 4.2. We observe five distinct re-
gions in parameter space: stalled regime, the bistable regime, the waving regime, the stochastic waving
regime, and the smooth motile regime. The bistable and stochastic waving regimes are novel findings,
whereas the other regimes had been reported in [4].

to the left/top by HM2 or SN2 and to the right by SNP; (iv) a smooth motile regime possessing the
smooth motile equilibrium, bounded from the top by the saddle-node SN1; (v) a stochastic waving
regime possessing the smooth motile equilibrium, bounded to the left by the HB1, from the top by
HM1 and from the bottom by SN1. Within this configuration, additional very small regimes also exist.
Namely, a bistable regime between the stalled equilibrium and waving solution between SNP and HB1,
as well as a bistable regime between the smooth motile equilibrium and the waving solution between
HB2 and HM1.

The fact that some of these regimes match well with those previously identified with the PDE model
[4] and further identifies new ones not previously discovered in [4] suggests that the spatio-temporal
patterns produced by the PDE model can be understood from the intrinsic dynamics of the ODE model.
Interestingly, we have identified a novel regime, the stochastic waving regime. This regime is separated
from the previously identified smooth motile regime by the continuation of SN1, which is depicted in
Fig. 4.3 as a line that terminates at the Bogdanov-Takens bifurcation BT1 where it collides with HB1
and SNP at pd0, 0q. As we shall see in Section 4.4.3, when the system is between HM1 and SN1, it
is sensitive to the presence of noise, leading to stochastically-induced transient oscillations despite the
fact that the system only possesses one stable fixed point.
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4.4 Slow-Fast Analysis

As indicated by Eqs. (6)-(8), setting ϵ ! 1 generates a time scale separation, making the variable
much faster than A and M . Thus to understand dynamics, one can apply slow-fast analysis on the
full system by dividing it into one fast variable and two slow variables. Within the context of this
analysis, we can obtain the critical manifold S of system (6)-(8), determined by the steady states of
the fast subsystem B as a function of the slow subsystem defined by A and M , and decomposing it
into attracting and repelling sheets that are typically separated by folds in S. An attracting (repelling)
sheet of a critical manifold is defined as the set all points p P S Ă S that make all the eigenvalues
of pDxfqppq have negative (positive) real parts, where x is the fast subsystem (i.e., x “ B in the
model under consideration) and f is the right hand side of the ODE defining the fast subsystem (i.e.,
f “ dB{dT in the the same model). If a sheet is neither attracting nor repelling, it is said to be of
saddle type. However, since our fast-subsystem is of dimension one, the critical manifold cannot have
any sheets of this type. For a system with one fast and two slow variables (e.g., system (6)-(8)), the
fold points that separate attracting and repelling sheets form smooth fold-curves [8], that are typically
curves of saddle-nodes for the fast subsystem .

In other words, for (6)-(8) we define the critical manifold of the system as the null-surface of the
fast variable B, given by

S “
␣

pB,A,Mq : dB{dT “ 0
(

.

Similar to our analysis of equilibria, it is useful to decompose the critical manifold into two parts
S “ SV Y S0 that correspond to when V ą 0 and V “ 0; they are defined by

SV “
␣

pB ě Bc, A,Mq : dB{dT “ 0
(

and
S0 “

␣

pB ă Bc, A,Mq : dB{dT “ 0
(

.

We may further subdivide the critical manifold into three distinct sheets, according to their stability
properties. Two of these sheets are attracting while the other is repelling; the very top, labeled Sa

V , and
the very bottom (primarily comprised of S0) sheets are attracting, whereas the middle one, labeled Sr

V ,
is repelling. In the limit of λ Ñ 0, the sheets S0 and Sa

V are separated from Sr
V by two fold-curves
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of the critical manifold, F´ and F`, respectively (see Fig. 4.8). Furthermore, in this limit, we have
SV “ Sr

V

Ť

F`
Ť

Sa
V . When we have λ ą 0, there is an additional a portion of the bottom attracting

sheet which extends from the upper edge of S0 to the lower edge of Sr
V , where it meets the latter at

F´ (in the limit λ Ñ 0 this attracting sheet shrinks down to nothing and the fold becomes arbitrarily
sharp).

Superimposing the cubic-like curve formed by the intersection of the two A- and M -nullsurfaces
(red curve in Fig. 4.4) onto the critical manifold can generated up to three intersections with S; these
intersections can lie on any sheet of S. We will refer to this red line as the nullcurve hereafter. Using
this configuration and the steady states formed by these intersections, one can decipher the dynamics
of the full system in various parameter regimes (see Fig. 4.4).

Due to the presence of time-scale separation, the system exhibits slow and fast epochs; during the
slow epochs, trajectories travel along the critical manifold, whereas during the fast epochs, dynamics
of the fast variable dominate causing trajectories to jump between branches of the critical manifold.
These jumps occur towards the end of each slow epoch when solution trajectories approach a fold
(or a saddle-node) in the critical manifold. In other words, the critical manifold locally organizes the
dynamics of the full system according to its slow and fast subsystems.

Although the condition ϵ ! 1 is required to observe the slow-fast dynamics, the choice of ϵ is
somewhat arbitrary. Specifically, we observe that for ϵ “ 0.1, much of the system’s dynamics can be
well understood using the critical manifold and its two folds, suggesting that, in the oscillatory regime,
the system acts as a relaxation oscillator (see Fig. 4.4C) [9]. Nonetheless, in the analysis presented
here, we will study the underlying dynamics of this system in various parameter regimes to understand
how it behaves and how noise can produce interesting outcomes.
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Figure 4.4: Slow-fast analysis of the full system defined by Eqs. (6)-(8). The critical manifold S is
depicted as a red surface, and the cubic-like nullcurve of the slow subsystem, defined as the intersection
of the A- and M -nullsurfaces, is plotted as a red line. S consists of three sheets, two of which (the very
top and bottom) are attracting (red surfaces) while the other is repelling (blue surface). The intersection
of S with the nullcurve are the fixed points of the system, where stable fixed points are depicted as filled
circles, and unstable (saddle) fixed points are depicted as open triangles. The number of fixed points
and their stability define different regimes of model behaviour: (A) stalled (d “ 0.65, R “ 0.15),
(B) bistable (d “ 0.72, R “ 0.04), (C) waving (d “ 0.8, R “ 0.15), and (D) stochastic waving
(d “ 0.8, R “ 0.05). Superimposing solution trajectories (green lines) illustrate the transient and
steady state dynamics of the full system. In general, during slow epochs, trajectories travel along the
attracting sheets of the critical manifold while during fast epochs they jump from one sheet to another.
When relevant, initial conditions for trajectories are depicted as a black x symbol.

4.4.1 The Stalled and Bistable Regimes

As discussed above, the system has a stalled equilibrium when d ă d0 (in the limit as λ Ñ 0). In [4],
it was stated that this regime is excitable, but a precise characterization of that excitability was not
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provided. To do so, we begin first by focusing on the scenario where the stalled equilibrium is the
sole attractor for the system (i.e., when dHB2 ą d0). With this scenario, we obtain only one point
of intersection representing the stalled equilibrium, formed by S0, the bottom attracting sheet of the
critical manifold S, and the nullcurve (see filled circle in Fig. 4.4A). By applying “small” perturbations
away from the stalled equilibrium, we obtain graded responses that relaxes back to S0 where the system
will relax more slowly to the stalled equilibrium (see the short green line landing on the filled circle
in Fig. 4.4A). Such behaviour is very intuitive, as small amplitude noise leads to small fluctuations
around the stalled equilibrium (see time series simulations in Fig. 4A). However, when perturbations
push the system beyond the repelling sheet Sr

V , solution trajectories shoot up to the attracting sheet Sa
V

and then travel along this sheet until they cross the fold delimiting Sr
V and then jump down to S0 where

they relax back to the stalled equilibrium. Such behaviour is one of the hallmarks of excitability, where
there is a threshold in perturbation strength which must be crossed for the full system to exhibit a large
excursion (see Fig. 4.5A). Due to the fact that Bptq crosses Bc at every excursion, the local velocity of
the leading edge V quickly jumps between its two extreme values as in Fig. 4.5B.

In the bistable regime (i.e., when dHB2 ă d ă d0), on the other hand, we obtain, as expected,
two points of intersections between the stable sheets of S and the nullcurve (see Fig. 4.4B). These
intersections represent the stable stalled and motile equilibria. The behaviour of the full system in this
regime is similar to that observed in the stalled regime when it comes to exhibiting graded responses to
“small” perturbations away from either one of the two steady states by relaxing quickly to the closest
attracting sheet and then more slowly along this sheet to a steady state. However, if perturbations push
the system beyond a threshold (see Section 4.4.3 for more about this threshold) trajectories will travel
to the other steady state (see Fig. 4.4B). Unlike the stalled regime, in this bistable regime, the steady
state the system converges to depends on the perturbation applied and/or the initial condition of the
system.
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Figure 4.5: Excitable dynamics obtained in the stalled regime. Impulsive perturbations are given to the
system every 10 seconds when t P r20, 90s with increasing magnitudes and every 20 seconds when
t P r100, 400s with a constant magnitude. (A) Time series simulations of actin barbed end density
Bptq in the absence of perturbations (dashed green line), showing that it remains at its fixed point
near B “ 3.5714 (i.e., the stalled equilibrium), and in the presence of perturbations (solid green line)
that become suprathreshold, surpassing Bc “ 4 (dashed black line). Notice that, in the latter case, we
have "all or none" response in which subthreshold perturbations evoke only graded responses, whereas
suprathreshold perturbations evoke large excursions, and that the return to the stalled equilibrium the
system exhibits a “refractory period” where perturbations do not induce large excursions until the
system is sufficiently close to stalled equilibrium. (B) Time series simulations of the velocity V ptq.
When B ą Bc the velocity becomes non-zero and drops back to zero when B ă Bc. Here we have
used δ “ 0.72.

4.4.2 Relaxation oscillations

When the periodic branches of Fig. 4.2A (blue lines) exhibit a plateau phase for d P rdHB1, dHM1s, the
system behaves like a relaxation oscillator in a manner similar to the van der Pol oscillator [10]. Slow-
fast analysis reveals that the underlying dynamics of the system in this regime does indeed behave that
way (see Fig. 4.4C). The critical manifold and the nullcurve, in this case, intersect only once in the
middle repelling sheet Sr

V (blue surface in Fig. 4.4C), producing a saddle fixed point (open triangle)
surrounded by a periodic orbit (green line) that jumps between the two attracting sheets S0 and Sa

V

(red surfaces in Fig. 4.4C). This ramp effect allows such an orbit to exhibit relaxation oscillations by
staying close to the upper and lower attracting sheets during the slow phase and jumping between them
during the fast phase.

248



4.4 Slow-Fast Analysis

4.4.3 Stochastic Waving Regime

4.4.3.1 Deterministic Dynamics

As indicated in Fig. 4.2A, when dHM2 ă d ă dSN1, the only stable attractor is the smooth motile
equilibrium and thus one would expect the system to exhibit motility with a constant velocity V ą 0 .
However, as we discussed in the previous section, in such a scenario, it is possible to obtain transient-
waving behaviour in the presence of noise. Indeed, in this regime the system has three equilibria, one
of which is stable and represents the smooth motile equilibrium, while the other two are of saddle type.
For d « dHM2( “ dHM1) the smooth motile equilibrium is very close to the middle saddle fixed point,
which means that small perturbations may push the system past the stable manifold of this saddle
(see Fig. 4.2). In the deterministic case, the stable manifold of the saddle acts as a separatrix which
divides phase space into distinct regions, each of which contains the family of trajectories that converge
to the system’s distinct attractors (e.g., the smooth motile equilibrium). Although the smooth motile
equilibrium is the only attractor in this regime, sufficiently large perturbations can push the system
across the stable manifold of the saddle, causing trajectories to undergo large excursions to return back
to this attractor (see the two trajectories (green lines) in Fig. 4.4D that start from close but distinct
initial conditions). We have previously called this noise-dependent oscillation-like behaviour of the
system stochastic waving and the parameter regime associated with it the stochastic waving regime.

In Section 4.4.1, we saw how the repelling middle sheet Sr
V of critical manifold acts as a threshold

for excitation of the system, producing large excursions once perturbations push the system beyond the
threshold. Such statements only make sense in the context of slow-fast analysis, and it is understood
that the critical manifold is only an approximation of the true “slow manifold” which governs the
dynamics for ϵ ą 0 [11]. This type of excitability is frequently discussed in the context of the Fitzhugh-
Nagumo and Morris-Lecar models and labeled type III excitability. It should be distinguished from
the one observed here in the stochastic waving regime, whereby dynamics are not governed by the
critical manifold, but rather by the stable manifold of the saddle-fixed point in a configuration that
includes two additional steady states, the stable smooth motile equilibrium and another upper saddle
fixed point. This type of excitability with single transient spikes is reminiscent to that observed in a
Hodgkin-Huxley type model previously characterized by our group [12, 13].

To better illustrate how the stable manifold of this saddle fixed point along with other manifolds
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organize trajectories, we have computed in Fig. 4.6 the stable and unstable manifolds of the two saddle
fixed points (open triangles) lying to the left of the stable node (filled circle), i.e., the smooth motile
equilibrium. With this new viewing angle of the system shown in Fig. 6, we can see that the right
saddle fixed point has two-dimensional stable manifold (red surface) and one-dimensional unstable
manifold (blue line), whereas the left saddle fixed point has one-dimensional stable manifold (red
line) and two-dimensional unstable manifold (blue surface). The red surface accumulates to the left
with the red line, generating a hollow space further to the left thereby allowing passage of solution
trajectories. Indeed, by plotting solution trajectories (green curves) starting from two different initial
conditions lying on either side of the red stable manifold shows that the trajectory starting from the
left converges quickly to the stable node, while the other starting from the right generates a large loop
around the manifold that takes advantage of the hollow space to return back to the stable node. In
other words, the stable manifold of the right saddle fixed point determines if the system undergoes
a large excursion following a perturbation and acts as a "threshold" between pronounced and graded
responses. This further highlights the difference between this type of excitability and the one seen in
type III oscillators.
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Figure 4.6: The topology of the stable and unstable manifolds associated with the saddle fixed points
govern the dynamics of excitability in the stochastic waving regime. Three steady states are present in
this regime, a stable node representing the smooth motile equilibrium to the right (filled circle), and
two saddle fixed points to the left (open triangles). The right saddle fixed point has two-dimensional
stable manifold (red surface) and one-dimensional unstable manifold (blue line), while the left saddle
fixed point has one-dimensional stable manifold (red line) and two-dimensional unstable manifold
(blue surface). Two solution trajectories starting from different initial conditions are also plotted (green
lines), one of which is initiated to the left of the red surface and one to the right of the red surface. The
former quickly converges to the stable node, generating a graded response, while the latter elicits an
excursion around the red surface that escapes from the hollow space to the right of the blue line back
to the stable node, generating a pronounced response.

4.4.3.2 Noise-Dependent Dynamics

We now consider what happens in the stochastic waving regime in the presence of noise (i.e., when
@

Ξ2
t

D

ą 0), where Ξt accounts for stochasticity arising from discrete effects in biochemical reactions
[14]. These discrete effects motivate the discussion of perturbations on solution trajectories. Intuitively,
we may expect these perturbations to cause B ptq to fluctuate around its equilibrium position B˚. We
find that once the system becomes ergodic, the distribution B ptq is well approximated by a normal
distribution B „ N pB˚, 12Ξ0q, where the factor "12" was determined empirically (see inset of Fig.
4.7A). This empirical value depends on the specific numerical values we choose for the parameters,
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where analytic formula for the ergodic distribution of B may be obtained by solving for the stationary
distribution of the corresponding Fokker-Planck equation ( [6, 14], beyond the scope of this analysis).
Nonetheless, if we draw N independent identically distributed samples of B ptq for t P rT0, T1s, with
T “ T1 ´ T0 sufficiently large that B ptq is ergodic, the expected maxima/minima of the samples can
be estimated as B˚ ˘ κ12Ξ0 (see black dashed lines in Fig. 4.7A), where κ “

?
2erf´1

`

1 ´ N´1
˘

is
adapted from the

`

1 ´ 1{N
˘th quantile function of the normal distribution. While the above analysis

holds for sufficiently small values of Ξ0, larger amplitude noise will push the system past the stable
manifold of the middle saddle, such that the process is no longer ergodic. When this occurs, the system
undergoes a large excursion in order to return to the stable smooth motile equilibrium. This leads to a
behaviour which is quite similar to the waving regime, but where the period with V ą 0 is variable in
duration due to the “oscillations” being initiated stochastically (see Fig. 4.7B).

We note here that these transient excursions from the stable fixed point are only observed for small-
to-medium levels of noise, as large amplitude noise tends to dominate over the intrinsic dynamics of
the model. As we move from SN2 to SN1, the distance between the stable fixed point and the stable
manifold of the saddle lying between SN1 and SN2 increases, requiring increasingly large amounts
of noise to induce transient excursions. Thus as d Ñ dSN1 transient excursions become increasingly
less likely. Therefore, the region where stochastic oscillations may be observed is considerably smaller
than the region labeled as the stochastic waving regime, and is likely a narrow band just below HM1
in Fig. 4.3.
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Figure 4.7: Noise-dependent dynamics in the stochastic waving regime. (A) The maximum and mini-
mum observed protrusion velocity as the noise magnitude Ξ0 is varied (solid lines). For small values
of Ξ0, fluctuations relax back to the smooth motile equilibrium and the max/min is well predicted by
evaluating V pB˚ ˘ κ12Ξ0q (dashed lines). However for Ξ0 Á 0.006 , fluctuations push the system
past the stable manifold of the middle saddle leading to a breakdown of the previous prediction. (inset)
For Ξ0 À 0.006, the empirical distribution (black line) of B ptq agrees very well with the theoretical
probability density function of a normal distribution (grey dashed line) with a standard deviation given
by κ12Ξ0 (here we have used Ξ0 “ 0.007). (B) Time series simulations of the model in the stochastic
waving regime. In the absence of noise, the system remains at the motile equilibrium with protrusion
velocity V pB˚q ą 0 (black line). In the presence of noise (Ξ0 “ 0.007), the system is perturbed beyond
the stable manifold of the saddle and it undergoes large excursions that push it below B “ Bc, causing
protrusion velocity to drop to V “ 0 stochastically (gray line).
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4.4.4 The Oscillatory Regime

A B

Figure 4.8: The canard explosion coming out of HB1, where the stalled equilibrium changes to a saddle
fixed point that is near the folded saddle FS´ (open triangle symbol) lying on the lower fold-curve
F´ (yellow line). (A) Very close to HB1, limit cycles (cyan lines) expand with increasing d. These
limit cycles are headless canard orbits as they travel first along the attracting sheet S0 (red surface) and
eventually jump up to the a repelling sheet of Sr

V (blue surface) and back to the folded saddle FS´.
(B) As d continues to increase, the headless canards travel further along S0 and Sr

V coming closer and
closer to the upper fold-curve F` (yellow line) in the critical manifold where Sr

V meets the attracting
sheet Sa

V (red surface). The headless canard which has a peak right at F` is termed the maximal canard,
and this canard separates the family of headless canards from the family of canards with head (magenta
lines). The canards with head continue to grow by traveling further along Sa

V , until they jump down to
Sr
V where they travel back to FS´. As d grow even further, the orbits eventually become relaxation

oscillations (red line) that jump between the attracting sheets Sa
V and S0 and do not travel along the

repelling sheet Sr
V .

4.4.4.1 The Folded Singularities

As discussed previously, the full system exhibits fast and slow epochs where the dynamics of the fast
and slow variables dominate, respectively. For dSNP ă d ă dHB2, the full system (6)-(8) has a limit
cycle as its sole attractor. Within a subset of this regime of size O p∆dq “ 10´5, the system exhibits
canard orbits where it spends a signifcant amount of time travelling along the unstable sheet Sr

V (see
Fig. (4.8)). Such an observation is surprising given that Sr

V is a repelling sheet, and thus by definition we
expect trajectories of the full system to travel away from Sr

V (e.g., see Section 4.4.1). Accordingly, we
restrict the dynamics of the full system to critical manifold. In this setting, the dynamics are described
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by the reduced problem, given by

0 “ f “
`

1 ` ηBV pBq
˘

´
B

1 ` AB{p1 ` M ` KBq
(11)

d

dT
A pT q “ gA “ d ´

p1 ` ηAV ` ηMMV qA

1 ` M ` KB
(12)

d

dT
M pT q “ gM “ RB ´ pθ ` ηMV qM, (13)

which can be obtained from system (6)-(8) by taking the limit as ϵ Ñ 0. This is formally equivalent to
saying that the fast variable B is projected onto the critical manifold S. As can be seen in Fig. 4.8, the
canard orbits travel along the critical manifold, passing over the fold which joins S0 and Sr

V (the lower
black line in Fig. 4.8B). In order to understand this phenomenon in more detail, we furthermore focus
on the dynamics of the reduced problem as it passes over the fold-curveF´. Generically, fold-points
are defined by singularities in the representation of the reduced problem [15], i.e.,

f pB,A,Mq “ 0,
Bf

BB
pB,A,Mq “ 0. (14)

Generally, away from fold-points, the fast variable B may be expressed as a function of the slow
variables h pA,Mq “ B that can be obtained by solving f pB,A,Mq “ 0, where f is defined in Eq.
(11). In other words, the critical manifold S may be represented over a single coordinate chart of the
slow variables. By expressing the dynamics of B on the critical manifold, we obtain

d

dT
B “

ˆ

Bf

BB

˙´1ˆ
Bf

BA
gA `

Bf

BM
gM

˙

.

At a fold-point, along either fold-curve F´ or F`, the projection of B onto S is singular, which
motivates the definition of a rescaled time variable T̃ with T “ T̃DBf . This allows us to define the
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desingularized reduced problem

d

dT̃
B “

Bf

BA
gA `

Bf

BM
gM (15)

d

dT̃
A “

Bf

BB
gA (16)

d

dT̃
M “

Bf

BB
gM , (17)

where we may further reduce the dimension of the system by using Eq. (11) to, without loss of gener-
ality, eliminate the slow variable M [15], such that it is given by the expression

M “ Mcrit pA,Bq :“
ABp1 ` ηBV pBqq

B ´ p1 ` ηBV pBqq
´ BK ´ 1.

Thus, after substituting in Eq. (9), we may express the desingularized system (i.e., the desingularized
reduced problem projected onto the critical manifold) as

d

dT̃
B “ ´

B ` σ1

AB2ηB

„

BηBpBpθK ` Rq ` θ ` 1q (18)

σ1ηBpBpθpA ` Kq ` d ` Rq ` θ ` 1q ´ pσ1 ` 1qηApB ` σ1q

ȷ

d

dT̃
A “

σ2

AB3σ1ηB

„

pσ1 ` 1qηMpBpσ1pA ` Kq ` BK ` 1q ` σ1q (19)

`ηBpBdσ1 ` B ` σ1q ` pσ1 ` 1qp´ηAqpB ` σ1q

ȷ

.

where σ1 “ ´
`

1 ` ηBV pBq
˘

and σ2 “ AB2ηBV
1pBq ´ σ1

2pA ` Kq ´ B2K ´ 2BKσ1.

By inspection of Eq. (16), we see that the desingularized system has at least two A-nullclines, one
corresponding to the fold (Bf{BB “ 0) and the other corresponding to the A-nullclines of the full
system (gA “ 0). Because we are interested in the dynamics precisely as trajectories cross the fold, we
will focus on the the former case, i.e., the folded singularities of the desingularized system, defined by,

Bf

BB
“ 0 and

Bf

BA
gA `

Bf

BM
gM “ 0. (20)

In order to find these folded singularities numerically, we isolate A in both the first and second expres-
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sions of Eq. (20) restricted to M “ Mcrit pA,Bq, yielding

A “ Afold pBq :“
Kp´ηBV pBq ` B ´ 1q2

B2ηBV 1pBq ´ ηB2V pBq2 ´ 2ηBV pBq ´ 1
,

and,

A “
1

BθpηBV pBq ` 1q

„

Bpθp´BK ` K ´ 1q ´ BR ` d ` R ´ 1q ` θ ` 1

V pBqpηBpBpd ` θK ` Rq ` θ ` 1q ` ηAηBV pBq ´ BηA ` ηAq

ȷ

,

respectively. With the parameters listed in Table 4.1 with d “ 0.750004 “ dHB1, we find that these two
curves intersect at

B´
« 4.00002 and B`

« 5.19902

which correspond to the B-values of the two folded singularities located on F´ and F`, respectively.
We further note that although F` and F´ appear to be disjoint curves in Fig. 4.8, they actually meet at
a cusp-like structure near pB,A,Mq “ p4, 0,´5q.

Folded singularities can be characterized by their two non-zero eigenvalues [15], which we have
determined from the Jacobian matrix of the desingularized system (18)-(19) evaluated at the two folded
singularities, given by

FS´
“

ˆ

B´, Afold

`

B´
˘

,Mcrit

´

Afold

`

B´
˘

, B´
¯

˙

,

and
FS`

“

ˆ

B`, Afold

`

B`
˘

,Mcrit

´

Afold

`

B`
˘

, B`
¯

˙

.

Numerical evaluation of the Jacobian matrix reveals that both folded singularities are in fact folded
saddles (see Table 4.2), but only the lower folded saddle FS´ is relevant to the canard orbits. The
singular canard associated with FS´ (going from the attracting sheet S0 to the repelling sheet Sr

V and
passing through FS´) determines the flow of solution close to this folded saddle.
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FS pB,A,Mq J pB,Aq λ1 λ2

FS´
p4.00002, 15.7493, 15.999q

„

4.88859 ˆ 10´9 0.0397441
0.000148825 ´0.000559416

ȷ

-0.0027278 0.00216839

FS`
p5.19902, 6.96656, 14.2681q

„

´0.00984134 0.0899238
0.000603317 ´0.00115534

ȷ

-0.00919448 0.00559321

Table 4.2: Folded singularities of the desingularized system and their stability properties.

4.4.4.2 Canard Explosion

As can be seen in Fig. 4.2, the periodic envelope of this limit cycle grows very rapidly from B « Bc “

4 to B « 10 on an interval with O p∆dq “ 10´5. This rapid growth of a limit cycle is typically referred
to as a canard explosion [8]. In order to understand this phenomenon, we will use the decomposition of
the critical manifold S into attracting and repelling sheets; such a decomposition is known to organize
the dynamics of limit cycles during the canard explosion [8]. In a system with one fast and two slow
variables, attracting and repelling sheets meet at folds of the critical manifold (see yellow lines in Fig.
4.8) and organize the dynamics of the limit cycles during the canard explosion [8]. From Fig. 4.4, we
can see that there are two folds in the critical manifold. Furthermore, from what we discussed above
with respect to excitability of the stalled equilibrium and the bistable regime, it is clear that, Sr

V , the
lower sheet of SV is repelling whereas, Sa

V , the upper sheet of SV and the whole of S0 are attracting
(see Fig. 4.8).

Once the full system goes through a Hopf bifurcation at dHB1 shown in Fig. 4.2, the stalled equilib-
rium becomes a saddle fixed point (see Fig. (4.4)C). Right at this point, periodic solution in the form
of canard orbits emerge; these canard orbits are limit cycles that follow the bottom attracting sheet S0

as well as the repelling sheet Sr
V for a significant amount of time by passing very closely to the folded

saddle FS´ (open triangles in Fig. 4.8) determined by the desingularized reduced problem [15] (see
next section for more details). Initially, the limit cycles travel away from FS´ along Sr

V for some time
until they jump to S0 where they travel back towards FS´ to complete the orbit (see Fig. 4.8A). As d
increases, the orbits grow in size and approach the fold that separates Sr

V and Sa
V . Near this fold, the

limit cycles begin to jump upwards to Sa
V . They then move along Sa

V down towards the fold. Once they
reach the fold, they jump down to S0 where they move back towards the folded saddle (see Fig. 4.8A).
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As d continues to increase, the point at which orbits jump up to Sa
V moves closer to FS´ such that for

d Á d0 `10´5 the limit cycle spends negligible time traveling along the repelling sheet of the manifold
(i.e., the limit cycles are no longer canard orbits, see red line in Fig. 4.8).

4.5 PDE Model Simulations

We now turn our attention to the PDE model, given by Eqs. (1)-(3), in order to see how the analysis
of the simplified ODE model carried out in the previous sections can be used to understand the un-
derlying dynamics of the PDE model. We recall that the simplified model is obtained by making two
simplifications to the PDE model: (i) the diffusion-like term that accounted for the lateral movement
of actin filament tips due to polymerization is dropped; and (ii) the formalism used to determine the
critical barbed actin density Bc, as described by Eq. (5), is simplified by setting Bc “ B0

c . The first
modification transforms the model into a system of first order ODEs whose oscillatory regime corre-
sponded to traveling waves of protrusion for the PDE. The second modification, on the other hand, is
somewhat more subtle and requires further investigation.

4.5.1 Two-Parameter Diagram for PDE Model

Applying the second modification through the use of Eq. (9) is necessary to resolve some ambiguities
with model definition. In particular, when using Eq. (5), it is unclear what the protrusion velocity
should be for B P

“

B0
c , p1 ` EqB0

c

‰

. In our implementation of the PDE model, we have found that this
issue may lead to rapid oscillations (period “ O p∆tq) in the protrusion velocity when the time step
∆t becomes very small. This problem is overcome by choosing the time step such that it satisfies the
constraint

∆t BB{BT
ˇ

ˇ

B“B0
c

ą EB0
c ,

which prevents rapid oscillations in the protrusion velocity. This choice is made due to a lack of rapid
oscillations in protrusion velocity in the numerical results of [4]. However, such a choice in time step
is somewhat inconsistent, and not very practical for the numerical continuation methods used in the
bifurcation analysis. Therefore, to circumvent this issue we have opted to analyze the ODE model with
a single value of Bc (hence the use of Eq. (9)).

From Eq. (5), it is clear that Bc can attain two distinct values B0
c and p1 ` EqB0

c , whenever B ă
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B0
c and B ą B0

c , respectively. However, it is somewhat less clear which value of Bc is relevant for
delineating the boundaries of model behaviour for the PDE. In order to clarify this, we have computed
two-parameter bifurcation diagrams for the ODE model, setting Bc “ B0

c or Bc “ p1 ` EqB0
c , and

then compared the resulting bifurcation diagrams to the regimes of behaviour obtained by the PDE
model in [4]. In Fig. 4.9, we show the boundaries of the two-parameter bifurcations that match those
identified by the PDE model as solid lines whereas the ones that do not match as thin dashed lines. The
most relevant boundaries have been determined by two methods: (i) by extensive testing of the PDE
model behaviour on both sides of each boundary determined by the two-parameter bifurcation, and (ii)
by comparison to the two-parameter regimes identified in [4] (see thick dashed lines in Fig. 4.9). As
can be seen, the PDE model changes its behaviour at boundaries defined by both values of Bc; namely,
B0

c (whose bifurcations are denoted without tilde, e.g., HB1) and p1 ` EqB0
c (whose bifurcations are

denoted with tildes, e.g., ĄSN2). In other words, the underlying dynamics of the PDE model is a hybrid
of the two. As we have seen in Section 4.3.1, the stalled equilibrium crosses B “ B0

c at d0. Therefore,
for d ď d0, regimes of behaviour associated with Bc “ B0

c are relevant in determining outcomes of
the PDE model, while for d ą d0, we find that the boundaries associated with Bc “ p1 ` EqB0

c are
relevant in delineating the regimes of behaviour (see Fig. 4.9). The exception to this rule is the bistable
regime, whose left boundary is defined by ĆSN2 despite having d ă d0.
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Figure 4.9: Two-parameter bifurcations of the ODE model identify the various regimes of behaviour
of the PDE model. Briefly, two-parameter bifurcations similar to that in Fig. (4.3) are computed with
Bc “ B0

c and Bc “ p1 ` EqB0
c . Bifurcations associated with the latter value of Bc are denoted with

tildes (e.g., ĄSN2). Bifurcations which coincide with those identified with the PDE model are depicted
by solid lines while those that do not coincide are depicted by thin dashed lines. The boundaries of the
various regimes of behaviour associated with the PDE model identified in [4] are overlaid as thick grey
dashed lines.

4.5.2 The Effects of Noise in the Stochastic Waving Regime

As we have repeatedly stated in Sections 4.3 and 4.4 with the folded nature of the bifurcation structure,
there exists a parameter regime (labeled stochastic waving regime) where the ODE is very sensitive
to noise. In this regime, deterministic realizations of the model will all converge to the smooth motile
equilibrium, while stochastic realizations will exhibit large excursions that lead to a temporary halt in
protrusion when the magnitude of noise is sufficiently large (see Fig. 4.7). In order to understand how
such dynamics manifest themselves with the PDE model, we investigate here how it behaves in this
parameter regime. While it was previously demonstrated that the PDE model is capable of propagating
a wave of protrusion [4], it is unclear how it will behave in the stochastic waving regime when a single
spatial point is stochastically pushed below the stable manifold of the saddle, transiently blocking
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that single point from protruding. Will the “unexcitedness” of that point spread outwards, leading to
widespread halt in protrusion? Or will the excited state of the neighbouring points simply fill the zone
of depleted B, such that the leading edge will only pause briefly at random points from time to time?

In order to answer these questions, we have implemented the PDE model on a domain of length
L “ 40 with a spatial step ∆x “ 0.1 and a time step ∆t “ 0.01. Time integration of the model
carried out using a second order Adams-Bashforth integrator [16] that can successfully deal with non-
linear reaction terms in a computationally efficient manner. The diffusion-like transport term in Eq.
(1) and the boundary conditions on B are implemented by an appropriate combination of forward and
backward differences for the inner and outer differential operators, respectively.

In the absence of noise, simulations of the PDE model in the stochastic waving regime exhibit a
smooth motile behaviour with the whole domain protruding indefinitely (results not shown). However,
as discussed in Section 4.4.3, once noise is turned on (Ξ0 ě 0.0006), random fluctuations push the
system below the stable manifold of the middle saddle (i.e., the right saddle in Fig. (4.6)) at discrete
points in the domain. This leads to a temporary stalling of protrusion which spreads laterally just
like protrusion does during the initiation of a wave of protrusion (see Fig. 4.10). This indicates that the
transport term Bx

`

Γ´1BxB
˘

in the PDE model can propagate both protrusion initiation and termination
events.

262



4.5 PDE Model Simulations

Figure 4.10: The dynamics of the PDE model in the stochastic waving regime with additive noise.
Here we have used d “ 1.95979, R “ 0.8, and ηA “ ηM “ 0.5 with Ξ0 “ 0.0006. (A) Kymograph
of protrusion velocity exhibits traveling wave behaviour where the temporal duration of protrusion can
be highly variable even within the same wave. (B) Mean protrusion velocity fluctuating stochastically
with respect to time.. (C) Mean auto-correlation function of the protrusion velocity.

4.5.3 Rough Motility

The irregular nature of the protrusions observed here raise the question of whether or not the stochastic
waving regime is related to the “rough” mode of motility described in [4]. In this experimentally
observed mode of motility (as in the waving mode of motility), a wave of protrusion starts from a
single point and spreads outwards producing diagonal stripes in a kymograph that move forward along
the time axis such as in Fig. 4.10A. However, rough motility is characterized by the stochastic halting
of the propagation of a traveling wave of protrusion (i.e., breaks in the diagonal stripes). At low levels
of noise, we do not observe this halting in the stochastic waving regime (see yellow stripes in Fig
4.10A); instead we see stochastically-induced termination event that propagate along the leading edge.
Therefore, we sought to test if the noise magnitude could be adjusted to produce this phenomenon (see
Fig. 4.11). As we increase the noise magnitude, the waves of protrusion become increasingly distorted
with multiple protrusion waves being initiated at the same time (see Fig. 4.11A). By increasing noise
further, we do observe some stochastic halting of protrusion waves, but this primarily occurs due
two adjacent waves colliding with one another (see Fig. 4.11B) and is therefore a consequence of
multiple waves initiating at roughly the same time. If we continue to increase noise, the propagation of
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Figure 4.11: The effect of noise in the stochastic waving regime. Kymographs of protrusion velocity
with R “ 0.8, d “ 1.95979 and (A) Ξ0 “ 1e ´ 1; (B) Ξ0 “ 2e ´ 1; (C) Ξ0 “ 3e ´ 1 ; and (D) Ξ0 “ 1.

protrusion waves becomes less obvious (see Fig. 4.11C), until at very high noise the whole leading edge
protrudes and stalls in a completely stochastic manner (see Fig. 4.11D). The behaviour in this regime
at high noise is characteristic of all other regimes of system (1)-(3) when noise becomes sufficiently
large; propagation of protrusion waves are not observed and the whole of the leading edge is primarily
protrusive.

The behaviour described above is different from what is observed in the stalled and bistable regimes,
where protrusion waves halt due colliding with a region that is in its refractory period. When looking
at a kymographs in these regimes, we see protrusion waves that appear to halt on their own for dif-
ferent values of Θ (see Fig. 4.12A-D). This is much more relevant to the experimentally observed
phenomenon, where protrusion waves propagate for some period of time until they stochastically halt
without colliding with another wave (see Fig. 1F in [4]). Therefore, it is tempting to ascribe experimen-
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Figure 4.12: The effect of noise in (A&B) the stalled regime with R “ 0.2 and d “ 0.7, and (C&D)
bistable regime with R “ 0.02 and d “ 0.7. Kymographs of protrusion velocity with (A) Ξ0 “ 4e ´ 2;
(B) Ξ0 “ 7e ´ 2; (C) Ξ0 “ 5e ´ 2; and (D) Ξ0 “ 8e ´ 2.

tally observed rough motility to these regimes. Indeed, such a conclusion was hinted at in [4], where
the stalled regime was used to produce PDE simulations similar to those displayed in Fig. 4.12.

While the spatio-temporal dynamics of the PDE model evaluated at specific parameter values allow
us to rule out the stochastic waving regime as a candidate for rough motility, to distinguish between
stalled and bistable regime, we turn our attention to population statistics of the modes of motility.
Experimental manipulations in [4] suggest that the parameter regime associated with rough motility
should grow in size as the maturation rate of adhesions R is decreased (see Fig. 1M in [4]). This as-
sumption may be justified by considering the heterogeneity of a population of cells as a set of points
in parameter space (e.g., see coloured ellipses blue and pink in Fig. 4.13 for an illustration in pd,Rq-
space). Plating cells on a substrates of varying adhesiveness corresponds conceptually to varying the
R parameter-value of a population of cells, where substrates with a high (medium) adhesiveness corre-
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Figure 4.13: Qualitative depiction the intercellular heterogeneity in pd,Rq-parameter space. (A) A
population of cells plated on substrates of high (medium) adhesiveness is depicted as a red (blue)
ellipse. By varying the value of the R-parameter of a population of cells, the size of the sub-populations
in each of the five distinct parameter regimes described in Fig. 4.3. (B) Experimentally observed sub-
populations of cells exhibiting waving, smooth motile, and rough motility when plated on substrates
of high and medium adhesiveness. Taken from Fig. 1F in [4].

sponds to a larger (smaller) value of R highlighted by the blue (pink) ellipses in Fig. 4.13. This means
that populations of cells plated on substrates of varying adhesiveness will have differing proportions
of cells in the distinct parameter regimes identified above. Given this perspective, it seems unlikely
that rough motility is produced in the stalled regime, as it shrinks rather than grows with decreasing R.
We therefore conclude based on that argument that the bistable regime is the most compatible with the
rough mode of motility.

4.6 Adhesion Mechanosensitivity

Having analyzed the ODE model in depth and established that the PDE model is capable of propagating
the stalled state across the lamellipodium to halt protrusion, we next sought to modify the model by
incorporating some of the mechanosensitive properties of adhesion complexes. We are particularly
interested in how such modification will alter the shape and size of the parameter regimes for the
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various modes of motility (see Figs. 4.2 & 4.9). There are two effects of force on integrin receptors
which we plan to incorporate: (i) the activation of integrin receptors by force and (ii) the rupture of the
integrin-ligand bond by force. These topics and the mathematical model used to describe them have
been covered extensively in Chapter 1, but it is now worth going into a little more detail about force
generation and transmission in the lamellipodium. As stated in Section 4.2, the membrane begins to
protrude when the barbed actin density is above a certain threshold. The physical basis behind this is
that there is a hydrostatic pressure difference between the inside and outside of the cell (which can be
related to surface tension using the Young-Laplace equation [17]), and that in order for the cell to move
forward, the branched actin network must push with enough force to overcome this pressure difference
(surface tension). The force is produced by the Brownian-ratchet mechanism of actin polymerization
[18]. This occurs when an actin filament has its branched tip resting against the cell membrane, and the
filament subsequently grows by adding a single actin monomer. This monomer addition is possible due
to transient, thermally induced, fluctuations of the filament tip away from the membrane, and results
in the filament pushing against the membrane with some small force [19]. Thus, if there is sufficient
density of branched actin tips and actin monomers at the leading edge, the polymerization force may
overcome the surface tension and the leading edge will move forward. All of this assumes that the actin
filament does not move backwards as result of the polymerization force, implying that there is some
balancing force that keeps the filament in place. This balancing force is provided by the substrate which
the cell is migrating on, and is transmitted to the filament through nascent adhesions. These nascent
adhesions serve as anchor points for the rigid branched actin network by mechanically coupling the
substrate and the polymerizing actin network that extends to the leading edge [20].

In Chapters 1 and 2, we saw numerous examples of how mechanical force can influence adhesion
dynamics and stability. Notably, integrin receptors, the basic building blocks of cell-extracellular ma-
trix adhesions, exhibit a „5,000-fold increase in binding affinity due to the application of force [21,22].
This suggests that a minimum amount of force may be required to induce the formation of nascent ad-
hesions [23, 24]. Furthermore, mechanical deformation of proteins in the adhesion plaque that links
integrins to the actin cytoskeleton may enhance the disassembly of adhesions at high force values. This
deformation may either directly reduce the binding affinity of proteins in the plaque, or may expose
otherwise obstructed domains in the protein to allow for enzymatic degradation of the adhesion. In
either case, the outcome is that adhesions become destabilized at high forces. Thus one may conclude
that the formation and stabilization of nascent adhesions is favoured within some finite range of forces.
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In this Section, we wish to investigate how this mechanosensitivity of adhesions affects the outcomes
of the ODE model described by Eqs. (6)-(8).

4.6.1 Model Extension

In order to to incorporate the transmission of the polymerization force through nascent adhesions into
Eqs. (6)-(8) we will

1. include a variable N ptq to describe the density of nascent adhesions;

2. assume that the force transmitted to nascent adhesions is directly proportional the barbed actin
density B ptq;

3. take the formation rate of nascent adhesions to be a biphasic function of force (i.e., a function of
B ptq, see Fig. 4.14A), where the function increases with force at low forces (reflecting integrin
activation) and decreases at high forces (reflecting mechanically-induced bond rupture and force-
dependent enzymatic activity);

4. assume that, at high forces, the actin-ECM linkage is disrupted, and that, in this scenario, the
polymerization force primarily results in a retrograde motion of the actin network rather than
protrusion of the lamellipodium. (this disruption of the mechanical linkage is generically referred
to as “slippage”, since the actin network slips over the basal membrane in the absence of nascent
adhesions [25]);

5. modify the velocity function in order to account for slippage (see Fig. 4.14B); and

6. modify the model for recruitment of barbed actin tips, B ptq, to the leading edge, as it previously
gave steady states with unbounded magnitude for finite parameter values (e.g., see Eq. (10)).

These modifications constitute a first-pass at extending the model described by system (6)-(8) to in-
corporate mechanical effects on nascent adhesions. Notably, the assumption that force9B ptq is overly
simplistic, but some preliminary analysis suggests that it is valid for B ă Bc (not shown). Moreover,
the non-linear relationships in Fig. 4.14 were chosen such that nascent adhesions “turn-on” at some
B ă Bc and “turn-off” at some B ą Bc. The effect of these choices will require future investigation.
However, the objective of this section is to investigate how these assumptions manifest themselves
in the dynamics of lamellipodial protrusion, not to assess their validity. In order for our results to
remain physiologically-relevant, we have introduced some modifications to Eq. (6), namely, we have
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introduced a parameter Bmax that represents the maximum density of barbed actin density in the lamel-
lipodium. In system (6)-(8), the rate of barbed actin tip production does not decrease at very high values
of B while the capping rate of branched tips drops to zero when A becomes large. This feature leads to
steady states that blow up to infinity for finite parameter values, an outcome that is incompatible with
the non-zero size of actin filaments [26]. Typical filament densities in fibroblasts have been found to
be „ 100 ´ 150filaments{µm [27]; however, to estimate Bmax , we assume a filament diameter of 10
µm [28] and a lamellipodial thickness of 150 nm [27] with a maximum packing fraction of 65% [26]
which yields a maximum barbed actin tip density of „ 975filaments{µm or Bmax „ 10µm´1.

With all of these considerations, we arrive at a new system of ODEs, given by

ϵ
d

dT
B pT q “ p1 ` ηBV q

pB ´ Bmaxq

Bmax

´
B

1 ` AB{p1 ` M ` KBq
` Ξt (21)

d

dT
A pT q “ d ´

p1 ` ηAV ` ηMMV qA

1 ` M ` KB
(22)

ϵ
d

dT
N pT q “ Pb pBqB ´ ϵ pR ` ηMV qN (23)

d

dT
M pT q “ RN ´

`

p1 ´ Ps pBqqθ ` ηMV
˘

M, (24)

where Pb is the force-dependent probability that an integrin on the membrane is bound, and Ps is the
force-dependent probability that actin-ECM mechanical link has been disrupted (see black and grey
lines in Fig. 4.14A, respectively). Our implementation of nascent adhesions (NAs) into the model
mirrors what can be found in [4], but we have additionally taken the rate of formation of NAs to be
proportional to Pb. Moreover, we have modified the degradation rate of mature adhesions to account
for the observation that they grow when the leading edge is stalled due to spreading-induced stalling
of the lamellipodium [29]. This stalling of the leading edge, despite appreciable polymerization rates,
is assumed to be due to slippage of the actin network, where the polymerization force drives the net-
work backwards rather than pushing the membrane forward. This is implemented through a velocity
function, given by

V pBq “

$

’

&

’

%

p1 ´ fsPsq

ˆ

1 ´

´

B0
c

B

¯8
˙

B ą B0
c

0 otherwise,
(25)

where fs P r0, 1s is the fractional reduction in protrusion velocity due to slippage (we use fs “ 0.9 ;
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see Fig. 4.14B).
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Figure 4.14: Force-dependent effects on the extended model, where the barbed actin tip density B is
taken to be a proxy for force. (A) The probability that an integrin is bounded to an extracellular ligand
(Pb, black line) or that the mechanical linkage between actin network and the ECM is disrupted due
to slippage (Ps, grey line). (B) The velocity function defined by Eq. (25) accounts for slippage by
reducing the protrusion velocity at high values of B (force).

Most of the modification to the model relate, in some way or other, to the non-linear function Pb.
This function accounts for the activation of integrins at low force magnitudes and the disruption of the
adhesion at high force magnitudes, and should generically be a unimodal function. We have developed
a thermodynamic framework that can produce such functions, but its formulation is currently beyond
the scope of this thesis. In order to produce a function that works well with the other parameters of the
model (see Table 4.1), we have used this thermodynamic framework to obtain a function, given by

Pb pBq “

”

1 ` 15.64 exp
`

´ p3.69 ` 2.21275BqB
˘

`0.1789 exp
`

´ p2.214 ` 2.21275BqB
˘

`145.1679 exp
`

p´3.69 ` 0.432178Bq ˚ B
˘

ı´1

.
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We have also used this function to also determine an expression for Ps, given by

Ps pBq “

$

&

%

P0´PbpBq

P0
B ě 4.5 µm´1

0 otherwise,

where P0 “ Pb

`

4.5 µm´1
˘

. This makes Ps a monotonically increasing function of B that increases at
the same time that Pb decreases due to slippage (see Fig. 4.14A). Finally, we have also modified the
dynamics of barbed actin tip recruitment in order to account for the physical limits on actin tip density.
Without such considerations, the stalled and smooth motile equilibrium will become infinite for some
values of d (e.g., Eq. (10) as d Ñ 1). With these modifications, the stalled equilibrium no longer blows
up at finite parameter values; indeed, the stalled equilibrium for system (21)-(24) has a B-value given
by

B˚
“

pd ´ 1qBmax ´ 1 `

b

`

pd ´ 1qBmax ´ 1
˘

2 ` 4dBmax

2d
.

4.6.2 Bifurcation diagrams for the extended model

In order to assess how the modified dynamics change the model outcomes, we perform one-parameter
bifurcation analysis on system (21)-(24). Since most of the bifurcation points for the extended model
are the same as those for system (6)-(8), we will use the same terminology when applicable. For small
values of the adhesion maturation rate, R, the bifurcation structure is nearly identical to that of system
(6)-(8) with the model exhibiting either a bistable (not shown) or a waving regime that terminates at
a homoclinic very close to SN2 (see Fig. 4.15A). However, unlike system (6)-(8), we can see that the
protrusion velocity of the smooth motile equilibrium asymptotically approaches V “ 1 ´ fs (see Fig.
4.15C). For sufficiently large values of R, we observe the appearance of two saddle-node bifurcations
on the smooth motile equilibrium (SN3 and SN4; see Fig. 4.15B), generating as many as two regions of
bistability. The novel bistable regime (dSN2 ă d ă dSN3, bistable II) lies between two stable branches of
the smooth motile equilibrium with one branch exhibiting a roughly constant velocity V « 1´fs, while
the other exhibits a non-zero velocity that may vary significantly (see Fig. 4.15D). For dSN2 ą dSN4,
there is another region of bistability between the waving solution and the smooth motile equilibrium
(dSN4 ă d ă dSN2, bistable III). A similar region of bistability existed for system (6)-(8), but its size
became infinitesimally small as λ Ñ 0. The reason this bistable region is significantly larger now is
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due to the existence of SN4, a bifurcation point that extends further to the left, causing the smooth
motile equilibrium to overlap with the waving solution.

272



4.6 Adhesion Mechanosensitivity

A

HB1
SNP

HB2

HM1

SN1

SN2

HM2

Waving

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
d

3.0

3.5

4.0

4.5

5.0

5.5

6.0

B

B

HB1

HM1SNP

SN1

SN4

SN2

SN3

0 5 10 15 20 25
d

0

1

2

3

4

5

6

7

8

9

10

B

Bistability II

Bistability III

Waving

C

HB2

SN1

SN2

Smooth Motile
 Equilibrium

HM2HM1

HB1

Stalled
 Equilibrium

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
d

0.0

0.2

0.4

0.6

0.8

V

1-fs

D

SN1

HM1

HB1

SN4

SN3

SN2

0 5 10 15 20 25
d

0.0

1-fs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V

Figure 4.15: The bifurcation diagram of actin barbed end density B (A&B) or the mean velocity V̄
(C&D) with respect to the scaled VASP delivery rate d at two different values of the scaled nascent
adhesion maturation rate: (A&C) R=0.01 and (B&D) R=0.5. Black solid (dashed) lines indicate stable
(unstable/saddle) branches of equilibria; blue solid (dashed) lines correspond to branches or envelopes
of stable (unstable) limit cycles. (A&C) For small values of R, the branches of equilibria are identical to
the original ODE model (compare panel A to Fig. 4.2A). However, due to the use of Eq. (25) the mean
velocity does not tend to 1, but asymptotically approaches V̄ “ 1 ´ fs as can be seen from the dotted
black line in panel C. (B&D) For sufficiently large values of R, two new saddle-node bifurcations
(SN3 and SN4) appear and split the smooth motile equilibrium into two stable branches that coexist to
produce a novel bistable regime (bistable II). Within this bistable regime, the “upper” stable branch of
the smooth motile equilibrium has a velocity which is nearly constant with a value of 1´ fs, while the
“lower” stable branch of the smooth motile equilibrium has a much more variable velocity as can be
seen in panel D. The waving solution also coexists with the upper stable branch of the smooth motile
equilibrium; this produces another bistable regime (bistable III).
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4.6.3 Two-Parameter Bifurcation

In order see how our extension of the model will behave in a PDE setting, we have continued all the
bifurcation points discussed in Fig. 4.15 within the (d,R)-plane of parameter space (see Fig. 4.16).
For very small values of R and close to HB1 (i.e., in the vicinity of BT1), we have a two-parameter
bifurcation diagram that is nearly identical to that for system (6)-(8) (compare Fig. 4.16A to Fig. 4.3).
That is, the 5 distinct regimes identified in Section 4.3.3 are still present and are delineated by the same
boundaries at this local scale. However, as we zoom out of BT1, additional regimes appear, including
the two novel bistable regimes discussed in the previous section (see Fig. 4.16B). Notably, there is a
cusp bifurcation point CP1 formed by SN3 and SN4. The two bistable regimes are contained between
these two saddle-node bifurcations: (i) The bistable regime between the two branches of the smooth
motile equilibrium (bistable II) emerges from CP1 and is bounded to the right by SN3 and to the left by
either SN4 or HM1 («SN2). (ii) The bistable regime between the stable oscillatory solutions and the
smooth motile equilibrium (bistable III) emerges from the intersection of SN2 and SN4 and is bounded
to the right by HM2 («SN2) and to the left by SN4.

Thus, for system (21)-(24), the boundaries of the waving, stochastic waving, and smooth motiles
regimes differ from what was seen in Fig. 4.3. In particular, we find that (i) the waving regime is
bounded to the left by SNP and to the right by HM1 or SN4; (ii) the stochastic waving regime is
bounded to the left by HB1, from the top by HM1, from the bottom by SN1, and to the right by SN4;
and (iii) the smooth motile regime is bounded to the left/top by SN1 or SN3 and for a small segment
between SN1 and SN3 it is bounded to the right by SN4. Finally, we observe a Bogdanov-Takens
bifurcation, BT2, where HB2 merges with SN2. However the HB2 and HM2 bifurcation points exist
in a region of negligible size at the boundary between the waving and stochastic waving regimes.

4.6.4 Rough Motility

As discussed in Section 4.5.3, using system (6)-(8) as the basis of the PDE model, we identified the
bistable regime as being associated with the rough mode of motility observed experimentally in [4].
Using the extended model given by system (21)-(24), we have identified two novel bistable regimes.
Due to the bistable nature of these two novel regimes, one would expect that they would be associated
with spatio-temporal patterns of protrusion that are compatible with rough motility. To check for this,
we have implemented system (21)-(24) as a PDE using the methods described in Section 4.5. The
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Figure 4.16: Two-parameter continuation of the bifurcation points in Fig. 4.15. Co-dimension 2 bifur-
cation points are represented with an open circle symbols, whereas co-dimension 1 are represented as
lines. (A) In the neighborhood of to BT1, we observe the same five regions as those seen in Fig. 4.3:
stalled, bistable (i.e., bistable I), Waving, the stochastic waving, and smooth motile. (B) Further away
from BT1, two novel bistable regimes contained between the saddle-node bifurcations SN3 and SN4
emerge from the cusp bifurcation point CP1. The bounds of panel A are roughly indicated by the red
square in panel B.

kymographs computed using the model for varying levels of noise in the regimes bistable II and III
are displayed in Figs. 4.17 and 4.18, respectively. As suggested by Fig. 4.17, bistable II produces
patterns of protrusion very similar to the bistable regime of system (6)-(8). On the other hand, in the
bistable III regime, the spatio-temporal dynamics are significantly different from what is observed both
experimentally and in the other regimes (see Fig. 4.18). Notably, the oscillatory nature of this regime
appears to be more prominent than that in the bistable or stalled regime.

The original derivation of system (1)-(3) in [4] was done for keratocytes, which primarily produce
nascent adhesions and very few mature adhesions. Other cell types, such as CHO-K1 cells have much
more prominent populations of mature adhesions [29], a finding that may be simplified within the
context of this model by by assuming they have a significantly larger value of R. With our extended
system (21)-(24), we still observe the five distinct modes of motility of the original system at very small
values of R and it is only when R becomes significantly larger that we observe these novel bistable
regimes. Therefore, it is possible that keratocytes simply do not have a large enough R-value land on
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those regions of parameter space (i.e., their rough motility is due to bistable I); whereas other cell types
may have sufficiently large values of R, allowing them to exhibit the dynamics observed in the bistable
II and III regimes. In order to test such a hypothesis, further analysis of experimental data from other
cell types (e.g., CHO cells) is required. A preliminary test would be to look at a population of cells
to see if the sub-population exhibiting rough motility can be expanded by increasing R, a feature that
distinguishes bistable II and III from bistable I .
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Figure 4.17: The effect of noise in the bistable II regime. Kymographs of protrusion velocity with
R “ 0.2, d “ 7.35, and (A) Ξ0 “ 1e ´ 2; (B) Ξ0 “ 4e ´ 2; (C) Ξ0 “ 5e ´ 1; and (D) Ξ0 “ 1.

4.7 Discussion & Future Directions

We have analyzed in detail the underlying dynamics of a model of traveling waves of protrusion that
arise due to actin polymerization in the lamellipodium. By underlying dynamics, we specifically mean
the spatio-temporal PDE model (1)-(3) without its spatial term Bx

`

Γ´1BxB
˘

, which yields a simpler

276



4.7 Discussion & Future Directions

0 50 100 150 200 250 300 350 400

Time (s)

5

10

15

20

25

30

35

40

S
pa

ce
 (

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350 400

Time (s)

5

10

15

20

25

30

35

40

S
pa

ce
 (

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350 400

Time (s)

5

10

15

20

25

30

35

40

S
pa

ce
 (

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350 400

Time (s)

5

10

15

20

25

30

35

40

S
pa

ce
 (

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A B

C D

Figure 4.18: The effect of noise in the bistable III regime. Kymographs of protrusion velocity with
R “ 0.2, d “ 5, and (A) Ξ0 “ 8e ´ 3; (B) Ξ0 “ 1e ´ 2; (C) Ξ0 “ 2.5e ´ 2; and (D) Ξ0 “ 6e ´ 2.

system of ODEs. This spatial term appears at first to be a diffusion-like term as it contains the second
spatial derivative of the barbed actin tip density B. However, since Γ “ Γ pBq, this spatial transport
term is somewhat more complicated than that. In fact, it represents the advective transport of barbed
actin tips due to polymerization which is not obvious from its form in Eq. (1) [30]. Therefore, our
analysis of the ODE system gives us insight into the intrinsic dynamics of the system independent of
any spatial considerations, where we may assume that any significant spatial gradient in B is advected
(i.e., transported with a constant speed) along the leading edge to produce traveling waves of elevated
or depleted B. Anecdotally, we have observed that this gradient must be sufficiently steep to propagate
with appreciable speed, and investigation of wave-speed should be pursued further to gain a more
complete understanding of the model.

The primary objectives for this study were to (i) decipher the excitability properties of the ODE
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model (6)-(8), (ii) determine the bifurcation points that define the boundaries of all the regimes of
behaviour exhibited by the PDE model, and (iii) understand the model’s connection to rough motility
in more detail. Through this analysis, we successfully identified in both the ODE and PDE models
the three original regimes of behaviour found in [4], namely, stalled, waving and smooth motile, and
discovered two new ones, including bistability and stochastic waving regimes.

The stochastic waving regime was initially thought to be a good candidate for explaining rough
motility seen in fish keratocytes [4], since it appeared to be very sensitive to noise. However, after fur-
ther examination of this regime in the PDE model, our results revealed that it predominantly produces
traveling waves of protrusion that are not compatible with rough motility (see Fig. 4.11) and it had an
inappropriate shape in pd,Rq-space (see Fig. 4.3.3). On the other hand, the stalled and bistable regimes
fared much better in their ability to produce spatio-temporal dynamics compatible with rough motility.
Interestingly, the shape of the bistable regime in pd,Rq-space was found to be the most compatible
with the experimentally obtained population statistics (see Fig. 4.13) when assessing population shifts
in parameter space due to a decrease in the maturating rate of NAs (assumed to be reflective of less
adhesive substrates). We do wish to note here that noise has been treated as an extrinsic parameter than
can be varied from arbitrarily small values to arbitrary large ones. However, a more justified approach
would be to determine the noise magnitude from the intrinsic dynamics of the chemical reactions [14].
Perhaps with such considerations, the stochastic waving regime may behave differently. However, as it
stands, we cannot reconcile the stochastic waving regime with rough motility without applying some
rather contrived assumptions on noise magnitude.

One peculiar feature of the ODE model analyzed in this study is its ability to produce canard orbits
governed by a folded saddle. These canard orbits were investigated here by analyzing both the layer
problem and the desingularized reduced problem. The layer problem is formed by assuming that the
slow variables are constants, while the desingularized reduced problem is obtained initially by setting
the fast variables to steady state (forming the reduced problem) followed by rescaling time to remove
singularities. It is important to point out here that the equilbria of the layer problem define the critical
manifold of the system. Applying this approach allowed us to characterize the folded singularities
responsible for generating the observed canards and to identify how they are generated.

Due to the ambiguity in the definition of critical barbed end density Bc introduced in Eq. (5), we in-
troduced a new definition of the velocity V in Eq. (9) that resolved the issue of continuity. Nonetheless,
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Eq. 5 shows that Bc can attain two different values: B0
c and p1`EqB0

c . Determining which one of these
is more critical in delineating the dynamics of the PDE model was one of the questions that we tackled
in this study. Given that each value of Bc can produce its own set of bifurcation points in the parameter
space defined by R and VASP delivery rate d, we decided to apply the continuation method using both
sets of bifurcation points and compare the results to the boundaries of the regimes of behaviour ob-
tained by the PDE model. Our results showed that, when plotting the two-parameter bifurcations of the
ODE model in pd,Rq-plane, some boundaries of the three original parameter regimes identified in [4]
coincided with those defined with the lower value of Bc while the others coincided with those defined
by the other value. This highlights the importance of using the formalism introduced in Eq. (9) and the
relevance of simplifying the PDE model into an ODE model to decipher dynamics more precisely.

The dynamics of NA maturation in the PDE model were described using a simplified ODE formal-
ism that accounts for the birth, decay and drift of NAs but neglects the effect of mechanical force on
the system, an important aspect of NA dynamics [31]. By incorporating adhesion mechanosensitivity
into the model through the use of system (21)-(24) and the velocity function Eq. (25), we discovered
two novel bistable regimes (see bistable II and III regimes in Fig. 4.16). Interestingly, by simulating the
behaviour of the PDE in this regime, we found spatio-temporal dynamics which are compatible with
rough motility. What is more, the size of this regime expands with increasing R, which is at odds with
experimental population statistics for keratocytes. On the other hand, we do not expect keratocytes to
have R that are large enough to visit these novel regimes, but it seems likely that other cell types might.

While the results for system (21)-(24) are very interesting findings, we are far from being able
to claim that they are indeed physiologically-relevant. Notably, we lack direct experimental evidence
for most of the added assumptions in system (21)-(24), as they have arisen from primarily theoretical
consideration which may or may not be relevant to the motile fish keratocytes under study. In particular,
the numerical value of the parameter fs which represent the fractional decrease in protrusion velocity
due to slippage was not estimated from any experimental evidence. The effect of this parameter value
on model outcomes should be tested carefully. Furthermore, the nonlinear function Pb was chosen so
that its increasing phase is below B0

c while its increasing phase is above p1`EqB0
c . The effect of these

assumptions should be investigated further and a biophysical framework should be developed to assess
the validity of these assumptions. Nonetheless, from our perspective it is likely that the implementation
of Pb described above produces the richest possible dynamics for the model, and thus we would not
expect any notable bifurcation structures to come out of further investigations (i.e., they should be done

279



4.7 Discussion & Future Directions

for completeness).

Appendix: Routh-Hurwitz Criterion

The characteristic polynomial for system (6)-(8) evaluated at the stalled equilibrium (i.e., Eq. (10))
may be expressed as P psq “ s3 ` a1s

2 ` a2s ` a3, where

a1 “

θ
´

xϵ
`

K ` x2
˘

` R ` x
¯

` θ2pK ` xq ` Rx2ϵ

θpK ` xq ` R

a2 “

θx
´

θ ` ϵ
`

θK ` R ` pθ ` 1qx2
˘

¯

θpK ` xq ` R

a3 “
θ2x3ϵ

θpK ` xq ` R
,

with x “ 1 ´ d. Let z “ a1a2 ´ a3, in order to satisfy the Routh-Hurwitz stability criterion we
must show that a1, a3 ą 0 and z ą 0. Assuming that all model parameters are positive, the first two
conditions are satisfied under the constraint x ą 0 ô d ă 1. Therefore we must show that z ą 0 with
z is given by

z “
θx

pθpK ` xq ` Rq2

«

ˆ

θ
´

xϵ
`

K ` x2
˘

` R ` x
¯

` θ2pK ` xq ` Rx2ϵ

˙

´

θ ` ϵ
`

θK ` R ` pθ ` 1qx2
˘

¯

´ θx2ϵpθpK ` xq ` Rq

ff

.

Notice that z ą 0 if the term inside the square brackets are positive, and that this term may be
decomposed as sum of one positive term (the first one) and one negative term (the second one). Thus
we must simply show that the first term is larger than the second. Expanding in θ, the first term is given
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by

R2x2ϵ2 ` Rx4ϵ2

`θ

«

KRx2ϵ2 ` x2ϵ
´

xϵ
`

K ` x2
˘

` R ` x
¯

` Rϵ
´

xϵ
`

K ` x2
˘

` R ` x
¯

` Rx4ϵ2 ` Rx2ϵ

ff

`θ2

«

x2ϵ
´

xϵ
`

K ` x2
˘

` R ` x
¯

` Kϵ
´

xϵ
`

K ` x2
˘

` R ` x
¯

`RϵpK ` xq ` xϵ
`

K ` x2
˘

` R ` x ` x2ϵpK ` xq

ff

`θ3
“

x2ϵpK ` xq ` KϵpK ` xq ` K ` x
‰

,

and the second term is given by
´θ2x2ϵpK ` xq ´ θRx2ϵ.

Observe that both of the negative terms in the second expansion have a corresponding positive term in
the first expansion. Namely, the first (second) term of the second expansions cancels with the last term
on the fourth (second) line of the first expansion. Thus, we have z ą 0 provided x ą 0 and therefore
the Routh-Hurwitz stability criterion allows us to conclude that d ă 1 is a necessary and sufficient
condition for stability of the stalled equilibrium.
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Chapter 5

Final Conclusion & Future Work

This thesis has covered a broad range of topics in the field of cellular motility. In Part I, we focused
on the mechanochemical properties of the integrin receptor, the building block of integrin-based ad-
hesions, and how these properties manifest themselves in the beahviour of adhesions. In Chapter 1,
we reviewed the literature of experimental findings that underlie the current understanding of integrin
receptor activation and its mechanosensitive properties. We also saw how these findings have been
incorporated into a number of biophysical models that describe both the equilibrium and dynamic
properties of integrin-ligand bonds. These models were described within a common framework, based
on the concept of thermodynamic chemical potentials. Two prominent descriptions of receptor-ligand
bonds, that differ in how they respond to increases in applied force, have been proposed and used for
integrin receptors, slip-bonds and catch-bonds; slip-bonds have a bond rupture rate (chemical potential
difference) that increases monotonically with applied force, whereas catch-bonds have a rupture rate
(chemical potential difference) that decreases with force at low values of applied force and then reverts
to a slip-bond behaviour beyond some optimal level of force. We then showed how the properties of
the individual receptor-ligand bonds have been integrated into two classes of mathematical models of
adhesion assembly/disassembly. These classes of models either describe adhesions as a discrete col-
lection of dynamically rebinding bonds [ES04b, NS13], or, for larger adhesions, as a thin deformable
film characterized by both its continuum mechanical properties and the chemical potential difference
of adaptor proteins being adsorbed onto the film [NBS08].

One experimental finding that both classes of model sought to explain is the observation that
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integrin-based adhesions grow in repsonse to increased force [BSR`01, RZB`01]. For the models de-
scribing collections of discrete bonds, this was achieved by using a catch-bond model for the individual
bonds [NS13]. Such assumptions produced adhesions with a number of integrin-ligand bonds that in-
creases with applied force. However, since this class of model did not account for geometry, it was un-
clear how the physical size of adhesions would vary. On the other hand, with the continuum-mechanics-
based models, the force-dependent growth was produced by incorporating the force-sensitive activation
of integrins through a decrease in the chemical potential of adaptor adsorption. This class of model fo-
cused on linear adhesions, showing that they may grow or shrink at each end. According to this class
of models, whether an adhesion tip will grow or shrink in size is determiend by a balance of the energy
required to mechanically deform the adhesion with the chemical potential differences associated with
integrin activation and adaptor protein adsoprtion. We note that integrin activation reflects the same
structural changes that underlie the catch-bond behaviour, i.e., they are two facets of the same bio-
physical phenomenon [LKZ16]. By accounting for all these phenomena, the continuum models were
able to explain the existence of sliding FAs [BHIWH01], where, for certain force ranges, FAs grow at
one end while they shrink at the other. Thus, both classes of models suggest that adhesion assembly
and disassembly dynamics can be modulated by force through a shift in the balance of binding and
unbinding of molecular bonds, either extracellularly (i.e., the integrin-ligand bond) or intracellularly
(i.e., the integrin-adaptor bond).

In Chapter 2, we presented a novel biophysical model of nascent adhesion (NA) assembly and
disassembly. This biophysicist model was formulated to capture a non-constant density of integrins that
was inferred from experimental distributions of NA-area and molecular counts. More specifically, using
a novel data analysis technique termed Conditional Expectation Analysis (CEA, see Section 2.5.2),
the shape of these distributions was found to suggest that the density of integrins is a monotonically
increasing function of their size, and that this function saturates at a value of „ 17, 000 integrins{µm2.
Interestingly, this saturating density corresponds to a theoretical maximal packing density of integrins
in their active conformation. The observation that integrins tend to diffuse freely inside adhesions
[ROS`12,TWG`18] thus suggests that a significant portion of integrins inside NAs exist in their denser
inactive conformation, a prediction that is in agreement with thermodynamic measurements [LSX`17].

The finding that integrin density is variable ruled out the notion that NA-area is set by the number
integrins they contain, a common assumption in models of adhesions [NS06,BS06,OTAG10,SS10]. In
order to predict NA-area, we instead assumed that it is determined by the number of adaptor proteins

288



Final Conclusion & Future Work

in the adhesion plaque. This plaque helps to organize integrins into adhesions by locally slowing their
diffusion as well as increasing their likelihood of binding to extracellular ligands [ROS`12,TWG`18].
We furthermore proposed that integrins aid in the organization of adhesion plaque by tethering cy-
tosolic adaptor proteins to the membrane. Thus, we modeled the interactions between integrins and
adaptor proteins as a feed-forward system that results in the aggregation of both proteins into NAs, a
phenomenon we termed co-aggregation. This was achieved by considering the area of a NA as well as
the number of integrins it contains to be independent quantities, where the dynamics governing these
two variables depend on one another. Moreover, we implemented the tethering of adaptor proteins by
integrins in such a way that it matches the results obtained from CEA (see Fig. 2.2A).

By decoupling NA-area and integrin molecular count, we were then able to investigate NA assem-
bly dynamics under various mechanical conditions. Interestingly, we found that under fixed load (i.e.,
the total force applied to the adhesion), NAs did not assemble for all but the smallest loads, whereas
they could much more readily assemble under conditions of fixed stress (i.e., the total force applied
per unit area of the adhesion). Such a prediction was not possible using previous models of adhesions
as they either did not have a well-defined area or assumed that integrin-density was a fixed quantity;
in both cases, the force per bound molecule, set by a chosen initial condition, determines whether
the adhesion will assemble or disassemble. As discussed in Chapter 1, these limitations on model-
predicted adhesion dynamics are due to the presence of a saddle fixed-point that separates the stable
equilibrium representing an adhesion with non-zero size from the trivial equilibrium containing zero
molecules. However, our model was constructed to posses a non-zero quasi-steady state (QSS) that
acts as an attractor when starting from the trivial equilibrium. Stochastic fluctuations around this QSS
eventually push the system past the stable manifold of the saddle fixed-point and a stable adhesion
subsequently assembles. Our model thus gives insight into the dynamics of NAs’ spontaneous self-
assembly, whereas previous models were primarily successful in explaining the dynamics of disassem-
bly after an adhesion has already been formed. Together, these findings contribute to the understanding
of the spatial organization and molecular-level dynamics of NAs as well as the mechanical conditions
that allow for their assembly.

In Part II, we turned our attention to the cell-scale phenomena of cellular motility and migration.
We specifically focused on spatio-temporal dynamics of front-to-rear polarization and membrane pro-
trusion, with an emphasis on biochemical feedback from adhesions onto these processes. In Chapter
3, we began by outlining a framework describing chemical reactions, both in a spatially homogeneous
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well-mixed (WM) setting and a spatially inhomogeneous reaction-diffusion (RD) setting. We empha-
sized mathematical formalisms for systematically imposing the conservation of matter, with or without
quasi-steady state (QSS) assumptions. This was first done by using a deterministic macroscopic per-
spective, where molecular-level fluctuations are averaged out; This formulation was then extended to
describe the stochastic simulation algorithm (SSA) that produces exact stochastic realizations of the
chemical master equation, a microscopic description of chemical reactions in the WM setting. We
furthermore presented a computationally efficient spatial implementation of the SSA that uses an ap-
proximate stochastic diffusion algorithm and conserves matter in the presence of QSS assumptions.
Continued development of this algorithm is underway, where our goal is to build a tool that will au-
tomatically produce high-performance stochastic RD simulation code from human-readable chemical
reaction notation.

The motivation for providing such a framework and developing the stochastic computational code
was to be able to investigate the mutual antagonism between the two main RhoGTPases that drive cel-
lular motility, Rac and Rho. We first reviewed how, in a WM setting, a model of mutual antagonism can
exhibit bistability, where two stable chemical equilibria coexist. These equilibria were termed induced
and uninduced states, and corresponded to either protrusive or contractile cellular states, respectively.
We next used the extension of this model, presented in [TBBK18], that includes feedback from paxillin
onto the mutual inhibition of Rac and Rho, to show that changes in the paxillin phosphorylation rate
can be used to reversibly switch between the induced and uninduced states.

By considering the same models in RD setting, we showed that they can produce stable spatially
inhomogeneous patterns through a pattern-formation mechanism known as wave-pinning. These pat-
terns can be understood as corresponding to a front-to-rear polarized cell where one region is protrusive
(contractile) defining the cell-front (cell-rear). In order to characterize the pattern-formation capacity
of the RD models, we applied local perturbation analysis (LPA) to them. Without paxillin, our results
demonstrated that a bistable WM system produces LPA diagrams that are considerably more complex
than what has typically been reported in the literature, suggesting that they can produce rich dynamics
which remain incompletely understood. We then performed LPA on the extended model, using paxillin
phosphorylation rate as a bifurcation parameter. By comparing the results of LPA to spatio-temporal
simulations, we discovered a, seemingly unbounded, parameter regime that exhibits polarization pat-
terns that are at odds with the predictions of LPA. This was surprising, as LPA usually yields, at least
approximate boundaries, for the parameter regimes that produce different types of polarization. In or-
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der to partially reconcile the observed pattern formation with the mathematical theory behind LPA, we
extended it to produce a post-hoc analysis methodology termed pinned-wave analysis (PWA), that can
be better reconciled with the outcomes of the spatio-temporal simulations.

A primary objective of this research was to determine how paxillin phosphorylation affects cell
motility and migration. While its downstream effects on adhesion dynamics are likely to increase
general motility by shifting adhesion populations towards small dynamic NAs and FCs [NWB`06,
ZBMKG07], its effects on Rac/Rho mutual inhibition are less straightforward to understand. For ex-
ample, in [TBBK18], it was reported that polarization disappears at very high paxillin phosphorylation
rates. However, here we used spatio-temporal simulations to demonstrate that polarization can indeed
be triggered when phosphorylation is very high. We also demonstrated that the loss of polarization
observed in [TBBK18] was likely due the applied perturbation being insufficient for triggering po-
larization. Thus, while paxillin phosphorylation may enhance the mutual antagonism that results in
polarization, excessive phosphorylation seems to make it harder to trigger polarization.

In order to see how this affects cellular motility, we then coupled these spatio-temporal simulations
to the Cellular Potts Model (CPM), producing time-varying domains that protrude and contract in a
way that is consistent with the effects of RhoGTPases. The results of such simulations showed that
cells can have multiple protrusive regions which may compete and arrest the movement of the cell. As
the paxillin phosphorylation rate was increased, the proportion of cells in an arrested state decreased
and simple front-to-rear polarization was increasingly favoured. This demonstrates that paxillin can
increase motility through its effects on RhoGTPase signaling, independent of its effects on adhesions.

There are a number of interesting future directions for this work. Firstly, the results of the CPM-
based simulations show that cells tend to exist in two different motility states, arrested or motile,
and can switch from arrested to motile. This phenomenon is consistent with many observations of
CHO-K1 cell motility, where studies typically focus on those that are motile. The dynamics of state
switching in simulations remains poorly understood and incompletely characterized. For example, we
do not know if cells in the motile state exhibit switching to the arrested state, or if the motile state
exhibits increased compared to the arrested state. These questions should be addressed by more in-
depth analysis of simulations and larger sample sizes. Furthermore, in Table 3.1, we identified 6 distinct
parameter regimes using LPA, whereas we have performed only CPM simulations on regime III1. The
motility behaviour produced in the various regimes, in particular regimes III-V, should be studied in
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detail in order to understand the richness in polarization suggested by LPA diagrams.

A significant phenomenological issue with the model presented in [TBBK18], when considered
in a RD setting, is that paxillin phosphorylation was assumed to occur homogeneously throughout the
cell. When coupled to the CPM, this modeling choice has the unintended outcome that cells can exhibit
patterns of RhoGTPase activity where Rac is elevated in the middle of a migrating cell. Such a pre-
diction is at odds with nearly all publications on the RhoGTPase signaling during motility. In reality,
paxillin is phosphorylated by proteins that are enriched in the vicinity of adhesions, and thus its down-
stream effects on Rac activation should be expected to occur near the protrusive regions of the cell that
act as sources of NAs. The model in [TBBK18] should be understood as a preliminary exploration of
paxillin-Rac interactions, and a more complete picture could be obtained by incorporating the spatial
distribution of adhesions. The polarization field approach described in [TGRF19] represents a promis-
ing methodology for implementing adhesion dynamics in a way that balances biological-realism and
computational efficiency. However, as a preliminary approach to modeling paxillin phosphorylation
more realistically, we propose the simple logical rule of having paxillin phosphorylation occur only at
boundary lattice points.

Finally, in Section 3.5.3, we also presented a novel analytical methodology, termed PWA, that
explains the large discrepancy between the fixed-points of bistable WM systems and the local limiting
values of wave-pinning patterns observed in RD systems. PWA is effectively a variant of LPA, where
instead of trying to predict if pattern formation occurs, we sought to reconcile the observed pattern
with asymptotic analysis of the RD PDEs. In order to perform PWA, one must obtain an estimate of
the position of the transition between the contractile and protrusive regions of the cell. However, if
one could also describe the dynamics of the transition point, and predict where it becomes stalled (i.e.,
where the wave is pinned), it should be possible to turn PWA into a predictive methodology. A method
for describing the movement of the transition was presented in [Jil09]. However, it was implemented
as an integro-differential equation that requires solving a time-dependent BVP. We believe that this
integro-differential equation and BVP can be simplified to a set of three ODEs through the use of
appropriate interpolant. Preliminary numerical results from the application of this methodology to
system (31)-(36) have shown that its is numerically stable, but that the equilibrium position of the
transition disagrees with PDE simulations. However, in light of what was shown in Section 3.4.1, it is
possible that this discrepancy stems from a problem with model derivations. Further investigation with
a simpler toy model to troubleshoot the methodology is warranted.
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In Chapter 4, we used a previously-published mathematical model of fish keratocyte lamellipodia
to investigate the spatio-temporal dynamics of protrusion that occur after such a cell has become front-
to-rear polarized. These protrusions are driven by interactions between adhesion maturation and actin
polymerization in the branched actin network of the lamellipodium [BAL`17]. In [BAL`17], this
mathematical model was successfully used to explain two motility phenotypes: smooth motility and
traveling waves of protrusion as well as how cells could be switched between the two phenotypes
by inhibiting the activity of the protein VASP. However, a third motility phenotype, rough motility,
remained poorly understood. In order to understand the existence of rough motility, we simplified the
spatio-temporal PDE model to an ODE model and thoroughly analyzed the dynamics of this simpler
model. Bifurcation analysis revealed the existence of two novel parameter regimes, one with bistability
between two stable equilibria and another where the closeness of a stable equilibrium to a saddle fixed-
point allows for small fluctuations to trigger large and long-lived excursions from the equilibrium.

Slow-fast analysis of the model further revealed that its critical manifold has a folded structure with
two attractive sheets separated by a middle repelling sheet. Once the system is pushed from one side of
the repelling to the other, its trajectories quickly tend to an attracting sheet, where they subsequently
spend a significant amount of time. Thus, in both of the newly-identified regimes, when a fluctuation
around a stable equilibrium pushes the system past the repelling sheet, trajectories do not simply relax
back to the equilibrium. Instead they travel away from the equilibrium, producing a significant change
in protrusion rate. Since this type of noise-driven change in protrusion rate was characteristic of the
rough motility phenotype, we hypothesized that one of the newly-identified regimes may be responsi-
ble for producing rough motility. By using spatio-temporal simulations of the model, we determined
that the bistable regime was more compatible with experimental kymographs of keratocytes with the
rough motility phenotype, and that similar results could also be obtained in a stalled regime where cells
are not motile in the absence of noise (as was reported in [BAL`17]). In order to further narrow down
the parameter regime associated with rough motility, we used a two-parameter bifurcation analysis to
explore how the shape of the bistable and stalled regimes change as adhesion maturation rate is var-
ied. Experimental findings in [BLK`11] and [BAL`17] suggest that the proportion of cells exhibiting
rough motility increases as adhesion maturation rate decreases. Interestingly, this population-level be-
haviour is most compatible with the bistable regime, as it increases in size as adhesion maturation rate
decreases.

We next extended the model by incorporating some of the mechanosensitive properties of NAs
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discussed in Chapter 1. This was done to see how mechanosensitive NAs would perturb the spatio-
temporal dynamics of protrusion. When analyzing the ODE simplification of the model, we identified
two new bistable regimes produced by our model extension. Similar to in the original model, one
regime (bistable II) has bistability between two steady states having either a low or high protrusion
velocity, while the other (bistable III) has bistability between a limit cycle and a steady state with low
protrusion velocity. By performing spatio-temporal simulations in the presence of noise, we found that
bistable II produced patterns of protrusion that are reminiscent of rough motility. On the other hand,
bistable III produced patterns of protrusion where a traveling wave moves a short distance along the
membrane until a synchronized wave of protrusion recruits all the non-refractory regions of the mem-
brane. Such behaviour is not typically observed in keratocytes [BAL`17], but synchronized protrusion
of distant regions of the membrane is indeed observed in CHO-K1 cells (e.g., see Supplementary
Movies 3-4 in [CVMZ`08]).

Interestingly, one phenotypic difference between CHO-K1 cells and fish keratocytes is that CHO-
K1 cells have many more mature adhesions than keratocytes; our bifurcation analysis shows that the
bistable II and bistable III regimes can only be attained when cells have a significantly high adhesion
maturation rate than what was used for keratocytes. Therefore, it seems likely that the predictions
coming from our analysis of the extended model are relevant for understanding the motility dynamics
of fibroblast-like cells such as CHO-K1 cells. Such a prediction should be tested experimentally by
generating kymographs of protrusion from CHO-K1 cells and comparing them to model simulations,
as well as subjecting them to the VASP inhibitors used in [BAL`17] to see how their spatio-temporal
dynamics of protrusion can be varied.

All in all, this thesis provides a quantitative framework that helped explain certain features associ-
ated with cell motility ranging from adhesion dynamics to cell polarization through pattern formation.
It provided insights into these systems that would not have been possible without the use of both math-
ematical modeling and computational methods.
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‚ CPM: Cellular Potts Model

‚ Ca2`: Calcium

‚ FA: Focal Adhesion

‚ FC: Focal Complex

‚ LPA: Local Perutrbation Analysis

‚ NA: Nascent Adhesion

‚ ODE: Ordinary Differential Equation

‚ PDE: Partial Differential Equation

‚ QSS: Quasi Steady State

‚ RD: Reaction-Diffusion

‚ WM: Well-Mixed
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